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Résumé

Ce travail de these est essentiellement consacré au développement de la théorie de transport tunnel Kk.p
multibandes (14, 30 et 40 bandes) pour une application a la spinorbitronique avec semiconducteur. La
spinorbitronique associe généralement les effets de spin et d’orbite, qui par 1’intermédiaire du couplage
spin-orbite, introduit des propriétés de transport nouvelles comme les effets Hall de spin et les effets tun-
nel Hall anormal. Celui-ci se caractérise par une déflection de la trajectoire des porteurs polarisés en spin
selon la direction transverse de leur flux. D’autres effets caractéristiques concernent i) les mécanismes de
transfert de spin (‘spin-transfer’ ou ‘spin-orbit torque’) permettant de commuter une aimantation locale par
transfert de moment angulaire, généralisant ainsi les processus de transfert de spin ainsi que ii) la conversion
spin-charge aux interfaces médiés par les termes Rashba et/ou Dresselhaus. Dans ce cadre, notre théorie
de transport tunnel est adaptable aux hétérostructures semiconductrices, magnétiques ou non, traitant d’une
simple interface ou de jonctions tunnel. Elle permet de tenir compte de fagcon fine des interactions spin-
orbite de coeur et d’interface (Rashba, d’interface). Elle utilise de fagon générale, I’introduction de bandes
hautes supplémentaires, dites fantdmes, pour traiter les états spurious inhérents a la théorie k.p multibandes.
Outre I’introduction de tels états ‘fantdmes’ ne déformant ni la structure électronique, ni le transport polar-
isé, notre approche utilise la continuité des composantes des fonctions d’onde a chaque interface ainsi que
le raccordement des composantes du courant d’onde selon la symétrie particuliere des interfaces en consid-
érant soit 1) la continuité des composantes du courant d’onde (extension de la théorie Ben Daniel Duke),
2) les conditions de raccordement correspondant & une symétrie particuliere Ca, introduisant un certain
mélange trous lourds/trous légers dans la bande de valence (conditions d’Ivchenko) ou 3) une discontinuité
des bandes p ‘hautes’. Nous démontrons, en outre, 1’équivalence des conditions de continuité pour le cas
de puits quantiques III-V de type AlAs/GaAs/AlAs ce qui représente ainsi une généralisation de résultats
précédents développés en 14 bandes.

L’ensemble de ce travail de these, analytique et numérique, comportent plusieurs volets et démonstra-
tions a la fois nouveaux et importants. Nous montrons que notre théorie permet de décrire le transport de
charge, de spin d’états couplés spin-orbite d’hétérostructures semiconductrices d’axe de croissance [100],
[110] ou [111]. Ces résultats sont notamment matérialisés par les calculs les trois composantes du courant
de spin dans les barrieres semiconductrices III-V (GaAs, AlAs) jouant le role de déphaseur de spin. Les
calculs que nous développons montrent en effet, comme le prévoit la théorie analytique, une rotation vec-
torielle de la matrice densité de spin dans 1’épaisseur de la barriere et comme prévue par 1’application d’un
champ e spin-orbite effectif de Dresselhaus parallele au plan de la barriere.

Notre théorie est également comparée avec succes aux calculs de perturbation multibandes utilisant
les fonctions de Green pour le transport pour traiter les mécanismes de 1’effet tunnel Hall anormal dans
la bande conduction et dans la bande de valences avec des résultats remarquables en terme de fidélité ce
qui montre la puissance de la technique utilisée. Nous calculons également les propriétés de courant de
spin dans les jonctions tunnel ferromagnétiques de type (Ga,Mn)As/GaAs/(Ga,Mn)As pour en déduire le
couple de transfert de spin de d’orbite responsable de la commutation de spin de 1’élément ferromagné-
tique fin dans la tricouche. Nous montrons par exemple, comment les composantes de spin transverses du
courant de spin et de spin-orbite représente le parameétre pertinent permettant de commuter une aimantation.
Enfin, nous avons adapté notre théorie de transport aux structures confinées III-V pour calculer les états
confinés de puits quantiques dans la bande de conduction et bande de valence pour démontrer 1’anisotropie
optique de 1’absorption entre les directions [110] et [110] pour le champ électrique lorsque la symétrie de
I’hétérostructure est réduite a une symétrie Co,. Nous comparons avec succes, nos résultats multibandes a

I’état de I’art obtenu précédemment en théorie 6 bandes et 14 bandes.
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Abstract

This thesis is essentially devoted to the developments of the multiband k.p tunneling theory (14, 30 and 40
bands) for semiconductor spinorbitronic application. Spinorbitronic generally associates the effects of spin
and orbit, that via spin-orbit coupling, introduces new transport properties such as spin Hall effects (SHE)
and anomalous tunnel Hall effects (ATHE). This is characterized by a deflection of the trajectory of the spin
polarized carriers according to the transverse direction of their flux. Other characteristic effects concern 1)
the spin-transfer or spin-orbit torque mechanisms, that makes it possible to switch local magnetization by
transferring angular momentum, thus generalizing the spin transfer processes as well as ii) spin to charge
conversion at interfaces mediated by the Rashba and/or Dresselhaus terms. In this context, our transport
theory is adaptable to semiconductor heterostructures, magnetic or not, dealing with a simple interface or
tunnel junctions. It allows one to take into account the spin-orbit interactions at the interface (Rashba in-
teraction). It uses in a general way, the introduction of additional bands, called ghost bands, to treat the
spurious states inherent to the multiband k.p theory. In addition to the introduction of such ghost states,
which do not disturb the electronic structure or the polarized transport, our approach uses the continuity of
the components of the wave functions at each interface as well as the continuity of the components of the
electronic current according to the particular symmetry of the interfaces considering either 1) the continuity
of the components of the wave current (extension of the Ben Daniel Duke theory), 2) the matching condi-
tions corresponding to a particular symmetry Cs,, introducing a certain mixture of heavy holes/light holes
in the valence band (Ivchenko conditions) or 3) a discontinuity of the high bands. We also demonstrate
the equivalence of the continuity conditions for the case of AlAs/GaAs/AlAs III-V quantum wells, which
represents a generalization of previous results developed in 14 bands.

This thesis work, all analytical and numerical implementations, includes several components and
demonstrations both new and important. We show that our theory can be used to describe the charge-
spin transport of spin-orbit coupled states of growth axis semiconductor heterostructures [001], [110] or
[111] direction. As an example with [110] direction, the remarkable results are shown by the calculations
of the three components of spin current in the III-V semiconductor barrier (GaAs, AlAs) structure acting as
spin-phase rotators. The calculations that we are developing show a rotation of the vector spin according to
the thickness of the barrier and as analytically predicted by the application of an effective spin-orbit field of
Dresselhaus parallel to the plane of the barrier.

Our theory is also successfully compared to multiband perturbation calculations using Green functions
to address the mechanisms of anomalous tunnel Hall effect in the conduction and valence bands with re-
markable results in terms of chirality showing the power of the technique used. We also calculate the spin
current properties in (Ga,Mn)As/GaAs/(Ga,Mn)As ferromagnetic tunnel junctions to derive the angular spin
transfer torque responsible for the magnetization switching of the ferromagnetic element in the trilayer. We
show, for example, how the transverse spin components of the spin and spin-orbit currents represent the
relevant parameter for switching magnetization direction. Finally, we adapted our transport theory to the
III-V confined structures to calculate confined states in quantum well for the conduction band and valence
band to demonstrate the optical anisotropy of the absorption between the [110] and [110] directions when
the symmetry of the heterostructure is reduced to a Ca, symmetry. We successfully compare our state-
of-the-art multiband results obtained in theory in 6 bands and 14 bands by Ivchenko et al. and Durnev et

al..
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g, h,i) Durnev’s matching condition 7 = 0.07 and with different in-plane wave vectors k|
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4.1

4.2

2
) f,f]T}N| (dashed lines) for n = hh1(HH1)

(a,b) and n = [h1(LH1) (c,d) in GaAs/Aly35Gag.75As 100 A quantum well. Here, (+)

and () are labeled for spin up and spin down and the calculations was done for k| =[0 0]
(a,c) and k|| = [106cm‘1 0] (b,d) and for #;_;, = O for all. Taken from Ref.[249] . . . . . . 141
f,f;}N|2 (solid lines) and f,ij(z (dashed lines) for LH; (h+) with
tin = 0.5 and k| = 0 in GaAs/Alyp35Gag.75As 100 A quantum well. In the right panel
enlarged images of two envelopes of the upper conduction band are shown. Taken from
Ref[240] . . . . o 142

The envelope functions in a GaAs/AlAs quantum well calculated in the framework of 30-

2
The envelope function |

(solid lines) and

The envelope function

band k.p theory with standard matching condition (7;_, = f = 0) and normal incidence
k| = O for corresponding LH7 (h+) energy level. The calculated wavefunctions are the
scattered waves propagating from lefttoright. . . . . . . .. ... ... .. oL, 142
The envelope functions in a GaAs/AlAs quantum well calculated in the framework of 30-
band k. p theory with Ivchenko’s matching conditions #;_;, = 0.5 (a-d) and Durnev’s match-
ing condition 7 = 0.07 (c-f) with normal incidence k) = O for corresponding LH7 (h+)
energy level. The calculated wavefunctions are the scattered waves propagating from left to
right. . . o L e 143
Dispersion (a, ¢) and spin splitting (b, d) of valence subbands for GaAs/Aly 35Gag.esAs
10nm QW. The calculations are done for two cases: mixing parameter #;_;, = O [panels (a)
and (b)] and #;,_;, = 0.5 [panels (c) and (d)]. The spin splitting of conduction subband el is
presented in (b) for comparison. Taken from Ref.[31]. . . . . . . . .. ... ... ... .. 144
Valence subbands dispersion in GaAs/AlAs 10nm QW calculated with different k.p plat-
forms (indicated in the figures), for two values of the mixing term #;_;, = 0 and #;_;, = 0.5
with two sets of boundary conditions proposed by Ivchenko et al. [30] and Durnev et al. [31].145
Splitting of valence subbands in GaAs/AlAs 10nm QW calculated with different k.p plat-
forms (depicted in the figure), for two values of the mixing term #;_;, = 0 and #;-,, = 0.5
with two sets of boundary conditions proposed by Ivchenko et al. [30] and Durnev et al. [31].146
The results of calculations for valence subbands spin splitting as a function of the interface
mixing strength for GaAs/GaAs and GaAs/AlAs 85 A quantum well (a,b) respectively. The
insets in (a,b) present heavy-hole (HH1) spin splitting for comparison with the result from
Durnev et al. in figure (¢) [31]. . . . . . . . . . L 147
Spin-orbit k-linear term B7 for the HH1 subband in a GaAs/Aly 35Gag.esAs QW. (a) 14-
band numerical calculation is shown for two sets of parameters (solid and dashed lines) and
for two values of the interface mixing parameter: #;_, = O and 0.5. The inset represents
the results for h+ and h- subbands at #;,_;, = O for the parametrization (I); (b) Analytical
calculation of 87 . Three bottom curves are obtained in the limit of infinitely-high barriers
from Eq.(8) of Ref. [251] the solid curve represents the parametrization (I), the dotted and
dashed curves are calculated for the parametrization (II). (c,d) Numerical calculations for
GaAs/GaAs and GaAs/AlAs QW respectively, with Ivchenko’s matching condition, mixing
paramter 7;_;, = 0 and 0.5, in the framework of a 30-band k.p method. . . . . . . .. . .. 148

Scheme of Green function where 71 and 7o symbols design scattering evens at the interfaces
of aheterostructure. . . . . . . . . . ... e 158
Schematic fundamental solutions of the Schrodinger equation (& — Ho) W = O for a scalar
particle in a homogenous potential Uy for z < O,and Ug forz > 0. . . . . ... ... ... 168
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(a). The sketch of a symmetric tunnel barrier with the [110] crystallographic orientation.
The point-group symmetry elements of the structure include the two-fold rotation axis Ca||y
and the mirror planes o,[|(110) and a'yzll(liO); (b) Model of spin injection via (110)-
grown barrier. The spin component S, > 0 of electrons transmitted through the barrier with
different in-plane wave vectors emerges due to i) anisotropic spin filtering caused by the
Dresselhaus spin-orbit coupling in the barrier interior followed by ii) spin rotation in the
interface-induced Rashba effective magnetic field Qg. Taken from Ref.[56]. . . . . . . ..
Schematic of spin rotation through the [110] barrier structure and the potential profile of the
SIIUCTUIE. . . . . . o o o o o e e e e e e e e e
(a) Spin density profile (o;) along the respective i = x,y, z directions (the [100]-, [010]-
and [001]-direction respectively) calculated using our 30-band k.p platform for an incom-
ing electron crossing a [110] GaAs tunnel barrier with incoming spin aligned along the z
% showing the gradual rotation of

the spin component in the {[001], [110]} plane. The rotation is a manifestation of the spin
(o )+(o y )

f \5<0—z )

close to origin depicted in inset figure) shows the spin mixing conductance of interface. . .

direction; (b) Same calculations giving the ratio
dephasing effect. A nonzero value of 6 at the interface (the positive value o

Spin rotation, experienced by the outgoing electron transmitted through the [110] GaAs bar-
rier, as a function of barrier height up to 0.6 eV. (a) Calculated with different k.p platforms
for barrier thickness about 200 A and incident energy e f = 1.7eV above top of valence band.
(b) Calculated with 30 bands k.p method with different barrier thickness. The rotation of
the spin is almost linear proportional to the barrier height. . . . . . . . ... ... ... ..
Spin rotation experienced by the outgoing electron transmitted through the [110] GaAs bar-
rier for different barrier thickness up to 300 A. (a) Calculated with different k.p platforms
for db = 0.5 eV and incident energy ef = 1.7¢V above top of valence band. (b) Calcu-
lated with 30 bands k.p method with different values of db. The rotation of the spin is
proportional to the barrier thickness. . . . . . . . .. ... ... ... ..
Spin rotation experienced by the outgoing electron transmitted through the [110] GaAs
barrier for different as a function of barrier thickness with fixed barrier height db = 0.5eV
and different ghost-band coupling strength {@} (a) and at different k. (b) showing small
differences. . . . . . . ..

The SOT switching and the relevant switching mechanism; (a,b) Field-assisted SOT switch-
ing with J || [110] and H, = £500 oe and with J || [110] and H, = +£500 oe. (c,d)
illustrations of the torques exerted by the external field (.. ), the anisotropy field (7,,) and
the spin component along the x direction (ts7) with J > 0 when H, > 0 and H, < 0, here
m lies in the y-z plane. Taken from [S5]. . . . . . . ... ... ... ... .. ...,
Band structure’s profile of a simple (Ga,Mn)As/GaAs/(Ga,Mn)As based tunnel junction.

