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Résumeé

Ce travail de these est essentiellement consacré au développement de la théorie de transport tunnel k.p
multibandes (14, 30 et 40 bandes) pour une application a la spinorbitronique avec semiconducteur. La
spinorbitronique associe généralement les effets de spin et d’orbite, qui par 1’intermédiaire du couplage
spin-orbite, introduit des propriétés de transport nouvelles comme les effets Hall de spin et les effets tun-
nel Hall anormal. Celui-ci se caractérise par une déflection de la trajectoire des porteurs polarisés en spin
selon la direction transverse de leur flux. D’autres effets caractéristiques concernent i) les mécanismes de
transfert de spin (‘spin-transfer’ ou ‘spin-orbit torque’) permettant de commuter une aimantation locale par
transfert de moment angulaire, généralisant ainsi les processus de transfert de spin ainsi que ii) la conversion
spin-charge aux interfaces médiés par les termes Rashba et/ou Dresselhaus. Dans ce cadre, notre théorie
de transport tunnel est adaptable aux hétérostructures semiconductrices, magnétiques ou non, traitant d’une
simple interface ou de jonctions tunnel. Elle permet de tenir compte de facon fine des interactions spin-
orbite de cceur et d’interface (Rashba, d’interface). Elle utilise de fagcon générale, I’ introduction de bandes
hautes supplémentaires, dites fantomes, pour traiter les états spurious inhérents a la théorie k.p multibandes.
Outre I'introduction de tels états ‘fantdmes’ ne déformant ni la structure électronique, ni le transport polar-
isé, notre approche utilise la continuité des composantes des fonctions d’onde a chaque interface ainsi que
le raccordement des composantes du courant d’onde selon la symétrie particuliere des interfaces en consid-
érant soit 1) la continuité des composantes du courant d’onde (extension de la théorie Ben Daniel Duke),
2) les conditions de raccordement correspondant a une symétrie particuliere Ca, introduisant un certain
mélange trous lourds/trous légers dans la bande de valence (conditions d’Ivchenko) ou 3) une discontinuité
des bandes p ‘hautes’. Nous démontrons, en outre, 1’équivalence des conditions de continuité pour le cas
de puits quantiques III-V de type AlAs/GaAs/AlAs ce qui représente ainsi une généralisation de résultats
précédents développés en 14 bandes.

L’ensemble de ce travail de these, analytique et numérique, comportent plusieurs volets et démonstra-
tions a la fois nouveaux et importants. Nous montrons que notre théorie permet de décrire le transport de
charge, de spin d’états couplés spin-orbite d’hétérostructures semiconductrices d’axe de croissance [100]
ou [110]. Ces résultats sont notamment matérialisés par les calculs les trois composantes du courant de spin
dans les barrieres semiconductrices III-V (GaAs, AlAs) jouant le role de déphaseur de spin. Les calculs
que nous développons montrent en effet, comme le prévoit la théorie analytique, une rotation vectorielle de
la matrice densité de spin dans 1’épaisseur de la barriere et comme prévue par I’application d’un champ e
spin-orbite effectif de Dresselhaus parallele au plan de la barriere.

Notre théorie est également comparée avec succes aux calculs de perturbation multibandes utilisant
les fonctions de Green pour le transport pour traiter les mécanismes de 1’effet tunnel Hall anormal dans
la bande conduction et dans la bande de valences avec des résultats remarquables en terme de fidélité ce
qui montre la puissance de la technique utilisée. Nous calculons également les propriétés de courant de
spin dans les jonctions tunnel ferromagnétiques de type (Ga,Mn)As/GaAs/(Ga,Mn)As pour en déduire le
couple de transfert de spin de d’orbite responsable de la commutation de spin de I’élément ferromagné-
tique fin dans la tricouche. Nous montrons par exemple, comment les composantes de spin transverses du
courant de spin et de spin-orbite représente le parametre pertinent permettant de commuter une aimantation.
Enfin, nous avons adapté notre théorie de transport aux structures confinées III-V pour calculer les états
confinés de puits quantiques dans la bande de conduction et bande de valence pour démontrer 1’anisotropie
optique de 1’absorption entre les directions [110] et [110] pour le champ électrique lorsque la symétrie de
I’hétérostructure est réduite a une symétrie Co,,. Nous comparons avec succes, nos résultats multibandes a

I’état de I’art obtenu précédemment en théorie 6 bandes et 14 bandes.
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Abstract

This thesis is essentially devoted to the development of the multiband k.p tunneling theory (14, 30 and
40 bands) for spinorbitronic semiconductor application. Spinorbitronic generally associates the effects of
spin and orbit, which via spin-orbit coupling, introduces new transport properties such as spin Hall effects
and anomalous tunnel Hall effects. This one is characterized by a deflection of the trajectory of the spin
polarized carriers according to the transverse direction of their flux. Other characteristic effects concern
1) the spin-transfer or spin-orbit torque mechanisms, which make it possible to switch local magnetization
by transferring angular momentum, thus generalizing the spin transfer processes as well as ii) spin-charge
conversion at interfaces mediated by the terms Rashba and/or Dresselhaus. In this context, our transport
theory is adaptable to semiconductor heterostructures, magnetic or not, dealing with a simple interface
or tunnel junctions. It allows one to take into account the spin-orbit interactions at the interface (Rashba
interaction). It uses in a general way, the introduction of additional high bands, called ghosts, to treat the
spurious states inherent to the multiband Kk.p theory. In addition to the introduction of such ’ghost’ states,
which do not distort the electronic structure or the polarized transport, our approach uses the continuity of
the components of the wave functions at each interface as well as the continuity of the components of the
wave current according to the particular symmetry of the interfaces considering either 1) the continuity of
the components of the wave current (extension of the Ben Daniel Duke theory), 2) the matching conditions
corresponding to a particular symmetry Co, introducing a certain mixture of heavy holes/light holes in
the valence band (Ivchenko conditions) or 3) a discontinuity of the "high’ bands. We also demonstrate
the equivalence of the continuity conditions for the case of AlAs/GaAs/AlAs III-V quantum wells, which
represents a generalization of previous results developed in 14 bands.

All of this thesis work, analytical and numerical, includes several components and demonstrations both
new and important. We show that our theory can be used to describe the charge-spin transport of spin-orbit
coupled states of growth axis semiconductor heterostructures [100] or [110]. These remarkable results are
shown by the calculations of the three components of spin current in the III-V semiconductor barrier (GaAs,
AlAs) structure acting as spin-phase rotators. The calculations that we are developing show a rotation of
the vector spin according to the thickness of the barrier and as analytically predicted by the application of
an effective spin-orbit field of Dresselhaus parallel to the plane of the barrier.

Our theory is also successfully compared to multiband perturbation calculations using Green’s transport
functions to address the mechanisms of anomalous tunnel Hall effect in the conduction and valence bands
with remarkable results in terms of chirality showing the power of the technique used. We also calculate the
spin current properties in (Ga,Mn)As/GaAs/(Ga,Mn)As ferromagnetic tunnel junctions to derive the orbit
spin transfer torque responsible for the magnetization switching of the ferromagnetic element in the trilayer.
We show, for example, how the transverse spin components of the spin and spin-orbit currents represent
the relevant parameter for switching a magnetization. Finally, we adapted our transport theory to the III-V
confined structures to calculate confined states in quantum well for the conduction band and valence band
to demonstrate the optical anisotropy of the absorption between the [110] and [110] directions when the
symmetry of the heterostructure is reduced to a Cs,, symmetry. We successfully compare our state-of-the-art

multiband results obtained in theory in 6 bands and 14 bands.
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Spin rotation, experienced by the outgoing electron transmitted through the [110] GaAs bar-
rier, as a function of barrier height up to 0.6 eV. (a) Calculated with different k.p platforms
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Spin rotation experienced by the outgoing electron transmitted through the [110] GaAs bar-
rier for different barrier thickness up to 300 A (a) Calculated with different k.p platforms
for db = 0.5 ¢V and incident energy ef = 1.7eV above top of valence band. (b) Cal-
culated with 30 bands k.p method with different values of db. The rotation of the spin is
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The SOT switching and the relevant switching mechanism; (a,b) Field-assisted SOT switch-
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right is transverse that is along x for the calculation of the STT. The calculations have been
performed with the energy of holes € = —0.03¢V from the middle of the (Ga,Mn)As band.
Here, the necessary heavy hole - light hole mixing parameter #;_j, varies from O to 1. This
coefficient is set naturally positive and negative at the respective right and left interface of
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The angular dependence of (a) T, and (b) 7} for SEMJ with bias of 0.2 V. The solid points
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tween the direction of the incident photons u; and the normal to the sample surface n,
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x axis. (b) Schematic representation of the spin current density Jy, photo induced by optical
orientation at the Pt/Ge Schottky junction under illumination. (c) Voltage difference AV as
a function of ¢ angle at fixed at # = 65° for the sample with a Pt thickness of ¢p; = 7.2 nm,
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(a) Schematic of a ferromagnet-semiconductor-normal metal tunnel junction. The tunneling
current flowing in the z direction generates the anomalous Hall voltage (Vi) in the nonmag-
netic electrode; (b) Side view of (a).Taking the [110] axis as a reference, the magnetization
direction (m) and the direction along which the Hall voltage is measured (¢) are determined
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channel (d). Taken from Ref. [11]. . . . . . . . . . . .. . .. . ... . . .. . ... ..
Scheme of Anomalous Tunnel Hall effect with ferromagnetic semiconductor (Ga,Mn)As
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Scheme of the transmission process at an exchange SOI step (left) and SOI barrier (right)
junction with AP magnetization along the x cubic crystal axis. The propagation direction of
carriers is along z with propagating wavevector k; whereas the in-plane incident component
+¢ (heavy line) and —¢ (dashed line) is along the y axis; xyz forms a direct frame. The dash-
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T(t.p)-T(-t.n)
T(t,n)+T(-t,n)

tained for an exchange-step with different values of ¢t = £/K [t=0.01 (black; circles), t=0.5

a) Universal asymmetry coefficient A = vs. reduced energy n = E/w ob-
(blue; squares), t=1 (red; stars), and t=2 (purple; triangles) by 2-band analytical (full line)
and numerical (symbols) calculations. (b) Transmission coefficients and asymmetry coeffi-
cient A vs.reduced energy = E/w obtained for a 3 nm tunnel junction (TJ) with different
values of r = £/K [t=1 (black),t=2(red), by perturbative scattering (pert.: full lines) method
and numerical k.p calculations (Calc.: symbols). Taken from Ref.[57] . . . . . . ... ..
The transmission coefficient as a function of in-plane wave vector k|| = (ky, ky) through
an exchange-SOI tunnel barrier junction with AP magnetizations. Carriers with plus &,
in-plane wave vector component are more easily transmitted than those carrying minus k.
These calculations were done for CB within the different k.p framework: 2 X 2, 14 x 14,
30 x 30, and 40 x 40 band model and a good agreement among them shows that the
numerical code is robust. The exchange strength is 0.3 eV and the total kinetic energy
E =0.23 ¢V, the barrier thicknessis3nm. . . .. ... ... ... .. ..........
Scheme of a |-spin electron, ‘I’Ili,o (a) and T-spin electron, ‘I’ITQO (b), tunneling through an
exchange step of height 2w from the left to the rightside. . . . . . . ... ... ... ...
(a) Asymmetry coefficient A vs. reduced energy calculated in the VB of
(Ga,Mn)As/GaAs/(Ga,Mn)As 3 nm thick tunnel junction with AP magnetizations for
k = 0.05 nm™1 and (b) the transmission coefficient as function of in-plane wave vector
ki = (kx,ky). Carriers with plus k, in-plane wavevector component are more easily trans-
mitted than those carrying minus k,. These calculations were done for VB within the dif-
ferent k.p framework: 6—, 14—, 30—, and 40— band model and a good agreement among
them showing that the numerical code is robust. The exchange strength is 0.3 eV and the
total kinetic energy E = 0.23¢V, the barrier thickness being3nm. . . . . ... ... ...
The transmission coefficient for plus and minus inplane wave vector k|| and transmission
asymmetry for an electron in CB tunnels through exchange step junction with antiparallel
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(a) Schematic of Anomalous Tunnel Hall effect in a GaAs quantum well with 2 nm bar-
rier thickness and 10nm quantum well width, 0.5 eV barrier height and 17| magnetization
configuration; (b): transmission as function of energy for anti-parallel configuration with
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(c) two dimensional map of transmission vs. k| calculated for hole’s energy which corre-
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a) Figure of optically-pumped spin-VECSELSs experiments, b) Angular-dependence of the
spin-VECSELS output optical power showing a classical cos? # dependence associated to
a pinning of a linear polarization due to optical anisotropies and c¢) Angular-dependence of
the spin-VECSELSs output optical power almost constant associated to a pure output optical

circular polarization when a strong circular birefringent media is introduced in the optical
Scheme of the circularly polarized optical pumping mechanism: Spin generation happens

through preferential transitions driven by the optical quantum selection rules in the active

medium of the optoelectronic device. . . . . . . . . .. ..o
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a) The ordinary (blue curve) and extraordinary (red curve) optical constants and b) the
permittivity differences of real Aeg; and imaginary Aegs parts of GaAs. Taken from [397]. .
a) The ordinary (blue curve) and extraordinary (red curve) optical constants and b) the
permittivity differences of real Ag; and imaginary Ae; parts of AlAs. Taken from [397].

a) The ordinary (blue curve) and extraordinary (red curve) optical constants and b) the
permittivity differences of real Ae; and imaginary Agy parts of an InGaAs quantum well.
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Scheme of InGaAs/GaAs quantum well(left figure) and the dispersion of electron in CB and
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6.19 (a) Normalized imaginary part of the susceptibility as a function of the mormalized fre-
quency deviation from the nominal band-gap frequency (w — wp) /7y, for increasing carrier
densities N/N; = 1.2 (star), 1.5 (diamond), 1.8 (triangle), 2.1 (square), and 2.4 (no symbol).
Solid lines correspond to oo = 0.2, while dashed lines correspond to o~ = 2; (b) Normalized
real part of the susceptibility as a function of the normalized frequency deviation from the
nominal band-gap frequency (w — wop) /y for the same carrier densities and o values as in
figure a; (c) Line width enhancement factor « as a function of the normalized frequency de-
viation from the nominal band-gap frequency,(w — wg) /7y for carrier densities n/N; = 1.17
(star), 2.37 (diamond), 3.57 (triangle), 4.77 (square), and 5.97 (no symbol). Solid lines cor-
respond to oo = 0.2, while dashed lines correspond to o = 2; (d) Line width enhancement
factor at the gain peak, @, as a function of the normalized carrier density N/N;. The sym-
bols denote value obtained numerically from the electrical susceptibility, while the solid
line corresponds to equation (18) in Ref. [410]. Taken from Ref. [410] . . . . . . . .. ..
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Introduction, motivation and goals of this thesis

Electrons possess both charge and spin which, until the discovery of Giant Magnetoresistance (GMR) in
magnetic multilayers in 1988 in Orsay [1] and Julich [2], have been considered separately. The involvement
of spin in devices has opened the way to efficiently control the motion and mobilities of electrons via the
orientation of magnetization. Those discovery rapidly triggered the development of a new field of research
and technology, nowadays referred to Spintronics and brought the 2007 Nobel Prize in Physics to A. Fert
and P. Griinberg.
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FIGURE 1: Three cornerstones of spintronics: the creation, manipulation and detec-
tion of spin polarization. Taken from [3].

Spintronics generally offers better or alternative performances as their conventional charge-only counter-
part, offering new functionalities like nonvolatility for memories application. Starting from 1988, spintron-
ics get first essentially interest in metals and metallic multilayers with the development of highly-sensitive
magnetoresistive devices. In the consecutive years important research efforts toward the control and ma-
nipulation of the electron spin in devices have been employed. Fields of studies such as magnetic tunnel
junctions and tunnel magnetoresistance phenomena (TMR), spin transfer torque (STT) and STT-based de-
vices and oscillators, and development of materials (bidimentional -2D- materials, Rashba interface states
or topological states in particular) strategy and developments have been impressively investigated or em-
ployed to boost efficiency and performances. Impressive research achievements enabled to rapidly reach a
high technological maturity for the first spintronic based hardware devices leading to the commercialization
of hard drives using GMR (IBM, 1997) and TMR (Seagate, 2006), GMR-based galvanic isolators, Magnetic
Random Access Memories (MRAM) and in a near future the Spin Transfer Torque Random Access Mem-
ories (STT-RAM).

Nowadays, the involvement of spin-orbit interactions (SOI)?> and potentials in electronic states and

related devices makes important scientific step ahead in the novel scientific area named spinorbitronics.

2In this thesis, the terminologies "spin-orbit interactions" and "spin-orbit coupling” are the same and are used interchange-
ably.



Since typically beginning 2010, spinorbitronics represents a real emerging multidisciplinary research field
thanks to the ability to generate efficient spin-currents without the need of magnetic field or magnetic
materials [4]. The use of high spin-orbit metallic or semiconducting materials, heterostructures or interfaces
allows to foresee new fundamental issues and prospects. For instance, the use of spin-orbit fields within
III-V semiconductors, e. g. involving the (Ga,Mn)As ferromagnetic semiconductors, concerned allows
to switch a single thin ferromagnetic layer using the property of angular momentum current [5]. Those
currents are now essential to control the magnetization state of a magnet, or moving a domain wall in III-V
materials [6-9]. This is made possible via the spin-transfer torque generated by a spin-current or by the
spin-orbit torque (SOT) generated by the spin-Hall effect possibly involving interfacial Rashba and/or bulk

Dresselhaus potentials arising from inversion asymmetry properties of T, symmetry group [4].
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FIGURE 2: The tremendously active field of spinorbitronic: the various sub-fields in

which magnetization and spin directions can be manipulated electrically via the spin

orbit coupling in systems broken inversion symmetry which reveals novel states of
matter. Taken from [10].

From a fundamental point of view, the interplay between particle spin and orbital motion is also at
the basis of a new family of effects like spin-galvanic effects or the tunnel anomalous Hall effect [11, 12]
leading to transverse (spin) currents at surface or interfaces. Concomitantly with the numerous literature
devoted to spin-Hall effects in metals and conductors, a mechanism of tunneling planar Hall effect emerg-
ing at ferromagnet FM/TI junctions has recently been proposed. Those qualitatively differ from the SHE
in terms of the relevant geometry, the forward/backward scattering in the present case, and/or the magne-
tization configuration. These phenomena manifest themselves by a left/right asymmetry in the scattering
process of spin-polarized carriers along the transverse direction of their flow, giving rise to spin-to-charge

conversion and vice versa whose manipulation will become essential in a new generation of devices. Indeed,
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those ensemble of properties may offer new functionalities in the next future, like the ability for spin-orbit

materials in contact with a thin ferromagnet to emit pulsed THz waves in the time-domain area.

XXXXXX1X,

GaN Fe;0,

FIGURE 3: The working principle of a spin-laser with a built-in spin filtering mech-
anism. a, A bucket model of a conventional laser. Water added to the bucket
represents the carriers and the water coming out the emitted light. When water
is added slowly, the system is analogous to an ordinary light source (spontaneous
emission). When water is added at a faster rate the bucket overfills and water pours
out. In a semiconductor laser, this regime corresponds to the emission of coherent
photons (stimulated emission). b, A bucket model of a spin-laser. The two halves
represent two spin populations (hot and cold water in the analogy) and are filled sep-
arately. The partition between them is not perfect: spin relaxation can cause the two
populations to mix. The difference between uneven water levels represents the spin
imbalance in the laser. ¢, The spin filtering effect at the semiconductor/nanomagnet
(GaN[Fe304) interface is responsible for spin imbalance, even without spin pumping
(equal amount of hot and cold water poured in each half in b). The spin-selective
interface (here represented by the traffic lights) allows spin-down electrons to move
across, while spin-up electrons get stuck behind it, resulting in the spin imbalance of
GaN being transferred to the photons to produce polarized emitted light. For such a
spin-laser to operate, all nanomagnets have to be aligned in the same direction. This
effect is accomplished by applying a magnetic field. Taken from [13]

Besides, even if the science and technology behind passive spintronic devices is well mastered today,
the realization of active devices such as spin-orbit based transistors or spin-lasers for optical communication
still remains an important challenge. The intense research towards such components is motivated by the
potentiality of combining residual magnetic storage of binary information with electronic or optical readout
in a single device. One could envisage to propagate the information contained in a magnetic bit over

large distances after having converted the spin into light polarization or helicity by using spin-laser devices
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[13, 14]. The injection, transport, and detection of spins in such III-V materials, optically active, like
(GaAs, InAs) [15] are then the three key points to master. A continuous research effort has been led in that
perspective in Spin-Light Emitting Diodes (Spin-LEDs) devices as soon as the impedance mismatch’ issue
between metals and semiconductors was known to be detrimental. The addition of a thin tunneling oxide
barrier [16] like played by magnesium oxide (MgO) with efficiency larger than 40%, has been considered
at UM¢ CNRS-Thales. Spin-Light Emitting Diodes (Spin-LEDs) involves optically active recombination
regions (quantum wells) where electrons are injected by electrical means or by optical pumping into an
active region where they can recombine radiatively with unpolarized holes to emit preferentially right-
or left- circularly polarized light. This information transfer happens through the optical quantum selection
rules for dipole radiation associated with the conservation of angular momentum z-projections m, occurring
in confined strained active medium or Quantum Wells (QWs) [17]. In that type of experiments, the degree
of circular-polarization of the light emitted serves as a fingerprint of the initial spin-polarization of carrier
injected electrically. The first functional Spin-LED was proposed by Fiederling et al. in 1999 [18]. Such
carrier-to-photon angular momentum transfer and information conversion have been demonstrated now
e.g. in Naval Research Lab (Washington) Hanover, Bochum [19]. The device must provide a coherent
light emission with switchable polarization state and an output polarization degree as high as possible
in order for instance to robustly encode a bit of information [20-22]. spin-lasers (spin-VECSELSs) are
devices using the same properties but with the enhanced quality of a coherent light emitted (spatially and
temporally). The amplification effects induced by the combination of a gain medium and a resonant optical
cavity give a unique opportunity to maximize the conversion efficiency of the carrier spin-information into
light polarization information. On the other hands, Spin-lasers would provide a number of advantages
over conventional VCSELSs for future optical communication systems such as spin driven reconfigurable
optical interconnects [23], fast modulation dynamics [23], polarization control [24, 25] as well as higher
performances such as laser threshold reduction [25, 26], improved laser intensity, and polarization stability.
In terms of device implementation, III-V semiconductor based Vertical Cavity Surface Emitting Lasers
(VCSEL) emerged as perfect candidates for a Spin-Laser implementation thank to their vertical geometry.
Additionally, they exhibit a polarization emission much more isotropic than the conventional side-emitting
laser diodes. Outstanding optical [24, 25] and electrical [25, 27] spin-injection results were already achieved
in monolithic VCSEL structures in the past few years. From a physical fundamental point of view, a
detailed knowledge, of the electronic and photonic spin-current profiles (polarized electromagnetic wave)
and this information transfer by relevant optical selection rules in active media embedded in a multilayer
structure is generally required to gain in performance. The latter calculations should take into account all
the physical ingredients that are e.g. circular dichroism, circular and anisotropic gain, linear birefringence
and local strain field at surfaces and interfaces. These ingredients are generally needed to model the light
emission in semiconducting multilayers inside optical cavities constituted by one or two Bragg mirrors
and/or external mirror (1/2 VECSEL). However, concerning spin-lasers functionalities, additional in-plane
linear anisotropies strongly impact the performance and properties of spin operations. Theoretical as well as
experimental investigations have allowed experimentalists to separate several different contributions [28]:
i) a linear birefringence originating from interfaces between ternary quantum wells and barriers and ii)
possible local surface strain of III-V materials after surface crystal reconstruction and iii) a magneto-optical
anisotropy. However, a full theoretical physical description of such in-plane linear anisotropies is still
missing today.

Overall, the ensemble of those complex phenomena mentioned above, requires now a clear description
of the spin-currents anatomy with advanced calculation tools and modeling platforms. This can be hardly
fulfilled by ab-initio methods because of the needs to treat multilayered systems. In term of semiconductor

based structure, an alternative method for ab-intitio is the k.p technique since a convenient and efficiency



method it is for the treatments of multilayered systems. Therefore, this thesis is devoted to the theoretical,
analytical and computational study of III-V based interfaces from fundamentals to experiments understand-
ings and analyses associated with multiband K.p method. In particular, we focus on theoretical study of
the electronic and photonic spin-currents profiles in hybrid heterostructures by taking into account the rel-
evant spin-orbit potentials involved. Together with the analytical development in this manuscript, we have
developed numerical calculations tools and platform based on k.p methods for tunneling and adapted to
many type of multilayers. Beside the 2 x 2 CB and 6 X 6 VB effective models describing for example the
GaAs and related material band structure and hetererostructure, the simultaneous treatment of electrons and
holes needs a 8-band k.p whereas the inclusion of odd-parity symmetry effect requires at least a 14 x 14
bands k.p treatment [29] and for a full Brillouin zone description which is useful for the indirect band gap
semiconductor like silicon, one needs to deal with 30 x 30 [29] or 40 x 40 bands k.p Hamiltonian. How-
ever, the difficulty to treat with a multiband like 8-, 14-, 30- and 40-band k.p model for spin transport is to
get rid of the well-known unphysical spurious electronic states making the tunneling calculation unfeasible
due to tunneling shortcuts within the first Brillouin zone. One of the real peculiarity and difficulty is to
treat correctly the tunneling elastic transport in heterostructures occurring at a constant energy, and not at
a constant wavevector k. Generally, it allows for a spurious or unphysical character being away from the
validity zone of the k.p treatment. Thus, this makes the tunneling problem to become much more complex
than the electronic band structure calculations as well as band to band optical transition estimations. This
work, therefore, provides one of the most advanced implementation of numerical k.p tunneling transport
codes (from 14-, up to 30- and 40- band) to investigate the spin-orbit field effects in carrier transport in a
new class of spintronic and spinorbitronic structures possibly involving also Si and Ge and their group IV

semiconductor alloys.

The organization of this thesis

This manuscript is organized as follows:

The first parts of this thesis is devoted to six chapters starting with chapter 1 where we review the
fundamental material properties of the III-V semiconductors and related materials. In this chapter, we
start firstly with the concept of spin and spin-orbit interaction of electron in crystal lattice. Afterward,
the properties of III-V semiconductor compounds like GaAs or (Ga,Mn)As is presented and linked to the
symmetry of crystal. Then, the chapter discusses the spin Hall phenomenal via spin-orbit interaction in
semiconductors as well as the generation of spin polarization for spin injection into a semiconductor. Finally,
this chapter closes by giving some main points for the spin relaxation mechanisms in semiconductors.

Chapter 2 describes in details the electronic band structure of Oy, and 7, semiconductors using the k.p
technique. This chapter starts, first, with the description of k.p method and then discusses the way how
to build k.p Hamiltonians for the case of O) and T,; semiconductors from the general symmetry point
of view. Afterward, the chapter is devoted to a "novel Ghost-band method" which allows one to remove
spurious states in multiband k.p Hamiltonians from 14- up to at least 40-band k.p Hamiltonians. Finally,
the chapter reviews some detail on the effective Hamiltonian, exchange interaction and strain field within
the k.p framework.

Chapter 3 considers the quantum matching conditions fulfilled by the electronic wavefunctions and
current waves at the various interfaces within multilayer structure. From the standard matching condition to
the matching condition in the case involving the surface potential as well as the matching condition for the
effective Hamiltonian along [110] direction, this chapter gives a set of consistent matching conditions for
each case which allows one to describe the tunneling properties of electron through heterostructures such

as the resonant tunneling, bound state or quasi bound state in quantum well. As an example of matching



condition with surface potential, the chapter discusses the properties of wavefunction and splitting energy
in quantum well with matching condition proposed by Ivchenko et al. [30] and Durnev et al. [31].

Chapter 4 is devoted to the Green function technique which is a very useful mathematical and physical
tool for studying the electronic, optical and transport properties of materials. In this chapter the comparison
between the numerical calculation with 30 bands k.p and perturbation calculation with Green function
for spin dephasing of an electron in the conduction band tunnels through [110] barrier structure, is also
implemented.

Chapter 5 and 6 contain the main focus of this thesis’s work. Chapter 5 starts with the definition of
spin current and then discuss on the spin transfer torques with (Ga,Mn)As/GaAs/(Ga,Mn)As in antiparallel
configuration of magnetization. Afterward, this chapter gives in details the anomalous tunnel Hall effect
in CB and VB with perturbation calculation based on Green function as well as numerical calculations
based on multiband k.p technique. Chapter 6 starts with the introduction to spin lasers then discusses the
experiment study of surface and interfacial optical anisotropy by ellipsometry method. Finally, this chapter
gives a theoretical study of optical anisotropy which is induced by the symmetry breaking at the interface
of semiconductor heterostructure as well as the segregation effect based on Kk.p technique together with the
matching condition.

Afterward, the last part of this thesis is devoted to conclusion and perspective of this thesis’s work as
well as four appendices giving in details of all methods and techniques using in this work: explicit matrix
representation of multiband K.p in a consistent basis set, the error estimation of ghost band method, transfer
and scattering matrices formalism and the calculations of the oscillator strength and optical anisotropy for
heavy and light holes.



CHAPTER

111-V semiconductors and related materials based struc-

ture for spintronics and optoelectronics

Contents

1.1 Electron spin and spin-orbit interaction . . ... ................. 10
1.1.1 Electronspin . . . . . . . . . o i i i e e e e e 10
1.1.2 Spin-orbitinteractions . . . . . . . . . . e e e e 10
1.1.3 Relativistic Dirac equation [44] . . . . . . . . . . . .. . .. 13

1.2 The III-V semiconductors and related materials (ferromagnetic (Ga,Mn)As):
theartofstate . . .. .. . . . . i i i i ittt it e 16
1.2.1 The III-V semiconductors and their alloys: Generalities . . . . ... ... .. 16
1.2.2 Ferromagnetic semiconductors: Exchange interactions in GaMnAs . . . . . . 18

1.3 Spin-orbit interactions and their symmetry in semiconductors: Larmor fre-

QUENCY « v« v v v v e v e v e o e et et e e e e e e e e e e e e e e e e e 22
1.3.1 Bulkinversion asymmetry . . . . . . . . . . . ... 23
1.3.2 Structure inversion asymmetry . . . . . . .. ... ..o e e e e 26
1.4 Spin Hall phenomena via spin-orbit interaction in semiconductors . . . . . . . 26
1.4.1 SpinHalleffects . . ... ... ... . .. . .. . 26
1.4.2 Inverse Spin Hall effects and Tunneling Anomalous Hall Effects . . . . . .. 27

1.5 Generation of spin polarization for spin injection into a semiconductor . ... 28

1.5.1 Electrical injection . . . . . . . . . . e e e 28
1.5.2 Optical spininjection . . . . . . . . .. .. . e 30
1.6 Spin relaxation mechanisms in semiconductors . . . . . ... .......... 33
1.6.1 Elliott-Yafet mechanism . . . ... ... ... ... ... ... 33
1.6.2 D’yakonov-Perel’ mechanism. . . . . .. ... ... ... ... ........ 34
1.6.3 Bir-Aronov-Pikus mechanism . .. ... ... ... . ... . ... . ... .. 34
1.6.4 Hyperfineinteraction. . . . . . . . . . . . i e 35







Chapter 1. III-V semiconductors and related materials based structure for spintronics and

optoelectronics

In this work, the main materials subject to investigation are III-V based ferromagnetic semiconductors
which attract much attention in Spintronics and Spinorbitronics for decades [32—40], thank to their particu-
lar magnetic and spin-orbital properties. In particular, we focus on (Ga,Mn)As material. Like (Ge,Mn)As
for group IV semiconductors, (Ga,Mn)As remains a unique prototype group III-V semiconductor which
demonstrates non-zero exchange interactions and carrier-mediated ferromagnetism [33]. This makes pos-
sible the development of spinorbitronics devices with their particular interest and properties appearing as
soon as both exchange strengths and spin-orbit interactions (SOI) come into play. From a fundamental point
of view, the ferromagnetic semiconductor (Ga,Mn)As provided new opportunities to study spin-polarized
transport phenomena in semiconductor heterojunctions [41]. One of the interests in (Ga,Mn)As lies in the
wealth and varieties of its electronic valence band structure, location of exchange interactions, and strong
spin-orbit coupling. In this vein, advantage of semiconductor tunnel junction are fourfold: (1) III-V het-
erostructures can be epitaxially grown in a wide variety of tunnel devices with abrupt interfaces and with
atomically controlled layer thicknesses; (2) junctions can be easily integrated with other III-V structures
and devices; (3)many structural and band parameters are controllable, like barrier thickness and barrier
height, allowing the engineering of any band profile; and (4) one can introduce quantum heterostructures
much more easily than in any other material system.

Throughout this present work, several kinds of III-V (Ga,Mn)As based tunnel junctions are used here-
after, including thin GaAs layer or (In,Ga)As quantum well, for theoretical consideration of spin transport
and spin laser problems. A full understanding of the spin properties and dynamics requires knowledge of
the fundamental material properties, this chapter is, therefore, devoted to a brief discussion on the material
characteristics and the fabrication of these semiconductors and related materials. First of all, this chapter
starts with a concept of the spin degree of freedom and spin-orbit interaction, the relativistic coupling of
the spin to the movement of electrons in an electric field generated by an atom or a crystal lattice, which
has sparked a rich variety both of fundamental research in spin physics and of new spin-based applications
in technology. Then the Thomas factor which is the correction factor due to the acceleration motion of the
electron, is also obtained from two different ways: the relativistic kinetic point of view and the common
way with Dirac equation. In the next part, this chapter gives a basic discussion on a fabrication of III-V
semiconductor and their alloys using Molecular Beam Epitaxy (MBE) technique which may provide very
pure crystal structure, as well as the fabrication of a ferromagnetic semiconductor by doping the semicon-
ductor with magnetic transition metals. From the fact that a crucial point to understand the spin transport
phenomena in semiconductor and related structure is to understand the spin orbit interaction relating to the
symmetry of certain structure since the SOI plays a very important role in various spin transport processes.
For example, the interplay of electron motion and SOI may generate a spin polarization in a non-magnetic
material due to Spin Hall Effect or a combination of SOI and ferromagnetic materials may give rise a spin-
to-charge conversion which will be given in details in chapter 5. Therefore, one part of this chapter gives
an introduction to SOI in III-V semiconductor which is the core of this work and link it to the symmetry of
crystal. Then, the chapter discusses the spin Hall family phenomena via spin-orbit interaction in semicon-
ductors. One of a key parts in spintronic device prospects is ascribed to the spin field effect transistor (FET),
a famous proposal of Datta and Das in 1990 [42]. Their concept requires the creation of spin polarization
injected from magnetized contacts into a normal semiconductor which may be done with two common
mechanism: electrical and optical spin injection being reviewed in the following part. However, in contrast
with spin polarization generation in semiconductor, the spin orientation is not conserved due to the SOI
since it will relax into thermal equilibrium after a certain spin relaxation time. This chapter will close with

four relaxation mechanisms which are of great importance in semiconductor spinorbitronics.



Chapter 1. III-V semiconductors and related materials based structure for spintronics and
optoelectronics

JWA Electron spin and spin-orbit interaction

Electron spin

Spin is an intrinsic magnetic dipole moment u carried by elementary particles (such as electron), composite
particles (hadrons), and atomic nuclei [43] . The existence of spin is inferred from experiments, such as the
Stern-Gerlach experiment where the silver atoms were observed to possess two opposite angular momenta

whereas no orbital angular momentum [43].

4+
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FIGURE 1.1: Stern Gerlach experiment: Silver atoms traveling through an inho-
mogeneous magnetic field, and being deflected up or down depending on their
spin.

In quantum mechanic, the spin quantity is derived from the relativistic Dirac equation [44] and known as one
of two types of the angular momentum as internal degree of freedom beside the orbital angular momentum
[43]. The spin operator is defined as:
1
S== 1.1
57 (1.1

where o is the Pauli operator which acts on the up and down spin states respectively as:

oD =10, oy =ill), oz =1D

(1.2)
ol =11, oyll) ==ilD, oz =-1D

This also refers to the electron spin % as only two states |T) and ||) respectively. Generally, for the case of

spin % system (the case of electrons), o, 0y, 0, are the three Pauli matrices, given by:

0 1 o =i 1o 03
10 27l o 7“0 -1 ‘

Spin-orbit interactions

Ox =

The magnetic moment of the electron relates to its spin:

1
H=—58KBO (1.4)
where up = % is the Bohr magneton and g = 2.0023 =~ 2.

In a uniform magnetic field B, this magnetic moment is submitted to a torque like:
M=uxB (1.5)

10
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optoelectronics

FIGURE 1.2: Schematic diagram depicting the spin of electron. Taken from [45]

Thus, the energy of a magnetic moment in a uniform magnetic field is described by
1
H=-uB-= Eg,uBO'.B (1.6)

which is called Zeeman Hamiltonian [46]. When the electron moves in a magnetic field gradient, such as
in the famous case of the Stern-Gerlach experiment, the electron interacts with magnetic field through its

magnetic dipole moment by the force given by [46]:
F=v(uB)=(uv)B 1.7

Electrons with different spin orientations are therefore deflected in two opposite directions. Moreover, the
spin interacts also with electric fields. This is the case for example when an electron moves in the electric
field E generated by the atoms or a crystal lattice. Here, if we assume that the atom or the crystal lattice
is at rest in the inertial system. Then the electron will experience in its own rest system not only a pure
electric field, but also a magnetic field which, in the lowest order in v/c, can be written as

1
B’ = —ZV X E (18)

c
due to the relativistic transformation of the electromagnetic fields. Here we have denoted the primed vari-
ables as the quantities in the coordinate system in which the electron is at rest. The magnetic moments
in the lab frame and in the electron’s rest frame are the same to first order in v/c. The magnetic field B’
couples to the magnetic dipole moment of the electron, i.e., to the spin, via the Zeeman interaction and we

have in the lowest order in v/c
’ ’ ’ 1
HSO Zg/,lBB .S =—g,uB—2(v><E).S = Hso (1.9
c

The above argument is incomplete as it neglects complications arising due to the acceleration of the electron
leading to the so-called Thomas precession. If the term is exactly derived from the relativistic Dirac equation
by taking the non-relativistic limit, the result is

gh
4c2m2

_ gmp 1 _
HSO = —TC—Z(V XE)S =

(vV(r)xp).S (1.10)
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where g is the Lande factor, m, the electron mass. This exact expression differs only by a factor 1/2, the
so-called Thomas factor, from the expression obtained from the classical expansion. It is the nature of this
spin-orbit interaction that the electron feels an effective magnetic field oriented normal to both its direction

of motion and to the external electric field.

The Thomas factor [47]

We are now going to present a major idea of Kroemer which allows one to derive the Thomas precession
factor in the value of spin orbit strength in the framework of the relativistic kinematics. The details can be
found in Ref.[47] where the main points are:

& When an electron moves with a velocity v through space in the presence of an electric field E, the
electron will experience in its own frame of reference an effective magnetic field B’. However, one cannot

use a Lorentz-transformed magnetic field B’ given by the familiar expression:

(E xv)/c? _ (E xv)

B’ =
2

(1.11)

1-(v/c)?

vLce

in such a simple way since the electron’s rest frame is not an inertial reference frame. Indeed an electric
field with a component perpendicular to the electron velocity causes an additional acceleration of the elec-
tron along the direction perpendicular to its instantaneous velocity, leading a curved trajectory. In a rotating
frame of reference, this leads to an additional precession of the electron which is called the Thomas pre-
cession. Beyond, one may observe from a Lorentz transformation that the transformation E — B’ mus be
linear in E, and E may occur only in the combination E X v which reflects the fact that only the component
of E perpendicular to the velocity v can play a role. In other word, B’ must be perpendicular to both E and
v. Generally, the magnetic field transformation admits the following form:

(E xv)
a—""

B’ = 3 (1.12)
c
or in the case of a magnetic field B present in the initial frame, Eq.1.12 may be generalized to:
, E xv
B =« 2 + BB (1.13)

where @ and S are scalar factors which depend on the velocity but not on either E or the magnetic field B
in the initial frame.

& In order to obtain the correct magnetic field acting on the electron in its rest frame (determining
the coefficient o and 8 in Eq.1.13), one can use the Lorentz transformation by taking into account the
influence of a rotating frame by considering the case in which an electron moves in crossed electric field
E and magnetic field B chosen such that the electric Coulomb force is balanced by the magnetic Lorentz
force. For that: (i) the electron will move along a straight line with an uniform velocity. The electron’s
rest reference becomes an inertial reference frame and therefore the Lorentz transformation can be applied
to obtain the magnetic field B’ experienced by the electron in this reference frame; (ii) the term which
corresponds to the magnetic field B will play the role of the rotating frame in the case of a curved motion
of the electron in the presence of a pure electric field E.

Particularly, we are now considering a specific combination both electric and magnetic fields such that

E=-vxB (1.14)
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where v is the velocity of the electron, and B is chosen perpendicular to v. Without loss of generality, one
may choose a Cartesian coordinate system such that the velocity is along the x direction, the magnetic field

is directed along the z direction, and the electric field is in the y direction to give:
E, = v«B; (1.15)

Using the Lorentz transformation to obtain the magnetic field B} in the uniformly moving electron frame:

B, — E,v,/c?
B, = # (1.16)
V1-(vi/e)?
Expanding the right hand side of Eq. 1.16 in powers of v, we obtain:
B2 [1 3 ve\2] Eyvs 1 (vi)2
pop B LS (| B Ly, 11
RGN [2+8 ¢ ] c? Tal\% " (1.17)
Using the relation 1.15, Eq. 1.17 can be re-written as:
, Eyve [1 1 fvy\2
B=p- D [E () ] . (1.18)
In the limit v < ¢, one gets:
/g, - 1B 1.1
BZ = BZ - EC—Z ( . 9)
or in a three-dimensional vector form, it yields:
1E xv
B'=B+- 1.20
T2 (1.20)

which is required from Eq. 1.13 with @ = % and B = 1. Finally, we get the Thomas’s factor @ = % which
is good agreement with the literature. As noted in Ref. [47] the central assumption of this derivation is that
proportionality between B’ to E X v carried over to a rotating frame of reference. Beside, the term B,v?
in Eq. 1.17 plays an important role since this term replaces the rotating frame corrections in the case of a
pure electric field. Neglecting it would be exactly equivalent to neglecting the effects of a rotating frame
of reference for a general choice of fields [47]. The assemble of those general arguments developed here
will also serve as the derivation of some general properties dealing with spin-orbital properties at surface or
interfaces spinorbitronics materials like developed further in this manuscript.

Relativistic Dirac equation [44]

As mentioned above, the electron spin was theoretically predicted by application of the special relativity
principles to the quantum mechanics. It appears naturally in Dirac equation as a result of Lorentz covariance
leading to a deep connection between spin and Lorentz invariance that is obscure in non relativistic quantum
mechanics [48]. Now we present here the Dirac equation (without presenting how to derive it) and establish
the expression of spin-orbit interaction from this equation by an approach introduced by Sakurai [43] and
by Winkler [44]. First of all, let us recall the Dirac equation for an electron [43]:

iy 0y — ey" Ay —moc)y =0 (1.21)

Comparing to Schrodinger equation:

Ld
zhaw = Hy (1.22)
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one may re-write Eq. 1.21 in term of:
L0
,haw = Hpyr (1.23)

where Hp = @ -(p —eA)c + Bmoc? +eV. Here we have used four-dimensional Einstein summation together

with following notations

0 o L 0 0 ; ;
- - = = 1.2
a [U J,ﬁ [012,7 B, v =Ba (1.24)
0
M =ih—, A* =(V/c,A) (1.25)

OxH

A solution of Eq. 1.23 is a four-component spinor which can be decomposed into two two-component

spinor with the normalized factor as following:

m, (‘2t
v =i |9 (1.26)
X
Substituting 1.26 to 1.23, one finds:
0 Vv og-(p-eA
inl o _ e c 02 eA)| ¢ - ¢ (1.27)
ot | x co-(p—-eA) -2moc*+eV||x X
For the stationary state, one obtains
H ¢ =E ¢ (1.28)
X X
Solving this equation, one has:
co - (p — eA)
=— > 7 1.29
E — eV + 2mgc? ( )
2
(p-eA)) —————[o-(p-eA)]p=(E-¢eV 1.30
(7 (p = eA)) g [0 (P~ )] 6 = (£~ eV (1.30)
To the zeroth order: )
E-eV v
— X — 1.31
2mgc2 “ 2 ( )
Finally, we obtain the well-known equation of Pauli [43]
- eA)? h
PoeA” oy D Blo=E (1.32)
2m0 2m0
Besides, to the first order, one has
c? 1 E-V
_ & —1- + ... 1.33
E — eV +2mgc2  2myg ( 2mgc? ) (1.33)
giving the following equation, which is not an eigenvalue equation:
1 E-V
[o-(p-eA)]l 5—|1-s——|lo-(p-eA)]p=(E-eV)p (1.34)
2m0 2moc
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Applying the renormalization for the wavefunction 1.26, we have:

(p-eA) \"(o-(p-eA
1:/(¢T¢+XTX)dx3:/¢T¢+0-(p eA) o-(p e)¢ a3
2moc 2mgc
: § (1.35)
=/¢T 1+Zij(Pi—€Ai) (pj —eAj)o; oy 6dx /¢ (P—é’ )? 6 dx®
4moyc? Cdmoc?
We renormalize then ¢ in the following way (to the first order):
~ (p — eA)?
p=Qp=1+——-—— (1.36)
8mgc?
- —eA)*| .
p=a1g=[1- LA ) (1.37)
8mgc?
Substituting to the Pauli’s equation to obtain:
1 E-V 1 .
Qlo-(p-eA)] — |1-——|[oc-(p-eA)]|Q "¢ =(E—¢eV)p (1.38)
2 2migc?
This expression can then be rewritten, after many simplifications to the order of v2/c? [49]
_ 2 . _ 2
(p —eA) +eV+ﬂ0'-B—6ha- (p eA)XS_ eh V.&
2mg 2mpg 4m(2)c2 8m(2)c2
. ) ) (1.39)
(p —eA) eh(p — eA) (ehiB)= | .. -
TTa 32 5, O B-so|0=E¢
8mgc 4mgc 8mgc

where & = %VV is the electric field; B = V X A is the magnetic field.
The different terms in Eq. 1.39 can be interpreted as [44]

1. (p — eA)?/2mg + €V : free electron term.

2. eh/2moo - B : Zeeman term.

3. —eh o - (p — eA) X &/4m2c? : spin-orbit coupling.
4, —(ehz/Sm%cz)V - & : Darwin term.

5. —(p—eA)*/8m3c? —(eh(p —eA)*/4m3c?)o - B — (ehB)*/(8m3c?) : relativistic corrections to kinetic

energy and Zeeman term.

Note that, mainly in the following, we are interested in the spin-orbit coupling since it introduces non-
linear coupling terms in the absence of external magnetic field. In framework of k.p method, the spin-orbit
coupling can be treated as a perturbation with the fact that this term is strictly zero when there is an inversion

symmetry in the crystal [44].
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The III-V semiconductors and related materials (ferromagnetic
(Ga,Mn)As): the art of state

We now will discuss main properties dealing with III-V ferromagnetic semiconductors. Typically, we will
focus on (Ga,Mn)As material.

The III-V semiconductors and their alloys: Generalities

The III-V semiconductors such as GaAs, AlAs and InAs are the basis materials for the structures considered
in this work. The Molecular Beam Epitaxy which provides crystal structures with sharp layer boundaries,
and negligible thickness variations of the layer, is a method to fabricate them.

View port UHV chamber B b

Sources =
Cryopanelling
“”‘ // Substrate

\ 1 ’," UHF heating and

\ / b RHEED rotation stage RHEED
) — — gun screen
screen Shutters - e Substrate

m ’éy Electron gun
& ™ L
| ‘ Molecular beams ’
N Open shutter Closed shutter

a®

Effusion cells

Rough
Substrate rotation stage

Transfer rack

Sample entry

FIGURE 1.3: a) Schematic of a simple molecular beam epitaxial system for the growth

of semiconductors. b) Schematic diagram of a MBE growth chamber, showing the

effusion cells and shutters, the substrate stage, and the arrangement of the Reflection
High-Energy Electron Diffraction (RHEED) system, taken from Ref. [50].

(100) (110)

111)

FIGURE 1.4: The unit cell and crystallographic planes of GaAs, taken from Ref. [51].

Figure 1.3 depicts a basis setup of a MBE chamber where the pure materials evaporate from effusion

cells setting in a ultrahigh vacuum chamber. Due to the ultrahigh vacuum which is supported by cryogenic
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cooling shields to freeze out impurity atoms, the molecules do not interact with each other until they eventu-
ally condense on a substrate. This method provides a slow deposition rate allowing epitaxial growth which
means that the deposited layer is congruent to the substrate. The relative fluxes out of the effusion cells is
controlled by mechanical shutters, and the growth is monitored with the high energy electron diffraction
technique.

Using the MBE technique, one can fabricate III-V semiconductor structures such as GaAs-based het-
erosstructure which consists of tetrahedral covalent bonds by each Ga(As) atom formed with four As (Ga)
atoms [51]. Hence, the two interpenetrating face centered cubic (fcc) lattices of the two atom types are form-
ing a zinc blende crystal depicted in Fig. 1.4. The space group symmetry of such crystal is symmorphic
and labeled F43m or T3 [52] which contains 24 symmetry operations: the identity, eight C3 operations (ro-
tation by 120°), two Cs operations (rotation by 180°), six S4 operations (rotation followed by a reflection
perpendicular to the rotation axis), and six o operations (reflection with respect to a plane) [53].

Unlike the Oy, group, the T; group possesses no inversion center or inversion symmetry which leads
to a small potential asymmetry in the lattice potential in Tz group Vr,, = Viym + Vanrisym Where Vanrigym
can be considered as a perturbation [29]. When SOI, Eq. 1.10, is taken into account, the lack of inversion
symmetry causes an effective internal magnetic field, experienced by the electrons and described by the
Dresselhaus terms Hp in the conduction band (CB) [52]:

Hp = yp [owkn(k? = k2) + oyky (k2 = k2) + ok (K2 — k2] (1.40)

where yp is the Dresselhaus parameter, k., ky and k, are three components of wave vector k along x-, y-
and z-direction respectively.

One has to emphasize that the Hp contributes odd terms in the electron wave vector k and is responsible
for a number of fascinating and important effects being actively studied recently in semiconductors and
spintronic [31] such as spin filtering effect without ferromagnetism [54], spin dephasing in barrier grown
along [110] direction [55], spin injection via [110] grown semiconductor barrier [56], or anomalous tunnel

Hall effect which will be largely described throughout this manuscript [11, 12, 57].
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FIGURE 1.5: (a): Energy gap vs. lattice parameter at temperature 300K (taken
from Ref. [58]). (b) Conduction band offsets in strained InyGaj_,As/GaAs QWs as
function of In composition (taken from Ref. [59])

The MBE technique also allows one to fabricate the ternary alloys such as In,Gaj_xAs. In these
structures, one of the two fcc-lattices consists of As atoms and the other is occupied by In and Ga atoms.
Because GaAs forms a band gap EéG“AS) = 1.42¢V larger than InAs E g "45) = 0.35¢V, the band gap of the
alloy may be designed by changing the content of In, [60]: Eq = xEg(InAs)+(1—-x)Eq(GaAs)—x(1-x)C
where C accounts for the deviation from a linear interpolation between the two binaries GaAs and InAs
which is the so-called bowing parameter, in the range of 0.45-0.5 eV [60]. It has also been proposed that
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the bowing depends on the temperature, being almost flat below 100K and decreasing rapidly at higher
temperatures [60]. The energy gap as a function of the lattice parameter at room temperature for several I1I-
V alloys is shown in Fig. 1.5a whereas 1.5b gives the band offset of /n,Gaj_,As. Because of the difference
between the gap of GaAs and InAs, one can grow heterostructures with different potential landscapes,
such as quantum wells or semiconductor barrier by stacking such layers with different band gaps. These
structures are known as type I heterostructures, where the higher VB edge and the lower CB edge are both

in the material with the smaller band gap.

Ferromagnetic semiconductors: Exchange interactions in GaMnAs

There is no magnetic order in a III-V semiconductor. However, ferromagnetism was introduced in III-V,
[61, 62] and II-VI [63, 64] semiconductors based on proposal of Furdyna [65]: doping the semiconductors
with magnetic transition metals, yielding the so-called diluted magnetic semiconductor where the magnetic
moments are distributed randomly in the host, allows one to explore the physics of ferromagnetism in
semiconductors [32]. In such a material as (Ga,Mn)As, the Mn atoms may substitute ideally a Ga atom
in the lattice or locate between the atom sites in the lattice. There are different possibilities for a Mn
atom to incorporate into the lattice: two tetrahedral positions between four Ga/As atoms or hexagonal
positions between three Ga/As atoms. In the (Ga,Mn)As crystal, manganese plays the role of an acceptor,
since Mn has an electron less than Ga in the 4p shell (Mn = [Ar]3d°4s%; Ga = [Ar]3d°4s*p' and
As = [Ar] 3d°4s?p®) [37]. However, this acceptor behavior may be partially or fully compensated due to
interstitial Mn impurities. The 3d shell of a Mn atom is only half occupied, yielding a magnetic moment
of % up [37, 43]. Because these electrons are not involved in the atomic bonding, the magnetic moment is

conserved in the macroscopic material.

FIGURE 1.6: Crystal structure of (Ga,Mn)As. Mn ions substituting Ga possesses a
magnetic moment, and the magnetic moment of each Mn ion aligns along the same
direction. This implies ferromagnetism of (Ga,Mn)As. Taken from Ref.[66].

Commonly, the MBE growth temperature for GaAs is high to ensure a pure crystal growth, however, the
low solubility of Mn in GaAs would cause segregation at this high temperature, yielding a Mn accumulation
on the surface [67]. Therefore, low temperatures are necessary to incorporate the Mn atoms, but also,
are giving rise to the implementation of defects. The combination of growth temperature and the Mn

concentration, thus, will determine the alloy’s state.
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Below the Curie temperature, ferromagnetic materials posses a non-vanishing spontaneous magnetiza-
tion M even in the absence of an external magnetic field. In this regime the magnetic moments are oriented
parallel to each other within magnetic domains, and an external magnetic field may align the magnetiza-
tion directions of the domains. Above the Curie temperature on the contrary, the magnetic moments are
randomly oriented in the paramagnetic phase in such a way that the total energy consisting of the exchange
energy and the kinetic energy is minimized, yielding an energy splitting in the density of states of two spin
orientations. A simple model to describe ferromagnetism is the Heisenberg model in which the two nearest

neighbor spins couple ferromagnetically according to the Heisenberg Hamiltonian [68]:

Hy = J; ;S:i.8; (1.41)
i,

where §; ; are two nearest neighbor spins and J; ; is the exchange integral which is responsible for the
exchange interaction. It exists various kinds of exchange interactions. For example, in the common 3d
transition metals, the ferromagnetism is based on the direct exchange interaction, which is an interplay
between the Coulomb interaction and the Pauli principle. In (Ga,Mn)As, due to the dilute incorporation, the
average distance between the localized magnetic moments is too large to allow a direct exchange coupling,
since the overlap of the wave functions of the involved spins is too small. Moreover, Ohno et al. [61, 62]
observed a ferromagnetic order in (Ga,Mn)As for Mn concentration higher than 1% which indicates that the
ferromagnetism in (Ga,Mn)As is caused by an indirect exchange interaction. In this case, the carriers get
spin polarized and couple with other carriers by localized magnetic moments (Zener-type ferromagnetism).

cos(kpri j)
3

Consequently, the exchange integral in Eq. 1.41 possesses an oscillatory behavior J; ; oc , where

kF is here the Fermi wave vector and r; ; the distance between the two coupled magnetic moments. For
the case of metallic (Ga,Mn)As, with Mn concentration in the 1% — 12% range, the distances are small
enough to assume only antiferromagnetic coupling [32]. Thus, the holes couple antiferromagnetically with
the localized 3d electron spins (p-dinteractions), yielding a local ferromagnetic coupling between two Mn
magnetic moments. In the case where the hole concentration is large enough, the hole impurity band merges
with the GaAs valence band, and the holes, which are freely propagating, align the Mn spins all over
the sample. We now discuss the main properties of the p-d exchange interactions within the (Ga,Mn)As

compound in both a atomic picture and in a mean-field approach.

Atomic and chemical picture

From general group-theory arguments, in the effective mass approximation [69-71], non-magnetic shal-
low acceptors like played by Mn atoms can be described by hydrogenic states of fundamental symmetry
term 1S3/5 of binding energy equal to 28 meV for GaAs. In a spherical approximation, these are char-
acterized by a total angular momentum F = L + J = 3/2 which is a constant of motion where L is the
angular momentum of the envelope wavefunction. The result is that the fundamental 1S3/, wavefunction is
®(S3/2) = fo(r)|L=0,J =3/2,F =3/2,F;) + go(r)|L = 2,J = 3/2,F = 3/2,F;). However, according
to optical studies, Mn is known to form a shallow acceptor center in GaAs with Mn level of about A%=d°+h
and electronic configuration characterized by a binding energy [72] of 110 meV due to the consideration
of the central potential correction term, and an energy difference of the order of 10 (+3) meV between the
J=1and J = 2 h-d° states.

In this picture, the / = § + j quantum number constant of motion is the sum of the ¢> Mn spin angular
momentum S = 5/2 and the j = 3/2 hole angular momentum. In the S—j exchange coupling scheme where
the exchange interaction is Jex. S - j, the energy difference between the extrema J = 1 and J = 4 states is

equal to 9J, . whereas it gives 2J,,. between the two successive J = 1 and J = 2 states. It follows that
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FIGURE 1.7: (a) Atomic structure near a substitutional Mn dopant (blue) in the GaAs
lattice (red atoms are As). The As atoms are labeled by S1, S2, S3, and S4. (b-d)
Contour surfaces of the LDOS of acceptor level at 10 % if the peak value at the Mn
site. The Mn spin is aligned with the (b)[001], (c) [110], or (d) [111] axis of the
GaAs lattice. The symmetry is (b) Doy, (c) Co,, or (d) C3,. The LDOS at each atomic
site is spatially distributed according to a normalized Gaussian with a 2.5 A width.
The box outlines are aligned with the cubic lattice and have widths in units of the
lattice constant a = 5.65 A, taken from [73]. (e) Electron-picture cartoon: splitting
of the isolated Mb acceptor level (top panel) and of the top of the valence-band in
the many-Mn system (bottom panel) due to p-d hybridization, taken from [74].

the energy difference between the states corresponding to the spin of the bound hole respectively parallel
and antiparallel to the Mn spin can be estimated to be 45 meV. This relative small p-d exchange energy
originates from the relative long extent of the bound hole wavefunction where the Mn d states are mostly
localized within an effective Bohr radius aj o €/m* ~ 0.8 nm (e is dielectrical constant) and corresponding
to an effective volume of 3 nm® as well as an effective Mn concentration approaching x;,. = 1.35%. A
direct consequence is that the average exchange integral A, is expected to be enhanced with increasing
the Mn content x above this threshold Mn concentration x;,. = 1.35%.

