
HAL Id: tel-02651332
https://theses.hal.science/tel-02651332v1

Submitted on 29 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local matching learning of large scale biomedical
ontologies
Amir Laadhar

To cite this version:
Amir Laadhar. Local matching learning of large scale biomedical ontologies. Technology for Human
Learning. Université Paul Sabatier - Toulouse III, 2019. English. �NNT : 2019TOU30126�. �tel-
02651332�

https://theses.hal.science/tel-02651332v1
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le Date de défense (27/09/2019) par :
Amir LAADHAR

Local Matching Learning of Large Scale Biomedical Ontologies

JURY
Sonia AYACHI
GHANNOUCHI

Maitre de conférences
habilité, Université de Sousse

Rapporteur

Ladjel BELLATRECHE Professeur,
ENSMAA-Poitiers

Rapporteur

Bernard ESPINASSE Professeur, Université
Aix-Marseille

Examinateur

Faiez GARGOURI Professeur, Université de
Sfax

Directeur

Faiza GHOZZI Maitre Assistant, Université
de Sfax

Co-directeur

Clement JONQUET Maitre de Conférences
habilité, Université de

Montpellier

Examinateur

Imen MEGDICHE Maitre de Conférences, Ecole
d’ingénieurs ISIS

Co-directeur

Franck RAVAT Professeur, Université
Toulouse 1

Invité

Olivier TESTE Professeur, Université
Toulouse 2

Directeur

École doctorale et spécialité :
MITT : Domaine STIC : Intelligence Artificielle

Unité de Recherche :
Institut de Recherche en Informatique de Toulouse (UMR 5505)

Directeur(s) de Thèse :
Olivier TESTE et Faiez GARGOURI

Rapporteurs :
Sonia AYACHI GHANNOUCHI et Ladjel BELLATRECHE

Acknowledgments
First of all, I would like to thank all those who contributed to the preparation and

writing of my thesis. Obviously, it is difficult to thank everyone. Thanks to the help of
many people, I was able to carry out this thesis to its end.

In the first place, I would like to express my gratitude to all my family, thanks to my
father and mother who have been the luminous stars for me all along the road and who
have always believed in me. I would like to thank my sister Ahlem and all my family for
their sincere love during these years.

My thanks go also to the reviewers, Sonia Ayachi Ghannouchi and Ladjel Bellatreche,
to whom I associate the members Bernard Espinasse and Clement Jonquet for honoring
me with taking time to read in detail my work and whose kindness, interest and advice to
continue and improve my research are invaluable.

I would like to thank my thesis directors, Faiez Gargouri and Olivier Teste for having
accepted to supervise me during the preparation of my thesis. In addition to their scien-
tific support and the human side, they have always been there to support me and advise
me throughout the development of my work especially during difficult times.

A special thanks goes also to my supervisors Faiza Ghozzi, Imen Megdiche and Franck
Ravat for always being there whenever I had questions, and for their patience and immense
knowledge. A special thanks to all my friends. It is almost impossible for me to imagine
the last three years without them, who gave me moral support during the years of this
thesis.

Thanks, finally, to all the members of the SIG team. I deeply appreciate the IRIT lab
every single person, for their involvement in my personal well-being.

Abstract
Although a considerable body of research work has addressed the problem of ontology
matching, few studies have tackled the large ontologies used in the biomedical domain.
We introduce a fully automated local matching learning approach that breaks down a large
ontology matching task into a set of independent local sub-matching tasks. This approach
integrates a novel partitioning algorithm as well as a set of matching learning techniques.
The partitioning method is based on hierarchical clustering and does not generate isolated
partitions. The matching learning approach employs different techniques: (i) local match-
ing tasks are independently and automatically aligned using their local classifiers, which
are based on local training sets built from element level and structure level features, (ii)
resampling techniques are used to balance each local training set, and (iii) feature selection
techniques are used to automatically select the appropriate tuning parameters for each lo-
cal matching context. Our local matching learning approach generates a set of combined
alignments from each local matching task, and experiments show that a multiple local
classifier approach outperforms conventional, state-of-the-art approaches: these use a sin-
gle classifier for the whole ontology matching task. In addition, focusing on context-aware
local training sets based on local feature selection and resampling techniques significantly
enhances the obtained results.

Résumé
Les larges ontologies biomédicales décrivent généralement le même domaine d’intérêt, mais
en utilisant des modèles de modélisation et des vocabulaires différents. Aligner ces ontolo-
gies qui sont complexes et hétérogènes est une tâche fastidieuse. Les systèmes de matching
doivent fournir des résultats de haute qualité en tenant compte de la grande taille de ces
ressources. Les systèmes de matching d’ontologies doivent résoudre deux problèmes: (i)
intégrer la grande taille d’ontologies, (ii) automatiser le processus d’alignement.

Le matching d’ontologies est une tâche difficile en raison de la large taille des ontologies.
Les systèmes de matching d’ontologies combinent différents types de matcher pour résoudre
ces problèmes. Les principaux problèmes de l’alignement de larges ontologies biomédicales
sont: l’hétérogénéité conceptuelle, l’espace de recherche élevé et la qualité réduite des
alignements résultants.

Les systèmes d’alignement d’ontologies combinent différents matchers afin de réduire
l’hétérogénéité. Cette combinaison devrait définir le choix des matchers à combiner et le
poids . Différents matchers traitent différents types d’hétérogénéité. Par conséquent, le
paramétrage d’un matcher devrait être automatisé par les systèmes d’alignement d’ontologies
afin d’obtenir une bonne qualité de correspondance.

Nous avons proposé une approche appele “local matching learning” pour faire face à
la fois à la grande taille des ontologies et au problème de l’automatisation. Nous divisons
un gros problème d’alignement en un ensemble de problèmes d’alignement locaux plus
petits. Chaque problème d’alignement local est indépendamment aligné par une approche
d’apprentissage automatique. Nous réduisons l’énorme espace de recherche en un ensemble
de taches de recherche de corresondances locales plus petites. Nous pouvons aligner effi-
cacement chaque tache de recherche de corresondances locale pour obtenir une meilleure
qualité de correspondance.

Notre approche de partitionnement se base sur une nouvelle stratégie à découpes mul-
tiples générant des partitions non volumineuses et non isolées. Par conséquence, nous
pouvons surmonter le problème de l’hétérogénéité conceptuelle. Le nouvel algorithme de
partitionnement est basé sur le clustering hiérarchique par agglomération (CHA). Cette
approche génère un ensemble de tâches de correspondance locale avec un taux de couver-
ture suffisant avec aucune partition isolée.

Chaque tâche d’alignement local est automatiquement alignée en se basant sur les
techniques d’apprentissage automatique. Un classificateur local aligne une seule tâche
d’alignement local. Les classificateurs locaux sont basés sur des features élémentaires et
structurelles. L’attribut class de chaque set de donne d’apprentissage training set est au-
tomatiquement étiqueté à l’aide d’une base de connaissances externe. Nous avons appliqué
une technique de sélection de features pour chaque classificateur local afin de sélectionner
les matchers appropriés pour chaque tâche d’alignement local. Cette approche réduit
la complexité d’alignement et augmente la précision globale par rapport aux méthodes
d’apprentissage traditionnelles.

Nous avons prouvé que l’approche de partitionnement est meilleure que les approches
actuelles en terme de précision, de taux de couverture et d’absence de partitions isolées.
Nous avons évalué l’approche d’apprentissage d’alignement local à l’aide de diverses expériences
basées sur des jeux de données d’OAEI 2018. Nous avons déduit qu’il est avantageux de
diviser une grande tâche d’alignement d’ontologies en un ensemble de tâches d’alignement
locaux. L’espace de recherche est réduit, ce qui réduit le nombre de faux négatifs et de faux
positifs. L’application de techniques de sélection de caractéristiques à chaque classificateur
local augmente la valeur de rappel pour chaque tâche d’alignement local.

Mots clés : Alignement d’ontologies, Partitionnement d’ontologies, Web sémantique,
Apprentissage Automatique

Contents

1 Introduction 1
1.1 Research Context . 2
1.2 Research Problems . 6

1.2.1 Large Ontology Matching . 7
1.2.2 Automation of the Matching Process 7

1.3 Thesis Contribution . 8
1.4 Research Overview . 10
1.5 Manuscript Outline . 10

2 Related Literature 12
2.1 Introduction . 13
2.2 Ontology Matching Systems . 14

2.2.1 Basic Matching Techniques . 14
2.2.1.1 Terminological methods . 14
2.2.1.2 Structural methods . 16
2.2.1.3 Semantic methods . 16
2.2.1.4 Extensional methods . 17

2.2.2 Workflow Strategies . 17
2.2.2.1 Sequential Workflow . 17
2.2.2.2 Parallel Workflow . 17
2.2.2.3 Iterative Workflow . 18

2.2.3 Scalability Techniques . 18
2.2.3.1 Search Space Reduction . 18
2.2.3.2 Self Tuning . 19
2.2.3.3 Reuse of Previous Matching Results 19

2.2.4 Discussion . 19
2.3 Ontologies partitioning . 21

2.3.1 Partition-based Methods . 22
2.3.2 Anchor-based Segmentation Method 23
2.3.3 Discussion . 25

CONTENTS

2.4 Ontology Matching Learning . 27
2.4.1 Ontology Matching Learning Systems 27

2.4.1.1 Balancing Training Sets . 29
2.4.1.2 Feature Selection . 29

2.4.2 Discussion . 30
2.5 Conclusion . 32

3 Ontologies Partitioning Approach 34
3.1 Introduction . 35
3.2 Formal foundations . 35

3.2.1 Ontology and Ontology Alignment 35
3.2.2 Local Matching and Ontology Partitioning 36

3.3 Ontologies Partitioning Architecture . 38
3.4 Input Ontologies Partitioning Pre-processing 40
3.5 Partitioning Algorithm . 42

3.5.1 Initialization . 42
3.5.2 Dendrogram Construction . 42
3.5.3 Dendrogram multi-cut . 44

3.6 Identification of local matching tasks . 48
3.7 Conclusion . 51

4 Local Matching Learning Approach 53
4.1 Introduction . 54
4.2 Formal foundations . 55

4.2.1 Global Matching Versus Local Matching 55
4.2.2 Local-based Training Data . 55
4.2.3 Local-based Classifier . 56

4.3 Local Matching Learning Architecture Overview 56
4.4 Local Training Sets Generation . 58

4.4.1 Generating Positive Samples . 59
4.4.1.1 Generating Positive Samples via Cross-searching 59
4.4.1.2 Generating Positive Samples via Cross-referencing 60
4.4.1.3 Generating Positive Samples via Exact Matching 62

4.4.2 The Algorithm for the Generation of Negative Samples 63
4.4.3 Local Training Set Generation Example 64

4.5 Balancing Generated Local Training Sets 64
4.6 Wrapper-based Local Feature Selection . 66

4.6.1 Element-level Features . 66
4.6.2 Structural-level Features . 67

4.7 Local Classification . 68
4.8 Conclusion . 69

CONTENTS

5 Evaluation 70
5.1 Introduction . 71
5.2 The Architecture for Experimental Assessment 72

5.2.1 Experimental Archiecture . 72
5.2.2 Experimental Configuration . 73
5.2.3 Datasets . 73

5.3 Ontology Partitioning Approach Evaluation 75
5.4 Machine Learning Algorithms Evaluation 77
5.5 Resampling Local Training Sets Evaluation 79

5.5.1 Impact of Undersampling on Local Training Data 80
5.5.2 Impact of Oversampling on Local Training Data 81
5.5.3 Impact of Oversampling combined to Undersampling on Local Train-

ing Data . 82
5.6 Local Feature Selection Evaluation . 83

5.6.1 Studying the Impact of Feature Selection Methods 83
5.6.2 Impact of Element level and Structure level Features 84

5.7 Comparing Local Matching to Global Matching 86
5.8 POMap++: Local Matching Learning Evaluation 87
5.9 Conclusion . 90

6 Conclusion and Future Work 91

List of Figures

1.1 Ontology example . 3
1.2 Linking open data cloud diagram of March 2019 4
1.3 Ontology matching example . 6
1.4 Contribution Overview . 10

2.1 Classification of ontology matching systems. 15

3.1 Ontologies Partitioning Architecture . 39
3.2 Relatedness between entities example . 41
3.3 (a) An ontology with no root entity (b) The ontology after adding the root

entity . 42
3.4 Isolated partitions cut example . 45
3.5 Large partitions cut example . 46
3.6 Multi-cut example . 48
3.7 Partitions merging example . 50

4.1 Local Matching Learning Architecture Overview 57
4.2 Positive samples extraction for a local training set extraction 64

5.1 Partitioning and Local Matching Learning Architecture 72
5.2 Ontologies Partitioning Experimental Architecture 76
5.3 Comparing different machine learning algorithms for local matching 79
5.4 Evaluating the impact of feature selection methods 84
5.5 The accuracy of Element level based features compared to the structure

level based features. 85
5.6 Venn diagram of alignments resulted from local matching based on the

element level features, the structure level features and their combination. . 86
5.7 Comparing local matching to global matching 87

List of Tables

2.1 Comparative of ontology matching systems 20
2.2 Comparative of partitioning approaches . 26
2.3 Comparative of matching learning approaches 31

4.1 An example of a local training set. 56
4.2 Element level features . 66
4.3 Structural level features . 68

5.1 Anatomy track partitioning results . 76
5.2 Local Matching accuracy for each undersampling method 81
5.3 Local Matching accuracy for each oversampling method 81
5.4 Impact of the combination Oversampling and Undersampling on Local

Training Data . 83
5.5 Local matching learning evaluation for the Anatomy track 88
5.6 Local matching learning evaluation for the FMA-NCI matching task 88
5.7 Local matching learning evaluation the FMA-SNOMED matching task . . . 89
5.8 Local matching learning evaluation for the NCI-SNOMED matching task . 89

Chapter 1

Introduction

Contents
1.1 Research Context . 2

1.2 Research Problems . 6

1.2.1 Large Ontology Matching . 7

1.2.2 Automation of the Matching Process 7

1.3 Thesis Contribution . 8

1.4 Research Overview . 10

1.5 Manuscript Outline . 10

1

2 CHAPTER 1. INTRODUCTION

1.1 Research Context

The semantic web is an extension of the World Wide Web through standards by the World
Wide Web Consortium (W3C) [2]. Therefore, humans and machines will understand and
explore the available data. In the Semantic Web, an idea of Tim Berners-Lee, the director
of the W3C, documents are annotated with additional meta data, such that software
agents can interpret the information to capture the semantics. This is not only limited
to the use within the WWW but can also be used within several applications. The most
simple way to add meta data to information is the use of RDF, which describes relations
between different pieces of information. Meta information can also be used not only to
better describe information sources but to better understand the questions of the user.

An ontology is a data model that represents a set of entities belonging to a specific
domain and the set of relationships between the entities of this domain. Ontologies have
many applications. A concept (also called class) is the main component (concerning the
information content) of an ontology. It may be described by several attributes, which
are concrete data fields. It is also possible to store information directly as instances of
concepts. In addition, most ontologies provide extra information on the entities, e.g. data
types or comments.

The ontology in Figure 1.1 displays a few pieces of information of the domain “organi-
zation of a university” stored in an ontology. “Professor”, “address”, “chair” and “lectures”
are concepts or classes. The pale blue fields like “name” or “surname” are called attributes
or data type properties. The diamonds represent relations between different concepts; a
relation might be an object property or (not shown in this example) a subclass property.
Instances are concrete values of the attributes and are displayed in italic strings. An in-
stance called also individual is belonging to the concept “professor” is “Stefan Conrad”,
where “Stefan” is the value of the attribute “name” and Conrad the value of “surname”.
This instance has a relation to the instance “conrad@cs.uni-duesseldorf.de.

Ontology contains information about concepts, relationships, attributes and individu-
als. Concepts are abstract groups or types of objects. Relationships describe relations be-
tween objects, they include specialization (is-a) relation and meronymy (part-of) relation.
Attributes describe concepts they belong to. Individuals are instantiations of concepts,
usually representing real-world objects. They contain values (attribute instances) and are
connected with relationship instances. The representation process of an ontology aims to
make those logical definitions and axioms to be formal, and machine-accessible. There
exist many kinds of languages can be used in that task such as OWL, RDF.. different rep-
resented languages lead to different syntax in the formal ontologies. Ontology languages
are formal languages used to encode ontology specifications. The Web Ontology Language
(OWL) [69] is the recent standard for ontology specification in the domain of the seman-
tic web. In OWL terminology, concepts are called classes. A class may be specified as
a subclass of another class, thus implementing the specialization relationship. Properties
are used to define the content of classes. Properties fall into two categories; object prop-
erties represent general relations between two classes, while datatype properties represent

1.1. RESEARCH CONTEXT 3

Figure 1.1: Ontology example

attributes. Individuals are still called individuals. OWL builds on other standards, XML
Schema datatypes are used, and the RDF/XML syntax [66] is used to exchange OWL
ontologies.

The main role of ontology is to describe domain knowledge in a generic and explicit
way. For instance, El Hadj Amor et al. [6] presented a new ontology based on a real busi-
ness process to create semantic relationships between all terms. An ontology provides also
an agreed understanding of a domain. The conceptualization process provides a simplified
viewpoint of users to the reality (the domain knowledge). However, different users may
have different knowledge acquisitions, different backgrounds and understanding of the way
this knowledge has to be conceptualized. This leads to different conceptualizations com-
prising different objects, entities and relations among them. Further, the formalization
process describes all the concepts defined in the previous step as an explicit specification.
It means that developers explain all entities and their relations as given in the conceptu-
alization phase, by using some specific formal language (e.g. Description Logics). But,
different languages provide different abilities to represent logical rules or axioms and dif-
ferent developers may assign different names for constant or predicates. Therefore, at this
step even the same conceptualization maybe formalized with different specification.

Life sciences ontologies like biomedicines and biology are produced and managed by
ontology developers and research community [7]. The integration and the analysis of these
datasets related to a single topic of interest such as the correlation between genotype and
phenotype is essential in the knowledge discovery process. Consequently, researchers are
publishing these datasets on the internet to make them available to the semantic web
community and more specifically to the biomedicines specialists [7, 91]. However, the
integration of the biomedical datasets raises many challenges in terms of their integration,

4 CHAPTER 1. INTRODUCTION

management, and representation. These challenges are addressed by the semantic web
community in order to resolve the issues related to the large scale of the available biomed-
ical ontologies published on the web. In figure 1.2, we depict the linking open data cloud
diagram1 of March 2019. This web page is a representation of the LOD cloud diagram.
Datasets that have been published in the Linked Data format. The dataset currently con-
tains 1,239 datasets with 16,147 links. The pink circles represent the life sciences datasets,
which represents one of the biggest sub clouds of the LOD cloud diagram.

Figure 1.2: Linking open data cloud diagram of March 2019

An ontology can be used in many different application areas to describe and store
knowledge. In general, there are many different ontologies describing the same domain.
In most cases, the ontologies are not totally equal, because the used vocabulary differs
and the coverage of the domain is varying. If two or more ontologies need to be compared
correspondences have to be found despite the existing heterogeneity. Ontologies are highly
heterogeneous [35]. According to the classification of Jérôme Euzenat and Pavel Shvaiko
[35], ontology heterogeneity can be classified into four levels:

• Syntactic: At this level, all forms of heterogeneity depend on the choice of the
representation format. This heterogeneity is caused by the use of different models
or vocabularies such as XML, RDF and OWL [81].

• Terminological: At this level, all forms of heterogeneity are related to the process of
1https://lod-cloud.net/

1.1. RESEARCH CONTEXT 5

naming entities that occur in an ontology [35].

• Conceptual: At this level, all forms of heterogeneity have come from the differences
in the content of an ontology [35].

• Semiotic Pragmatic: At this level, all the discrepancies are related to the fact that
different individual/communities may interpret the same different ways in different
context [81].

The heterogeneity at the Syntactic level can be handled by using a transformation
tool, which converts ontology from one represented language to another [81]. The hetero-
geneity at the Semiotic and Pragmatic level is very difficult because they strongly depend
on understanding the context of using ontology. Therefore, most of the current ontol-
ogy matchers focus only on solving the problem of mismatches between entities at the
Terminology and Conceptual levels. Dealing with terminological heterogeneity, ontology
matching systems employ different matcher based on similarity measures. A similarity
measure is a function f : Vi → Vj [0,1] where Vi is the set of Oi entities and Vj is the
set of Oj entities. For each pair of entities (ei, ej), a similarity measure computes a real
number, generally between 0 and 1, expressing the similarity between the two entities.

Ontology alignment is a process of discovering correspondences (or mappings) between
semantically related entities of different ontologies. An ontology matching systems define
a confidence value between the discovered correspondences. Usually this confidence value
is denoted as n, where n ∈ [0..1] Due to the high heterogeneity of ontologies, the same
concept described in different ontologies may have different representations (e.g., labels,
properties or relations with other concepts) [35]. Alignment algorithms primarily use the
equivalence relation (=), meaning that the matched objects are the same or are equiva-
lent. Using OWL vocabulary, it is possible to take advantage of the ”owl:equivalentClass”,
”owl:disjointWith” or ”rdfs:subClassOf” relations in order to infer correspondences be-
tween classes of two ontologies. These relations correspond to set-theoretic relations be-
tween classes: equivalence (=); disjointness (⊥) and less general (≤) [35].

Figure 1.3 is extracted from [47]. This figure shows a small ontology network with
two ontologies (concepts are represented by nodes and the is-a structures are represented
by directed edges) and an alignment (represented by dashed edges) [47]. The alignment
consists of 10 equivalence mappings. One of these mappings represents the fact that the
concept of bone in the first ontology is equivalent to the concept of bone in the second
ontology [47].

6 CHAPTER 1. INTRODUCTION

Figure 1.3: Ontology matching example

Ontology matching system is a software system that performs the matching process
[73]. The degree of automation is an important characteristic of the matching system.

• Interactive matching is done by a human, who is given hints by the matching system.

• Semiautomatic matching systems present a set of mapping propositions to the user.
The user approves them and may include additional mappings manually, this is
repeated until the matching is completed.

• Fully automatic matching is done solely by the matching system; it is the only option
if user input is not available.

The present research focuses mainly to fully automatic matching. In most scenarios,
ontology matching is expected to be done without the presence of a qualified user, therefore
fully automatic matching is required.

Let A be an alignment produced by a given ontology matching system and R the
reference alignment [8]. We can compute the accuracy of the matching system based on
Precision, Recall and F-measure as follows:

Precision = |A ∩R|
|A|

Recall = |A ∩R|
|R|

F −measure = 2 ∗ Precision ∗Recall

Precision + Recall

1.2 Research Problems

Ontologies have grown increasingly large in real application domains, notably the biomed-
ical domain, where ontologies, such as the Systematized Nomenclature of Medicine and

1.2. RESEARCH PROBLEMS 7

Clinical Terms (SNOMED CT) with 122464 classes, the National Cancer Institute The-
saurus (NCI) with 150231 classes, and the Foundational Model of Anatomy (FMA) with
104721 classes are widely employed. These ontologies can vastly vary in terms of their
modeling standpoints and vocabularies, even for the same domain of interest. To en-
able interoperability we will need to integrate these large knowledge resources in a single
representative resource. This integration can be established through a novel matching
process which specifies the correspondences between the entities of heterogeneous ontolo-
gies. Existing ontology matching systems have to overcome two major issues when dealing
with large ontologies: (i) integrating the large size not yet feasible with a good matching
accuracy, (ii) automating the ontology matching process.

1.2.1 Large Ontology Matching

With regards to the first issue, according to the bioportal, large ontologies like NCI and
SNOMED respectively contain 137,328 and 327,128 entities. For instance, the traditional
alignment approaches perform the Cartesian product between all the entities of NCI and
SNOMED ontologies, which produces a set of 137,328327,128 pairwise comparisons. This
set corresponds to almost 45 billion candidate alignments. This constructs a huge search
space, here the number of correspondences that should be specified between these on-
tologies is 18,844 according to the LargeBioMed Track from the Ontology Alignment
Evaluation Initiative (OAEI), which represents only 4.19% of the candidate alignments.
Therefore, the alignment of large ontologies is a complex task. The large size of these on-
tologies decreases the matching accuracy of ontology matching systems. Large ontologies
describing the same domain includes a high conceptual heterogeneity. Ontology develop-
ers can construct the same domain ontology but using different conceptual models. As
a result, finding mappings between two ontologies became more difficult. Consequently,
the matching of large ontologies became error-prone, especially while combining differ-
ent matchers in order to result in an adequate result. To summarize, the main issues of
the alignment of large ontologies are the conceptual heterogeneity, the high search space
and the decreased quality of the resulted alignments. Dealing effectively with biomedical
ontologies requires a solution that will align large alignment tasks such as ”divide and con-
quer” or parallelization approaches. The ”divide and conquer” strategy means breaking a
problem down into two or more sub-problems until the problem becomes simple enough
to be solved directly. The solutions to the sub-problems are then combined to give a final
solution for the original problem. When applied to the context of ontology alignment,
the ”divide and conquer” approach consists of dividing a large matching task into a set of
smaller sub-matching tasks known as partitions or blocks.

1.2.2 Automation of the Matching Process

A single matcher for a large ontology matching task is insufficient to result in good match-
ing quality. Usually, a matcher treats a single type of heterogeneity. Hence, the combina-
tion of different matchers and the tuning of each matcher is essential for a better matching

8 CHAPTER 1. INTRODUCTION

accuracy [60]. This process should be automatically defined by ontology matching sys-
tems. Therefore, an ontology matching system should not depend on a single configuration
of matchers for all the matching problems. The matching tuning process should be auto-
matically defined for every new matching context. Dealing with large ontologies should
not preclude a high-quality solution. High quality is affected by the tuning parameters
chosen during the alignment process, such as the thresholds, the appropriate matchers
and their weights. While dealing with different matching tasks, the main issue is the
automation process is the choice of the matching settings. The matching tuning process
should be automated in order to reduce the matching process complexity, especially while
dealing with large scale ontologies. As a result, the ontology matching process needs to
be self-tuned for a better selection of matching settings for each matching problem. This
process can improve the ontology matching accuracy. In the case of large ontologies, it
is important to have highly-automated, generic processes which are independent of the
input ontologies. To achieve quality alignments, ontology matching systems can employ a
variety of matchers while managing complex ontologies [72]. The choice of these matchers
should depend on the matching context. In the context of large ontologies, the drawback
of manual solutions is the level of complexity and the time needed to generate results
for such a large problem. Automatic solutions proposed in recent research work apply
matching learning techniques based on various machine learning approaches. Matching
learning corresponds to the use of machine learning for ontology matching.

1.3 Thesis Contribution

In this Ph.D. thesis, we put forward a novel local matching learning approach that com-
bines ontology partitioning with ontology matching learning. In the following, we describe
the main contribution of this thesis.

• A novel partitioning approach based on hierarchical agglomerative clustering [60].
As input, it takes two ontologies and generates as an output a set of local matching
tasks. The partitioning approach split a large ontology matching task into a set of
sub-matching tasks. The large search space is reduced accordingly to the number
of local matching tasks. Therefore, the search space is minimized from the whole
ontology matching problem to a set of sub-matching problems. Consequently, the
alignment of the two input ontologies can be more effective for each sub-matching
task in order to result in a better matching accuracy for the whole matching problem.
The proposed partitioning approach is based on a novel multi-cut strategy generating
not large partitions or not isolated ones.

• A local matching learning approach in order to fully automate the matching tuning
for each local matching task [64]. This automation has to be defined for every
new matching context in order to result in a context-independent local matching
learning system. This matching system should align each local matching context

1.3. THESIS CONTRIBUTION 9

based on its characteristics. State-of-the-art approaches define a set of predefined
matching settings for all the matching contexts. However, the benefit of the local
matching learning approach is the use of machine learning methods, which can be
flexible and self-configuring during the training process. We apply the proposed
matching learning approach locally and not globally. Consequently, we set the ade-
quate matching tuning for each local matching task. Therefore, we result in a better
matching quality independently of the matching context. Each local matching task
is automatically aligned using its local classifier from its local training set. These
local training sets are generated without the use of any reference alignments. Each
local classifier automatically defines the matching settings for its local matching task
in terms of the appropriate element-level and structural-level matchers, weights and
thresholds.

• A prototype called POMap++ implementing all the above contributions. This pro-
totype has participated in OAEI’2017 and OAEI’2018 have got top positions.

The work on the current PhD thesis have lead to the following publications:

1. Amir Laadhar, Faiza Ghozzi, Imen Megdiche, Franck Ravat, Olivier Teste, Faiez
Gargouri. The Impact of Imbalanced training Data on Local matching learning of
ontologie. International Conference on Business Information Systems (BIS 2019),
Seville, Spain, 26/06/19-28/06/19, june 2019.

2. Amir Laadhar, Faiza Ghozzi, Imen Megdiche, Franck Ravat, Olivier Teste, Faiez
Gargouri. Partitioning and Local Matching Learning of Large Biomedical Ontolo-
gies. ACM/SIGAPP Symposium on Applied Computing (SAC 2019), Limassol,
Cyprus, 08/04/19-12/04/19, ACM SIGAPP, april 2019.

