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Scope of the Thesis 

 

Inspired by the new and challenging additional capacity and higher throughput requirements 

for mobile data traffic, the main objectives of this thesis are: 

a) Understand what current Wireless solutions can offer to advanced mobile technologies by 

analyzing the additional capacity that could be offered by Wireless-Fidelity (WiFi) to Long Term 

Evolution Advanced (LTE-A) networks.  

b) Propose new solution in WiFi networks Load times attenuation measurement and thus 

estimate the available idle capacity of the physical layer 

c) Define the heavy users in Long term evolution (LTE) network based on the measured high 

data consumption or average needed throughput. 

d) Dimension the WiFi Network in order to support the transferred heavy traffic of LTE network 

e) Estimate the profit share between LTE and WiFi following the cooperation through the 

proposed solutions. 
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General Introduction 

 

Mobile data traffic is revealing an ongoing exponential growth due to the increasing number 

of mobile broadband devices and with the deployment of the IOT. This increase of data traffic 

necessitates new architecture and visions in the roadmap of the 5G networks in order to ensure 

a suitable mobile infrastructure that will be able to support the 10 times expected increase in 

the throughput and needed mobile capacity. However, there is a lack of available licensed 

spectrum, noting that most of the current mobile data traffic comes from indoor locations or 

mobile users with fixed positions. For those reasons, the cooperation between LTE and WiFi 

is an alleviating solution which aims to distribute the connected users efficiently between the 

Het-Nets and ensure throughput equilibration for the best QoS and capacity limitations 

management.  

WiFi could be considered as a good technology to support LTE systems and enhance the 

capacity in the 5G roadmap for many technical reasons. Basically, the data rates of WiFi 

systems are comparable with the ones of cellular networks, where WiFi could achieve higher 

energy saving than the cellular networks. In addition, WiFi APs can be easily and quickly 

deployed in many suburban areas and indoor environments, with very reasonable cost of 

investment and without limitations in the hardware size or needed practical or environmental 

customization. 

In addition, the majority of smart devices handsets are equipped with WiFi connectivity, and 

according to different studies, above 80% of the mobile traffic came from indoor locations [1][2]. 

Therefore, WiFi could have advantage to establish a communication infrastructure over other 

wireless communication technologies [1].  

In order to ensure efficient coexistence between WiFi and LTE, we are tackling the basic 

challenges faced in WiFi systems. 

One of those challenges, is the channel assignment process for the end user within a minimum 

response time and optimal spectrum utilization from the suitable AP. As per WiFi systems 

technical specifications, to perform the channel assignment when a device is first switched on, 

the software above the Media Access Control (MAC) layer stimulates the device to establish a 

contact message to select the most suitable AP [3]. The device will be in either active or passive 
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scanning mode based on the AP response type. For IEEE specifications, different 

implementations are allowed, therefore different characteristics may exist between devices. 

The time of the scanning mode could increase significantly depending on the channels load, 

and the status of the APs, where basic timers exist to assure minimum and maximum times for 

interrogation requests.  

In our thesis, we propose a novel algorithm that estimates the load times attenuation of the 

WiFi 802.11n physical layer by taking the overlapping characteristic of the physical channels. 

This algorithm estimates the average load times attenuation of all the overlapped physical 

channels over a certain observation time instead of the non-overlapped ones only, 

independently from all system timers. Therefore, our algorithm is increasing the capacity of 

WiFi channels assignment based on their minimum load value in highly populated networks, 

where with the presence of the increasing spectrum demand constraint for future WiFi and 5G 

systems, the number of available non-overlapped channels may not be enough, thus devices 

need to share different channels (overlapped and non-overlapped) or to check for a new 

spectrum if it becomes available. 

In addition, once the values of the estimated load are collected on a higher control node level, 

we could evaluate the load of the entire WiFi network APs channels, facilitating by that the 

aggregation and processing time of the capacity calculations. 

Another challenge faced in WiFi systems, is that almost all WiFi networks are constituted of 

randomly deployed WiFi cells, and this is due to the fact that there are no limitations or 

regulations on WiFi cell deployment [3].The random installation of WiFi APs may cause WiFi 

networks to be implemented without optimal planning.  

Obviously, cellular traffic can be partially offloaded if both WiFi and LTE cooperate together. 

However, it is essential to dimension efficiently the WiFi APs needed to support a proper 

number of transferred LTE users while ensuring a suitable user experience. 

In addition, it is apparent that when extra APs are installed, a WiFi network will gain additional 

available capacity, and thus will achieve higher throughput. Nevertheless, increasing the 

number of APs and consequently the related Capital Expenditures (CAPEX) and Operational 

Expenditures (OPEX) without any constraint is not a good solution.  

Therefore, we address in our proposed second algorithm, the two aforementioned constraints: 
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LTE efficient offload to WiFi networks, and the optimal WiFi network planning to support LTE.  

In this algorithm, we first define the LTE heavy users that are consuming the top data traffic in 

LTE network, and transfer or offload them to the WiFi network. The proposed solution will 

mitigate the energy consumption of the LTE cell related to the heavy users, and therefore, 

instead of increasing the number of LTE BSs or expanding their capacity, we are proposing to 

introduce new WiFi APs in the heterogenous network. This new architecture can ensure a low-

cost solution compared to other solutions where we may increase the LTE macro or small cells 

that necessitate additional cost of investment. In this case, the investment in hardware 

implementation and maintenance costs, CAPEX and OPEX, will be reduced due to the fact that 

the needed cost for expanding WiFi networks is much less than the one needed for LTE sites. 

    Then, having the total number of users that are transferred to WiFi with the related volume 

of data consumption, the existing WiFi network, initially constituted of minimum one AP, will be 

handling this LTE offloaded traffic on top of its initial one. We estimate the WiFi network 

remaining available capacity based on the first proposed algorithm that estimates the load 

times attenuation value of the WiFi overlapped physical channels. Consequently, any needed 

additional capacity will be reflected by incrementing the number of WiFi APs, that are able to 

handle this new traffic, an ensure an optimal planning of the WiFi network.  

Finally, the profit analysis of the cooperation between both systems is analyzed in this thesis 

for two different scenarios: in case the same operator owns both WiFi and LTE systems, or in 

case those systems are owned by two different operators. This analysis is based on the 

cooperative game theory Shapley value that proved its efficiency in profit sharing in the context 

of multiplayers that involves several types of relationships. Its main concept is that each player 

will have a profit share proportional to its contribution in the network setting and the added value 

it brings to the overall value chain as it will be explained in the related chapter. 

 

Document Organization: 

The remaining of this report is organized as follows. In Chapter 1, IEEE 802.11 standards of 

the different releases and amendments have been presented. The modulation and coding 

schemes of the 5th amendment 802.11n adopted in the analysis and simulations of this thesis 

are presented in detail, along with the physical layer architecture and functions (carrier sense 
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function, transmit function, receive function). The adopted modulation technique Orthogonal 

Frequency Division Multiplexing (OFDM) of 802.11n is analyzed, along with the structure of the 

overlapped physical channels and transmitter and receiver block diagrams. In addition, the 

MAC layer basic functions are described to clarify the WiFi systems medium access basic 

technique Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) in addition to the 

network connections and scanning methods, where our proposed algorithms in this thesis are 

essential to facilitate and enhance the quality and performance of the network and channel 

assignment model between the end user (or station) and the WiFi Access Points (APs). 

In Chapter 2, our first algorithm which aims to estimate the WiFi Channels load times 

attenuation during a channel observation time is analyzed. In fact, we have presented the 

overlapped architecture of 802.11n physical channels, where we have analyzed the model of 

observing the three non-overlapped channels, and by those observations we can estimate the 

load times the attenuation of the remaining overlapped channels to have in total the estimated 

value over the twelve channels. Once the attenuation value is normalized, an estimated value 

for the channels load could be measured.  

A five channels observations model has been analyzed as well, where we have noticed 

additional accuracy level. The study has been presented with a normalized attenuation model, 

however it has been analyzed in presence of a normalized white Gaussian noise environment, 

where we have demonstrated that the estimated load is almost equal to the real load of the 

channels with a negligible Mean Squared Error (MSE) value for the obtained results.  

In Chapter 3, LTE system channel allocation according to the available resource blocks on 

the radio interface are described. This resources allocation defines the capacity of the LTE 

radio interface, where we can conclude the throughput value of the subscribers on the Downlink 

(DL) interface. According to this capacity, the throughput by user has been defined, where we 

have selected a top number of users that have the most significant volume of downloaded data 

on the LTE network, to be transferred to the WiFi network, thus freeing the related capacity on 

LTE network for more users and better throughput. The definition of heavy users and users 

transfer schemes are described in detailed in this chapter. 

In Chapter 4, we refer to our first algorithm, to calculate the load of the channels of WiFi 

physical layer with normalized attenuation, to have a global average value per peak hours for 
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a certain number of days. Having this value, we can estimate the occupation of the WiFi 

network and thus estimate the remaining available free capacity that will be able to handle the 

transferred traffic of the heavy users from LTE to WiFi. Knowing the available capacity of WiFi 

network, any extra needed capacity will be reflected by adding more WiFi APs that will be able 

to support the amount of transferred data. This dimensioning of the minimum needed number 

of WiFi APs, represents the new needed WiFi hardware or investment to support LTE, instead 

of adding or investing in the extra needed LTE BSs, that will necessitate definitely extra amount 

of CAPEX and OPEX. 

Chapter 5 describes the profit estimation for the WiFi and LTE coexistence based on the 

previously proposed dimensioning method to pinpoint the benefit of the cooperation. We have 

analyzed the coexistence through the gaming theory where we have two players WiFi and LTE 

willing to cooperate or not based on the resulted profit. The profit is calculated using Shapley 

value, as the difference between the revenue shares and the cost shares and based on two 

different scenarios respectively: if both LTE and WiFi systems are owned by the same operator, 

or if they are owned by two separate operators. The results have shown the benefit of 

cooperation, where definitely they are optimal in case where the same operator owns both 

systems. 

Finally, Chapter 6 concludes the thesis work, to summarize the advantage of the proposed 

algorithms, and elaborate on the future needed extra possibilities and research areas. 
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CHAPTER 1 –  

WiFi Access Medium  

 

    In this chapter the Physical and MAC layers of the WiFi systems are described in addition to 

the basic functionalities and features, in order to pinpoint the channel assignment and channel 

occupation time or channels load measurement in 802.11 physical layer. 

1.1 IEEE 802.11 Standards 

Wireless Local Area Network (WLAN) WiFi is based on IEEE 802.11 standards designed for 

indoor Wireless Local Area Networks for bandwidths of up to 100 MHz, at frequencies of 2.4 

and 5 GHz.  

The most common set of standards encountered in the IEEE 802.11 Wireless LAN till the 

time of writing are basically: 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac and 802.11ax with 

maximum data rate extended from 54 Mbps, 11 Mbps, 54 Mbps, 600 Mbps, 1.3 Gbps and 12 

Gbps respectively. The current highest data rate of WiFi standard is 802.11ac (1.3 Gbps). The 

next generation 802.11ax is in the process of rolling out [4].  Basically, the main physical layer 

standards of 802.11n or 802.11ac are based on Orthogonal Frequency Division Multiplexing 

(OFDM) that will be explained in detail in the next paragraph.  

The Fifth Amendment 802.11n, operating in 2.4 GHz Industrial Scientific and Medical (ISM) 

unlicensed band, is adopted in this thesis algorithms and simulations, where we will be building 

our first proposed algorithm based on the overlapping characteristic of the 802.11n physical 

channels.  

Other basic characteristics of 802.11n are MIMO concepts and channel bonding. Legacy 

WLANs communicate through a single spatial stream and single antenna, whereas MIMO 

enables transmission over two or more spatial streams with multiple transmitters and receivers. 

In addition, 802.11n operates over 20 MHz or 40 MHz channels. Channel bonding can be 

deployed to merge two 20 MHz channels into one that is 40 MHz wide, which will increase the 

data rates (theoretically double).  
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In 20 MHz mode, there are 64 subcarriers, while there are 128 subcarriers in 40 MHz mode. 

The basic MCS used in IEEE 802.11n are Binary Phase Shift Keying (BPSK), Quadrature 

Phase Shift Keying (QPSK), 16-Quadrature Amplitude Modulation (QAM), and 64-QAM, as per 

Table 1.1 [5]. 

 

Table. 1.1 Modulation and Coding Schemes in 802.11n (Data rate in Mbps).

 

We will explain in detail in the next paragraphs the characteristic of the Physical and MAC 

layers of 802.11n standard in order to visualize the overlapping characteristic and the standard 

channels allocation scheme, that will be analyzed in our next proposed algorithm in this thesis. 

 

1.2      WiFi Physical and MAC Layers 

    In order to describe into details, the channels load measurement and the channel assignment 

scheme in 802.11n, we represent in this paragraph the Physical and MAC layer functions 

responsible of the carrier sensing and channels assignment methods.      
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1.2.1 Structure and basic functions 

    The 802.11 wireless networks physical layer is divided into two sublayers: The Physical 

Layer Convergence Procedure (PLCP) sub layer and the Physical Medium Dependent (PMD) 

sublayer, whereas the second Data link layer is the MAC layer as shown in Fig. 1.1. 

 

Fig 1.1 802.11 wireless networks Physical layer logical architecture 

    The PLCP sub layer is the link between the frames of the MAC layer and the radio 

transmissions in the air [6]. Basically, PLCP frames include a preamble to help synchronize 

incoming transmissions. The PMD is responsible for transmitting any bit it receives from the 

PLCP into the air using the antenna. Under the direction of the PLCP, the PMD sublayer 

provides actual transmission and reception of 802.11 frames. To provide this service, the PMD 

interfaces directly with the wireless medium, that is the air, and provides modulation and 

demodulation of the frame transmissions. The PLCP and PMD communicate with each other 

to govern the transmission and reception functions [7].  

    In addition, one of the basic general operations of the 802.11 physical layer is carrier-sensing 

[7]. The physical layer implements a carrier-sense operation by directing the PMD to check 

whether the medium is busy or idle. This involves activating a receiver that receives and 

demodulates radio frequency signals at specific frequencies. The PLCP performs the following 

sensing operations if the station is not transmitting or receiving a frame: 

• Detection of incoming signals: The PLCP within the station senses the medium continually. 

When the medium becomes busy, the PLCP reads in the PLCP preamble and header of the 

frame to attempt synchronization of the receiver to the data rate of the signal. 

• Clear Channel Assessment (CCA): The CCA operation determines whether the wireless 

medium is busy or idle. The PMD measures the energy on the medium that exceeds a specific 

level, which is the energy detection threshold. If the medium is idle, the PLCP will send an “idle” 

OSI Layer 1: Physical 
PLCP

PMD
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notification to the MAC layer. If the medium is busy, the PLCP will send a “busy” notification to 

the MAC layer. The MAC layer can then make a decision whether to send a frame or not. 

    The 802.11 MAC layer interfaces with a specific 802.11 physical (PHY) layer, such as 

802.11n, to perform the tasks of carrier sensing, transmission, and receiving of 802.11 frames 

[7].  The basic function of carrier sensing is the ability of an AP receiver to detect and decode an 

incoming WiFi signal preamble. CCA reports BUSY status when another WiFi signal is detected and 

must be held as BUSY for the length of the received frame as indicated in the frame's PLCP Length 

field. If the medium is busy, the PLCP will send a “busy” notification to the MAC layer. The MAC layer 

can then make the decision in case to send a frame or not [7]. 

    CCA involves two related functions: CCA Carrier Sense (CCA-CS) and CCA Energy 

Detection (CCA-ED). 

CCA-CS: Ability of the receiver to decode and detect a WiFi preamble. From the PLCP header 

field, the time duration for which the medium will be occupied can be inferred and when such 

WiFi preamble is detected the CCA flag is held busy until the end of data transmission. 

CCA-ED: Ability of the receiver to detect non-WiFi energy in the operating channel and back 

off data transmission. The ED threshold is typically defined to be 20 dB above the minimum Rx 

sensitivity of the PHY. If the in-band signal energy crosses this threshold, CCA is held busy 

until the medium energy is below the threshold. 

    To understand the channel assignment scheme, we analyze into details the channel or 

medium access principle. A station wanting to transmit data, senses first the medium, and if 

idle, it can transmit the data depending on additional rules that 802.11 defines. If the medium 

is busy (which indicates that another station is transmitting), the station holds off transmission. 

This protocol is referred to as Carrier-Sense Multiple Access (CSMA) [7]. 

    The main type of medium access used in 802.11n is Distributed Coordination Function (DCF) 

access. The DCF access method is part of the original 802.11 standard and uses a carrier 

sensing access method similar to Ethernet, which provides distributed asynchronous 

(unpredictable) access to the medium [7]. 

    The DCF implements Carrier-Sense Multiple Access with Collision Avoidance CSMA/CA, a 

contention-based protocol to enable stations to decide upon their own when to access the 

https://learning.oreilly.com/library/view/designing-and-deploying/9781587140945/go01.html#gloss01_20
https://learning.oreilly.com/library/view/designing-and-deploying/9781587140945/go01.html#gloss01_20
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medium based on the presence or absence of traffic. The DCF is a mandatory medium access 

protocol that was introduced in the original 802.11 specification.  

    The DCF uses a combination of both physical and virtual carrier-sense mechanisms to 

determine whether the medium is busy or idle. If both physical and virtual mechanisms indicate 

an idle medium, the station can transmit data. If not, the station must wait.  The Physical layer 

provides a physical means of sensing the channel. The result of the physical channel 

assessment from the Physical layer is sent to the MAC layer as part of the information in 

deciding the status of the channel. The MAC layer carries out the virtual carrier-sense protocol 

based on reservation information found in the Duration field of all frames. This information 

announces (to all other stations) a station’s impending use of the medium. The MAC layer 

monitors the Duration field in all MAC frames and places this information in the station’s 

Network Allocation Vector (NAV) if the value is greater than the current NAV value. The NAV 

operates like a timer, starting with a value equal to the Duration field value of the last frame 

transmission sensed on the medium and counting down to zero. 

    As a condition to accessing the medium, the MAC layer checks the value of its NAV. If the 

NAV equals zero and the PHY layer indicates a clear channel (that is, Received Signal Strength 

Indication (RSSI) is below a specific threshold), the station can transmit a frame. Just before 

sending a frame, a station calculates the amount of time necessary to send the frame based 

on the frame’s length and data rate. The station places a value representing this time in the 

Duration field in the header of the frame. This process reserves the medium for the sending 

station because the Duration field causes the MAC layers in other stations to hold off 

transmissions until the sending station finishes sending its frame [7]. 

    An important aspect of the DCF is a random backoff that a station must wait if it detects a 

busy medium. If the channel is in use, the station must wait a random period of time before 

attempting to access the medium. Thus, if the PHY layer indicates that the medium is not clear 

(that is, RSSI threshold is above a specific threshold), the MAC layer implements a backoff 

algorithm, regardless of the status of the NAV. This avoids the probability of collisions among 

stations waiting to transmit.  
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   From the other side, before checking the medium access, stations must first connect to an 

802.11 network prior to sending any data. This process is automatic and involves the following 

actions: Scanning for network (necessary for the station to identify an AP that he can connect 

to), Authenticating with the network (to announce the desire to associate with another station 

or AP, or to ensure that the requesting station is authentic to be connected to the network), and 

Associating with the AP (to synchronize the client station and access point with important 

information, such as beacon interval and supported data rates). Once the client radio completes 

these steps, it can begin sending data frames [7]. 

    During the scanning for the network, the station will use either active or passive scanning 

mode based on the response type from the AP. For IEEE specifications, different 

implementations are allowed; therefore, different characteristics may exist between stations or 

devices. The time of the scanning mode could increase significantly depending on the channels 

load.  

    Currently, in the channel selection principle of WiFi systems, two scanning modes could be 

used to assure a systematic channel assignment as mentioned before: passive and active 

scanning. In the case of passive scanning, the client has to wait to receive a Beacon Frame 

from the AP [8]. A Beacon is transmitted from an AP and contains information about the AP 

along with a timing reference. The device then searches for a network just by listening for 

beacons until it finds a suitable network to join. This procedure is similar for the 11 channels. 

    With active scanning the device tries to locate an AP by transmitting Probe Request Frames, 

and waits for Probe Response from the AP [8]. The probe request frame can be either a 

directed or a broadcast probe request. The probe response frame from the AP is similar to the 

beacon frame. The client station records the signal strength of the beacon frame or probe 

response to make a decision on which AP to associate with. In general, the client station 

chooses the AP that sent the beacon or response having the strongest signal [7]. 

    While active scanning is a faster way to establish the contact, it consumes more battery 

power. In addition, the delay of the probe response from the AP is variable and depends on the 

load of the AP. If the station waits for the Probe Response for a significant period of time, it will 

affect the average of the total scan duration. However, if it waits for a short duration, the 

probability of finding the suitable AP is decreased.  
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802.11n standard defines two timers to assure the optimal control: MinChannelTime and 

MaxChannelTime. If the Probe Response is not received between those two timers, the 

terminal assumes the channel is empty, thus no available AP exists. 

    Each vendor implements scanning differently, but many use both passive and active 

scanning. For example, the client station might initially and periodically thereafter perform a 

passive scan of all radio frequency channels. Between passive scans, the client station may 

perform an active scan if the signal strength of the AP that the client station is connected is 

declining rapidly, such as when the client station is moving away from the AP. 

 

1.2.2 Used Modulation scheme 

    We will describe in this paragraph, the used modulation scheme and the channels 

architecture in order to visualize the 802.11n overlapped physical channels needed in the 

analysis of our first proposed algorithm.   

    OFDM is a combination between multiplexing and modulation [5]. Multiplexing is the 

combination of independent signals that are produced by different sources. Modulation refers 

to mapping the original information into new symbol which has frequency, phase and amplitude. 

Therefore, OFDM can be understood as a method that first split the original data into 

independent channels, modulate the data and re‐multiplex it to create OFDM carriers. OFDM 

is the special case of Frequency Division Multiplex (FDM). In FDM, the data comes in one 

stream and cannot be divided. In OFDM, the information is made up by many smaller streams 

where a large number of overlapping, orthogonal, narrow band sub channels or subcarriers, 

transmitted in parallel, divide the available transmission bandwidth into several orthogonal 

subcarriers, and each subcarrier is modulated with the modulation technique in the same 

bandwidth [5]. 

    The separation of subcarriers is theoretically minimal so that there is a very compact spectral 

utilization. The spacing is basically 15 kHz (i.e. the spacing between the peaks of each sub-

carrier is 15 kHz). However, the phenomenon that hangouts most of the radio access 

technologies is the Inter Symbol Interference (ISI). ISI is caused by multipath propagations. 
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This basically causes the bits to interfere with each other and degrade the received signal. To 

prevent this, a Cyclic Prefix (CP) is added to the symbol which is simply a copy of the tail of the 

same symbol added at the start of the symbol. CP is preferred to Guard Interval (GI) which is 

the separation of the symbols in time domain by a time interval to neutralize the delay spread 

caused by the multipath. With the use of CP, data stream becomes continuous and this 

shortens the receiver filter delay [5]. Below are the multicarrier modulation techniques of FDM 

and OFDM respectively. 

 

Fig 1.2. Conventional FDM multicarrier modulation technique 

 

Fig 1.3. Conventional OFDM multicarrier modulation technique 

    In our study, we have considered in our Matlab simulations, 802.11n in 2.4 GHz band, with 

20 MHz channel bandwidth, with 16 QAM modulation, 64 subcarriers, one spatial stream, and 

different number of symbols varying between 100 to 1000 symbols as signal length. The QAM 

modulation is a digital modulation technique that maps binary information using the gray code 

maps. The output after modulation is a complex signal which can be used to transfer through 

the physical channel.  

    Based on the adopted OFDM configuration in WLAN 802.11n standard in 20 MHz, the 

physical layer is constituted basically of 14 channels spaced with 5 MHz, where the adjacent 

channels are overlapping. In Europe, the first 11 channels remain available, and only three 

channels are non-overlapping in frequency at the same time [10], (e.g. channels 1, 5 and 9) as 

presented in Fig. 1.4: 

Frequency

FrequencySaving of the bandwidth 
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Fig 1.4. 802.11n physical overlapped channels 

    The use of multiple channels often increases the capacity of a wireless network, especially, 

if those channels are orthogonal. However, the challenge lies when we have less available 

orthogonal channels than the number of existing nodes. In practical cases, the overlapped 

channels are not considered usable, and are not selectable on most hardware in order to avoid 

the co-channel interference. Thus, to avoid this interference and maximize the throughput, only 

non-overlapped channels are used. Nevertheless, in this thesis, we are expecting that in 

densely populated networks, and with the constraints of increasing spectrum demand for future 

WiFi and mobile communication technologies such as 5G, the number of available non-

overlapped channels may not be enough, thus devices might have to share both overlapped 

and non-overlapped channels or to check for a new spectrum if it becomes available. For these 

considerations, we are proposing an algorithm that calculates the load of the entire overlapped 

channels and not only the non-overlapped ones in order to ensure a proper channel selection 

during the data session between the end user and the WiFi AP. 

    Under the same concept, the study could be extended to 5 GHz band with 20 MHz channel 

width (or with wider channel width e.g. 40 MHz in channel bonding), constituted basically of 42 

overlapped channels spaced with 5 MHz, with only 24 non-overlapping channels used in 

practical scenarios. Similarly, using the overlapped channels in 5 GHz (such as in 802.11 ac 

or 802.11 ax) could be considered due to the expected dense arrangement of APs, therefore 

overlapping or non-overlapping channels option could be a solution for the future increasing 

demand of the WLAN spectrum. 

