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Introduction

Pour un potentiel V de classe C ∞ sur R d , l'opérateur de Krames-Fokker-Planck est défini sur R 2d par

K V = p∂ q -∂ q V (q)∂ p + 1 2 (-∆ p + p 2 ) .
Dans cette thèse, nous nous intéressons à l'étude de certaines propriétés spectrales et des critères de compacité de la résolvante pour des opérateurs de Kramers-Fokker Planck en présence de potentiels dégénérés.

Par ailleurs, une étude approfondie a été faite par Helffer-Nier [HeNi] suivant l'approche des groupes de Lie nilpotents de Rothschild-Stein [RoSt] et Helffer-Nourrigat [HeNo], montre que si aucun polynôme non nul d'un certain ensemble canonique contenant V n'admet un minimum local alors ∆ (0)

V est à résolvante compacte (cf Partie 1.3). En particulier, cette étude met en évidence l'influence du signe de V sur la compacité de la résolvante de ∆ (0)

V . L'exemple le plus connu dans cet esprit est V (q 1 , q 2 ) = q 2 1 q 2 2 en dimension 2. En effet, pour cet exemple l'opérateur ∆ (0) -V est à résolvante compacte alors que ∆ (0) +V ne l'est pas.

La difficulté de l'étude pour l'opérateur de Kramers-Fokker-Planck K V vient du fait qu'il n'est ni autoadjoint, ni elliptique. De nombreux travaux ont été réalisés dans le cas polynomial où d • V ≤ 2 (voir [Hor] [HiPr] [Vio] [Vio1] [AlVi]). Néanmoins, dès qu'un potentiel général est considéré, différents types de conditions suffisantes sur V (q) ont été examinées par Hérau-Nier [HerNi], Helffer-Nier [HeNi], Villani [Vil] et Wei-Xi Li [Li]. Ces premiers résultats ne considèrent que des variantes de la situation elliptique à l'infini (pour un potentiel non dégénéré), qui ne distinguent pas le signe ±V (q). Une amélioration significative de ces travaux a récemment été apportée par Wei-Xi Li [Li2] basée sur certaines méthodes de multiplicateurs. Dans [Li2], Wei-Xi Li a montré que pour des potentiels similaires à V (q 1 , q 2 ) = q 2 1 q 2 2 , les résultats pour K ±V étaient les mêmes que pour ∆ (0) ±V (voir Partie 1.4).

Positionnement du problème

Dans cette voie, nous visons à développer avec cette thèse une étude systématique des opérateurs de Kramers-Fokker-Planck. Notre objectif est en particulier de donner des conditions suffisantes sur V pour que K V soit à résolvante compacte et que ces conditions soient bien satisfaites. Une telle analyse approfondie une grande ressemblance avec les critères de compacité déjà établis pour Laplacien de Witten ∆ (0)

V et conforte ainsi l'idée que la conjecture 1.1.1 soit vraie (c.f Parties 2, 3, 4).

Ce problème présente ainsi de nombreux aspects du point de vue de l'analyse mathématique : ellipticité dégénérée des équations aux dérivées partielles (hypoellipticité, sous-ellipticité) ; groupe et algèbre de Lie (condition de Hörmander pour l'hypoellipticité), algèbre de Lie nilpotente (approche de Rotschild-Stein [RoSt] et hypoellipticité maximale de Helffer-Nourrigat [HeNo][HeNi] [Nie]) ; extension au cadre de la géométrie riemannienne via les Laplaciens de Witten et le Laplacien hypoelliptique de Bismut ; analyse spectrale semiclassique puisque la limite de basse température (utilisée en chimie, physique ou autres sciences faisant appel au mouvement brownien) n'est rien d'autre qu'une limite semiclassique.

1.1.1.1 Lien avec l'approche probabiliste 1.1.1.1.1 Rappel sur les équations différentielles stochastiques (SDE)

Soient b : R n × R + -→ R n et B : R n × R + -→ M n (R)
deux fonctions où M n (R) désigne l'espace des matrices carrées de taille n à coefficients réels.

Considérons l'équation différentielle stochastique (SDE) dX = b(X, t) dt + B(X, t) dW ,

(1.1.1) où X(•) ∈ R n est un processus stochastique et dW (•) est un "bruit blanc" de dimension n avec covariance E(dW (s) dW (t)) = δ 0 (t -s) .

Rappelons que pour une fonction lisse (x, t) -→ u(x, t) la formule d'Itô s'écrit du(X, t) = ∂u ∂t dt

+ n i=1 ∂u ∂x i dX i + 1 2 n i,j=1
∂ 2 u ∂x i ∂x j dX i dX j (1.1.2) avec dt 2 = 0 , dW dt = 0 , dW k dW l = δ k,l dt .

Chapitre 1 : Introduction Lorsque X résout l'équation (1.1.1), en appliquant la formule d'Itô (1.1.2), on obtient du(X, t) = ∂u ∂t dt

+ n i=1 ∂u ∂x i [b i (X, t) dt + (B dw) i ] + 1 2 n i,j=1 ∂ 2 u ∂x i ∂xj (BB t ) ij dt = ∂u ∂t dt + n i=1 ∂u ∂x i [b i (X, t) dt + (B dw) i ] + 1 2 n i 1 ,j 1 ,i 2 ,j 2 =1 ∂ 2 u ∂x i 1 ∂xj 1 B i 1 ,i 2 B j 1 ,j 2 dW i 2 dW j 2 = [∂ t u + b.∂ x u + 1 2 ∂ x .(BB t )∂ x u]dt + ∂ x u.(B dW ) . (1.1.3)
En particulier, si v 0 est une observable indépendante de la variable du temps t, la formule (1.1.2) mène à la relation

v 0 (X(t)) = v 0 (X(0)) + t 0 b.∂ x v 0 + 1 2 ∂ x .(BB t )∂ x v 0 (X(s)) ds + t 0 ∂ x v 0 (X(s)).B dW .
(1.1.4)

Le lien entre les équations différentielles stochastiques et les semi-groupes de diffusion est obtenu après calcul de l'espérance conditionnelle, v(x 0 , t) = E(v 0 (X, t); X(0) = x 0 ) , pour une observable

v(x 0 , t) = v 0 (x 0 ) + t 0 b.∂ x v + 1 2 ∂ x .(BB t )∂ x v (x 0 , s)ds + 0 .
Notons que dans la dernière formule, on utilise le fait que si une fonction measurable G vérifie

E t 0 G(s) 2 ds < ∞ alors E t 0 G(s)dW (s) = 0 . Notons L = -b.∂ x - 1 2 ∂ x .(BB t )∂ x .
(1.1.5)

On obtient alors 1.1 Positionnement du problème v(x 0 , t) = v 0 (x 0 ) + t 0 (-Lv)(s)ds = e -tL v 0 , ou encore

∂ t v = -Lv = b.∂ x v + 1 2 ∂ x .(BB t )∂ x v v(t = 0) = v 0 .
(1.1.6)

Pour plus amples détails sur les équations différentielles stochastiques voir [Ris][Nel] [Eva].

1.1.1.1.2 Application aux processus de diffusion réversibles Prenons un potentiel V (q) de classe C ∞ (R d ) et considérons b(q) = -∂ q V (q) , B = √ 2 Id .

(1.1.7)

Dans ce cas le champ de transport est un gradient et le processus de diffusion est dit alors réversible.

Avec les données (1.1.7), la SDE (1.1.1) s'écrit

dq = -∂ q V (q) dt + √ 2 dW ,
et le générateur du semi-groupe correspondant (voir (1.1.7)) est donné par L = ∂ q V (q)∂ q -∆ q = (∂ q V (q) -∂ q )∂ q .

De plus la mesure de probabilité invariante vaut

µ V = e -V (q)
R n e -V (q) dq dq (à condition que e -V soit dans L 1 (R d , dq)).

Supposons alors que e -V ∈ L 1 (R d , dq) ou encore e -V 2 ∈ L 2 (R d , dq) et écrivons

e -V 2 Le V 2 = e -V 2 (∂ q V (q) -∂ q ) • (e V 2 (∂ q + ∂ q V (q) 2 )) = -(∂ q - 1 2 ∂ q V (q)) • (∂ q + 1 2 ∂ q V (q)) = -∆ q + 1 4 |∂ q V (q)| 2 - 1 2 ∆ q V (q) .
Définition 1.1.2. Étant donné un potentiel V ∈ C ∞ (R d ), le Laplacien de Witten associé à

V 2 est défini par

∆ (0) V /2 : C ∞ 0 (R d ) -→ L 2 (R d , dq) , ∆ (0) 
V /2 = -∆ q + 1 4

|∂ q V (q)| 2 - 1 2 ∆ q V (q) .
1.2 Propriétés spectrales et relations entre ∆ (0)

V et K V Définition 1.1.3. Étant donné un potentiel V ∈ C ∞ (R d ), l'opérateur de Kramers-Fokker-Planck est défini par

K V : C ∞ 0 (R 2d ) -→ L 2 (R 2d , dq dp) , K V = p∂ q -∂ q V (q)∂ p + (-∂ p + 1 2 p)(∂ p + 1 2 p) .
Remarques 1.1.4. La partie réelle de K ±V ,

1 2 (K +V + K -V ) = -∂ p + 1 2 p ∂ p + 1 2 p = -∆ p + 1 4 |p| 2 - d 2 ,
est le hamiltonien d'un oscillateur harmonique en p.

La partie imaginaire de K V , 1 2 (K +V -K -V ) = p∂ q -∂ q V (q)∂ p est le champ de vecteurs hamiltonien associé à l'énergie classique E(q, p) = p 2 2 + V (q) .

1.2 Propriétés spectrales et relations entre ∆ (0)

V et K V

Propriétés spectrales de Laplacien de Witten

Commençons tout d'abord par rappeler certaines définitions élémentaires .

Définition 1.2.1. On appelle "symbole principal" de l'opérateur différentiel

D = m |α|=0 a α (x)D α d'ordre m la fonction σ m (x, ξ) = |α|=m a α (x) ξ α (où les a α (x) ∈ C ∞ (R d ) et D = (D x 1 , ..., D xn ), D x j = -i∂ x j ) .
Définition 1.2.2. L'opérateur différentiel D est dit "elliptique" au point x ∈ Ω si et seulement si

∀ ξ ∈ R d \ {0} , σ m (x, ξ) = 0 .
L'opérateur D est dit "elliptique" dans Ω s'il est elliptique pour tout point x ∈ Ω.

Chapitre 1 : Introduction Remarque 1.2.3. Le Laplacien de Witten ∆ (0)

V = -∆ q + |∂ q V (q)| 2 -∆V (q) est un opérateur elliptique dans R d . Clairement, son symbole principal vérifie

∀ ξ ∈ R d \ {0} , σ 2 (q, ξ) = ξ 2 = 0 .
Il est important de noter que l'ellipticité de ∆ (0)

V en tant qu'opérateur différentiel donne de la régularité et des informations locales, mais ne dit rien sur des estimations globales tant qu'on n'a pas fait d'hypothèses sur le comportement de V (q) et de ses dérivées à l'infini.

1.2.1.1 Application du théorème de Simader Définition 1.2.4. Un opérateur symétrique (A,D(A)) est dit essentiellement autoadjoint si sa fermeture est autoadjointe.

On rappele ci-après quelques critères et propriétés de base des opérateurs autoadjoints respectivement essentiellement autoadjoints (on peut par exemple regarder [ReSi] pages 256-257).

Proposition 1.2.5. Soit T un opérateur symétrique défini sur un espace de Hilbert H. Les assertions suivantes sont équivalentes. (i) T est autoadjoint. (ii) Ker(T * ± i) = 0. (iii) Ran(T ± i)est dense dans H. Proposition 1.2.6. Soit T un opérateur symétrique défini sur un espace de Hilbert H. Les assertions suivantes sont équivalentes. (i) T est essentiellement autoadjoint. (ii) T est fermé et Ker(T * ± i) = 0. (iii) Ran(T ± i) est dense dans H.

Preuve. On applique la proposition 1.2.5 à A = A * et on utilise le fait que A est symétrique alors Ran(A ± i) = Ran(A ± i) Remarque 1.2.7. Si de plus T est positif, on a Ran(T ) ⊂ Ran(T ± i) soit u ∈ Ker(T ± i) alors il existe u ∈ D(T ) tel que T u = ±iu. Par suite T u, u = ±iu, u = ±i u 2 . Or T est positif donc u = 0 d'où u ∈ Ker(T ) .

Théorème 1.2.1 (Théorème de Simader). Un opérateur de Schrödinger positif

-∆ + W (x) avec W ∈ C ∞ (R d ) est essentiellement autoadjoint sur C ∞ 0 (R d ).
1.2 Propriétés spectrales et relations entre ∆ (0)

V et K V Nous renvoyons par exemple le lecteur à [Hel] (voir Théorème 6.6.2) pour une preuve du théorème 1.2.1.

Le Laplacien de Witten ∆ (0)

V , étant positif par construction, est essentiellement autoadjoint sur C ∞ 0 (R d ). Autrement dit, il admet une unique extension autoadjointe et sa fermeture autoadjointe a pour domaine

D(∆ (0) V ) = u ∈ L 2 (R d ) , ∆ (0) V u ∈ L 2 (R d ) .
Lemme 1.2.8. Le noyau de Laplacien de Witten ∆ (0)

V avec domaine

D(∆ (0) V ) = u ∈ L 2 (R d ) , ∆ (0) V u ∈ L 2 (R d ) , est donné par Ker(∆ (0) V ) = u ∈ D(∆ (0) V ) : d(e V u) = 0 dans D (R d ; R d ) = Ce -V si e -V ∈ L 2 (R d ) 0 sinon. . Démonstration. Pour tout u ∈ D(∆ (0) V ) , u, ∆ (0) 
V u = d V u 2 L 2 (R d ) où d V = ∂ q + ∂ q V (q) . D'autre part, pour tout u ∈ L 2 (R d ) d(e V u) = d i=1 ∂ q i (e V u) dq i = d i=1 e V (∂ q i + ∂ q i V (q))u dq i = e V (∂ q + ∂ q V (q))u dq = e V (d V u) dq .
Il en résulte alors l'équivalence

d(e V u) = 0 dans D (R d ; R d ) ⇔ d V u = 0 dans D (R d ; R d ) .
Si u est dans Ker(∆

(0) V ) alors u est dans le domaine D(∆ (0) V ) tel que ∆ (0) V u = 0. Ainsi on obtient 0 = u, ∆ (0) V u 2 L 2 = d V u 2 L 2 ,
ce qui donne d V u = 0. Réciproquement, si d V u = 0 au sens des distributions pour un certain u dans le domaine de ∆ 2) Si A est accrétif maximal, alors (0, +∞) ∈ ρ(-A) et pour tout λ > 0 , λ(λI + A) -1 est un opérateur de contraction sur H .

(0) V , alors comme ∆ (0) V = d * V d V dans D (R d ; R d ), on a directement d V u = 0.
3) On suppose que A est accrétif alors on a l'équivalence suivante :

Ā est accrétif maximal ⇔ il existe λ > 0 tel que Ran(λI + A) est dense dans H.

Pour les preuves des lemmes 1.2.10 et 1.2.11 et pour plus de résultats sur la notion d'accrétivité maximale on peut regarder les livres de Dautray-Lions [DaLi] (Volume 5, Chapitre XVII) et [Dav].

Théorème 1.2.2. Soit V (q) ∈ C ∞ (R d ), l'opérateur de Kramers-Fokker-Planck défini sur C ∞ 0 (R 2d ) par K V := -∆ p + 1 4 |p| 2 - d 2 + X 0 , où X 0 = p∂ q -∇V (q)∂ p est essentiellement accrétif maximal.
1.2 Propriétés spectrales et relations entre

∆ (0) V et K V
Pour prouver ce dernier résultat on montre que le rang de K V + ( d 2 + 1)I est dense dans L 2 (R 2d ) et on utilise ainsi le lemme 1.2.11 pour conclure. La démonstration du théorème 1.2.2 est faite en détail dans [HeNi] (voir Proposition 5.5).

Remarque 1.2.12. Comme K V défini au départ avec domaine C ∞ 0 (R 2d ) est essentiellement accrétif maximal, le domaine de sa fermeture est donné par

D(K V ) = u ∈ L 2 (R 2d ) , K V u ∈ L 2 (R 2d ) .

De Kramers-Fokker-Planck au Laplacien de Witten

Dans [HeNi] (cf. Proposition 5.19), Helffer-Nier ont établi les relations suivantes entre l'opérateur de Kramers-Fokker-Planck K V et le Laplacien de Witten ∆

(0) V . Proposition 1.2.13. Soit V ∈ C ∞ (R d ). i) Si l'opérateur K V est à résolvante compacte alors ∆ (0)
V est aussi à résolvante compacte. ii) Si 0 est dans le spectre essentiel de ∆ (0)

V alors 0 est de même dans le spectre essentiel de K ±V .

Démonstration. Supposons que (1 + ∆

(0) V ) -1 n'est pas compact. Alors il existe une suite orthonormée (u k ) k∈N dans le domaine de ∆ (0) V tel que u k , ∆ (0) V u k = d V u k 2 L 2 (R d ) est bornée (où d V = ∂ q + ∂ q V (q)).
Considérons, la suite définie par

U k (q, p) = u k (q)(2π) -d/4 e -p 2 /4 . Cette suite est orthonormée dans L 2 (R 2d ) et satisfait pour tout k ∈ N, K V U k = (2π) -d/4 (d V u k (q))pe -p 2 /4 dans D (R 2d ) . D'oú U k ∈ D(K V ) = u ∈ L 2 (R 2d ) , K V u ∈ L 2 (R 2d ) (voir Remarque 1.2.12). De plus il existe une constante c > 0 telle que pour tout k ∈ N, K V U k L 2 (R 2d ) ≤ c d V u k L 2 (R d ) .
Ainsi la suite (U k ) k∈N est une suite orthonormée tel que K V U k L 2 est uniformément bornée. Si K V avait une résolvante compacte, nous pourrions extraire une sous suite de Cauchy U k . Cela implique immédiatement que u k devrait être une suite de Cauchy dans L 2 (R d ). Mais ceci est en contradiction avec le fait que u k est une suite orthonormée. 

(u k ) k∈N dans L 2 (R d ), avec u k ∈ D(∆ (0) V ) tel que lim k→∞ ∆ (0) V u k L 2 (R d ) = 0. En conséquence, la suite U k (q, p) = u k (q)(2π) -d/4 e -p 2 /4 est une suite orthonormée dans L 2 (R 2d ), qui vérifie U k ∈ D(K V ) et K V U k L 2 (R 2d ) ≤ c d V u k L 2 (R d ) → k→+∞ 0 .
1.3 Critères de compacité de Laplacien de Witten (Résultats connus)

Lemme 1.3.1. (Formule de Localisation IMS) Soit j∈N ψ j (q) 2 ≡ 1 une partition de l'unité sur R d . On a

-∆ q = j∈N ψ j (-∆ q )ψ j -|∂ q ψ j | 2 (q) . Démonstration. Pour tout u ∈ C ∞ 0 (R d ), -∆ q (ψ 2 j u) = -ψ j ∆ q (ψ j )u -ψ j u∆ q ψ j -2∇ψ j ∇(ψ j u) = -ψ j ∆ q (ψ j )u - 1 2 u(∆ q ψ 2 j -2|∇ψ j | 2 ) -2|∇ψ j | 2 u -2ψ j ∇ψ j ∇u = -ψ j ∆ q (ψ j )u - 1 2 u∆ q ψ 2 j -|∇ψ j | 2 u -∇ψ 2 j ∇u . Or j∈N ψ j (q) 2 ≡ 1 , donc j∈N (-∆ q )(ψ 2 j u) = j∈N -ψ j ∆ q (ψ j )u -|∇ψ j | 2 u .
1.3 Critères de compacité de Laplacien de Witten (Résultats connus)

Proposition 1.3.2. On considère le Laplacien de Witten ∆ (0)

V avec domaine

D(∆ (0) V ) = u ∈ L 2 (R d ) , ∆ (0) V u ∈ L 2 (R d ) .
S'il existe une application continue R : R d -→ R telle que pour tout u dans D(∆

(0) V ) R(q)u 2 L 2 (R d ) ≤ u, ∆ (0) V u L 2 (R d ) + u 2 L 2 (R d ) , (1.3.1) avec lim |q|-→+∞ R(q) = +∞, alors ∆ (0) 
V est à résolvante compacte.

Démonstration. Supposons par contradiction que (1 + ∆

(0) V ) -1 n'est pas compact. Il existe alors une suite u n ∈ D(∆ (0) V ) tel que      u n L 2 (R d ) = 1 u n 0 (∆ (0) V + 1)u n L 2 (R d ) ≤ c pour n assez grand.
Il s'ensuit que pour tout entier naturel n assez grand,

u n , ∆ (0) V u n ≤ u n , (∆ (0) V + 1)u n ≤ u n L 2 (R d ) (∆ (0) V + 1)u n L 2 (R d ) ≤ c . (1.3.2)
Considérons maintenant une partition de l'unité C ∞ , ψ 1 (q) 2 + ψ 2 (q) 2 = 1 , telle que ψ 1 soit à support compact (qui sera fixé à la fin). En particulier ∇ψ 1 et ∇ψ 2 sont C ∞ à support compact. En utilisant la formule de localisation IMS (voir Lemme 1.3.1) on obtient

u n , ∆ (0) 
V u n = ψ 1 u n , ∆ (0) 
V ψ 1 u n + ψ 2 u n , ∆ (0) V ψ 2 u n - 2 j=1 u n , |∇ψ j | 2 u n . (1.3.3) Comme pour j ∈ {1, 2}, les fonctions ∇ψ j sont C ∞ à support compact, il existe une constante c > 0 tel que 2 j=1 u n , |∇ψ j | 2 u n ≤ c u n 2 L 2 (R d ) = c . (1.3.4) Compte-tenu de (1.3.2), (1.3.3) et (1.3.4) on obtient c ≥ u n , ∆ (0) V u n ≥ ψ 1 u n , ∆ (0) V ψ 1 u n + ψ 2 u n , ∆ (0) 
V ψ 2 u n -c .

On en déduit alors qu'il existe une constante C > 0 tel que

C ≥ ψ 1 u n , ∆ (0) V ψ 1 u n + ψ 2 u n , ∆ (0) V ψ 2 u n + u n 2 L 2 (R d ) .
(1.3.5)

Chapitre 1 : Introduction D'autre part en utilisant l'hypothèse (1.3.1),

ψ 2 u n , ∆ (0) V ψ 2 u n + ψ 2 u n 2 L 2 (R d ) ≥ R(q)ψ 2 u n 2 L 2 (R d ) . (1.3.6) Ainsi (1.3.5) et (1.3.6) donnent C ≥ ψ 1 u n , ∆ (0) V ψ 1 u n + R(q)ψ 2 u n 2 L 2 (R d ) + ψ 1 u n 2 L 2 (R d ) .
Soit > 0, en choisissant ψ 1 et ψ 2 tel que R(q) ≥ 2C dans le support de ψ 2 , on obtient ainsi

C ≥ ψ 1 u n , ∆ (0) V ψ 1 u n + 2C ψ 2 u n 2 L 2 (R d ) + ψ 1 u n 2 L 2 (R d ) .
Par suite

ψ 2 u n 2 L 2 (R d ) ≤ 2 ψ 1 u n ∈ H 1 (R d ) car ψ 1 u n , ∆ (0) V ψ 1 u n = (∂ q + ∂ q V )(ψ 1 u n ) 2 L 2 (R d ) ≤ C . Comme ψ 1 u n ∈ H 1 (R d ) et ψ 1 est à support compact, on peut extraire de ψ 1 u n une sous suite u n k vérifiant ψ 1 u n k L 2 -→ n-→+∞ v. Or par hypothèse u n 0 donc v = 0. Ainsi pour tout > 0 , u n k 2 L 2 (R d ) = ψ 1 u n k 2 L 2 (R d ) + ψ 2 u n k 2 L 2 (R d ) ≤ 2 + 2 = , ce qui est absurde car u n L 2 (R d ) = 1. D'après la proposition 1.3.2, si |∇V (q)| 2 -∆V (q) -→ +∞ quand |q| -→ +∞ , alors ∆ (0) 
V est à résolvante compacte. Une combinaison avec un argument de crochet (voir [BoDaHe][Hel][HeNi]), montre que c'est encore vrai sous la condition plus faible qu'il existe existe

t ∈ [1, 2[ tel que t|∇V (q)| 2 -∆V (q) -→ +∞ quand |q| -→ +∞ .
Un autre résultat connu (voir Corollaire 5.10 dans [HeNi]) dit que si le potentiel

V ∈ C ∞ (R d ) satisfait l'hypothèse 1 suivante alors ∆ (0) V est à résolvante compacte. Hypothèse 1. Pour tout |α| ≥ 1, il existe une constante C α ≥ 1 tel que |∂ α q V (q)| ≤ C α ∂ q V (q) . Il existe des constantes C ≥ 1, M ≥ 1 tels que C -1 q 1 M ≤ ∂ q V (q) ≤ C q M .
Remarque 1.3.3. L'hypothèse 1 implique que la hessienne Hess V (q) est contrôlée par le gradient ∂ q V (q) à l'infini.

1.3 Critères de compacité de Laplacien de Witten (Résultats connus)

Premiers exemples et observations

Lemme 1.3.4. Étant donnés deux potentiels V 1 , V 2 ∈ C ∞ (R d ), on a l'inégalité suivante (dans le sens des formes quadratiques sur C ∞ 0 (R d )) ∆ (0) V 1 +V 2 ≥ 2∂ q V 1 (q) • ∂ q V 2 (q) + |∂ q V 2 (q)| 2 -∆V 2 (q) . Démonstration. Soit u ∈ C ∞ 0 (R d ) , ∆ (0) V 1 +V 2 u, u = (-∆ q + |∂ q (V 1 + V 2 )| 2 -∆(V 1 + V 2 ))u, u = (-∆ q + |∂ q V 1 | 2 -∆V 1 )u + (|∂ q V 2 | 2 + 2∂ q V 1 (q)∂ q V 2 (q) -∆V 2 )u, u = ∆ (0) V 1 u, u + (|∂ q V 2 | 2 + 2∂ q V 1 ∂ q V 2 -∆V 2 )u, u ≥ (|∂ q V 2 | 2 + 2∂ q V 1 ∂ q V 2 -∆V 2 )u, u . Exemple 1 : Dans L 2 (R 2 ), on considère V = V 1 + V 2 où V 1 (q 1 , q 2 ) = q 2 1 q 2 2 , V 2 (q 1 , q 2 ) = (q 2 1 + q 2 2 ) 1+δ 2 pour |q| ≥ 1 , 0 < δ < 1 .
En passant aux coordonnées polaires,

(q 1 , q 2 ) = (rcos θ, rsin θ) , r ∈ R * + , θ ∈ [-π, π) , on obtient V 1 = r 4 ϕ(θ) , ϕ(θ) = sin 2 (2θ) 4 , V 2 = r 1+δ avec r ≥ 1 .
Par suite

∆V 2 = (1 + δ)δr δ-2 ≤ (1 + δ)δ := c . Ainsi, d'après le lemme 1.3.4 ∆ (0) V ≥ 8(1 + δ)r 3+δ ϕ(θ) + (1 + δ) 2 r 2δ -c ≥ (1 + δ) 2 r 2δ -c . Comme lim r-→+∞ (1 + δ) 2 r 2δ -c = +∞, on conclut d'après la proposition 1.3.2 que ∆ (0) V est à résolvante compacte.
Remarquons que dans la direction θ = 0 , la hessienne de V croît comme r 2 alors que le gradient de V est borné par r δ ≤ r. Donc c'est un exemple d'un potentiel pour lequel ∆ (0) V est à résolvante compacte alors que l'hypothèse 1 n'est pas satisfaite.

Exemple 2 :

On considére V = -V 1 = -q 2 1 q 2 2 ∆ (0) -V 1 = -∆ q + |∂ q V 1 (q)| 2 -∆V 1 (q) ≥ -∆V 1 (q) = 2(q 2 2 + q 2 1 ) → +∞ |q|→+∞ . D'oú ∆ (0)
V est à résolvante compacte. Exemple 3 : Dans le cas du potentiel V = +V 1 = q 2 1 q 2 2 , on montre que 0 ∈ σ ess (∆

(0) V ), ce qui implique que la résolvante de ∆ (0) V n'est pas compacte. En effet, pour χ ∈ C ∞ 0 (R d ) on a χe -V , ∆ (0) 
V (χe -V ) = χe -V , -(∂ q -∂ q V )(∂ q + ∂ q V )χe -V = (∂ q + ∂ q V )(χe -V ) 2 L 2 (R d ) = (∂ q χ)e -V 2 L 2 (R d )
.