In the metallic regime and in the S-s exchange coupling scheme, the average exchange interaction

in (Ga(l_x),Mnx) As reads A.xe = —5/2xNpB, where Ny is the concentration of cations and NofS =

-(16/5) (m + ﬁ) X (%pda' - Z‘T@pdﬂ)z < 0 is the exchange integral found by treating the
p-d hybridization as a perturbation in the configuration interaction picture [75] giving rise to antiferromag-
netic interactions between p and d shells. Here, S is the localized d spin, Ueff=E(d"_1)+E(d”+1)-2E(d")
is the characteristic 3d-3d Coulomb interaction, Aeff=E(Ld”)-E(d"‘1) is the ligand-to-3d charge transfer
energy. On the other hand, (pdo-) and (pdrn) are the characteristic Slater-Koster hopping integrals [76]. The
value of No8 = —1.2 eV (8 = —54 meV.nm?) is generally admitted from core level photoemission mea-
surements for (Ga,Mn)As with a T¢ close to 60 K [77] corresponding to an effective acceptor concentration
Xerf = 4% where x.pr = xo — 2xp (xo: minimal doping; xp: double donors). Figure. 1.8 displays the
4-different exchange-split (Ga,Mn)As subbands calculated for a hole density p=1.7 x 102° cm™3 and an
average exchange energy between up and down hole spin of A,y = 120 meV.

From a point of view of experiments and material properties, questions remain on the general trends of
Tunneling magnetoresistance (TMR) vs. exchange interactions Ay, = —5/2xNy8 where xNy is the con-

centration of Mn atoms as well as hole band filling within (Ga,Mn)As. Also, what are the possible effects
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FIGURE 1.8: The four different Fermi surfaces heavy hole up (a) and down (c)
and light hole up (e) and down (f) of (Ga,Mn)As calculated in the k.p formalism
for a Fermi energy equal -135 meV counted from the top of the valence band
(p=17x 1029 ¢m=3) and an exchange interaction Agx. = 120MeV (calculated
without strain). The magnetization is along the [100] direction. The color code
scales the Fermi wavevactor (in nnm~1) along the corresponding crystalline axis.
Corrpespondingly, figures (b, d, f, h) are the xy plane projection of figures (a, c, €)

and (g).
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of the low-temperature (L-T) growth procedure used for the synthesis of these MTJs on the band lineup,
valence band offset and related barrier heights of heterostructures integrating (Ga,Mn)As? Remarkably and
as shown by non-linear [-V characteristics recorded on junctions both (Ga,As) and (In,Ga)As materials
play the role of a tunnel barrier for holes injected from/into (Ga,Mn)As [7, 78]. The same qualitative fea-
ture have been demonstrated through optical measurement of the hole chemical potential in ferromagnetic
(Ga,Mn)As/GaAs heterostructures by photoexcited resonant tunneling [79]. These results favor a band-edge
discontinuity due to the smaller band gap of (Ga,Mn)As compared to GaAs [80] and indicate a pinning of
the Fermi level deep inside the band gap of the (Ga,As) host. A part of the answer lies in the incorporation
of n-type double-donor As antisites during the low temperature growth procedure that partly governs the
pinning of the Fermi level at a higher energy position than expected, neighboring the midgap of GaAs. The
second reason is due to the positive coulombic-exchange potential experienced by holes and introduced by
Mn species playing the role of hydrogen centers for holes orbiting around it. This is at the origin of an
impurity-band formation at smaller or intermediate doping level in the host bandgap and an intense debate
remains about the position of the Fermi level relative to the impurity band [81]. While infrared measure-
ments [82] as well as magnetic circular dichroism (MCD) [83] experimental and theoretical studies [84]
seem to support the scenario of a detached impurity band, recent low-temperature conductivity measure-
ments [85] validate the approach of a VB picture more compatible with a k.p treatment of its electronic

properties.

Averaging in media: mean-field approach

In 2000, Dietl et al developed a mean field Zener model to describe the ferromagnetism in (Ga,Mn)As in
detail in Ref. [86, 87]. In this approach, the p-d interaction is considered as an effective magnetic field
which causes a spin splitting in the valence band. In the picture given by Dietl, the exchange interaction
with the hole and p-d hybridization is described by [87]:

Bs.M
8HUB

where 3 is the average exchange integral, s is the electron spin, M is a localized spin, g is the Landé factor,

Hoe = = 3Bgs.M (1.42)

and up is the Bohr magneton. For the sake of simplicity, in this work we will assume that Eq. 1.42 can be

applied to the exchange interaction between electrons and localized magnetic moments.

Spin-orbit interactions and their symmetry in semiconductors:

Larmor frequency

We now turn on the description of specific spin-orbital properties of III-V semiconductor and related ma-
terials. In the structure of semiconductors belonging to the O;, group, there is an existing space inversion
symmetry which implicates that the spin up and spin down states are degenerate. This can be understood as

the consequence of the time-reversal symmetry and space inversion symmetry.

In the system lacking of a space inversion center, the spin degeneracy is lifted because of the presence of
an electric field which results from an asymmetric charge distribution inside the semiconductor unit cell, or
an electric field applied along a certain crystal axis [29, 37]. According to Eq 1.10, the potential gradient
would lead to a spin splitting in the energy dispersion of electron in the conduction band even in the absence
of any external magnetic field. An external magnetic field would break the time inversion symmetry and

therefore would cause a Zeeman splitting in the energy dispersion. The SO splitting may be considered
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FIGURE 1.9: Panels (a) illustrates the SIA/BIA spin splitting, here | + 1/2), label

the eigenstates with fixed y spin components. Panels (b) and (c) show schematic

2D band structure with k-linear terms for Cy,, symmetry. The energy ¢ is plotted as

a function of ky and ky in (b) with only one type of inversion asymmetry, BIA or

SIA, and in (c) for equal strength of the BIA and SIA terms in the Hamiltonian. The

bottom panels (d-g) show the distribution of spin orientations at the Fermi energy
for different strengths of the BIA and SIA terms. Taken from [88].

as an intrinsic effective k dependent magnetic field B.ss(k) in which an electron spin precesses with the

Larmor frequency. Consequently, we can re-write 1.10 as:
n
HSO = EQ(k).O’ (143)

where Q(k) = g“TBBe 7 (k) is the Larmor frequency. The effective SO field must vanish at k = O because
Kramer’s theory requires that Q(k) = Q(—k) thus, leading to no spin splitting at k = 0. When k # 0, the
splitting energy is AEso = 2h|Q(k)|.

There exist several kinds of space inversion asymmetries:

& The bulk inversion asymmetry BIA.

& The structure inversion asymmetry SIA.

& The natural interface asymmetry NIA.

In the following, we are going to discuss on BIA and SIA which represent very common space inversion

asymmetries in III-V semiconductor heterostructures considered in this work.

Bulk inversion asymmetry

In ITII-V semiconductors of a zinc blende structure, there is no inversion center which gives rise to the BIA.
In 1955, G. Dresselhaus used general group theoretical arguments to give an expression for the spin splitting
in zinc blende structures [89]. In this case, the Larmor precession vector can be written in the form which
is also well known as Dresselhaus field (Eq. 1.40) according to:

QK)p14 = 22 [k (K2 - K2) by (K2 = K2) ke (12 - 2| (1.44)
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where the x — direction is along the [100] direction; y— the direction along [010]; z— the direction along
[001] and the spin-splitting parameter yp is expressed as [37, 90, 91]

h3
yp = — (1.45)

m*\2m*Eg,
here m™ is the electron effective mass, and Ej is the energy gap. One may observe that the magnitude of the
Dresselhaus SOI depends on the material and is expressed through a dimensionless parameter «p. In the lit-
erature, there exist several publications which have determined the value of yp for the bulk semiconductors

like shown in Table 1.1.

yD(eV.AB) Vurgaftman et al. [60] | Jancu et al. [92] | Perel et al [54] | T.H.Dang et al. [93]
GaAs 17.4-26 24.4 24 23.5
GaSb 185 176 187 180
InAs - 48.6 130 130
InSb 226 465 220 335
AlAs - 11.2 11.4 17

TABLE 1.1: Dresselhaus parameter of some bulk semiconductors taken from litera-
ture.

FIGURE 1.10: Vector fields (k) on the Fermi surface (circle) for the structure
inversion asymmetry (SIA) and bulk inversion asymmetry (BIA). Since Q(k) is also
the spin quantization axis, the vector pattern is also the pattern of the spin on the
Fermi surface. As the opposite spins have different energies, the Fermi circle becomes
two concentric circles with opposite spins. This is shown here only for the SIA case,
but the analogy extends to all examples. The field for BIA [110] lies perpendicular
to the plane, with the magnitude varying along the Fermi surface. All other cases
have constant fields lying in the plane. Taken from Ref. [37]

In the 2-dimensional electron system, yp depends on the confinement energy in the quantum well. The
value of yp decreases as the confinement energy increases. Moreover, the penetration of the wave function
in the barrier material also results in a change of the parameter yp [44]. The sign of the parameter is

determined by the coordinate system we use. For example, in the case of GaAs in which the cation Ga is
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placed at the origin of a GaAs primitive cell and the anion As is located at a (;1‘, %, %) vp is negative [94].
The confinement of the electron wavefunction in 2D semiconductor systems implicates that the quantization
of the momentum is along the growth direction (z-direction). In the first order perturbation theory, the
terms k, and kz2 in Eq 1.44 may be replaced by their expectation values. The shape and orientation of the
Dresselhaus field now depends on the direction of the quantization axis as depicted in figure 1.10 [37, 91].

In the case of [110]-grown quantum well, one may re-write the Eq.1.44 in a coordinate system
x||[110], y||[001, z||[110]] with a special attention that in quantum wells, since (kzz) is much larger than the
in-plane momentum kﬁ [91], thus one may neglect the term (k)% - 2k§) in comparison with (k2) to get:

o) = %ﬁ [0,0, ky] (1.46)

where 8 = yp (kg) is the so-called the Dresselhaus parameter. Furthermore, the other components are
obtained by cyclic permutation of the indices and one may easily obtain the Dresselhaus fields for both
[001] and [111] direction given by [37, 91, 95]:

0% = g [k, Ky, 0] (1.47)
[111] 2B
Q (k) = — |ky,—ky,0 (1.48)
D \/§h [ y X ]
a (o 2
Electron enegy
Vo [ | E
y
X
l T l T 9.5 GHz NiFe
=
Ag
0 k T & Ag/Bi
b e~ ingt;erflace
‘,’ //» ‘\\‘ \\‘# Taamess—— Bi
1‘ R\\ /)// 'lc‘

FIGURE 1.11: Electronic structure of interfacial Rashba states and principle of
experiments. (a) Typical spin-split dispersion curves of a Rashba 2DEG for ag > 0
(adapted from Nechaev et al. [96]) and (b) typical Fermi contours. An electron
flow (that is, a shift of the Fermi contour in the direction of the flow) automatically
induces a nonzero spin density or Rashba Edelstein effect (REE). Inversely, a nonzero
spin density generated by spin injection induces an electron flow or Inverse Rashba
Edelstein effect (IREE)!. (¢) Scheme of the NiFe/Ag/Bi samples under resonance.
The radio frequency (RF) field is along y, and the DC field along x; Js is the vertical
DC spin current injected into the Ag/Bi interface states (back flow included), and
converted into a horizontal DC charge current /- by the IREE. In an open circuit
situation /¢ is balanced by the current associated to the DC voltage V. Taken from
Ref.[97].

IWe will use the terminologies "Rashba Edelstein" and "Inverse Rashba Edelstein" effects later in the thesis but one has to
note here that these effects seem to have previously discovered by other authors, but having more complicated last names, a
common author is Lyanda-Geller, [98, 99]. The inverse effect was studied even earlier [100].
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Structure inversion asymmetry

In a heterostructure such as quantum well or semiconductor barrier, an external or internal electric field may
break the space inversion symmetry [101, 102] resulting in the Bychlov-Rashba spin-orbit interaction which
is proportional to the average of the sum of the external and internal field [103]. Moreover, the confinement
potential is described in the first order, by an electric field E. Thus, similarly to the BIA, the contribution
of the SIA to the Hamiltonian in 1.43 can be considered as an effective field, which can be expressed in the
lowest order in k and E like [44, 104]

2
Qpr(k) = %k x E (1.49)

where g is a material parameter (g = 5.2¢A2 for GaAs [44]). Typically, the electric field and the material

parameters are averaged over barrier and quantum well, if E = (0,0, E;) and we put @ = {aoE;) to find:
a
Qpr(k) = - [ky, —kx.0] (1.50)

This gives a spin splitting in the conduction band AEgr = ak| which is linear in k| = (kx, ky,0) and E; for
small k). The Rashba field 1.49 does not depend on the growth direction of the heterostructure. It is always
oriented in the plane and along the direction orthogonal to the electron in plane wavevector. When k|
becomes large, the parabolic approximation of the band structure does not hold anymore, and consequently,

the spin splitting converges towards a constant [104],

Spin Hall phenomena via spin-orbit interaction in semiconduc-

tors

The Spin Hall Effect, which is a member of the Hall family (see figure 1.12), was predicted by M. L.
Dyakonov and V. I. Perel in 1971 [105] and was observed in semiconductors in 2004 by using Kerr notation
microscopy technique [106, 107]. This effect consists in the appearance of a spin accumulation on the
lateral surfaces of an electric current-carrying sample, the signs of the spin directions being on the opposite
boundaries. Therefore, an electrical current flowing through a sample may lead to a spin transport along
the direction perpendicular direction as well as a spin accumulation at lateral boundaries. These purely
electrical mechanisms do not require neither external magnetic field nor ferromagnets and can be observed
in materials with strong spin-orbit as the SO coupling acts like an effective magnetic field on the spin of
the electrons. Eventually, SHE gives us the way to generate a spin accumulation like a source of pure spin

currents needed for spin injection.

Spin Hall effects

The spin Hall effect originates from the spin-orbit interaction which couples the electron spin to the orbital
motion [109]. The origin of the SHE is classified as:

& Intrinsic if SO effects on the wavefunctions of the conducting band are predominant.

& Extrinsic if SO effects originates from the scattering potential of impurities or defects.

In a nonmagnetic conductor, the SOI generates a pure spin current Jyp;;, which is orthogonal to the
charge current J¢pqrge. The conversion efficiency of the charge current density into spin current density is

characterized by the spin Hall angle 65y g given by:

Jspin

OsHE = (1.51)

Jchurge
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(a) Hall (1879) l (b)AHE(1881).J (c) SHE (2004 l
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FIGURE 1.12: Members of the Hall family: (a) Hall effect. (b) Anomalous Hall
effect. (c) Spin Hall effect. (d) Quantum Hall effect. (¢) Quantum Anomalous Hall
effect. (f) Quantum Spin Hall effect. Numbers in parentheses indicate the years
of each discovery. H is the external magnetic field, M is the intrinsic spontaneous
magnetization, and S denotes spin. Taken from Ref.[108].

The use of SHE, eventually, leads to the development of experiments and concepts involving the switching
of magnetization in ferromagnetic materials via spin-transfer torque or spin-orbit torque [110], spin torque

ferromagnetic resonance [111] and the SHE transistors [112].
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FIGURE 1.13: (a) Charge-current-induced Spin Hall effect (SHE) in which the charge
current j,along the x-direction induces the spin current 7 in the y-direction with
the polarization parallel to the z-axis. (b) Inverse Spin Hall effect (ISHE) in which
the spin current j flowing along the x-direction with the polarization parallel to the
z-axis induces the charge current j gl in the y-direction, taken from Ref.[113].

Inverse Spin Hall effects and Tunneling Anomalous Hall Effects

The inverse spin-Hall effect (ISHE), displaying in figure 1.13a, qualifies the mechanism reciprocal to the

SHE in which a pure spin current can be converted into a charge current and a charge accumulation. The
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ISHE is caused by the bending of electron orbits of up and down spins into opposite directions normal to
their group velocity, owing to the spin-orbit interactions [114, 115].

Furthermore, the interplay of SOI and exchange interactions at interfaces and tunnel junctions may
result in a large difference of transmission for carriers, depending on the sign of their incident in-plane
wavevector: this leads to interfacial skew-tunneling effects that are referred to as anomalous tunnel Hall
effect (ATHE) [12, 57] or tunnel anomalous Hall effect (TAHE) [11] which allows one to convert pure spin
currents to charge currents as well. Anomalous Tunnel Hall effect based on ferromagnetic semiconductors

is one of the main focus of this work and will be discussed in detail in Chapter 5.

Generation of spin polarization for spin injection into a semi-

conductor

In conventional (non-magnetic) semiconductors, spin up and spin down populations are balanced, macro-
scopically since they are randomly oriented. Finding an effective manner to generate a spin imbalance has

been a great challenge in the spintronics and semiconductor community.

Spin injection

Zeeman splittin -J
P 9 o from a ferromagnet

Spins

Circularly hv
polarised ’\/\N\ﬁ & Magnetic field
/ licati
photoexcitation ? application

i
i

Thermal gradient & 6*& Electric field

introduction i application

FIGURE 1.14: Techniques to generate spin-polarized electrons in a non-magnetic
medium. Taken from [116].

A common way to proceed is an electrical spin injection from a ferromagnetic electrode or via optical
pumping with a circularly polarized light source (laser). There are also other ways to create a spin imbalance
based on the Spin Seebeck effect [117], where the spin imbalance arises due to the generation of a thermal
gradient, or the spin Hall effect [109], where an electrical current driven through a material with a strong

spin orbit interaction yields a spin imbalance at the edges of the conducting channel (see section 1.4).

Electrical injection

The electrical injection is well known for a wide application in spintronics devices because of its ability

for integrating in the compact devices. This method has already been realized experimentally by Clark
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and Feher [118], who drove a direct current through a sample of InSb inthe presence of a constant applied
magnetic field. Then, Aronov [119, 120], and Aronov and Pikus [121] established several key concepts in
electrical spin injection giving the way to inject a spin polarization from a ferromagnet into a semiconductor,
electrically.

In a ferromagnetic material, the exchange interaction causes the spin up and spin down subbands to be
split, yielding the differential density of states at the Fermi energy for the two spin subbands. This leads to
a strong difference in the mobility of the two spin species. The total current through a ferromagnet, thus,
can be described by two independent currents [122, 123] with different mobilities, leading to a net spin

polarization injected into a semiconductor layer [124—128].
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FIGURE 1.15: (a)Electrical spin injection in an epitaxially grown ferromagnetic semi-
conductor heterostructure, based on GaAs.a, Spontaneous magnetization develops be-
low the Curie temperature 7¢ in the ferromagnetic p-type semiconductor (Ga,Mn)As,
depicted by the black arrows in the green layer. Under forward bias, spin-polarized
holes from (Ga,Mn)As and unpolarized electrons from the n-type GaAs substrate are
injected into the (In,Ga)As quantum well (QW, hatched region), through a spacer
layer with thickness d, producing polarized EL. (b) Total electro-luminescence (EL)
intensity of the device (d = 20 nm) under forward bias at temperature 7 = 6 K and
magnetic field H = 1 Oe is shown (black curve) with its corresponding polarization
(red curve). Current / = 1.43 mA. Note that the polarization is largest at the QW
ground state (E = 1.34 eV). The EL and polarization are plotted on semi-log and
linear scales, respectively. Inset, a current-voltage plot characteristic of a 20-nm
spacer layer device. Taken from [129].

However, the conductivity mismatch between a ferromagnetic material and a semiconductor leads to a very
low spin-injection efficiency [130—132]. A solution for this issue is to introduce a spin dependent interface
resistance by using tunnel barriers in which the transmission is proportional to the product of the density
of states on both sides [127, 133]. Thus, the resistivity for majority spin is lower than for minority spin,
leading to a dependence of spin accumulation on the polarization at the tunnel barrier [68, 127, 134, 135].
Various kinds of tunnel barriers have been proposed, such as the "vacuum" tunnel barriers proposed by
Alvaro et al. [136] with an efficiency about 30 %, or Schottky barriers which are naturally formed between
a semiconductor and metal [137-139]. Analyzing degree of the circular polarization of the observed elec-
troluminescence, Hanbicki et al [138] observed the spin efficiency up to 32 % for the Fe/AlGaAs contact.
However, intermixing between a ferromagnetic material and semiconductor layer during growth process
might lead to reduced interface quality, which plays an important role in spin injection. Therefore, the
tunnel barrier which is created by inserting an isolating material between ferromagnetic contact and semi-
conductor may be an alternative solution. Motsynie et al [140] used Al>O3 as insulating material which
shows very high spin injection efficiency even at room temperature: 21 % and 16 % at 80 K and 300 K,
respectively. Beside, a MgO tunnel barriers seem to be very an attractive way for spin injection into a

semiconductor since the spin polarization reaches 57 % at 100 K and 47 % at 290 K, respectively [141].
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Finally, a different approach to solve the conductivity mismatch problem is to use device based on fer-
romagnetic semiconductor/semiconductor like (Ga,Mn)As/GaAs Esaki zener diode structure [142] where
the spin polarization could be achieved up to 80 % [143—146]. This approach has attracted tremendous
attention [67, 143, 147-149] for decades and is one of the mains theoretical focus of this work. For that,
one needs to know the band structure of the involved materials. Typically, a complex band structure needs
to be considered together with the matching conditions of the wavefunction at the interface. Note that the
parallel components of the wavevectors k|| of the electrons are preserved during tunneling process, and in
the case of (Ga,Mn)As/GaAs based structure, only states close to the I'-point with matching k)| are involved
in the tunneling. Sankowski et al. [150] showed that the spin polarization increases as k|| increases and
achieves the maximum value when k) is parallel to the magnetization M. Hence, rising the Mn content and
the doping concentration would increase the spin polarization. However, in contrast, the spin lifetime in the
GaAs decreases for high doping concentration leading to a decrease of spin polarization. Thus, in order to
get high spin polarization, one needs to optimize the parameters to obtain the proper doping concentration.

Optical spin injection

Beside the electrical injection, the optical injection is also widely used for devices because of its simple
design and allowance for a uniform carrier excitation over a large area of active region as well as an ab-
sorption in a broad wavelength region. The physical basis of optical injection is based on the interaction of
light with a semiconductor crystal which may be described through the transition probabilities between two

states given by Fermi’s golden rule [43]:
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FIGURE 1.16: (a) A schematic illustration of the band structure of GaAs and spin-
polarized electrons generated by the absorption of circularly polarized light. (b)
A schematic illustration of the Pt/GaAs hybrid structure. 6 is the in-plane angle
between the incident direction of the illumination and the direction across the two
electrodes attached to the Pt layer; § = 659 is the angle of the light illumination to
the normal axis of the film plane. (c) A schematic illustration of the inverse spin Hall
effect induced by photoexcited pure spin currents in the Pt/GaAs system. Taken from
[151].

2m
WHF?gihqmmWa@—aimm (1.52)
S

where |i) and | f) are the initial and final states and V/; is the perturbation operator. The delta function term
indicates the conservation of energy, where an incident photon creates an electron-hole pair in conduction
and valence bands for fiw > E,. Because the momentum of the photon is small compared to the electron
momentum, then one has k., = k; which implicates a vertical transition in k-space. In the first order, V;;
may be approximated by an electrical dipolar potential, which does not depend on the spin, in the limit of
weak SOI given by:

Vii = d.E = dyEy + dyEy + d.E, (1.53)
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where d is the dipole moment and E is the electric field of the light wave in which the components of the
electric field Ey, Ey, and E, are considered constant as the electric field variations are small compared to the
periodical variation of the lattice potential; the vector dis expressed as a spherical tensor d;. for o* optical
transition. The conservation of angular momentum in interband transitions leads to selection rules applying
for the total angular momentum J = 0, £1 and its projection on the quantization axis my = +1, providing a
way to directly convert a circularly polarized light to spin-polarized carriers. Typically, these selection rules
are satisfied by left o or right o~ circularly polarized photons incident along the quantization axis which

are emitted from a Amj; = —1 transition.
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FIGURE 1.17: Optical selection rules for dipole radiation: (a) In the case of a

bulk active medium, the HH-band and LH-band are degenerated and (b) ae — h

recombination in a quantum well structure , the epitaxial strain and quantum
confinement lift the degeneracy between the HH-band and LH-band.

Figure 1.17 depicts the relative transition probabilities for o* light in a bulk semiconductor and quantum
well active medium at the I'-point where the CB-HH transitions are three times greater than the CB-LH
transition regardless to the active medium. In a bulk semiconductor, the HH and the LH bands are degener-
ated at the I'-point leading to a limitation of the spin polarization injected into devices. The maximum of
the spin polarization can in this case , theoretically, reach about 50 %. Whereas, the spatial confinement in
quantum well may lift the degeneracy of HH and LH bands leading to very high spin polarization efficiency.
Theoretically, 100 % of polarization could be achieved. One has to note that the optical selection rules are
only strictly valid at the I'-point. Moving away from this point may lead to an admixture of HH and LH
yielding reduced net spin polarization. Nevertheless, the optical circular polarization in the active medium
is not immediately converted to a spin polarization since this process is governed by a recombination time
and the depolarization mechanism occurring during the transport which would provide a limit value for the
spin injection efficiency.

In terms of (Ga,Mn)As materials based structures, Endres et al. [152] has demonstrated that an efficient
optical spin injection can be achieved with unpolarized light by illuminating a p-n junction where the p-
type region consists of a (Ga,Mn)As ferromagnet semiconductor (see Fig. 1.18b, c). If one illuminates
a p-n junction based on GaAs (Fig 1.18a) by photons with an energy exceeding the band gap, electron-
hole pairs are generated and will be separated in the built-in electric field of the p-n junction giving rise
to a photo-voltage (photo-current). In a device employing the ferromagnetic semiconductor (Ga,Mn)As on
the p-side, a highly doped n-side will result in a narrow depletion zone and enables tunneling across the
gap. The band bending region of this structure is mostly confined to the n-GaAs because of the heavily
p-doped (Ga,Mn)As. If such a p-n junction is illuminated, the resulting photo-current will mostly consist
of photoexcited electrons from the n-GaAs side and thus only a small fraction of spin-polarized electrons

is created in the (Ga,Mn)As leading to the small spin polarization of the photo-current [152]. The charge
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a p-GaAs n-GaAs

b Spin solar cell c Spin photodiode

(GEWRAS] n-GaAs n-GaAs

FIGURE 1.18: (a) Schematic of an illuminated GaAs p-n junction showing the
conduction and valence band edge Ec- and Ey across the junction. Electron-hole
pairs are separated in the electric field of the space charge region (see grey arrows)
and generate a photo-voltage Vpy . Grey areas indicate occupied states. (b) Working
principle of the spin solar cell (open circuit condition): the light-induced photo-
voltage drives an electron tunneling current (blue arrow) across the gap resulting
in a spin accumulation on the n-GaAs side. Photoexcited electrons are only weakly
polarized. (c) Working principle of the spin photodiode (biased circuit condition): at
reverse bias the width of the tunnel barrier (depletion zone) increases and tunneling
is suppressed. As a consequence, photoexcited electrons from the (Ga,Mn)As, which
are spin-polarized, are drifting to the n-GaAs conduction band and generate an
oppositely oriented spin accumulation. Taken from [152]

accumulation in the n-GaAs leads to a photo-voltage which in turn causes electrons to tunnel across the
narrow barrier into the (Ga,Mn)As. Due to the different tunneling probabilities for spin-up and spin-down
electrons, spins accumulate in the n-GaAs, that is, light-induced spin extraction occurs (Fig 1.18b) that
overcompensates the photo-current-induced spin accumulation [152]. This leads to the central working
principle of spin solar cell in this case: the energy of the incident light is not only converted into a voltage
(current) but also into a spin accumulation [152]. In not too highly n-doped junctions where tunneling
is suppressed in reverse direction leading to another mode of operation, depicted in Fig. 1.18c. When a
negative voltage is applied to the p-side of the junction (reverse bias), this would increase the depletion
width and suppresses tunneling. Photoexcited electrons on the p-side are, due to the spin-dependent density
of states in the valence band, spin-polarized and drift in the electric field of the junction into the conduction
band of n-GaAs. This spin photodiode effect was theoretically predicted in 2001 by Zutié et al. [153, 154]
and also results in a spin accumulation, however, with the spin orientation reversed in comparison to the
spin solar cell effect. Consequently, light-induced spin injection occurs. This spin photodiode effect and its
related phenomenon are under theoretical and experimental efforts in the studies in our group at LSI Ecole
Polytechnique and CNRS Thales as well.
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Spin relaxation mechanisms in semiconductors

Spin relaxation is of great importances for spintronics since a spin polarization in a nonmagnetic material
returns to its thermal equilibrium within the spin lifetime. In the case of III-V semiconductors, one may
expect four mechanisms for spin relaxation of conduction electrons: Elliott-Yafet mechanism; D’yakonov-
Perel’ mechanism; Bir-Aronov-Pikus mechanism; and Hyperfine interaction. The details of these four
mechanisms can be found in Ref. [37]. Here, we just present the main points and consequences of these

mechanisms.

Elliott-Yafet mechanism

In this mechanism, the spin relaxation is induced by the ordinary momentum scattering requiring a spin
orbit interaction to couple the electron spin wavefunction with the lattice wavefunction. The SO coupling

is described by:

n
Vso = m (VVSC X p) N (1.54)

where m is the free-electron mass, Vsc is the scalar periodic lattice potential, p is the linear momentum
operator and o are the Pauli matrices. The Bloch wavefunctions are not the eigenstates of o, but a com-
bination of Pauli spin up | T) and spin down | |) states. In the case of III-V semiconductors, the spin

relaxation of conduction electron with energy Ej, is characterized by a spin lifetime 7, (Ey ) given by [37]

2 2
1 A E, 1
=A( 50 ) (_k) 1 (1.55)
75 (Ex) Eg +Aso Eg Tp (Ex)

where 1, (Ey) is the momentum scattering time at energy (Ex), E, is the energy gap, and Ago is the spin-

orbit splitting of the valence band. The coefficient A depends on the dominant scattering mechanism.

q Spin-flip

FIGURE 1.19: Schematic of Elliott-Yafet mechanism: relaxation by diffusion on
impurities or phonons.

Equantion 1.55 implicates that the Elliott-Yafet mechanism is important for small-gap semiconductor
with large SO interaction. For a degenerate semiconductor, E = Ey whereas for a nondegenerate semicon-
ductor E ~ kgT. However, 75 ~ 1, in both cases. Besides, the temperature dependence of 7, and 7, are
similar for degenerate semiconductors, while for a non degenarate semiconductor, one has % ~ TPT—(ZT)

except in the case of scattering by charged impurities: % ~TY2 and T,(T) ~ T3/2 [37].
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D’yakonov-Perel’ mechanism

The D’yakonov-Perel” mechanism is a particular mechanism of spin relaxation of systems lacking inver-
sion symmetry such as the bulk III-V semiconductors or the interfaces between different materials. In these
systems, the two spin up and spin down states are split: Ext # Eg . This splitting can be described by intro-
ducing the intrinsic effective k-dependent field (see section 1.3) which is well known as D’yakonov-Perel’
effective field. The corresponding Hamiltonian describing the precession of electrons in the conduction

band is given by Eq. 1.43 with the Larmor frequency defined in Eq. 1.44.

FIGURE 1.20: Schematic of D’yakonov-Perel’ mechanism: relaxation by spin preces-
sion around the effective k-dependent SO magnetic field as well as by diffusion on
the crystalline network

If we characterize the momentum scattering by momentum relaxation time 7, and put €, as the aver-
age magnitude of Larmor frequency, then one may consider two limiting cases:

& 7,Q4, > 1: In this limit, the spin dephasing rate is proportional to the bandwidth AQ of the Larmor
frequencies such that T% ~ —AQ leading to 7, ~ 7, [37].

& 7,Q4, < 1Lt InA this case, one has T% = Q‘ZWT,,, or in other word, the spin lifetime is inversely
proportional to the momentum relaxtion timé[37].

In comparision with the Elliott-Yafet mechanism, one observes that the relation of the dephasing rate to
the momentum scattering time is opposite. Additionally, in the Elliott- Yafet mechanism the relaxation takes
place during the scattering event, whereas in the D’yakonov-Perel’ mechanism, the relaxation is between

the scattering events.

Bir-Aronov-Pikus mechanism

The electron-hole exchange scattering, which was first shown by Bir et al. in 1975, may also cause spin
relaxation [155, 156]. This mechanism is very important, typically for p-doped semiconductors at low
temperature. The exchange interaction between electrons and holes is given by the following Hamiltonian
[37]:

HBAP = AxS.Jhé(r) (156)

where Ay is proportional to the matrix element of the Coulomb exchange interaction between conduction
and valence band states. S is the electron spin operator and J, is the operator of the total angular momentum

of the hole, 6(r) depicts the relative position of the electron and hole.
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FIGURE 1.21: Schematic of Bir-Aronov-Pikus mechanism: Electron-Hole exchange
interaction leading to fast spin relaxation through Elliot-Yafet mechanism

optoelectronics

This exchange interaction acts like an effective magnetic field and entails a spin exchange during the
scattering process. Consequently, the long range interaction provides the spin-flip since the SOI induces
the splitting of the valence band. The spin-flip scattering probability, thus, depends mainly on the states of
holes, then, results in the spin relaxation.

For a non degenerate hole system, the spin relaxation resulting from Bir-Aronov-Pikus mechanism is
given by [37, 103, 156]:

1 2 3Vk | P 4 SNg-P
— N — | (0)|]" + = 1.57
= S Nady | WO+ S (1.57)
where N, is the density of acceptor, ag = Czij the exciton Bohr radius, m,. is the effective mass of electron
2
in the conduction band, p is the density of free holes, 7y is an exchange splitting parameter: % = 2—2 if;‘
(with Ep = 3 h2a2 is the Bohr exciton energy and A,y is the exchange splitting of the excitonic ground
mMedp
state), and vg = mch—aB; [(0)|? is the Sommerfeld’s factor, which enhances the free hole contribution and
is given by:
2 27T 27T -1
ly(0)* = — 1-exp — (1.58)

for an unscreened Coulomb potential, where x = g—'; (J¢(0)|?> = 1 for a completely screened potential)
For a degenerate hole system, the spin dephasing rate is given by [37, 103]
1 3 3 <Vk> k BT
7 - A LAl (1.59)
% 1o B g Erp
where Epy, is the hole Fermi energy and |(0)|? = 1 for degenerate holes. Note that Bir-Aronov-Pikus
mechanism dominates in n-doped 2D heterostructures with optical spin injection [157, 158] where the Bir-
Aronov-Pikus dephasing rate is proportional to the hole density which is proportional to the laser intensity

in the case of optical spin injection.

Hyperfine interaction

The hyperfine interaction comes from the exchange interaction between the spin of electrons and nuclear
spin of atoms in the crystalline lattice where the total nuclear spin is non-zero S, # O [37]. The effective

Hamiltonian for the hyperfine interaction is given by [37]:

81 u
H = ?4—5'0/13 Z Tyn,iS-Ii6 (r — Ri) (1.60)
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where pg is the vacuum permeability, go = 2.0023 is the free electron g factor, up is the Bohr magneton, i is
the label for nuclei at positions R;, S and I; are electron and nuclear spin operators, respectively, expressed
in the units of 7, and vy, ; is the nuclear gyromagnetic ratio. The Hamiltonian 1.60 implicates that the spin
of an electron experiences an effective magnetic field, which is generated by the hyperfine interaction, given
by [37]

20 8o
n= TE/J Zhyn’lSIlé(r _Ri) (161)
__ — —

FIGURE 1.22: Schematic of Hyperfine interaction mechanism: Electron-Nucleus
exchange interaction.

Commonly in semiconductors, the influence of the hyperfine interaction on the global spin relaxation
is small compared to the impact of mechanisms originating from SO like Elliott-Yafet mechanism or
D’yakonov-Perel” mechanism. However, its contribution may become significant when the nucleus po-

larization increases in case of optical pumping.

36



CHAPTER

O, and T; semiconductors: The electronic band struc-

ture
Contents
2.1 Density Functional Theory (DFT) . . . . .« v v v i v i i ittt et e oo e 40
2.2 The tight-binding method [175] . . . . . . . . . . oo i i i i vt oo 43
2.3 Thek.pmethods [29, 163] . . . . .« ot i i i i ittt i et e e e et 44
2.3.1 Schrodinger equation and Bloch theorem. General views of k.p method . . . 45
2.3.2 k.p Hamiltonian for Oy, and 7; semiconductors . . . . ... ... ...... 48
2.4 Evanescent states and spurious states elimination in the framework of the
multiband k.p method (14,30, and40bands) . . . . ... ... ... ...... 52
2.4.1 Simple example of 2-band toy model without spin: . . .. .......... 52
2.4.2 Method of spurious states elimination in multiband k.p method . . . . . . . 53
2.4.3 Evanescentstates . . . . . . . . ..ttt u i e 64

2.5 The envelope function approximation and Burt-Foreman Approach [179] . . . 66

2.5.1 Envelope function approximation (EFA) [212]: . . . ... ... ... .... 67
2.5.2 Burt-Foreman Theory [213-215]: . . . . . . . . .. oo i v i i i 67
2.5.3 KineticEnergy: . . . . . . . . e e 68
2.5.4 Potential energy: . . . . . . . ... e e e 69
2.5.5 Envelope function equation and effective Hamiltonian: . . . . ... ... .. 69

2.6 Effective Hamiltonian in the k.p framework involving spin-orbit interactions
(relation to the envelope function approximation (EFA)). . ........... 70

2.6.1 The effective Hamiltonian in the conduction band of T; symmetry group

semiconductors . . . . . ... 70

2.6.2 The effective Hamiltonian in the valence band [29] . . . . . . ... ... .. 75

2.7 Exchange interactions and strainfield. . ... ................... 80
2.7.1 Exchangeinteractions . . . . . ... . ... ... 80
2.7.2 Description of the strain field [224] . . . . . . ... ... ... ... .. ... 81

2.8 Density of statesand Fermienergy . .. ... ... ... ..., 84
2.8.1 Density of states . . . . . . . i i e e e e e e e e 84
2.82 Fermilevel . .. ... .. . ... .. 84







Chapter 2. Oy, and T, semiconductors: The electronic band structure

Calculating the electronic structure and band dispersion of a single and many body systems (multilay-
ers) is a very complex task which still requires modern computer hardware. Commonly, material science

computational methods for the band structure calculation fall into two general approaches [53]:

N
e
N

(a)

Energy (eV)
Energy (eV)

Wave vector DOS (1/eV em’) %1022

FIGURE 2.1: (a) Band structure of GaAs (belongs to 7; group) calculated in frame-

work of 30-band k.p model. The energy at the top of the filled valance bands has

been taken to be zero. (b) Density of states (DOS) calculated with native 30-band

k.p method and 38-band (30 bands + 8 ghost-bands detailed hereafter) which shows

that the ghost-band weakly affects the DOS which is in good agreement with the

experimental results and numerical results, calculated by Density Functional Theory
in Ref.[46].

& The first approach involves ab-initio methods, such as Density Functional Theory (DFT) or Hartree-
Fock method from first principle techniques without the need of empirical parameters except in a LSDA +
U approach [159].

& The second approach, less consuming, consists of far more computationally efficient semi-empirical
methods such as the empirical pseudopotential method (EPM) [160, 161], Tight-binding (TB) and the k.p
method, according to which energy band structure is obtained from a set of parameters: the energy gaps at
I' point, the momentum matrix elements and the strength of the spin-orbit (SO) coupling. The number of
energy bands (or levels) effectively implemented is related to the precision chosen for the results.

In the present work, our main focus is to develop a multiband k.p framework to describe the electronic
structure within the Brillouin zone (BZ) of semiconductors and related heterostructures. It consists in
applying a perturbation approach from the unique knowledge of those parameters at the I' point.

We first describe the main issues of DFT fundamentals before discussing the semi-empirical tight-

binding and k.p schemes. The k.p method is largely employed in this work and manuscript.

Description of the k.p method First, we start with the description of the k.p method and obtain
the k.p equation for the envelope function by using the Bloch theorem. We then discuss the way how to
build k.p Hamiltonians for Oy, and T; semiconductors from the point of view of symmetry using Linear
Combination of Atomic Orbital (LCAO) and Tight-Binding (TB) principle. To exactly match the true
band structure, one has to work with an infinite basis set (infinite dimensional Hamiltonian) which has
to be restricted to a finite number of bands: 2-band effective model may be employed to describe the
conduction states near the I point whereas a 6-band Luttinger model may describe the valence band of
p-symmetry in an effective Hamiltonian approach using the Luttinger parameters [162]. Furthermore, a

8-band k.p model is needed to describe the coupling between the conduction and valence bands, whereas
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a 14-band k.p model becomes mandatory to property describe spin-orbit interactions (SOI) coupled to the
absence of inversion symmetry involving Dresselhaus terms [94]. Beyond, a 30-band k.p or 40-band k.p
is mandatory to describe the spin injection properties in the full BZ, as required for an indirect band gap
group IV semiconductors like Si, Ge, and their compounds alloys and related heterostructures. These finite
multiband Hamiltonians are detailed in this chapter and Appendix A.

However, the price to pay for such simplification within finite dimensional basis like pointed out in Ref.
[163], is that spurious or unphysical states emerge at large wave vectors as a consequence of the truncation
of the remote bands necessary to recover the Bloch periodicity. These states are unphysical and have to
be removed in the electronic structure to restore the relevant physical properties. We suggest here a new
method based on an extension to Kolokolov’s proposal [164] and called "Ghost band" method. We will
show that this novel method is very robust and can be adapted to very wide cases, from 8-band up to, at
least, 40 band k.p Hamiltonian.

Finally, we review some detail on the effective Hamiltonian for both CB and VB (conduction and va-
lence bands) by including SOI and the effect of exchange interactions within possible strain field accounted

for the framework of k.p theory before investigating the main transport properties.

vl Density Functional Theory (DFT)

We give here some insight about the Density Functional Theory (DFT) technique which is a powerful
technique to solve many-body problems in solid state physics by reducing the complexity to an effective
single-particle equations. The advantage of DFT is that, unlike the k.p method, it represents an ab initio
technique without any further needed input than atomic parameters (and positions) which makes it straight-
forwardly applicable to many systems with high predictivity. The representation of the a priori unknown
exchange-correlation functional, described hereafter, has been improved from the local density via the gen-
eralized gradient approximation to more sophisticated functions allowing for an accurate description of

strongly correlated systems [165, 166].

Born-Oppenheimer approximation

In detail, the general free Schrodinger Hamiltonian describing the full interactions of the electronic system,
which constitutes a complex many-body problem, cannot, generally, be solved numerically nor analytically.
In this case, the well-known Born-Oppenheimer approximation makes an important simplification. Here,
the assumption is that the motion of atomic nuclei and electrons in a molecule can be treated separately.
Accordingly, the nuclei coordinates are fixed within the Born-Oppenheimer approximation and the Hamil-

tonian is solved for that particular set of atomic positions.

Hohenberg-Kohn theorems

The basic idea of DFT has been developed in the 1960 by Hohenberg and Kohn [167]. They proved for
a system with a non-degenerate groundstate that the potential and therefore the Hamiltonian is a unique
functional of the electron density n(r) alone. A generalized proof was given by Levy [168]. This yields the
famous Hohenberg-Kohn theorem:

& All ground state properties of a given many-body system are unique functionals of the electron density
n(r).

& The total energy functional E[n] underlies the variational principle:

O0E[n] _
on(ry _* 2.1)
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where u is a Lagrange-multiplicator and that will correspond to the Femi level, consuming the particle

conversation

N — /n(r)dr =0 (2.2)

and where the ground state density no minimizes the energy functional:
E[n] = E[no] = Eo (2.3)

Kohn-Sham equation

The basic idea of Kohn and Sham [169] is to represent an interacting system by a non-interacting system
with the same electron density to obtain a good approximation for the contribution of the kinetic energy to

the energy functional E[n]. The functional E[n] 2.3 then can be split into several parts and written as [170]:
n(ryn(r)’
E[n] = Ty[n] + / / drdr’% + Exc[n] + / drn(r)Vex(r) (2.4)
r—-r

where n(r) is the electron density, V,,; is the external potential, and Ty[n] describes the kinetic energy of a
system of non-interacting particles with the same electron density. The second term denotes the Coulomb
interaction of the electrons in the Hartree approximation and E, is the exchange correlation energy arising

due to the exchange and correlation effects of the electron density itself.
For the following discussion it is intuitive to introduce a wave-function representation. Then the electron

density can be expressed by:

N
n(r) = ) lgi(r)? 2.5)
i=1

where the summation extends over the N orbitals with the lowest eigenvalues. The functional for the kinetic

energy Tp reads in that basis:

N
nnl =) [ Voi0vaiwar 2.6)
i=1

The next important step is to apply the variational principle, which is stated in the Hohenberg-Kohn

theorems, to the energy functional 2.4 under the Lagrange constraint that the normalization of the wave-

Z € ( / ¢ (r)ei(r)dr — 1) 2.7)

where ¢ are the Lagrange-parameters. The variation of the energy functional E[n] then yields the pseudo

function ¢; is conserved:

Schrédinger equation according to:

(<92 + Vegslnl) 91 = 2.8)

The effective potential V, sy covers all previously discussed contributions to the energy and reads:

n(r’ , OExc[n
Verrlnl = / —r,(_ )r dr’ + Ve (r) + ;;[ ] (2.9)
and the determination of the kinetic energy Tp:
N
To[n] = ) & - / Ve o[n'In(r)dr (2.10)
i=1
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where V/ oF is the effective potential for a trial electron density n’. The total energy functional then reads:

Ze, [Visomer s [Veomr+ [ [EOR b @i

where the first term accounts the single-particle contribution.
It is worth to point out that the eigenvectors ¢; of the Kohn-Sham equation 2.8 have to be obtained

self-consistently as the effective potential is a functional of the density itself.

Spin-density functional theory

For the purpose of incorporating magnetic effects, DFT has to be generalized for two spin channels. Going
a step beyond the Hohenberg-Kohn approach, independently Hedin [166] and Pant and Rajagopal [171]
extended the method by including spin-dependent electron densities or alternatively a magnetization density
m(r) and generalized the Hohenberg-Kohn theorem to the spin-polarized case. Within the later notation the

variational principle becomes:
E[n(r),m(r)] = E[no(r),mo(r)] = Eo (2.12)
where the electron and magnetization density are defined by:

n(r) = n'(r) + nt(r) (2.13)
m(r) = n'(r) - n*(r) (2.14)

where 1 and n! are spin up and spin down densities, respectively.

In general, the two-component Pauli spinors or the spin-density matrix p, g as originally proposed
[166, 171] are used to derive the spin-dependent Kohn-Sham equations. Analogously the derivations of
the Kohn and Sham for DFT [169], the basic equations of SDFT turn out to be effective single-particle

Pauli-Schrodinger equations:

{ v2 +Veff[n m]}¢ = ¢ ¢7 (2.15)

where the two components ¢ are coupled to each other and optionally to an external magnetic field, which
can enter the effective potential V.s¢. It is important to note that we did not take into account here any

possible non-collinearity or relativistic effects like spin-orbit coupling.

Exchange-interaction potential.

The most important approaches to find accurate approximations to the exchange-correlation potential are
the local-density approximation (LDA) and the generalized gradient approximation (GGA).

In the LDA - or, in the spin-polarized case, local spin density approximation (LSDA) - the function
ELDA i5 assumed to be locally approximated by the exchange-correlation energy of a homogeneous electron
gas of the density n(r) [172]. This procedure is similar to the Thomas-Fermi-approximation for the kinetic
energy of an inhomogeneous electron system. Integrating the locally defined function of spin dependent

electron densities over then whole space yields the total exchange-correlation energy according to:

EEPny(r),ny(r)] = / [erom(np(r),ny(r)) + €™ (ny(r),ny (r))] dr (2.16)

While the exchange energy €™ is known exactly for the homogeneous electron liquid, developing a

hom

parametrization of the correlation energy €,°™ is a highly non-trivial problem.
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Due to the fact that any real system has a spatially varying electron density, the LSDA approach can be
improved by considering gradient corrections to give

ES5Any(r)n, ()] = / () y(F), Ve (), Yy (r)dr 2.17)

There are many different ways to construct the function f, one of the most reliable ones has been
developed by Perdew et al. [173]. Besides this most commonly used LDA and GGA functionals, part of
the additional correlation effects can be described within the LDA + U - approach [174].

The tight-binding method [175]

We are now going to review the general procedure of the Tight-Binding (TB) method. The ideas of TB
are closely related to the Linear Combination of Atomic Orbitals (LCAO) method which is based on the
superposition of wavefunctions of isolated atoms located at each atom site in the lattice. If we assume that
V (r) is the periodic potential which is formed by the atoms in the lattice, then in the framework of TB
method, V (r) may be written as a sum of atomic potentials at each site and the potentials from neighbors
[46, 76, 176]:

V()= ZU(r—Rm)+ZU(r -R) (2.18)

l#m

here, U(r — R,,) is the atomic potential at r contributed by an atom which is located at R,, and
D=m U(r — Ry) is the potential from its neighbors which is considered as perturbative potential.

The Schrodinger equation for an electron in the crystal is given by:

2
[—h—vz + vm] v (r) = Ev(r) (2.19)
2m

Substituting 2.18 to 2.19 one may re-write Eq.2.19 in terms of:

U (r)=Ey(r) (2.20)

[-%Vz + zm: U(r —Ry) + Z U(r - Ry)

l+m

Equation 2.19 gives rise a meaning that the electron at each side feels not only the atomic potential

at the same side but also the potential from its neighbors which is given by the perturbative potential

Zl;&m U(r - Rl)
Let us now assume that the solutions for the Schrédinger equation of the free atoms that form the crystal:

2
[-h—vz + U(r)] xi (r) = E;x: (r) (2.21)
2m

are known, where U (r) is the atomic potential of a free atom and y; (r) is the eigentstate of an electron in
the atomic energy level E;.

If there are a atoms in the primitive cell and their coordinates are given by:
R, + 1y (2.22)

where r,, represents the position of one atom inside the primitive cell. Then Eq.2.20 or Eq.2.19 may admit

a solution in the form of linear combination of Bloch function which can be constructed as [176]:

N a
Yok (r) = \/Lﬁ D e Ry (r = Ry = 7a) (2.23)

n=1a=1
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where N is the number of primitive cells in the crystal, k is the wavevector within the first Brillouin zone
whose values are determined by the periodic boundary conditions. However, the atomic orbitals y/;(r)
on different atomic sites are not orthogonal to one another. Thus, Lowdin et al. [177] has proposed an
orthogonal set which is obtained from this nonorthogonal one in Eq.2.23 in such a way it preserves the
symmetry properties of the original set. The relation between Lowdin functions and 2.23 functions is given
by the transformation [176]:

fur=Ri=ra)= > S} p X (2.24)

iR
where S is the overlap matrix which has a greater extent in space than the atomic orbitals, implying that
the Hamiltonian matrix will have elements significantly different from zero between atoms that are second
or third nearest neighbors. The orthogonal basis set for building TB Hamiltonian can then be formed from

these Lowdin functions as:

1 ik.R,,
D, = \/—N;;e” for =R —T) (2.25)

The wavefunction of an electron in crystal can be written in terms of basis set 2.25 as:

LPm,k = Z Cmnq)n,k (2.26)

m

Note that, the matrix elements of the TB Hamiltonian built from the Lowdin functions are not the same as
the atomic energies. However, this is not important since after all, the tight-binding Hamiltonian is formed
in a parametrization scheme. Using the Lowdin functions to replace the atomic orbitals, the orthogonality
properties are fullfilled. Therefore, substituting Eq.2.26 and Eq.2.25 to Eq.2.19, multiplying by ¥; from

the left and integrating over space, gives the coupled equations for the expansion coefficients ¢, , as:

Z (Hmn,m’n’ - E(k)(smm’érm’) Cm’,n’(k) =0 (2.27)
where:
1 i(Rm—R,y)
o = 57 Z e Bm=Ru!) [ (p — R = r)HF(r = Ry — 1)dr (2.28)
m,m’

The Hyun nyn depend on the overlap integral of the Lowdin functions on the different sites which up to
the nearest neighbors is good enough to give satisfactory results for some cases, but sometime one has to

include the next nearest neighbors also to get more accurate results.

The k.p methods [29, 163]

In 1970, Bir and Pikus [29, 178, 179] observed an interesting result that, first of all, only the neighborhoods
of the band extrema are important for the semiconductors because their electronic properties like transport
are governed by the shape of the extrema of the various energy band. Second, the qualitative physics
should be governed by the shape of those energy surface which means that a property should be readily
obtainable from symmetry arguments. The first observation has led to the common view of the k.p scheme
as a perturbation theory which was developed by Dresselhaus et al. [89] and Kane [180]. The second
observation has manifested itself through the power of symmetry analysis like in the method of invariants
introduced by Luttinger [162]. In fact, one can treat well beyond the neighborhood of band extrema which
was already demonstrated by Cardona and Pollak in 1966 [181]. In this work, they obtained realistic band
structure for Si and Ge using a full-zone k.p theory. However, due to the fact that the k.p method is a
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consequence of basic equations of quantum mechanic, therefore in the following, we will review the general
case of an electron in a crystal which is described by a Schrodinger equation admitting Bloch solutions to

get the general equation for the k.p method.

Schrodinger equation and Bloch theorem. General views of k.p method

Starting with the Schrodinger equation for one electron in the crystal’s structure involving spin-orbit inter-

actions 1.10 one has:

HY = EY¥Y (2.29)
where the Hamiltonian H writes:
p* gh
H=—+V(r)+ (VV(r)x p)o (2.30)
2mg 4c2mg

here V(r) represents the periodic potential within the crystal, mg is the effective mass of electron in the

crystal, p is the momentum operator, o the Pauli operator, and g the Lande factor.
V(r)=V(r +Rj) (2.31)

for a set of translation vectors {R;} of the lattice.

Note that, concerning the tunneling issue (elastic process) within an inhomogeneous heterostructure,
in order to construct the overall heterostructure wavefunction, one has to match, at interfaces, the states
of different symmetry at the same elastic energy E and same component of wavefunction parallel to the
interface k|| [163]. Therefore, it is necessary to calculate the different eigenstates in the bulk materials for
fixed E and k||. Possible values of the wave vector perpendicular to the interfaces k ,, are generally found.
For convenience of notation, throughout the manuscript, we will use the symbol k, to refer to the normal
component of the wave vector and the symbol k to refer to a three dimensional wave vector.

Complex values of k, corresponding to evanescent states, are also possible. We will refer to this issue as
the generalized "complex band-structure problem". To solve this problem, a basis set {®, x(r)} is chosen,

and the solutions of the equation 2.29 are sought by expanding in terms of the basis set according to [163]:

Wk = ) Con®ni (2.32)
n

For the usual band structure determination, wavevectors are generally fixed, the energies E and wave-
functions ¥, x are found via a diagonalisation procedure. This problem leads to the usual form of an
eigenvalue equation. In the complex band structure problem, given E and k)|, different values of k, and
wavefunctions ¥, x are found. This problem does not immediately lead to the usual form of an eigenvalue
equation depending on the form of the matrix elements:

ﬁnn’(k) = <¢)n,k|H|q)n’,k> (233)

However, it may be possible to cast 2.29 into a form of an eigenvalue equation. It becomes mandatory
to build a numerically efficient method to solve the complex band structure problem. Let us consider three
possible forms for the basis set [163].

(1) The plane wave basis :
(I)Gk = \/—$€[i<k+c)r] (234)
(2) The basis of Bloch functions :
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1 .
D x = \/—Ne“"")wn,k(r) (2.35)

(3) The basis of Tight — binding functions
1 .
q)n,k — e(lk'Rf)fn(r - R_] - ra) (2.36)

Here <V is the sample volume, N the number of unit cells, G is a reciprocal lattice vector, and ¥, i is a
Bloch function; r, specifies an atomic position within the unit cell (j is the unit cell index), f,, is a local

function centered at the atom located at r,,. The tight-binding basis functions posses the property:
Dp 4 = Ok (2.37)

unlike the plane waves and Bloch function basis functions. Using a tight binding basis, the individual
Hamiltonian matrix elements satisfy
ﬁnn’(k + G) = ﬁnn’(k) (2.38)

unlike plane waves and Bloch function basis. Using plane waves and Bloch function basis, the infinite
dimensional matrices H(k + G) and H(k) are related by a unitary transformation [163]. Using a plane
wave basis, H(k + G) is related to H(k) by relabeling rows and columns. Thus the infinite dimensional
matrices H(k + G) satisfy translation property invariance in all three basis sets. However, once the basis
sets are truncated, H(k + G) and H(k) become no longer equivalent, unlike the tight-binding basis because
each individual matrix element satisfies here Eq. 2.38. As a result, in the last case using a truncated
tight-binding basis, the solutions will be still periodic,

lPn,k+G = lIIn,k (2.39)

unlike truncated plane wave and Bloch function bases. For the usual band structure issue, this lack of
periodicity is not a major problem. The mesh in k—values is fixed in the first Brillouin zone whereas enough
basis functions are chosen for eigenfunctions so that eigenenergies be accurately determined in the energy
range of interest. For the complex band structure problem, the lack of periodicity causes major difficulties.
In principle, solutions in which k, takes a value such that k(= [k}, k;]) lies outside the Brillouin zone map
onto an equivalent solution inside of Brillouin zone. However, because of the lack of the periodicity, such
mapping does not occur in the truncated plane wave and Bloch function bases. As a result, out-of-zone
spurious solutions occur in the complex band structure calculations. Those spurious solutions have caused
considerable confusion in the application of pseudopotential and k.p methods (based on plane waves and
Bloch functions bases respectively), applied to superlattice and interface problems [163]. Similar difficulties
occur when one uses other basis sets that do not satisfy 2.37 and whose Hamiltonian matrix elements
therefore do not satisfy 2.38. Solving the equation 2.29 with the Bloch functions basis set 2.35, after

several transformations, Eq.2.29 becomes:

L B2 2
Hse + k2 + —kop + —5— (VV X k) 0 | 4k (r) = Enghnac(r) (2.40)
mg 4mgc?
where k2 = %kz and
0 p2
Hsc=——+V vV . 2.41
SC= oma T +4m2C2( Xp).o (2.41)

0
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Besides, as pointed out in a work of Kane et al. in Ref. [182], we may neglect the term % (VV xk).o
4mge
on the left hand of Eq.2.40 since it turns out to be very small in the far interior of the atom where most of

the spin-orbit interaction occurs in Ty group [182]. Afterward, we obtain Eq.2.40 in the form:

v K2
Hsc + k* + m_o’”’ Ynk(r) = En gt i (r) (2.42)

Note: When k — O then Hy , — Hgc where Hy, = Hsc + k2 + ’%k.p, so we can consider
the term k2 + Z—zok.p as the perturbed term of Hy p in the vicinity of the point k = 0. For a number
of semiconductor materials, the extreme point is located at the I point or the center of Brillouin zone
corresponding to k = 0. Furthermore, the group of the I" point corresponds to the point group of the crystal.
By analyzing the symmetry of the wave function at the I" point in framework of LCAO, we can derive the
suited basis function i, ;. to construct the Hamiltonian H , (we will discuss in detail in the next section).

