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Introduction

The aim of this thesis is to study and develop the theory of Discrete Duality Finite Volume method
("DDFV" for short) for problems arising in fluid mechanics (namely Stokes and Navier-Stokes
problem). In particular, my interests focus:

• on the study of different type of boundary conditions, such as mixed Dirichlet/Neumann or
outflow boundary conditions;

• on the coupling between DDFV method and the algorithm of domain decomposition.

This dissertation will start with a brief excursus on what is the DDFV method and the reason
why we choose it. I will then give an idea of the general results of the thesis, by describing the
problems we treated, how they have been developed and the main difficulties related to them.

DDFV method

This method enters the class of finite volume methods, that are discretization methods in which
volume integrals are converted to surface integrals, using the divergence theorem. An important
feature of those methods is that they are locally conservative; in fact, surface integrals are evaluated
as fluxes at the boundary of each finite volume and they are conserved from one discretization cell
to its neighbor. This makes finite volume methods quite attractive when modeling problems arising
from fluid mechanics, the derivation of which are precisely based on local balance principles.

Finite volume methods for Stokes and Navier-Stokes problem have been widely studied during
the years. Concerning the Stokes flow, we refer to [EHL06] for a colocated and stabilized finite
volume scheme, [BEH05] for a staggered finite volume scheme, [DE08] for a mixed finite volume/
finite element scheme, [Del07] for an alternative DDFV scheme with a different localization of the
unknowns, [DO15] for a DDFV scheme for the vorticity-velocity-pressure formulation.

Concerning the Navier-Stokes flow, we refer to [BCH00] for a fractional step method combined
with finite volume schemes, [EHL07] for a colocated finite volume scheme, [EH05] for a staggered
finite volume scheme, [Del07] for an alternative DDFV scheme with a different localization of the
unknowns, [DE08, LS17] for a combined finite volume/ finite element scheme, [GHL10] for a finite
volume scheme with explicit time discretization, [CCML17] for a high order finite volume scheme
based on polynomial reconstruction.

DDFV method has been developed since the early 2000’s; the DDFV schemes have been first
introduced and studied in [Her00] and [DO05] to approximate Laplace equation on a large class of
2D meshes including non-conformal and distorted meshes.

A way to consider general families of meshes is to add some unknowns to the problem: we
require unknowns on vertices, centers and edges of control volumes; for this reason, DDFV method
works on (three) staggered meshes. From an initial mesh, called the "primal mesh" (denoted with
M∪∂M), we construct the "dual mesh" (denoted with M∗∪∂M∗), that is centered on the vertices of
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the primal mesh, and the "diamond mesh" (denoted with D) , which is centered on the edges of the
primal mesh; see Fig. 1 for an illustration. The union of primal and dual mesh will be denoted by T.
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Fig. 1 DDFV meshes on a non conformal mesh: primal mesh M∪∂M (blue), dual mesh M∗ ∪∂M∗

(red) and diamond mesh D (green).

DDFV method for Stokes and Navier-Stokes problem leads naturally to locate the unknowns of
velocity and pressure in different points; the velocity unknowns are associated to each primal and
dual volume, while the pressure unknowns are located on each diamond. So DDFV enters the
class of staggered methods. This is an usual technique for incompressible flows: one of the best
known schemes is the MAC (Marker and Cell) scheme (see [HW65]), which is built for cartesian
meshes; we can mention also [CR73] for triangular meshes. MAC schemes, as unknowns, consider
the normal components of the velocity (located on the mesh edges) and the pressure (located at
the centers of the cells); with DDFV, we generalize this schemes by considering all the components
of the velocity and extending it to more general meshes. Moreover, it has been shown in [Kre10]
that a DDFV scheme on a cartesian mesh is equivalent to two decoupled MAC schemes written on
two different staggered meshes (except for the boundary).

With this kind of construction, DDFV has two important advantages:

1. it applies to general meshes, such as non-conformal and distorted meshes. It is useful,
for instance, in the domain decomposition setting, where the subdomains can be meshed
separately and non-conformal edges appear on the interface, or simply if one wants to locally
refine the mesh or consider complex geometries;

2. it can reconstruct and mimic at the discrete level the dual properties of the continuous
differential operators. In fact, thanks to this choice of unknowns and meshes, it is possible to
obtain a full approximation of the gradient operator and to maintain the structure of the
continuous problem, such as symmetry, that helps when dealing with nonlinearities.

Another important point is that the implementation of the method has the same difficulties
compared to the classical finite volume schemes: the structure is in fact similar. Just to remark,
all the simulations presented in this dissertation are done in a Fortran90 code.

DDFV method in 2D has been widely developed during the years; in the case of anisotropic
scalar diffusion [DO05, Her00, Her03, BHK10a], convection-diffusion problems [CM10], Div-Rot
systems [DDO07], Leray-Lions elliptic equations [ABH07, BH08], Stokes and Navier-Stokes prob-
lem [Del07, Kre11a, Kre11b, GKL17, GKL19], Maxwell [HLO08], and Cahn-Hilliard/Stokes phase
field model [BN17].
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Some works have been done even in 3D: for anisotropic linear diffusion problems [ABHK12,
CPRT08, ABK08, Her07], for Leray-Lions elliptic equations [CH11], for Stokes problem [KG12].

This motivated us to extend and develop the theory on DDFV methods and this thesis specifically
addresses the following issues

• mixed Dirichlet/Neumann boundary conditions for the Stokes problem

• outflow boundary condition for the Navier Stokes problem

• domain decomposition method for the Navier Stokes problem

In all three cases we establish a complete well-posedness theory of the discrete equations, and
we perform a convergence analysis. The discussion relies on stability properties of the scheme
(expressed by means of Inf-sup condition), and new functional inequalities (Korn’s lemma, trace
lemma...). Everytime, numerical test follow the theoretical analysis.

Stokes problem

We started our work by first considering the Laplace form of the Stokes system in a connected
open bounded polygonal domain Ω of R2:

−∆u + ∇p = f in Ω,
div(u) = 0 in Ω,

+boundary conditions on ∂Ω,

where the unknowns are the velocity u : Ω → R2 and the pressure p : Ω → R; the data f ∈ (L2(Ω))2.
The Stokes system is a PDEs system which arises in fluid mechanics: it is linear and its resolution
is the preliminary step to handle more intricate models, like the evolution problem for the Navier-
Stokes system. In the DDFV setting, this problem was studied in [Del07, Kre11a, BKN15] in the
case of homogeneous Dirichlet boundary conditions, i.e.:

u = 0 on ∂Ω.

Our first goal was to extend the theory known for this problem to the case of mixed Dirichlet/
Neumann boundary conditions, i.e. to study the system:

−∆u + ∇p = f in Ω,
div(u) = 0 in Ω,

u = g on ΓD,

(∇u − pId) n⃗ = Φ on ΓN ,

(1)

where the boundary of the domain Ω is split between ∂Ω = ΓD ∪ ΓN , Φ ,g ∈ (H 1
2 (∂Ω))2 and n⃗ is

the unitary outer normal. We refer to [BF12] for the analysis of the continuous problem (1).

A first natural question is the well-posedness of (1): in the continuous case, this property is
relied to the so-called Inf-sup stability inequality (or LBB). This will be a key point all along the
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dissertation; it is formulated as:

inf
p∈L2

0(Ω)

 sup
v∈(H1

0 (Ω))2

a(v,p)
∥v∥H1∥p∥L2

 > 0, (2)

where a(v, p) =
∫

Ω
p(div(v)) and L2

0(Ω) = {p ∈ L2(Ω) : m(p) = 1
|Ω|
∫

Ω p = 0}; it is equivalent to
the existence of a continuous right-inverse of the divergence operator (see [GR11, BF12]).

This inequality is satisfied by the continuous operators, cf [BBF08]; the analysis of numeri-
cal methods relies on the fact that the underlying discrete operators still satisfy an inequality of
the same type. Thus, with the intention of writing a DDFV scheme for (1), it is necessary to
understand if property (2) holds even in the discrete setting.

In the DDFV framework, we refer to [BKN15]; Inf-sup stability has been proven to hold uncon-
ditionally for conforming acute triangle meshes, non-conforming triangle meshes and chechkerboard
meshes. For some conforming or non-conforming Cartesian meshes, it holds up to a single unstable
pressure mode. Moreover, it has been proven numerically for many other families of meshes (it has
still not been found a mesh that does not satisfy it).

Our first goal was to extend those results to the case of non-homogeneous Dirichlet boundary
conditions (i.e. to the corresponding case of v ∈ (H1

ΓD
(Ω))2 ).

In the following, we denote by vT the velocity unknowns on the centers and vertices of the
mesh and pD the pressure on the edges; ∇D represents the discrete DDFV gradient operator and
divD the discrete DDFV divergence, both defined on the diamond mesh D, while divT stands
for the divergence on the primal and dual mesh (we recall that T = M ∪ ∂M ∪ M∗ ∪ ∂M∗). The
space EΓD

0 corresponds to homogeneous Dirichlet boundary condition on ΓD. By defining a scalar
product on the primal and dual mesh, denoted by [[·, ·]]T, and one on the diamond mesh, (·, ·)D,
we can deduce some discrete Lp norms, ∥ · ∥p. We refer to Chap. I for all the detailed definitions.

The extension of the discrete Inf-sup condition to the non-homogeneous Dirichlet case reads:

Theorem 1 For a given DDFV mesh T that satisfies Inf-sup stability (see Def.I.6.1), there exists
β̃T such that:

β̃T := inf
pD∈RD

(
sup

vT∈EΓD
0

aT(vT, pD)
∥∇DvT∥2∥pD −m(pD)∥2

)
> 0, (3)

where aT(vT, pD) = (divDvT,pD)D and m(pD) =
∑
D∈D

mDpD.

This theorem ensures that ∀pD ∈ RD:

∥pD −m(pD)∥2 ≤ 1
β̃2
T

sup
vT∈EΓD

0

(divDvT, pD)D
∥∇DvT∥2

; (4)

this inequality is a useful tool to prove the wellposedness of the DDFV scheme associated to (1).

One can object that supposing Inf-sup stability property on the mesh can be restrictive, since it
has not been proven uniformly for all meshes; there is a way to avoid this hypothesis, that is to
stabilize the mass conservation equation. It can be done either by adding a linear stabilization or
a stabilization term ∆D inspired by the Brezzi-Pitkäranta method [BP84] in the finite element
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framework. This latter strategy has been previously used in the finite volume framework by
[EHL06, EHL07]; in particular, in the DDFV framework, it was proposed by the author of [Kre11a].
See Sec. I.7 for more details.
Motivated by the work in [Kre11a], we decided to adopt this approach when discretizing (1).

To obtain our scheme, we decided to integrate the momentum equation over all M ∪ M∗ ∪ ∂M∗
N .

Thanks to the definition of the DDFV discrete operators, this is equivalent to replace the continuous
with the corresponding discrete ones. We impose Dirichlet boundary conditions on ∂MD ∪∂M∗

D and
Neumann boundary conditions on ∂MN . The mass conservation equation is directly approximated
on the diamond mesh equation over D, and it is stabilized through two parameters β ≥ 0, associated
to the stabilization of Brezzi-Pitkäranta (see Sec. I.7) and µ ≥ 0, associated to a linear stabilization.

If gσ,Φσ denote the projection of the Dirichlet and Neumann data on the mesh, and h is the mesh
size, the scheme we obtain is the following:

Find uT ∈ EΓDg and pD ∈ RD such that

divK(−∇DuT + pDId) = fK ∀K ∈ M

divK∗(−∇DuT + pDId) = fK∗ ∀K∗ ∈ M∗ ∪ ∂M∗
N

divD(uT) + µhpD − βh2∆DpD = 0
(∇DuT − pDId)n⃗σK = Φσ ∀Dσ,σ∗ ∈ Dext ∩ ΓN .

(5)

The scheme (5) is well-posed on general meshes if µ + β > 0 (see Thm. II.2.2). Moreover,
if µ > 0, we obtain a first rough estimate (see Thm. II.3.1) of order 0.5 for the velocity only; in
order to obtain order 1, it is necessary to use the Brezzi-Pitkäranta stabilization (i.e. if we suppose
β > 0). We first need to prove the stability result of Thm. 2. We point out that the number
reg(T), that will appear in the estimates, measures the regularity of the mesh and it is uniformly
bounded as h → 0.

Theorem 2 (Stability of the scheme) Suppose that β > 0. There exist two constants C1, C2 >

0, depending only on Ω, β and reg(T), such that for every pair (uT, pD) ∈ EΓD
0 × RD with

(−∇DuT + pDId)n⃗σK = Φσ ∀σ ∈ ΓN ,

there exist ũT ∈ EΓD
0 and p̃D ∈ RD such that:

∥∇DũT∥2
2 + ∥p̃D∥2

2 ≤ C1(∥∇DuT∥2
2 + ∥pD∥2

2), (6)

∥∇DuT∥2
2 + ∥pD∥2

2 ≤ C2

B(uT, pD; ũT, p̃D) +
∣∣∣∣ ∑
Dσ,σ∗ ∈Dext∩ΓN

mσΦσγ
σ(ũτ )

∣∣∣∣+ ∥Φσ∥2
2

 , (7)

where γσ(uT) is a trace term and B is the bilinear form associated to (5):

B(uT, pD, ũT, p̃D) := [[divT(−∇DuT + pDId), ũT]]T
+ (divD(uT) + µhpD − βh2∆DpD, p̃D)D. (8)

From this, we deduce the estimate of order 1 for the velocity, its gradient and the pressure:
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Theorem 3 We suppose that the solution of (1) satisfies (u, p) ∈ (W 2,∞(D))2 ×W 1,∞(D). Let
β > 0 and (uT,pD) be the solution of (5). Then there exists a constant C > 0 that depends on
reg(T), µ, β, ∥u∥W 2,∞ and ∥p∥W 1,∞ such that

∥u − uT∥2 + ∥∇u − ∇DuT∥2 ≤ Ch,

∥p − pD∥2 ≤ Ch.

In the idea of moving to the discretization of the Navier Stokes problem, the second problem we
considered is the Stokes problem in the divergence form:

−div(σ(u, p)) = f in Ω,
div(u) = 0 in Ω,

u = g on ΓD,

σ(u, p)n⃗ = Φ on ΓN .

(9)

The stress tensor is σ(u, p) = 2
ReDu − pId, with Re > 0. In particular, the strain rate tensor is

defined by the symmetric part of the velocity gradient Du = 1
2(∇u +t ∇u).

The main difficulty when dealing with this kind of problem is the so-called Korn inequality (see
[BS07]), that relates the gradient with the strain rate tensor; in the continuous case it is formulated
as:

∥u∥(H1(Ω))2 ≤ C∥Du∥(L2(Ω))2×2 .

In the DDFV setting, the equivalent discrete theorem was proved in [Kre10] in the case of
homogeneous Dirichlet boundary conditions; in this case, the proof relies on the definition of the
operators and thus the constant of the estimate can be explicitly computed.

If we add a part of the boundary with non-zero data, we introduce some difficulties: as in
the continuous setting, we are able to prove the extension to inhomogeneous Dirichlet boundary
condition by contradiction. So we proved the following theorem:

Theorem 4 (Korn’s inequality) Let T be a mesh that satisfies Inf-sup stability condition. Then
there exists C > 0, that depends only on reg(T), such that :

∥∇DuT∥2 ≤ C∥DDuT∥2 ∀uT ∈ EΓD
0 .

See Sec. I.8.2 for more details. It is important to mention that this theorem holds under the Inf-sup
stability condition on the mesh; this is why it becomes superfluous to stabilize the mass conser-
vation equation when working in the divergence form of Stokes problem (or Navier-Stokes problem).

The DDFV scheme corresponding to (9) then reads:

Find uT ∈ EΓDg and pD ∈ RD such that:

−divK
(
σD(uT,pD)

)
= fK ∀K ∈ M

−divK∗ (
σD(uT,pD)

)
= fK∗ ∀K∗ ∈ M∗ ∪ ∂M∗

N

divD(uT) = 0
σD(uT,pD) n⃗σK = Φσ ∀Dσ,σ∗ ∈ Dext ∩ ΓN ,

(10)
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with the discrete stress tensor defined by σD(uT,pD) = 2
ReDDuT − pDId, and the discrete strain

rate tensor by DDuT = ∇DuT +t (∇DuT)
2 . This scheme is well-posed under the Inf-sup hypothesis

on the mesh (see Thm. II.5.2). Moreover, all the results on the error estimates established for
(5) can be extended to (10) thanks to Korn’s inequality and the relation between the strain rate
tensor and the gradient, illustrated in Sec. I.8.2.

At last, we extended (5) to the case of weak boundary conditions. In fact, if we decide not
to stabilize the incompressibility constraint, problem (5) is well posed under the hypothesis that
the mesh satisfies Inf-sup inequality; this inequality, in the simplest case of conformal square meshes,
is valid up to an unstable mode for the pressure (see [BKN15]). A way of avoiding this incon-
venient is thus to impose boundary conditions in "a weak sense"; the details can be found in Sec. II.6.

In Sec. II.4, II.5.2, II.6.2 we numerically tested (5), (10) and the formulation with weak boundary
conditions on different meshes, by showing the convergence properties of the schemes and the
influence of the stabilization parameters β, µ for (5).

Navier-Stokes problem

The step forward to our work was the study of the following 2D unsteady incompressible Navier-
Stokes problem:

∂tu + (u · ∇)u − div(σ(u, p)) = 0 in ΩT = Ω × [0, T ],
div(u) = 0 in ΩT ,

u(0) = uinit in Ω,
u = g1 on Γ1 × (0, T ),

σ(u, p) n⃗ + 1
2(u · n⃗)−(u − uref ) = σref n⃗ on Γ2 × (0, T ).

(11)

This problem arises when computing a flow whose velocity is prescribed at one part of the boundary
and it flows freely on the other one. In this framework, we are often required to truncate the
physical domain to obtain a reduced computational domain, either because we want to save
computational ressources or because the physical domain is unbounded. We illustrate this setting
in Fig. 2.

physical domain

computational domain

Γ1 Γ2

Γ1

Γ1

in
flo

w

Fig. 2 Domain and notations.

This raises the question on what type of boundary conditions one should impose on the "artificial
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frontier", denoted by Γ2; we choose to adopt the ones proposed in [BF94] and then further studied
in [BF94, BF12]. Other techniques where proposed in the literature, we can mention for instance
[HS89]; here, an artificial boundary condition is proposed for the Navier-Stokes problem under
the hypothesis of small viscosity. The method consists into the approximation of the transparent
boundary conditions, since they are non local.

We remark that in order to build the outflow boundary condition on Γ2:

σ(u,p) n⃗ + 1
2(u · n⃗)−(u − uref ) = σref n⃗, (12)

we need to choose some reference flow uref , which is any uref ∈ (H1(Ω))2 such that uref = g1 on
Γ1, chosen so as to be a reasonable approximation of the expected flow near Γ2, and a reference
stress tensor σref such that σref n⃗ ∈ (H− 1

2 (Ω))2. The choice of the reference flow is delicate and it
will be widely discussed in Sec. III.6.

This nonlinear condition (12) is physically meaningful: if the flow is outward, we impose the
constraint coming from the selected reference flow; if it is inward, we need to control the increase
of energy, so we add a term that is quadratic with respect to velocity.

The analysis of the Navier-Stokes problem with the outflow boundary condition (12) is per-
formed in [BF96] and [BF07] for the continuous equations and simulations are performed in [BF94]
by the use of Finite Differences schemes in the case of Cartesian meshes. Within the framework of
DDFV methods, we are able to reproduce those simulations by extending to the case of general
meshes and we also offer a complete analysis of the discrete problem.

The first difficulty we faced when trying to write a DDFV scheme for (11) is the discretiza-
tion of the nonlinear convection term: we will not detail the computations here, but we point out
that it is necessary to construct the bilinear form bT(uT,vT) and the numerical flux FσK.

The bilinear form is built in order that [[bT(uT,vT),wT]]T discretizes
∫

Ω
(u · v)w, which is the

trilinear form that appears when considering the variational formulation of (11); in particular,
bT(uT,vT) approaches

∫
σ(u · n⃗)v while the flux FσK is an approximation of

∫
σ u · n⃗ . See Sec. III.1

for more details. We just state the following bound of the nonlinear convection term that we
obtained, useful in order to prove the discrete energy estimate:

Proposition 5 Let T be a DDFV mesh associated to Ω. For all (uT,vT,wT) ∈ EΓ1g1 × EΓ1g1 × EΓ1g1 ,

there exists a constant C > 0 that depens only on Ω and reg(T) such that:

[[bT(uT,vT),wT]]T ≤C
(
∥uT∥3 + ∥γT(uT)∥3,∂Ω

)
∥vT∥6∥∇DwT∥2

+ C ∥γT(uT)∥ 8
3 ,∂Ω∥γT(vT)∥ 8

3 ,∂Ω∥γ̃T(wT)∥4,∂Ω.

where γT, γ̃T are trace operators.

To write the DDFV scheme associated to (13), we choose to use an implicit Euler time discretization,
except for the nonlinear term, which is linearized by using a semi-implicit approximation.
Let N ∈ N∗, we note δt = T

N and tn = nδt for n ∈ {0, . . . , N}; we look for uT,[0,T ] = (un)n∈{0,...N} ∈(
EΓ1g1

)N+1 and pD,[0,T ] = (pn)n∈{0,...N} ∈ (RD)N+1. To simplify the notations we will denote
(un+1, pn+1) with (uT, pD) and (un, pn) with (ūT, p̄D) that at each time step are known.

Then, our first guess for the scheme was to naively replace the continuous operators with the
discrete ones (as done previously for Stokes). This would have given the following scheme:
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Find uT ∈ EΓDg1 and pD ∈ RD such that:

mK
uK − ūK

δt
−mKdivK(σD(uT,pD)) +mKbK(ūT,uT) = 0 ∀K ∈ M,

mK∗
uK∗ − ūK∗

δt
−mK∗divK∗(σD(uT, pD)) +mK∗bK∗(ūT,uT) = 0 ∀K∗ ∈ M∗ ∪ ∂M∗

2,

mσσ
D(uT, pD)n⃗σL + 1

2(FσL(ūT))−(γσ(uT) − γσ(uref )
)

= mσσ
D
refn⃗σK ∀Dσ,σ∗ ∈ Dext ∩ Γ2,

divD(uT) = 0.
(13)

Unfortunately, we were not able to prove the wellposedness of (13) with the classical techniques.
We thus had to change our strategy, by going back to the continuous problem: in fact, as presented
in [BF12], the velocity u satisfies:
∫

Ω
∂tu · Ψ + 2

Re

∫
Ω

D(u) : D(Ψ) + 1
2

∫
Ω

(u · ∇)u · Ψ − 1
2

∫
Ω

(u · ∇)Ψ · u

= −1
2

∫
Γ2

(u · n⃗)+(u · Ψ) + 1
2

∫
Γ2

(u · n⃗)−(uref · Ψ) +
∫

Γ2
(σref n⃗) · Ψ, (14)

where Ψ is a test function in the space

V = {Ψ ∈ (H1(Ω))2, Ψ|Γ1 = 0, div(Ψ) = 0}.

If now we rewrite this weak formulation (14) in the DDFV framework we obtain:

[[u
T − ūT

δt
,ΨT]]T + 2

Re(DDuT : DDΨT)D + 1
2[[bT(ūT,uT),ΨT]]T − 1

2[[bT(ūT,ΨT),uT]]T

= −1
2

∑
D∈Dext∩Γ2

(FσK(ūT))+ γσ(uT) · γσ(ΨT) + 1
2

∑
D∈Dext∩Γ2

(FσK(ūT))−γσ(uref ) · γσ(ΨT)

+
∑

D∈Dext∩Γ2

mσ(σD
refn⃗σK) · γσ(ΨT), (15)

where ΨT ∈ (R2)T is a test function in the discrete space that satisfies similar properties compared
to the continuous test function Ψ: {

ΨT ∈ EΓD
0 ,

divD(ΨT) = 0.
(16)

At this point, we can project (15) on the meshes to obtain the scheme; we look for uT ∈ EΓDg1 and
pD ∈ RD such that:

• For all K ∈ M:

mK
uK − ūK

δt
−mKdivK(σD(uT,pD)) + 1

2mKbK(ūT,uT)

− 1
2
∑

D∈Dint
K

(
F+

σK(ūT)uK − F−
σL(ūT)uL

)
= 0, (17)
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• For all K∗ ∈ M∗ ∪ ∂M∗
2:

mK∗
uK∗ − ūK∗

δt
−mK∗divK∗(σD(uT, pD)) + 1

2mK∗bK∗(ūT,uT)

− 1
2
∑

D∈DK∗

(
F+

σ∗K∗(ūT)uK∗ − F−
σ∗L∗(ūT)uL∗

)
= 0, (18)

• For all Dσ,σ∗ ∈ Dext ∩ Γ2:

mσσ
D(uT, pD)n⃗σL + 1

2(FσL(ūT))−(γσ(uT) − γσ(uref )
)

− 1
4FσL(ūT) (uK − uL)

= mσσ
D
refn⃗σK, (19)

• For all D ∈ D:
divD(uT) = 0, (20)

of which we can prove that there exists a unique solution (see Thm III.3.1). Remark that in the
scheme (17)-(20) the anti-symmetrization of the convection term is taken into account, and that
in (19) there is an additional term with respect to the equation on σ ∈ ∂M2 in (13), due to the
projection of the boundary terms in (15).

The open boundary condition (12) is derived from the weak formulation (14) which ensures
an energy estimate, as presented in [BF96]; so we proved a discrete version of the energy estimate.
In order to do so, it is necessary to consider the variational formulation (15) and select the solution
as a test function. Since the solution uT,[0,T ] is not zero on the Dirichlet boundary Γ1, it does not
satisfy the hypothesis (16). We decompose it as uT,[0,T ] = vT,[0,T ] + uT

ref so that, thanks to the
definition of uT

ref (see (III.12)) , vT,[0,T ] is a good candidate to be the test function.
Theorem 6 Let T be a DDFV mesh associated to Ω that satisfies Inf-sup stability condition.
Let (uT,[0,T ], pD,[0,T ]) ∈

(
EΓ1g1

)N+1 × (RD)N+1 be the solution of the DDFV scheme (17)-(20) , where
uT,[0,T ] = vT,[0,T ] + uT

ref .
For N > 1, there exists a constant C > 0, depending on Ω, reg(T),uT

ref ,u0,Re and T such that:

N−1∑
j=0

∥vj+1 − vj∥2
2 ≤ C, ∥vN ∥2

2 ≤ C,

N−1∑
j=0

δt
1

Re∥DDvj+1∥2
2 ≤ C, δt

1
Re∥DDvN ∥2

2 ≤ C,

N−1∑
j=0

δt
∑

D∈Dext

(FσK(vj + uT
ref ))+|γσ(vj+1)|2 ≤ C.

To prove this result, it is mandatory to prove the following trace inequality:
Theorem 7 (Trace inequality) Let T be a DDFV mesh associated to Ω.There exists a constant
C > 0, depending only on p,q, sin(αT), reg(T) and Ω such that ∀uT ∈ EΓD

0 and for all s ≥ 1, p > 1:

∥γT(uT)∥s
s,∂Ω ≤ C∥uT∥1,p∥uT∥s−1

p(s−1)
p−1

.

where sin(αT) is a measure of the flattening of the mesh diamonds.
We want to point out that all these results are proved, for simplicity, in the case of a constant
viscosity; they could be extended to the case of variable viscosity, by starting from the works of
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[Kre11b, BF07].

To give an idea of application of the DDFV scheme we built to approximate (11), we refer
to the numerical simulation illustrated in Fig. 3; the goal is to show that by adding an artificial
boundary, thanks to condition (12), we do not introduce any perturbation to the flow. For this
purpose, we first consider an original domain that we cut into smaller subdomains and we draw
the streamlines of the respective solution. We observe that the recirculations are well located and
that there is no spurious vortices. For more details on this test case and for further simulations,
we refer to Sec. III.6.

Fig. 3 Streamline of Test case 2 at T = 3.5, Re = 250. On the top: Ω = [0, 5] × [0, 1], NbCell=
12118. In the middle: Ω′ = [0, 3] × [0, 1], NbCell=8636. On the bottom: Ω′′ = [0, 1.5] × [0, 1],
NbCell=6534.

Domain decomposition method

Our next goal was to design a non-overlapping Schwarz algorithm for the Navier-Stokes problem.
It is an iterative method that enters the class of domain decomposition methods, in which a
domain is decomposed into smaller subdomains. The main advantage is that, contrary to di-
rect methods, decomposition methods are naturally parallel; in fact, subdomains problems are
related by some transmission conditions on the interface, but they are decoupled by the itera-
tive procedure. This makes those methods interesting for high performance computing perspectives.

The main difficulty when dealing with the decomposition is that we introduce an "artificial"
interface between the subdomains; it is important to understand what type of condition to impose
in order to be able to recover the solution on the entire domain.
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It was shown in 1990 by P.L.Lions [Lio90] that, with Fourier (i.e. Robin) transmission con-
ditions, Schwarz algorithm for the Laplace operator converges even without overlap between
subdomains. This method has been adapted to the discrete case for many problems of isotropic
diffusion, [AJNM02, CHH04, GJMN05], for advection-diffusion-reaction problems, [GH07, HH14]
and for anisotropic diffusion in a DDFV discretization, [BHK10b, GHHK18]. When moving to the
Navier-Stokes problem, in the literature we can find many different approaches, in particular our
focus is on the different design of the interface conditions. In the spirit of [HS89], [BCR16] derives
optimal transparent boundary conditions for the Stokes equation, result of the discretization in
time of the Navier-Stokes equation; these conditions are tested in the finite differences setting. In
the finite element setting, [LMO01] proposes a non-overlapping domain decomposition algorithm of
Robin–Robin type for the discretized Oseen equations (i.e. linearized Navier-Stokes); the transmis-
sion conditions they impose are equivalent to the ones that we finally chose, but in their case it was
necessary to prove a modified Inf-sup condition whose stability constant depends on the Reynolds
number: we will avoid this inconvenient by imposing a new condition for the pressure on the
interface. In [XCL05], in the finite element setting, the authors build a Dirichlet-Neumann domain
decomposition method for the nonlinear steady Navier-Stokes equations, under the hypothesis
that the Reynolds number is sufficiently small and [GRW05] studies a family of discontinuous
Galerkin finite element methods for Stokes and Navier-Stokes problems on triangular meshes and,
as in [LMO01], they need to modify the Inf-sup condition in order to mantain the zero-divergence
constraint in the decomposition .

Our objective was to write an algorithm for the complete incompressible Navier-Stokes sys-
tem, with a local condition defined on the interface, without any condition on the Reynold’s
number. As a first guess, motivated by our previous work for the Navier-Stokes problem, we
imagined that imposing a condition similar to outflow boundary condition of (12) would have
worked: in fact, as a reference flow, we could have chosen the solution on the neighboring domain,
computed at the previous iteration of the Schwarz algorithm. This is however not sufficient to
prove the convergence, since it can be seen just as a "Neumann type" boundary condition; it is
necessary to add a contribution that takes into account the velocity on the interface in order to
recover a "Fourier-type" condition for this problem.

We further remarked that, in order to deal with the incompressibility constraint, another
condition was required by the problem.

So, when decomposing the domain Ω into two (or more) smaller subdomains Ω = Ω1 ∪ Ω2,
the Schwarz algorithm that we designed defines a sequence of solutions ul

j of the Navier-Stokes
problem in Ωj , where the transmission condition on the interface between the subdomains (denoted
by Γ) for (j, i) = (1, 2) or (2, 1), is defined by:

σ(ul
j , pl

j) · n⃗j − 1
2(ul

j · n⃗j)(ul
j) + λul

j = σ(ul−1
i , pl−1

i ) · n⃗i − 1
2(ul−1

i · n⃗i)(ul−1
i ) + λul−1

i .

div(ul
j) + αpl

j = −div(ul−1
i ) + αpl−1

i ,
(21)

where n⃗j is the outer normal to Ωj .
The first condition, which depends on λ, is inspired by the classical Fourier condition, which

linearly combines the values of the unknown (in this case the velocity) and the values of its
derivative; here, also the convection is included.

The second, which depends on α, combines the divergence of the velocity with the pressure;
it will be useful to conserve the incompressibility constraint at the convergence of the algorithm.
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This is the first time, to our knowledge, that this kind of condition appears.

As a first step to write the non-overlapping Schwarz algorithm in the DDFV framework, we
proposed a DDFV discretization for the Navier-Stokes problem on the entire domain Ω with
Dirichlet boundary conditions. Indeed, we find convenient to consider a general discretization
of the convection term, seen as a centered discretization plus a diffusive perturbation, expressed
through a certain function B. This is inspired from the work of [HH14], which handles scalar
advection-diffusion-reaction equations with a classic finite volume discretization.

To obtain this scheme, we integrate the momentum equation over all M ∪ M∗ and we impose
Dirichlet boundary conditions on ∂M ∪ ∂M∗. The equation of conservation of mass is directly
approximated on the diamond mesh equation over D, and it is stabilized through a parameter
β > 0 with a Brezzi-Pitkäranta stabilization (see Section I.7). It gives:

Given (ūT, p̄D), satisfying divD(ūT) − βd2
D ∆Dp̄D = 0, we look for uT ∈

(
R2)T and pD ∈ RD

such that: 

mK
uK

δt
+

∑
Dσ,σ∗ ∈DK

mσFσK = mKfK +mK
ūK

δt
∀K ∈ M

mK∗
uK∗

δt
+

∑
Dσ,σ∗ ∈DK∗

mσ∗Fσ∗K∗ = mK∗fK∗ +mK∗
ūK∗

δt
∀K∗ ∈ M∗

u∂M = 0
u∂M∗ = 0

divD(uT) − βd2
D ∆DpD = 0∑

D∈D

mDpD = 0

(P)

with β > 0 and (ūT, p̄D) the solution computed at the previous time step tn−1 = (n − 1)δt for
n ∈ {1, . . . N − 1}. The total fluxes are thus approached by:

mσFσK = −mσσ
D(uT,pD) n⃗σK +mσFσK

(uK + uL

2

)
+ m2

σ

2RemD
B

(2RemD

mσ

FσK

)
(uK − uL),

mσ∗Fσ∗K∗ = −mσ∗σD(uT, pD) n⃗σ∗K∗ +mσ∗Fσ∗K∗

(uK∗ + uL∗

2

)
+ m2

σ∗

2RemD
B

(2RemD

mσ∗
Fσ∗K∗

)
(uK∗ − uL∗),

(22)

where we denote the coefficients B
(2RemD

mσ

FσK

)
, B

(2RemD

mσ∗
Fσ∗K∗

)
by BσK and Bσ∗K∗ ; they can

be scalars, for instance if we want to recover an upwind scheme (for which B(s) = 1
2 |s|), or even

matrices. Problem (P) is well-posed under the hypothesis (formulated here for the scalar case):

BσK = BσL, BσK ≥ 0
Bσ∗K∗ = Bσ∗L∗ , Bσ∗K∗ ≥ 0

(23)

See Thm. IV.1.3 for more details.

The following step consists in defining the DDFV scheme for the Navier Stokes problem on
the subdomain with transmission conditions (21). It is necessary to add some fluxes unknowns
ΨTj on each dual cell that intersects Γ, which approximate the dual fluxes Fσ∗K∗ on the interface.
The scheme reads:
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Find (uTj , pDj
,ΨTj ) ∈ RTj × RDj × ∂M∗

j,Γ such that

mK
uK

δt
+

∑
Dσ,σ∗ ∈DK

mσFσK = mKfK +mK
ūK

δt
∀K ∈ Mj

mK∗
uK∗

δt
+

∑
Dσ,σ∗ ∈DK∗

mσ∗Fσ∗K∗ = mK∗fK∗ +mK
ūK∗

δt
∀K∗ ∈ M∗

j

mK∗
uK∗

δt
+

∑
Dσ,σ∗ ∈DK∗

mσ∗Fσ∗K∗ +m∂Ω∩∂K∗ΨK∗ = mK∗fK∗ +mK
ūK∗

δt
∀K∗ ∈ ∂M∗

j,Γ

−FσK + 1
2FσKuL + λuL = hL ∀σ ∈ ∂Mj,Γ

−ΨK∗ + 1
2HK∗ uK∗ + λuK∗ = hK∗ ∀K∗ ∈ ∂M∗

j,Γ

u∂Mj,D = 0
u∂M∗

j,D = 0
mDdivD(uT) − βmDd

2
D ∆DpD = 0 ∀D ∈ Dj \ DΓ

j

mDdivD(uT) − βmDd
2
D ∆DpD + αmDpD = gD ∀D ∈ DΓ

j

(24)

with λ, β, α > 0 and (ūT, p̄D) the solution computed at the previous time step tn−1 = (n− 1)δt for
n ∈ {1, . . . N − 1}. We show that (24) is wellposed. We will refer to the system (24) in the more
compact form:

LTj ,µ
Ωj ,Γ(uTj ,pDj

,ΨTj , fT, ūTj ,hTj , gDj ) = 0. (25)

We then propose the following parallel DDFV Schwarz algorithm:

at each time step tn, for arbitrary initial guesses h0
Tj

∈ R∂Mj,Γ∪∂M∗
j,Γ and g0

Dj
∈ RDj , the al-

gorithm performs two steps on the iteration index l = 1, 2, . . . and i, j,∈ {1, 2}, j ̸= i:

1. Compute (ul
Tj
, pl

Dj
,Ψl

Tj
) ∈ RTj × RDj × R∂M∗

j,Γ solution to

LTj ,µ
Ωj ,Γ(ul

Tj
,pl

Dj
,Ψl

Tj
, fTj , ūTj ,h

l−1
Tj
, gl−1

DΓ
j

) = 0. (S1)

2. Compute the new values of hl
TJ

and of gl
DΓ

j
by:

hl
Lj

= F l
σKi

− 1
2FσKiul

Li
+ λul

Li
, ∀Lj = Li ∈ ∂Mj,Γ,

hl
K∗
j

= Ψl
K∗
i

− 1
2HK∗

j
ul

K∗
i

+ λul
K∗
i
, ∀K∗

j ∈ ∂M∗
j,Γ such that xK∗

j
= xK∗

i
,

gl
Dj

= −
(
mDidivDi(ul

Ti
) − βmDid

2
Di

∆Dipl
Di

)
+ αmDipl

Di
, ∀Dj ∈ DΓ

j such that xDj = xDi .

(S2)

When proving the convergence as l → ∞ of (S1)-(S2), we realized that actually this algorithm
converges to a modified version of (P), where the fluxes on the interface depend on some coefficients
B̃σK, B̃σ∗K∗ :

Theorem 8 Let (uT, pD) be a solution of (P̃), where:

• On the primal mesh, the new discrete convective fluxes are defined by:BσKId if σ /∈ EΓ,

B̃σK if σ ∈ EΓ,



15

where we refer to (IV.28) for the definition of B̃σK.

• On the dual mesh, Bσ∗K∗Id if σ∗ ∩ Γ = ∅,
B̃σ∗K∗ if σ∗ ∩ Γ ̸= ∅.

Under the hypothesis that mσ∗ = 2mσ∗
j

= 2mσ∗
i
, for j, i = 1, 2, j ̸= i, the iterates of the Schwarz

algorithm (S1)-(S2) converge as l tends to infinity to the solution of (P̃).

We refer to Sec. IV.3.1 and Thm. IV.3.9 for the details. So we asked ourselves if it was possible to
recover, at the limit, the solution of (P). The answer is positive as long as we modify the fluxes
on the interface EΓ of the Schwarz algorithm, as shown in the following theorem (Thm. IV.4.1):

Theorem 9 Let (uT, pD) be a solution of (P) for convective fluxes defined by a constant upwind
flux BσK(s) = 1

2 |s| for all σ ∈ E, and by the centered flux Bσ∗K∗(s) = 0 for all σ∗ ∈ E∗. Define (S̄)
the Schwarz algorithm where

• On the primal mesh, the new discrete convective fluxes are defined as:BσK(s)Id if σ /∈ EΓ,

B̄σK(s) if σ ∈ EΓ,

with:
B̄σK(s) = 1

2Q
(

|s| − 2 + 2
√

1 + |s| 0
0 |s| − 1 +

√
1 + 2|s|

)
Q−1, (26)

and Q =
(
x y

y −x

)
, where n⃗σK =

(
x

y

)
is the outer normal to the interface Γ.

• On the dual mesh, Bσ∗K∗(s) = 0.

Under the hypothesis that mσ∗ = 2mσ∗
j

= 2mσ∗
i
, for j, i = 1, 2, j ̸= i, (P) is the limit of the Schwarz

algorithm (S̄).

We numerically tested and compared the convergences proved in Thm. 8 and Thm. 9. We also
showed the influence of the parameters λ, α of the transmission condition (21); tipically, we observe
the presence of an optimal choice for both λ and α. Moreover, the mesh, the test case and even
the stabilization parameter affect this optimal values. For further details, we refer to Sec. IV.5.

Curved interface reconstruction

The last topic addressed in this dissertation is a work done during the CEMRACS project of 2018,
with Igor Chollet, Théo Corot, Laurent Dumas, Philippe Hoch and Tomas Leroy.

We proposed a curved interface reconstruction procedure in the case of a 2D compressible flow
made of two or more materials. Interface reconstruction (IR) methods are encountered in numerical
simulation of multi-material or multi-fluid flows. If we suppose to consider the case of two materials,
the objective of IR methods is to define a geometric interface separating material 1 and material 2
with the following properties:

• P1: volume fractions conservation,
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• P2: continuity of the interface,

• P3: robustness,

• P4: low or moderate computational cost.

The first IR method that has been introduced in 1982 is due to D.L. Youngs [You82]. There exists
many variants to Youngs method, for instance an order 2 reconstruction ([RK98]) or an extension
to more than two materials ([SGFL09]). Some correction terms for the normal computation have
also been proposed to reduce undesirable effects and to smooth the interface ([GDSS05]). Even
though this method is still largely used up to now because of its simplicity and robustness, it
suffers from the non continuity of the interface.

Recently, in [DGJM17], a new reconstruction method which ensures continuity of the inter-
face and preserves volume fractions have been introduced. This new interface reconstruction
method, called DPIR (Dynamic Programming Interface Reconstruction) has been used as a starting
point for the presented work. It consists of two main steps:

1. the minimization of a suitable energy functional, which gives a continuous linear interface;

2. the addition of a control point in each cell in order to find the correct volume fractions.

The last step in usually made by searching the point in the normal direction of the interface, in
the line passing through the center of this one. We had three main goals during our project that
we detail in the following.

First, we extended the DPIR method for curved interfaces (Sec. V.3). It is of interest in
particular in the case of curved meshes, where an exact reconstruction of the interface is expected.
In order to be a real candidate for being used in multi-material hydrodynamic simulation using
ALE remap methods, the DPIR method must be able to deal with distored meshes.

In order to obtain a curved interface, we chose to introduce rational Bezier curves in the local
correction phase of DPIR.

Second, we proposed several improvements in order to deal with strongly distorded cells and small
volume fraction issues.

In particular, we suggested to change the direction for the control point (the center of the cell
instead of the perpendicular bisector to the interface), to pass from a uniform discretization of the
segments crossing the interface to a Chebyshev one in order to obtain a finer discretization around
the corners and to add a new penalty term to the energy functional that has to be minimized in
step 1.

Finally, this work ended with a generalization of the method to the three materials case (Sec. V.5).
Interface reconstruction for multi-material simulations is a complicated issue, and a comparison
of several existing methods can be found in [KGSS10]. The proposed method applies the DPIR
method for all the materials without choosing any material ordering and a suitable average is
applied to obtain the final interfaces. The method has been tested on two test cases with triple
point configuration on cartesian meshes, giving encouraging results for future unstructured meshes
cases. We illustrate an example in Fig. 4. For more simulations and more details, that has been
obtained with a C++ code, we refer to Chap. V.
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Fig. 4 Exemple of reconstruction of an interface between three materials, with two triple points
configurations.
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The aim of this chapter is to introduce the DDFV method for Stokes and Navier-Stokes problem,
the meshes and the notations that we will use along this dissertation; we adopt the main definitions
introduced in [ABH07] and [Kre10].

This method enters the class of finite volume methods, that are discretization methods in which
volume integrals are converted to surface integrals, using the divergence theorem. An important
feature of those methods is that they are locally conservative; in fact, surface integrals are evaluated
as fluxes at the boundary of each finite volume and they are conserved from one discretization cell
to its neighbor. This makes finite volume methods quite attractive when modeling problems arising
from fluid mechanics, the derivation of which are precisely based on local balance principles.

Finite volume methods for Stokes and Navier-Stokes problem have been widely studied during
the years. Concerning the Stokes flow, we refer to [EHL06] for a colocated and stabilized finite
volume scheme, [BEH05] for a staggered finite volume scheme, [DE08] for a mixed finite volume/
finite element scheme, [Del07] for an alternative DDFV scheme with a different localization of the
unknowns, [DO15] for a DDFV scheme for the vorticity-velocity-pressure formulation.

Concerning the Navier-Stokes flow, we refer to [BCH00] for a fractional step method combined
with finite volume schemes, [EHL07] for a colocated finite volume scheme, [EH05] for a staggered
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finite volume scheme, [Del07] for an alternative DDFV scheme with a different localization of the
unknowns, [DE08, LS17] for a combined finite volume/ finite element scheme, [GHL10] for finite
volume scheme with explicit time discretization, [CCML17] for a high order finite volume scheme
based on polynomial reconstruction.

DDFV method has been developed since the early 2000’s; the DDFV schemes have been first
introduced and studied in [Her00] and [DO05] to approximate Laplace equation on a large class of
2D meshes including non-conformal and distorted meshes.

A way to consider general families of meshes is to add some unknowns to the problem: we
require unknowns on vertices, centers and edges of control volumes; for this reason, DDFV method
works on (three) staggered meshes. From an initial mesh, called the "primal mesh" (denoted with
M∪ ∂M), we construct the "dual mesh" (denoted with M∗ ∪ ∂M∗), that is centered on the vertices
of the primal mesh, and the "diamond mesh" (denoted with D) , which is centered on the edges
of the primal mesh; see Fig. I.1 for an illustration. The union of primal and dual mesh will be
denoted by T.

� �
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Fig. I.1 DDFV meshes on a non conformal mesh: primal mesh M∪∂M (blue), dual mesh M∗ ∪∂M∗

(red) and diamond mesh D (green).

DDFV method for Stokes and Navier-Stokes problem leads naturally to locate the unknowns of
velocity and pressure in different points; the velocity unknowns are associated to each primal and
dual volume, while the pressure unknowns are located on each diamond. So DDFV enters the
class of staggered methods. This is an usual technique for incompressible flows: one of the best
known schemes is the MAC (Marker and Cell) scheme (see [HW65]), which is built for cartesian
meshes; we can mention also [CR73] for triangular meshes. MAC schemes, as unknowns, consider
the normal components of the velocity (located on the mesh edges) and the pressure (located at
the centers of the cells); with DDFV, we generalize this schemes by considering all the components
of the velocity and extending it to more general meshes. Moreover, it has been shown in [Kre10]
that a DDFV scheme on a cartesian mesh is equivalent to two decoupled MAC schemes written on
two different staggered meshes (made exception for the boundary).

With this kind of construction, DDFV has two important advantages:

1. it applies to general meshes, such as non-conformal and distorted meshes;

2. it can reconstruct and mimic at the discrete level the dual properties of the continuous
differential operators.

The second point is what gives the terms "Discrete Duality" to the name of the method: the
discrete gradient ∇D (see Def. I.3.1) is proven to be in duality with the discrete divergence divT

(see Def. I.3.5) which is naturally associated to the finite volume setting. In particular, the duality
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consists into verifying a discrete Green’s formula, see Thm. I.5.1.

Outline. This chapter is organized as follows. In Sec. I.1 we recall the description of the DDFV
meshes, followed by the approximation spaces and projections in Sec. I.2. The discrete operators
are introduced in Sec. I.3 and in Sec. I.4 we detail the definition of the associated scalar products
and norms. In Sec. I.5 the duality property, i.e. the discrete Green’s formula, is stated. A reader
that is familiar with DDFV can easily skip those sections, which maintain the notations and the
structure of the presentation of the method done for instance in [Kre10, GKL19]; our intention is
to give continuity to the previous works on the subject.
In Sec. I.6 we recall the main results on Inf-sup stability for DDFV, property that will be crucial all
along the dissertation; in this section, we extend the existing results to the case of inhomogeneous
Dirichlet boundary conditions. In Sec. I.7 we define the stabilization of Brezzi-Pitkäranta, a useful
tool in order to deal with general meshes. In Sec. I.8 we study the relation between the discrete
gradient and the discrete strain rate tensor; an important result of this section is the proof of Korn
inequality in the case of inhomogeneous Dirichlet boundary conditions. In Sec. I.9 we extend to
general Lp norms some discrete trace inequalities; we conclude by recalling some properties of the
discrete operators in Sec. I.10.

I.1 DDFV meshes

A DDFV mesh T is constituted by a primal mesh M∪∂M and a dual mesh M∗ ∪∂M∗, see Fig. I.2.

Construction of the primal mesh

We consider a primal mesh M consisting of open disjoints polygons K called primal cells, such that⋃
K∈M K̄ = Ω̄. We denote ∂M the set of edges of the primal mesh included in ∂Ω, that are considered

as degenerated primal cells. We associate to each K ∈ M ∪ ∂M a point xK ∈ K, called center. For
the volumes of the boundary, the point xK is situated at the mid point of the edge. When K and L

are neighboring volumes, we suppose that ∂K ∩ ∂L is a segment that we denote σ = K|L, edge of the
primal mesh M. When K ∈ M and L ∈ ∂M, we denote σ the segment ∂K ∩ ∂L that coincides with L.
We denote with E the set of all edges and with Eint = E \ {σ ∈ E such that σ ⊂ ∂Ω}.
The DDFV framework is free of further "admissibility constraint", in particular we do not need to
assume the orthogonality of the segment xK, xL with σ = K|L , that is the case for instance in TPFA
schemes (see [EGH00, Dro14]). Here we suppose:

Hp I.1.1 All control volumes K are star-shaped with respect to xK.

Construction of the dual mesh

From the primal mesh, we build the associated dual mesh. A dual cell K∗ is associated to a vertex
xK∗ of the primal mesh. The dual cells are obtained by joining the centers of the primal control
volumes that have xK∗ as vertex. Then, the point xK∗ is called center of K∗. We will distinguish
interior dual mesh, for which xK∗ does not belong to ∂Ω, denoted by M∗ and the boundary dual
mesh, for which xK∗ belongs to ∂Ω, denoted by ∂M∗. We denote with σ∗ = K∗|L∗ the edges of the
dual mesh M∗ ∪ ∂M∗ and E∗ the set of those edges. In what follows, we assume:

Hp I.1.2 All control volumes K∗ are star-shaped with respect to xK∗.
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Fig. I.2 DDFV mesh T.

Construction of the diamond mesh

The diamond mesh D is made of quadrilaterals with disjoint interiors (thanks to Hp I.1.1), such
that their principal diagonals are a primal edge σ = K|L = [xK∗ , xL∗ ] and the dual edge σ∗ = [xK, xL].
Those quadrilaterals are called diamonds and they are denoted with D or Dσ,σ∗ . Thus a diamond is
a quadrilateral with vertices xK, xL, xK∗ and xL∗ (see Fig. I.3).
We remark that diamonds are the union of two disjoints triangles (xK, xK∗ , xL∗) and (xL, xK∗ , xL∗)
and that diamonds are not necessarily convex.
Moreover, if σ ∈ E ∩ ∂Ω, the quadrilateral Dσ,σ∗ degenerates into a triangle.

The set of all diamonds is denoted with D and we have Ω =
⋃

D∈D

D.

We distinguish the diamonds on the interior and of the boundary:

Dext = {Dσ,σ∗ ∈ D, such that σ ⊂ ∂Ω}
Dint = D\Dext.

Remark I.1.3 We have a bijection between the diamonds D ∈ D and the edges E of the primal
mesh; also between the diamonds D ∈ D and the edges E∗ of the dual mesh.

For a volume V ∈ M ∪ ∂M ∪ M∗ ∪ ∂M∗ we define:

• mV the measure of the cell V,

• EV the set of edges of V ∈ M ∪ M∗ ∪ ∂M∗ and the edge σ = V for V ∈ ∂M,

• DV = {Dσ,σ∗ ∈ D, σ ∈ EV},

• Dint
V =

{
Dσ,σ∗ ∈ DV ∩ Dint

}
, Dext

V =
{

Dσ,σ∗ ∈ DV ∩ Dext
}
,

• dV the diameter of V,

• BV := B(xV, ρV) ∩∂Ω ⊂ V for V ∈ ∂M∪∂M∗, mBV its length, ρV chosen to verify the inclusion.

For a diamond Dσ,σ∗ whose vertices are (xK, xK∗ , xL, xL∗), we denote:

• xD the center of the diamond D: xD = σ ∩ σ∗,

• mσ the length of the edge σ,
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Dual edge σ∗ = K∗|L∗

Diamond D

Vertices
Centers
Primal edge σ = K|L

τ⃗ KL

xL

xK

xL∗

xK∗

xD

σ∗

xK∗

xL∗

xK

xL

σ∗

σ σ

αD

τ⃗ K∗L∗

n⃗σK

n⃗σ∗K∗

Fig. I.3 A diamond D = Dσ,σ∗ , on the interior (left) and on the boundary (right).

• mσ∗ the length of σ∗,

• mD the measure of the diamond Dσ,σ∗ ,

• dD the diameter of the diamond Dσ,σ∗ ,

• αD the angle between σ and σ∗.

We introduce for every diamond two orthonormal basis (τ⃗ K∗L∗ , n⃗σK) and (n⃗σ∗K∗ , τ⃗ KL), where:

• n⃗σK the unit normal to σ going out from K,

• τ⃗ K∗L∗ the unit tangent vector to σ oriented from K∗ to L∗,

• n⃗σ∗K∗ the unit normal vector to σ∗ going out from K∗,

• τ⃗ KL the unit tangent vector to σ∗ oriented from K to L.

We denote for each diamond:

• its sides s (for example s = [xK, xK∗ ]),

• ED = {s, s ⊂ ∂D and s * ∂Ω} the set of all interior sides of the diamond,

• ms the length of s,

• n⃗sD the unit normal to s going out from D,

• S = {s ∈ ED,∀D ∈ D} the set of interior edges of all diamond cells D ∈ D,

• SK = {s ∈ S, such that s ⊂ K} and SK∗ = {s ∈ S, such that s ⊂ K∗}.

