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Établissement d’inscription : Université Paris-Sud
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malgré la pression à certains moments. Je remercie Alain pour ses enseignements en
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ble. Mais je la remercie surtout pour sa disponibilité, son arbitrage entre mes encadrants
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les champs, le seul jour où je n’avais pas de chemise, et pour le bizutage de F7p.
Je remercie Clément Mabire, Simon Rio et Adama Seye, ma co-bureau Camille Clipet et
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en fait) et les soirées jeux, Pierre Montalent et Yannick De Oliveira pour l’animation
basket (et bien entendu tous ses membres) pour la détente du Jeudi midi, Gaëlle Van
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Chapter 1

Introduction

1.1 Contexte Génétique

En génétique quantitative, les scientifiques cherchent à établir une relation entre
le phénotype (un caractère observé tel que la taille, le rendement, le développement de
maladie, etc.) des individus et leur information génétique. Les objectifs sont, dans ce
cas, de prédire le phénotype en se basant sur l’information génétique des individus et de
comprendre le rôle de l’information génétique dans l’expression de certains phénotypes.
On pourrait ainsi caractériser, par exemple, le risque de développer des maladies, le
rendement des plantes cultivées ou la quantité de lait produite pour les vaches.

L’information génétique (que ce soit les gènes ou les marqueurs moléculaires) est
contenue dans la molécule d’ADN qui est organisée en chromosomes. Pour les espèces
haplöıdes, chaque chromosome est présent en une seule copie alors que chez les espèces
diplöıdes, les chromosomes sont présents par paire. Dans ce cas, pour chaque paire, un
des deux chromosomes homologues provient du parent femelle et l’autre du parent mâle.
Une position précise sur ces chromosomes est appelée locus. Chez les espèces diplöıdes,
à chaque locus, un individu peut porter soit deux allèles différents (i.e. deux versions
différentes d’un même locus) et dans ce cas il est hétérozygote à ce locus soit deux allèles
identiques et dans ce cas il est homozygote à ce locus.
Afin de pouvoir se repérer sur la molécule d’ADN, et donc de suivre les régions d’intérêt,
on utilise des marqueurs moléculaires. Un marqueur moléculaire est une position sur la
molécule d’ADN dont on connâıt la position, la séquence d’ADN et dont la valeur ne
dépend pas de l’environnement. Les marqueurs moléculaires permettent de connâıtre le
génotype (la version de l’allèle) portée par un individu. Pour un diplöıde, chaque obser-
vation d’un marqueur est donc composée de deux valeurs correspondant aux allèles des
deux chromosomes homologues à cette position. Si on se place dans le cas d’un marqueur
bi-allélique (seulement deux allèles possibles à ce marqueur), sa valeur observée peut se
résumer aux nombres de présence de l’allèle de référence. Si tous les marqueurs sont
bi-alléliques dans une population, on obtient donc, pour chaque individu, un vecteur
comprenant des 0, 1 ou 2.
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2 CHAPTER 1. INTRODUCTION

Il existe deux grandes stratégies pour évaluer les valeurs phénotypiques des indi-
vidus. La première consiste à observer l’individu lui même, on parle d’observation per
se ou en valeur propre. La seconde consiste à observer la descendance des individus
considérés, on parlera alors de valeur phénotypique en croisement. Le choix entre ces
deux stratégies est essentiellement dicté par le régime de reproduction de l’espèce étudiée
et donc du type de variété qui est commercialisé.

La relation entre le phénotype et le génotype d’un individu peut se modéliser de la
manière suivante :

Yi = µ+Gi + Ei
Gi ⊥ Ei

(1.1)

où Yi est le phénotype de l’individu i, µ est la moyenne de ce phénotype, Gi est l’effet
dû à l’information génétique de l’individu i et Ei est l’effet dû à l’environnement.

Si on note Xi,`, la valeur observée au marqueur ` chez l’individu i alors on peut
décomposer la valeur génétique de l’individu i comme étant la somme des effets de chaque
marqueur, i.e. :

Gi =

L∑
`=1

Xi,`β`

où L est le nombre de marqueurs observés et β` est l’effet associé au marqueur `. Il
existe plusieurs cas possibles pour les β`. Le premier cas est celui où toute l’influence
du génotype est concentrée sur un seul marqueurs, il existe ` tel que β` 6= 0 et β`′ = 0
pour tout `′ 6= `. On parlera d’un cas monogénique. Si plusieurs β` sont non nuls, on
parlera alors d’un cas polygénique. Les marqueurs ` qui ont une valeur non nulle sont
appelés QTL (Quantative Trait Locus). Dans la suite, on considérera avec attention le
cas polygénique.
Si on suppose que les observations des marqueurs sont indépendantes entre un marqueur
` et un marqueur `′ alors on peut ainsi réécrire la covariance génétique de deux individus
i et j comme :

cov(Gi, Gj) =

L∑
`=1

cov(Xi,`, Xj,`)β
2
`

Si on suppose qu’il y a indépendance entre le génome des parents d’un même individu
et que les marqueurs sont bi-alléliques, en utilisant la corrélation entre les observations
des marqueurs, on peut obtenir :

cov(Gi, Gj) =

L∑
`=1

cor(Xi,`, Xj,`)4p`q`a
2
` (1.2)

où p` est la fréquence de l’allèle majoritaire et q` = 1−p`. En supposant que la corrélation
est la même pour tous les marqueurs, avec Ki,j = cor(Xi,`, Xj,`), alors on obtient une for-
mulation de la covariance génétique dépendante du paramètre de ressemblance génétique
Ki,j :

cov(Gi, Gj) = Ki,jσ
2
g

avec σ2
g =

∑L
`=1 4p`q`β

2
` .

Si dans le modèle (1.1), on suppose que les effets environnementaux sont indépendants
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entre deux individus (i.e. Ei ⊥ Ej pour tout i 6= j) alors la covariance phénotypique
entre individus ne dépend que de la covariance génétique entre individus :

cov(Yi, Yj) = cov(Gi, Gj)

En utilisant toutes les hypothèses précédemment citées et en approximant la somme
des effets des marqueurs par une loi normale, on obtient le modèle matriciel suivant, qui
relie le phénotype au génotype :

Y = 1µ+G+ E
G ⊥ E
G ∼ N (0,Kσ2

g)

E ∼ N (0, Iσ2
e)

(1.3)

où Y est le vecteur des phénotypes de tous les individus, µ est l’intercepte du modèle,
G est le vecteur des effets aléatoires dûs aux génotypes des individus et E est le vecteur
des effets aléatoires dûs à l’environnement. En génétique bovine, ce modèle est utilisé
pour caractériser la valeur génétique des taureaux prédite par le modèle, Ĝ, en utilisant
des méthodes de prédiction telles que le Best Linear Unbiased Predictor (BLUP).

Historiquement, l’apparentement entre individus était estimé à partir du pedigree
de ces derniers. La valeur estimée dans ce cas est l’apparentement attendu entre deux
individus, il correspond à un niveau moyen d’apparentement. En génétique végétale, le
recours au croisement dirigé permet de facilement suivre le pedigree. Par exemple, si
on effectue des observations sur une population composée de demi-soeurs (plantes issues
d’un même parent commun) alors le pedigree est simple et l’apparentement attendu
estimé à l’aide de ce dernier entre deux individus est de 1

4 pour tous les couples. Cepen-
dant, l’utilisation de l’apparentement dans le modèle (1.3) n’a pas été immédiate. Dans
l’exemple précédent, l’estimation de ce coefficient à l’aide du pedigree ne permet pas de
prendre en compte la variance autour de l’apparentement, et on peut se retrouver avec
une population d’individu dont tous les couples ont un même niveau d’apparentement.
Les marqueurs moléculaires permettent d’aller plus loin dans l’estimation de l’apparen-
tement. L’utilisation de ces derniers permet de prendre en compte la variance autour de
l’apparentement moyen et donc d’estimer un apparentement réalisé entre les individus.
Il existe différentes manières de procéder à l’estimation, par exemple, on peut considérer
le coefficient de similarité génétique entre deux individus i et j à l’aide de la formule
suivante :

Ki,j =
1

L

L∑
`=1

1Xi,`=Xj,`

Si tous les marqueurs sont bi-alléliques au sein de la population observée, alors on peut
aussi utiliser l’équation (1.2) pour obtenir un estimateur basé sur la corrélation entre les
observations des marqueurs (Astle and Balding, 2009) :

Ki,j =
1

L

L∑
`=1

(Xi,` − p`)(Xj,` − p`)
4p`(1− p`)
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Il existe d’autres façons de modéliser le coefficient Ki,j (Thompson, 1975; Milligan,
2003) comme détaillé dans le chapitre 2. L’utilisation des marqueurs pour estimer la
valeur d’apparentement permet donc de différencier des valeurs qui étaient égales sur
la base du pedigree ou encore d’estimer l’apparentement lorsque le pedigree est incom-
plet ou inconnu. Suite au développement des marqueurs moléculaires, le modèle (1.3)
et l’estimation de ses paramètres ont pu être effectués dans le contexte de la génétique
végétale (Bernardo, 1994).

Il est en plus devenu possible de détecter les marqueurs associés à une forte variation
phénotypique à l’aide du modèle proposé par Yu et al. (2006) :

Y = 1µ+X`β` + ZG+ E
G ⊥ E
G ∼ N (0,Kσ2

g)

E ∼ N (0, Iσ2
e)

(1.4)

où X` est le génotype des individus au marqueur `, β` est l’effet fixe dû à ce même mar-
queur, Z est la matrice d’incidence des individus (on peut avoir des individus répétés),
G est l’effet aléatoire provenant des autres marqueurs (fond polygénique) et E est un
effet résiduel. Une fois les paramètres du modèle (1.4) estimés, on effectue le test β` = 0
contre β` 6= 0 pour détecter si le marqueur ` joue un rôle sur la variation du caractère
phénotypique étudié. Pour effectuer la détection de gènes d’intérêt, il faut ajuster ces
modèles sur tous les marqueurs disponibles (actuellement, chez le mäıs, nous avons accès
à un million de marqueurs). Il est donc important d’avoir des algorithmes d’estimation
de modèles mixtes performants.

Le modèle (1.4) s’applique très bien lorsqu’on s’intéresse aux individus provenant
d’une seule population. En effet, l’intercepte est le même pour tous les individus. L’effet
du marqueur est le même pour tous les individus et on considère que cet effet est additif,
il s’additionne en fonction de la dose d’allèle présent à ce marqueur (0, 1 ou 2 pour les
individus bi-alléliques).

1.2 Cas spécifique : plan de croisement chez les plantes

Chez les plantes, les individus étudiés peuvent être des lignées issues d’autofécon-
dations successives, ce qui confère (i) un état homozygote des individus pour l’ensemble
des locus du génome et (ii) une identité génétique entre individus d’une même lignée.
L’observation de nombreux individus identiques génétiquement permet d’évaluer la valeur
moyenne d’une lignée pour un caractère, qui sera nettement plus précise qu’une observa-
tion sur une plante unique. Le modèle (1.4) est adapté à la détection de gènes d’intérêt
sur une population composée de lignées. Toutefois, chez un certain nombre d’espèces
comme le mäıs, l’état homozygote peut conduire à une perte de vigueur que l’on appelle
dépression de consanguinité. Pour ces espèces, le matériel cultivé est donc des variétés
hybrides (Shull, 1908) issues du croisement entre deux lignées homozygotes. On a alors
accès à des individus plus performants que leurs parents : c’est l’effet d’hétérosis (Shull,
1914). Cela implique donc l’existence d’effet de dominance en plus des effets additifs.
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Ces effets sont représentés schématiquement dans la figure 1.1.

Figure 1.1: Gauche : effet des combinaisons alléliques avec un effet additif (a). Droite : effet
des combinaisons alléliques avec un effet additif (a) et un effet de dominance (d)

Si les plantes mères dérivent de deux populations différentes, en plus de l’effet de
dominance, on peut aussi s’intéresser aux effets polygéniques (l’effet G du modèle (1.4))
provenant de chacune des populations. Dans ces cas là, le modèle de Yu et al. (2006)
ne peut pas s’appliquer. Lorsqu’on étudie des hybrides provenant d’un croisement entre
deux populations (une population Mère et une population Père) alors le modèle (1.4) se
généralise comme suit :

Y = µ+X`,Mβ`,M +X`,Pβ`,P +X`,M×Pβ`,M×P + ZMGM + ZPGP + ZHGH + E

GM ∼ N (0,K(M)σ2
M )

GP ∼ N (0,K(P )σ2
P )

GH ∼ N (0,Φσ2
H)

E ∼ N (0, Iσ2
e)

(1.5)
où X`,M (resp. X`,P , X`,M×P ) est le génotype des mères (resp. des pères, des hybrides)
au marqueur `, β`,M (resp. β`,P ) est l’effet dû aux marqueurs présents chez les mères
(resp. les pères), β`,M×P est l’effet dû à l’interaction des génotypes mères et pères,
ZM (resp. ZP ) est la matrice d’incidence reliant les hybrides à leur mère (resp. père),
ZH est la matrice d’incidence des hybrides, GM (resp. GP ) représente l’effet du fond
polygénique dû à la population maternelle (resp. paternelle) avec K(M) (resp. K(P ))
l’apparentement entre les lignées mères (resp. pères), GH est l’effet dû aux interactions
entre le fond polygénique maternel et paternel avec Φ un indice de double ressemblance
et E est un vecteur résiduel.
La ressemblance génétique entre les individus du croisement précédemment cité peut
intervenir de trois manières. La première (resp. la seconde) est une ressemblance de
l’information génétique apportée par les mères (resp. les pères) et est représentée par
la matrice K(M) (resp. K(P )). La troisième manière est une ressemblance double, i.e.
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à la fois les informations maternelles et paternelles sont identiques et est représentée
par la matrice Φ. Dans les deux premiers cas, on parlera de simple apparentement entre
les parents et dans le troisième cas on parlera de double apparentement entre les hybrides.

D’autres études peuvent faire intervenir une modélisation plus complexe de la co-
variance génétique donnée en (1.2), comme par exemple dans Gallais (1990). Elles font
intervenir d’autres coefficients d’apparentement tel que le coefficient de consanguinité
(ressemblance génétique entre les chromosomes homologues d’un individu), en partic-
uliers lorsqu’on croise des lignées maternelles d’une même population (un croisement
mère × mère dans l’exemple précédent). Il faut donc s’intéresser à la modélisation de
l’apparentement entre individus (Thompson, 1975; Milligan, 2003).
De plus, de nouveaux effets aléatoires apparaissent dans ce modèle, ce qui engendre un
temps de calcul plus long pour l’estimation des modèles mixtes. On peut donc voir
l’importance d’avoir des algorithmes performants pour ces estimations.

1.3 Objectifs de la thèse et plan général du manuscrit

Les différents modèles mettant en relation le phénotype et le génotype des individus
cités précédemment font intervenir de nombreux coefficients de relation génétique entre
les individus. Il est donc important de s’intéresser à l’estimation de ces coefficients dans
un premier temps.
Nous nous sommes intéressés à la modélisation des coefficients de l’apparentement à
partir de l’observation de marqueurs bi-alléliques en utilisant un modèle de mélange
(Thompson, 1975; Milligan, 2003). Une fois le modèle écrit, nous avons étudié l’identi-
fiabilité de ce modèle dans un cadre général et aussi dans le cadre de plan de croisement
d’intérêt pour la sélection végétale. En effet ces plans de croisement nous apportent
des informations supplémentaires telles que l’origine parentale des allèles (maternelle ou
paternelle), la classification en populations et des parents communs i.e. partagés par
plusieurs individus. Ces nouvelles informations jouent un rôle notable sur l’identifiabilité
du modèle. Enfin nous avons développé un algorithme permettant l’estimation des
paramètres d’apparentement entre individus à partir de marqueurs bi-alléliques qui peut
prendre en compte ces informations. Les résultats de cette partie ont été publiés dans
Laporte et al. (2017).

Les paramètres des modèles mixtes (1.4) et (1.5) doivent être estimés pour chaque
marqueur étudié. Le nombre croissant de marqueurs disponibles allonge considérablement
les temps de calcul des algorithmes d’inférence. De plus la prise en compte de nouveaux
effets aléatoires dans le modèle (1.5) nous a amené à réfléchir à la performance des al-
gorithmes d’inférence des modèles mixtes à composantes de la variance.
Les algorithmes d’inférence de modèles mixtes peuvent se classer en trois catégories.
La première catégorie est celle des algorithmes d’optimisation directe de la vraisem-
blance. Ceux-ci ne peuvent être appliqués qu’à des modèles comportant deux effets
aléatoires comme dans le modèle (1.4). En effet, ils se basent sur la diagonalisation
simultanée des matrices de corrélation et des algorithmes d’optimisation à une variable,
comme l’exemple de FastLmm développé par Lippert et al. (2011). A l’opposé, la seconde
catégorie est celle des algorithmes de second ordre (type Newton-Rapthon). Ils se basent
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sur une méthode itérative prenant en compte la matrice hessienne de la vraisemblance
ou une matrice dérivée (comme l’espérance de cette dernière pour le Fisher Scoring).
Un algorithme de second ordre largement utilisé en génétique des plantes est celui de la
matrice d’information moyenne (AI) proposé par Gilmour et al. (1995) et utilisé dans
l’algorithme ASReml. Durant mon doctorat, je me suis particulièrement intéressé à la
dernière catégorie, celle des algorithmes de premier ordre. Ces derniers se basent aussi
sur une méthode itérative mais font intervenir seulement le gradient de la vraisemblance.
L’algorithme de MinMax (MM) présenté par Hunter and Lange (2004) et appliqué aux
modèles mixtes par Zhou et al. (2015) en fait partie. Ces formules itératives simples
nous ont permis de penser que ce dernier serait plus rapide que les algorithmes des
autres classes. De plus, les astuces de calcul, telle que la diagonalisation simultanée des
matrices, peuvent y être adaptées.
Nous avons codé un algorithme basé sur la méthode MM, en utilisant des astuces
d’accélération dont celle proposée par Varadhan and Roland (2008). Nous avons en-
suite comparé les performances des différentes méthodes et algorithmes du point de vue
de la détection de gènes d’intérêt, à la fois en précision et en temps de calcul, en util-
isant des jeux de données issus de la génétique végétale et présents dans la bibliographie.

Nous avons enfin effectué la détection de QTL sur un panel d’hybrides issus d’un
croisement de deux populations distinctes (apparentement nul entre deux individus issus
de populations différentes) en utilisant les algorithmes développés précédemment. Notre
première réflexion a concerné la modélisation des phénotypes en fonction du génotype des
individus. Nous avons été amenés à utiliser le modèle (1.5) dans le cadre de cette étude.
Le second défi a été l’utilisation de différentes méthodes pour estimer les coefficients de
l’apparentement dans le cadre de ce panel. Nous pouvons mettre en concurrence deux
méthodes, une issue de la bibliographie Astle and Balding (2009) et celle que nous avons
développée. Nous souhaitons voir l’impact de l’utilisation de ces différentes méthodes
d’estimation de l’apparentement sur le détection de QTL. Enfin nous avons détaillé les
hypothèses de test possibles dans le cadre de ce modèle et nous nous sommes penchés
sur la pertinence de ces tests pour la détection de gènes d’intérêt.
Les hybrides ayant été phénotypés dans plusieurs lieux, nous avons également réalisé
une étude en prenant en compte l’interaction du génotype avec l’environnement. Le défi
ici a été la mise en place du modèle et l’optimisation des algorithmes pour permettre
d’estimer les paramètres nécessaires.

Ma thèse est construite en trois chapitres. Le premier traite l’estimation de l’apparen-
tement à partir de l’observation de marqueurs bi-alléliques. Le deuxième étudie l’estima-
tion des paramètres des modèles mixtes à composantes de la variance. Et le dernier est
une application des outils précédemment développés à la détection de gènes d’intérêt
dans un plan de croisement hybride. Une dernière partie est consacrée aux conclusions
générales et perspectives de mon doctorat.





Chapter 2

Estimation of relatedness
coefficients from biallelic markers,

application in plant mating
designs

The relatedness between two individuals is the distribution (over all loci) of the
number of alleles inherited from one (or several) common ancestor(s). The concept of
relatedness (and its decomposition) was introduced by Wright (1922) back in the 1920s,
and has been extensively investigated since then (Crow and Kimura, 1970). This is
indeed an important concept in quantitative and population genetics. Relatedness can be
useful on its own, for instance to quantify the level of consanguinity in a population (Crow
and Kimura, 1970). It has also proven to be an important component of association
genetics models, where the so-called kinship matrix is now widely used to account for
the effect of genetic background on the phenotypic response (Yu et al., 2006).
Two approaches have been considered to infer relatedness, depending on the data at
hand. Relatedness was first inferred from pedigree (Crow and Kimura, 1970). Nowadays,
thanks to new genotyping technologies, the relatedness can be inferred from markers.
The inference of relatedness from markers was first introduced by Thompson (1975),
and was followed by numerous contributions (see for instance McPeek and Sun (2000),
Milligan (2003), Hepler (2005), Bink et al. (2008) and Astle and Balding (2009)). Sev-
eral statistical strategies have been considered to infer relatedness between individuals
derived from a single population from genotypic data, many of these methods being
currently available as R packages or algorithms (Coancestry, Wang (2011), ML-Relate,
Kalinowski et al. (2006)). Some of the aforementioned methods actually aim at estimat-
ing only some specific components of the relatedness distribution (e.g. coefficients k0, k1

and k2 in Thompson (1975), or the simple relatedness coefficient in Astle and Balding
(2009)). These methods can be used whatever the genotypic information available, in-
cluding SNP data. Other methods aim at estimating the whole relatedness distribution
(Coancestry, ML-Relate). It has been recently shown that in this case, the information
provided by biallelic marker data may be too poor for the full recovery of the relatedness

9



10 CHAPTER 2. ESTIMATION OF RELATEDNESS

distribution (Csuros, 2014). This may be a reason why some of the available softwares
(e.g. Coancestry) require the markers to be multi-allelic to perform inference. With
the current development of (chip or sequencing) SNP data, this appears to be a severe
limitation.

In this chapter we consider the plant genetics framework, where additional infor-
mation about the relationship between individuals is usually available. This additional
information may be of two kinds. First, when considering panels of hybrids derived from
crosses between lines, one can partially retrieve relatedness information from the cross-
ing design. Second, the lines considered in the crossing design may belong to different
populations or heterotic groups. This membership is informative since lines belonging
to different populations cannot be related. Therefore the crossing design and population
membership should be accounted for in relatedness inference procedures. To this end,
the contribution of the present chapter is double. From a theoretical point of view, we
consider the problem of estimating relatedness from SNP data in a hybrid panel through
the framework developed by Thompson (1975), Milligan (2003) and Csuros (2014). In
this framework, inferring the (unknown) relatedness status at each marker from the (ob-
served) genotypic information can be cast into a mixture model where the goal is to
estimate the proportion of loci associated with each relatedness status over the genome.
We investigate in which cases this model is identifiable or not depending on the addi-
tional information at hand. In particular we show that important quantities such as the
double relatedness coefficient may or may not be estimable, depending on the crossing
design. From a practical point of view, we provide an R package for the Maximum Like-
lihood Estimation (MLE) of the relatedness coefficients that handle both the classical
case (unphased data, individuals belonging to a single population) and the case where
estimation is performed on a panel of hybrids for which the crossing design is available.

The chapter is organized as follows. The classical case is presented in Section 2.1.
The modification of the classical case to the case of line crossing designs is detailed in
Section 2.2, with a detailed characterization of identifiability and estimation for each
configuration (number of common parental lines between hybrids, membership of the
lines to a same or to different populations). Applications of the proposed methodology
is presented in Section 2.3 on both simulated and real data.

2.1 Statistical Framework

The purpose of this section is to provide a statistical framework for the estimation
of relatedness. We rely on the model initially proposed by Thompson (1975) and also
considered by Milligan (2003), where it is assumed that the genotypes of two individuals
sampled from a same population are observed, and that these genotypes are unphased.
Marker allelic frequencies are supposed to be known. We also briefly recall the results
of Csuros (2014) regarding model identifiability. In Section 2.2, this framework will be
adapted to the case where individuals are hybrids obtained by crossing of parental lines.