Assuming that the functions ¥, x(r) at k = O are well known and denoting ¥, = ¥y, k=0(r) as well
as the energies E,, = E,, k=0, one obtains Hsc{,, = En¥m. The functions ¥, x(r) with k # O can be
expanded onto the basis ¥, as:

Yn k() = D C (2.43)

Then the equation 2.42 can be re-written as:

vy H?
Hgc + kz + —k.p]
mo

D C::fkwm) = Enk
m

In an ideal case, the dimension of the basis set {¢/,, } is infinite and the Hamiltonian Hgc together with its

Z cn ¢m) (2.44)

eigenfunctions satisfy the periodicity properties of the crystal. It results that one can restrict ourself to the
resolution of 2.44 to the unit cell region only. We multiply both sides of 2.44 by ,; and integrate over the
unit cell using the following orthonormality properties 55 YbmdV = (Yn|¥m) = On.m- We thus obtain the

equation determining the C}", coefficients according to:

; [(w

which corresponds to the secular equation to solve.

h v
Hge + m—ok.P lﬂm> + kz(sn,m —Ewk0nm C,Tk =0 (2.45)

Note that the sum in 2.45 is generally infinite so that an infinite set of equations has to be fulfilled for
the determination of ¥, x(r) in 2.43. It results that the energies E for every bands are the solution of the
following secular equation:

det[H-EI]=0 (2.46)

where I is the identity matrix and the matrix elements of H are determined by:

— h v
Hnm = <l»[/n HSC + m—k-P ¢m> + kzén,m (247)
0
For our purpose with the choice of solving the complex band structure where values of k| and E are
fixed and values of k; have to be found, it is convenient to rewrite 2.47 according to the more general
following form:

—2

Hom = Hop k2 + Hypky + Hory (2.48)

nm-="z
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Then the secular equation 2.46 becomes:
det |[H*k% + H'k, + H* - EI| =0 (2.49)
and the Eq 2.45 can be cast in a matrix block form, as a equation for k, by:

C C
(kZC =kz( ) (2.50)

k. C
One observes that the matrix in Eq 2.50 is non-Hermitian. Therefore the k-eigenvalues may be complex

0 1
_(HZ)—l (HO _ E]I) _(HZ)—IHI

numbers. These complex values of k correspond to evanescent solutions which do not result from the
truncation of the basis set. Besides, the form of H/ (j = 1,2,3) in Eq. 2.49 implies that if k, satisfy
Eq 2.49 then k; does also (see also in the references [183, 184]). We thus have the important result that
complex eigenvalues always occur in pairs, k; and k7. That is, evanescent states come in growing and
decaying pairs with identical real part of k and imaginary parts of k with opposite signs. On the other
hand, solving the eigenvalue equation 2.50 for fixed k|| and E determines the possible values of k, and
the expansion coefficients C:Zk' Relationships between &, and k and the corresponding eigenvectors are
discussed in detail in Ref. [184].

Note that, in framework of k.p method, the solutions for k£ will not satisfy periodicity conditions for a
finite basis set [ 163]. This means that for whatever a finite basis set is, spurious states will always appear in
the band structure calculated from k.p Hamiltonian. If a larger basis set is used, the periodicity conditions
are maintained to somewhat larger values of k. However, they eventually break down completely. Moreover,

as the basis set is expanded, even more such spurious states occur [163].

k.p Hamiltonian for O, and T, semiconductors

In order to solve the secular equation 2.46 to obtain the electronic band structure of materials, one needs to
choose a proper basis set {|y,,)} at k = 0 and then determines the matrix elements 2.47. It can be performed
by analogy to LCAO and Tight-Binding methods based on symmetry arguments. This section is devoted to
the description of the basis set to construct the k.p Hamiltonian for semiconductors belonging to the Oy, or

T4 group.

Structure of O, and T, groups

Crystals of diamond or zinc-blende semiconductors are constructed from two face-centered cubic (fcc)
sub-lattice (A) and (B), shifted by one forth of the cube main diagonal. The atoms are placed at each sub-
lattice point. If we take the three Ox, Oy and Oz axes and their corresponding unit vectors ey, e, and e,
respectively, parallel to the [100], [010] and [001] directions of the crystal, an atom of sub-lattice (A) at the

. " . : . — (1 11)., _ .
point Rj = Rj + a possesses four nearest neighbors at sites Rj + a, where a = a (4, T 4), n=01,273;

ap=0,a1=a (%, %,O), as =a (%,O, %) as =a (O, % %) where a is the length of the unit cell (see Fig.
2.2).

If the two atoms in the two sub-lattices are identical, one obtains the diamond structure. In that case, an
inversion center exists in the middle of the segment joining these two atoms. These semiconductors belong
to the Oy, group. This is the case of semiconductors of group IV such as silicon, germanium and carbon.
Otherwise, if the two atoms are different, one obtains the zinc-blende structure. This is the case of I1II-V
compounds such as GaAs, AlAs, InAs or II-VI such as ZnTe. These structures belong to the 7,; group,

where the inversion symmetry is removed. The reciprocal lattice of this structure is the body centered cubic
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Chapter 2. Oy, and T, semiconductors: The electronic band structure

FIGURE 2.2: (a)The crystal structure of diamond and zinc-blende (ZnS). (b) the

fec lattice showing a set of primitive lattice vectors. (c) The reciprocal lattice of the

fec lattice is shown with the first Brillouin zone. Special high-symmetry points are

denoted by I', X and L, while high-symmetry lines joining some of these points are
labeled as A, taken from Ref.[53]

lattice (bcc) describing the common first Brillouin zone of Oj and T; groups, bounded by eight regular
hexagonal faces and six square faces. The symmetry points are defined as in Fig 2.2 where the I" point is
the center of the Brillouin zone. The other symmetry points: K, K’ and U points are equivalent from the
point of view of crystallography. The A line connecting I" and X, the A line connecting I" and L, and the X
line connecting I" and K are three principal directions.

Wavefunction at the T" point. Basis set for k.p Hamiltonians

In order to build up the k.p Hamiltonian, the basis set {¢,,} in 2.43 has to be known. Note that i, is
the wave function at k = O (I" point) where the symmetry group matches with the symmetry group of the
crystal itself.

The unit cell of Oy and T, groups contains two atoms. Therefore in the framework of LCAO and
Tight-Binding methods, the wavefunction at the center of the Brillouin zone is a linear combination of the
wavefunctions of the two atoms which, in the present case, results from the overlap and hybridization of
s and p atomic orbitals. We first consider two identical atoms of respective energy state Eg and E, and
corresponding to atomic wavefunctions or orbitals s, and p, = X4, V4,24 Of the form |n) = f(r) Y (0, @)
where [ = 0,1,2,3,...; m = —I,...,] and Y,,(0, ¢) is the spherical harmonic given by [43]:

Y6, 6) = (_1)"”2'"\/(2’4 ;1) %pﬁ@osa)em @.51)
where P["(cos6) are Associated Legendre Functions:
qm
P/"(cos) = sianWPl(cosﬁ) (2.52)
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TABLE 2.1: |j,m) states developed on |/, s) basis

[3/2.3/2) = [Yu 1) 3/2.-3/2) = W11 1)
3/2,1/2) = '\/g%o T+t l> 1/2,1/2) = ’%%0 1 -y3% l>

3/2.-1/2) = | L1 1 +y20 ¢> 1/2,-1/2) = ‘\/%yl_l 1LY l>

with:

Pi(cosB) = w/%cos ((l + %) 0+ %) +0 (l_l) (2.53)

The angular dependence of the s- and p-state wavefunctions are related to spherical harmonics according
to:

1

Moo= — = (2.54)

Var
Yi0(6.8) = +|—-cosb = ,/35 = iz, (2.55)
4r 4rr

Ye1(0.6) = Trf —singe*ié = 5| S XY _;(a) 2 iva (2.56)
4 4 r 2

Note that the spherical harmonics do not include the spin degree of freedom. When the spin s = 1/2
is considered, then the total angular momentum is defined as j = I + s. The projection of j on the z axis

takes the respective values m = j, € {—J,...,j}. It is more convenient to use the |j,m) states which satisfy:

ljsm) = Nj( +1) = m(m = D] j,m ~ 1) (2.57)
where
s Fors,,l =0and j = 1/2to obtain |s+) = |1/2,1/2), and |s—) = |1/2,-1/2);.
& For [ = 1, then four states |3/2,-3/2), |3/2,-1/2), |3/2,1/2) and |3/2,3/2) corresponding to

Jj = 3/2and two states |1/2,-1/2), |1/2,1/2) corresponding to j = 1/2 where exact expressions are given
in Table 2.1.

Xe = x4 + x4
Yo =Ya+Ya
Ze=2q+ 24

S =5,— 5,

— ’
Valence band X= Xaq — Xq
from p-bonding

orbitals Y = Va — y[;_
Z=124— 2,

Sy =S4~ Sg

Valence band
from s-bonding
orbitals

FIGURE 2.3: Schematic of evolution of the atomic s- and p-states, to form the con-
duction and valence bands in semiconductor and the wave function at the Brillouin
zone center.
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When two identical atoms, A and A’, are put in contact closely, their wavefunctions overlap and con-
sequently, new energies levels are formed with the final wavefunctions becoming linear a combinations of
the atomic functions s, and p,, respectively. The wavefunctions at the zone center are displayed in Fig.
2.3 where the S, Xc,Yc and Z¢ functions of the CB are fully antisymmetric, whereas the Sy, X,Y and Z
functions are fully symmetric in the Oy group. It is well known that in the Oj, group, the S function pos-
sesses an xyz symmetry (the three axes play the same role), changing their sign when r is changed into
—r. X, Y and Z functions possess respectively yz, zx and xy symmetry, respectively, keeping their sign
when r is changed into —r. The function Sy has the s symmetry whereas the X¢, Y¢ and Z¢ functions have
x,y and z symmetry under Oy, operations. For the T; group, where the centro-symmetry no longer exists,
wavefunctions are identical to those of Oj, except an additional part of orbital mixing arising from the per-
turbation asymmetric potential. The Table 2.2 gathers the different wavefuntions and their symmetry where
€ is a small mixing coefficient. This coefficient represents the effect of the spatial antisymmetric potential
contribution V,, with V = Vs + V,, (Vs(r) = Vs(—r) symmetric part in both Oy, and Ty, V,(r) = =V,(-r) for

T, only) originating from the non-identical A and A’ atoms.

TABLE 2.2: Wavefunctions at zone center in the 7; group, takem from Ref. [29].

Function LCAO Group | Symmetry
Xc (xq +x,) + €(xqg — x7) Is X+ €yz
Yc (Vat+yo) +teya—ys) | Ts y+ezx
Zc (za + 7)) + €(zqa — 7)) Is Z+€exy

S (sq — s5,) + €(sq + 57) I Xyz + €s
X (xqg —x,) + €(xq + x}) Is YZ + €x
Y (Ya—ya) teyatyy) | Ts X + €y
z (za — z4) + €(za + 2,) I's Xy + €z
Sy (Sq +s)) + €(sq —s7,) I S+ €xyz

The Xc¢,Ye,Zc, S, X, Y, Z and Sy states above do not include the spin degree of freedom and, moreover,
the electron now does not possess a true orbital momentum / as in the case of single atom but only a pseudo-
orbital momentum "L". The S function corresponds to L = 0 while X, Y and Z correspond to L = 1. When
the spin is taken into account, the sum J = L + S is, now, no longer well defined. However, starting with
L = 0 we can write J = 1/2 for the I'g band, and for L = 1 we can define J = 1/2 for the I'; and J = 3/2
for the I'g band [185]. By analogy with atomic physics, one can construct the wavefunctions for the two
atoms in the unit cell by replacing the spherical harmonic Y, by cubic harmonics Y},,, the atomic functions
Xa,Yq and z, being replaced by the X,Y and Z functions. Therefore, we define:

Yio = iZ; Yii = —iX\EY; Vi1 = iX\;E’Y (2.58)
And similarly to the |j,m) functions given in the case of single atom, we can write down the functions
used as the basis set {1, } in 2.43 to expand the k.p matrix elements as in the Table 2.3. Thus the |J, M)
basis set is usually used to build the k.p Hamiltonian [29, 53, 179]. However, the |L, S) basis is sometimes

more convenient if one considers formulation and analyses involving boundary conditions at interfaces
of heterojunctions [29-31]. The table 2.3 gives the relationship between the |J,M) and |L,S) basis set
allowing the unitary transformation from one representation to the other. Note that, the matrix elements of
k.p Hamiltonian built from cubic harmonic functions Y3, are not the same as atomic energies. However,
again, it is not a big issue since after all, like tight-binding technique, the k.p Hamiltonian is formed in

parametrization scheme from DFT calculations or from experimental measurements.
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TABLE 2.3: |j,m) states for kp matrix elements [29]

3.9 = | [~ (e +ive) 1)) 30, = i [y3ze T- ((Xc+lYC)l>
13 e = | [ e - i¥e) 1 +yf32c > 33, = || & Xe - i) 1))
L1y, = H ze T B e v 1)) 18 = ] & e - ive) 1 - L ze 1]
) =1s1) =) =15 1)

39, =i [~ x+in1]) 3.3, = i[\/gZT—%(XHY)lD
12.2) = i[vlg(x-iY)m\/gle 3.3, = |5 x-n1])

B0 =z Beemy) B3 =f[Ee-m—g2y)

Evanescent states and spurious states elimination in the frame-
work of the multiband k.p method (14, 30, and 40 bands)

Simple example of 2-band toy model without spin:

In order to give an insight on the appearance and impact of the spurious states on the electric band structure
and tunneling properties, we are going to consider firstly a simple 2-band k.p toy model involving a single

CB and VB states coupled by the off-diagonal k.p terms. In this model, the 2-band Hamiltonian then

writes:
IC) V)
22 [Eg Pk Eg+k*> Pk
="Ky, |Ee = [Tt (2.59)
2mg Pk O Pk K2

where the energy origin is at the top of the valence band, E¢ is band gap and P = mlo (C|p|V), the coupling
parameter between |C) and |V'). The energy E, solution of the secular equation 2.46 then reads:

L, Egz VEZ +4Epk?
E=Fk*+ 5 (2.60)

with Ep = 2'"0 P2,
When £ is very small, one may neglect the term P2k? since P2k? < EZ to get E = k? (1 + E—P) +Eg

for electrons in the CB and E = k2 (1 - E—g) for holes in the VB. Usually, the term £ — is of the order
of 10, and the electron effective mass m’ = (1 + Ep/Eg)! is positive whereas the hole effective mass
m, =(1- Ep/Eg)™! is negative as expected.

However when k becomes large enough, the term k2 increases faster than the ,/E(Z; +4Epk? term
which makes the energy in the VB to increase before crossing the band gap as depicts in Fig. 2.4. These
unphysical states are called "spurious states". They appear as a natural consequence of the truncation of
the remote bands necessary to recover the overall Bloch periodicity. Spurious states with large real wave
vectors are problematic since they mix and interact with real states, making then difficult to identify and
remove them in numerical calculations. Spurious states with larger imaginary wave vector components are

rapidly decaying and therefore harmless. Back to the solution 2.60, when k is purely imaginary, i.e, k = iK
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Wave vector (A™)

FIGURE 2.4: Spurious and Evanescent states in 2 band toy model. The spurious
o1 o
states cross the band gap at k = 2A ~ and the evanescent states are located within

K=[0,%%]
where K is real, then:
2 252
52 Eg +,JE% - 4P2K
E=-——K?+ (2.61)
sz 2

Note that E is real only if |K| < g—g. Then if this condition is satisfied, evanescent solutions exist as
depicts in Fig. 2.4. For GaAs, P = 9.3 eV.A and Eg = 1.52 ¢V then |K| < 0.1 A_l. The evanescent
states are localized within about 0.1 Ail, i.e., the evanescent states are confined within a small region of
the k-space (Fig. 2.4).

Method of spurious states elimination in multiband k.p method

Spurious states [186] have been more than a numerical headache for researchers in the community of theo-
retician of semiconductors, particularly because it appears difficult to discriminate them from true physical
states [164, 186—190].

Furthermore, the wavefunction mixing between real and spurious states renders the envelope functions
approach useless in calculating dipole matrix elements because of the unphysical oscillatory features. This
is also particularly true for transport properties. More generally, the spurious solutions with large imaginary
k are related to the wing-band solutions discussed in Ref. [191]. The wing-band solutions are rapidly
decaying in nature and therefore considered to be harmless in contrast to the oscillatory solutions with large
real k, which are the main issues of this section. The problem is not new but no fully satisfactory fixed and
widely used solutions exist. So far, several approaches have been suggested.

The first is to modify the Hamiltonian by discarding the terms responsible for the spurious solutions
[191-194]. This costs some accuracy in the band structure, since it is no longer possible to fit all experi-
mental effective masses correction. The idea of Foreman [186, 188] to avoid this trouble is that one just sets
some of the coefficients of the k? term in the conduction band matrix elements to zero and fits the CB mass
using a spatially varying momentum matrix elements as well as the coefficients of the k2 term in VB. The
other idea from Kolokolov et al. [164] is instead of modifying the coefficient of k2, to introduce additional

off-diagonal terms iak? in the Hamiltonian. This supplementary coupling will contribute to a positive term
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FIGURE 2.5: Envelope functions in GaAs/AlAs 10 nm quantum well before removing

spurious states: figure (a) where the spurious state makes envelope function to

oscillate and after removing spurious states: figure (b) : the unphysical oscillatory
features no longer appear. Results calculated by 30-band k.p model.

a?k% in the dispersion relation able to pull down the valence band structure at large wavevector, removing
thus the spurious characters. This technique has been applied to the 8-bands k.p method [164] and adapted
to 14-band by Dang et al. [93]. However, when one increases the number of bands, e.g., dealing with the 30-
band k.p method, the number of spurious states increases as well, with the result that the perturbations on
the conduction band caused by the additional terms becomes more and more significant, making the method
to be no longer accurate enough to deal with indirect band gap semiconductors like Silic for example.

A second possibility is to keep the original Hamiltonian (that is accurate near the I" point) but reject the
unphysical large k-solutions [193, 195-198]. This technique is problematic in heterostructures, since the
discarded solutions are needed to be considered to satisfy the general boundary conditions. It would become
unclear to determine which boundary conditions should be eliminated for mathematical consistency.

A third approach therefore consists in retaining all solutions on the grounds that spurious bands admit
negligible influence on the properties of bound-state eigenfunctions [199]. This is better justified but still
runs into trouble with oscillatory modes [186].

In the next part, we review the major idea of Kolokolov et al. [164] and then propose to extend this
proposal to our novel ghost-band method in order to adapt it to both 30-band and 40-band k.p models.

Adding off diagonal terms: the Kolokolov method [164]

Coming back to the 2-band toy model and Eq. 2.60, ideally to pull down the VB in the large wavevector
region, one would need to increase the value of Eé +4Epk> by possibly adding a positive term a2k* larger
than P2k? [164]. This is the role of the off-diagonal supplementary term ia’k? giving an overall Hamiltonian

IC) V)
EGc +k* Pk-iak?
- (Pk +iak? i (2.62)

We assume that E2 +4Epk? < k* in the large wavevector region. The eigenenergy for the VB becomes

now:

2
Epore = (h_ - CY) kz (263)
21110
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FIGURE 2.6: Spurious states elimination in 2 band toy model with two different

methods: (a) off-diagonal term method [164] with supplementary term « = %.

(b) ghost-band method with supplementary term a = % and the ghost band energy
Eg = 10eV. The band structure near the T" point in both cases remains identical.

If @ > h?/2mo, the hole effective mass is always negative as expected. With the supplementary terms, one

obtains, from the energy, the electron effective mass at small wavevectors according to:

JEZ +4Epk2 4 a2k4

y v Eg 4Epk? + o2k* 02 Eg
Eelectron:k2+ +—zk2+_ 1+ - + =&
2 2 2 E2 2
G (2.64)
v EP v CL/2
=Eg+k>+—k%+—k*
“ EG 4EG

Since a?k*/Eg < k? and because of the k* dependence, the electron effective mass weakly depends
on the added terms. We can derive similar results for the hole band. This method was improved to remove
the spurious states within the 8 -band k.p model [164] and has been adapted recently to 14 band k.p model
by Dang et al. [93].

In this work, we also managed to remove spurious states by adapting the so-called ghost — band method
which appears as an extension of the original idea of Kolokolov [164]. We discuss now in much details, the

Ghost-band method employed here.
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FIGURE 2.7: (a) Resonant tunneling with spurious states: the appearance of spurious
states allows the transmission coefficient to be different of zero in the band gap
(blue curve). The red curve is the sum of transmission and reflection coefficients (=
number of bands) involving spurious states. (b) The same calculation after having
removed spurious states by ghost-band method. (c) The three components of the
spin current calculated through the (Ga,Mn)As/GaAs/(Ga,Mn)As structure where
the magnetization is along z direction in the left electrode and along the x direction
in the right electrode with spurious, and (d) without spurious states.

Our novel ghost-band approach.

The appearance of spurious states at large k in the k.p scheme naturally arises from the inherent truncation

procedure. In order to extend the procedure of Ref. [164] to a wider region in the k space away from

I to almost cover the full Brillouin zone, we propose the so-called ghost-band method (see the detailed

introduction of this method in the appendix B). It consists in adding supplementary fictitious upper bands

(ghost-band) and off-diagonal coupling terms of the form:

Ho =

(@ 0
0 0 .. 0
14
0| o 0 0 of
0 0 .. 0

0 i&k®
0 0 0
—ia k2 0 0 0
0 0 0 |

(2.65)

in the extended N x N (N=14, 30 or 40) hamiltonian via a set of &’/ parameters and ghost band energy

levels @ conveniently chosen. The spirit is to extend the off-diagonal k* formalism [164] at the edge of

the first Brillouin zone with chosen parameters o’/ perturbing the less the correct electronic band structure.

In order to do that one must minimize the perturbation at specific k points (A) where the supplementary

\A/,,ff = a7 k? off diagonal terms are being operated. Then, the set of o/ matrices (parameters) may be
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conveniently chosen by the optimization procedure for energies (depicts in figure 2.9)and wavefunctions.
We describe here the main issues:

® : 0 - iow k2
"""" i Conduction Bands '
~ 0 ! Pk
Hip ' (T, I7, T, -.) :

4
! Valence Bands

icw k)T ! Pk :
( ¢ ) 1 ! (F6Cf F7C; 1—‘SC' )

FIGURE 2.8: Schematic of the Hamiltonian including the ghost band to remove the
spurious states. The off diagonal terms couple ghost bands and valence bands only
in second order to pull down the valence band structure at large wave vector k.

(1) Supplementary fictitious bands (8 supplementary bands in the case of the 30-band method, 18 in the
case of the 40-band method), the so-called "ghost-bands" (GB) of adequate symmetry, are introduced in the
basis states in order to branch on the off-diagonal coupling (V,, 7). The coupling strength is calculated so as
to leave unchanged the physical bands in the vicinity of the different CB valleys (I', X, or L valleys) and at
the VB, I'-valley, all relevant for the carrier transport. In short, the GB represent the average of all the other
remote bands truncated by a finite size Hamiltonian. Their mean position in energy lies in a region higher
than the S-type CB by approximately 15 eV without the need of a strong accuracy. The quf coupling
allows to invert the concavity of the spurious bands in the VB at large k avoiding thus any gap-crossing.

(2) New k.p Hamiltonian #j._ ,, including the ghost-bands has form:

o 0
Hy p = (2.66)
0 Hk.p

where Hyp, is the original k.p Hamiltonian which involves the spurious states. The new k.p Hamiltonian
Hy.. p is then changed into a perturbed Hamiltonian 7~{k_p with ﬂk,p = Hi. p + Cr, \A/offC,; 1 where Ck, is
the unitary matrix of eigenstates of the new Hamiltonian 2.66 calculated at a certain point k. close to the
Brillouin zone (where \A/off operates). The shape of new Hamiltonian 2.66 (the ghost-band ® is uncoupled)

make it possible to write C,. in the form:

Ck, = (2.67)

where @y is also a unitary matrix and 7 is the unit matrix with the same dimension as ghost-band ®; k.
may be found by minimization procedure without the need of a very high accuracy because leading to
only moderate errors on the effective mass and tunneling current properties. It can be shown that the
procedure leaves unchanged the electronic structure of the conduction band at this particular k. point by
our construction method.

(3) The o/ k? coupling leaves unchanged the bare Hamiltonian at the I" point (k = 0) because of its
specific k? form. By an effective Hamiltonian analysis (see more detail in Appendix B), the Hamiltonian is

only slightly perturbed by the coupling (perturbation V, -+ varying like k¢ with g > 4 by construction):
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FIGURE 2.9: Schematic of band structure of Hamiltonian in Fig 2.8, the ghost

bands are included at higher energy than the first conduction band for perturbation

minimization. At the A point, the ghost bands only couple with the VBs and ensure
that at I" and A points, the CBs is weakly affected

* At the first order of the theory of perturbation:

Aely = (CB|Vurs|CB) = (cB|(ci2) Vit (Ch)a

cv

CB)+.cc=0 (2.68)
because (C)g,. = O (see Eq.2.67). Similarly, one has the same for the first order of energy in VB:
Aeyy = (VB |Vor|VB) = 0 (2.69)

* At the second order of the theory of perturbation:

®) (0 [av, (C1,),.|CB)
k4

(CB |Voyy| @) (@ Vors| CB) 5 (cBl(ct) ave

@ _
Aelp = Eo— Ec Eo— Eo (2.70)
with (G, )| < Land |(c1) | <1.and
vB|(ct). ave|®) (@law (C.)uy|VB)
@ _ < |( ke Jyy </vv 4
Ae?, = E(D T k 2.71)

(the effective Hamiltonian is analyzed in detail in Appendix B).

(4) The o'/ parameters are chosen to leave unchanged the current-operator (1/%) (9H /dk,) (here k,
is directed along the current flow (z is the crystal growth direction) for a geometry of perpendicular spin-
polarized current) at the I" point and mostly unchanged near the T point from the 2/ k < P relationship

at small k where P is the dipolar coupling energy term.
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FIGURE 2.10: Electronic band structures of GaAs near the band gap along three

characteristic directions with native 30 band k.p method (a,b,c) and 30 bands + 8

ghost bands method (d,e,f). Figure (g,h) and (i) are the 8-ghost bands corresponding

to three characteristic directions. The effective mass and band dispersion along the
different crystal graphic directions are leaved unchanged.

(5) Due to (3), the effective mass is left unchanged near the I' point, the perturbative Hamiltonian
varying like k¢ with n > 4. This property favors the treatment of the tunneling process due to the fact that
the evanescent waves are mostly kept unchanged by the perturbation applied: the relevant evanescent waves
that expand near the I" point are the ones corresponding to the smaller imaginary wavevectors lying rather
close to the I point.

(6) The ensemble of the previous points (1)-(5) can be rigourously demonstrated from the derivation of
an effective Hamiltonian at the second order of the perturbation theory close to the I point for the respective
valence band and conduction bands. Those demonstrations are given in Appendix B. The effective pertur-
bative Hamilonian H,,s, arising from a perturbative potential ¢, and projected on a reduced block basis I,
writes in the present case:

4
(7{ ff) _ k_ ar,,r; @ r,,, N ar,,r; OrT,,,
O ’
mme 2| &r,, - &, ér,, —&r,

(2.72)

where &r is the energy of the corresponding block that are {m,m’} = {I'7g} and where the / subscript
represents all the other blocks. This leads to a k% variation because of the cancellation of the first order
energy term in k2.

And consequently, it results that:
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%) The electronic and transport properties are not affected at the vicinity of the I" point for all the CB,
VB, HH, LH, and SO bands by V,¢¢.

%) The electronic and transport properties of the CB are not affected at the vicinity of the point where
Vorr is introduced (close to the first Brillouin zone edge). The tunneling current mediated by a finite
evanescent wave-vectors will be only weakly affected by the present treatment method. Those ghost-band
evanescent states correspond to very large evanescent wave-vectors.

We can expect that the tunneling transport properties corresponding to the involvement of evanescent
states from the bottom of the CB to the top of the VB (I" point) will be only weakly affected and particularly
to the 30-band or 40-band case. Then the interest of this procedure is that one can readily transpose the
method to a full multiband approach where spurious states originating from the VB arise in the first BZ
boundary (the L valley of Ge, or nearly the X valleys of Si). The symmetry of the corresponding states
at the first BZ boundary generally admits a well defined character possibly rendering the correction more
convenient. Note that the Hamilonian in the CB is unchanged at the A point depicts in Fig.2.9.

The cost to pay for the method is the necessity to introduce at least two different coupling at two points
+k (A*) and —k (A7) instead of a single one for the BZ center treatment since the different eigenvectors
symmetry corresponding to +k and —k.

In the figure 2.10, we show the band structure of GaAs along 3 characteristic directions [001], [110] and
[111] calculated with native 30 bands k.p method (Fig 2.10 a,b,c) and 30 bands + 8 ghost bands (Fig 2.10
d,e,f). The spurious states at large wavevector k in native 30 band k.p method are then removed after using
our novel ghost band method which keeps the band structure almost unchanged within the first Brillouin
zone. Figure 2.10 (g,h,i) are the 8 ghost bands along 3 characteristic directions [001], [110] and [111].
These ghost band energies are proportional to k" where n > 5 since the coupling terms of the phantom

band are proportional to k2.

Estimation of the error on the effective mass introduced by the ghost-band
method

In order to check validity of our 30- and 40-band ’ghost-band’ approaches, we consider several situations:
First, we have calculated the in-plane energy dispersion of holes along the X, K directions in an
AlAs/GaAs/AlAs quantum well (QW) grown along the [001] directions (Fig 2.11a) with our 30-band k.p
tunneling code with parameters extracted from Richard et al. [200, 201]. Those are compared with the
results obtained with an effective 6-band k.p model for the two X and K directions [202] with a resulting
excellent agreement. We focus on the particular point that the AlAs barriers admit an indirect gap along
the X-valley which is perfectly taken into account in our modified 30-band k.p tunneling model. The same
calculations for the AlAs/GaAs/AlAs quantum well grown along [110] (Fig 2.11b) and [111] (Fig 2.11c)
directions are also done in comparison with 6-band model in Ref.[203] giving good agreements.
Moreover, we presently consider the tunneling transmission of electrons and holes in the
GaAs/GaAs/GaAs structure, by adding a fictitious potential for the central GaAs layer for the sake of
simplicity, vs. the GaAs barrier thickness d for the respective CB (see Fig 2.12 a) and VB (see Fig 2.12
b). We have performed the calculations for different "ghost-spurious” coupling strength |¢;;| varying in the
range of 1 — 2 eV.A_2 and 1.5 -1.7 eV.A_2 for the 30 and 40-band method, respectively. The results
are that the carrier transmission and tunneling effective mass, extracted from the slope of transmission vs.

d ( VZ’;*‘D = —ahﬁj T), either for electrons or holes, is not affected by the off-diagonal coupling strength

a. One can show that the calculations are also robust vs. the exact application of the coupling point k..

With the following procedure, the effective mass in the CB is correctly found to be m 5, = 0.06 and

m’, 4o, = 0.064 for the respective 30 and 40-band method near the I' point at about 0.2 €V above the gap.
In the same way, the extracted light hole effective mass was found m; H.30p == my H.40b = 0.07 very close
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FIGURE 2.11: Hole dispersions in AlAs/GaAs 6nm quantum well calculated by a 30-

band k.p model using ghost-band method for the three respective growth directions

[001] [110] and [111], Fig. (a), (b) and (c) respectively, in comparison with the

result calculated by Eppenga et al. [202] with 6-band k.p model, Fig. (d), and
Winkler et al. [203], Fig. (e) and (f).
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in fictitious GaAs/GaAs/GaAs trilayer barrier (a fictitious barrier height has been
added in the central GaAs of -0.2eV) calculated in the CB (Fig. (a)) and VB (Fig.
(b)) within an extended 30- and 40- band k.p framework for strictly normal in-
cidence (k) = 0). The slope of the transmission in log. scale vs d is related to
the tunneling effective mass which remains robust under ghost-spurious coupling

0 =2 o =2 o =2
strength a: {al =1eV.A ;ap =1.5eV.A ;a3 =2eV.A } for 30-band k.p model
e =2 o =2 °o—2
and {aq =15eV.A ;a3 =1.6eV.A ;a3=17eV.A } for 40 band k.p model.

to the expectation values 0.08. The relative errors calculated on the dispersion of the effective mass at the I'
point (barrier height of -0.2 eV) and introduced by the perturbative spurious-ghost band procedure are the

following ones:

’ ‘ me/mo ‘ omy [my ‘ my g /mo ‘ omy /My y ‘
Cal. Lit. Cal. Lit.
Si - - - 0.1652 | 0.16 | 1.6x107°
Ge - 0.041 - 0.0417 | 0.043 | 5.6x10°°
GaAs 0.064 | 0.063 | 1.5x10™> | 0.07 | 0.082 | 4x107°
InAs 0.0238 | 0.023 | 1.4x 1077 | 0.0258 | 0.026 | 1.6x107°
AlAs - 0.16 - 0.1749 | 0.18 1x10™
Ing 25Gag.7sAs | 0.0617 - 2.9%x107° | 0.0733 - 1.8x107°
InSb 0.0144 | 0.014 | 1x1077 | 0.0161 | 0.015 | 3x10°°
InP 0.0703 | 0.08 | 3.6x1077 | 0.0904 | 0.089 | 1x10°
GaP - 0.09 - 0.1504 | 0.14 6x107°

TABLE 2.4: Effective mass at the I" point of several semiconductors extracted from

our numerical calculations (Cal.) in comparison with literature (Lit.) (taken from

Ref.[53]) and the relative error of our numerical calculations induced by the phantom
treatment.

Am;, Amg
( m) ~2.3x 107, (i) ~1.5x 1075,
Me | 30p e /40b
Amyy Am;
( *LH) ~15x107, (J) ~4.0x107 (2.73)
Mru /30b Mpu /a0b

where LH stands here for the light-hole index corresponding to the smaller hole tunneling wavevector as

discussed previously. In Table 2.4, we show that the effective mass and the errors which were done in the
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same way as in GaAs, for different materials. Note that, the errors in the Table 2.4 are the relative differ-
ences between the effective mass calculated with different ghost-band coupling strength, not the relative

differences between the effective mass calculated with our method and the literature value. One can ob-
serve that those errors remain very small leading to the fact that the ghost-band method weakly affect on the
effective mass which is very important quantity for the tunneling problems. We are now going to compare
these results on the effective mass (extracted by numerical calculation) with analytical calculations.
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FIGURE 2.13: The 3 spin-current components through GaMnAs/GaAs/GaMnAs
trilayer structure, the magnetization in the left and in the right electrode are aligned
respectively along the z and x directions, within an extended 30-band k.p framework
calculated for strictly normal incidence (k|| = 0) and for different ghost-spurious

coupling strength a: o7 = 1.5¢V.A Figs. (a,b) and oy = 2eV.A2 Figs. (c,d) and at
different coupling points k. as depicted in the figure.

We consider here the energy dispersion up to the second order of the theory of perturbation, one has:

B h2k2 alekC|2k4 ~ thZ
T om " TEe—Es  2m
where m” is the effective mass:

1 102 1 12a? 2f2

- 2 Z * +Z 2a |
m % 0k mO i (Eq; Es)
11 ms —m’* _ Z 1202wy, |*k?
m* m; D K2 (Ep — Es)

gap or k2 = h—gA.
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2
Am* . ms —m* _ Z 24 (mo) A a2|wkC |2 (2 77)
m* mg 4 Eo—Es 72 '

If we call Ng: number of ghost bands, then one has:

2
A 24 (mo) B 2l 2
< Nq)

2.78
m* |E¢.—E5| hZ ( 7)

= N®|wkc|2

24A (ma/ )2
|Ep — Es| \ 1
For the numerical calculations based on 30-band k.p model above, one has: No = 8; |wg.. |2 ~ 1 (since

o —2
Wk, 1s unitary matrix); A = 0.2eV; |Ep — Es| = 15eV; @ = 1.5¢V.A  and m* =~ my then, one can get the
result that:

Am*

*

<107 (2.79)

which is in very good agreement with the numerical results in Table 2.4.
Finally, figure. 2.13 shows that the calculated profiles of the charge and spin-current components remain
mostly unchanged by the procedure adopted (see Fig 2.13). This makes our calculation scheme and strategy

extremely robust.

Evanescent states

While a real wavevector and corresponding Bloch state describe a propagating state, a complex wave vector
describes an evanescent state [185]. Such states are localized close to the crystal surface or interface or in
the forbidden band gap of a bulk semiconductor [55, 183, 185]. In the 2-band toy model, the evanescent
states appear when the wave vector is complex. In the k.p framework, the evanescent states are found by
solving the secular equation 2.49 where the wavevector k now possesses an imaginary part. Heine [205]
has studied the properties of the real energy lines for the diamond structure (Oy, group) in the framework
of the group theory. He proved several theorems for these real energy lines and observed that neither the
real-energy lines can branch nor terminate, nor can they coalesce more than one time. Moreover, they
can cross each other only at real wave vector k. Energies at the crossing point are extrema of E when
plotted in the real wave-vector space. The conclusion of Heine is that there are only two possibilities for the
evanescent states, one is that the real energy line crosses the bandgap, connecting the maximum of one band
to the minimum of a higher band, another is that these lines monotonically vary and run to infinity. This
prediction was confirmed by Jones [206] with a numerical calculation for determining the evanescent states
of silicon, taking into account only the bands in the neighborhood of the band gap. Using the tight-binding
method, Chang [207] has calculated the structure of the evanescent states in several materials with diamond
structure (Oy,) or with zinc-blende structure (7), but without taking into account the spin-orbit coupling. In
1985’s, Schuurmans and ’t Hooft [208] studied the band structure of GaAs and AlAs (7y) using the Kane
model. The spin orbit coupling was taken into account, but these authors supposed that the contribution of
k* terms to the bands structure is minor, and they disregarded the linear k term in the band dispersion. That
means GaAs and AlAs were considered as if they belonged to the O), group. Consequently, the evanescent
states are spin degenerated, no splitting is found for evanescent states in any direction.

The spin-orbit coupling and the absence of inversion symmetry were both considered for the first time
by Richard et al. [201, 204] and Rougemaille et al. [209] using the 14 X 14 and 30 X 30 k.p matrices.
A more recent discussion can be found in Ref. [184]. Here we recovered the calculation of Richard et
al. with our 30 x 30 band k.p method in Fig. 2.14 where the original topology of evanescent states is
found along the [tan#,0,i] k-direction with 8 = £/K defined in the figure. Our result is in good agreement
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FIGURE 2.14: Plot of the real energy line inside the gap for k = [£,0,iK]| = [tand,0,i] k
where ¢ and K are real and positive and 6 = % The calculations were performed
using our 30 x 30 k.p model. The presence of the spin-orbit coupling and the lack
of an inversion center lead to a splitting in the complex band structure when 6 # 0.
These results are in good agreement with results of Richard et al. in Ref.[204].

with the results of these authors [55, 183, 185, 201, 204]. According to these numerical calculations, the
evolution of the evanescent lines is depending on 6. Along the [001] direction when 6 = O, one observes
an evanescent loop connecting the I's conduction band and I's light-hole bands, with two-fold degeneracy.
When increasing 8 (8 > 0 but still small), the appearance of D’yakonov-Perel’ field leads to a small energy
splitting. The evanescent line is, then, represented by a loop that connects two spins subbands inside the
forbidden band gap. The splitting between these two evanescent subbands increases as 6 increases, until
6 = m/6, an angle beyond which the evanescent state extension starts to decrease. An energy region exists
in the band gap where no states are allowed: a forbidden band gap appears inside the bandgap and the
evanescent loop no longer reaches the valence band [185]. At larger 6, one observes a smaller extension of
the evanescent loops in wave vector space and energy. The loop totally disappears at the value § = /2 [185,
201, 204]. Such band diagrams are the consequence of the spin-orbit coupling and the lack of inversion
symmetry [183]. For a complex wave vector k we have E(k*) = [E(k)]* [205]. Then, with Kramers ’s
conjugate, one finds four states corresponding to k, —k*, k* and —k at the same energy.

Finally, figure 2.15 shows the calculations of the evanescent states along three characteristic direction
in the whole first Brillouin zone with native 30 bands and 38 bands (8 ghost bands) k.p method. The
evanescent band structures calculated by native 30 bands and 38 bands are the same in the region close to
the I' point where k is small. This shows that the tunneling processes inside the barrier are the same for
both approaches, i.e, using the complex band structure calculated by a native 30 bands k.p Hamtilonian or
by a 30 bands + 8 ghost bands method. Besides, at larger wave vector k, there are additional bands which
are the consequences of converting the spurious solutions with larger real k to the spurious solutions with
large imaginary k in the framework of ghost-band theory. However, this is less important since the states

corresponding to well larger imaginary wavevectors are harmless in their possible tunneling contributions
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FIGURE 2.15: Evanescent band structure of GaAs within native 30-band (a), (c),
(e) and 38-band (8 ghost-band) (b), (d) and (f) calculated for three characteristic
direction [001], [110] and [111]. In comparison to native 30-band, there are
additional evanescent bands at far away from I point in the calculation with 38-band
method. As mentioned in Ref. [164], these additional bands are the consequences
of converting the spurious solutions with large real k to the spurious solution with
large imaginary k which, as commented earlier, are harmless in the calculations. The
imaginary k landscape remains unchanged close to the I" point.

because they will decay very quickly.

The envelope function approximation and Burt-Foreman Ap-
proach [179]

The k.p theory or the theory of Luttinger-Kohn describing an effective equation for the wavefunction of a
Bloch electron is generally valid in the presence of a slowly-varying perturbative potential. In the presence
of atomically-abrupt heterostructures, the potentials are no longer slowly varying and the questions arises
to develop more refined models accounting for the presence of potentials confined at the vicinity of the
interfaces. Those potentials however needs not to be local in space although close to the interface. In that
view, in heterostructures, the material is position dependent and its properties do not generally commute

with the spatial differential operators appearing in the ’effective mass’ approach (k.p method) and in the
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envelope function approximation (EFA) [210-212]. Unlike those two latter approaches requiring rules
for operator ordering process, the more recent envelope-function theory of Burt and Foreman [213-215]

attempts to derive an effective Hamiltonian from first principles.

Envelope function approximation (EFA) [212]:

The main idea of the EFA is to consider that, in each separate layer of any heterostructures (typically named
A and B), the wavefunction can be expanded in terms of the periodic part of the Bloch functions (cellular

part) at a given wavevector kg (e.g. at the I point), of the type [210-212]:

w(r)= ) P ) (2.80)
n

and then match the solutions across boundaries. This method, largely developed in the present manuscript,
is exact in the case where the perturbation varies slowly in the landscape of the junctions. The boundary
conditions for the wavefunctions, which generally corresponds to abrupt potential leads to specific matching
conditions which can largely depart from the BenDaniel-Duke ones as one involves the local potentials thus
describing an effective interfacial Hamiltonian. We largely discuss those specific matching condition in this
manuscript. In the EFA method, we assume that the periodic (cellular) functions in the layers are the same.
This appears to be a good approximation, in particular, if the chemical species belongs to the same column
(Ga, As, Al) or similar and if the crystalline structure is the same (Oh or Td symmetry group). Moreover,
it also comes that the dipolar coupling terms remain almost unchanged for III-V elements with the result
that the main available or free parameters from material to material are the different energy gaps between
energy levels and band offsets.

In the quasi one dimensional tunneling problem, one can use Bloch periodicity in term of:
1 .
AB(r) = (4B, 2) = %e”‘”’”xﬁ/"’” (2) (2.81)

where z-direction is the tunneling direction, | is a position vector in the in-plane and S is the surface area
in this plane. This theory was used at length for quantum well structure by Bastard et al. [210-212] giving
rise an accuracy up to 0.3eV or 10% of the first Brillouin zone for GaAs/AlAs quantum well structures.
Note that, in terms of the envelope functions, they are continuous but their first derivatives may be not. For
example, in a material system whereby the effective mass changes sign, there are discontinuities in the first

derivatives of the envelope functions at the interfaces.

Burt-Foreman Theory [213-215]:

A first-principle envelope function theory was firstly formulated by Burt in the 1980 [214, 215], followed
more recently by B. Foreman [213], which makes the advantage of not imposing a particular symmetrization
of the effective 6-band and 8-band multiband Hamiltonian. Before discussing some details of the theory,
the main difference between the previous EFA approaches and that one is the ability to consider, from the
first principles, the exact effect of the local varying potentials (effective interface Hamiltonian) on the wave
function itself more than in the boundary conditions.

The essence of the theory is that the wavefunction can be written as an envelope-function expansion

according to:

U(2) = ) Fa(D)Un(2) (2.82)
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where F,,(z) is the envelope function which has to be a smooth continuous function with Fourier-component
lying in the first Brillouin zone (FBZ) and the U, (z) represents a complete set of orthogonal periodic
function, strongly localized, over the whole structure.

Like in the EPM approach, one starts by expanding the wave function in terms of plane waves according

to:

W) = ) dGk)e 0" (2.83)
kG

where k is the wavevector in the FBZ and G is vector of the reciprocal space. We have to consider now the
fact that a plane-wave expansion is unique and complete on the Burt-Foreman basis. Indeed, since U,(z)

are periodic functions, they can be writtetn as a sum in the Fourier space according to:

Un(2) = ), Unge'™* (2.84)
G

If the U,(z) are chosen complete and linearly independent, plane waves can be uniquely expanded in

terms of them to give:

0% = Zn: (U‘l)Gn Un(2) (2.85)
where:
; Un (U’l)Gm - (2.86)
We have then
Fo(2) = ;‘ do(ke™ (u71) (2.87)

showing that the F},(z) are uniquely determined by a Fourier expansion of plane waves within the FBZ and
furthermore we can show that this expansion is unique as well [179].
Starting from the Schrodinger equation for one dimensional tunneling along z-direction:
w d*y
-—— 4V =E 2.88
g 422 (W =Ey (2.88)
we are now going to perform the equation for the envelope function 2.82 by considering separately kinetic

and potential terms as following.

Kinetic Energy:

Using the envelope function expansion 2.82, the kinetic energy term becomes:

2 oty n

e 92 = "2 D [F,’;Un +2F.U, + FuU, (2.89)

n

where one has the periodicities of U, and U,,:

Up(z+a) = U,(2) (2.90)
Up(z+a) = U, (2) (2.91)
leading to:
L OU, _
- ih— = ; P Unm (2.92)
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One can now obtain the coefficients P, by multiplying each side of equation by U, integrate over z, and

use orthonormality. Besides, one has:

A R LR e R e POACLHE

dz’ (.. dU,(Z) du, 2:93)
4 . n\Z ’ . n
= [ — |-ih 0(z=7")=—inh
[ "
yielding an alternative solution for the Eq 2.92 if we define:
dz 0
Pmn = / —U, m(2) (_lha ) Un(z) (2.94)
Similarly, one can define:
dz . h? 92
Tmn = / _ZUm(Z) (_ ) n(Z) (295)
a 2m
and show that:
" 6°Uy 2.96
TinUnm .
Z mnUn = =5 == (2.96)
Then, the kinetic energy term for envelope function can be obtained as:
2 d*y n? d*F, inh dF,
- = -— —+ > TymFn| U 2.
2mo dz2 2m0 a2 mo £ Pnm dz Zml nm{'m| Un (2.97)

Potential energy:

We start by Fourier transforming the These can then be compared to those obtained starting from the bulk
Luttinger—Kohn Hamiltonian. potential V(z) (the periodic part and possible non periodic part close to the
interface) and expanding ¥(z) in the envelope function expansion and also replace the envelope function

F,.(z) and U, (z) by their respective Fourier transform to derive:

V(W) = ) [Z / d2'Vom (2.2) Fn ()| Un(2) (2.98)
where: 1
Vam (222 = 7 D7 D Un g V=0 (k) Unare 550 (2.99)
kk’ GG’
and 4
Vg (k) = / IZV(z)e"'(’”G)Z (2.100)
L

is the Fourier components of the potential.

Envelope function equation and effective Hamiltonian:

Putting the kinetic energy and potential energy terms into Schrédinger equation, one has:

12 9%°F, ih OF,, , , ,
; _2_”10 072 _m_O 2 pnma_z"';Tanm"';/dZ Vam(2,2 ) Fn(2") | Un

= E ) Fa(2)Un(2)

(2.101)
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giving rise exact envelope function equation:

W 0%F, ih OF,, , , ,
- 2_mo_3z2 - m_O ;an _BZ + ; / dz' Hym(2, 2" )Fn(2') = EF,(2) (2.102)
where:
Hyum(z, Z’) = Tumd(z - Z’) + Vam(2, Z,) (2.103)

This envelope-function equation can be simplified to reproduce multiband Hamiltonians for arbitrary
nanostructures as we will see in the next chapter dealing with matching conditions for tunneling within

heterostructures.

Effective Hamiltonian in the k.p framework involving spin-
orbit interactions (relation to the envelope function approxi-
mation (EFA)).

In many physical systems and in particular for the investigation of physical effects related to the relativistic
spin-orbit coupling in bulk semiconductors or at their interfaces, building an effective reduced Hamiltonian
projected on a smaller block may reveal particularly interesting. The advantage of such Hamiltonian re-
duced within a smaller size on blocks of particular symmetry (e.g. 2 x 2 CB Hamiltonian or 4 x 4 or 6 X 6
VB Hamiltonian) is the ability to handle with the envelope function approximation (EFA) for describing
wavefunction symmetries and developing analytical algebra methods for solving particular transport issues
and phenomena. The EFA method also allows to describe electron and hole states in the presence of electric
fields that vary slowly on the length scale of the lattice constant. Those fields can be internal, such as the
crystal field, or external by means of the application of an electric field e.g. a gate voltage. This gener-
ally leads to a system of coupled differential equations, the eigenstates of which are the multi-component
envelope functions or spinors-like functions described within the manuscript.

The standard method to realize the projection of the starting N x N multiband k.p Hamiltonian on a
reduced basis states of a given Bloch symmetry is called the Léwdin perturbation theory like described in
many textbooks [29, 44]. It will result that, in the reduced basis, the k.p interactions with the remote bands
that are not taken exactly into account will, in counterpart, lead to new terms at higher order of k (typically
k2 terms), and connected to the effective mass of carriers.

Moreover, the reduction of a multiband Hamiltonian of size N X N to a reduced size, is also interesting
from the symmetry point-of-view. Indeed, another complementary approach for the construction of a finite
size Hamiltonian is based on the theory of invariants (Ref. [44]). This approach utilizes, the fact, that
independently of any microscopic details, the Hamiltonian must be invariant under all the symmetry opera-
tions, and thus associated to well-known representation forms for its corresponding block Hamiltonian part
of given point-group symmetries. This also serves to check the final form of the application of Lowdin’s

perturbation techniques in a subset of the corresponding levels.

The effective Hamiltonian in the conduction band of T, symmetry group semi-
conductors

The effective Hamiltonian for the electrons in the first CB is:

2

i
He = kK*l+ Hp (2.104)

2m*

70



Chapter 2. Oy, and T, semiconductors: The electronic band structure

where m* is the electron effective mass in the crystal, I is the identity matrix, Hp is the Dresselhaus Hamil-
tonian 1.40:

o ke (2 - 12) ko (K2 = K2) = ik (k2 = &2) 2105
D =7D 2 .2\, 2 12 2 12 :
oo (K2 = K2) + iky (K2 = K2) ke, (K2 -
with
yo =9+ 9P (2.106)

yg) represents here the Dresselhaus coefficient obtained to the third-order perturbation series, whereas

72” corresponds to the fourth-order contribution [31]. Both terms originate from antisymmetric coupling

terms P’ and A" present in the T, group and are zeros in the O), group. According to the parameters

“)
D

of the fourth-order term is larger than the third order one. This nontrivial property makes then difficult

in the literature [92], |y;,’| is much larger than |yg’>|, meaning that, counterintuitively, the contribution
to anticipate the consequence of a truncation, possible higher-order development could give significant
Dresselhaus contributions. One need to note that the SOI in an effective Hamiltonian model originates from
the core spin-orbit potential (A and A€) and from the lack of inversion center (A" and P') [31]. In the Oy,
group, P = 0 and A" = O resulting in yg) =0, 753” = 0 and more generally yg’) = O resulting in the

cancellation of the Dresselhaus interaction.

Energy (eV)

k

Wave vector along [110] direction

FIGURE 2.16: Energies of 1 spin (red line) and | spin (blue line) states generated by
Dresselhaus terms.

For the sake of convenience, we define the y vector, ¥ = (xx, Xy, Xz) wWhere, y, = kx(k§ - kzz),
Xy = ky(kf‘ —k2), xz = ky (k2 - k%). The Dresselhaus Hamiltonian admits then the form:

Xz Xx _i)(y

. (2.107)
Xx T 11Xy —Xz

Hp =-ypxy.oc = -2ypx.S =—y

where § = % The Hp in Eq.2.107 is the so-called the D’akonov-Perel’s Hamiltonian [90, 105, 109].
The expression of Hp shows that the electron spin experiences a magnetic field proportional to y, which
depends on the k-direction. Therefore, y is called the internal magnetic field or D’yakonov-Perel’s field.
The internal magnetic field varies both in magnitude and direction and this is known to lead to a spin

relaxation mechanism of conduction electrons (D’yakonov-Perel’s mechanism). The electron’s energies in
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the CB are eigenvalues of the Hamiltonian 2.104 can be written in different ways:

hZ
€= zm*kzin,/)(%+)(y2+)(zz (2.108)

or equivalently:

2
=g ks VoA KR(E — K2)2 + K22 — K22 + K2 (k2 — k)2
", (2.109)
= ok VoA RRKE + K22 + K2K2) - OK2RZA2

The degeneracy of the conduction band is lifted along some peculiar directions but , e.g., neither along
the [001] nor the [111] directions. Along the [110] direction, &£ = 2 j2 4+ ypk?, is associated to the

2m*

maximum spin-splitting [94].

This effective Hamiltonian model in the CB is known to be convenient for analytical development
adapted to III-V semiconductors. However, situations possibly involving interfaces and/or heterostructures
with III-V can be much more complex to solve and implement due to the appearance of higher order terms.
For example, if one considers tunneling along the [110] direction, the appearance of k cubic terms leads
to the discontinuity of the envelope function and requires a re-definition of the current operator and current
flux at the interface in an effective Hamiltonian approach [56, 183, 185]. Generally, it is not easy to find
the new relevant matching conditions for the wavefunction and/or current for electrons tunneling along the
[110] direction.

In order to illustrate that particular point, we will address now several examples and situations involving

III-V heterostructures with Dresselhaus interactions in the CB that we can list as below.

Spin-orbit effect in T; symmetry group materials: The Dresselhaus Hamilto-
nian [54]

When the quantization direction is along [001], the two terms oy ky (k3 - kzz) and oy ky (k2 - k2) are called

in-plane Dresselhaus components, whereas the term ok, (k)zc - kﬁ) is the out-of-plane Dresselhaus com-
ponent. In almost all previous work concerning spin filtering effects working with small oblique incidences
leading to a small value of inplane wave vector k2 and k§ in comparison to k2, the Dresselhaus Hamiltonian

in Eq. 2.107 is simplified, getting rid of the out-of plane to give [54]:

62

a2 (2.110)

I:ID =YD [O’xkx - O'yky]
corresponding to a perfect two-dimensional electron gas (2D electron gas) or at the limit of a grazing inci-
dence of electrons. Up to now, this reduced Dresselhaus form has been used to study the spin-dependent
tunneling [11, 56, 216, 217]. Note that, in Eq. 2.110, the out-of-plane Dresselhaus component has been
totally neglected. In Chapter 5, we will show that the out-of plane Dresselhaus component plays an impor-
tant role in the Anomalous Tunnel Hall Effect (ATHE) [11, 12, 57] and is connected to a new type of chiral
phenomena.

The quantized direction of 7T- and |-spins for various directions of the in-plane electron wavevectors Kk
in the crystal are shown in Fig. 2.17. If k\l is directed along a cubic crystal axis ([100] or [010]) then the
spins are parallel (or antiparallel) to k;, while the spin directions are perpendicular to k if the in-plane
wavevector is directed along the [110] or [110] axes.
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[110]

FIGURE 2.17: Quantized directions of T and | eigenstates as a function of the
orientation of the in-plane electron wave vector k|- Taken from Ref.[54].

Spin filtering effect without ferromagnetism [54]

The Dresselhaus interaction allows one to get a polarized spin current free of the application of external
magnetic field by considering the case of spin-dependent tunneling transmission in the presence of a spin-
orbit Dresselhaus field (Fig.2.17 ) localized within a "thin" tunnel barrier, (Fig. 2.18 ) [54].

) (1)

m, (11 m,
(k. k,) i
_t
PR
0 a 7 || [001]

FIGURE 2.18: Sketch of a three-dimensional model of electron tunneling. Transmis-
sion of electrons with the wave vector k = (k, k;) through the potential barrier V of
width a grown along z. Taken from Ref.[54]

We present here the ideas of Perel’et al of spin-filtering effect. In 2003, Perel’ et al. [54] studied the
electronic transmission with an initial wavevector k = (K|, k) through a rectangular barrier grown along
the z||[001] direction. For the sake of simplicity, the authors assumed that the inversion symmetry is broken

only inside the barrier. The eigenvectors of Eq. 2.110 read:

1(1
X = E(T—ei‘)")’ (2.111)

where k = (ky cos ¢, ky sin ¢, k;). This introduces a correction to the effective mass for T- and |- spins in

the barrier according to

2ypk -1
+M) (2.112)

m+=m2(1_ 2
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where my is the electron effective mass in the barrier with no SOI included. The energy and in-plane

wavevector are conserved upon electron tunneling. The electronic wave functions are,

Wi (r) = us(z) exp(ik) p), (2.113)

where k| = k, + ky, and p = (x,y). The functions u,(z) are solutions of the Schrédinger equations in each

layer: left electrode, barrier, and right electrode according to:

ul(z) = explik.z) + r. exp(ik.z), (2.114)
u(z) = Asexp(-qs2) + Bsexp(q:2), (2.115)
ul™(z) = 1. exp(ik,z), (2.116)

where g.. are the wavevectors in the barrier for the spin T and spin | populations, respectively:

W \/z,Z;V B "3% -2 (’% _ 1), (2.117)
g = J (2’;2‘/ - k?Z—j) (1 + %)_1 - k2 [Hmf (1 + %)_1 - 1]. (2.118)

In the limit where (2yk|ma/h?) < 1, we get:
g ~ \/(2;:§v - kf"mij) (1 + W)_l -2 (anj - 1) (1 + w)_l’ (2.119)

2mpV. k2m
hZ Z mq

where go = \/ ( ) - kﬁ (ﬁ—f - ) is the wavevector in the barrier when the Dresselhaus term is
neglected.