Finally, the theoretical Power Spectral Density (PSD) of an OFDM signal is needed to be 

calculated in our first proposed algorithm. We represent here below the formula to calculate 

the theoretical spectrum 𝑆(𝑓) or the PSD of the OFDM signal as given by [11]: 
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𝑆(𝑓) =
𝜎𝑐
2

𝑀𝑇𝑆
∑(𝑠𝑖𝑛𝑐[(𝑓 − 𝑘Δ𝑓)𝑀𝑇𝑆])

2
𝑁−1

𝑘=0

                                             (1.1) 

 

where 𝑠𝑖𝑛𝑐(𝛼)  =  𝑠𝑖𝑛(𝜋𝛼) / (𝜋𝛼) , 𝑀 is the symbol length (or duration in µs), 𝜎𝑐 variance of the 

data symbols 𝐶(𝑘; 𝑙) (complex value) modulated on the kth subcarrier of the lth symbol, 𝑘 

discrete frequency index, 𝑁 is the number of subcarriers, and 𝛥𝑓 the frequency spacing 

between subcarriers. The theoretical Power Spectrum Density (PSD) is shown in Fig. 1.5. To 

assure the OFDM orthogonal relationship between subcarriers, 𝛥𝑓 is set as 𝑊/𝑁 =  1/𝑀, 

where 𝑊 is the total bandwidth of the signal, and 𝑇𝑠 is the sampling interval employed in the 

OFDM transmitter. 

 

Fig. 1.5 Normalized theoretical Power Spectral Density of the 802.11n physical channel 

1.2.3 Physical Layer Block Diagrams 

    In the below paragraph, we explain the needed functions of the 802.11n OFDM transmitter 

and receiver, that is adopted in our Matlab simulation to generate the 802.11n signal. 
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    To build up our 802.11n physical layer simulation, we define a list of frame blocks with the 

appropriate modulation and coding schemes or sub standards (physical modes) as shown in 

Fig. 1.6 that represents the block diagram of an IEEE 802.11n transmitter, with Cyclic Delay 

Diversity (CDD) as space-time frequency (STF) technique that can exploit spatial diversity or 

generate transmit diversity.  

 

Fig. 1.6 Block diagram of an IEEE802.11n transmitter  

 

    Input data is first scrambled using the pseudo-noise scrambler before applying the 

convolutional encoder [5]. After encoding, a parser sends consecutive blocks of bits to different 

spatial streams. The bits are then interleaved by a block interleaver with a block size equal to 

the number of bits in a single OFDM symbol of the nth spatial stream. By interleaving, the bits 

across both spatial streams and subcarriers, the link performance benefits from both spatial 

diversity and frequency diversity. After interleaving, the bits are modulated into QAM symbols. 

Inverse Fast Fourier Transform (IFFT) is then applied to perform OFDM at the end before 

transmitting. 

     Based on the 802.11n draft, we come up in our Matlab simulation in this thesis with the 

design for our wireless system. The system is described in the block diagram for both the 

transmitter and receiver sides as shown in Fig. 1.7. 

 

Fig 1.7. 802.11n Wireless communication system adopted Block Diagram 
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    For the block diagram of Fig. 1.7, first the convolution encoder is a type of error-correction 

method [8] in which each m-bit information input in will be encoded to n-bit information symbol 

at the output. m/n  is the code rate, and the transformation is a function of the k information 

symbol, k is the constraint length of the encoder. Convolution code usually used to improve the 

performance of digital radio. We use the Matlab convolution function to create the Convolution 

Encoder. Then the interleaver is applied to improve the error-correcting code. It will prevent the 

loss of data during the transmitting and receiving process. De-interleaver just rearranges the 

data to get the original signal. The Matlab function for Interleaver strictly follows the 802.11n 

draft to create the result. 

    In addition, 16-QAM modulation is applied. Then Alamouti encoder could be applied based 

on 2x2 MIMO technique as per Fig. 1.7. The concept of 2x2 MIMO is that the Data from the 

16-QAM will be encoded into two separate signals. During the transmitting process, there are 

two notations for channel from transmit antenna to receive antenna. In our simulation, and for 

simplicity of signal processing, we have considered only one spatial stream from transmit to 

receiving signal. 

    Finally, IFFT and FFT are the main fundamental to implement OFDM, IFFT for transmitter 

and FFT for receiver [9] (FFT window size used in our Matlab simulation is 64 equal to the 

number of subcarriers). To implement the OFDM, we use IFFT to arrange data into orthogonal 

signal assuming there is no noise or interference on the channel. 

 

 

 

 

 

 

 

 



  WiFi Integration with LTE towards 5G Networks               
 

33   

 

 

 

CHAPTER 2-  

 

Proposed Algorithm for Load Measurement of the 

WiFi Physical Channels 

 

     In order to reduce the time of an AP and channel discovery, and thus to optimize the values 

of different timers of WiFi systems on MAC and physical layers, we propose in this thesis a 

novel algorithm that estimates the load times the attenuation of each channel based on the 

overlapping characteristic of the WiFi physical layer, and thus ensuring to assign a channel 

based on the minimal load value. This algorithm is based on the overlapping characteristic of 

the physical channels where through some analytical observations of the non-overlapped 

channels, we can estimate the load times the attenuation of all the channels of the physical 

layer. 

2.1 The basis of the estimated Load measurements 

    The channels occupation in WiFi systems is measured through the standard physical carrier 

sense mechanism CCA as described in the previous chapter.  

    However, this procedure, might be affected in congested networks and is centralized on an 

AP level, and depends on the network performance quality.  

    The accuracy of the CCA method depends on the probabilities of correct detection, and false 

alarm [12]. The correct detection probability is that a busy channel will be correctly detected as 

being busy and the false alarm probability is that an idle channel will be incorrectly detected as 

being busy. Those probabilities depend on the signal-to-noise ratio (SNR), and have significant 

impact on MAC performance metrics. As previously described, when the MAC layer has a 

packet to transmit, it requests the PHY layer to perform a CCA. If the CCA indicates an idle 

channel, MAC informs the PHY to start transmitting the packet. If, on the other hand, a the CCA 
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indicates a busy channel, MAC waits for a certain period (called backoff) and requests another 

CCA. If a busy channel had been incorrectly detected by the PHY layer as idle, the subsequent 

transmission will cause a collision, thus destroy the node’s own packet and any others on air. 

Equally, if an idle channel had been detected incorrectly as busy, the node would postpone a 

possible alternative transmission and the channel would subsequently go unutilized [13]. 

    In addition, the effectiveness of a CCA method must also consider the consumed power in 

the process for energy constrained nodes. Collisions caused by missed detection result in 

energy being wasted in unsuccessful transmissions. False alarms that occur will cause MAC 

to backoff needlessly and spend more energy in subsequent CCAs. The CCA mechanisms 

discussed in the previous chapter affect MAC energy efficiency to varying degrees due to their 

different power consumption characteristics and channel performance. While the poor 

performance of ED causes MAC energy efficiency to drop on the one hand, its energy 

consumption causes very little overhead during CCA. Clearly there is a trade-off between 

energy consumption and channel performance in the manner it impacts MAC throughput and 

energy efficiency [12]. 

    For all the above considerations, we propose in our thesis a new algorithm that estimates 

the load times the attenuation of the WiFi 802.11n physical layer channels by analyzing the 

overlapping characteristic of the physical channels. 

    The algorithm is applied on the physical layer of WLAN networks, before establishing any 

connection between the WiFi AP and the user station. 

Through the analysis and observation of a minimum of 3 non-overlapped channels (e.g. 

channels 1, 5 and 9), we can estimate the load times the attenuation of those distinct 3 

channels and thus determine simultaneously this value over the remaining overlapped 

channels of the WiFi physical layer. By this, we can select the channel with the minimum load, 

and reduce the measurement time of channel load estimation.  

    Note that by the channel “load”, we mean the percentage of the channel usage in time (or 

busy time) with respect to the total channel measurement time (total busy and idle time). Having 

the load of each channel facilitates the decision of the user for the channel selection based on 

the minimal load measurement. In our study, we simulate the WiFi 802.11n in 2.4 GHz radio 
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band with 20 MHz channel width, constituted basically of 14 overlapped channels spaced with 

5 MHz.  

    Under the same concept, the study could be extended to 5 GHz band with 20 MHz channel 

width (or with wider channel width e.g. 40 MHz in channel bonding), constituted basically of 42 

overlapped channels spaced with 5MHz, with only 24 non-overlapping channels used in 

practical scenarios. Similarly, using the overlapped channels in 5GHz could be considered due 

to the expected dense arrangement of APs, therefore overlapping or non-overlapping channels 

option could be a solution for the future increasing demand of the WLAN spectrum. 

 

2.2 State of the Art  

    Many research studies were proposed to define the channel selection criteria in wireless 

networks, in order to minimize the AP or channel discovery time, independently from the 

medium QoS or SNR, and from the different timers’ parameters. An optimal scanning 

procedure aims to adjust the values of related timers based on the channel conditions and the 

network characteristics while taking into consideration the user requirements. 

Most of the existing proposals on the AP discovery in IEEE 802.11 networks focus on reducing 

the impact of scanning procedure on other processes, by reducing for example the duration of 

the scanning procedure during the handover, since MSs cannot send and receive data frames 

while they are scanning other channels. Basically, the proposed areas for efficient scanning 

are through limiting the number of channels to probe or to reduce the channel waiting time as 

was described for example in [13].  

    Also, authors in [10] proposed an algorithm that splits the complex power optimization and channel 

assignment problem into two separate solutions: first solution define the problem as pure channel 

assignment case with constant transmission power. Then in the second solution, after the channels are 

assigned based on the first one, they approached to the optimization of transmission power in APs. In 

this way, the power in an AP is increased or decreased in a step by step approach, so that the Signal 

to Interference Noise Ratio (SINR) is maximized and coverage area threshold is maintained for every 

AP. 

    In [14], authors presented a network and an interference models for multiple APs cochannel 

deployment and proposed a channel assignment scenario which transform the channel 

assignment problem into a time slot allocation problem. They proposed a multi AP deployment 
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mechanism, which allows all APs to operate in the same channel and coordinates them to 

obtain the appropriate channel and reduce the system interference. The core idea of the 

algorithm is to maintain a moderate cooperation between APs by a Central Access Controller 

in order to achieve a high channel utilization. They have proposed a basic channel assignment 

by vertex coloring algorithm which can determine the minimum number of time slots; they 

constructed a channel assignment by making extra polls for APs to improve the channel 

utilization; and then they have classified the clients to optimize the polling list of APs and reduce 

empty polls. In addition, since all APs only operate in one channel, they proposed multiple 

vertically nonoverlapping channels that can be used to improve the network capacity in high 

density WLANs.  

    Channel assignment in multi-rate 802.11n WLANs, to maximize the network throughput was 

analyzed in [15]. Authors first presented a network model and an interference model and 

estimated the client throughput based on them. They then formulated the channel assignment 

problem into a throughput optimization problem where they estimated the throughput for each 

client and formulated the problem into an integer linear program. They also proposed a 

distributed channel assignment algorithm that can be formulated into a throughput optimization 

problem. In fact, they analyzed the interference relationship between any two clients from 

different APs to estimate the throughput. This information was essential to the proposed 

channel assignment algorithm. So, they first presented a protocol to obtain the interference 

relationship among clients from neighboring APs, then gave a distributed channel assignment 

algorithm, named as throughput-maximizing channel assignment algorithm, that aims to 

maximize the network throughput. 

    In [16], authors elaborated the IEEE 802.11 discovery process needed for handovers 

between MS and WiFi AP. The scanning process consists in probing actively the radio channels 

to gather APs information and therefore to be able to be connected on the best suitable 

channel. This discovery is performed initially through the scanning process, where a MS sends 

a Probe Request management frame and waits for a Probe Response on each channel. This 

waiting time is managed by two timers in the scanning process: the MinChannelTime (MinCT) 

and the MaxChannelTime (MaxCT). If no Probe Response is received before MinCT expires, 

the MS switches to the next channel and sends a new Probe Request. Otherwise, if at least 
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one Probe Response was received, the MS waits for a longer timer, MaxCT, to receive more 

responses from other APs that operates in the same channel. The 802.11 standard does not 

specify the timer values nor the order in which the channels should be scanned (i.e., the 

channel sequence), even though these parameters impact greatly the scanning performance. 

Therefore, as analyzed in this paper, there is a tradeoff between keeping the latency short to 

minimize the impact on applications, and how many APs the MS is able to discover. In order 

to address this compromise, authors defined the scanning performance according to three 

metrics: the scanning latency which is the elapsed time for scanning the whole set of channels; 

the failure rate which is the probability of not finding any AP after completing the scanning; and 

finally, the discovery rate which is the fraction of discovered APs over the total number of 

available APs. The same problem is addressed in our proposed algorithm in this chapter, which 

is how to define the best suitable AP to be connected to a MS in the channel discovery and 

scanning process. The aim is to propose a scanning algorithm that seeks to discover the 

maximum number of APs in the shortest period of time, independently from the predefined 

values of the MAC and physical layers parameters. However, authors in this paper have 

adopted a probabilistic approach based on the three defined metrics mentioned previously (the 

scanning latency, the failure rate, and the discovery rate), that aims to find the set of scanning 

parameters in the decision space (i.e., the channel sequence and the timers) that minimize the 

scanning latency and the failure rate and maximize the discovery rate. The resolution of this 

problem provides multiple equivalent tradeoff solutions, where one particular configuration can 

be selected by taking into account the application needs that may prioritize one of the 

objectives. 

    In [17], authors have addressed the problem of the best AP selection in WLANs due to the 

same challenge of unplanned and unregulated nature of WiFi networks. Usually in WiFi 

networks, APs which are close to each other often operate on the same channel, especially on 

the frequently used non-overlapping channels, and therefore resulting in poor performance 

when the traffic demand exceeds the channel capacity. In this case, it is better for users to join 

a different network, for instance another AP operating on a different non-saturated channel, or 

a network using a different access technology (e.g., cellular network, wired network).  
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    In their work, authors showed that it is possible for IEEE 802.11 stations to detect a saturated 

channel by monitoring passively the beacon frames. Since APs send periodically beacon 

frames and encode them using the strongest modulation and coding scheme, so that even the 

stations that are far away from the sending APs can decode them correctly. Therefore, when 

sending beacons, APs sense the channel in prior and, if it is busy, delay the sending of frames, 

resulting in unequally spaced beacon frames, whenever other transmitters are active. They 

proposed a method for stations to detect a saturated channel by passive monitoring of beacon 

messages, which are available to all stations as part of the IEEE 802.11 standard procedures.  

    By analyzing their experiments under different traffic loads, they proposed to identify if a 

channel is saturated based on the distribution of the beacon jitter. Since even though APs send 

beacon frames periodically, they have to wait for the channel to be idle, resulting in an 

additional delay that depends on the traffic intensity. They presented empirical results that 

showed that the beacon jitter follows a similar distribution whenever the channel is saturated. 

Therefore, their solution analyzes this by comparing the beacon jitter distribution with a 

reference distribution that corresponds to a saturated channel. This enables stations to 

passively collect information and to determine whether a channel is saturated or not and 

therefore to select the best suitable AP. 

    Furthermore in [18], authors in their work proposed various distributed channel allocation 

algorithms which are based on QoE oriented allocation. They have studied two innovative 

distributed channel assignment algorithms that make use of learning automata to explore the 

QoE measure of associated clients to locally formulate the optimization problem. Between two 

of the proposed algorithms, first one does not require communication with other APs, while the 

second algorithm is based on a communication with neighboring APs. After finding QoE level 

of the clients associated to the serving AP, the algorithms use learning automata mechanism 

to enhance the proposed performance index that maximize both users perceived quality and 

user-level fairness 

    In [19], authors proposed a channel assignment algorithm at the APs in order to maximize 

Signal-to-Interference Ratio (SIR) at the user level. They started with the channel assignment 

at the APs, which is based on minimizing the total interference between APs. Based on this 

initial assignment, they calculated the SIR for each user. They considered assigning channels 
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to APs based on maximizing the SIR at the user level instead of minimizing the interference 

between neighboring APs, which quantitatively leads to increase in network throughput as well 

as the channel reuse factor in some cases. 

    In [20], similarly authors have measured the interference to assure channel selection, 

however based on realistic interference scenarios in WLAN environments. They formulated a 

weighted variant of the graph coloring problem that takes into account realistic channel 

interference observed in wireless environments, as well as the impact of such interference on 

wireless users. They proposed scalable distributed algorithms that achieve better performance 

than existing techniques for channel assignment. 

    In [21], the study proposed a cloud-assisted channel selection method for multi-node 

wireless networks. Periodic channel idle airtime measurements of the APs are accumulated at 

a remote controller that runs various forecasting methods on the aggregated data and finds the 

best fitting method for each AP channel pair. By using the selected forecasting method, for 

every channel and every AP, expected idle airtime in the near future is calculated. Channel 

assignment is carried out by the remote controller, based on the forecasted idle airtime of each 

AP. While performing the channel assignment, the remote controller considers the available 

frequency bands in the network.  

    In addition, other than the scanning procedure and optimal criteria for AP channel selection, 

in the literature there is not much work focused on load estimation in itself. However, there are 

many papers that define load in some way, basically based on CCA measurements, and then 

use this load estimate as an input to their network management subsystems. 

    In [22], authors focused on analyzing the variation in IEEE 802.11k channel load 

measurements for neighbor WLAN systems, that allows stations to assess how occupied or 

idle a frequency channel is. Investigations were based on the variation of the channel load in 

time (i.e. how does the measurement vary in time for static traffic conditions). Also, 

measurements were based on the variation between the channel load values reported by 

different measuring stations, located at varying distances from the AP (i.e. what effect will 

interference from neighboring nodes have on the calculation of the channel load). Using the 

channel load report within their simulations, a measuring station reports the fractional duration 
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over which the CCA indicates that the medium is busy during a measurement period. 

Simulations have shown that there is a significant variation in channel loads reported by the 

same station at different times, which may have important effect on the selection of the channel 

with the minimum load. The variation present in these measurements questions the accuracy 

of a single channel load measurement; hence considerable attention must be taken when using 

and interpreting such measurements. Moreover, in this study, there was not an analytical 

method or algorithm presented to measure the channels load independently from the CCA 

measurements initially present in WLANs between the PHY and MAC layers. 

   In [23], a distributed least congested channel selection algorithm is proposed based 

interference between stations and load information. They analyzed the minimum interfering 

stations, as well as associated stations, by exchanging with neighbor APs, the beacon frame 

of the IEEE 802.11 standard with some additional field of channel load information. Authors 

proposed that the AP can select the least congested channel among all other available 

channels since this channel has the minimum number of interfering stations based on the 

measurements of the beacon and probe frames used in IEEE 802.11 standards with some 

additional fields of channel load information exchanged with neighbor APs. 

    In [24], authors proposed a load balancing algorithm to enhance the WLAN network 

performance. The algorithm dynamically balances the network load by distributing the mobile 

stations among APs, based on their measured load through the channel capacity and SNR 

values. The proposed Load balancing algorithm assesses periodically the parameters of each 

AP and distribute the MSs between the available APs. Whenever a station enters, moves and 

leaves from network, the load balancing server executes this algorithm. After the execution, 

the results provide the information about the number of associated stations with each AP and 

the total load measured in APs. This information is stored and updated in the server database. 

Their proposed load balancing algorithm calculates the load on each AP whenever an 

association or re-association takes place in the WLAN, based on traffic generated parameters 

(ON State time, OFF State time, packet size in bytes, number of stations generating traffic). 

    Other studies, such as [25], [26], [27] are basically parameters adjustments for the WLAN 

channels load measurements and reporting or traffic management based on network 
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parameters. In [25], authors proposed a mechanism for a channel monitoring to effectively 

derive accurate results of channel load. They focused on optimizing the duration of channel 

monitoring and thus minimize the impact on applications. In [26], authors proposed a resource 

allocation algorithm using utility functions for heterogeneous traffic and that considers the 

estimated User Equipment (UE) speed, traffic types and channel quality. In [27], authors 

performed an analysis of load-based routing metrics based on the interface buffer queue 

occupancy and contention window level. However, despite their popularity, authors show that 

metrics based on these parameters were not good bases for load accounting because these 

metrics do not vary with traffic load despite their ability to sense saturated regions. As an 

alternative they proposed the channel load metric that accurately accounts for channel load, 

contention, and interference.  

    In [28], the load criterion was measured by monitoring a limited number of channels at each 

measurement time instead of monitoring all channels. As per other studies and WLAN 

standards, the load measurement in this paper is based on the standard mechanism CCA 

which can measure the fraction of time in which the channel is idle or busy. However, since the 

CCA based load measurement may take significant time since the monitoring station should 

halt its transmission or reception during the duration of the measurement, the proposed 

algorithm utilizes the Gaussian Process Regression technique, used to estimate the 

instantaneous load of each channel by utilizing the previous load measurements. In this 

method, they monitor only a limited number of channels at each measurement time instead of 

monitoring all channels, and then determine the channel with the minimum traffic load without 

measuring all channels. 

To summarize the different aims and methods adopted in the aforementioned studies, we 

represent in Table 2.1 the general summary of the analyzed state of the art. 
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Table 2.1. General summary of the analyzed state of the art 

Reference Aim Adopted Method 

[13] channels scanning  
through limiting the number of channels to 
probe or to reduce the channel waiting time  

[10] channel assignment  

transmission power optimization in APs so that 
the SINR is maximized and coverage area 
threshold is maintained for every AP. 

[14] channel assignment 

through time slot allocation, which allows all APs 
to operate in the same channel and coordinates 
them to obtain the appropriate channel, and 
reduce the system interference 

[15] channel assignment 
the problem was formulated into a throughput 
optimization problem  

[16] channels scanning  

in probing actively, the radio channels to 
optimize APs information: timers duration and 
channels sequence, based on the scanning 
latency, the failure rate, and the discovery rate  

[17] channel assignment 

by detecting a saturated channel through 
monitoring passively the beacon frames, and 
therefore to determine whether a channel is 
saturated or not to select the best suitable AP 

[18] channel assignment 

based on QoE oriented allocation to maximize 
both users perceived quality and user-level 
fairness 

[19] channel assignment 

to maximize SIR at the user level instead of 
minimizing the interference between APs, which 
leads to increase in network throughput as well 
as the channel reuse factor 

[20] channel assignment 

through measuring the interference to assure 
channel selection based on realistic interference 
scenarios in WLAN environments 

[21] channel assignment 
forecasting method: expected idle airtime for 
every channel and every AP is calculated 

[22] channel assignment 

channel allocation based on channel load 
measurement to assess how occupied or idle a 
frequency channel is. This method was based on 
the standard CCA method 
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[23] channel assignment 

based on measuring interference between 
stations and some additional fields of channel 
load information exchanged with neighbor APs 

[24] 
load balancing 
between APs 

by distributing the mobile stations among APs, 
based on their measured load through the 
channel capacity and SNR values according to 
some standard parameters 

[25] channel load 
based on channel monitoring standard 
parameters 

[26] channel assignment 
based on UE speed, traffic types and channel 
quality 

[27] 
load balancing 
between APs 

based on the interface buffer queue occupancy 
and contention window level 

[28] load measurement 

based on the standard CCA mechanism, by 
monitoring a limited number of channels at each 
measurement time instead of monitoring all 
channels  

 

    In this chapter, the same concept of limited number of channels observation is applied in our 

next proposed algorithm in this thesis, however with different load estimation approach than 

the standard CCA based load measurement one.  

    To give an idea of how much time is needed to collect load information of each channel, 

similarly to the approach presented in [28], we consider the 2.4 GHz frequency band where 

there are 12 non-overlapping channels with a bandwidth of 20 MHz. If a channel is monitored 

for a duration of 50 milliseconds (ms) then the total time spent for the monitoring process will 

equal 600 ms (respectively 1150 ms 1.15 seconds for 23 overlapped channels in 5 GHz 

frequency band), which can significantly degrade the performance of the monitoring station in 

terms of both the throughput and delay. If the monitoring station is the AP, then the effect of 

the monitoring becomes more significant. For the aforementioned reason, monitoring only a 

certain number of non-overlapped channels in our proposed algorithm, constructs a predefined 

set of channels to be measured, and only those channels are measured at each measurement 

time, enabling the estimation of the load of the other overlapped channels as it will be explained 

in detail in the next sections. 
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2.3 Channels Observations Model 

    As we mentioned earlier in this study, our proposed algorithm is able to estimate the load 

times the attenuation of the 12 overlapped channels of the IEEE 802.11n operating under 2.4 

GHz, by performing 3 observations only, and this on the non-overlapped channels, i.e channels 

1, 5, and 9.  

    Noting that by observing the channel 1, our algorithm is able to estimate the load times the 

attenuation of channel 1 as well as the load times the attenuation of the adjacent overlapped 

channels, in this case channels 2, 3 and 4. Similarly the observation of channel 5 will lead to 

estimate the load times the attenuation of the overlapped channels 2, 3, 4 and 5, 6, 7, and 8. 

The observation of channel 9 will lead to estimate the load times the attenuation of the 

overlapped channels 6, 7, 8 and 9, 10, 11 and 12. 