2.1.1 Statistical Modeling

We first consider the observation of the genotypes of two individuals at a given
marker `. Four alleles are observed (2 alleles per individual), with value 0 or 1 since
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markers are all assumed to be biallelic. These four alleles together define the Identity
By State (IBS) configuration of the marker, that can be one of the nine possible config-
urations described in Table 2.1. These four alleles can be inherited from one or several
ancestors according to one of the 9 possible IBD (Identity by Descent) configurations of
Table 2.2.

o1 {00, 00} op1 o6 {01, 11} op11

o2 {00, 01} op2 {10, 11} op12

{00, 10} op3 o7 {11, 00} op13

o3 {00, 11} op4 o8 {11, 01} op14

o4 {01, 00} op5 {11, 10} op15

{10, 00} op6 o9 {11, 11} op16

o5 {01, 01} op7
{01, 10} op8
{10, 01} op9
{10, 10} op10

Table 2.1: IBS configurations between two individuals. The first two numbers correpond to
the alleles of individual 1 and the last two numbers correspond to the alleles of individual 2.
Configurations o1, ..., o9 (respectively op1, ..., o

p
16) correspond to distinguishable IBS configurations

when the data are unphased (respectively phased).

c1 {AA,AA} cp1 c7 {AB,AB} cp9
c2 {AA,BB} cp2 {AB,BA} cp10

c3 {AA,AB} cp3 c8 {AB,AC} cp11

{AA,BA} cp4 {AB,CA} cp12

c4 {AA,BC} cp5 {AB,BC} cp13

c5 {AB,AA} cp6 {AB,CB} cp14

{AB,BB} cp7 c9 {AB,CD} cp15

c6 {AB,CC} cp8

Table 2.2: IBD configurations between two individuals. The first (respectively the last) two
letters correspond to the alleles of individual 1 (respectively individual 2). Letters A, B, C and
D refer to ancestor alleles. Two alleles have the same letter if they are both descended from a
single allele in a common ancestor. Configurations c1, ..., c9 (respectively cp1, ..., c

p
15) correspond

to distinguishable IBD configurations when the data are unphased (respectively phased).

Denote p` and q` = 1 − p` the allelic frequencies of alleles 0 and 1 at marker `,
respectively. Furthermore, define IBS` the (observed) random variable corresponding to
the IBS configuration at locus `, and IBD` the (hidden) random variable corresponding
to the IBD configuration at this same locus. The likelihood of IBS` can be written as
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follows:

P∆(IBS` = oi) =

9∑
j=1

P (IBS` = oi|IBD` = cj)P (IBD` = cj)

=
9∑
j=1

P (IBS` = oi|IBD` = cj)∆j , (2.1)

where ∆j = P (IBD` = cj). Note that the proportion parameters ∆1, ...,∆9 do not
depend on the particular marker that is considered. The vector ∆ = (∆1, ...,∆9)T ,
where T denote the transpose function, is called the IBD distribution or the relatedness
distribution, and ∆ satisfies

∆ ∈ S9
+ ,where SJ+ =

{
x ∈ RJ : xi ≥ 0,

J∑
i=1

xi = 1

}

Likelihood (2.1) can be straightforwardly generalized to the case where several indepen-
dent markers ` = 1, ..., L are considered:

L∏
`=1

 9∑
j=1

∆jP (IBS` = oi|IBD` = cj)

 .

Note that in the previous expression the conditional probabilities only depend on the
(known) marker allelic frequencies. The model is then a mixture model with known
emission distributions that differ for one marker to another, where the unknown param-
eters are the proportions ∆1, ...,∆9 that have to be estimated. In the following we will
also consider the matrix representation for this model. For locus ` one has

P v∆(IBS`) = M`∆ (2.2)

where

� P v∆(IBS`) = (P∆(IBS` = o1), ..., P∆(IBS` = o9))T

� M` = (m`
ij)1≤i≤9,1≤j≤9 with m`

ij = P (IBS` = oi|IBD` = cj),

� ∆ = (∆1, ...,∆9)T .

Note that matrix M` only depends on allelic frequencies p` and q`. For locus `, M` can
be expressed as followed:

M` =



q` q2` q2` q3` q2` q3` q2` q3` q4`
0 0 q`p` 2q2`p` 0 0 0 q2`p` 2q3`p`
0 q`p` 0 q`p

2
` 0 q2`p` 0 0 q2`p

2
`

0 0 0 0 q`p` 2q2`p` 0 q2`p` 2q3`p`
0 0 0 0 0 0 2q`p` q`p` 4q2`p

2
`

0 0 0 0 q`p` 2q`p
2
` 0 q`p

2
` 2q`p

3
`

0 q`p` 0 q2`p` 0 q`p
2
` 0 0 q2`p

2
`

0 0 q`p` 2q`p
2
` 0 0 0 q`p

2
` 2q`p

3
`

p` p2` p2` p3` p2` p3` p2` p3` p4`
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2.1.2 Model Identifiability

Although Model (2.2) has been largely used to estimate IBD from genotypic data
(Milligan, 2003), little attention has been devoted to the identifiability of this model. A
parametric model Pθ is identifiable if

Pθ = Pθ′ ⇒ θ = θ′.

It is only recently that this question has been addressed in Csuros (2014), where the
author proved that when the data are unphased and the markers biallelic, there exist
two IBD parameter sets ∆ and ∆′ such that

∆ 6= ∆′,
∆,∆′ ∈ S9

+,
P v∆(IBS`) = P v∆′(IBS`), ∀` ∈ {1, ..., L}

.

The model is not always identifiable because in some cases one can build ∆′ from ∆
using ∆′ = ∆ + ∆KER, where ∆KER = (0, x, 0,−x, 0,−x,−x, 2x, 0)T is a vector that
belongs to the kernel of matrix M` whatever `. Note that even when the model is not
identifiable, some linear combinations of ∆1, ...,∆9 are estimable. In Csuros (2014) it is
shown that some classical quantities such as the simple relatedness coefficient are always
estimable.

2.1.3 Maximum Likelihood Estimation

When the model is identifiable, inference can be performed using Maximum Like-
lihood Estimation (MLE). In Milligan (2003), the author suggested to maximize the
likelihood using a Hill Climbing algorithm. Alternatively, following McPeek and Sun
(2000); Bink et al. (2008), the likelihood maximization may be performed using the EM
algorithm (Dempster et al., 1977) (see Appendix A for an overview of the EM algorithm).
Note that, in this case, the E step and the M step have an explicit (and simple) expres-
sion, since only the proportion parameters have to be estimated. One has

� E-step:

τ
(n)
`,j =

P (IBS` = oi|IBD` = cj)∆
(n−1)
j∑9

k=1 P (IBS` = oi|IBD` = ck)∆
(n−1)
k

where τ
(n)
`,j is the posterior probability for locus ` to have the jth IBD configuration,

computed at step n,

� M-step:

∆
(n)
j =

1

L

L∑
`=1

τ
(n)
`,j

This EM algorithm has been accelerated using the method presented by Varadhan and
Roland (2008). The case where the model is not identifiable will be addressed in Section
2.2.1.
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2.2 Inference of Relatedness for Hybrids

In plant genetics, it is of common practice to cross inbred lines - possibly belonging
to several populations or heterotic groups - to obtain hybrids, that will constitute the
basis of the association or genomic selection study to come (Bernardo, 1994; Technow
et al., 2012). In such a configuration, extra information is available for each individ-
ual (hybrid), that may be highly valuable for the inference of relatedness. First, the
crossing design provides an explicit information about the phase of the genotypic data.
In Table 2.2, IBD configuration c8 (respectively c3, c5 and c7) can be decomposed into
four (respectively two) different configurations cp11, ..., c

p
14 that can now be distinguished.

IBS configurations can also be decomposed the same way (Table 2.1). Consequently
there are now 15 distinguishable IBD configurations and 16 IBS configurations. Second,
the crossing design indicates whether two hybrids share one or more common parental
lines. Lastly, information about the membership of the parental lines to different popu-
lations may be available. Accounting for all this information in the inference process can
greatly help the estimation of the relatedness coefficients. Additionally, one may expect
this additional information to solve the identifiability issue identified by Csuros (2014),
at least in some crossing configurations. These two points are investigated in the next 3
sections. The following proposition will be useful for the study of model identifiability
for the mixture models to come:

Proposition 1. Assume that the model can be written as

P∆(Y`) = M`∆, ∀` ∈ {1, ..., L} , (2.3)

where Y` is the `th observed data, M` is a matrix of known coefficients that possibly de-
pends on `, and ∆ is the vector of unknown parameters. Then Model (2.3) is identifiable
as soon as

K =

L⋂
`=1

Ker (M`) = {0}

2.2.1 Phased Genotypic Data

We first consider the general case where one aims at estimating the relatedness
between two hybrids H1 and H2 resulting respectively from crossings L1×L2 and L3×L4.
We assume the four parental lines to be different, to come from a same population, and
to be potentially related to each others.

Model There are 15 possible IBD status (noted cpj , j = 1, ..., 15, where subscript p
stands for “phased”) and 16 IBS status possible (noted opi , i = 1, ..., 16). For locus ` the
model is

P∆(IBS` = opi ) =

15∑
j=1

P (IBS` = opi |IBD` = cpj )∆j . (2.4)

As in Section 2.1.1, one can write

P v∆(IBS`) = M`∆, 1 ≤ ` ≤ L (2.5)

where M` is now a 16× 15 matrix and ∆ is a vector with 15 elements.
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Identifiability One can state the following proposition:

Proposition 2. The intersection of the kernels of matrices M`, ` = 1, ..., L is

K =
{

(0,−x, 0, 0, x, 0, 0, x,−y, x+ y, y,−x− y,−x− y, y, 0)T , x ∈ R, y ∈ R
}
.

Model (2.5) is not identifiable if there exists x, y satisfying

max(∆2 − 1,−∆5,−∆8) ≤x ≤ min(∆2, 1−∆5, 1−∆8)

max(∆9 − 1,−∆11,−∆14) ≤y ≤ min(∆9, 1−∆11, 1−∆14)

max(−∆10,∆12 − 1,∆13 − 1) ≤x+ y ≤ min(1−∆10,∆12,∆13)

Furthermore, linear combinations CT∆ such that C ∈ K⊥ are always estimable.

Proof. In what follows we skip the subscript ` corresponding to the locus index. For a
given locus, we note p the allelic frequency of allele 1 and q = 1− p. For a given vector
x, the set of equations defined by Mx = 0 (with M the matrix of conditional probability
as defined in section 2) is:



q4x15 + q3(x5 + x8 + x11 + x12 + x13 + x14) + q2(x2 + x3 + x4 + x6 + x7 + x9 + x10) + qx1 = 0 L1

q3px15 + q2p(x5 + x11 + x13) + qpx3 = 0 L2

q3px15 + q2p(x5 + x12 + x14) + qpx4 = 0 L3

q2p2x15 + qp2x5 + q2px8 + qpx2 = 0 L4

q3px15 + q2p(x8 + x11 + x12) + qpx6 = 0 L5

q2p2x15 + qp2x11 + q2px14 + qpx9 = 0 L6

q2p2x15 + qp2x12 + q2px13 + qpx10 = 0 L7

qp3x15 + qp2(x8 + x13 + x14) + qpx7 = 0 L8

q3px15 + q2p(x8 + x13 + x14) + qpx7 = 0 L9

q2p2x15 + q2px12 + qp2x13 + qpx10 = 0 L10

q2p2x15 + q2px11 + qp2x14 + qpx9 = 0 L11

qp3x15 + qp2(x8 + x11 + x12) + qpx6 = 0 L12

q2p2x15 + q2px5 + qp2x8 + qpx2 = 0 L13

qp3x15 + qp2(x5 + x12 + x14) + qpx4 = 0 L14

qp3x15 + qp2(x5 + x11 + x13) + qpx3 = 0 L15

p4x15 + p3(x5 + x8 + x11 + x12 + x13 + x14) + p2(x2 + x3 + x4 + x6 + x7 + x9 + x10) + px1 = 0 L16

This is equivalent to:

No change L1

x3 = −q2x15 − q(x5 + x11 + x13) L2

x3 = −p2x15 − p(x5 + x11 + x13) L15

x4 = −q2x15 − q(x5 + x12 + x14) L3

x4 = −p2x15 − p(x5 + x12 + x14) L14

x2 = −qpx15 − px5 − qx8 L4

x2 = −qpx15 − qx5 − px8 L13

x6 = −q2x15 − q(x8 + x11 + x12) L5

x6 = −p2x15 − p(x8 + x11 + x12) L12

x9 = −qpx15 − px11 − qx14 L6

x9 = −qpx15 − qx11 − px14 L11

x10 = −qpx15 − px12 − qx13 L7

x10 = −qpx15 − qx12 − px13 L10

x7 = −p2x15 − p(x8 + x13 + x14) L8

x7 = −q2x15 − q(x8 + x13 + x14) L9∑15
i=1 xi = 0

∑16
i=1 Li
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After some maths:



No change L15

x15 = −(x5 + x11 + x13) L2 − L15

x15 = −(x5 + x12 + x14) L3 − L14

x5 = x8 L4 − L13

x15 = −(x8 + x11 + x12) L5 − L12

x11 = x14 L6 − L11

x12 = x13 L7 − L10

x15 = −(x8 + x13 + x14) L8 − L9

x2 = −qpx15 − px5 − qx8 L4

x9 = −qpx15 − px11 − qx14 L6

x10 = −qpx15 − px12 − qx13 L7

x3 = −q2x15 − q(x5 + x11 + x13) L2

x4 = −q2x15 − q(x5 + x12 + x14) L3

x6 = −q2x15 − q(x8 + x11 + x12) L5

x7 = −p2x15 − p(x8 + x13 + x14) L8∑15
i=1 xi = 0

∑16
i=1 Li

If we change what is known:



No change L1

x15 = −(x5 + x11 + x12)
x8 = x5

x13 = x12

x14 = x11

x2 = (qp− 1)x5 + qpx11 + qpx12 L4

x9 = qpx5 + (qp− 1)x11 + qpx12 L6

x10 = qpx5 + qpx11 + (qp− 1)x12 L7

x3 = −qp(x5 + x11 + x12) L2

x4 = −qp(x5 + x11 + x12) L3

x6 = −qp(x5 + x11 + x12) L6

x7 = −qp(x5 + x11 + x12) L8

x1 = qp(x5 + x11 + x12)
∑16

i=1 Li
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The kernel of matrix M is

Ker(M`) = vect





qp
qp− 1
−qp
−qp

1
−qp
−qp

1
qp
qp
0
0
0
0
−1



,



qp
qp
−qp
−qp

0
−qp
−qp

0
qp− 1
qp
1
0
0
1
−1



,



qp
qp
−qp
−qp

0
−qp
−qp

0
qp

qp− 1
0
1
1
0
−1




Note that this kernel is obtained for a given marker, and depends on the allelic frequencies
of this marker. To check wether the model is identifiable, the intersection of all kernels
corresponding to the different markers has to be {0}. From the previous expression, it
is easy to prove that each kernel contains the following space:

vect





0
−1
0
0
1
0
0
1
0
1
0
−1
−1
0
0



,



0
0
0
0
0
0
0
0
−1
1
1
−1
−1
1
0




which shows that the intersection of all kernels has dimension 2.

Inference If Model (2.5) is not fully identifiable, the classical EM algorithm will con-
verge to one of the possible (local) solutions. Consequently, the same algorithm can
be applied whatever the identifiability status of Model (2.5). The only difference lies
in the convergence criterion, that can be adapted to account only for the estimable
part of ∆. More precisely, the by-default stopping criterion of the EM algorithm is
||∆(n) −∆(n+1)||2 < ε with ∆(n) the estimation of ∆ at iteration n, and ε the required
precision. Since ∆ is not fully identifiable in the general case, the criterion may be



18 CHAPTER 2. ESTIMATION OF RELATEDNESS

adapted as follows:

||ΠK⊥(∆(n) −∆(n+1))||2 ≤ ε , (2.6)

where ΠK⊥ is the projection matrix on the orthogonal complement of K. Since ΠK⊥ is a
projection, criterion (2.6) is actually less stringent that the previous one, i.e. the number
of iterations for (2.6) to be satisfied (and convergence achieved) should be smaller. In
practice the improvement of the EM computational cost observed in our experiments
was marginal (not shown).

2.2.2 Accounting for Common Parents

We now assume that the two hybrids share at least one common parental line. We
note L1, ..., Lm the set of m parental lines involved in the crossing design, and Lk × Lk′
the hybrid obtained by crossing lines Lk and Lk′ . All lines are assumed to belong to a
same population.

Identifiability The different configurations of two hybrids sharing at least one com-
mon parent are provided in Table 2.3, along with the relatedness coefficients that are
potentially non null. All other coefficient are automatically set at 0 since their associated
IBD configuration is impossible. For instance, consider hybrid H1 = L1×L2 and hybrid
H2 = L1×L3. Then all IBD configurations stating the absence of IBD link between the
first allele of each hybrid (such as ∆2 for instance) are impossible. This leads to a fully
identifiable model, as stated in the next proposition:

Proposition 3. If there is at least one common parental line between the four parental
lines crossed to obtain the two hybrids, then Model (2.5) is identifiable.

The proof requires the study of each case detailed in Table 2.3 separately, but one
can already notice that since some IBD coefficients are set to 0, some columns and rows
of matrix M` can be discarded. One can show that the resulting reduced matrix is full
rank, ensuring the identifiability of the model.

Proof. We consider the case where hybrids H1 and H2 share a common parent. Suppose
that H1 = L1×L2 and H2 = L1×L3. Under this assumption the conditional probability
matrix at a given locus boils down to:

M =

cp1 cp3 cp6 cp9 cp11

q q2 q2 q2 q3

0 qp 0 0 q2p
0 0 qp 0 q2p
0 0 0 qp qp2

0 0 0 qp q2p
0 0 qp 0 qp2

0 qp 0 0 qp2

p p2 p2 p2 p3



op1
op2
op5
op6
op11

op12

op15

op16
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with p the frequency of allele 1 at the locus and q = 1−p. If vectorX = (x1, x2, x3, x4, x5)T

belongs to the kernel of matrix M , it satisfies:

q3x5 + q2x4 + q2x2 + q2x3 + qx1 = 0 L1

q2px5 + qpx2 = 0 L2

q2px5 + qpx3 = 0 L3

qp2x5 + qpx4 = 0 L4

q2px5 + qpx2 = 0 L5

qp2x5 + qpx3 = 0 L6

qp2x5 + qpx2 = 0 L7

p3x5 + p2x4 + p2x2 + p2x3 + px1 = 0 L8

After some maths this is equivalent to:

qx5 + x2 = 0 L2
qp

px5 + x2 = 0 L7
qp

qx5 + x3 = 0 L3
qp

px5 + x3 = 0 L6
qp

px5 + x4 = 0 L4
qp

qx5 + x4 = 0 L5
qp

q3x5 + q2x4 + q2x2 + q2x3 + qx1 = 0 L1

p3x5 + p2x4 + p2x2 + p2x3 + px1 = 0 L8

Assuming p 6= 1
2 , it follows:

x5 = 0 L2
qp −

L7
qp

x5 = −2x2
L2
qp + L7

qp

x5 = −2x3
L3
qp + L6

qp

x5 = −2x4
L4
qp + L5

qp

q3x5 + q2x4 + q2x2 + q2x3 + qx1 = 0 L1

p3x5 + p2x4 + p2x2 + p2x3 + px1 = 0 L8

This equation leads to:

x1 = x2 = x3 = x4 = x5 = 0

Then for all locus l satisfying p 6= 1
2 we have Ker(M) = {0}, which is a sufficient

condition for the model to be identifiable. The other cases (more than one common
parent) can be dealt with using the same proof lines.

Inference One would like the inference algorithm to ensure that the estimated values
of null coefficient are actually equal to 0. This can be done straightforwardly via the
initialization step of the EM algorithm. Indeed, according to the expression of the
estimators appearing in the E and M steps provided in Section 2.1.3, one can observe

that if a coefficient ∆
(0)
j is initialized at 0 then for all n, ∆

(n)
j = 0. Consequently no

additional constraint is required for the EM algorithm once the null coefficients are
initialized at 0.
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Parental crossing Non null Coefficients

L1 × L1, L1 × L1 ∆1

L1 × L1, L1 × L2 ∆1, ∆3

L1 × L1, L2 × L3 ∆1, ∆2, ∆3, ∆4, ∆5

L1 × L2, L1 × L2 ∆1, ∆9

L1 × L2, L1 × L3 ∆1, ∆3, ∆6, ∆9, ∆11

Table 2.3: Crossing design allowing for at least one common parental line, along with the list of
positive relatedness coefficients. Here the ∆s correspond to the set of 15 relatedness coefficients
of Model (2.4) (phased case).

2.2.3 Accounting for Population Structure

The strategy that consists in crossing parental lines coming from different pop-
ulations has been largely investigated, especially for species in which known heterotic
groups exist (Bernardo, 1994). Regarding the estimation of relatedness, accounting for
the population structure is crucial since allelic frequencies may vary from one population
to another. Model (2.5) is unchanged, but matrix M` is different since the probabilities
of the IBS configuration conditionally to the IBD configuration now depend on the allelic
frequencies in the different populations the parental lines belong to.

Identifiability Since one can assume that individuals belonging to different popula-
tions do not share a common ancestor, some relatedness coefficients will be known to be
null, as shown in table 2.4. As for the case of common parental lines, this will ensure
the identifiability of Model (2.5):

Proposition 4. If parental lines are derived from two populations or more then Model
(2.5) is identifiable.

Inference Similarly to the previous section, one only needs to ensure that the ∆ coef-
ficients that are known to be 0 thanks to the parental population structure information
are set at 0. This can be done by initializing these parameters at 0. Note also that
matrix M` has to be computed using the allelic frequencies of marker ` in the different
populations.

2.2.4 Impact of Identifiability

In this part we will discuss about the identifiability problem for somes studies. The
first one is a theoretical result regarding the inference of the double relatedness in one
specific design. The second one is about the classification of individuals with respect to
their relatedness.
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Parental Population Non null Coefficients

P1 × P2, P3 × P4 ∆15

P1 × P1, P2 × P3 ∆5, ∆15

P1 × P2, P1 × P3 ∆11, ∆15

P1 × P2, P1 × P2 ∆9, ∆11, ∆14, ∆15

P1 × P1, P1 × P2 ∆3, ∆5, ∆11, ∆13, ∆15

Table 2.4: Population structures allowing for at least two different populations for parental lines,
along with the list of positive relatedness coefficients. Here the ∆s correspond to the set of 15
relatedness coefficients of Model (2.4) (phased case).

Diallel crossing design To illustrate the potential consequences of non-identifiability
on the analysis of plant genetic experiments, we consider here a diallel crossing design
(Hayman, 1954; Lynch and Walsh, 1998). In this design, individuals are hybrids obtained
by crossing lines coming from P populations. Usually only a (small) proportion of the
possible crosses are performed, but the design is complete in the sense that for any pair
of populations (p1, p2) - with possibly p1 = p2 - there exists at least one hybrid resulting
from the crosse of two lines with respective population memberships p1 and p2. Such
designs are commonly used in hybrid breeding (Bernardo, 1994).

In this context, we aim at estimating the double relatedness coefficient, defined as:

Φ = ∆1 + ∆9 + ∆10 (2.7)

that can be understood as the probability that both alleles of the first individual are
IBD to those of the second individual. This quantity is a key component of relatedness
that naturally appears when computing the phenotypic covariance between two hybrids
(see Crow and Kimura (1970) for instance). The two following situations may arise:

� if both hybrids are derived from four different lines belonging to a same population,
then the double relatedness coefficient is non-estimable,

� if the two hybrids share a common parental line, or if at least two of the four
parental lines come from different populations, then the double relatedness coeffi-
cient is estimable.

Note that the previous result does not definitely prevent the estimation of Φ in a dial-
lel experiment: the result only states that Φ cannot be correctly inferred from biallelic
marker data.

Class identification In some contexts the identification of different types of related-
ness relationship may be at stake. While it is out of the scope of this chapter to propose
a general strategy for the identification of relationship classes, we present here a very
simple simulation study to illustrate the following intuitive idea: having access to the
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full set of relatedness parameters rather that synthetic measures only should help to
identify relationship classes, as long as the estimation task is possible, i.e. as long as the
set of parameters is actually identifiable.
The different variants of Model (2.5) (but also of Model (2.2) corresponding to the un-
phased case) presented in the previous section have been implemented in the Relatedness
R package (Laporte and Mary-Huard, 2017), and the method will be referred to as RelML
furtherdown.

