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Résumé de la thése 

La Guyane est un territoire d’outre-mer, situé en zone intertropicale (ZIT). Cette zone est le lieu de 

phénomènes de convections intenses. De ce fait, l’énergie solaire incidente au sol est très variable ce qui 

constitue un frein à son exploitation à grande échelle. 

La question de recherche étudiée dans ce manuscrit est: comment peut-on améliorer les estimations et 

prédictions de rayonnement au sol en ZIT de façon à augmenter le taux de pénétration dans le réseau 

électrique de cette énergie renouvelable intermittente? Afin de répondre à cette question, nous avons 

utilisé deux outils. Le code Héliosat-II (HII) et le modéle de prévisions météorologiques Weather and 

research forecast (WRF). Nous avons utilisé ces outils de manière à améliorer les estimations et 

prévisions de rayonnement global au sol (IGH) dans la ZIT. 

La première partie de ce manuscrit présente le contexte de la thèse. La seconde présente une 

modification d’H-II permettant d’améliorer les estimations d’IGH par une modélisation explicite de 

l’absorption de nuages. Ces estimations améliorées donnent ainsi des outils décisionnels permettant de 

situer au mieux une centrale solaire en fonction du potentiel solaire du site et des systèmes services 

avoisinants. La seconde partie traite dans un premier précision des prévisions des modèles globaux IFS 

et GFS (i.e integrated forecast system, global forecast system GFS) en ZIT. Ces produits téléchargés sont 

validés par comparaison avec des mesures in situ de trois pays situés dans la ZIT et caractérisés par des 

climats tropicaux. Cette étude permet de combler un vide dans l’étude des prévisions d’IGH des 

modèles globaux en ZIT. Nous proposons ensuite une méthode générique permettant de calibrer le 

modèle WRF en ZIT. Cette méthodologie vise à limiter le nombre de simulations à effectuer en 

sélectionnant et en faisant varier uniquement les paramètres ayant le plus d’influence sur le 

rayonnement au sol en ZIT. Pour valider cette méthodologie nous avons comparé les prévisions d’IGH du 

modelé WRF calibré avec celle du modelé AROME ainsi qu’avec des mesures in situ en Guyane. La 

quatrième partie présente l’utilisation d’une méthode hybride ensembliste variationnelle d’assimilation 

de donnée permettant d’améliorer les prévisions de rayonnements en ZIT. Cette méthode initialement 

utilisée pour améliorer la description de phénomènes convectifs extrêmes tels que prévision de la 

trajectoire des cyclones est pour la première fois appliquée pour améliorer les prévisions d’IGH. Cette 

méthodologie appliquée à la ZIT fournie alors des prévisions améliorées d’IGH permettant ainsi une 

gestion améliorée de centrale solaire. 

 Les travaux effectués dans la seconde section ont donnés lieu à une publication dans solar energy 

journal. Les travaux effectués dans la troisième section ont été soumis, mais non publiés à la date de 

remise du manuscrit de thèse. 

Nous présentons une conclusion en français de cette thése après celle rédigé en anglais.
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I. Introduction 

 

I.1 Technical challenges of solar energy for electricity production 

 

The sun is a star with a 6.96 105 km radius and a  surface temperature of 5800K (Liou, 2002). 

According to Boltzmann law, it emits 3.94 1026 W.s toward space. Earth is located on average 1.5 108 

km from the sun;  having a 6378.137 km radius (Liou, 2002), it receives 1.8 1017 W.s. This energy is 

approximately 4000 times  of the World’s total primary energy consumption in 2016 (BP Statistical 

Review, 2017; Enerdata, 2017). First studies dealing with the conversion of solar energy into 

electricity date back to the mid-twenties (Albert Einstein, 1905; Bell labs, 1954; Fairley, 2008). 

However, at that time, the efficiency and cost of solar cells were not competitive with oil thermal 

energy. The interest in solar energy was renewed with the launch of the first satellites, as it was a 

reliable and renewable option for space applications (House et al., 1986). The combination of 

increasing energy needs (Birol, 2010), increasing concern for global warming (Pachauri and Meyer, 

2015), fossil fuel depletion (Shafiee and Topal, 2009) and cost decrease (IRENA, 2016), has 

established solar energy as a viable solution to meet the needs. According to IEA (2017) the global 

average levelized cost of electricity (LCOE) from utility-scale solar photovoltaic (PV) projects declined 

by 70% from 2010 to 2016. Nevertheless, there are high discrepancies in the LCOE between regions. 

The LCOE in 2016 for solar PV (IRENA, 2018) was ~ 0.1 USD per kWh in Europe whereas in Africa it 

was ~0.17 USD per kWh. The LCOE in Africa for 2016 was higher than the fossil fuel cost range (i.e. 

[0.05:0.15] USD per kWh).  

Regions with higher solar potential are located in the intertropical zone (ITZ) (Löf et al., 1966; 

Müller et al., 2015; Trieb et al., 2009). Nevertheless, the solar irradiance in the ITZ is highly variable 

due to the rapid cloud transformations that occur in this area (Aryaputera et al., 2015; Rossow et al., 

2013; Wheeler and Kiladis, 1999). Consequently, the solar energy available at the ground in this area 

is highly variable. This variability causes economical and technical challenges to fully exploit this 

resource. 

I.2 Thesis framework and goals 

 

French Guiana is a French territory located in the ITZ. This territory has fragile supply and demand 

equilibrium because it has to produce its energy locally. From 2009 to 2014 French Guiana’s 

population increased on average of 2.4% each year (INSEE: Rémi Charrier, 2017). The 2030 

demography projection Tab. I.1 shows that this trend will be magnified. Based on these projections, 

EDF the historical energy provider in France assessed that there will be an increase of electricity 

consumption that need to be addressed (Ministry of the environment, 2016a). 

Tab. I.1Projection of population evolution and electricity needs. The electricity production is based on 
the BPEOD reference scenario. The population evolution is based on the INSEE projection as reported 
in the PPE (Ministry of the environment, 2016a) 

 2015 2020 2025 2030 

Population number ~280 000 ~330 000 ~297 000 ~380 000 

Electricity needs GWh 879 1026 1158 1280 
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The multiannual energy plan-programmation pluriannuelle de l’énergie (PPE) (Ministry of the 
environment, 2016a) aims to meet the electricity needs using renewable energies (REs). Previous 
studies (Fillol et al., 2017) showed that French Guiana has a high solar potential. The global horizontal 
irradiance (GHI) ranges between 1650 and 2000 kWh/kWc/year; the direct normal irradiance (DNI) 
ranges between 1850 and 2250 kWh/kWc/year. Therefore, solar energy will be a driving force to 
meet the growing demand in electricity. In 2014, solar photovoltaic has a 6% (48 GWh) share in 
French Guiana electrical mix with an installed capacity of 34 MW (Ministry of the environment, 
2016a). The goal set for French Guiana is to increase this installed capacity by 111.7% by 2023. As an 
intermittent RE source, the integration of high loads of solar photovoltaic output into the electricity 
grid introduces instabilities (Clean Energy Council, 2017; IER, 2013; Zoulias: CRES, 2016). This issue 
led the government to set in 2018 a 35% penetration threshold for intermittent RE sources. In 2012, 
a penetration rate of 22% was already reached in French Guiana (Dambreville, 2014). Increasing the 
intermittent REs installed capacity may, on the one hand, provide enough electricity but on the other 
may destabilize the grid. Various solutions were suggested to increase the penetration of 
intermittent REs and ensure, at the same time, grid safety. These solutions can be classified into five 
categories (Zoulias: CRES, 2016): 
 
-use thermal fossil fuel power plant  
-update the electricity grid  
-use energy storage systems 
-use geographical information systems 
- forecast the incoming solar energy  

 
The first solution deals with the use of fossil fuel power plants as backup production systems. 

As the electricity production from REs depend on the weather conditions, it cannot meet user’s 

needs consistently. Fossil fuel power plants have low inertia, they can increase or decrease (i.e. 

ramp) the electricity production quickly to meet user’s needs and ensure grid stability (Ministry of 

the environment, 2016a). In 2014, thermal fossil fuel represents in French Guiana an installed 

capacity of 127.4 MW and this capacity is to increase up to 160 MW by 2030 (Ministry of the 

environment, 2016a). 

The second solution deals with extending the grid, improving transport lines and incorporating 

grid elements with “smart” functionalities in order to balance supply and demand. Extending the grid 

allows importing and exporting power with the neighboring countries. This extension helps in 

maintaining the equilibrium between supply and demand, which in turn helps in stabilizing the grid. 

Inverters are grid devices that feed solar power into the grid, converting the power from direct 

current to alternating current (Táczi and Szörényi, 2016). These devices cut off the solar plant output 

to the grid if they detect an abnormal state. As solar energy becomes more and more important if all 

grid inverter cut off all the solar plant output, it can result in system instabilities. Therefore, each 

inverter of the grid should vary on its own, adapting the cut-off frequency to grid state (IRENA, 2016). 

To best of the author knowledge this technology has not yet been implemented in French Guiana. 

Fig. I.1 shows the 2014 French Guiana’s electricity grid; it is 414 km long and is not connected to 

neighboring countries. Grid lines extend from Saint Laurent to Cayenne. Feasibility studies of grid 

extension to neighboring countries are planned for 2018 (Ministry of the environment, 2016a). 

The third solution is to increase the penetration of intermittent renewable energy into the 

electricity grid and ensure grid safety by using energy storage systems (IRENA, 2016). Energy storage 

systems allow storing electricity from variable renewable generation when the production exceeds 

the demand (IRENA, ETSAP, 2015). The energy previously stored can then be supplied upon demand, 



 

14 
 

when renewable energy production is not available or insufficient. Energy storage systems increase 

system flexibility and provide supply security. In 2014, the available energy storage systems in French 

Guiana are distributed amongst the 2 PV plant of 5 MW installed capacity. By 2023, out of the 

53 MW intermittent REs installed capacity, 45 MW will be backed up by energy storage systems. 

However, energy storage systems require high investments. The cost of a PV facility with backup 

production systems is estimated to be 3100 k€/MW whereas the cost of a PV facility without backup 

is estimated to be 2900 k€/MW (Ministry of the environment, 2016a). 

The fourth solution deal with the use of Geographical Information Systems (Zoulias: CRES, 

2016). This tool is used to identify the most suitable locations to install REs power plants with respect 

to both energy potential and surrounding facilities that favor grid stability. 

The fifth solution is to forecast the solar energy available to solar power plants in order to 

increase the penetration of solar energy into French Guiana’s electricity grid. 

In this thesis we consider the fourth and fifth solutions applied in the ITZ. 

 

Fig. I.1 French Guiana electricity grid (Ministry of the environment, 2016a) 

 

II. Manuscript outline 

 

This thesis dissertation aims to answer the following scientific issue: how could the solar irradiance 

be assessed and forecasted in French Guiana to increase the penetration rate of this intermittent 

renewable energy into the electricity grid? Weather conditions in French Guiana are driven by the 

physical phenomena in the ITZ; consequently, methods applied in French Guiana can be extended to 

all the ITZ. 



 

15 
 

 To answer this scientific issue, we use two tools: Heliosat-II method (H-II) and weather and research 
forecast (WRF) numerical weather prediction model (NWP). We used these tools in order to produce 
improved GHI estimates in French Guiana and the ITZ.  
 
The first chapter introduces the thesis and the research issue. The second chapter presents a 
modification to H-II; with this modification H-II can account for cloud absorption. The GHI estimates 
from modified H-II provide tools for decision making in French Guiana. These tools allow identifying 
the most suitable locations to install solar facilities in French Guiana with respect to both solar 
potential and surrounding facilities favoring grid stability. In the third chapter we first study the 
accuracy of the GHI forecasts from integrated forecast system (IFS) and global forecast system (GFS) 
NWP models in French Guiana, La Reunion and Singapore. We validate the accuracy of these 
downloaded products by comparison with ground measurements from these three territories 
located in the ITZ that have tropical climate. This study aims to fill the gaps in the accuracy of global 
NWP model in the ITZ. Secondly, we propose a methodology to calibrate WRF to produce improved 
GHI forecasts in the ITZ. The goal is to restrain and select the minimum number of simulations to run, 
to obtain improved GHI forecasts compared to a non-calibrated NWP model. This methodology to 
calibrate WRF is validated in French Guiana by comparison with the GHI forecasts of AROME and 
ground measurements. The fourth chapter deals with the use of an hybrid 3D variational (3D-Var) 
ensemble transform Kalman filter (ENTKF) to further improve the GHI forecasts of WRF calibrated for 
French Guiana. This methodology originally used in the tracking of extreme convection events such 
as cyclones is applied for the first time for GHI forecasts. Its application in French Guiana allows us to 
obtain an improved GHI forecast which makes monitoring the electricity production from solar 
facilities easier. In the fifth chapter, we summarize and conclude thesis. 
 
The research undergone in the second chapter is published in solar energy journal whereas the 

research on IFS, GFS, WRF and AROME from chapter three were submitted to journal for publication 

but were not published yet at the time of thesis dissertation submission.  

Note: In this manuscript we aimed to remain consistent with notations and abbreviations. 

Consequently, notations and abbreviations are explained only when they are first introduced. For 

later mention to these notations and abbreviations, the reader is invited to refer to the 

nomenclature and definition sections. 
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CHAPTER II : Improving ground 
irradiance assessment in the 

intertropical zone 
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I. Modeling and measuring the solar irradiance at the ground 

 
The solar irradiance at the ground that may be converted into electricity is a function of the 
irradiance at the outer edge of the atmosphere and the atmosphere constituents as seen in Fig. II.1. 
To describe this quantity we first define relevant radiometric and geometric variables. Second we 
describe how the outer edge of the atmosphere solar irradiance is computed. Third we discuss the 
measurement devices for the global component of the solar radiation and quality control 
procedures. Last we discuss the modeling of the solar radiation at the ground and the metrics used to 
validate the accuracy of a model. 
 

 
 

Fig. II.1 Earth radiation budget credit American meteorological society (AMS). 
 

I.1 Concepts and definitions 

 

I.1.a Solar constant Io 

 
The solar constant 𝐼0 is the total amount of solar energy reaching the top of the atmosphere at the 
mean distance between the sun and the earth across a surface of unit area normal to the solar beam. 
The solar constant is computed from the energy 𝐹0 emitted from the sun using an energy 
conservation principle (Liou, 2002): 
 

I0 = F0 (
rs
ro
)2, II.1 

 
where 𝑟𝑠  and 𝑟𝑜 are the sun radius and earth-sun mean distance respectively; these variables are 
expressed in m. 𝐹0 is the energy emitted from the sun; its value is given by the Boltzmann law for 
black bodies. 𝐹0  and  𝐼0  are expressed in W/m². The ratio 𝜀 between the mean earth-sun distance 
and the instantaneous earth-sun distance is the sun correction factor, its approximation can be found  
in (Mather and Koch, 2011). 

I.1.b Solar zenith angle 𝜽𝟎, 𝝁𝟎 

 
The solar zenith angle is the angle between the local zenith and the center of the sun disc. It is a 
function of the hour angle h, the sun declination 𝛿  and the local latitude ϕ and writes: 
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μ0 = cosθ0 = sinφ sinδ + cosφ cosδ cosh II.2 

 

 
Fig. II.2 schematic representation of the solar zenith angle 𝜃0, sun declination δ, the hour angle h 

(Liou, 2002) 

I.1.c Azimuth ∅ 

 

The azimuth ∅ is the angle between a reference direction (here the north) and a line from the 

observer to a point of interest (here the sun) projected on the same plane as the reference direction 

orthogonal to the zenith. 

 

Fig. II.3 schematic representation of the azimuth angle ∅ (Sidek et al., 2014) 
 

I.1.d Radiance 𝑳, radiation  

 
The monochromatic radiance 𝐿λ or luminance is the amount of radiant energy 𝑑𝐸λemitted by an 
element of area 𝑑𝐴 in a specified wavelength interval [𝜆, 𝜆 + 𝑑𝜆] , in a direction 𝑑𝛺  and during a 𝑑𝑡 
time span. The radiance 𝐿λ is an instantaneous value, it is expressed in W/m3.sr. 
 

Lλ =
dEλ

cosθ dΩ dλ dt dA  
 

II.3 

 
Radiation is the accumulation of radiance over a time span. If the radiance is monochromatic, it is 

expressed in J/m3.sr. The total or polychromatic radiance (radiation) is the integration over all 

wavelengths of the monochromatic radiance (radiation); it is expressed in W/m2.sr (J/m2.sr). 

I.1.e Irradiance 𝑬, Irradiation 
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The monochromatic irradiance or emittance is the radiant flux received from all directions by an 

element of area 𝑑𝐴. The radiance 𝐸λ is an instantaneous value; it is expressed in W/m3. 

Eλ = ∫Lλ 
 

Ω

cosθ dΩ 
II.4 

Irradiation is the accumulation of irradiance over time. If the irradiance is monochromatic it is 

expressed in J/m3. The total or polychromatic irradiance (irradiation) is the integration over all 

wavelengths of the monochromatic irradiance (irradiation); it is expressed in W/m2 (J/m2). 

 

I.1.f Top of atmosphere irradiance, GTOA 

 

The top of atmosphere irradiance (𝐺𝑇𝑂𝐴) is the solar flux density at the top of the atmosphere when 

the instantaneous and mean earth-sun are 𝑟𝑠 and 𝑟𝑜 respectively, and the sun is located by the solar 

zenith angle 𝜃0 in radians.  

GTOA = I0 μ0 II.5 
 

GTOA and I0are expressed in W/m2. 

I.1.g Global horizontal irradiance, Global horizontal irradiation 

 

The global horizontal irradiance (GHI) is the irradiance 𝐸λ received on a horizontal surface located on 

the ground. 

 

Fig. II.4 schematic representation of angles involved in radiometric quantities (Liou, 2002) 

The global horizontal irradiance is composed by two components: the irradiance received directly in 

a straight line from the sun on a normal surface (DNI) and the irradiance received on the ground after 

multiple scattering in the atmosphere (DHI). 

𝐺𝐻𝐼 = 𝑐𝑜𝑠(𝜃0 ) . 𝐷𝑁𝐼 + 𝐷𝐻𝐼 II.6 
The global horizontal irradiation is the accumulation of GHI over a time span. The GHI and global 

horizontal irradiation are expressed in W/m2 and J/m2 respectively. 
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I.1.h Clear sky model 𝑮𝒄 

 

A clear sky model 𝐺𝑐 approximates the maximal irradiance value available at the ground under 

cloudless sky conditions; it accounts for the depletion caused by aerosols and water vapor. 𝐺𝑐 always 

depends on the solar zenith angle; it also requires a varying number of other inputs data that 

describe the local atmospheric conditions. According to Gueymard (2012a) these input parameters 

are typically less than or equal to eight. 

I.1.i Clearness index 𝑲𝒕 and Clear sky index 𝑲𝒄 

 

The clearness index 𝐾𝑡 is the ratio of the GHI to the irradiance outside the atmosphere. The clear sky 

index 𝐾𝑐 instead divides the GHI by the clear sky atmosphere irradiance. Both 𝐾𝑐 and 𝐾𝑡  serve as 

proxies for the atmosphere transmission factor; these dimensionless numbers are expressed as 

follows: 

Kt =
GHI

GTOA
 𝑎𝑛𝑑 

II.7 

 

𝐾𝑐 =
𝐺𝐻𝐼

𝐺𝑐
. 

II.8 

 

Clear sky conditions are defined for Kc > 0.65 or Kt > 0.7; cloudy sky conditions are defined for 

0.4 < Kc < 0.65  or 0.2 < Kt < 0.7 and overcast conditions for  Kc < 0.4 or Kt < 0.2  (Aryaputera 

et al., 2015; Yousif et al., 2013). There is no consensus whether to use clear sky index or clearness 

index (Smith et al., 2017). The clear sky index allows the removal of diurnal and seasonal signals from 

a given set of radiation data (Langella et al., 2016), besides it is less dependent to the air mass than 

the clearness index. Nevertheless, the clear-sky index subject to many errors due to the clear sky 

model input parameters. 

I.1.j Albedo, reflectance and reflectivity  

 

The monochromatic bidirectional reflectance is defined as the ratio of the radiant flux reflected by a 

surface to the incoming radiant flux (Schaepman-Strub et al., 2006). It is a dimensionless number and 

is expressed mathematically as follows: 

ρ(T, λ, θi, ϕi, θr, ϕr) =
dLr(T, λ, θr, ϕr)

dLi(T, λ, θi, ϕi) 
. 

II.9 
 

 

Where 𝜃𝑖 and 𝜙𝑖 give the direction of the incoming radiance 𝑑𝐿𝑖; 𝜃𝑟 and 𝜙𝑟 the direction of the 

reflected radiance 𝑑𝐿𝑟. T is the medium temperature. According to the International Commission on 

Illumination CIE (2011), reflectivity is distinguished from reflectance by the fact that reflectivity is a 

value that applies to thick reflecting objects. 
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 The albedo is the ratio of the radiant flux reflected from a unit surface area into the whole 

hemisphere to the incident radiant flux of hemispherical angular extent. Consequently, in Eq.II.9, the 

albedo is defined when 𝜃𝑟 = ϕr = 2𝜋 (Schaepman-Strub et al., 2006).  

When the term surface reflectance is used for remote sensing it implies that narrow waveband or 

single wavelength is considered. Surface albedo, on the other hand, is used as a substitute for the 

integrated hemispherical albedo, of several wave-lengths (Duguay and LeDrew, 1992). 

I.1.k Absorptance, absorption coefficient, absorptivity  

 

The absorptance is defined as the ratio of the radiant flux absorbed by a surface to the incoming 

radiant flux. It is a dimensionless number and is expressed mathematically as follows: 

α(T, λ, θi, ϕi) =
dLa(T, λ, θi, ϕi)

dLi(T, λ, θi, ϕi) 
. 

II.10 
 

 
According to Boulet et al., (2015) absorptance and absorption coefficients are inter changeable; yet 
absorptance refers to volumetric properties whereas absorptivity is used for surface properties. 
However, as showed by the literature review of Hu et al.(2002) there are still ambiguities in the 
usage of these optical terms. 
 

I.1.l The emissivity 

 

The emissivity is defined as the ratio of the ratio of the radiance of a specific object or surface to that 

of a standard black body. It is a dimensionless number and is expressed mathematically as follows: 

εe(T, λ, θ, ϕ) =
dL(T, λ, θ, ϕ)

dL0(T, λ) 
. 

II.11 

 

I.1.m Scattering 

 

Scattering (diffuse reflection) similarly to reflection redirects an incoming radiation stream. Contrary 

to the reflection, there is a total absorption and emission of the incoming particle or photon. 

Scattering phenomenon happens when the surface is rough relative to wavelengths whereas 

reflection happens when the surface is smooth. To characterize the angular distribution of the 

scattered particle or photon the phase function 𝑝 is used. It describes photons with initial direction 

Ω′⃗⃗ ⃗⃗ (𝜇′, 𝜙′) that follow the direction Ω⃗⃗⃗(𝜇, 𝜙) after single or multiple scattering such that Eq. II.12 is 

verified. 

∫ p(λ, Ω⃗⃗⃗, Ω′⃗⃗ ⃗⃗ , t)
 

4π

 dΩ′ = 1. 
II.12 
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Fig. II.5 schematic representation of scattering angle for an incoming ray (In) in the direction 

𝛺⃗⃗(𝜇, 𝜙)that is deviated in the direction 𝛺′⃗⃗⃗⃗⃗(𝜇′, 𝜙′) (Liou, 2002) 

For spherical geometry, the scattering angle is related to the incoming and outgoing directions 

following Eq.II.13 as shown Fig. II.5 

cosΘ = μμ′ + (1 − μ2)
1
2 (1 − μ′2)

1
2 cos(ϕ′ − ϕ). 

II.13 
 

 

I.1.n The transmittance and transmissivity 

 

The transmittance or transmissivity Τ is the ratio of the radiant flux directly transmitted after passing 

through a medium (atmosphere) to the amount of radiant flux that would have passed the same 

distance through a vacuum. It is the amount of light that remains after the absorption and scattering 

by the media. Τ is related to the absorptance and reflectance as follows: 

Τ + ρ + α = 1. II.14 
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I.2 Modeling the extraterrestrial irradiance 

 

The top of atmosphere irradiance (𝐺𝑇𝑂𝐴) is a function of astronomical geometric parameters 

(Rigollier et al., 2000), it is defined Eq.II.5. Fig. II.6 shows the spectral distribution of the top of 

atmosphere irradiance. 

 

Fig. II.6 Solar radiation spectrum credit geosciencebigpicture 

The accumulation over time of the top of atmosphere irradiance is the top of atmosphere irradiation. 

Its expression can be found below: 

GTOA,t = ∫ GTOA dt
sunset

sunrise

. 
II.15 

 

Firstly, substituting the solar zenith angle expression Eq.II.2 and II.5 into Eq.II.15; secondly, 

expressing the time in function of the hour angle and earth angular velocity; lastly, assuming that the 

variation of the earth-sun distance in one day can be neglected yields (Liou, 2002): 

GTOA,t  ≅  
Io ε

π 
 (sinφ sinδ H + cosφ cosδ sinH), 

II.16 

 

where H represents a half-day expressed in radians. 𝐺𝑇𝑂𝐴,𝑡 is expressed in J/m². 

I.3 Instruments for measuring the GHI and quality control procedures 

 

In manuscript only the global horizontal (GHI) component of the solar irradiance is studied. We do 

not consider the direct normal (DNI) and the diffuse horizontal parts (DHI) because the French 

weather services in French Guiana do not measure them. 
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I.3.a Instruments for measuring the GHI  

 

The GHI is measured by two types of radiometers: thermopile and photodiode (e.g photoelectric or 
silicon) pyranometers (Driesse et al., 2016; Kleissl, 2013; Myers, 2013; Sengupta et al., 2015). They 
differ from each other by the type of sensor they use to infer the amount solar irradiance received.  
 

 
 
 
 
 
 
 
 
 
 
 
 

Thermopile pyranometers measure indirectly the irradiance by quantifying the temperature 
difference between two surfaces: one absorbing the other non-absorbing. These surfaces are in 
contact with two metals with different heat capacities called thermocouple. When the absorbing 
surface of the thermopile is heated by the incident solar irradiance it creates a thermal flux upon the 
thermocouple junction. Therefore, this junction produces a voltage proportional to the difference in 
temperature (Badescu, 2008; Myers, 2013). A commonly used combination is the T type 
thermocouple, consisting of junctions of copper and constantan; it produces about 40 microvolts per 
degree centigrade.  

 

Photodiode pyranometers measure indirectly the irradiance by quantifying the 
photocurrent generated in response to an incident irradiance flux. Photodiode pyranometers are less 
expensive and have a lower response time than thermopile pyranometers. The response time of 
thermopile pyranometers ranges between 1 and 240s (Sen, 2008) whereas the response time of 
photodiode pyranometers is approximately 10µs (Patil et al., 2013). Nevertheless, photodiode 
pyranometers are less accurate than most thermopile pyranometers (Badescu, 2008). A large part of 
photodiode pyranometers inaccuracies are related to their narrow spectral responses and or related 
to calibration issues (Kleissl, 2013). Thermopile pyranometers are sensitive to the whole shortwave 
spectrum whereas photodiode pyranometers have a narrow spectral sensitivity range: 350–1000 nm 
(Badescu, 2008). The most common solid-state detector used on solar photodiodes is crystalline 
silicon (Badescu, 2008; Myers, 2013). 

 
 According to Kleissl (2013), Younes et al. (2005), Myers (2013) and Sengupta et al. (2015) the 
measurement uncertainty of pyranometers are associated with: the calibration of the 
instrumentation, the data acquisition equipment, and the data processing step. The uncertainties 
related to the calibration process include the pyranometer spectral response, temperature response, 
non-linearity, aging and longwave radiation errors. The uncertainties related to the data acquisition 
include the error associated with the measurement of the sensor signals and environmental 
influences such as the cosine, azimuth and zenith response. The Uncertainties due to data processing 
results for instance from the average of sub-hourly irradiance measurements to hourly 
measurements.  
 

Fig. II.7 thermopile (left) and photodiode (right) pyranometer. Source Wikipedia, Licor 
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Based on these criteria, the World Meteorological Organization (WMO) classifies pyranometers into 
three categories based on their accuracies: secondary standard, first class and second class. Tab. II.1 
shows the characteristic of each category. 
 
 
Tab. II.1 WMO classification of pyranometers, extracted from (Sen, 2008) 

Characteristics Secondary 
standard 

First 
 class 

Second 
class 

Resolution (smallest detectable change in W/m²) ±1 ±5 ±10 

Stability (percentage of full scale, change per year) ±1 ±2 ±5 

Cosine response (% deviation from ideal at 10 ° elevation  
on a clear day) 

±3 ±7 ±15 

Azimuth response (% deviation from ideal at 10 ° 
elevation on a clear day) 

±3 ±5 ±10 

Temperature response (% maximum error due to change 
of ambient temperature within the operating range) 

±1 ±2 ±5 

Non linearity (% of full scale) ±0.5 ±2 ±5 

Spectral sensitivity (% deviation from mean absorbance 
0.3 -3μm ) 

±2 ±5 ±10 

Response time (99% response) <25s <60s <240s 

 

In French Guiana, French weather services use a First class pyranometers. They are thermopile of 

brand Kipp & zonen type CM6B. 

I.3.b Quality control procedures 

 

Before comparing global NWP GHI forecasts to ground measurements, one should quality control 

(QC, ore quality check) the ground data used as reference. QC procedures aim to detect faulty 
measurements related to calibration of the instrumentation, data acquisition equipment, and or data 
processing. QC procedures can be classified into four categories (Espinar et al., 2011): 
 
-QC based on redundancy 
-QC based on limits within range 
-step check QC 
-and consistency QC. 
 
QC based on redundancy use two instruments for measuring the same meteorological variable. 
These measurements from two different instruments are then compared and should be equal within 
the coupled uncertainty of both instruments. However, this approach is expensive; measurement 
sites do not often have several instruments that measure simultaneously the GHI. QC based on limits 
within a range makes sure that GHI measurements comply to physical limits and statistical 
knowledge. Statistical knowledge allows accounting for rare observation cases (Espinar et al., 2011). 
Step checks QC aims to detect unrealistic jumps in values from two consecutive GHI measurements 
or stagnation within a given time interval. Consistency QC consists in measuring simultaneously at 
the same location the three components of the solar radiation, i.e. GHI, DNI, DHI (Eq.II.6) and 
verifying their inner consistencies. To achieve maximum benefit the WMO combining these QC 
procedure starting by the QC based on limits within a range then step and consistency check (WMO, 
2007). 
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In French Guiana the GHI is measured by French weather services (Météo-France) every 15 min, then 

accumulated to hourly values. These hourly values are then stored and released to the users. As sub-

hourly measurements are not available in 2016, this QC procedure is not applicable. Besides, only the 

GHI is measured and only one pyranometer is available in each measurement sites; therefore, the 

redundancy and consistency QC cannot be applied. 

Tab. II.2 shows the different types of limits within range QC procedures found in the literature. Lower 

and higher limit values apply to daylight time: between sunrise and sunset. This table shows that 

Espinar et al. (2011) and Helioclim (Younes et al., 2005) are the most constrained QC. They share the 

same lowest GHI value; however, their highest observable values differ. The lowest value was set up 

according to the analysis of collected data and clearness index value from the European Solar 

Radiation Atlas for solar altitude greater than 2° (Geiger et al., 2002). Helioclim (Younes et al., 2005) 

maximum observable value involves the use of a clear sky model (Rigollier et al., 2000). Espinar et al. 

(2011) higher limit is defined as the minimum between Baseline Surface Radiation Network (BSRN) 

(Long and Dutton, 2002) and Muneer and Fairooz (2002) based limits. It has the advantage of 

accounting for rare observations using a constant. 

Tab. II.2 literature review of limits within range QC procedure 

QC Minimum range Maximum range 

(Espinar et al., 2011)  0.03 𝐺𝐻𝐼𝑇𝑂𝐴 min (1.2 𝐼0, 1.5 𝐼0   cos(𝜃𝑧)
1.2 + 100) 

Helioclim (Younes et al., 
2005) 
 

0.03 𝐺𝐻𝐼𝑇𝑂𝐴 min (1.1. 𝐺𝑐, 𝐺𝐻𝐼𝑇𝑂𝐴) 

CIE (Younes et al., 2005) 0 1.2  𝐼0 
Muneer (Muneer and 
Fairooz, 2002) 

0 min (1.2  𝐼0, 𝐺𝐻𝐼𝑇𝑂𝐴) 

BSRN (Long and Dutton, 
2002) 

-4 1.5 𝐼0   cos(𝜃𝑧)
1.2 + 100 

WMO (WMO, 2007) 0 1600 

Younes (Younes et al., 2005) none 𝐺𝑐 

 

Most QC procedures shown Tab. II.2 have restrictions on the minimum solar elevation angle they 

should be used for. Espinar et al. (2011) and Helioclim (Younes et al., 2005) QC are valid for solar 

altitude greater than 2° (Geiger et al., 2002). CIE (Younes et al., 2005), Muneer and Fairooz (2002) QC 

are valid only for solar elevation greater than 4°. Younes (Younes et al., 2005) QC is the most 

restrictive, it assumes that the solar elevation is greater than 7°. Restrictions on the solar elevation 

aim to limit the cosine effect error at sunrise and sunset. The more acute the angle of the sun (at 

sunrise and sunset), the greater the error associated with the cosine effect is. Besides, at low sunrise 

and sunset angle the change of GHI value might be too small to be detectable change by 

pyranometers (Sen, 2008).  

When disproportional number of observations are rejected by the QC it may either be an indication 

of strongly biased data that should not be considered as outliers or an indication that the QC is not 

adequate and should be further studied and possibly modified (Espinar et al., 2011).  
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I.4 Modeling the solar irradiance depletion due to the atmospheric constituent: the radiative 

transfer equation 

 

The following equation is the radiative transfer equation (RTE); it describes the extinction and 

generation process of radiance through the atmosphere path (Liou, 2002; Qu, 2013). 

1

𝑐
 
𝜕𝐿𝜆(𝑟, 𝛺⃗⃗, 𝑡)

𝜕𝑡
+ (𝛺⃗⃗. 𝛻⃗⃗)𝐿𝜆(𝑟, 𝛺⃗⃗, 𝑡) = −𝛽𝑒,𝜆 𝐿𝜆(𝑟, 𝛺⃗⃗, 𝑡) + 𝛽𝑒,𝜆 𝐽𝜆(𝑟, 𝛺⃗⃗, 𝑡), 

II.17 
 

 

where 𝐿λ(𝑟, Ω, t) is the monochromatic radiance in the position  𝑟 from direction Ω⃗⃗⃗ at a time t.  
 
The first term of the left-hand side (lhs) describes the radiance time evolution within a domain 
whereas the second term of the lhs describes the radiance exchange through the domain 
boundaries. The first term of the right hand side (rhs) describes the extinction causes by the 
absorption and scattering (Eq.II.18) whereas the second term of the rhs describes the generation of 
radiance by source terms (Eq.II.19). The extinction coefficient βe,λ and radiance source term Jλare 
expressed as follows:  
 

𝛽𝑒,𝜆  = (𝛽𝑠,𝜆 + 𝛽𝑎,𝜆) 𝑎𝑛𝑑 II.18 
 

 

Jλ(r⃗, Ω⃗⃗⃗, t) =
βs,λ

4π βe,λ
∫ Lλ(r⃗, Ω, t) p(λ, Ω⃗⃗⃗, Ω

′⃗⃗⃗⃗⃗)d
 

Ω′⃗⃗ ⃗⃗ ⃗
Ω′ +

βa,λ
 βe,λ

 Bλ(r⃗, Ω⃗⃗⃗, t). 
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Where 𝛽s,λ and 𝛽a,λ are the scattering and absorption coefficients respectively. The source term Jλ 

includes photons scattered inward the domain and photons emitted by the medium. In Eq.II.19, 
𝐵𝜆(𝑟, Ω, t) is the radiant flux emitted by the atmosphere, mostly in the thermal infrared (Liou, 2002); 

𝑝 (𝜆, Ω⃗⃗⃗, , Ω′⃗⃗ ⃗⃗ ) is the phase function defined Eq.II.12.  

 
The radiance stationarity approximation is often made to simplify the RTE (Liou, 2002; Qu, 2013). 

Applying these assumptions to Eq.II.17 yields: 

(Ω⃗⃗⃗. ∇⃗⃗⃗)Lλ(r⃗, Ω⃗⃗⃗)

βe,λ
= −Lλ(r⃗, Ω⃗⃗⃗) +

ωλ
4π
∫ Lλ(r⃗, Ω⃗⃗⃗) p(λ, Ω⃗⃗⃗, Ω

′⃗⃗⃗⃗⃗)d
 

Ω′⃗⃗ ⃗⃗ ⃗
Ω′ + (1 − ωλ)Bλ(r⃗, Ω⃗⃗⃗), 
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where, 𝜔𝜆 =
𝛽s,λ

 𝛽e,λ
 is the single scattering albedo. The scattering term may be written as a sum of 

single scattering and multiple scattering terms. 
 

ωλ
4π
∫ Lλ(r⃗, Ω⃗⃗⃗) p (λ, Ω⃗⃗⃗, Ω′⃗⃗ ⃗⃗ ) d
 

Ω′⃗⃗ ⃗⃗⃗
Ω′

=
ωλ
4π
 Fo p (λ, Ω⃗⃗⃗0, Ω′⃗⃗ ⃗⃗ ) e

−τλ +
ωλ
4π
∫ Lλ (r⃗, Ω′⃗⃗ ⃗⃗ )  p (λ, Ω⃗⃗⃗, Ω′⃗⃗ ⃗⃗ ) d
 

Ω′⃗⃗ ⃗⃗⃗
Ω′, 

II.21 
 

 

where Ω⃗⃗⃗0  shown Fig. II.9 gives the direction of incoming TOA radiation 𝐹𝑜 (Fig. II.9; Eq.II.1).For 
computations speed purposes the atmosphere is considered as plane-parallel in localized portions 
(Liou, 2002). The plane-parallel atmosphere hypothesis considers the atmosphere as a sum of vertical 
atmospheric layers. Each layer is characterized by homogeneous properties and bordered by the 
bottom and top infinite plates called boundaries. 
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Fig. II.8 Plane Parallel atmosphere 

Applying these assumptions to Eq.II.20 and assuming the angular symmetry 𝜃 of the radiance yields 
(Fouquart et al., 1991; Liou, 2002; Qu, 2013): 
 

μ
dLλ(τ, μ, ϕ)

dτ
= Lλ(τ, μ, ϕ) −

ωλ(τ)

4π
 F0 p(τ, μ0, ϕ0, μ

′, ϕ′)e
−τλ
μ

−
ωλ(τ)

4π
∫ ∫ Lλ(τ, μ

′, ϕ′)
1

−1

p(τ, μ, ϕ, μ′, ϕ′) dμ′dϕ′
2π

0

+ (1 − ωλ(τ))Bλ(τ, μ), 
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where 𝜇,  𝜇′and 𝜇0  angles are defined Fig. II.9. τ is the optical depth, it is expressed as follows: 

τ(z) = ∫ −βe,λ

z2

z1

dz.   
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Eq.II.22 describes the effect of the optical constituents of the atmosphere (cloud water droplets, 
cloud ice crystals, water vapor, ozone, aerosols, carbon dioxide and other minor trace gases) on the 
transfer of radiance for each atmospheric layer 𝑑𝜏. 
 
 A common approximation to Eq.II.22 is to consider that the azimuthal dependence of the radiance 
can be neglected; then we can define the azimuthally average radiance and phase function as follows 
(Liou, 2002): 
 

Lλ(τ, μ) =
1

2π
∫ Lλ(τ, μ, ϕ)dϕ
2π

0

 𝑎𝑛𝑑 
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p(τ, μ, μ′) =
1

2π
∫ p(τ, μ, ϕ, μ′, ϕ′)dϕ′.
2π

0
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For simplicity Eq. II.22 can be split in two uncoupled equations, one that describes the beam 

component of the radiation 𝐿𝜆,𝑏(𝜏,𝜇) and the other the diffuse component 𝐿𝜆,𝑑(𝜏,𝜇). They are written 

as follows (Liou, 2002): 
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μ
dLλ,b(τ, μ)

dτ
= Lλ,b(τ, μ) 𝑎𝑛𝑑 
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μ
dLλ,d(τ, μ)

dτ
= Lλ,d(τ, μ) −

ωλ(τ)

2
 F0 p(τ, μ0, μ)e

−τλ
μ

−
ωλ(τ)

2
∫ Lλ,d(τ, μ)p
1

−1

(τ, μ, μ′) dμ′ + (1 − ωλ(τ))Bλ(τ, μ). 
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The beam component equation can be solved analytically; its solution is written as follows: 

Lλ,b(τ) = μ0I0 e
−τ/μ0 , II.28 

 
where 𝐿0 is the TOA radiance and 𝜇0 is the azimuth angle of the incoming solar radiation. 
 