On prend χ n (q) = ψ(2 -n r)ψ 0 (θ), n ∈ N, où ψ 0 est à support compact autour de θ = 0 avec ψ 0 ≡ 1 dans un petit voisinage et supp ψ ⊂ ( 3 4 , 3 2 ) avec ψ ≡ 1 autour de 1. On pose u n = χ n e -V . Cette suite est orthogonale et vérifie

u n , ∆ (0) V u n u n 2 L 2 (R d ) = (∂ x χ n )e -V 2 L 2 (R d ) χ n e -V 2 L 2 (R d ) = 3 2 3 4 π -π |ψ | 2 |ψ 0 | 2 + r -2 |ψ| 2 |ψ 0 | 2 e -2 8n ϕ(θ) r drdθ 3 2 3 4 π -π |ψ| 2 |ψ 0 | 2 e -2 8n ϕ(θ) 2 2n r drdθ -→ 0 n-→+∞ .
En vue des exemples 2 et 3, on conclut que la compacité de la résolvante de ∆ (0) τ 0 V dépend du signe de τ 0 (où τ 0 est un paramètre de friction).

Résultat de Helffer-Nier

Dans cette partie, nous rappelons les critères d'hypoellipticité maximale développés par Helffer et Nourrigat [HeNo] et son application pour Laplacien de Witten (voir [HeNi][Nie] [Nou]).

Notion de micro-hypoellipticité maximale

Dans R d+1 q,t , on considère l'algèbre de Lie engendrée par les champs de vecteurs

X j = ∂ q j , Y j = ∂ q j V (q)∂ t , j = 1, • • • , d . (1.3.7)
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Pour tout τ 0 ∈ R * , on considère la représentation unitaire Π V,τ 0 de l'algèbre de Lie dans

L 2 (R d+1 ) donnée par Π V,τ 0 (X j ) = ∂ q j , Π V,τ 0 (Y j ) = ∂ q j V (q)iτ 0 . Notons L j = X j -iY j = ∂ q j -i∂ q j V (q)∂ t , j = 1, • • • , d . (1.3.8)
Ainsi on peut réécrire le Laplacien de Witten sous la forme ∆ (0)

τ 0 V = d j=1 Π V,τ 0 (L j ) * Π V,τ 0 (L j ) = d j=1 Π V,τ 0 (-X 2 j -Y 2 j + i[X j , Y j ]) = Π V,τ 0 (L * L) . Définition 1.3.5. Le système L 1 , • • • , L d défini sur R d+1 q,t dans (3.
2) est dit micro-hypoelliptique maximal autour de q 0 dans la direction τ > 0, s'il existe un voisinage de q 0 ω q 0 et une constante c > 0 tels que l'estimation

d j=1 Π V,τ 0 (X j )u 2 L 2 (R d ) + Π V,τ 0 (Y j )u 2 L 2 (R d ) ≤ c d j=1 Π V,τ 0 (L j )u 2 L 2 (R d ) + u 2 L 2 (R d )
est vraie pour tout τ 0 > 0 et pour tout u ∈ C ∞ 0 (ω q 0 ). Notation 1.3.6. Pour r ∈ N on note E r l'ensemble des polynômes de degré inférieur ou égal à r :

E r = {P ∈ R[q 1 , q 2 , • • • , q d ] , deg P ≤ r} . Définition 1.3.7. Pour un polynôme P ∈ E r , on définit la fonction R ≥1 P : R d → R par R ≥1 P (q) = 1≤|α|≤r |∂ α q P (q)| 1 |α| .
(1.3.9)

Remarque 1.3.8. La notion de micro-hypoellipticité maximale, nous conduit à considérer les inégalités globales

d j=1 Π V,τ 0 (X j )u 2 L 2 (R d ) + Π V,τ 0 (Y j )u 2 L 2 (R d ) ≤ C δ d j=1 Π V,τ 0 (L j )u 2 L 2 (R d ) + δR ≥1 V (0) 2 u 2 L 2 (R d )
(1.3.10)

pour τ 0 > 0 et δ ∈ {0, 1}.
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Par un changement de variable u( q-q 0 λ ), on voit que l'estimation maximale (1.3.10) pour un potentiel V ∈ E r implique la même estimation pour un potentiel q → V (q 0 + λq). De plus, si on note

C δ (V, τ 0 ) = sup u∈C ∞ 0 (R d ) u =1 d j=1 Π V,τ 0 (X j )u 2 L 2 (R d ) + Π V,τ 0 (Y j )u 2 L 2 (R d ) d j=1 Π V,τ 0 (L j )u 2 L 2 (R d ) + δR ≥1 V (0) 2 u 2 L 2 (R d )
, l'ensemble des potentiels V pour lesquels C δ (V, τ 0 ) ≤ C δ est fermé. Cette remarque a conduit à introduire la notion d'un "ensemble canonique".

Définition 1.3.10. Un sous ensemble L de E r est un "ensemble canonique" s'il est invariant par des opérations de changement d'origine et d'échelle c'est à dire s'il vérifie les trois propriétés suivantes :

1) Si P ∈ L et y ∈ R d , alors le polynôme définie par Q(q) = P (q + y) -P (y) , ∀q ∈ R d , est aussi dans L.

2) Si P ∈ L et λ > 0 alors Q(q) = P (λq) ∈ L.

3) L est un sous ensemble fermé de E r .

Notation 1.3.11. Soit V un potentiel dans E r , on note L V le plus petit ensemble canonique qui contient V .

Estimation maximale et compacité de ∆

(0) V Proposition 1.3.12. Si l'estimation maximale (1.3.10) est vérifiée pour un certain τ 0 fixé alors il existe une constante c > 0 tel que

∀u ∈ C ∞ 0 (R d ) , R ≥1 V u 2 L 2 (R d ) ≤ c u, ∆ (0) 
V u + u 2 L 2 (R d )
où la fonction R

≥1

V est définie dans (1.3.9).

Si de plus lim |q|→+∞ R ≥1 V (q) = +∞ alors le Laplacien de Witten est à résolvante compacte.
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Théorème 1.3.1 (Théorème de Helffer-Nier). Pour un potentiel V ∈ E r , si on suppose que : 

1. lim |q|→+∞ R ≥1 V (q) =
V a une résolvante compacte. De plus on a l'estimation avec reste (1.3.10) avec δ = 1) .

La preuve du théorème 1.3.1 est basée sur une double récurrence assez fine sur la dimension et sur le degré du potentiel V (cf. [Nie]).

Pour appliquer le théorème 1.3.1, nous devons déterminer l'ensemble L V ∩ E r-1 . Par conséquent, il faut déterminer les polynômes P d'ordre r -1 apparaissant comme limites :

P = lim n-→∞ V (q n + λ n •) -V (q n ) ,
pour une suite (λ n , q n ) avec λ n -→ 0. Les coefficients de ces polynômes doivent satisfaire lim n-→+∞

λ |α| n (∂ α q V )(q n ) = (∂ α q P )(0) .
En particulier, pour un polynôme V homogène de degré r, ces polynômes sont donnés par

P = lim n-→+∞ (λ r n V (• + q n ) -λ r n V (q n )) ,
pour une suite (λ n , q n ) avec λ n -→ 0. De plus les coefficients de ces polynômes doivent satisfaire

lim n-→+∞ λ r n (∂ α q V )(q n ) = (∂ α q P )(0) .
Notons que dans ce cas on a pour tout n ∈ N,

V (q n + λ n q) -V (q n ) = V (λ n ( q n λ n + q)) -V (λ n ( q n λ n )) = λ r n V (• + q n λ n ) -λ r n V ( q n λ n ) = λ r n V (• + q n ) -λ r n V (q n ) .
Pour des exemples d'application voir pages 109 --112 dans [HeNi].
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1.4

Conditions suffisantes pour la compacité de (1 + K V ) -1 (Résultats connus)

Proposition 1.4.1. On considère l'opérateur de Kramers-Fokker-Planck

K V = p∂ q -∂ q V (q)∂ p + -∆ p + 1 4 |p| 2 - d 2 .
S'il existe une application continue R : R d -→ R tel que

R(q)u 2 L 2 (R 2d ) ≤ K V u 2 L 2 (R 2d ) + u 2 L 2 (R 2d ) , ∀u ∈ D(K V ) avec lim |q|-→+∞ R(q) = +∞, alors K V est à résolvante compacte.
Démonstration. On suppose que (K V + 1) -1 n'est pas compact. Il existe alors une suite

u n ∈ D(K V ) tel que      u n L 2 (R 2d ) = 1 u n 0 (K V + 1)u n L 2 (R 2d ) ≤ c pour n assez grand. Pour tout u ∈ D(K V ), on a Re u, (K V + d 2 )u = 1 2 u, -∆ p u + u, p 2 2 u , Re u, (K V + d 2 )u ≤ u L 2 (R 2d ) K V u L 2 (R 2d ) + d 2 u 2 L 2 (R 2d ) ≤ 1 2 K V u 2 L 2 (R 2d ) + ( 1 2 + d 2 ) u 2 L 2 (R 2d ) .
Alors la suite u n vérifie

u n , -∆ p u n + u n , p 2 2 u n ≤ 2d K V u n 2 L 2 (R 2d ) + u n 2 L 2 (R 2d ) ≤ 2d (K V + 1)u n 2 L 2 (R 2d ) + u n 2 L 2 (R 2d ) ≤ 2d(c 2 + 1) ,
où la deuxième inégalité est bien vérifiée car K V est accrétif. On en déduit alors que

∂ p u n , pu n ∈ L 2 (R 2d ).
D'autre part, en utilisant le fait que pour toute fonction ψ ∈ C ∞ (R d ) on a

K V ψ(q) -ψK V = p∂ q ψ(q)
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et en considérant une partition de l'unité C ∞ , ψ 1 (q) 2 + ψ 2 (q) 2 = 1, avec ψ 1 à support compact (précisé plus loin), on obtient pour tout u ∈ D(K V ),

K V u 2 L 2 (R 2d ) = u, K * V K V u = u, K * V (ψ 1 (q) 2 + ψ 2 (q) 2 )K V u = 2 j=1 K V (ψ j u) 2 L 2 (R 2d ) -u, (p∂ q ψ j ) 2 u .
Or il existe une constante C > 0 tel que pour tout u ∈ D(K V ),

u, (p∂ q ψ j ) 2 u ≤ C pu 2 L 2 (R 2d ) ≤ C K V u 2 L 2 (R 2d ) + u 2 L 2 (R 2d ) .
Ainsi il existe une constante C > 0 tel que

C K V u 2 L 2 (R 2d ) + u 2 L 2 (R 2d ) ≥ 2 j=1 K V (ψ j u) 2 L 2 (R 2d ) + ψ 1 u 2 L 2 (R 2d ) + ψ 2 u 2 L 2 (R 2d ) .
On utilise maintenant l'hypothèse

K V (ψ 2 u) 2 L 2 (R 2d ) + ψ 2 u 2 L 2 (R 2d ) ≥ R(q)ψ 2 u 2 L 2 (R 2d ) ,
avec l'estimation précédente et on en déduit que

C K V u n 2 L 2 (R 2d ) + u n 2 L 2 (R 2d ) ≥ K V (ψ 1 u n ) 2 L 2 (R 2d ) + ψ 1 u n 2 L 2 (R 2d ) + R(q)ψ 2 u n 2 L 2 (R 2d ) .
(1.4.1)

Or par hypothèse, il existe une constante c 0 > 0 tel que

K V u n 2 L 2 (R 2d ) + u n 2 L 2 (R 2d ) ≤ c 0 . (1.4.2) En combinant (1.4.1) et (1.4.2), Cc 0 ≥ K V (ψ 1 u n ) 2 L 2 (R 2d ) + ψ 1 u n 2 L 2 (R 2d ) + R(q)ψ 2 u n 2 L 2 (R 2d ) . (1.4.3) La norme K V ψ 1 u n L 2 (R 2d ) est bornée (d'après l'inégalité (1.4.3)).
Or K V est localement un opérateur hypoelliptique de type 2 suivant la terminologie de Hörmander, suivant le modèle p∂ q -∆ p + p 2 avec [∂ p , p∂ q ] = ∂ q d'homogénéité 3, tandis que supp(ψ 1 u n ) est compact en q.

On en déduit que ψ 1 u n est borné dans H 2/3 (R d q ). Soit > 0, on choisit ψ 1 et ψ 2 tel que R(q) ≥ 2c 0 C dans le support de ψ 2 . Ce choix implique l'inégalité suivante

Cc 0 ≥ K V (ψ 1 u n ) 2 L 2 (R 2d ) + ψ 1 u n 2 L 2 (R 2d ) + 2Cc 0 ψ 2 u n 2 L 2 (R 2d ) . Chapitre 1 : Introduction Ainsi ψ 2 u n L 2 (R 2d ) ≤ . Comme ψ 1 u n ∈ H 2/3 (R d q ) et ∂ p u n , pu n sont bornés dans L 2 , on peut extraire de ψ 1 u n une sous suite qui vérifie ψ 1 u n k L 2 -→ n-→+∞
v, or on a par hypothèse u n 0 donc v = 0.

On obtient par suite

u n k 2 L 2 (R 2d ) = ψ 1 u n k 2 L 2 (R 2d ) + ψ 2 u n k 2 L 2 (R 2d ) ≤ 2 + 2 = , ce qui est absurde car u n L 2 (R 2d ) = 1.

Premiers Résultats

L'analyse de la compacité de la résolvante se fait à l'aide d'estimations sous-elliptiques. On peut envisager au moins deux types de méthodes : 1) à la Kohn telle quelle a été adaptée par Hérau-Nier [HerNi], Helffer-Nier [HeNi], Wei-Xi Li [Li][Li2] ou encore dans les méthodes dite hypocoercives de Villani [Vil], 2) à la Helffer-Nourrigat, comme par exemple pour traiter le Laplacien de Witten, qui met en jeu une structure de groupe de Lie nilpotent (voir [HeNo][RoSt]). La première ne donne pas les exposants optimaux contrairement à la deuxième, qui fournit de ce fait des pistes pour chercher des contre exemples. Sur des problèmes liés, on notera également le travail de Helffer-Mohamed [HeMo].

La méthode de Kohn a été ensuite utilisée par Hérau-Nier [HerNi] pour étudier le cas des potentiels V (q) qui se comportent comme des fonctions homogènes à l'infini. Plus précisément, si V (q) est une fonction C ∞ qui vérifie

Hypothèse 2. Il existe n ≥ 1 et pour tout α ∈ N d il existe C α > 0 tel que ∀q ∈ R d , |∂ α q V (q)| ≤ C α 1 + q 2n-min{|α|,2} . Il existe deux constantes C 0 = C 0 (V ) > 0 et C 1 = C 1 (V ) > 0 tel que ∀q ∈ R d , ±V (q) ≥ C -1 0 q 2n -C 0 et |∂ q V (q)| ≥ C -1 1 q 2n-1 -C 1 ,
alors Hérau-Nier [HerNi] ont établi à l'aide d'un calcul pseudo-différentiel l'estimation hypoelliptique isotrope suivante,

Λ u 2 L 2 (R 2d ) ≤ C V K V u 2 L 2 (R 2d ) + u 2 L 2 (R 2d ) , où = min( 1 4 , 1 4n -2 ) , Λ = 1 -∆ q -∆ p + |∂ q V (q)| 2 -∆V (q) + 1 2 |p| 2 1 2 .
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En développant les résultats et la démarche de Hérau-Nier, Helffer-Nier [HeNi] ont obtenu l'estimation 1.4.4) pour des potentiels V ∈ C ∞ plus générals vérifiant l'hypothèse suivante.

Λ 1 4 u 2 L 2 (R 2d ) ≤ C V K V u 2 L 2 (R 2d ) + u 2 L 2 (R 2d ) , ( 
Hypothèse 3.

∃C, M ≥ 1, ∀q ∈ R d , C -1 q 1 M ≤ ∂ q V (q) ≤ C q M , ∀α ∈ N d , |α| ≥ 1, ∃C α ≥ 1, |∂ α q V (q)| ≤ C α ∂ q V (q) .
Remarquons ici que l'exposant 1 4 dans l'estimation (1.4.4) n'est pas optimal. Un meilleur exposant, qui semble être 2 3 comme on le voit dans [RoSt], peut être obtenu par des méthodes explicites dans le cas particulier où V (q) est une forme quadratique non dégénéré (voir [HeNi]). Dans [HeNi], Helffer-Nier ont étudié aussi le cas où V (q) vérifie Hypothèse 4.

∀α ∈ N d , |α| = 2, |∂ α q V (q)| ≤ C α ∂ q V (q) 1-0 avec 0 > 1 3 ,
et ont obtenu alors l'estimation

|∂ q V (q)| 2 3 u 2 L 2 (R 2d ) ≤ C V K V u 2 L 2 (R 2d ) + u 2 L 2 (R 2d ) .
(1.4.5)

Ce résultat généralise en particulier celui du cas quadratique non dégénéré. De plus, l'exposant 2 3 dans (1.4.5) est meilleur que 1 4 qui apparaît dans l'estimation (1.4.4).

Résultats de Wei-Xi Li

Dans cette sous section on présente certains résultats récents développés par Wei-Xi Li [Li][Li2]. Ces résultats donnent des critères de compacité de la résolvante de

K V avec potentiel V (q) ∈ C 2 (R d ).
En particulier, les critères développés dans [Li2] impliquent un contrôle des valeurs propres positives de la matrice hessienne du potentiel V (q).

Le premier résultat dû à Wei-Xi Li est démontré dans [Li] sous des hypothèses d'ellipticité et sans contrôle des signes du potentiel. Il est rappelé dans le théorème suivant.

Théorème 1.4.1. Soit V (q) ∈ C 2 (R d ) une fonction à valeurs réelles qui satisfait pour un s < 4 3 , la propriété :

∀|α| = 2 , ∃C α > 0 , |∂ α q V (q)| ≤ C α 1 + |∂ q V (q)| 2 s 2 . (1.4.6) Chapitre 1 : Introduction Il existe alors C > 0 et δ > 0 tels que pour tout u ∈ C ∞ 0 (R 2d ) , |∂ q V (q)| 2 3 u L 2 (R 2d ) ≤ C K V u L 2 (R 2d ) + u L 2 (R 2d ) et (1 -∆ q ) δ 2 u L 2 (R 2d ) + (1 -∆ p + p 2 ) 1 2 u L 2 (R 2d ) ≤ C K V u L 2 (R 2d ) + u L 2 (R 2d ) .
De plus δ est égal à 2 3 si s ≤ 2 3 , 4 3 -s si 2 3 < s ≤ 10 9 et 2 3 -s 2 si 10 9 < s < 4 3 .

D'après ce théorème, si nous prenons en particulier s = 2 3 , nous avons l'estimation hypoelliptique optimale suivante

|∂ q V (q)| 2 3 u L 2 (R 2d ) + (1 -∆ q ) 2 3 u L 2 (R 2d ) ≤ C( K V u L 2 (R 2d ) + u L 2 (R 2d ) ) .
Rappelons que le critère établi par Helffer-Nier et énoncé dans le deuxième point du théorème 1.3.1 montre l'importance du signe de V (q) pour la compacité de la résolvante de Laplacien de Witten. En ce qui concerne l'opérateur de Kramers-Fokker-Planck, la conjecture de Helffer-Nier 1.1.1 suggère fortement qu'il devrait avoir la même propriété microlocale comme pour Laplacien de Witten. Nous remarquons ici que l'inconvénient de la condition (1.4.6) est qu'elle ne donne aucune information sur la dépendance du signe de V (q). Cependant, Wei-Xi Li a donné dans [Li2] (Théorèmes 1.2 et 1.3) certaines conditions suffisantes pour la compacité de la résolvante de l'opérateur de Kramers-Fokker-Planck, reposant principalement sur le signe des valeurs propres de la matrice hessienne (∂ q i q j V ) 1≤i,j≤d . Ainsi ces progrès présentent les premiers résultats reflétant cette propriété de dépendance, qui joue un rôle important dans l'analyse de la compacité de la résolvante pour le Laplacien de Witten.

Les deux résultats suivants sont extraits de [Li2] (Théorèmes 1.2 et 1.3).

Théorème 1.4.2. Soit V (q) ∈ C 2 (R d ). On note λ l (q) , où 1 ≤ l ≤ d les valeurs propres de la matrice hessienne

(∂ q i q j V (q)) 1≤i,j≤d .
À chaque q ∈ R d , on associe l'ensemble des indices noté I q donné par

I q = {1 ≤ l ≤ d , tel que λ l (q) > 0} . S'il existe une constante c > 0 telle que, ∀ q ∈ R d , j∈Iq λ j (q) ≤ c ∂ q V (q) 4 3 , (1.4.7)
alors on a les résultats suivants :

1.4 Conditions suffisantes pour la compacité de

(1 + K V ) -1 (Résultats connus) (i) Il existe une constante c > 0 telle que pour tout u ∈ C ∞ 0 (R 2d ) , |∂ q V (q)| 1 16 u L 2 (R 2d ) ≤ c K V u L 2 (R 2d ) + u L 2 (R 2d ) .
(1.4.8)

Par conséquent, si lim |q|→+∞ |∂ q V (q)| = +∞, l'opérateur de Kramers-Fokker-Planck est à résolvante compacte.

(ii) Si on suppose de plus qu'il existe α ≥ 0 telle que

lim |q|→+∞ (α|∂ q V (q)| 2 -∆ q V (q)) = +∞ , (1.4.9)
alors on peut trouver une constante

c α > 0 telle que pour tout u ∈ C ∞ 0 (R 2d ) , |α|∂ q V (q)| 2 -∆ q V (q)| 1 80 u L 2 (R 2d ) ≤ c α K V u L 2 (R 2d ) + u L 2 (R 2d ) .
Ceci implique que l'opérateur de Kramers-Fokker-Planck est à résolvante compacte.

Théorème

1.4.3. Soit V (q) ∈ C 2 (R d ).
On suppose qu'il existe une constante τ > 0 tel que la matrice

A τ (q) = (a τ ij (q)) 1≤i,j≤d , a τ ij = τ ∂ q V 4 5 (∂ q i V )(∂ q j V ) -∂ q i q j V + τ δ ij ,
est définie positive pour tout q ∈ R d , où δ ij désigne le symbole de Kronecker.

Alors il existe une constante c > 0 tel que pour tout u ∈ C ∞ 0 (R 2d ) ,

|∂ q V (q)| 1 20 u L 2 (R 2d ) + 1≤i,j≤d |a τ ij (q)| 1 80 u L 2 (R 2d ) ≤ c K V u L 2 (R 2d ) + u L 2 (R 2d ) . Par conséquent, si lim |q|→+∞ |∂ q V (q)| + 1≤i,j≤d
|a τ ij (q)| = +∞ , l'opérateur de Kramers-Fokker-Planck est à résolvante compacte.

Les preuves des deux théorèmes précédents sont bien détaillées dans [Li2] et ils reposent principalement sur des méthodes de multiplicateurs.

1.4.2.1 Application sur l'exemple V (q 1 , q 2 ) = -q 2 1 q 2 2
Dans le cas où V (q) = -q 2 1 q 2 2 , il est bien connu (voir Proposition 10.19 dans [HeNi]) que le Laplacien de Witten ∆ (0)

V est à résolvante compacte, alors que 0 appartient au spectre essentiel ∆ (0) -V et sa résolvante ne peut donc pas être compacte. En examinant maintenant le même potentiel susmentionné, on voit ci-après que les hypothèses des théorèmes 1.4.2 et 1.4.3 sont valides pour V (q) = -q 2 1 q 2 2 et violées par V (q) = q 2 1 q 2 2 .

Chapitre 1 : Introduction Application du Théorème 1.4.2 :

Le potentiel V (q 1 , q 2 ) = -q 2 1 q 2 2 vérifie les hypothèses du théorème 1.4.2. En calculant

(∂ q i q j V ) 1≤i,j≤2 = -2q 2 2 -4q 1 q 2 -4q 1 q 2 -2q 2 1 , |∂ q V (q)| 2 = 4q 2 1 q 4 2 + 4q 4 1 q 2 2 = 4q 2 1 q 2 2 |q| 2 ,
la somme j∈Iq λ j (q) qu'on cherche à estimer ne contient en réalité qu'un seul terme, la seule

racine positive λ = -|q| 2 + |q| 4 + 12q 2 1 q 2 2 . En multipliant par le conjugué (en supposant q = 0) on a λ = 12q 2 1 q 2 2 |q| 2 + |q| 4 + 12q 2 1 q 2 2 ≤ 12q 2 1 q 2 2 |q| 2 = 3 4q 2 1 q 2 2 |q| 2 |q| 4 = 3 |q| 4 |∂ q V (q)| 2 .
Le reste est simple à faire :

Si |q| ≥ 1, alors λ ≤ 3 |q| 4 |∂ q V (q)| 2 ≤ 3|∂ q V (q)| 2 ≤ 3(1 + |∂ q V (q)| 2 ) .
Et si |q| < 1, il suffit de remarquer que dans ce cas

λ = -|q| 2 + |q| 4 + 12q 2 1 q 2 2 < |q| 2 + |q| 4 + 12q 2 1 q 2 2 ≤ 1 + √ 1 + 12 = 1 + √ 13 < 5 . Par suite λ ≤ 5(1 + |∂ q V (q)| 2 ) .
Donc dans tous les cas, c'est-à-dire pour tout q ∈ R 2 , on a

λ ≤ 5(1 + |∂ q V (q)| 2 ) .
On peut donc prendre c = 5 comme constante pour l'hypothèse (1.4.7).

D'après l'item (i) du théorème 1.4.2, il existe une constante c > 0 tel que pour tout u ∈ C ∞ 0 (R 4 ) , |∂ q V (q)| 1 16 u L 2 (R 4 ) ≤ c K V u L 2 (R 4 ) + u L 2 (R 4 ) .
Cette dernière estimation nous dit rien sur la compacité de la résolvante de l'opérateur de Kramers-Fokker-Planck associé à V (q 1 , q 2 ) = -q 2 1 q 2 2 (car ∂ q V (q) s'annule suivant les deux lignes q 1 = 0 et q 2 = 0). Dans ce cas, on utilise l'item (ii) du théorème 1.4.2.

En effet, le potentiel considéré vérifie l'hypothèse (ii) du théorème 1.4.2 : Pour tout α ≥ 0 ,

lim |q|→+∞ (α|∂ q V (q)| 2 -∆ q V (q)) = lim |q|→+∞ (4αq 2 1 q 2 2 |q| 2 + 2|q| 2 ) = +∞ ,
1.5 Principaux résultats de cette thèse (dans l'énoncé du théorème il suffit de trouver une seule constante α ≥ 0 qui vérifie l'hypothèse), alors on peut trouver une constante

c α > 0 tel que pour tout u ∈ C ∞ 0 (R 4 ), |α|∂ q V (q)| 2 -∆ q V (q)| 1 80 u L 2 (R 4 ) ≤ c α ( K V u L 2 (R 4 ) + u L 2 (R 4 ) ).
Ceci implique que l'opérateur de Kramers-Fokker-Planck est à résolvante compacte.

Application du Théorème 1.4.3 :

Le potentiel V (q 1 , q 2 ) = -q 2 1 q 2 2 vérifie l'hypothèse du théorème 1.4.3. On cherche τ > 0, tel que la matrice A τ (q) = (a τ ij (q)) 1≤i,j≤2
, avec terme général

a τ ij = τ ∂ q V 4 5 (∂ q i V )(∂ q j V ) -∂ q i q j V + τ δ ij , soit définie positive pour tout q ∈ R 2 . En effet, on a pour tout τ > 0 , trace(A τ ) = τ ∂ q V 4/5 (∂ q 1 V ) 2 + (∂ q 2 V ) 2 -(∂ 2 q 1 V + ∂ 2 q 2 V ) + 2τ > 0 . Il faut donc prouver l'existence d'une constante τ > 0 tel que det(A τ ) > 0 : On a det(A τ ) = τ 2 ∂ q V 14/5 + τ -16 ∂ q V 4/5 (q 1 q 2 ) 4 + 2(q 2 1 + q 2
2 ) -12(q 1 q 2 ) 2 . Pour q fixé le déterminant est un polynôme en τ de degré 2. Il faut alors étudier quand ce polynôme de degré 2 est strictement positif. Il suffit d'écrire une telle condition comme une inégalité avec τ et prendre un τ suffisamment grand pour que ça marche pour tout q.