We simulated couples of hybrids corresponding to one of two possible relatedness
distributions given in the following table:

∆9 ∆11 ∆14 ∆15 Other ∆s

Class 1 0.275 0.3 0.2 0.225 0

Class 2 0.275 0.25 0.25 0.225 0

Genotypic data corresponding to 10000 SNPs were simulated for 50 couples of hybrids
in each class.

One can observe that the two classes can only be distinguished based on coefficients
∆11 and ∆14. Note that according to Proposition 2 the two set of relatedness param-
eters are fully identifiable. In the present context, the simple and double relatedness
coefficients are:

K =
1

2
∆9 +

1

4
(∆11 + ∆14) = 0.2625

Φ = ∆9 = 0.275

for any couple, whatever the class. Consequently, these two synthetic measures are non-
informative for the classification task and any attempt to classify the couples according
to these classical measures would yield a spurious classification. In comparison, we pro-
cessed the genotypic data to obtain the estimated relatedness distribution parameters
for each couple, then classified couples into two clusters using a K-means algorithm,
based on the full set of estimated relatedness coefficients. Figure 2.1 (left) displays the
boxplots for the two coefficient ∆11 and ∆14, in each class. For a given coefficient, the
two boxplots do not overlap meaning that the relevant information for clustering is cor-
rectly inferred. This is confirmed in Table 2.5 (left) where one can observe a perfect
classification by the K-means algorithm.

The same analysis was rerun except that the two relatedness distributions were
slightly modified as follows:

∆9 ∆11 ∆14 ∆15 Other ∆s

Class 1 0.275− 4ε 0.3− 4ε 0.2− 4ε 0.225 + ε ε

Class 2 0.275− 4ε 0.25− 4ε 0.25− 4ε 0.225 + ε ε

Here we chose ε = 0.03. While for a given coefficient ∆j the gap ‖∆1
j −∆2

j‖ remains the
same as in the previous analysis, the consequence of the modification is that coefficients
∆11 and ∆14 are not identifiable anymore, according to Proposition 2 in Section 2.2.1.
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Classified 1 Classified 2

Class 1 50 0
Class 2 0 50

Classified 1 Classified 2

Class 1 36 14
Class 2 33 17

Identifiable case Non-identifiable case

Table 2.5: Couple classification using the K-means clustering algorithm (true classes in lines,
predicted clusters in columns).

As expected non-identifiability strongly impacts the inference, as illustrated in Figure 2.1
(right), and the classification performance is significantly degraded, see Table 2.5 (right).

The present simulation study is simplistic in many aspects: in practice the true
number of classes (i.e. the different levels of relatedness between individuals) would be
unknown, the class membership information would be spread across the different relat-
edness parameters, and even if non-identifiability may be expected to some level, it may
be moderate in terms of impact on the precision of the estimators. The simulation shows
that when identifiability is guaranteed working on the full set of relatedness parameters
should help to retrieve the relatedness class membership between individuals, and that
non-identifiability, if not accounted for, may blur information and impact the results of
the statistical analysis based on the inferred relatedness coefficients.

Figure 2.1: Left: Boxplots over 50 couples of hybrids of the estimates of ∆11 and ∆14 using
RelML, obtained for the identifiable set of relatedness parameters. Red dots corresponding to
the true values of these coefficients. Right: Same boxplots when the relatedness parameters are
non-identifiable.

Merging markers When the marker data at hand are biallelic, several strategies have
been proposed to “merge” adjacent markers, i.e. to synthesize multi-allelic marker data
based on the initial biallelic information. These strategies may be useful but require
a supplementary pre-processing step of the data, and their efficiency depends on the
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relevant tuning of the parameters of the merging strategy (should the merging be per-
formed within a sliding window along the genome ? If so what should be the size of the
window ? Etc.). The results presented here provide guidelines on when (and why) such
alternatives should be considered.

2.3 Comparison with Classical Inference Method

We compare ML estimators to the classical moment estimator proposed by Astle
and Balding (2009), noted A&B in the following. Note that the A&B method only
estimates the simple relatedness coefficient, defined for two individuals i and j as

Ki,j = ∆1 +
1

2
(∆3 + ∆4 + ∆6 + ∆7 + ∆9 + ∆10) +

1

4
(∆11 + ∆12 + ∆13 + ∆14) (2.8)

This coefficient can be interpreted as the probability that two alleles picked randomly,
one in individual i and the other in individual j, are inherited from a common ancestor.
The A&B estimator for this coefficient is

K̂A&B
i,j =

1

L

L∑
`=1

(Gi,` − p`)(Gj,` − p`)
p`(1− p`)

where Gi,` is the genotype of individual i at marker ` (coded with 0, 0.5 or 1 for a hybrid,
and 0 or 1 for a line).

We will also consider the double relatedness coefficient, defined in Section 2.2.4.
When dealing with two hybrids H1 = L1 × L2 and H2 = L3 × L4, the simple and
double relatedness coefficients are obtained from the simple relatedness coefficients of
the parental lines using the following formulas (Bernardo, 1994):

KH1,H2 =
1

4
(KL1,L3 +KL1,L4 +KL2,L3 +KL2,L4) (2.9a)

ΦH1,H2 =
1

2
(KL1,L3KL2,L4 +KL1,L4KL2,L3) (2.9b)

As discussed in Section 2.3.1, note that Equality (2.9b) actually requires an extra
assumption to be verified. Combining these formulas with the A&B estimator for
KLu,Lv , u, v ∈ [1, 4] yields estimators for KH1,H2 and ΦH1,H2 , hereafter referred to as the
A&B estimators. We compare the A&B estimators with the ones provided by RelML
(obtained by applying formulas (2.8) and (2.7) to the estimated relatedness coefficients)
on both simulated and real data.

2.3.1 Simulated Data

We simulated genotypic data corresponding to (i) pairs of hybrids (settings 1 and 2)
or (ii) a complete hybrid crossing design (setting 3). The first two settings will be used
for the comparison of methods A&B and RelML regarding the precision when estimating
the simple relatedness coefficient (setting 1) or the double relatedness coefficient (setting
2). Setting 3 will be used to investigate the impact of allelic frequency estimation on
simple relatedness estimation. 10,000 biallelic markers were simulated for settings 1 and
2, and 8,000 for setting 3.
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Simulation setting 1 In this setting, all hybrids are assumed to belong to a same
population. Four different values for the simple relatedness coefficient are considered:
K = 0.05, 0.10, 0.15 and 0.20. For each of these values, 20 configurations are simu-
lated, each configuration corresponding to one relatedness distribution ∆ and one allelic
frequency vector F . Each relatedness distribution ∆ is generated under the following
constraints:

� ∆ ∈ S15
+ ,

� K is set at the chosen value,

� the double relatedness Φ is set at 0.05.

Each of the 10,000 allelic frequencies is generated using a uniform distribution over
[0.1, 0.9]. For a given combination (∆, F ), 20 pairs of hybrids are generated. For a given
pair, the IBD and IBS status of locus ` are simulated as follows. First, the IBD status
is drawn in the multinomial distribution M(∆). Then, to obtain the IBS status (i.e.
the genotype of the two hybrids), the 15× 16 matrix of conditional probabilities m`

ij =
P (IBS` = oi|IBD` = cpj ) is computed using allelic frequency F`. Assuming IBD` = j, the

IBS status at locus ` is drawn in the multinomial distribution M(m`
1j , ...,m

`
15j). The

IBS status directly provides the genotypic data. To summarize, the data at hand consist
in 4× 20× 20 = 1, 600 pairs of hybrids, each genotyped at 10,000 markers.

Simulation setting 2 In this setting the generated data correspond to a factorial
panel, i.e. each hybrid is assumed to be derived from a cross between two lines belonging
to two different populations. This ensures the identifiability of the double relatedness
coefficient, and also fixes ∆i = 0 for i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13}. Four different
values of double relatedness coefficient are considered: Φ = 0.01, 0.05, 0.10 and 0.15.
Importantly, an extra condition can be imposed:

∆9 = (∆9 + ∆11)× (∆9 + ∆14) . (2.10)

Condition (2.10) states that the double relatedness coefficient is equal to the product of
the simple relatedness coefficient computed for each couple of parental lines belonging
to the same population. While there is no guarantee that this condition is satisfied in
real experiments, it is implicitly assumed to be satisfied in formula (2.9b). The rest of
the simulation is similar to the previous setting (with one allelic frequency vector per
population). To sum up, the simulation of the relatedness distribution ∆ is performed
with the constraints

� ∆ ∈ S15
+ ,

� Φ is set at the chosen value,

� the simple relatedness K is set at 0.18,

� ∆i = 0 for i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13},

� with or without satisfying condition (2.10).



26 CHAPTER 2. ESTIMATION OF RELATEDNESS

We experimentally observed in this setting that, when condition (2.10) is not satisfied,
the difference ∆9 − (∆9 + ∆11) × (∆9 + ∆14) decreases with respect to Φ (see Figure
2.3, center). Also note that in settings 1 and 2 the considered values for K and Φ
were selected based on the value range observed for these two quantities in the dataset
presented in Section 2.3.2.

Simulation setting 3 In this setting, a complete hybrid crossing design is simulated
as follow. First, a set of allelic frequencies is generated for the 8,000 markers. These
frequencies are drawn independently in the [0.1,0.9] uniform distribution. These allelic
frequencies characterize the founder population. Based on these founder allelic frequen-
cies, 5 founder lines are independently drawn. A family is then derived from each founder
line: each family consists of 20 lines independently drawn from each others such that
their expected relatedness level to the founder line is fixed, and differs from a family to
another. The relatedness levels between a line and its associated founder are

√
0.1,
√

0.3,√
0.5,
√

0.7 and
√

0.9 for the 5 families respectively, resulting in relatedness levels of 0.1,
0.3, 0.5, 0.7 and 0.9 between lines within a family. Families A and B - corresponding to
those with relatedness level 0.3 and 0.7, respectively - are then selected, and only the
crossings between distinct lines are made. This results in a set of 20∗19/2 = 190 hybrids
exhibiting complex patterns of relatedness.

Comparison with A&B Figure 2.2 displays the boxplots of the raw differences be-
tween the true and estimated values of K. One can observe that the two estimators
perform equally well for the estimation of the simple relatedness coefficient. Figure
2.3 displays the boxplots of the raw differences between the true and estimated values
of Φ. One can observe that the two estimators perform equally for the estimation of
the double relatedness coefficient if condition (2.10) is verified. When the condition
is not verified the A&B procedure yields highly biased estimates whereas the RelML
estimators are quite robust in this context. Note that the apparent bias reduction
of the A&B procedure when Φ increases is mostly due to the fact that the difference
∆9− (∆9 + ∆11)× (∆9 + ∆14) decreases with respect to Φ in this setting, as illustred in
Figure 2.3 (center).

Impact of allelic frequency estimation We consider the data generated using sim-
ulation setting 3. The goal is to estimate coefficient K for each pair of hybrids. The
estimation is performed with RelML, using either the true allelic frequencies or the
frequencies estimated from the 100 parental lines. Figure 2.4 displays the differences
between the true and estimated K in these two situations. One observes a slight over-
estimation of K when the theoretical frequencies are used. This is mainly explained by
the fact that neither the crossing design nor the population structure was accounted for
RelML, therefore simple relatedness coefficients for hybrids belonging to different fam-
ilies (i.e. a hybrid AA and a hybrid BB) are not estimated at exactly 0. One can also
observe an underestimation of K when the allelic frequencies are estimated using the
parental lines. This underestimation can also be observed for the A&B procedure, and
can be explained as follows. Whatever the method, the estimation of relatedness is based
on the observation that, over all loci, individuals share more alleles than expected if they
were not related. This expectation is related to the genetic diversity He ∝

∑
` p`(1−p`).
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Figure 2.2: Boxplot of estimation errors for the simple relatedness coefficient, computed on 400
couples. Numerical results are available in the Appendix B.

Figure 2.3: Left: Boxplot of estimation errors for coefficient Φ where the condition ∆9 = (∆9 +
∆11)× (∆9 + ∆14) is verified, computed on 400 couples. Center: Boxplot of differences between
the true value of ∆9 and ∆9 = (∆9 + ∆11) × (∆9 + ∆14) when the condition is not satisfied,
represented as a function of the true value of coefficient Φ. Right: Boxplot of estimation errors
for coefficient Φ where the previous condition is not verified, computed on 400 couples. Not
that the scale of the y-axis differs between the 3 figures. Numerical results are available in the
Appendix B.
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Figure 2.4: Difference between true and RelML-estimated values of the simple relatedness coeffi-
cient, using the true (left) or panel-estimated (right) allelic frequencies.

When the allelic frequencies are estimated on a sample of closely related individuals, He

will be underestimated, and consequently the probability that two unrelated individuals
share a same allele will be overestimated. Figure 2.5 illustrates the impact of allelic fre-
quency estimation on the estimated diversity. This will result in an underestimation of
K for related individuals. We also observed that removing markers having a low MAF in
the reference population reduces this underestimation. Figure 2.6 illustrates the impact
of removing markers having a (supposedly known) low MAF in the population. Here
markers are filtered based on their MAF with a threshold t at 0 (no filter), 0.2 and 0.4.
One can see that the bias significantly decreases with respect to t.

The choice of the reference panel used for the estimation of allelic frequencies is
therefore crucial, and a poor estimation may lower the performance of RelML - and prob-
ably of most relatedness estimation methods (see Bink et al. (2008) for a comprehensive
study on this topic).

2.3.2 Real Data

We present the application of the two estimation procedures to a panel of 346
maize hybrids obtained by crossing lines according to a diallel design. More precisely,
120 (respectively 126) lines were collected in the Flint (respectively Dent) population,
and genotyped for 49,574 SNPs. Hybrids were derived from crossings with the following
distribution: 90 Flint×Flint hybrids, 92 Dent×Dent hybrids, 76 Flint×Dent hybrids and
88 Dent×Flint hybrids.
In this multi-population design there are 3 possible ways to perform an A&B estimation.
All strategies are based on Equation (2.9), but the ways to obtain the simple relatedness
coefficient between parental lines are different:
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Figure 2.5: Estimated versus True diversity, computed on data simulated using setting 3. Each
point corresponds to a locus. The red (respectively blue) curve corresponds to the first bisector
(respectively a loess estimation of the relationship between estimated and true diversity).

Figure 2.6: Difference between true and RelML-estimated values of the simple relatedness coeffi-
cient, using the true (left) or panel-estimated (right) allelic frequencies with a filter on the minor
allele frequency (MAF).
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� A&B V1: The simple relatedness coefficient is inferred between lines using:

K
Lk1 ,L

k′
2

=
1

L

L∑
l=1

(Gl,Lk1
− pkl )(Gl,Lk′2 − p

k′
l )√

pkl (1− pkl )× pk
′
l (1− pk′l )

1{k=k′} ,

where Gl,Lk1
is the genotype of line L1 in population k, and pkl the allelic frequency

for marker ` in population k. Note that the simple relatedness coefficient between
two lines belonging to two different populations is set to 0.

� A&B V2: The simple relatedness coefficient between two lines is inferred using:

K
Lk1 ,L

k′
2

=
1

L

L∑
l=1

(Gl,Lk1
− pkl )(Gl,Lk′2 − p

k′
l )√

pkl (1− pkl )× pk
′
l (1− pk′l )

.

� A&B V3: The simple relatedness coefficient between two lines is inferred using a
single allelic frequency vector obtained as the weighted mean of the allelic frequency
vector of each population.

KL1,L2 =
1

L

L∑
l=1

(Gl,L1 − pl)(Gl,L2 − pl)√
pl(1− pl)× pl(1− pl)

Applied to the present dataset, the results with the procedure A&B V2 and those with
the procedure A&B V3 are quite similar.

Consequently we omitted procedure A&B V3, and only comparisons between RelML,
A&B V1 and A&B V2 are presented here. The relatedness distribution has been inferred
for each couple of hybrids, requiring a computational time of 13 hours (using 8 cores).
Note that this time can be significantly reduced using less markers, possibly selected
based on mapping information, see Appendix C and Appendix D for details. Here we
focus on the estimation of the simple relatedness coefficient.

Figure 2.7 (left) displays the boxplot of the estimated simple relatedness coefficient
K obtained with the A&B V1 or A&B V2 (orange) or the RelML method (purple),
with respect to the number of common parent(s) between the two hybrids. The same
data are represented in the right panel of Figure 2.7, where each point represents a
pair of hybrids, represented by its estimated K value using A&B (x-axis) and RelML
(y-axis). Colors correspond to the number of common parent(s). Comparing A&B
V1 and RelML (on top panel of Figure 2.7), one can first observe that the two sets
of estimation are quite concordant. The major difference is the fact that the A&B
estimator yields estimated values that can be lower than one could expect from theory.
It is already well-known that A&B can produce negative kinship values. In the case
where one or two parents are shared by the hybrids, the simple relatedness coefficient
should be equal or greater than 0.25 (1 common parent) or 0.5 (2 common parents). As
observed here, the smallest estimations obtained with the A&B estimator are 0.15 and
0.39, respectively. In comparison, the RelML estimates are always equal or larger than
the expected lower bound. When the number of common parent is 0 (i.e. the lower
bound for K is also 0), it comes with no surprise since by construction ∆̂ ∈ S15

+ . It
turns out that this simplex constraint, associated with the fact that RelML accounts
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Figure 2.7: Left: Boxplot of simple relatedness coefficient with respect to the number of common
parent(s). Right: Colors correspond to different parental configurations (black: no common parent
between hybrids, all parents come from a same population, yellow: no common parent, parents
come from two different populations, blue: one common parent, grey: two common parents).
Top: Comparison between RelML and A&B V1. Bottom: Comparison between RelML and A&B
V2.
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for the crossing design, enforces the estimated simple relatedness coefficient to be equal
or higher than its theoretical lower bound in the case where one or two parents are
shared by the hybrids. Indeed, if two hybrids have a common parent then only ∆̂i for
i ∈ I = {1, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14} will be non zero (thanks to the crossing design),
and will sum to 1 (thanks to the simplex constraint). Combining this with the formula
of K given in Equation (2.8) leads to K̂ ≥ 1

4

∑
i∈I ∆̂i = 1

4 . A similar reasoning shows

that K̂ ≥ 1
2 when the hybrids share two common parents.

Comparing RelML with A&B V2 (Figure 2.7), one can observe a higher difference
than with A&B V1. This difference comes from hybrids without common parent but
with parental lines derived from two populations. The values of K obtained with A&B
V2 are higher than the ones obtained with RelML or A&B V1, because the simple
relatedness coefficient between lines belonging to different populations (hence known to
be 0) is not inferred at 0 in A&B V2. This illustrates that one should care about which
version of A&B to use according to different situations. In comparison, RelML provides
a unique framework adapted to all situations.

2.4 Conclusions

The Relatedness R package presented in this article provides MLE for the complete
set of relatedness coefficients from SNP data. While the results have been illustrated
on “hybrid data”, i.e. assuming that the individuals are hybrids derived from crossing
between lines, Relatedness also handles the classical case where the genotypic informa-
tion corresponds to unphased data collected on individuals in a single population. We
illustrated that the non-indentifiability issue raised by Csuros (2014) in the case of un-
phased data also occurs in phased data, but may be solved as soon as extra information
about the crossing design is taken into account in the inference step. The specific case of
crossing design is particularly relevant in plant genetics, but the principle of accounting
for population membership could be extended to animal breeding where intra and inter
population mating also occur. More generally, it illustrates how accounting for the full
information available may be of importance to avoid statistical identifiability issues. It
also illustrates how a naive inference of the relatedness distribution may lead to mis-
leading conclusions when applied to experimental design such as diallel designs, where a
same relatedness component (the double relatedness coefficient) may be identifiable or
not, depending on the couple of individuals considered.

Infering relatedness is highly related to some classical tasks in quantitative genet-
ics such as QTL detection or genomic prediction. Regarding the QTL detection task,
association studies nowadays routinely include a kinship matrix K (with Kij the simple
relatedness coefficient between individuals i and j) to account for background additive
effects. Several attempts have been proposed to generalize this modeling by including a
second matrix Φ (with Φij the double relatedness coefficient between individuals i and
j) to account for possible background dominance effects (Technow et al., 2012). The
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performance of such strategies may be impacted by the estimation precision of the relat-
edness parameters. Similarly, matrix Φ could also be accounted for in genomic selection
to improve the prediction accuracy of the GBlup procedure (Technow et al., 2012) in
presence of dominance. Before studying marker detection, we had been interested in
performance of algorithm to infer mixed model parameters.
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2.5 Appendix

Appendix A: An overview of EM algorithm

The EM algorithm is largely used to obtain Maximum Likelihood Estimator (MLE)
of unknown parameters in mixture models. Quoting X a variable with a density func-
tion f(x, θ) where θ is an unknown parameter. The log-likelihood of the data X =
(X1, ..., Xn), where Xi are independent and identically distributed with the density func-
tion f(x, θ), is:

L(θ;X) =

n∑
i=1

log[f(Xi, θ)] (2.11)

The goal of MLE is to maximize the function defined in (2.11) with respect to θ. The EM
algorithm is based on the use of hidden variables Z = (Z1, ..., Zn). Quoting h(Zi|(Xi, θ))
the density function of these variables knowing Xi and θ. Then the log-likelihood of the
couple (X,Z) is:

L(θ; (X,Z)) =
n∑
i=1

log[h(Zi|(Xi, θ))] + log[f(Xi, θ)] (2.12)

Combining equations (2.11) and (2.12), and using the expectation with respect to vari-
ables Z, one obtains the following equation:

E
[
L(θ;X)|θ(t)

]
= E

[
L(θ; (X,Z))|θ(t)

]
− E

[ n∑
i=1

log[h(Zi|(Xi, θ))]|θ(t)
]

L(θ;X) = Q(θ|θ(t))−H(θ|θ(t)) (2.13)

Maximize Q(θ|θ(t)) in (2.13) with respect to θ increases the log-likelihood of the complete
data. For all θ, one has:

L(θ;X)− L(θ(t);X) = Q(θ|θ(t))−Q(θ(t)|θ(t))− (H(θ|θ(t))−H(θ(t)|θ(t)))(2.14)

And the Jensen Inequalities ensure that:

∀θ, H(θ|θ(t)) ≤ H(θ(t)|θ(t))

So equation (2.14) can be written as an inequality:

L(θ;X)− L(θ(t);X) ≥ Q(θ|θ(t))−Q(θ(t)|θ(t)) (2.15)

The inequality (2.15) prooves the improvement of the log-likelihood if one use the iter-
ation update θ(t+1) = arg max

θ
Q(θ|θ(t)).

The EM algorithm is composed of two steps:

� Expectation (E-step): Calculate Q(θ|θ(t))

� Maximization (M-step): Calculate θ(t+1) = arg max
θ

Q(θ|θ(t))

In the model (2.3) the observed vector X corresponds to the vector of IBS configura-
tions through all locus, parameter θ corresponds to the vector of unknown distributions
∆ and vector Z corresponds to the vector of IBD configurations through all locus.
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Appendix B: Numeric values for the A&B and RelML estimators

The numerical results displayed in Suppl. Table 2.6 (respectively Suppl. Table 2.7
and 2.8) correspond to the ones presented in Figure 2.2 (respectively 2.3), Section 2.3.1
of the chapter 2. The displayed values are the mean, bias, standard deviation and MSE
of the A&B and RelML estimates.

K A&B

Mean Est Bias Sd MSE
0.05 0.05 4.21× 10−4 9.51× 10−3 9.03× 10−5

0.10 0.10 −2.84× 10−4 9.23× 10−3 8.51× 10−5

0.15 0.15 15.01× 10−4 15.71× 10−3 24.84× 10−5

0.20 0.20 −0.89× 10−4 12.35× 10−3 15.23× 10−5

K RelML

Mean Est Bias Sd MSE
0.05 0.05 15.68× 10−4 7.98× 10−3 6.59× 10−5

0.10 0.10 4.01× 10−4 8.05× 10−3 6.48× 10−5

0.15 0.15 4.02× 10−4 7.63× 10−3 5.82× 10−5

0.20 0.20 1.47× 10−4 7.20× 10−3 5.18× 10−5

Suppl. Table 2.6: Mean, bias, standard deviation and MSE of the A&B and RelML estimates
for the simple relatedness coefficient.