A further simplification made to solve the diffuse component of RTE Eq.II.27 is to separate 
the contributions from shortwave and the contribution from longwave radiations. The overlap 
between these ranges is relatively small which allows treating the two types of radiative transfer and 
their source functions separately. Stephens (1984) indicates that Rayleigh scatter is dominant only 
for the shorter wavelengths, while liquid water absorption in clouds occurs only for the longer 
wavelengths. The transfer of shortwave radiation is not as complex as longwave radiation, since the 
problem of the simultaneous absorption and emission of radiation from layer to layer does not occur 
(Stensrud, 2009). These hypotheses simplify the complexity of the radiative transfer problem (Liou, 
2002); for shortwave the thermal emission 𝐵𝜆 can be neglected since scattering process is dominant 
(Stephens, 1984). The following subsection introduces the different method to solve the RTE. Since 
the shortwave radiation is of interest for solar PV because it generates significant PV power (Kleissl, 
2013), only the method dealing with downward shortwave radiation modeling is discussed in this 
manuscript. 
 

 
Fig. II.9 Transfer of solar radiation in plane-parallel layers, illustrating attenuation by extinction, a; 
multiple scattering, b; and single scattering of the unscattered solar flux, c. Source (Liou, 2002) 
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I.5 Input datasets for radiative transfer models 

 

To solve the RTE Eq.II.26, II.27; a knowledge on the optical state of the atmosphere is required. Tab. 
II.3 shows the input datasets commonly required by radiative transfer codes (ECMWF, 2016a; Kneizys 
et al., 1996; Mayer and Kylling, 2005; Qu, 2013; Ricchiazzi et al., 1998; Stensrud, 2009; Vermote et 
al., 1997). 

Tab. II.3 input dataset for radiative transfer code Source (ECMWF, 2016a; Stensrud, 2009; Stephens, 
1984) 

Variable Source 

Vertical profile of temperature - NWP model forecasts 
- Or climatology from measurements campaigns (ANDERSON et 
al., 1986) 

Vertical profile of pressure - NWP model forecasts 
- Or climatology from measurements campaigns (ANDERSON et 
al., 1986) 

Vertical profile of water vapor 
mixing ratio 

- NWP model forecasts 
- Or climatology from measurements campaigns (ANDERSON et 
al., 1986) 

Gas concentrations (Carbon 
dioxide, ozone and trace gases) 

- Climatology from chemistry transport model and satellite 
observations (Inness et al., 2013) 

Ground albedo -Climatology from satellites measurements (Schaaf et al., 2002) 

Ground emissivity -Climatology value (ECMWF, 2016a) 

Aerosol : Number concentration 
optical thickness 

-Climatology from satellites measurements (Nabat et al., 2013; 
Zubler et al., 2011) 
- Climatology from chemistry transport models (Tegen et al., 
1997) 

Cloud properties: content (liquid, 
ice, snow, water), optical thickness 

(𝜏) 

-Climatological value from satellites observations (Rossow and 
Schiffer, 1999) 
-or diagnosed from variable forecasted by NWP models 
(Bengtsson et al., 2017; Slingo, 1989; Stephens et al., 1990) 

Effective radius of  cloud particles -Climatological value from satellites observations (Rossow and 
Schiffer, 1999) 
-or diagnosed from variable forecasted by NWP models 
(Bengtsson et al., 2017; ECMWF, 2016a; Troccoli and Morcrette, 
2014) 

Single scattering albedo (wo) - approximated  as a function the effective radius of particles sizes 
(Stephens, 1984) 

Asymmetry parameter (g) -approximated as a function the effective radius of particles sizes 
(Hansen and Travis, 1974) 

Solar zenith angle -Computed from trigonometric formulas (Liou, 2002) 

Altitude -From digital elevation model (USGS, 2018) 
 

 
Climatological datasets shown Tab. II.3 are primarily inferred from satellite observations, 

atmospheric sounding and ground measurements that are combined using regressions (ANDERSON 

et al., 1986; Cionni et al., 2011). According to Cionni et al. (2011) this procedure introduces biases. 

For unobserved or sparsely observed variable multi-year simulations of global numerical weather 

prediction model may be used (Chin et al., 2000; Cionni et al., 2011).  
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These input datasets have different coverage, uneven and sometimes coarse resolutions. We found 
in the literature (ANDERSON et al., 1986) that vertical profiles of temperature, pressure and water 
vapor mixing ratio from climatology have a typical resolution of 1 km. NWP model  have higher 
spatial and temporal resolution in; for Integrated Forecast System (IFS) the spatial resolution ranges 
between 20 and 6000 m (ECMWF, 2018). Nevertheless, the forecast evaluation of IFS (Richardson et 
al., 2013; Haiden et al., 2014, 2015, 2016) shows that its accuracy varies with the time of the year 
and the considered location. Besides the aerosol dataset currently used in a large number of 
operational center (ECMWF, 2016a; NOAA, 2016; Termonia et al., 2018) has a 5° by 4° spatial 
resolution and monthly temporal resolution. According to Nabat et al. (2013) the coarse spatial 
resolution of this dataset misrepresents the regional aerosol loads; this misrepresentation of aerosol 
loads lead to inaccurate irradiance estimates (Jimenez et al., 2015; Ruiz-Arias et al., 2013; Zhong et 
al., 2016). Consequently, to solve the RTE, lots of input datasets are required; these datasets despite 
being available worldwide have a coarse resolution and or rely on interpolation methods which 
misrepresent the regional variability and cause inaccurate assessment of the GHI. 
 

I.6 Accurate Methods to solve the radiative transfer equation for shortwaves  

 
Accurate methods to solve the RTE Eq.II.27 we found in the are the discrete ordinate 

(disort) and adding methods. However, these methods are not the preferred choice to assess the GHI 
operationally because they are computationally expensive and require a lot of input data. They are 
used in some NWP model to assess the GHI; however, the RTE is not solved for every model time 
step and or is solved in coarser grid than the NWP model resolution (ECMWF, 2016a; Ruiz-Arias et al., 
2013).   
 

Disort method uses Eq.II.27 as a starting point; the integral over all the directions 𝜇 is 

replaced by a summation over a finite number of quadrature points N (Liou, 2002). N is typically 

equal to 16 (Yang et al., 2016). Using Gaussian quadrature to approximate Eq. II.27 yields: 

μi
dLλ,d(τ, μi)

dτ
= Lλ,d(τ, μi) −

ωλ(τ)

2
 F0 p(τ, μ0, μi)e

−τλ
μ0

−
ωλ(τ)

2
 ∑ Lλ,d(τ, μi)ajp(τ, μi, μj)

N

j=−N

, 

II.29 
 

where 𝑎𝑗 are the Gaussian quadrature points.  

The second level of approximation in the disort method consists in expanding the radiance and phase 

function with Fourier cosine series. In case both are independent of azimuth Eq.II.24-II.25, they are 

written as follows: 

Lλ,d(τ, μi) = ∑ Lλ,d
m (τ, μi) 𝑎𝑛𝑑

N

m=0
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p(τ, μi, μj) = ∑  

N

m=0

∑ωl
mpl

m(τ, μi)pl
m(τ, μj)

N

l=m

. 
II.31 
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Substituting Eq.II.30 and Eq.II.31 into Eq.II.29 yields a system of 2N coupled equations with non-

constant coefficients. These equations describe the upwelling (Eq.II.32) and downwelling (Eq.II.33) 

radiance: 

μi
dLλ,d

m (τ, μi)

dτ
= Lλ,d

m (τ, μi) −
ωλ(τ)

2
 F0 ∑  

N

m=0

∑ωl
mpl

m(τ, μi)pl
m(τ, μ0)

N

l=m

e
−τλ
μ0

−
ωλ(τ)

2
∑ Lλ,d

m (τ, μi)aj ∑  

N

m=0

∑ωl
mpl

m(τ, μi)pl
m(τ, μj) 𝑎𝑛𝑑

N

l=m

N

j=−N
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−μi
dLλ,d

m (τ,−μi)

dτ

= Lλ,d
m (τ,−μi) −

ωλ(τ)

2
 F0 ∑  

N

m=0

∑ωl
mpl

m(τ,−μi)pl
m(τ, μ0)

N

l=m

e
−τλ
μ0

−
ωλ(τ)

2
∑ Lλ,d

m (τ,−μi)aj ∑  

N

m=0

∑ωl
mpl

m(τ,−μi)pl
m(τ, μj).

N

l=m

N

j=−N
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Eq.II.32 and II.33 assume that the medium consists of several adjacent homogeneous layers in which 

the single-scattering albedo and phase function are taken to be constant within each layer but 

allowed to vary from layer to layer. For large numbers of N, this system of equation is solved using 

numerical methods (Campbell, 1969; Stamnes et al., 1988; Stamnes and Conklin, 1984). 

Adding is an accurate method that allows calculating the shortwave radiative flux across 

multiple vertical levels. The underlying idea of the adding method is that knowing the reflection and 

transmission of two individual layers, one can deduce the reflection and transmission of the 

combined layer by calculating the successive reflections and transmissions between these two layers 

(Stensrud, 2009). Accounting for multiple reflections of the light beam in the two layers, as shown in 

Fig. II.10, the combined reflection and transmission functions are given by: 

{
 
 

 
 R12 = R1 + Τ̃1

∗
R1Τ̃1 + Τ̃1

∗
R2 R1

∗R2Τ̃1 + Τ̃1
∗
R2 R1

∗R2 R1
∗R2Τ̃1 +⋯

Τ̃12 = Τ̃2Τ̃1 + Τ̃2 R1
∗R2Τ̃1 + Τ̃2 R1

∗R2 R1
∗R2Τ̃1 +⋯

U = R2Τ̃1 + R2 R1
∗R2Τ̃1 + R2 R1

∗R2 R1
∗R2Τ̃1

D̃ = Τ̃1 +  R1
∗R2Τ̃1 +  R1

∗R2 R1
∗R2Τ̃1 +⋯
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Fig. II.10 Configuration of the adding method for two layers of optical depth 𝜏1 and 𝜏2respectively. 

The upward transmission and reflection of the ith layer are 𝛵̃𝑖
∗
and 𝑅𝑖

 , respectively whereas the 

downward transmission and reflection are 𝛵̃𝑖
 
and 𝑅𝑖

∗ . 𝐷̃ and 𝑈 are the the combined total 
transmission and reflection functions between layers 1 and 2. Source (Liou, 2002) 

In Eq.II.34 the infinite series can be replaced by a single inverse function such that: 

{
 
 

 
 ∑(𝑅1

∗𝑅2)
𝑛 =

1

1 − 𝑅1
∗𝑅2

= 1 + 𝑆,𝑤𝑖𝑡ℎ

𝑛≥0

𝑆 =
𝑅2 𝑅1

∗

(1 − 𝑅2 𝑅1
∗)
.
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As seen in Eq.II.26-II.27 the diffuse and beam component of the radiance can be treated separately. 

We can similarly separate the diffuse and direct components of the total transmission as follows: 

Τ̃i = Τi + e
−τi
μ′ ,   

II.36 
 

where 𝜇′ = 𝜇0 when transmission is associated with the incident solar beam and 𝜇′ = 𝜇 when it is 

associated with the emergent light beam in the direction 𝜇. 

On the basis of Eq.II.34, II.35 and II.36, a set of iterative equations for the computation of diffuse 

transmission and reflection involving the two layers may be written as follows (Liou, 2002): 

{
 
 
 
 

 
 
 
 

Q =  R1
∗R2

S = Q(1 − Q)−1

D = Τ1 + SΤ1 + Se
−τ1
μ0

U = R2D+ R2e
−τ1
μ0

R12 = R1 + Ue
−τ1
μ0 + Τ1

∗U

Τ12 = De
−τ2
μ0 + Τ2e

−τ1
μ0 + Τ2D
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In Eq.II.37 the product of any two parameters implies that integration over the solid angle (Fig. II.4) is 

to be performed so as to take into account all the possible multiple scattering contributions. 

Therefore, the product of A and B where they can be any of the parameters R,Τ, U, and D refers to 

the following equation: 

A1B2 = 2∫ A(τ1, μ, μ
′)B(τ2, μ, μ0)μ

′dμ′
1

0

. 
II.38 

 

 
In practice, one may begin with the computations for initial layers with small optical depths 
Δ𝜏 ≈ 10−8 so that the single scattering approximation is sufficiently accurate. Using the single 
scattering approximation one can find an analytical solution to Eq.II.22; this solution is written as 
follows: 

Lλ(τ, μ) = L(τ1, μ)e
−
(τ1−τ)
μ +

ω

4
F0p(μ,−μ0)∫ e

(−
(τ′−τ)
μ

+ 
τ′

μ0
) dτ′

μ
 and 

τ1

τ
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Lλ(τ, −μ) = L(0,−μ)e
−
−τ
μ +

ω

4
F0p(μ,−μ0)∫ e

(−
(τ′−τ)
μ

+ 
τ′

μ0
) dτ′

μ
.

τ1

τ
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Where 𝐿(𝜏, 𝜇)is the upward (reflected) and downward (transmitted) radiance for a finite atmosphere 

bounded on two sides at 𝜏 = 0 and 𝜏 = 𝜏1. Eq.II.37 are then used to compute the reflection and 

transmission functions for an optical depth of 2Δ𝜏. This procedure may be repeated until the 

desirable optical depth is reached (Liou, 2002).  

Adding and disort methods that are described  above assume a plane parallel homogeneous 
atmosphere; therefore, they cannot describe accurately the horizontal variations of optical 
properties induced by clouds (Barker et al., 2008; Oreopoulos et al., 2012; RÄISÄNEN et al., 2005). 
According to Oreopoulos et al. (2012) neglecting the horizontal variation in cloud optical depth leads 
to sizable bias on the estimated solar flux. To solve this issue, the fraction of cloud in the layer is 
modeled using method such as the maximum overlap, random overlap and Monte Carlo independent 
assumption column. They allow addressing columns whose layers are only partially filled by clouds 
which, in turn, overlapped vertically (Barker et al., 2008). 
 
To compute the broadband radiation calculations the radiance is first written in a flux form as follow 

(Pincus and Stevens, 2013): 

Fλ(τ) = ∫Lλ(τ, μ)

 

μ

μ dμ. 
II.41 
 

Eq.II.26-II.27 are then discretized using a quadrature formula written as follows: 

F(τ) =∑bg

G

g

Fλ,g(τ),   
II.42 
 

 
where 𝐹𝜆,𝑔 is the individual flux in the spectral interval defined by g and 𝑏𝑔 the quadrature points for 

the corresponding spectral interval. Tab. II.3 shows the spectral interval used in Rapid radiative 
transfer model RRTM (ECMWF, 2016a). 
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Tab. II.4 spectral interval choose in RRTM, extracted from (ECMWF, 2016a) 

Spectral intervals cm-1 Number of g-points Gases included 

Troposphere Stratosphere 

800-2600 12 H2O CO2 

2600-3250 6 H2O, CH4  
3250-4000 12 H2O, CO2 H2O, CO2 
4000-4650 8 H2O, CH4 CH4 
4650-5150 8 H2O, CO2 CO2 
5150-6150 10 H2O, CH4 H2O, CH4 
6150-7700 10 H2O, CO2 H2O, CO2 
7700-8050 2 H2O, O2 O2 
8050-12850 10 H2O  
12850-16000 8 H2O, O2 O2 
16000-22650 6 H2O  
22650-29000 6   
29000-38000 8 O3 O3 
38000-50000 6 O2, O3 O2, O3 

 

I.7 Approximate methods to solve the radiative transfer equation for shortwaves  

 

Radiative transfer parametrizations (RTPs) are simplified version of the sophisticated, rigorous 

radiative transfer models Eq.II.22 (Gueymard, 2012a). RTP are physical, semi-physical or statistical 

based methods. These methods aim to find the GHI value with a limited accuracy loss and faster than 

accurate methods. RTP are favored for operational purposes. 

I.7.a Statistical RTP 

 

Statistical RTPs are non-spectral model. They either use regression between irradiance and 
meteorological parameters; regression between irradiance and the digital count of satellite images or 
use historical measurements of irradiance to assess ground irradiance (Badescu, 2008; Noia et al., 
1993a, 1993b). Angstrom (1924) pioneered solar radiation statistical modeling; he used a linear 
relation to relate GHI and sunshine hours (Badescu, 2008; Sen, 2008): 

 
GHI

GTOA
= a + b 

S

S0
.   

II.43 
 

 
Where S is the monthly average of daily bright sunshine hours; which is the total hours when the 

sunlight is higher than a specified threshold value; a and b are Angstrom coefficients. The ratio 
𝑆

𝑆0
 is 

related to the cloud amount n as demonstrated by Davies et al. (1984). 

S

S0
= 1 − n.   

II.44 
 

Angstrom coefficients were derived using yearly GHI and sunshine duration measurements in 

Stockholm. A major difficulty of Angstrom (1924) relationship arises from the unicity of its 

coefficients: these coefficients depend on physical and spatial properties of the atmosphere at the 

region of interest (Badescu, 2008). Akinoǧlu (1991) tabulated Angstrom coefficient for 100 locations 
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and noticed a wide spread of values. Later, Ögelman et al. (1984) suggested the addition of a 

nonlinear term to Angstrom (1924) formulation. This model was validated in Turkey by Akinoǧlu and 

Ecevit (1990); results found showed an improvement of the GHI estimates compared to Angstrom 

(1924) original model.  

However, regression analyses are limited in their accuracies and the number of variables 

they can process. Studies showed that GHI can be correlated to several parameters (Elizondo et al., 

1994). Therefore, artificial neural networks were used to correlate GHI, sunshine and or 

meteorological variable because of their ability to deal with linear and nonlinear correlations 

between several variables (Zarzalejo et al., 2005). One of the pioneer of this research area is 

(Elizondo et al., 1994), he correlated the GHI to: daily precipitation, maximum and minimum daily 

temperature, day length, daily total. Several other parameters were also suggested as predictor: the 

location coordinate (Al-Alawi and Al-Hinai, 1998; Reddy and Ranjan, 2003; Sözen et al., 2004), the 

pressure (Al-Alawi and Al-Hinai, 1998; López et al., 2005), the relative humidity (Al-Alawi and Al-

Hinai, 1998; López et al., 2005; Reddy and Ranjan, 2003), the wind speed (Al-Alawi and Al-Hinai, 

1998; Reddy and Ranjan, 2003), the clear sky radiation (Elizondo et al., 1994), solar geometry angle 

(López et al., 2005; Zarzalejo et al., 2005), the clearness index (López et al., 2005), the relative air 

mass (López et al., 2005), the dew point temperature (López et al., 2005) and the precipitable water 

(López et al., 2005). According to Mao et al. (1999), the predictor choice is related to the 

geographical location. A major difficulty arises from the choice of relevant predictors. Having 

redundant predictors causes over learning which prevent the model to be applied generally to other 

datasets than the training dataset (Elizondo et al., 1994). López et al. (2005) suggested that the 

selection process should be done using an automatic relevance determination method (ARD). 

The launch of the first satellite promoted the use of statistical model using satellite 

images as input (House et al., 1986; Levanon, 1971). Statistical satellite methods establish a 

regression between the digital counts measured by the satellites radiometers and simultaneous 

ground irradiance values measured at the ground (Noia et al., 1993a). Tarpley (1979); Cano et al. 

(1986); Hay and Hanson (1978) pioneered the statistical modeling of solar irradiance using satellites 

images. Their methods were regularly enhanced, but their core principles remain unchanged. These 

methods may be generalized as follows: 

GHI

Gc
= a + bn + cn2.   a, b, c ∈ ℜ 
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Where n is called the cloud index; it is a measure effective cloud cover obtained using satellite 
measurements. 𝑎, 𝑏 and 𝑐 are either fixed parameters or parameters varying with n; they are 
determined with sets of satellite images and ground-based radiation measurements covering the 
same period. 
 
 For example, Rigollier et al. (2004) improved the model of Cano (1985) by adding a calibration 
relationship between the atmosphere emerging radiance and the numerical count measured by 
satellite sensors. Rigollier et al. (2004) also improved the model of Cano (1985) by adding a physical 
parameterization to describe the cloud and ground albedo, and adding several parameters such as 
the Linke turbidity factor and air mass to account for atmospheric extinction. The updated calibration 
step for the satellite digital count allowed processing images taken by different sensors (Rigollier et 
al., 2002a). Besides, to improve GHI estimates the cloud and ground albedo formulations that were 
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previously defined empirically were updated so that their new formulations are expressed using 
physical laws.  

I.7.b Semi-physical RTP 

 

Semi-physical RTPs attempt to model the absorption and scattering physical processes occurring in 
the atmosphere using physical principle; however, with parameters that are defined empirically. 
Semi-physical RTPs are non-spectral models, they treat the atmosphere as plane parallel and account 
for scattering (Davies et al., 1984). They generally approximate the downward shortwave radiative 
transfers as follows (Davies et al., 1984; Stensrud, 2009; Noia et al., 1993b):  
 

GHI = GTOA T̅ (𝜇0)f(ρg). II.46 

 

𝑇̅ is the atmospheric transmission function averaged over the entire solar spectrum; it is defined as: 

𝑇̅(𝜇0) =
1

𝐺𝑇𝑂𝐴
 ∫ 𝐺𝑇𝑂𝐴,λ 𝑇λ(

∞

0

𝜇0)𝑑λ, 
II.47 
 

 

where 𝐺𝑇𝑂𝐴,λand 𝑇λare the monochromatic top of atmosphere irradiance and transmission function, 

respectively. To compute the GHI, 𝑇̅ is obtained using an energy conservation equation in an earth-

atmosphere column. This energy conservation following Fig. II.11 writes (Hay, 1993): 

IE↑ − IE↓ = Ea + Eg
↓(1 − ρg), II.48 

 

where 𝐼𝐸↑ and 𝐼𝐸↓ are: the solar stream reflected to the space and the extraterrestrial solar 

irradiance (GTOA) respectively.  𝐸𝑎 is the solar stream absorbed by the atmosphere; 𝐸𝑔
↓ is solar 

irradiance at the earth's surface (GHI). 𝑓(𝜌𝑔) describes the multiple reflections between the ground 

and the atmosphere; it is obtained using empirical relationships that correlate measurements made 

by the satellite in the satellite band to the broadband irradiance.   

 

Fig. II.11 solar radiation flux at the atmosphere inspired after (Noia et al., 1993a) 

The bibliographic review we carried out highlighted the following model: (Gautier et al., 1980; Janjai, 

2010; Gautier and Landsfeld, 1997). These models use Eq.II.47 to define 𝑇̅; they, however, differ in 

the atmospheric processes that are accounted for. 
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Gautier et al. (1980) model the atmosphere for the downward path of the solar radiation as 

a scattering layer on top of an absorbing layer whereas in the upward path these layers are inverted. 

These layers model the absorption due to the water vapor and the scattering from a Rayleigh 

atmosphere. A pure Rayleigh atmosphere contains only the permanent atmospheric gases 

that scatter radiation by Rayleigh scattering. It excludes the effects of water vapor, clouds, 

and aerosols (AMS, 2012). Clouds add an extra layer that both absorb and reflect the incoming 

radiation as shown Fig. II.12. Gautier et al. (1980) model does not account for the ozone absorption 

and multiple scattering. Besides, it assumes isotropic reflection, isotropic scattering and a single 

homogeneous layer of clouds (Diak and Gautier, 1983). 

Under clear sky conditions the GHI is expressed as follows (Gautier et al., 1980; Noia et al., 1993b): 

{
GHI = GTOA T̅(μ0)(1 + ρs,d(θ)ρg) 𝑎𝑛𝑑

T̅(μ0) = (1 − ρs,b)(1 − αw
↓ ).

 
II.49 
 

 

Where 𝜌𝑠,𝑑 and 𝜌𝑠,𝑏 are the broadband scattering coefficients for the upward diffuse radiation and 

the broadband downward beam radiation coefficient due to a Rayleigh atmosphere. 𝜌𝑔 is the 

broadband surface albedo;  𝛼𝑤
↓  is the broadband water vapor absorption coefficient for the 

downward path of the solar radiation. 𝜌𝑑,𝜌𝑏 and 𝛼𝑤
↓  values were extracted from Coulson (1959) 

study.  𝜌𝑔 was computed using a conservation equation for the upwelling radiance. This equation 

related the ground albedo to the solar radiation measured by Geostationary Operational 

Environmental Satellite (GOES) in the visible band for cloud-free days. Gautier et al. (1980) assumed 

that there was no need for a conversion relation between satellite visible band measurements into a 

broadband equivalent (Diak and Gautier, 1983). The satellite images are also used to detect the 

occurrence of clouds by applying an empirical brightness threshold (Noia et al., 1993b).  

Under cloudy sky conditions the atmospheric transmission function: 

{
GHI = GTOA T̅(μ0) 𝑎𝑛𝑑

T̅(μ0) = (1 − ρs,b)(1 − αw,t
↓ )(1 − αc)(1 − ρc)(1 − αw,b

↓ ) .
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Where 𝛼𝑤,𝑡
↓  and 𝛼𝑤,𝑏

↓  are water vapor absorption coefficient above and below the cloud level 

respectively. Gautier et al., (1980) estimated empirically that for low and middle clouds there is an 

average of 30% of water vapor above the cloud level (i.e. 𝛼𝑤,𝑡
↓ = 0.3 𝛼↓). Besides 𝛼𝑐 was modeled 

empirically as linear function of 𝜌𝑐 which was obtained through satellite measurements. 

Janjai (2010) atmosphere model is more complex; it consists of two layers. The first layer 

where ozone absorption occurs is from the TOA to the top of the cloud layer. The second layer is 

from the top of the cloud layer to the earth’s surface, containing air molecules, water vapor, aerosols 

and clouds. Contrary to the model of Gautier et al. (1980), Janjai (2010) includes the effect of ozone 

and aerosols and assumes that the optical state of the atmosphere on the downwelling path is 

identical to the upwelling path (Fig. II.13). Therefore, the GHI is expressed with the following 

equation: 

 

 

http://glossary.ametsoc.org/wiki/Water_vapor
http://glossary.ametsoc.org/wiki/Aerosols
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{
GHI = GTOA T̅(μ0) [(1 − ρg) + ρg(αw

 + αaer
 )]𝑎𝑛𝑑

T̅(μ0) = τ0(1 − ρa − αw
 − αaer

 ).
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Where 𝜌𝑔  was determined empirically from several cloud free satellite images. 𝛼𝑤
  is the broadband 

water vapor absorption computed using Lacis and Hansen (1974) approximation for water vapor; 
𝛼𝑎𝑒𝑟
  the broadband aerosol absorption  is computed using ground measurement of the visibility and 

aerosol single scattering albedo; 𝜏0 the broadband ozone absorption transmission coefficient is 
computed from Lacis and Hansen (1974) approximation for ozone assuming that the ozone layer is 
purely absorbing. 𝜌𝑎 is the broadband earth-atmosphere reflectance obtained empirically using 
satellite band earth-atmosphere reflectance. The information about clouds are included in  𝜌𝑎. 

Fig. II.12 atmospheric model of Gautier et al. (1980) adapted from (Noia et al., 1993b) 
 

The atmosphere model of Gautier and Landsfeld (1997) has a more detailed description of 

the atmospheric processes than the model of Janjai (2010). Similarly to the model of Janjai (2010) the 

water vapor absorption, ozone absorption, aerosol absorption and scattering are included. The 

atmosphere model of Gautier and Landsfeld (1997) also includes the absorption of carbon dioxide 

and oxygen; and the multiple scattering between the ground and an atmosphere that is clear or 

cloudy. Under clear sky the monochromatic irradiance 𝐺𝐻𝐼c,λ is expressed as follows (Frouin et al., 

1989): 

{
dGHIc,λ = GTOA,λ Tλ(μ0) e

−(1−ρg,λ(θ)sλ)dλ and

Tλ(μ0) = Tg,λ(μ0)e
(
−τ
μ0
+Td,λ(μ0))

.
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Where 𝑇g,λ and 𝑇d,λ are the transmittance due to absorbing gases and due to diffuse sky. 𝜌𝑔,λ and 𝑠λ 

are the ground reflectance and spherical albedo of the atmosphere. Under cloudy sky conditions the 

GHI writes: 

GHI =
GHIc(1 − ρc − αc)

1 − ρc ρg
, 

II.53 
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where 𝐺𝐻𝐼c is the value of irradiance under clear sky for the shortwave frequency range. This model 
assumes that in the spectral range of interest, solar radiation is: scattered by air molecules and 
aerosols, absorbed by ozone, water vapor, carbon dioxide, oxygen, and aerosols. 

 

Fig. II.13 atmospheric model of Janjai, (2010) 

Besides, reflection and absorption by clouds is supposed to occur in one layer. 𝜌𝑔 is determined 

empirically from a time series of satellite images. The minimum brightness value for each satellite 
pixel during the daytime defines a threshold that is used to classify the satellite pixel as clear or 
cloudy. Under clear sky conditions, the satellite sensors measure the reflection from the ground. 𝑠λ, 
𝑇d,λ are approximated using the relationship suggested by Tanre et al. (1979). Similarly 𝑇g,λ is 

approximated using a relationship suggested in Gautier and Landsfeld (1997). 𝛼𝑐 was modeled as 
linear function of 𝜌𝑐 which is obtained through satellite measurements in the same way than Gautier 
et al. (1980). 
 

I.7.c Physical RTP 

 

Physical RTPs study the physical processes occurring in the atmosphere and influencing solar 

radiation; namely absorption and scattering. They make approximations to Eq.II.22 that simplify its 

resolution. The two stream and Eddington approximation are the most commonly used methods to 

assess the GHI (Anderson and co-authors, 2004; Brunner et al., 2015; Mathiesen and Kleissl, 2011; 

Morcrette, et al., 2007; Ritter and Geleyn, 1992; Slingo, 1989; Stuhlmann et al., 1990; Troccoli and 

Morcrette, 2014; Zhong et al., 2016). 

Two-stream approximation is similar to the disort method; it assumes that there are only 

upward and downward radiance in the directions 𝜇1 and −𝜇1. Consequently, 𝑁 = 1 in Eq.II.29, which 
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gives 𝑗 = −1 for the downward stream and 𝑗 = 1 for the upward stream. The upward and downward 

directions are given by the Gauss quadrature formula. The values of 𝜇𝑖,𝑗, 𝑝𝑙  and 𝜔𝑙  Eq.II.30 -II.31 for 

the two-stream approximation are shown Tab. II.5. 

Tab. II.5 Gaussian Points, Gaussian Weights and Legendre polynomials values for two-stream 
approximation. g is the asymmetry factor defined Eq. II.52. Inspired after (Liou, 2002) 

n Radiation stream 
value ±𝜇𝑛 

Integral Gaussian 
weights 

 𝑎𝑛 

Phase function 
polynomial value  𝑝𝑛 

Phase function 
polynomial weight 
 𝜔𝑛 

0   𝑃0 = 1 𝜔0 = 1 

1 𝜇1  =  0.5773503 𝑎1  =  1 𝑃1 = 𝑥 𝜔1 = 3𝑔 

 
Consequently, we obtain two equations from Eq.II.29:  one equations that describe the downward 

stream and the other describing the upward stream. After some mathematical manipulations Eq.II.29 

yields (Liou, 2002): 

μ1
dM(τ, μ1)

dτ
= (1 − ωλ(τ)g)N(τ, μ1) − (S

− − S+)ee
−τλ
μ0 𝑎𝑛𝑑 
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μ1
dN(τ, μ1)

dτ
= (1 − ωλ(τ))M(τ, μ1) − (S

− + S+)ee
−τλ
μ0 . 
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Where, 

{
 
 
 
 

 
 
 
 

M = L(τ, μ1) + L(τ, −μ1),

N = L(τ, μ1) − L(τ, −μ1),

g =
ω1
3
=
1

2
∫ p(cosΘ)cosΘ dcosΘ,
1

−1

b =
1 − g

2
 𝑎𝑛𝑑

S± =
F0ωλ(τ)

4π
  (1 ± 3gμ1μ0).
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 g is called the asymmetry factor, it is a function of 𝜔1, the 1𝑡ℎ moment of the phase function p. The 

two stream resolution of the RTE is used mostly in the radiative transfer code of NWP model: McRad 

(Mathiesen and Kleissl, 2011; Morcrette, et al., 2007; Troccoli and Morcrette, 2014), New Goddard 

(Zhong et al., 2016) and COSMO (Brunner et al., 2015; Ritter and Geleyn, 1992). It was also used in a 

satellite based method by Stuhlmann et al., (1990). Stuhlmann et al.(1990) used the Two stream 

method to relate the cloud index n Eq.II.45 measured in the satellite narrow band to a broadband 

cloud transmittance. 

In Eddington’s approximation the phase function is approximated similarly as the two-

stream but the radiance is expanded using Legendre polynomial and Eq.II.27 is not discretized using 

Gaussian quadrature.  

Lλ,d(τ, μi) = ∑ Llλ,d(τ, ) pl(μi)

N=1

l=0

     i = N,−N with N ∈ ℜ   
II.57 
 

 
Substituting Eq.II.57  into in Eq.II.27  and rearranging it yields (Liou, 2002): 
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dL1λ,d(τ, μ)

dτ
= 3(1 − ωλ(τ))L0(τ, μ) −

3ω

4π
F0e

e

−τλ
μ0  𝑎𝑛𝑑 
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dL0λ,d(τ, μ)

dτ
= (1 − ωλ(τ)g)L1(τ, μ) +

3ω

4π
F0e

e

−τλ
μ0 . 
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The Eddington resolution of the RTE is used in GFDL-SW (Anderson and co-authors, 2004; Mathiesen 
and Kleissl, 2011) and (Slingo, 1989). 
 

The two-stream and Eddington methods are good approximations for optically thick layers, but they 

produce inaccurate results for thin layers and when significant absorption is involved (Liou, 2002). 

These inaccuracies are related to simplicity of the phase function approximation Eq.II.31; according 

to Liou, (2002) a two term Legendre polynomial expansion is not adequate to describe the strong 

forward scattering of aerosols and cloud particles. To solve this issue Delta-Function adjustment was 

introduced; this procedure lead to the 𝛿-Eddington and the 𝛿-two-stream. Consequently, the optical 

depth, single-scattering albedo, and phase function were scaled such tat: 

{
 
 

 
 f =

ω2
5
,

τ′ = (1 − ωf)τ,

ω′ =
(1 − f)ω

1 − ωf
 𝑎𝑛𝑑

p′(τ, μ, μ′) = 1 + 3g′μμ′.
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Where f is the fraction of the energy scattered in the forward direction; it is expressed a function of 

the phase function second moment. 𝜏′, 𝜔′,𝑝′ are the scaled optical depth, single scattering albedo 

and phase function respectively (Liou, 2002). Under clear sky both the 𝛿-Eddington and 𝛿-two-

streams have relative errors of less than 1.5%. However, under cloudy skies relative errors might be 

as high as 10%, which indicates that higher order approximation scheme is necessary in order to 

obtain the accurate solar cloud absorption in weather and climate models (F. Zhang et al., 2013).  

Method such as the Heliosat-4 (Qu, 2013; Qu et al., 2016) aim to find a tradeoff between the 
accuracy of method such as disort, adding and the computational efficiency of two-stream and 
Eddington. In the Heliosat-4 (Qu, 2013; Qu et al., 2016) the RTE was resolved for a selected number 
of atmosphere characterized by fixed optical properties. These computations define nodes that can 
be used to interpolate the GHI for other types of atmosphere characterized by other optical 
properties. 
 

I.8 Validation metrics 

 

Various metrics have been proposed and used to quantify the accuracy of solar irradiance forecasts. 

They can be broadly divided into five categories (J. Zhang et al., 2013): statistical metrics, variability 

estimation metrics, uncertainty quantification and propagation metrics, ramping characterization 

metrics and economic and reliability metrics. These metrics describe different characteristics of the 

solar irradiance obtained from a model. These metrics are insufficient on their own and must be 

combined to establish a complete, coherent comparison for benchmarking (Beyer et al., 2009). 

Determining which metrics are most appropriate depends on the user: system operators are 

interested in metrics that accurately reflect the costs of forecast errors whereas researchers are 
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interested in metrics that give relative performance of different forecast models under different 

conditions (Kleissl, 2013). In this section we describe conventional statistical metrics, temporal 

variability and ramping metric that are commonly used to assess models performances. 

Statistical metrics commonly used (Jimenez et al., 2016; Perez et al., 2013, 2010; Rigollier et al., 2004; 
Zhong et al., 2016) are the correlation coefficient (R), the root mean square error (RMSE), the mean 
average error (MAE), the mean bias error (MBE) and the Kolmogorov Smirnov integral (KSI).  The 
RMSE and MAE are indicators of the model spread (Kleissl, 2013), the RMSE allows to put more 
weight on large forecast errors whereas the MAE weighs linearly all deviations to the observations 
(Lorenz et al., 2009b). According to Perez et al. (2013) the RMSE is most important model validation 
metric in the context of renewable power forecasting where small errors are more tolerable and 
large forecast errors have a disproportionately high impact in the grid management. Nevertheless, 
according to Chai and Draxler (2014) there is no definite consensus on the most appropriate metric 
between MAE and RMSE to assess a model performance. The use of RMSE is recommended when 
the error distribution is expected to be Gaussian (Chai and Draxler, 2014). The MBE describes 
systematic deviations of the model GHI estimates (Perez et al., 2013); it indicates the model average 
bias or deviation. This metric contrary to the RMSE and MAE indicate if the model under or over-
estimate the GHI. Contrary to the MAE and RMSE a deviation to the observation does not 
automatically increase the MBE value; low MBE may be caused by highly over-estimated values of 
GHI that are balanced by highly underestimated values of GHI or vice versa. KSI and R measure 
correlation between datasets; the KSI instead of comparing raw datasets, it compares their 
cumulative distribution function (CDF). The evaluation of CDF is helpful for applications where 
decisions are related to threshold values (Espinar et al., 2009; Perez et al., 2013). The KSI value is 
advantageous because it shows how dataset values are statistically distributed. It not only describes 
the distribution of the points around a unit line, similarly to MBE, but also allows the user to 
distinguish the behaviors of stations with similar RMSE values (Espinar et al., 2009). Statistical metrics 
discussed above are expressed as follows: 
 

𝑀A𝐸 =
∑ |𝑦𝑖 − 𝑥𝑖|𝑖

𝑁 ∑ 𝑥𝑖
 
𝑖

,   
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MBE =
∑ yi − xii

N ∑ xi
 
i

,   
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RMSE =
√1
n
∑ (yi − xi)

2
i

N∑ xi
 
i  

, 
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R =
∑ (xi − x̅)(yi − y̅)i

√∑ (xi − x̅)i √∑ (yi − y̅)i

= 1 −
σ2(yi − xi)

σ2(xi)
 𝑎𝑛𝑑 
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KSI = ∫ |CDFcomp(xj) −

xmax

xmin

CDFref(xj)|dx.   
II.65 
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Where 𝑥𝑗  ∈ [𝑥𝑚𝑖𝑛 + (𝑛 − 1)𝑝, 𝑥𝑚𝑖𝑛 + 𝑛𝑝) with 𝑝 =
(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)

𝑚⁄ ; n is the discretisation 

subdivision n ∈ [1,.., m]; m is the total number of discretisation subdivisions, taken as ≥ 100 for all 

integrations; and xmax and xmin are the extreme values of GHI; yi is the model estimate and xi is the 

ground measurement value. 𝑥̅ and 𝑦̅ are the model-estimated and ground-measured means, 

respectively; N is the total number of data points. RMSE and MBE are expressed in W/m². 𝜎 is the 

standard deviation error and 𝜎2 the variance. 

These statistical metric are related to each other as follows (Lorenz et al., 2009a): 

RMSE2 = MBE2 + σ2. II.66 
 

Temporal variability and ramping characterization metrics intend to address one of the biggest 

concerns associated with integrating a large amount of solar power into the grid (Bright et al., 2017). 

They give indication on the ability of a model to describe sudden and large variations of GHI values; 

therefore, sudden and large variations of electricity output caused by clouds s and extreme weather 

events. Variability metrics include the mean variability of the clearness index:  𝑀𝐾𝑐   Eq.II.67, and the 

mean squared variability of the clearness index : V Eq.II.68  (Marquez and Coimbra, 2012). MKcand 𝑉 

are expressed as follows:  

𝑉 = √
1

𝑁
∑(𝐾𝑐(𝑘 + ∆𝑡) − 𝐾𝑐(𝑘))

2

𝑁

𝑘=1

. 
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MKc =
1

N
 ∑Kc(k)

N

k=1

 𝑎𝑛𝑑 
II.67 
 

 

𝑉 = √
1

𝑁
∑(𝐾𝑐(𝑘 + ∆𝑡) − 𝐾𝑐(𝑘))

2

𝑁

𝑘=1

. 
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Where N is the number of sample is the consider time interval. The GHI ramp rate is defined as the 

change in irradiance divided by the time over which it occurs; it is expressed as follows (Mathiesen et 

al., 2013): 

RR(∆t) =
xi+∆t − xi

∆t
 .  II.69 

 
 

The ramp rate may also be used to describe the overall ability of a model to reproduce the variability 

of ground measurement datasets using the CDF as the show by Bright et al. (2017). 