Le coefficient dominant du déterminant est positif, donc si on note b(q) la racine la plus grande de ce polynôme (à q fixé), une condition suffisante est d'avoir τ > 1 + b(q) pour tout q. Cette condition est bien vérifiée puisque b(q) est majorée en q.

Ainsi, d'après le théorème 1.4.3 il existe une constante c > 0 telle que pour tout

u ∈ C ∞ 0 (R 4 ) , |∂ q V (q)| 1 20 u L 2 (R 4 ) + 1≤i,j≤2 |a τ ij (q)| 1 80 u L 2 (R 4 ) ≤ c K V u L 2 (R 4 ) + u L 2 (R 4 ) Dans notre cas, lim |q|→+∞ |∂ q V (q)| + 1≤i,j≤2
|a τ ij (q)| = +∞ , donc d'après la proposition 1.4.1, l'opérateur de Kramers-Fokker-Planck est à résolvante compacte.

Principaux résultats de cette thèse

Le coeur de ce travail de thèse se décompose en trois parties bien articulées, qui ont fait l'objet de trois articles distincts. Rappelons que l'approche de Helffer-Nourrigat sur Chapitre 1 : Introduction l'hypoellipticité maximale appliquée au Laplacien de Witten consiste à faire une double récurrence sur le degré du polynôme et la dimension de l'espace (après réduction de la dimension quand il y a des invariances par translation). Pour la récurrence sur le degré, ce sont des estimations uniformes par rapports aux coefficients pour des polynômes de degré r qui donnent des estimations qualitatives, sans contrôle des constantes par rapport aux coefficients, pour des polynômes de degré r+1. De ce point de vue le premier cas non trivial pour l'opérateur de Kramers-Fokker-Planck est le cas des potentiels de degré inférieur ou égal à 2. Des estimations sans contrôle des constantes dans les inégalités sous-elliptiques étaient connues (cf. [Hor]). Par ailleurs, un potentiel de degré inférieur ou égal à 2, donne un opérateur de Kramers-Fokker-Planck à symbole quadratique pour lequel la théorie générale (voir [Hor][HiPr][HPV2] [Vio][Vio1] [AlVi]) nous dit que l'on peut tout calculer très précisément. La mise en place de ce calcul pour aboutir à des inégalités sous-elliptiques optimales a été difficile à mettre en place et a fait finalement apparaître une structure quaternionique intéressante. Une fois le cas des polynômes de degré inférieur ou égal à 2 traité précisément, nous pouvons nous attaquer à des estimations sous-elliptiques avec des potentiels de degré supérieur mais dont les modèles asymptotiques à l'infini après changement d'échelle sont de degré inférieur ou égal à 2. Les corrections logarithmiques dont on ne peut pas se débarrasser dans le cas quadratique, sont fort heureusement absorbées grâce au théorème de Tarski-Seidenberg, outil très classique dans un cadre algébrique (potentiel polynomial). C'est l'objet du deuxième article.

Une fois ce travail fait quasiment tous les exemples présentés par Helffer et Nier dans [HeNi] pour comparer le Laplacien de Witten et l'opérateur de Kramers-Fokker-Planck, étaient complètement traités exceptés le cas simple de potentiels homogènes, non nécéssairement polynomiaux, de degré supérieur à 2. Ce dernier point est partiellement traité dans le troisième article, où l'homogénéité remplace les arguments plus implicites donnés par Tarski-Seidenberg et donne dans les cas qui manquaient de meilleurs résultats.

Nous donnons dans les paragraphes suivants un résumé un peu plus détaillé de chaque chapitre. Commençons par fixer quelques notations. On considère dans les énoncés des résultats qui suivent, l'opérateur de Kramers-Fokker-Planck défini sur R 2d par

K V = p∂ q -∂ q V (q)∂ p + 1 2 (-∆ p + p 2 ) , avec domaine D(K V ) = u ∈ L 2 (R 2d ) , K V u ∈ L 2 (R 2d ) ,
où V (q) est un potentiel qui ne dépend que de la variable de position q ∈ R d . On note

O p = 1 2 (D 2 p + p 2 ) , X V = p∂ q -∂ q V (q)∂ p , Pour tout q ∈ R d , on définit dans cette thèse Tr +,V (q) = ν∈Spec(Hess V (q)) ν>0 ν(q) , Tr -,V (q) = - ν∈Spec(Hess V (q)) ν≤0 ν(q) .
1.5 Principaux résultats de cette thèse

A V (q) = max{(1 + Tr +,V (q)) 2/3 , 1 + Tr -,V (q)} , B V = max{min q∈R d |∇ V (q)| 4/3 , 1 + Tr -,V (q) (log(2 + Tr -,V (q))) 2 } .

Énoncé des résultats du chapitre 2

Plusieurs travaux ont été consacrés à l'étude de certain opérateurs différentiels quadratiques non autoadjoints et non elliptiques dont en particulier l'opérateur de Kramers-Fokker-Planck avec polynôme V (q) de degré inférieur ou égal à 2 (Cf. [Hor][Sjo][HiPr][HPV2][Vio] [Vio1][AlVi]). Nos premiers résultats dans [BNV] établissent des estimations sous-elliptiques globales pour l'opérateur de Kramers-Fokker-Planck K V avec potentiel polynomial V (q) de degré inférieur ou égal à 2. Dans nos preuves nous nous inspirons des techniques développées par Hitrik, Pravda-Starov, Viola, et Aleman dans [HiPr][Vio][Vio1] et [AlVi]. Ce qui est particulier dans nos résultats, qui sont résumés dans les théorèmes 1.5.1 et 1.5.2, est le contrôle uniforme des inégalités par rapport aux coefficients du polynôme V.

Théorème 1.5.1. Soit V (q) un polynôme de degré inférieur ou égal à 2. Il existe une constante c > 0, indépendante de V, telle que l'estimation sous-elliptique avec reste

K V u 2 L 2 (R 2d ) + A V u 2 L 2 (R 2d ) ≥ c O p u 2 L 2 (R 2d ) + X V u 2 L 2 (R 2d ) + ∂ q V (q) 2/3 u 2 L 2 (R 2d ) + D q 2/3 u 2 L 2 (R 2d )
(1.5.1)

est vraie pour tout u ∈ D(K V ).
Théorème 1.5.2. Soit V (q) un polynôme de degré inférieur ou égal à 2. Il existe une constante c > 0, indépendante de V, telle que on a

K V u 2 L 2 (R 2d ) ≥ c B V u 2 L 2 (R 2d ) , K V u 2 L 2 (R 2d ) ≥ c 1 + A V B V O p u 2 L 2 (R 2d ) + X V u 2 L 2 (R 2d ) + ∂ q V (q) 2/3 u 2 L 2 (R 2d ) + D q 2/3 u 2 L 2 (R 2d ) pour tout u ∈ D(K V ).
Comme première conséquence du théorème 1.5.1, si |∂ q V (q)| tend vers l'infini lorsque |q| tend vers l'infini, alors K V est à résolvante compacte.

Les deux théorèmes précédents se déduisent du résultat suivant.

Chapitre 1 : Introduction Proposition 1.5.1. Soit V (q) un polynôme de degré inférieur ou égal à 2. Il existe une constante c > 0, indépendante de V, telle que

d i=1 |D q i |e -t(K V + √ A V ) L(L 2 (R 2d )) + |∂ q i V (q)|e -t(K V + √ A V ) L(L 2 (R 2d )) ≤ c t 3 2 pour tout t > 0.
De plus,

K -1 V L(L 2 (R 2d )) ≤ +∞ 0 e -tK V L(L 2 (R 2d )) dt ≤ c √ B V .
Notons tout d'abord qu'étant donné un potentiel polynomial à valeurs réelles

V (q) = |α|≤2 V α q α défini sur R d avec d • V = 2 , on peut supposer à l'aide d'un changement de variables orthogonal que Hess V =      ν 1 0 . . . 0 0 ν 2 . . . 0 . . . . . . . . . . . . 0 0 . . . ν d     
.

Comme la constante V 0 n'apparaît pas dans la formule de K V , elle peut être fixée à 0. Dans cette situation, on a les deux cas suivant :

• Si Hess V est non dégénérée, une translation en q réduit le problème à

V (q) = d i=1 ν i 2 q 2 i .
(1.5.2)

• Si Hess V est dégénérée, un bon choix d'une base orthonormale et une translation donnent :

V (q) = λ 1 q 1 + d i=2 ν i 2 q 2 i , (1.5.3) où λ 1 est défini par |λ 1 | = min q∈R d |∇ V (q)| ≥ 0 .
Pour démontrer les résultats que nous venons d'énoncer, il y a essentiellement deux types d'argument à utiliser.

• Comme les estimations de la proposition 1.5.1 sont exprimées en termes de semi-groupe, elles peuvent êtres démontrées après séparation des variables d'un polynôme de la forme 1.5 Principaux résultats de cette thèse

(1.5.2) ou (1.5.3). En effet, comme e -tK V est un produit de semi-groupes de contraction commutatifs par rapport à chaque variable (q j , p j ), il suffit d'écrire

d i=1 M i e -t(K V + √ A) L(L 2 (R 2d )) ≤ d i=1 M i e -t(K V i (q i ) +α i ) L(L 2 (R 2 )) M i = |D q i | ou M i = |∂ q i V (q)| , où V i (q i ) désigne le potentiel uni-dimensionnel à variable q i , avec V 1 (q 1 ) = ν 1 q 2 1 2 ou V 1 (q 1 ) = λ 1 q 1 , V i (q i ) = ν i q 2 i 2 pour i ≥ 2 , α i = |ν i | 1/2 si ν i < 0 , α i = ν 1/3 i si ν i > 0 et α i = 0 si ∂ 2 q i V = 0 .
La deuxième estimation de la proposition 1.5.1 est encore plus simple et elle découle d'un calcul exact de la norme du semi-groupe associé à l'opérateur K V . Par conséquent, la proposition 1.5.1 sera le résultat de l'analyse des trois potentiels uni-dimensionnels V (q) = ± νq 2 2 , ν > 0 , et V (q) = λ 1 q , λ 1 ∈ R . Une fois le problème ramené en dimension 1, nos résultats et nos formules sont exprimés explicitement à l'aide des biquaternions (ou quaternion complexe).

• Le deuxième argument consiste à utiliser les résultats d'interpolation de Lunardi (voir Remarque 5.11, Théorème 5.12 et Corollaire 5.13 dans [Lun]). En effet, en combinant la première inégalité de la proposition 1.5.1 avec le fait que

|Re [O p , X V ]u, u | ≤ C ( |D q | 2 3 u 2 + |∂ q V (q)| 2 3 u 2 ) + O p u 2
pour tout u ∈ D(K V ) (où > 0 est suffisamment petit), on obtient l'estimation du théorème 1.5.1. Ensuite la première estimation du théorème 1.5.1 n'est qu'une réécriture de l'estimation de la résolvante donnée dans la proposition 1.5.1. En combinant l'estimation de la résolvante avec le résultat du théorème 1.5.1, on obtient ainsi l'estimation sans reste du théorème 1.5.2.

Ces résultats ont fait l'objet de l'article [BNV] en collaboration avec Francis Nier et Joe Viola et seront prouvés dans le chapitre 2.

Énoncé des résultats du chapitre 3

Le chapitre 3 de ce manuscript reprend le contenu de l'article [Ben]. Cet article propose une étude de l'opérateur de Kramers-Fokker-Planck K V associé à une certaine classe de polynômes V (q) de degré r ≥ 3, dont le comportement à l'infini est quadratique. Nous donnons ici l'énoncé du résultat principal de [Ben] avec quelques éléments de sa preuve. Précisons au préalable quelques notations.

On désigne dans cette thèse par,

R ≥n V où n ∈ N * , la fonction définie sur R d par R ≥n V (q) = n≤|α|≤r |∂ α q V (q)| 1 |α| . Chapitre 1 : Introduction Pour tout κ > 0, on note Σ(κ) = q ∈ R d , |∇V (q)| 4 3 ≥ κ |Hess V (q)| + R ≥3 V (q) 4 + 1 .

On introduit

Hypothèse 5. Il existe des grandes constantes κ 0 , C 1 > 1 tel que pour tout κ ≥ κ 0 polynôme V (q) satisfait les propriétés suivantes

Tr -,V (q) > 1 C 1 Tr +,V (q), pour tout q ∈ R d \ Σ(κ) avec |q| ≥ C 1 , (1.5.4) de plus si R d \ Σ(κ) n'est pas borné, lim |q|→+∞ q∈R d \Σ(κ) R ≥3 V (q) 4 |Hess V (q)| = 0 . (1.5.5)
On a alors le théorème Théorème 1.5.3. Pour tout polynôme V (q) de degré r supérieur à deux vérifiant l'hypothèse 5, il existe une constante C V > 1 telle que

K V u 2 L 2 + C V u 2 L 2 ≥ 1 C V L(O p )u 2 L 2 + L( |∇V (q)| 2 3 )u 2 L 2 + L( |Hess V (q)| 1 2 )u 2 L 2 + L( |D q | 2 3 )u 2 L 2 , (1.5.6) pour tout u ∈ D(K V ) où L(s) = s+1 log(s+1) pour tout s ≥ 1.
En conséquence, si V (q) vérifie l'hypothèse 5, alors l'opérateur Kramers-Fokker-Planck K V est à résolvante compacte et il a donc un spectre discret. Mentionnons aussi qu'on sait déjà que pour un polynôme V vérifiant l'hypothèse 5, le Laplacien de Witten ∆ (0)

V est à résolvante compacte car les modèles asymptotiques à l'infini sont de degré inférieur ou égale à 2 sans minimum local (Voir théorème 10.16 dans [HeNi]).

Il est à remarquer que malgré la perte logarithmique dans (1.5.6), nous sommes très proches des exposants optimaux figurant dans l'estimation (1.5.1).

Expliquons un peu l'hypothèse 5 et en particulier l'idée derrière la partition Σ(κ) (R d \ Σ(κ)) : La région Σ(κ) est celle où le gradient de V domine sa hessienne et ses dérivées d'ordre supérieur. L'analyse, dans cette région, est essentiellement la même que dans les cas elliptiques traités dans [HerNi] [HeNi] et [Li]. Dans la région complémentaire R d \ Σ(κ), c'est la hessienne de V qui domine, au voisinage de l'infini, le gradient et les 1.5 Principaux résultats de cette thèse dérivées d'ordre supérieur. Ici les estimations précises du modèle quadratique donné par le deuxième ordre de développement de Taylor doivent être utilisées. En effet, la démonstration du théorème 1.5.3 repose principalement sur deux techniques :

• La première consiste à construire une partition de l'unité localement finie suivant la variable de position

q ∈ R d , j∈N χ 2 j (q) = j∈N χ 2 j R ≥3 V (q j )(q -q j ) = 1 (1.5.7) où supp χ j ⊂ B(0, a) et χ j ≡ 1 dans B(0, b)
pour certains q j ∈ R d avec 0 < b < a indépendants de j ∈ N. L'existence d'une telle partition de l'unité est une conséquence immédiate de la lenteur de la métrique

R ≥3 V (q) 2 dq 2 (∃C > 1, ∀q, q ∈ R d , R ≥3 V (q)|q -q | ≤ C -1 ⇒ R ≥3 V (q) R ≥3 V (q ) ±1 ≤ C
), qu'on a bien vérifié dans le lemme A.4 de [Ben]. Ceci permet d'une façon générale, d'obtenir des estimations globales à partir d'une étude locale.

• Il est naturel de considérer une approximation quadratique pour V (q), bien choisie, afin d'étendre les résultats de [BNV], déjà établis dans le cas d • V ≤ 2. Pour un certain κ > 1 donné et pour tout entier naturel j, cette dernière approximation est donnée par

V (2) j (q) = 0≤|α|≤2 ∂ α q V (q j ) α! (q -q j ) α , (1.5.8) où q j = q j si supp χ j ⊂ Σ(κ) q j ∈ (supp χ j ) ∩ R d \ Σ(κ) sinon.
Il se trouve qu'en utilisant les deux techniques citées plus haut, il faut évidemment bien contrôler les erreurs dues d'une part à la partition de l'unité et d'autre part à l'approximation quadratique. Ceci est assuré en ajustant le paramètre κ à la fin de la preuve. De plus le passage d'une estimation pour K V (2) j en une pour K V nécessite le recours au résultat suivant.

Lemme 1.5.2. Soit V un polynôme de degré r ≥ 3. On considère une partition de l'unité localement finie comme dans (1.5.7). Pour tout α ∈ N d avec |α| ∈ {1, 2} et pour tout j ∈ N, il existe une constante c α,d,r > 0 telle que

∂ α q V (q) -∂ α q V (2) j (q) ≤ c α,d,r R ≥3 V (q j ) |α| (1.5.9)
est valide pour tout q ∈ supp χ j = B(q j , aR

≥3

V (q j ) -1 ).

Par conséquent, si V satisfait l'hypothèse 1, il existe une constante assez grande κ 1 ≥ κ 0 tel que pour tout κ ≥ κ 1 et tout j ∈ N,

2 -1 ∂ q V (2) j (q) ≤ |∂ q V (q)| ≤ 2 ∂ q V
(2) j (q) (1.5.10)

pour tout q ∈ (supp χ j ) ∩ Σ(κ) et 2 -1 Hess V (2) j (q) ≤ |Hess V (q)| ≤ 2 Hess V (2) j (q) , (1.5.11) pour tout q ∈ (supp χ j ) ∩ R d \ Σ(κ) avec |q| ≥ C 2 (κ) où C 2 (κ)
> 0 est une constante assez grande qui dépend de κ.

La preuve du théorème 1.5.3 est basée en particulier sur une conséquence théorème de Tarski-Seidenberg examinée dans l'annexe 3.B. En effet, cette approche nous a permis d'absorber les corrections logarithmiques dont on ne peut pas s'affranchir dans le cas quadratique.

Si on veut étendre le résultat du théorème 1.5.3 à des classes de fonctions V (q) non polynomiales, nous n'avons plus le droit d'utiliser l'argument algébrique de Tarski-Seidenberg. Par contre ce résultat reste évidement valable dans le cas où

V = V 1 + V 2 avec V 1 est un polynôme satisfaisant l'hypothèse 5 et V 2 est une fonction dans S(R d ).

Énoncé des résultats du chapitre 4

Nous verrons dans cette partie une extension du théorème 1.5.3 dans le cadre des potentiels homogènes de degré 2 < r < 6 dans C ∞ (R d \ { 0}) satisfaisant l'hypothèse suivante.

Hypothèse 6.

∀ q ∈ S := q ∈ R d , |q| = 1 , ∂ q V (q) = 0 ⇒ Tr -,V (q) > 0 .
(1.5.12)

Le résultat principal établi dans [START_REF] Said | Kramers-Fokker-Planck operators with homogeneous potentials[END_REF] s'énonce comme suit.

Théorème 1.5.4. Pour tout potentiel V (q) vérifiant l'hypothèse 6, il existe une constante

C V > 1 telle que K V u 2 L 2 + C V u 2 L 2 ≥ 1 C V L(O p )u 2 L 2 + L( ∇V (q) 2 3 )u 2 L 2 + L( Hess V (q) 1 2 )u 2 L 2 + L( D q 2 3 )u 2 L 2 , (1.5.13) pour tout u ∈ D(K V ) où L(s) = s+1 log(s+1) pour tout s ≥ 1.

Principaux résultats de cette thèse

Soulignons tout d'abord que l'estimation sous-elliptique établie dans le théorème 1.5.4 est la même obtenue dans le cadre polynomial du théorème 1.5.3.

Corollaire 1.5.3. L'opérateur de Kramers-Fokker-Planck K V avec potentiel V (q) vérifiant l'hypothèse 6 est à résolvante compacte.

Il est important de noter que le résultat du corollaire n'est pas valide dans le cas d'un polynôme homogène de degré deux avec hessienne dégénérée. Dans ce cas avec hessienne dégénérée en effet, l'opérateur de Kramers-Fokker-Planck est invariant par translation dans la direction du noyau de la hessienne par calcul direct et donc ne peut être à résolvante compacte.

Mentionnons par ailleurs que le corollaire est en accord avec les résultats de Wei-Xi Li [Li][Li2] et ceux de Helffer-Nier sur Laplacien de Witten avec potentiel homogène [HeNi1].

Pour démontrer le théorème 1.5.4, nous nous appuyons sur les arguments suivant :

• Nous considérons tout d'abord une partition dyadique suivant la variable de position q ∈ R d (voir proposition 4.2.1 du chapitre 4),

j≥-1 χ 2 j (q) = χ2 -1 (2|q|) + χ2 0 (2|q|) + j≥1 χ 2 (2 -j |q|) = 1 (1.5.14) où les fonctions de troncature χ 0 , χ et χ -1 appartiennent respectivement à C ∞ 0 ( 3 4 , 8 3 ), C ∞ 0 ( 3 4 , 8 3 ) et C ∞ 0 ( 0, 4 
3 ). Il existe alors une constante uniforme c > 0 tel que

(1 + 4c) K V u 2 L 2 (R 2d ) + c u 2 L 2 (R 2d ) ≥ j≥-1 K V u j 2 L 2 (R 2d ) , (1.5.15) pour tout u ∈ C ∞ 0 (R 2d ) avec u j := χ j u.
Par homogénéité du potentiel V, on peut réécrire l'inégalité (1.5.15) comme suit

(1 + 4c) K V u 2 L 2 (R 2d ) + c u 2 L 2 (R 2d ) ≥ j≥-1 K j,V v j 2 L 2 (R 2d ) , (1.5.16) où K j,V = p(h 1 2(r-1) ∂ q ) -h -1 2 ∂ q V (q)∂ p + 1 2 (-∆ p + p 2 ) , h = 2 -2(r-1)j , v j (q, p) = 2 jd 2 u j (2 j q, p) , supp v j ⊂ C := q ∈ R d , 3 4 ≤ |q| ≤ 8 3 .
• L'idée est ensuite d'introduire l'ensemble des zéros du gradient de V (q),

K 0 := q ∈ C , ∂ q V (q) = 0 ,
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Comme q →

Tr -,V (q) 1+Tr +,V (q) est uniformément continue sur tout voisinage compact de K 0 , il existe ε 1 > 0 tel que

d(q, K 0 ) ≤ 1 ⇒ Tr -,V (q) 1 + Tr +,V (q) ≥ 0 2 , (1.5.17) où 0 := min q∈K 0 Tr -,V (q)
1+Tr +,V (q) . D'autre part, par définition de K 0 et par continuité de q → ∂ q V (q) sur C, il existe une constante 2 > 0 (qui dépend de 1 ) tel que

∀ q ∈ C , d(q, K 0 ) ≥ 1 ⇒ |∂ q V (q)| ≥ 2 .
(1.5.18)

Ces remarques nous ramènent à considérer un nouveaux découpage suivant la variable de position q ∈ R d , à savoir une partition de l'unité localement finie

k∈K h θ k,h (q) 2 = 1 au voisinage de C, où pour tout k ∈ K h := k ∈ Z d , |k| ≤ 3 | ln(h)|h ν , q k,h = | ln(h)|h ν k , supp θ k,h ⊂ B(q k,h , | ln(h)|h ν ) , θ k,h ≡ 1 in B(q k,h , 1 2 | ln(h)|h ν ) ,
avec ν est paramètre fixé tel que

3 16 + 1 16(r -1) < ν ≤ 1 8 + 3 8(r -1)
.

(1.5.19)

On considère ensuite l'ensemble

I( 1 ) = {k ∈ K h , supp θ k,h ⊂ {q ∈ C , d(q, K 0 ) ≥ 1 }} .
L'idée derrière l'introduction de la deuxième partition de l'unité est de pouvoir analyser et bien contrôler les deux cas suivant, en vue d'utiliser une approximation quadratique.

Cas 1 k ∈ I( 1 ). Dans cette situation, le support de la fonction de troncature θ k,h peut intersecter l'ensemble des zéros du gradient de V.

Cas 2 k ∈ I( 1 ). Dans ce cas, le gradient de V est non nul pour tout q dans le support de θ k,h .

On renvoie ici le lecteur au chapitre 4 pour trouver davantage de précisions sur l'analyse des deux situations sur-mentionnées.

Conclusion et perspectives
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L'étude des opérateurs de Kramers-Fokker-Planck sur divers espaces a donné lieu à de trop nombreuses publications pour qu'on puisse espérer en faire une liste exhaustive. Beaucoup de questions ont émergé, ont été résolues ou sont restées partiellement ouvertes dans des cadres géométriques variés. Parmi lesquelles, l'analyse de la conjecture de Helffer-Nier :

Conjecture 1.6.1. L'opérateur K V est à résolvante compacte si et seulement si ∆

V est à résolvante compacte.

La partie nécessaire de cette conjecture étant déjà établie par Helffer et Nier (cf. [HeNi], Théorème 1.1]), l'objectif de cette thèse était en particulier de considérer des exemples et des situations pour lesquelles l'analyse de la compacité pour Laplacien de Witten est bien développée et voir si l'implication inverse de la conjecture reste encore vraie.

Dans l'article de Helffer et Nier [HeNi], les auteurs ont, pour la première fois, l'idée d'utiliser des critères d'hypoellipticité maximale, dont la notion est développée par Helffer et Nourrigat [HeNo] [Nou], pour en déduire un critère de compacité de la résolvante pour Laplacien de Witten.

Ce dernier critère, étant basé en particulier sur une récurrence sur le degré du potentiel polynomial, l'idée de cette thèse était de développer une telle analyse systématique pour l'opérateur de Kramers-Fokker-Planck. Naturellement, notre point de départ était l'étude du cas d'un potentiel polynomial avec degré inférieur ou égal à 2. Cette étape d'étude basique, a abouti à des estimations sous-elliptiques optimales avec un contrôle uniforme des constantes. C'est l'objet de l'article [BNV].

L'apparition d'une structure quaterionique dans [BNV], qui a fortement simplifié l'étude, ouvre la voie vers des possibles pistes de recherche d'applications pour autres modèles d'opérateurs à symboles quadratiques.

Une fois le cas des polynômes de degré inférieur ou égal à 2 est soigneusement traité, nous avons poussé le degré du polynôme en considérant des potentiels de degré supérieur ou égal à 3 mais dont les modèles asymptotiques à l'infini après changement d'échelle sont de degré inférieur ou égal à 2. Dans cette situation, malgré les corrections logarithmiques apparaissant dans le cas quadratique, nous avons pu établir une estimation sous-elliptique pour K V , très proche d'être optimale grâce essentiellement au théorème de Tarski-Seidenberg. C'est le contexte de l'article [Ben].

Avec ce dernier travail, nous avons traité quasiment tous les exemples présentés par Helffer et Nier dans [HeNi] pour comparer le Laplacien de Witten et l'opérateur de Kramers-Fokker-Planck sauf le cas de potentiels homogènes, non nécéssairement polynomiaux, de degré supérieur à 2. Ce dernier cas est partiellement traité dans [START_REF] Said | Kramers-Fokker-Planck operators with homogeneous potentials[END_REF] et a abouti à des meilleurs résultats.

Chapitre 1 : Introduction

Après tout, la conjecture 1.6.1 de Helffer-Nier est encore loin d'être complètement résolue. Elle peut être décomposée en plusieurs questions qui n'ont reçu aucune réponse, parmi lesquelles :

1. Dans le cas d'un potentiel polynomial, est-il possible de montrer que l'opérateur de Kramers-Fokker-Planck K V est à résolvante compacte s'il vérifie les mêmes critères développés par Helffer-Nier dans le cas de Laplacien de Witten (cf. Théorème 10.16 dans [HeNi]) ?

2. Peut-on étendre le résultat du théorème 1.5.4 (établi dans l'article [START_REF] Said | Kramers-Fokker-Planck operators with homogeneous potentials[END_REF]) dans le cas d'un potentiel homogène de degré r ≥ 6 dans C ∞ (R d \ {0, 1}) ? Que se passe t-il en particulier pour le cas polynomial V (q) = -q 2 1 (q 2 1 + q 2 2 ) n avec n ∈ N \ {0, 1}?

3. L'équivalence (1.6.1) est-elle vraie pour un potentiel général V ∈ C ∞ (R d )?

Ces questions ouvrent la porte à d'autres travaux de recherche et d'autres possibles pistes d'extension.

Chapitre 2

Structure quaternionique et analyse des opérateurs de KFP avec polynômes de degrés inférieur à 3 (article rédigé en anglais)

Article [BNV], rédigé en anglais, soumis pour publication.
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In this work, we consider the Kramers-Fokker-Planck operator given by

K V = p∂ q -∂ q V (q)∂ p + 1 2 (-∆ p + p 2 ), (q, p) ∈ R 2d , (2.1.1)
where q denotes the space variable, p denotes the velocity variable, x.y = d j=1

x j y j ,

x 2 = d j=1
x 2 j and the potential

V (q) = |α|≤2 V α q α is a real-valued polynomial function on R d with d • V = 2 .
After making an orthogonal change of variables one may assume that its Hessian matrix is

Hess V =      ν 1 0 . . . 0 0 ν 2 . . . 0 . . . . . . . . . . . . 0 0 . . . ν d     
.