To anticipate the discussions on the matching conditions needed for the description of interface cross-
ing, the BenDaniel Duke (BDD) [218] matching conditions are used here in the case of the CB: u and
(1/m) (0u/dz) are continuous at the interface. Note that the small spin-dependent renormalization of the
effective mass induced by the Dresselhaus Hamiltonian can be neglected in the boundary conditions, since

it produces only a small correction to the pre-exponential factor in the final expressions, thus leading to:

k;q+
o= 42 "l exn(—gea—ikya) (2.121)
* my (g — ik,my/my)
.3 kqu . ( kamZ)
x —4i—=——1 _ exp(—qgoa —ik,a)exp|+—=———=
my (qo — ikzma/mq) p(~4 za)exp 2
k nmsy
~ fyexp (imh—;),
where .
to = —4i—2 240 exp(—qoa — ik, a), (2.122)

m1 (go — ikyma/m1)*
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is the transmission amplitude when the SOI is neglected in the barrier. Equation. 2.121 presents the differ-
ence of transmission between T- and |- spin electrons. The spin polarization [54] is then:

P -l

- 2 2
2| + 2|

- tanh (ZyD mhzzk ! aqo) . (2.123)
which clearly depends on the barrier thickness. Using a systematic expansion to the first order in v, Nguyen
et al. [183] considered that Dresselhaus terms do not re-normalize the effective masses of - and |- spinors
in the barrier but a renormalization of effective mass alters the wavevectors. In the limit of a small in-plane
wavevector they recovered Eq. 2.123. From these results, it is possible to state that the in-plane Dresselhaus
components play a very important role for spin filtering, whereas the out-of-plane component may be ne-
glected in this particular case. In contrast, the latter one will make the specificity of the Anomalous Tunnel
Hall effect (transmission asymmetry of opposite in-plane wavevectors) via a new type of chiral phenomena,
that we will discuss in the next part. We now turn on to the case and description of the VB admitting also
an effective Hamiltonian up to the second order of the perturbation (or higher).

The effective Hamiltonian in the valence band [29]

We now describe the effective model in the valence band that we need to describe spin-transport phe-
nomena in (Ga,Mn)As based heterostructure. Similarly to the conduction band, the second order
Lowdin’s perturbation method in {I'7,I'g} described by a 6 X 6 k.p Hamiltonian for VB in |J,M) =
{13/2),11/2),| = 1/2),| = 3/2),|7/2),| — 7/2)} leads to the following Hamiltonian form [29, 53, 93, 185]

13/2) 11/2) | -1/2) | —3/2) 17/2) | =7/2)
k2 +U B C 0 %%A V2@,
cc —y1k? - U 0 ¢ —V2U, ~{38
A 3 g
HVB — cc cc —’)/1]{2 -U -3 - Q%A \/illA (2124)
T * 1 *
cc cc cc —y1k? + U _\/iqu \/—EQSA
cc cc cc cc -A—vya1 k2 0
cc cc cc cc cc —-A —7ya1 k2

where the Luttinger parameters in the matrix 2.124 are introduced in Ref [29]. These Luttinger parameters
in the VB possess no specific contribution arising from the lack of inversion center. It means that this
effective Hamiltonian applies for both Oy, and T;; symmetry groups as well. In this picture, the SOl in VB is
introduced through the core spin-orbit parameter A. This particular shape of the 6 6 projected Hamiltonian
was firstly proposed by Luttinger-Kohn from general arguments of invariant theory [219]. Note that one
can also use the effective Hamiltonian for VB in the |L,S) = |X T),|Y T),|Z T),1X 1),|Y |),|Z |) basis set
given by the transformation:
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-L _iL 9 0 0 0 ]
13/2) e o X1
11/2) 0 0 2 -% & o ¥ 1)
1 i 2
L A AL iz
||—71/3£>2> 0 0 0 5 -5 0 Ié b) (2.125)
1 2 - [2
o o L \/; l\/; 0
| =7/2) 1 _i 9 0 0 -1 Z 1)
L V3 V3 V3
Sometimes for convenience, we also use the transformation below:
1 i 1
-L 0 -L 0 0 0
13/2) oo X 1)
_ 1 _ L 4
11/2) 0o % o &£ B o X 1)
1 i 2
-p| g 0 0 o Gl
— 1 _ L
||7%>2> 0 5 0 5 0 0 :Z #i (2.126)
2 - [2 1
0 2 o W2 L o
|-7/2) 1 o -Li o 0 -1 |Z 1)
L V3 V3 V3
1 HH T (a) 0.6 HH )
s
o5 / 0.4
- — 0.2
o @ =,
e ]
=< =< 0.2
-0.5
-0.4
-1 - - : -0.6
-1 -0.5 0 0.5 1 -06 -04 -0.2 0 0.2 0.4 0.6
K, A" K, A7l

FIGURE 2.19: Constant energy surface of Heavy Holes (HH) and Light Holes (LH)
in the GaAs band structure with Ef = —0.1 eV and Ey = -1 ¢V, Figure (a) and (b)
respectively.

One observes that, within the small k regime, the matrix 2.124 may be divided into two matrices com-
prising an upper left 4 x 4 matrix and lower right 2 X 2 matrix [53, 220] since the blocks of 2 x 4 give rise
to an error of the order of %. The 2 X 2 matrix gives the energy of the doubly degenerate J = % (I'7 band)
as [53]

(2.127)

h2k2 h2k>2 2 P2 202
2m 2m

1
Ejo= —— + =M’ + L)k* —Ag = -Ag+ — |1 - = + -
0 3( ) 0 0 3 \m(Eo + o) m(Ey + Ag)
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0.0514
0.0512
0.051
0.0508
0.0506
0.0504
0.0502
0.05

0.12
0.152
0.118 0.15
0.116 0.148
0.146
0.114
0.144
0.112 0.142
0.14
-0.1 -0.1
-1 . - -1 -0.2 -0.2 R
k, (A7) k (A k, (A7) k (A1)

FIGURE 2.20: Fermi surface of heavy hole (a,c), light hole (b,d) and SO band (e,f)
with Er = —0.1eV (a,b), Ef = —1eV (b,d,e) and Ef = —1.5¢V (f).
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TABLE 2.5: Valence band parameters A and B in units of % Taken from [53].

A B IC12 | Ao(eV) | mpn/mo | mpu/mo
Si -4.28 | -0.68 24 0.044 0.50 0.15
Ge -13.38 | -8.5 173 | 0.295 0.43 0.041
GaP -4.05 -0.98 16 0.08 0.51 0.16
GaAs -6.9 -4.4 43 0.341 0.73 0.08
GaSb | -13.3 -8.8 | 230 0.75 0.98 0.04
InP -5.15 -1.9 21 0.11 0.44 0.11
InAs | -20.04 | -16.6 | 167 0.38 0.4 0.026
InSb | -36.41 | -32.5 43 0.81 0.48 0.013

Thus, the constant energy surface for the j = % split-off valence band is spherical and the band dispersion

parabolic. The 4 X 4 matrix gives the solution for energy:
E.= AK? = [B24 4 €2 (k2K2 + K2K2 + 1242 | (2.128)

The Eq. 2.128 was first derived by Dresselhaus et al. [89]. Here, the constants A, B and C in 2.128 are

related to the electron momentum matrix elements and energy gaps which are given by [53]

2 2 2
2m,_ 1 2| 2&
K2 3 | mEy mEO
2 2

mp 2| P 07 (2.129)
h2 3| mEy mE,

2m \*_ 16P?Q

h2 a 3mEomE(')

For convenience, one may define the constants A, B and C in the units of hz/ 2m. In the table 2.5, we
have listed the values of the constants A, B and C for several semiconductors taken from [53].

Equation 2.128 gives the dispersion of the I's bands near the zone center I' and valids only for energies
small compared to the spin-orbit splitting. Moreover, from Eq.2.129 both A and B are negative since the
leading term in Eq. 2.129 is % > 1. Consequently, the effective masses of those bands are negative.
Since the valence band represented by E, in Eq 2.128 is characterized by a smaller dispersion and hence
a larger mass, it is generally referred to as the heavy hole band, while the band represented by E_ in Eq.
2.128 is known as the light hole band [29, 53]. We now denote these two hole bands energies as Ep gy and
Er g given by:

Enn = —AK? = | B4+ C2 (142 + k212 + k22 | (2.130)

Epip = —AK? + [ B4 + C2 (K2 + k22 + k242 | (2.131)

The constant energy surfaces of heavy hole and light hole for GaAs calculated by k.p method are shown
inFig 2.19, where k,, ky, and k; are along [100], [010] and [001] directions, respectively. The shape of these
constant energy surfaces are referred to as warped spheres [53]. This warping occurs along the [100] and
[111] directions because of the cubic symmetry of the zinc-blende crystal. One may argue that these warped
spheres are the only possible shapes for constant energy surfaces described by a second-order equation in

cubic crystals. The hole band dispersion along the [100] and [111] directions are parabolic, however, the
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hole effective masses are different along the two directions. For the [100] direction, one has:

1 2
- = —2(—A + B) (2.132)
mygH h
1 2
— =—(-A-B 2.133
p— hZ( ) ( )
whereas along the [111] direction, one has:
1
1 |C|2 2
—— == |[-A+B|l1+ — 2.134
mpgg h ( 332) ( )
1
L—E—A—B 1+g2 (2.135)
mry T B2 3B2 )

One observes that the warping of the valence bands is caused by the term |C|%, which is proportional to Q2.
If the term B2 is much larger than |C|?/3, then the warping can be neglected and one obtains my g ~ 3m /2.
Note that Q2 is crucial to mp g, because if one puts 02 = 0 then we obtain the incorrect result my g = —mo.
For simplicity, one may assume that the valence band masses are isotropic [53]. In such cases, average
heavy and light hole masses m, ,, and mj ;, can be obtained by averaging 2.133 and 2.135 over all possible
directions of k to obtain:

1 1 2|C|?
HH
2
! = l -2A-2B[1+ 2IC1 (2.137)
w2 1582

The constant energy surfaces for the valence bands as described by Eq.2.128 possess inversion symmetry:
E(k) = E(—k) (see Figure 2.20), even though the crystal may not posses such symmetry. This is a con-
sequence of time reversal symmetry: two Bloch waves corresponding to k and —k wavevector, admit the
same energy [29]. Furthermore, in the four-band approximation, only the heavy holes and light holes are
taken into account while the spin orbit-off bands are neglected. This four-band model has been proved
to be a very good approximation for not only the optical matrix elements but also the energy levels in
GaAs/AlGaAs quantum well structure [221]. This because in GaAs/AlGaAs quantum well, the spin-orbit
splitting energy A is larger than the quantum confinement energy of holes. However, the effect of SO
bands should be incorporated for rigorous calculations of the valence band structure. This effect becomes
significant in strained quantum wells such as InGaAs/GaAs quantum well [221].

Finally, one has to point out that there is an alternative approach to describe the valence band dispersion
for diamond and zinc-blende semiconductors which was proposed by Luttinger. Using the group theory,
Luttinger derived an effective k.p Hamiltonian appropriate for the I's valence bands:
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Hp = ~—

2m 2

5
(’)’1 + —72) V2 = 2y3(V.J)? + 2(y3 — y2) (Vﬁjﬁ + C.p)] (2.138)

where 1, y2 and 3 are the well known Kohn-Luttinger parameters; J = (Jy, Jy,J;) is an operator whose
effects on the I'g valence bands are identical to those of the pseudo-angular momentum operator on the
J = 3/2 atomic states, and c.p stands for cyclic permutations. The first two terms in 2.138 possess spherical
symmetry while the last one represents the effect of the lower, cubic symmetry. One may observe that
the warping of the valence band is directly proportional to the difference between y5 and y3. The Kohn-
Luttinger parameters are related to the coefficients A, B and C in Eq.2.128 by:
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h2
Eyl = _A (2.139)
hZ
2 2 211/2
LI [BT f_z] (2.141)

Exchange interactions and strain field.

We have already described the p-d exchange interactions in chap 1. In the following section, we present
here the mathematical and physical description of the interactions of p-d exchange which is compatible with

k.p platform technique largely used in this work.

Exchange interactions

The p — d exchange interactions appearing in the VB are introduced through the Hamiltonian matrix as

proposed by Dietl et al. [87] as well as in [222] in different approaches:
H,.. =3Bgs.m (2.142)

In this work, we expand the model proposed by Dietl in Ref.[87] for electrons in the CB with different
values of Bg like classically considered. Using the Bloch functions basic set based on |j,m) states, one

may write the exchange Hamiltonian in n — band k.p model as:

exc

0 HVB

exc

Hexe = (2.143)

HCB 0]

where HSE is the block exchange Hamiltonian in the CB and HY.2 is the block exchange Hamiltonian in
VB.

o Band structure of GaMnAs

1
0.0491_HH 1

Energy (eV)

031
0.4
K /M
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0.5 : —>
0.3 0.2 -0.1 0 0.1 0.2

Wave vector k_along [001] direction A7

FIGURE 2.21: Valence band structure of GaMnAs along [001] direction via 30 — band
k.p model with exchange energy equal 0.05 eV for two cases of magnetization
direction: perpendicular and parallel to the growth direction.
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For instance, if we write the exchange Hamiltonian in the 14 — band k.p model, then:

CB _
Hexc -

(2.144)

T
HSS 0
0  H.

and
HYE = H's, (2.145)

exc

where Her;‘cj is the block exchange Hamiltonian in the I's¢ subspace, Her}w is the block exchange Hamilto-

nian in the I'; subspace, and Hgf;c is the block exchange Hamiltonian in the I's space. If we write:

sm = (s_my + sym_) + s;m, (2.146)

after having defined s, = (szﬂ and my = (my +im,) then the exchange Hamiltonian in I's acting on the

spin degree of freedom can read:

13/2) 11/2) 1=1/2) |=3/2) |7/2) [|=7/2)

3m, V3m_ 0 0 —Vém_ 0
V3m, my 2m_ 0 2V2m, —V2m_
W, =g | 0 2w N3mo N2me o 2V2m, (2.147)
e G 0 0 V3m,  -3m, 0 Vém,
—\/Z6)m+ 2V2m,  V2m_ 0 —m, —-m_
0 -V2m, 2V2m, Vém_ —my my
whereas the exchange Hamiltonian in I'; is
ST 1S ST 1S
3m 3m_ m m_
H,}. = By} ‘ =3By | °° 2.148
exe G ( 3my -3my, ) S\ my -my ( )

The exchange Hamiltonian in the second CB is similar to Eq.2.147 but we replace the coefficient B(r;5
by Bgsc. Furthermore, one can easily extend this model in the same way for 30 — band or 40 — band k.p
Hamiltonian model. Figure 2.21 displays the band structure of GaMnAs calculated via 30-band k p giving
the same results in comparison to via 6-band model [223].

Description of the strain field [224]

Today’s semiconductor industry is facing lots of critical challenges such as the high gate leakage current for
very thin gate dielectrics, or the high power dissipation for small transistors, etc. Therefore, an innovative
techniques like strain engineering could be used to solve or circumvent the arising problems. The influence
of strain on the intrinsic mobility of Si was first investigated in the early 1950 [225] and demonstrated
that n-channel MOSFETS on a strained Si substrate, exhibit a 70% higher effective mobility than those on
unstrained substrates, in 1992 by Welser et al.[226]. Since then, semiconductor industry has adapted several
different technologies to introduce strain in the Si channel of MOSFETs. In the context of spintronics and
spinorbitronics, using strain to control spin-polarized current has attracted much attention. Recently, the
possibility of using strain to control electron-spin precession in zinc-blende structure semiconductors has
been demonstrated [107, 227]. The spatial part of the conduction electron wavefunction is modified in the
presence of strain, which affects the electron spin degrees of freedom due to spin-orbit coupling [228-230].

Theoretically, the effect of strain in semiconductor can be easily included in framework of k.p method

and this section is devoted to do that. In particular, we now present the approach to treat the effect of an
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homogeneous strain within the k.p framework [224]. It is worth to note that one may not treat the strain
effect as a perturbation because it is not really small and besides, strain changes the periodicity of the crystal
[176]. In the uniformly deformed crystal, the potential is still periodic except that the function V(r) is a
different potential from the undeformed potential Vy(r) and the difference V(r) — V(r) can be of the order
of Vo(r) [29, 176, 179, 224]. On the other hand, in perturbation theory, the wavefunction of the perturbed
system is expressed as a superposition of the wavefunctions of the unperturbed system. These two sets
of wavefunctions satisfy the same boundary conditions defined by the lattice periodicity. However, strain
would change the lattice periodicity, and, consequently, changes the periods of the lattice periodic functions
Y (r) in Bloch waves. Therefore, to avoid these difficulties, Pikus and Bir [176] have used a coordinate
transformation to make the deformed and undeformed crystals to have the same boundary conditions. Under
strain represented by the strain tensor €, the coordinates of the deformed and undeformed crystal are linked
by the transformation [29, 176, 179, 224]

r£ =r + Z €l (2.149)
J

where r;,7; = x,y,z. In the vector form, one has:

r=Q0Q+ér (2.150)
and the inverse transformation is given by:

r=1-ér (2.151)
Correspondingly, the transformation for the reciprocal vectors is given by:

k=(1+ék (2.152)

Using the above transformation, V(r”) can be expressed as a function of r with the same boundary condi-
tions as those of Vo(r):
V(') = VI +&r] = Volr) + ) Vije (2.153)
i,j

where
(2.154)

VI1+6ér]-V oV

, = lim VIL+ N1 = Vo) _ oV

e—0 €j (36,' j

that is related to deformation potentials. The crystal potential V(r) is assumed to be the sum of the potentials

of the individual ions, and the deformation of the lattice causes only a displacement of lattice site R,

without distorting their potentials. Thus,

VI +é).r] = Vo(r) = Z Val(1 + €)(r = Ry)] = Vu(r = Ra)

B AV,(r — Ry) (2.155)
n o ij
to give:
1 oV,(r — Ry) oVy(r — Ry)
wrzg[ G Ra) + (= Ry) (2.156)

here V,(r — R,,) is the atomic potential for an ion located at R,. It is appropriate to assume that V,(r)

possesses a spherical symmetry, and thus the derivative of it with respect to r;, is an odd function of r;.
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Since 5 o o ) ;
7
T e g A Tirv 2.15
or; Z]] dr; orj  Or; Z]: K ar; (2.157)
we have:
p =p1-¢ (2.158)
and
[7 =p _22[7161117/ (2.159)

ij

We now consider the transformation of the Schrédinger equation 2.29 in the form
h
— + V(r) + (VV(r) Xp) S| Wni(r)=EYy,x(r) (2.160)

under the strain.

In the new coordinate system, we have:
’ h ’ ’ 4
o PV o (v V(r'yx p ) W,k (F) = E¥p i (r) (2.161)

The goal is to re-express Eq. 2.161 in terms of unstrained coordinates and new terms linear in the strain

tensor by using Bloch function basic set in the new coordinate system as:

Wk (1) = ) Con @i (') (2.162)
with
0,4 (r') = €™ Y (r”) (2.163)
Then one gets:
P ’ h i’ ’ ’ i ’ ’ ’ ’
Iz—mO V() + PR (o xV'Ve) .+ ok (p s o x Vv )])l Ve ()
2,2 (2.164)
2k )
E, (k) - _Zl Yk (r’)
2mg

As we argued previously, one may neglect the term . z K (0’ xV V(r’)) in comparison with

. 2 = (0' xV V(r’)) .p'; moreover, using Eq. 2.153, Eq. 2.158 and Eq. 2.159, after doing some cal-
culatlons and neglecting spin-orbit effects in the strain energy for sake of simplicity we can re-write Eq.
2.164 as:

2,2
Hp + ik.p + —h k + ——(VVXxp)o+He+He | Yo (r') = E(k)(r') (2.165)
mo 2mg 4mgc2
where

P2
Ho= — +V(r) (2.166)

27’)10

1
He= Y |——pip; + Vi | &; 2.1
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2h
Hy = _m_o ; ki€ijp; (2.168)
The term H¢, = _% D J ki€;jp; in Eq. 2.165 accounts for the interaction between the strain and

the momentum of the carriers, whereas the deformation potential operator H, = Z,-j (—mio pipj + Vl-j) €
describes the change in the potential and the kinetic energy of carriers due to the strain itself [29, 176, 179].
In this work, although we did not consider the effect of strain field but one may easily include the strain

field in our 30 or 40 multiband k.p platform and we plan to do it in the short future.

Density of states and Fermi energy

In the following, we are going to give some insights into important definitions and notions of the electronic
band structure and correlated physical parameters that we use throughout the manuscript, the density of

sates and Fermi level.

Density of states

Together with the shape of constant energy surfaces shown in Fig.2.20, the density of states is often an
important quantity entering a number of physical properties. The general definition of the density of states
is:

DE) =< > 6(E = Ene) (2.169)

nk,o

<Ir

where V is the volume of the crystal, n is the band index, k is the wave vectors and ¢ is the spin quantum
number. The quantity D(E)dE describes the number of quantum states in the energy interval [E, E + dE]
normalized to the volume. The functional form of the density of states depends only on the dispersion
relation E, .

Integrating the density of states over energy up to a maximum energy bound results in the total number

of states (per unit volume):

E E
’ n _ 1 ’ _ 1 —

/dE D(E') = V/dE Z 6(E - Emo) = Z 1= N(E) (2.170)

o "o nk,o nko||E ko <E

correspondingly,
dN(E)

E)= 2.171
D(E) = — (2.171)

This relation is frequently used for analytical calculations of the density of states when the dispersion
relation is well known.

Otherwise, Eq. 2.169 can be solved numerically by the procedure depicted in Fig. 2.22: dividing the
k-space and energy, at each k, one can obtain all possible values of energy E, then counts the number of
E, between [E,E + 6E].

Fermi level

The electron concentration 7. in thermal equilibrium is expressed as:

fe = / D(E)f(E)dE (2.172)
0

84



Chapter 2. Oy, and T, semiconductors: The electronic band structure

FIGURE 2.22: Scheme of construction in k-space to calculate the density of states in
three dimensions. The shells have radii k and k + 6k corresponding to energies E
and E + 6E.

where f(E) is the Fermi-Dirac distribution under thermal equilibrium (in general, f(E) is the temperature
dependent occupation probability under thermal nonequilibrium when one considers the electron concentra-
tion under thermal nonequilibrium) which becomes unity at absolute zero when E is less than Er and zero

when E is greater than Er:

1
fE) = —Z— (2.173)
e k8T +1

The Fermi-Dirac distribution implies that at absolute zero (ground state of a system), the largest Fermion
states (electron, holes, etc.) are filled up to an energy which is called the Fermi energy. Here we specifically
define the Fermi energy at absolute zero. Finally, Figure 2.23 displays the DOS of GaAs and the Fermi
level as function of carrier concentration in this semiconductor. These calculations were done in framework
of 30-band k.p model showing good agreement with DFT calculation in Ref [46].
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FIGURE 2.23: The density of states (DOS) and Fermi level vs carrier concentration
calculated for GaAs in framework of 30-band k.p method.
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Chapter 3. Modeling of spin-polarized transport within semiconductor heterostructures in a k.p
multiband picture

In this chapter and following subsections, we consider the quantum matching conditions fulfilled by the
electronic wavefunctions and electronic current at the various interfaces within multilayer structures. The
set of matching conditions arises from the resolution of the Schrodinger equation within each layer with
correct boundary conditions depending on the particular interface properties and related symmetries such
as the Tq — C,, reduction at the scale of some unit cells [44]. The physical issues related to wavefunction
and electronic current matching are of a primary importance, because the issue of interface crossing for
carriers (electrons or holes) is encountered for the correct description of the quantum states of materials;
e. g. to describe correctly optical properties of optically active regions (or quantum wells) as well as spin-
resolved Boltzmann diffusion equations for both in-plane and out-of-plane diffusion transport [231-234].
More generally, the particular matching conditions are to be generalized in order to take into account the
local spin-orbit field starting from a simple 2 X 2 spinor vision towards a multiband approach involving
the orbital degree of freedom. The reason is that the interface crossing (or scattering) derives from a pure
quantum-mechanical process where spin-polarized carriers mainly behave more like waves than particles.
These observations partly explain the choice of dedicating a full chapter to the matching conditions.

For the case of semiconducting heterostructures largely developed in the present manuscript, we have
chosen to consider the standard multiband matching conditions possibly involving extrinsic SO surface
potentials although, in the particular case of Ty compounds, interfaces break the bulk symmetry group
into the Co, symmetry responsible for the mixing between heavy holes and light holes. These particular
matching conditions for the C,, symmetry have been proposed at the IOFFE institute in 1996 [30] in a first
4-band and 6-band approach before their generalization to a 14-band treatment very recently [31]. These
particular matching conditions have been implemented in our 14-, 30- and 40-band k.p codes without high
complexity. After having given a set of consistent matching conditions for quantum wavefunctions and
current waves at each interface, one may easily describe the properties of an electron tunneling through
multilayered structures such as resonant tunneling, bound states and quasi bound states in quantum well
structures via transfer or scattering matrix approach. Besides, the well known Landauer formalism gives
the relation between the electrical conductance and scattering properties of the system in the simple form.

In the following, we first describe the matching conditions for unpolarized electrons in the CB before
generalizing to the case of the spin-polarized multiband transport involving both the CB and VB of semi-
conductor heterostructures. Then we discuss the matching conditions involving interface potentials and the
matching condition for an effective Hamiltonian of electrons in the CB tunneling through a [110] barrier
structure under normal incidence as in Ref.[183]. In order to valid our multiband k.p platforms for a con-
sideration of tunneling of an electron through a heterostructure, we will demonstrate the cancellation of
the interference terms for the current as well as the negligible contributions of ghost bands on the current.
Then an important Landauer formula will be recovered from the expression of the wave current performed
by k.p technique. As an example of heterostructure to be considered, we present a calculation method for
resonant tunneling through GaAs/AlAs quantum well structure and give descriptions of bound states as well
as quasi bound states in this quantum well structure via scattering matrix approach developed in Appendix
C. For matching condition with surface potential at the interfaces, we consider the structure with reduction
from To4 — C3, and adapt the matching conditions proposed by Ivchenko et. al and Durnev et al. in the
framework of 6-band and 14-band k.p model, to our multiband (30- and 40-band) calculations. Noting that
the matching conditions should satisfy the fact that the current is conserved within whole structure, we then
give a limit for the application of Durnev’s matching conditions within multiband k.p Hamiltonian. After-
ward, we discuss the properties of wavefunctions and splitting energy in quantum wells from our numerical

calculations in comparison with the results of Ivchenko [30] and Durnev [31].
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multiband picture

KN Matching conditions for tunneling within heterostructures

Tunneling and electronic transport is a starting point but it is however a complex problem in fundamental
quantum physics, which is important for application. For example, electrons can be transmitted through
a tunnel barrier whose the first accessible propagating electronic states lies at an energy higher than the
incoming electron energy. Let us consider for instance free electrons tunneling in one dimension, for which
the Hamiltonian in the whole space is written: [218]
H= ﬁ + Wob(x) = —ia—z + Vob(x) 3.1)
2m0 (9 2
where my is free electron mass, V; is a certain constant potential and 6(x) is the Heaviside function.
A possible approach is first to establish the continuity of the wave function derivative by integration of

the Schrédinger equation 3.1:

+e

Y(x)dx = /S‘I’(x)dx

/[ 2m o 2+V09(x)

+e (3.2)
o 92
@/ ——‘P(x)dx = /[s - Vol(x)] P(x)dx
2mg dx2
—€ —€
Taking the limit when € — 0, because of the term & — Vp0(x) is bounded, we obtain:
+€
liII(l) / [e = VoO(x)] P(x)dx = 0 (3.3)
€E—
Then, the Eq. 3.2 becomes:
a +e€
lim [—‘P(x)] dx =0 (3.4)
e—0 | dx _e
Eventually, the probability current has to be continuous, i.e,
A 0
J[¥] = Re [\P*i\y] = m ‘P*—‘I’] = const (3.5)
mo mo ox

Consequently, a sufficient condition for the charge current conservation is now given by [¥] = = 0 which
provides us the standard matching condition, namely the continuity of the envelope function and of its
derivative.

However, the problem becomes more complex when an electron propagates through an heterostructure
made of different or inhomogenous materials, where in each medium, the system is described by its own
bulk Hamiltonian. We then need to define the proper matching conditions at each boundary. In this situation,
the standard matching condition is known to be the simplest one to be considered [218]. Let us introduce
the BDD ideas for the matching conditions in one dimension. Suppose that an electron tunnels through
an interface delimiting two different media at x < O and x > 0. As mentioned before, each medium is
characterized by its own Hamiltonian and one must find a solution of Schrédinger’s equation, made of
eigenvectors of relevant bands in the two bulk materials, ensuring the continuity of the probability current
at the origin. In this sense, the problem is analogous to a scattering problem, where the wave functions

are determined only at some distance of the scattering potential. Proper matching conditions rely on the
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extension of the bulk envelope function over the whole space. In an effective mass point of view, the BDD
proposed to write the Hamiltonian in the whole space as:

p>

Zm(x)

+V(x) = %pxa—H + V(x) (3.6)

H(x) = 6p

1
+V(x) = px %Px
X

where myy, is the effective position-dependent mass and V(x) is the potential in each medium. This proce-
dure yields a symmetric Hermitian Hamiltonian which is mandatory. The integration of the Hamiltonian
in Eq. 3.6 around the boundary automatically ensures the continuity of the probability, provided that both
Y(x) and electronic current ((,?’J—Fi) Y are continuous. The BDD matching conditions are well known as
standard matching conditions for electrons in the CB and have been applied with success to a variety of
situations. However one must note that these conditions are not valid in the systems described by Hamilto-
nians including terms with momentum operator power of order larger than two, along the flux direction as
well as surface potentials.

When one works with a complex system including e.g. k> terms, corresponding to Dresselhaus interac-
tions in an effective Hamiltonian approach, it is, generally, no longer possible to treat the transport in the
standard way. The general solution is to increase the number of bands to consider in the general Hamilto-
nian form so that each matrix element of the Hamiltonian only involves off-diagonal k coupling terms with
power strictly lower than three. In a special case when the k> terms are perturbations, such as the case of
an electron in CB tunneling through [110] at normal incidence, one may redefine the matching conditions

as in the work of Nguyen et al. [183].

Standard matching or boundary conditions

We now discuss the standard matching conditions in framework of the multiband k.p methods where it
is possible to include SOI and exchange interactions. This peculiar issue arises when one considers the
crossing of ferromagnetic/spin-orbit layers in semiconductors as well as metallic spintronics systems like
recently emphasized in papers dealing with the problem of spin-orbit transport and Spin-Orbit Torque (SOT)
via the Spin Hall effect (SHE) as well as Spin-Hall magneto resistance (SMR). As mentioned before, the
SOI associated to the lack of inversion center leads to the appearance of a cubic term, i.e, Dresselhaus terms,
in the conduction band. It implies to modify the standard matching conditions or consider the cubic term as
perturbation. Another solution, which is adopted in the present work, is to work within a larger set of basis
functions to decrease the order of the momentum, for example, using 6 bands or 8 bands (not possible to
describe the odd term without including perturbation of higher bands) or 14 bands, 30 bands, and 40 bands
(mandatory to describe the odd potential term) model instead of a 2-band effective model. In this point of
view, it becomes necessary to redefine the proper matching condition for multiband transport. Let us start

with the Hamiltonian without exchange interaction given by:

h
H:—+V+—2(VV><p).o- 3.7)
4mgc?

For convenient, we re-write Hamiltonian 3.7 in the more general form [183, 235-237]
H:Zajpj+2bjkpjpk (3.8)
J J.k

where p; and py are the components of momentum p; whereas a; and bji (j, k refer to Cartesian coordi-
nates) are n X n Hermitian matrices operating with the spin space and invariant under permutation of j, k.
To describe the potentials independent of the momentum, e.g., the exchange potential or external magnetic

field, as well as surface potential, we introduce Hy as a supplementary term in Eq. 3.8.
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We have intentionally chosen to give the exact derivation for the current and spin current operators in a

multiband approach. From Schrddinger equation, we obtain:

9¥)
== = H|¥) = ; a;p;|¥) + ]Zk bjrpipk|'¥) + Ho|'P) (3.9)
Taking the Hermitian conjugate, we have:
oY
—ih= = Z(pj‘ﬂaj + D (pipiPlbjx + (¥|Ho (3.10)
J.k

The conservation equation related to the density of probability or ’continuity equation’ follows quite

straight-forwardly from the following development:
6‘P> <6‘I’
+

oY)
ih =ih [<‘I‘ 3 r ‘I’>]

ot
= > (Plagpi 1) + D (Plbjupipil¥) = Y (pj¥la¥) = D (pipx¥Ibj¥)
J J.k J J-k

(3.11)
= | D Wlapi1¥) = > (o Wla;®)| + | > (Wlbjupipkl®) = > (pipi¥IbP)
J J J.k J.k
Since (p;¥|a;¥) = (¥la;p;|'¥)* and (p;jpr¥|bjx¥) = (¥|bjipjpr|¥)* we get:
o(P|v)y 2
o = 5 Im ;wjm% +jZk<w|bjkpjpk|W> (3.12)
Moreover, let us demonstrate that:
2
Im | ) (Plapj|¥) + > (¥Ibup;pel¥)| = = ) V; (ReC¥|J;¥)) (3.13)
J J-k J
where J; is the j™ component of wave current operator J [235, 238]:
0H
Ji=5- =a;+2 ) bupy (3.14)
P; P
One obtains:
_ Y ip Yyp
Re(¥|J;|¥) = ; ( ( : +bjkpk) \y(\y> + Zk“ <\11| : +bjkpk|‘P> (3.15)

to give

V; (Re(P|J;|9)) = {;(( +b,kpk)k1') >+;< ‘ +bjkpk|‘l’>} (3.16)
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Note that V; ; and (a;)" = a;,(bjx)* = bjr. We first consider the derivation of the first order
components in 3.16.

e 1 e M )

; ; 9 (3.17)
= 20 (¥l ¥) = T{(Plaip,¥) - (p, ¥l W)} = —=Im(¥la;p;¥)

And the derivation of the second order components in 3.16:

{ [(¥1bjkp¥) + <bjkpk‘PI‘P>]} = %Zp,- {(P1bjepi¥) + (bjp Y1) }
k

LS (Bl pic®) — (B Ibjpi®) = (bjpi P ) + (b p, )

k (3.18)
= L ((Plbjpipe®) - (oY) + h2(<b,kpk~1’|p]w> (P ¥lbjxpi¥))

k

T h

Sk I
[\

=<5 2 I bpspt) + ; (Grpc®lp;®) =y ¥lospcY))

Then, from Eq 3.17 and 3.18:

, .
V) (ReQPLTj W) = == 3" Im(¥l(ap; + bjcipe)®) + 7 (Bixpi I, ) = (8 ¥lbpi V)
k

k
(3.19)
to get:

) .
DUV (Re(HI,1¥)) = = 3 Im(¥l(a;p; + bypipi)¥) + 3 > ((bjepi¥Ip;¥) = (b Ibjepic?))
J J.k

.k
(3.20)
Because:
D (bpi¥lp, ) = Z<pk\P|bjkp,\P> = Z<p,\P|b]kka> (3.21)
Jj.k
hence
2 (upe¥Ip, ) = 0 VIbap D)) = 0 (3.22)
ok
Combining Eq. 3.12 and Eq.3.20 we get:
(YY)
5 = Z V, (Re(¥|J;|¥)) (3.23)
Thus, for a stationary regime (time-independent):
V; (Re{¥|J;|¥)) =0 (3.24)
where:
DUV, (Re(PII ;1)) = -2 Z Im{¥\(a;p; + bjpjpr)'P) (3.25)

J J-k
Equation 3.24 demonstrates that the current (\¥|J ;|'¥') is conserved, at least in each layers of the het-
erostructures separately. In the next section, we will show that is also true within the whole heterostructure
upon requirement to define the proper current operator from the Hamiltonian and the correct boundary
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conditions. And finally, the continuity of both wavefunction ¥ and current wave J ;'¥' are sufficient condi-
tions which ensure that the probability current is continuous at an interface. We will show, afterwards, that
the charge current remains constant in heterostructures independently of the electron coordinate within the

heterostructure.

Extended matching conditions with surface potentials at interfaces

In this part, we discuss the matching conditions to be used in quantum wells and heterostructures involving
possible surface potential at a given interface. The surface potentials may arise from Rashba effect [37],
strain [176] or symmetry breaking at the interface [30, 31] and are essential to be taken into account because
they represent the effects of the electronic wavefunction originating from a possible strong potential present

in the lattice at the scale on typically a few atomic cells from the interfaces in the heterostructure.

The Tight-Binding picture

Such peculiarity can be more easily observed if one adopts a tight-binding scheme for an electron moving
close to the interface between two materials A and B. For the tight binding Hamiltonian in the second

quantization form:

Hrp = Z tijé(x)&;&,- (3.26)
i.J
where a; and &;F are the annihilation and creation operators for the sites (i) and (j) respectively, and from

the expression of the density operator:

0= Z a*a; (3.27)
i
the divergence of the current operator reads:
d i i At A nt A
d_f =7 [Hrg,p] = % Ztijé(x)a}rai,z ay dg (3.28)
i.J k

For the i — component of current operator:

%H}B oy (3.29)

dp; i At A
% = _VJi = % ;tijé(x)a}rai —C.C =

where c.c is the complex conjugate; H} g is the local surface potential at the interface (i), giving after
integration:

e ri 2i i
Jf fl’ _Jl ght — EIHTB (3.30)

that is the expression given above in the second quantization formalism.

The k.p picture

Generally, we can write any surface potential at a given interface defined by xg like:

Hsurfuce = Z V](S(xj - XO) (3.31)
J
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where V; is a amplitude of surface potential along jh direction. Note that the values of V; may be different
for different directions, but however independent of the jzh component of momentum. Then the total
Hamiltonian is:

Hiorat = H + Hsurface (3.32)

where H was introduced in 3.8, the Schrddinger equation now can be re-written as:

oY
) < i) = HI) + 3" V(5 x0)|¥) (3.33)
J

Taking the Hermitian conjugate of this equation, one gets:

oY

i
By

= (HY| + Z(vj\ma(xj ~ Xo) (3.34)
J

The equation of conservation for the present Hamiltonian becomes now:

(5

1
"’—T> = 2 (1) — (HY))

ot ot ot
1 (3.35)
o | LISy = 20)) = 3 (V¥1o(x; — xo)l¥)
J J
Since: 1 .
— ((Y|HY) — (HY|¥)) = — Vi|Re(¥Y|—|¥ 3.36
L () - () ;,(< = (336)
One obtains within the k.p framework:
1
= DRIV 60k — x0)[®) = > (V;PI8(x; — x0)|¥)
/ ! (3.37)

Y

where O is the Heaviside function, this yields:

\P>] =—= ZV Re [< ‘ + 2iV;0(x; — xo)

—i -2i
= Z %<‘P|V}6()€] - XQ)l“P) +c.c = Z Re <\P ’7‘/}(5()@ - )CO)
J J

Using the fact that §(x; — xp) = M

O(¥|¥ OH  2i
% - ;ije [— <‘{"— - E’V,-@(xj ~ x0)

gl

Bpj
(3.38)
When the Hamiltonian is time-independent, one obtains thus:
Z V,Re [< ‘ +2iV;0(x; — xo) \1/>] =0 (3.39)
Or:
D ViRe [(¥]J; +2iV;0(x; — x0)| ¥)] = 0 (3.40)

J
where J; = % is the jth space component of the current operator to match at interfaces. This important
J
relationship allows one to give a formal definition of the current operator to be used in each media of the
heterostructure. It provides a generalization of the correct expression to use in the case of a general surface

potential possibly involving Rashba, Desselhaus, exchange interactions and all other types of spin-orbit
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interactions.

This development then yields the new matching conditions which is used as far as
Re [<‘I’ |Jj + 2iV;0(x; - x0)| ‘I’)] is continuous at the interface. It can be ensured by the continuity of
the wavefunction |¥') and electronic wave like term [Jj + 2iV;0(x; - xo)] |'V) at the interface.

Because of the properties of the ® Heaviside function: ®(x; —xp) = 0 if (x;—xp) < 0 and O(x; —xg) = 1
if (x; — xo) > 0O, therefore, one can say that the new boundary conditions to adapt are the continuity of the
wave function and a certain discontinuity of the electronic current at the interfaces. In particular, we derived

the system of equations describing the boundary conditions to be used hereafter namely:

|\P>left — |\P>right
: ) , (3.41)
[Jj.efl:l |\P>left — [J;zght + leJ |\P>rlght

where "left" and "right" labels refer to the wavefunction and current operator on the left and on the right
interfaces respectively; V; is the surface potential at the interfaces which might be a scalar quantity (potential
step) or spin-dependent operator in general. We will come back to this boundary condition in the next part

for a typical case symmetry breaking.

Specificity of the matching conditions for the effective Hamiltonian along the
[110] growth direction [183]

In this section, we deal with the matching conditions along the [110] direction for an effective Hamilto-
nian in the conduction band including a Desselhaus contribution. These developments will be used in the
description of the spin-dephasing effects (or spin rotation effects) which are described in detail in Chap.4.
This will reveal to be an unusual problem [183] because of the appearance of a higher order term (k3 term)
originating from the bulk Dresselhaus terms for electrons propagating along the [110] direction. To de-
scribe this novel situation, we consider the tunneling problem through a simple barrier grown along the

[110] direction, as depicted in the Figure 3.1

It was shown by Nguyen et al. [183, 185] that even in the simplest case, under a normal incidence,
no solution can be calculated in the usual way assuming that the wavefunction and its derivative are both
continuous. The energies (&1 and &) of the electrons along the [110] axis with normal incidence k =
k(1/V2)[110] are respectively for spin T and spin |:

1

for T -spin & = yk* + 5D k3, (3.42)
: 2 1 3

for | -spin& =y k" - ink . (3.43)

. o 3 . . . .
where yc = % and yp is the Dresselhaus parameters (eVA ). Respectively, their eigenvectors satisfy two

equations in parallel
o + Livp 2 Y =[E-V(2)]¥ (3.44)
—Yc o o ! Y = - ) .
Yoz T 2P| el

[ o2 1. &
—yer _ iyp—
Yooz " 2'"Pg 3

] ¥ =[E-V()IY,, (3.45)

where V(z) = V when O < z < a and V(z) = O outside. If the in-plane wavevector in the barrier is purely
imaginary, +iK, the respective energy —y.K? ¥ %in K3 will not be real. Therefore, the wavevectors in the
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() ()]

(1)

|
|

ki=q k, =Q+iK Kin=9

0 a Z || [110]

FIGURE 3.1: Sketch of the tunnel geometry with notations. The spin-orbit-split
barrier material of thickness a (medium II is located between two free-electron like
materials (media I and III). The tunnel axis, normal to the barrier, is the z axis. In
the free-electron like materials, the real normal incident electron wave vector in the
z direction is referred to as ¢. In the barrier material, the evanescent wave vector
along the z axis is referred to as Q + iK, where Q and K are real quantities. The
transverse wave-vector component is in the barrier plane. Then, the overall wave
vectors in the three media are, respectively, ky = kyy; = ¢ and ky; = Q + iK.

barrier are complex quatities, i.e., Q +iK where a real part (Q) has been added. Let us write =7 ¢'9? and
U=] €22, We first try to deal with this situation according to the usual procedure. The wavefunction is in

each part of the heterostructures:

Y1(z) = (A1€'9% + Bre™'9%) T +B1e79% | (z < 0),
¥ =1 W(z) = (A2e™K + BpeX?) 1 + (Aze-Kz + ézeKZ) U (0<z<a), (3.46)

P111(z) = Aze9? 1 +Ase'? | (2> a).

Applying the BDD [218] matching conditions for |- spin states, we find:

él = Az + Bz,
qB = (Q - iK) Az + (Q +iK) By,

A'“zefi(inK)a + Bﬁzefi(QHK)a — Aseiqa’ (347)
(Q — iK)Aze Q1K) 4 (O +iK)Bye Q1K) = _gA3ela4,
These equations have a non zero solution when
(qz _0%- KZ) sinh Ka + 2iKq cosh Ka = 0. (3.48)

The only solution is K = 0 but it is not relevant to our problem.

As introduced above, the Dyakonov Perel term was obtained by a perturbation method, therefore we
will look for a solution of the effective Schridinger equation to the first order in y only, e.g. for T- spin
¥, = pO 4+ ‘I‘%l) where P is a solution when the Dresselhaus terms are neglected. The Schrodinger

equation for T- spin in Eq. 3.44 becomes

¥ 1. 9@

ey Zip L = e - .. .
Yegz T3P 53 [E - V()] ¥7 (3.49)
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Integrating this equation from one side of the interface to the other, one obtains:
C’)\PT Z0te 1 62,{1(0) zZote
lim |-y.— + —lyp——— =0. (3.50)
e—0 yc (9Z zZ0—¢& 2 ’)/D azz 20—€

Note that, in the electrodes, if the incident wave possesses a wavevector ¢, the reflected wave will
possess wavevector —¢’, where ¥.q* + 2ypq® = v.q”® — 2ypq”®. It leads to 5g = ¢’ — q being a second
order term in yp so that this term can be neglected. This means there is no spin splitting in the electrodes.

In the case of free electrons, one may prove that:

zZo+e

8?y©

= (K2 + %) ¥ (z0). (3.51)
0z |,
From Eqs.3.50 and 3.51, we have
Wy [ore)
lim | 21 o) (K2 + qz) wO) (70) ~ 2i01 %O (z0). (3.52)
e—0\ 0z Z0-& 270

Equation. 3.52 clearly shows the discontinuity of the derivative of the wavefunction at an interface grown
along the [110] direction in the presence of DP field. Now, the solutions of the Schrodinger equation have

to satisfy the new matching conditions, e.g. for T-spin that are:

20te

e—0

¥ continuous, and lim (— ) = 2iQT‘P(O) (z0) - (3.53)

20—¢€

We write Q1 = Q for T-spin and Q| = —Q for |-spin. The solution of the Schrodinger equation is calculated
to the first order in 7y in the form

Y=o+, (3.54)
where _ '
¢1(2) = me'* + bre™'* (2 <0),
¢ =1 ¢3,(2) = (aze™X% + bpeF?) 92 (0<z<a), (3.55)
¢3,,(2) = a3’ (a < 2),
and

¢j(2) = prQe74: (2 <0),
¢ = gofl(z) = Q (2287 + BoeX?) 92 (0<z<a), (3.56)
(pijl(z) = a’éQeiqZ (a < Z)~
The new matching conditions for the effective Hamiltonian along the [110] direction are the following:

(1) ¢* and <p§ are continuous at the interfaces,
6( . A_) z20te 0
¢° +° .
—— = zQ‘I’f,,)(zo).
20—€

(ll) 1im£—>0 9z
The conclusion of this section is that it seems very difficult to find the exact analytical solution for elec-

tron tunneling through a heterostructure grown along [110] direction. This peculiarity of the [110] direction
has been also emphasized by Alekseev [56] as well as Durnev [31]. In the simplest model, the incoming
electron at normal incidence was treated to the first order in y. The difficulties do not only originate from
the mathematical techniques but also from the physical point of view; the discontinuity of the derivative of
the wave function caused by the k cubic term highlights the crucial role of the matching conditions. The
consequence is that numerical computational techniques, e.g. using advanced k.p methods, like 14-band,
30-band or 40 band tunneling codes, become mandatory in order to analyze the new properties brought by

spin-orbit effects over the Brillouin zone (BZ). The techniques we have employed and developed beyond
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the state of the art, will also appear to be perfect numerical tools to check some analytical developments
based on perturbation technique approaches.

Current within heterostructures: Landauer Biittiker Formalism

Current within heterostructures

In this section, we will demonstrate that the application of the matching conditions derived in the previous
sections and applied to each interface within a given heterostructure, simple interfaces, tunnel junctions,
quantum wells, double-barrier structures, are always associated to a conserved charge-current profile along
the transport direction. This is one of the main issues to fulfill. The demonstration will be made taking into
account the properties of the S- scattering matrix within the multilayers. On the other hand, the same con-
clusions cannot be generalized to the case of the spin current profile once either bulk or interface potentials
admit an Hamiltonian term not commuting with the spin operators (Pauli matrices). This effect should lead
to the re-examination of the calculations of the spin-mixing conductance (real part and imaginary part) for

systems involving Rashba interactions at interfaces [239].

Interface

Incidence

\ 4

Transmission R

Reflection

A

FIGURE 3.2: Scheme of continuity of wave current at the interface of heterostructure.

Considering an interface between two materials and assuming that the electron is moving from the left to
the right, then the wavefunction at some distance on the right interface can be a simple a linear combination
of eigenstates of the asymptotic Hamiltonian, or, equivalently, a linear combination of transmitted waves at
the right interface, namely:

Wi = > tin P, () (3.57)

where #;;,_,, are complex numbers. Note that the total Hamiltonian may also have evanescent modes, however
at some distance (far enough) from the interface, these modes posses zero contribution to the wavefunction
since they decay quickly with the distance from the interface.

At some distance to the left interface, the electrons are scattered at the interface then go back to the left.

We thus get a solution without contribution from evanescent modes as:

lPL = (Din(r) + Z rin,n(Dn,kn (r) (358)
n

involving all possible reflected waves which admit the same energy as the incoming wave. Here @;,(r) =
N;

>, Ci®; k,(r), N; is the number of band used to describe the incident wave, C; are normalization coefficients
i=1

(normally C; = 1), and {(Di,ki (r} (or {(I)n,kn (r}) is the basis function set.
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Let us assume that the matching conditions at the interfaces are the continuity of the wavefunction ¥
and of the electronic current Re (¥|J|¥) where J = 0H/dp. These are the matching conditions that we
consider throughout the present work.

The probability current at the left of the interface is:

Re (¥ |J|¥YL) = Re <(Din + Z Finn@n i, |J

Dip + ) rin,ncbn,kn> (3.59)
= Re(D@;y| J | D) + Z |rin,n|2 Re <(Dn,kn | J iq)n,kn> + Z Re <rin,nq)n,kn | J| D) (3.60)

+ Z Re <(Din| J \rin,nq)n,kn> + Z Re <rin,nq)n,kn |J| rin,mq)n,km> .
n

nm(n#m)

where the following contribution
<rin,n(bn,k,,|J |q)in> = <J+Vin,nq)n,kn| q)in> = <(I)in| J|rin,n(1)n,kn>>}< = - <Jq)m| rin,nq)n,kn>* . (3.61)

and
<rin,n®n,k,, |J| rin,m(Dn,km> (3.62)

with n # m are called the interference term in reflection.
From Eq. 3.61, it must obey:
Re (rinn@n i, | J|®in) = 0. (3.63)

Equations 3.61 and 3.63 show that the interference terms in Eq. 3.59 are canceled
D Re (rinn®u i, | T 0in) + D Re (il I|rinn®p s, ) = O, (3.64)
n n
as well as :

Re <rin,nq)n,k,,, |J| rin,mq)n,km> =0 (365)

nm(n#m)

and this point is particularly interesting when we deal with Green’s function technique in chapter 4.

Then, we get:
(FLIT L) = (@ial T 1) + . [rimn|* (@ | TP, ) (3.66)
n

The probability current at the right of the interface is:

J

Re <‘PR| J |‘PR> = <Z tin,nq)n,kn
n

Z tin,nq)n,kn> = Z \tin,n|2 <(Dn,k,, | J \q)n,kn> . (367)

The continuity of the probability current gives:

<(Din| J |q)ln> + Z |rin,n|2 <q)n,kn | J |(Dn,kn> = Z |fin,n|2 <(Dn,kn J |(Dn,k,,> (368)
n n
or
2 <(:[)n,k,l | J iq)n,kn> _ 2 <(Dn,k,, | J |(Dn,k,,>
b Z rinnl G Ty an finn e Ty (3.69)

100



Chapter 3. Modeling of spin-polarized transport within semiconductor heterostructures in a k.p

multiband picture

Cancellation of the interference terms for the current: where does it come

from?

We now demonstrate the cancellation of the interference terms (Eq. 3.61) for both reflection and transmis-

sion in the framework of the k.p theory. In order to do that, we write the Hamiltonian in the form [163]:

H = Akf + Bk, + C and the current operator is then: J = Ak, + %é We assume that the nth eigenvector at

a constant tunneling energy is |n) which corresponds to positive or negative incidence. Since the wavefunc-

tion can be a linear combination of these egenvectors, thus, in order to prove 3.61, one needs to calculate

the interference terms of the current in the form of (n|J|m) to show that Re (a(m|J|n) + a*(n|J|m)) = O,

where a is the expansion coefficient where |n) and |m) are two different bands (n and m) at the same elastic

energy € and described by two different wave vectors k, and k,,, respectively.

So, we start with:

(m|J|n)y = <m Ak;") +§ n>
(n|J|my = <n Akl + g m>
~ome B
(n|J|my" = <n Akgm) t m>
One has:
(n|3\my* + (m|Jjn) = <n A (k;"> + kg"”*) + é) m>
(n) (m)=
o A k' —k
= <n ‘A (ké”) + kgm)*) + B) m> X —?n) im)*
kz - kz
_ A2 (m)s? A (m) _ g (m)=
- (1A (K7 = k) 4 B (k2 = k) )
Z z
A2 A A N 2 A A
= —k(") o [<n‘Ak£’l) + Bkgl) + C|m> - <n |Ak§m) + Bk;m) + C|M>]
Z z
1 A N A A A A
= | (AR + B c| m) - (m )Ak;"vz + BRI + c| n)]
kz - kz :
€1 — En
= ———— (m|n)
kY — kg
So that
* € — €Em
(n|JIm)* + (m|J|n) = ——————— (m|n)

kgn) _ kgm)*

& Case 1: ki") and k;m) are real, then ¢, = ¢, (elastic tunneling), we have:

(n|Jm)* + (m|J|n) = 0

(nJ|m)* = —(m|J|n)

(@ (nlJ|m))" = —a(m|J|n)
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And finally, we get:
Re (a{m|J|n) + a*(n|Jjm)) =0 (3.83)

Or one can say that the interference terms for propagating waves are canceled in both the reflection and
transmission region.

& Case 2: k;") is purely real and k;m) is pure imaginary or mixed (real + imaginary) then we reach the
same conclusion as in the previous case: there remains no interference term in the current.

& Case 3: k;") and kgm) are both complex (evanescent states) and kg") # k;m) * then no interference term
exists in the current.

& Case 4: k" and k!"™ are both complex (evanescent states) and k") = k™" then:

(n|J|my* + (m|J|n) + 0 (3.84)

In this case, the interference term results in tunneling current inside the barrier as expected.

The two equations 3.83 and 3.84 become mandatory to derive a general expression for the multiband
and multilayer Green function as we will show in Chap 4. It will allow one to connect the value of a proper
wavefunction at a point z’ of the multilayer to the knowing wavefunction in a given point z in another
part of the multilayer. These treatments developed here are specific in the sense that one is able to find a
correlation between (n|J|m)* and (m|J|n) for the case where |n) and |m) are Bloch function or evanescent
waves corresponding to the same elastic energy € but different wave vectors k (or iK). In that sense, we
proved here the generalization of the validity of the k.p framework to the case of tunneling waves involving

evanescent wave [240].

Interference terms of spin current

Doing the same for spin current j; defined by:

1| 0H OH
I Z[Uakz 6kza-] (3.85)
where g% = ZAkZ + B, or we get:
. n n ]. Ay N
Js = (O'A + AO') ky + 5 (O'B + Bo-) (3.86)
As the same as electric current, we are now trying to calculate:
(mlisln) + (nlis[m)
A A 1 A A 1 A A *
- <m (o’A + AO') K o (a'B + Bo-) n> + <n (O'A + Aa’) ke s (O'B + Ba)] ‘ m>
A A 1 A A A 1 A A (3.87)
= <m [(O'A + AO') K 4 5 (O'B + Bo-) n)+ <mH(0'A + AO’) K 4 5 (O'B + Bo-) n>
= <m [(O'AA + AO‘) (ké") + k§’">*) + (0B + B%')] n>
Since we have:
AL+ BE + €| 1) = 0 In) (3.88)
[A(kg’”bz + K™ 4 c] Im) = € |m) (3.89)
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then:

(k& = k) (bl m) + G g m)

N S~——

A

oC-2Co +2Co - 20'6‘]

>

N A 2 N N A A
(Aa' - o-A) (kg")) + (BO' - a'B) Ky Co - ol

d
d

(Aa' - o-A) (kém) ) + (BO' - O'B) K™ 4 Co - o€

o onZ \
= <m 204 (k;">) +20Bk" + 20¢ n> + <m
> _ <m

{en (m|or|n) — €y (mlo|n)} + 1 {(m[[Hn, o1l n) + (m [[Hpm, ]| 1)}

A

<m 'ZO'A (k<’“>*) + 20 BK 4 20

NI[\J

(3.90)

Since:

(K07 =) (Gmljsln) + Gulislm)) =i (Gmlidnd + Gl m) - 39D

then, one obtains:

i, (L) + Gl |m)) = 3 (6o = e) Gnlrl ) —i{% m{Hy, )+ <m|[Hm,a]|n>} (3.92)

() 4 g

Incase €, = €, and k; , one obtains:

oc ((m1jslmy+ (nli|m)) = —= {<m [, 1l n) + G [y, ]| 1)} (3.93)

This relationship shows that the spin current is not always conservation quantity.

Cancellation of ghost-band currents

To anticipate the discussions on the matching conditions given in the previous section, we adopt here the
continuity of the wavefunction and electronic current (the standard matching conditions) to study the conse-
quence of the ghost-band treatment. Our conclusion will be that, through standard matching conditions, the
ghost-band treatment is truly relevant to describe the full (spin-dependent) transport properties in the main
conduction valleys: i.e., I" valley for direct-gap semiconductors for both electrons and holes, L valleys for
the CB in the case of indirect-gap semiconductors (e.g. AlAs). We have already checked (without formal
proofs) that the symmetry of both the wavefunction, the wave current and the spin current remain almost
unchanged at the relevant valleys following the ghost-band approach.