Remark I.1.4 Every diamond is star-shaped with respect to xD.

Remark I.1.5 It can happen that dual cells can overlap; to avoid this inconvenient, we can either
suppose that the diamonds are convexes or consider the barycentric dual mesh, obtained by joining
the centers xK of the primal control volumes to the middle point of the edges that have xK∗ as a
vertex. Thanks to Hyp. I.1.1, barycentryc dual cells have disjoint interiors.
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Regularity of the mesh

Let size(T) be the maximum of the diameters of the diamonds cells in D.
To measure the flattening of the triangles we denote with αT the only real in ]0, π

2 ] such that
sin(αT) := min

D∈D
| sin(αD)|.

We introduce a positive number reg(T) that measures the regularity of the mesh. It is defined as:

reg(T) = max
(

1
sin(αT ) ,N ,N ∗,max

D∈D
max
s∈ED

dD

ms
,max

K∈M

dK√
mK

, max
K∗∈M∗∪∂M∗

(
dK∗

√
mK∗

)
,

max
K∈M

max
D∈DK

(
dK

dD

)
, max

K∗∈M∗∪∂M∗
max

D∈DK∗

(
dK∗

dD

))
, (I.1)

where N and N ∗ are the maximum number of edges of each primal cell and the maximum number
of edges incident to any vertex. The number reg(T) should be uniformly bounded when size(T) → 0
for the convergence to hold.
From the definition of reg(T), the following geometrical result holds: there exist two constants C1
and C2 depending on reg(T) such that ∀K ∈ M,∀K∗ ∈ M∗ ∪ ∂M∗ and ∀D ∈ D such that D ∩ K ̸= 0
and D ∩ K∗ ̸= 0 we have:

C1mK ≤ mD ≤ C2mK, C1mK∗ ≤ mD ≤ C2mK∗ ,

and
C1 dK ≤ dD ≤ C2 dK, C1 dK∗ ≤ dD ≤ C2 dK∗ .

I.2 Approximation spaces and projections on DDFV meshes

The DDFV method for Stokes and incompressible Navier-Stokes problem uses staggered unknowns;
this is a classical approach, see for instance [HW65].
We associate to each primal volume K ∈ M ∪ ∂M an unknown uK ∈ R2 for the velocity, to every
dual volume K∗ ∈ M∗ ∪ ∂M∗ an unknown uK∗ ∈ R2 for the velocity and to each diamond D ∈ D an
unknown pD ∈ R for the pressure. Those unknowns are collected in the families:

uT = ((uK)K∈M∪∂M, (uK∗)K∗∈M∗∪∂M∗) ∈ (R2)T and pD = ((pD)D∈D) ∈ RD.

We approximatively have twice the number of velocity unknowns with respect to finite volume
methods like TPFA (see [Dro14]), but we will show that this allows to build a complete approxi-
mation of the gradient (not only in the normal direction), which gives robustness to the method,
since it does not demand any "admissibility constraint" on the mesh; this is not the case in TPFA
methods, which require an orthogonality condition: this is a strong hypothesis since it excludes,
for instance, non conformal meshes (such as locally refined meshes).

In all our works, we will deal with mixed boundary conditions; so we define two subsets of
the boundary mesh, useful to take into account two different types of boundary conditions (see
Fig. I.4):

∂Mi = {K ∈ ∂M : xK ∈ Γi}, for i = 1, 2,
∂M∗

1 = {K∗ ∈ ∂M∗ : xK∗ ∈ Γ1},
∂M∗

2 = {K∗ ∈ ∂M∗ : xK∗ ∈ Γ2 \ Γ1}.
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The conditions will change from a chapter to another, so Γ1,Γ2 will represent different types of
boundaries: in Chap. II, we will impose Dirichlet and Neumann boundary conditions; in Chap.
III, we will impose Dirichlet and open boundary conditions on the outflow. Finally, in Chap. IV,
we will take into account transmission conditions on the interface between subdomains.
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Γ2

Γ1

K∗ ∈ ∂M∗
1

K ∈ ∂M1

Γ2

Γ2
K∗ ∈ ∂M∗

2

K ∈ ∂M2

Fig. I.4 Domain with mixed boundary conditions

We define now two discrete average projections, for all functions v in (H1(Ω))2:

• one on the interior:

PM
m v =

(( 1
mK

∫
K

v(x)dx
)

K∈M

)
PM∗

m v =
(( 1

mK∗

∫
K∗

v(x)dx
)

K∗∈M∗

)
,

• one on the boundary :

P∂Ω
m v =

((
1

mBK

∫
BK

v(x)dx
)

K∈∂M

,

(
1

mBK∗

∫
BK∗

v(x)dx
)

K∗∈∂M∗

)
.

We can collect them in a shortened notation:

PT
mv = (PM

m v,PM∗
m v,P∂Ω

m v), ∀v ∈ (H1(Ω))2).

We introduce also a centered projection on the mesh T:

PT
c v = ((v(xK))K∈(M∪∂M), (v(xK∗))K∗∈(M∗∪∂M∗)), ∀v ∈ (H2(Ω))2, (I.2)

and an average projection on the diamond mesh D:

PD
mq =

(( 1
mD

∫
D

q(x)dx
)

D∈D

)
∀q ∈ H1(Ω).

We define two discrete subsets of (R2)T, useful to take in account Dirichlet boundary conditions.
In the following, we will denote by ΓD the Dirichlet boundary (instead of Γ1), and consequently
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∂MD, ∂M
∗
D the corresponding primal and dual boundary mesh (instead of ∂M1, ∂M

∗
1).

EΓD
0 = {uT ∈ (R2)T, s. t. ∀K ∈ ∂MD, uK = 0 and ∀K∗ ∈ ∂M∗

D, uK∗ = 0}.

EΓD
m,g = {uT ∈ (R2)T, s. t. ∀K ∈ ∂MD, uK = (P∂Ω

m g)K and ∀K∗ ∈ ∂M∗
D, uK∗ = (P∂Ω

m g)K∗}.

We define also the projection PD
m,g on the space ED

m,g:

PΓD
m,g : (R2)T −→ EΓD

m,g

uT 7−→
(
(uK)K∈M∪∂M2 , (P∂Ω

m g)K∈MD
, (uK∗)K∗∈M∗∪∂M∗

2
, (P∂Ω

m g)K∗∈∂M∗
D

)
.

I.3 Discrete operators

In this section we define the discrete operators that are necessary to write and to analyse the DDFV
schemes that we will build. We start by defining a discrete gradient and a discrete divergence.
Those two operators are in "discrete duality" (this is what gives the name to the scheme) since we
can prove a discrete Green formula (see Thm. I.5.1 below) that links them. For the proof we refer
to [CVV99, Her00, DO05] and [Kre11a]. Then, we will define some other operators that will be
useful later, such as a discrete strain rate tensor, a discrete curl and a discrete rotational.

Definition I.3.1 (Discrete gradient on D) We define the discrete gradient of a vector field of
(R2)T the operator

∇D : uT ∈ (R2)T 7→ (∇DuT)D∈D ∈ (M2(R))D,

such that for D ∈ D :

∇DuT = 1
sin(αD)

[uL − uK

mσ∗
⊗ n⃗σK + uL∗ − uK∗

mσ

⊗ n⃗σ∗K∗

]
,

where ⊗ represents the tensor product.

We remark that the area of a diamond D is mD = 1
2mσmσ∗ sin(αD). So we can rewrite the discrete

gradient as:
∇DuT = 1

2mD
[mσ(uL − uK) ⊗ n⃗σK +mσ∗(uL − uK∗) ⊗ n⃗σ∗K∗ ] .

Remark I.3.2 The gradient ∇D, that is constant on each diamond D ∈ D, is the “composition”
of two directional derivatives. In fact, the gradient in the direction −−−→xK, xL can be approximated by
(uL −uK), and the one in the direction −−−−→xK∗ , xL∗ by (uL∗ −uK∗) (see Fig. I.3). Thanks to trigonometric
formulas, we can combine those two and obtain a full approximation of the gradient on D, given by
Def. I.3.1 .

Remark I.3.3 For all uT ∈ (R2)T, the property ∇DuT = 0 implies the existence of two constants
c0 ∈ R2 and c1 ∈ R2 such that:

uK = c0 ∀K ∈ (M ∪ ∂M)
uK∗ = c1 ∀K∗ ∈ (M∗ ∪ ∂M∗).

If, moreover, uT ∈ EΓD
0 , we deduce c0 = c1 = 0 and finally uT = 0.
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Definition I.3.4 (Discrete strain rate tensor on D) We define the discrete strain rate tensor
of a vector field in (R2)T as the operator

DD : uT ∈ (R2)T 7→ (DDuT)D∈D ∈ (M2(R))D

such that for D ∈ D:

DDuT = ∇DuT + t(∇DuT)
2 . (I.3)

To define a discrete divergence, we remark that for a regular vectorial function ξ, by applying
Green’s Formula we can write:∫

K
div(ξ(x))dx =

∑
σ⊂∂K

∫
σ
ξ(s) · n⃗σKds, ∀K ∈ M. (I.4)

By means of the discrete counterpart of (I.4), we can define our operator of discrete divergence.

Definition I.3.5 (Discrete divergence on T) We define the discrete divergence of a discrete
tensor field of (M2(R))D as the operator

divT : ξD ∈ (M2(R))D 7→ divTξD ∈ (R2)T.

Let ξD = (ξD)D∈D ∈ (M2(R))D, we set:

divTξD = (divMξD,div∂MξD,divM∗
ξD,div∂M∗

ξD),

where we define divMξD = (divKξD)K∈M, div∂MξD = 0, divM∗
ξD = (divK∗

ξD)K∈M∗ and div∂M∗
ξD =

(divK∗
ξD)K∗∈∂M∗ with:

divKξD = 1
mK

∑
Dσ,σ∗ ∈DK

mσξ
Dn⃗σK ∀K ∈ M,

divK∗
ξD = 1

mK∗

∑
Dσ,σ∗ ∈DK∗

mσ∗ξDn⃗σ∗K∗ ∀K∗ ∈ M∗,

divK∗
ξD = 1

mK∗

( ∑
Dσ,σ∗ ∈DK∗

mσ∗ξDn⃗σ∗K∗ +
∑

Dσ,σ∗ ∈Dext
K∗

mσ

2 ξDn⃗σK

)
∀K∗ ∈ ∂M∗.

Definition I.3.6 (Discrete gradient on T) We define the discrete gradient of a scalar field of
RD as the operator:

∇T : pD ∈ RD 7→ ∇TpD ∈
(
R2
)T

with
∇TpD = divT(pDId).

Similarly to the continuous setting, in which for a vectorial function f = (f1, f2) of two variables
(x1, x2) the gradient and the divergence are defined by:

∇f =
(

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)
, div(f) = Tr(∇f) = ∂f1

∂x1
+ ∂f2
∂x2

, (I.5)

and the curl and the rotational by:

curl f =
(

∂f1
∂x2

− ∂f1
∂x1

∂f2
∂x2

− ∂f2
∂x1

)
, rot(f) = Tr(curl f) = −∂f1

∂x2
+ ∂f2
∂x1

; (I.6)
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we can further define (on the diamond mesh D) a discrete divergence, a discrete curl and a discrete
rotational.

Definition I.3.7 (Discrete divergence on D) We define the discrete divergence of a vector
field of (R2)T as the operator

divD : uT ∈ (R2)T 7→ (divDuT)D∈D ∈ RD

with
divDuT = Tr(∇DuT), ∀D ∈ D.

Definition I.3.8 (Discrete curl on D) We define the discrete curl of a vector field of (R2)T as
the operator

curlD : uT ∈ (R2)T 7→ curlDuT ∈ (M2(R))D,

such that for D ∈ D:

curlDuT = 1
2mD

[mσ(uL − uK) ⊗ τ⃗ K∗L∗ −mσ∗(uL∗ − uK∗) ⊗ τ⃗ KL] .

Definition I.3.9 (Discrete rotational on D) We define the discrete rotational of a vector field
of (R2)T as the operator

rotD : uT ∈ (R2)T 7→ rotDuT ∈ RD

with
rotDuT = −Tr(curlDuT), ∀D ∈ D.

I.4 Scalar products and norms

We define the trace operators on (R2)T and RD; see Fig. I.5 for the notations.

uL∗

uK∗

uL

σuK

Fig. I.5 A boundary diamond, σ ∈ ∂M.

Let γT : uT 7→ γT(uT) = (γσ(uT))σ∈∂M ∈ (R2)∂M, such that:

γσ(uT) = uK∗ + 2uL + uL∗

4 , ∀σ = [xK∗ , xL∗ ] ∈ ∂M. (I.7)

We can also define γ̃T : uT 7→ γ̃T(uT) = (γ̃σ(uT))σ∈∂M ∈ (R2)∂M, such that:

γ̃σ(uT) = uK∗ + 2uK + uL∗

4 , ∀σ = [xK∗ , xL∗ ] ∈ ∂M. (I.8)

On the diamond mesh we define γD : ΦD ∈
(
R2)T → (ΦD)D∈Dext ∈ (R2)Dext , which is the operator

of restriction to the boundary diamonds.
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Now we define the scalar products on the approximation spaces:

[[vT,uT]]T = 1
2

(∑
K∈M

mK uK · vK +
∑

K∗∈M∗∪∂M∗

mK∗ uK∗ · vK∗

)
∀uT,vT ∈ (R2)T

(ΦD,v∂M)∂Ω =
∑

Dσ,σ∗ ∈Dext

mσΦD · vσ ∀ΦD ∈ (R2)Dext ,v∂M ∈ (R2)∂M

(ξD : ΦD)D =
∑

Dσ,σ∗ ∈D

mD

(
ξD : ΦD

)
∀ξD,ΦD ∈ (M2(R))D

(pD, qD)D =
∑

Dσ,σ∗ ∈D

mDpDqD ∀pD, qD ∈ RD,

where (ξ : ξ̃) =
∑

1≤i,j≤2
ξi,j , ξ̃i,j = Tr(tξξ̃) for all ξ, ξ̃ ∈ M2(R).

For all p ≥ 1 we can define for any uT ∈ (R2)T and ξD ∈ (M2(R))D the norms:

∥uT∥p =

1
2

(∑
K∈M

mK|uK|p +
∑

K∗∈M∗∪∂M∗

mK∗ |uK∗ |p
)1/p

=
[1

2

(
∥uM∥p

p + ∥uM∗∪∂M∗∥p
p

)]1/p

,

∥v∂M∥p,∂Ω =
( ∑

Dσ,σ∗ ∈Dext

mσ|vσ|p
)1/p

,

�ξD�p =
(∑

D∈D

mD|ξD|p
)1/p

,

∥uT∥1,p =
[
∥uT∥p

p + ∥∇DuT∥p
p

]1/p
,

∥pD∥p =
(∑

D∈D

mD|pD|p
)1/p

.

Remark I.4.1 Remark that, if we denote by � · �F the Frobenius norm �ξ�2
F = (ξ : ξ) for all

matrices ξ ∈ M2(R), the following holds:�����ξ +t ξ

2

�����
F

≤ �ξ�F .

I.5 Green’s formula

In [ABH07], [DO05] the discrete gradient and discrete divergence for a scalar-valued function are
linked by a discrete Stokes formula. This is precisely the duality property that gives its name to
the method.

Theorem I.5.1 Discrete Green’s formula
For all ξD ∈ (M2(R))D,uT ∈ (R2)T, we have:

[[divTξD,uT]]T = −(ξD : ∇DuT)D + (γD(ξD)n⃗, γT(uT))∂Ω,

where −→n is the unitary outer normal.

The proof can be found in [Kre10, Thm IV.9].
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I.6 Inf-sup stability

In this section, we first recall the Inf-sup stability property for the DDFV method: its definition
and its main consequences. Then, since it has been proven to hold in the case of homogeneous
Dirichlet boundary conditions, we will extend the result to the case of vT ∈ EΓD

0 . i.e. Dirichlet
boundary conditions just on a fraction of the domain.

Inf-sup stability inequality (or LBB), in the continuous setting, is formulated as:

inf
p∈L2

0(Ω)

 sup
v∈(H1

0 (Ω))2

a(v,p)
∥v∥H1∥p∥L2

 > 0

where a(v, p) =
∫

Ω
p(div(v)) and L2

0(Ω) = {p ∈ L2(Ω) : m(p) = 1
|Ω|
∫

Ω p = 0}. This inequal-
ity is equivalent to the existence of a continuous right-inverse of the divergence operator (see
[GR11, BF12]).

This condition is related to the well-posedness of the Stokes problem coupled with homoge-
neous Dirichlet boundary conditions. In the DDFV framework, Inf-sup stability has been proven
to hold unconditionally for conforming acute triangle meshes, non-conforming triangle meshes and
chechkerboard meshes. For some conforming or non-conforming Cartesian meshes, it holds up to a
single unstable pressure mode. Moreover, it has been proven numerically for many other families
of meshes and it has still not been found a mesh that does not satisfy it. For more details, see
[BKN15]).

Definition I.6.1 A given DDFV mesh T is said to satisfy the Inf-sup stability if the following
condition holds:

βT := inf
pD∈RD

(
sup

vT∈E0

aT(vT,pD)
∥∇DvT∥2∥pD −m(pD)∥2

)
> 0, (I.9)

where aT(vT, pD) = (divDvT,pD)D and m(pD) =
∑
D∈D

mDpD.

For a given family of meshes such that size(T) → 0, the scheme is stable if and only if

lim inf
size(T)→0

βT > 0.

We shall use the following two consequences of the Inf-sup condition (I.9):

• ∀pD ∈ RD:

∥pD −m(pD)∥2 ≤ 1
βT

sup
vT∈E0

(divDvT,pD)D
∥∇DvT∥2

, (I.10)

• For every pD ∈ (R2)T such that m(pD) = 0, there exists vT ∈ E0 such that:

divD(vT) =pD

∥∇DvT∥2 ≤ 1
β2
T

∥pD∥2.
(I.11)

The former is a direct consequence of the definition. The latter is more subtle, in particular when
considering the constant arising in estimate (I.11). It is worth detailing this issue.

The Inf-sup property is a crucial property of the continuous gradient/divergence operators,
which enters into the analysis of the Stokes problem. In particular it is equivalent to the possibility
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to define a continuous right-inverse of the divergence operator defined from H1
0 (Ω) to L2(Ω), as a

consequence of the open mapping theorem [BF12, Sec. IV.3] and (I.11) is nothing but the discrete
analog of this property.

For the numerical analysis, it is crucial to check whether or not the constants are uniform with
respect to the mesh parameters; which is not completely clear when one uses such an abstract
argument.

Therefore let us justify that the discrete divergence operator admits a right inverse, which,
furthermore, satisfies a continuity estimate that depends only on the (possibly uniform) constant
of the Inf-sup condition (I.9). To this end, we adapt the sketch of proof presented in [DPE12,
Rem. 6.7].

Proposition I.6.2 Let T be a mesh that satisfies Inf-sup stability condition. Then, for every
pD ∈ RD with m(pD) = 0, there exists wT ∈ E0 such that:

divD(wT) =pD

∥∇DwT∥2 ≤ 1
β2
T

∥pD∥2,

where βT is the Inf-sup constant defined in (I.9).

Proof As a warm-up we shall need a discrete analog of the Riesz isomorphism between H1
0 and

its dual space H−1; the analogous discrete spaces are E0 and its dual E′
0.

Let l : E0 → R be a continuous linear form on E0, equipped with the norm induced by the
scalar product (∇D· : ∇D·)D, i.e. ∀vT,uT ∈ E0, (∇DvT : ∇DuT)D = ∑

D∈DmD(∇DvT : ∇DuT).
By continuity, the linear form l satisfies:

|⟨l,vT⟩E′
0,E0 | ≤ C∥∇DvT∥2.

By Riesz representation theorem, there exists a unique J T
l ∈ E0 such that ∀vT ∈ E0:

⟨l,vT⟩E′
0,E0 = (∇DJ T

l : ∇DvT)D.

Moreover, by applying the previous relation, we have:

∥l∥E′
0

= sup
vT∈E0

|⟨l,vT⟩E′
0,E0 |

∥∇DvT∥2
= sup

vT∈E0

|(∇DJ T
l ,∇DvT)D|

∥∇DvT∥2
.

Since J T
l ∈ E0 and by Cauchy-Schwarz, it holds:

∥l∥E′
0

= ∥∇DJ T
l ∥2.

We can then deduce that:
⟨l,J T

l ⟩E′
0,E0 = ∥∇DJ T

l ∥2
2 = ∥l∥2

E′
0
. (I.12)

Let MD = {pD ∈ RD : m(pD) = 0}. We consider now ∀pD ∈ MD and ∀vT ∈ E0:

aT(pD,vT) = (pD, divD(vT))D.

Let pD ∈ MD. We define the linear form BpD : E0 → R on E0 as:

⟨BpD ,vT⟩E′
0,E0 = aT(pD,vT). (I.13)
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The linear form BpD on E0 is continuous, since it holds by Cauchy-Schwarz inequality:

|⟨BpD ,vT⟩E′
0,E0 | = |(pD,divD(vT))D| ≤ ∥pD∥2∥∇DvT∥2. (I.14)

We can deduce the following properties on the norm of BpD :

• by (I.14):

∥BpD∥E′
0

= sup
vT∈E0

aT(pD,vT)
∥∇DvT∥2

= sup
vT∈E0

(pD,divD(vT))D
∥∇DvT∥2

≤ ∥pD∥2 (I.15)

• by (I.10), since we suppose that the mesh T satisfies Inf-sup condition and that m(pD) = 0:

∥BpD∥E′
0

= sup
vT∈E0

aT(pD,vT)
∥∇DvT∥2

≥ βT∥pD∥2 (I.16)

Consider now the following problem:

Find qD ∈ MD such that ∀rD ∈ MD :
⟨BrD ,J T

BqD
⟩E′

0,E0︸ ︷︷ ︸
=:̃aT(rD,qD)

= (pD, rD)D. (I.17)

If we define ãT(rD, qD) := ⟨BrD ,J T
BqD

⟩E′
0,E0 , we can show that ãT is coercive. In fact, if we apply

(I.12):
ãT(qD, qD) = ⟨BqD ,J T

BqD
⟩E′

0,E0 = ∥BqD∥2
E′

0
,

and by (I.16):
ãT(qD, qD) = ∥BqD∥2

E′
0

≥ β2
T∥qD∥2

2. (I.18)

The coercivity of ãT implies that problem (I.17) is well-posed. Let qD ∈ MD be the unique solution
of (I.17); then:

β2
T∥qD∥2

2 ≤︸︷︷︸
by (I.18)

ãT(qD, qD) =︸︷︷︸
by (I.17)

(pD, qD) ≤︸︷︷︸
by Cauchy-Schwarz

∥pD∥2∥qD∥2,

which implies 1
β2
T

∥pD∥2 ≥ ∥qD∥2. From (I.15) and (I.12), we deduce:

1
β2
T

∥pD∥2 ≥ ∥qD∥2 ≥ ∥BqD∥E′
0

= ∥∇DJ T
BqD

∥2. (I.19)

If now we set wT = J T
BqD

∈ E0, we obtain

∥∇DwT∥2 ≤ 1
β2
T

∥pD∥2

that is the estimate we want to prove. It remains to show that divD(wT) = pD.

Let rD ∈ MD; we can write:

(rD, divD(wT))D =︸︷︷︸
by (I.13)

⟨BrD ,wT⟩E′
0,E0 =︸︷︷︸

by (I.17)

(pD, rD)D
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that implies
(rD,pD − divD(wT))D = 0 ∀rD ∈ RD,m(rD) = 0. (I.20)

If now we consider r̃D ∈ RD, we can decompose it in:

r̃D = r̃D − m(r̃D)
|Ω|

1D︸ ︷︷ ︸
:=rD

+m(r̃D)
|Ω|

1D

= rD + m(r̃D)
|Ω|

1D.

where 1D = (1D)D∈D and 1D is the indicator function on D. Remark that m(rD) = 0. Thus, if we
compute:

(r̃D, pD − divD(wT))D = (rD,pD − divD(wT))D + m(r̃D)
|Ω|

(1D, pD − divD(wT))D (I.21)

By (I.20), we deduce (rD, pD−divD(wT))D = 0; remark that (1D, pD)D = ∑
D∈DD mDpD = m(pD) =

0 and that by Green’s formula (Thm. I.5.1) (1D,divD(wT))D = [[∇T(1D),wT]]T = 0. So (I.21)
gives:

(r̃D,pD − divD(wT))D = 0 ∀r̃D ∈ RD,

that implies pD = divD(wT).

The following result is an extension to Necas Lemma, [GR86, Corollary 2.4]. Instead of considering
v ∈ H1

0 (Ω), with zero boundary data and p ∈ L2
0(Ω) with zero mean, we take (v, p) ∈ H1

Γ(Ω)×L2(Ω),
with H1

Γ = {v ∈ (H1(Ω))2, v = 0 on ΓD}, with |ΓD| > 0.

Lemma I.6.3 Let H1
Γ = {v ∈ (H1(Ω))2, v = 0 on ΓD}. Then, for every p ∈ L2(Ω) there exists v

∈ H1
Γ and a constant C > 0 depending only on Ω, such that:

div(v) = p

∥v∥H1 ≤ C∥p∥2.
(I.22)

Proof Consider ω ∈ H1
Γ such that 1

|Ω|
m(div(ω)) = 1, i.e. 1

|Ω|

∫
Ω

div(ω) = 1. We can decompose

any p ∈ L2(Ω) into:
p = p− 1

|Ω|
m(p)div(ω)︸ ︷︷ ︸
:=p̃

+ 1
|Ω|

m(p)div(ω)

= p̃+ 1
|Ω|

m(p)div(ω).

Remark that p̃ ∈ L2
0(Ω). By Necas Lemma, [[GR86], Corollary 2.4], there exists ṽ ∈ (H1

0 (Ω))2 such
that

div(ṽ) = p̃

∥ṽ∥H1 ≤ C∥p̃∥L2 .
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If we set v = ṽ +m(p)ω, we can observe that v ∈ H1
Γ(Ω) and that

div(v) = div(ṽ) + 1
|Ω|

m(p)div(ω)

= p̃+ 1
|Ω|

m(p)div(ω) = p,

that is the first property of (I.22).
We now look at ∥v∥H1 . By Minkowski inequality:

∥v∥H1 = ∥ṽ + 1
|Ω|

m(p)ω∥H1

≤ ∥ṽ∥H1 + |m(p)|
|Ω|

∥ω∥H1 .

We apply Necas Lemma to ∥ṽ∥H1 and Cauchy-Schwarz inequality to |m(p)|∥ω∥H1 :

∥v∥H1 ≤ C∥p̃∥L2 + 1√
|Ω|

∥p∥L2 ∥ω∥H1 . (I.23)

We now need to estimate ∥p̃∥L2 . By definition of p̃ and Minkowsky inequality, we can write:

∥p̃∥L2 ≤ ∥p∥L2 + |m(p)|
|Ω|

∥div(ω)∥L2 .

By Cauchy-Schwarz inequality, the fact that ∥div(ω)∥L2 ≤ ∥ω∥H1 and the bound of |m(p)| we
deduce:

∥p̃∥L2 ≤
(

1 + 1√
|Ω|

∥ω∥H1

)
∥p∥L2 .

Injecting this estimate in (I.23), we obtain:

∥v∥H1 ≤
[
C

(
1 + 1√

|Ω|
∥ω∥H1

)
+ 1√

|Ω|
∥ω∥H1

]
∥p∥L2

that, if we define C̃ = C

(
1 + 1√

|Ω|
∥ω∥H1

)
+ 1√

|Ω|
∥ω∥H1 , gives:

∥v∥H1 ≤ C̃∥p∥L2 .

This proves (I.22) of Lemma I.6.3.

I.6.1 Extension to inhomogeneous Dirichlet boundary conditions

In this section we extend the results of [BKN15] to the case in which vT ∈ EΓD
0 instead of vT ∈ E0;

this will come as a natural extension since E0 ⊂ EΓD
0 .

Theorem I.6.4 For a given DDFV mesh T that satisfies Inf-sup stability (see Def.I.6.1), there
exists β̃T such that:

β̃T := inf
pD∈RD

(
sup

vT∈EΓD
0

aT(vT, pD)
∥∇DvT∥2∥pD −m(pD)∥2

)
> 0, (I.24)
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where aT(vT, pD) = (divDvT, pD)D and m(pD) =
∑
D∈D

mDpD.

Moreover, for a given family of meshes which are Inf-sup stable such that size(T) → 0, we have:

lim inf
size(T)→0

β̃T > 0.

Proof To prove this result, it is necessary to refer on how in [BKN15] the authors prove that
Inf-sup condition (of Def. I.6.1) holds for a given mesh T. We show how it is possible to extend
the results of this proof to the case of vT ∈ EΓD

0 . To do that, we do not detail the computations
(that can be found in [BKN15]), but we give an idea of the key points of the proof and we show
how to deduce (I.24).

The strategy used in [BKN15] is to relate the value of βT to the eigenvalues of a suitable matrix.
The reformulation of (I.9) as an eigenvalue problem reads:

βT = inf
pD∈RD

⟨MTpD,1⟩=0

(
sup

vT∈E0

⟨BTvT, pD⟩
⟨RTvT,vT⟩

1
2 ⟨MTpD,pD⟩

1
2

)
, (I.25)

where RT is the stiffness matrix, BT is the divergence matrix and MT the pressure mass matrix.
Those matrices are built so that:

⟨RTuT,vT⟩ = (∇DuT : ∇DvT)D,
⟨BTuT, pD⟩ = aT(uT,pD) = (divDvT, pD)D,
⟨MTpD, qD⟩ = (pD, qD)D,

(I.26)

where we denote by ⟨·, ·⟩ the Euclidian inner product on the spaces R2NT and RND , with
NT = Card(T), ND = Card(D).
Our aim is to extend the reformulation (I.25) to the case of vT ∈ EΓD

0 , thus we need to build
different stiffness and divergence matrices that take into account boundary terms and maintain
the same properties of (I.26).

The new stiffness matrix R̃T, modified only on ∂MN and ∂M∗
N , is built as:

R̃TuT =



(
− mK

2 divK(∇DuT)
)

K∈M

(uσ)σ∈∂MD(
mσ

2 ∇DuT · n⃗σK)
)

σ∈∂MN(
− mK∗

2 divK∗(∇DuT)
)

K∗∈M∗

(uK∗)K∗∈∂M∗
D(

− mK∗

2 divK∗(∇DuT) +
∑

D∈Dext
K∗

mσ

4 ∇DuT · n⃗σK

)
K∗∈∂M∗

N



,

so that, if we take the product with a vector vT, we have:

⟨R̃TuT,vT⟩ = −[[divT(∇DuT),vT]]T +
(
γD(∇D(uT) · n⃗), γT(uT)

)
∂Ω
,
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that by Green’s formula (Thm. I.5.1) implies ⟨R̃TuT,vT⟩T = (∇DuT : ∇DvT)D so that:

⟨R̃TuT,vT⟩ = ⟨RTuT,vT⟩. (I.27)

For what concerns the divergence matrix, we remark that BT is identical, while its transposed is
modified into tB̃T in order to take into account the boundary terms on ∂MN and ∂M∗

N :

BTuT =
(
−mDdivD(uT)D∈D

)
and tB̃TpD = 1

2



(
mK∇KpD

)
K∈M

( 0 )σ∈∂MD

( −mσpDn⃗σK )σ∈∂MN(
mK∗∇K∗pD

)
K∗∈M∗

(0)K∗∈∂M∗
D(

mK∗∇K∗pD −
∑

D∈Dext
K∗

mσ

2 pD · n⃗σK

)
K∗∈∂M∗

N


.

So, if we take the product with a vector pD, we have:

⟨BTuT,pD⟩ = −(divDuT, pD)D
⟨tB̃TpD,uT⟩ = [[∇TpD,uT]]T −

(
pDextn⃗σK, γ

T(uT)
)

∂Ω
.

Green’s formula (Thm. I.5.1) gives ⟨tB̃TpD,uT⟩ = −(pD, divDuT)D, so that:

⟨BTuT, pD⟩ = ⟨tB̃TpD,uT⟩. (I.28)

So, if we define the DDFV for the Stokes scheme as:

Find (uT, pD) ∈ EΓD
0 × RD such that:

divK(−∇DuT + pDId) = fK ∀K ∈ M

divK∗(−∇DuT + pDId) = fK∗ ∀K∗ ∈ M∗ ∪ ∂M∗
N

divD(uT) = 0
(∇DuT − pDId)n⃗σK = Φσ ∀Dσ,σ∗ ∈ Dext ∩ ΓN ,

(I.29)

this is equivalent to

(
R̃T

tB̃T

BT 0

)(
uT

pD

)
=



fM
0

Φ∂MN

fM∗

0
f∂M∗

0


.
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By (I.27)- (I.28) and the fact that E0 ⊂ EΓD
0 , we can conclude:

βT = inf
pD∈RD

⟨MTpD,1⟩=0

(
sup

vT∈E0

⟨BTvT,pD⟩
⟨RTvT,vT⟩

1
2 ⟨MTpD, pD⟩

1
2

)

= inf
pD∈RD

⟨MTpD,1⟩=0

(
sup

vT∈E0

⟨BTvT,pD⟩
⟨R̃TvT,vT⟩

1
2 ⟨MTpD, pD⟩

1
2

)

≤ inf
pD∈RD

⟨MTpD,1⟩=0

(
sup

vT∈EΓD
0

⟨BTvT,pD⟩
⟨R̃TvT,vT⟩

1
2 ⟨MTpD,pD⟩

1
2

)
= β̃T,

so that every time that βT is proven (theoretically or numerically) to be positive, also β̃T > 0.
This, in particular, implies that for a given family of meshes such that size(T) → 0, by Def.I.6.1:

lim inf
size(T)→0

β̃T > lim inf
size(T)→0

βT > 0.

From (I.24), as from Def. I.6.1, we deduce the analogous of properties (I.10) and (I.11). In fact,
the following holds:

• ∀pD ∈ RD:

∥pD −m(pD)∥2 ≤ 1
β̃2
T

sup
vT∈EΓD

0

(divDvT, pD)D
∥∇DvT∥2

, (I.30)

• For every pD ∈ RD, there exists vT ∈ EΓD
0 and there exists h0 > 0 such that ∀h = size(T) ≤ h0,

there exists a constant C depending only on βT,Ω, reg(T), h0 :

divD(vT) =pD

∥∇DvT∥2 ≤C∥pD∥2.
(I.31)

As for the case of (I.10), property (I.30) is a direct consequence of (I.24). For (I.31), the proof is
the discrete analog of Lemma I.6.3, that we detail here.

Lemma I.6.5 Let T be a mesh that satisfies Inf-sup stability condition; we denote h = size(T).
Then, for every pD ∈ RD, there exists vT ∈ EΓD

0 :

divD(vT) = pD

and there exists h0 > 0 such that ∀h ≤ h0, there exists a constant C depending only on
βT,Ω, reg(T), h0 such that:

∥∇DvT∥2 ≤ C∥pD∥2.

Proof To prove this result, we adapt the proof of Lemma I.6.3 to the discrete case; in this proof,
by means of a particular function, we reduce to the case of homogeneous Dirichlet in order to
apply the result of Prop. I.6.2.

Let v ∈ H1
ΓD

(Ω) with 1
|Ω|

∫
Ω

div(v) = 1. Let vT = PT
mv.

By definition of the projection (see Sec. I.2), we have vT ∈ E0. Moreover, by [ABH07, Corollary
3.1], given a sequence of meshes (Tn)n such that size(Tn) → 0 as n → ∞ and reg(Tn) is bounded,
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we have:
vTn → v in (L2(Ω))2 as n → ∞,

∇DvTn → ∇v in (L2(Ω))2×2 as n → ∞.

Remark that ∇DvTn can be seen as the L2 function ∇DvTn = ∑
D∈D ∇DvTn1D; as a matter of fact,

it implies ∀ϕ ∈ (L2(Ω))2×2 ∫
Ω

(
∇DvTn : ϕ

)
→
∫

Ω
(∇v : ϕ) .

Thanks to the relation between the gradient and the divergence operator (see (I.5)-(I.6)) and by

choosing ϕ = 1
|Ω|

(
1Ω 0
0 0

)
and ϕ = 1

|Ω|

(
0 0
0 1Ω

)
, we obtain:

m̃Tn = 1
|Ω|

m(divD(vTn)) → 1
|Ω|

m(div (v)) = 1 as n → ∞. (I.32)

Define now wT = 1
m̃T

vT, where m̃T := 1
|Ω|

m(divD(vT)); it satisfies wT ∈ EΓD
0 and ∇DwT =

1
m̃T

∇DvT. Moreover, by definition of m̃T,

m(divD(wT)) = 1
m̃T

∑
D∈D

mDdivD(vT) = |Ω|. (I.33)

Its gradient is bounded by:
∥∇DwT∥2 ≤ 1

m̃T
∥∇DvT∥2

and by [ABH07, Lemma 3.4], there exists C that depends only on reg(T) such that

∥∇DwT∥2 ≤ C

m̃T
∥∇v∥2.

By (I.32), there exists h0 > 0 such that ∀h ≤ h0 (where h = size(T)), m̃T > 1
2 , so:

∥∇DwT∥2 ≤ 2C∥∇v∥2. (I.34)

We can then decompose any pD ∈ RD into:

pD = pD − 1
|Ω|

m(pD)divD(wT)︸ ︷︷ ︸
:=p̃D

+ 1
|Ω|

m(pD)divD(wT)

= p̃D + 1
|Ω|

m(pD)divD(wT).

Remark that p̃D ∈ RD with m(p̃D) = 0 by (I.33). By Prop. I.6.2, there exists ṽT ∈ E0 such that

divD(ṽT) =p̃D

∥∇DṽT∥2 ≤ 1
β2
T

∥p̃D∥2.
(I.35)

If we set vT = ṽT + 1
|Ω|m(pD)wT, we can observe that vT ∈ EΓD

0 and that

divD(vT) = divD(ṽT) + 1
|Ω|

m(pD)divD(wT).
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Using (I.35) and the decomposition of pD we get:

divD(vT) = p̃D + 1
|Ω|

m(pD)divD(wT) = pD,

that is the first property of Lemma I.6.5 that we wanted to prove.
We now look at ∥∇DvT∥2. By Minkowski inequality:

∥∇DvT∥2 = ∥∇DṽT + 1
|Ω|

m(pD)∇DwT∥2

≤ ∥∇DṽT∥2 + |m(pD)|
|Ω|

∥∇DwT∥2.

By (I.35) and applying Cauchy-Schwarz inequality to m(pD) = ∑
D∈DmDpD, by recalling that

|Ω| = ∑
D∈DmD, we obtain:

∥∇DvT∥2 ≤ 1
β2
T

∥p̃D∥2 + 1√
|Ω|

∥pD∥2 ∥∇DwT∥2. (I.36)

We now need to estimate ∥p̃D∥2. By definition of p̃D and Minkowsky inequality, we can write:

∥p̃D∥2 ≤ ∥pD∥2 + 1
|Ω|

|m(pD)|∥divD(wT)∥2.

By Cauchy-Schwarz inequality, the fact that ∥divD(wT)∥2 ≤ ∥∇DwT∥2 and the bound of |m(pD)|
we deduce:

∥p̃D∥2 ≤
(

1 + 1√
|Ω|

∥∇DwT∥2

)
∥pD∥2.

Injecting this estimate in (I.36), we obtain:

∥∇DvT∥2 ≤
[

1
β2
T

(
1 + 1√

|Ω|
∥∇DwT∥2

)
+ 1√

|Ω|
∥∇DwT∥2

]
∥pD∥2

and by (I.34) it becomes:

∥∇DvT∥2 ≤
[

1
β2
T

(
1 + 2C√

|Ω|
∥∇v∥2

)
+ 2C√

|Ω|
∥∇v∥2

]
∥pD∥2

that, if we define C̃ = 1
β2
T

(
1 + 2C√

|Ω|
∥∇v∥2

)
+ 2C√

|Ω|
∥∇v∥2, gives:

∥∇DvT∥2 ≤ C̃∥pD∥2.

This concludes the proof of Lemma I.6.5.

I.7 Stabilization of Brezzi-Pitkaranta

This stabilization term is inspired by the Brezzi-Pitkäranta method [BP84] in the finite ele-
ment framework. This strategy has been previously used in the finite volume framework by
[EHL06, EHL07]; in particular, in the DDFV framework, it was proposed by the author of [Kre11a]
to add this term in the mass conservation equation, in order to deal with the lack of a uniform
discrete Inf-sup condition for general meshes. Later, in [BKN15], Inf-sup condition was studied (as
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presented in Sec. I.6); it has been proven to hold for a large class of meshes but not for general
meshes, thus sometimes it will be preferable to stabilize the equation of conservation of mass in
order to avoid the Inf-sup hypothesis on the mesh.

To define this Brezzi-Pitkäranta stabilization term in Stokes and Navier-Stokes problem we
need a second order discrete operator, denoted by ∆D : pD ∈ RD 7→ ∆DpD ∈ RD, defined as
follows:

∆DpD = 1
mD

∑
s=D|D′∈ED

d2
D + d2

D′

d2
D

(pD′ − pD), ∀D ∈ D.

Remark I.7.1 We recall that ED contains just the interior edges of the diamonds. Actually, we
never consider s ∈ ∂Ω. This means that we imposed automatically an homogeneous Neumann
condition on the boundary ∂Ω inside the operator ∆D.

It resembles an approximation of the Laplace’s operator, however it is consistent only under
orthogonality condition (as in the case of admissible meshes, see [EGH00, Dro14]); that is not true
in general for diamond meshes obtained from M.

In relation with this operator we define a semi-norm | · |h on RD that depends on the mesh:

|pD|2h =
∑

s=D|D′∈G

(d2
D + d2

D′)(pD′ − pD)2, ∀pD ∈ RD. (I.37)

Remark I.7.2 By reorganizing the sum on the diamond edges s ∈ G, we have that for all pD ∈ RD:

−(d2
D∆DpD, pD)D =

∑
D∈D

pD
∑

s=D|D′∈ED

(d2
D + d2

D′)(pD − pD′)

=
∑

s=D|D′∈G

(d2
D + d2

D′)(pD′ − pD)

= |pD|2h.

The following lemma is an inverse Sobolev lemma, i.e. the seminorm | · |h is bounded by the L2

norm ∥ · ∥2.

Lemma I.7.3 ([Kre10], Lemma IV.13) Let T be a DDFV mesh associated to Ω. There exists
a constant C > 0, that depends only on reg(T), such that ∀pD ∈ RD we have:

|pD|2h ≤ C∥pD∥2.

I.8 Results on the strain rate tensor

In this section, we compare the strain rate tensor to the gradient: this will be useful in the estimates,
in order to pass from a Laplace form of Stokes (or Navier-Stokes) problem to a Divergence form,
and viceversa. The most important result of this section is the Korn inequality.

I.8.1 Bound for the strain rate tensor

This estimate comes straightforward from the definition of the operators; the goal is to bound the
norm of the strain rate tensor with the one of the gradient.
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Proposition I.8.1 For all uT ∈
(
R2)T, we have:

∥DDuT∥2 ≤ ∥∇DuT∥2.

Proof Thanks to Rem. I.4.1, we have:

∥DDuT∥2 =
∑
D∈D

mD∥DDuT∥2
F ≤

∑
D∈D

mD∥∇DuT∥2
F = ∥∇DuT∥2.

I.8.2 Korn inequality

The proof of the discrete Korn inequality is inspired by the continuous version in [BS07]. In DDFV
setting in the case of homogeneous Dirichlet boundary conditions, i.e. if uT ∈ E0, the theorem was
proved in [Kre10]. In this case the proof relies on the definition of the operators and the constant
of the estimate can be explicitly computed. By adding a part of the boundary with non-zero data,
we introduce some difficulties and we are able to prove the result only by contradiction, just as in
the continuous setting.

Theorem I.8.2 (Korn’s inequality) Let T be a mesh that satisfies Inf-sup stability condition. Then
there exists C > 0, that depends only on reg(T),βT, such that :

∥∇DuT∥2 ≤ C∥DDuT∥2 ∀uT ∈ EΓD
0 .

In order to prove this result, it is necessary to first consider the case in which rotDuT has zero
mean.

Lemma I.8.3 Let T be a mesh that satisfies Inf-sup stability condition. Then ∀uT ∈ (R2)T that
satisfies m(rotDuT) =

∑
D∈D

mDrotDuT = 0 it holds:

∥∇DuT∥2 ≤ 1
β2
T

∥DDuT∥2,

where βT is the Inf-sup constant defined in (I.9).

Proof (of Lemma I.8.3) Let uT ∈ (R2)T such that m(rotDuT) = 0. If we consider the function

rotDuT =
∑
D∈D

rotDuT1D,

this is an L2 function with zero mean, by hypothesis. This means that, by infsup stability condition
(I.11), ∃wT ∈ E0 such that:

divD(wT) =rotD(uT)

∥∇DwT∥2 ≤ 1
β2
T

∥∇DuT∥2.
(I.38)

Moreover, if we define the matrix χ =
(

0 1
−1 0

)
, we have the following property:

DDuT = ∇DuT + 1
2rotD(uT)χ ∀uT ∈ (R2)D.
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Let us compute by replacing the value of DD and by developing:

(DDuT : ∇DuT−curlD(wT))D

= (∇DuT + 1
2rotDuTχ : ∇DuT − curlDwT)D

= ∥∇DuT∥2
2 − (∇DuT : curlDwT)D + 1

2(rotDuTχ : ∇DuT − curlDwT)D.

Since
(∇DuT : curlDwT)D = 0,

and
(rotDuTχ : ∇DuT)D = (rotDuT,−rotDuT)D,

(rotDuTχ : curlDwT)D = (rotDuT,−divDwT)D.

(pay attention that the product between matrices becomes a product between scalars), we then
obtain:

(DDuT : ∇DuT−curlD(wT))D

= ∥∇DuT∥2
2 + 0 + 1

2(rotDuT,−rotDuT + divDwT︸ ︷︷ ︸
=0 by infsup

)D

= ∥∇DuT∥2
2.

(I.39)

This means that, if we apply the Cauchy-Schwarz inequality and triangle inequality to (I.39), we
deduce:

∥∇DuT∥2
2 ≤∥DDuT∥2∥∇DuT − curlDwT∥2

≤∥DDuT∥2(∥∇DuT∥2 + ∥curlDwT∥2).

By applying the definition of curlD and (I.38) we get:

∥∇DuT∥2
2 ≤∥DDuT∥2(∥∇DuT∥2 + ∥∇DwT∥2)

≤ 1
β2
T

∥DDuT∥2∥∇DuT∥2.

We conclude that:
∥∇DuT∥2 ≤ 1

β2
T

∥DDuT∥2.

Thanks to this result, we give the proof of Korn’s inequality in the general case.
Proof (of Theorem I.8.2) Let uT ∈ EΓD

0 . We define zT ∈
(
R2)T as:

zT = uT + 1
2m(rotDuT)xT,

where xT = PT
c

(
y

−x

)
is a vector that satisfies for all D ∈ D: ∇DxT = χ =

(
0 1

−1 0

)
, DDxT = 0 and

rotDxT = −2.
As a consequence, we have that m(rotDzT) = 0 and DDuT = DDzT. By Lemma I.8.3 to zT:

∥∇DzT∥2 ≤ 1
β2
T

∥DDzT∥2. (I.40)
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If we compute ∇DuT, using the fact that ∇DxT = χ we obtain:

∇DuT = ∇DzT − 1
2m(rotDuT)χ,

from which we deduce
∥∇DuT∥2 ≤ C(∥∇DzT∥2 + |m(rotDuT)|),

where C depends on the size of the domain Ω. By (I.40)

∥∇DuT∥2 ≤ C̄(∥DDzT∥2 + |m(rotDuT)|),

that by the definition of zT becomes:

∥∇DuT∥2 ≤ C̄(∥DDuT∥2 + |m(rotDuT)|). (I.41)

It remains to prove that ∃C̃ > 0 such that:

|m(rotDuT)| ≤ C̃∥DDuT∥2 ∀uT ∈ EΓD
0 . (I.42)

We prove this result by contradiction.
Let (hn)n∈N be a sequence such that hn → 0 as n → +∞, and let (Tn)n be a sequence of meshes
such that size(Tn) = hn while reg(Tn) is bounded. For every n, there exists a constant Cn such
that:

|m(rotDuTn)| ≤ Cn∥DDuTn∥2 ∀uTn ∈ EΓD
0 , (I.43)

with Cn := sup
uTn ∈EΓD

0

|m(rotDuTn)|
∥DDuTn∥2

. Inequality (I.43) holds because of Thm. I.8.4 (proved below in

Sec. I.8.3), that ensures that ∥DDuTn∥2 is actually a norm.
Proving (I.42), it is equivalent to show that the bound (I.43) is a uniform bound. Thus we argue
by contradiction, and we suppose that:

∀k ∈ N, ∃nk with nk ≥ k such that Cnk
≥ k,

that is
∀k ∈ N, ∃ũTnk such that |m(rotDũTnk )| ≥ k ∥DDũTnk ∥2 ∀ũTn ∈ EΓD

0 .

Let uTnk = ũTnk

m(rotDũTnk )
, so that:

m(rotDuTnk ) = 1, ∥DDuTnk ∥2 ≤ 1
k
. (I.44)

From (I.41), we can deduce that ∇DuTnk is bounded as k → +∞, since:

∥∇DuTnk ∥2 ≤ C

(1
k

+ 1
)
.

We can thus apply the compactness result of [ABH07, Lemma 3.6], which implies the existence of
u ∈ (H1

D(Ω))2 such that, up to a subsequence:

uTnk → u in (L2(Ω))2 as k → ∞,

∇DuTnk ⇀ ∇u in (L2(Ω))2×2 as k → ∞.
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The weak convergence of ∇DuTnk , that can be seen as the L2 function ∇DuTnk = ∑
D∈D ∇DuTnk 1D,

implies that ∀ϕ ∈ (L2(Ω))2×2

∫
Ω

(
∇DuTnk : ϕ

)
→
∫

Ω
(∇u : ϕ) .

Thanks to the relation between the gradient and the rotational operator (see (I.5)-(I.6)) and by

choosing ϕ = 1
|Ω|

(
0 0

1Ω 0

)
and ϕ = 1

|Ω|

(
0 1Ω
0 0

)
, we obtain:

m(rotDuTnk ) → m(rot u).

From (I.44), we deduce m(rot u) = 1.

Moreover, the weak convergence of the gradient implies the weak convergence of the strain
rate tensor DDuTnk , by definition of the operators; this, with (I.44), implies Du = 0, i.e. u is a
rigid motion. The only rigid motion that satisfies u|ΓD

= 0 is u = 0 since meas(ΓD) > 0 (see
[BS07]). We have therefore a contradiction, so we proved (I.42) and Thm. I.8.2.

I.8.3 Study of the kernel of DD

The following result is necessary in order to prove Korn’s inequality. It will be useful even to show
the wellposedness of the DDFV scheme in Sec. II.5.

Theorem I.8.4 Let Ω be an open connected bounded polygonal domain of R2 and ΓD be a part of
the boundary such that m(ΓD) > 0.
Let T be a DDFV mesh associated to Ω that satisfies Inf-sup stability condition. Then ∀uT ∈ EΓD

0
such that DDuT = 0 we have uT = 0 in Ω.

Proof Since we are not able to give a general proof of this theorem for all meshes, we focus on all
the ones that are unconditionally Inf-sup stable (see [BKN15]), since to prove Lemma I.8.3 we
need this last hypothesis.
When studying those meshes, we observe a propagation phenomenon of the zero boundary data on
ΓD to the entire mesh.

In fact, it is important to remark that in DDFV meshes all boundary diamonds are triangles (see
Fig. I.3). If we focus on one of those diamonds, the condition on ΓD implies that the velocity is
zero on the three vertices L, K∗ and L∗:

uL =

ux
L

uy
L

 = 0,uK∗ =

ux
K∗

uy
K∗

 = 0,

uL∗ =

ux
L∗

uy
L∗

 = 0.

Since we are supposing DDuT = 0 for all D ∈ D, this is true in particular for the boundary diamonds
(the white ones in Fig. I.6). By the definition of the discrete strain rate tensor (I.3) we are led to
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Fig. I.6 Possible configurations of diamonds adjacent to the boundary ones in Inf-sup stable meshes.

the following system: 
mσ ux

K nx
σ,K = 0

mσ uy
K ny

σ,K = 0
mσ (ux

K ny
σ,K + uy

K nx
σ,K) = 0,

(I.45)

that implies uK =

ux
K

uy
K

 = 0, since the outer normal n⃗σK =

nx
σ,K

ny
σ,K

 cannot be zero.

This means that for all diamonds in Dext ∩ ΓD the four components of the velocity, uK,uL,uK∗ ,uL∗ ,
are zero.

We now look at the diamonds that are adjacent to ones on the boundary: for the meshes
under consideration, we can distinguish two possible situations that we illustrate in Fig. I.6.

The first one is the case of the shaded diamond, for which the situation is equivalent to the
one of boundary diamonds. In fact, we know that the velocity is zero on three of its vertices. So
we can conclude, by solving a system similar to (I.45) deduced by DDuT = 0, that even the last
component of the velocity is zero on that diamond.

The second structure is described by the hatched diamonds. This is the case of two neigh-
bors, that we will denote with D1,D2 which share a common vertex. Remark that on that vertex
the velocity is zero and both diamonds have one more vertex with zero velocity. Thus we are
considering a structure composed by 6 vertices, where the values of the velocity are zero on 3
among them.
In this case, we denote the normal vectors of D1, D2 with

n⃗i
σK =

nx,i
σ

ny,i
σ

 , n⃗i
σ∗K∗ =

nx,i
σ∗

ny,i
σ∗

 for i = 1, 2,
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D1 D2

D3

Fig. I.7 Degenerate case

and we write the system of equations equivalent to the conditions DDiuT = 0 for i = 1, 2.
The 6 × 6 matrix of that system has determinant

det = (nx,2
σ∗ ny,2

σ − nx,2
σ ny,2

σ∗ )(nx,1
σ∗ ny,1

σ − nx,1
σ ny,1

σ∗ )(nx,1
σ ny,2

σ − nx,2
σ ny,1

σ ) ̸= 0,

that is always different from zero, except in a degenerate case that we treat in the following section
where the normals of the two diamonds are parallel. Thus the matrix is invertible, that implies that
all the six components of the velocity on those two diamonds are zero: ui

K = ui
L = ui

K∗ = ui
L∗ = 0

for i = 1, 2.

