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Abstract

This thesis addresses the physics of non-interacting and interacting Dirac fermions in ballistic
graphene. Three main phenomena are investigated: Dirac fermion optics in electronic prisms
defined by p-n junctions, GHz plasmonics in plasma resonance capacitors, and the breakdown
of the integer quantum Hall effect (QHBD) by a magnetoexciton instability. Our technol-
ogy relies on h-BN encapsulated graphene devices characterized by DC to GHz electronic
transport and noise.

We first study the total internal reflection of electrons in a gate-defined corner reflector.
Both geometric and coherent electron optics effects are demonstrated and the device is shown
to be sensitive to minute phonon scattering rates. It is then used as a proof-of-concept for
GHz electron optics experiments in graphene.

We introduce top-gated graphene field-effect capacitors as a platform to study ultra-
long wavelength plasmons characterized with a vector network analyzer. We simultaneously
measure resistivity, capacitance and kinetic inductance. We observe a resonance at 40 GHz
with a quality factor of two, corresponding to a plasmon of 100 µm wavelength. This result
sets a milestone for the realization of resonant plasmonic devices.

We finally move our attention to the QHBD in a bilayer graphene sample. DC transport
and GHz noise measurements show that the elusive intrinsic breakdown field can be reached
in graphene. Its signature is an abrupt increase of noise, with a super-Poissonian Fano factor.
We propose a magnetoexciton instability scenario as the origin of breakdown.

These results show how progress in sample fabrication has enabled us to study new
classes of ballistic devices, to explore new fundamental phenomena and to envision more
complex experiments like: time-of-flight measurements of acoustic phonons, characterization
of plasmon propagation in bipolar superlattices, or breakdown in single layer graphene.
In terms of applications, this thesis paves the way for room-temperature electron optics
devices, plasma-resonance-based THz detectors, and improvement of quantum Hall resistance
standards.
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Résumé

Cette thèse porte sur la physique des fermions de Dirac dans le graphène balistique, sans
et avec interactions. Trois phénomènes principaux sont étudiés: L’optique des fermions de
Dirac dans des prismes électroniques définis par des jonctions p-n, la plasmonique GHz dans
des condensateurs à résonance plasmons, et la rupture de l’effect Hall quantique (en anglais
QHBD) dû à l’instabilité de magnetoexcitons. Notre technique est basée sur la caractérisation
du transport électronique et du bruit dans les dispositifs de graphène encapsulé dans du
nitrure de bore, du continu aux hyperfréquences.

En optique électronique, nous étudions la réflexion totale interne des électrons dans un
réflecteur coin défini par des électrodes de grille. On démontre des effets d’optique électron-
ique géométrique et cohérente. Le dispositif est sensible à des taux de diffusion minuscules
et donc capable de détecter des phonons à basse température. On l’utilise pour démontrer
la faisabilité d’expériences d’optique de fermions de Dirac en régime hyperfréquences.

En plasmonique, nous introduisons les condensateurs graphène à effet de champs en tant
que plateforme pour étudier les plasmons de longeur d’onde très grande. Les dispositifs
sont caractérisés avec un analyseur de réseau. Nous mesurons simultanément la résistivité,
la capacitance et l’inductance cinétique et nous observons une résonance à 40 GHz avec
un facteur de qualité de deux, qui correspond à un plasmon d’une longueur d’onde de 100
µm. Ce résultat constitue un pas important vers la réalisation de dispositifs plasmoniques
résonnants.

Enfin, à champs magnétiques et électriques croisés forts, nous étudions la rupture de
l’effet Hall quantique entier dans un échantillon modèle de graphène bicouche. Le transport
en courant continu et le bruit à 5 GHz démontrent que le champ de rupture intrinsèque peut
être atteint dans le graphène. La signature du QHBD est un décollage brutal du bruit, avec
un facteur de Fano largement superpoissonien. Comme mécanisme collectif de rupture, nous
proposons l’instabilité de magnetoexcitons.

Ces résultats montrent comment le progrès dans la fabrication des échantillons a permis
d’étudier de nouvelles classes de dispositifs balistiques, d’explorer de nouveaux phénomènes
fondamentaux et d’envisager des expériences plus complexes, comme : des mesures du
temps de vol des phonons acoustiques, la caractérisation de la propagation d’un plasmon
dans un super-réseau bipolaire ou le QHBD dans le graphène monocouche. En termes
d’applications, cette thèse ouvre la voie pour l’exploitation de l’optique de fermions de Dirac
à température ambiante, la conception de détecteurs THz utilisant la résonance de plasmon,
et l’amélioration des standards de résistance basé sur l’effet Hall quantique.
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Gourmelon. À ceux qui restent en P13 je souhaite une ambiance aussi bonne que j’ai eu le
plaisir d’expérimenter.