    Let us define 𝛤𝑗(𝑓) as the baseband spectrum of the signal observed in channel 𝑗 (𝑗 = 1, 5, 9 

denotes the non-overlapped channels) and 𝑆(𝑓) the theoretical baseband PS of the WiFi signal 

calculated in equation (1.1), which emits in a continuous way. According to CSMA/CA principle, 

APs are not transmitting their data continuously. Let 𝛼𝑖 denotes the load of channel 𝑖 (𝑖 =

 1, … ,12), and  𝜆𝑖(𝑓) is the signal attenuation dependent on the channel frequency due to the 

propagation model of the same channel 𝑖.  

𝛼𝑖 is defined as the percentage usage of channels 𝑖 in time (or busy time) in respect to the total 

channel measurement time as described previously. The observed baseband spectrum of 

channel 𝑗 with respect to all signals transmitted in the overlapped channels 𝑖 is expressed as: 

  

(𝜆𝑖
2(𝑓). 𝛼𝑖). 𝑆(𝑓)                                                  (2.1) 

In the next sections of our algorithm, we assume that the attenuation of channel 𝑖, 𝜆𝑖 is constant 

independently from the frequency in order to facilitate the calculations, however the robustness 

of the algorithm in presence of multipath fading is demonstrated at the end of the simulations 

results section. Also, let 𝑎𝑖 be the value needed to be calculated as per the equation below: 

𝑎𝑖 =  𝜆𝑖
2. 𝛼𝑖                                                         (2.2) 
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We present in the next sections, the 3 observations models that will lead to the estimation of 

the load times the attenuation of the entire 12 channels. 

2.3.1 Channel 1 Observation and Load times the Attenuation Estimation of the related 

overlapped channels 

    To estimate 𝛤𝑗(𝑓), the baseband spectrum of the signal observed in channel 𝑗, we use Welch 

periodogram method [29]:  

    Mathematically, it is defined as the Fourier transform of the autocorrelation sequence of the 

time series. This method outlines the application of the Fast Fourier Transform algorithm to the 

estimation of the power spectra, which involves sectioning the record, taking modified 

periodograms of these sections, and averaging these modified periodograms [29] [30]. 

    Let us now derive the expression of the PS of Channel 1, 𝛤1(𝑓). Channels 1, 2, 3 and 4 

contribute to this PS referring to Fig. 1.4.  

We are therefore able to estimate the channels load times the attenuation values 𝑎1, 𝑎2, 𝑎3, 

and 𝑎4 from this observation. The contribution of channels 2, 3, and 4 in the PS of channel 1 is 

illustrated in Fig. 2.1, taking into consideration that those channels are shifted to the baseband, 

thus duplicated from both sides while saving the same overlapping proportions. 

 

Fig 2.1. Channel 1 Observation Model 
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    The observation of channel 1 reflects the total load times the attenuation of channel 1 in 

addition to a part of the load times the attenuation of its related overlapped channels 2, 3 and 

4, according to the overlapped partitions. 

    For a bandwidth 𝐵 of the channel, the total overlapping bandwidth between two consecutive 

channels is 3(𝐵/4). Based on this sectioning, we divide the theoretical PSD 𝑆(𝑓) into 4 

partitions 𝑆1,  𝑆2, 𝑆3, and 𝑆4  as presented in Fig. 2.2: 

 

Fig 2.2. Signal Sectioning – Theoretical PSD 

                                              𝑆1(𝑓)  =  𝑆(𝑓) 𝑓𝑜𝑟 𝑓 𝜖 [−𝐵/2;− 𝐵/4] and 0 elsewhere 

    𝑆2(𝑓)  =  𝑆(𝑓) 𝑓𝑜𝑟 𝑓 𝜖 [−𝐵/4;  0] and 0 elsewhere                             (2.3) 

                                              𝑆3(𝑓)  =  𝑆(𝑓) 𝑓𝑜𝑟 𝑓 𝜖 [0; 𝐵/4] and 0 elsewhere   

                                              𝑆4(𝑓)  =  𝑆(𝑓) 𝑓𝑜𝑟 𝑓 𝜖 [𝐵/4; 𝐵/2] and 0 elsewhere 

The complete theoretical PSD is denoted by the vector 𝕊 = [𝑆1(𝑓), 𝑆2(𝑓), 𝑆3(𝑓), 𝑆4(𝑓)] of size 

(1x4). 

    Similarly, 𝛤𝑗(𝑓), which is the PS of the observed signal in channel j, is divided into 4 sections 

𝛾1
𝑗
, 𝛾2

𝑗
, 𝛾3

𝑗
, 𝛾4

𝑗
. 
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                                                𝛾1
𝑗(𝑓) =  𝛤𝑗(𝑓) 𝑓𝑜𝑟 𝑓 𝜖 [−𝐵/2;−𝐵/4] and 0 elsewhere 

          𝛾2
𝑗
(𝑓)  =  𝛤𝑗(𝑓) 𝑓𝑜𝑟 𝑓 𝜖 [−𝐵/4; 0] and 0 elsewhere                            (2.4) 

                                                𝛾3
𝑗(𝑓) =  𝛤𝑗(𝑓) 𝑓𝑜𝑟 𝑓 𝜖 [0; 𝐵/4] and 0 elsewhere 

      𝛾4
𝑗
(𝑓)  =  𝛤𝑗(𝑓) 𝑓𝑜𝑟 𝑓 𝜖 [𝐵/4; 𝐵/2] and 0 elsewhere. 

The complete PS is the vector 𝛤𝑗(𝑓) = [𝛾1
𝑗
 (𝑓); 𝛾2

𝑗
 (𝑓); 𝛾3

𝑗
 (𝑓); 𝛾4

𝑗
 (𝑓)] 𝑜𝑓 size (4x1) (j = 1, 5, 9 

in our case). 

    Based on the sectioning described in the previous sections, and based on equations (2.1), 

(2.3), and (2.4), we need to calculate 𝛾1
𝑗
, 𝛾2

𝑗
 , 𝛾3

𝑗
, and 𝛾4

𝑗
 in terms of 𝑆(𝑓) and 𝑎𝑖 (the load times 

the attenuation of channel 𝑖 ) for the 12 channels, and thus during the 3 non-overlapped 

channels observations.  

    In the observation of channel 1 (𝑗 =  1) referring to Fig. 2.1,  𝛾1
1 is constituted of 2 times the 

load of channel 1 corresponding to section 1 (𝑆1), 1 time the load of channel 2 corresponding 

to section 2 (𝑆2), 1 time the load of channel 3 corresponding to section 3 (𝑆3), and 1 time the 

load of channel 4 corresponding to section 4 (𝑆4).  

And therefore, based on the sectioning described previously, and referring to equation (2.2), 

we can have the below system of equations: 

𝛾1
1(𝑓) = 2. 𝑎1. 𝑆1(𝑓) + 𝑎2. 𝑆2(𝑓) + 𝑎3. 𝑆3(𝑓) + 𝑎4. 𝑆4(𝑓)                                (2.5) 

By applying the same concept for 𝛾2
1, 𝛾3

1, and 𝛾4
1, we can write the below system of equations: 

𝛾2
1(𝑓) = 2. 𝑎1. 𝑆2(𝑓) + 𝑎2. (𝑆1(𝑓) + 𝑆3(𝑓)) + 𝑎3. 𝑆4(𝑓) 

𝛾3
1(𝑓) = 2. 𝑎1. 𝑆3(𝑓) + 𝑎2. (𝑆2(𝑓) + 𝑆4(𝑓)) + 𝑎3. 𝑆1(𝑓) 

𝛾4
1(𝑓) = 2. 𝑎1. 𝑆4(𝑓) + 𝑎2. 𝑆3(𝑓) + 𝑎3. 𝑆2(𝑓) + 𝑎4. 𝑆1(𝑓) 

From the above equations, we can write the Power Spectrum (PS) of the observed signal in 

channel 1 as: 



  WiFi Integration with LTE towards 5G Networks               
 

48   

 

Γ1(𝑓) = [

𝕊 0 0 0
0 𝕊 0 0
0 0 𝕊 0
0 0 0 𝕊

] .

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
2 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 1 0 0
2 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
0 1 0 0
2 0 0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. [

𝑎1
𝑎2
𝑎3
𝑎4

]                                                         (2.6) 

 

Now let 𝔹1 be equal to: 

𝔹1 = [

𝕊 0 0 0
0 𝕊 0 0
0 0 𝕊 0
0 0 0 𝕊

] .

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
2 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 1 0 0
2 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
0 1 0 0
2 0 0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,                                                                  (2.7) 

then 

Γ1(𝑓) − 𝔹1. 𝑎
1 = 0                                                                      (2.8) 
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where 𝑎1  =  [𝑎1, 𝑎2, 𝑎3, 𝑎4] denotes the load times the attenuation vector of channels 1, 2, 3 

and 4 in the observation of channel 1. 

    Our aim is to estimate 𝑎1. Since the channel load has a non-negative value, non-negativity 

constraint should be applied on the load estimations instead of simple non-square matrix 

inversion. In this algorithm, the non-negative Least Mean Square (LMS) calculation has been 

applied. It is derived based on a stochastic gradient descent approach [31] combined with a 

fixed-point iteration strategy that ensures convergence toward a solution to estimate vector 𝑎1 

from channel 1.  

We denote by: 

[𝑎̂1
1, 𝑎̂2

1, 𝑎̂3
1, 𝑎̂4

1] 

 

the estimate of the load of channels 1, 2, 3 and 4 obtained from the observation of channel 1. 

It is given by: 

[
 
 
 
 
𝑎̂1
1

𝑎̂2
1

𝑎̂3
1

𝑎̂4
1]
 
 
 
 

= Argmin
𝑎1

(‖Γ1(𝑓) − 𝔹1. 𝑎
1‖)                                                            (2.9) 

By applying (2.9), we are now able to estimate the load of channels 1, 2, 3 and 4 from the 

observation of channel 1. 

2.3.2 Channel 5 Observation and Load times the Attenuation Estimation of the related 

overlapped channels 

    Same observation principle is applied for channel 5 (𝑗 =  5). As described previously, let us 

now derive the expression of the PS 𝛤5(𝑓). Channels 5, 6, 7 and 8 contribute to this PS as well 

as the channels 2, 3, and 4 referring to Fig. 1.4. Therefore, we are able to estimate the channels 

load times the attenuation 𝑎5, 𝑎6, 𝑎7, and 𝑎8 from this observation, as well to confirm in double 

calculation method the value of 𝑎2, 𝑎3, and 𝑎4. The contribution of all those channels in the PS 

of channel 5 is illustrated in Fig. 2.3, taking into consideration that those channels are shifted 
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to the baseband thus duplicated from both sides while saving the same overlapping 

proportions. 

 

Fig 2.3. Channel 5 Observation Model 

For the channel 5 calculations, we proceed similarly as per the observation of channel 1 

method, in order to recover the load times the attenuation 𝑎𝑖  of the related overlapped 

channels. For channel 5 observation, we have the below equations:  

𝛾1
5(𝑓) = 𝑎2. 𝑆4(𝑓) + 𝑎3. 𝑆3(𝑓) + 𝑎4. 𝑆2(𝑓) + 2𝑎5. 𝑆1(𝑓) + 𝑎6. 𝑆2(𝑓) + 𝑎7. 𝑆3(𝑓) + 𝑎8. 𝑆4(𝑓) 

  𝛾2
5(𝑓) = 𝑎3. 𝑆4(𝑓) + 𝑎4. (𝑆1(𝑓) + 𝑆3(𝑓)) + 2 𝑎5. 𝑆2(𝑓) + 𝑎6. (𝑆1(𝑓) + 𝑆3(𝑓)) + 𝑎7. 𝑆4(𝑓) (2.10) 

𝛾3
5(𝑓) = 𝑎3. 𝑆1(𝑓) + 𝑎4. (𝑆4(𝑓) + 𝑆2(𝑓)) + 2 𝑎5. 𝑆3(𝑓) + 𝑎6. (𝑆4(𝑓) + 𝑆2(𝑓)) + 𝑎7. 𝑆1(𝑓) 

𝛾4
5(𝑓) = 𝑎2. 𝑆1(𝑓) + 𝑎3. 𝑆2(𝑓) + 𝑎4. 𝑆3(𝑓) + 2 𝑎5. 𝑆4(𝑓) + 𝑎6. 𝑆3(𝑓) + 𝑎7. 𝑆2(𝑓) + 𝑎8. 𝑆1(𝑓) 

 

From the above equations, we can write the PS of the observed signal in channel 5 as: 
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Γ5(𝑓) = [

𝕊 0 0 0
0 𝕊 0 0
0 0 𝕊 0
0 0 0 𝕊

] .

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 2 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
1 0 0 0 0 0 1
0 0 1 0 1 0 0
0 0 0 2 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
0 1 0 0 0 1 0
0 0 1 0 1 0 0
0 0 0 2 0 0 0
0 0 1 0 1 0 0
1 0 0 0 0 0 1
0 1 0 0 0 1 0
0 0 1 0 1 0 0
0 0 0 2 0 0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.

[
 
 
 
 
 
 
𝑎2
𝑎3
𝑎4
𝑎5
𝑎6
𝑎7
𝑎8]
 
 
 
 
 
 

                                                   (2.11) 

Now let 𝔹5 be equal to: 

𝔹5 = [

𝕊 0 0 0
0 𝕊 0 0
0 0 𝕊 0
0 0 0 𝕊

] .

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 2 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
1 0 0 0 0 0 1
0 0 1 0 1 0 0
0 0 0 2 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
0 1 0 0 0 1 0
0 0 1 0 1 0 0
0 0 0 2 0 0 0
0 0 1 0 1 0 0
1 0 0 0 0 0 1
0 1 0 0 0 1 0
0 0 1 0 1 0 0
0 0 0 2 0 0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,                                                            (2.12) 

then 

Γ5(𝑓) − 𝔹5. 𝑎
5 = 0                                                                      (2.13) 

 

where 𝑎5  =  [𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑎8] denotes the load times the attenuation vector of channels 

2, 3, 4, 5, 6, 7, and 8 in the observation of channel 5. 
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    Our aim is to estimate 𝑎5 using the non-negative Least Mean Square (LMS) calculation as 

described in channel 1 observation calculations.  

We denote by: 

[𝑎̂2 
5 , 𝑎̂3

5, 𝑎̂4
5, 𝑎̂5

5, 𝑎̂6
5, 𝑎̂7

5, 𝑎̂8
5] 

 

the estimate of the load of channels 2, 3, 4, 5, 6, 7, and 8 obtained from the observation of 

channel 5. 

It is given by: 

[
 
 
 
 
 
 
 
𝑎̂2
5

𝑎̂3
5

𝑎̂4
5

𝑎̂5
5

𝑎̂6
5

𝑎̂7
5

𝑎̂8
5]
 
 
 
 
 
 
 

= Argmin
𝑎5

(‖Γ5(𝑓) − 𝔹5. 𝑎
5‖)                                                            (2.14) 

By applying (2.14), we are now able to estimate the load of channels 2, 3, 4, 5, 6, 7, and 8 from 

the observation of channel 5. 

2.3.3 Channel 9 Observation and Load times the Attenuation Estimation of the related 

overlapped channels 

    Same observation principle is applied for channel 9. We derive the expression of the PS 

𝛤9(𝑓). Channels 9, 10, 11 and 12 contribute to this PS as well as the channels 6, 7, and 8 

referring to Fig. 1.4. Therefore, we are able to estimate the channels load times the attenuation 

𝑎9, 𝑎10, 𝑎11, and 𝑎12 from this observation, as well to confirm in double calculation method the 

load 𝑎6, 𝑎7, and 𝑎8. The contribution of all those channels in the PS of channel 9 is illustrated 

in Fig. 2.4, taking into consideration that those channels are shifted to the baseband thus 

duplicated from both sides while saving the same overlapping proportions. 
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Fig 2.4. Channel 9 Observation Model 

For the channel 9 calculations, we proceed similarly as per the observation of channel 1and 5 

methods, in order to recover the load times the attenuation 𝑎𝑖  of the related overlapped 

channels. For channel 9 observation, we have the below equations:  

𝛾1
9(𝑓) = 𝑎6. 𝑆4(𝑓) + 𝑎7. 𝑆3(𝑓) + 𝑎8. 𝑆2(𝑓) + 2𝑎9. 𝑆1(𝑓) + 𝑎10. 𝑆2(𝑓) + 𝑎11. 𝑆3(𝑓) + 𝑎12. 𝑆4(𝑓) 

  𝛾2
9(𝑓) = 𝑎7. 𝑆4(𝑓) + 𝑎8. (𝑆1(𝑓) + 𝑆3(𝑓)) + 2 𝑎9. 𝑆2(𝑓) + 𝑎10. (𝑆1(𝑓) + 𝑆3(𝑓)) + 𝑎11. 𝑆4(𝑓) (2.15) 

𝛾3
9(𝑓) = 𝑎7. 𝑆1(𝑓) + 𝑎8. (𝑆4(𝑓) + 𝑆2(𝑓)) + 2 𝑎9. 𝑆3(𝑓) + 𝑎10. (𝑆4(𝑓) + 𝑆2(𝑓)) + 𝑎11. 𝑆1(𝑓) 

𝛾4
9(𝑓) = 𝑎6. 𝑆1(𝑓) + 𝑎7. 𝑆2(𝑓) + 𝑎8. 𝑆3(𝑓) + 2𝑎9. 𝑆4(𝑓) + 𝑎10. 𝑆3(𝑓) + 𝑎11. 𝑆2(𝑓) + 𝑎12. 𝑆1(𝑓) 

 

From the above equations, we can write the PS of the observed signal in channel 9 as: 
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Γ9(𝑓) = [

𝕊 0 0 0
0 𝕊 0 0
0 0 𝕊 0
0 0 0 𝕊

] .

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 2 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
1 0 0 0 0 0 1
0 0 1 0 1 0 0
0 0 0 2 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
0 1 0 0 0 1 0
0 0 1 0 1 0 0
0 0 0 2 0 0 0
0 0 1 0 1 0 0
1 0 0 0 0 0 1
0 1 0 0 0 1 0
0 0 1 0 1 0 0
0 0 0 2 0 0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.

[
 
 
 
 
 
 
𝑎6
𝑎7
𝑎8
𝑎9
𝑎10
𝑎11
𝑎12]

 
 
 
 
 
 

                                                   (2.16) 

 

Now let 𝔹9 be equal to: 

𝔹9 = [

𝕊 0 0 0
0 𝕊 0 0
0 0 𝕊 0
0 0 0 𝕊

] .

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 2 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
1 0 0 0 0 0 1
0 0 1 0 1 0 0
0 0 0 2 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
0 1 0 0 0 1 0
0 0 1 0 1 0 0
0 0 0 2 0 0 0
0 0 1 0 1 0 0
1 0 0 0 0 0 1
0 1 0 0 0 1 0
0 0 1 0 1 0 0
0 0 0 2 0 0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,                                                            (2.17) 

then 

Γ9(𝑓) − 𝔹9. 𝑎
9 = 0                                                                      (2.18) 

where 𝑎9  = [𝑎6, 𝑎7, 𝑎8, 𝑎9, 𝑎10, 𝑎11, 𝑎12] denotes the load times the attenuation vector of 

channels 6, 7, 8, 9, 10, 11, and 12 in the observation of channel 9. 
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    Our aim is to estimate 𝑎9 using the non-negative Least Mean Square (LMS) calculation as 

described in channel 1 and 5 calculations.  

We denote by: 

[𝑎̂6 
9 , 𝑎̂7

9, 𝑎̂8
9, 𝑎̂9

9, 𝑎̂10
9 , 𝑎̂11

9 , 𝑎̂12
9 ] 

the estimate of the load of channels 6, 7, 8, 9, 10, 11, and 12 obtained from the observation of 

channel 9. It is given by: 

[
 
 
 
 
 
 
 
𝑎̂6
9

𝑎̂7
9

𝑎̂8
9

𝑎̂9
9

𝑎̂10
9

𝑎̂11
9

𝑎̂12
9 ]
 
 
 
 
 
 
 

= Argmin
𝑎9

(‖Γ9(𝑓) − 𝔹9. 𝑎
9‖)                                                            (2.19) 

By applying (2.19), we are now able to estimate the load of channels 6, 7, 8, 9, 10, 11, and 12 

from the observation of channel 9. 

    From all the above equations, as already declared, we are able to estimate the load times 

the attenuation of the entire physical layer channels of 802.11n, by applying only 3 observations 

methods on the non-overlapped channels (1, 5, 9). 

2.4 Estimated Load times Attenuation in respect to different Observations 

    In the section 2.3, we have defined the matrices to estimate the load times the attenuation 

value  𝑎̂𝑖
𝑗
 for the overlapped channels 𝑖 (𝑖 =  1, … ,12)  from the different observations of the 3 

non-overlapped ones (𝑗 =  1, 5, 9). Since as noticed, the estimated load times the attenuation 

value 𝑎̂𝑖 of each channel can be calculated simultaneously from the observation of at least one 

or more adjacent non-overlapped channels, we propose the below equation to estimate 𝑎̂𝑖: 

𝑎̂𝑖 = ∑
jϵ{1,5,9}

𝛽𝑖
𝑗
  𝑎̂𝑖

𝑗
                                                    (2.20) 

where 𝛽𝑖
𝑗
 is a coefficient defined according to two proposed methods: 
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- The Direct calculations method: from one channel observation only, we estimate the 

value 𝑎̂𝑖 of the channels that overlap directly with it. We define, for the observation of 

the 3 non-overlapped channels 1, 5 and 9 respectively, the values of 𝛽𝑖
𝑗
 as following:     

𝑎̂𝑖 = 𝑎̂𝑖
1        𝑓𝑜𝑟 𝑖 = 1, 2, 3 𝑎𝑛𝑑 4                                        (2.21) 

𝑎̂𝑖 = 𝑎̂𝑖
5        𝑓𝑜𝑟 𝑖 = 5, 6, 7 𝑎𝑛𝑑 8 

𝑎̂𝑖 = 𝑎̂𝑖
9        𝑓𝑜𝑟 𝑖 = 9, 10, 11 𝑎𝑛𝑑 12 

- The Averaged calculations method: each estimated channel load times attenuation 

value 𝑎̂𝑖 is estimated from the observation of at least 2 channels that overlap with it, 

referring to equation (2.20) and for more than one channel simultaneous observations. 

In this case, 𝛽𝑖
𝑗
  is the proportion intersection value of the channel 𝑖 in the channel 𝑗, 

therefore we can conclude the below values of 𝛽𝑖
𝑗
: 

  𝑖𝑓 𝑖 = 𝑗,                     𝛽𝑖
𝑗
= 1 

  𝑖𝑓 |𝑖 − 𝑗| > 3,           𝛽𝑖
𝑗
= 0 

𝑖𝑓 |𝑖 − 𝑗| = 3,            𝛽𝑖
𝑗
=
1

4
 

 𝑖𝑓 |𝑖 − 𝑗| = 2,             𝛽𝑖
𝑗
=
1

2
 

 𝑖𝑓 |𝑖 − 𝑗| = 1,            𝛽𝑖
𝑗
=
3

4
 

 

For example, the load of channel 1 is estimated from the observation of channel 1, the loads 

of channels 2, 3 and 4 are estimated from the observations of both channels 1 and 5 as per 

the following equations: 
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𝛼1
1 = 𝛼1

1 

𝛼2
1,5 = (

3

4
. 𝛼2

1) + (
1

4
. 𝛼2

5) 

𝛼3
1,5 = (

1

2
. 𝛼3

1) + (
1

2
. 𝛼3

5) 

𝛼4
1,5 = (

1

4
. 𝛼4

1) + (
3

4
. 𝛼4

5) 

    Similarly, the load of channel 5 is estimated from the observation of channel 5, the load of 

channels 6, 7, and 8 are estimated from the observations of channels 5 and 9, and finally the 

loads of channels 9, 10, 11, and 12 are estimated from the observation of channel 9. 

    The performance of the proposed Direct and Averaged calculations methods is presented in 

the simulations results where we have applied the load calculation based on an averaged 

method between simultaneous two channels observation, to note that additional channels 

observations (more than 3) could be applied as previously stated. 

 

2.5 Simulations Results  

    Simulations were conducted on Matlab to generate the physical signal of 802.11n based on 

OFDM technique, according to WiFi 802.11n specific parameters shown in Table 2.2. 

Table. 2.2 Used 802.11n parameters in the channel load estimation algorithm. 

Parameter Value 

Bandwidth 20 MHz 

The frequency spacing 

between subcarriers 

312.5Khz 

Sampling interval employed in 

the OFDM transmitter Ts 

0.05 µs 
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Symbol length 3.2 µs 

Number of subcarriers 64 

FFT Window 64 

Modulation 16 QAM 

Total number of samples per 

OFDM symbol 

1024 

Number of samples zero-

padded after 16 QAM 

2048 

Number of symbols 200 

 

    The length of the input signal used in our simulations is equivalent to the duration of 200 

OFDM symbols in time (or 200 times the symbol duration ts = 3.2 µs), where the channel load 

is expressed by non-zero symbols value equivalent to the time occupation of the signal (or 

busy time), and with null symbols value when the channel is empty (or idle time). The channels 

load predefined on the twelve channels is expressed as the percentage of the channel 

occupation time between 0% and 100% (or 0 and 1) assumed as following: 20%, 50%, 0%, 

40%, 90%, 0%, 60%, 70%, 80%, 40%, 0%, 90%. 

    In addition, to simplify the presentation of the algorithm, we consider in the simulation results, 

that the attenuation 𝜆𝑖 = 1 ∀ i, ∀ 𝑓; therefore, we represent the calculated load 𝛼𝑖 only. 