Degenerate case: checkerboard mesh

This is a particular case of the second structure, in which the normal vectors of the two hatched
diamonds are parallel. In order to have an invertible system to solve, it is necessary to consider a
third diamond.
In particular, if we call D1, D2 the hatched diamonds and D3 the white one, we have for instance:

n⃗i
σK =

(
0
1

)
for i = 1, 2 and n⃗3

σK =
(

1
0

)
.

If, as we did in the previous cases, we write the system of equations equivalent to DDiuT = 0, but
this time for i = 1, 2, 3, we get again an invertible system, this time of size 8 × 8. As before, we
find that all the components of the velocity are zero on the three diamonds.
By proceeding step by step, we can prove that the velocity uT is zero on the entire domain Ω.

Remark I.8.5 Since the study of the kernel of DD is related to the mesh geometry, there is no
general proof for all meshes. We only focused on meshes that satisfy Inf-sup condition because in
the study of Navier-Stokes problem we are already in this setting, due to Thm. I.8.3. The technique,
though, can be potentially extended to all mesh geometries considering one mesh at a time; for
instance, it is valid also on Cartesian meshes, which are Inf-sup stable up to a single pressure
mode.
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I.9 Trace inequalities

Given a vector uT = ((uK)K∈M∪∂M, (uK∗)K∗∈M∗∪∂M∗) defined on a DDFV mesh T, we associate the
approximate solution on the boundary in two different ways:

φ̃T(uT) = 1
2
∑
K∈M

uK1K̄∩∂Ω + 1
2

∑
K∗∈∂M∗

uK∗1K̄∗∩∂Ω,

φT(uT) = 1
2
∑

L∈∂M

uL1L + 1
2

∑
K∗∈∂M∗

uK∗1K̄∗∩∂Ω.

With this definition, we use simultaneously the values on the primal mesh and the values on the
dual mesh. The difference between the two traces can be explained if we look at a diamond D on
the boundary, illustrated in Fig. I.8: φ̃T averages values at the interior and on the boundary of the
mesh, i.e. uK,uK∗ ,uL∗ , while φT takes values just on the boundary, i.e. uL,uK∗ ,uL∗ .

uL∗

uK∗

uL

σuK

Fig. I.8 A boundary diamond, σ ∈ ∂M.

We can also consider two different reconstructions based either on the primal values or the dual
values:

φ̃∂M(uT) =
∑
K∈M

uK1K̄∩∂Ω or φ∂M(uT) =
∑

L∈∂M

uL1L

φ̃∂M∗(uT) = φ∂M∗(uT) =
∑

K∗∈∂M∗

uK∗1K̄∗∩∂Ω(x).

With respect to the traces defined in Sec.I.4, they satisfy

∥γ̃T(uT)∥q,∂Ω ≤ ∥φ̃T(uT)∥q,∂Ω

∥γT(uT)∥q,∂Ω ≤ ∥φ̃T(uT)∥q,∂Ω.

We point out that, if we consider the object we want to estimate, we have for both cases (by
Minkowski’s inequality):

∥φ̃T(uT)∥q,∂Ω ≤ ∥φ̃∂M(uT)∥q,∂Ω + ∥φ̃∂M∗(uT)∥q,∂Ω,

∥φT(uT)∥q,∂Ω ≤ ∥φ∂M(uT)∥q,∂Ω + ∥φ∂M∗(uT)∥q,∂Ω.

Before proving the trace theorem, we introduce a discrete Poincaré inequality, proved in [ABH07]
for scalar fields and L2 norm; here we need the one proved in [BCCHF15] for vector fields.

Theorem I.9.1 (Discrete Poincaré inequality, [BCCHF15], Thm. 11) Let Ω be an open
connected bounded polygonal domain of R2 and ΓD be a part of the boundary such that m(ΓD) > 0.
Let T be a DDFV mesh associated to Ω.

• If 1 ≤ p < 2, let 1 ≤ q ≤ p∗
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• If p ≥ 2, let 1 ≤ q < ∞.

There exists a constant C > 0, depending only on p,q, ΓD and Ω such that ∀uT ∈ EΓD
0 :

∥uT∥q ≤ C

sin(αT)
1
p reg(T)

p−1
p

∥∇DuT∥p.

Theorem I.9.2 (Trace inequality) Let T be a DDFV mesh associated to Ω. For all p > 1 there
exists a constant C > 0, depending only on p, sin(αT), reg(T) and Ω such that ∀uT ∈ EΓD

0 and
∀s ≥ 1:

∥φ̃T(uT)∥s
s,∂Ω ≤ C∥uT∥1,p∥uT∥s−1

p(s−1)
p−1

. (I.46)

The computations of the proof are similar to those present in [EGH00] and [CHKM15]. In [EGH00],
the proof is given for finite volume methods; in [CHKM15], the proof is given for DDFV method
but in the case of L1 norm. Our proof has been adapted to the vectorial case and to general Ls,
Lp norms.
Proof
Boundary properties: By compactness of ∂Ω, there exists a finite number of open hyper-
rectangles {Ri, i = 1 . . . N}, and normalized vectors of R2, {ηi, i = 1, . . . , N}, such that:

Ri

x+ tηi

x

ν(x)
ηi

Γ = ∂Ω

Ri

Fig. I.9 Properties of the boundary ∂Ω.



∂Ω ⊂
⋃N

i=1Ri

(ηi,
−→ν (x)) ≥ λ > 0 ∀x ∈ Ri ∩ ∂Ω, i ∈ {1 . . . N}

{x+ tηi, x ∈ Ri ∩ ∂Ω, t ∈ R+} ∩Ri ⊂ Ω,

where λ is a strictly positive number and −→ν (x) is the normal vector to ∂Ω at x, inward to Ω (see

Figure 1). Let {λi, i = 1 . . . N} be a family of functions such that
N∑

i=1
λi(x) = 1, for all x ∈ ∂Ω,

λi ∈ C∞
c (R2,R+) and λi = 0 outside of Ri, for all i = 1 . . . N . Let ∂Ωi = Ri ∩ ∂Ω; we shall prove

that there exists Ci > 0 depending only on λ, reg(T) and λi such that∫
∂Ωi

λi(x)|φ̃∂M(uT)(x)|sdx+
∫

∂Ωi

λi(x)|φ̃∂M∗(uT)(x)|sdx ≤ Ci∥uT∥1,p∥uT∥s−1
p(s−1)

p−1
.

Then it will be sufficient to define C := ∑N
i=1Ci to get (I.46). We study separately the two terms.



I.9 Trace inequalities 49

On the primal mesh: We introduce the functions to determine the successive neighbours
of a cell uK. Consider x, y ∈ Ω, then:

for σ ∈ E Ψσ(x, y) :=

1 if [x, y] ∩ σ ̸= ∅
0 otherwise,

for K ∈ M ΨK(x, y) :=

1 if [x, y] ∩ K ̸= ∅
0 otherwise.

K0

L0

x = ξK0(x)

y(x) = ηL0(x)

ηK0(x) = ξL0(x) = zσ0(x)
σ0

y(x) = ηK0(x) = ηL0(x) = zσ0(x)

x = ξK0(x) = ξL0(x)

K0

L0

σ0

Fig. I.10 (Left) [x, y(x)] ∩ σ0 is reduced to a point zσ0(x). (Right) [x, y(x)] ∩ σ0 is the segment
[x, y(x)].

Now, we fix i ∈ {1 . . . N} and x ∈ ∂Ωi.
Then there exists a unique t > 0 such that x+tηi = y(x) ∈ ∂Ri. Then, for σ ∈ E , if [x, y(x)]∩σ ≠ ∅,
then it is:

• either a point: zσ(x) := [x, y(x)] ∩ σ

• either a segment: [a(x), b(x)] := [x, y(x)] ∩ σ and let zσ(x) := b(x).

For K ∈ M, if [x, y(x)] ∩ K ̸= ∅ we have:

[ξK(x), ηK(x)] := [x, y(x)] ∩ K.

Let us fix x ∈ K0 , with K0 ∈ M such that y(x) ∈ L0, σ0 = K0|L0. We distinguish the following two
cases:

1. For the left case (see Fig. I.10):

λi(x)|uK0 |s =
(
λi(ξK0(x)) − λi(ηK0(x))

)
|uK0 |s

+
(
λi(ξL0(x)) − λi(ηL0(x))

)
|uL0 |s

+ λi(zσ0(x))
(
|uK0 |s − |uL0 |s

)
,

2. for the right case (see Fig. I.10):

λi(x)|uK0 |s =
(
λi(ξK0(x)) − λi(ηK0(x))

)
|uK0 |s.
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In both cases:

λi(x)|uK0 |s ≤
∑
D∈D

Ψσ(x, y(x))λi(zσ(x))
∣∣|uK|s − |uL|s

∣∣
+
∑
K∈M

ΨK(x, y(x))|λi(ξK(x)) − λi(ηK(x))||uK|s,

that we can write as
λi(x)|uK0 |s ≤ A(x) +B(x),

by defining
A(x) :=

∑
D∈D

Ψσ(x, y(x))λi(zσ(x))||uK|s − |uL|s|

B(x) :=
∑
K∈M

ΨK(x, y(x))|λi(ξK(x)) − λi(ηK(x))||uK|s.

We proceed by estimating separately the two terms.

Estimate of A:
Since λi is bounded, we get:

A(x) ≤ ∥λi∥∞
∑
D∈D

Ψσ(x, y(x))
∣∣∣∣|uK|s − |uL|s

∣∣∣∣;
We now use the following estimate (with cσ = |(ηi,

−→ν σ(x))|)∫
∂Ωi

Ψσ(x, y(x))dx ≤ cσ

λ
mσ,

that is proved in [EGH00], to conclude:

A =
∫

∂Ωi

A(x)dx ≤ ∥λi∥∞
∑
D∈D

(∫
∂Ωi

Ψσ(x, y(x))dx
)∣∣∣∣|uK|s − |uL|s

∣∣∣∣
≤ Ci

∑
D∈D

mσ

∣∣∣∣|uK|s − |uL|s
∣∣∣∣,

where in the 3rd inequality we used [Kre10, Lemma I.19].
Now, as in [BCCHF15], we use the inequality:∣∣∣∣|uK|s − |uL|s

∣∣∣∣ ≤ s(|uK|s−1 + |uL|s−1)|uK − uL|,

that leads to:
∑
D∈D

mσ

∣∣∣∣|uK|s − |uL|s
∣∣∣∣ ≤ s

∑
D∈D

mσ(|uK|s−1 + |uL|s−1)|uK − uL|

≤ C
∑
D∈D

mσmσ∗(|uK|s−1 + |uL|s−1)
∣∣∣∣uK − uL

mσ∗

∣∣∣∣,
that by integration by parts and Hölder gives:

∑
D∈D

mσ

∣∣∣∣|uK|s − |uL|s
∣∣∣∣ ≤ C

(∑
K∈M

∑
D∈DK

mσmσ∗ |uK|
(s−1)p

p−1

) p−1
p
(∑

D∈D

mσmσ∗

∣∣∣∣uK − uL

mσ∗

∣∣∣∣p)
1
p

.



I.9 Trace inequalities 51

By regularity hypothesis on the mesh and the definition of the discrete gradient we can write:

A ≤ C

sin(αT)
1
p reg(T)

p−1
p

∥uT∥s−1
(s−1)p

p−1
∥∇DuT∥p.

Estimate of B:
Since λi is C∞, we have, by Taylor’s formula:

B(x) ≤ ∥∇λi∥∞
∑

K∈M

ΨK(x, y(x))|ξK(x) − ηK(x)||uK|s,

and thanks to the inequality that can be found in [EGH00, Lemma 3.10]∫
∂Ωi

ΨK(x, y(x))|ξK(x) − ηK(x)|dx ≤ mK

λ
,

we can conclude:

B =
∫

∂Ωi

B(x) ≤ ∥∇λi∥∞
∑
K∈M

(∫
∂Ωi

ΨK(x, y(x))|ξK(x) − ηK(x)|
)
|uK|s

≤ Ci

∑
K∈M

mK|uK|s.

Thus
B ≤ C∥uT∥s

s.

Putting together the terms, we find:∫
∂Ωi

λi(x)|φ̃∂M(uT)|s ≤ Ci

(
∥uT∥s−1

(s−1)p
p−1

∥∇DuT∥p + ∥uT∥s
s

)
.

By proceeding as in the proof of [BCCHF15, Lemma 1], we use interpolation between Lp spaces
and we write:

∥uT∥s
s ≤ ∥uT∥s−1

(s−1)p
p−1

∥uT∥p,

that leads to ∫
∂Ωi

λi(x)|φ̃∂M(uT)|s ≤ Ci∥uT∥s−1
(s−1)p

p−1
∥uT∥1,p,

that proves our theorem.

On the dual mesh: the computations are exactly the same, exchanging K with K∗ and σ in
σ∗ .

Corollary I.9.3 (Second trace inequality) Let T be a DDFV mesh associated to Ω.There
exists a constant C > 0, depending only on p,q, sin(αT), reg(T) and Ω such that ∀uT ∈ EΓD

0 and
for all s ≥ 1, p > 1:

∥φT(uT)∥s
s,∂Ω ≤ C∥uT∥1,p∥uT∥s−1

p(s−1)
p−1

.

Proof The proof is almost the same as Thm. I.9.2.
What changes is just that we now fix x ∈ L, L ∈ ∂M and K0 ∈ M such that L ⊂ K0, y(x) ∈ K0,
σ0 = K0|L (see Fig. I.11).
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K0

x

y(x)

σ0 = K0|L
L

Fig. I.11 L on the boundary ∂M and K0 ∈ M such that L ⊂ K0, y(x) ∈ K0, σ0 = K0|L.

The term that we want to study now is λi(x)|uL|s, since we are focusing on the boundary. It can
be written as:

λi(x)|uL|s = λi(x)(|uL|s − |uK0 |s) + λi(x)|uK0 |s, (I.47)

that can be estimated by:

λi(x)|uL|s ≤ λi(x)
∣∣∣∣|uL|s − |uK0 |s

∣∣∣∣1L(x) + λi(x)|uK0 |s

:= Ab(x) + λi(x)|uK0 |s.

Estimate of Ab:
Since λ is bounded, we have:

Ab =
∫

∂Ωi

Ab(x) ≤ ∥λi∥∞
∑
D∈D

mσ

∣∣∣∣|uL|s − |uK|s
∣∣∣∣.

We can proceed exactly as in the proof of Thm I.9.2 for A, so we get:

Ab ≤ C

sin(αT)
1
p reg(T)

p−1
p

∥uT∥s−1
(s−1)p

p−1
∥∇DuT∥p.

Putting together all the terms, we find:(∫
∂Ωi

λi(x)|φ∂M(uT)|s
)

≤ Ab +
(∫

∂Ωi

λi(x)|φ̃∂M(uT)|s
)
.

Thanks to the previous theorem, we conclude:∫
∂Ωi

λi(x)|φ∂M(uT)|s ≤ Ci∥uT∥s−1
(s−1)p

p−1
∥uT∥1,p

that proofs our statement.

On the dual mesh: the computations are the same as the previous theorem.

Corollary I.9.4 (L2 norm) Let T be a DDFV mesh associated to Ω. There exists a constant
C > 0 that depends only on Ω and reg(T) such that ∀uT ∈ EΓD

0 :

∥φT(uT)∥2,∂Ω ≤ C∥∇DuT∥2.

Proof It is a direct consequence of Corollary I.9.3 with s = p = 2 and Poincaré inequality
(Thm. I.9.1).
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I.10 Properties of discrete operators

We give now some results on discrete operators and projections, that will be useful in the error
estimate proof of Chapter II. All the proofs can be found in [Kre10].

Lemma I.10.1 ([Kre10], Lemma IV.14 ) For d = 2, 3. Let K be an open non empty polygonal
convex set of Rd such that, for some α > 0, there exists a ball of radius α diam(K) contained in K.
Let E be an affine hyperplan of Rd and σ an open non empty set of E contained in ∂K ∩ E. Then
there exists a constant C > 0, that depends only on α, such that for all v ∈ (H1(K))d:

∣∣∣∣ 1
mσ

∫
σ

v(s)ds
∣∣∣∣2 ≤ Cdiam(K)

mσ

∫
K

|||∇v(s)|||2Fds+ C

diam(Ω)mσ

∫
K

|v(s)|2ds.

Properties of the projection PT
c

Lemma I.10.2 ([Kre10], Lemma IV.16) Let T be a DDFV mesh associated to Ω. There exists
a constant C > 0, that depends only on reg(T), such that for all functions v ∈ (H2(Ω))2, we have:

∥∇v − ∇DPT
c v∥2 ≤ Csize(T)∥∇v∥H1 .

Corollary I.10.3 ([Kre10], Coro IV.17) Let T be a DDFV mesh associated to Ω. There exists
a constant C > 0, that depends only on reg(T), such that for all functions v ∈ (H2(Ω))2, we have:

∥∇DPT
c v∥2 ≤ C∥∇v∥H1 .

Corollary I.10.4 ([Kre10], Coro IV.18) Let T be a DDFV mesh associated to Ω. There exists
a constant C > 0, that depends only on reg(T), such that for all functions v ∈ (H2(Ω))2 that
verifies div(v) = 0, we have:

∥divDPT
c v∥2 ≤ Csize(T)∥∇v∥H1 .

Properties of the projection PT
m

Lemma I.10.5 ([Kre10], Lemma IV.19) Let T be a DDFV mesh associated to Ω. There exists
a constant C > 0, that depends only on reg(T), such that for all functions v ∈ (H1(Ω))2, we have:

∥∇DPT
mv∥2 ≤ C∥∇v∥2 and ∥v − PT

mv∥2 ≤ Csize(T)∥∇v∥2.

Error between the projections PT
c and PΓD

m,gPT
c :

Lemma I.10.6 ([Kre10], Lemma IV.20) Let T be a DDFV mesh associated to Ω. There exists
a constant C > 0, that depends only on reg(T), such that for all functions v ∈ (H1(Ω))2, we have:

∥∇DPT
c v − ∇DPΓD

m,gPT
c u ∥2 ≤ Csize(T)∥v∥H2 .

Lemma I.10.7 ([Kre10], Lemma IV.22) Let T be a DDFV mesh associated to Ω. There exists
a constant C > 0, that depends only on reg(T), such that for all functions v ∈ (H2(Ω))2, we have:

∥v − PT
c v∥2 ≤ Csize(T)∥∇v∥H1 and ∥v − PD

m,gPT
c v∥2 ≤ Csize(T)∥∇v∥H1 .



54 DDFV method

Properties of the projection on diamonds PD
m

Lemma I.10.8 ([Kre10], Lemma IV.23) Let T be a DDFV mesh associated to Ω. There exists
a constant C > 0, that depends only on reg(T), such that for all functions p ∈ H1(Ω), we have:∑

s=D|D′∈G

(PD′
mp − PD

mp)2 ≤ C∥∇p∥2
2.

Lemma I.10.9 ([Kre10], Lemma IV.24) Let T be a DDFV mesh associated to Ω. There exists
a constant C > 0, that depends only on reg(T), such that for all functions p ∈ H1(Ω), we have:

∥PD
mp − p∥2 ≤ Csize(T)∥∇p∥2.

I.11 Basic inequalities

Here we recall some basic inequalities that we will need in the following chapters.

Lemma I.11.1 (Young’s inequality) Let a, b, c be three non negative numbers. Let p1, p2 and
p3 be positive real numbers such that 1

p1
+ 1

p2
+ 1

p3
= 1. Then, we have:

abc ≤ C1
p1

ap1 + C2
p2

bp2 + 1
p3C1C2

cp3 ,

for some positive constants C1, C2,

We adapted the proof of Grönwall’s lemma, Lemma 16.I.6 in [Sch01], to obtain the following:

Lemma I.11.2 (Discrete Grönwall’s lemma) If a sequence (an)n, n = 0 . . . N , satisfies

a0 ≤ A, an ≤ A+Bδt
n−1∑
i=0

ai ∀n ∈ 1, . . . N, δt = T

N
,

where A and B are two positive constants independent of δt, then

max
n=1...N

an ≤ AeBT .

Lemma I.11.3 (Hölder’s inequality) Let p, q, r ∈ (1,+∞) with 1/p+1/q+1/r = 1. For every
(x1, . . . xn), (y1, . . . yn), (z1, . . . zn) ∈ Rn it holds

n∑
i=1

|xi yi zi| ≤
( n∑

i=1
|xi|p

)1/p( n∑
i=1

|yi|q
)1/q( n∑

i=1
|zi|r

)1/r

.
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A condensed version of this chapter has been published in [GKL17]; further details are given
here, such as the proofs the error estimate for the DDFV scheme, the extension to the Divergence
form and the study of the unstabilized scheme.

The goal of this chapter is to approximate with DDFV method the solution of the following
Stokes problem: 

−∆u + ∇p = f in Ω,
div(u) = 0 in Ω,

u = g on ΓD,

(∇u − pId) n⃗ = Φ on ΓN ,

(II.1)

where the unknowns are the velocity u : Ω → R2 and the pressure p : Ω → R. The data are
f ∈ (L2(Ω))2, Φ ,g ∈ (H 1

2 (∂Ω))2 and n⃗ is the unitary outer normal. Ω is an open bounded
polygonal domain of R2, with ∂Ω = ΓD ∪ ΓN , where |ΓD| > 0 is the fraction of the boundary with
Dirichlet boundary conditions and ΓN ̸= ∅ the one with Neumann boundary conditions.
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In the previous works of [Del07], [Kre11a] and [BKN15], DDFV method was studied for Stokes
problem in the case of homogeneous Dirichlet boundary conditions. In the case of [Del07], well-
posedness of the scheme was proved only for conformal triangle meshes, conformal and non
conformal square meshes, in the case of unstabilized mass equation. This result was then improved
in [Kre11a] by adding a stabilization term to the equation of conservation of mass that led to
prove existence and uniqueness of the solution on general meshes. Successively, since it was
observed that very accurate approximations could be computed even without stabilization on
general meshes, in [BKN15] Boyer, Krell and Nabet worked on the Inf-sup stability condition (Def.
I.6.1) for the unstabilized scheme. This condition relies on the wellposedness of the scheme; it
holds unconditionally for certain meshes (e.g. conforming acute triangle meshes) or, with some
restrictions, for specific mesh geometries (see Sec. I.6 for more details).

The work of this chapter aims at extending the theory known for the Stokes problem to the
case of Neumann boundary conditions on a fraction of the boundary, namely the 4th equation in
(II.1).

Outline. This chapter is organized as follows. In Sec. II.1 we define a DDFV discretization
of the Stokes problem (II.1); we choose to stabilize the mass conservation equation through two
parameters, µ, β ≥ 0. We prove the wellposedness of this scheme under the hypothesis β + µ > 0
in Sec. II.2. In Sec. II.3 we prove some error estimates, by showing a first rough error estimate
only for the velocity (when µ > 0 ) followed by a stability result (true under the hypothesis β > 0)
that leads to an optimal error estimate for the velocity and the pressure. This result is tested
numerically in Sec. II.4, by also showing the influence of the parameters in the convergence. In
Sec. II.5 we extend the obtained results to the Divergence form of Stokes problem (II.28), thanks to
the results of Sec. I.8. In Sec. II.6, we consider the case of a DDFV scheme for the Stokes problem
(II.1) without stabilization on the mass conservation equation, with "weak" boundary conditions.

II.1 DDFV scheme

We recall that DDFV scheme uses staggered unknowns. We approximate the velocity on the
centers and vertices of the primal mesh (i.e. on T = M ∪ ∂M ∪ M∗ ∪ ∂M∗) and the pressure on
the diamond mesh (i.e. D).
As introduced in Sec. I.2 and as illustrated in Fig. II.1, the boundary meshes will be denoted by:

∂MD = {K ∈ ∂M : xK ∈ ΓD},
∂MN = {K ∈ ∂M : xK ∈ ΓN },
∂M∗

D = {K∗ ∈ ∂M∗ : xK∗ ∈ ΓD},
∂M∗

N = {K∗ ∈ ∂M∗ : xK∗ ∈ ΓN \ ΓD}.

To obtain our scheme, we integrate the momentum equation over all M ∪ M∗ ∪ ∂M∗
N . We impose

Dirichlet boundary conditions on ∂MD ∪ ∂M∗
D and Neumann boundary conditions on ∂MN . The

equation of conservation of mass is directly approximated on the diamond mesh equation over D,
and it is stabilized through two parameters β ≥ 0, associated to a stabilization of Brezzi-Pitkäranta
(see Sec. I.7) and µ ≥ 0, associated to a linear stabilization.
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ΓN

ΓD

K∗ ∈ ∂M∗
D

K ∈ ∂MD

ΓN

ΓN

K∗ ∈ ∂M∗
N

K ∈ ∂MN

Fig. II.1 Domain with mixed boundary conditions

The scheme is the following:

Find uT ∈ EΓD
m,g and pD ∈ RD such that

divK(−∇DuT + pDId) = fK ∀K ∈ M

divK∗(−∇DuT + pDId) = fK∗ ∀K∗ ∈ M∗ ∪ ∂M∗
N

divD(uT) + µsize(T)pD − βd2
D∆DpD = 0

(∇DuT − pDId)n⃗σK = Φσ ∀Dσ,σ∗ ∈ Dext ∩ ΓN ,

(Pβµ)

where we denote by fK,gK (resp. fK∗ ,gK∗) the mean-value of the source term f and of the Dirichlet
data g on K ∈ M (resp. on K∗ ∈ M∗ ∪ ∂M∗) and Φσ the mean-value of the Neumann data on
σ ∈ ΓN :

fK = 1
mK

∫
K

f(x)dx, fK∗ = 1
mK∗

∫
K∗

f(x)dx,

gK = 1
mK

∫
K

g(x)dx, gK∗ = 1
mK∗

∫
K∗

g(x)dx,

Φσ = 1
mσ

∫
σ

Φ(x)dx.

Moreover, we denote by gσ = γσ(gT) , σ ∈ ∂M. Remark that, as the mesh becomes finer, the sta-
bilization terms vanish (we recall that d2

D is the diameter of a diamond, thus it depends on size(T)).

We define now the bilinear form associated to the scheme (Pβµ).

Definition II.1.1 (Bilinear form) For all (uT,pD), (ũT, p̃D) ∈ EΓD
m,g × RD, the bilinear form

associated to (Pβµ) is:

B(uT,pD, ũT, p̃D) := [[divT(−∇DuT + pDId), ũT]]T
+ (divD(uT) + µsize(T)pD − βd2

D∆DpD, p̃D)D. (II.2)

II.2 Wellposedness of the scheme

Before showing that there exists a unique solution to (Pβµ), we prove the following a priori estimate:
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Proposition II.2.1 (A priori estimate) Let (uT,pD) ∈ EΓD
m,g × RD be a solution of (Pβµ).

Then:

∥∇DuT∥2
2 + µsize(T)∥pD∥2

2 + β|pD|2h

≤
∣∣∣[[fT,uT]]T

∣∣∣+
 ∑

Dσ,σ∗ ∈Dext∩ΓD

mσ|gσ|2
 1

2

·

 ∑
Dσ,σ∗ ∈Dext∩ΓD

mσ |∇DuT − pDId|2
 1

2

+

 ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ|Φσ|2
 1

2
 ∑

Dσ,σ∗ ∈Dext∩ΓN

mσ |γσ(uT)|2
 1

2

. (II.3)

Proof We consider the bilinear form (II.2) associated to the scheme:

B(uT,pD,uT, pD) = [[divT(−∇DuT + pDId),uT]]T
+ (divD(uT) + µsize(T)pD − βd2

D∆DpD, pD)D.

On one hand, if we apply Green’s formula (Thm. I.5.1) to the first term, by taking into account
the boundary terms, we get:

B(uT, pD,uT, pD) = ∥∇DuT∥2
2 − (pD, divD(uT))D

+
∑

Dσ,σ∗ ∈Dext

mσγ
σ(uT) · (−∇DuT + pDId) n⃗σK

+ (divD(uT) + µsize(T)pD − βd2
D∆DpD, pD)D.

The terms (pD,divD(uT))D simplify and we apply Remark I.7.2 to the term −β(d2
D∆DpD,pD)D.

The boundary diamonds Dext can be split between Dext ∩ ΓD and Dext ∩ ΓN , so by applying
Dirichlet and Neumann boundary conditions we obtain:

B(uT, pD,uT, pD) = ∥∇DuT∥2
2 + µsize(T)∥pD∥2

2 + β|pD|2h
+

∑
Dσ,σ∗ ∈Dext∩ΓD

mσgσ · (−∇DuT + pDId) n⃗σK −
∑

Dσ,σ∗ ∈Dext∩ΓN

mσγ
σ(uT) · Φσ. (II.4)

On the other hand, since (uT, pD) is a solution to (Pβµ), we have:

B(uT, pD,uT, pD) = [[fT,uT]]T. (II.5)

By putting together (II.4) and (II.5) :

∥∇DuT∥2
2 + µsize(T)∥pD∥2

2 + β|pD|2h

≤ [[fT,uT]]T +

∣∣∣∣∣∣
∑

Dσ,σ∗ ∈Dext∩ΓD

mσgσ · (∇DuT − pDId) n⃗σK

∣∣∣∣∣∣+
∣∣∣∣∣∣

∑
Dσ,σ∗ ∈Dext∩ΓN

mσγ
σ(uT) · Φσ

∣∣∣∣∣∣ .
We then apply Cauchy-Schwarz inequality to get our result (II.3).

We can now prove the well-posedness of the scheme, that is a direct consequence to the a priori
estimate of Prop. II.2.1.

Theorem II.2.2 (Well-posedness of the scheme) Let T a DDFV mesh associated to Ω and
β + µ > 0 . Then the stabilized scheme (Pβµ) has a unique solution (uT, pD) ∈ EΓD

m,g × RD.
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Proof By linearity, it is sufficient to prove that if fT = 0, g∂M = 0, g∂M∗ = 0 and Φσ = 0, then
uT = 0 and pD = 0. Directly from (II.3), we deduce:

∥∇DuT∥2
2 + µsize(T)∥pD∥2

2 + β|pD|2h ≤ 0.

This implies ∥∇DuT∥2 = 0: from Remark I.3.3 and since g∂M = 0, g∂M∗ = 0, we obtain uT = 0.
Moreover, if µ > 0, then ∥pD∥2

2 = 0 that implies pD = 0; otherwise, we have β > 0, from which we
can deduce |pD|2h = 0 that leads to pD constant. Thanks to Neumann boundary condition (the 4th

equation in (Pβµ)), since uT = 0, and Φσ = 0 we get that pD = 0.

Remark II.2.3 Without the stabilization term, we can still prove the wellposedness of the scheme.
In fact, if the velocity uT = 0, the momentum equation and the Neumann boundary condition
become: 

divK
(
pDId

)
= 0 ∀K ∈ M

divK∗ (pDId
)

= 0 ∀K∗ ∈ M∗ ∪ ∂M∗
N

(pDId)n⃗σK = 0 ∀Dσ,σ∗ ∈ Dext ∩ ΓN .

(II.6)

Our goal is to show that pD = 0. For every vT ∈ EΓD
0 , thanks to Green’s formula (Thm. I.5.1), we

can write:(
divD(vT), pD

)
D

= −
[[

vT,divT(pDId)
]]

T
+

∑
Dσ,σ∗ ∈Dext

mσγ
σ(vT) · (pDId) n⃗σK. (II.7)

By definition of the scalar products (see Sec. I.4), by (II.6) and by the fact that vT ∈ EΓD
0 , we get

that
[[

vT,divT(pDId)
]]

T
= 0 and

∑
Dσ,σ∗ ∈Dext

mσγ
σ(vT) · (pDId) n⃗σK = 0. Thus (II.7) becomes:

(
divD(vT),pD

)
D

= 0. (II.8)

Assuming that the mesh T satisfies Inf-sup stability condition (see Sec. I.6), inequality (I.30) is
verified; since (II.8) holds for any vT ∈ EΓD

0 , the supremum in the right hand side of (I.30) vanishes
so we can deduce that the pressure pD is constant. We can then conclude thanks to Neumann
boundary conditions as in the previous proof.

II.3 Error estimates for the DDFV scheme

In this section, we prove error estimates for the scheme (Pβµ).
First, we show an error estimate of order 0.5 just for the velocity and its gradient, under the
hypothesis µ > 0 . We then improve this result if β > 0, by showing an estimate of order 1 for the
velocity, its gradient and the pressure, thanks to a stability study of the scheme.

II.3.1 Rough error estimate

Since we are working with mixed boundary conditions of the type Dirichlet/ Neumann, i.e. ΓN ≠ ∅,
we need to suppose more regularity for the exact solution u in order to get a better error estimate
with respect to the homogeneous Dirichlet case of [Kre11a].
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Thus, we define the space of regularity of the solution as follows:

(W 2,∞(D))2 =
{

u ∈ (W 1,∞(Ω))2 s.t. u|D ∈ (W 2,∞(D))2, ∀D ∈ D
}
.

W 1,∞(D) =
{

p ∈ L∞(Ω) s.t. p|D ∈ W 1,∞(D), ∀D ∈ D
}
.

We will now prove an error estimate for the error of order 0.5 in the L2 norm of the velocity field
and of its gradient.

Theorem II.3.1 Let (u, p) ∈ (W 2,∞(D))2 × W 1,∞(D) be the solution of (II.1) and (uT,pD) ∈
EΓD

m,g × RD be the solution of the problem (Pβµ). Suppose that µ > 0. Then there exists a constant
C > 0 that depends on reg(T), µ, ∥u∥W 2,∞ and ∥p∥W 1,∞ such that

∥u − uT∥2 + ∥∇u − ∇DuT∥2 ≤ Csize(T)
1
2 .

Proof Let eT = (PD
m,gPT

c u)−uT ∈
(
R2)T be the error for the velocity field and eD = PD

mp−pD ∈ RD

the error for the pressure field.

The proof is divided into four parts. In Step 1, we start by defining the problem satisfied
by the errors. Then, in Step 2, we give a first estimate of the bilinear form associated to the
scheme, followed by estimates of the consistency errors in Step 3. We will conclude in Step 4 by
gathering all the estimates together.

II.3.1.1 Step 1 : Error scheme

We look for the equations satisfied by (eT, eD) ∈
(
R2)T × RD.

Thanks to (II.1) and (Pβµ), we can write ∀K ∈ M:
divK(−∇DuT + pDId) = fK,

− 1
mK

∫
K

div(∇u(x))dx+ 1
mK

∫
K

∇p(x)dx = fK.

Thus, we deduce:

mKdivK(−∇DeT + eDId) = mKdivK(−∇DPD
m,gPT

c u + PD
mp Id) +

∫
K

div(∇u(x))dx−
∫

K
∇p(x)dx.

By Def. I.3.5 of the discrete divergence and Green’s formula (Thm. I.5.1), we obtain for all K ∈ M:

•mKdivK(−∇DeT + eDId) =
∑

Dσ,σ∗ ∈DK

∫
σ
(∇u − ∇DPD

m,gPT
c u)n⃗σKds

+
∑

Dσ,σ∗ ∈DK

∫
σ
(PD

mp − p(s))n⃗σKds.

We define the consistency errors

Ru
D(z) = ∇u(z) − ∇DPD

m,gPT
c u, for z ∈ D , D ∈ D,

Rp
D(z) = PD

mp − p(z), for z ∈ D , D ∈ D.

so that
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•mKdivK(−∇DeT + eDId) =
∑

Dσ,σ∗ ∈DK

∫
σ
Ru

D(s)n⃗σKds+
∑

Dσ,σ∗ ∈DK

∫
σ
Rp

D(s)n⃗σKds.

In the same way, for all K∗ ∈ M∗:

•mK∗divK∗(−∇DeT + eDId) =
∑

Dσ,σ∗ ∈DK

∫
σ∗
Ru

D(s)n⃗σ∗K∗ds+
∑

Dσ,σ∗ ∈DK

∫
σ∗
Rp

D(s)n⃗σ∗K∗ds.

For the boundary primal and dual cells, we consider only ∂M∗
N and ∂MN since we impose strong

Dirichlet boundary conditions on ∂M∗
D and ∂MD, i.e. uK∗ = 0 ∀K∗ ∈ ∂M∗

D, uK = 0 ∀K ∈ ∂MD.
For all K∗ ∈ ∂M∗

N :

•mK∗divK∗(−∇DeT + eDId) =
∑

Dσ,σ∗ ∈DK∗

∫
σ∗
Ru

D(s)n⃗σ∗K∗ds+
∑

Dσ,σ∗ ∈DK∗

∫
σ∗
Rp

D(s)n⃗σ∗K∗ds

+
∑

Dσ,σ∗ ∈DK∗ ∩Dext

∫ xσ

xK∗
Ru

D(s)n⃗σKds+
∑

Dσ,σ∗ ∈DK∗ ∩Dext

∫ xσ

xK∗
Rp

D(s)n⃗σKds.

Finally, for all σ ∈ ∂MN :

•(∇DeT − eDId)n⃗σK = − 1
mσ

∫
σ
Ru

D(s)n⃗σKds− 1
mσ

∫
σ
Rp

D(s)n⃗σKds.

We can finally write in a compact way the system satisfied by the error:

Find eT ∈ EΓD
0 and eD ∈ RD such that:

divK(−∇DeT + eDId) = RK ∀K ∈ M

divK∗(−∇DeT + eDId) = RK∗ ∀K∗ ∈ M∗ ∪ ∂M∗
N

divD(eT) + µsize(T)eD − βd2
D ∆DeD = RD

(∇DeT − eDId)n⃗σK = −(Ru
σK + Rp

σK) ∀∀Dσ,σ∗ ∈ Dext ∩ ΓN

where RT =
(
(RK)K∈M, (RK∗)K∗∈M∗∪∂M∗

N

)
and RD =

(
RD
)

D∈D
with:

RK = 1
mK

∑
Dσ,σ∗ ∈DK

mσRu
σK + 1

mK

∑
Dσ,σ∗ ∈DK

mσRp
σK, ∀K ∈ M,

RK∗ = 1
mK∗

∑
Dσ,σ∗ ∈DK∗

mσ∗Ru
σ∗K∗ + 1

mK∗

∑
Dσ,σ∗ ∈DK∗

mσ∗Rp
σ∗K∗ , ∀K∗ ∈ M∗,

RK∗ = 1
mK∗

∑
Dσ,σ∗ ∈DK∗

mσ∗(Ru
σ∗K∗ + Rp

σ∗K∗) + 1
mK∗

∑
Dσ,σ∗ ∈Dext

K∗

mσ

2 (Ru
K∗L + Rp

K∗L), ∀K∗ ∈ ∂M∗
N ,

RD = divD(PD
m,gPT

c u) + µsize(T)PD
mp − βd2

D ∆DPD
mp, ∀D ∈ D.
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We define for i ∈ {u, p}:

Ri
σK = −Ri

σL = 1
mσ

∫
σ
Ri

D(s)n⃗σKds,

Ri
σ∗K∗ = −Ri

σ∗L∗ = 1
mσ∗

∫
σ∗
Ri

D(s)n⃗σ∗K∗ds,

Ri
K∗L = 2

mσ

∫ xD

xK∗
Ri

D(s)n⃗σKds,

Ri
σ = |Ri

σK| = |Ri
σL|,

Ri
σ∗ = |Ri

σ∗K∗ | = |Ri
σ∗L∗ |.

We denote the L2 norms of consistency error as follows:

∥Ri
σ∥2

2 =
∑

Dσ,σ∗ ∈D

mD|Ri
σ|2 and ∥Ri

σ∗∥2
2 =

∑
Dσ,σ∗ ∈D

mD|Ri
σ∗ |2, for i ∈ {u,p}.

We also remark that for σ = [xK∗ , xL∗ ] ⊂ ∂Ω:

Ri
σK = 1

2Ri
K∗L + 1

2Ri
L∗L, for i ∈ {u, p}.

II.3.1.2 Step 2 : Estimate of B(eT, eD; eT, eD)

We can now start with the estimate. Thanks to the Def. (II.2) of B, we have:

B(eT, eD; eT, eD) = [[RT, eT]]T + (RD, eD)D.

We note I := [[RT, eT]]T and T := (RD, eD)D.

Estimate of I = [[RT, eT]]T:
By definition, I is:

I = 1
2
∑
K∈M

∑
Dσ,σ∗ ∈DK

mσ(Ru
σK + Rp

σK) · eK + 1
2

∑
K∗∈M∗∪∂M∗

∑
Dσ,σ∗ ∈DK∗

mσ∗(Ru
σ∗K∗ + Rp

σ∗K∗) · eK∗

+ 1
2

∑
K∗∈∂M∗

∑
Dσ,σ∗ ∈Dext

K∗

mσ

2 (Ru
K∗L + Rp

K∗L) · eK∗ .

If we reorganize the sum on diamonds, we get:

I = 1
2

∑
Dσ,σ∗ ∈D

mσ(Rp
σK + Ru

σK) · (eK − eL) + 1
2

∑
Dσ,σ∗ ∈D

mσ∗(Rp
σ∗K∗ + Ru

σ∗K∗) · (eK∗ − eL∗)

+ 1
2

∑
Dσ,σ∗ ∈Dext∩ΓN

mσ(Rp
σK + Ru

σK) · eL + 1
2

∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 (Rp
K∗L + Ru

K∗L) · eK∗

+ 1
2

∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 (Rp
L∗L + Ru

L∗L) · eL∗

: = I1 + I2 + I3 + I4 + I5.

Remark that the boundary terms depend only on the values on ΓN ; in fact, since we impose
Dirichlet boundary conditions, if D ∈ Dext ∩ ΓD we have eL = eK∗ = eL∗ = 0.
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We estimate separately the terms.

I Firstly from Def. (I.3.1) of the discrete gradient and secondly by Cauchy-Schwarz inequality, we
have:

I1 = 1
2

∑
Dσ,σ∗ ∈D

mσ(Rp
σK + Ru

σK) · (eK − eL)

= −
∑

Dσ,σ∗ ∈D

mD

sin(αD)(Rp
σK + Ru

σK) · ((∇DeT) · τ⃗ KL)

≤ C(reg(T))∥∇DeT∥2 (∥Rp
σ∥2 + ∥Ru

σ ∥2) .

I As the previous term, from Def. (I.3.1) of the discrete gradient and then by Cauchy-Schwarz
inequality, we have:

I2 = 1
2

∑
Dσ,σ∗ ∈D

mσ(Rp
σ∗K∗ + Ru

σ∗K∗) · (eK∗ − eL∗)

= −
∑

Dσ,σ∗ ∈D

mD

sin(αD)(Rp
σ∗K∗ + Ru

σ∗K∗) · ((∇DeT) · τ⃗ K∗L∗)

≤ C(reg(T))∥∇DeT∥2 (∥Rp
σ∗∥2 + ∥Ru

σ∗∥2) .

I By applying Cauchy-Schwarz inequality and by the definitions of traces (and their norms) of
Sec. I.4, we have:

I3 = 1
2

∑
Dσ,σ∗ ∈Dext∩ΓN

mσ(Rp
σK + Ru

σK) · eL

≤ 1
2

 ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ|Rp
σK + Ru

σK|2
 1

2
 ∑

Dσ,σ∗ ∈Dext∩ΓN

mσ|eL|2
 1

2

≤ 1
2

 ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ|Rp
σK + Ru

σK|2
 1

2

∥γσ(eT)∥2,∂Ω.

By applying Thm. I.9.4, we can write:

I3 ≤ 1
2

 ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ|Rp
σK + Ru

σK|2
 1

2

∥∇DeT∥2.

I In the same way, by applying Cauchy-Schwarz inequality and by the definitions of traces (and
their norms) of Sec. I.4, we have:

I4 = 1
2

∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 (Rp
K∗L + Ru

K∗L) · eK∗

≤ 1
2

 ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Rp
K∗L + Ru

K∗L|2
 1

2
 ∑

Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |eK∗ |2
 1

2

≤ 1
2

 ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Rp
K∗L + Ru

K∗L|2
 1

2

∥γσ(eT)∥2,∂Ω.
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By applying Thm. I.9.4, we can write:

I4 ≤ 1
2

 ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Rp
K∗L + Ru

K∗L|2
 1

2

∥∇DeT∥2.

I Finally, as the previous two estimates, we have:

I5 = 1
2

∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 (Rp
L∗L + Ru

L∗L) · eL∗

≤ 1
2

 ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Rp
L∗L + Ru

L∗L|2
 1

2
 ∑

Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |eL∗ |2
 1

2

≤ 1
2

 ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Rp
L∗L + Ru

L∗L|2
 1

2

∥γσ(eT)∥2,∂Ω.

By applying Thm. I.9.4, we can write:

I5 ≤ 1
2

 ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Rp
L∗L + Ru

L∗L|2
 1

2

∥∇DeT∥2.

Putting all together, we get the following estimate for I:

|I| ≤ C(reg(T))∥∇DeT∥2 (∥Rp
σ∥2 + ∥Ru

σ ∥2 + ∥Rp
σ∗∥2 + ∥Ru

σ∗∥2)

+ C(reg(T))∥∇DeT∥2


 ∑

Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Ru
K∗L|2

 1
2

+
∑

Dσ,σ∗ ∈Dext∩ΓN

(
mσ

2 |Rp
K∗L|

2
) 1

2


+ C(reg(T))∥∇DeT∥2


 ∑

Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Ru
L∗L|2

 1
2

+
∑

Dσ,σ∗ ∈Dext∩ΓN

(
mσ

2 |Rp
L∗L|

2
) 1

2

 .

Estimate of T = (RD, eD)D:

We remark that T = (divD(PD
m,gPT

c u), eD)D + (µ size(T)PD
mp, eD)D − (βd2

D∆DPD
mp, eD)D, so by

adding and subtracting divD(PT
c u) and by Minkowski inequality we have:

∥divD(PD
m,gPT

c u)∥2 ≤ ∥∇D(PD
m,gPT

c u − PT
c u)∥2 + ∥divD(PT

c u)∥2.

From Corollary I.10.4 and Lemma I.10.6 we get:

∥divD(PD
m,gPT

c u)∥2 ≤ Csize(T)∥u∥H2 .

Cauchy-Schwarz inequality on the previous estimate gives:

(divD(PD
m,gPT

c u), eD)D ≤ Csize(T)∥u∥H2∥eD∥2.
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By reorganizing the sum on s ∈ G in the term T1 := −(βd2
D∆DPD

mp, eD)D we have, as in Rem.
I.7.2:

T1 = −β
∑
D∈D

mDeDd2
D∆DPD

mp = β
∑

s=D|D′∈G

(d2
D + d2

D′)(PD′
mp − PD

mp)(eD′ − eD).

Cauchy-Schwarz inequality and the definition of the semi-norm | · |h (see (I.37)) give:

|T1| ≤

 ∑
s=D|D′∈G

(d2
D + d2

D′)(PD′
mp − PD

mp)2

 1
2
 ∑

s=D|D′∈G

(d2
D + d2

D′)(eD′ − eD)2

 1
2

≤ 2size(T)β|eD|h

 ∑
s=D|D′∈G

(PD′
mp − PD

mp)2

 1
2

.

Lemma I.7.3 and Lemma I.10.8 lead to:

|T1| ≤ Csize(T)∥eD∥2∥∇p∥2.

Then, Cauchy-Schwarz inequality and Lemma I.10.9 give:

(µ size(T)PD
mp, eD)D ≤ Csize(T)∥eD∥2∥p∥H1 .

We recall that T = (divD(PD
m,gPT

c u), eD)D + (µ size(T)PD
mp, eD)D + T1, so we can write:

|T | ≤ Csize(T)∥eD∥2(∥u∥H2 + ∥p∥H1).

Estimate of B(eT, eD; eT, eD) :

By gathering all the estimates on I and T we get:

|B(eT, eD; eT, eD)| ≤ |I| + |T |
≤ C∥∇DeT∥2 (∥Rp

σ∥2 + ∥Ru
σ ∥2 + ∥Rp

σ∗∥2 + ∥Ru
σ∗∥2)

+ C∥∇DeT∥2

[( ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Ru
K∗L|2

) 1
2

+
∑

Dσ,σ∗ ∈Dext∩ΓN

(
mσ

2 |Rp
K∗L|

2
) 1

2
]

+ C∥∇DeT∥2

[( ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Ru
L∗L|2

) 1
2

+
∑

Dσ,σ∗ ∈Dext∩ΓN

(
mσ

2 |Rp
L∗L|

2
) 1

2
]

+ Csize(T)∥eD∥2(∥u∥H2 + ∥p∥H1).
(II.9)

As in Prop. II.2.1, equivalently to (II.4) the following equality holds:

B(eT, eD, eT, eD) = ∥∇DeT∥2
2 + µsize(T)∥eD∥2

2 + β|eD|2h −
∑

Dσ,σ∗ ∈Dext∩ΓN

mσγ
σ(eT) · (Ru

σK + Rp
σK),
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from which we deduce:

∥∇DeT∥2
2 + µsize(T)∥eD∥2

2 + β|eD|2h

≤ |B(eT, eD, eT, eD)| +

∣∣∣∣∣∣
∑

Dσ,σ∗ ∈Dext∩ΓN

mσγ
σ(eT) · (Ru

σK + Rp
σK)

∣∣∣∣∣∣ .
By applying Cauchy-Schwarz inequality we obtain:

∥∇DeT∥2
2 + µsize(T)∥eD∥2

2 + β|eD|2h

≤ |B(eT, eD, eT, eD)| +

 ∑
Dσ,σ∗∈Dext∩ΓN

mσ(Ru
σK + Rp

σK)2

 1
2
 ∑

Dσ,σ∗∈Dext∩ΓN

mσ(γσ(eT))2

 1
2

.

Thanks to Thm. I.9.4 and Minkowsky inequality, we can write:

∥∇DeT∥2
2 + µsize(T)∥eD∥2

2 + β|eD|2h

≤ |B(eT, eD, eT, eD)| + C

[ ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ|Ru
σK|2

 1
2

+

 ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ|Rp
σK|2

 1
2 ]

∥∇DeT∥2.

By replacing the estimates obtained in (II.9), we get:

∥∇DeT∥2
2 + µsize(T)∥eD∥2

2 + β|eD|2h
≤ C∥∇DeT∥2 (∥Rp

σ∥2 + ∥Ru
σ ∥2 + ∥Rp

σ∗∥2 + ∥Ru
σ∗∥2)

+ C∥∇DeT∥2

[( ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Ru
K∗L|2

) 1
2

+
( ∑

Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Rp
K∗L|

2
) 1

2
]

+ C∥∇DeT∥2

[ ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Ru
L∗L|2

 1
2

+
( ∑

Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Rp
L∗L|

2
) 1

2
]

+ Csize(T)∥eD∥2(∥u∥H2 + ∥p∥H1)

+ C∥∇DeT∥2

[ ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ|Ru
σK|2

 1
2

+

 ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ|Rp
σK|2

 1
2 ]
.

It remains to show the estimates for the consistency errors.

II.3.1.3 Step 3 : Consistency errors

First, we remark that the consistency error for the velocity can be decomposed into three contribu-
tions Ru,η

D , Ru,Du
D and Ru,bd

D that come from, respectively, the error due to the flux approximation,
to the gradient approximation and the boundary data approximation:

Ru
D(z) = Ru,η

D (z) +Ru,Du
D +Ru,bd

D ,
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where, for z ∈ D,

Ru,η
D (z) = ∇u(z) − 1

mD

∫
D

∇u(x)dx,

Ru,Du
D = 1

mD

∫
D
(∇u(x) − ∇DPT

c u)dx,

Ru,bd
D = ∇DPT

c u − ∇DPD
m,gPT

c u.

We now estimate all the consistency errors, by stating every result in the form of a lemma. For
the first two lemmas, we just give the statement, since they have been proven in [Kre10]; we detail
only the proofs of the new results.

Lemma II.3.2 ([Kre10], Lemma V.8) Let T be a DDFV mesh associated to Ω. There exists
a constant C > 0, that depends only on reg(T), such that for all u ∈ (H2(Ω))2

∥Ru
σ ∥2 + ∥Ru

σ∗∥2 ≤ Csize(T)∥∇u∥H1 .

Lemma II.3.3 ([Kre10], Lemma V.10) Let T be a DDFV mesh associated to Ω.
There exists a constant C > 0, that depends only on reg(T), such that for all u ∈ H1(Ω):

∥Rp
σ∥2 + ∥Rp

σ∗∥2 ≤ Csize(T)∥∇p∥2.

The following result estimates boundary terms on ΓN .

Lemma II.3.4 Let T be a DDFV mesh associated to Ω.
There exists a constant C > 0, that depends only on reg(T) and m(ΓN ), such that for all u ∈
(W 2,∞(D))2: ∑

Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Ru
K∗L|2 +

∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Ru
L∗L|2 ≤ Csize(T)2∥u∥2

W 2,∞(D)

Proof By definition, we can write:

Ru
K∗L = 2

mσ

∫ xL

xK∗
Ru

D(s) · n⃗σKds

= 2
mσ

∫ xL

xK∗
(Ru,η

D (s) +Ru,Du
D +Ru,bd

D ) · n⃗σKds.

Now, it’s important to notice that Ru,bd
D = 0 ∀D ∈ Dint ∪ (Dext ∩ ΓN ). So we are left only with

the terms depending on Ru,η
D (s), Ru,Du

D .
By applying Jensen’s inequality and convexity we get:

∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Ru
K∗L|2 =

∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2

∣∣∣∣ 2
mσ

∫ xL

xK∗
(Ru,η

D (s) +Ru,Du
D ) · n⃗σKds

∣∣∣∣2

≤
∑

Dσ,σ∗ ∈Dext∩ΓN

∫ xL

xK∗
|Ru,η

D (s) +Ru,Du
D |2ds

≤ 2
( ∑

Dσ,σ∗ ∈Dext∩ΓN

∫ xL

xK∗
|Ru,η

D (s)|2ds+
∑

Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Ru,Du
D |2

)
.
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We estimate separately the terms.
I By Jensen’s inequality:

∑
Dσ,σ∗ ∈Dext∩ΓN

∫ xL

xK∗
|Ru,η

D (s)|2ds =
∑

Dσ,σ∗ ∈Dext∩ΓN

∫ xL

xK∗

∣∣∣∣ 1
mD

∫
D
(∇u(s) − ∇u(z))dz

∣∣∣∣2ds

≤
∑

Dσ,σ∗ ∈Dext∩ΓN

∫ xL

xK∗

1
mD

∫
D

|∇u(s) − ∇u(z)|2dz ds.