We decompose the wave function ¥ into a form
v
¥r = (”) (3.94)

where W7 is over all full wavefunction oof the complete Hamiltonian, ¥'p refers to the physical components
and ¥ to the unphysical ghost part.

The boundary conditions now read: (i) The continuity of the wavefunction means that W7 is continuous
at each interface indicating that both of the ¥p and Ys parts are continuous. W¥p is then continuous

(necessary condition) at each interface and at each energy.
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(ii) The continuity of the electronic current means that J (Wr) is continuous at each interface which,
however, does not necessary imply that J¥p and J¥¢ are both continuous separately at each energy be-
cause of the supplementary coupling introduced.

However this important property remains true near the extrema of the valleys involved in the transport
because the symmetry is conserved for both wavefunction and electronic current in these regions (derivation
of the supplementary coupling is equal to zero).

Let us write the current operator in the form:
J=Jp+J:, (3.95)

where J p is a nbxnb matrix which has nxn non-zero components and dealing with the original nxn k.p
Hamiltonian, and all the other blocks concerning ghost-band being zero near the I" point.
The (spin-dependent) current flux is written at the first order in wave vector k (because of the highest

order in k of coupling terms is k% even between the physical and phantom bands):

Re (¥r| J |¥7) Re< Yo W, |J

Yp
¥ > (3.96)

G
0
¥ |’

By principle (matching conditions), Re(¥r|J |¥r) is continuous over the multilayer structure which

Re< ¥p 0 ‘JP

q:)” >+Re< 0 ¥, (JG

means that the sum of the two terms are continuous but not necessary each term separately.

The current of the supplementary ghost-bands:

Re< 0 Y5 ‘JG

0 €¥ — €l i(k kim0
- = E ——— (mglngye ‘" < (3.97)
¥g > A

n,m

where G indicates the ghost band quantities, k"% and k™% are both pure complexities; [mg) and |ng)
describe here the ghost-band components of the total wavefunction. By increasing the ghost band energies,

kén,G)ikgm,G)*)

kG as well. This results in the term el(

one may increase k;”G and — 0, thus one may
neglect the contributions originating from the ghost-band, once the ghost-bands are sufficiently high in

energy compared to the bottom of the CB. So that we obtain

Re (Wr|J |¥r) =~ Re (¥p| Jp |¥p). (3.98)

The proof for the spin-dependent tunneling current can be considered but, by simple arguments, one
can estimate that the result is equivalent so that one neglects the evanescent current contribution originating
from the lower spurious VBs, which is generally the case.

Note that those rules derived here mainly concern charge current, they are generally not applicable to

the case of spin-currents because of the non-zero commutation between Hamiltonian and Pauli matrices.

Landauer formula from the expression of the wave current

Ballistic transport.

In mesoscopic physics, ballistic transport relates to the transport of charge carriers in a small structure where
one may assume that the charge carriers move elastically, through the active medium without scattering
except for a possible reflection from a barrier. In this ballistic transport, the motion of carriers is simply

described by the classical Newton second law. The ballistic transport may be observed in the system where
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the mean free path of the carriers (typically the electrons) is much lager than the dimensions of the system.
To that goal, together when reducing the system size, one has to increase the mean free path of electrons
by reducing the impurities in the system or by lowering the temperature. In this regime, the conductance of
the system may be described in the framework of Landauer Biittiker formalism which gives the relationship
between the electrical resistance and the scattering properties of the system, and is going to be presented in
the following.

Landauer formalism [241]

In order to derive the Landauer formula, let us now calculate the current across a given surface S perpen-
dicular to the direction x of global electron flow, carried by the wave Wy, (r). Starting with the expectation

value of the current density operator i(r) over the state | W .7, one has:

. : Wi, (P
) = i) = o | () o) gy P OT (3.99)
X Junction
. Electrode Electrode

(—

FIGURE 3.3: Scheme of a closed system, electron source plus electrode-junction-
electrode structure. The electrodes are assumed to confine electrons in the x-y
direction.

Integrating over a plane (x,y) perpendicular to the z direction, one observes the average current I(E;) which
is carried by the state at energy E;:

(o) (o)

1) =e [ ax [ avicy = 5o / dx / ay | o ) gy ) L | 100)

Let us assume that our system is in a steady state. Therefore, the current does not depend on the position
of the surface at which we evaluate it. Thus, one may evaluate it deep into the left electrode or deep into the
right electrode, equivalently, and the resulting currents must be identical. Deep into the left and deep into
the right electrode, the wave function W;, (r) becomes:

NE
Wik, (1) = Qig, (1) + ) rig i (r) (3.101)
=
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NR
Wik, (r) — Z tip @i (r) (3.102)

where N and NF are number of channels on the Left and Right electrode, respectively.

Left Electrode Sample Right Electrode
. (Junction) __
N; » : NE
| |
Incoming flow :
— 1 |
('—- -—\l

Reflection Transmission

FIGURE 3.4: Reflected and transmitted wave at the junction.

Deep into the left electrode, we replace 3.101 into 3.100 to obtain:

NL
IL(E) = L(E) + Z lrip 1217 (Ez) (3.103)
where :
h rr Dif, (r) 3 Du, ()"
I(E)— ° dx [ dy [[q)lk() —d)ik,-(r)—']
/ / Ox (3.104)
Vi(ki)
T L
and
Cen T L0, (r) Ay, ()"
180 = g [ ax [y 1050, 0 =55 <, (0 = o
_ vr(ky)
T L

where v;(k;) is the group velocity of an electron in j th channel and L is the volume of the system [43]. Due
to the fact that in this case, all wavevectors k¢ are in the negative z direction with the opposite sign than the

incident current /;. So, if we introduce the quantity:

|17 (E;)|
|1;(E:)|

Rip(E) = |rif]? (3.106)

as the reflection probability for a wave incident on the nanostructure with momentum 7k; to be scattered

back into the left electrode in a state with momentum 7k while the energy is conserved, then one obtains:
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NE NE
IL(E) = I(E) = ) g PUA(En)| = T(E) | 1= Rig(Ep) (3.107)
f=1 f=1

Doing the same calculation deep into the right electrode, one obtains:

NR N.R
IR(E) = ) g PUED)| = 1(E) ) Top(Er) (3.108)
f=1 f=1
where:
14(E))|
Tir(Ep) = |t |? (3.109)
! LE)

is the transmission probability that the wave with initial momentum 7ik; is transmitted across the nanojunc-
tion into the right electrode in a final state with momentum 7k at the same energy. We remind again that
in a steady state, the two currents /7 (E;) and Ir(E;) have to be identical. Therefore, one finds the relation
between the reflection and transmission coefficients for a wave incident from the left electrode:

NR NE
DT (E) + ) Rip(E) =1 (3.110)
=1 =1

which complies with the general result of Eq. 3.69. Since the motion of electrons is ballistic, then the
channels are independent and the total current in the system is afterwards calculated as the sum of all
currents carried by all states (channels) at all energies. Thus, one needs to integrate in energy, multiply by
the density of states (number of channels per unit energy) for each momentum direction, and sum over all
incident channels (both right and left motions). Since each channel represents a one-dimensional problem,
the density of states per spin for the momentum 7k; of given direction is simply:

L
D;(E;)dE; = —dk; (3.111)
2
or

Ldk L 1

Di(Ej)= ——=-———
( ) 2 dE,' 2nh V,‘(ki)

(3.112)
where v;(k;) is the group velocity of an electron in i’ channel.

Assuming that the electro-chemical potential A at the left and the right electrodes respectively, are uy,
and ug, the local equilibrium distribution appropriate to the corresponding to the left and right electrodes
are:

1
JUE) = 57— (3.113)
e kst +1
1
JR(E) = — (3.114)
e kst +1

Note that we are dealing with a steady state, therefore, it is possible to calculate this current anywhere

in space. At an arbitrary point deep into the right lead, one gets the total current:
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NE NR NR NE
= 2e / 2Ny Z fL(E)D(E)(E)Tyy(E) - Z fR(EYDAE)(E) |1 =) Rif(E)
i=1 f=1 =1
NENE NE Ne (3.115)
=2¢ / dE{ " fLE)D(EMAE)T(E) = > " fr(E)D{E){E)Tif(E) '
i=1 f=1 i=1 f=1
2e
=5 | 9E [fL(E)TLR(E) — fR(E)TRL(E)]
where from Eqs. 3.104, 3.105 and 3.112 one has
Di(E)li(e) = L (3.116)
AR = 5 )
and we have defined the total transmission coefficient at a given energy as:
NE NE
Tr(E) = Z Z Tif(E) = Z T:(E) (3.117)
i=1 f=1
and
NL NR
TLr(E) = Z Z Tif(E) = Z T(E) (3.118)
i=1 f=1
where
NE&
TiE) = ) Ty (E) (3.119)
=1
and
N}
TAE) = ) Tif(E) (3.120)
=1

Since the particle flux must be conserved, the total transmission coefficient from left to right must be equal

to the total transmission coefficient from right to left.

Tri(E) = TLr(E) = T(E) (3.121)

Combining 3.115 and 3.121 one gets:
e
1= 5 [aELE) - fENTE) (3.122)

The zero-bias limit:

In the limit of zero bias or (ugr — ur) — O where uy, and pg are equilibrium fermi energy on the left and

right electrodes respectively, one may use the approximation:

i) ~ i) = - R

(ur = pr) + O [(ur — pr)?] (3.123)
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Then the 3.122 can be written to the first order in (¢, — ug) as:
e A fr(E)
= — — dE | - —~
o (UL — HR) / ( 3E

If we now consider the limit when the temperature 7 — 0, then the local Fermi-Dirac distribution fr(E)

T(E) (3.124)

HR

becomes a step function and its energy derivative becomes a § function centered at the right electro-chemical

potential ug. The equation 3.124 then becomes:

e

I= ﬂ(#L — uR)T(ur) = ﬁT(#R)V (3.125)

where the transmission coefficient is evaluated at the right electro-chemical potential. Equivalently, one
may choose to expand the right local Fermi-Dirac distribution to get:

2

5 L)V (3.126)

e
I = — b T =
27rh('uL MR)T (ur)

where now the transmission coefficient is evaluated at the left electrochemical potential. These two equa-
tions 3.125 and 3.126 are both correct since we are working in the limit in which u; and ug differ only
sightly from each other. One can assume that they both differ negligibly from the Fermi energy Er of the
electron gas at equilibrium, with y;, an infinitesimal energy € above and ug an infinitesimal energy € below

the Fermi energy:

ur = Ep +€ (3.127)
HUR = EF — € (3.128)

The transmission coefficient evaluated at the left or the right electrochemical potential is thus:
T(ur) =T(EF +€) ~ T(EF — €) = T(ur) ~ T(EF) (3.129)
with this approximation, one finally gets:
o2
I =—T(Ep)V (3.130)
nh

which is well known as the Landauer formula giving the conductance:

2
e

= —T(E 131

G ﬂh(f) (3.131)

Calculation method for the tunneling problem within semicon-

ductor heterostructures

As examples of using multiband k.p platforms in the tunneling problem through a heterostructure, we
describe in this part the details of the calculation techniques implemented for investigating the electronic
properties of spin-orbit-split semiconductors and multilayers. These calculation techniques are based on

the transfer or scattering matrix formalism which will be described in detail in section C.1. The readers
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may refer to this section (section C.1) concerning the relevant definitions and notations of the scattering (or

transfer) matrix.

Resonant tunneling

A typical device under investigation is a quantum well embedded between barriers with different energy
gaps including possible surface potentials. Such structure displays in Fig.3.5, will be the focus of the

following calculations performed using an 30- and 40-band tunneling platform codes.

(@)

(b) (c)

Left lead AlAs GaAs AlAs  Right lead

ikx

£>0 e Aczeikx Ac3eikx
o— — s
BCle—ikx Bcze—ikx tl
— < ty 2
50nm  60nm  50nm n Ty
eikx Aypetk* Ayseikx
<0
o 0.55¢
Byie* Byge ™
<

FIGURE 3.5: (a) Scheme of GaAs/AlAs quantum well structures by sandwiching
the middle GaAs layer between two AlAs barriers. (b) Resonant tunneling through
GaAs/AlAs quantum well structure together with the corresponding amplitude of
the waves. (c) Indication of transmission and reflection coefficients as well as
propagation inside the considered quantum well structure.

Concerning resonant tunneling problems, one has to consider the transmission coefficient of an electron
tunneling through a quantum well structure. In figure 3.6¢, we indicate the transmission and reflection
coefficients as well as the propagation within the considered GaAs/AlAs quantum well structure. If we
denote the transfer matrix of left and right barriers as 77 and 75 respectively, the propagation matrix within

quantum well as Q and the total transfer matrix of the structure as 7', then one has:

-1 -1
t —t
T = [ Lo, T (3.132)
rltl l‘1 = r1t1 r
;1 1517,
T, = [ 2 T2 l (3.133)
rgz‘2 Iy —ratyr,
Pyt 0
=0 3.134
o 0 Py ( )
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and

Note that, using the

T

(3.135)

6r T

g (a)
3—‘ 5S¢ ]
= [
4L 1 1 1 ! ! ! ! ! !
g 107 T T T T T T T T T
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FIGURE 3.6: Calculation of transmission coefficient (blue) and sum of transmission
and reflection coefficient (red) for resonant tunneling through GaAs/AlAs quantum
wells with growth directions along three characteristic directions: [001], [110]
and [111] (figures (a), (b) and (c) respectively) with normal incidence k)| = 0 via
30-band k.p method.

can be constructed from 77, 7> and Q as following:

leading to a relationship:

1 -

rt! t’ - rt‘lr'

-1
tl

rltl_l

-t

-

I'=T1+QxT>
-1, -1
1" Py
rltl_lrl 0

111

(3.136)

(3.137)
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giving:
= 1Pyt [T PoriPors | 15! (3.138)

where I is the identity matrix.
Finally, one obtains the transmission coefficient equation for an electron tunnel through the quantum
well structure in terms of transmission and refection elements of barriers as well as propagation within

quantum well as following:

, -1
t=1 []I - Porlporz] Potl (3139)

Equation 3.139 gives rise the conditions for resonant tunneling through a quantum well structure:
det [T = Pory Porz| = 0 (3.140)

This is a well-known Fabry—Pérot condition for resonant mode in optical cavity [242, 243].

Figure 3.6 displays the typical electronic resonance occurring in the valence band under normal inci-
dence (k|| = 0) for the three different growth directions [001], [110] and [111] of GaAs/AlAs 6nm QWs
calculated by 30 bands k.p method. The zero-energy is chosen at the top of VB. One may observe reso-
nances in transmission corresponding to resonant levels (or quantized) states in the quantum well (HHI,
LHI1, HH2, HH3,...). We also checked that the sum of the reflection (R) and transmission (T) coefficient
T + R = N where N is the number of incoming channels (propagating waves). This relation 7 + R = N

shows a physical requirement that the current is ensured to be conserved.

Bound states and quasi bound states

Bound states

In classical mechanics, bounded motion is always possible for a particle near a point of stable equilibrium.
However, in quantum mechanics, a bound state is not necessarily allowed, even though the potential energy
function may describe an attractive force. Since the method of solution for a particular problem will often
depend on whether the energy spectrum is discrete or continuous, it is useful to know in advance whether
bound state exist. In this section, we are now going to describe bound state in quantum well structure from
physical point of view with transmitted and reflected wave as well as from mathematical point of view with
scattering or transfer matrix approach and a good agreement between the two.

Physical point of views

A bound state of an electron in a quantum well can be figured out as the confinement of the electron
emitting from an inner source within a quantum well structure (depicted in Fig 3.7). Without loss of general,
we may assume that the source is close to the right barrier and for convenience we consider here the one
dimensional problem. At a certain time, the source emits an electron heading to the right barrier. This
electron reflects at right barrier then propagates to the left barrier and reflects again at left barrier and finally
propagates back to the initial position close to the source.

The condition for a bounded motion or a bound state of the electron is that the phase of wavefunction of
the electron at the initial and the ending states at right barrier are the same. If we call ¥;,,; the initial wave-
function of the electron, then the wavefunction of the electron at the end of the process can be determine by
following relation:

Yena = [Poripoi’z] Wine (3.141)
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Left barrier Quantum well Right barrier

FIGURE 3.7: Scheme of bounded motion or bound state of an electron in a quantum
well structure. ¥;;,, is the initial wavefunction of the electron and ¥, is the ending
wavefunction of the electron after one (or many) period of motion; r/1 and ry are
the reflection coefficient of the left barrier and right barrier, respectively; Py is
the propagation within quantum well (thank to the inversion time symmetry, the
propagation from left to right and from right to left are the same and denoted by

Py).
giving rise the conditions for bound state:
| PoriPors | Win = Wins (3.142)
or equivalently:
[]1 - PoriPorz] Wine =0 (3.143)
yielding non trivial solutions if:
det |1 = Pory Porz| = 0 (3.144)

The wavefunction ¥;,; can be obtained as a linear combination of eigenfunctions of []I - Por; Porz] and
the bound state wavefunction within whole quantum well structure then can be constructed from ¥;,; via
scattering or transfer matrix method.

Description of bound state in quantum well via transfer and scattering matrix

One of the main interests of the scattering (or transfer) matrix method is that one may characterize the
bound state of quantum-well structures or more complex heterostructures to calculate accurately the bound
state energy and exact eigenvector symmetry components in a multiband approach [244, 245]. We propose
the readers to refer to section C.1 for the fulfill definitions of the amplitude of the wavefunction a¢ and by
as well as scattering (or transfer) matrix.

The key point in this case is that the wavefunction decays on both sides of potential profile formed by
the structure leading to a so-called outgoing wavefunction solution [245]. Then we may obtain the correct
solution of bound states in quantum wells by considering ag = [0] and by = [0] (depicted in Fig. 3.8)
where [0] indicates the vector zero. In the framework of transfer matrix T'(0,n) method, one obtains (see
section C.1 for the definitions of vectors ag, b and T (0, n) transfer matrix):

I 0 T T
bo Ton T

—T(O,N) [ “(’)V l -

an
0 l (3.145)
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FIGURE 3.8: Scheme of bound state wavefunction in quantum well. Outside of
quantum well, the wave function decays exponentially which means that ag = by =

[0].

The coefficients ay and by may be eliminated from above equation to give:

Tiiany =0

T21aN - bo =0

leading to:

im O I
o -1 bo |

The non trivial solutions of Eq. 3.148 yield to a determination equation [245]

T 0
det| M =0
or
Det[T11] =0

(3.146)
(3.147)

(3.148)

(3.149)

(3.150)

If we use transfer matrix T'(n,0) defined in section C.1, then we might obtain the equivalent equation for

bound state as following:
Del‘[ng] =0

(3.151)

Note that, in the framework of the scattering matrix formalism, it becomes more difficult to use the

S(0,n) scattering matrix to describe the bound states since this requires the value of ag and b,, that are

presently unknown quantities (to describe scattering wave). Therefore, in this case, one needs to switch to

the scattering matrix S(n,0) describing the scattering process for outgoing waves to obtain:

K

- S(n,0) [ ‘;N l

0
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FIGURE 3.9: Resonant tunneling (red curve) and Det[S(0, N)] (blue curve) in arbitrary

units as the functions of energy of an electron in (In,Ga)As/GaAs 10 nm quantum

well structure. The positions of the maximum points corresponding to the bound

state solutions of blue curve are exactly the same as the resonant peaks of red curve

excepts the first maxima (of blue curve) which is not a bound state solution, but a
tuning point of current from pure evanescent to propagating states.

since ag = [0] and b = [0]. This gives:
Det[S(N,0)] =0 (3.153)
Using the relation C.26 and the properties of determinants:
Det[X + AB] = Det[X|Det[I + AX"'B] (3.154)

where [ is identity matrix, one might show that 3.150, 3.151 and 3.153 are equivalent. After solving the
equation 3.150 or 3.153, we can extract the eigenenergies that is the quantized energy of bound states in the

quantum well and build up the bound state wavefunction afterward.

The equivalence between the physical point of views and scattering matrix description of bound
state in quantum well
In order to make above descriptions united, let us now prove that the Eq. 3.150 is equivalent to Eq.3.144.

Indeed, from Eq. 3.138 we have:
T = 17 Pyt 1= Porq Pora | 15 (3.155)
then the conditions for bound states 3.150 can be re-written:
det {171 P51~ Por Pora| 131} = det [171 P ] « det [t = Pory Porz | det [5'] =0 (3.156)

leading to:
det |1 = Por Porz| = 0 (3.157)

In the other words, we obtain a fact that the physical point of view of bound state and transfer (or scattering)

matrix description of bound state in quantum well are the same as expected.
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FIGURE 3.10: Scattering wavefunction (left pannel) and bound state wavefunction

(right pannel) correspond to lh1 energy level in (In,Ga)As/GaAs 10 nm quantum

well. The blue curves are the I'g, 1,5 subband wavefunction and the red curves are
the I'g, 3/5 subband wavefunction.

Nummerical calculations of bound state for an electron in quantum well based on multiband k.p
method

Note that from a numerical point of view, we can solve 3.153 by varying the energy and find the local
minimum of Det[S(N,0)] or local maximum of m = Det[S(0, N)] v.s energy (the same for 3.144,
3.150 or 3.151). However, the accuracy to find the numerical local extreme points depends on the variable
resolution (in particular, the energy). Therefore, these numerical local extreme points are, sometime, not
accurate enough to describe the solutions of 3.153. In order to calculate ay and b, numerically, one notices
that if Det[S(N,0)] = O, then, it is possible for a zero eigenvalue of S(N, 0) to exist, with that ay , by can
be linear combination of eigenvectors corresponding to this zero eigenvalue. Thus, numerically, ay and bg

are determined by solving the general eigenvalue problem:
S(N,0) i = At (3.158)

where i and A are the eigenvector and eigenvalue of S(N,0), respectively. Our method then, consists in
extracting the eigenvalue A and choosing the absolute minimum one A,,;;,, as well as the corresponding
eigenvectors. One can then consider that @ , bo correspond to those eigenvectors.

Figure 3.9 shows a comparison between resonant tunneling (red curve) and Det[S(0, N)] (blue curve) in
arbitrary units as the functions of energy of an electron in (In,Ga)As/GaAs 10 nm quantum well structure.
One observed that excepts the first maximum point of blue curve, the positions of three other maximum
points corresponding to a bound state solutions of blue curve are exactly the same as the resonant peaks
of red curve (as expected). One need to note that, mathematically, a bound state solutions will satisfy the

condition 3.153 but not vice versa. Therefore one has to eliminate the bad solutions for bound states of Eq.
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3.153 (by comparing with resonant tunneling). In this case, the first maxima of blue curve is not a bound
state solution, but a tuning point of current from pure evanescent state inside the barrier to propagating state
within the quantum well. Figure 3.10, on the other hand, shows the scattering wavefunction (from resonant
tunneling) and bound state wavefunction corresponding to the LH1 energy level in (In,Ga)As/GaAs 10
nm quantum well. Except the amplitudes, the shapes of I, 12 subband wavefunctions are the same in
both scattering and bound state calculations, but however the I'g, 3/2 subband wavefunctions within the left
barrier are different. This can be understandable since the wavefunction from scattering method is not a

true bound state wavefunction.

Quasi bound states

A quasi bound state may exist in a quantum well limited by thin barriers. The electron in its fundamental
state is temporarily trapped in the quantum well with a maximum of occupation probabilities at the middle
of quantum well, and then escapes to the leads at a certain moment via quantum tunneling phenomena (this
is very similar to alpha decay phenomena) [43, 246].

In a semi-classical point of view, one can imagine the following scheme: The electron is temporarily
confined between the two barriers. It moves back and forth and collides to the two barriers, however, each
time the electron hits the barriers, it may tunnel through the barriers with a small probability making the
state of electron in quantum well to be a quasi-bound state instead of a truly bound state [244, 246, 247].

In order to estimate the probability of an electron tunneling through a barrier to consider a quasi bound
state in quantum well structure, we assume that the barrier thickness is thick enough to make the electron
to feel as if it is moving between two infinite thick barriers, and therefore, the motion of an electron in
quantum well possesses stable state (constructive interference). The simplest approximation to calculate
the corresponding state in a confined region is to use the Bohr-Summerfeld quantization principle giving

the energy spectrum of electrons in a quantum well in a familiar formula as following[43, 244]

Thin barrier Thin barrier
Quantum well

Left lead Right lead

t
Pn(t) = [1 - Pn(o)]a

Out-going current Ol—J_t-gomg current

FIGURE 3.11: Scheme of a quasi-bound state in a quantum well structure. An

electron with maximum occupation probabilities at the middle of quantum well

decrease with time since each time the electron hits the barriers, it may tunnel
through barrier with a small probability.

hn2n?

E. =
" 2md?

(3.159)
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Now let us consider an electron in the n'” state associating to the classical momentum p,, = fik, = h"T"

and classical velocity v, = %” between the two barriers. Each time when the electron hits the barrier’s wall,
it may tunnel through the barrier with a probability given by the WKB (named after Wentzel, Krammers,
and Brillouin) approximation [43, 244]

X2
P, =exp —/|q(x)|dx (3.160)
x1

where x7 and x; are the classical tuning points, g(x) is the imaginary wave number in classically forbidden.
The period of motion is 7,, = Vi. After the period of time ¢, the number of collision is N = TL then the

probability to find the electron in quantum well can be estimated as:

Pu(t) = [1 = P,(0)]7r (3.161)

From a quantum mechanical point of view, one can describe this phenomena by assuming that the
electron can be described by a wavefunction with a generalized imaginary energy part, however much
smaller than its real part [246-248]. The existence of a imaginary part in the energy makes the probability to
find the electron in quantum well decreasing exponentially with time according to Eq. 3.160. We emphasize
that the imaginary part is much smaller than the real part and plays the role of a perturbation in order to
ensure the stable state of the electron.

0 x10°°
T T T
‘ —r =0.001
5 (@) r=0 | s°?
- - r=0001 | =
Dot r=0.01 P =
© ! >
B ‘ S o2
215 = =
®
2 10l i ©1.5
|
< 5 |-
i .
ot R %0.5
| (o4
5 | | | ( - | |
-0.04 -0.03 -0.02 -0.01 0 0 50 100 150
Real energy E_(eV) [001] direction (A)

FIGURE 3.12: (a) The Det[S(0,N)] as function of energy with different ratios r = ’é—'

where E, and E; are the real and imaginary part of generalized energy E, respectivelly,

of an electron in (In,Ga)As/GaAs 10 nm quantum well structure. As the same as

previous argument with bound state solutions, the first maximum of the curves here

are not bound state solutions. (b) The quasi bound state wavefunction corresponding

to the lh1 energy level in (In,Ga)As/GaAs 10 nm quantum well structure with
different values of r.

By a similar argument, we can state that the quasi bound state in a quantum well can be described by 3.150
or 3.153 but with the imaginary part in energy. From a numerical calculation point of view, we can solve
3.150 by varying the energy E = E, +iE; and find the local minimum of Det[S(N, 0)] or local maximum of
m = Det[S(0,N)]. Here E, and E; are the real part and imaginary part of the generalized energy,
respectively. Figure 3.12 displays the Det[S(0, N)] as function of energy (a) and the wavefunction (b) of
an electron in a (In,Ga)As/GaAs 10 nm quantum well with different ratios r = g—: It shows that when
one increases the value of r then the stable of quasi bound state decreases since the local maximum of

Det[S(0,N)] v.s energy become smaller leading to the smaller occupation probabilities (the wavefunction
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in Fig 3.12b) of the electron in quantum well as expected from above argument: the imaginary part in the

energy makes the probability to find the electron in quantum well decreasing with time.

Structures with symmetry reduction from T; (D2,) to Ca, at the interfaces

We have considered transport properties of the electrons through a heterostructure based on III-V semicon-
ductors like GaAs/AlAs quantum well structures made by sandwiching the middle GaAs layer between two
AlAs barriers, but by far, neglected all interface effects. Note that the point group of III-V bulk semicon-
ductors such as GaAs, AlAs, InAs, is the T; group, however, the interfaces of related heterostructures, e.g.,
GaAs/AlAs quantum wells grown along [001] direction (z direction), depicted in Fig. 3.13, possess a lower
symmetry , which is Ca,, [30]. The Cs, symmetry is lower than T,; because a rotation which transforms
Ga into Al is missing (see Fig 3.13). Particularly, the reduced symmetry from 7, to Ca, at the interface of
heterostructure leads to the mixing of the heavy hole (HH) | = %) and light hole (LH) | + %) states with the
same parity (the parity with respect to the element S4, of the group T,; ). We are now going to consider the

consequence of this resulting mixing on the boundary conditions at the interface.

[001] > GaAs quantum well
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FIGURE 3.13: Schematics of the nearest neighbors of an As interface atom of

GaAs/AlAs quantum well structure where the point symmetry Co, of a single het-

erosjunction contains the twofold rotation axis Cy parallel to the growth direction
[001] and two mirror planes [110] and [110]
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Within the envelope function theory presented in section 2.5.1, the wavefunction of an electron in the

quantum structure can be expanded in the |/, M) and |L,S) basis as:

eik eik”p

Y(r) = N

P
fL,S|L’S> =

> Frmld, M) (3.162)
J.M

Here, z is the growth axis, k)| is the in-plane wave vector with two components (kx,ky) and U is the
normalization area, r = p + z with p = x + y. Note that k| is supposed to be conserved within the
whole heterostructure and the envelope functions f7 s or F; » depend only on the coordinate z. Thus, the
standard matching condition for wavefunction [218] may be written , now, in the framework of the envelope

function theory according to:

fa=7z (3.163)
(Jf)a=Uf)B
for the envelope f1, s function, where f is the column vector with the components f; s and:
Fo=Fp
(3.164)

(JzF)A = (JZF)B

for the envelope F; s functions, where F is the column vector with the components F; »s. The subscripts

A, B indicate the different materials on the left and the right interfaces, say AlAs or GaAs; J, = %gTH is

the z component of the current operator.
Ivchenko’s boundary conditions within 6 — band k.p model [30]

In the framework of 6-band k.p model, the HH-LH mixing, or mixing between X and Y orbital states, can

be described by the following coupling Hamiltonian which, written in |L, S) basis reads [30]:

HX y = +h2tX—Y [{Ix’ly} 0

modao 0 {I, 1}

where {I, 1, } is the symmetrized product of the angular momentum / = 1:

l o(z — zi) (3.165)

) o 1o
(L} = 5y + LIy = 5|1 0 0 (3.166)
0 0 0

which is an invariant under C»,, and the § — function with z; being the coordinate of the interface. The
sign + refers to BA or AB interfaces and the pre-factor with Planck’s constant 7, free electron mass my,
and lattice constant ag (assumed to be the same for A and B) has been introduced to characterize the X-Y
orbital mixing by the dimensionless real parameter tx_y. Taking into account Hx_y and using Eq. 3.41 for
the surface potential terms, then the standard boundary conditions for envelope function f;, s have then to

be changed by adding the term:

(3.167)

i
moag

htx_y |20} 0 ;
0 2{Ll}
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to (J.f)p on the right hand side of Eq. 3.163 to give:

fa=Trs

_ Jitx—y Z{ley} 0 (3168)
ool i)

Or equivalently, the new matching conditions for the envelope Fy ps functions which take into account the
HH-LH mixing, have form:

Fy=Fp
2 (3.169)
(JF)a=(.F)p - §i tx-yRF g
aopmo
Here R is the following 6 X 6 matrix:

JiJ. 3U.
r=|! ’“Ty} - (3.170)

3Uyy 0

composed of angular momentum matrices J, (@ = x,y,z) for J = 3/2 and 4 x 2 matrix Uy, and being the

corresponding Co,, symmetry group [44]

0 0 -V3 0
ilo 0 0 -V3
Jody} = 5 3.171
Uyt =3 Vi 0 o0 0 ( )
0 V3 0 0
0 1
i [0 0
Upy = — (3.172
Y7 V6o 0 )
10
Then we get [44]
: . e
0o o0 F o o0 N
=i
0 0 0 F 0 0
L 0 0 0 0 0
R=Z| ¥ 5 (3.173)
0o L o 0 i o
0O 0 0 —i\/g 0 0
-iJ32 0 0 0 0 0

If the hole energy E is small compared to the spin-orbit splitting Ay, then the mixing between the I'g
and I'7 subspaces can be neglected and we retain in Eq. 3.169 only the first four components F; and R in
the 4 x 4 block {J,Jy }. In this case the boundary conditions then read [30]

(Fj)a = (Fj)B

i i 2 (3.174)
(VFj)a =(VFj)p + Etl—h{-]x’ Jy}ip(Fi)B
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where {Jx Jy} is pure imaginary. By considering the following relationship:

1
t_p = @tx—y (3.175)

Here, we have defined the two gradient operators acting respectively on heavy and light holes:

P

v+3/2 = 40 m";‘)H . (3.176)
P

vEl/2 - aOn%,a_z (3.177)

and we used the notations mpy g, mp g for the effective masses of heavy and light holes. For convenience,
one can re-write 3.174 in the form:

(F)a = (Fj)B

oF OF 2
M =] =mzt=— =t {de, JWHF
A (6Z)A B (61)3+\/§lh{J Jy}( )

where the matrix M is diagonal and includes the values of the heavy-hole mgypg = 71’_"—372 and the light-hole

(3.178)

— mo

mryg = respectively. Those boundary conditions may be applied to our 30 x 30, and 40 x 40

Y1+2y2’
multiband Hamiltonian in the corresponding reduced 6 x 6 blocks of the p — symmetry components (e.g.
VB). Following the general arguments developed above, the charge current will be shown to be conserved

by adopting such boundary conditions.

Durnev’s boundary conditions within 14-band k.p model [31]

We remind here that the boundary conditions to adopt have to i) conserve the charge flux (current) and ii)
make allowance for the heavy-to-light hole mixing in Eq. 3.169 or 3.178. We are now interested to inves-
tigate the boundary conditions proposed by Durnev et al. [31] in the framework of the 14-multiband k.p
theory. In 2014, Durnev et al. proposed a boundary condition which is: the continuity of the wavefunction
and discontinuity of the current-wave by Ivchenko [30] in the 6 x 6 block of the VB may be replaced by
the continuity of wave current, the five envelope functions f;, s corresponding to S, X,Y,Z,Z’, and the

discontinuity of the wavefunctions of the level of the I's¢ p-type symmetry band as follows:

(Fx)a = (fx)s +(fx)s

N N A (3.179)
(fy)a = (fy)B +1(fy)B

where 7 is a real dimensionless interface - mixing parameter and the two component spinor envelopes in
3.179 are defined as:
fi = | S (3.180)
fr.-12
where L refers to X', X, ¥", Y, ... (X, Y correspond to I's, and X’, Y’ to I's.). They have also showed that
the proposed conditions 3.179 are in agreement with the flux continuity which is given for a 14-component

envelope functions frs by [31]:

1 . OH s(6)
s=: D) firg——gr——fis (3.181)

L'S’,LS

or explicitly one has, e.g., for the flux z component [31]
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S. = = [PULSs = fid)+ P s = iz + 0 dy = Py + Fy = fd)]|

where P, P’ and Q are the coupling strength [31].

Transmission (log)

FIGURE 3.14: Spin splitting in resonant tunneling through GaAs/GalAs quantum
well structures [31] where the mixing between the heavy hole and light hole in
figure (b) (;;, = 0.5) allows splitting to become larger than the splitting caused only
by Dresselhaus term in figure (a) (¢, = 0). In figure (b) are the calculations with
two boundary conditions proposed by Durnev [31] and Ivchenko [30] which were
adapted to 30-band k.p model. The sum of transmission and reflection coefficients
(red curve) for both two adapting boundary condition in 30-band k.p model are
almost constantly and are equal to number of bands included in tunneling. This
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mean that the wave current is conserved.

(3.182)

Note that one can readily prove the conservation of charge flux by applying the boundary condition
3.179 directly to flux equation 3.182. Furthermore, the boundary conditions 3.169 or 3.178 can be obtained
from Eq. 3.179 taking into account that the Ql%Z off-diagonal matrix elements in the 14 x 14 Hamiltonian

couple fX« with fy and fy/ with fx according to:

Foo-_Q 3y

Ec/ —Enj 0z
Fpo—Q Ok
YT TEe —Eyy 0z
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Here E is the energy position of l"'1 < conduction band, E,; the energy in the nth electronic subband, and
we replaced I%z by _ia% acting on the smooth envelopes. Substituting fx/ , fy/ from 3.183 into Eq. 3.179,
transforming it into I's basis and making use of the explicit forms of Luttinger-Kohn parameters, we arrive
in the linear k, approximation to the second boundary condition 3.178 with the heavy-light hole mixing
coefficient:

t_p = ——Of (3.184)

Figure 3.14 displays the splitting of the resonant peaks in GaAs/GalAs quantum well structure [31]
where the mixture of the heavy hole and light hole (figure 3.14b), described via the #;;, = 0.5 parameter,
allows a larger splitting than the ones caused only by Dresselhaus terms (f;;, = 0) in figure 3.14b. These
calculations were done with the boundary conditions proposed by Durnev [31] and Ivchenko [30] adapting

to 30 band k.p model which are now going to be discussed in the following section.

Adapting the Ivchenko’s and Durnev’s boundary conditions to the 30- and 40-
multiband k.p models

Let us now develop the boundary conditions which allow one to describe the symmetry reduction from Ty
to Ca, at the interface of III-V semiconductor heterostructure within the multiband k.p platforms. In order
to do that we try to adapt the boundary conditions proposed by Ivchenko et al. [30] and Durnev et al. [31]
to multiband k.p Hamiltonian, typically for 30 — band and 40 — band k.p models where the details of
them can be found in Appendix A.

First of all, for convenience we rewrite the boundary conditions proposed by Ivchenko et al. given in

Eq. 3.169 in the matrix form as the following:

F I 0 F
A _ ) i;,6><6 R B (3.185)
(JzF) 4 ~3 aomo tx-yR Iexe (JzF)p

where fgyg is the 6 x 6 identity matrix and R was defined in Eq. 3.173. The matching conditions adapted

from Ivchenko’s boundary conditions to the 30- and 40-band k.p models then, may be given in a following

form:
Iinb+22)x(nb+22) 0 0 0
F 4 _ 0 Isxe 0 0 Fp (3.186)
(J2F) 0 —3 8- ix yR loxs 0 (JF)p
0 0 0 L(np-28)x(nb—28)

where i(nb+22)><(nb+22) and i(nb_gg)x(nb_zg) are (nb + 22) X (nb + 22) and (nb — 28) x (nb — 28) identity
matrices, respectively, with nb = 30 for 30 — band and nb = 40 for 40 — band k.p models.

The boundary conditions 3.186 show that in framework of 30—band and 40— band k.p models, one has
the continuity of the wavefunctions at the interface, the discontinuity of 6 components of the wave current
corresponding to 6 valence sub-bands HH 1, HH |, LH T, LH |, SO T, SO |; and the continuity of the
remaining components of the wave current. Here, we keep the same terms responsible for the discontinuity

of current as in 6 X 6 band model. One can easily observe that this extended boundary conditions also

ensure the conservation of the charge current. Indeed, note that the term Re [F ¥ (—% aJZO tX_YR) F ] =0

which can easily be proven by multiplying both side of Eq.3.186 with F* on the left.
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Doing the same treatments for Durnev’s boundary conditions, one may also adapt these boundary con-
ditions for 30 — band and 40 — band k.p models with the matching conditions defined by:

T14x14 0 0 0
F 0 D 0 0 F
A 1414 B (3.187)
(J2F )4 0 0 L(nb-28)x(nb-28) 0 (JF)p
0 0 0 Lbxnb

where f14x14 and inbxnb are 14 x 14 and nb X nb identity matrices respectively; 1514X14 = R.M,.R!, here
R is a matrix which transforms the |J, M) basis set to |L,S) basis set and M; is 14 X 14 matrix such that
the diagonal elements are equal to ones: M,(i,i) = 1 (i=1:14); and M;(1,9) = M,(2,10) = M,(3,11) =
M,;(4,12) = f and the remaining terms are equal to zero.

Conveniently, one may re-write Eqs 3.186 and 3.187 as:

F F
A mixing ’ (3 188)
(J2F) 4 (J.F)p
where:
f(nb+22)><(nb+22) 0 0 0
0 f6><6 O 0
Mpixing = (3189
8 0 % ih 0 )
0 0 0 f(nh_zs)x(nb—zs)
for Ivchenko’s boundary conditions and
haxia 0 0 0
o D 0 0
Mmixing = T A (3.190)
0 0 L(nb-28)x(nb-28) 0
0 0 0 Lubxnb

for Durnev’s boundary conditions.
Finally, These boundary conditions can be involved in the scattering and transfer matrix approaches by

modifying the interfacial matrix in Eq. C.14 as:

2102 B 210 - N A w},H( L0 B ,M( m
mey1 m(y2m 1
IM(n+1) = | Mpixing * o 1(kn1) oo 1(kn2) Uk nJ{I) n+1( o
Jon(ky) oo T (k™) VATAN (500 BRSO A4 )
| T (ky) e L™ ()| M(le) n+1( ) |
(3.191)
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It is worth noting that, in the framework of 30- and 40-band k.p models, and unlike the extended
Ivchenko’s matching conditions which is easy to see that the conservation of charge current is ensured,
the extended Durnev’s matching conditions are more difficult to analyze. Figure 4.1.1 displays the wave
current through a GaAs/AlAs quantum well structure for different matching conditions calculated with the
30-band k.p framework. One observes that the extended Durnev’s matching conditions are just accurate
in the vicinity of the I' point where the in-plane wave vector k|| is small and becomes inaccurate when k|
increases. Therefore, in this work, we just use the extended Durnev’s matching conditions for restricted

o _1
cases where k|| is small enough (typically less than 0.015A ).

Symmetry of wavefunctions in Quantum Wells of T, semicon-
ductor groups in a 30-band k. p approach and linear energy
Splitting in Quantum wells

Symmetry of wavefunctions in Quantum Wells of T, semiconductors in a 30-
band k.p approach

In this section, we describe the specific symmetry of the electrons and holes wavefunctions in III-V semi-
conductors quantum wells (AlAs/GaAs QW(10 nm)/AlAs) calculated in our 30-band (or 40-band) k.p
multiband scheme. We compare our results to the 14-band model as discussed by Durnev et al [31]. Here-
after, we will discuss calculations and modeling of the linear energy splitting vs. the in-plane electronic

wavevector k.

hhl ke =10° cm™!
X
() k=0 (b) b=
FSC ’
I'7e __/\/& _JM&
r x100 %100
, -
%100 s A
Rt jirwsr \7/\ g1 AV — St jrnsr2
Titirge — \ St jry.se
Ty, b D VI <L
1_7\/ _— .
x100 *100
© (d

x100 x100

D\ R v

2 C

x10 +).
flgli/‘j,['.\m 12 \7/\ ./ﬁ./,,‘,r,;,.,j/z s f12 /’/ 12
D Sotire s Wdirg 1
%100 x100

2 2
FIGURE 3.16: The envelope function } fé;f)N‘ (solid lines) and } féj_.)N‘ (dashed lines)

for n = hh1(HH1) (a,b) and n = [h1(LH1) (c,d) in GaAs/Aly 35Gag.75As 100 A

quantum well. Here, (+) and (-) are labeled for spin up and spin down and the

calculations was done for k =[0 0] (a,0) and k= [106cm‘1 0] (b,d) and for
ti_p, = 0 for all. Taken from Ref.[249]
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We will discuss respectively the different matching conditions, the hypotheses arising from the Cs,

interfaces that are of three types:

A) Without heavy-to-light hole mixing.

B) Ivchenko’s boundary’s conditions corresponding to a discontinuity of the I's, hole bands.

C) Durnev’s boundary conditions (discontinuity of the I's. conduction bands).

Figs 3.17 displays the typical wavefunction profiles (scattered wave) corresponding to the first light
hole states (LH1) within the GaAs QW and in the barriers without any mixing and calculated for k| = O,

at normal incidence. The wavefunctions components corresponding to the I's, 1/2, I's¢,1/2, I'sv,3/2, and
I'7¢ 12 represented here are all continuous along the coordinate z as required by the matching conditions of

type A. Moreover, those calculations are in pretty good agreement with the results published by Durnev et
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al. and displayed in Fig. 3.16. One can observe that under oblique incidence, the LH1 state is mainly of the
I'gy,1/2 symmetry as expected but acquires other symmetry components (only I's¢ 1/2, I'sy 3/2 and I'7¢ 1,2
are represented here) arising from the off-diagonal coupling and characterized by a different shape of the
envelope function that we will discuss hereafter.

In the same way, Fig 3.19 displays the equivalent wavefunction components profiles (symmetry-
projected electron density components) corresponding to I'g, 12, 'sc,1/2, I'sv,3/2, and I'z 1,2 for the LH1
level by adapting type B and type C matching conditions and where I, 1/2 acquires the larger weight.
Those curves should be compared to the 14 — band k.p results published by Durnev in Fig. 3.18 and are
in good agreement. Note that the component-dependent electron (hole densities) of I'7. 12 and I'g. 1/2 are
characterized by a discontinuity at each QW/barrier interface due to the heavy-to-light-hole mixing on the
current-wave (type B boundary conditions) or on the I's. states (type C boundary conditions). One notes
also a strong increase of the I'g, 32 density in the case of type B and type C conditions due to such mix-
ing terms. The impact of the 30-band k.p treatment on the electronic density calculation is a much better
precision owing to the introduction of large evanescent wave components of the high energy states (levels)
leading to the appearance of contributions characterized by rapid oscillations close to interfaces. Moreover,
the off-diagonal parts (e. g. I, 3/2 contributions to the I's, 1/2) are calculated with much more accurate
precision in this 30-multiband approach.

Linear energy splitting due to heavy-light hole mixing in quantum wells [31]

We discuss now the energy splitting for the HH1 and LH1 and HH2 doublets in the same type of
(AlAs/GaAs QW(10 nm)/AlAs) as discussed by Durnev et al. [31].
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FIGURE 3.20: Dispersion (a, ¢) and spin splitting (b, d) of valence subbands for

GaAs/ Al 35Gag gsAs 10nm QW. The calculations are done for two cases: mixing

parameter #;_j, = 0 [panels (a) and (b)] and #;_;, = 0.5 [panels (c) and (d)]. The spin

splitting of conduction subband el is presented in (b) for comparison. Taken from
Ref.[31].

Figures 3.20 display the results of 14-band k.p calculations performed by Durnev and corresponding
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respectively to: (i) band energy dispersions of HH1 and LH1 and HH?2 levels along the [100] and [110] k-
lines within the reciprocal space, together with ii) the energy splitting observed vs. k. Such splitting, with

a value reaching possibly 3 to 4 meV, results from the native Dresselhaus term due to the 7; bulk symmetry

group of the GaAs QW and/or the effects of the heavy-to-light hole mixing terms. As discussed by Durneyv,

one generally notes an enhancement of the hole splitting when type C (or type B) boundary conditions are

used, e. g., by considering subsequent heavy-to-light hole mixing, like discussed in the last section. Such

enhancement of the k-linear energy splitting for the doublet set (hh* and hh~ are almost degenerated in

energy for a 10 nm QW) ranges from 0.6 to 4 meV.
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FIGURE 3.21: Valence subbands dispersion in GaAs/AlAs 10nm QW calculated with
different k.p platforms (indicated in the figures), for two values of the mixing term
ti_p = 0 and 7;_;, = 0.5 with two sets of boundary conditions proposed by Ivchenko

et al. [30] and Durnev et al. [31].

In order to check our 14x14, 3030 and 40x40 multiband tunneling code, we have operated to same

kind of calculations by extracting the typical resonance energy of HH1 and LH1 and HH?2 levels using

electronic scattering waves (tunneling waves and not outgoing waves -bonding states-) boundary conditions.

We have then extracted the main energy peaks in resonance together with their splitting AEsoy. Figs. 3.21
(a-1) show the energy dispersions calculated along the respective [100] and [110] k-lines in the different

situations with a pretty good agreement with the results of Durnev. Figs. 3.22 (a-i) display the characteristic

energy splitting extracted in each calculation and one can note that the different platforms give consistent

results with each others, confirming thus the power of our k.p treatment.
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FIGURE 3.22: Splitting of valence subbands in GaAs/AlAs 10nm QW calculated with

different k.p platforms (depicted in the figure), for two values of the mixing term

t;_p = 0 and #;_j, = 0.5 with two sets of boundary conditions proposed by Ivchenko
et al. [30] and Durnev et al. [31].

In Figs. 3.23 (a-c), we have reported the results of calculations for the valence band splitting as a
function of the interface mixing strength (#;;) for a 8.5 nm GaAs QW embedded in GaAs (Figs. 3.23a)
and AlAs (Figs. 3.23b) barriers for the respective HH1, LH1 and HH2 levels. One can observe that the
splitting parameter 1, defined as AEso; = 1k increases firstly linearly with #;,_j, and more strongly for
1 > 1. The intercept of these curves with #;; = O correspond to the native Dresselhaus splitting (positive or
negative depending on the convention) whereas the values of AEgp; acquired for 775, > O from its value at
origin correspond to the heavy-to-light hole mixing terms (Cs, interface symmetry). These calculations and
results reinforce the energy splitting enhancement by the mixing of the hole characters arising also at pure
normal incidence. In agreement with the calculations of Durnev (Fig. 3.24), our multiband k.p platform
also exhibits a drop of the splitting coefficient 81 vs. QW thickness d from typical values of 20 — 60 or
200 meV.A at d = 5 nm to vanish for d > 15 nm. This feature is due to a rapid decrease of the electron
charge density at the Cy, interface when the QW width increases.

30x30 and 40x40 multiband k.p modeling of the energy splitting in the VB

As largely discussed by Durnev et al. [31, 250], the large hole energy splitting in the valence band, of
the order of 1-4 meV that is beyond the k3-Dresselhaus term, originates from the combined action of
the heavy-to-light hole mixing term at oblique incidence and the surface potential at Cy, interfaces H.
Under oblique incidence, the heavy-to-light hole k—linear mixing is a consequence of the complex valence
band structure and is related to the off-diagonal elements of the Luttinger Hamiltonian H and H*, here
H = —3h%y3/mo(ky — iky)k;, and k = (ky, k) is the in-plane wave vector of the hole. Here, y; (i = 1,2,3)
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are the Luttinger parameters in an effective Hamiltonian approach, and z is the operator of the z-component

of the hole wave vector. The mixing results in the following form for the ground-state heavy-hole and

light-hole wavefunctions [250]

P = Cp(2) [+£1/2) T i(k=d)SL(z) |+£3/2),
P = 0 (2) 1£3/2) £ i(ked)Sp(2) |£1/2)

(3.192)
(3.193)

here Cr(z) = |LH) (C like cos, and S like sin functions) and Cy(z) = |HH) are the envelopes of hole
motion along the z axis at k = 0,+1/2, +£3/2 are the Bloch functions, k. = kx + ik, and d is the well

(V AQLU) I{/ul//lm

150

width.
parametr'izalion a T
-~ —  parametrization (Il)
100 ;‘
= b @ = ’
% 60 80 100 120 140
E Well width (A)
3 50
60 80 100 120 140 60 100 120 140
Well width (A) Well width (A)
60 250,
= GaAs/Gads QW 200 GaAs/AlAs QW
40 <
g (C) -1, =0 g 150 (d)
g -t 0.5 g —=t,,=0
= Eh - 100 t =05
i@:— 20 g —_ —— l-h_ o
Q.
. 50
0 1
50 100 150 50 100
Well width (A) Well width (A)
FIGURE 3.24: Spin-orbit k-linear term pB; for the HH1 subband in a

GaAs/Aly 35Gag g5 As QW. (a) 14-band numerical calculation is shown for two sets
of parameters (solid and dashed lines) and for two values of the interface mixing
parameter: 7;_, = 0 and 0.5. The inset represents the results for h+ and h- subbands
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Three

Envelopes Cy,, q(z) satisfy the Schrodinger equation corresponding to a normal incidence: This reads

where

CLu(@)=NrLH {
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cos(kr,m.z)for|z| < d/2
cos(ky p.a/2) exp~*r-zz1=a/2) for 7| > d/2

(3.194)
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2mogr,H 2mo(Vo — eL,1)
k =4]/——— K =, —. 3.195
b \ 72(y1 % 2y2) L N 7#2(y1 % 2y2) ( )

Nr g is the normalization factor, &7, and ey are the energies of |LH) and |HH) states, V(z) = O at |z| < d/2
and V(z) = W at |z] > d/2 is the confinement potential of the well. The barrier height Vj is equal to the

valence band offset at heterointerfaces. Boundary conditions for Cy, g and Sy g at the well interfaces are

ly_(_'—L,H) ‘P_(:L’H)

obtained from the continuity of and v, columns with ¥, being the velocity operator. Envelopes

St (z) are odd in z and satisfy the following equation [250]:

312

2
[ U ()’1 F 2)’2) = + V(z) - €L H] Sr.H(2) = e
T mo

0
2mo 8z {73 6_z} Sr.u(2) (3.196)

Here, the upper and lower signs correspond to Sy, and Sy respectively and curly brackets define the sym-
metrized product {73 } = (73 5t 5 73) If one is interested to find the solution for Sy, one obtains:

Su = Al sin (ky\vz) + A¥ sin (kg .z) in the quantum well where v = ;1;22 and where the coefficient

N, and where the value of AH ensures the relevant continuity equations at the interface with

H _ \F _V3ys
A ~2kndys

the barriers. One thus finds that, under oblique incidence, the heavy-hole level acquires a small light-hole
component, proportional to k| and with a different symmetry for the envelope amplitude.

From the energy point of view, the involvement of a surface potential term of the form Hy =
2t gy Jy}s leads to an energy splitting AEsor = S1k| = 20,1 d¥y Sy, for the HH1 [31]. The same

\/§ apmo moag

occurs for the LH1 — HH2 doublet.

Conclusions of the section

Finally a short conclusion of this section is that an appropriate modification of the matching conditions
previously proposed for 6x6 and 14x14 multiband Hamiltonians by Ivchenko and Durnev el al. [30, 31]
accounting for the heavy and light hole mixing at the interface for the first time have been extended to 30x30
and 40x40 multiband k.p models in this thesis. The comparison of the wavefunction profile and valence
band dispersion as well as spin splitting in a GaAs/AlAs quantum well structure for these different numerical
models have been presented showing a good agreement. Thus, the implementation of the 30x30 and 40x40
multiband numerical algorithm developed in the thesis has been verified. This is very important point as in
the next part, we will apply these matching condition in framework of 30 or 40 bands k.p Hamiltonian to
describe an optical anisotropy (in spin lasers system) arising from broken symmetry at interfaces between
ternary quantum wells and barriers of such structure like (In,Ga)As/GaAs quantum well.
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The single-particle and two-particle Green functions (GF) are very useful mathematical and physical
tools for studying the electronic, optical and transport properties of materials and multilayers because they
can be used to express all the quantum observables of the system [252] thanks to their specific structures.
Indeed, beyond the knowledge of the wavefunctions, the determination of the single particle GF allows for:

(i) An efficient treatment of complex systems, starting from idealized ones to e.g. interfaces and
multilayered systems by handling the complexity as a perturbation involving e. g spin-orbit interactions.
Moreover, in order to obtain the electronic structure of a periodic system with a localized impurity or defect,
one can start from the GF method to treat the impurity (also like played by an interface) and subsequent SOI
and spin-dependent electronic diffusion as perturbations to increasing order. Similarly, the presence of a
surface can be considered to be a perturbation to the GF of an infinite medium. That way, we may introduce
a GF treatment for mixed propagating and evanescent waves within tunnel junctions considering the spin-
orbit interactions in a localized volume (tunnel barrier) or in semi-infinite half-spaces as a perturbation to
investigate the properties of the scattered waves in the ground state taken at the zeroth order. This provides
us a way to generalize the investigations dealing with spin polarized currents in GMR systems [253] by the
involvement of the spin-orbit interactions in both current geometry (CIP and current-perpendicular to plane
- CPP-).

(ii) More generally, the GF techniques are very useful for the calculation of the response of a system
to an external field within the linear response regime thanks to the well-established Kubo’s formula [254]
like e.g. the conduction properties within multilayers [255] as well as the optical response of a system via
the knowledge of the optical indexes, optical susceptibility or density matrix (optical gain).

For all those reasons, the ability to calculate the GF of a single interface or of a multilayered system
with an arbitrary potential shaped barrier becomes mandatory as soon as the complete resolution of the
Schrodinger equation of a complex system is not feasible. For an homogeneous media, the GF may be
evaluated locally using unperturbed wavefunctions as a basis or may be calculated quite straightforwardly
in the real space by matrix inversion technique like explored within a tight-binding approach. Similarly, the
GF for an infinite periodic system may be obtained by matrix inversion in the reciprocal space. Neverthe-
less, in the case of semi-infinite or inhomogeneous systems, e.g. an infinite periodic system with surfaces or
interfaces or involving two reservoirs (possibly ferromagnetic), one encounters the specific problem of the
matching conditions for the GFs which have been largely discussed and debated in a series of papers [253,
256-258]. Those works deal with finding the proper general expressions for the GF describing the multi-
layer structures from the "bulk’ ones and involving the relevant transmissions and reflections coefficients at
each interface. In this chapter, we will start to give an expression of the spin-polarized GF corresponding to
a simple potential step in the energy range of an evanescent transmission from pure spin-up channel to pure
spin-down channel without SOI before adapting and generalizing to multilayers and multiband hamiltonian.

Although we mostly deal with the development of the GF methods adapted to spin-orbit-assisted skew
tunneling for an interface or a tunnel junction, it is worth to mention a few applications without however
giving a full comprehensive view out-of-scope of the present manuscript. For that physical issues, the
GF formalism with spin-orbit extension has been employed with great success to study transport through
mesoscopic devices, exchange coupling, GMR [255] as well as tunneling magnetoresistance [259], surface

and interface states, as well as spin-Hall effect of heavy-metal/transition metal alloys [260].
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"Wl Green functions techniques for transport calculations.

