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Résumé

La sécurité dans les systèmes embarqués devient un sujet de plus en plus important, notam-
ment en raison de la multiplication des appareils portables capables de gérer des données
sensibles (smartphones, tablettes, etc.). L’utilisation d’un support matériel pour implé-
menter des mécanismes de sécurité paraît incontournable afin de protéger efficacement ces
systèmes contre les attaques logicielles, tout en minimisant l’impact sur le temps d’exécution
des applications. Le contrôle de flux d’informations, Dynamic Information Flow Tracking
(DIFT), permet de détecter différents types d’attaques logicielles tels que les dépassements
de tampon ou les injections SQL. Pour suivre et contrôler les flux d’informations, les travaux
existants modifient l’architecture interne du processeur ou utilisent des processeurs de type
softcore, c’est-à-dire des processeurs synthétisés sur un FPGA, tels que les Leon3. De plus, la
plupart des approches existantes ne sont pas portables sur des processeurs de type hardcore
(câblés dans une puce). Dans cette thèse, une solution ciblant les processeurs hardcore ARM
Cortex-A9 est proposée. Notre approche s’appuie sur des composants ARM CoreSight, qui
permettent de tracer l’exécution des programmes exécutés par le processeur, afin de réaliser
le contrôle de flux d’informations. Le co-processeur DIFT que nous proposons est réalisé dans
la partie FPGA Artix-7 du système sur puce (Soc) Zynq, afin de bénéficier de la présence
sur la même puce de cœurs ARM Cortex-A9 dans la partie PS (Processing System) et d’une
partie reconfigurable FPGA dans la partie PL (Programmable Logic). Il est montré que
l’utilisation des composants ARM CoreSight n’ajoute pas de surcoût en terme de temps
d’exécution et permet une amélioration du temps de communication entre le processeur ARM
et le coprocesseur DIFT. De plus, les flux d’informations induits par les appels système ne
sont pas pris en compte dans les travaux existants, ce qui les rend vulnérables aux attaques
provenant de fichiers tels que la fuite d’information contenue dans un fichier. La solution
proposée dans ces travaux utilise RFBlare, un noyau Linux modifié, qui se charge du stockage
et de la récupération des étiquettes associées aux fichiers afin de protéger contre ces attaques.
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Abstract

Embedded security is more and more crucial with the huge increase in the number of mobile
equipment dealing with sensible data (smartphones, tablets, etc.). Runtime efficient protection
from software attacks requires architectural support. DIFT (Dynamic Information Flow
Tracking) is a technique that allows detecting software attacks such as buffer overflows or SQL
injection by monitoring information flows. In order to track information flows, existing works
modify internal CPU architecture or target softcore CPUs. Most of the existing approaches
are not portable to hardcore CPUs. In this thesis, a solution that targets ARM Cortex-A9
hardcore CPUs and takes advantage of ARM CoreSight components, that allow tracing
the CPU, is proposed in order to efficiently track information flows. DIFT co-processor
is implemented in Artix-7 FPGA included in Zynq SoC in this work, taking advantage
of both PS (Processing System containing ARM Cortex-A9 cores) and PL (Programmable
Logic providing an FPGA) on the same chip. It is shown that ARM CoreSight components
do not add execution time overhead which results in an improvement of communication
time overhead between the ARM CPU and the DIFT coprocessor. In addition, information
flows induced by system calls are not considered in existing works making them unsafe to
attacks originating from files such as data leaks. The solution proposed in this thesis takes
advantage of RFBlare, a modified Linux kernel, that provides support to store and retrieve
tags associated to files in order to protect against these attacks.



Résumé étendu

Depuis plus d’une décennie, le nombre de vulnérabilités logicielles ne cesse d’augmenter.
De nombreuses attaques logicielles exploitent les mécanismes architecturaux de bas niveau.
Dans le contexte de la sécurité informatique, le contrôle de flux d’informations (Dynamic
Information Flow Tracking en anglais) est un mécanisme de sécurité qui permet de lutter
efficacement contre un large spectre d’attaques logicielles, par exemple celles exploitant les
vulnérabilités de type buffer overflow, les cross-site scripting, les injections SQL ou les fuites
de données en générale. Le contrôle de flux d’informations consiste à rajouter une étiquette
(tag ou taint en anglais) sur chaque conteneur d’information. Le conteneur d’information
varie suivant le niveau auquel on effectue le contrôle: par exemple, il peut s’agir d’un registre
ou d’une adresse mémoire si on s’intéresse au niveau architectural, d’une variable si on
s’intéresse au niveau d’une application ou d’un fichier au niveau d’un système d’exploitation.
A chaque fois qu’une instruction est exécutée par le processeur, l’étiquette est également
propagée entre les conteneurs d’information. Une politique de sécurité permet de préciser
à quel moment l’étiquette doit être vérifiée afin de détecter une attaque. Par exemple, si
on considère une attaque qui consiste à lire une zone/adresse mémoire non initialisée, la
politique de sécurité consiste à détecter qu’il y a une écriture sur une adresse avant toute
lecture de la même adresse. La détection de l’écriture peut se faire en vérifiant la valeur
de l’étiquette. On peut considérer que lors de chaque écriture d’une adresse mémoire, son
étiquette est mise à 1. Lorsque l’adresse mémoire est adressée pour une lecture, son étiquette
est vérifiée pour savoir si elle a été initialisée (étiquette 1) ou non (étiquette 0).

Le contrôle de flux d’information peut être réalisé de plusieurs façons : de manière logicielle,
matérielle ou en utilisant une solution hybride logicielle/matérielle. L’approche logicielle est
la plus flexible, c’est-à-dire qu’elle permet de protéger contre de multiples attaques, mais
en contrepartie elle ralentit l’application de 3 à 37 fois [1]. L’approche matérielle permet
de réduire l’impact sur le temps d’exécution de l’application mais le spectre des attaques
détectées est plus restreint et surtout il est figé dans le temps. L’approche hybride ([2, 3,
4, 5]) permet d’obtenir le meilleur compromis entre performance du système et flexibilité.
Nos travaux se basent sur cette approche hybride et permettent de répondre aux questions
suivantes qui sont non-traitées dans les travaux existants :
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• Comment contrôler les flux d’informations sur un processeur ARM hardcore (c’est-à-dire
un processeur dont l’architecture ne peut être modifiée)

• Comment s’assurer de la sécurité du coprocesseur ?
• Comment mettre en œuvre plusieurs politiques de sécurité de différentes granularités ?
• Comment protéger une application contenant plusieurs fils d’exécution (threads) ?

Pour pouvoir contrôler les flux d’informations, il faut déterminer tous les flux qui sont
effectués lors de chaque opération exécutée par le processeur: chargement, mémorisation,
affectation, opérations arithmétiques, etc. Dans les travaux existants [1, 2, 3, 4, 5], les
processeurs qui exécutent l’application sont des processeurs de type softcore (c’est-à-dire des
processeurs réalisés dans un FPGA) qui permettent de récupérer l’information nécessaire
pour suivre et contrôler les flux d’information en utilisant des signaux existants. Sur un
processeur de type hardcore (câblé dans une puce donc non modifiable), il n’est pas possible
d’utiliser cette approche. Dans nos travaux, nous proposons une approche utilisant à la
fois le mécanisme de trace offert par les composants ARM CoreSight, une analyse statique,
l’instrumentation du code de l’application et RFBlare [6] (un noyau Linux modifié) afin
de récupérer l’information et de la transférer à un co-processeur implémenté sur la partie
reconfigurable d’un SoC (système sur puce) Zynq. Les composants CoreSight du cœur ARM
sont utilisés pour déterminer le chemin d’exécution pris par l’application. En effet, à l’aide
des traces générées par ces composants, il est possible de déterminer quel bloc de base le
processeur est en train d’exécuter. En revanche, ces traces ne permettent pas d’inférer
directement les flux d’informations générés à l’intérieur d’un bloc de base. C’est pourquoi
une analyse statique est réalisée en complément lors de la compilation de l’application, pour
déterminer tous les flux d’information à l’intérieur de chaque bloc de base. Le résultat de
cette analyse est stocké dans le fichier exécutable de l’application et fourni au co-processeur
lors du chargement de l’application. Toutefois, l’analyse statique ne peut déterminer toutes
les adresses mémoires des instructions mémoires (par exemple, ldr et str). Aussi, lors de la
compilation, il est également nécessaire d’instrumenter le code afin de récupérer les adresses
mémoires des instructions ldr et str à l’exécution de l’application. RFBlare est quant à lui
nécessaire pour pouvoir récupérer et mettre à jour les étiquettes associées à des fichiers. Il a
été vu d’une part qu’en utilisant l’approche proposée, qu’il est possible de déterminer tous
les flux d’information. D’autre part, l’approche proposé dans ces travaux est meilleure en
termes du temps d’exécution que l’approche proposée dans l’état de l’art [4].

Le composant CoreSight PTM, disponible sur le SoC Zynq, génère la trace (autrement dit,
des paquets qui permettent d’avoir des informations sur le code exécuté par le processeur).
Cette trace peut être envoyée vers la partie reconfigurable du SoC (système sur une puce)
en utilisant l’interface EMIO (Extended Multiplexed Input/Output en anglais). Le support
pour les composants CoreSight n’existait pas pour le Zynq SoC dans le noyau Linux. Nous
avons donc modifié le device tree pour pouvoir utiliser les pilotes associés à ces composants.
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Par ailleurs, le pilote Linux existant ne mettait pas en œuvre toutes les caractéristiques
offertes par ces composants: par exemple, il n’était pas possible de récupérer l’adresse des
branchements directs. Nous avons donc également modifié le pilote des composants CoreSight
pour rajouter ce support. Nous avons soumis un patch au mainteneur. Ce patch a été
accepté et il est maintenant intégré dans le noyau Linux. Le pilote pour le TPIU (Trace
Port Input/Output Unit) n’était pas complet et nous l’avons également modifié pour pouvoir
utiliser ce composant afin de récupérer la trace sur la partie reconfigurable (FPGA) du SoC.

Pour effectuer l’analyse statique, un algorithme qui permet d’analyser chaque bloc de base d’un
graphe de flot de contrôle a été proposé. La sémantique de chaque instruction exécutée par le
processeur est analysée pour déterminer les flux d’informations générés par cette instruction.
Par exemple, lorsque le processeur exécute une instruction add r0, r1, r2, il y a un flux
d’information depuis les registres r1 et r2 vers le registre r0. L’analyse statique permet
de récupérer cette information pour l’ensemble des instructions d’un bloc de base. Il faut
également arriver à déterminer les adresses mémoires utilisées dans le programme. Or, cela
n’est pas possible pour certaines instructions notamment pour les instructions mémoire (ldr,
str, . . . ) qui sont relatives aux registres. Pour ces instructions, il faut instrumenter le code
c’est-à-dire rajouter des instructions dans le code pour récupérer l’information sur l’adresse
mémoire. L’analyse statique est réalisée en utilisant le désassembleur Capstone [7] qui fournit
une API (Application Programming Interface) pour différentes architectures. Le chapitre 3
détaille l’utilisation des composants CoreSight, l’analyse statique et l’instrumentation pour
pouvoir récupérer l’information nécessaire pour le contrôle de flux d’informations.

Un premier prototype a été réalisé et a permis d’évaluer la faisabilité de l’approche pro-
posée. Le prototype permet de montrer comment le contrôle de flux d’information peut être
réalisé pour protéger le système contre la fuite de données. Dans un premier temps, un
processeur générique est utilisé pour effectuer les opérations nécessaires pour le contrôle de
flux d’information. Le chapitre 4 détaille l’architecture réalisée.

Dans un deuxième temps, un coprocesseur dédié a été développé afin d’accélérer le contrôle
de flux d’information. Les coprocesseurs dédiés de l’état de l’art considèrent que l’application
n’exécute qu’un seul thread. Or, les applications utilisent de plus en plus toutes les ressources
disponibles sur un processeur afin d’accélérer l’exécution. C’est pourquoi, il est important
de s’assurer que les applications qui utilisent plusieurs threads soient également protégées
des attaques logicielles. L’approche proposée a été améliorée pour pouvoir récupérer les
informations nécessaires pour suivre les flux d’informations d’une application contenant
plusieurs threads. Une configuration différente des composants CoreSight a été utilisée
pour obtenir le context ID d’une application dans les traces. Le context ID inclut le ASID
(Application Specific ID) et le TID (Thread ID). A l’aide de ces informations, le coprocesseur
peut identifier le thread actuellement exécuté et donc réaliser le contrôle de flux d’information
pour chaque tread. Par ailleurs, l’architecture du coprocesseur dédié que nous avons proposé
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permet de découpler les deux opérations qu’il doit effectuer : reconstruire le chemin d’exécution
de l’application et suivre les flux d’informations à l’aide des instructions générées par l’analyse
statique. Le chapitre 5 détaille l’architecture du coprocesseur et comment l’utiliser pour
protéger plusieurs threads ou suivre plusieurs politiques de sécurité en parallèle.

Par ailleurs, une mobilité a été effectuée entre décembre 2017 et février 2018 au sein du
laboratoire ALARI à l’Université de la Suisse Italienne (à Lugano). Au cours de cette mobilité,
la détection dynamique de logiciel malveillants (malware) pour les appareils portables à
l’aide des accélérateurs matérielles a été étudiée. Avec l’augmentation du volume d’appareils
intelligents, l’intérêt d’attaquer ces appareils est fortement en croissance, faisant de leur
sécurité un défis majeur. Le vecteur d’attaque couramment utilisé pour détourner ces appareils
de leur usage est l’utilisation d’un logiciel malveillant. Les deux moyens de protection contre
ces logiciels malveillants sont l’analyse statique et l’analyse dynamique. Alors que les analyses
statiques couramment utilisées s’appuient sur des signatures et ne peuvent détecter que les
attaques connues, l’analyse dynamique nécessite des ressources de calcul qui ne conviennent
pas aux appareils portables fonctionnant sur batterie. Une solution qui utilise les FPGAs
embarqués dans les SoCs a été proposée afin de réaliser un calcul économe en énergie pour
l’analyse dynamique, ce qui permet de l’adopter pour les appareils portables. La solution
proposée peut également accélérer l’analyse dynamique grâce aux accélérateurs matériels
générés à l’aide d’un outil de synthèse de haut niveau. Plus précisément, trois algorithmes
de classification (la régression logistique, la classification naïve bayésienne et les machines
à vecteur de support) ont été réalisés en matériel à l’aide de Vivado HLS. L’efficacité en
termes du temps d’exécution et de la consommation énergétique ont été évalués. Le chapitre
6 détaille ces travaux.

Le chapitre 7 résume les travaux présentés dans ce manuscrit et décrit les perspectives futures.
Il a notamment été montré dans ce manuscrit comment le contrôle de flux d’informations
peut être réalisé sur une architecture ARM en utilisant les composants CoreSight, l’analyse
statique, l’instrumentation et RFBlare (un noyau Linux modifié). L’architecture réalisée
permet de protéger des applications contenant plusieurs threads et permet également de
mettre en œuvre plusieurs politiques de sécurité en utilisant l’architecture modulaire du
coprocesseur proposé. Par ailleurs, une version économe en consommation énergétique a
été développée pour trois algorithmes de classification afin de détecter des applications
malveillantes et d’augmenter la durée d’utilisation de la batterie des smartphones. En ce qui
concerne le contrôle de flux d’information, les perspectives futures consistent en l’utilisation
de l’architecture afin de détecter différentes attaques logicielles (tels que XSS (cross-Site
Scripting) et attaque par traversée de chemin) et l’utilisation de l’approche proposée sur des
processeurs Intel qui possèdent également un composant de debug similaire au composant
ARM CoreSight PTM notamment Intel PT (Processor Trace).
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Chapter 1

Introduction

In this chapter, background context and motivations for this work are described. Then, the
important notion of security policy is explained with the help of an uninitialized memory
attack. A non-exhaustive list of software attacks is presented in order to understand the type
of attacks that can be detected using information flow tracking.

Contents
1.1 Background and Motivations . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Security policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Non-exhaustive list of software attacks . . . . . . . . . . . . . . . . . . . 5

1.4 Open Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Manuscript organization and contributions . . . . . . . . . . . . . . . . . 9
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1.1 Background and Motivations

Software security is still one of the main concerns in today’s systems even though an important
amount of research has been done on the subject. There is no universal solution for software
security because the security has been overlooked for performance from the dawn of the
computer age. From the invention of transistor-based computers, the focus of research and
development has been put on the improvement of speed rather than the security of computers.
This leads to devices considering security as an optional feature rather than a compulsory
one. In the 1980s, the first impactful software attacks showed the need for making research
efforts in the domain of software security.

Since the beginning of this field, most of the solutions proposed in research are not being
widely adopted by hardware vendors and software developers and there are a few reasons
for that. One of the main reason is the scope of existing works. Most related works provide
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an answer to a particular type of software attacks. There are a huge variety of attacks that
target different aspects: some target a particular aspect of the hardware while others take
advantage of a software misconception. In average, 40 new software vulnerabilities have been
detected every single day of 2017 [8]. In addition to the different level of attacks, there has
been a diversification of targeted devices. The attacks are no longer limited to the personal
computer but can affect all the connected devices. For all these major concerns, there is an
important need of providing architectures that provide security features.

This paragraph briefly discusses important software security notions. First of all, there
are three important software security principles that are briefly discussed: confidentiality,
integrity, and availability. Confidentiality consists of making sure that only the authorized
users has access to the data while integrity consists of making sure that only the authorized
users can modify the data. Availability refers to the accessibility of data or the system to
authorized users at all time. The security policy details which information containers (files,
variables, registers, . . . ) are being considered as well as the security properties that are
studied. Security mechanisms are used to detect, prevent or recover from a security attack.
There are two important types of security mechanisms: preventive and reactive mechanisms.
The preventive mechanisms are used in order to reduce the probability of an attack (e.g.
cryptographic mechanisms, isolation, and formal proof). However, the attackers end up
finding security loopholes in the existing code and bypass these mechanisms. Therefore,
reactive mechanisms have been proposed in order to monitor the system and detect a security
policy violation in order to recover. One of the most generic and universal solution to detect
software attacks is the dynamic information flow tracking.

DIFT approaches target confidentiality and integrity principles. Existing software-based
DIFT approaches are flexible (multiple security policies can be applied in order to detect
multiple types of software attacks) while requiring an important amount of computation
time. Therefore hardware-assisted approaches have been proposed in order to speed up the
execution time of DIFT operations. However, almost all of these hardware-assisted DIFT
approaches target open architectures such as SPARC V8 [9] whereas ARM, Intel, and AMD
architectures are widely used in the industry are left unstudied. Furthermore, some related
works target a system with a standalone OS (Operating System) which is not the case in
most systems used in the industry. All these reasons showed the need to bridge this gap by
providing a solution that can protect from most types of software attacks and is portable to
existing systems.

There are two main types of approaches in order to detect software attacks: signature-based
and behavioral-based. The signature-based approach consists in comparing the action or
code sequence of the application with a known set of “signatures” (i.e. known pieces of code
that indicate an attack or a malware). The behavioral-based approach consists in monitoring
program behavior and comparing it with a model of the legitimate behavior: it works well in
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order to detect new unknown attacks while a signature-based approach only detects known
attacks.

The goal of the work proposed in this thesis is to propose a solution for software security
on an ARM-based CPU running Linux OS in order to bridge the gap between research and
industry. The ARM architecture is one of the most used architectures in embedded devices
(smartphones, tablets and other electronic devices). In 2013, ARM-based chips were found in
60 % of the world’s mobile devices [10]. The Linux kernel is also one of the most used OS in
the world. The choice of the architecture and the OS is crucial in order to make sure that
the end user would be able to take advantage of the approach proposed in this work.

This work studies behavioral-based solutions in order to detect software attacks. More
precisely, we rely on taint-based and anomaly-based approaches. Taint-based detection
scheme consists in adding tags to the information container, propagating the tag each time
the information container is accessed or modified and checking the value of the tag when
it is copied or written to another information container. The information container differs
depending on which level the detection is made. For instance, if the low-level scheme is
used, then the information container is a register or a memory address. The anomaly-based
detection scheme consists in detecting programs that are likely to present a threat and block
them. Chapters 2, 3, 4 and 5 studies taint-based detection in embedded systems running the
Linux kernel while chapter 6 studies anomaly-based detection in embedded systems running
Android.

HardBlare project

This work is done in the frame of the HardBlare project [11]. This project aims at exporting
compute-intensive operations of the Blare project [12, 13, 14] to a dedicated hardware
coprocessor. Blare, an OS-level taint-based approach, consists in providing security features
in the Linux kernel using LSM (Linux Security Modules) hooks. It allows detecting security
policy violations such as intrusions and malware.

Blare is an OS-level information flow monitor. The information container at the OS level is a
file: it means that tags are associated with files. Each time a program accesses a file, then the
tag of the file is associated with the program. Conversely, each time the program writes to a
file, the tag of this file is updated with the tag of the program and the security policy verifies
whether this information flow is authorized or not. The propagation and check required by
the security policy are all done by the Linux kernel. Furthermore, the memory used by the
process is considered to be tagged by all the files read. For instance, if the program reads two
files, then the whole memory area used by the process is tagged with both tags instead of
tagging only the region where bytes read from the file are located. It results in an important
number of false positives and false negatives.
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HardBlare uses Blare in order to properly initialize tags of the file in the kernel. When a
read operation is made by the process, the kernel sends some information to the coprocessor
in order to propagate tag. When the kernel writes to a file, the Blare part recovers the tag of
the file being written and requests the tag of the file from the hardware accelerator. It allows
having a more accurate vision of the memory as only the area that contains the file read by
the process are tagged using the tag of the file (the behavior is similar for write operations).

1.2 Security policies

The security policy states how to initialize, propagate, and check tags. Defining proper
security policies in order to detect software attacks with few false positives and false negatives
require formal verification and some deep knowledge on the attack that needs to be detected.
This problem correspond to a dedicated research field and is out of the scope of this thesis.
This work aims at providing users a framework allowing them to implement any security
policy.

Some works such as [15] try to analyze and formally verify that the security policy succeeds
in detecting software attacks. For instance, if an uninitialized memory corruption attack is
considered, then the security policy states the propagation and check rules shown in equations
1.1 and 1.2. For the purpose of simplicity, only two tag values are considered: 0 and 1
where the value 0 means that the tag is uninitialized, the value 1 means that the memory is
initialized and tm represents the tag of the memory address being accessed or modified by
the instruction.

Store : {tm = 1} (1.1)

Load : (tm = 0)→ interrupt (1.2)

The bold text shows that the operation must happen if the instruction being executed on the
main CPU has the mentioned opcode, then the propagation or the check operation should
take place. If the instruction is a store instruction (equation 1.1: it could be either str, stm,
vstr or vstm instruction), then the tag of the memory address should be set to 1. Otherwise,
if the instruction is a load instruction (equation 1.1: it could be either ldr, ldm, vldr or
vldm instruction), then the tag of the memory address should be checked. If it is equal to
0, then an uninitialized memory address is being accessed allowing to detect the memory
corruption. For all other instructions, there is no propagation or check operation. This simple
example shows how the security policy is specified and how it can be used in order to protect
against uninitialized memory corruption attack. Similarly, there is a security policy that
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specifies how to propagate and check tags in order to implement information flow control.
DIFT (Dynamic Information Flow Tracking) requires that for each instruction executed by
the CPU, another operation must be done on the tag of operands used in the instruction.
Depending on the instruction type and the software attack protected, propagation and check
rules of the security policy may differ.

1.3 Non-exhaustive list of software attacks

This section presents the buffer overflow attack that can be protected using DIFT. The attack
itself and the security policy used in order to detect this attack are explained. There are other
types of attacks (Format string, SQL injection, Cross-Site Scripting, Directory traversal. . . )
that can be detected using DIFT and specific security policies as described in [15].

1.3.1 Buffer Overflow

Buffer overflow is one of the first software attacks that resulted in the emerge of the software
security field. It consists of overwriting some buffer in memory to modify program control
flow and execute some malicious code. The goal of the security policy is to enforce the
integrity of return address in order to prevent from modification of program control flow.
Listing 1.1 shows an example code that can result in a buffer overflow. The user types an
input that is stored in idx variable. It is then used to modify an element of the buffer. If
the user types an index value that is greater than the buffer size, then this could result in
modifying the elements outside the buffer which could corrupt the program data. Historically,
the attacker overflows the buffer in such a way that the input data contains malicious code
which could be executed after overflow by modifying the return address stored in memory
(as shown in Figure 1.1). When the return address is used, it points towards the specially
crafted malicious injected code by the attacker.

1 int idx = tainted_input ; // stdin (> BUFFER SIZE)
2 buffer [idx] = x; // buffer overflow

Listing 1.1 – Buffer overflow example code.

There is an important amount of techniques that allow preventing from buffer overflows: stack
canaries, DEP (Data Execution Prevention) and ASLR (Address Space Layout Randomization)
are the most common ones. Compilers can insert stack canaries after each buffer in order
to detect a change of this value after execution allowing to successfully detect the attack.
DEP consist in adding a mark using a special NX (Non eXecutable) bit available in the
MMU (Memory Management Unit). It allows preventing the attacker to execute injected
code from the stack. So, even if the attacker succeeds in modifying return value and pointing
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Registers
Tag Data

r1:&input
r2:idx=input
r3:&buffer
r4:&buffer+idx
r5:x

Memory
Tag Data

Return Address

int buffer[Size]

Figure 1.1 – Initial state of the system before the program starts execution.

it towards the injected code, the attacker will not be able to run that code residing in the
stack. To bypass the DEP, attackers come up with another attack named ROP (Return-
Oriented Programming). Instead of overwriting the return address to point towards the
injected code on the stack, the attacker manipulates the return address to point towards the
instructions already available in the program also known as “gadgets” (i.e. existing code in
the .text section). ASLR was designed in order to protect against ROP attacks. It works
by randomizing the value of .text and data segments on each run. Therefore, the attacker
cannot precisely determine the address of “gadgets” and cannot take advantage of the ROP
attack.

1.3.2 DIFT security policy

DIFT consists in adding a tag to a register or a memory address. Each time an instruction is
executed in the CPU, it makes an operation from one or multiple source operands (register
or memory address) towards a destination operand (a register or memory address). DIFT
consists in propagating the tag alongside the instruction in order to monitor program behavior.
The goal of this paragraph is to show how the DIFT can be used to prevent from buffer
overflows. Listing 1.2 shows the simplified assembly code of the program shown in Listing
1.1.

1 set r1 ← & tainted_input
2 load r2 ← M[r1]
3 add r4 ← r2 + r3
4 store M[r4] ← r5

Listing 1.2 – Simplified assembly code for the buffer overflow example code (Listing 1.1).

Figure 1.1 shows the initial state of the system before program execution. The main CPU
registers are extended to contain an additional information about the tag. Green tags
represent private tags while red tags represent public tags. Private tags mean that the
information is coming from a secure source whereas public tags mean that the information is
originating from a non-secure (or public) interface such as the standard input stdin. Each
time an instruction is executed, the corresponding operation is realized on the tag. For
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Registers
Tag Data

r1:&input
r2:idx=input
r3:&buffer
r4:&buffer+idx
r5:x

Memory
Tag Data

Return Address

int buffer[Size]

Figure 1.2 – Final state of the system after the execution of program code.

instance, if the first instruction in Listing 1.2 (consisting in moving address of tainted_input
in register r1) is executed on the CPU, the tag of tainted_input is also copied into register
r1. When the second instruction is executed, the tag of r1 is also copied into r2. r4 is
tainted after executing the third instruction because r2 is tainted. When the store operation
on the line four takes place, the tag of the r4 register is copied to the r5 register. Figure
1.2 shows the final state of the system after the program has finished execution. When the
return address is used, the tag is checked which will result in the generation of an exception
due to the fact that the return address is tagged as non-secure.

1.4 Open Research questions

This section presents some important research questions that are not dealt in existing works.

