
HAL Id: tel-02645881
https://theses.hal.science/tel-02645881v1

Submitted on 29 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Test case generation for Symbolic Distributed System
Models : Application to Trickle based IoT Protocol

Ngo Minh Thang Nguyen

To cite this version:
Ngo Minh Thang Nguyen. Test case generation for Symbolic Distributed System Models : Application
to Trickle based IoT Protocol. Other. Université Paris Saclay (COmUE), 2019. English. �NNT :
2019SACLC092�. �tel-02645881�

https://theses.hal.science/tel-02645881v1
https://hal.archives-ouvertes.fr

Th
ès

e
de

do
ct

or
at

N
N

T
:2

01
9S

A
C

LC
09

2

Test case generation for
Symbolic Distributed System Models:

Application to Trickle based IoT Protocol
Thèse de doctorat de l’Université Paris-Saclay

préparée à CentraleSupélec

École doctorale n◦573 Approches Interdisciplinaires: Fondements, Applications
et Innovation (Interfaces)

Spécialité de doctorat: Informatique

Thèse présentée et soutenue à Gif-sur-Yvette, le 16/12/2019, par

NGO MINH THANG NGUYEN

Composition du Jury :

Stéphane MAAG
Professeur, Telecom SudParis Président

Antoine ROLLET
Maître de conférences, Université de Bordeaux Rapporteur

Frédéric MALLET
Professeur des universités, Université Côte d’Azur Rapporteur

Pascale LE GALL
Professeur des universités, CentraleSupélec Directeur de thèse

Boutheïna BANNOUR
Ingénieur chercheur, CEA LIST Co-encadrante de thèse

iii

Acknowledgements

This work has been carried out within the Laboratory of System Requirements and Conformity (LECS) and
the Laboratory of Mathematics and Computing for Complexity and Systems (MICS) at respectively the Alter-
native Energies and Atomic Energy Commission and CentraleSupelec. It is funded by the Laboratory LECS.

This work has been accomplished under the supervision of Professor Pascale Le Gall (MICS) and my supervi-
sor Boutheïna Bannour (LECS). I would like to express my deepest acknowledgment to them and their highly
professional guidance, dedication and incessant support. I highly appreciate the friendly and professional
environment they have created for me during my doctorate. They have always been available whenever I
had a question, and always interested in the progress of my work. The discussions we have had, and their
advice, have always allowed me to progress. Finally, their proofreading to this thesis were very precious.

I would like to show especially my gratitude to Arnault Lapitre (LECS) and Paolo Ballarini (MICS) for their
help and valuable advice during my doctorate. Their rigors, their problem solving skills and their knowledge
have always been helpful to me.

I sincerely thank the jury: Mr. Antoine Rollet and Mr. Frédéric Mallet for accepting to review my PhD thesis.
I also would like to extend my special thanks to Mr. Stéphane Maag for agreeing to examine this thesis.

My thanks go also to my doctoral friends in CEA: Lamia, Hadi, Slim and Imen in my laboratory and Lionel,
Jean-Christophe in the Laboratory LSL. I would like to thank Frédérique Descreaux, the secretary of my lab-
oratory for her assistance. I wish to thank my colleagues with whom I had lunch, shared jokes and played
football together: Jean-Yves, Xavier, Alain, Julien, Virgile and Adel.

Finally, I owe unconditional thanks for the support of my family. I will never forget helpful advice of my
aunt Lien, my aunt Hang and my uncle Thong. Above all, I would like to thank my mom My, my dad Phap,
my sister Dung, my nephew Subeo and my beloved Thao Nguyen for their unfailing support and continuous
encouragement throughout my doctoral years.

v

Résumé étendu en français

Les systèmes distribués sont composés de nombreux sous-systèmes distants les uns des autres. Afin de
réaliser une tâche commune, les sous-systèmes communiquent à la fois avec l’environnement local par des
messages qualifiés d’externes et avec d’autres sous-systèmes par des messages qualifiés d’internes grâce à un
réseau de communication. En pratique, les systèmes distribués mettent en jeu plusieurs types d’erreurs, soit
provenant des sous-systèmes les composant, soit provenant des messages internes. Cela explique l’importance
de tester de tels systèmes afin d’augmenter le niveau de confiance en leur bon fonctionnement. Cependant,
en raison même de leurs caractéristiques, il est reconnu qu’il est compliqué de tester les systèmes distribués.
Sans horloge globale, les sous-systèmes ne peuvent pas synchroniser les messages, ce qui entraîne des situa-
tions non déterministes, difficiles à contrôler.

L’approche de test, appelée test à base de modèles (MBT pour Model Based Testing) a pour objectif de véri-
fier si le comportement d’un système sous test (SUT) est conforme à son modèle, en charge de décrire les
comportements attendus du système. Les approches de test à base de modèles ont un rôle majeur pour 2
étapes principales du test : la génération de cas de test et le calcul de verdict. Dans cette thèse, nous nous
intéressons à la génération de cas de test locaux dans le contexte du test des systèmes distribués : les cas de
test sont coordonnés dans la mesure où chacun d’entre eux est paramétré par un objectif de test local obtenu
par projection d’un objectif de test global associé au système global.

Pour spécifier les systèmes, nous utilisons les systèmes de transition symbolique temporisé à entrées et sor-
ties (TIOSTS), qui sont des automates communicants équipés de techniques d’exécution symbolique portant
sur les données et le temps. Le modèle d’un système distribué est un tuple de TIOSTS, chacun décrivant un
sous-système et la communication entre sous-systèmes étant modélisée par les files d’attente. Nous utilisons
la technique d’exécution symbolique pour décrire les comportements symboliques du système distribué.
Faisant partie des hypothèses de test adoptées dans ce manuscrit, on suppose qu’en plus des messages ex-
ternes, un cas de test local observe les messages internes reçus et envoyés par le sous-système co-localisé.
Cette hypothèse réduit le problème de contrôlabilité puisqu’en observant ces messages, un cas de test local
peut connaître l’ordre d’émission et de réception des messages internes du sous-système co-localisé. Notre
framework de test est constitué des étapes suivantes : dans un premier temps, on sélectionne un objectif de
test global, qui correspond à un comportement particulier dans le système distribué, obtenu via des tech-
niques d’exécution symbolique. Deuxièmement, les techniques de projection sont appliquées pour obtenir
des objectifs de test locaux à partir de l’objectif de test global précédemment sélectionné. Troisièmement, nous
décrivons les cas de test locaux à l’aide de règles indiquant dans quelles circonstances le cas de test stimule le
système local sous test avec une donnée de test ou bien attend d’observer une réaction du sous-système, tout
en suivant l’objectif de test local correspondant. L’exécution distribuée du test consiste à exécuter des cas de
test locaux sur chacun des sous-systèmes distants : les données de test sont calculées à l’aide de techniques
de résolution de contraintes et les verdicts de test sont calculés à la volée.

Une implémentation de notre framework de test est proposée au sein de Diversity, qui est un outil d’analyses
formelles basées sur un modèle utilisant l’exécution symbolique. Cet outil personnalisable nous facilite
l’implémentation de nouvelles fonctionnalités grâce à une architecture extensible du moteur de l’exécution

vi

symbolique. L’utilisation de notre framework de test dans Diversity se compose de deux étapes: sélection
d’un objectif de test global et dérivation de cas de test locaux à partir de l’objectif de test sélectionné. Dans le
but d’expérimenter notre framework de test, nous le mettons en œuvre sur un cas d’étude issu d’un protocole
de communication utilisé dans le contexte des systèmes IoT. Enfin, une méthode de sélection est proposée
pour sélectionner des objectifs de test intéressants à tester avec ce cas d’étude.

Mots clés: Systèmes distribués, test à base de modèles, systèmes de transition symbolique temporisé avec
des entrées et sorties, exécution symbolique, objectif de test global, technique de projection, objectif de test
local, résolution de contraintes.

vii

Contents

1 Introduction 1
1.1 Distributed systems and motivation . 1
1.2 Testing architectures and related works . 3
1.3 Our proposed architecture and approach . 8
1.4 Contributions . 9
1.5 Dissertation structure . 10

2 Symbolic models for reactive systems 11
2.1 Reactive systems and real-time systems . 12

2.1.1 Reactive systems and real-time systems. 12
2.1.2 Models for reactive systems: Automata/Labeled Transition Systems. 13

2.2 Timed Input Output Symbolic Transition Systems (TIOSTS) . 13
2.2.1 Formalism overview . 13
2.2.2 Semantics of TIOSTS . 16
2.2.3 Running case study: ATM-Bank system . 19

2.2.3.1 TIOSTS of ATM . 19
2.2.3.2 TIOSTS of Bank . 20

2.3 Symbolic execution of TIOSTS . 22
2.3.1 Principle of symbolic execution . 22
2.3.2 Illustration with ATM . 26
2.3.3 Deterministic TIOSTS . 28
2.3.4 Enrichment by quiescence . 31

2.4 Implementation in Diversity . 33
2.4.1 Textual models of the ATM-Bank system . 33
2.4.2 The tool customizable symbex engine . 36
2.4.3 Module of test purpose selection . 37

2.5 Conclusion . 39

3 Test cases derivation in the distributed context 41
3.1 Model-Based Testing of reactive systems . 42

3.1.1 Offline approach . 43
3.1.2 Online approach . 44

3.2 Timed conformance relation . 45
3.2.1 Localized System Under Test . 45
3.2.2 Timed Input Output Conformance relation (tioco) . 46

3.3 Construction of online test case . 47
3.4 Illustration with ATM . 56
3.5 Implementation in Diversity . 62

3.5.1 Test case generation process . 62

viii

3.5.2 Module of test case generation for unitary systems . 62
3.5.3 Elements on the validation of the generated test case . 66

3.6 Related work . 69
3.7 Conclusion . 72

4 Distributed systems: testing, coverage and derivation of scenarios 73
4.1 Distributed systems . 74
4.2 The interest of testing distributed systems . 76
4.3 Our testing architecture for distributed systems . 78
4.4 Symbolic execution for testing distributed systems . 79

4.4.1 Distributed system context . 79
4.4.2 Symbolic execution rules for distributed systems . 80
4.4.3 Illustration with ATM-Bank . 81

4.5 Our testing framework for distributed systems . 85
4.5.1 Our testing framework . 85
4.5.2 An ATM-Bank test purpose . 87

4.6 Discussion of the approach . 91
4.7 Conclusion . 91

5 Models and scenario selection for information dissemination in Wireless Sensors Networks 93
5.1 Context . 94
5.2 Trickle algorithm . 95
5.3 Trickle algorithm in MPL protocol . 95
5.4 Behavioral models for MPL protocol . 96

5.4.1 Processes of sensor nodes architecture . 96
5.4.2 Compact automata for process modeling . 97
5.4.3 Control message process . 98
5.4.4 Data message process . 99

5.5 Experimenting with scenario selection . 100
5.5.1 An extended selection method with observers . 100
5.5.2 Some sensor nodes topologies . 101
5.5.3 Coverage objective 1 - All nodes are updated . 102

5.5.3.1 Selection using sequences of ordered formulas 102
5.5.3.2 Selection using sequences mixing actions and formulas 105

5.5.4 Coverage objective 2 - At least one node is outdated . 106
5.5.5 Analyses of generated scenarios . 106

5.5.5.1 Scenario for the coverage objective all node are updated 106
5.5.5.2 Scenario for the coverage objective at least one node is outdated 109

5.6 Conclusion . 109

6 Conclusion 111
6.1 Summary . 111
6.2 Future research directions . 113

Acronyms 115

Bibliography 117

1

Chapter 1

Introduction

Contents
1.1 Distributed systems and motivation . 1
1.2 Testing architectures and related works . 3
1.3 Our proposed architecture and approach . 8
1.4 Contributions . 9
1.5 Dissertation structure . 10

1.1 Distributed systems and motivation

Distributed systems (DS) [21, 76] can be considered as a collection of subsystems that in order to achieve a
common goal coordinate their actions by exchanging messages through an interconnected communication
network. Each subsystem is autonomous and interacts with its local environment through external channels
and with other subsystems through internal channels. Several concrete examples of DS can be found in
different domains, including: communication networks, e.g. Local Area Networks (LAN) which connect
thousands of servers in data centers; Internet of Things (IoT) networks which exchange application data and
are applied to domains such as agriculture, health and smart home; real time process controls, e.g. aircraft
control systems which are used to manage flight routes for takeoff and landing.

Network

Sub1

Sub2 Sub3

Internal channels

External channels

FIGURE 1.1: Overview of a distributed system

2

Figure 1.1 schematically depicts a distributed system, generically called Sys with three subsystems Sub1,
Sub2 and Sub3. Each of the subsystems Subi can communicate with the other subsystems Subj (for j 6=
i) via internal channels (black lines going to the cloud pattern) as well as with its direct environment via
external channels (black lines going to the black silhouette, schematizing any user, either an human being or
a machine.

In spite of their widespread diffusion, the conception and deployment of DS is affected by a number
of critical aspects [55], the most relevant of which is the lack of a global clock which may induce non-
deterministic interleaving of exchanged messages, hence letting the overall behavior of DS non-deterministic.
Indeed, without some mechanisms playing the role of a global clock, distributed systems are unable to guar-
antee that handling of received messages is correct w.r.t. their emission date. For instance, it suffices that the
order of two receptions in a subsystem has been reversed to yield a flow of messages which would not occur
if the messages were received in the correct order.

DS often entail typical errors which roughly speaking, may be split in two categories: errors due to non-
compliance with some real-time constraints as opposed to errors affecting data included in the messages
exchanged by the subsystems. Errors of the first category arise when the correct operation of the system
requires, for example, that the reply to a request received by Sub1 must be issued within a given delay.
Exceeding such delay should be considered as a display of a misbehavior which could be due to either: i)
an erroneous implementation of Sub1; ii) a misbehaving of the other subsystems (Sub2 and Sub3); iii) an
excessive communication’s latency due to insufficient Quality of Service (QoS) of the underling network.
On the other hand, errors of the second category entail situations where an unexpected data is carried over
a channel, and hence as to be considered as invalid. Such kind of errors may result from faulty internal
communications, e.g. an internal message could be dropped or be corrupted, leading to a situation where
the message has been emitted by a subsystem but never received by the corresponding receiver. Obviously,
an erroneous exchanged data can simply come from the subsystem that emits the data, and therefore can
come directly from an erroneous subsystem. To summarise, errors in the context of distributed systems may
be caused either by errors of their subsystems, by errors of the underlying communication network, or by a
combination of both. In this respect, testing of distributed systems requires taking into account sufficiently
sophisticated methods capable of dealing with all these kinds of errors.

Many kinds of testing methodologies have been proposed in the literature [60], arising at different levels
in the development cycle of a computerized system. Unit testing [24, 17] is a process concerned with testing
of individual parts of a system, considered in isolation, i.e. without accounting for any interactions with other
components. In the context of distributed systems, whereby a subsystem may be considered as an individual
part (hence its local behavior could be tested through unit testing), integration testing [67] represents the
second level of testing, which aims at detecting errors due to the interactions between the subsystems that
form a DS. Therefore DS testing consists of verifying the compliance with some (global) specifications of
the entire system (i.e. the system consisting of all interacting subsystems). In some cases, the knowledge
of the DS architecture and/or of the structure of the (global) specification can facilitate testing activities, in
particular through the adoption of a compositional approach.

In this context, the objective of this thesis is to propose an integrated testing framework that allows one for
verifying whether a DS composed of a number of subsystems operates correctly w.r.t its specification, where
a DS specification consists of a set of specifications, one for each subsystem composing it. In the next section,
we overview several testing architectures that have been introduced in the literature for testing distributed
systems.

3

1.2 Testing architectures and related works

General architecture. Figure 1.2 illustrates a general testing architecture for distributed systems. It accounts
for different possible configurations that can be considered during a testing process, such as:

1. At every subsystem, we place a local tester (depicted as a dummy holding a magnifying glass) in order
to test it locally;

2. Local testers could coordinate each other (represented by dotted green arrows) in order to synchronize
their behaviors for testing a global behavior (i.e. a behavior that accounts for the combination of several
subsystems behaviors);

3. A local tester may observe internal communications (represented by dotted blue arrow) which are sen-
t/received by its corresponding subsystem

4. A global tester (dummy with a magnifying glass linked through dotted pink arrows to local tester’s
dummies) connected to all local testers is in charge of i) collecting local traces together with their asso-
ciated local verdict or ii) controlling the process such as beginning or terminating the whole process or
iii) analysing the compatibility of all local traces up to internal communication rules or iv) emitting a
global verdict from the knowledge of all local verdicts together with the analysis of internal communi-
cations etc.

Network

Sub1

Sub2 Sub3

Local tester 1

Local tester 2 Local tester 3

testers’s
coordination

testers’s coordination

testers’s
coordination

Global tester

Control/
Collect

Control/Collect Control/Collect

FIGURE 1.2: General architecture

According to state-of-the-art literature [82, 45] a testing architecture for distributed systems may be re-
ferred to as: global-tester based architecture, local-tester based architecture and hybrid architecture. Let us
briefly introduce these kinds of testing architectures.

4

Network

Sub1

Sub2 Sub3

Global tester

FIGURE 1.3: Global-tester based architecture

Global-tester based architecture. A global tester (Figure 1.3) is characterized by two main features: he/she
is capable of directly interacting with every subsystem and also has access to the internal communications
of each subsystem. As a consequence, in order to compute a test verdict, the global tester can: i) stimulate
and collect the resulting messages at each subsystem (depicted by magenta arrow); ii) observe the content of
internal channels of each components of the DS (depicted by cyan dashed arrow).

The most important advantage of this architecture is that the global tester has an overview of global be-
haviors and controls easily the stimulus to drive a global behavior. However, in this architecture, it is required
that the tester possesses a strict control over the system execution so as to control the global behavior that
is being tested. For instance, an unstable connection between the global tester and a subsystem can delay
a stimulus, hence resulting in reversing the order of messages (i.e. test actions) in the system execution.
Furthermore the inherent latency which affects the retrieval of data collected by the global tester from the
subsystems being tested makes it difficult to accurately reconstruct the sequence of events in the system, and
therefore to know whether the overall reconstructed behavior is in line with expectations. The consideration
of test data delays between remote points of observations and a centralized global tester is known as the main
difficulty of remote testing, often partially resolved by assuming that these transmission delays are bounded
by a known boundary.This issue is not present in the following testing architecture where each subsystem is
equipped with a local tester, under the testing hypothesis that local testers synchronously communicate with
the co-localized subsystems.

5

Network

Sub1

Sub2 Sub3

Local tester 1

Local tester 2 Local tester 3

FIGURE 1.4: Local-tester based architecture

Local-tester based architecture. A local-tester architecture consists in decomposing the global testing goal
(i.e. the desired test of the entire DS) into a number of local goals, each of which is to be performed by a
dedicated local tester assigned to a specific subsystem (see Figure 1.4). Testing of the DS in this case con-
sists of the composition of the activity that each local tester performs independently on the corresponding
subsystem. Local testers may observe internal messages sent/received to/from their corresponding subsys-
tems. Furthermore stimulus applied by a local tester undergoes no delay to be reached by the corresponding
subsystem (since each local tester interacts directly with its subsystem). A shortcoming of the local-tester
architecture is that since one does not have a global view, it is not possible for local testers to control sending
of internal messages to meet a targeted global behavior.

Hybrid architecture. The hybrid testing architecture consists of a combination of the global-tester and local-
tester architecture. With the hybrid approach a tester may be associated with one or several subsystems as
depicted in Figure 1.5 whereby local testers 1 and 4 are associated with subsystem Sub1 while subsystems
Sub1 and Sub2 are connected to the local tester 1.

Network

Sub1

Sub2 Sub3

Local tester 1

Local tester 2 Local tester 3

Local tester 4

FIGURE 1.5: Hybrid architecture

6

Model-Based Testing. The literature is populated with a large number of methods devoted to testing of dis-
tributed systems. Approaches based on the application of some formal modelling paradigm (such as, e.g.,
state transition machines, data flow or control flow models, etc.) to express a system (correct) behavior, com-
monly known as system specification, belong to the family of so-called Model-Based Testing (MBT) methods.
Roughly speaking, MBT characterises a family of testing approaches where models are used to derive test
cases whose execution is used to compute verdicts. Specifically: the runtime behavior of a system is tested
through tests that are devised from a specification expressed in terms of a (formal) model. MBT is very often
studied in order to efficiently test a system [72, 43, 35, 65, 64, 62]: From a predefined model which character-
izes expected behaviors, one can derive test cases according to a test purpose describing a particular behavior.
The generated test cases are then executed on the actual system (i.e. test execution) and results are collected
and analysed so to produce a test verdict. The main objective of MBT is to test that the system behaviors
do not violate behaviors expressed by the model. Thus, the last step consists in analyzing the result of test
execution so to conclude if the system behaves as expected. If the outcome of a test execution diverges from
those specified in the model, an error is identified and the system behavior is suspect. The testing approach
for DS presented in this dissertation is based on MBT.

Conformance relations. The process of testing a system is concerned with establishing whether a system be-
haves correctly (w.r.t. some specifications). In the context of system testing the notion of system’s correctness
is usually given in mathematical terms through a relation defined w.r.t. the traces (i.e. sequences of input and
output) observed on the system under test (SUT).
In the class of MBT based on Finite State Machines (FSM) models, i.e. models for which a (possibly empty)
output is systematically associated to an input, conformance is often expressed in term of distinguishing se-
quences and of coverage criteria for the underlying model, so that a successful test campaign consists in the
generation of test sequences up to some coverage criteria on states or transitions.
When considering models in the class of labelled transition systems, for which outputs are not systematically
coupled with inputs, establishing the correctness of the SUT is based on the so-called notion of conformance
relation. The input output conformance relation (ioco) [78, 77] is the original conformance relation upon which
much of MBT literature of the 90s is based. It has then been extended by many other variants to adapt it to
different kind of models, such as timed variant tioco [46, 73, 45, 5] for timed systems, dtioco for distributed
timed systems [32, 10]. In the rest of the document, we will place ourselves within the framework of models
in the form of labelled transition systems provided with conformance relations issued from the ioco relation
family.

Background of our work. The work presented in this document is a complementary contribution to that
described in [32], [10]. Indeed, in [10], authors consider a particular testing architecture for which a local
tester is associated to each subsystem and for which a global tester collects all local behaviors for a posteriori
analysis (Figure 1.6). In particular, in addition to external communications, local testers are supposed to
observe local internal communications. By interacting with the corresponding subsystem, the local tester
collects a local trace and sends it to the global tester. More precisely, as the correctness of a distributed system
is defined in a modular way, i.e. by the (local) correctness of each local subsystem with respect to its local
specification, and by the correctness of internal communications with respect to communication rules. These
communication rules governing internal communications simply express that a message, before it is received,
has first been sent, that a message may take an arbitrarily long time to reach its destination. In [10], the authors
have modeled these rules as a constraint solving problem. Moreover, since each of the local traces is checked
in an off-line mode against its local specification, the approach of [10] has the advantage of proposing a test
method structured according to the structure of the system itself. On the other hand it has the disadvantage
of not providing the tester with any means to control the behavior that are analysed. Indeed, the coordination

7

of local testers is not taken into consideration in this approach. In this document, we propose to remedy this
shortcoming by assuming the same system structure and testing architectures as in [10], and yet seeking a
method that allows for controlling the behavior executed during the testing phase, in particular by selecting
test data from some global behaviors deemed relevant by the tester. In the following we summarise the main
elements of the DS test framework defined in [10].

Network

Sub1

Sub2 Sub3

Global tester

Collect trace σ1

Collect trace σ2 Collect trace σ3

FIGURE 1.6: Testing architecture in the work [10]

In the approach of [10], the specification of the distributed system is defined as a tuple of three models
where each of them specifies behaviors of a subsystem, i.e. Sys = (M1, M2, M3). [10] highlights a composi-
tional result: the conformance of a DS is defined as the composition of local conformance for all subsystems
and correctness of internal communications. In order to be able to derive the global test verdict, the tuple of
local traces, (σ1, σ2, σ3) one for each subsystem, is verified as follows:

• Local conformance: each local trace σi for 1 ≤ i ≤ 3 is checked w.r.t its corresponding model Mi in the
context of the conformance relation tioco;

• Verification of internal communications: the tuple (σ1, σ2, σ3) of the three local traces is then analysed
to check whether they are compatible to the broadcast communication policy : the emission date of an
internal message must occur before the corresponding reception date for any other subsystem likely to
receive the message. Each of these inequalities constitutes a constraint, element of the set of constraints
that needs to be satisfied by the tuple of local traces. To do so, all the dates are fictitiously measured
against a common initial date: as it is not possible to precisely synchronize the beginning of all traces
together, a variable xi is introduced per subsystem Subi, representing the time elapsed since an initial
date common to all the subsystems, but unknown. Moreover, time is assumed to elapse at the same
speed for all subsystems, so that time unit is the same for all subsystems. Moreover, no constraints are
expressed on transmission delays in the internal network so that a message reception can take place
after an arbitrarily long delay w.r.t. its corresponding emission. Under these hypotheses, the analysis
of the correctness of internal communications can be expressed as a Constraint Satisfaction Problem [7,
81] with exactly n variables (the initial unknown duration xi for each subsystem), whose solution can
be obtained through a standard constraint solver (CVC4 [6], Z3 [25], Yices [28]).

8

In the best case, the local conformance in [10] is inherited from the conformance verification proposed
by Bannour et al. in [5]: a sequence of inputs interleaved with delays is derived from a target behavior to
be tested, and then is executed on the local subsystem. As we are in a high level non-deterministic context,
the execution of a predefined selected timed input sequence is very likely to deviate from the initial selected
behavior. Thus, while the approach described in [10] allows the tester to check whether a set of local traces
is consistent with the conformance relation dtioco, (i.e. the ioco variant adapted to such timed distributed,
combining tioco for each subsystem and internal communication rules), [10] does not propose a methodology
to manage the submission of test data. Unlike [5], we aim at proposing a test method that deploys local testers
who are able to submit input data based on both test purposes to be followed and previous observations on
local subsystems. Such test approaches where local testers can control local testing process by choosing at
which moment test data should be submitted are said to be online in contrast to offline approaches where
input test data sequences are pre-computed.

In the following section, we present the initial assumptions concerning the testing architecture and our
approach on which our work will be based.

1.3 Our proposed architecture and approach

Models of distributed systems. In our approach, to specify behaviors of a DS, we use a collection of models
called Timed Input Output Symbolic Transition Systems (denoted as TIOSTS) [5, 48]. These are communi-
cating automata which interact with the environment by receiving and sending messages through commu-
nication channels. In addition, transitions of these automata are symbolic ones and data exchanges on the
channels and time are symbolic parameters. Guards and substitutions are constructed on these symbolic pa-
rameters. Each subsystem of a DS is modeled by a TIOSTS, communicating with other subsystems through
waiting queues.

Symbolic execution techniques. To obtain behaviors of a distributed system, symbolic execution is consid-
ered as an interesting technique [44]. Indeed, from its model, we can execute it to obtain all possible symbolic
behaviors. Furthermore, the particularity of symbolic execution is to explore paths of the model by using
symbolic parameters (not concrete numerical values). During this exploration, the logical constraints are
also computed to assure the feasibility of exploration paths. These constraints are constructed over symbolic
parameters at each execution step. The result of symbolic execution can be represented as the form of a sym-
bolic tree whose nodes are called execution contexts containing pieces of information related to the symbolic
execution.

Test purpose. A test purpose is used to characterize a particular behavior to be relevant for testing. Con-
cretely, a test purpose in our approach is issued from a symbolic behavior in the symbolic execution of sys-
tem.

In our architecture (figure 1.7), each local test case is placed in direct interaction with its local subsystem.
We do not consider coordination messages between test cases, once the testing process has been initiated.
However, we have a global tester to initialize and terminate the whole testing process. Similarly to the work
[10], we allow that a test case can observe local internal communications. From a global test purpose that
will be selected among symbolic paths of the overall system, one can derive local test purposes that local
test cases will have to follow. From each local test purpose, a test case is generated for the corresponding
subsystem. This test case is an executable TIOSTS and is directly executed on the subsystem: the local test
case can observe the external and internal communications from its corresponding subsystem and stimulate
it with inputs. Unlike the previous architecture while local testers collect traces for a posterior verification, in

9

our approach, the local test case benefits from constraint solving techniques to compute next inputs based on
previous observations, allowing to pilot the local test purpose.

Experimentation. For experimental purposes, our reference models are implemented in our platform called
Diversity, which is a multipurpose machinery used to debug models and perform different analyses such as
trace generation, deadlock detection or behavior selection. Moreover, being customizable, Diversity allows
advanced users to implement their own analysis thanks to a dedicated process.

Network

Sub1

Sub2 Sub3

TC1

TC2 TC3

Global tester

Start/End

Start/End Start/End

FIGURE 1.7: Our testing architecture

1.4 Contributions

We present in this dissertation the following contributions:

• We propose an online testing framework for subsystems in the distributed context. The derivation of
a test case for a subsystem consists in constructing an automaton which can either observe messages
emitted by the subsystem to compute a test verdict, or stimulate the subsystem with messages satisfying
the test purpose.

• The testing framework for a distributed system is adapted from the testing framework for subsystems.
Indeed, from a global test purpose, one can derive a local test purpose that defines local behaviors for
each subsystem. Then, the testing framework consists in generating for each subsystem a local test case
based on the corresponding local test purpose. Because of the distributed architecture, each local test
case interacts only with the co-localized subsystem and is unconcerned with the execution of distant
local test cases. At the end of the process, a global verdict is computed by aggregation of local test
verdicts and the communication correctness of local traces [10];

• Our last contribution consists in providing selection criteria to compute global test purposes which are
relevant for testing in a representative case study, which is a protocol for information dissemination in

10

a Wireless Sensor Network (abbreviated as WSN). This network applies Multicast Protocol for Low-
Power and Lossy Networks (MPL for short) to quickly spread information for the purpose of keeping
updated all sensors. It might also be noted that we benefit from the symbolic exploration in Diversity
to implement the Send Receive Pair Coverage criterion (SRPC for short) [68, 69] as a dynamic selection
heuristics;

As a part of our contributions, our testing framework is implemented in the Diversity tool to validate
the proposed theory. This implementation of our testing framework is composed of the two following steps:
selection of a global test purpose (characterized by a sequence of consecutive transitions) by checking its
feasibility and derivation of local test cases. Furthermore, in order to facilitate the selection of a test purpose,
we propose a novel means to visualize a scenario in distributed systems obtained from selection criteria. The
new visualization has the form of a sequence diagram annotated with time and data information and can be
readable by the PlantUML tool (http://plantuml.com).

1.5 Dissertation structure

In conformity with our contributions that have been presented above, we propose the following organisation
of our dissertation:

• In Chapter 2, we present the symbolic model TIOSTS. Then, we introduce deterministic TIOSTS, a
subclass of TIOSTS which is considered in our testing framework. We present also notations that will
be used throughout the manuscript, and introduce small illustrative examples. This chapter is also
devoted to the presentation of the Diversity tool as well as the underlying language used in this tool
and the implementation of the test purpose coverage;

• Chapter 3 discusses firstly two principal testing approaches in MBT: offline and online testing. Then, we
propose our online testing approach for a subsystem in the distributed context. This chapter provides
also the set of construction rules to derive a test case for the subsystem. The next part is dedicated to
the implementation of the test case generation in Diversity and elements for validation of our testing
framework based on the conformance relation tioco. We also evaluate our implementation with respect
to the test purposes of long size by doing experiments. Finally, we review the state of the art relevant to
the context of unitary testing;

• In Chapter 4, we introduce distributed systems and the interest of testing them. Then, our testing
architecture for distributed systems is discussed. In order to obtain behaviors of distributed systems,
we define symbolic execution technique for DS which adds means to handle internal messages between
subsystems and especially to reason about their causality using durations. The subsequent section is
devoted to our testing framework for DS. Finally, we present our scenario generator to provide a new
visualization of a test purpose for DS in the form of a sequence diagram;

• Chapter 5 presents selection criteria applied to the case study Trickle-based communication protocol
MPL. From the specification of the protocol, we will construct timed symbolic models. Then, from the
constructed models, we propose selection method to cover global test purposes which are relevant for
testing in a WSN applying MPL. The coverage is based on the proposed selection method by taking
advantage of the heuristics Hit-or-Jump [15] implemented in the symbolic execution of Diversity;

• Finally, Chapter 6 concludes the dissertation, as well as reviews the contributions of our approach and
identifies perspectives that require further exploration in the future.

http://plantuml.com

11

Chapter 2

Symbolic models for reactive systems

Contents
2.1 Reactive systems and real-time systems . 12

2.1.1 Reactive systems and real-time systems. 12
2.1.2 Models for reactive systems: Automata/Labeled Transition Systems. 13

2.2 Timed Input Output Symbolic Transition Systems (TIOSTS) 13
2.2.1 Formalism overview . 13
2.2.2 Semantics of TIOSTS . 16
2.2.3 Running case study: ATM-Bank system . 19

2.3 Symbolic execution of TIOSTS . 22
2.3.1 Principle of symbolic execution . 22
2.3.2 Illustration with ATM . 26
2.3.3 Deterministic TIOSTS . 28
2.3.4 Enrichment by quiescence . 31

2.4 Implementation in Diversity . 33
2.4.1 Textual models of the ATM-Bank system . 33
2.4.2 The tool customizable symbex engine . 36
2.4.3 Module of test purpose selection . 37

2.5 Conclusion . 39

In this Chapter, we present Timed Input Output Symbolic Transition Systems (TIOSTS) [4, 5] for the pur-
pose of modeling behaviors of reactive systems together with their dedicated symbolic execution techniques.
These are perquisites to the symbolic framework that we develop in this thesis. This chapter is structured as
follows:

• Section 2.1 describes the context of modeling reactive systems and introduces briefly several existing
symbolic frameworks available in the literature;

• In Section 2.2, we present the formalism which is used throughout this thesis through two different
issues: theory and implementation. The running example called ATM-Bank system that is used in this
thesis is also introduced;

• Then, symbolic execution techniques are explained in Section 2.3. After talking about their principles,
we introduce the enrichment by quiescence, a technique permitting to specify the situations when a
system cannot produce an output;

12

• Section 2.4 is dedicated to the implementation of the model of ATM-Bank system in the Diversity tool.
We introduce also an analysis module called TESTPURPOSE_SEL, a coverage strategy to verify the
feasibility of a sequence of consecutive transitions. This module has been implemented in Diversity to
support our approach;

• Finally, we conclude this chapter in Section 2.5.

2.1 Reactive systems and real-time systems

2.1.1 Reactive systems and real-time systems.

A reactive system is a system that interacts continuously with its environment through a well-identified in-
terface as illustrated in Figure 2.1. Such an interface defines which kind of possible inputs (or stimulations)
the system accepts and which possible outputs (or reactions) it can produce. The behavior of this kind of
systems is not reduced to a simple transformation function applied to an input to generate an output. A
behavior is an interleaving of inputs and outputs, with different durations between two consecutive actions,
that can be indifferently inputs or outputs. That is, in addition to the last inputs that the system has received,
the computation of the next output may depend on the state of the system being defined by the history of
prior interactions so-far. Consequently, the behavior of a reactive system may be characterized by sequences
of inputs and outputs separated by durations. Those sequences allow to reason about correctness of reac-
tive systems: intuitively, a sequence reflects a legal execution of a reactive system provided that in case it
receives legal inputs, the reactive system provides appropriate outputs as expected. In addition, some re-
active systems are subject to timing constraints. They have to generate outputs in response to inputs, also
called stimulations, within an acceptable duration. In other words, the absence or a late (arrival out of time)
response is considered as serious as an erroneous output. They are part of the so-called real-time systems.
Usually the moment of an event (input or output) occurrence is measured (timestamps, logs with dates...)
allowing the definition of legal durations separating subsequent events.

Reactive System

i1
i2
o1

i3
o2

in
on

...

Interface

time

Environment

FIGURE 2.1: Reactive systems.

Examples of reactive systems are control programs or operating systems, communication protocols, web-
servers, financial services, air-traffic or automobile or nuclear plant control systems and more generally em-
bedded systems which embed software running on hardware devices. Lightweight reactive systems include
mobile phones or tablets applications and IoT (Internet of Things) applications composed of small connected
devices (sensors, actuators, processors, ...) to the Internet.

13

2.1.2 Models for reactive systems: Automata/Labeled Transition Systems.

Many state-based formalisms exist to model intended behaviors of reactive systems, in particular we can
cite Finite State Machines (FSM) [30] and Labeled Transition Systems (LTS) [78] as representative of such
formalisms.

FSM is well known as being useful to model behaviors of reactive systems. In particular, many approaches
were studied to test a system modeled by a FSM. In the late 70’s, Chow [19] introduced a new technique for
testing deterministic FSM. Lately, Tripathy et al. [80] presented an approach for non-deterministic FSM. Then,
the FSM were applied recently to generate test sequences for distributed systems [16, 49, 84].

LTS have been successfully used in formal analysis and testing of such systems. LTS are a state-based for-
malism whose transitions are labeled with inputs, outputs or durations in later extensions to time-constrained
behaviors. Durations represent that time elapses between actions (as being either inputs or outputs). The in-
troduction of symbolic abstraction of LTS has been considered more recently with the purpose of compacting
the representation of system to master the state-explosion in targeted formal analyses. The first extensions to
symbolic handling of data are Symbolic Transition Systems (STS for short) [29, 33]. In the work of Gaston
et al. [33], they are called Input Output Symbolic Transition Systems (IOSTS). Timed STSs (TSTS) or Timed
IOSTS (TIOSTS) which extend STS with clocks have been defined later in different approaches [1, 4, 5, 74].
In the paper of Andrade et al. [1] and Styp et al [74], models are rather a merge of Timed Automata [66]
and STS so that clock values represent convex abstractions, known as zones, while [5] directly uses symbolic
techniques to homogeneously handle both clocks and other data variables. Now the expressiveness of such
symbolic models is as important as associated underlying exploration and unfolding techniques. For this,
STS models are endowed with efficient execution mechanisms using symbolic execution techniques [44] (de-
noted by SE). The main principle of symbolic execution is to explore systems models for symbolic parameters
rather than concrete values and to compute logical constraints on those parameters as the exploration pro-
gresses. As glimpsed before, we recall that such technique has been used to handle only data in [1, 74], while
it is used to handle both data and time in the work presented by Bannour et al. [4, 5]. The Diversity tool [3]
implements SE of TIOSTS (those defined in the papers [5, 33]) and provides them in addition with a textual
syntax and editing facilities. We ground the symbolic framework in our work on TIOSTS and their encoding
in the Diversity tool. The latter constitutes the tool supporting the symbolic analyses that we propose.

2.2 Timed Input Output Symbolic Transition Systems (TIOSTS)

In this Section, we present Timed Input Output Symbolic Transition Systems (TIOSTS). We illustrate then
the usage of the formalism to specify an Automatic Teller Machine (ATM) and a central Bank cooperating
together to form a Banking system.

2.2.1 Formalism overview

TIOSTS are defined over a signature Σ = (Ω, A, K, C) where:

• Ω = (S, F) is an equational logic signature with S a set of names of sorts and F a set of operation names,
each with an arity in S. The operations of F are interpreted in the usual way via a model M of a set of
concrete values.

• A is a set of variables for storing the received values via the reception of messages, for representing the
evolution of the data of the system and finally for defining the guards of the transitions, which constrain
their execution.

14

• K is a set of clocks, which are particular variables whose values belong to a set D+ (for durations)
isomorphic to the set of positive reals, and they are used to denote the time elapsing, in particular
durations between two actions. By hypothesis, M contains D+.

• Finally, C is a set of communication channels partitioned as follows:

C = Cin q Cout

where Cin is the set of input channels and Cout is the set of output channels.

The set of terms TΩ(A ∪ K) is inductively defined in the usual way over Ω and A ∪ K and the interpreta-
tion of variables is canonically extended to terms.

Values of variables of A are updated by using substitutions of the form

ρ : A ∪ K → TΩ(A ∪ K)

We denote TΩ(A ∪ K)A∪K the set of all such substitutions.
In the numerical counterpart, we consider interpretations of the form

ν : A ∪ K → M

associating variables with their concrete values in M. We denote MA∪K the set of all such interpretations.
The set of formulas FΩ(A ∪ K) contains the truth values true and f alse and is inductively defined over

equality predicates and over usual existential (∃) and universal (∀) quantifiers and boolean connectives (∨, ∧
and ¬).

The set of communication actions Act(Σ) is defined then as follows:

Act(Σ) = I(Σ) ∪O(Σ)

where I(Σ) = {c?x|x ∈ A, c ∈ Cin} and O(Σ) = {c!t|t ∈ TΩ(A), c ∈ Cout}.

Remark 2.2.1. In the examples we will use a generalized notion of communication actions carrying n ≥ 0
pieces of data as being obvious extensions of those defined before. That is, an input action can be of the form
c?(x1, . . . , xn) or of the simple form c? and an output action can be of the form c!(t1, . . . , tn) or of the simple
form c!.

A TIOSTS is a triple G = (Q, q0, Tr) where:

• Q is a set of control points of the automata, called states,

• q0 is a distinguished state of Q, called the initial state,

• Tr ⊆ Q× 2K ×FΩ(A ∪ K)× Act(Σ)× TΩ(A ∪ K)A ×Q is a set of transitions.

A transition is a tuple tr = (q, K, φ, act, ρ, q′) where

– q (respectively q′) is the source (respectively target) state of the transition,

– K is a set of clocks to reset,

– φ is a formula which constrains the transition firing,

– act is a communication action being either an input action or an output action

15

– and ρ is a substitution of variables (other than clocks) which represents their updates with new
values.

Notation 2.2.1. In the sequel, for a given transition tr = (q, K, φ, act, ρ, q′), we use the notations
src(tr), tgt(tr), Clk(tr), φ(tr), act(tr), ρ(tr) to denote respectively source state q, target state q′, set of clocks
to reset, formula constraining the transition, action and substitution of data variables of tr.
Moreover, chan(tr) is called the channel of the transition and is used to denote the channel of the action in
the transition, i.e. chan(act(tr)).

A finite path of a TIOSTS G = (Q, q0, Tr) is a sequence of transitions tr1 . . . trn of G with tri ∈ Tr for i ≤ n
and such that tgt(tri) = src(tri+1) for any i < n.

We denote Paths(G) the set of all such paths.

Example 2.2.1 (TIOSTS). Figure 2.2 depicts an excerpt 1 of a TIOSTS representing an Automatic Teller Ma-
chine (ATM).

a0

start

a1 a2 a3

∅
true
Init?[

rid := 0
]

{wclock}
true

Wdral?amt[
rid := rid + 1

]
∅

wclock ≤ 1
Debit!(rid, amt + f ee, ATM_ID)[]

FIGURE 2.2: Excerpt of a TIOSTS for an Automatic Teller Machine.

This simple TIOSTS consists of four states Q = {a0, a1, a2, a3}, where a0 is the initial state, A =
{rid, amt, f ee} is the set of variables, K = {wclock} is the set of clocks, C = {Init, Wdral, Debit} is the set
of channels and Tr = {tra

1, tra
2, tra

3} is the set of transitions. Let us discuss the role of each transition:

• Transition tra
1 : a0

∅, true, Init?,
[

rid:=0
]

−−−−−−−−−−−−→ a1
2 represents the initialization transition of the ATM machine

which is unconstrained. It is freely fired while the ATM receives a message on the input channel Init
from the environment (act(tra

1) = Init?). There is no clock to be reset by the transition (Clk(tra
1) = ∅).