Consequently, we used the metric described here in this section to describe the ability of a model to 

reproduce specific characteristics of the GHI measured at the ground. 
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II. Improving the GHI estimate from satellite method in the inter-tropical zone 

 

The first section presented the different methods used to solve the complex RTE. This section gives 

the advantage and drawback of statistical, semi-physical and physical parameterizations and how 

they can be combined to improve the GHI estimates in French Guiana and the ITZ using the Heliosat-

2 method. 

II.1 Comparison between statistical, semi-physical and physical parameterizations of the 

radiative transfer equation 

 

The main advantage of statistical parameterization methods is their simplicity, they rely on linear or 

nonlinear relationship between the GHI and other measured variables (Noia et al., 1993a). 

Nevertheless, a major drawback of statistical parameterization methods arises from the unicity of the 

relationship coefficients. These coefficients depend on the physical and spatial properties of the 

atmosphere at the region of interest (Badescu, 2008; Raphael and Hay, 1984). Statistical methods 

such as the Heliosat-2 was validated in several type of climates ranging from oceanic, Mediterranean, 

desert to semi-arid climate regions (Dagestad, 2004; Lefèvre et al., 2007; Dürr and Zelenka, 2009; 

Moradi et al., 2009; Wahab et al., 2009; Jumaily et al., 2010; Blanc et al., 2011). These studies 

showed a varying level of accuracy and sizable biases under cloudy skies. Inaccuracies under cloudy 

sky conditions  (Girodo et al., 2006; Suárez et al., 2012; Polo et al., 2014; Albarelo et al., 2015) were 

explained by the inability to model properly the optical properties of clouds such as cloud optical 

depth which influence cloud reflectance, absorptance and transmittance (Welch et al., 1980). 

Semi-physical methods presented rely on physical principles. They are broadband and consider that 

for shortwave the most important radiative processes occurring within the atmosphere are: 

scattering and absorption by molecules, clouds, and aerosols. These methods use satellites images to 

provide information on the optical properties of the cloud and for some case other processes (Janjai, 

2010). Nevertheless, semi-physical methods require an extensive knowledge of the optical properties 

of the atmosphere that might not be available. In that case they are obtained through empirical 

relationships (Hay, 1993; Lacis and Hansen, 1974; Noia et al., 1993b; Stephens, 1984). When these 

data are available they are climatological and do not vary with the atmospheric state (Gautier and 

Landsfeld, 1997; Stephens, 1984; Stephens et al., 1990). Nevertheless, satellites semi-physical 

method offer the advantage of: (1) being more computationally efficient, (2) having a wide 

geographical coverage, (3) having a high spatial and temporal resolution (Hay, 1993). 

Physical parameterization methods similarly to semi-physical methods consider the most important 

radiative processes occurring within the atmosphere; besides, they include a  spectral dependency. 

Physical methods have a more detailed description of the atmosphere than semi-physical methods; 

therefore, they require a lot more input datasets that might not be accurate or might be available 

sparsely. According to Stensrud (2009) inaccurate aerosol optical depths and ozone amounts inputs 

lead to high bias in GHI estimates. One advantage of physical parameterization methods is their 

potential to assess more accurately the GHI; however, with high computational cost (Pincus and 

Stevens, 2013). According to Fouquart et al., (1991) and Stensrud, (2009) there are two main causes 

of the uncertainty in the shortwave calculations from physical parameterization methods. The first is 
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related to the approximation made to compute vapor absorption and the lower spectral resolution 

used to reduce the computation time.  

Recently, the Heliosat-2 statistical method was used to produce GHI estimates in French Guiana  with 

GOES images (Albarelo et al., 2015). On cloudy sky days, the root mean square error (RMSE) of hourly 

GHI estimates attained values of up to 78%. These unsatisfactory results can be attributed to the 

significant cloud cover seen in intertropical zones, as clouds are known to be an important source of 

bias (Gautier and Landsfeld, 1997; Pereira et al., 2000; Janjai, 2010). To improve the GHI estimates 

from this statistical method we considered   coupling it with semi-physical methods that account for 

cloud properties. This approach was chosen because: (1) satellite images can provide information on 

the optical properties of the cloud; according to Stuhlmann et al., (1990) the cloud fraction observed 

by satellite is used as a proxy of cloud transmittance. (2)  Semi-physical methods are less 

computationally expensive than Physical parameterization methods and require less input 

parameters. 

The article below describes how the statistical heliosat-2 method was coupled with a radiative 

transfer parameterization under cloudy sky conditions. 

II.2 Improving the Heliosat-2 Method for Surface Solar Irradiation Estimation Under Cloudy Sky 

Areas 
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Abstract 

 

The purpose of this study was to improve global horizontal irradiation (GHI) estimates under cloudy 

sky conditions using an optimised version of the Heliosat-2 method calibrated with Geostationary 

Operational Environmental Satellite images. The optimised version was coupled with a radiative 

transfer parameterisation1 (RTP) to better account for local cloud properties. The key element of this 

parameterisation is the cloud absorption coefficient, which was the only element to be computed. 

The obtained estimates were compared against GHI measurements from six meteorological stations 

in French Guiana over four years. We used root mean square error (RMSE), mean bias error (MBE), 

correlation coefficient, and the Kolmogorov Smirnov test integral to assess GHI estimate accuracy. 

The estimates were also compared with those obtained with the original optimised Heliosat-2 

method. Our results show an improvement in the GHI estimates under cloudy, clear, and all sky 

conditions. Under cloudy skies, the RMSE and MBE of our method ranged from 43% to 63% and −2% 

to −22%, respectively, whereas those of the original optimised Heliosat-2 method ranged from 66% 

                                                           
1
RTP: radiative transfer parameterisation 
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to 87% and −48% to −65%, respectively. Another effect of the new method was the improvement in 

clear sky GHI estimates: the RMSE and MBE ranged from 16% to 24% and −20% to −8%, respectively, 

while those of the optimised Heliosat-2 ranged from 19% to 28% and −23% to −10%, respectively. 

The improvement in GHI estimates under cloudy sky conditions led to better GHI estimates under all 

sky conditions: the RMSE and MBE ranged from 19% to 26% and −7% to −2%, respectively, while the 

corresponding values for the original optimised Heliosat-2 ranged from 22% to 32% and −15% to 

−8%, respectively. The suggested cloudy sky RTP offers the advantages of simple implementation and 

good computation speed. This method requires only one parameter; users need to configure a cloud 

absorption coefficient suitable for their local conditions. We conclude that coupling the optimised 

Heliosat-2 method with an RTP improves GHI estimates in French Guiana and reduces discrepancies 

between satellite-derived irradiation and ground measurements in areas with high cloudiness. 

Keywords: Heliosat-2, GOES, cloudy sky, global horizontal irradiance, radiative transfer 

parameterization 

 

 

1 Introduction 

Accurate knowledge of global horizontal irradiation (GHI) is vital in several fields, including 

climatology, agriculture and energy. For instance, GHI is used in climatology to assess ocean heat flux 

balance and in agronomy to monitor the growth rate of crops. GHI mapping can be inferred through 

surface radiation network measurements using pyranometers (Perez et al., 1994). However, the high 

manufacturing cost, maintenance costs, and an uneven network density of pyranometers limit their 

use (Inman et al., 2013; Qu, 2013). Several studies (e.g., Perez et al., 1994; Zelenka et al., 1999) have 

shown that when distance between the studied site and the pyranometers is greater than 30 km, 

solar radiation obtained through interpolation methods is of lower quality than satellite-derived solar 

radiation. Satellite-derived GHI methods were developed with the first satellite launches (Levanon, 

1971; House et al., 1986) and were either classified as statistical (Tarpley, 1979; Cano et al., 1985; 

Möser and Raschke, 1984; Noia et al., 1993a, 1993b) or physical (Ellis and Haar, 1976; Gautier et al., 

1980). 

Heliosat-2 is one of the most widely validated methods developed for estimating solar irradiation 

from satellite images. One of the assets this method is that it is an open source method and is 

modular enough to be employed worldwide. It has been validated in oceanic, Mediterranean, desert 

and semi-arid climate regions (Dagestad, 2004; Lefèvre et al., 2007; Dürr and Zelenka, 2009; Moradi 

et al., 2009; Wahab et al., 2009; Jumaily et al., 2010; Blanc et al., 2011). Furthermore, it has been 

used in tropical areas over which the Intertropical Convergence Zone (ITCZ) transits: Mozambique 

(Wald et al., 2011), Zimbabwe (Blanc et al., 2011) and French Guiana (Marie-Joseph et al., 2013). 

However, GHI estimates from the stations in these tropical areas show greater biases than those 

from stations in oceanic, Mediterranean and semi-arid climate regions (Blanc et al., 2011). Therefore, 

improvement of GHI estimates from Heliosat-2 in intertropical zones remains an open topic of 

discussion. 
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Recently, Heliosat-2 was used to produce GHI estimates in French Guiana (Albarelo et al., 2015) with 

Geostationary Operational Environmental Satellite (GOES) images. On cloudy sky days, the root mean 

square error (RMSE) of hourly GHI estimates attained values of up to 78%. These unsatisfactory 

results can be attributed to the significant cloud cover seen in intertropical zones, as clouds are 

known to be an important source of bias (Gautier and Landsfeld, 1997; Pereira et al., 2000; Janjai, 

2010). Overall, satellite-derived GHI methods exhibit positive biases under cloudy sky conditions 

(Diak et al., 1982; Girodo et al., 2006; Suárez et al., 2012; Polo et al., 2014; Tarpley, 1979), reflecting 

the inability of the satellite sensor to observe the lowest layer of clouds in the visible spectrum 

(Heinle et al., 2010). In the Heliosat-2 method, cloud attenuation is modelled empirically using a 

polynomial function of a cloud index that tends to one when the sky is overcast and zero when the 

sky is clear. However, the cloud index does not model cloud properties such as cloud optical depth, 

which influences cloud reflectance, absorbance and transmittance (Welch et al., 1980). Therefore, 

Heliosat-2 GHI estimates under cloudy sky conditions need to be improved to provide accurate GHI 

estimates in tropical areas. Several corrections have been proposed to improve the Heliosat-2 

method irrespective of whether the sky is clear or cloudy; however, to the best of our knowledge, no 

methods have been proposed to correct the GHI estimates obtained using the Heliosat-2 method in 

tropical zones with a high occurrence of cloudy skies. The objective of this study was to improve GHI 

estimates from the Heliosat-2 method and GOES images for areas with high cloudiness. 

Two main approaches have been used to assess GHI under cloudy sky conditions. The first involves 

radiative transfer models (RTMs) that simultaneously compute absorbed, scattered and emitted 

electromagnetic radiation through the Earth’s atmosphere. This approach provides the most 

accurate results; however, it is time consuming and requires many input parameters (Stephens et al., 

2001). Oumbe et al. (2009) developed the Heliosat-4 method that relies on an approximation of the 

RTM equation using a product of clear sky irradiance and a parameter representing cloud extinction. 

This approximation allows faster GHI computation when abaci, previously computed by an RTM, are 

combined with interpolation functions. Under cloudy skies, the tested cases exhibited an overall 

overestimation of GHI; the greatest positive biases were found when cloud coverage was between 

2% and 10%, where biases were sometimes greater than 60 W/m2. High RMSE values were 

encountered for desert stations where cloud fractions were between 20% and 30% and RMSE was up 

to 220 W/m2 . 

The second approach involves radiative transfer parameterisations (RTPs), which are simpler spectral 

models based on parameterisations of transmittance and absorption functions for basic atmospheric 

constituents such as Rayleigh scattering and ozone, water vapour and aerosol transmittances (Khalil, 

2008). These parameterisations provide faster results with accuracy similar to the more time-

consuming RTMs (Fouquart et al., 1991). 

Gautier et al. (1980) developed a method based on an RTP to estimate GHI. Overall, the 

parameterisation showed potential; however, the results under cloudy sky conditions were not 

optimal. This first RTP was updated by Gautier and Landsfeld (1997) to better account for cloud 

effects; they found that under all sky conditions, the first version’s monthly RMSE was 9%, while in 

the improved version it decreased to 4%. Janjai et al. (2005; 2011; 2013) also developed a method 

based on an RTP to estimate GHI in a tropical climate region under all sky conditions. Contrary to 

Gautier et al. (1980), they did not develop a separate RTP for clear and cloudy sky conditions; the 

monthly RMSEs were 6.8% for Vietnam (Janjai et al., 2005), 6.3% for Cambodia (Janjai et al., 2011) 
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and 9.6% for Myanmar (Janjai et al., 2013). Geiger et al. (2008) parameterised GHI as top-of-

atmosphere irradiance lowered by an atmospheric transmission factor. Under cloudy sky conditions, 

the atmospheric transmission factor was inferred from the Gautier et al. (1980) cloudy sky RTM. 

Geiger et al. (2008) noted the monthly means of surface solar estimated biases to be within ±5% in 

most cases with clear sky conditions and within ±15% under cloudy sky conditions. The standard 

deviation was noted to be between 13 and 111 W/m² under clear sky conditions and between 21 and 

191 W/m² under cloudy sky conditions. Bisht and Bras (2010) also used an RTM under clear and 

cloudy sky conditions. To improve GHI estimates under cloudy sky conditions, they chose a cloudy 

sky RTM suggested by Slingo (1989); this parameterisation describes the effect of clouds based on 

their fraction and optical thickness, both provided by MODIS cloud data products. Under clear sky 

conditions, the daily averaged bias was about 17.82 W/m² and the daily averaged RMSE was about 

42.05 W/m²; under cloudy sky conditions, the values were 25.64 W/m² and 66.52 W/m², 

respectively. 

With increasing interest in the development of solar technologies in tropical areas, the merits of 

Heliosat-2 in these areas are questioned. The solar energy potential of tropical areas can be up to 

three times higher than that of extra-tropical countries (Fillol et al., 2017); however, variability in 

solar energy is also higher in these areas due to the dynamic cloud cover and the hot and humid 

weather (Laing and Evans, 2011; Galvin, 2015). Designing and sizing systems using solar energy input 

(such as solar water heaters, photovoltaic cells or solar thermal concentrators) require solar data 

estimates with high accuracy even under tropical zones with a high occurrence of cloudy skies. 

We propose an improvement to the Heliosat-2 method so that it can be widely used to obtain GHI 

estimates of tropical climate regions with as high standards as those of other climate regions. To 

achieve this goal, we used an RTP model (Polo et al., 2016) and focused on adjusting the atmospheric 

input data and cloud absorption to better match the local cloud regime. Our new method 

(RTP_OPT_H2) achieves the following: (1) no significant increase in computation time and (2) no 

deterioration of clear sky GHI estimation accuracy. 

This paper is structured as follows. Section 2 describes both the ground and satellite data used in the 

study. Section 3 introduces the Heliosat-1 and Heliosat-2 methods with GOES images and describes 

how RTP_OPT_H2 is implemented to improve GHI estimates under cloudy sky conditions. Section 4 

compares the results obtained for cloudy, clear and all sky conditions using both the optimised 

Heliosat-2 method (OPT_H2) and RTP_OPT_H2. Finally, Section 5 summarises the paper. 

 

2 Data 

2.1 Ground measurements 

We exploited hourly GHI data from six stations operated by the French national weather services 

(Météo-France) over four years (Table 1). 

Table 1: Ground meteorological stations in French Guiana 

Station Latitude (°) Longitude (°) Height (m) Period 

Rochambeau 4.81 −52.37 4 2010–2013 
Saint Georges 3.88 −51.80 6 2010–2013 
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Three stations are located on the Atlantic Coast, namely, Rochambeau, Ile Royale and Kourou. 

Rochambeau is located 13 km from the Atlantic Ocean and Ile Royale is on a 0.6-km² island, 7 km 

offshore from the coast. The other three are located inland; Saint-George, Saint-Laurent and 

Maripasoula are located between 30 and 230 km from the coast. These stations are equipped with 

Kipp and Zonen pyranometers of type CM6B and CMP11; both types are fitted with a ventilation fan. 

CM6B is a first-class pyranometer, and CMP11 fulfils the accuracy requirements of a secondary 

standard pyranometer defined in (WMO, 2007). Preventive maintenance is performed every two 

months, and the pyranometers are replaced every two years. Prior to final installation, each 

pyranometer was calibrated at the national radiometry centre in Météo-France; once installed, the 

coefficients of the new pyranometer were entered into the data acquisition system of the station 

(Albarelo et al., 2015). 

Hourly GHI measurements were run through a quality control process based on extreme values, 

following the method of Geiger et al. (2002) and the Solar Radiation Data (SoDa2) website. For 

extreme values, hourly GHI (Gh, in Wh/m2) was considered valid when it adhered to the following 

condition: 

0.03 𝐺ℎ𝑇𝑂𝐴 < 𝐺ℎ < 𝑚𝑖𝑛 ((1.2 𝐼0), ((1.5 𝐼0  cos(𝜃0)
1.2) +  100)), (1) 

where GhTOA is the top-of-atmosphere hourly surface solar insolation, 𝜃0 is the sun zenith angle and I0 

is the solar constant (1367 W/m2). 

2.2 Satellite data 

The satellite data used in this study were sourced from the Comprehensive Large-Array Stewardship 

System (CLASS), provided by the National Oceanic and Atmospheric Administration (NOAA). These 

data were collected by GOES 13, which was launched in May 2006 (Hillger and Schmit, 2009). GOES 

13 has five band imagers; in this study, images from the visible band (0.55–0.75 μm) were 

considered. Images from GOES 13 were taken every 30 min with a 1 × 1 km spatial resolution. The 

downloaded dataset had 30-min time steps in a series of 16-bit images from January 2010 to 

December 2013. 

2.3 Climate 

The climate in French Guiana is regulated by the ITCZ, which is the meeting point of the northeast 

and southeast trade winds (Albarelo et al., 2015). The ITCZ is characterised by the rapid ascent of hot 

air associated with the development of large and homogeneous cumulonimbus clouds (Marie-Joseph 

                                                           
2
Solar Radiation Data. http://www.soda-is.com/eng/index.html. 

Maripasoula 3.63 −54.03 104 2010–2013 
Saint-Laurent 5,48 −53,90 4 2010–2013 
Kourou 5.12 −52.44 12 2010–2013 
Ile Royale 5.28 −52.58 48 2010–2013 
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et al., 2013). It is mainly an oceanic phenomenon (Vasquez, 2009); however, its latitude changes over 

the years, resulting in high humidity clouds that bring continuous rain over continental areas. 

The ITCZ moves over French Guiana twice a year, although variations in the timings of the start and 

end of the seasons show that there are annual variations in the ITCZ movement (Albarelo et al., 

2015). In general, the ITCZ moves northward to ~7° N from May to July and southward to ~15° S from 

November to January (Albarelo et al., 2015). This shift creates a seasonal cycle with four periods 

(Bovolo et al., 2012): (1) July to November, when the ITCZ lies to the north, producing a dry season 

characterised by sky that is mostly clear, although weak precipitations may occur (Albarelo et al., 

2015). During this period cirrus and cumulus fractus clouds are predominant; (2) November to 

January, a short rainy season when the ITCZ moves south of French Guiana (Albarelo et al., 2015); (3) 

February to March, a transition period before the ITCZ begins its northward motion, characterised by 

a short dry season (Albarelo et al., 2015); and (4) April to May, when the ITCZ moves northward and a 

rainy season occurs. During this time, cumulonimbus clouds are predominant. 

3 Methods 

3.1 The Heliosat method 

For details of the principles governing the Heliosat method and the development of the optimised 

Heliosat-2 method (hereafter, OPT_H2) that exploits GOES images over French Guiana, readers are 

directed to Albarelo et al. (2015) and Fillol et al. (2017). In summary, the Heliosat method involves 

the construction of a ‘cloud index’, n, resulting from a comparison of what is observed by the sensor 

with what should be observed over that pixel if the sky were clear, which is related to the ‘clearness’ 

of the atmosphere (Rigollier et al., 2002b): 

𝑛𝑡(𝑖, 𝑗) =
𝜌 
𝑡(𝑖,𝑗)−𝜌𝑔

𝑡 (𝑖,𝑗)

𝜌𝑐
𝑡(𝑖,𝑗)−𝜌𝑔

𝑡 (𝑖,𝑗)
,    (2) 

where 𝑛 (𝑖, 𝑗)𝑡 is the cloud index (unitless); 𝜌(𝑖, 𝑗)𝑡 is the apparent albedo, observed by a space-

borne sensor for time t (unitless); 𝜌𝑔
𝑡 (𝑖, 𝑗) is the apparent albedo of the ground under clear sky 

conditions (unitless); and 𝜌𝑐
𝑡(𝑖, 𝑗) is the apparent albedo of the brightest clouds (unitless). 

As per the Heliosat-1 method core hypothesis (Cano et al., 1985), GHI is a linear function of n and is 

expressed as follows: 

𝐺𝐻𝐼 =  𝑛 𝐺𝑏  +  (1 − 𝑛)𝐺𝑐 ,   (3) 

where GHI is the global horizontal irradiance (Wh/m2), n is the cloud index (unitless), Gc is the clear 

sky RTP (Wh/m2) and Gb is the cloudy sky RTP (Wh/m2). GHI is also related to top-of-atmosphere 

irradiance as follows: 

𝐺𝐻𝐼 = 𝐾𝑡 𝐺𝑇𝑂𝐴,    (4) 

where Kt is the clearness index or atmospheric transmission factor and GTOA is the top-of-atmosphere 

irradiance. Using equations (3) and (4), Cano et al., (1985) found that Kt is linearly dependent on the 

cloud index equation (5): 
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𝐾𝑡  =  𝑎 𝑛 +  𝑏.    (5)

     

The coefficients a and b have to be determined empirically with sets of satellite images and ground-

based radiation measurements covering the same period (Beyer et al., 1996). 

Beyer et al. (1996) adapted the GHI formula to the following: 

𝐺𝐻𝐼 =  𝐾𝑐  𝐺𝑐,     (6) 

where Kc is the clear sky index or an atmospheric transmission factor and Gc is the clear sky RTP. 

Beyer et al. suggested the use of a clear sky RTP to better account for the irradiation dependence on 

the solar zenith angle and atmospheric aerosol and water vapour content.  

Using the linear relationship (5) between the atmospheric transmission factor Kt and the cloud index 

used by Cano et al., (1985), Beyer et al. (1996) also suggested a linear relationship between the 

atmospheric transmission factor for clear sky, Kc, and the cloud index. Using sets of satellite images 

and ground-based radiation measurements covering the same period, Beyer et al. (1996) found that 

Kc is expressed as follows: 

𝐾𝑐  = 1 − 𝑛,      (7) 

where Kc tends to one for clear sky conditions and tends to zero for cloudy sky conditions. Later, 

(Rigollier et al., 2002c) showed that for overcast skies (n > 0.8), a linear relationship is inappropriate 

and underestimates Kc; therefore, they suggested a quadratic equation:  

0.8 < 𝑛 ≤ 1.1 𝐾𝑐 = 2.0667 − 3.6667𝑛 + 1.6667𝑛
².   (8) 

  

The Heliosat-2 method was developed by Rigollier et al. (2004), considering previous works (Cano et 

al., 1985; Beyer et al., 1996; Rigollier et al., 2002a; 2002b) and setting the maximal and minimal 

values of the clear sky index to 1.2 and 0.05 (Rigollier and Wald, 1998), respectively (6). The clear sky 

index KC was defined as follows. 

 𝑛 ≤ −0.2                             𝐾𝑐 = 1.2, 

 

                                                     −0.2 < 𝑛 ≤ 0.8                     𝐾𝑐 = 1 − 𝑛,  

 0.8 < 𝑛 ≤ 1.1                     𝐾𝑐 = 2.0667 − 3.6667𝑛 + 1.6667𝑛
²,  

 1.1 < 𝑛                                 𝐾𝑐 = 0.05.    (9) 

The European Solar Radiation Atlas clear sky model in the Heliosat-2 method (Rigollier et al., 2000) 

uses the Linke turbidity factor (TL) as an input. TL is a parameter that describes the attenuation of 

solar radiation by the atmosphere under clear skies (Remund et al., 2003). TL varies for each site and 

each month and is calculated using monthly values from the SoDa database. The methodology used 

to obtain this database of TL values is described in Remund et al. (2003). 

 

The OPT_H2 was developed by Albarelo et al. (2015) to consider GOES images as input instead of 



 

53 
 

METEOSAT images. The main change involved the modification of the calibration step to process 

data from GOES. A sensitivity analysis was also conducted with different values of cloud albedo 

(maximum value, Rigollier value, quantile 95) and TL. 

However, in this version, overcast sky conditions are associated with significant errors in GHI 

estimates. Since the studied area is subject to strong climatic instability linked to the regular 

presence of the ITCZ, the accuracy of GHI estimates when the sky is cloudy degrades quickly; thus, 

there is a need for a GHI calculation formula based only on a clear sky RTP. In the Heliosat-2 code 

(Albarelo et al., 2015; Rigollier et al., 2004), two types of solar irradiation attenuation are accounted 

for: attenuation by aerosols and attenuation by clouds. 

TL models the attenuation caused by aerosol absorption and scattering, assesses the optical depth of 

aerosols and incorporates water vapour and NO2 optical depths (Gueymard, 2012b). The value of this 

parameter increases as scattering increases (Rigollier et al., 2000). 

Cloud attenuation is modelled empirically using a clear sky index (Kc) function of cloud index (n) (9). 

When the sky is overcast, n tends to one and Kc tends to zero, which means that clouds fully 

attenuate the incoming radiation. However, using parameters that account for both aerosol and 

cloud attenuation have drawbacks. One of which is that TL is subjected to daily variations 

(Gueymard, 1998) that are not accounted for in the monthly climatological values provided by the 

SoDa database used in the Heliosat-2 code. Another drawback is that Kc does not model cloud 

properties such as cloud optical depth, which influences cloud reflectance, absorbance and 

transmittance (Welch et al., 1980). 

3.2 Optimised Heliosat-2 method coupled with cloudy sky RTP 

The limited modelling of cloudy skies by the Heliosat-2 method generates inaccuracies in GHI 

estimation under cloudy sky conditions in tropical areas, where skies are regularly disturbed by cloud 

formations with significant variability throughout the year. Therefore, a GHI calculation formula that 

considers a cloudy sky parameterisation is required. We modified the Heliosat-2 method by using 

equation (3) instead of (6) to estimate the GHI values, where Gb is a cloudy sky model that represents 

the extinction of irradiance due to clouds. Equation (3) was used by Cano et al., (1985) in the form 

𝐺𝐻𝐼

𝐺𝑇𝑂𝐴
 =  𝑛.

𝐺𝑏

𝐺𝑇𝑂𝐴
 +  (1 − 𝑛)

𝐺𝑐

𝐺𝑇𝑂𝐴
= 𝑛 (.

𝐺𝑏

𝐺𝑇𝑂𝐴
−

𝐺𝑐

𝐺𝑇𝑂𝐴
) +

𝐺𝑐

𝐺𝑇𝑂𝐴
  (10) 

to empirically determine the regression coefficients between GHI and n (4-5). However, Cano et al., 

(1985) did not explain or propose a cloudy sky model Gb. 

To consider the significant presence of clouds in the atmosphere of the studied area, we integrated a 

spatiotemporally dependent cloudy sky RTP into the GHI estimate formula of Cano et al., (1985). For 

this, we used equation (3) proposed by Cano et al., (1985), in which Gb now represents a cloudy sky 

RTP and 1-n is replaced by the clear sky coefficient Kc (9). The GHI equation transforms into the 

following: 

𝐺𝐻𝐼 =  𝑛 𝐺𝑏 + 𝐾𝑐  𝐺𝑐 .      (11) 

A bibliographic review highlighted four cloudy sky RTPs used in Gautier et al. (1980), Gautier and 

Landsfeld (1997), Slingo (1989) and Bisht and Bras (2010). The following criteria were used when 
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choosing the appropriate model: (1) the RTP should not significantly increase the computation time, 

and (2) it should not worsen the accuracy of clear sky GHI estimates. 

Considering these constraints, we kept the cloudy sky RTP proposed by Gautier and Landsfeld (1997). 

It is written as follows: 

𝐺𝑏 = 𝐺𝑐  
(1−𝜌𝑒𝑓𝑓−𝛼𝑐)

(1−𝜌𝑒𝑓𝑓 𝜌𝑔)
,     (12) 

where Gb is the cloudy sky RTP (Wh/m2), Gc is the clear sky RTP (Wh/m2), ρeff is the effective cloud 

albedo (unitless), αc is the cloud absorption (unitless) and ρg is the apparent ground albedo (unitless). 

For the effective cloud albedo, we used ρeff, as defined by Lefèvre et al. (2007): 

eff
 

𝑡
(𝑖, 𝑗) = 0.85 − 0.13 [1 − 𝑒𝑥𝑝(−4 𝑐𝑜𝑠(𝜃0))

5
],      (13)  

where 𝜃0 is the solar zenith angle. 

The apparent ground albedo ρg was used by Rigollier et al. (2004) in the Heliosat-2 model and is 

defined as the minimisation of the following equation, since it is assumed that the presence of clouds 

increases the albedo. 

𝜌𝑔
𝑡(𝑖, 𝑗) =

𝑚𝑖𝑛[ 𝜌𝑡(𝑖,𝑗)−𝜌𝑎𝑡𝑚
𝑡 (𝜃𝑠,𝜃𝑣,𝛹)]

𝑇(𝜃𝑠)𝑇(𝜃𝑣)
 .        (14) 

 

For further details, the reader is encouraged to refer to Rigollier et al. (2004). 

 

The cloud absorption αc of Gautier and Landsfeld (1997) is linearly dependent on the effective cloud 

albedo: 

𝛼𝑐  =  𝑎 𝜌𝑒𝑓𝑓.      (15) 

The proportionality coefficient a can be determined empirically, and Gautier and Landsfeld (1997) 

suggested a value of 0.07 for cirrus-type clouds. This RTP considers plane parallel clouds (Gautier and 

Landsfeld, 1997) as well as reflection and absorption by clouds, which are assumed to occur in one 

layer (Gautier et al., 1980).  

To compute the cloudy sky RTP, a cloud absorption index that describes the local cloud regime was 

required. As suggested by Gautier and Landsfeld (1997), the tendency of the satellite-derived GHI to 

underestimate or overestimate the ground-measured surface solar irradiation may be linked to a 

misrepresentation of cloud absorption. According to Diak and Gautier (1983) and Welch et al. (1980), 

the proportionality coefficient a (15) between cloud absorption and cloud albedo ranges from 0.04 to 

0.17.  

To find a (15) the author minimised the bias between the parameterised cloud absorption (15) and a 

cloud absorption computed from a RTM (Liou 1976) for solar zenith angle between 0° and 75°. First, 

the cloud type that mainly represents the local cloud regime was chosen. Second, the selected cloud 
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type’s absorption per solar zenith angle 𝛼𝑐𝑡 was extracted from Liou (1976) drawings, where the 

cloud absorption for five different types of clouds are available. Third, the effective cloud albedo 

𝜌𝑒𝑓𝑓 was computed following (14). Finally, a was chosen to minimise the bias between the cloud 

absorption defined in equation (15) and the cloud absorption 𝛼𝑐𝑡 obtained previously in Liou (1976) 

for solar zenith angle 𝜃𝑠 between 0° and 75°. To fit these two cloud absorptions, a (15) was varied 

between 0.04 and 0.17, and the authors solved the following equation: 

   𝑚𝑖𝑛𝑗∈𝑅(
1

𝑁
∑ 𝛼𝑐𝑡(𝜃𝑠𝑖) − 𝑎𝑗 𝜌𝑒𝑓𝑓(𝜃𝑠𝑖))
𝑁
𝑖=1 ,  (16) 

where aj is the value that can be obtained from the proportionality coefficient a and discrete values 

of solar zenith angle 𝜃𝑠𝑖 between 0° and 75°, chosen according to Liou (1976) cloud type absorption 

per solar zenith curves. Equation (16) is minimised when 𝑎𝑗 = 𝑎. 

The optimised Heliosat-2 method used in this study (RTP_OPT_H2) was designed for 16-bit GOES 

images instead of the 8-bit GOES images used by Albarelo et al. (2015). Monthly TL values for each 

site were obtained from the SoDa online database. GHI estimates using the RTP_OPT_H2 method 

(10, 11) were computed as follows: the clear sky RTP Gc, effective cloud albedo ρeff and ground 

albedo ρg used to compute the cloudy sky RTP as well as Gb were considered as outputs of the 

optimised Heliosat-2 code. These parameters were then used to compute the cloud index and GHI 

estimates. Within the Heliosat-2 code, Gb, Kc and Gc were computed simultaneously and combined to 

produce the GHI estimates. 

4 Results and discussion 

The accuracies of the GHI estimates from RTP_OPT_H2 were benchmarked against those of GHI 

estimates from the optimised Heliosat-2 and of GHI from in situ measurements. 

The GHI datasets were compared using four criteria: mean bias error (MBE), the root mean square 

(RMSE, the Pearson correlation coefficient (R), and the Kolmogorov Smirnov test integral (KSI). These 

accuracy criteria were defined as follows: 

𝐵𝐼𝐴𝑆 =
∑ yi−xii

𝑁 ∑ xi
 
i

,      (17)  

𝑅𝑀𝑆𝐸 =
√
1

𝑛
∑ (yi−xi)

2
i

𝑁∑ xi
 
i  

, and     (18)  

𝑅 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑖

√∑ (𝑥𝑖−𝑥̅)𝑖 √∑ (𝑦𝑖−𝑦̅)𝑖
.      (19) 

 

where yi is the model estimate and xi is the ground measurement value; 𝑥̅ and 𝑦̅ are the model-

estimated and ground-measured means, respectively; and N is the total number of data points. RMSE 

and MBE are expressed in Wh/m².  

According to Espinar et al. (2009), RMSE, MBE and R describe different characteristics of the 

behaviour of a dataset but are often insufficient to establish a complete, coherent comparison for 

benchmarking. While RMSE describes how points are clustered around a regression line, MBE 
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describes the distribution of the points around a unit line (Espinar et al., 2009). Therefore, the KSI can 

be used in such cases as a measure of similarity between two datasets described by their cumulative 

distribution function (CDF) (Espinar et al., 2009); the lower the KSI value, the closer the CDFs of the 

two datasets. The KSI value is advantageous because it shows how dataset values are statistically 

distributed. It not only describes the distribution of the points around a unit line, similar to MBE, but 

also allows the user to distinguish the behaviours of stations with similar RMSE values (Espinar et al., 

2009). KSI is defined as follows: 

𝐾𝑆𝐼 = ∫ |𝐶𝐷𝐹𝑐𝑜𝑚𝑝(𝑥𝑗) −
𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛
𝐶𝐷𝐹𝑟𝑒𝑓(𝑥𝑗)|𝑑𝑥,    (20) 

where 𝑥𝑗  ∈ [𝑥𝑚𝑖𝑛 + (𝑛 − 1)𝑝, 𝑥𝑚𝑖𝑛 + 𝑛𝑝) with 𝑝 =
(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)

𝑚⁄ ; n is the discretisation 

subdivision n∈ [1,.., m]; m is the total number of discretisation subdivisions, taken as ≥ 100 for all 

integrations; and xmax and xmin are the extreme values of GHI. 

Clear and cloudy skies were split with respect to the clearness index Kt values: 

𝐾𝑡 =
𝐺𝐻𝐼

𝐺𝑇𝑂𝐴
.         (21) 

Although it would have been also possible to separate cloudy skies from clear skies using the clear 

sky index (see eq. 6), we used the clearness index (Kt) instead. This is because the calculation of the 

clear sky index implies the use of a clear sky model, and we did not want to add uncertainties related 

to this model to our calculation. While we are also aware that Kt is more related to the turbidity in 

the atmosphere, the calculation of this index only requires GHI and the top-of-atmosphere GHI 

(GHITOA), as opposed to that of the clear sky index. Furthermore, GHI used to calculate Kt is obtained 

from validated and quality-checked ground measurements. Kt has already been used in studies in 

tropical climate areas, with highly variable sky conditions during the day: 

-Soubdhan et al. (2009) studied the daily distribution of Kt in Guadeloupe, French West Indies. They 

found 4 classes of days: clear sky days, intermittent clear sky days, cloudy sky days and intermittent 

cloudy sky days. The classes were separated according to the daily Kt value, a sunshine threshold, a 

cloudy level and a dynamic level. 

-Marie-Joseph et al. (2013) studied the applicability of the Heliosat-2 method to French Guiana in the 

north-eastern part of South America. Cloudy skies were assumed when Kt < 0.2 and clear skies were 

assumed when Kt > 0.7. We calculated the daily Kt value from the daily averaged GHI measured at the 

ground stations, as well as the standard deviation of the hourly Kt for each day; only data for days 

with a standard deviation of less than 15% were retained. Because of this constraint, the Kt values 

ranged between 0.7 and 0.1; Kt for clear sky days was almost equal to 0.7, while that for cloudy sky 

days was less than 0.2 (Albarelo et al., 2015). 

Over all the years and stations, the studied dataset includes 70480 hourly all sky values, 4052 hourly 

clear sky values and 3700 hourly cloudy sky values. 

4.1 Quality of GHI estimates from the OPT_H2 method 
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To compare RTP_OPT_H2 GHI estimates against OPT_H2 GHI estimates, we first estimated the 

accuracy of the OPT_H2 GHI estimates using ground measurement data for clear, cloudy and all sky 

conditions (Table 2). 

Table 2: Results of the comparison between hourly GHI estimates from OPT_H2 and measured GHI 
under cloudy, clear and all sky conditions from 2010 to 2013 at all stations. Relative RMSE and MBE 
are given in brackets. 
 

Station MBE 
Wh/m² (%) 

RMSE 
Wh/m² (%) 

R 

cloudy sky conditions 

Saint 
Georges −97.1 (−61) 133.6 (84) 0.62 
Rochambeau −113.5 (−65) 150.8 (86) 0.62 
Kourou −101.9 (−62) 147.0 (81) 0.66 
Ile Royale −109.0 (−62) 146.9 (84) 0.64 
Saint 
Laurent −130.1 (−64) 159.8 (82) 0.72 
Maripasoula −123.1 (−49) 162.3 (66) 0.78 

clear sky conditions 

Saint 
Georges −85.4 (−15) 123.3 (22) 0.94 

Rochambeau −103.5 (−19) 136.1 (24) 0.94 
Kourou −96.0 (−16) 118.6 (20) 0.96 

Ile Royale −109.4 (−18) 140.1 (22) 0.96 
Saint 

Laurent −133.6 (−23) 159.4 (28) 0.95 
Maripasoula −63.3 (−11) 113.3 (19) 0.94 

all sky conditions 

Saint 
Georges −44.5 (−11) 130.3 (31) 0.89 

Rochambeau −55.5 (−13) 133.1 (30) 0.90 
Kourou −48.2 (−10) 120.6 (26) 0.92 

Ile Royale −40.6 (−8) 112.0 (23) 0.94 
Saint 

Laurent −63.8 (−15) 134.3 (31) 0.90 
Maripasoula −37.3 (−8) 125.5 (27) 0.90 

 

For clear, cloudy and all sky conditions, biases were negative, indicating that OPT_H2 underestimated 
the GHI. Under clear skies, MBE ranged from −23% to −10% for the study period, and RMSE ranged 
from 19% to 28%. High biases found in clear skies are explained by two phenomena: The first 
phenomenon is the occurrence of clouds on days that are on average clear. Fig 1 show time series of 
GHI for two days on each station. One can notice for instance that clouds occur over Saint Georges 
(Julian day 259) around 2 pm UTC because of the high discrepancies between the clear sky modelled 
GHI and the ground measured GHI. The bias between OPT_H2 and the ground measurement is 
approximately 50 Wh/m². The second phenomenon that explains high biases found in clear skies is 
TL. TL describes the optical thickness of the atmosphere due to both the absorption by the water 
vapour and the absorption and scattering by the aerosols. Tropical climate is characterised by hot 
and humid weather conditions; therefore, the water vapour modelling heavily influence the GHI 
(Janjai et al., 2005). However, available data are monthly climatological values. According to (Rigollier 
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et al., 2000) a change of 1 in TL leads to a relative change of approximately 10–15% in clear-sky GHI 
estimates. 
 

 

Fig. 1. GHI time series of two days where all stations experienced on average a clear sky day. (1) is for 

Julian day 259 (September 16th) on year 2010, (2) is for Julian day 277 (October 4th) on year 2013. 

For all sky conditions, MBE and RMSE ranged from −15% to −8% and from 22% to 32%, respectively, 

while the correlation coefficient R ranged from 0.89 to 0.94. Under cloudy sky conditions, MBE 

increased by more than three times, with values ranging from −48% to −64%. RMSE also increased in 

this case, usually by almost four times, with values ranging from 66% to 84%. The correlation 

coefficient, a measure of the similarity between the irradiance estimated by the model and that 

measured by the pyranometers, was close to maximum under clear sky conditions. For each year and 

station, the correlation coefficient was better than 0.93 under clear sky conditions. Under cloudy sky 

conditions, there was a significant decrease in the correlation coefficient values: the highest value 

was 0.78 and the lowest value was 0.62. 

 

Fig. 2. Measured GHI versus OPT_H2 GHI estimates under cloudy conditions from 2010 to 2013 for all 

stations. The full line is the identity line and the dashed line is the linear regression between the 
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ground measurements and OPT_H2 

As seen in Table 2 and Figure 2, under cloudy sky conditions, there was a large discrepancy between 

GHI estimates from the OPT_H2 model and the measured values. To address this discrepancy, we 

coupled the optimised model with an RTP, as described in Section 4.2. 