The constant term V 0 does not appear in K V and can be set to 0 and we distinguish two cases :

• If Hess V is non-degenerate, a translation in q reduces the problem to

V (q) = d i=1 ν i 2 q 2 i .
(2.1.2)

• If Hess V is degenerate, a good choice of orthonormal basis and a translation give :

V (q) = λ 1 q 1 + d i=2 ν i 2 q 2 i , (2.1.3)
where λ 1 is invariantly defined by

|λ 1 | = min q∈R d |∇ V (q)| ≥ 0 .
As established in [HeNi] (see Proposition 5.5, page 44), the non-selfadjoint operator K V is maximal accretive when endowed with the domain

D(K V ) = u ∈ L 2 (R 2d ), K V u ∈ L 2 (R 2d
) . The question about the compactness of the resolvent combined with subelliptic estimates is intimately related with the return to the equilibrium or exponential decay estimates. As pointed out in [HerNi] and [HeNi], the analysis of K V is also strongly related to the one of the Witten Laplacian ∆ (0)
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Helffer and Nourrigat in [HeNo] provide accurate criteria for general polynomial potentials V (q) .

Within this maximal hypoelliptic analysis of ∆ (0)

V there is a recurrent interplay between qualitative estimates and quantitative estimates in terms of the size of the coefficients of the polynomial V (q) . The general idea is that the study of the operator ∆ (0)

V as q → ∞ when V is a degree r polynomial, is reduced to a quantitative version of subelliptic estimates for ∆ (0) τ V , where V belongs to some family of polynomials related to V with degree less than r , and τ is a large parameter.

"Quantitative estimates" means that we consider subelliptic estimates with a good and optimal control of the constant with respect to the parameter τ . Remember also that the compactness of the resolvent on ∆ (0)

V obtained by maximal hypoelliptic techniques , relies on the fact that no polynomial V of the family associated with V admits a local minimum. It shows in particular that the compactness of the resolvent of ∆ (0) +V and ∆ (0) -V differ and the first non trivial example comes with the potential ±V (q 1 , q 2 ) = ±q 2 1 q 2 2 in R 2 . For the Kramers-Fokker-Planck operator K V , no sufficient condition until the recent work by Wei-Xi Li [Li2] exhibited such a different behavior.

We hope to develop the same strategy for the non self-adjoint operator K V as for the Witten Laplacian ∆ (0)

V , namely try to get the optimal subelliptic estimates for some class of polynomial functions V (q) , by making use of quantitative estimates for some lower degree polynomials. The case d • V ≤ 2 for which the Weyl symbol of K V is a polynomial of degree ≤ 2 in the variable (q, p, ξ q , ξ p ) allows a lot of exact analytic calculations and was already deeply studied in [Hor][Sjo] [HiPr][Vio][Vio2] [AlVi]. Nevertheless exploiting those exact analytic expressions for the semigroup kernel or symbol (Mehler's type formulas) or for the spectrum does not solve completely the question of optimal quantitative subelliptic estimates for the non self-adjoint operator K V . The semiclassical regime which can be handled quite accurately via symbolic calculus gives results after rescaling essentially when the transport part p∂ q -∂ q V (q)∂ p is small compared to the diffusive-friction part -∆p+p 2 2 . Actually, we are mainly interested in the other regime where the Hamiltonian dynamics is stronger than the diffusive and friction part. The difficulty then appears clearly, because understanding the operator K V requires the understanding of the Hamiltonian dynamics associated with p∂ q -∂ q V (q)∂ p which, for a general polynomial V exhibits a rich variety of phenomena, and which, for a polynomial of degree ≤ 2, already contains the three types of dynamics : a) elliptic (bounded trajectories when V is a positive definite quadratic form) ; b) hyperbolic (trajectories escaping exponentially quickly in time to infinity when V is a negative definite quadratic form) ; and c) parabolic (trajectories escaping polynomially quickly in time to infinity when V is linear).

At a more fundamental level, understanding the operator K V when the transport term is dominant also proceeds in the same direction as Bismut's program : in [Bis1], Bismut
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introduced his hypoelliptic Laplacian in order to interpolate Morse theory (in the high diffusion-friction regime via the Witten Laplacian) and the topology of loop spaces (dominant transport term). The difficult part with a dominant transport term was understood only for the geodesic flow on symmetric spaces making use of the specific algebraic structure in [Bis2].

With this respect our simpler case also requires a better understanding of the underlying algebra, and it appeared that after using the general FBI-techniques the Kramers-Fokker-Planck evolution with quadratic potentials, even in dimension d = 1 , is reduced to some linear dynamics on C 4 which are easily computed after elucidating some quaternionic structure. In this specific case, this also completes the unfruitful attempts in [HeNi], Section 9.1, to exhibit some useful nilpotent Lie algebra structure for Kramers-Fokker-Planck operators. Actually, quaternions and Pauli matrices are related to the su(2) Lie algebra, so the Lie algebra structure decomposition useful to the analysis of Kramers-Fokker-Planck operators with polynomial potentials is certainly not nilpotent.

Denoting

O p = 1 2 (D 2 p + p 2 )
and

X V = p∂ q -∂ q V (q)∂ p ,
we can rewrite the Kramers-Fokker-Planck operator K V defined in (2.1.1) as

K V = X V + O p .
In this work, we are mainly based on recent publications by Hitrik, Pravda-Starov, Viola, and Aleman [AlVi], [START_REF] Viola | The elliptic evolution of non-self-adjoint degree-2 Hamiltonians[END_REF], and [HPV2] which deal with operators having polynomial symbols of degree less than or equal to two.

Notations :

Tr + = ν i>0 ν i , Tr -= - ν i ≤0 ν i , A = max{(1 + Tr + ) 2/3 , 1 + Tr -} , B = max{|λ 1 | 4/3 , 1 + Tr - (log(2 + Tr -)) 2 } .
The main goal of this work is the following subelliptic estimates.

Theorem 2.1.1. Let V (q) be a potential as in (2.1.2) or (2.1.3). Then there exists a constant c > 0 that does not depend on V such that the subelliptic estimate with a Chapitre 2 : Structure quaternionique et analyse des opérateurs de KFP avec polynômes de degrés inférieur à 3 (article rédigé en anglais) remainder term

K V u 2 L 2 (R 2d ) + A u 2 L 2 (R 2d ) ≥ c O p u 2 L 2 (R 2d ) + X V u 2 L 2 (R 2d ) + ∂ q V (q) 2/3 u 2 L 2 (R 2d ) + D q 2/3 u 2 L 2 (R 2d ) (2.1.4)
holds for all u ∈ D(K V ).

Theorem 2.1.2. Let V (q) as in (2.1.2) or (2.1.3). Then there is a constant c > 0 independent of the polynomial V so that the subelliptic estimate without a remainder

K V u 2 L 2 (R 2d ) ≥ c 1 + A B O p u 2 L 2 (R 2d ) + X V u 2 L 2 (R 2d ) + ∂ q V (q) 2/3 u 2 L 2 (R 2d ) + D q 2/3 u 2 L 2 (R 2d )
holds for all u ∈ D(K V ).

The two previous Theorems are both consequences of the following result.

Proposition 2.1.3. Let V (q) as in (2.1.2) or (2.1.3). Then there exists a constant c > 0, independent of V , such that

d i=1 |D q i |e -t(K V + √ A) L(L 2 (R 2d )) + |∂ q i V (q)|e -t(K V + √ A) L(L 2 (R 2d )) ≤ c t 3 2
for all t > 0.

Moreover,

K -1 V L(L 2 (R 2d )) ≤ +∞ 0 e -tK V L(L 2 (R 2d )) dt ≤ c √ B .

Reduction to a one-dimensional problem

Interpolation results of Lunardi (see Remark 5.11, Theorem 5.12 and Corollary 5.13 in [Lun]) show that the first inequality of Proposition 2.1.3 combined with the fact that

|Re [O p , X V ]u, u | ≤ C ( |D q | 2 3 u 2 + |∂ q V (q)| 2 3 u 2 ) + O p u 2 44 2.
2 Reduction to a one-dimensional problem for all u ∈ D(K V ) (where > 0 is small enough), implies the subelliptic estimates given in Theorem 2.1.1. Theorem 2.1.2 is then a consequence of Theorem 2.1.1 and the second inequality of Proposition 2.1.3. Details are given below.

Proof of Proposition 2.1.3. Since this result is expressed in terms of the semigroup, it can be studied by a separation of variables for a potential of the form (2.1.2) or (2.1.3). Actually e -tK V is a product of commutative contraction semigroups with respect to each variable (q j , p j ), and it suffices to write

d i=1 M i e -t(K V + √ A) L(L 2 (R 2d )) ≤ d i=1 M i e -t(K V i (q i ) +α i ) L(L 2 (R 2 )) M i = |D q i | or M i = |∂ q i V (q)| ,
where V i (q i ) denotes the one-dimensional potential in the q i variable, with V 1 (q 1 ) =

ν 1 q 2 1 2 or V 1 (q 1 ) = λ 1 q 1 , V i (q i ) = ν i q 2 i 2 for i ≥ 2 , α i = |ν i | 1/2 if ν i < 0 , α i = ν 1/3 i if ν i > 0 and α i = 0 if ∂ 2 q i V = 0 .
The second estimate of Proposition 2.1.3 is even simpler. Hence Proposition 2.1.3 will be the result of a careful analysis of the three one-dimensional potentials V (q) = ± νq 2 2 , ν > 0 , and V (q) = λ 1 q , λ 1 ∈ R , developed in the next sections.

Proof of Theorem 2.1.1. In this proof we use nearly the same notations as in [Lun] (Remark 5.11, Theorem 5.12 and Corollary 5.13). Set

T (t) = e -t( √ A+K V ) , L 2 = L 2 (R 2d ) , E = {u ∈ L 2 (R 2d ), qu, ∂ q u ∈ L 2 (R 2d )}
where E is equipped with the norm

u 2 E = d i=1 |D q i |u 2 L 2 (R 2d ) + |∂ q i V (q)|u 2 L 2 (R 2d ) + u 2 L 2 (R 2d ) .
Applying Lemma 2.3.4 and Proposition 2.3.1, we obtain by separation of variables

T (t) L(L 2 ,E) ≤ c t 3 2
for all t > 0 .

If m = 3 and β = 1 2 , then by Theorem 5.12 in [Lun], one has the following embedding of real interpolation spaces

L 2 , D ( √ A + K V ) 3 θ 2 ,p ⊂ L 2 , E θ,p
(2.2.1)
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for all θ ∈ (0, 1), p ∈ [1, +∞]. In particular for θ = 2 3 , [L 2 , E] 2 3 = (L 2 , E)2 3 ,2 = {u ∈ L 2 , |D q i | 2 3 u ∈ L 2 , |∂ q i V (q)| 2 3 u ∈ L 2 for all 1 ≤ i ≤ d} , (2.2.2)
where the complex interpolation space [L 2 , E]2 3 is equipped with the norm

u [L 2 ,E] 2 3 = d i=1 |D q i | 2 3 u 2 L 2 (R 2d ) + |∂ q i V (q)| 2 3 u 2 L 2 (R 2d ) + u 2 L 2 (R 2d ) .
Moreover in view of Remark 5.11 and Corollary 5.13 in [Lun],

L 2 , D (

√ A + K V ) 3 1 3 ,2 = D( √ A + K V ) (2.2.3)
(since L 2 is a Hilbert space and ( √ A + K V ) is a maximal accretive operator). Thus taking into account (2.2.1), (2.2.2) and (2.2.3)

D( √ A + K V ) ⊂ {u ∈ L 2 , |D q i | 2 3 u ∈ L 2 , |∂ q i V (q)| 2 3 u ∈ L 2 for all 1 ≤ i ≤ d} .
Hence there exists a constant c > 0 such that

d i=1 |D q i | 2 3 u 2 + |∂ q i V (q)| 2 3 u 2 L 2 ≤ c ( √ A + K V )u 2 L 2
(2.2.4) holds for all u ∈ D(K V ).

Write for u ∈ D(K V ), (

√ A + K V )u 2 L 2 = ( √ A + O p )u 2 L 2 + X V u 2 L 2 + 2Re [O p , X V ]u, u , (2.2.5) so |2Re [O p , X V ]u, u | ≤ d i=1 Re u, D p i D q i + p i ∂ q i V (q) u ≤ d i=1 |Re u, (D p i D q i )u | + |Re u, p i ∂ q i V (q)u | ≤ d i=1 u, |p i ||∂ q i V (q)|u + u, |D p i ||D q i |u ≤ d i=1 u, |p i | 4 u + c u, |∂ q i V (q)| 4 3 u + u, |D p i | 4 u + c u, |D q i | 4 3 u (2.2.6) ≤ c O p u 2 L 2 + c ( √ A + K V )u 2 L 2 ,
where (2.2.6) is due to the Young inequality ts ≤ 1 4 t 4 + 3 4 s 3 4 for all t, s ≥ 0 and the last line is a consequence of (2.2.4).

Therefore, combining the last inequality with (2.2.5), we obtain (

√ A + K V )u 2 L 2 ≥ ( √ A + O p )u 2 L 2 + X V u 2 L 2 -c O p u 2 L 2 + c ( √ A + K V )u 2 L 2 ≥ (1 -c ) ( √ A + O p )u 2 L 2 + X V u 2 L 2 -cc ( √ A + K V )u 2 L 2
for all u ∈ D(K V ).

To complete the proof, it is enough to use the above inequality with (2.2.4) and the fact that

2 A u 2 L 2 + K V u 2 L 2 ≥ ( √ A + K V )u 2 L 2 for all u ∈ D(K V ).
Proof of Theorem 2.1.2. If Tr -+ |λ 1 | = 0, by Proposition 2.1.3, there exists a constant c > 0 such that

K -1 V L(L 2 (R 2d )) = +∞ 0 e -tK V dt L(L 2 (R 2d )) ≤ +∞ 0 e -tK V L(L 2 (R 2d )) dt ≤ c √ B .
Consequently, for all u ∈ D(K V ),

u 2 L 2 (R 2d ) ≤ c 2 B K V u 2 L 2 (R 2d ) .
Combining the above inequality, along with (3.1.5), one gets immediately the global subelliptic estimates

K V u 2 L 2 (R 2d ) ≥ c 1 + A B O p u 2 L 2 (R 2d ) + X V u 2 L 2 (R 2d ) + ∂ q V (q) 2/3 u 2 L 2 (R 2d ) + D q 2/3 u 2 L 2 (R 2d ) (2.2.7) for all u ∈ D(K V ).
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Subelliptic estimates with remainder for non-degenerate one-dimensional potentials

The operator K V with a potential V (q) = ∓ νq 2 2 = -e 2iα νq 2 2 (where ν > 0 is a parameter and α ∈ {0, π 2 }), is unitarily equivalent to

K ν,α = 1 2 (-∂ 2 p + p 2 ) + e iα √ ν e -iα p∂ q + e 2iα q∂ p = O p + zX α
where z := e iα √ ν and X α := i(e -iα pD q + e iα qD p ). Actually introducing the possibly complex parameter z allows us to use the same computations for both cases because they involve entire functions of z ∈ C . On the other hand, some identities make sense only when α ∈ 0, π 2 , particularly those involving O q (the harmonic oscillator in q) or the symplectic product. Below we sum up the cases to be studied :

V (q) α z -νq 2 2 0 √ ν +νq 2 2 π 2 i √ ν
In this one dimensional case, we use the following notations :

O q = 1 2 (D 2 q + q 2 ) , O e iα q = 1 2 (e -2iα D 2 q + e 2iα q 2 ) , O p = 1 2 (D 2 p + p 2 ) , X α = i(e -iα pD q + e iα qD p ) , Y α = i(e iα pq -e -iα D q D p ) ,
where α ∈ 0, π 2 and O e iα q = e 2iα O q in the final applications.

The Hamilton map written as a matrix equals

H Q :=   q ξx q ξξ -q xx -q xξ   ,
where q(q, p, ξ q , ξ p ) is the Weyl-symbol of the operator Q, meaning Q = q w (q, p, D q , D p ) = q w (x, D x ) , x = (q, p) :

Qu(x) = R 4d e i(x-x ).ξ q x + x 2 , ξ u(x ) dξ (2π) 2d dx .
We use the nonstandard notation where H Q is indexed by the operator Q instead of the symbol q to avoid introducing redundant notation for the symbols of each operator considered and to reserve q for the position variable q ∈ R d throughout.

Subelliptic estimates with remainder for non-degenerate one-dimensional potentials

Noticing that O p , O q , O e iα q , X α , Y α and K ν,α have quadratic symbols, the corresponding Hamilton maps are written accordingly H Op , H Oq , H O e iα q , H Xα , H Yα and H Kν,α . Let E := H O e iα q -Op , I := H -O e iα q -Op , J := H -Xα , and K := H Yα denote respectively the Hamiltonian matrices associated to the operators O e iα q -O p , -O e iα q -O p , -X α and Y α . Then one has

E =     0 0 e -2iα 0 0 0 0 -1 -e 2iα 0 0 0 0 1 0 0     , I =     0 0 -e -2iα 0 0 0 0 -1 e 2iα 0 0 0 0 1 0 0     , J =     0 -ie -iα 0 0 -ie iα 0 0 0 0 0 0 ie iα 0 0 ie -iα 0     , K =     0 0 0 -ie -iα 0 0 -ie -iα 0 0 -ie iα 0 0 -ie iα 0 0 0     .
Note that E commutes with I, J, K and IJ = K with the relations

E 2 = I 2 = J 2 = K 2 = -1 for all α ∈ R , (2.3.1) and E = E, I = I, J = -e 2iα J, K = -e 2iα K when α ∈ {0, π/2} . (2.3.2)
These relations, IJ = K, and (2.3.1) ensure that (1, I, J, K) can be considered algebraically as a basis of (bi-)quaternions. Note in particular that

H Op = - 1 2 (E + I) , H Xα = -J H Yα = K , H Kν,α = - 1 2 (E + I + 2zJ)
for all α ∈ R, while the relations

0 -Id R 2 Id R 2 0 = sin(α)E + cos(α)I , H Oq = e 2iα 2 (E -I)
hold for α ∈ {0, π 2 } . The commutation property with the matrix E can be interpreted as follows at the operator level : consider the two commutators O p , X α = iY α and O e iα q , X α = iY α . Then the operator O e iα q -O p commutes with O p and X α . Once this reduction is done, the quaternionic structure can be guessed as well from the operator level after computing all the commutators of O p , O e iα q , X α and Y α .

General estimate when

V (q) = ± νq 2 2 , ν > 0 Proposition 2.3.1.
Let ν > 0 be a parameter and α ∈ 0, π 2 . There exists a constant C > 0, independent of ν, such that ν O q e -t(Kν,α+ √ ν)

L(L 2 (R 2 ) ≤ C t 3 2
holds for all t > 0.

Lemma 2.3.2. One can find a function δ 0 (t) > 0 , specified below in (2.3.8)(2.3.9), defined in [0, +∞[ such that for all δ(t) ∈ [0, δ 0 (t)[ e δ(t)Oq e -tKν,α L(L 2 (R 2 )) ≤ 1 is satisfied for all t > 0.

Proof. The exact classical quantum correspondence, valid for Q j = q w j , j = 1, 2, 3, when q j are complex-valued quadratic forms, with associated Hamilton maps H Q j (alternative notation of H q j with our convention) and positive Hamilton flows exp H Q j (see [Hor] [Vio]), says that exp

H Q 1 exp H Q 2 = exp H Q 3 ⇐⇒ e -iQ 1 e -iQ 2 = ±e -iQ 3 .
We will determine conditions such that the canonical transformation exp H iδ(t)Oq exp H -itKν,α is strictly positive in the sense defined in (2.3.5). Working from the Hamilton flow, one can therefore compute exactly ([Vio2], Proposition 4.8) a compact operator of the form e -iQ 2 for Q 2 quadratic such that e -δ(t)Oq e -iQ 2 = e -iδ(t)(i -1 Oq) e -iQ 2 = ±e -it(i -1 Kν,α) = ±e -tKν,α

Applying this equality to the dense set of linear combinations of Hermite functions, this shows that e -tKν,α takes L 2 (R 2 ) to the domain of e δ(t)Oq with the estimate

e δ(t)Oq e -tKν,α L(L 2 (R 2 )) = e -iQ 2 L(L 2 (R 2 )) ≤ 1.
We will compute e iδ(t)H Oq e -itH Kν,α which will be done by using biquatertionic expressions. The compactness of e -iQ 2 , and the fact that its norm is bounded by 1, is a consequence of the positivity condition (2.3.5) which will be checked explicitly.

Subelliptic estimates with remainder for non-degenerate one-dimensional potentials

Set, for all t ≥ 0, κ(t) = e -itH Kν,α and κ 0 (δ) = e iδ(t)H Oq , and consider the canonical transformation κ(t) := e -itH Kν,α = e i t 2 (E+I+2zJ) for all t ≥ 0. Let n 1 denote

n 1 = N (I + 2zJ) = √ 1 + 4z 2 = 0 when z = ± i 2 such that v = I+2zJ n 1 satisfies v2 = -1 .
Using the fact that E commutes with I and J, and the formula (2.A.1) ,

κ(t) = e i t 2 E e i t 2 n 1 v = e i t 2 E ch( tn 1 2 ) + i sh( tn 1 2 ) n 1 (I + 2zJ) =: e i t 2 E C(t) + i S(t)(I + 2zJ) . (2.3.3)
The functions R t → C(t) and R t → S(t) do not depend on the choice of the square root √ 1 + 4z 2 , because ch is an even function and sh an odd function. Moreover, they are real when z ∈ R ∪ iR , which corresponds to z = e iα √ ν , α ∈ 0, π 2 . On the other hand, κ 0 (δ) = e -iδ(t)H Oq = e (and only in those cases mod π). As established in [START_REF] Viola | The elliptic evolution of non-self-adjoint degree-2 Hamiltonians[END_REF], it is possible to write e δ(t)Oq e -tKν,α = e -iQ 2 with Q 2 = q w 2 , with e -iQ 2 a compact operator , when the canonical transformation κ 0 κ satisfies the strict positivity condition i σ κ 0 κz, κ 0 κz -σ z, z > 0 for all z ∈ C 4 \ {0} .

(2.3.5)

This condition is equivalent to the condition that the Hermitian matrix

i (κ 0 κ) * σκ 0 κ -σ = i κ * κ * 0 σκ 0 κ -σ = i κ * κ 0 σκ 0 κ -σ ,
is positive definite, or equivalently that

κ 0 (iσ)κ 0 -(κ * ) -1 (iσ)(κ) -1 = κ 0 (δ)(iσ)κ 0 (δ) -κ * (-t)(iσ)κ(-t)
is positive definite.

Since E commutes with I, J and K, the spectral decomposition of E allows us to study 2-by-2 matrices instead of 4-by-4 matrices : T * ± (iE)T ± = ±Id , where

T ± = 1 √ 2     1 0 0 1 ∓ie ±2iα 0 0 ±i     , T * ± T ± = 1 0 0 1 . Letting E := T * ± ET ± = ∓iId = ∓i 0 0 ∓i , I := T * ± IT ± = ±i 0 0 ∓i , J := T * ± JT ± = 0 -ie -iα -ie iα 0 , K := T * ± KT ± = 0 ±e -iα ∓e iα 0 ,
we get

T * ± κ 0 (δ)(iσ)κ 0 (δ)T ± = e ±δ(t)e 2iα ± sin(α)c(t) -s(t) cos(α) + i cos(α)c(t) ∓ sin(α)s(t) I , (2.3.6)
where c(t) = ch(δ(t)e 2iα ) and s(t) = sh(δ(t)e 2iα ) . Similarly,

T * ± κ * (-t)(iσ)κ(-t)T ± = e ∓t ± sin(α) C 2 (t) + (1 -(2z) 2 )S 2 (t) -2 cos(α)C(t)S(t) + i cos(α) C 2 (t) + (1 -(2z)
2 )S 2 (t) I ∓ 2i sin(α)C(t)S(t) I + 4zi cos(α)S 2 (t) J ∓ 4z sin(α)S 2 (t) K .

(2.3.7)

Taking into account (2.3.6) and (2.3.7),

T * ± κ 0 (δ)(iσ)κ 0 (δ)T ± -T * ± κ * (-t)(iσ)κ(-t)T ± = ±e ±δ(t)e 2iα sin(α)c(t) ∓ cos(α)s(t) + e ∓t ∓ sin(α)(1 + 2S 2 ) + 2 cos(α)CS + i e ±δ(t)e 2iα cos(α)c(t) ∓ sin(α)s(t) -e ∓t cos(α)(1 + 2S 2 (t)) ∓ 2 sin(α)C(t)S(t) I -4zie ∓t cos(α)S 2 (t) J ± 4ze ∓t sin(α)S 2 (t) K =e ∓t a + b I + c J + d K .
The determinant of the Hermitian matrix

e ±t T * ± κ 0 (δ)(iσ)κ 0 (δ)T ± -T * ± κ * (-t)(iσ)κ(-t)T ± is equal to a 2 + b 2 + c 2 + d 2 = 1 -e ±t (2 + 4S 2 -e ±t ) ∓ e ±t (1 -e ±2δ(t)e 2iα ) 2CS ∓ (1 + 2S 2 -e ±t ) .

Subelliptic estimates with remainder for non-degenerate one-dimensional potentials

Let δ 0 (t) > 0 be the function which cancels the determinant, or equivalently for which one has, for all t > 0, 2 2S 2 -(ch(t) -1) = ∓(1 -e ±2δ(t)e 2iα ) 2CS + sh(t) ∓ 2S 2 -(ch(t) -1) .

After some computation, we find that this function is independent of the sign in the expression above and is given by

δ 0 (t) = e -2iα 2 ln 1 - 2A(t) 2C(t)S(t) + sh(t) + A(t) , (2.3.8)
where

A(t) := 2S 2 (t) -(ch(t) -1) .
(2.3.9)

We know that, when δ = 0 and α ∈ {0, π 2 }, the Hamilton flow κ(t) is positive because e -tK ν,0 is a compact operator (see [HeNi][HiPr]). By connectedness of the set of positive definite hermitian matrices and because the result holds for δ(t) = 0, the flow κ 0 (δ)κ(t) is a positive canonical transformation so long as the determinant is positive on

[0, δ]. Therefore δ(t) ∈ [0, δ 0 (t)[ implies e δ(t)Oq e -tKν,α L(L 2 (R 2 )) ≤ 1 ,
because any such compact Schrödinger evolution has norm less than 1 (see [START_REF] Viola | The elliptic evolution of non-self-adjoint degree-2 Hamiltonians[END_REF]).

Proof of Proposition 2.3.1. When 0 < 0 < 1 , there exists a constant c > 0 independent of ν such that δ 0 (t) ≥ cνt 3 holds for all 0 < t ≤ t 0 := 0 1+|z| = 0 1+ √ ν . This can be seen via the expansion

1 2 ln 1 - 2A(t) A(t) + 2C(t)S(t) + sh(t) = z 2 12 t 3 + O (1 + |2z| 2 ) 2 t 5 ,
which is uniform with respect to the parameter ν for all t ∈]0, t 0 ] .

We write the quantity ν O q e -t(Kν,α+ √ ν)

L(L 2 (R 2 )) in the form      ν δ(t) δ(t) O q e -δ(t)Oq e δ(t)Oq e -tKν,α e -t √ ν L(L 2 (R 2 )) if 0 < t ≤ t 0 , √ νe -t √ ν
O q e -δ(t 0 )Oq e δ(t 0 )Oq e -t 0 Kν,α e -(t-t 0 )Kν,α

L(L 2 (R 2 )) if t ≥ t 0 ,
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where Lemma 2.3.2 is applied with δ(t) = δ 0 (t) 2 . For both cases we get the upper bounds

                           ν δ(t) ≤ √ 2 √ ct 3 2 δ(t)O q e -δ(t)Oq ≤c . e δ(t)Oq e -tKν,α ≤1 . e -t √ ν ≤1 if 0 < t ≤ t 0 , (1 + √ ν) 3 2 e -t √ ν √ ν (1 + √ ν) 3 2 O q e -δ(t 0 )Oq ≤ √ ν (1+ √ ν) 3 2 √ δ(t 0 )
. e δ(t 0 )Oq e -t 0 Kν,α

≤1

. e -(t-t 0 )Kν,α

≤e -(t-t 0 ) 2 if t ≥ t 0 .
For the second case t ≥ t 0 , we use

(1 + √ ν) 3 2 e -t( t 2 + √ ν) × √ ν (1 + √ ν) 3 2 δ(t 0 ) × e t 0 2 ≤ c 0 t 3/2 × √ 2ν (1 + √ ν) 3/2 cν 3 0 (1+ √ ν) 3 × e ε 0 2 ≤ c 0 t 3 2 .
This ends the proof of Proposition 2.3.1 and gives

√ ν(|D q | + |q|)e -t(Kν,α+ √ ν) L 2 ≤ C t 3 2
(2.3.10) for all t > 0.