1.4.1 Question 1: How to recover required information for DIFT on hard-
core CPUs ?

Most of existing works target softcore CPUs for DIFT implementations. It results in important
design considerations that cannot be fulfilled on a hardcore CPU. One example is the interface
between the CPU and the DIFT accelerator often implemented in FPGA. Decoupling tag
operations on FPGA requires some information from the CPU. Existing works consider that
this information can be taken from existing CPU signals. If the target CPU is a softcore, then
all internal signals can be easily extracted and used in order to recover information required
for DIFT. However, this is not the case on a hardcore CPU as internal signals cannot be
extracted. Therefore, it is important to propose an approach allowing to recover information
required for DIFT on a hardcore CPU.
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1.4.2 Question 2: DIFT on ARM architecture (hardcore CPU)

Most devices (smartphones, tablets and electronic systems) include ARM-based CPUs.
Therefore, it is important that the proposed approach provides a solution designed for the
ARM architecture. It provides general purpose registers and an FPU (Floating Point Unit)
in order to speed up computation on floating point numbers. The FPU requires special
instructions that are not considered in existing works. Furthermore, software considerations
are different on such an architecture. For instance, the ABI (Application Binary Interface) is
different from the SPARC architecture considered in related works. Therefore, it is important
to target the ARM architecture in order to provide a solution that is easily usable by
researchers, developers and experienced users.

DIFT coprocessors proposed in the literature lack some important features such as the tag
initialization support from the OS. Furthermore, the tag management scheme consists of a
simple bitmap which is not adapted on a hardcore. It is important to provide these missing
features in order to improve flexibility and reusability.

1.4.3 Question 3: How to implement multiple security policies of different
tag size ?

A program may need require a protection based on multiple security policies. Existing
works provide limited support for this feature. For instance, most hardware-assisted DIFT
approaches can implement multiple security policies of 1-bit tag. If the tag size needs to be
bigger than 4 bits, then the security policy cannot be implemented. Therefore, it is important
to provide an architecture able to run multiple security policies with different tag sizes in
order to detect multiple attacks.

1.4.4 Question 4: Multi-threaded system / Multicore system

Most applications take advantage of multicore systems in order to speed up execution by
using multiple threads. However, no existing hardware-assisted DIFT approach provides a
way to manage multiple threads. Therefore, it is important to propose an approach that can
be used with a multi-threaded program.
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1.5 Manuscript organization and contributions

1.5.1 Manuscript organization

This section presents the overall organization of this thesis. Chapter 2 describes important
existing works on the topic of information flow tracking and provides a comparison of features
proposed in this work. Then, chapter 3 explains the first contribution of this work that
details how to recover information required for DIFT on an ARM-architecture based hardcore
CPU. Chapter 4 presents a first proof-of-concept implemented using a MicroBlaze softcore
CPU in order to experiment that the proposed approach can allow implementing DIFT on
a hardcore CPU. Later, chapter 5 shows a detailed view of the custom DIFT coprocessor
that is implemented in order to improve the execution time of tag operations. Chapter 6
describes a different approach for malware detection on Android smartphones. The main goal
is to propose an energy-efficient implementation of a malware detection approach proposed
in [16]. Finally, chapter 7 concludes this work by summarizing proposed contributions and
providing future perspectives. In addition to the main content, this manuscript contains four
appendices.

• Appendix A details some characteristics of the development board used in this work.
• Appendix B details the design and evaluation method followed in order to test the

developed IPs in this work.
• Appendix C details the ISA (Instruction-Set Architecture) of the DIFT coprocessor

proposed in chapter 6.
• Appendix D lists the publications that the author has contributed to during the Ph.D.

1.5.2 Manuscript contributions

The contributions of this thesis are the following:

• It provides a method to recover information required for DIFT on ARM CPUs. It
proposes to use CoreSight PTM, static analysis, and binary instrumentation to recover
information required for DIFT. It is shown that the PTM does not add any execution
time overhead. This contribution is detailed in chapter 3 and chapter 4.

• Two patches have been added in the Linux kernel in order to add support for missing
features [17].

• It proposes a method to protect the DIFT coprocessor using ARM TrustZone. This
contribution is detailed in chapter 4.

• It provides flexible security policies implementation in hardware: previous off-core
hardware-assisted approaches lack ways of specifying security policies (compile-time or
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runtime only) and do not offer support for multiple security policies of different tag
granularities (page, word, etc.). This contribution is explained in chapter 5.

• This work is compatible with multi-threaded applications mainly thanks to the context
ID information obtained from CoreSight PTM. It allows filtering trace using Context
ID and to determine the exact order of operations on the CPU for each thread. This
contribution is explained in chapter 5.

• This work tracks all information flows unlike most existing works. It allows detecting a
wider range of attacks. This contribution is explained in chapter 5.

• This work provides a power-efficient and runtime-efficient implementation of three
classification algorithms: LR, NB, and SVM. This contribution is explained in chapter
6.

1.6 Summary

This chapter sums up the gap between research and industry in the domain of embedded
software security. One of the main reasons for this gap is that solutions in the literature do
not consider architectures widely used in the industry especially ARM. This work focus on
minimizing this gap by targeting the ARM architecture. There are some other important
research questions that are not handled in existing works such as multiple security policies of
different tag sizes or tracking multiple threads in an hardware-assisted approach. This work
focuses on providing an architecture able to track multiple security policies with different tag
sizes and providing a method to recover information required for DIFT for multiple threads or
multiple processes by taking advantage of a unique feature of CoreSight debug components.



Chapter 2

Related works

This chapter presents existing works on information flow tracking with an emphasis on
hardware-assisted DIFT architectures. It also details specifications for this work and
compares them with existing works.

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
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2.1 Introduction

This chapter introduces existing works in order to fully understand the contributions reported
in this thesis. Section 2.2 describes different types of IFT (Information Flow Tracking):
static IFT (SIFT) and dynamic IFT (DIFT) both explained in section 2.2. SIFT is mainly
used to test an application binary while DIFT is used to protect against software attacks [1].
Section 2.3 explains different levels of IFT (from application to gate level): IFT can be used
at different levels in order to monitor a program behavior, to detect software security attacks
and even to detect hardware trojans using gate-level information flow tracking [18]. Section
2.4 describes different hardware assisted DIFT solutions. Section 2.5 explains the benefits of
this work compared to existing solutions. Finally, section 2.6 summarizes this chapter.
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2.2 Different types of IFT

There are two types of IFT approaches: static and dynamic IFT, each one has its own goals.

2.2.1 Static IFT (SIFT)

SIFT is an offline analysis of the application aiming to check that all branches of the control
flow graph are trustworthy. SIFT is mainly used for the purposes of general program
understanding, detection of attacks and vulnerabilities. Figure 2.1 shows a simplified CFG
(Control Flow Graph) of an application compiled for the ARM-v7 architecture. The application
opens a file depending on the user type determined using the geteuid function: if the user
is root, the secret file passwd is opened. Otherwise, a public file welcome is opened. Then,
contents of the file are copied into a buffer and printed on the stdout. The content of the
passwd file should not be printed on the stdout. The CFG shows two possible paths for
the application depending on the output of the test made in basic block #1. The path
#1 is made up of execution of basic blocks #1, #2 and #4 while path #2 consists of the
execution of basic blocks #1, #3 and #4. SIFT will analyze both these paths in order to
find security vulnerabilities. As the analysis is done offline before execution, SIFT does not
add runtime overhead. However, it is possible that the analyzed path may never be used by
the application during execution. As a consequence, SIFT tends to produce an important
number of false positives.

2.2.2 Dynamic IFT (DIFT)

DIFT is performed at runtime: it monitors data flow of the application binary in order to
check if the execution is safe. DIFT is used to protect against software attacks (such as buffer
overflows, format-string attacks, SQL injection, cross-site scripting, etc.) [1] or used for data
leakage prevention [4]. DIFT only tracks the execution path taken by the application instead
of analyzing all possible execution paths which results in an approach more precise than
SIFT. Considering the example shown in Figure 2.1, DIFT would track only path #1 (basic
blocks #1, #2 and #4) or path #2 (basic blocks #1, #3 and #4). However, DIFT requires
more information in order to determine the execution path taken by the application.

2.3 Different levels of IFT

Figure 2.2 shows the four different levels of an embedded software architecture: application
layer, system service layer, OS layer and hardware abstraction layer.
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; read(buffer, 1, sizeof(buffer), fs);
8678:  mov   r3, sp
867c:  mov   r0, r3
8680:  mov   r1, #1
8684:  mov   r2, #20
8688:  ldr   r3, [sp, #20]
868c:  bl    848c <_init+0x44> ; fread
; fclose(fs);
8690:  ldr   r0, [sp, #20]
8694:  bl    84bc <_init+0x74> ; fclose
; printf("Buffer Value : %s \n", buffer);
8698:  mov   r3, sp
869c:  movw  r0, #34628 ; 0x8744
86a0:  movt  r0, #0
86a4:  mov  r1, r3
86a8:  bl    8468 <_init+0x20> ; printf

; char buffer[20];
; FILE *fs;
8608:  push {lr}
860c:  sub  sp, sp, #28
8610:  bl   8480 <_init+0x38> ; geteuid()
8614:  mov  r3, r0
8618:  cmp  r3, #0
861c:  beq  864c <main+0x44> ; basic_block_3_addr

Basic Block #1

Basic Block #3 Basic Block #2

Basic Block #4

Path #1Path #2

; user
; fs = fopen("welcome", "r");
8620:  movw  r0, #34608 ; 0x8730
8624:  movt  r0, #0
8628:  movw  r1, #34616 ; 0x8738
862c:  movt  r1, #0
8630:  bl    8474 <_init+0x2c> ; fopen
8634:  str   r0, [sp, #20]
; if(!fs) exit (1);
8638:  ldr   r3, [sp, #20]
863c:  cmp   r3, #0
8640:  bne   8678 <main+0x70> ; basic_block_4_addr
8644:  mov   r0, #1
8648:  bl    84b0 <_init+0x68> ; exit

; root
; fs = fopen("passwd", "r");
864c:  movw  r0, #34620 ; 0x873c
8650:  movt  r0, #0
8654:  movw  r1, #34616 ; 0x8738
8658:  movt  r1, #0
865c:  bl    8474 <_init+0x2c> ; fopen
8660:  str  r0, [sp, #20]
; if(!fs) exit(1);
8664:  ldr   r3, [sp, #20]
8668:  cmp   r3, #0
866c:  bne   8678 <main+0x70> ; basic_block_4_addr
8670:  mov   r0, #1
8674:  bl    84b0 <_init+0x68> ; exit

Figure 2.1 – A simplified sample Control Flow Graph.
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Figure 2.2 – Software architecture of an embedded system.
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The IFT can be done at different levels: starting from high-level (OS-level) to hardware level
(or low-level). Each level has its own advantages and drawbacks that are explained below.

2.3.1 Application level IFT

Application level IFT tracks information flows between application variables. Considering
the C code shown in Listing 2.1, the corresponding information flow tracking program code
is shown in Listing 2.2. The goal of information flow tracking in this example is to prevent
from data leakage, which consists in leaking confidential information on a public interface, in
three main steps:

1. Tag initialization. Each variable in the C code (for instance a, Listing 2.1) has its
corresponding tag variable (tag_a, Listing 2.2).

2. Tag propagation. The tracking program propagates the tag of a variable each time
it is used in the code (for instance variable c).

3. Tag check. Before writing the value to a channel, the tracking program makes sure
that the variable being written is public. If the variable is public, then the write
operation succeeds, , otherwise the tracking program raises an alert to inform the user
about a data leakage.

These three steps are common to all levels of IFT. The tracking program, running alongside
the original application, is generated using a modified compiler or by analyzing the program.

1 char buffer ;
2 int a, b, c;
3 c = a + b;
4 print(c);
5

Listing 2.1 – Example C code.

1 char tag_a = 1, tag_b = 0, tag_c = 0;
2 tag_c = tag_a | tag_b;
3 if (tag_c == TAG_PRIVATE )
4 print( Secure information being sent

to public channel );

Listing 2.2 – Tracking program code for application
level IFT.

2.3.1.1 Interpreter-based

Some languages provide a specific mode allowing to specify whether a variable is public or
private. A private variable cannot be sent towards public channels.
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1 #!/ usr/opt/perl
2 my $arg=shift; # get parameter from command line
3 system ($arg); # and execute it as a system command

Listing 2.3 – Application level IFT.

In Listing 2.3, the Perl script has a clear security problem: a malicious user can use any
system command as an argument and the script would execute it. Therefore, it is necessary
to taint (in other words, add a tag to) the user argument so that when it is used, the Perl
interpreter can propagate this taint to other variables. This is done by using taint mode [19]
i.e. executing the script with -T option like #!/usr/opt/perl -T.

2.3.1.2 Language-based

There are several security extensions that have been proposed for existing languages. This
subsection cites some important approaches and provides a summary of these works.

Java One of the first works that proposed a programming language extension is JFlow
[20]. JFlow adds statically-checked information flow annotations to Java language. Because
this approach is static, its main advantages are little code space, data space and low
runtime overhead in the implementation. JIF [21] is another extension that adds support
for information flow control and access control that are enforced at both compile-time and
run-time. JBlare [22] is an hybrid approach associating a tag to each variable used by the
program in order to track all information flows. The Java bytecode is analyzed statically in
order to generate annotations that are executed dynamically by a modified JVM interpreter.

Android TaintDroid [23] is an extension of the Android platform that tracks data infor-
mation flows in applications. The main goal of their proposed approach is to detect when
sensitive data leaves the system in order to analyze specific Android applications or services.
AndroBlare [24] is an approach that tracks information flows on the Android operating system.
It modifies an existing information flow monitor, called Blare, that tracks information flows
in Linux in order to trace information flows on an Android platform.

Other languages There exist other solutions specific to each language. For instance, a
solution is proposed in [25] for Javascript and FlowCaml [26] for OCaml.
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2.3.2 OS level IFT

The application level IFT tracks information flows for each variable of the application which
results in an important runtime overhead. Therefore, another coarse-grained approach was
proposed to track information flows at the OS level. In this approach, instead of tagging
variables used by the application, the files used by the application (read or written) are
tagged. On the one hand, the advantage of this approach is that it reduces the number of
information flows which results into an improvement of the runtime overhead. On the other
hand, the main drawback of this approach is that it results in more false positives than the
application level approach. There are two types of OS-level IFT approaches: approaches
based on a dedicated OS and approaches that modify an existing OS.

HiStar [27] is a new OS that has been designed in order to provide precise data specific security
policies. Asbestos [28] and Flume [29] are some other solutions that tracks information flows
on specific OSs. On the other hand, Blare [30] is an information flow monitor that tracks the
information flow of Linux kernel OS. Figure 2.3 describes how Blare works. Each time an
application reads a file, the OS tags the corresponding process with the tag of the file read.
Similarly, when the application writes to a file, the process associates the tag of the process
to the file being written. Security policies are enforced by checking the tag of the process
that writes to a file. The work proposed in this thesis uses Blare [30] and a modified Linux
kernel OS in order to provide support for retrieving and storing tags of files.

kBlare

File 1
passwd.txt

File 2
index.html

File 3
Unauhtorized.html

Application

Socket
Network

user land

kernel land

char buffer1[20], buffer2[20], buffer3[20];
FILE *fpassword, findex, funauthorized;

fpassword = open("passwd.txt");
findex = open("index.html");
funauthorized = open("unauthorized.html");

read(buffer1, fpassword)
read(buffer2, findex)
read(buffer3, funauthorized)

if(buffer1[] == 1){
   send_to_socket(fpassword);
}
else{
   send_to_socket(findex);
}

Figure 2.3 – Blare approach.
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2.3.3 Low level IFT

Low level IFT tracks information flows at a lower level than application level. Instead of
tagging variables or files, this approach tags registers and memory addresses. The idea of
tagging registers and memory addresses is to design an hardware accelerator in order to
improve execution time overhead of IFT. This approach can be implemented using different
types of solutions. The different low-level hardware-assisted solutions are described in section
2.4 as it will be the approach followed in this thesis work.

2.3.4 DBT-based IFT

There are many existing dynamic binary instrumentation frameworks: Pin for Intel [31],
StarDBT for multiple platforms [32], DynamoRIO for multiple platforms especially for
ARM [33] and Padrone [34]. This non-exhaustive list shows few important works on DBT
frameworks. These DBT frameworks can be used in order to implement DIFT. In practical,
they are not used because they add huge runtime overhead. However, they are used to
implement memory checking tools and some specific fixed security policy but lack generic
security policy solutions.

QEMU-based

The instrumentation-based approach is architecture dependent. Whelan et al. [35] describes
PIRATE, an architecture-independent DIFT approach. It is based on the QEMU (Quick
EMUlator) [36] dynamic binary translator. It translates code of the guest architecture into
its own custom IR (intermediate representation) and then converts it into different host
architectures. The idea is to use the QEMU IR to analyze information flows.

2.3.5 Gate level IFT

Gate level IFT [37] is used to create “secure” circuits. The goal is to protect against hardware
trojans and unauthorized behaviors. This is done, during the creation of the hardware circuit,
by adding additional logic for each gate used in the design.

2.4 Hardware-assisted

In [1], Dalton et al. reports that software DIFT solutions add huge runtime overheads:
the application can be slowed up to 37 times if DIFT is performed in software. Therefore,
an interest arose in developing hardware accelerators in order to improve execution time
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overhead at the expense of flexibility. This section details different types of hardware-assisted
approaches: new CPU architecture designed for DIFT, in-core, off-loading and off-core DIFT
approaches.

2.4.1 New CPU architecture

Instead of securing existing platforms, the SAFE project [38] proposes a new CPU architecture
that takes into account security features. The architecture includes additional features
designed for security. The originality of this work is to have a different look at security.
Security is not an option and is included by default in the system. The main drawback is that
the whole software stack needs to be adapted to the architecture. Another similar approach
is proposed in CHERI [39].

2.4.2 In-core

The in-core approach relies on a deeply revised processor pipeline. Figure 2.4 shows the
architecture proposed in [1]. All memory elements (DRAM, instruction and data caches)
are extended with tag bits. Furthermore, the processor architecture is modified in order to
compute tags in another level. When the processor fetches an instruction, the corresponding
tag is fetched as well. During decode stage of the processor pipeline, the first level decodes
the instruction while the second level decodes the security policy in order to determine how
tags should be propagated and checked. When the first level executes the instruction, the
second level propagates the tag. When the data is written into memory, the tag is taken from
tag ALU and written to memory at the same time. To sum up, each stage of the pipeline is
duplicated with a specific hardware module in order to realize tag-related operations all along
the program execution. This approach can be adapted to add support for multi-threaded
software but invasively modifies the processor architecture making it not portable on hardcore
CPUs.

In [40], similar to Raksha [1], PUMP modifies the CPU architecture in order to make DIFT
computations in the processor pipeline. In addition, they proposed a rule cache that avoids
the computation of a new tag if the rule cache is hit. This in-core approach is not feasible
with a hardcore CPU, not modifiable, such as the ARM Cortex-A9 considered in this work.

2.4.3 Off-loading

The off-loading approach shown in Figure 2.5 [41, 42] suggests to separate program execution
from DIFT computation by using two general purpose processors. The first core executes the
application while the second core executes the tag-related operations.
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Figure 2.4 – In-core DIFT (adapted from [2]).
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Figure 2.5 – Off-loading DIFT: Log-based approach (adapted from [2]).
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Figure 2.6 – Off-core DIFT (adapted from [2]).

In addition to program execution, the first core also compresses and stores the information
required for DIFT inside a shared buffer located in memory or cache. The second core
decompresses this information and realizes tag computation in order to check whether an
illegal information flow has taken place or not. Illegal information flows are specified using
security policies.

2.4.4 Off-core

This approach seems similar to the off-loading one. However, DIFT is performed on a
dedicated coprocessor instead of a general purpose processor. Furthermore, this approach
requires support from the OS in order to synchronize the main core and the DIFT coprocessor.
The synchronization part stalls the main core in order to wait for the end of tag propagation.
Another important thing to notice is that the OS is responsible for initializing tags of memory
regions. However, no existing approach proposed an architecture that offers this possibility.

2.4.4.1 RAKSHA v2

Kannan et al. [2] described one of the first works that proposed the idea of using a dedicated
DIFT coprocessor in order to improve tag computation runtime overhead. The tag pipeline
unit (Figure 2.6) is responsible for propagating tags for registers and memory addresses. The
tag cache is used to fetch tags from memory. The memory is extended with some additional
tag bits. The most important architectural decision is the interface between the main core
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and the tag pipeline unit. Figure 2.6 shows this interface. As the targeted main core is a
softcore CPU, the existing CPU signals are exported towards the DIFT coprocessor. However,
sending this information on a hardcore CPU typically requires instrumentation and static
analysis [4] and adds over 90% of total DIFT time overhead. Therefore, it is important to
reduce the amount of information that needs to be sent in order to compute tag operations
on the FPGA side. In addition, this approach considers a tag size of only 1 bit per memory
word making it not suitable for more complicated security policies such as heap protection
security policy presented in [15] which requires a tag size of multiple bits (up to 32). The
security policy can only be specified at run-time using dedicated configuration registers: TPR
(Tag Propagation Register) and TCR (Tag Check Register).

2.4.4.2 FlexCore

Deng et al. [3, 43] proposed an hardware accelerator that can work up to 1GHz. The idea of
increasing frequency is to propose an architecture that can match the main CPU frequency
running the monitored application. However, the hardware accelerator requires a lot of
information from the main core. Therefore, this solution is not suitable for hardcore CPUs
as the amount of information that needs to be sent would result in a huge runtime overhead.
Another original aspect of their work is to propose a generic hardware accelerator that can
be configured to run different security policies [43]. Furthermore, this approach is lacking
support for modern OS (such as Linux kernel) making it not suitable for hardcore CPUs.

2.4.4.3 Program Analysis Unit (PAU)

Heo et al. [4] proposed a monitor named PAU that can run different security policies. The
original aspect of their work is to propose an instrumentation-based solution that is adaptable
on hardcore CPUs. This approach instruments code (i.e. adds instructions) in order to track
information flows for each CPU instruction executed by the application. However, adding an
instruction for each CPU instruction results in a huge runtime overhead. Therefore, Heo et al.
[4] proposed an approach that instruments only memory addresses and branch instructions.
Listing 2.4 shows an example ARM assembly code and added assembly instructions as
suggested by [4]. The instructions at line 1, 2 are required in order to reconstruct the CFG.
While lines 4 and 8 have been added in order to recover memory addresses. This approach
requires some static analysis to get information flows inside basic blocks of the application.



22 | Related works

1 mov 0x5, r8 // Basic Block ID: 5
2 str r8, [r9] // Trace #0: Basic Block ID
3 ldr r3, [fp, #-20]
4 str fp, [r9] // Trace #1: Load address is pushed.
5 and r3, r3, #1
6 cmp r3, #0
7 str r2, [r1]
8 str r1, [r9] // Trace #2: Store address is pushed.

Listing 2.4 – Example ARM assembly code (instrumented).

This solution was implemented on a softcore CPU (Leon 3, SPARC-v8 architecture) inside
an FPGA instead of a hardcore CPU. In addition, the code is analyzed statically in order
to generate the tag propagation rules that runs on the FPGA part. The security policy is
fixed during compilation and the program needs to be re-compiled in order to run a different
security policy.

Lee et al. [5] proposed the idea of using the CDI Core Debug interface in order to recover
information required for DIFT. The debug component taken into account sends information
for each CPU instruction being executed. As for [4], [5] targets a softcore CPU. On a hardcore
CPU, it is possible to recover the same information with ARM CoreSight ETM (Event Trace
Macrocell) trace component. However, this trace component has been replaced with the more
recent CoreSight PTM (Program Trace Macrocell) as in the Zynq SoC, embedding ARM
Cortex-A9 CPU, considered in this work. The PTM sends information only for instructions
that change program flow such as branches and interrupts. Therefore the approach proposed
in [5] is not compatible with Zynq SoCs.

2.4.4.4 Others

There exist many other important works regarding hardware architectures for DIFT. The
other approaches, non-exhaustive list, are : Minos [44], RIFLE [45], LIFT [46], WHISK [47],
PIFT [48], V-DIFT [49]. Recent works, such as [50], [51], takes care of including support for
implicit control flows in existing DIFT mechanisms. Micropolicies [15] and Stack protection
[52] are other important works that consist in defining a valid security policy for DIFT. These
works are important in order to understand different types of attack that can be detected
using existing DIFT architectures.
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2.5 Proposed solution for DIFT on hardcore CPUs

2.5.1 Specifications

No existing work has considered and deployed their work on the ARM architecture which
results in the fact that existing solutions are not used by hardware vendors and research
community. It is very important to protect ARM cores because most of the portable devices
(smartphones, tablets and laptops) use ARM CPUs. It has been reported in [53] that
17.7 billion ARM-based chips, representing a market share of 34%, have been shipped in
2016. This number is expected to grow up to 55 billion devices only for market share of
application processors (smartphones, tablets and laptops). Therefore, this work targets the
ARM architecture in order to protect it against software attacks in embedded systems.

Another important aspect that must be taken into account is regarding security policy. The
architecture should have the maximum flexibility regarding security policies. The security
policy specifies how to propagate and check tags in order to detect a particular kind of attack
[40]. There are two missing aspects in existing off-core solutions regarding security policies:
flexibility to specify security policies and tag granularities.

Security policies can be specified at compile-time or at runtime. The compile-time solution [4]
consists of hard-coding the propagation and checking operations using dedicated opcodes,
during the compilation of the application. For instance, consider that the security policy states
that all arithmetic and logic instructions on ARM core result in the logical OR operation on their
corresponding tags. Then, during static analysis, for all arithmetic and logical instructions
of the program code, an OR operation is used to compute the tags of their operands. The
runtime solution [1] requires special register called TPR (Tag Propagation Register) to specify
the operation that has to be done on tag values. This time, the static analysis gives the
operands for each instruction and the class of ARM instruction: arithmetic/logical, load/store,
branch, floating point load/store. Thanks to this class information, the DIFT coprocessor
can determine with the help of the TPR register, the operation that needs to be done to
propagate the tags corresponding to the instruction executed on the main CPU. The main
advantage is that the TPR value can be modified at runtime to modify the policy without
recompiling the application. No existing works provide the flexibility to specify security
policies using both methods. The proposed architecture should support both methods of
specifying security policy.

2.5.2 Comparison

Tables 2.1 and 2.2 show different aspects of related works and compare them with this work.
Table 2.1 shows that no existing work has proposed an implementation on a hardcore CPU
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as the experimental target in existing works is a softcore CPU. Furthermore, no existing
approach has targeted an ARM architecture. In terms of communication interface used, no
approach has used the recent debug components sending information on control flow alone. In
addition, most existing works except [1, 2], cannot protect against software attacks from non-
tracked programs. The only hardcore-portable solutions are [4, 5] but their implementation
has been done using a softcore CPUs.

Table 2.1 – Features comparison with related works.

Related Type of CPU Experimental Hardcore Communication Interface Coprocessor
work approach type Target portability interface simulated isolated

[1] In-core Softcore Leon3 No Signals N/A No[40]
[42] Off-loading Softcore Leon3 No Log buffer No No[41] in cache
[2] Off-core Softcore Leon3 No Signals No No[3],[43]
[4] Off-core Softcore Leon3 Yes System bus No No[54]
[5] Off-core Softcore Leon3 Yes CDI Yes No

This work Off-core Hardcore ARM Yes EMIO and No YesCortex-A9 System bus

Table 2.2 shows that off-core approaches do not provide the same features as existing in-core
and off-loading approaches. It can be seen that most off-core approaches lack support for
multi-threaded and floating-point software. Furthermore, most existing mechanisms are
limited in terms of support for different security policies either because of tag granularity or
tag scheme. In addition, most existing solutions lack support for modern OS such as Linux
kernel.

Table 2.2 – Features comparison with related works.