By [Kre10, Lemma I.12] and the fact that diam( ̂D ∪ [xK∗ , xL]) ≤ CdD

∑
Dσ,σ∗ ∈Dext∩ΓN

∫ xL

xK∗
|Ru,η

D (s)|2ds ≤
∑

Dσ,σ∗ ∈Dext∩ΓN

Cd3
D

mD

∫
D̂

|∇2u(s)|2ds,

and since we are on the boundary, D is a triangle (see Fig. I.3): so D̂ = D. This implies:

∑
Dσ,σ∗ ∈Dext∩ΓN

∫ xL

xK∗
|Ru,η

D (s)|2ds ≤ Csize(T)
∑

Dσ,σ∗ ∈Dext∩ΓN

∫
D

|∇2u(s)|2ds.

By the regularity of u and the fact that

∑
Dσ,σ∗ ∈Dext∩ΓN

mD ≤ 1
2size(T)m(ΓN ), (II.10)

we conclude: ∑
Dσ,σ∗ ∈Dext∩ΓN

∫ xL

xK∗
|Ru,η

D (s)|2ds ≤ Csize(T)2m(ΓN )∥u∥2
W 2,∞(D).

I By Jensen’s inequality:

∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Ru,Du
D |2 =

∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2

∣∣∣∣ 1
mD

∫
D
(∇u(z) − ∇DPT

c u)dz
∣∣∣∣2

≤
∑

Dσ,σ∗ ∈Dext∩ΓN

mσ

2mD

∫
D

|∇u(z) − ∇DPT
c u|2dz.

By [Kre10, Lemma I.13]:

∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Ru,Du
D |2 ≤

∑
Dσ,σ∗ ∈Dext∩ΓN

Cd2
Dmσ

mD

∫
D̂

|∇2u(z)|2dz

and since we are on the boundary, D is a triangle: so D̂ = D. This implies:
∑

Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Ru,Du
D |2 ≤ Csize(T)

∑
Dσ,σ∗ ∈Dext∩ΓN

∫
D

|∇2u(z)|2dz. (II.11)

By the regularity of u and (II.10) : we conclude:∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Ru,Du
D |2 ≤ Csize(T)2m(ΓN )∥u∥2

W 2,∞(D).
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We can conclude by putting all the terms together.

We proceed in the same way to estimate the term
∑

Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Ru
L∗L|2 .

Remark II.3.5 Remark that we obtained an estimate of order size(T)2 thanks to the regularity
u ∈ (W 2,∞(D))2; otherwise, from (II.11),we would have obtained an estimate of order size(T) if
u ∈ (H2(D))2.

The following result is obtained by replacing in the previous proof [xK∗ , xL] by σ.

Lemma II.3.6 Let T be a DDFV mesh associated to Ω. There exists a constant C > 0, that
depends only on reg(T), such that for all u ∈ (W 2,∞(D))2:∑

Dσ,σ∗ ∈Dext∩ΓN

mσ|Ru
σK|2 ≤ Csize(T)2∥u∥2

W 2,∞(D).

Lemma II.3.7 Let T be a DDFV mesh associated to Ω. There exists a constant C > 0, that
depends only on reg(T), such that for all p ∈ W 1,∞(D): ∑

Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Rp
K∗L|

2 +
∑

Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Rp
L∗L|

2

 ≤ Csize(T)2∥p∥2
W 1,∞(D).

Proof By definition, we can write:

∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Rp
K∗L|

2 =
∑

Dσ,σ∗ ∈Dext∩ΓN

mσ

2

∣∣∣∣ 2
mσ

∫ xL

xK∗
Rp

D(s)n⃗σKds
∣∣∣∣2.

By Lemma I.10.1:
∑

Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Rp
K∗L|

2 ≤
∑

Dσ,σ∗ ∈Dext∩ΓN

C hD

∫
D

|||∇(Rp
D(z)n⃗σK|||2Fdz

+
∑

Dσ,σ∗ ∈Dext∩ΓN

C

hD

∫
D

|Rp
D(z)n⃗σK|2dz.

We apply now the definition of Rp
D(z) to get:

∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Rp
K∗L|

2 ≤
∑

Dσ,σ∗ ∈Dext∩ΓN

C hD

∫
D

|∇p(z)|2dz

+
∑

Dσ,σ∗ ∈Dext∩ΓN

C

hD

∫
D

|PD
mp − p(z)|2dz.

We estimate separately the terms.
I By regularity of p and (II.10) we have:

∑
Dσ,σ∗ ∈Dext∩ΓN

C hD

∫
D

|∇p(z)|2dz ≤ Csize(T)
∑

Dσ,σ∗ ∈Dext∩ΓN

∫
D

|∇p(z)|2dz

≤ Csize(T)2m(ΓN )∥p∥2
W 1,∞(D).
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I By Lemma I.10.9 and the regularity of p:

∑
Dσ,σ∗ ∈Dext∩ΓN

C

hD

∫
D

|PD
mp − p(z)|2dz ≤

∑
Dσ,σ∗ ∈Dext∩ΓN

C

hD
size(T)2

∫
D

|∇p(z)|2dz.

Again by regularity of p, we have:

∑
Dσ,σ∗ ∈Dext∩ΓN

C

hD

∫
D

|PD
mp − p(z)|2dz ≤ Csize(T)2∥p∥2

W 1,∞(D)
∑

Dσ,σ∗ ∈Dext∩ΓN

mD

hD
.

Finally, since mD
hD

≤ 1
2mσ, we conclude:

∑
Dσ,σ∗ ∈Dext∩ΓN

C

hD

∫
D

|PD
mp − p(z)|2dz ≤ C m(ΓN )size(T)2∥p∥2

W 1,∞(D).

We can conclude by putting all the terms together.

We proceed in the same way to estimate the term
∑

Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Rp
L∗L|

2 .

The following result is obtained by replacing in the previous proof [xK∗ , xL] by σ.

Lemma II.3.8 Let T be a DDFV mesh associated to Ω. There exists a constant C > 0, that
depends only on reg(T), such that for all p ∈ W 1,∞(D):∑

Dσ,σ∗ ∈Dext∩ΓN

mσ|Rp
σK|2 ≤ Csize(T)2∥p∥2

W 1,∞(D).

II.3.1.4 Step 4 : Conclusion

We recall that eT = (PD
m,gPT

c u ) − uT ∈ (
(
R2)T and eD = PD

mp − pD ∈ RD and that we obtained
the following inequality:

∥∇DeT∥2
2 + µsize(T)∥eD∥2

2 + β|eD|2h
≤ C∥∇DeT∥2 (∥Rp

σ∥2 + ∥Ru
σ ∥2 + ∥Rp

σ∗∥2 + ∥Ru
σ∗∥2)

+ C∥∇DeT∥2

[( ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Ru
K∗L|2

) 1
2

+
( ∑

Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Rp
K∗L|

2
) 1

2
]

+ C∥∇DeT∥2

[ ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Ru
L∗L|2

 1
2

+
( ∑

Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Rp
L∗L|

2
) 1

2
]

+ Csize(T)∥eD∥2(∥u∥H2 + ∥p∥H1)

+ C∥∇DeT∥2

[ ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ|Ru
σK|2

 1
2

+

 ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ|Rp
σK|2

 1
2 ]
.

Lemmas II.3.2, II.3.3, II.3.4, II.3.6, II.3.7, II.3.8 and the fact that β|eD|2h ≥ 0 imply:

∥∇DeT∥2
2 + µsize(T)∥eD∥2

2 ≤ Csize(T)∥∇DeT∥2 + Csize(T)∥eD∥2.
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We apply Young’s inequality to obtain:

∥∇DeT∥2
2 ≤ Csize(T) and ∥eD∥2

2 ≤ C. (II.12)

Estimate of ∥u − uT∥2:
By using discrete Poincaré inequality, we find:

∥u − uT∥2 ≤ ∥u − PD
m,gPT

c u∥2 + ∥PD
m,gPT

c u − uT∥2

≤ ∥u − PD
m,gPT

c u∥2 + C∥∇DeT∥2.

By [Kre10, Lemma I.18] , we have:

∥u − PD
m,gPT

c u∥2
2 ≤ ∥u − Pτ

c u∥2
2 + ∥u− Pτ

mu∥2
2.

and if we apply Lemma I.10.7, it gives:

∥u − PD
m,gPT

c u∥2
2 ≤ Csize(T).

So we have:
∥u − uT∥2 ≤ C(size(T) + ∥∇DeT∥2). (II.13)

Thus, if we apply estimate (II.12) we finally obtain:

∥u − uT∥2 ≤ Csize(T)
1
2 .

Estimate of ∥∇u − ∇DuT∥2:
We can decompose it in:

∥∇u − ∇DuT∥2 ≤ ∥∇u − ∇DPT
c u∥2 + ∥∇PT

c u − ∇DPD
m,gPT

c u∥2 + ∥∇PD
m,gPT

c u − ∇DuT∥2

≤ ∥∇u − ∇DPT
c u∥2 + ∥∇PT

c u − ∇DPD
m,gPT

c u∥2 + ∥∇DeT∥2.

By Lemma I.10.2 and Lemma I.10.6, we have:

∥∇u − ∇DPT
c u∥2 + ∥∇PT

c u − ∇DPD
m,gPT

c u∥2 ≤ Csize(T),

so that :
∥∇u − ∇DuT∥2 ≤ Csize(T) + ∥∇DeT∥2. (II.14)

By estimate II.12, we conclude:

∥∇u − ∇DuT∥2 ≤ Csize(T)
1
2 .

II.3.2 Stability of the DDFV scheme

In order to improve the error estimate, we prove the stability result for the scheme (Pβµ). This
result has been proven in the case of homogeneous Dirichlet boundary conditions in [Kre10], here
the difficulty relies in taking into account the boundary ΓN .



72 Stokes problem with mixed Dirichlet-Neumann boundary conditions

Theorem II.3.9 Suppose that β > 0. There exist two constants C1, C2 > 0, depending only on
Ω, β and reg(τ), such that for every couple (uT,pD) ∈ EΓD

0 × RD with

(−∇DuT + pDId)n⃗σK = Φσ ∀∀Dσ,σ∗ ∈ Dext ∩ ΓN ,

there exist ũT ∈ EΓD
0 and p̃D ∈ RD such that:

∥∇DũT∥2
2 + ∥p̃D∥2

2 ≤ C1(∥∇DuT∥2
2 + ∥pD∥2

2), (II.15)

∥∇DuT∥2
2 + ∥pD∥2

2 ≤ C2

B(uT,pD; ũT, p̃D) +
∣∣∣∣ ∑
Dσ,σ∗ ∈Dext∩ΓN

mσΦσγ
σ(ũτ )

∣∣∣∣+ ∥Φσ∥2
2

 . (II.16)

Proof Let (uT,pD) ∈ EΓD
0 × RD with

(−∇DuT + pDId)n⃗σK = Φσ ∀Dσ,σ∗ ∈ Dext ∩ ΓN .

The proof consists into building explicitely (ũτ , p̃D) ∈ EΓD
0 × RD such that relations (II.15)-(II.16)

are true.
I Step 1: As in the proof of Prop. II.2.1, we apply discrete Green’s formula (Thm. I.5.1) to the
bilinear form B, defined in (II.2). We obtain:

B(uT,pD; uT,pD) = ∥∇DuT∥2
2 + µsize(T)∥pD∥2

2 + β|pD|2h −
∑

Dσ,σ∗ ∈Dext∩ΓN

mσΦσ · γσ(uT). (II.17)

I Step 2: We apply Lemma I.6.3 to the function pD = ∑
D∈D pD1D ∈ L2(Ω). So there exists

C > 0 depending only on Ω, v ∈ (H1
ΓD

(Ω))2 such that (mind the sign):

div(v) = −pD

∥v∥H1 ≤ C∥pD∥2.
(II.18)

We set vT = Pτ
mv. In particular, vT ∈ EΓD

0 .
We apply Lemma I.10.5 to obtain:

∥∇DvT∥2 ≤ C∥v∥H1 ≤ C∥pD∥2. (II.19)

I Step 3: Green’s formula (Thm. I.5.1) implies:

B(uT, pD,vT, 0) = (∇DuT : ∇DvT)D − (pD,divDvT)D −
∑

Dσ,σ∗ ∈Dext∩ΓN

mσΦσ · γσ(vT).

We pass the boundary term on the left hand side. Then, by applying Cauchy-Scwharz inequality
and adding and subtracting the term ∑

D∈D

∫
D pD(div(v(z))dz, we end up with:

B(uT,pD,vT, 0) +
∑

Dσ,σ∗ ∈Dext∩ΓN

mσΦσ · γσ(vT) ≥ −∥∇DuT∥2∥∇DvT∥2

−
∑
D∈D

∫
D

pD(div(v(z))dz −
∑
D∈D

∫
D

pD(divD(vT) − div(v(z)))dz.
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Thanks to (II.18), we get:

B(uT,pD,vT, 0) +
∑

Dσ,σ∗ ∈Dext∩ΓN

mσ · Φσγ
σ(vT) ≥ −C∥∇DuT∥2∥pD∥2

+ ∥pD∥2
2 −

∑
D∈D

∫
D

pD(divD(vT) − div(v(z)))dz.

We need the following estimate:
∑
D∈D

∫
D

pD(divD(vT) − div(v(z)))dz ≤ C(|pD|h + ∥Φσ∥2 + ∥∇DuT∥2)∥v∥H1 .

Let us assume temporary that this statement holds (it will be proven in Lemma II.3.10 below),
then we can write:

B(uT,pD,vT, 0) +
∑

Dσ,σ∗ ∈Dext∩ΓN

mσΦσγ
σ(vT) ≥ −C∥∇DuT∥2∥pD∥2

+ ∥pD∥2
2 − C(|pD|h + ∥Φσ∥2 + ∥∇DuT∥2)∥v∥H1 .

Using (II.18), we get:

B(uT,pD,vT, 0) +
∑

Dσ,σ∗ ∈Dext∩ΓN

mσΦσγ
σ(vT) ≥ −C∥∇DuT∥2∥pD∥2

+ ∥pD∥2
2 − C(|pD|h + ∥Φσ∥2 + ∥∇DuT∥2)∥pD∥2.

Thanks to Young’s inequality (Lemma I.11.1), we get the existence of four constants C1, C2, C3, C4 >

0 that depend only on Ω and reg(T), such that:

B(uT,pD; vT, 0) +
∑

Dσ,σ∗ ∈Dext∩ΓN

mσΦσγ
σ(vT) ≥

C1∥pD∥2
2 − C2∥∇DuT∥2

2 − C3|pD|2h − C4∥Φσ∥2
2. (II.20)

Step 3: The bilinearity of B, inequality (II.20) and (II.17) give, for all ξ > 0:

B(uT, pD; uT + ξvT, pD) +
∣∣∣∣ ∑
Dσ,σ∗ ∈Dext∩ΓN

mσΦσγ
σ(uT + ξvT)

∣∣∣∣+ ξC4∥Φσ∥2 ≥

(1 − ξC2)∥∇DuT∥2
2 + ξC1∥pD∥2

2 + (β − ξC3)|pD|2h.

We choose the value of ξ > 0 sufficiently small (that depends only on C2, β and C3) such that all
the constants in front of the norms are strictly positive. In this way we find (II.16).
To recover inequality (II.15), it’s sufficient to consider ũT = uT + ξvT and p̃D = pD; since
∥∇DvT∥2 ≤ C∥pD∥2, we can conclude.

The following lemma is an extension of the result proved in [[Kre10], Lemma IV.25]. The difference
is in the space in which the function v belongs: we consider the case in which v ∈ H1

ΓD
(Ω) instead

of v ∈ H1
0 (Ω).

Lemma II.3.10 Let T be a DDFV mesh associated to Ω. There exists a constant C > 0, that
depends only on reg(T), such that for all v ∈ (H1

ΓD
(Ω))2 and for every couple (uT, pD) ∈ EΓD

0 ×RD
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with
(−∇DuT + pDId)n⃗σK = Φσ ∀Dσ,σ∗ ∈ Dext ∩ ΓN , (II.21)

we have: ∑
D∈D

∫
D

pD(divD(vT) − div(v(z)))dz ≤ C(|pD|h + ∥Φσ∥2 + ∥∇DuT∥2)∥v∥H1 ,

with vT = Pτ
mv is the average projection of v on the mesh T, defined in Sec. I.2.

Proof The set D can be split into interior and exterior diamonds: D = Dint ∪ Dext. From
[[Kre10], Lemma IV.25] we have:

∑
D∈Dint

∫
D

pD(divD(vT) − div(v(z)))dz ≤ C|pD|h∥v∥H1 .

So, we focus on diamonds D ∈ Dext. In particular, the only terms that are non zero are on
D ∈ Dext ∩ ΓN , since v ∈ (H1

ΓD
(Ω))2. Thanks to the divergence formula (I.3.5) we can write:

∫
D
(divD(vT) − div(v(z)))dz =

∑
s=[xK,xK∗ ]∈ED

ms
1
ms

∫
s

(vK + vK∗

2 − v(z)
)

· n⃗sDdz

+
∫ xL

xK∗

mσ

2
2
mσ

(vL + vK∗

2 − v(z)
)

· n⃗σKdz

+
∫ xL∗

xL

mσ

2
2
mσ

(vL∗ + vL

2 − v(z)
)

· n⃗σKdz.

(II.22)

We define:

Rs
div(v) = 1

ms

∫
s

(vK + vK∗

2 − v(z)
)

dz

RK∗
div(v) = 2

mσ

∫ xL

xK∗

(vL + vK∗

2 − v(z)
)

dz

RL∗
div(v) = 2

mσ

∫ xL∗

xL

(vL∗ + vL

2 − v(z)
)

dz.

So, if in (II.22) we multiply by pD and we sum over Dext ∩ ΓN :

∑
D∈Dext∩ΓN

∫
D

pD(divD(vT) − div(v(z)))dz =
∑

D∈Dext∩ΓN

pD
∑
s∈ED

msR
s
div(v) · n⃗sD

+
∑

D∈Dext∩ΓN

pDmσ

2 RK∗
div(v) · n⃗σK

+
∑

D∈Dext∩ΓN

pDmσ

2 RL∗
div(v) · n⃗σK.

The first term
∑

D∈Dext∩ΓN

pD
∑
s∈ED

msR
s
div(v) · n⃗sD contains only interior edges s of the diamonds, so

we refer to the proof [[Kre10], Lemma IV.25].

We consider then the other two terms. In particular, we prove the result just for RK∗
div(v),

since it is equivalent for RL∗
div(v).

We recall that mD = 1
2mσmσ∗ sin(α). We apply Neumann boundary conditions (II.21) and Cauchy-
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Schwarz inequality to obtain:

∑
D∈Dext∩ΓN

pDmσ

2 RK∗
div(v) · n⃗σK ≤ C

( ∑
D∈Dext∩ΓN

mD|Φσ|2
) 1

2
( ∑

D∈Dext∩ΓN

|RK∗
div(v)|2

) 1
2

+ C

( ∑
D∈Dext∩ΓN

mD|∇DuT|2
) 1

2
( ∑

D∈Dext∩ΓN

|RK∗
div(v)|2

) 1
2

≤ C(∥Φσ∥2)
( ∑

D∈Dext∩ΓN

|RK∗
div(v)|2

) 1
2

+ C(∥∇DuT∥2)
( ∑

D∈Dext∩ΓN

|RK∗
div(v)|2

) 1
2
.

To conclude, we need to prove that
∑

D∈Dext∩ΓN

|RK∗
div(v)|2 ≤ C∥v∥H1 . Notice that, if we call the

segment [xK∗ , xL] = σ1 and if we define

vσ1 := 1
mσ1

∫
σ1

v(y)dy,

we can write by the definition of RK∗
div(v):

|RK∗
div(v)|2 ≤ 2

(
|vK∗ − vσ1 |2 + 2|vL − vσ1 |2

)
.

If we denote v =
(

V1

V2

)
, we can work componentwise. For i = 1, 2, each term on the right hand

side can be controlled by:

|Vi
K∗ − Vi

σ1 |2 ≤ 2
∣∣∣∣Vi

K∗ − 1
mK∗

∫
K∗

Vi(x)dx
∣∣∣∣2 +

∣∣∣∣ 1
mK∗

∫
K∗

Vi(x)dx− Vi
σ1

∣∣∣∣2.
By defintion, both Vi

K∗ and Vi
σ1 are averages of Vi on a segment and 1

mK∗

∫
K∗

Vi(x)dx is an average
over a bounded polygonal domain. We can thus apply [[ABH07], Lemma 3.4] and deduce:

|Vi
K∗ − Vi

σ1 |2 ≤ C

∫
K̂∗

|∇Vi(z)|2dz.

We obtain for i = 1, 2: ∑
D∈Dext∩ΓN

|RK∗
div(Vi)|2 ≤ C

∫
Ω

|∇Vi(z)|2dz.

that by summing over i, gives us the desired result.

II.3.3 Optimal error estimate

We improve the result of Thm. II.3.1 by applying the stability result of Thm. II.3.9; remark that
to apply this result it is necessary to suppose β > 0.

Theorem II.3.11 We suppose that the solution of (II.1) satisfies (u, p) ∈ (W 2,∞(D))2×W 1,∞(D).
Let β > 0 and (uT, pD) be the solution of (Pβµ). Then there exists a constant C > 0 that depends
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on reg(T), µ, β, ∥u∥W 2,∞ and ∥p∥W 1,∞ such that

∥u − uT∥2 + ∥∇u − ∇DuT∥2 ≤ Csize(T),
∥p − pD∥2 ≤ Csize(T).

Proof We proceed exactly as in Thm. II.3.1 by defining the errors eT = (PD
m,gPT

c u ) − uT ∈(
R2)T, the error for the velocity field, and eD = PD

mp − pD ∈ RD, the error for the pressure field.
We recall that they satisfy the following system:

Find eT ∈ EΓD
0 and eD ∈ RD such that:

divK(−∇DeT + eDId) = RK ∀K ∈ M

divK∗(−∇DeT + eDId) = RK∗ ∀K∗ ∈ M∗ ∪ ∂M∗
N

divD(eT) + µsize(T)eD − βd2
D ∆DeD = RD

(−∇DeT + eDId)n⃗σK = Ru
σK + Rp

σK ∀Dσ,σ∗ ∈ Dext ∩ ΓN

where RT =
(
(RK)K∈M, (RK∗)K∗∈M∗∪∂M∗

N

)
and RD =

(
RD
)

D∈D
with:

RK = 1
mK

∑
Dσ,σ∗ ∈DK

mσRu
σK + 1

mK

∑
Dσ,σ∗ ∈DK

mσRp
σK, ∀K ∈ M,

RK∗ = 1
mK∗

∑
Dσ,σ∗ ∈DK∗

mσ∗Ru
σ∗K∗ + 1

mK∗

∑
Dσ,σ∗ ∈DK∗

mσ∗Rp
σ∗K∗ , ∀K∗ ∈ M∗,

RK∗ = 1
mK∗

∑
Dσ,σ∗ ∈DK∗

mσ∗(Ru
σ∗K∗ + Rp

σ∗K∗) + 1
mK∗

∑
Dσ,σ∗ ∈Dext

K∗

mσ

2 (Ru
K∗L + Rp

K∗L), ∀K∗ ∈ ∂M∗
N ,

RD = divD(PD
m,gPT

c u) + µsize(T)PD
mp − βd2

D∆DPD
mp, ∀D ∈ D.

Thm. II.3.9 implies that there exist ẽT ∈ EΓD
0 and ẽD ∈ RD such that:

∥∇DẽT∥2
2 + ∥ẽD∥2

2 ≤ C(∥∇DeT∥2
2 + ∥eD∥2

2), (II.23)

and

∥∇DeT∥2
2 + ∥eD∥2

2 ≤ CB(eT, eD; ẽT, ẽD)

+ C

∣∣∣∣ ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ(Ru
σK + Rp

σK) · γσ(ẽT)
∣∣∣∣+ C∥(Ru

σK + Rp
σK)∥2

2,ΓN
.
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Thus, by applying Cauchy-Schwarz inequality and trace theorem (Thm. I.9.4), we can write:

∥∇DeT∥2
2 + ∥eD∥2

2 ≤ CB(eT, eD; ẽT, ẽD)

+ C

 ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ(Ru
σK + Rp

σK)2

 1
2
 ∑

Dσ,σ∗ ∈Dext∩ΓN

mσ(γσ(ẽT))2

 1
2

+ C
∑

Dσ,σ∗ ∈Dext∩ΓN

mσ|Ru
σK|2 + C

∑
Dσ,σ∗ ∈Dext∩ΓN

mσ|Rp
σK|2

≤ CB(eT, eD; ẽT, ẽD) + C

 ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ(Ru
σK + Rp

σK)2

 1
2

∥∇DẽT∥2

+ C
∑

Dσ,σ∗ ∈Dext∩ΓN

mσ|Ru
σK|2 + C

∑
Dσ,σ∗ ∈Dext∩ΓN

mσ|Rp
σK|2.

Thanks to the definition of B we have B(eT, eD; ẽT, ẽD) = [[RT, ẽT]]τ + (RD, ẽD)D =: I + T and by
proceeding as in the proof of Thm. II.3.1 we get:

∥∇DeT∥2
2 + ∥eD∥2

2 ≤ C∥∇DẽT∥2 (∥Rp
σ∥2 + ∥Ru

σ ∥2 + ∥Rp
σ∗∥2 + ∥Ru

σ∗∥2)

+ C∥∇DẽT∥2

[( ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Ru
K∗L|2

) 1
2

+
( ∑

Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Rp
K∗L|

2
) 1

2
]

+ C∥∇DẽT∥2

[( ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Ru
L∗L|2

) 1
2

+
( ∑

Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Rp
L∗L|

2
) 1

2
]

+ Csize(T)∥ẽD∥2(∥u∥H2 + ∥p∥H1)

+ C∥∇DẽT∥2

[( ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ|Ru
σK|2

) 1
2

+
( ∑

Dσ,σ∗ ∈Dext∩ΓN

mσ|Rp
σK|2

) 1
2
]

+ C
∑

Dσ,σ∗ ∈Dext∩ΓN

mσ|Ru
σK|2 + C

∑
Dσ,σ∗ ∈Dext∩ΓN

mσ|Rp
σK|2.

Now we use relation (II.23) to get:

∥∇DeT∥2
2 + ∥eD∥2

2

≤ C(∥∇DeT∥2 + ∥eD∥2) (∥Rp
σ∥2 + ∥Ru

σ ∥2 + ∥Rp
σ∗∥2 + ∥Ru

σ∗∥2)

+ C(∥∇DeT∥2 + ∥eD∥2)
[( ∑

Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Ru
K∗L|2

) 1
2

+
( ∑

Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Rp
K∗L|

2
) 1

2
]

+ C(∥∇DeT∥2 + ∥eD∥2)
[ ∑

Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Ru
L∗L|2

 1
2

+
( ∑

Dσ,σ∗ ∈Dext∩ΓN

mσ

2 |Rp
L∗L|

2
) 1

2
]

+ Csize(T)(∥∇DeT∥2 + ∥eD∥2)(∥u∥H2 + ∥p∥H1)

+ C(∥∇DeT∥2 + ∥eD∥2)
[( ∑

Dσ,σ∗ ∈Dext∩ΓN

mσ|Ru
σK|2

) 1
2

+
( ∑

Dσ,σ∗ ∈Dext∩ΓN

mσ|Rp
σK|2

) 1
2
]

+ C
∑

Dσ,σ∗ ∈Dext∩ΓN

mσ|Ru
σK|2 + C

∑
Dσ,σ∗ ∈Dext∩ΓN

mσ|Rp
σK|2.
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Lemmas II.3.2, II.3.3, II.3.4, II.3.6, II.3.7, II.3.8 imply:

∥∇DeT∥2
2 + ∥eD∥2

2 ≤ Csize(T)2. (II.24)

Estimate of ∥u − uT∥2 and ∥∇u − ∇DuT∥2:

If we apply the estimate (II.24) (different from (II.12) in Thm. II.3.1) to (II.13) and (II.14),
we obtain:

∥u − uT∥2 ≤ Csize(T).

∥∇u − ∇DuT∥2 ≤ Csize(T).

Estimate of ∥p − pD∥2:
We have:

∥p − pD∥2 ≤ ∥p − PD
mp∥2 + ∥PD

mp − pD∥2.

We conclude thanks to Lemma I.10.9 and the estimate (II.24).

II.4 Numerical results

We validate the scheme (Pβµ) by showing some numerical experiments. The computational domain
is Ω = [0, 1]2. The configuration of the boundaries is illustrated in Fig. II.2.

ΓD ΓN

ΓD

ΓD

Fig. II.2 Ω = [0, 1]2, Dirichlet boundary conditions on ΓD , Neumann boundary conditions on ΓN .

We study the error in the case of unstabilized and stabilized mass equation (i.e. with a linear
stabilization, µ > 0, or Brezzi-Pitkaranta type stabilization, β > 0). In the following discussion,
we show how we obtain the expected convergence rates and how the stabilization terms do not
influence the result.
For those tests we give the expression of the exact solution (u, p), from which we deduce the
source term f, the Dirichlet boundary condition g and the Neumann boundary condition Φ
for which (u, p) is solution of (II.1). We will compare the L2-norm of the error for the velocity
(denoted Ervel), the velocity gradient (Ergradvel) and the pressure (Erpre). In particular we denote:

Ergradvel = ∥∇D(PT
c u) − ∇DuT∥2

∥∇D (PT
c u) ∥2

, Erpre = ∥PD
c p − pD∥2
∥PD

c p∥2
, Ervel = ∥PT

c u − uT∥2
∥PT

c u∥2
, (II.25)

where PT
c u and PD

c p are the centered projections of u and p.

On Tables III.1 -II.6 we give the number of primal cells (NbCell) and the convergence rates (Ratio).
We remark that, to discuss the error estimates, a family of meshes (Fig. II.3) is obtained by refining
successively and uniformly the original mesh.
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Fig. II.3 Family of
meshes. On the left:
non conformal square
mesh. On the right:
quadrangle-triangle
mesh.

Green-Taylor vortices: In this test case, the exact solution is given by:

u(x, y) =
(

1
2 sin(2πx) cos(2πy),

−1
2 cos(2πx) sin(2πy)

)
p(x, y) = 1

8 cos(2πx) sin(2πy). (II.26)

In this example, we show the results obtained using the non conformal square mesh of Fig. II.3;
many other meshes were tested and the geometry of the mesh did not influence the accuracy of the
approximation. As we can see in Tables II.1, II.2, II.3, we observe super convergence in L2 norm of
the velocity; instead, for the H1 norm of the velocity and for the L2 norm of the pressure we get
exactly what was expected from Thm. II.3.11. As we mentioned before, an important remark is
that the order of convergence does not change whether or not a stabilization is present and this has
been observed in all the tests; it is sufficient to compare Tables II.1, II.2, II.3. This underlines the
fact that the stabilization term is just a useful tool for the proofs of Theorems II.2.2 and II.3.11,
but in practice it does not affect the results. Moreover, we tested the unstabilized scheme on
other meshes for which we are not able to prove well-posedness because of their geometry and we
numerically observed good behaviour. Remark also that the mesh in this example is non conformal.

Table II.1 Green-Taylor vortices on the non conformal square mesh of Fig. III.3, with µ = 0, β = 0.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio

64 6.693E-02 - 9.762E-02 - 1.179E+00 -
208 1.665E-02 2.00 4.485E-02 1.12 5.621E-01 1.07
736 4.173E-03 1.99 2.167E-02 1.05 2.770E-01 1.02
2752 1.045E-03 1.99 1.068E-02 1.02 1.380E-01 1.00
10624 2.615E-04 1.99 5.304E-03 1.01 6.895E-02 1.00

Table II.2 Green-Taylor vortices on the non conformal square mesh of Fig. III.3, with µ = 10−2, β =
0.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio

64 6.695E-02 - 9.769E-02 - 1.175E+00 -
208 1.665E-02 2.00 4.487E-02 1.12 5.612E-01 1.06
736 4.173E-03 1.99 2.167E-02 1.05 2.767E-01 1.02
2752 1.045E-03 1.99 1.068E-02 1.02 1.379E-01 1.00
10624 2.614E-04 1.99 5.305E-03 1.00 6.894E-02 1.00
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Table II.3 Green-Taylor vortices on the non conformal square mesh of Fig. III.3, with µ = 0, β =
10−2.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio

64 6.970E-02 - 1.080E-01 - 6.979E-01 -
208 1.719E-02 2.01 5.031E-02 1.10 3.189E-01 1.13
736 4.305E-03 1.99 2.447E-02 1.04 1.528E-01 1.06
2752 1.079E-03 1.99 1.210E-02 1.01 7.498E-02 1.02
10624 2.700E-04 1.99 6.021E-03 1.00 3.717E-02 1.01

Polynomial solutions: The exact solution is given by

u(x, y) =
(

2000(x4 − 2x3 + x2)(2y2 − 3y2 + y),
−2000(y4 − 2y3 + y2)(2x3 − 3x2 + x)

)
p(x, y) = x2 + y2 − 1. (II.27)

In this example we use the quadrangle mesh on the right of Fig. II.3. Remark that, for this mesh,
the well-posedness of the unstabilized scheme has not been proven. However, we numerically
observe that the scheme is invertible and, in Tables II.4, II.5, II.6, we observe (as in the previous
test case) super convergence in L2 norm of the velocity and the expected rate for the gradient of
the velocity and for the pressure. The order of convergence does not change if we work with or
without stabilization. As in the previous case, we tested our schemes on different general meshes,
and every time we got good results.

Table II.4 Polynomial solutions on the quadrangle-triangle mesh of Fig. III.3, with µ = 0, β = 0.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio
400 5.081E-02 - 6.309E-02 - 5.450E+00 -
1536 1.284E-02 1.98 2.796E-02 1.17 2.643E+00 1.04
6016 3.225E-03 1.99 1.346E-02 1.05 1.307E+00 1.01
23808 8.078E-04 1.99 6.660E-03 1.01 6.517E-01 1.00
94720 2.022E-04 1.99 3.320E-03 1.00 3.256E-01 1.00

Table II.5 Polynomial solutions on the quadrangle-triangle mesh of Fig. III.3, with µ = 10−2, β = 0.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio
400 5.080E-02 - 6.312E-02 - 5.443E+00 -
1536 1.284E-02 1.98 2.797E-02 1.17 2.641E+00 1.04
6016 3.224E-03 1.99 1.346E-02 1.05 1.307E+00 1.01
23808 8.079E-04 1.99 6.660E-03 1.01 6.516E-01 1.00
94720 2.022E-04 1.99 3.320E-03 1.00 3.256E-01 1.00

II.5 Extension to the Divergence form

In this section, we would like to discuss the extension of the work done for the Laplace form of the
Stokes problem (II.1) to the Divergence form:

−div(σ(u, p)) = f in Ω,
div(u) = 0 in Ω,

u = g on ΓD,

σ(u, p)n⃗ = Φ on ΓN ,

(II.28)
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Table II.6 Polynomial solutions on the quadrangle-triangle mesh of Fig. III.3, with µ = 0, β = 10−2.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio
400 4.580E-02 - 7.500E-02 - 3.045E+00 -
1536 1.152E-02 1.99 3.436E-02 1.12 1.434E+00 1.08
6016 2.887E-03 1.99 1.673E-02 1.03 7.051E-01 1.02
23808 7.230E-04 1.99 8.302E-03 1.01 3.510E-01 1.00
94720 1.809E-04 1.99 4.142E-03 1.00 1.753E-01 1.00

where the unknowns are the velocity u : Ω → R2 and the pressure p : Ω → R. The data
are f ∈ (L2(Ω))2, Φ ,g ∈ (H 1

2 (∂Ω))2 and n⃗ is the unitary outer normal. The stress tensor is
σ(u,p) = 2

ReDu − pId, with Re > 0. In particular, the strain rate tensor is defined by the
symmetric part of the velocity gradient Du = 1

2(∇u +t ∇u).
We will consider an open bounded polygonal domain Ω of R2 with ∂Ω = ΓD ∪ ΓN , where ΓD ̸= ∅
is the fraction of domain with Dirichlet boundary conditions, ΓN ̸= ∅ is the fraction is the one
with Neumann boundary conditions.

The DDFV discretization of (II.28) and the properties of the resulting scheme come as a natural
extension of the results for (Pβµ). This is due to the results proved in Sec. I.8, that relate the
discrete strain rate tensor with the discrete gradient.

To obtain our scheme, we integrate the momentum equation over all M ∪ M∗ ∪ ∂M∗
N . We

impose Dirichlet boundary conditions on ∂MD ∪ ∂M∗
D and Neumann boundary conditions on

∂MN (see Fig. II.1). The incompressibility constraint is directly approximated on the diamond
mesh D. We remark that, since Korn’s inequality (Thm. I.8.2) is proved under the assumption
that the mesh satisfies inf-sup stability (see Sec. I.6), it is not interesting to stabilize this equation
(as we did for (Pβµ)).

The scheme reads:

Find uT ∈ EΓD
m,g and pD ∈ RD such that:

−divK
(
σD(uT,pD)

)
= fK ∀K ∈ M

−divK∗ (
σD(uT,pD)

)
= fK∗ ∀K∗ ∈ M∗ ∪ ∂M∗

N

divD(uT) = 0
σD(uT,pD) n⃗σK = Φσ ∀Dσ,σ∗ ∈ Dext ∩ ΓN .

(D)

with the discrete stress tensor defined by σD(uT, pD) = 2
ReDDuT − pDId and where we denote as

before by fK,gK (resp. fK∗ ,gK∗) the mean-value of the source term f and of the Dirichlet data g on
K ∈ M (resp. on K∗ ∈ M∗ ∪ ∂M∗

Γ) and Φσ the mean-value of the Neumann data on σ ∈ ΓN :

fK = 1
mK

∫
K

f(x)dx, fK∗ = 1
mK∗

∫
K∗

f(x)dx,

gK = 1
mK

∫
K

g(x)dx, gK∗ = 1
mK∗

∫
K∗

g(x)dx,

Φσ = 1
mσ

∫
σ

Φ(x)dx.
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Moreover, we denote by gσ = γσ(gT).

II.5.1 Well-posedness of the scheme

In the following proposition, we show an a priori estimate to the solution of (D) before proving
that the problem is well-posed:

Proposition II.5.1 (A priori estimate) Let (uT, pD) ∈ EΓD
m,g ×RD be a solution of (D). Then:

2
Re∥DDuT∥2

2 ≤
∣∣∣[[fT,uT]]T

∣∣∣
+

 ∑
Dσ,σ∗ ∈Dext∩ΓD

mσ|gσ|2
 1

2

·

 ∑
Dσ,σ∗ ∈Dext∩ΓD

mσ

∣∣∣∣ 2
ReDDuT − pDId

∣∣∣∣2
 1

2

+

 ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ|Φσ|2
 1

2
 ∑

Dσ,σ∗ ∈Dext∩ΓN

mσ |γσ(uT)|2
 1

2

. (II.29)

Proof We define the bilinear form associated to the scheme:

B(uT, pD,uT,pD) =
[[

divT

(
(− 2

ReDDuT + pDId
)
,uT

]]
T

+ (divD(uT),pD)D.

If we apply Green’s formula (Thm. I.5.1 ), with the remark that, since DDuT is symmetric and
divD(uT) = 0, we have [[DDuT,∇DuT]]T = [[DDuT,DDuT]]T , we get:

B(uT, pD,uT, pD) = 2
Re∥DDuT∥2

2 − (pD,divD(uT))D

+
∑

Dσ,σ∗ ∈Dext

mσγ
σ(uT) ·

(
− 2

ReDDuT + pDId
)

n⃗σK + (divD(uT), pD)D.

The terms (pD, divD(uT))D simplify. The boundary diamonds Dext can be split between Dext ∩ ΓD

and Dext ∩ ΓN ; by applying Dirichlet and Neumann boundary conditions, we obtain:

B(uT, pD,uT, pD) = 2
Re∥DDuT∥2

2 +
∑

Dσ,σ∗ ∈Dext∩ΓD

mσgσ ·
(

− 2
ReDDuT + pDId

)
n⃗σK

−
∑

Dσ,σ∗ ∈Dext∩ΓN

mσγ
σ(uT) · Φσ. (II.30)

On the other hand, since (uT, pD) is a solution to (D), we have:

B(uT, pD,uT, pD) = [[fT,uT]]T. (II.31)

By putting together (II.30) and (II.31) :

2
Re∥DDuT∥2

2 ≤ [[fT,uT]]T

+

∣∣∣∣∣∣
∑

Dσ,σ∗ ∈Dext∩ΓD

mσgσ ·
( 2

ReDDuT − pDId
)

n⃗σK

∣∣∣∣∣∣+
∣∣∣∣∣∣

∑
Dσ,σ∗ ∈Dext∩ΓN

mσγ
σ(uT) · Φσ

∣∣∣∣∣∣ .
We then apply Cauchy-Schwarz inequality to get our result (II.29).
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In the following result, we prove that there exists a unique solution to (D).

Theorem II.5.2 (Well-posedness of the scheme) Let T a DDFV mesh associated to Ω that
satisfies Inf-sup stability (Def. I.6.1) . Then the scheme (D) has a unique solution (uT,pD) ∈
EΓD

m,g × RD.

Proof By linearity, it is sufficient to prove that if fT = 0, g∂M = 0,g∂M∗ = 0 and Φσ = 0, then
uT = 0 and pD = 0. Directly from (II.29), we deduce:

2
Re∥DDuT∥2

2 ≤ 0.

that implies ∥DDuT∥2 = 0. Thanks to Thm. I.8.4, we deduce uT = 0. Thus, the momentum
equation and the Neumann boundary condition become:

divK
(
pDId

)
= 0 ∀K ∈ M

divK∗ (pDId
)

= 0 ∀K∗ ∈ M∗ ∪ ∂M∗
N

(pDId)n⃗σK = 0 ∀Dσ,σ∗ ∈ Dext ∩ ΓN .

(II.32)

Our goal is now to show that pD = 0. For every vT ∈ EΓD
0 , thanks to Green’s formula (Thm. I.5.1),

we can write:(
divD(vT),pD

)
D

= −
[[

vT,divT(pDId)
]]

T
+

∑
Dσ,σ∗ ∈Dext

mσγ
σ(vT) · (pDId) n⃗σK. (II.33)

By definition of the scalar products (see Sec. I.4), by (II.32) and by the fact that vT ∈ EΓD
0 , we

get that
[[

vT,divT(pDId)
]]

T
= 0 and

∑
Dσ,σ∗ ∈Dext

mσγ
σ(vT) · (pDId) n⃗σK = 0. Thus (II.33) becomes:

(
divD(vT),pD

)
D

= 0. (II.34)

We now go back to inequality (I.30) ensured by Inf-sup stability: since (II.34) holds for any
vT ∈ EΓD

0 , the supremum in the right hand side of (I.30) vanishes and we can deduce that pD is
constant. Thanks to Neumann boundary condition, i.e.

( 2
ReDDuT − pDId

)
n⃗σK = 0, and uT = 0,

we get that pD = 0.

Remark II.5.3 (Error estimates) For what concerns the error estimates for the scheme (D),
we will not detail the computations here. The proof of an optimal error estimate of order 1 for
the velocity, its gradient and the pressure comes straightforwardly from the one in Sec. II.3, Thm.
II.3.11.

First, remark that it is sufficient to apply the results of Sec. I.8 in order to pass from ∥∇DuT∥2
to ∥DDuT∥2 and viceversa when necessary.

Moreover, the hypothesis β > 0 in the optimal error estimate of Thm. II.3.11 can be eliminated
if we suppose Inf-Sup stability condition. It is necessary to suppose β > 0 in order to apply the
stability result of Thm. II.3.9; under Inf-Sup stability condition and with β = 0 = µ, the proof
remains valid. In fact, if we look at Step 1 with β = 0 = µ, instead of (II.17) we get:

B(uT, pD; uT, pD) = ∥∇DuT∥2
2 −

∑
Dσ,σ∗ ∈Dext∩ΓN

mσΦσ · γσ(uT).
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Step 2 is replaced by Lemma I.6.5, which directly ensures ∀pD ∈ RD the existence of vT ∈ EΓD
0

such that divD(vT) = −pD and ∥∇DvT∥2 ≤ C∥pD∥2 ; Step 3 is then obtained straightforwardly.

II.5.2 Numerical results

We validate the scheme (D) by showing a few numerical experiments. The setting of the simulations
is the same as the one introduced in Sec. II.4.
The computational domain is Ω = [0, 1]2. The configuration of the boundaries is illustrated in Fig.
II.4.

ΓD ΓN

ΓD

ΓD

Fig. II.4 Ω = [0, 1]2, Dirichlet boundary conditions on ΓD , Neumann boundary conditions on ΓN .

For those tests we give the expression of the exact solution (u,p), from which we deduce the source
term f, the Dirichlet boundary condition g and the Neumann boundary condition Φ for which
(u,p) is solution of (II.1). We will compare the L2-norm of the error obtained with the DDFV
scheme for the velocity (denoted Ervel), the velocity gradient (Ergradvel) and the pressure (Erpre);
see (II.25) for the definition of the norms. On the Tables II.7, II.14 we give the number of primal
cells (NbCell) and the convergence rates (Ratio).

The difference with respect to Sec. II.4 is that now the scheme is not stabilized; so, instead
of studying the influence of the parameters, we present tests on different mesh geometries to show
how this does not affect the accuracy of the scheme. With respect to the previous section, we add
the meshes of Fig. II.6. Moreover, for some of the meshes that we tested, Inf-sup inequality (Def.
I.6.1) has not been proven, but we observe numerically that it holds even in those cases.
The main difficulty with respect to the implementation of the scheme (Pβµ) is that here we deal
with the discretization of the term DDuT.

Fig. II.5 Two families of
quadrangular meshes.

We remark that, to discuss the error estimates, a family of meshes is obtained by refining succes-
sively and uniformly the original mesh.

In Tables II.7,II.8,II.9, II.10 we show the results for the solution of Green-Taylor vortices (II.26);
in Tables II.11,II.12,II.13, II.14 we show the results for the polynomial solutions (II.27). In all the
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Fig. II.6 Two family
of triangular meshes.

cases, we observe super convergence in L2 norm of the velocity and the expected order 1 for the
H1 norm of the velocity and for the L2 norm of the pressure (as proved in Thm. II.3.11) ; we also
remark that the mesh geometry does not influence the results, even for meshes that do not satisfy
Inf-sup stability (Def. I.6.1), like the quadrangular mesh of Fig. II.5.

Table II.7 Green-Taylor vortices on the left triangular mesh of Fig. II.6.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio

72 1.122E-02 - 3.669E-02 - 5.226E-01 -
256 2.729E-03 2.04 1.572E-02 1.22 2.179E-01 1.26
960 7.113E-04 1.94 7.355E-03 1.09 1.150E-01 0.92
3712 1.860E-04 1.93 3.534E-03 1.05 5.915E-02 0.96
14592 4.772E-05 1.96 1.728E-03 1.03 2.992E-02 0.98

Table II.8 Green-Taylor vortices on the right triangular mesh of Fig. II.6.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio

48 4.048E-02 - 6.850E-02 - 1.394E+00 -
160 1.001E-02 2.01 2.270E-02 1.59 3.486E-01 2.00
576 2.489E-03 2.00 7.783E-03 1.54 8.732E-02 1.99
2176 6.207E-04 2.00 2.712E-03 1.52 2.184E-02 1.99
8448 1.550E-04 2.00 9.519E-04 1.51 5.459E-03 2.00
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Table II.9 Green-Taylor vortices on the left quadrangular mesh of Fig. II.5.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio

64 3.292E-02 - 9.172E-02 - 1.878E+00 -
208 7.827E-03 2.07 4.423E-02 1.05 6.809E-01 1.46
736 1.932E-03 2.01 2.163E-02 1.03 3.002E-01 1.18
2752 4.801E-04 2.00 1.069E-02 1.01 1.432E-01 1.06
10624 1.197E-04 2.00 5.308E-03 1.00 7.021E-02 1.03

Table II.10 Green-Taylor vortices on the right quadrangular mesh of Fig. II.5.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio

400 3.658E-03 - 2.591E-02 - 6.480E-01 -
1536 9.242E-04 1.98 1.280E-02 1.01 3.206E-01 1.01
6016 2.326E-04 1.99 6.376E-03 1.00 1.595E-01 1.00
23808 5.833E-05 1.99 3.184E-03 1.00 7.957E-02 1.00
94720 1.460E-05 1.99 1.591E-03 1.00 3.974E-02 1.00

Table II.11 Polynomial solutions on the left triangular mesh of Fig. II.6.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio

72 7.574E-02 - 1.266E-01 - 7.616E+00 -
256 1.507E-02 2.32 4.247E-02 1.57 2.494E+00 1.61
960 4.019E-03 1.90 1.757E-02 1.27 1.048E+00 1.25
3712 1.085E-03 1.89 7.782E-03 1.17 4.984E-01 1.07
14592 2.836E-04 1.93 3.626E-03 1.10 2.471E-01 1.01

Table II.12 Polynomial solutions on the right triangular mesh of Fig. II.6.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio

48 1.381E-01 - 2.041E-01 - 1.991E+01 -
160 3.697E-02 1.90 6.771E-02 1.59 5.614E+00 1.82
576 9.553E-03 1.95 2.333E-02 1.53 1.465E+00 1.93
2176 2.417E-03 1.98 8.172E-03 1.51 3.709E-01 1.98
8448 6.072E-04 1.99 2.879E-03 1.50 9.305E-02 1.99

Table II.13 Polynomial solutions on the left quandrangular mesh of Fig. II.5.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio

64 1.669E-01 - 2.739E-01 - 3.525E+01 -
208 4.027E-02 2.05 1.138E-01 1.26 1.017E+01 1.79
736 8.839E-02 2.01 4.964E-02 1.19 3.528E+00 1.52
2752 4.419E-02 2.00 2.273E-02 1.12 1.428E+00 1.30
10624 2.210E-02 2.00 1.080E-02 1.07 6.372E-01 1.16

Table II.14 Polynomial solutions on the right quandrangular mesh of Fig. II.5

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio

400 2.468E-02 - 5.906E-02 - 5.974E+00 -
1536 6.451E-03 1.93 2.741E-02 1.10 2.726E+00 1.13
6016 1.639E-03 1.97 1.339E-02 1.03 1.319E+00 1.04
23808 4.117E-04 1.99 6.651E-03 1.01 6.534E-01 1.01
94720 1.031E-04 1.99 3.319E-03 1.00 3.259E-01 1.00
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II.6 Unstabilized scheme: weak boundary conditions

Here we discuss another extension to the results proved for the scheme (Pβµ). If we do not stabilize
the incompressibility constraint, the problem remains well-posed under the hypothesis that the
mesh satifies Inf-sup inequality (see Sec. I.6). We recall that this inequality has been proven for
a large class of meshes, but in the simplest case of conformal square meshes it is valid up to an
unstable mode for the pressure.

We want to show that there is a way of avoiding this inconvenient on simple mesh geometries: it
is to impose boundary conditions in a "weak sense". This means that, instead of imposing the
conditions on ∂MD ∪ ∂M∗

D ∪ ∂MN , they will only be imposed on ∂MD ∪ ∂MN .
The scheme is thus obtained by integrating the momentum equation over M ∪ M∗ ∪ ∂M∗ and the
incompressibility constraint over D. It reads:

Find uT ∈
(
R2
)T

and pD ∈ RD :



divK(−∇DuT + pDId) = fK ∀K ∈ M,

divK∗(−∇DuT + pDId) = fK∗ ∀K∗ ∈ M∗ ∪ ∂M∗,

divD(uT) = 0,
(∇DuT − pDId)n⃗σK = Φσ ∀Dσ,σ∗ ∈ Dext ∩ ΓN ,

γσ(uT) = gσ ∀Dσ,σ∗ ∈ Dext ∩ ΓD∑
K∈M

mKuK −
∑

K∗∈M∗∪∂M∗

mK∗uK∗ = 0,

(Pw)

where we denote as before by fK (resp. fK∗) the mean-value of the source term f on K ∈ M (resp.
on K∗ ∈ M∗ ∪ ∂M∗

Γ), gσ,Φσ the mean-value of the Dirichlet and Neumann data respectively for
σ ∈ ΓD, σ ∈ ΓN :

fK = 1
mK

∫
K

f(x)dx, fK∗ = 1
mK∗

∫
K∗

f(x)dx,

gσ = 1
mσ

∫
σ

g(x)dx, Φσ = 1
mσ

∫
σ

Φ(x)dx.

Linear dependence of the equations.
By imposing weak boundary conditions, the equations are no more linearly independent. This is
why we add the relation: ∑

K∈M

mKuK −
∑

K∗∈M∗∪∂M∗

mK∗uK∗ = 0.

To show the linear dependence, set firstly ψT ∈
(
R2)T such that

ψK = e⃗1 := (1, 0)t, ∀K ∈ M ∪ ∂M,

ψK∗ = 0⃗, ∀K∗ ∈ M∗ ∪ ∂M∗,

that implies ∇DψT = 0 and γT(ψ) = (1
2 , 0)t. We have:

• on one hand, thanks to the scheme (Pw):

2
[[

divT(−∇DuT + pDId), ψT
]]

T
=
∑
K∈M

mKfK · e⃗1,
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that thanks to the definition of the source term leads to

2
[[

divT(−∇DuT + pDId), ψT
]]

T
=
∫

Ω
f(x) · e⃗1dx.

• on the other hand, Green’s formula (I.5.1) gives:

2
[[

divT(−∇DuT + pDId), ψT
]]

T
=

2
(
∇DuT − pDId : ∇DψT

)
D

− 2
(
γD
(
(∇DuT − pDId)n⃗σK

)
, γT(ψT)

)
∂Ω
,

that since ∇DΨT = 0 and γT(ψ) = (1
2 , 0)t is equivalent to:

2
[[

divT(−∇DuT + pDId), ψT
]]

T
=

∑
D∈Dext

mσ ((−∇DuT + pDId)n⃗σK) · e⃗1.