After the reception, only the value of the variable rid which represents the request identifier is updated
(assigned to 0);

• Transition tra
2 : a1

{wclock}, true, Wdral?amt,
[

rid:=rid+1
]

−−−−−−−−−−−−−−−−−−−−−−→ a2 has an input action which represents a reception
on the channel Wdral of a withdrawal request. The requested amount is stored in the variable amt.
Similar to tra

1, the transition is unconstrained that means the transition is freely fired from its source state
src(tra

2) = a1 and leads to its target state tgt(tra
2) = a2. Then, the request identifier rid is incremented.

Finally, the transition resets the only clock wclock of ATM;

• Transition tra
3 : a2

∅, wclock≤1, Debit!(rid,amt+ f ee,ATM_ID),
[]

−−−−−−−−−−−−−−−−−−−−−−−−−−→ a3 illustrates an output transition of ATM to
emit a reply on the channel Debit. It is conditioned by the formula wclock ≤ 1, used to constrain the

1Extract of the Banking system will be discussed in Section 2.2.3.
2In the following, we use the superscript a and b to denote respectively the transitions of ATM and Bank, such as tra

1, tra
2 (for ATM)

and trb
1, trb

2 (for Bank).

16

duration which has been elapsed from the last transition tra
2 to tra

3. The reply of ATM is a tuple of
three elements (rid, amt + f ee, ATM_ID) where rid is the identifier granted with the actual request,
amt + f ee is the amount which has been debited in the user’s account (a fee will be charged when a
request is performed) and ATM_ID is a constant (sort integer) which represents the ATM identifier in
the Banking system. Without loss of generality, we suppose that the value of the constant ATM_ID is
1. Finally, the transition does not modify the values of variables (denoted by

[]
).

In the following we give as examples three possible paths of the TIOSTS given above:

• str1 = tra
1

• str2 = tra
1 · tra

2

• str3 = tra
1 · tra

2 · tra
3

The set of paths of this TIOSTS is defined as follows {ε, str1, str2, str3} where ε denotes the empty path.

2.2.2 Semantics of TIOSTS

We show next how to give a semantic counterpart to a TIOSTS in terms of events and timed traces. An
execution of a TIOSTS G = (Q, q0, Tr) is always described up to a "starting point" which is in fact a semantical
denotation of a state of G called snapshot. A snapshot snp ∈ Q× MA∪K is a couple (q, ν) composed of two
pieces of information:

• q is a state of G reached so-far, it conditions which transitions of G are to be fired next,

• ν is an interpretation of variables of G, it denotes the concrete values which are currently associated
with these variables.

The semantics of a TIOSTS are obtained by concretely executing it. The execution of a TIOSTS is based on
concrete actions. The set of concrete communication actions Act(C) is defined as follows:

Act(C) = I(C) ∪O(C)

where I(C) = {c?v|v ∈ M, c ∈ Cin} and O(C) = {c!v|v ∈ M, c ∈ Cout}.
A timed trace σ is a sequence (d1, act1) . . . (dn, actn) where (di, acti) is called an event which constitutes a

concrete communication action acti ∈ Act(C) and di ∈ D+ the time elapsed between the two actions acti−1
and acti (where D+ is the set of strictly positive real numbers). In the remainder, for an event ev of the form
(d, act), we denote delay(ev) the delay d and act(ev) the action act. The set of events is denoted as Evt(C).

The set of runs of a transition tr ∈ Tr, denoted Run(tr), is defined by triples of the form r = (snp, ev, snp′)
such that if we denote snp = (q, ν) and snp′ = (q′, ν′), we have q = src(tr) and the following holds:

• q′ = tgt(tr) and the interpretation ν′ : A ∪ K → M is defined as:

ν′(w) =

ν′0(ρ(tr)(w)) if w ∈ A
0 if w ∈ Clk(tr)
ν′0(w) if w ∈ K \ Clk(tr)

(2.1)

17

where ν′0 is the auxiliary function defined as:

ν′0(w) =

v if act(tr) = c?w with v ∈ M
ν(w) if w ∈ A with ((act(tr) = c?x for w 6= x)

or if act(tr) 6= c?x)
ν(w) + d if w ∈ K with d ∈ D

(2.2)

• delay(ev) = d

• act(ev) is defined as:

act(ev) =

{
c!ν′0(t) if (act(tr) = c!t)
c?ν′0(x) if (act(tr) = c?x)

(2.3)

• the formula φ(tr) is satisfiable under the interpretation ν′0.

Example 2.2.2 (Run of transitions). We may consider snp0 = (a0, [rid := 12, amt := 3, f ee := 2, wclock := 16])
as a possible snapshot from which tra

1 is a candidate transition to be fired.
Let us consider a snapshot snp1 which is obtained by executing the transition tra

1 from snp0. According to
the definition 2.1, we have ν′(rid) = ν′0(ρ(tr

a
1)(rid)), and ρ(tra

1)(rid) = 0, thus ν′(rid) = ν′0(0) and ν′(rid) = 0,
since a substitution of an integer number is itself. Similarly, we have ν′(amt) := ν′0(ρ(tr

a
1)(amt)) = ν′0(amt),

by applying the definition 2.2, we obtain ν′0(amt) = ν(amt) = 3, therefore ν′(amt) := 3. In a similar way,
ν′(f ee) := 2. Moreover, we suppose that wclock reaches 16.4 which means that 0.4 time units has been elapsed
from snp0. The snapshot snp1 is the following snp1 = (a1, [rid := 0, amt := 3, f ee := 2, wclock := 16.4]). The
run of the transition tra

1 is defined by the triple r1 = (snp0, (0.4, Init?), snp1).
From snp1, the TIOSTS can execute the transition tra

2. The definition 2.1 gives us the following substitution
ν′(rid) = ν′0(ρ(tr

a
2)(rid)) = ν′0(rid + 1) = ν′0(rid) + 1. Moreover, the value of rid is not modified by the input

received from the environment, thus ν′(rid) = 0 + 1 = 1. We can easily obtain ν′(f ee) = 2. The new value
of amt is determined as ν′(amt) = ν′0(ρ(tr

a
2)(amt)) = ν′0(amt). Since amt is used to store the reception on the

channel Wdral, its value will be modified, let suppose that amt := 10 after the reception. We assume also that
the time has elapsed 0.5 time units from the last snapshot snp1. Finally, the clock wclock is reset. The snapshot
snp2 is defined as follows snp2 = (a2, [rid := 1, amt := 10, f ee := 2, wclock := 0]). The run of the transition
tra

2 is defined by the triple r2 = (snp1, (0.5, Wdral?10), snp2).
Let us consider the last example of runs by executing the transition tra

3 from snp2. By using the definition
2.1 and 2.2, we obtain ν′(rid) = ν′0(ρ(tr

a
3)(rid)) = ν′0(rid) = ν(rid) = 1. Similarly, we have ν′(f ee) = 2,

ν′(amt) = 10. The transition tra
2 is conditioned by the guard wclock ≤ 1 which permits it to be fired within

at most 1 time unit from the last run. We suppose that wclock has elapsed 1. The snapshot snp3 is the
following snp3 = (a3, [rid := 1, amt := 10, f ee := 2, wclock := 1]) and the run of tra

3 is the triple r3 =
(snp2, (1, Debit!(1, 12, 1)), snp3).

Notation 2.2.2. In the sequel, for a given run r = (snp, ev, snp′), we use the notations src(r), ev(r) and tgt(r)
to denote respectively snp, ev and snp′.

For any sequence of runs rseq = r1 . . . rn, the trace of rseq is trace(rseq) = ev(r1) . . . ev(rn). For any path
p = tr1 . . . trn ∈ Paths(G), a run of p is defined as r1 . . . rn such that ri ∈ Run(tri), tgt(ri) = src(ri+1) and
ν(src(r1))(w) = 0 for any w ∈ K. We denote Run(p) the set of all such runs.

18

The set of runs of G is the set
Run(G) =

⋃
p∈Paths(G)

Run(p)

The set of traces of G is the set:
Trace(G) =

⋃
rseq∈Run(G)

trace(rseq)

Example 2.2.3 (Traces). As an illustration, we introduce several examples of traces.

• For the sequence of runs rseq1 = r1 · r2, we obtain the trace

trace(rseq1) = (0.4, Init?) · (0.5, Wdral?10)

• For the sequence of runs rseq2 = r1 · r2 · r3, we obtain the trace

trace(rseq2) = (0.4, Init?) · (0.5, Wdral?10) · (1, Debit!(1, 12, 1))

A TIOSTS is deterministic if and only if for any p ∈ Paths(G) and for any two transitions tr1, tr2 ∈ Tr
such that p · tr1, p · tr2 ∈ Paths(G), we have that for any rseq ∈ Run(p) and for any run r1 = Run(tr1) and
r2 = Run(tr2) the following holds:

rseq.r1 ∈ Run(G) ∧ rseq.r2 ∈ Run(G) =⇒ ev(r1) 6= ev(r2)

In other words, a TIOSTS is deterministic if for any trace, there is exactly one path of the TIOSTS giving
rise to this trace.

Example 2.2.4 (Deterministic TIOSTS). In each following example of TIOSTS, amt and f ee are natural num-
bers.

ATM1

a′0start a′1 a′2 a′3
Wdral?amt Debit!amt

[f ee > 0]
Debit!amt + f ee

ATM2

a′′0start a′′1 a′′2 a′′3
Wdral?amt Debit!amt

Debit!amt + f ee

ATM3

a′′′0start a′′′1 a′′′2 a′′′3

Wdral?amt
{wclock}

[wclock < 1]
Debit!amt

[1 ≤ wclock < 2]
Debit!amt

FIGURE 2.3: Examples of ATM

19

Example of ATM1.
Let suppose that we have a sequence of runs rseq = r1 with r1 ∈ Run(tr1) (tr1 denotes the transition

a′0 → a′1) and two runs r2 ∈ Run(tr2) and r3 ∈ Run(tr3) (tr2 and tr3 denote respectively the transitions
a′1 → a′2 and a′1 → a′3). Without loss of generality, we assume that ev(r1) = (4, Wdral?5), that means after the
execution of r1, amt is assigned to the value of 5, since the value of f ee is always constrained by the condition
f ee > 0 in tr3, consequently 5 + f ee > 5, i.e. there does not exist r2 and r3 such that ev(r2) = ev(r3). Thus,
ATM1 is deterministic.

Example of ATM2.
We consider the sequences of run r1 with r1 ∈ Run(tr1) (tr1 denotes the transition a′′0 → a′′1). Once again,

we assume that ev(r1) = (4, Wdral?5). In case of f ee := 0, we can always find r2 and r3 with r2 ∈ Run(tr2)
and r3 ∈ Run(tr3), such that ev(r2) = ev(r3) (since amt + f ee = amt for f ee = 0). Therefore, ATM2 is a
non-deterministic TIOSTS.

Example of ATM3.
Similarly, let consider two sequences of runs denoted by r1 · r2 and r1 · r3 with r1 ∈ Run(tr1), r2 ∈

Run(tr2), r3 ∈ Run(tr3). It is not possible for ATM3 to have ev(r2) = ev(r3) since delay(ev(r2)) is con-
strained by the condition 1 ≤ delay(ev(r2)) < 2 and delay(ev(r3)) is constrained by delay(ev(r2)) < 1. By
consequence, ATM3 is deterministic.

2.2.3 Running case study: ATM-Bank system

In order to demonstrate the usage of TIOSTS for modeling behavior of reactive systems, we introduce an
illustrative example called banking system where several ATM (stands for Automatic Teller Machine 3) ex-
change information with different bank agencies. In particular, we develop respectively two TIOSTS models
representing the generic behavior of an ATM (Figure 2.4) and a bank agency (Figure 2.5).

2.2.3.1 TIOSTS of ATM

Let us describe in the following behaviors of the TIOSTS ATM. For the sake of clarity, we only present a
simplified view of the system ATM.

a0start

a1 a2

a3a4

tra
1 : Init?[

rid := 0
]

tra
2 : Wdral?amt
{wclock}[

rid := rid + 1
]

tra
3 : wclock ≤ 1

Debit!
(rid, amt + fee, ATM_ID)

tra
7 : wclock ≥ 4

Abort!

tra
4 : wclock < 4

Auth?(rid_ret, stat, mid_ret)

tra
5 : rid_ret = rid∧

mid_ret = ATM_ID∧
stat = ACCEPT

Cash!amt
{wclock}

tra
8 : rid_ret = rid∧

mid_ret = ATM_ID∧
stat 6= ACCEPT

Abort!
{wclock} tra

6 : wclock ≤ 1
∧(rid_ret 6= rid∨

mid_ret 6= ATM_ID)
Log!(rid_ret, stat, mid_ret)

a5

tra
9 : Auth?(rid_ret, stat, mid_ret)

tra
10 : Log!(rid_ret, stat, mid_ret)

FIGURE 2.4: TIOSTS of ATM

3An automated teller machine (ATM) is an electronic telecommunications device that allows customers to perform financial
transactions, such as cash withdrawals, deposits, transfer funds, or obtaining account information, at any time and without the need
for direct interaction with bank staff.

20

An ATM is described by the TIOSTS given in Figure 2.4. Let us provide in the following the complete
signature of ATM. This TIOSTS is defined over the signature Σa = (Ω, Aa, Ka, Ca) where:

• Aa = {rid, amt, f ee, rid_ret, stat, mid_ret} is the set of variables,

• Ka = {wclock} is the set of clocks,

• Ca = {Init, Wdral, Debit, Auth, Abort, Log, Cash} is the set of channels.

In the following, we introduce the role of each transition in the TIOSTS ATM. tra
1, tra

2, tra
3 representing

respectively transition a0 → a1, a1 → a2, a2 → a3 will not be discussed in this section since they are all pre-
viously presented in the example 2.2.1. We remark that ATM_ID is a constant of the TIOSTS ATM. Without
loss of generality, we suppose that the ATM_ID is predefined as 1.

• tra
4 : a3

∅,wclock<4,Auth?(rid_ret,stat,mid_ret),
[]

−−−−−−−−−−−−−−−−−−−−−−−→ a4 represents the response that is received by the ATM
within the specified duration. The new values of the reception are then stored in the variables
rid_ret, stat, mid_ret. This response is then analyzed to provide a final reply to the client;

• tra
5 : a4

{wclock},rid_ret=rid∧mid_ret=ATM_ID∧stat=ACCEPT,Cash!amt,
[]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ a1 returns cash to the client if the request
has been accepted;

• tra
6 : a4

∅,(wclock≤1)∧(rid_ret 6=rid∨mid_ret 6=ATM_ID),Log!(rid_ret,stat,mid_ret),
[]

−−−→ a3 sends a log message concerning
a late answer to some request or an answer containing an incorrect identifier for the ATM. A late answer
is simply recognized by an identifier which is different from the current rid;

• tra
7 : a3

∅,wclock≥4,Abort!,
[]

−−−−−−−−−−−−→ a1 illustrates a request cancellation. After transferring the withdrawal request
on the channel Debit, the ATM waits 4 time units for the response. Without receiving any response
within this duration, the request is aborted;

• tra
8 : a4

{wclock},rid_ret=rid∧mid_ret=ATM_ID∧stat 6=ACCEPT,Abort!,
[]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ a1 is an aborting reply since the request has
not been accepted, i.e. value which has been stored in the variable stat is different from ACCEPT;

• tra
9 : a1

∅,true,Auth?(rid_ret,stat,mid_ret),
[]

−−−−−−−−−−−−−−−−−−−−→ a5 represents a reception of a non-involved request from a1. A non-
involved request is defined as the one which has been performed by another client (not the actual one)
who abandoned the request for some reason;

• tra
10 : a5

∅,true,Log!(rid_ret,stat,mid_ret),
[]

−−−−−−−−−−−−−−−−−−−→ a1 returns a log corresponding to the non-involved request to the
bank.

2.2.3.2 TIOSTS of Bank

The TIOSTS of a bank is described in Figure 2.5. In order to manage the withdrawal sum during 3 consecutive
days of a client, the TIOSTS uses a circular array of size 3 (i.e. sum) to store withdrawal amounts of the last
three days. In practice, the stored amounts for the 3th previous day are not relevant any more. The counter
days is incremented at the end of each day and is used to identify the next place in the array sum to store
the accumulated amounts for the new day by using the operator modulo. In the following, we discuss the
different roles of the bank. The first one is to assign authorisations to withdrawal requests:

21

• trb
1 : b0

{tclock,dclock,pclock},true,Init!,
[

days:=0,sum:={0,0,0},cpt:=0,tloc:=0
]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ b1 sends an initialization message to all
of the ATM machine it manages;

• trb
2 : b1

{pclock},dclock+6<24H,Debit?(tid,x,aid),
[]

−−−−−−−−−−−−−−−−−−−−−−−−→ b2 receives a new request on the channel Debit within a day.
Consequently, a new process is instantiated. The duration of each process is measured by the clock
pclock. We remark that each process is constrained to terminate within the current day, therefore we
add a small duration (6 time units) to our constraints such that the bank has enough time to react (e.g.
dclock + 6 < 24H). There are three possible processes that will be discussed;

• trb
3 : b2

{pclock},tclock≥tloc∧pclock≤6...,Auth!(tid,ACCEPT,aid),
[

bal=−x,cpt++,...
]

−−−→ b1. The request is accepted if the
balance is sufficient and the total debit limit over a rolling 3 days is not exceeded (the lowest transition
b2 → b1), this leads to the update of the withdrawal amount by accumulating the requested amount x
and the update of balance by deducting the amount x;

• trb
4 : b2

{pclock},tclock<tloc∧pclock≤6...,Auth!(tid,LOCK,aid),
[]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ b1. The request is locked if the bank receives it
during the lock time;

• trb
5 : b2

{pclock},pclock≤6∧(x>bal∨x<100∨(x+∑i≤3 sum[i]>1000)),Auth!(tid,REJECT,aid),
[]

−−→ b1. The request is rejected if
either the total debit limit is exceeded or the requested amount is greater than the balance or less than
100 money units;

b0

start

b1 b2

b4

b3

trb
3 : tclock ≥ tloc ∧ pclock ≤ 6∧

(100 ≤ x ≤ bal) ∧ (x + ∑i≤3 sum[i] ≤ 1000)
Auth!(tid, ACCEPT, aid)[

bal =- x
cpt++

sum[days mod 3]=+x
]

{pclock}

trb
1 : Init![

days := 0
sum := {0, 0, 0}

cpt := 0
tloc := 0

]
{tclock, dclock,

pclock}

trb
2 : dclock + 6 < 24H
Debit?(tid, x, aid)
{pclock}

trb
5 : pclock ≤ 6∧

(x > bal ∨ x < 100∨ (x + ∑i≤3 sum[i] > 1000))
Auth!(tid, REJECT, aid)

{pclock}

trb
4 : tclock < tloc ∧ pclock ≤ 6∧

(100 ≤ x ≤ bal) ∧ (x + ∑i≤3 sum[i] ≤ 1000)
Auth!(tid, LOCK, aid)

{pclock}

trb
10 : pclock < 1

Lock?tloc
{tclock, pclock}[

cpt := 0
]

trb
9 : pclock < 1
Transc!cpt

trb
8 : dclock + 2 < 24H

Check?
{pclock}

trb
7 :[

dclock + 1 < 24H
]

Log?(id, auth, aid)

trb
6 : dclock = 24H
DayElapsed![

sum[days mod 3] := 0
days++

]
{dclock}

trb
11 : pclock = 1

TimeoutBank!
{pclock}

FIGURE 2.5: TIOSTS of Bank

The second functionality of the Bank is to elapse time during the current day:

22

• trb
6 : b1

{dclock},dclock=24H,DayElapsed!,
[

sum[days mod 3]:=0,days++
]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ b1. When a day has elapsed (i.e. dclock =
24H), the counter days is incremented and the withdrawal amount for the new day is reset to zero;

• trb
7 : b1

∅,dclock+1<24H,Log?(id,auth,aid),
[]

−−−−−−−−−−−−−−−−−−−−→ b1. During the day, the bank can receive at any moment a log
message from an ATM.

Finally, the bank checks the number of successful requests from a client within the current day:

• trb
8 : b1

{pclock},dclock+2<24H,Check?,
[]

−−−−−−−−−−−−−−−−−−−→ b3 allows a banker to check the number of successful requests
within a day;

• trb
9 : b3

∅,pclock<1,Transc!cpt,
[]

−−−−−−−−−−−−−−→ b4 emits a reply to the banker in the following time unit;

• trb
10 : b4

{tclock,pclock},pclock<1,Lock?tloc,
[

cpt:=0
]

−−−−−−−−−−−−−−−−−−−−−−−→ b1. The banker has less than one time unit to update the lock
time if he finds that there are too many transactions during some period. Otherwise the time is expired

trb
11 : b4

{pclock},pclock=1,TimeoutBank!,
[]

−−−−−−−−−−−−−−−−−−−→ b1.

2.3 Symbolic execution of TIOSTS

The symbolic execution of TIOSTS has been defined in [4, 5, 32]. It boils down to the construction of a symbolic
tree obtained by symbolically executing transitions not for concrete values but rather using fresh variables (or
symbolic parameters). For this, a set of fresh variables F disjoint from TIOSTS variables is considered, that
is F ∩ (A ∪ K) = ∅. We denote Ft ⊆ F the set of fresh variables of type time which is used to symbolically
denote durations associated with transitions execution. Similarly, Fd ⊆ F is the set of fresh variables used for
variables of other types. For the signature ΣF =(Ω, F, ∅, C), the set of symbolic events over ΣF is

Evt(ΣF) ::= Ft × Act(ΣF)

Notation 2.3.1. For any event ev = (z, act) in Evt(ΣF), we denote delay(ev) and act(ev) respectively z and
act.

2.3.1 Principle of symbolic execution

The symbolic execution technique is based on an execution context, abbreviated by EC. An execution context
ec = (q, π, λ, ev, pec) is a data structure which is composed of the following pieces of information:

• a state (control point) q of TIOSTS which is reached by the execution so far, it is a source state from
which candidate transitions can be be executed,

• a path condition π, the so-called path condition, which is a formula representing all conditions over
variables and clocks that need to be satisfiable by the symbolic execution to reach ec,

• a substitution of variables λ of the TIOSTS by expressions over fresh variables, that denote their current
associated values,

23

• a symbolic event ev which is the event that has been executed to reach ec,

• and finally, a predecessor of ec, denoted by pec, that represents the execution context from which ec has
been created by executing the corresponding transition. For the initial execution context, this compo-
nent is left undefined.

While components q, π and λ of an EC suffice to fully characterize by means of symbolic variables the
current state (control state and possible values for state variables), components ev and pec of an EC are
primarily useful to build a tree in which nodes are ECs and edges connect predecessor ECs to ECs themselves.

An execution context has one and only one predecessor, whereas it can have many successors since from
a state in a TIOSTS, we can execute more than one candidate transition. Therefore, from an execution context,
we can have access to its predecessor as well as its pieces of information.

Notation 2.3.2. For a given execution context ec, we use respectively the notations q(ec), π(ec), λ(ec), ev(ec)
and pec(ec) to denote the corresponding elements in ec.

For a TIOSTS G=(Q, q0, Tr), symbolically executing a transition tr ∈ Tr from an EC ec = (q, π, λ, ev, pec)
boils down to determination of the successor EC ec′ which is reached from ec by taking into account the
elements of tr. If we note tr = (q, K, φ, act, ρ, q′)∈Tr, the EC ec′ = (q′, π′, λ′, ev′, pec′) is defined as follows:

• the substitution λ′ : A ∪ K → TΩ(F):

λ′(w) =

λ′0(ρ(w)) if w ∈ A
0 if w ∈ K

λ′0(w) if w ∈ K \K

(2.4)

where λ′0 is the auxiliary function defined as:

λ′0(w) =

y if act = c?w with y∈Ftype(w)

λ(w) if w ∈ A with act = c?x for w 6= x
or with act 6= c?x

λ(w) + z0 if w ∈ K with z0∈Ft

(2.5)

• the guard π′ is π ∧ λ′0(φ).

• delay(ev′) = z0 with z0 ∈ Ft which is precisely the variable used in the definition of λ′0 and:

act(ev′) =

{
c!λ′0(t) if act = c!t
c?λ′0(x) if act = c?x

(2.6)

• and finally pec′ = ec.

24

The symbolic execution of a transition translates directly the standard execution of the involved transition:
λ′0 is an intermediate substitution which advances for all clocks a same symbolic duration z0 to denote time
passing, assigns to a data variable w a fresh variable y if w is the variable of a reception (c?w) and leaves
unchanged other data variables. The substitution λ′ for w is obtained after the application of λ′0 on the
substitution ρ, clocks that are reset by the transition (determined by the set of clocks K) are reset to 0 and the
other clocks advance z0. The path condition π′ is obtained by the accumulation of the predecessor one π and
the guard of the transition φ evaluated with input fresh variables and time elapsing.

In the following, let us denote EC(G) the set of all execution contexts of the TIOSTS G. As we can state,
from the given context ec ∈ EC(G), one can determine the context ec′ of EC(G) based on the previous
definition. It remains to make clear what the initial contexts are: they are of the form (q0, true, λ0, (0, _), sel f)
with

• the symbol _ for indicating the absence of an action,

• with λ0 : A ∪ K → TΩ(F) associating to variables of A a fresh variable4 and to variables of K the
constant 0,

• sel f an identifier indicating that the initial context has no predecessor context, except by convention the
initial context itself.

Notation 2.3.3. For a given execution context ec, we use the notation tr(ev(ec)) to denote the corresponding
transition in the TIOSTS G which has been executed from pec(ec) to obtain ec. Moreover, for simplicity,
act(ec), delay(ec) and chan(ec) denotes respectively act(ev(ec)), delay(ev(ec)) and chan(act(ev(ec))).

Example 2.3.1 (Symbolic execution of TIOSTS). We consider the excerpt ATM in example 2.2.1 and illustrate
the symbolic execution through its three transitions.

Given the initial execution context ec1 = (a0, true, {rid := rid0, amt := amt0, f ee := f ee0, wclock :=
0}, (0, _), sel f) where the notation _ denotes the absence of a symbolic action and sel f denotes that the prede-
cessor of the initial context ec1 is itself.

The symbolic execution of the transition tra
1 from ec1 leads to a new execution context denoted by ec2.

We suppose that the time has elapsed a duration z0 from ec1 (z0 is a new fresh variable). The substitution
of λ′ applied to rid is the following λ′(rid) = λ′0(ρ(rid)) = λ′0(0) = 0 (definition 2.4). Similarly, λ′(amt) =
λ′0(ρ(amt)) = λ′0(amt) (definition 2.4). In addition, λ′0(amt) = λ(amt) = amt0 (definition 2.5). The delay
delay(ec2) and symbolic action act(ec2) are respectively defined as z0 and Init?. In Figure 2.6, we illustrate the
symbolic execution of tr1 from ec1 to obtain ec2. We note also that for the sake of simplicity, only variables
whose value has been modified through the symbolic execution are illustrated.

ec1
rid := rid0, amt := amt0, f ee := f ee0,
wclock := 0

ec2 rid := 0, wclock := z0

(z0, Init?)

FIGURE 2.6: Symbolic execution of initialization transition

Let us consider the second transition tra
2 which could be fired from ec2 and its execution leads to the

creation of a new context denoted by ec3. We denote by z1 the delay that has been elapsed until the reception

4All introduced fresh variables are distinct

25

on the channel Wdral. The new value of amt is determined as λ′(amt) = λ′0(ρ(amt)) = λ′0(amt) (definition
2.2). According to the definition 2.5, λ′0(amt) = amt1 to express that the ATM receives a new value amt1
which is stored in amt. Similarly, we obtain that λ′(rid) = 1 and λ′(wclock) = 0 (wclock is reset). The delay
delay(ec3) and symbolic action act(ec3) are respectively defined as z1 and Wdral?amt1. The path condition
π(ec3) is π(ec2) ∧ λ′0(φ(tr2)), i.e. π(ec2) ∧ true, since tra

2 could be freely fired from a1.

ec1
rid := rid0, amt := amt0, f ee := f ee0,
wclock := 0

ec2 rid := 0, wclock := z0

ec3 amt := amt1, rid := 1, wclock := 0

(z0, Init?)

(z1, Wdral?amt1)

FIGURE 2.7: Symbolic execution of withdrawal transition

From ec3, the transition tra
3 could be executed in order to create a new execution context ec4. The delay

of transition is denoted by z2. All variables remain unchanged since there is no update concerning variables,
except that the clock wclock has elapsed z2 time units from ec3. The delay delay(ec4) and symbolic action
act(ec4) are defined as z2 and Debit!(1, amt1 + f ee0, 1). This transition is conditioned by the guard wclock ≤ 1,
therefore π(ec4) = π(ec3) ∧ λ′0(φ(tr

a
3)) = λ′0(wclock ≤ 1) = z2 ≤ 1.

ec1
rid := rid0, amt := amt0, f ee := f ee0,
wclock := 0

ec2 rid := 0, wclock := z0

ec3 amt := amt1, rid := 1, wclock := 0

ec4
π(ec4) : z2 ≤ 1
wclock := z2

(z0, Init?)

(z1, Wdral?amt1)

(z2, Debit!(1, amt1 + f ee0, 1))

FIGURE 2.8: Symbolic execution of debiting transition

The symbolic execution consists in constructing symbolic paths corresponding to finite paths of a TIOSTS.
Indeed, for a given finite path p = tr1 . . . trn of a TIOSTS G, its corresponding symbolic path is of the form
sp = ec1 . . . ecn+1 where ec1 is the initial execution context, eci+1 is the context resulting from the symbolic
execution of tri from the predecessor context eci, with 1 ≤ i ≤ n. Formally, we have pec(eci+1) = eci, with
1 ≤ i ≤ n. We denote SPaths(G) the set of all such paths. In the following, for a given symbolic path

26

sp = ec1 . . . ecn+1 ∈ SPaths(G), we use the notation π(sp) to denote the path condition π(ecn+1).
As we can see from the example 2.3.1, the symbolic execution of the excerpt ATM is considered as the

symbolic execution of all transitions in the TIOSTS from a given EC ec. In the following, we denote by
SE(G) = (ec1, EC) the symbolic execution of a TIOSTS G where:

• ec1 is an arbitrary initial execution context,

• EC is the set of all execution contexts of G.

SE(G) is a tree-like structure whose root is ec1 and nodes are execution contexts containing pieces of
information related to the possible executions of G.

2.3.2 Illustration with ATM

Until now, we have presented the symbolic execution technique and its principle in our approach to obtain
the semantics of a TIOSTS. In this section, we illustrate this technique through the examples of TIOSTS ATM.
These illustrations show that our work has been not only conceived and implemented in a formal analysis
tool, but also it is made to deal with quite complex system models.

Before discussing the illustrations, we take a look at the architecture of the ATM with different communi-
cation channels in the figure below. We remark that in this illustration, we consider only the unitary system
ATM, therefore all of its communication channels are connected to the environment. Figure 2.9 represents the
connection between ATM and the environment (denoted by ENV) through communication channels.

ENV ATM

Wdral?

Abort!

Cash!

ENV

Init?

Debit!

Auth?

Log!

FIGURE 2.9: Connection between ATM and the environment

In the following, let go into details about each execution context which is created by symbolic execution.
We suppose that the contexts ec1, ec2, ec3 and ec4 are similarly computed as in example 2.3.1. As pointed out
previously, in the sequel, for the sake of simplicity, the update of data variables and clocks in an execution
context is explicitly depicted only when their values have been modified with respect to its predecessor.

From the context ec4, ATM executes the transition tra
4. This transition represents a response that is received

by the ATM, new fresh variables rid_ret2, stat2, mid_ret2 are created to store new values. We denote by z3 the
time elapsed from ec4 to the reception on the channel Auth, thus the value of clock wclock is defined by
z2 + z3. The transition is also conditioned by the guard wclock < 4, which implies z2 + z3 < 4. The path
condition π(ec5) is obtained by conjoining π(ec4) and the evaluation of guard of actual transition, π(ec5) =
z2 + z3 < 4∧ z2 ≤ 1.

27

ec4
π(ec4) : z2 ≤ 1
amt := amt1, rid := 1, wclock := z2

ec5

π(ec5) : z2 + z3 < 4∧ z2 ≤ 1
stat := stat2, rid_ret := rid_ret2, mid_ret := mid_ret2,
wclock := z2 + z3

(z3, Auth?(rid_ret2, stat2, mid_ret2))

FIGURE 2.10: Symbolic execution of authorization request transition

Next, we consider the output transition tra
8. We suppose that the time has elapsed z4. The variables

remain unchanged since there is no update concerning them, except that the clock is reset by the transition,
i.e. wclock := 0. The transition tra

8 is conditioned by the following guard over the values which have been
received from the previous reception on the channel Auth: rid_ret = rid ∧ mid_ret = ATM_ID ∧ stat 6=
ACCEPT, therefore the path condition is constructed as π(ec7) = π(ec5) ∧ mid_ret2 = 1 ∧ rid_ret2 = 1 ∧
stat2 6= ACCEPT.

ec5

π(ec5) : z2 + z3 < 4∧ z2 ≤ 1
stat := stat2, rid_ret := rid_ret2, mid_ret := mid_ret2,
wclock := z2 + z3

ec7
π(ec7) : mid_ret2 = 1∧ rid_ret2 = 1∧ stat2 6= ACCEPT∧
z2 + z3 < 4∧ z2 ≤ 1
wclock := 0

(z4, Abort!)

FIGURE 2.11: Symbolic execution of aborting request transition

From the context ec5, the transition tra
6 could be executed in order to reach a new execution context ec8.

Similarly, the delay of this transition is denoted by z4 and the value of clock wclock is z2 + z3 + z4. The path
condition π(ec8) is defined as π(ec5) ∧ (rid_ret2 6= 1∨mid_ret2 6= 1) ∧ (z2 + z3 + z4 ≤ 1).

ec5

π(ec5) : z2 + z3 < 4∧ z2 ≤ 1
stat := stat2, rid_ret := rid_ret2, mid := mid_ret2,
wclock := z2 + z3

ec8

π(ec8) : (mid_ret2 6= 1∨ rid_ret2 6= 1) ∧
z2 + z3 < 4∧ z2 + z3 + z4 ≤ 1∧ z2 ≤ 1
wclock := z2 + z3 + z4

(z4, Log!(rid_ret2, stat2, mid_ret2))

FIGURE 2.12: Symbolic execution of locking request transition

We remark that the symbolic execution in the TIOSTS ATM is a non-stopping process because it is always
possible to reach the state a1 in order to start a new withdrawal request. In Figure 2.13, we present a part

28

of symbolic execution of ATM which allows to cover each transition in ATM at least once. Let us point out
that in the symbolic execution tree, for any two different execution contexts sharing a same predecessor, they
are always associated with the same fresh delay. The important thing is that on the same path, each newly
introduced fresh variable is different from the ones occurring before in the symbolic path under construction.

ec1

rid := rid0, amt := amt0, f ee := f ee0,
rid_ret := rid_ret0, stat := stat0, mid_ret := mid_ret0,
wclock := 0

ec2 rid := 0, wclock := z0

ec3 amt := amt1, rid := 1, wclock := 0

ec4
π(ec4) : z2 ≤ 1
wclock := z2

ec10

stat := stat1, rid_ret := rid_ret1,
mid := mid_ret1,
wclock := z0 + z1

ec5

π(ec5) : z2 + z3 < 4∧ z2 ≤ 1
stat := stat2, rid_ret := rid_ret2, mid_ret := mid_ret2,
wclock := z2 + z3

ec9
π(ec9) : z2 + z3 ≥ 4∧ z2 ≤ 1
wclock := z2 + z3

ec11wclock := z0 + z1 + z5

ec6

π(ec6) : mid_ret2 = 1∧
rid_ret2 = 1∧
stat2 = ACCEPT∧
∧ z2 + z3 < 4∧ z2 ≤ 1
stat := ACCEPT,
wclock := 0

ec7

π(ec7) : mid_ret2 = 1∧
rid_ret2 = 1∧
stat2 6= ACCEPT∧
∧ z2 + z3 < 4∧ z2 ≤ 1
wclock := 0

ec8

π(ec8) : (mid_ret2 6= 1
∨ rid_ret2 6= 1) ∧
∧ z2 + z3 < 4
∧ z2 + z3 + z4 ≤ 1
∧ z2 ≤ 1
wclock := z2 + z3 + z4

(z0, Init?)

(z1, Wdral?amt1)

(z2, Debit!(1, amt1 + f ee0, 1))

(z1, Auth?(rid_ret1, stat1, mid_ret1))

(z3, Auth?(rid_ret2, stat2, mid_ret2))

(z5, Log!(rid_ret1, stat1, mid_ret1))

(z3, Abort!)

(z4, Cash!amt1) (z4, Abort!) (z4, Log!(rid_ret2, stat2, mid_ret2))

FIGURE 2.13: Symbolic execution of ATM

2.3.3 Deterministic TIOSTS

In this section, we are going to discuss the determinism of a TIOSTS. In some existing approaches [1, 42], the
authors did not deal with the non-deterministic situations while modeling systems with specific models.

Remark 2.3.1. In the sequel, we suppose that a TIOSTS G is given. Let consider two symbolic paths of G

(defined in Section 2.3.1) denoted by p1 = ec1 . . . ecn.ecn+1 and p2 = ec1 . . . ecn.ecn+2 which share a same
prefix. Before discussing our proposition for deterministic TIOSTS, we introduce the following restrictions:

• delay(ecn+1) = delay(ecn+2), i.e. any two outgoing symbolic transitions from the same execution con-
text are associated with the same fresh duration,

29

• for any channel c, if act(ecn+1) = c?x1 and act(ecn+2) = c?x2 then x1 = x2, i.e., any two outgoing
symbolic transitions from the same execution context are associated with the same reception variable
for a given channel,

• for any symbolic path p, the identification condition of p’s observable values is inductively defined as
follows:

OCond(p) =

true if p = ε
OCond(p′) ∧ (χ = t) if p = p′.ec ∧ act(ec) = c!t
OCond(p′) if p = p′.ec ∧ (act(ec) = c?x ∨ act(ec) = _)

in which OFresh(pec(ec))c = χ is a fresh variable 5,

for any ec, we denote OCond(ec) the identification condition OCond(p.ec) where p is the path that leads
to ec, by convention we consider that the path that leads to the initial context ec1 is the empty path.

• IFresh(ec1) denotes the set of variables which have been initialized at the beginning of symbolic execu-
tion.

Notation 2.3.4. In the following, we use the syntax ∃E, where E = {x1, . . . , xn} is a set of variables, to denote
the application of existential quantifier to all variables in E, i.e. ∃x1, . . . , ∃xn.

In our work, we will consider in the following only a subclass of TIOSTS called deterministic TIOSTS by
making an assumption about the symbolic execution.

Definition 2.3.1 (Deterministic TIOSTS). A TIOSTS G is deterministic if for any couple of symbolic path
p.ec, p.ec′ where p is a symbolic path and ec, ec′ are execution contexts such that ec 6= ec′, pec(ec) = pec(ec′)
and chan(ec) = chan(ec′) we have that:

(∃IFresh(ec1).π(ec) ∧OCond(ec)) ∧ (∃IFresh(ec1).π(ec′) ∧OCond(ec′))

is unsatisfiable

Example 2.3.2 (Deterministic TIOSTS). In each following example of TIOSTS, amt and f ee are natural num-
bers.

ATM1

a′0start a′1 a′2 a′3
Wdral?amt Debit!amt

[f ee > 0]
Debit!amt + f ee

ATM2

a′′0start a′′1 a′′2 a′′3
Wdral?amt Debit!amt

Debit!amt + f ee

5Given an ec, we suppose that we always use the same fresh variable OFresh(ec)c = χ to symbolically represent the observable
values from ec emitted or received on channel c. Similarly, as we use the same duration for all successors of ec, we will systematically
associate a duration denoted by OdFresh(ec) = z, which represents therefore the delay of occurrence of its successors.

30

ATM3

a′′′0start a′′′1 a′′′2 a′′′3

Wdral?amt
{wclock}

[wclock < 1]
Debit!amt

[1 ≤ wclock < 2]
Debit!amt

Deterministic verification of ATM1. The symbolic execution of ATM1 is given in Figure 2.14. Let us consider
the following data:

IFresh(ec1) = {amt0, f ee0},
π(ec3) = true,
OCond(ec3) = (χ1 = amt1),
π(ec4) = (f ee0 > 0),
OCond(ec4) = (χ1 = amt1 + f ee0).

According to the previous definition, ATM1 is deterministic if and only if the following is unsatisfiable:
(∃amt0, f ee0 . χ1 = amt1)∧ (∃amt0, f ee0 . f ee0 > 0∧ χ1 = amt1 + f ee0) where χ1 is a new fresh variable representing
the value emitted on channel Debit. This formula is not satisfiable because of amt1 < amt1 + f ee0 (since
f ee0 > 0). We can deduce then that ATM1 is a deterministic TIOSTS.

ec1 amt := amt0, f ee := f ee0, wclock := 0

ec2 amt := amt1, wclock := z0

ec3wclock := z0 + z1 ec4
π(ec4) : f ee0 > 0
wclock := z0 + z1

(z0, Wdral?amt1)

(z1, Debit!amt1) (z1, Debit!amt1 + f ee0)

FIGURE 2.14: Symbolic execution of ATM1

Deterministic verification of ATM2. The symbolic execution of ATM2 is given in Figure 2.15. In a sim-
ilar way, ATM2 is deterministic if and only if the following is unsatisfiable: (∃amt0, f ee0. χ1 = amt1) ∧
(∃amt0, f ee0. χ1 = amt1 + f ee0) where χ1 is a new fresh variable representing the value emitted on the chan-
nel Debit. This formula is satisfiable for f ee0 = 0. So, ATM2 is a non-deterministic TIOSTS.

ec1 amt := amt0, f ee := f ee0, wclock := 0

ec2 amt := amt1, wclock := z0

ec3wclock := z0 + z1 ec4 wclock := z0 + z1

(z0, Wdral?amt1)

(z1, Debit!amt1) (z1, Debit!amt1 + f ee0)

FIGURE 2.15: Symbolic execution of ATM2

31

Deterministic verification of ATM3. Let us verify whether or not the TIOSTS ATM3 is deterministic. The
following formula which is deducted from the definition is considered: (∃amt0, f ee0. χ1 = amt1 ∧ 1 ≤ z1 <
2) ∧ (∃amt0, f ee0. χ1 = amt1 ∧ z1 < 1) where χ1 is a new fresh variable representing the value emitted on the
channel Debit. This formula is unsatisfiable since we cannot have a value of z1 satisfying the formula. Indeed,
the first part of the formula is satisfiable if 1 ≤ z1 < 2, whereas the second part of the formula is satisfiable if
z1 < 1, which implies an empty set of values for z1. Therefore, the TIOSTS ATM3 is non-deterministic.

ec1 amt := amt0, f ee := f ee0, wclock := 0

ec2 amt := amt1, wclock := 0

ec3
π(ec3) : 1 ≤ z1 < 2
wclock := z1

ec4
π(ec4) : z1 < 1
wclock := z1

(z0, Wdral?amt1)

(z1, Debit!amt1) (z1, Debit!amt1)

FIGURE 2.16: Symbolic execution of ATM3

Deterministic verification of the TIOSTS ATM. Now, we consider the symbolic execution tree of TIOSTS
ATM in Figure 2.13, we state that for a given symbolic path p = ec1 . . . ecn, we cannot have two new execution
contexts ecr and ecs such that pec(ecr) = pec(ecs) and they satisfy the formula in the definition of a determin-
istic TIOSTS. We illustrate this formula through an example, let suppose that p = ec1 · ec2 · ec3 · ec4 · ec5, from
ec5, the extension of p with ec6 and ec7 gives us the following symbolic timed traces:

(z0, Init?) · (z1, Wdral?amt1) · (z2, Debit!(1, amt1 + f ee0, 1)) · (z3, Auth?(rid_ret2,
stat2, mid_ret2)) · (z4, Cash!amt1) for p.ec6

(z0, Init?) · (z1, Wdral?amt1) · (z2, Debit!(1, amt1 + f ee0, 1)) · (z3, Auth?(rid_ret2,
stat2, mid_ret2)) · (z4, Abort!) for p.ec7
which cannot satisfy the formula in the definition of a deterministic TIOSTS because the symbolic actions
in ec7 and ec8 contain two different communication channels. In a general way, we note that from any state
in TIOSTS of ATM, we cannot have two transitions which share a same communication channel, therefore
for a given symbolic path p = ec1 . . . ecn and two distinct execution contexts eci and ecj which are results
of symbolic execution of two distinct transitions which could be fired from ecn, we always have act(eci) 6=
act(ecj). Consequently, two distinct symbolic paths cannot give a same symbolic timed trace and obviously
a same timed trace. This property is verified for all symbolic paths in symbolic execution of ATM, therefore
this TIOSTS is deterministic.