Related Type of Experimental Hardcore Communication Interface Coprocessor
work approach Target portability interface simulated isolated

[1] Yes Physical Partial 4 Extended memory No[40]
[42, 41] Yes Virtual Partial 4-8 Tag TLB No
[2] No Physical Partial 4 Extended memory No
[3], [43] No Physical No 1-32 Tag TLB No
[4] No Physical No 1 Packed array (bitmap) No
[5] No Physical Partial 1 Packed array(bitmap) No
This work Yes Virtual Yes 1-32 TMMU Yes
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2.6 Summary

This section presented an overview of different DIFT approaches with an emphasis on
hardware-assisted approaches. The existing hardware DIFT mechanisms have not targeted
the ARM architecture and hardcore CPUs. Some important missing features in existing
works are: specifying security policies using compile-time or run-time solution, support for
floating-point, multi-threaded software and kernel support for initializing and checking tags.
These missing features are the main reasons why most existing DIFT mechanisms have not
been adapted by hardware vendors or by research community. This thesis is based on existing
off-core DIFT approach but differs in its implementation: the application runs on a hardcore
CPU rather than a softcore CPU as in previous works. The goal is to implement DIFT
on hardcore CPUs while minimizing runtime overhead so that security does not slow an
application, at the expense of a relatively small hardware increase. The above-mentioned
missing features in related works have been addressed in this work. One of the main challenges
is to find a way to recover required information for DIFT on a hardcore CPU. In existing
works, the information is easily recovered via existing softcore CPU signals. However, no
such signals exist on a hardcore CPU. Another important achievement is to make sure that
all information required for DIFT can be recovered on the considered architecture.





Chapter 3

Recovering information required for
DIFT on hardcore CPUs

This chapter explains how the information required for DIFT on ARM hardcore CPUs can be
recovered using ARM CoreSight components, static analysis, instrumentation and RFBlare
[6], a Linux kernel information flow monitor.
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3.1 Introduction

This work aims at providing a method to recover information required for DIFT on a hardcore
CPU. One of the main challenges faced in order to track information flows on a hardcore
CPU is the visibility issue. The FPGA part does not know which instructions are being
executed by the ARM CPU core. Therefore, the information required to compute DIFT
operations needs to be determined and sent to the FPGA part. A simple approach would
be to send an information for each CPU instruction executed by the CPU on the FPGA
part. However, sending an information for each CPU instruction executed would increase
the total runtime overhead. Existing works mainly send signals to the DIFT coprocessor in
order to compute DIFT operations. As all existing works have their main core in the FPGA
itself, sending existing softcore CPU signals do not add any runtime overhead. However,
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these signals cannot be extracted from a hardcore CPU. Therefore, information recovery for
DIFT adds important runtime overhead on a hardcore CPU. Heo et al. [4] show that the
communication time, i.e. the time required to send information to the FPGA part, represents
90% of the total runtime overhead required for DIFT operations. As a consequence, it is
important to lower the amount of information to be sent to the FPGA coprocessor in order to
minimize this communication time. First, the information required for DIFT on a hardcore
CPU is detailed in section 3.2. In section 3.3, CoreSight components are described as they
play an important role in the proposed approach in section 3.4. Section 3.5 evaluates the
proposed approach by providing time, area, and power overheads. Section 3.6 sums up this
chapter.

3.2 Context of the proposed approach

All hardware-assisted existing works protect applications running on a softcore CPU. As
the program runs on a softcore CPU, the information required for DIFT is recovered using
existing softcore CPU signals. Table 3.1 shows different signals sent from the main core
(softcore CPU) executing the application towards the DIFT monitor for existing off-core
solutions. On a hardcore CPU, this information cannot be recovered using signals.

Table 3.1 – Information required for DIFT in existing works.

Related work Information sent to DIFT monitor on the FPGA

Kannan et al. [2] PC, instruction, memory address, valid
Deng et al. PC, instruction, memory address, result of an instruction,
[3, 43] source operands, branch, opcode, decoded instruction

configuration signals
Heo et al. [4] Instructions, execution trace (instrumentation), static analysis
Lee et al. [5] Core Debug Interface (CDI)

Some signals, shown in Table 3.1, are not mandatory to compute tag operations and implement
DIFT: for instance, the result of an instruction, sent by [3, 43], is not required in order
to compute tags. This section describes which signals are needed for tag operations and,
most importantly, how these signals can be recovered on the FPGA part without adding an
important runtime overhead.

Information required on the FPGA part

Listing 3.1 is a C code used as an example, throughout this chapter, to illustrate which pieces
of information are required for DIFT. In this program, two files (one public and one secret)
are read and one file is written. The content of the file being written can come from either
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the public or the secret file. The goal is to explain the required information for DIFT using
this simple example code.

1 int main () {
2 int file_public , file_secret , file_output ;
3 char public_buffer [1024];
4 char secret_buffer [1024];
5 char * temporary_buffer ;
6 file_public = open("files/ public .txt",O_RDONLY );
7 file_secret = open("files/ secret .txt",O_RDONLY );
8 file_output = open("files/ output .txt",O_WRONLY );
9 read( file_public , public_buffer , 1024);

10 read( file_secret , secret_buffer , 1024);
11 srand(time(NULL));
12 if( (rand () % 2) == 0){
13 temporary_buffer = public_buffer ;
14 }
15 else{
16 temporary_buffer = secret_buffer ;
17 }
18 write( file_output , temporary_buffer , 1024);
19 return 0;
20 }

Listing 3.1 – Example C code for DIFT

This C code is compiled using the LLVM (Low-Level Virtual Machine) compiler in order
to obtain an ELF (Executable and Linkable Format) binary running on the target platform
(based on the ARM-v7 architecture). A simplified control flow graph composed of five basic
blocks is shown in Figure 3.1. For this code, trace (i.e. addresses generated by CoreSight
components) of the main function is shown in Listing 3.2.

1 10618 10494 10634 10494 10648 10494 1065c 10464 10678 10464 10690
2 1047c 10698 10470 106 a4 10458 106 a8 106 c8 10440 106 e4 00000 00000

Listing 3.2 – Decoded trace of main function of the binary compiled from Listing 3.1.

In Listing 3.2, the first decoded trace value (10618) corresponds to the starting address
of basic block #1 (Figure 3.1). The following value is the value of the open function call
(0x10494). Then, the return address of the function call (0x10630+4 or 0x10634) is obtained
in the decoded trace. This example shows that the decoded trace allows to determine which
basic block is being executed on the main CPU core. As the trace is generated only for
instructions that change the program flow (such as branches), any other instruction is not
traced. For instance, instructions between addresses 0x10618 and 0x10630 generate no trace.
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So, what happens inside a basic block remains unknown for the FPGA part. Therefore, a
static analysis (detailed in 3.4.2) is done offline in order to determine information flows inside
each basic block of the application. However, all missing information cannot be recovered
through static analysis: typically, memory addresses inside ldr/str instructions cannot be
resolved statically.

# 3 (else)
0x106c8: sub r3, fp, #2064

...
0x106d0: str r3, [fp, #-8]

# 1
0x10618: push {fp,lr}

...
0x10630: bl 10494 <open>

...
0x10644: bl 10494 <open>

...
0x10658: bl 10494 <open>

...
0x10674: bl 10464 <read>

...
0x1068c: bl 10464 <read>

...
0x10694: bl 1047c <time>

...
0x106a0: bl 10470 <srand>
0x106a4: bl 10458 <rand>

...
0x106b4: bne 106c8 

# 2 (if)
1005b0: e51b300c ldr r3, [fp, #-12]
1005b4: e50b3008 str r3, [fp, #-8]
0x106c4: b 106d4

# 4
0x106d4: mov r2, #1024

...
0x106e0: bl 10440 <write>

...
0x106f0: pop {fp, pc}

Figure 3.1 – Simplified CFG of the C code of Listing 3.1.

In order to send these memory addresses, the application binary is instrumented during
compilation through an LLVM pass. Furthermore, an application relies on some external
library code to take advantage of system calls and perform specific operations. Thus, the
information flows of library code used by the application are also required in order to compute
tags. A thorough search of the relevant literature for information flows tracking of library
code yielded no article. This work proposes to use two FIFOs in order to send information
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from the OS to the DIFT coprocessor and vice versa. Four pieces of information allow to
overcome this visibility problem:

1. Trace obtained via CS (CoreSight) components.
2. Static analysis.
3. Instrumentation.
4. Dedicated FIFOs to communicate between the OS and the DIFT coprocessor.

In order to obtain trace on the FPGA, CoreSight components need to be configured. The
configuration of CoreSight components is explained in section 3.3. Obtained trace needs
to be decoded in order to obtain addresses of the program. It is explained in subsection
3.4.1. Static analysis is detailed in subsection 3.4.2 while the instrumentation is described
in subsection 3.4.3. The dedicated FIFOs to communicate between the OS and the DIFT
coprocessor are explained in subsection 3.4.4.

3.3 CoreSight components

CS components provide a set of hardware components to debug or profile the program. There
are four main classes of CS components:

• Control. Control and access to CS components (for instance, CTI, CTM, DAP and
ECT). These elements are not detailed in a subsection because they either do not
require a special configuration (DAP) or are not used in this thesis (CTI, CTM and
ECT).

• Source. Trace generation for CPU instructions (PTM , FTM and ITM).
• Link. Link between CS sources and CS sinks (funnel and replicator).
• Sink. Trace store or export (ETB and TPIU). Trace can be transmitted to an on-chip

memory, the FPGA coprocessor or even dedicated pins.

The most important classes in this work are source and sink components. Figure 3.2 shows
different ARM CS components available on Zynq SoC. All these components are connected
to each other, each one having its important features as detailed in the following subsections.

3.3.1 Trace Source

There are three types of trace source components: ETM, ITM, and PTM. The ETM, not
available on Zynq SoC, generates trace for each CPU instruction executed while the ITM
is a printf-style like trace generator i.e. each time trace is required, the program source
code should write a value to the ITM which is then recovered through trace. The PTM
generates execution trace for each waypoint (i.e. instructions that modify program flow). A
waypoint can be any of the following instructions: any indirect branches, conditional and
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Figure 3.2 – CS components in Xilinx Zynq [55].

unconditional direct branches, all exceptions, any instruction that changes the instruction set
state or security state of the processor. Each time a waypoint occurs, the PTM generates a
trace describing this waypoint. Table 3.2 shows an example of trace output. Trace always
starts with synchronization packets: A-Sync and I-Sync (Table 3.7). Then, each time a
waypoint instruction is executed, trace is generated. For instance, bl and beq instructions
generate trace packets as shown in Table 3.2. If a BAP packet is generated, it means that the
branch was taken. Otherwise, an Atom packet is generated. The PTM generates 11 different
types of trace packets which are described in PFT (Program Flow Trace) specifications [56].
All PFT packets are summed up in Table 3.7.

Table 3.2 – Example code and corresponding trace.

Address Assembly code Trace packets type

A-Sync, I-Sync
860c sub r0, r1, r2 -
8610 bl 8480 BAP
8614 mov r3, r0 -
8618 ldr r3, [sp, #-8] -
861c cmp r3, #0 -
8620 beq 864c BAP or Atom
8624 str r1, [r3, r2] -
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The most important PTM feature used is branch broadcasting which allows to obtain all
branch addresses in trace. However, the corresponding Linux driver did not implement this
feature. A patch, shown in Listing 3.3, was developed in this work that enables the use of
branch broadcasting in Linux driver. The patch has been integrated into Linux kernel v4.11
[17].

1 diff -uprN -X linux -4.7 - vanilla / Documentation / dontdiff linux -4.7 - vanilla /
drivers / hwtracing / coresight /coresight -etm3x -sysfs.c linux -4.7/ drivers /
hwtracing / coresight /coresight -etm3x -sysfs.c

2 --- linux -4.7 - vanilla / drivers / hwtracing / coresight /coresight -etm3x -sysfs.c
2016 -07 -24 21:23:50.000000000 +0200

3 +++ linux -4.7/ drivers / hwtracing / coresight /coresight -etm3x -sysfs.c 2016 -09 -28
15:36:39.886542702 +0200

4 @@ -145,7 +145 ,7 @@ static ssize_t mode_store ( struct device
5 goto err_unlock ;
6 }
7 config ->ctrl |= ETMCR_STALL_MODE ;
8 - } else
9 + } else

10 config ->ctrl &= ~ ETMCR_STALL_MODE ;
11

12 if (config ->mode & ETM_MODE_TIMESTAMP ) {
13 @@ -163,6 +163 ,20 @@ static ssize_t mode_store ( struct device
14 else
15 config ->ctrl &= ~ ETMCR_CTXID_SIZE ;
16

17 + if (config ->mode & ETM_MODE_BBROAD )
18 + config ->ctrl |= ETMCR_BRANCH_BROADCAST ;
19 + else
20 + config ->ctrl &= ~ ETMCR_BRANCH_BROADCAST ;
21 +
22 + if (drvdata ->arch == ( PFT_ARCH_V1_0 | PFT_ARCH_V1_1 )) {
23 + if (config ->mode & ETM_MODE_RET_STACK ) {
24 + if (config ->mode & ETM_MODE_BBROAD )
25 + dev_warn (drvdata ->dev , " behavior is unpredictable \n");
26 + config ->ctrl |= ETMCR_RETURN_STACK_EN ;
27 + } else
28 + config ->ctrl &= ~ ETMCR_RETURN_STACK_EN ;
29 + }

Listing 3.3 – Patch developed for adding support for branch broadcasting feature of CS components
in a Zynq SoC (Excerpt from patch).
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Retrieving trace

In order to retrieve trace, the first thing is to make sure that these components have a
corresponding driver in the Linux kernel, which is the case, and corresponding device tree
entries in the device tree file. The device tree file is a file that contains information about
hardware devices in a tree structure format. As there were no device tree entries for CS
components available in Zynq SoCs, a patch has been proposed in this work in order to add
support for these components [17]. Listing 3.4 shows the patch with different device entries
corresponding to CS components available in Zynq SoCs. The patch was produced using
the diff command on the Linux kernel 4.7 which was the current version when generating
patches. Each device tree entry has several fields. The compatible field is the most important
one because it allows the kernel to find the right driver for the entry. Other fields are used
by the kernel to initialize a specific value for the driver. For instance, the reg field allows
specifying the starting address of the hardware device and a range of programmable addresses.
Using this information, the kernel can associate a virtual address for this physical address in
device tree entry and this virtual address is used afterwards to program the corresponding
device. After patching the device tree, CS components were accessible from the sysfs file
system after booting the kernel.
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1 --- linux -4.7/ arch/arm/boot/dts/zynq -7000. dtsi.orig 2016 -07 -24
21:23:50.000000000 +0200

2 +++ linux -4.7/ arch/arm/boot/dts/zynq -7000. dtsi 2016 -10 -03 15:54:35.228460164
+0200

3 @@ -96,6 +96 ,51 @@
4 rx -fifo -depth = <0x40 >;
5 };
6

7 + etb@f8801000 {
8 + compatible = "arm ,coresight -etb10", "arm , primecell ";
9 + reg = <0 xf8801000 0x1000 >;

10 + coresight -default -sink;
11 + clocks = <&clkc 47>;
12 + clock -names = " apb_pclk ";
13 + port {
14 + etb_in_port : endpoint@0 {
15 + slave -mode;
16 + remote - endpoint = <& replicator_out_port0 >;
17 + };
18 + };
19 + };
20 +
21 + ptm0@f889c000 {
22 + compatible = "arm ,coresight -etm3x", "arm , primecell ";
23 + reg = <0 xf889c000 0x1000 >;
24 + cpu = <&cpu0 >;
25 + clocks = <&clkc 47>;
26 + clock -names = " apb_pclk ";
27 + port {
28 + ptm0_out_port : endpoint {
29 + remote - endpoint = <& funnel_in_port0 >;
30 + };
31 + };
32 + };

Listing 3.4 – Patch developed for adding support for CS components in a Zynq SoC (Excerpt from
patch).

PTM PTM registers need to be programmed in a specific way as shown in Figure 3.3.
Registers are unlocked by writing 0xC5ACCE55 to ETMLAR (ETM Lock access register)
register as shown in Table 3.3.

Table 3.3 shows the main registers needed to enable the PTM. The PTM can be configured in
three different modes: trace all instructions, trace a range of addresses and trace everything
except a given region (modes #1, #2 and #3 respectively). This feature is essential if the
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Figure 3.3 – PTM registers programming order (taken from [56]).

Table 3.3 – PTM registers, configuration values and purpose.

Register name Value Purpose

ETMLAR 0xC5ACCE55 Unlock PTM registers
ETMCR 1|(1«8)|(1«10) Enable PTM features
ETMTRIGGER 0x6F Events that capture trace
ETMTECR1 1«24 Trace all code
ETMTEEVR 0x6F TraceEnable Event
ETMTRACEID 0x0F Trace ID
ETMLAR 0 lock PTM registers
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trace of a specific region such as .text is required. Table 3.4 presents the detailed configuration
of PTM registers in order to enable each of these three modes.

Table 3.4 – PTM Configuration registers.

Register Mode #1 Mode #2 Mode #3

ETMCR 1 ≪ 10 (Change programming bit alone)
ETMCR (1 ≪ 8)|(1 ≪ 12) (Activate other features)
ETMTECR1 1 ≪ 24 0 ≪ 24 1 ≪ 24
ETMTEEVR 0x6F (Event ALWAYS TRUE)
ETMACVR(n) - Start/stop address
ETMACTR(n) 1

In order to make sure that each change in the program flow is contained the in trace sent
by the PTM, conditional execution must be disabled for instructions other than branches.
Almost all instructions in ARM instruction set can be executed conditionally and can alter
the program flow. However, these instructions are not traced by the PTM. As a result, an
LLVM pass has been created to allow conditional execution only for branch instructions. All
other conditional instructions (for instance, addeq) are converted to a conditional branch
(bne) followed by a normal instruction (add). This way, each change in the program flow is
contained in the execution trace generated by the PTM: in other words, it can be determined
which basic block is currently being executed.

3.3.2 Trace Link

The funnel and the replicator (Figure 3.4) transport trace between source and sink components.
The funnel takes care of merging trace received from multiple sources into a single one: if
two Cortex-A9 cores need to be traced, both PTMs must be enabled. Furthermore, a source
ID is assigned by a trace source component in order to identify each core from the funnel
point of view: it allows multi-core debug tracing [57]. The replicator duplicates trace sent by
the funnel and forwards it to sink components.

Table 3.5 – Funnel registers, configuration values and purpose.

Register Value Purpose

CSTFLAR 0xC5ACCE55 Unlock the funnel registers
CSTF Control 1 Enable input for trace 0
CSTFLAR 0 lock the funnel registers
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3.3.3 Trace Sink

Trace can be transmitted to two components: the ETB is a small 4KB memory where trace
can be stored, while the TPIU is a module able to export trace towards the reconfigurable
logic or towards a trace analyzer unit.

Figure 3.6 shows the program flow to follow in order to use the ETB or the TPIU to trace a
program. The ETB and the TPIU have a similar set of registers. Table 3.6 shows the ETB
configuration registers to be programmed with corresponding values. Once the ETB registers
have been programmed, the PTM can be configured and enabled. Once these components
are enabled, the program to be traced can be executed. When the program is terminated,
tracing can be disabled by resetting the PTM. Then, a test is performed in order to make
sure that trace is available in sink component before reading it.

Program the ETB or 
the TPIU registers

Configure and 
enable the PTM

Wait until the 
AcqComp bit is set

Run the code to 
trace

Disable tracing by 
resetting the PTM

Wait until the 
DFEmpty bit is set

Read trace

Figure 3.6 – Program flow for programming CS components and retrieving trace.

Table 3.6 – ETB registers, configuration values and purpose.

Register Configuration values Purpose

ETBLAR 0xC5ACCE55 Unlock the ETB registers
ETBFFCR (1≪8|1≪9|1≪10) Enable the ETB features
ETBCONTROL 1 Enable the ETB Trace Capture
ETBLAR 0 Lock the ETB registers

The TPIU needs to be enabled by software and hardware configurations. Figure 3.7 shows
how the hardware configuration of the TPIU is done using Xilinx Vivado tools. The EMIO
(Extended Multiplexed Input Output) interface is used to export trace to the FPGA part.
The other option is to use the MIO (Multiplexed Input Output) interface in order to send
trace towards external pins. The TPIU hardware configuration requires a clock. ARM CS
Component user guide [57] propose two frequencies : 125 MHz or 250 MHz. If the frequency
of 125 MHz is selected, trace is sent at both rising and falling edges of the clock. Figure 3.8
shows how to configure the clock speed for the TPIU using Xilinx Vivado tools.

The Linux kernel driver for the TPIU was incomplete and could not be used to program the
TPIU. Therefore, a patch has been developed in this work for using the TPIU component
(shown in Listing 3.5) [17].
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Figure 3.7 – TPIU trace connected to EMIO using Xilinx Vivado.

Figure 3.8 – TPIU trace clock configuration using Xilinx Vivado.
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1 static void tpiu_enable_hw ( struct tpiu_drvdata * drvdata )
2 @@ -67,7 +83 ,10 @@
3 CS_UNLOCK (drvdata ->base);
4 -
5 + /* set trace port width */
6 + writel_relaxed (1<<7, drvdata ->base + TPIU_CURR_PORTSZ );
7 + /* clear formatter control register */
8 + writel_relaxed (0, drvdata ->base + TPIU_FFCR );
9 CS_LOCK (drvdata ->base);

10 }
11

12 @@ -84,11 +103 ,28 @@
13 static void tpiu_disable_hw ( struct tpiu_drvdata * drvdata )
14 {
15 CS_UNLOCK (drvdata ->base);
16 + unsigned int ffcr;
17 + ffcr = readl_relaxed (drvdata ->base + TPIU_FFCR );
18 + /* stop formatter when a stop has completed */
19 + ffcr |= TPIU_FFCR_STOP_FI ;
20 + /* Clear formatter control reg. */
21 + writel_relaxed (ffcr , drvdata ->base + TPIU_FFCR );
22 + /* Generate manual flush */
23 + ffcr |= TPIU_FFCR_FON_MAN ;
24 + writel_relaxed (ffcr , drvdata ->base + TPIU_FFCR );
25 +
26 + if ( coresight_timeout (drvdata ->base , TPIU_FFCR , TPIU_FFCR_BIT , 0)) {
27 + dev_err (drvdata ->dev ,
28 + " timeout observed when probing at offset %#x\n",
29 + TPIU_FFCR );
30 + }
31 +
32 + if ( coresight_timeout (drvdata ->base , TPIU_FFSR , TPIU_FFSR_BIT , 1)) {
33 + dev_err (drvdata ->dev ,
34 + " timeout observed when probing at offset %#x\n",
35 + TPIU_FFCR );
36 + }
37

38 - /* Clear formatter controle reg. */
39 - writel_relaxed (0x0 , drvdata ->base + TPIU_FFCR );
40 - /* Generate manual flush */
41 - writel_relaxed ( FFCR_FON_MAN , drvdata ->base + TPIU_FFCR );
42

43 CS_LOCK (drvdata ->base);
44 }

Listing 3.5 – Patch developed for adding the CS TPIU driver in Linux kernel (Excerpt from patch).
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Listing 3.5 shows that the registers are configured with the values shown in Table 3.6. The
function coresight_simple_func is used to provide access from sysfs to read or write
configuration registers.

3.4 Proposed approach

In [4], Heo et al. showed that the instrumentation time required to send information to the
FPGA part is the major reason for slowdown in their proposed solution for DIFT. Therefore,
a DIFT implementation is efficient when required information is obtained in the shortest
possible time. To monitor information flows, at least four pieces of information are required
to compute tags propagation:

1. PC register value.
2. Instruction encoding.
3. load/store memory addresses.
4. Basic system calls and arguments.

PC register value and some memory addresses are partially recovered using CS components
described in Subsection 3.4.1. Missing information about memory addresses and instruction
encoding is obtained through static analysis (explained in subsection 3.4.2) and instrumenta-
tion (detailed in subsection 3.4.3). Information about system calls is recovered using KBlare
[6] described in subsection 3.4.4.

3.4.1 CS components

CoreSight components are programmed as explained in section 3.3. Trace generated by the
PTM is recovered on the FPGA using the TPIU via EMIO interface. Trace recovered from
the sample code in Listing 3.1 is shown in Listing 3.6.

1 00 00 00 00 00 80 08 18 06 01 00 21 cb 04 08 34
2 06 01 00 21 cb 04 08 48 06 01 00 21 cb 04 08 5c
3 06 01 00 21 b3 04 08 78 06 01 00 21 b3 04 08 90
4 06 01 00 21 bf 04 08 98 06 01 00 21 b9 04 08 a4
5 06 01 00 21 ad 04 08 a8 06 01 00 21 86 6b a1 04
6 08 e4 06 01 00 21 cb 9b d2 db 0d 01 00 00 00 00
7 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Listing 3.6 – Raw trace of .text section related to the compiled binary of C code in 3.1.

Different PFT packets can be noticed (Table 3.7). In order to get branch addresses, trace
needs to be decoded.
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Figure 3.9 – Overall architecture of PFT Decoder.

3.4.1.1 PFT Decoder

The PTM generates trace according to the PFT protocol [56]. Table 3.7 presents PFT packets
and their corresponding headers. As trace is recovered at the frequency of 250 MHz, it needs
to be decoded at the same frequency in order to avoid unnecessary storage overhead.

Table 3.7 – PFT packet formats.
PFT packet name Header Remarks

A-sync 0x00 00 00 00 00 00 80 Alignment synchronization

I-sync 0x08 XX XX XX XX IB CA
Instruction synchronization packet contains PC value,
information byte and cycle accurate count

Atom 0b1xxx xxx0 Precises whether a branch was taken or not taken
Branch address 0bCxxx xxx1 C is 1 if another byte follows, 0 otherwise.
Waypoint update 0x72 Indicates a change in program execution (e.g. exception)
Trigger 0x0C Indicates a trigger condition has occurred.
Context ID 0x6E Contains context ID of the process
VMID 0x3C Contains VMID (Virtual Machine ID) value.
TimeStamp 0b0100 0x10 Holds timestamp value
Exception return 0x76 Generated on return from an exception handler
Ignore 0x66 Indicates insufficient trace

The PFT decoder receives the packet from the TPIU. A global FSM governs all these three
packet FSMs as shown in Figure 3.9. I-Sync, branch address, and waypoint packets have their
own packet FSMs. The other packets are decoded by the global FSM. The PFT architecture
specification [56] states that trace starts with synchronization packets. Any other packet can
follow these packets. It means that the next state logic of state machine must check for each
type of packet. The PFT decoder is designed taking into consideration constraints of the
PFT protocol.
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Figure 3.10 – State machine diagram for I-sync packet.

The most important ones are:

1. At each global FSM state transition, any PFT packet can be received.
2. For some packets (e.g. bap, atom), the size of the packet is unknown before trace is

received.

The global state machine detects packet type and enables the corresponding packet FSM
by setting start signal. There are other state machines for I-Sync, branch address, and
waypoint packets. Figure 3.10 shows the state machine diagram for I-Sync packet decoding.
The I-Sync packet FSM uses counters in state i_sync, ctxtid_2 and ctxtid_3. The state
machine is in wait_state by default. When the start signal is set, it goes into i_sync state
and starts counting trace samples. Once four samples are received, the state machine goes
into i_sync_ib state. If context ID tracing is enabled, it can send one, two or four bytes.
Depending on the generic ctxtid value, the context ID packet is decoded. When the packet
FSM finishes decoding packet, it goes back to wait_state and sends the stop signal to the
global FSM which then looks for the next packet type.
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Figure 3.11 – Timing diagram of global FSM and I-Sync FSM of PFT decoder.

Figure 3.11 is a timing diagram showing how the PFT decoder works at each clock cycle. All
inputs are registered: for instance, input data is registered to obtain data_reg signal. All
FSMs work with the data_reg registered signal. When the global FSM detects an I-Sync
packet, it enables a start_i signal (e.g. this is the case at the third clock cycle) to enable the
corresponding slave FSM. Then, the packet FSM decodes the packet according to the PFT
architecture as shown by i_sync_state_reg, i_sync_state_next and i_sync_address
signals. In the meantime, the global FSM waits for a stop signal which is enabled by the
packet FSM when the packet is decoded. Enabling stop_i signal at the ninth clock cycle
modifies the global FSM state according to data_reg signal. It allows to decode the received
trace on-the-fly. The outputs of the PFT decoder are also registered to avoid timing failures
due to longer critical paths.