2.3.2 Improved remainder, case V (q) = νq2 2 , ν 1

In this section we follow the explicit methods of Aleman and Viola in [Vio][AlVi].

Following [HSV][HPV] it makes use of an FBI transform, which in this specific case is nothing but the usual Bargmann transform

B 2 u(z) = 1 2 2/2 π (3×2)/4 R 2 e -(z-y) 2 -z 2 /2 2 u(y) dy with B 2 : L 2 (R 2 , dy) → L 2 (C 2 ; e -|z| 2 2 L(dz)) ∩ Hol(C 2 ) unitary. Lemma 2.3.3. For ν > 1 4 , the adjoint operator K * ν, π 2 = 1 2 (-∂ 2 p + p 2 ) - √ ν p∂ q -q∂ p = O p - √ νX π 2 is transformed via the Bargmann transform B 2 into B 2 (K ν, π 2 ) * B * 2 = t zM ∂ z , M = 0 - √ ν √ ν 1 . and [B 2 (e -tK ν, π

Subelliptic estimates with remainder for non-degenerate one-dimensional potentials

Proof. Although it may be proved by a direct computation, it is instructive as an illustration of the general method to follow the lines of [AlVi] or [Vio], Example 2.7. Remember that it is made in essentially two steps : 1) Write the operator, up to an additive constant, in the "supersymmetric" form t (D x -A + x)B(D x -A -x) after some real canonical transformation in R 2d (here d = 2) ; 2) transform the supersymmetric form into i t zM ζ after some linear complex canonical transformation associated with an FBI-transform.

Step 1 : The two variables (q, p) are gathered in the notation x = (q, p) ∈ R 2 , with dual variable ξ = (ξ q , ξ p ) ∈ R 2 . The hamiltonian matrix associated to K * ν, π 2 is given by

H K * ν, π 2 =     0 -i √ ν 0 0 i √ ν 0 0 1 0 0 0 -i √ ν 0 -1 i √ ν 0     . Set λ 1 , 2 = 1 i+ 2 in 1 2 the eigenvalues of H K * ν, π 2 
with their associated eigenvectors

t X 1 , 2 = 1, iλ 1 , 2 √ ν , (λ 1 , 2 ) 2 -ν λ 1 , 2 , i (λ 1 , 2 ) 2 -ν √ ν ,
where 1 , 2 ∈ {±1}. In the case α = π 2 , one has

n 1 = √ 1 -4ν = i √ 4ν -1 for ν > 1 4 .
As a first step we need to determine the following two spaces :

Λ -= Im λ<0 ker(H K * ν, π 2 -λI) = x A -x , x ∈ C 2 and Λ + = Im λ>0 ker(H K * ν, π 2 -λI) = x A + x , x ∈ C 2 ,
where A + and A -are two matrices in M 2 (C) satisfying t A ± = A ± and ±Im(A ± ) > 0.

The matrix A + is given by

A + = B -1 1+ B 2+
where

B 1+ =   1 -1-n 1 2 √ ν 1 -1+n 1 2 √ ν   and B 2+ =   i -i-in 1 2 √ ν i -i+in 1 2 √ ν   , so A + = iId . Similarly, A -= B -1 1-B 2-with B 1-=   1 1+n 1 2 √ ν 1 1-n 1 2 √ ν   and B 2-=   -i -i+in 1 2 √ ν -i -i-in 1 2 √ ν   ,
Chapitre 2 : Structure quaternionique et analyse des opérateurs de KFP avec polynômes de degrés inférieur à 3 (article rédigé en anglais) so A -= -iId . This means, after [Vio] formula (2.3), that the real canonical transformation on R 4 is nothing but the identity.

Hence it suffices to write K * ν, π 2 in the form

K * ν, π 2 = t (D x -A + x)B(D x -A -x) ,
for all x = (q, p) ∈ R 2 , where the matrix B is found by identification of the two sides :

B = 0 -√ ν 2 √ ν 2 1 2
.

Step 2 : Once A + and A -are known, the complex canonical transformation is given by

κ = 1 -i -(1 -iA + ) -1 A + (1 -iA + ) -1 , with associated quadratic phase ϕ A + : C 2 × C 2 → C ϕ A + (x, y) = i(x -y) 2 2 - 1 2 x, (1 -iA + ) -1 A + x = i (x -y) 2 2 - x 2 4 ,
which is the one entering in the definition of the associated FBI transform (which is

B 2 ) . The computation of B 2 K * ν, π 2 B * 2 then comes from Egorov's theorem K * ν, π 2 (κ -1 Z) = t Z t κ -1 -A + Id B(-A -, Id)κ -1 Z = i t zM ζ with M = (1 -iA + )B = 2B = 0 - √ ν √ ν 1 .
The weight e -2φ(z) L(dz) occurring in the range of B 2 is φ(z) = |z| 2 4 which is coherent with the formulas (2.6) and (2.7) of [Vio] ,

φ(x) = 1 4 |x| 2 -t xCx because C = (1 -iA + ) -1 (1 + iA + ) = 0 . Lemma 2.3.4. There exists a constant c > 0 independent of ν > 1, such that for all t > 0 and all u ∈ L 2 (R 2 ) , u t = e -t(K ν, π 2 +ν 1/3 ) u satisfies ν 2 u t 2 L 2 (R 2 ) + D q u t 2 L 2 (R 2 ) + qu t 2 L 2 (R 2 ) = √ ν( -∂ q + q √ 2 )e -t(K ν, π 2 +ν 1 3 ) u 2 L 2 (R 2 ) ≤ c t 3 u 2 L 2 (R 2 ) . (2.3.11)
Proof. Set a q = ∂q+q √ 2 and a * q = -∂q+q √ 2 so that a q a * q = a * q a q + 1 = 1 2 (D 2 q + q 2 + 1) . The identity

ν a * q e -t(K ν, π 2 +ν 1/3 ) u 2 L 2 (R 2 ) = ν e -t(K ν, π 2 +ν 1/3 ) u 2 L 2 (R 2 ) + ν a q e -t(K ν, π 2 +ν 1/3 ) u 2 L 2 ≤ νe -tν 1/3 u 2 L 2 (R 2 ) + ν a q e -t(K ν, π 2 +ν 1/3 ) u 2 L 2 56 
2.3 Subelliptic estimates with remainder for non-degenerate one-dimensional potentials reduces the problem to that of estimating √ νa q e -t(K ν, π 2 +ν 1/3 ) . By taking the adjoint, it suffices to prove that

√ νe -t(K * ν, π 2 +ν 1/3 ) a * q f L 2 (R 2 ) ≤ c t 3 2 f L 2 (R 2 ) (2.3.12)
is satisfied for all f ∈ L 2 (R 2 , dqdp) and for all t > 0 .

Conjugating by the Bargmann transform B 2 , the creation operator

B 2 a * q B * 2 = B 2 ( -∂q+q √ 2 )B * 2 = zq √ 2 is nothing but multiplication by the complex component z q in C 2 = C q × C p . The inequality (2.3.12) is therefore equivalent to √ νe -t(M z∂z+ν 1/3 ) z q u H φ ≤ c t 3 2 u H φ (2.3.13) for all u ∈ H φ = L 2 (C 2 , e -|z| 2 2 L(dz)) ∩ Hol(C 2 ) , with φ(z) = |z| 2 4 . Let u ∈ H φ , setting v(z) = z q u(z), one has e -tM z∂z v(z) = v(e -tM z) and it follows that e -tM z∂z z q u 2 H φ = C 2 |v(e -tM z)| 2 |(e -tM z) q | 2 e -2φ(z) L(dz) = e 2t Tr M C 2 |v(z )| 2 |z q | 2 e -φ(z ) e -2[φ(e tM z )-φ(z )] L(dz ) .
So our problem is reduced to the proof of the existence of a constant c > 0 that does not depend on ν such that sup

z∈C 2 |z q | 2 e -1 2 |e tM z| 2 -|z| 2 e -tν 1/3 ≤ c νt 3
for all t > 0.

Let us start by checking that z → φ(e tM z) -φ(z) defines a positive definite hermitian form for t > 0 .

From the expression given in Lemma 2.3.3 , M is easily written in terms of Pauli's matrices :

M = 1 2 Id - 1 2 σ 3 -i √ νσ 2 , with σ 1 = 0 1 1 0 ; σ 2 = 0 -i i 0 and σ 3 = 1 0 0 -1 .
Recall that Pauli's matrices are involutory :

σ 2 1 = σ 2 2 = σ 2 3 = -iσ 1 σ 2 σ 3 = Id ,
and that (Id, -iσ 1 , -iσ 2 , -iσ 3 ) can be interpreted as a basis of (bi)quaternions.

Using formula (2.A.1), one has for all t > 0

e tM = e t 2 C(t) + 2S(t)(- 1 2 σ 3 -i √ νσ 2 ) .
From this, we compute

(e tM ) * e tM = e t 1 + 2S 2 (t) -2C(t)S(t)σ 3 -4 √ νS 2 (t)σ 1 = e t (a + v) , with a = 1 + 2S 2 (t) and v = -2C(t)S(t)σ 3 -4 √ νs 2 1 (t)σ 1 .
The eigenvalues of (e tM ) * e tM are given by

λ ± = e t (a ± -N (v)) ,
where

N (v) = -2C(t)S(t) 2 -4 √ νS 2 (t) 2 = -4S 2 -4S 4 < 0 owing to (4ν -1)S 2 + C 2 = 1
, and where -N (v) is the usual square root.

In order to prove that the hermitian form z → φ(e tM z) -φ(z) = t z (e tM ) * (e tM ) -Id z is positive definite, it suffices to check λ -> 1 for all t > 0, λ + being clearly strictly larger than 1 . The eigenvalue λ -equals

λ -= e t (1 + (1 + S 2 ) -2|S| √ 1 + S 2 ) = e t e -2 Argsh |S|
which is larger than 1 if and only if sh(t/2) -|S| > 0 or [sh(t/2) -S(t)][sh(t/2) + S(t)] > 0 because sh(t/2) > 0 . This is true since both factors vanish at t = 0 with a positive derivative for t > 0 owing to ch(t/2) > 1 > ± cos( t 2 √ 4ν -1) . Now denote

r 1 = √ 4ν -1 ; Q t (z) = t z (e tM ) * (e tM ) -Id z and S t (z 1 , z 2 ) = t z1 (e tM ) * (e tM ) -Id z 2 for all z = (z 1 , z 2 ) ∈ C × C. Writing z q = l(z)
where l is a linear form with kernel ker l = Ce p , C 2 = Ce q ⊕ Ce p where e q = (1, 0) and e p = (0, 1) , we construct an orthonormal basis (e q , e p ) for Q t with e q = e q -S t (e p , e q ) S t (e p , e p ) In this new basis, z = αe q + βe p then l(z) = α l(e q ) and Q

e p =   1 4 √ ν S 2 (t) (1-e -t )
t (z) = |α| 2 Q t (e q ) + |β| 2 Q t (e p ).
This gives immediately

|z q | 2 e -Q t (z) 2 = |α| 2 |l(e q )| 2 e -|α| 2 Q t (e q )-|β| 2 Q t (ep) 2
. and then

sup z∈C 2 |z q | 2 e -1 2 |e tM z| 2 -|z| 2 = sup s∈R + |l(e q )| 2 e -sQ t (e q ) 2 = 2|l(e q )| 2 Q t (e q ) sup σ∈R + σe -σ = c 0 2|l(e q )| 2 Q t (e q ) = c 0 2 Q t (e q )
where c 0 = sup σ∈R + σe -σ and

Q t (e q ) = S t (e q , e q ) = 4 sh 2 ( t 2 ) -S 2 (t) (1 -e -t ) + 2S 2 (t) + 2S(t)C(t)
.

Recall that, in the case α = π 2 and for ν > 1 4 , we define C(t) = cos( tr 1 2 ) and S(t) = sin(

tr 1 2 ) r 1 .
All that remains is to control the following quotient for all t > 0 :

1 Q t (e q ) = (1 -e -t ) + 2S(t) S(t) + C(t) 4 sh 2 ( t 2 ) -S 2 (t) := N D .
• Starting with the case when t ≥ 4 r 1 ,

N = (1 -e -t ) + 2S(t) S(t) + C(t) ≤ 1 + 4 r 1 ≤ 2 .
On the other hand,

|S(t)| ≤ 1 r 1 ≤ t 4 ≤ 1 2 sh( t 2 ) implies D ≥ sh 2 ( t 2 ) .
Then

1 Q t (e q ) ≤ 2 sh 2 ( t 2 )
≤ 2e -t avec polynômes de degrés inférieur à 3 (article rédigé en anglais) for all t ≥ 4 r 1 . • Now observe that for t ≤ 4 r 1 , one has the following two expansions : On the other hand,

sh( t 2 ) + S(t) = +∞ k=0 (-1) k (r 2k 1 + (-1) k ) t 2k+1 2 2k+1 (2k + 1)! and sh( t 2 ) -S(t) = +∞ k=0 (-1) k (-r 2k 1 + (-1) k ) t 2k+1 2 2k+1 (2k + 1)! . Furthermore, sh( t 2 ) + S(t) -t - r 2 1 -1 48 t 3 ≤ (r 4 1 + 1)t 5 2 5 × 120 which implies 1 t sh( t 2 ) + S(t) ≥ 1 - (r 2 1 -1) 48 t 2 - r 4 1 + 1 2 5 × 120 t 4 ≥ 1 - 16 48 - 2 × 4 4 2 5 × 120 ≥ 1 - 1 3 - 2 15 = 8 15 . (2.3.14) Similarly, sh( t 2 ) -S(t) - r 2 1 + 1 48 t 3 ≤ (r 4 1 -1)t 5 2 5 × 120 = (r 2 1 + 1)t 3 48 × (r 2 1 -1)t 3 4 × 20 ≤ (r 2 1 + 1)t 3 48 (r 1 t) 2 4 × 20 ≤ (r 2 1 + 1)t 3 48 1 5 , which gives sh( t 2 ) -S(t) ≥ (r 2 1 + 1)t 3 48 × 4 5 . ( 2 
N = (1 -e -t ) + 2S(t) S(t) + C(t) = 2t + (1 - r 2 1 6 )t 3 - 1 + r 2 1 24 t 4 + O(r 4 1 t 5 ) = t 2 + (1 - r 2 1 6 )t 2 - 1 + r 2 1 24 t 3 + O((r 1 t) 4 ) .
2.4 Resolvent estimates when V (q) = -νq 2 2 , ν 1

Hence N ≤ ct for all t ≤ 4 r 1 and

1 Q t (e q ) = N D ≤ c νt 3 for all t ≤ 4 r 1 .
Thus there exists a constant c > 0 such that, for all u ∈ H φ ,

e -tM z∂z z q u 2 H φ ≤ c νt 3 u 2 H φ for all t ≤ 4 r 1 ce -t u 2 H φ for all t ≥ 4 r 1 which is equivalent to e -tK * ν, π 2 a * q v L 2 ≤ c √ νt 3 v L 2 for all t ≤ 4 r 1 ce -t v L 2 for all t ≥ 4 r 1 for all v ∈ D(K ν, π 2 
). From this, we deduce that a q e -t(ν

1 3 +K ν, π 2 ) v L 2 ≤ c √ νt 3 v L 2 if t ≤ 4 r 1 ce -ν 1 3 t v L 2 if t ≥ 4 r 1 for every v ∈ D(K ν, π
2 ). When 0 < t ≤ 4 r 1 , we clearly have

√ νa q e -t(ν 1 3 +K ν, π 2 ) L(L 2 (R 2 )) ≤ C t 3 2
.

When t ≥ 4 r 1 , we obtain the same result by writing

c √ νe -ν 1 3 t = c t 3 2 ν 1 3 t 3 2 e -ν 1 3 t
and noting that the function s 3/2 e -s is bounded on [0, ∞). This establishes the inequality for all t > 0 and completes the proof of the lemma.

2.4 Resolvent estimates when V (q) = -νq 2 2 , ν 1

In this section, we use the same notations as in the previous one and we take α = 0. Giving the exact norm of the semigroup e -tK ν,0 allows us to control the resolvent of the operator K ν,0 . When doing so, a logarithmic factor appears, with optimality up to an exponent.
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Lemma 2.4.1. For every t ≥ 0, one has

e -tK ν,0 L(L 2 (R 2 )) = e -Argsh S(t)
where

S(t) = sh( tn 1 2 ) n 1 = sh( t √ 4ν+1 2 ) √ 4ν + 1 .
Proof. Using (2.3.3) and (2.3.4), we directly compute that

(κ(t)) -1 κ(t) := e -itH K ν,0 e itH K ν,0 = e itE a + bI -cJ a + bI + cJ , with a = C(t), b = iS(t) and c = 2izS(t) . Note that a + bI -cJ a + bI + cJ = a 2 -b 2 + c 2 + v. Furthermore, a 2 + b 2 + c 2 = 1 and (a 2 -b 2 + c 2 ) 2 + N (v) = 1. It follows that N (v) = 1 -(a 2 -b 2 + c 2 ) 2 = 1 -(1 -2b 2 ) 2 = 4b 2 (1 -b 2 ). Denote sh(u) = √ -b 2 , so -N (v) = 2 sh(u) ch(u) = sh(2u).
The eigenvalues of (κ(t)) -1 κ(t) are given by

1 µ 1 = e t (a 2 -b 2 + c 2 + -N (v)) µ 1 = e -t (a 2 -b 2 + c 2 --N (v)) 1 µ 2 = e t (a 2 -b 2 + c 2 --N (v)) µ 2 = e -t (a 2 -b 2 + c 2 + -N (v)) .
Therefore (see [START_REF] Viola | The elliptic evolution of non-self-adjoint degree-2 Hamiltonians[END_REF] Theorem 1.3),

e -tK ν,0 L(L 2 (R 2 )) = (µ 1 1 µ 2 ) 1 4 = e -1 2 Argsh( √ -N (v)) = e -Argsh( √ -b 2 ) ,
where

-b 2 = S(t) 2 = sh( tn 1 2 ) n 1 2 .
Proposition 2.4.2. There exists some c > 0 such that, for all ν > c,

K -1 ν,0 L(L 2 (R 2 )) ≤ c log(ν) √ ν .
2.4 Resolvent estimates when V (q) = -νq 2 2 , ν 1

Proof. Observing that

K -1 ν,0 L(L 2 (R 2 )) = +∞ 0 e -tK ν,0 dt L(L 2 (R 2 )) ≤ +∞ 0 e -tK ν,0 L(L 2 (R 2 )) dt ,
we aim to obtain an upper bound of the right-hand side.

Using the exact norm of the semigroup generated by K ν,0 , we write

+∞ 0 e -tK ν,0 L(L 2 (R 2 )) dt = +∞ 0 e -Argsh sh( tn 1 2 ) n 1 dt = +∞ 0 1 sh( tn 1 2 ) n 1 + 1 + sh( tn 1 2 ) n 1 2 dt = log(ν) 0 2du sh(u) + n 2 1 + sh 2 (u) + +∞ log(ν) 2du sh(u) + n 2 1 + sh 2 (u) ≤ 2 log(ν) n 1 + +∞ log(ν) e -u du ≤ 2 log(ν) n 1 + 1 ν ≤ c log(ν) √ ν .
This completes the proof.

Optimality with a logarithmic factor

Proposition 2.4.3. One can find a function u ∈ L 2 (R 2 ) such that

K ν,0 u L 2 (R 2 ) ≤ c √ ν log(ν) u L 2 (R 2 )
where c > 0 is a constant that does not depend on the parameter ν 1.

Proof. We recall here that

K ν,0 = 1 2 (-∂ 2 p + p 2 ) + √ ν p∂ q + q∂ p = O p + √ νX 0 .
For all u ∈ D(K ν,0 ),

K ν,0 u 2 L 2 (R 2 ) ≤ 2 O p u 2 L 2 (R 2 ) + ν X 0 u 2 L 2 (R 2 ) ,
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then to prove the Proposition we will look for a function u ∈ L 2 (R 2 ) such that

O p u 2 L 2 (R 2 ) + ν X 0 u 2 L 2 (R 2 ) u 2 L 2 (R 2 ) ≤ c ν log(ν)
.

Consider the Gaussian

ϕ(q, p) = e -(q 2 +p 2 ) 2 √ π and set u(q, p) = 1 L L 0 e sX 0 ϕds = 1 L L 0 ϕ s (q, p)ds
where ϕ s (q, p) = e sX 0 ϕ(q, p) and L > 0 is a constant to be specified at the end of the proof.

One has

d ds ϕ s = X 0 (ϕ s ) = (p∂ q + q∂ p )ϕ s .
Let q(t), p(t) be the solution of the following system :

   d dt q = p d dt p = q
with (q(0), p(0)) = (q 0 , p 0 ). The solution is given by

   q(t) = ch(t)q 0 + sh(t)p 0 p(t) = sh(t)q 0 + ch(t)p 0 . The function ϕ s verifies d ds ϕ s (q(-s), p(-s)) = ∂ ∂s ϕ s - d ds q(-s)∂ q ϕ s - d ds p(-s)∂ p ϕ s = 0 , then ϕ s (q, p) = ϕ 0 (q(s), p(s)) = ϕ ch(s)q + sh(s)p, sh(s)q + ch(s)p = 1 √ π exp - ch(s)q + sh(s)p 2 + sh(s)q + ch(s)p 2 2 . 2.4 Resolvent estimates when V (q) = -νq 2 2 , ν 1 For all p ∈ [0, +∞], ϕ s L p = ϕ L p . In particular, ϕ s L 2 = ϕ L 2 = 1 .
Let's start by calculating X 0 u L 2 (R 2 ) :

X 0 u = 1 L L 0 X 0 e sX 0 ϕds = 1 L L 0 d ds ϕ s ds = 1 L (ϕ L -ϕ) .
As a result,

X 0 u 2 L 2 (R 2 ) = 1 L 2 ϕ L -ϕ 2 L 2 (R 2 ) = 1 L 2 ϕ L 2 L 2 (R 2 ) =1 + ϕ 2 L 2 (R 2 ) =1 -2 R 2 ϕ L ϕ dqdp = 2 L 2 1 - R 2 ϕ L ϕ dqdp .
We directly compute that

R 2 ϕ L (q, p)ϕ(q, p)dqdp = 1 π R 2 e - ch(L)q+sh(L)p 2 + sh(L)q+ch(L)p 2 2 e -q 2 +p 2 2 dqdp = 1 π R 2 e -1 2 2 ch 2 (L)q 2 +2 ch 2 (L)p 2 +4 sh(L) ch(L)qp dqdp = 1 π R 2 e -1 2 (q,p)A t (q,p) dqdp = 1 π (2π) 2 det(A) = 1 ch(L)
,

where

A =   2 ch 2 (L) 2 ch(L) sh(L) 2 ch(L) sh(L) 2 ch 2 (L)   . Then X 0 u 2 L 2 (R 2 ) = 2 L 2 1 - 1 ch(L) . (2.4.1)
Now, let's find a lower bound for u 2 L 2 (R 2 ) :

u 2 L 2 (R 2 ) = 1 L 2 L 0 L 0 Re ϕ s 1 , ϕ s 2 L 2 (R 2 ) ds 1 ds 2 = 2 L 2 L 0 L s 1 Re ϕ s 1 , ϕ s 2 L 2 (R 2 ) ds 2 ds 1 = s 2 =s 1 +s 2 L 2 L 0 L-s 1 0 Re ϕ s 1 , ϕ s 1 +s L 2 (R 2 ) ds ds 1 . Re ϕ s 1 +s , ϕ s 1 L 2 (R 2 ) = e s 1 X 0 ϕ, e (s 1 +s)X 0 ϕ L 2 (R 2 ) = e s 1 X 0 ϕ, e sX 0 ϕ L 2 (R 2 ) = R 2 ϕ s (q, p)ϕ(q, p)dqdp = 1 ch(s)
.

For L > 2 we obtain

u 2 L 2 (R 2 ) = 2 L 2 L 0 L-s 1 0 1 ch(s) ds ds 1 ≥ 2 L 2 L 2 0 L 2 0 1 ch(s) ds ds 1 ≥ 2 L 2 L 2 0 1 0 1 ch(s) ds ds 1 ≥ c L . (2.4.2) The final step is the upper bound of O p u 2 L 2 (R 2 ) : O p u 2 L 2 (R 2 ) = O p 1 L L 0 ϕ s (q, p)ds 2 L 2 (R 2 ) ≤ 1 L 2 L 0 O p ϕ s 2 L 2 (R 2 ) ds .
With O p = 1 2 (D 2 p + p 2 ), we want to compute

O p ϕ s L 2 (R 2 ) = e -sX 0 O p e sX 0 ϕ 0 L 2 (R 2 )
(because e -sX 0 is unitary and ϕ s = e sX 0 ϕ 0 ).

For any u ∈ L 2 (R 2 ), e sX 0 u(q, p) = u(e sM (q, p)) where e sM = ch s sh s sh s ch s .

Egorov's theorem gives that, for any symbol a(q, p, ξ q , ξ p ), e -sX 0 a w (q, p, D q , D p )e sX 0 = a w (e -sM (q, p), e sM (D q , D p )).

In particular, writing O q = 1 2 (D 2 q + q 2 ) as well,

e -sX 0 (p 2 + D 2 p )e sX 0 = (-sh(s)q + ch(s)p) 2 + (sh(s)D q + ch(s)D p ) 2 = sh 2 (s)q 2 -2 ch(s) sh(s)qp + ch 2 (s)p 2 + sh 2 (s)D 2 q + 2 ch(s) sh(s)D q D p + ch 2 (s)D 2 p = 2 ch 2 (s)O q + 2 sh 2 (s)O p + 2 ch(s) sh(s)(D q D p -qp) . 66 

Degenerate one-dimensional case

We have chosen ϕ 0 an eigenfunction of both O p and O q with eigenvalue 1 2 , and D q D p ϕ 0 = -qpϕ 0 . Therefore e -sX 0 O p e sX 0 ϕ 0 = 1 2 (ch 2 (s) + sh 2 (s)) -2 ch(s) sh(s)qp ϕ 0 .

This can be interpreted as the sum of products of the first two orthonormal Hermite functions : if

h 0 (x) = π -1/4 e -x 2 /2 , h 1 (x) = √ 2xh 0 (x) ,
then ϕ 0 (q, p) = h 0 (q)h 0 (p) and

e -sX 0 O p e sX 0 ϕ 0 = 1 2 (ch 2 (s) + sh 2 (s))h 0 (q)h 0 (p) -ch(s) sh(s)h 1 (q)h 1 (p).
This type of tensor product forms an orthonormal family, so by the Pythagorean relation the square of the norm can be computed as the sum of squares of the coefficients :

O p ϕ s 2 L 2 (R 2 ) = e -sX 0 O p e sX 0 ϕ 0 2 L 2 (R 2 ) = 1 4 (ch 2 (s) + sh 2 (s)) 2 + ch 2 (s) sh 2 (s) = 1 4 ch(4s) .
Thus we deduce that

O p u 2 L 2 ≤ 1 L 2 L 0 e 4s ds = 1 4L 2 (e 4L -1) ≤ 1 L 2 e 4L .
(2.4.3)

The estimates in (2.4.1) and (2.4.2) taken with (2.4.3), allow us to establish that

K ν,0 u 2 L 2 u 2 L 2 ≤ O p u 2 L 2 + ν X 0 u 2 L 2 u 2 L 2 ≤ c e 4L + ν 1 -1 ch(L)
L .

Now letting L = log(ν)

4

, we get the desired inequality

K ν,0 u 2 L 2 ≤ c ν log(ν) u 2 L 2 .
2.5 Degenerate one-dimensional case Lemma 2.5.1. Let λ 1 ∈ R be a parameter. Consider the operator

K 1 = p∂ q -λ 1 ∂ p + 1 2 (-∂ 2 p + p 2 -1)
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with domain D(K 1 ) = {u ∈ L 2 (R 2 ), K 1 u ∈ L 2 (R 2 )}.
There exists a constant c > 0 such that

(D 2 q + λ 2 1 )e -t(K 1 +1) L(L 2 (R 2 )) ≤ c t 3
holds for all t > 0.