Φ A&B

Mean Est Bias Sd MSE

0.01 0.01 −4.95× 10−3 8.89× 10−3 1.03× 10−4

0.05 0.06 7.37× 10−3 8.41× 10−3 1.25× 10−4

0.10 0.11 15.42× 10−3 9.85× 10−3 3.35× 10−4

0.15 0.16 14.89× 10−3 12.88× 10−3 3.87× 10−4

Φ RelML

Mean Est Bias Sd MSE
0.01 0.03 17.98× 10−3 6.18× 10−3 3.61× 10−4

0.05 0.06 13.12× 10−3 10.43× 10−3 2.80× 10−4

0.10 0.11 5.81× 10−3 10.42× 10−3 1.42× 10−4

0.15 0.14 −7.89× 10−3 10.38× 10−3 1.70× 10−4

Suppl. Table 2.7: Mean, bias, standard deviation and MSE of the A&B and RelML estimates
for the double relatedness coefficient, when condition ∆9 = (∆4 + ∆9)(∆7 + ∆9) is satisfied.

Appendix C: Computational time

While obtaining the relatedness coefficients for a couple of individuals is quite
fast, in practice one usually needs to compute the set of coefficients for all couples of
individuals in a panel. The computational burden associated to this task is linear in
the number of markers and quadratic in the number of individuals. To speed up the
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Φ A&B

Mean Est Bias Sd MSE
0.01 0.14 0.13 45.73× 10−3 18.70× 10−3

0.05 0.13 0.08 39.62× 10−3 8.15× 10−3

0.10 0.15 0.05 16.55× 10−3 3.04× 10−3

0.15 0.14 −0.01 23.36× 10−3 0.68× 10−3

Φ RelML

Mean Est Bias Sd MSE
0.01 0.04 29.38× 10−3 15.61× 10−3 1.11× 10−3

0.05 0.06 14.47× 10−3 16.57× 10−3 0.48× 10−3

0.10 0.11 10.28× 10−3 13.65× 10−3 0.29× 10−3

0.15 0.15 0.77× 10−3 14.76× 10−3 0.22× 10−3

Suppl. Table 2.8: Mean, bias, standard deviation and MSE of the A&B and RelML estimates
for the double relatedness coefficient, when condition ∆9 = (∆4 + ∆9)(∆7 + ∆9) is not satisfied.

computation the EM algorithm has been coded in C with the acceleration proposed by
Varadhan and Roland (2008) and parallelized in the Relatedness package. Another
way to reduce the computational time is to reduce the number of markers taken into
account for the computation. The number of markers can be selected according to the
required precision. Top Figures in Suppl. Figure 2.8 displays the error |KH1,H2−K̂R

H1,H2
|

over 50 simulations as a function of the number of markers, for the estimation of the
simple relatedness coefficients. One can observe that only 10,000 markers are required
to guarantee an error range as low as 0.01. Applying RelML to all pairs of hybrids
described by 10,000 biallelic markers in a panel of size 100 (i.e. 5050 couples) results in
a computational time of 7 minutes (on a personal laptop with 8 cores). See also Web
Appendix D for a study about marker selection on real data.

Appendix D: Impact of Linkage Disequilibrium and SNP selection on
relatedness coefficient estimation

In Appendix C the problem of reducing the computational cost by reducing the
number of markers was considered. The numerical study showed that marker selection
has minor impact on the precision of the simple relatedness coefficient estimator. How-
ever, this conclusion was drawn on the basis of simulated data, where markers were
generated independently from each others. It is not clear how these results can be ex-
tended to real data experiments where the level of Linkage Disequilibrium (LD) may
be high. We present here some additional results obtained on the maize dataset used
in Section 2.3.2 of the manuscript. Note that for an equivalent panel, Rincent et al.
(2014b) recently evaluated the actual number of independent markers to be ≈ 4000.

To study the impact on inference of i) LD and ii) working with a reduced number
of markers, we applied RelML to different subsets of selected markers. Two differ-
ent strategies were considered for the selection. The first strategy consisted in selecting
markers such that the minimum genetic distance between two consecutive markers along
the chromosome was higher than dmin. Different values of dmin were considered, cor-
responding to the division of the total genetic length of the map by 1000, 5000, 10000
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Suppl. Figure 2.8: Left: Boxplot of the absolute error for the estimation of simple relatedness
coefficients with respect to the number of marker, over 500 simulated couples. The solid line
indicates a threshold of 0.01 for the absolute error. Right: Boxplot of computational time for 50
couples, averaged over 10 trials. Note that the scale of this axis is not linear.

Minimal Genetic Distance (cM)

quantile 2.29 0.46 0.23 0.11

75% 7.2× 10−3 3.8× 10−3 3.2× 10−3 2.9× 10−3

90% 13.7× 10−3 7.6× 10−3 6.7× 10−3 5.9× 10−3

Suppl. Table 2.9: Quantiles of the absolute error between simple relatedness coefficients estimated
from the whole set of markers or from a set markers selected based on their genetic distances.

and 20000, respectively. For each value of dmin, 10 marker selections were performed,
corresponding to different ”starting” markers along the chromosome. On average, the
number of selected markers corresponding to each value of dmin were 897, 3370, 5393 and
7938, respectively. The second strategy consisted in selecting a same number of markers
randomly. For each subset, the absolute errors between simple coefficients computed on
the whole set and on the subset of markers were recorded.

Suppl. Table 2.9 displays the quantiles of the absolute error for the first strategy
(subsetting wih a minimal genetic distance). One can observe that for most couples of
hybrids the absolute difference is lower than 0.01. One can conclude that accounting for
linkage disequilibrium has limited impact on the estimation of relatedness using RelML.
The same results are displayed in Suppl. Table 2.10 for the second strategy (subsetting

Number of markers

quantile 897 3370 5393 7938

75% 6.6× 10−3 3.0× 10−3 2.2× 10−3 1.8× 10−3

90% 12.6× 10−3 5.8× 10−3 4.4× 10−3 3.4× 10−3

Suppl. Table 2.10: Quantiles of the absolute error between simple relatedness coefficients esti-
mated from the whole set of markers or from a set of randomly selected markers.
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at random). One concludes that using ≈ 8000 markers instead of 46474 (i.e. dividing the
number of used markers by 5.8) does not substantially affect the estimation of simple
relatedness. Note that in a similar study (Bink et al. (2008)) the authors reached a
similar conclusion.

In both tables, the difference between the simple relatedness coefficient inferred
with (i) all the markers and (ii) a reduced number of markers increases as the number of
markers decreases. This difference appears larger with the markers selected according to
the genetic map, especially when short intervals are considered. Still, one can note that
with this method the ”error” decreases as the inverse of the square-root of the number
of markers, which is expected with independent markers. This expectation of variation
is find with the simulated data too.







Chapter 3

Evaluating the performance of
different mixed model inference

procedures in the context of
statistical genetics

Since their formal introduction in the early 50’s (Henderson, 1953; Scheffe, 1956),
mixed models have become an indispensable tool of modern statistics. It has been suc-
cessfully applied in many application fields (Gibbons and Hedeker, 2000) to model data
with multiple sources of (biological or technical) variations. Starting with Griffing (1956)
and Henderson (1973), mixed models have been a flavored methodology in quantitative
genetics, and are still widely used in the context of Genome-Wide Association Studies
(GWAS) and Genomic Selection (GS).
With the development of high throughout technologies, a special care has been dedicated
to the development of efficient algorithmic procedures for the inference of mixed models
(Kang et al., 2008; Lippert et al., 2011; Zhou and Stephens, 2012; Perdry and Dandine-
Roulland, 2017). This is illustrated by the availability of many tools/softwares that
either perform inference in a mixed model including many (fixed and random) effects on
large datasets, or alternatively that efficiently fit hundreds of thousands of mixed mod-
els with a limited number of variance components. Due to the numerous optimization
algorithms available and the many technical shortcuts involved in each of them, it may
become difficult for the user to identify which algorithm would lead to the most efficient
inference on a particular dataset.

The goal of this chapter is to compare different algorithms used in plant breeding
GWAS and GS studies. In the context of plant breeding panels are often of moderate
size, including a few hundreds/thousands of individuals only due to experimental and
cost constraints. At the same time, the variance component mixed models used for the
statistical analysis may be more complex that the ones used in human genetics, since
the modeling should account for the specificities of the experimental design (e.g. when
a multi-site experiment involving the same varieties in different environments has been

41
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carried out) or of the crossing design (e.g. when considering hybrids obtained from
parental lines belonging to different populations). One then aims at choosing the al-
gorithmic procedure that is best suited to cope with these specific constraints. In the
present paper we focus on the set of algorithmic procedures that provide the ReML
estimates of the fixed effects and the variance components. This set includes procedures
that directly optimize the restricted log-likelihood over a grid of values (available when
the number of components is equal to 2), a first order method based on the Min-Max
(MM) algorithm described by Hunter and Lange (2004) and applied to mixed models
by Zhou et al. (2015), and a second order (Newton like) method called the Average
Information (AI) algorithm described in Johnson and Thompson (1995). Note that this
last algorithm has been widely used in animal genetics and is the core procedure of the
ASReml software for mixed model inference (Gilmour et al., 2009). We first provide an
algorithmic overview of the different methods, highlighting the different technical tricks
that lead to their efficient implementation. We then present a benchmark analysis where
three popular R packages (gaston, FaSTLMM and ASReml) and the more recently pro-
posed MM procedures are compared on different scenarios. This empirical study reveals
that while the differences in terms of precision may be marginal between procedures, the
differences in terms of computational efficiency may be huge. Moreover, one can easily
exhibit configurations where a given algorithm will perform poorly compared with its
competitors. The observed performances are related to the respective algorithmic prop-
erties of the different procedures in order to provide some general guidelines to users.
Importantly, we also investigated the impact that the algorithmic procedure may have
on the resulting list of detected QTLs. The impact may be important, especially in a
context where the list of detected QTLs is usually small due to the lack of power inherent
to the moderate size of the available panels.

The chapter is organized as follows: Section 3.1 introduces the statistical framework
of variance component mixed models, the different algorithmic procedures are presented
in Section 3.2, and the results of the benchmark study are displayed in Section 3.3.
Lastly some discussion is developed in Section 3.4.

3.1 Mixed Model

In this chapter we focus on variance component models of the form:

Y ∼ N (Xβ,
K∑
k=1

σ2
kVk) (3.1)

where Y is the vector of observations, X is an incidence matrix, β is the vector of fixed
effects, Vk is the (known) covariance matrix associated to the kth random effect and
γ = (σ2

1, ..., σ
2
K) is the vector of variances associated to the K random effects. A special
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case of Model (3.1) is the following mixed model:

Y = Xβ +
K−1∑
k=1

Zkuk + e (3.2)

with


uk ∼ N (0, σ2

kRk), k = 1, ...,K − 1,

e ∼ N (0, σ2
KVK)

u1 ⊥ ... ⊥ uK−1 ⊥ e ,

where uk is the kth random effect vector, Zk (resp. Rk) is the incidence matrix (resp. the
correlation matrix) associated with random effect uk, e is an error vector, and notation
A ⊥ B stands for ”A and B are independent”. Model (3.2) boils down to Model (3.1)
where Vk = ZkRkZ

T
k . Lastly, we introduce Σγ =

∑K
k=1 σ

2
kVk, the covariance matrix of

vector y. In the following we will use Σ in place of Σγ when no confusion is possible.

The goal is then to infer the unknown mean and variance parameters β and γ. In
this chapter we consider the Restricted Maximum Likelihood (ReML) estimation proce-
dure (Harville, 1977).
Let ΠX⊥ = I −X(XTX)−1XT be the projection matrix on span(X)⊥, and M be any
matrix built from the columns of ΠX⊥ such that M is of full rank and rank(M) =
rank(ΠX⊥). Applying M to the initial data vector y allows one to get rid of the fixed
effects. The restricted (log-) likelihood corresponds to the (log-) likelihood of the trans-
formed data My, and has the following expression

LR(γ|y) = −1
2

[
log(|XTΣ−1

γ X|) + log(|Σγ |)
+yTPγy

] (3.3)

where |H| stands for the determinant of matrix H and

Pγ = MT (MΣγM
T )−1M

= Σ−1
γ − Σ−1

γ X(XTΣ−1
γ X)−1XTΣ−1

γ .

Note that LR(γ|y) does not depend on β (since MX = 0 by construction), nor on the
specific choice of M thanks to the second expression of Pγ (see also Searle et al. (1992)).
Variance parameters γ̂ can be estimated by applying the classical Maximum Likelihood
procedure to LR, then fixed effects can be obtained using the following formula:

β̂ = (XTΣ−1
γ̂ X)−1XTΣ−1

γ̂ y.

Although quite popular, the ReML procedure may be quite challenging from a
computational point of view, the bottleneck being the maximization of the log-likelihood
(3.3) w.r.t. γ. Although the first derivative of LR with respect to σ2

k has a simple
expression:

∂LR
∂σ2

k

= −1

2

[
tr(PγVk)− yTPγVkPγy

]
,

solving the system of K equations ∂LR
∂σ2
k

= 0, k = 1, ...,K does not lead to a closed form

expression for γ̂. Consequently likelihood maximization has to be performed numerically.
The next section present some classical optimization algorithms to obtain the ReML
variance estimates.
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3.2 Algorithm Overview

In this section we consider two algorithms for the maximization of the restricted
log-likelihood. The first one is an adaptation of the Newton algorithm, where the clas-
sical Hessian matrix is replaced by the so-called ”Average Information” matrix that
can be efficiently computed (Johnson and Thompson, 1995; Gilmour et al., 1995). This
algorithm is quite popular and is implemented both in the gaston R package (Perdry
and Dandine-Roulland, 2017) and in the statistical software package Asreml (Gilmour
et al., 2009). The second one is the iterative Minimization-Maximization algorithm for
variance component models recently proposed in Zhou et al. (2015). The last paragraph
of this section focuses on the particular case of the 2-variance component mixed model
(i.e. K = 2) where efficient computational tricks exist to significantly speed up the
optimization.

3.2.1 Newton-based algorithms

Newton and Fisher algorithms

Let first rewrite Model (3.1) as

Y = Xβ + Zu+ e

where Z = (Z1|...|ZK−1), u = (u1|...|uK−1)T . The joint distribution of (u, e) is[
u
e

]
∼ N

(
0, σ2

K

[
G(δ) 0

0 VK

])
where δ = (

σ2
1

σ2
K

, ...
σ2
K−1

σ2
K

)

and Gδ =


δ1R1 0 ... 0

0 δ2R2 ... 0
... ... ... ...
0 0 ... δK−1RK−1

 .

Using these notations, LR can be reformulated as:

LR(σ2
K , δ|y) = −1

2

[
(n− r) log(σ2

K) + log(|XTH−1X|)
+ log(|H|) + yTPδy

σ2
K

]
where H = ZGδZ

T + VK , Pδ = σ2
KPγ and r is the rank of matrix X. Starting from this

last expression, one can perform optimization of LR using an iterative scheme like the
Newton algorithm that requires the first and second derivatives of LR w.r.t. both δ and
σ2
K . The first derivatives are

[
∇LR

(
δ, σ2

K

)]
k

= −1

2

(
tr(PδVk)−

yTPδVkPδy

σ2
K

)
1 ≤ k ≤ K − 1,

[
∇LR

(
δ, σ2

K

)]
K

= −1

2

(
n− r
σ2
K

− yTPδy

σ4
K

)
.
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Similarly, the second derivatives are

[
HLR

(
δ, σ2

K

)]
kk′

=
1

2
tr(PδVkPδVk′)−

yTPδVkPδVk′Pδy

σ2
K

,

[
HLR

(
δ, σ2

K

)]
kK

= −1

2

yTPδVkPδy

σ4
K

,

[
HLR

(
δ, σ2

K

)]
KK

=
n− r
2σ4

K

− yTPδy

σ6
K

.

Denoting ∇(t)
LR and H(t)

LR the gradient and Hessian matrix of LR evaluated at point(
δ(t), σ

2(t)
K

)
respectively, the Newton method then iterates the following recursion:

(
δ(t+1)

σ
2(t+1)
K

)
=

(
δ(t)

σK
2(t)

)
−
[
H(t)
LR

]−1
∇(t)
LR . (3.4)

Replacing the Hessian matrix H(t)
LR by its expected value in equation (3.4) leads to the

Fisher Scoring (FS) algorithm. The expected moments of the Hessian matrix are

E
[
HLR

(
δ, σ2

K

)]
kk′

= −1

2
tr(PδVkPδVk′),

E
[
HLR

(
δ, σ2

K

)]
kK

= −1

2

tr(PδVk)

σ4
K

,

E
[
HLR

(
δ, σ2

K

)]
KK

= −n− r
2σ4

K

.

AI algorithm

A popular alternative to the Newton and FS algorithms is the use of the Average
Information (AI) matrix in place of the Hessian matrix Johnson and Thompson (1995).
The AI matrix is defined as the average of the Hessian and its expectation. The efficiency
of this strategy leads in the general expression of the resulting matrix. One has

AIkk′ =
yTPδVkPδVk′Pδy

2σ2
K

,

AIkK ≈ yTPδVkPδy
2σ4
K

,

AIKK = yTPδy
2σ6
K
,

(3.5)

where for the second term the approximation tr(VkPδ) = yTPδVkPδy is used. Compared
with the previous expressions obtained for the Newton and FS algorithms, computing the
AI matrix does not involve any trace computation anymore. Note that Pδ is computed
at each step using formula

Pδ = Σ−1 − Σ−1X(XTΣ−1X)−1XTΣ−1

where δ and σ2
K are fixed at their current value.
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MME trick

One can avoid the explicit computation of matrix Pδ by obtaining the quantities ap-
pearing in equation set (3.5) through the solving of Henderson’s mixed model equations
(MME): [

XTV −1
K X XTV −1

K Z

ZTV −1
K X ZTV −1

K Z +G(δ)−1

] [
β̂
û

]
=

[
XTV −1

K y

ZTV −1
K y

]
(3.6)

Let C be the coefficient matrix of the MME. One one hand, assuming C is sparse C−1

can be efficiently derived, giving access to β̂, û and any submatrix of C−1. On the other
hand one can reexpress the AI matrix as

AIkk′ =
[yTPδZk]Rk[ZTk PδZk′ ]Rk′ [Zk′Pδy]

2σ2
K

AIkK =
[yTPδZk]Rk[ZTk Pδy]

2σ4
K

AIKK = yTPδy
2σ6
K

and provide the following expressions for the quantities involved in each term:

ZTPδy = G−1û
ZTPδZ = G−1 −G−1[C−1]uuG

−1

Pδy = V −1
K ê.

(3.7)

where ê = y − Xβ̂ − Zû and [C−1]uu corresponds to the submatrix of C−1 associated
with the random component u. Assuming all matrices Vk are invertible (i.e. definite
positive), all these expressions are easily obtained from β̂, û and C−1, leading to an
efficient computation of the AI matrix.

Proof. In this proof, we will demonstrate equalities given in equation (3.7). First Pδ can
be written using the matrix S = V −1

K − V −1
K X(XTV −1

K X)−1XTV −1
K :

Pδ = S − SZ(ZTSZ +G−1)−1ZTS (3.8)

Using the equation (3.8) and Petersen et al. (2008), one can obtain:

ZTPδZ = G−1 −G−1(ZTSZ +G−1)−1G−1

One can note that (ZTSZ +G−1)−1 = [C−1]uu using the Schur complement.
From the equation (3.6), one can deduce:

û = (ZTSZ +G−1)−1ZTSy (3.9)

Derived from (3.8) and (3.9), one has:

ZTPδy = G−1û

And derived from (3.8), (3.9) and (3.6), one has:

Pδy = Sy − SZũ = S(y −Xβ̂ − Zû) = V −1
K ẽ

where ẽ = y −Xβ̂ − Zû.
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3.2.2 MM method

MM algorithms represent another class of iterative schemes that have been thor-
oughly described in Hunter and Lange (2004). We provide here a brief overview of the
MM principle based on the previous reference. Consider an optimization problem where
the goal is to find the minimizer θ∗ of a function f(θ) (in our setting f = −LR and
θ = γ), one builds at each step t a new surrogate function g(t) that upper bounds f in
the following sense:

g(t)(θ) ≥ f(θ) and g(t)(θ(t)) = f(θ(t)) ,

where θ(t) is the current evaluation of θ∗. Assuming the surrogate function can be
minimized easily, one defines

θ(t+1) = arg min
θ

g(t)(θ) .

One can show that the sequence
(
θ(t)
)
t≥1

satisfies the descent property f(θ(t+1)) ≤
f(θ(t)).

In the context of variance component mixed models, Zhou et al. (2015) thoroughly
described the application of the MM method to the maximization of the likelihood. Here
we illustrate the strategy applied to the restricted likelihood. The following surrogate
function in place of the restricted log-likelihood:

g(t)(γ) =
1

2

K∑
k=1

[
σ2
ktr(P

(t)
γ Vk) +

σ
4(t)
k

σ2
k

yTP (t)
γ VkP

(t)
γ y)

]
where Σ(−t) = Σ(γ(t))(−1). Thank to the linearity of g(t) with respect to σ2

1, ..., σ
2
K , the

update formulas are easily obtained by setting the gradient of g(t) at 0:

σ
2(t+1)
k = σ

2(t)
k

√√√√yTP
(t)
γ VkP

(t)
γ y

tr(P
(t)
γ Vk)

Similar to EM algorithms, MM algorithms can benefit from accelerating strategies to
achieve better rates of convergence (by reducing the number of iterations required to
achieve a given precision). In the present chapter we combined the MM algorithm with
the acceleration strategy of Varadhan and Roland (2008).

3.2.3 A special case: two variance component mixed models

Joint diagonalization

In the particular case where K = 2, the computational burden can be greatly
alleviated by applying a simple transformation to the data. Assuming V2 is symmetric
positive definite, there exists a matrix U such that

UV1U
T = D

UV2U
T = In
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Where D is a diagonal matrix and In is the identity matrix of size n. Applying the
transformation Ỹ = UY (and X̃ = UX) Model (3.1) is modified as follows:

Ỹ ∼ N (X̃β, σ2
1D + σ2

2In) ,

Once matrix U is computed (which requires one diagonalization and one Cholesky de-
composition) all traces and inverse matrix computations involved in the computation
of LR and its derivatives become straightforward. While this diagonalization trick is
already useful when fitting one model, the situation where many two variance compo-
nent MM with identical variance matrices (but different observation vectors Y and/or
matrices X) have to be fitted will greatly benefit from it since the computation of U will
be done only one time. This situation arises in GWAS analysis where the same trick
has also been exploited Lippert et al. (2011). The joint diagonalization trick may be
directly combined with any optimization procedure such as the AI and MM algorithms
presented in the previous sections. Alternatively, one can first ”profile” one of the two
variance parameters out of the log-likelihood and then apply optimization techniques,
as explained in the next paragraph.

Profiling trick

The profiling trick consists in two steps. First, one can reexpress the restricted log-

likelihood associated with Model 3.2.3 as a function of σ2
2 and ratio δ =

σ2
1

σ2
2

as follows:

LR(σ2
2, δ|ỹ) = −1

2

[
(n− r) log(σ2

2) + log(|Dδ + In|)
+ log(|X̃T (Dδ + In)−1X̃|) + 1

σ2
2
ỹT P̃δỹ

] (3.10)

where P̃δ = (Dδ + In)−1 − (Dδ + In)−1X(XT (Dδ + In)−1X)−1XT (Dδ + In)−1.
Second, one can observe that the optimization of (3.10) in σ2

2 leads to a closed form
expression:

σ̂2
2(δ) =

1

n− r
ỹT P̃δỹ .

This expression can be plugged back into equation (3.10) to obtain a function that
depends on δ only:

LR(δ|ỹ) = −1
2

[
(n− r) log(σ̂2

2(δ)) + log(|Dδ + In|)
+ log(|X̃T (Dδ + In)−1X̃|) + (n− r)

]
.

(3.11)

This last expression of the restricted log-likelihood can then be optimized in δ using
one of the aforementioned procedures. This strategy is implemented in the R package
gaston where the Newton algorithm is used for the optimization of (3.11), and also in
FaSTLmm where the optimization is first performed on a grid then refined using the
Brent algorithm (see Lippert et al. (2011) and Perdry and Dandine-Roulland (2017) for
details). Next we describe the application of the MM algorithm to optimize (3.11) and
show that at each step the update of δ has a closed form expression.
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Fast profiling for the MM algorithm

Following the same line of proof as in Zhou et al. (2015), we consider the following
surrogate function

g(t)(δ) = 1
2

[
(n− r) log( 1

n−r ỹ
T P̃

(t)
δ ( δ

2(t)

δ D + In)P̃
(t)
δ ỹ)

+tr(P̃
(t)
δ (Dδ + I)) + c(t)

]
.