3.4.1.2 Implementation details

Hardware is designed using Xilinx Vivado. Synthesis and implementations are performed in
order to generate the bitstream. Vivado also generates hardware specification files that are
exported towards the Xilinx SDK tool. Then, C code is written for the targeted OS. Once
the C code is compiled, the binary is either run using Xilinx SDK if standalone OS is used or
it is copied to Linux kernel file system. The most important difference between standalone
OS and Linux kernel is the address space used: standalone OS works on physical addresses
whereas Linux kernel operates on virtual addresses.

The design shown in Figure 3.12 allows to recover raw trace from the FPGA part. Zynq7
Processing system IP is configured to send trace at 250 MHz using FCLK_CLK1. The utility
vector logic is used to invert the trace_ctl output of processing system. This signal is equal
to ’0’ when valid trace data is being sent on trace_data bus. It is inverted so that it equals
’1’ when trace_data is valid. As trace is sent at 250 MHz and 8 bits are sent, the maximum
bandwidth of trace_data port is 250*8 = 2000 Mbits/s. Trace is stored in a true dual port
BRAM (Block RAM ) in order to read it back from processing system using AXI BRAM
Controller IP. Trace shown in Listing 3.6 is recovered using this design.
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Figure 3.12 – Vivado design to recover trace on the PL (Programmable Logic). The Process-
ing_system7_0 IP contains the configuration of ARM core and CS components. The util_vector_logic
IP is used to implement a not gate in order to obtain an enable signal that equals ‘1’ when valid trace
data is available. Trace is written to blk_mem_gen_0 memory which can be read back by the ARM
core using the second port. Trace is also stored in another FIFO (fifo_generator_0 IP) in order to be
readable by the FPGA part.
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Figure 3.13 – This design shows how to use PFT Decoder. Trace is sent to the decodeur_trace IP
which takes care of decoding trace packet in order to obtain control flow addresses of the program
that is being executed on the ARM core. The decoded trace is stored in blk_mem_gen_0 IP to read
it back from the ARM core using the second port of the BRAM.
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The PFT decoder is tested using the design presented in Figure 3.13. The clock FCLK_CLK1
is set to 250 MHz in order to recover and decode trace. The clock FCLK_CLK0 is set to 125
MHz. BRAM is used in its true dual port configuration making it possible to write decoded
trace using one port and read it back using the second port. Decoded trace shown in Listing
3.2 is recovered using this design.

3.4.2 Static analysis

Table 3.2 shows a sample code used to illustrate how static analysis is used in this thesis.
Instructions at address 860c, 8614, 8618, 861c and 8624 do not produce any trace. In order
to recover information about all other instructions not contained in the trace, the source
code is statically analyzed before program execution. The static analysis will generate a tag
dependencies instruction also called annotation that must be executed by the DIFT monitor.

Table 3.8 – Example annotations.

Example Instructions Annotations

sub r0, r1, r2 r0 = r1 + r2
mov r3, r0 r3 = r0
str r1, [PC, #4] @Mem(PC+4) = r1
ldr r3, [SP, #-8] r3 = @Mem(SP-8)
str r1, [r3, r2] @Mem(r3+r2) = r1

(a) (b)

Table 3.8 shows a code which does not produce any trace (a) and corresponding annotations
(b). r is used to denote the tag of register r. For instance, for the first instruction in Table
3.8(a), the corresponding annotation, shown in Table 3.8(b), is to associate tags of operands
r1 and r2 towards the tag of destination register r0. Annotations are generated by analyzing
the assembly representation. The analysis can be done using the binary file (described in
subsubsection 3.4.2.1) or using program source code (described in subsubsection 3.4.2.2).

3.4.2.1 Method 1: static analysis after compilation using Capstone disassembly
engine

Figure 3.14 shows the schematic of the overall approach using the Capstone disassembly
engine [7]. The binary is compiled using a compiler (LLVM or GCC). In this thesis, LLVM is
used as the main compiler. Once the binary is generated, it is disassembled using the Capstone
disassembly engine and annotations are generated for each instruction in the disassembled
binary. Another tool spedi [58] is used in order to recover all basic blocks of the binary.
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int main(){
    ...
    return 0;
}

LLVM

program.c compiler
mov 
ldr
str
...

binary

Capstonespedi
recover all basic 

blocks
generate annotation for 

each instruction

Figure 3.14 – Overall schematic of static analysis using the Capstone disassembly engine [7].

Details Annotations specify the operation to be realized by the DIFT monitor. For each
instruction, operands type (register, memory or immediate) and their number or value are
determined. By using operands type, information flows that take place between the operands
can be determined. For instance, if the first instruction of Table 3.8 (a) is considered, it
can be noticed that the three operands are registers. By determining registers number, the
information flow can be determined from source registers towards destination register. For
all instructions that do not produce trace, instruction encoding and semantics are analyzed
in order to generate annotations. Furthermore, an instruction is added to keep track of the
SP (Stack Pointer) value by DIFT monitor. It is done for each CPU instruction that changes
the SP value directly (e.g. sub SP, SP, #4) or indirectly (e.g. push,pop).

Algorithm 1 illustrates how annotations are generated using the Capstone disassembler[7].
The idea is to analyze each instruction encoding to find operands and determine information
flows between these operands. This algorithm is applied to all instructions of the application.
Information flows obtained through this process are encoded for an hybrid monitor and stored
in a memory section.

Line 2 shows that all instructions are analyzed one by one. Some special instructions are
analyzed separately on line 14 while all other instructions are analyzed from line 4 to 13.
Line 3 shows that a function RecoverOperands, detailed in Algorithm 2, is called to analyze
instruction encoding in order to recover operands. This function returns operandsType and



3.4 Proposed approach | 49

corresponding operands value. There are multiple different cases but only three cases are
shown as an example.

Input : basic block
Output : annotations (annot)

1 i = 0; operandsType = []; operand = [];
2 foreach instruction instr in basic block do
3 operandsType[], operand[] = RecoverOperands (instr);
4 if instr != (push OR pop OR ldm OR stm) then
5 switch

⋃
i operandsType[i] do

6 case [Reg, Reg] do
7 if operand[1] != operand[2] then
8 annot = operand[1] ← operand[2];

9 case [Reg, Reg, Reg] do
10 operand[1] = operand[2] OR operand[3];

11 case [Reg, mem] do
12 annot = operand[1] ← Mem[operand[2]];

13 case . . . do

14 else
15 annot = generateAnnotations (instr);

16 InstructionChangesSP (instr) // Strategy 2 only

Algorithm 1: Algorithm for generating annotations.

If the instruction has two operands and both are registers (line 6 to 8) then the information
flow takes place from the destination register towards the source register. Furthermore, if
the destination register is the same as the source register, there are no information flows to
propagate. Therefore, the if operation on line 7 checks whether both registers are different.
Similarly, if the instruction has three register operands (line 9 to 10), then the corresponding
information flow is to associate tags of source registers and store the result into the tag of the
destination register. If the instruction has two operands type: such as register and memory
address operand (line 11 to 12), then the corresponding annotation is to associate the tag of
memory address towards the tag of register.
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1 Function RecoverOperands
Input: instruction (instr)
Output: Operands type (operandsType[]),

Operands (operand[])
2 foreach operand in instr do
3 switch operand do
4 case reg do
5 operandsType[i] = reg;
6 operand[i] = reg_number;

7 case imm do
8 operandsType[i] = imm;
9 operand[i] = imm_value;

10 case mem do
11 operandsType[i] = mem;
12 operand[i] = mem_offset;

// instrumentation

13 i++;

Algorithm 2: RecoverOperands function.

The special instructions (push, stm, ldm, pop) are dealt from line 14 to 15. The generateAnnotations
function takes care of instructions analysis and annotations generation. Line 16 contains
an optional analysis that takes care of detecting instructions changing the SP register value.
This analysis, detailed in Algorithm 3, is an optimization and is required in order to reduce
the number of instrumented instructions.

Algorithm 1 considers only instructions that are part of the ARM instruction set. The same
algorithm can be applied as well to the Thumb instruction set but minor differences may
exist and it may need to be adapted. Furthermore, the algorithm shown here works for
architecture ARM v7-A. It can be easily adapted to any other ARM architecture by taking
into consideration minor differences that exist between instruction sets.
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1 Function InstructionChangesSP
Input: instruction (instr)
Output: Stack pointer offset

2 Function InstructionChangesSP(instr)
3 count = 0;
4 switch instr do
5 case Reg do
6 if (isAdd && reg_dst == SP ) then
7 SP = SP + offset;
8 else
9 (isSub && reg_dst == SP )

10 SP = SP - offset;

11 case mem do
12 if (isLoad && reg_src == SP ) then
13 SP = SP + offset;

14 if (isStore && reg_src == SP ) then
15 SP = SP - offset;

16 if isPush then
17 SP - offset;

18 if isPop then
19 SP + offset;

20 return SP ;

Algorithm 3: InstructionChangesSP function.

The RecoverOperands function on line 3, detailed in Algorithm 2, determines operands for
each instruction. For each operand, its type (register, immediate, or memory) and its value
(register number, immediate value or memory address) are determined and stored in two lists
operandsType and operand respectively.

Limits The proposed method in section 3.4.2.1 analyzes only explicit information flows.
Analyzing information flows require keeping track of the PC register value and propagate
the tag of PC inside loops. Furthermore, this method uses a disassembler which has its
own limitations. For instance, the code obfuscation renders any kind of static analysis very
difficult.
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3.4.2.2 Method 2: static analysis during compilation using LLVM

Static analysis can be done during compilation. LLVM compiler [59] provides more information
than a disassembler making it more suitable for static analysis. Furthermore, it avoids previous
approach limitations of method #1 by providing implicit information flows support while
being able to generate information flows for obfuscated code.

3.4.3 Instrumentation IP

Decoded trace allows resolving which basic block is currently being executed. Static analysis
allows determining information flows inside each basic block. However, some information
flows cannot be determined statically. For instance, if a load (ldr) instruction is statically
analyzed, the memory address cannot be determined. Therefore, missing ldr/str memory
addresses are recovered using instrumentation. An IP named instrumentation IP is used to
receive instrumented memory addresses.

In table 3.8, ldr and str instructions contain memory addresses. These addresses need
to be known in order to propagate the associated tags. There are three types of memory
instructions in the ARM instruction set:

(i) PC-relative (e.g. 3rd instruction of Table 3.8)
(ii) SP-relative (e.g. 4th instruction of Table 3.8)
(iii) Register-relative (e.g. 5th instruction of Table 3.8)

Two strategies can be designed in order to recover addresses contained in memory instructions.
Both strategies provide the same code coverage as related work instrumentation techniques.

• Strategy 1. Each memory instruction is instrumented in order to send memory
address(es) to the DIFT monitor.

• Strategy 2. From all memory instructions, only register-relative instructions are
instrumented. The DIFT monitor knows the PC register value thanks to the decoded
trace. Therefore, PC-relative memory instructions can be omitted in instrumentation.
Furthermore, the SP-relative memory instructions do not need to be instrumented. All
SP value changes can be tracked thanks to annotations obtained during static analysis
(optional analysis in Algorithm 1).

3.4.3.1 Software considerations for instrumentation IP

The instrumentation IP has a memory-mapped register that is used to receive instrumented
memory addresses. This memory-mapped address needs to be mapped into the virtual memory
space of the application and stored in a register in order to be used for instrumentation.
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Figure 3.15 – Simplified schematic of the instrumentation IP.

For instance, it can be done using mmap syscall and by reserving a register during compilation
so that it is not used by the application.

1 instrumentation_buffer : instrumentation@43c10000 {
2 compatible = "generic -uio";
3 interrupt - parent = <&intc >;
4 interrupts = <0 30 4>;
5 reg = <0 x43c10000 0x1000 >;
6 };

Listing 3.7 – Device tree entry for the instrumentation IP.

Another modification is to add an entry for the instrumentation IP in the device tree, as
shown in Listing 3.7, so that the kernel can enable the right driver for this IP during boot.
The device tree entry tells the kernel to use the generic-uio driver developed. Furthermore,
the interrupts field specify the interrupt number that the kernel needs to associate with
this IP. Using this number, the software handler can be programmed.

3.4.3.2 Implementation details for instrumentation IP

Figure 3.15 shows the architecture of the instrumentation IP. It mainly contains a FIFO and a
rising edge detector entity. The IP is written through an AXI bus interface and is read using
custom FIFO interface. The FIFO is written when the following condition (S_AXI_WVALID =
‘1’ and axi_wready = ‘1’ and s_axi_awaddr(3 downto 2) = b“00” and S_AXI_WDATA
/= zero) is true. This condition allows to determine whether the instrumented data is avail-
able through AXI bus. When a read request is received through the custom FIFO read
interface, it is transferred to the FIFO which outputs the data read and forwards it to the
output.
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Figure 3.16 – Simplified schematic of the optimized instrumentation IP.

When the FIFO is full, a signal enables the rising edge detector entity which enables an
interrupt to CPU signal. Using this interrupt signal, the CPU can put the process in wait
state using a custom interrupt handler. Figure 3.16 shows an optimized version of the
instrumentation IP. Writing instrumented memory addresses one by one implies high runtime
overhead. Therefore, in order to decrease the instrumentation runtime overhead, memory
addresses are written by bursts of multiple (two) memory addresses. The IP was modified in
order to add another FIFO and a rising edge detector entity in order to receive burst memory
addresses.

3.4.4 OS-related information

Most of the existing works do not precise how information from the OS is sent to the DIFT
monitor. However, it is mandatory to explain kernel modifications in order to provide an
end-to-end approach. Therefore, all kernel-related modifications and hardware IPs required
in order to provide that support are described. Table 3.9 shows the registers available in
FIFO IPs (kernel2monitor and monitor2kernel) with their relative addresses. There are
three registers available:
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• The first register allows the ARM CPU to read the FIFO status in order to determine
whether the values can be written (if FIFO not full) or read (if FIFO not empty).

• The second register allows clearing the interrupt by writing any value to it. The
hardware detects a write to this register to clear the interrupt.

• The data is written to or read from the third register.

Table 3.9 – Registers for kblare FIFO IPs.

Register number Register name Relative address Format

1 FIFO status 0x00000000
31 3 2 1 0
- err full empty

2 Clear interrupt 0x00000004
31 0
Write any value to clear interrupt

3 Data

0x00000008
31 0
Data to write to FIFO

0x0000000c
31 0
Data to write to FIFO

0x00000010
31 0
Data to write to FIFO

Listing 3.8 shows an example code where OS-related information is required. Read and write
functions used in the program require kernel support. For instance, read function reads the
content of the file and copies it into a buffer. On the FPGA side, the DIFT monitor needs to
know the tag value of the file being read by the program so that it can initialize the memory
address of buffer with the correct tag. This information cannot be recovered statically as
the tag can be modified at runtime. The tag is stored in extra attributes of the root file
system and its value can be modified by another running process.

1 # define SIZE 6
2 char buffer [SIZE +1];
3 int fd = open(" testfile .txt", O_RDWR );
4 size_t sz = read(fd , buffer , SIZE);
5 // modify buffer
6 write(fd , buffer , SIZE);

Listing 3.8 – Example code for OS-related information. The open, read, and write on lines 3, 4,
and 5 respectively require an information from the kernel in order to determine the tag.

3.4.4.1 Kernel to monitor

The kernel2monitor IP sends information about tag initialization of memory addresses.
Listing 3.8 shows that kernel support is required. The read function call, on Line 4, needs
to send the buffer address, its size and the tag of the file being read to the DIFT monitor.
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Using these three pieces of information, the DIFT monitor can initialize all memory addresses
starting from the buffer address until size with the tag value provided. Three pieces of
information need to be sent: as a consequence, kernel2monitor IP has three registers as
shown in Table 3.9.

3.4.4.2 Monitor to Kernel

The monitor2kernel IP recovers tag value of memory addresses. The write function call in
Listing 3.8 writes the provided buffer into the file. Writing buffer contents to the file also
requires the write of buffer tag to the extra attributes of the file. However, the buffer tag is
known only by the DIFT monitor. Therefore, the monitor2kernel IP allows recovering the
tag of buffer. The kernel writes the buffer address and the size to the first two registers and
then waits for the tag value. The DIFT monitor looks up for the tag value and writes it to
the third register. When the tag is written, the process can update the extra attributes of
the file and carry its execution.

3.4.4.3 Software considerations

Similarly to the instrumentation IP, the hardware IPs need to be added to the device tree.
Listing 3.9 shows the new device tree entries.

1 kernel2monitor : kernel2monitor@43c00000 {
2 compatible = "kblare -ip -ps2pl";
3 interrupt - parent = <&intc >;
4 interrupts = <0 32 4>;
5 reg = <0 x43c00000 0x1000 >;
6 };
7

8 monitor2kernel : monitor2kernel@43c20000 {
9 compatible = "kblare -ip -pl2ps";

10 interrupt - parent = <&intc >;
11 interrupts = <0 31 4>;
12 reg = <0 x43c20000 0x1000 >;
13 };

Listing 3.9 – Device tree entry for OS-related information.
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3.5 Evaluation of the proposed approach

3.5.1 Evaluation goals

The main goal in this section is to study feasibility i.e. make sure that all information required
for DIFT is being sent to the FPGA part. This study is done in five steps:

• Evaluating the time overhead of CS components.
• Evaluating the time overhead of instrumentation (number of instructions added).
• Evaluating why the proposed strategies allow to recover required information for DIFT.
• Evaluating the efficiency of proposed strategies compared to related works.
• Describing area and power overheads of each IP developed.

3.5.2 Results evaluation method

Implementations were done with Vivado 2017.1 tools on a Xilinx Zedboard 1 including a Z-
7020 SoC (dual-core Cortex-A9 running at 667MHz and an Artix-7 FPGA). The FPGA logic
has around 85K logic cells and 560 KB of Block RAMs. The DIFT monitor is implemented
in a Microblaze softcore for this proof-of-concept. The evaluation method is explained in
Appendix B.

3.5.3 Time overhead analysis

3.5.3.1 CS components overhead

MiBench applications were tested with and without enabling CS components. The negligible
time difference observed in Figure 3.17 is introduced by non-deterministic events (such as
context switches). Vergé et al. [60] showed that an execution time overhead can occur if
trace is stored in the ETB. In this work, as shown in Figure 3.17, the time overhead of CS
components is negligible for two main reasons. First of all, the CS PTM trace component is
non-intrusive as it operates in parallel on a list of committed CPU instructions. The second
reason is due to the configuration of CS components: the TPIU is used as a trace sink rather
than the ETB.

3.5.3.2 Static analysis

Static analysis does not add execution time overhead as it is performed before executing the
application. However, it adds a static binary size overhead that corresponds to the storage of

1The ZedBoard development board is presented in Appendix A
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Figure 3.17 – CoreSight components time overhead for MiBench benchmark.

dependencies (i.e. output of static analysis). The communication overhead of the approach
developed in this thesis is only due to code instrumentation.

3.5.3.3 Instrumentation time overhead

Assumptions: The instrumentation time overhead is measured by taking two important
assumptions:

1. The library code does not need to be instrumented. This is the case in most existing
works i.e. information flows originating from library code are not taken into account.
In other words, the library code is considered to be secure.

2. The runtime overhead of instrumentation, also called instrumentation time overhead, is
directly proportional to the number of instrumented instructions in a program.

Figure 3.18 shows the percentage of instrumented instructions over different strategies. In [4],
in order to recover memory addresses, each branch instruction (b/beq/bne/..., bl/blx) as
well as memory instructions are instrumented. Furthermore, another instruction is added for
each direct branch in order to detect changes in the program flow. This strategy is referred
as Related work instrumentation in Figure 3.18.

In this thesis, there is no need to instrument branch instructions thanks to CS components.
Then, there are two strategies. Strategy #1 consists in instrumenting all memory instructions
while strategy #2 only takes care of memory instructions relative to registers. For both
strategies, instructions are added to send needed information to the instrumentation IP
implemented in the reconfigurable logic.
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Figure 3.18 – Instrumentation overhead.

The average time overhead for strategy #1 is 24.6% while it reaches 53.7% for related work
instrumentation strategy. The average time overhead for strategy #2 is 5.37% which is
better than the overhead of 60 % reported by Heo et al. [4]. For some applications (such as
dijkstra, rijndael or CRC32), the instrumentation overhead (for strategy #2) is less than
2%: it is due to the fact that there are few register-relative memory instructions in these
applications.

3.5.4 Area overhead

Table 3.10 – Area results of developed IPs on Xilinx Zynq Z-7020.
IP Name Slice LUTs Slice Registers BRAM Tile
PFT decoder 121 (0.23%) 231 (0.22%) 0
Instrumentation 676 (1.27%) 2108 (1.98%) 0
Monitor2kernel 662 (1.24%) 2106 (1.98%) 0
Kernel2monitor 662 (1.24%) 2106 (1.98%) 0
Total Available 53200 106400 140
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Table 3.10 shows the post-implementation area results of developed IPs on Xilinx Zynq SoC.
The area results show that the developed IPs take 4 % of FPGA area on Zedboard system.

3.5.5 Power overhead

To evaluate power overhead of the designed IPs, two hardware designs were realized.
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Figure 3.19 – Hardware design to evaluate power overhead of the PFT decoder.

Table 3.11 – Power results of PFT Decoder on Xilinx Zynq Z-7020.
Power consumption (in Watt)

Clocks 0.028
Signals 0.018
Logic 0.015
BRAM 0.006
PS7 1.529

The first design (Figure 3.19) is used to evaluate the power overhead of the PFT decoder
and the memory storage. Table 3.11 shows the power overhead of this design.
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Figure 3.20 – Hardware design to evaluate power overhead of communication buffers.

The second one (Figure 3.20) is used to evaluate the power overhead of the communication
buffers (Instrumentation, Monitor2kernel, Kernel2monitor).

Table 3.12 – Power results of communication buffers on Xilinx Zynq Z-7020.
Power consumption (in Watt)

Clocks 0.0.022
Signals 0.019
Logic 0.016
BRAM 0.000
PS7 1.527

Table 3.12 shows the power overhead of this design.

All IPs designed in this chapter consume 0.124W while both designs are running at their
nominal speed: 250 MHz for PFT decoder and 100 MHz for communication buffers.

3.6 Summary

This chapter presents the proposed strategy to recover required information for DIFT on
ARM-based SoCs. The results presented in this work have been published in [61, 62]. The
proposed approach takes advantage of ARM CoreSight components in order to recreate the
CFG of the running application on the FPGA part. Trace generated by CoreSight PTM
component and exported to the FPGA part through TPIU component via EMIO interface is
decoded using the PFT decoder entity. It is shown that the recovery of trace do not slowdown
the application running on the ARM core as CS components are non-intrusive.
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The information flows that take place in between basic blocks of the CFG cannot be recovered
using decoded trace. Therefore, static analysis allows to recover annotations that specify
what operations are being done in each basic block of the application. Load/Store memory
addresses cannot be obtained during static analysis. So, they are instrumented and recovered
during runtime using instrumentation IP. Nonetheless there is still one piece of information
is missing: information about syscalls that are handled by Linux kernel. The Blare Linux
kernel monitor is used in order to recover this information and is sent to the FPGA part
using monitor2kernel and kernel2monitor IPs. Once all this information is recovered on the
FPGA, the DIFT monitor can be studied. The power overhead introduced by all these IPs is
negligible when compared to that of the ARM core running the application.



Chapter 4

ARMHEx: First proof of concept

This chapter proposes an architecture that allows verifying the proposed scheme in chapter 3.
An example security policy of data execution prevention is explained and implemented in
order to evaluate the feasibility.
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4.1 Introduction

The information required for DIFT on a hardcore CPU can be recovered using the methodology
described in chapter 3. The goal of this chapter is to describe the first PoC (Proof Of Concept)
design based on the proposed methodology, named ARMHEx (ARM Hardware Extension),
implemented in order to make sure that all information required for DIFT is being recovered
on a real system. In this chapter, the information related to the OS is not being recovered,
as in existing related works, in order to simplify the test procedure and the comparison with
previous works. Furthermore, existing designs target softcore CPUs reducing development
times. However, in this thesis, Zynq SoC is the main target making it more challenging and
more practical if an industry partner wants to implement the solution proposed in this work.
First, the architecture is detailed in section 4.2. Then, the security of ARMHEx and its
components is discussed in section 4.3 with the help of an example attack. Implementation
details and results are explained in section 4.4. Section 4.5 presents a summary of this
chapter.
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4.2 Proposed architecture

4.2.1 Threat model

Figure 4.1 presents an overview schematic of an embedded system where ARMHEx is
implemented. A default ARMHEx implementation is composed of a CPU (possibly multicore)
and the ARMHEx extension which is implemented in the reconfigurable logic (both with a
dedicated memory).

It is assumed that adversaries can launch a malicious application that contains software
vulnerabilities. For instance, they can try to take advantage of buffer overflows, SQL
injection, cross-site scripting or data leakage. Furthermore, adversaries may try to access
the content of ARMHEx components or DIFT memory. For instance, an attacker can try
mapping and writing to the DIFT memory section used by ARMHEx. In this work, following
communication channels between CPU and ARMHEx are considered secure: (Execution
trace, Control signals, and instrumented data shown in Figure 4.1). Furthermore, physical
attacks such as side-channel attacks, probing, JTAG attacks, memory attacks such as cold
boot, EM injections . . . are not considered in this work.

The first goal in this work is to prevent from user-space software attacks. ARMHEx uses
DIFT to monitor information flows at execution time in order to prevent from such software
attacks. An example of a straightforward buffer overflow attack is shown in Listing 4.1.
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The buffer overflow attack happens because of the use of gets() and strcmp() functions
which do not enforce bounds checking. The user can type a value that overflows the buffer
buff and can take advantage of privileges offered to the user who provides the right password.

The second goal is to make sure that the specified trusted area is inaccessible from the
untrusted area through non-secure channels (colored in red in Figure 4.1). As an attacker
may read or write to ARMHEx or its DIFT memory, reads/writes to the FPGA or the DIFT
memory section must not be allowed through non-secure channels. ARMHEx uses ARM
TrustZone [63] to prevent from unauthorized accesses (writes or reads) to the trusted area.
Any attacks originating from the secure world are not taken into account.

Table 4.1 sums up the type of attacks protected in an ARMHEx-based system. In addition
to using the DIFT coprocessor to detect software attacks, the DIFT coprocessor itself is
protected, unlike existing works. No side-channel attacks are considered in this thesis.

Table 4.1 – Threat model summary.

Attack types ARMHEx Related works

Software attacks (overflows, injections SQL, . . . ) ! !

Illegal accesses to the DIFT coprocessor ! #

Side-channel attacks # #
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1 # include <stdio.h>
2 # include <string .h>
3

4 int main(void){
5 char buff [15];
6 int pass = 0;
7

8 printf ("\n Enter the password : \n");
9 gets(buff);

10

11 if( strcmp (buff , " Fp72k17 ")){
12 printf ("\n Wrong Password \n");
13 }
14 else{
15 printf ("\n Correct Password \n");
16 pass = 1;
17 }
18

19 if(pass){
20 // Now Give root or admin rights to user
21 printf ("\n Root privileges given to the user \n");
22 }
23

24 return 0;
25 }

Listing 4.1 – The buffer buff can be overflown if the user writes more than a precise number of
characters. In this case, the message Correct Password would appear even if the user has not typed
the correct password specified in the second argument of strcmp function Fp72k17.

4.2.2 ARMHEx design

ARMHEx (Figure 4.2) is quite different from existing solutions, especially regarding how
information needed for DIFT is recovered. This section explains ARMHEx components and
the operations done by the ARMHEx coprocessor.

The PFT decoder 1 (Figure 4.2) is a state machine that decodes trace packets received
from CS components as detailed in 3.4.1.1. As the trace is sent at 250 MHz by the TPIU, it
is decoded at the same frequency to avoid unnecessary storage overhead. Decoded trace is
stored in AXI BRAM.