Profiles of 3-components of the spin current collinear to o, o, and o inside
(Ga,Mn)As/GaAs/(Ga,Mn)As (fig. 5.2). The magnetization of the thick layer to the left
is along z whereas the one to the right is transverse that is along x. Calculations have been
performed with respective (a,d) 6-, (b,e) 30- and (c,f) 40-band k.p models showing equiva-
lent results. The energy of hole £y = —0.03 ¢V and corresponding to in-plane wave vector
k11=[0 0] (a,b,c) and kH:[O.OSA O](de). . . . oo o
Derivative of three components of spin-current and three components spin-torque calculated
using 30-band k.p model for normal incidence (k| = 0) and oblique incidence (k|| =
0.0510%) and different energies of hole: £y = 0.01eV and Ey = 0.045¢V. The exchange
energy Aoxe = 0.15eV. . . o L e
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55

5.6

5.7

5.8

59

5.10

5.11

5.12

5.13

5.14

(a) The parallel and perpendicular components of spin torque act on the right FM as the
function of the distance from right interface between barrier and right FM, calculated with
zero bias, hole’s energy Ey = —0.05¢V and exchange energy A,y = 0.15¢V in framework
of the 30-band k.p tunneling code; (b) Spin torque spatial distribution of the parallel and
perpendicular components of the spin torque for positive and negative bias, taken from
Ref[290]. . . . . o o
Profiles of the z-component of the spin current within (Ga,Mn)As/GaAs/(Ga,Mn)As junc-
tions. The magnetization of the thick layer to the left is along z, whereas the one to the
right is transverse that is along x for the calculation of the STT. The calculations have been
performed with the energy of holes € = —0.03eV from the middle of the (Ga,Mn)As band.
Here, the necessary heavy hole - light hole mixing parameter #;_;, varies from O to 1. This
coefficient is set naturally positive and negative at the respective right and left interface of
the barrier due to the specific Doy symmetry of the junction of a symmetric profile. . . . .
Scheme of spin transfer torque: the spin polarized currents were prepared by the fixed fer-
romagnetic layer before entering the free ferromagnetic layer. Because of the conservation
of angular momentum, the lost spin part acts like a torque on the magnetization in the free
layer and then may switch the direction of magnetization in this layer. . . . ... ... ..
(a) Structure used for the investigation of the Tunneling Magnetoresistance. (b) Tunneling
Magnetoresistance (TMR) obtained on the structure shown in this figure a at temperature
of 12 K and at bias of 20 mV. The (Ga,Mn)As layers where made different to promote a
different reversal of the two (Ga,Mn)As layers and a clear antiparallel (AP) plateau. . . . .
(a) Tunneling magneto resistance TMR as the function of bias voltage: The TMR reaches
very high values at low bias (120 %) and reduces to zero at bias 1V. (b) The I-V curve of
our sample. . . ... e e e
(a) Spin torque experiment performed on the same nanopillars revealing magnetic reversal
for a critical current density of j., = 2.1 x 10°A.cm™2 and j.; = —1.9 x 10°A.cm™2
respectively. The applied field is 55 Oe in the in-plane direction; (b) The magnetization
diagram switching for this spin torque experiment. . . . . . . . . . . ... ... ...
Shematic structure of the MTJ, consisting of left and right FM leads separated by a non-
magnetic spacer. The magnetization M of the right FM lead is along the z axis, whereas

the magnetization M of the left lead is rotated by an angle 6 around the y axis with respect

The angular dependence of (a) T, and (b) 7}, for SEMJ with bias of 0.2 V. The solid points
are analytical calculation and the solid lines are the sine curve fit, taken from Ref.[309]. . .
Angular dependence of spin transfer torque, for nomal incident electron (a,b)
and oblique incident electron (c,d,e,f) with different hole’s energies, through the
(Ga,Mn)As/GaAs/(Ga,Mn)As tunnel junction depicted in Fig. 5.11. . . . .. .. ... ..
Transmission coefficient as function of k|| wavevector for the maximum spin transfer torque
configuration (6 = n/2) depicted in Fig. 5.11. The strong asymmetry in the transmission
coefficient for the opposite incidence leads to a difference in the angular dependence of the
torque upon two opposite incident direction depicted in Fig. 5.13(c-f). . . . . .. ... ..
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(a) Sketch of the Pt/Ge junction and experimental geometry: 6 is defined as the angle be-
tween the direction of the incident photons uj and the normal to the sample surface n,
whereas ¢ is the angle in the xy plane between the projection of uy, in the xy plane and the
x axis. (b) Schematic representation of the spin current density Jy, photo induced by optical
orientation at the Pt/Ge Schottky junction under illumination. (c) Voltage difference AV as
a function of ¢ angle at fixed at § = 65° for the sample with a Pt thickness of 7p, = 7.2 nm,
taken from Ref. [322]. . . . . . . ..
(a) Schematic of a ferromagnet-semiconductor-normal metal tunnel junction. The tunneling
current flowing in the z direction generates the anomalous Hall voltage (V) in the nonmag-
netic electrode; (b) Side view of (a).Taking the [110] axis as a reference, the magnetization
direction (m) and the direction along which the Hall voltage is measured (¢) are determined
by the angles ¢ and ¢, respectively. Spin-dependent momentum filtering resulting from tun-
neling through a barrier with Bychkov-Rashba SOC for majority channel (c), and minority
channel (d). Taken from Ref. [11]. . . . . . . . . . .. .. .. . . .. .. .. .. .....
Scheme of Anomalous Tunnel Hall effect with ferromagnetic semiconductor (Ga,Mn)As
junction in anti parallel configuration of magnetization. The spin current is injected along
the z direction allowing to obtain the charge current along the y direction if the magnetiza-
tion direction is along the x axis. The efficiency of ATHE may be described through the
tunnel Hall angle 6 which is depicted in the right figure. . . . . . . . ... ... ... ...
Scheme of the transmission process at an exchange SOI step (left) and SOI barrier (right)
junction with AP magnetization along the x cubic crystal axis. The propagation direction of
carriers is along z with propagating wavevector k; whereas the in-plane incident component
+¢ (heavy line) and —¢ (dashed line) is along the y axis; xyz forms a direct frame. The
dash-dot curve denotes the evanescent waves, either reflected or transmitted. Carriers with

+¢ in-plane wavevector component are more easily transmitted than those with —¢.
T(t,m)-T(-t,n)
T (t,n)+T (-t,n)
obtained for an exchange-step with different values of t = £/K [t=0.01 (black; circles),

a) Universal asymmetry coefficient A = vs. reduced energy n = E/w
t=0.5 (blue; squares), t=1 (red; stars), and t=2 (purple; triangles) by 2-band analytical (full
line) and numerical (symbols) calculations. (b) Transmission coefficients and asymmetry
coefficient A vs.reduced energy = E/w obtained for a 3 nm tunnel junction (TJ) with
different values of t = &/K [t=1 (black),t=2(red), by perturbative scattering (pert.: full
lines) method and numerical k.p calculations (Calc.: symbols). Taken from Ref.[57]

The transmission coefficient as a function of in-plane wave vector k|| = (ky, ky) through
an exchange-SOI tunnel barrier junction with AP magnetizations. Carriers with plus k,,
in-plane wave vector component are more easily transmitted than those carrying minus k.
These calculations were done for CB within the different k.p framework: 2 X 2, 14 x 14,
30 x 30, and 40 x 40 band model and a good agreement among them shows that the
numerical code is robust. The exchange strength is 0.3 eV and the total kinetic energy
E =0.23 ¢V, the barrier thicknessis 3nm. . . . . . . . . . . . . i
Scheme of a |-spin electron, ‘Pko (a) and T-spin electron, ‘I‘LO (b), tunneling through an
exchange step of height 2w from the left to the rightside. . . . . . . ... ... ... ...

xxiii

204

205

206

207

209

210



5.22

5.23

5.24

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

(a) Asymmetry coefficient A vs. reduced energy calculated in the VB of
(Ga,Mn)As/GaAs/(Ga,Mn)As 3 nm thick tunnel junction with AP magnetizations for
k = 0.05 nm~! and (b) the transmission coefficient as function of in-plane wave vector
ki = (k. ky). Carriers with plus k, in-plane wavevector component are more easily trans-
mitted than those carrying minus k. These calculations were done for VB within the dif-
ferent k.p framework: 6—, 14—, 30—, and 40— band model and a good agreement among
them showing that the numerical code is robust. The exchange strength is 0.3 eV and the
total kinetic energy E = 0.23¢V, the barrier thickness being3nm. . . . . . ... ... ..
The transmission coefficient for plus and minus inplane wave vector k|| and transmission
asymmetry for an electron in CB tunnels through exchange step junction with antiparallel
configuration of magnetization. Figs (a, b) are calculations using effective Hamiltonian
(without s-p hybridization) with and without Dresselhaus term yp # 0 (yp = 0). (c, d) are
calculations using 30 bands Hamiltonian (taking into account s-p hybridization) with and
without Dresselhaus term yp #0(yp =0). . . . . . . . . . oo
(a) Schematic of Anomalous Tunnel Hall effect in a GaAs quantum well with 2 nm bar-
rier thickness and 10nm quantum well width, 0.5 eV barrier height and 17| magnetization
configuration; (b): transmission as function of energy for anti-parallel configuration with
opposite incident wave vectors k|| around the second peak of quantum well dispersion, and
(c) two dimensional map of transmission vs. k|| calculated for hole’s energy which corre-
sponds to the energy position of the peakin(b). . . . . . . ... ... ... ... ...

a) Figure of optically-pumped spin-VECSELSs experiments, b) Angular-dependence of the
spin-VECSELS output optical power showing a classical cos® @ dependence associated to
a pinning of a linear polarization due to optical anisotropies and c¢) Angular-dependence of
the spin-VECSELSs output optical power almost constant associated to a pure output optical
circular polarization when a strong circular birefringent media is introduced in the optical
CAVILY. . v v v v e et e e e e e e
Scheme of the circularly polarized optical pumping mechanism: Spin generation happens
through preferential transitions driven by the optical quantum selection rules in the active
medium of the optoelectronic device. . . . . . . . . ...
Ilustrating the origin of the natural interface asymmetry in quantum wells grown on (001)
substrates (a-c) and on a (011) substrate (d). Taken from [392] . . . ... ... ... ...
(a) Schematic of a VECSEL (not to scale) with a semiconductor gain chip and an external
laser resonator. Reprinted from [398]. (b,c) VECSEL with the quantum well structure is to
be investigated in this work. . . . . ... ... oL

Schematic of a single unbroadened CP structure in the Herzinger-Johs model. Taken from

The measured Mueller matrix elements as a function of the in-plane azimuth rotation angle
ranging from 0 to 360 degree for E = 2.2 eV and for the angle of incidence 6 = 40°. Taken
from [397]. . . . . e e e
a) The ordinary (blue curve) and extraordinary (red curve) optical constants and b) the
permittivity differences of real Ae; and imaginary Aey parts of GaAs. Taken from [397]. .
a) The ordinary (blue curve) and extraordinary (red curve) optical constants and b) the
permittivity differences of real Aeg; and imaginary Aes parts of AlAs. Taken from [397].

a) The ordinary (blue curve) and extraordinary (red curve) optical constants and b) the
permittivity differences of real Ae; and imaginary Ags parts of an InGaAs quantum well.
Taken from [397]. . . . . . . . e
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6.11

6.12
6.13

6.14

6.15

6.16

6.17

6.18

6.19

Al
A2

A3

Electronic energy-band structure of Ing 25Gag.75As calculated by 30 band k.p method. The
main interband transitions are indicated by the vertical arrows. . . . . . ... ... .. ..
Dipolar matrix elements in Eq. 6.44 for the electron-heavy hole transition (figure a) and
electron-light hole transition (figure b)in InGaAs/GaAs 10nm thick QW with different po-
larization directions [100], [010], [110], and [110]. . . . . . . . . .. .. ... ... ...
Schematic of optical selection rules in quantum well structures. . . . . . . . ... ... ..
Dipolar matrix elements as function of quantum well width electron-light hole transitions
with polarization along [100] direction calculated by our 30 x 30 band k.p code (a) com-
pares with result of Kajikawa (b) taken from ref.[221]. . . . . .. .. ... .. ... ...
Scheme of InGaAs/GaAs quantum well(left figure) and the dispersion of electron in CB and
hole in VB of InGaAs/GaAs 6 nm thick quantum well (right figure) calculated by 30-band
kipmodel. . . . . .. e
Calculated z-dependence of the dipolar matrix element in a single quantum well along the
growth direction. Those correspond to optical transitions between the respective envelope
functions of fundamentals CB1, HH1, and LH1 levels in CB1-HH1 and CB1-LH]1 optical
transitions. The calculations have been performed for different heavy-to-light-hole mixing
coefficients at interfaces leading to optical anisotropic transition. . . . . . . . .. ... ..
The anisotropy of optical matrix transition elements vs. well width indicates a pure interfa-
cial effect like originating from HH to LH mixing. See Ivchenko P.127 in Ref.[409].

The annisotropy of optical matrix transitions elements vs. mixing term parameters originat-
ing from HH and LH calculated within different k.p platforms (14-30-40 bands) and with
two types of matching conditions: (a) the matching conditions proposed by Durnev et al.
[31, 249] and (b) the matching conditions proposed by Ivchenko et al. [30,409].. . . . . .
The annisotropy of optical matrix transitions elements as a function of the mixing term
parameter at right interface of quantum well originating from HH and LH with different
values of mixing term parameter at left interface, taken from Ref.[409]. . . . ... .. ..
(a) Normalized imaginary part of the susceptibility as a function of the mormalized fre-
quency deviation from the nominal band-gap frequency (w — wy) /7, for increasing carrier
densities N/N; = 1.2 (star), 1.5 (diamond), 1.8 (triangle), 2.1 (square), and 2.4 (no symbol).
Solid lines correspond to o = 0.2, while dashed lines correspond to o = 2; (b) Normalized
real part of the susceptibility as a function of the normalized frequency deviation from the
nominal band-gap frequency (w — wq) /7y for the same carrier densities and o values as in
figure a; (c) Line width enhancement factor @ as a function of the normalized frequency de-
viation from the nominal band-gap frequency,(w — wo) /vy for carrier densities n/N, = 1.17
(star), 2.37 (diamond), 3.57 (triangle), 4.77 (square), and 5.97 (no symbol). Solid lines cor-
respond to o = 0.2, while dashed lines correspond to o = 2; (d) Line width enhancement
factor at the gain peak, @, as a function of the normalized carrier density N/N;. The sym-
bols denote value obtained numerically from the electrical susceptibility, while the solid
line corresponds to equation (18) in Ref. [410]. Taken from Ref. [410] . . . . . . . .. ..

Schematic of band structure using in 14 x 14 band k.p Hamiltonian model. . . . . . . . .
The real band structure along three characteristic directions of GaAs calculated in 14 band
k.p model before (a,c,e) and after (b,d,f) using our novel ghost-band method to remove
spurious states. The parameters for 14-band k.p Hamiltonian is taken from Ref.[92]

The complex band structure along three characteristic directions of GaAs calculated by
14-band k.p model before (a,c,e) and after (b,d,f) using our novel ghost-band method to

remove spurious States. . . oL L e e e e e e e e
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A.4 Real band structure of InGaAs via 30-band k.p model before (a,c,e) and after (b,d,f) using
our novel ghost-band method to remove spurious states. . . . . . . . . ... ... ... ..
A.5 Complex band structure of InGaAs via 30-band k.p model before (a,c,e) and after (b,d,f)
using our novel ghost-band method to remove spurious states. . . . . . . ... ... ...
A.6 Real band structure of Silicon via 30-band k.p model before (a,c,e) and after (b,d,f) using
our novel ghost-band method to remove spurious states. . . . . . . . . .. ... ... ...
A.7 Complex band structure of Silicon via 30-band k.p model before (a,c,e) and after (b,d,f)
using our novel ghost-band method to remove spurious states. . . . . . . . .. ... ...
A.8 Schematic representation of the 30-band k.p model representing involved bands, relevant
parameters, momentum matrix elements and spin-orbit couplings. . . . . .. ... .. ..
A.9 Variation of the lowest band gap at T = 300k and electron effective mass at I" conduction
bands of Iny_ Ga,As(taken from [S50]) . . . . . . . . . .. ... ...
A.10 Schematic representation of the 40-band k.p model representing involved bands, relevant
parameters, momentum matrix elements and spin-orbit couplings. . . . . .. ... .. ..
A.11 Real band structure of InAs calculated via 40 bands k.p model before (a,b,c) and after
(d,e.f) using our novel ghost-band method to remove spurious states. . . . . . . ... ...
A.12 Complex band structure of InAs calculated via 40 bands k.p model before (a,b,c) and after
(d,e,f) using our novel ghost-band method to remove spurious states. . . . . . . . ... ..

B.1 Scheme of the tunneling process of an electron through a barrier structure. . . . . . . . . .
B.2 Transmission of carriers (in log. scale) vs. the barrier thickness d in fictitious
GaAs/GaAs/GaAs trilayer barrier with different barrier’s height and different incident elec-
tron wave vectors. The slope of the transmission in log. scale vs d is related to the
tunneling effective mass which remains robust under ghost-spurious coupling strength a:
{a1 = 1eV.A%; a3 = 1.5eV. A% a3 = 2¢V.A%} in framework of 30-band model. . . . .
B.3 Removal of off-diagonal elementsof H. . . . . . .. ... ... ... ...
B.4 Representation of H as the sum of Ho, H1, and Hy where Hy is a truly diagonal matrix, Hy
is diagonal block matrix and Hj is off-diagonal block matrix . . . . ... ... ... ...
B.5 Cardona diagram [416] of the four terms which contribute to the Dresselhaus coefficient y
of valenceband. . . . . . . . ..