4.2 Quality of GHI estimates from the OPT_H2 method coupled with an RTP 

Using the methodology described in Section 3.2, the cloud absorption to effective cloud albedo 

proportionality coefficient, a, was computed to describe the effect of cumulonimbus clouds over 

French Guiana (Marie-Joseph et al., 2013). Equation (15) is minimised when 𝑎𝑗= a= 0.165. This value 

was substituted in equation (14) to yield the following: 

αc = 0.165 ρeff.    (22) 

This value of αc was integrated in the cloudy sky RTP, and GHI estimates were generated with this 

parameterisation for the years 2010–2013 (Table 3). 

Table 3: Results of the comparison between hourly GHI estimates from RTP_OPT_H2 and measured 
GHI under clear, cloudy and all sky conditions from 2010 to 2013. Relative RMSE and MBE are given in 
brackets. 
 

Station MBE  
Wh/m² (%) 

RMSE 
Wh/m² (%) 

R 

cloudy sky conditions 

Saint 
Georges −4.1 (−2) 99.1 (62) 0.62 
Rochambeau −19.4 (−11) 108.0 (62) 0.60 
Kourou −22.6 (−12) 103.2 (57) 0.66 

Ile Royale 
−20.1 
(−11.14) 102.2 (58) 0.67 

Saint 
Laurent −42.9 (−21) 109.0 (54) 0.74 
Maripasoula −49.3 (−20) 108.1 (43) 0.84 

clear sky conditions 

Saint 
Georges −70.0 (−12) 106.4 (18) 0.94 

Rochambeau −86.8 (−15) 117.1 (20) 0.95 
Kourou −86.8 (−14) 105.7 (17) 0.97 

Ile Royale −100.0 (−16) 126.8 (20) 0.97 
Saint 

Laurent −116.2 (−20) 139.7 (24) 0.96 
Maripasoula −51.7 (−9) 101.3 (17) 0.94 

all sky conditions 

Saint 
Georges −9.4 (−2) 107.8 (26) 0.91 

Rochambeau −21.7 (−5) 108.1 (24) 0.92 
Kourou −20.7 (−4) 99.7 (21) 0.94 

Ile Royale −17.5 (−4) 94.2 (19) 0.95 
Saint 

Laurent −30.4 (−7) 109.0 (25) 0.92 
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Maripasoula −11.7 (−3) 108.6 (24) 0.92 
 

4.3 GHI estimates under cloudy sky conditions 

Table 3 shows the impact of coupling a cloudy sky RTP with OPT_H2 under cloudy sky conditions. 

 

Fig. 3. All stations’ GHI ground-measured data versus RTP_OPT_H2 estimates under cloudy sky 

conditions from 2010 to 2013. The full line is the identity line and the dashed line is the linear 

regression between the ground measurements and RTP_OPT_H2 

Figure 3 shows the relationship between GHI from ground measurements and from OPT_H2. 
Comparing Figures 2 and 3, one can see that the gap between the identity line and the linear 

regression line between the ground measurements and OPT_H2 has decreased, and in some cases, 

they intersect. 

There was an overall decrease in both MBE and RMSE, and the correlation coefficient improved for 

most stations. The RTP_OPT_H2 MBE ranged from −2% to −22% over the entire study period, while 

OPT_H2 MBE ranged from −48% to −65%. A noticeable decrease in the RMSE was also observed; 

OPT_H2 RMSE ranged from 66% to 87%, while RTP_OPT_H2 RMSE ranged from 43% to 63%. 

Figure 4 shows a clear reduction in the gap between the ground-measured values and RTP_OPT_H2 

values under cloudy sky conditions for all stations. The clearness index CDF (Fig. 4) show that for 

these days considered as cloudy on average, at least 50% of the hourly Kt values are lower than 0.2 

for each station. Kt values higher than 0.4 represent less than 1%.  The accuracy of the GHI estimates 

for this cloud absorption coefficient parameterisation (22) varies according to the location of the 

station, as seen in Table 3. One can classify stations into three groups with respect to the magnitude 

of the improvement: (1) Saint-Georges and Rochambeau, (2) Kourou and Ile Royale and (3) St-

Laurent and Maripasoula. This classification is based on rainfall amount in the regions: the first group 

has a yearly mean rainfall between 3700 and 3500 mm, the second group has a yearly mean rainfall 

of approximately 3000 mm and the third group has a yearly mean rainfall between 2500 and 2650 

mm according to Météo-France (Héritier, 2011). Hong et al. (2004) and Richards and Arkin (1980) 

noticed significant correlation between cloud groups and rainfall; therefore, the regions within each 

group may also have a similar cloud regime.  
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Figure 4 also shows that modelling cloud absorption with RTP_OPT_H2 improved the Heliosat-2 

cloudy sky GHI CDF for irradiance values between 42 and 278 Wh/m². These values are obtained my 

multiplying the normalized value Fig. 4 by the maximum GHI value measured under cloudy sky 

condition. These values represent approximately the 85th percentile on average for all stations. The 

highest improvement was noted for irradiance of approximately 42 to 56 Wh/m² (Fig. 4), which, 

depending on the station, represents approximately 20% to 30% of the cloudy sky samples. However, 

the correction effect was less obvious for irradiance values of less than 42 Wh/m² or more than 333 

Wh/m² (Fig. 4), except at Maripasoula, where noticeable improvements were found for values of up 

to 472 Wh/m². 

The results for percentiles of values higher than 333 Wh/m² (Fig. 4) are explained by the occurrences 

of clear sky periods on days considered cloudy. The results for percentiles of values lower than 42 

Wh/m² correspond to periods near sunrise or sunset (high s), where Gautier and Landsfeld (1997) 

found discrepancies between their cloudy sky model (used in this study) and ground measurements. 

Rigollier et al. (2004) also found that Heliosat-2 performs poorly for high s (values greater than or 

equal to 75°). Differences observed between stations in the intermediate percentiles can be 

explained by varying cloudiness conditions during the day. An analysis of satellite images containing 

the ground stations showed that cloud index values can vary rapidly for days considered cloudy; 

there were few days where the cloud index was constantly high. 

 
Fig. 4. CDF of GHI estimates from RTP_OPT_H2 and OPT_H2 compared with CDF of measured GHI 

from 2010 to 2013 under cloudy sky conditions. The clearness index CDF (computed using ground 

measurements) under cloudy sky conditions is shown alongside the GHI cdfs for each station. The 

normalized GHI CDFs are obtained by dividing the GHI values by the maximum ground GHI value 

measured under cloudy sky condition. These normalization values are:  for Saint Georges 847 Wh/m², 

Rochambeau 661 Wh/m², Kourou 697 Wh/m², Iles Royale 822 Wh/m², Saint Laurent 852 Wh/m², 

Maripasoula 966 Wh/m² 

4.4 Quality of GHI estimates under clear sky conditions 
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One of the objectives for RTP_OPT_H2 development was to not degrade the clear sky surface solar 

radiation estimates. Table 3 shows significant improvements in RMSE, MBE and correlation 

coefficients under clear sky conditions. MBE of the GHI estimates from OPT_H2 ranged from −23% to 

−10%, while that from RTP_OPT_H2 ranged from −8% to −20%. RMSE followed the same trend, 

ranging from 19% to 28% for OPT_H2 and 16% to 24% for RTP_OPT_H2. Overall, there was a minor 

increase (0.01) in the correlation coefficient. To further analyse the impact of RTP_OPT_H2 under 

clear sky conditions, we considered the CDF of the GHI estimated by RTP_OPT_H2, OPT_H2 and from 

ground measurements (Fig. 5). 

 

Fig. 5. CDF of GHI estimates from RTP_OPT_H2 and OPT_H2 compared with CDF of measured GHI 

from 2010 to 2013 under clear sky condition. The clearness index CDF (computed using ground 

measurements) under clear sky conditions is shown alongside the GHI cdfs for each station. The 

normalized GHI CDFs are obtained by dividing the GHI values by the maximum ground GHI value 

measured under clear sky condition. These normalization values are:  for Saint Georges 1058 Wh/m², 

Rochambeau 1075 Wh/m², Kourou 1019 Wh/m², Iles Royale 1055 Wh/m², Saint Laurent 1083 Wh/m², 

Maripasoula 1038 Wh/m² 

Figure 5 shows that, although RTP_OPT_H2 improved GHI estimation from each site similarly 

regardless of geographical location under clear sky conditions, this improvement was less noticeable 

than that observed under cloudy sky conditions (Fig. 4). The clearness index CDF (Fig. 5) show that for 

these days considered as clear on average, at least 50% of the hourly Kt values are higher than 0.65 

for each station. Kt values lower than 0.5 represent less than 1%.   

4.5 Quality of GHI estimates under all sky conditions 

The computation results showed an overall improvement in GHI estimates under all sky conditions 

(Table 3). MBE of the GHI estimates from RTP_OPT_H2 ranged from −2% to −7% over the entire 

study period, while that from OPT_H2 ranged from −15% to −8%. RMSE also showed a decrease; 

RMSE of the GHI estimates from OPT_H2 ranged from 22% to 32%, while that from RTP_OPT_H2 
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ranged from 19% to 26%. Under all sky conditions, there was a noticeable improvement in the 

correlation coefficient; lower and higher values for RTP_OPT_H2 were 0.91 and 0.95, respectively, 

whereas those for OPT_H2 were 0.89 and 0.94, respectively. The clearness index CDF (Fig. 6) show 

that under all sky conditions there is a high occurrence of clouds, at least 50% of the hourly Kt values 

are lower than 0.5 for each station. The overall improvement under all sky conditions may be 

explained by improved cloud feature characterisation.  

Previously, cloud optical depth was not modelled in OPT_H2 by Kc but is now modelled in 

RTP_OPT_H2 using cloud absorption αc as a proxy for cloud optical depth (Gautier and Landsfeld, 

1997). Welch et al. (1980) showed that when cloud optical depth decreases, cloud transmittance 

increases, and vice versa. Using the cloudy sky parameterisation allowed tweaking of the cloud 

optical depth to match the ITCZ regional cloud properties. To further analyse RTP_OPT_H2’s effect 

under all sky conditions, the CDF of the GHI from RTP_OPT_H2, OPT_H2 and ground measurements 

was considered (Fig. 6). 

 
Fig. 6. CDF of GHI estimates from RTP_OPT_H2 and OPT_H2 compared with the CDF of measured GHI 

from 2010 to 2013 under all sky conditions. The clearness index CDF (computed using ground 

measurements) under all sky conditions is shown alongside the GHI cdfs for each station. The 

normalized GHI CDFs are obtained by dividing the GHI values by the maximum ground GHI value 

measured under all sky condition. These normalization values are:  for Saint Georges 1108 Wh/m², 

Rochambeau 1172 Wh/m², Kourou 1063 Wh/m², Iles Royale 1108 Wh/m², Saint Laurent 1122 Wh/m², 

Maripasoula 1066 Wh/m² 

Table 4: KSI between CDF of GHI from RTP_OPT_H2, OPT_H2 and ground measurements under clear, 
cloudy and all sky conditions from 2010 to 2013. These values are obtained my multiplying the 
normalized value Fig. 4-6 by the maximum GHI value measured in the station under the considered 
sky condition 
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Station KSI between OPT_H2 GHI estimates 
and ground measurements 
2010–2013 (Wh/m²) 

KSI between RTP_OPT_H2 GHI 
estimates and ground measurements 
2010–2013 (Wh/m²) 

 Cloudy sky Clear sky All sky Cloudy sky Clear sky All sky 

Saint Georges 63.7 36.1 18.1 15.9 29.1 4.7 
Rochambeau 57.3 42.5 22.7 15.2 34.7 8.6 
Kourou 58.8 40.9 18.1 11.6 35.8 7.6 
Ile Royale 67.5 43.3 15.3 13.3 38.8 7.8 
Saint Laurent 76.2 58.7 26.4 20.7 50.6 12.5 
Maripasoula 72.7 25.8 13.6 28.8 21.3 5.4 
       
 

Figure 6 shows a clear reduction in the discrepancy between ground-measured and RTP_OPT_H2 GHI 

values under all sky conditions for all stations, similar to the improvements noted for clear and 

cloudy sky conditions. Table 4 shows KSI for both OPT_H2 and RTP_OPT_H2 computed for the six 

stations under clear, cloudy and all sky conditions using CDF. One can see that the magnitude of the 

improvement clearly distinguishes the three groups described in Section 4.2.1. The first group (Saint 

Georges and Rochambeau) showed the greatest improvement, followed by the second and third 

groups. There was also an improvement under clear sky conditions, albeit lower than that under 

cloudy sky conditions. This is explained by the occurrence of clouds during days that are, on average, 

clear, as defined in equation (21). 

5 Conclusions 

In this article, we have attempted to improve GHI estimates under cloudy sky conditions 

encountered in tropical areas. We coupled a cloudy sky RTP that included cloud features in an 

optimised version of the Heliosat-2 method calibrated with GOES images. Using this method 

improved GHI estimation accuracy in the ITCZ, a zone characterised by high cloudiness. 

The novelty of this modification to the Heliosat-2 method is its design, which (i) is based on a cloudy 

sky RTP with only one parameter—the cloud absorption and (ii) does not increase computation time. 

The bias improvement of GHI estimates under cloudy sky conditions lies between 25% and 39%. 

RTP_OPT_H2 had a greater effect on bias; for the entire dataset, under cloudy sky conditions, the 

bias changed from a mean of −60% for OPT_H2 to a mean of −16% for RTP_OPT_H2. This 

improvement under cloudy sky conditions has a direct effect on that under all sky conditions; the 

overall MBE and RMSE changed from mean values (based on all years and stations combined) of 

−11% and 28%, respectively, for OPT_H2 to −4% and 23%, respectively, for RTP_OPT_H2. This 

improvement is explained by the improved cloud feature characterisation resulting from the cloudy 

sky parameterisation integration in the GHI formula. KSI was also computed for all stations under 

clear, cloudy and all sky conditions.  

RTP_OPT_H2 was found to be highly sensitive to cloud absorption parameterisation. We have shown 

that the magnitude of RTP_OPT_H2 bias improvement varied between three groups: (1) Saint-

Georges and Rochambeau, (2) Kourou and Ile Royale and (3) St-Laurent and Maripasoula. This 

phenomenon can be explained by the similar cloud regimes amongst these groups. Experiments 
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showed that better results are obtained if cloud absorption is tweaked for each group of stations. 

Nevertheless, the cloud absorption value for cumulonimbus clouds was found to be good enough to 

describe the cloud regimes in French Guiana. Thus, we have shown that, despite having dynamic 

cloud cover, a single cloud albedo and cloud absorption proportionality coefficient can be used at 

different sites to provide good results. 

The scope for future research involves creating a monthly map of cloud absorption, first, for French 

Guiana, and then, for other tropical areas using several satellite spectral channels and/or ground 

measurements to identify cloud types (Tapakis and Charalambides, 2013). Once the cloud type is 

known, the cloud absorption can be computed using Liou, (1976). To conclude, our Heliosat-2 

method with RTP coupling can be applied universally and at various locations, provided the correct 

cloud absorption parameterisation, describing the cloud regime at the said location, is used. 
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III. Summary and conclusion of Chapter II 

 

In Chapter II we presented first the definition of radiometric quantities. Using these definitions we 

discussed methods used to model the GHI at the ground and how they can be validated against 

quality control ground measurements. These methods either solve accurately or approximate the 

RTE. Approximate methods answer a major concern that is to find a good compromise between the 

accuracy of the GHI estimates and the computation cost. Approximate method can either be 

classified as physical, semi-physical or statistical parameterizations. A key component for modelling 

the GHI in the ITZ is the ability of a model to describe cloud coverage and cloud content. Physical 

parameterizations account for cloud properties; however, they do not account for cloud coverage as 

statistical satellite methods. For this reason we presented in this chapter a new method that couple a 

statistical satellite methods (ie, Heliosat-II) and a physical parameterization for cloudy sky conditions. 

This methodology (RTP_OPT_H2) was validated against ground measurements and the native 

Heliosat-II (OPT_H2) calibrated with GOES images. We found that the bias improvement of GHI 

estimates under cloudy sky conditions lies between 25% and 39%. We also found that the 

improvement under cloudy sky conditions has a direct effect on the GHI estimates under all sky 

conditions The overall MBE and RMSE changed from mean values (based on all years and stations 

combined) of −11% and 28%, respectively, for OPT_H2 to −4% and 23%, respectively, for 

RTP_OPT_H2. Consequently, we have shown that our method improves the GHI estimates under 

cloudy and under all sky condition in French Guiana. The scope for future research includes extend 

this methodology to other location in the intertropical zone and provide accurate GHI estimate to 

improve solar facilities design and siting in in the ITZ. 
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CHAPTER III : Assessing the accuracy of 
numerical weather prediction model in 

the intertropical zone 
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I. Forecasting the solar irradiance at the ground 

 

I.1  Recommendation for solar energy forecast method depending on the horizon 

 

Knowledge of the global horizontal irradiance (GHI), its temporal and spatial distribution is crucial for 

many purposes, such as electricity production (Clack, 2017), crop growth monitoring (Campillo et al., 

2012), and energy efficient building design (Oldewurtel et al., 2012). Several countries, including 

Australia (Clean Energy Council, 2017), Costa Rica (Nandwani, 2006), France (Ministry of the 

environment, 2016b), Germany (Lehr et al., 2006), the United States (O’Connor and Cleveland, 2015), 

and Sweden (Centeno López, 2016) have begun an energy transition. A primary goal of this energy 

transition is to increase the share of electricity produced from solar and or wind energy and decrease 

the share of electricity produced from fuel and or nuclear energy. However, the integration into the 

grid of electricity generated by intermittent renewable energies present economic and technical 

challenges (IER, 2013). To ensure grid stability and safety: accurate forecasts of solar irradiance and 

weather conditions up to 48 hours ahead are required  (Dambreville et al., 2014). Many models have 

been developed to assess the GHI at the ground depending upon the forecast horizon (Diagne et al., 

2013; Glassley et al., 2012; Inman et al., 2013; Kleissl, 2013; Pelland et al., 2013). These methods can 

be divided into three categories: ground based, satellite based and NWP based Fig. III.1.  

 

Fig. III.1 Conceptual diagram of forecast skill as a function of forecast lead time for different forecast 
methods. Extracted from (Kleissl, 2013; Ruiz-Arias and Goenka, 2017) 

For intra hour GHI forecasts the use of sky imagers is suggested (Inman et al., 2013). Sky 
imagers forecast the GHI based on a cloud advection approach. First cloud motion vectors are 
generated by cross-correlating two consecutive sky images (Chow et al., 2011). Second the cloud 
images are then propagated forward in time using the motion vector previously defined. The second 
step results in a forecast of the cloud position (Quesada-Ruiz et al., 2014). Therefore, using a clear 
sky model and knowing the location of clouds, a GHI forecast can be obtained. The main challenge of 
these imagers forecasts are: the cloud detection method (Fu and Cheng, 2013; Yang et al., 2015) and 
the computation of the 3D-cloud map extrapolated from sky imagers images. The main advantage of 
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sky imagers forecasts is that they have higher spatial and temporal resolution than numerical 
weather prediction and satellite-based forecasts (Fu and Cheng, 2013). The temporal resolution is 
typically inferior or equal to 1 min  whereas the spatial resolution is determined by the sky imager 
field of view (Chow et al., 2011; Marquez and Coimbra, 2013; Quesada-Ruiz et al., 2014; Schmidt et 
al., 2015). Using sky imagers to forecast the GHI Schmidt et al., (2015) found for a forecast horizon of 
10 min a RMSE ranging between 70 and 250 W/m². for a 5 minute forecast horizon, Quesada-Ruiz et 
al.(2014) found that overall the RMSE was 105.26 W/m². For a 15-minute forecast horizon (Marquez 
and Coimbra, 2013) found a RMSE ranging between 299 and 401 W/m². Marquez et al. (2013) 
showed that intra hours forecasting using stochastic learning technic is possible, for a 30 min forecast 
horizon he found out a 1.78 W/m².  The main disadvantage of this method is their reliance on 
training datasets (Mathiesen and Kleissl, 2011). 
 

For intraday, between 1h and 6h forecast horizon, the use of satellite method is suggested 
(Diagne et al., 2013; Inman et al., 2013). Nevertheless, stochastic learning technics can be used 
forecast the GHI up to 2h ahead (Pedro and Coimbra, 2012). Satellite methods are also based on a 
cloud motion forecasts approach. They allow a greater forecast range because of their spatial 
resolution that is coarser than those of sky imagers (Diagne et al., 2014). Satellite advection forecast 
extends up to 6h at a resolution of 1 km² ( C. W. Chow et al., 2011). The main challenges for satellite-
based advection based forecasts are the cloud detection algorithm and cloud height determination 
(Qu, 2013). Perez et al. (2010) found that the RMSE of 6h GHI forecasts using a satellite method 
ranges between -31% and 38%.  
 

Beyond 6h forecast horizon, cloud advection which is observed through satellite images 
become less important than cloud development and dissipation. NWP models describe the 
atmospheric state using conservation equations; therefore they account for  dissipation 
phenomenon (Hamill and Nehrkorn, 1993).  Consequently, for forecast horizon larger than 6h, the 
use of numerical weather prediction (NWP) model is suggested (Diagne et al., 2013; Inman et al., 
2013). In this manuscript we aim to forecast the GHI up to 48 h ahead; therefore, we are interested 
in using NWP to assess the GHI. In the following section we present the different type of NWP 
models and how they describe the atmospheric state. 
 

I.2  Introduction to Numerical weather prediction models 

 

A numerical weather prediction model is a set of non-linear equations that are discretized and 
resolved using numerical algorithms (Coiffier, 2011). These equations model the physical process that 
occur in the atmosphere and its interaction with the ocean and land surface (Fig. III.2). These physical 
processes account for: the transfer of momentum and temperature by advection, convection, small-
scale turbulent motions (diffusion) as well as the selective absorption and emission of radiation and 
the release of latent heat accompanying condensation (Schlesinger, 1988). According to Jacobson, 
(2005) Molecular diffusion occur over distances much smaller than 2 mm whereas advection motion 
such as thunderstorm occur over distances of 2–2000 km. This wide disparity of length scale 
introduces modeling and computation feasibility issues. To solve this issue NWP models were divided 
into two categories:  
 
-global NWP models 
-mesoscale models 
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Fig. III.2 Physical process accounted for in NWP models extracted from (Helmert, 2016) 

Global models, on one hand forecast the state of the entire earth atmosphere; they have a typical 

resolution of 16-50 km. Mesoscale models, on the other forecast the state of a portion of earth 

atmosphere. The spatial resolution of mesoscale models is defined by the user with respect to the 

computing power; it usually ranges between  5 and 20 km (Diagne et al., 2014). Mesoscale models 

take global model forecasts as initials and boundary conditions inputs so they can account for large 

scale phenomena; they do not include an ocean model. Yet the resolution of current NWP models is 

still too coarse to resolve the micro-scale physics associated with cloud formations (Inman et al., 

2013). Because of NWP model coarse grid resolution, sub-grid scale (i.e unresolved) physical process 

must be approximated (hereafter, parameterized). Consequently, parameterization are used so that 

the physical effect of smaller scale processes are accounted for on larger scale (Kleissl, 2013). 

Physical parameterization scheme can be divided in five categories (Dudhia, 2014; Kleissl, 2013; 

Schlesinger, 1988; Stensrud, 2009): 

-microphysics (or stratiform-microphysic) 

-cumulus (or convective) 

-radiation (or radiative transfer) 

-surface (land surface-atmosphere) 

-planetary boundary layer (or turbulent transport) 

Microphysics scheme governs the formation of hydrometeors for stratiform clouds, and their growth 

to precipitation-size raindrops and snow particles. Cumulus scheme intend to represent vertical 

fluxes and latent heat due to unresolved upward or downward moving air current. Radiation scheme 

compute absorption by gases as well as scattering and absorption by particles. Surface scheme 

model the exchange of mass and energy between land surface and the atmosphere with respect to 

the land-surface properties. The planetary boundary layer scheme represents the small scale 

turbulence that transports heat and moisture in the vertical, thereby creating the conditions needed 
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for saturation and cloud formation. These parameterizations are not independent, they interact 

directly as shown Fig. III.3. 

.  

Fig. III.3 Interaction between physical parameterization. Extracted from (Dudhia, 2014) 

The advantage of global models is that there GHI forecasts are available globally and freely for most 

cases; they do not require any computing facilities. There drawback is that these forecasts are 

available on grid resolutions greater than 10 km and with frequency greater or equal to 1-hour. Tab. 

III.1 shows the spatial and temporal resolution of GHI forecasts from global NWP for that are 

available for download. Among these models, the uncertainties of IFS and GFS GHI forecasts at the 

ground are the most well-documented (Mathiesen and Kleissl, 2011; Perez et al., 2013; Remund et 

al., 2008; Schroedter-Homscheidt et al., 2017; Troccoli and Morcrette, 2014). The aforementioned 

studies gathered data from a total of 43 stations. A large number of these validation stations 

represent Mediterranean, oceanic, continental, and arid climates, and are located in the United 

States, Canada. Nevertheless, these models have not been evaluated yet in the ITZ. Therefore, the 

accuracy the accuracy of IFS and GFS in French Guiana and in tropical climates is unknown. 

Mesoscale model have finer resolution than global because they are ran for smaller scale domains. 

They have the potential to produce more realistic forecasts than lower resolution models by 

resolving smaller scale processes (Lorenz et al., 2016). Nevertheless, for a mesoscale model to be 

used it must be carefully calibrated, using physical parameterization that describes the region climate 

patterns (Ruiz-Arias et al., 2008). Most studies dealing with mesoscale model calibration concentrate 

on locations in the USA, Spain and Germany with continental climate(Lara-Fanego et al., 2012; Perez 

et al., 2013; Prabha and Hoogenboom, 2010; Ruiz-Arias et al., 2013; Zempila et al., 2015). These 

countries are amongst the world leaders in installed photovoltaic power capacity (Inman et al., 

2013). 
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Tab. III.1 spatial and temporal resolution of GHI forecast products from global model operated by 
forecast center for the first 48 hour forecasts. The temporal and spatial resolution of these products 
refers to those of datasets available for download. Source (BAM, 2018; CMC, 2016; DWD, 2018; 
ECMWF, 2016b; Figueroa et al., 2016; NOAA, 2016; Walters et al., 2017) 
 

NWP Operational  
Center 

Spatial resol. 
distrib. forecast 

Temporal 
resol. 
distrib. 
forecast 

Download link 

GFS (GSM v13.0.2): global 
forecast system 

National center for 
environmental prediction:  
NCEP 

0.25° (~28 km), 
46 levels 

3 hours https://rda.ucar.edu/
datasets 

IFS (cycle 41R2): Integrated 
forecast system 

European center for 
medium range forecast: 
ECMWF 

0.125° (~14km), 
125 levels 

1 hour https://www.ecmwf.i
nt/en/forecasts/datas
ets 

UM : unified model v6.1 Meteorological office: Met 
Office 

~17km, 70 level 1 hour http://catalogue.ceda
.ac.uk 

GEM v4.0: Global 
environmental multi-scale 

Canadian Meteorological 
center: CMC 

0.240° (~25 km), 
28 levels 

1 hour or 
3 hours  

https://weather.gc.ca 

ICON v1.2.3: ICOsahedral 
Non-hydrostatic 

German weather Service: 
DWD  

13 km, 90 levels 1 hour https://opendata.dw
d.de 

ARPEGE cycle 43: Action de 
recherché petite echelle 
grande échelle 

French Weather services: 
Météo-France 

0.50° (~56 km),x 
levels 

3 hours https://donneespubli
ques.meteofrance.fr 

BAM: Brazilian Global 
Atmospheric Model 

Centro de previso de 
tempo estudos climaticos: 
CPTEC 

0.18° (~20 km), 
6 levels 

6 hours ftp://ftp.cptec.inpe.br
/modelos/io/tempo/g
lobal 

 

According to Warner, (2010) calibrating a numerical weather prediction model require the following 

step: 

- determine the prevailing physical process in the geographic area of interest 

- define the horizontal resolution so that physical process are resolved within the model grid 

-define the vertical resolution so it describe accurately vertical structures such as the boundary layers 

gradients 

-define the map projection 

-validate the model accuracy for different season 

- study the accuracy of the model with respect to the location of the computation domain and 

domain size. 

- Perform tests to determine the sensitivity of the model accuracy to the vertical and horizontal grid 

increments 

Tab. III.2 shows a comparison of commonly used mesoscale model (Dudhia, 2014; WMO, 2014). This 

comparison focuses on the numerical aspect and radiation parameterization options. Tab. III.2 shows 

that weather and research forecast model (WRF) (Skamarock et al., 2008) has the numerical methods 

with higher order of accuracy. According to Wang et al., (2013) high order numerical method achieve 

better accuracy than low order numerical method for the same grid resolution. WRF (Skamarock et 
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al., 2008) model is the most documented, besides it has physical parameterization that allows for 

feedbacks between aerosol, ozone, cloud and radiation which is not the case for all mesoscale NWP. 

Tab. III.2 Comparison of commonly used mesoscale model Source: for numerics ((Burridge, 1975; 
Doms and Baldauf, 2015; Käellen, 1996; Majewski, 2009; NCAR, 2017; Termonia et al., 2018; Tudor et 
al., 2013; Undén and co-authors, 2002); for Radiation (Doms and Baldauf, 2015; Jimenez et al., 2016; 
Termonia et al., 2018; Walters et al., 2017; Zubler et al., 2011) 

  WRF 
v3.8 

ALADIN 
cycle 43 

COSMO 
v5.1 

HIRLAM 
V5 

Unified 
model UM 
v6.0 

HRM 
v2.5 

Numerics temporal 
integration 
order of 
accuracy 

3
rd

 order Runge 
Kutta 

2
nd

 order  
semi-implicit 
semi-
Lagrangian  

3
rd

 order 
Runge 
Kutta 

1
st

 order 
Eulerian semi 
implicit 

2
nd

 order 
semi-implicit 
semi-
Lagrangian 

Explicit two 
step Lax-
Wendroff 
2

nd
 order 

Horizontal 
advection 
order of 
accuracy 

5th order 
default (6

th
 order 

available) 

Semi-
Lagrangian.  
Order not 
mentionned 

5th order 
default (6

th
 

order 
available) 

Eulerian or 
semi-
Lagrangian. 
Order not 
mentionned 

Semi-
Lagrangian.  
Order not 
found 

Adjusted 
Lax-
Wendroff. 
Order not 
mentioned 

Vertical 
advection 
order of 
accuracy 

3
rd

 order 
default (6

th
 order 

available) 

Semi-
Lagrangian.  
Order not 
mentioned 

2
nd

 order 
Crank-
Nicholson 

Eulerian or 
semi-
Lagrangian. 
Order not 
mentioned 

Semi-
Lagrangian.  
Order not 
mentioned 

Adjusted 
Lax-
Wendroff. 
Order not 
mentioned 

Horizontal 
Diffusion 

6
th

 order 4
th

 order 
numerical 
diffusion 

4
th

 Order 
linear 

6th order 
semi-
Lagragian 

2
nd

 order 4
th

 order 
linear 
diffusion 

Radiation Ozone 
dataset 
resolution 
available 

CAM climatology: 
2.82 ° latitudinal, 
monthly 

UGAMP 
climatology: 
2.5°*2.5° 
monthly 

Not 
mentionne
d 

Not 
mentionned 

SPARC-II 
monthly 
variable 
longitude 
latitude   

Not 
documented 

Climatologic 
Aerosol 
dataset 
available 

-Tegen 
climatology: 
Monthly, 5°*4°  
-Thompson and 
Eidhammer 
climatology : 
Monthly, 0.5°* 
1.25° 

-Tegen 
climatology 
 

-Tegen 
climatolog
y 
-Tanré 
climatolog
y:  ~11°, 
constant in 
time 

-Tegen 
climatology 
 

CLASSIC 
aerosol 
climatology. 
resolution 
not found 

Not 
documented 

Cloud 
radiation 
feedback 

yes 
 

yes 
 

yes Not 
mentioned 

yes Not 
documented 

Aerosol 
radiation 
feedback 

yes 
 

yes yes yes yes Not 
documented 

Ozone 
radiation 
feedback 

yes Yes yes yes yes Not 
documented 

cloud 
aerosol 
feedback 

yes 
 

Yes 
 
 

Not 
mentioned 

Not 
mentioned 

yes Not 
documented 
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Perez et al., (2013)  studied the accuracy of global and mesoscale model for several location in 

Canada, Europe and the USA. They found that despite their higher resolution the accuracy of hourly 

GHI forecasts of mesoscale models are similar or worse than those of global models. According 

(Kotsopoulos et al., 2014; Morrison, 2010)  describing more accurately physical phenomena may 

expose other NWP model deficiencies. For this reason we decided first study the accuracy of global 

NWP model in the ITZ and for tropical climates. Second, to propose a methodology to calibrate WRF 

in the ITZ so that it has improved GHI forecasted compared to non-calibrated mesoscale models. This 

methodology was validated in French Guiana using ground measurements and AROME (Seity et al., 

2011) mesoscale model. 

II. Studying the GHI forecast accuracy of global NWP models in the intertropical 

zone  

 

Assessing GFS and IFS global weather prediction and numerical 
model forecast accuracy in the intertropical zone and for tropical 

climates3 
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a
Université de la Guyane – UMR 228 Espace-Dev, BP 792, 0.275 km Route de Montabo, 97337 Cayenne, French 

Guiana, France 
b
Graduate School for Engineering and Integrative Science, National University of Singapore, Centre for Life 

Sciences (CeLS), #05-01, 28 Medical Drive, Singapore 117456 
c
Solar Energy Research Institute, National University of Singapore, PV Module Cluster, No. 1 CleanTech Loop, 

CleanTech One #06-01, Singapore 637141 
d
Department of Physics, National University of Singapore, Faculty of Science, 2 Science Drive 3, Blk S12, Level 2, 

Singapore 117551 
e
 Université de la Réunion, Laboratoire de l’Atmosphère et des Cyclones, UMR8105, UMR CNRS-Météo France-

Université, 15 avenue René Cassin - 97715 ST DENIS Messag Cedex 9, Ile de la Réunion, France 

*Corresponding author: mouhametdiallo@gmail.com (M. Diallo) 

Abstract 

An understanding of available solar resources is vital for monitoring and predicting the yield of solar 

energy systems. The purpose of this study is to assess the global horizontal irradiance (GHI) forecast 

accuracy of the Global Forecast System (GFS) and the Integrated Forecast System (IFS) numerical 

weather prediction (NWP) models in the intertropical zone and for tropical climates. GFS 

(GSM v13.0.2) and IFS (cycle 41R2) forecast accuracy is validated against GHI measurements during 

2016 from twelve meteorological stations located in French Guiana, Reunion Island, and Singapore. 

The mean average error (MAE), the mean bias error (MBE), the root mean squared error (RMSE), and 

                                                           
3 Abbreviations: FS, Forecast Skill; GEM, Global Environmental Multiscale; GFS, Global Forecast 
System; GHI, Global Horizontal Irradiance; IFS, Integrated Forecast System; ITCZ, Intertropical-
Convergence Zone; MAE, mean average error; NWP, numerical weather prediction; RMSE, root mean 
squared error; RRTMG, rapid radiative transfer model-G; UM, Unified Model. 
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the forecast skill (FS) were used to study: (1) the seasonal and yearly accuracy of IFS and GFS GHI 

forecasts (2) the bias distribution of both models as a function of the clear sky index and the clear sky 

index variability (3) the effect of temporally averaging IFS native hourly GHI outputs (IFS-1h) to 3-

hour GHI outputs, and (4) the accuracy of both model forecasts relative to other climates. To 

compare GFS 3-hour forecast outputs to IFS-1h forecast outputs, we considered two approaches. (i) 

We averaged temporally IFS-1h forecasts following GFS cycle to obtain 3-hour forecasts; these 3-hour 

output forecasts were named IFS-3h-p. (ii)Starting from 00h UTC we kept every 3 hour forecasts of 

hourly IFS ; these 3-hour output forecasts were named IFS-3h. Results show that under all sky 

conditions the GHI forecasts of IFS-3h and IFS-3h-p outperform those of 3-hour GFS in all territories. 

We found that averaging temporally the GHI forecasts using GFS cycle increase the MAE value; under 

all sky conditions the relative improvement of the MAE of IFS-3h over the MAE of IFS-3h-p ranges 

between 21% and 46% depending on the territory. The magnitude of the improvement of the MAE of 

IFS-3h over the MAE of GFS-3h was found to be 48%, 57%, 37% in French Guiana, Reunion Island, and 

Singapore, respectively. GFS and IFS behave differently with respect to the sky conditions. IFS-3h and 

IFS-3h-p underestimate the GHI under clear sky conditions and overestimate the GHI under cloudy 

and overcast sky conditions. Under clear sky conditions GFS underestimates the GHI only in Reunion 

Island. Under cloudy and overcast sky conditions GFS overestimate the GHI except for Reunion Island 

where the GHI under cloudy sky is underestimated. We found that  except for GFS in Reunion Island, 

the GHI forecasts of IFS-3h, IFS-3h-p and GFS are more accurate under clear sky conditions than 

under overcast and cloudy sky conditions; this result is similar to result found in previous study 

assessing IFS and GFS accuracies in extra tropical climate. However, we also find that the clear sky 

index variability has a key role on model accuracies which was not addressed previously. The FS 

computed for GHI 48 hours ahead in Mediterranean, oceanic, continental, and arid climates is 

superior, for both GFS and IFS, than in tropical regions. This study provides forecast accuracy metrics 

that aim to respond to the need for reliable solar power forecasts driven by increasing interest in the 

development of solar technologies in tropical areas. 

Keywords: Global horizontal irradiance; Global Forecast System (GFS); Integrated Forecast System 
(IFS); French Guiana; La Réunion, Singapore 

1 Introduction 

The integration into the grid of electricity generated by intermittent renewable energies presents 
economic and technical challenges (IER, 2013). To deal with the uncontrollable nature of these 
resources, they are forecasted at different time scales so that the global production can be balanced 
to match users’ consumption (Vallance et al., 2017). 
 
 Many models have been developed to assess solar radiation at the ground depending upon 
the forecast horizon (Diagne et al., 2013; Inman et al., 2013; Kleissl, 2013). For forecast horizons 
greater than six hours, it is widely accepted that numerical weather prediction (NWP) models are 
needed (Diagne et al., 2013; Inman et al., 2013). These models forecast either the state of the 
entirety of Earth’s atmosphere, or some part of it. The following global NWP models were developed 
to forecast the state of the entire Earth atmosphere: the Global Forecast System (GFS) 
(Environmental Modeling Center, 2003), the Integrated Forecast System (IFS) (ECMWF, 2016b), the 
Unified Model (UM) (Staniforth et al., 2006), the Global Environmental Multiscale (GEM) (Côté et al., 
1998), and the GME (Majewski et al., 2002). Among these models, IFS (Richardson et al., 2013; 
Haiden et al., 2014, 2015, 2016) and GFS forecast evaluations are the most well-documented 
(Fanglin, 2013, 2014, 2015).  
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 Many studies have evaluated GFS and IFS solar irradiance forecast uncertainty at the ground 
by comparison with validation stations (Mathiesen and Kleissl, 2011; Perez et al., 2013; Remund et 
al., 2008; Schroedter-Homscheidt et al., 2017; Troccoli and Morcrette, 2014). The aforementioned 
studies gathered data from a total of 43 stations. A large number of these validation stations 
represent Mediterranean, oceanic, continental, and arid climates, and are located in the United 
States, Canada, and Europe as these regions are among the world leaders for installed photovoltaic 
power capacity (Inman et al., 2013). 

 Therefore, although many studies have evaluated GFS and IFS irradiance estimates at the 
ground, their performances under several specific climate zones still remain to be evaluated. The 
present work focuses on assessing the GHI forecast accuracy of GFS and IFS in the intertropical zone 
for tropical climates. This paper is structured as follows: section 2 describes both the ground and 
NWP forecast data used in the study; section 3 addresses GFS and IFS monthly and annual accuracy 
metrics; in section 4, we present our conclusions. 

 

2 Datasets and Methods 

 

 In this section, we first describe the downloaded GHI data and the operative setup used in 
GFS and IFS models to produce these forecasts. Second, we describe the GHI measurements and the 
quality check procedure followed prior to using the data to validate IFS and GFS forecasts. Lastly, we 
describe the climates of French Guiana, Reunion Island, and Singapore as well as the microclimate at 
each measurement station. 

2.1 Numerical Weather Prediction models 

 GFS (GSM v13.0.2) and IFS (cycle 41R2) forecasts used in this study were downloaded online 
respectively from the National Center for Atmospheric Research data archive ([dataset] NCEP-NWS-
NOAA-USDC, 2015) and the European Center for Medium-Range Weather Forecasts (ECMWF) 
Meteorological Archival and Retrieval System (MARS) ([dataset] Maass, 2017). The downloaded 
datasets began from January 1st and ended December 31st of 2016. Both model GHI forecasts 
originated at 00:00 UTC, and were run for 48 hours. The primary IFS and GFS setups used to produce 
GHI datasets are presented below.   