The TRF (Tag Register File 2 ) is a register file that stores tags for each of the 16 ARM
CPU registers and the 32 floating point registers. This IP has an AXI-lite interface in order
to communicate with the ARMHEx coprocessor. The Config IP 3 is an AXI slave IP
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Figure 4.2 – Internal architecture of an ARMHEx-based system.

containing a set of registers that provide a communication channel between the CPU and the
ARMHEx coprocessor: it is used to configure tag propagation rules, send the initial value of
the SP and for debugging purposes. Buffer 4 is a FIFO (AXI slave interface) that contains
instrumented memory addresses.

Tags for memory addresses are stored in the tag space memory section a . Tag dependencies
( b in Figure 4.2) is also a memory section containing annotations obtained through static
analysis (currently implemented with the Capstone disassembler engine [7]). The structure
of this memory section is shown in Figure 4.3 (inspired from a memory section layout in
[4]). The upper part contains offset/jump addresses used to locate annotations related to
basic blocks. The address received in the decoded trace is used to find the jump address
where annotations are located for the basic block. Figure 4.4 shows an example to illustrate
the content of tag dependencies memory section. If an application has n basic blocks, the
basic block jump table has 2n entries. At each basic block jump address, the first entry is
the header that contains information such as the number of annotations, information on how
to decode the instructions. Then, there are annotations to be executed by the ARMHEx
coprocessor.
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Figure 4.5 shows the design implemented using Xilinx Vivado. The design shows the Zynq
processing system IP which represents the ARM core configuration. The other important
IP used is the Microblaze which represents the ARMHEx coprocessor. There are two clocks
used in this design. FCLK_CLK0 is fixed to 100MHz and FCLK_CLK1 is fixed to 250 MHz in
order to receive trace and decode it.
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Figure 4.3 – Tag dependencies structure layout.
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Figure 4.5 – This design shows the implementation of the architecture shown in Figure 4.2. The Processing_System_IP contains the default
configuration of the ARM core. The application runs on the ARM core. The Microblaze softcore IP represents the ARMHEx coprocessor. The
ARMHEx coprocessor is responsible for managing all the IPs in the PL. The decodeur_traces IP decodes trace coming out from the TPIU via
EMIO interface and stores it in the local memory. Other important IPs are marked in bold: axi_trf which contains tags for the ARM registers,
axi_config which contains some configuration values and the DDR which is accessible on the PL via the AXI HP (High_Performance) Slave ports.
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4.2.3 ARMHEx operations

The ARM core runs the application. Before the application is executed, an important amount
of tasks are done by the OS without user intervention. In order to take advantage of CS
components, they need to be configured as explained in section 3.3.1. The application loader,
which is responsible of loading all application sections (.text, data, . . . ), also configures CS
components, Config IP and loads annotations in tag dependencies memory section before
executing the application. Once the application is launched, trace starts to appear on
the FPGA part. The trace is decoded and stored in AXI BRAM. On the first storage of
decoded trace in BRAM, the ARMHEx coprocessor (MicroBlaze) receives an interrupt to
start processing tags. The ARMHEx coprocessor computes tags for each annotation and
checks tags to detect a possible attack.

1 while (1){
2 // read decoded trace to get basic block starting address
3 decodedTrace = Read_mem ( DECODED_TRACE_MEM );
4 // find offset to fetch annotations for basic block by reading the basic

block jump table
5 offset = Search_annotations ( decodedTrace );
6 if ( offset != 0){
7 // get annotation size for current basic block by reading basic block

header
8 annotation_size = Read_mem ( TAG_DEPENDENCIES + offset );
9 // Get annotations , decode and compute the operation

10 for (i = 0; i < annotation_size ; i++){
11 // Get annotation
12 tag_dependencies_instruction = Read_mem ( TAG_DEPENDENCIES + offset );
13 // Decode and compute the specified operation by the annotation
14 Decode_Execute ( tag_dependencies_instruction );
15 }
16 }
17 }

Listing 4.2 – Pseudo-code of the program running on the ARMHEx coprocessor.

The ARMHEx coprocessor, running at 100 MHz, needs to be synchronized with the ARM
CPU, running at 667MHz, in order to catch up. The synchronization is done on system
calls as in previous works. Listing 4.2 shows the pseudo-code of algorithm running on the
ARMHEx coprocessor. Following steps are done in order to perform DIFT operations.

1. Reading decoded trace stored in AXI BRAM.
2. Looking for the corresponding basic block in the tag dependencies memory section by

reading the basic block jump table.
3. Reading basic block header, reading the annotation and decoding it.
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4. For each annotation, looking for tags of source operands either in memory or TRF.
5. Computing the tag of destination operand depending on current propagation rules

stored in Config IP.
6. Updating the corresponding tag in memory or TRF.
7. Checking for security policy violation and if a violation occurs raising an interruption.

Listing 4.3 shows the pseudo-code of Decode_Execute function which decodes the annotation
and computes the required operation specified by the opcode. The pseudo-code shows only
two instructions and how they are decoded. There are other operations such as writing
and reading the tag of register or memory addresses that are not shown for the purpose of
simplification and readability. These operations are encoded during static analysis according
to a defined instruction set. The software running on the ARMHEx coprocessor decodes
instructions with respect to the instruction set defined for the output of static analysis.

1 switch ( annotation ) {
2 case DIFT_INIT_REG :
3 // bits 31:28
4 register_dst = ( tag_dependencies_instruction & 0 xF0000000 ) >> 28;
5 // bit 27
6 tag_v = ( tag_dependencies_instruction & 0 x08000000 ) >> 27;
7 // Update AXI_TRF
8 update_axi_trf ( register_dst ,tag_v);
9 break;

10 case DIFT_INIT_MEM :
11 // bit 27
12 tag_v = ( tag_dependencies_instruction & 0 x08000000 ) >> 27;
13 update_mem ( MEM_ADDRESS , tag_v);
14 break;
15 }
16 case DIFT_UPDATE :
17 ...
18 case DIFT_CHECK :
19 ...
20 }

Listing 4.3 – Pseudo-code of the Decode_Execute function.

4.3 PL security and the memory used by the ARMHEx co-
processor

The overall architecture is shown in Figure 4.2. Related works do not take into account
the security of hardware DIFT extensions as summed up in Table 4.1. It is important to
protect hardware modules and memory sections from being modified through unauthorized
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channels. For instance, if a memory section used by the ARMHEx coprocessor is modified by
the software running on the Cortex-A9 core, the ARMHEx coprocessor may produce false
negatives or false positives. If the example code shown in Listing 4.1 is being protected using
ARMHEx, then it is important that any other application does not modify both the memory
section used by ARMHEx and the hardware IPs used by ARMHEx.

Listing 4.4 shows a sample attack against DIFT memory section used by ARMHEx. The
same attack can be done against any hardware IP used by ARMHEx. The only change that
needs to be done is to modify the dev_base address by the physical address of the targeted
hardware IP. This change seems minor as only a single value is changed in the DIFT memory
section. However, it can corrupt the entire algorithm shown in Listing 4.2. The modified
value could be one of these four values: basic block starting address received in trace, basic
block jump address, basic block header information or annotation. All of these values have
an impact on the DIFT process. For instance, if the basic block starting address is modified
by the attack then the received trace will not match with this modified address resulting in a
failure to process annotations for the basic block. Therefore, some information flows will not
be propagated resulting in a non-detection of the attack. Similarly, if any other value in the
DIFT memory section is modified by an attacker, the tracked program may produce a false
positive (i.e. the attack might be wrongly detected) or false negative (i.e. the attack may be
wrongly ignored). It is important to note that existing solutions are not protected against
such type of attacks.
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1 # include <stdio.h>
2 # include <stdlib .h>
3 # include <fcntl.h>
4 # include <sys/mman.h>
5 # include <linux/types.h>
6

7 int main(void){
8 int memfd;
9 volatile void * mapped_base , * mapped_dev_base ;

10 // Physical address of DIFT memroy section
11 off_t dev_base = DIFT_MEMORY_ADDRESS ;
12

13 memfd = open("/dev/mem", O_RDWR | O_SYNC );
14 if (memfd == -1) {
15 printf ("Can ’t open /dev/mem .\n");
16 exit (0);
17 }
18

19 // Memory map the physical address to get virtual address
20 mapped_base = mmap (0, MAP_SIZE , PROT_READ | PROT_WRITE , MAP_SHARED , memfd ,

dev_base & ~ MAP_MASK );
21 if ( mapped_base == (void *) -1) {
22 printf ("Can ’t map the memory to user space .\n");
23 exit (0);
24 }
25

26 // get the address of the device in user space which will be an offset from
27 // the base that was mapped as memory is mapped at the start of a page
28 mapped_dev_base = mapped_base + ( dev_base & MAP_MASK );
29 // *******************************
30 // ATTACK
31 // *******************************
32 // Modify DIFT memory content
33 *( volatile u32 *) ( mapped_dev_base + (10*4) )) = 0 xABCD1234 ;
34 return 0;
35 }

Listing 4.4 – This Listing shows an example attack against DIFT memory section (Figure 4.1). The
Listing maps the memory section using the mmap system call. Then, the attack takes place on line 33
by accessing and modifying a memory section that is required by the ARMHEx coprocessor.

4.3.1 ARM TrustZone

ARM TrustZone [63, 64, 65] provides two worlds: the secure world and the normal world. The
normal world can only access IP designed for the normal world while the secure world can



74 | ARMHEx: First proof of concept

Userspace

Kernel space

Normal world Secure world

TrustZone 
aware 

OS
Linux OS

Application
Sensitive 

Application

Monitor

Figure 4.6 – TrustZone hardware protected isolation.

access only secure IPs. This way, the software running in the secure world has a completely
different view of the system compared to the software running in the normal world. On
the hardware, the separation is made using a dedicated bit called the NS (Non-Secure) bit.
This distinction between normal and secure world is completely orthogonal to the protection
between user-level and kernel-level code as shown in Figure 4.6. Similarly to context switches
in software side to switch between userspace and kernel space, there are world switches
between normal and secure world. The switches are done using a special SMC (Secure Monitor
Call) instruction with the help of a monitor.

To avoid unauthorized access to ARMHEx, ARM TrustZone is used to ensure that the CPU
(untrusted part) cannot access components used by the ARMHEx coprocessor. Figure 4.7
shows that the Linux OS runs in the normal world. In addition, the devices and memory used
by Linux OS are also declared as non-secure while ARMHEx and memory used by ARMHEx
are declared as secure. When a non-secure element writes to a secure element, the operation
will fail on a check of the NS bit. Similarly, if a non-secure element tries to read a secure
element, the read will fail. ARM TrustZone is used to isolate ARMHEx with ARM CPU
core. Listing 4.5 shows the boot procedure with ARM TrustZone enabled.
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Figure 4.7 – This Figure shows how TrustZone can be used to protect ARMHEx. The ARM core
is divided into two worlds: the normal world in which the Linux kernel is running and the secure
world in which some secure application is running. The DDR memory is also divided into normal and
secure sections: the memory sections used by the ARM core are declared as normal while the memory
section used by the ARMHEx are declared as secure. The FPGA area is declared as secure except for
some area which can be used as a shared area between normal and secure world.

1 # Load compressed kernel image
2 fatload mmc 0 0x8000 zImage ;
3 # Load device tree
4 fatload mmc 0 0 x1000000 devicetree .dtb;
5 # Load ramdisk file
6 fatload mmc 0 0 x800000 ramdisk8M .image.gz;
7 # Load world switch monitor
8 fatload mmc 0 0 x1c000000 monitor .bin;
9 # Load TrustZone trusted execution environment

10 fatload mmc 0 0 x1c100000 fmp_t_com .bin;
11 # Launch monitor
12 go 0 x1c000000 ;

Listing 4.5 – This Listing shows the order of boot operations when TrustZone is used. First, the
kernel image is loaded into memory from the SD card. Then, the device tree is loaded. After, the file
system is loaded. These first three steps are also required when TrustZone is disabled. The specific
actions for enabling the TrustZone feature are shown in lines 8, 10, and 12. The world switch monitor
is loaded into memory from the SD card. Then, the TEE (Trusted Execution Environment is loaded.
After these steps, the monitor can be launched.)
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4.3.1.1 Protecting DDR memory

On Zynq SoCs, ARM TrustZone can also be used to protect DDR memory. The only
constraint in Zynq SoCs is that the region to be protected should be a multiple of 64MB. As
a consequence, the DIFT memory section used by ARMHEx is 64 MB and is protected by
unauthorized accesses using ARM TrustZone. The tag space and heap and stack memory
sections also have a size of 64 MB.

4.3.1.2 Protecting FPGA

In order to protect the FPGA, the NS-bit is set so that the IPs in the FPGA are all in the
secure world. There are two interfaces used to recover information on the FPGA part: AXI
and EMIO interface. The AXI interface has special bits: AWPROT and ARPROT that are
used to provide either a secure (if the bit is low) or a non-secure (if the bit is high) feature
provided by additional bits. The EMIO interface, used to recover trace, has no such security
feature provided by an additional bit. However, CS components are configured by the kernel
making the configuration process not vulnerable to unauthorized access attack originating
from userspace. Furthermore, the kernel is considered secure. Therefore, both interfaces are
protected.

4.4 ARMHEx evaluation

Implementations were done with Vivado 2016.4 tools on a Xilinx Zedboard including a
Z-7020 SoC (dual-core Cortex-A9 running at 667MHz and an Artix-7 FPGA). The FPGA
logic has around 85K logic cells and 560 KB of Block RAMs. The ARMHEx coprocessor is
implemented in a Microblaze softcore for this proof-of-concept. The evaluation proves the
following points:

• Implement a sample security policy using ARMHEx.
• Evaluation of ARMHEx system: area and power overheads.
• Efficiency of ARMHEx compared to related works.
• Security level provided by ARMHEx.

4.4.1 Example security policy: DLP (Data Leakage Prevention)

As an introduction to DIFT implementation within the ARMHEx framework, an example of
DLP is shown in Listing 4.6. It opens a file depending on user type (root or normal user),
copies the file contents in a buffer and prints it. In order to avoid data leakage, the buffer
should not be printed if it contains secret data as it may be the case if the user is root.
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1 char buffer [20];
2 FILE *fs;
3 // normal user
4 if( geteuid () != 0){
5 fs = fopen(" welcome ", "r"); // public
6 if(!fs)
7 exit (1);
8 }
9 // root user

10 else{
11 fs = fopen(" passwd ", "r"); // secret
12 if(!fs)
13 exit (1);
14 }
15 fread(buffer , 1, sizeof ( buffer ), fs);
16 fclose (fs);
17 printf (" Buffer Value: %s \n", buffer );

Listing 4.6 – This Listing shows an example code for DLP. After declaring the buffer and the file
pointer on lines 1 and 2 respectively, a verification is done based on the user type. If the user is a
normal user, then a file declared as public (accessible by everyone i.e. can be printed on a public
interface) is opened. Otherwise, if the user is root, then a secret file (not printable on a public
interface) is opened. Then, the content of the file is read and printed on the stdout. The goal here is
to avoid leaking data to a public interface. If the user is a normal user, the data contained inside the
buffer comes from a public file and therefore, it can be printed without any issues. However, if the
user is root, then the printf should not write any value to the stdout.

ARMHEx operates on assembly instructions which facilitates the DIFT implementation for
all programming languages. The example code shown in Listing 4.6 is compiled for Zynq
SoC to obtain the assembly code. System calls (e.g. write system call that is called for the
printf function call) need to be modified in order to send tag related information to the
ARMHEx coprocessor. In this chapter, it is considered that static analysis can determine the
tag of files being read: welcome (tagged public) and password (tagged secret).

After the code is statically analyzed, annotations are generated and stored in memory as
shown in Table 4.3. The jump table is located from address 0x0 to 0x54. There are some
basic blocks that have no annotations. For instance, this is the case for basic block starting
at address 0x10528. In this case, there is no need for the ARMHEx coprocessor to compute
any tag propagation for this basic block. Therefore, by convention, an offset value of 0x0 is
set which tells the ARMHEx coprocessor to jump to the next basic block. From address 0x58
to 0x158, annotations are stored. These are the instructions that the ARMHEx coprocessor
decodes and computes tags.
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1 char buffer [20];
2 FILE *fs;
3 // normal user
4 if( geteuid () != 0){
5 fs = fopen(" welcome ", "r");
6 if(!fs)
7 exit (1);
8 }
9 // root user

10 else{
11 fs = fopen(" passwd ", "r");
12 if(!fs)
13 exit (1);
14 }
15 fread(buffer , 1, sizeof ( buffer ), fs);
16 fclose (fs);
17 printf (" Buffer Value: %s \n", buffer );

tag[Mem[buff ]] = 0; // Tag
initialization

tag[Mem[fs]] = 0;
// normal user
// Decoded trace (if taken)
tag[Mem[fs]] = 0;

// root user
// Decoded trace (else taken)
tag[Mem[fs]] = 1;

tag[Mem[ buffer ]] = tag[Mem[fs ]];

if (tag[Mem[ buffer ]] == 1)
interrupt

Listing 4.7 – Simplified view of corresponding DIFT operations for example DLP code.

Listing 4.7 shows the corresponding DIFT operations for the example DLP code. The first
operation, in order to implement DIFT, is tag initialization. On lines 1 and 2 of Listing 4.6,
the tags of buffer and fs need to be initialized. Two levels of security (private and public)
are considered in this work. The OS sends the tag value, buffer address and its size to the
ARMHEx coprocessor. The allocated space for buffer is marked with a tag that can be of
different size. The fs FILE pointer is initialized with a tag according to the executed branch
(if or else). Information about which branch is executed is obtained using the decoded
trace. If the user is not root, lines 5 and 6 are executed. In this case, the tag of fs is set to
public as welcome file is public. Otherwise, lines 11 and 12 are executed. As passwd file is
considered as secret, the tag of fs is set to secret.

The tag check operation happens on line 17 when buffer is sent outside to the standard
output. The ARMHEx coprocessor sends tag value of buffer to the CPU: if it is secret,
then a violation has occurred (a secret information is being sent outside the system) and an
exception is raised. This example shows how ARMHEx uses the three operations required to
implement DIFT described in section 1.1. Tag initialization and tag check operations need
OS support while the ARMHEx coprocessor alone is responsible for tag propagation.

By running this application as a normal user, ARMHex does not produce any error because
a public file is opened which is authorized by the DLP security policy. However, if the
application is run by a root user, an error is thrown to indicate the user that the program
violates the security policy. This sample use case shows that ARMHex is fully capable of
detecting security policy violations.
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Table 4.2 – DIFT memory section containing annotations for the DLP example.

Memory address Memory content

0 10508
4 58
8 10528
c 00000000
10 1052C
14 80
18 10554
1c a8
20 10544
24 00000000
28 10548
2c d4
30 1056C
34 00000000
38 10570
3c e0
40 10550
44 00000000
48 10578
4c 00000000
50 1057C
54 ec

Table 4.3 – This Table shows the jump table
contained in the DIFT memory section. The table
is read by the ARMHEx coprocessor using two
consecutive reads. The first value shows the basic
block addresses while the second value shows the
offset at which the annotations are located for the
corresponding basic block.

Memory address Memory content
58 9
5c BD040084
60 ED080084
64 BD000084
68 00000012
6c D02C4004
70 00000001
74 00000001
78 00000012
7c 00000000

Table 4.4 – This Table shows the annotations
stored at the offset found in the jump table.
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Nonetheless, the simplifying assumption that the tags of files can be determined statically is
not realistic even though this is considered to be true in most existing works. Therefore, the
support of OS is required in order to provide tags of files used by a program at runtime.

4.4.2 Results

4.4.2.1 Area

Area results are shown in Table 4.5. Most of the used FPGA area is filled by the AXI
interconnect (5.87%), Config IP (5.20%) and the Microblaze softcore (4.62%). Other IPs
occupy less than 1% of the FPGA area in terms of slices. Overall, 10% of the FPGA area
is used in order to implement DIFT for one ARM Cortex-A9 CPU. The Zedboard (Zynq
Z-7020) includes an Artix-7 FPGA and it could easily fit into the smallest Zynq Z-7010 SoCs
(available on Zybo boards).

Table 4.5 – Area results of ARMHEx on Xilinx Zynq Z-7020.

IP Name Slice LUTs Slice Registers Slice (in %) BRAM Tile

Microblaze 1578 1407 614 (4.62) 6
MDM 102 110 40 (0.30) 0
Local memory 14 4 11 (0.08) 32
PFT Decoder 105 211 60 (0.45) 0
AXI TRF 53 105 24 (0.18) 1
Config 914 2141 692 (5.20) 0
AXI Interconnect 1788 2436 781 (5.87) 0
BRAM 2 0 1 (0.01) 2
BRAM Controller 157 168 59 (0.44) 0
Miscellaneous 641 586 171 (1.29) 0

Total Design 5354 7168 2453 41
(10.06%) (6.74%) (18.44%) (29.29%)

Total Available 53200 106400 13300 140

4.4.2.2 Power

Table 4.6 shows the power overhead of ARMHEx with default synthesis and implementation
strategies on the ZedBoard. The power overhead of ARMHEx consists only of the power
overhead of the FPGA part because the ARM core is running the application. Therefore, the
power overhead of ARMHEx is the sum of the power consumption of clocks, signals, logic,
and BRAM that are located in the FPGA part which equals to 0.13 W.
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Figure 4.8 – DDR memory protection using ARM TrustZone.

It represents 8.45 % of the baseline power consumption of Zynq processing system (1.538 W).
The results obtained are provided by Vivado tools using the post-implementation design.

Table 4.6 – Power consumption results of ARMHEx on Xilinx Zynq Z-7020.

Power consumption (in Watt)

Clocks 0.039
Signals 0.034
Logic 0.017
BRAM 0.040
PS7 1.538

4.4.3 Security evaluation

In section 4.4.1, it is shown that ARMHEx can detect security policy violations allowing to
detect software attacks. To protect against unauthorized access attack discussed in section
4.3, SafeG [66] dual-OS monitor has been used to take profit of ARM TrustZone. Linux runs
in the normal world and the TOPPERS/FMP kernel [67] runs in the secure world. In order
to evaluate ARMHEx isolation, secure memory region used by the ARMHEx coprocessor is
accessed from Linux running in the normal world.

ARM TrustZone is used to protect one secure memory section (from 0x1c00 0000 to 0x1fff
ffff) (Figure 4.8). This secure region is only accessible from the secure world. The kernel
that runs in the normal world is not able to access this region and it results in an AXI bus
error (DECERR or SLVERR depending on the type of transaction) which is the expected
error as a response to a Non-Secure read/write transaction. Listing 4.8 shows the error
received when a secure address is accessed with a read and write transaction. It shows
that unlike existing approaches, ARMHEx does not allow any unauthorized accesses to the
memory section and IPs used by ARMHEx.
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1 # read secure address (0 x1c00 0000)
2 zynq > devmem 0 x1c000000
3 Unhandled fault: external abort on non - linefetch (0 x18) at 0 xb6fe9004
4 Bus error
5 # write 0x1234 abcd to secure address (0 x1c00 0000)
6 zynq > devmem 0 x1c000000 32 0 x1234abcd
7 Unhandled fault: external abort on non - linefetch (0 x18) at 0 xb6f04000
8 Bus error

Listing 4.8 – This Listing shows that the Linux kernel, running in the normal world, cannot access a
secure memory region. It fails on a bus error which is the expected result as the AXI bus error verifies
for each transaction whether the NS-bit matches or not.

4.4.4 Comparison with previous works

Table 4.7 – Performance comparison with related works.

Approaches Kannan [2] Deng [3] Heo [4] ARMHEx

Hardcore portability No No Yes Yes
Main CPU Softcore Softcore Softcore Hardcore
Communication overhead N/A N/A 60% 5.4%
Area overhead 6.4% 14.8% 14.47% 0.47%
Area (Gate Counts) N/A N/A 256177 128496
Power overhead N/A 6.3% 24% 8.45%
Max frequency N/A 256 MHz N/A 250 MHz

Table 4.7 shows a performance comparison of ARMHEx with previous off-core approaches.
Unlike previous works, ARMHEx is based on an ARM hardcore processor: it opens interesting
perspectives as this work is easily portable to existing embedded systems. Approaches
proposed by Heo [4] and Lee [5] are not portable on Zynq SoC due to CS PTM component.

Furthermore, the time cost for communication between a CPU and the coprocessor is
5.4% in this work compared to 60% in [4]. In terms of area, ARMHEx has the best
coprocessor/processor ratio: the reason is that the CPU used in this work is a Cortex-A9
which has around 26 million gates [68]. Other works use softcores as their main CPU which
have a lower number of gates. If area results (in terms of gate counts) are compared, this
approach performs better than existing works. Moreover, regarding the power ratio of a
DIFT-enhanced architecture, ARMHEx is better than [4] (8.45 % instead of 24%). However,
Deng et al. [3] have a better power overhead than ARMHEx because they implemented a
dedicated hardware module for DIFT instead of a coprocessor-based approach as in ARMHEx.
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ARMHEx is able to operate at a maximum frequency of 250 MHz (bridled at 100 MHz for
the first implementation because of a Microblaze used for DIFT computations).

4.5 Summary

This chapter proposed an implementation, named ARMHEx, of a system taking advantage
of the proposed strategy to recover information required for DIFT in Chapter 3. The results
presented in this work have been published in [62, 69]. A simplifying assumption was made,
similarly to most existing works, that the tags of files can be determined statically. It can be
the case for simple examples or use cases. However, on a real-world system, this is not the
case and OS support is required. This helped us build a full prototype which is used to verify
that the proposed strategy allows recovering all information required for DIFT. The obtained
results show that using a small communication runtime overhead due to instrumentation,
the DIFT can be implemented on ARM hardcore CPU. Furthermore, the area ratio between
the coprocessor and processor is less than 1 % which shows that ARMHEx can be added to
existing systems without incurring huge area overhead. ARMHEx propagates and checks
tags using the ARMHEx coprocessor (MicroBlaze). As a softcore CPU is used in order to
decode and compute tags, the execution of annotations requires multiple cycles. To overcome
this issue, a dedicated DIFT coprocessor needs to be developed that decodes and executes
annotations.





Chapter 5

Dedicated coprocessor for DIFT

This chapter presents the architecture of the dedicated DIFT coprocessor developed in order
to provide missing features in related works: specification of the security policy (compile-time
or runtime), support for FP operations and multithreaded applications.

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Requirements for the DIFT coprocessor . . . . . . . . . . . . . . . . . . . 86

5.3 System design with the DIFT coprocessor . . . . . . . . . . . . . . . . . . 89

5.4 The DIFT coprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5 Evaluation of the proposed coprocessor . . . . . . . . . . . . . . . . . . . 105

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.1 Introduction

The information required for DIFT can be recovered and used to propagate and check tags in
order to make sure that the program running on the ARM core does not violate the security
policy. However, in the previous chapter, propagation and checks have been done in software
(MicroBlaze used as the DIFT coprocessor) requiring multiple clock cycles in order to compute
a single tag operation. Therefore, it is important to decrease tag operations execution time:
this is the main goal of this chapter. Furthermore, a new design for the DIFT coprocessor
is required in order to improve features missing in related works. Existing works target a
softcore CPU (often LEON3) which results in design considerations that are not suitable for
hardcore processors. For instance, the DIFT coprocessor proposed in existing works such as
[2] cannot be used to compute tags for floating point code. Section 5.2 describes the DIFT
coprocessor requirements considered in this chapter. Then, the system design is explained
in section 5.3 in order to understand mandatory operations and software requirements that
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Figure 5.1 – DIFT coprocessor design requirements.

are required by the system. Thereafter, the evaluation is proposed in section 5.5 in order to
compare the architecture with existing works and to discuss case studies where the design
proposed in this work outperforms existing works.

5.2 Requirements for the DIFT coprocessor

5.2.1 ARM architecture related

Figure 5.1 presents the overall design of the architecture which looks similar to the one
proposed in chapter 4. The main core, an ARM Cortex-A9 core, executes the application and
sends information to the DIFT coprocessor. The coprocessor is responsible for reconstructing
the control flow graph of the application, finding annotations for basic blocks and computing
tag operations. Furthermore, an additional information is being sent from the kernel in order
to determine the tag of files used by the kernel. It results in another information flow that
the DIFT coprocessor should manage.