3. Amir Laadhar, Faiza Ghozzi, Imen Megdiche, Franck Ravat, Olivier Teste, Faiez
Gargouri. OAEI 2018 results of POMap++. International Workshop on Ontol-
ogy Matching co-located with the 17th International Semantic Web Conference
(OM@ISWC’18 2018), Monterey, CA, US, 08/10/18-12/10/18, CEUR-WS : Work-
shop proceedings, p. 192-196, 2018.

4. Amir Laadhar, Faiza Ghozzi, Ryutaro Ichise, Imen Megdiche, Franck Ravat, Olivier
Teste. Partitioning and Matching Tuning of Large Biomedical Ontologies. Inter-
national Workshop on Ontology Matching co-located with the 17th International
Semantic Web Conference (OM@ISWC’18 2018), Monterey, CA, USA, 08/10/18-
12/10/18, CEUR-WS : Workshop proceedings, p. 220-221, 2018.

5. Amir Laadhar, Faiza Ghozzi, Imen Megdiche, Franck Ravat, Olivier Teste, Faiez
Gargouri. POMap results for OAEI 2017. Dans : Ontology Matching co-located with
the 16th International Semantic Web Conference (OM@ISWC’17 2017), Vienna,
Austria, 21/10/17-25/10/17, CEUR-WS : Workshop proceedings, october 2017.

10 CHAPTER 1. INTRODUCTION

6. Amir Laadhar, Faiza Ghozzi, Imen Megdiche, Franck Ravat, Olivier Teste, Faiez
Gargouri. POMap: An Effective Pairwise Ontology Matching System. International
Conference on Knowledge Engineering and Ontology Development (KEOD 2017),
Funchal, Madeira, Portugal, 01/11/17-03/11/17, INSTICC - Institute for Systems
and Technologies of Information, Control and Communication, p. 1-8, 2017.

1.4 Research Overview

In this section, we briefly describe the main processes of the proposed contributions as
depicted in Figure 1.4. This architecture has two ontologies as the input and alignments
as the output. The output is a set of correspondences generated from the two input
ontologies.

Figure 1.4: Contribution Overview

1. The two input ontologies are pre-processed and indexed in the first module. We
applied a set of natural language processes across the annotations for each input
ontology. All the annotations and semantic relationships between entities are stored
in a data structure.

2. In the second module, the indexed ontologies are then partitioned in order to generate
the set of local matching tasks. The partitioning process ensures good coverage of
the alignments that should be discovered.

3. In the third module, we automatically build a local classifier for each local matching
task. These local classifiers automatically align the set of local matching tasks based
on their adequate features.

4. In the fourth module, the generated alignment file stores the set of correspondences
located by all the local matching tasks. The correspondences are compared to the
reference alignments provided by the Gold Standard to assess the accuracy of local
matching.

1.5 Manuscript Outline

The remainder of this thesis is organized as the following:

• Chapter 2 reviews and compares the existing works related to the alignment of
large biomedical ontologies. It includes three main sections. The first one focuses

1.5. MANUSCRIPT OUTLINE 11

on reviewing the state of the art matching systems. In this section, we classify
the related ontology matching systems based on the employed matching techniques.
The second section reviews the ontology partitioning approaches, which are classified
into two main categories: Partition-based method and anchor-based segmentation
method. The third section reviews the ontology matching learning approaches. Each
of the two later sections is followed by a discussion in order to review the employed
techniques.

• Chapter 3 starts by presenting the formal foundations employed throughout the
chapter. Then, we introduce the ontologies partitioning architecture. Later, we
present the three main components of the ontology partitioning approach, which
are: input ontologies pre-processing, partitioning algorithm and identification of
local matching tasks. Each part is illustrated through examples.

• Chapter 4 presents the local matching learning approach. We begin by presenting
the formal foundations employed in the chapter. Then, we present an architecture
presenting the main components of the local matching learning approach. The ap-
proach mainly contains three components: the local training sets generation, the
balancing of the generated local training sets, the wrapper-based feature selection
and the local classification through a set of classifiers.

• Chapter 5 corresponds to the evaluation of our main contributions. We begin by
presenting the Experimental environment. We are based on the biomedical datasets
provided by the benchmark of the Ontology Alignment Evaluation Initiative (OAEI).
Then, we evaluate the partitioning approach compared to the state-of-the-art meth-
ods based on the same dataset. Later, we asses the local matching approach based
on different experiments. Each experiment is followed by a discussion.

• Chapter 6 summarizes the thesis with a discussion about the different results and
concludes with some perspectives and future research directions.

Chapter 2

Related Literature

Contents
2.1 Introduction . 13

2.2 Ontology Matching Systems . 14

2.2.1 Basic Matching Techniques . 14

2.2.2 Workflow Strategies . 17

2.2.3 Scalability Techniques . 18

2.2.4 Discussion . 19

2.3 Ontologies partitioning . 21

2.3.1 Partition-based Methods . 22

2.3.2 Anchor-based Segmentation Method 23

2.3.3 Discussion . 25

2.4 Ontology Matching Learning . 27

2.4.1 Ontology Matching Learning Systems 27

2.4.2 Discussion . 30

2.5 Conclusion . 32

12

2.1. INTRODUCTION 13

2.1 Introduction

Large ontologies include a high conceptual heterogeneity, especially for biomedical ontolo-
gies. Usually, these ontologies are developed and maintained by different oncologists and
researchers. Moreover, the same domain ontology can be constructed based on different
modeling views. As a result, the matching process performed by matching systems can be
impacted. Finding all the correspondences between two large ontologies became a chal-
lenging task. This can affect the matching accuracy, which can be decreased. Furthermore,
the alignment of large ontologies results in a huge search space. For instance, the number
of candidate correspondences between the ontologies NCI and SNOMED is more than 45
billion entity pairs. In this huge search space, ontologies matching systems try to find the
wright correspondences. This process is error-prone especially while combining different
matchers. As a result, the accuracy of the matching process can be impacted. To sum-
marize, the main issues of aligning large scale ontologies are the conceptual heterogeneity,
the high search space and the decreased quality of the resulted alignments.

Moreover, automating the alignment process of ontologies is presenting an issue for
the state-of-the-art matching systems [35]. Furthermore, the alignment automation of
large ontologies is representing a challenge for the semantic web community. Each match-
ing task is different from the other matching tasks in terms of its semantic richness and
its heterogeneity. Different ontology matching tasks can have different kinds of hetero-
geneity. Therefore, ontology matching systems should take into account the difference
between ontology matching tasks. Moreover, ontology matching systems employ different
matchers since a single matcher is not sufficient to cope with the heterogeneity of a large
matching task. Different matching tasks require different matching settings such as the
set of employed matchers, their weights and the threshold of each matcher. Therefore, an
automatic combination of matchers is required especially for large matching tasks. The
matching settings of an ontology matching system should not manually be defined. We
argue the choice of the automatic approach due to the complexity of the manual approach
particularly for large matching setting, which requires multiple matchers. Moreover, each
ontology matching task has its own specific matching settings that are different from the
other matching tasks. Therefore, the automation process of the matching tuning should
be taken into account by ontology matching systems. In Section 2.4 we review the related
works for ontology matching based on machine learning techniques.

In Section 2.2, we classify ontology matching systems based on their employed tech-
niques. Since we are proposing an ontology partitioning approach, in Section 2.3, we review
the related work for this field. Partitioning approaches are compared and reviewed. Deal-
ing with ontology matching automation, in Section 2.4, we review the state-of-the-art for
ontology matching learning.

14 CHAPTER 2. RELATED LITERATURE

2.2 Ontology Matching Systems

Different ontology matching systems have been approached by the semantic web commu-
nity. Several surveys [90, 56, 22, 35, 56, 86, 85] compare the state-of-the-art approaches.
Since the appearance of the OAEI (Ontology Alignment Evaluation Initiative) campaign,
many ontologies matching systems have been proposed and compared. In this section, we
classify and discuss the recent systems proposed by the state-of-the-art. Most of these
systems have participated in the OAEI campaign. Classification is guided by the different
techniques that can be employed during the matching process.

Aiming to review the ontology matching systems and inspired by the state-of-the-art
surveys [90, 35, 86, 85], we classify them under the following groups: (i) basic match-
ing techniques; (ii) scalability techniques and (iii) workflow strategies. Basic matchers
are employed by almost matching systems. They are used to discover mappings between
the entities of pairwise ontologies. Each ontology matching system can employ different
basic matching techniques in order to cope with the high heterogeneity of ontology match-
ing tasks. Scalability matching techniques are employed to align large scale ontologies.
Workflow strategies are employed to combine different matchers [95]. For instance, in a
sequential matching workflow, each matcher can reuse the generated correspondence of an
earlier matcher. In a parallel workflow, matchers can be implemented at the same time in
order to combine their results. In Figure 2.1, we draw the classification of the matching
techniques as well as the workflow strategies.

New techniques are required to deal with the large size of the ontologies in order to
deliver a good matching accuracy. During the last years, the alignment of large ontologies
is getting a lot of interest by the semantic web community. In the following, we review the
state-of-the-art matching techniques based on the classification depicted in Figure 2.1.

2.2.1 Basic Matching Techniques

Basic matching techniques are also known as individual matchers. These techniques usu-
ally implement a similarity measure that explores a single feature of an entity [61]. An
ontology matching system can include several basic matchers, which are combined in order
to deliver a final set of alignments. According to the survey of Euzenat and Pavel Shvaiko
[35], these individual matchers are classified as follows.

2.2.1.1 Terminological methods

Terminological methods compare the strings of the names, labels, and comments of entities
in order to align the similar ones. These methods use string similarity measures in order
to asses the similarity between two strings. Similarity measures are classified into four
categories: (i) Character-based [18] (ii) Edit-distance [68] (iii) Term-based [48] and (iv)
Subsequence-based [70]. This method is used by many ontology matching systems such
as AML [37], XMap [30] and Lily [108].

2.2. ONTOLOGY MATCHING SYSTEMS 15

Figure 2.1: Classification of ontology matching systems.

16 CHAPTER 2. RELATED LITERATURE

2.2.1.2 Structural methods

Structural methods explore the structural characteristics between the entities of an on-
tology to derive correspondences. The structural information between two entities can be
the subsumption relation, domain, range and restriction property. For instance, if two
classes are similar, then their siblings can be somehow similar [35] and if two classes are
similar, then their subclasses should be also similar. These methods are divided into two
categories: internal and external structure methods [35]. Internal methods employ the
domain, range, and cardinality of their properties in order to compute the structural sim-
ilarity [30]. Some ontology matching systems developed their own structural similarity
measures [74]. These measures compute the overlap between two sets of entities taken
from super entities, descendant entities or based on the path from the root to the to-be-
matched entities. Nevertheless, the structure of ontologies describing the same domain
can be different. Therefore, it is not sure that two similar entities from two ontologies can
have similar neighbors [35]. Consequently, some ontology matching systems employ filter
techniques to find wrong correspondences [37, 52].

2.2.1.3 Semantic methods

Semantic methods explore semantic information encoded in the entities of an ontology.
Therefore, if two entities have similar semantic relations, such as the same property,
therefore, they can be similar. Description logic employs semantic information in order to
discover inconsistent mappings. These inconsistent mappings are removed from the final
mappings set. Reasoning can be used to rewrite and expand relations between entities.
For example, new semantic relationships between entities can be generated. Therefore,
new mapping can be discovered. Another type of using description logic is to transform
the resulted mappings to the optimization problem on constraint programming. Annotat-
ing an ontology class by new semantic information extracted from background knowledge
sources can facilitate the discovery of new mappings. Therefore, the heterogeneity be-
tween two ontologies is reduced and new correspondences can be discovered. Therefore,
upper-level ontologies can be employed as external knowledge sources in order to align
lower level ontologies describing the same domain. DBPedia [10] and YAGO [103] are
multi-purpose upper ontology. For biomedical domain, UMLS [16] is a generic medical
dictionary. Uberon [78], FMA [38] and GO [24] are specific upper level for bio-medical
domain. These upper-level ontologies can employ the Open Biomedical Ontologies (OBO)
vocabulary [98] in order to interconnect similar classes of different ontologies. More
specifically, the annotation property ”oboInOwl:hasDbXref” is employed by the OBO vo-
cabulary to interconnect the classes of different ontologies describing the same concept.
Therefore, the names of each class can be extended by new definitions and names. Many
ontology matching systems employ external background knowledge to annotate and align
ontologies.

2.2. ONTOLOGY MATCHING SYSTEMS 17

2.2.1.4 Extensional methods

Other methods compute the similarity between classes by comparing their instances.
Therefore, the schema matching can be based on the data layer matching. For instance,
two classes can be similar if their instances are similar. This kind of methods can be em-
ployed when the information about the schema layer is limited. For example, extensional
methods can be used when there is no names, labels, and comments for classes. Such
methods can be found in several ontologies matching systems live such as ASMOV [49],
and AROMA [28].

2.2.2 Workflow Strategies

Basic matching techniques are not able to discover a set of mapping that satisfies user
requirements. Each basic matcher usually focuses on a specific type of heterogeneity
between the entities of two ontologies. Therefore, ontology matching systems combine
several basic matchers in order to deliver a better matching accuracy. The state-of-the-
art follows three workflows strategies in order to combine matchers: sequential, parallel
and interactive composition. The combination of the later compositions is identified as a
hybrid strategy. In the following, we discuss the state-of-the-art workflow strategies.

2.2.2.1 Sequential Workflow

The most usual method to compose basic matchers is the sequential workflow. The output
of each matcher is the input of the next matcher. This method is used by many ontology
matching systems. Usually, an element-level matcher generates an initial set of corre-
spondences, which are passed to a structural-level matcher. This strategy is employed by
Gomma [39], Falcon-AO [44], Similarity Flooding [74]. For instance, in a sequential
workflow, we can employ at least two matchers executed sequentially. The first matcher
aims to find all the possible candidate mappings, the second matcher discovers all the pos-
sible inconsistent correspondences produced between the two matchers. Therefore, there
is a dependence between matchers.

2.2.2.2 Parallel Workflow

In the parallel workflow strategy, matchers are independent. Each matcher is executed
independently from the other matchers. If each basic matcher is employing a similarity
measure, then the similarity scores generated by each candidate matcher are aggregated
based on an aggregation operator. The commonly used aggregation operators are the
weighted sum and the weighted average. Other matching systems can assign manually
the weigh for each matcher COMA [11], ASCO [67]. Other systems proposes adaptive
weights AgreementMaker [25] or fuzzy assign weights (OWA) [50]. Some other ontology
matching systems aggregate operators via a decision function. Therefore, basic matchers
can be combined based on machine learning classifiers [46].

18 CHAPTER 2. RELATED LITERATURE

2.2.2.3 Iterative Workflow

The purpose of the iterative workflow strategy is that the matching process is repeated
many times until converging to a stop condition. The matching process can be performed
by one basic matcher or a combination of several basic matchers. This type of strategy
can be used in a part of a system or in the whole system. A typical example of using
iterative method in a part of system is similarity propagation method. The principle of
the algorithm is that the similarity between two nodes must depend on the similarity
between their adjacent nodes [74, 108]. Therefore, at each step of the running algorithm,
the similarity value of each pair of entities is re-computed according to the current values
of itself and its neighbors. We can find this strategy in the second phase of works in
Similarity Flooding [74], OLA [57], Falcon-AO [44], Lily [108]. Similarly, the iterative
strategy is also used in constraint-based method. In that way, for each step, the constraint-
based method re-calculates the confidence values for every candidate mappings or removes
inconsistent mappings. This process will be stopped until the optimization condition is
reached. The iterative constraint-based methods can be found in second phase of GLUE
[31], CODI [45], LogMap [52].

2.2.3 Scalability Techniques

Large ontologies like NCI and SNOMED respectively contain 137,328 and 327,128 entities.
The traditional alignment approach uses the cartesian product between all the entities
of NCI and SNOMED ontologies, which produces a set of 137, 328 × 327, 128 pairwise
comparisons. This set corresponds to almost 45 billion candidate alignments. The number
of correspondences that should be specified between these ontologies is 18,844 according
to the LargeBioMed Track from the Ontology Alignment Evaluation Initiative (OAEI)
1, which represents only 4.19% of the candidate alignments. Dealing effectively with
biomedical ontologies requires a solution that will align large alignment tasks such as
search space reduction (early pruning and partitioning methods), self-tuning and reuse of
previous matching results [35, 89].

2.2.3.1 Search Space Reduction

Early pruning This method reduces the search space by heuristically eliminating the set
of the candidate correspondences. For instance, Eff2Match [23] employ the top-K entities
algorithm in the target ontology according to their context virtual document similarity.
This methods heuristically selects candidate mappings. For instance, the ontology match-
ing system QOM [34] proposed a heuristic strategy based on different extracted features
such as label, hierarchy, neighbors to select the promising mappings.

Partitioning Methods These methods split two large ontologies into a set of sub-
ontologies based on their structural information. The alignment process is performed only
between the entities of the sub-ontologies instead between the whole ontologies. Some

1http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/

2.2. ONTOLOGY MATCHING SYSTEMS 19

methods are based on anchors in order to extract the set of sub-ontologies. An anchor is
a set of entity-pairs determined by a similarity measure or other sophisticated techniques.
Each sub-ontology of one ontology have only one corresponding sub-ontology of the sec-
ond ontology. Then, the alignment process will be performed for each pair of related
sub-ontologies. This strategy is proposed by several ontology matching systems such as:
Anchor-Prompt [84], AnchorFlood [97], Lily [108] and TaxoMap [42].

2.2.3.2 Self Tuning

Several match systems first analyze the schemas to be matched and determine their lin-
guistic and structural similarity. These similarity characteristics are then used to select
matchers or to weigh the influence of different matchers in the combination of matcher
results. The Rimom system uses such similarity factors for dynamically selecting matchers
for a specific match task. For example, they use string measures for name matching only
if the input schemas have highly similar names; otherwise, they rely on thesauri such as
Wordnet. Similarly, they apply structural matching only if the input schemas are deeply
structured and structurally similar. Falcon-AO uses linguistic and structural similarities
to combine matcher results, particularly to optimize individual similarity (cutoff) thresh-
olds. For example, if the linguistic similarity is high, Falcon-AO uses lower thresholds for
linguistic matchers so that more of their correspondences are considered [89].

2.2.3.3 Reuse of Previous Matching Results

A promising approach to improve both the effectiveness and efficiency of schema match-
ing is the reuse of previous match results to solve a new but similar match task. An
ideal situation for such a reuse is the need to adapt a mapping between two schemas
after one of them evolves to a new schema version. By reusing the previous match map-
ping for the unchanged schema parts, a significant amount of match effort can likely be
saved. The reuse of previously determined correspondences and match results may also
be applicable in other cases, especially when different schemas share certain elements or
substructures, such as standardized address information. Exploiting the reuse potential
requires a comprehensive infrastructure, particularly a repository to maintain previously
determined correspondences and match results. Furthermore, methods are necessary to
determine the schema elements and fragments for which match reuse is applicable. Reuse
can be exploited at three mapping granularities: for individual element correspondences,
for mappings between common schema fragments, and for complete mappings and schemas
[89].

2.2.4 Discussion

Due to the decentralized semantic web, ontologies are highly heterogeneous. As a re-
sult, ontology matching becomes a crucial task in semantic web applications. Therefore,
ontology matching systems are developed in order to discover correspondences between

20 CHAPTER 2. RELATED LITERATURE

semantically related entities of ontologies. Ontology matching systems should be efficient,
especially while aligning large ontologies due to their high heterogeneity. These systems
propose different approaches for the matching that are implemented in ontology matching
algorithms exploring different ontology matching techniques. Therefore, in the following
Table 2.1, we perform a comparative study of the prominent state-of-the-art matching
systems. This comparative study aims to compare the state-of-the-art matching systems
to our proposed approach called POMap++. We are based on three main criteria for the
comparison: basic matching techniques, scalability techniques, and the workflow strategy.
These criteria are presented in the earlier sections of this chapter.

Table 2.1: Comparative of ontology matching systems

Approach Basic Matching techniques Scalability techniques Workflow strategy
Eff2Match [23] Structural, Terminological Early pruning Sequential

QOM [34] Structural, Terminological Early pruning Sequential
CODI [45] Structural, Terminological, Semantic No Iterative
GLUE [31] Structural, Terminological No Iterative

Agreement Maker [26] Structural, Terminological No Parallel
RiMOM [109] Structural, Terminological, Structural Parallel Iterative

Lily [108] Structural, Terminological Partitioning and reduction anchors parallel
OLA [57] Structural, Terminological No Iterative

ASCO [67] Structural, Terminological No Sequential
ASMOV [49] Structural, Terminological, Semantic No Iterative
AROMA [28] Structural, Terminological Early pruning Iterative

AML [37] Structural, Terminological, Semantic Hashmap data structure parallel
LogMap [53] Structural, Terminological, semantic logic based iterative
XMAP [30] Structural, Terminological, semantic divide-and-conquer Parallel

FCAMapX [43] Structural,Terminological, semantic formal concept analysis Iterative
YAM-BIO [8] Semantic, Terminological, Structural Candidates correspondences filtering Sequential

CroMatcher [17] Semantic, Terminological, Structural No Parallel
COMA++ [11] Terminological, Structural Partitioning Parallel
Falcon-AO [44] Terminological, Structural Partitioning Sequential

Anchor Flood [97] Terminological, Structural Anchor-segmentation Iterative
Anchor-prompt [84] Terminological, Structural Anchor-segmentation Sequential

Taxomap [42] Terminological, Structural Partitioning Sequential
Gomma [39] Semantic,Terminological, Structural Partitioning Parallel

Xue and Pan [114] Terminological, structural Partitioning Sequential
KEPLER [55] Terminological, Semantic Partitioning Sequential

Ngo and Bellahsene [82] Semantic, Terminological, Structural Candidates correspondences filtering Sequential
Ryutaro Ichise [46] Semantic, Terminological, Structural no n/d
Nezhadi et al. [80] Semantic, Terminological, Structural No Sequential
Eckert et al. [33] Semantic, Terminological, Structural No n/d
Wang et al. [107] Terminological, Structural Candidate selection Sequential
F. Cruz et al. [27] Semantic, Terminological, Structural No Parallel

Nkisi-Orji et al. [83] Semantic, Terminological, Structural No Sequential
POMap++ [63] Terminological, Structural Partitioning Parallel

Firstly, we classify existing approaches based on their use of basic matching techniques,
which can use the following matching techniques: terminological, structural and semantic.
Next, for the second criterion, we state the employed techniques in order to deal with the
alignment of large scale ontologies. We argue the use of this criterion since our approach
deals with large scale ontologies. The final criterion corresponds to the employed workflow

2.3. ONTOLOGIES PARTITIONING 21

strategy, which can be in sequential, in parallel or iterative. We were able to add an
additional criterion that states the automation of the approaches. However, many ontology
matching systems claim to be automated, but in reality, these systems introduce a manual
tuning process. Usually, a predefined manual tuning is defined for ontology matching tasks
after the evaluation of the generated correspondences. Even, ontology matching learning
systems lack automation in terms of the generation of the training data. The majority
of the existing matching systems build the training data either manually or extract it
from the reference alignments. However, reference alignment does not usually exist for
the majority of ontology matching tasks. Moreover, even a single automated generated
training set is not rich enough to include all the possible patterns for all the ontology
matching tasks. Therefore, the learned classifier can contain wrong assumptions that can
result in wrong correspondences for the ontology matching tasks. We can deduce from
the performed comparative study, that there is a lack of matching systems that combine
scalability techniques to a fully automated ontology matching approach. Nevertheless,
it is highly required to automatically align large ontology matching tasks. As a result,
our proposed approach, POMAp++, combines large scale ontologies matching to a fully
automated matching learning approach. This approach is called local matching learning,
which divide a large scale ontology matching into a set of local matching tasks aligned
automatically using machine learning techniques. In the next section, we review the
existing ontology partitioning approaches.

2.3 Ontologies partitioning

Some of the matching systems perform an all-against-all comparison between the entities of
the input ontologies [36]. However, this strategy is not suitable for dealing with large and
heterogeneous ontologies. The divide and conquer approach reduces the search space of
pairwise ontology matching. Therefore, the matching process is applied to the set of similar
partition-pairs between the input ontologies. Some approaches perform the partitioning
process to ease the maintenance and the re-usability of a single large ontology [101].
Partitioning and modularization techniques have been also employed by the semantic web
community in order to solve some tasks such as (e.g., ontology visualization [102, 3],
ontology reuse [54], ontology debugging [104], ontology classification [92]. Partitioning
has also used [51]. Another line of work perform the partitioning process of pairwise
ontologies to reduce the complexity of large ontology matching task (e.g., [11, 44, 4,
39, 114, 21, 88]. The alignment of the large scale ontologies is one of the main issues
in the ontology matching field. The size of the input ontologies impacts the resulted
matching quality in terms of effectiveness and efficiency. There is a very high conceptual
heterogeneity in large ontologies. This heterogeneity results in a difficulty in finding all
the possibles mappings between ontologies. Therefore, ontologies matching systems can
be affected due to the large search space that can be generated. The discovery of the
mapping in huge search space is time-consuming. Consequently, it may lead to wrong

22 CHAPTER 2. RELATED LITERATURE

alignments.
In this section, we focus on reviewing the approaches of large ontologies matching.

Notably, we review large scale ontology matching methods in particular partition-based
method in Section 2.3.1. Then, we review the anchor-based segmentation method and dis-
cussed in Section 2.3.2. Later, in Section 2.3.3, we will discuss the strength and weaknesses
of the state-of-the-art methods.

2.3.1 Partition-based Methods

This method is similar to the divide and conquer approach. The partition-based meth-
ods break down a big matching problem into a set of sub-problems. The sub-problems
correspond to the matching of the set of sub-ontologies [101].

Commonly, partition-based matching strategies follow two tasks:

1. The partitioning of the input ontologies can be performed by applying a clustering
algorithm. The entities of each cluster are semantically related to each other [101,
51]. Whereas, the entities of different clusters are weakly related. We assume that
partitions represent different sub-domains for each ontology.

2. The identification of similar partitions-pairs is accomplished through the comparison
between the partitions of the two ontologies [101]. This comparison is made by
computing the similarity or based on a set of anchors between the set of partitions.
The intuition is if two partitions of two ontologies are similar, then they describe
the same sub-domain.

Recently, Jimenez-Ruiz et al. [51] proposed a divide and conquer approach that par-
tition large ontologies into a set of sub-matching tasks based on two clustering strategies:
(i) Naive strategy and (ii) neural embedding strategy. Jimenez-Ruiz et al have performed
a comprehensive evaluation of both strategies which suggests that the obtained divisions
are suitable in practice in terms of both coverages. However, the naive and the neural
embedding strategies require the size of the number of matching subtasks or clusters as
input. The (required) matching subtasks have to be known beforehand if, for example,
the matching tasks are to be run in parallel in a number of available CPUs [51] .

COMA++ [11] was one of the first matching systems proposing an ontology partition-
ing approach. COMA++ is a schema matching tool based on a parallel composition of
matchers. It provides an extensible library of matching algorithms, a framework for com-
bining obtained results, and a platform for the evaluation of the different matchers [35].
COMA contains 6 elementary matchers, 5 hybrid matchers, and a reuse-oriented matcher.
Most of them implement string-based techniques, such as affix, n-gram edit distance (Sect.
5.2.1); others share techniques with Cupid, e.g., thesaurus lookup. An original compo-
nent, called reuse-oriented matcher, tries to reuse previously obtained results for entire
new schemas or for their fragments. Schemas are internally encoded as directed acyclic
graphs, where elements are the paths [35].

2.3. ONTOLOGIES PARTITIONING 23

Falcon-AO [44] Falcon present a divide-and-conquer approach to ontology matching.
The approach operates in three phases: (i) partitioning ontologies, (ii) partitions matching,
and (iii) discovering alignments. The first phase starts with a structure-based partitioning
to separate entities (classes and properties) of each ontology into a set of small clusters [35].
Partitioning is based on structural proximities between classes and properties, e.g., how
close the classes are in the hierarchies of rdfs:subClassOf relations, and on an extension of
the ROCK agglomerative clustering algorithm [35]. Then it constructs blocks out of these
partitions. In the second phase, the partitions from distinct ontologies are matched based
on anchors. The anchors are discovered by matching entities with the help of the SMOA
string comparison technique [35]. Finally, the third phase combines two matchers between
the matched partition pairs via sequential composition [35]. Nonetheless, this approach
is evaluated through only one pair of ontologies from the web directories matching task of
the OAEI.

TaxoMap [42] offers two partitioning methods refining the Falcon-AO method by
attempting to introduce more dependency between the two partitions. The main difference
between these methods is the order of extraction of anchors in order to discover the
sub-matching tasks [35]. The first algorithm, Partition-Anchor-Partition (PAP), first
partitions one of the ontologies based on its own structure; then it computes anchors
between the ontologies and partitions the second ontology starting at the anchors [35].
The second method, Anchor-Partition-Partition (APP), is more adapted to unstructured
ontologies. It partitions the two ontologies by starting from the anchors that are found
in these ontologies, and for the second ontology, groups of anchors that are in the same
partitions. In both cases, partitions are then paired together based on anchors [35].