Putting all together, we get:
∑

D∈Dext

mσ ((−∇DuT + pDId)n⃗σK) · e⃗1 =
∫

Ω
f(x) · e⃗1dx. (II.35)

We can repeat the same computation by choosing ψT ∈
(
R2)T such that

ψK = e⃗2 := (0, 1)t, ∀K ∈ M ∪ ∂M,

ψK∗ = 0⃗, ∀K∗ ∈ M∗ ∪ ∂M∗,

that implies ∇DψT = 0 and γτ (ψ) = (0, 1
2)t. Now we obtain:

∑
D∈Dext

mσ ((−∇DuT + pDId)n⃗σK) · e⃗2 =
∫

Ω
f(x) · e⃗2dx. (II.36)

Relations (II.35)-(II.36) imply then:

∑
D∈Dext

mσ(−∇DuT + pDId)n⃗σK =
∫

Ω
f(x)dx. (II.37)

By proceeding in the same way, we choose first ψT ∈
(
R2)T such that

ψK = 0⃗ := (1, 0)t, ∀K ∈ M ∪ ∂M,

ψK∗ = e⃗1, ∀K∗ ∈ M∗ ∪ ∂M∗,

that implies ∇DψT = 0 and γT(ψ) = (1
2 , 0)t, and next ψT ∈

(
R2)T such that

ψK = 0⃗ := (1, 0)t, ∀K ∈ M ∪ ∂M,

ψK∗ = e⃗2, ∀K∗ ∈ M∗ ∪ ∂M∗,

that implies ∇DψT = 0 and γT(ψ) = (0, 1
2)t. Those choices lead to:

∑
D∈Dext

mσ(−∇DuT + pDId)n⃗σK =
∫

Ω
f(x)dx. (II.38)
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We observe that (II.37) and (II.38) give the same result; this shows that the equations on T are
not linearly independent.

II.6.1 Well-posedness of the scheme

Equivalently to Sec. II.2, we start by proving an a priori estimate:

Proposition II.6.1 (A priori estimate) Let (uT,pD) ∈
(
R2)T × RD be a solution of (Pw).

Then:

∥∇DuT∥2
2 ≤

∣∣∣[[fT,uT]]T
∣∣∣

+

 ∑
Dσ,σ∗ ∈Dext∩ΓD

mσ|gσ|2
 1

2

·

 ∑
Dσ,σ∗ ∈Dext∩ΓD

mσ |∇DuT − pDId|2
 1

2

+

 ∑
Dσ,σ∗ ∈Dext∩ΓN

mσ|Φσ|2
 1

2
 ∑

Dσ,σ∗ ∈Dext∩ΓN

mσ |γσ(uT)|2
 1

2

. (II.39)

Proof We can associate the following bilinear form to the scheme:

B(uT, pD,uT, pD) = [[divT(−∇DuT + pDId),uT]]T + (divD(uT),pD)D.

If we apply Green’s formula (Thm. I.5.1 ), by taking into account the boundary terms, we get:

B(uT,pD,uT, pD) = ∥∇DuT∥2
2 − (pD, divD(uT))D

+
∑

Dσ,σ∗ ∈Dext∩ΓN

mσγ
σ(uT) · (−∇DuT + pDId) n⃗σK + (divD(uT), pD)D.

The terms (pD, divD(uT))D simplify. The boundary diamonds Dext can be split between Dext ∩ ΓD

and Dext ∩ ΓN ; by applying Dirichlet and Neumann boundary conditions, we obtain:

B(uT, pD,uT, pD) = ∥∇DuT∥2
2+

∑
Dσ,σ∗ ∈Dext∩ΓN

mσg
σ ·(−∇DuT + pDId) n⃗σK−

∑
Dσ,σ∗ ∈Dext

mσγ
σ(uT)·Φσ.

(II.40)
On the other hand, since (uT, pD) is a solution to (Pw), we have:

B(uT, pD,uT, pD) = [[fT,uT]]T. (II.41)

By putting together (II.40) and (II.41) :

∥∇DuT∥2
2 ≤ [[fT,uT]]T +

∣∣∣∣∣∣
∑

Dσ,σ∗ ∈Dext∩ΓD

mσgσ · (∇DuT − pDId) n⃗σK

∣∣∣∣∣∣+
∣∣∣∣∣∣

∑
Dσ,σ∗ ∈Dext∩ΓN

mσγ
σ(uT) · Φσ

∣∣∣∣∣∣ .
We then apply Cauchy-Schwarz inequality to get our result (II.39).

We can now prove the well-posed character of our scheme.

Theorem II.6.2 (Well-posedness of the scheme) The scheme DDFV (Pw) has a unique so-
lution (uT, pD) ∈

(
R2)T × RD on conformal triangle meshes, conformal and non-conformal square

meshes.
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Proof By linearity, it is sufficient to prove that if fT = 0, gσ = 0 and Φσ = 0, then uT = 0 and
pD = 0. Directly from (II.39), we deduce:

∥∇DuT∥2
2 ≤ 0.

This implies ∥∇DuT∥2 = 0: from Remark I.3.3 and since gσ = 0, we obtain c0 + c1 = 0. Since we
impose

∑
K∈M

mKuK −
∑

K∗∈M∗∪∂M∗

mK∗uK∗ = 0 and by hypothesis
∑
K∈M

mK =
∑

K∗∈M∗∪∂M∗

mK∗ , we deduce

c0 = c1 so we can conclude uT = 0.

The momentum equation becomes:
divT(pDId) = 0.

Here is the point where the structure of the mesh is crucial. In fact, we can prove that pD = 0 if
we are on a conformal triangle mesh, conformal or non conformal square mesh.
Here, we illustrate the case of conformal triangle mesh: this is an adaptation of the proof that can
be found in [Del07], done in the case of Dirichlet boundary conditions. We also refer to [Del07] for
the case of conformal/non-conformal squares.

If we consider a volume K of the primal mesh and we enumerate its edges with α = 1, 2, 3,
by using the definition of discrete divergence we can write:

0 = divK(pDId) = 1
mK

(|σ1|p1Idn⃗σ1K + |σ2|p2Idn⃗σ2,K + |σ3|p3Idn⃗σ3K),

with |σ1|n⃗σ1K + |σ2|n⃗σ2K + |σ3|n⃗σ3K = 0, so:

(p1Id − p3Id)|σ1|n⃗σ1K + (p2Id − p3Id)|σ2|n⃗σ2K = 0,

and since n⃗σ1K and n⃗σ2K are not co-linear, it implies p1 = p2 = p3.
If we proceed in the same way for an element K′ neighbour of K, we obtain p′

1 = p′
2 = p′

3 and since
p1 = p′

1 we deduce p1 = p2 = p3 = p′
2 = p′

3.
If we make the same reasoning for all the others triangles, we get that all the pj are equal to the
same constant. Thanks to Neumann boundary conditions, we deduce that this constant is equal to
0, i.e. pD = 0 ∀D ∈ D.

II.6.2 Numerical results

We validate the scheme (Pw) through some numerical experiments. We recall that the goal of
designing this scheme is to show that, since Inf-sup inequality (Def. I.6.1) in the simplest case of
conformal square meshes has been proven to be valid up to an unstable mode for the pressure,
we can avoid this inconvenient by imposing boundary conditions in a "weak sense", instead of
stabilizing the equation of conservation of mass.
The computational domain is Ω = [0, 1]2. The configuration of the boundaries is illustrated in Fig.
II.7.
As in Sections II.4, II.5.2, we give the expression of the exact solution (u,p), from which we deduce
the source term f, the Dirichlet boundary condition g and the Neumann boundary condition Φ
for which (u,p) is solution of (II.1). We will compare the L2-norm of the error obtained with
the DDFV scheme for the velocity (denoted Ervel), the velocity gradient (Ergradvel) and the
pressure (Erpre). On the two Tables III.1, II.4 we give the number of primal cells (NbCell) and
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ΓD ΓN

ΓD

ΓD

Fig. II.7 Ω = [0, 1]2, Dirichlet boundary conditions on ΓD , Neumann boundary conditions on ΓN .

the convergence rates (Ratio).
We remark that, to discuss the error estimates, a family of meshes is obtained by refining succes-
sively and uniformly the original mesh.
In Tables II.15, II.17 we show the results for the solution of Green-Taylor vortices (II.26); in Tables
II.16,II.18 we show the results for the polynomial solutions (II.27).

In Tables II.15,II.16 we show how on a cartesian mesh we obtain super convergence in L2 norm of
the velocity and the expected order 1 for the H1 norm of the velocity and for the L2 norm of the
pressure.

Table II.15 Green-Taylor vortices on a cartesian mesh with weak boundary conditions.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio

12 2.980E-01 - 4.242E-01 - 3.429E+00 -
32 9.168E-02 1.70 1.361E-01 1.640 1.789E+00 0.93
96 2.567E-02 1.83 5.273E-02 1.36 7.571E-01 1.24
320 7.050E-03 1.86 2.320E-02 1.18 3.546E-01 1.09
1152 1.915E-03 1.88 1.094E-02 1.08 1.733E-01 1.03

Table II.16 Polynomial solutions on a cartesian mesh with weak boundary conditions.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio

12 1.122E+00 - 1.456E+00 - 3.771E+01 -
32 2.396E-01 2.22 3.632E-01 2.00 1.243E+01 1.60
96 6.708E-02 1.83 1.320E-01 1.46 5.541E+00 1.16
320 1.899E-02 1.82 5.312E-02 1.31 2.578E+00 1.10
1152 5.265E-03 1.85 2.283E-02 1.22 1.262E+00 1.03

In Tables II.17,II.18, we numerically tested the scheme on the non conformal square mesh of
Fig. II.5 and we obtained the same results as for the cartesian case.
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Table II.17 Green-Taylor vortices on the left quadrangular mesh of Fig. II.5 with weak boundary
conditions.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio

64 5.851E-02 - 1.211E-01 - 1.746E+00 -
208 1.680E-02 1.80 5.576E-02 1.11 8.070E-01 1.11
736 4.707E-03 1.83 2.704E-02 1.04 3.901E-01 1.05
2752 1.300E-03 1.85 1.336E-02 1.01 1.925E-01 1.02
10624 3.548E-04 1.87 6.651E-03 1.00 9.572E-02 1.00

Table II.18 Polynomial solutions on the left quadrangular mesh of Fig. II.5 with weak boundary
conditions.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio

64 1.851E-01 - 2.829E-01 - 1.234E+01 -
208 5.208E-02 1.82 1.227E-01 1.20 6.087E+00 1.01
736 1.430E-02 1.86 5.592E-02 1.13 3.006E+00 1.01
2752 3.907E-03 1.87 2.645E-02 1.08 1.496E+00 1.00
10624 1.061E-03 1.88 1.282E-02 1.04 7.473E-01 1.00

Conclusions

In this chapter, we first presented a stabilized DDFV scheme (Pβµ) for the Stokes problem with
mixed Dirichlet/Neumann boundary conditions and we proved its wellposedness on general meshes.
We obtained an error estimate in the L2 norm of order 1 for the velocity, its gradient and the
pressure. Numerically, we observed a super convergence in the L2 norm of the velocity and the
expected convergences for the gradient of the velocity and for the pressure; moreover, we remarked
that the order of convergence is not influenced by the presence of the parameters of stabilization.
Second, we extended the results to the divergence form of Stokes problem, by obtaining the scheme
(D); we proved that the same results proven for (Pβµ) are valid for (D), thanks to the results
of Sec. I.8 (such as Korn inequality) and we numerically tested the scheme. At last, we wrote a
non-stabilized DDFV scheme for for the Stokes problem, with "weak" boundary conditions. We
proved its well-posedness in the case of conformal triangle meshes, conformal and non-conformal
square meshes and we tested numerically the convergence, that turns out to have the same rates
as the previous cases.
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Most of the content of this chapter appeared in [GKL19].

The problem we are interested in is the computation of a flow whose velocity is prescribed
at one part of the boundary and it flows freely on the other one. In this framework, we are often
required to truncate the physical domain to obtain a reduced computational domain, either because
we want to save computational ressources or because the physical domain is unbounded. We
illustrate this setting in Fig. III.1.

physical domain

computational domain

Γ1 Γ2

Γ1

Γ1

in
flo

w

Fig. III.1 Domain and notations.
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The aim of this chapter is to design and analyze a finite volume approximation of the 2D unsteady
incompressible Navier-Stokes problem:

∂tu + (u · ∇)u − div(σ(u,p)) = 0; in ΩT = Ω × [0, T ]
div(u) = 0 in ΩT ,

u = g1 on Γ1 × (0, T ),

σ(u,p) n⃗ + 1
2(u · n⃗)−(u − uref ) = σref n⃗ on Γ2 × (0, T ),

u(0) = uinit in Ω

(III.1)

with 0 < T < ∞, Ω an open connected bounded polygonal domain of R2, whose boundary is
∂Ω = Γ1 ∪ Γ2 and whose outward unit normal is n⃗, uinit ∈ (L∞(Ω))2, g1 ∈ (H 1

2 (Γ1,T ))2 and where
u : ΩT → R2 is the velocity, p : ΩT → R is the pressure and σ(u,p) = 2

ReDu − pId is the stress
tensor, with Re > 0. In particular, the strain rate tensor is defined by the symmetric part of the
velocity gradient Du = 1

2(∇u + t∇u).

On the physical part of the boundary Γ1 we impose Dirichlet boundary conditions. On the
"non-physical" part, Γ2, we impose the artificial boundary condition

σ(u,p) n⃗ + 1
2(u · n⃗)−(u − uref ) = σref n⃗ (III.2)

that was first introduced in [BF94] and then further studied in [BF96] and [BF12]. We use the
notation (a)− = − min(a, 0). In order to build it, we need to choose some reference flow uref , which
is any uref ∈ (H1(Ω))2 such that uref = g1 on Γ1, chosen so as to be a reasonable approximation
of the expected flow near Γ2, and a reference stress tensor σref such that σref n⃗ ∈ (H− 1

2 (Ω))2.
This nonlinear condition is physically meaningful: if the flow is outward, we impose the constraint
coming from the selected reference flow; if it is inward, we need to control the increase of energy,
so we add a term that is quadratic with respect to velocity. Other techniques to model artificial
boundaries have been studied during the years. For instance, in [HS89] an artificial boundary
condition is designed for the Navier-Stokes equations under the hypothesis of small viscosity. The
method consists into the approximation of the transparent boundary conditions, since they are
non-local. The technique was then generalized to parabolic perturbations of hyperbolic systems
in [Hal91] and to compressible flows in [Tou97]. We choose to work with the condition (III.2)
of [BF94] since it is defined locally and it does not add hypothesis on the viscosity. It has
been derived by a particular weak formulation of Navier-Stokes equation that ensures an energy
estimate: we would like to reproduce the same property at a discrete level with the DDFV formalism.

The analysis of problem (III.1) is done in [BF96] and [BF07] from the continuous point of view
and simulations are performed in [BF94] by the use of Finite Differences schemes in the case of
Cartesian meshes. Within the framework of DDFV methods, we are able to reproduce those
simulations by extending to the case of general meshes and we also offer a complete analysis of the
discrete problem, perspective that was never addressed in the literature.

Outline. This chapter is organized as follows. In Section III.1 we show how approximate the
nonlinear convection term. In Section III.2, we introduce the DDFV scheme for the Navier-Stokes
problem (III.1) and we prove its well-posedness in Section III.3 (see Theorem (III.3.1)). In Section
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III.4 we show an estimate of the convection term. In Section III.5, we prove a discrete energy
estimate. Finally, in Section III.6, theoretical results are illustrated with numerical simulations.

III.1 Approximation of the nonlinear convection term

As in [Kre10, Kre11b], we construct a bilinear form bT(uT,vT) as an approximation of
∫

Ω
(u · ∇)v.

The form introduced in [Kre10, Kre11b] is built in order to take into account homogeneous Dirichlet
boundary conditions, so we need to modify it in order to handle the outflow condition (III.2).

To obtain the approximation of the convection term, we need to integrate the equation over
the primal and dual mesh; we approximate

∫
K
(u · ∇)v when K ∈ M with mK bK(uT,vT).

We remark that for u and v smooth functions:∫
K
(u · ∇)v =

∑
Dσ,σ∗ ∈DK

∫
σ
(u · n⃗σK)v, ∀K ∈ M.

Such as for the Dirichlet case [Kre11b], we look for an approximation of the fluxes:
∫

σ
(u · n⃗σK) 

FσK(uT). For the interior edges σ ∈ Eint, we obtain them by calculating the fluxes on the sides s of
diamonds (see Fig. III.2). In fact, we remark that by integrating the solenoidal constraint on the
semi-diamond DK of vertices xK, xK∗ , xL∗ we have:

0 =
∫

DK
div(uT)dx =

∫
σ

uT · n⃗σK +
∑

s∈GK∩ED

∫
s
uT · n⃗sDds.

The integral
∫
s
uT · n⃗sDds is approximated by Gs,D = ms

uK + uK∗

2 · n⃗sD, for s = [xK, xK∗ ] = D|D′, s ∈ ED.
Remark that those fluxes on the sides s of diamonds are the same that we obtain by integrating
the solenoidal constraint on each diamond D ∈ D:∫

D
div(uT)dx =

∑
s∈∂D

∫
s
uT · n⃗sDds,

that at a discrete level is written as:

mDdivD(uT) =
∑

s=D|D′∈ED

Gs,D. (III.3)

Remark III.1.1 If D ∈ Dext (see Fig. III.2), mDdivD(uT) can be rewritten as:

mDdivD(uT) =
∑

s=D|D′∈ED

Gs,D +mσγ
σ(uT) · n⃗σK.

For what concerns the boundary edges σ ∈ ∂Ω, we replace u by its trace γσ(uT). So we impose:

FσK(uT) =


−

∑
s∈SK∩ED

Gs,D(uT) if σ ∈ Eint

mσγ
σ(uT) · n⃗σK if σ ∈ ∂Ω

(III.4)
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and with an equivalent argument, we define for the dual edges:

Fσ∗K∗(uT) =


−

∑
s∈SK∗ ∩ED

Gs,D(uT) if K∗ ∈ M∗ ∪ ∂M∗, σ∗ ∩ ∂Ω = ∅,

−Gs,D(uT) − 1
2FσK(uT) if K∗ ∈ ∂M∗, σ∗ ∩ ∂Ω ̸= ∅, i.e. Dσ,σ∗ ∈ Dext

K∗ .

(III.5)

As illustrated in the right of Fig. III.2, for K∗ ∈ ∂M∗ such that σ∗ ∩ ∂Ω ̸= ∅, σ corresponds to the
boundary edge [xK∗ , xL∗ ] in the diamond Dσ,σ∗ .

⊗

⊗

�

�
xL∗

xK∗

xL

xK

s = [xK, xK∗ ]

n⃗σK

n⃗sD

σ∗ =K∗|L∗

σ=K|L

⊗
⊗

�

�
xL∗

xK∗

xL

xK

s = [xK, xK∗ ]

n⃗σK
n⃗sD

σ∗ =K∗|L∗

σ=K|L

Fig. III.2 Left: A diamond D = Dσ,σ∗ with σ ⊂ Eint. Right: A diamond D = Dσ,σ∗ with σ ∈ ∂Ω.

Remark that thanks to the solenoidal constraint divD(uT) = 0 we have conservativity of the fluxes
FσK and Fσ∗K∗ :

FσK(uT) = −FσL(uT), ∀σ = K|L
Fσ∗K∗(uT) = −Fσ∗L∗(uT), ∀σ∗ = K∗|L∗.

(III.6)

Unlike in [Kre10, Kre11b], we do not stabilize the solenoidal constraint thus we do not need to
add a stabilization term in the flux Gs,D; in fact, you can remark the link between the solenoidal
constraint and Gs,D in (III.3).
We define the bilinear form on the primal mesh as:

mKbK(uT,vT) =
∑

Dσ,σ∗ ∈Dint
K

FσK(uT)v+
σ +

∑
Dσ,σ∗ ∈Dext

K

FσK(uT)γσ(vT) ∀K ∈ M

where
v+

σ =
{ vK if FσK ≥ 0

vL otherwise ∀σ ∈ Eint,

and on the dual mesh as:

mK∗bK∗(uT,vT) =
∑

Dσ,σ∗ ∈DK∗

Fσ∗K∗(uT)v+
σ∗ ∀K∗ ∈ M∗

mK∗bK∗(uT,vT) =
∑

Dσ,σ∗ ∈DK∗

Fσ∗K∗(uT)v+
σ∗ + 1

2
∑

Dσ,σ∗ ∈Dext
K∗

FσK(uT)γσ(vT) ∀K∗ ∈ ∂M∗

where
v+

σ∗ =
{ vK∗ if Fσ∗K∗ ≥ 0

vL∗ otherwise ∀σ∗ ∈ E∗.
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We choose to do upwinding on the interior diamonds because we started from the analysis done
in [Kre10] and [Kre11b]. In the case of Dirichlet boundary conditions in [Kre10, Kre11b], it is
necessary to upwind in order to get well-posedness of the scheme and an energy estimate, since
it is the key to prove an inequality of the type [[bT(uT,vT),vT]]T ≥ 0. In our case, in the weak
formulation the convection term is skew-symmetrized, and we will see that upwind and centered
discretizations lead to the same scheme, see Remark III.2.2.
Proposition III.1.2 Let T be a DDFV mesh associated to Ω. For all (uT, pD) ∈

(
R2)T × RD, we

have: ∑
Dσ,σ∗ ∈DK

FσK(uT) = 0 ∀K ∈ M

∑
Dσ,σ∗ ∈DK∗

Fσ∗K∗(uT) = 0 ∀K∗ ∈ M∗

∑
Dσ,σ∗ ∈DK∗

Fσ∗K∗(uT) = −
∑

D∈Dext
K∗

1
2mσFσK ∀K∗ ∈ ∂M∗

Proof For K ∈ M, we distinguish two cases, depending on Def. (III.4).
• If K ∩ ∂Ω = ∅, that means that ∀Dσ,σ∗ ∈ DK σ ∈ Eint, by reorganizing the sum on the sides s ∈ GK

belonging to the primal cell K, we obtain:

−
∑

Dσ,σ∗ ∈DK

∑
s∈GK∩ED

ms
uK + uK∗

2 · n⃗sD = −
∑
s∈GK

ms
uK + uK∗

2 · (n⃗sD + n⃗sD′) = 0 (III.7)

since n⃗sD = −n⃗sD′ , where D and D′ denote the two neighbor diamonds which share the edge s, of
vertices xK, xK∗ .
•If K ∩ ∂Ω ̸= ∅, we remark that, thanks to Rem. III.1.1 and since divD(uT) = 0, for Dσ,σ∗ ∈ Dext

K we
have:

mσγ
σ(uT) · n⃗σK =

∑
s∈SK∩ED

Gs,D.

So we get: ∑
Dσ,σ∗ ∈DK

FσK(uT) = −
∑

Dσ,σ∗ ∈DK

∑
s∈GK∩ED

ms
uK + uK∗

2 · n⃗sD = 0

where we applied (III.7). We deduce that
∑

Dσ,σ∗ ∈DK

FσK(uT) = 0 for all K ∈ M.

The proof is similar for
∑

Dσ,σ∗ ∈DK∗

Fσ∗K∗(uT) = 0 if K∗ ∈ M∗.

We now focus on the case in which K∗ ∈ ∂M∗; by Def. (III.5) of Fσ∗K∗(uT):

−
∑

Dσ,σ∗ ∈DK∗

∑
s∈GK∗ ∩ED

ms
uK + uK∗

2 · n⃗sD −
∑

Dσ,σ∗ ∈Dext
K∗

1
2FσK(uT) = 0 −

∑
Dσ,σ∗ ∈Dext

K∗

1
2FσK(uT).

where the first sum is zero thanks to a similar argument to (III.7).
We deduce that

∑
Dσ,σ∗ ∈DK∗

Fσ∗K∗(uT) = −
∑

Dσ,σ∗ ∈Dext
K∗

1
2FσK(uT) for all K∗ ∈ ∂M∗.

III.2 DDFV scheme

Let N ∈ N∗. We note δt = T
N and tn = nδt for n ∈ {0, . . . , N}. To obtain the DDFV scheme,

we choose to use an implicit Euler time discretization, except for the nonlinear term, which is
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linearized by using a semi-implicit approximation.
We look for uT,[0,T ] = (un)n∈{0,...N} ∈

(
EΓ1g1

)N+1 and pD,[0,T ] = (pn)n∈{0,...N}∈ (RD)N+1 , that we
initialize with:

u0 = PT
c u0 ∈ EΓ1

g1
(III.8)

where PT
c is the centered projection defined in (I.2). We would like to write the system (III.1) in

our setting.

For what concerns the momentum equation, we start by finding the discrete equivalent of
the variational formulation of the problem. For the continuous problem, as presented in [BF12],
the velocity u satisfies:
∫

Ω
∂tu · Ψ + 2

Re

∫
Ω

D(u) : D(Ψ) + 1
2

∫
Ω

(u · ∇)u · Ψ − 1
2

∫
Ω

(u · ∇)Ψ · u

= −1
2

∫
Γ2

(u · n⃗)+(u · Ψ) + 1
2

∫
Γ2

(u · n⃗)−(uref · Ψ) +
∫

Γ2
(σref n⃗) · Ψ, (III.9)

where Ψ is a test function in the space

V = {Ψ ∈ (H1(Ω))2, Ψ|Γ1 = 0, div(Ψ) = 0}.

This weak formulation (III.9) can be rewritten in the DDFV framework (with the operators
introduced in section I.1) as:

[[u
n+1 − un

δt
,ΨT]]T + 2

Re(DDun+1 : DDΨT)D

+ 1
2[[bT(un,un+1),ΨT]]T − 1

2[[bT(un,ΨT),un+1]]T

= −1
2

∑
D∈Dext∩Γ2

(FσK(un))+ γσ(un+1) · γσ(ΨT)

+ 1
2

∑
D∈Dext∩Γ2

(FσK(un))−γσ(uref ) · γσ(ΨT)

+
∑

D∈Dext∩Γ2

mσ(σD
refn⃗σK) · γσ(ΨT), (III.10)

where ΨT ∈ (R2)T is a test function in the discrete space that satisfies similar properties compared
to the continuous test function Ψ:

ΨT ∈ EΓD
0 , divD(ΨT) = 0. (III.11)

To simplify the computations, even though it is not necessary, as in the continuous case (see [BF12]),
the reference flow (uT

ref ,pD
ref ) ∈ EΓ1g1

× RD is supposed to be a solution of the under-determined
steady Stokes problem: 

−divM
( 2

ReDD(uT
ref ) − pD

ref Id
)

= 0,

−divM∗∪M∗
2

( 2
ReDD(uT

ref ) − pD
ref Id

)
= 0,

divD(uT
ref ) = 0.

(III.12)
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We also need to define a reference stress tensor σD
ref on the outflow part of the boundary; we choose:

σD
refn⃗σK = σD(uT

ref ,pD
ref )n⃗σK ∀σ ∈ ∂M2 (III.13)

where the discrete stress tensor is defined by σD(uT
ref , pD

ref ) = 2
ReDD(uT

ref ) − pD
ref Id.

From this formulation, we design our DDFV scheme. We project (III.10) on the mesh. For
instance, to obtain the equation on the primal mesh, that is ∀K ∈ M, we consider a primal cell
K0 ∈ M and we build ΨT such that ΨK0 = 1, ΨK′ = 0 for all K′ ∈ M, K′ ≠ K0 and ΨM∗∪∂M∗ = 0; we
then replace ΨT in (III.10). We proceed in the same way for the dual mesh M∗ ∪ ∂M∗

2 and the
boundary mesh ∂M2. The solenoidal constraint is projected on the diamond mesh D.

Remark III.2.1 When projecting (III.10) on the boundary dual mesh, i.e. when considering ΨT

such that for a K∗
0 ∈ ∂M∗

2, ΨK∗
0

= 1, ΨK∗′ = 0 for all K∗′ ∈ M, K∗′ ̸= K∗
0 and ΨM∪∂M = 0, remark

that the term −1
2[[bT(un,ΨT),un+1]]T = −1

2
∑
K∈M

bK(un,ΨT)un+1
K − 1

2
∑

K∗∈M∗∪∂M∗

bK∗(un,ΨT)un+1
K∗

has also contributions that comes from the trace term γσ(ΨT) in bK(un,ΨT), which then cancel by
replacing terms coming from (N3). This is why the equations for K∗ ∈ M∗ and K∗ ∈ ∂M∗

2 can be
written in the compact form (N2).

The resulting DDFV is the following:

• For all K ∈ M:

mK
un+1

K − un
K

δt
−mKdivK(σD(un+1,pn+1)) + 1

2mKbK(un,un+1)

− 1
2
∑

D∈Dint
K

(
F+

σK(un)un+1
K − F−

σL(un)un+1
L

)
= 0; (N1)

• For all K∗ ∈ M∗ ∪ ∂M∗
2:

mK∗
un+1

K∗ − un
K∗

δt
−mK∗divK∗(σD(un+1,pn+1)) + 1

2mK∗bK∗(un,un+1)

− 1
2
∑

D∈DK∗

(
F+

σ∗K∗(un)un+1
K∗ − F−

σ∗L∗(un)un+1
L∗

)
= 0; (N2)

• For all Dσ,σ∗ ∈ Dext ∩ Γ2:

mσσ
D(un+1,pn+1))n⃗σL − 1

4FσL(un) (un+1
K − un+1

L )

= −1
2(FσL(un))−(γσ(un+1) − γσ(uref )

)
+mσ(σD

ref · n⃗σK); (N3)

• For all D ∈ D:

divD(un+1) = 0. (N4)
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Remark III.2.2 If we consider the definition of bK(uT,vT) on the interior diamonds Dint
K , we

remark that it can be written as a centered discretization plus a diffusion term:

mKbK(uT,vT) =
∑

Dσ,σ∗ ∈Dint
K

(
FσK(uT)

(vK + vL

2

)
+BσK(vK − vL)

)
+

∑
Dσ,σ∗ ∈Dext

K

FσK(uT)γσ(vT),

where BσK is defined by a function B of FσK(uT). In particular, this formulation allows to generalize
the results: if BσK = 0 we get a centered approximation, if BσK = 1

2 |FσK(uT)| it is an upwind scheme
(this kind of generalization will be useful in Chap. IV).

If we consider (III.10) and we project it on K ∈ M with this new definition of convection, we get:

mK
un+1

K − un
K

δt
−mKdivK(σD(un+1, pn+1)) + 1

2
∑

D∈Dint
K

FσK(un) un+1
L

2

+ 1
2
∑

D∈Dint
K

(BσL(un) −BσK(un))un+1
L + 1

2
∑

D∈Dext
K

FσK(un)
(
γσ(un+1)

)
= 0.

Since ∀K ∈ M, ∑D∈DK
FσK = 0 by Prop. III.1.2, we can add the term 1

4un+1
K

∑
D∈DK

FσK to the last
expression and find:

mK
un+1

K − un
K

δt
−mKdivK(σD(un+1, pn+1)) + 1

2
∑

D∈Dint
K

FσK(un) un+1
K + un+1

L

2

+ 1
2
∑

D∈Dint
K

(BσL(un) −BσK(un))un+1
L + 1

2
∑

D∈Dext
K

FσK(un)
(1

2un+1
K + γσ(un+1)

)
︸ ︷︷ ︸

=trace term on D

= 0. (III.14)

We observe that for both the centered and the upwind schemes, we have BσL = BσK, and the schemes
are thus equivalent to a centered discretization on the interior cells. This property is due to the
skew-symmetrization of the convection term.

For a dual cell K∗ ∈ ∂M∗
2, the equation is similar to (III.14), except for the "trace term on

D", that becomes 1
2un+1

K∗ + γσ(un+1). For an interior dual cell K∗ ∈ M∗, this trace term is zero.

III.3 Well-posedness

We now prove the existence and uniqueness of the solution of our DDFV scheme.
The well-posedness result relies on a uniform discrete Inf-sup condition. We could have add a
stabilization term to the equation of conservation of mass to generalize the result to general meshes,
as done in [Kre11a, GKL17] for Stokes and in [Kre11b] for Navier-Stokes, but since our proof for
Korn’s inequality (that is crucial to prove the energy estimate) requires the hypothesis of Inf-sup
stability, we decided not to stabilize the equation. This hypothesis does not add a lot of restriction
on the choice of the mesh; see Sec. I.6 for more details.

III.3.1 Existence and uniqueness

Theorem III.3.1 (Well-posedness) Let T be a DDFV mesh associated to Ω that satisfies the
Inf-sup stability condition. The scheme (III.8), (N1)-(N4) has a unique solution (uT,[0,T ], pD,[0,T ]) ∈(
EΓ1g1

)N+1 × (RD)N+1.
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Proof The scheme issued from the equations (N1)-(N4) is a linear system Av = b with A square
matrix at each time step. We want to show that A is injective, thus we study the kernel of the
matrix. Let v = (un+1, pn+1) ∈ EΓ1g1

× RD be in ker(A): we then obtain the system Av = 0. If we
multiply this relation by a test function ΨT that satisfies (III.18), this is equivalent to consider the
discrete variational formulation (III.10) in the form:

1
δt

[[un+1,ΨT]]T + 2
Re(DDun+1,DDΨT)D

+ 1
2[[bT(un,un+1),ΨT]]T − 1

2[[bT(un,ΨT),un+1]]T

= −1
2

∑
D∈Dext∩Γ2

(FσK(un))+ γσ(un+1) · γσ(ΨT).

The choice ΨT = un+1 leads to:

1
δt

||un+1||22 + 2
Re ||DDun+1||22 + 1

2
∑

D∈Dext

(FσK(un))+∣∣γσ(un+1)
∣∣2

︸ ︷︷ ︸
≥0

= 0,

that implies
1
δt

||un+1||22 + 2
Re ||DDun+1||22 ≤ 0,

from which we deduce that un+1 = 0.
To conclude the proof, we need to show that pn+1 is equal to zero too. Since un+1 = 0, the
momentum equation and the outflow boundary condition become:

divK
(
pn+1Id

)
= 0 ∀K ∈ M

divK∗ (pn+1Id
)

= 0 ∀K∗ ∈ M∗ ∪ ∂M∗
2

(pn+1Id)n⃗σK = 0 ∀Dσ,σ∗ ∈ Dext ∩ Γ2.

(III.15)

For every vn+1 ∈ EΓD
0 , thanks to Green’s formula (Thm. I.5.1), we can write:(

divD(vn+1), pn+1
)
D

= −
[[

vn+1,divT(pn+1Id)
]]

T
+

∑
Dσ,σ∗ ∈Dext

mσγ
σ(vn+1) ·

(
pn+1Id

)
n⃗σK.

(III.16)
By definition of the scalar products (see Sec. I.4), by (III.15) and by the fact that vn+1 ∈ EΓD

0 , we
get that

[[
vn+1,divT(pn+1Id)

]]
T

= 0 and
∑

Dσ,σ∗ ∈Dext

mσγ
σ(vn+1) ·

(
pn+1Id

)
n⃗σK = 0. Thus (III.16)

becomes: (
divD(vn+1),pn+1

)
D

= 0. (III.17)

We now go back to inequality (I.30) ensured by Inf-sup stability: since (III.17) holds for any
vn+1 ∈ EΓD

0 , the supremum in the right hand side of (I.30) vanishes and we can deduce that pn+1

is constant. Then, the condition (N3) on ∂MO implies that pn+1 = 0 on the boundary, since
we recall that mσσ

D(un+1,pn+1))n⃗σL = mσ

( 2
ReDD(un+1) − pn+1Id

)
n⃗σL, that uT

ref = σDref = 0
because we are studying ker(A) and that un+1 = 0.
Thus, by putting together the fact that pn+1 is constant and it is zero on the boundary, we have
pn+1 = 0 in all the domain.
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Remark III.3.2 Supposing Inf-sup condition is not that restrictive; just in the case of Cartesian
meshes the stability is proved up to a checkerboard mode for the pressure, but thanks to the boundary
conditions that we impose even in this case we can deduce that pn+1 = 0. Moreover, lots of
numerical tests have been done and it still has not been found another mesh that does not satisfy
the condition, see [BKN15].

III.4 Property of the convection term

We need to prove the following estimate in order to establish a discrete energy estimate:

Proposition III.4.1 Let T be a DDFV mesh associated to Ω. For all (uT,vT,wT) ∈ EΓ1g1
×EΓ1g1

×
EΓ1g1

, there exists a constant C > 0 that depends only on Ω and reg(T) such that:

[[bT(uT,vT),wT]]T ≤C
(
∥uT∥3 + ∥γT(uT)∥3,∂Ω

)
∥vT∥6∥∇DwT∥2

+ C ∥γT(uT)∥ 8
3 ,∂Ω∥γT(vT)∥ 8

3 ,∂Ω∥γ̃T(wT)∥4,∂Ω.

Proof By the definition of the scalar product [[·, ·]]T and of the convection term:

[[bT(uT,vT),wT]]T = 1
2

∑
K∈M

mKwK · bK(uT,vT) +
∑

K∗∈M∗∪∂M∗

mK∗wK∗ · bK∗(uT,vT)


= 1

2

(∑
K∈M

wK ·
( ∑
Dσ,σ∗ ∈Dint

K

FσK(uT)v+
σ +

∑
Dσ,σ∗ ∈Dext

K

FσK(uT)γσ(vT)
)

+
∑

K∗∈M∗∪∂M∗

wK∗ ·
( ∑
Dσ,σ∗ ∈DK∗

Fσ∗K∗(uT)v+
σ∗ +

∑
Dσ,σ∗ ∈Dext

K∗

FσK(uT)γ
σ(vT)

2

))
.

If we reorganize the sum over diamonds, since the fluxes are conservative (see (IV.6)), we get:

[[bT(uT,vT),wT]]T = 1
2

( ∑
Dσ,σ∗ ∈Dint

FσK(uT)v+
σ · (wK − wL)

+ 2
∑

Dσ,σ∗ ∈Dext

FσK(uT)γσ(vT) · γ̃σ(wT) +
∑

Dσ,σ∗ ∈D

Fσ∗K∗(uT)v+
σ∗ · (wK∗ − wL∗)

)

:= 1
2(T1 + 2T2 + T3).

Estimate of T1:

By the definition of v+
σ , we have:

|T1| =
∣∣∣∣ ∑

Dσ,σ∗ ∈Dint

FσK(uT)v+
σ · (wK − wL)

∣∣∣∣
=
∣∣∣∣ ∑

Dσ,σ∗ ∈Dint

(
F+

σK(uT) vK − F−
σK(uT) vL

)
· (wK − wL)

∣∣∣∣
≤

∑
Dσ,σ∗ ∈Dint

∣∣FσK(uT)
∣∣|vK + vL||wK − wL|.
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If we look at the flux FσK(uT), we remark that ∀D ∈ Dint
K :

|FσK(uT)| =
∣∣∣∣− ∑

s∈SK∩ED

ms
uK + uK∗

2 · n⃗sD

∣∣∣∣ ≤ Cmσ

∑
s∈SK∩ED

∣∣∣∣uK + uK∗

2

∣∣∣∣,
where C depends on reg(T) (see (I.1)). We use this result in the estimate of T1 to obtain:

|T1| ≤ C
∑

Dσ,σ∗ ∈Dint

mσmσ∗ |vK + vL|
∣∣∣∣wK − wL

mσ∗

∣∣∣∣ ∑
s∈SK∩ED

∣∣∣∣uK + uK∗

2

∣∣∣∣.
We apply Hölder’s inequality with p = 6, q = 2, r = 3:

|T1| ≤ C

( ∑
Dσ,σ∗ ∈Dint

mσmσ∗ |vK + vL|6
)1/6( ∑

Dσ,σ∗ ∈Dint

mσmσ∗

∣∣∣∣wK − wL

mσ∗

∣∣∣∣2)1/2

( ∑
Dσ,σ∗ ∈Dint

mσmσ∗
∑

s∈SK∩ED

∣∣∣∣uK + uK∗

2

∣∣∣∣3)1/3
,

and thanks to the definition (I.3.1) of the gradient operator and (I.1), we can write:

|T1| ≤ C

( ∑
K∈M

mK|vK|6
)1/6(∑

Dσ,σ∗ ∈D

mD|∇DwT|2
)1/2

·
(1

2
∑
K∈M

mK|uK|3 + 1
2
∑

K∗∈M∗

mK∗ |uK∗ |3
)1/3

≤ C∥vT∥6 ∥∇DwT∥2 ∥uT∥3.

Estimate of T2:

For what concerns boundary terms, the definition of fluxes changes (see (III.4)). Thus T2 can be
estimated by:

|T2| =
∣∣∣∣ ∑

Dσ,σ∗ ∈Dext

FσK(uT)γσ(vT) · γ̃σ(wT)
∣∣∣∣ ≤

∑
Dσ,σ∗ ∈Dext

mσ|γσ(uT)||γσ(vT)||γ̃σ(wT)|.

By applying Hölder’s inequality with p = 8
3 , q = 8

3 , r = 4 we get

|T2| ≤
(∑

Dσ,σ∗ ∈Dext

mσ|γσ(uT)|8/3
)3/8(∑

Dσ,σ∗ ∈Dext

mσ|γσ(vT)|8/3
)3/8(∑

Dσ,σ∗ ∈Dext

mσ|γ̃σ(wT)|4
)1/4

≤ ∥γT(uT)∥ 8
3 ,∂Ω ∥γT(vT)∥ 8

3 ,∂Ω ∥γ̃T(wT)∥4,∂Ω.

Estimate of T3:

As we did for T1, by the definition of v+
σ∗ , we have:

|T3| ≤
∑

Dσ,σ∗ ∈D

∣∣Fσ∗K∗(uT)
∣∣|vK∗ + vL∗ ||wK∗ − wL∗ |.
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By the definition of the flux (see (III.5)), this term can be split into two contributions:

|T3| ≤
∑

Dσ,σ∗ ∈Dint

∣∣Fσ∗K∗(uT)
∣∣|vK∗ + vL∗ ||wK∗ − wL∗ |

+
∑

Dσ,σ∗ ∈Dext

∣∣Fσ∗K∗(uT)
∣∣|vK∗ + vL∗ ||wK∗ − wL∗ | = T1

3 + T2
3.

For what concerns the estimate of T1
3, the definition of the flux Fσ∗K∗(uT) is the same as the one of

FσK when σ ∈ Eint.
Thus we can proceed as for the estimate of T1 and we get:

T1
3 ≤ C ∥vT∥6 ∥∇DwT∥2 ∥uT∥3.

For the term T2
3, the definition of the flux changes and we can estimate it by:

|Fσ∗K∗(uT)| =
∣∣∣∣− ∑

s∈SK∩ED

ms
uK + uK∗

2 · n⃗sD − 1
2mσγ

σ(uT) · n⃗σK

∣∣∣∣
≤ Cmσ

( ∑
s∈SK∩ED

∣∣∣∣uK + uK∗

2

∣∣∣∣+ |γσ(uT)|
)
.

In this case, we can write:

|T2
3| ≤

∑
Dσ,σ∗ ∈Dext

m2
σ|vK∗ + vL∗ |

∣∣∣∣wK∗ − wL∗

mσ

∣∣∣∣( ∑
s∈SK∩ED

∣∣∣∣uK + uK∗

2

∣∣∣∣+ ∣∣γσ(uT)
∣∣).

We split the right hand side into two terms. The first one is estimated exactly as T1:

∑
Dσ,σ∗ ∈Dext

m2
σ|vK∗ + vL∗ |

∣∣∣∣wK∗ − wL∗

mσ

∣∣∣∣ ∑
s∈SK∩ED

∣∣∣∣uK + uK∗

2

∣∣∣∣ ≤ C ∥vT∥6 ∥∇DwT∥2 ∥uT∥3.

For the second one, we apply Hölder’s inequality with p = 6, q = 2, r = 3 and we obtain:

∑
Dσ,σ∗ ∈Dext

m2
σ|vK∗ + vL∗ |

∣∣∣∣wK∗ − wL∗

mσ

∣∣∣∣∣∣γσ(uT)
∣∣

≤ C

( ∑
Dσ,σ∗ ∈Dext

m2
σ|vK∗ + vL∗ |6

) 1
6
( ∑
Dσ,σ∗ ∈Dext

m2
σ

∣∣∣∣wK∗ − wL∗

mσ

∣∣∣∣2)
1
2
( ∑
Dσ,σ∗ ∈Dext

mσ|γσ(uT)|3
) 1

3

≤ C

( ∑
K∈M∗

mK∗ |vK∗ |6
) 1

6
(∑
Dσ,σ∗ ∈D

mD|∇DwT|2
) 1

2
( ∑
Dσ,σ∗ ∈Dext

mσ|γσ(uT)|3
) 1

3

≤ C∥vT∥6∥∇DwT∥2∥γT(uT)∥3,∂Ω.

By collecting the estimates we find the announced result:

T3 = T1
3 + T2

3 ≤ C ∥vT∥6 ∥∇DwT∥2 (∥uT∥3 + ∥γT(uT)∥3,∂Ω).
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III.5 Discrete energy estimate

The open boundary condition (III.2) that we study is derived from a weak formulation of the
Navier-Stokes equation that ensures an energy estimate, presented in [BF96]. In this section we
prove a discrete version of the energy estimate.
In order to do so, we will need to consider the variational formulation (III.10) and select the
solution as a test function. Since the solution uT,[0,T ] is not zero on the Dirichlet boundary Γ1, it
does not satisfy the hypothesis (III.18). We decompose it as uT,[0,T ] = vT,[0,T ] + uT

ref and, thanks
to the definition of uT

ref (see (III.12)) , vT,[0,T ] will be a good candidate to be our test function.

Theorem III.5.1 Let T be a DDFV mesh associated to Ω that satisfies Inf-sup stability condition.
Let (uT,[0,T ], pD,[0,T ]) ∈

(
EΓ1g1

)N+1 ×(RD)N+1 be the solution of the DDFV scheme (III.8), (N1)-(N4)
, where uT,[0,T ] = vT,[0,T ] + uT

ref .
For N > 1, there exists a constant C > 0, depending on Ω, reg(T),uT

ref ,u0,Re and T such that:

N−1∑
j=0

∥vj+1 − vj∥2
2 ≤ C, ∥vN ∥2

2 ≤ C,

N−1∑
j=0

δt
1

Re∥DDvj+1∥2
2 ≤ C, δt

1
Re∥DDvN ∥2

2 ≤ C,

N−1∑
j=0

δt
∑

D∈Dext

(FσK(vj + uT
ref ))+

∣∣∣γσ(vj+1)
∣∣∣2 ≤ C.

Proof The first step to obtain the energy inequality consists in rewriting the variational formulation
(III.10) for the unknown vn+1 = un+1 − uT

ref . Let ΨT ∈ (R2)T be a test function such that

ΨT ∈ EΓD
0 , divD(ΨT) = 0. (III.18)

We recall that (uT
ref ,pD

ref ) is a solution of the steady Stokes problem (III.12), so in particular

0 = −
[[

divT

( 2
ReDD(uT

ref ) − pD
ref Id

)
,ΨT

]]
T

;

by Green formula (Thm. I.5.1) we have:

0 = −
[[

divT

( 2
ReDD(uT

ref ) − pD
ref Id

)
,ΨT

]]
T

= 2
Re(DDuT

ref ,DDΨT)D −
∑

D∈Dext∩Γ2

mσ(σD(uT
ref , pD

ref )n⃗σK) · γσ(ΨT).

Then, since σDref is given by (III.13), the following holds:

0 = 2
Re(DDuT

ref ,DDΨT)D −
∑

D∈Dext∩Γ2

mσ(σD
refn⃗σK) · γσ(ΨT).
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This implies that (III.10), for the unknown vn+1 = un+1 − uT
ref , becomes:

[[v
n+1 − vn

δt
,ΨT]]T + 2

Re(DDvn+1,DDΨT)D

+ 1
2[[bT(vn + uT

ref ,vn+1 + uT
ref ),ΨT]]T − 1

2[[bT(vn + uT
ref ,ΨT),vn+1 + uT

ref ]]T

+ 1
2
∑

D∈Dext

(FσK(vn + uT
ref ))+γσ(vn+1 + uT

ref ) · γσ(ΨT)

= −1
2
∑

D∈Dext

FσK(vn + uT
ref )−γσ(uT

ref ) · γσ(ΨT).

The second step consists in selecting ΨT = (vn+1 + uT
ref ) − uT

ref as a test function. If we define:

E := [[v
n+1 − vn

δt
,vn+1]]T + 2

Re∥DDvn+1∥2
2 + 1

2
∑

D∈Dext

(FσK(vn + uT
ref ))+

∣∣∣γσ(vn+1)
∣∣∣2 ,

it follows that:

E ≤
∣∣∣∣12[[bT(vn + uT

ref ,vn+1),uT
ref ]]T − 1

2[[bT(vn + uT
ref ,uT

ref ),vn+1]]T
∣∣∣∣

+
∣∣∣∣12 ∑

D∈Dext

FσK(vn + uT
ref )−γσ(uT

ref ) · γσ(vn+1)
∣∣∣∣.

We apply Proposition III.4.1 to the convection terms [[bT(vn + uT
ref ,vn+1),uT

ref ]]T and [[bT(vn +
uT

ref ,uT
ref ),vn+1]]T; for what concerns the boundary term, thanks to the definition of FσK for

σ ∈ ∂Ω, we have:∣∣∣∣ ∑
Dσ,σ∗ ∈Dext

FσKγ
σ(uT

ref ) · γσ(vn+1)
∣∣∣∣ ≤

∑
Dσ,σ∗ ∈Dext

mσ|γσ(vn + uT
ref )||γσ(uT

ref )||γσ(vn+1)|

and by applying Hölder’s inequality with p = 8
3 , q = 8

3 , r = 4 we get:∣∣∣∣ ∑
Dσ,σ∗ ∈Dext

FσKγ
σ(uT

ref ) · γσ(vn+1)
∣∣∣∣ ≤ C∥γT(vn + uT

ref )∥ 8
3 ,∂Ω∥γT(vn+1)∥ 8

3 ,∂Ω∥γT(uT
ref )∥4,∂Ω.

Thus we are led to:

E ≤ C

(
∥vn + uT

ref ∥3 + ∥γT(vn + uT
ref )∥3,∂Ω

)
·
(

∥vn+1∥6 ∥∇DuT
ref ∥2 + ∥uT

ref ∥6 ∥∇Dvn+1∥2

)
+ C∥γT(vn + uT

ref )∥ 8
3 ,∂Ω∥γT(vn+1)∥ 8

3 ,∂Ω∥γT(uT
ref )∥4,∂Ω.

By Sobolev inequalities of [BCCHF15, Theorem 9], we bound ∥vn∥3 from above by
C∥∇Dvn∥

1
3
2 ∥vn∥

2
3
2 and ∥vn+1∥6 by C∥∇Dvn+1∥

2
3
2 ∥vn+1∥

1
3
2 . Moreover, thanks to the trace theorem

(Thm. I.9.2) and to [BCCHF15, Theorem 9], we dominate ∥γT(vn+1)∥ 8
3 ,∂Ω and ∥γT(vn)∥3,∂Ω by

C∥∇Dvn+1∥
5
8
2 ∥vn+1∥

3
8
2 and C∥∇Dvn∥

2
3
2 ∥vn∥

1
3
2 .
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We then apply the discrete Poincaré inequality, Theorem I.9.1, to get rid of the norms of vn+1.
Finally we recall that uT

ref is a fixed reference steady flow. Hence there exists a constant C > 0
that depends only on Ω, reg(T) and uT

ref such that:

E ≤ C

(
2∥∇Dvn∥

1
3
2 ∥vn∥

2
3
2 ∥∇Dvn+1∥2 + 2∥∇Dvn∥

2
3
2 ∥vn∥

1
3
2 ∥∇Dvn+1∥2

+ 5∥∇Dvn+1∥2 + ∥∇Dvn∥
5
8
2 ∥vn∥

3
8
2 ∥∇Dvn+1∥2

)
.

We control the norm of the gradients with the norms of DDvn+1 and DDvn thanks to Korn’s
inequality, Theorem I.8.2:

E ≤ C

(
2∥DDvn∥

1
3
2 ∥vn∥

2
3
2 ∥DDvn+1∥2 + 2∥DDvn∥

2
3
2 ∥vn∥

1
3
2 ∥DDvn+1∥2

+ 5∥DDvn+1∥2 + ∥DDvn∥
5
8
2 ∥vn∥

3
8
2 ∥DDvn+1∥2

)
.

Hence, by suitable use of Young’s inequality (Lemma I.11.1) we end up with:

[[v
n+1 − vn

δt
,vn+1]]T + 2

Re∥DDvn+1∥2
2 + 1

2
∑

D∈Dext

(FσK(vn + uT
ref ))+

∣∣∣γσ(vn+1)
∣∣∣2

≤ 16Re2C3∥vn∥2
2 + 1

2Re∥DDvn∥2
2 + 1

Re∥DDvn+1∥2
2 + 25

2 ReC2

We combine 1
Re∥DDvn+1∥2

2 with the left hand side, we multiply this relation by δt and we apply

2[[vn+1 − vn,vn+1]]T = ∥vn+1 − vn∥2
2 + ∥vn+1∥2

2 − ∥vn∥2
2.

We obtain:

∥vn+1 − vn∥2
2 + ∥vn+1∥2

2 + δt
2

Re∥DDvn+1∥2
2 + δt

∑
D∈Dext

(FσK(vn + uT
ref ))+

∣∣∣γσ(vn+1)
∣∣∣2

≤ ∥vn∥2
2 + 32Re2C3δt∥vn∥2

2 + 1
Reδt∥DDvn∥2

2 + 25ReC2δt.

We sum over n = 0 . . .m− 1 with m ∈ {1 . . . N} to obtain:

m−1∑
n=0

∥vn+1 − vn∥2
2 + ∥vm∥2

2 +
m−1∑
n=0

δt
1

Re∥DDvn+1∥2
2

+ δt
1

Re∥DDvm∥2
2 +

m−1∑
n=0

δt
∑

D∈Dext

(FσK(vn + uT
ref ))+∣∣γσ(vn+1)

∣∣2
≤ ∥v0∥2

2 + 1
Reδt∥DDv0∥2

2 + 25ReC2T + 32Re2C3δt
m−1∑
n=0

∥vn∥2
2. (III.19)

We can now apply Grönwall’s lemma (Lemma I.11.2), with:

a0 := ∥v0∥2
2 + 1

Reδt∥DDv0∥2
2
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am :=
m−1∑
j=0

∥vj+1 − vj∥2
2 + ∥vm∥2

2 +
m−1∑
j=0

δt
1

Re∥DDvj+1∥2
2

+ δt
1

Re∥DDvm∥2
2 +

m−1∑
j=0

δt
∑

D∈Dext

(FσK(vj + uT
ref ))+∣∣γσ(vj+1)

∣∣2
for m = {1 . . . N}. In fact, we deduce from (III.19) that

am ≤ a0 + 25ReC2T︸ ︷︷ ︸
:=A

+ 32Re2C3︸ ︷︷ ︸
:=B

δt
m−1∑
i=0

ai,

that implies:
max

m=1...N
am ≤ AeBT .