Green functions and Lippman-Schwinger equation

The scattering presented here theory is essentially a time-independent perturbation theory applied to the
case of a continuous spectrum. That means that we know that it exists a complete eigenstates set (propagat-
ing or evanescent) corresponding to the full Hamiltonian for every possible energy, &. At this given energy
&, one may be interested to find the perturbed eigenstates |V (E)). There exist usually some degenerate
eigenstates for any given energy. So, the question becomes which of the presumably infinitely degenerate
full-eigenstates we are trying to compute? The answer originates from the causality; we want to be able to
completely specify the probability current amplitude incoming in from r — co, and we want the theory
to give us the corresponding outgoing current amplitude. The way we do this is picking an unperturbed
eigenstate which has the desired incoming current amplitude. At this stage we do not need to worry what
the outgoing current amplitude of the unperturbed state is. The second step is to make sure that our pertur-
bation theory generates no contribution and no changes on the incoming currents, which we accomplish by
considering such condition, under the argument of causality. As we will see, this means that the resulting
full eigenstates set will have desired incoming current amplitudes. We recall that solving a partial differen-
tial equation requires first to specify the boundary conditions, which is exactly what the standard scattering
theory formalism is designed to do.

We first consider a spin-polarized particle free of any orbital moment and described by a 2—component
spinor. The Hamiltonian only involves 2 x 2 identity and Pauli matrices. Typically, the scattering formalism
is described within the following approach: an incident particle in the state |Wp) is scattered by the 2 x 2
potential V, resulting in a scattered state |'¥';). The incident state |Wy) is assumed to be an eigenstate of the

host Hamiltonian Hp, with the eigenvalue &. This is mathematically expressed as:

(& = Ho) [Yo) = 0, 4.1)

The potential V(r) is assumed to be localized (without however being always a necessary condition), so
that

lim V(r) = 0. 4.2)
r—0oo
The goal of the scattering theory is then to solve the full eigenvalue problem
(E-Ho-V)|¥) =0, (4.3)

where |W¥) is the eigenstate of the full Hamiltonian H = Hp + V of the system with the energy &. It should
be clear that there is a different |¥p) and correspondingly a different |\¥') for each energy &, even though
our notation does not indicate this explicitly. We start by defining the scattered state |Wy) via

|¥s) = I¥) - [Wo) . 4.9

The full Schrodinger equation (Eq. 4.3) may be written as
(E-Ho)|¥) =V|¥), (4.5)
which, after substituting |¥) = |¥) + |¥o) and making use of Eq. 4.1, this gives:
(& - Ho) |¥s) =V|¥), (4.6)
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otherwise,
W) = (& - Ho) ' V|¥), (4.7)

by adding |Wo) to both sides of Eq. 4.7, one obtains:
) = [¥o) + (&~ Ho) ' V|¥). (4.8)

This is well known as the Lippman-Schwinger equation. It is often expressed in a slightly more compact
notation by introducing the concept of Green’s function, defined as:

Gi = limo (E—Ho +ie)t. (4.9

Gg (Ga) is called retarded (advanced) Green function. The term i€ is added to enforce causality by making
sure that |¥) has no incoming probability current associated with it. It makes sense that scattered waves
propagate away from the source, and not other way around. In our work, as we only consider the retarded
Green function, for simplicity we use Go instead of G{. Using this definition, the Lippman-Schwinger

equation takes its standard form:

[¥) = |Wo) + GoV |¥) . (4.10)

Solving the Lippman-Schwinger equation for |¥) is formally very simple. This yields:

[¥) = (1-GoV)™ [¥o) . (4.11)
The Born series give:
|¥) = |Wo) + GoV |Wo) + GoVGoV |Wo) + ... (4.12)
and, to the first order,
['¥) = [Wo) + GoV [¥o) . (4.13)

Written as an integral equation, Eq. 4.13 becomes

Y(r) = Yo(r) + / Go(r,r" )V ¥o(r')dr’, 4.14)

where (r |¥) = ¥(r), and Go(r,r’) = (r| Go |r’). The GF, Go(r,r’), is a solution of Eq. 4.9.

(E—=Hp)Go(r,r'y=6(r—-r’). (4.15)

The respective retarded and advanced Green functions G for homogeneous host materials of eigenval-
ues & and eigenvectors W, with a certain translational invariance involving Bloch k states, and satisfying

(& = Hy)¥i(r) = 0 at the energy &, is generally determined according to the general formula:

Wi (r)¥(r’)
= .16
GoErr)= ) e g wi (4.16)
where &y is the energy of the state |k).
Generally, in the multiband, one has [261]:

() ()
Gi(&,r,r) = “4.17)

0 Zk: Zj: E-&l +iny
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to find the bulk or in heterostructures where 1 (7 > 0) represents an infinitesimal value needed for conver-
gence; n ensures that the electronic waves coming from the left (right) side remains finite over the whole
host volume after a given propagation time 7. |k;) is the state of wavevector k and band j; 8{( is the energy
of such sate. The equivalent Green function G to be derived for a junction composed of two semi-infinite
media or for a tunnel junction is often more complex to obtain. We present here a general method devel-

oped for spin-unpolarized particles based on some references [253, 256-258] before its generalization to
spin-polarized particles.

Green function and the scattering matrix

It is possible to relate the Green function directly to the scattering matrix that is developed in details in
Appendix C [262]. This relation is very convenient as it will allow one to write the total transmission
coefficient as well as the wavefunction in a compact form containing the total Green function. Let us now
discuss an effective way to connect the Green function and scattering matrix formalism. In order to get
some insights, we consider firstly a single band green function with single layer and then go to a general
case with multiband Green function in multilayer structure.

Gy

1
Gy tq Gy
< = =
5 + .
Gy t, Go t, Gg
< = < o =
Go Go &, Gi
< ® < @ <
A A G+
ty ty )

FIGURE 4.1: Scheme of Green function where 71 and 7, symbols design scattering
evens.

A single layer.

Considering a single layer contacting with left and right electrodes with a point r . inside the left electrode
where the amplitudes of the scattering matrix are evaluated, and an equivalent point rg inside the right
electrode. We then, define a single band Green function as:

G(rRsan E) = Z Z w;;/l(pR)Gnm(ZRs ZL» E)lpn(pL) (4'18)

142



Chapter 4. Green function techniques for multiband perturbative spin-orbit transport in

heterostructures

where the sums are over all the number of channels 7 at the left and m at right leads, respectively. Then one
has: .
Grum(2R 21, E) = = ——ty e kit ~homr) (4.19)
AV
is the Green function associates with channel n'” at point z; in the left electrode, and channel m'” at point
zRr in the right electrode, vy, is the group velocity of an electron in n'h (m' h) channel. Substituting Eq.4.19

into Eq.4.18. We then obtain:

i )
Grrr i E) == 3" ———t (pR)tamthn(pp )’ Cr3t men) (4.20)

iy vallvml

Following the same procedure for two points r'L < rr in the left electrode, a similar expression can be
derived that relates the total Green function to the reflection amplitudes:

, i ikn (2 - [V —i(kpz, +kn
G(I'L, ry, E) = _Z Z an/(pL) [6nn’elk (ZL ZL) + I'nw V_n/e l(k ath ZL)] 'pn(pL) (4'21)
PTG n n

Equation 4.20 and 4.21 are the expressions relating the Green function to the elements of the scattering
matrix. We can now express the total transmission coefficient in terms of the Green function by inverting
equation 4.20: multiply it by ¥, (0g)Tum (0 e knzr =k
and use the orthonormality condition between the transverse wavefunctions. Then the transmission ampli-

mZR) integrate over the coordinates ry and rpg

tudes are:

Inm =ihVVan/dPL/dpRl//fn (PR)G (PR-PLE)Yn (pr) (4.22)

where we have defined:

G(Pr:pr-E) = G(pr.2r = 0,p. 2L = 0.E) (4.23)

The transmission coefficient then reads:

Tin = 3 Dt =1 3, 3 v [ [ ] [vitenceorpemmon

. (4.24)
Xm(pg) [G*(p}espL,E)] Un(py)dpLdprdp;dpy
If we define:
Tr(PRPR) = D Um(P RVl (PR) (4.25)
and:
L1 PL) = ) Un(pr)hvaths(pr) (4.26)

Then Eq. 4.24 becomes:

TLR=////FR(p'R,pR)GWpR,pL,E)FL(pL,p/L)G_(p/UPIR,E)dPLddePLdp}e (4.27)

and in the discrete-space representation we can re-write compactly Eq. 4.27 in operator notation as:

TLR =Tr {fRé+fLé_} = TRL (428)
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Multilayer structure [263, 264]

We now consider a general case with a multiband scattering process within a multilayers. For simply,
we consider a quasi one dimensional problem. Note that each interface within 1D multilayers act as a
diffusive (reflected - transmitted) that can be described by a surface potential \7, A general (multiband)
Green function of the system then satisfy:

(e-H)G=6(z-7) (4.29)

where H = Ho + Y. V;, here Hy is the Hamiltonian of the system without surface potential arising from the

13
interfaces between two layer. Or one has:

(s—HO+Z\7i G=6(z-17) (4.30)
i
We define a Green function Gy as:
Gp = lim (&= Ho =i€) ™" (4.31)
€E—

(e is very small) then for one single scattered center, the multiband Green function G reads:

G = Go + GoVGo + GoVGoVGo + ... (4.32)
or equivalently:
1
G=——Gp (4.33)
1-GoV
giving:
Gl=G5' -V (4.34)
We define a T-matrix operator as:
T=V+VGoV+VGoVGoV + ... (4.35)

where the right hand side of above equation is a infinite series. If this series converges then T will satisfy
the well-known Dyson equation:
T =V+VGol (4.36)

which possesses the formal solution:
A N -1, N} -1
T =(1-VGo) V=(V"-Go) (4.37)

Note that even in a case the series in Eq 4.35 does not converge, the relation 4.36 between T and V is
still valid, especially for the types of potentials of primary interest here: the surface potential or localized

potential. The Green function can be expressed in terms of T-matrix operator [264]:

G = Go + GoVGo + GoVGoVGo + ...
= Go + GoVG (4.38)
=Go + GofGo
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leading to:

A

VG =TG, (4.39)

In general, for multiple scattered center V = Y V;, the T-matrix operator reads:
i

<>

T=V+ ‘/}GO‘/} + VG()VG()V + .= [\7_1 - Go] - (4.40)

-1
|(ze) -oof -3 || 2

i i J
One observes that the sum of all repeated, consecutive products with the same potential index i such as

-1

Go + .. (4.41)

\Z- + ‘A/iGO\A/,- + \A/l-GO‘A/iGOV,- + ... that can be grouped together. So, if we denote the t-matrix:
t; =V +ViGoV; + V;GoV;GoV; + ... (4.42)

Then the T-matrix operator reads:

TZZfi+ZZfiGolAj+... (4.43)

i j#

Denoting by 7; ; the sum of all terms (scattering sequences) in Eq. 4.43 that start with 7; and end with 7;

then one has: )
_]_ -

T=>"1;= (Z V| -Go (4.44)
i.j

i

It can be shown through direct iteration that the quantities T j satisfy:

f}j = fiéij + lA,‘Go Z Tkj (445)
k#i

Now, if we introduce in a unique manner the site off-diagonal element Gg’k) of the free particle prop-
agator between i’ and k’h interfaces (that a part of G which connect #; to 7 in Eq. 4.43) and write Eq.
4.45 in the form:

Ty = sy + 4 Y Gy T (4.46)

k#i
Then a system of equations like 4.46 for all T; 7 terms can be re-written in a suitable matrix form as following:

M =N+ NGoM (4.47)

where M is a matrix that its elements are given by M;; = T; IE

fll f]i
M= ; (4.48)
Til Tll
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Matrix N that its elements are given by N;; = 1;0; 7 (N is diagonal matrix):
f
N = . (4.49)
ti
and matrix Gy that its elements are given by G = Gg’k) (1-6):
) o G
Go=| 0 (4.50)
()]
G, 0
G is a off-diagonal matrix or matrix with the zero-diagonal elements.
Equation 4.47 possesses a solution:
. \-1 1 - \1-1 RS |
M=(1-NGo) N=|[NT(1-NGo)| = (N"-Go) (4.51)
Note that:
-1
1
Nl = : (4.52)

then one could obtain the matrix M as the inverse of a matrix K = N~! — G with matrix elements:
Kij = fi_15ij - Gg’j) (1-06) (4.53)

and finally, all the terms T, i = M;; can be obtained immediately giving the T-matrix operator T afterward.

Besides, the Green function formula in multiple scattered also reads:
G = Gy + GoVG = Go + GoT Gy (4.54)

where V=Y V,and T = 3 T; j = 2, M;;, or in the other words, T is a sum over all elements of super matrix
i ij i.j
M.
Making a comparison to the global scattering matrix formalism developments in Appendix C, one could
realize a similarity between M and scattering matrix S that their matrix elements describe all possible

scattering sequences leading to T ~ S or simply, one may write:
Sg =M (4.55)

where ] is the current operator but also the surface potential term. Since we have the important relation (as

we will prove it in the next section):
GoJ = Po (4.56)

and in terms of scattering event at the i” interface, f; plays a role as the interface scattering matrix S; defined

in Appendix C:
t ’
S; = [ ' l (4.57)
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Consequently, that make it possible to write out the matrix M in a compact form as:

- 1-1
st =GPV o 0o . 0 0
& S N ¢/ S 0 0
o -G&¥ st -G 0 0
M=| 0 o -G&Y  g! 0 0 (4.58)
0 0 0 0 .. S, -GV
0 0 0 0 .. -GNV

Finally, in order to completely finish this description of multiband Green function for multiple scattering,

we are going to demonstrate relation 4.56 in framework of k.p method in following part.
k.p theory of Green’s function in multilayer
Considering a multilayer structure, then in a single layer, one has:
i A A
H=0.y;j0,+ifij0,+A; (4.59)

The schrodinger equation reads:
(H-e)¥Y=0 (4.60)

giving an equation for the wavefunction:

— = A A
(az%'jaz +ifij 0, + Ajj — 851/) ¥Y=0 (4.61)
and for the Green function:
Y A A + ’ ’
(‘9z7’ij 07 +iPij0+A;— 85,-]-) Gl (2,7)) = 616 (z,2)) (4.62)

Taking complex conjugate of Eq. 4.62:

o A*_> -"*_) NS s - ’ ’
(azyij 3. +ifyd. + Ay - 55,.].) G (2.2)) = 66 (2.2) (4.63)
or:
_ (e A A ,
G (z,2) (3z%‘j 0, +ifij0,+A;— 8(5ij) =0jx6(z,2) (4.64)

Left multiplying Eq. 4.61 by G, (z,z’) and right multiplying Eq. 4.62 by '¥;(z) then making summation as

well as integration over the z coordinate, one obtains:
A 1 -
Wi (2) = EGJ Wi(z2) - EG] W¥i(2) (4.65)

or .
¥ () = G ] ¥i(2) (4.66)

leading to a fact that GTis the propagation matrix.
So, from which it becomes possible to calculate the wavefunction profile within the whole multilayer

involving multiple scattering events.
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Link between the Kubo and Landauer’s formulas [265]

We are now going to derive the link between the Kubo and Landauer formulas. We will give a generalization
of that formulas when we will address the specific multiband k.p theory of spin-current in the next chap-
ter. One has then to consider the general expression of the conductance G in terms of the current-current
correlation function as expressed by the Kubo’s formula according to:

2¢? . i » A
GcUnd(w)=i—he g / dt exp "t Q1) ([J(z.1), J(z, 0)1), (4.67)
w —o0
where @ is the Heaviside function, w the frequency with € = 7w and ()¢ means the average of the

[/(z.1),J(z,0)] correlation operator on the ground state and this can be evaluated at any point of the het-

erostructure due to the current conservation. In terms of the second quantization, one has:

Jo =) Jap(2)cip (4.68)
af

where cj,cﬁ are the creation and annihilation operators of states @ and 8. We remind that the matrix element

—>
Jap Writes jog = (—i)%w; J Y and finally is independent of the space coordinate z. Thus, one obtains:

(190 72 01)g = 3 Jaw 2 ﬁzﬁ; Jgp (2 exp! e (|cheqrchap | ) (4.69)
([F0.J @0y = D Vaa ()1 exp /" [np (&) = np(e)] (4.70)

aa’
where nr is the Fermi occupation number. Inserting this equation into Eq. 4.67, we get:

2325 |Jaa'|2

Geona(w) = —— [nF (€0 — €} (4.71)

: _ ’
o fiw +in + €, — €,

The conductance in the DC limit at zero frequency (w — 0) is given by:

Geondl©) = =20 3 Ly ) (-2 6 e, =€) .72
ad’ 86“
to get:
2 o[ Onr(e)
Geona(0) = =271 ) Jaw () | == 6 (€0 = €ar) (4.73)
g 0ey

The calculation is independent of the z-coordinate thanks to the current conservation property. The
calculation can be performed in the right lead for incoming waves from the left. Because of the property

that Re(<m,_j) n> + <m (Jt‘n>) = 0, one can observe that

Z |Jaa’(z)|2 = Trace(n,m):k” |<Jm>|2 (tnm)? (tmn) (4.74)

aa’
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where n (m) are the ingoing (outgoing) states giving in fine the well known Landauer formula:

2

Gcona(0) = %Tracek” Tk (4.75)
where TkH = > tratmn 18 the overall transmission coefficient for incoming channel n. To establish the
expression of the latest Landauer formula, we have used the variable change ), Ky = (leh) / de. We will

give further proofs in the following section dealing with multiband k.p Hamiltonian.

Green function and spin transport

Interfacial Green’s function for spinless particles free of spin and spin-orbit
potentials

As an example, we first consider the solution of Eq. 4.15 for a scalar (or spinless) particle in a homogenous

potential Uy for z < 0, and U for z > 0. In this part, we have deliberately decided to detail the whole

mathematical developments to find the correct description of the GF for a single interface. The GF satisfies

the equation:
(&E-Hy)Go(z,7)=6(z-7) (4.76)
or

— - U(2)| Go(z,2') =6 (z - 2)) 4.77)

(s- o 1 9
2 dzm*(z) 0z

where Hy = (%) 6—‘92 m,}(z) a% + U(z). is the symmetrized Hamiltonian. Equation. 4.77 is an ordinary differ-

ential equation, the method to find the GF has been well mentioned in mathematical textbooks, normally it

has three main steps. We use this procedure in a particular case, i.e., Eq. 4.77, with the boundary conditions

at 7z = +oo.
1]1% incoming from the left side L|JE incoming from the right side
(1) (2) (1) )
ky k, k,
AVAVAVE 4 AVAVAVA" - k NNNS>
1
=A\N\NN NN NN
U1 UZ Ul U2
z<0 z2>0 z<0 z>0

FIGURE 4.2: Schematic fundamental solutions of the Schrédinger equation
(& — Hp) ¥ = 0 for a scalar particle in a homogenous potential U; for z < 0, and U,
for z > 0.

The strategy is:
(i) To find a fundamental system {¥9,%%} (see fig.5.21) of the homogenous Schrédinger equation
(E-Hp)¥ =0.
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(i1) To find a suitable linear combinations of ‘Pg and ‘{’g and find solutions y; and yy of the equation

(& = Hyp) y = 0 where y1(z) is non-infinite at z = —co, whereas y2(z) is non-infinite at z = +oo.

(iii) To define the correct GF we make use of the formula

Y1(2)ya(2) s ’
~if —o0 <z <7/ < 400
Go(z.7') = { Wy, y2)(z') , (4.78)

@) ya@) e ,
W1, y2)(z') if —co<z' <z<+00

where W(z') = #2(1) yl(z’)aygz(,zl) - ayal—z(,zl)yz(z’)] is the Wronskian potential. In the case & > Uy > Us,

Eq. 4.77 possesses a solution ¥ which is finite at z = —oo, and W% finite at z = +oo,
As well-known, at an energy larger than the potential step, the homogenous Schrodinger equation,
(& — Hy) ¥ = 0, admits the solutions:

l{lg — e_ik22> + rLeikZZ> + tLe_iklz<’ (4.79)

‘1’2 = ethiz< 4 rRe*iklz< + tReik2Z>, (4.80)

where we write z< instead of z < 0, and z instead of z > 0. Concerning their physical meaning: ‘I‘% is the
wave transmitted from the left to the right and ‘I’g is the wave transmitted from the right to the left at the
same energy. They satisfy the matching conditions at the left and right sides respectively.

By using the BDD matching conditions at z = 0, one obtains:

2ko 2kq
t, = JIR = , .81
L ko + kq R ko + kq “ )
ko — k1 ki —ka
= VPR = ) 4.82
L ko + k1 "R ko + k1 ( )
if one chooses y; = ¥, and y; = W§ satisfying the boundary conditions at z = +oo.
Therefore, Eq. 4.77 possesses a solution of the form:
, ‘I’g(z’)‘l’g(z)(%(z -7)+ ‘I’g(z)‘l’g(z’)(ﬂ(z’ -2)
Go(z,2') = , (4.83)
W(z")
with the Wronskian potential:
W) = w0 L) - )Ll (4.84)
)= 2m*(Z,) L\Z 87’ R\Z R\Z 07’ L\Z . .

If one assumes for simplicity and without a big loss of generality that the effective mass remains un-
changed in the layers, one obtains m*(z’) = m*. It is easy to derive 0W(z’)/dz" = O to prove that the

Woronskian is independent of the coordinate (z and z’). In this case, we obtain:

"% Aikyko
= . .85
2m* ko + k1 (4.85)
Following Eq. 4.83 we recover the retarded GF introduced in Refs. [253, 257]

GO(Z Z’) = Mie—iklzeikzz'. 72<0,7>0 (4.86)

’ h2 2ikp ’ ’ ’ '
o) = 21 ML itz yiksz, 250 1/ <0 (4.87)

o h2 2iko ’ ’ ’ '
Go(z,7)) = m 1 ekl et G| 20, 27 <0 (4.88)

’ K2 2ik; ’ ’ ’
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2m* 1 : / : /
Go(z,2)) = == |e®2l ¥ 4 pp el 1250, 27 > 0. 4.89
0(z,2") W 2k, | rre z F4 (4.89)
Note that the advanced GF is generally constructed by inversion of the respective left and right incoming

wavefunctions in the expression of the retarded GF.

Interfacial Green’s function for a spin-polarized particle without orbital de-
generacy: Case of diagonal Green function

In order to demonstrate the efficiency and power of the perturbation methods adapted to the spin-transport
case, one first considers the simpler case of the CB, free of any orbital degeneracy, and described by a
single S—type orbital. Choosing the orthogonal basis functions |S) ® {|T), ||)} allows one to obtain the

zeroth-order unperturbed diagonal Hamiltonian according to:

ISTY 1S 1)
H' o (4.90)
Hy = THRE
0 H;
¢! g
‘{’2 = \Pgl and ‘I’g = ‘Pél are solutions of the homogenous Schrodinger equation satisfying the
R

boundary conditions for the respective left and right incoming waves,

ol
=0, (4.91)

and

(&1 Ho) ( ia ) = 0. (4.92)

where I is the 2 x 2 unitary matrix. Note that (S}AI - Ho) is diagonal.
Now, the spin-polarized GF in the CB is a solution of the following equation

(STI - Ho) Go(z.7) =16(z-2), (4.93)

The 2 x 2 GF admits a diagonal form, due to the orthogonality (no spin mixing) between the basis functions,

i.e., |ST)and |S |). This makes the treatment rather similar to the spinless case. The diagonal GF then

writes:
1 ’
G, (z.2) 0
Go(zz)=| ° , (4.94)
° 0 GoH(z.2)
with o o o o
) - P ()P (2)0(z - ) + Yo ()P (2)0(2 - 2) 4.95)
0 > WTT(Z’) ’ :
and 0l 0l 0l 0l
Gll(z ) - Yo (¥, (2)0(z - 2') + ¥R ()Y, (2)0(" - 2) (4.96)
0 ? Wll(z’) ’ ’
The spin-dependent Lippman-Schwinger equation for the Wg state then writes:
¥r@) | _ [ ¥R @ ), / Gylwz) 0 V) VIR | (Y@ 4o
Pp2) |\ PR 0 Gz || V@) vi@) [\ ¥ |
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where V7 is the matrix element of the perturbed potential in the basis, |S 7T) and |S |).
We then obtain the correction to the overall wave function within the heterostructure according to:

[ Gl W)W (2)dz + [ Gl (2, 2 )W) Wakz)dz’

s¥h(2)
[ G WA (2 + [ Gz )W) P () dz!

4.98
SWh(2) (498

Examples and specificities of spin-transport along the [110]

growth directions.

In this chapter we will give some insights in the interest using Green’s function technique to explore the
specific properties of spin-transport in III-V semiconductors. We will consider in particular the electronic
transport through a [110]-oriented tunnel barrier giving rise to (i) a new kind of spin-filtering effect at
oblique incidence when Rashba SOI interactions is involved at the barrier interfaces [56] and thus associated
to the generation of a spin-current (Fig. 4.3) together with (ii) a spin-dephasing or spin-rotation effects at
normal incidence [55, 183] and that we will illustrate via our multiband tunneling code implementation.

The spin-orbit interactions are treated here in the volume of the tunneling barrier.

Spin-injection along [110] and spin-filtering effect [56]

The whole detail of the calculations described in this subsection may be found in Ref. [56].

(a)

x || [110] —_—a

.M/
1
P
~
Ny
S

z || [110]

y || [001]
® S: g

| . 2 || [110] . 14\

L -
S

‘{H [001] E 2| [11()} %

FIGURE 4.3: (a). The sketch of a symmetric tunnel barrier with the [110] crystal-
lographic orientation. The point-group symmetry elements of the structure include
the two-fold rotation axis Cs||y and the mirror planes oyy||(110) and O'yZ“(].iO);
(b) Model of spin injection via (110)- grown barrier. The spin component Sy > 0
of electrons transmitted through the barrier with different in-plane wave vectors
emerges due to i) anisotropic spin filtering caused by the Dresselhaus spin-orbit
coupling in the barrier interior followed by ii) spin rotation in the interface-induced
Rashba effective magnetic field Q. Taken from Ref.[56].

=4 Cy

A particular property of the Dresselhaus interaction lies in its specific dependence of the spin-splitting
with the crystallographic direction in the 7; symmetry group. Since the work of Perel’ et al. [54], it is
well-known, that an incident electronic beam crossing a III-V tunnel barrier at oblique incidence leads to a

net outgoing spin-polarization of the flux beam according to the following expression:

2 2
L et

T2 2
|21 + [

k“
- tanh (2yD s aqo) (4.99)

152



Chapter 4. Green function techniques for multiband perturbative spin-orbit transport in
heterostructures

where ¢, are the respective transmission coefficients for the respective+ and — spins with the quantification
axis set along the direction of the incident parallel wavevector k||, yp is the SOI Dresselhaus coefficient, my
and gg are the effective mass and evanescent wavevector inside the barrier, and a the barrier width. How-
ever the overall spin-polarization of the outgoing electronic beam vanishes if one sums over all electronic
incidences (+k) and —k) for an equal population within the Fermi surface. However, an efficient spin-
injection is observed with an [110]-oriented barrier due to the combined action of the Dresselhaus SOI in
the barrier and a Rashba SOI at the barrier interfaces as shown by Alekseev [56]. The Rashba coupling may
be considered as an effective magnetic field Qg lying in the interface plane which rotates the spin direction.
For that case, the authors consider a zinc-blende semiconductor heterostructure with a symmetric potential
barrier grown along the z || [110] axis, and an in-plane wavevector Kk = (k, ky) where x || [110] and

y || [001]. The electron effective Hamiltonian writes in this case:

H = Hy + Hp + Hg, (4.100)
where H is the Hamiltonian without SOI, Hr describes the Rashba SOI at the barrier interface:
Hg = a[6(z—a) -6 (2)] (oxky — oyky), (4.101)

where a is the barrier thickness, « is the Rashba coefficient and §(z) the Dirac distribution; Hp is the
Dresselhaus Hamiltonian projected in the corresponding basis as the sum of four terms

% 9°

Hp1 = i%{m(z),a—zs} (4.102)
ky O d

Hpz = Uzz a—ZVD(Z)a—Z (4.103)

. ko 3
Hps = il|oy ?+ky — 20y kyky )/D(z),a—Z (4.104)
k2
Hps = ok (?x—kﬁ))’D(Z) (4.105)

where we recall that yp(z) is the bulk Dresselhaus coefficient. The kinetic energy of electrons is assumed
to be sufficiently smaller than the barrier height to neglect Hps and Hp4 in comparison with the main
contribution Hp1 and Hps. The calculations demonstrate that the Hpj term does not lead to spin-filtering
effects at the first order of perturbation [56, 183]. In Ref. [56], the authors focused then on the combined
action of the Hps and Rashba terms. The mechanism of spin-injection and spin-filtering effects along
the [110] direction can be schematized on Fig. 4.3. One can assume that the electrons impinging the
barrier are unpolarized and that their distribution in the interface plane is isotropic. The incident electrons
are transmitted with different in-plane wavevectors k.. As in the case of the spin-filtering effect, a spin-
polarized current is generated. In the case where the Rashba term is absent, an equal population of the k,
and —k, states makes the net spin polarization to be zero. The Rashba coupling is considered as an effective
Hamiltonian with Qg proportional to k,, leading to a rotation with opposite axes for electrons with positive
and negative k.. The efficiency of spin-injection is analyzed by using the spin-dependent transfer matrix
technique with the assumption that the effective masses inside and outside the barrier are the same (/) and
neglecting the spin-orbit coupling outside the barrier.

The conclusion is that the spin distribution of the transmitted electrons is an even function of the in-plane

wavevector
aypm?kk,a

Sk,x = 2 h4q ’

(4.106)
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where g is the electron wave vector in the barrier when SOl is neglected. It results an effective spin-injection
even for an isotropic distribution of the incident electrons in the interface plane.

Besides the spin injection, the authors also consider the reciprocal effect that is the emergence of a
direct electric tunneling current j, through the barrier in the presence of spin polarization along the [110]
direction. Taking into account that the transmission coefficients for the electrons incident upon the barrier

from left and from right, the tunneling current density is

J.=e Z Tr [Tk(a)plT,:(a)] v, 0(,) + e Z Tr [Tk(—a)prT]:(—a)] v, 0(=v;) (4.107)
k k

where p; (p,) is the spin density matrix on the left (right), e is the electron charge, T (a) and Ty (—a) are
transmission matrices for an electron propagating from the left to the right and from the right to left. The

calculation yields the tunnel current

. 6dep, ameak?:'
T2 = 10522 13K3

where kr is the Fermi wave vector, p; is the spin polarization along the x axis, V is barrier height.

exp(—2+/2mV [1i2) (4.108)

Main physical issues for the spin-injection mechanism along [110] direction.

Along the [110] direction, the Dresselhaus Hamiltonian contains derivatives of third, second, first, and

zeroth order. In a perturbative treatment, we are interested in the third order derivative term like:

tp = 2 fyp @k + () o)} (4.109)

Indeed, the presence of the third-order derivative term makes the current discontinuous at the interface [183].
To avoid this problem, the authors considered the k-cubic term as the perturbation term V(z) in the above
calculation in order to derive the correction to the transmission coefficient for T and | spin channels start-
ing from standard BDD boundary conditions. One chooses here orthogonal basis functions with spin-
quantization axis being along the eigenvectors of o, according to: |S) ® {|T), ||)} with |T) = % (%), and

=34,
The unperturbed Hamiltonian possesses then the following block form:
7
H 0
H0=[ —) l (4.110)
0 H,
with: "
o _1 9
— 5 s o forz<Qorz>a
H'=plt =2 2 0m@ 0 : (4.111)
_7a_zm*_(z)5_2+v0 fOI'O<Z<Cl

and where we remind that a is the barrier thickness and Vj the barrier height. As it is well known, the

solutions of the homogenous Schrédinger equation at the same incident energy & < Vp are respectively:

ekt e ™z, 7<0

WOl = WOl = & Ae 92 + Bre®?, 0<z<a , (4.112)
tkeik(z—a)’ 7>a
tke—ikz, 7 < 0
‘I‘gT _ ‘I‘gl ={ Aped@® 4 Be™9E® 0<z<a , (4.113)

e—tk(z—a) + rkelk(z—a), z>a.
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: k . -1 : k .
where #;, = [Cosh qa+ 5 (% - 5) sinh qa] is the transmission amplitude, ry = [—é (% + 5) sinh qa] t
the reflection amplitude, Ax and B are the amplitudes in the barrier, Ay = % (1 +1i g) e 9, B, =

% (1 - is) e1%; k = 4/2mE/h% > 0 is the initial wavevector, g = +/2m (Vo — &) /h2, with the same ef-
fective masses inside and outside the barrier. The Wronskian potential is independent of the 7z’ coordinate.

We choose z > a to calculate its value.

w2 [ .o VR >a) ¥ >a) . 2k
wiT = o {‘I’L(z > @) - Y > a)p =i (4.114)
Note that the Wronskian for the | spin particle remains unchanged,
"2k
Wi =i—u. (4.115)
m

Expression for the Dresselhaus SOI potential and perturbation calculation.

We consider now the symmetrized Dresselhaus SOI Hamiltonian within the barrier. Because of:

=L (Tlox I =1, (4.116)
{loxIT) =0, (4.117)

(lox 1)
(TMox 11

the perturbed potential can be expressed in a diagonal form according to:

3 vIT(z) 0
V(z) = 0 Vi) l , (4.118)
where . .
V@) = A1H IN) = 5 {yo@k2 + (k) ()} (4.119)
and . .
VHE = W H 1) = =5 (@K + (&) yo(a)] (4.120)

Following Eq. 4.98, the correction to the zeroth order T-spin wavefunction within the heterostructure is

then:

6‘P1Te(z) = /GgT(z,z’)VTT(z')‘I’gT(z’)dz’ for T-spin incidence (4.121)
0
_l-m*eik(z—a) a , 1 , + , , ,
= T/ ‘PgT(z)—{yD(z )kf/+(k§’f) ¥o(z )}‘I’g(z )z,
2k A 2
whereas
a
SWh(z) = / Gz 2)WWH() ¥ (2)dz’ for |-spin incidence (4.122)
0
im*eik(z—a)

/a lI"Ol(Z,)l {,yD(Z/)kS, + (kg/)+')’D(Z’)} \POL(Z/)dZ/.
hzk 0 L \* 2 Z Z g R \* g
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From Eqs. 4.121 and 4.122, we can find the correction to the transmission amplitude for the T- and |-
spin channels respectively, according to:

— —
ot = —gtbd = —— a\POT( ')i S _9° ) b 9N (2)dz (4.123)
- hzk L z 2 3 aZ,S')’D < R Z Z .

—>
because ‘Pgl and ‘I’gT possess the same orbital character as ‘I’gl and ‘I’gT, where a%, acts to the right, whereas
—

aiz, acts to the left. This is Eq. (A5) in Ref. [56]. The authors finally obtained:

a ; =3 93
(K L ot nk N9 0 PO (1 4o
ot o hzk / ¥ (@ )2 { 923 925 —3¥p(@) ¢ Ve (2)dz (4.124)
—im* i 01 T(Z’) o1 T(Z’)
= QVDf L@ ) ~ Y (z ) et K (4.125)
* 2
ypm'q-a
= T o e (4.126)

The result is that the correction to the transmission coefficient is independent of the incoming spin
L 2
direction, ‘6tm = \6

with normal electron ingoing but only spin-dephasing or spin-rotation effects around the [110] direction

, in the present situation. It means that there is no particular spin filtering effect

like demonstrated by Nguyen et al. [183].

Spin-dephasing effects occurring under normal incidence along the [110]
direction [183]

In this part, we discuss the main results obtained by Nguyen ef al. on the spin-dephasing or spin-rotation
effects for a normal incidence of electrons within the conduction band along a [110]-oriented tunnel barrier
of T; symmetry group. This geometry for electron tunneling is called paraprocess [183] in contrast to
orthoprocess by which an incident particle travels through a [001]-oriented barrier at oblique incidence.

Along the specific [110] direction the Hamiltonian writes:
H =yck* + ink?’ (62 — by) (4.127)
N2 [110] y

where k is the particle wavevector along the [110] direction in the barrier (mainly evanescent) and oy
02
the Pauli matrices representing the spin; yc = % (in eV.A ") and yp is the Dresselhaus SOI parameter
03 -
(in eV.A"). Note that the quantized spin axis lies along the [110] direction that is in the barrier plane

perpendicularly to the growth axis. It results in a characteristic electron energy given by:

1
E =yck® + §7Dk3 (4.128)

where the wavevector k admits a large imaginary part due to its evanescent character. The evanescent nature
of the wavevector k = kg + i« of the tunneling electron has several important impacts [183]:
A) The requirement of a real energy E, negative from the top of the barrier conduction band, imposes a

mixed character to the wavevector k = Q + iK with the necessary addition of a real part k, = Q in order to
2m*A3

satisfy this condition. For yp = 0, K = <
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FIGURE 4.4: Schematic of spin rotation through the [110] barrier structure and the
potential profile of the structure.

B) The presence of a k3 term along the [110] current flow needs a re-examination of the current operator
definition in a reduced 2 x 2 spinor form [183]. A larger multiband Hamiltonian involving only linear k

and quadratic k2 terms does not require such a re-examination.

C) In a 2x 2 effective model, the current wave admits a discontinuity at both barrier interfaces related to
vp and such discontinuity is not related to a surface potential term but to the bulk Dresselhaus interaction.
In a 14 x 14, 30 x 30 and 40 x 40 multiband model, such discontinuity in the current wave should be
materialized by the connection with highly evanescent interfacial states originating from upper conduction
band.

D) This tunneling paraprocess as well as the orthoprocess lead to the formation of specific evanescent
textures in the imaginary space of the wave vector in the barriers which may be represented by evanescent
loops. Such evanescent loops emerging and absorbed at the top of the barrier conduction band represent the
(two) eigenvectors at a given energy characterized by their spin-direction not necessarily orthogonal (the
Hamiltonian is not hermitian in the complex k space). However the condition of current continuity is still
preserved.

From the statement A) and from Eq. 4.130, one can find §k = Q in the limit Q < K where yp is small

according to:

1
SE = 2yckék + EVDkS =0 (4.129)
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FIGURE 4.5: (a) Spin density profile (o;) along the respective i = x, y,z directions
calculated using our 30-band k.p platform for an incoming electron crossing a [110]
GaAs tunnel barrier with incoming spin aligned along the z direction; (b) Same
calculations giving the ratio % showing the gradual rotation of the spin
(o
component in the {[001],[110]} plazn. The rotation is a manifestation of the spin
dephasing effect.
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FIGURE 4.6: Spin rotation, experienced by the outgoing electron transmitted through

the [110] GaAs barrier, as a function of barrier height up to 0.6 €V. (a) Calculated

with different k.p platforms for barrier thickness about 200 A and incident energy

ef = 1.7¢V above top of valence band. (b) Calculated with 30 bands k.p method

with different barrier thickness. The rotation of the spin is almost linear proportional
to the barrier height.

or

K? A
Q=+1P2 _  YD0B (4.130)

"~ 4ye 4y2

where Ag = ycK? is the barrier height. A non zero value for +Q (+ and — respectively for spin up and spin
down along [001] or [110] directions will result in a spin-dephasing from the initial [1; 0]” state towards

[exp(iQa); exp(—iQa)] after electrons has crossed the barrier of thickness a:

g=2208, (4.131)
4ye

giving a dephasing of 27 would then correspond to a barrier thickness given by:

8my?
gy = € (4.132)

~ YpAs
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FIGURE 4.7: Spin rotation experienced by the outgoing electron transmitted through
the [110] GaAs barrier for different barrier thickness up to 300 A. (a) Calculated
with different k.p platforms for db = 0.5 ¢V and incident energy e¢f = 1.7¢V above
top of valence band. (b) Calculated with 30 bands k.p method with different values

of db. The rotation of the spin is proportional to the barrier thickness.
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FIGURE 4.8: Spin rotation experienced by the outgoing electron transmitted through
the [110] GaAs barrier for different as a function of barrier thickness with fixed
barrier height db = 0.5¢V and different ghost-band coupling strength {a} (a) and at
different k. (b) showing small differences.

Fig. 4.6b and 4.7b display the results of our 30-band k.p calculations of the spin-rotation observed
o 3 o 2
through a GaAs tunnel barrier (yp = 25 eV.A , y¢ = 50 eV.A ) vs. the barrier height Ap and the barrier

thickness a, respectively. One observes a spin rotation linearly increasing with Ag as well as a. In the case

of barrier height dependence, a characteristic slope inversely proportional to the barrier thickness while in

contrast to barrier height (Ag= band discontinuity - Fermi energy) with the barrier thickness dependence.

For example, the slope is then found to be equal to 1.25 X 1072 rad/nm for Az=0.5 eV, 8.75 x 1073 rad/nm
for Ag=0.3 eV and 3.5 x 1073 rad/nm for Ag=0.1 eV in Fig 4.7b. This is in pretty good agreement with
the formula 4.132 giving a slope of about 8 x 10~ rad/nm for Ap=0.3 eV. Figs. 4.6a and 4.7a shows

moreover that the calculations remains robust whatever the multiband code chosen. And finally, Fig 4.8

shows small impact of ghost band on the spin rotation with different ghost band coupling parameters and

different coupling point k..

To conclude: these good agreements among numerical calculations based on multiband k.p method and

analytical developments of matching condition with effective Hamiltonian for [110] direction by Nguyen et

al. [183] as well as perturbation method by Alekseev et al. [56] give another proof for the effectiveness of

the ghost band method developed in this manuscript. Since then, we may use a multiband k.p Hamiltonian
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that avoids some difficulties with the k% or higher terms in effective Hamiltonian to consider spin transport
phenomena along [110] direction or in general, along arbitrary directions that are interested.
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Chapter 5. Anatomy of spin-orbit currents for spin-torque and spin-orbit torque in spintronic
semiconductor devices

In today’s spintronics technology, the generation and use of spin-currents, spin-orbit currents and spin-
torques are of a particular importance in the aim to switch a small magnetic element or a magnetic memory.
This operation is generally possible without the use of any external magnetic field, by the transverse spin-
current via the so-called spin-transfer torque (STT). The current is injected from the top to the bottom of
the device (in the so-called current perpendicular to plane (CPP) geometry), or via the spin-orbit torque
(SOT) in an in-plane current injection geometry. Both STT and SOT mechanisms may provoke, hereafter,
a switching of the small magnet from the basic principle conservation of angular momentum. The flux of
the spd-hybridized orbital-angular-momentum current (spin but also orbital current) interacts with the local
magnetization, typically the local 3d magnetization of a transition metal or the 4p band of the (Ga,Mn)As
ferromagnetic semiconductor.

Those switching functionalities require efficient spin current injection at ferromagnet-non magnetic in-
terfaces as well as efficient spin-transfer torques (STT) and possibly efficient spin-Hall effect (SHE) [266].
At present, STT and more particularly SOT switching has been achieved in metallic systems, semiconduc-
tors involving (Ga,Mn)As and topological insulators, thus requiring the synthesis of bilayers, one made of
heavy material with strong spin-orbit interactions (like Pt, or even In in InGaAs compounds) in contact with
the thin magnetic element to flip. The description of magnetic switching is then provoked by the dissipa-
tion, close to the interface, of the two components of the spin-current transverse to the local magnetization
direction playing the role of spin torque. The two components are respectively called, the antidamping
or Slonczewski component for the one generating a torque towards the direction of the spin injected, and
field-like torque for the one generating a torque perpendicularly to the spin injected. In that context, investi-
gations of SOI in solids, interfaces, as well as tunnel junctions are of mandatory [110, 267, 268]. Moreover,
SOI at an interface with a broken inversion symmetry can lead to the observation of Bychkov-Rashba-split
states [269] for carriers propagating along surface or interface states. Such a splitting, if well controlled, can
be used to convert a perpendicular spin current into a lateral charge current by Inverse-Rashba or Inverse
Edelstein effect [97, 270, 271]. Alternatively, SOI can lead to inherent spin-memory loss (SML) [239, 272]
or spin-current discontinuities [273] when electrons cross interfaces. In that context, investigations of SOI
in solids and at interfaces are mandatory for basic physics. No much attention has been paid to the particular
anatomy of the electronic spin-polarized transport at SOI-magnetic interfaces where exchange-split inter-
face states may be observed [274-276]. This is the essence of the present chapter and following sections
to describe such spin-current local magnetic-moment interactions and subsequent magnetic commutation
principles involving both spin and orbital degree of freedom.

Beside metals systems in which one may obtain STT and SOT switching at room temperature, the STT
and SOT with ferromagnetic semiconductor also has been tremendous attracted due to low critical switching
current density [5]. In the context of GaAs materials concerning semiconductor devices, beyond the demon-
stration of STT mechanisms in trilayer (Ga,Mn)As/(In,Ga)As/(Ga,Mn)As magnetic tunnel junctions [6, 7],
Chernysov [8] was the first to demonstrate the switching functionality in bulk GaMnAs using the properties
of the SOI. Those results showing up a reduction/increase of the switching field vs. sign and amplitude
of current injection were explained by the contribution of an effective magnetic field, proportional to the
current injected in size and in sign, able to take part to the switching-field process. The inner strain field
and related spin-orbit field in the bulk, leading to an inversion asymmetry and k-dependent potential terms
in the reciprocal space was invoked to explain this phenomena. More recently, the group of Tanaka at the
University of Tokyo [5], demonstrated the switching of a 7 nm thick (Ga,Mn)As single layer by SOT mech-
anism with the help of the particular Dresselhaus interaction potential characteric of the Ty symmetry group
of GaAs and (Ga,Mn)As compound (Fig. 5.1). However, the use of a quite thick (In,Ga)As template buffer
layer, in the latter case, cannot totally rule out the spin-Hall effect as partly responsible for the magnetic

switching. If the switching mechanism is strongly investigated in terms of interaction between spin-current
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FIGURE 5.1: The SOT switching and the relevant switching mechanism; (a,b) Field-

assisted SOT switching with J || [110] and Hy = +500 oe and with J || [110] and

Hy = +500 oe. (c,d) illustrations of the torques exerted by the external field (t¢x;),

the anisotropy field (r,,) and the spin component along the x direction (rg7) with
J > 0 when Hy, > 0 and Hy < 0, here m lies in the y-z plane. Taken from [5].

and local magnetization viewed as a mono-domain (using the so-called Landau-Lifshitz-Gilbert equation
describing the magnetization dynamics [277, 278]), the investigation of spin-orbit torques in domain walls
has been the matter of recent subject of debates. The latest results [9] emphasized on the particular role of

the bulk component of the SOT in (Ga,Mn)As compared to the potential interface contribution.

This work and requirement of a multiband treatment

In the present work and following sections, we focus on the spin-torque components exerted on (Ga,Mn)As
by the spin and angular-momentum current generated in a trilayer system by a (Ga,Mn)As polarizer. We
calculate the two components of the torques versus angle, versus energy, and versus the thickness of the
soft layer to be switched in order to compare with actual prevalent theories excluding the orbital part.
Moreover, from the point of view of the spin-transfer and spin-orbit torque anatomy, we show that the
interplay of SOI and exchange interactions at interfaces and tunnel junctions may result in a large difference
of transmission for carriers, depending on the sign of their incident in-plane wavevector: this leads to
interfacial skew-tunneling effects that we refer to as anomalous tunnel Hall effect (ATHE) [12] or tunnel
anomalous Hall effect (TAHE) like proposed by other international groups [11]. In a 2X2 exchange-split
band model, the transmission asymmetry (A) between incidence angles related to +k|| and —k| wavevector
components, is shown to be m%xim%l at peculiar points of the Brillouin zone corresponding to a totally
iy Tk

T T k” = 100%) making the transmission difference from the standard
|

quenched transmission (A =
tunneling case.

More generally by inclusion of SOI, we demonstrate the universal character of the transmission asym-
metry A vs. in-plane wavevector component, for given reduced kinetic energy and exchange parameter, A
being universally scaled by a unique function, independent of the spin-orbit strength and of the material

164



Chapter 5. Anatomy of spin-orbit currents for spin-torque and spin-orbit torque in spintronic
semiconductor devices

parameters. Similarly, striking tunneling phenomena arising in topological insulators have just been pre-
dicted. While they all are related to the spin-orbit directional anisotropy, ATHE differs from the tunneling
planar Hall effect [279], spontaneous anomalous and spin Hall effects [280], or spin-galvanic effect [281],
previously reported for electron transport, by its giant forward asymmetry and chiral nature. These features
have non-trivial connection with the symmetry properties of the system. All these results show that a new

class of tunneling phenomena can now be investigated and experimentally probed.

LWl General argument on the spin-transfer torque (STT) and spin-

orbit torque (SOT) free of orbital-momentum contributions

We consider first, the spin-transfer mechanism in 3d transition metals without involving orbital terms. Those
originate from the spin-current/local magnetic moment interactions via the s-d exchange interactions. We
write 7‘A(Sp_d = —Jsp-a §.M where Jy,_q4 is the exchange constant (|Js,—¢M| = 0.1 eV /i) between the
4s-4p conduction electrons carrying an average spin -, and the local magnetization M of 3d orbital charac-
ter. Here, & is written in unit of 7. It results that:

i) The effective magnetic field B and the subsequent torque T' generated by the conduction electrons on

the local 3d magnetization of a unit vector m = MMS respectively write:
B=Jgp a0 (5.1
T=yJpabxM (5.2)

ii) Conversely, the effective magnetic field B as well as the torque T acting on the conduction spin 4s

write in reaction:

. J,

B=2r (5.3)
y

T=ylp-aMx& (5.4

T = —T should be associated to the conservation of the total spin moment 4sp+3d. It results that, in a
non-collinear magnetic configuration, the dissipation of a given component of the spin-current carried by
the 4sp conduction electrons by precession or decoherence and transverse to the local magnetization will
be associated to a transfer of angular momentum towards the local magnetic moment, at least when the

1

spin-flip mechanisms * are neglectable. Without spin-flip term, one obtains:

6M__ os
o~ o

iii) On the other hand, we are able to calculate the magnetization dynamics of the conduction electrons

(5.5)

according to the principles of quantum mechanics applied to the Bloch electronic wavefunctions. This

writes:

os Jsp—d
Lo v+
y(’)t Js

Mxs— yTi (5.6)

where j is the spin-current due to the polarized carriers and where 75 is the characteristic time for spin-

flip corresponding to the longitudinal component parallel to the local magnetization. This time may be

1In this case, the spin-flip terms are the same as spin relaxation.
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considered as long compared to the characteristic precession time. In steady-state regime, one has % =0,

the volume integral of the torque acting on the small ferromagnetic element (5.5) writes:

d M oM s
I = Q7 = _— = = Vi - — 5.
(91‘ Q (?t '[) JS Y Q Ts ( 7)
or:
ol M
= /Q = (IS(O)_Is(t)_'Y/i) (5.8)
ot Q Ts

It results that the total torques simply equals the difference between the incoming (I ;(0)) and outgoing
(I4(d)) flux of spins transverse to the local magnetization that we call T ! and T crossing the ferromagnetic
element integrated on the whole surface. The second term to the right is negative, and represents a counter
balance due to the spin loss during the spin-transfer mechanism [282]. To conclude, without orbital moment,
one can easily describe the two components of the torques according to:

Tspin—torque = aj M x (M X S) - bj Mxs (59)

e The component 7 = l% M x s is called the ’field-like’ component given by the imaginary part of

the spin-mixing conductance in the Landauer formula.

e The component T = ‘;—’ M x (M X s) is called the ’antidamping’ component given by the real part

of the spin-mixing conductance in the Landauer formula.

where the parameters a; et b; depend on the current density and the material parameters as the interface

conductance.

Definition of the spin-current operator and spin-current

The concept of spin-current is crucial for spintronics. However, its definition in a medium where SOI is
present remains a subtle point that gives rise to intense discussions and sometimes epistemological con-
troversies [235, 283-286]. Up to now, the standard definition is to write the spin-current tensor as the

symmetrized dyadic product o-v where the velocity v is defined from Hamilton’s relation.

A% A%
/ N\ i /

Ep Er A
dp
AN A\

(Ga,Mn)As (Ga,Mn)As

GaAs

FIGURE 5.2: Band structure’s profile of a simple (Ga,Mn)As/GaAs/(Ga,Mn)As based
tunnel junction.
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J= %(vé' +6v) (5.10)
y = 6_H (5.11)
op

The conceptual difficulty in current definition is of a general nature and extends to a wide range of physical
systems. Because the spin current may be not conserved, there may exist a source term G such that the
continuity equation for the density p of a physical quantity can be expressed in terms of the current J and
G:

op

i -VJ+G (5.12)

The point is that the source term is not well defined. It can be modified, an arbitrary part of it can
be incorporated in the divergence term, accordingly changing the current definition so that only the cur-
rent/source couple has a physical meaning [235, 285, 287]. This is analogous to a gauge transformation
where different vector/scalar-potential couples account for a unique physical reality. In spintronics, the
source term is referred to as the ’spin transfer torque’. Then, the problem of defining both current and
source terms in a conservation law is an old problem that was discussed in depth by Feynman [288] in his
lecture on electromagnetic-field energy current and also by De Groot and Mazure [289] in the context of
nonequilibrium thermodynamics, for which, however, the second law of thermodynamics provides addi-
tional conditions allowing the currents to be uniquely defined. Even though the argument cannot be used
as such in the case of (possibly nondissipative, permanent) quantum currents, there are situations where the
equilibrium or steady state regimes impose boundary conditions that lead to unambiguous identification.

Now we are going to consider the spin current corresponding to the two cases of boundary conditions:
the standard boundary condition or BDD boundary condition and the boundary condition involving surface
potentials.The typical structure under study is composed of a tunnel barrier corresponding to holes with the
VB like displayed in Fig. 5.2.

Spin-current and spin-torque with standard matching conditions

Starting with the derivation of spin density (¥|0|¥) given by:
ot ot ar

A . 0¥
i a'a‘l"> + <‘{’ O—GEH (5.13)

—(HY| Go'¥) + (¥| G HY) = — (6IHY| ¥) + (¥| 6, HY)  (5.14)

iha(‘{’|0'a|‘1’) iha(‘ﬂo-a ¥) =ih[<al{l

where &, is the Pauli operator, & = {0, 0y, 03} .

Since H and ¢ are hermitian operators therefore we have:

H=H'
. (5.15)
=06
thus
(H6) =6"H' = 6H = Ho + (6, H] (5.16)
Using relations 5.15 then 5.14 can be rewritten as:
O(¥| 6o |¥ . R ) .
ihw = (Y| 6oHY) — (G HY| ¥Y) = 2i Im [(¥| 6.HY)]) (5.17)

ot
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FIGURE 5.3: Profiles of 3-components of the spin current collinear to oy, o, and

o, inside (Ga,Mn)As/GaAs/(Ga,Mn)As (fig. 5.2). The magnetization of the thick

layer to the left is along z whereas the one to the right is transverse that is along

x. Calculations have been performed with respective (a,d) 6-, (b,e) 30- and (c,f)

40-band k.p models showing equivalent results. The energy of hole Ef = —0.03 eV

and corresponding to in-plane wave vector k=10 0] (a,b,c) and kH=[O.051°X 0]
(d,e,D.

Since 26H = 0cH + Ho + [0, H] (Eq 5.16) together with Eq 5.17 we have:

0(¥| o, |¥ 1 1
% = Im [% (¥| (buH + Hoo)W) | + Im [% V| (6 H] ‘I’)] (5.18)
For convenience, we write the Hamiltonian as in Eq.3.8:
H:Zajpj+ijkpjpk (5.19)
J J.k
Here we have (a;)" = a; and (bjx)" = bjx and thus:
(a;Fa + &aaj)-‘- =a;0y + Gaa; (5.20)
(bjkOa + Gabjr)’ = bjba + Oabjk (5.21)
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We now consider the term:

D PilPIbjpiGa + Gabjpi¥)
J.k

Z [—(p,;¥IbjkprFa + Tabjipr|¥) + (F|PbjxprFa + P jTabjipy V)] (5.22)
Jj.k

[~ ¥lbjpia + Fabupil®) + (Vlbjippiba + Fabjip;pi V)]
Jj.k

where we have used the fact that p ;bjxpy = bjxp;py and p ;Gabjkpy = Gabjkp;pi. Doing the same, one
has:

D PP IbjGa + Gabji¥)
J.k

= Z [—(PjPi¥|bjkGa + Gabjk|¥) + (P Y|P bjiba + P iGabji|V)] (5.23)
TE

= Z [P P YIbjkGa + Tabjk|¥) + (P ¥|bjip 60 + Tabjp ;)]
K

Because:

PiPrY|bjkGo + Tabji|¥) = p;{(bjxGa + Fabj)' pL¥IY) (5.24)
= pj((bjka-a/ + a'a/bjk) pklP|\IJ> = pj<(bjkpk6-(t + a'a/bjkpk) ‘P|\P>
and:

(PP ¥IbjkGo + Tabji|¥) = ((bjxGa + a’abjk)ijPk\PPP) (5.25)
= ((bjxOa + Gabji) p;pPI¥) = < (bjkPij(ATa + a'abjkPij) '{" ‘P>

and:
Z<pjly|bjkpk&a + Gabjkpi]W) = Z(pk‘ﬂbjkpja}, + &abjp;¥) (5.26)
Jsk J-k

From 5.22,5.23 ,5.24 ,5.25 and 5.26, one gets:

> p; (Real{(¥lbjxpy&a + abjpi¥)) =i Y I ((Vlbjp pida + Gabpp;pil®))  (5:27)

J.k J.k
‘P>

")

or

2.P
J
:iZIm
7

Real <‘{‘

<T

Z bjkPk) Ca+0q (Z bjkpk)
% %

Z bjkpjpk) Ga+0a (Z bjip Pk
k J

(5.28)
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Consider the term:

ijmaj bo + Oqaj|W) = Z [~(p¥laj 6o + Gaa;|®) + (¥Ip,a; o + PGaa;|P)]
: :

J

= [_<(aj o+ Gatj) PP + (Plajp; Go + ar(,a,p‘,w)]
J
J
= 2 |- (@) 6o + Gaap,) ¥ ¥) + (Flajp, G0+ Guaip,19)]
J
=20 Im (<~P|ajpj b + a—aa,-pj|w>)
J
to give
aj A A aj . n n
ij <‘{I‘E o + O'QE| ‘P> = ZZ Im ((‘P|ajpj 0o+ O'Qajij‘P)) (5.30)
J J
Doing the same we get also:

ij < (% O + 6}1%) ‘P’\P> = iz Im ((‘Plajpj Ga + a’aajpjl‘{])) (5.31)
j J

From Eqs 5.30 and 5.31:

2;,;1. (Re <\1/ |%f o + 0},%)‘}’» - 21'2‘ Im ((‘Plajpj G + &aajp.,.m) (5.32)
or:
;pj (Re <'1/(%’ G + aa%| ‘P>) - i; Im ((‘P|ajpj G + &aajpj|‘l’)) (5.33)

From Eqgs 5.28 and 5.33, one has:
2P ‘1’>

J
= iZIm <‘I’ ‘I‘>

J
If we introduce j;’ as the @ (@ = {x, y, z}) component of spin current operator, along the j direction

a; . a9
5 ; bjkpk) Go + G (E + ; bikpy

ajp; + Z b,-kp,-pk) Ga +0a (ajpj + Z bjkp Pk
3 J

Real <‘P
(5.34)

(j = {x, y, z}) of the charge current,

“a _ o OH 0H 0, oA aj aj A
Jj —75”4-%7—0}1 (E"';bjkpk + ?+ijkpk (o (535)
Using p; = —ihV; then Eq 5.34 becomes:

- Z Vi (Re w3y ‘I’>) = %Im (¥ |(GoH + Hby) 'P) (5.36)
J
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energy Aexc = 0.15¢V in framework of the 30-band k.p tunneling code; (b) Spin

torque spatial distribution of the parallel and perpendicular components of the spin
torque for positive and negative bias, taken from Ref.[290].