Introducing some additional notations A = ỹT P̃
(t)
δ ỹ, B = ỹT P̃

(t)
δ Dδ2(t)P̃

(t)
δ ỹ and C =

tr(P̃
(t)
δ D), the first derivative of the surrogate function 3.2.3 is:

∂g(δ|δ(t))

∂δ
= −1

2

[
(n− r) −B

δB + δ2A
+ C

]
Solving ∂g(δ|δ(t))

∂δ = 0 boils down to solving the following quadratic problem :

AC

n− r
δ2 +

BC

n− r
δ −B = 0

that admits a unique positive solution δ̂.

3.3 Results

3.3.1 Setting

Algorithms

We compared 7 methods that correspond to different implementations of the opti-
mization algorithms described in Section 3.2.1.

AI-ASreml corresponds to the AI algorithm as implemented in the licensed software
ASreml available on R. When computing the AI matrix the direct computation of Pδ
is avoided, and the required quantities are obtained as by-products of the solutions of
Henderson’s equation, as explained in Section 3.2.1. Note that in order to apply this
trick each variance matrix Vk must be definite positive which may represent a limitation
of the method.

AI-gaston corresponds to the AI algorithm as implemented in the R package gaston.
Here the AI matrix is obtained through the direct computation of Pδ, and consequently
this version of the AI algorithm does not require the variance matrix to be definite
positive. Note that this algorithm is only available for K > 2 in gaston. When K = 2
another optimization algorithm is applied (see below).

MM corresponds to the implementation of the MM algorithm presented in Section
3.2.2, combined with the acceleration of Varadhan and Roland (2008). We implemented
the MM procedure in the MM4LMM R package. The core inference procedure was
coded in C++. When applied to a 2-VC mixed model the closed form expression update
presented in Section 3.2.3 is used.
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FaST-LMMe is dedicated to the fitting of mixed models with two variance compo-
nents only, and implements the diagonalization and profiling tricks presented in Sections
3.2.3 and 3.2.3. The ”e” subscript stands for ”exact”, meaning that an exact computa-
tion of the variance ratio δ is required for each fitting of the model.

FaST-LMMa corresponds to the approximate FaST-LMM algorithm where parame-
ter δ is computed at once on a null model, then plugged without further modification in
each fitted model. This may significantly reduce the computational burden since given
δ only one variance component needs to be estimated. While the comparison of compu-
tational times between FaST-LMMa and the other (exact) methods is somewhat unfair
since the first one solves a simpler optimization problem, it provides some insight about
the impact the approximation may have on the resulting list of markers found to be
significant (see Section 3.3.1).

We also included the optimizeLmer function of the lme4 package in the present
comparison setting, as a gold standard for variance estimation and p-value precision -
lme4 being one of the most popular R packages for mixed model fitting. Lastly, in the ex-
periment involving mixed models with only two variance components we included gaston
in the comparison setting. In the K = 2 setting gaston performs ReML optimization
using Newton method.

Criteria

We focus here on the application of mixed models to statistical genetics, with two
specific application cases in mind: variance component analysis (VCA) and genome wide
association study (GWAS). These two cases are described here, along with the specific
qualities that are required for the mixed model fitting algorithms for each of them.

In VCA the goal is to quantify the contribution of each random component to the
global variance of a given phenotype Y . Such an analysis may be performed jointly on
data from different trials involving the same genotypes, which may result in i) a large
number of measurements, and ii) a complex mixed model including a higher number of
fixed and random effects. In this context, optimization algorithms may be compared
according to i) the precision of the variance estimates, and i) their ability to scale with
the size of the data and the number of variance components.

In GWAS, the goal is to identify markers that are significantly associated with
phenotypic variation. The relationship between a given marker and the phenotype may
be tested in a model that accounts for both the marker effect and background genetic
effect specific to each individual. This background effect can be modeled as a random
effect whose associated covariance matrix may be deduced from the kinship between
individuals, leading to a VC mixed model.
Since GWAS requires the fitting of a mixed model for each tested marker, computational
efficiency is of major importance. However, one should also be sure that the optimization
algorithm yields accurate p-values. In the following we compare the different algorithms
based on i) their computational time, ii) their associated list of markers that are found
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to be significantly related to the phenotype, and iii) the ordered list of the first 100
markers, where the ranking of the markers is based on their associated p-values.

3.3.2 Algorithm comparison

All algorithms were run and compared on a server with a cpu of 2200 MHz and 8
cores, applying their by-default configuration settings.

Variance component analysis

In this section, we study the performance of algorithms AI-ASreml, AI-gaston and
MM in terms of variance component estimation when applied on two different datasets.
FaST-LMM is not considered here since it only handles the case K = 2.

Datasets The Technow dataset is a maize panel consisting in hybrids derived from
an incomplete factorial crossing design between lines belonging to two heterotic groups:
flint and dent. A total of nD = 123 parental dent lines and nF = 86 parental flint lines
were crossed to obtain nH = 1, 254 hybrids. Parental lines were genotyped at 35,478
markers, and two phenotypic traits were quantified: grain yield (GY) and grain moisture
(GM). We present here the results obtained on GY, the ones obtained with GM being
similar.
The Giraud dataset consists is also a maize panel that consists in nH = 951 maize hybrids
derived from an incomplete factorial crossing design between nD = 875 dent lines and
nF = 883 flint lines, and described in Giraud et al. (2017). Parental lines were genotyped
at 9643 biallelic markers, and 4 phenotypic traits were quantified: dry matter content
(DMC), dry matter yield (DMY), days to silking (DtSilk) and plant height (PH). Here
we focus on DMY, the results obtained with the other traits being also quite similar. In
this experiment hybrids were phenotyped in 8 trials, therefore different strategies can
be considered for the data analysis. One can first compute least-square means for each
hybrid (correcting for trial effects), then perform a VCA on the resulting dataset where
each hybrid is characterized by a single measurement. Alternatively, one can directly
perform the VCA on the initial dataset without averaging per hybrid. In the following we
refer to the two datasets corresponding to these two strategies as the LSM (Least Square
Means) dataset and the NAM (Non Averaged Measurement) dataset, respectively.

Statistical analysis For the Technow dataset and the LSM dataset, VCA was per-
formed using the following model:

Y = 1µ+ ZFGF + ZDGD + ZHGH + E
GF ∼ N (0, σ2

FKF )
GD ∼ N (0, σ2

DKD)
GH ∼ N (0, σ2

HΦ)
E ∼ N (0, σ2

EI)
GF ⊥ GD ⊥ GH ⊥ E

(3.12)

where Y is the phenotypic vector, µ is the intercept, GF , GD and GH are the polygenic
effect derived from the flint parent, the dent parent and their specific interaction, respec-
tively, with ZF , ZD and ZH their associated incidence matrices. Correlation matrices
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Study VC AI-gaston AI-ASreml MM lme4

Technow σ2
D 32.14 32.14 32.14 32.14
σ2
F 25.34 25.34 25.34 25.34
σ2
H 3.80 3.80 3.80 3.80
σ2
E 14.84 14.84 14.84 14.84

LSM σ2
D 0.57 0.57 0.57 0.57
σ2
F 0.38 0.38 0.38 0.38
σ2
H 0.02 0.02 0.02 0.02
σ2
E 0.69 0.69 0.69 0.69

Table 3.1: Variance components estimates for the Technow and the averaged Giraud datasets.
The considered phenotypes are GY (for the Technow dataset) and DMY (for the LSM dataset).

KF and KD correspond to the kinship matrices between the dent (resp. flint) parental
lines, and were computed according to Astle and Balding (2009). Correlation matrix Φ
corresponds to the matrix of double relatedness between hybrids, of general term

Φ̂h,h′ = (K̂F )f,f ′ × (K̂D)d,d′

where h (resp. h′) is the hybrid resulting from the crossing between the flint and dent
lines f and d (resp. f ′ and d′). Lastly, E is the error vector.
Regarding the NAM dataset, we assumed the genetic effects to be identical in all trials
(i.e. no genetic×trial interaction), and the intercept to be specific to each trial. This
results in updating Model (3.12) as follows:

Y = 1µ+XTβT + ZFGF + ZDGD + ZHGH + E

with the same notations and statistical assumptions as before. Here XT is the incidence
matrix associated to trials and βT is the vector of trial effects. Alternatively, non-
informative covariance matrices were also considered for the random genetic effects,
replacing the kinship matrices by identity matrices. The resulting analysis is referred to
as the NAM-Id dataset in the following.

Variance Component Values Table 3.1 displays the variance component estimates
obtained with the different algorithms, for the Technow and the LSM datasets. One
can observe that all algorithms yield the same results that are also identical to the one
obtained with the lme4 reference. Similar conclusions were obtained when considering
other phenotypic traits and/or the NAM dataset.

Computational time Table 3.2 displays the computational time associated with the
different algorithms in different settings. In order to investigate the ability of the algo-
rithms to cope with datasets of increasing sizes, we built several intermediate versions of
the NAM dataset by adding observations corresponding to different trials sequentially.
This corresponds to lines 3 to 6 in Table 3.2, where 2, 4, 6 and 8 trials were successively
included in the analysis, leading to an increase of the number of observations from 950
to 7,725.
Several comments can be made about the results of Table 3.2. First, for some datasets,
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Dataset Nb Trials Nb Obs Sparse AI-gaston AI-ASReml MM Ratio

Technow - 1,254 No 4.77 116.61 6.57 24
LSM - 950 No 2.88 338.89 7.76 117
NAM 2 1,891 No 18.67 702.90 31.33 37
NAM 4 3,820 No 148.02 768.98 146.88 5
NAM 6 5,749 No 515.34 619.14 471.59 1
NAM 8 7,725 No 1,226.61 610.63 1,037.85 2
NAM-Id 8 7,725 Yes 1,150.56 0.32 1,519.25 4,747

Table 3.2: Computational time (in sec.) associated to the different algorithms and different
analysis. Ratio corresponds to the ratio between the slowest and the fastest algorithms.

the difference in terms of computational efficiency from an algorithm to another may be
huge, as quantified using the ratio between the worst and the best computational time
obtained (last column). Second, one can see that there does not exist a “best” algorithm
that outperforms the other ones in all cases: for instance, AI-ASreml is 100× slower than
its competitors on the LSM dataset, and 1, 000× faster on the NAM-Id dataset.

The different configurations presented in Table 3.2 give a clear picture about what
can be expected from the different algorithms. Note that for the MM and AI-gaston
algorithms the computational cost is directly related to the cost of inverting matrix Pγ
- a non-sparse n × n matrix - whereas the computational cost of AI-ASreml roughly
depends on the cost of inverting G(δ). This last cost depends on the sparsity of G(δ)
and on its size N×N with N = nD+nF +nH . When considering the Technow and LSM
datasets, one has n = nH < N , and the kinship matrices are not sparse. Consequently
the computational time is much higher for AI-ASreml than for its competitors. On the
opposite, the case ”NAM-Id” correspond to the case where the individual observations
of the different trials are not merged, and where each kinship matrix is assumed to
be an identity matrix. In this case, one has n ≈ 8 × nh >> N , where 8 is the total
number of trials, and the kinship matrices are as sparse as possible. This case is clearly
favorable to AI-ASreml that has been designed for such applications. The cases where
trials are sequentially added show some intermediate configurations where the number
of observations n grows with the number of trials. At first n is lower than N and MM
and AI-gaston outperform AI-ASreml. As the number of trials increases the gap gets
smaller, and finally when N << n applying the MME trick becomes relevant (even with
G(δ) not being sparse) and AI-ASreml becomes more efficient than MM and AI-gaston.

GWAS with two variance components

Dataset We consider the two CornFed Association panels - named CF-Flint and CF-
dent hereafter - described in Rincent et al. (2014b). The CF-Flint panel consists in 259
maize lines of the Flint heterotic group crossed with a tester from the dent heterotic
group. Lines were genotyped at ≈ 50K biallelic markers, among which 39,076 were kept
after quality control for the present study. Eight phenotypic trait were quantified: Tass,
Silk, ASI, DMC, DMY, PLHT, DM Flo and DM Y Flo and DMYcorr, see Rincent et al.
(2014b) for details. The association study was performed using the following model: at
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AI-gaston AI-ASreml MM FaSTLMMe FaSTLMMa lme4

DM Y Flo 3.81 3037.78 5.23 28.64 2.01 12886.23

Tass 6.38 4514.99 5.35 28.40 2.19 34852.63

Silk 3.14 - 4.88 9.20 2.20 -

ASI 3.85 - 5.49 28.41 2.20 -

DMC 4.03 - 5.51 28.21 2.00 -

DMY 3.99 - 5.71 28.61 2.00 -

PLHT 4.50 - 5.78 28.53 2.21 -

DMC Flo 3.63 6.27 28.53 2.02 -

Table 3.3: Computational time (in sec.) associated to the different algorithms for the complete
analysis of the panel, trait by trait.

a marker ` and for a given trait, one has

Y = 1µ+X`β` + U + E ,

with Y the vector of phenotypes, X` the vector of observed allele (0 or 1) for each line
at marker `, β` the effect associated to allele 1, U the random effect accounting for the
genetic background, and E the error vector. One further assumes that

U ∼ N (0, σ2
GK) and E ∼ N (0, σ2

EI)

where K is the matrix of kinship between lines. U and E are assumed to be independent.
The unknown parameters to infer are the fixed effects µ and β`, along with the variances
of the random effects σ2

G and σ2
E . In order to identify markers that are strongly related

to phenotypic variation the null hypothesis H0 : {β` = 0} was tested using a Wald test
procedure. Following Rincent et al. (2014b), the kinship matrix was computed from the
markers using the formula of Astle and Balding (2009).

The analysis of panel CF-dent led to similar conclusions and is not presented here.

Computational Time The computational times corresponding to the analysis of all
markers of the panel by each algorithm are displayed in Table 3.3, for each of the 8
considered phenotypes. The computational performance of AI-ASreml is reported for
phenotype DM Y Flo only, which is sufficient to observe that it compares poorly with its
competitors, being ×100 slower than FastLMMe and ×600 slower than AI-gaston and the
MM algorithms. All other methods performed the analysis in less than 30s. As expected
the fastest method is FastLMMa that performs only an approximate optimization of the
restricted likelihood, improving by a factor 10 over its exact counterpart but only by a
factor 2/3 over AI-gaston and MM.

Comparison of the p-value orderings Hereafter we focus two phenotypes: Tasseling
and DM yield Flo. For a given algorithm A we note LA the ordered list of markers,
where markers are ordered on the basis of their p-values - from the smallest to the
highest one. Similarly, a same ranking Llme4 is also obtained using lme4, this last
ranking being considered as the reference. One can then compute a concordance score
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Figure 3.1: Concordance curves for the different algorithms, based on the p-values obtained from
the Tasseling association analysis, and using lme4 as a reference.

between algorithm A and lme4 at rank r as follows:

Cr(A, lme4) =
LA(r) ∩ Llme4(r)

r
,

where LA(r) contains the first r items of list LA.
Figure 3.1 displays the concordance curves of each algorithm for Tasseling. One can ob-
serve that all methods are (almost) perfectly concordant with lme4 except for gaston and
to a lower extend FastLMMa. Figure 3.2 displays the same curves but for DM yield Flo.
The discrepancy between gaston, FastLMMa and lme4 is even higher when consider-
ing DM yield Flo (see Fig. 3.2): focusing on the top 100 ranked markers, one can still
observe a difference of ≈10% between FastLMMa/gaston and lme4.

Figure 3.2 displays the concordance curves of each algorithm. One can observe
that all methods are (almost) perfectly concordant with lme4 except for gaston and
FastLMMa. When considering the top 100 ranked markers, one can still observe a
difference of 10% between FastLMMa and lme4.

QTL detection As illustrated in the previous section, the use of different algorithms
for (restricted) likelihood maximization leads to different p-values lists for the mark-
ers. As a consequence the ordering of the markers with respect to their p-values varies
from an algorithm to another. While this variation may seem marginal, in practice any
GWAS analysis will include a multiple testing correction procedure that may be affected
by the (lack of) precision of the computed p-values. To further illustrate the impact of
the optimization procedure, we applied a full marker identification procedure accounting
for multiple testing to each list LA. Following Rincent et al. (2014b) we performed a
Bonferroni correction using Meff as the number of tests, where Meff is the effective
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Figure 3.2: Concordance curves for the different algorithms, based on the p-values obtained from
the DM yield Flo association analysis, and using lme4 as a reference.

number of tests that can be estimated using the method described in Li and Ji (2005).
For the present application one obtains Meff = 3, 527. Note that this correction proce-
dure only depends on the genotypic information (used to compute the effective number
of tests) but not on the p-value distribution. Because procedures that account for the
p-value distribution may be more sensitive to a wrong ordering and/or a lack of precision
in p-value estimation, we also performed a Benjamini-Hochberg correction (noted BH
hereafter, Benjamini and Hochberg (1995)) to obtain an alternative list of candidate
QTLs. For the Li&Ji procedure the nominal level of global type I error was fixed at
0.05, and for the BH procedure 3 nominal levels were considered: 0.05, 0.1 and 0.2.

Tables 3.4 and 3.5 display the list of all markers that have been declared significant
by at least one of the algorithms for Tasseling and DM yield Flo respectively. When
considering Tasseling, only one marker is significantly detected overall. When the Li&Ji
procedure is applied the marker is detected by all algorithms, and when the BH procedure
is applied the marker is detected at level 0.2, except for the two FastLMM algorithms.
The results are more contrasted when considering DM yield Flo. First, as expected
from Figures 3.1 and 3.2, the AI-ASreml and MM procedures yield detection results
that are identical to the ones of lme4. Second, the two versions of FastLMM yield
more conservative results: at level 0.05 and using BH, no marker is detected. When
using Li&Ji, FastLMMe fails to find one of the markers detected by AI-ASreml, MM
and lme4, and FastLMMa only finds one among five. Lastly, one can observe that AI-
gaston generally yields a larger number of detected markers, 4 of them being not found
by the other methods whatever the multiple testing procedure. Overall the results are
consistent with what was observed at the previous paragraph: AI-gaston and FastLMMa
lead to final lists of markers that are different from the ones found with all other methods.
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AI-gaston AI-ASReml MM FaSTLMMe FaSTLMMa lme4

PZE.101070781 5.37* ◦ 5.37* ◦ 5.37* ◦ 5.17* 5.11* 5.37* ◦

Table 3.4: − log10(p-value) of markers detected by at least one algorithm for Tasseling. The star
(resp. circle) indicates if the marker is detected when a Li&Ji (resp. BH FDR) multiple testing
procedure is used at nominal level 5% (resp. 20%).

AI-gaston AI-ASReml MM FaSTLMMe FaSTLMMa lme4

SYN10537 5.92* ◦◦◦ 5.61* ◦◦◦ 5.61* ◦◦◦ 5.4* ◦◦ 4.52 ◦ 5.61* ◦◦◦

SYN10528 5.92* ◦◦◦ 5.61* ◦◦◦ 5.61* ◦◦◦ 5.4* ◦◦ 4.52 ◦ 5.61* ◦◦◦

PZE.101030022 5.37* ◦◦ 5.07* ◦◦ 5.07* ◦◦ 4.9* ◦ 4.06 5.07* ◦◦

PZE.101123079 4.49 ◦ 4.87* ◦ 4.87* ◦ 4.71 ◦ 4.71 ◦ 4.87* ◦

SYN13856 5.23* ◦◦ 5.19* ◦◦ 5.19* ◦◦ 5.01* ◦ 5.01* ◦ 5.19* ◦◦

PZE.101122758 4.86* ◦◦ 4.31 ◦ 4.31 ◦ 4.19 4.19 4.31 ◦

SYN26073 4.91* ◦◦ 4.66 ◦ 4.66 ◦ 4.51 ◦ 4.51 ◦ 4.66 ◦

SYN10535 4 4.46 ◦ 4.46 ◦ 4.33 3.57 4.46 ◦

PZA00240.9 4.25 ◦ 4.25 ◦ 4.25 ◦ 4.13 4.08 4.25 ◦

PZE.101123102 4.59 ◦ 4.59 ◦ 4.59 ◦ 4.45 ◦ 4.45 ◦ 4.59 ◦

PZE.105146456 4.36 ◦ 4.66 ◦ 4.66 ◦ 4.52 ◦ 4.5 ◦ 4.66 ◦

PZE.109091780 4.58 ◦ 4.4 ◦ 4.4 ◦ 4.27 4.2 4.4 ◦

SYN10536 4.7 ◦ 4.04 4.04 3.93 3.19 4.04
SYN10531 4.29 ◦ 4.03 4.03 3.92 3.38 4.03
PZA00583.4 4.13 ◦ 3.81 3.81 3.72 3.63 3.81
PZE.109020361 4.13 ◦ 3.81 3.81 3.72 3.63 3.81

Table 3.5: − log10(p-value) of markers detected by at least one algorithm for DMY Flo. The star
indicates if the marker is detected when a Li&Ji multiple testing procedure is used at nominal
level 5%. One circle (resp. two or three circles) indicate if the marker is detected when a BH
FDR multiple testing procedure is used at nominal level 20% (resp. 10% and 5%).

Moreover, the instability of the list seems greater when BH is applied, compared with
Li&Ji.

GWAS with multiple variance components

We consider here the Technow dataset presented in variance component analysis.
At marker ` there are four possible Flint × Dent allelic combinations: ”00”, ”01”, ”10”
and ”11”. The association study was performed using the following model:

Y = 1µ+X`β` + ZFGF + ZDGD + ZHGH + E
GF ∼ N (0, σ2

FKF )
GD ∼ N (0, σ2

DKD)
GH ∼ N (0, σ2

HΦ)
E ∼ N (0, σ2

EI)
UF ⊥ UD ⊥ UH ⊥ E

where coefficients described in variance component analysis are the same and X` is the
incidence matrix of the four allelic combinations and β` is a vector of effects of each
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AI-gaston AI-ASreml MM

GY 6.07 144.50 2.40
GM 10.98 156.68 2.44

Table 3.6: Computational time (in hour) associated to the different algorithms for the complete
analysis of the data.

Figure 3.3: Concordance curves for AI-gaston and MM algorithms against AI-ASReml, based on
the p-values obtained for the grain yield analysis (left) and grain moisture analysis (right).

combination.
As in Section 3.3.2, only 3 procedures are considered: AI-gaston, AI-ASReml and MM,
AI-ASReml being considered as the reference.

Computational Time The computational times corresponding to the analysis of the
35,478 markers of hybrids by each algorithm are displayed in Table 3.6, for the grain
yield (GY) and the grain moisture (GM). In this case, AI-gaston and AI-ASReml are
based on the same method but the second one uses MME trick. One can see the cons
about using MME trick in this analysis: computational time is 15 times longer. The
MM algorithm is the fastest one for this analysis.

Comparison of the p-value orderings Figure 3.3 displays the concordance of each
algorithm with AI-ASReml for GY analysis and GM analysis. For the grain moisture
concordances with AI-ASReml are perfect for both algorithms. For grain yield, MM is
slightly less concordant than AI-gaston with AI-ASReml.
The exact concordance of AI-gaston with AI-ASReml was expected in this study be-
cause, in this case, the two algorithms are based on the same method. Using MME trick
or a direct computation of matrix P yields the same p-values.
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3.4 Discussion

Computational time appeared as the most striking feature in the comparison be-
tween the different inference procedures. This high variability in performance may come
as a surprise since all procedures considered here were designed for high computational
efficiency. In practice, one can observe that this goal is (often) achieved when considering
datasets that match the initial framework for which the procedures were developed. For
instance the AI-ASReml algorithm was initially developed for the analysis of genetic data
in animal breeding where relatedness coefficients are generally inferred from pedigree.
These pedigree-based kinship matrices are generally sparse, which prompted the develop-
ment of specific sparse matrix inversion procedures such as the one presented in Section
3.2.1. This procedure appeared orders of magnitude faster as soon as the sparsity of the
kinship matrices is satisfied, as illustrated by the application to the NAM-Id dataset.
Nowadays, thanks to the ever decreasing cost of the genotyping technologies, kinship can
be inferred from genotypic information, leading to a more precise estimation, but yielding
kinship matrices that are not sparse any longer. When applied to such data, the perfor-
mance of the AI-ASReml algorithm decreases dramatically. Alternatively, FaST-LMM
was developed to efficiently perform inference in mixed models without any limitation
regarding the sparsity of the kinship matrix, but can only handle models with two vari-
ance components. These limitations have motivated the development of new approaches.