 GFS was initialized using a hybrid 3D variational ensemble method (Buehner et al., 2013) with 
a 6-hour data assimilation window. GFS horizontal and vertical computational resolutions were 
T1534 (~13 km) and 64 levels. GHI forecasts were distributed with a lower resolution; the dataset 
exploited in this study was 0.25° (~28 km), 46 levels of spatial resolution, and a 3-hour temporal 
resolution. GFS GHI forecasts (W/m²) alternated between 3- and 6-hour averages (NOAA, 2016). GHI 
values (W/m²) at 03:00, 09:00, 15:00, and 18:00 UTC were the means of 3-hour irradiance values 
ending at forecast time. GHI values (W/m²) at 06:00, 12:00, 18:00, and 24:00 UTC were the means of 
6-hour irradiance values ending at forecast time. IFS was initialized using a 4D variational method, 
with a 12-hour data assimilation window (ECMWF, 2016c). The horizontal and vertical computational 
resolution were TCo1279 (~9 km) and 137 levels, respectively. IFS GHI forecasts were also distributed 
with a lower resolution; the dataset exploited in this study was 0.125°, 125 levels of spatial 
resolution, and a 1-hour temporal resolution. GHI values were accumulated from the forecast 
initialization (Hogan, 2015). Both IFS and GFS used rapid radiative transfer model-G (RRTMG), 
(Mlawer et al., 1997) to parameterize radiative transfer for longwave and shortwave radiations; the 
scheme was called hourly by the dynamic core of each model.  

 Under cloudless skies, irradiance forecast accuracy is driven by aerosols (Jimenez et al., 
2015). GFS models the effects of aerosols on the troposphere and stratosphere separately (DTC, 
2016). In the troposphere, aerosol data are climatological values with a 5° horizontal resolution (Chin 
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et al., 2000; Hess et al., 1998). In the stratosphere, climatological aerosol values derived from Sato et 
al. (1993) were used, and they varied with latitude, and exhibited an uneven resolution greater than 
or equal to 30° depending upon the zonal band. GFS aerosols were divided into 11 types: insoluble, 
water soluble, soot, sea salt (2 types), minerals (3 types), transported minerals, sulfate, and 
stratospheric volcanic aerosols. IFS models aerosols using climatological values (Tegen et al., 1997); 
the stratosphere and troposphere are not treated separately as in GFS. The aerosol data used were 
of six types: organic carbon, soot, sulfate, sea salt, minerals, and stratospheric volcanic aerosols. 
Aerosol data had 5x4 longitudinal grids, latitudinal spatial resolution, height variation (59 levels), and 
monthly temporal variations. 

 Under cloudy skies, irradiance forecast accuracy is driven by cloud cover and content (Welch 
et al., 1980). The planetary boundary layer (i.e., turbulent transport) parameterization scheme and 
the cloud microphysics scheme have a strong influence on the distribution and physical properties of 
the simulated cloud fields (Cintineo et al., 2014; Otkin and Greenwald, 2008; Xie et al., 2012). The 
microphysics scheme governs the formation of hydrometeors that scatter and absorb radiation and 
describes their growth to precipitation-size raindrops and snow particles. In the NWP model, 
microphysics schemes are developed separately for stratiform and cumulus clouds (Kleissl, 2013). In 
this study, GFS modeled stratiform microphysics after the scheme of Zhao et al. (1997), which uses 
prognostic equations for cloud vapor, liquid water, and cloud ice. The precipitation types included 
rain, freezing rain, and snow. Liquid and ice phases do not coexist in this model. Deep cumulus clouds 
were parametrized after the bulk mass flux scheme of Arakawa and Schubert (1993). The shallow 
cumulus scheme used was modified from Arakawa and Schubert (1973) as described by Han and Pan 
(2011). Both deep and shallow cumulus schemes use prognostic equations to compute the cloud 
vapor and liquid water. IFS stratiform microphysics were evaluated after the methods of Forbes et al. 
(2011), and this scheme forecasts cloud liquid water, cloud ice, rain, snow and fraction. The 
precipitation types included rain, freezing rain, and snow. Deep and shallow cumulus microphysics 
were parametrized by a bulk mass flux scheme originally described by Tiedtke (1989). They both use 
a prognostic equation to compute the cloud vapor and liquid water. 

 The turbulent transport scheme used parameterizes the sub-grid-scale vertical transfer of 
heat, moisture, and momentum between the surface and atmosphere. Therefore, it interacts with 
cumulus microphysics to produce the cloud field (Xie et al., 2012). Vertical turbulent transport was 
treated differently in the surface layer and above. In the surface layer, the turbulence fluxes were 
based on the Monin Obukhov similarity theory both for IFS and GFS (DTC, 2016; ECMWF, 2016a). 
Above the surface layer, IFS used a weakly unstable boundary layer with a K-diffusion turbulence 
closure (ECMWF, 2016a), whereas GFS used an eddy diffusivity counter-gradient parameterization 
(Hong and Pan, 1996). For unstable boundary layers, both GFS and IFS used eddy diffusivity mass flux 
schemes, as described by Han et al. (2016) and Köhler et al. (2011), respectively.  

 Cloud radiation feedback was taken into account by GFS (GSM v13.0.2) and IFS (cycle 41R2) 
using the values for liquid, ice, and snow water contents from the microphysics scheme and a cloud 
fraction parameterization (DTC, 2016; ECMWF, 2016a). GFS and IFS assume that each grid box is 
either entirely filled with clouds or entirely clear for any given time step. A cloud fraction 
parameterization scheme assigns the fractional volume of a grid box that is occupied by clouds 
(Kleissl, 2013). IFS uses a prognostic equation to compute cloud fraction (Tiedtke, 1993), whereas 
GFS diagnoses cloud fraction from liquid-water content (Xu and Randall, 1996). Both GFS and IFS 
assume maximum cloud overlap.  

2.2 Measurement stations  

 To assess GFS and IFS forecast accuracy for tropical climates, we selected GHI measurements 
from three tropical locations: (1) French Guiana, located in South America between the latitudes of 
2° and 6° N, and longitudes of 51 ° and 55° W, (2) Reunion Island, located in the Southwest Indian 
Ocean (21° S, 55° E), and (3) Singapore, located in Southeast (1.37° N, 103.87° E). Our study exploits 
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hourly GHI data from twelve stations described in Table 1; these data extend from January 1st to 
December 31st of 2016. First the GHI value before sunrise and after sunset were removed; second 
the hourly GHI data between sunrise and sunset were quality checked after the methods of Espinar 
et al. (2011) shown in Equation (1): 

0.03 𝐺𝐻𝐼𝑇𝑂𝐴 < 𝐺𝐻𝐼 < min(1.2 𝐼0, 1.5 𝐼0  cos(𝜃𝑧)
1.2 + 100),   (1) 

where 𝐺𝐻𝐼𝑇𝑂𝐴 (W/m²) is the top of atmospheric irradiance, 𝜃𝑧 is the sun zenith angle (°), and 𝐼0 is 
the solar constant (1367 W/m²). The top of atmospheric irradiance is defined as Equation (2): 

𝐺𝐻𝐼𝑇𝑂𝐴 =  𝐼0 𝜀 cos(𝜃𝑧),     (2) 

where 𝜀 is the solar correction (Mather and Koch, 2011).  

 French Guiana and Reunion Island stations were equipped with type CM6B Kipp and Zonen 
pyranometers, whereas Singapore stations were equipped with Delta-T SPN1 pyranometers. French 
weather services in French Guiana and Reunion Island carry out preventive maintenance every two 
months, and pyranometers are replaced every two years. Singapore pyranometers are operated by 
the Solar Energy Research Institute of Singapore (SERIS) and are calibrated at the National Metrology 
Center of Singapore every two years. The GHI values resulting from the quality check procedure (Eq. 
1) were then compared to the coincident IFS and GFS time stamps for a 48h forecast horizon.  
Figure 1 shows the monthly means GHI value for each station with hourly and 3 hourly frequency.  

 

 

Figure 1: Monthly mean of global horizontal irradiance (GHI) values at 1 and 3-hour intervals. Values 
were computed using hourly quality checked GHI values. The abbreviations of the station name and 

location are shown Table 1. 

Table 1: Validation station description. 

Stations Latitude (°) Longitude (°) Height (m) Climate 

French Guiana  

Saint Georges (SG) 3.890 - 51.804 6 Trop. monsoon 
Rochambeau (RO) 4.822 -52.365 4 Trop. rainforest 
Kourou (KR) 5.209 - 52.748 12 Trop. monsoon 
Maripasoula (MP) 3.640 - 54.028 106 Trop.  rainforest 

Reunion Island  
Ligne-Paradis (LP) -21.318 55.485 156 Trop. savanna 
Le Port (PO) -20.946 55.281 9 Trop.  savanna 
Gillot-Aéroport (GI) -20.891 55.528 8 Trop.  monsoon 
Pierrefonds-Aéroport (PI) -21.320 55.425 21 Trop.  savanna 
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2.3 Climate 

In tropical regions, seasons are based on the precipitation amount (Hess and McKnight, 2013). Under the 
Köppen climate classification, a dry season month has an average monthly precipitation amount of less 
than 60 mm, whereas a rainy season month has precipitation amounts greater than 60 mm. Based on the 
Köppen climate classification system, tropical climates are divided into three categories: tropical 
rainforest, tropical monsoon, and tropical savanna (Hess and McKnight, 2013). Tropical rainforest climates 
have annual precipitation amounts between 150 and 250 cm, and precipitation amounts greater than 
60 mm every month. Tropical monsoon and savanna climates have at least one month with precipitation 
amounts of less than 60 mm. Tropical monsoon climates have annual precipitation amounts between 250 
and 500 cm, whereas the annual precipitation of tropical savanna climates is between 90 and 180 cm 
(Hess and McKnight, 2013). Table 1 shows the climates for stations of validation. 

In the following subsections, we describe the climate of each territory, and the microclimates at each of 
the measurement sites. 

2.3.1 French Guiana 

 The climate of French Guiana is regulated by the Intertropical-Convergence Zone (ITCZ), which is 
the meeting point of the northeast and southeast trade winds (Bovolo et al., 2012). The ITCZ moves over 
French Guiana twice a year, this shift from north to south creates a seasonal cycle with four periods 
(Philippe Héritier, 2011): (1) From July to November, the ITCZ lies north of French Guiana, and this period 
represents the dry season during which time the sky is mostly clear, although weak precipitation may 
occur (Albarelo et al., 2015). During this period cirrus and cumulus fractus clouds are predominant. (2) 
From November to January, there is a short rainy season when the ITCZ moves southward over French 
Guiana. (3) From February to March, there is a transition period between the southward and northward 
motions of the ITCZ, and depending on the year, this month behaves as a rainy or dry. (4) From April to 
May, the ITCZ moves northward, and a second rainy season begins. During this period, cumulonimbus 
clouds predominate. Rochambeau Station is located 13 km of the Atlantic Ocean. Maripasoula Station is 
located inland, ~230 km from the coast. Kourou Station is located, ~2 km from the Atlantic Coast. Saint 
Georges Station is located and inland, ~50 km from the Atlantic Ocean (Philippe Héritier, 2011).  

2.3.2 Reunion Island  

 Reunion Island is a volcanic island with a complex orography driving several microclimates, but its 
overall climate is classified as tropical. There are two main seasons, the rainy season (January to March) 
and dry season (May to November). April and December are transitional months with rainy or dry periods. 
From November to April, clouds are observed at low and high altitude, below 3.5 km, and above 6.5 km, 
respectively. High altitude cirrus clouds represent ~13% of the cloud coverage (Bertrand Cadet et al., 
2003). From May to October, there is a high occurrence of low altitude clouds. This cloud cover is three 
times greater than that observed from November to April, and clouds are denser, and observed at 
altitudes below 3.5 km (Badosa et al., 2013, 2015). Ligne-Paradis Station is located on the south of the 
island in the volcanic foothills, ~6 km from the Indian Ocean. Le Port Station is located in the northwest, 

Singapore     
Seris 403 (ST) 1.443 103.784 45 Trop.  rainforest 

Seris 404 (SQ) 1.249 103.841 36 Trop.  rainforest 

Seris 405 (SC) 1.352 103.965 45 Trop.  rainforest 

Seris 408 (SH) 1.355 103.692 57 Trop.  rainforest 
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~100 m from the Indian Ocean. Gillot Aéroport is located in the north, ~300 m from the ocean. 
Pierrefonds-Aéroport is located in the southwest, ~500 m from the ocean, and has a tropical savanna 
climate.  
 
2.3.3 Singapore 

 Singapore has a tropical rainfall climate characterized by high temperatures and humidity 
throughout the year. There is no distinct wet or dry season in Singapore; the main seasonal events are the 
Northeast (NE) and the Southwest (SW) monsoons, separated by two inter-monsoon periods. The NE 
monsoon lasts from December to early March and is characterized by prevailing north and northeastern 
winds and is divided into two phases. The wet phase lasts from December to January and sees rapid 
development of monsoon surges in the afternoon and early evening. The dry phase, from January to early 
March, is relatively drier. The SW monsoon extends from June to September with prevailing winds from 
the south and southwest. This period witnesses occasional Sumatra squall lines (SSL) that bring organized 
lines of thunderstorms to Singapore.  

During the two inter-monsoon periods, there is little prevailing wind, and thunderstorms typically develop 
in the afternoon and the evening. The first inter-monsoon period (late March to May) is usually hotter and 
relatively drier than the second one (October to November). The four meteorological stations operated by 
SERIS are located in all cardinal directions of the island. Depending on their locations, each station is 
located less than 6 km from Singapore or the Johor Strait. Due to the small size of Singapore, the stations 
are relatively close and all experience the same tropical rainfall climate. However, there are small 
variations in the hourly GHI received by each station over the year, as illustrated in Figure 1.  

3 Results and discussion 

In this section we consider the GHI forecasts at the single grid points closest to each station; we do not 
average spatially the GHI forecasts of IFS and GFS. We present first the metrics used to assess the 
accuracy of both IFS and GFS; second we study their yearly accuracies and third their monthly accuracies. 
Lastly, we compare the accuracy of IFS and GFS in the different tropical climate to their respective 
accuracy in extra-tropical climates. 

3.1 Error metrics 

 IFS and GFS GHI forecasts are compared with in situ measurements. Their performance is 
evaluated in terms of mean bias error (MBE), mean average error (MAE), root mean squared error 
(RMSE) and forecast skill (FS), defined as by Equations 3- 7, respectively: 

𝑀𝐵𝐸% =
∑ 𝐺𝐻𝐼𝑁𝑊𝑃(𝑡)−𝐺𝐻𝐼𝑔𝑟𝑜𝑢𝑛𝑑𝑡 (𝑡)

𝑁 ∑ 𝐺𝐻𝐼𝑔𝑟𝑜𝑢𝑛𝑑
 
𝑡  (𝑡)

;          (3) 

𝑀𝐴𝐸% =
∑ |𝐺𝐻𝐼𝑁𝑊𝑃(𝑡)−𝐺𝐻𝐼𝑔𝑟𝑜𝑢𝑛𝑑(𝑡)|𝑖

𝑁 ∑ 𝐺𝐻𝐼𝑔𝑟𝑜𝑢𝑛𝑑
 
𝑡  (𝑡)

;    (4) 

𝑅𝑀𝑆𝐸% =
√
1

𝑛
∑ (𝐺𝐻𝐼𝑁𝑊𝑃(𝑡)−𝐺𝐻𝐼𝑔𝑟𝑜𝑢𝑛𝑑(𝑡))

2
𝑖

𝑁∑ 𝐺𝐻𝐼𝑔𝑟𝑜𝑢𝑛𝑑
 
𝑡  

,    (5) 

where 𝐺𝐻𝐼𝑁𝑊𝑃 refers to the NWP model GHI estimate, 𝐺𝐻𝐼𝑔𝑟𝑜𝑢𝑛𝑑 to in-situ observed measurements 

and N is the total number of data points. RMSE is arguably the most important metric in renewable 
energy forecasting (Perez et al., 2013) because it puts more weight on large forecast errors that have 
a higher impact on electricity grid management. MAE provides a measurement of global error, and it 
is suitable for applications where forecast errors are proportional to the induced error cost (Perez et 
al., 2013). The MBE shows a model tendency to underestimate or to overestimate the GHI. 𝑀𝐵𝐸%,   
𝑀𝐴𝐸% and 𝑅𝑀𝑆𝐸% are unitless, they are expressed as percentages (%). Absolute MBE, MAE and 
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RMSE in W/m² are also used; they are obtained by multiplying their relative value by the mean 
𝐺𝐻𝐼𝑔𝑟𝑜𝑢𝑛𝑑 value over the considered time span. 

 Persistence forecasts (Eq. 6) were implemented using the 24-hour previous irradiance values. 
Persistence forecasts serve as references to compute the forecast skills (FS) of the models (Perez et 
al., 2013): 

𝐺𝐻𝐼(𝑡 + 24ℎ) = 𝐺𝐻𝐼(𝑡)     (6) 

𝐹𝑆 =
(𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒)²−(𝑅𝑀𝑆𝐸𝑁𝑊𝑃)²

(𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒)²
.     (7) 

FS allows comparison between different forecast results from different locations, it is unitless. FS 
uses the absolute RMSE (in W/m²) computed from the GHI estimate of a NWP model. FS = 1 
corresponds to a perfect model, while negative scores indicate performance worse than persistence 
(Perez et al., 2013).  

 The clear sky index 𝐾𝑐 is used as a proxy for sky conditions, it is unitless. 𝐾𝑐  > 0.65 indicates 
a clear sky, 0.4 < Kc < 0.65 a cloudy sky, and 𝐾𝑐 < 0.4 overcast conditions (Aryaputera et al., 2015). 
𝐾𝑐 is defined as follows (Eq. 7): 

𝐾𝑐 =
𝐺𝐻𝐼

𝐺𝑐
,      (8) 

where 𝐺𝑐 is the ESRA clear sky model as defined by Rigollier et al. (2000). Link turbidity, the clear sky 
attenuation factor input to 𝐺𝑐, is defined for each site and each month using monthly climatological 
values provided by the SoDa database ([dataset] Transvalor, 2014).  

 As rapid cloud transformations occur in tropical climates (Aryaputera et al., 2015), the mean 
value of Kc, 𝑀𝐾𝑐  (Eq. 9), and the mean absolute variability of Kc, V (Eq. 10) (Marquez and Coimbra, 

2012) are introduced to study the ability of IFS and GFS to reproduce the GHI variability in tropical 
climates; both MKc and 𝑉 are unitless: 

𝑀𝐾𝑐 =
1

𝑁
 ∑ 𝐾𝑐(𝑡)

𝑡+𝑁
𝑡 ,     (9) 

𝑉 = √
1

𝑁
∑ (𝐾𝑐(𝑡 + 𝑑𝑡) − 𝐾𝑐(𝑡))

2𝑡+𝑁
𝑡 .    (10) 

Where dt is the time step of ground measurements, i.e. hourly. For a model with hourly GHI outputs 
N=1 whereas for a model with a three hour GHI outputs N=2. To illustrate how MKc and 𝑉  were 
computed, we give the following example for a one hour and a three-hour output model. At 12 h 
UTC, and for a one hour output model, MKc and 𝑉  are computed using the Kc value at 11h UTC and 
12 h UTC (N=1). At 12 h UTC, and for a three hour output model, MKc and 𝑉  are computed using the 
Kc value at 10h, 11h UTC and 12 h UTC (N=2).  

3.2 Assessing the accuracy of hourly IFS forecasts 

In this section we study the accuracy of hourly IFS forecasts; we name these forecasts IFS-1h. Table 2 

gives the MAE and MBE for each territory under clear, cloudy, overcast and all sky conditions; 

figure 2 gives IFS-1h MAE distribution with respect to the mean clearness index (𝑀𝐾𝑐)and mean 

clearness index variability (V). 

Table 2 shows that the MAE of IFS-1h under clear sky condition is lower than the MAE of IFS-1h 

under cloudy and overcast sky conditions. Under clear sky conditions the MAE values range between 
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100 W/m² and 122 W/m² whereas under overcast and cloudy sky conditions the MAE values range 

between 127 W/m² and 225 W/m². Consequently IFS-1h forecasts are more accurate in clear sky 

conditions than in cloudy and overcast sky conditions. Nevertheless, Figure 2 shows that the accuracy 

of IFS forecasts does not decrease systematically as the sky conditions become clearer; IFS-1h is 

sensitive to the mean clear sky index and mean clear sky index variability. Table 2 also shows that 

under clear sky conditions, the MBE are negative for each territory. Oppositely, under cloudy and 

overcast sky conditions the MBE are positive. Consequently IFS-1h underestimates the GHI value 

under clear sky conditions whereas under cloudy and overcast sky conditions IFS-1h overestimate the 

GHI.  

Table 2: IFS-1hour absolute MAE and MBE by territory under clear, cloudy, and overcast sky 
conditions. We computed 𝑀𝐾𝑐  (Eq. 9) using  N=1, and dt=1hour. Months and stations were merged 

by territory. The classification of sky conditions was based on ground measurements. 

Territory 

MAE of IFS 1-hour (W/m²) MBE of IFS 1-hour (W/m²) 

Sky conditions 

Clear Cloudy Overcast All sky Clear Cloudy Overcast All sky 

French Guiana 104 127 173 119 -52 68 160 9 

Reunion Island 100 137 216 117 -58 104 209 -4 

Singapore 122 155 225 153 -60 107 215 41 

 

 

Figure 2: IFS-1h MAE distribution with respect to 𝑀𝐾𝑐  (Eq. 9) and V (Eq. 10). We computed 𝑀𝐾𝑐  (Eq. 

9) and V (Eq. 10) using  N=1, and dt=1hour. Months and stations were merged by territory. The 
classification of sky conditions was based on ground measurements 

3.3 Comparing IFS and GFS yearly irradiance forecast accuracy in French Guiana, Reunion Island 
and Singapore 
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To compare IFS-1h outputs to GFS 3 hour outputs (GFS-3h), there are three alternatives. Firstly, the 
GHI forecasts of GFS can be interpolated to hourly outputs using 𝐾𝑐 (Mathiesen and Kleissl, 2011). 
Verzijlbergh et al. (2015) found in his study by comparing hourly 𝐾𝑐 values computed from ground 
measurement to hourly interpolated 𝐾𝑐 values obtained using the perfect 3h average forecasts (also 
computed from ground measurements) that the RMSE was as high as 21%. Consequently, to 
compare IFS to GFS we did not consider this alternative. Secondly, IFS-1h GHI forecasts can be 
averaged temporally to obtain three hours forecasts outputs following GFS cycle; we named these 
forecasts IFS-3h-p. The GHI values  of IFS-3h-p (W/m²) at 03:00, 09:00, 15:00, and 18:00 UTC are the 
means of 3-hour irradiance values ending at forecast time whereas the GHI values of IFS-3h-p (W/m²) 
at 06:00, 12:00, 18:00, and 24:00 UTC are the means of 6-hour irradiance values ending at forecast 
time. Lastly, from 00h UTC to 24h UTC we keep only every 3-hour forecasts of hourly IFS; we named 
these forecasts IFS-3h.  
 
Figure 3 gives the MAE and MBE of IFS-3h-p, GFS-3h and IFS-3h for each territory under clear, cloudy, 
overcast and all sky conditions. Table 3 gives the Relative improvement of the MAE of IFS-3h over the 
MAE of IFS-3h-p and GFS-3h for each territory under clear, cloudy, overcast and all sky conditions. 
Figure 4 gives IFS-3h-p, GFS-3h and IFS-3h MAE distribution with respect to 𝑀𝐾𝑐  and V. 

 
Figure 3 shows that for all territories, the MBE of IFS-3h and IFS-3h-p are negative under 

clear sky conditions whereas under cloudy and overcast sky conditions the MBE of both are positive. 
Consequently, IFS-3h and IFS-3h-p under estimate the GHI under clear sky conditions whereas under 
cloudy and overcast sky conditions both overestimate consistently the GHI. Oppositely, the MBE of 
GFS-3h is consistently positive in Singapore and French Guiana. In Reunion Island, the MBE is positive 
under overcast sky conditions and negative under clear and cloudy sky conditions. Consequently, 
GFS-3h overestimates the GHI consistently in Singapore and French Guiana; in Reunion Island GFS-3h 
overestimates the GHI under overcast sky conditions whereas it underestimates the GHI under clear 
and cloudy sky conditions. 

 
Figure 4 shows that the MAE of IFS-3h-p, GFS-3h and IFS-3h are highly correlated to 𝑀𝐾𝑐  

and V. This figure shows that except for GFS in Reunion Island, each model has a tendency to 
perform better under clear sky conditions. To conclude on the accuracy of each model with respect 
to the sky condition, we gather each GHI sample according to sky condition type that is reported by 
the ground measurements (Figure 3).   

 
The MAE values (Fig. 3) show that for each territory IFS-3h and IFS-3h-p are more accurate 

in clear sky conditions and least accurate in cloudy and overcast sky conditions (Fig.3). Oppositely, we 
find that in Reunion Island, GFS-3h MAE of clear sky condition forecasts is higher than the MAE of 
cloudy and overcast sky conditions forecasts. Under clear sky conditions, the MAE of GFS-3h is 319 
W/m² whereas under cloudy and overcast sky conditions it is 249 W/m² and 242 W/m², respectively. 
Under all sky conditions and for each territory, the MAE of IFS-3h-p is lower than the MAE of GFS-3h 
(Fig. 3). Figure 3 also shows that for each territory and under all sky conditions the MAE of IFS-3h is 
lower than the MAE of IFS-3h-p. Table 3 shows that under all sky conditions and for each territory, 
the relative improvement of the MAE of IFS-3h over IFS-3h-p ranges between 21% and 46%. This 
result contrasts with Lorenz et al., (2016) who found that averaging temporally improve the accuracy 
of NWP GHI outputs. Therefore, we conclude that (1) averaging temporally IFS-1h following GFS cycle 
to obtain IFS-3h-p worsen the MAE in tropical climate and (2) that both IFS-3h and IFS-3h-p are more 
accurate than GFS.  
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Figure 3: MAE and MBE of GHI forecast from IFS-3h, IFS-3hp and GFS-3h in French Guiana, Reunion 
Island and Singapore. Months and stations were merged by territory. The classification of sky 

conditions was based on ground measurements.  

Table 3: Relative improvement of the MAE of IFS-3h over the MAE of IFS-3h-p and GFS-3h under 
clear, cloudy, and overcast sky conditions. The classification of sky the conditions for each 3-hour 

sample is based on 𝑀𝐾𝑐  (Eq. 9) which is computed using ground measurements with N=2, and 

dt=1hour. Months and stations were merged by territory.  

Territory 

Relative improvement (%) of the MAE of IFS-3h (W/m²) over the MAE of IFS-
3h-p (W/m²) and GFS-3h (W/m²) 

Clear Cloudy Overcast All 

Vs  
IFS-3h-p 

Vs  
GFS-3h 

Vs  
IFS-3h-p 

Vs  
GFS-3h 

Vs  
IFS-3h-p 

Vs  
GFS-3h 

Vs  
IFS-3h-p 

Vs  
GFS-3h 

French Guiana 32% 37% 22% 54% 20% 61% 27% 48% 

Reunion Island 49% 63% 43% 34% 33% 4% 46% 57% 

Singapore 31% 32% 14% 39% 7% 43% 21% 37% 

 

IFS-3h  

GFS-3h 

IFS-3h-p      
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Figure 4: IFS and GFS bias distributions with respect to the mean Kc values (Mkc) of the previous 

three hours, and the mean of the Kc Variability (V). We computed 𝑀𝐾𝑐  (Eq. 9) and V (Eq. 10) using  

N=2, and dt=1hour. Months and stations were merged by territory. The classification of sky 

conditions was based on ground measurements 

3.4 Analyzing the sources of error of IFS and GFS GHI forecasts  
 
We have shown in section 3.3 that the accuracy of IFS-3h-p, IFS-3h and GFS-3h forecasts was related 
to the Kcvalue. Consequently, to explain the sources of IFS and GFS GHI forecasts errors in tropical 
climates, we analyze and compare the Kcvalues computed using ground measurement and the 
Kcvalue computed using IFS-3h-p, IFS-3h and GFS-3h GHI forecasts. Figure 5 shows a comparison 
between the sky conditions measured at the ground i.e clear, cloudy or overcast to the sky 
conditions forecasted by the NWP model (i.e IFS-3h-p, IFS-3h or GFS-3h). This comparison uses the 
cdf of Kc values computed using ground measurements and the cdf Kc values forecasted by the NWP 
GHI forecasts.  
 

 

Figure 5:  cdf of KC computed using ground measurements and IFS-3h-p, GFS-3h and IFS-3h forecasts 
under clear, cloudy and overcast sky conditions. Months and stations were merged. The classification 

of sky conditions was based on ground measurements 

IFS-3h  

 

IFS-3h-p  

GFS-3h      

Ground 
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3.4.1 Analyzing the sources of error under clear sky condition 
 

Figure 5 shows that under measured clear sky conditions, for IFS-3h, there are 77%, 87% and 
78% of the forecasted KC values that are higher than 0.65 in French Guiana, Reunion Island and 
Singapore, respectively. Consequently, when the sky condition is reported as clear by the ground 
measurements, it is reported as clear by IFS-3h between 77% and 87% of the time.  

 
For GFS-3h, under measured clear sky conditions, Figure 5 shows there are 69%, 32% and 80% 

of the forecasted KC values that are higher than 0.65 in French Guiana, Reunion Island and Singapore, 
respectively. Consequently, when the sky condition is reported as clear by the ground 
measurements, it is reported by GFS-3h as clear between 32% and 80%. 

 
For IFS-3h-p, under measured clear sky conditions, Figure 5 shows there are 56%, 57% and 40% 

of the forecasted KC values that are higher than 0.65 in French Guiana, Reunion Island and Singapore, 
respectively. Consequently, when the sky condition is reported as clear by the ground 
measurements, it is reported by IFS-3h-p as clear between 40% and 57% of the time. 
 
Therefore, IFS-3h-p, GFS-3h and IFS-3h are unable to forecast realistic cloud cover and or amount for 
sky conditions reported as clear by the ground measurements. Consequently, this inability 
contributes to the source of errors under clear sky. To quantify the source of errors due to sky 
conditions that are reported as clear by the ground measurements, but forecasted otherwise  by IFS-
3h-p, GFS-3h and IFS-3h; firstly, we computed first the MAE when IFS-3h-p forecast and the ground 
measurements assess simultaneously that the sky conditions are clear. Secondly, we computed the 
MAE when GFS-3h forecasts and the ground measurements assess simultaneously that the sky 
conditions are clear. Thirdly, we computed the MAE when IFS-3h forecast and the ground 
measurements assess simultaneously that the sky conditions are clear.  
 

Firstly, we found that IFS-3h-p has a MAE of 123 W/m², 133 W/m² and 134 W/m² in French 
Guiana, Reunion Island and Singapore respectively. These values represent 78%, 58% and 61%, 
respectively of clear sky MAE values that were shown figure 3. Consequently, the source of errors 
due to sky conditions that are reported as clear by the ground measurements, but forecasted 
otherwise  by IFS-3h-p represent between 22% and 39%.  
 

 Secondly, we found that GFS-3h has a MAE of 139 W/m², 131 W/m² and 172 W/m² in French 
Guiana, Reunion Island and Singapore respectively. These values represent 81%, 41% and 77%, 
respectively of clear sky MAE values that were shown figure 3. Consequently, the source of errors 
due to sky conditions that are reported as clear by the ground measurements, but forecasted 
otherwise by GFS-3h represent between 19% and 59%, 
 

Thirdly, we found that IFS-3h has a MAE of 69 W/m², 80 W/m² and 96 W/m² in French Guiana, 
Reunion Island and Singapore respectively. These values represent 64%, 68% and 63%, respectively 
of clear sky MAE values that were shown figure 3. Consequently, the source of errors due to sky 
conditions that are reported as clear by the ground measurements, but forecasted otherwise  by IFS-
3h represent between 32% and 37%, 
 
Therefore, the sky conditions that are reported as clear by the ground measurements, but forecasted 
otherwise  by IFS-3h-p, GFS-3h and IFS-3h lead to sizable MAE values; for GFS-3h in Reunion Island 
they are as high as 59% of the overall MAE. 
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According to Zhong et al. (2016) : “often, but not always  clear sky model biases are related to 

aerosol modeling issues”; for Jimenez et al. (2015) aerosols represent the largest source of 

uncertainty in the GHI forecasts under clear sky conditions. Consequently, we could explained  the 

MAE when IFS-3h-p or GFS-3h or IFS-h forecasts and the ground measurements assess 

simultaneously that the sky conditions are clear by a misrepresentation of the aerosols. 

To conclude IFS-3h-p, IFS-3h, and GFS-3h sources of error under clear sky conditions may include: (1) 
sky conditions reported as clear by the ground measurements that are inaccurately forecasted as 
cloudy or overcast and (2) an inaccurate representation of the aerosols. 
 
 
3.4.2 Analyzing the sources of error under cloudy and overcast sky conditions 
 
Figure 5 shows that for all territories considered, when the sky condition is reported as cloudy or 
overcast by the ground measurements, it is inaccurately forecasted by IFS-3h-p, GFS-3h and IFS-3h. 
 
In French Guiana, under measured cloudy sky conditions and for IFS-3h-p, figure 5 shows that 26% of 
forecasted KC values are lower than 0.4 whereas 32% of the forecasted KC are higher than 0.65. 
Therefore, the match between sky conditions type that is measured at the ground and sky conditions 
type that is forecasted by IFS-3h-p is 6%. In French Guiana, under measured overcast sky conditions, 
figure 5 shows that 23% of forecasted KC values are higher than 0.4. Therefore, the match between 
sky conditions type that is measured at the ground and sky conditions type that is forecasted by IFS-
3h-p is 23%. 
 
 Using the same procedure described previously, for each territory and each NWP model: we find 
that under cloudy and overcast sky condition, the match between sky conditions measured at the 
ground and sky conditions forecasted by any NWP model (eg. IFS-3h-p, GFS-3h and IFS-3h) is lower 
than 50%. Consequently, these results may be explained by the inability of the NWP to either 
forecast accurately the cloud position and or extent. Similar conclusions were drawn by Mathiesen 
and al. (2013), Zempila et al. (2015) and Kleissl (2013); they explained high biases under cloudy and 
overcast skies were caused by the inability of NWP models to accurately predict cloud position and 
cloud extent. Lin et al. (2009) demonstrated that increasing the horizontal resolution of NWP models 
improves the accuracy of the simulated low cloud field; they concluded that clouds can be 
realistically simulated with horizontal resolutions higher than 4 km, but not with coarser resolutions. 
Consequently, we could explained the forecast accuracy of IFS-3h, IFS-3h-p and GFS-3h under cloudy 
and overcast sky conditions by their coarse resolution; this coarse resolution causes a 
misrepresentation of the sky conditions which lead to high MAE value.  
 
3.5 IFS and GFS seasonal forecast accuracy assessment 

 In this section, seasonal forecast accuracies of both 3-hour IFS and GFS are assessed using the 
metrics described in section 3.1. To obtain the percent RMSE and MAE relative values, absolute value 
in W/m² were normalized using the monthly mean values shown in Figure 1, and following 
Equations 4 and 5. 

3.5.1 French Guiana Sites 

 Figure 6 gives on the one hand IFS and GFS monthly RMSE and MAE, figure 7 gives on the 
other the monthly mean Kcvalue. 

Figure 6 shows that both GFS and IFS GHI forecasts follow seasonal trends for French Guiana (i.e., 
there is a clear distinction between dry and rainy seasons). RMSE and MAE during the dry season 
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(i.e., July to November) are on average lower than those found in rainy season (i.e., from November 
to January and from April to May). The different forecast accuracies found may be explained by 
different clearness index value that varies according to the seasons (Fig. 7).  

 During the dry season, Kourou station exhibits the lowest average RMSE and MAE. Figure 7 
shows that during this season, Kourou station exhibits the highest monthly mean Kc values. During 
the rainy seasons, Maripasoula exhibits lowest average RMSE and MAE. Figure 7 shows that during 
these seasons, Maripasoula have on average the highest monthly mean Kcvalues, respectively. These 
results suggest that there is a correlation between the monthly mean forecast accuracy and the 
monthly mean Kcvalue. Consequently IFS-3h and GFS-3h GHI forecasts are less accurate in cloudier 
sky conditions; the accuracy of IFS-3h and GFS-3h GHI forecasts are also influenced by the variability 
of the sky conditions. 

 

Figure 6: GFS-3h and IFS-1h monthly relative MAE and RMSE (%) for French Guiana stations. The 

monthly mean value used to normalized the MAE and RMSE are shown Figure 1 

  

Figure 7: Monthly Kc value  for all French Guiana stations. The Monthly Kc value were computed 

using hourly quality checked GHI measurement between sunrise and sunset 

 

RMSE, MAE GFS 3h  

RMSE, MAE IFS 1h  
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3.5.2 Reunion Island sites 

Figure 8 gives on the one hand IFS and GFS monthly RMSE and MAE, figure 9 gives on the other the 
monthly mean Kcvalue. 

 When comparing figure 9 to Figure 7, it can be seen that, unlike in French Guiana, there is no 
distinct wet or dry season on Reunion Island. Figure 9 shows that the difference between monthly 
mean Kc values during the rainy and dry season is less visible. According to the French Weather 
Service, 2016 ranks 13th amongst the driest years since 1960. For Station PI, during the dry season, 
the lowest GFS RMSE and MAE (60% and 49%, respectively) are found in August; the lowest IFS RMSE 
and MAE (24% and 14%, respectively), they are found in June. For this station, the highest monthly 
mean Kc is found in June. Consequently, the monthly RMSE and MAE of the GHI forecasts of GFS are 
not as strongly correlated with monthly mean Kc as they are in French Guiana.  

 

Figure 8: GFS-3h and IFS-1h monthly relative MAE and RMSE (%) for Reunion island stations. The 

monthly mean value used to normalized the MAE and RMSE are shown Figure 1 

  

Figure 9: Monthly Kc value for all Reunion Island stations. The Monthly Kc value were computed 

using hourly quality checked GHI measurement between sunrise and sunset 

RMSE, MAE GFS 3h  

RMSE, MAE IFS 1h  
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3.5.3 Singapore sites 

Figure 10 gives on the one hand IFS and GFS monthly RMSE and MAE, figure 11 gives on the other 
the monthly mean Kcvalue. 

 . From January to August, station SC has the highest monthly mean Kc value, as seen in 
figure 11. During this time span, this station exhibits overall the lowest RMSE and MAE. 
Consequently, IFS-3h and GFS-3h GHI forecasts are correlated to the monthly mean Kc value and 
they are less accurate in cloudier sky conditions. 

 

Figure 10: GFS-3h and IFS-1h monthly relative MAE and RMSE (%) for Singapore stations. The 

monthly mean value used to normalized the MAE and RMSE are shown Figure 1 

  

Figure 11: Monthly Kc value and associated standard deviations for Singapore stations. The Monthly 

Kc value were computed using hourly quality checked GHI measurement between sunrise and sunset 

3.6 Comparing GFS and IFS forecast accuracy for tropical climates and comparing their accuracy in 
tropical climate to extra tropical climates 

3.6.1 Comparing GFS and IFS forecast accuracy for the different tropical climates 

RMSE, MAE GFS 3h  

RMSE, MAE IFS 1h  
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Table 4 present the RMSE and FS for the different tropical climates. This table merged the yearly GHI 
values per tropical climate type; it allows comparing the forecast accuracy in tropical monsoon 
climate compared to tropical savanna and rainforest climates. Figure 12 presents the RMSE and FS 
per station. The yearly GHI values per stations were merged in order to analyze the variability 
amongst the same climate type. This approach allows us to obtain a range of RMSE value instead of a 
single value.  

Table 4: RMSE of FS of IFS-1h GHI forecasts for tropical monsoon, savanna and rainforest climates. 
The yearly mean value used to normalized the RMSE are: 434 W/m² for stations with tropical 

monsoon climate; 468 W/m² for stations with tropical savanna climate, 392 W/m² for station with 
tropical rainforest climate 

 RMSE FS 

Tropical monsoon 35% 0.39 

Tropical savanna 33% 0.40 

Tropical rainforest 46% 0.42 

 
To compare the forecast accuracy for the different tropical climates we used IFS-1h forecasts 
because we showed that this model was able to reproduce the seasonal variation of GHI contrary to 
GFS-3h. Table 4 shows that overall the highest RMEs are found in tropical rainforest climate followed 
by tropical monsoon and tropical savanna climate. Nevertheless, there are discrepancies in the GHI 
forecast accuracies between stations sharing the same tropical climate type (Fig. 12). We have shown 
in section 3.3 that the forecast accuracy of IFS and GFS were highly correlated with the MKc and V. 
Consequently, to explain the results shown table 4 we analyze the cdf of MKc and V for each climate 
type (Fig. 13). 