Finally, from 5.18 and 5.36, one has

(V| 6a1¥) _ o 1 .
SR ; v, (Re ¥ ‘P)) I | = (V] [Gr0, H] ) (5.37)
If we introduce 7& = %[&Q,H] = —%[&Q,H] then:
A Z v, (Re (¥ ¥ \y>) + Re [(¥] 7W)] (5.38)
where we have used 1 ;
Im 7 (¥| [0, H] ‘P)} = Re [E (P| [0, H] \P)] (5.39)

In the case, when the Hamiltonian is time independent, we obtain the continuity equation for the spin current

according to the following form:

;. (Re w32 ‘I’)) = Re [(¥] )] (5.40)
7

which means that, unlike the charge current which is always conserved, the spin current is conserved on
the condition that the Hamiltonian in the bulk and at the interface (see the following section) commutes
with the corresponding spinor. On this unique condition, the spin current is conserved within the whole
heterostructure. If one considers, for example, the case of a spin-orbit coupling of the form Hg o = L.S,
one can easily observe that its commutator with the spin physical observable S is not zero but includes the
orbital-moment operator L, playing the role of a non-zero external magnetic field acting on the spin. By
reciprocity, the orbital current (not defined here, see for instance Ref. [291]) will not be conserved due to
the action of the spin S. Note however, that the total angular-momentum (J = L + S) is conserved at least
in the case of a pure spherical symmetry because it commutes with the spin-orbit Hamiltonian. Another
example is the one of an exchange field in a ferromagnet, which is a general problem for the issue of the
spin-transfer phenomena. The presence of an exchange field in the ferromagnetic layer to be switched, by
STT or by SHE, makes the spin current nonuniform in the layer but modulated by a precession of the local
spin-polarized carriers around the local magnetic field. This precession, which is shortly described below,
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is responsible for the mixing between the damping-like and field-like torques within the film thickness, as
largely emphasized in the case of spin-torques through a tunnel barrier [290, 292, 293].

Figs 5.3 displays the profile of the joy , .-components of the spin-current (absolute value) calculated
within the respective 6, 30 and 40-band approaches. The holes tunnel from the thick layer to the left with
magnetization along z to the thin layer to the right with magnetization oriented along the x direction (or-
thogonal configuration). Those mostly identical profiles obtained with the 6, 30 and 40-band treatment,
display an incident spin-current along z parallel to the magnetization of the thick layer, transmitting inside
the thin layer in a mainly x-component parallel to the local magnetization and reflected with two z and y
components. The reflected y-component is ascribed to a partial precession of the spin-current inside the
thin layer. The transverse z-component of the spin-current entering the thin layer to the right is responsi-
ble for the dissipative torque (Slonczewski-like) whereas the y component is responsible for the field-like
component of the torque (non-dissipative) like discussed above.

Figure 5.4 displays the equivalence between the calculation of derivative of spin current and spin torque
(see Eq.5.40) calculated with our 30 bands k.p tunneling code. This shows that our theory and code are

robust. Furthermore, one should have:
VFh

Aexc

A= (5.41)

where A is the period of the spin torque’s oscillation within the layer and A.x. the spin-splitting due to
exchange; vr is Fermi velocity. One observes that with the same incident energy Er, A under normal
incidence (Fig.5.4a,b,c,d) is greater than the value obtained under oblique incident (Fig. 5.4e.f,g,h) since
the Fermi velocity along the tunnel direction (z) decreases as k|| increases.

For the parameters corresponding to the calculations shown in Fig.5.5a, one has v ~ 3 x 10°m/s;
Aexe = 0.15eV which corresponds to a larger period length, by about a factor of 4 ( A =~ 40A instead of
10 A for transition metals) extracted from our numerical calculations in Fig. 5.5a compared to the results of
Kalitsov et al. in Ref. [290] and plotted in Fig. 5.5b. The difference originates from the different material
properties between poor metallic ferromagnetic semiconductors and transition metal systems. In the latest
case, the Fermi velocity is larger, approaching 10® m/s, which is typically 3 or 4 times larger than the one
of light holes, but however characterized by a well smaller characteristic precession time of the order of
BiAexc = 1 fs with Ao = 1 eV. This leads in the latter case, to a precession period of about 1 nm as shown
in the corresponding figure of Kalitsov (Fig. 5.5b). Beside that, the phase relation between parallel and
perpendicular component of transfer torque in our numerical calculations is the same with that in Kalitsov
et al [290].

The partial conclusion of this section concerning the calculation of spin-torque in multiband k.p theory
is that our theory and numerical development compete with the ones led in a Green’s function approach or
at least give essentially the same results. The strong improvement provided by our technique is that one
can involve more easily the surface potential terms (or surface Hamiltonian), like Rashba or Dresselhaus
spin-orbit terms. Those are relevant in spin-transport to describe spin-depolarization effects or additional
effects like the generation or conversion of charge current into transverse spin-currents (anomalous tunnel
Hall effect or inverse Edelstein effect).

We will come back to theoretical calculations of the spin-transfer torque after having described the

experimental results dealing with spin-transfer in (Ga,Mn)As/GaAs/(Ga,Mn)As tunnel junctions.
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Spin-current and spin-torque involving interface potentials and spin-orbit
terms

We are now going to discuss the involvement of the interface potentials on the STT. Let us consider the spin

current in heterostructures involving surface potential terms.
Hsurface = Z V}'(S()Cj - XO) (5.42)
J
where V; is a matrix which is independent of the j component of momentum. Then the total Hamiltonian

is:

Htotal =H+ Hsurface (543)
According to Eq. 5.40, we have:
T 1 J 1 A
D V5 (Re (#1372 W)) = Re | = (¥ [ Hour race] 1¥)| + Re | = (2| [60. H] ¥ (5.44)
J

Since:
1 N 1 R N
E <\P| [O-aaHsurface] |‘P> = E (lPl O-(lvjé(xj - xO) - Vjé(xj - XO)O'(, |lP>
1 N n 1 N N
= %Vj (W04 V;0(xj — x0) — V;i0(x; — x0)0¢ |¥) = EV, [(‘I’I 0oVi = Voo |¥) 0(x; - xo)] (5.45)

= 29, (1[G, V7] 1) 65 - 0]

x10°

Barrier —t =

Non-zero spin-current
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Left Electrode
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FIGURE 5.6: Profiles of the z-component of the spin current within
(Ga,Mn)As/GaAs/(Ga,Mn)As junctions. The magnetization of the thick layer to
the left is along z, whereas the one to the right is transverse that is along x for the
calculation of the STT. The calculations have been performed with the energy of
holes € = —0.03¢V from the middle of the (Ga,Mn)As band. Here, the necessary
heavy hole - light hole mixing parameter #;_j, varies from O to 1. This coefficient is
set naturally positive and negative at the respective right and left interface of the
barrier due to the specific Dy,; symmetry of the junction of a symmetric profile.
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Equation. 5.44 becomes:

>V (Re (v137 ) - v, (Re [% (] [50.V;] 1) 60, = x0) ) = Re (% (¥ (600 H] |LP>) (5.46)
j

Project Eq. 5.46 onto j — direction, one gets:

v (Re (w130 W) - v, (Re[%m [60.Y] |\P>e(xj—xo>}) =Re(%<w (60 H] |\P>) (5.47)

J

J
Taking integral of both side of Eq. 5.47 and putting J]‘.’(O) = / Re (llh (V| 0@, H] |‘P)) dx; then we get:

Re (|37 W) = 50+ Re (3 <1 [&“’Vf] M)j i >x% (5.48)
JJ‘.’(O) if xj < xo

This equation shows the discontinuity of the spin current at the interface induced by the surface po-
tential, which may originate from the Rashba term or reducing from Cy, to Dy, at the interface of III-V
semiconductor heterostructures. Figure 5.6 displays the 30-band k. p profile of the z-component of the
’transverse’ spin-current injected, and particularly at the interface between the tunnel barrier and the thin
(Ga,Mn)As layer. The parameters are the same than those of Fig. 5.3 except that one considers, now, the
necessary HH-LH mixing parameter (#,) varying from O to + 1. This coefficient is set naturally positive
and negative at the respective right and left interfaces of the barrier owing to the Do, -symmetry of the
junction with a symmetric profile. Surprisingly, it results in a noticeable enhancement of the z-dissipative
component of the STT by more than 10% (Fig. 5.6) for #;;, = + 1. Such enhancement in the transverse
dissipative part of the spin-current may originate from a transfer of highly spin-polarized heavy holes (pure

spin-states) into polarized light holes with a larger transmission (smaller effective mass).

Spin transfer and spin-orbit torque: Experiments (collabora-
tion UM¢ CNRS-Thales)

We now turn on and discuss the spin-torque experiments involving (Ga,Mn)As-based magnetic tunnel junc-
tions in a perpendicular current geometry (CPP). Since the pioneering experimental work led in Grenoble
by M. Tsoi et al. [294] and in Cornell University by J. Katine et al. [295], we know that the magnetic
moment of a ferromagnetic body can be reversed or be re-oriented by transfer of the spin angular momen-
tum carried by a spin-polarized current. This concept of spin transfer has been previously introduced by
Slonczewski [277] and Berger, [278] before being confirmed by extensive experiments on pillar-shaped
magnetic trilayers [296].

The principle of spin-orbit torque process mediated through the spin-Hall effect in semiconductors can
be discussed along the same ideas as recently demonstrated by the group of M. Tanaka [5] by the evidence
of the magnetization switching of a single magnetic layer of (Ga,Mn)As.

Most current-induced magnetization switching (CIMS) or spin-torque experiments have been performed
on purely metallic trilayers [297-302], such as Co/Cu/Co, in lithographically patterned nanopillars with de-
tection of the magnetic switching by giant magnetoresistance effects. Typical critical current density J¢
required for magnetization reversal in these systems has been of the order of 10”7 A.cm™2 or higher. Since,

there have been several reports on current-induced magnetization switching on transition-metal magnetic
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FIGURE 5.7: Scheme of spin transfer torque: the spin polarized currents were

prepared by the fixed ferromagnetic layer before entering the free ferromagnetic

layer. Because of the conservation of angular momentum, the lost spin part acts like

a torque on the magnetization in the free layer and then may switch the direction of
magnetization in this layer.

tunnel junctions with low junction resistance at critical current density below 10® A.cm=2 [303-305]. Cur-
rent Induced Magnetization Switching (CIMS) experiments on tunnel junctions bring new physical prob-
lems, [306] and are also of particular interest for their promising application to the switching of the MTJ of
MRAM (Magnetic Random Access Memory). For a latest review of spin transfer in MgO-based MT]Js, the
reader can refer to the paper of Katine and Fullerton [307] and references therein. (Ga,Mn)As is known to
have a small magnetization of less than 0.05 T and a high spin-polarization of holes which must result in the
reduction of critical current according to the Slonczewskis spin-transfer-torque model. It results that a low
current density, of the order of 10° A.cm™2, is a needed for CIMS with (Ga,Mn)As [6, 7] shows the interest
of magnetic semiconductors for spin transfer. Beyond the fundamental point of view and as emphasized by
Chiba et al. [308], the specificity of the valence-band structure and spin-orbit interactions has to be taken
into account and should have the effect to mix the spin states of carriers. In the following, we present results
of CIMS experiments obtained on our own (Ga,Mn)As MTJs, they appear to be more or less comparable to
those obtained in Ohno’s group [6].

On the other hand, considering the spin-orbit torques (SOT), the combination of exchange and SOI
in (Ga,Mn)As makes this materials very important. Indeed, more generally, magnetization switching at
the interface between ferromagnets and SHE nonmagnetic materials controlled by a current and related
current-induced torques are of a particular interest. In that sense, the size and symmetry of the SOI at
the interface with relevant materials with surface broken symmetry, like using (Ga,Mn)As (III,V), deserves
some clear investigations for potential future applications. With that in mind, SOI current induced torques
have been already demonstrated with (Ga,Mn)As [4, 8] and more recently, the specific role of the anti-
damping Slonczewski-like torque in the ferromagnetic resonance regime of spin-transfer. This particularly
emphasizes the role of the two types, Rashba and Dresselhaus, symmetry-like terms originating from the

unidirectional character of the interface, together with the symmetry breaking from 7,; to Ca, symmetry

group.

176



Chapter 5. Anatomy of spin-orbit currents for spin-torque and spin-orbit torque in spintronic
semiconductor devices

Experiments on spin transfer torque with (Ga,Mn)As-based tunnel junctions
(Ga,Mn)As/GaAs/(Ga,Mn)As heterostructures

Our ferromagnetic semiconductor-based (Ga,Mn)As(50 nm)/GaAs(6 nm)/(Ga,Mn)As(10 nm) structures,
depicts in figure 5.8a, were grown by molecular beam epitaxy at 250°C on a p-doped GaAs buffer template
(doping p =~ 2x 10 cm™3) deposited on a GaAs(001) substrate. The two (Ga,Mn)As electrodes were made
different according to their thickness and their composition in Mn doping so as to observe a different Curie
temperature 7¢ and coercive field. By SQUID measurements, we find a typical ferromagnetic behavior for
the (Ga,Mn)As layers with a Curie temperature of 150 K for the thick 50 nm layer and 55 K for the thinnest
10 nm layer. The magnetization at saturation Mg was measured to be 50 emu/cm® and 12 emu/cm?® for the

thick and thin layer respectively.
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FIGURE 5.8: (a) Structure used for the investigation of the Tunneling Magnetore-

sistance. (b) Tunneling Magnetoresistance (TMR) obtained on the structure shown

in this figure a at temperature of 12 K and at bias of 20 mV. The (Ga,Mn)As layers

where made different to promote a different reversal of the two (Ga,Mn)As layers
and a clear antiparallel (AP) plateau.

For the tunneling-magnetoresistance (TMR) measurements and spin-torque experiments, 500 nm diam-
eter submicronic pillars were patterned by e-beam lithography methods. The resistance of the junctions
were acquired with a standard DC technique between 12 K in magnetic fields up to 6 kOe. The I-V curves
(Fig. 5.9b) exhibit a typical nonlinear behavior for tunneling. The resistance-area product (RA) at low bias
(20 mV) is about 1.2 x 1073 Q cm? at 12 K which appears very similar to junctions with (Ing 25,Gag 75)As
indicating an almost equal barrier height with the two materials. Besides, figure 5.9a displays the depen-
dence of TMR on the bias voltage where the TMR reaches about 115% at zero bias and reduces almost
to the zero at bias about 1eV. These results are in the same order of magnitudes that were obtained with
(Ing.25,Gag.75)As (150 at zero bias) as reported previously in ref.[7].

Fig. 5.8b displays an example of a TMR curve acquired at 12 K with a magnetic field He; = 55 Oe
applied along the easy magnetization axis ([100]). The well-defined resistance plateau on the curves is
characteristic of an antiparallel (AP) arrangement of the two (Ga,Mn)As layers on the plateau. The MR
ratio reaches about 50% at 12 K with a bias voltage of 20 mV. In Fig 5.10a, we show the spin-transfer
torque phenomena (STT) obtained on the same (Ga,Mn)As/GaAs(6nm)/(Ga,Mn)As junction. Starting from
a saturated parallel (PA) configuration at zero injected current (V=0), the bias is increased step by step up
to magnetization switching, and, after each step, brought back to 20 mV for comparison with the results at
20 mV before the current injection process. By this way, one can check whether the magnetic configuration
has been irreversibly switched and only irreversible switching can be detected. By comparison with the MR

curve at 20 mV, one observes that the magnetic configuration is switched irreversibly from an almost parallel
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FIGURE 5.9: (a) Tunneling magneto resistance TMR as the function of bias voltage:
The TMR reaches very high values at low bias (120 %) and reduces to zero at bias
1V. (b) The IV curve of our sample.

(P) to an almost antiparallel (AP) configuration by a positive current density (current flowing from the thin
magnetic layer to the thick one, j.4 = 2.1 X 10° A.em™ (Vey = 1.2 V) at 12 K. Then the configuration
is switched back to parallel by a negative current above a threshold current density of the same order
Je- = 1.9 x 10°A.cm™? at 12 K (Vo_=1.4 V). Opposite current directions for the P to AP and AP to
P transitions is the characteristic behavior of switching by the STT induced by the current. Reversing the
initial orientation of the magnetizations does not reverse the sign of the switching current confirming thus
that Oersted field effects can be ruled out and that the transition is due to the magnetic switching of the thin

layer.
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FIGURE 5.10: (a) Spin torque experiment performed on the same nanopillars re-
vealing magnetic reversal for a critical current density of jo. = 2.1 x 10°A.cm™2
and jo4 = —1.9 X 10° A.cm™2 respectively. The applied field is 55 Oe in the in-plane
direction; (b) The magnetization diagram switching for this spin torque experiment.

STT experiments similar to those obtained of Fig.5.10a and corresponding switching diagram in
Fig.5.10b can be obtained only in a small field window of 4-5 Oe around 50 Oe at 12 K. We found that the
dipolar field generated by the thick (Ga,Mn)As layer and acting on the thin layer is close to 55 Oe at 3 K,
so that H.,;=55 Oe corresponds to about an effective field H.r#=0 Oe on the thin layer when the moment
of the thick one is in the positive direction (Fig. 5.10a). The behavior of Fig. 5.10a in a field range of a
few Oe around H, ¢ = 0 Oe can be explained by the combined effects of the Joule heating and temperature
dependence of the magnetic properties [7].
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Analytical theory and numerical modeling of the Spin-Transfer torque within
the multiband k. p theory frame

General arguments on Spin Transfer phenomena

We now focus to the calculations of the torque within the point of view of the spin degree of freedom. One
defines oy y ., the spin of the carriers, generating a local torque on a local magnetization M. We call j the
charge-current. Concerning the calculation of spin torque in III-V heterojunctions, one can start from an
equation giving the time derivative of the angular momenta density operator u; = pJ; at a certain position

inside the heterostructure where J; is the angular momentum operator along direction i:

ou; . aJi
T ViyJ)+p ER
(9[.! Aexe
—_— = —V ] i _— .
o GJi)+ . mXx u (5.49)

z 5 Spacer

y Left FM Right FM
X

FIGURE 5.11: Shematic structure of the MTJ, consisting of left and right FM leads

separated by a nonmagnetic spacer. The magnetization M5 of the right FM lead is

along the z axis, whereas the magnetization M of the left lead is rotated by an angle
0 around the y axis with respect to M.
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0.2 V. The solid points are analytical calculation and the solid lines are the sine curve
fit, taken from Ref.[309].
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Summing the latter equation over the different hole states included in the transport gives out (after
having considered that the time derivative of the angular moment operator is null in the limit of coherent

elastic transport):

(VG = 2 mx () (5.50)

This gives the torque at a given interface (int.) after integration over the semi-infinite structure:

<jJi>int. = [VHexc X <ﬂ]> (551)

where H, . is the average exchange field experienced by holes and y; is the magnetic moment vector (per
unit surface) injected in the thin layer subject to the torque by the spin-polarized current. We recover here
the general results established by Kalitsov et al. [310] in the case of transport in the CB described using the
Keldysh framework.

This demonstrates the presence of two intertwined contributions (jJ;), (parallel to the layer) and (jJ;),
(perpendicular to the layer) for the spin torque (¥ is the magnetization direction) as derived for symmet-
ric [311, 312] and asymmetric barriers [313] and demonstrated experimentally in epitaxial MgO barrier
MTIs [314, 315]. These two components of the transverse spin current are also responsible for the par-
ticular angular dependence of the tunneling transmission as in the case of the conduction band [316, 317].
These two components of the torque are linked to the average value of the two components of the angular
momentum carried by the hole current [310]. Within the general circuit-theory formalism developed by
Braatas ef al. [318] and adapted to metallic trilayers, one can establish that these two contributions to the
torque in magnetic tunnel junctions can be linked to the magnetic moment in the barrier (generalization of
the spin accumulation) through the real and imaginary part of the tunnel mixing conductance G1. These

should be calculated in a future work.

Spin Transfer phenomena: Angular variations of spin-torque and spin-orbit
torque

The general expression for the magnetic torque acting on the local magnetization M is:

df,M Acxe ()
Ty=—2Y_ = XXM ~— | L 5.52
M= /V n HX /V a1 (5.52)

where /V means the integral over the volume, V, of the magnetic layer to switch (or thickness). The

. . 0/M . .
relationship % ~ - f %—’: means that the total torque is zero due to the conservation of the angular

momentum as it results from general reciprocity argument via the exchange term (H,,.) acting equally

between M and y with Heyxe = —AexcM p. The equality agtM = - / %—’; holds exactly for zero spin-orbit
coupling. One gets:
oui  dp do;
= Lo+ p=—=L 5.53
FTF TRAREAFY (5.53)
or equivalently:
oy, oy,
LV (jo; -1 5.5
o1 (Jo)+p o1 (5.54)
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FIGURE 5.13: Angular dependence of spin transfer torque, for nomal incident
electron (a,b) and oblique incident electron (c,d,e,f) with different hole’s energies,
through the (Ga,Mn)As/GaAs/(Ga,Mn)As tunnel junction depicted in Fig. 5.11.

(5.55)

where 7, is the decoherence time for the two components of the spin-currents transverse to the magnetiza-

tion. The latter expression holds exactly in the absence of any spin-orbit interactions [4] (core spin-orbit

of holes nor spin-orbit at interfaces) whereby the commutator of the spin operator simply involves the

exchange field.

Spin-transfer torques involving decoherence and spin-flips

In order to determine the efficiency of spin-transfer and spin-orbit-torque involving decoherence and spin-
flips, one needs to compute the dynamics of the spin-polarized carriers with spin o and local 3d transition

metal magnetization M and looking for the different condition limit. From a quantum mechanical picture
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spin transfer torque configuration (6 = n/2) depicted in Fig. 5.11. The strong

asymmetry in the transmission coefficient for the opposite incidence leads to a

difference in the angular dependence of the torque upon two opposite incident
direction depicted in Fig. 5.13(c-f).

involving supplementary relaxation terms, the dynamics of the magnetic moment g inside the ferromagnetic

layer to switch writes:

0 1
a_l; = E[N»Hexc]coh. prec. — Psn — :_J_J_
or (5.56)
o Aexc H
G0 = Mxu-Pin - (5.57)

where n is the unit vector along the divergence of the spin-current P; its value (spin-polarization) that is the
rate of the spin injected in the small volume one considers. n is transverse to the magnetization and almost
transverse to the spin-current injected from the ferromagnetic source (thick layer) giving rise to the torque.
7, is a characteristic spin-flip time for the transverse magnetization inside the ferromagnet. If the spin-orbit
term, Hso is neglected. The latter equation, derived from general quantum mechanics arguments, gives out

the rule for the conservation of the total angular momentum shared between u and M. Here, we have used:

o) _ 1
5 " ([n. HI) (5.58)
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where (...) represents a certain quantum-mechanical averaging over the non-equilibrium carrier states and
(o) = p and where g is the corresponding Pauli matrix. This corresponds to the quantum mechanical

precession (coh. prec.) giving rise to the torque.

In the case of a long spin-lifetime 7, compared to the precession time Tox. = %, one obtains:
=P (M xn), (5.59)
which yields:
oM
i P.M x (n x M) (5.60)

Once integrating over the total thickness ¢ of the ferromagnet, one can express that:
af,M
—5 =M x (J; x M), (5.61)
where s is the spin-current injected from the external ferromagnetic source whose magnetization is m;
involving also the spin-current reflection part. One recovers the standard expression of the Slonczewski-
type like torque or antidamping torque (that we denote 7)) when s remains strictly parallel to 721. This part
of the spin-current, incident plus reflected, collinear to the ferromagnetic source m; should be associated to
the antidamping torque proportional to the real part of the spin-mixing conductance G’ﬁ. The reflection part
of the transverse spin-current, transverse to both m and m; gives rise to a field-like torque (that we denote
T, ); this term is proportional to the imaginary part of spin-mixing conductance G% e
In the case of a very short spin-lifetime 7, compared to the precession time 7., one obtains:

P (5.62)

giving in the end:

d fVM — ApxeTs
ot 17}

(Js xM), (5.63)

which has only a field-like symmetry. This is the so-called field-like torque component transverse to both
the magnetization and to the entering spin-current vector. One recovers the general results established by
Kalitsov et al. for the CB (without any SOI) by the use of the Keldysh formalism [310]. This demonstrates
the presence of two intertwined contributions for the STT as derived for symmetric [311, 312] and asym-
metric barriers [313] and as evidenced in epitaxial MgO junctions [314, 315]. However, one must be aware
that the ’field-like’ component maybe non-zero for several other reasons: i) an oblique incidence of carrier
with a high degree of reflection (case of metals giving rise to a small but non-zero ’field-like’ component)
or due to ii) the SOI or HH-LH mixing terms. Indeed, SOI may introduce an additional precession term in
bulk or at interfaces leading to precession and non-conservation of the spin vector. The general effects of

SOI requires a reexamination and a generalization of the spin-mixing conductance [319, 320].

Effect of core spin-orbit terms on spin-torque

Moreover, Hgo introduces an additional precession term in the bulk or at interfaces (e. g. Rashba) which can

lead to local spin-memory loss [321] of the longitudinal component (that is parallel to the magnetization)
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and to spin-decoherence of its transverse component responsible for spin-transfer. According to this, the
SOI fields may have the effect, via local (interfacial) spin-precession of incoming spin-polarized carriers, to

decrease the efficiency of the spin-torque (STT or SOT) reduced from the expected maximum amplitude e. g.

Mt
ot
in the volume (V) of the ferromagnet and at its interface (S), and expressed like fV+ s J"g" M X (o) dz,

= JsM x (n x M). This total transverse spin-current is generally divided into a spin-torque current

and a spin-current dissipated in the lattice (and then lost) because now J; = /v+ S J"g <M X (o) dz is no
longer fulfilled. The presence of the SOI at surface and in bulk requires a re-examination of the generalized
spin-mixing conductance as proposed recently in the case of metallic multilayers [319, 320].

What differs on the core-spin orbit interactions are induced in the Hamiltonian to give:
H=H9+50L.S (5.64)

where H is the Hamiltonian free of spin-orbit interaction, but however including the sp-d exchange term;
AsoL.S is the core spin-orbit term.
i) Now the precession torque acting on the spin-only can be written as:

oS 08§ 1
— = /l S,L.S 5.65
o = ar| T gplso [ | (5.65)
oS (9S /150
— == — (LxS 5.66
5 = ( ) (5.66)
where %—f o means the torque acting on the carriers free of spin-orbit interaction. We can then derive that
the torque acting on the local 3d magnetization then writes:
oM 0 A
rz—_——”——SO/<L><S) (5.67)
ot
A
I=To- ﬂ/@ x S) (5.68)

where I'g is the torque previously calculated without spin-orbit and — ASO fV(L X §) is the torque due to
the pure orbital contribution [291].

ii) The alternative would be to calculate the torque acting on the thin ferromagnetic layer from the
knowledge of the total angular momentum (J = L + S) current given by (’J%JJ) Writing the exchange

term in the form:

Hexe = =AexeS M = =Apxe (J - L) M (569)

this yield in fine (without spin-flip term):

(9 M ACXC
fgt =Jjf+ - /(MxL)--/[JHk,,] (5.70)

where % fV [J ,Hk_p] = % fV [L, Hk,p] which is non-zero due to the k.p wrapping term represents the
torque acting on the lattice and not on the local magnetization.

iii) We come to the important conclusions that the exact determination of the spin-torque acting on a
ferromagnetic system involving spin-orbit interactions (spin-orbit, Rashba, Dresselhaus) requires the imple-
mentation of a multiband k.p code (14, 30, or 40 bands) allowing to determine the contributions and related
angular momentum profiles of :

# The spin-current j, = {57

& The orbital-current j; = j—LerLj-
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& The angular momentum current j; = J.—J;Jj-

like made from our multiband k.p platforms.

Calculations of spin torque within 30-band k.p method

In Fig.5.13(a,b), we show the calculation of the angular dependence of the spin transfer torque under normal
incidence and under different incident energies performed in a 30 multiband k.p technique. The amplitudes
of spin transfer torque are proportional to the tunneling transmissions which are expressed in the figures
by the 107° values in the y-axis. Although developed in a multiband frame generalizing thus the standard
2x2 spinor approach described by simple Pauli matrix avoiding the orbital moment part, our calculations
display an almost sinusoidal shape vs. angle for the two torques in Fig.5.12 omitting however the orbital
contribution, as found in Ref.[309]. This simply indicates that the two torques are equal to zero at zero
(6 = 0) or m angle which corresponds to the respective parallel and antiparallel configurations of the magne-
tizations. The calculated component of the spin-current is only nonzero for the z-component corresponding
to the direction of the two magnetizations. This is the so-called longitudinal spin-current whose difference
between the PA and AP states is associated to the tunneling magnetoresistance effect (TMR).

Note however that, from the respective PA and AP magnetic configurations, the torque increases from
zero because associated to a non-collinear magnetic configuration enabling the injection of the transverse
spin-current from the local magnetization as discussed in the theory section. The two torques reach a
maximum value at & = /2 where the magnetizations are perpendicular. Besides, the slope at § = 0 and
6 = m have a small difference which means that the critical current switching from PA to AP is different
from the critical current switching from AP to PA configuration. This result is a good agreement with the
experimental results shown in Fig. 5.10a. Figure 5.13(c.d,e,f) represents the calculations of the angular
dependence of the spin-torque profile corresponding to an oblique electronic incidence with k,, = +0.015A
and for two different hole energies (¢ = 0 eV and € = —0.1 eV). The two energies are characteristic of
HH and LH bands respectively. The difference in the angular dependence of the torques upon two opposite
electronic incidences can be understood as the consequence of the asymmetry in the transmission coefficient
displayed in Fig. 5.14. This refers to anomalous Tunnel Hall effect and will be considered in details in the
following section.

Transmission asymmetry and Anomalous Tunnel Hall effect

In this section, we describe the main physical issues of transmission asymmetry (or skew tunneling) and
related tunnel anomalous Hall effect (TAHE) [11] in heavy metal/semiconductor heterojunctions or anoma-
lous tunnel Hall effect (ATHE) [12, 57] in ferromagnetic semiconductors/semiconductor interface.

The investigations of anomalous tunnel Hall effect with Ge in Pt/GaAs Schottky barriers has started in
2010 by K. Ando in the group of E. Saitoh [151] demonstrating thus the generation of a sizable transverse
spin-current under right or left helicity carrier optical pump. This effect should be associated to a deflection
of polarized carriers tunneling through the Schottky barrier into Pt. Since the middle of the 2010, the same
kind of experiments are performed in the Polytechnico Milan’s group (Prof. F. Ciccacci) using the Pt/Ge
group IV semiconductor Schottky barrier [322, 323]. Again, the experimental work consists in pumping
spin-polarized carriers in Ge via optically circularly polarized pump, and under oblique incidence, measur-
ing the transverse photovoltage or photocurrent thus generated from their asymmetric tunneling deflection.
They recently observed some very large effect, with strong enhancement compared to what is expected from

simple Hall effect of Pt, which may be associated to the tunnel asymmetry scattering of carrier (Fig. 5.15).
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FIGURE 5.15: (a) Sketch of the Pt/Ge junction and experimental geometry: @ is

defined as the angle between the direction of the incident photons u, and the normal

to the sample surface n, whereas ¢ is the angle in the xy plane between the projection

of uy, in the xy plane and the x axis. (b) Schematic representation of the spin current

density Jg, photo induced by optical orientation at the Pt/Ge Schottky junction under

illumination. (c) Voltage difference AV as a function of ¢ angle at fixed at 6 = 650
for the sample with a Pt thickness of rp; = 7.2 nm, taken from Ref. [322].

In order to address the issue in a simple way of the skew tunneling or skew reflection phenomena, we
restrict ourselves to the effect of bulk Dresselhaus terms by using the simplest form of the quantum bound-
ary conditions - the standard matching conditions. We will consider the most favorable case of bilayer or
tunnel junction which is, a given interface between the two materials, e.g the III-V semiconductor com-
pounds, with the same ferromagnetic contact in the anti parallel (AP) magnetic configuration (Fig.5.17). In
such system, the interplay between the spin orbit interaction and exchange interaction results in such giant
transport asymmetry of carriers and spin-to-charge conversion at the corresponding interface (Figs. 5.17
and 5.18) corresponding to the anomalous Tunnel Hall effect (ATHE). Presently, the phenomenon of asym-
metry scattering of polarized carriers is discussed in systems constituted of ferromagnetic/superconductor

junctions in the frame of skew Andreev reflection of Cooper pairs [324].

Anomalous tunnel Hall effect by matching wavefunctions: Case of the con-
duction band of semiconductors of T; symmetry group

In order to introduce ATHE, we first consider the case of the conduction band of a junction formed by two
semiconductors of 7; symmetry group in contact, involving the Dresselhaus and exchange interaction in
AP state. The Dresselhaus term is [52, 89], Hp = (Yx) - T,
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FIGURE 5.16: (a) Schematic of a ferromagnet-semiconductor-normal metal tunnel
junction. The tunneling current flowing in the z direction generates the anomalous
Hall voltage (Vg ) in the nonmagnetic electrode; (b) Side view of (a).Taking the [110]
axis as a reference, the magnetization direction (m) and the direction along which
the Hall voltage is measured (¢) are determined by the angles ¢ and ¢, respectively.
Spin-dependent momentum filtering resulting from tunneling through a barrier with
Bychkov-Rashba SOC for majority channel (c), and minority channel (d). Taken from
Ref. [11].

=2 _s12
HD:( Y&k —iyk ) (5.71)

iyek®  yE%k

We refer the structure to the x, y, z cubic axes (unit vectors X, y,z) and assume that electron transport occurs
along the z axis, whereas the magnetization lies along x. One then introduces (0, &, k) the electron wavevec-
tor; o the Pauli operator, and y = [O,sz, —fzk] the D’yakonov-Perel’ (DP) internal field responsible for
the spin splitting [89, 90, 105]. One introduces the tensor ¥ = (yl-éij) which characterizes the DP-field
strength, with yx = ¥y = ¥, ¥, = 7, and ¢;; the Kronecker symbol. We consider the two cases ¥ = y and
¥ = 0 which switches off the £2 perturbation.

We study the transmission asymmetry when the wavevector component along y is changed from ¢ to
—¢. Electrons are injected from the first conduction band of material / to the left (¢ = 1) into the first

conduction band of material /7 to the right (¢ = —1). Then, the relevant 2 X 2 Hamiltonians respectively
write:
HI,II = Y (k2+§:2) T+wm~3+HD
k% +&2) - y&2k —iyEk? + ew
Vel . é; )= 7€ 275 e (5.72)
ivék® + ew ve(k® + &%) + y&k

where 7 is the identity matrix, vy, the conduction effective mass, m is the unit magnetization, 2w the ex-

change strength.
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FIGURE 5.17: Scheme of Anomalous Tunnel Hall effect with ferromagnetic semicon-

ductor (Ga,Mn)As junction in anti parallel configuration of magnetization. The spin

current is injected along the z direction allowing to obtain the charge current along

the y direction if the magnetization direction is along the x axis. The efficiency of

ATHE may be described through the tunnel Hall angle 6 which is depicted in the
right figure.

Transmission from quantum boundary conditions (quantum wavefunction
matching)
The two energies in the electrodes are given by &1 = vy, (k% + 52) —wand & = 7C(k§ + &%) + w, where

k1 (ko — pure imaginary—) is the z-component of the wavevector in the lower (upper) subband. The two

eigenvectors are:

[1-2eiuk?,—€(1 - 2fk1)] /V2,
[1-2eiuk3, e (1 +20Ek2)| /V2,

(5.73)
(5.74)

Ue 1 (6’ kl)
Ue 2 (‘f’ k2)

where yu = y&€/(2w) and g = y£¢/(2w). Note that the form of the eigenvectors does not foresee any tunneling
transmission asymmetry in usual tunneling models [12, 57] based on the density of states [135, 325]. The
asymmetry arises from a full-quantum treatment discussed in terms of chirality. Because k| is conserved,
we are dealing with states with the same longitudinal kinetic energy E along z and a total kinetic energy
& = E + y.£2. The boundary conditions are the continuity of the wavefunction and of the current wave
f‘{’l,” =(1/n) (6ﬁ1,11/6k)‘111,” because ﬁl,” contains no more than quadratic k terms [183, 326-329].
The transmission of a pure up-spin incident electron into a pure down-spin state is only possible un-
der oblique incidence via SOI which introduces off-diagonal matrix elements. The spin-orbit field is also
responsible for a discontinuity of the spin-current between incident (inc) and transmitted (trans.) waves.
Moreover, a non-vanishing diagonal part of SOI is necessary to obtain a non-zero asymmetry although the
z component of the DP field along z does not depend on the sign of k| [12, 57]. Then, from now on, we take
y = y. The wavevector k1 in the lower subband has to be real so that we can define K = k; > 0. We intro-
duce the parameter A > 0 with kp = iAK, the reduced longitudinal energy n = E/w = (1 —42) /(1 + 42),
and the incidence parameter t = £/K. One finally obtains the transmission 7 (z,77) and its average T upon

+¢ incidence ¢ and asymmetry A:
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FIGURE 5.18: Scheme of the transmission process at an exchange SOI step (left) and

SOI barrier (right) junction with AP magnetization along the x cubic crystal axis. The

propagation direction of carriers is along z with propagating wavevector k; whereas

the in-plane incident component +¢ (heavy line) and —¢ (dashed line) is along the y

axis; xyz forms a direct frame. The dash-dot curve denotes the evanescent waves,

either reflected or transmitted. Carriers with +¢ in-plane wavevector component are
more easily transmitted than those with —£.

2
T(lthn) = %wﬂ (1+n)? [4n2 (1 =) + 21 + )20 - 1)?], (5.75)
A1 = n2 _
A,y = 4yl =7 (2n = 1) (5.76)

a2 (L-m+2(1+n)@2n-17

where A = [T (t,n) — T (-t,n)] /[T (¢t,n) + T (—t,n)], emphasizing the increase of T (¢,77) with ¢ and y. The
analytical asymmetry (A is plotted in Fig. 5.19 for several values of ¢ (full lines), where the symbols refer to
the 2 x 2 numerical calculations, showing an excellent agreement. It is a remarkable result that A (z,17) does
not depend either on the material parameters or on the sign of y, thus conferring to A a universal character.
Reversing the magnetization (changing w into —w) makes transport occur in the ka channel leading to a
change of A (¢,n7) into —A (¢,17). Our convention is that A is positive, at small energy r (or averaged over
the energy band) when (m, &, k) forms a direct frame and negative otherwise. Another striking feature is
that an arbitrarily small perturbation is able to produce a 100% transport asymmetry i.e., a total quenching
of the transmission in the CB. Figure 5.20 displays the 2-dimensional map of the electron transmission at
a given total energy in the reciprocal space calculated using a 2 x 2 effective Hamiltonian as well as a full
14 x 14, 30 x 30 and 40 x 40 band k - p treatment involving odd-potential coupling terms P* and A" [92,
94, 330].
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Transverse Surface Currents

The transmitted current summed, J [#,77] = J¢ [Wr1 (2)] + J-¢ [W11 (2)], originates from incident waves of

equal amplitude and opposite k. To the lowest order in y, we find

4 (yew)!

/2
Iyl = === @+ 2T (6m) [A (1 0) 15+7) (5.77)

A non-zero A gives rise to a transverse carrier momentum and then to a tunneling surface current (per unit
length) j, = Jy.6nrp (Cuypp is the electron mean free path), of the form Jc = m x Jg , (C for current and §
for spin-current), leading to a potentially large AT HE. The ratio of the surface transverse to the longitudinal
current density, j, [£,7] /J; [t,n] = tA(t,n) Cmyp, leads to the ATHE length, or ATHE angles [12, 57], in
the spirit of the work dealing with Inverse Edelstein effect (IEE) [331, 332].

Anomalous tunnel Hall effect by Green’s function techniques: Case of the CB
with perturbation Calculations involving SOI

Using advanced perturbation procedures, one may give a general expression for the change of the transmis-
sion amplitude 6177 of a propagating spin-T wave from the left transmitted into a propagating spin-| wave
to the right, after having experienced a SOI potential V" (spin-flip) in a confined region of space. The
calculation is based on Ref. [56] and we will demonstrate in fine that

W%@=/G$@aWWwﬂﬁwﬁ, (5.78)
0

and from the expression of G, that (M may be written:

,—im* [ / '
o = Jax /0 Yo (W7 ()Y (2)dz, (5.79)

where (in) and (out) refer respectively to the unperturbed incoming wave at left and outgoing wave at
right [56]; chr is the (spin-diagonal) Green’s function (GF) to consider and that we are searching for. Such
perturbative scattering approach has hardly been employed to investigate the role of the evanescent waves
in transport like investigated here. The method is particularly suitable for the case of non-degenerate orbital
systems but however could be applied, in a future work, to the case of the valence band (VB). We consider
the Green’s function (GF) Gg of an Hamiltonian system Hy = (%) (%m%@a—az — U(z) in a homogeneous
potential Uy for z < 0, and Us for z > O satisfying:

(E-Hy) Gy (z,2') = 6(z-2), (5.80)

Green’s function without orbital degeneracy

The strategy to find the GF is then i) to find two different ground states {‘Pg’”, \I’%”} of the homogeneous
Schrodinger equation (& — Hp) ¥ = O (L for left and R for right whith characteristic wavevector k; and
k1), ii) to find the relevant linear combinations of ‘I’g and ‘I’% that make y; and ys solution of the equation

(E-Hp)¥Y = O finite at z = —o0 [y1(z)] and z = +o0 [y2(z)] depending on the use of the retarded or
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FIGURE 5.19: a) Universal asymmetry coefficient A = % vs. reduced
energy n = E/w obtained for an exchange-step with different values of 1 = £/K
[t=0.01 (black; circles), t=0.5 (blue; squares), t=1 (red; stars), and t=2 (purple;
triangles) by 2-band analytical (full line) and numerical (symbols) calculations. (b)
Transmission coefficients and asymmetry coefficient A vs.reduced energy n = E/w
obtained for a 3 nm tunnel junction (TJ) with different values of r = £/K [t=1
(black),t=2(red), by perturbative scattering (pert.: full lines) method and numerical
k.p calculations (Calc.: symbols). Taken from Ref.[57]

advanced quantities, and iii) to define the correct GF by making use of:

"(z)y ) ,
GO (Z,Z ) = (z )yz (z) , s (581)
W —c0 <z <z<+00
where W(y1,y2) = [yl( =5 i Z(Z) ay 1(Z ) yz(z')] is the Wronskian. The homogeneous Schrodinger
equation, (& — Hp) ‘I‘ = 0, admits the solutlons
‘P%‘T = ( iki'z< 4 rie iki'z< 4 tje ’k”Z>) |o) (5.82)
\P%U' — ( —ik{, z> +}"0- ik{yz> +ta' iky Z<) |O’> (583)

where z. and z stand for z < 0 and z > 0. If we chose y; = ‘I’%“ and yy = ‘I’g’(’, Eq. 5.80 admits a
particular solution:
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PO (N (2)0(z — 27) + ¥XT ()PP ()02 - z)

Gy (z.2)) = WP0. 90
> L

(5.84)

2 4ikTkT,
h" 2111 s a constant (AW /dZ’ = 0)

2m* kK, +kT
and we recover the retarded GF introduced in Ref. [253] according to:

On the assumption of a same effective mass, the Wronskian W =

2m* t o o
Go(zetl) = T grze i, (5.85)
I
’ 2m* IR oy ke
Go(z>,z2) = I A (5.86)
11
’ 2m" 1 ik¥ |z-7'| o —ik¥ (z+7)
Go(z<,zL) = ?21'/{‘7 [e i +rf et ], (5.87)
1
’ 2m* 1 ik |z-7'| o~k (z+2")
GO(Z>,Z>) = h—zzl,ka_ [6 m=="+rre 1 ] (5.88)
11
that we will use henceforth.
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FIGURE 5.20: The transmission coefficient as a function of in-plane wave vector k|| =
(kx, ky) through an exchange-SOI tunnel barrier junction with AP magnetizations.
Carriers with plus &, in-plane wave vector component are more easily transmitted
than those carrying minus ky. These calculations were done for CB within the
different k.p framework: 2 x 2, 14 x 14, 30 x 30, and 40 x 40 band model and a
good agreement among them shows that the numerical code is robust. The exchange
strength is 0.3 €V and the total kinetic energy E = 0.23 ¢V, the barrier thickness is 3
nm.

192



Chapter 5. Anatomy of spin-orbit currents for spin-torque and spin-orbit torque in spintronic
semiconductor devices

Case of the potential step with exchange interaction in the CB: perturbation
treatment

We revisit here the issue and results of section 5.4.1 (exchange-step) with Ho, eigenvectors and eigenvalues
given in section 5.4.1 . We recall that the current is along Z and magnetizations along x. The incident
wavevector is k = (0,&, k).

Reflection, transmission and perturbative SOI potential

We consider the electron transmission within an energy window in the exchange step, —-w < & < w,
where the transmission asymmetry takes place, so that k,T and kIlI are real whereas kll and and k;l are pure
imaginary quantities. In the right contact, the spin T state admits a pure propagating character whereas the
spin | state is purely evanescent. It is then quite convenient to define kT = kl = k1 and /’cl = kT = ika.
The two solutions of the homogeneous Schrédinger equation, ‘PO T and ‘PO l are glven by Eq. 5.83 with

kl lkz 2 _
reflection, rpp = rg = 5, and transmission, 711 = Ig| = o (R = L) = 7= lkl) found via the

matching conditions at z = 0. This allows possible transmission from propagating to evanescent states (fg |

and #7,1) and vice-versa (tz1 and 7 |).

NN p O 0

FIGURE 5.21: Scheme of a |-spin electron, lIflle0 (a) and T-spin electron, ‘P;O (b),
tunneling through an exchange step of height 2w from the left to the right side.

The SOI, Hg”', is then introduced as a perturbation potential according to:

2y 4 7| (5.89)

with y = y(z). Hp acquires a pure non-diagonal form like:
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o (T T | TP
Vit <T|HD|¢>:<T o (vi——y)—@(v—+—2y) 1>

2 0z 0z 2 472 0z
— —
o —ig? i& 9% 92
= - (Y(Z)— —?’(Z))+—(7(Z) 6—227(0
2 2 2 02
_ (€T 0 i o7 ) [ig7 0 ig 07
- (2 0z 27322) (2 az7 " zazzy)’ (5.90)
and
2 R e a2 o2 S Y
wo_ (#7909 g 97 (g7 & 97
1% (2 Y52t 232 5 9.7 " 232" (5.91)

2
From Eq. 5.78 and W = i%tRT, the correction to the amplitude of transmission is:

6t“’ e

+o00 ) 10,/ . 20,/
/ W1 I_%ya\PL (), ie 9] (z)l

T2k oz 277 922
. 0T/ _, . 2q0T/ ./
lé:z 6\PR (Z ) lf 4 ‘IIR (Z ) 10,/ ’
- l77 97 + 57’ 522 W, (2)dz (5.92)

We are now going to calculate the properties of the carrier transmission (A for the different SOI config-

urations: at left, at right, and SOI in both contacts for an incoming left electron.

SOI at left for electrons incoming from lefft.

T

We first note that the zeroth-order transmission coefﬁ01ent 1o~ = 0 is zero without spin-mixing interac-

tions. Then, from Eq. 5.92, the transmission amplitude, tL , with SOI at left is:

PR TR / w0l |- zé‘z 3‘Pl°(1’)+g ¥ ()
T ik 9z 27 522

.0 0T,/ . 2907/
B li Oy (2)) L i€ 0¥ (@) w0z, (5.93)

27 o 27 522

By considering k; = K (incoming propagating wavevector) and ks = AK (imaginary transmitted

wavevector), and introducing the respective A, and Ay parameters according to:

P | e 0¥0@) e |
A1=/\PR(Z) B R R L8 (5.94)
and o
so that:
o't = (5.96)
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We are now going to calculate A1, and Aa.

0

o 0 . 3 "o
24, / ¥ol(2) (—zfzya—z + zfya—zz) ¥1%(z')dz (5.97)

0 koz’ . g2 0 . 62 ikizs —ik17’ ’
trre —iyé 52 + l)/fm (e +rpe )dz

O ’ 6 . ’ . 0 ’ 2 . ’ i ’

= '[ tRTek22 {—iyfza—zl} (e’klz + rLie_’klz') dz7’ + [ tRTek22 {iyfazlz} (e’klz + rRle_’klz ) dz’
0 0

= / trre s (=iy€2) (iha)(e™™ = rp e 1)z’ + / tr e (y€)(—k) (M1 4 rp e ) d
0 0

= / tRTyfzkwkzz'(e’klZ/ - rLle_lklzl)dz' + / —itRTyfkfekzz’ (e‘klzl + rLle_lklz/) d7’

If one defines Bj as:

0 0
B]_ — / tRTyé_-ZklekzZ’(eiklz' _ rLle*iklz')dZ/ — / tRTyfzkl (e(szrik])Z' _ rLle(k27ikl)Z,) dz/
2
9 rry tR1YE“k1 ) :
=t k - = ko —iky) — k k 5.98
R1YE 1{k2+ik1 kz—ikl} 212 {(ka —ik1) = rp (ko +ik1)} (5.98)
tr1YE2 k1 2(k3 — k2) B 2R1yE2k (k2 — k2)
K24 k2 ka—iky (K2 4+ K2)(ks — ik1)
with
. . . ki —iks . . (ko +ikq)(ka +ikq)
ko — ik, — ko +iky) = (kg —ik1) — ko +iky) = (ko —iky) +
2 —iky —rp (ka +iky) = (ko —ikq) k1+ik2(2 ik1) = (k2 —ik1) P
_ (ka —ik1)? + (ko +ik1)* 2(k3 — k3) (5.99)
a ko —ikq T ko —iky :
and
O ’ . ’ . ’ 0 . ’ . ’
By = / ~itRyyEkT e (elklz +"Lle_lk12)d2,:/ =ity y€kg (VT 4y el g
. rry —itryyék? . .
= —itgyy€k? = ko — ik ko + ik 5.100
lRTygl(k2+ik1+k2—ik1) (k2 + K2) (ko k) + ry (o + ik} (5.100)
_ —itrYERE —4ikiky | —HRyYERTK:
(k? + k2) (k2 —ik1) (k% + k2)(ka — ik1)
with

k

1 (k2 +iky)(ka +ik1)
k1

(ko —ik1) + rp (ko +ik1) = (ko — ik1) + ‘
kz - lk]

—ikoy
k k1) = (kg —ikq1) —
+ik2(2+ll) (ko — ik1)

(kg — ikl)z — (ko + ikl)z _ —4ikiko

= 5.101
ko —iky ko —iky ( )
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2p1yE2ky (k2 - k2 AtpryERSk
24, = By + By = ’;sz - k) _ _ RTZ% 172 (5.102)
(k2 + k2)(k — ik1) (k2 + k2)(kz — k1)
Doing the same treatment:
O Y% () 9*Y(2)
_ 2 . 0/ ’
24, = /(lf Y5 +ify 5.7 Y (2")dz
0 2
o I 0 0 /
— k —ik - g2 . k ’
= Im (e‘ I AT ) (lyf 37 + lyf—az,z) trp€ 2 dz
0 . ’ . ’ ’
- / (e rp o mhi%) (iye2hy + iygh) e d2’
0
= dyékaty, (é + kz)/ (elTkithk2) rLle(kz_ikl)z/)dz'
iyEkot . (€ + k) L + !
= T
Y& 2l 2 ik, + ko Ll ko —ikq
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With the following notations, k1 = K (incoming propagating wavevector) and k2 = AK (imaginary
transmitted wavevector), one obtains:
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One finally obtains:

n_ 1 yék? {f

2 2
P —(3A2-1)+24 (/l - 1); (5.106)

SOI at right for electrons incoming from left.
The transmission changes from the previous case by changing the integral from /_ (; into /Om giving

tITel = t?. Indeed, let us introduce the notations Ar1, and Ags.
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where
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— k
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Because 17| = g1, one can observe that TILL = Tgl
SOI at left and right side for electrons incoming from left.
With SOI in the whole space (left and right), we find from Eq. [5.92] the transmission amplitude #}:
o [vEK*\ £BA2 -1 +21(2% - 1)
't =— — (5.111)
w (1+id)

From T(z,n) = |tT}|?, we recover transmission 7'(¢,77) and asymmetry A derived from the application of
the pure matching conditions (Egs. 5.76). This proves the power of this perturbation methodology involving

mixed propagating and evanescent electronic states.

Case of a tunnel junction in the CB: perturbation calculations

We focus now on the case of a tunnel junction, of thickness a, made of two ferromagnetic contacts (in the AP
state) and separated by a thin semiconductor belonging to the T4 -symmetry. The contacts are free of SOIL.
The incident energy in the CB lies in the range of the exchange step, —-w < & < w, with a single incident
propagating wave of a pure spin T character. However, the electrons may scatter, now, at the two different
interfaces of the junction and this makes the problem generally different from the previous treatment. One
then considers a particular value for the barrier height equal to the exchange potential, Vo = |w|, so as
to prevent any back and forth scattering. The calculation of the most general shape of the GF is given in
Ref. [257]. To the first order of perturbation, the transmission, 5147, now equals:

* . 10/ _/ . 10, ,
sl = ™ / w0l (21 g ¥R @) | iyg ¥R () .
ihzkl 0 L 2 0z 2 072 ’
. 0T, _» . 20T,/
m* a l'yfz 6‘PL (Z ) l}’f 0 \I—’L (Z ) 10, ,
- t 5| ¥ dz’, 5.112
ih2ky /0 2 97 2 922  (2)dz ( )

The coefficient of the wave functions ‘Pgl, and ‘I’gT, without SOI, are found from the relevant matching

condition in a similar way to the case of the exchange step to give:
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and the second term
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One obtains:
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giving out the transmission coefficient we are searching for:

—koa 2
P S LAY (5.117)
Ye (k1 +iky)

where we remind that a is the barrier thickness.
Without SOI perturbation, the transmission coefficient is also zero in the situation of pure spin states,
2 . .
and consequently, 71 = |6t”| . If one defines again the incidence parameter t = tan6 = ¢/K for and

2 .. . . .
n = 1= = £ the reduced incident kinetic energy, we find the asymmetry of transmission for the tunnel
1+ w

barrier to be like:

A= | + kal? = | =€ + ko[ _, VA -n)d+mnr
€ — ko> + |6 — ko2 2A+m+Q-n)

One obtains a perfect agreement between the perturbative scattering method and our multiband calcula-

(5.118)

tions for |¢7}|? and A (Fig. 5.19b). The transmission coefficient for an incoming propagating spin-T electron
into an outgoing propagating spin-| electron is non-zero after SOI is branched on. The transmission vs. in-

cident kinetic energy and incident angle is different from the case of a simple exchange-step. The maximum
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of transmission depends also on the incidence angle or ¢ parameter. The k - p theory gives a maximum of

asymmetry when the evanescent wavevector equals in magnitude the parallel incoming wavevectors in the
CB.
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FIGURE 5.22: (a) Asymmetry coefficient A vs. reduced energy calculated in the VB
of (Ga,Mn)As/GaAs/(Ga,Mn)As 3 nm thick tunnel junction with AP magnetizations
for k = 0.05 nm~! and (b) the transmission coefficient as function of in-plane wave
vector k|| = (kx, ky). Carriers with plus k,, in-plane wavevector component are more
easily transmitted than those carrying minus ky,. These calculations were done for VB
within the different k.p framework: 6—, 14—, 30—, and 40— band model and a good
agreement among them showing that the numerical code is robust. The exchange
strength is 0.3 €V and the total kinetic energy E = 0.23¢V, the barrier thickness being
3 nm.

Anomalous tunnel Hall effect with valence bands: Case of intrinsic Core SOI
in the VB and spin-chirality

We now turn to the case of the VB of a tunnel junction composed of two p-type ferromagnets separated by
a thin tunnel barrier (3 nm in the present case). The barrier height have been chosen so as to match with the
exchange strength (0.3 eV). The structure is free of any odd-potential k-terms (Hp =0) and only includes
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core SOI (p-orbitals). Results are displayed in Fig. 5.22b for the transmission maps and Fig. 5.22a for the
corresponding asymmetry resulting from a multiband k.p treatment.

In the 2D-map calculation procedures obtained for a hole kinetic energy of € = 0.23 eV, we have
checked (Fig. 5.22b) that the whole numerical approaches (6, 14, 30 and 40-bands models) provide about
exactly similar data. The transmission scales within the range 7 — 25 x 10™* with P = 0 and A" = 0. Those
results demonstrate that the absence of inversion symmetry (7,) is not mandatory to observe an asymmetry
A in valence band (we have checked the existence of asymmetry with the silicon barrier structure which
is a structure with inversion symmetry). Figure 5.22a displays the asymmetry A vs. hole energy & for
k; =0.05 nm~!. The energy range covers the spin-T, | heavy (HH) and light (L H)-hole subbands whereas
the respective spin T and | split-off bands are not represented here. We refer to points (1) to (4) marked by
vertical arrows in the following discussion. Here, the energy of the HH T (HH |) corresponds to 0.15 eV
[-0.15 eV] as indicated by point (1) [(4)], the energy zero being taken at the top of the VB of the non-
magnetic material. Correspondingly, one observes a large negative transmission asymmetry (—60%) in this
energy range for predominant majority spin T injection as far as HH | does not contribute to the current. At
more negative energy [& < —0.15 eV: point (4)], a sign change of A occurs at the onset of HH | to reach
about +20%. From Ref. [12, 57] A changes sign two times at characteristic energy points corresponding
to a sign change of the injected particle spin. Also, we have performed similar calculations for a simple
contact [12, 57]. Remarkably, A, although smaller, keeps the same trends as for the tunnel junction, except
for a change of sign. Without tunnel junctions, A abruptly disappears as soon as SO | contributes to
tunneling i.e., when evanescent states disappear. In the case of tunnel junction, A, although small, subsists
in this energy range and this should be related to the evanescent character of the wavefunction in the barrier.

A short report about ATHE for electron in CB: A multiband k.p treatments.