B.6 Diagram of the contribution of spin-orbit coupling on the Dresselhaus coefficient in valence

B.7 Numerical calculations of errors for CB, HH and LH subband, calculated via 30-band k.p

C.1 The wave function in n'”* layer and (n + 1)'" layer. ‘P,(,O) is the wavefunction at O,, point
in nth layer, a, and b,, are coefficients corresponding to lI’flo); ‘P,(ld") is the wavefunction
at d,, point in nth layer, (az") and bf,d”) are coefficients corresponding to W, (d,); ‘Pfg)l is
the wavefunction at O,.1 point in nth layer, a,+1 and b, are coefficients corresponding
to ‘Pil?l. Here O;z; is the proper coordinate in i layer where O; was chosen as the point
at the interface between (i — 1) and i"" layer. . . . . . . ... ... ... ........

C.2  Schematic diagram of electron tunneling through heterostrucutre. . . . . . . ... ... ..

C.3 Schematic of scattering process within a heterostructure with indications of wavefunction’s
amplitudes and interfacial scattering matrix S; at each interface as well as the propagation
between two interfaces of considering heterostructure. . . . . . . . . ... Lo

C.4 The elements to build up a global scattering matrix S for a simple barrier structure.

C.5 Schematic of scattering process between two interface. . . . . . ... ... .. ... ...
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Introduction, motivation and goals of this thesis

Electrons possess both charge and spin that, until the discovery of Giant Magnetoresistance (GMR) in
magnetic multilayers in 1988 in Orsay [1] and Julich [2], have been considered separately. The involvement
of spin in devices has opened the way to efficiently control the motion and mobilities of electrons via the
orientation of magnetization. Those discovery rapidly triggered the development of a new field of research
and technology, nowadays referred to spintronics and brought the 2007 Nobel Prize in Physics to A. Fert
and P. Griinberg.
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FIGURE 1: Three cornerstones of spintronics: the creation, manipulation and detec-
tion of spin polarization. Taken from [3].

Spintronics generally offers better or alternative performances to their conventional charge-only counter-
part, offering new functionalities like nonvolatility for memories application. Starting from 1988, spintron-
ics gets first essentially interest in metals and metallic multilayers with the development of highly-sensitive
magnetoresistive devices. In the consecutive years, important research efforts toward the control and ma-
nipulation of the electron spin in devices have been employed. Fields of studies such as magnetic tunnel
junctions and tunnel magnetoresistance phenomena (TMR), spin transfer torque (STT) and STT-based de-
vices and oscillators, and development of materials (2D- materials, Rashba interface states or topological
states in particular) strategy and developments have been impressively investigated or employed to boost
efficiency and performances. Impressive research achievements enabled to rapidly reach a high techno-
logical maturity for the first spintronics based hardware devices leading to the commercialization of hard
drives using GMR (IBM, 1997) and TMR (Seagate, 2006), GMR-based galvanic isolators, Magnetic Ran-
dom Access Memories (MRAM) and in a near future the Spin Transfer Torque Random Access Memories
(STT-RAM).

Nowadays, the involvement of spin-orbit interactions (SOI)> and potentials in electronic states and

related devices makes important scientific step ahead in the novel scientific area named spinorbitronics.

2In this thesis, the terminologies "spin-orbit interactions" and "spin-orbit coupling” are the same and are used interchange-
ably.



Since typically beginning 2010, spinorbitronics represents a real emerging multidisciplinary research field,
thanks to the ability to generate efficient spin-currents without the need of magnetic field or magnetic
materials [4]. The use of high spin-orbit metallic or semiconducting materials, heterostructures or interfaces,
allows one to foresee new fundamental issues and prospects. For instance, the use of spin-orbit fields within
II-V semiconductors, e. g. involving the (Ga,Mn)As ferromagnetic semiconductors, allows one to switch
the magnetization direction in a single thin ferromagnetic layer using the property of angular momentum
current [5]. Those currents are now essential to control the magnetization state of a magnet, or moving a
domain wall in ITII-V materials [6-9]. This is made possible via the spin-transfer torque generated by a spin-
current or by the spin-orbit torque (SOT) generated by the spin-Hall effect possibly involving interfacial
Rashba and/or bulk Dresselhaus potentials arising from inversion asymmetry properties of T; symmetry
group [4].
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FIGURE 2: The tremendously active field of spinorbitronics: the various sub-fields in

which magnetization and spin directions can be manipulated electrically via the spin

orbit coupling in systems broken inversion symmetry which reveals novel states of
matter. Taken from [10].

From a fundamental point of view, the interplay between particle spin and orbital motion is also at
the basis of a new family of effects like spin-galvanic effects or the tunnel anomalous Hall effect [11, 12]
leading to transverse (spin) currents at surface or interfaces. Concomitantly with the numerous literature
devoted to spin-Hall effects in metals and conductors, a mechanism of tunneling planar Hall effect emerg-
ing at ferromagnet FM/TI junctions has recently been proposed. Those qualitatively differ from the SHE
in terms of the relevant geometry, the forward/backward scattering in the present case, and/or the magne-
tization configuration. These phenomenon manifest themselves by a left/right asymmetry in the scattering

process of spin-polarized carriers along the transverse direction of their flow, giving rise to spin-to-charge
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conversion and vice versa whose manipulation will become essential in a new generation of devices. Indeed,
those ensemble of properties may offer new functionalities in the next future, like the ability for spin-orbit

materials in contact with a thin ferromagnet to emit pulsed THz waves in the time-domain area.

AXXXXX1X,

GaN Fe;0,

FIGURE 3: The working principle of a spin-laser with a built-in spin filtering mecha-
nism. a, A bucket model of a conventional laser. Water added to the bucket represents
the carriers and the water coming out the emitted light. When water is added slowly,
the system is analogous to an ordinary light source (spontaneous emission). When
water is added at a faster rate the bucket overfills and water pours out. In a semicon-
ductor laser, this regime corresponds to the emission of coherent photons (stimulated
emission). b, A bucket model of a spin-laser. The two halves represent two spin pop-
ulations (hot and cold water in the analogy) and are filled separately. The partition
between them is not perfect: spin relaxation can cause the two populations to mix.
The difference between uneven water levels represents the spin imbalance in the
laser. ¢, The spin filtering effect at the semiconductor/nanomagnet (GaN/Fe304)
interface is responsible for spin imbalance, even without spin pumping (equal amount
of hot and cold water poured in each half in b). The spin-selective interface (here
represented by the traffic lights) allows spin-down electrons to move across, while
spin-up electrons get stuck behind it, resulting in the spin imbalance of GaN being
transferred to the photons to produce polarized emitted light. For such a spin-laser
to operate, all nanomagnets have to be aligned in the same direction. This effect is
accomplished by applying a magnetic field. Taken from [13]

Besides, even if the science and technology behind passive spintronics devices is well mastered today,
the realization of active devices such as spin-orbit based transistors or spin-lasers for optical communication
still remains an important challenge. The intense research towards such components is motivated by the
potentiality of combining residual magnetic storage of binary information with electronic or optical readout

in a single device. One could envisage to propagate the information contained in a magnetic bit over

3



large distances after having converted the spin into light polarization or helicity by using spin-laser devices
[13, 14]. The injection, transport, and detection of spins in such III-V materials, optically active, like
(GaAs, InAs) [15] are then the three key points to master. A continuous research effort has been led in that
perspective in Spin-Light Emitting Diodes (Spin-LEDs) devices as soon as the "impedance mismatch’ issue
between metals and semiconductors was known to be detrimental. The addition of a thin tunneling oxide
barrier [16] like played by magnesium oxide (MgO) with efficiency larger than 40%, has been considered
at UM¢ CNRS-Thales. Spin-Light Emitting Diodes (Spin-LEDs) involves optically active recombination
regions (quantum wells) where electrons are injected by electrical means or by optical pumping into an
active region where they can recombine radiatively with unpolarized holes to emit preferentially right-
or left- circularly polarized light. This information transfer happens through the optical quantum selection
rules for dipole radiation associated with the conservation of angular momentum z-projections m, occurring
in confined strained active medium or quantum wells (QWs) [17]. In that type of experiments, the degree
of circular-polarization of the light emitted serves as a fingerprint of the initial spin-polarization of carrier
injected electrically. The first functional Spin-LED was proposed by Fiederling et al. in 1999 [18]. Such
carrier-to-photon angular momentum transfer and information conversion have been demonstrated now
e.g. in Naval Research Lab (Washington) Hanover, Bochum [19]. The device must provide a coherent
light emission with switchable polarization state and an output polarization degree as high as possible
in order for instance to robustly encode a bit of information [20-22]. Spin-lasers (spin-VECSELSs) are
devices using the same properties but with the enhanced quality of a coherent light emitted (spatially and
temporally). The amplification effects induced by the combination of a gain medium and a resonant optical
cavity give a unique opportunity to maximize the conversion efficiency of the carrier spin-information into
light polarization information. On the other hands, spin-lasers would provide a number of advantages
over conventional VCSELSs for future optical communication systems such as spin driven reconfigurable
optical interconnects [23], fast modulation dynamics [23], polarization control [24, 25] as well as higher
performances such as laser threshold reduction [25, 26], improved laser intensity, and polarization stability.
In terms of device implementation, III-V semiconductor based Vertical Cavity Surface Emitting Lasers
(VCSEL) emerged as perfect candidates for a spin-laser implementation, thank to their vertical geometry.
Additionally, they exhibit a polarization emission much more isotropic than the conventional side-emitting
laser diodes. Outstanding optical [24, 25] and electrical [25, 27] spin-injection results were already achieved
in monolithic VCSEL structures in the past few years. From a physically fundamental point of view, a
detailed knowledge, of the electronic and photonic spin-current profiles (polarized electromagnetic wave)
and this information transfer by relevant optical selection rules in active media embedded in a multilayer
structure is generally required to gain in performance. The latter calculations should take into account all
the physical ingredients that are e.g. circular dichroism, circular and anisotropic gain, linear birefringence
and local strain field at surfaces and interfaces. These ingredients are generally needed to model the light
emission in semiconducting multilayers inside optical cavities constituted by one or two Bragg mirrors
and/or external mirror (1/2 VECSEL). However, concerning spin-lasers functionalities, additional in-plane
linear anisotropies strongly impact the performance and properties of spin operations. Theoretical as well as
experimental investigations have allowed experimentalists to separate several different contributions [28]:
i) a linear birefringence originating from interfaces between ternary quantum wells and barriers and ii)
possible local surface strain of III-V materials after surface crystal reconstruction and iii) a magneto-optical
anisotropy. However, a full theoretical physical description of such in-plane linear anisotropies is still
missing today.

Overall, the ensemble of those complex phenomenon mentioned above, requires now a clear description
of the spin-currents anatomy with advanced calculation tools and modeling platforms. This can be hardly

fulfilled by ab-initio methods because of the needs to treat multilayered systems. In term of semiconductors



based structure, the K.p technique is a convenient and efficient method for the treatments of multilayered
systems. Therefore, this thesis is devoted to the theoretical, analytical and computational studies of III-V
semiconductor and related materials based structures from fundamental to experimental understandings and
analyses associated with multiband k.p method. In particular, we focus on theoretical study of the electronic
and photonic spin-current profiles in hybrid heterostructures by taking into account the relevant spin-orbit
potentials involved. Together with the analytical developments in this manuscript, we have developed
numerical tools and platforms based on k.p methods for tunneling issues and adapted to many type of
multilayers. Beside the 2 X 2 conduction and 6 X 6 valence bands effective models describing the band
structures of materials in a hetererostructure, the simultaneous treatment of electrons and holes needs a
8-band k.p whereas the inclusion of odd-parity symmetry effect requires at least a 14 x 14 bands k.p
treatment [29] and for a full Brillouin zone description that is useful for the indirect band gap semiconductor
like silicon, one needs to deal with 30 x 30 [29] or 40 X 40 bands k.p Hamiltonian. However, the difficulty
to treat with a multiband like 8-, 14-, 30- and 40-band k.p model for spin transport is to get rid of the well-
known unphysical spurious electronic states making the tunneling calculation unfeasible due to tunneling
shortcuts within the first Brillouin zone. One of the real peculiarity and difficulty is to treat correctly the
tunneling elastic transport in heterostructures occurring at a constant energy, and not at a constant wave
vector k. Generally, it allows for a spurious or unphysical character to be away from the validity zone
of the k.p treatment. Thus, this makes the tunneling problem to become much more complex than the
electronic band structure calculations as well as band to band optical transition estimations. This work,
therefore, provides one of the most advanced implementation of numerical k.p tunneling transport codes
(from 14, up to 30 and 40 bands) to investigate the spin-orbit field effects in carrier transport in a new
class of spintronics and spinorbitronics structures possibly involving also Si and Ge and their group IV

semiconductor alloys.

The organization of this thesis

The layouts of this thesis are:

The first part of this thesis is devoted to six chapters starting with chapter 1 where we review the
fundamental properties of the III-V semiconductors and related materials. In this chapter, we start firstly
with the concept of spin and spin-orbit interaction of electrons in crystal lattice. Afterward, the properties
of III-V semiconductor compounds like GaAs or (Ga,Mn)As is presented and linked to the symmetry of
crystal. Then, the chapter discusses the spin Hall phenomenon via spin-orbit interaction in semiconductors
as well as the generation of spin polarization for spin injection into a semiconductor. Finally, this chapter
closes by giving some main points for the spin relaxation mechanisms in semiconductors.

Chapter 2 describes in details the electronic band structure of Oj, and T; semiconductors using the k.p
technique. This chapter starts with the description of k.p method and then discusses the scheme to build
the k.p Hamiltonians for Oj and T semiconductors from the general symmetry point of view. Afterward,
the chapter presents a "novel ghost-band method" that allows one to remove spurious states in multiband
k.p Hamiltonians from 14 up to at least 40 bands. Finally, the chapter reviews some details on the effective
Hamiltonian, exchange interaction and strain field within the k.p framework.

Chapter 3 considers the quantum matching conditions fulfilled by the electronic wavefunctions and
electronic currents at the various interfaces within multilayer structures. From the standard matching con-
ditions for homogeneous structures to a structure involving the surface potential as well as the matching
conditions with effective Hamiltonians, this chapter gives a set of consistent boundary conditions for each
case allowing to describe the tunneling property of electrons, such as the resonant tunneling, bound state or
quasi bound state in the quantum well. As an example of matching conditions with surface potentials, the

chapter discusses the properties of wavefunctions and spin splitting energies in a A1As/GaAs/AlAs quantum



well structure calculated with multiband k.p models in comparisons with the analytical results obtained by
Ivchenko et al. [30] and Durnev et al. [31].

Chapter 4 gives a description of Green function which is a very useful mathematical and physical tool
for studying the electronic, optical and transport properties of materials. In this chapter the comparisons
between the numerical calculation with 30 bands k.p model and perturbation calculations with Green func-
tion for spin dephasing of an electron in the conduction band tunnels through [110] barrier structure, is also
implemented.

Chapter 5 and 6 contain the main focus of this thesis work. Chapter 5 starts with the definition of spin
current and then discusses on the spin transfer torques mechanism in (Ga,Mn)As/GaAs/(Ga,Mn)As trilayer
with antiparallel configuration of magnetization. Afterward, this chapter gives in details the anomalous
tunnel Hall effect in CB and VB with perturbation calculation based on Green function technique as well as
numerical calculations with multiband k. p method. Chapter 6 starts with the introduction to spin lasers then
discusses the experimental studies of surface and interfacially optical anisotropy by ellipsometry method.
Finally, this chapter gives a theoretical study of optical anisotropy induced by the symmetry breaking at the
interface of semiconductor heterostructure as well as the segregation effect using k.p technique together
with the matching conditions.