However, the robustness of the proposed algorithm in the presence of a multipath fading 

channel (i.e. 𝜆𝑖  ≠ 1) is analyzed and presented in section (2.5.5) at the end of the simulations 

section to highlight the accuracy of the algorithm in practical conditions. 

2.5.1 Load Estimation in an Ideal Channel 

    As explained previously, since the physical channels overlap with only 3 distinct channels, 

an observation of those 3 distinct channels entails to measure the load of the 12 channels. 
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Therefore, we start first by observing channels 1, 5, and 9. By applying our algorithm presented 

in the previous section with the assumption that the signal is in ideal channel with 𝜆𝑖 = 1 ∀ i, 

∀ 𝑓; , the load of channels 1, 2, 3, and 4 are estimated from the observation of channel 1, the 

load of channels 5, 6, 7 and 8 are estimated from the observation of channel 5, and the load of 

channels 9, 10, 11 and 12 are estimated from the observation of channel 9. 

As shown in Fig. 2.5, the estimated load is nearly the same comparing to the predefined load. 

 

Fig 2.5. Estimated Load versus the real load with 3 channels observation 

 

    To check the effect of several additional channels observations, we have applied our 

algorithm on channels 1, 5, 6, 9, and 12 (optionally 5 channels observation in this case). The 

loads of channels 1, 2, 3, and 4 are estimated from the observation of channel 1, the load of 

channel 5 is estimated from the observation of channel 5, the loads of channels 6, 7 and 8 are 

estimated from the observation of channel 6, the load of channel 9 is estimated from the 

observation of channel 9 and the loads of channels 10, 11 and 12 are estimated from the 

observation of channel 12.  

    A comparison between the 3 channels observation and the 5 channels observation is done, 

and the results in terms of the value of the Mean Squared Error (MSE), averaged through 

several repetitive random simulations, is shown in Fig. 2.6 for the two averaged and direct 
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calculations methods, with a fixed signal length of 100 symbols and SNR of 10 dB. As we can 

see, the MSE decreases with 5 channels observations; thus we can conclude that with 

additional number of channels observation, the algorithm accuracy level is increased. 

 

Fig 2.6. Averaged MSE of the estimated load versus the real load values  

 In addition, we can observe that the averaged calculations method did not bring additional 

improvement in the MSE values compared to the direct calculations method, thus additional 

coefficients finetuning could be considered to investigate other calculations that might be 

subject to further studies. 

Finally, we should note that the values of MSE are averaged for several repetitive simulations 

results in order to have a general average value, however a difference in the values may appear 

randomly in some channels than the others in each simulation based on the initial considered 

values of the load. 

2.5.2 Load Estimation in presence of a White Gaussian Noise 

    We assume now that the channel is affected by a White Gaussian Noise. In order to analyze 

the noise effect on the accuracy of our algorithm, same observations are used to reflect the 

estimated load versus the real one. The averaged MSE value is represented in respect to SNR 

in Fig. 2.7, with a fixed signal length of 100 OFDM symbols. We can notice that the precision 

of the algorithm is affected by a high noise level; however an acceptable error margin can still 

exist with a SNR around 3 dB. 
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Fig 2.7. Averaged MSE of the estimated load versus SNR 

2.5.3 Load Estimation with higher Symbol Length 

    We have analyzed the effect of signal length (i.e. the number of OFDM symbols) at the input 

in an Ideal free channel. Different realizations have been performed in order to reflect the 

averaged MSE with increased number of OFDM symbols duration 100*ts (the symbol duration 

(ts) = 3.2 μs), 200*ts, 300*ts, 400*ts and 1000*ts as can be shown in Fig. 2.8 with a SNR = 10 

dB. As we can notice, the averaged MSE value decreases with the highest number of OFDM 

symbols, since the precision of the estimated load increases for a higher message length where 

the observations results are more accurate. 

 

Fig 2.8. Averaged MSE of the estimated load versus Signal Length  
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2.5.4 Load Estimation in presence of a Multipath Fading 

    Following the assumption that the attenuation is not affecting our calculations (𝜆𝑖 =

1; ∀𝑖;  ∀𝑓), non-perfect conditions are assumed in this subsection in the presence of a multipath 

fading channels.   

In multipath fading, the radio signal propagates from the transmitter to the receiver via different 

multiple paths due to the obstacles and reflectors existing in the wireless channel. These 

multipaths are caused by mechanisms of reflection, diffraction, and scattering.  

When the user is significantly far from the base station, the LOS signal path does not exist, and 

reception happens mainly from the indirect signal paths. These multiple paths have different 

propagation lengths and will cause amplitude and phase fluctuations and time delay in the 

received signal. Thus, the main effect of multipath propagation can be described in terms of 

fading and delay spread.  

Small scale fading is also called Rayleigh fading because if the multiple reflective paths are 

large in number and there is no line-of-sight signal component, the envelope of the received 

signal is statistically described by Rayleigh distribution. When there is a dominant non-fading 

signal component present, such as a line-of-sight propagation path, the small-scale fading 

envelope is described by Rician distribution and, thus, is referred to as Rician fading. 

In our simulation the channel under consideration can be modeled as a multipath fading 

channel in which the impulse response may follow distributions like Rayleigh distribution (in 

which there is no Line of Sight (LOS) ray between transmitter and receiver). 

The Rayleigh distribution follow the below Probability Density Function (PDF): 

𝑓(𝑥; 𝜎) =
𝑥

𝜎2
 . 𝑒−𝑥

2/(2𝜎2)                                            (2.22) 
 

where 𝑥, 𝜎 >  0, 𝜎 is the scale parameter of the distribution. 

 

Let the Rayleigh channel be the vector 𝐻 = [ℎ0, ℎ1, … , ℎ𝐾−1]  and the transmitted signal 𝑆, then 

the received signal 𝑅 is as per the equation below: 

𝑅 =  𝐻 ⊗ 𝑆                        (2.23) 

where the symbol ⊗ represents the discrete convolution operator.  

Each tap ℎ𝑘 of 𝐻 would be generated as Rayleigh random variable with scale parameter 𝜎𝑘.  

The mean value 𝐸(𝑋) of Rayleigh random variable 𝑋 is as following: 

𝐸(𝑋) =  𝜎 ∗  √
𝜋

2
       (2.24) 
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For the kth Rayleigh coefficient ℎ𝑘 of the impulse response we define 𝐸(ℎ𝑘) as the mean value 

of ℎ𝑘 following a multipath decreasing exponential power profile, thus: 

𝐸(ℎ𝑘) =  𝑒
−kλ      (2.25) 

With λ is a constant value predefined for each simulation. 

To generate the different multipath taps ℎ𝑘, we calculate the Rayleigh scale parameter referring 
to equation (2.24) as per the below: 

𝜎𝑘 = 
𝐸(ℎ𝑘)

√
𝜋

2

 =  
𝑒−kλ

√
𝜋

2

      (2.26) 

 

We normalize the vector 𝐻 to have ||𝐻||2 = 1, to reflect the effective PSD and thus calculate 
the channels load as previously explained in the first algorithm of this thesis.  

As we can observe in Fig. 2.9, the accuracy margin has been decreased in respect to the Ideal 

channel conditions, however our algorithm is still reliable for the different 12 WiFi channels with 

10 channel taps and a decreasing exponential power profile for the taps of the channel equal 

to 1, despite certain attenuation factors. 

 

Fig 2.9. Estimated load versus the real load values in presence of a multipath fading channel 

By varying λ parameter of the decreasing exponential power profile for the taps of the channel 

in ascending order within the multipath fading model, the Mean Squared Error (MSE), between 

the real load value and the estimated one, is decreased as shown in figure 2.10:  
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Fig 2.10. Averaged MSE of the estimated load versus the real load values in presence of a multipath fading 

channel for different scale parameters 

In addition, by varying the number of multipath channel taps between 5, 10, 15, 20 and 30 taps, 

and with λ = 1, we can notice as shown in figure 2.11, that the MSE value is almost the same 

for all channels taps. 

 

 

Fig 2.11. Averaged MSE of the estimated load versus the real load values in presence of a multipath fading 

channel for different number of Taps 

Finally, the difference between the averaged MSE with multipath fading channel with 10 taps 

and with λ = 1, and with an Ideal channel are represented in figure 2.12, with the same signal 

length of 100 OFDM symbols, without Gaussian noise, where the simulations results have 

been averaged for 10 realizations.  
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Fig 2.12. Averaged MSE of the estimated load versus the real load values in presence of a multipath fading 

channel and in an Ideal channel 

As it can be noticed, the MSE value in case of multipath fading is higher than the MSE in an 

Ideal channel. 

 

2.6 Attempt to estimate Channels Load in presence of Rayleigh 

attenuation model 

    In this section, we tried to estimate the load of the WiFi 802.11n overlapped channels in 

presence of a Rayleigh fading model, without considering the attenuation equal to 1 or 

normalized as per the previous simulation sections.  

However, our attempt did not reach a successful result since we get an infinite number of 

possible solutions of attenuation values. Despite this non-finite result, we will represent here 

below our approach in details, just for the reference of future related investigations, aiming to 

calculate the load and the attenuation separately. 

    As per most real cases, the Rayleigh fading model is normally viewed as a suitable approach 

to take when analyzing and predicting radio wave propagation performance for areas such as 

wireless communications in urban environment where there are many reflections and 

refractions from buildings, obstacles etc...  
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    Thus accordingly, we have tried in this section to formulate a system of equations from the 

well-known value 𝑎𝑖 , where  𝑎𝑖 =  𝜆𝑖
2. 𝛼𝑖 calculated in the previous section of this chapter 

(Referring to equation (2.1) and (2.2)).  

 
2.6.1 Attenuation System Model 

    As mentioned previously, we consider that the attenuation is the general Rayleigh multipath 

fading channel model. The Rayleigh fading model uses a statistical approach to analyze the 

propagation and can be used in a number of environments. In probability theory and statistics, 

a Rayleigh random variable x follows the Probability Density Function (PDF) presented below 

[32]: 

 

𝑓(𝑥; 𝜎′) =
𝑥

𝜎′2
 . 𝑒−𝑥

2/(2𝜎′2)                                            (2.22) 
 

where 𝑥, 𝜎’ >  0, 𝜎’ is the scale parameter of the distribution. 

 

    Based on our previous sections, referring to (2.1), we have calculated the load times the 

attenuation factors (𝛼𝑖 . 𝜆𝑖
2) of the WiFi physical channels where the attenuation was 

normalized. However, since in this section 𝜆𝑖 is a Rayleigh random variable, thus the squared 

Rayleigh variable is an exponential random variable that follows the below PDF function [33]: 

 

𝑓(𝑋; 𝜎) = 𝜎. 𝑒−𝜎𝑥                                                                         (2.23) 

 

where 𝑥, 𝜎 >  0, 𝜎 is the scale parameter of the distribution. 

 

 
2.6.2 Proposed Algorithm 

    We consider one user measuring the load times the attenuation of the 12 channels 𝑖, through 

𝐾 MIMO antennas systems, having 𝐾 different random paths, thus having 𝐾 different random 

attenuations 𝜆𝑖,𝑘. 
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    We can conclude that this user who is observing and estimating 𝑎𝑖 = (𝛼𝑖 . 𝜆𝑖
2) of one channel 

𝑖, can initiate 𝐾 different values of this measurement 𝑎𝑖,𝑘, with different 𝐾 attenuation 𝜆𝑖,𝑘
2  but 

with the same load 𝛼𝑖 .  

 

    As previously mentioned, we consider that the attenuation 𝜆𝑖,𝑘 is a Rayleigh random variable 

that can be used to describe the form of fading that occurs when Rayleigh multipath 

propagation exists, thus  𝜆𝑖,𝑘
2  is an exponential distribution variable with different rate 

parameters 𝜎k for the different 𝐾 paths. Therefore, the known variable 𝑎𝑖,𝑘 is also an 

exponential random variable, since it is the product of a constant real value 𝛼𝑖  times an 

exponential random variable, with different rate parameter 𝜎𝑎,k for the different 𝐾 paths. 

    While calculating the load and attenuation of any random channel from the 12 overlapped 

ones assigned to one AP, and based on the previous explained algorithm in (2.1), we have the 

below equation: 

 

𝑎𝑖,𝑘  =  (𝛼𝑖 . 𝜆𝑖,𝑘
2 )                                                   (2.24) 

 
𝑘 =  1, … , 𝐾 number of MIMO antennas (𝐾 ≥  2); 𝛼𝑖 is the load of the random channel 𝑖 to be 

calculated; 𝜆𝑖,𝑘
2  is the attenuation value following the PDF of an exponential random variable 

(with rate parameter 𝜎𝑘) to be calculated; and 𝑎𝑖,𝑘 is the known random exponential variable 

(with rate parameter 𝜎𝑎,𝑘), calculated in the previous sections. 

    We consider the minimum number of MIMO antennas, 𝐾 =  2, so we have a system with 

minimum 2 equations with 3 unknown variables to calculate (𝛼𝑖 , 𝜆𝑖,1, 𝜆𝑖,2), and measuring the 

load of the same AP channel 𝑖 via 2 different paths: 

 

𝛼𝑖 .  𝜆𝑖,1
2 = 𝑎𝑖,1                                                        (2.25) 

𝛼𝑖 .  𝜆𝑖,2
2 = 𝑎𝑖,2                                                        (2.26) 

with 𝜎1, 𝜎2, 𝜎a,1, 𝜎a,2 the rate parameters of 𝜆𝑖,1
2  , 𝜆𝑖,2

2  , 𝑎𝑖,1,𝑎𝑖,2 respectively as previously 

described. 

The variance of an exponential random variable 𝑥 with rate parameter σ is: 
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𝑉𝑎𝑟(𝑥) =
1

𝜎2
                                                       (2.27) 

 

Thus from (2.24), (2.25), and (2.26) we can conclude the following: 

𝛼𝑖
2.

1

𝜎1
2 = 

1

𝜎𝑎,1
2                                                        (2.28) 

𝛼𝑖
2.

1

𝜎2
2 = 

1

𝜎𝑎,2
2                                                                      (2.29) 

Thus 

𝜎1 = 𝛼𝑖 .  𝜎a,1                                                      (2.30) 

𝜎2 = 𝛼𝑖 .  𝜎a,2                                                      (2.31) 

    To calculate 𝜎a,1 and 𝜎a,2 knowing that the values of 𝑎1 and 𝑎2 are known for 𝑘 = 2 antennas 

as calculated in previous section, we have 2 exponential PDF functions with 𝜎a,1  and 𝜎a,2 

unknown, that we can calculate by the Maximum Likelihood Estimation (MLE) based on the 

rate parameter value that maximize the likelihood of the PDF functions according to the 

following equations, where we can calculate 𝜎a,1 and 𝜎a,2 respectively: 

 
𝑀𝐿𝐸𝜎a,1 = 𝐴𝑟𝑔𝑚𝑎𝑥𝜎a,1(𝜎a,1 . 𝑒

−𝜎a,1𝑎1)                                    (2.32) 

 
 

𝑀𝐿𝐸𝜎a,2 = 𝐴𝑟𝑔𝑚𝑎𝑥𝜎a,2(𝜎a,2 . 𝑒
−𝜎a,2𝑎2)                                      (2.33) 

 

    Equations (2.32) and (2.33) are resolved using Matlab by applying the derivative of the 

acquired function in order to get the desired maximum of 𝜎a,1 and similarly 𝜎a,2 . 

 

    Thus, we still need to calculate 𝜎1 and 𝜎2 of the exponential attenuation variables to calculate 

the desired load α. In order to have a system of equations of  𝜎1 and 𝜎2, we propose to do the 

ratio of both equations (2.25) and (2.26) of 𝑘 = 2 MIMO antennas, where we get the following: 
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𝜆𝑖,1
2

𝜆𝑖,2
2 = 

𝑎𝑖,1

𝑎𝑖,2
= 𝑌𝑖                                                    (2.34) 

 
noting that 𝑌𝑖 is a known random variable (since 𝑎𝑖,1 and 𝑎𝑖,2  are known), representing the ratio 

of two random exponential variables, with rate parameters 𝜎1 and 𝜎2 that are needed to be 

calculated. 

According to [34], the PDF of the ratio of two exponential variables is as per the below: 

 

𝑓(𝑌𝑖) =
𝜎1  .𝜎2 

(𝜎1 .𝑌𝑖+ 𝜎2 )
2                                             (2.35) 

 
    As per the MLE method applied before, but in this case with 2 dimensions, we need to get 

the values of 𝜎1 and 𝜎2 that maximize the likelihood of the PDF function of the ratio of two 

exponential variables as per the following: 

 

𝑀𝐿𝐸𝜎1,𝜎2 = 𝐴𝑟𝑔𝑚𝑎𝑥𝜎1,𝜎2(
𝜎1  .𝜎2 

(𝜎1 .𝑌𝑖+ 𝜎2 )
2)                                            (2.36) 

 
Since 

𝑚𝑎𝑥 [𝑓(𝑥)]  =  𝑚𝑖𝑛 [−𝑓(𝑥)]  
 
to solve the complex equation (2.35), we adopt the gradient descent algorithm with two 

dimensions to have the values of 𝜎1 and 𝜎2 by minimizing the negative value of (2.36), and with 

the below constraint referring to (2.30) and (2.31), 

 

𝜎1 = 
𝜎a1

𝜎a2
 .  𝜎2                                                      (2.37) 

 

    In this method, we are minimizing the function [−𝑀𝐿𝐸𝜎1,𝜎2] to get the desired 𝜎1 and 𝜎2 that 

maximize [𝑀𝐿𝐸𝜎1,𝜎2]  value. 

In order to avoid the local minimums, and calculate the global minimum value, a dynamic 

learning rate 𝜇 is applied as per the study in [35], and according to the error function 𝐽 between 

previous and current values of the function that we are minimizing as per the below conditions: 

 
𝜇 =  𝜇 + 0.1𝜇 , 𝑖𝑓 𝐽(𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠) > 𝐽(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) 
𝜇 =  𝜇 − 0.5𝜇, 𝑖𝑓 𝐽(𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠) < 𝐽(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) 

𝜇 =  𝜇, 𝑖𝑓 𝐽(𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠) = 𝐽(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) 
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        By applying the above described method to calculate 𝜎1 and 𝜎2 using Matlab, we didn’t 

reach a local maximum value for equation (2.36), since we had noticed that for different step 

values of the gradient descent method, we are getting different maximum values of the MLE.  

By applying the plot of the solution to extract the maximum values, global maxima were found 

at straight line 𝜎2 = 2𝜎1  as per Fig. 2.13.  

We have introduced the constraint 𝜎1 = 
𝜎a1

𝜎a2
 .  𝜎2 of (2.37), in order to define the intersection 

between the line of straight line of the global maxima, however the two lines do not intersect 

(unless at null value) as per Fig 2.14, therefore we cannot calculate a unique value for 𝜎1 and 

𝜎2: 

 

Fig 2.13. MLE of 𝜎2 in respect to 𝜎1 in 3D plot with Maxima Values in red line 
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Fig 2.14. Maxima and Constraint lines of 𝜎2 in respect to 𝜎1 

2.7     Conclusion and potential Use Cases 

    Our proposed algorithm is able to estimate the load times the attenuation of the 12 

overlapped channels of the WiFi 802.11n, based on only 3 observations of non-overlapping 

channels (1,5 and 9 in our simulation). The accuracy of the algorithm has been measured by 

the MSE of multiple realizations, in Ideal channel and in white Gaussian noisy channel. We 

evaluated our work and can conclude a high accuracy level and flexibility in estimating the load 

of the physical channels with normalized attenuation, thus facilitating the channel assignment 

based on the minimal load, providing better QoE for the end user and minimized load 

measurement and channel selection time. Following the same principle, the analysis of 5 GHz 

spectrum and 802.11ac could be applied, including the channel bonding feature. However, 

more work should be carried out to estimate the attenuation level which was normalized during 

our study.  

    From the analysis of our simulated results, we can notice that in a high level of noise, the 

number of channels observation and message length could be increased (more than 3 

channels observation and 500 ts respectively) in order to maintain the same accuracy level of 

the algorithm as per the Ideal channel environment. In addition the proposed averaged 

calculation method through two simultaneous channels observation is also recommended in 

𝜎1

𝜎2
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order to minimize the MSE value and increase the precision level of the estimated load in noisy 

environment. 

    Furthermore, as described previously, when the user is trying to connect to a suitable AP, 

interrogation requests are performed in order to detect the available one. Different values of 

the timers could be set to assure an optimal waiting time for the response of the AP before the 

connection. Following the application of our algorithm, and where the user terminal is waiting 

between two timers values to be connected, the measurement of the load by the user terminal 

could facilitate the selection and thus optimize both the values of the timers, and the battery 

consumption when compared to long timers duration with no response in congested networks.  

    Finally, we should note that currently in practical use the overlapped channels analyzed in 

this study, are not considered usable and typically are not selectable in order to avoid co-

channel interference. However, in densely populated networks, and with the future increasing 

traffic demand, overlapped channels might be needed to resolve the increasing available 

spectrum demand in Het-Nets towards 5G, where further algorithms and procedures should be 

analyzed to minimize the anticipated interference. 
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CHAPTER 3 –  

LTE Capacity Management and Resources 

Allocation 

 

    In this chapter the physical layer of LTE network in addition to the resources’ distribution are 

described. Resource allocation along with the modulation technique on the physical interface 

are described. In addition, we propose how we define the LTE heaviest users that have the 

highest amount of throughput in terms of Mbps, in order to select the criteria of LTE users 

offload to WiFi network that will be described in detail in Chapter 4. 

 

    Before the standardization for the LTE in 2004, 3GPP highlighted the most important basic 

requirements for the long-term evolution of UTRAN as following: 

• LTE system should be Packet Switched domain optimized. 

• A global roaming technology with the inter-system mobility with Global System for 

Mobile Communication (GSM), Wideband Code Division Multiple Access (WCDMA) 

and Code Division Multiple Access (CDMA) 2000. 

• Enhanced customer experience with high data rates exceeding 100 Mbps in DL and 50 

Mbps in UL. 

• Reduced latency with radio round trip time below 10 ms and access time below 300 ms 

• Scalable bandwidth from 1.4 MHz to 20 MHz 

• Increased spectral efficiency 

• Reduced network complexity 

    These specifics are based on the visions of 3GPP that concluded the need of LTE 

technology to cope up with the growth predictions of the wireless market [36].  
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3.1      LTE Physical Layer Structure 

    The LTE radio interface or LTE-Uu interface is the interface between the UE and the Evolved 

NodeB or eNodeB. The eNodeB is the termination point for the radio protocols and related 

functionalities in LTE network, considered as a base station that controls all radio related 

functionalities of the Evolved Packet System (EPS) (Evolved UTRAN (E-UTRAN) and Evolved 

Packet Core (EPC)). It is the connecting layer between UE and EPC. All of the radio protocols 

from UE terminate at eNodeB. eNodeB is the essential part of mobility management in EPS. It 

also performs encryption/decryption of User Plane/Control Plane data and Internet Protocol 

(IP) header compression/decompression as well to decrease the sending of redundant data in 

IP header [37]. 

    In addition to these basic functionalities, there are other Radio Resource Management 

(RRM) functionalities handled by the eNodeB. As a terminating node for the radio protocols, it 

sets Radio Resource Connection (RRC) and performs radio resource allocations to the users 

with QoS based prioritization [37].  

    Comparing it with UTRAN, it can be seen that the eNodeB performs the functionalities of 

both NodeB and Radio Network Controller (RNC). This simplifies the network structure and 

also in a way reduces the latency in the network as well. The eNodeBs are connected to their 

neighboring eNodeBs with the X2 interface. This connection becomes useful during the 

handover scenarios [37]. 

 

3.2      LTE System and Channel Assignment Model  

    In LTE systems, Orthogonal Frequency Division Multiple Access (OFDMA) is the multiple 

access technique used in the downlink. However, since it presents a high Peak-to-average 

Power Ratio, it is not possible to use OFDMA on the uplink. For the uplink, Single Carrier 

Frequency Division Multiple Access (SC-FDMA) is used [38]. 

    The main difference between an OFDM and OFDMA system is the fact that in the OFDM, 

users are allocated on the time domain only while using an OFDMA system the user would be 

allocated by both time and frequency. This is useful for LTE since it makes possible to exploit 
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frequency dependence scheduling. For instance, it would be possible to exploit the fact that 

user 1 might have a better radio link quality on some specific bandwidth area of the available 

bandwidth.  

    It is not possible to use OFDMA on the uplink since, as told before, it presents a high Peak-

to-average Power Ratio. SC-FDMA presents the benefit of a single carrier multiplexing of 

having a lower Peak-to-average Power Ratio. On SC-FDMA, before applying the IFFT the 

symbols are pre-coded by a Discrete Fourier Transform (DFT). This way each subcarrier after 

the IFFT will contain part of each symbol.. 

    With OFDMA and SC-FDMA the radio spectrum is divided up into 15 KHz subcarriers. These 

are allocated to UEs in groups of 12 known as Resource Blocks (RBs) or Physical Resource 

Block (PRBs) during one 0.5 ms slot [39]. The total number of those PRBs depends on the LTE 

bandwidth. A RB is assigned to a user to cater its service demand that can range from few 

kilobits per second (Kbps) to some megabits per second (Mbps) [40]. 

The 12 OFDM subcarriers of the RB that are adjacent to each other and each of these sub-

time slot utilizes 6 OFDM symbols when normal CP is used and 7 OFDM symbols when 

extended CP is used. 