For the same reasoning which has been applied to the TIOSTS of ATM, we can state that the TIOSTS of
Bank is also deterministic.

2.3.4 Enrichment by quiescence

A system replies to its environment by sending outputs. However, it cannot always emit an output from any
given state [71, 33, 70, 5]. In this subsection, we present the quiescence enrichment in order to describe this
situation when either there is a lack of transitions labeled by an output from the system or the system cannot
reply due to the dissatisfaction of constraints. We remark that our quiescence enrichment is applied only to
deterministic TIOSTS. To represent quiescence enrichment, we introduce the symbol _ to denote the absence
of reaction observed by the tester.

32

Definition 2.3.2 (Quiescence enrichment). Let us denote for any ec of G, React(ec) = {ec′ | pec(ec′) = ec ∧
act(ec′) ∈ O(ΣF)}. The quiescence enrichment of SE(G) = (ec1, EC) is denoted by SE(G)δ = (ec1, ECδ) with
EC ⊆ ECδ. The set ECδ is enriched by new execution contexts as follows, for any execution context ec ∈ EC

we define a new one ecδ such that: if we denote z = OdFresh(ec), we let πδ(ec) = true if React(ec) = ∅, and
otherwise πδ(ec) =

∧
ec′∈React(ec)(∀IFresh(ec1).(∀z.¬(π(ec′) ∧OCond(ec)))),

• q(ecδ) = q(ec),

• π(ecδ) = πδ(ec),

• λ(ecδ) = λ(ec),

• ev(ecδ) = (z, _),

• pec(ecδ) = ec.

The introduced contexts ecδ are reachable from a given ec only if no transition labeled by an output can
be executed anymore due to unsatisfiable data and/or time constraints. The path condition πδ(ec) states that
for all execution contexts ec′ obtained from ec by executing a transition labeled by an output, whatever the
delay is, the path condition π(ec′) to reach ec′ cannot be satisfied.

Example 2.3.3 (Quiescence enrichment). In this example, let us enrich the quiescence for the TIOSTS ATM.
For this purpose, we consider the symbolic tree in Figure 2.13.

• From ec1, the set React(ec1) is defined as ∅, the system is quiescent as it always waits for an input
from environment. Hence, we enrich systematically the quiescence from the execution context ec1. The
elements of ecδ1 as e(ecδ1), π(ecδ1), λ(ecδ1) are the same as ec1, except the symbolic event ev(ecδ1) =
(z1, _) and the predecessor pec(ecδ1) = ec1.

ec1

rid := rid0, amt := amt0, f ee := f ee0,
rid_ret := rid_ret0, stat := stat0, mid_ret := mid_ret0,
wclock := 0

ec2 rid := 0, wclock := z0ecδ1

(z0, Init?)(z0, _)

FIGURE 2.17: Enrichment by quiescence from ec1

• From ec3, the set React(ec3) is defined as {ec4}. Let us consider the following data:

OdFresh(ec3) = z2,

IFresh(ec1) = {rid0, amt0, f ee0, rid_ret0, stat0, mid_ret0},
π(ec4) = (z2 ≤ 1),

OCond(ec3) = true.

The path condition of quiescence enrichment from ec3 (if exists) is defined as: π(ecδ4) =
∀IFresh(ec1).(∀z2 .¬(z2 ≤ 1)). This condition is never satisfiable if z2 takes a value which is strictly less
than 1. In other words, the system is supposed to always provide a reply on channel Debit within the
specified duration (e.g. 1). The quiescence enrichment cannot be applied from the context ec3.

33

ec3 amt := amt1, rid := 1, wclock := 0

ec4
π(ec4) : z2 ≤ 1
wclock := z2

ecδ1

(z2, Debit!(1, amt1 + f ee0, 1))(z2, _)

FIGURE 2.18: Enrichment by quiescence cannot be applied from ec3

2.4 Implementation in Diversity

Diversity is an extensible tool for the development of model-based formal analyses using symbolic execu-
tion [3]. The tool has become open source since 2016 and is available for download at the following url
https://projects.eclipse.org/proposals/eclipse-formal-modeling-project. It comes with an expres-
sive entry language that captures a wide range of classical models semantics. One major application domain
for Diversity is Model-Based Testing (MBT), the development of the tool has been mainly driven by needs
arising from MBT, such as time modeling, customizable tools or selection criteria. The tool has an Eclipse-
based GUI which provides a textual editor for its entry language, and exposes some built-in analysis modules
such as: exhaustive exploration with stopping criteria [33] (all-paths of length k, inclusion criterion, . . .), test
offline oracle [5], behavior selection heuristics [3] . . .

Besides the existing modules, the customizability of Diversity allows advanced users to create and define
a new analysis by designing and implementing their own modules. Whatever their purpose, the implemen-
tation of a new analysis module is possible thanks to an extensible architecture of the symbolic execution
engine of Diversity symbex by a visitor-like pattern. The symbex engine is developed in C++ language so-
as the analysis modules. One (or more) module(s) can be called when symbex is executed on the (textual)
model, in order to apply their analyses during the symbolic exploration.

We have implemented a first module which allows the computation of a symbolic path which covers
consecutive transitions. Those are meant to represent a test purpose, which is a particular behavior that we
would like to test in a given subsystem (this notion will be discussed more clearly in next chapter). In spite of
being a very simple module and there are already many other coverage modules such as transition coverage,
behavior selection, etc., our module allows to verify the feasibility of a sequence of consecutive transitions,
and is used to select a test purpose during the process of test case generation that is presented in Chapter 3.

In the first part of the section, we overview the encoding of the ATM-Bank system using the tool entry
language. In the second part, we present the extensible symbex engine of the tool illustrated by our consec-
utive transitions coverage module. And finally, in the third part of this section we discuss the application of
this coverage module on the subsystem ATM of the distributed system ATM-Bank.

2.4.1 Textual models of the ATM-Bank system

Diversity provides a pivot textual language called xLIA (eXecutable Language for Interaction and Assembly)
introducing a set of communication and execution primitives allowing one to encode a wide class of dynamic
model semantics, (timed) Symbolic Transition Systems (STS) [29, 33], (communicating) Finite State Machine
(FSM) [19, 30], data flow and Synchronous Data Flow (SDF) [50], SDL (ITU-T) [40], UML/SysML (OMG)
[63], . . . An xLIA system model can be atomic, a state machine, or compositional or hierarchical. We show
next how we encode the ATM-Bank system using xLIA.

The distributed system ATM-Bank is composed of many subsystems, each of them could be ATM or Bank.
In the following, we show how to declare different elements for the TIOSTS ATM such as variable, clock,

https://projects.eclipse.org/proposals/eclipse-formal-modeling-project

34

communication channel, transition. Figure 2.19 presents the declaration of the communication channels and
variables. All channels are declared with the modifier public by using keyword port whereas all variables
are declared in private (e.g. modifier private) using keyword var. Similar to variables, each channel is
well-typed, e.g. Wdral only accepts the value of type pos_integer (i.e. positive integer).

FIGURE 2.19: Channel and variable declaration of ATM

In Figure 2.20, we present transition on channel Debit of ATM and Bank. The subsystem ATM sends a
request on the channel Debit containing the request identifier rid, an amount including the requested one
amt and a charge f ee, and an ATM machine identifier ATM_ID. This request is constrained by the guard over
wclock, meaning that it is fired when the value of this clock does not exceed 1 time unit. To receive this kind of
request, the subsystem Bank stores the values that have been received in variables tid, x, aid. This transition
is fired if the value of dclock satisfies dclock + 6 < 86400 (i.e. the value of TWENTY_FOUR_HOUR is 86400 time
units). We remark that Debit is declared as an output channel for ATM and as an input channel for Bank.

FIGURE 2.20: Transition on Debit of ATM (left) and Bank (right)

The Diversity tool proposes also a mechanism to create many instances of a state machine through key-
word instance. Diversity’s users can also modify value of a variable dedicated to a proper instance decla-
ration. For example, Figure 2.21 shows the declaration of two TIOSTS ATM1 and ATM2 based on the basic
template ATM. The machine identifier for ATM1 and ATM2 are respectively declared as 1 and 2.

FIGURE 2.21: Declaration of two instances ATM1 and ATM2

35

Depending on the system structure (atomic, compositional or distributed system), Diversity offers many
ways in order to connect communication channels in xLIA. In the figure below, let us introduce three kinds
of connection from left to right: 1) when the subsystem ATM1 is executed in isolation, the channel Debit is
connected to the environment, denoted as env 2) when the system is compositional, an output on channel
Debit from ATM1 is immediately consumed by Bank (synchronous communication). The keyword rdv is
used to declare a synchronous communication 3) when the system is distributed, then an output on channel
Debit from ATM1 is stored in a waiting queue of type fifo for being consumed lately (asynchronous com-
munication). The keyword fifo is used to describe the nature of a waiting queue (other natures lifo) and
<*> is used to designate its unbounded capacity of storing received messages.

FIGURE 2.22: Different kinds of connection in Diversity

In Figure 2.23, the right subfigure shows the declaration of a multicast connection on channel Auth be-
tween Bank and two instances ATM1 and ATM2. Bank sends a message in multicast to both ATM1 and
ATM2 which store the message received in their local waiting queue bufferATM. This waiting queue must be
previously declared inside of the state machine ATM as in the left subfigure. Similarly, <*> indicates that the
buffer has an unbounded capacity of storing received messages.

FIGURE 2.23: Multicast connection in Diversity

For a given distributed system, the mechanism of scheduling represents a computational model that al-
lows to execute behaviors of subsystems running in parallel. We have many kinds of scheduling between
subsystems, such as sequence, interleaving, etc. In Diversity, in order to define a scheduling, we use the
keyword schedule to declare a scheduling section. In case of the distributed system ATM-Bank, we choose
to define its scheduling by using interleaving operator (|i|) to illustrate possible interactions between sub-
systems. In Figure 2.24, ATM1, ATM2 and Bank are executed by considering every possibility: transitions of
three subsystems are executed in any possible order when operational.

FIGURE 2.24: Interleaving scheduling in Diversity

36

2.4.2 The tool customizable symbex engine

Input: TIOSTS (an xLIA model) A sequence (transitions, states, actions, etc.) to cover

Output: Model exploration with symbolic tree,
trace generation, oracle computation,

transition coverage, deadlock detection

Coverage of the sequence

pre-processing post-processing

pre-processor post-processor

processing: symbex loop

symbex(EC ′) : EC ′′

Stop Filter :
for all ec in EC

h(ec) ≤ Height∧ . . .

queue

ec
all successors of all ec in EC ′

. . .

(i)

(ii)

(iii)

(iii-bis)
(i-bis)

select(’STRATEGY’) : EC
e.g., BFS, DFS add(EC ′′′)

’Stop Filter’
.
.
.

’MODULE’1
.
.
.

’MODULE’i
.
.
.

’INCLUSION’
costly

pre-filtering
post-filtering

.

FIGURE 2.25: Overview of Diversity’s symbex engine

The Diversity tool is an multipurpose platform allowing different analyses for models using symbolic exe-
cution. From a TIOSTS model, one can perform many analyses such as model exploration, trace generation
or verdict computation, etc. Diversity has been designed in a way which facilitates the implementation of a
new analysis module. Advanced users may develop their own modules for proper objectives. In Figure 2.25,
we illustrate the overview of the symbex engine in Diversity based on which each module is implemented.

Firstly, we present a priori step that could be arisen at the beginning of the symbex engine, called pre-
processing. The pre-processing step occurs before the symbolic execution loop. Its main purpose is to con-
struct initial context (i.e. ec1) and enqueue this context. It may also transform the model for the formal
treatments to be applied (for example adding sink states in the model).

The symbex engine consists in executing symbolically the system model. During execution, it maintains
a waiting queue containing EC for the next execution step. At the beginning, the process initializes the queue
with the initial execution context (i.e. ec1). The symbolic execution loop is composed of five main following
steps:

• (i) Selection of EC: According to a strategy chosen by the user (BFS: Breadth-First Search, DFS: Depth-
First Search, RFS: Random-First Search or ALL: All contexts are selected), the symbex selects from the
waiting queue one or more ECs for Pre-Filtering step. The set of selected ECs is denoted as EC.

• (i-bis) Pre-Filtering - Analyses for filtering EC for execution step: This step consists in performing some
analyses to reason on selected ECs before computing their successors. An EC that does not pass these
analyses will be added to the symbolic tree. The contexts that pass analyses are stored in the set EC ′.

• (ii) Symbex - Execution step for computing EC-successors: We compute successors of any EC belonging
to EC ′ in Pre-Filtering step. The set of successors is denoted as EC ′′.

37

• (iii-bis) Post-Filtering - Analyses for filtering EC-successors for queuing for next execution step: The
selected ECs from Pre-Filtering step are added to symbolic tree. This step is used to perform some
analyses on their successors obtained from symbex step. An EC-successor that passes these analyses
will be added to the set EC ′′′. Otherwise, it will be inserted in the symbolic tree.

• (iii) Addition of EC-successors: All the successors resulting from the Post-Filtering step (i.e. the set
EC ′′′) are added to the waiting queue and the symbolic execution engine starts over from step (i)

The module ’INCLUSION’ stops the symbolic execution of any ec (at pre-filtering) when it is included
semantically in another already computed one ec′ in the symbolic tree [33]: this means that any transition
which can be fired from ec, can also be fired from ec′. Calling this module is costly as inclusion checking has
a high computational cost in comparison with for instance ’Stop filter’ which checks if the height of an ec
(distance to ec1 the root of the symbolic tree) reaches maximum height bound (h(ec) ≤ Height).

After the symbolic execution loop (the symbolic execution tree is computed at this step), symbex engine
can process a posteriori step called post-processing, which consists in restoring the model in its original form
whenever it was modified in the pre-processing step, and performing some processing in the computed sym-
bolic tree. Two steps pre-processing and post-processing occurs respectively before and after the symbolic
execution loop, therefore they are not part of the symbolic execution loop.

2.4.3 Module of test purpose selection

In this subsection, we introduce the module of coverage called TESTPURPOSE_SEL that has been imple-
mented in our work to cover a sequence of consecutive transitions in a TIOSTS. The objective of this module
is to verify the feasibility of this sequence of consecutive transitions, i.e. there exists at least a timed trace
satisfying the formulas constraining the transitions in the sequence. Because of this functionality, TESTPUR-
POSE_SEL will be applied to a sequence of consecutive transitions before applying the test case generation
process (this will be discussed in next chapter). In our module, the selection strategy ’ALL’ is required, mean-
ing all contexts from the waiting queue are selected.

38

Input:
- TIOSTS ATM

- A sequence of consecutive transitions str = tra
1.tra

2.tra
3.tra

4.tra
5

ec0
initialstate

ec1
a0

startup ec2
a1

tpid#1->a0.tr_1a

tr_1a
INPUT ATM:

Init ec3
a2

tpid#2->a1.tr_2a

tr_2a
INPUT ATM:

Wdral(amt_1) ec5
a3

tpid#3->a2.tr_3a

tr_3a
OUTPUT ATM:

Debit(1 , (amt_1 + fee_0) , 1) ec7
a4

tpid#4->a3.tr_4a

tr_4a
INPUT ATM:

Auth(rid_ret_2 , stat_2 , mid_ret_2) ec8
a1

tpid#5->a4.tr_5a

tr_5a
OUTPUT ATM:

Cash(amt_1)

pre-processing post-processing

Default pre-
processor

create initial context ec1
enqueue ec1 to
symbex loop

post-processor

processing: symbex loop

symbex(EC ′) : EC ′′

queue

ec
all successors of all ec in EC ′

. . .

(i)

(ii)

(iii)

(iii-bis)

(i-bis)

add({ec3})

’Stop Filter’

TESTPURPOSE_SEL:
if coverage completes,

reject EC
pre-filtering

post-filtering

TESTPURPOSE_SEL:
check coverage

.

select(’ALL’) : {ec2}

h(ec2) ≤ Height
∧w(ec2) ≤Width
∧id(ec2) ≤ Nodes

Output: A symbolic path covers str

FIGURE 2.26: Module of TESTPURPOSE_SEL in symbex

Let suppose that we need to cover the following sequence str = tra
1 . . . tra

5 (Figure 2.27) which describes
the following scenario:

1. At the beginning, the ATM machine receives an initialization message;

2. Lately, a client asks for an amount at the ATM;

3. The request is then transferred on the channel Debit;

4. Subsequently, the ATM machine receives the withdrawal authorization;

5. Finally, it returns cash to the client.

FIGURE 2.27: Screenshot from a workflow file of TESTPURPOSE_SEL module for ATM

39

The application of the module TESTPURPOSE_SEL to str produces a symbolic path as illustrated in Figure
2.26. The following graphical conventions are used to denote different kinds of contexts: the initial execution
context is colored in blue, a context permitting to cover the transitions in the sequence str is colored in yellow,
except the one that covers the last transition is colored in green.

For more information about the implementation of this module, please refer to the following website:
https://projects.eclipse.org/proposals/eclipse-formal-modeling-project

2.5 Conclusion

In summary, this chapter introduced a formal model (TIOSTS) used to describe expected behaviors of reactive
systems. Then, we introduced symbolic execution techniques applied to the TIOSTS to derive symbolic
behaviors. Lately, we presented a new kind of coverage called TESTPURPOSE_SEL, which is developed in
the Diversity tool, in order to verify the feasibility of a sequence of consecutive transitions. The usefulness of
this module will be illustrated in our process of test case generation in subsequent chapters. Of course, there
are many other coverage strategies which have been already implemented in Diversity such as coverage of
all transitions or behavior selection. However, we decided to implement this coverage since it facilitates the
selection of a test purpose in our approach.

https://projects.eclipse.org/proposals/eclipse-formal-modeling-project

41

Chapter 3

Test cases derivation in the distributed
context

Contents
3.1 Model-Based Testing of reactive systems . 42

3.1.1 Offline approach . 43
3.1.2 Online approach . 44

3.2 Timed conformance relation . 45
3.2.1 Localized System Under Test . 45
3.2.2 Timed Input Output Conformance relation (tioco) . 46

3.3 Construction of online test case . 47
3.4 Illustration with ATM . 56
3.5 Implementation in Diversity . 62

3.5.1 Test case generation process . 62
3.5.2 Module of test case generation for unitary systems . 62
3.5.3 Elements on the validation of the generated test case . 66

3.6 Related work . 69
3.7 Conclusion . 72

In this chapter, we present our contribution for testing unitary (sub)systems while being running in a
distributed context: in practice some of their stimulations or inputs will not be provided by the co-localized
testers, and will be provided by other distant subsystems. The contribution consists in: i) the definition of
the generation of online test cases from the symbolic models and ii) their implementation in the symbolic
analysis tool Diversity. In order to facilitate the reading, let us introduce the organisation of this chapter:

• Section 3.1 recalls Model-Based Testing principle for reactive systems. This section also illustrates two
principal categories of conformance testing: the offline approach and the online approach;

• Then, Section 3.2 introduces the mathematical conformance relation tioco which states the meaning that
we give to the verdicts (Pass, Fail, ...) in the test case.

• Section 3.3 gives the rules for the generation of online test cases, these are given in the form of deter-
ministic (acyclic) TIOSTS. The generation is driven by a particular behavior of the system that we want
to test, the so-called test purpose. We illustrate the generation rules on the ATM example in Section 3.4;

• Section 3.5 is devoted to implementation: We first present the module that has been developed to im-
plement the rules. This module has been implemented using the extension mechanisms of the symbolic

42

process in Diversity; and then, we give few elements on the validation of the generated test cases with
respect to the conformance relation tioco by exploring the test case behaviors (being a TIOSTS itself)
using diversity and in particular analysing verdicts reachability;

• We review some related model-based approaches for testing reactive systems in Section 3.6. And finally,
we conclude the chapter in Section 3.7.

3.1 Model-Based Testing of reactive systems

Model-Based Testing (abbreviated as MBT) is a testing technique which uses models to automate the test
cases generation or definition and eventually their executions. When it comes to testing reactive systems,
many MBT approaches use models as a reference to test their intended behaviors. Figure 3.1 describes the
generic process of MBT for reactive systems.

Reactive System

i1
i2
o1

i3
o2

in
om

...

Interface

time

Test case

Reference Model

+
Test Purpose

Generation

Conformance?

FIGURE 3.1: Model-Based Testing Process

MBT consists of the following activities:

• Reference models : A model M represents intended behaviors of a reactive system. There are different
kinds of behavioral models for such system: a model can be a Labelled Transitions System (LTS) [77, 78],
a Symbolic Transitions System (STS) [33, 5] or a Finite State Machine (FSM) [30, 84, 59], . . . (see Chapter
2). Such a model is constructed often based on high level requirements of the system. In black box
testing, the model expresses the interaction of the system with its environment, in terms of sequences
of inputs, outputs, and, eventually observed delays in-between, while abstracting as much as possible
its internal implementation details.

• System Under Test (abbreviated as SUT) : It refers to a system that is going to be tested for correct
behaviors. Those are characterized by a model in the MBT approach. In Figure 3.1, the reactive system
is an SUT.

• Test purpose : A test purpose TP represents a particular behavior of the model M that the test case
would like to observe on a SUT in order to verify whether or not this SUT behaves correctly.

• Test case generation: This activity consists in generating test cases from the model M, which is driven
by the test purpose TP, the latter may be either defined as sub-behavior of the model, for instance
selected from the model using coverage criteria [22] or have been constructed in the previous activities,
for instance a specific behavior (or property) defined independently of the model [1]. The test cases
are constructed in such a way that it can interact with the SUT. Indeed, a generated test case can be
plugged on the SUT in order to send the stimulations to the SUT and observe its outputs, i.e. inputs

43

are computed to stimulate the SUT and outputs are compared to the ones of the model. There are two
categories of test case generation: offline [5, 32] and online [1, 33] that we will talk in the subsequent
sections. Roughly speaking, offline approach consists in generating in advance the sequences of inputs
and delays and each sequence is considered as a test case, whereas in online approach, next inputs (and
their adequate submission delays) are computed on-the-fly based on previous interactions and with the
objective to remain as much as possible within the test purpose, eventually by calling a solver, a verdict
is issued at the earliest to stop the test execution.

• Test execution: MBT consists in executing the test cases as the SUT is being executed with the objective
to make both interact. Usually test cases are therefore transformed into an executable form, for instance
as TTCN scripts [85] executable in the test execution tool Titan [75].

• Conformance check: This activity is about checking that the behaviors of an SUT conforms to the ref-
erence model. In fact, by executing a test case, outputs are provided by the SUT in response to test
case stimulations, we have then to analyze the correctness of these outputs and their occurrence delays.
Such correctness is often stated by a mathematical conformance relation, a well-known one is the input
output conformance relation (abbreviated as ioco) [78] and its timed extension (tioco) [46, 5]. This rela-
tion has become a standard in system verification and has allowed the development of many test case
generation and verdict computation from models.

In the context of MBT, most of testing approaches could be categorized into offline and online testing that
we discuss in the following section.

3.1.1 Offline approach

In the offline approach [5, 10, 32], a test case is derived from the combination of the test purpose and the
model. From a test purpose, the offline approach pre-computes a sequence composed of inputs (denoted
by i1, . . . , in) and their submission delays. During the test execution, the corresponding sequence of outputs
(denoted by o1, . . . , om) is recorded. This sequence is then merged with the sequence of inputs based on
temporal information as being occurrence delays of inputs or outputs (or timestamps) to reconstruct the
execution sequence. The last step consists in analyzing the obtained sequence in order to compute the test
verdict w.r.t the model. This steps is performed after the test execution, thus the approach is called offline
testing. The generic process of offline testing is shown in Figure 3.2.

We remark that in this approach, all inputs and delays are computed in advance. The advantage of offline
approach is that it facilitates the test execution because all time guards and data guards have been completely
resolved during test case generation process, i.e. the sequence of inputs is completely pre-computed, there-
fore we do not need to compute new inputs to stimulate SUT. Moreover, a test case could be applied as many
times as we want to test a particular behavior of the system.

There are several main disadvantages concerning offline approach. The first one is that the test case must
be completely executed on the SUT to be able to compute the test verdict even though the test case is a very
long sequence of inputs and delays. The verdict computation is based on a conformance relation allowing
to reason system correctness. We discuss more in detail a variant of this relation in Section 3.2. The second
disadvantage is the non-deterministic behavior of the SUT. It is the case when an output emitted by the SUT
is not specified in the test purpose but is specified by the model. Consequently, it is not possible to conclude
the test verdict as Pass or Fail. Another test verdict Inc is emitted in this situation, i.e. inconclusive.

44

Reactive System

i1
i2
o1

i3
o2

in
om

...

Interface

time

Reference Model

Test Purpose

Test case: +

Generation

Conformance?

Test execution

Test verdicts: Pass, Fail, Inc

computes verdict

wait or apply input
d1.i1.d2.i2.dn.in

FIGURE 3.2: Offline approach

3.1.2 Online approach

The online testing combines test generation and execution [36, 37, 33]. It can also take benefit of a model and
a test purpose. The online testing process is depicted in Figure 3.3. Unlike offline approach, the particularity
of online approach is that inputs (their submission delays) are computed on-the-fly (i.e. during the test
execution). The computation of the next stimulation is based on the previous observations. Indeed, the input
is generated on-the-fly and then it is sent to stimulate the SUT. Typically, the inputs and delays are chosen
such that the interaction between the test case and the SUT is specified in the test purpose. The second
particularity of online approach is that the system correctness is performed after each reception of an output
produced by the SUT. Indeed, the output produced by the SUT as well as its moment of occurrence are
verified directly against the model after the reception: if the behavior is specified in the test purpose, the
test execution is continued (until a verdict Pass is emitted), if it is specified in the model but not compatible
with the test purpose, a verdict Inc is emitted and the test execution stops, otherwise (i.e. the behavior is not
expected by the model), a verdict Fail is emitted and the test execution stops also.

Reactive System

i1
i2
o1

i3
o2

in
om

...

Interface

time

Reference Model

Test Purpose

Test case: +
Generation

i1
i2

o1

Inc Fail

in
om

Pass Inc Fail

FIGURE 3.3: Online approach

An advantage of the online approach compared with the offline one is that it can target very long behav-
iors of an SUT without deviating from the test purpose as the test case adapts the next input computation
with respect to previous observations, and in favor for targeted future outputs to be observed in the test pur-
pose. Besides, the test case does not need to be completely executed on the SUT to reveal a non-compliant

45

behavior of SUT, i.e. it can help us detect early failures and proceed by executing other test cases in the test
campaign.

3.2 Timed conformance relation

In this section, firstly, we characterize a Localized System Under Test (abbreviated simply as LUT). Secondly,
we present tioco, which is a conformance relation relating the correctness of a given timed trace resulting
from the execution of an LUT against its reference model TIOSTS, whose semantics is given by timed traces.

3.2.1 Localized System Under Test

As we deal with Localized Systems Under Test in the distributed context, we need to distinguish between
inputs locally received from some users (or test cases) and inputs received from other distant subsystems via
the network. Therefore, we consider the following partition of Cin, the set of input channels:

Cin = CCin qUCin

where CCin is the set of controllable input channels and UCin is the set of uncontrollable input channels. A
channel in CCin is used to receive messages from the test case (hence controllable for the test case), whereas a
channel in UCin is used to receive messages emitted by other subsystems (uncontrollable for the test case).

It might happen that the test case does not wait long enough to observe a reaction of a Localized System
Under Test because the delay is not known in advance (and in whole generality not bounded). We recall
that to represent this situation, we introduced in Section 2.3.4 the symbol _ to denote the absence of reaction
observed by the tester. An event (d, _) will be used to denote that after waiting delay d, no reaction of the
Localized System Under Test is observed. Evt({_}) denotes the set of all such events.

Notation 3.2.1. For any ev = (d, _) ∈ Evt({_}), delay(ev) and act(ev) denote d and _ respectively.

A Localized System Under Test is as a black box, and defined as a set LUT ⊆ (Evt(C) ∪ Evt({_}))∗
satisfying the following hypotheses for any σ1, σ2 ∈ Evt(C)∗ and ev ∈ Evt(C):

• stable by prefix:
σ1.σ2 ∈ LUT ⇒ σ1 ∈ LUT

• quiescence: for any d < delay(ev),

σ1.ev ∈ LUT ⇒ σ1.(d, _) ∈ LUT

• input complete: for any d < delay(ev), c ∈ CCin, v ∈ M,

σ1.ev ∈ LUT ⇒ σ1.(d, c?v) ∈ LUT

The hypothesis on quiescence states that if the LUT is waiting for an event ev whose action is not empty,
then any duration which is strictly less than the delay of ev is accepted by the LUT. The hypothesis on input
completeness enables LUT to receive any input on a controllable channel, i.e. an input received from the test
cases, during the delay of ev.

In the following, we present tioco, timed conformance relation between a timed trace of the LUT and
timed traces that can be generated from the reference model. This relation states that the LUT is in con-
formance with the model, if and only if after a specified sequence of events between the LUT and the test

46

case, any event produced by the LUT (either a reaction or an observation of a delay) must be specified in the
reference model.

3.2.2 Timed Input Output Conformance relation (tioco)

The semantics of a TIOSTS G can be seen as timed traces (cf Section 2.2.2). Now, in order to reflect the
quiescence situations that can be observed during the test execution on LUT, we define the semantics of G,
denoted by Sem(G), as the smallest set containing Trace(G) and such that for any σ ∈ Evt(C)∗, ev ∈ Evt(C),
for any d < delay(ev):

σ.ev ∈ Trace(G)⇒ σ.(d, _) ∈ Sem(G)

We stress that, as a consequence of TIOSTS semantics, when G is waiting for an event ev, it accepts any
duration which is strictly less than the delay of ev. In the following, elements of the semantics Sem(G) are
called sequences of events.

We use the following reformulation of the tioco conformance relation [46] to define correctness of a LUT
with respect to a TIOSTS G:

LUT tioco G if and only if, for all σ ∈ Sem(G), for any either event ev ∈ Evt(C) with act(ev) ∈ O(C) or
ev ∈ Evt({_}), we have:

σ.ev ∈ LUT ⇒ σ.ev ∈ Sem(G)

In an informal way, the LUT conforms to the reference model G if after any sequence of events σ, an
output event ev is produced by the LUT, then this event must be also specified by the TIOSTS G.

Example 3.2.1. We introduce in this example many sequence of events of the ATM4 presented in Figure 3.4
in order to illustrate the conformance relation tioco. This example is a variant of the complete example intro-
duced in Subsection 2.2.3.1. Let us suppose that ATM_ID is a constant and predefined as 1.

Let us discuss some sequence of events of some hypothetical LUTs and their conformance:

• σ1 = σ′1.(1, Debit!(1, 12, 2)) where σ′1 = (2, Init?).(2, Wdral?10):

σ′1 is a sequence of events of Sem(ATM4), however σ1 is not (σ1 6∈ Sem(ATM4)). This is because the
output event (1, Debit!(1, 12, 2)) is not specified in ATM4 as a possible continuation of σ′1: the third
element in the tuple of information transmitted on the channel Debit must have a value of 1 since
ATM_ID is predefined as 1 (see Figure 3.4). Therefore, this is an erroneous unspecified output.

• σ2 = σ′2.(3, Debit!(1, 14, 1)) where σ′2 = (2, Init?).(1, Wdral?12):

Once again, σ2 is not a sequence of events in Sem(ATM4), since the delay between the last event of σ′2
and the next event on the channel Debit is measured as 3 time units, which exceeds the delay permitted
by the transition from state a2 to a3 (conditioned by wclock ≤ 1).

• σ3 = σ′3.(3.4, _) where σ′3 = (3, Init?).(2, Wdral?20).(0.5, Debit!(1, 22, 1)).(1.6, Auth?(0, ACCEPT, 1)):

It is straightforward to find that σ′3 is specified by ATM4, let verify if the event (3.4, _) is allowed by the
model. After σ′3, the system reaches the state a′4, and the only possible behavior is the emission of an
output on channel Cash when the guard of transition is satisfied, i.e. wclock > 4∧ stat = ACCEPT. The
system LUT has elapsed 3.4 time units after σ′3 without sending anything to the environment, therefore
this behavior is accepted by the model. The clock wclock of LUT3 has elapsed in total 5.5 time units (i.e.
sum of 0.5, 1.6 and 3.4 since it has never been reset from the second event). According the conformance
relation tioco, σ3 holds the conformance relation and belongs to Sem(ATM4).

47

• σ4 = σ′4.(1.4, Auth?(0, ACCEPT, 3)) where σ′4 = (1, Init?).(5, Wdral?15).(0.5, Debit!(1, 17, 1)):

The sequence σ′4 is specified by ATM4 and after σ′4, the system reaches the state a3. However, the last
event of σ4 does not correspond to an event of the transition from a3 since the value of mid_ret is 3
which is different from the predefined value of the constant ATM_ID (i.e. 1). An under-specified input
event cannot violate the conformance, we recall that on the other hand, specified outputs or delays in
the model has to be observed.

a0 a1 a2 a3

a′4

Init?
{rid := 0}

{wclock}
Wdral?amt
{rid := rid + 1}

wclock ≤ 1
Debit!(rid, amt + f ee, ATM_ID)

wclock > 4
Abort!

wclock ≤ 4
∧ rid_ret = (rid− 1)
∧ mid_ret = ATM_ID

Auth?(rid_ret, stat, mid_ret)

wclo
ck
>

4

∧sta
t 6=

ACCEPT

Abort!

wclock > 4
∧stat = ACCEPT

Cash!amt

ATM4

FIGURE 3.4: ATM4 (ATM_ID = 1): under-specified for some internal inputs

3.3 Construction of online test case

We have presented in Section 3.1 two approaches of MBT: offline and online. Our work falls into the second
category, the test case is generated in such a way it stimulates the LUT based on previous observations, and
it allows the computation of verdicts on-the-fly.

In the sequel, we suppose that a TIOSTS G and its symbolic execution tree are previously computed. In
our approach, the test case generation is based on the selection of a test purpose in the symbolic execution
tree of SE(G). The selection of a test purpose permits to characterize a particular behavior in the reference
model [1, 5, 36]. In the following, we consider a test purpose of G as a finite symbolic path tp ∈ SPaths(G).

In our work, we consider only deterministic TIOSTS for test case generation. In addition, in order to sim-
plify the test case definition, we assume that channels are typed, which implies that the emitted or received
piece of data (i.e., concrete value) via a given channel is of the same type. By default, for each execution
context ec in SE(G) such that the action of its event is an output on a channel c ∈ Cout, we associate ec with a
fresh variable OFresh(ec)c of same type, which will be useful in test case definition to store any output value
emitted by the LUT on the channel c, when the execution follows that specific execution context ec. We point
out that as the test case is defined based on a given test purpose tp, variables used to store values corre-
sponding to internal inputs are those introduced as fresh reception variables when tp is defined by symbolic
execution (see symbolic execution steps in Section 2.3).

Notation 3.3.1. For any execution context ec, we denote by Fresh(ec) the set of additional fresh variables that
are introduced since its predecessor for the definition of ec as follows:

48

Fresh(ec) =

{z, x} if ev(ec) = (z, c?x)
{z} if ev(ec) = (z, c!t)
∅ if ev(ec) = (0, _)

We recall that from the remark 2.3.1, ec1 is the considered initial context with ev(ec1) = (0, _) and Fresh(ec1) =
∅. For the initial context ec1, IFresh(ec1) is the set of fresh variables used to initialize the variables, other than
clocks, in ec1 at the beginning of symbolic execution. Moreover, for a given symbolic path p, OCond(p) is the
identification condition of p’s observable values.

For any symbolic path p = ec1 . . . ecn, let PFresh(p) =
⋃

1≤k≤n Fresh(eck). Now, for any ec, we denote by
PFresh(ec) the set PFresh(p) where p is the symbolic path that leads to ec.
The set PFresh(ec) identifies the variables introduced by symbolic execution, that will be associated with
concrete values when the execution of the test case against LUT reaches ec.

The notation Var(ϕ) is used to denote the set of variables appearing in the definition of a formula ϕ.
Finally, for any decomposition of a symbolic path p = ec1 . . . ecn into p = ec1 . . . eck−1 . eck . eck+1 . . . ecn, we
denote ec1 . . . eck−1 and eck+1 . . . ecn respectively by pre(eck) and post(eck).

Let tp be a test purpose of G. The test case generated for the test purpose tp is a TIOSTS Gtp =

(Qtp, qtp
0 , Trtp) over a signature Σtp = (Ω, Atp, Ktp, C) defined partially based on the signature Σ =

(Ω, A, K, C) of the reference TIOSTS G as follows.
The set of clocks Ktp contains one clock cl used to measure the delay of each transition fired in the test case.
The set of communication channels (C) of the test case is the same as for G: indeed, a controllable input
channel of LUT (an implementation of G) is considered as an output channel from the viewpoint of a test
case since the latter uses this channel to stimulate the LUT and conversely. On the other hand, input channels
for the test case are both the output channels and uncontrollable channels of LUT. This is because, input
values on uncontrollable channels will be provided by other subsystems, considered to be internal in the
view of the overall system of LUT.
The set of variables of test case Atp contains initially a global maximal waiting-time denoted as WaitMax,
in order to bound the waiting delay for observing outputs or internal inputs emitted by other subsystems.
The waiting-time fixed in the test case to avoid waiting for too long for such observations. For instance, it
can be chosen as the maximal value among those which bound the occurrences of observations (if any) in the
definition of the test purpose, plus one time unit. In addition, the set Atp contains other variables that will be
created during the construction of transitions in the test case.

For the TIOSTS test case Gtp = (Qtp, qtp
0 , Trtp), we have:

• Qtp is the set of states containing states of test verdicts Pass, Failout, Failtime, Incout, Inctime, IncspecIntI ,
IncuspecIntI and other states constructed from the rules;

• qtp
0 is the initial state, here qec1 , where ec1 is the initial context of tp;

• Trtp is the set of transitions built by applying a process that will be discussed in the following. This
process will be applied to a so-called fully-prepared symbolic tree containing the test purpose tp. Figure
3.5 is a simplified illustration for this symbolic tree.

Figure 3.5 depicts a symbolic tree and a test purpose tp = ec1.ec2.ec3.ec4.ec5.ec6 (being as glimpsed before,
a symbolic path in the tree). Besides the (execution) contexts of tp, the symbolic tree contains also the adjacent
contexts outside of tp reflecting either a specified output (ec′3), or an internal input received from another sub-
system (may be ec′5). All these contexts do not allow us to follow tp, hence, they do not represent the behavior

49

that we would like to observe. Adding these neighboring contexts in the tree, prepares for application of test
case generation rules. Figure 3.5 is a simplified illustration, the details will be given in Section 3.5.2.

ec1 ec2 ec3

ec′3

ec4 ec5

ec′5

ec6

(z0, a?u1) (z1, b!u1 + w0)

(z1, d!u1 + 2)

(z2, c?x1)

. . .

π(tp) i.e. π(ec6) :
z1 < 5∧ z2 < u1 + w0 ∧ x1 ≤ 100

FIGURE 3.5: An example of fully-prepared symbolic tree for tp : ec1.ec2.ec3.ec4.ec5.ec6

For the given fully-prepared symbolic tree, the application process of our construction rules of the test
case is defined as follows:

1. We advance linearly in the tp = ec1.ec2.ec3...ecn, starting with the context ec2;

2. For the current ec, one applies all possible rules in the order in which they are presented;

3. In case where we can no longer apply any rules, then we move on to the next context in tp (becoming
the new current ec) until we reach ecn and finish with it.

In the following, we will not present all the contexts (ec′3, ec′5, . . .) to facilitate the illustration. And some
rules will be illustrated by an application example to facilitate their understanding, in addition to next Section
3.4 which is dedicated to the illustration for the ATM.

Let us note that a transition which is generated in test case will be presented in the form of a table for
readability reason:

Source Clocks Action Substitution Target

q K act
[]

q′

Guard

φ

where
[]

is the identity substitution, it is used when the transition does not modify the values of variables.
In our approach, for any given transition tr that will be generated in the test case, the test case does not need
to update the values of variables, hence ρ(tr) :

[]
.

• R1 - stimulation: Case ev(ec) = (z, c?x) with c ∈ CCin, we build the following transition

Source Clocks Action Substitution Target

qpec(ec) {cl} c!x
[]

qec

Guard

cl = z ∧ ∃(Var(π(tp))∪IFresh(ec1))\PFresh(ec)(OCond(ec) ∧ π(tp))

50

A stimulation in the test case is constructed in such a way that allows to follow the test purpose, there-
fore its guard is determined based on the path condition π(tp) of the test purpose. A stimulation of
the test case has to be emitted within a delay allowed by the test purpose, i.e. cl = z. Furthermore, the
construction of the guard is based on identification conditions OCond(ec) which have been previously
accumulated during the test execution. The delay z and variable x are considered as variables in test
case and therefore, will be added to the set of variables Atp, since test cases need to know the moment
and the value of stimulation. In order to illustrate the different ingredients of the rule, let us consider
the following toy example.

ec1 ec2 ec3 ec4 ec5 ec6

ec

test purpose tp : current contextpre(ec) post(ec)

(z0, a?u1) (z1, b!u1 + w0) (z2, c?x1) . . .

IFresh(ec1) : {w0, u0, x0}
event of ec, ev(ec) : (z2, c?x1) // (delay, input)

Fresh(ec) : {z2, x1}
PFresh(ec) : {z0, u1, z1, z2, x1}

Var(π(tp)) : {z1, z2, u1, w0, x1}
OCond(ec) : χ = u1 + w0

pec(ec) : ec3 // predecessor of ec
Fresh(ec1) : ∅
Fresh(ec2) : {z0, u1}
Fresh(ec3) : {z1}

qec3 qec4

i.e.

π(tp) i.e. π(ec6) :
z1 < 5∧ z2 < u1 + w0 ∧ x1 ≤ 100

path condition of ec,
π(ec) i.e. π(ec4) :

z1 < 5∧ z2 < u1 + w0

{cl}
cl = z ∧ ∃(Var(π(tp))∪IFresh(ec1))\PFresh(ec)(OCond(ec) ∧ π(tp))

i.e.
cl = z2 ∧ ∃w0 ,u0 ,x0 .(u1 + w0 = χ ∧ z1 < 5∧ z2 < u1 + w0 ∧ x1 ≤ 100)

c!x1[]
i.e. i.e.qpec(ec) qec

R1 - stimulation:

tr : generated transition
of test case

By interacting with the LUT, the values of some variables appearing in the PC will be progressively
revealed, i.e., they will be associated with known values in test case as the execution progresses. The
set PFresh(ec) represents these variables: for example, the delay z2 of the current execution context
ec and its reception variable x1 belong both to the set PFresh(ec) (z2, x1 ∈ PFresh(ec)), as the test
case knows when emitting a stimulation and its value. This holds as well for previously encoun-
tered variables before reaching ec (z0, u1, z1 ∈ PFresh(ec)). Now to define the guard of the transi-
tion of the test case, one needs to satisfy π(tp) while keeping unconstrained all non-revealed vari-
ables appearing in π(tp) and initialized variables in IFresh(ec1) (cf remark 2.3.1), those are determined
by the set resulting from excluding from the union Var(π(tp)) ∪ IFresh(ec1) all variables that have
been revealed during test execution to this level, i.e., represented by the set PFresh(ec) (in the example
(Var(π(tp)) ∪ IFresh(ec1)) \ PFresh(ec) = {w0, u0, x0}). The action of stimulation is determined by a
mirror operator: an input in the model becomes an output (stimulation) in the test case, and conversely,
an output in the model becomes an input (reception) in the test case. In the example, the stimulation of
the current ec, c?x1, is transformed into the output c!x in the test case.