The MM and gaston algorithms circumvent the two limitations mentioned above,
and proved to be very efficient both in the context of 2-variance component models
(where the two algorithms outperform FastLMM) and in the more general case where
the number of component is higher than 2. This lower computational time is explained
by simpler iteration updates. This lower cost per iteration is generally counterbalanced
by the requirement of a higher number of iterations to achieve convergence, but the ver-
sion we implemented here benefit from the acceleration trick of Varadhan and Roland
(2008) that significantly reduces the number of iterations. MM and gaston provide an
attractive alternative to approximate methods, that can be quite efficient from a com-
putational point of view but may lead to less precise p-values that may affect the QTL
detection. Still, mixed model inference remains an open problem as soon as the number
of observations is high and when more than one non sparse covariance matrices are con-
sidered, as illustrated by the results reported in Table 3.6.

In absence of any efficient exact procedure for the estimation in the previous con-
figuration, one could use approximate methods to filter the candidate marker in a first
step. Most of these approximate methods (see e.g. EMMAX, Kang et al. (2010)) rely
on the fact that most markers have a small or even null effect. As a consequence one can
use the variance estimates obtained from the null model (i.e. the model with no marker
fixed effect) as relevant approximations for most markers. Still, for major QTL variance
parameters may be quite different from those obtained from the null model, leading to
a test statistic for the marker effect where the variance parameters are over-estimated.
Therefore the filtering should be less stringent in terms of type 1 risk control in order to
avoid the discarding of markers of potential interest.
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The MM algorithm that we implemented here will be available soon through a R
package. It will benefit from additional features, such as the possibility to test the non-
genetic fixed effects, or the possibility to specify models where the marker effect can be
described by more than one parameter (see Chapter 4 for an illustration of such mod-
els). For gaston package and FaSTLMM, using more than one parameter to described
the marker effects needs to bypass principal functions and define incidence matrix.







Chapter 4

Detection of genes of interest in
an incomplete hybrid factorial

design, application to maize panel

Maize hybrids are obtained by crossing inbred lines derived from complementary
heterotic groups. In this chapter, two heterotic groups were considered. Understand-
ing the origin of phenotypic variation in such hybrids is an important issue to envisage
marker based breedings strategies.

A common strategy to detect QTL for hybrid performance is to cross a population
of inbred lines from one heterotic group to a same common parent derived from the other
heterotic group, referred as ”tester”. In this case, the phenotype of a given hybrid can
be associated to the genotype of its non tester parental line within the population.

This strategy enables the detection of QTL in the non tester heterotic group only,
therefore detecting QTL in both groups would require two experiments (cycling on the
heterotic group considered as the non tester group). In each experiment, genetic diver-
sity is only contributed by the non tester population. As discussed in chapter 1, from a
statistical point of view the data analysis can be performed using the model proposed by
Yu et al. (2006) in this case. This strategy has been successfully used for productivity
and related traits by Rincent et al. (2014b).

As discussed recently by Giraud et al. (2017) in the context of linkage based map-
ping, the use of a tester raises important issues. First, results can be dependent to a
larger extent on the choice of the tester, therefore hampering a comprehensive view of
the determinism of the phenotype of interest. Second, the fact that all hybrids share a
common parent buffers genetic variation and restricts the number of lines that can be
evaluated.

Giraud et al. (2017) have therefore advocated the study of both heterotic groups
at a same time. Authors used hybrids between two sets of lines that represent the two
heterotic groups. This kind of analysis allows the QTL detection in each group within a
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single experiment and without selecting a tester. Moreover, a possible dominance effect
between those groups could be detected in this experiment. The analysis requires to take
into account two genetic diversities, each derived from a group, in the statistical mod-
eling. Following a classical approach (Technow et al., 2014), the data can be analyzed
using model (1.5) with a decomposition using the general combining ability (GCA) of
each group and the specific combining ability (SCA) of the crossing between these two
groups (Sprague and Tatum, 1942). These effects could be further decomposed as QTL
effects and polygenic residual effects (Parisseaux and Bernardo, 2004; van Eeuwijk et al.,
2010).

In this chapter, we use a panel of hybrids produced in the PIA(Programmes d’Inves-
tissements d’Avenir)/ANR project Amaizing. I will start by briefly presenting the mat-
ing design and the data available. Then I will describe models used for statistical anal-
yses. Application of these models require the knowledge of relatedness coefficients. In
practice these coefficients have to be inferred, and in this chapter inferred from bi-allelic
markers, using one or an other available algorithm. Inferred values from these models
will be impacted from the method chosen. One can characterize the influence of using
one inference method comparing to an other one as in Rincent et al. (2014a). To this pur-
pose, I will show results about the markers detection within each trial using relatedness
inferred from Astle and Balding (2009) or from Relatedness (Laporte and Mary-Huard,
2017). I will discuss about the results of the detection regarding the tested hypothesis
and the inference method used to estimate the relatedness parameters. Moreover, the
experiment allows to take in account interaction genotype × trial (van Eeuwijk et al.,
2005). so finally, I will present results about the detection by analyzing all trials jointly.

4.1 Material and Method

4.1.1 Genetic Material

Lines used for this study belong to two different populations: the flint and the dent
heterotic groups. These two groups are largely used for maize production in northern
Europe. Lines were crossed according to an incomplete factorial design (Comstock et al.,
1952), i.e. each hybrid was derived from a cross between a flint line and a dent line.
There were approximately 300 flint lines and 300 dent lines crossed to obtain 348 hy-
brids. Within each group, most lines were involved in a single crossing except 50 which
were involved in two crosses, schematically represented in Figure 4.1.
Lines were genotyped using 600K SNP (Single Nucleotid Polymorphism) markers chip
(markers are bi-allelic in this case). Missing data were imputed using Beagle (Browning
and Browning, 2007) version 3.2.2. Afterwards, we used a criterion based on allele fre-
quencies in each population: markers with a minor allele frequency lower than 4% in a
given population were not considered. Note that minor allele frequency criteria does not
ensure the presence of all possible allelic combinations (”00”, ”01”, ”10”, ”11”) among
hybrids. Markers where one of these combinations is not represented among hybrids
were not considered furtherdown. We obtained a set of approximately 400K markers for
the analyses.
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Figure 4.1: Matrix of the mating design. Blue crosses indicate hybrids with parents have been
already crossed to obtain an other hybrid.

4.1.2 Phenotypic Evaluation

Phenotyping Experiment The hybrids were phenotyped two consecutive years in
public and private phenotyping platforms: Saint-Martin de Hinx in 2014 (SMH14) and
2015 (SMH15), Syngenta in 2014 (SYN14), Caussade in 2014 (CAU14), Limagrain in
2015 (LMG15), Mäısadour in 2015 (MAS15), RAGT in 2015 (RAGT15) and Euralis
in 2015 (EUR15), leading to a total of 8 trials. In this chapter, we will focus on two
phenotypes, the anthesis (the male flowering date) and the grain yield. To avoid compe-
tition effect between hybrids with different flowering dates, hybrids were sowed within
two blocks in each trial according to their flowering date evaluated in 2013. One block
was composed of early and intermediate hybrids and the other one was composed of late
and intermediate hybrids.

Field Effect Correction In a first step the raw data need to be corrected for field
effects trial per trial. Moreover the decomposition in flowering blocks allows a correction
of the raw data with respect to the flowering date of hybrids. We use the following
method to correct the data. First, the following model was fitted:

Y = µ+XFloβFlo +XBlβBl + ZrowR+ ZcolC + ZHH + E
R ⊥ C ⊥ H ⊥ E
R ∼ N (0, Irσ

2
R)

C ∼ N (0, Icσ
2
C)

H ∼ N (0, Ihσ
2
H)

E ∼ N (0, Inσ
2
E)

where µ is the mean effect, XFlo is the incidence matrix of the flowering group, XBl

is the incidence matrix of the sawed block within the trial, Zrow (resp. Zcol) is the
incidence matrix linked to the row (resp. column) in the trial, R (resp. C) is the row
(resp. column) random effect , ZH is the incidence matrix corresponding to hybrids, H
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Anthesis Grain Yield
Mean σ2

E Mean σ2
E

CAU14 192.44 0.35 85.58 88.85
SYN14 202.83 0.45 75.65 85.42
SMH14 197.50 0.40 101.49 93.46
LMG15 191.11 2.34 115.31 132.01
MAS15 197.93 3.16 88.78 95.70
RAGT15 197.22 0.97 87.84 62.64
EUR15 188.43 12.15 90.30 27.58
SMH15 195.15 1.18 86.82 151.87

Table 4.1: Table of means and residual variances among each trial of both phenotypes of interest

is the random effect associated to the polygenic background of hybrids and E is a vector
of residuals. Rows and columns data correspond to spatial location of the plot where
hybrids were sowed within trial. This model was inferred using ASReml (Gilmour et al.,
2009) because of the sparsity of correlation matrix (see chapter 3). Once this model is
adjusted, one can correct the phenotype with respect to trial effects as :

Ỹ = Y −XBlβ̂Bl − ZrowR̂− ZcolĈ

Furthermore, we inferred means per trial and residual variances to filter trials. As shown
in Table 4.1, the mean value of MOR14 for the anthesis is higher than the others. This
trait was phenotyped lately on this trial, therefore we did not consider this trial for the
anthesis. Residual variances were too high in the trial EUR15 for anthesis and too low
for the grain yield. We did not consider this trial anyfurther.

From now, we rename Ỹ as Y . We will only use corrected phenotypes furtherdown.

4.1.3 Statistical Framework

Two types of analysis were conducted. On the one hand, we analyzed each trial sep-
arately. On the other hand, we analyzed all trials together. For each, we adjusted several
models with a common random part and a variable fixed part. We defined two generic
models, one for the per trial analyses and an other for the global analyses by taking all
trials together. We refer to the first one by Trial model and to the second one by Global
model. Firstly, we describe the two models and their random part. Secondly, we detail
the inference of relatedness parameters needed in those models. Thirdly, we describe
methods to infer variance components. And finally, we write tests for QTL detection
in the per Trial and Global data analyses. All models here were inferred using MM al-
gorithm presented in chapter 3 and implemented in a R package that is nearly developed.

Trial Model Because of the mating design here, model has to account for genetic
variability within each population and the interaction between them. We used the
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following model:

Y = {Fixed}+ ZFUF + ZDUD + ZHUH + E
UF ⊥ UD ⊥ UH ⊥ E
UF ∼ N (0,KFσ

2
F )

UD ∼ N (0,KDσ
2
D)

UH ∼ N (0,Φσ2
H)

E ∼ N (0, Iσ2
E)

(4.1)

where

� Y is the vector of phenotypes

� {Fixed} represents a list of fixed effects

� ZF (resp. ZD and ZH) is the incidence matrix of flint parental lines (resp. dent
parental lines and hybrids)

� UF is the polygenic effect derived from flint lines, also called General Combining
Ability for flint lines (GCAF )

� UD is the polygenic effect derived from dent lines, also called General Combining
Ability for dent lines (GCAD)

� UH is the polygenic effect derived from the interaction between the two populations,
also called Specific Combining Ability (SCAH)

� KF (resp. KD) is the simple relatedness matrix between flint (resp. dent) lines as
defined in chapter 2

� Φ is the double relatedness matrix between hybrids as defined in chapter 2

� E is a vector of residuals

The full model, derived from (4.1), is composed of all possible fixed parameters.
It accounts for flint (resp. dent) additive effect at a marker `, quoted βF,` (resp. βD,`)
and the interaction effect between alleles derived from the two population at a marker
`, quoted γH,`. In this case:

Fixed = 1µ+XF,`βF,` +XD,`βD,` +XH,`γH,` (4.2)

where

� µ is the intercept of the model

� XF,` (resp. XD,`) is the genotype of flint (resp. dent) parental lines

� XH,` is a vector filled with 1 when alleles of flint and dent parental lines are different
and −1 otherwise.

Note that models need to be fitted for each marker, i.e. the variances have to be estimated
marker by marker.
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Global Model When we study data by taking all trials, the model has to account for
interaction between trial and genotype in addition to the ones already listed. The model
used is quite similar as the previous one, three random terms are added, we will only
detailed this three here:

Y = {Fixed}+ ZFUF + ZDUD + ZHUH + ZFTUFT + ZDTUDT + ZHTUHT + E
UF ⊥ UD ⊥ UH ⊥ UFT ⊥ UDT ⊥ UHT ⊥ E
UFT ∼ N (0,bdiag(KF )σ2

FT )
UDT ∼ N (0, bdiag(KD)σ2

DT )
UHT ∼ N (0,bdiag(Φ)σ2

HT )
E ∼ N (0, Iσ2

E)
(4.3)

where

� ZFT (resp. ZDT and ZHT ) is the incidence matrix of couples trial/flint parental
lines (resp. dent parental lines and hybrids)

� UFT is the random effect derived from the interaction between trials and GCAF

� UDT is the random effect derived from the interaction between trials and GCAD

� UHT is the random effect derived from the interaction between trials and SCAH

� E is the vector of residuals

The notation bdiag(A) corresponds to:

bdiag(A) =


A 0 0 ... 0
0 A 0 ... 0
0 0 A ... 0
. . . . .
0 0 0 ... A


where the matrix A is repeated on the diagonal as times as the number of trials.

The full model is model (4.3) accounting for a global flint (resp. dent) additive
effect at a marker `, quoted βF,` (resp. βD,`), a global interaction effect between alleles
derived from the two population at a marker `, quoted γH,`, a vector of specific flint
(resp. dent) additive effects in each trial, quoted βFT,` (resp. βDT,`) and a vector of
specific interaction, quoted γHT,`. This model is model (4.3) with:

Fixed = 1µ+XF,`βF,` +XD,`βD,` +XH,`γH,` +XFT,`βFT,` +XDT,`βDT,` +XHT,`βHT,`

where coefficients defined in model (4.2) are the same and

� XFT,` (resp. XDT,`) is the incidence matrix of couples trial/flint (resp. dent)
parental line genotype

� XHT,` is the incidence matrix of couples trial/XH,`
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Relatedness Inference Matrix KF , KD and Φ involve relatedness coefficients. The
mating design, detailed in subsection 4.1.1, ensures the identifiability of relatedness
coefficients as explained in Section 2.2.3 because the parents of each hybrid are derived
from two different populations.
We inferred these coefficients using two methods. The first one is based on Astle and
Balding (2009) and will be quoted A&B method (see Chapter 2 for details). The simple
relatedness between two lines i and j of the population P (flint or dent) is inferred using
the following formula:

(K̂P )i,j =
1

L

L∑
`=1

(Xi,` − p
(P )
` )(Xj,` − p

(P )
` )

p
(P )
` (1− p(P )

` )
(4.4)

where Xi,` (resp. Xj,`) is the genotype of the individual i (resp. j) at marker ` (a vector

filled with 0 and 1) and p
(P )
` is the allele frequency of marker ` in the population P

inferred from individuals of the panel. Once one has inferred K̂F and K̂D using the
equation (4.4), one can infer the double relatedness between hybrids Hh = i × j and
Hh′ = i′ × j′ to obtain the coefficient Φh,h′ . We used the following formula to estimate
this coefficient:

Φ̂h,h′ = (K̂F )i,i′ × (K̂D)j,j′

The second method to infer relatedness is using the R-package Relatedness as described
in chapter 2.

Variance component inference One is interested here in variance component esti-
mation, for example to study the heritability of trait. In this analysis, we use complete
dataset by taking all trials. We adjust model (4.3) with:

Fixed = µ+XTβT (4.5)

According to (4.3) this model has a common residual variances for all trials. But vari-
ability of residuals with respect to trials in Table 4.1 leads to think about using Per Trial
Residual Variances (PT Residual Variances). To achieve this goal, we derive model (4.5)
using a vector of residuals as follow:

E ∼ N (0, bdiag((Iσ2
E,t)1≤t≤NT )) (4.6)

where NT is the number of trials considered and σ2
E,t is the residual variance in trial t.

Tests for QTL Detection within each Trial There are different possible effects
which are interesting to explain the genotype effect on the phenotype. Each test is done
using a likelihood ratio test (LRT). The ratio studied is:

LR = −2(LH0(Y )− LH1(Y ))

where LHi(Y ) is the complete log-likelihood under the hypothesis Hi. All models here
are base on model (4.1).
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Flint (resp. dent) additive effect:
Test the specific additive effect at a marker ` of the flint (resp. dent) population.

H0 : {Fixed = 1µ} vs H1 : {Fixed = 1µ+XF,`βF,`}
H0 : {Fixed = 1µ} vs H1 : {Fixed = 1µ+XD,`βD,`}

Under H0, one has LR ∼
+∞

χ2(1).

Additive effect:
Test the joint additive effect at a marker ` of the two populations.

H0 : {Fixed = 1µ} vs H1 : {Fixed = 1µ+XF,`βF,` +XD,`βD,`}

Under H0, one has LR ∼
+∞

χ2(2).

Allelic interaction effect:
Test the interaction effect at a marker ` between alleles of the two populations.

H0 : {Fixed = 1µ+XF,`βF,` +XD,`βD,`} vs
H1 : {Fixed = 1µ+XF,`βF,` +XD,`βD,` +XH,`γH,`}

Under H0, one has LR ∼
+∞

χ2(1).

Full marker effect:
Test the global effect of marker `.

H0 : {Fixed = 1µ} vs H1 : {Fixed = 1µ+XF,`βF,` +XD,`βD,` +XH,`γH,`}

Under H0, one has LR ∼
+∞

χ2(3).

Tests for QTL Detection when analyzing all trials jointly Effects studied when
considering all trials together are quite similar to individual trials but, because we have
access to trial effects, we study in addition the interaction between trial and genotype.
All models here are based on model (4.3).

Flint (resp. dent) additive effect with trial interaction (TI):
Test jointly the global additive effect at a marker ` of the flint (resp. dent) population
and specific additive effects within each trial.

H0 : {Fixed = 1µ+XTβT } vs H1 : {Fixed = 1µ+XTβT +XF,`βF,` +XFT,`βFT,`}
H0 : {Fixed = 1µ+XTβT } vs H1 : {Fixed = 1µ+XTβT +XD,`βD,` +XDT,`βDT,`}

Under H0, one has LR ∼
+∞

χ2(NT ).

Additive effect with TI:
Test jointly the global additive effect at a marker ` and specific additive effects within
each trial.

H0 : {Fixed = 1µ+XTβT } vs
H1 : {Fixed = 1µ+XTβT +XF,`βF,` +XD,`βD,` +XFT,`βFT,` +XDT,`βDT,`}
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Under H0, one has LR ∼
+∞

χ2(2NT ).

Allelic interaction effect with TI:
Test jointly the global interaction effect at a marker ` between flint and dent populations
and specific interaction effects within each trial.

H0 : {Fixed = 1µ+XTβT +XF,`βF,` +XD,`βD,` +XFT,`βFT,` +XDT,`βDT,`} vs
H1 : {Fixed = 1µ+XTβT +XF,`βF,` +XD,`βD,` +XFT,`βFT,` +XDT,`βDT,`

+XH,`γH,` +XHT,`γHT,`}

Under H0, one has LR ∼
+∞

χ2(NT ).

Full marker effect with TI:
Test jointly the global effect of a marker ` and specific marker effects within each trial.

H0 : {Fixed = 1µ+XTβT } vs
H1 : {Fixed = 1µ+XTβT +XF,`βF,` +XD,`βD,` +XFT,`βFT,` +XDT,`βDT,`

+XH,`γH,` +XHT,`γHT,`}

Under H0, one has LR ∼
+∞

χ2(3NT ).

4.2 Results

4.2.1 Variance Components

Inferred values of unknown variance parameters are given in Table 4.2 for anthesis
and in Table 4.3 for grain yield. One can observe a preponderance of GCA effects for
both traits with relatively equivalent contributions for the Flint and Dent groups. The
proportion of genetic variance explained by SCAH is quite small (∼ 5%) for both traits
and both relatedness inference methods. Proportions of variance explained by genetic
variances (GCAF , GCAD and SCAH) are slightly higher (∼ 1%) using Relatedness

than A&B method to infer relatedness coefficients.
Based on BIC values (lower is better), one can see that using A&B method is slightly
better than using Relatedness to infer relatedness coefficients (a raise of approximately
0.5% and 0.4% for anthesis and grain yield respectively). Based on BIC values, Common
Residual Variance and PT Residual Variances seem equivalent when studying grain yield.
But PT Residual Variances is better than Common Residual Variance when studying
anthesis (a raise of approximately 3.5% using both A&B method and Relatedness to
infer relatedness coefficients).
Computational time of PT Residual Variance model is quite long compare to the one of
Common Residual Variance model. Models for QTLs detection have to be adjusted on
all available markers so computational time of one model has to be reasonable. Despite
the fact that BIC values of PT Residual Variance model are better, we therefore do not
consider this model furtherdown because of its associated computational time.
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Common Residual Variance PT Residual Variances
A&B Relatedness A&B Relatedness

GCAF 4.49 4.94 4.56 5.11
GCAD 3.65 3.94 3.75 4.05
SCAH 0.51 0.48 0.69 0.60
GCAFT 0.19 0.20 0.21 0.22
GCADT 0.44 0.46 0.35 0.36
SCAHT 0.42 0.41 0.37 0.38
Res 1.19 1.18
Res SMH15 0.87 0.86
Res LMG15 1.40 1.38
Res MAS15 4.39 4.37
Res RAGT15 0.44 0.43
Res SMH14 0.25 0.25
Res CAU14 0.40 0.40

BIC 8698.803 8739.158 8386.006 8430.809

Table 4.2: Variance parameters for anthesis of models (4.5) and (4.6) using both A&B and
Relatedness.

Common Residual Variance PT Residual Variances
A&B Relatedness A&B Relatedness

GCAF 87.27 89.41 90.27 90.98
GCAD 65.41 73.75 63.90 71.78
SCAH 7.42 8.55 7.33 9.52
GCAFT 26.42 28.71 22.72 24.91
GCADT 18.33 21.50 19.27 21.90
SCAHT 16.03 10.78 11.35 7.06
Res 103.30 104.72
Res SMH15 157.92 159.04
Res LMG15 173.99 175.33
Res MAS15 90.49 92.90
Res RAGT15 53.54 54.77
Res SMH14 113.14 112.11
Res CAU14 92.08 93.74
Res MOR14 77.94 78.70

BIC 20578.70 20643.57 20546.57 20611.42

Table 4.3: Variance parameters for grain yield of models (4.5) and (4.6) using both A&B and
Relatedness.



4.2. RESULTS 73

4.2.2 QTL Detection per Trial

In this subsection, we study the impact of relatedness inference methods on the
detection of QTL within each trial. To fulfill this purpose, we adjusted trial models
where relatedness coefficients were inferred using both methods presented in Section
4.1.3.

Impact of Relatedness Inference Figure 4.2 displays QQplots of − log10(p-values)
obtained with each method for anthesis in trial CAU14. Here we present only one trial
and one phenotype because all other QQplots have the same aspect (not shown).
The − log10(p-values) obtained using Relatedness were generally higher than those
obtained using A&B method and distributions of p-values obtained using Relatedness

deviate from the ”null” distribution sooner than distributions of p-values obtained using
A&B. Using Relatedness allows to detect more markers than using A&B method. Two
alternative interpretations can be made regarding these results. On the one hand, using
Relatedness may improve the power of tests. On the other hand, using Relatedness

to detect QTLs may increase the number of false positive discoveries.

Marker Detection within each Trial Manhattan plots are presented in Figures
4.3 and 4.4 for anthesis at CAU14 and grain yield at SMH15, respectively, using A&B
method to infer relatedness. Figure 4.5 displays Manhattan plot for anthesis at CAU14
when using Relatedness.

The − log10(p-values) obtained using Relatedness seem globally higher than those
obtained using A&B method. QTLs are not always detected for both the full marker test
and a specific test. For example, in Figure 4.3, one marker is detected on chromosome
8 when one considers the flint additive effect or the global additive effect with the FDR
threshold at 5%, but it is not detected when considering the full marker test. Conversely,
in Figure 4.4, one marker is detected on chromosome 1 when considering the full marker
test, but it is not detected with any other tests.
There are two strategies to detect QTLs. The first one is to do the full marker test and
then focus on other tests to determine which effects are significant. The second one is to
test flint additive, dent additive and allelic interaction effects to detect specific QTLs.
As shown by Manhattan plots, in this case doing one or the other method will lead to
miss some QTLs. The fact that a QTL is detected only for a specific test could be
explained by the raise of degrees of freedom when one tests the full marker effect. On
the opposite, a QTL detected only for the full marker test could be explained by small
specific effects that become detectable once jointly accounted for. To detect all markers
involved in determinism of the targeted trait, one has to study all the possible effects
derived from markers.