In RB assignment, the Channel State Information (CSI) plays a significant role [40] and this 

information is acquired periodically by an eNodeB from its connected users. Based on this 

information, an eNodeB decides upon the Modulation and Coding Scheme (MCS) and the 

number of radio blocks that it needs to allocate to its connected users. 

However, in LTE downlink, if a user has been assigned to more than one RB, all these RBs 

must have the same MCS. This increases the complexity of the radio resource allocation 

problem [40].  

Each 1 ms Transmission Time Interval (TTI) consists of two slots. Each user is allocated a 

number of RBs in the time/frequency grid. The higher the modulation used in the resource 

elements are and the more RBs a user gets, the higher the bit-rate becomes [41]. 

    The type of modulation used in LTE depends on the radio environment. The UE estimates 

the quality in the downlink and signals it back to the eNodeB in the Channel Quality Indicator 

(CQI). The uplink reference signals that are embedded into the uplink transmission are used 

by the eNodeB to estimate the quality in the uplink. The eNodeB decides which modulation 
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technique should be used based on the quality of the downlink (DL) and uplink (UL) radio 

environment through the adaptive modulation technique [38][39].  

The supported modulation techniques in the DL and UL are: 64 QAM (6 bits/symbol), 16 QAM 

(4 bits/symbol), QPSK (2 bits/symbol), used in very good radio conditions till poor ones, yielding 

to the highest throughput till the lowest one, respectively. 

    The LTE specifications support number of channel bandwidths ranging from 1.4 to 20 MHz 

in the DL as per Table 3.1 [41] [43]: 

Table 3.1. LTE Channel Bandwidths  

Channel 
Bandwidth 

(MHz) 
1.4 3 5 10 15 20 

Number of 
Subcarriers 

72 180 300 600 900 1200 

Number of 
RBs 

6 15 25 50 75 100 

    

 Finally, Sampling frequency varies under different bandwidth configuration in LTE, where the 

possible combinations are summarized in Table. 3.2 [41][44]: 

Table 3.2. Sampling frequency for different LTE bandwidths (FDD and TDD) 
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3.3      LTE Schedulers  

Scheduling is a process through which the eNodeB decides which UEs should be given RBs, 

and how many RBs should be given to send or receive data. In LTE, scheduling is done per 

subframe basis (i.e. every 1 ms). The entity that governs this mechanism is known as scheduler 

[45]. 

A scheduler takes input from the operation and maintenance system configuration e.g. which 

scheduling algorithm is to be enabled and considers QoS information and channel quality 

information (CQI, Rank, SINR etc) to make the decisions [45]. 

Scheduling paradigms such as Round Robin (RR), Best Channel Quality Condition or 

Maximum Channel Quality Indication (Max- CQI), and Proportional Fair (PF) are commonly 

adopted in current LTE downlink scheduling algorithms [46].  

In RR, terminals are assigned one after another without taking any factor into consideration. 

Although this method results in poor performance, fairness is guaranteed since all terminals 

are equally scheduled. Max-CQI scheduling assigns RBs to the user with the best radio link 

conditions. The UEs with the highest CQI therefore become candidates for scheduling thereby 

increasing the overall cell throughput. The disadvantage of this approach is that UEs with lower 

CQI are denied scheduling instances, thus being starved for throughput and leading to 

degraded user experience. On the other hand, PF scheduling tries to maximize total throughput 

while providing all users at least a minimal level of service. Thus, it balances between 

throughput and fairness among all the UEs. The PF scheduling performs in such a manner that 

it considers resource fairness as well as maximizing cell throughput (in addition to other 

possible performance metrics) [45] [46]. 

For a Max-CQI scheduling, the sector throughput improves while cell edge throughput drops 

compared to a PF scheduling where sector throughput may not be as good as Max-CQI, but 

cell edge throughput thoroughly improves [45]. 

In our LTE system model proposed in the next chapter, we propose that the PF scheduling is 

adopted due to its frequent application in such networks. We assume that a minimum level of 

service or cell capacity is provided to all UEs, while providing a max per user throughput 

according to the user demand and quality of service. Thus, our definition of the heavy users 
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who will be offloaded from LTE to WiFi will depend on the users who consume the highest level 

of transmission power, leading to a highest throughput demand. Therefore, the problem 

formulation will be power minimization and not throughput maximization as it will be described 

in details in the next chapter of this thesis.  
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CHAPTER 4-  

WiFi Network Planning for LTE Offload 

 

As mentioned previously, LTE and WiFi cooperation is needed in order to ensure a balanced 

traffic so that the end user benefits from a maximum bit rate with the same or better QoS, by 

being transferred to WiFi or LTE seamlessly, with available needed capacity and optimal 

throughput.  

We propose in this chapter a WiFi dimensioning method that will offload LTE. We study the 

available WiFi capacity and the minimum needed number of WiFi APs that will be able to handle 

heavy users transferred from LTE advanced to WiFi. The dimensioning method is based on 

the remaining available capacity of the WiFi network taking into consideration the load of the 

overlapped channels of the WiFi physical layer, as estimated in Chapter 2 of this thesis.  

4.1      Main Drivers of WiFi Offload in 5G Systems 

 
    Mobile data offloading transfers cellular users to WiFi networks to relieve the cellular system 

from the pressure of the ever-increasing data traffic load. This approach was designed many 

years, since the third generation (3G) networks in years 2010 and 2011 [49], till the fourth 

generation (4G) and LTE-A networks, and still under analysis in current research areas of 

HetNets in the roadmap of 5G technology, even though mobile network operators and providers 

have deployed many small cells or femtocells solutions to cope with the forecasted needed 

capacity in licensed and unlicensed mode.  

    To have a preliminary forecast about the data traffic in the upcoming years in mobile data 

traffic, we represent here below a rough forecasted measures according to Cisco’s 

annual Global Mobile Data Traffic Forecast Update (2017 – 2022) [50]:  

• By 2022, there will be more than 12 billion mobile-ready devices and IoT connections, 

up from about 9 billion in 2017. 

https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html#~mobile-forecast
https://www.networkworld.com/article/3207535/internet-of-things/what-is-iot-how-the-internet-of-things-works.html
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• By 2022, mobile networks will support more than 8 billion personal mobile devices and 

4 billion IoT connections. 

• The average mobile network speeds globally will increase more than three-fold from 

8.7Mbps in 2017 to 28.5Mbps by 2022. 

• By 2022, mobile video will represent 79 percent of global mobile data traffic, up from 59 

percent in 2017. 

• By 2022, 79 percent of the world’s mobile data traffic will be video, up from 59 percent 

in 2017. 

• Mobile offload exceeded cellular traffic by a ton in 2017; 54 percent of total mobile data 

traffic was offloaded onto the fixed-line network through WiFi or femtocell in 2017. 

• In 2017, 4G already carried 72 percent of the total mobile traffic and represented the 

largest share of mobile data traffic by network type. It will continue to grow faster than 

other networks, however the percentage share will go down slightly to 71 percent of all 

mobile data traffic by 2022. 

“As a percentage of total mobile data traffic from all mobile-connected devices, mobile offload 

increases from 54 percent (13.4 exabytes/month) in 2017 to 59 percent (111.4 

exabytes/month) by 2022. Offload volume is determined by smartphone penetration, dual-

mode share of handsets, percentage of home-based mobile Internet use, and percentage of 

dual-mode smartphone owners with WiFi fixed Internet access at home,” Cisco said. 

Other Wi-Fi predictions from the study of [50]:  

• By 2022, 59 percent of global mobile data traffic (cellular) will be offloaded to WiFi or 

small cell networks, up from 54 percent in 2017. 

• By 2022, 51 percent of total IP traffic will be Wi-Fi, 29 percent will be wired, and 20 

percent will be mobile (cellular). In 2017, total IP traffic was 48 percent wired, 43 percent 

WiFi, and 9 percent mobile (cellular). 

• Globally, total public Wi-Fi hotspots (including home spots) will grow four-fold from 124 

million in 2017 to 549 million by 2022. 

• In 2022 the average Wi-Fi connection speed will be 54.2 Mbps, up 2.2 times from 2017 

to 2022. 

https://www.networkworld.com/article/3330603/mobile-wireless/5g-versus-4g-how-speed-latency-and-application-support-differ.html
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    WiFi is as mentioned in many studies as described before, a potential network infrastructure 

layer that will be supporting mobile systems in the roadmap of 5G technology, especially for 

non-sensitive services which can tolerate some delay (i.e. email checking, browsing, text 

messaging…), in respect to the 5G experience expected in the IOT services (i.e. remote health 

care operations, industrial live operations, streaming services, smart cities management 

applications, autonomous vehicles and machines,…), or in the indoor locations where WiFi 

APs deployment is easier to ensure indoor coverage especially when 5G BSs, operating on 

the higher spectrum bands, may represent certain limitations in the deep indoor penetration. 

This is due to the fact that 5G will be based on the acquisition of high-frequency bands between 

1 GHz and 3 GHz, which will result in smaller wavelength propagation characteristics. This 

necessitates network designs that are smaller in coverage footprint but will also help support a 

very dense network that will be low powered and achieve very low noise in the 5G environment 

[51].  

    Moreover, the handover to a Wi-Fi network should be seamless, and customers shouldn’t 

be aware that they are receiving their service through WiFi. Indoor, offloaded networks benefit 

customers by providing a seamless, out-of-the-box experience using their existing phone and 

phone number, and extending connectivity into areas where cellular and public-safety networks 

often don’t reach. Future improvements in WiFi calling will provide a seamless handover 

between available Wi-Fi and LTE networks along with high-quality voice and next-generation 

calling features [51].  

    Therefore, Mobile device manufacturers and operating system developers may need to add 

options that allow users to have their default connection method based on speed or quality of 

network rather than having the decision made for them based on technology. It might be that 

devices connect to multiple networks at the same time. 

    In addition, an efficient WiFi APs planning and dimensioning is needed in order to avoid the 

network gaps or interference or congestions among unplanned distribution of WiFi APs. An 

efficient WiFi planning is proposed in the next chapter, which could ensure a minimum needed 

number of WiFi APs that will support efficiently with the same or better QoS the offloaded users. 
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To note that, the cost of deployment in CAPEX and OPEX for WiFi APs is much cheaper than 

5G BSs or small cells that could ensure the same indoor coverage.  

    A Total Cost of Ownership (TCO) study was presented in [52], where the estimated cost 

(CAPEX and OPEX) for a WiFi AP and an LTE BS along with a study of two major cities 

(Manhattan and San Diego) were presented, in order to pinpoint the cost saving when 

implementing the WiFi offload to support LTE. The study found that a detailed analysis is 

required for every deployment.  The key analysis assumptions, such as expected traffic load, 

density of subscribers, WiFi coverage, WiFi AP density factors, expected costs, are critical in 

determining the economic impact of adding WiFi offload into a network deployment plan.   

    In dense environments, such as New York City, the study showed that an improvement of 

7.2% in the TCO can be achieved with an optimized deployment of a WiFi offload network.   

In a smaller city, such as San Diego, the economic analysis can pinpoint the optimal 

combination of WiFi coverage and density that will optimize the Return on Investment 

(ROI).  The key is that every case is different, and an operator must do the detailed business 

case analysis to understand how WiFi offload can help their deployment plans. 

The cost assumptions is presented in Table 4.1 as following [52]:   

Table 4.1. WiFi LTE CAPEX & OPEX Assumptions 

 

    From the above analysis, we can visualize the profit from applying the WiFi offload to support 

LTE systems in the roadmap of 5G networks, where we can ensure additional spectrum and 

connectivity capacity, in addition to the monetary profit for the long term TCO models. 
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    The cost and profit of the LTE WiFi cooperation has been analyzed in details in our thesis in 

the next chapters using Shapley value by considering both scenarios: if mobile and WiFi 

systems are owned by the same operator or by different ones. 

 

4.2      State of the Art 

Many studies and researches have tackled the cooperation between WiFi and LTE or future 

mobile networks technologies in the Heterogeneous Networks (HetNets) architecture.  In 

practice, offloading the cellular data traffic to a WLAN depending on the signal quality is a 

broadly deployed method to solve networks limitations. Mobile users obtain data through WiFi 

instead of cellular network; hence, it is the efficient technique to improve the spectrum efficiency 

and reduce the cellular network congestion. In addition, it is the cost-effective solution that 

offloads mobile traffic to the existing WiFi networks, where extra needed expansions cost is 

saved in the cellular networks, which is relatively higher than the needed expansions cost in 

WLANs. 

For those considerations, we propose in this thesis to analyze the benefit of the cooperation 

between the LTE and WiFi, however through the proper minimum needed planning and 

dimensioning of the WiFi network that will be handling a certain specified transferred users and 

data traffic from the mobile network. 

Many studies have tackled the planning of the WiFi networks, whereas many others have 

tackled the offloading scenarios from cellular to WLANs. 

    For the WiFi network planning, authors in [3], tackled the WiFi offloading solution by 

analyzing the hypothesis of how many APs are needed to accommodate a proper number of 

users per WiFi AP without severe performance degradation. They first set the target average 

per-user throughput when a WiFi network can play a role as an offloading network of a given 

cellular network. Then, based on this criterion, they proposed the minimum required number of 

WiFi APs in an overlay network through a mathematical analysis. 

The minimum required number of WiFi APs was investigated based on the active users’ density 

of the uniformly distributed users, the overall coverage of the WiFi APs and the transmission 

probability of a user, without taking into consideration the WiFi network available capacity. The 

criterion proposed was the target average per-user WiFi throughput, and it is just an example 
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and it can be adjusted if other performance evaluation metrics such as energy efficiency or 

delay are employed. Although the results of this paper are based on several assumptions for 

simplicity of analysis, however it provides intuitive results and basic guidelines to establish a 

WiFi cell deployment strategy, which has been adopted in our next algorithm as it will be 

presented in the next sections.  

  

    In [53], the authors propose WiFi deployment algorithms based on realistic mobility 

characteristics of users to deploy WiFi APs for continuous service for mobile users based on 

maximum continuous coverage. They studied two AP deployment problems that aim to 

maximize the continuous user coverage and that minimize the AP deployment cost, 

respectively.  

They were driven by the fact of the critical need to satisfy stringent performance requirements 

of interactive and time-sensitive mobile applications through WiFi networks; therefore they 

proposed the WiFi deployment to ensure continuous service for mobile users in terms of 

coverage and throughput, at the same time, to minimize the deployment cost such as the 

number of APs must be minimized for large-scale WiFi networks. The same principle as well is 

applied in our next proposed algorithm, however the effective network available capacity was 

not calculated in this paper, where the dimensioning was based only on the needed QoS 

offered to the end user. They formulated the Maximum Continuous Coverage and the Minimum 

Deployment Cost problems, which aim to provide the maximum continuous WiFi coverage to 

mobile users at the minimum deployment cost. Both problems were formulated based on 

mobility graphs that capture the statistical movement patterns of users on a map. 

 

    In [49], authors proposed and evaluated an integrated architecture to migrate data traffic 

from cellular networks to metropolitan WiFi APs, by considering the case of bulk file transfer 

and video streaming over cellular networks and simulate data delivery using real mobility data 

set of 500 taxis in an urban area. They calculated the number of APs needed for different 

requirements of quality of service for data delivery in large metropolitan area. 

They proposed Delay Tolerant Networking approach by leveraging the fact that a significant 

amount of mobile data is delay tolerant in nature. Certain uplink data created by sensors, and 

Machine to Machine (M2M) applications such as remote sensing does not require real-time 
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data transmission; so, they proposed an integrated architecture Metropolitan Advanced 

Delivery Network that consists of cellular networks, WiFi networks, and mobile to mobile Pocket 

Switched Networks 

Network architecture and mobility sessions were analyzed, however, authors just provided a 

feasibility study on such offloading solution through real mobility traces and did not perform any 

mathematical analysis or dimensioning for this problem.  

    In [54], authors studied the problem of mobile data offloading via WiFi networks. They 

analyzed a large-scale real user mobility traces and proposed a deployment algorithm based 

on the density of user data access requests. They first focused on the deployment of WiFi APs 

for efficient offloading. To this end, they analyzed a wide city real user mobility traces and 

proposed an APs deployment scenario. They measured how much offloading can be achieved 

with different numbers of APs, and they measured the offloading efficiency of proposed 

deployment for future data usage by network users. They also proposed a framework for the 

recruitment of available APs owned by private parties. The simulation results demonstrate that 

the alternative solution is able to provide good offloading ratios without requiring the 

deployment of new APs.    

    Although the idea of mobile data offload to WiFi networks has been tackled in many research 

studies since 2010 till present, based on predefined performance metrics or real traffic traces 

and use cases; however, the real dimensioning and planning of the WiFi network has not been 

analyzed in detail upon to our knowledge. In our thesis, a mathematical approach has been 

proposed to calculate exactly the needed number of WiFi APs, that ensures at least same or 

better throughput per user when transferred from LTE to WiFi network. 

    From the other side, many studies have analyzed the benefit or challenges of the offload 

between LTE and WiFi based on different criteria and assumptions. 

    In [1], the offload to WiFi was analyzed based on the Remaining Throughput Scheme for 

WiFi selection, where data is offloaded from U-LTE to WiFi APs. In addition, they proposed a 

distance-based transfer and speed-based transfer where the transfer process relies on 

distance and speed of users to be transferred to the WiFi systems or to Licensed LTE systems. 

They have investigated the network performance in order to evaluate the efficiency of this 

offload or transfer. Authors in their work discussed the cooperation between U-LTE, licensed 
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LTE and WiFi where they considered the probability of transmission in a time slot and the 

successful transmission probability in order to calculate the per user throughput. They 

considered that the decision of the network saturation and non-saturation depends on the WiFi 

saturation throughput which is the maximum load a WiFi network can carry in stable conditions. 

By setting the maximum network capacity, they calculated the maximum number of users that 

can be offloaded from U-LTE to WiFi. There was no planning or dimensioning for the WiFi/LTE 

networks, however, the decision of offloading was based on throughput. Similarly, they studied 

the shortest distance between WiFi AP and the UE in order to decide the transfer based on the 

shortest distance, as well they investigated the speed of the UE with the specific conditions to 

be transferred to licensed LTE or WiFi. All those scenarios were evaluated in respect to the 

offered throughput to the UE.  

    In [47], cellular-to-mesh data offloading for LTE-A cellular mobile users to WiFi mesh 

networks was proposed, which are built and managed collaboratively by users. Mobile network 

operators can lease these mesh networks to offload their traffic and reduce their servicing cost. 

Authors proposed an analytical framework that determines which mobile users should be 

offloaded, based on the energy cost incurred to the cellular base stations eNB for serving their 

demands. The offload was analyzed based on the energy cost incurred to the cellular base 

stations and according to a routing policy within the overlay network. The policy comprises the 

data routing decisions for serving a set of users that are offloaded by the cellular network in 

respect to the average flow (bps) of data transfer over transmission link for the offloaded users, 

and the WiFi flow for serving locally offloaded traffic, and the Internet average rate of flow from 

the WiFi node or AP. The mesh network policy is constrained by the respective link capacities. 

Furthermore, authors in this paper proposed employing the Shapley value profit sharing rule, 

to reflect the reimbursement offered by the operator that should be dispensed to the different 

mesh users, according to their contribution and added-value significance. 

    In [55], the reverse way of offloading was proposed. Authors proposed transferring some 

WiFi users to be served by the LTE system, in contrast to the traditional mobile data offloading 

which effectively offloads LTE traffic to the WiFi network, where some unlicensed spectrum 

resources may be allocated to the LTE system in compensation for handling more WiFi users. 

Authors believe that a win–win situation would be generated since LTE can generally achieve 
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better performance than WiFi due to its capability of centralized coordination. They tackled 

three different user transfer schemes according to the availability of Channel State Information 

(CSI): the random transfer, the distance-based transfer, and the CSI-based transfer. The 

minimum required amount of unlicensed time slots under a given transferred user number is 

first analyzed for each scheme. The number of users that need to be transferred and the 

amount of unlicensed spectrum that needs to be relinquished to the LTE-U system are jointly 

determined by negotiation between the two networks. The challenge was that WiFi and LTE-U 

have contradicting intentions, i.e., WiFi intends to transfer more users to LTE-U and relinquish 

as less unlicensed spectrum as possible while the expectation of LTE-U is just opposite. 

Therefore, to achieve an effective balance/tradeoff, authors utilized the Nash bargaining 

solution to develop a joint user transfer and unlicensed resource allocation algorithm.  

In fact, in their work, authors of [55] analyzed the benefit of adopting the offload toward LTE-U 

instead of the licensed spectrum and mentioned how it is fairly and harmoniously coexisting 

with the WiFi network deployed in the same unlicensed spectrum. It has been demonstrated 

that LTE-U would be a better neighbor to WiFi than an additional WiFi network if its 

transmission is carefully controlled.     

    This was assessed in detail in [56], since traffic offloading and resource sharing are two 

common methods for delivering cellular data traffic over unlicensed bands. Authors in [56], first 

developed a hybrid method to take full advantages of both traffic offloading and resource 

sharing methods, where cellular base stations offload traffic to WiFi networks and 

simultaneously occupy certain number of time slots on unlicensed bands. Then, they 

analytically compared the cellular throughput of the three methods with the guarantee of WiFi 

per user throughput in the single BS scenario. They demonstrated that traffic offloading can 

achieve better performance than resource sharing when existing WiFi user number is below a 

threshold and the hybrid method achieves the same performance as the resource sharing 

method when existing WiFi user number is large enough.  

    In [57], authors studied the offload between LTE-U and WiFi and within the same WiFi 

network between the high busy APs and the less loaded ones. 

Since Licensed Assisted Access (LAA) is considered one of the latest groundbreaking 

innovations to provide high performance in future 5G, authors based their study on the 
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coexistence between Listen Before Talk protocol (LBT) and the Carrier Sensing and Adaptive 

Transmission (CSAT) schemes to share spectrums. They proposed a modified LBT-based 

CSAT scheme which can effectively reduce the collision at the moment when LTE starts to 

transmit data in CSAT mode. Two-layer Coalition-Auction Game-based Transaction 

mechanism is proposed in order to optimize the performance of the two systems. In the first 

layer, a coalition among APs is built to balance the WiFi stations by merging the light-loaded 

APs with heavy-loaded APs into a coalition; consequently, the data of the overloaded APs can 

be offloaded to the light-loaded APs. Next, an auction game between the LAA and WiFi 

systems is used to gain a win-win strategy, in which, LAA BS is the auctioneer and AP coalitions 

are bidders.  

    Similar studies have shown the user patterns behaviors and network challenges for mobile 

offloading as was studied in [58], [59], and [60]. In [58], authors presented a model for defining 

the behavioral patterns of smartphone users when offloading data from mobile to WiFi 

networks. The model was generated through analysis of individual characteristics of 298 

smartphone users, based on data collected via online survey as well as the amount of data 

offloaded from mobile to WiFi networks as measured by an application integrated into the 

smartphone. Users were segmented into categories based on data volume offloaded from 

mobile to Wi-Fi networks, and numerous user characteristics were explored to develop a model 

capable of predicting the probability that a user, with given characteristics, will fall into a given 

category of data offloading. In [59], authors carried out a survey of the practical challenges 

faced by operators in data traffic offloading to Wi-Fi networks (Availability and limitations of 

WiFi planning tools, Backhaul limitations, site availability and acquisition issues, device 

limitations, charging issues, authentication…) and provided recommendations to successfully 

address these challenges. Finally, in [60], authors in their work reviewed WiFi offloading, as a 

simple strategy of increasing network capacities. After performing some real-life mobile data 

rates measurements in different areas of specific city, they gave some recommendations on 

deploying a WiFi offloading strategy regarding the feasibility and the area-specific necessity 

behind this method. 

    In our next proposed algorithm in this thesis, we determined the users that should be 

offloaded from LTE-A to WiFi, however we proposed a planning for the WiFi network in order 
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to cope with this number of offloaded users. Furthermore, we have proposed the offload 

between LTE-A operating on the licensed spectrum toward WiFi in order to fully benefit from 

both spectrums at the same time, and not to have the unlicensed one shared between both 

technologies. Finally, in our work, Shapley value was applied to reflect the profit in terms of 

revenues versus cost of the adopted cooperation between WiFi and LTE systems taking into 

consideration the needed OPEX and CAPEX for network deployments and the revenues or 

data subscription fees of the data services.  

 

4.3      Overlay LTE/WiFi Network Model 
     

    We describe in this section the adopted network model of our proposed algorithm, in order 

to pinpoint the WiFi network dimensioning method that will ensure an efficient optimal traffic 

offload from LTE. 

We consider a network where an LTE-A cell, also known as eNB, is covered by K WiFi APs 

(K unknown to be calculated) that will support the transfer of heavy users from LTE-A to a WiFi 

network with a sufficient capacity and proper available coverage. 

The proposed architecture of the overlay network is depicted in Fig. 4.1 where the eNB serves 

a set of UEs that also have WiFi interfaces. 

 

 

Fig 4.1. An overlay network with ‘K’ WiFi APs deployment covering a regular hexagonal LTE-A cell 

    We consider that the UEs are in range with at least one or more WiFi APs. The amount of 

data to be downloaded or uploaded from/to the internet differs between different users, as well 
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as for their channel conditions with the BS. The effects of the hidden node problem (that occurs 

when a node can communicate with an AP but cannot directly communicate with other nodes 

that are communicating with that AP and are outside their transmission range [61] [62]), and 

the exposed node problem (that occurs when a node is prevented from sending packets to 

other nodes because of co-channel interference with a neighboring transmitter [61] [63]) are 

not considered in our analysis.  