This proves our initial statement, since we can choose m = N and write:

N−1∑
j=0

∥vj+1 − vj∥2
2 + ∥vN ∥2

2 +
N−1∑
j=0

δt
1

Re∥DDvj+1∥2
2

+ δt
1

Re∥DDvN ∥2
2 +

N−1∑
j=0

δt
∑

D∈Dext

(FσK(vj + uT
ref )+∣∣γσ(vj+1)

∣∣2 ≤ C(T ).

III.6 Numerical results

We validate the scheme through a series of numerical experiments. First, we study numerically the
consistency properties of the scheme. Second, we reproduce the simulations of a flow in a channel
presented in [BF94] and [Joh04].

III.6.1 Convergence results

Test case 1. The computational domain is Ω = [0, 1]2, whose boundary is divided into ∂Ω = Γ1∪Γ2.
We impose Dirichlet boundary conditions on Γ1, composed by the two horizontal boundaries and
the left vertical one. The open boundary condition (III.2) is imposed on Γ2, the right vertical
boundary. We set the viscosity to 1.
For the tests we give the expression of the exact solution (u,p), from which we deduce a source
term f for the momentum equation and the Dirichlet boundary condition g1. As a reference
flow (uT

ref ,pD
ref ), we consider the projection of the exact solution on Γ2. We will compare the

L∞(L2)-norm of the error (difference between a centered projection of the exact solution and
the approximated solution obtained with DDFV scheme) for the velocity (denoted Ervel), the
L2(L2)-norm of the error for the velocity gradient (Ergradvel) and the pressure (Erpre). In
particular we denote:

Ergradvel =

(
N∑

n=0
δt∥∇D(PT

c u)n − ∇Dun∥2
2

)1/2

(
N∑

n=0
δt∥∇D (PT

c u)n ∥2
2

)1/2
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Erpre =

(
N∑

n=0
δt∥(PD

c p)n − pn∥2
2

)1/2

(
N∑

n=0
δt∥

(
PD

c p
)n

∥2
2

)1/2 , Ervel =
max

n=0...N
∥ (PT

c u)n − un∥2

max
n=1...N

∥ (PT
c u)n ∥2

,

where (PT
c u)n and (PD

c p)n are the centered projections of u and p at the time step tn = nδt.
On Table III.1 we give the number of primal cells (NbCell) and the convergence rates (Ratio). We
remark that, to discuss the error estimates, a family of meshes (Fig. III.3) is obtained by refining
successively and uniformly the original mesh. The exact solution is:

u(x, y) =
(

−2π cos(πx) sin(2πy) exp(−5ηtπ2),
π sin(πx) cos(2πy) exp(−5ηtπ2)

)
,

p(x, y) = −π2

4 (4 cos(2πx) + cos(4πy)) exp(−10tηπ2).

Fig. III.3 Non conformal square mesh.

The final time is T = 0.03 and we set δt = 3 × 10−5. As we can see in Table III.1, we observe
super convergence in L∞(L2) norm of the velocity, that is a classical result for Finite Volume
methods. For what concerns the gradient of the velocity and the pressure, we remark that the
non-conformity of the mesh does not influence the good convergence of the method. We get a first
order accuracy on the velocity gradient, and an order of 1.5 for the pressure, that is better than
what we expected.

Table III.1 Test case 1 on the non conformal square mesh Fig. III.3.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio

64 1.424E-01 - 1.612E-01 - 6.127E+00 -
208 4.095E-02 1.80 7.316E-02 1.14 1.725E+00 1.83
736 1.019E-02 2.00 3.489E-02 1.07 5.836E-01 1.56
2752 2.559E-03 1.99 1.710E-02 1.03 1.947E-01 1.58
10624 6.493E-04 1.98 8.474E-03 1.01 6.189E-02 1.65
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We tested many other meshes and the results do not change. The geometry of the mesh does not
influence the accuracy of the approximation.

III.6.2 Simulations of a flow in a pipe

Figure III.4 describes the situation we are dealing with: we consider Ω, a connected bounded
polygonal domain of R2, whose boundary ∂Ω is split into Γ0, Γ1 and Γ2 and whose outer normal
is denoted by n⃗. We add a cylindrical obstacle inside Ω. The Dirichlet part of the boundary is
composed by Γ0 and Γ1: on the physical boundary Γ0 we impose no slip boundary conditions
(i.e. the velocity is set to zero) and on the inflow boundary Γ1 the velocity is prescribed. On the
artificial boundary Γ2, that we wish to set as close as possible to the obstacle, we impose the
nonlinear boundary condition (III.2).

physical domain

computational domain

Γ1 Γ2Γ0

Γ0

Γ0

in
flo

w

Fig. III.4 Domain and notations.

We reproduce two different test cases, proposed in [BF94] and in [Joh04]. In both cases, the
simulations are performed on a triangular mesh, generated by GMSH, that is locally refined around
the cylinder.

Test case 2. We show that by adding an artificial boundary, thanks to condition (III.2), we do
not introduce any perturbation to the flow. For this purpose, we consider an original domain that
we cut into two smaller domains and we draw the streamlines of the respective solution.
We consider the symmetric domain Ω = [0, 5]× [0, 1] with a cylindrical obstacle of diameter L = 0.4.
The smaller domains are obtained by cutting at the horizontal axis first in x = 3, then in x = 1.5.
The mesh for Ω is composed by 12118 cells, and we pass to Ω′ = [0, 3] × [0, 1] with 8636 cells and
to Ω′′ = [0, 1.5] × [0, 1] with 6534 cells. The time step is δt = 0.035. The inflow on Γ1 is:

g1 = (6y(1 − y), 0).

Since our first simulations are performed with Re = 250, it makes sense to set as reference flow a
Poiseuille flow. Therefore we choose uref = g1, pref = 0 and σref (u,p) n⃗ = (0, 6

Re(1 − 2y)). As
initial condition, we impose uinit = g1 and the final time is T = 3.5. If u = (u1,u2), the stream
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Fig. III.5 Domains Ω = [0, 5] × [0, 1] , Ω′ = [0, 3] × [0, 1] and Ω′′ = [0, 1.5] × [0, 1] for the test case 2.

function Ψ is defined in the continuous setting as the solution of

∂Ψ
∂y

= u1,
∂Ψ
∂x

= −u2,

in particular it has to satisfy the following system:{
∆Ψ = rot(u) in Ω

∇Ψ · n⃗ = u · τ⃗ on ∂Ω,

where rot(u) = −∂u1
∂x

+ ∂u1
∂y

, n⃗ is the outward unit normal to the domain and τ⃗ is the unitary

tangent to the boundary. In the DDFV setting, given the discrete solution (uT, pD) ∈
(
R2)T × RD,

we look for ΨD ∈ RD solution of:{
divD∇TΨD = rotD(uT)
∇KΨD · n⃗σK = γσ(uT) · τ⃗ K∗L∗ ∀Dσ,σ∗ ∈ Dext.

We observe by the streamlines in Fig. III.6 (at T=1.5) and Fig. III.7 (at T=3.5), for which we
point out that the scale is the same in all the sub-figures, that we can cut close to the obstacle
without adding any perturbation to the whole flow. The recirculations are well located and there
is no spurious vortices. Clearly, the closer we cut, the more we loose in precision in the cells right
before the artificial boundary. This is due to the artificiality of the conditions and to the choice of
the reference flow. But in any case, the boundary can cut the recirculation right in the middle
without affecting the whole flow.
The choice of the reference flow is crucial. In [BF94], it is proposed to use a Poiseuille flow as
we reproduce in our numerical tests of Fig. III.6 and Fig. III.7. In [Bru00], since to write down
the variational formulation (III.9) the reference flow is assumed to be the solution of a steady
Stokes problem with u = g1 on Γ1, the author chooses the flow at infinity: uref = u∞, σref = σ∞.
Nevertheless, when the flow is chaotic or turbulent such a reference flow does not give a good
equivalent of the traction. Thus for higher Reynold’s numbers, such as Re = 1000 as in Fig. III.8
(T = 1.5) Fig. III.9 (T = 3.5), other techniques can be envisaged for the choice of the reference
flow; for example, it looks reasonable to choose a reference flow that changes with time.

We might think that a good approximation of the solution at the boundary Γ2 is the solu-
tion computed at the previous time step (or even just before the boundary at the same time step),
but actually we numerically observed that these techniques lead to strong instabilities.
Remark that by replacing uT

ref with un, the energy stability is no longer guaranteed. Therefore, in
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Fig. III.6 Streamline of Test case 2 at T = 1.5, Re = 250, δt = 0.035. On the top: Ω = [0, 5] × [0, 1],
NbCell= 12118. In the middle: Ω′ = [0, 3]×[0, 1], NbCell=8636. On the bottom: Ω′′ = [0, 1.5]×[0, 1],
NbCell=6534.

order to avoid numerical instabilities, for the simulations of Fig. III.8, Fig. III.9 we do not update
the value of uT

ref at each time step, but each 400 iterations. This choice is arbitrary and we cannot
provide a generalization to all the values of Reynold’s number. A way to overcome this difficulty
could be to compute the flow on a strictly larger domain (with respect to the smaller one) with a less
refined mesh, and then take as reference flow the trace of the solution on Γ2. Anyway, those results
lead us to observe that even for higher Reynold’s number and with a consistent choice of uT

ref ,
the conditions behave well: the recirculations are still well located and there are no spurious vortices.

Test case 3. This test is inspired from the benchmark of [ST96] and we precisely use the
detailed results in [Joh04]. In both [ST96], [Joh04] the drag and lift coefficients of the flow past
an obstacle are computed from simulations on a long domain, by imposing Dirichlet boundary
conditions. Our idea is to measure the quality of the DDFV solution we obtain on the shorter
domain with outflow boundary conditions.
The benchmark is defined with dimensional equations, so we adopt the same framework. References
[ST96] and [Joh04] consider a long channel Ω = [0, 2.2m] ×[0, 0.41m], that we cut at x = 0.6m,
with a cylindrical obstacle S whose center is in (0.2m, 0.2m). We perform the computation of the
drag and lift coefficients by working on the smaller domain Ω′ = [0, 0.6m] × [0, 0.41m] , with the
outflow boundary condition (III.2) on Γ2 (at x = 0.6m) and Dirichlet on the other boundaries. The
triangular mesh that we considered on Ω′, obtained with GMSH, has 8020 cells and it is locally
refined around the cylinder.

The viscosity of the fluid is set to η = 10−3m2s−1 and the final time is T = 8s. The time-dependent
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Fig. III.7 Streamline of Test case 2 at T = 3.5, Re = 250, δt = 0.035. On the top: Ω = [0, 5] × [0, 1],
NbCell= 12118. In the middle: Ω′ = [0, 3]×[0, 1], NbCell=8636. On the bottom: Ω′′ = [0, 1.5]×[0, 1],
NbCell=6534.

Fig. III.8 Streamline of Test case 2 at T = 1.5, Re = 1000, δt = 0.035. On the top: Ω = [0, 5]× [0, 1],
NbCell= 12118. On the bottom: Ω′ = [0, 3] × [0, 1], NbCell=8636.

inflow on Γ1 is:
g1 = 0.41−2 sin(πt/8)(6y(0.41 − y), 0),

and as a reference flow on Γ2 we choose uref = g1, pref = 0 and σref n⃗ = σ(uref , 0) n⃗, where n⃗ is
the outer normal to Ω. The initial condition is uinit = (0, 0). The density of the fluid is given by
ρ = 1kgm−3, and the reference velocity is Ū = 1ms−1 (note that the maximum velocity is 3

2 Ū).
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Fig. III.9 Streamline of Test case 2 at T = 3.5, Re = 1000, δt = 0.035. On the top: Ω = [0, 5]× [0, 1],
NbCell= 12118. On the bottom: Ω′ = [0, 3] × [0, 1], NbCell=8636.

0.16m

0.15m

2.2m

0.6m

0.41mΓ2

Fig. III.10 Domains Ω = [0, 2.2] × [0, 0.41] and Ω′ = [0, 0.6] × [0, 0.41] for the test case 3.

The diameter of the cylinder is L = 0.1m, so that the Reynold’s number is 0 ≤ Re(t) ≤ 100. We
define the drag coefficient cd(t) and the lift coefficient cl(t) as:

cd(t) = 2
ρLŪ2

∫
S

(
ρη
∂utS (t)
∂n

ny − p(t)nx

)
,

cl(t) = − 2
ρLŪ2

∫
S

(
ρη
∂utS (t)
∂n

nx + p(t)ny

)
,

where here n⃗S = (nx, ny) is the normal vector on S directing into Ω , tS = (ny,−nx) the tangential
vector and utS the tangential velocity.
The corresponding formula in the DDFV setting is:

cn
d = 2

ρLŪ2

∑
D∈Dext∩S

mσ (ρη∇D(un · τ⃗ K∗L∗) · n⃗σK ny − pnnx) ,

cn
l = − 2

ρLŪ2

∑
D∈Dext∩S

mσ (ρη∇D(un · τ⃗ K∗L∗) · n⃗σK nx + pnny) ,

where:

∇D(un · τ⃗ K∗L∗) · n⃗σK = mσ

2mD
(un

L − un
K ) · τ⃗ K∗L∗ + mσ∗

2mD
(un

L∗ − un
K∗) · τ⃗ K∗L∗ n⃗σ∗K∗ · n⃗σK.
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We study the evolution of the coefficients in Fig. III.11 and their maximum value in Table III.2,
defined as:

cd,max = max
n∈{0...N}

cn
d , cl,max = max

n∈{0...N}
cn

l .

The results shown in Table III.2 and in Fig. III.11 prove that the boundary conditions are robust
and the solution we find is quantitatively correct. The small difference in the coefficients, with
respect to the reference values, is due to the different kind of condition on the boundary and to
the level of refinement of the mesh. We work with approximately 24000 unknowns, for all velocity
components and pressure, with respect to the approximately 500 000 unknowns used to compute
the reference coefficients. Even if our grid is coarser, we still obtain a good approximation.
In Figure III.11 we can also observe how the time step and the choice of the scheme influences the
result for the lift coefficient: for the reference values, [Joh04] considers a time step δt = 0.00125s
with a second order scheme in time. Our scheme is first order in time: firstly, we test this scheme
with a decreasing time step, starting with δt = 0.0016667. Secondly, we implement a second order
backward difference formula in time to see if the approximation improves. The first iteration of the
scheme remains unchanged, and for n ∈ {1, . . . N} the variational formulation (III.10) becomes:

[[ 1
δt

(3
2un+1 − 2un + 1

2un−1
)
,ΨT]]T + 2

Re(DDun+1,DDΨT)D

+ 1
2[[bT(2un − un−1,un+1),ΨT]]T − 1

2[[bT(2un − un−1,ΨT),un+1]]T

= −1
2

∑
D∈Dext∩Γ2

(FσK(2un − un−1))+ γσ(un+1) · γσ(ΨT)

+ 1
2

∑
D∈Dext∩Γ2

(FσK(2un − un−1))−γσ(uref ) · γσ(ΨT)

+
∑

D∈Dext∩Γ2

mσ(σDrefn⃗σK) · γσ(ΨT).

We observe in Fig. III.11 that this technique actually improves the quality of the approximation of
the lift coefficient.

DDFV Reference

cd,max 2.9754 2.9509
cl,max 0.44902 0.47795

Table III.2 Comparison between the values of cd,max, cl,max obtained with DDFV scheme (left) and
the reference values of [Joh04] (right).
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Evolution of the lift coefficient cn
l

Fig. III.11 Comparison between the evolution of cn
d , c

n
l on the time interval [0, 8] obtained with

DDFV scheme (left) and the reference values of [Joh04] (right). We plot the results for the scheme
of order 1 in time, with respect to different time steps, and for the scheme of order 2.
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Conclusions and perspectives

In this chapter, we proposed a DDFV scheme for the Navier–Stokes problem with outflow boundary
conditions. The DDFV scheme is proved to be well-posed and it satisfies a discrete energy estimate.
We numerically showed the good convergence of the scheme and we performed numerical tests that
establish the accuracy of this condition. In particular, we remarked the influence in the simulations
of the reference flow that appears in the outflow boundary condition: it is supposed to be a steady
flow, but when the Reynold’s number increases and the flow it is no more laminar, this choice is
not the optimal one. We would like to investigate this point in order to find the best technique to
choose it. Moreover, these results are proved in the case of a constant viscosity, but they could be
extended to the case of variable viscosity, by starting from the works of [BF07, Kre11b].
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The aim of this chapter is to develop a DDFV version of a non-overlapping iterative Schwarz
algorithm for the incompressible Navier-Stokes problem:

∂tu + (u · ∇)u − div(σ(u,p)) = 0 in Ω × [0, T ],
div(u) = 0 in Ω × [0, T ],

u = 0 on ∂Ω × [0, T ],
u(0) = uinit in Ω,

(IV.1)

where Ω is an open connected bounded polygonal domain of R2, uinit ∈ (L∞(Ω))2, and where
u : Ω × [0, T ] → R2 is the velocity, p : Ω × [0, T ] → R is the pressure and σ(u,p) = 2

ReDu − pId is
the stress tensor, with Re > 0. In particular, the strain rate tensor is defined by the symmetric
part of the velocity gradient Du = 1

2(∇u + t∇u).

Non-overlapping Schwarz algorithm enters the class of domain decomposition methods, in which
a domain is decomposed into smaller subdomains. The main advantage is that the problems on
the subdomains are independent, which makes these methods suitable for parallel computing and
thus interesting for high performance computing perspectives. The classical Schwarz algorithm,
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proposed in 1870 by H.A. Schwarz for the Laplace’s problem, is an iterative method that consists
in transmitting the solution, or its normal derivative, from a subdomain to the other, in order to
deal with complex domains. This method converges only if the subdomains overlap. Moreover,
this convergence becomes slower as the overlap between the subdomains is smaller.
In non-overlapping Schwarz algorithms, the subdomains intersect only on their interface and in or-
der to obtain convergence, different transmission conditions on the interfaces have been investigated.
It was shown in 1990 by P.L.Lions [Lio90] that, with Fourier (i.e. Robin) transmission conditions,
Schwarz algorithm for the Laplace operator converges even without overlap. This method has been
adapted to the discrete case for many problems of isotropic diffusion, [AJNM02, CHH04, GJMN05],
for advection-diffusion-reaction problems, [GH07, HH14] and for anisotropic diffusion in a DDFV
discretization, [BHK10b, GHHK18].

Our goal is thus to decompose the domain Ω of problem (IV.1) into smaller subdomains, solve
the Navier-Stokes problem on those subdomains by imposing some transmission conditions on the
interfaces, and recover by an iterative Schwarz algorithm the discrete solution of (IV.1) on Ω. We
work with an unsteady problem; we decide to apply this iterative algorithm at each time iteration.

We refer as a starting point of this study to the works of [GHHK18] and [HH14]: they both
build a non-overlapping Schwarz algorithm in a finite volume framework with Fourier-like trans-
mission conditions between subdomains; the first considers the case of anisotropic diffusion with a
DDFV discretization, the latter considers a problem of advection-diffusion-reaction in a TPFA
discretization. In our case, when switching to the Navier-Stokes equations (IV.1) in a DDFV
framework, the difficulty mainly consists into designing the same type of transmission conditions,
by taking into account both the non-linear convection terms and the incompressibility constraint.

This is why we choose to impose the following: when we decompose the domain Ω into two
(or more) smaller subdomains Ω = Ω1 ∪ Ω2, the Schwarz algorithm defines a sequence of solutions
ul

j of the Navier-Stokes problem in Ωj , where the transmission conditions on the interface between
the subdomains (denoted by Γ) for (j, i) = (1, 2) or (2, 1), are defined by:

σ(ul
j ,pl

j) · n⃗j − 1
2(ul

j · n⃗j)(ul
j) + λul

j = σ(ul−1
i ,pl−1

i ) · n⃗i − 1
2(ul−1

i · n⃗i)(ul−1
i ) + λul−1

i ,

div(ul
j) + αpl

j = −div(ul−1
i ) + αpl−1

i ,
(IV.2)

where n⃗j is the outer normal to Ωj and l is the iteration of the Schwarz algorithm. The first condi-
tion, which depends on λ, is inspired by the classical Fourier condition, which linearly combines of
the values of a the unknown and the values of its derivative; here, also the convection is included.
The second, which depends on α, combines the divergence of the velocity with the pressure; it will
be useful to conserve the incompressibility constraint at the convergence of the algorithm. This is
the first time, to our knowledge, that this kind of condition appears.

Another key point of our study is the discretization of the convection terms, inspired by [HH14]:
we decide to approximate this terms by a centered discretization plus a diffusive perturbation,
which depends on a general function B; this function will play an important role in the convergence
of the algorithm. We refer to the so called "B-schemes", which first appeared in [CHD11] when de-
signing finite volume schemes for non-coercive elliptic problems with Neumann boundary conditions.

Outline. This chapter is organized as follows. In Sec. IV.1, we define a discretization of the
Navier-Stokes problem on the entire domain Ω by using B-schemes for the discretization of the
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nonlinear convection terms; we prove that the scheme, to which we will refer as (P), is well-posed.
In particular, (P) is the limit scheme towards which the solution of the iterative Schwarz algorithm
should converge. In Sec.IV.2, we introduce the composite meshes, i.e. the meshes on the subdo-
mains, and we build a scheme for the subdomain problem with transmission boundary conditions,
that are the discrete version of (IV.2). In the same section, we introduce then the DDFV Schwarz
algorithm. The convergence of that algorithm is proven in Sec. IV.3, and we show that it actually
converges to a modified version of (P), that we name (P̃). The difference between (P) and (P̃) is
the choice of the function B that defines the convection terms on the interface. In Sec. IV.4, we
prove how to recover the convergence towards (P), by proposing an alternative Schwarz algorithm.
Finally, in Sec. IV.5 we illustrate the theoretical results by means of some numerical simulations; in
particular, we show and compare the convergence of the Schwarz algorithms built, by underlying
the influence of the parameters λ, α of (IV.2).

IV.1 DDFV scheme for the Navier-Stokes problem on Ω

In this section, we propose a DDFV discretization for the Navier-Stokes problem with Dirichlet
boundary conditions on the entire domain Ω. Such a scheme for this problem was already studied
in [Kre10], with the choice of an upwind discretization to treat the convection term. Our aim is to
generalize this result to B-schemes; in those schemes, the convection term is approximated by a
centered discretization plus a diffusive perturbation, which depends on a general function B. This
is inspired from the work of [HH14], which handles scalar advection-diffusion-reaction equation
with a classic finite volume discretization.

Just a remark, all along this chapter Dσ,σ∗ will be denoted by D, to simplify the notations.

IV.1.1 The scheme P

Let N ∈ N∗ and 0 < T < ∞. We note δt = T
N and tn = nδt for n ∈ {0, . . . , N}. To design

the DDFV scheme, we choose to use an implicit Euler time discretization, except for the non-
linear term, which is linearized by using a semi-implicit approximation. This is why we need
divD(un) − βd2

D∆Dpn = 0 at each time step n ∈ {0, . . . N}, even at the initial time step. Remark
that the parameter β is relied to a Brezzi-Pitkäranta stabilization for the mass conservation
equation; see Sec. I.7.

We look for uT,[0,T ] = (un)n∈{0,...N} ∈
(
E0
)N+1 and pD,[0,T ] = (pn)n∈{0,...N} ∈ (RD)N+1 , that

we initialize with:

u0 = PT
c u0 ∈ E0,

p0 ∈ RDsuch that ∆Dp0 = 1
βd2

D

divD(u0) with
∑
D∈D

mDp0
D = 0.

The vector p0 is well defined since it is solution of a square system, whose matrix is invertible. With
those choices of (u0,p0) we guarantee the property divD(un)−βdD∆Dpn = 0 at the initial time step.

From now on, to simplify the notations we will denote (un+1, pn+1) with (uT,pD) and (un,pn)
with (ūT, p̄D) that at each time step are known.

To obtain our scheme, we integrate the momentum equation over all M ∪ M∗ and we impose
Dirichlet boundary conditions on ∂M ∪ ∂M∗. The equation of conservation of mass is directly
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approximated on the diamond mesh equation over D, and it is stabilized through a parameter
β > 0 with a Brezzi-Pitkäranta stabilization (see Sec. I.7).

Given (ūT, p̄D), satisfying divD(ūT) − βd2
D ∆Dp̄D = 0, we look for uT ∈

(
R2)T and pD ∈ RD

such that: 

mK
uK

δt
+
∑

D∈DK

mσFσK = mKfK +mK
ūK

δt
∀K ∈ M

mK∗
uK∗

δt
+

∑
D∈DK∗

mσ∗Fσ∗K∗ = mK∗fK∗ +mK∗
ūK∗

δt
∀K∗ ∈ M∗

u∂M = 0
u∂M∗ = 0

divD(uT) − βd2
D ∆DpD = 0∑

D∈D

mDpD = 0,

(P)

with β > 0.
The fluxes are defined as a sum of a "diffusion" term and a "convection" term:

mσFσK = mσ(Fd
σK + Fc

σK), (IV.3)

mσ∗Fσ∗K∗ = mσ∗(Fd
σ∗K∗ + Fc

σ∗K∗). (IV.4)

The diffusion fluxes are defined, as in Chapter III, as:

mσFd
σK = −mσσ

D(uT,pD) n⃗σK

= −mσ

( 2
ReDDuT − pDId

)
n⃗σK,

mσ∗Fd
σ∗K∗ = −mσ∗σD(uT,pD) n⃗σ∗K∗

= −msige

( 2
ReDDuT − pDId

)
n⃗σ∗K∗ ,

where the stress tensor is approximated through the operators defined in Sec. I.3.

The convection fluxes are defined as:

mσFc
σK =mσFσK

(uK + uL

2

)
+ m2

σ

2RemD
B

(2mDRe
mσ

FσK

)
(uK − uL),

mσ∗Fc
σ∗K∗ =mσ∗Fσ∗K∗

(uK∗ + uL∗

2

)
+ m2

σ∗

2RemD
B

(2mDRe
mσ∗

Fσ∗K∗

)
(uK∗ − uL∗).

They are the sum of a centered discretization and a diffusive perturbation, which depends on
the function B. This function B embeds the different schemes that we want to work with: for
instance, if we want a centered scheme, we choose B(s) = 0 and for an upwind scheme, we set
B(s) = 1

2 |s|. We denote B
(

2mDRe
mσ

FσK

)
with BσK and B

(
2mDRe
mσ∗ Fσ∗K∗

)
with Bσ∗K∗ . In the particular

case of the upwind discretization, BσK, Bσ∗K∗ are scalars, but we will see that those coefficients can
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be generalized to matrices and to more general expressions. The total fluxes then become:

mσFσK = −mσσ
D(uT,pD) n⃗σK +mσFσK

(uK + uL

2

)
+ m2

σ

2RemD
BσK(uK − uL)

mσ∗Fσ∗K∗ = −mσ∗σD(uT,pD) n⃗σ∗K∗ +mσ∗Fσ∗K∗

(uK∗ + uL∗

2

)
+ m2

σ∗

2RemD
Bσ∗K∗(uK∗ − uL∗)

(IV.5)

The definition of FσK, Fσ∗K∗ comes straightforward by Sec. III.1 and [Kre10, Kre11b]. They are an
approximation of the fluxes:

∫
σ
(u · n⃗σK) FσK(uT) and

∫
σ∗

(u · n⃗σ∗K∗) Fσ∗K∗(uT).
We obtain them by calculating the fluxes on the sides s of diamonds for the interior edges (see
Fig. IV.1). In fact, we remark that by integrating the solenoidal constraint on the semi-diamond
DK of vertices xK, xK∗ , xL∗ we have:

0 =
∫

DK
div(ūT)dx =

∫
σ

ūT · n⃗σK +
∑

s∈GK∩ED

∫
s
ūT · n⃗sDds.

Those fluxes on the sides s of diamonds are the ones that we obtain by integrating the solenoidal
constraint on each diamond D ∈ D:∫

D
div(ūT)dx =

∑
s∈∂D

∫
s
ūT · n⃗sDds,

that at a discrete level is written, by adding a stabilization, as:

mDdivD(ūT) − βmDd
2
D ∆Dp̄D =

∑
s=D|D′∈ED

msGs,D,

so that
∫
s
ūT · n⃗sDds is approximated by msGs,D = ms

ūK + ūK∗

2 · n⃗sD − β(dD + dD′)(pD − pD′) for
s = [xK, xK∗ ] = D|D′, s ∈ ED.

Remark IV.1.1 If D ∈ Dext (see Fig. IV.1), mDdivD(uT) can be rewritten as:

mDdivD(ūT) − βmDd
2
D ∆Dp̄D =

∑
s=D|D′∈ED

msGs,D +mσγ
σ(ūT) · n⃗σK.

We thus impose:
I For the primal edges:

mσFσK = −
∑

s∈SK∩ED

msGs,D.

I For the dual edges:

mσ∗Fσ∗K∗ =


−

∑
s∈SK∗ ∩ED

msGs,D if K∗ ∈ M∗ ∪ ∂M∗, σ∗ ∩ ∂Ω = ∅

−msGs,D − 1
2m∂Ω∩∂K∗HK∗ if K∗ ∈ ∂M∗, σ∗ ∩ ∂Ω ̸= ∅, i.e. Dσ,σ∗ ∈ Dext

K∗
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where m∂Ω∩∂K∗ indicates the measure of the intersection between ∂K∗ ∩ ∂Ω and:

msGs,D = ms
ūK + ūK∗

2 · n⃗sD − β(dD + dD′)(pD − pD′), ∀s = [xK, xK∗ ] = D|D′,

m∂Ω∩∂K∗HK∗ =
∑

D∈Dext
K∗

mσ∩∂K∗ūK∗ · n⃗σK, ∀K∗ ∈ ∂M∗.

The difference with respect to the fluxes of Sec. III.1 is their definition on the boundary edges; this
is due to type of boundary conditions that we consider. Remark that at this stage, since we are
imposing (for simplicity) homogeneous Dirichlet boundary conditions on ∂Ω, those contributions
will not be taken into account.

Remark that if mDdivD(ūT) − βmDd
2
D ∆Dp̄D = 0 we have conservativity of the fluxes FσK and

⊗

⊗

�

�
xL∗

xK∗

xL

xK

s = [xK, xK∗ ]

n⃗σK

n⃗sD

σ∗ =K∗|L∗

σ=K|L

⊗
⊗

�

�
xL∗

xK∗

xL

xK

s = [xK, xK∗ ]

n⃗σK
n⃗sD

σ∗ =K∗|L∗

σ=K|L

Fig. IV.1 Left: A diamond D = Dσ,σ∗ with σ ⊂ Eint. Right: A diamond D = Dσ,σ∗ with σ ∈ ∂Ω.

Fσ∗K∗ , that is:

FσK = −FσL, ∀σ = K|L and Fσ∗K∗ = −Fσ∗L∗ , ∀σ∗ = K∗|L∗. (IV.6)

Proposition IV.1.2 Let T be a DDFV mesh associated to Ω. For all (uT, pD) ∈ E0 ×RD, β ∈ R∗

we have: ∑
D∈DK

mσFσK = 0 ∀K ∈ M

∑
D∈DK∗

mσ∗Fσ∗K∗ = 0 ∀K∗ ∈ M∗

∑
D∈DK∗

mσ∗Fσ∗K∗ = −m∂Ω∩∂K∗HK∗ ∀K∗ ∈ ∂M∗

Proof For the interior mesh, we proceed as in [Kre10].
If K ∈ M, by reorganizing the sum on the sides s ∈ GK belonging to the primal cell K, we obtain:

−
∑

D∈DK

∑
s∈GK∩ED

ms
uK + uK∗

2 · n⃗sD = −
∑
s∈GK

ms
uK + uK∗

2 · (n⃗sD + n⃗sD′) = 0 (IV.7)
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since n⃗sD = −n⃗sD′ , where D and D′ denote the two neighbor diamonds which share the edge s, of
vertices xK, xK∗ . In the same way,

−
∑

D∈DK

∑
s∈GK∩ED

(d2
D + d2

D′)(pD′ − pD) = −
∑
s∈GK

(d2
D + d2

D′)(pD′ − pD + pD − pD′) = 0. (IV.8)

We deduce that
∑

D∈DK

mσFσK = 0. The proof is similar for
∑

D∈DK∗

mσ∗Fσ∗K∗ = 0 if K∗ ∈ M∗.

We now focus on the case in which K∗ ∈ ∂M∗; by definition of mσ∗Fσ∗K∗ :

−
∑

D∈DK∗

∑
s∈GK∗ ∩ED

{
ms

uK + uK∗

2 · n⃗sD + (d2
D + d2

D′)(pD′ − pD)
}

−
∑

D∈DK∗ ∩∂Ω

1
2m∂Ω∩∂K∗HK∗

= 0 −m∂Ω∩∂K∗HK∗ .

where the first sum is zero thanks to (IV.7),(IV.8), and for the second term we use the fact that
each vertex K∗ is shared by two boundary diamonds.

IV.1.2 Wellposedness of problem (P)

The following theorem states the wellposedness of the scheme (P). This is quite a classical result
for a discretization of Navier-Stokes problem with Dirichlet boundary conditions, if we consider a
centered or an upwind scheme (see for instance [Kre10] for the DDFV setting); what is crucial is
to understand the properties that need to be satisfied by BσK, Bσ∗K∗ in order to have wellposedness,
with the aim to extend later to more general coefficients.

Theorem IV.1.3 Under the hypothesis

BσK = BσL, BσK ≥ 0
Bσ∗K∗ = Bσ∗L∗ , Bσ∗K∗ ≥ 0

(Hp)

problem (P) is well-posed.

Remark IV.1.4 In the more general case in which BσK, Bσ∗K∗ are matrices, instead of BσK, Bσ∗K∗ ≥
0, we ask BσK, Bσ∗K∗ to be semi-definite positive; the proof does not change, except for the notations.

Proof The scheme (P) is a linear system in (uT,pD) ∈
(
R2)T × RD. Let us denote by N the

dimension of
(
R2)T × RD. Then (P) can be written, with g∂M = g∂M∗ = qD = φ = 0, as

mK
uK

δt
+
∑

D∈DK

mσFσK = mKfK +mK
ūK

δt
∀K ∈ M

mK∗
uK∗

δt
+

∑
D∈DK∗

mσ∗Fσ∗K∗ = mK∗fK∗ +mK∗
ūK∗

δt
∀K∗ ∈ M∗

u∂M = g∂M

u∂M∗ = g∂M∗

divD(uT) − βd2
D ∆DpD = qD∑

D∈D

mDpD = φ

(P)
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This is a linear system Av = b with a rectangular matrix A ∈ MN+1,N (R), v ∈ RN and b ∈ RN+1.
Let X be the following set:

X =

(fM, fM∗
,g∂M,g∂M∗

, qD, φ) ∈ RN+1,
∑

D∈Dext

mσγ
σ(gT) · n⃗σK =

∑
D∈D

mDq
D

 ,
then dim(X) = N . We have that t(fM, fM∗

, 0, 0, 0) belongs to X and that Im(A) ⊂ X since we have
a relation between the solenoidal constraint and the Dirichlet boundary conditions thanks to Green’s
formula (Thm. I.5.1). If we show that the matrix is injective, we conclude that dim(Im(A)) = N

and that Im(A) = X. So we study the kernel of the matrix A, that is equivalent to show that if
fM = fM∗ = 0, then uT = 0 and pD = 0.

We multiply the equations on the primal and dual mesh of (P) by uT and we sum over all
the control volumes:

1
2

[ 1
δt

( ∑
K∈M

mK |uK|2 +
∑

K∈M∗
mK∗ |uK∗ |2

)
+
∑
K∈M

uK ·
∑

D∈DK

mσFσK +
∑

K∗∈M∗

uK∗ ·
∑

D∈DK∗

mσ∗Fσ∗K∗

]
= 0.

By definition of the scalar products we have 1
2

[ 1
δt

( ∑
K∈M

mK |uK|2 +
∑

K∈M∗
mK∗ |uK∗ |2

)]
= 1
δt

∥uT∥2

and, by replacing the definition of the fluxes, we have:

1
δt

∥uT∥2 − 1
2
∑
K∈M

uK ·
∑

D∈DK

mσσ
D(uT,pD)n⃗σK − 1

2
∑

K∗∈M∗

uK∗ ·
∑

D∈DK∗

mσ∗σD(uT,pD)n⃗σ∗K∗

+ 1
2
∑
K∈M

uK ·
∑

D∈DK

mσFσK
uK + uL

2 + 1
2
∑

K∗∈M∗

uK∗ ·
∑

D∈DK∗

mσ∗Fσ∗K∗
uK∗ + uL∗

2

+ 1
2
∑
K∈M

uK ·
∑

D∈DK

m2
σ

2RemD
BσK(uK − uL) + 1

2
∑

K∗∈M∗

uK∗ ·
∑

D∈DK∗

m2
σ∗

2RemD
Bσ∗K∗(uK∗ − uL∗) = 0. (IV.9)

We can consider separately the terms. By replacing the definition of the divergence operator (Def.
(I.3.5)) and then by appying Green’s formula (Thm. I.5.1) for uT ∈ E0, we have:

• −1
2
∑
K∈M

uK ·
∑

D∈DK

mσσ
D(uT,pD)n⃗σK − 1

2
∑

K∗∈M∗

uK∗ ·
∑

D∈DK∗

mσ∗σD(uT, pD)n⃗σ∗K∗

= −
[[

divT

( 2
ReDDuT − pD

)
,uT

]]
T

= 2
Re∥DDuT∥2

2 −(pD,divDuT)D = 2
Re∥DDuT∥2

2 +β|pD|2h,

where for the last equality we use that divD(uT) − βd2
D∆DpD = 0 and we apply Remark I.7.2 to

the term −β(d2
D∆DpD,pD)D. .

For all the convection terms, we pass to a sum over diamonds recalling that uT ∈ E0, so we
do not have boundary terms.



IV.2 DDFV scheme for the subdomain problem on Ωj 127

For the centered part, we apply Prop. IV.1.2, to conclude that:

• 1
2
∑
K∈M

uK ·
∑

D∈DK

mσFσK
uK + uL

2 + 1
2
∑

K∗∈M∗

uK∗ ·
∑

D∈DK∗

mσ∗Fσ∗K∗
uK∗ + uL∗

2

= 1
4
∑
D∈D

mσFσK(|uK|2 − |uL|2) + 1
4
∑
D∈D

mσ∗Fσ∗K∗(|uK∗ |2 − |uL∗ |2)

= 1
4
∑
K∈M

|uK|2
∑

D∈DK

mσFσK︸ ︷︷ ︸
=0

+1
4
∑

K∗∈M∗

|uK∗ |2
∑

D∈DK

mσ∗Fσ∗K∗

︸ ︷︷ ︸
=0

= 0.

For the terms that depend on BσK, Bσ∗K∗ , we apply hypothesis (Hp) to conclude that:

• 1
2
∑
K∈M

uK ·
∑

D∈DK

m2
σ

2RemD
BσK(uK − uL) + 1

2
∑

K∗∈M∗

uK∗ ·
∑

D∈DK∗

m2
σ∗

2RemD
Bσ∗K∗(uK∗ − uL∗)

= 1
2
∑
D∈D

m2
σ

2RemD
BσK(uK − uL)2 + 1

2
∑
D∈D

m2
σ∗

2RemD
Bσ∗K∗(uK∗ − uL∗)2 ≥ 0.

Putting all together, (IV.9) becomes:

1
δt

||uT||22 + 2
Re ||DDuT||22 + β|pD|2h ≤ 0,

from which we deduce that uT = 0 and pD is a constant (we recall that β > 0). Since pD verifies∑
D∈D

mDpD = 0, we have pD = 0.

IV.2 DDFV scheme for the subdomain problem on Ωj

In this section, we define a discretization for the subdomain problem on Ωj , for j = 1, 2. We present
the study for two subdomains for simplicity, but it could be extended to a generic number of
adjacent subdomains. As in Sec. IV.1, the nonlinear convection term will be approximated through
B-schemes; we will see that the coefficients BσK, Bσ∗K∗ play an important role in the convergence of
the Schwarz algorithm.
We start by defining the scheme, denoted by (Pj), and the related Schwarz algorithm for the
domain decomposition; then we prove some a priori estimates in order to show the wellposedness
of (Pj) at the end of the section.

IV.2.1 DDFV on composite meshes

On each subdomain Ωj of Ω, j = 1, 2, we want to solve a Navier-Stokes system with mixed
boundary conditions. On a fraction of the boundary (the one that intersects ∂Ω) we impose
Dirichlet boundary conditions; on the remaining part (the interface Γ between the two subdomains)
we impose the discretized version of the transmission conditions (IV.2), that depend on the two
parameters λ, α.
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xK∗

xK2 xK2

Γ

Ω = Ω1 ∪ Ω2

Γ

xK1

xK∗ xK∗

xL∗

xL xL

xL∗

xK1

Ω1 Ω2

Γ

xL∗

Primal mesh M

Dual mesh M∗ ∪ ∂M∗

Fig. IV.2 DDFV meshes.

Description of the meshes

For each subdomain Ωj of Ω, j = 1, 2, we consider a DDFV mesh Tj = (Mj ∪ ∂Mj ,M
∗
j ∪ ∂M∗

j )
and the associated diamond mesh Dj . We remark that, thanks to DDFV scheme, we can work
with non conformal meshes, and in particular the two subdomains can be meshed differently.
Letting Γ be the interface between the two subdomains, we denote by:

� the diamond cells intersecting Γ : DΓ
j := {D ∈ Dj , D ∩ Γ ̸= ∅};

� the boundary primal cells intersecting Γ : ∂Mj,Γ := {K ∈ ∂Mj , K ∩ Γ ̸= ∅};
� the boundary dual cells intersecting Γ : ∂M∗

j,Γ := {K∗ ∈ ∂M∗
j , K∗ ∩ Γ ̸= ∅};

� the boundary primal cells intersecting ∂Ω : ∂Mj,D := {K ∈ ∂Mj , K ∩ ∂Ω ̸= ∅};
� the boundary dual cells intersecting ∂Ω : ∂M∗

j,D := {K∗ ∈ ∂M∗
j , K∗ ∩ ∂Ω ̸= ∅};

see Fig. IV.2 for an example.

Definition IV.2.1 (Composite mesh) We say that T1 and T2 are compatible, if the following
conditions are satisfied:

1. the two meshes share the same vertices on Γ. This, in particular, implies that the two meshes
have the same degenerate volumes on Γ, i.e. ∂M1,Γ = ∂M2,Γ.

2. The center xL of the degenerate volumes of the interface L = [xK∗ , xL∗ ] ∈ ∂M1,Γ = ∂M2,Γ is
the intersection between (xK∗ , xL∗) and (xK1 , xK2), where K1 ∈ M1 and K2 ∈ M2 are the two
primal cells such that L ∈ ∂K1 and L ∈ ∂K2 (see Fig. IV.2).

Consider the composite mesh of Fig. IV.2; remark that:

• a diamond D, of vertices xK1 , xK∗ , xL∗ , xK2 that intersects Γ in the domain Ω can be written
as the union of diamonds D1, of vertices xK1 , xK∗ , xL∗ , xL , and D2, of vertices xK2 , xK∗ , xL∗ , xL,
respectively in Ω1,Ω2. Moreover, on the subdomain meshes we have the additional unknowns
on xL on Γ with respect to the mesh on Ω;

• equivalently, a volume K∗ that intersects Γ in Ω is the union of K∗
1, K∗

2 in Ω1,Ω2. In particular,
an edge σ∗ = [xK1 , xK2 ] can be split into σ∗ = σ∗

1 ∪ σ∗
2 = [xK1 , xL] ∪ [xL, xK2 ];

• an edge σ = [xK∗ , xL∗ ] on the interface Γ is shared by all the meshes.
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We add some fluxes unknowns ΨTj on each dual cell that intersect Γ , i.e. ∀K∗
j ∈ ∂M∗

j,Γ. Those
unknowns approximate the dual fluxes Fσ∗K∗ on the interface; in particular, for a diamond D ∈ DΓ

j ,
the unknowns are illustrated in Fig. IV.3.

uL∗
j

uK∗
j

uLj

ΨK∗
j

ΨL∗
j

pDj

uKj

Ωj Ωi

Fig. IV.3 The unknowns on a diamond on the interface for the subdomain Ωj .

To obtain our scheme, we integrate the momentum equation over Mj ∪ M∗
j ∪ ∂M∗

j,Γ, we impose
Dirichlet boundary conditions on ∂Mj,D ∪ ∂M∗

j,D and transmission conditions on ∂Mj,Γ ∪ ∂M∗
j,Γ

(depending on λ). The equation of conservation of mass is directly approximated on the diamond
mesh equation over Dj , and it is stabilized through a parameter β > 0 with a Brezzi-Pitkäranta
stabilization (see Sec. I.7); for the diamonds in DΓ

j a transmission term is added, controlled by the
parameter α.

We then define the DDFV discretization for the transmission conditions the following system:

Find (uTj ,pDj
,ΨTj ) ∈ RTj × RDj × ∂M∗

j,Γ such that

mK
uK

δt
+
∑

D∈DK

mσFσK = mKfK +mK
ūK

δt
∀K ∈ Mj

mK∗
uK∗

δt
+

∑
D∈DK∗

mσ∗Fσ∗K∗ = mK∗fK∗ +mK
ūK∗

δt
∀K∗ ∈ M∗

j

mK∗
uK∗

δt
+

∑
D∈DK∗

mσ∗Fσ∗K∗ +m∂Ω∩∂K∗ΨK∗ = mK∗fK∗ +mK
ūK∗

δt
∀K∗ ∈ ∂M∗

j,Γ

−FσK + 1
2FσKuL + λuL = hL ∀σ ∈ ∂Mj,Γ

−ΨK∗ + 1
2HK∗ uK∗ + λuK∗ = hK∗ ∀K∗ ∈ ∂M∗

j,Γ

u∂Mj,D = 0
u∂M∗

j,D = 0
mDdivD(uT) − βmDd

2
D ∆DpD = 0 ∀D ∈ Dj \ DΓ

j

mDdivD(uT) − βmDd
2
D ∆DpD + αmDpD = gD ∀D ∈ DΓ

j ,

(Pj)

with λ, β, α > 0 and ūTj the solution computed at the previous time step tn−1 = (n − 1)δt for
n ∈ {1, . . . N − 1}.
We will refer to the system (Pj) in the more compact form:

LTj ,µ
Ωj ,Γ(uTj ,pDj

,ΨTj , fT, ūTj ,hTj , gDj ) = 0. (IV.10)
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Remark IV.2.2 When we impose transmission conditions in Schwarz algorithm, the term on
the boundary that we want to approximate is

∫
σ

(
σ(u, p) · n⃗ − 1

2(u · n⃗)u
)

; this comes from the
anti-symmetrization of the convection term.
Formally, at the continuous level, if ϕ is a test function in V = {ϕ ∈ (H1(Ω))2, Ψ|ΓD

= 0, div(ϕ) =
0}, the variational formulation of (IV.1) reads:∫

Ω
∂tu · ϕ+

∫
Ω

(u · ∇)u · ϕ−
∫

Ω
div(σ(u, p))ϕ = 0. (IV.11)

The convection term can be written as∫
Ω

(u · ∇)u · ϕ = 1
2

∫
Ω

(u · ∇)u · ϕ+ 1
2

∫
Ω

(u · ∇)u · ϕ

= 1
2

∫
Ω

(u · ∇)u · ϕ− 1
2

∫
Ω

(u · ∇)ϕ · u +
∫

∂Ω

1
2(u · n⃗)u,

by integration by parts. If we inject this result in (IV.11) and we integrate by parts also the diffusion
terms, we end up with:∫

Ω
∂tu ·ϕ+ 1

2

∫
Ω

(u ·∇)u ·ϕ− 1
2

∫
Ω

(u ·∇)ϕ·u+
∫

Ω
σ(u, p) : ∇ϕ−

∫
∂Ω

(
σ(u, p)n⃗ − 1

2(u · n⃗)u
)

·ϕ = 0.

This is the reason why, when working with transmission conditions, we want to impose a condition
on σ(u, p)n⃗ − 1

2(u · n⃗)u, that contains just half of the convection. Remark then that the numerical
flux FσK is constructed to approximate the term

FσK ≈
∫

σ
(−σ(u, p)n⃗ + (u · n⃗)u) .

This is why in the approximation it gives:

σ(u, p)n⃗ − 1
2(u · n⃗)u = σ(u, p)n⃗ − (u · n⃗)u + 1

2(u · n⃗)u ≈ −FσK + 1
2FσKuL.

IV.2.2 DDFV Schwarz algorithm

Let N ∈ N∗. We note δt = T
N and tn = nδt for n ∈ {0, . . . N}.

At each time step tn we apply the following parallel DDFV Schwarz algorithm: for arbitrary initial
guesses h0

Tj
∈ R∂Mj,Γ∪∂M∗

j,Γ and g0
Dj

∈ RDj , at each iteration l = 1, 2, . . . and i, j,∈ {1, 2}, j ̸= i

the algorithm performs two steps:

1. Compute (ul
Tj
, pl

Dj
,Ψl

Tj
) ∈ RTj × RDj × R∂M∗

j,Γ solution to

LTj ,µ
Ωj ,Γ(ul

Tj
,pl

Dj
,Ψl

Tj
, fTj , ūTj ,h

l−1
Tj
, gl−1

DΓ
j

) = 0. (S1)

2. Compute the new values of hl
TJ

and of gl
DΓ

j
by:

hl
Lj

= F l
σKi

− 1
2FσKiul

Li
+ λul

Li
, ∀Lj = Li ∈ ∂Mj,Γ

hl
K∗
j

= Ψl
K∗
i

− 1
2HK∗

j
ul

K∗
i

+ λul
K∗
i
, ∀K∗

j ∈ ∂M∗
j,Γ such that xK∗

j
= xK∗

i

gl
Dj

= −
(
mDidivDi(ul

Ti
) − βmDid

2
Di

∆Dipl
Di

)
+ αmDipl

Di
, ∀Dj ∈ DΓ

j such that xDj = xDi

(S2)
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To prove that the algorithm is well-posed, we need the following result:

Theorem IV.2.3 (A priori estimate on (Pj)) The scheme (Pj) satisfies the following:

1
δt

∥uTj ∥2
2 + 2

Re∥DDj uTj ∥2
2 − (pDj , divDj uTj )Dj

+ 1
2
∑

D∈DΓ
j

mσ(FσK − 1
2FσKuL) · uL + 1

2
∑

K∗∈∂M∗
j,Γ

m∂Ω∩∂K∗(ΨK∗ − 1
2HK∗uK∗) · uK∗

+ 1
2
∑

D∈Dj

m2
σ

2RemD
BσK|uK − uL|2 + 1

2
∑

D∈Dj

m2
σ∗

2RemD
Bσ∗K∗ |uK∗ − uL∗ |2 = [[fTj ,uTj ]]Tj . (IV.12)

Proof We multiply the equations on the primal and dual mesh of (Pj) by uTj and we sum over
all the control volumes:

1
2

[ 1
δt

( ∑
K∈Mj

mK |uK|2 +
∑

K∈M∗
j ∪∂M∗

j

mK∗ |uK∗ |2
)

+
∑

K∗∈∂M∗
j,Γ

m∂Ω∩∂K∗ΨK∗ · uK∗

+
∑

K∈Mj

uK ·
∑

D∈DK

mσFσK +
∑

K∗∈M∗
j ∪∂M∗

j

uK∗ ·
∑

D∈DK∗

mσ∗Fσ∗K∗

]
= [[fTj ,uTj ]]Tj . (IV.13)

By definition of the scalar products we have 1
2

[ 1
δt

( ∑
K∈Mj

mK |uK|2 +
∑

K∈M∗
j ∪∂M∗

j

mK∗ |uK∗ |2
)]

=

1
δt

∥uTj ∥2 and, by rewriting the fluxes as a sum of the diffusive and convective contribution we
have:

1
δt

∥uTj ∥2+1
2

 ∑
K∗∈∂M∗

j,Γ

m∂Ω∩∂K∗ΨK∗ · uK∗ +
∑

K∈Mj

uK ·
∑

D∈DK

mσFd
σK +

∑
K∗∈M∗

j ∪∂M∗
j

uK∗ ·
∑

D∈DK∗

mσ∗Fd
σ∗K∗

+
∑

K∈Mj

uK ·
∑

D∈DK

mσFc
σK +

∑
K∗∈M∗

j ∪∂M∗
j

uK∗ ·
∑

D∈DK∗

mσ∗Fc
σ∗K∗

 = [[fTj ,uTj ]]Tj .

We consider separately the two contributions. For the diffusion terms, we have, by the definition
of the divergence operator (Def. I.3.5):

1
2

 ∑
K∈Mj

uK ·
∑

D∈DK

mσFd
σK +

∑
K∗∈M∗

j ∪∂M∗
j

uK∗ ·
∑

D∈DK∗

mσ∗Fd
σ∗K∗


= −

[[
divTj

( 2
ReDDj uTj − pDj Id

)
,uTj

]]
Tj

− 1
4

∑
K∗∈∂M∗

j,Γ

uK∗ ·
∑

D∈Dext
K∗

mσFd
σK.
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We can now apply Green’s formula to the RHS, and remark that
∑

K∗∈∂M∗
j,Γ

uK∗ ·
∑

D∈Dext
K∗

mσFd
σK =

∑
D∈DΓ

j

mσFd
σK · (uK∗ + uL∗). We thus find:

1
2

 ∑
K∈Mj

uK ·
∑

D∈DK

mσFd
σK +

∑
K∗∈M∗

j ∪∂M∗
j

uK∗ ·
∑

D∈DK∗

mσ∗Fd
σ∗K∗


= 2

Re∥DDj uT∥2
2 − (pDj ,divDj uT)Dj +

∑
D∈DΓ

j

mσFd
σK · γσ(uT) −

∑
D∈DΓ

j

mσFd
σK · uK∗ + uL∗

4 .