Eventually, the last part of this thesis is devoted to conclusion and perspective as well as four appendices
giving in details of all methods and techniques used: explicit matrix representation of multiband k.p in a
consistent basis set, the error estimation of ghost band method, transfer and scattering matrices formalism

and the calculations of the oscillator strength and optical anisotropy for heavy and light holes.
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Chapter 1. III-'V semiconductors and related materials based structure for spintronics and
optoelectronics

In this work, the main materials subject to investigation are III-V based ferromagnetic semiconductors.
In particular, (Ga,Mn)As and related materials have attracted much attention in spintronics and spinorbi-
tronics for decades [32—40], thank to their typical magnetic and spin-orbital properties. In the same manner
as (Ge,Mn)As belonging to group IV semiconductors, (Ga,Mn)As remains a unique prototype of group
II-V semiconductor. It demonstrates non-zero exchange interactions and carrier-mediated ferromagnetism
[33]. This makes it possible for the development of spinorbitronics devices with their particular interest and
properties appearing as soon as both exchange strengths and spin-orbit interactions (SOI) to come into play.
From a fundamental point of view, the ferromagnetic semiconductor (Ga,Mn)As provided new opportuni-
ties to study spin-polarized transport phenomena in semiconductor heterojunctions [41]. One of the interests
in (Ga,Mn)As lies in the wealth and varieties of its electronic valence band structure, location of exchange
interactions, and strong spin-orbit coupling. In this vein, advantages of semiconductor tunnel junction are
fourfold: (1) III-V heterostructures can be epitaxially grown in a wide variety of tunnel devices with abrupt
interfaces and with atomically controlled layer thicknesses; (2) junctions can be easily integrated with other
III-V structures and devices; (3) many structural and band parameters are controllable, like barrier thick-
ness and barrier height, allowing the engineering of any band profile; and (4) one can introduce quantum
heterostructures much more easily than in any other material system.

Throughout this present work, several kinds of III-V (Ga,Mn)As based tunnel junctions are used here-
after, including thin GaAs layer or (In,Ga)As quantum well, for theoretical considerations of spin transport
and spin laser problems. A full understanding of the spin properties and dynamics requires knowledge of
the fundamental material properties, this chapter is therefore devoted to a brief discussion on the material
characteristics and the fabrication of these semiconductors and related materials. First of all, this chapter
starts with a concept of the spin degree of freedom and spin-orbit interaction, the relativistic coupling of
the spin to the movement of electrons in an electric field generated by an atom or a crystal lattice, which
has sparked a rich variety both of fundamental research in spin physics and of new spin-based applications
in technology. Then the Thomas factor, the correction factor due to the acceleration motion of the electron,
is also obtained from two different ways: the relativistic kinetic point of view and the common way with
Dirac equation. In the next part, the chapter gives a basic discussion on a fabrication of III-V semiconductor
and their alloys using Molecular Beam Epitaxy (MBE) technique. This method provides very pure crystal
structures, as well as the fabrication of a ferromagnetic semiconductor by doping the semiconductor with
magnetic transition metals. From the fact that a crucial point to understand the spin transport phenomena in
semiconductor and related structure is to understand the spin orbit interaction in relations to the symmetry of
certain structure since the SOI plays a very important role in various spin transport processes. For instance,
the interplay of electron motion and SOI may generate a spin polarization in a non-magnetic material due
to Spin Hall Effect or a combination of SOI and ferromagnetic materials may give rise a spin-to-charge
conversion which will be given in details in chapter 5. Therefore, one part of this chapter gives an introduc-
tion to SOI in III-V semiconductor linking to the symmetry of crystal. Then, the chapter discusses the spin
Hall family phenomenon with spin-orbit interaction in semiconductors. One of a key parts in spintronic
device prospects is ascribed to the spin field effect transistor (FET), a famous proposal of Datta and Das
in 1990 [42]. Their concept requires the creation of spin polarization injected from magnetized contacts
into a normal semiconductor that can be implemented by electrical or optical spin injection being reviewed
in the following part. However, in contrast with spin polarization generation in semiconductor, the spin
orientation is not conserved due to the SOI since it will relax into thermal equilibrium after a certain spin
relaxation time. Thus, this chapter will close with four relaxation mechanisms being of great importance in

semiconductor spinorbitronics.



Chapter 1. III-'V semiconductors and related materials based structure for spintronics and
optoelectronics

/WA Electron spin and spin-orbit interaction

WA Electron spin

Spin is an intrinsic magnetic dipole moment u carried by elementary particles (electrons), composite par-
ticles (hadrons), and atomic nuclei [43] . The existence of spin is inferred from experiments, such as the
Stern-Gerlach experiment where the silver atoms were observed to possess two opposite angular momenta

whereas no orbital angular momentum [43].
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FIGURE 1.1: Stern Gerlach experiment: Silver atoms traveling through an inho-
mogeneous magnetic field, and being deflected up or down depending on their
spin.

In quantum mechanic, the spin quantity is derived from the relativistic Dirac equation [44] and known as one
of two types of the angular momentum as internal degree of freedom beside the orbital angular momentum
[43]. The spin operator is defined as:
1
S=- 1.1
37 (1.D

where o is the Pauli operators acting on the up and down spin states as:

oD =1, oyD=ill), oID)=1ID 1.2)
o) =M. oyl ==, =D ==

This also refers to the electron spin % as only two states |T) and ||) where o, o, 07, are the three Pauli

01 0 —i 1 O
o-x:(l 0) 0'y=(i 0) o-z:(o _1) (1.3)

Spin-orbit interactions

matrices, given by:

The magnetic moment of the electron relates to its spin:

1
H=—58HB0 (1.4)
where up = zliz is the Bohr magneton and g = 2.0023 =~ 2.

In an uniform magnetic field B, this magnetic moment is submitted to a torque:

M=uxB (1.5)
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optoelectronics
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FIGURE 1.2: Schematic diagram depicting the spin of electron. Taken from [45]

Thus, the energy of a magnetic moment in an uniform magnetic field is described by Zeeman Hamiltonian
[46]:
1
H=-uB= Eg,uBO'.B (1.6)

When an electron moves in a magnetic field gradient like in the Stern-Gerlach experiment, the electron
interacts with magnetic field through its magnetic dipole moment by a force [46]:

F=v(uB)=(uv)B (1.7)

Consequently, electrons with different spin orientations are therefore deflected in two opposite directions.
Moreover, the spin of electrons in a crystal also interacts with electric field E generated by atoms or a
crystal lattice. If we assume the atom or the crystal lattice is at rest in the inertial system, then electrons in
this crystal will experience in their own rest system not only a pure electric field, but also a magnetic field

in the lowest order in v/c, can be written as:

1
B’ = —2V X E (18)

Cc

by using the relativistic transformation of the electromagnetic fields. We have denoted above the primed
variables as the quantities in the coordinate system in which the electron is at rest. The magnetic moments
in the lab frame and in the electron rest frame are the same to first order in v/c. The magnetic field B’
couples to the magnetic dipole moment of the electron, i.e., to the spin, via the Zeeman interaction that in

the lowest order in v/c reads:
’ ’ ’ 1
HSOZg/,tBB .S Z—g,uBC—Z(VXE) .S =Hso (1.9

However, the above argument is incomplete as it neglected complications arising due to the acceleration of
the electron leading to the so-called Thomas precession. It can be exactly derived from the relativistic Dirac
equation by taking the non-relativistic limit, giving:

gup 1 gh
Hsp = —=—— E).S=——(VV .S 1.10
SO 5 2 (v XE) Acm? (VV(r)x p) (1.10)

where g is the Lande factor, m, the electron mass. This exact expression 1.10 differs only by a factor 1/2
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(the so-called Thomas factor) comparing to Eq. 1.9. One observes that electrons experience an effective

magnetic field oriented normal to both its direction of motion and to the external electric field.

The Thomas factor [47]

We will now review a major idea of Kroemer which allows one to derive the Thomas precession factor in
the value of spin orbit strength within the framework of the relativistic kinematics. The details can be found
in Ref.[47] where the main points are:

& When an electron moves with a velocity v through a space in the presence of an electric field E, the
electron will experience in its own frame of reference an effective magnetic field B’. However, one cannot

use a Lorentz-transformed magnetic field B’ given by the familiar expression:

(E xv) /c? _ (E>;v)
Vi-oe? o

in such a simple way since the electron’s rest frame is not an inertial reference frame. Indeed an electric field

B’ = (1.11)

with a component perpendicular to the electron velocity causes an additional acceleration of the electron
along the direction perpendicular to its instantaneous velocity, leading to a curved trajectory. In a rotating
frame of reference, this leads to an additional precession of the electron called the Thomas precession.
Beyond, one may observe that the transformation E — B’ mus be linear in E, and E may occur only in
the combination E X v which reflects the fact that only the component of E perpendicular to the velocity
v can play a role. In other word, B’ must be perpendicular to both E and v. Generally, the magnetic field

transformation admits the following form:

E x
B = a¥ (1.12)
¢
or in the case of a magnetic field B presents in the initial frame, Eq.1.12 may be generalized to:
E x
B'=a— +pB (1.13)
c

where « and 3 are scalar factors depending on the velocity but not on either E or the magnetic field B in
the initial frame.

& In order to obtain the correct magnetic field acting on the electron in its rest frame (determining the
coefficient @ and B in Eq.1.13), one can use the Lorentz transformation taking into account the influence
of a rotating frame by considering the case in which an electron moves in crossed electric field E and
magnetic field B chosen such that the electric Coulomb force is balanced by the magnetic Lorentz force.
For that concern: (i) the electron will move along a straight line with an uniform velocity. The electron’s rest
reference becomes an inertial reference frame and therefore the Lorentz transformation can be applied to
obtain the magnetic field B’ experienced by the electron in this reference frame; (ii) the terms corresponding
to the magnetic field B will play the role of the rotating frame in the case of a curved motion of the electron
in the presence of a pure electric field E.

Particularly, we are now considering a specific combination both electric and magnetic fields such that

E=-vxB (1.14)

where v is the velocity of the electron, and B is chosen perpendicular to v. Without loss of generality, one
may choose a Cartesian coordinate system such that the velocity is along the x-direction, the magnetic field
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is directed along the z-direction, and the electric field is in the y-direction, to give:
Ey =vyB, (1.15)

Using the Lorentz transformation to obtain the magnetic field B’ in the uniformly moving electron frame:

B, — E,v./c?
e </ (1.16)
V1= (vx/c)?
Expanding the right hand side of Eq. 1.16 in powers of v, we obtain:
’ BZV)ZC 1 3 Vx 2 Eny 1 Vx 2
BZ :BZ+ C2 |:§+§(?) - Cz 1+§(7) + ... (1.17)
Using the relation 1.15, Eq. 1.17 can be re-written as:
, Eyvx [1 1 jvy\2
B =5 - [5*5(?) ]+ (1.18)
In the limit v < ¢, one gets:
, 1Eyvy
B:=B:-5—5 (1.19)
or in a three-dimensional vector form, it yields:
1E xv
B '=B+= 1.20
T3 (1.20)

which is required from Eq. 1.13 with o = % and 8 = 1. Finally, we get the Thomas’s factor @ = % ina
good agreement with the literature. As noted in Ref. [47] the central assumption of this derivation is the
proportionality between B’ to E X v carried over to a rotating frame of reference. Besides, the term B,v?2
in Eq. 1.17 plays an important role since this term replaces the rotating frame corrections in the case of a
pure electric field. Neglecting it would be exactly equivalent to neglecting the effects of a rotating frame
of reference for a general choice of fields [47]. The assemble of those general arguments developed here
will also serve as the derivation of some general properties dealing with spin-orbital properties at surface or
interfaces spinorbitronics materials like developed further in this thesis.

Relativistic Dirac equation [44]

As mentioned above, the electron spin was theoretically predicted by application of the special relativity
principles to the quantum mechanics. It appears naturally in Dirac equation as a result of Lorentz covariance
leading to a deep connection between spin and Lorentz invariance that is obscure in non relativistic quantum
mechanics [48]. Now we present here the Dirac equation (without presenting how to derive it) and establish
the expression of spin-orbit interaction from this equation by an approach introduced by Sakurai [43] and
by Winkler [44]. First of all, let us recall the Dirac equation for an electron [43]:

(ihy" 0y — ey" Ay —moc)y =0 (1.21)

Comparing to Schrodinger equation:

Ld o
lhagb = Hy (1.22)
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one may re-write Eq. 1.21 in term of:
L0
lhalﬁ = Hpy (1.23)

where Hp = @ - (p —eA)c+moc? +eV. Here we have used four-dimensional Einstein summation together

0 o 12 0
a = . ﬁ:
o 0 0 I

with following notations

, 70 =B, yi = Bai (1.29)

pt = ih%, AF =(V/c, A) (1.25)

A solution of Eq. 1.23 is a four-component spinor which can be decomposed into two two-component

spinor with the normalized factor as following:

i mgc3t [0)
y=eTh (1.26)
X
Substituting 1.26 to 1.23, one finds:
Vv -(p—eA
inl %] = ¢ cop e 0] _g|9 (1.27)
ot | x co-(p—eA) =2moc’+eV||x X
For the stationary state, one obtains
H ¢ =F ¢ (1.28)
X X
Solving this equation to get:
co - (p —eA)
=— & 7 1.29
X E—eV+2mocz¢ ( )
2
c
(p—eA)] —————[o-(p-eA =(E-eV 1.30
[0 (p = el gy gy [0 (P = eA)] 9 = (E = V) (1.30)
To the zeroth order: 5
E-ev v
— 1.31
2moc? * c2 ( )
Finally, we obtain the well-known equation of Pauli [43]
(p — eA)? eh
—~——+eV—-———0 -B|¢p=E¢ (1.32)
2m0 2mo
Besides, to the first order, one has
2 1 E-V
¢ ~ 1- + ) (1.33)
E — eV +2mgc?2  2myg 2mgc?
giving the following equation, which is not an eigenvalue equation:
1 E-V
[o-(p-eA)] -—|1- 5|0 (p—eA)]¢p=(E-eV)¢ (1.34)
2m0 2moc

14



Chapter 1. III-'V semiconductors and related materials based structure for spintronics and
optoelectronics

Applying the renormalization for the wavefunction 1.26, we have:

. (p-eA) \'[o-(p-ecA
1=/(¢T¢+X'X)dxs=/ ¢T¢+0'(P €)¢ o-(p €)¢ di3
2moc 2mgc
55 (pi = eA) (pj — eAj)a! 2 .
ii\pPi —€eA; i —€A;)o; O . —eA
=/¢T1+ Jp p] J lj¢dx3=/¢' 1+(P 6‘) ¢dx3
4m0C2 47"1()6'2
We renormalize then ¢ in the following way (to the first order):
. (p—eA)®
¢:Q¢= 1+—2 (136)
8mgc?
- —eA)*| .
p=lg=|1_2 j) é (1.37)
8mgc?
Substituting to the Pauli’s equation to obtain:
1 E-V i -
Qo (p-eA)] o —(1- | [0 (p-eA) Q7§ = (E-eV)§ (1.38)
2myg 2mgc
This expression can then be rewritten, after many simplifications to the order of v2/c? [49]
- 2 . _ 2
(p—eA) reV+ eho_.B_eha' (p eA)x8_ eh vV.&
2mo 2mo 4m3c2 SmSc2
(1.39)

_(p —eA)* B eh(p — eA)ZU_ B (ehiB)?
8mgc2 4m(3;c2 8mgc2

$=E¢
where & = %VV is the electric field; B = V X A is the magnetic field. The different terms in Eq. 1.39 can
be interpreted as [44]

1. (p —eA)?/2mg + eV : free electron term.

2. eh/2mgo - B : Zeeman term.

3. —ehho-(p-eA)X 8/4111(2)c2 : spin-orbit coupling.

4. —(eh2/8mgc2)v - & : Darwin term.

5 -(p - eA)4/8m8c2 — (en(p - eA)2/4m8c2)0' -B - (ehB)Z/(Smgcz) : relativistic corrections to

kinetic energy and Zeeman term.

Note that, mainly in the following, we are interested in the spin-orbit coupling since it introduces non-
linear coupling terms in the absence of external magnetic field. In framework of k.p method, the spin-orbit
coupling can be treated as a perturbation with the fact that this term is strictly zero when there is an inversion

symmetry in the crystal [44].
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The III-V semiconductors and related materials (ferromagnetic
(Ga,Mn)As): the art of state

We now will discuss main properties dealing with III-V ferromagnetic semiconductors. Typically, we will
focus on (Ga,Mn)As material.
RN The III-V semiconductors and their alloys: Generalities

The III-V semiconductors such as GaAs, AlAs and InAs are the basis materials for the structures considered
in this work. The Molecular Beam Epitaxy providing crystal structures with sharp layer boundaries, and
negligible thickness variations of the layer, is a method to fabricate them.