SeeCOnt [4] introduced a partitioning approach that analyses each input ontology
to derive the root of each partition. This approach employed a ranking function that
assigns each entity of an ontology to a single partition root. Using this technique improve
the matching efficiency by reducing the search space and produce acceptable matching
results. However, the downside of this technique is that it requires an expert to determine
the maximum size of each cluster. Moreover, the number of roots is manually defined.

Most of the existing work suffer from the low coverage value of the generated parti-
tions [88]. For instance, the partitioning methods Falcon-AO , PAP, and APP obtained
a coverage value of 80%, 34%, and 48%, respectively for the FMA-NCI matching task of
OAEI [88]. Pereira et al. [88] performed a study with the PBM method of Falcon-OA,
and the PAP and APP methods of TaxoMap. The results in terms of coverage with the
largebio tasks were very low, which directly affected the results of the evaluated systems
[88]. We are motivated by these obtained negative result to propose our partitioning
approach of this thesis.

2.3.2 Anchor-based Segmentation Method

This method is different from the partition-based method in terms of the generation of
partitions. The partition-based method can generate anchors in order to find similar parti-

24 CHAPTER 2. RELATED LITERATURE

tions between the two input ontologies. Whereas, the anchor-based segmentation method
generates anchors in order to construct the set of partitions or called also segments. The
anchor-based segmentation method is also known as a dynamic selection of candidates.
Therefore, this method iteratively updates the set of candidate correspondences. Candi-
date correspondences are generated by exploring the structural characteristics of entities
in order to remove the possible wrong candidate mappings. This method is proposed by
Anchor PROMPT [84] and Anchor Flood [97] matching systems.

The main steps of the anchor-based segmentation method are listed in the following:

1. The first step is the generation of the initial set of anchors between the two input
ontologies. This can be accomplished through a fast similarity measure or the exact
matching.

2. The neighbors of each anchor is explored in each iteration. Anchors are considered
as the set of aligned entities. These anchors represent the root of each segment. For
each selected anchors the algorithm updates the entities belonging to its segment.
This update is made by adding the neighboring entities of an aligned anchor. The
neighboring entities correspond to the superclasses, subclasses, and siblings. The
intuition is that if two entities are similar, their neighbors can be also similar.

3. An alignment process is performed between the set neighbors in order to produce a
new set of anchors. These anchors are employed in the next iterations.

4. The iterative process is repeated until there is no more entity to explore. The output
is a set of aligned entities between the segments of the two input ontologies.

Anchor-Flood [97] starts with anchors in the same way as above. It then compares
the neighborhoods (or partitions) of both anchors, i.e., the set of entities connected to the
anchors two levels away (parents, grandparents, children, grandchildren, siblings, etc.) [35].
The algorithm only compares entities from two such anchored partitions, starting from
the anchors and spreading to the neighborhood until all entities are reached [35]. The
pairs of entities to match are those reachable from the same type of operation (ascending,
descending, sibling)

Anchor-Prompt [84] is a sequential matching algorithm that takes as input two on-
tologies, internally represented as graphs and a set of anchors, which are identified with
the help of string-based techniques, such as edit distance, user-defined distance or another
matcher computing linguistic similarity. Then the algorithm refines them by analyzing the
paths of the input ontologies limited by the anchors in order to determine terms frequently
appearing in similar positions on similar paths. Finally, based on the frequencies and user
feedback, the algorithm determines matching candidates [35].

The anchor-based segmentation suffers while dealing with large scale ontologies. For
instance, the FMA (78,989 classes) and NCI NCI.owl (66,724 classes) have in common
only 2898 correspondence that should be discovered. Consequently, during the alignment
process, the structural similarity value computed for each pair of concepts between the

2.3. ONTOLOGIES PARTITIONING 25

two segments is small. As a result, new correspondences may not be discovered during the
next iteration. This issue results in a loss of the number of candidate alignments, which
affect the recall value. For example, anchor-Flood obtained a not high Recall (0.682) in
the OAEI 2008 Anatomy track.

2.3.3 Discussion

Large biomedical ontologies are developed by different oncologists and researchers. There-
fore, these ontologies are characterized by high conceptual heterogeneity. Conceptual
heterogeneity corresponds to the mismatches in the conceptualization of two ontologies
modeling the same domain. During the conceptualization process, the different entities of
an ontology are ordered according to a defined hierarchical structure. This hierarchical
structure is defined by the ontology developer. Hence, the same domain ontology can be
constructed based on different modeling views. Moreover, two similar entities of two on-
tologies can be associated with different semantic relationships and properties. Moreover,
large biomedical ontologies include a high search space. An ontology matching systems
tries to discover the right correspondences in the huge search space. This process is com-
plex and time-consuming especially while combining different matchers. As a result, many
wrong false positive and false negative correspondences can be generated. Therefore, the
matching accuracy can be decreased due to the complexity of the task. Ontology match-
ing systems suffer to cope with the later issues: the conceptual heterogeneity of large
ontologies, the huge search space and the decreased resulted from correspondences.

In order to cope with the later issues, in particular, the large scale only matching, Er-
hard Raham [89] reviewed four of the promising state-of-the-art techniques: Reduction of
search space (early pruning and partition-based matching), parallel matching, self-tuning
matching and reuse of previous matching results. We are following the partition-based
matching since all the other techniques can be integrated into this matching technique.
For instance, we can perform partitions matching using a parallel matching workflow. As a
result, sub-matching tasks can be aligned simultaneously in a parallel matching workflow.
Moreover, we can integrate early pruning or self-pruning with partition-based matching.
The main advantage of the partitioning approaches is that they can be used independently
of the matching approach. Therefore, we can apply different matching approaches for the
extracted partition-pairs. Therefore, we propose a partitioning approach in order to align
large scale ontologies. In the following Table 2.2, we perform a comparative study of the
state-of-the-art approaches for ontology partitioning. We are based on the following cri-
teria for comparison: coverage ratio, number of sub-matching tasks, isolated partitions,
and the employed dataset. Jimenez-Ruiz et al. [51] argued that is essential to evaluate
the efficiency of partitioning approaches. The coverage of the matching subtask aims at
providing guarantees about the preservation of the (potential) outcomes of the original
matching task (i.e., information loss) [51]. It indicates if the relevant ontology alignments
in the original matching task can still be computed with the matching subtasks [51]. The
second comparison criteria correspond to the number of sub-matching tasks generated af-

26 CHAPTER 2. RELATED LITERATURE

ter performing the partitioning approach. This number can be automatically or manually
defined. Unfortunately, there is a large variety of the possible number of sub-matching
tasks that can be defined. However, the adoption of an automatic approach becomes
increasingly necessary and should be considered by partitioning approaches. Another cri-
terion is checking if partitioning approaches generate isolated partitions. Isolated partition
is called isolated blocks by Pereira et al. [88]. Isolated partitions are partitions with only
one entity. These partitions can result in either source or target ontologies by the par-
titioning approaches. Therefore, isolated partitions need an extra process to be aligned
and not lost after performing the partitioning. The last criterion is employed dataset. We
consider this criterion since some partitioning approaches claim to be effective however
they employ small datasets. However, partitioning is most efficient for large datasets.

Table 2.2: Comparative of partitioning approaches

Approach Coverage ratio Number of submatching tasks Isolated Partitions Dataset
Jimenez-Ruiz et al. [51] High Manually defined n/d LargeBio and Phenotype

COMA++ [11] n/d n/d n/d Anatomy, Benchmark , Directory, Food
Falcon-AO [44] Very low Manually defined high Russia12 and TourismAB

Anchor Flood [97] n/d Automatic n/d Benchmark, Anatomy
Anchor-prompt [84] n/d Automatic n/d UMD and CMU

Taxomap [42] Very low n/d high Benchmark, Anatomy and Directory

Gomma [39] n/d n/d n/d
Anatomy, Benchmarks and Library,

Conference and Multifarm

Xue and Pan [114] n/d Semi-automatic n/d
Bibliographic benchmarks, Anatomy,

Library and LargeBio

KEPLER [55] n/d Manually defined low
Anatomy, Conference, Multifarm,

LargeBio and Phenotype
POMap++ [64] High Automatic No Anatomy and LargeBio

We can deduce from Table 2.2 that almost the partitioning approaches do not give
importance to the coverage ratio. However, Jimenez-Ruiz et al [51] stated that this
criterion is considered as primary in the evaluation of the partitioning approaches. Only
the approach proposed by Jimenez-Ruiz et al [51] results in a high coverage ratio. However,
this approach defines manually the number of sub-matching tasks. Only the anchor-
prompt and Anchor-Flood approaches automatically generate. However, these approaches
do not state the resulted coverage ratio. Moreover, these approaches partition relatively
small ontologies. Dealing with isolated partitions, only the ontology matching system
KEPLER cope with this issue. It generates a low number of isolated partitions. However,
these approaches fail to align large ontology matching tasks. Therefore, our partitioning
approach integrated into POMap++ focuses on addressing the issues concerning achieving
a good average ratio, automatically defining the number of sub-matching tasks and without
generating isolated partitions. Moreover, we are based on the dataset of large biomedical
ontologies. We mention that almost the state-of-the-art method made no restriction on
the size of the generated partitions. Therefore, unbalanced partitions may be produced,
where some partitions are big and the other partitions are quite smaller. This may affect
the accuracy of the ontology matching algorithm if it uses structural information. To the
best of our knowledge, most of the existing approaches apply the same matching tuning

2.4. ONTOLOGY MATCHING LEARNING 27

over all the extracted sub-matching tasks. However, each sub-matching task represents
a single sub-topic of interest, which has its own context and characteristics that should
be taken into account during the matching process. The main advantages of the Anchor-
based Segmentation methods, which are employed by Anchor-flood and Falcon-AO, is
their memory efficiency. These methods suffer when the size of the input ontologies is
very large like the Foundational Model of Anatomy ontology (FMA.owl - 78,989 classes)
and the National Cancer Institute Thesaurus ontology (NCI.owl - 66,724 classes). Unlike
related work, we divide a large ontology alignment task to a set of sub-matching tasks
called local matching tasks with a good coverage ratio and without resulting in any isolated
partitions or large partitions. We distinguished that the number of sub-matching tasks
is automatically defined. We achieve these results due to the proposed approach for the
iterative partitions merging. Then, we align each sub-matching task using its specific local
settings. We automatically determine the local matching tuning using a specific machine
learning classifier for each sub-matching task.

2.4 Ontology Matching Learning

Matching learning corresponds to the use of machine learning techniques for ontology
alignment. Supervised matching learning is the task of automatically inferring a function
f from training data. The learned function f : x ⇒ y maps the input x to an output
y [35]. The learned function is called a classifier for the learned function. A classifier is
a function that assigns a class label to a data point. The input x is composed of a set
of attribute values that describe the object to classify, while the output y is the class in
which the object x will be classified by the learned classifier. The training data is a set
of objects already classified (containing both attributes and a class value), while the test
data is the set of objects to classify. A supervised machine learning algorithm analyzes the
training data and produces a classifier that will be used to classify the test data objects.

In this section, we review the state of the art matching systems employing machine
learning techniques in their matching process workflow. In Section 2.4.1, we will review the
ontology matching learning systems. In Section 2.4.1.1, we will focus on the resampling of
the training data for the proposed ontology matching systems. Later, in Section 2.4.1.2,
we will focus on the use of feature selection methods for state-of-the-art ontology matching
learning approaches.

2.4.1 Ontology Matching Learning Systems

There have been some relevant works dealing with matching learning [46, 80, 82, 33].
Machine learning approaches for ontology alignment usually follow two phases [35]: the
training phase and the classification phase.

1. In the training phase, the machine learning algorithm learns the matching settings
from a training set. This training set is usually created from the reference alignments
of the same matching task.

28 CHAPTER 2. RELATED LITERATURE

2. In the classification phase, the generated classifier is applied over the input ontologies
to classify the entity pairs of the input ontologies (matches or not).

Eckert et al.([33] built a meta-learner strategy to combine multiple learners. Malform-
SVM [?] constructed a matching learning classifier from the reference alignments through
a set of element level and structural level features. Nezhadi et al. [80] presented a machine
learning approach to aggregate different types of string similarity measures. The latter
approach is evaluated through a relatively small bibliographic matching track provided by
the OAEI benchmark. Yam++ [82] defined a decision tree classifier based on a training
set with different similarity measures. The decision tree classifier is built from the ref-
erence alignments. Existing matching learning approaches build their machine learning
classifiers from the reference alignments or derive it manually from a particular matching
task [35]. Wang et al. [107] proposed a method for enriching entities in an ontology with
external definition and context information, and use this additional information for ontol-
ogy alignment. We develop a neural network architecture capable of encoding additional
information when available. Wang et al. showed that the addition of external data results
in an F1-score of 0.69 on the Ontology Alignment Evaluation Initiative (OAEI) largebio
SNOMEDNCI subtask [107]. Nkisi-Orji et al. [83] introduced a random forest classifier
approach for ontology alignment which relies on word embedding for determining a vari-
ety of semantic similarities features between concepts. Specifically, Nkisi-Orji et al. [83]
combined string-based and semantic similarity measures to form feature vectors that are
used by the classifier model to determine when concepts match. This approach eliminates
the need for learning the aggregation weights of a composition of similarity measures [83].
However, this approach is tested only based on small and medium-sized ontology match-
ing tasks. Moreover, the training set is generated from the reference alignments without
employing any resampling or feature selection.

Matching Learning which is considered as a classification problem. It is also concerned
by different problems related to machine learning such as imbalanced data sets or the choice
of the best features. Imbalanced data sets usually reflect an unequal distribution of classes
within a dataset. Typically, they are composed of two classes: the majority (negative) class
and the minority (positive) class. These type of sets suppose a new challenging problem
since standard classification algorithms usually consider a balanced training set and this
supposes a bias towards the majority class. Machine Learning algorithms tend to produce
unsatisfactory classifiers when faced with imbalanced datasets. Feature selection is the
process of selecting a subset of relevant features for use in model construction. It enables
the machine learning algorithm to train faster. It reduces the complexity of a model and
makes it easier to interpret. It also improves the accuracy of a model if the right subset is
chosen. In the next subsections, we review the works dealing with (i) balancing training
datasets and (ii) feature selection.

2.4. ONTOLOGY MATCHING LEARNING 29

2.4.1.1 Balancing Training Sets

Classification problems often suffer from data imbalance across classes. This is the case
when the size of instances from one class is significantly higher or lower relative to the
other classes. A small difference often does not matter [76]. However, if there is a modest
class imbalance in training data like 4:1, it can cause misleading classification accuracy.
Imbalanced data refers to classification problems where we have an unequal number of
instances for different classes. Most machine learning classification algorithms are sensitive
to imbalanced training data. An imbalanced training data will bias the prediction classifier
towards the more common class. This happens because machine learning algorithms are
usually designed to improve accuracy by reducing the error. Different methods have been
proposed in the state-of-the-art to handle imbalanced training data [29]. The common
approaches [19] to generate a balanced dataset from an imbalanced one are undersampling,
oversampling, and their combination:

• Undersampling approach balances a dataset by reducing the size of the abundant
class. This method is used when the quantity of data is sufficient [76]. By keeping
all samples in the rare class and randomly selecting an equal number of samples in
the abundant class. Undersampling is used when the amount of collected data is
sufficient.

• Oversampling approach tries to balance a dataset by increasing the size of rare sam-
ples. Rather than removing the abundant samples, new rare samples are generated
[76]. Oversampling is employed when the amount of data collected is insufficient.

• Performing a combination of oversampling and undersampling can yield better re-
sults than either in isolation [76].

Generally, oversampling is preferable because the undersampling can result in the loss
of important data. Under sampling is suggested when the amount of data collected is
larger than ideal and can help data mining tools to stay within the limits of what they
can effectively process. Combining oversampling and undersampling can result in better
results than either in isolation [76]. Despite the importance of the resampling process,
existing matching learning approaches do not take into consideration the issue of the
imbalanced dataset.

2.4.1.2 Feature Selection

Feature selection Feature selection methods can be classified into three categories [96]:
Filters, Wrappers, and Embedded Methods. Filter methods are independents from the
classification algorithm as they are run once a time before classification. These methods
depend only on the intrinsic properties of a dataset [96]. Wrapper methods are dependent
on the classifier. The subset of best features selected through the wrapper methods is
validated through the global process of machine learning. Embedded methods are similar

30 CHAPTER 2. RELATED LITERATURE

to wrapper methods with the advantage to be far less computationally intensive [96] than
the wrapper methods.

Feature selection techniques are less investigated while dealing with ontology matching
learning. A line of work is based on a set of predefined features [107, 27, 83], another
line of work employs feature selection techniques [12, 115]. [83] proposed a matching
learning classifier based on 23 features. [107] feed a neural network classifier with 32
features covering commonly used measures in the literature. A global classifier is built
based on all the 32 features. Both approaches [83, 107] do not mention if the training
set is balanced or not. Automatchm [12] performs a database schema matching using a
probabilistic Bayesian learning strategy. Automatchm reduces the size of the dictionary
mediating structure, by three feature selection methods: information gain, mutual infor-
mation and likelihood ratio. This approach is based on a global matching process focusing
on database schema matching. [27] proposed an ontology matching learning approach,
based on a multi-class classifier, that employs five predefined configurations selected from
the Agreement Maker ontology matching system ([26]. This approach aims to select the
best configuration for each candidate alignment of an ontology matching task. However,
this approach is limited to only five matching configurations. Moreover, the training set
is built based on the reference alignments. The feature selection process is in somehow
pre-established.

2.4.2 Discussion

A single matcher to align a large ontology matching task is not enough to result in good
matching accuracy. As a result, ontology matching systems employ different matchers in
order to align an ontology matching task. The combination of different matchers should
be automated in order to choose the adequate matcher, the weight and the threshold of
each matcher. When matchers are combined, each matcher can have a weight different
than the other matchers. Moreover, each simgle matcher can be be associated with a
parameter called threshold. This threshold is especially used by terminological matchers
to trim the result of the similarity measures. Each ontology matching task has its specific
matching settings. These matching settings should be automatically defined. The manual
tuning process is time-consuming, especially for combining many matcher for large ontol-
ogy matching task. Automating the alignment process of large ontologies is representing
an issue for the existing approaches. As a result, in the following Table 2.3, we compare
the state-of-the-art ontology matching systems based on matching learning approaches.

2.4. ONTOLOGY MATCHING LEARNING 31

Table 2.3: Comparative of matching learning approaches

Approach Training set generation Features type
Feature
selection

Resampling Machine learning algorithm

Ryutaro Ichise [46] n/d
Terminological, Semantic,

Structural
No No SVM

Nezhadi et al. [80] Manual
Terminological, Semantic,

Structural
No No

K-Nearest Neighbours, Decision Tree,
SVM, AdaBoost

Ngo and Bellahsene [82] Manual Terminological, Semantic No No Decision Tree

Eckert et al. [33] From reference alignments
Ontology profiling, Terminological,

Semantic, Structural
No No Decision Tree, Naive Bayes

Wang et al. [107] Semi-automatic Terminological No No (partial) Neural network

F. Cruz et al. [27] n/d Ontology profiling No No
K-Nearest Neighbours, Naive Bayes,

Neural Network, C4.5
Nkisi-Orji et al. [83] From reference alignments Terminological, Semantic No No Random forest

POMap++ Automatic Terminological , Structural Yes Yes Random forest

Comparison of Table 2.3 is based on the following criteria: The method for the gen-
eration of the training set, the type of the employed features, the use of feature selection
methods, the resampling of the training set and the employed machine learning algorithms.

Nezhadi et al. [80] proposed an ontology matching learning approach. Nezhadi et
al. [80] claim that the main problem is how to generate a good training set. It should
be a highly representative subset of the problem’s data. In addition, the larger it is, the
higher the quality of the classification will be. An important aspect is the distribution
of the classes in the training set. It should reflect the nature of the data to be classified
and contain an adequate number of examples for every class [80]. Therefore, training
data should be balanced in terms of balancing the number of positive samples and the
number of negative samples. We can balance the class distribution using resampling
techniques. Consequently, we consider resampling as an important compassion criterion
in Table 2.3. Ngo and Bellahsene [82] proposed an ontology matching learning approach
based on a decision tree algorithm. Ngo and Bellahsene [82] stated that the performance
of the matching learning strongly depends on the training data, i.e., if the training data
are not available or not suitable, the matching quality is poor. Hence, we claim that the
training set generation method is crucial for the accuracy of matching learning. Therefore,
we consider this criterion in comparing the state-of-the-art matching learning systems.
Matching learning approaches combine different matchers. Each matcher is considered as
a feature of the training data. Hence, we investigate the use of feature selection techniques
for the training data. Every matching task has its own specific type of heterogeneity.
Therefore, the ontology matching systems should select adequate matchers. This process
can be ensured using feature selection techniques. Feature selection is the process of
selecting the subset of the most relevant features from the set of features. There are four
main reasons for feature selection:

• To simplify the model by reducing the number of parameters.

• To decrease the training time.

• To reduce over-fitting by enhancing generalization.

• To avoid the curse of dimensionality

32 CHAPTER 2. RELATED LITERATURE

Hence, we consider feature selection as a criterion to classify the ontology matching learn-
ing approaches. Moreover, we investigate the type of the employed features as well as the
employed machine learning algorithms by the existing work. Despite the importance of
resampling and feature selection, there is a lack of work that considers these two tech-
niques while performing the ontology matching learning process. Moreover, most of the
existing work extract the training set manually from the reference alignments. Reference
alignments do not usually exist especially while dealing with new matching tasks. Also,
the manual generation of the training data is time-consuming and complex in particular
for generating training data for large matching tasks, where the training data should be
rich by a variety of patterns.

Our approach POMap++ proposes a most generic way to perform the matching learn-
ing. We automatically generate a local training set for each sub-matching task. We do not
use any reference alignments or user interactions to build the local training sets. There-
fore, we are able to include adequate patterns in the training data in order to result in
better matching accuracy. We divide a large ontology matching task into a set of local
matching tasks aligned independently based on machine learning techniques. Each local
machine learning classifier is based on a local training set, which provides adequate match-
ing settings for each sub-matching task. Local training sets are balanced via resampling
techniques in order to deliver a better matching accuracy. Moreover, we employ feature
selection to identify for each local matching task the appropriate combination of features,
which represent the adequate combination of matchers.

2.5 Conclusion

The alignment of large ontologies is considered as one of the most difficult issues to solve
in the ontology alignment field. The high heterogeneity of large scale of ontologies impacts
the effectiveness and the efficiency of ontology matching systems, which face a difficulty
to find adequate correspondence in a large search space. We argue this issue due to the
high conceptual heterogeneity of ontologies. Consequently, we have reviewed in Section
2.3 the state of the art ontology matching systems through four criteria: basic matching
techniques, scalability techniques, and workflow strategies. This review aims to give an
overview of the existing ontology matching systems and to position our approach. We
have deduced that existing approaches lack the automation of the alignment of large. We
have identified the following approached that deal with large scale ontology matching:
Reduction of search space (early pruning and partition-based matching), parallel match-
ing, self-tuning matching and reuse of previous matching results. Partitioning based ap-
proaches can be combined with the other large scale matching approaches. Consequently,
in Section 2.4, we have reviewed the state-of-the-art related to large scale ontology match-
ing systems, more specifically the systems based on partitioning approaches. We deduced
that the existing work for ontology partitioning suffers from a low coverage rate, a manual
definition of the number of sub-matching tasks and isolated partitions. Hence, we target

2.5. CONCLUSION 33

these issues by our proposed approach for ontology partitioning.
A single matcher to align large scale ontologies is not enough to result in good matching

accuracy. Therefore, ontology matching systems try to combine different matchers in order
to result in better accuracy. The manual tuning is error-prone, especially while dealing
with different large scale matching tasks. The combination of different matchers should
be automated for each large ontology matching task. This automated tuning process
can be ensured by machine learning approaches. Consequently, in Section 2.4, we have
reviewed the different approaches for ontology matching learning. We have concluded
that the existing work lacks the automation of the training data. Training data are
usually extracted manually or from reference alignments, which usually do not exist for
the majority of the existing matching tasks. Moreover, we have deduced that state-of-the-
art approaches do not perform any resampling of the training data or feature selection.
Resampling aims to increase the efficiency of the training data. Feature selection methods
aim to select adequate matchers.

Our proposed approach is called local matching learning, which combines a fully au-
tomated ontology matching to ontology partitioning. The proposed matching learning
approach is fully automated compared to the existing work. The ontology partitioning
approach copes with earlier stated problematic. Henceforth, in the next chapters, we will
introduce the contributions in order to address the issues deduced from the state-of-the-art.

Chapter 3

Ontologies Partitioning Approach

Contents
3.1 Introduction . 35

3.2 Formal foundations . 35

3.2.1 Ontology and Ontology Alignment 35

3.2.2 Local Matching and Ontology Partitioning 36

3.3 Ontologies Partitioning Architecture 38

3.4 Input Ontologies Partitioning Pre-processing 40

3.5 Partitioning Algorithm . 42

3.5.1 Initialization . 42

3.5.2 Dendrogram Construction . 42

3.5.3 Dendrogram multi-cut . 44

3.6 Identification of local matching tasks 48

3.7 Conclusion . 51

34

3.1. INTRODUCTION 35

3.1 Introduction

The alignment of large ontologies is considered as a cumbersome task in the field of on-
tology matching. The large size of the input ontologies strongly affects the performance
of ontology matching systems. Large ontologies usually include a high conceptual het-
erogeneity. In other words, each ontology developer or researcher build the sane domain
ontology but using different conceptual models. The conceptual heterogeneity can impact
the effectiveness and efficiency of the ontology matching system. Therefore, it will be more
difficult to discover all the mappings between two ontologies. As a result, the accuracy of
the resulted alignments by the matching system can be decreased. Moreover, the matching
of large ontologies results in a huge search space, where the matching system tries to find
the right correspondences. This task is time-consuming, in particular, while employing a
set of matchers that should be combined to return the adequate result. Therefore, the
efficiency of the matching system will be affected. To sum up, the main issues of the
alignment of large biomedical ontologies are the conceptual heterogeneity, the high search
space and the decreased quality of the resulted alignments.

In this chapter, we propose a novel ontology partitioning approach in order to align
large ontologies matching tasks. This approach divides a large ontology matching task
into a set of sub-matching tasks. The large search space is reduced from the whole ontol-
ogy matching problem to a set of sub-matching problems. Consequently, in the alignment
process, we can align effectively each sub-matching task in order to result in better match-
ing accuracy. The proposed partitioning approach is based on a novel multi-cut strategy
generating not large partitions or not isolated ones. As a result, we can overcome the issue
of conceptual heterogeneity. In Section 3.2, we introduce the formal notations employed
in this chapter. Then, we present the proposed ontology partitioning approach, which
follows mainly three stages: (i) input ontologies partitioning pre-processing, introduced in
Section 3.3, (ii) partitioning algorithm, introduced in Section 3.4 and (iii) identification of
local matching tasks is presented in Section 3.5.

3.2 Formal foundations

We introduce definitions that we will employ throughout this chapter.

3.2.1 Ontology and Ontology Alignment

Ththe ontology term is borrowed from philosophy, where an ontology is a systematic ac-
count of Existence [40]. For knowledge-based systems, what “exists” is exactly that which
can be represented [40]. When the knowledge of a domain is represented in a declarative
formalism, the set of objects that can be represented is called the universe of discourse.
This set of objects and the describable relationships among them are reflected in the rep-
resentational vocabulary with which a knowledge-based program represents knowledge.
Thus, we can describe the ontology of a program by defining a set of representational

36 CHAPTER 3. ONTOLOGIES PARTITIONING APPROACH

terms. In such an ontology, definitions associate the names of entities in the universe of
discourse (e.g., classes, relations, functions, or other objects) with human-readable text
describing what the names are meant to denote, and formal axioms that constrain the
interpretation and well-formed use of these terms [35]. An ontology can have semantic
relationships between their classes. Each class can be associated with different names,
labels, and comments.

Definition 1 (Ontology) We encode an ontology Oi as a directed acyclic graph (DAG),
denoted by:
Gi= (Vi,Ei)
such that:

• Vi =
{

ei,1,...,ei,ni

}
is a finite set of entites of the ontology Oi, ni = | Vi |. Each en-

tity represent a class that can be associated to different names, labels and comments.

• Ei =
{

(ei,k,ei,l) | ei,k, ei,l ∈ Vi
}

is a finite set of edges, where an edge encodes
the relationship between two entities of the ontology Oi. An edge can refer to the
subsumption or an object property.

An alignment Aij is the set of correspondences between two ontologies Oi and Oj .
Aij can be either retrieved from the set of reference alignment. We state that a single
mapping of Aij is covered by the set of local matching tasks LMij , if the later mapping
is discovered by at least one local matching task lmij,q. The partitioning coverage ratio is
defined in the following Definition 6.

Definition 2 (Ontology Alignment) Ontology Alignment Aij between two ontologies
Oi and Oj results in the set of Alignment:
Aij : <el, eq, n, p>

such that:

• el ∈ Vi and eq ∈ Vj

• n is the matching confidence value between the entities el and eq respectively from
Oi and Oj, where n ∈ [0..1]

• p is the semantic relationship between el and eq.