By the definition of the trace operator, we obtain:

1
2

 ∑
K∈Mj

uK ·
∑

D∈DK

mσFd
σK +

∑
K∗∈M∗

j ∪∂M∗
j

uK∗ ·
∑

D∈DK∗

mσ∗Fd
σ∗K∗


= 2

Re∥DDj uT∥2
2 − (pDj ,divDj uT)Dj + 1

2
∑

D∈DΓ
j

mσFd
σK · uL. (IV.14)

For the convection terms:

1
2

 ∑
K∈Mj

uK ·
∑

D∈DK

mσFc
σK +

∑
K∗∈M∗

j ∪∂M∗
j

uK∗ ·
∑

D∈DK∗

mσ∗Fc
σ∗K∗

 := 1
2(T1 + T2)

We estimate the term T1; we first integrate by parts:

T1 =
∑

K∈Mj

uK ·
∑

D∈DK

mσFc
σK

=
∑

D∈Dj

mσFc
σK · (uK − uL) +

∑
D∈DΓ

j

mσFc
σK · uL.

We replace the definition of Fc
σK for all D ∈ Dj :

T1 =
∑

D∈Dj

mσFσK
uK + uL

2 · (uK − uL) +
∑

D∈Dj

m2
σ

2RemD
BσK|uK − uL|2 +

∑
D∈DΓ

j

mσFc
σK · uL

= 1
2
∑

D∈Dj

mσFσK(|uK|2 − |uL|2) +
∑

D∈Dj

m2
σ

2RemD
BσK|uK − uL|2 +

∑
D∈DΓ

j

mσFc
σK · uL.

Passing to the sum over primal cells K for the first term and applying Prop. IV.1.2 we get:

T1 = 1
2
∑

K∈Mj

|uK|2
∑

D∈DK

mσFσK︸ ︷︷ ︸
=0

−1
2
∑

D∈DΓ
j

mσFσK|uL|2 +
∑

D∈Dj

m2
σ

2RemD
BσK|uK − uL|2 +

∑
D∈DΓ

j

mσFc
σK · uL.

It can be rewritten as:

T1 =
∑

D∈DΓ
j

mσ(Fc
σK − 1

2FσKuL) · uL +
∑

D∈Dj

m2
σ

2RemD
BσK|uK − uL|2 (IV.15)
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We estimate the term T2; we first integrate by parts:

T2 =
∑

K∗∈M∗
j ∪∂M∗

j

uK∗ ·
∑

D∈DK∗

mσ∗Fc
σ∗K∗

=
∑

D∈Dj

mσ∗Fc
σ∗K∗ · (uK∗ − uL∗).

We replace the definition of Fc
σK for all D ∈ Dj :

T2 =
∑

D∈Dj

mσ∗Fσ∗K∗
uK∗ + uL∗

2 · (uK∗ − uL∗) +
∑

D∈Dj

m2
σ∗

2RemD
Bσ∗K∗ |uK∗ − uL∗ |2

= 1
2
∑

D∈Dj

mσ∗Fσ∗K∗(|uK∗ |2 − |uL∗ |2) +
∑

D∈Dj

m2
σ∗

2RemD
Bσ∗K∗ |uK∗ − uL∗ |2.

Passing to the sum over dual cells K∗ for the first term we get:

T2 = 1
2

∑
K∗∈M∗

j ∪∂M∗
j

|uK∗ |2
∑

D∈DK∗

mσ∗Fσ∗K∗ +
∑

D∈Dj

m2
σ∗

2RemD
Bσ∗K∗ |uK∗ − uL∗ |2. (IV.16)

From the definition of Fσ∗K∗ and by Prop. IV.1.2 we have that ∑D∈DK∗ mσ∗Fσ∗K∗ = 0 for all K∗ ∈ M∗
j

and ∑D∈DK∗ mσ∗Fσ∗K∗ = −m∂Ω∩∂K∗HK∗ for all K∗ ∈ ∂M∗
j,Γ, that gives:

T2 = −1
2

∑
K∗∈∂M∗

j,Γ

m∂Ω∩∂K∗HK∗ |uK∗ |2 +
∑

D∈Dj

m2
σ∗

2RemD
Bσ∗K∗ |uK∗ − uL∗ |2.

If we put the estimates (IV.14),(IV.15) and (IV.16) together, we find:

1
δt

∥uTj ∥2 + 2
Re∥DDj uTj ∥2

2 − (pDj ,divDj uTj )Dj

+ 1
2
∑

D∈DΓ
j

mσ(Fd
σK + Fc

σK − 1
2FσKuL) · uL + 1

2
∑

K∗∈∂M∗
j,Γ

m∂Ω∩∂K∗ΨK∗ · uK∗ − 1
4

∑
K∗∈∂M∗

j,Γ

m∂Ω∩∂K∗HK∗ |uK∗ |2

+ 1
2
∑

D∈Dj

m2
σ

2RemD
BσK|uK − uL|2 + 1

2
∑

D∈Dj

m2
σ∗

2RemD
Bσ∗K∗ |uK∗ − uL∗ |2 = [[fTj ,uTj ]]Tj ,

that, since Fd
σK + Fc

σK = FσK, leads to our result:

1
δt

∥uTj ∥2
2 + 2

Re∥DDj uTj ∥2
2 − (pDj ,divDj uTj )Dj

+ 1
2
∑

D∈DΓ
j

mσ(FσK − 1
2FσKuL) · uL + 1

2
∑

K∗∈∂M∗
j,Γ

m∂Ω∩∂K∗(ΨK∗ − 1
2HK∗uK∗) · uK∗

+ 1
2
∑

D∈Dj

m2
σ

2RemD
BσK|uK − uL|2 + 1

2
∑

D∈Dj

m2
σ∗

2RemD
Bσ∗K∗ |uK∗ − uL∗ |2 = [[fTj ,uTj ]]Tj .

Thanks to Thm. IV.2.3, we are able to deduce the following:

Theorem IV.2.4 (Wellposedness of the DDFV subdomain problem) Under the hypoth-
esis (Hp) and λ, β, α > 0, the problem (Pj) is well-posed.
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Proof By linearity we can prove that if fTj = 0 = hTj = gDj , then uTj = 0 = ΨTj and pDj = 0.
Starting from the estimate (IV.12) of Thm. IV.2.3, we apply:

• the transmission conditions on the sums over DΓ
j and ∂M∗

j,Γ:

−FσK + 1
2FσKuL + λuL = hL ∀σ ∈ ∂Mj,Γ,

−ΨK∗ + 1
2HK∗ uK∗ + λuK∗ = hK∗ ∀K∗ ∈ ∂M∗

j,Γ,

• the conditions on the equation of conservation of mass:

divD(uT) − βmDd
2
D ∆DpD = 0 ∀D ∈ Dj \ DΓ

j ,

divD(uT) − βmDd
2
D ∆DpD + αmDpD = gD ∀D ∈ DΓ

j .

This implies:

1
δt

∥uTj ∥2
2 + 2

Re∥DDj uTj ∥2
2 + β|pD|2h

+ α
∑

D∈DΓ
j

mD|pD|2 + λ

2
∑

D∈DΓ
j

mσ|uL|2 + λ

2
∑

K∗∈∂M∗
j,Γ

m∂Ω∩∂K∗ |uK∗ |2

+ 1
2
∑

D∈Dj

m2
σ

2RemD
BσK|uK − uL|2 + 1

2
∑

D∈Dj

m2
σ∗

2RemD
Bσ∗K∗ |uK∗ − uL∗ |2

= [[fTj ,uTj ]]Tj + (pDj , gDj )DΓ
j

+ 1
2
∑

D∈DΓ
j

mσhL · uL + 1
2

∑
K∗∈∂M∗

j,Γ

m∂Ω∩∂K∗hK∗ · uK∗ . (IV.17)

If now we impose fTj = 0 = hTj = gDj in (IV.17), we have:

1
δt

∥uTj ∥2
2 + 2

Re∥DDj uT∥2
2 + β|pD|2h

+α
∑

D∈DΓ
j

mD|pD|2 + λ

2
∑

D∈DΓ
j

mσ|uL|2 + λ

2
∑

K∗∈∂M∗
j,Γ

m∂Ω∩∂K∗ |uK∗ |2

︸ ︷︷ ︸
≥0

+ 1
2
∑

D∈Dj

m2
σ

2RemD
BσK|uK − uL|2 + 1

2
∑

D∈Dj

m2
σ∗

2RemD
Bσ∗K∗ |uK∗ − uL∗ |2

︸ ︷︷ ︸
≥0

= 0,

that leads to:
1
δt

||uTj ||22 + 2
Re ||DDj uT||22 + β|pD|2h ≤ 0,

from which we deduce that uTj = 0 and pDj is a constant (we recall that β > 0). Thanks to the
transmission conditions on DΓ

j , since α > 0 and uTj = 0, we obtain pDj = 0. Finally, thanks to
the transmission condition on ∂M∗

j,Γ and uTj = 0, we also have ΨTj = 0.
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IV.3 Convergence analysis of the DDFV Schwarz algorithm

Before studying the convergence of the DDFV Schwarz algorithm towards the solution of the
Navier-Stokes problem defined on Ω, we recall some remarks that may be useful to understand the
analysis. Consider the composite mesh of Fig. IV.2; remark that:

• a diamond D that intersects Γ in the domain Ω can be written as the union of diamonds
D1, D2 respectively in Ω1,Ω2. Moreover, on the subdomain meshes we have the additional
unknowns uL on Γ with respect to the mesh on Ω;

• equivalently, a volume K∗ that intersects Γ in Ω is the union of K∗
1, K∗

2 in Ω1,Ω2. In particular,
an edge σ∗ = [xK1 , xK2 ] can be split into σ∗ = σ∗

1 ∪ σ∗
2 = [xK1 , xL] ∪ [xL, xK2 ];

• an edge σ = [xK∗ , xL∗ ] on the interface Γ is shared by all the meshes.

Those characterizations of the meshes imply that, at the limit, the fluxes need to satisfy the
following:

mσFσK = mσFσK1 = −mσFσK2 , ∀D ∈ DΓ (IV.18)

mσ∗Fσ∗K∗ = mσ∗
1
Fσ∗

1 K∗ +mσ∗
2
Fσ∗

2 K∗ , ∀σ∗ = σ∗
1 ∪ σ∗

2, K∗ ∈ ∂M∗
Γ. (IV.19)

In order to obtain this properties, it will become necessary to modify the fluxes on the interface,
either for the limit or for the subdomain problem. For this reason, the convergence will be studied
in two steps.

The first step will be to identify the limit of Schwarz algorithm defined in Sec. IV.2.2. We
will show that this limit is still a DDFV scheme for the problem (IV.1), but with modified fluxes
on Γ. We will then prove convergence to this limit scheme, to which we will refer as (P̃).

Secondly, in Sec. IV.4, we will show that it is possible to modify the fluxes of the Schwarz
algorithm (S1) in order to converge exactly to (P).

IV.3.1 The limit problem (P̃)

The following scheme is another DDFV approximation of (IV.1), on the domain Ω; what changes
with respect to (P) are the fluxes on the interface Γ.

To obtain our scheme, we will not detail the steps here since we proceed as in Sec. IV.1.
Given (ūT, p̄D), satisfying divD(ūT) − βd2

D ∆Dp̄D = 0, we look for uT ∈
(
R2)T and pD ∈ RD such

that: 

mK
uK

δt
+

∑
D∈DK\DΓ

K

mσFσK +
∑

D∈DΓ
K

mσF̃σK = mKfK +mK
ūK

δt
∀K ∈ M

mK∗
uK∗

δt
+

∑
D∈DK∗ \DΓ

K∗

mσ∗Fσ∗K∗ +
∑

D∈DΓ
K∗

mσ∗F̃σ∗K∗ = mK∗fK∗ +mK∗
ūK∗

δt
∀K∗ ∈ M∗

u∂M = 0
u∂M∗ = 0

mDdivD(uT) − βmDd
2
D ∆DpD = 0 ∀D ∈ D∑

D∈D

mDpD = 0,

(P̃)
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with β > 0. At the interior of the domain, the fluxes coincide with the fluxes in (P), see (IV.5).
On the interface, they are defined as:

mσF̃σK = −mσσ
D(uT, pD) n⃗σK +mσFσK

(uK + uL

2

)
+ m2

σ

2RemD
B̃σK(uK − uL),

mσ∗F̃σ∗K∗ = −mσ∗σD(uT, pD) n⃗σ∗K∗ +mσ∗Fσ∗K∗

(uK∗ + uL∗

2

)
+ m2

σ∗

2RemD
B̃σ∗K∗(uK∗ − uL∗),

where B̃σK and B̃σ∗K∗ are defined in the next section in Prop. IV.3.4 and Prop. IV.3.5.

IV.3.1.1 Definition of B̃σK and B̃σ∗K∗

We first give the following definition of some matrices that will be useful in the following; the index
i, j relating to the subdomain will be specified if the matrix is not symmetric with respect to the
subdomains.

Definition IV.3.1 We define for i = 1, 2, σ ∈ ∂Mi,Γ and P = Id + n⃗σK ⊗ n⃗σK the matrix:

Ai = m2
σ

2RemDi

(P +BσKiId),

where we recall that BσKi = B
(2mDi Re

mσ
FσKi

)
and we define:

A = A1 +A2.

Remark IV.3.2 The matrix A = A1 + A2 is symmetric and definite positive, thus invertible,
since it is the sum of two symmetric and definite positive matrices.

In fact, thanks to the definition of P , if n⃗σK =
(
x

y

)
, we have:

Ai =
(

1 +BσKi + x2 xy

xy 1 +BσKi + y2

)
,

which is symmetric and for any v =
(
v1
v2

)
it holds:

⟨Aiv, v⟩ = (1 +BσKi)(v2
1 + v2

2) + (xv1 + yv2)2 ≥ 0 and ⟨Aiv, v⟩ = 0 ⇐⇒ v = 0,

thanks to Hypothesis (Hp), which implies BσKi ≥ 0.
For i, j = 1, 2, i ̸= j, since Ai and Aj are polynomial in P , the following properties hold:

AiAj = AjAi,

AjA
−1 = A−1Aj ,

since from Hyp. (Hp) we have BσKi = BσKj for σ ∈ ∂Mi,Γ.

The fluxes F̃σK, F̃σ∗K∗ are constructed in order to satisfy the properties (IV.18)-(IV.19) defined in
the introduction of Sec. IV.3.
It is important to recall that (P̃) is a scheme defined on the mesh T on Ω; in particular, this means
that there are no additional unknowns uL on the interface Γ, see Fig. IV.2. The following results
apply for a general diamond:
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Proposition IV.3.3 Let D ∈ DΓ be a diamond and let D1, D2 be the two semi-diamonds such that
D = D1 ∪ D2, see Fig. IV.4 . We denote by (xK, xK∗ , xL∗ , xL) its vertices and by (xK1 , xK∗ , xL∗ , xσ),
(xK2 , xK∗ , xL∗ , xσ) the vertices of D1 and D2. Then, there exists a unique uσ that, for σ = K1|K2, verifies

FσK1 = −FσK2 (IV.20)

given by:
uσ = A−1

[
A1uK1 +A2uK2 + 1

2mσFσK1(uK1 − uK2)
]
. (IV.21)

where A,A1 and A2 are given in Def. IV.3.1.

⊗

⊗

�

�

⊗

xL∗

xK∗

xL = xK2

xK = xK1 n⃗σK1σ=K1|K2
xσ

Fig. IV.4 A diamond D, of vertices xK, xK∗ , xL∗ , xL as a union of two semi-diamonds: D1 of vertices
xK1 , xK∗ , xσ, xL∗ and D2 of vertices xK2 , xK∗ , xσ, xL∗ . In particular, σ∗

1 = [xK1 , xL] and σ∗
2 = [xL, xK2 ].

Proof The condition (IV.20) is a linear equation in uσ. In fact, FσK1 is a flux on D1, of vertices
xK1 , xK∗ , xL∗ , xσ, and FσK2 is a flux on D2, of vertices xK2 , xK∗ , xL∗ , xσ. If we insert the definitions of
the fluxes, (IV.20) becomes:

mσFσK1 = −mσσ
D1(uT, pD) n⃗σK1 +mσFσK1

(uK1 + uσ

2

)
+ m2

σ

2RemD1
BσK1(uK1 − uσ)

= −FσK2 = mσσ
D2(uT,pD) n⃗σK2 −mσFσK2

(uK2 + uσ

2

)
− m2

σ

2RemD2
BσK2(uK2 − uσ) (IV.22)

The strain rate tensors can be written by using the matrix P as:

−mσσ
D1(uT,pD) · n⃗σK1

= m2
σ

2RemD1
P (uK1 − uσ) +

mσmσ∗
1

2RemD1
(n⃗σK1 · n⃗σ∗K∗Id + n⃗σ∗K∗ ⊗ n⃗σK1)(uK∗ − uL∗) +mσpDn⃗σK1 , (IV.23)

mσσ
D2(uT,pD) · n⃗σK2

= − m2
σ

2RemD2
P (uK2 − uσ) −

mσmσ∗
2

2RemD2
(n⃗σK2 · n⃗σ∗K∗Id + n⃗σ∗K∗ ⊗ n⃗σK2)(uK∗ − uL∗) −mσpDn⃗σK2 .

(IV.24)

If we replace (IV.23), (IV.24) into (IV.22), since n⃗σK1 = −n⃗σK2 and
mσmσ∗

1

2RemD1
= 1

sin(αD) =
mσmσ∗

2

2RemD2
,

the contributions of the pressure pD and of the velocity uK∗ ,uL∗ on the vertices cancel.
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So (IV.22) becomes:

m2
σ

2RemD1
P (uK1 − uσ) +mσFσK1

(uK1 + uσ

2

)
+ m2

σ

2RemD1
BσK1(uK1 − uσ) =

− m2
σ

2RemD2
P (uK2 − uσ) −mσFσK2

(uK2 + uσ

2

)
− m2

σ

2RemD2
BσK2(uK2 − uσ).

We group the terms in uσ thanks to FσK1 = −FσK2 , to obtain:

m2
σ

2RemD1
(P +BσK1Id) uK1 + m2

σ

2RemD2
(P +BσK2Id) uK2 + 1

2mσFσK1(uK1 − uK2) =(
m2

σ

2RemD1
(P +BσK1Id) + m2

σ

2RemD2
(P +BσK2Id)

)
uσ. (IV.25)

By Def. IV.3.1, (IV.25) becomes:

A1uK1 +A2uK2 + 1
2mσFσK1(uK1 − uK2) = Auσ. (IV.26)

It is sufficient to show that this expression is injective; if (uT,pD) are equal to zero, we need
to deduce that uσ is zero. This is true because, if (uT,pD) are zero, this means in particular
uK1 = uK2 = 0; so condition (IV.26) becomes:

Auσ = 0.

Since the matrix A is definite positive, by Rem. IV.3.2, we deduce uL = 0.

The following proposition is a way to obtain property (IV.18), by modifying the fluxes on the
interface:

Proposition IV.3.4 Let D be a diamond and let D1, D2 be the two semi-diamonds such that D =
D1 ∪ D2, see Fig. IV.4 . Then there exists a unique flux F̃σK on σ = K1|K2 such that

mσF̃σK = mσFσK1 = −mσFσK2 , (IV.27)

given by

B̃σK = 2RemD

m2
σ

(
A1A2 +

(1
2mσFσK

)2
Id
)
A−1 − P, (IV.28)

mσF̃σK = −mσσ
D(uT, pD) n⃗σK +mσFσK

(uK1 + uK2

2

)
+ m2

σ

2RemD
B̃σK(uK1 − uK2). (IV.29)

Proof We consider FσK1 and we refer to Fig. IV.4: we recall that it is a flux on the semi-diamond
D1 of vertices xK1 , xK∗ , xL∗ , xσ. Thanks to (IV.23), it can be written as:

mσFσK1 = A1(uK1 − uσ) +mσFσK1

(uK1 + uσ

2

)
+
mσmσ∗

1

2RemD1
(n⃗σK1 · n⃗σ∗K∗Id + n⃗σ∗K∗ ⊗ n⃗σK1)(uK∗ − uL∗) +mσpDn⃗σK1 .



IV.3 Convergence analysis of the DDFV Schwarz algorithm 139

By grouping the terms in uK1 and uσ in mσFσK1 and injecting the definition (IV.21) of uσ , that
ensures (IV.20), i.e. mσFσK1 = −mσFσK2

mσFσK1 =
(
A1 + 1

2mσFσK1Id
)

uK1+
(

−A1 + 1
2mσFσK1Id

)
A−1

[
A1uK1 +A2uK2 + 1

2mσFσK1(uK1 − uK2)
]

+
mσmσ∗

1

2RemD1
(n⃗σK1 · n⃗σ∗K∗Id + n⃗σ∗K∗ ⊗ n⃗σK1)(uK∗ − uL∗) +mσpDn⃗σK1 .

By regrouping the terms in uK1 and uK2 we have:

mσFσK1 =
[(
A1 + 1

2mσFσK1Id
)

+
(

−A1 + 1
2mσFσK1Id

)
A−1

(
A1 + 1

2mσFσK1Id
)]

uK1

+
(

−A1 + 1
2mσFσK1Id

)
A−1

(
A2 − 1

2mσFσK1

)
uK2

+
mσmσ∗

1

2RemD1
(n⃗σK1 · n⃗σ∗K∗Id + n⃗σ∗K∗ ⊗ n⃗σK1)(uK∗ − uL∗) +mσpDn⃗σK1 .

As by Rem. IV.3.2, the matrices A and Ai commute, for i = 1, 2, we can write:

mσFσK1 =
(
A1 + 1

2mσFσK1Id
) =A2︷ ︸︸ ︷

A−A1 +1
2mσFσK1Id

A−1 uK1

+
(

−A1 + 1
2mσFσK1Id

)(
A2 − 1

2mσFσK1Id
)
A−1 uK2

+
mσmσ∗

1

2RemD1
(n⃗σK1 · n⃗σ∗K∗Id + n⃗σ∗K∗ ⊗ n⃗σK1)(uK∗ − uL∗) +mσpDn⃗σK1 .

We develop the computations and we find:

mσFσK1 =
[(
A1A2 +

(1
2mσFσK

)2
Id
)
A−1

]
(uK1 − uK2)

+
mσmσ∗

1

2RemD1
(n⃗σK1 · n⃗σ∗K∗Id + n⃗σ∗K∗ ⊗ n⃗σK1)(uK∗ − uL∗) +mσpDn⃗σK1 +mσFσK1

(uK1 + uK2

2

)
.

If we define:
B̃σK = 2RemD

m2
σ

(
A1A2 +

(1
2mσFσK

)2
Id
)
A−1 − P,

we get:
m2

σ

2RemD
(P + B̃σK) =

(
A1A2 +

(1
2mσFσK

)2
Id
)
A−1,

and since mσFσK = mσFσK1 = −mσFσK2 , n⃗σK = n⃗σK1 and
mσ∗

1
mD1

= mσ∗
mD

(see Fig. IV.4), we end up
with:

mσFσK1 = m2
σ

2RemD

(
P + B̃σK

)
(uK1 − uK2)

+ mσmσ∗

2RemD
(n⃗σK · n⃗σ∗K∗Id + n⃗σ∗K∗ ⊗ n⃗σK)(uK∗ − uL∗) +mσpDn⃗σK +mσFσK

(uK1 + uK2

2

)
.
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We remark that now the expression of mσFσK1 depends only on the unknowns uK1 ,uK2 ,uK∗ ,uL∗ ; so
it is a flux defined on the entire diamond D (see Fig. IV.4). It can be rewritten as:

mσFσK1 = −mσσ
D(uT, pD) n⃗σK +mσFσK

(uK1 + uK2

2

)
+ m2

σ

2RemD
B̃σK(uK1 − uK2) := mσF̃σK.

so that we find (IV.29).

The following proposition is a way to obtain property IV.19:

Proposition IV.3.5 Let D be a diamond and let D1, D2 be the two semi-diamonds such that D =
D1 ∪ D2, see Fig. IV.4 . Then, for K∗ ∈ ∂M∗

Γ, there exists a unique flux F̃σ∗K∗ on σ∗ = σ∗
1 ∪ σ∗

2 =
[xK1 , xL] ∪ [xL, xK2 ] such that

mσ∗F̃σ∗K∗ = mσ∗
1
Fσ∗

1 K∗ +mσ∗
2
Fσ∗

2 K∗ , (IV.30)

given by
B̃σ∗K∗ =

mσ∗
1

mσ∗
Bσ∗

1 K∗ +
mσ∗

2

mσ∗
Bσ∗

2 K∗ . (IV.31)

F̃σ∗K∗ = −mσ∗σD(uT, pD) n⃗σ∗K∗ +mσ∗Fσ∗K∗

(uK∗ + uL∗

2

)
+ m2

σ∗

2RemD
B̃σ∗K∗(uK∗ − uL∗) (IV.32)

Proof This is a direct consequence of the computation of (IV.30). By definition,

mσ∗
1
Fσ∗

1 K∗ = −mσ∗
1
σD(uT, pD) n⃗σ∗K∗ +mσ∗

1
Fσ∗K∗

1

(uK∗ + uL∗

2

)
+

m2
σ∗

1

2RemD1
Bσ∗

1 K∗(uK∗ − uL∗),

mσ∗
2
Fσ∗

2 K∗ = −mσ∗
2
σD(uT, pD) n⃗σ∗K∗ +mσ∗

2
Fσ∗K∗

2

(uK∗ + uL∗

2

)
+

m2
σ∗

2

2RemD2
Bσ∗

2 K∗(uK∗ − uL∗).

Since σ∗ = σ∗
1 ∪ σ∗

2, we have mσ∗ = mσ∗
1

+mσ∗
2

and
mσ∗

2
mD2

=
mσ∗

1
mD1

; by definition, it holds mσ∗Fσ∗K∗ =
mσ∗

1
Fσ∗K∗

1
+mσ∗

2
Fσ∗K∗

2
. So if we take the sum of the two fluxes, we get:

mσ∗
1
Fσ∗

1 K∗ +mσ∗
2
Fσ∗

2 K∗ = −mσ∗σD(uT, pD) n⃗σ∗K∗ +mσ∗Fσ∗K∗

(uK∗ + uL∗

2

)
+ m2

σ∗

2RemD1

[
mσ∗

1

mσ∗
Bσ∗

1 K∗ +
mσ∗

2

mσ∗
Bσ∗

2 K∗

]
(uK∗ − uL∗).

By defining B̃σ∗K∗ :=
mσ∗

1
mσ∗Bσ∗

1 K∗ +
mσ∗

2
mσ∗Bσ∗

2 K∗ , we obtain (IV.32).

Remark IV.3.6 Remark that, by construction, (P̃) is the limit of the Schwarz algorithm defined
in Sec. IV.2.2 if and only if (IV.28) and (IV.31) hold. This is equivalent to say that B̃σK is defined
as a function F of (BσK1 , BσK2) and B̃σ∗K∗ defined as a function G of (Bσ∗

1 K∗ , Bσ∗
2 K∗):

B̃σK = F (BσK1 , BσK2),
B̃σ∗K∗ = G(Bσ∗

1 K∗ , Bσ∗
2 K∗).

(IV.33)

IV.3.1.2 Wellposedness of the limit problem (P̃)

In the following theorem, we prove that the solution of the limit problem (P̃) exists and it is
unique. This will rely just on the expression of the new fluxes F̃σK, F̃σ∗K∗ .
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Theorem IV.3.7 Under the hypothesis (Hp) for BσK, Bσ∗K∗, problem (P̃) is well-posed.

Proof By Thm. IV.1.3, we need to verify that hypothesis (Hp) holds; since we are supposing it
for BσK, Bσ∗K∗ , we just need to verify it for B̃σK, B̃σ∗K∗ (the modified fluxes on the interface). As a
direct consequence of (IV.28) and (IV.31), we have:

B̃σK = B̃σL,

B̃σ∗K∗ = B̃σ∗L∗ .

In fact, if we consider a diamond on the interface between the two subdomains Ω1,Ω2, it can be
seen as the one in Fig. IV.4.
For K = K1 and L = K2, we have:

B̃σK = B̃σK1 = 2RemD

m2
σ

(
A1A2 +

(1
2mσFσK1

)2
Id
)
A−1 − P,

B̃σL = B̃σK2 = 2RemD

m2
σ

(
A2A1 +

(1
2mσFσK2

)2
Id
)
A−1 − P,

We remark that A,P do not depend on the index of the subdomain; moreover, mσFσK1 = −mσFσK2 ,
so that (mσFσK1)2 = (mσFσK2)2 and A1A2 = A2A1 from Rem. IV.3.2. So we can conclude
B̃σK = B̃σL.

For the dual flux, we have:
B̃σ∗K∗ =

mσ∗
1

mσ∗
Bσ∗

1 K∗ +
mσ∗

2

mσ∗
Bσ∗

2 K∗ ,

B̃σ∗L∗ =
mσ∗

1

mσ∗
Bσ∗

1 L∗ +
mσ∗

2

mσ∗
Bσ∗

2 L∗ .

Thanks to Hp. (Hp), we have Bσ∗
1 K∗ = Bσ∗

1 L∗ and Bσ∗
2 K∗ = Bσ∗

2 L∗ . So we get B̃σ∗K∗ = B̃σ∗L∗ .

We now have to prove that B̃σK, B̃σ∗K∗ are semi-definite positive.

If n⃗σK =
(
x

y

)
, then P = Id + n⃗σK ⊗ n⃗σK =

(
1 + x2 xy

xy 1 + y2

)
; if we insert the definition (IV.28) of

B̃σK, by defining two constants:

den = 4m2
σ(2 + 3BσK +B2

σK),

and
a = (mDReFσK)2(1 +BσK) + 8m2

σBσK + 12m2
σB

2
σK + 4m2

σB
3
σK,

we have
B̃σK = 1

den

[
aId + (mDReFσK)2

(
y2 −xy

−xy x2

)]
.

Let v =
(
v1
v2

)
; then:

⟨B̃σKv, v⟩ = 1
dena⟨v, v⟩ + (mDReFσK)2

den
(
y2v2

1 − 2xyv1v2 + x2v2
2

)
= 1

dena∥v∥2 + (mDReFσK)2

den (yv1 − xv2)2 ≥ 0,
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and
⟨B̃σKv, v⟩ = 0 ⇐⇒ v = 0,

thanks to hypothesis (Hp) on BσK, that ensures a ≥ 0 and den ≥ 0. So B̃σK is semi-definite positive.

For what concerns the dual flux, by (IV.31) we obtain directly that B̃σ∗K∗ is semi-definite positive
since it is the sum of two semi-definite positive matrices Bσ∗

1 K∗ and Bσ∗
2 K∗ (by (Hp)).

IV.3.1.3 Identification of the limit

In order to prove the convergence of the Schwarz algorithm towards the solution of (P̃), it is
necessary to project this solution, that is defined on Ω, on the subdomains Ωj , j = 1, 2.

Theorem IV.3.8 Let T be the composite mesh T = T1 ∪ T2 and (uT,pD) be the solution of the
DDFV scheme (P̃) on the domain Ω. For j ∈ {1, 2}, there exists a projection (u∞

Tj
, p∞

Dj
,Ψ∞

Tj
, h∞

Tj
, g∞

Dj
) ∈

RTj × RDj × R∂M∗
j,Γ × RTj × RDj of (uT,pD), such that:

LTj ,µ
Ωj ,Γ(u∞

Tj
, p∞

Dj
,Ψ∞

Tj
, fTj , ūTj ,h∞

Tj
, g∞

Dj
) = 0. (P∞)

Proof On the primal cells Mj ∪ ∂Mj,D and on the dual cells M∗
j ∪ ∂M∗

j,D ∪ ∂M∗
j,Γ we can simply

define the values of u∞
Tj

as the values of uT:

• for all K ∈ Mj and K∗ ∈ M∗
j ∪ ∂M∗

j,Γ, we set u∞
Kj

= uK and u∞
K∗
j

= uK∗ ,

• for all K ∈ ∂Mj,D and K∗ ∈ ∂M∗
j,D, we set u∞

Kj
= 0 and u∞

K∗
j

= 0.

• for all D ∈ Dj such that xD /∈ Γ, we set p∞
Dj

= pD.

• for all D ∈ Dj such that xD ∈ Γ, Dj ∈ DΓ
j and Di ∈ DΓ

i , we set p∞
Dj

= p∞
Di

= pD.

We then need to introduce new unknowns near the boundary Γ:

• for all L ∈ ∂Mj,Γ, we impose (see Prop. IV.3.3):

u∞
L = u∞

Lj
= u∞

Li
= A−1

[
AjuKj +AiuKi + 1

2mσFσK1(uKj − uKi)
]
. (IV.34)

• for all K∗ ∈ M∗ such that xK∗ ∈ Γ, K∗ = K∗
j ∪ K∗

i with K∗
j ∈ ∂M∗

j,Γ, we impose:

Ψ∞
K∗
j

= −Ψ∞
K∗
i

= −
mK∗

j

m∂Ω∩∂K∗

u∞
K∗
j

δt
− 1
m∂Ω∩∂K∗

∑
D∈DK∗

j

F∞
σ∗

j K∗ +
mK∗

j

m∂Ω∩∂K∗
fK∗

j
+

mK∗
j

m∂Ω∩∂K∗

ūK∗
j

δt
.

(IV.35)

• for all L = Lj ∈ ∂Mj,Γ and for all K∗ ∈ M∗ such that xK∗ ∈ Γ, K∗ = K∗
j ∪ K∗

i with K∗
j ∈ ∂M∗

j,Γ,
K∗

i ∈ ∂M∗
i,Γwe impose:

h∞
Lj

= F∞
σKi

− 1
2FσKiu∞

L + λu∞
L ,

h∞
K∗
j

= Ψ∞
K∗
i

− 1
2HK∗

i
u∞

K∗
i

+ λu∞
K∗
i
.

• for all D ∈ D such that xD ∈ Γ, Dj ∈ DΓ
j and Di ∈ DΓ

i , we set

g∞
Dj

= −
(
mDidivDi(u∞

Ti
) − βmDid

2
Di

∆Dip∞
Di

)
+ αmDip∞

Di
.
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Consequence on the equations.
We now show that from a solution (uT, pD) of the DDFV scheme (P̃) we built a solution to (P∞).

• ∀K ∈ M , (uT,pD) satisfies:

mK
uK

δt
+

∑
D∈DK\DΓ

K

mσFσK +
∑

D∈DΓ
K

mσF̃σK = mKfK +mK
ūK

δt
.

If we look at the composite mesh (see Fig. IV.2), we can remark that the primal cells K ∈ M

correspond to Kj ∈ Mj (or to Ki ∈ Mi). This implies thatmK = mKj , mKfK =
∫

K f(x)dx = mKjfKj

and mK
ūK

δt
= mKj

ūKj

δt
.

Moreover, for a diamond D ∈ DK \ DΓ
K , remark that the limit unknowns u∞

Kj
,u∞

K∗
j
,p∞

Dj
on Tj

for j = 1, 2 coincide with uK,uK∗ , pD on T; so if

mσF∞
σKj

= −mσσ
D(u∞

Tj
, p∞

Dj
) n⃗σKj +mσFσK

(
u∞

Kj
+ u∞

Lj

2

)
+ m2

σ

2RemD
BσK(u∞

Kj
− u∞

Lj
),

we have: ∑
D∈DK\DΓ

K

mσFσK =
∑

D∈DKj \DΓ
Kj

mσF∞
σKj
.

For a diamond D ∈ DΓ
K , if

mσF∞
σKj

= −mσσ
D(u∞

Tj
,p∞

Dj
) n⃗σKj +mσFσK

(
u∞

Kj
+ u∞

L

2

)
+ m2

σ

2RemD
BσKj (u∞

Kj
− u∞

L ),

thanks to the choice (IV.34) of u∞
L for all L ∈ ∂Mj,Γ and thanks to Prop. IV.3.4, we have

mσF̃σK = mσF∞
σKj
,

that implies: ∑
D∈DΓ

K

mσF̃σK =
∑

D∈DΓ
Kj

mσF∞
σKj
.

So in the end (u∞
Tj
,p∞

Dj
,Ψ∞

Tj
) satisfies:

mKj

u∞
Kj

δt
+
∑

D∈DKj

mσF∞
σKj

= mKjfKj +mKj

ūKj

δt
, ∀Kj ∈ Mj . (IV.36)

• ∀K∗ ∈ M∗, (uT,pD) satisfies:

mK∗
uK∗

δt
+

∑
D∈DK∗ \DΓ

K∗

mσ∗Fσ∗K∗ +
∑

D∈DΓ
K∗

mσ∗F̃σ∗K∗ = mK∗fK∗ +mK∗
ūK∗

δt
. (IV.37)

We need to distinguish two cases.

1. If ∂K∗ ∩ Γ = ∅, equation (IV.37) reduces to:

mK∗
uK∗

δt
+

∑
D∈DK∗

mσ∗Fσ∗K∗ = mK∗fK∗ +mK∗
ūK∗

δt
,
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and the cells K∗ ∈ M∗ correspond to K∗
j ∈ M∗

j (or to Ki ∈ M∗
i ). This implies that

mK∗ = mK∗
j
, mK∗fK∗ =

∫
K∗ f(x)dx = mK∗

j
fK∗

j
, mK∗

ūK∗

δt
= mK∗

j

ūK∗
j

δt
and mσ∗ = mσ∗

j
.

Moreover, for a diamond D ∈ DK∗ \ DΓ
K∗ , (that is the case here since we are supposing

∂K∗ ∩ Γ = ∅) remark that the limit unknowns u∞
Kj
,u∞

K∗
j
, p∞

Dj
on Tj for j = 1, 2 coincide

with uK,uK∗ , pD on T. So if

mσ∗F∞
σ∗

j K∗ = −mσ∗
j
σDj (u∞

Tj
, p∞

Dj
) n⃗σ∗K∗+mσ∗

j
Fσ∗

j K∗

(u∞
K∗
j

+ u∞
L∗
j

2

)
+ m2

σ

2RemDj

Bσ∗
j K∗(u∞

K∗
j
−u∞

L∗
j
),

we have: ∑
D∈DK∗

mσ∗Fσ∗K∗ =
∑

D∈DK∗
j

mσ∗F∞
σ∗

j K∗ .

So (u∞
Tj
,p∞

Dj
,Ψ∞

Tj
) satisfies on the interior dual mesh:

mK∗
j

u∞
K∗
j

δt
+

∑
D∈DK∗

j

mσF∞
σ∗

j K∗ = mKjfK∗
j

+mK∗
j

ūK∗
j

δt
, ∀K∗

j ∈ M∗
j . (IV.38)

2. If ∂K∗ ∩Γ ̸= ∅, the cell K∗ can be written as the union of Kj ∈ ∂M∗
j,Γ and Ki ∈ ∂M∗

i,Γ. This
implies that mK∗ = mK∗

j
+mK∗

i
, mσ∗ = mσ∗

j
+mσ∗

i
, mK∗fK∗ =

∫
K∗ f(x)dx = mK∗

j
fK∗

j
+mK∗

i
fK∗

i

and mK∗
ūK∗

δt
= mK∗

j

ūK∗
j

δt
+mK∗

i

ūK∗
i

δt
.

Moreover, for a diamond D ∈ DK∗ \DΓ
K∗ , remark that the limit unknowns u∞

Kj
,u∞

K∗
j
,p∞

Dj
on

Tj for j = 1, 2 coincide with uK,uK∗ , pD on T. So if

mσ∗F∞
σ∗

j K∗ = −mσ∗σD(u∞
Tj
,p∞

Dj
) n⃗σ∗K∗ +mσ∗Fσ∗

j K∗

(u∞
K∗
j

+ u∞
L∗
j

2

)
+ m2

σ

2RemD
Bσ∗

j K∗(u∞
K∗
j

−u∞
L∗
j
),

and

mσ∗F∞
σ∗

i K∗ = −mσ∗
i
σDj (u∞

Ti
, p∞

Di
) n⃗σ∗K∗+mσ∗

i
Fσ∗

i K∗

(u∞
K∗
i

+ u∞
L∗
i

2

)
+ m2

σ

2RemDi

Bσ∗
i K∗(u∞

K∗
i
−u∞

L∗
i
),

we have: ∑
D∈DK∗ \DΓ

K∗

mσ∗Fσ∗K∗ =
∑

D∈DK∗
j

\DΓ
K∗
j

mσ∗
j
F∞

σ∗
j K∗ +

∑
D∈DK∗

i
\DΓ

K∗
i

mσ∗
i
F∞

σ∗
i K∗ .

For a diamond D ∈ DΓ
K∗ , thanks to (IV.30), we have

mσ∗F̃σ∗K∗ = mσ∗
j
F∞

σ∗
j K∗ +mσ∗

i
F∞

σ∗
i K∗ ,

that implies: ∑
D∈DΓ

K∗

mσ∗Fσ∗K∗ =
∑

D∈DΓ
K∗
j

mσ∗
j
F∞

σ∗
j K∗ +

∑
D∈DΓ

K∗
i

mσ∗
i
F∞

σ∗
i K∗ .
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We deduce from (IV.37):

mK∗
j

u∞
K∗
j

δt
+mK∗

i

u∞
K∗
i

δt
+

∑
D∈DK∗

j

mσ∗
j
F∞

σ∗
j K∗ +

∑
D∈DK∗

i

mσ∗
i
F∞

σ∗
i K∗

= mK∗
j
fK∗

j
+mK∗

i
fK∗

i
+mK∗

j

ūK∗
j

δt
+mK∗

i

ūK∗
i

δt
.

By definition, Ψ∞
K∗
i

satisfies:

Ψ∞
K∗
i

= −Ψ∞
K∗
j

= −
mK∗

i

m∂Ω∩∂K∗

u∞
K∗
i

δt
− 1
m∂Ω∩∂K∗

∑
D∈DK∗

i

mσ∗
i
F∞

σ∗
i K∗ +

mK∗
i

m∂Ω∩∂K∗
fK∗

i
+

mK∗
i

m∂Ω∩∂K∗

ūK∗
i

δt
,

so (u∞
Tj
, p∞

Dj
,Ψ∞

Tj
) satisfies on the boundary dual mesh:

mK∗
j

u∞
K∗
j

δt
+

∑
D∈DK∗

j

mσ∗
j
F∞

σ∗
j K∗ +m∂Ω∩∂K∗Ψ∞

K∗
j

= mK∗
j
fK∗

j
+mK∗

j

ūK∗
j

δt
, ∀K∗

j ∈ ∂M∗
j,Γ.

(IV.39)

• ∀K ∈ M, with ∂K ∩ Γ ̸= ∅, if we look at the composite mesh, the diamond D ∈ DΓ
K can be

written as the union of Dj ∈ DΓ
Kj

and Di ∈ DΓ
Ki

. By definition, we have FσKj = −FσKi ; moreover,
thanks to the choice (IV.34) of u∞

L for all L ∈ ∂Mj,Γ and thanks to Prop. IV.3.4, we have
mσF∞

σKj
= −mσF∞

σKi
.

From the definition of h∞
Ti

, we get the relation:

h∞
L = F∞

σKi
− 1

2FσKiu∞
L + λu∞

L = −F∞
σKj

+ 1
2FσKj u∞

L + λu∞
L .

So (u∞
Tj
,p∞

Dj
,Ψ∞

Tj
) satisfies:

F∞
σKi

− 1
2FσKiu∞

L + λu∞
L = −F∞

σKj
+ 1

2FσKj u∞
L + λu∞

L . (IV.40)

• ∀K∗ ∈ M∗, with ∂K∗ ∩ Γ ̸= ∅, the cell K∗ can be written as the union of Kj ∈ ∂M∗
j,Γ and

Ki ∈ ∂M∗
i,Γ. By definition, we have HK∗

j
= −HK∗

i
and Ψ∞

K∗
i

= −Ψ∞
K∗
j

. This leads, from the
definition of h∞

Ti
, to the relation:

h∞
K∗

j
= Ψ∞

K∗
i

− 1
2HK∗

i
u∞

K∗
i

+ λu∞
K∗
i

= −Ψ∞
K∗
j

+ 1
2HK∗

j
u∞

K∗
j

+ λu∞
K∗
j
.

So (u∞
Tj
,p∞

Dj
,Ψ∞

Tj
) satisfies:

Ψ∞
K∗
i

− 1
2HK∗

i
u∞

K∗
i

+ λu∞
K∗
i

= −Ψ∞
K∗
j

+ 1
2HK∗

j
u∞

K∗
j

+ λu∞
K∗
j
. (IV.41)

• for all D ∈ D, (uT, pD) satisfies:

mDdivD(uT) − βmDd
2
D ∆DpD = 0, ∀D ∈ D. (IV.42)

We need to distinguish two cases:
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1. If D ∩ Γ = ∅, the diamond D coincides with a diamond Dj ∈ Dj (or with a diamond
Di ∈ Di). For a diamond D ∈ D \ DΓ, remark that the limit unknowns u∞

Kj
,u∞

K∗
j
,p∞

Dj

on Tj for j = 1, 2 coincide with uK,uK∗ ,pD on T. Thus we can directly deduce that
(u∞

Tj
,p∞

Dj
,Ψ∞

Tj
) satisfies ∀Dj ∈ Dj \ DΓ

j :

mDj divDj (u∞
Tj

) − βmDjd
2
Dj

∆Dj p∞
Dj

= 0. (IV.43)

2. If D ∩ Γ ̸= ∅, the diamond D can be written as the union of Dj ∈ DΓ
j and Di ∈ DΓ

i . This
implies that the divergence can be split as : mDdivD(uT) = mDj divDj (u∞

Tj
)+mDidivDi(u∞

Ti
).

From (IV.42), the choice of unknowns p∞
D and from the definition of g∞

Dj
we obtain:

g∞
Dj

= −
(
mDidivDi(u∞

Ti
) − βmDid

2
Di

∆Dip∞
Di

)
+ αmDip∞

Di

=
(
mDj divDj (u∞

Tj
) − βmDjd

2
Dj

∆Dj p∞
Dj

)
+ αmDj p∞

Dj
,

that implies for (u∞
Tj
, p∞

Dj
,Ψ∞

Tj
) that ∀Dj ∈ DΓ

j :

−(mDidivDi(u∞
Ti

)−βmDid
2
Di

∆Dip∞
Di

) + αmDip∞
Di

=
(mDj divDj (u∞

Tj
) − βmDjd

2
Dj

∆Dj p∞
Dj

) + αmDj p∞
Dj

(IV.44)

To recapitulate, (IV.36), (IV.38), (IV.39), (IV.40), (IV.41),(IV.43), (IV.44) show that (u∞
Tj
, p∞

Dj
,Ψ∞

Tj
)

is a solution to (P∞).

IV.3.1.4 Convergence of the DDFV Schwarz algorithm towards (P̃)

Theorem IV.3.9 (Convergence of the discrete Schwarz algorithm) Under the hypothesis
that mσ∗ = 2mσ∗

i
= 2mσ∗

j
for i, j = 1, 2, i ̸= j, the iterates of the Schwarz algorithm (S1)-(S2)

converge as l tends to infinity to the solution of the DDFV scheme (P̃) (up to a constant for the
pressure).

Proof The iterates of (S1)-(S2) satisfy:

LTj ,µ
Ωj ,Γ(ul

Tj
, pl

Dj
,Ψl

Tj
, fT, ūTj ,h

l−1
Tj
, gl−1

Dj
) = 0,

and (u∞
Tj
,Ψ∞

Tj
,p∞

D ), constructed from the solution of (P̃) is solution to:

LTj ,µ
Ωj ,Γ(u∞

Tj
, p∞

Dj
,Ψ∞

Tj
, fTj , ūTj ,h∞

Tj
, g∞

Dj
) = 0.

We define the errors
el
Tj

= ul
Tj

− u∞
Tj
,

Φl
Tj

= Ψl
Tj

− Ψ∞
Tj
,

Πl
Dj

= pl
Dj

− p∞
Dj
.

(IV.45)

By linearity, they satisfy:

LTj ,µ
Ωj ,Γ(el

Tj
,Πl

Dj
,Φl

Tj
, 0, 0,Hl−1

Tj
,Gl−1

Dj
) = 0, (IV.46)
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with

Hl−1
Lj

= F l−1
σKi

− 1
2FσKiel−1

Li
+ λel−1

Li
, ∀Lj = Li ∈ ∂Mj,Γ

Hl−1
K∗
j

= Φl−1
K∗
i

− 1
2HK∗

i
el−1

K∗
i

+ λel−1
K∗
i
, ∀K∗

j ∈ ∂M∗
j,Γ such that xK∗

j
= xK∗

i

Gl−1
Dj

= −
(
mDidivDi(el−1

Ti
) − βmDid

2
Di

∆DiΠl−1
Di

)
+ αmDiΠl−1

Di
∀Dj ∈ DΓ

j such that xDj = xDi .

To prove the convergence of the iterates of Schwarz algorithm, it is sufficient to prove the convergence
to 0 of the solution of (IV.46). In the expanded form, (IV.46) is written as:

mK

el
Kj

δt
+
∑

D∈DK

mσF l
σKj

= 0 ∀Kj ∈ Mj

mK∗

el
K∗
j

δt
+

∑
D∈DK∗

mσ∗F l
σ∗

j K∗ = 0 ∀K∗
j ∈ M∗

j

mK∗

el
K∗
j

δt
+

∑
D∈DK∗

mσ∗F l
σ∗

j K∗ +m∂Ω∩∂K∗Φl
K∗
j

= 0 ∀K∗
j ∈ ∂M∗

j,Γ

−F l
σKj

+ 1
2FσKj el

Lj
+ λel

Lj
= Hl−1

Lj
∀σ ∈ ∂Mj,Γ

−Φl
K∗
j

+ 1
2HK∗

j
el

K∗
j

+ λel
K∗
j

= Hl−1
K∗
j

∀K∗
j ∈ ∂M∗

j,Γ

e∂Mj,D = 0
e∂M∗

j,D = 0
mDj divDj (el

Tj
) − βmDjd

2
Dj

∆Dj Πl
Dj

= 0 ∀Dj ∈ Dj \ DΓ
j

mDj divDj (el
Tj

) − βmDjd
2
Dj

∆Dj Πl
Dj

+ αmDj Πl
Dj

= Gl−1
Dj

∀Dj ∈ DΓ
j .

Thanks to the hypothesis mσ∗ = 2mσ∗
i

= 2mσ∗
j
, we have mDi = mDj ; so, in the equation on Dj ∈ DΓ

j ,
we can simplify the measures and it becomes:

divDj (el
Tj

) − βd2
Dj

∆Dj Πl
Dj

+ αΠl
Dj

= −
(
divDi(el−1

Ti
) − βd2

Di
∆DiΠl−1

Di

)
+ αΠl−1

Di
.

We multiply the equations by el
Tj

and we sum over all the control volumes, as in the proof of
Thm. IV.2.3. We obtain, analogously to (IV.12), the following:

1
δt

∥el
Tj

∥2
2 + 2

Re∥DDj el
Tj

∥2
2 − (Πl

Dj
,divDj (el

Tj
))Dj

+ 1
2
∑

D∈DΓ
j

mσ(F l
σKj

− 1
2FσKj el

Lj
) · el

Lj
+ 1

2
∑

K∗∈∂M∗
j,Γ

m∂Ω∩∂K∗(Φl
K∗
j

− 1
2HK∗

j
el

K∗
j
) · el

K∗
j

+ 1
2
∑

D∈Dj

m2
σ

2RemD
BσK|el

Kj
− el

Lj
|2 + 1

2
∑

D∈Dj

m2
σ∗

2RemD
Bσ∗K∗ |el

K∗
j

− el
L∗

j
|2

︸ ︷︷ ︸
≥0

= 0. (IV.47)

By the equations on DΓ
j , we can split the scalar product into interior diamonds D \ DΓ

j and
boundary diamonds DΓ

j :

−(Πl
Dj
,divDj (el

Tj
))Dj = −

∑
Dj∈Dj\DΓ

j

mDj Πl
Dj

divDj (el
Tj

) −
∑

Dj∈DΓ
j

mDj Πl
Dj

divDj (el
Tj

);
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for the diamonds Dj ∈ Dj \ DΓ
j we apply the equation of conservation of mass, for the diamonds

Dj ∈ DΓ
j we add and subtract the term ∑

Dj∈Dj
mDjβd

2
Dj

∆Dj Πl
DΓ

j
· Πl

DΓ
j
:

− (Πl
Dj
, divDj (el

Tj
))Dj = −β

∑
Dj∈Dj\DΓ

j

mDjd
2
Dj

∆Dj Πl
DΓ

j
· Πl

DΓ
j

− β
∑

Dj∈DΓ
j

mDjd
2
Dj

∆Dj Πl
DΓ

j
· Πl

DΓ
j

−
∑

Dj∈DΓ
j

mDj Πl
Dj

(
divDj (el

Tj
) − βd2

Dj
∆Dj Πl

DΓ
j

)
.

We apply Rem. I.7.2 to the term −β
∑

Dj∈Dj
mDjd

2
Dj

∆Dj Πl
DΓ

j
· Πl

DΓ
j

= −β
(
d2
Dj

∆Dj Πl
Dj
,Πl

Dj

)
; we

then multiply and divide ∑Dj∈DΓ
j
mDj Πl

Dj

(
divDj (el

Tj
) − βd2

Dj
∆Dj Πl

DΓ
j

)
by α to finally obtain:

−(Πl
Dj
,divDj (el

Tj
))Dj = β |Πl

Dj
|2h − 1

α

∑
Dj∈DΓ

j

mDjαΠl
Dj

(divDj (el
Tj

) − βd2
Dj

∆Dj Πl
DΓ

j
).