51

• R2 - authorized reaction inside tp: Case ev(ec) = (z, c!t),

Source Clocks Action Substitution Target

if post(ec) 6= ε qpec(ec)
{cl} c?OFresh(pec(ec))c

[] qec

else ∅ Pass
Guard

cl < WaitMax ∧ cl = z
∧ ∃IFresh(ec1)\PFresh(ec)(OCond(ec) ∧ π(ec))

N.B., we denote φ̃(tr) = ¬(∃IFresh(ec1)\PFresh(ec)(OCond(ec) ∧ π(ec))). The construction of φ̃(tr) is necessary
for constructing transitions by R4.
We recall that OFresh(pec(ec))c denotes here the (same) fresh variable used to represent from context pec(ec),
the received values on channel c for all its successor contexts (including ec, see Remark 2.3.1). The delay z and
fresh variable OFresh(pec(ec))c are added to the set of variables Atp of the test case since delay z is revealed
(moment of reception) and OFresh(pec(ec))c is created by the test case to store observable values.

Let us consider again the same toy example, yet with another decomposition of tp with respect to an
output event in order to illustrate the rule.

ec1 ec2 ec3 ec4 ec5 ec6

ec

test purpose tp : current contextpre(ec) post(ec)

(z0, a?u1) (z1, b!u1 + w0) (z2, c?x1) . . .

IFresh(ec1) : {u0, w0, x0}
event of ec, ev(ec) : (z1, b!u1 + w0) // (delay, output)

Fresh(ec) : {z1}
PFresh(ec) : {z0, u1, z1}
OCond(ec) : χ = u1 + w0

pec(ec) : ec2 // predecessor of ec
OFresh(pec(ec))b : χ qec2 qec3

i.e.

path condition of ec,
π(ec) i.e. π(ec3) :

z1 < 5

{cl}
cl < WaitMax ∧ cl = z ∧ ∃IFresh(ec1)\PFresh(ec).(OCond(ec) ∧ π(ec))

i.e.
cl < WaitMax ∧ cl = z1 ∧ ∃w0 ,u0 ,x0 .(u1 + w0 = χ ∧ z1 < 5)

b?χ[]
i.e. i.e.qpec(ec) qec

R2 - authorized reaction inside tp:

tr : generated transition
of test case

The expected reaction (b!u1 + w0) of LUT on channel b is seen as an input (b?χ) from the viewpoint of the test
case, which leads to the creation of a new fresh variable (OFresh(pec(ec))b = χ) to store the value received
on that channel.
Let us discuss how the guard of an authorized reaction has been defined. First, we require that the test
case waits for reactions during a time delay bounded by a parameter bound WaitMax (cl < WaitMax),
which is of practical concerns as this duration can be unconstrained and can arrive after an arbitrary long
delay (as it is the case in this example). As previously, the guard takes into consideration the identification
for the variables OCond(ec) : χ = u1 + w0 and for the clock cl = z1, where z1 is the delay elapsed since
the last event (hence the utility of clock resets by generated transitions of the test case). This delay is then
verified to be compliant with path condition π(ec) (here z1 < 5, constrains its emission delay to be less than
5 time units). One can see that values accepted by the test case and received on χ are exactly those satisfying
cl = z1 ∧ ∃w0,u0,x0 .(χ = u1 + w0 ∧ z1 < 5), u1 is supposed to be known as being a stimulus sent by the test
case (its corresponding transition is generated by applying rule R1 on ec2). Therefore, the satisfiability of the
guard allows the test case to remain within the test purpose tp, and the test case evolves from state qpec(ec) to
state qec. Finally, the clock cl is reset to measure the time elapsed for the next event.

52

In case where post(ec) is empty (post(ec) = ε), the generated transition is the one which allows to reach
the verdict state Pass, meaning that the behavior of LUT is correct w.r.t the selected test purpose. Then, the
clock cl does not need to be reset.

• R3 - authorized reaction outside tp:

In case there exists ec′ 6= ec such that pec(ec′) = pec(ec) and ev(ec′) = (z, c!t),

Source Clocks Action Substitution Target

qpec(ec) ∅ c?OFresh(pec(ec))c
[]

Incout

Guard

cl < WaitMax ∧ cl = z
∧ ∃IFresh(ec1)\PFresh(ec′)(OCond(ec′) ∧ π(ec′))

N.B., we denote φ̃(tr) = ¬(∃IFresh(ec1)\PFresh(ec′)(OCond(ec′) ∧ π(ec′))). The construction of φ̃(tr) is necessary
for constructing transitions by R4.

We consider here the case when there exists an execution context ec′ satisfying the following conditions: i)
ec (the current context of tp w.r.t. our application process of construction rules) and ec′ (distinct from ec)
have a same predecessor, and ii) the event of ec′, i.e., ev(ec′) = (z, c!t), is an output event. Then the action
of the corresponding transition in the test case is an input, i.e. c?χ(ec)c (dual of c!t) as in rule R2. The guard
is defined as well is a similar manner as rule R2: yet the event needs to be compliant with path condition
π(ec′). Now as this a specified output in the model, yet divergent outside tp, the verdict Incout is emitted and
execution of the test case is ended. Once again, similar to R2, the delay z and fresh variable OFresh(pec(ec))c
are added to the set of variables Atp of test case.

This rule can be applied to the context ec′3 that represents a specified behavior in the model in Figure 3.5.
However, this reaction does not allow test case to follow the test purpose tp.

• R4 - unauthorized reaction:

Source Clocks Action Substitution Target

qec ∅ c?OFresh(ec)c
[]

Failout

Guard

cl < WaitMax ∧ cl = OdFresh(ec)
∧

tr′∈Tr′ φ̃(tr
′)

Where Tr′ is the set {tr′ | tr′ ∈ Trtp ∧ src(tr′) = qec ∧ tgt(tr′) 6= Failout ∧ act(tr′) = c?OFresh(ec)c} and
φ̃(tr′) is the formula defined in R2 and R3.

In case where there are authorized reactions tr′ on a same output channel c: the unauthorized behaviors
are constructed according to the authorized ones on the channel c. Indeed, those are characterized by all
transitions tr′ in the test case satisfying the following conditions: i) their source state must be the same
whereas their target state must be different from Failout, and ii) their action is an input on the channel c.
Now, in order to define the erroneous received values and and/or their erroneous delays, we reason on
the negation of a sub formula of φ(tr′) (See rules R2 and R3 defining authorized reactions), denoted by
φ̃(tr′): This formula is obtained by: i) omitting cl < WaitMax ∧ cl = z in φ(tr) as it will be factorized (same

53

as cl < WaitMax ∧ cl = OdFresh(ec), knowing that OdFresh(ec) = z), ii) and especially by negating the
conditions defining specified values of reactions and their accepted delays in φ(tr′).
A transition leads to Failout if and only if the test case receives a reaction from the LUT on the channel c
and either the corresponding delay or the data received on OFresh(ec)c does not satisfy the conjunction of
all φ̃(tr′), i.e. meaning that there is no guard of an authorized reaction (within tp or outside tp) which is
satisfiable.
The reception of such reaction leads to an authorized behavior of the LUT, denoted by the verdict Failout.
Finally, the clock cl is reset to measure the time elapsed for the next event. We note that we do not need to
add the delay OdFresh(ec) and fresh variable OFresh(ec)c to the set Atp of test case because they have been
already as a application of R2 and R3 to generate specified reactions.
In case there is no authorized reaction on an output channel c (hence no corresponding transition tr′): the
guard of the unauthorized reaction on c is reduced to cl < WaitMax ∧ cl = OdFresh(ec), where WaitMax
denotes a maximum delay that the test case can wait for the observation, which will be erroneous when ob-
served (the LUT is not supposed to react).

Let us consider again the toy example with the objective to illustrate the definition of transitions leading to
the Failout state in the test case. The unauthorized reaction is constructed based on the authorized transition
constructed by rule R2 and denoted by tr′. Suppose that the test case receives a value that is stored to the new
fresh variable χ after a duration z1. A reaction on channel b is considered as unauthorized if either the value
stored in χ is not the expected one or the delay z1 does not satisfy the constraint of φ(tr′). Therefore, the guard
of transition for unauthorized reaction is defined by φ̃(tr′), which is obtained by negating the conditions
constructed on specified values and accepted delays in φ(tr′). Finally, we have φ(tr) : cl < WaitMax ∧ cl =
z1 ∧ ∀w0,u0,x0 .((u1 + w0 6= χ ∨ z1 ≥ 5)).

ec1 ec2 ec3 ec4 ec5 ec6

ec

test purpose tp : current contextpre(ec) post(ec)

(z0, a?u1) (z1, b!u1 + w0) (z2, c?x1) . . .

OdFresh(ec) : z1
OFresh(ec)b : χ

src(tr′) : qec2 i.e.qec
tgt(tr′) : qec3 6= Failout
act(tr′) : b?χ

φ(tr′) : ∃w0 ,u0 ,x0 .((u1 + w0 = χ ∧ z1 < 5))
φ̃(tr′) : ¬(∃w0 ,u0 ,x0 .(u1 + w0 = χ ∧ z1 < 5))

i.e., ∀w0 ,u0 ,x0 .(u1 + w0 6= χ ∨ z1 ≥ 5)

path condition of ec,
π(ec) i.e. π(ec3) :

z1 < 5

qec2 Failout

i.e.

∅
cl < WaitMax ∧ cl = z1 ∧ ∀w0 ,u0 ,x0 .((u1 + w0 6= χ ∨ z1 ≥ 5))

b?χ[]
i.e.
qec

R4 - unauthorized reaction:

tr : generated transition
of test case

• R5 - internal input inside tp: Case ev(ec) = (z, c?x) and c ∈ UCin, we build the following transition

Source Clocks Action Substitution Target

if post(ec) 6= ε qpec(ec)
{cl} c?OFresh(pec(ec))c

[] qec

else ∅ Pass
Guard

cl < WaitMax ∧ cl = z
∧ ∃IFresh(ec1)\PFresh(ec)(OCond(ec) ∧ π(ec))

N.B., we denote φ̃(tr) = ¬(∃IFresh(ec1)\PFresh(ec)(OCond(ec) ∧ π(ec))). The construction of φ̃(tr) is neces-
sary for constructing transitions by R7.

54

We remind the reader that OFresh(pec(ec))c is x (see Remark 2.3.1).

Let consider an execution context ec whose delay is z and action is an input on the channel c where c is an
uncontrollable channel. The test case does not send this input, but it is able to observe this internal input
which is sent by another subsystem, hence the action of tr is c?OFresh(pec(ec))c.
The guard is defined based on the path condition π(ec). Indeed, the reception of this input by the LUT needs
to be compatible with the test purpose in order to follow targeted execution. In case of incompatibility, we are
either in the case of an internal input outside of the test purpose or under-specified internal input, that will be
introduced in the next two rules. As for reactions, the waiting-time for internal inputs is constrained by the
bound WaitMax, i.e. cl < WaitMax. The delay z and fresh variable OFresh(pec(ec))c for storing observable
values are added to the set Atp of test case.

• R6 - internal input outside tp: In case there exists ec′ 6= ec such that pec(ec′) = pec(ec) and ev(ec′) =
(z, c?x), c ∈ UCin:

Source Clocks Action Substitution Target

qpec(ec) ∅ c?OFresh(pec(ec))c
[]

IncspecIntI

Guard

cl < WaitMax ∧ cl = z
∧ ∃IFresh(ec1)\PFresh(ec′)(OCond(ec′) ∧ π(ec′))

N.B., we denote φ̃(tr) = ¬(∃IFresh(ec1)\PFresh(ec′)(OCond(ec′) ∧ π(ec′))). The construction of φ̃(tr) is necessary
for constructing transitions by R7.

As in previous rule, we remind the reader that OFresh(pec(ec))c is x (see Remark 2.3.1).

This rule applies on an execution context ec′ satisfying the following conditions: i) its predecessor is the same
as ec (the current context of tp w.r.t. our application process of construction rules), and ii) its action is of the
form c?x, being an internal input sent by another subsystem. In such situation, the internal input is not ex-
pected by the test purpose, yet specified in the model. The guard construction is similar to the case of internal
input inside of the test purpose (see Rule 5), when satisfied the testing is stops and the verdict IncspecIntI is
emitted. The delay z and fresh variable OFresh(pec(ec))c are added to the set Atp of test case.

• R7 - under-specified internal input:

Source Clocks Action Substitution Target

qec ∅ c?OFresh(ec)c
[]

IncuspecIntI

Guard

cl < WaitMax ∧ cl = OdFresh(ec)
∧

tr′∈Tr′ φ̃(tr′)

Where Tr′ is the set {tr′ | tr′ ∈ Trtp ∧ src(tr′) = qec ∧ tgt(tr′) 6= IncuspecIntI ∧ act(tr′) = c?OFresh(ec)c}
and φ̃(tr′) is the formula defined in R5 and R6.

Let us consider all the transitions in the test case tr′ satisfying the following conditions: i) their source state
is qec, and ii) their action is an a specified internal input (either inside or outside the test purpose). The firing

55

guard of the transition tr, i.e., conditions on received internal input values and their delay which are not in
the model, is then defined over the negation formulas φ̃(tr′). When such conditions are satisfied, the verdict
IncuspecIntI is issued by the test case. The current construction is somewhat similar to the situations of un-
specified outputs (see rule R4, when the verdict Failout is emitted), it is simply transposed to internal inputs.
The delay OdFresh(ec) and fresh variable OFresh(ec)c are not added to the set Atp of test case which contains
already them from the application of R5 and R6.

• R8 - authorized quiescence on bound WaitMax (WaitMax is the max. waiting-time for observations):
Case ec such that there exists ec′ satisfying pec(ec′) = ec and chan(ec) ∈ (Cout ∪UCin),

Source Clocks Action Substitution Target

qec ∅ _
[]

Inctime

Guard

cl ≥WaitMax ∧ cl = OdFresh(ec)
∧
(φδ ∨ φout ∨ φintI)

N.B., φδ =
∧

ec′∈React(ec)(∀IFresh(ec1)\PFresh(ec)(∀z(¬(OCond(ec) ∧ π(ec′))))), where z = OdFresh(ec)
(OdFresh(ec) is the fresh duration introduced to represent the time elapsed from ec, see Remark 2.3.1), and
finally React(ec) = {ec′ | pec(ec′) = ec ∧ chan(ec′) ∈ Cout} (see Definition 2.3.2),

φout =
∨

ec′∈React(ec) ∃IFresh(ec1)\PFresh(ec)((OCond(ec) ∧ π(ec′))),
φintI =

∨
ec′∈Uncont(ec) ∃IFresh(ec1)\PFresh(ec)((OCond(ec) ∧ π(ec′))),

where Uncont(ec) = {ec′ | pec(ec′) = ec ∧ chan(ec′) ∈ UCin}

While waiting for observations (outputs or uncontrollable internal inputs), test case can stop by observing a
quiescent situation of the the LUT, i.e., absence of action of the form (z, _). This situation is possible: i) either
because it is authorized by the model (by quiescence enrichment, see Definition 2.3.2), or ii) because the test
case waits long enough for observations and ends the test (the bound WaitMax is reached, cl ≥ WaitMax).
Then, a special verdict Inctime is emitted.

• R9 - unauthorized quiescence on bound WaitMax (WaitMax is the max. waiting-time for observa-
tions): Case ec such that exists ec′ satisfying pec(ec′) = ec and chan(ec) ∈ (Cout ∪UCin),

Source Clocks Action Substitution Target

qec ∅ _
[]

Failtime

Guard

cl ≥WaitMax ∧ cl = OdFresh(ec)
∧
(¬φout ∧ ¬φintI)

we remark that ¬φδ =
∨

ec′∈React(ec)(∃IFresh(ec1)\PFresh(ec)(∃z(OCond(ec) ∧ π(ec′)))) captures exactly the sit-
uation when a duration is compatible with a reaction which is still possible to come, it is omitted as it contra-
dicts the targeted verdict here, fail due to non-conforming duration.

The generated transition is enabled when the observed duration is not allowed in the model, and naturally
when the guard of the transition defined by the previous rule R8 is not satisfied. The verdict Failtime is
emitted in this case. In the following illustration, we show how the rule applies and generates a transition
which captures the situation of non-conforming duration (z1 ≥ 5).

56

ec1 ec2 ec3 ec4 ec5 ec6

ec

test purpose tp : current contextpre(ec) post(ec)

(z0, a?u1) (z1, b!u1 + w0) (z2, c?x1) . . .

IFresh(ec1) : {u0, w0, x0}
OdFresh(ec) : z1

PFresh(ec) : {z0, u1}
OCond(ec) : true

React(ec) : {ec3}
Uncont(ec) : ∅ no uncontrollable internal inputs

φδ : ∀u0 ,w0 ,x0 (∀z1 (z1 ≥ 5)), i.e., f alse
(no quiescence)

φout : ∃u0 ,w0 ,x0 (z1 < 5∧ u1 + w0 = χ)

qec2 Failtime

i.e.

∅
cl ≥WaitMax ∧ cl = z1 ∧ ∀u0 ,w0 ,x0 (z1 ≥ 5∨ u1 + w0 6= χ)

_[]
i.e.
qec

R9 - unauthorized quiescence on bound WaitMax:

tr : generated transition
of test case

π(ec3) : z1 < 5

3.4 Illustration with ATM

Let us consider the following test purpose of the ATM:
tp1 = ec1 . ec2 . ec3 . ec4 . ec5 . ec6 where each execution context is defined as follows:

• ec1 = (a0, true, [rid := rid0, amt := amt0, wclock := 0, . . .], (0, _), ec1)

• ec2 = (a1, true, [rid := 0, wclock := z0], (z0, Init?), ec1)

• ec3 = (a2, true, [amt := amt1, rid := 1, wclock := 0], (z1, Wdral?amt1), ec2)

• ec4 = (a3, z2 ≤ 1, [wclock := z2], (z2, Debit!(1, amt1 + f ee0, 1)), ec3)

• ec5 = (a4, z2 + z3 < 4 ∧ z2 ≤ 1, [stat := stat2, rid_ret := rid_ret2, mid_ret := mid_ret2, wclock := z2 +
z3], (z3, Auth?(rid_ret2, stat2, mid_ret2)), ec4)

• ec6 = (a1, mid_ret2 = 1 ∧ rid_ret2 = 1 ∧ stat2 = ACCEPT ∧ z2 + z3 < 4 ∧ z2 ≤ 1, [stat :=
ACCEPT, wclock := 0], (z4, Cash!amt1), ec5)

The test purpose tp1 describes the following behavior of the ATM: The ATM receives an initialization
message on internal channel Init from the Bank to start its services. Then, it receives a withdrawal request on
channel Wdral from a client, which is lately transferred to the Bank on internal channel Debit. Afterwards,
the ATM machine receives the withdrawal authorization on internal channel Auth that allows it to return
cash to the client on channel Cash. We recall that the set of output and input channels of ATM is respectively
defined as Cout(ATM) = {Abort, Cash, Debit, Log} and Cin(ATM) = {Wdral, Init, Auth}, whereas the set
of controllable and uncontrollable input channels is respectively defined as CCin(ATM) = {Wdral} and
UCin(ATM) = {Init, Auth}. A controllable input channel is used to receive messages from the test case and
an uncontrollable one is used to receive messages from other subsystems via the network.

The path condition of tp1 is π(tp1) : mid_ret2 = 1∧ rid_ret2 = 1∧ stat2 = ACCEPT∧ z2 + z3 < 4∧ z2 ≤ 1.
From this formula, we can determine the set Var(π(tp1)) of variables appearing in π(tp1) (i.e. π(ec6))

Var(π(tp1)) = {mid_ret2, rid_ret2, stat2, z2, z3}

The chosen test purpose allows the illustration of the following rules: a stimulation (R1), an authorized
reaction inside tp1 (R2), an unauthorized reaction (R4), and an internal input inside tp1 (R5).

57

R5 - internal input inside tp1.

ec1 ec2 ec3 ec4 ec5 ec6

ec

test purpose tp1 :

current context

pre(ec) post(ec)

(z0, Init?)

PFresh(ec) : {z0}
OCond(ec) : true

π(ec) : true
IFresh(ec1) : {rid0, amt0, f ee0, rid_ret0, stat0, mid_ret0}

OFresh(ec)Init : ∅ qpec(ec)
i.e.
qec1

qec
i.e.
qec2

{cl}
cl < WaitMax ∧ cl = z0

Init?[]
R5 - internal input inside tp1:

tr : generated transition
of test case

FIGURE 3.6: Internal input on the channel Init

We consider the decomposition tp1 = pre(ec2) . ec2 . post(ec2) with pre(ec2) = ec1 and post(ec2) =
ec3 . ec4 . ec5 . ec6. The corresponding transition which will be generated in test case is denoted as tr. In the
following, we construct different elements of tr.

Firstly, tr represents an observable input from the viewpoint of the test case since act(ec2) = Init? is an
uncontrollable internal input issued by the Bank (Init ∈ UCin). So, the test case is constructed in a way to
observe this internal input, hence act(tr) = Init?. To wait for receptions, we constrain the waiting-time by
the bound WaitMax. This internal input allows the test case to follow test purpose tp1 if it is received during
this bound WaitMax, i.e. cl < WaitMax where cl is the clock used to measure the duration of transition
cl = z0. In addition, we need to take into consideration the path condition to ec2 (i.e. π(ec2) = true) and the
identification condition to ec2 (i.e. OCond(ec2) = true, no values are transmitted via the channel Init) as the
duration z0 may be constrained by them. Therefore, φ(tr) is determined as cl < WaitMax ∧ cl = z0. If the
duration z0 does not satisfy these constraints, the input is either an internal input outside of tp1 yet in the
model or under-specified, for both, an inconclusive verdict is emitted. Finally, the test case resets the clock cl
in order to measure the duration of the next transition. The different elements of tr are shown in Figure 3.6.

R1 - stimulation on the channel Wdral.
In the following, we consider the decomposition tp1 = pre(ec3) . ec3 . post(ec3) with pre(ec3) = ec1 . ec2

and post(ec3) = ec4 . ec5 . ec6. The generated transition in test case is denoted as tr.
The considered context ec3 is created by executing a transition labeled by an input action, thus the corre-

sponding transition in the test case is labeled by an output (stimulation). For a stimulation, the test case needs
to know the value and the moment of stimulation. In case of the considered transition, these are respectively
defined as amt1 and z1. Now, for the purpose of following tp1, this stimulation must be emitted by the test
case within the delay allowed by the PC of test purpose (i.e. π(tp1)). Furthermore, the value of stimulation
must satisfy also π(tp1). Therefore, φ(tr) must take into account the constraint cl = z1 ∧ π(tp1). In addition,
the identification conditions which have been previously accumulated during the test execution may also
constrain the value and the moment of stimulation. In case of ec3, the identification condition OCond(ec3) is
defined as true since the test case has not received any reaction from the LUT yet. All non-revealed variables
appearing in π(tp1) and initialized variables in IFresh(ec1) (i.e. Var(π(tp1)) ∪ IFresh(ec1) \ PFresh(ec2)) are
existentially quantified since their values are unknown until this moment of stimulation. Therefore, φ(tr) is
defined as follows:

58

cl = z1∧∃(Var(π(tp1))∪IFresh(ec1))\PFresh(ec2)(mid_ret2 = 1∧ rid_ret2 = 1∧ stat2 = ACCEPT∧ z2 + z3 < 4∧ z2 ≤ 1)

with Var(π(tp1)) = {mid_ret2, rid_ret2, stat2, z2, z3}
and IFresh(ec1) = {rid0, amt0, f ee0, rid_ret0, stat0, mid_ret0}
Finally, the transition does not modify any variable, its substitution is denoted as

[]
for the identity

substitution.

ec1 ec2 ec3 ec4 ec5 ec6

ec

test purpose tp1 :

current context

pre(ec) post(ec)

(z0, Init?)(z1, Wdral?amt1)

event of ec, ev(ec) : (z1, Wdral?amt1) // (delay, input)
Fresh(ec) : {z1, amt1}

PFresh(ec) : {z0, z1, amt1}
Var(π(tp1)) : {mid_ret2, rid_ret2, stat2, z2, z3}

IFresh(ec1) : {rid0, amt0, f ee0, rid_ret0, stat0, mid_ret0}
OCond(ec) : true

pec(ec) : ec2 // predecessor of ec

qpec(ec)
i.e.
qec2

qec
i.e.
qec3

{cl}
cl = z1 ∧ ∃(Var(π(tp1))∪IFresh(ec1))\PFresh(ec2)

(π(tp1))
Wdral!amt1[]

R1 - stimulation:

tr : generated transition
of test case

FIGURE 3.7: Stimulation on the channel Wdral

R2 - authorized reaction inside tp1 on the channel Cash. In this illustration, we consider another decompo-
sition of tp1 into pre(ec6) . ec6 . post(ec6) with pre(ec6) = ec1 . . . ec5 and post(ec6) = ε. This is an authorized
reaction on the channel Cash.

Since ec6 is reached by symbolic execution of a reaction on channel Cash from the LUT (Cash!amt1), the
corresponding transition tr from the viewpoint of the test case is labeled by a reception on this channel.
Moreover, the reception of the value denoted by the symbol amt1 on the channel Cash requires the creation
of a new fresh variable χC

1 in order to store this value 1. Hence, the communication action is determined as
Cash?(χC

1).
To define the guard φ(tr), first, we require that the test case waits for this reaction during a delay which is

less than the bound WaitMax. In reality, the test case cannot wait for a very long delay to observe a reaction
which can be unconstrained. The LUT’s behavior conforms to the model if the reaction is received during an
allowed delay z1 which may be constrained by the condition π(ec6). Moreover, the construction of φ(tr) takes
also into account the identification condition on the new fresh variables created to store received values, since
they may be constrained by OCond(ec6). In case of ec6, OCond(ec6) is determined as OCond(ec5)∧ χC

1 = amt1
with OCond(ec5) : χD1

1 = 1 ∧ χD2
1 = amt1 + f ee0 ∧ χD3

1 = 1. As usual, we existentially quantify all non-
revealed variables appearing in OCond(ec6) ∧ π(ec6) until this reception (i.e. IFresh(ec1) \ PFresh(ec6) =
{ f ee0} 2). Thus, the guard φ(tr) is constructed as follows:

cl < WaitMax ∧ cl = z4 ∧ ∃IFresh(ec1)\PFresh(ec6)(OCond(ec6) ∧ π(ec6))

with OCond(ec6) : χD1
1 = 1∧ χD2

1 = amt1 + f ee0 ∧ χD3
1 = 1∧ χC

1 = amt1

1The subscript such as Ab, Au, C, D, L of new fresh variables for reception refers respectively to the channel
Abort, Auth, Cash, Log, Debit

2To simplify, we present here only initialized variables which appear in the constraint OCond(ec6) ∧ π(ec6).

59

and π(ec6) : mid_ret2 = 1∧ rid_ret2 = 1∧ stat2 = ACCEPT∧ z2 + z3 < 4∧ z2 ≤ 1

ec1 ec2 ec3 ec4 ec5 ec6

ec

test purpose tp1 : current contextpre(ec) post(ec) = ε

(z0, Init?) (z1, Wdral?amt1)
(z2, Debit!(1,

amt1 + f ee0, 1))
(z3, Auth?(rid_ret2,

stat2, mid_ret2))
(z4, Cash!amt1)

event of ec, ev(ec) : (z4, Cash!amt1) // (delay, output)
Fresh(ec) : {z4}

PFresh(ec) : {z0, z1, amt1, z2, z3, rid_ret2, stat2, mid_ret2, z4}
IFresh(ec1) : {rid0, amt0, f ee0, rid_ret0, stat0, mid_ret0}
OCond(ec) : χD1

1 = 1∧ χD2
1 = amt1 + f ee0 ∧ χD3

1 = 1∧ χC
1 = amt1

π(ec6) : mid_ret2 = 1∧ rid_ret2 = 1∧ stat2 = ACCEPT∧
z2 + z3 < 4∧ z2 ≤ 1

pec(ec) : ec5 // predecessor of ec
OFresh(pec(ec))Cash : χC

1

qpec(ec)
i.e.
qec5

qec
i.e.

Pass

∅
cl < WaitMax ∧ cl = z4 ∧ ∃ f ee0 (OCond(ec6) ∧ π(ec6))

Cash?χC
1[]

R2 - authorized reaction inside tp1:

tr : generated transition
of test case

FIGURE 3.8: Authorized reception on the channel Cash

R4 - unauthorized reaction.
Let us discuss an unauthorized reaction or output on the channel Cash permitting to detect a non-

conforming behavior of the LUT. Such erroneous reaction is determined either by receiving unspecified
values on that channel or by observing a non-conforming delay of its occurrence. From the condition con-
structed on expected values and accepted delays in φ(tr′) (i.e. OCond(ec6) ∧ π(ec6)) of the authorized reac-
tion on the same channel, we can construct the guard of unauthorized transition by negating the constraint
OCond(ec6) ∧ π(ec6), expressing the reception of a non-conforming behavior in the delay WaitMax (the ob-
servation waiting-time). Thus, the guard φ(tr) of the unauthorized reaction is constructed as follows:

cl < WaitMax ∧ cl = z4 ∧ ¬(∃ f ee0(OCond(ec6) ∧ π(ec6)))

with OCond(ec6) : χD
1 = 1∧ χD

2 = amt1 + f ee0 ∧ χD
3 = 1∧ χC

1 = amt1
and π(ec6) : mid_ret2 = 1∧ rid_ret2 = 1∧ stat2 = ACCEPT∧ z2 + z3 < 4∧ z2 ≤ 1

The elements of this transition are illustrated below:

OFresh(ec)Cash : χC
1

src(tr′) : qec5 i.e. qec
tgt(tr′) : Pass
act(tr′) : Cash?χC

1
φ(tr′) : cl < WaitMax ∧ cl = z4∧

(OCond(ec6) ∧ π(ec6))

qpec(ec)
i.e.
qec5

Failout

∅
cl < WaitMax ∧ cl = z4 ∧ ¬(∃ f ee0 (OCond(ec6) ∧ π(ec6)))

Cash?χC
1[]

R4 - unauthorized reaction:

tr : generated transition
of test case

FIGURE 3.9: Unauthorized reception on the channel Cash

60

R9 - unauthorized quiescence on bound WaitMax.

ec1 ec2 ec3 ec4 ec5 ec6

ec

test purpose tp1 : current contextpre(ec) post(ec)

(z0, Init?) (z1, Wdral?amt1)
(z2, Debit!

(1, amt1 + f ee0, 1))
. . .

OdFresh(ec) : z2
IFresh(ec1) : {rid0, amt0, f ee0, rid_ret0, stat0, mid_ret0}
PFresh(ec) : {z0, z1, amt1}
OCond(ec) : true

React(ec) : {ec4}
π(ec4) : z2 ≤ 1

Uncont(ec) : ∅ no uncontrollable internal inputs
φδ : ∀IFresh(ec1)

(∀z2 (cl = z2 ∧ ¬π(ec4))), i.e., f alse
(no quiescence)

φout : cl = z2 ∧ ∃IFresh(ec1)
(mid_ret2 = 1∧ rid_ret2 = 1∧

stat2 = ACCEPT∧ z2 ≤ 1)

qec3 Failtime

i.e.

∅
cl ≥WaitMax ∧ cl = z2 ∧ ∀IFresh(ec1)

(mid_ret2 6= 1∨ rid_ret2 6= 1
∨stat2 6= ACCEPT∨ z2 > 1)

_[]
i.e.
qec

R9 - unauthorized quiescence on bound WaitMax:

tr : generated transition
of test case

FIGURE 3.10: Unauthorized quiescence

The generated sequence transition for quiescence in test case represents the situation when the LUT does
not supply a reaction as specified in the model. In case of the context ec3, the system is supposed to reply on
channel Debit within the duration z2 ≤ 1. In practice, the test case will wait for the reaction on channel Debit
during this delay, and obviously the test case has already waited more than the predefined bound WaitMax.
After that (i.e. z2 > 1), the test case considers that the LUT is in quiescence. The verdict Failtime is emitted
since the quiescence is not authorized in this situation, i.e. the test case is unable to provide the output on
channel Debit within specified duration.

Let us illustrate in the figure below the form of the generated test case with several transitions.

61

qec1 startqec2qec3

qec4

qec5 Failout

Failtime

Pass

IncspecIntI

Incout

IncuspecIntI

{cl}[
cl < WaitMax ∧ cl = z0

]
Init?

[cl
<

W
aitM

ax
∧

cl
=

z0]
D

ebit?(χ
D

1
0

,χ
D

2
0

,χ
D

3
0

)

[cl
<

W
aitM

ax
∧

cl
=

z0]
C

ash?χ
C0

{cl}[
cl = z1 ∧ ∃Var(π(tp1))

π(tp1)
]

Wdral!amt1

[
cl
<

W
aitM

ax ∧
cl
=

z
1]

A
bort?
[
cl < WaitMax ∧ cl = z1

]
Auth?(rid_ret1, stat1, mid_ret1)

{cl}[
cl < WaitMax ∧ cl = z2∧
∃ f ee0 (χ

D1
1 = 1∧

χD2
1 = amt1 + f ee0∧

χD3
1 = 1∧ z2 ≤ 1)

]
Debit?(χD1

1 , χD2
1 , χD3

1) [
cl <

W
aitM

ax ∧
cl =

z2 ∧ ¬∃
f ee0 .

(χ D11
=

1∧
χ D21

=
amt1 +

f ee0 ∧
χ D31

=
1∧

z2 ≤
1)]

Debit?(χ D11 , χ D21 , χ D31
)

cl ≥WaitMax ∧ cl = z2∧

(mid_ret2 6= 1∨ rid_ret2 6= 1

∨stat2 6= ACCEPT∨ z2 > 1)

[
cl < WaitMax ∧ cl = z3∧
∃ f ee0 (χ

D1
1 = 1∧

χD2
1 = amt1 + f ee0∧

χD3
1 = 1∧

z2 + z3 ≥ 4∧ z2 ≤ 1)
]

Abort?

[
cl < WaitMax ∧ cl = z3 ∧ ¬∃ f ee0

(χD1
1 = 1∧

χD2
1 = amt1 + f ee0∧

χD3
1 = 1∧

z2 + z3 < 4∧ z2 ≤ 1)
]

Auth?(rid_ret2, stat2, mid_ret2)

{cl}[
cl < WaitMax ∧ cl = z3
∧∃ f ee0 (χ

D1
1 = 1∧

χD2
1 = amt1 + f ee0∧

χD3
1 = 1∧

z2 + z3 < 4∧ z2 ≤ 1)
]

Auth?(rid_ret2, stat2, mid_ret2)

[
cl < WaitMax ∧ cl = z3 ∧ ¬(∃

f ee0

χ D11 = 1∧ χ D21 = amt1 + f ee0 ∧ χ D31 = 1∧

z2 + z3 > 4∧ z2 ≤ 1)]Abort?

[
cl < WaitMax ∧ cl = z4 ∧ ∃ f ee0

(χD1
1 = 1∧

χD2
1 = amt1 + f ee0∧

χD3
1 = 1∧

χC
1 = amt1 ∧mid_ret2 = 1

∧rid_ret2 = 1∧ stat2 = ACCEPT∧
z2 + z3 < 4∧ z2 ≤ 1)

]
Cash?χC

1

[
cl < WaitMax ∧ cl = z4 ∧ ¬∃ f ee0 (χ

D1
1 = 1∧

χD2
1 = amt1 + f ee0 ∧ χD3

1 = 1∧
χC

1 = amt1 ∧mid_ret2 = 1∧ rid_ret2 = 1∧
stat2 = ACCEPT∧ z2 + z3 < 4∧ z2 ≤ 1)

]
Cash?χC

1

FIGURE 3.11: TIOSTS of the generated test case for ATM

Because of the big size of the test case, Figure 3.11 represents only its form with different verdict states
and does not contain all transitions. For the sake of readability, the dotted arrow is used to denote some other
transitions leading to different verdicts that we cannot detail due to lack of space.

62

3.5 Implementation in Diversity

Our testing approach for unitary systems is implemented in the Diversity tool. In this section, we are going
to talk in detail about this implementation. In the first part, we start off by introducing the generic process
of test case generation. The second part is dedicated to the implementation of a new module in Diversity to
derive a test case from a feasible sequence of consecutive transitions.

3.5.1 Test case generation process

Given the model of a unitary system described by a TIOSTS G and a test purpose depicting a particular
behavior in G, the process takes as input the reference model G and a feasible sequence of consecutive transi-
tions characterizing a test purpose, then produces a symbolic execution tree permitting to cover the selected
test purpose.

1. Selection of a sequence of consecutive transitions in the TIOSTS G and use of the module TESTPUR-
POSE_SEL to verify if this sequence is feasible. If it is feasible, we move to step 2 as we can use the
sequence to characterize a test purpose, otherwise we select another sequence of consecutive transi-
tions;

2. Generation of a test case according to the test purpose which is characterized by the selected sequence
of consecutive transitions from step 1;

3. Execution of the generated test case on the LUT with the goal to follow the test purpose.

For the purpose of illustrating this process, in the next subsection, let us present a new module called
TESTCASE_GEN that has been implemented in Diversity and its purpose is to generate a test case from a
given sequence of consecutive transitions.

3.5.2 Module of test case generation for unitary systems

In a formal way, the test purpose is defined as a symbolic path selected from the symbolic execution of G (see
Section 3.3). However, the selection of a test purpose in the symbolic tree is not really convenient and suitable
for Diversity’s users while the symbolic tree becomes complex. For the sake of simplicity, we propose in our
implementation a simpler way to select a test purpose: Instead of selecting directly the test purpose from the
tree, we characterize it equally as a sequence of consecutive transitions in the model. Consequently, we can
apply the module TESTPURPOSE_SEL that we have already implemented from Chapter 2 in order to verify
the feasibility of the sequence of consecutive transitions. Then, our new module TESTCASE_GEN computes
a symbolic tree covering this sequence and generate the test case associated with this sequence.

Figure 3.12 captures a screenshot of a workflow file in Diversity that illustrates the declaration of the
module TESTCASE_GEN, as well as its parameters to generate the test case for ATM. It is noted that uncon-
trollable channels for ATM are also taken into account in the parameters, i.e. two channels Init and Auth are
declared inside of the section @uncontrollable. Furthermore, users can parameterize location and name of
the generated test case through the parameters folder and file#1.

63

FIGURE 3.12: Screenshot from a workflow file of module TESTCASE_GEN for ATM

In Figure 3.13, we present the operation of module TESTCASE_GEN. In general, this module takes as
input a TIOSTS and a feasible sequence of consecutive transitions str and outputs a test case generated as-
sociated with str. For this, TESTCASE_GEN computes a symbolic tree that covers the sequence and creates
additional execution contexts which prepares for process of test case generation. Let us point out that this
module intervenes in the steps pre-filtering, post-filtering and post-processing (see Section 2.4.2). In the
following, we explain the mission of TESTCASE_GEN in each step.

Input:
- TIOSTS ATM

- Feasible sequence of consecutive transitions str = tra
1.tra

2.tra
3.tra

4.tra
5

ec0
initialstate

ec1
a0

startup

ec2
a1

tpid#1->a0.tr_1a

tr_1a
INPUT ATM:Init

ec3
a2

tpid#2->a1.tr_2a

tr_2a
INPUT ATM:Wdral(amt_1)

ec4
a5

tr_9a
INPUT ATM:Auth(rid_ret_1 , stat_1 , mid_ret_1)

ec5
a3

tpid#3->a2.tr_3a

tr_3a
OUTPUT ATM:Debit(1 , (amt_1 + fee_0) , 1)

ec6
a1

tr_7a
OUTPUT ATM:Abort

ec7
a4

tpid#4->a3.tr_4a

tr_4a
INPUT ATM:Auth(rid_ret_2 , stat_2 , mid_ret_2)

ec8
a1

tpid#5->a4.tr_5a

tr_5a
OUTPUT ATM:Cash(amt_1)

ec9
a1

tr_8a
OUTPUT ATM:Abort

ec10
a3

tr_6a
OUTPUT ATM:Log(rid_ret_2 , stat_2 , mid_ret_2)

TESTCASE_GEN:
Visit the prepared symbolic tree to generate test case

ec3
a2

tpid#2->a1.tr_2a

ec5
a3

tpid#3->a2.tr_3a

tr_3a
OUTPUT ATM:Debit

(1 , (amt_1 + fee_0) , 1) PC: (z_2 <= 1)
time=(z_0 + z_1 + z_2)

z=z_2
wclock=z_2Output: A test case generated for ATM

pre-processing post-processing

Default pre-processor

create initial context ec1
enqueue ec1 to
symbex loop

processing: symbex loop

symbex(EC ′) : EC ′′

queue

all successors of all ec in EC ′
ec2

ec3 ec4

. . .

(i)

(ii)

(iii)

(iii-bis)

(i-bis)

enqueue({ec3})

’Stop Filter’

TESTCASE_GEN

pre-filtering

post-filtering

TESTCASE_GEN

.

select(’ALL’) : {ec2}

ec1

ec2

ec3 ec4

ec5

ec6 ec7

ec8 ec9 ec10

FIGURE 3.13: Module TESTCASE_GEN

In the step pre-filtering, the module verifies if the sequence coverage is completed. In that case, all
contexts from the waiting queue are rejected and the symbex loop is stopped, otherwise the process continues.
Let take the example in Figure 3.13, the context ec2 is the only one in waiting queue and as the coverage is
not completed, we compute successors of ec2, which are determined as the following set {ec3, ec4}.

64

During the step post-filtering, the module checks the coverage whether it allows to cover the considered
transition. In Figure 3.13, our module has covered so far the first transition tra

1. The step post-filtering
allows us to filter ECs according to the transition in question. We find that ec3 is filtered, then added to the
symbolic tree and waiting queue since the execution leading to ec3 has covered the transition in question tra

2,
whereas the other one (ec4) that has covered the transition tra

9 is inserted to the symbolic tree. The adding of
these contexts to the symbolic tree is useful in the process of test case generation in the step post-processing.
Indeed, they represent specified behaviors in the model which do not allow to follow the behaviors that we
would like to observe and therefore, will be evaluated as inconclusive verdict. Besides, our module also
generates execution contexts representing the reception of internal actions sent by other subsystems which
give rise to an inclusive verdict. In case where the sequence str is empty, the contexts for internal receptions
are also generated and added to the symbolic tree. The symbolic tree that covers the test purpose is the
fully-prepared symbolic tree that we presented in Section 3.3.

The fully-prepared symbolic tree obtained from the coverage of str is given in Figure 3.13. The following
graphical conventions are applied to denote different kinds of contexts: the initial execution context ec1 is
colored in blue, an execution context permitting to cover the transitions in the sequence str is colored in
yellow (ec2, ec3, ec5, ec7), except the one that covers the last transition is colored in green (ec8), an execution
context that either covers a transition which do not allow to follow the test purpose (ec4, ec6, ec9, ec10) or
represents the reception of an internal action is colored in orange.