Figure 13 presents the cdf of Mc and V for stations with tropical monsoon, savanna and rainforest 
climate.We find, based on the analysis of the cdf MKc shown figure 13, that stations with tropical 
rainforest stations have the highest occurrence of cloudy and overcast sky conditions sample 
followed by stations with tropical monsoon and savanna climate. For stations with tropical rainforest 
climate 50% of the sample has MKc values lower than 0.70. For stations with tropical monsoon and 
tropical savanna climate 50% of the sample has Kc values lower than 0.75 and 0.85, respectively. 
Similarly the analysis of the cdf of V, shows that stations with tropical rainforest stations have the 
highest hourly mean variability followed by stations with tropical monsoon and savanna climate. 
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Figure 12: Yearly IFS and GFS FS and relative RMSE for all stations. The yearly GHI values used to normalize the 
RMSE were respectively: SG: 387 W/m², KR: 443W/m², GI: 482 W/m²; LP: 474 W/m², PO: 451 W/m², PI: 507 
W/m²; ST: 359 W/m², SQ: 390 W/m², SC: 373 W/m², SH: 364 W/m², RO: 394 W/m², MP: 425 W/m² 

 

Figure 13: cdf of MKc and V for stations with tropical monsoon, savanna and rainforest climate. We 
computed 𝑀𝐾𝑐  (Eq. 9) and V (Eq. 10) using  N=1, and dt=1hour 

 To compare the accuracy of the different tropical climates, the FS was also used. The FS allows the 
comparison of the forecast accuracy of a NWP model to that of a persistence model (Eq. 6) at 
different locations (Aryaputera et al., 2015). A negative FS value indicates that the NWP 
underperformed in comparison to the persistence model. A FS value close to 0 indicates that the NWP 
model forecast accuracy is similar to the minor persistence model forecast accuracy. A FS value close 
to 1 indicates that the NWP model outperforms the persistence model. Table 4 shows, by comparison 
with the persistence model, that it is more difficult for IFS-1h to forecast the GHI 48 hours in advance 
for tropical monsoon, savanna and rainforest in decreasing order. 

3.6.2 Comparing GFS and IFS forecast accuracy in tropical climates to their forecast accuracy in extra-
tropical climates 

Table 5 gives the yearly FS and RMSE for different climate zones; we used this table to compare the 
GHI forecasts accuracy of  IFS and GFS found in tropical climates to those found in extratropical 
climates.. The FS metric was not computed in all previous studies; when it was not available, it was 
computed if the absolute 24-hour persistence and 48-hour forecast RMSE were given by the authors 
(e.g., Perez et al., 2013; Schroedter-Homscheidt et al., 2017; Troccoli and Morcrette, 2014). FS and 
RMSE ranges were given for stations using the lowest and highest FS values, and the lowest and 

IFS-3h FS 

GFS-3h FS     

IFS-1f FS 

IFS-3h  

RMSE 

GFS-3h 

RMSE 
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highest RMSE values, respectively. GFS-based models NDFD and BLUE FORECAST are detailed in 
Perez et al. (2013). Every NWP was run for 48 hours, and was initialized at 00:00 UTC. The FS and 
RMSE values that were computed for tropical climates are shown Figure 12. 

Table 5 shows that the 48h forecasts of GFS-3h have higher RMSE in tropical climates than in extra-
tropical climate. The RMSEs of IFS-3h in tropical climate are in agreement with those found in extra-
tropical climates. In Mediterranean, arid, semi-arid, continental, and humid continental stations, all 
GFS and IFS FS scores are positive. Among all tropical climate stations considered in Figure 12, GFS 
has a positive FS for only 1 station out of 12 (i.e., SQ, where GFS GHI forecast accuracy is similar to 
the accuracy of persistence models, and the FS score is 0.04). Conversely, IFS-3h FS is always positive; 
however, FS values found in tropical climates are lower than values found in other climates. 
Consequently, forecasting the GHI in tropical climate is more difficult for IFS and GFS. The lower GFS 
FS results might be explained by the coarser spatial resolution of GFS. This resolution may not be 
able to reproduce the higher variability of solar energy due to the dynamic cloud cover and hot and 
humid weather of tropical climates (Laing and Evans, 2011; Galvin, 2015).  

Table 5: Yearly FS and RMSE for different climates. The native temporal resolution of IFS and GFS 
models used by Perez et al.(2013)are underlined. 

Climate Stations GFS/ GFS based 
yearly RMSE, MAE, FS 
range 

IFS yearly RMSE, 
MAE, FS range 

Mediterranean Huelva, Cordoba, Granada (Perez et al., 
2013) 

N.A 

RMSE: N.A 

FS: N.A 

3-hour 
RMSE: [21:25]% 
FS: [0.45:0.63] 

Arid Desert Rock (Perez et al., 2013) 3-hour 
RMSE: ~27% 
FS: ~0.13 

3-hour 
RMSE: ~22% 
FS:~0.42 

Semi-arid Boulder (Perez et al., 2013) 
 

3-hour 
RMSE: ~45% 
FS:~0.22 

3-hour 
RMSE: ~39% 
FS:0.41 ~ 

Continental Bondville, Sioux Falls, Fort Peck, Furstenzell, 
Stuttgart, Wurzburg, Linz, and Wien (Perez et al., 
2013) 

3-hour 
RMSE: [39:49]% 
FS: [0.22:0.57] 

3-hour 
RMSE: [34:52]% 
FS:[0.41:0.61] 

Humid 
continental 

Goodwin Creek, Penn State, Egbert, Bratt’s, 
Varennes (Perez et al., 2013) 

3-hour 
RMSE: [40:49]% 
FS: [0.32:0.43] 

3-hour 
RMSE: [34:41]% 
FS: [0.54:0.60] 

Tropical monsoon Saint Georges (SG), Kourou (KR), Gillot-
aéroport(GI) 

3-hour 
RMSE: [59:78]% 
FS: [-2.32.:-1.41] 

3-hour 
RMSE: [31:40]% 
FS: [0.26:0.46] 
hourly 
RMSE: [32:40]% 
FS: [0.28:0.49] 

Tropical Savanna Le port (PO), Pierrefonds aéroport(PI), Ligne-

Paradis(LP) 

3-hour 
RMSE: [61:69]% 
FS: [-2.24:-1.52] 

3-hour 
RMSE: [28:37]% 
FS: [0.31:0.44] 
hourly 
RMSE: [29:38]% 
FS: [0.32:0.44] 

Tropical 
rainforest 

Rochambeau (RO), Maripasoula (MP), 
Station three (ST), Station four (SQ), Station Five 
(SC), Station eight (SH) 

3-hour 
RMSE: [53:73]% 
FS: [-1.36:0.04] 

3-hour 
RMSE: [33:52]% 
FS: [0.26:0.49] 
hourly 
RMSE: [34:52]% 
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FS: [0.25:0.50] 

 

 Recently, Aryaputera et al. (2015) and Diagne et al. (2013) downscaled 0.5° GFS model 
forecasts using Weather and Research Forecast (Skamarock et al., 2005) limited-area NWP to 
forecast GHI on Reunion Island and in Singapore. Both studies forecasted the GHI hourly, on a 3 km 
resolution grid size. The yearly FS were computed from the RMSE values found by Aryaputera et al. 
(2015) and Diagne et al. (2013); these FS were -0.177, 0.07, and 0 for the tropical savanna station 
(Saint Pierre) and the tropical rainforest stations (station 305 and 500), respectively. These results 
are worse than those found in this study in tropical savannas (i.e., 0.32, 0.44), and tropical rainforest 
climates (i.e., 0.25, 0.50) using IFS-1h GHI forecasts, despite having a higher spatial resolution. 
Therefore, using IFS global NWP for GHI forecast is relevant in tropical climates. Using IFS and GFS 
global NWP forecasts, one might avoid calibrating a limited area NWP model, instead using physical 
parameterization that describes regional climate patterns. This process requires high computational 
resources, and does not guarantee better forecast results (Perez et al., 2013). 

4 Conclusions 

 The goal of this study was to assess the accuracy of GFS and IFS global NWP model GHI 
forecasts for tropical climates. As the solar energy potential of tropical countries can be up to three 
times greater than that of extra-tropical countries, yet more variable due to the dynamic cloud cover 
(Fillol et al., 2017), predicting the yield of solar energy systems and their input into the electricity grid 
up to 48 hours in advance is crucial. Therefore, knowledge about the accuracy of the GHI forecasts 
from NWP models is needed.  

 To characterize GFS and IFS forecast accuracy for tropical climates, three countries were 
selected for study. Our results reveal that: (1) Higher RMSEs are found in tropical rainforest climate, 
followed by tropical monsoon, and tropical savanna climates. This result was explained by the higher 
occurrence of cloudy and overcast sky conditions sample found in stations with tropical rainforest 
climate followed by stations with tropical monsoon and savanna climates. (2) GFS and IFS behave 
differently with respect to the sky conditions. IFS underestimates the GHI under clear sky conditions 
and overestimate the GHI under cloudy and overcast sky conditions. Under clear sky conditions GFS 
underestimates the GHI only in Reunion Island. Under cloudy and overcast sky conditions GFS 
overestimate the GHI except for Reunion Island where the GHI under cloudy sky is underestimated. 
The inaccuracies under clear sky conditions were explained by the combination of two phenomena: 
the misrepresentation of aerosols and the inability of model forecast inaccurately clouds under 
measured clear sky. This inability to forecast realistic clouds cover also translates in cloudy and 
overcast sky conditions. (3) By comparing the MAE of IFS-3h and the MAE of IFS-3h-p we found that 
using the average cycle of GFS to obtain 3-hour worsen the model forecasts. (4) IFS and GFS model 
biases under clear sky conditions were lower than their biases under cloudy and overcast sky 
conditions. However, the biases of both models do not decrease systematically as the sky became 
clearer; the sky index variability also plays an important role in both model biases. (5) IFS-3h, IFS-3h-p 
outperforms the 3-hour GFS model in all countries. IFS-3h outperforms GFS-3h to a higher extent. 
Under all sky conditions, with all months and stations merged by territory, the magnitude of 
improvement for IFS-3h over GFS-3h were found to be 48%, 57%, 37% in French Guiana, Reunion 
Island, and Singapore, respectively.  

This study fills the gap of global NWP models GHI forecast accuracy in tropical climates by studying 
two of the most widely used NWPs, IFS and GFS, for various types of tropical climates. Comparing the 
FS score for tropical climate stations to those of Mediterranean, arid, semi-arid, continental, and 
humid continental stations, we found that forecasting solar irradiance is more difficult in tropical 
climates. By comparing the FS found in this study with recent studies that calibrated limited-area 
NWP to forecast GHI on Reunion Island and in Singapore, we showed that using IFS global NWP for 
GHI forecast is relevant in tropical climates.  
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 Nevertheless, GHI forecast accuracy in tropical climate regions is too poor to be exploited 
directly; they must be post-processed. Our future research will involve using post-processing 
techniques (Verbois et al., 2018) to further improve GHI forecast accuracy. The current study may be 
useful in the following ways: (1) as a benchmark tool to assess the forecast accuracy of a limited area 
NWP model GHI forecast, and (2) as a reference for post-processing or data assimilation methods to 
characterize the improvement obtained when forecasting GHI in tropical climates.  
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Abstract 

 

The purpose of this study is to propose a methodology to calibrate Weather and Research Forecast 

model (WRF) to produce improved GHI forecasts in the intertropical zone (ITZ). We designed a 34 

ensemble members with high spatial and temporal resolution to find the set of parameterizations 

that better characterize sub-grid scale processes associated with clouds, aerosols and their 

interaction with radiation in the ITZ. This ensemble was constructed using five microphysics schemes 

(MP), four planetary boundary layer schemes (PBL), two land surface scheme (LSM), two radiation 

schemes (RAD) and two cumulus schemes (CU). This methodology is validated against GHI 

measurements during 2016 from six meteorological stations and AROME “outre-mer” (AROME-OM) 

GHI forecasts in French Guiana. To evaluate WRF and AROME-OM accuracy, the mean average error 

(MAE), the mean bias error (MBE) and the root mean square (RMSE), were used to study: (1) the 

seasonal and annual accuracy of WRF and AROME-OM GHI forecasts; and (2) the bias distribution of 

both models as a function of the clear sky index and the clear sky index variability (V). Results found 

show that the best WRF GHI forecasts in French Guiana are obtained using: Thomson aerosol aware 

MP, Mellor-Yamada Nakanishi and Niino PBL, Unified Noah Land LSM, Grell 3D CU, and Rapid 

Radiative Transfer Model-G RAD for both long and shortwave radiations. We also found that using 

set of physical parameterizations previously used in other tropical climate is not suitable, the RMSE 

discrepancy between our set of parameterization and those previously used are as high as 96 W/m² 

under all sky conditions. The WRF model we calibrated outperforms AROME-OM under clear cloudy 

and overcast sky conditions in French Guiana. All months and stations were merged. Under clear, 

cloudy, overcast and all sky conditions WRF improves AROME-OM by 44%, 26%, 8% respectively.  

This study provides a methodology to calibrate WRF GHI forecasts in the ITZ and cloudy sky areas; it 

aims to answer the need for reliable solar power forecast driven by the increasing interest in the 

development of solar technologies. 

Keywords: Global horizontal irradiance, radiative transfer parameterization, WRF, tropical zone, 

AROME 
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1 Introduction 

The world current energetic model is unsustainable; it relies primarily on fossil fuel powered energy 

(Shafiee and Topal, 2009). According to BP Statistical Review, (2017) oil make up the third of the 

2016 primary energy consumption and coal share is approximately 28.1%. However, oil resources are 

expected to be depleted by 2040, the remaining fossil fuel resources by 2212 (Shafiee and Topal, 

2009). The combination of increasing energy needs (Birol, 2010), increasing concern for global 

warming (Pachauri and Meyer, 2015) fossil fuel depletion (Shafiee and Topal, 2009) and cost 

decrease (IRENA, 2016) established the solar energy as a solution to meet the needs. Regions with 

higher solar potential are located in the intertropical zone (ITZ) (Löf et al., 1966; Müller et al., 2015; 

Trieb et al., 2009). Nevertheless, the solar irradiance in the ITZ is highly variable due to the rapid 

cloud transformations that occur in this area (Aryaputera et al., 2015; Rossow et al., 2013; Wheeler 

and Kiladis, 1999). To deal with the uncontrollable nature of the solar energy, the available resource 

must be forecasted at different time scales so that the global production can be balanced to match 

users’ consumption (Vallance et al., 2017). It is commonly accepted that for forecast horizon larger 

than 6h, numerical weather prediction (NWP) models are needed (Diagne et al., 2013; Inman et al., 

2013). They are two types of NWP model, global and mesoscale. Global model forecast the state of 

the entire earth atmosphere; they have a typical resolution of 16–50 km, with a forecast horizon up 

to 15 days ahead (Diagne et al., 2013). Global NWP models have a coarse resolution, to account for 

local effect mesoscale models were introduced. They have a typical resolution of 5–20 km (Diagne et 

al., 2013) and forecast the state of the atmosphere on a regional domain. They take global NWP 

model forecasts as initials and boundary conditions inputs. NWP models with high spatial resolution 

have the potential to produce more realistic cloud forecasts than lower resolution models (Lorenz et 

al., 2016) by resolving explicitly smaller scale processes. Yet the resolution of current NWP model is 

still too coarse to resolve the micro-scale physics associated with cloud formations (Inman et al., 

2013; Mathiesen et al., 2013). Because of NWP model coarse grid resolution, sub-grid scale physical 

process must be approximated (hereafter, parameterized) so that effects of smaller scale processes 

are accounted for on larger scale (Kleissl, 2013). For a mesoscale model to be used it must be 

carefully calibrated, using physical parameterization that describes the region climate patterns (Ruiz-

Arias et al., 2008). The parameterization schemes express the effect of sub grid, subscale processes 

on the variables resolved by the NWP spatial resolution (Kleissl, 2013). Most studies dealing with 

mesoscale models calibration concentrate on locations in the USA, Spain and Germany with 

continental climate(Lara-Fanego et al., 2012; Perez et al., 2013; Prabha and Hoogenboom, 2010; 

Ruiz-Arias et al., 2013; Zempila et al., 2015). These countries are amongst the world leaders in 

installed photovoltaic power capacity (Inman et al., 2013). Tropical regions have been less studied 

(Aryaputera et al., 2015; Diagne et al., 2014) and are more challenging due to the dynamic weather. 

Recently (Diallo et al., 2018) studied the accuracy of GFS and IFS global horizontal irradiance (GHI) 

forecast in the ITZ using measurement forecast from French Guiana, Reunion Island and Singapore. 

They showed that forecasting the GHI is more difficult in tropical climate than in extra tropical.  

In this study is we propose a methodology to calibrate the Weather and Research Forecast (WRF) 

mesoscale model to produce improved GHI forecast in the intertropical zone. This methodology uses 

an ensemble of 34 members with high-resolution model simulations. It aims to restrain and select 

the minimum number of simulations to run, to obtain improved GHI forecasts in the ITZ compared to 

a non-calibrated model. We validated this methodology against GHI measurements during 2016 from 

six meteorological stations and AROME “outre-mer” (AROME-OM) GHI forecasts in French Guiana. 
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This paper is structured as follows: Section 2 describes the dataset used to validate WRF GHI 

forecast. Section 3 describes the methodology followed to build the ensemble members (EM). 

Section 4 presents the results of this study. Finally section 5 summarizes the paper and concludes. 

2 Data 

2.1 Ground Dataset 

Our study exploits 2016 hourly data of GHI from six stations of the French national weather services. 

The characteristics of these stations are described table 1. Due computational capacity constraints 

associated with the computation of the 34 EM, three months representative of French Guiana 

seasons were selected. September represents the dry season, May the rainy season and March to 

describe the latency period between the ITCZ southward to northward motion over French Guiana. 

Before comparing the NWP GHI forecast to the ground data, ground measurements were quality 

checked following Espinar et al. (2011) range check formula as follows: 

0.03𝐺𝐻𝐼𝑇𝑂𝐴 < 𝐺𝐻𝐼 < 𝑚𝑖𝑛(1.2𝐼0, 1.5𝐼0𝑐𝑜𝑠(𝜃𝑧)
1.2 + 100),     (1) 

 
where 𝐺𝐻𝐼𝑇𝑂𝐴  (W/m²) is the top of atmosphere irradiance, 𝜃𝑧 the sun zenith angle (°),𝐼0 the solar 
constant (1367 W/m²). The top of atmosphere irradiance is defined as follows: 
 
𝐺𝐻𝐼𝑇𝑂𝐴 = 𝐼0𝜀𝑐𝑜𝑠(𝜃𝑧),          (2) 
 
where 𝜀 is the sun correction (Mather and Koch, 2011). Only valid hourly GHI measurements were 
used to assess the accuracy of WRF and AROME; when the hourly GHI measurements passed the 
quality check procedure it was then compared to the coincident NWP time stamp to compute the 
accuracy metrics. 

 

Table 1: French Guiana GHI ground measurement stations 

Stations Latitude (°) Longitude (°) Height (m) Instruments 

Rochambeau 4.822 -52.365 4 Kipp & Zonen CM6B 

Saint Georges 3.890 - 51.804 6 Kipp & Zonen CM6B 

Maripasoula 3.640 - 54.028 106 Kipp & Zonen CM6B 

Saint-Laurent 5.485 - 54.031 5 Kipp & Zonen CM6B 

Kourou 5.209 - 52.748 12 Kipp & Zonen CM6B 

Iles Royales  5.283 -52.583 48 Kipp & Zonen CM6B 

 

2.2 AROME irradiance forecast 

AROME France was developed by French weather services (Seity et al., 2011). It was developed to 

better characterize convection processes and used operationally since December 2008. In this study 

the authors used AROME “Outre mer” (AROME-OM). AROME-OM produces meteorological forecast 
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in French West Indies while AROME-France which produces meteorological forecasts in mainland 

France. Unlike AROME France it doesn’t have its own data assimilation system, it is initialized using 

ARPEGE forecast as lateral boundary conditions and IFS forecast as initial conditions. AROME-OM GHI 

forecasts used in this study were downloaded online from French weather services catalogue servers 

(Meteo France, 2017). All forecasts originated at 00:00 UTC and were run for 36h. The main setups 

used to produce AROME-OM GHI forecasts are shown table 2. 

Table 2: AROME-OM operational setup (Termonia et al., 2018; YESSAD, 2015) 

Dynamical Core 

Initialization Initial and boundary conditions provided by ARPEGE and IFS 

Spatial resolution of 
Forecasts 

-Horizontal: 2.5 km 
-Vertical:  90 levels 

Temporal resolution of 
Forecasts 

-Computation time step: 1 min 
-GHI output: hourly 

Domain -Single domain 
- Latitude: [1.05: 8.95] 
-Longitude: [-46.3:-56.75] 

Physical Parameterization 

Radiation scheme (RAD) -RRTMG (Iacono et al., 2008) both for Longwave and Shortwave radiations 
-Call frequency: 15 min 
-Aerosol dataset: (Tegen et al., 1997)  

Microphysics scheme (MP) -ICE3 Single moment scheme, 5 types of hydrometeors (PINTY et al., 1998) 
- Call frequency: 1 min 

Planetary boundary layer 
scheme (PBL) 

-Turbulent kinetic energy scheme (Cuxart et al., 2000), associated with a 
mass flux scheme for shallow convection (Bechtold et al., 2001) 
- Call frequency: 1 min 

Land surface scheme (LSM) -ISBA scheme (Noilhan and Planton, 1989) 
Cumulus scheme (Cu) -Eddy diffusivity max flux approach (Pergaud et al., 2009) 

- Call frequency: 1 min 

 
3 Methodology 

 
According to Warner, (2010) calibrating a NWP model involves the following steps: (1) determine the 

prevailing physical process in the geographic area of interest; (2) define the horizontal resolution so 

that physical processes are resolved within the model grid; (3) define the vertical resolution so it 

describes accurately vertical structures such as the boundary layers gradients; (4) validate the model 

accuracy for different seasons. Consequently, the following subsections explain the calibration 

process for WRF in the ITZ.  

 

3.1 Physical parameterization 

IFS and GFS NWP models GHI forecasts are inaccurate in the ITZ; their accuracies are highly sensitive 

to the cloudiness and its variability (Diallo et al., 2018). Results obtained under measured clear sky 

conditions were explained by a misrepresentation of aerosols and by clouds wrongly forecasted by 

the NWP. Under cloudy sky, they were explained by the inability of the NWP model to predict 

accurately cloud position, extent and content due to the NWP model coarse resolution. From this 

investigation on the origin of IFS and GFS inaccuracies, we concluded that to improve NWP GHI 
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forecast in the ITZ, sub-grid scale phenomena such as clouds, aerosols and their interaction with 

radiation should be better characterized.  

Parameterization schemes allow modeling the effect of a sub-grid scale physical process; however, 

their accuracies highly depends on the weather regime and parameterization schemes interactions in 

the NWP model (Cossu and Hocke, 2014; Dudhia, 2014). Therefore, in order to find the set of 

parameterization that forecast the most accurately the GHI in the ITZ the authors built and computed 

an ensemble of several 48h GHI forecasts using WRF V3.8.1 (NCAR, 2017; Skamarock et al., 2008). 

The 34 EM used to calibrate WRF 48h GHI forecast, varied the MPs scheme, LSMs scheme, and PBLs 

schemes. The ITZ is an area with highly variable dynamic in which we encounter significant amounts 

of convective clouds (Galvin, 2015; Laing and Evans, 2011). The parameterization scheme we chose 

to vary have a strong influence on the distribution and physical properties of the simulated cloud 

field (Cintineo et al., 2014; Otkin and Greenwald, 2008; Xie et al., 2012). The EM also includes set of 

parameterizations previously used in Singapore and Reunion tropical climate by Aryaputera et al., 

(2015) and Diagne et al., (2014) respectively; they are shown table 3. The MPs scheme, LSMs scheme, 

and PBLs schemes varied in this study (members 1 to 32) were chosen with respect to the following 

constraint: 

Chosen Microphysics schemes are either double or triple moment. For triple moment 

microphysics schemes, the mixing ratio of each hydrometeor, their number concentrations and 

reflectivities are independent whereas for double moment schemes only mixing ratio of each 

hydrometeor and number concentrations are independent. Triple and double moment schemes are 

more time consuming than single moment scheme but more computationally efficient than Bin 

scheme. They allow removing internal assumptions regarding reflectivity and number concentrations 

respectively which increases the flexibility of these schemes to adapt to the availability of cloud 

condensation or ice nuclei (Dudhia, 2014). According to (Chosson et al., 2014) using microphysics 

scheme with higher number of moments improve the representation of microphysical processes 

which may improve the radiative transfer computations. Yet as higher moment schemes are more 

realistic, they may expose other NWP model deficiencies and might not lead to better results 

(Morrison, 2010). Consequently, the following third and second moment microphysics schemes were 

selected: Thompson aerosol-aware (Thompson and Eidhammer, 2014), Milbrandt-Yau (Milbrandt and 

Yau, 2005), Morrison (Morrison et al., 2009), WDM6 (Lim and Hong, 2010). 

Chosen PBL schemes equally represent local and non-local schemes. Local and non-local 

schemes differ in the determination of which model layers influence atmospheric condition at a 

given model level (Cohen et al., 2015). According to (Cohen et al., 2015) non-local schemes represent 

more accurately deep PBL circulations, though similar accuracy could be obtained using higher order 

of closure. Therefore, both local and non-local PBL with various orders of closure from 1 to 2 was 

accounted for. The major weakness of non-local scheme is their high sensitivity to diagnosed 

quantities that are difficult to define accurately in NWP models (Milovac et al., 2016). Consequently, 

the following local and non-local PBL schemes were selected: the non-local first order YSU (Hong et 

al., 2006), the local second order MYNN3 (Nakanishi and Niino, 2009) scheme, the local 1.5 order 

QNSE (Sukoriansky et al., 2005) scheme, and the mixed local, non-local first order Shin-Hong (Shin 

and Hong, 2015; Xu et al., 2018) scheme.  
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Chosen land surface scheme should at least represent vegetation, and soil moisture processes 

and computationally efficient. According to (Liang, 2012) LSMs that have more comprehensive 

treatments of physical processes of land reduce the uncertainties of regional climate model. 

However, Kotsopoulos et al. (2014) showed that more complex LSM may expose other NWP model 

deficiencies similarly to microphysics scheme (Morrison, 2010). Land surface schemes such as Noah 

MP (Niu et al., 2011), Pleim Xiu (Pleim and Xiu, 2003; Xiu and Pleim, 2001) and CLM4 (Dai et al., 2010) 

despite modeling more complex of land physical process were not used in this study because they 

were not computationally efficient; therefore, they could not be used for operational forecasting 

(Kotsopoulos et al., 2014; NCAR, 2017). Consequently, the following LSMs schemes were selected: 

Noah (Tewari et al., 2004), RUC (Benjamin et al., 2004). These LSMs communicate with the PBL 

schemes through the surface layer scheme. The surface layer scheme of each member were selected 

in accordance with (NCAR, 2017) recommendations, the one affiliated with the PBL was always 

preferred. 

Due to computational constraints, the Cumulus scheme and radiation scheme may be fixed 

(members 1–32). RRTMG (Iacono et al., 2008) radiation schemes were chosen for both long wave 

and shortwave radiations. Previous work (Ruiz-Arias et al., 2013; Zempila et al., 2015) showed that 

this scheme outperform the other commonly used radiation scheme independently of the other 

parameterization. This scheme is one of the rare WRF radiative schemes to allow aerosols, ozone 

radiation feedback in WRF (Jimenez et al., 2016). According to (Jimenez et al., 2016; Ruiz-Arias et al., 

2013) the inclusion of aerosols in the calculations shows that RRTMG outperform Dudhia’s scheme 

(Dudhia, 1989) and is able to provide an excellent agreement with GHI observation. Grell 3D (Grell 

and Dévényi, 2002) cumulus scheme was chosen to model unresolved convective column physics. 

Previous work in the ITZ (Crétat et al., 2012; Raghavan et al., 2015) showed that this scheme has the 

ability to reproduce Inter Tropical Convergence Zone patterns. Besides Grell 3D (Grell and Dévényi, 

2002) scheme accounts for the shallow convection which improves sub grid-scale clouds, shortwave 

irradiance feedback (NCAR, 2017). 

3.2 Dynamical core setup 

To initialize WRF initial and boundary conditions from a global NWP model (Côté et al., 

1998; Déqué et al., 1994; ECMWF, 2016b; Environmental Modeling Center, 2003; Majewski et al., 

2002). Among the existing global NWP model the usage of Global Forecast System (Environmental 

Modeling Center, 2003) is the most straightforward; there is no need for users pre-processing steps 

to ingest GFS forecasts into WRF. Besides GFS forecasts are available free of charge and archives 

dating back to 1997 are available (NCAR-RDA, 2017). Consequently, we chose in this study GFS 

forecast for initial and boundary conditions. To choose the initialization, the time needed for WRF to 

produce a balanced state from GFS coarser initial and boundary condition must be considered. 

According to (Aryaputera et al., 2015; Diagne et al., 2014) the spin up time in the ITZ ranges between 

6 and 12 hours. The GFS model is initialized every 6 hour starting at 00h; consequently, we chose the 

initialization at 00 UTC to allow for a spin up of 12 hours before the sunrise in French Guiana4. 

To choose the spatial discretization of WRF the spatial resolution of the initial and boundary 

conditions (icbc) must be accounted for. GFS (GSM v13.0.2) forecasts used in this study ([dataset] 

NCEP-NWS-NOAA-USDC, 2015) have a spatial resolution of approximately 24 km. According to Lin et 

                                                           
4
 Reference point : WRF spin up 
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al. (2009) findings, clouds can be realistically simulated with horizontal resolutions higher than 4 km, 

but not with coarser resolutions. Therefore, there is a dimension mismatch between the resolution 

needed to simulate realistic cloud and the resolution of the icbcs. To solve this mismatch issue we 

used three ways nested domain; D01 with a 27 km horizontal resolution, D02 with a 9 km horizontal 

resolution and D03 with a 3 km horizontal resolution. To allow for each nest to produce accurate sink 

sand sources we have approximately 
1

3
 of D01 surrounding each side of D02 and similarly 

1

3
 of D02 

surrounding each side of D01 (Gill, 2016). GHI forecasts resulting from the inner domain with a 3 km 

resolution centered on French Guiana are exploited (Fig. 1). We chose this resolution to find a 

balance between the computational power required and the ability of the model to produce realistic 

clouds. Previous studies in the ITZ used a vertical discretization ranging between 35 and 100 levels 

(Aryaputera et al., 2015; Diagne et al., 2013; Lima et al., 2016; Verbois et al., 2018) for solar energy 

forecasts. According to (Tselioudis, 2002) the cloud coverage and cloud properties are more 

accurately forecasted with increased vertical resolution. Consequently, in our study all domains have 

100 levels vertical resolution. 

Based on the horizontal and vertical resolution the time step of the WRF dynamic core was 

set to 50s to achieve convergence. All parameterization schemes are called every model time-step 

except for the radiation schemes called every 3 min.  

 

Figure 1: WRF computation domain5 

 
4 Results founds 
 

4.1 Error metrics 

To study the forecast accuracy of the NWP models we used the root mean square error (RMSE), 
mean bias error (MAE), and mean bias error (MBE) respectively; 
 

𝑅𝑀𝑆𝐸% = 
√
1

𝑛
∑ (𝐺𝐻𝐼𝑁𝑊𝑃(𝑡)−𝐺𝐻𝐼𝑔𝑟𝑜𝑢𝑛𝑑(𝑡))

2
𝑖

𝑁∑ 𝐺𝐻𝐼𝑔𝑟𝑜𝑢𝑛𝑑
 
𝑡  

 ,       (3) 
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 Reference point : WRF computation domain 
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𝑀𝐴𝐸 = ∑
|𝐺𝐻𝐼(𝑡)𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑−𝐺𝐻𝐼(𝑡)𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑|

𝑁 𝐺𝐻𝐼(𝑡)𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  

 
𝑡  and           (4)    

 

𝑀𝐵𝐸% =
∑ 𝐺𝐻𝐼𝑁𝑊𝑃(𝑡)−𝐺𝐻𝐼𝑔𝑟𝑜𝑢𝑛𝑑𝑡 (𝑡)

𝑁 ∑ 𝐺𝐻𝐼𝑔𝑟𝑜𝑢𝑛𝑑
 
𝑡  (𝑡)

.        (5) 

 
In the metrics mention above 𝐺𝐻𝐼(𝑡)𝑁𝑊𝑃 is the GHI forecasted by the NWP whereas 𝐺𝐻𝐼(𝑡)𝑔𝑟𝑜𝑢𝑛𝑑 

is the ground measured GHI. They are both expressed in W/m².  
 
To assess the accuracy of the NWP models with respect to the sky condition: the clearness index (𝐾𝑐),  
clearness index mean value (𝑀𝐾𝑐) and clearness index mean variability (𝑉) over a time span was 

used. The sky condition were considered as clear when 𝐾𝑐 > 0.65, cloudy when 0.4 < 𝐾𝑐 < 0.65  
and overcast when 𝐾𝑐 < 0.4  (Aryaputera et al., 2015). 
 

𝐾𝑐(𝑡) =
𝐺𝐻𝐼 𝑔𝑟𝑜𝑢𝑛𝑑(𝑡)

𝐺𝑐(𝑡) 
,          (6) 

 

𝑀𝐾𝑐 =
1

∆𝑡
 ∑ 𝐾𝑐(𝑡)

𝑡+∆𝑡
𝑡  and         (7) 

 

𝑉 = √
1

∆𝑡
∑ (𝐾𝑐(𝑡 + ∆𝑡) − 𝐾𝑐(𝑡))

2𝑁
𝑘=1 .        (8) 

 
where 𝐺𝑐 is ESRA clear sky model as defined in (Rigollier et al., 2000). Link turbidity, the clear sky 
attenuation factor inputted to 𝐺𝑐  is defined for each site and each month using monthly 
climatological values provided by the SoDa database. In equation 7-8, dt is the time step of ground 
measurements, i.e. hourly. For a model with hourly GHI outputs N=1. To illustrate how MKc and 𝑉  
were computed, we give the following: at 12 h UTC, MKc and 𝑉  are computed using the Kc values at 
11h UTC and 12 h UTC. 
 
Using previously described metrics WRF and AROME GHI forecasts were validated against, quality 
checked in situ measurements.  
 

4.2 Intercomparing the accuracies of the ensemble members 

According to (Perez et al., 2013) the most important metric in renewable energy forecast is the RMSE 

because give more weight to the large forecasts errors that has higher impact on the electrical grid 

management. Therefore, to select the greatest ensemble member we used the RMSE as validation 

metric.  

Figure 2 gives the RMSE of each member for all the month and stations merged under clear cloudy 

and overcast sky conditions. It shows that there are high discrepancies between the most and least 

accurate members. Under clear, cloudy, overcast and all sky conditions these discrepancies are 87 

W/m², 157 W/m², 201W/m² and 96 W/m² respectively. They are observed between members 16 and 

23; members 3 and 34; members 7 and 34; members 9 and 34 respectively. These results show that: 

(1) varying the PBL scheme, microphysics scheme and land surface model has a strong influence on 

the forecasted GHI. (2) Using parameterization previously defined in similar climate is not suitable. 

The member with the worst accuracy under all sky condition is 34, it was previously used by (Diagne 

et al., 2014) to forecast the GHI in Reunion Island tropical climate. 
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The best compromise between clear cloudy and overcast sky GHI forecast accuracy is obtained using 

member 9 (WRF-M9)6 as show figure 2. This results may be explained by two phenomena: (1) 

Member 9 uses Thompson aerosol aware microphysics scheme (Thompson and Eidhammer, 2014); 

this scheme exploits an aerosol climatology derived from eight years (2001–2007) global model 

simulations instead of using Tegen (Tegen et al., 1997) aerosol datasets used in the other 

microphysics scheme. (Thompson and Eidhammer, 2014) aerosol dataset has a higher spatial 

resolution: 0.5-degree longitude by 1.25-degree latitude spacing whereas (Tegen et al., 1997) aerosol 

dataset has 5 by 4 longitudes, latitude spatial resolution. (2) This scheme is the only microphysics 

scheme up to WRF V3.8 that allows cloud radiation feedback; the effective cloud water, ice and snow 

radii from Thompson are fed into RRTMG (Jimenez et al., 2015). Consequently, WRF-M9 might 

improve aerosols and their interaction with radiation characterization which result in a better 

forecast under all sky conditions. 

4.3 Comparing the GHI forecast of WRF Member against AROME French West Indies 

In this section the GHI forecasts of WRF using Member 9 (WRF-M9) is compared against AROME 

French West Indies described section 2.2. We consider the GHI forecasts at the single grid points 

closest to each station and do not average spatially the GHI forecasts of IFS and GFS. First we study in 

section 4.3.1 the accuracy of WRF-M9 and AROME-OM when all stations and months are merged. 

Second we study in section 4.3.2 their accuracies for each station and each month. 

4.3.1 Influence of the sky conditions  

To analyze the influence of the sky conditions on the accuracy of WRF-M9 and AROME-OM: we give 

Figure 3, the MAE and MBE of each model under clear, cloudy and overcast sky conditions. Lastly, 

Figure 4 gives AROME-OM and WRF-M9 the MAE as a function of the clearness index mean value 

(𝑀𝐾𝑐) and clearness index mean variability (𝑉) over an hour time span.  

Figure 3 shows that under all sky conditions WRF-M9 GHI forecast outperforms AROME-OM GHI 

forecast; the MAE of WRF-M9 is 139 W/m² whereas the MAE of AROME-OM is 206 W/m². To explain 

the behavior of WRF-M9 and AROME-OM under all sky, we study their individual performance under 

clear cloudy and overcast sky conditions.  

Under measured clear sky conditions Figure 3 shows that the MAE and MBE of WRF-M9 and 

AROME-OM are the lowest. This result is in agreement with Diallo et al. (2018) findings in French 

Guiana. According to Jimenez et al. (2015) under clear skies, the forecast accuracy of the GHI is 

driven by aerosols. To analyze the effect of the different aerosol dataset used by WRF-M9 and 

AROME-OM on the GHI forecasts, we computed the MAE for samples that are reported as clear both 

by the NWP model and ground measurements. We found for all months and stations merged by 

territory that aerosols cause a MAE (MBE) of 80 W/m² (40 W/m²), for WRF-M9. For AROME-OM 

aerosols cause a MAE (MBE) of 167 W/m² (112 W/m²). From the positive MBE of WRF-M9 and 

AROME-OM we deduce that both WRF-M9 and AROME-OM overestimate of the aerosol optical 

depth (Jimenez et al., 2016); however, WRF-M9 to a lesser extent. WRF-M9 uses Thompson and 

Eidhammer, 2014 aerosol datasets which has a higher spatial than the one used in AROME-OM 

(Tegen et al., 1997) which is also available in WRF. Consequently, we may believe that WRF-M9 

                                                           
6
 Reference point : WRF-M9 
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aerosol dataset represent more accurately the aerosol load and distribution in French Guiana which 

in turn lead to better forecasts under clear sky condition.  

Despite the ability of WRF-M9 and AROME-OM detect the occurrence of cloudy and overcast sky 
conditions being weak; they are in agreement with value reported in (Diallo et al., 2018). According 
to Lin et al. (2009) findings, clouds can be realistically simulated with horizontal resolutions higher 
than 4 km, but not with coarser resolutions. Consequently, both models have the potential to 
simulate realistic clouds; nevertheless, there are still high MAEs under cloudy and overcast sky 
conditions. The MAEs of WRF-M9 under cloudy and overcast sky conditions are 172 W/m² and 230 
whereas the MAEs of AROME-OM are 185 W/m² and 231 W/m² respectively (Fig. 3). According to 
Mathiesen et al. (2013); Yang and Kleissl (2016) the model initialization is critical for NWP forecast 
accuracy; initial conditions derived from large-scale models will inherit the error of the parent model. 
We have showed in Diallo et al. (2018) that both IFS and GFS are inaccurate in cloudy and overcast 
sky conditions which may  translate in AROME-OM and WRF-M9 forecasts respectively. As WRF-M9 
and AROME-OM has quasi-similar horizontal (e.g 3 km vs 2.5 km) and vertical resolution (e.g 100 
levels vs 90 levels); we may explained WRF-M9 improvements over AROME-OM (Tab.4) under cloudy 
and overcast sky conditions by its more frequent call of the radiation physics. WRF-M9 hourly GHI 
forecast is the result of 20 accumulated irradiance values divided by the accumulation time (eg, 1 
hour) whereas AROME-OM hourly GHI forecast is the result of 4 accumulated irradiance values 
divided by the accumulation time (also 1 hour). 
 
figure 4 shows that the MAE does not decrease systematically as the sky conditions become clearer. 