Moreover, the ontology matching process may need some parameters, which correspond
to the matching tuning configuration and some resources. These resources may be the
external knowledge resources that can be employed during the matching process.

3.2.2 Local Matching and Ontology Partitioning

In the following, we provide the characteristics of local matching and ontology partitioning.

3.2. FORMAL FOUNDATIONS 37

Definition 3 (Local matching) The local matching LMij between two ontologies Oi

and Oj is denoted by:
LMij={lmij,1,...,lmij,n}.
A single local matching task lmij,q correspond to the matching learning between the

entities of Vi,k and Vj,l, respectively from two ontology partitions pi,k ⊆ Pi and pj,l ⊆ Pj.
Each ontology matching task is aligned based on its specific classifier in order to define the
local-based matching settings.

Each ontology is independently partitioned into a set of distinct partitions. Partitions
of one ontology do not overlap in terms of entities and semantic relationships. The entities
of a single ontology partition belong to the set of entities of its ontology Oi. The relation-
ships between the entities of a single partition are included in the set of relationships of
its corresponding ontology Oi.

In the following, we introduce the formal definition of an ontology partition:

Definition 4 (Ontology partition) An ontology partition pi,k from an ontology Oi is a
sub-ontology denoted by:

pi,k = (Vi,k, Ei,k)
such that:

• Vi,k =
{

ei,k,1,...,ei,k,mk

}
, Vi,k ⊆ Vi.

• Ei,k = {(ei,k,x, ei,k,y) | ei,k,x, ei,k,y ∈ Vi,k ∧ (ei,k,x, ei,k,y) ∈ Ei }, Ei,k ⊆ Ei.

The partitioning process of each ontology results in a set of partitions for each ontology.
Each partition contains at least one entity. Therefore, we do not result in any isolated
partitions. The total number of the relationships and entities of the partitions set is
equal to the total number of the relationships and entities of its corresponding ontology.
For a given ontology Oi, the entities and the semantic relationships of each partition are
distinct from the entities and the semantic relationships of the other partitions. The set of
partitions of each ontology are disjoint. In the following, we provide the formal foundation
of the cited characteristics of a set of ontology partitions.

Definition 5 (Properties of a set of ontology partitions) An ontology Oi can be di-
vided into a set of ontology partitions:
Pi ={pi,1,..,pi,si}
such that:

• ∀k ∈ [1..si],Vi,k 6= ∅ : each partition includes at least one entity.

•
⋃si

k=1 Vi,k = Vi: all the entities of an ontology Oi are covered by the set of partitions.

• ∀ k ∈ [1..si], ∀ l ∈ [1..si], k 6= l, Vi,k ∩ Vi,l = ∅: the partition set are disjoint, there
is no partitions that share the same entity or the semantic relationship.

38 CHAPTER 3. ONTOLOGIES PARTITIONING APPROACH

Definition 6 (Partitioning coverage ratio) The partitioning coverage ratio of the Lo-
cal Matching LMij defines the set of mappings that can be discovered after performing the
partitioning process

CgRatio(LMij , Aij) = |Cg(lmij,q,Aij))|
|Aij |

(3.1)

In the following, we introduce the different steps for the ontology partitioning approach.
These steps are depicted as an architecture in Figure 3.1.

3.3 Ontologies Partitioning Architecture

In this section, we present the main steps of the proposed approach for ontology par-
titioning. In Figure 3.1, we depict the main steps of the partitioning approach. The
approached strategy is similar to the divide and conquer method [35]. The divide and
conquer method reduces the search space for finding alignments. Therefore the search
space is reduced from the Cartesian product of all the entities of the two input ontologies
to the Cartesian product of entities of the partition-pairs. A partitions-pair between two
ontologies correspond to a local matching task. The partitioning approach splits a big
matching problem (i.e., matching large ontologies) into smaller problems (i.e., matching
sub-ontologies).

There are two main classes of clustering methods: hierarchic methods and non-hierarchic
methods. Hierarchical clustering methods produce a set of clusters nested hierarchical
structure. Therefore, hierarchical methods are more flexible than non-hierarchical meth-
ods in terms of the relationship between the generated clusters. Hierarchical clustering
methods are classified by top-down and bottom-up methods. Despite top-down methods,
bottom-up methods do not require any prior information regarding the desired number
of partitions. Therefore, the later methods are considered more flexible than top-down
clustering methods.

We are based on the hierarchical agglomerative clustering approach while delivering a
large ontology into a set of partitions. The hierarchical agglomerative clustering does not
need any user involvement [77]. In other words, the number of clusters is not manually
defined in advance for each ontology matching task. The hierarchical agglomerative clus-
tering method divides the input ontologies Oi and Oj into a set of partitions, respectively
Pi and Pj . Then, we iteratively identify the set of similar partitions between the two
partition sets Pi and Pj . Similar partitions represent the set of our local matching tasks
LMij . Hierarchical clustering algorithms are either top-down or bottom-up. Bottom-up
algorithms treat each entity as a singleton cluster at the outset and then successively
merge (or agglomerate) pairs of clusters until all clusters have been merged into a single
cluster that contains all entities. Bottom-up hierarchical clustering is therefore called Hi-
erarchical Agglomerative Clustering or HAC. The HAC approach requires the choice of
two main parameters: the linkage strategy and the distance similarity measure. Different
linkage criterions have been proposed by the state-of-the-art to measure the distance or

3.3. ONTOLOGIES PARTITIONING ARCHITECTURE 39

dissimilarity between two clusters. Linkage strategies include several strategies such as
complete-linkage clustering, single-linkage clustering, average linkage clustering, and Cen-
troid linkage clustering. Depending on the linkage criterion, several variants of hierarchi-
cal clustering can be defined; in particular, for the complete-linkage and the single-linkage
clustering algorithms the distance between any two clusters pi,l and pi,k are respectively
defined as the maximum and minimum Euclidean distance between all pairs of entities in
pi,l and pi,k. We have evaluated several linkage strategies and our experiments conclude
the choice of the average linkage strategy. The average linkage strategy results in a better
matching accuracy during the local matching learning process.

The input of this architecture is two indexed ontologies and the output is a set of
local matching tasks. Each local matching task is automatically aligned based on machine
learning techniques. This alignment process will be detailed in Chapter 4.

Figure 3.1: Ontologies Partitioning Architecture

In the following, we briefly describe the main steps of the partitioning approach. All
these steps will be detailed in the next sections of this chapter.

1. Ontologies partitioning pre-processing: The input of this step is two indexed
ontologies. The output is two pre-processed ontologies. The pre-processing con-
sists of computing the structural relatedness between all the entities of each input
ontology. This structural relatedness is required by the hierarchical agglomerative
clustering method in order to generate a dendrogram. In our case, the employed
similarity measure is the structural relatedness, which will be introduced in the next
section. The computation of the structural relatedness requires the existence of a
root entity. As a result, we create a novel root entity in case of its absence in each
input ontology.

2. Partitioning algorithm: The partitioning algorithm has as input two pre-processed
ontologies and results in a set of partitions of each ontology. The partitioning al-
gorithm employs the hierarchical agglomerative clustering method. We propose a
novel cut strategy of multi-cut strategy in order to result in a set of non-isolated
partitions and non-large partitions. Isolated partitions are partitions with only one
entity. These isolated partitions decrease matching accuracy result. Therefore, this

40 CHAPTER 3. ONTOLOGIES PARTITIONING APPROACH

issue should be taken into consideration by the partitioning process. Hence, by over-
coming this issue, we can increase the matching quality. Large partitions can also
affect the accuracy of the matching process. The constructed classifiers for large
partitions are less effective than for the smaller ones. For instance, the resulted
accuracy of the matching process of two ontologies with one huge partition-pair and
one small partition-pair is lower than the matching process of several partitions pairs
with no large partition-pair. We also employ the average linkage strategy in order
to compute the similarity between two partitions to build the dendrogram of one
ontology.

3. Identification of local matching tasks: this step has as input the set of par-
titions of each ontology and results in the set of local matching tasks between the
two input ontologies. We identify the set of local matching tasks based on a set of
anchors. Anchors are a set of initial correspondences between the two input ontolo-
gies. These anchors are employed to identify the set of local matching tasks without
being included in the set of final alignments.

In the next sections, we explain in depth the workflow of each step of the partitioning
process.

3.4 Input Ontologies Partitioning Pre-processing

In order to measure the similarity between clusters, we use the function StrcSim presented
in equation 3.2. This function computes the relatedness between the entities of an input
ontology. It ensures that the more structurally close two entities, the higher relatedness
score they have and the higher the probability that they will belong to the same partition.
This formula is inspired by [113] similarity measure.

Definition 7 (Relatedness between entities) To compute the degree of relatedness
between all the entities in one ontology, we measure their structural similarity. Given
two entities ei,x and ei,y, we have defined lca as their lowest common ancestor. We denote
the relatedness between entities by:

StrcSim(ei,x, ei,y) = Dist(ri, lca)× 2
Dist(ei,x, lca) + Dist(ei,y, lca) + Dist(ri, lca)× 2 (3.2)

Such that:

• Dist(ri,lca) is the distance between the root ri and lca.

• Dist(ei,x,lca) represents the shortest distance between the entity ei,x and lca in terms
of number of edges,

• Dist(ei,y,lca) denote the distance between the entity ei,y and lca,

3.4. INPUT ONTOLOGIES PARTITIONING PRE-PROCESSING 41

According to this structural similarity measure, when two entities are structurally
close in one ontology, they are likely belonging to the same partition. In the case when
the root entity (ri) and the lowest common ancestor (lca) are representing exactly the
same entity, we consider the distance Dist(ri, lca) = 1 rather than 0 because the division
by 0 is undefined.

In Figure 3.2, we depict the computation of the relatedness between two entities of
an ontology Oj . Based on Equation 3.3, the relatedness between the entities ei,9 and ei,6

gives the following equation:

StrcSim(ei,9, ei,6) = Dist(ri, lca)× 2
Dist(ei,9, lca) + Dist(ei,6, lca) + Dist(ri, lca)× 2 (3.3)

Such that:
ri = ei,1, lca = ei,7, Dist(ei,9,lca) = 2, Dist(ei,6,lca) = 1, Dist(ri,lca) = 2
Consequently, StrcSim (ei,9,ei,6) = 0.57. We can deduce according to the obtained

relatendess score between ei,9 and ei,6 that these entities are relatively close to each other.

Figure 3.2: Relatedness between entities example

In equation 3.4, we compute the structural relatedness between the entities ei,9 and
ei,10:

StrcSim(ei,9, ei,10) = Dist(ri, lca)× 2
Dist(ei,9, lca) + Dist(ei,10, lca) + Dist(ri, lca)× 2 (3.4)

Such that: ri = ei,1, lca = ei,8, Dist(ei,9,lca) = 1, Dist(ei,10,lca) = 1, Dist(ri,lca) = 3.
As a result, StrcSim(ei,9,ei,10) = 0.75. In this example, ei,9 and ei,10 are more structurally
related than ei,9 and ei,6 since StrcSim (ei,9,ei,6) < StrcSim (ei,9,ei,10). Therefore, ei,9 and
ei,10 are more probably to belong to the same cluster of the dendrogram D representing
the ontology Oi.

Particular use case: Some ontologies do not contain any root element. As a result,
it is not possible to apply the relatedness equation. Therefore, we search for all high-level
entities. These entities do not have any semantic relationship with an ancestor entity.
The identified high-level entities of an ontology are linked to a newly created root entity

42 CHAPTER 3. ONTOLOGIES PARTITIONING APPROACH

using a subsumption relationship. The ontology depicted in Figure 3.3 (a) do not have
any root entity. As a result, we create a root entity ei,0. This root entity is connected
with a subsumption relationship to the entities ei,1 and ei,2. Consequently, it is possible
to apply the relatedness equation over the ontology in order to generate its corresponding
dendrogram.

Figure 3.3: (a) An ontology with no root entity (b) The ontology after adding the root
entity

3.5 Partitioning Algorithm

In this section, we describe the different steps required for partitioning an input ontology
Oq. These steps are depicted in Algorithm 1. For each input ontology, the goal of this
algorithm is the construction of a dendrogram and to perform its multi-cut in order to
result in a set of partitions.

Algorithm 1 takes as input the ontology Oi. The partitioning algorithm splits an input
ontology Oi into a set of partitions Pi. The different variables of Algorithm 1 (line 2) are
initialized such as the Dendrogram D and the set of Partitions Pi. The Dendrogram D and
Pi are initially initialized to an empty set. These empty sets will be filled in the following
parts of Algorithm 1. The Dendrogram D represents the hierarchical relationship between
the partitions of an ontology Oi. In the following, we discuss the steps of the partitioning
algorithm:

3.5.1 Initialization

Each entity of Vi is initially considered as a single partition pi,x belonging to the set of
partitions Pi (line 3 to 6). Therefore, Pi initially contains a set of partitions having a
single entity for each one.

3.5.2 Dendrogram Construction

The agglomerative hierarchical clustering algorithm available in this program module
builds a cluster hierarchy that is commonly displayed as a tree diagram called a den-
drogram. They begin with each partition in a separate partition. At each step, the two

3.5. PARTITIONING ALGORITHM 43

Algorithm 1 Ontology partitioning Algorithm
1: Input Oi= (Vi, Ei), SplitSize . (1) Input
2: D ← ∅, Pi ← ∅, Lv ← 0 . (2) Initialization
3: for x← 1 to |Vi| do
4: pi,x ← (ei,x,∅)
5: Pi ←

⋃
pi,x

6: end for
7: while (Lv <= |Vi|) do . (3) Dendrogram Construction
8: (pi,l, pi,k)← getMaxSimilarPart(Pi)
9: Pi ← Pi \ pi,l \ pi,k + Merge(pi,l, pi,k)

10: D ← D + < pi,l, pi,k >

11: Lv ← Lv + 1
12: end while
13: Pinit ← getInitCutPartitions(D) . (4)Dendrogram Multi-cut
14: Pi ← ∅
15: for each pi,l of Pinit do
16: if (|Vi,l| > SplitSize) then
17: Pi ← Pi

⋃
getIterativeCutPartitions(D,Pi,l)

18: else
19: Pi ← Pi

⋃
{pi,l}

20: end if
21: end for
22: Return Pi . Output

partitions that are most similar are joined into a single new partition. As depicted in
Figure 3.4, the horizontal axis of the dendrogram represents the distance or dissimilarity
between partitions. The vertical axis represents the entities and partitions. The advantage
of a dendrogram is its simple interpretation.

The Dendrogram D of each input ontology is generated by the hierarchical agglom-
erative approach hac (line 7 to 12). This approach iteratively identify the two partitions
(pi,l, pi,k) from Pi with the maximum structural similarity (line 8). The maximum struc-
tural similarity is measured using the relatedness formula (Definition 7) coupled with the
average linkage clustering technique. The identified partitions pi,l and pi,k are then re-
moved from the set of initial partitions Pi (line 9). Then, we merge these partitions pi,l

and pi,k into a new partition containing (pi,l, pi,k), whish is added to the set of partitions
Pi (line 9). Every merged partitions are added to the Dendrogram hierarchy D (line 10).
The instractions from line 7 to line 12 are repeated until building a dendrogram D with a
number Lv of levels, which is equal to the number of entities Vi of Oi.

44 CHAPTER 3. ONTOLOGIES PARTITIONING APPROACH

3.5.3 Dendrogram multi-cut

Agglomerative hierarchical clustering can be represented by a dendrogram. The dendro-
gram should be at a certain level results in a set of partitions. Cutting at another level
results in another set of partitions. To obtain a given partitioning of the data, the den-
drogram has to be cut at a certain height. Entities that remain interconnected after the
cut will be considered part of the same partition.

The generated dendrogram hierarchy D should be cut at a certain level to result in
a set of non-isolated partitions Pi. There is no standard solution that can result in a
perfect dendrogram cut for every application domain. Every application domain has its
own preferred cut strategy. Dealing with the hierarchical agglomerative clustering of large
ontologies, there is a lack of work that proposes the adequate cut strategy for the generated
dendrogram.

Partitions with only one entity are considered as isolated. These isolated partitions
negatively impact the matching accuracy result. For instance, the partitioning of FMA-
SNOMED matching task of OAEI using Falcon Falcon results in 3352 isolated partitions
with an F-Measure 0.485 ernesto.

We depict in Figure 3.4 an example of a normal cut of a dendrogram D representing
an ontology Oi. This ontology is encoded as a directed acyclic graph, where:
Oi= (Vi,Ei)
such that:
Vi =

{
ei,1, ei,2, ei,3, ei,4, ei,5, ei,6, ei,7, ei,8, ei,9, ei,10, ei,11, ei,12, ei,13, ei,14, ei,15, ei,16

}
The performed cut results in a set of isolated partitions. This random cut generates

the following partitions set Pi for the ontology Oi:
Pi ={pi,1, pi,2, pi,3, pi,4, pi,5, pi,6, pi,7, pi,8, pi,9, pi,10, pi,11}
Such that

• pi,1 = (Vi,1,Ei,1), where Vi,1 =
{

ei,1,1
}
, Vi,1 ⊆ Vi

• pi,2 = (Vi,2,Ei,2), where Vi,2 =
{

ei,2,2, ei,2,3
}
, Vi,2 ⊆ Vi

• pi,3 = (Vi,3,Ei,3), where Vi,3 =
{

ei,3,4
}
, Vi,3 ⊆ Vi

• pi,4 = (Vi,4,Ei,4), where Vi,4 =
{

ei,4,5
}
, Vi,4 ⊆ Vi

• pi,5 = (Vi,5,Ei,5), where Vi,5 =
{

ei,5,6, ei,5,7
}
, Vi,5 ⊆ Vi

• pi,6 = (Vi,6,Ei,6), where Vi,6 =
{

ei,6,8
}
, Vi,6 ⊆ Vi

• pi,7 = (Vi,7,Ei,7), where Vi,7 =
{

ei,7,9
}
, Vi,7 ⊆ Vi

• pi,8 = (Vi,8,Ei,8), where Vi,8 =
{

ei,8,10,ei,8,11,ei,8,12, ei,8,13
}
, Vi,8 ⊆ Vi

• pi,9 = (Vi,9,Ei,9), where Vi,9 =
{

ei,9,14
}
, Vi,9 ⊆ Vi

• pi,10 = (Vi,10,Ei,10), where Vi,10 =
{

ei,10,15
}
, Vi,10 ⊆ Vi

3.5. PARTITIONING ALGORITHM 45

• pi,11 = (Vi,11,Ei,11), where Vi,11 =
{

ei,11,16
}
, Vi,11 ⊆ Vi

The performed random cut generated 6 isolated partitions (pi,1, pi,3, pi,4, pi,6, pi,7, pi,9,
pi,10 and pi,11).

ei,3 ei,4 ei,5 ei,6 ei,7 ei,8 ei,9 ei,10 ei,11 ei,12 ei,13 ei,14 ei,15 ei,16ei,2ei,1

Pi,1 Pi,7 Pi,10Pi,2 Pi,3 Pi,4 Pi,5 Pi,9 Pi,11Pi,6 Pi,8

Figure 3.4: Isolated partitions cut example

Moreover, a single cut of a dendrogram D can result in a set of large partitions. In order
to demonstrate this use case, we perform another random cut of the same dendrogram D.
This random cut is depicted in Figure 3.5. The later cut results in the set of the following
partition set Pi for the ontology Oi:

Pi ={ pi,1, pi,2, pi,3}

Such that

• pi,1 = (Vi,1,Ei,1), where Vi,1 =
{

ei,1,1, ei,1,2, ei,1,3, ei,1,4, ei,1,5, ei,1,6, ei,1,7, ei,1,8, ei,1,9
}
,

Vi,1 ⊆ Vi

• pi,2 = (Vi,2,Ei,2), where Vi,2 =
{

ei,2,10, ei,2,11, ei,2,12, ei,2,13
}
, Vi,2 ⊆ Vi

• pi,3 = (Vi,3,Ei,3), where Vi,3 =
{

ei,3,14, ei,3,15, ei,3,16
}
, Vi,3 ⊆ Vi

We can deduce from the generated partitions that the first partition pi,1 is relatively
large compared to the total size of the ontology Oi. Therefore, the partitioning process is
not well balanced and the search space is not well reduced.

46 CHAPTER 3. ONTOLOGIES PARTITIONING APPROACH

ei,3 ei,4 ei,5 ei,6 ei,7 ei,8 ei,9 ei,10 ei,11 ei,12 ei,13 ei,14 ei,15 ei,16ei,2ei,1

Pi,1 Pi,2 Pi,3

Figure 3.5: Large partitions cut example

To cope with the issue of isolated partitions and large partitions, we propose a multi-
cut strategy of the resulted dendrogram D (line 13 to 21) in Algorithm 1. Therefore, the
non-isolated partitions Pi are derived based on two steps: an initial dendrogram cut (line
13) and a set of iterative cuts (line 14 to 21). The initial cut result in a set of partitions
Pinit. This first cut is defined at a certain level of the dendrogram D, which do not result
in any isolated partitions. To perform this cut, we conduct all the possible cuts over
the dendrogram Di until finding the first cut returning a set of non-isolated partitions
Pinit. This initial cut results in a set of partitions Pi with no isolated ones. The initially
returned partitions Pinit may contain large ones. A large partition is identified through
its size (SplitSize) in terms of the number of entities (line 16). After performing a set of
experiments, we set the SplitSize as 50% of the size of an input ontology Oi. Therefore,
a large partition is identified if it contains more than 50% of the entities of an ontology.
We iteratively compare the size of the initially generated partitions Pinit to the SplitSize
(line 16). If an initial partition pi,l is large (line 16), we split this partition pi,l into smaller
ones. These partitions are split based on the same strategy as Algorithm 1 (line 8). The
identified partitions are added to the final partition set Pi (line 17). If the partition pi,l of
Pinit is smaller than the SplitSize, we add it directly to the final partition set Pi (line 19).
The result of the multi-cut strategy is a set of partitions Pi for each input ontology Oi.

We draw in Figure 3.6 an example of a dendrogramD in order to demonstrate the multi-
cut strategy. This dendrogram is resulted by the hierarchical clustering of an ontology
Oi composed of 16 entities. The initial cut is represented by the top dashed line. The
multi-cut strategy is performed after a set of iterations. The first iteration corresponds to
an initial cut of the dendrogram D. The following iteration of the first one represents the
cut process of the resulted partitions.

For this initial iteration, we adopt a SplitSize of 10 entities, which is approximately

3.5. PARTITIONING ALGORITHM 47

equal to 50% of the total number of entities of the input ontology Oi. Therefore, the
dendrogram D should be cut in a level that should not result in isolated partition while
the size of the resulted partition should be below the SplitSize. This cut result in a set of
non-isolated partitions Pinit :

Pinit = { pi,1, pi,2}, such that

• pi,1 = (Vi,1,Ei,1), where Vi,1 =
{

ei,1,1, ei,1,2, ei,1,3, ei,1,4, ei,1,5, ei,1,6, ei,1,7, ei,1,8, ei,1,9
}
,

Vi,1 ⊆ Vi

• pi,2 = (Vi,2,Ei,2), where Vi,2 =
{

ei,2,10, ei,2,11, ei,2,12, ei,2,13, ei,2,14, ei,2,15, ei,2,16
}
, Vi,2

⊆ Vi

Then, we perform a second cut of the denrogram D. The next cut is performed over the
resulted partitions of Pinit. Partition pi,2 of Pinit is not considered as a large partition
since it contains a number of entities less than the SplitSize, which is 50% of the total
number of entities of the input ontology Oi. However, the total number of entities of pi,1

is over the SplitSize. Therefore, the next cut is only performed over the partition pi,1 of
Pinit. This second cut result in two new partitions. Therefore, the partition set Pinit is
updated and contains the following partitions :

Pinit = { pi,1, pi,2, pi,3}

Such that:

• pi,1 = (Vi,1,Ei,1), where Vi,1 =
{

ei,1,1, ei,1,2, ei,1,3, ei,1,4, ei,1,5
}
, Vi,1 ⊆ Vi

• pi,2 = (Vi,2,Ei,2), where Vi,2 =
{

ei,2,6, ei,2,7, ei,2,8, ei,2,9
}
, Vi,2 ⊆ Vi

• pi,3 = (Vi,3,Ei,3), where Vi,6 =
{

ei,3,10, ei,3,11, ei,3,12, ei,3,13, ei,3,14, ei,3,15, ei,3,16
}
, Vi,3

⊆ Vi

There is no additional cut of the dendrogram since the size of all the resulted partitions
is under the SplitSize. Consequently, the resulted partitions of Pinit are not large and
without any isolated partitions.

48 CHAPTER 3. ONTOLOGIES PARTITIONING APPROACH

ei,3 ei,4 ei,5 ei,6 ei,7 ei,8 ei,9 ei,10 ei,11 ei,12 ei,13 ei,14 ei,15 ei,16ei,2ei,1

Pi,1 Pi,2 Pi,3

Figure 3.6: Multi-cut example

In the next step, we show how to determine the local matching tasks LMij between
two sets of ontology partitions Pi and Pj .

3.6 Identification of local matching tasks

Algorithm 2 presents the different steps in order to generate a set of local matching tasks
from the set of partitions generated by Algorithm 1. Algorithm 2 takes as input the two
sets of partitions Pi and Pj resulted by the partitioning of the input ontologies Oi and Oj

coupled with a set of anchors Aij (line 1). Algorithm 2 results in the set of local matching
tasks LMij .

The anchors are denoted as:
Aij = {(ei,x,ej,y) | ei,x ∈ Vi, ej,y ∈ Vj }.
The anchors Aij are employed to identify the set of local matching tasks LMij . Since

we are aligning ontologies, anchors are extracted by cross-searching the two input on-
tologies Oi and Oj with the available external knowledge bases (KB) such as the Uni-
fied Medical Language System (UMLS) Metathesaurus UMLS, Medical Subject Headings
(MeSH) mesh, Uberon UBERON, and BioPortal BioPortal in the biomedical donain. For
instance, UMLS integrates more than 160 biomedical ontologies. We expand the extracted
anchors with a set of exact mappings between the two input ontologies Oi and Oj using a
hash-based search method [37]. One partition pi,k of Pi can have multiple anchors with
different partitions of Pj . Similarly, one partition pj,k of Pj can have multiple anchors
with different partitions of Pi. Consequently, we iteratively merge the partitions of Pi

having anchors with more than one partition of Pj (line 3 to 6). Similarly, we merge the

3.6. IDENTIFICATION OF LOCAL MATCHING TASKS 49

partitions of Pj having anchors with partitions of Pi (line 7 to 10). Therefore, we guaran-
tee that there is no anchors overlap between the partitions of Pi and Pj respectively from
the input ontologies Oi and Oj . Consequently, a local matching task lmij,q correspond to
a single partition of Pi having anchors only with a single partition of Pj . Therefore, we
are able to identify the set of local matching tasks LMij between the set of partitions
Pi and Pj based on the anchors Aij (line 11 to 17). This technique guarantees a good
coverage ratio. The coverage ratio defines the percentage of reference mappings that can
be discovered after performing the partitioning process.