The step post-processing generates a test case from the fully-prepared symbolic tree by visiting all con-
texts in the tree to create for each of them a corresponding transition using the construction rules R1-R9
(Section 3.3) w.r.t. the type of action of the current visited context ec. For instance, in Figure 3.13, the genera-
tion process begins from the initial context ec1 to the last one (i.e. ec10). From the fully-prepared symbolic tree,
the module TESTCASE_GEN generates, according to the construction rules, transitions that follows the test
purpose from ec2, ec3, ec5, ec7, ec8 (or leads to inconclusive verdict from ec4, ec6, ec9, ec10). To construct tran-
sitions leading to verdict Fail from any given state in the test case, we apply the construction rules R4 and
R9.

For more information about the implementation of the module TESTCASE_GEN, reader is invited to visit
the website: https://projects.eclipse.org/proposals/eclipse-formal-modeling-project

Let us illustrate in the following a transition generated by TESTCASE_GEN. We suppose that the module
has already processed contexts ec1, ec2, ec3 and ec4 and now, it processes ec5. From the pieces of information
that contains the context ec5 (cf. symbolic tree in Figure 3.13), the different elements of the corresponding
transition in the test case are constructed.

The context ec5 is the execution result of a transition labeled by an output, then the transition in test case
is a reception, which creates a new communication channel Debit in the generated test case (Figure 3.14).

FIGURE 3.14: Connection of channel Debit in the generated test case

New variables are created for receiving values emitted from the LUT (i.e. chi_D1_3, chi_D2_3,
chi_D3_3). The transition is constrained by the following guard cl_TC < WaitMax ∧ cl_TC = z2 ∧
∃{mid_ret2,rid_ret2,stat2,z3}∩Fresh(ec1)(chi_D1_3 = 1∧ chi_D2_3 = amt1 + f ee0 ∧ chi_D3_3 = 1∧ z2 ≤ 1), condition-
ing the transition duration (i.e. z2 ≤ 1) and the values stored in the created variables chi_D1_3, chi_D2_3,
chi_D3_3. The clock cl_TC is reset at the end of this transition in order to measure the duration of the next

https://projects.eclipse.org/proposals/eclipse-formal-modeling-project

65

transition. In Figure 3.15, we show a screenshot of some transitions in our generated test case from initial
state q1 to the verdict states Pass, Failout, Incout.

FIGURE 3.15: An extract of the generated test case

The module TESTCASE_GEN terminates its processing after taking into consideration the last context
ec10. Due to the size of the test case generated by our module TESTCASE_GEN, we will not detail it in the
context of this chapter.

66

3.5.3 Elements on the validation of the generated test case

As previously mentioned, our test case is of the form TIOSTS, which is executable in the Diversity tool. In
this part of the thesis, we propose some elements related to the validation of the generated test case presented
in Subsection 3.4 by generating its timed traces. This step can be done by using the module traces generation
in Diversity. Indeed, from a given symbolic tree, this module allows Diversity to generate a timed trace asso-
ciated to each symbolic path in the tree. The purpose is to execute symbolically the TIOSTS test case and to
apply the module TRACE_GEN to obtain timed traces of test case. Then, we verify the correctness of these
traces thanks to the module OFFLINE implemented in Diversity [5] whose purpose is to compute a verdict
on the correctness of a timed trace w.r.t the reference model of the ATM based on the conformance relation
tioco. The presented steps can be summarized as follows:

generated test case for ATM
TIOSTS G

tp1
a (acyclic) timed traces

BFS exploration
&

module TRACE_GEN
verdict

module OFFLINE
tioco-based test oracle

w.r.t. TIOSTS Ga of ATM

Let us recall the ATM model which will service as a reference for verdict computation.

a0start

a1 a2

a3a4

tra
1 : Init?[

rid := 0
]

tra
2 : Wdral?amt
{wclock}[

rid := rid + 1
]

tra
3 : wclock ≤ 1

Debit!
(rid, amt + fee, ATM_ID)

tra
7 : wclock ≥ 4

Abort!

tra
4 : wclock < 4

Auth?(rid_ret, stat, mid_ret)

tra
5 : rid_ret = rid∧

mid_ret = ATM_ID∧
stat = ACCEPT

Cash!amt
{wclock}

tra
8 : rid_ret = rid∧

mid_ret = ATM_ID∧
stat 6= ACCEPT

Abort!
{wclock}

tra
6 : wclock ≤ 1

∧(rid_ret 6= rid∨
mid_ret 6= ATM_ID)

Log!(rid_ret, stat, mid_ret)

a5

tra
9 : Auth?(rid_ret, stat, mid_ret)

tra
10 : Log!(rid_ret, stat, mid_ret)

We consider the test purpose tp1 which is characterized by the sequence of transitions colored by blue:

tra
1.tra

2.tra
3.tra

4.tra
5

.
First example of trace. Let us consider in the following the timed trace σ1 = (0, Init?).(0, Wdral!0).
(0, Debit?(1, 0, 1)).(0, Auth?(0, REJECT, 0)).(0, Cash?0) of the test case which is generated by execut-
ing the sequence of transitions going through qec1 , qec2 , qec3 , qec4 , qec5 and Failout (see Figure 3.15). By
applying the mirror operation, we obtain in the following the timed trace of the LUT σ′1 =
(0, Init?).(0, Wdral?0).(0, Debit!(1, 0, 1)).(0, Auth?(0, REJECT, 0)).(0, Cash!0).
This trace σ′1 is not specified by the reference model of ATM. Indeed, by applying the module OFFLINE to
verify the conformance of σ′1 w.r.t to the TIOSTS ATM, we obtain the result in Figure 3.16 which shows the
verdict Fail: the trace σ′1 is not accepted by ATM. Let us analyze in the following this result. The sequence of

67

the first, second and third event (respectively represented by (0, Init?), (0, Wdral?0) and (0, Debit?(1, 0, 1)))
belongs to the TIOSTS ATM and allows to follow the test purpose tp1. We consider now the fourth event
(0, Auth?(0, REJECT, 0)), describing a reception of the tuple (0, REJECT, 0) by ATM on the uncontrollable
channel Auth. Consequently, the variables rid_ret, stat and mid_ret are respectively assigned the value of
0, REJECT, 0. After receiving this tuple, the ATM machine reaches the state a4. However, tra

5 cannot be
executed. Indeed, the values stored in rid_ret, stat, mid_ret do not allow to execute tra

5 since the guard φ(tra
5)

is not satisfiable (i.e. rid_ret 6= rid, stat 6= ACCEPT and mid_ret 6= ATM_ID). The only possible transition
which can be executed is tra

6, which gives us the verdict Incout as this reaction diverges from the test purpose
tp1. Therefore, the last event in σ′1 leads to the verdict Failout.

σ1 = (0, Init?).(0, Wdral!0). (0, Debit?(1, 0, 1)).(0, Auth?(0, REJECT, 0)).(0, Cash?0)

FIGURE 3.16: Application of OFFLINE:
Trace unaccepted due to unspecified reaction on Cash

Second example of trace. In this example, we consider the second trace σ2 = (1/6, Init?).(1/6, Wdral!0).
(1/6, Debit?(1, 1, 1)).(1/6, Auth?(0, REJECT, 0)).(1/6, Log?(0, REJECT, 0)) obtained by executing the se-
quence of transitions from qec1 , qec2 , qec3 , qec4 , qec5 to Incout. This trace is equivalent to the follow-
ing one for the LUT by doing mirror operation σ′2 = (1/6, Init?). (1/6, Wdral?0). (1/6, Debit!(1, 1, 1)).
(1/6, Auth?(0, REJECT, 0)). (1/6, Log!(0, REJECT, 0)).
Figure 3.17 presents the result of application of OFFLINE to σ′2. Let us explain this result as follows: The
following prefix (1/6, Init?).(1/6, Wdral?0).(1/6, Debit!(1, 1, 1)).(1/6, Auth?(0, REJECT, 0)) of σ′2 is specified
by the reference model, and the extension of this prefix by the event (1/6, Log!(0, 0, 0)) produced by the LUT
gives us a specified behavior with respect to the reference model of the ATM machine. However, this event
does not allow us to follow the test purpose tp1 when the LUT has executed the transition tra

6 (a reply on
channel Log) instead of tra

5. The test case emits the verdict Incout for a specified reaction in the model, yet
divergent from tp1, even if the conformance relation tioco holds for this situation.

σ′2 = (1/6, Init?).(1/6, Wdral?0).(1/6, Debit!(1, 1, 1)).(1/6, Auth?(0, REJECT, 0)).(1/6, Log!(0, REJECT, 0))

FIGURE 3.17: Application of OFFLINE:
Trace specified by the model but outside of test purpose

68

Third example of trace. We examine in the following the trace σ3 = (0, Init?).(0, Wdral!0).
(0, Debit?(1, 0, 1)).(0, Auth?(1, ACCEPT, 1)).(0, Cash?0) of the test case. This trace is obtained from the se-
quence of transitions covering qec1 , qec2 , qec3 , qec4 , qec5 and Pass in Figure 3.15. The equivalent trace in the LUT
is the following σ′3 = (0, Init?).(0, Wdral?0).(0, Debit!(1, 0, 1)).(0, Auth?(1, ACCEPT, 1)).(0, Cash!0).
Once again, the correctness of σ′3 is verified by using the module OFFLINE (Figure 3.18). This trace
is a conforming behavior of LUT w.r.t to the TIOSTS ATM. It is straightforward to find that the prefix
(0, Init?).(0, Wdral?0).(0, Debit!(1, 0, 1)).(0, Auth?(1, ACCEPT, 1)) of σ′3 is a timed trace in ATM. The recep-
tion of the tuple of values on channel Auth associates rid_ret, stat, mid_ret respectively with 1, ACCEPT, 1.
After the prefix, the LUT produces an output on the channel Cash. The guard φ(tra

5) is satisfiable since
rid_ret = 1, stat = ACCEPT and mid_ret = 1. Moreover, the value transmitted on this channel is allowed ac-
cording to the previous events: this value is equal to the requested amount performed on the channel Wdral
at the beginning (i.e. 0). Therefore, the last event is specified by the model. According to the conformance
relation tioco, the trace σ′3 is a conforming behavior with respect to TIOSTS ATM, and the verdict Pass is
emitted.

σ′3 = (0, Init?).(0, Wdral?0).(0, Debit!(1, 0, 1)).(0, Auth?(1, ACCEPT, 1)).(0, Cash!0)

FIGURE 3.18: Application of OFFLINE: Trace succeeds in covering test purpose

Fourth example of trace. For the last example, we take into consideration a trace of the verdict IncuspecIntI
in the test case σ4 = (0, Init?).(0, Wdral!0).(0, Debit?(1, 0, 1)).(0, Auth?(1, ACCEPT, 1)).(0, Init?) (sequence
of transitions covering qec1 , qec2 , qec3 , qec4 and IncuspecIntI). The corresponding trace for the LUT is σ′4 =
(0, Init?).(0, Wdral?0).(0, Debit!(1, 0, 1)).(0, Auth?(1, ACCEPT, 1)).(0, Init?).
This trace denotes a specified behavior in the reference model, however this is not the one that we would
like to observe. Indeed, after the prefix (0, Init?).(0, Wdral?0).(0, Debit!(1, 0, 1)).(0, Auth?(1, ACCEPT, 1)),
the test case should receive a reaction on channel Cash in order to follow the test purpose tp1. However,
the next event is an internal reception on channel Init which is sent by another subsystem. Therefore, this
reception on channel Init by the LUT leads to the verdict IncuspecIntI .

σ′4 = (0, Init?).(0, Wdral?0).(0, Debit!(1, 0, 1)).(0, Auth?(1, ACCEPT, 1)).(0, Init?)

FIGURE 3.19: Application of OFFLINE:
Trace outside of test purpose due to unspecified internal input

69

We conclude this section by giving some metrics on some generated test cases in Table 3.1. Those are
generated for the ATM model by varying the size (the length in terms of number of transitions) of the test
purpose from 5 to 10, . . . , 100. We find that except the generation duration, all remaining metrics increase
approximately linearly with the size of the test purpose. Indeed, from a test purpose of 100 transitions, our
implementation takes more than 40 seconds to generate the TIOSTS test case, compared to only 8 seconds to
generate the test case for a test purpose of 50 transitions.

Size of TP Coverage duration Generation duration Nb of transitions Nb of LOC
5 40ms 500ms 31 277

10 80ms 1s160ms 62 459
15 140ms 2s110ms 87 641
25 290ms 3s220ms 138 1005
50 890ms 8s60ms 261 2778
100 3s260ms 42s150ms 513 6058

Size of TP: number of transitions in the test purpose,
Coverage duration: the duration to cover the selected test purpose,

Generation duration: the duration to generate the test case,
Nb of transitions: number of transitions in the generated test case,

Nb of LOC (Lines Of Code): number of lines of xLIA code in the test case
Experimentations on an ASUS computer, memory 8GB, processor Intel Core i7 2.00GHz × 4, Ubuntu operating system.

TABLE 3.1: Metrics on some generated test cases for ATM.

3.6 Related work

We discuss related works on Model-Based Testing approaches using the black box conformance relation
ioco [78, 33] and some of its recent variants, namely tioco [46] (for timed testing) and pioco [34] (for proba-
bilistic testing), in the unitary case.

In the decades of 90, the first MBT approach based on a conformance relation was applied for a kind of
model called Input Output Labeled Transition Systems (IOLTS) and introduced by Tretmans [77] where each
transition is labeled by an event (neither data nor time is handled). This work is considered as one of founda-
tion approaches in formal testing based on models. The SUT’s behavior is verified with respect to the model
thanks to the conformance relation ioco. This relation has been then used in numerous approaches [20, 33,
18, 57].

STG [20] is a tool that has been developed to automatically derive test cases compliant with ioco, yet from
a model of Input Output Symbolic Transition Systems (IOSTS) which can be seen as compact representations of
IOLTS. It is considered as one of the first tools that have dealt with symbolic test generation. The advantage
of symbolic technique is to allow the production of compact test cases with symbolic variables which need
to be instantiated only during the test execution, hence enables its reuse. The process takes a specification of
the system together with a test purpose which is also an IOSTS describing the behavior that one would like
to test, and then produces a symbolic test case (also an IOSTS). The construction of a test purpose is manual
by annotating an accepted behavior with a state Pass and rejected behaviors with states Reject. Rejected
behaviors are not really erroneous, just not targeted by the test purpose. The IOSTS of the generated test case
is then translated to an executable form (written in C++), which allows to perform the test execution on an
SUT. The tool was then successfully used on smart card case studies. The tool is not maintained anymore.

In the approach of Krichen et al. [46], the authors have introduced an offline test generation approach
for reactive systems. The specification is constructed based on the model Timed Automata (abbreviated

70

as TA). Those allows the definition of timed behavior in reactive systems, using clock constraints as well,
yet values of data variables (other than clocks) are enumerated. They have proposed timed input-output
conformance relation tioco extended from ioco. The relation is defined on the semantics of a TA which is
expressed as a set of timed traces. Unlike the previously presented work [20], the test generation process takes
only into consideration the reference model (without test purpose), hence the test case is directly generated
from the model and is of the form TA. In this approach, the generation algorithm has been partially specified.
Indeed, in cases where there are many possible stimulations from a given state in the test case or there is
a non-deterministic choice between a stimulation and a delay, the choice will be made according to user-
defined parameters or randomly chosen. However, the test generation is not possible in cases where the
reference model containing loops defines an infinite set of possible behaviors. For this, the authors have
proposed structural coverage criteria, such as state coverage or transition coverage. The approach has been
implemented in a prototype tool, called TTG.

The work of Bohnenkamp et al. [11] has used TA as reference models. From such models, the authors have
constructed a so-called zone-automaton which represents semantics of a TA in an abstract compact manner.
This zone-automaton is a Labeled Transition System (LTS) in which states are composed of control states of
the TA and a clock zone, where a zone is a symbolic denotation of all possible values that clocks can receive
to satisfy the automaton guards. The idea has been to generate a test case with zones, and check on-the-fly
that execution is still in a reachable zone after an action being either a input or an output. If it is the case,
the test continues, otherwise the test fails. This approach has been implemented as an extension of the TorX
tool [79]. We point out that the test case does not follow a test purpose, next inputs are chosen at random.

Similar to the previous works [20, 11], the authors in the work of Gaston et al. [33] have introduced an
online approach for test case generation. The formalism that has been adopted to model a system is Input
Output Symbolic Transition Systems IOSTS, which deals only with symbolic data. The particularity of this
approach is that the authors have used the symbolic execution technique to unfold all possible behaviors
of the reference model under the form of a symbolic execution tree. The test generation takes as input the
reference model and a test purpose. However, unlike STG [20] (test purpose is manually constructed) and our
approach (test purpose is a path in symbolic tree and characterized as a sequence of transitions in the model),
the test purpose in this work is directly selected as a finite subtree in symbolic tree. The test generation process
consists in computing stimulations allowing to follow the test purpose, and verifying whether a reaction
from an SUT is specified by the reference model. To automatically define a test purpose, the approach has
also proposed to use some coverage criteria such as: all symbolic behaviors of a same length or restriction by
inclusion criterion (allow to extract a subtree of the symbolic execution tree by avoiding redundancies). The
test generation process has been implemented in a tool called AGATHA [56].

Andrade et al. [1] have addressed the generation of online test cases from a variant of TIOSTS, yet deter-
ministic as in our approach. While symbolic execution has been used to handle data variables, zone-based [8]
abstraction techniques have been used to denote constraints on clocks. This is possible as clocks constraints
are separate formulas, bounded by constants, one cannot for instance bound a clock by (the value of) another
data variable. The class of TIOSTS that we have introduced are more expressive in the sense that a clock
constraint is a first-order formulas, hence clocks may be constrained by other data variables, in comparison
as well with the one in [5]. The test selection is different from ours: it is based on the synchronous product
between the TIOSTS of the reference model and the test purpose being a TIOSTS which is defined indepen-
dently. The latter represents a desired behavior (or property) of the system under test that the testing aims
to check. An inconvenient of such selection is that the test purpose definition is manual and not straightfor-
ward when the model becomes complex. In our approach, a test purpose is a sub-behavior of the TIOSTS
of the reference model associated with automated selection mechanism. In the authors’s work, test cases are
derived by transforming the symbolic execution of the synchronous of product. The test case is generated
as an automaton (a TIOSTS), which enables its reuse. The implementation has not been detailed in order to

71

validate the generated test cases. In our approach, we offer the possibility to parameterize the generation
by a set of controllable/uncontrollable inputs which enables the use of the obtained test cases in distributed
testing.

In the work of Bannour et al. [5], the authors have presented an approach for applying a complete offline
testing framework by using TIOSTS as reference models. This framework is based on the conformance re-
lation tioco [46]. Authors use the notion of a test purpose which is characterized by a path in the symbolic
execution of the TIOSTS. Then, an input sequence is obtained from the test purpose using constraint solving
techniques to compute first a timed trace, in which then outputs are removed. The test execution consists
in submitting inputs when their delays are fulfilled. Meanwhile outputs are collected together with their
occurrence delays, to form an output sequence. Finally, the input sequence and output actions are merged to
reconstruct a complete timed trace of SUT. A tioco-based oracle algorithm is then applied to analyze the re-
sulting trace and compute a verdict. About the advantages of the approach, we do not waste time on solving
constraints to compute a new input to stimulate the SUT. This is because input actions and delays are gen-
erated in advance. However, inconclusive verdicts can be observed more often as inputs are not computed
with respect to previous observation, which can compromise the following of the test purpose.

The approach of Chimisliu et al. [18] has discussed the test case generation from UML statecharts. A ref-
erence model described in UML statechart is then encoded by LOTOS [31], a description language for formal
specification. A test purpose is given as an IOLTS, and the elements for test case generation are composed of
the reference model and the test purpose which represents an abstraction of the reference model describing
a scenario of interest. The particularity of this approach is that the authors have allowed to annotate directly
so-called refuse states in the model in order to identify parts of the reference model that will be not of interest
during the generation process. This technique has allowed to select test purposes in order to limit the state
space being searched. Therefore, the selection of test purpose is completely automatic by users. To evaluate
the approach, they have applied to several case studies from industry by using the tool TGV [41].

In the paper of Gerhold et al. [34], the authors have presented a testing framework for probabilistic sys-
tems. Unlike other presented model, a specification is given as a Probabilistic Input Output Transition System
pIOTS, which is an extension of the untimed model IOLTS where transitions from any given state are anno-
tated by probabilities. The test case generation process has taken into account the reference model pIOTS.
Like the approach [11], there is no notion of test purpose proposed by this work, test cases are generated
from the reference model. The generated test cases are also probabilistic automata in which the probability is
observed through the frequency when test cases are executed multiple times. The generation approach has
been based on a conformance relation called pioco, an extension of ioco for probabilistic systems. The idea has
consisted in constructing a set of traces in the reference model with positive probabilities and check whether
a system produces a trace without belonging to the set of traces of the reference model. The approach has not
developed a dedicated tool to validate the generated test case. For experimentations, the authors have then
applied to two case studies by using the MBT tool JTorX [9].

The authors in the recent work [57] have proposed another approach for on-the-fly testing. In this ap-
proach, they have used the formalism IOLTS to represent specified behaviors of a reference model. The test
case generation has been based on the same technique as [1, 20] when the test purpose is defined by an IOLTS
other than the reference model and by annotating test purpose with accept and refuse states. Therefore test
purpose construction is still manual. We point out the difference between this approach and the one pre-
sented in [18] which has proposed to annotate directly refuse states in the reference model. A test case is
generated from the synchronous product of the test purpose and the reference model, and is an IOLTS armed
by three verdict states Pass, Fail and Inc. The approach has been then implemented in the tool TESTOR and
has been carried out on an important number of benchmark examples.

72

Approach Time Symbolic Online Relation Tool
[77] 1996, Tretmans × × × ioco ×
[20] 2002, Duncan et al. × X X ioco X
[46] 2004, Krichen et al. X × × tioco X
[11] 2005, Bohnenkamp et al. X × X tioco X
[33] 2006, Gaston et al. × X X ioco X
[1] 2011, Andrade et al. X X X tioco ×
[5] 2012, Bannour et al. X X × tioco X
[18] 2013, Chimisliu et al. × × X ioco ×
[34] 2016, Gerhold et al. × × X pioco X
[57] 2018, Marsso et al. × × X ioco X

TABLE 3.2: Comparison between approaches for unitary testing

3.7 Conclusion

In this chapter, we have presented two approaches in Model-Based Testing: the offline approach and the
online approach. In our approach, we favor the online approach for its ability to follow the test purpose as
far as possible. We have therefore defined generation of online test cases using symbolic execution techniques.
The generation is based on the reference model and a test purpose characterizing a behavior that we would
like to test. The generation takes into account the distinction between internal input and external input
channels, which are respectively considered as uncontrollable and controllable channels from the viewpoint
of a test case. This allows those test cases to be used in a distributed testing where some inputs that we call
internal, are provided at runtime by other subsystems. Finally, we have implemented the generation as a
module in the Diversity tool.

73

Chapter 4

Distributed systems: testing, coverage and
derivation of scenarios

Contents
4.1 Distributed systems . 74
4.2 The interest of testing distributed systems . 76
4.3 Our testing architecture for distributed systems . 78
4.4 Symbolic execution for testing distributed systems . 79

4.4.1 Distributed system context . 79
4.4.2 Symbolic execution rules for distributed systems . 80
4.4.3 Illustration with ATM-Bank . 81

4.5 Our testing framework for distributed systems . 85
4.5.1 Our testing framework . 85
4.5.2 An ATM-Bank test purpose . 87

4.6 Discussion of the approach . 91
4.7 Conclusion . 91

This chapter presents our contribution related to the testing framework for distributed systems, as well
as its implementation in the Diversity tool. For this purpose, it will be structured as follows:

• Firstly, we present an informal description of a distributed system (denoted as DS), and its formal
definition in Section 4.1;

• Next Section 4.2 introduces several problems that we often meet in DS and the need to test them to
avoid erroneous implementations;

• In Section 4.3, we introduce our testing architecture;

• Then, for the purpose of testing DS, we introduce an operational semantics for DS based on symbolic
execution techniques in Section 4.4;

• The implementation of our approach is presented in Section 4.5. Firstly, we discuss our approach to
generate test cases for distributed systems. Secondly, we present a global test purpose which is a par-
ticular behavior in our system ATM-Bank. Additionally, to give an alternative visualization besides
the traditional symbolic tree of a global test purpose in a DS, we generate it in the form of a sequence
diagram, which allows to represent internal communications between subsystems and easily choose
the scenario to be tested. This diagram is annotated with temporal and data constraints reflecting the
feasibility of this behavior;

74

• Section 4.6 draws some feedback about our approach by giving its strength and limitation w.r.t other
state of the art approaches;

• Finally, Section 4.7 concludes the chapter.

4.1 Distributed systems

Nowadays, distributed systems are very ubiquitous in the technology landscape. Some familiar examples of
DS can be cited such as Internet, cloud of services, client-server systems, clusters of workstations, embedded
systems, cyber-physical systems (IoT systems, . . .) etc.

Network

Bank

ATM1 ATM2

Check

TimeoutBank

InitDebit

Wdral1

Cash1

Wdral2

Cash2
Debit

Init

Debit

Init

FIGURE 4.1: A sample of DS: The distributed system ATM-Bank

Distributed systems are composed of intercommunicating localized subsystems deployed on distant ma-
chines. These subsystems are interconnected by a communication networks, and exchange messages to
achieve the system goals. In Figure 4.1, our distributed system ATM-Bank is composed of a bank denoted by
Bank and many machines ATM deployed in different cities communicating through communication channels
like Check, Init, Wdral, We illustrate only two ATM and several communication channels in Figure 4.1.
And in the following, for the sake of simplicity, only one ATM and one Bank are considered without loss of
generality.

In our approach, a distributed system is defined as an n-tuple of subsystems. And the model for a DS is a
tuple Sys = (G1, . . . , Gn) where Gi (1 ≤ i ≤ n) is a TIOSTS with signature Σi = (Ω, Ai, Ki, Ci) (cf. Subsection
2.2.1). For all subsystems Gi and Gj, i 6= j, we have Ai ∩ Aj = ∅, Ki ∩ Kj = ∅, i.e. the sets of variables (resp.
the sets of clocks) of any two subsystems are disjoint. The subsystems interact through a distributed interface,
which is defined as an n-tuple of set of channels of subsystems, i.e. Λ = (C1, . . . , Cn). In our work, we allow
multicast communications, i.e. a subsystem can send an output to many other subsystems which receive this
input on a same channel. With Λ = (C1, . . . , Cn) the distributed interface of Sys, we adopt the notations:

• C(Λ) =
⋃

i≤n Ci is the set of all channels in the distributed system Sys. C(Λ)in =
⋃

i≤n Cin
i is the set of

all input channels and C(Λ)out =
⋃

i≤n Cout
i is the set of all output channels in Sys.

75

• C(Λ)int =
⋃

i≤n Cint
i where Cint

i = {Ci ∩ Cj | 1 ≤ j ≤ n ∧ j 6= i} denotes the set of internal channels of
the subsystem Gi

• C(Λ)ext =
⋃

i≤n Cext
i where Cext

i = Ci \ Cint
i denotes the set of external channels of the subsystem Gi

which implies that for all subsystems Gi and Gj, i 6= j, we have Cext
i ∩ Cext

j 6= ∅.

Example 4.1.1. In this example, we consider the following distributed system SysAB = (ATM, Bank) which
is composed of one ATM machine and one Bank. Let take a look of the communication channels between the
ATM and the Bank as well as between these subsystems with the local environment in Figure 4.2.

Client

ATM

Wdral

Abort

Cash

Bank

Init

Debit

Auth

Log Banker

DayElapsed

Check

Transc

Lock

TimeoutBank

FIGURE 4.2: Communication channels of SysAB = (ATM, Bank) with environment

The signature of ATM and Bank is respectively defined as (Ω, Aa, Ka, Ca) and (Ω, Ab, Kb, Cb) in the table
4.1.

ATM Bank

Variables Aa = {rid, amt, f ee, rid_ret,
stat, mid_ret}

Ab = {days, sum, cpt, tloc,
tid, x, aid, bal}

Clocks Ka = {wclock} Kb = {tclock, dclock, pclock}

Channels

Input Cin
a = {Wdral, Init, Auth} Cin

b = {Debit, Log, Check,
Lock}

Output Cout
a = {Abort, Cash, Debit, Log} Cout

b = {Init, Auth, DayElapsed,
Transc, TimeoutBank}

Internal Cint
a = {Init, Debit, Auth, Log} Cint

b = {Init, Debit, Auth, Log}

External Cext
a = {Wdral, Abort, Cash} Cext

b = {DayElapsed, Check,
Transc, Lock, TimeoutBank}

TABLE 4.1: Signature of subsystems and distributed interface in SysAB

We recall in the following the functionality of our system ATM-Bank: the TIOSTS ATM (Figure 2.4) is
used to receive withdrawal requests from clients stored in the variable amt on channel Wdral and transfer

76

requests to the Bank on channel Init and waiting for a reply on Auth. A transferred request is composed
of the request identifier (rid), the requested amount with the charge (amt + f ee) and the machine identifier
(ATM_ID). After receiving a reply to a request on channel Auth, the ATM returns cash on channel Cash if
the client is allowed to withdraw this sum, otherwise the request is aborted on channel Abort.

The TIOSTS Bank (Figure 2.5) uses a circular array of size 3 (i.e. sum) to store withdrawal amounts of
the last three days 1. The counter days is incremented at the end of each day and is used to identify the next
place in the array sum to store the accumulated amounts for the new day by using the operator modulo.
Bank receives the withdrawal request on channel Debit from ATM. The received data is stored in the tuple
(tid, x, aid). Then Bank assigns authorizations to this request on channel Auth by emitting one among three
responses: Accept, Reject or Lock. In order to decide to emit which response, the Bank verifies if the requested
amount does not exceed the balance bal and the total debit limit over a rolling 3 days is not exceeded. The
Bank allows also a banker to send a request on channel Check, and receive a reply which is the number of
successful requests within a day on channel Transc, then to modify the lock time on channel Lock if he finds
that there are too many transactions during some period.

In addition to traditional operations such as withdrawal request, balance verification for withdrawing,
and cash return, our system ATM-Bank allows also security processes, e.g. in particular the verification of
consecutive withdrawals within some too short duration protects against the situation where someone steals
a card and tries to withdraw as much money as possible.

Notation 4.1.1. For a subsystem Gi, we recall that UCin(Gi) denotes the set of uncontrollable input channels
of Gi, i.e. UCin(Gi) = Cin

i ∩ Cint
i and CCin(Gi) the set of controllable input channels of Gi, i.e. CCin(Gi) =

Cin
i ∩ Cext

i (cf. Section 3.2.1). This allows us to differentiate between those channels (UCin(Gi)) used by Gi to
receive inputs from other subsystems of Sys and those (CCin(Gi)) used to receive stimulus from the external
environment.

Example 4.1.2. The set of uncontrollable input channels of ATM and Bank is respectively defined as follows:
UCin(ATM) = {Init, Auth}
UCin(Bank) = {Debit, Log}

The set of controllable input channels of ATM and Bank is respectively defined as follows:
CCin(ATM) = {Wdral}
CCin(Bank) = {Check, Lock}

We have just introduced in this section the informal description of a distributed system, as well as its
formal definition and some notations about its distributed interface. In the following, we will talk about the
problems that we often encounter while constructing distributed systems and therefore, the need for testing
them to avoid incorrect operations.

4.2 The interest of testing distributed systems

In spite of being very widely used, the implementation of a distributed system can make well-known failures.
Certain failures can be classified at a local level such as:

• Timing failure - a response time to a request is not respected, e.g. a subsystem takes too long (more than
the specified interval) to reply to a request

• Response failure - the response to a request is incorrect, e.g. a subsystem provides an unexpected
response on an output channel

1For illustrative purposes, we choose an interval of three days instead of seven days, which is common for most of banks.

77

Some other failures at the global level are the ones in the internal messages between subsystems:

• Corrupted message occurs when an internal communication is injected by a hacker, i.e. he supplies
internal input to a subsystem, which produces a security risk: the communication that is not emitted
by a subsystem is finally received by another subsystem in the distributed system.

• Lost messages is typically the consequence of internal communication failures. Indeed, a message can
be lost as someone tries to catch or hide it to prevent the distributed system from correctly operating

Because of these typical failures, testing DS to detect such kinds of failures before operating has an ex-
tremely important role. However, this process is recognized to be difficult due to a number of characteristics
of distributed systems, including:

• non-deterministic situation: the absence of a global clock makes distributed systems become non-
deterministic [55]. Without a global clock, subsystems cannot synchronize their local behaviors. For
example, a reception for a subsystem can happen before or after another one, leading to two different
situations, which gives two behaviors to be taken into consideration;

• lack of reliable communications media: this leads to the problem of loss of messages (a) or latency (b),
etc. For example, in case (a), a message which is lost during its transmission due to a communication
error can cause an undesired behavior where the subsystem that needs to receive the message is always
waiting for it to start a process. In case (b), a big latency in the transmission of a request can delay the
reception of this request at a subsystem, inducing an incorrect operation of the system.

For the purpose of illustrating the non-deterministic situations, let consider two diagrams in Figure 4.3
which describe the interactions of the system SysAB: the reception of the message on channel Check by the
subsystem Bank can arrive before or after the reception of the message on channel Debit, which gives two
different traces for the subsystem Bank:

σ1 = (1, Init!).(3, Debit?(1, 10, 1)).(2, Auth!(1, ACCEPT, 1)).(1, Check?).(0.5, Transc!2).(0.5, Lock?10) in
the diagram on the left: The banker sends a lock request to lock transitions during some period (10 time
units) after the withdrawal request reception, therefore the request is accepted.

σ2 = (1, Init?).(1, Check?).(0.5, Transc!2).(0.5, Lock?10).(1, Debit?(1, 10, 1)).(2, Auth!(1, LOCK, 1)) in the
diagram on the right: The banker sends a lock request at the beginning, then the withdrawal request is
locked and there is no cash returned to the client.

Indeed, the user interacting locally with Bank cannot control the moment of emission of the message on
channel Check since he does not know exactly when he has to emit it. These two situations represent two
different traces. We can see that the interleaving of traces due to uncontrollable channels introduces more
and more behaviors to manage, making distributed systems difficult to design and build.

ATM Bank
Init!

Wdral?10
Debit!(1, 10, 1)

Auth!(1, ACCEPT, 1)

Cash!10
Check?

Transc!2

Lock?10

ATM Bank
Init!

Wdral?10
Check?

Transc!2

Lock?10Debit!(1, 10, 1)

Auth!(1, LOCK, 1)

Abort!

FIGURE 4.3: Non-deterministic situations

78

Because of these major obstacles, testing and analyzing behaviors of a distributed system, in particular
those describing scenarios involving many subsystems, faces many difficulties. Each kind of failure that we
have mentioned could be an interesting scenario for testing if we can define it. This scenario is called global
test purpose, which is a necessary ingredient to our testing architecture that will be presented in the following.

4.3 Our testing architecture for distributed systems

As explained in Chapter 3, when it comes to testing a Localized System Under Test (LUT), we consider
specific behaviors that are characterized by a test purpose relevant for testing, for which we define test cases
aiming at stimulating the LUT, pursuing the goal of covering those behaviors.

In this section, we present our testing architecture and different hypothesis. When testing DS, we need
to interact with distant subsystems [82], either by a global test case which interacts with all subsystems or
by a collection of local test cases where each of them interacts with its localized subsystem. Our architecture
(Figure 4.4) includes both previous configurations when it is composed of local, autonomous test cases, each
of which interacts with its localized subsystem. Moreover, we have a global tester whose role is to emit two
coordination messages to all local test cases: one at the beginning to initialize and one at the end to terminate
the testing process. In the literature, local test cases can exchange coordination messages or not [82]: 1) local
test cases regularly synchronize their actions by sending coordination messages to inform other local test
cases of their progress in the global testing process 2) a local test case interacts only with its subsystem and
do not know about the evolution of other distant local test cases. In the first case, coordination messages
assure a consistent global view of the system execution, but require some other hypotheses due to the delay
of coordination messages [83]. Our testing architecture is constructed based on the second one.

Network

Bank

ATM1 ATM2

FailIncPass

LTC

FailIncPass

LTC

Fail Inc Pass

LTC

Check

TimeoutBank

InitDebit

Wdral1

Cash1 Debit

Init

Wdral2

Cash2Debit

Init

Global tester

Start/End

Start/End Start/End

FIGURE 4.4: Our testing architecture

79

In our testing architecture, each local test case (denoted as LTC) is placed and is in direct interaction with
its localized subsystem. We do not have the coordination between test cases. The proposed architecture in-
duces the controllability problem by considering that local test cases can observe internal messages received
or sent by the localized subsystems. Such hypotheses require more testing instrumentation efforts than sim-
ple test cases playing the role of the environment. However, they increase the number of observations on the
system which, based on the causal relation between emission and reception of any internal message, facilitate
the scheduling of local events to reconstruct a consistent global scenario. Unlike the architecture in the work
[10] while one collect local traces for a posterior verification, local test case benefits from constraint solving
techniques to compute next inputs based on previous outputs, allowing to pilot the test purpose.

We have seen in Chapter 2 (see Section 2.4.3), that symbolic execution is a useful technique for character-
izing precisely test purposes as being a sequence of consecutive transitions of a reference TIOSTS G since it
allows to compute their counterpart in the form of satisfiable symbolic paths of SE(G). Moreover, symbolic
execution generates useful pieces of information resulted from internal communications between subsystems
which are interesting for the test case generation process. For this reason, this technique will be discussed in
the following section.

4.4 Symbolic execution for testing distributed systems

In order to obtain behaviors of a distributed system, we introduce in this section an operational semantics al-
lowing to execute symbolically the distributed system. Then, for illustrative purposes, we apply the symbolic
execution to our system ATM-Bank.

4.4.1 Distributed system context

The symbolic behavior of a DS model is defined on top of that for TIOSTS by adding means that handle
internal communications and reason about their causality. This mainly comes to store internal receptions and
ensure that each of them corresponds to a previous emission which allows us to rule out anomalies such, for
example, that the reception of an internal message by a subsystem is allowed only if the message has been
previously sent by another subsystem. To capture the information necessary to deal with such anomalies,
we introduce the notion of distributed execution context for keeping track of additional information so that
the reception of an internal message by a TIOSTS is allowed only if the message has been previously sent by
another TIOSTS.

In Section 2.3 of Chapter 2, we introduced the symbolic execution of a unitary system G. Its symbolic
execution is processed based on execution contexts which contain elements related to the execution. The
set of execution contexts is denoted as EC. For the distributed system Sys = (G1, . . . , Gn), apart from the
execution context for each subsystem, we need other pieces of information related to the execution of internal
communications. We extended the notion of execution context for distributive purpose. The new extended
notion called distributed execution context of the subsystem Gi (defined over the signature Σi = (Ω, Ai, Ki, Ci))
is defined as a tuple dec = (ec, γ, χ, d, tr-seq) where

• ec ∈ EC is the reached execution context of Gi being executed in the context of Sys;

• γ : UC(Gi) → (TΩ(Fd)× TΩ(Ft))∗ associates each uncontrollable channel with its pending content in
terms of a received piece of data and its emission date where Ft and Fd are respectively the set of fresh
variables to denote variables of type time and variables of other types (cf. Section 2.3). TΩ(Fd) and
TΩ(Ft) are respectively the set of terms constructed over Fd and Ft. We note that the pending content of
each uncontrollable channel is considered as an unbounded fifo-queue, i.e. the first data received is the
first one to be consumed;

80

• χ ∈ FΩ(F) represents a constraint on time and data inferred from data exchanges between Gi and other
subsystems in the context of Sys;

• d ∈ TΩ(Ft) is the date at which ec has been reached;

• tr-seq ∈ Tr∗i is the sequence of transitions of Gi that has been executed leading to ec from initialization.

Notation 4.4.1. For any dec = (ec, γ, χ, d, tr-seq), ec(dec), γ(dec), χ(dec), d(dec) and tr-seq(dec) stand for
respectively ec, γ, χ, d and tr-seq.

The Distributed System Context (abbreviated by DSC) of a DS model Sys = (G1, . . . , Gn) is a tuple dsc=
(dec1, . . . , decn, psc) where psc is the predecessor DSC from which dsc has been created by executing the
corresponding transition. As for initial execution context, this component is left undefined for an initial
system execution context.

Notation 4.4.2. For any dsc = (dec1, . . . , decn, pdsc), pdsc(dsc) stands for pdsc.

The symbolic execution of a DS model consists of executing a transition tr of its subsystems Gi and mak-
ing the DS distributed execution context evolves accordingly. Intuitively, the evolution of the distributed
system context will essentially concern the distributed execution contexts of only subsystems concerned by
the transition tr, i.e. whose signature contains the channel of the transition chan(tr) (cf. notation 2.2.1).

4.4.2 Symbolic execution rules for distributed systems

Notation 4.4.3. In order to take advantage that only some elements of DSC are likely to be modified at each
symbolic execution step, we will use the notation J K which will highlight the only modified components. For
example, with dsc′ = (dec′1, . . . , dec′n, psc), dsc′ = dscJd(dec′i) ← d(deci) + delayK means that dsc′ coincides
with dsc except that the component d of the i-th distributed execution context is increased of the value delay.

The symbolic execution of a transition tr of the subsystem Gi from dsc = (dec1, . . . , decn, psc) with
src(tr) = q(ec(deci)) allows to compute a successor system context dsc′ = (dec′1, . . . , dec′n, dsc) of dsc by
considering a temporary system context dsctmp = (dectmp

1 , . . . , dectmp
n , dsc) defined by:

dsctmp = dsc

u

w
v

ec(dectmp
i)← ec′,

d(dectmp
i)← d(deci) + delay(ec′),

tr-seq(dectmp
i)← tr-seq(deci).tr

}

�
~

where ec′ is the execution context resulted from ec(deci) by executing tr.

• if chan(ec′) ∈ C(Λ)ext, i.e. transition tr is an external transition 2, then we have dsc′ = dsctmp;

• if chan(ec′) = c and c ∈ C(Λ)out ∩ C(Λ)int and act(ec′) = c!t, i.e. transition tr is an internal output
transition, then for any subsystem Gj receiving this output, its waiting queue γ(dec′j)(c) is accumulated

with (t, d(dectmp
i)). Therefore, new distributed system context dsc′ is:

dsc′ = dsctmp
r

γ(dec′j)(c)← γ(dectmp
j)(c).(t, d(dectmp

i))
z

with j 6= i, j ≤ n, c ∈ UCin(Gj)

2An external transition is the one whose action is an external communication. An internal transition is the one whose action is an
internal communication.

81

• if chan(ec′) = c and c ∈ C(Λ)in ∩ C(Λ)int and act(ec′) = c?x, i.e. transition tr is an internal input
transition, if the waiting queue γ(deci)(c) is of the form (term, delay).w, then the new distributed system
context dsc′ is:

dsc′ = dsctmp
s

γ(dec′i)(c)← w
χ(dec′i)← χ(dectmp

i) ∧ (d(dectmp
i) ≥ delay) ∧ (x = term)

{

Otherwise if the waiting queue is empty, i.e. γ(deci)(c) = ε, the transition tr cannot be executed.

Condition χ(dec′i) ← χ(dectmp
i) ∧ (d(dectmp

i) ≥ delay) ∧ (x = term) ensures that term may be consumed only
if its emission date (delay) is anterior to the its reception date on x (d(dectmp

i)) and term is identified by a local
variable x of the subsystem receiving the message.

Remark 4.4.1. In our approach, we suppose that all subsystems G1, . . . , G1 are initialized from an assumed
common instant of time and the time elapsed from this moment to their boot are respectively denoted as
z1

0, . . . , zn
0 .

Notation 4.4.4. In the following, we denote by ev(dsc′) the symbolic event of the execution context ec′, i.e.
ev(dsc′) = ev(ec′). Similarly, act(dsc′), delay(dsc′) and chan(dsc′) represents respectively act(ec′), delay(ec′)
and chan(ec′).