Figure 4 also show that the variability plays a key role on each model accuracy. For highly variable sky 

conditions 𝑉 ≥  0.4, WRF-M9 outperforms AROME-OM (Fig. 4). We explain this result by the higher 

frequency of the radiation physics of WRF-M9. 
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Table 3: WRF 34 ensemble members’ physical parameterization 
 

 Member number 

Physics 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

PBL 

YSU                                   

MYNN                                   

QNSE                                   

SHIN-HONG                                   

MP 

Thompson                                   

Milbrandt                                   

Morisson                                   

WDM6                                   

WSM6                                   

WSM3                                   

LSM 

Noah                                   

RUC                                   

CU 

Grell-3D                                   

Grell-Devenyi                                   

Kain Frisch                                   

RAD LW 

RRTMG                                   

RAD SW 

RRTMG                                   

Dudhia                                   
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Figure 2: Normalized RMSE for each ensemble members all months and stations merged. The 

absolute RMSE (W/m²) of each member are normalized with the RMSE value of the less accurate 

member for the considered sky conditions. The normalization value under all, clear, cloudy and 

overcast sky conditions are 272, 208, 315, and 437 W/m² respectively. They are obtained for member 

34, 23, 34, 34 

 
 

Figure 3: MAE and MBE of GHI forecast from AROME-OM and WRF-M9. Months and stations were 
merged. The classification of sky conditions is based on ground measurements.  

 

 
 
Figure 4: WRF and AROME-OM bias distributions with respect to the mean of the previous hours Kc 
(MKc) values and the mean of the previous hour Kc variability (V). Months and stations were merged 
  

WRF-M9          

 

AROME-OM       
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Table 4: Relative improvement (%) of the MAE of WRF-M9 (W/m²) over the MAE of AROME-OM 
(W/m²). Months and stations were merged.  

Territory 

Relative improvement (%) of the MAE of WRF-M9 (W/m²) over the MAE of 
AROME-OM (W/m²)  

Clear Cloudy Overcast All 

French Guiana 44% 26% 8% 33% 

 
 

4.3.2 Seasonal forecast accuracy under all sky conditions 
 
Figure 5 shows WRF-M9 and AROME-OM monthly MBE and MAE. Both AROME-OM and WRF-M9 
GHI forecasts follow seasonal trends for French Guiana.  There is a clear distinction between the MAE 
value dry season represented by September and the MAE value in the rainy seasons represented by 
May. March is a transition period between the southward and northward motions of the Inter 
Tropical Convergence Zone, and depending on the year, this month behaves as a rainy or dry. 
Consequently, except for Maripasoula the MAE in March is overall higher than the MAE value in the 
dry season but lower than the MAE values in the rainy season. 
 

 
 

Figure 5: WRF and AROME-OM relative MBE and MAE for rainy season (May), dry season 
(September) and March transition month. The MAE and MBE were normalized using monthly mean 
values to obtain % values. Monthly GHI of SG in March, May, September and all months merged are 
316, 312, 450 and 359 W/m² respectively; for RO they are 307, 342, 456 and 370 W/m² respectively; 

for KR they are 335, 362, 484 and 393 W/m² respectively; for IR they are 352, 358, 468 and 390 W/m² 
respectively. For SL they are 392, 324, 422 and 381 W/m² respectively; for MP they are 348, 386, 454 

and 397 W/m² respectively    

WRF-M9          

 

AROME-OM       
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The different forecast accuracies found figure 5 may be explained by different cloud cover and cloud 
cover variability.  The Lowest MAE are found during September for all stations (Fig. 5); Oppositely 
higher RMSE are found during May in all stations (Fig. 5) except for Rochambeau and Maripasoula. 
We explain results found in SG, KR, IR and SL by the higher variability of sky conditions found during 
May compare to March; figure 4 shows that both model underperform for highly variable sky 
conditions. For RO and MP May as higher occurrence of cloudy sky than March; we believe that it 
outweigh the high variable sky conditions and gives better RMSE. 
 
Under all sky conditions and all months merged the MAE of WRF-M9 ranges between 29% and 33% 
whereas the MAE of AROME-OM ranges between 40% and 68% (Fig. 5). The improvement of WRF-
M9 MAE over AROME-OM ranges between [35:52]% depending on the stations. WRF-M9 MAE values 
has similar standards as those of other climate regions despite forecast the GHI in tropical climate 
being more difficult (Diallo et al., 2018). Perez et al., (2013) showed that WRF 48 h GHI forecasts in 
the USA, Central Europe, Spain and Canada ranged between [17:39] %, [32:40] %, [16:14] %, [30:32] 
%. 

 
5 Conclusions 

The goal of this study was to propose a methodology to calibrate WRF so that it produced improved 

GHI forecasts in the ITZ compared to non-calibrated mesoscale model. This methodology was 

validated against ground measurements and AROME-OM GHI forecasts in French Guiana during 

2016. French Guiana is a French territory located in the ITZ; its photovoltaic installed capacity is 

projected to increase by 112% by 2023. Because there are higher solar potential in the ITZ predicting 

the solar input to the solar facilities which will lead the electricity injected to the grid is vital. 

Therefore, knowledge of the forecast accuracy of NWP models is needed. We found in this study that 

using set of physical parameterization previously used in other similar climate is not suitable. It can 

worsen the all sky conditions RMSE by 96 W/m² compared to the calibrated model. The set of 

parameterization derived from our calibration (WRF-M9) outperform AROME-GHI forecast in clear 

cloudy and overcast sky conditions. Improvements under clear sky conditions were explained by the 

finer and more recent aerosol dataset used by WRF-M9 and the ability of WRF to reproduce more 

accurately the sky conditions. Improvements under cloudy and overcast sky conditions are explained 

by the higher call frequency of the radiation physics. The seasonal and accuracy study showed that 

MAE were lower in the dry season represented by September and higher in the rainy season 

represented by May. These different forecast accuracies was explained by different cloud cover and 

cloud cover variability found during these months. Under all sky conditions and month merged, the 

improvement of WRF-M9 MAE over AROME-OM ranges between [35:52]% depending on the 

stations.  

To the best of the author’s knowledge several studied showed that the MPs scheme, LSMs scheme, 

and PBLs schemes, as these schemes have a strong influence on the distribution and physical 

properties of the simulated cloud field (Cintineo et al., 2014; Otkin and Greenwald, 2008; Xie et al., 

2012); however, no other studies analyzed the effect of varying these physics on the irradiance 

forecast in the ITZ. This study is the first dealing with the calibration of mesoscale models in French 

Guiana; results found that this calibration of WRF has similar standards as those of other climate 

regions. 
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Nevertheless, these GHI forecasts must be improved as PV managers have financial incentive to 
produce accurate forecasts of electricity production. Our future research will involve using data 
assimilation methods to improve the initialization of WRF forecasts (Mathiesen et al., 2013; Yang and 
Kleissl, 2016). 
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IV. Summary and conclusion of chapter III 
 

In Chapter III we presented first methods recommended for forecasting the GHI depending on the 

horizon of interest. Using this knowledge, we presented methods that forecast the GHI using NWP 

models. First we downloaded and studied the accuracy of IFS and GFS forecast products in the ITZ for 

tropical climate areas. That study filled the gap on the knowledge of global NWP models 

performance in the ITZ and for tropical climates. We studied two of the most widely used NWP 

models for various types of tropical climates located in French Guiana, Reunion Island and Singapore. 

Results found showed by comparison to the persistence model that forecasting the GHI in tropical 

climate is more difficult than forecasting the GHI in extra-tropical climates. Besides, under all sky 

conditions the GHI forecasts of IFS outperform those GFS in all territories; nevertheless, both models 

have high MAE values under clear, cloudy and overcast sky conditions. High MAE under measured 

clear sky conditions were explained by a misrepresentation of aerosols and clouds wrongly 

forecasted by the NWP whereas high MAE under cloudy and overcast sky conditions were explained 

by the coarse resolution of IFS and GFS that render them unable to produce realistic clouds. From 

this investigation on the origin of IFS and GFS inaccuracies, we concluded that to improve NWP GHI 

forecasts in the ITZ, sub-grid scale phenomena such as clouds, aerosols and their interaction with 

radiation should be better characterized. Consequently, the authors built and computed an 

ensemble of several 48h GHI forecasts using WRF. The aim of the second study was to suggest a 

generic method to calibrate mesoscale models to obtain improved GHI forecasts in the ITZ. The 

ensemble members used to calibrate WRF 48h GHI forecast varied the MPs scheme, LSMs scheme, 

and PBLs schemes. The ITZ is an area with highly variable dynamic in which we encounter significant 

amounts of convective clouds (Galvin, 2015; Laing and Evans, 2011). The parameterization scheme 

we chose to vary have a strong influence on the distribution and physical properties of the simulated 

cloud fields (Cintineo et al., 2014; Otkin and Greenwald, 2008; Xie et al., 2012). Results found showed 

that under all sky conditions, the improvement of WRF MAE over AROME-OM ranges between 

[35:52]% depending on the stations. We also found that MAE values have similar standards as those 

of extra-tropical regions despite forecast the GHI in tropical climate being more difficult. 

The scope for future research includes extending this methodology to other locations in the inter-

tropical zone and using data assimilation methods to improve the initialization of WRF forecasts 

(Mathiesen et al., 2013; Yang and Kleissl, 2016). 
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CHAPTER IV : Improving the irradiance 
forecast of numerical weather prediction 

model using data assimilation 
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I. Improving the solar irradiance forecast under tropical climate for long range 

forecast horizon 

 

Solar radiation forecasts and especially GHI forecasts are needed for integrating into the grid and at a 

large scale the electricity production from PV plants. Increasing the installed capacity of PV power 

requires that solar irradiance forecasts be more and more accurate in terms of spatial and temporal 

resolutions (Thorey et al. 2015). However, NWP models are still highly biased in cloudy sky 

conditions; these conditions occur more frequently in the ITZ. According to Kleissl (2013), errors 

related to irradiance forecasts can have a wide variety of sources. These sources include: poor model 

initialization, excessively coarse vertical grid spacing, and inaccurate assumptions in the physical 

parameterizations. For this reason several methods were developed to increase the accuracy of NWP 

models irradiance forecasts. These methods could be classified into three categories: 

-Model output statistics (MOS) 
-Multi model ensemble (MME) 
-Data assimilation (DA) 
 
MOS is the most frequent mean to improve solar irradiance forecasts; it is a post-processing method, 
which consists in the determination of a relationship between the GHI and other ground measured 
variables in order to refine the output of NWP models (Glahn and Dale, 1972). This method was 
successfully used by Diagne et al. (2014), Lauret et al. (2014), Mathiesen et al. (2013), and Verbois et 
al. (2018). They found RMSE improvement of WRF GHI forecasts was high as 40%, 18%, 19%, and 
33% respectively using a Kalman filter, a multivariate fourth-order regression and combination of a 
principal component analysis with a stepwise variable selection. However, these methods were 
exclusively based on statistical properties of the time series and do not use the physical properties of 
solar irradiance; therefore, they are site specific. Beside MOS need a training period require at least 
one year of archive. During the training and validation period the NWP setup and physics must not be 
changed (Kalnay, 2009). 
 
MME combines several forecasts from one or several NWP models (e.g. an ensemble) in order to 
produce a single forecast hopefully more skillful than any individual model of the ensemble (Mallet 
et al., 2009). This methodology was used by Thorey et al. (2015) who combined linearly GHI forecasts 
from six NWP models. Thorey et al. (2015) found that for a 42-hour forecast the RMSE of the worst 
NWP is improved by as much as -24%. The advantage of multi-model ensemble methods is that they 
rely on several NWP; different models capture the same physical phenomenon differently which tend 
to reduce the uncertainty based on each individual model (Xue and Zhang, 2014). Nevertheless, 
multi-model ensemble has several limitations. The combination of the ensemble forecasts is 
determined to minimize its discrepancy with the observations; since the observations are not 
perfect, this approach is not entirely satisfactory. The second limitation is that the weights are 
computed only at the locations and for the variables that are observed. Computing weights for other 
locations and other do not guaranty similar accuracy (Mallet, 2010). Besides, similar to MOS 
methods, MME methods need an extensive training period and the NWP models must be frozen 
during the training and validation periods. 
 
Data assimilation (DA) methods merge the physical information provided by numerical models and 
the information brought by the observations, in order to improve the forecast. These methods date 
back to the early seventies (Daley, 1999) and have been tested for several purposes such as 
improving storm forecasts (Fierro et al., 2014), improve wind forecasts (Portabella and Stoffelen, 
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2004), improve cloud forecasts (Benjamin et al., 2002), improving aerosol concentration forecasts. 
However, a literature study we carried out show that only a few publications using DA to improve 
solar irradiance forecasts were available (Mathiesen et al., 2013; Sahu et al., 2016; White et al., 2016; 
Yang and Kleissl, 2016). Nevertheless, these studies showed promising results. Clear advantages of 
DA over MME are that (1) DA methods take into account observational errors which make a 
difference when significant instrumental errors are involved, (2) DA methods are not site specific: DA 
improvements apply to the NWP forecast region (3) they are autonomous, they may be used with 
different NWP models and (4) they do not require a training period. Bourgin et al. (2014) investigated 
the interactions between data assimilation and post-processing in hydrological ensemble forecasting; 
he found that DA method outperform MOS especially for forecast horizon lower or equal to 12h. For 
these reasons we considered DA methods to improve solar irradiance forecasts in this thesis. 
 

II.  Data assimilation methods 

 

DA is a technique in which an accurate image of the true state of the atmosphere at a given time (i.e 

analysis) is accumulated into a NWP model state to improve its forecasts (Bouttier and Courtier, 

1999; Holm, 2008). This accurate image of the true state of the atmosphere is called the analysis. 

This analysis is constrained by the physical laws of the NWP model set of equations. Fig. IV.1 and IV.2 

shows the type of observation used to build this accurate image, and their distribution around the 

globe. 

 DA methods can be divided into four categories (Bannister, 2008a; Daley, 1999; Kalnay, 2009; 

Lakshmivarahan and Lewis, 2013): 

-interpolation method (e.g., function fitting) 

-empirical methods (e.g.  successive correction method) 

-variational method (e.g., 4D-var, 3D-var) 

-stochastic method (e.g., Kalman filter and ensemble Kalman filters) 

-nudging methods 

In this manuscript we focus only on real time assimilation algorithms systems because they only 

consider observations from the past (Bouttier and Courtier, 1999). Therefore, they are relevant in the 

operational management of solar energy systems. Consequently, interpolation and empirical 

methods are not discussed as they are outdated and no longer used in current NWP (ECMWF, 2016b; 

Environmental Modeling Center, 2003; Majewski et al., 2002; Staniforth et al., 2006). We present in 

the main body of the manuscript the general framework of stochastic, variational and nudging DA 

algorithms. Further details on the different DA methods, are given Appendix A. 

 

Fig. IV.1 Measurements instrument used in DA system credit WMO 
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Fig. IV.2 Observation network in ECMWF DA system 

 

II.1 Stochastic method and variational methods 

 

Stochastic DA methods include commonly used in commonly used in atmospheric science (Kalnay, 

2009) include ensemble square root filters (EnSRF) and ensemble Kalman filters (ENKF); while 

variational DA algorithms include 3D-Var and 4D-Var (Appendix A). Bennett (2004), Holm, (2008) and 

Kalnay (2009) showed that stochastic and variational DA algorithms can be derived from one 

common source. Consequently, The DA problem from the stochastic and variational framework is 

expressed as follows: 

x⃗⃗(t + 1) = M⃗⃗⃗⃗(x⃗⃗(t)) + εm⃗⃗⃗⃗⃗⃗ , IV.1 

 

x⃗⃗(t0) = xb⃗⃗⃗⃗⃗(t0) + εb⃗⃗ ⃗⃗  𝑎𝑛𝑑 IV.2 

 

y⃗⃗(tn) = ℋ⃗⃗⃗(x⃗⃗(tn)) + ε0,n⃗⃗ ⃗⃗ ⃗⃗ ⃗. IV.3 

Where 𝑥⃗ ∈ ℜ𝑛 is the NWP model state vector; 𝑥𝑏⃗⃗⃗⃗⃗ ∈ ℜ
𝑛  the background state; 𝑦⃗(𝑡𝑛) ∈ ℜ

𝑝 the 

observation of the state variable over a given time interval n; 𝑀⃗⃗⃗(𝑥⃗) ∈ ℜ𝑛 the model operator; 

ℋ⃗⃗⃗ ∈ ℜ𝑛⟶𝑝 the observation operator which computes the model equivalent of an observation 𝑦⃗ 

made a given time and location; 𝜀𝑚⃗⃗⃗⃗ ⃗⃗⃗  ∈ ℜ
𝑛,𝜀𝑏⃗⃗ ⃗⃗  ∈ ℜ

𝑛 and 𝜀0⃗⃗ ⃗⃗ ∈ ℜ
𝑝 approximate the model errors, the 

initial condition error (i.e., background error), and observation error respectively. 𝜀0,𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗ is used a 

simplification for 𝜀0⃗⃗ ⃗⃗ (𝑡𝑛). 

To model the uncertainty related to the model errors, background errors, and observation errors, 

probability distribution functions (pdfs) are used. Under the assumption that the background 

observation and model error pdfs are Gaussian, the probability to find the model state at x knowing 

the observation error is: 
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P(x⃗⃗|y⃗⃗) =
1

(2π)
3
2|B||R||Q|

 e
−1
2
[ εb⃗⃗ ⃗⃗ ⃗

T
 B−1 εb⃗⃗ ⃗⃗ ⃗+ εm⃗⃗⃗⃗⃗⃗⃗

T
 Q−1 εm⃗⃗⃗⃗⃗⃗⃗+∑ ε0,n⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗

T
  R−1N

n=0 ε0,n⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗], 
IV.4 

 

 

where 𝐵 ∈ ℜ𝑛.𝑛,𝑄 ∈ ℜ𝑛.𝑛 and 𝑅 ∈ ℜ𝑝.𝑝 are the model error covariance matrix, background error 

covariance matrix and observation error covariance matrix respectively. They are defined as follows: 

𝐵 =< (𝜀𝑏⃗⃗ ⃗⃗ −< 𝜀𝑏⃗⃗ ⃗⃗ >) (𝜀𝑏⃗⃗ ⃗⃗ −< 𝜀𝑏⃗⃗ ⃗⃗ >)
𝑇 >, IV.5 

 

R =< (ε0⃗⃗ ⃗⃗ −< ε0⃗⃗ ⃗⃗ >) (ε0⃗⃗ ⃗⃗ −< ε0⃗⃗ ⃗⃗ >)
T > 𝑎𝑛𝑑 IV.6 

 

𝑄 =< (𝜀𝑚⃗⃗⃗⃗⃗⃗ −< 𝜀𝑚⃗⃗⃗⃗⃗⃗ >) (𝜀𝑚⃗⃗⃗⃗⃗⃗ −< 𝜀𝑚⃗⃗⃗⃗⃗⃗ >)
𝑇 >. IV.7 

 

Similarly we define the analysis error 𝜀𝑎⃗⃗ ⃗⃗ ∈ ℜ
𝑛 which measures the departure of the analysis to the 

true state and the analysis covariance matrix 𝑃 ∈ ℜ𝑛.𝑛: 

𝑃 =< (𝜀𝑎⃗⃗ ⃗⃗ −< 𝜀𝑎⃗⃗ ⃗⃗ >) (𝜀𝑎⃗⃗ ⃗⃗ −< 𝜀𝑎⃗⃗ ⃗⃗ >)
𝑇 >. IV.8 

In Eq.IV.5 to IV.8 < > and 𝑇represent the expectation and transposition operators, respectively. 

The most important elements of DA methods are the covariance matrices B, Q and R. They 

determine to what extent the background fields will be corrected to match the observations 

(Bouttier and Courtier, 1999) and how the model error influence the analysis. 

𝑄 describes the correlations between errors in the model between several locations and for 

several time instances. Model errors can be caused by physical processes not described by the model 

equations, or by inaccurate physical parameterizations (Holm, 2008). In most assimilation algorithm 

the model is assumed to have no error; therefore, 𝑄 = 0. 

𝐵 spreads the information vertically and horizontally with proper weights to observation 𝑦𝑛 

and the background 𝑥𝑏⃗⃗⃗⃗⃗(𝑡0). Thus, if |𝐵| is very large compared to observation errors, the analysis is 

closer to observation, otherwise the analysis is closer to the background (Descombes et al., 2015; Liu, 

2017; Rizvi, 2016). B can be either be approximated as static or dynamic. For the static case, B is 

approximated using long term simulations (i.e climatological); For the dynamic case B is 

approximated using a set of different numerical simulation (i.e an ensemble) that varies with the 

time. To approximate 𝐵 several approaches may be used: the analysis of innovations method, the 

differences of varying length forecasts (NMC method), the forecast time lags method (CQ) and the 

ensemble method (Bannister, 2008a). 

 

 𝑅 includes the effects of measurement errors, errors in the design of the observation 

operators and representativeness errors (Bouttier and Courtier, 1999; Holm, 2008; Kalnay, 2009) . R 

is specified according to the knowledge of instrumental characteristics; in WRF (Skamarock et al., 
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2008) for instance a standard table of observation error values provided by the US Air Force Weather 

Agency is used (Kavulich, 2017). This table contains error values broken down by observed variable, 

observation type, and pressure level. 

The most likely state of the atmosphere (analysis) maximizes the joint probability Eq.IV.9. This 

maximum is attained when  𝑥⃗ = 𝑥𝑎⃗⃗⃗⃗⃗ , the analysis state vector. Consequently, the following cost 

function is minimized (Kalnay, 2009): 

J(x⃗⃗(t0)) =
1

2
[ εb⃗⃗⃗⃗⃗⃗

T
 B−1εb⃗⃗ ⃗⃗ + εm⃗⃗⃗⃗⃗⃗

T
 Q−1εm⃗⃗⃗⃗⃗⃗ +∑ ε0,n⃗⃗ ⃗⃗ ⃗⃗ ⃗

T
 R−1

N

n=1

ε0,n⃗⃗ ⃗⃗ ⃗⃗ ⃗] = Jb + Jm + J0. 
IV.9 

 

Where 𝐽𝑏 , 𝐽𝑚 and 𝐽0 are the background, observation and model cost functions respectively. The cost 

function 𝐽 aims to find an optimal estimate for the initial state of the system 𝑥⃗(𝑡0) given a prior 

estimate 𝑥𝑏⃗⃗⃗⃗⃗(𝑡0) of the initial state and observations at several points 𝑡𝑛; 𝑛 =  0, … , 𝑁 distributed 

over a time window[𝑡0: 𝑡𝑁]. 

Variational DA algorithms minimize Eq.IV.9 to obtain an analysis whereas stochastic DA solve directly 

the analysis equation (Eq.IV.9) directly by inversion (Appendix A). In operational NWP centers, to 

reduce computational costs, a sequence of linear approximations to the nonlinear minimization 

problem Eq.IV.9 using successive small increments δx⃗⃗, given an estimated analysis 𝑥⃗(𝑡0). 

δ𝑥⃗(t0) = 𝑥⃗(t0) − 𝑥⃗𝑏(t0) IV.10 

In practice the assimilation cycle has two step, the update and prediction step. If observations 𝑦(𝑡𝑛) 

are available, they are used in the update step to compute the analysis state vector 𝑥𝑎⃗⃗⃗⃗⃗ and its error 

covariance matrix 𝑃 is then propagated into time during the prediction step. 

II.2 Nudging methods 

 
The nudging DA (NDA) algorithm is originally an empirical method that consists in adding to the 
prognostic equations a term that relaxes (nudges) the solution towards the observations. Current 
nudging DA assimilation method are no longer empirical, they derive the nudging coefficient from 
variational or ensemble methods. They are two types of nudging: the observation nudging and the 
analysis nudging (Auroux and Blum, 2008; Lakshmivarahan and Lewis, 2013; Lei, 2011; Lei and 
Hacker, 2015).  In the case of analysis nudging, the model state is nudged toward gridded analysis 
based on the analysis error whereas in observation nudging, the model predictions are nudged to 
match better with observations at individual locations both on the surface and above (Xiangshang Li 
et al., 2016) based on the model error. The DA problem from the observation nudging framework is 
expressed as follows (Lakshmivarahan and Lewis, 2013): 
 

{
x⃗⃗(t + 1) = M⃗⃗⃗⃗(x⃗⃗(t)) + G0(t)ε0⃗⃗ ⃗⃗ (t) 𝑎𝑛𝑑

 x⃗⃗(t0) = x⃗⃗0 .
  

IV.11 

 

 
Whereas from analysis nudging, it is express as: 
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{
x⃗⃗(t + 1) = M⃗⃗⃗⃗(x⃗⃗(t)) + Ga(t) εa⃗⃗⃗⃗ (t) 𝑎𝑛𝑑

x⃗⃗(t0) = x⃗⃗0 .
  

IV.12 

 

 
Where 𝜀0⃗⃗ ⃗⃗ , 𝐺0, 𝜀𝑎 , 𝐺𝑎 are: the observation error, observation nudging coefficient matrix, analysis error 
and analysis nudging coefficient matrix respectively.  
 
A variational variant of nudging method named back and forth nudging method was developed 
recently by Auroux and Blum (2008), (2005). The back and forth nudging algorithm consists in first 
solving the forward nudging equation (Eq.IV.11) and then the backward nudging equation. The initial 
condition of the backward integration is the final state obtained after integration of the forward 
nudging equation. At the end of this process, one obtains an estimate of the initial state of the 
system (Appendix A). The main difficulty in the NDA scheme resides in the estimation of the nudging 
coefficient G. They could be either computed empirically, statistically or using a variational approach 
(Kalnay 2009; Zou et al. 1992). The latter approach gives the optimal nudging method 
(Lakshmivarahan and Lewis, 2013). 

III. Comparison between DA algorithms  

 

A literature study we carried out showed that among DA methods commonly use in atmospheric 
sciences, only 3D-Var and nudging were used to improve solar irradiance forecasts. Sahu et al. (2016) 
recently used 3D-var data assimilation to improve irradiance forecast over southern California. Sahu 
et al. (2016) ran WRF for two consecutive days and noticed that 3-DVAR improved the MAE by 65%.  
Most available studies used nudging type method (Mathiesen et al., 2013; White et al., 2016; Yang 
and Kleissl, 2016). Mathiesen et al. (2013) and Yang and Kleissl (2016) used conjointly WRF 
(Skamarock et al., 2008) NWP model with GOES cloud cover images to increase or decrease 
artificially the water vapor mixing ratio to produce or dissipate clouds simulated in the NWP models 
so that they match GOES imagery. Yang and Kleissl (2016) found that their nudging method improved 
by 47% the solar irradiance forecast of WRF; yet under clear sky conditions, the model was negatively 
biased (Mathiesen et al., 2013); indicating that for some forecasts clouds were incorrectly dissipated. 
White et al., 2016 also used conjointly WRF NWP model with GOES cloud cover images but nudged 
the horizontal wind fields positively to produce cloud and negatively to dissipate clouds. This 
methodology was validated against two stations and for two months; it was found that the 
correlation coefficient was found to be greater for the cloud assimilation simulation, 0.71 compared 
to 0.65 and 0.67 compared to 0.47 at both locations. The main disadvantage of these methods is: 
these methods introduce fake sink/source term which creates stability issues (Mathiesen et al., 
2013). Beside on their current stage of development, they rely on site specific parameters. 
Mathiesen et al. (2013) used a mixing ratio optically similar to the marine stratocumulus clouds 
observed in coastal California. 
 
For these reasons a bibliographic review highlighting the advantage and drawback of each DA 
method commonly used in atmospheric science is presented in the next section. This bibliographic 
review was used to select the DA method to improve the solar irradiance forecast in the ITZ. 
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Tab. IV.1 comparison of advantage and disadvantage of existing DA algorithms used in NWP models. These DA algorithm are detailed Appendix A 

DA methods Nudging 3D-Var 4D-Var Ensemble filters (ENKF,ENSRF) 

Nudging  -Nudging does not need to linearize the 

model (Asch et al., 2016) 

 

- Nudging does not require a to compute  B 

(Asch et al., 2016)  less computational 

burden 

 

-Observations are treated at the correct 

time (Lorenc and Rawlins, 2005) improve 

the forecast 

 

-can model implicitly the model error 

(Lakshmivarahan and Lewis, 2013) 

improve the forecast (Howes et al., 2017) 

-Nudging does not need to linearize the 

model (Asch et al., 2016) 

 

- Nudging does not need the development 

of an adjoint model (Asch et al., 2016)  

easier to code 

 

- Nudging does not require a covariance 

matrices B (Asch et al., 2016)  less 

computational burden 

 

-can model implicitly the model error 

(Lakshmivarahan and Lewis, 2013) 

improve the forecast (Howes et al., 

2017) 

 

- Nudging does not require a to compute  

B (Asch et al., 2016)  less computational 

burden 

 

- Nudging is more adapted to observing 

networks with heterogeneous reporting 

times (Lei and Hacker, 2015) 

3D-Var -3DVar  can process a wider range of 

observations  In nudging only 

variables in the prognostic  equations 

can be nudged (Asch et al., 2016) 

 

-Perfect model assumption wrong 

analysis when model error is high 

relative to observation and 

background errors (Holm, 2008) 

 -3DVAR does  not requires the 

development of linear and adjoint 

models(i.e TLM)  (Bannister, 2018) 

computationally cheaper but worst 

forecast (Lorenc and Rawlins, 2005) 

-Perfect model assumption wrong 

analysis when model error is high relative 

to observation and background errors 

(Holm, 2008) 
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4D-Var -4DVar requires the development of 

linear and adjoint models (Bannister, 

2018)  more difficult to code and 

maintain 

 

-4DVar  can process a wider range of 

observations (Skamarock et al., 

2008) 

- 4Dvar treats observations at the correct 

time (Bannister, 2018) 

improve analysis 

 

-4Dvar evolves B is implicitly (Bannister, 

2018; Schwartz et al., 2014) 

 

- 4D-Var computationally expensive 

compared  depending on the 

computational facilities cannot be used 

operationally (Lorenc and Rawlins, 2005) 

 - 4DVAR analysis is consistent with the 
model (Fowler, 2016; Lorenc, 2003) 
appropriate B 
 
- 4DVAR relies on the validity of: TL and 
perfect model (Fowler, 2016; Lorenc, 
2003) restrict  assimilation window 
 
-B not evolved explicitly (Fowler, 2016; 
Schwartz et al., 2014) 
 
-4DVAR  assumes no model error  give 

the same credence to older observations 

at the beginning of the interval as to 

newer observations at the end of the 

interval (Kalnay, 2009) 

Ensemble 

filters 

-ENKF is more computationally 

demanding (Kalnay, 2009) 

 

- ENKF treat explicitly the model 

error  

 improve the forecast (Mitchell et 

al., 2002) 

 

-ENKF better spread information in 

space and across variables (Fritzner 

et al., 2018) 

-Ensembles are propagated with full 

nonlinear numerical (Janjic, n.d.) 

Model no need to linearize 

 

-ENKF is more computationally demanding 

(Kalnay, 2009) 

-B is flow dependent (Fowler, 2016; 

Lorenc, 2003) 

 

-No need to linearize the model (Fowler, 

2016; Lorenc, 2003).  However, due to 

computational cost we can only afford 

small ensemble sizes thus offering 

minimal if any benefit for strongly non-

linear problems (Vetra-Carvalho, 2018) 

 

-Sensitive to ensemble size (Fowler, 2016) 

filter divergence  

 
-ENKF is more computationally demanding 
(Kalnay, 2009) 
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As shown Tab. IV.1 each DA method as its own set of advantages and drawbacks. Main drawbacks of 

variational method are that they do not natively take into account the model error and that they do 

not evolve explicitly B within the assimilation window. ENKF main drawback deal with the tradeoff 

between ensemble size, computational affordability and accuracy. For these reasons hybrid method 

were developed such as ETKF-3DVar (Wang et al., 2008), ENKF-3DVAR (Gao et al., 2013), ENSRF-

3DVAR (Schwartz et al., 2014), ETKF-4DVar (Clayton et al., 2013), ENKF with nudging (Lei and Hacker, 

2015), to benefit from the strengths of each individual DA methods. Most methods that couple 

several DA methods involve variational and ENKF methods; they are called EnVar (Bannister, 2017). 

Bannister (2017) classified in his study EnVar DA methods in three categories: 

- pure EnVar system that uses a tangent linear model (TLM) similarly to variational methods (e.g 
En4dvar,En3dvar) 
- pure EnVar system that does not use a TLM similarly to ENKF (4DEnvar, 3DEnvar) 
-hybrid EnVar system whose B is computed with the contribution of a static part similarly to 
variational methods and a contribution from a flow dependent part similar to ENKF methods 
 
According to Bannister (2017) hybrid methods tend to be better and more robust for smaller 
ensembles size than pure variational method, ensemble, or EnVar methods. Bannister (2017) also 
found that pure EnVar system that uses a TLM outperforms pure EnVar system that does not use a 
TLM. However, an EnVar system that uses a TLM requires more significant computational resources. 
 

IV.  Data assimilation for solar energy forecast purposes in the intertropical zone 

 

The ITZ is an area with highly variable dynamic in which we encounter significant amounts of 

convective clouds. Consequently, the solar energy available at the ground is highly variable. Recently 

Schwartz (2016); and Schwartz and Liu (2014) showed that using continuously cycling an 

hybrid 3DEnVar DA systems improve the characterization of convective phenomena. As clouds 

convective phenomena have a sizeable effect on accuracy of NWP model GHI forecasts; therefore, 

hybrid 3DEnVar DA method was selected to improve WRF irradiance forecasts in the ITZ. 

IV.1 Description of the Hybrid 3D Ensemble variational 

 

The hybrid 3DEnVar DA algorithm is available in WRF-DA; it aims to minimize a cost function similar 

to that of Eq.IV.9; However, in the hybrid 3DEnVar the analysis increment (δ𝑥⃗) is partitioned into a 

weighted linear combination of the ensemble and static contributions; it is expressed as follows (Li et 

al., 2015; Schwartz et al., 2014): 

δ𝑥⃗(t0) = δx⃗⃗s(t0) +
1

√N − 1
∑ai

N

i=1

(δx(𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (t0)−< δx
(𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (t0) >) 

IV.13 

 

 

Where 𝛿𝑥⃗𝑠  is the increment associated with the static BECs, and 𝑎𝑖  the ith member’s extended 

control variable (Lorenc, 2003) that give proper weight to the ith member’s departure from the 

ensemble mean. Therefore, the Hybrid 3DEnVar minimization problem is written as follows (Li et al., 

2015; Schwartz et al., 2014): 
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J(δx⃗⃗(t0)) =
β1
2
δx⃗⃗s(t0)

 B−1δx⃗⃗s(t0) +
β2
2
a⃗⃗TA−1a⃗⃗ +

1

2
(d0 − Hδ𝑥⃗(t0))

TR−1(d0 − Hδ𝑥⃗(t0)), 
IV.14 

 

where 𝑎⃗ is an array containing the extended control variable for each ensemble member. A is the 

ensemble covariance localization matrix; it controls the spatial correlation of 𝑎⃗ ; 𝛽1and 𝛽2 are user 

defined parameters that determine how much weight is given to the ensemble and static BECs. 

𝛽1and 𝛽2 are constrained such that:  

1 =
1

β1
+
1

β2
. 

IV.15 

 

Fig. IV.3 describes the hybrid 3DEnVar algorithm. In this figure we can see that the coupling between 

the ETKF and the 3DVAR algorithm. First the ensemble perturbation supplies an estimate of the flow 

dependent forecast error A to the 3DVAR analysis. Second the ensemble member analysis is re-

centered about the hybrid analysis. The high-resolution hybrid analysis is then used as initial and 

boundary conditions for a WRF forecast instead of the GFS coarse resolution analysis. In our Studies 

we performed the hybrid analysis for the three domains of WRF showed previously chapter III 

section III. 

 

Fig. IV.3 Flowchart describing the hybrid ETKF–3DVAR DA system in WRF model; inspired after (Barker 
and Clayton, 2011; Kutty et al., 2018) 
 

IV.2 Building the ensemble members 

 

As stated in earlier chapter III section III, we chose the initialization at 00 UTC to allow for a spin up of 
12 hours before the sunrise in French Guiana. Consequently, each member should be valid at 00h 
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UTC and allows for 12 hours spin-up at least. To build the ensemble valid for the day d at 00h UTC; 
first we perturbed GFS initial and boundary condition valid for the day d-1 at 00h UTC using random-
cv utility provided in WRFDA (NCAR, 2017). Second we use this perturbed set of initial and boundary 
conditions to run WRF for a 24-hour forecast, which is valid for day d at 00h UTC. These forecasts 
were computed using WRF-M9 setup for the same three way nested domain shown chapter III 
section III. We repeated this cycle 40 times to obtain a 40 ensemble member. This ensemble size was 
based on Vetra-Carvalho (2013) finding that ETKF is able predicts the initial cloud growth for 
ensemble containing at least 30 members. 
 

IV.3 Modeling of the background error covariances A and B 

 

B plays a key role in Var, ENKF, pure and hybrid EnVar DA algorithms. It weights the importance of 

the background state by spreading information from observation points and imposing balance 

between analysis variables 𝑥𝑎⃗⃗⃗⃗⃗(𝑡) (Wang et al., 2014). Current NWP models have a typical dimension 

of 108 which gives B matrix with 1016 elements (Descombes et al., 2015). This number of elements is 

too important to be calculated explicitly and stored. Therefore, B needs to be preconditioned such 

that it becomes numerically manageable (Wang et al., 2014). To precondition B, first a control 

variable transform (CVT) is applied (Descombes et al., 2015; Wang et al., 2014). Instead of using the 

state variable 𝑥⃗ of the NWP model, other variables (control variables) that are likely to be mutually 

uncorrelated are selected. Second B is decomposed in a series of sub-matrices expressed in the 

control variables space. Each matrix corresponds to an elemental transform that can be individually 

modeled.  These two steps aim to renders B diagonal, they are expressed mathematically as follows 

(Descombes et al., 2015; Liu, 2017; Wang et al., 2014): 

{

δx⃗⃗ = Uu⃗⃗,

B = UUT 𝑎𝑛𝑑
U = UpUvUh .

 

IV.16 

 

 

where 𝑢⃗⃗ is the control variable array; U the transformation matrix; 𝑈𝑝, 𝑈𝑣   and 𝑈ℎare the physical 

transform operator, vertical transform matrix, and the horizontal transform matrix respectively. They 

aim to remove the remaining correlation (e.g, balanced part) between the control variable using 

linear regressions, define the vertical correlation between control variables using recursive filters and 

horizontal correlations via empirical orthogonal decomposition of vertical covariance. 𝑆 is a diagonal 

matrix composed of the standard deviations of the background error.  

According to Dhanya and Chandrasekar (2016); Xin Li et al. (2016); Wang et al. (2014) the formulation 

and choice of control variables have an impact on the analysis as well as model forecasts. Bannister 

(2008b) and Gustafsson et al.( 2018) listed in their study the control variable used in NWP forecast 

centers. In WRF V3.8 (NCAR, 2017) four choices of control variable are available (cv3, cv5, cv6, cv7). 

In cv3 the control variables are in physical space; i.e. the state vector variable are used. It is assumed 

that there is no spatial and multivariate correlation (Liu, 2017). This option uses stream function, 

unbalanced velocity potential, unbalanced temperature, mixing ratio and unbalanced logarithm 

surface pressure. Cv3 provides a generic B that has a global coverage, however, it needs to be tuned 

to get a an improved analysis (Guo et al., 2008; Radi et al., n.d.). In cv5, cv6, cv7 the control variable 

are instead in eigen-vector space (NCAR, 2017). cv5 and cv6 use quasi-similar control variables; cv5 
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uses stream function, unbalanced velocity potential, unbalanced temperature, pseudo-relative 

humidity and unbalanced surface pressure. Cv6 uses an unbalanced pseudo relative humidity instead 

of using the pseudo-relative humidity. A major difference between cv5 and cv6 is that cv5 correlation 

used between the velocity potential and temperature or the velocity potential and surface pressure 

(Chen et al., 2013). Therefore, neither temperature nor surface pressure observations can directly 

influence the divergent part of the wind. Similarly the moisture observations will not have any impact 

on other variables like wind, temperature, and surface pressure. To overcome these limitations, cv6 

includes linear relationship between temperature and surface pressure with unbalanced velocity 

potential as well as the inclusion of moisture correlations with all other analysis variables (Chen et 

al., 2013). Chen et al. (2013) showed that in tropical regions the inclusion of these extra correlations 

improved the forecast accuracy. According to (Dhanya and Chandrasekar, 2016) Moisture is a highly 

variable component in the atmosphere especially in tropical regions where convection is a major 

driving factor for weather systems, better formulation of moisture fields in the analysis system can 

improve the analysis and consequently the model predictions. Cv7 uses a different set of control 

variables than cv5 and cv6; it uses horizontal wind components as momentum control variable 

temperature, pseudo-relative humidity and surface pressure. For this cv7 the transformation matrix 

Up Eq.IV.16 becomes an identity matrix (Sun et al., 2016). Recent studies (Xin Li et al., 2016; Sun et 

al., 2016; Xie and MacDonald, 2012) have shown that using stream function and velocity potential 

instead of horizontal wind components tends to produce non-physical wind increments with 

opposite direction to the observed wind in the neighborhood around the observation point. White et 

al., 2016 showed in this study that nudging horizontal velocity has the ability to improve GHI 

forecasts. Therefore, a CVT that describes accurately wind increments is considered because in our 

study there are a significant number of wind velocity observations. 

Consequently, for the static background B, the NMC method (Parrish and Derber, 1992) Eq.IV.17 is 

performed using the horizontal wind component as momentum control variable temperature, 

pseudo-relative humidity and surface pressure control variables. For the flow dependent background 

we use the ensemble method Eq.IV.18.  