 
In the proposed algorithm, the selection of the transferred users is not random. Instead, it is 

based on the users with heavy data consumption depending on the requested throughput thus 

consuming the highest level transmitted power, so the minimum needed number of WiFi APs 

is calculated to cope with the traffic of those transferred users.  

In addition, the offloading decision is not random or based on the probability of WiFi channels 

occupation or on the CSI either. Instead, it is based on the exact information sent by the WiFi 

network informing the LTE eNB about its remaining average capacity. 

This remaining average capacity depends on the estimated channels load of the physical 

layer of the WiFi network calculated in Chapter 2 of this thesis. However, in this chapter, we 

consider the average of the channels load or occupation value of the channels previously 

calculated, where this value is averaged for several days during the peak hour traffic of the 

WiFi network. Based on this averaged value, we have a global estimation, calculated through 

the multiple APs to be collected on a higher control node of the network, to estimate the 

remaining available capacity and to facilitate the measurements collection and processing time. 

Therefore, our framework is divided into two phases to ensure WiFi cooperation in the 

heterogenous network:  

• The first phase is to determine the average number of heavy users who will transmit 

the highest power. Therefore, we consider the LTE traffic during peak hours for several 

days, so to have an estimated traffic volume that should be offloaded from the LTE 

system. Real network statistics could be considered to estimate the traffic that should 

be offloaded, however we have adopted in this thesis a mathematical approach as it 

will be explained in the next section in equation (4.1). 

• The second phase is WiFi APs dimensioning. This is considered through WiFi APs 

remaining capacity calculation, and it is based on the remaining throughput of each 
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WiFi AP based on the average occupation or load value of the physical channels.  

The heavy users definition and the dimensioning method will be detailed in the following 

paragraphs. 

 

4.4      Heavy Users Definition 
 

In our study, as previously mentioned, the problem formulation that will be described in this 

section, is an energy minimization problem and not a throughput maximization problem with 

the effect of adopting the PF scheduler. Therefore, the energy minimization solution consists 

by identifying the heaviest users who consume the highest transmission power and thus a high 

needed throughput. Our approach for the eNB scheduler adopts a greedy method to exclude 

the costly users. The eNB using our algorithm sorts the mobile users in decreasing order of 

power consumption and selects the most power consuming ones to be transferred to WiFi. This 

number of users and the related downloaded volume is averaged for several days during the 

peak hours of the network, to measure the overall traffic of the LTE cell and to estimate the 

volume and number of users to be offloaded from this LTE cell to the WiFi network. This is a 

greedy method for determining the most energy-consuming nodes as it leverages the results 

and policy that the eNB has to devise for serving its mobile users. Our approach in the 

evaluation scenario is the simplest one as we desired to showcase the benefits of considering 

power savings for the eNB by offloading a different number of users.  

In order to determine the heaviest users in LTE, the operator needs to determine the resource 

allocation policy, in terms of RBs assignment and transmission power [47]. 

We consider the downlink operation of one LTE-A macro cellular Base Station (BS) for a time 

period of T subframes, possibly expanding over multiple frames. There exists a set of Nc users 

within the cell. Each user n ϵ Nc, needs to download an amount of Dn  ≥ 0  in bytes, thus is 

assigned by the LTE QoS mechanism a data rate of Dn/𝑇 ≥ 0   in bps, for the current period, 

based on the used class of service, subscription status, etc [47] [64].  

The BS has a set of M available Resource Blocks (RBs) that can be allocated to users in 

each subframe (t =  1,2, . . . , T). The value of M depends on the available spectrum. Hence, 

there are in total (M ∗ T) RBs. The system is considered quasi-static, i.e., users do not join or 
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leave the cell during the current time period, and channels do not change significantly (flat 

fading). Note that, even if channels change rapidly, the eNB will not be aware of this fact, as 

users transmit their CQI parameters only once during this time period. 

In the beginning of the period, the eNB devises the RB assignment and power allocation 

policy for serving his users.  

Let xnm(t)  ϵ {0,1} denotes whether RB m ϵ M is allocated to user n ϵ Nc during subframe t or 

not.  xnm(t)  ϵ {0,1}  was considered randomly in our simulation using Matlab. 

Let Pnm (t) denotes the respective transmission power. For each RB, the BS can determine 

a different transmission power. However, the total power consumption should not exceed a 

maximum level of aggregated transmission power Pmax (Watt).  

Assuming orthogonal allocation of RBs [48], and ignoring inter-cell interference, i.e., we 

assume that proper Enhanced Inter-Cell Interference Coordination (eICIC) techniques are 

applied, the bit rate for each user n is calculated by [47]: 

 

rn(t) = ∑ xnm(t).Wb. log (1 +
hnm.xnm(t).Pnm(t)

σ2
)M

m=1                           (4.1) 

 

where Wb  is the symbol rate per RB, hnm  the channel gain of user n in RB m during the current 

time period, σ2 is a parameter considering the variance of the noise. These parameters are 

estimated through the CQI feedback that is provided by the users, once every period T. Real 

network statistics could be considered to estimate the values of these parameters, however we 

have considered  Pnm (t), in our simulations using Matlab, as a random parameter between the 

two minimal and maximal possible values of the transmission power of the UEs: 1 dBm and 23 

dBm (in Watt). Based on this policy, the operator determines which users consume the highest 

power and hence are most costly. 

With equation (4.1), we can calculate the users bit rate or highest throughputs values that 

depend on the highest transmission power. The top-heavy users in the LTE cell, are the ones 

that exceed a certain maximal predefined threshold of this bit rate. Knowing the top-heaviest 

users, we rely on this value to dimension the WiFi network based on the needed Mbps volume 

transferred from LTE to WiFi, and to ensure a balanced and beneficial cooperation between 

both networks. 
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4.5      WiFi Dimensioning Method 

The WiFi network should assure a minimum acceptable and predefined average per user 

throughput for an efficient LTE offloading. Based on this average per user throughput, we will 

calculate the minimum required number of WiFi APs in the overlay network.  

    As mentioned earlier in this thesis, future generation cellular networks are likely to involve 

multiple RATs over multiple frequency bands, such as LTE, WiFi, and LTE-U. The prime bands 

today are licensed frequency bands under 3 GHz and over 500 MHz of unlicensed spectrum 

in the 2.4 GHz and 5 GHz frequency bands [65]. 

As illustrated in Fig. 4.1, we consider a scenario with one LTE BS and 𝐾 WiFi APs operating 

separately in licensed and unlicensed spectrum, respectively. 

In our scenario, we assume a coverage area of 802.11n WiFi APs with no interference, each 

transmitting on an orthogonal channel in the 2.5 GHz unlicensed spectrum selected based on 

the minimal calculated load value of the channels as proposed in Chapter 2. This model has 

also been adopted in other literatures, such as [47] and [53]. Following the same principle, the 

analysis of 5 GHz spectrum and 802.11ac could be applied.   

The coexistence of WiFi and LTE could be facilitated by assuming that an inter-system 

coordinator exists, which performs the WiFi user transfer and resource allocation, as in [47]. 

To note that our proposed system is very useful for the case where LTE-A and WiFi are 

deployed by the same network operator. In this case, the inter-system coordinator can be 

implemented by the cellular network operator itself. Otherwise, it can be implemented by a 

third-party vendor that provides service enhancement for both WiFi and LTE. 

To calculate the WiFi network remaining capacity, we need to measure the network load or 

occupation level. However instead of adopting the instant CCA information previously 

described on each WiFi AP on the network to reflect the network occupation, we rely in this 

thesis on the channel load estimation method previously presented in Chapter 2, which enables 

to scan and measure the occupation of all WiFi overlapped physical channels simultaneously, 

collected on a higher control node, instead of the local measurement on each AP. This load 

estimation method facilitates the occupation measurements aggregation and processing time. 
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In addition, since initially this value is an instant occupation measure, we consider in this 

chapter the average value of channels occupation during peak hours for several days within 

the LTE-WiFi HetNet, so the dimensioning calculations will be based on an averaged 

occupation value for several days to reflect more accurately the load of the WiFi network. 

Let αi denotes the average load or occupation value of channel 𝑖; (1 − 𝛼𝑖) is therefore the 

available idle capacity of this WiFi channel. 

Since WiFi APs operate on the different 12 channels of the 802.11n system based on the 

minimum load value of the channel, different APs might be operating simultaneously on a 

specific channel 𝑖, taking into consideration that they are not neighbor APs to avoid the inter-

channel interference. Therefore, the total available capacity of this channel 𝑖 will be divided 

between at least two APs. If we consider 𝑡𝑖 as the number of APs operating simultaneously 

under the frequency 𝑖 of the WiFi channels(1 < ti < 12), we can deduce the below equation:  

 

𝐾 = ∑ 𝑡𝑖
12
𝑖=1                                                       (4.2) 

K ≥  1 is the number of WiFi APs to be calculated. 

Consequently, we can define the available capacity in terms of bit rate for a WiFi AP 𝐿  with 𝐿 =

 1, . . . , 𝐾), operating on a channel 𝑖, denoted as 𝑅𝑙
𝑖 as follows: 

𝑅𝑙
𝑖 = (𝑅𝑤 𝑚𝑎𝑥

.
(1−𝛼𝑖)

𝑡𝑖
)                                                  (4.3) 

𝑅𝑡𝑜𝑡 = ∑ ∑ µ𝑙
𝑖 . 𝑅𝑙

𝑖12
𝑖=1

𝐾
𝑙=1                                           (4.4) 

where 𝑅𝑤𝑚𝑎𝑥
 is the maximum throughput of the WiFi APs (considered as same releases and 

specs), 𝑖 is WiFi channel number (i =  1, . . . ,12), 𝑅𝑡𝑜𝑡 is the total remaining capacity or 

throughput of the WiFi network, and µ𝑙
𝑖 = {0,1} is 1 if the AP 𝑙 is operating on frequency 𝑖, and  

0 if the AP 𝑙 is not operating on frequency 𝑖. 

From equation (4.4), we can estimate the total available capacity of the WiFi network, and 

thus dimension the minimum needed number of WiFi APs that will handle the transferred LTE 

users according to certain throughput criteria. 
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To ensure the same user experience, the average per-user throughput offered by the WiFi 

network should be at least equal to or higher than the cellular network throughput.  

Based on this constraint, we set the target average per-user WiFi throughput as follows [3]: 

 

SW
user ≥ SC

user                                                              (4.5) 

where SW
user and SC

user represent the average per-user WiFi throughput and the average per-

user cellular throughput, respectively.  

      We define a maximum throughput threshold within the LTE network, considered in the 

simulations as 20 Mbps as average [66], where each user exceeding this threshold is 

considered as heavy user and should be transferred from LTE to WiFi. From equation (4.4) we 

can conclude the below equation to compute the average per user throughput offered in WiFi 

network:  

SW
user =

Rtot

Nw
                                                    (4.6) 

where 𝑁𝑤 is the number of the heavy users to be transferred from LTE to WiFi as previously 

described. 

    While setting the maximum throughput threshold within the LTE as the minimum needed 

throughput per user to be ensured by the WiFi network, we calculate the minimum required 

number of WiFi APs 𝐾 that achieves the target average per user WiFi throughput.  

We can express the mathematical expression of 𝐾 by: 

K = argmin
K

(SW
user ≥ 𝑟𝑛(𝑡))                                                   (4.7) 

where  𝑟𝑛(𝑡) is the bit rate value calculated per user in the LTE network as per equation (4.1) 

and that should be at least offered by the WiFi network to the transferred user. 

Therefore, by applying (4.6), we can find 𝐾, the minimum number of WiFi APs that are 

needed to offload the LTE heavy users. 
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A similar analysis could be done by analyzing the number of users to be re-transferred from 

WiFi to LTE when we reach a certain maximum number of WiFi APs 𝐾, that could not be 

increased indefinitely, and when the capacity of those APs is fully utilized. Taking into 

consideration, that in a certain defined coverage area of LTE BS, we have an optimal number 

of WiFi  APs that could be added, and if both 𝐾 WiFi APs and LTE BS are fully loaded, thus 

reconsidering the LTE network dimensioning by increasing the number of LTE BS will be a 

possible solution. This will be tackled in a consecutive work following the current one. 

4.6      Simulations results 

We consider in our simulations, an LTE system for one eNB cell operating in 1800 MHz with 

an available bandwidth of 10 MHz [47] [67]. The WiFi network is based on 802.11n system that 

operates in 2.5 GHz bandwidth with 12 overlapped channels on the physical layer. Every TTI, 

the eNB makes a scheduling decision to dynamically assign the available time-frequency RBs 

to the UEs. The eNB scheduler aims at power minimization while also at satisfying UEs 

demands.  

 

Table 4.2 summarizes the basic system model parameters, while considering a total number 

Nc of LTE users operating in the heterogeneous network varying from 10 to 100 users per eNB 

making simultaneously data sessions. 

Table. 4.2. Overlay LTE/WiFi system parameters 

Parameters Values 

Bandwidth 10 MHz 

Duration 10 ms 

RBs per Time Slot 50 

RBs per TTI 100 

Subcarriers per RB 12 



  WiFi Integration with LTE towards 5G Networks               
 

97   

 

Max eNB TX Power 43 dBm 

Max UE TX Power 23 dBm 

Symbols per RB 7 

Number of subframes(T) 20 

Block Error Rate 0.1 

Channel Gain 6 dB 

Max WiFi AP 600 Mbps 

Cost of LTE BS (CLBS) 45,000 USD 

Cost of WiFi AP (CWAP) 500 USD 

Cost of 1Mbps data traffic (𝜆) 0.001 USD 

 

Based on the configured setup, we present in this section, numerical results by using 

MATLAB to analyze the minimum required number of WiFi APs versus LTE and WiFi 

throughput. 

By varying the number of simultaneous active users in the LTE cell from 10 to 100 active 

users, Fig. 4.2 represents the number of users considered as heavy users and that need to be 

offloaded to WiFi network. 
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Fig 4.2. Number of users to be offloaded to WiFi with respect to the total number of active 

users in the LTE cell. 

 

Taking into consideration that the LTE users will be offloaded when their demands exceed 

the 20 Mbps, considered as the average per user throughput in LTE-A network [66], the 

minimum needed number of WiFi APs, and the acquired throughput in the WiFi network are 

shown in Fig. 4.3 and Fig. 4.4 respectively, noting that there is no restriction in this case on the 

maximum offered throughput per user in the WiFi network. 
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Fig 4.3. Total number of needed WiFi APs with no limitation on average per user WiFi 

throughput 

 

 

 

Fig 4.4. Average per user WiFi throughput (Mbps) 
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As we can observe, with few LTE users to be offloaded, the WiFi network with only one AP 

can provide up to around 120 Mbps as theoretical value on top of its existing users. The WiFi 

throughput per user decreases with the additional number of offloaded simultaneous active 

users, with an average of 40 Mbps, thus greater than the maximum defined threshold in the 

LTE network (20 Mbps). 

 

By adopting this method, in addition to the saved cost when increasing the WiFi APs in 

indoors environment, to a maximum of 4 APs as shown in Fig. 4.3, instead of increasing the 

number of eNBs; the user experience will be enhanced instead of suffering from any possible 

congestion or throughput deterioration with limited number of LTE eNBs. 

If we take the scenario of a restricted threshold of throughput offered to the offloaded users 

in the WiFi network (e.g. a max of 20 Mbps), the needed number of WiFi APs will be reduced 

to 3 APs as presented in Fig. 4.5. 

 

Fig 4.5. Total number of needed WiFi APs with average per user WiFi throughput set to 20 Mbps 

maximum. 

 

To pinpoint the saving in LTE when applying our proposed dimensioning method, we have 

measured the average power consumption saving related to the transmitted power after being 

transferred to WiFi. 
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Fig. 4.6 and Fig. 4.7 represent the average saved power consumption in the eNB in Watts, 

and the percentage of power saving in respect to the total consumed power, respectively.  

As we can observe, there is on average 40% saving of the total consumed power in the eNB. 

This saving is expected to grow obviously when the number of offloaded users increase. 

 

Fig 4.6. Average Power Consumption saving in Watt 

 

Fig 4.7. Percentage of Power Consumption saving 
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4.7      Conclusion 

We have proposed in this chapter a mathematical approach to find the minimum required 

number of WiFi APs to support the heavy users’ traffic transferred from LTE to WiFi network 

based on the remaining available capacity of the WiFi network. This capacity was estimated 

taking into consideration the overlapping characteristics of the physical channels of the WiFi 

technology in Chapter 2, where we can estimate the average percentage of busy time and idle 

time of the channels during peak hours traffic and for several days to estimate the global 

occupation and thus capacity of the WiFi network. 

Through this mathematical approach, we can ensure an efficient coexistence between LTE-

A and WiFi HetNets, while providing a high level of bit rate to the end users, and with minimum 

required number of WiFi APs thus a minimum needed hardware and investment cost. The cost 

investment is presented in details in the next chapter of this thesis, where we perform a detailed 

cost analysis based on Shapley value, to reflect the benefits of the cooperation in the proposed 

HetNet. 
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CHAPTER 5 –  

Profit sharing in case of WiFi LTE coexistence 

 

LTE and WiFi operators seek a monetary profit in case of cooperation while heavy users are 

transferred from LTE to WiFi. Each WiFi or LTE player tries to adopt a network configuration 

that decreases its own costs in order to maximize its profits. Thus, we evaluate in this chapter 

the Shapley Value that proved to be very effective in profit sharing in a multiplayer context, 

where several types of relationships are involved [68]. The idea is that each player will have a 

profit share proportional to its contribution in the network setting and the added value it brings 

to the overall value chain. 

 

We estimate in this chapter the profit of LTE and WiFi, taking into account the data bundles 

subscription revenues as well as the infrastructure capital and operational costs. We calculate 

for each player the profit share using a coalition game concept Shapley value. 

5.1      Shapley Value: Definition and Properties 

    The Shapley value provides a concept of solution in gaming theory. Basically, in this gaming 

theory, where a coalition of players are contributing to this game, they can cooperate to obtain 

a certain overall gain from that cooperation [68]. Since some players could contribute more to 

the coalition than others, and they may possess different participation power or influence on 

the whole gain, Shapley reflects the final distribution of the generated surplus or payoff among 

the players in any particular game.  

Consequently, the Shapley value is the share gained by a player 𝑖 when he is in coalition 𝑆. 

This value 𝜑𝑖(𝑆, 𝑉) as defined by Shapley in [68] [69] [70] is given by: 
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𝜑𝑖(𝑆, 𝑉) =
1

𝑁!
∑ ∆𝑖(𝑉, 𝑆(𝜋, 𝑖)) ∀𝑖 ∈ 𝑁𝜋∈𝛱                                       (5.1) 

 

where 𝑁 is the set of players and 𝑆 a given coalition formed by a subset of these players, 𝑉(𝑆) 

is the worth function that denotes the weight or payoff of coalition 𝑆 [68], the worth function 𝑉 

describes the expected payoff the members of 𝑆 can obtain by cooperation. 𝛱 is the set of all 

𝑁! players permutations, 𝑆(𝜋, 𝑖) is the coalition formed by players from rank 1 till 𝑖 in a given 

permutation 𝜋 (𝜋 ∈ 𝛱), and ∆𝑖(𝑉, 𝑆(𝜋, 𝑖)) = 𝑉(𝑆) − 𝑉(𝑆\{𝑖}) is the marginal contribution of 

player 𝑖 in coalition 𝑆, defined as the difference between the worth functions of (𝑆) and 

(𝑆\{𝑖}) that is the set of players in 𝑁 which precede 𝑖 in all players permutations, and 

representing the benefits or losses that player 𝑖 could bring if he entered coalition (𝑆\{𝑖}). 

 

1) Properties: The Shapley value has the following properties [71]: 

a. Additivity: If the worth function 𝑉(𝑆) can be divided into two components 𝑉(𝑆) =  𝑉1(𝑆) +

 𝑉2(𝑆), then the Shapley value for a player 𝑖 is equal to: 

 

𝜑𝑖(𝑆, 𝑉) =  𝜑𝑖(𝑆, 𝑉1) + 𝜑𝑖(𝑆, 𝑉2)                                (5.2) 

b. Efficiency: There is a conservation of the total value of the coalition: 

∑𝜑𝑖(𝑆, 𝑉)  = 𝑉(𝑆) 

𝑖∈𝑆

 

c. Balance contribution: For any two players 𝑖 and 𝑗, the Shapley values are balanced as 

follows: 

𝜑𝑖(𝑆, 𝑉) − 𝜑𝑖(𝑆\{𝑗}, 𝑉) = 𝜑𝑗(𝑆, 𝑉) − 𝜑𝑗(𝑆\{𝑖}, 𝑉) 

      In our model, there are two players only, LTE and WiFi, considered managed by the same 

operator in scenario 1, and by different operators in scenario 2. 

The profit is the difference between the total revenue represented in the equations by 𝑟 and 

costs represented in the equations by 𝑐, and is to be shared among the different players in the 
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system. Using the above defined Shapley additivity property in (5.2), the worth function of any 

coalition 𝑆, i.e., its payoff 𝑉(𝑆), is simply the difference of the revenue worth function 𝑉𝑟(𝑆) and 

the cost worth function 𝑉𝑐(𝑆). This yields the profit share of each player 𝑖 as follows [71]: 

𝜑𝑖(𝑆, 𝑉) =  𝜑𝑟
𝑖
(𝑆, 𝑉𝑟) − 𝜑𝑐

𝑖
(𝑆, 𝑉𝑐)                                       (5.3) 

We now derive closed-form expressions for the Shapley value so as to ease its numerical 

computation and overcome the exhaustive summation in (5.1). 

Since we have 2 players (𝑁 = 2), WiFi and LTE, so we have two different permutations (𝛱 =

2): 

1- LTE, WiFi 

2- WiFi, LTE 

Let 𝐶𝐿 be the cost of the network in presence of LTE only, 𝐶𝐿,𝑊 the cost in presence of LTE and 

WiFi, 𝐺𝐿 the revenues of the network in presence of LTE only, 𝐺𝐿,𝑊 the revenues of the network 

in presence of LTE and WiFi. The cost and revenues shares 𝐶𝑊 and 𝐺𝑊 respectively in 

presence of WiFi only are equal to zero, since we are proposing that WiFi exists to support LTE 

and the presence of WiFi network only is not a scenario to be considered in our study in this 

chapter, however the scenario where LTE network only exists is considered (𝐶𝐿 , 𝐺𝐿  ≠ 0) if WiFi 

does not support LTE. 

The share of LTE in the costs according to Shapley value of equation (5.1) is calculated for the 

different possible permutations: 

In case of permutation 1 (𝜋 = 1) mentioned previously, and since there is no other player that 

precedes LTE, ∆𝐿𝑇𝐸 the difference of cost worth function is: 

 ∆𝐿𝑇𝐸(𝑉, 𝑆(1,1)) = 𝐶𝐿 ;                  (𝜋 = 1, 𝑖 = 1)                       (5.4) 

In permutation 2 (𝜋 = 2), WiFi is a player preceding LTE, therefore ∆𝐿𝑇𝐸 is: 

∆𝐿𝑇𝐸(𝑉, 𝑆(2,1)) = 𝐶𝐿,𝑊 − 𝐶𝑊 = 𝐶𝐿,𝑊;      (𝐶𝑊 = 0), (𝜋 = 2, 𝑖 = 1)             (5.5) 
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 Thus, the share of LTE in the costs 𝜑𝑐
𝐿
 is as per equation (5.1) the sum of the different 

permutations of equation (5.4) and (5.5) over 2! As per the below: 

φc
L
= 

1

2
. (𝐶𝐿 + 𝐶𝐿,𝑊)                                                (5.6) 

Let us now compute the share of WiFi ∆𝑊𝑖𝐹𝑖 in the costs. In the first permutation, it is given as 

below:  

∆𝑊𝑖𝐹𝑖(𝑉, 𝑆(1,2)) = 𝐶𝐿,𝑊 − 𝐶𝐿;          (𝜋 = 1, 𝑖 = 2)                            (5.7) 

In the second permutation, the share of WiFi in the costs ∆𝑊𝑖𝐹𝑖 is: 

∆𝑊𝑖𝐹𝑖(𝑉, 𝑆(2,2)) =  𝐶𝑊 = 0;       (𝜋 = 2, 𝑖 = 2)                           (5.8) 

Therefore, the share of WiFi in the costs 𝜑 𝑐
𝑊

 is as per equation (5.1) the sum of the different 

permutations of equation (5.7) and (5.8) over 2! as per the below: 

φ c
W
= 

1

2
 . (𝐶𝐿,𝑊 − 𝐶𝐿)                                                (5.9) 

Under the same concept, we consider 𝜑𝑟
𝐿
 the share of LTE in the revenues, 𝜑 𝑟

𝑊
 the share of 

WiFi in the revenues, 𝐺𝐿,𝑊 the revenues in the presence of both LTE and WiFi, 𝐺𝐿 the revenues 

in presence of LTE only, 𝐺𝑊 the revenues in presence of WiFi only. Therefore, the shares of 

LTE and WiFi in the revenues are as per the following equations, where 𝐺𝑊 = 0 as previously 

described: 

𝜑𝑟
𝐿
=

1

2
. (𝐺𝐿 + 𝐺𝐿,𝑊)                                                 (5.10) 

𝜑 𝑟
𝑊
=

1

2
. (𝐺𝐿,𝑊 − 𝐺𝐿)                                                  (5.11) 

 

5.2      Revenue Sharing 

Revenues depend on the pricing of data traffic offered to mobile users, and the volume of this 

traffic. In general, operators offer various data bundles with a flat rate for each one. Therefore, 

by having the total number of mobile subscribers within the LTE network, 𝑁𝐿 , and the number 
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of users transferred to the WiFi network, 𝑁𝑊 (with 𝑁𝑊 included in the total number of LTE users 

𝑁𝐿), along with their related average Mbps volume per month, the operator can estimate the 

related revenues. 