The symbolic execution SE(Sys) of Sys denoted by (dsc1, DSC) where:

• dsc1 is an arbitrary initial DSC (dec1
1, . . . , dec1

n, sel f) which is defined by

– for i ≤ n, dec1
i = (eci

1, γi
1, true, zi

0, ε) with zi
0 a fresh variable

– γi
1 verifies that for c ∈ UCin(Gi), γi

1(c) = ε

– sel f indicates that the initial distributed system context has no predecessor context, except by
convention the initial context itself

• DSC is the set of all distributed system contexts in the symbolic execution of Sys.

A symbolic system path psys of a DS is either the empty sequence ε or a sequence dsc1 . . . dscm such that for
all i < m, pdsc(dsci+1) = dsci. For a non-empty path psys, we denote tgt(psys) = dscm.

4.4.3 Illustration with ATM-Bank

In this section, we illustrate an example of symbolic execution in the distributed system SysAB from example
4.1.1. In the following, the subsystem ATM is abbreviated as a and the subsystem Bank as b and their sets of
execution contexts are respectively denoted as ECa and ECb. We recall that the TIOSTS ATM and Bank are
respectively illustrated in Figure 2.4 and 2.5.

Initialization: Let us consider the following initial system context dsc1 = (dec1
a, dec1

b, sel f) where dec1
a =

(eca
1, γa

1, true, za
0, ε) is the distributed execution context of the ATM with:

• eca
1 = (a0, true, {rid := rid0, amt := amt0, f ee := f ee0, wclock := 0}, (0, ε), sel f) ∈ ECa is the initial

context of ATM;

82

• γa
1 associates each uncontrollable input channel of ATM with its pending content: γa

1(Init) = ε and
γa

1(Auth) = ε. We note that ε means the empty content.

and dec1
b = (ecb

1, γb
1, true, zb

0, ε) the distributed execution context of the bank agency with:

• ecb
1 = (b0, true, {days := days0, sum := {sum[0]0, sum[0]1, sum[0]2}, cpt := cpt0, tloc := tloc0, tclock :=

0, dclock := 0, pclock := 0}, (0, ε), sel f) ∈ ECb is the initial context of the bank agency;

• γb
1(Debit) = ε and γb

1(Log) = ε.

We find that the time elapsed from the assumed common instant to the boot of the subsystem ATM and
Bank are respectively denoted as za

0 and zb
0.

Let suppose that the distributed system has already executed the transitions trb
1 of Bank and tra

1, tra
2 of ATM

as presented in Figure 4.5. The execution of these transitions leads respectively to the creation of dsc2, dsc3
and dsc4.

b0start

b1

trb
1 : Init![

days := 0
sum := {0, 0, 0}

cpt := 0
tloc := 0

]
{tclock, dclock,

pclock}
a0

start

a1 a2

tra
1 : Init?[

rid := 0
] tra

2 : {wclock}
Wdral?amt[

rid := rid + 1
]

FIGURE 4.5: Transitions of ATM and Bank that have been executed

Execution of an internal output transition: The execution of transition tra
3 : a2 → a3 (Figure 4.6) creates

the new system context dsc5 = (dec5
a, dec5

b, dsc4) from dsc4. The distributed execution context of the ATM
and the Bank are respectively denoted as dec5

a = (eca
5, γa

5, χa
5, da

5, tr-seqa
5) and dec2

b = (ecb
5, γb

5, χb
5, db

5, tr-seqb
5).

The determination of the elements in the context eca
5 is straightforward based on the principle of symbolic

execution (Section 2.3.1):

Element Value

q(eca
5) a3

π(eca
5) za

3 ≤ 1

λ(eca
5)

rid := 1, amt := amt1, f ee := f ee0, rid_ret := rid_ret0,
stat := stat0, mid_ret := mid_ret0, wclock := za

3

ev(eca
5) (za

3, Debit!(1, amt1 + f ee0, ATM_ID))

pec(eca
5) eca

4

TABLE 4.2: Different elements of eca
5

The new system context dsc5 = (dec5
a, dec5

b, dsc4) and its predecessor dsc4 differ only in the following elements:

83

• the new context of ATM is updated with eca
5;

• the creation date of eca
5 is accumulated with delay(eca

5) = za
3, i.e. its creation date is za

0 + za
1 + za

2 + za
3;

• the sequence of covered transitions is currently tr-seq(deca
4) · tra

3, i.e. tra
1 · tra

2 · tra
3;

• the content of the input channel Debit for Bank is updated with ((1, amt1 + f ee0, ATM_ID), za
0 + za

1 +
za

2 + za
3) where (1, amt1 + f ee0, ATM_ID) denotes the tuple of data transmitted on channel Debit:

γ(dec5
b)(Debit) = ((1, amt1 + f ee0, ATM_ID), za

0 + za
1 + za

2 + za
3).

a2

a3

tra
3 : wclock ≤ 1

Debit!(rid, amt + f ee, ATM_ID)

dsc4 dsc4 = (dec4
a , dec4

b, dsc3)

dsc5 dsc5 = dsc4

u

wwww
v

ec(dec5
a)← eca

5
d(dec5

a)← d(dec4
b) + delay(eca

5)
tr-seq(dec5

a)← tr-seq(dec4
a) · tra

3
γ(dec5

b)(Debit)← ((1, amt1 + f ee0, ATM_ID),
za

0 + za
1 + za

2 + za
3)

}

����
~

(za
3, Debit!(1, amt1 + f ee0, ATM_ID))

FIGURE 4.6: Symbolic execution of tra
3

Execution of an internal input transition: Now, let consider the symbolic execution of the recep-
tion on the channel Debit of the Bank (transition trb

2) which creates the new system context dsc6 =
(dec6

a, dec6
b, dsc5) (Figure 4.7). The distributed execution context of the ATM and the Bank is denoted as

dec6
a = (eca

6, γa
6, χa

6, da
6, tr-seqa

6) and dec6
b = (ecb

6, γb
6, χb

6, db
6, tr-seqb

6). The determination of elements of new con-
text ecb

6 of the Bank is defined as follows:

Element Value

q(ecb
6) b2

π(ecb
6)

zb
2 < 86394, determined from the constraint

dclock + 6 < 24H with 24H = 86400 time units

λ(ecb
6) tclock := zb

2, dclock := zb
2

ev(ecb
6) (zb

2, Debit?(tid1, x1, aid1))

pec(ecb
6) ecb

5

TABLE 4.3: Different elements of ecb
6

To resume, the new system context dsc6 = (dec6
a, dec6

b, dsc5) and its predecessor dsc5 differ in the following
components:

• the new context of Bank is updated with ecb
6;

• the creation date of ecb
3 is accumulated with delay(ecb

6) (i.e. zb
0 + zb

1 + zb
2);

84

• the sequence of covered transitions of the bank is currently trb
1 · trb

2;

• the only element in the pending content associating to the uncontrollable input channel Debit of the
Bank is removed (i.e. ((1, amt1 + f ee0, 1), za

0 + za
1 + za

2 + za
3)), because of the reception on this channel.

Consequently, γ(dec6
b)(Debit) = ε;

• χ(decb
6) = (zb

0 + zb
1 + zb

2 ≥ za
0 + za

1 + za
2 + za

3) ∧ (tid1 = 1∧ x1 = amt1 + f ee0 ∧ aid1 = 1).

b1

b2

trb
2 : dclock + 6 < 86400

Debit?(tid, x, aid)
{pclock}

dsc5 dsc5 = dsc4

u

wwww
v

ec(dec5
a)← eca

5
d(dec5

a)← d(dec4
b) + delay(eca

5)
tr-seq(dec5

a)← tr-seq(dec4
a) · tra

3
γ(dec5

b)(Debit)← ((1, amt1 + f ee0, 1),
za

0 + za
1 + za

2 + za
3)

}

����
~

dsc6 dsc6 = dsc5

u

wwwwww
v

ec(dec6
b)← ecb

6
d(dec6

b)← d(dec5
b) + zb

2
tr-seq(dec6

b)← tr-seq(dec5
b) · tr

b
2

γ(dec6
b)(Debit)← ε

χ(dec6
b) = (zb

0 + zb
1 + zb

2 ≥ za
0 + za

1 + za
2 + za

3)∧
(tid1 = 1∧ x1 = amt1 + f ee0 ∧ aid1 = 1)

}

������
~

(zb
2, Debit?(tid1, x1, aid1))

FIGURE 4.7: Symbolic execution of trb
2

The beginning of a test purpose for our system ATM-Bank: In the following, we will discuss the testing
issues that are required by the symbolic execution of a DS. In other words, the definition of symbolic execu-
tion for a distributed system that we have previously introduced helps to show out these issues. Figure 4.8
presents a simple scenario which is generated from the symbolic execution of DS SysAB.

time and data constraints for :

msg1 : za
0 + za

1 ≥ zb
0 + zb

1

msg2 : zb
0 + zb

1 + zb
2 ≥ za

0 + za
1 + za

2 + za
3

tid1 = 1
x1 = amt1 + f ee0

aid1 = 1

msg1 : Init!

Init?

msg2 : Debit!(1, amt1 + f ee0 , 1)

Debit?(tid1, x1, aid1)

za
0

zb
0

zb
1

za
1

trb
1

tra
1

za
2Wdral?amt1 tra

2
za

3
tra

3

trb
2

zb
2

ATM Bank

boot

boot

FIGURE 4.8: Illustration of the beginning of a test purpose for system SysAB

The scenario shows that the symbolic execution of the overall model introduces for both subsystems ATM
and bank, an initial duration which is respectively za

0 and zb
0. These durations denote the time elapsed from

an assumed common instant of time (depicted by a dotted blue horizontal line in the scenario depiction) to
the boot of either subsystems (short arrows in the scenario). Instants z0 and z1 allow to establish a precedence

85

constraint between the date of emission of a piece of data (on an internal channel) and its later reception by
another subsystem called causality relation, i.e. a message has to be received after its emission. Typically, the
following constraint za

0 + za
1 ≥ zb

0 + zb
1 reflects that the emission of the first message msg1 (Init! at zb

0 + zb
1)

by the bank agency happens before its corresponding reception (Init? at za
0 + za

1) by the ATM machine since
the reference time instant. Similarly, the same reasoning should be applied for the second message msg2 in
order to obtain the constraint zb

0 + zb
1 + zb

2 ≥ za
0 + za

1 + za
2 + za

3. Besides, the data identification constraints
tid1 = 1, x1 = amt1 + f ee0, aid1 = 1 take into account that data received by the bank necessarily correspond
to data emitted by the ATM (on that same channel). The variables tid1, x1, aid1 are new fresh variables created
by the bank in order to store values received on the internal channel Debit.

We point out that temporal correlations imply that since a duration between an emission of a message
msg1 followed by a reception of a message msg2 at a given location (bank) should be greater than the dura-
tion between the reception of msg1 followed by the emission of msg2 at a remote location (ATM). All such
correlation constraints are checked to be compatible with local path conditions discussed previously, in which
case the scenario is a possible distributed behavior of the overall model.

4.5 Our testing framework for distributed systems

Inspired by the coverage of a sequence of consecutive transitions in Subsection 2.4.3, our implementation
of testing framework for distributed systems takes into consideration a sequence of consecutive transitions
involving two subsystems of SysAB, in a similar way to unitary systems. Given this sequence of transitions,
the idea is to pilot the symbolic exploration with the objective to compute feasible system paths covering
the sequence. In this section, firstly, we introduce our testing framework to generate test cases for distributed
systems which is also based on the notion of global test purpose. Then, we illustrate a testing scenario through
an example of global test purpose.

4.5.1 Our testing framework

As we know, symbolic execution computes executions of the DS model, which facilitates model’s under-
standing, especially in case of distributed systems. Therefore, it is very practical to obtain a global test purpose
defined by one of such execution paths which covers an interesting behavior of the system. Concretely, a
global test purpose can be seen as interactions between different subsystems. In practice, these interactions
are characterized by a tuple of sequence of consecutive transitions. Indeed, for the global test purpose psys
represented by the sequence dsc1 . . . dscm with dscm = (dec1, . . . , decn, dscm−1), the tuple of sequence of tran-
sitions (tr-seq(dec1), . . . , tr-seq(decn)) is used to characterize the local test purposes, where each component in
the tuple is a sequence of consecutive transitions of one the constituent TIOSTS Gi with 1 ≤ i ≤ n. Thus, each
component in this tuple allows to obtain a local test purpose for each subsystem (considered as LUT) of the DS.

In agreement with models of DS given in Section 4.1, a Distributed System Under Test (DUT) is seen as a
tuple of Localized System Under Test (LUT): DUT = (LUT1, . . . , LUTn) where each LUTi is a subsystem. Let
us introduce the main steps of our testing framework for DS as follows:

1. Selection of a global test purpose psys as a path dsc1 . . . dscm in a symbolic execution tree of a distributed
system;

2. Canonical derivation of the tuple (tr-seq(dec1), . . . , tr-seq(decn)) from psys to obtain a tuple of local test
purposes (pG1 , . . . , pGn);

3. Generation of n local test cases according to n local test purposes as presented in the process in Section
3.3;

86

4. Initialization phase by sending to local test cases the start signal of local test executions;

5. Concurrent execution of local test cases with the goal to follow their local test purposes, without send-
ing coordination messages toward some other test cases, but observing internal messages exchanged
between LUTs;

6. Computation of a global verdict based on the knowledge of all local verdicts and on the communication
verification.

At step 1, we select a symbolic path issued from the symbolic execution of distributed systems. Con-
cretely, either we can use the module TESTPURPOSE_SEL presented in Chapter 2 to verify the feasibility of a
sequence of consecutive transitions, which is not immediate to obtain in the context of a distributed system,
or we can use a module in Diversity called BEHAVIOR_SELECTION to cover an interesting behavior char-
acterized by a sequence of non-consecutive transitions using the heuristics Hit-or-Jump (HoJ) [15]. From a
methodological point of view, we will prioritize among all paths those that involve internal communications
between subsystems to highlight causality relation and data identification constraints of internal communica-
tions. For this, we have implemented the Send Receive Pair Coverage criterion (SRPC) [68] as an exploration
heuristics in Diversity which benefits from the module BEHAVIOR_SELECTION. Step 2 and 3 are applied to
the global test purpose obtained from step 1.

At step 4, the overall testing process is initiated by a light coordination step to provide local test cases with
the start moments of local test executions. Depending on initial actions of test case, a local test case knows
when it has to emit or has to wait until an observation (reception on an internal channel or an emission),
before possibly stimulating the LUT. This issue of controlling distant concurrent executions is known as
the controllability problem in the context of distributed testing. A situation that alleviates this issue is the
selection of a path that gives rise to a family of test purposes, defining only one test case in a situation to start
with a stimulation.

At step 5, during test execution, a local test case can observe internal communications and provide inputs
which are controllable to follow its local test purpose.

At step 6, we collect two local pieces of information: traces and verdicts. A local verdict results from the
execution of a local test case on the localized subsystem. The local verdicts are likely to often be inconclusive
because of numerous non-deterministic situations induced by the distributed context. A local trace of inter-
actions between a subsystem with other subsystems (only internal communications) is also recorded. These
pieces of information are then collected in order to produce a global test verdict, which consists of two stages:

• aggregation of the local verdicts

• communication correctness of the tuple of local traces with regard to a set of communication rules. The
communication correctness is ensured whenever two following conditions hold:

– There is enough emissions for receptions, i.e. the number of receptions of messages on a channel
must be less than or equal to the number of emissions of messages on the same channel

– The emission of an internal message must occur before its reception (i.e. causality relation
d(emission) ≤ d(reception))

Given a subsystem Gi (1 ≤ i ≤ n) in the distributed system Sys = (G1, . . . , Gn), the global test verdict is
determined based on the tuple of n + 2 verdicts (v1, . . . , vn, vcom_int, vcom_cau), where n first verdicts are local
ones collected from local test cases whereas vcom_int and vcom_cau are respectively verdicts obtained from the
verification of the first and second condition in the communication correctness. Concretely, the global test
verdict is determined as follows:

87

• if all verdicts in the tuple are Pass, the global test verdict is Pass

• else if there exists at least one verdict in the tuple of n + 2 verdicts which is determined as Fail, the
global test verdict is Fail

• else, the global test verdict is Inc

For the global test purpose psys = dsc1 . . . dscm with dscm = (dec1, . . . , decn, dscm−1), the tuple of sequences
of transitions (tr-seq(dec1), . . . , tr-seq(decn)) are qualified as compatible because they come from a common
(satisfiable) symbolic path of the distributed system.

Each tr-seq(deci) with 1 ≤ i ≤ n is a sequence of transitions characterizing a local test purpose tpi. The
subsystem LUTi implementing Gi will be equipped with the associated test case LTCi in charge of piloting
LUTi with the goal of following tpi. The test case LTCi pilots its localized subsystem LUTi in the way that it
computes stimulations based on previous observations in order to provide stimulations compatible with its
local test purpose. This step is detailed by the construction rules presented in Section 3.3. Let us remark that
for tr-seq(deci) ∈ {tr-seq(dec1), . . . , tr-seq(decn)}, tr-seq(deci) is a sequence of transitions of Gi that admits a
symbolic counterpart that we note SE(tr-seq(deci)) in Paths(Gi). This means that tr-seq(deci) admits at least
one timed trace satisfying it. Therefore tr-seq(deci) is feasible.

4.5.2 An ATM-Bank test purpose

In our approach, a global test purpose is characterized by a sequence of consecutive transitions that covers
a particular scenario. In this illustration, we are interested in a blocking scenario caused by two consecutive
withdrawals during some short period. This is a typical case of a stolen card and the thief wants to withdraw
as much money as possible quickly. Concretely, the thief succeeds to withdraw quickly twice in a row (two
executions of tra

5), the banker then assumes that it is abnormal. As a result, he decides to lock immediately
the next transactions within some duration (transition trb

10). After this duration, the ATM receives the third
request from the client which is locked due to the locking duration (transition tra

8). As we can see, to char-
acterize this scenario, we easily know the transition of a withdrawal request and of a blocking request but
it is not immediate to obtain the sequence of consecutive transitions in the distributed system SysAB since
it involves many transitions in different subsystems and furthermore, we need to verify if the sequence is
feasible.

To do this, we will take advantage of the module BEHAVIOR_SELECTION which allows to cover a
coverage objective characterized by a sequence of non-consecutive transitions. The process of this mod-
ule is presented in Figure 4.9. From a sequence of non-consecutive transitions in parameters str′1 =
tra

3 · trb
2 · tra

5 · tra
3 · trb

2 · tra
5 · trb

10 · tra
3 · trb

2 · tra
8 which contains 10 transitions, the module BEHAVIOR_SELECTION

will compute a symbolic path in the symbolic execution tree of SysAB covering this sequence str′1. We point
out that the input sequence of transitions for BEHAVIOR_SELECTION is constructed based on the Send Re-
ceive Pair Coverage criterion (SRPC) [68] where a (sender, receiver) pair is a combination of two transitions
labeled respectively by an internal emission and its corresponding internal reception. In case of str′1, the
(sender, receiver) pair (tra

3, trb
2) appears three times in the sequence to facilitate the coverage. For a more effi-

cient coverage, during symbolic exploration, BEHAVIOR_SELECTION allows the reduction of an important
number of symbolic paths. Indeed, with a special selection mechanism based on the heuristics Hit-or-Jump
(HoJ) [15], BEHAVIOR_SELECTION performs the coverage by cutting off paths which are not related with
our objective. At the end, the module BEHAVIOR_SELECTION produces the computed symbolic path (i.e.
our global test purpose) which is characterized by a sequence of consecutive transitions.

88

Input: str′1 = tra
3 · trb

2 · tra
5 · tra

3 · trb
2 · tra

5 · trb
10 · tra

3 · trb
2 · tra

8

pre-processing post-processing

Default pre-
processor

create initial context ec1
enqueue ec1 to initial symbex loop

post-processor
SD_Serializer

Output SD_Serializer:
Sequence diagram of global test purpose, which describes

interaction between subsystems with (optional)
information: constraints, update of variables, etc.

Output BEHAVIOR_SELECTION:
Selection of one coverage path: a sequence of consecutive

transitions characterizing global test purpose in our framework

processing: symbex loop

symbex(EC ′) : EC ′′

Stop Filter :
for all ec in EC

h(ec) ≤ Height∧ . . .

queue

ec
all successors of all ec in EC ′

. . .

(i)

(ii)

(iii)

(iii-bis)

(i-bis)

select(’BFS’) : EC

add(EC ′′′)

’Stop Filter’

BEHAVIOR
SELECTION

if coverage completes,
reject EC

pre-filtering

post-filtering

BEHAVIOR
SELECTION

check coverage of
a sequence of

non-consecutive
transitions

.

FIGURE 4.9: Module BEHAVIOR_SELECTION and module SD_Serializer

The sequence of consecutive transitions obtained from BEHAVIOR_SELECTION is presented in the fol-
lowing (23 transitions in total):

str1 = trb
1 · tra

1 · tra
2 · tra

3 · trb
2 · trb

3 · tra
4 · tra

5 · tra
2 · tra

3 · trb
2 · trb

3 · tra
4 · tra

5 · trb
8 · trb

9 · trb
10 · tra

2 · tra
3 · trb

2 · trb
4 · tra

4 · tra
8

The next step (i.e. step 2) consists in deriving canonically the tuple (tr-seq(decm
a), tr-seq(decm

b)) which rep-
resents respectively the sequence of consecutive transitions in ATM and Bank and they are determined as
follows:

tr-seq(decm
a) = tra

1 · tra
2 · tra

3 · tra
4 · tra

5 · tra
2 · tra

3 · tra
4 · tra

5 · tra
2 · tra

3 · tra
4 · tra

8
tr-seq(decm

b) = trb
1 · trb

2 · trb
3 · trb

2 · trb
3 · trb

8 · trb
9 · trb

10 · trb
2 · trb

4

Until now, we presented step 1 and step 2 in our testing framework: the module BEHAVIOR_SELECTION
has been applied to the sequence of non-consecutive transitions str′1 in order to compute the sequence str1 of
consecutive transitions covering str′1 and the tuple of sequences (tr-seq(decm

a), tr-seq(decm
b)) for subsystems.

In the following, we present, in addition to TESTPURPOSE_SEL and TESTCASE_GEN, a new module called
SD_Serializer 3 that we implemented as a serializer of symbolic tree and intervenes only in the step post-
processing (Figure 4.9), allowing to visualize the global test purpose in the form of a sequence diagram. This
visualization is very adequate to depict interactions between subsystems in distributed systems and facilitate
the selection of the global test purpose. Therefore, it is very helpful for the first step in our testing framework.

SD_Serializer takes also in input the sequence of non-consecutive transitions str′1. This module is a vis-
itor of any symbolic tree and generates pieces of information in the textual entry language of PlantUML 4,
which is an open-source tool allowing users to create visual diagrams from a plain text language. From the

3For more information about the implementation of SD_Serializer, refer to the page: https://projects.eclipse.org/
proposals/eclipse-formal-modeling-project

4http://plantuml.com/

https://projects.eclipse.org/proposals/eclipse-formal-modeling-project
https://projects.eclipse.org/proposals/eclipse-formal-modeling-project
http://plantuml.com/

89

computed symbolic tree characterizing the global test purpose, this module retrieves traceability information
such as external, internal messages, constraints, . . . The generated sequence diagram is composed of many
lifelines where each of them represents a subsystem in the distributed system. Moreover, we can annotate the
lifelines with pieces of information such as time and data information, constraints related to execution of each
subsystem, update of variables. All pieces of information are optional, which means Diversity’s users are able
to modify the information format or choose to display or not the information on the sequence diagram thank
to dedicated configurable parameters.

Figure 4.10 shows the sequence diagram that is generated for the sequence str′1. In the generated
diagram, an output (or input) message is of the form c!m@Z1 (or c?m@Z2) where Z1 (or Z2) repre-
sents the emission (or reception) moment. In the path conditions for subsystems ATM and Bank which
are detailed in the yellow boxes for each lifeline, we find again the causality relation and data identi-
fication constraints, such as: the causality z_0 + z_1 <= z_0 + z_2 for the reception of the message on
channel Init of ATM, the causality z_0 + z_2 + z_3 + z_4 <= z_0 + z_1 + z_5 and data identification
(tid_1 = 1) && (x_1 = amt_1 + fee_0) && (aid_1 = ATM_ID) for the reception of the message on chan-
nel Debit of Bank. We point out that for the causality relation z0 + z1 ≤ z0 + z2, variable z0 on the left
(respectively on the right) represents the delay of Bank (respectively of ATM). And due to the mechanism
of increase of index for creating new fresh variables by Diversity, the index of variables denoting duration
(z0, z1, z2, . . .) generated in path conditions are different with respect to the ones in subsection 4.4.3.

90

ATM _Bank

ATM

ATM

Bank

Bank

Init ! @(z_0 + z_1)

((z_0 + z_1) < = (z_0 + z_2))

Init ? @(z_0 + z_2)

Wdral ? am t_1 @(z_2 + z_3)

((z_4 < = 1))

Debit ! (1, (am t_1 + fee_0), 1) @(z_0 + z_2 + z_3 + z_4)

((z_5 < 86394) && ((z_0 + z_2 + z_3 + z_4) < = (z_0 + z_1 + z_5)) &&
(t id_1 = 1) && (x_1 = am t_1+ fee_0) && (aid_1 = ATM_ID))

Debit ? (t id_1, x_1, aid_1) @(z_0 + z_1 + z_5)

((0 < = (am t_1 + fee_0 + -100)) && ((am t_1 + fee_0) < = 1000) &&
((am t_1 + fee_0) < = bal_0) && (z_6 < = 6) && ((z_5 + z_6) > = 0)))

Auth ! (1, ACCEPT, 1) @(z_0 + z_1 + z_5 + z_6)

(((z_4 + z_7) < 4) && ((z_0 + z_1 + z_5 + z_6) < = (z_0 +
z_2 + z_3 + z_4 + z_7)) && (rid_ret_1 = 1) && (stat_1 =
ACCEPT) && (m id_ret_1 = ATM_ID))

Auth ? (rid_ret 1, stat_1, m id_ret_1) @(z_0 + z_2 + z_3 + z_4 + z_7)

Cash ! am t_1 @(z_0 + z_2 + z_3
+ z_4 + z_7 + z_8)

Wdral ? am t_2 @(z_0 + z_2 + z_3
+ z_4 + z_7 + z_8 + z_9)

((z_10 < = 1))

Debit ! (2, (am t_2 + fee_0), 1) @(z_0 + z_10 + z_2 + z_3 + z_4 + z_7 +
z_8 + z_9)

(((z_11 + z_5 + z_6) < 86394) && ((z_0 + z_10 + z_2 + z_3 + z_4 + z_7 + z_8 + z_9) < = (z
_0 + z_1 + z_11 + z_5 + z_6)) && (t id_2 = 2) && (x_2 = am t_2+ fee_0) && (aid_2 = ATM_ID))

Debit ? (t id_2, x_2, aid_2) @(z_0 + z_1 +
z_11 + z_5 + z_6)

((0 < = (am t_2 + fee_0 + -100)) && ((am t_1 + am t_2 + (2 * fee_0)) < = 1000) && ((am t_1 +
am t_2 + (2 * fee_0)) < = bal_0) && (z_12 < = 6) && ((z_11 + z_12 + z_5 + z_6) > = 0))

Auth ! (2, ACCEPT, 1) @(z_0 + z_1 + z_11 + z_12 + z_5 + z_6)

(((z_10 + z_13) < 4) && ((z_0 + z_1 + z_11 + z_12 + z_5 + z_6) < =
(z_0 + z_10 + z_13 + z_2 + z_3 + z_4 + z_7 + z_8 + z_9)) &&
(rid_ret_2 = 1) && (stat_2 = ACCEPT) && (m id_ret_2 = ATM_ID))

Auth ? (rid_ret 2, stat_2, m id_ret_2) @(z_0 + z_10 + z_13 + z_2 + z_3 + z_4 +
z_7 + z_8 + z_9)

Cash ! am t_2 @(z_0 + z_10 +
z_13 + z_14 + z_2 + z_3 +
z_4 + z_7 + z_8 + z_9)

(((z_11 + z_12 + z_15 + z_5 + z_6) < 86398))

Check ? @(z_0 + z_1 + z_11 + z_12
+ z_15 + z_5 + z_6)

((z_16 < 1))

Transc ! 2 @(z_0 + z_1 + z_11 +
z_12 + z_15 + z_16 + z_5

+ z_6)

(((z_16 + z_17) < 1))

Lock ? t loc_1 @(z_0 + z_1 + z_11 +
z_12 + z_15 + z_16 + z_17

+ z_5 + z_6)

Wdral ? am t_6 @(z_0 + z_10 +
z_13 + z_14 + z_18 + z_2 +
z_3 + z_4 + z_7 + z_8 + z_9)

((z_19 < = 1))

Debit ! (3, (am t_6 + fee_0), 1) @(z_0 + z_10 + z_13 + z_14 + z_18 + z_19
+ z_2 + z_3 + z_4 + z_7 + z_8 + z_9)

(((z_11 + z_12 + z_15 + z_16 + z_17 + z_20 + z_5 + z_6) < 86394) && ((z_0 + z_10 + z_13 +
z_14 + z_18 + z_19 + z_2 + z_3 + z_4 + z_7 + z_8 + z_9) < = (z_0 + z_1 + z_11 + z_12 + z_15
+ z_16 + z_17 + z_20 + z_5 + z_6)) && (t id_3 = 3) && (x_3 = am t_3+ fee_0) && (aid_3 = ATM_ID))

Debit ? (t id_3, x_3, aid_3) @(z_0 +
z_1 + z_11 + z_12 + z_15 + z_16 +
z_17 + z_20 + z_5 + z_6)

(((z_20 + z_21) < t loc_1) && (0 < = (am t_6 + fee_0 + -100)) && ((am t_1 + am t_2 + am t_6 +
(3 * fee_0)) < = 1000) && ((am t_1 + am t_2 + am t_6 + (3 * fee_0)) < = bal_0) && (z_21 < = 6))

Auth ! (3, LOCK, 1) @(z_0 + z_1 + z_11 + z_12 + z_15 + z_16 + z_17 +
z_20 + z_21 + z_5 + z_6)

(((z_19 + z_22) < 4) ((z_0 + z_1 + z_11 + z_12 + z_15 + z_16 + z_17 +
z_20 + z_21 + z_5 + z_6) < = (z_0 + z_10 + z_13 + z_14 + z_18 + z_19
+ z_2 + z_22 + z_3 + z_4 + z_7 + z_8 + z_9)) && (rid_ret_3 = 3) &&
(stat_3 = LOCK) && (m id_ret_3 = ATM_ID))

Auth ? (rid_ret 3, stat_3, m id_ret_3) @(z_0 + z_10 + z_13 + z_14 + z_18
+ z_19 + z_2 + z_22 + z_3 + z_4 + z_7 + z_8 + z_9)

Abort ! @(z_0 + z_10 + z_13
+ z_14 + z_18 + z_19 + z_2
+ z_22 + z_23 + z_3 + z_4
+ z_7 + z_8 + z_9)

FIGURE 4.10: Scenario Locking request visualized by PlantUML resulted from coverage of global
test purpose

91

4.6 Discussion of the approach

Our work is related to a family of model-based selection methods [12, 39, 68, 69, 13, 23, 14] which is dedicated
to testing concurrent multi-process and/or distributed system and protocol models. These recommend to
increase the coverage of synchronizations, pairwise communications and data exchange besides classical
structural coverage criteria (e.g., all-states coverage, all-transitions coverage,...) which may fail short to select
tests that exercise those. Our work is in the lineage of these works, in particular, we implement the Send
Receive Pair Coverage criterion (SRPC) suggested by [68, 69] using symbolic execution techniques to compute
the global test purpose, compositional models in which asynchronous communication is intertwined with
complex time and data constraints, resorting to SMT solvers to check their satisfiability. Authors in [68, 69]
use the reachability techniques offered by the tool UPPAAL [36] (models are networks of Timed Automata
[66] under hand-shake synchronization) where time is symbolically handled as convex abstractions of clock
values, known as zones [8] (pieces of data are rather enumerated). A significant benefit of our selection
method is that it is fitted with an heuristic guided by an observer [2] allowing us to express reachability
properties, in particular those which encode sequences of possibly non-consecutive pairwise emissions and
receptions to cover. Our work is related in this aspect to [13, 23] which addresses the selection of scenarios
using symbolic techniques and based on regular expressions describing sequences of (rather consecutive)
synchronous operation calls in an untimed compositional model. When dealing with asynchrony, we believe
that an heuristic approach can prove to be useful as reachability is undecidable in case of asynchronous
message-passing, e.g., via unbounded fifo-queues.

4.7 Conclusion

This chapter presented a model-based distributed testing framework in reference models are n-tuple of
TIOSTS that specify licit behaviors of the subsystems. The key problem addressed in this chapter is to au-
tomatically decompose a global test purpose defined as a scenario at the distributed system level, into a
collection of n local test purposes, one for each subsystem. Those test purposes are meant to guide the local
test case generation for the unitary subsystems that has been presented in the previous chapter. Therefore
the local test cases are by construction coordinated in the sense that they will follow each a test purpose be-
ing part of a global scenario satisfying temporal and data correlation of internal communications. We have
finally implemented a scenario generator in the Diversity tool which allows users to visualize the system sce-
narios in the user-friendly format of sequence diagrams. This visualization is more intuitive and suitable to
inspect and analyze behaviors of distributed systems than the classical symbolic tree, which is more suitable
for unitary systems.

93

Chapter 5

Models and scenario selection for information
dissemination in Wireless Sensors Networks

Contents
5.1 Context . 94
5.2 Trickle algorithm . 95
5.3 Trickle algorithm in MPL protocol . 95
5.4 Behavioral models for MPL protocol . 96

5.4.1 Processes of sensor nodes architecture . 96
5.4.2 Compact automata for process modeling . 97
5.4.3 Control message process . 98
5.4.4 Data message process . 99

5.5 Experimenting with scenario selection . 100
5.5.1 An extended selection method with observers . 100
5.5.2 Some sensor nodes topologies . 101
5.5.3 Coverage objective 1 - All nodes are updated . 102
5.5.4 Coverage objective 2 - At least one node is outdated . 106
5.5.5 Analyses of generated scenarios . 106

5.6 Conclusion . 109

In this chapter, we will illustrate our testing framework on a representative case study, even if it is still of
reasonable size. In particular, it will be an opportunity to use our tools (design of timed models, asynchronous
product of TIOSTS, symbolic execution techniques, projection of symbolic paths, dedicated coverage criteria,
visualization of a distributed scenario considered as a global test purpose) in the context of the Diversity
platform. A simplified version of the content of this chapter has been published in the following paper [61].

In this chapter, we develop behavioral models for a distributed IoT case study. The case study is a protocol
for the dissemination of versioned fragments of firmware across a network of sensors (nodes) using the
distributed Trickle algorithm [53]. Then, we experiment the scenario selection method and support tooling
that we have presented in the previous chapter on the case study models. The chapter is structured as follows:

• Section 5.1 introduces briefly the context of the case study;

• In Section 5.2, we explain the principle of the distributed Trickle algorithm;

• Section 5.3 presents the Trickle-based Multicast Protocol for Low-Power and Lossy Networks (abbreviated
by MPL);

94

• In Section 5.4, we develop behavioral models for the case study;

• In Section 5.5, we experiment the selection method on the developed models with respect to different
network topologies. We have targeted the selection of scenarios achieving high-coverage of multicast
communications reaching an up-to-date or outdated state(s) of sensor(s) in the network.

• Section 5.6 is the conclusion of the chapter.

5.1 Context

Internet of Things (IoT) designates the connection to the Internet of various devices (sensors, actuators, pro-
cessors, etc.) evolving in a physical environment. Typical IoT applications allow the remote (via Internet)
monitoring of household appliances, urban infrastructures, vehicle connectivity, agriculture production, and
e-healthcare. Wireless Sensor Networks (WSN) are commonly part of such IoT applications. In fact, WSN are
composed of a large number of sensors with limited resources (energy, memory, calculation, etc.) and called
to operate independently during large periods (of the order of the year). To meet the new needs related to
the evolution of their functionalities (new features, bug fix, security, etc.) and to remain compatible with
other internet devices, it is necessary to propagate updates of binary firmwares 1 to be installed on the nodes
(sensors) of the network. These sensors networks have variable size and topology (hundreds or thousands of
sensors, which can be added or removed, and possibly mobile). In addition, the dissemination of information
across the network is through sensor-to-sensor short-range communications since such small devices can be
equipped only with small radio antennas. Such communications may be asymmetric as well: a node A may
send messages to a node B without the opposite being possible. Therefore, efficient update protocols for all
sensors firmware in a network have to meet several objectives:

• reduce the number and the size of packets (messages) exchanged between sensors to save the sensor
batteries. In particular, when the sensors all have the same version of the firmware (consistent net-
work), then the frequency and size of the messages exchanged must be minimal: message exchanges
should be used to ensure that all sensors share same firmware version. Due to the changing topology
of the network, firmware update is a continuous activity, constantly iterated: nodes must periodically
communicate to find out if there is a new version of the firmware;

• quickly propagate new firmware versions to minimize periods when sensors do not share the same ver-
sions. When sensors discover that neighboring nodes need updates, the latest version of the firmware
must be released quickly.

Trickle [53, 54, 51] is the state-of-the-art distributed algorithm for the dissemination and update of in-
formation across a WSN. This algorithm is provided as a standard library in TinyOS [52] and Contiki [27],
two of the best known firmware Operating Systems (OS) for WSN. Trickle is also used in recently standard-
ized WSN protocols namely the Multicast Protocol for Low Power and Lossy Networks (MPL) [38] and the
Routing Protocol for Low Power and Lossy Networks (RPL) [86].

We choose the MPL protocol as a case study in particular when used to disseminate (firmware) upgrades
in WSN. On the difference of RPL multicast (which is not dissemination oriented), MPL is well adapted to
disseminate fragmented firmware (as a set of smaller-size packets) which is most efficient in such energy-
constrained WSN (e.g. as discussed in [47]). We develop for this case behavioral models based on the
reference specification of the protocol [38]. An MPL implementation is already available in Contiki OS [27].

1Firmwares are specific user software applications communicating directly with the device hardware and installed into the device
non-volatile flash memory which makes them more adaptable.

95

5.2 Trickle algorithm

As glimpsed in previous section, a WSN network can be seen as a directed graph connecting nodes to their
neighbors which can be reached by their transmissions, i.e., broadcasts of messages, without the need of
routing via other intermediate nodes. Usually the dissemination of an information by a given sender node
to all nodes in the network cannot be granted by a single message transmission. Trickle is a fully distributed
algorithm where each node applies a set of rules according to its state, i.e., the information it holds, with the
objective of converging towards a global stable state of the network where all nodes have the same informa-
tion. The Trickle algorithm can be described as follows [53, 54, 51, 58]:

• each node maintains a current interval τ, a counter c and a broadcasting time t in current interval τ,

• global parameters to all nodes (same values) are k the redundancy constant, τl the lowest value for τ
and τh the highest value for τ,

• each node applies the following rules:

1. at the start of a new interval a node resets its timer and counter c and sets at random t to a value
in [τ/2, τ[,

2. if the node receives a message consistent with the information it holds, it increments c,

3. when its timer reaches t, the node broadcasts the message carrying the information it holds if c < k,

4. when its timer expires at τ, it increases its interval length by setting τ to min(2 · τ, τh) and starts a
new interval,

5. when a node receives a message that is inconsistent with its own information, then if τ > τl it sets
τ to τl and starts a new interval, otherwise it does nothing.

Each time an inconsistency is detected, the value τ is set to τl, then τ is doubled up to τh. This makes
known the “cost" per inconsistency in terms of transmissions number≈ log(τh/τl): at most one transmission
per τ-interval, occurring exactly at t. We note that the node transmits only if its neighbors are unlikely to be
up-to-date, when c < k given c counts receptions of consistent messages in the interval (k is fixed based on
number of neighbors). Moreover, since small intervals are considered immediately after the inconsistency,
the frequency of transmissions is greater at the beginning (and decreases when approaching τh), which al-
lows nodes to quickly share the same information. Now nodes are not necessarily synchronized, yet Trickle
suggests choosing a random t (in [τ/2, τ[) together with imposing a listen-only period (first half of τ) in order
to enhance the distribution of the transmission load between nodes in the interval (and hence energy costs).

5.3 Trickle algorithm in MPL protocol

The Multicast Protocol for Low-Power and Lossy Networks (MPL) [38] uses Trickle to disseminate two kinds of
messages:

• data message containing functional data disseminated by nodes in the network

• control message used to notify all neighbors of the most recently received data message

The protocol associates each data message with a sequence number and a unique identifier of the original
sender node which generates the message (seed in MPL parlance). These pieces of information are not modi-
fied by all intermediate nodes transmitting the message. During the operation, nodes maintain a lower-bound

96

sequence number that represents the sequence number of the oldest data message the nodes are willing to
receive or transmit. In such setting, control messages are used to inform neighbors about recently received
data messages. MPL specifies two dissemination strategies:

• proactive forwarding which uses Trickle to schedule transmissions of data messages a limited number of
times without knowing if the neighbors have the message or not;

• reactive forwarding which uses Trickle to handle the forwarding of control messages (a limited number
of times as well), these messages allows data messages to be scheduled only if neighbors are not up-to-
date.

The case study considers reactive forwarding which is specific to the protocol MPL.

5.4 Behavioral models for MPL protocol

In this section, we present the full model of the case study. Some modeling facilities that are naturally encoded
in the input language of Diversity have been allowed and discussed. This is to present a readable form of
TIOSTS forming the MPL processes of the case study system, and especially keep the intuition on the Trickle
algorithm being implemented by each of those TIOSTS.

5.4.1 Processes of sensor nodes architecture

Figure 5.1 depicts the architecture of the MPL processing units per node in case of reactive forwarding: each
node is defined by n + 1 processes, managed each by a Trickle algorithm. Process cp (resp. dpi, 1 ≤ i ≤ n)
handles the dissemination of all control messages (resp. the dissemination of exactly the ith data message
identified by its sequence number). Each process is a TIOSTS. As suggested in the figure we use a template to
instantiate many times the same TIOSTS, those on their turn can be grouped to form the enclosing template
of a node, this hierarchical template mechanism is supported by the Diversity tool. For example, the TIOSTS
ControlMsgProcess and DataMsgProcess which are respectively depicted in Figure 5.2 and Figure 5.3 are
generic templates which are instantiated to specify an enclosing node template, namely Node. The latter is
instantiated on its turn to obtain nodes n1, n2, . . . (see Figure 5.1). Communication between nodes is specified
by asynchronous message-passing between their respective processes (over unbounded fifo) where sending
a message is not blocking for the sender process and messages are received in the same order that they are
issued, the kind of communications defined in Chapter 4.

We distinguish a particular node n1 in the architecture which holds the data messages to be disseminated
(a.k.a data message generator). As we can see, n1 can send data to n2 but the opposite is not possible. We
suppose that in general, each node contains the following sub-processes: one ControlMsgProcess and many
DataMsgProcess. Moreover, the ControlMsgProcess of n2 receives directly control messages disseminated by
n1 on channel ControlMsg, whereas each process of data messages of n1 can disseminate data to all processes
of data messages of n2 through channel DataMsg, i.e. the dissemination of data messages from dp1 of n1 is
received by all sub-processes dp1, . . . , dpn of n2.