BNMC = x⃗⃗24 − x⃗⃗12 𝑎𝑛𝑑 IV.17 

 

BENS =
1

N − 1
∑(x⃗⃗i − 〈x⃗⃗i〉

N

i=1

)(x⃗⃗i − 〈x⃗⃗i〉)
T. 

IV.18 

 

Where 𝑥⃗24 and 𝑥⃗12 are forecasts which are valid at the same time for different initialization times; N 

and 𝑥⃗𝑖 are the ensemble size and an ensemble member respectively. 

IV.4 Experiments 

 

Due to computational constraints we selected a limited number of experiments for a limited time 

span to validate 3DEnVar GHI forecasts. In CHAPTER IIIIII we have calibrated and validated WRF GHI 

forecasts in French for March, May and September. To choose which month to use we set the 

following constraint. The GHI forecasts obtained using 3DEnVar should not deteriorate significantly 

the GHI forecast under clear sky conditions and should improve the GHI forecasts under cloudy and 

overcast sky conditions. To meet this constraint we validated the GHI forecasts 3DEnVar over 
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September because this month has the highest number of clear sky conditions samples. Fig. IV.4 

shows the cdf of 𝐾𝑐 values when the GHI measurements of all stations are merged from September 

1st to September 29th. In September 5% of 𝐾𝑐 value are lower than 0.4; approximately 12% range 

between 0.4 and 0.65 and 83% of the sample size have 𝐾𝑐 values higher than 0.65. 

 

Fig. IV.4 Cdf of Kc values in March, May, September. The GHI forecasts from Rochambeau, Saint 
Georges, Maripasoula,  Saint Laurent, Kourou and Ile Royale 

In the 3DEnVar DA algorithm two parameters can be adjusted: the ensemble weight 𝛽2 Eq.IV.14 and 

the correlation length scale. The correlation length scale was defined to 500 km, the default value. 

The ensemble weight was defined so that there is first a 50% and second a 75% contribution from 

the flow dependent background i.e. 𝛽2 = 2 and 𝛽2 =
4

3
 respectively. The experiments performed are 

described in this study are described as follows: 

(i) The control experiment; WRF-M9 described chapter III. In this experiment there is no 

data assimilation; WRF is initialized using GFS forecasts at 00h UTC and ran for 48h. WRF 

forecasts are forced every 3h by GFS. Once a 48h forecast is obtained, a new one is 

launched so that the last 48h is valid for September 29th at 00h UTC. 

 

(ii) 3DEnVar DA with no cycling (WRF-M9-3DEnVar). In this experiment 𝛽2 = 2 and WRF is 

initialized at 00h UTC using the analysis produce by 3DEnVar and ran for 48h. From +3h 

to +45h WRF forecasts are forced using GFS. Once a 48h forecast is obtained, a new one 

is launched so that the last 48h is valid for September 29th at 00h UTC.  

 

(iii) 3DEnVar DA with a 6h cycling (WRF-M9-3DEnVar-c). In this experiment 𝛽2 = 2; the 

hybrid data assimilation is performed once at 00h UTC and WRF forecasts are cycled 

every 6 hours. WRF is run for 6h and the forecast obtained at t+6h is used a background 

for another 6h forecast. This forecast cycle is repeated so at the end we obtain a 48h 
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forecasts. Once a 48h forecast is obtained, a new one is launched so that the last 48h is 

valid for September 29th at 00h UTC. 

 

(iv) 3DEnVar DA with a 6h cycling (WRF-M9-3DEnVar-c2). In this experiment 𝛽2 =
4

3
. 

The observations we assimilated were conventional observation downloaded online from NCEP 

servers (NCEP, 2018), they are Global Upper Air and Surface Weather Observations  in PREPBUFR 

format. 

IV.4.a Studying the impact of the hybrid DA on the GHI forecasts 

 

Tab. IV.2 Comparison between WRF-M9 and WRF-M9-3DEnVar for all experiments. All six stations 
showed chapter III section III were merged 

Ensemble background 

contribution 

MAE (W/m²)  MBE (W/m²) 

Clear Cloudy Overcast All Clear Cloudy Overcast All 

WRF-M9 (i) 79 134 236 102 17 128 233 55 

WRF-M9-3DEnVar 

(ii) 

81 132 227 103 6 121 224 45 

WRF-M9-3DEnVar-c 

(iii) 

79 130 221 100 4 121 217 43 

WRF-M9-3DEnVar-c2 

(iv) 

83 137 231 106 2 122 231 43 

 

Tab. IV.2 shows that under overcast sky conditions each experiment (ii, iii, iv) involving the use of the 

hybrid DA improves the GHI forecasts. The greatest improvement of the GHI forecasts under cloudy 

and overcast sky conditions is obtained using WRF-M9-3DEnVar-c; the relative improvement of the 

MAE and MBE of WRF-M9-3DEnVar-c compared to WRF-M9 are 6% and 7% respectively. We can also 

see Tab. IV.2 that cycling WRF forecasts as initial and boundary conditions improve the accuracy. 

Nevertheless, in September, increasing 𝛽2 outweigh this gain; under cloudy sky conditions, the MAE 

of WRF-M9-3DEnVar-c2 GHI forecasts are worse than those of WRF-M9.  

Under all sky conditions the lowest MAE is obtained using WRF-M9-3DEnVar-c (Tab. IV.2). The 

improvement of WRF-M9-3DEnVar-c MAE and MBE over the MAE and MBE of WRF-M9 are 2% and 

22% respectively. Under clear sky conditions WRF-M9-3DEnVar-c and WRF-M9 have similar MAE 

values (Tab. IV.2); consequently, we explain this improvement by the better GHI forecasts under 

cloudy and overcast sky conditions. The magnitude of the improvement under all sky conditions (e.g. 

2%) is explained by the fewer occurrence of cloudy and overcast conditions in September; 5% and 
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12% respectively. Nevertheless, the greater results of WRF-M9-3DEnVar-c compared to WRF-M9 

meet the constraint initially set: not deteriorate significantly the GHI forecast under clear sky 

conditions and should improve the GHI forecasts under cloudy and overcast sky conditions.  

Consequently these results show that WRF-M9-3DEnVar-c is able to improve the forecast of cloudy 

and overcast sky conditions during September a rainy season month. 

 

Fig. IV.5 Cdf of V values in March, May, September. The GHI forecasts from Rochambeau, Saint 
Georges, Maripasoula,  Saint Laurent, Kourou and Ile Royale 

 Tab. IV.2 also shows that the hybrid DA impact the GHI forecasts under clear sky conditions. The GHI 

forecasts increase by as much as 4 W/m² (+5%) whereas the MBE decreases as much as 15 W/m² (-

88%). 

IV.4.b Comparison of WRF-M9-3DEnVar-c against WRF-M9 and IFS forecast in 

September 

 

Perez et al. (2013) showed in this study that IFS is the most accurate global model in extra-tropical 

climate. This model even outperformed GHI forecasts from optimized mesoscale model including 

WRF. We have shown in Chapter III section that similarly to extra-tropical climate IFS is more 

accurate than GFS in tropical climate. Consequently, in this section we compare our calibrated WRF 

model with data assimilation (e.g., WRF-M9-3DEnVar-c) to IFS forecasts in French Guiana. According 

to Lorenz et al. (2016) spatial average improve the forecast metrics. Consequently, we averaged WRF 

GHI forecasts over a 12² km area and compared it against IFS hourly forecast available over a 14² km 

grid.  

We have shown in chapter III sections II and III that IFS and WRF accuracy varied with Kc and V values. 

Consequently, we represented Fig. IV.6 WRF-M9, WRF-M9-3DEnVar-c and IFS MAE as a function of Kc 

and V. We can see Fig. IV.6 and Fig. IV.7 that averaging spatially the GHI forecasts of WRF-M9 and 

WRF-M9-3DEnVar-c increase the MAE improvement of WRF-M9-3DEnVar-c over WRF-M9 obtained 

previously for a single grid cell. Under all sky conditions and for a single grid cell the MAE 

improvement of WRF-M9-3DEnVar-c over WRF-M9 was 2%. For an average over a 12² km area the 
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MAE improvement of WRF-M9-3DEnVar-c over WRF-M9 is 6%. Under cloudy and overcast sky 

conditions the improvement cause by the spatial average is 9% and 7% respectively.  

When comparing the GHI forecasts of WRF-M9-3DEnVar-c to those of IFS we find that under clear sky 

conditions WRF-M9-3DEnVar-c outperforms the GHI forecasts of IFS-1h. The relative improvement of 

WRF-M9-3DEnVar-c MAE over IFS MAE is 10% (Fig. IV.7). However, under cloudy and overcast sky 

conditions it is the opposite; the relative  worsening of WRF-M9-3DEnVar-c MAE over IFS MAE is -

37% and -45% respectively. Nevertheless, due to the higher occurrence of clear sky conditions during 

September the accuracies of WRF-M9-3DEnVar-c and IFS are close.  Under all the relative worsening 

of WRF-M9-3DEnVar-c MAE over the MAE of IFS is -5%. Tab. IV.4 shows a comparison of IFS and post-

processed WRF for various types of extra-tropical climate. For arid and humid continental climates 

the GHI forecasts of WRF are worse than the GHI forecasts of IFS; the relative worsening of WRF over 

IFS is -25% and -30 %respectively. In Mediterranean WRF with MOS has a similar accuracy than IFS. 

These results showed that the hybrid data we used performed successfully comparatively to MOS 

methods.  

 

 

Fig. IV.6 WRF-M9, WRF-M9-3DEnVar, and IFS MAE as a function of Kc and V 
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Fig. IV.7 MAE (W/m²) and MBE (W/m²) of WRF-M9, WRF-M9-3DEnVar-c and IFS 

 

Tab. IV.3 Relative improvement of WRF-M9-3DEnVar-c over WRF-M9 and IFS 

 

 

Relative improvement (%) of the MAE 

of WRF-M9-3DEnVar-c (W/m²) over 

the MAE of WRF-M9 (W/m²)  

Relative improvement (%) of the MAE of 

WRF-M9-3DEnVar-c (W/m²) over the MAE of 

IFS (W/m²) 

Clear Cloudy Overcast All Clear Cloudy Overcast All 

September 5% 9% 7% 6% 10% -37% -45% -5% 

 

Tab. IV.4 Relative improvement of the MAE WRF with MOS  over IFS. These relative improvement 
were computed using MAE values for a 48h forecast initialized at 00h UTC that were provided by 

Perez et al. (2013). Mediterranenan stations include Cordoba, Huelva,Granada, Carpentras; Desert 
rock is the Arid station considered; For Humid continental we considered Goodwin Creek and Penn 

state 

 
Mediterranean Arid Humid-Continental 

Mean IFS MAE (W/m²) 60 56 78 

Mean WRF (W/m²) 60 70 103 

Relative improvement (%) of the MAE of 

WRF-MOS over the MAE of IFS (W/m²) 

0% -25% -32% 
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IV.5 Conclusions 

 

In this section we have suggested a method to improve the GHI forecasts of mesoscale models in 

French Guiana and in the ITZ. This method is based on an hybrid ensemble variational ensemble data 

assimilation: 3DEnVar; it was validated in French Guiana. Due to computational constraints we 

selected a limited number of experiments and over a limited time span to validate 3DEnVar GHI 

forecasts. The validation period was chosen so that it guarantees the ability of the method to not 

deteriorate significantly the GHI forecast under clear sky conditions and to improve the GHI forecasts 

under cloudy and overcast sky conditions. We found that : (i) our method meet the constraint initially 

set: In September during the dry season and under clear sky conditions WRF-M9 and WRF-M9-

3DEnVar have similar MAE values; however, under cloudy sky and overcast conditions the MAE of 

WRF-M9 is improved by 6% and 7% respectively. (ii) the balance between the flow dependent 

background and static background highly influence the forecast accuracy. Due to lack of 

computational resources we did not optimized this balance. Nevertheless, the fact that the forecasts 

under cloudy and overcasts sky conditions are improved whereas the GHI forecasts under clear sky 

are not deteriorated shows that this method is promising. (iii) Cycling WRF GHI forecasts improve the 

GHI forecasts. The GHI forecasts of WRF-M9-3DEnVar were also compared to the GHI of IFS. We 

found that under clear sky conditions WRF-M9-3DEnVar-c outperforms the GHI forecasts of IFS-1h. 

The relative improvement of WRF-M9-3DEnVar-c MAE over IFS MAE is 10%. However, under cloudy 

and overcast sky conditions it is the opposite; the relative worsening of WRF-M9-3DEnVar-c MAE 

over IFS MAE is -37% and -45% respectively. Nevertheless, due to the higher occurrence of clear sky 

conditions during September the accuracies of WRF-M9-3DEnVar-c and IFS are close; the relative 

improvement of WRF-M9-3DEnVar-c MAE over the MAE of WRF-M9 is -5%. Our future research will 

involve optimizing the balance between the flow dependent background and static background and 

validating the method in the rainy season. 
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CHAPTER V  : Thesis summary and 
conclusions 

 

The contribution of this thesis to the scientific community was: to use existing and well-known 
methods (i.e Heliosat-II (H-II) and weather and research forecast (WRF)) and adapt them so that they 
produce improved Global Horizontal Irradiance (GHI) estimates in French Guiana. Weather 
conditions in French Guiana are driven by the physical phenomena in the Intertropical zone (ITZ); 
consequently, methods developed in this manuscript for French Guiana aimed to be extended to all 
the ITZ. 
 
Our first contribution to the scientific community was to modify the H-II method so it can account for 
cloud absorption. The rationale behind this choice came from a literature review of the physical 
properties of the ITZ. The ITZ is an area with highly variable cloud cover dynamic. In this area we 
encounter significant amounts of convective clouds. Consequently, to improve the GHI forecasts in 
the ITZ the effect of clouds must be modeled accurately. Native H-II method accounts for cloud 
attenuation empirically by using a clear sky index (Kc) that is a function of a cloud index derived from 
satellite images. A drawback of using Kc is that it does not model cloud properties such as cloud 
optical depth, which influences cloud reflectance, absorbance and transmittance. Therefore, to 
consider the significant presence of clouds we integrated a spatiotemporally dependent cloudy sky 
RTP into the GHI estimate formula of native H-II. This cloudy sky model integrates the cloud albedo 
and the cloud absorption which is a proxy for the cloud optical depth. This study showed that the GHI 
forecasts of the H-II method can be improved by accounting for the cloud absorption. Our method 
does not increase computation time and only require one parameter that must be computed 
beforehand using cloud absorption abacus available in the literature. The scope for future research 
involves validating this methodology to other locations; for this purpose a monthly map of cloud 
absorption must be computed, first, for French Guiana, and then, for other tropical areas. 
 
Our second contribution to the scientific community was to fill the gap on the knowledge about the 
forecasts accuracy of GHI products from global NWP models in the ITZ. We compared IFS and GFS 
against GHI measurements from three territories located in the ITZ and with tropical climates. That 
study provided benchmark tools to assess the forecast accuracy of a limited area NWP model GHI 
forecast and for assessing the quality of post-processing methods. It also identified the source of 
inaccuracies of the GHI forecasts from NWP in the ITZ. This study showed the inability of model 
forecast realistic clouds cover; this inability impact cloudy, overcast and clear sky conditions. Under 
sky conditions reported as clear by the ground measurements, IFS and GFS forecasts cloudy and 
overcast sky conditions a significant amount of time. We compared results in tropical climates to 
results in extra tropical climates (Mediterranean, oceanic, continental, and arid climates) and found 
by comparison with the persistence that is more difficult to forecasts the GHI in tropical climates. The 
scope for future research involves studying for other locations and other climate in the ITZ. The 
scope for future research involves validating this methodology to other locations in the ITZ. 
 
Our third contribution to the scientific community was to suggest based on the analysis of IFS and 
GFS a generic methodology to WRF mesoscale model in the ITZ. The aim of this methodology was to 
restrain and select the minimum number of simulations to run, to obtain improved GHI forecasts in 
the ITZ compared to a non-calibrated model. Consequently, we built 34 Ensemble Members (EM) by 
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varying the microphysics, land surface model, and planetary boundary layer parameterization 
schemes. These parameterizations were varied because they have a strong influence on the 
distribution and physical properties of the simulated cloud field. This methodology was validated 
against GHI forecasts from AROME mesoscale model and ground measurements in French Guiana. 
This study showed that the calibration process of a mesoscale model must be carefully considered 
and that using physical parameterization previously selected in similar climate is not suitable. 
 
Our last contribution to the scientific community was to use an hybrid ensemble variational data 

assimilation method to improve the GHI forecasts of WRF in the ITZ. The rationale behind this choice 

was to find a method that does not require an extensive training dataset; that is applicable for the 

whole computation domain and that does not require that the setup of the NWP model to be frozen. 

Ensemble variational data assimilation methods have proved their abilities to improve the 

characterization of severe convection events but have not been used yet for solar energy purposes. 

This method used the greatest ensemble member previously computed on the calibration process of 

WRF first to compute the static background and to build the initial ensemble needed for the 

assimilation method. Results found showed that this method improves the GHI forecast under cloudy 

and overcast sky conditions without lowering significantly the accuracy under clear sky conditions. 

The accuracy of the GHI forecasts depend highly on the balance between the flow dependent and 

static background which needs to be optimized. Nevertheless, this method is computationally 

demanding: it requires computing the background and the initial ensemble. The scope for future 

research is to find the adequate balance between the static and the flow dependent background 

covariance and to modify our method so it can be used operationally. In order the computational 

time the following solution may be considered: (i) instead of computing the initial ensemble, we may 

use ensemble forecasts available from forecasts center at coarser resolution and or (ii) use and 

optimize background covariance also provided globally for coarser resolutions. Using these two 

suggestions may one hand reduce the computing time but on the other reduce the accuracy of the 

GHI forecasts. 
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Conclusions et apport de la thése 

 

La contribution de ce travail de thèse à la communauté scientifique a été : d’utiliser des outils connus 
et réputés et de les adapter pour qu’ils fournissent des estimations (avec H-II) et des prévisions (avec 
WRF) améliorées en Guyane. Les conditions météorologiques en Guyane sont influencées par les 
phénomènes physiques se déroulant dans la zone intertropicale; en conséquence, les méthodes 
appliquées en Guyane française ont pour vocation à être étendues à toute la zone intertropicale. 
 
Notre première contribution à la communauté scientifique a été de modifier H-II afin qu’il puisse 
tenir compte de l’absorption des nuages. Ce choix a été motivé par une étude des propriétés 
physiques de l’ITZ. Cette zone est caractérisée par une dynamique nuageuse importante; en 
conséquence les nuages et leurs propriétés physiques doivent être modélisés pour obtenir de 
meilleurs estimés de GHI. La méthode H-II originelle modèle l’atténuation des nuages en utilisant une 
relation empirique fonction d’un index nuageux déduit à partir d’images satellites. Un inconvénient 
de cette méthode est que les propriétés physiques des nuages tels leurs épaisseurs optiques ne sont 
pas modélisées. L’épaisseur optique influence à la fois l’absorption, la réflexion et la transmission des 
nuages. En conséquence, afin de tenir compte de la présence significative de nuage, nous intégrons 
un modèle de transfert radiatif en ciel couvert dans la formulation de GHI de la méthode H-II 
originelle. Ce modèle de ciel couvert intègre l’albédo des nuages qui est un proxy de l’épaisseur 
optique. Cette étude a montré que la prise en compte de l’absorption des nuages permet une 
amélioration des estimés de GHI. Notre méthode n’augmente pas de manière significative le temps 
de calcul et ne nécessite qu’un seul paramètre supplémentaire ; celui-ci est calculé à priori à partir 
d’abaque d’absorption des nuages disponible dans la littérature. Les recherches futures 
consisteraient à valider cette méthode dans d’autre pays de la zone intertropicale. 
 
Notre deuxième contribution à la communauté scientifique d’étudier les performances des modèles 
IFS et GFS en zone intertropicale. Nous avons comparé les prévisions d’IFS et de GFS avec des 
mesures au sol provenant de trois territoires dans l’ITZ de climat tropical. Cette étude a permis des 
outils comparatifs permettant de valider la calibration du modèle WRF et la validation de méthode 
de post-processing. De plus ils ont permis d’identifier les sources d’erreurs des prévisions de GHI en 
zone intertropicale. Cette étude a montré que les modèles IFS et GFS étaient incapables de simuler 
une couverture nuageuse réaliste ; cette inhabilité se répercute aussi bien en ciel clair que couvert. 
Nous avons comparé les résultats obtenus en climat tropical aux résultats obtenus en climat 
extratropical (Méditerranéen, océanique, continental, et aride); ceci nous a permis de montrer par 
comparaison avec le modèle de persistance que la prévision est climat extratropical est plus aisé. Les 
recherches futures consisteraient à valider cette méthode dans d’autre pays de la zone 
intertropicale. 
 
 Notre troisième contribution à la communauté scientifique a été de suggéré une méthode générique 
permettant de calibrer le modèle mésoéchelle WRF dans l’ITZ. La méthodologie développée pour 
calibrer WRF se base sur l’identification des sources d’erreurs des prévisions de GHI en zone 
intertropicale. L’objectif de cette étude a été de choisir restreindre et choisir le nombre minimum de 
simulations à effectuer afin que le modèle WRF produise des prévisions de GHI de meilleures qualités 
qu’un modèle numérique non calibré. En conséquence nous avons construit un ensemble de 
simulation comprenant 34 membres. Cet ensemble fut construit en faisant varier le schéma de 
microphysique, le schéma de surface et le schéma de couche limite. Ces éléments ont été variés car 
une étude de la littérature a montré qu’ils avaient le plus d’influence sur les propriétés physiques de 
la couche nuageuse simulée. Cette méthode a été validée avec des mesures au sol ainsi que des 
prévisions de rayonnement du modèle AROME. Cette méthode a montré l’intérêt du processus de 
calibration avant l’utilisation d’un modèle de prévisions météorologiques mésoéchelle. 
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Notre dernière contribution à la communauté scientifique a porté sur l’utilisation d’une méthode 
hybride ensembliste variationnelle afin d’améliorer les prévisions de GHI de WRF dans l’ITZ. Le choix 
de cette méthode a été basé sur la recherche d’une méthode : (1) ne nécessitant pas de base de 
données (2) applicable sur tout le domaine de simulation et (3) ne nécessitant pas que les réglages 
physiques du modèle soient inchangés. Notre étude de la littérature a montré que l’habilité des 
méthodes ensemblistes d’améliorer la caractérisation des phénomènes convectifs ; néanmoins, à 
notre connaissance ces méthodes n’ont pas été utilisées pour améliorer les prévisions de GHI. 
L’utilisation d’une méthode hybride (ETKF-3DVAR) a montré une amélioration des estimés de GHI en 
ciel couvert sans pour autant dégrader de manière significative les estimés de GHI en ciel clair. Nous 
avons montré que les estimés de GHI sont sensibles à l’équilibre entre la partie statique (3DVAR) et la 
partie dynamique (ETKF). Néanmoins cette méthode nécessite une puissance de calcul significative 
pour définir les matrices de « Background » ainsi que les ensembles. Les recherches futures 
consisteraient à (i) optimiser l’équilibre entre la partie statique et la partie dynamique et (ii) rendre 
opérationnelle cette méthode en réduisant le temps de calcul. Pour cela il peut être envisagé : (1) 
d’utiliser des ensembles fournis pas des centres de prévisions météorologiques et de quantifier 
l’utilisation de ceux-ci sur la prévision des estimés de GHI. (2) Utiliser les matrices de Background à 
l’échelle planétaire et les optimiser pour notre échelle régionale. 
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Appendix A 
 

 

We present in this section how the stochastic and variational DA algorithms that are commonly used 

in atmospheric science can be derived from one common source Eq.IV.9. Each DA methods has two 

step; when observations 𝑦(𝑡𝑛) are available, they are used in the update step to compute the 

analysis state vector 𝑥𝑎⃗⃗⃗⃗⃗ and its error covariance matrix 𝑃 then propagated into time during the 

prediction step. 

I. Variational method 
 

I.1 3D-Var 

 

In practice, the 3D-Var method attempts to find an approximate solution of the minimum of Eq.IV.9  

under the following hypothesis(Holm, 2008): 

-no model error 𝑄 = 0 

-all observations in the time window [𝑡0 − ℎ: 𝑡0 + ℎ] are treated as if they were at 𝑡0, the analysis 

time which is close to their average time. 

-linearity of M⃗⃗⃗⃗ and ℋ⃗⃗⃗ 

-unbiased errors < 𝜀𝑏⃗⃗ ⃗⃗ >=< 𝜀0⃗⃗ ⃗⃗ >=< 𝜀𝑚⃗⃗⃗⃗⃗⃗ >= 0 
-errors are uncorrelated < 𝜀𝑏⃗⃗ ⃗⃗  𝜀0⃗⃗ ⃗⃗ >=< 𝜀0⃗⃗ ⃗⃗  𝜀𝑚⃗⃗⃗⃗⃗⃗ >=< 𝜀𝑚⃗⃗⃗⃗⃗⃗  𝜀0⃗⃗ ⃗⃗ >= 0 

Under the above assumptions Eq.IV.9 yields (Rihan et al., 2005):  

J(x⃗⃗(0)) =
1

2
[ εb⃗⃗ ⃗⃗

T
 B−1εb⃗⃗ ⃗⃗ + ε0,n⃗⃗ ⃗⃗ ⃗⃗ ⃗

T
R−1ε0,n⃗⃗ ⃗⃗ ⃗⃗ ⃗] = Jb + J0. 

0.1 

 

B is stationary, it is computed beforehand using the one of the algorithm described Eq.IV.17 (Bouttier 
and Courtier, 1999). As one hypothesis of the 3D-VAR is linearity, the forward model M⃗⃗⃗⃗  should be 
linearized to evolve the uncertainty in the state from one observation time to the next.  
 
In operational NWP centers, to reduce computational costs, a sequence of linear approximations to 

the nonlinear minimization problem Eq.0.1 using successive small increments δx⃗⃗. Given an estimated 

analysis 𝑥⃗(𝑡0) ; the nonlinear cost function J is then linearized about the corresponding model 

trajectory 𝑥⃗(𝑡𝑖), 𝑖 = 1. . 𝑛 satisfying the nonlinear forecast model M⃗⃗⃗⃗. This incremental variational3D-

Var DA scheme is written as follows (Haben et al., 2009; Lawless et al., 2005): 

 

{
 
 

 
 J̃(δx⃗⃗(t0)) =

1

2
[δx⃗⃗(t0) − (x⃗⃗b(t0) − x⃗⃗(t0))]

T
B−1[δx⃗⃗(t0) − (x⃗⃗b(t0) − x⃗⃗(t0))] +

+
1

2
[H̃(t0)δx⃗⃗(t0) − d0

T]
T
R−1[H̃(t0)δx⃗⃗(t0) − d0

T] 𝑎𝑛𝑑

with d0 = y⃗⃗(t0) − H⃗⃗⃗(x⃗⃗(t0)).

 

0.2 
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Where 𝛿𝑥⃗(0) ∈ ℜ𝑛 is the analysis increment; 𝐻(𝑡0) ∈ ℜ
𝑛⟶𝑝 the linearization of the observation 

operator at the analysis time 𝑡0 and 𝑑0 the innovation for the analysis at𝑡0. Therefore the Linearize 
model 𝑀̃ prediction step follows Eq.0.3: 
 

δx⃗⃗⃗⃗⃗(t + 1) = M̃(t + 1, t)δxa⃗⃗ ⃗⃗ ⃗⃗ ⃗(t), 0.3 

 

Where 𝛿𝑥⃗⃗⃗⃗⃗ ∈ ℜ𝑛 is the forecast model increment and 𝑀̃ ∈ ℜ𝑛.𝑛 the linearized model between t+1 

and t.  

I.2 4D-Var 

 

4D-Var is an extension of the 3D-Var which allows for observations distributed within a time 

interval [𝑡1: 𝑡𝑁]. It attempts to find an approximate solution of the minimum of Eq.IV.9, under the 

following approximations (Holm, 2008): 

-no model error  

-linearity of M⃗⃗⃗⃗ and ℋ⃗⃗⃗ 

-unbiased errors 
-errors are uncorrelated 

Under the above assumptions Eq.IV.9 becomes:  

J =
1

2
[ εb⃗⃗ ⃗⃗

T
 B−1εb⃗⃗ ⃗⃗ +∑ ε0,n⃗⃗ ⃗⃗ ⃗⃗ ⃗

T
 R−1

N

n=1

ε0,n⃗⃗ ⃗⃗ ⃗⃗ ⃗] = Jb + J0. 
0.4 

 

4D-Var contrary to 3D-Var does not assimilate observation at a particular point within the 

assimilation window (Rihan et al., 2005), instead the assimilation window is divided in several sub 

interval (Laroche et al., 2007) to assimilate observation at their correct time. Therefore, 4D-Var has 

the ability to implicitly evolve the initial 𝐵 over the length of the assimilation window with the 

tangent linear dynamics: 

B(t) ≈ MB(t = t0)M
T, 0.5 

where 𝐵(𝑡 = 𝑡0) is the background at the beginning of the assimilation windows and M the 

linearized forecast model value between the beginning and the end of the assimilation window. 

However, B does not propagate error information from one assimilation cycle to the next; it revert to 

the stationary value at the beginning of each assimilation window (Miyoshi and Kadowaki, 2008; 

Raynaud et al., 2011; Schwartz et al., 2014; THEPAUT et al., 1996). Only the information about the 

state 𝑥⃗ is propagated from one cycle to the next following. Similarly to 3D-Var is exploited in 

operational NWP centers in the incremental form; it is expressed as follows (Haben et al., 2009; 

Lawless et al., 2005): 



 

136 
 

{
  
 

  
 J̃(δx⃗⃗(t0)) =

1

2
[δx⃗⃗(t0) − (x⃗⃗b(t0) − x⃗⃗(t0))]

T
B−1[δx⃗⃗(t0) − (x⃗⃗b(t0) − x⃗⃗(t0))] +

+
1

2
[H̃δx⃗⃗(t0) − d⃗⃗]

T
R−1[H̃δx⃗⃗(t0) − d⃗⃗] ,

with H̃ = [H̃(t0), H̃(t1)M̃(t1, t0)
T, … , H̃(tn)M̃(tn, t0)

T]T 𝑎𝑛𝑑

 d⃗⃗ = [d0
T, d1

T, … , dN
T].

 

0.6 

 

 

The information about the state 𝑥⃗ is propagated from one assimilation cycle similar to 3-DVar Eq. 0.3.  

II. Stochastic method 

 

II.1  Kalman filter 

 

In the Kalman filter (KF) DA, the analysis equation is solved directly by inversion. 

∇J(x⃗⃗ → xa⃗⃗ ⃗⃗ ) = 0, 0.7 

The KF DA assumes the following: 

-the analysis is performed at each time step of the model, it uses only the observations available 

during that time step. 

-linearity of M⃗⃗⃗⃗ and ℋ⃗⃗⃗ 

-unbiased errors 
-errors are uncorrelated 

Under the assumptions listed above (Holm, 2008), Eq.0.7 yields: 

xa⃗⃗ ⃗⃗ (t) =  xb⃗⃗⃗⃗⃗(t) + K(t) (y(t) − H(x⃗⃗b(t)))   with 0.8 

 

K(t) = BHT(HBHT + R)
−1
 and 0.9 

 

P(t) = (I − KH)B. 0.10 

Where K is the Kalman gain. Contrary to 3DVar and 4DVar B is propagated from one cycle to the next 

alongside the information about the state 𝑥⃗. Therefore, the prediction step follows the following 

equations: 

x⃗⃗(t + 1) = Mxa⃗⃗ ⃗⃗ (t) 𝑎𝑛𝑑 0.11 

 

𝐵(𝑡 + 1) = 𝑀𝑃(𝑡)𝑀𝑇 + 𝑄. 0.12 
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However, KF is very expensive to evaluate directly for atmospheric science due to size of K e.g 

𝑂(107) (Ghil and Malanotte-Rizzoli, 1991). Therefore, several approximations were made to achieve 

a computationally efficient DA algorithm. One simplification of KF is the ensemble Kalman filter 

(ENKF) is presented in the following section. 

II.2 stochastic and deterministic ensemble Kalman filter 

 

ENKF is an approximate version of the KF where the distribution of possible states is represented by 

an ensemble. This ensemble is propagated forward through time and updated when new data 

become available (Katzfuss et al., 2016). The ensemble representation is a form of dimension 

reduction, instead of specifying B, the EnKF uses an ensemble of possible forecasts that contains 

valuable flow-dependent information about the background-error statistics (Bannister, 2017). This 

dimension reduction leads to computational feasibility even for very high-dimensional systems. ENKF 

DA algorithms are either classified as stochastics (SENKF) or deterministic (DENKF). They differ on the 

methodology used to get the updated ensemble; they share the same prediction step but have 

different update state. SENKF directly use the Kalman gain together with random perturbations 

whereas DENKF uses a non-random transformation on the forecast ensemble (Lei et al., 2010). 

Stochastic ENKF methods were first introduced by (Evensen, 1994), since then many variations on the 
original algorithm have been developed (Evensen, 2003; Houtekamer and Zhang, 2016; Lei et al., 
2010). Nevertheless, the update step from the SENKF framework can be expressed generally as 
follows: 
 

xa
(i)⃗⃗ ⃗⃗ ⃗⃗⃗
= xb

(i)⃗⃗ ⃗⃗ ⃗⃗⃗
+ K(ỹ + H⃗⃗⃗ (xb

(i)⃗⃗ ⃗⃗ ⃗⃗⃗
))  𝑎𝑛𝑑 

0.13 

 

 

K = BHT(HBHT + Re)
−1
. 0.14 

 

Where  𝑥𝑎
(𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗

 and 𝑥𝑏
(𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗

 are the analysis and state vector of the ensemble member i. 𝑦̃ is the perturbed 

observations and 𝑅𝑒 the observation error covariance matrix consistent with𝑦̃. Eq.0.13-0.14 differ 

from Eq. 0.8-0.9 because of the addition of a perturbation to the observation. Burgers (1998) showed 

that the observations must be treated as random variables at the analysis steps in order for P, the 

variance of the ensemble to be consistent with Eq.0.10 after the update step. Burgers (1998) found 

that for the SENKF that P is expressed as follows: 

 

P(t) = (I − KH)B + 𝒪 (N−
1
2), 

0.15 

 

 

where N is the ensemble size and  𝒪(𝑁−1/2) a negligible term that decreases as the ensemble size 
increase. Therefore, 𝑦̃ and 𝑅𝑒 were defined as follows: 
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{
ỹ = y⃗⃗ + ε⃗  𝑎𝑛𝑑

Re =< ε⃗ε⃗
T >.

  
0.16 

 

 
Where 𝑦⃗ and 𝜀 are the observation as defined in the KF and 𝜀 the observation perturbation. 𝑅𝑒 

assumes that errors are unbiased. In SENKF K is not computed directly as in KF but using ensemble-

based approximations (Houtekamer and Zhang, 2016): 

{
 
 
 
 

 
 
 
 
BHT =

1

N − 1
 ∑(xb

(i)⃗⃗ ⃗⃗ ⃗⃗⃗
−< xb

(i)⃗⃗ ⃗⃗ ⃗⃗⃗
>) (Hxb

(i)⃗⃗ ⃗⃗ ⃗⃗⃗
−< 𝐻xb

(i)⃗⃗ ⃗⃗ ⃗⃗⃗
>)

T

 𝑎𝑛𝑑

N

i=1

 

HBHT =
1

N − 1
 ∑(Hxb

(i)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
−< 𝐻xb

(i)⃗⃗ ⃗⃗ ⃗⃗⃗
>) (Hxb

(i)⃗⃗ ⃗⃗ ⃗⃗⃗
−< 𝐻xb

(i)⃗⃗ ⃗⃗ ⃗⃗⃗
>)

T

 .

N

i=1

with < xb
(i)⃗⃗ ⃗⃗ ⃗⃗⃗
>=

1

N
∑xb

(i)⃗⃗ ⃗⃗ ⃗⃗⃗
N

i=1

.

 

0.17 

 

 

Similarly to KF, B is evolved explicitly propagated from one cycle to the next alongside the 

information about the state 𝑥⃗. First the state of the member number is evolved: 

x(i)⃗⃗⃗⃗⃗⃗⃗(t + 1) = M(xa
(i)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(t)) + εm⃗⃗ ⃗⃗ ⃗ .  

0.18 

 

Then when all members are evolved, the ensemble mean and its covariance are reconstructed as 

follows: 

{
 
 

 
 

< x 
(i)⃗⃗ ⃗⃗ ⃗⃗⃗ >=

1

N
∑x 

(i)⃗⃗ ⃗⃗ ⃗⃗⃗
N

i=1

 𝑎𝑛𝑑

B =
1

N − 1
 ∑(x 

(i)⃗⃗ ⃗⃗ ⃗⃗⃗−< x 
(i)⃗⃗ ⃗⃗ ⃗⃗⃗ >)(x 

(i)⃗⃗ ⃗⃗ ⃗⃗⃗−< x 
(i)⃗⃗ ⃗⃗ ⃗⃗⃗ >)T = XXT.

N

i=1

 

0.19 

 

 
Where 𝑋 is an array that contains the ensemble perturbations. In the SENKF if the ensemble number 

is not sufficient due to the computational resources, perturbing the observation with random 

perturbations will cause sampling errors, which makes the filter suboptimal (Sakov and Oke, 2008). 

Statistics will not be necessarily representative of the state with estimated variances that are 

systematically too small (Bannister, 2017). For this reason DENKF methods such as the ensemble 

square root filter (EnSRF), the ensemble adjustment Kalman filter (EAKF), and the ensemble 

transform Kalman filter (ETKF) were proposed (Houtekamer and Zhang, 2016). The idea of DENKF is 

to create an updated ensemble with covariance consistent with Eq.0.10 using a transformation 

matrix𝑇𝑀. Instead of updating each ensemble member separately as in Eq.0.13, the ESRF generates 

the new ensemble simultaneously as follows (Sakov and Oke, 2008; Zhang et al., 2009):  
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< xa
(i)⃗⃗ ⃗⃗ ⃗⃗⃗
>=< xb

(i)⃗⃗ ⃗⃗ ⃗⃗⃗
> +𝐾 (y+< H⃗⃗⃗ (xb

(i)⃗⃗ ⃗⃗ ⃗⃗⃗
) >), 

0.20 

 

 

K = BYb
T(YbYb

T + R)
−1
 𝑎𝑛𝑑 0.21 

 

𝑃 = 𝐵𝑇𝑀 . 0.22 

 

Where 𝑌𝑏 and T are the perturbation and transformation matrices. 𝑌𝑏 is expressed as follows: 

Yb =
1

√N − 1
(H⃗⃗⃗ (xb

(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
)−< H⃗⃗⃗ (xb

(i)⃗⃗ ⃗⃗ ⃗⃗⃗
) >,… , H⃗⃗⃗ (xb

(N)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
)−< H⃗⃗⃗ (xb

(i)⃗⃗ ⃗⃗ ⃗⃗⃗
) >). 

0.23 

 

 

𝑇𝑀 is not unique, its different values lead to the EnSRF, EAKF and ETKF. To the best of the author 

knowledge no previous studies using ENKF to improve the solar irradiance forecast was found in the 

literature similarly to 4D-var. 

III. Back and forth nudging 
 

A variational variant of nudging method named back and forth nudging method was developed 
recently by Auroux and Blum (2008), (2005). The back and forth nudging algorithm consists in first 
solving the forward nudging equation (Eq.IV.11) and then the backward nudging equation. The initial 
condition of the backward integration is the final state obtained after integration of the forward 
nudging equation. At the end of this process, one obtains an estimate of the initial state of the 
system. These forward and backward integrations are then cycled until convergence of the 
algorithm. Therefore, the DA problem from the back and forth nudging (BFN) framework is expressed 
as follows: 
 
 

{
𝑥⃗𝑘(𝑡 + 1) = 𝑀⃗⃗⃗(𝑥⃗𝑘(𝑡)) + 𝐺 𝜀0,𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑡),

𝑥⃗𝑘(𝑡0) = 𝑥⃗̃𝑘−1(𝑡0),
  and {

𝑥⃗̃𝑘(𝑡 + 1) = 𝑀⃗⃗⃗ (𝑥⃗̃𝑘(𝑡)) + 𝐺̃ 𝜀0,𝑘̃⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑡),

𝑥⃗̃𝑘(𝑡) = 𝑥⃗𝑘(𝑡).
 

 

0.24 

 

where k is the iteration step; 𝑥⃗̃𝑘  and 𝑥⃗𝑘 are the state vector in the backward and forward NDA 

respectively; 𝜀0,𝑘̃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and 𝜀0,𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗ and are he observation error in the backward and forward NDA 
respectively. Auroux and Blum (2008) tested his algorithm by comparison with the 4D-var using the 
Lorenz, Burgers and quasi-geostrophic model non-linear systems. Result found showed that BFN 
algorithm is better than the variational method for the same number of iterations (and hence for the 
same computing time). It converges in a small number of iterations. However, the BFN was not 
tested using more complex models such as primitive equations with various types of observations 
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