The ARM Cortex-A9 includes an FPU (Floating Point Unit) which is responsible for com-
puting floating point operations. The DIFT coprocessor requires another register file to
store tags for floating point registers used by the FPU. Therefore, it also requires specific
instructions to compute operations on such registers. In addition, general instructions are
required to transfer data between general-purpose and floating point register files.
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5.2.2 Flexibility

The DIFT coprocessor has been designed in order to provide maximum flexibility in terms
of security policy specifications. The security policy specifies how tags are checked and
propagated in order to detect a specific attack. Two aspects related to security policies are
missing in existing works: flexibility in security policies specification and tag granularities.

5.2.2.1 Security policy

Security policies can be specified at compile-time or at runtime. The compile-time solution [4]
consists in hard-coding propagation and checking operations using dedicated opcodes, during
the application compilation. For instance, let us consider the security policy that states that
all arithmetic and logic instructions on the ARM core result in the logical OR operation on their
corresponding tags. Then, during static analysis, for all arithmetic and logical instructions of
the program code, an OR operation is hard-coded to compute tags of their operands. The
runtime solution [1] requires a special register called TPR (Tag Propagation Register) to
specify the operation that must be done on tag values. In this case, the static analysis gives
the operands for each instruction and the class of ARM instruction: Arithmetic/logical,
Load/Store, Branch, Floating point Load/Store. Knowing the instruction class, the DIFT
coprocessor can determine, with the help of the TPR register, the operation to be done
to propagate tags corresponding to the instruction executed on the main CPU. The main
advantage of runtime solution is that the TPR value can be modified at runtime in order to
modify the security policy without recompiling the application.

No existing works provide the flexibility to specify security policies using both methods.
This work proposes an architecture that can implement either one of these approaches
providing developers more flexibility to implement security policies. The DIFT coprocessor
ISA (Instruction-Set Architecture) has two different types of instructions: specific instructions
for the compile-time method and specific instructions for the runtime method. The last
ones are used in combination with TPR and TCR (Tag Check Register) [1] to implement a
runtime security policy.

5.2.2.2 Tag granularity

Existing off-core approaches provide a fixed tag size of one bit in most cases. Therefore,
security policies that require multiple bits for a tag (such as heap overflow detection [15])
cannot be implemented. This work offers hardware support for a tag size up to 32 bits. In
addition, it can support multiple security policies as discussed in section 5.5.1.
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Figure 5.2 – Virtual addresses in the decoded trace.

5.2.3 Tag virtual memory

In hardware-assisted DIFT existing works, tags are associated with physical memory addresses.
However, Linux applications are compiled to use virtual addresses (as shown in Figure 5.2)
and the MMU is responsible to translate them into physical addresses during execution.
Existing solutions consider that it is possible to recover translation information from the
MMU. This assumption is only realistic if the main CPU is a softcore tightly coupled with
the DIFT co-processor. On a hardcore, a solution could be to modify the Linux kernel in
order to send to the coprocessor information about PTEs (Page Table Entries), which are
managed by the kernel. However, this can be costly because each time a translation is done,
the virtual and physical page numbers need to be sent to the coprocessor as well. This
information can be difficult to obtain from the kernel and requires lots of minor modifications
to the kernel source code which is constantly evolving. Furthermore, the trace generated by
the PTM contains virtual addresses (as shown in Figure 5.2). Therefore, in order to limit
kernel modifications and to avoid virtual to physical address translation overhead, a tag is
associated to a virtual address rather than a physical address.

5.2.4 Tag memory management

Table 5.1 – TMMU entry.

Virtual page number Physical tag page number

0x12345 0x1c000

A TMMU (Tag Memory Management Unit) is required to associate tags to a given memory
region used by the main CPU. The TMMU (Figure 5.3) is functionally similar to an MMU
used in CPUs. It translates each process virtual address to a physical tag address i.e. the
physical address which contains the tag associated to the virtual address. It is implemented
as an associative array of 64 entries with some additional logic. Each entry, as shown in
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Table 5.1, contains a virtual page number and the corresponding physical page number where
the tag is located. In order to initialize the TMMU, mappings of different segments of the
process (e.g. code and data) are sent to the FPGA (Process mappings IP in Figure 5.3).
This information is retrieved while the application is being loaded by the kernel and is sent
to the FPGA part via the process mappings IP (Figure 5.3).

5.3 System design with the DIFT coprocessor

This section explains the overall system design with the DIFT coprocessor and software
requirements needed in order to manage DIFT operations.

5.3.1 Overall system design with the DIFT coprocessor

Figure 5.3 shows the global architecture of a system with the DIFT coprocessor. The DIFT
coprocessor is responsible for IPs/tags management and program flow reconstruction. There
are four new IPs that are used with the custom DIFT coprocessor. The TMMU IP is in
charge of finding the physical address where the tag is located for a given virtual address.
The AXI Master IP takes care of DDR memory read and write transactions. In chapter 4,
this IP was not mandatory as the MicroBlaze processor uses the AXI interface whereas the
DIFT coprocessor uses a custom interface and requires an AXI Master IP to communicate
with the DDR memory. The other two IPs that were missing in the previous chapter are
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kernel2monitor and monitor2kernel. The first one is required in order to send the file tag
from the kernel to monitor while the second one is used to transmit the file tag from the
monitor to the kernel.

Figure 5.4 illustrates the high-level architecture of the DIFT coprocessor. The DIFT copro-
cessor has two main functions: manage the sequence of operations and compute annotations.
It has been designed in two submodules: the dispatcher responsible for managing the order of
operations and the TMC (Tag Management Core) unit responsible for decoding annotations
i.e. computing and propagating tags.

The dispatcher initializes and manages all IPs. Its main task is to find annotations in
program execution order (thanks to the decoded trace) and to store them in the TMC
local annotations memory. The dispatcher is implemented as a classic five stages pipelined
MIPS CPU that allows executing general operations. It reads the decoded trace 1 , finds
annotations corresponding to this trace by reading tag annotations memory section in DDR
2 and stores them in the TMC local annotations memory 3 .

The TMC core is in charge of propagating and checking tags according to a specified
security policy. If a tag check fails, then an interrupt is sent to the ARM core to trigger a
counter-measure (e.g. stopping the application).

5.3.2 Software requirements

All existing off-core approaches require software modifications. However, existing works do
not provide enough information to easily reproduce their work. As a consequence, following
software modifications proposed in this work are explained here in order to make this work
reproducible:
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Figure 5.5 – Binary instrumentation using modified LLVM.

• Instrumentation required in order to retrieve memory addresses.
• Kernel support needed in order to recover information about system calls.
• Process mapping used in order to initialize the tag memory management unit.

5.3.2.1 Instrumentation

The DIFT coprocessor can reconstruct the program execution path by creating a CFG using
the decoded trace. However, it has no information on what happens inside each basic block
of the CFG. The output of the static analysis, as explained in the chapter 3, states how tags
propagation is performed for each CPU instruction. However, for memory instructions, the
static analysis cannot compute the memory addresses that are only known at runtime.

This situation is illustrated in Figure 5.5. Figure 5.5a shows the original application code.
The starting address of basic blocks 1 and 2 (underlined addresses) are recovered from the
decoded trace. For memory instructions (in bold in Figure 5.5a) such as ldr and str at
addresses 0x10170 and 0x10174 of the original application, the value of registers (sp and r2)
cannot be computed from static analysis. This information is needed by the DIFT coprocessor
to propagate tags from a register to a memory address (in case of a store operation) or from
a memory address to a register (in case of a load operation).

In this work, this information is obtained by instrumenting the original application binary. The
instrumented application is shown in Figure 5.5b. Before each memory instruction, another
instruction is added (store instructions at addresses 0x10170 and 0x10178 of Figure 5.5b)
that sends the missing register value to the memory address contained by r9. The r9 register
has been reserved for that and is not used by the application. It contains the virtual address
associated with the physical address of the instrumentation IP (shown in Figure 5.3) so that



92 | Dedicated coprocessor for DIFT

any store to r9 results in a write to the instrumentation IP. Compared to the instrumentation
as done in chapter 4, the whole code is instrumented rather than only the .text section.

5.3.2.2 Kernel support

Existing hardware DIFT approaches only handle tags associated to RAM and registers.
However, they do not take into account information stored on mass storage, i.e. tags
associated to files. This feature is important to handle inter-process communications and
data persistence (after a reboot). Moreover, users are more inclined to specify a security
policy at the file level rather than at the memory address or register level. For example, a
user can easily identify the files that are supposed to contain confidential information, such
as passwords.

Handling file implies some kernel support. However, most of kernel modifications are limited
to file Input/Output interface. Only a limited number of system calls such as read or write
have to be modified. In order to handle tags associated to files, RFBlare [70], a modified
Linux kernel that implements an OS-level DIFT monitor, is used. This monitor saves tags as
file meta-data using file system extended attributes. RFBlare original behavior consists in
propagating tags from files to the process memory whenever a file is read and from memory
to files whenever a file is written. This OS-level approach is coarse-grained since only one tag
is used to abstract the whole memory of a process.

RFBlare is modified to disable the OS-level tag propagation and the feature allowing to
link tags to files is used. Some code is added in order to enforce a communication between
RFBlare and the DIFT co-processor for each file I/O. For instance, when a read system
call occurs on the ARM core, RFBlare allows retrieving the tag of the file being read, the
address of the buffer where the read data is stored and the number of bytes read. These three
values are sent by the kernel to the FPGA part using the kernel2monitor FIFO IP (shown in
Figure 5.3). Similarly, if a program writes to a file (e.g. write system call), the kernel sends
the memory address of the buffer being written and the size of the buffer. Then, the DIFT
coprocessor fetches the corresponding tag and sends it back to the kernel. RFBlare uses this
tag to set the new tag of the file. All the communication for the write system call use the
monitor2kernel FIFO IP (shown in Figure 5.3). These FIFOs have an AXI-Lite interface to
communicate with the ARM core and a custom FIFO interface to communicate with the
TMC.

The main CPU and the DIFT coprocessor must be synchronized since the main core runs
faster than the DIFT coprocessor. In this work, this synchronization is done thanks to the
monitor2kernel and kernel2monitor FIFO mechanism. As the ARM core and the DIFT
coprocessor runs at different frequencies, the attack might be detected after execution of
the malicious code. However, it will not compromise the system because an attack needs a
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system call (for example write) to damage the system. Besides, each system call waits for
the DIFT coprocessor to finish tag computation before carrying on execution. Therefore, the
synchronization mechanism makes sure that the software attack does not affect the system.

5.3.2.3 Process mappings

The DIFT coprocessor needs to know memory mappings of the program in order to properly
initialize the TMMU. The ELF binary loader (binfmt_elf.c) is modified in order to send
memory mapping of the process. This way, the DIFT coprocessor starts by initializing
TMMU before any other operation is done.

5.4 The DIFT coprocessor

This section provides architectural and implementation details of the DIFT coprocessor which
is made up of two cores as shown in Figure 5.4: the dispatcher and the TMC core. The DIFT
coprocessor is responsible for managing all operations that are listed below.

• The dispatcher manages all IPs and determines the execution order of the program
running on the ARM core. The main steps needed to be done for that are:

– Read trace.
– Fetch Tag dependencies (store dependencies for the basic block in local memory).
– Initialize different modules for tag management and trace handling.

• The dispatcher manages inputs and outputs. The main operations are:
– Read instrumentation buffer.
– Read kernel2monitor.
– Write monitor2kernel.
– Keep track of ARM SP register value.
– Keep track of ARM PC register value.
– Configure TPR, TCR registers and TMMU IP.

• The TMC core should manage tags. It consists of the following operations:
– Configure security policy and tag ALU.
– Fetch tags from memory.
– Update register tags.
– Store tags to memory.
– Check for security policy violation.
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5.4.1 ISA of the dispatcher

The dispatcher is responsible for storing annotations for the TMC core in the same order
as the program that is being executed on the ARM core. It also manages other inputs and
outputs (e.g. kernel2monitor and monitor2kernel IPs). Therefore, it is implemented as a
general purpose MIPS processor providing the advantage of using the existing MIPS compiler
in order to compile the software. Furthermore, it allows to provide maximum flexibility in
terms of management of IPs. If a change is required for other program analysis techniques
such as detection of CRA (Code Reuse Attacks), the software running on the dispatcher can
be easily adapted. The ISA is detailed by explaining the data types, instruction formats,
instruction types, and register files used by the dispatcher. All instructions available are
explained in Appendix C.

5.4.1.1 Data type(s)

The dispatcher operates only on the general data type.

5.4.1.2 Instruction formats

There are three types of instruction formats that are used to encode the instruction. The
R format instructions are the most common and used by arithmetic and logical operations.
The I format instructions are used by memory or branch operations while the J format
instructions are used by jump operations.

1. R (Register) format

31 26 25 21 20 16 15 11 10 6 5 0
Opcode Rs Rt Rd shamt Funct

2. I (Immediate) format

31 26 25 21 20 16 15 0
Opcode Rs Rt Immediate

3. J (Jump) format

31 26 25 0
Opcode Target address
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Table 5.2 – Overview of instructions executed by the dispatcher.
Instruction Opcode Format Example Actiontype type type annotation

General
(Arithmetic/
Logical)

add R add $1, $2, $3 $1 = $2 + $3
sub R sub $1, $2, $3 $1 = $2 - $3
addi I addi $1, $2, 100 $1 = $2 + 100
addiu I addiu $1, $2, 100 $1 = $2 + 100
and R and $1, $2, $3 $1 = $2 & $3
or R or $1, $2, $3 $1 = $2 | $3
xor R xor $1, $2, $3 $1 = $2 ˆ $3
andi R andi $1, $2, 100 $1 = $2 & 100
ori I ori $1, $2, 100 $1 = $2 | 100
xori I xori $1, $2, 100 $1 = $2 ˆ 100
sll I sll $1, $2, 10 $1 = $2 << 10
srl I srl $1, $2, 10 $1 = $2 >> 10
lui I lui $1, 100 $1 = 100 x 216

Load/Store lw I lw $1, 100($2) $1 = Mem[$2 + 100]
sw I sw $1, 100($2) Mem[$2+100] = $1

Branch

beq I beq $1, $2, 100 if ($1 == $2) go to PC+4+100
bne I bne $1, $2, 100 if ($1 != $2) go to PC+4+100
blez I blez $1, 100 if ($1 <= $2) go to PC+4+100
bgtz I bgtz $1, 100 if ($1 > $2) go to PC+4+100

Jump
j J j 10000 go to 10000
jr R jr $31 go to $31
jal J jal 10000 $31 = PC + 4; go to 10000

5.4.1.3 Instruction types

The dispatcher has all non-proprietary instructions of the classic MIPS architecture. Table
5.2 shows important instructions available in the dispatcher. There are four types of
instructions available: General, Load/Store, Branch, and Jump. Instructions of general type
are responsible for computing arithmetic and logical operations. Load/Store instructions deal
with memory load and store operations. Branch instructions allow to execute conditional
code and jump instructions are used to jump to a specific location in the code.

5.4.1.4 Register files

The dispatcher has one register file that contains 32 registers with the first register always
containing zero value.

5.4.2 ISA of the TMC unit

The TMC core decodes annotations and executes the operation specified in the annotation.
It also takes care of storing tags in memory by using the TMMU and AXI Master IPs. As the
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dispatcher is pipelined with five stages, the TMC is also pipelined with five stages providing
higher throughput. All annotations available are explained in Appendix C.

5.4.2.1 Data types

The TMC core operates on three different data types: tags of general purpose ARM registers,
tags of FPU and general data. Tags of general purpose ARM registers type is used to store
the tag value of general purpose ARM registers. Tags of FPU data type is used in order
to store the tag value of the FPU registers. The general data type is required in order to
compute general operations.

5.4.2.2 Instruction formats

There are three types of instruction formats that are used to encode the annotation.

1. Init format used to initialize tags of registers and tags of memory addresses.
31 26 25 21 20 16 15 0
Opcode Reg_dst Reg_src Immediate

2. TR (Tag Register) format used to update tags of registers.
31 26 25 22 21 17 16 12 11 7 6 5 4 0
Opcode ARM_OPCODE_TYPE Reg_dst Reg_src1 Reg_src2 n.u Funct

3. TI (Tag Immediate) format used to update tags of memory addresses.
31 26 25 22 21 17 16 12 11 0
Opcode ARM_OPCODE_TYPE Reg_dst Reg_src1 Immediate

5.4.2.3 Instruction types

There are four instruction types as shown in Table 5.3: Tag initialization, Tag ALU, Tag
Load/Store, and Compound annotations. The same set of annotations is also included
for the floating-point code. Tag initialization annotations can be used in both runtime
and compile-time methods to initialize tags of registers or memory addresses. Tag ALU
annotations propagate tags for registers. For instance, TagRRR annotation (on the fourth
row of Table 5.3) shows a runtime annotation that contains type field and operands T1, T2,
and T3. The operation op for this annotation will be determined, at runtime, by reading
the TPR register value for the corresponding type. If the type field is arithmetic and the
TPR register states that an AND operation must be done on source operands to compute the
destination tag, then the operation done on the TMC unit of the DIFT coprocessor is T1
= T2 AND T3. The compile-time solution will use the fifth annotation (TagRRR2) in order
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to specify the operation that will be hard-coded in the annotation itself using the function
(Funct) field. If the security policy is changed, the compile-time solution must recompile the
application while the runtime solution will simply require changing the TPR register value.

Tag Load/Store annotations are used in order to fetch tags from the memory or to store tags
to the memory. They are similar to classical load/store operations: the value fetched/stored
from/to memory is the tag. The last type of annotation is the compound type which, as the
name suggests, consists of doing multiple operations using a single annotation. For instance,
if the first annotation of compound type is considered (TagITR), it consists of loading value
from instrumentation IP, then using the TMMU unit to find the physical tag address i.e.
address where the tag is located for the given virtual address.

Then, the tag store operation can happen: it stores the value of register T3 into the physical
address obtained from the TMMU. Therefore, compound annotations allow executing multiple
tasks from a single annotation making the output of static analysis more compact in memory.

Table 5.3 – Overview of annotations executed by the TMC.
Instruction Opcode Format Operation Example Actiontype type type annotation

Tag
initialization

TagRImm Init irrelevant TagRImm T1,#1000 T1 = 1000
TagRR Init irrelevant TagRR T2,T1 T2 = T1
TagMR Init irrelevant TagMR R1,T1 Mem[R1] = T1

Tag ALU TagRRR TR runtime TagRR type T1,T2,T3 T1 = T2 op T3
TagRRR2 TR compile-time TagRRR2 AND T1,T2,T3 T1 = T2 AND T3

Tag
Load/Store

TagMTR TI runtime TagMTR type R1,T1,#4 Mem [R1+4] = T1
TagTRM TI runtime TagTRM type T1,R1,#4 T1 = Mem[R1+4]
TagMTR2 TI compile-time TagMTR2 R1,T1,#4 Mem[R1+4] = T1
TagTRM2 TI compile-time TagTRM2 T1,R1,#4 T1 = Mem[R1+4]

Compound

TagITR TI runtime TagITR T3,T1,#4 Mem[TMMU(Instrumentation)] = T3
TagTRI TI runtime TagTRI T4,T2,#4 T4 = Mem[TMMU(Instrumentation)]
TagITR2 TI compile-time TagITR2 T12,#4 Mem[TMMU(Instrumentation + 4)] = T1
TagTRI2 TI compile-time TagTRI2 T2,#4 T2 = Mem[TMMU(Instrumentation + 4)]
TagKTR TI compile-time TagKTR T1 Mem[monitor2kernel] = T1
TagTRK TI compile-time TagTRK T2 T2 = TMMU(Mem[kernel2monitor])

5.4.2.4 Register files

The TMC unit has three data types. Therefore, it contains three register files (one for
each data type): TRF (Tag Register File), TRF_FP ((Tag Register File for Floating-Point
numbers)), and GRF (General Register File) (Figure 5.6). TRF contains tags corresponding
to the ARM registers (r0 to r15) while TRF_FP contains tags for the ARM floating point
registers (s0 to s31). GRF contains 16 general purpose registers.
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Figure 5.6 – Microarchitecture of the DIFT coprocessor with 5 pipeline stages.

5.4.3 Microarchitecture of the DIFT coprocessor

Figure 5.6 shows the internal architecture of the DIFT coprocessor. The DIFT coprocessor is
made up of two units: the dispatcher and the TMC core. The Dispatcher is implemented as
a five-stage fully pipelined MIPS CPU (with no branch-prediction unit) while the TMC core
is implemented as a five-stage pipelined custom coprocessor to decode annotations.

An important implementation detail about the TMC unit concerns the number of register
files. Figure 5.6 shows that there are three register files: TRF (16 registers), TRF_FP
(32 registers) and a GRF (16 registers). It means that 13 bits (4 bits for TRF, 5 bits for
TRF_FP and 4 bits for GRF) are required in order to address each of the register files.
However, there are not enough bits available to store this information. Therefore, TRF and
GRF are implemented together as a one big register file. Register 0 to 15 are used for TRF
while registers 16 to 31 are reserved for GRF. It allows to use 10 bits (5 bits for TRF_FP
and 5 bits for both TRF and GRF) rather than 13 bits required if there were three separate
register files implemented.

Pipeline There are five stages of pipeline for each unit as shown in Figure 5.6: instruction
fetch, instruction decode, execution, memory access and write-back stage. The MIPS
processor is fully pipelined with some additional delays added either by the hardware or the
software depending on the instruction. The TMC core is pipelined for Init and TR formats
of instruction. All memory accesses on the TMC core require to stall the pipeline because an
external DDR memory is used rather than the local BRAM as in case of the dispatcher.
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Figure 5.7 – Compound annotation (TagITR). example on the TMC core

The TMC core has a very simple instruction fetch unit compared to the dispatcher because it
does not deal with branches or jumps. The dispatcher takes care of sending annotations in the
right execution order. During the decode stage, the annotation is decoded. If the annotation
is of compile-time operation type, then all the information required to compute tag is stored
in the annotation itself. The decoder decodes the operands and sets the operation type. If the
annotation is of runtime operation type, then the operation is not specified in the annotation.
Therefore, the ARM_OPCODE_TYPE field in the annotation is used along with TPR and TCR
registers to determine the type of operation that the tag ALU must compute. The execute
stage of the TMC core performs the operation decoded and takes also care of forwarding a
value if any data hazard is detected. In addition, for memory operations, the execute stage
also enables the TMMU unit in order to look for the physical address where the tag must be
loaded from or stored to. The memory access stage enables the AXI Master IP to enable the
transaction from memory. The write-back stage performs one or two operations depending
on the annotation type. If the annotation type is compile-time, it only writes back the value.
If the annotation type is runtime, then it also verifies the tag value that is being written
using the tag check module. If a violation is detected, the processor sends an interrupt
signal to the ARM core.

Compound annotation Figure 5.7 shows the data path taken by the compound anno-
tation TagITR on the TMC core. Blocks that are not used in the TMC core are grayed
out. The decode stage enables a signal that allows reading the instrumentation IP which
contains the virtual address obtained through instrumentation. During the execute stage,
the instrumentation IP delivers this virtual address which is used as input to the TMMU in
order to find the physical address where tags are stored for the virtual address. Then, the
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memory access stage can access the physical address in order to store the value to the TRF
register file. For instance, if the instrumentation IP delivers the address 0x12345678 to the
TMMU, the TMMU will look in its associative table the corresponding entry for virtual page
number 0x12345. The TMMU output gives the physical address where the tag is located for
the virtual address 0x12345678. Then, this physical address is used to access the memory
using the AXI Master IP and writing back the value read into the TRF register file. Another
annotation with a specific opcode is used in order to store the value to the TRF_FP floating
point register file.

Dispatcher implementation tests Figure 5.8 shows the design developed with Vivado
tools for Zynq SoC in order to test the dispatcher core. The design shows the Zynq processing
system IP that contains the configuration for the ARM core. The dispatcher (mips_cpu_v2_3
IP) represents the dispatcher. The instruction_mem memory block contains instructions
generated using GCC MIPS compiler [71]. The data_mem memory block contains data
for the dispatcher. The trace_mem block contains the trace while anotations_bb block
contains annotations generated by the static analysis. The AXI GPIO IP is used in order to
reset the dispatcher. This design is used in order to make sure that the dispatcher operates
correctly. The Zynq system is responsible for writing all previously detailed memory blocks.
The dispatcher determines the execution order on the ARM CPU from the decoded trace
stored in trace_mem and finds corresponding annotations. These annotations are stored in
the annotations_bb block which is used as the instruction memory of the TMC unit.

TMC implementation tests Figure 5.9 shows the design developed with Vivado tools for
the Zynq SoC in order to test the TMC core. The design shows the Zynq processing system
IP and the TMC core IP. The instruction memory of the TMC core (instruction_mem in
Figure 5.9) is filled by the dispatcher core and corresponds to the annotations_bb memory
block in Figure 5.8. There is one simplifying assumption in order to easily test the TMC
core: the interface used for the IPs in this design does not match the interface in the real
design. It is replaced by the AXI BRAM interface in order to use BRAM memory blocks
(configured as dual port BRAM). All memory blocks are filled by the Zynq processing system
except for instruction_mem block which contains data filled statically during initialization
of the FPGA. The TMC core reads annotation using instruction_mem and computes the
operation specified in the opcode.

DIFT coprocessor implementation Figure 5.10 shows the complete design developed
with the DIFT coprocessor (dispatcher and TMC). The dispatcher IP is actually a sub-design
that contains all IPs with the correct interface shown in Figure 5.8 while the TMC core here
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Figure 5.8 – This Figure shows the design made in order to implement the dispatcher core on the
FPGA and evaluate it on the FPGA. The Zynq Processing_system7_0 IP is used in order to
initialize the content of instruction memory (instruction_mem)

and set the appropriate value for the reset signal using axi_gpio_0 IP. Once the ARM
core sets the value ‘0’ to the reset signal, then the dispatcher starts executing instructions
specified in the instruction memory. The code running on the dispatcher is shown in Listing

5.1. Once the program has finished execution, the Zynq reads back the content of the
annotations_bb memory block in order to make sure that the dispatcher has properly
dispatched the annotations in the right execution order. This design allows verifying that

the dispatcher properly fulfills its role.
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Figure 5.9 – TMC design with Vivado tools on Zynq SoC.
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Figure 5.10 – System design with the DIFT coprocessor.
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is also a sub-design with all the blocks shown in Figure 5.9 with the correct interface as
explained in chapter 3. This design is implemented and evaluated in the next sections.

5.4.4 Software running on the DIFT coprocessor

The dispatcher core runs the program shown in Listing 5.1 which looks quite similar to
the pseudo-code shown in Listing 4.2 except for the last operations. In Listing 4.2, the
last operation called another software function to decode the annotation. Here, the last
operation stores the annotation in the instruction memory of the TMC core in order to
decode the annotation in hardware. Furthermore, there is another operation done by the
Check_annotation function which is required for the management of ARM system calls: it
allows to initialize memory addresses with the help of the kernel.