In the previous sections, we have used the effective Hamiltonian involving the bulk inversion asymmetry, or
Dresselhaus term, to study the transmission asymmetry of an electron in conduction band tunnels through
exchange step junction with antiparallel configuration. We then got a result that if we discard the out of
plane term in the 2x2 Dresselhaus Hamiltonian, there is no asymmetry in CB.

On the other word, the odd-potential k-terms are needed to obtain the transmission asymmetry for
CB (within 2x2 effective Hamiltonian), in contrast to the effect in VB. This result surprised us a lot at
the beginning since from the physical point of view, the point group symmetry of the studied structure
is Do4 where the irreducible representations relevant for the conduction and valence band states are the
same. Therefore, it is reasonable to expect the similar form of the spin-orbit interaction and, hence, spin-
orbit interaction induced anomalous tunnel Hall effect. Recently, the difference between the effect in the
conduction and valence bands has been elucidated completely and will be published soon by our group in
the collaboration with Ioffe Institute, Politekhnicheskaya 26 194021 St.Petersburg. We now present here
our short conclusions about it.

First of all, one has to emphasize that all analytical calculations we have done with effective Hamilto-
nian for CB are mathematically correct, but however, in framework of effective Hamiltonian for CB, there
is no contribution of s-p hybridization in CB that make it different from effective Hamiltonian for VB.
This means that if one takes into account the s-p hybridization in CB (by using multiband like 30 bands
Hamiltonian) then the transmission asymmetry effect for electron in CB would have the same features as
in VB, on the other word, the transmission asymmetry should exist in CB even when the Dresselhaus terms
are discarded. Figure 5.23 displays the numerical calculations of transmission coefficient for plus and mi-
nus in-plane wave vector k|| and transmission asymmetry for an electron in CB tunnels through exchange
step junction with antiparallel configuration of magnetization. Figs 5.23b is the calculation using effective

Hamiltonian (without s-p hybridization) and without Dresselhaus term (yp = 0) showing a zero asymmetry
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FIGURE 5.23: The transmission coefficient for plus and minus inplane wave vector
k|| and transmission asymmetry for an electron in CB tunnels through exchange step
junction with antiparallel configuration of magnetization. Figs (a, b) are calculations
using effective Hamiltonian (without s-p hybridization) with and without Dresselhaus
term yp # 0 (yp = 0). (c, d) are calculations using 30 bands Hamiltonian (taking
into account s-p hybridization) with and without Dresselhaus term yp # 0 (yp = 0).

in transmission that is the same treatment as presented in previous sections with analytical calculations. But,
however, in contrast with effective Hamiltonian, the 30 bands Hamiltonian shows a non-zero asymmetry
even when we discarded Dresselhaus term responsible for the absence of inversion symmetry in the bulk ITI-
V semiconductor. When the absence of inversion symmetry in III-V semiconductor is taken into account,
the asymmetry calculations of both effective Hamiltonian and 30 bands Hamiltonian return a same feature
of very large asymmetry as discussed previously.

Finally, a short conclusion for this section is that one has to take into account both Dresselhaus terms
and s-p hybridization in CB in order to recover the similar form of the spin-orbit interaction and, hence,
spin-orbit interaction induced anomalous tunnel Hall effect between CB and VB. That makes the multiband
k.p method developed in this manuscript become more important to consider the real ATHE effect in both

CB and VB of III-V semiconductor based heterostructure.

Device application of ATHE: Resonant structures

One observed from previous calculations that in the both two cases of the exchange step or the barrier

structure, the universal asymmetry (A is large but, however, the transmission is rather small. Therefore,
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in order to obtain both large universal asymmetry and transmission coefficient, one may construct more
complicated structures involving resonant tunneling to increase the transmission up to a fraction of unity

while keeping extremely high asymmetries. Such structures would be suitable for device application of

ATHE in the future.
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anti-parallel configuration with opposite incident wave vectors k|| around the second
peak of quantum well dispersion, and (c) two dimensional map of transmission vs.
k| calculated for hole’s energy which corresponds to the energy position of the peak

in (b).

As an example, in Fig. 5.24, we depict the structure consisting of a magnetic quantum well sandwiched
between two magnetic electrodes and separated by non-magnetic barriers of different thicknesses. The
magnetization of each layer can be reversed independently. There are 4 possible different magnetization
configurations: 11T, T1T, TTl and T]|. This constitutes a paradigm for a 4-state memory. In Fig. 5.24b the
transmissions as the function of energy for opposite parallel wavevector components k|| = £0.02 are plotted
around the second peak for 17T] magnetization configuration. One observes that the peak transmission
reaches a values close to unity for the k|| = ~0.02A whereas for the ky = 0.02A the peak transmission
is very small. It makes the asymmetry to become very high, almost 100% which is evidenced by the
strong difference between plus k, and minus k, in 2D map of transmission as function of k| in Fig. 5.24c.
Eventually, an experimental confirmation of these predictions would yield a fingerprint of ATHE.
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For several decades, continuous research efforts have been devoted to the physics and development of
spin lasers made of e. g. spin-polarized vertical-cavity surface-emitting lasers (spin VCSELs) as a source of
coherent circular polarized light with novel and enhanced performances. As a source of coherent circular-
polarized light, spin-lasers introduce strong non-linearities at their emission threshold possibly enabling an
amplification of the spin-information encoded with light helicity from a spin-controlled carrier optical or
electrical injection. On the other hand, spin lasers would provide a number of advantages over conventional
vertical-cavity surface-emitting lasers for the future optical communication systems such as spin-driven re-
configurable optical interconnects [23], fast modulation dynamics [333, 334], polarization control [24, 25]
as well as higher performances such as laser threshold reduction [335, 336], improved laser intensity, and
polarization stability. Laser threshold reduction was observed [335, 337, 338] and explained theoretically
from the argument of the removal of the degeneration of the carrier densities [26, 339, 340]. Additionally,
they have been shown to exhibit a polarization emission much more directional than conventional side-
emitting laser diodes. Moreover, optical [24, 341-343] and electrical [25, 27] spin-injection were already
achieved in monolithic VCSEL structures. A clear control of the laser polarization via optical spin injection
was also demonstrated [24, 341, 344]. In particular, experimental investigations showed that the output
circular polarization degree can exceed the input polarization via strong non-linear gain effects [341]. Even
more recently, it was demonstrated, by the Thales TRT group in Palaiseau, France, a clear controllable
elliptically-polarized laser emission in 1/2-VCSELSs via circular optical pumps once the intrinsic linear bire-
fringence of the device were compensated to zero [345]. It exists nowadays two kinds of surface emitting
semiconductor lasers: monolithic micro-cavity-type VCSELs that allows for highly integrated low current
threshold devices and on the other hand vertical-external-cavity surface-emitting lasers (VECSEL). In that
goal, quantum-well VECSELSs are very promising solutions for spin-lasers as they are inherently compact,
wavelength flexible, widely tunable, powerful and highly coherent [346, 347] (spectrally, spatially and in
terms of polarization) along with a class-A dynamics low noise regime [348, 349]. For spin-lasers func-
tionality, optically-pumped III-V semiconductor VECSEL technology is a candidate of choice due to its
inherent easier control of in-plane isotropy of the material. Typically, the resonant optical cavity of a
VECSEL is made of a semiconductor chip, also called 1/2-VCSEL, and an external output coupler. The
1/2-VCSEL nanostructure integrates a Bragg reflector and a semiconductor quantum well (QW) [350] or a
quantum dot (QD) gain medium. For a recent review, the reader can refer e.g. to Refs. [13, 14, 346, 347,
351-354]).

However, the properties of vector dipole sources in active regions of VECSELSs do not necessarily force
the polarization of the emitted light to be in the same direction because of the result of the residual optical
anisotropies as linear birefringences and linear gain anisotropy within the semiconductor multilayers. These
anisotropic properties of the dielectric function strongly impact the performance and properties of laser op-
eration [355] leading to preferential linearly-polarized laser emission (Fig.6.1a-b) (see also e. g. the results
presented in Ref. [345]) and to an additional favorable coupling between modes and complex polarization
dynamics and polarization switching. These also impact the polarization dynamics of electrically pumped
VCSEL [356-359] by pinning the polarization mode to a certain linearly polarized state [338, 360-365]. On
the other hand, the dynamics of the circular polarization experiences very fast oscillations in the GHz range,
much faster than the relaxation oscillation in the device for the same pump conditions [366]. This results
in mode beating [334] whose frequency splitting is tuned by the birefringence. Previous theoretical as well
as experimental investigations have allowed to distinguish between two different contributions that we will
discuss hereafter in much details: a linear birefringence originating from interfaces between ternary quan-
tum wells and barriers (GaAsP/(In,Ga)As/GaAsP) and local surface strain of III-V materials after surface

crystalline reconstruction [367-369]. An in-plane optical anisotropy of III-V quantum well structures was
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FIGURE 6.1: a) Figure of optically-pumped spin-VECSELSs experiments, b) Angular-

dependence of the spin-VECSELs output optical power showing a classical cos® g

dependence associated to a pinning of a linear polarization due to optical anisotropies

and c¢) Angular-dependence of the spin-VECSELs output optical power almost constant

associated to a pure output optical circular polarization when a strong circular
birefringent media is introduced in the optical cavity.

found due to the breakdown of the rotational inversion symmetry at a semiconductor interface (by the reduc-
tion from T, to Cy,, symmetry group when the host materials do not share any common atoms) [368, 369]
and evaluated numerically from a pseudo-potential microscopic model as well as by k. p theory approached
by correct electronic boundary conditions [369—372], as well as chemical segregation [368] and strain ef-
fect in QWs. Such effect of linear birefringence in the QWs is generally measured by optical reflectance
anisotropy [373], by transmission anisotropy [374] or by absorption anisotropy [375] like previously evi-
denced. The second contribution originating from surface may have two different causes: a surface-bulk
electro-optical effect due to the appearance of a significant electric field developing from the top surface by

pinning of the Fermi level [376, 377] and an effect related to strain by surface reconstruction [378].

Principles of Spin VECSELs

We are now giving some details about the working principles of spin VECSELS with optical pumping
method based on optical selection rules and the dynamical descriptions from the optical Maxwell-Bloch

equations.

Optical pumping and optical gain: optical selection rules

Generally one can distinguish between devices optically-pumped like spin-VCSELS and devices electri-
cally pumped like spin light-emitting diodes (spin-LEDs) and electrically-pumped spin-VCSELS. In those
devices, the emission of circularly polarized coherent light originates from radiative recombinations of spin

polarized electrons with unpolarized holes in active media such as quantum wells (QWs). The output spin
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TABLE 6.1: Optical selection rule obtained from the characteristic dipole matrix

element at I' point.

CBT(1/2,+1/2]

CB | (1/2,-1/2]

HH 1 (3/2,+3/2|
HH | (3/2,-3/2]
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0

0
V1/2(% - if)

LH 1 (1/2,+1/2]
LH | (1/2,-1/2|

2/32
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—/1/6 (X +1iy)
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polarization is directly related, although in a non-linear way, to the polarization injected (optical or electri-
cal) via the optical quantum selection rules governing the radiative recombination. There is a proportionality
relation between the spin polarization of the injected current Py and the degree of circular polarization of
the emitted light P;,, in particular along the quantization axis parallel to the growth direction in the case
of a quantum well (any direction can play this role for bulk optically active materials). The annihilation of
an electron-hole pair during the inter-band recombination process triggers a transfer of the total electron-
hole angular momentum to the emitted photon. In 7 units, polarized photons have an angular momentum
projection on the wave vector direction equal to +1 or -1 respectively. Thus the radiation resulting from the
recombination of the spin-polarized carriers will be partially circular if the spin orientation has not entirely
relaxed within the time of recombination. Thereupon, the degree of circular polarization of the radiation
serves as a useful and direct measure of the carrier density spin state as well as its change under the influ-
ence of external factors and relaxation process. The efficiency of the conversion of the spin-polarization
between pump and output coherent light can be quantified from optical polarization measurements (e. g.
spin-resolved electroluminescence or spin-resolved photoluminescence) through the examination of the op-
tical quantum selection rules [14]. In a direct gap III-V semiconductor, the interband transitions rates are
given by the Fermi golden rule 1.52 where the transition matrix element D = | f|V;|0)|, proportional to the
overlap integral, quantifies the coupling strength between the initial state and the final state via the dipolar
Hamiltonian perturbation V;. For electronic states close to the I' point, the electron wavefunction in the CB
and VB can be described by the quantized states or standing waves formed with the Bloch wavefunctions
(sum of forward and backward traveling waves) with associated Bloch states |j,m;) denoted according to
the total angular momentum j and its projection onto the quantization axis m;. In this notation, the wave-
functions describing the CB and VB states near the I" point can be expressed in terms of wavefunctions with
S, Px, Py and p orbital character.

The Vy; , perturbation operator, is the operator describing the physical interaction coupling between the

initial and final states. The dipolar Hamiltonian interactions Hy; = —E.d, where d = % 2. e.X(m) is the host
(m)

vector dipole moment of electrons with charge e, position vectors Iy in the volume V and space coordinate
m (m = x = [100], y = [010], z = [001]), leading to both spontaneous and stimulated emission [355].
In the case of the i—polarized electric field E; it takes the form Hy = —-3; E,-o?l- with the off-diagonal
matrix elements between two levels |1) and |2), da1; = (1 |d;|2), which is also called the dipolar coupling
coefficient. In the present case, the interaction arises between an electrical dipole and an external field such

that the interaction operator is given by:

Vii = d.E = dyEy + dyEy + d E; 6.1)

where d is the dipole moment and E is the electric field of the light wave. The components of the electric
field Ey, Ey and E, are considered constant as the electric field variations are small compared to the period-
ical variation of the lattice potential. When the vector dis expressed as a spherical tensor d. for o* optical

transition, the Wigner-Eckart theorem states that the non-zero dipolar matrix element D = |(f|Vy;|0)| are
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the terms verifying the relation Am; = +1 [379]. The transition probabilities for allowed transitions are
given in table 6.1.

The orientation convention is to consider that a photon has a right circular polarization o+ (respectively
left circular polarization o-~) when emitted from a Am; = —1 transition and propagating toward the surface
(respectively toward the backside). The optical selection rules are only strictly valid at the I point. By
moving away from the I point, the HH and LH band mixture results in a non-ideal optical polarization.

Snl—BnT _

Peive » =P (6.2)

Snl + 3nT

Right or Left circular polarized light
pumping

( Conversion of angular momentum \

CB (-1/2) CB (+112)

Quantum well &

HH (-3/2) - = om HH(312)
LH (+1/2) I,-

P-doped layer [, LR
Substrate k

J

Optoelectronic structure

FIGURE 6.2: Scheme of the circularly polarized optical pumping mechanism: Spin
generation happens through preferential transitions driven by the optical quantum
selection rules in the active medium of the optoelectronic device.

At the T point, the CB — HH transitions are three times more probable than the CB — LH transi-
tions regardless to the active medium nature. In a bulk semiconductor, the HH-band and the LH-band are
degenerate at the I' point, which intrinsically limits the degree of circular polarization degree injected in
the device. Thus, the maximum value theoretically reachable for P.;.. with a bulk active medium will be

limited to 50% for a carrier spin polarization of 100%

(o) -I(c7) @Bny+n)-Q@Bm+n) ng-np Py

Peire = o)+ 1) GBny+n)+@ny+n)  2n +np) 2 ©2

where /(0*) and I(o") are the intensities for o+ and o~ polarizations respectively; n1 and n| stands for the

density of states of spin up and spin down electrons respectively.

The case of QWs is much more appealing as the quantum confinement and potential epitaxial strain
lift the degeneracy between the HH-band and LH-band at the I" point. For example, in Al,Gai_xAs and
InyGaj_xAs which we extensively used in the active medium of spin-LEDs and spin-VCSELSs, the HH-
band is energetically higher than the LH-band. Consequently, the LH states can be ignored, especially
since the CB — HH transitions are three times more probable than the CB — LH transitions. It is then
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theoretically possible to reach 100% degree of circular polarization for an injected spin polarization of
100%.

Dynamics of the system: the optical Maxwell-Bloch equations.

We now give more details on the optical transitions and related transition matrices. From a pure quantum-
mechanical approach, physical processes responsible for the optical gain involve optically active recombi-
nation regions, typically multiple quantum wells (MQWSs) wherein the electronic-to-photonic information
transfer occurs via the optical quantum selection rules for dipole radiation. This is associated with the
conservation of angular momentum in active media or QWs [17]. From a material point of view, binary
(GaAs, InP, GaN) and ternary (InGaAs, GaAsP) III-V semiconductor compounds are widely used in opto-
electronics as reference materials for light sources and detectors with the advantage of a direct gap. The
amplification effects induced by the combination of a gain medium and a resonant optical cavity gives a
unique opportunity to maximize the conversion efficiency of the carrier spin-information into light helicity.
A particular example of the derivation of the dynamics of VCSELs and spin-VCSELSs is Bloch equations
refined in terms of the so-called spin-flip model established in the mid-nineties [360, 380]. This describes
the dynamics of spin-polarized pumped carriers and correlated polarized electric field in the optical cavi-
ties and thus generating elliptical optical eigenmodes. However, what is missing in the latter approach is
a correct evaluation of the optical gain properties and its different anisotropic contributions from a pure
quantum mechanical approach. The optical gain property has to take into account the anisotropic contri-
butions according to circularly or elliptically polarized electronic injection in QW (via optical, electrical
or hybrid pumping). This includes possible linear gain anisotropy between different in-plane [110] and
[110] crystallographic axes, originating from the interfacial symmetry breaking between III-V quantum
wells and barriers, which is reduced from the bulk 7;; or structural Do, to the interface Cp,, symmetry group
as demonstrated recently [368].

The carrier-photon dynamics of spin lasers may then be modeled, starting from the Maxwell-Bloch
equations [381-384], using a spin-dependent rate equation analysis. The rate equations can provide a direct
relation between material characteristics and device parameters [26, 333, 385]. A set of equations which
relates the polarization behavior of V(E)CSEL to the quantum structure of the active medium and to the
anisotropies of the cavity may then be derived. The first anisotropy to consider is the unavoidable linear
phase anisotropy induced by a possible local strain-field in the material host via electro-optical effects
and originating e.g. from lattice mismatch [356, 357] or from crystal relaxation at the interface. As a
consequence of this anisotropy [110] and [110] axes, the directional degeneracy of the electric field will
be removed and the frequencies of orthogonally linearly polarized light fields will be split. One possible
description is a generalization of the equations within a full transfer-matrix method developed recently in
our group [386].

The dynamical Maxwell-Bloch dynamical equations link the electromagnetic electric field E and the
medium polarization P in a vectorial form as well as the spin-dependent carrier density which may be
different via the electrical or optical circularly-polarized pumps. These equations generally derive from the
density matrix dynamics [381-384] of carriers coupled to photons via the dipolar interactions Hamiltonian
H,; = —E.d. If one considers slowly varying amplitudes of the electric field, conveniently written in the
relevant reference basis (circularly or linearly polarized eigenmodes), rate equations for E, and for carrier
density can be derived as P = yE, where y is the susceptibility tensor. Indeed, one admits here that the
transverse relaxation time of the optical polarizability is very short which is generally true for class A and
class B lasers as in Ref. [387].

Nonetheless, crystallographic and electro-optical anisotropies in the QWs can make that the vectorial

orientations of E and P slightly differ in the active regions where the carrier recombination and optical gain
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take place. This can be explained via the property of the optical activity. Even if the resulting optical gain
would only represent a small fraction of the electromagnetic wave intensity in the cavity, this property of
non-collinearity between E and P in QWs is crucial to analyze and understand the eigenmode polarization
and the mode coupling. This is what we will demonstrate below. Note that, although outside of the scope of
the present thesis, such possible non-collinearity between E and P also appears to be of the first importance
to understand optical eigenmodes obtained with pumps competing with intrinsic linear gain anisotropy like
observed in recent experiments [345, 388].

Generally, in order to take into account realistic physical situations dealing with III-V (spin-)VCSELS
involving anisotropic interfaces (Co, symmetry), a possible way consists in considering differential optical
losses for the two different crystallographic axes. However, if this method correctly mimics the difference in
the optical activities (losses and corresponding threshold [360, 380]), it cannot account for additional mode
coupling as far as the dipolar-transitions remain, here, unaffected by the surface properties. An alternate and
novel method that we propose here, would be to determine the correct properties of the dipolar interband
transitions from a pure quantum-mechanical picture taking into account the orbital bonding anisotropy
imposed by interfaces. By this way, we will be able to determine the true dipolar amplification properties
as well as the optical eigenmodes that can be then made different, and in this specific case, the optical
coupling between modes imposed by electro-optical properties originating from interfaces. It may also lead

to a generation of mode splitting like observed recently [389-391].

Impact of the optical anisotropies in the semiconductor cavity.

Linear birefringence and circular gain dichroism

Those additional linear in-plane anisotropies in the multilayer semiconductor cavity strongly impact the
performance and properties of spin-laser operation, leading to complex polarization dynamics. Previous
theoretical as well as experiment investigations have allowed to distinguish between several different con-
tributions:

* A linear birefringence originating from interfaces between ternary quantum wells and barriers like
(In,Ga)As/GaAs quantum well structure.

& Possible local surface strain of III-V material after surface crystalline reconstruction.

# A magneto-optical anisotropy.

The first contribution, an in-plane optical anisotropy of III-V quantum well structures, was found due to
the reduction from D4 to Co, symmetry group when the host materials do not share any common atoms,
as well as chemical segregation and strain effect in quantum well. The second contribution originating
from the surface may have two different causes: a surface-bulk electro-optical effect due to the appearance
of a significant electric field developing from the top surface and an effect related to strain by surface
reconstruction. The last contribution is given by magneto-optical effects which cause the circular dischroism

and birefringence in a magnetized ferromagnetic layer used as a spin-injector.

Natural interface anisotropy in quantum wells and optical active regions.

The natural interface anisotropy is a form of an inversion asymmetry resulting from the structure of chemical
bonding at the interfaces. An example of such an interface with symmetry reduction from Dsy to Cs, is
shown in Fig. 6.3 which depicts the atomic structure of zinc-blend type quantum wells along the [110]
axis grown on [001]-oriented substrates. Figure 6.3a shows the case of a quantum well/barrier system
with a common atom. While within each layer, the anions (black circles) are surrounded by equivalent

cations (white circles), the interfacial anion is bonded to different cations from the upper and lower layers.
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An example of such system is GaAs/AlAs structure depicted in Fig 6.3e. The planes of the As-Al and
As-Ga bonds involving a common anion are rotated by 7/2 with respect to each other at each side of the
interface. It results from this particular Cy, symmetry leading to a possible heavy to light hole mixing
in the component of the wavefunction at interface [30, 31] yielding the optical anisotropy. Consequently,
different optical properties are expected along the [110] and [110] directions. However, even if the top
interface exhibits any anisotropy due to the symmetry reason, such anisotropy would be compensated at the
bottom interface because the chemical bonds themselves are the same. The quantum well/barrier system
thus remain symmetric. On the other hand, the different situation is in the case when quantum well/barrier
system does not share any common atoms as depicted in Fig 6.3 (b,c,d). The anisotropy of the top interface
is not compensated at the bottom interface because the chemical bonds are different and thus the system is

no longer symmetric.

Al

\ (001) Ga /

FIGURE 6.3: Illustrating the origin of the natural interface asymmetry in quantum
wells grown on (001) substrates (a-c) and on a (011) substrate (d). Taken from
[392]

In this work, we mainly focus on Ing 25Gag.75As/GaAsg.95Po.o5 quantum well structure where quantum
wells and barriers share the common atoms Ga and As. However, the average cation type and anion type
atoms (InGa) and (As) in quantum wells are different from the average atoms (Ga) and (AsP) in the barriers.
Therefore the symmetry breaking leading to the optical linear birefringence and dichroism is expected.
Moreover, the local surface strain of III-V materials due to even a small lattice mismatch after surface

crystalline reconstruction as well as due to the chemical segregation can be present.
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Anisotropy at the surface

The linear birefringence and dichroism originating from the surface may have two different origins: the
effect related to the strain by surface reconstruction and the surface bulk electro-optic effect due to the
appearance of a significant electric field at a surface.

One contribution to the overall anisotropy predicted and observed at clean (001) surfaces of binary III-
V semiconductors is caused by the surface reconstruction with its characteristic dimer-configuration and
back-bonds as depicted in fig.6.3. This anisotropy could be understood on the basis of trigonally bonded
overlayers leading to the strain and thus different optical properties along the [110] and [110] directions.
Typical examples are the As or Ga dimers found on the different reconstruction of the GaAs surface. Since
the dimers have a preferential orientation, electronic transitions involving these states are expected to be
highly anisotropic. Moreover, reconstruction induces small changes in atomic positions in the atomic layers
close to the surface and thus producing a strain field.

Another contribution to the surface linear anisotropy is due to the linear electro-optic, bulk-related ef-
fect induced by the sample surface electric field. Such effect originates from an electric charge exchange
between the bulk and the surface states of the semiconductor, in order for the material to attain thermo-
dynamical equilibrium. As a result of this process, the Fermi level becomes pinned at the semiconductor
surface at an energy located in the forbidden gap. The presence of the surface electric field results in the
breaking of the symmetry of GaAs near the surface and in the loss of the optical isotropy in this region.
A systematic studies of this effect on n-type GaAs has been done by Acosta-Ortiz by using reflectance
different technique [393].

Besides, the electro-optic effects can appear also in the presence of an applied external electric field
(electrically injected VCSELSs) or the electric field from high-power pumping laser (optical pumped VEC-
SELs). When an electric field is present along the [001] direction, the refractive indices along the [110] and
[110] directions are given by [394]

n3 ~

n[1o] = ho — ErE (6.4)
n3 ~

nlﬁoj =ng + ErE (65)

where ng is the refractive index in the absence of an electric field and 7 is the electro-optical coefficient.
Such electro-optical birefringence can be used to control the cavity resonance of the polarized light along
the [110] and [110] directions, which are shifted to shorter and longer wavelengths depending on the
direction of the applied electric field.

Electronic susceptibility, optical anisotropy, and optical gain: The Maxwell-
Bloch equations revisited.

Generalities

The objectives of the general scientific program is to investigate both by analytical and numerical proce-
dures the static and time-dependent properties of output laser eigenmodes emitted from VECSEL and 1/2
VECSEL cavity vs. the known dielectric optical constants of each constituting material. Those investi-
gations include the effects and properties of light-sources in each active layers (or quantum wells) with
possible related linear birefringence (uniaxial in-plane strain field), anisotropy of linear gain due to stress,
circular gain due to spin injection and possibly dichroism due to the presence of a ferromagnetic film.
For the Spin-VECSEL applications, it has been proposed in the frame of Tibor Fordos’s thesis to develop
computation and modeling of the coherent light-emitted from VECSEL or 1/2 VECSEL cavities based on
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the scattering-matrix approach. A number of properties have been derived, namely the properties of laser
threshold, output-light polarization in terms of output Jones vector including possible linear-birefringence
and strain-induced field effect at surfaces and interfaces (quantum wells, Bragg reflectors, surface with air).

The electric field and polarization-field vectors, are respectively E and P. We refer now to the sketch
and notations given by Fordos ef al. [395]. Let us define the electromagnetic field of the two-mode laser

E(1,2) as a sum of two orthogonal coupled lasing eigenmodes A(1,2)7(; o) in the following way

E = Z E(exp (u)(i)t - k(l-)z) +c.c.= Z A(i)ll(i)exp (u)(i)l‘ - k(i)Z) +c.c. (6.6)
i =12

P= Z Pexp (wpt — k@iz) + c. c. (6.7)
i=1,2

where the 7, 5 are the polarization of the eigenmodes, either (1) or (2) to be calculated and that we yet
consider to be known at this stage, A(;(r,7) is the time slowly varying envelope and transverse spatial
amplitude, and Py;) the polarization P;y = yE;) of the mode i (i = 1,2), respectively. The derivation is
made by projecting the incoming electric field vector of the propagating wave crossing the active region
in the reference basis corresponding to the two optically active circular recombination channels (+ and —).
This will thus generate a certain 2 X 2 non-diagonal amplification-matrix (gain-tensor) in the active region

for the vectorial electric fields to find.

Role of the susceptibility tensor in the light-matter coupling

The interaction between light and matter is generally described by the susceptibility tensor y = yr +ix7s
that links the electronic polarization and electric field according to P = y€oE and where P = tr{epr} stands
for the electronic polarization P. From the Maxwell equations, the susceptibility tensor yqp is linked to the

dielectrical tensor €,5 and conductivity tensor o, by the following relationship (Gaussian units):
, 3 N N
E=g (1 + 477)() =€ +4ni— (6.8)
w

where w is the optical fequency. One may distinguish between intraband and interband virtual or effective
transitions and several models have been proposed to describe such interactions. The intraband transitions
are responsible for optical absorption, e. g. dealing with free carriers in metals or in electron gas systems
in semiconductor, whereas the interband transitions are responsible for the dynamical host conductivity,
host optical index and optical gain. On may also distinguish between longitudinal (Coulomb problem) and
transverse (electromagnetic wave) optical response. We shortly review, here, the main models:

e The Lorentz-model describes the response of an electron bounds to a given center excited by an
electromagnetic wave excitation or AC-electric field. The steady-state dynamical response gives an ac-
susceptibility:

ne® 1

X = —_— (6.9

meop (w? — w?) —iL

where wq is the resonance frequency of the bound system and 7 its characteristic relaxation time. We

4nne?

note wp = /e the characteristic plasma frequency. It results that the real part of the conductivity
(absorption) that reads o = X572 satisfies the well-known sum rule:

w=00 & wz
/ ordw = 7 (6.10)
w=0 8
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e From pure quantum-mechanical point of view, for the calculation of both intraband and interband
transitions, we have for the longitudinal optical response:

¥ (q w) _ ez Z f0(8k+q,l’) - fo(gk,l)
T Veoq? 44 & Excrqr = Eiy = how — il

I(k + ql’| exp{ik.r}|kl)|* (6.11)

where V the volume, [,!” are the initial (|/)) and final (/")) electronic states and |(k + q/’| exp{ik.r}|kl>|2 =

2
o + (1 =6y) (ﬁ) | Pyyr|? represents the transition matrix element within the k.p theory frame. On the

other hand, the transverse response reads:

ne> + ne> Z f0(8k+q,l’) - fo(ak,l)
Veom2w? T

711 p2 2
Excrq.r — it — hw — il ((k+aq PPk (6.12)

Xl (q’ (U) = 2A2
o It results that for semiconductors, if one notes |0) the top of the valence band state, the susceptibility

writes in fine:

2
ne fro
xgw)=—>" E— (6.13)
mey £ (wp2 — w?) —i%
2
where fio = % is the optical oscillator strength between the initial state |0) and the final state |/") and
where wor = &y — &o is the energy gap. We can note that 3, fro = - with m” the effective mass of the

semiconductor near state |0). It results that the sum rule for the optical conductivity is retrieved according
to:

wW=00 & wZ
/ ordw = 7 (6.14)
w=0 8

Kramers-Kronig relationships

The Kramers-Kronig relies the real and imaginary part of the susceptibility tensor according to the following
Cauchy integration:

Y(wo) = /_ R (O (6.15)

0 W—wo+in

which allows one to derive the real part of y once its imaginary part (optical absorption) is known. This
relationship allows us to introduce the Henry factor in optically active region by ))‘(—’; ~ 3.5 for standard
III-V semiconductor compound.

For that purpose, the dipolar amplitude responsible for the optical gain and corresponding to each of
the two spin-populations, (+) for spin T and (—) for spin |, must be derived depending on possible linear
anisotropies. We define A as these dipolar amplitude in a Jones-vectorial form in a Cartesian optical refer-
ence basis associated to the two optically active circular recombination channels, (+) and (—) respectively.
For a 2-level model, we note N. the respective spin-up (+) and spin-down (—) carrier densities in quan-
tum wells above transparency (tr) (N: = Np| — Ny;) associated to the respective pumping rates No., I the
off-diagonal damping factor for the off-diagonal density-matrix elements (media polarization), the damping

rate of the carrier densities y, vy, the spin-flip rate, and the spectral detuning 6’. One then gets the dynamical
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behavior of each of the physical constituents that are E, P in a vectorial form according to [381, 383]:

oP, 2 ,
2 = (T +i8)Pu g - iE [(E(Lz)Af*) AIN, + (Eq A7) AN (6.16)
N _ .

= =y (Vo= Now) % 75 (N = N-)) - 3 Z {( o ) (P(,-)Af_f ) - c.c} (6.17)
92 2 9
o 2P(1 2)EXp (wt k(l,z)Z) C V _Eﬁ - Ka E(] 2)€Xp (a)t - k(1 z)Z) (6.18)

Those three equations represent a generalization of the Maxwell-Bloch equations, and of the spin-flip model,

to the case of anisotropic active regions.

Application to optical anisotropy in spin-VCSELs

In active media or laser devices, the optical response to an electromagnetic wave excitation can be described
by the equation governing the two-level (i = 1,2) density matrix p;; via the time-dependent Schrodinger
equation. From that equation that we do not detail here, one obtains the expression of y. At low light

intensity, close to threshold, it is given by:

_ ny? (0) (0) 6.19
Xr =Py 0 F2 (6.19)
_ ny (0) (0) 6.20
X1 = "o - )5 rz (6.20)
where n is the density of atoms, € the host dielectric constant, and where p( ) p(ll) represents the pop-

ulation inversion at the laser threshold. The optical gain a, then follows from the imaginary part of the

susceptibility tensor y; as:

o=y (6.21)

The absorption coefficient is shown to be linked to the imaginagy part of the susceptibility tensor!

Thesis objectives: from past, present to beyond.

What has been performed:

These analytical and numerical modelings already focused in particular on:

(1) The representation of (circular) optical gain in active layers (quantum wells) with dipole sources
and derived from the very general optical-selection rules applied to III-V semiconductor compounds and
including possible local Hamiltonian terms in III-V materials (Rashba, Dresselhauss) derived from the
electronic structure. The possible study of the effect of residual stress-induced linear birefringence on
output optical properties.

(2) The integration the Spin-Flip model [396] for the gain of the electromagnetic-field inside the cavity
into the propagative S-matrix formalism.

(3) The analytical and computational modeling of light emission in resonant multilayer structures was
performed by using an appropriate 4 x4 matrix approach fulfilling Maxwell equations in each layer together
with relevant boundary conditions for the electromagnetic field.

(4) The determination of the laser threshold and resonance where both amplitudes and phases of the

waves in the cavity was reproduced and compared to experiments. Losses in the magneto-optically active
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ferromagnetic injector and strain-induced optical anisotropy at the interfaces of III-V QWs have crucial
impact on laser threshold and was included in the model using experimentally obtained optical parameters.
Experimental study of resonance conditions and emitted polarization of the half spin-VECSELSs was per-
formed at Thales TRT and UM¢ CNRS/Thales. Optimization of the structure geometry, film thicknesses,
number of QWs, etc. in order to enhance spin-lasers overall performance and to design electrically-injected
full spin-VCSELs.

(5) The development of analytical method and numerical codes including several sources of active
layers (quantum wells) in Spin-VECSELSs was performed and achieved by S-matrix recursive method. This
particular worktask aimed at generalizing the previous work of Fordos et al. [28] to the case of multi-wells
VECSELSs structures.

This thesis project:

We propose in this thesis to tackle the problem of the properties of the dipolar optical transitions (band-to-
band) near the center of the Brillouin zone of quantum wells in a 14 x 14, 30 x 30 and 40 x 40 multiband
k.p framework. This theory will use the specific matching conditions for wavefunctions derived in the
previous chapters taking into account local non-symmetric potential (Dresselhauss, heavy to light hole
mixing) in bulk and active layer interfaces. These dipolar optical transitions determine the selection rules
during transitions and are needed to study either the properties of the optical gain as well as the properties of
the optical pump in Spin-VECSELSs operations in both steady-state and dynamical regime of spin injection.
These optical transitions may involve the effect of stress-induced linear birefringence at the surface of III-V
QWs interfaces.

Moreover, when dealing with electrical spin-injection or electrically-pumped devices, on needs to inject
the spin-polarized carriers from a ferromagnetic injector or magnetic tunnel barrier, magnetic injectors
which constitute the optical device by itself. One thus have to consider the modeling of a real hybrid
devices, inhomogeneous by essence, constituted by magnetic injector and an optically active region from a
monolithic point-of-view. This deserves the development of our multiband k. p tunneling platform to model

spin-injection processes and spin-currents.

Experimental study of surface and interfacial optical
anisotropy by ellipsometry methods (collaboration Univer-
sity of Ostrava) [397].

This section refers to the recent experimental results obtained by ellipsometry methods on
GaAsP/InGaAs/GaAsP quantum well based spin-VCSELs. Those experiments as well as data analysis
have been performed in the framework of Tibor Fordos thesis [28] within a joint degree program between
University d’Ostrava and LSI Ecole Polytechnique. We recall the main results and connect to our recent

k.p calculations realized during the present thesis.

Design of the VECSEL structure

Generally, the VECSEL device is based on a laser resonator and the active gain medium: quantum wells or

quantum dots.

Figure.6.4 shows schematically the general VECSEL laser structure and the particular structure to be inves-

tigated in this work consists of an epitaxial high reflectivity (99.9%) bottom AlAs/GaAs Bragg mirror (26
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(C) InGaAs/GaAsP 6x MQWs

GaAs/AlAs DBR  GaAs/AlAs
26 pairs Strained surface

FIGURE 6.4: (a) Schematic of a VECSEL (not to scale) with a semiconductor gain
chip and an external laser resonator. Reprinted from [398]. (b,c) VECSEL with the
quantum well structure is to be investigated in this work.

pairs) of nominal thickness 4745 = 85.37 nm and tG4as = 71.8 nm. The %xl—thick active region is consti-
tuted of 6 strain-balanced 8 nm thick InGaAs/GaAsP QWs with emitting laser frequency at A = 1um. Each
pairs of QWs is separated by GaAs spacer which size decreases when getting closer to the surface. A 30
nm thick insulating AlAs layer in-between the surface and the active medium used as a carrier confinement

layer in optical pumping experiments. The nominal thickness of GaAs capping layer is 10 nm.

Methodology: Optical function of semiconductors in a layer-by-layer ap-
proach

The critical step involved in fitting Mueller matrix ellipsometric data to a given structural model is the
proper parametrization of the unknown energy-dependent complex optical functions €,.(E) = € — iez. We
have used a Kramers-Kronig (KK) consistent Tauc-Lorentz (TL) model function, which was developed by
Jellisson using the Tauc joint density of states and the Lorentz oscillator. This approach is combined by
subset of more general Herzinger-Johs (HJ) parametrized function shapes with KK properties to model the

shape of an My critical point seen in direct gap semiconductors such as GaAs around the gap energy E,.

Tauc-Lorentz model [399]

In the approximation of parabolic bands, Tauc’s dielectric function describing inter-band mechanisms above
the band edge is in the form [400]
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eI(E) = (6.22)

0 E <E,

where Ar is the Tauc coefficient, E is the phonon energy and E, is the energy of optical bandgap.

On the other hand, the derivation of the Lorentz oscillator is based on the classical theory of interaction
between light and matter and is used to describe frequency dependent polarization due to bound charge,
which are supposed to be analogy to a spring-mass system. Bounded electrons react to an electromagnetic
field by vibrating like damped harmonic oscillators leading to the imaginary part of the relative permitivity

ATEQE

€ = 6.23
> (E2-E})?+I2E2 (6:23)

where I’ is the broadening parameter and Ej is the energy of the central peak with amplitude Ay . Multiply-
ing Eq. 6.22 and Eq.6.23 leads to the Tauc-Lorentz dispersion formula:

1 AEQT(E-Eg)? S
e (E) = { F (E*-EQP+T2E? E=E (6.24)
0 E<E,

with the overall amplitude A = ArAr. The real part of the dielectric function is derived using Kramers-

Kronig integration:

o)

2
€1(E) = €10 + =Pc
T

Eg

E’ex)(E’)
- 2= JJE! 6.25
T —F (6.25)
where Pc is the Cauchy principal value and €;, is the constant term originating from high-energy absorb-

tions [399].

Hergzinger-Johs model [401]

The model developed by Johs which combines functional shape with Kramers-Kronig consistent properties
is convenient when reproducing complicated dielectric function shape without the need of additional oscil-
lators between critical points. Analytically, a single oscillator is formed by four-order Gaussian broadened
polynomials, which are grouped into four polynomial ensembles connected end-to-end and centered on
critical point Ec. Each spline connects smoothly with the advanced spline, forming a single, continuous
function as depicted in Fig. 6.5. Generally, each critical point is described by 9 parameters. Ec is the CP
energy with amplitude Ac, while E; and Ey are the end points. Energies Er s and Eyjps with respective
amplitudes Az and Ayps describe two control points for establishing the asymmetry of the line-shape.
The center, the bounding energies and center amplitude are specified absolutely. The position of the control

points, which corresponds to the joining points of four polynomials, are defined relatively to these absolutes.

The general expression of the dielectric function is then given as a summation of the Herzinger-Johs dielec-

tric function [401]:

EH‘,(O.)) = 6{1‘, - ieZHJ (6.26)

and Py poles representing contribution from outside region of studied spectra:
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FIGURE 6.5: Schematic of a single unbroadened CP structure in the Herzinger-Johs
model. Taken from [28].

Py A
e(w) =1+ (w) + Z W—’_Ez (6.27)
Jj=1 J

The imaginary part of the Herzinger-Johs dielectric function EZH 7 is described using m energy-bounded

polynomials given by:

E,
m max

eg“(w)zz / W;(E)®(hw, E, oj)dE (6.28)

j:1Emin

where ®(fiw, E, o) is the Gaussian broadening factor and W;(E) is the fourth-order (N = 4) polynomial

function:

N
WH(E) = )" Pjmk EXu(E = a;)u(b; - E) (6.29)
k=0
with coefficient P; ; and unit step functions u(x)/ The corresponding real part of the dielectric function e{{ 4
is obtained by Kramers-Kronig transformation. In this work, we use HJ function to model the sahpe of My

CP of the zinc-blende semiconductor such as GaAs.

Main experimental results [397]

We present the main experimental results consisting of Muller ellipsometry measurement that we performed
in the full energy range from 0.73 to 6.4 eV. Those are afterwards compared to the fit alter data analysis
using tabulated optical constants of GaAs, AlAs, InGaAs, GaAsP and involving a thin GaAs oxide layer on
the top.
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FIGURE 6.6: The measured Mueller matrix elements as a function of the in-plane
azimuth rotation angle ranging from 0 to 360 degree for E = 2.2 €V and for the angle
of incidence 6 = 40°. Taken from [397].

Using ellipsometry techniques, the output results are given by the Mueller matrix elements where M1 =
Moy, Mas = —Ms34 and M33 = Mu4 are the main ones in the present case and reveal a particular optical
anisotropy. Considering the general form of the reflection coefficient rss and r,, where ’s’ and "p’ stands
respectively for ’s” and ’p’ polarization, one can show that [28] Mo o |reg|* — [7pp |2 and M4 o< R {rssr,*,p}
leading to the sensitivity on linear dichroism, while M34 oc 3 {rssr; p} is the most sensitive element to the
linear birefringence. The analysis procedure of VECSEL structure then consists of the following steps: 1)
the analysis of the full measured spectra from 0.73 to 6.4 eV, variable angle of incidence, and ii) using

tabulated optical constants in order to fit and extract the precise thicknesses of all semiconductor layers.

30The permittivity components of GaAs 1The permittivity differences of GaAs
7\ €

2} (@) il
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O L
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0 2 4 6 0'50 2 4 6
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FIGURE 6.7: a) The ordinary (blue curve) and extraordinary (red curve) optical
constants and b) the permittivity differences of real Ae; and imaginary Aey parts of
GaAs. Taken from [397].

As mentioned above, the critical step involved in fitting Mueller matrix ellipsometric data to a given
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structural model is the proper parametrization of the energy dependent complex material optical functions
described by the complex permitivity e(E) = €; — iez. The Ostravas’s group have used the Kramers-
Kronig (KK) consistent Tauc-Lorentz (TL) model function described in previous section. This approach
is combined by subset of more general HJ parametrized function shapes with KK properties to model the
shape of an M critical point seen in direct gap semiconductors such as GaAs around the energy gap E,. In
combination with 4 X 4 matrix formalism describing the light propagation in anisotropic stratified media,

the Levenberg-Marquardt least square algorithm is used to obtain Mueller matrix data fit.

40The permittivity components of AlAs ) The permittivity differences of AlAs

20

Energy (eV) Energy (eV)

FIGURE 6.8: a) The ordinary (blue curve) and extraordinary (red curve) optical
constants and b) the permittivity differences of real Ag; and imaginary Aeg parts of
AlAs. Taken from [397].

Figure 6.6 displays the measured Mueller matrix elements as a function of the in-plane azimuth rotation
angle ranging from 0 to 360 degrees for the photon energy of E = 2.2 ¢V. Clear evidence of the broken
in-plane symmetry at the surface GaAs/AlAs layers is observed due to the 180 degree symmetry of the
measured MM dependence on the rotation angle. Note that effects of the sample tilt and misalignment
would exhibit 360 degree symmetry. The present model is based on the optical-function parametrization of
the GaAs/AlAs top layers by TL model with the amplitudes as a fitting parameter in the absorbing range
from 1.7 to 6.4 eV, while all other structure parameters (thickness, optical constants of quantum wells
and barriers, etc.) are fixed. The resulting optical constants are shown in Fig. 6.7 and Fig. 6.8. For
the lasing energy of E = 1.24 ¢V, the difference between ordinary and extraordinary optical constants
Ae1 = €1,0 — €1,00 gives Aep = 0.115 + 0.005 for 10 nm thick GaAs and Ae; = 0.021 + 0.005 for 30 nm
thick AlAs, giving the average value about Aé; = 0.04 for a 40 nm thick layer composed of GaAs/AlAs at
surface in agreement with the recent analysis using active lasing configuration described in [28].

We will discuss now the connection between particular interband transitions of zinc-blende type semi-
conductors with the obtained permitivity functions. The fundamental absorption edge of zinc-blende type
GaAs and AlAs corresponds to direct transitions from the highest valence band to the lowest conduction
band at the I" point (Brillouin zone center) with the energy E, = 1.42 eV for GaAs and E, = 2.89 eV for
AlAs as depicted in Figs 6.7 and 6.8. Above the E, critical point, we observe E1 and E7 + A (spin-orbit
split) transitions, which occur at the L point of the Brillouin zone or along the A line. The E(; describes the
transitions between the valence bands and higher conduction bands at the I" point. The imaginary part of
the permittivity e; reaches a strong absolute maximum known as the E peak, which contains contribution
over a large region close to the edges in the [100] (X point) and [110] (K point) directions of the Brillouin
zone.

In Figs 6.7 and 6.8, one can observe each of the resonant peak absorption s corresponding to each critical

points of the Brillouin zone. The main contribution of the anisotropy of the GaAs originates from the Eq
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FIGURE 6.9: a) The ordinary (blue curve) and extraordinary (red curve) optical
constants and b) the permittivity differences of real Ae; and imaginary Aey parts of
an InGaAs quantum well. Taken from [397].

TABLE 6.2: Table of the optical constants and their extracted difference.

€1=€, | =6, | Ael=€ € | A2 =€, — € o
GaAs 12.30 0 0.115 0
AlAs 8.69 0 0.021 0
InGaAs 13.10 0.76 0.047 0.026

and E7 + A transitions giving a positive anisotropy between ordinary and extraordinary axes Ae; > O and
Aey > 0 up to the energy of E = 2.9 ¢V and opposite Ae; < O for higher energy. The contribution of AlAs
to the surface anisotropy for energy below band gap E, is much smaller due to the compensation between
E1 and E(') oscillators.

In the following step, the extracted optical constants of the surface layers have been considered fixed,
while the optical constants of the InGaAs QW are parametrized and fitted to the experimental data in the
full range from 0.73 to 6.4eV. The optical constants in all QWs are considered identical (coupled) in order
to obtain reduced number of fitting parameters. Results are depicted in Fig. 6.9. We note that the highest
accuracy is obtained in the region below 1.8 eV, while the features above are determined only qualitatively.
The contribution of the QW to the overall birefringence admits two main parts: i) a positive one originating
from the region of E; and E] spin-orbit-split transitions and ii) a negative one from the region of higher
energies around Ej transition. For the lasing energy E = 1.24 €V this gives Ae; = 0.047 + 0.005 for a
8 nm thick InGaAs QW (48 nm total). We first note a positive sign of Ae; > 0, identical to the surface
birefringence, which should be correlated to a corresponding negative sign in the regime of laser operation
due to population inversion. The larger value of Ae, although not yet understood, may originate on the
non-saturated population inversion in laser operation, where the average birefringence has been extracted
close to 6 x 1073,

k.p modeling: optical anisotropy from dipolar transition ma-
trix transitions revisited in a 30-band model.

We are now going to focus on the fundamentals of optical transitions in quantum wells from a quantum

mechanical point of view and its anisotropy vs. the emitted electric field polarization. We describe here the
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FIGURE 6.10: Electronic energy-band structure of Ing 95Gag 75As calculated by 30
band k.p method. The main interband transitions are indicated by the vertical arrows.

main physical issues corresponding to the dipolar interaction and oscillator strength of interband transitions

between the valance band and conduction band close to the gap energy.

Electron in Electromagnetic Field: The dipolar interactions

For that concern, we recall here the interaction Hamiltonian describing the interactions between an electron

and an electromagnetic field according to Ref. [220, 402, 403] and adapt it to the k.p framework:

P
HZZ—(P—eA)2+€¢+V(F) W——(pA+Ap)+—A2+e¢+V(r) (6.30)

where V(r) is the crystal potential and A is the potential vector which is expressed by the plane wave:
T ol itkpr- —i(kr—
A= EAOE elkpr-wi) o pmilkpr-wi) (6.31)

where k,, and E are the wave vector of the electromagnetic field and its unit vector (polarization vector),
respectively. In a quantum mechanical point of view, since the momentum p is a differential operator, then
one has: "

2‘70,;.14 - ZL’;mA.p - i(v A) (6.32)

Thus, the Hamiltonian in Eq.6.30 may be rewritten as:

2 ieh 2
H=L S Ap+ 8 vA) + Z A2 tep+V(r) (6.33)
2mo  mo 2myg 2mg

Here, we only work with the radiation gauge and weak optical power. Consequently, (V.A) = ¢ = 0 and A

is small, thus one can neglect the second order term in A. The Hamiltonian finally reads:

2
n
H= gt V) =2 Ap = =5 =V2 4 V() + o Aup 6.34)
mo
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Dipole moment of transition and selection rules

Because the term mLOA. p is the perturbation of H since A is small, the transition probability per unit time

we, for the electron from the initial state |vk) to the final state |ck’) is calculated from [220]:

oy = X chf ﬁA,p) vk>|2 5 [eo(k’) = &y (k) — ho] (6.35)
/] m
2
= —;m;rh A2 |(ck’ [explik p.r)E.p| vi ) 6 [ec(K') = £,(k) — hew] (6.36)

The matrix element of the term which includes the momentum operator \(ck’ |exp(i k, .r)E . p| vk >| is called
the matrix element of the transition and gives the selection rule and the strength of the transition. Therefore,
in order to study optical anisotropy, we have to determine this term. Using the Bloch function 2.35 as a
basis set, then the dipolar matrix element D,,,, is given by:

Dy = %/e‘ik"’zﬁ:lk,(r)eikl”l?.peik’wmk(r)dgr (6.37)
\%
1 [ . N .
=5 / e kr k= K0ry s (1E (p + k)i (r)dr (6.38)
\'4

One has y(r) = y/(r + Ry) where R; is the translation vector (properties of Bloch functions), then the matrix

element is rewritten as:

Dym = %Z exp itk +k — k)R] / ko kKLYt (VE (p + B W (r)dr (6.39)
l Q

where Q is the volume of the unit cell. The summation with respect to R; becomes zero except for:
k,+k-k'=nG (6.40)

where G is the smallest reciprocal lattice vector and 7 is an integer. Note that, commonly the inequality
k, < G is fulfilled in general [220]. Therefore, the largest contribution to the integral in Eq.6.39 is due to
the term for nG = 0 (n = 0) [220]. This condition may be understood to be equivalent to the conservation

of momentum. From these considerations, Eq.6.40 leads to the important relation:
k=k' (6.41)

for the optical transition. That is, electron transitions are allowed between states with the same wave vector
k in k — space. In other words, when a photon of energy greater than the band gap is incident on a
semiconductor, an electron with wave vector k in the valence band is excited into a state with the same
wave vector in the conduction band . From this fact the transition is referred to as a direct transition.

Since the integral with respect to 7ik in Eq.6.39 vanishes because of the orthogonality of the Bloch

functions, one obtains:

1 A 1 N
Dum = & / Ve OE-Yi (N1 s = 5 / U (O E pY (r)d°r (6.42)
Q Q
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FIGURE 6.11: Dipolar matrix elements in Eq. 6.44 for the electron-heavy hole
transition (figure a) and electron-light hole transition (figure b)in InGaAs/ GaAs
10nm thick QW with different polarization directions [100], [010], [110], and [110].

Looking back at Eq.2.47, one may observe that if we define a term H ;2 X which is extracted from k.p
mq

Hamiltonian as following:

Hﬁk.p = Hk.p - H(k:O).p - Diag (Hk.p - H(k:O).p) (643)

mo

then the optical selection rules are found by evaluating the dipole moment of transitions between the con-
duction band state {c| and valence band state |v) at the I point [14]

D., = <c|l§.p|v> = <c

Hyo|v) (6.44)

where HE‘,p is obtained from H ;2 kp in Eq.6.43 by replacing k by ';I%OEA .

mg

Figure. 6.11 displays the calculations of dipole moment of transition between the conduction band states
and heavy-light hole band states in Ing 25 Gag.75 As/GaAs 10nm QW structure. One observes that the dipole
moment between the CB and HH is almost 3 times greater than between CB and LH, as expected from
the optical selection rules for quantum wells depicted in fig.6.12. One can easily check that the relation
among different polarization direction calculations in Fig.6.11 also satisfies the Table.6.1. Furthermore, as
pointed out in a work of Kajikawa in Ref.[221], when one considers the optical transition in a quantum
well involving materials with strong spin-orbit coupling, then SO band may contribute in the CB and LH
transition. Particularly, Kajikawa considered the optical matrix elements at the zone center in framework
of 6— band k.p model involving the SO subband and found that the dipolar matrix elements for x, y, z
polarizations respectively can be written as:
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FIGURE 6.12: Schematic of optical selection rules in quantum well structures.
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cv \/6 ‘\/§
where P = [(s|px|x)| = [slpyly)l = [slpzl2)l; le-am, Ic—m and I._so are respectively the overlap

integrals between CB and HH, CB and LH, CB and SO. Note that for heavy-hole transition, both overlap
integrals I._p and I._so are equal to zeros and the optical matrix elements are derived only from I._p g

transition [221] while, on the other hand, the optical-matrix elements for light-hole transition are calculated
from:

2
0.07% : (b)
AN —=— Barrier height =0.05¢V
0.06 - \ —=— Barrier height =0.1eV | o “==~.._Infinite Barrier
=— Barrier height =0.15eV gn N
0.05 N
=" B 1
—_ X X=
' 0.04 1 2 .
Qo = T e
0.03 x=0.3
0.02 0
0 5 10 15
0.01
50 100 150 Well Width (nm)
Well width (A)

FIGURE 6.13: Dipolar matrix elements as function of quantum well width electron-
light hole transitions with polarization along [100] direction calculated by our 30x 30
band k.p code (a) compares with result of Kajikawa (b) taken from ref.[221].
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1 1 z
Dﬁv =|-—=lecrg + —=Il.—so| P (6.48)
'3 V3
1 1 2
D), =|—le-ry — —Ic—so| P* (6.49)
V6 V3
2 1 2
Div =|—le_rg+ —=I.—so P2 (650)
V6 V3

It is observed that in the case of [001] quantum well DY, = D, becomes smaller while D%, becomes
larger than those calculated within the model neglecting the SO band if we assume that the overlap integral
I._so has same sign with I._ i. Besides, the factor between the CB1-HH1 and CB1-LH1 transitions may
be smaller than 3.

Finally, taking into account the impact of the SO band, one may expect also that the strength of dipolar
matrix element for CB1-LH1 transition with poralization along [100] direction decreases as the quantum
well width increases [221] as shows in Fig.6.13. Figure 6.13a displays the calculations of dipolar matrix
element for CB1-LHI1 transitions as a function of quantum well width with different barrier height using

our 30 band k.p model, in comparison with the Kajikawa’s result for CB1-LH]1 transition in Fig.6.13b.

B Optical anisotropy revisited in the framework of 14-, 30-, and

40-bands k.p method

Now we are going to consider the linear birefringence originating from interfaces between ternary quan-
tum wells and barriers in a InysGaysAs/GaAs structure, depicted in figure 6.14, using advanced k.p and
scattering matrix methods. In this case, the reduced symmetry from Dy, to Ca, at the interfaces of ternary

quantum wells and barriers is described by modifying the boundary conditions of tunneling problem.
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FIGURE 6.14: Scheme of InGaAs/GaAs quantum well(left figure) and the dispersion
of electron in CB and hole in VB of InGaAs/GaAs 6 nm thick quantum well (right
figure) calculated by 30-band k.p model.
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Chapter 6. Spin VCSELs and optical anisotropy in (001) InGaAs/GaAs QWs revisited by multiband
k.p methods

Optical properties of Ina5Gaz5As/GaAs quantum well

The theory and experiment have shown that the anisotropic transition in InGaAs/GaAs quantum well mainly
originates from the mixing between the heavy holes and light holes that can be attributed, by part, to indium
segregation effect [404]. Both mixing between heavy holes and light holes and the segregation effect are
described by an additional term in the k.p theory namely [404—408]:

H = [ﬂexp (—Z - W/z) O(z—w/2)— Zexp (—Z hl W/z) Oz + w/Z)] (. Jy} (6.51)
h I b lo

for the basis |%, %), |%, %), |%,—%> and |%,—%) where,

0 i 0 O
i 0 0 0

Jedy} = 6.52

{Jxdy} 0 0 i (6.52)
0 0 - O

P; and P5 are the lower and upper interface potential parameters describing the effect of C, interface
symmetry, respectively. The parameters /; and Iy are the segregation length in the left and right interface

and z = £w/2 is the location of the QW’s interfaces. In the limit where /1,3 — 0, one has:

1 -w/2
—exp (—Z lw/ )@(z —w/2) = 6z - w/2) (6.53)
1 1

and 1 9
—exp (—“lw/ )@(z+w/2) 5z +w/2) (6.54)
2 2

The additional term 6.51 then becomes:
H' =[P16(z = w/2) — P2