Summary of all QTL detected in individual trials To simplify results and dimen-
sion of tables, we grouped markers into QTL with respect to their position on the genome
and their correlation with other markers. Tables 4.4 and 4.5 give results for anthesis and
grain yield respectively, when using A&B method to infer relatedness. Tables 4.6 and
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Figure 4.2: QQplots of the − log10(p-values) of each hypothesis tested for anthesis in the trial
CAU14.
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Figure 4.3: Manhattan plots of − log10(p-values) for the anthesis in trial CAU14, using A&B
method to infer relatedness coefficients. Black line corresponds to the bonferroni threshold. Red
line corresponds to the minimum − log10(p-value) higher than − log10(T ) with T the FDR thresh-
old at 5%.
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Figure 4.4: Manhattan plots of − log10(p-values) for the grain yield in trial SMH15, using A&B
method to infer relatedness coefficients. Black line corresponds to the bonferroni threshold. Red
line corresponds to the minimum − log10(p-value) higher than − log10(T ) with T the FDR thresh-
old at 5%.



4.2. RESULTS 77

Figure 4.5: Manhattan plots of − log10(p-values) for the anthesis in trial CAU14, using
Relatedness to infer relatedness coefficients. Black line corresponds to the bonferroni threshold.
Red line corresponds to the minimum − log10(p-value) higher than − log10(T ) with T the FDR
threshold at 5%.
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Chr MinPos MaxPos SpikePos Pval Type Trial

QTL1 3 207227085 207273133 207250092 6.60e-07 Int MAS15
QTL2 4 33073973 34691176 33882328 5.55e-08 AddF;Add SMH14;LMG15;MAS15
QTL3 4 35498565 37115386 36306920 7.40e-07 Add MAS15
QTL4 5 22977027 23058617 23017884 6.77e-07 Int MAS15
QTL5 5 137239697 138591297 137919829 6.99e-07 Add MAS15
QTL6 8 122931493 122967814 122949646 1.47e-08 AddF;Add CAU14
QTL7 8 123486667 123523088 123504889 1.51e-07 Add CAU14
QTL8 9 118682726 118752544 118717549 1.29e-07 Int MAS15

Table 4.4: Summary of all QTLs detected in individual trial analyses for the anthesis, using A&B
method to infer relatedness coefficients. Chr is the chromosome number, MinPos (resp. MaxPos)
is the minimum (resp. maximum) physical position of the QTL, SpikePos is the physical position
of the marker associated to the lowest p-value, Pval is the p-value of the marker located in
SpikePos, Type is the tested hypotheses which led to the detection, Trial is the list of trials where
the QTL is detected.

Chr MinPos MaxPos SpikePos Pval Type Trial

QTL1 1 187925319 188103693 188014659 4.78e-08 Add;Marker SMH15
QTL2 1 275024696 275155215 275090036 3.58e-08 Marker SMH15
QTL3 3 181856980 181899492 181878262 2.47e-06 Add SMH15
QTL4 5 188687491 188736959 188712217 9.48e-08 AddD SMH14
QTL5 7 108999484 110601741 109740799 2.03e-08 AddD;Add;Marker SMH15
QTL6 7 114737557 115831136 115284347 2.91e-06 AddD SMH15
QTL7 8 129936264 130002097 129978850 1.72e-07 Int LMG15
QTL8 8 136032803 137312565 136713760 1.89e-07 AddD;Marker RAGT15
QTL9 9 36510612 38307857 37409235 1.66e-07 Add;Marker SMH15
QTL10 10 24440373 26069606 25254990 1.24e-07 Marker MOR14

Table 4.5: Summary of all QTLs detected in individual trial analyses for the grain yield, using
A&B method to infer relatedness coefficients. Chr is the chromosome number, MinPos (resp.
MaxPos) is the minimum (resp. maximum) physical position of the QTL, SpikePos is the physical
position of the marker associated to the lowest p-value, Pval is the p-value of the marker located
in SpikePos, Type is the tested hypotheses which led to the detection, Trial is the list of trials
where the QTL is detected.

4.7 give results for anthesis and grain yield respectively, when using Relatedness.

All QTLs detected when using A&B are also detected when using Relatedness.
Except one QTL, all are detected with Relatedness for same hypotheses or supplemen-
tary hypotheses related to those detected with A&B method. For example, QTL3 in
Table 4.4 is detected for a additive effect whereas the same QTL in Table 4.6 (QTL21)
is detected for flint additive effect, additive effect and full marker effect. There is only
one exception for grain yield: QTL8 in Table 4.5 is detected for dent additive effect and
full marker effect when using A&B whereas QTL14 in Table 4.7 is detected for additive
effect and full marker effect but not for dent additive effect when using Relatedness.
The number of QTLs detected when using A&B method is 8 for the anthesis and 10 for
grain yield, whereas the number of QTLs detected when using Relatedness is 40 and 17
respectively. In both cases, we detect a QTL already reported in the literature and that
corresponds to a major QTL for flowering time ”vgt2” (QTL7 in Table 4.4 and QTL33
in Table 4.6). Both inference methods lead to detect principally flint additive effect,



4.2. RESULTS 79

Chr MinPos MaxPos SpikePos Pval Type Trial

QTL1 1 29759110 29889994 29824504 1.66e-06 Int MAS15
QTL2 1 51846200 52458709 52152455 4.00e-06 Int MAS15
QTL3 1 72139068 72330839 72235348 1.42e-06 AddF MAS15
QTL4 1 187925319 188103693 188014659 5.20e-07 Add SMH15
QTL5 1 249481328 250188927 249860569 1.14e-06 Add SMH15
QTL6 1 296537860 296604671 296571258 9.21e-07 AddF;Add LMG15
QTL7 2 29962136 30039666 30000856 3.17e-06 Int MAS15
QTL8 2 34394474 34474721 34434499 1.62e-06 Marker MAS15
QTL9 2 42755878 42847764 42801764 6.60e-07 AddF;Add LMG15
QTL10 2 183397532 183418800 183408153 2.05e-06 Add LMG15
QTL11 2 185645697 185666158 185655920 2.57e-06 Add;Marker MAS15
QTL12 2 214990030 215033365 215011710 3.90e-07 Add SMH14;SMH15
QTL13 3 1530506 1550179 1541536 3.67e-07 Marker MAS15
QTL14 3 32711250 34404141 33557696 1.35e-06 AddF MAS15
QTL15 3 121214088 122906979 122060534 3.30e-07 AddF SMH14
QTL16 3 169062211 169099373 169080793 7.22e-07 AddF MAS15
QTL17 3 199279355 199333417 199306388 1.92e-06 Add SMH15
QTL18 3 207227085 207273133 207250148 4.29e-07 Int;Marker MAS15
QTL19 4 11565938 11587401 11576663 3.79e-06 Int MAS15
QTL20 4 32886547 34691176 33882328 6.00e-09 AddF;Add SMH14;RAGT15;LMG15;MAS15
QTL21 4 35498565 37115386 36306920 2.52e-07 AddF;Add;Marker MAS15
QTL22 4 216614568 218231277 217422923 3.53e-06 Add LMG15
QTL23 5 22977027 23058617 23017932 1.21e-06 Int MAS15
QTL24 5 119491999 121109100 120178761 2.27e-06 Int;Marker MAS15
QTL25 5 137239697 138594982 137898176 1.28e-06 AddF;Add;Marker MAS15
QTL26 5 186933193 186986427 186959785 3.11e-06 Int;Marker MAS15
QTL27 5 195282149 195325351 195303760 4.69e-07 Add LMG15
QTL28 7 168081333 168087858 168084596 6.37e-07 AddF;Add LMG15
QTL29 8 28249381 29243930 28746656 5.88e-06 Add SMH15
QTL30 8 122931493 122967814 122949646 1.57e-09 AddF;Add;Marker CAU14;SMH14;LMG15;SMH15
QTL31 8 123190729 123210729 123200729 6.33e-07 Add;Marker LMG15;MAS15
QTL32 8 123254290 123290662 123272484 4.24e-08 Add;Marker CAU14;SMH15;LMG15;MAS15
QTL33 8 123486131 123530355 123504889 6.81e-09 Add;Marker CAU14;SMH14;SMH15;LMG15;MAS15
QTL34 8 133024400 133044400 133034400 3.00e-06 Add LMG15
QTL35 9 57736343 59751203 58852581 2.58e-07 AddF;Add LMG15
QTL36 9 118682726 118752544 118717549 4.08e-08 Int;Marker MAS15
QTL37 9 136536072 136572665 136554345 1.24e-07 AddD;Add;Marker MAS15
QTL38 9 142733128 142760181 142746618 2.19e-06 Add SMH15
QTL39 9 150819939 150831476 150825715 1.37e-06 AddF LMG15
QTL40 10 138823997 138834442 138829251 7.92e-08 Int SMH14

Table 4.6: Summary of all QTLs detected in individual trial analyses for the anthesis, using
Relatedness to infer relatedness coefficients. Chr is the chromosome number, MinPos (resp.
MaxPos) is the minimum (resp. maximum) physical position of the QTL, SpikePos is the physical
position of the marker associated to the lowest p-value, Pval is the p-value of the marker located
in SpikePos, Type is the tested hypotheses which led to the detection, Trial is the list of trials
where the QTL is detected.
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Chr MinPos MaxPos SpikePos Pval Type Trial

QTL1 1 9410068 9460154 9435138 2.19e-07 Add;Marker RAGT15
QTL2 1 179173582 179302324 179238996 2.86e-06 Add RAGT15
QTL3 1 187925319 188179616 188014659 1.08e-08 Add;Marker SMH15
QTL4 1 214280372 214383338 214331897 4.86e-06 Marker SMH15
QTL5 1 215146259 215246254 215196304 6.58e-07 Add;Marker RAGT15
QTL6 1 251315626 251543607 251429693 2.26e-07 Marker MOR14
QTL7 1 275024696 275155215 275090036 1.45e-08 Marker SMH15
QTL8 3 181856980 181899492 181878262 1.78e-06 Add;Marker SMH15
QTL9 5 188687491 188736959 188712217 7.33e-09 AddD;Add SMH14
QTL10 7 108999484 110601741 109740799 1.42e-08 AddD;Add;Marker SMH15
QTL11 7 114715042 115831136 115284347 1.11e-06 AddD;Add;Marker SMH15
QTL12 8 2412401 2438579 2425454 3.78e-07 Int LMG15
QTL13 8 129936264 130002097 129978850 1.22e-07 Int LMG15
QTL14 8 136032803 137312565 136716294 9.07e-07 Add;Marker RAGT15
QTL15 9 36510612 38410771 37409235 4.73e-08 Add;Marker SMH15
QTL16 10 24440373 26069606 25254990 2.71e-08 Marker MOR14
QTL17 10 141956077 141976077 141966077 5.13e-06 Marker SMH15

Table 4.7: Summary of all QTLs detected in individual trial analyses for the grain yield, using
Relatedness to infer relatedness coefficients. Chr is the chromosome number, MinPos (resp.
MaxPos) is the minimum (resp. maximum) physical position of the QTL, SpikePos is the physical
position of the marker associated to the lowest p-value, Pval is the p-value of the marker located
in SpikePos, Type is the tested hypotheses which led to the detection, Trial is the list of trials
where the QTL is detected.

additive effect or allelic interaction effect for anthesis and dent additive effect, additive
effect, full marker effect or allelic interaction effect for grain yield. In this experiment,
hybrids are derived from crossing flint lines, to bring precocity, and dent lines, to bring
productivity. This is consistent with the type of effects detected for each trait.

Common QTLs detected using A&B method and Relatedness could indicate a
raise of power when using the second method to infer relatedness, because new effects
detected when using Relatedness are related with the ones detected when using A&B
method. The proportion of allelic interaction QTLs is quite small and consistent with
the SCAH variances inferred in subsection 4.2.1, which were small too. QTLs are mostly
detected in only one trial. QTLs can be further decomposed in two groups. The first one
is composed of QTLs detected in one trial and with sub-significant effect in other trials.
The second one is composed of QTLs detected in one trial and with no significant effects
in other trials. A joint analysis of all trials could improve the power of detection for the
first group and accounting for interaction between trials and genotype could improve the
power of detection for the second group.

4.2.3 QTL Detection by joint analysis of all trials

The goal of this subsection is to study the impact of using all trials on QTL detec-
tion. To test our method and because of computational time, we only analyzed anthesis
in this part. When using all trials, for some markers, the matrix X combining all in-
cidence matrices for fixed effects did not have the expected rank. The corresponding
markers were not considered for the analyses.
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Common Residual Variance PT Residual Variances

MF,5 6.69e-11 3.51e-09
MD,10 2.13e-11 5.86e-14
MA,6 1.44e-10 4.40e-07

Table 4.8: p-values associated to markers MF,5, MD,10 and MA,6 with Common Residual Vari-
ance and PT Residual Variances

Impact of relatedness inference method Figure 4.6 displays QQplots of − log10(p-
values) of each tested hypothesis using A&B method and Relatedness. Contrary to
results in QTL detection within each trial the two curves are similar and both of them
diverge from the first bisector quite soon. One can see in Figures 4.7 and 4.8 the distri-
bution of p-values with respect to tested hypotheses using A&B and Relatedness. The
distribution of p-values for both methods seems sub-uniform. Note that, the correlation
between markers is not accounted for in this analysis. The non-independence of tests
may contribute to the shape of histograms.

Impact of analyzing jointly all trials Figure 4.9 displays the Manhattan plots of
− log10(p-values) for each hypothesis tested when using A&B method to infer related-
ness coefficients. One can see that − log10(p-values) values are higher than in Manhattan
plots 4.3. New regions are detected through these analyses, like on chromosomes 5, 10
and 6 for the additive flint TI effect, dent flint TI effect and additive TI effect. This
could be due to a strong interaction effect between trials and genotype or to the fact
that effects within each trial were almost significant and their combination increases the
power of detection.

To simplify notations, most significant markers of regions on chromosomes 5, 10
and 6 are quoted MF,5, MD,10 and MA,6, respectively. Figure 4.10 displays boxplots of
inferred fixed values for the three markers. In these three graphics, one can see that
changing allele values from 0 to 1 leads to increase flowering dates in each trial except in
trial MAS15. The inversion or absence of effect in this particular trial increases the effect
of interaction between trials and genotype and therefore increases the significativity of
tests.

Analysis of MAS15 impact These results prompted us to further investigate the
specificity of trial MAS15. As displayed in Table 4.2, residual variances vary with respect
to trials, and the residual variance of MAS15 is the highest. We considered two methods
to correct the effect of MAS15. The first method was to use per trial residual variances in
each trial as in Section 4.1.3. The second method was simply to dismiss the trial MAS15.

When using PT Residual Variances, p-values associated to MF,5 and MA,6 increased
whereas p-value associated to MD,10 decreased as shown in Table 4.8. The decrease of
p-value associated to MD,10 could be due to a stronger dent additive effect within trials
with the lowest error variances.

Table 4.9 displays the impact of not considering trial MAS15 on p-values associated
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Figure 4.6: QQplots of the − log10(p-values) of each hypothesis tested for anthesis by analyzing
all trials jointly, with both methods to infer relatedness coefficients.
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Figure 4.7: Histograms of the p-values of each hypothesis tested for anthesis by analyzing all
trials jointly, using A&B method to infer relatedness coefficients.
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Figure 4.8: Histograms of the p-values of each hypothesis tested for anthesis by analyzing all
trials jointly, using Relatedness to infer relatedness coefficients.
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Figure 4.9: Manhattan plots of − log10(p-values) for the anthesis by analyzing all trials jointly,
using A&B method to infer relatedness coefficients. Black line corresponds to the bonferroni
threshold. Red line corresponds to the minimum − log10(p-value) higher than − log10(T ) with T
the FDR threshold at 5%.
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Figure 4.10: Boxplots of inferred fixed values for MF,5 (topleft), MD,10 (topright) and MA,6

(bottom) with respect to trials and genotype of flint, dent and dent lines, respectively.
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With MAS15 Without MAS15

MF,5 6.69e-11 3.57e-05
MD,10 2.13e-11 1.24e-10
MA,6 1.44e-10 5.25e-2

Table 4.9: p-values associated to markers MF,5, MD,10 and MA,6 with and without considering
trial MAS15

Figure 4.11: Histograms of p-values associated to flint additive TI test with trial MAS15 (left)
and without trial MAS15 (right) and with A&B method to infer relatedness coefficients

to markers MF,5, MD,10 and MA,6. In this case, the three p-values increased and two of
them became non-significant.

QTL detection for flint additive TI effect without MAS15 The strong impact
associated with the inclusion/exclusion of trial MAS15 on the p-values for these three
loci prompted us to further investigate the impact of excluding trial MAS15. We tested
only the flint additive TI effect on all genome without MAS15 to compare results.
One can see in Figures 4.11 and 4.12 that excluding trial MAS15 leads to a distribution
of p-values closer to that expected under the null hypothesis. We considered that this
could indicate an error in data from trial MAS15. We looked more carefully at the dis-
tribution of flowering date for hybrids in this trial. In Figure 4.13, the distribution seems
bimodal whereas unimodal distributions were observed in other trials. Going back to
the data, we identified for this trial an error in the preprocessing of the data explained
in Section 4.1.2. Hybrids were wrongly assigned to flowering groups, so that the field
correction was not correctly performed. The error impacts particularly results about
anthesis. Considering this error, we display results about variance component inference
and QTL detection within each trial without considering trial MAS15 in Appendix A.

Figure 4.14 displays Manhattan plot of − log10(p-values) of the test. One can
see that values are smaller than those in Figure 4.3 when considering MAS15. Fewer
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Figure 4.12: QQplot of the − log10(p-value) for flint additive TI effect for anthesis by analyzing all
trials jointly, using A&B method to infer relatedness coefficients (with and without trial MAS15).

Figure 4.13: Histogram of flowering date of hybrids in trial MAS15.
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Figure 4.14: Manhattan plot of − log10(p-values) associated to the additive flint TI effect, without
trial MAS15, for the anthesis, using A&B method to infer relatedness coefficients. Black line
corresponds to the bonferroni threshold. Red line corresponds to the minimum − log10(p-value)
higher than − log10(T ) with T the FDR threshold at 5%.

regions are detected. Regions are grouped as in subsection 4.2.2 and results are displayed
in Table 4.10. Table 4.4 includes QTL detected in trial MAS15. To facilitate the
comparison, we rebuilt this table without the trial MAS15 in Table 4.14 and only with
the flint additive effect.
The number of QTLs detected with the joint analysis of all trials is higher than the
number of QTLs detected with analyses within each trial. Note however, that QTL1
in 4.10 was detected when analyzing separately each trial with Relatedness to infer
relatedness coefficients.
More surprisingly, only one of the two QTLs (in vgt2 region on Chromosome 8) detected
with individual trial analyses was detected by analyzing all trials together. Despite the
detection of QTL1 in Table 4.11 in two trials, this QTL was not detected when taking
all trials together. But the QTL2 is detected when taking all trials.
If one looks at the boxplots of inferred fixed values with respect to the flint allele in
Figure 4.15, the effects of the two markers in the different trials appear quite similar
but one can observe a slight tendency towards more stable effects for QTL1, suggesting
a lower interaction for QTL1 than for QTL2. Considering the number of degrees of
freedom added to integrate, this may explain that QTL2 is detected whereas QTL1
is not. Such differences in the behaviour of QTL in single and multiple environment
analyses have been reported previously by Moreau et al. (2004) in the context of linkage
QTL mapping.

4.3 Conclusions

Inferring relatedness coefficients using Relatedness leads to detect more regions
but it is not possible to tell on the basis of present results if these regions are real QTLs
or false positives. To investigate this point, one could use simulated data, as in Rincent
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Chr MinPos MaxPos SpikePos Pval Type

QTL1 1 296537860 296604671 296571258 1.41e-06 AddF TI
QTL2 2 45936108 46042320 45989148 1.68e-07 AddF TI
QTL3 2 235839119 235865570 235852341 2.45e-06 AddF TI
QTL4 4 146320528 147937237 147128883 5.13e-07 AddF TI
QTL5 5 11773790 11801440 11787642 7.51e-07 AddF TI
QTL6 5 47971637 49288925 48630447 1.50e-07 AddF TI
QTL7 5 61166367 61271414 61215284 2.13e-06 AddF TI
QTL8 5 69494886 71542501 70153365 1.47e-06 AddF TI
QTL9 5 213725489 213738702 213732099 1.09e-07 AddF TI
QTL10 6 141925997 142763094 142344596 6.44e-07 AddF TI
QTL11 7 141637892 141675462 141656663 1.19e-06 AddF TI
QTL12 7 168081333 168087858 168084596 1.19e-06 AddF TI
QTL13 8 122931493 122969131 122949646 1.49e-09 AddF TI
QTL14 8 133512273 133610933 133560305 4.92e-07 AddF TI
QTL15 10 9888472 9906991 9897742 9.46e-07 AddF TI
QTL16 10 10572689 10592611 10582540 1.87e-06 AddF TI

Table 4.10: Summary of all QTLs detected in joint analysis of all trials, except trial MAS15,
for the anthesis and only for flint additive TI effect, using A&B method to infer relatedness
coefficients. Chr is the chromosome number, MinPos (resp. MaxPos) is the minimum (resp.
maximum) physical position of the QTL, SpikePos is the physical position of the marker asso-
ciated to the lowest p-value, Pval is the p-value of the marker located in SpikePos, Type is the
tested hypotheses which led to the detection.

Chromosome MinPos MaxPos SpikePos Pval Type Trial

QTL1 4 33073973 34691176 33882328 5.55e-08 AddF;Add SMH14;LMG15
QTL2 8 122931493 122967814 122949646 1.47e-08 AddF;Add CAU14

Table 4.11: Summary of all QTLs detected in individual trial analyses, except trial MAS15, for
the anthesis and only for additive flint effect, using A&B method to infer relatedness coefficients.
Chr is the chromosome number, MinPos (resp. MaxPos) is the minimum (resp. maximum)
physical position of the QTL, SpikePos is the physical position of the marker associated to the
lowest p-value, Pval is the p-value of the marker located in SpikePos, Type is the tested hypotheses
which led to the detection, Trial is the list of trials where the QTL is detected.

Figure 4.15: Boxplots of inferred fixed values with respect to trials and genotype of flint lines.
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et al. (2014a), to evaluate the balance between power and type I risk control when using
Relatedness to infer relatedness coefficients. Furthermore, one could compare QTL
detection using Relatedness to the method proposed by Rincent et al. (2014a) which
infers kinship matrices chromosome by chromosome. For analysis of a marker `, the
kinship matrix used in mixed model is inferred using all markers except those on the
same chromosome than marker `. This aims at avoiding ”proximal contamination” that
leads to a loss of power due to the colinearity between the marker tested as fixed effects
and those considered to estimate the kinship. One could also compare Relatedness to
the method proposed by Vitezica et al. (2013) for double relatedness coefficients.

At the biological level, our results bring information regarding genotype x environ-
ment interaction, additive vs. interaction allelic effects and the combination of both.
Analyses in individual trials suggest that QTL are mostly specific to one trial. In addi-
tion, considering all trials jointly leads to detect more QTLs than within each location.
This supports the hypothesis that the expression of genes depends to a large extent
on the environment and that although variable across locations, there are trends in ef-
fects that contribute to a higher power of the global analysis. It would be interesting
to study environment parameters to understand the impact of environmental effects on
the expression of alleles. Note however that the problem encountered with trial MAS15
suggests that tests involving a QTL x environment interaction can be highly sensitive
to errors in the initial data, which therefore require a specific attention.
QTLs in individual trial analyses are mostly detected for additive effects (flint, dent
or global). There are few QTLs detected for allelic interaction effect. This results is
consistent the one of Giraud et al. (2017) who conducted a linkage based QTL detection
in hybrids between the two same genetic groups (flint and dent) and also mostly found
additive QTL effects. It supports the idea that this organization of diversity into het-
erotic groups is an efficient way to limit allelic interaction effects, which is useful for the
practical management of breeding programs.