Let 𝛾𝐿 and 𝛾𝑤 be the total average volume in Mbps per month per user connected on LTE and 

per user transferred to WiFi, respectively. This volume is calculated based on an average value 

per month calculated from equation (4.1). 𝜆 is the price per Mbps per user in LTE or WiFi 

network as presented in Table 4.1. 

We consider in the revenues calculations that both WiFi and LTE networks exist, and the heavy 

users NW are transferred from LTE to WiFi.  

Let (GL) be the revenues of the network in presence of LTE only, defined in the previous section 

as the revenues generated from LTE network only without considering the participation of WiFi 

in the game. Let (𝐺𝐿,𝑊) be the revenues of the network in presence of both LTE and WiFi where 

WiFi is participating in the game. GL and 𝐺𝐿,𝑊 are calculated as per the below equations, 

through two different scenarios: 

Scenario 1: In case WiFi supports LTE in the revenues sharing: 

 

GL = (NL‐ NW) * γL* λ                                           (5.12) 

𝐺𝐿,𝑊 = (𝑁𝐿−𝑁𝑊) ∗  𝛾𝐿 ∗ 𝜆 + 𝑁𝑊 ∗   𝛾𝑊 ∗  𝜆                                   (5.13) 

Scenario 2: In case WiFi does not support LTE in the revenues sharing, therefore equations 

(5.12) and (5.13) become:  

𝐺𝐿 = 𝑁𝐿 ∗ 𝛾𝐿 ∗  𝜆                                                (5.14) 

𝐺𝐿,𝑊 = 𝑁𝐿 ∗ 𝛾𝐿 ∗  𝜆                                                   (5.15) 

Indeed, in the scenario where WiFi does not support LTE, WiFi will not be participating in the 

users offload or the revenues sharing, therefore the total LTE users 𝑁𝐿 will stay connected to 

the LTE network, and therefore 𝐺𝐿 and 𝐺𝐿,𝑊 are equal. 
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Therefore, the shares of both LTE 𝜑𝑟
𝐿
 and 𝜑 𝑟

𝑊
 WiFi in the revenues, according to the different 

permutation of the two players calculated as per the equations (5.10) and (5.11). 

5.3      Cost Sharing 

The cost of equipment and related operations expenditure for the LTE BS and WiFi AP are 

CLBS and CWAP respectively presented in table 4.1. 

The cost of the network in presence of LTE only (CL), and in presence of LTE and WiFi 

(CL,W) are calculated as per the below equations: 

CL = L . CLBS                                                            (5.16) 

CL,W = (K. CWAP) + (L. CLBS)                                          (5.17) 

K is the number of WiFi APs calculated in (4.6), and L is the number of LTE BSs that will assure 

an average throughput per user greater than 20 Mbps for around 100 simultaneous active 

users [66] (minimum values for L are considered as follow: L =  1 in case of WiFi support, L =

 2 in case WiFi does not support LTE).  

Therefore, the shares of both LTE 𝜑𝑐
𝐿
 and WiFi 𝜑 𝑐

𝑊
 in the costs, and according to the different 

permutations of the two players are calculated as per the equations (5.6) and (5.9). 

5.4      Profit Sharing 

The profit distribution of each player is simply the difference between its revenue and cost 

share as per (5.3). 

We consider as previously described two scenarios: 

- Scenario 1: the case of a single, joint LTE/WiFi operator. 

- Scenario 2: the case where the LTE and WiFi operators are separate. 

 

For both scenarios, we calculate the profit in case WiFi APs supports LTE for its heavy users 

and in case there is no WiFi support. 

In scenario 1, we consider the total cost share, revenue share and profit share as per the 

below equations: 
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𝜑𝑐 =  𝜑𝑐
𝐿
+  𝜑 𝑐

𝑊
                                                       (5.18) 

𝜑𝑟 =  𝜑𝑟
𝐿
+  𝜑 𝑟

𝑊
                                                       (5.19) 

𝜑 =  𝜑𝑟 −  𝜑𝑐                                            (5.20) 

Whereas in scenario 2, the profit share is calculated separately for LTE and WiFi as per the 

below equations: 

𝜑𝐿 =  𝜑𝑟
𝐿
−  𝜑𝑐

𝐿
                                                      (5.21) 

𝜑𝑊 =  𝜑 𝑟
𝑊
−  𝜑 𝑐

𝑊
                                                       (5.22) 

Due to its fairness, the profit distribution under Shapley value is appealing in cooperative 

games. Each player is rewarded a profit proportional to its contribution in the overall profit. This 

is demonstrated in the simulation results section, where the profit started to be positive or 

beneficiary, in case of WiFi support, earlier than the case of without WiFi support. This is due 

to the fact that the cost of investment in WiFi is much less than the additional cost of investment 

for the LTE BSs, with same subscribers’ revenues and offered throughput per user. 

5.5      Simulations Results 

By applying the Shapley value calculations in our Matlab simulation using the previously 

calculated minimal number of WiFi APs 𝐾, the results of the profit calculations are presented 

in Fig. 5.1 and Fig. 5.2 for the scenario 1 (joint operator) and scenario 2 (separate operators), 

respectively. 
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Fig. 5.1 Profit in case of Joint WiFi/LTE operator 

 

 

Fig. 5.2 Profit in case of separate WiFi and LTE operators 

The study is split over 10 months only, where we consider that the number of subscribers is 

constant during this period without additional growth on LTE network. In this case we consider 

that a minimum of 1 BS is needed for 100 simultaneous active users with WiFi network support, 

and 2 BSs are needed in case of no WiFi support. After 10 months, the growth of subscribers 

and consequently the growth of revenues will affect both the LTE and WiFi dimensioning, but 
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if there is no need for an additional LTE BS, the profit of LTE in case of no WiFi support could 

be the same as if there is WiFi support after 10 months as per Fig. 5.2, however this analysis 

is not considered in our study at this stage. 

In case of joint operator in Fig. 5.1, we can observe that the profit is becoming positive or 

beneficiary starting almost the 5th month where the revenues share become higher than the 

investment cost in case WiFi supports LTE. However, this gain is much more delayed for almost 

several additional months in case there is no WiFi support. 

In the case of separate operators in Fig. 5.2, the profit starts to be positive or beneficiary on 

almost the 9th month whereas staying less than the profit in case of WiFi support for joint 

operator.  

Thus, we can conclude that the Return on Investment (RoI) is maximum in the scenario where 

the operator owns both WiFi and LTE networks and while WiFi is providing support to LTE. 

       Finally, we can as well observe that the profit of the WiFi is always positive in case of 

separate operators as shown in Fig. 5.2, since the traffic transferred to WiFi is directly covering 

the investment expenses or cost. 

 

5.6      Conclusion 

We have analyzed in this chapter, the benefit of the proposed WiFi dimensioning method, 

which cooperates with LTE to handle the heavy users’ traffic, through the profit share 

calculations by applying the cooperative game theory and the Shapley Value.  

Two scenarios were considered, the first one where the same operator owns both WiFi and 

LTE networks, and the second one where both networks are owned by different operators. 

The estimated profit using Shapley value is obviously increasing in time for both WiFi and 

LTE in both scenarios in case WiFi presents support to LTE to offload its heavy users. This 

profit is maximal when the same operator owns both systems. 
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CHAPTER 6-  

Conclusion and Future Directions 

 

    This chapter presents the general conclusion of the different work described in this thesis 

report. We summarize the main contributions in Section 6.1, and we give future directions and 

topics in Section 6.2, related to the HetNet resource allocation and planning, where our 

contributions can be exploited in an efficient way. 

 

6.1 Summary of Contribution 

    The exponentially growing demand for mobile broadband communications has made the 

dense deployment of cellular networks with aggressive frequency reuse a crucial need. 

HetNets between LTE cells and WiFi APs are considered as good architecture to ensure 

additional spectrum margin between LTE-A and WiFi to use both licensed and unlicensed 

spectrum simultaneously. However, this dense deployment, will lead to complicated channel 

assignment model and criteria.  In this context, the focus of this thesis is to introduce dynamic 

radio resource allocation methods in WiFi networks based on the overlapped physical channels 

estimated load. This increases system available channels and energy efficiency, in addition we 

were able to deduce a WiFi network dimensioning algorithm to support LTE systems and to 

handle the traffic of the LTE heavy users. 

    Our first contribution, addresses the problem of the channel assignment in WiFi network. 

Our algorithm analyses the channels overlapping on 802.11 system, and based on the 

overlapped intersections, we were able to estimate the occupation time or load of each channel. 

In our algorithm, through the analysis of 3 non-overlapped channels only of 802.11n systems, 

we estimated the load of the entire 12 overlapped channels multiplied by the attenuation of the 
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channel. Based on the minimal load value, the channel could be allocated to an end user. 

However, the problem of channel attenuation factor and inter channel interference was not 

presented here, and this will be tackled in further analysis, although our algorithm was analyzed 

in noisy environment, where we have proven that in the presence of white Gaussian noise 

channel, the accuracy of the proposed algorithm is still reliable to estimate the channels load.  

    Based on this load estimation, we proposed another algorithm and method to dimension the 

WiFi network with a minimum number of WiFi APs that will support an LTE-A network. In this 

algorithm, we defined the users who are demanding the highest throughput in the LTE network 

on the downlink, and thus transferred them to the WiFi network. According to the estimated 

transferred load, the minimal number of WiFi APs was calculated based on the available 

network capacity calculated from the channels load of the first algorithm. 

    Having the minimal needed number of WiFi APs, we demonstrated the profit of such 

architecture or cooperation between WiFi and LTE through gaming theory and the Shapley 

value. With this cooperation, the operator will have minimum investment in CAPEX and OPEX 

and thus will increase its ROI. 

6.2 Future Directions 

    In fact, the integration of heterogeneous wireless environment consisting of multiple Radio 

Access Technologies (RATs) is proliferating within 5G networks. The optimization and the inter 

cell or inter channel interference management of heterogeneous data networks is one of these 

challenges to tackle in future research issues. Our current contribution can be extended to 

include the channel attenuation problem while calculating the channel load values, and to 

tackle new algorithms to minimize and manage the overlapped channels interference.  

    As well, we can easily extend our proposed WiFi dimensioning algorithm to include the 

transfer of users from WiFi to LTE to ensure both directions cooperation, or the transfer of LTE 

users to WiFi based on the coverage area and distance between the APs and the transferred 

users. In addition, we can consider the performance degradation due to hidden and exposed 

node problems and investigate the impact of practical traffic patterns and multiple modulation 

and coding scheme (MCS) levels on WiFi cell deployment. 
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    Finally, with the deployment of Internet of Things, uplink traffic will drastically increase. 

Therefore, uplink resource allocation in mobile networks will become also a crucial problem to 

solve. Therefore, the load association between LTE-A and WiFi could be analyzed in the uplink 

as well, which can be different than the downlink as it is proposed in this thesis to provide more 

flexibility. In general, in the downlink, the UE is associated to the best coverage eNB with the 

highest received signal strength, which favors the choice of LTE macro cell serving with the 

highest transmitting power. Consequently, the macro cell will attract more UEs which degrade 

its capacity and resource availability. The serving macro cell in the downlink may be not ideal 

for uplink traffic. It is interesting to study the improvement of the downlink/uplink decoupling on 

throughput efficiency and power economy. 
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French Summary 

Introduction  

 

Il est devenu évident depuis des années que le taux du trafic mobile des données ne fait 

qu’augmenter. Cette augmentation pousse à développer encore et toujours de nouvelles interfaces radio 

dans les réseaux mobiles adaptées aux contraintes amenées par les dits usages.  

Ce développement rapide annonce l'arrivée de la technologie cinquième génération (5G). En 

substance, pour répondre aux besoins futurs du trafic, et pour supporter la demande croissante des 

utilisateurs, la 5G doit fournir un débit de données plus élevé et une capacité beaucoup plus grande que la 

quatrième génération (4G). Ceci impose de nouvelles méthodes pour renforcer les capacités comme 

l’intégration de petites cellules, ou ajouter des nouvelles fréquences sans licence, ou utiliser les réseaux 

Wireless Fidelity (WiFi) pour former des réseaux hétérogènes. La coopération entre WiFi et 4G ou Long 

Term Evolution (LTE) est nécessaire, et peut permettre à l’utilisateur de bénéficier d’un débit de données 

maximal, avec une même ou meilleure qualité de service. 

Dans cette thèse, différents algorithmes ont été proposés pour contribuer à la coopération optimale 

entre WiFi et 4G dans le domaine des réseaux hétérogènes.  

On propose un algorithme qui calcule la charge des canaux de la couche physique du système 

802.11n. La charge représente le taux d’occupation du canal durant la transmission par rapport au temps 

global d’allocation du canal. A partir uniquement de trois observations des canaux indépendants, qui ne se 

chevauchent pas frequentiellement, on peut estimer la charge des 12 canaux qui se chevauchent. Ainsi, 

durant la phase de la recherche des canaux pour établir la connexion, le canal avec la valeur minimale de 

la charge peut être réservé. 

Ayant cette valeur de la charge du canal, on présente notre second algorithme qui dimensionne un 

réseau WiFi pour supporter un réseau 4G en déchargeant les utilisateurs 4G qui consomment le plus haut 

niveau de débits de données. A partir de la valeur de la charge des canaux physiques, on calcule la capacité 

du réseau WiFi, et puis on calcule le nombre minimal de points d’accès nécessaire pour supporter le trafic 

des utilisateurs déchargés du LTE. 

Dans la dernière partie de cette thèse, on calcule le profit de la coopération entre WiFi et LTE en 

utilisant la valeur de Shapley, et en se basant sur les données du coût d’investissement et le coût du service. 

Le coût, les revenus et le profit ont été analysés, dans les 2 cas :  

• Le même operateur gère les 2 systèmes WiFi et LTE 

• Deux opérateurs possèdent les deux systèmes séparément.  
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PARTIE 1 : Estimation de la charge multipliée par l’atténuation de la couche 

physique des réseaux WiFi  

Afin de réduire le temps de découverte d'un Point d’accès WiFi (PA), et ainsi d'optimiser les valeurs 

des différents timeurs du système WiFi sur couche physique et couche ‘Media Access Control’ (MAC), nous 

proposons dans cette partie un nouvel algorithme qui estime la charge ou temps d’occupation multiplié par 

l'atténuation de chaque canal. Cet algorithme exploite le chevauchement des canaux de la couche physique 

WiFi. Cet algorithme permet à partir de quelques observations des canaux non chevauchés, d’estimer la 

charge multipliée par l'atténuation de tous les canaux de la couche physique. 

 Notons que par charge de canal, nous entendons le pourcentage d'utilisation du canal en temps (ou 

temps occupé) par rapport au temps de mesure total du canal (temps occupé et inactif total). La 

connaissance de la charge de chaque canal facilite la décision de l'utilisateur pour sélectionner le canal 

ayant la charge minimale. 

De nombreux algorithmes ont été proposées pour définir les critères de sélection des canaux dans 

les réseaux sans fil, afin de minimiser le temps de découverte des PA. En général, ces algorithmes ont été 

basés sur des procédures de balayage optimal pour ajuster les valeurs des timeurs du système WiFi en 

fonction des conditions du canal et des caractéristiques du réseau tout en tenant compte des besoins des 

utilisateurs. De plus, d’autres méthodes ont été proposées pour mesurer la charge des canaux en se basant 

sur les paramètres d’occupation des canaux du standard WiFi.  

Notre algorithme proposé dans cette partie, est appliqué sur la couche physique des réseaux 

‘Wireless Local area Network’ (WLAN), avant d'établir toute connexion entre le PA WiFi et la station de 

l’utilisateur. Comme nous l'avons déjà indiqué, nous proposons d'estimer la valeur 𝑎𝑖   (𝑖 est le numéro du 

canal (𝑖 =  1,… , 12)) de la charge multipliée par l'atténuation des 12 canaux superposés de l'IEEE 802.11n 

fonctionnant sous 2,4 GHz, en effectuant 3 observations uniquement, et ce sur les canaux non superposés, 

c'est-à-dire les canaux 1, 5 et 9. En effet, en observant le canal 1, la valeur 𝑎𝑖 de la charge multipliée par 

l’atténuation des canaux 2, 3 et 4 est estimée. De même, l'observation du canal 5 conduit à estimer la valeur 

des canaux chevauchés 2, 3, 4 et 5, 6, 7 et 8. L'observation du canal 9 conduit à estimer la valeur des 

canaux chevauchés 6, 7, 8 et 9, 10, 11 et 12 comme le montre la figure 1.1 suivante : 

  

Fig. 1.1 Canaux de la couche physique du 802.11n  
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Afin de simplifier les notations, nous présentons la méthode en utilisant l’observation du canal 1. La 

généralisation à l’ensemble des canaux 5 et 9 est aisée. 

Soit 𝛤1(𝑓) le spectre du signal acquis dans le canal 1. Du fait du recouvrement spectral des canaux, 

ce spectre peut provenir de signaux se trouvant dans les canaux 1, 2, 3, et 4. Notons que le recouvrement 

de deux canaux adjacents est de 3𝐵/4 où 𝐵 est la bande d’un canal Wifi. Soit 𝑆(𝑓) le spectre d’un signal 

théorique d’un signal Wifi en bande de base qui émet d’une manière continue. Si le signal n’émet plus de 

façon continue, mais possède une charge égale à 𝛼𝑖, et en supposant un canal flat fading sur la durée 

d’observation du signal, alors le signal observé est de plus atténué par 𝜆𝑖, et le spectre s’exprime par : 

(𝜆𝑖
2(𝑓). 𝛼𝑖). 𝑆(𝑓) 

La valeur du spectre 𝑆(𝑓), est calculée comme suit et représente le spectre d’un signal OFDM: 

 

𝑆(𝑓) =
𝜎𝑐
2

𝑀𝑇𝑆
∑ (𝑠𝑖𝑛𝑐[(𝑓 − 𝑘Δ𝑓)𝑀𝑇𝑆])

2𝑁−1
𝑘=0            (1.1) 

 

On peut exprimer alors 𝛤1(𝑓) en fonction de 𝑆(𝑓), et de la valeur de la charge multipliée par l’atténuation du 

canal 𝑎𝑖. 

Nous découpons le spectre 𝑆(𝑓) en quatre parties : 

                                              𝑆1(𝑓)  =  𝑆(𝑓) 𝑝𝑜𝑢𝑟 𝑓 𝜖 [−𝐵/2;− 𝐵/4] et 0 sinon 

    𝑆2(𝑓) =  𝑆(𝑓) 𝑝𝑜𝑢𝑟 𝑓 𝜖 [−
𝐵

4
;  0] et 0 sinon                   (1.2) 

                                              𝑆3(𝑓)  =  𝑆(𝑓) 𝑝𝑜𝑢𝑟 𝑓 𝜖 [0; 𝐵/4] et 0 sinon    

                                              𝑆4(𝑓)  =  𝑆(𝑓) 𝑝𝑜𝑢𝑟 𝑓 𝜖 [𝐵/4; 𝐵/2] et 0 sinon 

avec le vecteur 𝕊 = [𝑆1(𝑓), 𝑆2(𝑓), 𝑆3(𝑓), 𝑆4(𝑓)]. 

De même  

𝛾1
𝑗(𝑓) =  𝛤𝑗(𝑓) 𝑝𝑜𝑢𝑟 𝑓 𝜖 [−𝐵/2;−𝐵/4] et 0 sinon     

𝛾2
𝑗(𝑓) =  𝛤𝑗(𝑓)𝑝𝑜𝑢𝑟 𝑓 𝜖 [−

𝐵

4
; 0] et 0 sinon       (1.3) 

 𝛾3
𝑗(𝑓) =  𝛤𝑗(𝑓) 𝑝𝑜𝑢𝑟  𝑓 𝜖 [0; 𝐵/4] et 0 sinon     

 𝛾4
𝑗
(𝑓)  =  𝛤𝑗(𝑓) 𝑝𝑜𝑢𝑟 𝑓 𝜖 [𝐵/4; 𝐵/2] et 0 sinon     
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Fig. 1.2. Modèle d'observation du canal 1 

avec  𝑗 est le numéro du canal observé (1, 3, ou 5), avec 𝑗 =  1 dans notre analyse dans cette partie, et le 

vecteur 𝛤𝑗(𝑓) = [𝛾1
𝑗
 (𝑓); 𝛾2

𝑗
 (𝑓); 𝛾3

𝑗
 (𝑓); 𝛾4

𝑗
 (𝑓)]. En se basant sur la figure 1.2, on aura le système 

d’équations suivant : 

𝛾1
1(𝑓) = 2. 𝑎1. 𝑆1(𝑓) + 𝑎2. 𝑆2(𝑓) + 𝑎3. 𝑆3(𝑓) + 𝑎4. 𝑆4(𝑓)     (1.4) 

𝛾2
1(𝑓) = 2. 𝑎1. 𝑆2(𝑓) + 𝑎2. (𝑆1(𝑓) + 𝑆3(𝑓)) + 𝑎3. 𝑆4(𝑓) 

𝛾3
1(𝑓) = 2. 𝑎1. 𝑆3(𝑓) + 𝑎2. (𝑆2(𝑓) + 𝑆4(𝑓)) + 𝑎3. 𝑆1(𝑓) 

   𝛾4
1(𝑓) = 2. 𝑎1. 𝑆4(𝑓) + 𝑎2. 𝑆3(𝑓) + 𝑎3. 𝑆2(𝑓) + 𝑎4. 𝑆1(𝑓) 

Ainsi, 

Γ1(𝑓) = [

𝕊 0 0 0
0 𝕊 0 0
0 0 𝕊 0
0 0 0 𝕊

] .

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
2 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 1 0 0
2 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
0 1 0 0
2 0 0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. [

𝑎1
𝑎2
𝑎3
𝑎4

]                                                         (1.5) 
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avec  

𝔹1 = [

𝕊 0 0 0
0 𝕊 0 0
0 0 𝕊 0
0 0 0 𝕊

] .

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
2 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 1 0 0
2 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
0 1 0 0
2 0 0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                  (1.6) 

et  

Γ1(𝑓) − 𝔹1. 𝑎
1 = 0                                                                      (1.7) 

avec 𝑎1  =  [𝑎1, 𝑎2, 𝑎3, 𝑎4]. On note les valeurs estimées de 𝑎1 par  [𝑎̂1
1, 𝑎̂2

1, 𝑎̂3
1, 𝑎̂4

1], alors on aura : 

[
 
 
 
 
𝑎̂1
1

𝑎̂2
1

𝑎̂3
1

𝑎̂4
1]
 
 
 
 

= Argmin
𝑎1

(‖Γ1(𝑓) − 𝔹1. 𝑎
1‖)                                                            (1.8) 

Pour avoir l’estimation de la charge des douze canaux, il suffit de concaténer de la même manière 

l’observation du canal 5 et 9.   

Deux méthodes pour calculer la valeur 𝑎𝑖 ont été proposées : la méthode de calcul directe, et la méthode de 

calcul moyenné. Par la méthode de calcul directe, les valeurs de 𝑎𝑖 ont été calculées directement de 

l’observation d’un seul canal, et par la méthode de calcul moyenné, les valeurs de 𝑎𝑖 ont été calculées 

comme valeur moyenne entre l’observation de deux canaux selon la proportion de chevauchement entre 

ces canaux.  

Ainsi, par la méthode directe, les valeurs 𝑎1, 𝑎2, 𝑎3,  et 𝑎4 sont directement calculées par l’observation du 

canal 1, les valeurs 𝑎5, 𝑎6, 𝑎7, et 𝑎8 sont directement calculées par l’observation du canal 5, et les valeurs 

𝑎9, 𝑎10, 𝑎11,  et 𝑎12 sont directement calculées par l’observation du canal 9.  
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Soit 𝑎𝑖
𝑗
, la valeur 𝑎𝑖  du canal 𝑖 observé dans le canal 𝑗. En utilisant, la méthode de calcul moyenné on aura 

𝑎𝑖 : 

𝑎1
1 = 𝑎1

1 

𝑎2
1,5 = (

3

4
. 𝑎2

1) + (
1

4
. 𝑎2

5) 

𝑎3
1,5 = (

1

2
. 𝑎3

1) + (
1

2
. 𝑎3

5) 

𝑎4
1,5 = (

1

4
. 𝑎4

1) + (
3

4
. 𝑎4

5) 

 

En application les simulations sur Matlab, on obtient les résultats suivants: 

 

Fig.1.3. Charge estimée par rapport à la charge réelle ou prédéfinie avec l’observation de 3 canaux – cas 

d’un canal idéal  

Figure 1.3 montre que la charge estimée est presque la même par rapport à la charge prédéfinie ou réelle, 

avec durée de 100 symboles comme un signal d’entrée, un rapport SNR égal à 10 dB et la méthode de 

calcul directe, dans les conditions d’un canal idéal.  
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Fig.1.4. Charge estimée par rapport à la charge réelle avec les 2 méthodes de calcul 

Dans la figure 1.4, une comparaison entre l'observation de 3 canaux et l'observation de 5 canaux avec 

les deux méthodes de calcul est effectuée. Les performances en termes de l'erreur quadratique moyenne 

ou Mean Squared Error (MSE), à travers plusieurs simulations sont présentés. Comme nous pouvons le 

voir, la MSE diminue avec l’observation de 5 canaux; nous pouvons donc conclure qu'avec un nombre 

supplémentaire d'observations de canaux, le niveau de précision de l'algorithme est augmenté. La durée du 

signal est 100 symboles ou 0.3 ms avec rapport signal sur bruit ou Signal to Noise Ratio (SNR) égal à 10 

dB. 