Algorithm 2 Finding Similar Partitions Algorithm
1: Input Pi,Pj ,Aij . Input
2: Qi ← ∅, Qj ← ∅,LMij ← ∅ . Initialization
3: for each pj,l of Pj do . Pi partitions merging
4: Qi =

⋃
∀(eikx,ej ly)∈Aij

pi,k

5: Pi ← Pi \ Qi + Merge(Qi)

6: end for
7: for each pi,k of Pi do . Pj partitions merging
8: Qj =

⋃
∀(eikx,ej ly)∈Aij

pj ,l

9: Pj ← Pj \ Qj + Merge(Qj)

10: end for
11: for each pi,k of Pi do . Finding similar partitions between Pi and Pj

12: for each pj,l of Pj do
13: if (∃(eikx, ej ly) ∈ Aij) then
14: LMij ← LMij

⋃{
(pi,k, pj,l)}

15: end if
16: end for
17: end for
18: Return LMij . Output

Figure 3.7 gives an example of the proposed approach for partitions merging. As
depicted in the example of Figure 3.7, two ontologies Oi and Oj are partitioned into 6
partitions resulted from Algorithm 1. Each partition contains a set of entities illustrated
as nodes. The dashed lines represent the set of anchors Aij between the partitions of the
two ontologies Oi and Oj . The first ontology Oi is encoded as a directed acyclic graph
with 36 nodes, where:
Oi= (Vi,Ei)
Such that
Vi =

{
ei,1, ei,2, ei,3, ei,4, ei,5, ei,6, ei,7, ei,8, ei,9, ei,10, ei,11, ei,12, ei,13, ei,14, ei,15, ei,16,

ei,17, ei,18, ei,19, ei,20, ei,21, ei,22, ei,23, ei,24, ei,25, ei,26, ei,27, ei,28, ei,29, ei,30, ei,31, ei,32,
ei,33, ei,34, ei,35, ei,36

}
The second ontology Oj is also encoded as a directed acyclic graph with 36 nodes,

50 CHAPTER 3. ONTOLOGIES PARTITIONING APPROACH

where:
Oj= (Vj ,Ej)
such that:
Vi =

{
ej,1, ej,2, ej,3, ej,4, ej,5, ej,6, ej,7, ej,8, ej,9, ej,10, ej,11, ej,12, ej,13, ej,14, ej,15, ej,16,

ej,17, ej,18, ej,19, ej,20, ej,21, ej,22, ej,23, ej,24, ej,25, ej,26, ej,27, ej,28, ej,29, ej,30, ej,31, ej,32,
ej,33, ej,34, ej,35, ej,36

}

Pi,1

Pi,2

Pi,3

Pi,5

Pi,6

Pi,4

Pj,1

Pj,2

Pj,3

Pj,4

Pj,5

Pj,6

Ontology	Oi Ontology	Oj

lmij1

lmij2

lmij3

lmij4

ei,2
ei,1

ei,3
ei,4 ei,5

ei,6
ei,7
ei,8

ei,9

ei,11
ei,10

ei,13

ei,12

ei,14
ei,16

ei,17
ei,18

ei,15
ei,19

ei,21

ei,23
ei,22

ei,24

ei,25

ei,29

ei,26
ei,27
ei,28

ei,30

ei,31

ei,36

ei,34

ei,32
ei,33

ei,35

ej,1
ej,2

ej,4

ej,3

ej,5

ej,6
ej,7

ej,14

ej,8

ej,10
ej,11
ej,12

ej,13

ej,16
ej,17

ej,18
ej,19

ej,20
ej,15

ej,21

ej,23

ej,24

ej,27

ej,26

ej,25

ej,9

ei,20

ej,28
ej,30
ej,29

ej,31

ej,32

ej,33

ej,34

ej,35

ej,36

ej,22

Figure 3.7: Partitions merging example

After partitioning the ontology Oi, the set of partitions Pi resulted by Algorithm 1 is
depicted in Figure 3.5 and denoted by Pi, where:
Pi = { pi,1, pi,2, pi,3, pi,4, pi,5, pi,6}
such that

• pi,1 = (Vi,1,Ei,1), where Vi,1 =
{

ei,1,1, ei,1,2, ei,1,3, ei,1,4, ei,1,5
}
, Vi,1 ⊆ Vi

• pi,2 = (Vi,2,Ei,2), where Vi,2 =
{

ei,2,6, ei,2,7, ei,2,8, ei,2,9, ei,2,10, ei,2,11, ei,2,12
}
, Vi,2

⊆ Vi

• pi,3 = (Vi,3,Ei,3), where Vi,3 =
{

ei,3,13, ei,3,14, ei,3,15, ei,3,16, ei,3,17, ei,3,18, ei,3,19
}
, Vi,3

⊆ Vi

• pi,4 = (Vi,4,Ei,4), where Vi,4 =
{

ei,4,20, ei,4,21, ei,4,22, ei,4,23, ei,4,24
}
, Vi,4 ⊆ Vi

• pi,5 = (Vi,5,Ei,5), where Vi,5 =
{

ei,5,25, ei,5,26, ei,5,27, ei,5,28, ei,5,29, ei,5,30, ei,5,31
}
, Vi,5

⊆ Vi

3.7. CONCLUSION 51

• pi,6 = (Vi,6,Ei,6), where Vi,6 =
{

ei,6,32, ei,6,33, ei,6,34, ei,6,35, ei,6,36
}
, Vi,6 ⊆ Vi

The partitioning of the ontology Oj results in the set of partitions Pj after applying
Algorithm 1. This set of partitions is depicted in Figure 3.5 and denoted by Pj , where:
Pj = { pj,1, pj,2, pj,3, pj,4, pj,5, pj,6}
such that

• pj,1 = (Vj,1,Ej,1), where Vj,1 =
{

ej,1,1, ej,1,2, ej,1,3, ej,1,4, ej,1,5, ej,2,6, ej,2,7
}
, Vj,1 ⊆ Vj

• pj,2 = (Vj,2,Ej,2), where Vj,2 =
{

ej,2,8, ej,2,9, ej,2,10, ej,2,11, ej,2,12, ej,3,13, ej,3,14
}
, Vj,2

⊆ Vj

• pj,3 = (Vj,3,Ej,3), where Vj,3 =
{

ej,3,15, ej,3,16, ej,3,17, ej,3,18, ej,3,19, ej,4,20, ej,4,21
}
,

Vj,3 ⊆ Vj

• pj,4 = (Vj,4,Ej,4), where Vj,4 =
{

ej,4,22, ej,4,23, ej,4,24, ej,5,25, ej,5,26
}
, Vj,4 ⊆ Vj

• pj,5 = (Vj,5,Ej,5), where Vj,5 =
{

ej,5,27, ej,5,28, ej,5,29, ej,5,30, ej,5,31
}
, Vj,5 ⊆ Vj

• pj,6 = (Vj,6,Ej,6), where Vj,6 =
{

ej,6,32, ej,6,33, ej,6,34, ej,6,35, ej,6,36
}
, Vj,6 ⊆ Vj

Following Algorithm 2 (line 11 to line 17), we iteratively merge the ontology partitions
of the ontology Oi having anchors with one partition of the ontology Oj . We also follow
the same iterative strategy in order to merge the ontology Oj having anchors with one
partition of the ontology Oi. For instance, the ontology partitions pi,1 and pi,2 of the
ontology Oi are merged into one partition since they both have anchors to the partition
pj,1 of the ontology Oj . As depicted in Figure 3.7, the extracted Anchors between the two
ontologies Oi and Oj are denoted by Aij , where:
Aij = {(ei,2,ej,3), (ei,5,ej,7), (ei,11,ej,6), (ei,13,ej,8), (ei,14,ej,10), (ei,16,ej,16), (ei,18,ej,17),

(ei,21,ej,23), (ei,23,ej,25),(ei,25,ej,30), (ei,30,ej,27), (ei,32,ej,28), (ei,34,ej,35), (ei,36,ej,33)}, ei,x ∈
Vi, ej,y ∈ Vj }.

The merge of partitions is illustrated in Figure 3.7 by a hashed circle. After performing
the merge process, we are able to identify the set of local matching tasks LMij between
the two ontologies Oi and Oj . For instance, in Figure 3.7, we identify the following four
local matching tasks:
LMij={lmij,1, lmij,2, lmij,3, lmij,4}.

3.7 Conclusion

The matching of large ontologies is a complex task especially while employing a set of
matchers. Consequently, the matching accuracy of matching systems is decreased. Large
ontologies have a highly conceptual heterogeneity. Moreover, large ontologies produce a
huge search space in which matching systems. In this chapter, we have proposed a novel
approach to partition a large ontology matching task into a set of sub-matching tasks
called local matching tasks. A big matching problem is splitted into a set of smaller prob-
lems. Therefore, the ontology matching process is only performed between the set of local

52 CHAPTER 3. ONTOLOGIES PARTITIONING APPROACH

matching tasks rather than the whole ontologies. This divide and conquer strategy aims to
reduce the search space for the discovery of alignments in large ontologies. Differentiated
from the state-of-the-art approaches, the introduced partitioning approach does not result
in any isolated partitions or large sub-matching tasks.

The proposed partitioning approach is based on the hierarchical agglomerative clus-
tering method and follows three stages: (i) input ontologies partitioning pre-processing
(ii) partitioning algorithm and (iii) identification of local matching tasks. During the first
stage, we construct the dendrogram for each input ontology. This dendrogram is con-
structed based on the relatedness of equation 3.1 and the average linkage strategy. In the
second stage, the dendrogram for each ontology is splitted into a set of partitions based on
a novel multi-cut strategy. This multi-cut strategy does not result in any large partitions.
In the third stage, we identify the set of local matching tasks based on novel partitions
merging approach. In the next chapter, we introduce the local matching learning approach
in order to automatically align the set of local matching tasks.

Chapter 4

Local Matching Learning
Approach

Contents
4.1 Introduction . 54

4.2 Formal foundations . 55

4.2.1 Global Matching Versus Local Matching 55

4.2.2 Local-based Training Data . 55

4.2.3 Local-based Classifier . 56

4.3 Local Matching Learning Architecture Overview 56

4.4 Local Training Sets Generation 58

4.4.1 Generating Positive Samples . 59

4.4.2 The Algorithm for the Generation of Negative Samples 63

4.4.3 Local Training Set Generation Example 64

4.5 Balancing Generated Local Training Sets 64

4.6 Wrapper-based Local Feature Selection 66

4.6.1 Element-level Features . 66

4.6.2 Structural-level Features . 67

4.7 Local Classification . 68

4.8 Conclusion . 69

53

54 CHAPTER 4. LOCAL MATCHING LEARNING APPROACH

4.1 Introduction

Using a single matcher for the whole ontology matching task is usually insufficient. There-
fore, an automatic combination of these matchers and the tuning of each matcher is es-
sential for a better matching quality. Hence, the settings of an ontology matching system
should not depend on a set of pre-selected contexts. The matching settings should be
automatically adapted for every new matching context, which can not be included in the
predefined set of settings. The main issue concerns the choice of the matching settings (eg.
the weight of each matcher, the threshold) while dealing with different matching contexts.
This choice should be automated in order to reduce the matching process complexity, es-
pecially while dealing with large scale ontologies. Thus, the matching process should be
self-tuned in order to derive the adequate matching settings,e.g. similarity measure and
threshold, for each matching context. This process can improve the ontology matching
accuracy.

The goal of local matching learning is to perform an effective matching of large ontolo-
gies. This matching is based on machine learning techniques in order to fully automate
the whole process. Hence, a large ontology matching task is to divide into a set of local
matching tasks. Each local matching task is considered as a matching context that should
be aligned independently from the other local matching tasks. The local matching learn-
ing automatically selects the adequate matchers for each local matching task. Usually
ontology matching systems combine different types of matchers to align pairwise ontolo-
gies [94, 14, 13]. Ideally, matchers should complement each other in order to reduce the
generated matching quality [71]. An element level matcher can be based on a similarity
measure, which derives a similarity score between the entities of the pairwise ontologies.
Structural matchers are based on structural features extracted from the relation between
entities of a single ontology. These matchers should be automatically defined for each
matching context. We automatically combine element-level and structural-level matcher
using machine learning techniques.

In this chapter, we propose a local matching learning approach to fully automate
the matching tuning for each local matching task. This automation should be automati-
cally defined for each matching context in order to result in a context-independent local
matching learning system. This local matching learning system should align each ontology
matching task based on the specificities of the local matching tasks. Since we are dealing
with a large ontology matching task, we apply the proposed matching learning approach
locally and not globally. Therefore, we define adequate matching tuning for each local
matching task. State-of-the-art approaches define a single matching tuning for all the
matching contexts, otherwise, they define a set of matching tuning for a set of preselected
context. However, the benefit of the local matching learning approach is the use of machine
learning methods, which can be flexible and self-configuring during the training process.
Therefore, we result in a better matching quality independently of the matching context.
After identifying the set of local matching tasks LMij as introduced in the last chapter,
we perform the local matching learning of each local matching task lmij,q of LMij . The

4.2. FORMAL FOUNDATIONS 55

local matching learning automatically discovers the alignments between the entities of each
local matching task. In section 4.2, we present the formal notation employed throughout
this chapter. The local matching approach follows four stages: (i) Local training sets
generation (Section 4.3) (ii) Resampling the generated local training sets (Section 4.4)
(iii) Wrapper-based local feature selection of the local training sets (Section 4.5) and (iv)
Local-based classification (Section 4.5).

4.2 Formal foundations

4.2.1 Global Matching Versus Local Matching

Global matching perform the matching learning between two ontologies Oi and Oj using
a single classifier. This classifier defines a single matching tuning for a large ontology
matching task. However, the local matching learning aligns two ontologies Oi and Oj

based on a set of classifiers. Each classifier focuses on a local matching task by defining
its matching tuning.

In the following we provide the definition of global matching. Local matching is defined
in definition 3.

Definition 8 (Global matching) The global matching GMij between two ontologies Oi

and Oj consists in learning correspondences between all the entities of Vi and Vj. The
global matching GMij requires a single machine learning classifier Gmlij generated from
one global training set Gtsij.

4.2.2 Local-based Training Data

For each local matching lmij,q of LMij , we automatically generate a local training set
denoted by tsij,q. A local training set tsij,q is built automatically to generate its specific
classifier. A classifier defines the matching tuning of a matching task. Existing works lack
the automation of the generation of the training data. State-of-the-art methods generate a
single training data for all the possible matching contexts. However, each matching context
has its unique characteristics and should be aligned based on its adequate classifier. The
automatic generation of the training data results in the appropriate classifier for each local
matching task. Therefore, the alignment of local matching tasks based can result in better
quality alignments. In the following, we define the local-based training data.

Definition 9 (Local-based training Set) A set of local machine learning classifiers is
generated from a set of local training sets T sij, denoted by:
T sij = {tsij,1,...,tsij,q,...}.
Each local training set tsij,q contains a set of features {fijq,1,..., fijq,r} associated with a

prediction class attribute cijq (match/not match). Each feature corresponds to a matcher.
We denote a local training set by:

tsij,q = {fijq,1,..., fijq,r, cijq}, such that cijq ∈ {0,1}, such that cijq is an integer repre-
senting the class attribute of the binary classification task.

56 CHAPTER 4. LOCAL MATCHING LEARNING APPROACH

Table 4.1 represents an example of a local training set.

Table 4.1: An example of a local training set.

Local matching entity pairs Feature 1 ... Feature r Class
(ei,q,1,ej ,q,1) 0.61 ... 0.75 1
(ei,q,2,ej ,q,2) 0.45 ... 0.5 0

...
(ei,q,x,ej ,q,y)

4.2.3 Local-based Classifier

Existing works generate a single classifier for all the ontology matching tasks. A classifier
defines the matching settings of an ontology matching task. However, each matching
task has its specificity that should be taken into consideration by the classifier during the
alignment process. We build a local-based classifier in order to align the entities of a local
matching task. This classifier is automatically generated based on its local-based training
set.

Definition 10 (Local-based classifier) A local matching LMij is performed using a
set of local machine learning classifiers Lclij denoted by:
Lclij = {lclij,1,..., lclij,q}.
Every local matching task lmij,q of LMij uses a single local training set tsij,q to gen-

erate its local classifier lclij,q. An algorithm that implements classification, especially in a
concrete implementation, is known as a classifier. The term ”classifier” sometimes also
refers to the mathematical function, implemented by a classification algorithm, that maps
input data to a category. In our case, a classifier classifies a candidate correspondence to
be aligned or not.

4.3 Local Matching Learning Architecture Overview

Each matching context should be automatically aligned based on its characteristics. Cap-
turing all the characteristics of a matching task by a single matcher is really difficult.
Usually, each matcher focuses on a single type of heterogeneity. As a result, the automatic
combination of the available matchers is required. The choice of matchers should be au-
tomated especially for the alignment of large ontologies. As a result, matching settings
should be set automatically. Thus, the matching process should be self-tuned in order
to derive the appropriate matching tuning for each matching context. Usually, state-of-
the-art approaches generate a single classifier for each ontology matching task. However,
each ontology matching task has its specific context different from the other matching
context. Moreover, existing approaches construct a single classifier based on training data
similar to the matching context that should be aligned. Therefore, this single classifier is

4.3. LOCAL MATCHING LEARNING ARCHITECTURE OVERVIEW 57

less appropriate for all matching context. In our case, we build a classifier for each local
matching task taking into consideration its context.

In this section, we discuss the main features of the proposed local matching learning
approach. In Figure 4.1, we depict the main steps of the local matching learning approach.
This approach automatically aligns the set of local matching tasks based on machine
learning techniques. Local matching tasks are generated by the partitioning approach,
which is presented in Chapter 3. The local matching learning approach has as an input
the set of local matching tasks and results in a single output alignment file for the ontology
matching task. This output alignment file contains the set of generated mapping for each
local matching task. The local matching process is composed of five steps. This approach
aligns each local matching task based on its unique classifier. Classifiers are automatically
generated from an external knowledge base.

Figure 4.1: Local Matching Learning Architecture Overview

In the following, we give an overview of the different steps of the local matching learning
approach.

• Local training sets generation The input of this step is a set of local matching
tasks generated by the ontologies partitioning approach. The output is a training set
for each local matching task. We generate training sets for each local matching task
based on an external biomedical knowledge base. As a result, training sets of different
local matching tasks are not similar in terms of their positive samples and negative
samples. Therefore, the generated classifiers based on the later training sets are
flexible and self-configuring in terms of the matching tuning of local matching task.
State-of-the-art approaches define a single static training set for all the ontology
matching task, which results in a single matching setting for different matching
context. As a result, matching accuracy can be decreased [82].

• Re-sampling local training sets The generated local training sets are not bal-
anced. The number of negative samples is higher than the number of positive sam-
ples. Therefore, we apply resampling techniques in order to generate a better clas-
sifier for each local matching task.

58 CHAPTER 4. LOCAL MATCHING LEARNING APPROACH

• Local wrapper feature selection During this step we perform the feature selection
for the resampled local training sets. This process aims to include only adequate
features for the local classifiers. Therefore, each local matching task is aligned based
on its adequate features. Each feature corresponds to a matcher. Therefore, only
the best features for each local matching context are selected. Each local matching
task can be aligned based on its unique set of features. Consequently, the accuracy
of the generated alignments can be improved.

• Local classification This step has as an input the local training sets for the local
matching tasks. The output is a set of alignments for each local matching task.
During this step, we build a classifier for each local matching task. Each classifier
aligns its corresponding local matching task.

• Output alignment generation During this step, the generated alignments for
each local matching task are unified in order to result in a single alignment file. This
alignment file contains the correspondences between the two input ontologies.

In the next sections, we explain in depth the workflow of each step of the local matching
learning approach.

4.4 Local Training Sets Generation

Each local matching task has its own specific context. Therefore, a local matching task
should be aligned based on its adequate matching settings, such as the weight of each
matcher and its threshold. Related work generates a single static training set in order
to build a classifier for large ontology matching tasks. However, each ontology matching
learning task has its own characteristics and should be aligned accordingly. To cope with
this issue, a local based classifier should be built for each local matching task. Therefore,
we automatically construct a local training set tsij,q for each local matching task lmij,q.
A local training set serves as the input for its local classifier. Differentiated from the
existing work, we automatically generate the local training sets without any manual user
involvement or any reference alignments.

To summarize, for a given local matching lmij,q, we generate:

• Positive samples PSij,q = {(ei,q,x,ej,q,y)}, such as the total number of these positive
samples is N = |PSij,q|.

• Negative samples NSij,q = {(Vi,q × Vj,q) \ PSij,q}. Negative samples correspond to
all the entity-pairs of a local matching task minus the entity-pairs of the already
generated positive samples. Therefore, the total number of negative samples is M
= N (N -1).

4.4. LOCAL TRAINING SETS GENERATION 59

4.4.1 Generating Positive Samples

Labeled data for the class attribute cijq are usually hard to acquire. Existing work con-
struct the labeled data either from the reference alignments or by creating it manually [82].
However, the reference alignments commonly do not exist. We derive the positive map-
pings samples (the minority class) of the class attribute cijq by combining the results of two
methods: cross-searching and cross-referencing of external knowledge bases for the same
domain of application, in particular, the biomedical domain for this Ph.D. thesis. This
combination allows the labeling of the local training sets to cover a wide range of biomedi-
cal ontologies. In the following, we detail the cross-searching, the cross-referencing and the
exact matching methods. All the positive samples generated by the three later methods
are unified into a single positive sample set PSij,q. We remove redundant instances from
the positive samples set PSij,q. Therefore, the set of positive samples may contain samples
from the three approached methods. This process enriches the training data in order to
build a better classifier for a better alignment. The lack of positive samples may result in
wrong assumptions generated by the classifiers.

4.4.1.1 Generating Positive Samples via Cross-searching

Cross-searching employs external biomedical knowledge sources as a mediator between
local matching tasks in order to extract bridge alignments. A bridge alignment is
extracted if a similar annotation is detected between an entity of the ontology and two
entities of a local matching task. We consider bridge alignments as the set of positive
samples.

In Algorithm 3, we depict the different steps of the cross-searching method for gener-
ating positive samples from external biomedical knowledge bases.

Algorithm 3 Cross-searching Algorithm
1: Input pi,l, pj,k . (1) Input
2: PSij,q ← ∅ . (2) Initialization
3: sourcePartition = pi,l.getNames()
4: targetPartition = pj,k.getNames()
5: externalBKS = Uberon.getNames()
6: for each externalName of externalBKS do . (3) Positive samples generation
7: for each sourcePName of sourcePartition do
8: if sourcePartition.contains(externalName) then
9: for each targetPName of targetPartition do

10: if targetPartition.contains(externalName) then
11: PSij,q.add(sourcePName.getClass, targetPName.getClass)
12: end if
13: end for
14: end if
15: end for
16: end for
17: Return PSij,q . Output

60 CHAPTER 4. LOCAL MATCHING LEARNING APPROACH

The Cross-searching Algorithm has as input the two partition pi,l and pj,k correspond-
ing to their local matching task lmij,q. The output of Algorithm 3 is the generated set
of positive samples PSij,q for their local training set. As mentioned in Algorithm 3, the
cross-searching algorithm follows the next three steps:

Cross-searching Algorithm Initialization
We initialize the set of positive samples PSij,q as an empty set. We also extract the

annotations of the source (pi,l) and target (pj,k) partitions. These annotations are respec-
tively assigned to the variables sourcePartition and targetPartition. Moreover, we extract
the annotations of the employed external biomedical knowledge base. The extracted an-
notations are assigned to the variable externalBKS. In the next step, we employ all the
extracted annotations in order to generate bridge alignments between pi,l and pj,k for their
local matching task lmij,q.

Positive Samples Generation
During this step, we perform a nested for loop in order to extract bridge alignments

between the local matching task lmij,q and the external biomedical knowledge base. In
our case, we employ UBERON as an external knowledge base for the biomedical domain.
Bridge alignments are considered as the set of positive samples PSij,q. Therefore, the
algorithm performs a nested loop of names of the external knowledge base and the parti-
tions pi,l from Oi and pj,k from Oj . If the annotations (names) of the external knowledge
base contain the same annotation (externalName) in both partitions pi,l and pj,k, then, we
align via a bridge alignment the two classes of the later partitions. This bridge alignment
is added to the set of positive samples PSij,q (line 11).

4.4.1.2 Generating Positive Samples via Cross-referencing

We can also perform the labeling of the raining data via cross-referencing. This method
enriches the already discovered positive samples by the cross-searching by new labels.
Extracted positive samples by the cross-searching method can maybe not have a sufficient
number to build a training set. Therefore, we extract more positive samples using the cross-
referencing method, we are based on the vocabulary of the Open Biomedical Ontologies
(OBO) [98]. OBO is an effort to create controlled vocabularies for shared use across
different biological and medical domains [98]. The OBO ontology library forms the basis
of the OBO Foundry, a collaborative experiment involving a group of ontology developers
who have agreed in advance to the adoption of a growing set of principles specifying best
practices in ontology development. These principles are designed to faster interoperability
of ontologies within the broader OBO framework and also to ensure a gradual improvement
of quality and formal rigor in ontologies. The OBO library operates to design ways to
meet the increasing needs of data and information integration in the biomedical domain
[98].

The classes of different biomedical ontologies are interconnected via the annotation
property ”oboInOwl:hasDbXref” based on the OBO vocabulary [98]. Consequently, we
are based on one of the OBO ontologies, which is UBERON. We employ Uberon as an

4.4. LOCAL TRAINING SETS GENERATION 61

external biomedical knowledge source in order to derive positive samples for each local
training set. Uberon is an integrated cross-species ontology covering anatomical structures
and includes relationships to taxon-specific anatomical ontologies. Indeed, we explore the
OBO annotation property “oboInOwl:hasDbXref”, which is mentioned in almost every
class of Uberon. This property references the classes URI of external biomedical ontologies.
We align every two classes of a given local matching task in case if one of their classes are
both referenced in a single Uberon class.

The UBERON ontology includes references to different biomedical ontologies (via an-
notation property “oboInOwl:hasDbXref”). For instance, the class UBERON 0001275
(“pubis”) of Uberon references the FMA class 16595 (“pubis”) and NCI class C33423
(“pubic bone”). Therefore, the later entities construct a positive sample of its local train-
ing set.

In Algorithm 4, we depict the different steps of the cross-referencing method for gener-
ating positive samples from external biomedical knowledge bases. The difference between
the cross-referencing method and the cross-searching method is that the earlier method
does not explore the annotation property “oboInOwl:hasDbXref”, which reference other
biomedical ontologies. The cross-searching method explores only the value of the names
of the external knowledge base annotations. Therefore, the returned positive samples of
the two methods are different. This difference compliments the set of positive samples by
a set of alignments not discovered by cross-reference method.

Algorithm 4 Cross-referencing Algorithm
1: Input pi,l, pj,k . (1) Input
2: PSij,q ← ∅ . (2) Initialization
3: set externalBKS = ontology.getClasses(Uberon)
4: set sourcePartitionURIs = partition.getURIs(pi,l)
5: set targetPartitionURIs = partition.getURIs(pj,k)
6: for each externalClass of externalBKS do . (3) Positive samples generation
7: sourceOBO = ontology.getOBODBxref(externalClass, sourcePartitionURIs)
8: targetOBO = ontology.getOBODBxref(externalClass, targetPartitionURIs)
9: for each sourceURI of sourcePartitionURIs do

10: if sourceURI.equals(sourceOBO) then
11: for each targetURI of targetPartitionURI do
12: if sourceURI.equals(targetOBO) then
13: PSij,q.add(sourceURI.getClass, targetURI.getClass)
14: end if
15: end for
16: end if
17: end for
18: end for
19: Return PSij,q . Output

62 CHAPTER 4. LOCAL MATCHING LEARNING APPROACH

As mentioned in Algorithm 4, the cross-referencing algorithm follows the following
steps:

Cross-referencing Algorithm Input and Output Similar to the cross-searching
Algorithm, the Cross-referencing Algorithm has as input the two partition pi,l and pj,k cor-
responding to their local matching task lmij,q. The output of Algorithm 4 is the generated
set of positive samples PSij,q for their local training set.

Cross-referencing Algorithm Initialization
We initialize the set of positive samples PSij,q as an empty set. We extract the classes

of the external biomedical ontology (line 3), these classes contain the OBO vocabulary.
The OBO annotation property “oboInOwl:hasDbXref” of the external biomedical ontology
references the URIs of other biomedical ontologies. Therefore, we extract the URIs of the
source partition and the target partition (line 4 and line 5). In the next step, we employ
all the extracted data in order to generate bridge alignments between pi,l, pj,k and the
external biomedical knowledge base.

Positive Samples Generation During this step, we perform a nested loop in order
to extract bridge alignments between the local matching task lmij,q and the external
biomedical knowledge base. Therefore, the algorithm respectively perform a nested loop
of the external knowledge base, the first partition pi,l and the second partition pj,k of their
local matching task lmij,q. A class of the external knowledge base may contain different
OBO annotation properties “oboInOwl:hasDbXref”, referencing different classes of other
biomedical ontologies. If one class of the externalBKS reference contain two annotation
properties respectively referencing a class from the first partition pi,l and another class
from the second partition pj,k, then we consider the two referenced classes as a bridge
alignment discovered by the cross-referencing method. The discovered bridge alignment
is added to the set of positive samples (line 13).

4.4.1.3 Generating Positive Samples via Exact Matching

We can also generate positive samples between two partitions pi,l and pj,k of a local
matching task lmij,q based on the exact matching method. Exact matching can add
positive samples, which are not discovered by the cross-searching and the cross-referencing.
In OAEI, StringEquiv is a matcher employed as a baseline in order to compare the accuracy
of the ontology matching systems. In Algorithm 5, we depict the different steps of the exact
matching method. Similar to cross-searching and cross-referencing, the exact matching
algorithm has as an input the two partition pi,l and pj,k. The output of the exact matching
algorithm is the set of positive samples PSij,q for its local training set.

As mentioned in Algorithm 5, the exact matching algorithm follows the following steps:
Exact Matching Algorithm Initialization We extract the annotations of the

source (pi,l) and target (pj,k) partitions. These annotations are respectively assigned
to the variables of source (pi,l) and target (pj,k) partitions. Moreover, we initialize the
positive samples PSij,q as an empty set.

Positive Samples Generation We perform a nested loop between the annotations

4.4. LOCAL TRAINING SETS GENERATION 63

of the source and target partitions. If we found that the content of a single annotation is
exactly the same between the classes of the later partitions, then we add it to the list of
positive samples PSij,q.

Algorithm 5 Exact-matching Algorithm
1: Input pi,l, pj,k . (1) Input
2: PSij,q ← ∅ . (2) Initialization
3: sourcePartition = pi,l.getNames()
4: targetPartition = pj,kn.getNames()
5: for each sourceName of sourcePartition do . (3) Positive samples generation
6: for each targetName of targetPartition do
7: if sourceName.equals(targetName) then
8: PSij,q.add(sourceName.getClass, targetName.getClass)
9: end if

10: end for
11: end for
12: Return PSij,q . Output

4.4.2 The Algorithm for the Generation of Negative Samples

We extract the set of Negative samples NSij ,q by computing the difference between the
set of extracted Positive samples PSijq and the set representing the cartesian product of
its entities. After extracting the entities for positive samples PSij,q and negative samples
NSij,q, for each local training set, we compute the features for each entity pair of the
positive samples PSij,q as well as the negative samples NSij,q. In the following Algorithm
6, we depict the different steps for the generation of negative samples.