,\h) (a) UHV chamber M _ (b)

Cryopanelling

View port

Substrate
heating and
rotation stage

UHF

‘g T un
RHEED T P Pump gl
screen Shutters L\ I’
’ = Electron gun
| =
T

RHEED
screen

Open shutter Closed shutter

Rough

Substrate rotation stage

Transfer rack Effusion cells

FIGURE 1.3: a) Schematic of a simple molecular beam epitaxial system for the growth

of semiconductors. b) Schematic diagram of a MBE growth chamber, showing the

effusion cells and shutters, the substrate stage, and the arrangement of the Reflection
High-Energy Electron Diffraction (RHEED) system, taken from Ref. [50].

(100) (110)

(111)

FIGURE 1.4: The unit cell and crystallographic planes of GaAs, taken from Ref. [51].

Figure 1.3 depicts a basis setup of a MBE chamber where the pure materials evaporate from effusion

cells setting in a ultrahigh vacuum chamber. Due to the ultrahigh vacuum which is supported by cryogenic
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cooling shields to freeze out impurity atoms, the molecules do not interact with each other until they eventu-
ally condense on a substrate. This method provides a slow deposition rate allowing epitaxial growth which
means that the deposited layer is congruent to the substrate. The relative fluxes out of the effusion cells is
controlled by mechanical shutters, and the growth is monitored with the high energy electron diffraction
technique.

Using the MBE technique, one can fabricate III-V semiconductor structures such as GaAs consisting
of tetrahedral covalent bonds by each Ga(As) atom formed with four As (Ga) atoms [51]. Hence, the two
interpenetrating face centered cubic (fcc) lattices of the two atom types are forming a zinc blende crystal
depicted in Fig. 1.4. The space group symmetry of such crystal is symmorphic and labeled F43m or Tg
[52] which contains 24 symmetry operations: the identity, eight C3 operations (rotation by 120°), two
C,, operations (rotation by 180°), six S4 operations (rotation followed by a reflection perpendicular to the
rotation axis), and six o~ operations (reflection with respect to a plane) [53].

Unlike the Oy, group, the T; group possesses no inversion center or inversion symmetry leading to a
small potential asymmetry in the lattice potential in Ty group Vr, = Viym + Vanrisym wWhere Vapsisym can
be considered as a perturbation [29]. When SOI, Eq. 1.10, is taken into account, the lack of inversion
symmetry causes an effective internal magnetic field, experienced by the electrons and described by the
Dresselhaus terms Hp in the conduction band (CB) [52]:

Hp =yp [oxky(k} = k2) + oryky (k2 = k2) + o2k (k3 = k)] (1.40)

where yp is the Dresselhaus parameter, k,, k, and k, are three components of wave vector k along x-, y-
and z-direction respectively.

One has to emphasize that the Hp contributes odd terms in the electron wave vector k and is responsible
for a number of fascinating and important effects being actively studied recently in semiconductors and
spintronic [31] such as spin filtering effect without ferromagnetism [54], spin dephasing in barrier grown
along [110]-direction [55], spin injection via [110] grown semiconductor barrier [56], or anomalous tunnel
Hall effect which will be largely described throughout this thesis [11, 12, 57].
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FIGURE 1.5: (a): Energy gap vs. lattice parameter at temperature 300K (taken
from Ref. [58]). (b) Conduction band offsets in strained InyGaj_,As/GaAs QWs as
function of In composition (taken from Ref. [59])

The MBE technique also allows one to fabricate the ternary alloys such as In,Gaj_,As. In these
structures, one of the two fcc-lattices consists of As atoms and the other is occupied by In and Ga atoms.
Because GaAs forms a band gap E (GG“AS) = 1.42¢V larger than InAs E g n45) = 0.35¢V, the band gap of the
alloy may be designed by changing the content of /ny [60]: Eq = xE éI"AX) +(1-x)E éG“Ax) -x(1-x)C
where C accounts for the deviation from a linear interpolation between the two binaries GaAs and InAs

which is the so-called bowing parameter, in the range of 0.45-0.5 eV [60]. It has also been proposed that
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the bowing depends on the temperature, being almost flat below 100K and decreasing rapidly at higher
temperatures [60]. The energy gap as a function of the lattice parameter at room temperature for several I1I-
V alloys is shown in Fig. 1.5a whereas 1.5b gives the band offset of In,Gaj_,As. Because of the difference
between the gap of GaAs and InAs, one can grow heterostructures with different potential landscapes,
such as quantum wells or semiconductor barrier by stacking such layers with different band gaps. These
structures are known as type I heterostructures, where the higher VB edge and the lower CB edge are both

in the material with the smaller band gap.

Ferromagnetic semiconductors: Exchange interactions in GaMnAs

There is no magnetic order in a III-V semiconductor. However, ferromagnetism was introduced in III-V,
[61, 62] and II-VI [63, 64] semiconductors based on proposal of Furdyna [65]: doping the semiconductors
with magnetic transition metals, yielding the so-called diluted magnetic semiconductor where the magnetic
moments are distributed randomly in the host, allows one to explore the physics of ferromagnetism in
semiconductors [32]. In such a material as (Ga,Mn)As, the Mn atoms may substitute ideally a Ga atom
in the lattice or locate between the atom sites in the lattice. There are different possibilities for a Mn
atom to incorporate into the lattice: two tetrahedral positions between four Ga/As atoms or hexagonal
positions between three Ga/As atoms. In the (Ga,Mn)As crystal, manganese plays the role of an acceptor,
since Mn has an electron less than Ga in the 4p shell (Mn = [Ar] 3d°4s?; Ga = [Ar] 3d°4s®*p! and
As = [Ar] 3d°4s?p®) [37]. However, this acceptor behavior may be partially or fully compensated due to
interstitial Mn impurities. The 3d shell of a Mn atom is only half occupied, yielding a magnetic moment
of % up [37, 43]. Because these electrons are not involved in the atomic bonding, the magnetic moment is

conserved in the macroscopic material.

FIGURE 1.6: Crystal structure of (Ga,Mn)As. Mn ions substituting Ga possesses a
magnetic moment, and the magnetic moment of each Mn ion aligns along the same
direction. This implies ferromagnetism of (Ga,Mn)As. Taken from Ref.[66].

Commonly, the MBE growth temperature for GaAs is high to ensure a pure crystal growth, however, the
low solubility of Mn in GaAs would cause segregation at this high temperature, yielding a Mn accumulation
on the surface [67]. Therefore, low temperatures are necessary to incorporate the Mn atoms, but also,
are giving rise to the implementation of defects. The combination of growth temperature and the Mn

concentration, thus, will determine the alloy’s state.
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Below the Curie temperature, ferromagnetic materials posses a non-vanishing spontaneous magnetiza-
tion M even in the absence of an external magnetic field. In this regime the magnetic moments are oriented
parallel to each other within magnetic domains, and an external magnetic field may align the magnetiza-
tion directions of the domains. Above the Curie temperature on the contrary, the magnetic moments are
randomly oriented in the paramagnetic phase in such a way that the total energy consisting of the exchange
energy and the kinetic energy is minimized, yielding an energy splitting in the density of states of two spin
orientations. A simple model to describe ferromagnetism is the Heisenberg model in which the two nearest
neighbor spins couple ferromagnetically according to the Heisenberg Hamiltonian [68]:

Hy = JijSi.S, (1.41)
i,

where §; ; are two nearest neighbor spins and J; ; is the exchange integral which is responsible for the
exchange interaction. There exists various kinds of exchange interactions. For example, in the common
3d transition metals, the ferromagnetism is based on the direct exchange interaction, which is an interplay
between the Coulomb interaction and the Pauli principle. In (Ga,Mn)As, due to the dilute incorporation, the
average distance between the localized magnetic moments is too large to allow a direct exchange coupling,
since the overlap of the wave functions of the involved spins is too small. Moreover, Ohno et al. [61, 62]
observed a ferromagnetic order in (Ga,Mn)As for Mn concentration higher than 1% which indicates that the
ferromagnetism in (Ga,Mn)As is caused by an indirect exchange interaction. In this case, the carriers get
spin polarized and couple with other carriers by localized magnetic moments (Zener-type ferromagnetism).

cos(kpri j)
3

Consequently, the exchange integral in Eq. 1.41 possesses an oscillatory behavior J; ; o , where

kr is here the Fermi wave vector and r; ; the distance between the two coupled magnetic Iﬁgments. For
the case of metallic (Ga,Mn)As, with Mn concentration in the 1% — 12% range, the distances are small
enough to assume only antiferromagnetic coupling [32]. Thus, the holes couple antiferromagnetically with
the localized 3d electron spins (p-dinteractions), yielding a local ferromagnetic coupling between two Mn
magnetic moments. In the case where the hole concentration is large enough, the hole impurity band merges
with the GaAs valence band, and the holes, which are freely propagating, align the Mn spins all over
the sample. We now discuss the main properties of the p-d exchange interactions within the (Ga,Mn)As

compound in both a atomic picture and in a mean-field approach.

Atomic and chemical picture

From general group-theory arguments, in the effective mass approximation [69-71], non-magnetic shal-
low acceptors like played by Mn atoms can be described by hydrogenic states of fundamental symmetry
term 1S3/o of binding energy equal to 28 meV for GaAs. In a spherical approximation, these are char-
acterized by a total angular momentum F = L +J = 3/2 which is a constant of motion where L is the
angular momentum of the envelope wavefunction. The result is that the fundamental 1S53, wavefunction is
D(S32) = fo(r)IL=0,J =3/2,F =3/2,F;)+go(r)|L =2,J =3/2,F = 3/2, F;). However, according
to optical studies, Mn is known to form a shallow acceptor center in GaAs with Mn level of about A%=d°+h
and electronic configuration characterized by a binding energy [72] of 110 meV due to the consideration
of the central potential correction term, and an energy difference of the order of 10 (+3) meV between the
J=1andJ = 2 h-d° states.

In this picture, the J = S + j quantum number constant of motion is the sum of the @> Mn spin angular
momentum S = 5/2 and the j = 3/2 hole angular momentum. In the §— j exchange coupling scheme where
the exchange interaction is Jex. S - j, the energy difference between the extrema J = 1 and J = 4 states is

equal to 9J,,. whereas it gives 2J,.,. between the two successive J = 1 and J = 2 states. It follows that
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FIGURE 1.7: (a) Atomic structure near a substitutional Mn dopant (blue) in the GaAs
lattice (red atoms are As). The As atoms are labeled by S1, S2, S3, and S4. (b-d)
Contour surfaces of the LDOS of acceptor level at 10 % if the peak value at the Mn
site. The Mn spin is aligned with the (b)[001], (c) [110], or (d) [111] axis of the
GaAs lattice. The symmetry is (b) Doy, (¢) Ca,, or (d) C3,,. The LDOS at each atomic
site is spatially distributed according to a normalized Gaussian with a 2.5 A width.
The box outlines are aligned with the cubic lattice and have widths in units of the
lattice constant a = 5.65 A, taken from [73]. (e) Electron-picture cartoon: splitting
of the isolated Mb acceptor level (top panel) and of the top of the valence-band in
the many-Mn system (bottom panel) due to p-d hybridization, taken from [74].

the energy difference between the states corresponding to the spin of the bound hole respectively parallel
and antiparallel to the Mn spin can be estimated to be 45 meV. This relative small p-d exchange energy
originates from the relative long extent of the bound hole wavefunction where the Mn d states are mostly
localized within an effective Bohr radius ajj o €/m" ~ 0.8 nm (e is dielectrical constant) and corresponding
to an effective volume of 3 nm? as well as an effective Mn concentration approaching x;,. = 1.35%. A
direct consequence is that the average exchange integral A,y is expected to be enhanced with increasing
the Mn content x above this threshold Mn concentration x;,. = 1.35%.

In the metallic regime and in the S-s exchange coupling scheme, the average exchange interaction
in (Ga(1-x), Mny) As reads A.xc = —5/2xNof, where Ny is the concentration of cations and NoB =

—(16/S) (_Aeffl"'Ueff + Aelff ) X (%pda - 2%@pdﬂ)z < 0 is the exchange integral found by treating the p-
d hybridization as a perturbation in the configuration interaction picture [75] giving rise to antiferromagnetic
interactions between p and d shells. Here, S is the localized d spin, U, ¢ f:E(d"’1)+E(d"+1)—2E(d”) is the
characteristic 3d-3d Coulomb interaction, A, ¢ ¢ =E(Ld")-E(d"!) is the ligand-to-3d charge transfer energy.
On the other hand, (pdo) and (pdr) are the characteristic Slater-Koster hopping integrals [76]. The value
of Nof3 = —1.2 eV (8 = =54 meV.nm?) is generally admitted from core level photoemission measurements
for (Ga,Mn)As with a T¢ close to 60 K [77] corresponding to an effective acceptor concentration X,z 5 =~
4% where x.r ¢y = X0 — 2xp (xo: minimal doping; xp: double donors). Figure. 1.8 displays the 4-
different exchange-split (Ga,Mn)As subbands calculated for a hole density p=1.7 x 10%° cm™ and an
average exchange energy between up and down hole spin of A.x. = 120 meV.

From a point of view of experiments and material properties, questions remain on the general trends of
tunneling magnetoresistance (TMR) vs. exchange interactions A.x. = —5/2xNyf where xNy is the con-

centration of Mn atoms as well as hole band filling within (Ga,Mn)As. Also, what are the possible effects
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of the low-temperature (L-T) growth procedure used for the synthesis of these MTJs on the band lineup,
valence band offset and related barrier heights of heterostructures integrating (Ga,Mn)As? Remarkably and
as shown by non-linear I-V characteristics recorded on junctions both (Ga,As) and (In,Ga)As materials
play the role of a tunnel barrier for holes injected from/into (Ga,Mn)As [7, 78]. The same qualitative fea-
ture have been demonstrated through optical measurement of the hole chemical potential in ferromagnetic
(Ga,Mn)As/GaAs heterostructures by photoexcited resonant tunneling [79]. These results favor a band-edge
discontinuity due to the smaller band gap of (Ga,Mn)As compared to GaAs [80] and indicate a pinning of
the Fermi level deep inside the band gap of the (Ga,As) host. A part of the answer lies in the incorporation
of n-type double-donor As antisites during the low temperature growth procedure that partly governs the
pinning of the Fermi level at a higher energy position than expected, neighboring the midgap of GaAs. The
second reason is due to the positive coulombic-exchange potential experienced by holes and introduced by
Mn species playing the role of hydrogen centers for holes orbiting around it. This is at the origin of an
impurity-band formation at smaller or intermediate doping level in the host bandgap and an intense debate
remains about the position of the Fermi level relative to the impurity band [81]. While infrared measure-
ments [82] as well as magnetic circular dichroism (MCD) [83] experimental and theoretical studies [84]
seem to support the scenario of a detached impurity band, recent low-temperature conductivity measure-
ments [85] validate the approach of a VB picture more compatible with a k.p treatment of its electronic

properties.

Averaging in media: mean-field approach

In 2000, Dietl et al developed a mean field Zener model to describe the ferromagnetism in (Ga,Mn)As in
detail in Ref. [86, 87]. In this approach, the p-d interaction is considered as an effective magnetic field
which causes a spin splitting in the valence band. In the picture given by Dietl, the exchange interaction
with the hole and p-d hybridization is described by [87]:

Bs.M

H. . = =3Bgs.M (1.42)
S4B

where 3 is the average exchange integral, s is the electron spin, M is a localized spin, g is the Landé factor,
and up is the Bohr magneton. For the sake of simplicity, in this work we will assume that Eq. 1.42 can be

applied to the exchange interaction between electrons and localized magnetic moments.

Spin-orbit interactions and their symmetry in semiconductors:

Larmor frequency

We now turn on the description of specific spin-orbital properties of III-V semiconductor and related ma-
terials. In the structure of semiconductors belonging to the Oj, group, there is an existing space inversion
symmetry which implicates that the spin up and spin down states are degenerate. This can be understood as

the consequence of the time-reversal symmetry and space inversion symmetry.