 

Afin d'analyser l'effet du bruit sur la précision de notre algorithme, les mêmes simulations ont été 

réalisées pour différents niveaux de bruit. La valeur MSE moyenne est représentée par rapport au SNR dans 

la figure 1.5. On peut remarquer que la précision de l'algorithme est affectée par un niveau de bruit élevé ; 

cependant une marge d'erreur acceptable peut encore exister avec un SNR autour de 3 dB.  

 

 

Fig.1.5. charge estimée par rapport à la charge réelle en fonction du SNR 
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Dans la figure 1.5, la durée du signal est 100 symboles ou 0.3 ms  

De plus, nous avons analysé l'effet de la longueur du signal (c'est-à-dire le nombre de symboles OFDM) à 

l'entrée d’ un canal sans erreur. Différentes réalisations ont été réalisées afin de refléter le MSE moyen avec 

une augmentation du nombre de symboles: 100 * ts ( avec la durée du symbole (ts) = 3,2 μs), 200 * ts, 300 

* ts, 400 * ts et 1000 * ts. La valeur MSE moyenne diminue avec un nombre plus grand de symboles OFDM 

comme montré dans la Fig. 1.6. De plus, la précision de la charge estimée augmente avec la longueur du 

message. 

 

Fig.1.6. Charge estimée par rapport à la charge réelle en fonction de la longueur du signal 

Finalement, on a appliqué nos simulations en présence des canaux à trajets multiples Rayleigh pour mesurer 

la performance de l’algorithme dans des conditions non parfaites. 

La probabilité de densité de Rayleigh est comme suit : 

𝑓(𝑥; 𝜎) =
𝑥

𝜎2
 . 𝑒−𝑥

2/(2𝜎2)      (1.9) 

où 𝑥 𝑒𝑡 𝜎 >  0, 𝜎 est le paramètre de la distribution. 

On considère le canal de Rayleigh le vecteur 𝐻 = [ℎ0, ℎ1, … , ℎ𝐾−1] et le signal transmis 𝑆, alors le signal reçu 

est le signal 𝑅 définit par l’équation : 

𝑅 =  𝐻 ⊗ 𝑆                        (1.10)  

où le symbole ⊗ est l’opérateur de convolution discrète. 

L’espérance de la variable aléatoire Rayleigh est donnée par : 

𝐸(𝑋) =  𝜎 ∗ √
𝜋

2
        (1.11) 

Pour le kième coefficient de Rayleigh ℎ𝑘 de la réponse impulsionnelle, on définit l’espérance suivant le profil 

de puissance des trajets exponentiellement décroissante, alors : 

𝐸(ℎ𝑘) =  𝑒
−kλ       (1.12) 
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avec λ un paramètre prédéfinie pour chaque simulation. 

Pour générer les différents taps du canal multi-trajets, on calcule le paramètre de la distribution Rayleigh 

comme suit en se referrent sur l’équation (1.11) : 

 𝜎𝑘 = 
𝐸(ℎ𝑘)

√
𝜋

2

 =  
𝑒−kλ

√
𝜋

2

      (2.26) 

Nous normalisons le vecteur 𝐻 pour avoir ||𝐻||2 = 1, pour refléter la PSD effective et ainsi calculer la charge 

des canaux comme expliqué précédemment dans le premier algorithme de cette thèse. Les résultats des 

simulations sont comme suit : 

 

Fig.1.7. Charge estimée par rapport à la charge réelle ou prédéfinie avec l’observation de 3 canaux – 

canaux à trajets multiples  

Dans la figure 1.7, la marge de précision a été réduite par rapport au cas de canal idéal, mais notre 

algorithme est toujours fiable pour les différents 12 canaux WiFi avec 10 taps de canal et un profil de 

puissance des trajets exponentiellement décroissante avec le paramètre 𝜆 égal à 1, malgré certains facteurs 

d'atténuation. 

 

Fig.1.8. Charge estimée par rapport à la charge réelle en fonction du λ – canaux à trajets multiples 
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Fig.1.9. Charge estimée par rapport à la charge réelle en fonction du nombre de taps – canaux à trajets 

multiples 

Nous pouvons observer dans les figures 1.8 et 1.9 la valeur du MSE par rapport aux différentes valeurs de 

𝜆 et le nombre de taps respectivement. La valeur MSE décroît avec une valeur croissante du paramètre du 

profil du canal à puissance exponentiellement décroissante, et est presque la même pour tous les nombre 

des taps. 

 

Fig.1.10. Charge estimée par rapport à la charge réelle – canaux à trajets multiples et canal idéal  

Finalement, comme on peut voir dans la figure 1.10, évidement la valeur du MSE est plus faible dans le 

cas d’un canal idéal. 
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PARTIE 2 : Calcul du nombre minimal de PA WiFi pour décharger le réseau 

LTE 

Comme présenté précédemment, la coopération entre LTE et WiFi est nécessaire pour augmenter la 

capacité des réseaux mobiles, et assurer une même ou meilleure qualité de service à l’utilisateur tout en 

étant transféré du LTE au WiFi d’une manière transparente. 

De nombreuses études ont abordé la coopération entre WiFi et LTE. Les utilisateurs mobiles 

obtiennent des données via WiFi au lieu du réseau cellulaire ; c'est donc une technique efficace pour 

améliorer l'efficacité du spectre et réduire la congestion du réseau cellulaire. En général, le déchargement 

du trafic de données cellulaires vers un WLAN a été analysé en fonction de la qualité du signal, la densité 

d'utilisateurs actifs et des utilisateurs uniformément répartis, la couverture globale des PA WiFi et la 

probabilité de transmission d'un utilisateur, sans tenir compte de la capacité disponible du réseau WiFi.  

Nous proposons dans cette partie une méthode de dimensionnement du réseau WiFi pour décharger 

le réseau LTE. Nous étudions la capacité moyenne disponible du réseau WiFi et le nombre minimal 

nécessaire de PA WiFi pour supporter le trafic des utilisateurs lourds à transférer de LTE vers WiFi. La 

méthode de dimensionnement est basée sur la capacité disponible restante du réseau WiFi en considérant 

la valeur de la charge des canaux WiFi estimée dans la première partie de cette thèse. 

Nous considérons un réseau où une cellule LTE, également connue sous le nom d'eNB, est couverte 

par K points d'accès WiFi (K inconnu à calculer) qui prend en charge le transfert d'utilisateurs lourds de LTE 

vers un réseau WiFi avec une capacité suffisante et couverture disponible appropriée. 

L'architecture proposée du réseau est représentée par la figure 2.1. 

 

Fig 2.1. Un réseau avec déploiement de K points d'accès WiFi couvrant une cellule LTE-

A hexagonale régulière 

 

Notre analyse est divisée en deux phases pour assurer la coopération entre le WiFi et LTE dans le réseau 

hétérogène : 

• La première phase consiste à déterminer le nombre moyen d’utilisateurs lourds qui transmettent 

la puissance la plus élevée. Pour cela, nous considérons uniquement les heures de pointe du 

trafic et ce trafic est moyenné sur plusieurs jours. Cela nous permet d’obtenir une estimation du 

trafic moyen à décharger de LTE vers WiFi. 
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• La deuxième phase est le dimensionnement des PAs WiFi. Ceci est pris en compte par le calcul 

de la capacité restante du réseau WiFi, et il est basé sur la capacité restante de chaque PA WiFi 

en fonction de l'occupation moyenne ou la valeur de la charge des canaux physiques. 

Afin de déterminer les utilisateurs les plus lourds en LTE, l'opérateur doit déterminer la politique 

d'allocation des ressources, en termes d'attribution des ‘Ressource Blocks’ (RB) et de puissance de 

transmission en adoptant la formule suivante : 

rn(t) = ∑ xnm(t).Wb. log (1 +
hnm.xnm(t).Pnm(t)

σ2
)M

m=1                    (2.1) 

 

rn                      Débit de données (instant rate in bps) instantané de l’utilisateur  

M             Nombre de RB pendant une durée T de sous-trame (subframe) 

xnm(t)               {0, 1} est la possibilité si l’utilisateur ‘n’ a un RB ‘m’ ou non 

Pnm(t)                Puissance de transmission de l’utilisateur n dans le RB m 

Wb                     Taux ou débit de symboles par RB 

hnm                    Gain du canal de l’utilisateur ‘n’dans le RB ‘m’ 

σ2                      Variance du bruit 

 

Le réseau WiFi doit garantir un débit de données moyen minimal et acceptable par utilisateur pour un 

déchargement efficace du réseau LTE. Le débit offert par le réseau WiFi doit être au moins égal au débit 

offert par LTE ou meilleur. Ainsi : 

SW
user ≥ SC

user 

SW
user                  Débit de données ou throughput de l’utilisateur dans le réseau WiFi 

SC
user                   Débit de données ou throughput de l’utilisateur dans le réseau LTE 

La capacité restante du réseau WiFi est calculée en se basant sur notre premier algorithme pour calculer la 

charge des canaux WiFi 𝛼𝑖 . 

Pour calculer la capacité disponible du réseau WiFi, nous proposons les formules : 

 

𝐾 = ∑ 𝑡𝑖
12
𝑖=1        (2.2) 

𝑅𝑙
𝑖 = (𝑅𝑤 𝑚𝑎𝑥

.
(1−𝛼𝑖)

𝑡𝑖
)     (2.3) 

𝑅𝑡𝑜𝑡 = ∑ ∑ µ𝑙
𝑖  .  𝑅𝑙

𝑖12
𝑖=1

𝐾
𝑙=1      (2.4) 

SW
user =

Rtot

Nw
       (2.5) 
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avec 

𝐾  Nombre de PAs à calculer 

𝑡𝑖  Le nombre de PAs qui fonctionnent simultanément sur la fréquence i 

𝑅𝑤 𝑚𝑎𝑥
  La capacité maximale du PA du réseau WiFi 

𝑅𝑙
𝑖  La capacité restante du PA l fonctionnant sur la fréquence i 

𝑅𝑡𝑜𝑡  La capacité restante totale du réseau WiFi 

𝛼𝑖  La charge du canal i calculée précédemment 

µ𝑙
𝑖  1 si le PA l fonctionne sur la fréquence i, 0 si le PA l ne fonctionne pas sur  

                   la fréquence i  

Nw                    Le nombre d’utilisateurs lourds transférés du LTE au WiFi 

 

Alors le nombre minimal de PAs est calculé par : 

𝐾 = argmin
K

(SW
user

≥ 𝑟𝑛(𝑡))     (2.6) 

En simulant notre algorithme sur Matlab, nous avons obtenu les résultats suivants :  

 

Fig 2.2. Nombre d’utilisateurs transférés au réseau WiFi  

En faisant varier le nombre d'utilisateurs actifs simultanés dans la cellule LTE de 10 jusqu’à 100, la figure 

2.2 représente le nombre d'utilisateurs considérés comme des utilisateurs lourds et qui doivent être 

déchargés sur le réseau WiFi. 

Le nombre minimal de PA et le débit de données acquis dans le réseau WiFi sont indiqués dans la Fig. 2.3 

et la Fig. 2.4 respectivement : 
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Fig 2.3. Nombre de PAs calculé pour décharger le LTE 

 

Fig 2.4. Débit moyen de données (Mbps) par l’utilisateur dans WiFi 

 

Le nombre de PAs WiFi nécessaire pour décharger le LTE est 4 PAs comme indiqué dans la figure 2.3. En 

installant ces 4 PAs WiFi, il n’est pas nécessaire d’augmenter le nombre de cellules LTE comme la cellule 

qui existe n’est pas saturée. De plus, l’expérience des utilisateurs s’est améliorée pour avoir un débit moyen 

de 40 Mbps comme par la figure 2.4. 
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Fig 2.5. Pourcentage de la Puissance moyenne économisée dans la cellule LTE 

 

Finalement, comme nous pouvons l'observer dans la figure 2.5, il y a en moyenne 40% d'économie de la 

puissance totale consommée dans la cellule LTE. Cette économie devrait augmenter de façon évidente 

lorsque le nombre d'utilisateurs déchargés augmentera. 
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PARTIE 3 : Calcul du Profit Financier entre LTE et WiFi 

Les opérateurs LTE et WiFi cherchent un profit monétaire en cas de coopération dans les réseaux 

hétérogènes lorsque les utilisateurs lourds sont transférés du LTE vers le WiFi. Nous modélisons dans cette 

partie le problème par un jeu ou chaque joueur va estimer son profit une fois il participe au jeu (coopération 

entre WiFi et LTE) ou non. 

Alors, chaque joueur WiFi ou LTE essaie d'adopter une configuration du réseau qui diminue ses 

propres coûts afin de maximiser ses profits. Pour ces raisons, nous évaluons dans cette partie la valeur de 

Shapley qui a démontré une efficacité dans le calcul du partage du profit dans un contexte multijoueurs, où 

plusieurs types de relations sont impliquées. L'idée est que chaque joueur aura une part des bénéfices 

proportionnelle à sa contribution dans le jeu et à la valeur ajoutée qu'il apporte à la chaîne globale du 

système. 

La valeur de Shapley peut être calculée par : 

 

𝜑𝑖(𝑆, 𝑉) =
1

𝑁!
∑ ∆𝑖(𝑉, 𝑆(𝜋, 𝑖)) ∀𝑖 ∈ 𝑁𝜋∈𝛱                                (3.1) 

 

𝑣(𝑆)   La fonction caractéristique du jeu qui donne la valeur maximum de la coalition 𝑆 

𝑁   Nombre de joueurs 

𝛱    L’ ensemble de 𝑁!  permutations de 𝑁 joueurs 

 

Le profit est donné par : 

𝜑𝑖(𝑆, 𝑉) =  𝜑𝑟
𝑖
(𝑆, 𝑉𝑟) − 𝜑𝑐

𝑖
(𝑆, 𝑉𝑐)                                   (3.2) 

avec 

𝜑𝑟
𝑖
   La valeur de partage de Shapley des revenues 

𝜑𝑐
𝑖
   La valeur de partage de Shapley des coûts   

 

Pour calculer les valeurs du coût et du revenu des réseau LTE seul, ou LTE en présence du WiFi on a les 

formules suivantes : 

φc
L
=  

1

2
. (𝐶𝐿 +  𝐶𝐿,𝑊)      (3.3) 

φ c
W
=  

1

2
 .  (𝐶𝐿,𝑊 −  𝐶𝐿)      (3.4) 

𝜑𝑟
𝐿
=

1

2
.  (𝐺𝐿 +  𝐺𝐿,𝑊)     (3.5) 
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𝜑 𝑟
𝑊
=

1

2
.  (𝐺𝐿,𝑊 −  𝐺𝐿)     (3.6) 

avec 

φc
L
    La valeur Shapley du coût par rapport à LTE 

φ c
W

    La valeur Shapley du coût par rapport à WiFi 

𝜑𝑟
𝐿
    La valeur Shapley de la revenue par rapport à LTE 

𝜑 𝑟
𝑊

    La valeur Shapley de la revenue par rapport à WiFi 

𝐶𝐿 (𝐺𝐿 )  coût (Gain) du LTE seul 

𝐶𝐿,𝑊 (𝐺𝐿,𝑊 )  coût (Gain) du LTE and WiFi 

𝐶𝑊 (𝐺𝑊 )  coût (Gain) du WiFi seul = 0  

 

Le coût du réseau en présence de LTE seulement, et en présence de LTE et WiFi: 

CL = L . CLBS      (3.7) 

CL,W = (K. CWAP) + (L. CLBS)     (3.8) 

 

L    Nombre de eNB 

CLBS    Coût d’un eNB (~ 45,000 USD) 

K    Nombre de PA WiFi calculé 

CWAP    Coût d’un PA WiFi (~500 USD) 

 

Les revenus du réseau en présence de LTE seulement, et en présence de LTE et WiFi : 

Si le WiFi supporte le LTE: 

GL = (NL −  NW) ∗  γL ∗  λ     (3.9) 

𝐺𝐿,𝑊 = (𝑁𝐿−𝑁𝑊) ∗  𝛾𝐿 ∗ 𝜆 +  𝑁𝑊 ∗   𝛾𝑊 ∗  𝜆    (3.10) 

 

Si le WiFi ne supporte pas le LTE: 

𝐺𝐿 = 𝑁𝐿 ∗ 𝛾𝐿 ∗  𝜆     (3.11) 

𝐺𝐿,𝑊 = 𝑁𝐿 ∗ 𝛾𝐿 ∗  𝜆     (3.12) 

𝜆     prix d’un Mbps (~0.001 USD) 
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𝛾𝑊 (𝛾𝐿)    volume de données déchargé dans le réseau WiFi (LTE) 

𝑁𝐿    Nombre d’utilisateurs dans le LTE; NW nombre d’utilisateurs déchargés  

dans le réseau WiFi  

 

Le Profit 𝜑 au cas où les 2 réseaux sont possédés par le même opérateur : 

𝜑𝑐 =   𝜑𝑐
𝐿
+   𝜑 𝑐

𝑊
      (3.13) 

𝜑𝑟 =   𝜑𝑟
𝐿
+   𝜑 𝑟

𝑊
     (3.14) 

𝜑 =   𝜑𝑟 −   𝜑𝑐      (3.15) 

Le Profit du LTE 𝜑𝐿 , et le profit du WiFi 𝜑𝑊 au cas où les 2 réseaux sont possédés par des opérateurs 

différents : 

𝜑𝐿 =   𝜑𝑟
𝐿
−   𝜑𝑐

𝐿
     (3.16) 

𝜑𝑊 =   𝜑 𝑟
𝑊
−   𝜑 𝑐

𝑊
     (3.17) 

 

En simulant nos équations sur Matlab, nous avons obtenu les résultats suivants : 

Cas où le même opérateur possède les deux réseaux LTE et WiFi : 

 

Fig 3.1. Profit du réseau au cas où le même operateur possède LTE et WiFi   
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Nous pouvons observer dans la figure 3.1, que le profit devient positif ou bénéficiaire à partir du 5ème 

mois dans le cas où le WiFi supporte le LTE. Cependant, ce gain peut être retardé de plusieurs mois en 

absence du support WiFi. 

Cas où deux opérateurs différents possèdent les réseaux LTE et WiFi : 

 

 

Fig 3.2. Profit du réseau au cas où deux operateurs possèdent LTE et WiFi   

 

Dans la figure 3.2, le profit du WiFi est toujours positif (i.e. il gagne des utilisateurs), mais le profit du LTE 

commence à être positif ou bénéficiaire à partir du 9ème mois. Cependant le profit dans le cas où le Wifi 

supporte le LTE reste toujours plus grand. 
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PARTIE 4 : Conclusion et Perspectives 

La demande exponentiellement croissante de trafic de données dans les réseaux de 

communications mobiles a rendu le déploiement de réseaux cellulaires, avec une réutilisation agressive des 

fréquences, un besoin crucial. Les réseaux HetNets entre les cellules LTE et les points d'accès WiFi ont été 

considérés comme une bonne architecture pour garantir une marge de spectre supplémentaire entre LTE-

A et WiFi, et pour utiliser simultanément le spectre sous licence et sans licence.  

Cependant, ce déploiement dense entraîne un modèle et des critères d'attribution de canal 

compliqués. Dans ce contexte, l'objectif de cette thèse est d'introduire des méthodes dynamiques 

d'allocation de ressources radio dans les réseaux WiFi basées sur la charge estimée des canaux physiques 

qui se chevauchent. Cela augmente les canaux disponibles du système, en plus nous avons pu déduire un 

algorithme de dimensionnement du réseau WiFi pour décharger le réseau LTE au Wifi et gérer le trafic des 

utilisateurs lourds du LTE. 

    Dans la première partie de cette thèse, nous avons proposé un algorithme qui analyse les canaux 

qui se chevauchent sur le système 802.11, où nous avons pu estimer le temps d'occupation ou la charge 

multipliée par l’atténuation de chaque canal. Dans notre algorithme, grâce à l'analyse de 3 canaux non 

superposés uniquement des systèmes 802.11n, nous avons estimé la charge de l'ensemble des 12 canaux 

superposés. Sur la base de la valeur de charge minimale, le canal pourrait être attribué à un utilisateur final. 

Cependant, le problème du facteur d'atténuation du canal et des interférences entre canaux n'a pas été 

présenté ici, et cela sera abordé dans une analyse plus approfondie, bien que notre algorithme ait été 

analysé dans un environnement bruité, où nous avons simulé qu'en présence d'un canal à trajet multiple, la 

précision de l'algorithme proposé reste fiable pour estimer la charge des canaux. 

    En se basant sur cette estimation de charge, nous avons proposé un autre algorithme dans la 

deuxième partie de cette thèse, pour dimensionner le réseau WiFi avec un nombre minimal de points d'accès 

WiFi permettant de décharger un réseau LTE. Dans cet algorithme, nous avons défini les utilisateurs lourds 

qui exigent le débit le plus élevé dans réseau LTE, moyennés sur un certain nombre de jours, pendant les 

heures pointes de trafic. Cela, nous permet d’avoir une idée du trafic moyen à transférer vers le WiFi. Le 

nombre minimal de points d'accès WiFi, nécessaire pour supporter ce trafic, a été calculé en se basant sur 

la capacité disponible du réseau WiFi, calculée à partir de la charge des canaux du premier algorithme. 

    Dans la troisième partie de la thèse, ayant le nombre minimal de PA WiFi, nous avons calculé le 

profit d'une telle coopération entre WiFi et LTE à travers la théorie des jeux et la valeur Shapley. Grâce à 

cette coopération, l'opérateur aura un investissement financier minimum et augmentera ainsi son profit. 

Finalement, notre contribution actuelle peut être étendue pour inclure le problème d'atténuation de 

canal lors du calcul des valeurs de charge de canal, et pour analyser de nouveaux algorithmes pour 

minimiser et gérer les interférences de canaux qui se chevauchent. 

De plus, nous pouvons facilement étendre notre algorithme de dimensionnement WiFi proposé pour inclure 

le transfert dynamique d'utilisateurs du WiFi vers le LTE pour assurer la coopération dans le sens inverse. 

De plus, nous pouvons analyser le transfert des utilisateurs LTE vers le WiFi en fonction de la zone de 

couverture et de la distance entre les points d'accès et les utilisateurs transférés. Comme le trafic sur uplink 

augmentera considérablement dans les réseaux 5G, ou pourra étendre notre analyse de dimensionnement 

par rapport au trafic uplink des réseaux mobiles qui deviendra également un problème crucial à résoudre. 
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Titre : Intégration WiFi et LTE dans le domaine du système 5G 

  Mots clés : 5G, Réseaux hétérogènes, décharge et coexistence du LTE et WiFi, sélection   

  des canaux dans le réseau WiFi, couche physique du 802.11n, Valeur de Shapley 

Résumé :  suite à l'augmentation continue du trafic de données mobiles, la technologie 5G 
a été introduite pour offrir une capacité et un débit de données plus élevé. Ceci impose de 
nouvelles méthodes pour renforcer les capacités comme l’intégration de petites cellules, 
ou ajouter des nouvelles fréquences sans licence, autour de 2.4 et 5 GHz des réseaux 
WiFi pour former les réseaux hétérogènes. Pour ces raisons, la coopération entre WiFi et 
4G ou Long Term Evolution (LTE) est nécessaire. 

    Dans cette thèse, différents algorithmes ont été proposés pour assurer une coopération 
optimale entre WiFi et 4G dans le chemin du système 5G pour les réseaux hétérogènes. 
Notre premier algorithme calcule la valeur de la charge des canaux de la couche physique 
du 802.11n. Ayant cette valeur, nous présentons notre second algorithme qui propose de 
dimensionner un réseau WiFi pour décharger le réseau 4G en transférant les utilisateurs, 
qui consomment le plus de débits de données, au réseau WiFi. Finalement, nous avons 
calculé le profit de la coopération entre WiFi et LTE en utilisant la valeur de Shapley.  

 

 

Title: WiFi Integration with LTE in the Roadmap of 5G Networks 

Keywords: 5G, Heterogeneous Networks, LTE WiFi offload and coexistence, WiFi 
Channel selection, 802.11n physical layer, Shapley Value profit sharing. 

Abstract:    Following the continuous increase of the mobile data traffic, the 5G technology 
has been introduced to offer additional capacity and higher data rate. WiFi APs integration 
with mobile networks are considered as potential candidate towards the heterogenous 
networks. 
    We first propose in this thesis an algorithm for the estimation of the WiFi physical 
channels load through the observation of the non-overlapped channels and estimating as 
a result the load of the entire physical channels. Then, in our second proposed algorithm, 
we propose to dimension the WiFi network to offload LTE network and transfer the users 
that consume the high level of transmission power. The algorithm calculates the minimum 
needed number of APs that will support the extra offloaded LTE traffic.  

    Finally, we evaluate the benefit of the cooperation by estimating the profit share of LTE 
and WiFi. We calculate for each player the profit using a coalition game concept based on 
Shapley value.  
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