Proof. For each ξ q fixed, there is a metaplectic operator on L 2 (R p ) which, via conjugation, takes ip.ξ q -iλ 1 D p to ip ξ 2 q + λ 2 1 while leaving O p invariant. Taking the direct integral of this rotation (whose angle depends on ξ q ) gives a unitary equivalence between the operator K 1 and

K 1 = 1 2 2ip D 2 q + λ 2 1 + (-∂ 2 p + p 2 -1) .
We also note that D 2 q + λ 2 1 is left invariant by the rotation in the variables (p, ξ p ).

It is shown in [START_REF] Viola | The elliptic evolution of non-self-adjoint degree-2 Hamiltonians[END_REF] that

e -i(t 1 +it 2 )P b L(L 2 (R)) = exp cos(t 1 ) -ch(t 2 ) sh(t 2 ) b 2
for all t 1 ∈ R and all t 2 < 0 , where

P b = 1 2 D 2 x + x 2 -1 + 2ibx-b 2 , b ∈ R.
Applying this result with t 1 = 0, t 2 = -t < 0 and b = b(ξ q ) = ξ 2 q + λ 2 1 , we obtain

D 2 q + λ 2 1 e -t K 1 L(L 2 (R 2 )) ≤ sup ξq∈R b 2 e -t(P b + b 2 2 ) L(L 2 (R 2 )) = sup ξq∈R b 2 e -t 2 b 2 e ( ch(t)-1 sh(t) )b 2
.

(We remark that this inequality can be strengthened to an equality by taking the tensor product of explicit optimisers for the norm of e -tP b with functions in q localized in phase space near the optimising ξ q .)

For all t ∈ [0, 1], denote f b (t) = b 2 e ( ch(t)-1 sh(t) -t 2 )b 2
, and

u(t) = ch(t)-1 sh(t) -t 2 = th( t 2 ) -t 2 < 0. Since max x∈R xe -ax = e -a
a when a > 0 , we get

b 2 t 3 exp u(t)b 2 ≤ -t 3 e u(t) u(t) =: F (t) .
The expansion u(t) = th( t 2 ) -t 2 = -t 3 24 + O(t 4 ) yields lim t→0 F (t) = 24 and the function F is bounded on the interval [0, 1] . Replacing b 2 with ξ 2 q + λ 2 1 , we conclude that, for t ∈ [0, 1] ,

(D 2 q + λ 2 1 )e -t(K 1 +1) L(L 2 (R 2 )) ≤ c t 3 . 68 2.A Biquaternions For all t ≥ 1, just write with t 0 = 1 2 , (D 2 q + λ 2 1 )e -t(K 1 +1) L(L 2 (R 2 )) ≤ (D 2 q + λ 2 1 )e -t 0 K 1 L(L 2 (R 2 )) ≤ c t 0 e -(t-t 0 )K 1 L(L 2 (R 2 )) ≤1 e -t 2 ≤ c t 3 .

2.A Biquaternions

We define a biquaternion W as follows :

W = a + bi + cj + dk
where a, b, c, d are complex numbers and i, j, k multiply according to the rules

i 2 = j 2 = k 2 = ijk = -1 ij = -ji = k jk = -kj = i ki = -ik = j .
For convenience we use a vector notation for biquaternions as follows :

W = a + v , v = bi + cj + dk .
The conjugate of a biquaternion W is given by conj

(W ) = a -bi -cj -dk .
The biquaternion ring B Q is isomorphic to the matrix ring M 2 (C). This can be seen via the following map :

f : B Q → M 2 (C) a + bi + cj + dk → M = a + bi c + di -c + di a -bi .
The "norm" N (W ) of a biquaternion W is

N (W ) = conj(W )W = det(M ) = a 2 + b 2 + c 2 + d 2 .
Note that the norm is homogeneous of degree 2 and may take complex values. In particular, a biquaternion W is invertible if and only if N (W ) = 0. In this case its inverse is given by inv(W ) = conj(W ) N (W ) .

Exponential and spectrum.

Let a + bi + cj + dk = a + v be a biquarternion such that N (v) = 0. In this case v = v √ N (v) verifies v 2 = -1.
Hence write

e a+v = e a e v = e a e v √ N (v) = e a +∞ k=0 ( v N (v)) k k! = e a +∞ k=0 (-1) k ( N (v)) 2k (2k)! + +∞ k=0 (-1) k ( N (v)) 2k+1 (2k + 1)! v = e a cos( N (v)) + sin( N (v)) N (v)) v .
(2.A.1)

The above computation do not depend on the choice of N (v) because cos is even and sin is odd. Finally the set of λ ∈ C such that (a + v -λ) is non-invertible can be explicitly determined :

(a + v -λ) is non-invertible if and only if 0 = N (a + v -λ) = (a -λ) 2 + N (v) if and only if λ ∈ a ± -N (v) .

Introduction and main results

Introduction and main results

The Kramers-Fokker-Planck operator reads

K V = p∂ q -∂ q V (q)∂ p + 1 2 (-∆ p + p 2 ) , (q, p) ∈ R 2d , (3.1.1)
where q denotes the space variable, p denotes the velocity variable, x.y = d j=1

x j y j ,

x 2 = d j=1
x 2 j and the potential

V (q) = |α|≤r V α q α is a real-valued polynomial function on R d with d • V = r.
There have been several works concerned with the operator K V with diversified approaches. In this article we impose some kind of assumptions on the polynomial potential V (q), so that the Kramers-Fokker-Planck operator K V admits a global subelliptic estimate and has a compact resolvent. This problem is closely related to the return to the equilibrium for the Kramers-Fokker-Planck operator (see [HeNi][Nie] [Nou]). As mentioned in [HerNi] and [Nie], the analysis of K V is also strongly linked to the one of the Witten Laplacian ∆

V = -∆ q + |∇V (q)| 2 -∆V (q). This relation yielded the Helffer-Nier conjecture stated by Helffer and Nier :

(1 + K V ) -1 compact ⇔ (1 + ∆ (0) V ) -1 compact . (3.1.2)
This conjecture has been partially solved in basic cases (see for example [HeNi], [HerNi] and [Li]), whereas for the operator ∆ (0)

V very general criteria of compactness work for polynomial potential V (q) of arbitrary degree. These last criteria require an analysis of the degeneracies at infinity of the potential and rely on extremely sophisticated tools of hypoellipticity developed by Helffer and Nourrigat in the 1980's (see [HeNo], [Nie]). Among the the particularities of these last analyses, we mention that the compactness results obtained for degenerate potentials at infinity were not the same for ∆ (0) +V as ∆ (0) -V . The typical example which was considered is the case V (q 1 , q 2 ) = q 2 1 q 2 2 in dimension d = 2 : The operator ∆ (0) -V has a compact resolvent, while ∆ (0) +V has not.

In the case of the Kramers-Fokker-Planck operator, there have been extensive works concerned with the case d • V ≤ 2 (see [Hor][HiPr] [Vio][Vio1][AlVi] [BNV]). Nevertheless, as far as general potential is concerned, different kind of sufficient conditions on V (q) had been examined by Hérau-Nier [HerNi], Helffer-Nier [HeNi], Villani [Vil] and Wei-Xi Li [Li]. These first results considered only variants of the elliptic situation at the infinity (for non-degenerate potential), which did not distinguish the sign ±V (q). Lately a significant improvement of those works has been done by Wei-Xi Li [Li2] based on some multipliers methods. In [Li2], Wei-Xi Li showed that for potentials similar to V (q 1 , q 2 ) = q 2 1 q 2 2 the results for K ±V were the same as for ∆ (0) ±V , thus comforting the idea that the conjecture (3.1.2) is true.

The ultimate goal would be to develop a complete recurrence with respect to d • V for the Kramers-Fokker-Planck operator like it is possible to do for the Witten Laplacian as recalled in [HeNi] (cf. Theorem 10.16 page 106) and [Nie] by following the general approach of Helffer-Nourrigat in [HeNo] and [Nou]. Although we are not able to write a complete induction, we establish here subelliptic estimates for K V for a rather general class of polynomial potentials with criteria which distinguish clearly the sign of V (q). The asymptotic behaviour of those polynomials is governed by at most quadratic parameter dependent potentials, and the global subelliptic estimates in which arise some logarithmic weights are know to be essentially optimal in the quadratic case (see [BNV]).

Denoting

O p = 1 2 (D 2 p + p 2 ) ,
and

X V = p∂ q -∂ q V (q)∂ p ,
we can rewrite the Kramers-Fokker-Planck operator K V defined in (3.1.1) as

K V = X V + O p .
Notations : Throughout the paper we use the notation

• = 1 + | • | 2 .
For an arbitrary polynomial V (q) of degree r, we denote for all q ∈ R d

Tr +,V (q) = ν∈Spec(Hess V (q)) ν>0

ν(q) , Tr -,V (q) = -ν∈Spec(Hess V (q)) ν≤0

ν(q) . Furthermore, for a polynomial P ∈ E r := {P ∈ R[X 1 , ..., X d ], d • P ≤ r} and all natural number n ∈ {1, ..., r}, we define the functions R ≥n P : R d → R and R =n P : R d → R by

R ≥n P (q) = n≤|α|≤r ∂ α q P (q) 1 |α| , (3.1.3) R =n P (q) = |α|=n |∂ α q P (q)| 1 |α| . (3.1.4)
For arbitrary real functions A and B, we make also use of the following notation

A B ⇐⇒ ∃ c ≥ 1 : c -1 |B| ≤ |A| ≤ c |B| .

Introduction and main results

This work is essentially based on the recent publication by Ben Said, Nier, and Viola [BNV], which deals with the analysis of Kramers-Fokker-Planck operators with polynomials of degree less than 3. In this case we define the constants A V and B V by

A V = max{(1 + Tr +,V ) 2/3 , 1 + Tr -,V } , B V = max{min q∈R d |∇ V (q)| 4/3 , 1 + Tr -,V (log(2 + Tr -,V )) 2 } .
As proved in [BNV], there is a constant c > 0 such that the following global subelliptic estimate with remainder

K V u 2 L 2 (R 2d ) + A V u 2 L 2 (R 2d ) ≥ c O p u 2 L 2 (R 2d ) + X V u 2 L 2 (R 2d ) + ∂ q V (q) 2/3 u 2 L 2 (R 2d ) + D q 2/3 u 2 L 2 (R 2d ) (3.1.5)
holds for all u ∈ C ∞ 0 (R 2d ). Moreover, there exists a constant c > 0 such that

K V u 2 L 2 (R 2d ) ≥ c B V u 2 L 2 (R 2d ) , (3.1.6) 
holds for all u ∈ C ∞ 0 (R 2d ). Hence combining (3.1.5) and (3.1.6), there is a constant c > 0 so that

K V u 2 L 2 (R 2d ) ≥ c 1 + A V B V O p u 2 L 2 (R 2d ) + X V u 2 L 2 (R 2d ) + ∂ q V (q) 2/3 u 2 L 2 (R 2d ) + D q 2/3 u 2 L 2 (R 2d ) (3.1.7)
is valid for all u ∈ C ∞ 0 (R 2d ). The constants appearing in (3.1.5), (3.1.6) and (3.1.7) are independent of the potential V and depend only on the dimension d and the degree of the polynomial V . We recall here that for a smooth potential V ∈ C ∞ (R d ), our operator K V is essential maximal accretive when endowed with the domain C ∞ 0 (R 2d ) [HeNi] (cf. Proposition 5.5 page 44). As a result the domain of its closure is given by

D(K V ) = u ∈ L 2 (R 2d ), K V u ∈ L 2 (R 2d ) .
Consequently by density of C ∞ 0 (R 2d ) in D(K V ) all estimates stated in this paper, which are checked with C ∞ 0 (R 2d ) functions, can be extended to the domain of K V .

Given a polynomial V (q) with degree r greater than two, our result will require the following assumption after setting for κ > 0

Σ(κ) = q ∈ R d , |∇V (q)| 4 3 ≥ κ |Hess V (q)| + R ≥3 V (q) 4 + 1 ,
where |Hess V (q)| is the norm of the matrix (∂ 2 q i ,q j V (q)) 1≤i,j≤d .
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Assumption 1. There exist large constants κ 0 , C 1 > 1 such that for all κ ≥ κ 0 the polynomial V (q) satisfies the following properties

Tr -,V (q) > 1 C 1 Tr +,V (q) , for all q ∈ R d \ Σ(κ) with |q| ≥ C 1 , (3.1.8) moreover if R d \ Σ(κ) is not bounded lim |q|→+∞ q∈R d \Σ(κ) R ≥3 V (q) 4 |Hess V (q)| = 0 . (3.1.9)
Those assumptions and in particular the partition R d = Σ(κ) (R d \ Σ(κ)) have a simple interpretation. The region Σ(κ) is the one where the gradient dominates the Hessian and the higher order derivatives so that the analysis in this region is essentially the same as in the various elliptic cases discussed in [HerNi][HeNi] and [Li]. On the contrary, the Hessian dominates the gradient and the derivatives of higher degree in the region R d \ Σ(κ) and the accurate estimates of the quadratic model given by the second order Taylor expansion have to be used. Finally the parameter κ will be adjusted in the end of the proof so that the main subelliptic estimates control the error terms due to partitions of unity and Taylor expansions. Distinguishing the sign of the potential arises in particular when the region R d \ Σ(κ) is considered. Actually Tr +,V and Tr -,V play different roles in the accurate subelliptic estimate without remainder (3.1.7) for polynomials of degree less than 3.

Tarski-Seidenberg Theorem and some of its consequences reviewed in Appendix 3.B transforms the assumption (3.1.9) into R ≥3 V (q) 4 = O(|Hess V (q)| 1-ν ) as |q| → +∞ , q ∈ R d \ Σ(κ) , for some ν > 0 (with |Hess V (q)| → +∞ as |q| → +∞ , q ∈ R d \ Σ(κ)) . Alternatively one could simply assume from the beginning the existence of such a ν > 0 .

We mention here that one knows that for a potential V satisfying assumption 1, the resolvent of the Witten Laplacian ∆ (0)

V is compact (since the asymptotic models at infinity are of degree less than 3 without a local minimum. C.f Theorem 10.16 [HeNi] ). In Section 3.4 of this paper we provide some explicit families of polynomial potentials for which the conditions (3.1.8), (3.1.9) both hold.

Our main result is the following.

Theorem 3.1.1. Let V (q) be a polynomial of degree r greater than two verifying Assumption 1. Then there exists a strictly positive constant C V > 1 (depending on V ) such that

K V u 2 L 2 + C V u 2 L 2 ≥ 1 C V L(O p )u 2 L 2 + L( ∇V (q) 2 3 )u 2 L 2 + L( Hess V (q) 1 2 )u 2 L 2 + L( D q 2 3 )u 2 L 2 , ( 3 
.1.10)

Preliminary results

holds for all u ∈ D(K V ) where L(s) = s+1 log(s+1) for any s ≥ 1. Corollary 3.1.2. If V (q) is polynomial of degree greater than two that satisfies Assumption 1, then the Kramers-Fokker-Planck operator K V has a compact resolvent.

Démonstration. Proof of Corollary 4.1.3 Assume 0 < δ < 1. Define the functions f δ : R d → R by

f δ (q) = |∇V (q)| 4 3 (1-δ) + |Hess V (q)| 1-δ . From (3.1.10) in Theorem 3.1.1 there is a constant C V > 1 such that K V u 2 L 2 + C V u 2 L 2 ≥ 1 C V u, f δ u + L(O p )u 2 L 2 + L( D q 2 3 )u 2 L 2
, holds for all u ∈ C ∞ 0 (R 2d ) and all δ ∈ (0, 1). In order to prove that the operator K V has a compact resolvent it is sufficient to show that lim |q|→+∞ f δ (q) = +∞.

To do so, assume A > 0 and denote κ = A 1 1-δ . If q ∈ Σ(κ), one has

|∇V (q)| 4 3 (1-δ) ≥ κ 1-δ = A . If q ∈ R d \ Σ(κ) by (3.1.9) in Assumption 1, lim |q|→+∞ q∈R d \Σ(κ)
|Hess V (q)| = +∞. Hence there exists a constant η > 0 such that |Hess V (q)| 1-δ ≥ A for all q ∈ R d \ Σ(κ) with |q| ≥ η.

Remark 3.1.3. The results of Theorem 3.1.1 and Corollary 4.1.3 can be extended in the case when

V = V 1 + V 2 where V 1 is polynomial satisfying Assumption 1 and V 2 is a function in S(R d ).

Preliminary results

This work is essentially based on two main strategies. The first one consists in the use of a partition of unity which is the most important tool that allows one to pass from local to global estimates.

In this paper, given a polynomial V (q) we make use of a locally finite partition of unity with respect to the position variable q ∈ R d j∈N

χ 2 j (q) = j∈N χ 2 j R ≥3 V (q j )(q -q j ) = 1 (3.2.1)
where c d,r is a constant that depends only on the dimension d and the degree of V. Here the last inequality is due to the fact that for each index j there are finitely many j such that (∂ q χ j )χ j is nonzero.

Before stating the following lemma, we fix and remind some notations.

Notations 3.2.2. Let V be a polynomial of degree r larger than two. Consider a locally finite partition of unity j∈N χ 2 j (q) = 1 described as in (3.2.1).

Set for all κ > 0

J(κ) = j ∈ N, such that supp χ j ⊂ Σ(κ) ,
where we recall that

Σ(κ) = q ∈ R d , |∇V (q)| 4 3 ≥ κ |Hess V (q)| + R ≥3 V (q) 4 + 1 .
For a given κ > 0 and all indices j ∈ N, let V

(2) j be the polynomial of degree less than three given by

V (2) j (q) = 0≤|α|≤2 ∂ α q V (q j ) α! (q -q j ) α , (3.2.4) 
where q j = q j if j ∈ J(κ)

q j ∈ (supp χ j ) ∩ R d \ Σ(κ) otherwise.
Lemma 3.2.3. Assume V a polynomial of degree r larger than two. Consider a locally finite partition of unity described as in (3.2.1). For a multi-index α ∈ N d of length |α| ∈ {1, 2} and all j ∈ N, one has

∂ α q V (q) -∂ α q V (2) j (q) ≤ c α,d,r R ≥3 V (q j ) |α| (3.2.5)
for any q ∈ supp χ j = B(q j , aR

≥3 V (q j ) -1 ), where c α,d,r = 3≤|β|≤r (a C) |β|-|α| .
As a consequence, if V satisfies Assumption 1, there exists a large constant κ 1 ≥ κ 0 so that for all κ ≥ κ 1 and every j ∈ N ,

2 -1 ∂ q V (2) j (q) ≤ |∂ q V (q)| ≤ 2 ∂ q V
(2) j (q) , (3.2.6)

for every q ∈ (supp χ j ) ∩ Σ(κ) and

2 -1 Hess V (2) j (q) ≤ |Hess V (q)| ≤ 2 Hess V (2) j (q) , (3.2.7)
for any q ∈ (supp χ j ) ∩ R d \ Σ(κ) with |q| ≥ C 2 (κ) where C 2 (κ) > 0 is a large constant that depends on κ.

Preliminary results

Proof. Let V be a polynomial of degree r greater than two. In this proof we are going to need the following equivalence

R ≥3 V (q) R ≥3 V (q ) , (3.2.8)
satisfied for all q, q ∈ supp χ j and proved in Lemma 3.A.5. That is, there is a constant C > 1 such that for every q, q ∈ supp χ j ,

R ≥3 V (q) R ≥3 V (q ) ±1 ≤ C .
(3.2.9)

Assume α ∈ N d of length |α| ∈ {1, 2} . For every j ∈ N, observe that

∂ α q V (q) -∂ α q V
(2)

j (q) = | 3≤|β|≤r β≥α ∂ β q V (q j ) (β -α)! (q -q j ) β-α | ≤ 3≤|β|≤r β≥α ∂ β q V (q j ) (β -α)! q -q j |β|-|α| ,
for any q ∈ R d . Hence regarding the equivalence (3.2.9), there exists a constant c α,d,r > 0 (depending as well on the multi-index α, the dimension d and the degree r of V ) so that

∂ α q V (q) -∂ α q V (2) j (q) ≤ 3≤|β|≤r β≥α 1 (β -α)! R ≥3 V (q j ) |β| a -1 R ≥3 V (q j ) -|β|+|α| ≤ 3≤|β|≤r β≥α 1 (β -α)! (a C) |β|-|α| R ≥3 V (q j ) |α| ≤ c α,d,r R ≥3 V (q j ) |α| , (3.2.10)
holds for all q in the support of χ j , where the constant C > 1 is the one in (3.2.9) and

c α,d,r = 3≤|β|≤r (a C) |β|-|α| .
In the rest of the proof, let the polynomial V (q) satisfies Assumption 1. In view of (3.2.10), we get when |α| = 1 3.2.11) for all j ∈ N and any q ∈ supp χ j , where c 1,d,r = 3≤|β|≤r (a C) |β|-1 . By virtue of the equivalence (3.2.9), it results from (3.2.11)

∇V (q) -∇V (2) j (q) ≤ c 1,d,r R ≥3 V (q j ) , ( 
∇V (q) -∇V (2) j (q) ≤ c 1,d,r C R ≥3 V (q) , ( 3 
.2.12)

for every q ∈ supp χ j . Given κ ≥ κ 0 , it follows from (3.2.12) and the definition of Σ(κ) that ∇V (q) -∇V

(2)

j (q) ≤ c 1,d,r C κ 1 4 |∇V (q)| 1 3 ≤ c 1,d,r C κ 1 4 |∇V (q)| (3.2.13)
for all q ∈ (supp χ j ) ∩ Σ(κ). For the above second inequality we know that |∇V (q)| ≥ 1 for every q ∈ (supp χ j ) ∩ Σ(κ), indeed since q ∈ (supp χ j ) ∩ Σ(κ),

|∇V (q)| ≥ κ 3 4 ≥ κ 3 4 0 ≥ 1 . Taking the constant κ 1 ≥ κ 0 such that c 1,d,r C κ 1 4 1 ≤ 1 2 , we get for every κ ≥ κ 1 |∇V (q)| -|∇V (2) j (q)| ≤ |∇V (q) -∇V (2) j (q)| ≤ 1 2 |∇V (q)| ,
for any q ∈ (supp χ j ) ∩ Σ(κ). Therefore, for every κ ≥ κ 1 ,

1 2 |∇V (2) j (q)| ≤ |∇V (q)| ≤ 3 2 |∇V (2) j (q)|
holds for all q ∈ (supp χ j ) ∩ Σ(κ).

On the other hand when |α| = 2, by (3.2.10) there is a constant c 2,d,r > 0 so that for all j ∈ N |∂ α q V (q) -∂ α q V

(2)

j (q)| ≤ c 2,d,r R ≥3 V (q j ) 2 (3.2.14)
holds for every q ∈ supp χ j , where c 2,d,r = 3≤|β|≤r (a C) |β|-2 .

Using the fact that R ≥3 V (q) ≥ R =r V (0) for every q ∈ R d , we derive from (3.2.14) that

|∂ α q V (q) -∂ α q V (2) j (q)| ≤ c 2,d,r R ≥3 V (q j ) 4 R =r V (0) 2 , for all q ∈ supp χ j .
Assuming κ ≥ κ 0 , we obtain using (3.1.9) in Assumption 1, if

|q j | is large enough |β|=2 |∂ β q V (q)| - |β|=2 |∂ β q V (2) j (q)| ≤ |β|=2 |∂ β q V (q) -∂ β q V (2) j (q)| ≤ 1 2 |Hess V (q j )| , for any q ∈ (supp χ j ) ∩ R d \ Σ(κ) . In other words, 1 2 |Hess V (2) j (q)| ≤ |Hess V (q)| ≤ 3 2 |Hess V (2) j (q)| holds for all q ∈ (supp χ j ) ∩ R d \ Σ(κ) with |q| ≥ C 2 (κ)
where C 2 (κ) is a strictly positive large constant depending on κ .

Preliminary results

By Theorem X.29 in [ReSi1], the operator 2 -∆ q + R ≥3 V (q) 4 is essentially self adjoint on C ∞ 0 (R 2d ) and hence E 1 corresponds to the spectrally defined subspace of L 2 (R 2d ).

Given a partition of unity as in (3.2.1), define the linear map

T : E 0 → (L 2 (R 2d )) N , u → (u j ) j∈N = (χ j u) j∈N ,
and denote

F 0 := Im T. Notice that T : E 0 → F 0 is unitary. Indeed for all u ∈ E 0 , T u 2 F 0 = j∈N χ j u 2 L 2 = u 2 L 2 = u 2 E 0 , (3.2.24)
further the inverse map of T is well defined by

T -1 : F 0 → E 0 , (u j ) j∈N → u = j∈N χ j u j .
Now introduce the set

F 1 = (u j ) j∈N ∈ F 0 , j∈N u j , (2 -∆ q + R ≥3 V (q j ) 4 )u j < +∞ ,
with its associated norm defined for all (u j ) j∈N ∈ F 1 by (u j ) j∈N 2

F 1 = j∈N 2 u j 2 L 2 (R 2d ) + D q u j 2 L 2 (R 2d ) + R ≥3 V (q j ) 2 u j 2 L 2 (R 2d ) = j∈N (2 -∆ q + R ≥3 V (q j ) 4 ) 1/2 u j 2 L 2 (R 2d ) .
Assume u ∈ E 0 . For all j ∈ N, let q j ∈ supp χ j . Observe that

| T u 2 F 1 -u 2 E 1 | = | j∈N u j , (2 -∆ q + R ≥3 V (q j ) 4 )u j -u, (2 -∆ q + R ≥3 V (q) 4 )u | = | j∈N u j , -∆ q u j -u, -∆ q u + j∈N u j , (R ≥3 V (q j ) 4 -R ≥3 V (q) 4 )u j | ≤ | j∈N u j , -∆ q u j -u, -∆ q u | + j∈N u j , |R ≥3 V (q j ) 4 -R ≥3 V (q) 4 |u j .
(3.2.25)

Since we are dealing with cutoff functions satisfying

j∈N |∇χ j | 2 ≤ c R ≥3 V (q) 2 and owing to the equivalence R ≥3 V (q) R ≥3 
V (q j ) for all q ∈ supp χ j , it follows from (3.2.25)

| T u 2 F 1 -u 2 E 1 | ≤ c 1 j∈N u j , R ≥3 V (q j ) 4 u j ≤ c 1 T u 2 F 1 ,
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Here Lemma 3.B.6 relying on Tarski-Seidenberg is crucial as shows the following argument

R 4 (q) |q|→+∞ ∼ H(q) log(H(q))
and lim |q|→+∞ H(q) = +∞ , where R(q) is a function which plays the same role as R ≥3 V (q) and still satisfies lim |q|→+∞ R4 (q) H(q) = 0 . For a non-polynomial function V , we may think of a function R(q) which satisfies

1 C R(q) ≤ max q ∈B(q, b R(q) ), |α|=3 |∂ α q V (q)| 1 3 ≤ CR(q) ,
with C > 1 and b > 0 independent of q for |q| large enough. 1

Alternatively the asymptotic behaviour (3.1.9) of Assumption 1 should be replaced by something like R(q

) 4 = O(H(q) 1-ν ) with ν > 0 as |q| → +∞ , q ∈ R d \ Σ(κ) or R(q) 4 = O( H(q) (log H(q)) 2 ) (with |Hess V (q)| → +∞ as |q| → +∞ , q ∈ R d \ Σ(κ)
) . Therefore we get from the above inequality and (3.3.16),

K V (2) j u j 2 ≥ c Λ Σ(κ) (C(κ)) 2 R ≥3 V (q j ) 4 u j 2 . (3.3.17)
Next, remind that t j = 2 Hess V (q j ) 1/4 . By (3.2.7) in Lemma 3.2.3, the equivalence t j 2 Hess V (q) 1/4 , (3.3.18) holds for any q ∈ supp χ j with |q| ≥ C(κ) ≥ C 2 (κ). From (3.3.7) and (3.3.18) we see that

K V (2) j u j 2 + (1 + 10C)t 4 j u j 2 ≥ C O p u j 2 + ∂ q V (2) j (q) 2/3 u j 2 + Hess V (q) 1/2 u j 2 + D q 2/3 u j 2 + 9t 4 j u j 2 . (3.3.19)
One has by (3.2.6) in Lemma 3.2.3, 3.3.20) for all q ∈ (supp χ j ) ∩ Σ(κ) . On the other hand, for every q ∈ (supp

∂ q V (2) j (q) ≥ 1 2 ∂ q V (q) , ( 
χ j ) ∩ R d \ Σ(κ) , |Hess V (q)| + R ≥3 V (q) 4 + 1 ≥ 1 κ |∂ q V (q)| 3.3 Proof of Theorem 3.1.1
Step 2, j ∈ I(κ 3 ) : The set N \ I(κ 3 ) is now a fixed finite set and we can define

C (4) = max j∈N\I(κ 3 ) A V (2) j + sup q∈supp χ j Hess V (q) + ∂ q V (q) 4/3 + t 4 j (log(t 4 j )) 2 + (1 + (c d,r ) 2 )(1 + R ≥3 V (q j )) 4 .
From the lower bound (3.1.5) we deduce

1 4 K V (2) j u j +C (4) u j 2 -(c d,r ) 2 R ≥3 V (q j ) 4 u j 2 ≥ c 4 O p u j 2 + D q 2/3 u j 2 +(1+R ≥3 V (q j )) 4 u j 2 + ∂ q V (q) 2/3 u j 2 + Hess V (q) 1/2 u j 2 + t 2 j log(t 4 j ) u j 2 With the quantities Λ 1,j = O p log(t 4 j ) , Λ 2,j = Hess V (q) 1/2 log(t 4 j ) , Λ 3,j = ∂ q V (q) 2 3 log(t 4 j ) , Λ 4,j = t 2 j log(t 4 j ) , Λ 5,j = (1 + D 2 q + R ≥3 V (q j ) 4 ) 1 3 log(t 4 j )
.

where t j ≥ 2 we deduce

j ∈I(κ 3 ) 1 4 K V (2) j u j 2 -(c d,r ) 2 R ≥3 V (q j ) 4 u j 2 + C (4) u j 2 ≥ C (5) j ∈I(κ 3 ) Λ 1,j u j 2 + Λ 2,j u j 2 + 1 κ 3 Λ 3,j u j 2 + Λ 4,j u j 2 + 1 c 0 Λ 5,j u j 2 , (3.3.30)
Collecting (3.3.5), (3.3.29) and (3.3.30), there exists a positive constant C (6) ≥ 1 depending on V such that

K V u 2 L 2 + C (6) u 2 L 2 ≥ 1 C (6) j∈N Λ 1,j u j 2 + Λ 2,j u j 2 + Λ 3,j u j 2 + Λ 4,j u j 2 + Λ 5,j u j 2 .
(3.3.31)

Step 3. In this final step, set L(s) = s+1 log(s+1) for all s ≥ 1. Notice that there exists a constant c > 0 such that for all x ≥ 1, inf t≥2 x log(t) + t ≥ 1 c L(x) .
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3.A Slow metric, partition of unity

The purpose of this appendix is to state with references or proofs the facts concerning metrics which are needed in the article. We first remind the following definitions.