97

cp: ControlMsgProcess dp1: DataMsgProcess dpn: DataMsgProcess

init myseq:= MIN_SEQ+1
e := 0

init myseq:= MIN_SEQ+n
e := 0

timed n1: Node

init myseq-buff:=[1, . . . , 1], mydp-run:=[true,. . . ,true])
my-buff:=[(MIN_SEQ + 1, FRAGMENT1, 1), . . . , (MIN_SEQ + n, FRAGMENTn, n)]

ControlMsg DataMsg DataMsg

cp: ControlMsgProcess dp1: DataMsgProcess dpn: DataMsgProcess

init myseq:= MIN_SEQ+1
e := 0

init myseq:= MIN_SEQ+n
e := 0

timed n2: Node

init myseq-buff:=[0, . . . , 0], my-buff:=[UNDEF, . . . , UNDEF],
mydp-run:=[false,. . . ,false]

ControlMsg DataMsg DataMsg

/* MPL Data Messages generator */

init e:=0

init e:=0

FIGURE 5.1: Nodes sub-processes instantiation.

5.4.2 Compact automata for process modeling

The (template) TIOSTS that we discuss for MPL modeling are of two kinds: one for handling control mes-
sages (Figure 5.2), the other for handling data messages (Figure 5.3). Yet both have similar structure as each
implements the Trickle algorithm (presented informally in Section 5.2). In order to compact and simplify the
structure of those TIOSTS, we use transitions with sequential statements which are naturally encoded by the
Diversity tool’s entry language xLIA. Statements include communication actions act which are either of the
form c?x that denotes the reception, on channel c, of a value which is stored in variable x, or of the form
c!t that denotes the emission, on channel c, of the value represented by term t; assignments x := t which
assigns the variable x with a value denoted by t; newfresh(x) randomly assigns x with a new fresh variable;
guards on variables

[
φ
]

are used to denote firing conditions of transition. More generally, statements (stm)
are also built considering the null statement (skip) and the following control primitives: sequence (;), condi-
tion (if . . . then . . . else . . .) or counted-repetition (for(nat i = N : M) . . . with N, M, i natural numbers and
N ≤ M).

A transition will be of the form q stm,K−−−→ q′ where q is a source state, q′ is a target state, stm is a statement, and
K is a subset of clocks to reset. Whereas, transitions in theory (see Section 2.2 of Chapter 2) have the form

(q
K,φ,act,ρ−−−−→ q′) where K is as previous a subset of clocks to reset, φ is a firing guard, act is a communication

action (_ denotes the absence of such communication action), ρ is a substitution of variables (other than
clocks) which represents their updates with new values.

Therefore, with notation of Chapter 2, two consecutive transitions for example are respectively of the form:

cp2
∅ , cl=τ , _ , [τ:=min(2·τ,τk), newfresh(t), c:=0, e++]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ cpi

2

cpi
2
{cl} , cl=τ∧τ/2≤t<τ , _ , []−−−−−−−−−−−−−−−→ cp1

N.B., here we consider the case when timer τ expires, then τ is doubled and a new t is chosen within the
new half of the τ-interval (see Trickle rules in Section 5.2).

98

Those subsequent transitions are equivalent to following transition using sequential statements:

cp2
cl=τ; τ:=min(2·τ,τk); newfresh(t); τ/2≤t<τ; c:=0; e++], {cl}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ cp1 (see Figure 5.2).

Condition and repetition statements allows us as well to have this compact form of transitions, rather than
making explicit two (or more) transitions for a decision and so on.

5.4.3 Control message process

Figure 5.2 depicts the ControlMsgProcess which handles control messages using the Trickle algorithm.

cp1

τ := τl
newfresh(t)[
τ/2 ≤ t < τ

]
c := 0
e := 0

Log ! INIT,
{cl}

cp0 cp2

[
cl = t

][
c < k ∧ e < CTRL_EXPIR

]
ControlMsg ! myseq-buff

[
cl = t

][
c ≥ k ∧ e < CTRL_EXPIR

]

[
cl = τ

]
τ := min(2 · τ, τh)

newfresh(t)[
τ/2 ≤ t < τ

]
c := 0
e ++,
{cl}

cp3

[
e = CTRL_EXPIR

]
Log ! TERMIN

macro analyze-seq: consistent := true
for (nat i = 0 : BUFF_SIZE− 1)

if (myseq-buff[i] 6= seq-buff[i]) then
consistent := false
if ¬(mydp-run[i]) then

mydp-run[i] := true

[
e < CTRL_EXPIR

][
cl < t

]
ControlMsg ? seq-buff

analyze-seq()[
consistent

]
c ++

[
e < CTRL_EXPIR

][
cl < t

]
ControlMsg ? seq-buff

analyze-seq()[
¬consistent

]
τ := τl

newfresh(t)[
τ/2 ≤ t < τ

]
c := 0
e := 0,
{cl}

[
cl < τ

]
ControlMsg ? seq-buff

analyze-seq()[
consistent

]
c ++

[
cl < τ

]
ControlMsg ? seq-buff

analyze-seq()[
¬consistent

]
τ := τl

newfresh(t)[
τ/2 ≤ t < τ

]
c := 0
e := 0,
{cl}

FIGURE 5.2: Control messages processing.

From the initial state cp0, the control messages process assigns t with a new fresh value using the action
newfresh(t), this new value for t is constrained by the guard τ/2 ≤ t < τ. The clock cl is initially reset, as
glimpsed before it is used to activate the different Trickle events, that is when reaching t and starting new
τ-intervals.

When the process reaches the state cp1, it can receive a control message from a neighboring node before
reaching t (loop-transitions on cp1). Such message carries a sequence of 0 and 1. The value 1 (resp. the
value 0) at place i ≥ 0 of the sequence indicates that the neighbor holds (resp. does not hold) the data
message which is identified by sequence number MIN_SEQ + i. The message is processed as follows (see
macro analyse-seq): for each value of the sequence on which the node and its neighbor does not agree, the
corresponding data process of the node (the instance of DataMsgProcess which initialized with myseq :=
MIN_SEQ + i, see Figure 5.1) is started by assigning mydp-run[i] with true. This allows us a) in case of a not
up-to-date neighbor, to schedule Trickle transmissions; and b) in case of the node itself not being up-to-date,
to wait for upcoming data messages, yet without starting transmissions. Trickle rule related to (in)consistency
is then applied: if the neighbor is up-to-date, i.e., the node and its neighbor agree on all values of the sequence,

99

then the counter c of process is incremented (upper loop-transitions on cp1), otherwise a new τ-interval is
considered for the process where τ and c are reset, since additional little-spaced control messages are needed
for convergence (lower loop-transitions on cp1). When cl = t, the transmission is scheduled only if c < k in
order to inform neighbors of data messages the nodes possess (upper transition cp1 → cp2), otherwise the
process does nothing (lower transition cp1 → cp2).

At state cp2, while cl < τ and received control messages are consistent, the counter c is incremented (loop-
transition on cp2), upon the reception of inconsistent control message the process starts a new τ-interval by
resetting both cl and c (lower transition cp2 → cp1). When cl = τ, the process increases the listening interval
by doubling τ (up to τh), and that is when the variable e is incremented (upper transition cp2 → cp1).

The variable e disables the overall Trickle behavior when it reaches CTRL_EXPIR, and terminates the
process (transition cp1 → cp3).

5.4.4 Data message process

The DataMsgProcess is given in Figure 5.3. The process implements the Trickle algorithm and therefore is
structured in a similar manner as the control messages process. We recall that it is instantiated as many
times as the number of the data messages to be disseminated, the variable myseq of the process identifies its
associated data message.

dp1

[
ϕ1
]

τ := τl
newfresh(t)[
τ/2 ≤ t < τ

]
c := 0
e := 0,
{cl}

dp0 dp2

[
cl = t

][
(c < k ∧ ϕ2) ∧ e < DATA_EXPIR

]
DataMsg ! my-buff[myseq−MIN_SEQ]

ϕ2 : my-buff[myseq−MIN_SEQ] 6= UNDEF
ϕ1 : mydp-run[myseq−MIN_SEQ]

[
cl = t

][
(c ≥ k ∨ ¬(ϕ2)) ∧ e < DATA_EXPIR

]

[
cl = τ

]
τ := min(2 · τ, τh)

newfresh(t)[
τ/2 ≤ t < τ

]
c := 0
e ++,
{cl}

dp3

[
e = DATA_EXPIR

]

macro analyze-data: consistent := true
if (myseq = d.seq) then

my-buff[d.seq−MIN_SEQ] := d
myseq-buff[d.seq−MIN_SEQ] := 1
firmware[d.offset] = d.fragment

else
consistent := false

[
e < DATA_EXPIR

][
cl < t

]
DataMsg ? d

analyze-data()[
consistent

]
c ++

[
e < DATA_EXPIR

][
cl < t

]
DataMsg ? d

analyze-data()[
¬consistent

]
τ := τl

newfresh(t)[
τ/2 ≤ t < τ

]
c := 0
e := 0,
{cl}

[
cl < τ

]
DataMsg ? d

analyze-data()[
consistent

]
c ++

[
cl < τ

]
DataMsg ? d

analyze-data()[
¬consistent

]
τ := τl

newfresh(t)[
τ/2 ≤ t < τ

]
c := 0
e := 0,
{cl}

FIGURE 5.3: Data messages processing.

When ϕ1 : mydp-run[myseq−MIN_SEQ] is evaluated to true, the process is activated (transition dp0 → dp1).
The process can transmit the data message if it exists in the node buffer namely my-buff, i.e., ϕ2 :
my-buff[myseq−MIN_SEQ] 6= UNDEF is true (upper transition on dp1 → dp2). Actually, there are two
possible ways to hold such a message: a) either at instantiation, this is the case of the instance n1 : Node of

100

Figure 5.1 (my-buff[myseq−MIN_SEQ] is properly initialized) as n1 represents the data messages generator
in that setting; b) or upon its reception from a neighboring node (upper loop-transitions respectively on dp1
and dp2). In the latter case, the process stores the message in its buffer, it also write the carried firmware
fragment at the appropriate location of the flash memory (see macro analyse-data). Firmware reconstitution
is not part of the MPL protocol, naturally it is just a well-known application of this multicast protocol usage
in WSN, which constitutes our case study.
As for the control messages process, the process is associated with a Trickle timer expirations limit
DATA_EXPIR monitored by its variable e which is incremented at each τ-interval expiration (upper transi-
tion dp2 → dp1) and is reset when τ is assigned with τl. The process terminates when e reaches DATA_EXPIR
(transition dp1 → dp3).

5.5 Experimenting with scenario selection

In this section, we propose firstly a selection method in Diversity to compute feasible symbolic paths which
cover a sequence of elements (formula, action). Then, we present several WSN network topologies and two
coverage objectives in a WSN network to cover by using proposed selection method. The last part is dedicated
to the analyses of scenarios which are generated from the selection method for two coverage objectives.

5.5.1 An extended selection method with observers

We recall that the idea is to guide the symbolic exploration with the objective to compute feasible system
paths covering sequences of (sender, receiver) pairs implementing the Send Receive Pair Coverage criterion
(SRPC) [68, 69]. Those are combination of two transitions labeled respectively by an internal emission and its
corresponding internal reception where an emission (c!m) of a message m by some subsystem is followed by
the corresponding reception (c?m) of m by another subsystem (see Section 4.5.2).

The system is asynchronous, meaning that emissions and receptions are likely to be separated with po-
tentially many other intertwining actions which are difficult to guess beforehand, that’s why we propose to
use an heuristic combined with observers:

• A parametric heuristic Hit-or-Jump [15] (implemented in Diversity by the module BEHAV-
IOR_SELECTION, see Section 4.5.2) is used to cope with the potential combinatorial explosion due
to asynchrony. It runs a regular breadth-first exploration of the symbolic tree up to a certain height (H:
height of exploration), and after that, if a path satisfies the coverage the exploration stops, otherwise a
number of paths (HC: hit count) which maximize the coverage are chosen at random to re-iterate with
another breadth-first (remaining paths are disregarded). The number of carried breadth first is bounded
as well (JTL: jump trials limit), when all paths in a given breadth-first do not cover anything, a number
of paths can be chosen at random to continue the exploration (JC: jump count);

• A synchronous observer [2] to express reachability of states (targets of some feasible system paths) after
some sequences of non-consecutive pairwise emissions/receptions. It is able to read I/O actions and
to progress as the actions of the sequence are covered, unmatched in-between actions are ignored up to
a parametric limit (if the limit is reached the path is disregarded). Moreover, the observer can monitor
formulas on process’s clocks and data variables which need to be satisfied by some encountered states
in the exploration.

This selection is integrated with a scenario generator from the selected system paths (see module
SD_Serializer, Section 4.5.2). Those are produced in the form of sequence diagram annotated with time and
data information and can be visualized by the PlantUML tool (http://plantuml.com).

http://plantuml.com

101

We present next the WSN topologies of nodes for the case study. For those, we will present experimental
results on scenario selection using the tooling support discussed above.

5.5.2 Some sensor nodes topologies

For each topology, we illustrate the connections between two different nodes by arrows. A connection from
the node ni to the node nj in the network is drawn as in Figure 5.4. Whenever nj is reached by ni, we call
that nj is a neighbor of ni and it can receive messages which are emitted by ni since it belongs to the wireless
range of ni. However, ni cannot receive anything from nj since it does not belong to the wireless range of nj.
We recall that the connection between ni and nj is not bidirectional.

ni
nj

nj is a neighbour of ni
ni can send MPL Messages to nj

FIGURE 5.4: A connection in the network

Let us introduce the first topology T1 which is composed of three nodes n1, n2 and n3 where n1 is defined
as the MPL Data Message generator which receives all fragments of the firmware from an external source
and emits them to all nodes in the network. In the sequel, without loss of generality, we consider always that
n1 is a data message generator for each topology.

n1: Node

n2: Node

n3: Node

FRAGMENTi of the
firmware and its offset

n1 MPL Data Message generator

FIGURE 5.5: Topology T1

In our experimentations, the number of nodes in the topologies are progressively increased. The second
and the third topology (denoted respectively by T2 and T3) are depicted in Figure 5.6. It consists of 4 nodes
namely n1, n2, n3 and n4. The only difference between T2 and T3 is that in T2, the node n3 can send its data
to the node n2 whereas in T3, this connection is not possible.

n1: Node

n2: Node

n3: Node

n4: Node

FRAGMENTi of the
firmware and its offset

FIGURE 5.6: Topology T2 and T3 (removing the connection from n3 to n2)

102

The next topology that we consider in our experimentations is T4. The latter has one more node than the
two previous topologies. This node (i.e. n5) is reached by the connection from node n3 to n5.

n1: Node

n2: Node

n3: Node

n4: Node

n5: Node

FRAGMENTi of the
firmware and its offset

FIGURE 5.7: Topology T4

5.5.3 Coverage objective 1 - All nodes are updated

We consider next the selection of system paths (or scenarios) which represent situations of all nodes being
up-to-date, in other words they all hold the newest data messages in their buffer at a certain point of the
exploration. The experiments are conducted by using firstly an observer encoding a sequence of formulas
on state variables to be satisfied by the selected path in the order of their occurrence in the sequence, then
sequences mixing actions and formulas. The latter being more expressive allows in general faster selection
when combined with the heuristic as we will see next.

5.5.3.1 Selection using sequences of ordered formulas

The sequence SEQ1. For the first experiments, we use a sequence composed of formulas in order to express
our coverage objective all nodes are up-to-date:

SEQ1: sequence of ordered formulas fi with 1 ≤ i ≤ 3 and fi is defined as ni.myseq-buff = [1, 1]

which requires three nodes in the topology to be updated. Indeed, when a node receives all fragments which
are necessary for the firmware update, its buffer myseq-buff is expected to be assigned with [1, 1]. For the
topology T1 which is composed of 3 nodes, the sequence SEQ1 is concretely the following:

f1 : n1.myseq-buff = [1, 1]
f2 : n2.myseq-buff = [1, 1]
f3 : n3.myseq-buff = [1, 1]

The sequence SEQ1 is constructed based on the topology: as we know, n1 is considered as the MPL Data
Message generator, this node is always updated first of all, lately n2 and n3 are updated by receiving data
from n1.

Table 5.1 shows results for the experiment conducted on topology T1. Each correspond to an heuristic
exploration that has been executed with 20 trials, and the metrics are such that number of evaluations, time
and rate, are computed on average for the 20 trials.

The coverage result for SEQ1 is shown in Table 5.1. It is clear that the coverage ratio has grown (from
60% to 80% and 90%) with the increase of the local height (respectively from 2 to 3 and 4). However, the
algorithm takes a longer coverage duration, from 19 seconds to more than 2 minutes and especially, more
than 12 minutes in case of the local height of 4. A more important number of evaluations is also observed
(respectively from 274 to 1903 and 10287).

103

This increase is explained as follows: with a greater local height, the heuristic explores locally all possible
sequences of a bigger height, which takes obviously more time than the execution of a smaller one. Further-
more, we obtain a better coverage ratio since a greater local height explores longer paths than a smaller local
height, which increases the chances to cover the considered elements in the sequence.

Property Hit-or-Jump parameters #EV Time Rate
#H #JTL #HC #JC

All updated 2 40 2 2 274 19s120ms 60%
All updated 3 30 2 2 1903 2m25s 80%
All updated 4 30 2 2 10287 12m9s800ms 90%

#H: height of exploration triangle, #JTL: jump trials limit,
#HC: hit count, #JC: jump count

#EV: count of successful evaluations of exercised transitions
successful ratio for 20 trials of the selection heuristics

Experimentations on an ASUS computer, memory 8GB, processor Intel Core i7 2.00GHz × 4, Ubuntu operating system.

TABLE 5.1: Experimentations with SEQ1 on topology T1

The sequence SEQ2. The sequence SEQ1 is slightly modified in order to obtain the sequence SEQ2 as follows:

f1,0 : n1.myseq-buff[0] = 1 f1,1 : n1.myseq-buff[1] = 1
f2,0 : n2.myseq-buff[0] = 1 f2,1 : n2.myseq-buff[1] = 1
f3,0 : n3.myseq-buff[0] = 1 f3,1 : n3.myseq-buff[1] = 1

The formula fi,j means that the node ni has its array myseq-buff whose value at the position j is 1, i.e. the
node ni has already received the data message of firmware at the position j.
This new sequence allows the heuristic to improve the coverage ratio compared with the SEQ1, the explo-
ration checks the formula myseq-buff = [1, 1] for each node, i.e. the node must receive two data messages of
firmware to satisfy the given formula. Whereas in SEQ2, this formula is rewritten by two separate formulas
myseq-buff[0] = 1 and myseq-buff[1] = 1, giving a sequence of 6 formulas for 3 nodes in total. Obviously, it
is easier to cover sequentially two separate formulas than their conjunction.

According to the experiments, it takes more than 18 seconds to update the whole topology on average
(line 1 in Table 5.2). With a greater local height (i.e. 3), it takes only 1m35s to generate the scenario, which
is much faster than the experimentation with the same configuration for SEQ1. Similarly, for the height of 4,
the sequence SEQ2 takes only 7 minutes to cover the scenario compared to 12 minutes of the sequence SEQ1.

Once again, we find that the strategy using the sequence SEQ2 takes more time to generate scenarios with
a greater local height. This result is similar to the experiments for SEQ1 for the same reasons.

Moreover, for the last experimentation where the local height of the breadth-first trials is 4, we have an
absolute coverage ratio (20 successes over 20 times). We realize that by increasing the local height, we can
increase the chance to cover the scenario, but the coverage duration can also grow very quickly.

Selection objective Hit-or-Jump parameters #EV Time Rate
#H #JTL #HC #JC

All updated 2 40 2 2 234 18s110ms 90%
All updated 3 30 2 2 1142 1m35s 90%
All updated 4 30 2 2 5727 7m41s790ms 100%

TABLE 5.2: Experimentations with SEQ2 on topology T1

104

Sometimes, even though the exploration is executed with an important local height, we cannot generate
the scenario. Indeed, since the symbolic execution chooses to explore randomly a number of symbolic paths,
it may not choose the right paths to continue the process and does not succeed in covering the sequence.
Comment. From the experiments with SEQ1 and SEQ2, we can draw the following remark: the sequence
SEQ2 performs a better coverage result than SEQ1. In the next experiments, our sequences will be con-
structed in a similar way as SEQ2.

The sequence SEQ3. Now, let us consider the coverage of the objective all nodes are up-to-date on the topology
T2 and T3 by using the sequence of formulas SEQ3 defined in the same way as SEQ2.

SEQ3: the sequence of ordered formulas fi,j with 1 ≤ i ≤ 4, 0 ≤ j ≤ 1 and fi,j is defined as ni.myseq-buff[j] = 1

Table 5.3 summarizes the experimental results. For a topology composed of 4 nodes (T2 and T3), we
realize that the exploration needs more time to cover the sequence SEQ3 in all cases: for example, when the
local height is 2, the execution needs on average 18s110ms to cover the objective in the topology T1, whereas
it needs more than four times to cover the objective in T2 and T3 (respectively 1m20s and 1m18s). Or in
case where the local height is 4 (line 3 and line 6), the exploration takes almost a third of an hour to update
completely the four nodes. This can be due to the size of topology of T2 and T3, as they have one more node
than T1, more exchanges to be updated. Once again, we find that the coverage ratio for the two topologies is
increased with the growth of the local height as in the first topology T1.

Selection objective Hit-or-Jump parameters #EV Time Rate
#H #JTL #HC #JC

All updated (T2) 2 40 2 2 689 1m20s135ms 20%
All updated (T2) 3 30 2 2 4279 4m28s400ms 70%
All updated (T2) 4 30 2 2 22290 19m49s60ms 80%
All updated (T3) 2 40 2 2 796 1m18s250ms 20%
All updated (T3) 3 30 2 2 4144 3m42s 90%
All updated (T3) 4 30 2 2 19572 17m25s120ms 80%

TABLE 5.3: Experimentations with SEQ3 on topology T2 and T3

Comment. Until now, our selection heuristic shows good execution time: certainly we do not conduct ex-
haustive exploration but we have succeeded in achieving the coverage, within a reasonable time if we take as
reference running model-checking techniques on similar number of parallel Trickle processes, see works [26,
87, 88], objective all nodes are up-to-date. We remind the reader that a node in the MPL protocol is defined by
3 Trickle processes, which gives in total 12 processes for a topology of 4 nodes, the heuristic spent slightly
more than 17 minutes to achieve the coverage with a very high coverage ratio (80%).

Selection objective Hit-or-Jump parameters #EV Time Rate
#H #JTL #HC #JC

All updated 2 40 2 2 1009 1m46s906ms 10%
All updated 3 30 2 2 8807 12m12s160ms 60%
All updated 4 30 2 2 45120 37m15s60ms 60%

TABLE 5.4: Experimentations with SEQ4 on topology T4

The sequence SEQ4. Let us consider now the topology T4 which consists of 5 nodes (see Figure 5.7) with the
sequence of formulas SEQ4.

105

SEQ4: the sequence of ordered formulas fi,j with 1 ≤ i ≤ 5, 0 ≤ j ≤ 1 and fi,j is defined as ni.myseq-buff[j] = 1

With a local height of 2, the exploration reaches only 2 successful coverage over 20 trials (Table 5.4). The
performance is worse than the topologies T1, T2 and T3, due to the increased size of topology T4. When
increasing the local height of the breadth-first we obtain more interesting results in terms of coverage ratio,
however it takes more than 12 minutes to reach the coverage for a local height of 3, and more than half an
hour (37 minutes) for a local height of 4.

5.5.3.2 Selection using sequences mixing actions and formulas

Previously, we have used selection guided by sequences of ordered formulas. In the following, we propose
to guide the selection of sequences mixing formulas and actions. We target as before the coverage where all
nodes are up-to-date. We compare also the experiment results obtained by this selection method with the ones
using the sequences of formulas only (from previous subsection).

The sequence SEQ5. The following sequence is defined for the topology T3:

SEQ5: (n1, ControlMsg![1, 1]).
(n2, ControlMsg?[1, 1]).(n3, ControlMsg?[1, 1])
(n1, DataMsg!∗).(n2, DataMsg?∗).(n3, DataMsg?∗).
(n3, DataMsg!∗).(n4, DataMsg?∗).
(n3, DataMsg!∗).(n4, DataMsg?∗).∧

i≤4 ni.myseq-buff = [1, 1]

The sequence SEQ5 denotes a natural idea to target the update of the most distant node (n4) from the gen-
erator (n1) in T3. In order to quickly start the dissemination, the sequence suggests that n1 sends a control
message ControlMsg![1, 1] to n2 and n3 to start their data messages processes: myseq-buff of n2 (resp. of n3)
is expected to be assigned with [0, 0] (if nothing happens in between). We note that n1 has already started its
data messages process due to initialization of mydp-run :=

[
true, . . . ,true

]
(see Figure 5.1). SEQ5 suggests

using few other data messages exchanges to reach the coverage objective more rapidly. On the other hand,
the formula expresses that all nodes are up-to-date which represents the main goal, i.e., when it is satisfied
the heuristics asserts.

Selection objective Hit-or-Jump parameters #EV Time Rate
#H #JTL #HC #JC

All updated 2 40 2 2 167 16s200ms 90%
All updated 3 30 2 2 870 38s250ms 100%
All updated 4 30 2 2 1826 1m12s210ms 100%

TABLE 5.5: Experimentations with SEQ5 on topology T3

The coverage results are depicted in Table 5.5. We also show the graphical depiction of a scenario for this
topology in Figure 5.8, which has been generated by our module SD_Serializer from a system path satisfying
the coverage objective. By comparing with the results obtained in Table 5.3, we can see that shorter time is
needed to obtain the coverage for all considered local heights. Moreover, the coverage ratio is much better by
using this selection.
Comment. By applying this kind of sequence to the topology T3, we obtain a better result than using the
sequences composed of formulas only, both in term of coverage ratio and duration. However, this selection
requires that the user understands the topology in order to provide a compatible sequence. For example, in
topology T3, a sequence that proposes the update of n4 before n2 and n3 is impossible, since n4 is the most
distant node from the generator.

106

5.5.4 Coverage objective 2 - At least one node is outdated

Let us highlight now an atypical, less studied, scenario of MPL protocol (Figure 5.9) which can give insights
on the unfairness of the diffusion algorithm under some type of topology. The scenario has been computed
for topology T3 (Figure 5.6) by using the following sequence which aims to reach a situation in which the
most distant node n4 from the generator n1 cannot be updated.

SEQ6 : [0](n1, Log!INIT); [0](n2, Log!INIT); [0](n3, Log!INIT); [0](n4, Log!INIT);
[0](n1, ControlMsg![1, 1]); [0](n2, ControlMsg?[1, 1]); [0](n3, ControlMsg?[1, 1]);
[2](n1, DataMsg!(1, FRAGMENT0, 0));
[2](n2, DataMsg?(1, FRAGMENT0, 0)); [2](n3, DataMsg?(1, FRAGMENT0, 0));
[4](n4, ControlMsg![0, 0]); [4](n2, ControlMsg?[0, 0]]);
[8](n3.dp1, Log!TERMIN); [4](n4.dp1, Log!TERMIN)
[n4.my-buff = [UNDEF, UNDEF]];
MPL parameters: k=2, τl =4, τh =8, Control_EXPIR=2, DATA_EXPIR=2.

Limits on possible in-between actions (L= 0, 2, 4, 8, . . .) are the result of an iterative process starting with
small values with the objective to achieve the targeted coverage as soon as possible. This limit is determined
as the value inside the brackets between two any communication actions. The sequence SEQ6 imposes a strict
sequencing of initialization messages of control processes for all nodes to quickly start the dissemination
(L=0). Then, it expresses that generator n1 (initially possesses all the fragments of the firmware) broadcasts
its control message to its neighbors n2 and n3. Few more actions are then indicated to better guide the
heuristic.

A computed scenario is depicted in Figure 5.9, the heuristics has explored more behaviors than in the
first scenario (of Figure 5.8). This is due to the non-trivial Trickle situation of the node n4 in topology: n4 can
only receive messages from n3, which can be in a situation where it cannot send data messages anymore to
its neighbors (including n4) after receiving “enough" consistent messages (redundancy constant k has been
reached according to Trickle algorithm). So the heuristics has generated significantly more exchanged mes-
sages compared to the first scenario and of course, more transitions being evaluated (see the evaluation
number in the table).

Selection objective Hit-or-Jump parameters #EV Time Rate
#H #JTL #HC #JC

At least one node outdated 2 40 2 2 167 40s160ms 90%
At least one node outdated 3 30 2 2 870 2m15s 100%

TABLE 5.6: Experimentations with SEQ6 on topology T3

5.5.5 Analyses of generated scenarios

In this section, we discuss the two scenarios that have been previously referred to, and analyze them with
respect to the MPL/Trickle required behavior.

5.5.5.1 Scenario for the coverage objective all node are updated

The scenario of Figure 5.8 is depicted with the following graphical conventions: each emission of a given
message and its corresponding reception are colored with the same unique color in the diagram. Besides,
each message emission (or reception) by a node has a label of the form c!m@Z (or c?m@Z) where Z is a local
timestamp (to the node) as a sum of fresh variables among z0, z1, z2, Fresh variables occurring in a local
timestamp definition represent durations of past executions of the node transitions (including the emission

107

or reception transition being considered), as glimpsed in Section 5.4. In the scenario, initial durations from
the beginning for n1, n2, n3, n4 are respectively denoted by z0, z1, z2, z3.

In the scenarios generation, we have used Diversity to check the feasibility of all causal communications
of the form (ni, c!m@Z1), (nj, c?m@Z2), (nj, d!m@Z3) and (ni, d?m@Z4) using those timestamps: we check that
the formula Z1 ≤ Z2 ∧ Z3 ≤ Z4 (by construction we have Z1 < Z4 and Z2 < Z3) in conjunction with local
PC of the nodes are satisfiable2. Actually, the PC are generated from the successive symbolic evaluation of
guards on clocks and other owned variables occurring in a given path. For illustration, we give next the PC
generated by the heuristics for the node n3.

Conditions on clocks of n3:

PC11

z186 + z198 + z302 + z310 + z338 = t54
z198 + z302 + z310 + z338 + z378 + z530 = t171
z310 + z338 + z378 = t279
z198 < t171
z310 < t279
z82 < t15

Conditions on other variables of n3:

PC12

t15 < 4
t54 < 4
t171 < 4
t279 < 4
0 ≤ (t15 +−2)
0 ≤ (t54 +−2)
0 ≤ (t171 +−2)
0 ≤ (t279 +−2)

with k = 2, τl = 4, τh = 8, DATA_EXPIR = 2 and CTRL_EXPIR = 2.

PC11 and PC12 reflects the intended transmissions and receptions dates of both control and data messages
during the successive τ-intervals for n3 (with τl = 4). For example, the transmission of the control message
ControlMsg![1, 1]@z186 + . . . + z82 occurs exactly at z186 + . . . + z82 with t54 = z186 + z198 + z302 + z310 + z338 ∧
2 ≤ t54 < 4 where t54 is a fresh variable which denotes the random value chosen for t (constrained by
τ/2 ≤ t54 < τ in the system). The same analysis applies on the last transmission timestamp of the data
message DataMsg!(1, FRAGMENT0, 0)@z186 + . . . + z82 with t171 = z198 + z302 + z310 + z338 + z378 + z530. The
latter achieves the update of the node n4, see message DataMsg?(1, FRAGMENT0, 0)@z3 + . . . z675 (being
out-of-reach of the node n1, the data messages generator n1).

Table 5.7 gives the coverage achieved by this first scenario with respect to the Send Receive Pair Coverage
criterion (SRPC) [68] “In order to achieve full sr-pairs coverage every sr-pair must be executed at least once
in testing" where an sr-pair is a combination of send and receive statements for a message m in different
machines, which are respectively of the form (ni, c!m) and (nj, c?m) in our setting. Most of the missing sr-
pairs have been separately achieved by producing trivial sequences for the heuristics: regarding the model,
we will not have all the coverage since n1 can only send the control message ControlMsg!m1 with m1 = [1, 1],
other values for m1 are not activated in this model. This is an intrinsic limitation to this coverage criterion.

2In order to check satisfiability of formulas, Diversity uses off-the-shelf SMT solvers such that Z3, CVC4, etc.

108

Trickle

n1:Node

n1:Node

n2:Node

n2:Node

n3:Node

n3:Node

n4:Node

n4:Node

Log ! INIT @(z_0 + z_4)

Log ! INIT @(z_1 + z_9)

((t_15 < 4) && (0 < = (t_15 + -2)))

Log ! INIT @(z_2 + z_22)

Log ! INIT @(z_3 + z_39)

Cont rolMsg ! [1 , 1] @(z_0 + z_4 + z_40)

Cont rolMsg ! [1 , 1] @(z_0 + z_4 + z_40)

Cont rolMsg ? [1 , 1] @(z_1 + z_65 + z_9)

((t_54 < 4) && (z_82 < t_15) && (0 < = (t_54 + -2)) &&
((z_0 + z_4 + z_40) < = (z_2 + z_22 + z_82)))

Cont rolMsg ? [1 , 1] @(z_2 + z_22 + z_82)

DataMsg ! { 1 , FRAGMENT_0 , 0 } @(z_0
+ z_100 + z_136 + z_4 + z_40)

DataMsg ! { 1 , FRAGMENT_0 , 0 } @(z_0
+ z_100 + z_136 + z_4 + z_40)

DataMsg ? { 1 , FRAGMENT_0 , 0 } @(z_1
+ z_145 + z_169 + z_65 + z_9)

((t_171 < 4) && (0 < = (t_171 + -2)) && ((z_0 + z_4 + z_40)
< = (z_2 + z_22 + z_82)))

((z_198 < t_171) && ((z_0 + z_100 + z_136 + z_4 + z_40) < =
(z_186 + z_198 + z_2 + z_22 + z_82)))

DataMsg ? { 1 , FRAGMENT_0 , 0 }
@(z_186 + z_198 + z_2 + z_22 +
z_82)

DataMsg ! { 2 , FRAGMENT_1 , 1 } @(z_0
+ z_100 + z_136 + z_224 + z_256 + z_4
+ z_40)

DataMsg ! { 2 , FRAGMENT_1 , 1 } @(z_0
+ z_100 + z_136 + z_224 + z_256 + z_4
+ z_40)

DataMsg ? { 2 , FRAGMENT_1 , 1 } @(z_1
+ z_145 + z_169 + z_265 + z_285

+ z_65 + z_9)

((t_279 < 4) && (0 < = (t_279 + -2))

((z_310 < t_279) && ((z_0 + z_100 + z_136 + z_224 + z_256 + z_4 + z_40)
< = (z_186 + z_198 + z_2 + z_22 + z_302 + z_310 + z_82)))

DataMsg ? { 2 , FRAGMENT_1 , 1 }
@(z_186 + z_198 + z_2 + z_22 +
z_302 + z_310 + z_82)

(((z_186 + z_198 + z_302 + z_310 + z_338) = = t_54))

Cont rolMsg ! [1 , 1] @(z_186 +
z_198 + z_2 + z_22 + z_302 +
z_310 + z_338 + z_82)

Cont rolMsg ?
[1 , 1]

@(z_3 +
z_355 +
z_39)

(((z_310 + z_338 + z_378) = = t_279))

DataMsg ! { 2 , FRAGMENT_1 , 1 }
@(z_186 + z_198 + z_2 + z_22 +
z_302 + z_310 + z_338 + z_378 +
z_82)

DataMsg ?
{ 2 , FRAGMENT_1 , 1 }
@(z_3 + z_355 +
z_375 + z_39 + z_431)

(((z_198 + z_302 + z_310 + z_338 + z_378 + z_530) = = t_371))

DataMsg ! { 1 , FRAGMENT_0 , 0 }
@(z_186 + z_198 + z_2 + z_22 +
z_302 + z_310 + z_338 + z_378 +
z_530 + z_82)

DataMsg ?
{ 1 , FRAGMENT_0 , 0 }
@(z_3 + z_355 +
z_375 + z_39 + z_431

+ z_667 + z_675)

FIGURE 5.8: Scenario for the first coverage objective - All nodes are updated

109

sr-pair send, receive statements Coverage
sr(1,2)(m1) (n1, ControlMsg!m1), (n2, ControlMsg?m1) 1/4
sr(1,2)(m2) (n1, DataMsg!m2), (n2, DataMsg?m2) 2/2
sr(1,3)(m1) (n1, ControlMsg!m1), (n3, ControlMsg?m1) 1/4
sr(1,3)(m2) (n1, DataMsg!m2), (n3, DataMsg?m2) 2/2
sr(2,3)(m1) (n2, ControlMsg!m1), (n3, ControlMsg?m1) none
sr(2,3)(m2) (n2, DataMsg!m2), (n3, DataMsg?m2) none
sr(3,1)(m1) (n3, ControlMsg!m1), (n1, ControlMsg?m1) 1/4
sr(3,1)(m2) (n3, DataMsg!m2), (n1, DataMsg?m2) none
sr(3,2)(m1) (n3, ControlMsg!m1), (n2, ControlMsg?m1) 1/4
sr(3,2)(m2) (n3, DataMsg!m2), (n2, DataMsg?m2) none
sr(3,4)(m1) (n3, ControlMsg!m1), (n4, ControlMsg?m1) 2/4
sr(3,4)(m2) (n3, DataMsg!m2), (n4, DataMsg?m2) 2/2
sr(4,2)(m1) (n4, ControlMsg!m1)(n2, ControlMsg!m1) none
sr(4,2)(m2) (n4, DataMsg!m2)(n2, DataMsg!m2) none

m1 ∈ {[0, 0], [1, 0], [0, 1], [1, 1]}
m2 ∈ {(1, FRAGMENT0, 0), (2, FRAGMENT1, 1)}

TABLE 5.7: Achieved coverage by the (1st) scenario of Figure 5.8 with respect to Send Receive
Pair Coverage criterion (SRPC) [68].

5.5.5.2 Scenario for the coverage objective at least one node is outdated

In the scenario of Figure 5.9, initial durations from the beginning for n1, n2, n3, n4 are respectively denoted by
z0, z1, z2, z3. PC of processes of n3 (an updated node) are reported for illustration. Those reflect the moment
of transmissions and receptions of both control messages and data messages within chosen τ-intervals (with
τl = 4): e.g., the reception of the first control message ControlMsg?[1, 1]@(z2 + z22 + z86) occurs exactly at
z2 + z22 + z86 with z86 < t15 where t15 denotes the random value chosen for t (constrained by τ/2 ≤ t15 < τ),
meaning that the reception of this message satisfies the constraint cl < t. Before this reception, the clock
cl of the control messages process (of n3) has been reset after initialization (Log!INIT@(z2 + z22)). Subse-
quently, at the instance t58, n3 disseminates its control message that has just been updated under the con-
dition z186 + z198 + z302 + z318 + z338 = t58. Now the node n3, despite of being already updated, cannot
send data messages to its neighbors, including n4, since the counter c of its first data process has reached
the redundancy constant k (equals to 2) after receiving two times the data message respectively from n1:
DataMsg?(1, FRAGMENT0, 0)@(z2 + . . . + z198) and n2: DataMsg?(1, FRAGMENT0, 0)@(z2 + . . . + z470). For
this data message, n4 terminates the corresponding handling process (Log?TERMIN@(z3 + . . .+ z1063)) at the
end of the scenario after two consecutive τ-intervals without being updated by its neighbor n3. Such unfair
situations arise from the value of redundancy constant k being common to all nodes and hence should be set
carefully according to the nodes topology.

For more information about MPL models and experimentations, please visit this GitHub repository:
https://github.com/ngo-minh-thang-nguyen/MPL_Trickle

5.6 Conclusion

In this chapter, we have provided behavioral models for the Trickle-based MPL protocol specifying licit timed
multicast communications which can be used in Model-based Testing activities. Then, in order to automate
the selection of relevant scenarios to be tested from such distributed models with high combinatorial of com-
munications (due to asynchrony), we have extended the exploration heuristic by observers. Those encode
coverage sequences of non-consecutive pairwise emissions and receptions, including predicate formulas on
the content of messages. Our selection method and support tooling allowed us to generate in reasonable time
relevant scenarios for the Trickle-based MPL protocol displaying an up-to-date or outdated states of network.

https://github.com/ngo-minh-thang-nguyen/MPL_Trickle

110

Trickle

n1:Node

n1:Node

n2:Node

n2:Node

n3:Node

n3:Node

n4:Node

n4:Node

Log ! INIT @(z_0 + z_4)

Log ! INIT @(z_1 + z_9)

((t_15 < 4) && (0 < = (t_15 + -2)))

Log ! INIT @(z_2 + z_22)

Log ! INIT
@(z_3 +
z_39)

Cont rolMsg ! [1 , 1] @(z_0 + z_4 + z_40)

Cont rolMsg ! [1 , 1] @(z_0 + z_4 + z_40)

Cont rolMsg ? [1 , 1] @(z_1 + z_65 + z_9)

((t_58 < 4) && (z_86 < t_15) && (0 < = (t_58 + -2))
&& ((z_0 + z_4 + z_40) < = (z_2 + z_22 + z_86)))

Cont rolMsg ? [1 , 1] @(z_2 + z_22 + z_86)

DataMsg ! { 1 , FRAGMENT_0 , 0 } @(z_0 +
z_100 + z_136 + z_4 + z_40)

DataMsg ! { 1 , FRAGMENT_0 , 0 } @(z_0 +
z_100 + z_136 + z_4 + z_40)

DataMsg ? { 1 , FRAGMENT_0 , 0 } @(z_1 +
z_145 + z_169 + z_65 + z_9)

((t_171 < 4) && (0 < = (t_171 + -2)) (z_198 < t_171) && ((z_0 + z_100
+ z_136 + z_4 + z_40) < = (z_186 + z_198 + z_2 + z_22 + z_86)))

DataMsg ? { 1 , FRAGMENT_0 , 0 } @(z_186
+ z_198 + z_2 + z_22 + z_86)

DataMsg ! { 2 , FRAGMENT_1 , 1 } @(z_0 +
z_100 + z_136 + z_224 + z_260 + z_4 +
z_40)

DataMsg ! { 2 , FRAGMENT_1 , 1 } @(z_0 +
z_100 + z_136 + z_224 + z_260 + z_4 +
z_40)

DataMsg ? { 2 , FRAGMENT_1 , 1 } @(z_1 +
z_145 + z_169 + z_265 + z_293 + z_65 +
z_9)

((t_279 < 4) && (z_318 < t_279) && (0 < = (t_279 + -2)) && ((z_0 + z_100 + z_136 +
z_224 + z_260 + z_4 + z_40) < = (z_186 + z_198 + z_2 + z_22 + z_302 + z_318 + z_86)))

DataMsg ? { 2 , FRAGMENT_1 , 1 } @(z_186
+ z_198 + z_2 + z_22 + z_302 + z_318 +
z_86)

((z_186 + z_198 + z_302 + z_318 + z_338) = = t_58))

Cont rolMsg ! [1 , 1] @(z_186 + z_198 +
z_2 + z_22 + z_302 + z_318 + z_338 + z_86)

Cont rolMsg ?
[1 , 1]

@(z_3
+ z_347

+ z_39)

Cont rolMsg ! [1 , 1] @(z_1 + z_145 +
z_169 + z_265 + z_293 + z_373 + z_65
+ z_9)

Cont rolMsg ! [0 , 0] @(z_3 + z_347 + z_39 + z_403)

(((z_186 + z_198 + z_302 + z_318 + z_338 + z_418) < 4) && ((z_1 + z_145 + z_169 +
z_265 + z_293 + z_373 + z_65 + z_9) < = (z_186 + z_198 + z_2 + z_22 + z_302
+ z_318 + z_338 + z_418 + z_86)))

Cont rolMsg ? [1 , 1] @(z_186 + z_198 + z_2
+ z_22 + z_302 + z_318 + z_338 + z_418
+ z_86)

DataMsg ! { 1 , FRAGMENT_0 , 0 } @(z_1 +
z_145 + z_169 + z_265 + z_293 + z_373 +
z_437 + z_65 + z_9)

(((z_198 + z_302 + z_318 + z_338 + z_418 + z_470) < t_171) && ((z_1 + z_145 + z_169
+ z_265 + z_293 + z_373 + z_437 + z_65 + z_9) < = (z_186 + z_198 + z_2 + z_22 +
z_302 + z_318 + z_338 + z_418 + z_470 + z_86)))

DataMsg ? { 1 , FRAGMENT_0 , 0 } @(z_186
+ z_198 + z_2 + z_22 + z_302 + z_318 +
z_338 + z_418 + z_470 + z_86)

Cont rolMsg ? [0 , 0] @(z_1 + z_145 +
z_169 + z_265 + z_293 + z_373 + z_437

+ z_521 + z_65 + z_9)

DataMsg ! { 2 , FRAGMENT_1 , 1 } @(z_1
+ z_145 + z_169 + z_265 + z_293 +
z_373 + z_437 + z_521 + z_585 + z_621
+ z_65 + z_9)

(((z_186 + z_198 + z_302 + z_318 + z_338 + z_418 + z_470 + z_494 + z_554 + z_570)
= = 4) && ((z_318 + z_338 + z_418 + z_470 + z_494 + z_554 + z_570 + z_706) < 4)
&& ((z_1 + z_145 + z_169 + z_265 + z_293 + z_373 + z_437 + z_521 + z_585 + z_621
+ z_65 + z_9) < = (z_186 + z_198 + z_2 + z_22 + z_302 + z_318 + z_338 + z_418 +
z_470 + z_494 + z_554 + z_570 + z_706 + z_86)))

DataMsg ? { 2 , FRAGMENT_1 , 1 } @(z_186
+ z_198 + z_2 + z_22 + z_302 + z_318 +
z_338 + z_418 + z_470 + z_494 + z_554 +
z_570 + z_706 + z_86)

(((z_198 + z_302 + z_318 + z_338 + z_418 + z_470 + z_494 + z_554 +
z_570 + z_706 + z_734) = = 4) && ((z_318 + z_338 + z_418 + z_470 +
z_494 + z_554 + z_570 + z_706 + z_734 + z_786) = = 4))

Log ! TERMIN @(z_186 + z_198 + z_2 + z_22 + z_302 + z_318 + z_338 + z_418 + z_470
+ z_494 + z_554 + z_570 + z_706 + z_734 + z_786 + z_814 + z_826 + z_846 + z_86)

Log ! TERMIN @(z_1003 + z_1031 + z_1035 + z_1059 + z_1063 + z_3 + z_347 + z_39 + z_403 + z_615 + z_891 + z_915 + z_919 + z_947)

FIGURE 5.9: Scenario for the second coverage objective - At least one node is outdated

111

Chapter 6

Conclusion

Contents
6.1 Summary . 111
6.2 Future research directions . 113

6.1 Summary

Distributed systems (DS) consist of a number of independent subsystems, executing concurrently on different
machines and interacting, by message passing, through a communication network so to complete a common
objective. Such kind of systems are subjected to errors of different nature including errors related to excessive
delays in replying to a received message or errors due to misplaced/erroneous data content for a received
message. In order to capture, hence prevent the malicious effect of such errors, testing of DS becomes a
vital pre-deployement task. Because of the peculiarities of DS (distributed nature, the lack of a global clock,
non-deterministic behaviors), testing of DS turns out to be non trivial.