In the system lacking of a space inversion center, the spin degeneracy is lifted because of the presence
of an electric field resulting from an asymmetric charge distribution inside the semiconductor unit cell, or
an electric field applied along a certain crystal axis [29, 37]. According to Eq 1.10, the potential gradient
would lead to a spin splitting in the energy dispersion of electron in the conduction band even in the absence
of any external magnetic field. An external magnetic field would break the time inversion symmetry and

therefore would cause a Zeeman splitting in the energy dispersion. The SO splitting may be considered
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FIGURE 1.9: Panels (a) illustrates the SIA/BIA spin splitting, here | + 1/2), label

the eigenstates with fixed y spin components. Panels (b) and (c) show schematic

2D band structure with k-linear terms for Cy,, symmetry. The energy ¢ is plotted as

a function of k, and ky in (b) with only one type of inversion asymmetry, BIA or

SIA, and in (c) for equal strength of the BIA and SIA terms in the Hamiltonian. The

bottom panels (d-g) show the distribution of spin orientations at the Fermi energy
for different strengths of the BIA and SIA terms. Taken from [88].

as an intrinsic effective k dependent magnetic field B,y s (k) in which an electron spin precesses with the

Larmor frequency. Consequently, we can re-write 1.10 as:
h
Hso = Eﬂ(k).a' (1.43)

where Q(k) = g"TBBe 75 (k) is the Larmor frequency. The effective SO field must vanish at k = 0 because
Kramer’s theory requires that Q(k) = Q(—k) thus, leading to no spin splitting at k = 0. When k # 0, the
splitting energy is AEso = 2h|Q(k)|.

There exist several kinds of space inversion asymmetries:

& The bulk inversion asymmetry BIA.

& The structure inversion asymmetry SIA.

& The natural interface asymmetry NIA.

In the following, we are going to discuss on BIA and SIA which represent very common space inversion

asymmetries in III-V semiconductor heterostructures considered in this work.

Bulk inversion asymmetry

In ITII-V semiconductors of a zinc-blende structure, there is no inversion center leading to a bulk inversion
asymmetry (BIA) in the crystal lattice. In 1955, G. Dresselhaus used general group theoretical arguments to
give an expression for the spin splitting in zinc-blende structures [89]. In this case, the Larmor precession
vector can be written in the well-known form as Dresselhaus field (Eq. 1.40) according to:

QU0 = 22 [k (k2= K2) ky (k2= K2) ke (K2 - 42) | (1.44)
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where the x — direction is along the [100]-direction; y— the direction along [010]; z— the direction along

[001] and the spin-splitting parameter yp is expressed as [37, 90, 91]

ah®
YD = —(/———
m*\2m*Eg

here m* is the electron effective mass, and E, is the energy gap. One may observe that the magnitude of the
Dresselhaus SOI depends on the material and is expressed through a dimensionless parameter «p. In the lit-
erature, there exists several publications which have determined the value of yp for the bulk semiconductors

(1.45)

shown in Table 1.1.

TABLE 1.1: Dresselhaus parameter of some bulk semiconductors taken from litera-

ture.
yD(eV.f\B) Vurgaftman et al. [60] | Jancu et al. [92] | Perel et al [54] | T.H.Dang et al. [93]
GaAs 17.4-26 24.4 24 23.5
GaSb 185 176 187 180
InAs - 48.6 130 130
InSb 226 465 220 335
AlAs - 11.2 11.4 17

FIGURE 1.10: Vector fields Q(k) on the Fermi surface (circle) for the structure
inversion asymmetry (SIA) and bulk inversion asymmetry (BIA). Since Q(k) is also
the spin quantization axis, the vector pattern is also the pattern of the spin on the
Fermi surface. As the opposite spins have different energies, the Fermi circle becomes
two concentric circles with opposite spins. This is shown here only for the SIA case,
but the analogy extends to all examples. The field for BIA [110] lies perpendicular
to the plane, with the magnitude varying along the Fermi surface. All other cases
have constant fields lying in the plane. Taken from Ref. [37]

In the 2-dimensional electron system, yp depends on the confinement energy in the quantum well. The
value of yp decreases as the confinement energy increases. Moreover, the penetration of the wave function
in the barrier material also results in a change of the parameter yp [44]. The sign of the parameter is

determined by the coordinate system used. For example, in the case of GaAs in which the cation Ga is
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placed at the origin of a GaAs primitive cell and the anion As is located at a (}P %r, ‘l‘), vp is negative [94].
The confinement of the electron wave function in 2D semiconductor systems implicates that the quantization
of the momentum is along the growth direction (z-direction). In the first order perturbation theory, the
terms k, and kg in Eq 1.44 may be replaced by their expectation values. The shape and orientation of the
Dresselhaus field now depends on the direction of the quantization axis as depicted in figure 1.10 [37, 91].
In the case of [110]-grown quantum well, one may re-write the Eq.1.44 in a coordinate system
x||[110], y||[001, z||[110]] with a special attention that in quantum wells, since (k%) is much larger than
the in-plane momentum kﬁ [91], thus one may neglect the term (kac - 2k§) in comparison with (kg) to get:

ol k) = %ﬁ [0,0, ky] (1.46)

where 8 = vp (k%) is the so-called the Dresselhaus parameter. Furthermore, the other components are
obtained by cyclic permutation of the indices and one may easily obtain the Dresselhaus fields for both
[001] and [111] direction given by [37, 91, 95]:

Q% (k) = g [k, ky, 0] (1.47)
2
ol (k) = «/‘Tﬁh [ky, —kx, 0] (1.48)
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FIGURE 1.11: Electronic structure of interfacial Rashba states and principle of
experiments. (a) Typical spin-split dispersion curves of a Rashba 2DEG for ag > 0
(adapted from Nechaev et al. [96]) and (b) typical Fermi contours. An electron
flow (that is, a shift of the Fermi contour in the direction of the flow) automatically
induces a nonzero spin density or Rashba Edelstein effect (REE). Inversely, a nonzero
spin density generated by spin injection induces an electron flow or Inverse Rashba
Edelstein effect (IREE)!. (¢) Scheme of the NiFe/Ag/Bi samples under resonance.
The radio frequency (RF) field is along y, and the DC field along x; Jg is the vertical
DC spin current injected into the Ag/Bi interface states (back flow included), and
converted into a horizontal DC charge current /- by the IREE. In an open circuit
situation /¢ is balanced by the current associated to the DC voltage V. Taken from
Ref.[97].

IWe will use the terminologies "Rashba Edelstein" and "Inverse Rashba Edelstein" effects later in the thesis but one has to
note here that these effects seem to have previously discovered by other authors, but having more complicated last names, a
common author is Lyanda-Geller, [98, 99]. The inverse effect was studied even earlier [100].
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Structure inversion asymmetry

In a heterostructure such as quantum well or semiconductor barrier, an external or internal electric field may
break the space inversion symmetry [101, 102] resulting in the Bychlov-Rashba spin-orbit interaction which
is proportional to the average of the sum of the external and internal field [103]. Moreover, the confinement
potential is described in the first order, by an electric field E. Thus, similarly to the BIA, the contribution
of the SIA to the Hamiltonian in 1.43 can be considered as an effective field, which can be expressed in the
lowest order in k and E as [44, 104]:

2
Qpr(k) = %k x E (1.49)

where ag is a material parameter (ag = 5.2¢ A2 for GaAs [44]). Typically, the electric field and the material
parameters are averaged over barrier and quantum well, if E = (0,0, E,) and we put @ = {(aoE;) to find:

Qpr(k) = %[ky, k., 0] (1.50)

This gives a spin splitting in the conduction band AEggr = ak| which is linear in k| = (k, ky,0) and E
for small k. The Rashba field 1.49 does not depend on the growth direction of the heterostructure. It is
always oriented in the plane and along the direction orthogonal to the electron in plane wave vector. When
k| becomes large, the parabolic approximation of the band structure no longer holds , and consequently, the

spin splitting converges towards a constant [104].

Spin Hall phenomena via spin-orbit interaction in semiconduc-

tors

The spin Hall effect (SHE), a member of the Hall family (see figure 1.12), was predicted by M. 1. Dyakonov
and V. L. Perel in 1971 [105] and then observed in semiconductors in 2004 by using Kerr notation mi-
croscopy technique [106, 107]. This effect consists in the appearance of a spin accumulation on the lateral
surfaces of an electric current-carrying sample, the signs of the spin directions being on the opposite bound-
aries. Therefore, an electrical current flowing through a sample may lead to a spin transport along the
direction perpendicular direction as well as a spin accumulation at lateral boundaries. These purely electri-
cal mechanisms require neither external magnetic field nor ferromagnets and can be observed in materials
with strong spin-orbit as the SO coupling acts like an effective magnetic field on the spin of the electrons.
Eventually, SHE gives us the way to generate a spin accumulation like a source of pure spin currents needed

for spin injection.

‘Wl Spin Hall effects

The spin Hall effect originates from the spin-orbit interaction which couples the electron spin to the orbital
motion [109]. The origin of the SHE is classified as:

& Intrinsic: if SO effects on the wave functions of the conducting band are predominant.

& Extrinsic: if SO effects originates from the scattering potential of impurities or defects.

In a nonmagnetic conductor, the SOI generates a pure spin current J;p;, which is orthogonal to the

charge current J.pqrge. The conversion efficiency of the charge current density into spin current density is
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(a) Hall (1879) A (b)AHE (1881) A (c)SHE(2;O4)l
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FIGURE 1.12: Members of the Hall family: (a) Hall effect. (b) Anomalous Hall
effect. (c) Spin Hall effect. (d) Quantum Hall effect. (¢) Quantum Anomalous Hall
effect. (f) Quantum Spin Hall effect. Numbers in parentheses indicate the years
of each discovery. H is the external magnetic field, M is the intrinsic spontaneous
magnetization, and S denotes spin. Taken from Ref.[108].

characterized by the spin Hall angle 65y g given by:

J .
Spin (1.51)

OsHE =

Jenar ge
The use of SHE, eventually, leads to the development of experiments and concepts involving the switching
of magnetization in ferromagnetic materials via spin-transfer torque or spin-orbit torque [110], spin torque

ferromagnetic resonance [111] and the SHE transistors [112].
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FIGURE 1.13: (a) Charge-current-induced Spin Hall effect (SHE) in which the charge
current j,along the x-direction induces the spin current j H in the y-direction with
the polarization parallel to the z-axis. (b) Inverse Spin Hall effect (ISHE) in which
the spin current j, flowing along the x-direction with the polarization parallel to the
z-axis induces the charge current jg in the y-direction, taken from Ref.[113].
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Inverse Spin Hall effects and Tunneling Anomalous Hall Effects

The inverse spin-Hall effect (ISHE), displayed in figure 1.13a, qualifies the mechanism reciprocal to the
SHE, in which a pure spin current can be converted into a charge current and a charge accumulation. The
ISHE is caused by the bending of electron orbits of up and down spins into opposite directions normal to
their group velocity, owing to the spin-orbit interactions [114, 115].

Furthermore, the interplay of SOI and exchange interactions at interfaces and tunnel junctions may
result in a large difference of transmission for carriers, depending on the sign of their incident in-plane
wave vector. This leads to an interfacial skew-tunneling effect that is referred to as anomalous tunnel Hall
effect (ATHE) [12, 57] or tunnel anomalous Hall effect (TAHE) [11] which allows one to convert pure spin
currents to charge currents as well. Anomalous Tunnel Hall effect based on ferromagnetic semiconductors

is one of the main focus of this work and will be discussed in detail in Chapter 5.

Generation of spin polarization for spin injection into a semi-

conductor

In conventional (non-magnetic) semiconductors, spin up and spin down populations are balanced macro-
scopically since they are randomly oriented. Finding an effective manner to generate a spin imbalance has

been a great challenge in the spintronics and semiconductor community.

Spin injection

Zeeman splittin -
RS 9 from a ferromagnet

Spins

Circularly hv
polarised /\/\/W 6 Magnetic field
/ licati
photoexcitation ? application

i
u

Thermal gradient 3 6’& Electric field

introduction application
9 >

FIGURE 1.14: Techniques to generate spin-polarized electrons in a non-magnetic
medium. Taken from [116].

A common way to proceed is an electrical spin injection from a ferromagnetic electrode or via optical
pumping with a circularly polarized light source (laser). There are also other ways to create a spin imbalance
based on the Spin Seebeck effect [117], where the spin imbalance arises due to the generation of a thermal
gradient, or the spin Hall effect [109], where an electrical current driven through a material with a strong

spin orbit interaction yields a spin imbalance at the edges of the conducting channel.
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Electrical injection

The electrical injection is well known for a wide application in spintronics devices because of its ability
for integrating in the compact devices. This method has already been realized experimentally by Clark and
Feher [118], who drove a direct current through a sample of InSb in the presence of a constant applied
magnetic field. Then, Aronov [119, 120], and Aronov and Pikus [121] established several key concepts in
electrical spin injection giving the way to inject a spin polarization from a ferromagnet into a semiconductor,
electrically.

In a ferromagnetic material, the exchange interaction causes the spin up and spin down subbands to be
split, yielding the differential density of states at the Fermi energy for the two spin subbands. This leads to
a strong difference in the mobility of the two spin species. The total current through a ferromagnet, thus,
can be described by two independent currents [122, 123] with different mobilities, leading to a net spin

polarization injected into a semiconductor layer [124—128].
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FIGURE 1.15: (a) Electrical spin injection in an epitaxially grown ferromagnetic
semiconductor heterostructure, based on GaAs.a, Spontaneous magnetization de-
velops below the Curie temperature T¢ in the ferromagnetic p-type semiconductor
(Ga,Mn)As, depicted by the black arrows in the green layer. Under forward bias,
spin-polarized holes from (Ga,Mn)As and unpolarized electrons from the n-type
GaAs substrate are injected into the (In,Ga)As quantum well (QW, hatched re-
gion), through a spacer layer with thickness d, producing polarized EL. (b) Total
electro-luminescence (EL) intensity of the device (d = 20 nm) under forward bias
at temperature 7 = 6 K and magnetic field # = 1 Oe is shown (black curve) with
its corresponding polarization (red curve). Current / = 1.43 mA. Note that the
polarization is largest at the QW ground state (E = 1.34 eV). The EL and polarization
are plotted on semi-log and linear scales, respectively. Inset, a current-voltage plot
characteristic of a 20-nm spacer layer device. Taken from [129].

However, the conductivity mismatch between a ferromagnetic material and a semiconductor leads to
a very low spin-injection efficiency [130-132]. A solution for this issue is to introduce a spin dependent
interface resistance by using tunnel barriers in which the transmission is proportional to the product of the
density of states on both sides [127, 133]. Thus, the resistivity for majority spin is lower than for minority
spin, leading to a dependence of spin accumulation on the polarization at the tunnel barrier [68, 127, 134,
135]. Various kinds of tunnel barriers have been proposed, such as the "vacuum" tunnel barriers proposed by
Alvaro et al. [136] with an efficiency about 30 %, or Schottky barriers which are naturally formed between
a semiconductor and metal [137-139]. Analyzing degree of the circular polarization of the observed elec-
troluminescence, Hanbicki et al [138] observed the spin efficiency up to 32 % for the Fe/AlGaAs contact.
However, intermixing between a ferromagnetic material and semiconductor layer during growth process
might lead to reduced interface quality, which plays an important role in spin injection. Therefore, the
tunnel barrier which is created by inserting an isolating material between ferromagnetic contact and semi-

conductor may be an alternative solution. Motsynie et al [140] used Al5O3 as insulating material which
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shows very high spin injection efficiency even at room temperature: 21 % and 16 % at 80 K and 300 K,
respectively. Besides, a MgO tunnel barriers seem to be very an attractive way for spin injection into a
semiconductor since the spin polarization reaches 57 % at 100 K and 47 % at 290 K, respectively [141].
Finally, a different approach to solve the conductivity mismatch problem is to use device based on ferro-
magnetic semiconductor/semiconductor like (Ga,Mn)As/GaAs Esaki zener diode structure [142] where the
spin polarization could be achieved up to 80 % [143—146]. This approach has attracted tremendous attention
[67, 143, 147-149] for decades and is one of the main theoretical focuses of this work. For that concern,
one needs to know the band structure of the involved materials. Typically, a complex band structure needs
to be considered together with the matching conditions of the wave function at the interface. Note that the
parallel components of the wave vectors k|| of the electrons are preserved during tunneling process, and in
the case of (Ga,Mn)As/GaAs based structure, only states close to the I'-point with matching k| are involved
in the tunneling. Sankowski et al. [150] showed that the spin polarization increases as k| increases and
achieves the maximum value when k| is parallel to the magnetization M. Hence, rising the Mn content and
the doping concentration would increase the spin polarization. However, in contrast, the spin lifetime in the
GaAs decreases for high doping concentration leading to a decrease of spin polarization. Thus, in order to

get high spin polarization, one needs to optimize the parameters to obtain the proper doping concentration.