The Check_annotation function (Listing 5.2) takes care of managing memory addresses sent
or received by the kernel. Depending on the annotation opcode, it will generate annotations.
If the opcode is 0x11, then the dispatcher reads kernel2monitor IP and generates annotations
to initialize memory addresses specified by the kernel. If the opcode is 0x12, then the
dispatcher reads monitor2kernel IP and looks for the tag of the memory address specified
by the kernel. When the tag is available from the DDR memory, it is written back to the
monitor2kernel IP by the TMC core. This allows to set the tag of the file being written by
the kernel.
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1 while (1){
2 // read decoded trace to get basic block starting address
3 decodedTrace = Read_mem ( DECODED_TRACE_MEM );
4 // find offset to fetch annotations for basic block by reading the basic

block jump table
5 offset = Search_annotations ( decodedTrace );
6 if ( offset != 0){
7 // get annotation size for current basic block by reading basic block

header
8 annotation_size = Read_mem ( TAG_DEPENDENCIES + offset );
9 // Get annotations , decode and compute the operation

10 for (i = 0; i < annotation_size ; i++){
11 // Get annotation
12 annotation = Read_mem ( TAG_DEPENDENCIES + offset );
13 // ARM system call management
14 Check_annotation ( annotation );
15 // Store annotation to the TMC instruction memory
16 Store_annotation ( annotation );
17 }
18 }
19 }

Listing 5.1 – This Listing shows the pseudo-code of the program running on the dispatcher core.
The dispatcher reads the decoded trace and then, using the address read, determines the offset where
to find corresponding annotations for the corresponding basic block. The annotations are copied from
the memory to the instruction memory of the TMC core in order to be executed.
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1 Check_annotation ( annotation ){
2 // Check annotation for specific opcodes
3 If ( annotation && 0x11){
4 // Read kernel2monitor IP
5 buffer_address = Read_fifo ( kernel2monitor );
6 buffer_size = Read_fifo ( kernel2monitor );
7 tag = Read_fifo ( kernel2monitor );
8 // initialize tags of memory addresses
9 for (i = 0; i < buffer_size ; i++){

10 generate_mtr2_annotation ( buffer_address , i*4);
11 }
12 }
13 else if ( annotation && 0x12){
14 // Read monitor2kernel IP
15 buffer_address = Read_fifo ( monitor2kernel );
16 buffer_size = Read_fifo ( monitor2kernel );
17 // initialize tags of memory addresses
18 for (i = 0; i < buffer_size ; i++){
19 generate_trm2_annotation ( buffer_address , i*4);
20 }
21 }
22 }

Listing 5.2 – The Check_annotation function is responsible for managing memory addresses sent or
received by the kernel. If the kernel sends a value using the Kernel2monitor IP, the dispatcher creates
a single (or multiple) instruction(s) for the TMC in order to initialize the address with a specified tag
value. Otherwise, the kernel sends a value using the Monitor2kernel IP in which case, the dispatcher
creates a single (or multiple) instruction(s) for the TMC to fetch tag and store to the Monitor2kernel
IP.

This code is compiled using the GCC MIPS compiler [71] and then stored in the instruction
memory of the dispatcher.

5.5 Evaluation of the proposed coprocessor

Xilinx tools 2017.1 are used on a Xilinx Zedboard with a Z-7020 SoC (dual-core Cortex-A9
running at 667 MHz and an Artix-7 FPGA) to implement the architecture shown in Figure
5.3. The Clang compiler has been used with a customized LLVM pass to get the binary
and annotations (instructions for TMC). The evaluation described in this section has the
following goals.

• Study use cases where the proposed architecture performs better than existing architec-
ture.

• Evaluate the feasibility of the proposed architecture.
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• Evaluate the cost of software modifications (execution time overhead and memory
footprint).

• Compare efficiency with related works.
• Evaluate the area and power overheads of the DIFT coprocessor.

5.5.1 Case studies

This section shows two use cases where the proposed architecture can outperform existing
works: handling multiple security policies and multi-threaded applications.

5.5.1.1 Multiple security policies

Existing works propose to manage multiple security policies using the DIFT coprocessor in
two ways. On the one hand, most off-core hardware assisted works [1], [2], [3], [4] target
security policies that require only a single bit in order to determine the software attack.
However, in practice, there are security policies that require more than a single bit in order
to determine the attack. For instance, this is the case for the security policy that allows the
detection of heap overflow attack. On the other hand, other works [40] modify the CPU
architecture by increasing the CPU bus size in order to run multiple security policies. Instead
of designing a 64-bit CPU, authors proposed to use a 128-bit CPU where 64-bits are used for
data and the other 64-bits manage tags. This approach is not feasible on hardcore CPU as
considered in this work because their architecture cannot be modified.

Therefore, it is important to be able to independently run multiple security policies on the
DIFT coprocessor. The architecture has been designed in order to provide the ability to
program multiple security policies using independent TMC cores. Figure 5.11 shows the
design in order to run multiple security policies. There are two TMC cores: one per security
policy. The dispatcher is responsible for writing annotations to both annotations memory
of each TMC. The same annotation is written into both TMC cores. However, each TMC
core is configured at runtime with a different security policy by programming TPR and TCR
registers. When the annotation is decoded by the TMC, the decoder also determines the
operation to be done for each security policy. For instance, the security policy one states
that for a memory store operation, the tag to propagate is the tag of the register containing
the memory address while the security policy two states that for a memory store operation,
the tag to propagate is the tag of the memory address. Then, the decode stage of TMC units
will set accordingly all the required signals in order to run these security policies separately
on each TMC unit.
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Figure 5.11 – DIFT coprocessor for multiple security policies.

5.5.1.2 Multiple threads

Real-world applications use multiple threads in order to speed up execution. However, existing
DIFT mechanisms are not able to track multiple threads because the interface between the
main processor and the DIFT coprocessor does not export information that allows determining
the thread being executed on the CPU. We overcome this issue by exploiting CoreSight
components to extract the context ID, which comprises the TID (Thread ID) and the ASID
(Application-Specific ID).

Figure 5.12 shows the architecture of the DIFT coprocessor if two threads are to be monitored.
The architecture looks similar to the architecture used in order to protect multiple security
policies (Figure 5.11). The main difference is that annotations managed by TMC units
are different. The dispatcher is responsible for writing annotations for each thread in its
corresponding annotations memory. The dispatcher can determine the thread number thanks
to the information contained in the decoded trace.

Single core If two threads are considered and both run on the same CPU core, the context
ID field, retrieved by decoding the PTM trace, allows to determine which thread is currently
being executed. Figure 5.13 shows the format of decoded traces in memory. The trace
contains an I-sync packet (in green) including 4 bytes of context-ID (underlined). It can be
noticed that the trace contains the same ASID value (42) and two different TID values (4d2
and 4d3) corresponding to each thread.
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Figure 5.12 – DIFT coprocessor for multiple threads.

Decoded trace
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00 00 00 00 00 80 08 74  05 01 00 21 42 d2 04 00
95 04 08 84 05 01 00 21 42 d2 04 00 e5 03 08 98
05 01 00 21 42 d2 04 00  fd 03 08 74 05 01 00 21
42 d3 04 00 95 04 08 84 05 01 00 21 42 d3 04 00
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Context ID
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0004d2 42
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0004d2 42
0004d3 42
0004d3 42
0004d3 42

Stored address
 00010574
 00010428
 00010584
 000103c8
 00010598
 000103f8
 00010575
 00010429
 00010585

Figure 5.13 – Decoded trace for multiple threads.

The PFT decoder computes the branch address where the ARM core has jumped. These
addresses are 4-byte aligned (in ARM state which is the only state allowed to be used during
compilation) which means that two bits (0 and 1) are always equal to 0. The PFT decoder
also recovers the context ID field and uses these unused two bits to specify whether the
decoded trace is generated by the first thread or the second thread. Figure 5.13 shows that
for the second thread, the stored addresses in the decoded trace memory are not 4-bit aligned
due to the storage of context ID in last two bits. The value of the context ID still needs to be
stored in separate registers so that if an attack is detected, the interrupt routine gets the TID
of the program in order to kill the process in charge of generating unauthorized behavior.

Multi-core system If two threads are launched on two different CPUs, the same architec-
ture can be used to propagate tags. However, the trace configuration and the PFT decoder
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needs to be adapted. If the second core is being used to run the program, then the second
PTM needs to be configured as well to trace the program. In terms of configuration, when
both PTMs are enabled, each PTM needs to insert a trace ID packet so that the funnel [57]
can merge traces onto a single bus. Furthermore, trace sinks (TPIU or ETB) must enable
formatting to differentiate trace from different sources. Therefore, the PFT decoder should
be adapted in order to consider formatted data instead of raw data considered in this work.
The rest of the architecture remains the same as it is similar to multiple threads on a single
core case. For multi-core case, a tracing overhead will appear due to trace formatting that
adds a low overhead of 6% [72] and an overhead of one byte every time the trace bus switches
between trace sources.

5.5.2 Performance overhead

In [4], authors show that the overall overhead of instrumentation is mostly affected by the
runtime overhead of instrumentation. They show that it represents 90 % of the total execution
time required for DIFT operations. Therefore, by improving this overhead, the overall time
required for implementing DIFT is reduced.

5.5.2.1 Runtime overhead of instrumentation

Figure 5.14 shows the average normalized execution time overhead for instrumented applica-
tion binaries. The related work implementation strategy is detailed in [4]. Two instrumen-
tation strategies (strategy 1 and 2) are adapted from ARMHEx ([62]) which has the same
software considerations as existing work [4]. In this work, all information flows are considered
in this work. Library code is instrumented unlike [62, 4] and a different configuration of
Coresight components is used allowing to recover the context ID information which changes
the design of hardware modules such as the PFT decoder.

Figure 5.14 shows that if the related work strategy (as in [4]) is used, the instrumentation
overhead is 12.79 times higher than the original execution time. The instrumentation strategy
1, where all memory instructions are instrumented, adds significant execution time overhead
(on average 10.43 times higher than the original execution time). The instrumentation
overhead is high for applications that require more memory operations (such as lu and
matrix). However, if only register-relative (other than PC, SP and FP) memory instructions
are instrumented, as in strategy 2, the average communication time overhead is reduced by a
factor 3.8 to achieve 3.35 times higher execution time on average.
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Figure 5.14 – This Figure shows the runtime overhead of instrumentation using a custom benchmark.
The solution proposed in this work outperforms the related work strategy thanks to the negligible
runtime overhead of CoreSight components. In average, it can reduce the runtime overhead by a factor
3.8. It can reduce the runtime overhead up to 5 times better than the related work instrumentation
strategy.

The three main reasons why this overhead remains high are:

• This work targets hardcore CPU which is not the case in most existing works such as
in [3, 4, 1, 40].

• The static analysis considers all information flows rather than function level information
flows as in [4, 62].

• It also instruments library code used by the applications unlike most existing works [3,
4, 62].

5.5.2.2 Memory footprint of instrumentation

Figure 5.15 shows the memory space overhead of custom benchmark applications using both
strategies. Binaries are statically compiled i.e. all the code executed by the application is
inside the code section of the binary. Therefore, results obtained here take into account all
modifications of user code and the library code. The instrumentation strategy 1 adds in
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Figure 5.15 – Memory footprint of custom benchmark.
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average 10% of memory space overhead and instrumentation strategy 2 adds in average only
3% of memory space overhead.

5.5.2.3 Area

Table 5.4 – Post-synthesis area results on Xilinx Zynq Z-7020.

IP Name Slice LUTs (in %) Slice Registers (in %) BRAM Tile

Dispatcher 2223 (4.18%) 1867 (1.75%) 3
TMC 1837 (3.45%) 2581 (2.43%) 6
PFT Decoder 121 (0.23%) 231 (0.22%) 0
Instrumentation 676 (1.27%) 2108 (1.98%) 0
Blare PS2PL 662 (1.24%) 2106 (1.98%) 0
Blare PL2PS 62 (0.12%) 56 (0.05 %) 0
Decoded trace memory 0 0 2
AXI Master 858 (1.61%) 2223 (2.09 %) 0
TMMU 295 (0.55%) 112(0.10 %) 3
AXI Interconnect 2733 (5.14%) 2495 (2.34 %) 0
Miscellaneous 1381 (2.6%) 2160 (2.03%) 0
Total Design 10848 (20.39%) 15939 (14.98%) 14 (10%)
Total Available 53200 106400 140

Table 5.4 shows the area required to implement the architecture presented in Figure 5.4.
Most of the FPGA area is filled by AXI interconnect (5.14%), dispatcher (4.18 %) and TMC
(3.45%). The overall design takes 20.4% of the FPGA area.

If two security policies are required at the same time, the design would be modified as shown
in Figure 5.11. The overall design, in case of two security policies, would require an additional
TMC core and some IPs used the TMC core that all would take additional 4095 slice LUTs,
9074 slice registers (i.e. 8% additional FPGA logic) and 6 BRAM tiles. Tools do not allow
to use all available FPGA area due to the efficiency of placing and routing algorithms used
as well as the characteristics of targeted FPGA. In practical, around 80 % of FPGA area
can be successfully routed and placed on the FPGA. As 20 % of the FPGA area is filled by
the overall design, 60 % of FPGA area can be used to run other TMC units as well as the
IPs required. In other words, the proposed design can run more than 8 security policies or
protect more than 8 processes at the same time in this targeted SoC which is the second
smallest SoC of Zynq family.
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5.5.2.4 Power

Table 5.5 shows the power overhead of the overall architecture with default synthesis settings
for the ZedBoard. The power overhead consists only of the power overhead of the FPGA
part because the ARM core is running the application. Therefore, the power overhead of the
overall architecture is the sum of the power consumption of clocks, signals, logic and BRAM
that are located in the FPGA part which equals to 0.294 W (with a deviation of 20 %). It
represents 16.2 % of the baseline power consumption of Zynq processing system (1.815 W).
The obtained results are provided by Vivado tools using the post-synthesis design.

Table 5.5 – Power results of overall architecture on Xilinx Zynq Z-7020.

Power consumption (in Watt)

Clocks 0.061
Signals 0.039
Logic 0.029
BRAM 0.011
PS7 1.522

5.5.3 Comparison with previous works

Table 5.6 – Performance comparison with previous off-core approaches.

Approaches [2] [3] [4] [4]
adapted ARMHEx This work

Area overhead 6.4% 14.8% 14.47% N/A 0.47% 0.95 %
Power overhead N/A 6.3% 24% N/A 8.45% 16.2%
Max frequency N/A 256 MHz N/A N/A 250 MHz 250 MHz
Communication
time overhead N/A N/A 60% 1280% 5.4% 335%

Hardcore
portability No No Yes Yes Yes Yes

Main CPU Softcore Softcore Softcore Hardcore Hardcore Hardcore
Library

instrumentation N/A N/A partial Yes No Yes

All
information flows No No No Yes No Yes

FP support No No No No No Yes
Multi-threaded

support No No No No No Yes

Table 5.6 shows the comparison of this work off-core approach with previous off-core ap-
proaches. Comparison of this work with in-core solutions is not done because they are not
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hardcore portable and are very invasive contrary to the off-core solution used in this work.
Compared to ARMHEx ([62]), this work has an higher area overhead because it provides
support for FP and multi-threaded software that requires additional modules in the FPGA
area. Furthermore, the power overhead of this work is higher than ARMHEx because this
work uses two times more FPGA area. The maximum frequency achievable is comparable to
existing works.

The most important difference resides in communication time overhead. It may appear that
this overhead is higher than values reported in related works. The fifth column, Heo [4]
adapted, shows that if the instrumentation strategy proposed in [4] is adapted with the same
static analysis and information flows constraints as in this thesis, then the communication time
overhead obtained on Zynq architecture reaches 1280%. However, the solution proposed in this
thesis can reduce this overhead to 335% by a factor of 1280

335 = 3.8. The best communication
time overhead reported in existing works is 5.4% (ARMHEx) but the solution proposed in
ARMHEx lacks support for all information flows and library instrumentation. Furthermore,
in ARMHEx, the time overhead has been estimated based on the number of instrumented
instructions whereas the value reported in this work is obtained on the Zedboard platform and
the time is measured using perf tool on Linux kernel v4.9. It is very important to consider
all information flows and instrument libraries because it allows detecting an important range
of attacks unlike most existing works. For instance, a simple attack on existing works could
be to add a wrapper around library function and use Linux kernel dynamic LD_PRELOAD
feature to avoid detection of any malicious library code. However, this work is able to detect
the execution of malicious library code as its tracking is not ignored as in most existing works.
Moreover, this work provides support for missing features in related works: support for
floating point (through additional instructions and additional register file) and multi-threaded
software thanks to context ID feature of the CoreSight PTM as described in section 5.5.1.

5.6 Summary

This chapter details the architecture of the custom DIFT coprocessor. The DIFT coprocessor
has been designed for the ARM architecture and provides support for missing features in
related works such as specifying security policies at compile-time or runtime, support for
floating point, support for multiple security policies of different tag granularity and support
for multiple threads. The DIFT coprocessor is divided into two units: the dispatcher and the
TMC core. The dispatcher determines the execution order of the program being executed on
the ARM core thanks to the decoded trace and stores corresponding annotations in order for
the TMC. The TMC is responsible for computing and propagating tags. The TMC uses a
TMMU in order to ease the management of memory tags. The DIFT coprocessor is modular
allowing to reuse developed units for different purposes. The DIFT coprocessor can be easily
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adapted to run multiple security policies or to monitor multiple threads. This is done by
adding another dedicated TMC core along with the required IPs. The instrumentation time
overhead, limiting factor in existing works DIFT architecture, is reduced by more than 380%
if compared to existing work solution [4] with same software constraints. Area results show
interesting perspectives in terms of implementing multiple security policies and protecting
multiple processes. For instance, protecting two threads requires another TMC unit which
adds an additional area overhead of 8%.





Chapter 6

Hardware accelerators for malware
detection

This chapter presents the work done during a 3-month research stay within the ALaRI
institute in Lugano, Switzerland. It focuses on the anomaly-based malware detection scheme
rather than the taint-based information flow tracking approach previously used. It gives a
complementary point of view on hardware-based software security approaches.
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6.1 Introduction

In previous chapters, the dynamic taint analysis technique, DIFT, has been used in order to
detect software attacks in embedded systems. There is an important amount of works that
deal with detecting malware on the Android OS using taint-based detection scheme [23]. In
this chapter, another dynamic approach, named anomaly-based detection, is studied in order
to detect malware applications in Android. The work presented here has been done in the
frame of a mobility, funded by the UBL (Université de Bretagne-Loire), at ALARI (Advanced
Learning and Research Institute) lab of USI (Università della Svizzera Italiana) at Lugano,
Switzerland. This work is the continuation of [16] where the author proposed an approach
to detect malware applications. Figure 6.1 shows the proposed malware detection system
with both offline and runtime components. The offline part basically consists in creating a
dataset in order to train classification algorithms. This is done by executing applications
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Figure 6.1 – Proposed detection system (taken from [16])

and recovering execution traces. These traces are used to train the classification algorithms.
The runtime part consists of measuring some selected features and testing the application
using the trained classification algorithms. The runtime part runs on a battery-based device
making its energy efficiency a critical feature as it is one of the most important factors in
battery-powered devices. If the detection scheme takes an important amount of power, it
would result in a fast discharge of the device making it impossible to use it for other purposes.
Besides, the FPGAs are starting to be used in the mobile devices [73] and can provide a
solution to implement energy-efficient algorithms for important services such as security. The
goal of this chapter is to provide an energy and performance efficient implementation of the
runtime part of the proposed approach in [16].

6.2 Proposed hardware accelerators

The key idea of the solution proposed by Milosevic [16] is to use an FPGA in order to
implement the malicious applications detection (more specifically, classification algorithms,
see Figure 6.1). Another important goal is to maintain the accuracy of the software solution
in the hardware-assisted upgrade.

6.2.1 Design methodology

The approach proposed in [16] is designed using the methodology shown in Figure 6.2. First,
the classification algorithm is implemented in C code. Using the C code and some directives,
Vivado HLS (High-Level Synthesis) tool is used in order to generate a hardware version of the
C code. The generated hardware IP is tested in simulation, using Vivado HLS co-simulation,
in order to make sure that the generated IP behaves correctly. Afterward, the IP is exported
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int main(){

    ...
    return 0;
}

Vivado 
HLS

program.c HW IP

Vivado 
Xilinx 
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Figure 6.2 – Methodology used in order to develop hardware version of classification algorithms

to Vivado. Then, a Vivado design is made in order to make sure that the IP runs correctly.
For this purpose, the design developed in Vivado is synthesized and implemented. Then, the
FPGA is programmed using the bitstream generated from the implemented design. This
design is exported towards Xilinx SDK and verified on the FPGA. This overall approach
allows verifying that the proposed designed IP runs correctly in both simulations and on the
hardware.

Once the IP is verified in implementation, a power-efficient hardware version of the C code
is developed by using different optimization directives in Vivado HLS. Three classification
algorithms are studied: LR (Logistic Regression), NB (Naive Bayes) and SVM (Support
Vector Machine).

6.2.2 Power and performance optimizations

The primary goal of optimizations is to reduce power while the secondary goal is to not
decrease performance. In order to develop a power efficient hardware version that does not
decrease the performance when compared to the software version, some design considerations
have been taken into account:

• All input interfaces are developed using BRAM interface. This is also true for the
non-optimized hardware version as well. The other options for interfaces are AXI
Master, AXI slave, ap_fifo, or ap_mem. All these interfaces take an important amount
of FPGA logic and therefore have a higher power overhead than that of the BRAM
interface. All output interfaces are designed using AXI-Lite interface.

• Loops are pipelined. This is not true in the non-optimized version. By pipelining
loops, the hardware version takes more FPGA area but improves the performance by
increasing the throughput.

• The “dataflow” directive is used in order to improve the execution time of the IP. As
the goal is to focus on the improvement of both power and performance, this directive
is used to parallelize functions when possible in order to improve the throughput.
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6.2.2.1 LR

1 void classify ( double x[ TEST_SIZE ][ NB_FEATURES ], double weights [ NB_FEATURES ],
double output [ TEST_SIZE ]){

2 double temp = .0;
3 unsigned int i, k;
4 double w, xtemp , prod;
5

6 for (k = 0; k < TEST_SIZE ; k++){
7 temp = .0;
8 for (i = 0; i < NB_FEATURES ; i++){
9 xtemp = x[k][i];

10 w = weights [i];
11 prod = w*xtemp;
12 temp = temp + prod;
13 }
14 output [k] = sigmoid (temp);
15 }
16 }

Listing 6.1 – Accelerated portion of the LR algorithm

Listing 6.1 shows the C code that is used in the runtime part in order to detect whether
an application is a malware or not. If the output value is greater than a threshold (0.5 in
this work), then the application is detected as a malware. Otherwise, the application is not
detected as a malware. The TEST_SIZE number represents the number of applications that
are being tested and NB_FEATURES is the number of features required in order to successfully
classify the application. Basically, this function makes a dot product between features
measured and a weight vector obtained by training the classification algorithm. Then, a
mathematical function sigmoid is computed in order to determine the output value. Listing
6.2 shows the optimization directives applied to the source code shown in Listing 6.1.

1 set_directive_interface -mode bram " classify " output
2 set_directive_interface -mode bram " classify " weights
3 set_directive_interface -mode bram " classify " x
4 set_directive_interface -mode s_axilite " classify "
5 set_directive_pipeline " classify / classify_label0 "
6 set_directive_unroll " classify / classify_label1 "
7 set_directive_dataflow " classify "

Listing 6.2 – Optimization directives for the LR algorithm.
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6.2.2.2 NB

1 void predict ( double means[ NB_CLASSES * NB_FEATURES ], double variances [
NB_CLASSES * NB_FEATURES ], double priors [ NB_CLASSES ], double v[ NB_FEATURES
], double * best_probability , unsigned *index){

2 unsigned int i, j;
3 static unsigned bestIndex ;
4 static double bestProb ;
5 static double probabilities [ NB_CLASSES ];
6 double prob;
7

8 calculateClassProbabilities (means ,variances ,priors ,v, probabilities );
9 bestProb = 0.0;

10 bestIndex = 0;
11 predict_label1 : for (i = 0; i < NB_CLASSES ; i++){
12 prob = probabilities [i];
13 if (prob > bestProb ){
14 bestProb = prob;
15 bestIndex = i;
16 }
17 }
18 * best_probability = bestProb ;
19 *index = bestIndex ;
20 }

Listing 6.3 – Accelerated portion of the NB algorithm.

Listing 6.3 shows the runtime part of the NB classification algorithm. The runtime part
consists of measuring some features of the application that are stored in vector v. The training
part of the NB algorithm provides with means and variances in order to classify the malware
application. The algorithm computes the probability using means, variances, and features
provided in vector v. Then, the best probability is found using a simple comparison operation.
If the application is a malware, the best probability is found for index 1. Otherwise, the best
probability is 0. Listing 6.4 shows the optimization directives applied to the source code
shown in Listing 6.3.
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1 set_directive_interface -mode bram " predict " means
2 set_directive_interface -mode bram " predict " priors
3 set_directive_interface -mode bram " predict " variances
4 set_directive_interface -mode bram " predict " v
5 set_directive_interface -mode s_axilite " predict "
6 set_directive_dataflow " predict "
7 set_directive_pipeline " predict / predict_label1 "
8 set_directive_pipeline " calculateClassProbabilities /

calculateClassProbabilities_label2 "

Listing 6.4 – Optimization directives for the NB algorithm.

6.2.2.3 SVM

1 unsigned classifier (float x[N], float weights [N]){
2 float sum = 0;
3 float res;
4 unsigned output ;
5 classifier_label0 :for (int i = 0; i < N; i++){
6 sum += weights [i] * x[i];
7 }
8 output = (sum + bias) >= 0 ? 1 : 0;
9 return output ;

10 }

Listing 6.5 – Accelerated portion of the SVM algorithm.

Listing 6.5 shows the runtime part of the SVM classification algorithm that is implemented
in hardware using Vivado HLS. The runtime part consists of performing a dot product and
an addition operation. Then, the value is compared with a threshold value (0) in order to
determine whether the application is a malware or not. Listing 6.6 shows the optimization
directives applied to the source code shown in Listing 6.5.

1 set_directive_interface -mode bram " classifier " x
2 set_directive_interface -mode s_axilite " classifier "
3 set_directive_pipeline " classifier /loop"
4 set_directive_dataflow " classifier "
5 set_directive_interface -mode bram " classifier " weights

Listing 6.6 – Optimization directives for the SVM algorithm.
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Figure 6.3 – This Figure shows the Vivado design used in order to verify the hardware version of the
NB algorithm (predict_0 IP). The Zynq Processing_System7_0 IP represents the configuration
of the ARM core on the Zynq SoC. The ARM core sends the data to the predict_0 IP and recovers
the return data in order to verify it with the result of software version. The ARM core also takes care
of measuring the execution time for both software and hardware versions.

6.3 Implementation details and evaluation

6.3.1 Evaluation method

Figure 6.3 shows the implementation design with the NB algorithm hardware version. The
predict_0 IP has been generated by the Vivado HLS tool. The Processing_System7_0
IP contains the default configuration of the ARM Core on the Zynq SoC. The memory
blocks (means_bram, variances_bram, priors_bram, and vector_bram) contain the output
of training information sent by the ARM core. The output of classification is sent back to the
ARM core by the predict_0 IP using AXILite interface. The predict_0 IP shown in Figure
6.3 is the non-optimized hardware version. This design is synthesized and implemented on
the FPGA. After implementation, a bitstream is generated and used to program the SoC.
The ARM core sends inputs to the hardware version of the NB algorithm, recovers outputs
and compares them with that of the software version. Xilinx tools 2017.1 are used on a
Xilinx Zedboard with a Z-7020 SoC (dual-core Cortex-A9 running at 667 MHz and an Artix-7
FPGA) to implement the architecture shown in Figure 6.3.
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Figure 6.4 – Power overhead of the implemented algorithms

6.3.2 Results

6.3.2.1 Power overhead

Figure 6.4 shows the maximum power overhead of implemented algorithms. The software
power consumption value is considered as the base value for comparison. There are two
values reported for hardware versions: without and with optimizations. For the LR algorithm,
the power overhead is improved by more than 19 times using a non-optimized version when
compared to the power overhead incurred by the software solution. If the optimized version
of IP is used, then the power overhead is improved by more than 24 times. For the NB
algorithm, the power overhead is improved by more than 8.3 times when compared to the
software solution. For the optimized version, the power overhead can be improved more than
2.6 times when compared to the software version. The power overhead of the optimized
version in the NB algorithm is higher because the area occupied by the optimized algorithm
is very high (Figure 6.5). Furthermore, the goal of optimization is to improve both power
overhead and the performance of the NB algorithm. For non-optimized hardware version of
the SVM algorithm, the power overhead is improved by more than 8.3 times when compared
to the software solution while the optimized hardware version improves the power overhead
by more than 33 times when compared to the power overhead of the software solution. It
shows that the use of FPGA allows reducing the power overhead of classification algorithms,
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Figure 6.5 – Area overhead of the implemented algorithms using optimized and non-optimized
hardware IPs. The non-optimized versions are more area efficient while the optimized versions require
more FPGA area. As the goal of the optimization is to improve both power and performance overhead,
the area taken by the optimized version is higher than the non-optimized hardware version.

from 2.6 times up to 33 times depending on the algorithm, used in the malware detection
scheme proposed in [16].