In the context of testing distributed systems, this dissertation develops new insights by proposing a novel
testing framework with regard to the issue of test data generation. The presented approach belongs to the
family of Model-Based Testing approaches, i.e. those approaches where the specification of the System Under
Test (SUT) and of what should be considered a correct implementation is formally described. We stress
that our approach is not concerned with so-called oracle problem which consists of checking the traces to
detect non-conformance between the SUT and the model using a mathematical conformance relation (for us
tioco). Indeed, we have deliberately based our contribution in the context of the framework of distributed
system modeling and testing described in [32, 10], which is very focused on the issue of conformance and
its verification: in a few words, given a set of traces under the form of sequences of actions and durations,
one per remote subsystem, the approach described in [32],[10] recommends analysing each of the traces in
an off-line mode up to the tioco conformance relation (using for example [5]) and the tuple of traces with
regard to some communication rules (using constraint solving techniques). Since the approach of [32], [10]
has the advantage of being compositional and facilitating the resolution of the oracle problem, our modeling
assumptions for distributed systems will be exactly the same. However, [32], [10] left aside the question of
generating test data, whether in terms of managing test data or defining test selection criteria appropriate for
DS. We therefore sought to complete the work of [10] with test generation capabilities, while keeping exactly
the same test architecture, i.e. one test case per remote subsystem, to benefit from the same definitions and
properties relating to conformance.

In this context, in Chapter 2, we introduce the TIOSTS formalism that we have adopted for the purpose
of modeling timed reactive systems. TIOSTS formalism makes it relatively easy to specify properties about
data and time. Moreover the formalism has the key advantage of being equipped with symbolic execution

112

mechanisms. The main interest of this chapter is to set the main definitions and notations that will be used
throughout the manuscript, to introduce small illustrative examples, to present the customizable Diversity
platform allowing users to define their own functionalities about models and exploration strategies of their
symbolic execution trees. In connection with the following chapters, the notion of deterministic models is pre-
cisely expressed in relation to properties of symbolic execution trees: this will be useful because it is expected
that TIOSTS defining test cases are deterministic. For the same reasons, the facilities of the Diversity platform
to target user-defined objectives are illustrated through a simple example, that of following a sequence of
transitions from the initial model.

In Chapter 3, we detail the construction of an online unitary test case, i.e. a test case with the ability to
compute the next test data taking into account the previous reactions of the SUT. The main difficulty is to
combine constraints on data and time, the possible occurrence of message arrivals on internal channels as
well as the need to follow a test purpose defined as the form of a finite path of the symbolic execution tree.
Let us recall here that the particularity of our approach for managing unitary test case design is to integrate
that local systems SUT are tested in the context of a distributed system, i.e., in the context where third parties
interact with the SUT through internal channels, without control on the part of the tester. The construction
of the test case as a TIOSTS is defined using rules covering the different cases likely to occur depending on
the progress in the test purpose, the reception on the internal channels, . . . Rules are in the form of a TIOSTS
transition so that, by taking the test purpose as a guiding skeleton, it is possible to represent the test case
as a rather particular TIOSTS (in the form of a tree with verdicts on the leaves). The implementation in
Diversity is done in two steps, the first to build a symbolic execution tree of the reference model including
the considered test objective, and the second to build transitions whose source nodes are those of the test
purpose, by applying the rules.

In Chapter 4, a distributed system is specified as a collection of unitary subsystems given as TIOSTS.
System behaviors are captured by the symbolic execution of the whole system, defined by intertwining of
symbolic executions of subsystems and modeling of asynchronous internal communications using waiting
queues. Each symbolic path of the whole system defines by projection a family of local paths that can serve
as local test purposes. The causality relation and the data identification are taken into account during the
projection mechanism in order to provide local testers with these constraints that need to be satisfied by
subsystems. As a part of our contribution, to provide the user with an alternative tool for the visualization
of a global test purpose (besides the symbolic tree), we implemented in the Diversity tool a textual generator
allowing for visualizing the global test purpose in the form of a sequence diagram annotated with temporal
and data constraints reflecting the feasibility of the test purpose.

In Chapter 5, we illustrate our testing method with a case study which is a Wireless Sensor Network
based on the communication protocol MPL. The objective of the protocol is to update network nodes (i.e.
devices) by means of the Trickle algorithm built for the MPL protocol. From the specification of the protocol,
we constructed timed symbolic models. As part of our contribution, we implemented selection criteria in
the Diversity tool that allow the generation of global test purposes which are relevant for testing from mod-
els. The interesting properties of the network that are expressed in a high level language, such as, e.g. all
devices are updated or at least one device is outdated, can be considered as a global test purpose. With the aim
of experimenting the selection criteria, their practical usage has been then highlighted by using the Diversity
tool for generating different scenarios displaying up-to-date or outdated state of devices for many network
topologies.

113

6.2 Future research directions

A natural continuation of our work on unitary testing is to transform the generated test cases into an exe-
cutable format (e.g., as TTCN [85] scripts) and to define an adequate test instrumentation (e.g., using the test
execution tool Titan [75] for TTCN) which allows: i) handling the asynchronous arrival of internal messages
and systematically associate them with timestamps, and ii) integrating solvers that will be called to calculate
the next stimulations and analyze the conformance of the observations. We point out that the speed of the
instrumented test case including the solvers calls and the speed of the SUT should be carefully studied in
order to ensure reliable testing.

We have carefully designed local test cases with the challenge to follow as far as possible the test pur-
pose, in the possible presence of internal messages that may not be observed as expected, and thus lead to
dedicated inconclusive verdicts. We take benefit of the compositional result of [32] ensuring that the verifi-
cation that subsystems communicate properly, together with our online test cases for subsystems according
to tioco are sufficient to assess the conformance of the global distributed system to its model. To limit incon-
clusive situations (mainly due to intrinsic controllability difficulties of distributed testing), our framework
can be extended firstly by identifying new criteria on tuples of local test purposes while ensuring a better
controllability, and secondly by considering coordination messages between remote test cases.

114

115

Acronyms

BFS Breadth-First Search

DFS Depth-First Search

DS Distributed System

DSC Distributed System Context

DUT Distributed System Under Test

EC Execution Context

ENV Environment

FSM Finite State Machine

ioco input output conformance relation

IOLTS Input Output Labelled Transitions Systems

IOSTS Input Output Symbolic Transition Systems

IoT Internet of Things

LAN Local Area Networks

LTC Local Test Case

LTS Labelled Transitions Systems

LUT Localized System Under Test

MBT Model-Based Testing

MPL Multi-cast Protocol for Low-Power and Lossy Networks

PC Path Condition

pioco Probabilistic input output conformance relation

pIOTS Probabilistic Input Output Transition System

RFS Random-First Search

116

SE Symbolic Execution

SRPC Send Receive Pair Coverage

STS Symbolic Transition Systems

SUT System Under Test

TA Timed Automata

tioco timed input output conformance relation

TIOSTS Timed Input Output Symbolic Transition Systems

TSTS Timed Symbolic Transition Systems

WSN Wireless Sensor Networks

xLIA executable Language for Interaction and Assemblage

117

Bibliography

[1] W. L. Andrade et al. “Abstracting Time and Data for Conformance Testing of Real-Time Systems”. In:
2011 IEEE Fourth International Conference on Software Testing, Verification and Validation Workshops. Mar.
2011, pp. 9–17. DOI: 10.1109/ICSTW.2011.82.

[2] Étienne André. “Observer Patterns for Real-Time Systems”. In: 2013 18th International Conference on
Engineering of Complex Computer Systems. July 2013, pp. 125–134. DOI: 10.1109/ICECCS.2013.26.

[3] Mathilde Arnaud, Boutheina Bannour, and Arnault Lapitre. “An Illustrative Use Case of the DIVER-
SITY Platform based on UML Interaction Scenarios”. In: Electr. Notes Theor. Comput. Sci. 320 (2016),
pp. 21–34. DOI: 10.1016/j.entcs.2016.01.003. URL: https://doi.org/10.1016/j.entcs.2016.01.
003.

[4] Boutheina Bannour, Christophe Gaston, and David Servat. “Eliciting Unitary Constraints from Timed
Sequence Diagram with Symbolic Techniques: Application to Testing”. In: 18th Asia Pacific Software
Engineering Conference, APSEC 2011, Ho Chi Minh, Vietnam, December 5-8, 2011. 2011, pp. 219–226. DOI:
10.1109/APSEC.2011.40. URL: https://doi.org/10.1109/APSEC.2011.40.

[5] Boutheina Bannour et al. “Off-Line Test Case Generation for Timed Symbolic Model-Based Confor-
mance Testing”. In: Testing Software and Systems - 24th IFIP WG 6.1 International Conference, ICTSS 2012,
Aalborg, Denmark, November 19-21, 2012. Proceedings. 2012, pp. 119–135. DOI: 10.1007/978- 3- 642-
34691-0_10. URL: https://doi.org/10.1007/978-3-642-34691-0_10.

[6] Clark Barrett et al. “CVC4”. In: Proceedings of the 23rd International Conference on Computer Aided Verifi-
cation. CAV’11. Springer-Verlag, 2011, pp. 171–177. ISBN: 978-3-642-22109-5. URL: http://dl.acm.org/
citation.cfm?id=2032305.2032319.

[7] Roman Barták, Miguel A. Salido, and Francesca Rossi. “Constraint satisfaction techniques in planning
and scheduling”. In: Journal of Intelligent Manufacturing 21.1 (2010), pp. 5–15. ISSN: 1572-8145. DOI: 10.
1007/s10845-008-0203-4. URL: https://doi.org/10.1007/s10845-008-0203-4.

[8] Gerd Behrmann et al. “Lower and upper bounds in zone-based abstractions of timed automata”. In:
International Journal on Software Tools for Technology Transfer 8.3 (2006), pp. 204–215. ISSN: 1433-2787. DOI:
10.1007/s10009-005-0190-0. URL: https://doi.org/10.1007/s10009-005-0190-0.

[9] Axel Belinfante. “JTorX: A Tool for On-Line Model-Driven Test Derivation and Execution”. In: Tools
and Algorithms for the Construction and Analysis of Systems. Ed. by Javier Esparza and Rupak Majumdar.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 266–270. ISBN: 978-3-642-12002-2.

[10] Nassim Benharrat et al. “Constraint-Based Oracles for Timed Distributed Systems”. In: Testing Software
and Systems - 29th IFIP WG 6.1 International Conference, ICTSS 2017, St. Petersburg, Russia, October 9-11,
2017, Proceedings. 2017, pp. 276–292. DOI: 10.1007/978-3-319-67549-7_17. URL: https://doi.org/
10.1007/978-3-319-67549-7_17.

[11] Henrik Bohnenkamp and Axel Belinfante. “Timed Testing with TorX”. In: FM 2005: Formal Methods. Ed.
by John Fitzgerald, Ian J. Hayes, and Andrzej Tarlecki. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 173–188. ISBN: 978-3-540-31714-2.

https://doi.org/10.1109/ICSTW.2011.82
https://doi.org/10.1109/ICECCS.2013.26
https://doi.org/10.1016/j.entcs.2016.01.003
https://doi.org/10.1016/j.entcs.2016.01.003
https://doi.org/10.1016/j.entcs.2016.01.003
https://doi.org/10.1109/APSEC.2011.40
https://doi.org/10.1109/APSEC.2011.40
https://doi.org/10.1007/978-3-642-34691-0_10
https://doi.org/10.1007/978-3-642-34691-0_10
https://doi.org/10.1007/978-3-642-34691-0_10
http://dl.acm.org/citation.cfm?id=2032305.2032319
http://dl.acm.org/citation.cfm?id=2032305.2032319
https://doi.org/10.1007/s10845-008-0203-4
https://doi.org/10.1007/s10845-008-0203-4
https://doi.org/10.1007/s10845-008-0203-4
https://doi.org/10.1007/s10009-005-0190-0
https://doi.org/10.1007/s10009-005-0190-0
https://doi.org/10.1007/978-3-319-67549-7_17
https://doi.org/10.1007/978-3-319-67549-7_17
https://doi.org/10.1007/978-3-319-67549-7_17

118

[12] Arkady Bron et al. “Applications of Synchronization Coverage”. In: Proceedings of the Tenth ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming. PPoPP ’05. ACM, 2005, pp. 206–212.
ISBN: 1-59593-080-9. DOI: 10.1145/1065944.1065972. URL: http://doi.acm.org/10.1145/1065944.
1065972.

[13] Kalou Cabrera Castillos, Frédéric Dadeau, and Jacques Julliand. “Scenario-based testing from UM-
L/OCL behavioral models”. In: International Journal on Software Tools for Technology Transfer 13.5 (Oct.
2011), pp. 431–448. ISSN: 1433-2787. DOI: 10.1007/s10009-011-0189-7. URL: https://doi.org/10.
1007/s10009-011-0189-7.

[14] Ana Cavalcanti and Marie-Claude Gaudel. “Test selection for traces refinement”. In: Theoretical Com-
puter Science 563 (2015), pp. 1–42. DOI: 10.1016/j.tcs.2014.08.012. URL: https://hal.archives-
ouvertes.fr/hal-01126800.

[15] Ana R. Cavalli et al. “Hit-or-Jump: An algorithm for embedded testing with applications to IN ser-
vices”. In: Formal Methods for Protocol Engineering and Distributed Systems, FORTE XII / PSTV XIX’99,
IFIP TC6 WG6.1 Joint International Conference on Formal Description Techniques for Distributed Systems and
Communication Protocols (FORTE XII) and Protocol Specification, Testing and Verification (PSTV XIX), Octo-
ber 5-8, 1999, Beijing, China. 1999, pp. 41–56.

[16] Kai Chen et al. “Testing a Distributed System: Generating Test Sequences without Potential Control-
lability and Observability Problems”. In: Fifth International Conference on Networking and the Interna-
tional Conference on Systems (ICN / ICONS / MCL 2006), 23-29 April 2006, Mauritius. 2006, p. 170. DOI:
10.1109/ICNICONSMCL.2006.207. URL: https://doi.org/10.1109/ICNICONSMCL.2006.207.

[17] Yoonsik Cheon and Gary T. Leavens. “A Simple and Practical Approach to Unit Testing: The JML
and JUnit Way”. In: ECOOP 2002 — Object-Oriented Programming. Ed. by Boris Magnusson. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002, pp. 231–255. ISBN: 978-3-540-47993-2.

[18] Valentin Chimisliu and Franz Wotawa. “Improving Test Case Generation from UML Statecharts by
Using Control, Data and Communication Dependencies”. In: Proceedings of the 2013 13th International
Conference on Quality Software. QSIC ’13. Washington, DC, USA: IEEE Computer Society, 2013, pp. 125–
134. ISBN: 978-0-7695-5039-8. DOI: 10.1109/QSIC.2013.48. URL: https://doi.org/10.1109/QSIC.
2013.48.

[19] Tsun S. Chow. “Testing Software Design Modeled by Finite-State Machines”. In: IEEE Trans. Software
Eng. 4.3 (1978), pp. 178–187. DOI: 10.1109/TSE.1978.231496. URL: https://doi.org/10.1109/TSE.
1978.231496.

[20] Duncan Clarke et al. “STG: A Symbolic Test Generation Tool”. In: Tools and Algorithms for the Construc-
tion and Analysis of Systems. Ed. by Joost-Pieter Katoen and Perdita Stevens. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2002, pp. 470–475. ISBN: 978-3-540-46002-2.

[21] George F Coulouris et al. Distributed Systems: Concepts and Design. Pearson, 2011.

[22] Frédéric Dadeau, Kalou Cabrera Castillos, and Jacques Julliand. “Coverage Criteria for Model-Based
Testing using Property Patterns”. In: MBT 2014, 9th Workshop on Model-Based Testing, Satellite workshop
of ETAPS 2014. Ed. by Alexander K. Petrenko and Bernd-Holger Schlingloff. Vol. 141. EPTCS, Electronic
Proceedings in Theoretical Computer Science. Grenoble, France, Apr. 2014, p. 15. DOI: 10.4204/EPTCS.
141.3. URL: https://hal.inria.fr/hal-01089687.

[23] Frédéric Dadeau, Kalou Cabrera Castillos, and Régis Tissot. “Scenario-Based Testing using Symbolic
Animation of B Models”. In: Software Testing, Verification and Reliability 6.22 (Mar. 2012), pp. 407–434.
DOI: 10.1002/stvr.1467. URL: https://hal.inria.fr/hal-00760020.

https://doi.org/10.1145/1065944.1065972
http://doi.acm.org/10.1145/1065944.1065972
http://doi.acm.org/10.1145/1065944.1065972
https://doi.org/10.1007/s10009-011-0189-7
https://doi.org/10.1007/s10009-011-0189-7
https://doi.org/10.1007/s10009-011-0189-7
https://doi.org/10.1016/j.tcs.2014.08.012
https://hal.archives-ouvertes.fr/hal-01126800
https://hal.archives-ouvertes.fr/hal-01126800
https://doi.org/10.1109/ICNICONSMCL.2006.207
https://doi.org/10.1109/ICNICONSMCL.2006.207
https://doi.org/10.1109/QSIC.2013.48
https://doi.org/10.1109/QSIC.2013.48
https://doi.org/10.1109/QSIC.2013.48
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.4204/EPTCS.141.3
https://doi.org/10.4204/EPTCS.141.3
https://hal.inria.fr/hal-01089687
https://doi.org/10.1002/stvr.1467
https://hal.inria.fr/hal-00760020

119

[24] E. Daka and G. Fraser. “A Survey on Unit Testing Practices and Problems”. In: 2014 IEEE 25th Interna-
tional Symposium on Software Reliability Engineering. 2014, pp. 201–211. DOI: 10.1109/ISSRE.2014.11.

[25] Leonardo De Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In: Proceedings of the Theory and
Practice of Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. TACAS’08/ETAPS’08. Springer-Verlag, 2008, pp. 337–340. ISBN: 3-540-78799-2, 978-3-540-
78799-0. URL: http://dl.acm.org/citation.cfm?id=1792734.1792766.

[26] Jin Song Dong et al. “Specifying and Verifying Sensor Networks: An Experiment of Formal Methods”.
In: Formal Methods and Software Engineering, 10th International Conference on Formal Engineering Methods,
ICFEM 2008, Kitakyushu-City, Japan, October 27-31, 2008. Proceedings. 2008, pp. 318–337. DOI: 10.1007/
978-3-540-88194-0_20. URL: https://doi.org/10.1007/978-3-540-88194-0_20.

[27] A. Dunkels, B. Gronvall, and T. Voigt. “Contiki - a lightweight and flexible operating system for tiny
networked sensors”. In: 29th Annual IEEE International Conference on Local Computer Networks. 2004,
pp. 455–462.

[28] Bruno Dutertre. “Yicesä2.2”. In: Proceedings of the 16th International Conference on Computer Aided Verifi-
cation - Volume 8559. Springer-Verlag, 2014, pp. 737–744. ISBN: 978-3-319-08866-2. DOI: 10.1007/978-3-
319-08867-9_49. URL: https://doi.org/10.1007/978-3-319-08867-9_49.

[29] Lars Frantzen, Jan Tretmans, and Tim A. C. Willemse. “Test Generation Based on Symbolic Specifica-
tions”. In: Formal Approaches to Software Testing, 4th International Workshop, FATES 2004, Linz, Austria,
September 21, 2004, Revised Selected Papers. 2004, pp. 1–15. DOI: 10.1007/978-3-540-31848-4_1. URL:
https://doi.org/10.1007/978-3-540-31848-4_1.

[30] Susumu Fujiwara and Gregor von Bochmann. “Testing Non-Deterministic State Machines with Fault
Coverage”. In: Protocol Test Systems, IV, Proceedings of the IFIP TC6/WG6.1 Fourth International Workshop
on Protocol Test Systems, Leidschendam, The Netherlands, 15-17 October, 1991. 1991, pp. 267–280.

[31] Hubert Garavel, Frédéric Lang, and Wendelin Serwe. “From LOTOS to LNT”. In: ModelEd, TestEd,
TrustEd - Essays Dedicated to Ed Brinksma on the Occasion of His 60th Birthday. 2017, pp. 3–26. DOI:
10.1007/978-3-319-68270-9_1. URL: https://doi.org/10.1007/978-3-319-68270-9_1.

[32] Christophe Gaston, Robert M. Hierons, and Pascale Le Gall. “An Implementation Relation and Test
Framework for Timed Distributed Systems”. In: Testing Software and Systems - 25th IFIP WG 6.1 Interna-
tional Conference, ICTSS 2013, Istanbul, Turkey, November 13-15, 2013, Proceedings. 2013, pp. 82–97. DOI:
10.1007/978-3-642-41707-8_6. URL: https://doi.org/10.1007/978-3-642-41707-8_6.

[33] Christophe Gaston et al. “Symbolic Execution Techniques for Test Purpose Definition”. In: Testing of
Communicating Systems, 18th IFIP TC6/WG6.1 International Conference, TestCom 2006, New York, NY, USA,
May 16-18, 2006, Proceedings. 2006, pp. 1–18. DOI: 10.1007/11754008_1. URL: https://doi.org/10.
1007/11754008_1.

[34] Marcus Gerhold and Mariëlle Stoelinga. “Model-Based Testing of Probabilistic Systems”. In: Fundamen-
tal Approaches to Software Engineering. Ed. by Perdita Stevens and Andrzej Wąsowski. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2016, pp. 251–268. ISBN: 978-3-662-49665-7.

[35] Andreas Griesmayer et al. “Dynamic Symbolic Execution for Testing Distributed Objects”. In: Tests
and Proofs. Ed. by Catherine Dubois. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 105–120.
ISBN: 978-3-642-02949-3.

[36] Anders Hessel et al. “Testing Real-Time Systems Using UPPAAL”. In: Formal Methods and Testing, An
Outcome of the FORTEST Network, Revised Selected Papers. 2008, pp. 77–117. DOI: 10.1007/978-3-540-
78917-8_3. URL: https://doi.org/10.1007/978-3-540-78917-8_3.

https://doi.org/10.1109/ISSRE.2014.11
http://dl.acm.org/citation.cfm?id=1792734.1792766
https://doi.org/10.1007/978-3-540-88194-0_20
https://doi.org/10.1007/978-3-540-88194-0_20
https://doi.org/10.1007/978-3-540-88194-0_20
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-540-31848-4_1
https://doi.org/10.1007/978-3-540-31848-4_1
https://doi.org/10.1007/978-3-319-68270-9_1
https://doi.org/10.1007/978-3-319-68270-9_1
https://doi.org/10.1007/978-3-642-41707-8_6
https://doi.org/10.1007/978-3-642-41707-8_6
https://doi.org/10.1007/11754008_1
https://doi.org/10.1007/11754008_1
https://doi.org/10.1007/11754008_1
https://doi.org/10.1007/978-3-540-78917-8_3
https://doi.org/10.1007/978-3-540-78917-8_3
https://doi.org/10.1007/978-3-540-78917-8_3

120

[37] Anders Hessel et al. “Time-Optimal Real-Time Test Case Generation Using Uppaal”. In: Formal Ap-
proaches to Software Testing, Third International Workshop on Formal Approaches to Testing of Software, FATES
2003, Montreal, Quebec, Canada, October 6th, 2003. 2003, pp. 114–130. DOI: 10.1007/978-3-540-24617-
6_9. URL: https://doi.org/10.1007/978-3-540-24617-6_9.

[38] J. Hui and R. Kelsey. Multicast Protocol for Low-Power and Lossy Networks, Request for Comments: 7731.
Tech. rep. Silicon Labs, February 2016.

[39] Eisuke Itoh et al. “Ordered sequence testing criteria for concurrent programs and the support tool”. In:
Proceedings of 1st Asia-Pacific Software Engineering Conference (1994), pp. 236–245.

[40] ITU. Z.100 : Specification and Description Language - Overview of SDL-2010. INTERNATIONAL
TELECOMMUNICATION UNION, 2010. URL: https://www.itu.int/rec/T-REC-Z.100.

[41] Claude Jard and Thierry Jéron. “TGV: theory, principles and algorithms”. In: STTT 7.4 (2005), pp. 297–
315.

[42] Thierry Jéron. “Symbolic Model-based Test Selection”. In: Electronic Notes in Theoretical Computer Science
240 (2009).

[43] Sen K. and Agha G. “CUTE and jCUTE: Concolic Unit Testing and Explicit Path Model-Checking
Tools”. In: Computer Aided Verification, 18th International Conference, CAV. 2006, pp. 419–423.

[44] James C. King. “Symbolic Execution and Program Testing”. In: Commun. ACM 19.7 (1976), pp. 385–394.
DOI: 10.1145/360248.360252. URL: https://doi.org/10.1145/360248.360252.

[45] Moez Krichen. “A Formal Framework for Conformance Testing of Distributed Real-Time Systems”. In:
Principles of Distributed Systems. Ed. by Chenyang Lu, Toshimitsu Masuzawa, and Mohamed Mosbah.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 139–142. ISBN: 978-3-642-17653-1.

[46] Moez Krichen and Stavros Tripakis. “Black-Box Conformance Testing for Real-Time Systems”. In: SPIN
(2004.).

[47] S. Kurt et al. “Packet Size Optimization in Wireless Sensor Networks for Smart Grid Applications”. In:
IEEE Trans. Industrial Electronics 64.3 (2017), pp. 2392–2401.

[48] Frantzen L., Tretmans J., and Willemse T. A. C. “A Symbolic Framework for Model-Based Testing”. In:
Int. Workshops FATES and RV. 2006.

[49] O. Rafiq L. Cacciari. “Controllability and observability in distributed testing”. In: Information and Soft-
ware Technology (1999).

[50] E. A. Lee and D. G. Messerschmitt. “Synchronous data flow”. In: Proceedings of the IEEE 75 (1987),
pp. 1235–1245.

[51] P. Levis et al. The Trickle Algorithm, Request for Comments: 6206. Tech. rep. March 2011.

[52] P. Levis et al. “TinyOS: An Operating System for Sensor Networks”. In: Ambient Intelligence. Ed. by
Werner Weber, Jan M. Rabaey, and Emile Aarts. Springer Berlin Heidelberg, 2005, pp. 115–148.

[53] P. Levis et al. “Trickle: A Self-regulating Algorithm for Code Propagation and Maintenance in Wireless
Sensor Networks”. In: Proceedings of the 1st Conference on Symposium on Networked Systems Design and
Implementation - Volume 1. NSDI’04. Berkeley, CA, USA: USENIX Association, 2004.

[54] Philip Levis et al. “The Emergence of a Networking Primitive in Wireless Sensor Networks”. In: Com-
munications of the ACM, Volume 51, Issue 7 (2008).

[55] Bruno Lima and Joao Pascoal Faria. “A Survey on Testing Distributed and Heterogeneous Systems: The
State of the Practice”. In: Software Technologies, 11th International Joint Conference, ICSOFT 2016, Lisbon,

https://doi.org/10.1007/978-3-540-24617-6_9
https://doi.org/10.1007/978-3-540-24617-6_9
https://doi.org/10.1007/978-3-540-24617-6_9
https://www.itu.int/rec/T-REC-Z.100
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252

121

Portugal, July 24-26, 2016, Revised Selected Papers. 2016, pp. 88–107. DOI: 10.1007/978-3-319-62569-
0_5. URL: https://doi.org/10.1007/978-3-319-62569-0_5.

[56] David Lugato, Nicolas Rapin, and Jean-Pierre Gallois. “Verification and tests generation for SDL indus-
trial specifications with the AGATHA”. In: 2001.

[57] Lina Marsso, Radu Mateescu, and Wendelin Serwe. “TESTOR: A Modular Tool for On-the-Fly Confor-
mance Test Case Generation”. In: Tools and Algorithms for the Construction and Analysis of Systems. Ed. by
Dirk Beyer and Marieke Huisman. Cham: Springer International Publishing, 2018, pp. 211–228. ISBN:
978-3-319-89963-3.

[58] T. Meyfroyt et al. “On the scalability and message count of Trickle-based broadcasting schemes”. In:
Queueing Syst. 81.2-3 (2015), pp. 203–230.

[59] Robert M.Hierons. “Generating Complete Controllable Test Suites for Distributed Testing”. In: IEEE
Transactions on Software Engineering (March 2015).

[60] Glenford J. Myers and Corey Sandler. The Art of Software Testing. USA: John Wiley & Sons, Inc.,
2004. ISBN: 0471469122.

[61] Ngo Minh Thang Nguyen et al. “Behavioral Models and Scenario Selection for Testing IoT Trickle-
Based Lossy Multicast Networks”. In: 2019 IEEE International Conference on Software Testing, Verification
and Validation Workshops, ICST Workshops 2019, Xi’an, China, April 22-23, 2019. IEEE, 2019, pp. 168–175.

[62] Soria Dustmann O., Sasnauskas R., and Wehrle K. “Symbolic System Time in Distributed Systems Test-
ing”. In: Fifth IEEE International Conference on Software Testing, Verification and Validation, ICST. 2012,
pp. 893–894.

[63] OMG. OMG Systems Modeling Language (OMG SysML), Version 1.3. Object Management Group, 2012.
URL: http://www.omg.org/spec/SysML/1.3/.

[64] Sasnauskas R. et al. “Integration testing of protocol implementations using symbolic distributed exe-
cution”. In: 20th IEEE International Conference on Network Protocols, ICNP. 2012, pp. 1–6.

[65] Sasnauskas R. et al. “Scalable Symbolic Execution of Distributed Systems”. In: 2011 International Con-
ference on Distributed Computing Systems, ICDCS. 2011, pp. 333–342.

[66] David L. Dill Rajeev Alur. “A theory of timed automata”. In: Journal Theoretical Computer Science, Volume
126 Issue 2, April 25, 1994, Pages 183 - 235 (1994).

[67] Muhammad Jaffar-Ur Rehman et al. “Testing software components for integration: a survey of issues
and techniques”. In: Softw. Test., Verif. Reliab. 17 (2007), pp. 95–133.

[68] C. Robinson-Mallett, R. M. Hierons, and P. Liggesmeyer. “Achieving communication coverage in test-
ing”. In: ACM SIGSOFT Software Engineering Notes (2006).

[69] C. Robinson-Mallett et al. “Using communication coverage criteria and partial model generation to
assist software integration testing”. In: Software Quality Journal (2008).

[70] Antoine Rollet and Sebastien Salva. “Testing robustness of communicating systems using ioco-based
approach”. In: Computers and Communications, 2009. ISCC 2009. IEEE Symposium on (2009).

[71] Vlad Rusu, Hervé Marchand, and Thierry Jéron. “Automatic Verification and Conformance Testing for
Validating Safety Properties of Reactive Systems”. In: International Symposium on Formal Methods. 2005.

[72] Khurshid S., S. Pasareanu C., and Visser W. “Generalized Symbolic Execution for Model Checking and
Testing”. In: Tools and Algorithms for the Construction and Analysis of Systems, 9th International Conference,
TACAS Proceedings. 2003, pp. 553–568. DOI: 10.1007/3-540-36577-X_40. URL: https://doi.org/10.
1007/3-540-36577-X_40.

https://doi.org/10.1007/978-3-319-62569-0_5
https://doi.org/10.1007/978-3-319-62569-0_5
https://doi.org/10.1007/978-3-319-62569-0_5
http://www.omg.org/spec/SysML/1.3/
https://doi.org/10.1007/3-540-36577-X_40
https://doi.org/10.1007/3-540-36577-X_40
https://doi.org/10.1007/3-540-36577-X_40

122

[73] Julien Schmaltz and Jan Tretmans. “On Conformance Testing for Timed Systems”. In: Formal Modeling
and Analysis of Timed Systems (2008).

[74] Julien Schmaltz Sabrina von Styp Henrik Bohnenkamp. “A Conformance Testing Relation for Symbolic
Timed Automata”. In: Formal Modeling and Analysis of Timed Systems (2010).

[75] János Zoltán Szabó and Tibor Csöndes. “TITAN, TTCN-3 test execution environment”. In: 2007.

[76] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems: principles and paradigms. 2007.

[77] Jan Tretmans. “Conformance Testing with Labelled Transition Systems : Implementation Relations and
Test Generation”. In: Computer Networks and ISDN Systems (1996).

[78] Jan Tretmans. “Test generation with inputs, outputs and repetitive quiescence”. In: Software—Concepts
and Tools:103-120 (1996).

[79] Jan Tretmans and Ed Brinksma. “TorX: Automated Model Based Testing - Côte de Resyste”. In: 2003.

[80] P. Tripathy and K Naik. “Generation of Adaptive Test Cases From Non-deterministic Finite State Mod-
els”. In: (1992), pp. 309–320.

[81] Edward P. K. Tsang. “Foundations of constraint satisfaction”. In: Computation in cognitive science. 1993.

[82] Andreas Ulrich, Peter Zimmerer, and Gunther Chrobok-Diening. “Test Architectures for Testing Dis-
tributed Systems”. In: 1999.

[83] Juri Vain et al. “Automatic Distribution of Local Testers for Testing Distributed Systems”. In: Databases
and Information Systems IX - Selected Papers from the Twelfth International Baltic Conference, DBIS 2016,
Riga, Latvia, July 4-6, 2016. 2016, pp. 297–310.

[84] Xiao Wang and Jin Hua Zhang. “Analysis and Research on Distributed Network Protocol Testing Con-
trollability Problem”. In: International Conference on Information Engineering for Mechanics and Materials
(2015).

[85] Colin Willcock et al. An Introduction to TTCN-3. 2nd. Wiley Publishing, 2011. ISBN: 0470663065,
9780470663066.

[86] T. Winter et al. RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks, Request for Comments: 6550.
Tech. rep. Cooper Power Systems, Cisco Systems, and Stanford University, March 2012.

[87] M. Woehrle, R. Bakhshi, and M. Mousavi. “Mechanized Extraction of Topology Anti-patterns in Wire-
less Networks”. In: Integrated Formal Methods. Ed. by John Derrick et al. Springe, 2012, pp. 158–173.

[88] M. Zheng et al. “Towards a Model Checker for NesC and Wireless Sensor Networks”. In: Formal Methods
and Software Engineering. Ed. by Shengchao Qin and Zongyan Qiu. Springer, 2011, pp. 372–387.

Titre: Génération de cas de test pour les modèles symboliques de système distribués: Application au
protocole IoT à base de Trickle

Mots clés: Systèmes distribués, Test à base de modèles, Systèmes de Transition Symbolique Temporisé
avec des Entrées et Sorties, Génération de cas de test, Critères de couverture, Protocole MPL

Résumé: Les systèmes distribués sont composés de
nombreux sous-systèmes distants les uns des autres.
Afin de réaliser une même tâche, les sous-systèmes
communiquent à la fois avec l’environnement par des
messages externes et avec d’autres sous-systèmes par
des messages internes, via un réseau de communica-
tion. En pratique, les systèmes distribués mettent en jeu
plusieurs types d’erreurs, propres aux sous-systèmes
les constituant, ou en lien avec les communications in-
ternes. Afin de s’assurer de leur bon fonctionnement,
savoir tester de tels systèmes est essentiel. Cependant,
il est très compliqué de les tester car sans horloge glob-
ale, les sous-systèmes ne peuvent pas facilement syn-
chroniser leurs envois de messages, ce qui explique
l’existence des situations non déterministes.

Le test à base de modèles (MBT) est une approche
qui consiste à vérifier si le comportement d’un système
sous test (SUT) est conforme à son modèle, qui spéci-
fie les comportements souhaités. MBT comprend deux
étapes principales: la génération de cas de test et le cal-
cul de verdict. Dans cette thèse, nous nous intéressons à
la génération de cas de test dans les systèmes distribués.

Nous utilisons les systèmes de transition sym-
bolique temporisé à entrées et sorties (TIOSTS) et les
analysons à l’aide des techniques d’exécution symbol-
ique pour obtenir les comportements symboliques du
système distribué. Dans notre approche, l’architecture
de test permet d’observer au niveau de chaque sous-
système à la fois les messages externes émis vers
l’environnement et les messages internes reçus et en-
voyés. Notre framework de test comprend plusieurs
étapes: sélectionner un objectif de test global, défini
comme un comportement particulier exhibé par exé-
cution symbolique, projeter l’objectif de test global sur
chaque sous-système pour obtenir des objectifs de test
locaux, dériver des cas de test unitaires pour chacun des
sous-systèmes. L’exécution du test consiste à exécuter
des cas de test locaux sur les sous-systèmes paramétrés
par les objectifs de tests en calculant à la volée les don-
nées de test à soumettre au sous-système en fonction
de données observées. Enfin, nous mettons en œuvre
notre approche sur un cas d’étude décrivant un proto-
cole utilisé dans le contexte de l’IoT.

Title: Test case generation for Symbolic Distributed System Models: Application to Trickle based IoT
Protocol

Keywords: Distributed systems, Model-Based Testing, Timed Input Output Symbolic Transition Sys-
tems, Test case generation, Coverage criteria, MPL protocol

Abstract: Distributed systems are composed of many
distant subsystems. In order to achieve a common task,
subsystems communicate both with the local environ-
ment by external messages and with other subsystems
by internal messages through a communication net-
work. In practice, distributed systems are likely to re-
veal many kinds of errors, so that we need to test them
before reaching a certain level of confidence in them.
However, testing distributed systems is complicated
due to their intrinsic characteristics. Without global
clocks, subsystems cannot synchronize messages, lead-
ing to non-deterministic situations.

Model-Based Testing (MBT) aims at checking
whether the behavior of a system under test (SUT) is
consistent with its model, specifying expected behav-
iors. MBT is useful for two main steps: test case gen-
eration and verdict computation. In this thesis, we are

mainly interested in the generation of test cases for dis-
tributed systems.

To specify the desired behaviors, we use Timed
Input Output Symbolic Transition Systems (TIOSTS),
provided with symbolic execution techniques to derive
behaviors of the distributed system. Moreover, we as-
sume that in addition to external messages, a local test
case observes internal messages received and sent by
the co-localized subsystem. Our testing framework in-
cludes several steps: selecting a global test purpose us-
ing symbolic execution on the global system, projecting
the global test purpose to obtain a local test purpose
per subsystem, deriving unitary test case per subsys-
tem. Then, test execution consists of executing local test
cases by submitting data compatible following a local
test purpose and computing a test verdict on the fly. Fi-
nally, we apply our testing framework to a case study
issued from a protocol popular in the context of IoT.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Introduction
	Distributed systems and motivation
	Testing architectures and related works
	Our proposed architecture and approach
	Contributions
	Dissertation structure

	Symbolic models for reactive systems
	Reactive systems and real-time systems
	Reactive systems and real-time systems.
	Models for reactive systems: Automata/Labeled Transition Systems.

	Timed Input Output Symbolic Transition Systems (TIOSTS)
	Formalism overview
	Semantics of TIOSTS
	Running case study: ATM-Bank system
	TIOSTS of ATM
	TIOSTS of Bank

	Symbolic execution of TIOSTS
	Principle of symbolic execution
	Illustration with ATM
	Deterministic TIOSTS
	Enrichment by quiescence

	Implementation in Diversity
	Textual models of the ATM-Bank system
	The tool customizable symbex engine
	Module of test purpose selection

	Conclusion

	Test cases derivation in the distributed context
	Model-Based Testing of reactive systems
	Offline approach
	Online approach

	Timed conformance relation
	Localized System Under Test
	Timed Input Output Conformance relation (tioco)

	Construction of online test case
	Illustration with ATM
	Implementation in Diversity
	Test case generation process
	Module of test case generation for unitary systems
	Elements on the validation of the generated test case

	Related work
	Conclusion

	Distributed systems: testing, coverage and derivation of scenarios
	Distributed systems
	The interest of testing distributed systems
	Our testing architecture for distributed systems
	Symbolic execution for testing distributed systems
	Distributed system context
	Symbolic execution rules for distributed systems
	Illustration with ATM-Bank

	Our testing framework for distributed systems
	Our testing framework
	An ATM-Bank test purpose

	Discussion of the approach
	Conclusion

	Models and scenario selection for information dissemination in Wireless Sensors Networks
	Context
	Trickle algorithm
	Trickle algorithm in MPL protocol
	Behavioral models for MPL protocol
	Processes of sensor nodes architecture
	Compact automata for process modeling
	Control message process
	Data message process

	Experimenting with scenario selection
	An extended selection method with observers
	Some sensor nodes topologies
	Coverage objective 1 - All nodes are updated
	Selection using sequences of ordered formulas
	Selection using sequences mixing actions and formulas

	Coverage objective 2 - At least one node is outdated
	Analyses of generated scenarios
	Scenario for the coverage objective all node are updated
	Scenario for the coverage objective at least one node is outdated

	Conclusion

	Conclusion
	Summary
	Future research directions

	Acronyms
	Bibliography