Optical spin injection

Beside the electrical injection, the optical injection is also widely used for devices because of its simple
design and allowance for a uniform carrier excitation over a large area of active region as well as an absorp-
tion in a broad wavelength region. The physical basis of optical injection is based on the interaction of light
with a semiconductor crystal that can be described through the transition probabilities between two states

given by Fermi’s golden rule [43]:
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FIGURE 1.16: (a) A schematic illustration of the band structure of GaAs and spin-
polarized electrons generated by the absorption of circularly polarized light. (b)
A schematic illustration of the Pt/GaAs hybrid structure. 6 is the in-plane angle
between the incident direction of the illumination and the direction across the two
electrodes attached to the Pt layer; 6 = 650 is the angle of the light illumination to
the normal axis of the film plane. (c) A schematic illustration of the inverse spin Hall
effect induced by photoexcited pure spin currents in the Pt/GaAs system. Taken from
[151].

2
Wing = o Z [(FIVyiliy26(E s — E; + hw) (1.52)
-

where |i) and | f) are the initial and final states and V¢ is the perturbation operator. The delta function term
indicates the conservation of energy, where an incident photon creates an electron-hole pair in conduction

and valence bands for iw > E,. Because the momentum of the photon is small compared to the electron
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momentum, then one has k. = kj;, which implicates a vertical transition in k-space. In the first order, V;;
may be approximated by an electrical dipolar potential, which does not depend on the spin, in the limit of
weak SOI given by:

Vii=d.E =dEyx +dyEy+dE, (1.53)

where d is the dipole moment and E is the electric field of the light wave in which the components of the
electric field E,, Ey and E, are considered constant as the electric field variations are small compared to
the periodical variation of the lattice potential. Note that the vector dis expressed as a spherical tensor
d. for o* optical transition. The conservation of angular momentum in interband transitions leads to
selection rules applying for the total angular momentum J = 0, +1 and its projection on the quantization
axis my = =1, providing a way to directly convert a circularly polarized light to spin-polarized carriers.
Typically, these selection rules are satisfied by left o+ or right o~ circularly polarized photons incident

along the quantization axis which are emitted from a Am; = —1 transition.
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FIGURE 1.17: Optical selection rules for dipole radiation: (a) In the case of a bulk

active medium, the HH-band and LH-band are degenerated and (b) The electron —

hole recombination in a quantum well structure, the epitaxial strain and quantum
confinement lift the degeneracy between the HH-band and LH-band.

Figure 1.17 depicts the relative transition probabilities for o* light in a bulk semiconductor and quantum
well active medium at the I'-point where the CB-HH transitions are three times greater than the CB-LH
transition regardless to the active medium. In a bulk semiconductor, the HH and the LH bands are degen-
erated at the ["-point leading to a limitation of the spin polarization injected into devices. The maximum of
the spin polarization in this case can theoretically reach about 50 %. Whereas the spatial confinement in
quantum well may lift the degeneracy of HH and LH bands leading to very high spin polarization efficiency,
theoretically 100 % of polarization could be achieved. One has to note that the optical selection rules are
only strictly valid at the I'-point. Moving away from this point may lead to an admixture of HH and LH
yielding reduced net spin polarization. Nevertheless, the optical circular polarization in the active medium
is not immediately converted to a spin polarization since this process is governed by a recombination time
and the depolarization mechanism occurring during the transport which would provide a limit value for the
spin injection efficiency.

In term of (Ga,Mn)As materials based structures, Endres et al. [152] has demonstrated that an efficient
optical spin injection can be achieved with unpolarized light by illuminating a p-n junction where the p-
type region consists of a (Ga,Mn)As ferromagnet semiconductor (see Fig. 1.18b, ¢). When a p-n junction
based on GaAs (Fig 1.18a) is illuminated by photons with an energy exceeding the band gap, electron-
hole pairs are generated and will be separated in the built-in electric field of the p-n junction giving rise

to a photo-voltage (photo-current). In a device employing the ferromagnetic semiconductor (Ga,Mn)As on
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a p-GaAs n-GaAs
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FIGURE 1.18: (a) Schematic of an illuminated GaAs p-n junction showing the
conduction and valence band edge Ec and Ey across the junction. Electron-hole
pairs are separated in the electric field of the space charge region (see grey arrows)
and generate a photo-voltage Vpy . Grey areas indicate occupied states. (b) Working
principle of the spin solar cell (open circuit condition): the light-induced photo-
voltage drives an electron tunneling current (blue arrow) across the gap resulting
in a spin accumulation on the n-GaAs side. Photoexcited electrons are only weakly
polarized. (c) Working principle of the spin photodiode (biased circuit condition): at
reverse bias the width of the tunnel barrier (depletion zone) increases and tunneling
is suppressed. As a consequence, photoexcited electrons from the (Ga,Mn)As, which
are spin-polarized, are drifting to the n-GaAs conduction band and generate an
oppositely oriented spin accumulation. Taken from [152]

the p-side, a highly doped n-side will result in a narrow depletion zone and enables tunneling across the
gap. The band bending region of this structure is mostly confined to the n-GaAs because of the heavily
p-doped (Ga,Mn)As. If such a p-n junction is illuminated, the resulting photo-current will mostly consist
of photoexcited electrons from the n-GaAs side and thus only a small fraction of spin-polarized electrons
is created in the (Ga,Mn)As leading to the small spin polarization of the photo-current [152]. The charge
accumulation in the n-GaAs leads to a photo-voltage which in turn causes electrons to tunnel across the
narrow barrier into the (Ga,Mn)As. Due to the different tunneling probabilities for spin-up and spin-down
electrons, spins accumulate in the n-GaAs, that is, light-induced spin extraction occurs (Fig 1.18b) that
overcompensates the photo-current-induced spin accumulation [152]. This leads to the central working
principle of spin solar cell in this case: the energy of the incident light is not only converted into a voltage
(current) but also into a spin accumulation [152]. In not too highly n-doped junctions where tunneling
is suppressed in reverse direction leading to another mode of operation, depicted in Fig. 1.18c. When a
negative voltage is applied to the p-side of the junction (reverse bias), this would increase the depletion
width and suppresses tunneling. Photoexcited electrons on the p-side are, due to the spin-dependent density
of states in the valence band, spin-polarized and drift in the electric field of the junction into the conduction
band of n-GaAs. This well-known spin photodiode effect, was theoretically predicted in 2001 by Zuti¢ et al.
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[153, 154], results in a spin accumulation, however, with the spin orientation reversed in comparison to the
spin solar cell effect. Consequently, light-induced spin injection occurs. The spin photodiode effect and its
related phenomenon are now under theoretical and experimental efforts in the studies in our group at LSI
Ecole Polytechnique and CNRS Thales as well.

Spin relaxation mechanisms in semiconductors

Spin relaxation is of great importances for spintronics since a spin polarization in a nonmagnetic material
returns to its thermal equilibrium within the spin lifetime. In the case of III-V semiconductors, one may
expect four mechanisms for spin relaxation of conduction electrons: Elliott-Yafet mechanism; D’yakonov-
Perel” mechanism; Bir-Aronov-Pikus mechanism; and Hyperfine interaction. The details of these four
mechanisms can be found in Ref. [37]. Here, we just present the main points and consequences of these
mechanisms.

Elliott-Yafet mechanism

In this mechanism, the spin relaxation is induced by the ordinary momentum scattering requiring a spin
orbit interaction to couple the electron spin wave function with the lattice wave function. The SO coupling
is described by:

Vso (VVSC X p) Noa (1.54)

g
where m is the free-electron mass, Vgc is the scalar periodic lattice potential, p is the linear momentum
operator and o are the Pauli matrices. The Bloch wave functions are not the eigenstates of o, but a com-
bination of Pauli spin up | T) and spin down | |) states. In the case of III-V semiconductors, the spin

relaxation of conduction electron with energy Ej, is characterized by a spin lifetime 7 (Ey) given by [37]

1 Aso  \? (Ek )2 1
_4A L 1.55
Ts (Ek) (Eg + ASO) Eg Tp (Ek) ( )

where 7, (Ex) is the momentum scattering time at energy (Ey), E, is the energy gap, and Ago is the

spin-orbit splitting of the valence band. The coefficient A depends on the dominant scattering mechanism.

0 Spin-flip

FIGURE 1.19: Schematic of Elliott-Yafet mechanism: relaxation by diffusion on
impurities or phonons.
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Equation 1.55 implicates that the Elliott-Yafet mechanism is important for small-gap semiconductor
with large SO interaction. For a degenerate semiconductor, Ey = Ey whereas for a nondegenerate semicon-

ductor Ey ~ kpT. However, 7, ~ 7, in both cases. Besides, the temperature dependence of 75 and 7, are

1 T2

similar for degenerate semiconductors, while for a non degenerate semiconductor, one has =D~ M
s P

TS%T) ~ T2 and T,(T) ~ T3/2,

except in the case of scattering by charged impurities [37]:

D’yakonov-Perel’ mechanism

The D’yakonov-Perel” mechanism is a particular mechanism of spin relaxation of systems lacking inver-
sion symmetry such as the bulk III-V semiconductors or the interfaces between different materials. In these
systems, the two spin up and spin down states are split: Ex¢ # Ey . This splitting can be described by intro-
ducing the intrinsic effective k-dependent field (see section 1.3) which is well known as D’yakonov-Perel’
effective field. The corresponding Hamiltonian describing the precession of electrons in the conduction

band is given by Eq. 1.43 with the Larmor frequency defined in Eq. 1.44.

FIGURE 1.20: Schematic of D’yakonov-Perel’ mechanism: relaxation by spin preces-
sion around the effective k-dependent SO magnetic field as well as by diffusion on
the crystalline network

If we characterize the momentum scattering by momentum relaxation time 7,, and put £, as the aver-
age magnitude of Larmor frequency, then one may consider two limiting cases:

& 7,04, > 1: In this limit, the spin dephasing rate is proportional to the bandwidth AQ of the Larmor
frequencies such that T% ~ —AQ leading to 7, ~ 7, [37].

& 17,04, < 1t In> this case, one has Tls = wa‘rp, or in other word, the spin lifetime is inversely
proportional to the momentum relaxation time [37].

In comparison with the Elliott-Yafet mechanism, one observes that the relation of the dephasing rate to
the momentum scattering time is opposite. Additionally, in the Elliott- Yafet mechanism the relaxation takes
place during the scattering event, whereas in the D’yakonov-Perel” mechanism, the relaxation is between
the scattering events.

Bir-Aronov-Pikus mechanism

The electron-hole exchange scattering, which was first shown by Bir et al. in 1975, may also cause spin
relaxation [155, 156]. This mechanism is very important, typically for p-doped semiconductors at low
temperature. The exchange interaction between electrons and holes is given by the following Hamiltonian
[37]:
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HBAP ZAXS.Jh(;(I') (156)

where A, is proportional to the matrix element of the Coulomb exchange interaction between conduction
and valence band states. S is the electron spin operator and J, is the operator of the total angular momentum

of the hole, §(r) depicts the relative position of the electron and hole.

p% iiu%

FIGURE 1.21: Schematic of Bir-Aronov-Pikus mechanism: Electron-Hole exchange
interaction leading to fast spin relaxation through Elliot-Yafet mechanism

This exchange interaction acts like an effective magnetic field and entails a spin exchange during the
scattering process. Consequently, the long range interaction provides the spin-flip since the SOI induces
the splitting of the valence band. The spin-flip scattering probability, thus, depends mainly on the states of
holes, then, results in the spin relaxation.

For a non degenerate hole system, the spin relaxation resulting from Bir-Aronov-Pikus mechanism is
given by [37, 103, 156]:

12 vk | P SNy,-P
N 32— | —lw O+ —— 1.57
= Naah " Naw( W= (1.57)
where N, is the density of acceptor, ap = is the effective mass of electron
in the conduction band, p is the density of free holes, 79 is an exchange splitting parameter: Tio = ?é_ZE

(with Ep = is the Bohr exciton energy and A, is the exchange splitting of the excitonic ground

72
2m(‘

state), and vg = _aB | (0)]2 is the Sommerfeld’s factor, which enhances the free hole contribution and

m

is given by:

-1
WP =2~ [1 “exp (—2—”)] (1.58)
K K

for an un-screened Coulomb potential, where « = E—; (J¢(0)|? = 1 for a completely screened potential)
For a degenerate hole system, the spin dephasing rate is given by [37, 103]
1 3 g (vi)kpT
— =" pad =L (1.59)
% 10 ° ve Erp
where Ef, is the hole Fermi energy and | (0)|? = 1 for degenerate holes. Note that Bir-Aronov-Pikus
mechanism dominates in n-doped 2D heterostructures with optical spin injection [157, 158] where the Bir-
Aronov-Pikus dephasing rate is proportional to the hole density which is proportional to the laser intensity

in the case of optical spin injection.
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Hyperfine interaction

The hyperfine interaction comes from the exchange interaction between the spin of electrons and nuclear
spin of atoms in the crystalline lattice where the total nuclear spin is non-zero S, # 0 [37]. The effective

Hamiltonian for the hyperfine interaction is given by [37]:

8n

H= ?4—80/13 Zh)’n iSd;6 (r — R;) (1.60)

where (¢ is the vacuum permeability, go = 2.0023 is the free electron g factor, u g is the Bohr magneton, i is
the label for nuclei at positions R;, S and I; are electron and nuclear spin operators, respectively, expressed
in the units of 7, and vy, ; is the nuclear gyromagnetic ratio. The Hamiltonian 1.60 implicates that the spin
of an electron experiences an effective magnetic field, which is generated by the hyperfine interaction, given

X
VT b g g

FIGURE 1.22: Schematic of Hyperfine interaction mechanism: Electron-Nucleus
exchange interaction.

2
By =5 D 2.y iSTié(r = Ry (1.61)

Commonly in semiconductors, the influence of the hyperfine interaction on the global spin relaxation
is small compared to the impact of mechanisms originating from SO like Elliott-Yafet mechanism or
D’yakonov-Perel” mechanism. However, its contribution may become significant when the nucleus po-

larization increases in case of optical pumping.
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Chapter 2. Oy, and T, semiconductors: The electronic band structure

Calculating the electronic structure and band dispersion of a single and many body systems (multilay-
ers) is a very complex task which still requires modern computer hardware. Commonly, material science
computational methods for the band structure calculation fall into two general approaches [53]:

& The first approach involves ab-initio methods, such as Density Functional Theory (DFT) or Hartree-
Fock method from first principle techniques without the need of empirical parameters except in a LSDA +
U approach [159].

& The second approach, less consuming, consists of far more computationally efficient semi-empirical
methods such as the empirical pseudopotential method (EPM) [160, 161], Tight-binding (TB) and the k.p
method, according to which energy band structure is obtained from a set of parameters: the energy gaps at
I" point, the momentum matrix elements and the strength of the spin-orbit (SO) coupling. The number of

energy bands (or levels) effectively implemented is related to the precision chosen for the results.

o<

\
/V\/ (a)

7 /‘
[ ———

Energy (eV)
]

f

Wave vector

FIGURE 2.1: (a) Band structure of GaAs (belongs to T; group) calculated in frame-

work of 30-band k.p model. The energy at the top of the filled valance bands has

been taken to be zero. (b) Density of states (DOS) calculated with native 30-band

k.p method and 38-band (30 bands + 8 ghost-bands detailed hereafter) which shows

that the ghost-band weakly affects the DOS which is in good agreement with the

experimental results and numerical results, calculated by Density Functional Theory
in Ref.[46].

In the present work, our main focus is to develop a multiband k. p framework to describe the electronic
structure within the Brillouin zone (BZ) of semiconductors and related heterostructures. It consists in
applying a perturbation approach from the unique knowledge of those parameters at the I" point. We first
describe the main issues of DFT fundamentals before discussing the semi-empirical tight-binding and k.p

schemes.