Definitions 3.A.1. A metric g on R m is called a slowly varying metric if there exists a constant C ≥ 1 such that for all x, y ∈ R m satisfying g x (x -y, x -y) ≤ C -1 it follows that

C -1 g x (z, z) ≤ g y (z, z) ≤ Cg x (z, z) (3.A.1)
holds for all z ∈ R m .

Let g 1 and g 2 be two metrics. We say that g 1 is g

2 -slow if there is a constant c ≥ 1 such that for all x, y ∈ R m g 2 x (x -y, x -y) ≤ c -1 ⇒ c -1 g 1 x (z, z) ≤ g 1 y (z, z) ≤ cg 1 x (z, z) . (3.A.2)
holds for all z ∈ R m .

Remark 3.A.2. The second statement in the above definitions is a typical application of the notion of the second microlocalisation developed by Bony-Lerner (see [BoLe]).

Remark 3.A.3. Property 3.A.1 will be satisfied if we ask only that

∃C ≥ 1, ∀x, y, z ∈ R m , g x (x -y, x -y) ≤ C -1 =⇒ g y (z, z) ≤ Cg x (z, z) . (3.A.3)
Indeed, assuming (3.A.3) gives that wherever g x (x -y, x -y) ≤ C -1 (which is less than or equal to one since C ≥ 1 from (3.A.3) with x=y) this implies g y (y -x, y -x) ≤ C -1 and then g x (z, z) ≤ Cg y (z, z), so that (3.A.1) is fulfilled.

Notations 3.A.4. For r ∈ N, let E r denote the set of polynomials with degree not greater than r :

E r = {P ∈ R[X 1 , ..., X d ], d • P ≤ r} .
For a polynomial P ∈ E r of degree r ∈ N * and for n ∈ {1, ..., r}, the function R ≥n P : R d → R is defined by

R ≥n P (q) = n≤|α|≤r |∂ α q P (q)| 1 |α| . (3.A.4)
In the present article we are mainly concerned with the metric g n = R ≥n P (q) 2 dq 2 where n ∈ {1, ..., r} which satisfies the following properties.

3.A Slow metric, partition of unity

We conclude the proof of 1) by choosing C(n, r, d) = max M n,r,1 , 1 m n,r,1 , 1 and by applying the more general result to P ∈ E r such that d • P = r . Let us prove 2). We still work in K n,r = P ∈ E r /E n-1 , R ≥n P (0) = R ≥n P (0) = 1 and with now a given ∈]0, 1] . From the proof of 1) we know that there exists M n,r,1 , m n,r,1 > 0 such that m n,r,1 ≤ R ≥n P (t) ≤ M n,r,1 for all q , |q| ≤ ≤ 1 and all P ∈ K n,r . In particular there exists a constant Cn,r such that

∀P ∈ K n,r , ∀t ∈ B(0, ) ⊂ B(0, 1) , max n≤|α|≤r ∂ α q P (t) ≤ Cn,r . (3.A.7) For any P ∈ E r in the class P ∈ E r /E n-1 , we decompose R ≥n-1 P (t) into R ≥n-1 P (t) = |β|=n-1 ∂ β q P (t) 1 n-1 + R ≥n P (t) .
By the Taylor expansion

∂ β q P (t) -∂ β q P (0) = 1≤|α |≤r-n+1 ∂ β+α q P (0) α ! t α , |β| = n -1 ,
and owing to (3.A.7), there exists a constant C n,r > 0 such that the inequality

|∂ β q P (t)| -|∂ β q P (0)| ≤ C n,r holds for all β ∈ N d , |β| = n -1 , and all t ∈ R d , |t| ≤ ≤ 1 . The uniform continuity of s → s 1 n-1 on [0, +∞[ now implies |β|=n-1 ∂ β q P (t) 1 n-1 - |β|=n-1 ∂ β q P (t) 1 n-1 ≤ ε n,r ( )
with lim →0 ε n,r ( ) = 0 uniformly with respect to P ∈ P , P ∈ K n,r and q ∈ B(0, ) ⊂ B(0, 1) . On side we write

R ≥n-1 P (t) ≤ |β|=n-1 ∂ β q P (t) 1 n-1 + M n,r,1 ≤ |β|=n-1 ∂ β q P (0) 1 n-1 + ε n,r ( ) + M n,r,1 ≤ max(1, ε n,r ( ) + M n,r,1 )R ≥n-1 P (0) .
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On the other side we have

R ≥n-1 P (0) ≤ |β|=n-1 ∂ β q P (0) 1 n-1 + M n,r,1 ≤ |β|=n-1 ∂ β q P (t) 1 n-1 + ε n,r ( ) + M n,r,1 ≤ max(1, ε n,r ( ) + M n,r,1 m n,r,1 )R ≥n-1 P (t) .
For n,r ∈]0, 1] chosen small enough such that ε n,r ( 0 ) ≤ M n,r,1 , we deduce

∀P ∈ K n,r , ∀P ∈ P , ∀t ∈ B(0, n,r ) , R ≥n-1 P (t) R ≥n-1 P (0) ±1 ≤ max(2M n,r,1 , 2M n,r,1 m n,r
) .

For V ∈ E r such that d • V ≥ n we apply the previous estimate to P q (t) = V (q + R ≥n V (q) -1 t) , with P q ∈ K n,r , which leads to

R ≥n V (q)|q -q | ≤ n,r ⇒   R ≥n-1 V (q) R ≥n-1 V (q ) ±1 ≤ max(2M n,r,1 , 2M n,r,1 m n,r,1 )   .
We conclude the proof by choosing C (n, r, d) = max(2M n,r,1 , 2M n,r,1 m n,r,1 , 1 n,r ) and by applying the more general result to P ∈ E r such that d • P = r . Remark 3.A.6. The proof of 1) gives a more general result than the slowness, namely when n, r, d are fixed : For any λ > 0 there exists

C λ ≥ 1 such that (R ≥n P (q)|q -q | ≤ λ) ⇒   R ≥n P (q) R ≥n P (q ) ±1 ≤ C λ   , without assuming that λ > 0 is small. Actually it is even possible to estimate C λ in terms of λ → ∞ by applying (3.A.5) to the polynomial tP , t ∈ [0, 1] , with t 1 n R ≥n P (q) ≤ R ≥n tP (q) ≤ t 1 r R ≥n P (q) .
The main feature of a slow varying metric is that it is possible to introduce some partitions of unity related to the metric in a way made precise in the following theorem. For more details and proof see [Hor1] ( Section 1.4 page 25).

Theorem 3.A.7. [Hor1] For any slowly varying metric g in R m one can choose a sequence x ν ∈ R m such that the balls

B ν = x; g xν (x -x ν , x -x ν ) < 1 3.B Around Tarski-Seidenberg theorem
form a covering of R m for which the intersection of more than N = (4C 3 + 1) m balls B ν is always empty (C is the constant in (3.A.1)). In addition, for any decreasing sequence d i with

j d j = 1 one can choose non negative φ ν ∈ C ∞ 0 (B ν ) with φ ν = 1 in R m so that for all k |φ (k) ν (x; y 1 , • • • , y k )| ≤ (N CC 1 ) k g x (y 1 , y 1 ) • • • g x (y k , y k )/d 1 • • • d k
where C is the constant in (3.A.1) and C 1 is a constant that depends only on m.

Regarding the above Theorem we have the following result.

Lemma 3.A.8. Let P ∈ E r , where r ∈ N * is the degree of P and n ∈ {1, ..., r}, then there exists a partition of unity j∈N Ψ j (q) 2 ≡ 1 in R d such that :

1) For all q ∈ R d , the cardinality of the set {j, Ψ j (q) = 0} is uniformly bounded.

2) For any natural number j ∈ N, supp Ψ j ⊂ B(q j , aR ≥n P (q j ) -1 ) and Ψ j ≡ 1 in B(q j , bR ≥n P (q j ) -1 ) ,

for some q j ∈ R d with 0 < b < a independent of j ∈ N .

3) For all α ∈ N d \ {0}, there exists c α > 0 such that j∈N |∂ α q Ψ j | 2 ≤ c α R ≥n P (q) 2|α| .

Moreover the constants a, b et c α can be chosen uniformly with respect to P ∈ E r , once the degree r ∈ N and the dimension d ∈ N are fixed.

3.B Around Tarski-Seidenberg theorem

In this appendix we give an application of the Tarski-Seidenberg Theorem [Hor2], which we state in the following geometric form. We first introduce a few basic concepts needed for the statement. where A = 0 and a is a rational number.

We refer to [Hor2] (see Theorem A.2.2 and Theorem A.2.5) for detailed proofs of Theorem 3.B.3 and Proposition 3.B.4.

In the final part of this section we list and recall the following notations. Lemma 3.B.6. Let Σ be an unbounded semialgebraic set and V a polynomial in R[q 1 , ..., q d ] of degree r ∈ N * satisfying the following assumption Then there exist δ ∈ (0, 1) and a positive nondecreasing function Λ Σ : (0, +∞) → [0, +∞) so that ∀q ∈ Σ , ∀ > 0 , |q| ≥ , Λ Σ ( )R ≥n V (q) α ≤ R =m V (q) 2(1-δ) and lim →+∞ Λ Σ ( ) = +∞ .

lim |q|→+∞ q∈ Σ R ≥n V (q) α R =m V (q) 2 = 0 ,
The function Λ Σ : (0, +∞) → [0, +∞) is clearly positive and due to (3.B.12) it satisfies ∀q ∈ Σ , ∀ > 0 , |q| ≥ , Λ Σ ( )R ≥n V (q) α ≤ R =m V (q) 2(1-δ) and lim →+∞ Λ Σ ( ) = +∞ .

To conclude, it is sufficient to take Λ Σ : (0, +∞) → [0, +∞) defined by

Λ Σ ( ) = inf |q|≥ R =m V (q) 2(1-δ) R ≥n V (q) α ,
which is non decreasing and larger than Λ Σ . rédigé en anglais)

is valid for all u ∈ C ∞ 0 (R 2d ). As a consequence collecting (4.1.3) and (4.1.2) together, there is a constant c > 0, independent of V , so that the global subelliptic estimates without remainder

K V u 2 L 2 (R 2d ) ≥ c 1 + A V B V O p u 2 L 2 (R 2d ) + X V u 2 L 2 (R 2d ) + ∂ q V (q) 2/3 u 2 L 2 (R 2d ) + D q 2/3 u 2 L 2 (R 2d ) (4.1.4)
holds for all u ∈ C ∞ 0 (R 2d ). Here and throughout the paper we use the notation

• = 1 + | • | 2 .
Moreover we remind that for an arbitrary potential V ∈ C ∞ (R d ), the Kramers-Fokker-Planck operator K V is essentially maximal accretive when endowed with the domain C ∞ 0 (R 2d ) (see Proposition 5.5, page 44 in [HeNi]). Thanks to this property we deduce that the domain of the closure of K V is given by

D(K V ) = u ∈ L 2 (R 2d ), K V u ∈ L 2 (R 2d ) .
Resultantly, by density of C ∞ 0 (R 2d ) in the domain D(K V ) all estimates written in this article, which are verified with C ∞ 0 (R 2d ) functions, can be extended to D(K V ). By relative bounded perturbation with bound less than 1 , this result holds as well when V ∈ C ∞ (R \ {0}) is an homogeneous function of degree r > 1.

Our results will require the following assumption after setting S = q ∈ R d , |q| = 1 .

(4.1.5)

Assumption 2. The potential V (q) is a homogeneous function of degree 2 < r < 6 in C ∞ (R d \ { 0}) and satisfies :

∀ q ∈ S , ∂ q V (q) = 0 ⇒ Tr -,V (q) > 0 .

(4.1.6)

Our main result is the following.

Theorem 4.1.1. If the potential V (q) verifies Assumption 2, then there exists a strictly positive constant C V > 1 (which depends on V ) such that

K V u 2 L 2 + C V u 2 L 2 ≥ 1 C V L(O p )u 2 L 2 + L( ∇V (q) 2 3 )u 2 L 2 + L( Hess V (q) 1 2 )u 2 L 2 + L( D q 2 3 )u 2 L 2 , (4.1.7)
holds for all u ∈ D(K V ) where L(s) = s+1 log(s+1) for any s ≥ 1.

Proof of the main result

Now owing to a dilation with respect to the velocity variable p, that with ( √ hp, √ h∂ p ) associates (p, h∂ p ), we deduce that the operator K j,V is unitary equivalent to K j,V = 1 h p(h 1 2 + 1 2(r-1) ∂ q ) -∂ q V (q)h∂ p + 1 2 (-h 2 ∆ p + p 2 ) .

In particular, taking r = 2, K j,V = 1 h p(h∂ q ) -∂ q V (q)h∂ p + 1 2 (-h 2 ∆ p + p 2 ) , is clearly a semiclassical operator with respect to the variables q and p. However if r > 2, the operator K j,V is semiclassical only with respect to the velocity variable p (since h 1 2 + 1 2(r-1) > h). For a polynomial V (q), the case r = 2 corresponds to the quadratic situation. Extensive works have been done concerned with this case (see [Hor][HiPr][Vio][Vio1][AlVi] [BNV]).

Proof of the main result

In this section we present the proof of Theorem 4.1.1.

Proof. In the whole proof we denote

C = q ∈ R d , 3 4 ≤ |q| ≤ 8 3 .
Assume u ∈ C ∞ 0 (R 2d ) and consider a locally finite dyadic partition of unity defined as in (4.2.1). By Lemma 4.2.2 (see (4.2.3)), there is a uniform constant c such that

(1 + 4c) K V u 2 L 2 (R 2d ) + c u 2 L 2 (R 2d ) ≥ j≥-1 K V u j 2 L 2 (R 2d ) . (4.3.1)
where we denote u j = χ j u. We obtain by Lemma 4.2.3 and the estimate (4.3.1)

(1 + 4c) K V u 2 L 2 (R 2d ) + c u 2 L 2 (R 2d ) ≥ j≥-1 K j,V v j 2 L 2 (R 2d ) , (4.3.2)
where the operator K j,V = 1 2 j p∂ q -(2 j ) r-1 ∂ q V (q)∂ p + O p , and v j (q, p) = 2 jd 2 u j (2 j q, p) . Setting h = 2 -2(r-1)j , one has K j,V = p(h 1 2(r-1) ∂ q ) -h -1 2 ∂ q V (q)∂ p + 1 2 (-∆ p + p 2 ) .
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In the analysis we will focus on the case when j ≥ J, with J large enough, or equivalently h ≤ h J with h J small enough. The remaining error terms in θ(• -k) 2 = 1, we define for all q ∈ R d , θ k,h (q) = θ( 1 | ln(h)|h ν (q -q k,h )) ,

with q k,h = h ν | ln(h)|k. Denoting K h = k ∈ Z d , |k| ≤ 3 | ln(h)|h ν
, one has k∈K h θ k,h (q) 2 = 1 in the neighborhood of C, where for any index k ∈ K h , supp θ k,h ⊂ B(q k,h , | ln(h)|h ν ) , θ k,h ≡ 1 in B(q k,h , 1 2 | ln(h)|h ν ) .

Using this partition we get through Lemma 4.2.2 (see (4.2.2)), (4.3.4) In order to reduce the written expressions we denote in the whole of the proof

K j,V v j 2 L 2 ≥ k∈K h K j,V θ k,h v j 2 L 2 -| ln(h)| -2 h 1 r-1 -2ν pθ k,h v j 2 L 2 .
w k,j = θ k,h v j .
Taking into account (4.3.4), (4.3.5) Notice that in the last inequality we simply use respectively the fact that pw k,j 2 L 2 ≤ 2Re w k,j , K j,V w k,j ≤ 2 w k,j L 2 K j,V w k,j L 2 , 4.3 Proof of the main result and the Cauchy inequality. From now on, set

K j,V v j 2 L 2 ≥ k∈K h K j,V w k,j 2 L 2 -2| ln(h)| -2 h 1 r-1 -2ν w k,j L 2 K j,V w k,j L 2 ≥ k∈K h 1 2 K j,V w k,j 2 L 2 -2(| ln(h)| -2 h 1 r-1 -2ν ) 2 w k,j 2 L 2 .
K 0 = q ∈ C , ∂ q V (q) = 0 .
Clearly, by continuity of the map q → ∂ q V (q) on the shell C (which is a compact set of R d ), we deduce the compactness of K 0 .

Since q →

Tr -,V (q) 1+Tr +,V (q) is uniformly continuous on any compact neighborhood of K 0 , there exists ε 1 > 0 such that d(q, K 0 ) ≤ 1 ⇒ Tr -,V (q) 1 + Tr +,V (q) ≥ 0 2 , (4.3.6)

where 0 := min q∈K 0

Tr -,V (q) 1+Tr +,V (q) .

On the other hand, in view of the definition of K 0 and by continuity of q → ∂ q V (q) on C, there is a constant 2 > 0 (that depends on 1 ) such that ∀ q ∈ C , d(q, K 0 ) ≥ 1 ⇒ |∂ q V (q)| ≥ 2 . In order to establish a subelliptic estimate for K j,V , we distinguish the two following cases.

Case 1 k ∈ I( 1 ). In this case the support of the cutoff function θ k,h might intersect the set of zeros of the gradient of V.

Case 2 k ∈ I( 1 ). Here the gradient of V does not vanish for all q in the support of θ k,h .

The idea is to use a quadratic approximating polynomial

V (2) k,h (q) = |α|≤2 ∂ α q V (q k,h ) α! (q -q k,h ) α .
near some q k,h ∈ supp θ k,h to write

k∈K h K j,V w k,j 2 
L 2 ≥ k∈K h 1 2 K j,V (2) k,h w k,j 2 L 2 -(K j,V -K j,V (2) k,h )w k,j 2 L 2 , 125 
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or equivalently

k∈K h K j,V w k,j 2 
L 2 ≥ k∈K h 1 2 K j,V (2) k,h w k,j 2 L 2 - 1 √ h (∂ q V (q) -∂ q V
(2) k,h (q))∂ p w k,j 2 L 2 .

(4.3.8)

Then based on the estimates written in [BNV], which are valid for the operator K V 2 k,h , we deduce a subelliptic estimate for K V 2 k,h , after a careful control of the errors which appear in (4.3.5) and (4.3.8).

Notice that one has for all q ∈ R d , |V (q) -V

(2) k,h (q)| = O(|q -q k,h | 3 ) .

(4.3.9)

Accordingly, for every q in the support of w k,j , |∂ q V (q) -∂ q V

(2) 

k,h (q)| = O(|q -q k,h | 2 ) = O(| ln(h)| 2 h 2ν
K j,V v j 2 ≥ k∈K h 1 8 K j,V (2) k,h w k,j 2 -8c 2 (| ln(h)| 2 h 2ν ) 4 h 2 w k,j 2 -2(| ln(h)| -2 h 1 r-1 -2ν ) 2 w k,j 2 .
(4.3.12)

On the other hand, owing to a change of variables q" = qh 1 2(r-1) , one can write (4.3.13) where the operator K j,V (2)

K j,V (2) k,h w k,j L 2 = K j,V (2) k,h w k,j L 2 ,
k,h reads K j,V (2) 
k,h

= p∂ q -h -1 2 ∂ q V

(2) k,h (h 1 2(r-1) q)∂ p + 1 2 (-∆ p + p 2 ) , 126 4.3 Proof of the main result and w k,j (q, p) = 1 h d 4(r-1) w( q h 1 2(r-1) , p) .

In the rest of the proof we denote

H := h -1 2 h 1 2(r-1) > 1 .
Case 1. In this situation, we use the quadratic approximation near some element q k,h ∈ supp θ k,h ∩ (R d \ Σ( 1)).

From now on assume j ∈ N. In view of (4.3.6), Tr -,V (2)

k,h = Tr -,V (q k,h ) = 0. By (4.1.3),

K j,V (2) k,h w k,j 2 
L 2 ≥ c 1 + HTr -,V (2) 
k,h

(log(2 + HTr -,V (2) k,h

)) 2 w k,j 2 L 2 . (4.3.14)

In the same way

K j,V (2) k,h w k,j 2 
L 2 ≥ c
1 + HTr -,V (q k,h ) (log(2 + HTr -,V (q k,h ))) 2 w k,j 2 L 2 .

(4.3.15)

Using once more (4.3.6),

Tr -,V (q k,h ) ≥ 0 2

(1 + Tr +,V (q k,h )) , (4.3.16)

where we remind that 0 = min q∈K 0

Tr -,V (q) 1+Tr +,V (q) . Consequently |Hess V (q k,h )| ≥ Tr -,V (q k,h ) ≥ 0 2 , (4.3.17) and Tr -,V (q k,h ) ≥ 1 2 Tr -,V (q k,h ) + 0 4

(1 + Tr +,V (q k,h ))

≥ 1 2 min(1, 0 
2 )(Tr -,V (q k,h ) + Tr +,V (q k,h )) (4.3.18) Furthermore by continuity of the map q → Tr -,V (q) on the compact set C, there exists a constant 3 > 0 such that Tr -,V (q) ≤ 3 for all q ∈ C. Hence 0 2 ≤ Tr -,V (q k,h ) ≤ 3 . (4.3.19) 

≥ 1 2 min(1, 0 2 )|Hess V (q k,h )| .
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Chapitre 1 :

 1 IntroductionPour ii), rappelons tout d'abord que λ ∈ C appartient au spectre essentiel d'un opérateur (A,D(A) ⊂ L 2 (R n )) s'il existe une suite othonormée (u k ) k∈N dans L 2 (R n ), avec u k ∈ D(A),telle que lim k→+∞ (A -λ)u k = 0. Cette condition est suffisante en général et c'est une condition nécessaire et suffisante si l'opérateur A est autoadjoint. Supposons que 0 ∈ σ ess (∆ (0) V ). Il existe alors une suite orthonormée

  of the symplectic form on R 2×2 , the equality σ = sin(α)E + cos(α)I holds when α ∈ 0, π 2

  Definition 3.B.1. A subset of R n is called semi-algebraic if it is a finite union of intersections of finitely many sets defined by polynomial equations or inequalities.Definition 3.B.2. Let A ⊂ R n and B ⊂ R m be two sub-algebraic sets. The function f : A → B is said to be semi-algebraic if its graph Γ f = {(x, y) ∈ A × B; y = f (x)} is a semi-algebraic set of R n × R m .KFP avec polynômes de degré supérieur à 2 (article rédigé en anglais)Theorem 3.B.3. [Hor2](Tarski-Seidenberg) If A is a semi-algebraic subset of R n+m = R n ⊕ R m , then the projection A of A in R m is also semi-algebraic.Proposition 3.B.4.[Hor2] If E is a semi-algebraic set on R 2+n , and f (x) = inf {y ∈ R; ∃z ∈ R n , (x, y, z) ∈ E} is defined and finite for large positive x, then f is identically 0 for large x or else f (x) = Ax a (1 + o(1)) , x → +∞

  Notation 3.B.5. Let P be a real-valued polynomial on R d with d • P = r. For all natural number n ∈ {0, • • • , r} and every q ∈ R d

  where α ∈ Q, n, m ∈ {0, 1, • • • , r -1} , n > m , are fixed numbers.

  term C V u 2 L 2 (R d ) in (4.1.7) by taking C V large enough. Now, fix ν > 0 is always possible when 2 < r < 6. Taking ν > 0, satisfying (4.3.3) and a function θ ∈ C ∞ 0 (R d ) such that k∈Z d

  ) = {q ∈ C , d(q, K 0 ) ≥ 1 } , I( 1 ) = {k ∈ K h , supp θ k,h ⊂ Σ( 1 )} .

  

  Positionnement du problème . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Propriétés spectrales et relations entre ∆

	Table des matières
	1 Introduction
	1.1

  Chapitre 1 : Introduction 1.2.2 Propriétés spectrales de l'opérateur de KFP Dans cette sous-section, on donne une version hypoelliptique du théorème 1.2.1. Définitions 1.2.9. Soit A un opérateur non borné dans un espace de Hilbert H avec domaine D(A). * On dit que A est accrétif si Re u, Au ≥ 0 , ∀ u ∈ D(A) . * Un opérateur accrétif A est accrétif maximal s'il n'admet aucune extension accrétive B avec domaine strictement plus grand (ou encore s'il est fermé, accrétif et 1 ∈ ρ(-A)).

* Un opérateur accrétif A est essentiellement accrétif maximal si sa fermeture est accrétive maximale. Lemme 1.2.10. Soit (A,D(A)) un opérateur défini sur un espace de Hilbert H avec domaine dense dans H. Si A est accrétif alors il est fermable, sa fermeture Ā est accrétive et pour tout λ ∈ C, Ran(λ + A) est dense dans Ran(λ + Ā). Lemme 1.2.11. Soit (A,D(A)) un opérateur défini sur un espace de Hilbert H avec domaine dense dans H. 1) Si A est fermé et accrétif, alors I + A est injectif et Ran(I + A) est dense dans H.

  ) . (4.3.10) Combining (4.3.8) and (4.3.10), there is a constant c > 0 such that

	k∈K h	K j,V w k,j	2 L 2 ≥	k∈K h	1 2	K j,V (2) k,h	w k,j	2 L 2 -c	(| ln(h)| 2 h 2ν ) 2 h	∂ p w k,j	2 L 2
			≥	k∈K h	1 2	K j,V (2) k,h	w k,j	2 L 2 -2c	(| ln(h)| 2 h 2ν ) 2 h	w k,j L 2 K j,V (2) k,h	w k,j L 2
			≥	k∈K h	1 4	K j,V (2) k,h	w k,j	2 L 2 -16c 2 (| ln(h)| 2 h 2ν ) 4 h 2	w k,j	2 L 2 .	(4.3.11)
	Putting (4.3.5) and (4.3.11) together,					

u)](z) = (B 2 u)(e -tM z) .