Algorithm 6 Negative Samples Generation Algorithm
1: Input pi,l, pj,k, PSij,q . (1) Input
2: i← 0
3: NSij,q ← ∅ . (2) Initialization
4: while (i <= PSij,q.geSize) do . (3) Negative samples generation
5: sourcePS1 ← PS.getSourceClass(i)
6: j ← 0
7: while (j <= PSij,q.geSize) do
8: sourcePS2 ← PS.getSourceClass(j)
9: if (sourcePS1.notEqual(sourcePS2)) then

10: targetPS ← PS.getTargetClass(j)
11: NSij,q.add(sourcePS1, targetPS)
12: end if
13: end while
14: end while
15: Return NSij,q . Output

64 CHAPTER 4. LOCAL MATCHING LEARNING APPROACH

4.4.3 Local Training Set Generation Example

In order to demonstrate an example of a generation of training data, in Figure 4.2, we
extracted the following positive samples PSij,q based on the cross-searching method:

PSij,q = {(ei,3,ej,8), (ei,2,ej,2), (ei,1,ej,1)}.
The number of extracted positive samples is 3. Therefore, N = 3. These labeled

entities are generated by cross-searching the two partitions and an external biomedical
knowledge base. This external knowledge base should contain the OBO vocabulary, more
specifically the annotation property “oboInOwl:hasDbXref”. In our case, we are based on
UBERON as a mediating ontology. We deduce that the number M of negative samples
NSij ,q is equal to the following:
M = N (N -1) = 6
Therefore, the generated local training set for this example has 9 instances, corre-

sponding to the sum of 3 positive samples and 6 negative samples. We can deduce that
the number of negative samples is higher than the number of positive samples (M>N).
Consequently, we apply resampling techniques over the local training set in order to bal-
ance the number of samples.

Figure 4.2: Positive samples extraction for a local training set extraction

4.5 Balancing Generated Local Training Sets

Imbalanced training sets are one of the main issues occurring while dealing with ontology
matching learning. Imbalanced data typically refers to a classification problem where the
number of observations per class is not equally distributed [76]. Current matching learn-
ing work does not consider the resampling process to resolve the problem of imbalanced
matching learning training data. Nonetheless, resampling is essential to deliver better
matching learning accuracy.

Classification problems often suffer from data imbalance across classes. This is the
case when the size of instances from one class is significantly higher or lower relative to
the other classes. A small difference often does not matter [76]. However, if there is
a modest class imbalance in training data like 4:1, it can cause misleading classification
accuracy. Imbalanced data refers to classification problems where we have unequal samples

4.5. BALANCING GENERATED LOCAL TRAINING SETS 65

for different classes. For instance,
Most of machine learning classification algorithms are sensitive to imbalanced training

data. An imbalanced training data will bias the prediction classifier towards the more
common class. This happens because machine learning algorithms are usually designed
to improve accuracy by reducing the error. Thus, they do not take into account the class
distribution of classes. Different methods have been proposed in the state-of-the-art for
handling the data imbalance [29]. The common approaches [19] to generate a balanced
dataset from an imbalanced one are undersampling, oversampling, and their combination:

• Undersampling approach balances the dataset by reducing the size of the abundant
class by keeping all samples in the rare class and randomly selecting an equal number
of samples in the abundant class;

• Oversampling approach is used when the quantity of data is insufficient. It tries
to balance dataset by increasing the size of rare samples. Rather than removing
abundant samples, new rare samples are generated;

• Performing a combination of oversampling and undersampling can yield better re-
sults than either in isolation.

Most of the state-of-the-art matching learning approaches neglect the problem of the
imbalanced dataset. Existing work does not give any importance to resampling. However,
the resampling method can strongly affect the obtained accuracy by the matching learning
strategy.

Local training sets are not balanced since the number of the negative samples M is
higher than the number of positive samples N . Therefore, we initially undersample each
local training set tsij,q by a heuristic method which consists of removing all the negative
samples (majority class) having at least one element level feature equal to zero. The re-
sult of this initial treatment is not sufficient to balance the local training data, since the
number of negative samples NSij,q (majority class) still higher than the number of posi-
tive samples PSij,q (minority class). Hence, an additional sampling method is required to
result in a balanced local training sets, we employ the state-of-the-art resampling meth-
ods to undersample of the majority class PSij,q, oversample the minority class NSij,q or
combining both of the later techniques. In chapter 5, we conduct a comparative study of
applying resampling methods over imbalanced training data. We express r as the ratio of
the size of the minority class to the majority class. This ratio should be equal to 1 in order
to have a similarity between the number of positive samples and the number of negative
samples. The ratio r is denoted by:

r = ‖N‖/‖M‖.
The output of this step is a balanced local training set tsij,q for each local matching

task lmij,q. For instance, if a local matching process LMij is composed of three local
matching tasks: lmij,1 lmij,2 and lmij,3, we respectively result in three local training sets
tsij,1 tsij,2 tsij,3.

66 CHAPTER 4. LOCAL MATCHING LEARNING APPROACH

4.6 Wrapper-based Local Feature Selection

The local matching LMij approach splits a large ontology matching problem into a set
of smaller local matching tasks lmij,q. Each local matching task focuses on a specific sub-
topic of interest. Therefore, it should be aligned based on its set of adequate matchers. We
classify matchers into structural level matchers and element level matchers. Each matcher
corresponds to a feature in a local training set tsij,q. Element level matchers measure
correspondences by analysing entities in isolation without taking into consideration the
existing relationships between these entities. Whereas, structure level matchers considers
the ontological neighborhood of entities in order to determine their similarity. We employ
wrapper feature selection in order to determine the suitable element level and structure
level features for each local matching task lmij,q of LMij . Consequently, each local match-
ing task is aligned based on its specific set of features. Each feature represents a single
matcher. In the following, we present the set of element-level features and structural-level
features. These set of features are employed as input for each local matching features
selection process.

4.6.1 Element-level Features

We perform features selection over each generated local training set tsij,q in order to build
its local classifier. The latter identifies the local alignments of its local matching task
lmij,q. For example, for a given local training sets: tsij,1, tsij,2 and tsij,3, we separately
perform the features selection over these three local training sets. As depicted in Table 4.2,
we integrate 14 of the state-of-the-art similarity measures as the element level matchers.
These similarity measures are widely employed by state-of-the-art matching systems. We
classify the 14 similarity measures into four groups: edit-distance, character-based, term-
based and subsequence-based. Each group employs a specific technique in order to measure
the similarity between two entities. We are based on these four groups in order to cover
all types of syntactic heterogeneity between the annotations of the two input ontologies.

Table 4.2: Element level features

Chracter based Block Distance [15] A similarity measure based
on n-dimensional vector
space defined through the
characters of input strings.

Cosine Similarity [18] Instead of summing the
edge distances, this variant
calculates the cosine value
of the angle between input
strings

Subsequence based QGrams [70] Computes the similarity by
splitting the strings into to-
kens, comparing the tokens
by the help of an internal
measure.

4.6. WRAPPER-BASED LOCAL FEATURE SELECTION 67

Group Feature Description
Term based Dice similarity [99] It is defined as twice the

number of common terms
divided by the total num-
ber of terms in both input
strings

Jaccard [48] It is defined as the size
of the intersection divided
by the size of the union
of terms within the input
strings

Euclidian Distance [9] The similarity is measured
through the length of the
line segment between two
vectors composed of input
strings’ terms

Overlap Coefficient [106] It is defined as the size of
common terms divided by
the size of the shortest in-
put string

Edit distance Levenshtein [68] One of the most widely
used string similarity mea-
sures based on edit dis-
tance, i.e. copy, substitute,
insert and delete a charac-
ter from one string to an-
other

Needleman Wunch [79] A weighted variant of Lev-
enshtein by adding a vari-
able cost to the gap.

ISUB [100] Considers not only the sim-
ilar but also the different
parts of two strings.

Smith Waterman [110] A variant of Needleman
Wunch which is originally
developed to identify opti-
mal matching between re-
lated DNA and protein se-
quences.

Monge Elkan [75] An extension of Smith Wa-
terman by allowing a spe-
cific gap penalty function
between sequences

Jaro Winkler [112] A variant of Jaro similar-
ity measure which is better
suited for short strings by
the help of an internal mea-
sure.

Subsequence based QGrams [70] Computes the similarity by
splitting the strings into to-
kens, comparing the tokens
by the help of an internal
measure.

4.6.2 Structural-level Features

We draw in Table 4.3 the set of structural level features as well as their description. We
propose 7 structural level features. These features are based on the following intuition: the
more similar the annotations of two entities are the more likely they correspond to each
other [35]. A set of structural level features (NbSib, NbSup, NbSub, and Depth) computes
the similarity between entities of a local matching lmij,q task by analyzing their position

68 CHAPTER 4. LOCAL MATCHING LEARNING APPROACH

in the ontology. Moreover, another set of structural level features (SibSim, SupSim, and
Subsim) are based on the syntactic similarity of the neighborhood of entities in order
to compute their similarity. The intuition behind this is that, if two entities from two
local matching tasks are similar, their neighbors must also be somehow similar [35]. In
the proposed 7 structural level features, we compute the similarity between two entities
based on their siblings, superclasses, subclasses, and depth in each ontology. The generated
numeric values of structural level features are normalized between 0 and 1. Some ontologies
do not contain a root entity. Therefore, we search for high-level entities of an ontology.

Table 4.3: Structural level features

Feature Description

NbSib The modulus between the total number of
siblings of two entities

NBSup The modulus between the total number of
superclasses of two entities

NBSub The modulus between the total number of
subclasses of two entities

Depth The modulus of the distance to the root
entity between two entities in a local train-
ing set.

SibSim The modulus of the average similarity
score between the siblings of two entities

SupSim The modulus of the average similarity
score between the super-classes of two en-
tities

SibSub The modulus of the average similarity
score between the sub-classes of two en-
tities

4.7 Local Classification

The final step of the local matching approach corresponds to the generation of a classifier
for each local training set. Each classifier aligns the entities of its local matching task.
Classifiers are based on machine learning algorithms. In chapter 5, we have compared
the performance of the state-of-the-art machine learning algorithms for performing the
local classification. All the generated candidate correspondences for a local matching
task are processed. This process stands for a cleaning process in order to result in a
set of correspondences of one-to-one (1:1) multiplicity. This process removes all the one-
to-many (1:m) correspondences by only selecting the correspondence with the highest
similarity score. The generated correspondences by each classifier are unified into a single
alignment file. This alignment file represents the resulted correspondences for the whole
ontology matching task. Correspondences can be compared to the reference alignment file
in order to compute the accuracy of the local matching learning approach.

4.8. CONCLUSION 69

4.8 Conclusion

Ontology matching systems combine different matchers in order to align the input ontolo-
gies. Structural and terminological matchers result in different sets of alignments that
may have in common a certain number of correspondences. Therefore, different matchers
complement each other in order to improve the matching accuracy result. Terminological
matchers are usually based on a similarity measure associated with its specific threshold. If
the similarity score of two entities is above a certain threshold, the entities can be aligned.
Therefore, the set of employed matchers should be well defined for each matching con-
text. A good combination of the input matchers is essential to result in better matching
efficiency. For each matching task, matchers combination should be automated and self
tuned in order to derive the adequate matching setting, e.g. similarity measure, threshold,
and matcher weight. State-of-the-art matching learning approaches do not perform full
automation of matching process. Usually, these approaches do not take into considera-
tion the matching context before generating the set of final alignments. Hence, matching
learning classifier is usually generated from a single training set. This training set does not
take into consideration each matching context. Therefore, the matching accuracy depends
on the quality of the generated classifier by the training data, which is usually manually
created or generated based on references alignments, which usually do not exist.

We have proposed a novel matching learning approach in order to automate matching
process for each local matching task. We automatically generate a classifier for each local
matching task. Classifiers are built based on their training sets, which are automatically
extracted from external knowledge sources. These training sets are initially imbalanced
due to the high number of negative samples compared to the number of positive samples.
Imbalanced training data negatively affect the accuracy of the generated alignment by the
local matching learning approach. Consequently, we applied resampling techniques over
each training set of the sub-matching tasks in order to improve the alignment quality.
Furthermore, we have applied features selection techniques over each training set of a sub-
matching task. Each feature corresponds to a matcher. Therefore, the alignment process
is fully automated for each sub-matching task in terms of the generation of training-set,
the choice of its specific matchers and the construction of its adequate classifier. Every
sub-matching task is aligned based on its adequate classifier independently from the other
sub-matching tasks. Therefore, alignment quality is improved for the overall matching
task.

Chapter 5

Evaluation

Contents
5.1 Introduction . 71

5.2 The Architecture for Experimental Assessment 72

5.2.1 Experimental Archiecture . 72

5.2.2 Experimental Configuration . 73

5.2.3 Datasets . 73

5.3 Ontology Partitioning Approach Evaluation 75

5.4 Machine Learning Algorithms Evaluation 77

5.5 Resampling Local Training Sets Evaluation 79

5.5.1 Impact of Undersampling on Local Training Data 80

5.5.2 Impact of Oversampling on Local Training Data 81

5.5.3 Impact of Oversampling combined to Undersampling on Local
Training Data . 82

5.6 Local Feature Selection Evaluation 83

5.6.1 Studying the Impact of Feature Selection Methods 83

5.6.2 Impact of Element level and Structure level Features 84

5.7 Comparing Local Matching to Global Matching 86

5.8 POMap++: Local Matching Learning Evaluation 87

5.9 Conclusion . 90

70

5.1. INTRODUCTION 71

5.1 Introduction

In this chapter, we evaluate our approach for ontology partitioning and local matching
learning. The evaluation asses the performance of our approach, which addresses two
major issues: (i) integrating the large ontologies with a good matching accuracy, (ii)
automating the ontology matching process. We address these two issues by proposing
an ontology matching system called POMap++. POMap++ cope both with the large
size of ontologies and the automation issues. POMap++ implements the local matching
learning approach that combines ontology partitioning and matching learning. Therefore,
we divide a large ontology matching task into a set of local matching tasks. This division
is ensured based on our partitioning approach to cope with the following issues: the
conceptual heterogeneity, the high search space and the quality of the resulted alignments.
Hence, we reduce the huge search space into a set of smaller local matching tasks. The
local matching approach automatically independently align each local matching task using
machine learning techniques. The local matching process is self-tuned in order to derive
the appropriate matching tuning for each local matching task matching. As a result,
we can align effectively each local matching task to result in better matching accuracy.
The evaluation of POMap++ aims at comparing our partitioning approach to the-state-of-
the-art approaches. Moreover, based on POMap++, which implements the local matching
learning approach, we asses the efficiency of the local matching approach to the existing
ontology matching systems. Moreover, we compare our local matching learning approach
to the global matching learning approach. The main purpose of this comparision is to
know if there is a matching accuracy gain resulted by automatically and independently
aligning the set local matching task compared to aligning large ontologies as a single
matching task. We also study the performance of the different resampling techniques for
balancing the automatically generated local training sets. This study aims to suggest the
adequate resampling strategy. Furthermore, we study the impact of the feature selection
methods for performing the local matching approach. This study aims to justify the choice
of different employed features.

In order to evaluate the effectiveness of the proposed approach, we run experiments
based on the benchmark of the OAEI campaign. We compare the results of the proposed
matching system POMap++ with the systems of other participants in the campaign.
POMap++ is the ontology matching system implementing all the contribution discussed
in Chapter 3 and Chapter 4. Moreover, we have participated with PPOMap++ in the
benchmark of OAEI 2017 [62] and OAEI 2018 [65].

In Section 5.2, we firstly introduce the experimental environment employed for the
evaluation of the proposed contributions. Then, in Section 5.3, we evaluate the ontology
partitioning approach. Later, in Section 5.4, we begin to evaluate the local matching
learning approach based on different machine learning algorithms. This comparison aims
to result in an adequate machine learning algorithm for the local matching learning ap-
proach. Once the algorithm is chosen, we study the impact of the imbalanced training sets
for performing the local matching learning approach. Training sets are imbalanced since

72 CHAPTER 5. EVALUATION

the number of negative samples is higher than the number of positive samples. The imbal-
anced training set affects the matching accuracy. In Section 5.5, we show the results of the
resampling process of the training sets using state-of-the-art techniques. These techniques
are the undersampling of the majority class, the oversampling of the minority class and
the combination of the later techniques. After the resampling process, in Section 5.6, we
study the impact of feature selection methods. Moreover, we compare the effectiveness
of element level features to the structural level features. This study aims to find a way
for future improvement of the employed features. In Section 5.7, we compare the local
matching learning to the global matching learning as well as our results compared to the
state-of-the-art matching systems. This comparison aims to study the efficiency of the
local matching learning approach.

5.2 The Architecture for Experimental Assessment

In this section, we introduce the experimental environment employed throughout this
chapter. We firstly present the architecture for experimental assessment. Then, we intro-
duce the experimental configuration used to conduct our experiments. Later, we present
the different datasets employed to asses the efficiency of the proposed contributions.

5.2.1 Experimental Archiecture

in Figure 5.1, we present the main processes of the proposed architecture for onology
partitioning and local matching learning approach. The partitioning and local matching
learning architecture has as input two ontologies and outputs the generated alignments.
The ontology matching system POMap++, which participated in OAEI 2018 follows this
architecture. The proposed architecture contains mainly four modules: (i) input ontologies
indexing, (ii) input ontologies partitioning, (iii) local matching learning and (iv) output
alignment generation.

Figure 5.1: Partitioning and Local Matching Learning Architecture

5.2. THE ARCHITECTURE FOR EXPERIMENTAL ASSESSMENT 73

5.2.2 Experimental Configuration

All experiments have been implemented in Java and Python on a MacOs operating system
with 2.8 GHz Intel I7-7700HQ (4 cores) and 16 GB of internal memory. This platform is
similar in terms of its configuration to the OAEI configuration. Therefore, we employ it
in order to asses POMap++. We also conducted experiments on the servers of OSIRIM1

(Observatoire des Systèmes d’Indexation et de Recherche d’Information Multimédia). This
platform is open to researchers and students working in IRIT, but also for external re-
searchers under conditions. OSIRIM is composed of a storage area of 1 Po with a cluster
of 928 cores and 28 GPUs. This platform eases the running of multiple experiments at the
same time. Therefore, we employed it to simultaneously align large biomedical ontologies
matching tasks.

5.2.3 Datasets

Since we are proposing an ontology matching system that aligns large biomedical ontologies
datasets, are based on the dataset provided by Ontology Alignment Evaluation Initiative
(OAEI). OAEI aims at comparing ontology matching systems on precisely defined test
cases. These datasets serve as an input for POMap++, which implements the partitioning
and the local matching learning approaches. The output is a set of generated alignments by
POMap++. These resulted alignments are compared to the reference alignments provided
by OAEI benchmark in order to asses the effeciency of our proposed approach. These test
cases can be based on ontologies of different levels of complexity (from simple thesauri to
expressive OWL ontologies) [1]. We are based mainly on two matching tracks: Anatomy
track and LargeBio track. These two tracks are widely employed by the existing work to
asses matching systems aligning biomedical ontologies.

• The Anatomy track contains a single matching task.

• The Largebio track contains three matching tasks: FMA-NCI, FMA-SNOMED, and
SNOMED-NCI.

We present in the following the two matching tracks :

• The anatomy real-world case is about matching the Adult Mouse Anatomy (2744
classes) and the NCI Thesaurus (3304 classes) describing the human anatomy. The
task is placed in a domain where we find large, carefully designed ontologies that
are described in technical terms. Besides their large size and conceptualization
that is only to a limited degree based on the use of natural language, they also
differ from other ontologies with respect to the use of specific annotations and roles,
e.g. the extensive use of the ”partOf” relationship. The manual harmonization of
the ontologies leads to a situation, where we have a high number of rather trivial
mappings that can be found by simple string comparison techniques. At the same

1http://osirim.irit.fr/site/

74 CHAPTER 5. EVALUATION

time, we have a good share of non-trivial mappings that can require careful analysis
and sometimes also medical background knowledge [1].

• The LargeBio track was elaborated to find alignments between the Foundational
Model of Anatomy (FMA), SNOMED CT, and the National Cancer Institute The-
saurus (NCI). These ontologies have the advantage of being semantically rich and
contain tens of thousands of classes. UMLS Metathesaurus has been selected as the
basis for the track reference alignments. UMLS is currently the most comprehensive
effort for integrating independently-developed medical thesauri and ontologies, in-
cluding the Foundational Model of Anatomy Ontology (FMA), SNOMED CT, and
NCI. The integration of new UMLS sources combines automatic techniques, expert
assessment, and auditing protocols. Therefore, we are based on this dataset, which
is employed in the biomedical domain and provided by the OAEI benchmark with
its reference alignments.

In the following we present each of the employed ontologies by the Anatomy track and
the LargeBio Track:

• The Anatomy track:

– The anatomy real-world case is about matching the Adult Mouse Anatomy
(2744 classes) and the NCI Thesaurus (3304 classes) describing the human
anatomy. The focus of the anatomy track is to confront existing matching
technology with real-world ontologies. The ontologies of the anatomy track are
the NCI Thesaurus describing the human anatomy, published by the National
Cancer Institute (NCI) [38], and the Adult Mouse Anatomical Dictionary,
which has been developed as part of the Mouse Gene Expression Database
project. Both resources are part of the Open Biomedical Ontologies (OBO).

• The LargeBio track:

– FMA is an evolving computer-based knowledge source for biomedical infor-
matics [93]. It is concerned with the representation of classes or types and
relationships necessary for the symbolic representation of the phenotypic struc-
ture of the human body in a form that is understandable to humans and is also
navigable, parseable and interpretable by machine-based systems [93]. Specifi-
cally, the FMA is a domain ontology that represents a coherent body of explicit
declarative knowledge about human anatomy. Its ontological framework can be
applied and extended to all other species.

– SNOMED CT or SNOMED Clinical Terms is a systematically organized com-
puter processable collection of medical terms providing codes, terms, synonyms,
and definitions used in clinical documentation and reporting [32]. SNOMED
CT is considered to be the most comprehensive, multilingual clinical health-
care terminology in the world [32]. The primary purpose of SNOMED CT

5.3. ONTOLOGY PARTITIONING APPROACH EVALUATION 75

is to encode the meanings that are used in health information and to sup-
port the effective clinical recording of data with the aim of improving patient
care. SNOMED CT provides the core general terminology for electronic health
records [32]. SNOMED CT comprehensive coverage includes clinical findings,
symptoms, diagnoses, procedures, body structures, organisms and other etiolo-
gies, substances, pharmaceuticals, devices, and specimens.

– NCI provides reference terminology for many NCI and other systems. It cov-
ers vocabulary for clinical care, translational and basic research, and public
information and administrative activities

5.3 Ontology Partitioning Approach Evaluation

Large ontologies alignment is a complex task due to their high conceptual heterogeneity.
Different ontology developers construct the same domain ontology using different concep-
tual models. A high conceptual heterogeneity affects the efficiency of ontology matching
systems. As a result, the discovery of adequate alignments becomes a challenging process.
Moreover, the alignment of large ontologies results in a huge search space, where ontology
matching systems fetch for the right correspondences. This process is time consuming es-
pecially where the matching process should combine different matchers. The main issues
of the alignment of large biomedical ontologies are the conceptual heterogeneity, the high
search space and the decreased quality of the resulted alignments.

We have proposed a novel ontology partitioning approach to cope with the later issues.
In figure 5.2, we depict the employed experimental architecture for the partitioning pro-
cess, which is proposed in Chapter 3. The partitioning approach has as input two large
ontologies and results as an output a set of local matching tasks. This set of local match-
ing task is later aligned using the matching learning process. We evaluate the accuracy
of the resulted alignment based on the biomedical anatomy track of OAEI benchmark.
Moreover, we evaluate the partitioning approach based on the coverage ratio criteria. The
partitioning coverage ratio defines the set of alignments that can be discovered after per-
forming the partitioning process. A low coverage ratio leads to missing a high number of
alignment that should be discovered (reference alignments). The partitioning approaches
split a large ontology matching task into a set of sub-matching tasks called local match-
ing tasks. As a result, the search space is reduced from the alignment of the hole large
matching into the matching of smaller matching tasks. Consequently, the alignment pro-
cess can reduce the number of false positives to result in better matching accuracy. Our
approach overcomes the issue of conceptual heterogeneity by performing a novel multi-cut
strategy and a partitions merging method. Consequently, this approach generates do not
generate large partitions or isolated ones. The proposed ontology partitioning approach
follows mainly three stages: (i) the input ontologies partitioning pre-processing, (ii) the
partitioning algorithm, and (iii) the identification of local matching tasks.

We evaluated the proposed partitioning approach according to the current partitioning

76 CHAPTER 5. EVALUATION

Figure 5.2: Ontologies Partitioning Experimental Architecture

strategies SeeCOnt [4], Falcon [44], [5] and [51]. All these approaches are evaluated
using the biomedical anatomy track of OAEI. In Table 5.1, our partitioning strategy
outperforms the existing state of the art approaches. We achieved an F-Measure of 89%
with a coverage ratio of 98.3%.

The recall value is significantly higher than most of the existing works due to the
achieved coverage ratio. A good coverage ratio guarantee that performing the partitioning
process does not result in separating the expected correspondence to be found. Moreover,
the recall value is obtained due to the reduction of the search space from the entity-pairs
of two ontologies to only the entities of the local matching tasks. As a result, the number
of false-positive can be reduced during the matching process. The precision value is lower
than Seecont [4], Falcon [44] and [5] due to the additional number of wrong alignments
discovered compared to the later approaches. SeeCOnt [4] did not mention the number
of generated partitions for the anatomy dataset. Moreover, the other existing approaches
did not define (n/d) the achieved coverage ratio. The partitioning coverage and its ratio
are defined respectively in Definition 7 of Chapter 3.

Table 5.1: Anatomy track partitioning results

Approach F-Measure Precision Recall Partitions Coverage Ratio Run time (mn)
POMap++ 0.896 0.915 0.877 57/57 98.3 8.13
SeeCOnt [4] 0.863 0.951 0.789 n/d n/d n/d
Jimenez-Ruiz et al. [51] 0.850 0.880 0.820 5/10 n/d 42
Falcon [44] 0.730 0.964 0.591 139/119 n/d 10
Algergawy et al. [5] 0.753 0.975 0.613 84/80 n/d 0.98

We can deduce from Table 5.1 that the proposed partitioning approach outperforms
the existing approaches in terms of F-measure and recall. We argue these results due
to the achieved coverage ratio [64]. This coverage ratio is obtained because of the per-
formed multi-cut strategy and partitions merging strategy of Algorithm 2 of Chapter 2.
We achieved a high coverage ratio of 98.3%. Therefore, the partitioning process of two
ontologies into a set of local matching tasks results in missing only 1.7% of the expected
correspondences to find the reference alignments. As a result, we maximize the probability

5.4. MACHINE LEARNING ALGORITHMS EVALUATION 77

of adequate alignments discovery, which results in better matching accuracy. The parti-
tions merging strategy ensures that almost the entities that should be aligned are covered.
The number of the resulted partitions for the two ontologies of the anatomy track is 57
for both ontologies due to the proposed merging strategy. Therefore, there is no ontology
that can have a higher number of partitions (after merging) than the other ontology. This
is ensured due to the proposed partitions merging strategy.

5.4 Machine Learning Algorithms Evaluation

Combination of different matchers is essential to align effectively an ontology matching
task. An automatic combination is highly required in order to provide the adequate
matchers for each ontology matching task. Therefore, the ontology matching system should
not align an ontology matching task based on only one matching setting. Each ontology
matching task has its specific matching settings that should be automatically defined. In
our case, we are dealing with large biomedical ontologies matching. We divide an ontology
matching task into a set of local matching tasks. Therefore, we automatically provide the
matching tuning for each local matching task. The main issue that we are dealing with
is the automatic choice of the matching settings (eg. the weight of each matcher, the
threshold) for every local matching task. Therefore, the matching process should be self-
tuned for every local matching task in order to result in a good matching accuracy for a
large matching task.

The purpose of local matching learning is to divide a large ontology matching task
into a set of local matching tasks that are independently and automatically aligned. This
process is ensured based on machine learning techniques. The local matching learning
process selects adequate matchers for each local matching task. We are based on element
level matcher and structural level matchers as a set of initial matchers before the automatic
selection process. After identifying the set of local matching tasks LMij , we perform the
local matching learning of each local matching task lmij,q of LMij . The local matching
learning automatically discovers the alignments between the entities of each local matching
task.

The employed architecture for this experiment is the same as depiected in Figure 4.1.
This architecture has as input the set of local matching tasks and results in a set of
alignments for the whole ontology matching task.