6.3.2.2 Accuracy

The other important goal is to make sure that the accuracy remains the same for the
hardware and software versions. This goal has been achieved by using floating point numbers
in hardware in order to have the maximum precision. If the fixed point solution is used in
hardware, then the precision is lost resulting in a difference of accuracy between the software
and hardware version. Therefore, floating point precision has been used to not lose precision.
The accuracy of the LR algorithm is 91.72 %. The accuracy of the NB algorithm is 53.75 %
and the accuracy of the SVM algorithm is 89.30 %. The same accuracy values are obtained
for the software and both hardware versions. The most accurate results are obtained using
the LR algorithm while the SVM algorithm still allows to correctly classify more than 89
% of applications. The NB algorithm is the least accurate among the three implemented
algorithms but hardware implementations do not degrade results.
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Figure 6.6 – Runtime overhead of LR algorithm

6.3.2.3 Runtime overhead

LR: Figure 6.6 shows the average runtime overhead introduced by the LR algorithm to
classify a single application. The non-optimized hardware version requires 3.5 times higher
execution time compared to the software version while the optimized version runs 4 times
slower than the software version. This result can be explained by the fact that the software
can run floating point operations faster than the hardware versions by using the FPU present
in the ARM Cortex-A9 core. Furthermore, to improve power, the interface used to transfer
data between the ARM core and the hardware version is AXI BRAM interface which takes a
low area and low power. The runtime is further divided into two parts: initialization time
and execution time. The initialization time is the time required to send the data in memory
blocks from the ARM core while the execution time is the time required to run the algorithm
and send the result back to the ARM core. The initialization time for hardware version is
higher which is expected because the hardware gets data from the external DDR memory
while for the software version, the data is cached. The execution time for the hardware
version is also higher than the software solution because of the mathematical function which
is not optimized in the hardware version generated by Vivado HLS. The software execution
time is better thanks to the FPU but requires much more power than the hardware versions.

NB: Figure 6.7 shows the average runtime overhead introduced by the NB algorithm to
classify a single application. The non-optimized hardware solution takes 26 % more runtime
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Figure 6.7 – Runtime overhead of NB algorithm

than the software solution. The execution time for the non-optimized hardware version is
similar than the software version while the initialization time is much more important than
the software version. This is due to the fact that the FPGA needs to fetch data from the
DDR memory while the software version takes advantage of the data cache available on the
ARM core. The power and performance optimized hardware version of the NB algorithm
improves the runtime overhead by more than 55 % while it improves the power overhead
considerably (by more than 2.6 times). The results show that the optimized version has
a higher initialization time than the non-optimized solution. This is due to the usage of
datapath directive in Vivado HLS which improves throughput by duplicating the ports.
Instead of having a single port for an input, multiple (two in this work) ports are used for a
single input. This results in an important initialization time which affects the total runtime
overhead.

SVM: Figure 6.8 shows the average runtime overhead introduced by the SVM algorithm
to classify a single application. The software version performs the best in terms of runtime.
The software performs better than the hardware version due to two major reasons that were
explained earlier for the LR algorithm. The initialization time for software version is lower due
to the data cache while the execution time of the software version is better than the hardware
solution is lower because of the FPU present in the ARM core. Furthermore, the goal of the
optimization is to minimize both power and performance overhead. The power overhead of



128 | Hardware accelerators for malware detection

SW
HW (Without

Optimizations)
HW (With

optimizations)

Average execution time 0.295 1.395 1.149

Average initialisation time 0.18 1.236 2.396

0

0.5

1

1.5

2

2.5

3

3.5

4

A
ve

ra
ge

 e
xe

cu
ti

o
n

 t
im

e 
(i

n
 µ

s)
 

Figure 6.8 – Runtime overhead of SVM algorithm

the hardware version is still lower than the software version while the execution time for
hardware versions is higher than the software solution. The BRAM interface uses fewer
FPGA resources than other available interfaces to improve power but limits the performance
improvement.

6.4 Summary

This chapter presents the approach proposed in order to improve the energy efficiency of the
anomaly-based detection scheme detailed in [16]. The main idea is to take advantage of the
FPGA in order to run the most power consuming part of the algorithm used in the malware
detection scheme. The FPGAs are starting to appear in the mobile devices [73] and can
provide a solution to implement energy-efficient algorithms for important services such as
security. The hardware versions developed do not decrease the accuracy. The optimized SVM
hardware version provides the most energy-efficient solution while the power and performance
optimized hardware version of the NB algorithm has the lowest runtime.



Chapter 7

Conclusions and Perspectives

7.1 Conclusions

Recovering information required for DIFT on ARM hardcore CPUs

The first step towards DIFT on a hardcore CPU consists in recovering information required
for DIFT on the FPGA part. In this work, a method to recover the information required for
DIFT is proposed and implemented. This work takes advantage of CoreSight components in
order to determine the program flow of the program on the FPGA side. The PTM component
does not generate trace for each instruction executed by the ARM CPU. Therefore, a static
analysis is performed that allows recovering missing information. However, the static analysis
cannot determine the address of memory instructions such as ldr, str. . . The program is
instrumented in order to recover these missing memory addresses. Most hardware-assisted
existing works do not need more information. Nonetheless, there is still a missing piece
of information from the kernel: information about system calls. The FPGA part needs to
know the tag of the file being read by the kernel while the kernel needs to know the tag of
the file being written. This information is recovered using modified RFBlare. The use of
CoreSight components leads to a submission of two patches into the Linux kernel that have
been integrated into the kernel.

Dedicated DIFT coprocessor for the ARM architecture

Once the information required for DIFT is recovered, the FPGA needs to propagate and
check tag values. An operation needs to be done for almost every instruction of the program.
Therefore, a dedicated DIFT coprocessor is required that takes care of propagating and
computing tags with respect to a security policy. A few missing features in related works
have been addressed in this work: security policy specification at compile-time or runtime,
support for floating point instructions and a modular architecture. The dedicated DIFT
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coprocessor is divided into two parts: dispatcher and TMC. The dispatcher takes care of
reconstructing the program control flow of the application executed on the ARM CPU while
the TMC decodes and performs the operation specified by either the compile-time security
policy specified in the opcode of the annotation (i.e. instruction executed by the TMC).

Tracking of multiple security policies

The modular architecture of the DIFT coprocessor allows running up to 8 security policies in
order to detect multiple software attacks. The dispatcher takes care of dispatching annotations
to each of the 8 TMC that can be implemented using the proposed DIFT coprocessor.

Hardware-assisted DIFT for multiple threads

This work shows how the presented architecture can be used to protect multiple threads. The
context ID information retrieved from the PTM component can be used in order to detect
traces originating from different threads. Besides, trace for each thread respects the program
execution order allowing to completely determine the execution order over the FPGA side.
The modular architecture of the DIFT coprocessor can be used in order to run multiple
threads. The dispatcher takes care of determining the annotations for each TMC and sending
it to the specific TMC core.

7.2 Perspectives for future works

In this thesis, a problem of protecting software running on ARM-based hardcore CPUs, that
has been overlooked in the existing works, has been investigated. The obtained results have
raised some questions that are listed in the following as perspectives for future works.

Multi-threaded software

In this work, the proposed solution works without adaptation if multiple threads are running
on the same core (section 5.5.1.2). However, if there are threads running on multiple cores,
then the proposed solution needs to be adapted. The most important adaptation effort needs
to be done around the configuration of CS components. Multiple PTM components and the
TPIU formatter need to be enabled. The PTM decoder needs to be adapted as well in order
to decode trace. It must “de-format” trace before decoding it.
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TMMU and cache

In this work, a simple version of TMMU has been used in order to ease the management of
memory space region in DDR memory containing tags for memory addresses. The TMMU
can be improved by adding a tag cache in order to avoid fetching tags from memory for
every memory operation. The TMMU and cache can help to improve the latency of memory
instructions.

Evaluate different trace source components

There are different types of trace source components. In this work, the ARM PTM component
has been considered. However, previous trace source components, still available in some
processors (such as ARM Cortex-A53), include ETM trace component that can trace each
instruction executed by the CPU rather than tracing only instructions that change program
flow as done by the PTM. It means that the static analysis is not required on these processors.
Furthermore, if a data trace component is included in CS components, then the trace
component can also recover memory addresses. In that case, instrumentation would not be
required anymore resulting in fewer software modifications. However, trace source components
are being replaced by the recent PTM component which improves trace bandwidth and the
processor design.

Find new security policies

All the work done in this thesis can be used to find new security policies. In this thesis,
the focus has been put on the development of architectural support in order to implement
DIFT. As the architecture is designed and implemented, different tests can allow finding new
security policies in order to detect new software attacks.

Protect the kernel code

In this work, the focus has been put on protecting userspace code. However, the PTM
component allows tracing only the kernel code as well. Besides, protecting the kernel code is
much more challenging as the static analysis is much more complex.

Final Words

The work proposed in this thesis is one of the first works to target the ARM architecture for
providing security features. The proposed solution in this work overcomes the visibility issue
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faced when implementing DIFT on a hardcore CPU by using CS components, static analysis,
instrumentation, and modified RFBlare. Furthermore, this is one of the first works to take
advantage of the CS TPIU component to export trace towards the FPGA part and decode it
on the fly. The modular architecture proposed can be used to implement multiple security
policies and protect multiple threads. The idea of using a general purpose processor to
implement the dispatcher is to provide flexibility to users in order to implement other security
techniques using the same coprocessor. Besides, the architectural support provided in this
work raises some interesting perspectives for future works: improvement of the thread model
used, the architecture of some components used (TMMU), the discovery of new security
policies and the protection of kernel code.



Appendix A

ZedBoard development board

Figure A.1 – Zedboard

All implementations in this work are done on the ZedBoard (Figure A.1). ZedBoard integrates
a Zynq SoC (Figure A.2) with a number of hardware peripherals (HDMI, audio, OLED,
switches, LEDs. . . ). The Zynq SoC integrates a dual-core ARM Cortex-A9 CPU based PS
(Processing System) with a Xilinx 7-series FPGA fabric as the PL (Programmable Logic).
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Figure A.2 – Zynq SoC

The most important components of the Zynq SoC used in this work are the following:

• Cortex-A9 CPU used to run the application.
• CoreSight components programmed to trace the application.
• Interfaces between PS and PL used to recover information required for DIFT on the

PL.
– AXI GP (General Purpose) ports.
– AXI HP (High Performance) ports.
– AXI ACP (Accelerator Coherency ports).
– EMIO.

There are other peripherals that can be used by taking advantage of available Linux kernel
drivers. The device tree is in charge of enabling the drivers using “compatible” field. The Zynq
core runs at the maximum frequency of 667 MHz whereas the PL uses different frequencies
varying between 50 to 250 MHz depending on the IP and the design.

There are two types of interface: Master and Slave. The Master interface means that the PS
is responsible for initializing communication with the PL while the slave interface allows the
PL to access hardware peripherals such as the DDR memory or UART. . .



Appendix B

Development and Evaluation method

This chapter provides details about how implementations and tests are done. The section B.1
explains how hardware IPs have been developed and tested using Xilinx tools. It also contains
information about software modifications in order to test the developed design. Then, the
section B.2 shows the software development done in order to take advantage of CoreSight
components. Finally, the section B.3 provides details about how the evaluation is performed.

B.1 Hardware development

First, the hardware is designed in HDL (VHDL or Verilog) and simulated using the Vivado
simulator. Once the behavioral simulation is valid, the code is packaged as an IP, following
the procedure described in [74], to be used with other IP blocks provided by Xilinx.

The design flow used in order to test the developed IPs is shown in Figure B.1. A Vivado
design is made containing the tested IP along with Zynq Processing System IP and other IP
blocks provided by Xilinx. The design is synthesized and implemented. After implementation,
a bitstream is generated. The design is exported towards software in order to program the
Zynq PS.

Hardware 
design

Synthesis Implementation
Generate 
bitstream

C code
Standalone 

C code
Linux

Vivado Xilinx SDK

Figure B.1 – Development design flow with Xilinx tools
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The exported design from Vivado contains the hardware definition file allowing the Xilinx
SDK to build a BSP (Board Support Package) for the design. The BSP provides drivers
for peripherals used in the design. The C code can be written to communicate with the
developed IP block in order to make sure that the design works correctly.

B.1.1 Standalone

The first tests of the design are done in standalone “OS” made available by Xilinx [75] which
provides a simple set of drivers for peripherals available on the targeted board. C code is
written in order to modify input memory or to send the enable signal to the FPGA part.

B.1.2 Linux Kernel

Tests are made on the Linux kernel by adapting the previously developed program for the
standalone OS. For instance, instead of accessing physical addresses, virtual addresses are
obtained for physical addresses using the mmap system call and used in the program. The
program is compiled using the cross compiler obtained using Yocto toolchain [76].

B.2 Software development

The software development, done on the Linux kernel, mainly consists in taking advantage of
CoreSight components. There was no support for CoreSight components of the Zynq SoC in
the Linux kernel. After adding support for these components, it was noticed that the PTM
component did not have the branch broadcast feature available in the driver. Therefore,
this feature has been added. Both these patches have been submitted to the Linux kernel
and have been integrated into the Linux kernel release 4.11. The trace generated by the
PTM needs to be sent towards the FPGA part using the TPIU component. However, the
TPIU driver was not functional. Therefore, another patch was developed in order to modify
the TPIU driver to be usable. All patches developed in this work are available at the git
repository [77].

Once the trace was available on the FPGA, it needs to be decoded. At first, a software
decoder has been developed that is made available on the git repository [77]. The decoder
has been adapted from the decoder available in the Android kernel [78].
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B.3 Evaluation details

B.3.1 Area evaluation

The area is evaluated using Vivado tools. The tools report the area after synthesis and
implementation. The provided value is obtained using the post-implementation design except
if specified otherwise.

B.3.2 Power evaluation

The power is evaluated using Vivado tools. Vivado tools provide the maximum power value
of the design. The power value is an estimation and has an accuracy of +/- 20 %. Once
the implementation or synthesis is done, the implemented or synthesized design is opened in
order to get the report of power that the tools estimate based on the area occupied by all
IPs in the design.

B.3.3 Runtime overhead

The runtime overhead is measured on the Linux kernel using perf tool [79].





Appendix C

The DIFT coprocessor instruction set
details

C.1 DIFT coprocessor

The DIFT coprocessor is made up of two cores: the dispatcher and the TMC. This chapter
provides all instructions available on the DIFT coprocessor: dispatcher instruction set
described in C.1.1 and TMC instruction set detailed in C.1.2.

C.1.1 Dispatcher instruction set details

Table C.1 shows all available instructions on the dispatcher including their opcodes. The
opcode for each instruction is choosed so that the program compiled using the GCC MIPS
compiler [71] can be directly executed on the dispatcher without any software transformations.
Table C.2 shows the values for the FUNC field used in the A/L instruction.

C.1.2 TMC

Table C.3 presents all available instructions, called annotations in order to differentiate from
instructions of the dispatcher, on the TMC including their opcodes. The program running
on the TMC is obtained using static analysis. However the execution order of annotations
depend on the path taken by the ARM core. Therefore, the dispatcher is responsible for
ordering annotations by analyzing the decoded trace.
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Opcode
0x0 A/L

0x1 Branch
0x2 n.u.
0x3 JAL
0x4 BEQ
0x5 BNE
0x6 BLEZ
0x7 BGTZ
0x8 ADDI
0x9 ADDIU
0xa SLTI
0xb SLTIU
0xc ANDI
0xd ORI
0xe XORI
0xf LUI

0x10 COP
0x11-0x1f n.u.

0x20 LB
0x21 LH

0x22-0x23 n.u.
0x24 LBU
0x25 LHU

0x26-0x27 n.u.
0x28 SB
0x29 SH

0x2a-0x3f n.u.

Table C.1 – Dispatcher instruction set

FUNC
0x0 SLL
0x1
0x2 SRL
0x3 SRA
0x4 SLLV
0x6 SRLV
0x7 SRAV
0x8 JR
0x9 JALR
0xa MOVZ

0x10 MFHI
0x11 FTHI
0x12 MFLO
0x13 MTLO

0x18 MULT
0x19 MULTU
0x1a DIV
0x1b DIVU

0x20 ADD
0x21 ADDU
0x22 SUB
0x23 SUBU
0x24 AND
0x25 OR
0x26 XOR
0x27 NOR

0x28-0x29 n.u.
0x2a SLT
0x2b SLTU
0x2c n.u.
0x2d DADDU

Table C.2 – FUNC field of the A/L instruction
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Opcode Instruction Format
0x01 LW Init
0x02 SW Init
0x03 LCR (load configuration register) Init
0x04 Write a TLB entry Init
0x05 LW_FP Init
0x06 SW_FP Init
0x07 tag_rri Init
0x08 MOV_TRF_2_TRF-FP Init
0x09 MOV_TRF-FP_2_TRF Init
0x20 TagRImm Init
0x21 TagRR Init
0x22 TagMR Init
0x23 TagRRR TR
0x24 Tag_mem_tr TI
0x25 Tag_tr_mem TI
0x26 tag_arith_log TR
0x27 tag_instrumentation_tr TI
0x28 tag_tr_instrumentation TI
0x29 Tag_kblare_tr TI
0x2a Tag_tr_kblare TI
0x2b lui Init
0x2c Tag_mem_tr_2 TI
0x2d Tag_tr_mem_2 TI
0x2e Tag_check TR
0x2f Tag_check_mem TI
0x30 TagFRImm Init
0x31 TagFRFR Init
0x32 TagMFR Init
0x33 TagFRFRFR TR
0x34 Tag_mem_tfr TI
0x35 Tag_tfr_mem TR
0x36 tag_arith_log_fp TR
0x37 tag_instrumentation_tfr TI
0x38 tag_tfr_instrumentation TI
0x39 Tag_kblare_tr_fp TI
0x3a Tag_tr_fp_kblare TI
0x3b lui_fp Init
0x3c Tag_mem_tfr_2 TI
0x3d Tag_tfr_mem_2 TI
0x3e Tag_check_fp TR
0x3f Tag_check_mem_fp TI

Table C.3 – TMC core instructions (called annotations)

FUNC
0x2 ADD
0x3 SUB
0x4 OR
0x5 AND
0x6 XOR
0x7 NOR
0x8 copy_src_1
0x9 copy_src_2

0x10-0x2d not used yet

Table C.4 – Func field for the
tag_arith_log annotation
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Annotations are encoded using three formats described in section 5.4.2.2. All instructions
used in the TMC core are detailed in order to understand the operation managed by each
one of them.

1. LW (init format)
reg_dst = Mem(reg_src + offset)
General purpose instruction to load a value from an address value stored in a register.
Conditions on instruction operands
0 ≤ reg_dst ≤ 23
16 ≤ reg_src ≤ 23

31 26 25 21 20 16 15 0
000001 reg_dst reg_src Immediate

2. SW (init format)
Mem(reg_dst + offset) = reg_src
general purpose instruction to store a value to a memory address.
Conditions on instruction operands
0 ≤ reg_dst ≤ 23
16 ≤ reg_src ≤ 23

31 26 25 21 20 16 15 0
000010 reg_dst reg_src Immediate

3. LCR (init format)
reg_dst_config_register = Mem(reg_src + offset)
Load configuration register value from an address.
Conditions on instruction operands
0 ≤ reg_dst ≤ 23
16 ≤ reg_src ≤ 23

31 26 25 21 20 16 15 0
000011 reg_dst reg_src Immediate

4. Write a TLB entry (init format)
TLB[auto] = reg_src.
Initialize a TLB entry corresponding to an address given in reg_src field.
Conditions on instruction operands
0 ≤ reg_dst ≤ 23.
16 ≤ reg_src ≤ 23.

31 26 25 21 20 16 15 0
000100 n.u. reg_src n.u.

5. tag_rri (init format)
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reg_dst = reg_src + imm_16.
Add a 16-bit value to a register. This is useful in order to update ARM SP register
value or ARM PC register value.
Conditions on instruction operands
16 ≤ reg_dst ≤ 31.
16 ≤ reg_src ≤ 31.

31 26 25 21 20 16 15 0
000111 reg_dst reg_src imm_16

6. Tag_reg_imm (init format)
reg_dst = imm
initialize reg with an immediate value: this instruction can be used to initialize tag
values or register values ...
Conditions on instruction operands
0 ≤ reg_dst ≤ 23
16 ≤ reg_src ≤ 23

31 26 25 21 20 16 15 0
100000 reg_dst reg_src Immediate

7. Tag_reg_reg tag (init format)
reg_dst <= reg_src
initialize reg_dst with a value stored in register
Move from GPR (of 2nd stage) to tag register file (registers 0 to 16)
Conditions on instruction operands
0 ≤ reg_dst ≤ 23
16 ≤ reg_src ≤ 23

31 26 25 21 20 16 15 0
100001 reg_dst reg_src Immediate

8. Tag_mem_reg (init format)
Mem([reg1_dst + offset] ) = reg2
initialize memory with a value stored in register
Conditions on instruction operands
16 ≤ reg_dst ≤ 23
0 ≤ reg_src ≤ 23

31 26 25 21 20 16 15 0
100010 reg_dst reg_src Immediate

9. Lui (init format)
reg_dst <= (imm_16«16) | reg_src;
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To ease initialize of 32 bit values, we can use this instruction to load upper 16 bits into
a register with an immediate value
Conditions on instruction operands
16 ≤ reg_dst ≤ 23
16 ≤ reg_src ≤ 23

31 26 25 21 20 16 15 0
101011 reg_dst reg_src Immediate

The tag update instructions allow to update tags of registers or memory addresses.

1. TRR (TR format)
tag(reg_dst) = tag (reg_src1) OPERATION tag(reg_src2)
update tag of reg_dst_arm with reg_src1_arm and reg_src2_arm
Conditions on instruction operands
0 ≤ reg_dst ≤ 15
0 ≤ reg_src ≤ 15

31 26 25 22 21 17 16 12 11 7 6 5 4 0
100011 ARM_OPCODE_TYPE reg_dst reg_src1 reg_src2 n.u n.u

2. Tag_mem_tr (TI format)
tag (Mem(reg_dst + offset)) = tag(reg_src1)
update tag of memory address contained in reg_dst with tag value contained in reg_src1
(ARM STR operation)
propagate operation specified by security policy
Conditions on instruction operands
16 ≤ Reg_dst ≤ 23
0 ≤ reg_src1 ≤ 15

31 26 25 22 21 17 16 12 11 0
100100 ARM_OPCODE_TYPE reg_dst reg_src1 Immediate

3. Tag_tr_mem (TI format)
tag(reg_dst) = tag (Mem(reg_src + offset))
update tag of reg_dst with the tag of memory address contained in (val(reg_src) +
offset) (this operation is done for ARM LDR operation)
propagate operation specified by security policy
Conditions on instruction operands
0 ≤ Reg_dst ≤ 15
16 ≤ reg_src1 ≤ 23

31 26 25 22 21 17 16 12 11 0
100101 ARM_OPCODE_TYPE reg_dst reg_src1 Immediate

4. Tag_mem_tr_2 (TI format)
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tag (Mem(reg_dst + offset)) = tag(reg_src1)
update tag of memory address contained in reg_dst with tag value contained in reg_src1
(ARM STR operation)
propagate operation specified by opcode
Conditions on instruction operands
16 ≤ Reg_dst ≤ 23
0 ≤ reg_src1 ≤ 15

31 26 25 22 21 17 16 12 11 0
101100 ARM_OPCODE_TYPE reg_dst reg_src1 Immediate

5. Tag_tr_mem_2 (TI format)
tag(reg_dst) = tag (Mem(reg_src + offset))
update tag of reg_dst with the tag of memory address contained in (val(reg_src) +
offset) (this operation is done for ARM LDR operation)
propagate operation specified by opcode
Conditions on instruction operands
0 ≤ Reg_dst ≤ 15
16 ≤ reg_src1 ≤ 23

31 26 25 22 21 17 16 12 11 0
101101 ARM_OPCODE_TYPE reg_dst reg_src1 Immediate

6. Tag_arith_log (TR format)
General purpose operations on GPR of DIFT coprocessor (2nd stage) (add/or/and/-
sub/sll/srl ...)
Conditions on instruction operands
16 ≤ reg_dst ≤ 23
16 ≤ reg_src1 ≤ 23
16 ≤ reg_src2 ≤ 23

31 26 25 22 21 17 16 12 11 7 6 5 4 0
100110 ARM_OPCODE_TYPE reg_dst reg_src1 reg_src2 n.u FUNCT

7. Tag_instrumentation_tr (TI format)
tag(Mem(instrumentation)) <= tag (reg_src1) (operation done for ARM STR register
relative instructions)
Condition(s) on instruction operands
0 ≤ reg_src1 ≤ 15

31 26 25 22 21 17 16 12 11 0
100111 ARM_OPCODE_TYPE reg_dst reg_src1 Immediate

8. Tag_tr_instrumentation (TI)
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reg_dst <= tag(Mem(instrumentation)) (opreation done for ARM register relative
LDR instructions)
Update tag of memory address, obtained by instrumentation IP, with the tag of ARM
register (reg_src1)
Condition(s) on instruction operands
0 ≤ reg_dst ≤ 23

31 26 25 22 21 17 16 12 11 0
101000 ARM_OPCODE_TYPE reg_dst reg_src1 Immediate

9. Tag_Kblare_tr (TI format)
Mem(KBlare) <= tag (reg_src1)
write tag to Kblare IP PL2PS
Condition(s) on instruction operands
0 ≤ reg_src1 ≤ 15

31 26 25 22 21 17 16 12 11 0
101001 ARM_OPCODE_TYPE reg_dst reg_src1 Immediate

10. Tag_tr_Kblare (TI format)
tag (reg_dest) <= Mem(KBlare)
read tag from Kblare IP PS2PL
Condition(s) on instruction operands
0 ≤ reg_src1 ≤ 15

31 26 25 22 21 17 16 12 11 0
101010 ARM_OPCODE_TYPE reg_dst reg_src1 Immediate
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Titre : Support matériel pour l’analyse de sécurité du comportement des applications : application au contrôle 
de flux d’information et à l’analyse des logiciels malveillants   

Mots clés : FPGA, sécurité, systèmes embarqués, contrôle de flux d’information, architectures hétérogènes 

Résumé : Le contrôle de flux d’informations, Dynamic 
Information Flow Tracking (DIFT), permet de détecter 
différents types d’attaques logicielles tels que les 
dépassements de tampon ou les injections SQL. 
Dans cette thèse, une solution ciblant les processeurs 
hardcore ARM Cortex-A9 est proposée. Notre 
approche s’appuie sur des composants ARM 
CoreSight, qui permettent de tracer l’exécution des 
programmes exécutés par le processeur, afin de 
réaliser le contrôle de flux d’informations. 
 

Le co-processeur DIFT que nous proposons est 
réalisé dans la partie FPGA Artix-7 du système sur 
puce (SoC) Zynq. Il est montré que l’utilisation des 
composants ARM CoreSight n’ajoute pas de surcoût 
en terme de temps d’exécution et permet une 
amélioration du temps de communication entre le 
processeur ARM et le coprocesseur DIFT.  

 

Title : Hardware support for the security analysis of embedded softwares : applications on information flow 
control and malware analysis 

Keywords : FPGA, security, embedded systems, information flow control, heterogeneous architectures 

Abstract : Information flow control (also known as 
Dynamic Information Flow Tracking, DIFT), allow a 
user to detect several types of software attacks such 
as buffer overflow or SQL injections. 
In this thesis, a solution based on the ARM Cortex-A9 
processor family is proposed. Our approach relies on 
the use of ARM CoreSight components, which are 
able to trace softwares as executed by the processor 
in order to perform the information flow tracking. 
 

The DIFT coprocessor proposed in this thesis is 
implemented in an Artix-7 FPGA, embedded in a 
System-on-Chip (SoC) Zynq provided by Xilinx. It is 
shown that using ARM CoreSight components does 
not add a latency overhead while giving a better 
communication time between the ARM processor 
and the DIFT coprocessor.  

 