3 .(3.3.21)1 As example, we may take the function V on R 2 equal to r 6 (log r) 3 (1+cos(θ)) in polar coordinates for r > 1.
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Quaternionic structure and analysis of some Kramers-Fokker-Planck operators

Abstract

The present article is concerned with global subelliptic estimates for Kramers-Fokker-Planck operators with polynomials of degree less than or equal to two. The constants appearing in those estimates are accurately formulated in terms of the coefficients, especially when those are large.
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where supp χ j ⊂ B(0, a) and χ j ≡ 1 in B(0, b)

for some q j ∈ R d with 0 < b < a independent of j ∈ N. In our work we need to choose the constant a less or equal to min(C -1 , C -1 ), where the constants C and C are those in Lemma 3.A.5. Such a partition is described more precisely in Lemma 3.A.8 after taking n = 3. In our study introducing this partition yields to errors that are under control.

The second approach lies in the decomposition of the operator K V onto two parts so that the first one be a Kramers-Fokker-Planck operator with polynomial potential of degree less than three. On this way, based on [BNV], we derive the result of Theorem 3.1.1.

In order to prove Theorem 3.1.1 we need the following basic lemmas.

Lemma 3.2.1. Assume V ∈ R[q 1 , ..., q d ] with degree r ∈ N. Consider the Kramers-Fokker-Planck operator K V defined as in (3.1.1). For a locally finite partition of unity namely j∈N χ 2 j (q) = 1 one has

for all u ∈ C ∞ 0 (R 2d ).

In particular when the degree of V is larger than two and the cutoff functions χ j have the form (3.2.1), there exists a constant c d,r > 0 (depending only on the dimension d and the degree of V ) so that

holds for all u ∈ C ∞ 0 (R 2d ).

Proof. First let V be a real-valued polynomial on R d of degree r ∈ N. Assume that u ∈ C ∞ 0 (R 2d ). On the one hand,

On the other hand,

Putting the above equalities together

Preliminary results

Using commutators, we compute

Thus

. Now it is easy to check the following commutation relations

Collecting the terms, we obtain

where in the last line we make use of j∈N χ 2 j (q) = 1.

From this it follows immediately that

Next, suppose that the degree of V is greater than two and χ j (q) = χ j R ≥3 V (q j )(q -q j ) for all indices j and any q ∈ R d with supp χ j ⊂ B(0, a) and χ j ≡ 1 in B(0, b) .

Then we can write

Preliminary results

Lemma 3.2.4. Consider two positive operators A and B on a Hilbert space H such that

for any u ∈ D.

Proof. Assume that A, B are two positive operators so that

holds for all u ∈ D with ν > 1. For α ∈ [0, 1], the application T → T α is operator monotone according to Example 6.8 in [Sim]. This provides the inequality

for any u ∈ D and every α ∈ [0, 1], which is of course related with interpolation in Hilbert spaces.

Furthermore, for any positive operator C ≥ c Id H , c > 0 , with domain D(C) we define its logarithm defined by the functional calculus satisfies for all u ∈ D(C) and all

holds for all u ∈ D. Integrating (3.2.17) with respect to α over [0, α 0 ] where 

Once the constant C k,α 0 ,ν ≥ 1 is known for k ≥ 1, the same integration with respect to α ∈ [0, α 0 ] provides the constant C k+1,α 0 ,ν ≥ 1. We proved by induction on k ∈ N, the existence of a constant

Lemma 3.2.5. Assume V (q) a polynomial of degree r greater than two. Let j∈N χ 2 j (q) be a locally finite partition of unity defined as in (3.2.1). For each j ∈ N, choose any q j ∈ supp χ j .

There is a constant

As a consequence, there exists a constant c = c(d, r) > 1 so that

and

, where c 1 , c 1 are two strictly positive constants. As a result 1

In view of (3.2.24) and (3.2.26), we conclude by interpolation that for all α ∈ [0, 1]

, where E α and F α are two interpolated spaces endowed respectively with the norms

Hence there is a constant c > 0 so that u, (2 (3.2.27) holds for all u ∈ C ∞ 0 (R 2d ) and any α ∈ [0, 1]. In order to prove (3.2.23), repeat the same process as in Lemma 3.2.4. Starting with (3.2.28) for all u ∈ C ∞ 0 (R 2d ) and any α ∈ [0, 1], use the functional calculus in the left-hand side and the Fourier transform in the right-hand side. When integrating with respect to α ∈ [0, 2 3 ] we can interchange for any fixed u ∈ C ∞ 0 (R 2d ) the sum and the integral in the right-hand side of (3.2.28) since the partition of unity is locally finite. This leads to

with φ(t) = (1+t) 1/3 log((1+t) 1/3 . By referring again to the functional calculus for the left-hand side and the Fourier transform for the right-hand side, the proof is finished after noticing the uniform equivalence

log(1+t 1/3 .

Proof of Theorem 3.1.1

In this section we present the proof of Theorem 3.1.1. In the sequel for a given polynomial V (q) with degree r greater than two, we always use a locally finite partition of unity

where supp χ j ⊂ B(0, a) and χ j ≡ 1 in B(0, b)

for some q j ∈ R d with 0 < b < a independent of the natural numbers j, defined more specifically as in Lemma 3.A.8 with n = 3. As mentioned before we choose the constant a less or equal to min(C -1 , C -1 ), where the constants C and C are those in Lemma 3.A.5.

Proof. Let V (q) be a polynomial with degree larger than two that satisfies Assumption 1. Assume u ∈ C ∞ 0 (R 2d ). In the whole proof we denote u j = χ j u for all natural number j.

From Lemma 3.2.1 we get

Given κ ≥ κ 0 , set

For all indices j ∈ N, let V

(2) j be the polynomial of degree less than three given by V

(2)

where

We associate with each polynomial V

(2) j

the Kramers-Fokker-Planck operator K V (2) j .

Observe that using the parallelogram law 2(

On the other hand, by (3.2.5) in Lemma 3.2.3 j∈N (∇V (q) -∇V

(2) 

Therefore, making use of the equivalence (3.A.5), it follows

Using respectively the Cauchy-Schwarz inequality and then the Cauchy inequality with epsilon (for any real numbers a, b and all > 0, ab

Putting the above estimate and (3.3.4) together we obtain 

The rest of the proof is divided into three steps. The first one is devoted to the control of the terms in the the left-hand side of (3.3.5) for which j ∈ I(κ) for some large κ ≥ κ 0 to be chosen. At the end of the first step the constants κ > κ 1 and C(κ) ≥ max(C 1 , C 2 (κ)) will be fixed. The second step is concerned with the remaining terms for which the support of the cutoff functions χ j are included in some closed ball B(0, C (κ)). We finally sum up all the terms in Step 3 and refer to Lemma 3.2.5 after some elementary optimization trick in the last step.

Step 1, j ∈ I(κ), κ ≥ κ 1 to be fixed : As proved in [BNV], there is a constant c > 0 such that for all j ∈ I(κ)

(2) (3.3.6) where

Hence there is a constant C 0 > 0 so that

(2)

where we use the notation t j = 2 Hess V (q j ) 1/4 throughout the proof.

Recall that as mentioned in [BNV], the constant c in (3.3.6) does not depend on the polynomial V

(2) j and then so is the constant C 0 in (3.3.7). Now for all indices j ∈ I(κ) we distinguish two cases : either j ∈ J(κ) or j ∈ J(κ).

Case 1. Assume j ∈ J(κ). Then taking into account the inequality (3.2.6) in Lemma 3.2.3 and using the estimate (3.3.7) we obtain

Furthermore, since for all indices j ∈ N the quantity R ≥2 V (q j ) 2 is always greater than |Hess V (q j )|, there exists a constant c d > 0 so that for every j ∈ J(κ),

holds for any q ∈ supp χ j . Now, since for every q ∈ R d on has R ≥3 V (q) ≥ R =r V (0) , we derive from the previous estimate that for any q ∈ supp χ j ,

Collecting the estimates (3.3.8) and (3.3.9), we get for κ ≥ κ 1

Choosing κ 2 ≥ κ 1 so that

the following inequality (3.3.10) holds for all j ∈ J(κ) with κ ≥ κ 2 .

Since j ∈ J(κ), there is a constant c 1 > 0 so that (3.3.11) holds for all q ∈ supp χ j . In addition, using the equivalence (3.A.5) it follows

for any q ∈ supp χ j .

Putting (3.3.10), (3.3.11) and (3.3.12) together,

In particular, since

Referring again to [BNV],

where

Hence we get in particular

holds, which in turn implies

Then it follows from (3.3.14) and (3.3.15)

By Assumption 1 (see condition (3.1.9)) and (3.3.16), applying Lemma 3.B.6, there is δ ∈ (0, 1) and a positive nondecreasing function Λ Σ(κ) on (0, +∞) such that Λ Σ(κ) ( ) → +∞ as → +∞, and such that

Proof of Theorem 3.1.1

Furthermore, it results from Assumption 1 , in particular (3.1.9), that for all q ∈ (supp

From (3.3.21) and (3.3.22) we get for every q ∈ (supp

Hence there exists a constant c > 0 such that

The above inequality combined with (3.3.20) and (3.3.19) leads to

for all κ ≥ κ 2 .

Collecting the estimates (3.3.24) and (3.3.16) we get

(3.3.25)

In order to reduce the written expressions we denote

.

The estimate (3.3.25) can be rewritten as follows

(3.3.26)
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Using (3.3.26) and (3.3.17) we obtain

Therefore in both cases, that is for all j ∈ I(κ) where κ ≥ κ 2

(3.3.27)

Due to the elementary inequality

where

.

In conclusion, we get by (3.3.27) and (3.3.28) for every j ∈ I(κ)

We now fix the choice firstly of C(κ) and secondly of κ . Because lim →+∞ Λ Σ(κ) ( ) = +∞ , we can choose for any

where c d,r is the constant in (3.3.5),

(3.3.29) KFP avec polynômes de degré supérieur à 2 (article rédigé en anglais)

In view of the above estimate,

here we recall that dµ u j (λ) = d E(λ)u j , u j where E(λ) is the spectral family.

Summing over j, we obtain the first term in the desired estimation (3.1.10). Likewise for the second term

To obtain the third term in (3.1.10) write similarly

In the same way

By Lemma 3.2.5 we get j∈N L((1

To conclude, just remark that

Finally collecting all terms, we have found

) is dense in D(K V ) endowed with the graph norm, the result extends to any u ∈ D(K V ) .

Applications

This section is devoted to some applications of Theorem 3.1.1. In each of the following examples we examine that the Assumption 1 is well fulfilled. We recall here that one knows that for a potential V satisfying assumption 1, the resolvent of the Witten Laplacian ∆ (0) V is compact (see Theorem 10.16 in [HeNi]). In the cas of the Witten Laplacian, the following examples were in particular considered in [HeNi] (C.f Proposition 10.19 and Proposition 10.21) Example 1 : Let us consider as a first example of application the case

By direct computation

. KFP avec polynômes de degré supérieur à 2 (article rédigé en anglais)

It is clear that the trace of Hess V (q) given by -2|q| 2 is negative for all q ∈ R 2 \ {0} . Hence Tr -,V (q) > Tr +,V (q) for all q ∈ R 2 , |q| ≥ 1 .

Moreover, for all κ > 0 the algebraic set R 2 \ Σ(κ) is not bounded since (0, q 2 ) ∈ R 2 \ Σ(κ) for all q 2 ∈ R. Furthermore for κ > 1 chosen as we wish lim

Below we sketch as example Σ(800) in a blue color.

The compactness of the resolvent of K V in this case follows from Corollary 4.1.3.

Example 2 : Let n ∈ N. The polynomial V (q) = -q 2 1 (q 2 1 + q 2 2 ) n verifies the Assumption 1 only for n = 1. A straightforward computation shows that

,

Notice that the trace of Hess V (q) equals -2|q| 2(n-2) |q| 4 + 5nq 2 1 |q| 2 + 2n(n -1)q 4 1 + nq 2 1 |q| 2 + 2n(n -1)q 2 1 q 2 2 < 0 , 100

Applications

for all q ∈ R 2 , |q| ≥ 1 . Hence -Tr -,V (q) + Tr +,V (q) < 0, for any q ∈ R 2 , |q| ≥ 1 .

In addition for all κ > 0 the set R 2 \ Σ(κ) is not bounded since (0, q 2 ) ∈ R 2 \ Σ(κ) for all q 2 ∈ R.

For q large enough |Hess V (q)| |q| 2n and

Taking as example κ = 800, we get the following shape of Σ(800) colored in blue.

Figure 3.2 : Contour lines of V (q 1 , q 2 ) = -q 2 1 (q 2 1 + q 2 2 )

In this example, the hypothesis of the Theorem 3.1.1 is satisfied only for n = 1. By Corollary 4.1.3, we deduce that the Kramers-Fokker-Planck operator K V with potential V (q) = -q 2 1 (q 2 1 + q 2 2 ) has a compact resolvent.

Example 3 : For ∈ R \ {0, -1}, we consider V (q 1 , q 2 ) = (q 2 1 -q 2 ) 2 + q 2 2 . For all q ∈ R 2 one has

In this case, we are going to show that for all κ > 0 the algebraic set

Up to a change of coordinates X 1 = q 1 , X 2 = q 2 1 -q 2 the above inequality is equivalent to

Using the triangle inequality in the right-hand side and the reverse triangle inequality with the elementary inequality (u + v)

3 satisfied for all u, v ≥ 0, it follows that

The right-hand part in the above inequality is bounded from above by |X 2 | + c 1 where c 1 is some positive constant. Now we distinguish two case :

Using the fact that = -1, we deduce that X 2 must be also bounded.

Applications

Now if |X 1 | ≥ 1, we derive from (3.4.1) the following estimates

Here we study three cases.

Since = 0, it follows that X 1 is bounded and so is X 2 .

Hence since = 0, X 1 is bounded and then X 2 is so. Below we sketch as example Σ(2) in a blue color.

Figure 3.3 : Contour lines of V (q 1 , q 2 ) = (q 2 1 -q 2 ) 2 + 0.5q 2 2 .

We conclude that for ∈ R \ {0, -1}, the Assumption 1 is satisfied, and therefore by Corollary 4.1.3, K V has a compact resolvent.

For = 0, thanks to [HeNi] (see Proposition 10.21 page 111), we know that the Witten Laplacian defined by

has no compact resolvent and then the Kramers-Fokker-Planck operator K V has no compact resolvent.

This example was studied in the case of the Witten Laplacian operator by B.Helffer and F.Nier in their book [HeNi]. A small mistake was made in [HeNi] in Proposition 10.21. In fact the equations l 11 = l 12 = l 111 = 0 should be replaced by (1 + )l 11 = l 12 = l 111 = 0. When = -1, we can eventually construct a Weyl sequence for the Witten Laplacian operator in the following way. In this case the potential V (q 1 , q 2 ) = (q 2 1 -q 2 ) 2 -q 2 2 is equal to -2q 2 q 2 1 + q 4 1 .

In order to construct a Weyl sequence for ∆

V , it is sufficient to take χ( (q 2 +n 2 ) n ) where χ is a cutoff function supported in [-1, 1] and then consider the sequence

The support of u n is then included in -n 2 -n ≤ q 2 ≤ -n 2 + n. Hence the u n 's have disjoint supports for large n.

Therefore we have

As a result, we get for n large

Here to get the lower bound of the the above quantity we restrict the integral in q 1 = O( 1 n ). As a conclusion, for = -1 the Witten Laplacian attached to V (q 1 , q 2 ) = q 2 1 q 2 2 + (q 2 1 + q 2 2 ) has no compact resolvent and then the Kramers-Fokker-Planck operator K V has no compact resolvent. KFP avec polynômes de degré supérieur à 2 (article rédigé en anglais) Lemma 3.A.5. Let P ∈ E r , where r ∈ N * is the degree of P and let n be a natural number in {1, ..., r} .

1) The metric g n is slow : There exists a uniform C = C(n, r, d) ≥ 1 such that

2) The metric g n-1 is g n -slow : There is a constant C = C (n, r, d) ≥ 1 so that

Proof. The dimension d is fixed. Assume n, r ∈ N * with n ≤ r. The set

, where P ∈ E r /E n-1 can be identified with the polynomial P (q) = n≤|α|≤r ∂ α q P (0) α! q α . For any ≥ 0 , the mapping

is continuous because s → s ν is continuous on [0, +∞) for any ν > 0 . On the compact set K n,r × B(0, ) it admits a maximum M n,r, and a minimum m n,r, which cannot be 0 . Actually R ≥n P (t 0 ) = 0 means ∂ α x P (t 0 ) = 0 for all α ∈ N d , |α| ≥ n , and by the Taylor expansion ∂ α

x P (t) = 0 for all t ∈ R d , α ∈ N d , |α| ≥ n , which contradicts R ≥n P (0) = 1 . Now for a general V ∈ E r with d • V ≥ n , we know that for all q ∈ R d , R ≥n V (q) = 0 . We thus consider for any q ∈ R d , the class P q of V (q + R ≥n

and in particular R ≥n P q (0) = 1 , P q ∈ K n,r . Therefore we obtain for = 1 r,1 .

3.B Around Tarski-Seidenberg theorem

Proof. Let V be a real-valued polynomial on R d with degree r ∈ N * . Suppose that there are

where Σ is a given unbounded semialgebraic set.

After setting τ = 2 LCM |β|, min(n, m) ≤ |β| ≤ r , (where the abbreviation LCM stands for least common multiple), define the functions

Notice that one has the equivalences 

Remark here that R ≥n V (q) and R =m V (q) are polynomials in q ∈ R d variable. Furthermore, the Assumption (3.B.5) can be written as follows

for all q ∈ Σ where

Now, following the notations of Proposition 3.B.4, we introduce the set

and the function f defined in R + by 

In particular, since

does not vanish for q ∈ Σ with |q| ≥ 1.

On the other hand, notice

The inequalities (3.B.8) and (3.B.10) lead to

for every q ∈ Σ with |q| ≥ ρ 1. Therefore since B.11) for any q ∈ Σ with |q| ≥ 1.

From (3.B.9) and (3.B.11), we deduce the existence of 0 1 such that

(3.B.12)

We now take δ = |γ| 4τ r ∈ (0, 1) and

Kramers-Fokker-Planck operators with homogeneous potentials Abstract

In this article we establish a global subelliptic estimate for Kramers-Fokker-Planck operators with homogeneous potentials V (q) under some conditions, involving in particular the control of the eigenvalues of the Hessian matrix of the potential. Namely, this work presents a different approach from the one in [Ben], in which the case V (q 1 , q 2 ) = -q 2 1 (q 2 1 + q 2 2 ) n was already treated only for n = 1. With this article, after the former one dealing with non homogeneous polynomial potentials, we conclude the analysis of almost all the examples of degenerate ellipticity at infinty presented in the framework of Witten Laplacian by Helffer and Nier in [HeNi]. Like in [Ben], our subelliptic lower bounds are the optimal ones up to some logarithmic correction. 

Introduction and main results

In this work we study the Kramers-Fokker-Planck operator

where q denotes the space variable, p denotes the velocity variable and the potential V (q) is a real-valued function defined in the whole space R d q .

Setting

We firstly list some notations used throughout the paper. We denote for an arbitrary function

In particular for a polynomial V of degree less than 3, Tr +,V and Tr -,V are two constants.

In this case we define the constants A V and B V by

This work is principally based on the publication by Ben Said, Nier, and Viola [BNV], which concerns the study of Kramers-Fokker-Planck operators with polynomials of degree less than three. In [BNV] we proved the existence of a constant c > 0, independent of V , such that the following global subelliptic estimate with remainder

holds for all u ∈ C ∞ 0 (R 2d ). Furthermore, there exists a constant c > 0, independent of V , such that

Corollary 4.1.2. The Kramers-Fokker-Planck operator K V with a potential V (q) satisfying Assumption 2 has a compact resolvent.

Proof. Let 0 < δ < 1. Define the functions f δ : R d → R by

As a result of (4.1.7) in Theorem 4.1.1 there is a constant

) and all δ ∈ (0, 1). In order to show that the operator K V has a compact resolvent it is sufficient to prove that lim |q|→+∞ f δ (q) = +∞. It is a matter of how different derivatives scale. Consider the unit sphere S = {q ∈ R d : |q| = 1}. By Assumption (4.1.6), at every point on S either ∇V = 0 or |Hess V | = 0. Then the function f δ is always positive on S. By hypothesis, f δ is continuous on S and therefore it achieves a positive minimum there, call it m δ > 0.

For any y, |y| > 1 there exists λ > 1 such that y = λq for some q ∈ S. By homogeneity,

and therefore, by the chain rule

Adding these up,

which goes to infinity as |y| = λ → ∞, since by assumption r > 2.

Remark 4.1.3. The result of Corollary does not hold in the case of homogeneous polynomial of degree 2 with degenerate Hessian. In the case with degenerate Hessian, the Kramers-Fokker-Planck operator is indeed invariant by translation in the direction of the kernel of the Hessian and then it could not have a compact resolvent.

Remark 4.1.4. Our results are in agreement with the results of Wei-Xi Li [Li][Li2] and those of Helffer-Nier on Witten Laplacian with homogeneous potential [HeNi1].
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Observations and first inequalities 4.2.1 Dyadic partition of unity

In this paper, we make use of a locally finite dyadic partition of unity with respect to the position variable q ∈ R d . Such a partition is described in the following Proposition. For a detailed proof, we refer to [BCD] (see page 59).

Proposition 4.2.1. Let C be the shell x ∈ R d , 3 4 < |x| < 8 3 . There exist radial functions χ and φ valued in the interval [0, 1], belonging respectively to C ∞ 0 (B(0, 4 3 )) and to

Setting for all q ∈ R d , χ -1 (q) = χ(2q)

we get a locally finite dyadic partition of unity

where the cutoff functions χ 0 (r) =

χ 2 (q)+φ 2 (q)

1 2

3 ) and C ∞ 0 ( 0, 4 3 ). 120
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Lemma 4.2.2. Let V be in C ∞ (R d \ {0}). Consider the Kramers-Fokker-Planck operator K V defined as in (4.1.1). For a locally finite partition of unity j≥-1 χ 2 j (q) = 1 one has

In particular when the cutoff functions χ j have the form (4.2.1), there exists an absolute constant c > 0 so that

Proof. The proof of the equality (4.2.2) is detailed in [Ben]. Now it remains to show the inequality (4.2.3), after considering a locally finite dyadic partition of unity (described as below Proposition 4.2.1), j≥-1

where for all j ∈ N, the cutoff functions χ j and χ -1 are respectively supported in the shell q ∈ R d , 2 j 3 4 ≤ |q| ≤ 2 j 8 3 and in the ball B(0, 2 j 3 4 ). Since the partition is locally finite, for each index j ≥ -1 there are finitely many j such that (∂ q χ j )χ j is nonzero. Along these lines, there exists a uniform constant c > 0 so that j≥-1

On the other hand, for every u ∈ C ∞ 0 (R 2d ), 

Localisation in a fixed Shell

Lemma 4.2.3. Let V (q) be an homogeneous function in C ∞ (R d \ {0}) of degree r and assume j ∈ Z. Given u j ∈ C ∞ 0 (R 2d ), one has

where the operator K j,V is defined by

and v j (q, p) = 2 jd 2 u j (2 j q, p).

In particular when u j is supported in

Since V is homogeneous of degree r, its gradient ∂ q V (q) is homogeneous of degree r -1. As follows, we can write

the cutoff functions v j , defined in (4.2.8), are all supported in the fixed shell

Remark 4.2.4. Assume j ∈ N. If we introduce a small parameter h = 2 -2(r-1)j then the operator K j,V , defined in (4.2.7), can be rewritten as
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From (4.3.15), (4.3.18) and (4.3.19), we deduce for an other suitable choice of c > 0,

It follows from the above inequality and (4.3.13), that

(4.3.20)

Now using the estimate (4.3.20), we should control the errors coming from the partition of unity and the quadratic approximation. For this reason, notice that our choice of exponent ν in (4.3.3) implies

As a result, collecting the estimates (4.3.12) and (4.3.20), we deduce the existence of a constant c > 0 such that

(4.3.21) Via (4.1.2), there is a constant c > 0 so that

Hence using the inverse change of variables q" = q h 1 2(r-1)

, we obtain in view of the above estimate and (4.3.13), 

(4.3.25)

On the other hand, for all q ∈ supp w k,j ,

Therefore by (4.3.24) and (4.3.26), we obtain for every q ∈ supp w k,j and all j sufficiently large.

From (4.3.25) and (4.3.37), there exists a constant c > 0 so that (4.3.28) is valid for all j large enough.

Furthermore, taking into account the condition (4.3.3) on ν, one has for all q ∈ supp w k,j such that |∂ q V (q)| ≤ | ln(h)| 2 h 2ν , and every j sufficiently large

On the other hand, by (4.3.10), all q ∈ supp w k,j such that

In such a way, considering (4.3.28), (4.3.29) and (4.3.30) (4.3.32) Chapitre 4 : Opérateurs de KFP avec potentiels homogènes (article rédigé en anglais)

holds for all j ≥ j 0 , for some j 0 ≥ 1 large enough. Now let us collect the finite remaining terms for -1 ≤ j ≤ j 0 . After recalling h = 2 -j and

From the lower bound (4.1.2), we deduce the existence of a constant c > 0 so that (4.3.33) holds for all -1 ≤ j ≤ j 0 .

Finally, collecting (4.3.21), (4.3.32) and (4.3.33), (4.3.34) is valid for every j ≥ -1.

Case 2. We consider in this case the quadratic approximating polynomial near q k,h . Using once more [BNV] (see (4.1.2)), there is a constant c > 0 such that

k,h (h 1 2(r-1) q) 2 3 w k,j 2 .

(4.3.35)

As a consequence of (4.3.13) and (4.3.35),

k,h w k,j 2 + H w k,j 2 ≥ c O p w k,j 2 + h 1 2(r-1) D q 2 3 w k,j 2 + h -1 2 ∂ q V

(2) k,h (q) (4.3.37) holds for all q ∈ supp w k,j and any j large. Then, it follows from (4.3.37) and (4.3.36), (4.3.38) Or in this case, in view of the (4.3.7), one has |∂ q V (q)| ≥ 2 for all q ∈ supp w k,j . Hence it results from the above inequality

(4.3.39) Furthermore, by continuity of q → |Hess V (q)| on the compact set C, one has for all q ∈ supp w k,j and any j large (4.3.40) Then by the above inequality and (4.3.39), we get

k,h w k,j 2 ≥ c O p w k,j 2 + h 1 2(r-1) D q 2 3 w k,j 2 + (h -1 2 ) (4.3.41) for every j ≥ j 1 for some j 1 ≥ 1 large. Now, in order to absorb the errors in (4.3.12), notice that our choice of exponent ν in (4.3.3) implies

Now set c

(3)
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Seeing (4.1.2), we deduce the existence of a constant c > 0 so that

k,h w k,j + (c

≥ c( O p w k,j 2 + h 1 2(r-1) D q 2/3 w k,j 2 + h -1 2 |∂ q V (q)| 2/3 w k,j 2 + H|Hess V (q)| 1/2 w k,j 2 + (2 + H) (4.3.42) holds for all -1 ≤ j ≤ j 1 .

Thus, combining the estimates (4.3.12), (4.3.41) and (4.3.42)

O p w k,j 2 + h 1 2(r-1) D q 2 3 w k,j 2 + (2 + H) (4.3.43) holds for all j ≥ -1.

In conclusion, in view of (4.3.34) and (4.3.43), there is a constant c > 0 such that

w k,j 2 + h 1 2(r-1) D q 2 3 log(2 + H) w k,j 2 + (2 + H) (4.3.44) holds for all j ≥ -1.

Finally setting L(s) = s+1 log(s+1) for all s ≥ 1, notice that there is a constant c > 0 such that for all x ≥ 1, , Λ 2,j = H|Hess V (q)| 1/2 log(2 + H) , Λ 3,j = h -1 2 |∂ q V (q)| 2 3 log(2 + H) , Λ 4,j = (2 + H)

log(2 + H) , Λ 5,j = h 1 2(r-1) D q ) 2 3 log(2 + H) , From the above estimates and (4.3.44),

3 )w k,j 2 .

(4.3.46)

Therefore in view of Lemma 2.5 in [Ben] conjugated by the unitary transformation of the change of scale, (4.3.47) or equivalently

3 )u j 2 + L( Hess V (q)

1 2 )u j 2 + L( ∂ q V (q)

2 3 )u j 2 , (4.3.48) for every j ≥ -1.

Therefore, combining the last estimate and (4.3.1), there is a constant C V > 1 so that

3 )u 2 + L( Hess V (q)

1 2 )u 2 + L( ∂ q V (q)

2 3 )u 2 (4.3.49) holds for all u ∈ C ∞ 0 (R 2d ).