In Figure 5.2, we compare the local matching accuracy while employing different ma-
chine learning algorithms for building the set of local machine learning classifiers. Since
we are performing a supervised classification strategy, we draw the results of the top-
performing machine learning algorithm for each classification type. We have employed the
common supervised classification machine learning algorithms used by the state-of-the-art
for matching learning. These algorithms are reported in the following:

• SVM: A Support Vector Machine (SVM) is a discriminative classifier formally de-
fined by a separating hyperplane. In other words, given labeled training data (su-

78 CHAPTER 5. EVALUATION

pervised learning), the algorithm outputs an optimal hyperplane which categorizes
new examples

• Bayes: Naive Bayes classifiers are a family of simple probabilistic classifiers based on
applying Bayes’ theorem with strong (naive) independence assumptions between the
features. The featured image is the equation with P(A—B) is posterior probability,
P(B—A) is a likelihood, P(A) is class prior probability, and P(B) is predictor prior
probability.

• Decision rules: A decision rule is a simple IF-THEN statement consisting of a condi-
tion (also called antecedent) and a prediction. For example: IF it rains today AND
if it is April (condition), THEN it will rain tomorrow (prediction). A single decision
rule or a combination of several rules can be used to make predictions.

• Decision trees: Decision tree methods construct a model of decisions. That is made
based on actual values of attributes in the data. Decisions fork in tree structures
until a prediction decision is made for a given record. Decision trees are trained
on data for classification and regression problems. Decision trees are often fast and
accurate and a big favorite in machine learning.

In Figure 5.3, we report the achieved results by SVM (function), Naive Bayes (bayes),
JRip (decision rules) and Random Forest (decision tree). We also depict the resulted accu-
racy based on the OAEI 2018 biomedical ontologies matching tasks: the Anatomy dataset
and the Largebio dataset fragments of FMA-NCI, FMA-SNOMED, and SNOMED-NCI.
Random Forest achieved a better accuracy for the local matching learning than the other
algorithms. Random forests overcome several problems with decision trees, including:

• Reduction in overfitting: by averaging several trees, there is a significantly lower risk
of overfitting.

• Less variance: By using multiple trees, you reduce the chance of stumbling across
a classifier that does not perform well because of the relationship between the train
and test data.

For every local matching task lmij,q, we generated a local training set tsij,q by cross-
searching the local entities with UBERON as an external knowledge base. We are based on
the extracted positive samples PSijq from UBERON to automatically infer the negative
samples NSijq. We mention that different knowledge bases can be employed to enrich the
positive samples of the local training sets.

As depicted in Figure 5.3, the results for the Anatomy track are better than the other
matching tasks. We argue this result because the anatomy track contains less conceptual
heterogeneity compared to the large track. For instance, the maximum depth of the
human anatomy ontology is nine entities. However, the maximum depth of FMA ontology
is twenty-four entities. Therefore, the alignment of Largebio tasks is harder than the

5.5. RESAMPLING LOCAL TRAINING SETS EVALUATION 79

Anatomy FMA-NCI FMA-SNOMED SNOMED-NCI

0.7

0.75

0.8

0.85

F-
M

ea
su

re

Random Forest
Naive Bayes

SVM
JRip

Figure 5.3: Comparing different machine learning algorithms for local matching

Anatomy track due to higher conceptual heterogeneity. We have deduced this behavior
for the majority of ontology matching systems.

5.5 Resampling Local Training Sets Evaluation

We generated the set of local training sets and we chose the adequate machine learning al-
gorithm for the local matching learning process. An additional step is required to enhance
the accuracy of the matching process. This additional step corresponds to the resampling
of the local training sets. We perform resampling in order to balance the training data,
which contains a number of negative samples higher than the number of positive samples.
Imbalanced training data is one of the main issues occurring while dealing with ontology
matching learning. Imbalanced data typically refers to a classification problem where the
number of observations per class is not equally distributed [76]. The purpose of the
resampling process is to have an equal number of the majority class and the minority
class. In our case, the majority class corresponds to the set of negative samples and the
minority class corresponds to the set of positive samples. Therefore, local machine learn-
ing classifiers can learn wrong assumptions from imbalanced training sets. Therefore, for
each local training set tsij,q of T sij,q we apply resampling techniques. Different methods
have been proposed by the state-of-the-art to resample imbalanced data [29]. As a result,
we implement the architecture of Figure 4.1 but using different resampling techniques in
order to study the obtained matching accuracy by each resampling technique. Resampling
techniques are applied over the T sij,q local training sets. The goal of applying resampling
techniques over each local training set tsij,q is to result in better matching accuracy. We
discuss the obtained results according to this criterion. We are based on the biomedical
Anatomy track provided by OAEI benchmark for the evaluation process.

80 CHAPTER 5. EVALUATION

5.5.1 Impact of Undersampling on Local Training Data

We apply the widely employed undersampling method in order to balance the class dis-
tribution of the local training data. These methods are described as follows:

• Random undersampling is a non-heuristic method that aims to balance the class
distribution through the random elimination of instances belonging to the majority
class.

• Tomek links [105] removes the unwanted overlap between classes where majority
class links are removed until all minimally distanced nearest-neighbor pairs are of
the same class.

• One-sided selection (OSS) [59] aims at creating a training dataset composed only
by ”safe instances”. Consequently, this technique removes instances that are noisy,
redundant, or near the decision border. As the other undersampling techniques, OSS
removes only instances from the majority class.

• Edited Nearest Neighbors [111] method removes the instances of the majority
class with a prediction made by the K-means method. Therefore, if an instance has
more neighbors of a different class, this instance will be removed.

In Table 5.2, we depict the results of each undersampling method in terms of the
obtained accuracy. We deduce that Tomek links, One-sided selection, and Edited nearest
neighbors obtained comparable results [63]. The Edited Nearest Neighbors resulted in the
highest F-Measure of 85.3%. We deduce from Table 5.2 that the random undersampling
resulted in the lowest F-measure (74.8%) as well as the lowest precision (65.9%). We
argue this result due to the random feature of this undersampling method. This random
feature negatively affect matching accuracy. Local training sets are balanced by randomly
removing the instances of negative samples NSijq until being equal to the number of
positive samples PSijq. As a result the negative samples are not representative of the
set of true negative and true positive that should be obtained by the learned classifiers.
Therefore, the classifiers built from the balanced local training sets can result in a set
of wrong correspondences (false negative and false positive). Consequently, the precision
percentage is affected and became lower thant the other heuristic undersampling methods.
The highest recall value is obtained by the random undersampling method. However, the
recalled correspondences have lower precision than the other method. We can deduce that
the number of returned correspondences by the random undersampling is higher than the
other methods. Nevertheless, the returned correspondences contain a higher number of
false-positive and false-negative. As a result, the precision value is lower than the other
undersampling techniques but the recall is higher due to the high number of the returned
correspondences. These correspondences contain a higher number of false negatives and
false positives than the other undersampling techniques.

5.5. RESAMPLING LOCAL TRAINING SETS EVALUATION 81

Table 5.2: Local Matching accuracy for each undersampling method

Undersampling method Precision Recall F-Measure
Random Undersampling 65.9% 86.4% 74.8%

Tomek links 93.7% 77.4% 84.8%
One-sided selection 93.7% 77.1% 84.6%

Edited Nearest Neighbors 93.4% 78.4% 85.3%

5.5.2 Impact of Oversampling on Local Training Data

In this section, we perform the oversampling of the minority class instead of performing
the undersampling of the majority class. There are several oversampling methods used in
typical classification problems. The most common technique is known as SMOTE [20]:
(Synthetic Minority Oversampling Technique). We perform the oversampling using the
random oversampling method.

In the following, we briefly describe each of these methods:

• SMOTE oversamples the minority class by taking each positive instance and gen-
erating synthetic instances along a line segment joining their k-nearest neighbors of
the minority class.

• Random oversampling is a non-heuristic method that aims to balance class dis-
tribution through the random elimination of instances belonging to the minority
class.

In Table 5.3, we depict the results of the local matching LMij after performing the
oversampling of the local training sets for each local matching task lmij,q of LMij . We
show below the results of applying SMOTE with k = 5 as the number of nearest neighbors
in order to achieve a ratio r = 1. This ratio corresponds to an equal number of positive
samples PSijq and negative samples NSijq. We also perform the random oversampling
with a ratio r= 1

Table 5.3: Local Matching accuracy for each oversampling method

Oversampling method Precision Recall F-Measure
Random oversampling 70.8% 82.8% 76.3%

SMOTE 86.7% 78.8% 82.6%

We deduce from Table 5.3 that SMOTE outperforms the random oversampling method
in terms of precision and F-Measure. We argue this result due to the randomly generated
instances by the random oversampling method. Random generated instances as negative
samples are not generic enough to result in good classifiers. Therefore, a classifier can
learn wrong assumptions from random negative samples. As a result, compared to the
SMOTE oversampling, the random oversampling precision (70.8%) is negatively affected as
we can see in Table 5.3. However, the recall percentage (82.8%) resulted from the random

82 CHAPTER 5. EVALUATION

oversampling is better than SMOTE. We argue this result due to the high number of
the returned correspondences by the random oversampling method. However, compared
to SMOTE, random oversampling returns a higher number of false positives and false
negatives. As a result, SMOTE has a better precision percentage (86.7%).

5.5.3 Impact of Oversampling combined to Undersampling on Local
Training Data

It is possible to combine oversampling and undersampling techniques into a hybrid strat-
egy. Performing a combination of oversampling and undersampling can often yield better
results than either in isolation. [76] Common state-of-the-art methods [76, 19] include
the combination of SMOTE and Tomek links, SMOTE and Edited Nearest Neighbors
(ENN) or SMOTE and Random Undersampling. SMOTE is employed for the oversam-
pling with a ratio r= 0.5 and combined with each of the latter undersampling techniques
with a ratio r= 0.5. Therefore, we perform the oversampling of the minority class (positive
samples) and the undersampling with the majority class (positive samples). We set for
each sampling method a ratio of 0.5 in order result in a balanced training sets.

In the following we briefly describe each of the used undersampling methods:

• SMOTE and Tomek links, SMOTE is performed for the oversampling (r= 0.5)
and Tomek links is employed for undersampling (r= 0.5).

• SMOTE and Edited Nearest Neighbors (ENN) SMOTE is used for the over-
sampling (r= 0.5) and Edited Nearest Neighbors is performed for undersampling (r=
0.5).

• SMOTE and Random Undersampling SMOTE is used to perform the oversam-
pling with (r= 0.5) and Random undersampling with a ratio (r= 0.5) is employed
for undersampling.

We evaluate these three methods by resampling the local training sets, then we perform
the local matching process based on the generated local classifiers.

In the following Table 5.4, we depict the results of each combined method. We deduce
that the combination of SMOTE and Tomek Link results in the best accuracy in terms
of F-Measure and Precision. The combination of SMOTE and Random Under sampling
results in the best recall value due to the random nature of this approach. Therefore, it
returns the highest number of alignments with the lowest precision compared to the other
combination methods.

According to the achieved results, we highlight the following points:

• The random undersampling and oversampling methods are unstable. A deeper study
on the convergence of these methods can be investigated.

• We can observe in table 5.4 that combining SMOTE with undersampling methods
decreases the matching accuracy.

5.6. LOCAL FEATURE SELECTION EVALUATION 83

Table 5.4: Impact of the combination Oversampling and Undersampling on Local Training
Data

Hybrid method Precision Recall F-Measure
SMOTE + Random Undersampling 87.8% 81.3% 84.4%

SMOTE + ENN 88.4% 80.5% 84.3%
SMOTE + Tomek Link 92.0% 79.0% 85.0%

We deduce that for the matching learning context, undersampling methods outper-
form the other resampling methods. We argue this result since the undersampling method
removes redundant instances rather than creating new synthetic instances like the over-
sampling of the minority class. We conclude that the undersampling using ENN [111]
yields to the best Precision and F-Measure. ENN removes instances of the majority class
with a prediction made by the K-means method which is different from the majority class.
For the generation of positive samples, we combined the use of cross-searching, cross-
referencing and exact matching order to construct local training sets. The impact of each
method on the resulted matching quality can be investigated. Some of the later methods
can have a different impact in terms of the matching accuracy than the other positive
samples generation methods. We tend to validate the hypothesis that the quality could
depend on the use of methods used in the construction of the training data sets.

5.6 Local Feature Selection Evaluation

In this section, we apply the state-of-the-art feature selection methods over the generated
training set for each local matching task of LMij . Feature selection is one of the core
concepts in machine learning which hugely impacts the performance of a machine learning
model. Feature selection is the process where features are automatically or manually
selected in the order to contribute to accurate predictions. Having irrelevant features in
the training data can decrease the accuracy of the classifiers and make the classifiers learn
based on irrelevant features. In our case, each feature corresponds to a matcher. We firstly
study the impact of each of the employed feature selection methods. This comparison aims
at choosing the adequate feature selection method in order to perform the local matching
learning. Then, we compare the efficiency of the element level features and structure level
features. This comparison aims at analyzing the obtained results in order to suggest new
features for the local matching learning process.

5.6.1 Studying the Impact of Feature Selection Methods

In Figure 5.4, we compare the impact of three feature selection techniques on the local
matching. These techniques are a filter-based method [41], a wrapper-based method [58]
and an embedded-based method [87]. Each local classifier is built for each local training
set based on its specific features, which are selected through feature selection methods.

84 CHAPTER 5. EVALUATION

According to the results of our experiments, for every matching task depicted in Fig-
ure 5.4, we can deduce that the wrapper feature selection method slightly outperforms the
other employed local feature selection methods. The wrapper method considers the selec-
tion of a set of features as a search problem, where different combinations are prepared,
evaluated and compared to other combinations. A local classifier is used to evaluate a
combination of features and assign a score based on the local classifier accuracy. However,
filter-based feature selection method works in isolation of the local classifier. Therefore,
the wrapper-based method outperforms the filter-based method.

In Figure 5.4, in the first bar chart of every experiment, we draw the accuracy of local
matching LMij without applying any feature selection method (No FS). We deduct that
applying feature selection improves the accuracy compared to no use of feature selection
for local matching for different matching tasks. We argue these results due to the selection
of the adequate features for every local-based classifier for a local matching task lmij,q of
LMij . Therefore, each local matching task is aligned through its specific local classifier,
which captures the optimal settings (employed features, weight, and threshold) for the
local matching context.

Anatomy FMA-NCI FMA-SNOMED SNOMED-NCI

0.7

0.8

0.9

F
-M

E
A

SU
R

E

No FS Embedded FS Filter FS Wrapper FS

Figure 5.4: Evaluating the impact of feature selection methods

5.6.2 Impact of Element level and Structure level Features

In this section, we evaluate the impact of element level features compared to structure
level features. This evaluation consists of studying the performance of each used feature
level separately and combined. Thus, we discuss the obtained results and we deduce the
limitations of the employed features.

We perform three experiments using the Anatomy track of OAEI 2018. For each
experiment, we run the local matching process, without feature selection methods, while
varying the employed features. These three experiments are summarized as follows.

1. In the first experiment, we perform the local matching using only element level
features.

2. In the second experiment, we use only the structure level features for performing the
local matching.

5.6. LOCAL FEATURE SELECTION EVALUATION 85

3. In the third experiment, we perform the local matching using both element level
features and structure level features.

In Figure 5.5, we draw the obtained accuracy for each experiment based on the 1516
reference alignments of the Anatomy track provided by OAEI 2018. The local matching
using the element level and structure level features achieved an F1-measure of 0.836, which
is better than the accuracy of the local matching using only element level features (0.802
F1-Measure) and the local matching with only structure features (0.503 F1-Measure). We
can deduce that the combination of structure level features and element level features is
beneficial for the local matching learning process in terms of accuracy. We deduce from
the result of the local matching using only element level features that the majority of
the correspondences of the reference alignments are based on terminological heterogeneity
more than the conceptual heterogeneity.

Figure 5.5: The accuracy of Element level based features compared to the structure level
based features.

In order to analyze in-depth the obtained results, we compare the true positive align-
ments resulted from each experiment. The Venn diagram of Figure 5.6 depicts all the
intersections between the obtained true positive alignments of each experiment and the
reference alignments. Overlapping circles reveal common alignments obtained by two or
more groups. We can observe in Figure 5.6 that no experiment is able to find 202 align-
ments, which represents 13% of the reference alignments. This can be argued due to the
high heterogeneity of the 202 alignments. We can also observe that the local matching is
not able to find 22% (13% + 9%) of the reference alignments. The local matching finds
all the alignments discovered by the element level alignments. In future work, we plan to
define new features to find the rest of the alignments (22%). For instance, we can define
more features in order to discover more alignments. Finally, the 0% depicted in Figure
5.6 is resulted due to the absence of unique alignments discovered exclusively by the ele-
ment level features and not the local matching. Thus, the local matching combining both
feature levels discovers all the alignments discovered by the element level local matching.
The local matching classifiers, which correspond to the combination of the element level
features and structure level features result in discovering 29 unique alignments. These 29

86 CHAPTER 5. EVALUATION

alignments are neither discovered separately by the element feature level features nor the
structure level features, which proves the importance of combining both types of features.

Figure 5.6: Venn diagram of alignments resulted from local matching based on the element
level features, the structure level features and their combination.

We can deduce after performing the feature selection for local training sets that the
wrapper feature selection methods are the most efficient method since it resulted in the best
matching accuracy. We argue the obtained results due to the interaction process that this
method makes with the classifier. Therefore each set of selected features are adequate to
the employed machine learning algorithm. Compared to the filter method, wrapper feature
selection conducts a search for a good subset of features using the learning algorithm itself
as part of the evaluation function. In our case, the learning algorithm is Random Forest.
Therefore, the wrapper feature selection makes the interaction between feature subset
search and model selection and is able to take into account feature dependencies.

After studying the impact of each feature group in separation versus their combination,
we can deduce that the combination of structural level features and element level features is
beneficial. For instance, the combination of these features while performing local matching
learning increases the number of the true positive alignments by 2%, which correspond to
29 alignments for the Anatomy matching the task. Moreover, we can deduce that 13% of
the alignments are not discovered. Consequently, new features should be proposed in our
feature work in order to discover these alignments.

5.7 Comparing Local Matching to Global Matching

As depicted in Figure 5.7, we conducted four experiments using the ontology matching
tasks of OAEI 2018. The goal of these experiments is to compare the local matching
LMij accuracy to the global matching GMij accuracy. The accuracy is computed using

5.8. POMAP++: LOCAL MATCHING LEARNING EVALUATION 87

the F1-Measure according to the reference alignments, which are provided by OAEI 2018
for each ontology matching track.

The global matching GMij is the alignment of two input ontologies using a single
global machine learning classifier. This classifier is generated using one global training
set. We automatically build a global training set by the same method used to build local
training sets. We perform the local matching LMij between the two input ontologies Oi

and Oj of each task. To accomplish that, we begin by performing the partitioning of each
matching task to generate a set of local matching tasks LMij . For each local matching
task lmij,q of LMij , we generate a local training set tsij,q using the features of Table 4.2
and Table 4.3. Each local classifier lclij,q is built using its specific local training set tsij,q.
Each local classifier classifies the entity pairs (Vi,q ×Vj,q) of its local matching task lmij,q

to be aligned or not. The final set of alignments for each local matching task lmij,q are
summed up in order to generate the final set of alignments for the ontology matching task.
Therefore, we combine the correspondences of each local matching task into one alignment
set to be compared to the reference alignments. This comparison results in the accuracy
of the local matching learning approach.

We can observe that the local matching significantly outperforms the global matching
for each matching task. For some tracks, we achieved comparable results to the top match-
ing system AML [37] and LogMap [53]. AML manually defines the threshold for the
employed similarity matchers. AML and LogMap have been the top-ranked OAEI match-
ing systems for several years. AML defines a syntactic threshold of 0.6. This threshold is
updated based on the size of the matching task. However, our local matching approach
is completely automated with no user involvement for setting the matching parameters.
Nonetheless, our approach fixes automatically the adequate threshold value for every em-
ployed feature along with the weight of each feature for every local matching task lmij,q

of LMij .

Anatomy FMA-NCI FMA-SNOMED SNOMED-NCI

0.7

0.8

0.9

F
-M

E
A

SU
R

E

Global Matching Local Matching

Figure 5.7: Comparing local matching to global matching

5.8 POMap++: Local Matching Learning Evaluation

We are based on the OAEI 2018 datasets in order to asses the efficiency of the POMap++.
POMap++ implements the partitioning and the local matching learning approach in order

88 CHAPTER 5. EVALUATION

to align large biomedical ontologies. The architecture of POMap++ is depicted in Figure
5.1. Its has as input two ontologies and results in a set of correspondences. These align-
ments are compared to the reference alignment provided by the OAEI 2018 benchmark.
We are mainly based on the biomedical datasets for the evaluation of POMap++. There-
fore, we evaluate POMap++ based on the two biomedical tracks: Anatomy and LargeBio.
In the following tables, we report the obtained results for each matching task. We have
achieved good results for the alignment of biomedical ontologies. This approach generates
matching setting automatically for each matching task. Therefore, it can be adapted for
every biomedical ontology matching domain.

Table 5.5: Local matching learning evaluation for the Anatomy track

Matching system F-Measure Precision Recall
AML 0.943 0.95 0.936

LogMapBio 0.898 0.888 0.908
POMap++ 0.897 0.919 0.877

XMap 0.896 0.929 0.865
LogMap 0.88 0.918 0.846
SANOM 0.865 0.888 0.844

FCAMapX 0.859 0.941 0.791
KEPLER 0.836 0.958 0.741

Lily 0.832 0.872 0.795
LogMapLite 0.828 0.962 0.728
ALOD2Vec 0.785 0.996 0.648

DOME 0.761 0.997 0.615
ALIN 0.758 0.998 0.611

Holontology 0.451 0.976 0.294

Table 5.6: Local matching learning evaluation for the FMA-NCI matching task

Matching system F-Measure Precision Recall
AML 0.855 0.838 0.872

POMap++ 0.841 0.860 0.822
LogMap 0.831 0.856 0.808

LogMapBio 0.830 0.830 0.831
XMap 0.804 0.878 0.742

FCAMapX 0.743 0.665 0.841
LogMapLite 0.741 0.676 0.819

DOME 0.729 0.803 0.668

5.8. POMAP++: LOCAL MATCHING LEARNING EVALUATION 89

Table 5.7: Local matching learning evaluation the FMA-SNOMED matching task

Matching system F-Measure Precision Recall
FCAMapX 0.789 0.819 0.762

AML 0.772 0.882 0.687
POMap++ 0.743 0.829 0.673
LogMapBio 0.731 0.834 0.650

LogMap 0.730 0.840 0.645
XMap 0.661 0.723 0.608

LogMapLite 0.334 0.851 0.208
DOME 0.326 0.941 0.197

Table 5.8: Local matching learning evaluation for the NCI-SNOMED matching task

Matching system F-Measure Precision Recall
AML 0.768 0.904 0.668

FCAMapX 0.733 0.796 0.680
LogMapBio 0.723 0.854 0.627

POMap++ 0.721 0.851 0.625
LogMap 0.706 0.867 0.596

LogMapLite 0.662 0.798 0.566
DOME 0.632 0.907 0.485
XMap 0.610 0.640 0.582

We can deduce from the later table that POMap++ ranked among the top ontology
matching systems for Anatomy and LargeBio matching tracks. We mention that our
approach automatically defines the matching setting for both element level matchers and
structural level matchers. AML manually defines the employed similarity measure and
their associated thresholds. However, our proposed approach is completely automated for
local matching of biomedical ontologies. For instance, AML chooses a global syntactic
threshold of 0.6 for all the matching task. Nonetheless, our proposed approach derives
automatically the adequate thresholds values for every employed matcher in every local
matching task context. Thus, we take advantage of the partitioning process to maximize
the matching accuracy gain. The automatically generated local matching tuning takes
into consideration the matching context in order to increases the overall obtained result.
We can deduce from the obtained results that the local matching approach obtained a
better accuracy than the global matching approach due to the reduced search space by
dividing each ontology matching task into a set of local matching tasks. The search space
for an ontology matching task is reduced from all the entities-pairs Vi × Vj of two input
ontologies Oi and Oj to the set of entity-pairs Vi,q ×Vj,q of each local matching task
lmij,q of LMij . Therefore, the percentage of wrong alignments (false positive) is reduced

90 CHAPTER 5. EVALUATION

by the local matching approach. Moreover, each local matching classifier captures the
characteristics of a local matching task than a single global matching classifier for a large
ontology matching task. Thus, the local matching LMij has a better recall than the global
matching process GMij .

5.9 Conclusion

In this chapter, we have presented the evaluation of the ontology partitioning approach
and the local matching learning approach. Our partitioning approach outperformed the
existing systems. In order to asses the local matching learning approach, we have com-
pared this approach to the state-of-the-art matching systems as well as the global matching
systems. POMap++ is ranked among the top ontology matching systems for the differ-
ent biomedical matching tracks. Moreover, the comparison between the local matching
and the global matching has shown that our proposed approach outperforms the global
matching. Global matching corresponds to the use of machine learning techniques without
employing any partitioning strategy. We can deduce that dividing a large ontology match-
ing task into a set of sub-matching tasks, and aligning each sub-matching task based on
its specific classifier yields to promising results. Therefore, each local classifier takes into
consideration the heterogeneity of each sub-matching context in the generation of local
alignments. Consequently, the overall alignment results are improved. Moreover, we have
compared the state-of-the-art resampling techniques in order to resample the unbalanced
training sets. Results show that random undersampling and random oversampling meth-
ods are unstable compared to the other methods. Furthermore, combining SMOTE with
undersampling methods decreases the matching accuracy. We also studied the efficiency of
feature selection methods. Therefore, we compared the state-of-the-art feature selection
methods for selecting the adequate feature for the training sets. The comparison state
that the wrapper feature selection outperforms the other methods for performing local
matching learning. Besides the comparison of feature selection methods, we have com-
pared structural level features to element level features. This comparison aims to study
the behavior of each type of features as well as finding a way to improve the obtained
results by thinking about adding more types of features. As a result, a study of the align-
ment not found by both type of feature may yield to propose new features. We consider
this task as future work.

Chapter 6

Conclusion and Future Work

Ontologies are the backbone of the semantic web. They enable sharing, reusing and ac-
cessing the knowledge resources. Hundreds of large ontologies such as SNOMED CT,
the National Cancer Institute Thesaurus (NCI), and the Foundational Model of Anatomy
(FMA) are extensively employed in the biomedical domain [101]. Large biomedical ontolo-
gies usually describe the same domain of interest but using different modeling standpoints
and vocabularies. Hence, aligning these complex and heterogeneous ontologies is a cum-
bersome task. Matching systems should provide high-quality results while dealing with the
large size of these resources. Therefore, an ontology matching system should be based on
different matchers in order to cope with the high heterogeneity of the matching tasks. Dif-
ferent matchers should be combined to result in better matching accuracy. These matchers
should not depend on a single configuration for all the matching problems. Hence, the
matching tuning process should be automatically configured for different matching tasks.
State-of-the-art ontology matching systems need to cope with two major issues for the
alignment of large ontologies: (i) integrating the large size not yet feasible with a good
matching accuracy, (ii) automating the ontology matching process.

The integration of large ontologies requires efficient matching systems supporting the
complex ontologies [1, 35, 89]. For instance, the cartesian product between the entities of
NCI and SNOMED ontologies results in more than 45 billion comparisons. As a result, an
agile solution is required. Ontology mapping becomes a challenging task due to the large
size of ontologies. Large ontologies are characterized by high conceptual heterogeneity.
Consequently, the discovery of mappings between large ontologies became more challeng-
ing. As a result, ontology matching systems combine different matchers to cope with these
issues. These matchers are usually based on the predefined matching configuration. How-
ever, each domain ontology should be aligned based on its characteristics, which should be
taken into account by the matching settings. To sum up, the major issues of the alignment
of large biomedical ontologies are the conceptual heterogeneity, the high search space and
the decreased quality of the resulted alignments.

Usually, ontology matching systems combine different matcher in order to cope with
the high heterogeneity of large matching tasks. This combination should define at least the
choice of matchers to combine and the weight of each matcher. Different matchers treat

91

92 CHAPTER 6. CONCLUSION AND FUTURE WORK

different types of heterogeneity. There is no effective combination of all ontology matching
tasks. Each matching task has its appropriate specificity. Therefore, the matching tuning
should be well defined by ontology matching systems in order to result in good matching
accuracy. The manual configuration of the matching setting is complex, especially for
large ontology matching tasks. Consequently, matching tuning should be automatically
defined for the matching process. The ontology matching process should be self-tuned for
an automatic selection of the matching settings.

We have proposed an approach to cope both with the large size of ontologies and the
automation issue. This approach is called local matching learning. We divide a large
matching problem into a set of smaller local matching problems. Each local matching
problem is independently aligned based on a matching learning approach. Therefore, we
reduce the huge search space into a set of smaller local matching tasks. As a result, we
can align effectively each local matching task to result in better matching accuracy.