Altogether, results from this experiment (see below) suggest that, to detect QTLs
involved in the determinism of a targeted trait, one has to test different hypotheses, ac-
counting for different biological effects. For instance, it would be interesting to test only
additive effects with no interaction with the environment in the joint analysis. This may
lead to discover additional QTLs like QTL4, because the number of degrees of freedom
will decrease. The multiplication of tests prompts us to think about hierarchical testing
procedure (Buzdugan et al., 2016) and the use of adequate multiple testing correction,
like the higher criticism.
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Common Residual Variance PT Residual Variances

AB General Rel General AB Specific Rel Specific

GCAF 4.64 5.09 4.65 5.20
GCAD 3.91 4.17 3.90 4.19
SCAH 0.52 0.53 0.67 0.58
GCAFT 0.21 0.20 0.23 0.22
GCADT 0.26 0.26 0.31 0.30
SCAHT 0.24 0.26 0.35 0.37
Res 0.81 0.81
Res SMH15 0.89 0.88
Res LMG15 1.43 1.41
Res RAGT15 0.45 0.45
Res SMH14 0.24 0.25
Res CAU14 0.38 0.38

BIC 6811.01 6849.97 6735.18 6777.29

Suppl. Table 4.12: Variance parameters for anthesis of models (4.5) and (4.6) using both A&B
and Relatedness and without considering trial MAS15.

Appendix

Appendix A: Results without considering trial MAS15

Results which can be affected by the error on data derived from MAS15 are the
inference of variance components and tables of QTLs detected within each trial.

Variance Components Suppl. Tables 4.12 and 4.13 display estimation of variance
components when studying anthesis and grain yield respectively without considering
data derived from trial MAS15.

All BIC values have decreased comparing to the analysis with trial MAS15, which
can be explained to a large extent by the decrease in the number of observations. The
advantage of a per trial residual variance model compared with a common residual
variance model regarding BIC values is not as pronounced as before when studying
anthesis (a raise of approximately 1%). Using A&B method to infer relatedness still
seems better than using Relatedness.

Summary of QTLs detection in individual trials Suppl. Tables 4.14 and 4.15
display QTLs detected for anthesis and grain yield when using A&B method to infer
relatedness. Suppl. Tables 4.16 and 4.17 display QTLs detected for anthesis and grain
yield when using Relatedness.
The number of regions detected for anthesis is lower without trial MAS15. This result is
expected regarding the problem about the correction. There is no more QTL detected
for allelic interaction between alleles among all trials when considering A&B method to
infer relatedness. When using Relatedness, one marker is detected for allelic interaction
effect. This could be due to a better modelization of the double relatedness coefficients
between hybrids.
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Common Residual Variance PT Residual Variances

AB General Rel General AB Specific Rel Specific

GCAF 85.30 86.90 87.79 88.30
GCAD 66.51 73.67 64.71 71.41
SCAH 6.02 7.60 6.19 8.59
GCAFT 27.63 27.99 23.98 24.35
GCADT 18.95 21.15 19.46 21.05
SCAHT 13.29 9.92 8.86 6.35
Res 106.77 108.51
Res SMH15 154.45 156.17
Res LMG15 179.58 182.50
Res RAGT15 57.58 59.09
Res SMH14 110.85 110.27
Res CAU14 92.29 94.79
Res MOR14 77.72 78.66

BIC 17783.72 17818.01 17749.80 17784.35

Suppl. Table 4.13: Variance parameters for grain yield of models (4.5) and (4.6) using both A&B
and Relatedness and without considering trial MAS15.

Chr MinPos MaxPos SpikePos Pval Type Trial

QTL1 4 33073973 34691176 33882328 5.55e-08 AddF;Add SMH14;LMG15
QTL2 8 122931493 122967814 122949646 1.47e-08 AddF;Add CAU14
QTL3 8 123486667 123523088 123504889 1.51e-07 Add CAU14

Suppl. Table 4.14: Summary of all QTLs detected in individual trial analyses, except trial
MAS15, for the anthesis, using A&B method to infer relatedness coefficients. Chr is the chro-
mosome number, MinPos (resp. MaxPos) is the minimum (resp. maximum) physical position of
the QTL, SpikePos is the physical position of the marker associated to the lowest p-value, Pval
is the p-value of the marker located in SpikePos, Type is the tested hypotheses which led to the
detection, Trial is the list of trials where the QTL is detected.

Results about grain yield are not impacted by the error on the correction. Indeed, no
QTL was found in trial MAS15 during the study. Correction of data at MAS15 may
increase the number of detected QTLs.
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Chr MinPos MaxPos SpikePos Pval Type Trial

QTL1 1 187925319 188103693 188014659 4.78e-08 Add;Marker SMH15
QTL2 1 275024696 275155215 275090036 3.58e-08 Marker SMH15
QTL3 3 181856980 181899492 181878262 2.47e-06 Add SMH15
QTL4 5 188687491 188736959 188712217 9.48e-08 AddD SMH14
QTL5 7 108999484 110601741 109740799 2.03e-08 AddD;Add;Marker SMH15
QTL6 7 114737557 115831136 115284347 2.91e-06 AddD SMH15
QTL7 8 129936264 130002097 129978850 1.72e-07 Int LMG15
QTL8 8 136032803 137312565 136713760 1.89e-07 AddD;Marker RAGT15
QTL9 9 36510612 38307857 37409235 1.66e-07 Add;Marker SMH15
QTL10 10 24440373 26069606 25254990 1.24e-07 Marker MOR14

Suppl. Table 4.15: Summary of all QTLs detected in individual trial analyses, except trial
MAS15, for the grain yield, using A&B method to infer relatedness coefficients. Chr is the chro-
mosome number, MinPos (resp. MaxPos) is the minimum (resp. maximum) physical position of
the QTL, SpikePos is the physical position of the marker associated to the lowest p-value, Pval
is the p-value of the marker located in SpikePos, Type is the tested hypotheses which led to the
detection, Trial is the list of trials where the QTL is detected.

Chr MinPos MaxPos SpikePos Pval Type Trial

QTL1 1 187925319 188103693 188014659 5.20e-07 Add SMH15
QTL2 1 249481328 250188927 249860569 1.14e-06 Add SMH15
QTL3 1 296537860 296604671 296571258 9.21e-07 AddF;Add LMG15
QTL4 2 42755878 42847764 42801764 6.60e-07 AddF;Add LMG15
QTL5 2 183397532 183418800 183408153 2.05e-06 Add LMG15
QTL6 2 214990030 215033365 215011710 3.90e-07 Add SMH14;SMH15
QTL7 3 121214088 122906979 122060534 3.30e-07 AddF SMH14
QTL8 3 199279355 199333417 199306388 1.92e-06 Add SMH15
QTL9 4 33073973 34691176 33882328 6.00e-09 AddF;Add SMH14;RAGT15;LMG15
QTL10 4 216614568 218231277 217422923 3.53e-06 Add LMG15
QTL11 5 195282149 195325351 195303760 4.69e-07 Add LMG15
QTL12 7 168081333 168087858 168084596 6.37e-07 AddF;Add LMG15
QTL13 8 28249381 29243930 28746656 5.88e-06 Add SMH15
QTL14 8 122931493 122967814 122949646 1.57e-09 AddF;Add;Marker CAU14;SMH14;LMG15;SMH15
QTL15 8 123190729 123210729 123200729 6.33e-07 Add LMG15
QTL16 8 123254290 123290662 123272484 4.24e-08 Add;Marker CAU14;SMH15;LMG15
QTL17 8 123486131 123530355 123504889 6.81e-09 Add;Marker CAU14;SMH14;SMH15;LMG15
QTL18 8 133024400 133044400 133034400 3.00e-06 Add LMG15
QTL19 9 57736343 59751203 58852581 2.58e-07 AddF;Add LMG15
QTL20 9 142733128 142760181 142746618 2.19e-06 Add SMH15
QTL21 9 150819939 150831476 150825715 1.37e-06 AddF LMG15
QTL22 10 138823997 138834442 138829251 7.92e-08 Int SMH14

Suppl. Table 4.16: Summary of all QTLs detected in individual trial analyses, except trial
MAS15, for the anthesis, using Relatedness to infer relatedness coefficients. Chr is the chro-
mosome number, MinPos (resp. MaxPos) is the minimum (resp. maximum) physical position of
the QTL, SpikePos is the physical position of the marker associated to the lowest p-value, Pval
is the p-value of the marker located in SpikePos, Type is the tested hypotheses which led to the
detection, Trial is the list of trials where the QTL is detected.
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Chr MinPos MaxPos SpikePos Pval Type Trial

QTL1 1 9410068 9460154 9435138 2.19e-07 Add;Marker RAGT15
QTL2 1 179173582 179302324 179238996 2.86e-06 Add RAGT15
QTL3 1 187925319 188179616 188014659 1.08e-08 Add;Marker SMH15
QTL4 1 214280372 214383338 214331897 4.86e-06 Marker SMH15
QTL5 1 215146259 215246254 215196304 6.58e-07 Add;Marker RAGT15
QTL6 1 251315626 251543607 251429693 2.26e-07 Marker MOR14
QTL7 1 275024696 275155215 275090036 1.45e-08 Marker SMH15
QTL8 3 181856980 181899492 181878262 1.78e-06 Add;Marker SMH15
QTL9 5 188687491 188736959 188712217 7.33e-09 AddD;Add SMH14
QTL10 7 108999484 110601741 109740799 1.42e-08 AddD;Add;Marker SMH15
QTL11 7 114715042 115831136 115284347 1.11e-06 AddD;Add;Marker SMH15
QTL12 8 2412401 2438579 2425454 3.78e-07 Int LMG15
QTL13 8 129936264 130002097 129978850 1.22e-07 Int LMG15
QTL14 8 136032803 137312565 136716294 9.07e-07 Add;Marker RAGT15
QTL15 9 36510612 38410771 37409235 4.73e-08 Add;Marker SMH15
QTL16 10 24440373 26069606 25254990 2.71e-08 Marker MOR14
QTL17 10 141956077 141976077 141966077 5.13e-06 Marker SMH15

Suppl. Table 4.17: Summary of all QTL detected in individual trial analyses, except trial MAS15,
for the grain yield, using Relatedness to infer relatedness coefficients. Chr is the chromosome
number, MinPos (resp. MaxPos) is the minimum (resp. maximum) physical position of the
QTL, SpikePos is the physical position of the marker associated to the lowest p-value, Pval is
the p-value of the marker located in SpikePos, Type is the tested hypotheses which led to the
detection, Trial is the list of trials where the QTL is detected.





Chapter 5

Conlusions

5.1 Conclusion Générale

Au cours de mon doctorat, je me suis intéressé à plusieurs méthodes statistiques
nécessaires à la détection de QTLs par GWAS en génétique quantitative. Ma première
contribution a été de proposer un cadre d’étude rigoureux pour l’identifiabilité et l’estima-
tion des coefficients d’apparentement à partir de marqueurs bi-alléliques. Il s’agit à ce
jour de la première étude de l’apparentement qui prend en compte la nature des données
(individus phasés ou non) et le plan d’expérience (possible(s) parent(s) commun(s), struc-
ture en populations). Elle a permis de conclure que l’identifiabilité d’une partie des
paramètres d’apparentement dépend de la structure du plan de croisement, c’est-à-dire
de la manière dont des individus de la même population ou au contraire de popula-
tions différentes sont croisés pour obtenir les hybrides. Ainsi certains plans tels que les
plans factoriels (Comstock et al., 1952) permettent l’estimation de l’ensemble des coef-
ficients d’apparentement. A l’inverse, les plans diallèles (Griffing, 1956) ne permettent
pas d’estimer le coefficient de double parenté entre les hybrides à partir de marqueurs bi-
alléliques. Cette non-identifiabilité peut avoir des conséquences sur l’analyse statistique :
le coefficient de double parenté est nécéssaire pour la modélisation de l’interaction en-
tre allèles en effet polygénique, et des erreurs sur son estimation peuvent dégrader les
performances de l’analyse d’association ou de sélection génomique à suivre. Le package
R Relatedness permet de prendre en compte la structure des plans de croisement et
de vérifier l’estimabilité des coefficients d’apparentement. Ce package est disponible, en
version 2.0, sur le CRAN (Comprehensive R Archive Network) (R Core Team, 2015).

J’ai aussi étudié et implémenté un algorithme pour l’estimation des paramètres des
modèles mixtes à composantes de la variance. Cet algorithme, bientôt disponible sous
la forme d’un package R, sera particulièrement utile dans le cadre de la génétique quan-
titative pour la détection de QTLs. En effet, l’algorithme MM est plus rapide que ses
concurrents directs lorsque les matrices de corrélation ne sont pas creuses. De nos jours
en génétique des plantes, ces matrices sont largement estimées sur la base des marqueurs
bi-alléliques, ce qui les empêche d’être creuses. De plus, cet algorithme s’est montré plus
rapide que l’algorithme FaST-LMM dans sa version exacte (Lippert et al., 2011) qui
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est l’algorithme de référence en génétique des plantes lorsque le modèle génétique ne
contient qu’un seul effet aléatoire génétique.
Utiliser l’algorithme le mieux adapté aux données analysées est crucial en terme de
temps de calcul : il est dans certains cas possible d’économiser plusieurs heures voire
plusieurs jours de calcul lors de l’étape d’inférence. Notre étude a permis de car-
actériser avec précision les différents cas d’applications de prédilection des algorithmes
étudiés, particulièrement en génétique végétale. Ainsi, si on considère des matrices
de corrélations creuses, il est préférable d’utiliser un algorithme utilisant l’astuce de
l’équation d’Henderson tel que ASReml (Johnson and Thompson, 1995; Gilmour et al.,
2009).
Il n’existe pas à ce jour un algorithme permettant l’estimation la plus rapide et la plus
précise des paramètres sur l’ensemble des cadres d’étude.

Ces développements ont été appliqués à un panel d’hybrides de mäıs. La première
remarque sur cette étude est le manque de puissance lors de la détection de QTLs. Nous
avons donc suivi deux pistes pour essayer d’augmenter le nombre de QTLs détectés :
utiliser Relatedness pour estimer les coefficients de l’apparentement et faire une analyse
jointe de tous les essais. Lors de l’analyse essai par essai, très peu de QTLs ont été trouvés
lorsque nous avons utilisé la méthode d’estimation de l’apparentement décrite par Astle
and Balding (2009). Par comparaison, l’utilisation de l’algorithme Relatedness s’est
traduit par une augmentation du nombre de régions détectées par les analyses. De plus,
cela a permis de détecter une région ”proche” d’un autre QTL majeur de floraison ”vgt1”
(chromosome 8, 131.000.000), ce qui tend à favoriser l’utilisation de notre package. Dans
les deux cas, et malgré un manque de puissance avec la méthode A&B, nous avons été
capable de détecter un QTL correspondant exactement à ”vgt2”. Bien entendu, il reste
à étudier de manière propre l’impact de l’utilisation de Relatedness sur la puissance de
détection. Il existe peu de stratégies disponibles pour cette étude au vu de la complexité
des données, nous pensons à utiliser des données simulées pour analyser empiriquement
cet impact.

Dans un second temps nous avons réalisé l’analyse de tous les lieux conjointe-
ment. Cette dernière nous a tout d’abord permis d’identifier une erreur lors de la
préparation des données sur un lieu. En effet, une forte incohérence au sein d’un lieu
affecte les effets d’interaction entre le génotype et les essais et augmente ainsi le nombre
de régions détectées. Bien que l’étude multi-essais ne soit pas achevée, le nombre de
régions détectées lors de l’analyse sans l’essai MAS15 est supérieur au nombre de régions
détectées dans l’analyse essai par essai. Ce potentiel gain de puissance est un message
encourageant pour la suite des études de GWAS. Les résultats de l’analyse jointe, une fois
complétée, pourraient permettre de revoir la manière de détecter les QTLs en génétique
des plantes et inciter les chercheurs à travailler dans cette voie.

5.2 Perspectives

Il y a beaucoup d’ouvertures sur les modèles mixtes suite à notre étude. La première
serait d’étudier la possibilité d’utiliser des astuces de sparsité des matrices de corrélation



5.2. PERSPECTIVES 99

pour la méthode MM (Misztal and Perez-Enciso, 1993; Masuda et al., 2015) mais aussi
d’utiliser des méthodes approchées des calculs de trace (Brezinski et al., 2012; Fika and
Koukouvinos, 2017). On pourrait aussi s’intéresser à diminuer la taille des matrices à
inverser. Pour cela, il serait possible d’orthogonaliser les modèles selon les vecteurs pro-
pres des matrices de corrélation en gardant seulement les valeurs propres les plus fortes.
Il faudrait bien sûr, par la suite, étudier l’impact de cette projection, à la fois sur le
temps de calcul (normalement plus court) et sur la précision des estimations.

La multiplication des effets aléatoires et le nombres grandissant de marqueurs
disponibles entrâınent des temps de calcul très longs pour la détection de QTL. Comme
présentées dans le Chapitre 3, des méthodes d’inférence approchées (Kang et al., 2010;
Lippert et al., 2011) permettent d’accélérer grandement le processus de détection mais
ne permettent pas forcément de détecter tous les marqueurs. Il pourrait être intéressant
de dériver une méthode de détection couplant méthodes approchées et méthodes ex-
actes d’inférence. Cette méthode se composerait de deux parties. La première étant
d’effectuer les tests sur l’ensemble des marqueurs en utilisant une méthode d’estimation
approchée et de sélectionner les marqueurs passant un certain seuil de sélection peu
strict (à déterminer). La seconde étape serait d’utiliser une méthode d’inférence exacte
sur les marqueurs précédemment sélectionnés et de les déclarer comme ayant un effet
significatif suivant un seuil de détection plus strict (à déterminer). Il faut donc étudier
la valeur des différents seuils pour contrôler le nombre de faux positifs et conserver une
puissance suffisante lors de ce processus de détection.

Certaines méthodes n’ont pas du tout été envisagées dans ce manuscrit, en par-
ticulier la méthode MCMC (Gilks et al., 1996) ou les méthodes de détection de QTLs
bayesiennes. Il serait éventuellement intéressant d’étudier empiriquement ces méthodes
comme dans le Chapitre 3, afin de considérer leur apport contre la méthode de détection
présentée ici. On pourrait ainsi coupler ou dériver ces méthodes à la détection de QTLs
par maximisation de la vraisemblance des modèles mixtes.

Nous avons pu voir l’effet d’insérer des données erronées sur un lieu dans une étude
multi-environnements. Je pense qu’il serait intéressant d’effectuer une étude sur la puis-
sance des tests (Säıdou et al., 2014) et la variation de cette dernière suivant la qualité
des données insérées dans l’étude. De plus, les marqueurs observés sont corrélés entre
eux et pour l’instant cette corrélation n’est pas prise en compte dans les modèles ni pour
les corrections de tests multiples. Il pourrait être intéressant de quantifier la corrélation
entre marqueurs à l’aide du déséquilibre de liaison (Hill and Weir, 1994; Doligez et al.,
2011; Nicolas et al., 2016). Ce dernier commence à être pris en compte lors des correc-
tions de test multiples (Li and Ji, 2005; Gao et al., 2010) mais les propriétés statistiques
de ces seuils restent encore à préciser. L’application de ces seuils à la détection de QTLs
détaillée dans le Chapitre 4 permettra éventuellement de détecter de nouvelles régions
impactant le déterminisme des traits étudiés.

Il pourrait être aussi très intéressant d’effectuer une détection de QTLs sur le panel
présenté dans la chapitre 4 en étudiant plusieurs phénotypes en même temps (Hen-
derson and Quaas, 1976; Scutari et al., 2014), ce qui, selon les auteurs, augmente la
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puissance de détection des QTLs pléiotropiques dans la cas d’étude d’effets additifs.
Ces analyses permettraient de détecter des QTLs impactant simultanément plusieurs
phénotypes d’intérêt en même temps, tel que la précocité de floraison et le rendement
dans notre cas où une (resp. deux) région ”commune” est détectée en utilisant A&B
(resp. Relatedness) pour ces deux caractères. Bien évidemment, ce type d’étude en-
trâıne une complexification des modèles à travers la prise en compte de la corrélation
entre les phénotypes.
Cette étude multi-caractères pourrait se coupler à l’étude multi-environnements effectuée
dans le Chapitre 4 (Alimi et al., 2013).

Outre la détection de QTL, les modèles mixtes présentés ont aussi des applications
en sélection génomique (Heffner et al., 2009). Les analyses permettent de prédire sur
la base de l’observation d’un pool d’individus les valeurs phénotypiques d’individus non
observés. Il serait intéressant d’étudier l’impact de l’estimation de l’apparentement entre
les individus sur la prédiction, une ”meilleure” modélisation du double apparentement
pourrait augmenter la qualité des prédictions.
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Nicolas, S., Péros, J.-P., Lacombe, T., Launay, A., Le Paslier, M.-C., Bérard, A., Mangin,
B., Valière, S., Martins, F., Le Cunff, L., et al. (2016). Genetic diversity, linkage
disequilibrium and power of a large grapevine (vitis vinifera L) diversity panel newly
designed for association studies. BMC plant biology, 16(1):74.

Parisseaux, B. and Bernardo, R. (2004). In silico mapping of quantitative trait loci in
maize. Theoretical and Applied Genetics, 109(3):508–514.

Perdry, H. and Dandine-Roulland, C. (2017). gaston: Genetic Data Handling (QC,
GRM, LD, PCA) & Linear Mixed Models. R package version 1.5.

Petersen, K., Pedersen, M., et al. (2008). The matrix cookbook. Technical University
of Denmark, 7:15.

R Core Team (2015). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Rincent, R., Moreau, L., Monod, H., Kuhn, E., Melchinger, A., Malvar, R., Moreno-
Gonzalez, J., Nicolas, S., Madur, D., Combes, V., et al. (2014a). Recovering power
in association mapping panels with variable levels of linkage disequilibrium. Genetics,
197(1):375–387.

Rincent, R., Nicolas, S., Bouchet, S., Altmann, T., Brunel, D., Revilla, P., Malvar, R.,
Moreno-Gonzalez, J., Campo, L., Melchinger, A., et al. (2014b). Dent and flint maize
diversity panels reveal important genetic potential for increasing biomass production.
Theoretical and applied genetics, 127(11):2313–2331.
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Titre : Développement de méthodes statistiques pour l’identification de gènes d’intérêt
en présence d’apparentement et de dominance, application à la génétique du mäıs.
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Résumé : La détection de gènes est une étape importante dans la compréhension des
effets de l’information génétique d’un individu sur ses caractères phénotypiques. Du-
rant mon doctorat, j’ai étudié les méthodes statistiques pour conduire les analyses de
génétique d’association, avec les hybrides de mäıs comme modèle d’application. Je me
suis tout d’abord intéressé à l’estimation des paramètres d’apparentement entre indi-
vidus à partir de données de marqueurs bialléliques. Cette estimation est réalisée dans
le cadre d’un modèle de mélange paramétrique. J’ai étudié l’identifiabilité de ce modèle
dans un cadre général mais aussi dans un cadre plus spécifique où les individus étudiés
étaient issus de croisements entre lignées, cadre représentatif des plans de croisement
classiquement utilisés en génétique végétale. Je me suis ensuite intéressé à l’estimation
des paramètres des modèles mixtes à plusieurs composantes de variance et plus par-
ticulièrement à la performance des algorithmes pour tester l’effet de très nombreux
marqueurs. J’ai comparé pour cela des logiciels existants et optimisé un algorithme
Min-Max. La pertinence des différentes méthodes développées a finalement été illustrée
dans le cadre de la détection de QTL à travers une analyse d’association réalisée sur un
panel d’hybrides de mäıs.

Title : Development of statistical methods to identify genes of interest in presence of
relatedness and dominance, application to maize genetics.
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Abstract : The detection of genes is a first step to understand the impact of the
genetic information of individuals on their phenotypes. During my PhD, I studied sta-
tistical methods to perform genome-wide association studies, with maize hybrids as an
application case. Firstly, I studied the inference of relatedness coefficients between in-
dividuals from biallelic marker data. This estimation is based on a parametric mixture
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specific case of mating design where observed individuals are obtained by crossing lines,
a representative case of classical mating design in plant genetics. Then I studied infer-
ence of variance component mixed model parameters and particularly the performance
of algorithms to test effects of numerous markers. I compared existing programs and I
optimized a Min-Max algorithm. Relevance of developed methods had been illustrated
for the detection of QTLs through a genome-wide association analysis in a maize hybrids
panel.
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