So (IV.47) becomes:

1
δt

∥el
Tj

∥2
2 + 2

Re∥DDj el
Tj

∥2
2 + β |Πl

Dj
|2h − 1

α

∑
Dj∈DΓ

j

mDjαΠl
Dj

(divDj (el
Tj

) − βd2
Dj

∆Dj Πl
DΓ

j
)

+ 1
2λ

∑
D∈DΓ

j

mσ(F l
σKj

− 1
2FσKj el

Lj
) · λel

Lj
+ 1

2λ
∑

K∗∈∂M∗
j,Γ

m∂Ω∩∂K∗(Φl
K∗
j

− 1
2HK∗

j
el

K∗
j
) · λel

K∗
j

≤ 0, (IV.48)

where we multiplied and divided by λ > 0 the terms on the second line.
We start by considering 1

2λ
∑

D∈DΓ
j

mσ(F l
σKj

− 1
2FσKj el

Lj
) · λel

Lj
. By applying now the equality −ab =

1
4((−a+ b)2 − (a+ b)2) we can write:

•
∑

D∈DΓ
j

mσ(F l
σKj

− 1
2FσKj el

Lj
) · λel

Lj
= 1

4
∑

D∈DΓ
j

mσ|F l
σKj

− 1
2FσKj el

Lj
+ λel

Lj
|2

− 1
4
∑

D∈DΓ
j

mσ| −F l
σKj

+ 1
2FσKj el

Lj
+ λel

Lj︸ ︷︷ ︸
=Hl−1

Lj

|2,

So thanks to transmission conditions it becomes:

•
∑

D∈DΓ
j

mσ(F l
σKj

− 1
2FσKj el

Lj
) · λel

Lj
= 1

4
∑

D∈DΓ
j

mσ|F l
σKj

− 1
2FσKj el

Lj
+ λel

Lj
|2

− 1
4
∑

D∈DΓ
j

mσ|F l−1
σKi

− 1
2FσKiel−1

Li
+ λel−1

Li
|2,
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Equivalently for 1
2λ

∑
K∗∈∂M∗

j,Γ

m∂Ω∩∂K∗(Φl
K∗
j

− 1
2HK∗

j
el

K∗
j
) · λel

K∗
j
, we obtain:

•
∑

K∗∈∂M∗
j,Γ

m∂Ω∩∂K∗(Φl
K∗
j

− 1
2HK∗

j
el

K∗
j
) · λel

K∗
j

= 1
4

∑
K∗∈∂M∗

j,Γ

m∂Ω∩∂K∗ |Φl
K∗
j

− 1
2HK∗

j
el

K∗
j

+ λel
K∗
j
|2

− 1
4

∑
K∗∈∂M∗

j,Γ

m∂Ω∩∂K∗ |Φl−1
K∗
i

− 1
2HK∗

j
el−1

K∗
i

+ λel−1
K∗
i

|2.

If now we consider mDjαΠl
Dj

(divDj (el
Tj

) − βd2
Dj

∆Dj Πl
DΓ

j
), thanks to the equality −ab = 1

4((−a +
b)2 − (a+ b)2) we can write:

• −
∑

Dj∈DΓ
j

mDjαΠl
Dj

(divDj (el
Tj

)−βd2
Dj

∆Dj Πl
DΓ

j
) = 1

4
∑

D∈DΓ
j

mDj |divDj (el
Tj

)−βd2
Dj

∆Dj Πl
DΓ

j
−αΠl

Dj
|2

− 1
4
∑

D∈DΓ
j

mDj | divDj (el
Tj

) − βd2
Dj

∆Dj Πl
DΓ

j
+ αΠl

Dj︸ ︷︷ ︸
=

mDi
mDj

Gl−1
Dj

|2,

that under the hypothesis mσ∗ = 2mσ∗
i

= 2mσ∗
j

which implies mDi = mDj becomes:

• −
∑

Dj∈DΓ
j

mDjαΠl
Dj

(divDj (el
Tj

)−βd2
Dj

∆Dj Πl
DΓ

j
) = 1

4
∑

D∈DΓ
j

mDj |divDj (el
Tj

)−βd2
Dj

∆Dj Πl
DΓ

j
−αΠl

Dj
|2

− 1
4
∑

D∈DΓ
j

mDi |divDj (el−1
Ti

) − βd2
Di

∆DiΠl−1
DΓ

i

− αΠl−1
Di

|2.

Replacing those results into (IV.48), we have:

1
δt

∥el
Tj

∥2
2 + 2

Re∥DDj el
Tj

∥2
2 + β |Πl

Dj
|2h

+ 1
4α

∑
D∈DΓ

j

mD|divDj (el
Tj

)−βd2
Dj

∆Dj Πl
DΓ

j
−αΠl

Dj
|2 − 1

4α
∑

D∈DΓ
j

mD|divDj (el−1
Ti

)−βd2
Di

∆DiΠl−1
DΓ

i

−αΠl−1
Di

|2

+ 1
8λ

∑
D∈DΓ

j

mσ|F l
σKj

− 1
2FσKj el

Lj
+ λel

Lj
|2 − 1

8λ
∑

D∈DΓ
j

mσ|F l−1
σKi

− 1
2FσKiel−1

Li
+ λel−1

Li
|2

+ 1
8λ

∑
K∗∈∂M∗

j,Γ

m∂Ω∩∂K∗ |Φl
K∗
j
−1

2HK∗
j
el

K∗
j
+λel

K∗
j
|2− 1

8λ
∑

K∗∈∂M∗
j,Γ

m∂Ω∩∂K∗ |Φl−1
K∗
i

−1
2HK∗

j
el−1

K∗
i

+λel−1
K∗
i

|2 ≤ 0.
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Summing over l = 0, . . . lmax and j = 1, 2 we obtain:

lmax∑
l=0

∑
j=1,2

1
δt

∥el
Tj

∥2
2 +

lmax∑
l=0

∑
j=1,2

2
Re∥DDj el

Tj
∥2

2 +
lmax∑
l=0

∑
j=1,2

β |Πl
Dj

|2h

+ 1
4α

∑
j=1,2

∥divDj (elmax
Tj

)−βd2
Dj

∆Dj Πlmax

DΓ
j

−αΠlmax
Dj

∥2
DΓ

j
+ 1

8λ
∑

j=1,2
∥F lmax

σKj
− 1

2FσKj elmax
Lj

+λelmax
Lj

∥2
∂Mj,Γ

+ 1
8λ

∑
j=1,2

∥m∂Ω∩∂K∗Φlmax
K∗
j

−1
2HK∗

j
elmax

K∗
j

+λelmax
K∗
j

∥2
∂M∗

j,Γ
≤ 1

4µ
∑

j=1,2
∥divDj (e0

Tj
)−βd2

Dj
∆Dj Π0

DΓ
j
−αΠ0

Dj
∥2
DΓ

j

+ 1
8λ

∑
j=1,2

∥F0
σKj

− 1
2FσKj e0

Lj
+ λe0

Lj
∥2

∂Mj,Γ + 1
8λ

∑
j=1,2

∥m∂Ω∩∂K∗Φ0
K∗
j

− 1
2HK∗

j
e0

K∗
j

+ λe0
K∗
j
∥2

∂M∗
j,Γ

that shows how the total energy stays bounded as the iteration index lmax goes to infinity; the

series
lmax∑
l=0

∑
j=1,2

1
δt

∥el
Tj

∥2
2 and

lmax∑
l=0

∑
j=1,2

β |Πl
Dj

|2h converge, so their general term tends to zero, that

implies the convergence to zero of the errors ∥el
Tj

∥2
2, |Πl

Dj
|2h, defined in (IV.45). Thus the algorithm

converges.
The limit is the solution of problem (P̃), that is problem (P) with an appropriate choice of the

flux on Γ; in fact, we can deduce that, as lmax goes to infinity:

• ∥el
Tj

∥2
2 tends to zero implies:

ul
Tj

→ u∞
Tj

for j = 1, 2.

• |Πl
Dj

|2h tends to zero implies:

pl
Dj

→ p∞
Dj

+ const(Ωj) for j = 1, 2.

Thus the pressure converges up to a constant that depends on the subdomain; we show in
the following remark (Rem. IV.3.10) that in some cases we are able to determine cost(Ωj).

Remark IV.3.10 We can determine the constant const(Ωj) if we suppose that the mesh satisfies
Inf-sup inequality (Def. I.6.1). In fact, this implies that:

∥Πl
Dj

−m(Πl
Dj

)∥2 ≤ ∥el
Tj

∥2
2 → 0.

From which we deduce that:

pl
Dj

−m(pl
Dj

) → p∞
Dj

−m(p∞
Dj

) for j = 1, 2.

Remark IV.3.11 Numerically, we observed that (pl
Dj

− const(Ωj)) → p∞
Dj

and that
(Ψl

Tj
− const(Ωj)n⃗σK) → Ψ∞

Tj
.

If (uTj , pDj
,ΨTj ) is solution to (Pj)

LTj ,µ
Ωj ,Γ(uTj , pDj

,ΨTj , fT, ūTj ,hTj , gDj ) = 0,
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then (UTj ,PDj ,ΦTj ) := (uTj , pDj
− const(Ωj),ΨTj − const(Ωj)n⃗σK) satisfies:

LTj ,µ
Ωj ,Γ(uTj , pDj

,ΨTj , fT, ūTj , h̃Tj , g̃Dj ) = 0,

with h̃Lj = hLj − const(Ωj)n⃗σK for all Lj ∈ ∂Mj,Γ, h̃K∗
j

= hK∗
j

− const(Ωj)n⃗σK for all K∗
j ∈ ∂M∗

j,Γ and
g̃Dj = gDj + αmDconst(Ωj). In fact:

• (UTj ,PDj ,ΦTj ) satisfies the same equations on K ∈ Mj , K∗ ∈ M∗
j ∪ ∂M∗

j for the momentum.
It is sufficient to remark that:∑

D∈DK

mσconst(Ωj)n⃗σK = 0 ∀K ∈ Mj ,∑
D∈DK∗

mσ∗const(Ωj)n⃗σ∗K∗ = 0 ∀K∗ ∈ M∗
j ,∑

D∈DK∗

mσ∗const(Ωj)n⃗σ∗K∗ = −m∂Ω∩∂K∗const(Ωj)n⃗σK ∀K∗ ∈ ∂M∗
j ;

where we recall that m∂Ω∩∂K∗ is the intersection between ∂K∗ ∩ ∂Ω.

• (UTj ,PDj ,ΦTj ) the same equation on D ∈ D \ DΓ
j since ∆D(pD − const(Ωj)) = ∆DpD by

definition of the operator (see Sec. I.7);

• on σ ∈ ∂Mj,Γ:
−FσK + 1

2FσKuL + λuL = hL − const(Ωj)n⃗σK;

• on K∗ ∈ ∂M∗
j,Γ:

−ΨK∗ + 1
2HK∗ uK∗ + λuK∗ = hK∗ − const(Ωj)n⃗σK;

• on D ∈ DΓ
j :

mDdivD(uT) − βmDd
2
D ∆DpD + αmDpD = gD + const(Ωj)n⃗σK.

IV.4 Second DDFV Schwarz algorithm

We now investigate whether is it possible to construct a discrete Schwarz algorithm with modified
fluxes that converges to the solution of (P).
We show that this is possible if we suppose an asymmetric discretization of our problem (IV.1), in
the sense that we need to consider an upwind discretization of the convection term on the primal
mesh and a centered scheme on the dual mesh, that corresponds to the choice BσK(s) = 1

2 |s| and
Bσ∗K∗(s) = 0 in (P).
This comes from the fact that in the first DDFV approximation, we can prove convergence if and
only if

• (IV.28) holds, i.e.:

B̃σK = 2RemD

m2
σ

(
A1A2 +

(1
2mσFσK

)2
Id
)
A−1 − P,

that, by Rem. IV.3.6, can be rewritten as B̃σK = F (BσK1 , BσK2).

• (IV.31) holds, i.e.:
B̃σ∗K∗ =

mσ∗
1

mσ∗
Bσ∗

1 K∗ +
mσ∗

2

mσ∗
Bσ∗

2 K∗ ,
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that, by Rem. IV.3.6, can be rewritten as B̃σ∗K∗ = G(Bσ∗
1 K∗ , Bσ∗

2 K∗).

In fact, those two relations lead to the fundamental properties (IV.29) and (IV.32).
The idea for the second Schwarz algorithm, since we would like it to converge to the solution of
(P) (whose fluxes depends only on BσK, Bσ∗K∗), is to invert (IV.28) and (IV.31), that will lead to
invert the functions F,G of Rem. IV.3.6.
The advantage of this second DDFV approximation, with respect to the convergence of (S1)-(S2)
towards (P̃) described in Sec. IV.3, is that here the limit solution does not have a different definition
of the fluxes on the interface Γ.

Theorem IV.4.1 Let (uT,pD) be a solution of (P) for convective fluxes defined by a constant
upwind flux BσK(s) = 1

2 |s| for all σ ∈ E, and by the centered flux Bσ∗K∗(s) = 0 for all σ∗ ∈ E∗.
Define (S̄) the Schwarz algorithm where

• On the primal mesh, the new discrete convective fluxes are defined as:BσK(s)Id if σ /∈ EΓ

B̄σK(s) if σ ∈ EΓ

with:
B̄σK(s) = 1

2Q
(

|s| − 2 + 2
√

1 + |s| 0
0 |s| − 1 +

√
1 + 2|s|

)
Q−1, (IV.49)

and Q =
(
x y

y −x

)
, where n⃗σK =

(
x

y

)
is the outer normal to the interface Γ.

• On the dual mesh, Bσ∗K∗(s) = 0

Under the hypothesis that mσ∗ = 2mσ∗
j

= 2mσ∗
i
, for j, i = 1, 2, j ̸= i, (P) is the limit of the Schwarz

algorithm (S̄).

Proof Recall that (P̃) is the limit of (S1)-(S2) if and only if (IV.28) and (IV.31) hold.

We start by considering (IV.28), that we recall here.:

B̃σK = 2RemD

m2
σ

(
A1A2 +

(1
2mσFσK

)2
Id
)
A−1 − P, (IV.50)

that is a condition on the fluxes on σ ∈ EΓ.
The assumption mσ∗ = 2mσ∗

j
= 2mσ∗

i
implies that mD1 = mD2 = 2mD and BσK1 = BσK2 = BσK. This

means that
A1 = A2 = m2

σ

RemD
(P +BσKId)

and
A = A1 +A2 = 2m2

σ

RemD
(P +BσKId) = 2A1 = 2A2.

Moreover, A−1 = RemD

2m2
σ

(P +BσKId)−1. By replacing these remarks in (IV.50), we obtain:

B̃σK = 2RemD

m2
σ

(
1
4A

2 +
(1

2mσFσK

)2
Id
)
A−1 − P.
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By developing the computation, we get:

B̃σK =
(RemD

2m2
σ

)
A+ 2RemD

m2
σ

(1
2mσFσK

)2
A−1 − P.

By replacing the definition of A and A−1, it leads to:

B̃σK = P +BσKId +
(RemD

m2
σ

)2 (1
2mσFσK

)2
(P +BσKId)−1 − P.

Then, if s = RemD

mσ

FσK, we have
(RemD

m2
σ

)2 (1
2mσFσK

)2
= 1

4s
2, so we end up with:

B̃σK = BσKId + 1
4s

2(P +BσKId)−1.

If we make explicit the dependences of B̃σK, BσK as a function of s, since BσK is a function of
BσK(mDRe

mσ
FσK) and B̃σK a function of B̃σK(2mDRe

mσ
FσK), (IV.50) finally becomes:

B̃σK(2s) = BσK(s)Id + 1
4s

2 (P +BσK(s)Id)−1 , for l = 1, 2.

We can rewrite this condition, like in Rem. IV.3.6, as:

B̃σK = F (BσK).

This relation implies that the Schwarz algorithm (S1)-(S2), whose convection fluxes depend on
BσK, converges towards the solution of (P̃), whose convection fluxes depend on B̃σK for σ ∈ EΓ.

We want to build a new Schwarz algorithm (S̄) that converges toward (P), whose fluxes are
defined by BσK; so we need to build B̄σK such that:

BσK = F (B̄σK),

where BσK can be a full matrix. In our case, since our goal is to converge towards the fluxes that
define an upwind scheme, i.e. defined by B(s) = 1

2 |s|, BσK is actually a diagonal matrix, that will
be denoted by BσKId to distinguish it by a full matrix.

Thus we need to invert the function F defined above to find the new coefficients B̄σK. The
inverse of F does not exist for every BσK. Given s and BσK(2s), we have a second-degree equation
for B̄σK(s):

B̄σK(s)2 + B̄σK(s) (P −BσK(2s)Id)︸ ︷︷ ︸
T

+ 1
4s

2Id − P BσK(2s)Id︸ ︷︷ ︸
V

=
(

0 0
0 0

)
,

that is:
B̄σK(s)2 + B̄σK(s)T + V = 0.

Since the matrices T, V are symmetric and they commute (because they are polynomials on P ),

they can be diagonalized using the same basis of eigenvectors. If Q =
(
x y

y −x

)
, Q orthogonal
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matrix, we can write:
T = Q T̃ Q−1, V = Q Ṽ Q−1,

with T̃ and Ṽ diagonal matrices, whose expressions are:

T̃ =
(

2 −BσK 0
0 1 −BσK

)
, Ṽ =

(
1
4s

2 − 2BσK 0
0 1

4s
2 −BσK

)
.

We then look for B̄σK(s) of the form B̄σK(s) = QM̃ Q−1, with M̃ diagonal matrix such that:

M̃2 + M̃ T̃ + Ṽ = 0.

Since we are supposing BσK(s) = 1
2 |s|, the solution is given by

M̃ = 1
2

(
|s| − 2 + 2

√
1 + |s| 0

0 |s| − 1 +
√

1 + 2|s|

)
,

that leads to our result (IV.49).

For what concerns property (IV.31), we would like to define a unique Bσ∗K∗(s∗) for σ∗ ∈ E∗

in the limit scheme (P).

With the assumption mσ∗ = 2mσ∗
1

= 2mσ∗
2
, we can define s∗ = RemD

mσ∗
Fσ∗K∗ and s∗

j =
RemDj

mσ∗
j

Fσ∗
j K∗

for j = 1, 2: remark that there is no relation between the s∗
j . The only property that is satisfied is

s∗ = s∗
j + s∗

i , since mσ∗
j
Fσ∗

j K∗ +mσ∗
i
Fσ∗

i K∗ = mσ∗Fσ∗K∗ . This leads to the new expression for (IV.31):

B̃σ∗K∗(s∗
j + s∗

i ) = 1
2
(
Bσ∗K∗(s∗

j ) +Bσ∗K∗(s∗
i )
)
.

This is true only if Bσ∗K∗ = B̃σ∗K∗ = 0; in this way, even property (IV.32) is verified. So the dual
flux for the algorithm (S̄) and for the limit (P) correspond to a centered discretization of the
convection flux on the dual mesh.

The Schwarz algorithm (S̄) is well posed, since (Hp) is verified by his fluxes, and it converges
towards (P) with the choice of BσK(s) = 1

2 |s| for all σ ∈ E and Bσ∗K∗(s) = 0 for all σ∗ ∈ E .

IV.5 Numerical results

In this section, the objectives are the following:

• showing and comparing the convergence properties of the Schwarz algorithms (S1)-(S2)
(presented in Sec. IV.2.2)) and (S̄) (presented in Sec. IV.4);

• studying the influence of the parameters λ, α, β of (IV.2) in the convergence.

We recall that the difference between the two algorithms relies in the definition of the fluxes at the
interface; the first one converges towards the solution of (P̃) (see Thm. IV.3.9), the second one
towards the solution of (P) (see Thm. IV.4.1).

We will refer to (S1)-(S2) as "first Schwarz algorithm", and to (S̄) as "second Schwarz
algorithm". For the first Schwarz algorithm, in all the following test cases, we will consider an
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upwind discretization of the convection flux, i.e. we fix the function B = 1
2 |s|.

We recall that the domain decomposition algorithm is an iterative algorithm that is employed
at each time step; this, in particular, implies that at each iteration of the Schwarz algorithm we
solve a steady problem. In the tests we present, a time step is fixed and the iterative algorithm is
applied; we choose to fix the first one, with δt = 10−4, so every test presented in this section will
be done in the time interval [0, δt].

In all the test cases, the domain Ω = [−1, 1]× [0, 1] will be divided into two subdomains Ω = Ω1 ∪Ω2.
The meshes we will consider are illustrated, in their first level of refinement, in Fig. IV.5.

(a) Mesh1
1 (b) Mesh2

1

(c) Mesh3
1.

Fig. IV.5 Coarse level of refinement of the composite meshes on Ω, Meshk
1.

The sub-index in the name of the mesh (see Fig. IV.5) denotes the level of refinement, i.e. Meshk
1

represents the coarse mesh of a family of refined meshes (Meshk
m)m. More precisely, Meshk

m is
obtained by dividing by two all the edges of Meshk

m−1.

We consider the following exact solutions to (IV.1):

Test 1:
u(x, y) =

(
−2π cos(πx) sin(2πy) exp(−5ηtπ2),
π sin(πx) cos(2πy) exp(−5ηtπ2)

)
,

p(x, y) = −π2

4 (4 cos(2πx) + cos(4πy)) exp(−10tηπ2).
(IV.51)

Test 2:
u(x, y) =

(
sin(2πx) cos(2πy) exp(−2ηt),

− cos(2πx) sin(2πy) exp(−2ηt)

)
,

p(x, y) = −1
4(cos(4πx) + cos(4πy)) exp(−4ηt).

(IV.52)

The algorithms, in all the following simulations, are initialized with initial random guesses h0
Tj

and
g0
Dj

for j = 1, 2.
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As a stopping criterion, we impose:

max
(
∥el

Tj
∥2, ∥Πl

Dj
∥2
)
< 10−6,

where the errors are defined in (IV.45).

IV.5.1 Error on the interface

In this first test case, we consider the first Schwarz algorithm; our goal is to point out that the
error computed with respect to the solution of (P̃), along the iterations of the algorithm, stays
localized at the interface between the two subdomains.
The domain Ω is meshed with Mesh3

5, we fix the parameters λ = 100, α = 1, β = 10−2.
In Fig. IV.6 we represent the error of the velocity on the entire domain at the initialization on the
primal and dual mesh; the initialization assigns random values, and the initial error is 100 for both
primal and dual mesh.
As we pass to the 1st iteration, we observe in Fig. IV.7 how it immediately locates on the interface
between the subdomains; it decreases, passing from 100 to 1.9 on the primal mesh and to 6.9 on
the dual mesh. Already at the 10th iteration we see in Fig. IV.8 how it has diminished, staying
localized on the interface, passing from 1.9 to 0.52 on the primal mesh and from to 6.9 to 0.05 on
the dual mesh.

Fig. IV.6 Error u0
T − uT at the initialization: ∥u0

T − uT∥∞ = 100. Left: Primal mesh. Right: Dual
mesh.

Fig. IV.7 Error u0
T − uT at the 1st iteration. Left: Primal mesh, ∥u1

M − uM∥∞ = 1.9. Right: Dual
mesh, ∥u1

M∗∪∂M∗ − uM∗∪∂M∗∥∞ = 6.9.
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Fig. IV.8 Error u0
T − uT at the 10th iteration. Left: Primal mesh, ∥u2

M − uM∥∞ = 0.52. Right:
Dual mesh, ∥u2

M∗∪∂M∗ − uM∗∪∂M∗∥∞ = 0.05.

IV.5.2 Study of the parameters

In this section our goal is to study the influence of the parameters λ, α, β on the convergence of
the first and second Schwarz algorithms.
We recall that β is associated to the Brezzi-Pitkaranta stabilization (see Sec. I.7), present in
the mass conservation equation, while the parameters λ and α are associated the transmission
conditions between subdomains, that we recall here, for j, i ∈ 1, 2, j ̸= i:

• for all Lj = Li ∈ ∂Mj,Γ :

−F l
σKj

+ 1
2FσKj ul

Lj
+ λul

Lj
= F l−1

σKi
− 1

2FσKiul−1
Li

+ λul−1
Li

;

• for all K∗
j ∈ ∂M∗

j,Γ such that xK∗
j

= xK∗
i

:

−Ψl
K∗
j

+ 1
2HK∗

j
ul

K∗
j

+ λul
K∗
j

= Ψl−1
K∗
i

− 1
2HK∗

i
ul−1

K∗
i

+ λul−1
K∗
i

;

• for all Dj ∈ DΓ
j such that xDj = xDi :

mDj divDi(ul
Tj

) − βmDjd
2
Dj

∆Dj pl
Dj

+ αmDj pl
Dj

=

−
(
mDidivDi(ul−1

Ti
) − βmDid

2
Di

∆Dipl−1
Di

)
+ αmDipl−1

Di
.

Comparison between first and second Schwarz algorithm and parameters optimiza-
tion. In those numerical tests, our goal is to compare the convergence between the first and the
second Schwarz algorithm and to see the influence of λ and α; to do so, in each test case we fix
one of the two parameters and we let the remaining vary. Here, the value of β associated to the
stabilization is set to 10−2; we will discuss its value in the next section. In Fig. IV.9-IV.11 we
represent on the x-axis the number of iterations, on the y-axis the error.

We start by considering the first Schwarz algorithm; we can observe in Fig. IV.9 the conver-
gence of the algorithm to the solution of Test 1 on Mesh1

1.
In particular, on the left of Fig. IV.9, α is fixed to 1, and we observe how, as λ increases, the
number of iterations necessary to converge decreases until λ = 200; passed this critical value, the
number of iterations starts to increase again. In fact, for λ = 10 we need 650 iterations to reach an
error of 10−5, for λ = 200, we need 98 iterations and for λ = 600 we need 232 iterations. This
suggests that for α = 1, λ = 200 is a good choice to have a better convergence. On the right of
Fig. IV.9, we set λ = 100 and we let α vary: we observe the same kind of behavior as the one of λ.
If α is small, i.e. α = 0.01, the algorithm converges in more than 1000 iterations; when α increases
to 0.25, the number of iterations decreases to 97. Then, when α becomes bigger, such as α = 10,
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Fig. IV.9 Test 1, Mesh1
1, first Schwarz algorithm. Left: optimization of λ, with α = 1. Right:

optimization of α, with λ = 100.

we need around 600 iterations to converge.

We consider now the second Schwarz algorithm on same test case, i.e. Test 1 on Mesh1
1. We show

its convergence in Fig. IV.10. This indicates that for λ = 100, α = 0.25 is a good choice to have a
better convergence.
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λ=5, α=1
λ=10, α=1
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λ=100, α=10
λ=100, α=50

Fig. IV.10 Test 1, Mesh1
1, second Schwarz algorithm.Left: optimization of λ, with α = 1. Right:

optimization of α, with λ = 100.

We remark that the second Schwarz algorithm behaves similarly to the first one, if we compare
Fig. IV.10 and Fig. IV.9 ; thus, both algorithms converge and the speed of convergence is influenced
by the choice of λ and α. The parameters have the same behavior and the number of iterations
necessary to the convergence is almost identical between the two algorithms; this is why from now
on we will focus just on the first one.

We consider now a different test case, i.e. Test 2 on Mesh2
1 for the first Schwarz algorithm.

We observe in Fig. IV.11 that we still have the same kind of behavior for the parameters λ, α; but
we point out that the optimal value of the parameters depends on the mesh and on the test case.
In fact, if we compare the optimal α in Fig. IV.10 and in Fig. IV.11, we remark that α = 0.25 for
the first case and α = 0.5 for the second case.
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Fig. IV.11 Test 2, Mesh2
1, first Schwarz algorithm. Left: optimization of λ, with α = 1. Right:

optimization of α, with λ = 100.

Influence of the mesh and of the stabilization. In the first test case of Fig. IV.12, our goal
is to show how the level of refinement of the mesh can influence the choice of the optimal parameter;
we consider Test 1 on the family (Mesh1

m)m, m = 1, 2, 3, 4. As before, we fix one parameter at the
time (λ or α) and we let the other vary; we represent on the x-axis the value of the parameter that
changes, on the y-axis the number of iterations required to obtain an error of order 10−5.
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Fig. IV.12 Test 1, (Mesh1
m)m, m = 1, 2, 3, 4. Left: optimization of λ to obtain an error of order

10−5, with α = 1, β = 10−1. Right: optimization of α to obtain an error of order 10−5, with
λ = 100, β = 10−1.

Table IV.1 Test 1 on (Mesh1
m)m, m = 1, 2, 3. First line: Optimal value of λ for α = 1, β = 10−1.

Second line: Optimal value of α for λ = 100, β = 10−1.

Mesh1
1 Mesh1

2 Mesh1
3 Mesh1

4

λ 152.36 293.36 404.63 929.36
α 0.5 0.5 0.5 0.6

As illustrated in Fig. IV.12 and summarized in Tab. IV.1, we observe different results for the two
parameters; the mesh refinement has an impact on λ but not really on α. The mesh size h is
divided by two at each level of refinement, and we see that it has an influence on the value of λ;
unfortunately, we can not conclude by defining a relation between the two.
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In Fig. IV.13 (left) and Tab. IV.2 we want to confirm the results obtained for λ on Fig. IV.12
(left) and Tab. IV.1, by considering the same test case (Test 1) on a different family of meshes,
(Mesh3

m)m, m = 1, 2, 3, 4.
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4 Table IV.2 Test 1 on (Mesh3
m)m, m = 1, 2, 3, 4.

Optimal value of λ for α = 1, β = 10−1.

Mesh3
1 Mesh3

2 Mesh3
3 Mesh3

4

λ 122 253.27 384.45 667.51

Fig. IV.13 Test 1, (Mesh3
m)m, m = 1, 2, 3. Left: optimization of λ to obtain an error of order 10−5,

with α = 1, β = 10−1. Right: Summary table of the optimal values of λ.

As before, λ is influenced by the mesh discretization step but we can not conclude by defining
a relation between the two; moreover, we remark that its optimal values change with respect to
Tab. IV.1, due to the different meshes.

In Fig. IV.14 and in Tab. IV.3 we want to point out the influence of the parameter β, asso-
ciated to the Brezzi-Pitkäranta stabilization. We see how the choice of this parameter affects the
convergence of the algorithm and how it affects the optimal value of λ: we pass from 818 iterations
with λ = 436.81 (for β = 10−4) to 40 iterations with λ = 122 (for β = 10−1). There is then an
optimal choice even for this parameter.
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β=1
β = 10-4 Table IV.3 Test 1 on Mesh3

1. Optimal value of λ
and the number of iterations for different values
of β and for α = 1.

β 10−4 10−2 10−1 1
λ 436.81 122 122 25.2
# iter 818 53 40 246

Fig. IV.14 Test 1, Mesh3
1. Left: optimization of λ with different values of β on Mesh3

1; α = 1 .
Right: Summary table of the optimal values of λ.

As last simulation, on Fig. IV.15 and Tab. IV.4 we compare the optimal values of λ for Test 1 on
different meshes. We see that even the choice of the mesh influences the optimal choice of the
parameter: for a cartesian mesh, λ = 105.91 while for Mesh2

1 λ = 154.3.
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Table IV.4 Test 1. Optimal value of λ for α =
1, β = 10−1 on different meshes.

Mesh1
1 Mesh2

1 Mesh3
1 Cartesian

λ 146.2 154.3 130.1 105.91

Fig. IV.15 Left: Test1, optimization of λ for different meshes to obtain an error of order 10−6,
α = 1 and β = 10−1 . Right: Summary table of the optimal values of λ.

Conclusions and perspectives

In this chapter, we proposed two non-overlapping DDFV Schwarz algorithm for Navier-Stokes
problem. We started by defining a discretization (P) of the Navier-Stokes problem on the entire
domain Ω by means of B-schemes for the discretization of the nonlinear convection terms; we
proved the well-posedness of this scheme, which is the limit scheme towards which the solution
of the iterative Schwarz algorithm should converge. We then built a scheme for the subdomain
problem with transmission boundary conditions and we introduced the DDFV Schwarz algorithm,
to which we refer as "first Schwarz algorithm". We showed in Thm. IV.3.9 that it converges to a
modified version of (P), that we named (P̃). The difference between (P) and (P̃) is the choice of
the function B that defines the convection terms on the interface. We then built a "second Schwarz
algorithm" and we recovered the convergence towards (P) in Thm. IV.4.1.
We then numerically tested the two algorithms; in particular, we focused on the influence of the
parameters λ, α of the transmission conditions, by observing the presence of an optimal value
for both parameters in order to have a better convergence. Moreover, we remarked that the
choice of the mesh, of the test case and of the parameter β linked to the stabilization of the mass
conservation equation influences the optimal value of λ and α.
We are working on other numerical simulations; we would like to test the convergence on meshes
that have non-conformal edges on the interface, to reproduce and compare the numerical results of
Chapter III and also to investigate more fully the choice of the optimal parameters.
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This chapter presents an independent work issued from a CEMRACS project (in 2018); it is a
joint work with Igor Chollet, Théo Corot, Laurent Dumas, Philippe Hoch and Thomas Leroy and
it has been submitted to ESAIM: proceedings and surveys.

A curved interface reconstruction procedure is presented here in the case of a 2D compress-
ible flow made of two or more materials. Built with a dynamic programming procedure already
introduced in [DGJM17], the curve interface is continuous and volume preserving in each cell. It
is applied here to general test cases with non cartesian grids as well as triple point configurations.

V.1 Introduction

Interface reconstruction (IR) methods are encountered in numerical simulation of multi-material
or multi-fluid flows. In a Volume of Fluid (VOF) approach in a case of two materials, denote C
the volume fraction of material 1 encountered in volume V :
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C = 1
V

∫
V
χ(x, y, z)dxdydz (1),

where χ denotes the indicator function of material 1:

χ(x, y, z) =
{

1 if (x, y, z) ∈ material 1,
0 if (x, y, z) ∈ material 2.

The objective of IR methods is to define a geometric interface separating material 1 and
material 2 with the following properties:

• P1: volume fractions conservation,

• P2: continuity of the interface,

• P3: robustness,

• P4: low or moderate computational cost.

The first IR method for volume tracking that has been introduced in 1982 is due to D.L. Youngs
[You82]. This method consists in assuming that the interface for each mixed cell (that is such
0 < C < 1) is made of a segment joining two of its edges. The normal of this segment is colinear
to the gradient of the volume fraction ∇C and its position is obtained by assuming an exact
conservation of partial volumes. With such construction, it is clear that the conservation property
P1 is fulfilled by contrast with the continuity property P2. The two other desired properties,
robustness and low cost, are also satisfied with this method.

There exists many variants to Youngs method, for instance an order 2 reconstruction ([RK98])
or an extension to more than two materials ([SGFL09]). Some correction terms for the normal
computation have also been proposed to reduce undesirable effects and to smooth the interface
([GDSS05]). The two references [RK98] and [Rud97] give various examples of applications of
Youngs IR method. Even though Young’s method is still largely used up to now because of its
simplicity and robustness, it suffers from the non continuity of the interface.

Recently, in [DGJM17], a new reconstruction method which ensures continuity of the interface and
preserves volume fractions has been introduced. This new interface reconstruction method, called
DPIR (Dynamic Programming Interface Reconstruction), is introduced in the next section and will
be used as a starting point for the presented work. It consists of two main steps. First, minimize
a suitable energy functional which gives a continuous linear interface. Secondly, add a control
point in each cell to find the correct volume fractions. This last step is usually made by searching
the point in the normal direction of the interface, in the line passing through the center of this one.

In this paper there are three main goals. First, the DPIR method is extended for curved
interfaces (section V.3). It is of interest in particular in the case of curved meshes, where an
exact reconstruction of the interface is expected. In order to be a real candidate for being used
in multi-material hydrodynamic simulation using ALE remap methods, the DPIR method must
be able to deal with distored meshes. Although the principle of the method remains unchanged
(one minimization step, one correction step), several improvements are proposed (section V.4),
in particular to deal with strongly distorded cells and small volume fraction issues. Finally,
this work ends with a generalization of the method for three materials (section V.5). Interface
reconstruction for multi-material simulations is a complicated issue, and a comparison of several
existing methods can be found in [KGSS10]. The proposed method applies the DPIR method
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for all the materials without choosing any material ordering and a suitable average is applied to
obtain the final interfaces. The method is tested on two test cases with triple point configuration
on cartesian meshes, giving encouraging results for futur unstructured meshes cases.

V.2 Interface reconstruction with DPIR

DPIR method deals with interface reconstruction as a minimization problem of the sum of volume
fraction errors. It relies on the minimization of the functional

J(y) =
∑

(i,j)∈{1,...,Nx}×{1,...,Ny}
|voly,i,j − voli,j |2 (2)

where t 7→ y(t) is the associated interface curve, voli,j denotes the targeted volume fraction in cell
(i, j) and voly,i,j the volume fraction obtained with the curve y.

This method is splitted in two steps, first dynamic programming is used to minimize the cost
function J . Then, a correction is made on the curve y obtained in each cell to recover the targeted
volume fraction. DPIR algorithm is decribed below, for more information we invite the reader to
consult [DGJM17].

V.2.1 First step: minimization of J with dynamic programming

During the first step, the interface curve t 7→ y(t) is assumed to be piecewise linear in each cell
(see Fig. V.1). The minimization problem consists in finding a finite number of points (Mi)0L∗iL∗N ,
located on the edges of mixed cells, such that M0 = MN . More precisely, the possible locations of
points Mi are obtained after finding the so-called internal and external curves that will bound
the interface curve (see Fig. V.1). The internal and external curves are also polygonal curves
with nodes located at the mesh nodes and are obtained by a simple search algorithm among
mixed cells. We denote by vol(Mi,Mi+1) the volume fraction in the cell computed bewteen the
segment MiMi+1 and the internal curve. Once these curves are found, a dynamic programming
procedure is applied to find the piecewise closed linear curve that minimize the cost function J at
a computational cost of O(NL2) where L is the discretization number of each cell edges.

Note that a penalty term of the form p(y) = ∑N−1
i=0 λ||Mi+1 −Mi|| can be added to the cost

function J in order to reduce the interface length and to avoid wave effects.
Dynamic programming is a very efficient tool to minimize J in the meaning that it has a

low cost (property P4) and is robust (property P3). This step gives a first approximation of the
interface which is continuous (property P2). However, the interface obtained does not satisfy the
volume conservation (property P1).

V.2.2 Second step: local correction of volume fractions

The goal of the second step is to correct volume fractions in order to recover Property P1. In the
original DPIR algorithm described in [DGJM17], a control point is added in each mixed cell. This
point is located on the perpendicular bisector of the interface segment and placed in order to have
an exact volume conservation.

The complete method including the previous two steps, called DPIR (Dynamic Programming
Interface Reconstruction) can then be summarized by:

DPIR Algorithm: for a given distribution of volume fractions on a 2D cartesian grid:

• Initialization: define the internal and external curves that will bound the interface.



166 Curved interface reconstruction for 2D compressible multi-material flows

Fig. V.1 The interface curve (dotted line) with the internal (points Ii) and external (points Ei)
curves.

• Step 1 (global step): minimize the cost functional J (2) with dynamic programming.

• Step 2 (local step): add a control point in each cell to have an exact conservation of
volume fractions.

In the next sections, we present some extensions of this method. We extend it to curved
interfaces in Section V.3, describes tools to make it more robust in Section V.4 and extend it to
three materials in Section V.5.

V.3 DPIR extension to curved interfaces reconstruction

In order to obtain a curved interface, more suited to some cases (circle reconstruction for instance),
rational quadratic Bezier curves are introduced in the local correction phase of DPIR.

A second order rational Bezier curve is a parametric curve defined by three control points P0,
P1 and P2. Here, P1 will play the role of the control point introduced in the correction step. A
weight ω ∈ [0,+∞] is associated to this point (Fig. V.2).

Mω(q) =
(
x(q)
y(q)

)
= P0(1 − q)2 + 2ωq(1 − q)P1 + q2P2

(1 − q)2 + 2ωq(1 − q) + q2 , q ∈ [0, 1]. (V.1)

The area A(Mω(q), P0, P1, P2) under a Bezier curve (see Fig. V.2 on Left) can be computed
with

A(Mω(q), P0, P1, P2) = f(ω) ·A(P0, P1, P2),
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Fig. V.2 A second order rational Bezier curve (area under Bezier curve and straight segment
[P0, P2] and shape curve evolution with respect to weight parameter ω) of parameterization (V.1).

where A(P0, P1, P2) is the area of the triangle P̂0P1P2 and

f(ω) =



0 if ω = 0
2ω

1 − ω2

(
1

1 − ω2 arctan
(√

1 − ω

1 + ω

)
− ω

2

)
if ω ∈ (0, 1)

2
3 if ω = 1
ω

ω2 − 1

(
ω + 1√

1 − ω2
ln
(
ω −

√
ω2 − 1

))
if ω > 1

In this paper, the value of ω will be fixed to 1 if no other specification is made.
Let Mi, i = 0, . . . N be the coordinates of the points obtained after the first step of DPIR. Let

Pi be the control point associated with the piece of interface [Mi,Mi+1]. The position of Pi is
defined in order to preserve the volume fraction defined by the associated rational quadratic Bezier
curve (Mi, Pi,Mi+1). We use a dichotomy to find the position of Pi. Let us apply this algorithm to
the reconstruction of a circle. First we consider a circle of radius 2 on a coarse mesh. We compare
the results obtained with Youngs method, the original DPIR and our extension with ω = 0.2. Plots
on Fig. V.3 show that the use of such curved parameterization can greatly improve results.
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4

Fig. V.3 Circle reconstruction with Youngs method (left), DPIR (middle) and DPIR using curved
interfaces (right).

Then we apply our method to a refined mesh (Fig. V.4). Here again, we can see improvements
are made on results with curved interface.
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Fig. V.4 Reconstruction of a circle with DPIR with and without bezier curves.

Even if these good results are encouraging, we want a method that can work on general meshes.
This method has shown some lack of robustness and it is what we want to investigate in the
following section.

V.4 Robustness improvement of DPIR

To illustrate this robustness problem let us consider the same test as above on an unstructured
mesh (Fig. V.5). In some cases the points on the edges Mi and Mi+1 obtained after the first step
of DPIR can be to close to the same node leading to a spike when the algorithm tries to balance
the volume fraction. It has been observed, on some cases, that the algorithm can not balance the
volume since the interface ends up outside the cell.

1.18 5.87

1.13

5.87

1.976 2.1

2.035

2.151

Fig. V.5 On the left: Reconstruction of a circle with the initial DPIR algorithm. On the right: a
zoom on the reconstruction; the interface (in red) degenerates near a corner.

In order to tackle this problem and improve the robustness we describe three improvements of
the method.
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V.4.1 A new search direction for the control point

A first way to reinforce DPIR robustness is to move the control point in the direction to the cell
center (Fig. V.6) instead of the perpendicular bisector. This ensures to move in a direction where
there is more space available to apply the correction. Consequently it makes the correction step
more robust.

Fig. V.6 Search direction of the control point: perpendicular bisector vs center of the cell.

V.4.2 A new discretization of the cell edges

A second idea is to change, in the first step of DPIR, the discretization of the segments crossed by
the interface: instead of considering uniform discretization, we use Chebyshev points in order to
obtain a finer discretization around the corners than in the middle of those segments and avoid to
end up with two points Mi Mi+1 too close to each other. It permits in particular to reduce the
number of points on each edge without altering the reconstruction quality.

V.4.3 A new penalty term

It may happen for some cells that the cost function term vol(Mi,Mi+1) and the penalty term
∥Mi+1 −Mi∥ have very different scales. In order to remedy to this problem, a second penalization
term is added to the cost functional in the first step of DPIR. It is defined as:

p̃ =
N−1∑
i=0

|voltarget − vol(Mi,Mi+1)|
vol(Mi,Mi+1) ,

that leads to the following minimization problem:

min
M0,...MN

N−1∑
i=0

|vol(Mi,Mi+1) − voltarget|2 + λ∥Mi+1 −Mi∥ + p̃.

If the volume fraction between Mi and Mi+1 is too small with respect to the correction, the second
penalization p̃ becomes big and those points are not chosen by the minimization.

V.4.4 Numerical results

First let us apply the corrections illustrated in Sec. V.4.2-,V.4.3 in to the reconstruction of the
circle on an unstructured grid. Fig. V.7 shows that the problem visible on Fig. V.5 has been solved:
by looking at the zoom on the right hand side, we see that the interface does not degenerate
anymore. In fact, the corrections do not let the interface pass too close to the corners of the mesh.

We also applied this method with the three improvements to the reconstruction of a square
(Fig. V.8) and to the reconstruction of a J (Fig. V.9) on unperturbed and perturbed cartesian
meshes.



170 Curved interface reconstruction for 2D compressible multi-material flows

1.18 5.87

1.13

5.87

1.925 2.272

1.92

2.229

Fig. V.7 Reconstruction of a circle.
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Fig. V.8 Reconstruction of a square on a distorted cartesian mesh
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Fig. V.9 Reconstruction of a J on a distorted cartesian mesh
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V.5 DPIR extension to triple point reconstruction

In this section, we describe an extension of DPIR to three or more materials. One of the main
issues of this extension is the ability of the scheme to take into account triple points. First we
describe different cases that can occur when considering more than two materials. Then we explain
how to extend the algorithm and treat triple points. Then we apply it to three and four materials
cases.

V.5.1 Classification of triple cells

A cell with exactly two strictly positive volume fractions is called a double cell. The treatment of
double cells will the same as above. However the algorithm described above can not handle more
than one interface point per edges. When an edge is crossed twice by the interface our method is
not able to treat it. This means that DPIR can not handle filaments.

A triple cell contains exactly three materials. Two main cases can happen with this kind of
cells: it contains a triple point or not. If the cell contains a triple point, you can quickly end up
with the filament issue (see Fig. V.10b). Since we are not able to deal with this problem with
two materials we will only give some perspectives on this matter at the end. If the cell does not
contain a triple point, then materials are aligned in the cell (see Fig. V.10c).

a b c

Fig. V.10 Types of triple cells.

We extend DPIR to three materials with a one-against-all approach. First we reconstruct three
interfaces which are then merged in order to recover the final interface.

V.5.2 The new algorithm for interface reconstruction

The method described below is only suited for the first case of Fig. V.10a. Indeed, as explained
above, we do not treat the filaments.

The algorithm is still divided in two steps : a first step leading to an interface prediction by
running three Dynamic Programming algorithms, and a second step for a local correction of all
mixed cells.

V.5.2.1 First step: one-against-all approach

1. Consider each material against all the others. Run the dynamic programming step of DPIR
on all those materials. This step results in three interfaces (see Fig. V.11).

2. Every double cell is composed of edges with exactly 2 or 0 interface points (from outer
and inner materials). Average those two points and fix the new resulting point as the final
interface point (see Fig. V.12).
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3. Every triple cell containing a triple point has three edges crossed by two interfaces. Glue
the interfaces as previously and compute the temporary triple point as the barycenter of the
triangle induced by those three new points (see Fig. V.12).

V.5.2.2 Second step: mixed cells correction

Each mixed cell is divided in different sub-cells whose number depends on its type (two for double
cells and three for triple cells). We use a different correction algorithm depending on the type of
mixed cell. If the mixed cell is a double cell, we simply use the standard correction step of DPIR
in order to correct the partial volumes.

In the case of a triple cell containing a triple point, the objective is to obtain an interface
regardless of the order of materials in the correction step. We describe here an algorithm that
realizes such a correction.

• Compute signs of correction (decide if a material needs to increase or decrease its volume
by evaluating the sign of the difference between the current volume in the sub-cell and the
targeted volume)

• Correct the material that has a correction sign different of the two others by moving the triple
point (considered here as a control point) in the direction given by the leading direction (that
is the mean between the two correction directions of sub-cells that have the same correction
sign)

• Correct the partial interface between the two others materials using the standard DPIR
correction step (adding a control point on the sub-segment). The result of this step is
illustrated on Fig. V.13.

Let us point out that as soon as you can treat the filament issue, the case of a cell with three
materials aligned can be treated the same way as the cell with two materials.

V.5.2.3 Complexity

The complexity of the algorithm is equal to M times the complexity of DPIR, where M is the
number of materials. As all one-against-all DPIR executions are independent, they can be executed
in parallel. The correction step only involves very local corrections, that are independent. There
are two different options :

• from the edge point of view: average contributions of computed temporary interface on each
edge (that can be done in parallel) and correct the volume into each cell (possibly in parallel);

• from the cell point of view: average all interface contributions on each edge of the cell crossed
by an interface and correct the volume into each cell (possibly in parallel).

Each local correction involves a (small) dichotomy search optimization that is O(log2(|C|/ϵ)), with
ϵ the requested precision of this optimization and |C| the diameter of the largest mixed cell of the
mesh. If we denote by T the number of mixed cells, the total complexity of the correction step is
then O(T log2(|C|/ϵ)) (triple cells only require 2 dichotomies).

V.5.3 A example of DPIR reconstruction on a triple point configuration

The new DPIR algorithm is applied to the interface reconstruction of a classical triple point test
case where materials 1 and 2 are located inside a half sphere and material 3 outside this sphere.
The results are displayed on figures V.11, V.12 and V.13.
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Fig. V.11 A triple point configuration: three interfaces obtained after the Dynamic programming
execution, introduced in section V.5.2.1, point A).
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Fig. V.12 A triple point configuration: result after the first step, see section V.5.2.1, points B) and
C).
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Fig. V.13 A triple point configuration: final result after the second step, see section V.5.2.2.

This new algorithm has also been successfully applied to a case with four materials (see
Fig. V.14).

V.5.4 Perspectives on the filament issue

A filament is a portion of the interface of a given material that crosses twice the same edge
(Fig. V.15). When it appears, one has to detect it before applying the algorithm. Indeed, DPIR
can not handle this problem because it looks for one unique interface point per edge.
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Fig. V.14 Interface reconstruction in a case with 4 materials.
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Fig. V.15 Example of filament. The numbers 1,2,3 indicate the three different materials.

To deal with this problem, we propose to first detect cells that contain filaments. The edges
that should contain two interfaces points are then tagged and splitted into two sub-edges. At the
stage methods described above can be applied since you are now looking for one unique interface
point per edge (or sub-edge).

V.6 Conclusion and perspectives

A new and extended version of DPIR algorithm has been developed that preserves its major
advantages, namely the continuity of the interface and the exact conservation of volumes. First,
we have extended it to unstructured grids and curved interfaces using Bezier curves. We also
described solutions to make it more robust at almost no additional cost.

In a second part, we extended DPIR to three or more materials. In this paper, we chose to use
a one-against-all approach even if other methods could be considered in the future.

We are currently working on coupling this method to an ALE scheme in order to use the
reconstructed interface with DPIR in anti-diffusive methods and curvature computation to deal
with surface tension.
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Résumé: L’objectif de cette thèse est d’étudier et développer des schémas numérique du type volume
finis pour des problèmes provenant de la mécanique des fluides, notamment le problème de Stokes et
Navier-Stokes. Les schémas choisis sont du type dualité discrète, dénotés DDFV; cette méthode travaille
sur des grilles décalées, où les inconnus de vitesse sont placés aux centres des volumes de contrôle et aux
sommets du maillage, et les inconnus de pression aux arêtes du maillage. Ce type de construction a deux
avantages principaux: elle permet de considérer des maillages généraux (qui ne vérifient pas nécessairement
la condition d’orthogonalité classique des maillages volumes finis) et de reconstruire à niveau discret les
propriétés de dualité des opérateurs différentiels continus. On commence par l’étude de la discrétisation du
problème de Stokes avec des conditions aux bords mixtes de type Dirichlet/Neumann; le caractère bien
posé de ce problème est strictement lié à l’inégalité Inf-sup, qui doit être vérifiée. Dans le cadre DDFV,
cette inégalité a été prouvée pour des maillages particuliers; on peut éviter cette hypothèse, en ajoutant des
termes de stabilisation dans l’équation de conservation de masse. Dans un premier temps, on étudie un
schéma stabilisé pour le problème de Stokes en forme de Laplace, en montrant son caractère bien posé, des
estimations d’erreur et des tests numériques. On étudie ensuite le même problème en forme divergence,
où le tenseur des contraintes remplace le gradient; ici, on suppose que l’inégalité Inf-sup est vérifiée, et on
écrit un schéma bien posé suivi des tests numériques. On considère ensuite le problème de Navier-Stokes
incompressible. Initialement, on étude ce problème couplé avec des conditions aux bords « ouvertes » en
sortie ; ce type de conditions apparaissent lors qu’on veut introduire une frontière artificielle, qui peut arriver
pour des raisons de coût de calcul ou physiques. On écrit un schéma bien posé et des estimations d’énergie,
validés par des simulations numériques. Deuxièmement, on s’intéresse à la méthode de décomposition de
domaines sans recouvrement pour le problème de Navier-Stokes incompressible, en écrivant un algorithme de
Schwarz discret. On discrétise le problème avec un schéma de type Euler semi-implicite en temps, et à chaque
itération on applique l’algorithme de Schwarz au système linéaire résultant. Nous montrons également la
convergence de cet algorithme et nous terminons par des expériences numériques. Cette thèse se termine
par un cinquième chapitre issu d’une collaboration lors du CEMRACS 2019, où le but est d’étendre DPIR
(une technique récente pour la reconstruction d’interfaces entre deux matériaux) au cas d’interfaces courbes
et de trois matériaux. Des simulations numériques montrent les résultats.

Mots clefs : mécanique des fluides, volumes finis, DDFV, Stokes, Navier-Stokes, conditions aux bords
mixtes, algorithmes de Schwarz, décompostion de domaine, reconstruction d’interfaces

Abstract: The goal of this thesis is to study and develop numerical schemes of finite volume type for
problems arising in fluid mechanics, namely Stokes and Navier-Stokes problems. The schemes we choosed
are of discrete duality type, denoted by DDFV; this method works on staggered grids, where the velocity
unknowns are located at the centers of control volumes and at the vertices of the mesh, and the pressure
unknowns are on the edges of the mesh. This kind of construction has two main advantages: it allows to
consider general meshes (that do not necessarily verify the classical orthogonality condition required by finite
volume meshes) and to reconstruct and mimic at the discrete level the dual properties of the continuous
differential operators. We start by the study of the discretization of Stokes problem with mixed boundary
conditions of Dirichlet/Neumann type; the well-posed character of this problem is strictly relied to Inf-sup
inequality, that has to be verified. In the DDFV setting, this inequality has been proven for particular
meshes; we can avoid this hypothesis, by adding some stabilization terms in the equation of conservation of
mass. In the first place, we study a stabilized scheme for Stokes problem in Laplace form, by showing its
well-posedness, some error estimates and numerical tests. We study the same problem in divergence form,
where the strain rate tensor replaces the gradient; here, we suppose that the Inf-sup inequality is verified,
and we design a well-posed scheme followed by some numerical tests. We consider then the incompressible
Navier-Stokes problem. At first, we study this problem coupled with « open » boundary conditions on the
outflow; this kind of conditions arises when an artificial boundary is introduced, to save computational
ressources or for physical reasons. We write a well-posed scheme and some energy estimates, validated
by numerical simulations. Secondly, we address the domain decomposition method without overlap for
the incompressible Navier-Stokes problem, by writing a discrete Schwarz algorithm. We discretize the
problem with a semi-implicit Euler scheme in time, and at each time iteration we apply Schwarz algorithm
to the resulting linear system. We show the convergence of this algorithm and we end by some numerical
experiments. This thesis ends with a last chapter concerning the work done during CEMRACS 2019, where
the goal is to extend DPIR (a recent technique for interface reconstruction between two materials) to the
case of curved interfaces and of three materials. Some numerical simulations show the results.

Key words : fluid mechanics, finite volumes, DDFV, Stokes, Navier-Stokes, mixed boundary conditions,
Schwarz algorithm, domain decomposition, interface reconstruction
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