Our proposed partitioning approach is based on a novel multi-cut strategy generat-
ing non-large partitions or non-isolated ones. As a result, we can overcome the issue
of conceptual heterogeneity. The novel partitioning algorithm is based on Hierarchical
Agglomerative Clustering. This approach generates a set of local matching tasks with a
sufficient coverage ratio and no isolated partitions. The partitioning process follows three
steps: (i) pre-processing and partitioning input ontologies, (ii) applying the partitioning
algorithm and (iii) identification of local matching tasks. We aligned each local matching
task using its specific local-based classifier.

Each local matching task is automatically aligned based on machine learning tech-
niques. A local classifier aligns a single ontology matching task. Local classifiers are based
on element and structure level features and built using a specific local training set. The
class attribute for each local training set is automatically labeled using an external knowl-
edge base to generate an adequate classifier for each local matching context. We applied a
wrapper-feature selection technique across each local classifier. This local feature selection
technique ensures that adequate matchers are selected for each local matching context.
This approach decreases the complexity of an ontology matching task and increases the
overall accuracy compared to traditional matching learning approaches.

We have proved that the partitioning approach outperforms the existing state-of-the-
art approaches in terms of accuracy, coverage ratio and the absence of isolated parti-
tions. We have evaluated the proposed local matching learning approach using various
experiments. Firstly, we compared the local matching approach and the global match-
ing approach using six datasets from the OAEI 2018 benchmark. We deduced that local
matching outperforms global matching in terms of accuracy. Therefore, dividing a large
ontology matching task into a set of local matching tasks is beneficial. We can affirm this
result on account of the reduced search space, which results in fewer false negatives and
false positives. Secondly, we tested the impact of resampling and feature selection tech-
niques. Resampling of local training sets yields better results. Applying feature selection
techniques across each local classifier using its local training set increases the recall value

93

for each local matching context. Finally, we studied the impact of element level features
compared to structure level features. We show that additional alignments are captured
after combining two feature levels in one local classifier.

As an immediate future work, we plan to investigate additional features, such as se-
mantic features, in particular word embedding approaches. Word embedding approaches
are effective at capturing language semantics. They have been proposed for semantic
matching in some of the existing state-of-the-art ontology alignment systems. Seman-
tic matching approaches do not always outperform string-based similarity and effectively
combining both strategies in a matching learning alignment system remain a challenge.
We plan also to integrate features based on profiling metrics [27]. Profiling metrics can
be employed in order to automatically optimize the system’s configuration depending on
the characteristics of the ontologies to be matched. Profiling metrics can investigate sev-
eral features, such as the average number of attributes per class, the average number of
subclasses per class and the average distribution of instances across all the classes.

Moreover, we plan to extend our approach for matching learning to other domain
ontologies besides the biomedical domain. Therefore, we intend to enlarge the automatic
generation of the training data for different domain ontologies. Generating context-aware
training data for different domains without employing the Gold Standard to perform the
labeling is a cumbersome problem that should be resolved. To resolve this issue, we can
extract the labeled data from external knowledge sources. Ontology repositories in order
to extract the labeled data using ontology repositories. These repositories offer facilities to
access the stored domain ontologies. Therefore, related domain ontologies can be explored
to extract labeled data

Most existing approaches are still limited to pairwise matching [94]. However, in
complex domains where several ontologies describing different but related aspects of the
domain have to be linked together, matching multiple ontologies simultaneously, known
as holistic matching, is required [94]. Therefore, as a long term future work, we plan to
extend the matching learning approach to perform the holistic matching. The training
data should be adapted to this type of alignment. For instance, we plan to extend the
set of feature for the training data with some characteristics related to holistic matching
tasks.

Bibliography

[1] Manel Achichi, Michelle Cheatham, Zlatan Dragisic, Jérôme Euzenat, Daniel Faria,
Alfio Ferrara, Giorgos Flouris, Irini Fundulaki, Ian Harrow, Valentina Ivanova, et al.
Results of the ontology alignment evaluation initiative 2017? In 12th International
Workshop on Ontology Matching co-located with the 16th International Semantic
Web Conference, volume 2032, pages 61–113. CEUR-WS, 2017.

[2] Sareh Aghaei, Mohammad Ali Nematbakhsh, and Hadi Khosravi Farsani. Evolution
of the world wide web: From web 1.0 to web 4.0. International Journal of Web &
Semantic Technology, 3(1):1, 2012.

[3] Asan Agibetov, Giuseppe Patanè, and Michela Spagnuolo. Grontocrawler: Graph-
based ontology exploration. 2015.

[4] Alsayed Algergawy, Samira Babalou, Mohammad J. Kargar, and S. Hashem
Davarpanah. Seecont: A new seeding-based clustering approach for ontology match-
ing. In Advances in Databases and Information Systems - 19th East European Con-
ference, ADBIS 2015, Poitiers, France, September 8-11, 2015, Proceedings, pages
245–258, 2015.

[5] Alsayed Algergawy, Sabine Massmann, and Erhard Rahm. A clustering-based ap-
proach for large-scale ontology matching. In Advances in Databases and Information
Systems - 15th International Conference, ADBIS 2011, Vienna, Austria, September
20-23, 2011. Proceedings, pages 415–428, 2011.

[6] Emna Ammar El Hadj Amor and Sonia Ayachi Ghannouchi. Toward an ontology-
based model of key performance indicators for business process improvement. In 2017
IEEE/ACS 14th International Conference on Computer Systems and Applications
(AICCSA), pages 148–153. IEEE, 2017.

[7] Amina Annane. Using Background Knowledge to Enhance Biomedical Ontol-
ogy Matching. PhD thesis, Université Montpellier; Ecole Nationale Supérieure
d’Informatique (ESI)-Alger, 2018.

94

BIBLIOGRAPHY 95

[8] Amina Annane, Zohra Bellahsene, Faiçal Azouaou, and Clement Jonquet. Yam-bio–
results for oaei 2017. 2017.

[9] Howard Anton. Elementary linear algebras. page 170–171, 1994.

[10] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. Dbpedia: A nucleus for a web of open data. In The semantic web,
pages 722–735. Springer, 2007.

[11] David Aumueller, Hong Hai Do, Sabine Massmann, and Erhard Rahm. Schema and
ontology matching with COMA++. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, Baltimore, Maryland, USA, June 14-16,
2005, pages 906–908, 2005.

[12] Jacob Berlin and Amihai Motro. Database schema matching using machine learning
with feature selection. In Seminal Contributions to Information Systems Engineer-
ing, 25 Years of CAiSE, pages 315–329. 2013.

[13] Alain Berro, Imen Megdiche, and Olivier Teste. Holistic statistical open data inte-
gration based on integer linear programming. In 9th IEEE International Conference
on Research Challenges in Information Science, RCIS 2015, Athens, Greece, May
13-15, 2015, pages 468–479, 2015.

[14] Alain Berro, Imen Megdiche, and Olivier Teste. A linear program for holistic match-
ing: Assessment on schema matching benchmark. In Database and Expert Systems
Applications - 26th International Conference, DEXA 2015, Valencia, Spain, Septem-
ber 1-4, 2015, Proceedings, Part II, pages 383–398, 2015.

[15] Paul E Black. Manhattan distance”” dictionary of algorithms and data structures.
http://xlinux. nist. gov/dads//, 2006.

[16] Olivier Bodenreider. The unified medical language system (umls): integrating
biomedical terminology. Nucleic acids research, 32(suppl 1):D267–D270, 2004.

[17] Vrdoljak Boris. Cromatcher-results for oaei 2016. In The 11th International Work-
shop on Ontology Matching, OM-2016, 2016.

[18] Said Broumi and Florentin Smarandache. Cosine similarity measure of interval
valued neutrosophic sets. Infinite Study, 2014.

[19] Nitesh V. Chawla. Data mining for imbalanced datasets: An overview. In Data
Mining and Knowledge Discovery Handbook, 2nd ed., pages 875–886. 2010.

[20] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res., 16:321–
357, 2002.

96 BIBLIOGRAPHY

[21] Agnese Chiatti, Zlatan Dragisic, Tania Cerquitelli, and Patrick Lambrix. Reducing
the search space in ontology alignment using clustering techniques and topic identi-
fication. In Proceedings of the 8th International Conference on Knowledge Capture,
K-CAP 2015, Palisades, NY, USA, October 7-10, 2015, pages 21:1–21:4, 2015.

[22] Namyoun Choi, Il-Yeol Song, and Hyoil Han. A survey on ontology mapping. ACM
Sigmod Record, 35(3):34–41, 2006.

[23] Watson Wei Khong Chua and Jung-Jae Kim. Eff2match results for oaei 2010. On-
tology Matching, 150:105–106, 2010.

[24] Gene Ontology Consortium. The gene ontology (go) database and informatics re-
source. Nucleic acids research, 32(suppl 1):D258–D261, 2004.

[25] Isabel F Cruz, Flavio Palandri Antonelli, and Cosmin Stroe. Agreementmaker:
efficient matching for large real-world schemas and ontologies. Proceedings of the
VLDB Endowment, 2(2):1586–1589, 2009.

[26] Isabel F. Cruz, Flavio Palandri Antonelli, and Cosmin Stroe. Agreementmaker:
Efficient matching for large real-world schemas and ontologies. PVLDB, 2(2):1586–
1589, 2009.

[27] Isabel F. Cruz, Alessio Fabiani, Federico Caimi, Cosmin Stroe, and Matteo Pal-
monari. Automatic configuration selection using ontology matching task profiling.
In The Semantic Web: Research and Applications - 9th Extended Semantic Web
Conference, ESWC 2012, Heraklion, Crete, Greece, May 27-31, 2012. Proceedings,
pages 179–194, 2012.

[28] Jérôme David. Aroma results for oaei 2009. In Proc. 4th ISWC workshop on ontology
matching (OM), pages 147–152. No commercial editor., 2009.

[29] Marćılio Carlos Pereira de Souto, Valnaide G. Bittencourt, and José Alfredo Fer-
reira Costa. An empirical analysis of under-sampling techniques to balance a protein
structural class dataset. In Neural Information Processing, 13th International Con-
ference, ICONIP 2006, Hong Kong, China, October 3-6, 2006, Proceedings, Part
III, pages 21–29, 2006.

[30] Warith Eddine Djeddi, Sadok Ben Yahia, and Mohamed Tarek Khadir. Xmap:
results for OAEI 2018. In Proceedings of the 13th International Workshop on On-
tology Matching co-located with the 17th International Semantic Web Conference,
OM@ISWC 2018, Monterey, CA, USA, October 8, 2018., pages 210–215, 2018.

[31] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy. Ontology
matching: A machine learning approach. In Handbook on ontologies, pages 385–
403. Springer, 2004.

BIBLIOGRAPHY 97

[32] Kevin Donnelly. Snomed-ct: The advanced terminology and coding system for
ehealth. Studies in health technology and informatics, 121:279, 2006.

[33] Kai Eckert, Christian Meilicke, and Heiner Stuckenschmidt. Improving ontology
matching using meta-level learning. In The Semantic Web: Research and Appli-
cations, 6th European Semantic Web Conference, ESWC 2009, Heraklion, Crete,
Greece, May 31-June 4, 2009, Proceedings, pages 158–172, 2009.

[34] Marc Ehrig and Steffen Staab. Qom–quick ontology mapping. In International
Semantic Web Conference, pages 683–697. Springer, 2004.

[35] Jérôme Euzenat and Pavel Shvaiko. Ontology matching, vol. 1, 2007.

[36] Daniel Faria, Catia Pesquita, Isabela Mott, Catarina Martins, Francisco M. Couto,
and Isabel F. Cruz. Tackling the challenges of matching biomedical ontologies. J.
Biomedical Semantics, 9(1):4:1–4:19, 2018.

[37] Daniel Faria, Catia Pesquita, Emanuel Santos, Matteo Palmonari, Isabel F. Cruz,
and Francisco M. Couto. The agreementmakerlight ontology matching system. In On
the Move to Meaningful Internet Systems: OTM 2013 Conferences - Confederated
International Conferences: CoopIS, DOA-Trusted Cloud, and ODBASE 2013, Graz,
Austria, September 9-13, 2013. Proceedings, pages 527–541, 2013.

[38] Jennifer Golbeck, Gilberto Fragoso, Frank Hartel, Jim Hendler, Jim Oberthaler,
and Bijan Parsia. The national cancer institute’s thesaurus and ontology. Journal
of Web Semantics First Look 1 1 4, 2003.

[39] Anika Groß, Michael Hartung, Toralf Kirsten, and Erhard Rahm. GOMMA re-
sults for OAEI 2012. In Proceedings of the 7th International Workshop on Ontology
Matching, Boston, MA, USA, November 11, 2012, 2012.

[40] Tom Gruber. What is an ontology. WWW Site http://www-ksl. stanford.
edu/kst/whatis-an-ontology. html (accessed on 07-09-2004), 1993.

[41] Mark A. Hall. Correlation-based feature selection for discrete and numeric class
machine learning. In Proceedings of the Seventeenth International Conference on
Machine Learning (ICML 2000), Stanford University, Stanford, CA, USA, June 29
- July 2, 2000, pages 359–366, 2000.

[42] Fayçal Hamdi, Brigitte Safar, Nobal B Niraula, and Chantal Reynaud. Taxomap
alignment and refinement modules: Results for oaei 2010. Ontology Matching, page
212, 2010.

[43] Sven Hertling and Heiko Paulheim. Dome results for oaei 2018. In OM@ ISWC,
pages 144–151, 2018.

[44] Hu. Matching large ontologies: A divide-and-conquer approach. Data Knowl. Eng.,
67(1):140–160, 2008.

98 BIBLIOGRAPHY

[45] Jakob Huber, Timo Sztyler, Jan Noessner, and Christian Meilicke. Codi: Combi-
natorial optimization for data integration–results for oaei 2011. Ontology Matching,
134, 2011.

[46] Ryutaro Ichise. Machine learning approach for ontology mapping using multiple
concept similarity measures. In 7th IEEE/ACIS International Conference on Com-
puter and Information Science, IEEE/ACIS ICIS 2008, 14-16 May 2008, Portland,
Oregon, USA, pages 340–346, 2008.

[47] Valentina Ivanova and Patrick Lambrix. A unified approach for aligning taxonomies
and debugging taxonomies and their alignments. In Extended Semantic Web Con-
ference, pages 1–15. Springer, 2013.

[48] Paul Jaccard. Étude comparative de la distribution florale dans une portion des
alpes et des jura. Bull Soc Vaudoise Sci Nat, 37:547–579, 1901.

[49] Yves R Jean-Mary, E Patrick Shironoshita, and Mansur R Kabuka. Asmov: Results
for oaei 2010. Ontology Matching, 126:2010, 2010.

[50] Qiu Ji, Peter Haase, and Guilin Qi. Combination of similarity measures in ontology
matching using the owa operator. In Recent Developments in the Ordered Weighted
Averaging Operators: Theory and Practice, pages 281–295. Springer, 2011.

[51] Ernesto Jiménez-Ruiz, Asan Agibetov, Matthias Samwald, and Valerie Cross. We
divide, you conquer: from large-scale ontology alignment to manageable subtasks
with a lexical index and neural embeddings. In Proceedings of the 13th International
Workshop on Ontology Matching co-located with the 17th International Semantic
Web Conference, OM@ISWC 2018, Monterey, CA, USA, October 8, 2018., pages
13–24, 2018.

[52] Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. Logmap: Logic-based and scal-
able ontology matching. In International Semantic Web Conference, pages 273–288.
Springer, 2011.

[53] Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. Logmap: Logic-based and scal-
able ontology matching. In International Semantic Web Conference, pages 273–288.
Springer, 2011.

[54] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ulrike Sattler, Thomas Schneider,
and Rafael Berlanga. Safe and economic re-use of ontologies: A logic-based method-
ology and tool support. In European Semantic Web Conference, pages 185–199.
Springer, 2008.

[55] Marouen Kachroudi, Gayo Diallo, and Sadok Ben Yahia. Kepler at oaei 2018. In
OM@ ISWC, pages 173–178, 2018.

BIBLIOGRAPHY 99

[56] Yannis Kalfoglou and Marco Schorlemmer. Ontology mapping: the state of the art.
The knowledge engineering review, 18(1):1–31, 2003.

[57] Jean François Djoufak Kengue, Jérôme Euzenat, and Petko Valtchev. Ola in the
oaei 2007 evaluation contest. In Proceedings of the 2nd International Conference on
Ontology Matching-Volume 304, pages 188–195. Citeseer, 2007.

[58] Ron Kohavi and George H. John. Wrappers for feature subset selection. Artif.
Intell., 97(1-2):273–324, 1997.

[59] Miroslav Kubat, Stan Matwin, et al. Addressing the curse of imbalanced training
sets: one-sided selection. In Icml, volume 97, pages 179–186. Nashville, USA, 1997.

[60] Amir Laadhar, Fäıza Ghozzi, Imen Megdiche, Franck Ravat, and Olivier Teste.
Partitioning and matching tuning of large biomedical ontologies. In Proceedings
of the 13th International Workshop on Ontology Matching co-located with the 17th
International Semantic Web Conference, OM@ISWC 2018, Monterey, CA, USA,
October 8, 2018., pages 220–221, 2018.

[61] Amir Laadhar, Fäıza Ghozzi, Imen Megdiche, Franck Ravat, Olivier Teste, and Fäıez
Gargouri. Pomap: An effective pairwise ontology matching system. In Proceedings
of the 9th International Joint Conference on Knowledge Discovery, Knowledge En-
gineering and Knowledge Management - (Volume 2), Funchal, Madeira, Portugal,
November 1-3, 2017., pages 161–168, 2017.

[62] Amir Laadhar, Faiza Ghozzi, Imen Megdiche, Franck Ravat, Olivier Teste, and Faiez
Gargouri. Pomap results for oaei 2017. 2017.

[63] Amir Laadhar, Fäıza Ghozzi, Imen Megdiche, Franck Ravat, Olivier Teste, and Fäıez
Gargouri. The impact of imbalanced training data on local matching learning of
ontologies. In Business Information Systems - 22nd International Conference, BIS
2019, Seville, Spain, June 26-28, 2019, Proceedings, Part I, pages 162–175, 2019.

[64] Amir Laadhar, Fäıza Ghozzi, Imen Megdiche, Franck Ravat, Olivier Teste, and Fäıez
Gargouri. Partitioning and local matching learning of large biomedical ontologies.
In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC
2019, Limassol, Cyprus, April 8-12, 2019, pages 2285–2292, 2019.

[65] Amir Laadhar, Faiza Ghozzi, Imen Megdiche Bousarsar, Franck Ravat, Olivier Teste,
and Faiez Gargouri. Oaei 2018 results of pomap++. CEUR-WS: Workshop pro-
ceedings, 2018.

[66] Ora Lassila, Ralph R Swick, et al. Resource description framework (rdf) model and
syntax specification. 1998.

[67] Bach Thanh Le, Rose Dieng-Kuntz, and Fabien Gandon. On ontology matching
problems. ICEIS (4), pages 236–243, 2004.

100 BIBLIOGRAPHY

[68] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

[69] Deborah L McGuinness, Frank Van Harmelen, et al. Owl web ontology language
overview. W3C recommendation, 10(10):2004, 2004.

[70] Paul Mcnamee and James Mayfield. Character n-gram tokenization for european
language text retrieval. Information retrieval, 7(1-2):73–97, 2004.

[71] Imen Megdiche. Intégration holistique et entreposage automatique des données ou-
vertes. (Holistic integration and automatic warehousing of open data). PhD thesis,
Paul Sabatier University, Toulouse, France, 2015.

[72] Imen Megdiche, Olivier Teste, and Cássia Trojahn dos Santos. LPHOM results
for OAEI 2016. In Proceedings of the 11th International Workshop on Ontology
Matching co-located with the 15th International Semantic Web Conference (ISWC
2016), Kobe, Japan, October 18, 2016., pages 190–195, 2016.

[73] Imen Megdiche, Olivier Teste, and Cassia Trojahn. An extensible linear approach
for holistic ontology matching. In International Semantic Web Conference, pages
393–410. Springer, 2016.

[74] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity flooding: A
versatile graph matching algorithm and its application to schema matching. In Pro-
ceedings 18th International Conference on Data Engineering, pages 117–128. IEEE,
2002.

[75] Alvaro E. Monge and Charles Elkan. The field matching problem: Algorithms and
applications. In Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining (KDD-96), Portland, Oregon, USA, pages 267–270,
1996.

[76] Ajinkya More. Survey of resampling techniques for improving classification perfor-
mance in unbalanced datasets. CoRR, abs/1608.06048, 2016.

[77] Daniel Müllner. Modern hierarchical, agglomerative clustering algorithms. CoRR,
abs/1109.2378, 2011.

[78] Christopher J Mungall, Carlo Torniai, Georgios V Gkoutos, Suzanna E Lewis, and
Melissa A Haendel. Uberon, an integrative multi-species anatomy ontology. Genome
biology, 13(1):R5, 2012.

[79] Saul B Needleman and Christian D Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal of molec-
ular biology, 48(3):443–453, 1970.

BIBLIOGRAPHY 101

[80] Azadeh Haratian Nezhadi, Bita Shadgar, and Alireza Osareh. Ontology alignment
using machine learning techniques. International Journal of Computer Science &
Information Technology, 3(2):139, 2011.

[81] Duy Hoa Ngo. Enhancing ontology matching by using machine learning, graph
matching and information retrieval techniques. PhD thesis, 2012.

[82] DuyHoa Ngo and Zohra Bellahsene. Overview of YAM++ - (not) yet another
matcher for ontology alignment task. J. Web Semant., 41:30–49, 2016.

[83] Ikechukwu Nkisi-Orji, Nirmalie Wiratunga, Stewart Massie, Kit-Ying Hui, and
Rachel Heaven. Ontology alignment based on word embedding and random for-
est classification. In Machine Learning and Knowledge Discovery in Databases -
European Conference, ECML PKDD 2018, Dublin, Ireland, September 10-14, 2018,
Proceedings, Part I, pages 557–572, 2018.

[84] Natalya F Noy and Mark A Musen. The prompt suite: interactive tools for ontology
merging and mapping. International journal of human-computer studies, 59(6):983–
1024, 2003.

[85] Peter Ochieng and Swaib Kyanda. Large-scale ontology matching: State-of-the-art
analysis. ACM Computing Surveys (CSUR), 51(4):75, 2018.

[86] Lorena Otero-Cerdeira, Francisco J Rodŕıguez-Mart́ınez, and Alma Gómez-
Rodŕıguez. Ontology matching: A literature review. Expert Systems with Appli-
cations, 42(2):949–971, 2015.

[87] Hanchuan Peng, Fuhui Long, and Chris H. Q. Ding. Feature selection based on mu-
tual information: Criteria of max-dependency, max-relevance, and min-redundancy.
IEEE Trans. Pattern Anal. Mach. Intell., 27(8):1226–1238, 2005.

[88] Sunny Pereira, Valerie Cross, and Ernesto Jiménez-Ruiz. On partitioning for on-
tology alignment. In Proceedings of the 12th International Workshop on Ontology
Matching co-located with the 16th International Semantic Web Conference (ISWC
2017), Vienna, Austria, October 21, 2017., pages 219–220, 2017.

[89] Erhard Rahm. Towards large-scale schema and ontology matching. In Schema
matching and mapping, pages 3–27. Springer, 2011.

[90] Erhard Rahm and Philip A Bernstein. A survey of approaches to automatic schema
matching. the VLDB Journal, 10(4):334–350, 2001.

[91] Quentin Riché-Piotaix, Patrick Girard, Frédéric Bilan, and Ladjel Bellatreche. Ex-
ample based programming and ontology building: A bioinformatic application. In
HCI International 2018 - Posters’ Extended Abstracts, 20th International Confer-
ence, HCI International 2018, Las Vegas, NV, USA, July 15-20, 2018, Proceedings,
Part I., pages 101–108, 2018.

102 BIBLIOGRAPHY

[92] Ana Armas Romero, Bernardo Cuenca Grau, and Ian Horrocks. More: Modular
combination of owl reasoners for ontology classification. In International Semantic
Web Conference, pages 1–16. Springer, 2012.

[93] Cornelius Rosse and José LV Mejino Jr. A reference ontology for biomedical in-
formatics: the foundational model of anatomy. Journal of biomedical informatics,
36(6):478–500, 2003.

[94] Philippe Roussille, Imen Megdiche, Olivier Teste, and Cássia Trojahn. Boosting
holistic ontology matching: Generating graph clique-based relaxed reference align-
ments for holistic evaluation. In Knowledge Engineering and Knowledge Manage-
ment - 21st International Conference, EKAW 2018, Nancy, France, November 12-
16, 2018, Proceedings, pages 355–369, 2018.

[95] Philippe Roussille, Imen Megdiche, Olivier Teste, and Cássia Trojahn. Holontology:
results of the 2018 OAEI evaluation campaign. In Proceedings of the 13th Inter-
national Workshop on Ontology Matching co-located with the 17th International Se-
mantic Web Conference, OM@ISWC 2018, Monterey, CA, USA, October 8, 2018.,
pages 167–172, 2018.

[96] Yvan Saeys, Iñaki Inza, and Pedro Larrañaga. A review of feature selection tech-
niques in bioinformatics. Bioinformatics, 23(19):2507–2517, 2007.

[97] Md Hanif Seddiqui and Masaki Aono. An efficient and scalable algorithm for seg-
mented alignment of ontologies of arbitrary size. Web Semantics: Science, Services
and Agents on the World Wide Web, 7(4):344–356, 2009.

[98] Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard, William Bug,
Werner Ceusters, Louis J Goldberg, Karen Eilbeck, Amelia Ireland, Christopher J
Mungall, et al. The obo foundry: coordinated evolution of ontologies to support
biomedical data integration. Nature biotechnology, 25(11):1251, 2007.

[99] Thorvald Sørensen. A method of establishing groups of equal amplitude in plant so-
ciology based on similarity of species and its application to analyses of the vegetation
on danish commons. Biol. Skr., 5:1–34, 1948.

[100] Giorgos Stoilos, Giorgos B. Stamou, and Stefanos D. Kollias. A string metric for
ontology alignment. In The Semantic Web - ISWC 2005, 4th International Semantic
Web Conference, ISWC 2005, Galway, Ireland, November 6-10, 2005, Proceedings,
pages 624–637, 2005.

[101] Heiner Stuckenschmidt, Christine Parent, and Stefano Spaccapietra, editors. Mod-
ular Ontologies: Concepts, Theories and Techniques for Knowledge Modularization,
volume 5445 of Lecture Notes in Computer Science. Springer, 2009.

[102] Heiner Stuckenschmidt and Anne Schlicht. Structure-based partitioning of large
ontologies. In Modular ontologies, pages 187–210. Springer, 2009.

BIBLIOGRAPHY 103

[103] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic
knowledge. In Proceedings of the 16th international conference on World Wide Web,
pages 697–706. ACM, 2007.

[104] Boontawee Suntisrivaraporn, Guilin Qi, Qiu Ji, and Peter Haase. A modularization-
based approach to finding all justifications for owl dl entailments. In Asian Semantic
Web Conference, pages 1–15. Springer, 2008.

[105] Ivan Tomek. Two modifications of cnn. IEEE Trans. Systems, Man and Cybernetics,
6:769–772, 1976.

[106] MK Vijaymeena and K Kavitha. A survey on similarity measures in text mining.
Machine Learning and Applications: An International Journal, 3(2):19–28, 2016.

[107] Lucy Lu Wang, Chandra Bhagavatula, Mark Neumann, Kyle Lo, Chris Wilhelm,
and Waleed Ammar. Ontology alignment in the biomedical domain using entity
definitions and context. In Proceedings of the BioNLP 2018 workshop, Melbourne,
Australia, July 19, 2018, pages 47–55, 2018.

[108] Peng Wang and Baowen Xu. Lily: Ontology alignment results for oaei 2008. In
Proceedings of the 3rd International Conference on Ontology Matching-Volume 431,
pages 167–175. CEUR-WS. org, 2008.

[109] Zhichun Wang, Xiao Zhang, Lei Hou, Yue Zhao, Juanzi Li, Yu Qi, and Jie Tang.
Rimom results for oaei 2010. Ontology Matching, 195, 2010.

[110] MS Waterman. Identification of common molecular subsequence. Mol. Biol, 147:195–
197, 1981.

[111] Dennis L Wilson. Asymptotic properties of nearest neighbor rules using edited data.
IEEE Transactions on Systems, Man, and Cybernetics, (3):408–421, 1972.

[112] William E Winkler. String comparator metrics and enhanced decision rules in the
fellegi-sunter model of record linkage. 1990.

[113] Zhibiao Wu and Martha Stone Palmer. Verb semantics and lexical selection. In
32nd Annual Meeting of the Association for Computational Linguistics, 27-30 June
1994, New Mexico State University, Las Cruces, New Mexico, USA, Proceedings.,
pages 133–138, 1994.

[114] Xingsi Xue and Jeng-Shyang Pan. A segment-based approach for large-scale ontology
matching. Knowl. Inf. Syst., 52(2):467–484, 2017.

[115] Chee Een Yap and Myung Ho Kim. Instance-based ontology matching with rough
set features selection. In 2013 International Conference on IT Convergence and
Security, ICITCS 2013, Macau, China, December 16-18, 2013, pages 1–4, 2013.