Description of the k.p method First, we start with the description of the k.p method and obtain
the k.p equation for the envelope function by using the Bloch theorem. We then discuss the way how to
build k.p Hamiltonians for O}, and T; semiconductors from the point of view of symmetry using Linear
Combination of Atomic Orbital (LCAO) and Tight-Binding (TB) principle. To exactly match the true
band structure, one has to work with an infinite basis set (infinite dimensional Hamiltonian) which has
to be restricted to a finite number of bands: 2-band effective model may be employed to describe the
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conduction states near the I" point whereas a 6-band Luttinger-Kohn model may describe the valence band of
p-symmetry in an effective Hamiltonian approach using the Luttinger-Kohn parameters [162]. Furthermore,
a 8-band k.p model is needed to describe the coupling between the conduction and valence bands, whereas
a 14-band k.p model becomes mandatory to property describe spin-orbit interactions (SOI) coupled to the
absence of inversion symmetry involving Dresselhaus terms [94]. Beyond, a 30-band k.p or 40-band k.p
is mandatory to describe the spin injection properties in the full BZ, as required for an indirect band gap
group IV semiconductors like Si, Ge, and their compounds alloys and related heterostructures. These finite
multiband Hamiltonians are detailed in this chapter and Appendix A.

However, the price to pay for such simplification within finite dimensional basis like pointed out in Ref.
[163], is that spurious or unphysical states emerge at large wave vectors as a consequence of the truncation
of the remote bands necessary to recover the Bloch periodicity. These states are unphysical and have to
be removed in the electronic structure to restore the relevant physical properties. We suggest here a new
method based on an extension to Kolokolov’s proposal [164] and called "Ghost band" method. We will
show that this novel method is very robust and can be adapted to very wide cases, from 8-band up to, at
least, 40 band k.p Hamiltonian.

Finally, we review some details on the effective Hamiltonian for both CB and VB (conduction and va-
lence bands) by including SOI and the effect of exchange interactions within possible strain field accounted

for the framework of k.p theory before investigating the main transport properties.

Wl Density Functional Theory (DFT)

We give here some insight about the Density Functional Theory (DFT) technique which is a powerful
technique to solve many-body problems in solid state physics by reducing the complexity to an effective
single-particle equations. The advantage of DFT is that, unlike the k.p method, it represents an ab initio
technique without any further needed input than atomic parameters (and positions) which makes it straight-
forwardly applicable to many systems with high predictivity. The representation of the a priori unknown
exchange-correlation functional, described hereafter, has been improved from the local density via the gen-
eralized gradient approximation to more sophisticated functions allowing for an accurate description of
strongly correlated systems [165, 166].

Born-Oppenheimer approximation

In detail, the general free Schrodinger Hamiltonian describing the full interactions of the electronic system,
which constitutes a complex many-body problem, cannot, generally, be solved numerically nor analytically.
In this case, the well-known Born-Oppenheimer approximation makes an important simplification. Here,
the assumption is that the motion of atomic nuclei and electrons in a molecule can be treated separately.
Accordingly, the nuclei coordinates are fixed within the Born-Oppenheimer approximation and the Hamil-

tonian is solved for that particular set of atomic positions.

Hohenberg-Kohn theorems

The basic idea of DFT has been developed in the 1960 by Hohenberg and Kohn [167]. They proved for
a system with a non-degenerate groundstate that the potential and therefore the Hamiltonian is a unique
functional of the electron density n(r) alone. A generalized proof was given by Levy [168]. This yields the
famous Hohenberg-Kohn theorem:

& All ground state properties of a given many-body system are unique functionals of the electron density

n(r).
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& The total energy functional E [n] underlies the variational principle:

OE[n]
on(r) —H

where u is a Lagrange-multiplicator and that will correspond to the Femi level, consuming the particle

(2.1

conversation

N — / n(r)dr =0 2.2)

and where the ground state density np minimizes the energy functional:

E[n] = E[no] = Eo (2.3)

Kohn-Sham equation

The basic idea of Kohn and Sham [169] is to represent an interacting system by a non-interacting system
with the same electron density to obtain a good approximation for the contribution of the kinetic energy to
the energy functional E[n]. The functional E[n] 2.3 then can be split into several parts and written as [170]:
ryn(r)’
E[n] =Ty[n] + / / drdr’% + Eyc[n] + / drn(r)Vex: (r) 2.4
-r

where n(r) is the electron density, V,,; is the external potential, and Tp[n] describes the kinetic energy of a
system of non-interacting particles with the same electron density. The second term denotes the Coulomb
interaction of the electrons in the Hartree approximation and E . is the exchange correlation energy arising
due to the exchange and correlation effects of the electron density itself.

For the following discussion it is intuitive to introduce a wave-function representation. Then the electron

density can be expressed by:

N
n(r) =" 1¢:(r)l> (2.5)
i=1

where the summation extends over the N orbitals with the lowest eigenvalues. The functional for the kinetic

energy Tp reads in that basis:

N
folnl = ) [ V6i (Ve rrar 2.6)
i=1

The next important step is to apply the variational principle, which is stated in the Hohenberg-Kohn

theorems, to the energy functional 2.4 under the Lagrange constraint that the normalization of the wave-

S ( / 01 (F) i (r)dr — 1) @2.7)

where ¢; are the Lagrange-parameters. The variation of the energy functional E[n] then yields the pseudo

function ¢; is conserved:

Schrodinger equation according to:

(<924 Ver s [n]) 91 = €9y 2.8)
The effective potential V. ¢ ¢ covers all previously discussed contributions to the energy and reads:

E)CC [n]

Ver r [n] = / n(r’) dr’ +Vex (r) + 9 on 2.9

r'—r
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and the determination of the kinetic energy Tp:

N
:Zel / L I In(r)dr (2.10)

i=

where V! rf is the effective potential for a trial electron density n’. The total energy functional then reads:

qu /eff(r)n(r)+/ ext(r)n(r)+//n(r)"(r,) Exc[n] (2.11)

where the first term accounts the single-particle contribution.
It is worth to point out that the eigenvectors ¢; of the Kohn-Sham equation 2.8 have to be obtained

self-consistently as the effective potential is a functional of the density itself.

Spin-density functional theory

For the purpose of incorporating magnetic effects, DFT has to be generalized for two spin channels. Going
a step beyond the Hohenberg-Kohn approach, independently Hedin [166] and Pant and Rajagopal [171]
extended the method by including spin-dependent electron densities or alternatively a magnetization density
m(r) and generalized the Hohenberg-Kohn theorem to the spin-polarized case. Within the later notation the

variational principle becomes:
E[n(r),m(r)] = E[no(r),mo(r)] = Eo (2.12)
where the electron and magnetization density are defined by:

n(r) =nl(r) +nt(r) (2.13)
m(r) = nT(r) - nl(r) (2.14)

where 1T and n! are spin up and spin down densities, respectively.

In general, the two-component Pauli spinors or the spin-density matrix po g as originally proposed
[166, 171] are used to derive the spin-dependent Kohn-Sham equations. Analogously the derivations of
the Kohn and Sham for DFT [169], the basic equations of SDFT turn out to be effective single-particle

Pauli-Schrddinger equations:

{ v +Veff[n,m]}¢i” =T (2.15)

where the two components ¢ are coupled to each other and optionally to an external magnetic field, which
can enter the effective potential V. . It is important to note that we did not take into account here any

possible non-collinearity or relativistic effects like spin-orbit coupling.

Exchange-interaction potential.

The most important approaches to find accurate approximations to the exchange-correlation potential are
the local-density approximation (LDA) and the generalized gradient approximation (GGA).

In the LDA - or, in the spin-polarized case, local spin density approximation (LSDA) - the function
ELDA i5 assumed to be locally approximated by the exchange-correlation energy of a homogeneous electron
gas of the density n(r) [172]. This procedure is similar to the Thomas-Fermi-approximation for the kinetic
energy of an inhomogeneous electron system. Integrating the locally defined function of spin dependent

electron densities over then whole space yields the total exchange-correlation energy according to:
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ESP [ny(r).ny(r)] = / (€17 (ny (1), () + €27 (my (), my (1) ] i 2.16)

While the exchange energy €/

20" is known exactly for the homogeneous electron liquid, developing a

parametrization of the correlation energy €™ is a highly non-trivial problem.
Due to the fact that any real system has a spatially varying electron density, the LSDA approach can be

improved by considering gradient corrections to give

ESS4 [y (r),ny(r)] =/f(nT(r),nl(r),VnT(r),an(r))dr (2.17)

There are many different ways to construct the function f, one of the most reliable ones has been
developed by Perdew et al. [173]. Besides this most commonly used LDA and GGA functionals, part of
the additional correlation effects can be described within the LDA + U - approach [174].

The tight-binding method [175]

We are now going to review the general procedure of the Tight-Binding (TB) method. The ideas of TB
are closely related to the Linear Combination of Atomic Orbitals (LCAQO) method which is based on the
superposition of wave functions of isolated atoms located at each atom site in the lattice. If we assume that
V (r) is the periodic potential formed by the atoms in the lattice, then in the framework of TB method, V (r)
may be written as a sum of atomic potentials at each site and the potentials from neighbors [46, 76, 176]:

V(r) ~ ZU(r—Rm)+ZU(r—Rl) (2.18)

I+m

here, U(r — Ry,) is the atomic potential at r contributed by an atom which is located at R,, and
D2m U(r = Ry) is the potential from its neighbors which is considered as perturbative potential.

The Schrodinger equation for an electron in the crystal is given by:

2
[—h—vz +V (r)] W (r) = Ey (r) (2.19)
2m

Substituting 2.18 to 2.19 one may re-write Eq.2.19 in terms of:

Y (r)=Ey(r) (2.20)

2
[_g—mvz + ; U(r=Rp)+ ) U(r = Ry)

l#m

Equation 2.19 gives rise a meaning that the electron at each side feels not only the atomic potential

at the same side but also the potential from its neighbors which is given by the perturbative potential

Zl#—m U(r - Rl)-
Let us now assume that the solutions for the Schrodinger equation of the free atoms that form the crystal:

hZ
[—EVZ +U (")] Xi (r) = Eix; (r) (2.21)
are known, where U (r) is the atomic potential of a free atom and y; (r) is the eigentstate of an electron in

the atomic energy level E;.

If there are a atoms in the primitive cell and their coordinates are given by:

Ry +1q (2.22)
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where r, represents the position of one atom inside the primitive cell. Then Eq.2.20 or Eq.2.19 may admit

a solution in the form of linear combination of Bloch function which can be constructed as [176]:

N a
bk 1) = 5= 30 DR (= R = 1) (2.23)

n=1 a=1
where N is the number of primitive cells in the crystal, k is the wave vector within the first Brillouin zone
whose values are determined by the periodic boundary conditions. However, the atomic orbitals y;(r)
on different atomic sites are not orthogonal to one another. Thus, Lowdin et al. [177] has proposed an
orthogonal set which is obtained from this nonorthogonal one in Eq.2.23 in such a way it preserves the
symmetry properties of the original set. The relation between Lowdin functions and 2.23 functions is given

by the transformation [176]:
fulr —Ri—rq) = ; S iRy, Xi R (2.24)
L, Km

where S is the overlap matrix which has a greater extent in space than the atomic orbitals, implying that
the Hamiltonian matrix will have elements significantly different from zero between atoms that are second
or third nearest neighbors. The orthogonal basis set for building TB Hamiltonian can then be formed from

these Lowdin functions as:

D g = \/iﬁ ; Ea] KR f (r = Ry = r4) (2.25)

The wave function of an electron in crystal can be written in terms of basis set 2.25 as:

Wk = ) ConPuk (2.26)

m

Note that, the matrix elements of the TB Hamiltonian built from the Lowdin functions are not the same as
the atomic energies. However, this is not important since after all, the tight-binding Hamiltonian is formed
in a parametrization scheme. Using the Lowdin functions to replace the atomic orbitals, the orthogonality
properties are fulfilled. Therefore, substituting Eq.2.26 and Eq.2.25 to Eq.2.19, multiplying by ¥} from the

left and integrating over space, gives the coupled equations for the expansion coefficients ¢, , as:

Z (Hmn,m’n’ - E(k)émm’énn’) Cor (k) =0 (2.27)
m,n
where:
1 i(Ryp=Rypt)
Humw = & Z ¢! Bmn=Ru) [ f(p — Ry = rp)Hf(r = Ry = rpr)dr (2.28)
m,m’

The Hpp o depend on the overlap integral of the Lowdin functions on the different sites which up to
the nearest neighbors is good enough to give satisfactory results for some cases, but sometime one has to

include the next nearest neighbors also to get more accurate results.

The k.p methods [29, 163]

In 1970, Bir and Pikus [29, 178, 179] observed an interesting result that, first of all, only the neighborhoods
of the band extrema are important for the semiconductors because their electronic properties like transport
are governed by the shape of the extrema of the various energy band. Secondly, the qualitative physics
should be governed by the shape of those energy surface which means that a property should be readily

obtainable from symmetry arguments. The first observation has led to the common view of the k.p scheme
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as a perturbation theory which was developed by Dresselhaus et al. [89] and Kane [180]. The second
observation has manifested itself through the power of symmetry analysis like in the method of invariants
introduced by Luttinger [162]. In fact, one can treat well beyond the neighborhood of band extrema which
was already demonstrated by Cardona and Pollak in 1966 [181]. In this work, they obtained realistic band
structure for Si and Ge using a full-zone k.p theory. However, due to the fact that the k.p method is a
consequence of basic equations of quantum mechanic, therefore in the following, we will review the general
case of an electron in a crystal which is described by a Schrodinger equation admitting Bloch solutions to
get the general equation for the k.p method.

Schrédinger equation and Bloch theorem. General views of k.p method

Starting with the Schrodinger equation for one electron in the crystal’s structure involving spin-orbit inter-

actions 1.10 one has:

HY = EY (2.29)
where the Hamiltonian H writes:
p? gh
H=—+V(r)+ (VV(r)x p)o (2.30)
2mg 4c2mg

here V(r) represents the periodic potential within the crystal, mg is the effective mass of electron in the

crystal, p is the momentum operator, o the Pauli operator, and g the Lande factor.
V(r) =V(r+Rj) (2.31)

for a set of translation vectors {R;} of the lattice.

Note that, concerning the tunneling issue (elastic process) within an inhomogeneous heterostructure,
in order to construct the overall heterostructure wave function, one has to match, at interfaces, the states
of different symmetry at the same elastic energy E and same component of wave function parallel to the
interface k| [163]. Therefore, it is necessary to calculate the different eigenstates in the bulk materials for
fixed E and k||. Possible values of the wave vector perpendicular to the interfaces k ,, are generally found.
For convenience of notation, throughout the manuscript, we will use the symbol k, to refer to the normal
component of the wave vector and the symbol k to refer to a three dimensional wave vector.

Complex values of k, corresponding to evanescent states, are also possible. We will refer to this issue as
the generalized "complex band-structure problem". To solve this problem, a basis set {®,, x ()} is chosen,

and the solutions of the equation 2.29 are sought by expanding in terms of the basis set according to [163]:

Wik = ) Con®uk (2.32)
n

For the usual band structure determination, wave vectors are generally fixed, the energies £ and wave
functions ¥, x are found via a diagonalization procedure. This problem leads to the usual form of an
eigenvalue equation. In the complex band structure problem, given E and k)|, different values of k, and
wave functions ¥,, x are found. This problem does not immediately lead to the usual form of an eigenvalue

equation depending on the form of the matrix elements:

Enn'(k) = <(Dn,k|H|q)n’,k> (2.33)
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However, it may be possible to cast 2.29 into a form of an eigenvalue equation. It becomes mandatory
to build a numerically efficient method to solve the complex band structure problem. Let us consider three
possible forms for the basis set [163].

(1) The plane wave basis :

1 .
gy = Wd“’“‘”” (2.34)
(2) The basis of Bloch functions :
T ikr)
® ey g (1) (2.35)

k==
n \/N
(3) The basis of Tight — binding functions

1 .
(I)n = — E E e(lk'Rj) n\r — R —-r (2‘36)
& \/N j o« f ( ! a)

Here V is the sample volume, N the number of unit cells, G is a reciprocal lattice vector, and ¢, x is a
Bloch function; r, specifies an atomic position within the unit cell (j is the unit cell index), f, is a local

function centered at the atom located at r,. The tight-binding basis functions posses the property:
®pig = O (2.37)

unlike the plane waves and Bloch function basis functions. Using a tight binding basis, the individual