Je remercie le groupe d’optique: Christophe Voisin, Emmanuel Baudin, Carole Diederichs,
Adrien Jeantet, Romaric LeGoff, Christophe Raynaud, Louis Nicolas, ..., le groupe HQC:
Takis Kontos, Audrey Cottet, Matthieu Delbecq, Lauriane Contamin, Federico Valmorra,
Matthieu Desjardins, Matthieu Dartiailh, ..., le groupe QElec: Zaki Leghtas, François Mal-
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Merci à Sylvain Massabeau, Raphaël Lescanne, Vincent Vinel et Alexandre Gourmelon
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ALD atomic layer deposition
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EM electromagnetic
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1
Introduction

The experimental isolation of graphene as a truly two-dimensional electron system in 2004 [1]
has brought to life a whole new sub-domain of research in condensed matter physics. Andre
Geim and Konstantin Novoselov, the discoverers, were awarded the 2010 Nobel Prize in
Physics for their work. Graphene is a single layer of carbon atoms arranged in a honeycomb
lattice. Such two-dimensional crystals were long doubted to be stable until their first isolation
by the well-known scotch-tape method a.k.a. micro-mechanical cleaving [2]. Alternatively,
this material can nowadays be synthesized by epitaxial growth on silicon carbide or by
chemical vapour deposition on copper.

Graphene’s astonishing material properties include its thinness (obviously) and a very
high breaking strength, “establish[ing] graphene as the strongest material ever measured” [3].
Even though it is nearly transparent, it still absorbs light at around 2% per layer, regardless
of the wavelength, which means it can be used for photo-detection [4]. In particular, pristine
graphene has a very high conductivity, with electronic mobilities of 105 cm2/Vs at room-
temperature and 106 cm2/Vs at cryogenic temperatures, preserved even at substantial doping
unlike in semiconductor 2DEGs [5].

For fundamental physics, a particularly important property of graphene is its band struc-
ture, which originates from the honeycomb arrangement of the carbon atoms and was already
calculated by Wallace in 1947 [6]: The valence and conduction band touch in two non-
equivalent points of the first Brillouin zone, classifying graphene as a semi-metal. Around
these points, the dispersion is linear and isotropic, forming the notorious Dirac cones. As
a consequence of this, the low-energy Hamiltonian corresponds to the Dirac equation for
massless, relativistic fermions. The Fermi velocity is constant on these cones and about 300
times slower than the speed of light (which is still pretty fast for electronics).

Again owing to the honeycomb arrangement, which implies the existence of two indepen-
dent sublattices, Dirac fermions in graphene exhibit chirality due to an additional quantum
number coined pseudospin. The conservation of this pseudospin gives rise to a surprising
phenomenon called Klein-tunneling: The transmission probability for Dirac fermions imping-
ing on a potential step is unity at normal incidence, regardless of the step height. [7] Not long

1



2 Chapter 1: Introduction

after the discovery of graphene, similar Dirac states were found at the surface of two- [8]
and three-dimensional [9] topological insulators and in the bulk of Weyl semimetals [10].
Altogether, these materials are commonly referred to as Dirac matter. Very recently, the
discovery of correlated phases in twisted bilayer graphene [11–13] has once again shown that
these relatively simple systems continue to surprise us with new, fundamental phenomena.

Other 2D materials with crystalline structures similar to graphene have attracted the
interest of the research community, like semiconducting transition metal dichalcogenides or
hexagonal boron nitride (hBN). The latter is particularly important for graphene devices,
since it was found to be a nearly lattice-matched, atomically flat and electrically isolating
substrate [14]. Due to the strong inter-layer van der Waals force, it can even by used to
pick up graphene flakes without contaminating them with water or polymers, unlike other
techniques, enabling the fabrication of very clean and stable graphene samples, reaching elec-
tronic mobilities at the intrinsic phonon limit. In material science, the astonishing properties
of these materials have motivated the development of new growth methods [15, 16] and the
fabrication of new graphene-based materials, like three-dimensional carbon foams [17,18] for
heat dissipation.

For more details about graphene, in particular from a mesoscopic physics point of view,
the reader is referred to the review articles [5, 7, 19–21]. This is the third PhD thesis
about electronic transport in graphene in the Mesoscopic Physics group at École Normale
Supérieure. It was carried out under the supervision of Dr. Bernard Plaçais and follows the
works of Andreas Betz (2012) [22] and Quentin Wilmart (2015) [23]. Related works are An-
dreas Inhofer’s 2017 thesis about GHz spectroscopy of topological insulators [24] and Simon
Berthou’s 2017 thesis about opto-electronic studies on graphene [25]. Part of this work was
carried out in the CINTRA laboratory at Nanyang Technological University in Singapore,
under the supervision of Prof. Edwin Hang Tong Teo.

Since the introduction of the hBN-encapsulation method to our laboratory in 2016, the
typical room temperature mobility of our devices has increased by an order of magnitude.
In contrast to the previous works, we were therefore able to explore ballistic transport in
graphene and investigate truly intrinsic properties, like Dirac fermion optics, ultra-long wave-
length plasmonics and the intrinsic breakdown of the quantum Hall effect, all phenomena
that require minimal scattering and the absence of impurities or charge inhomogeneities.

∗ ∗ ∗

This thesis is organized as follows: In this introductory chapter, I will briefly recall the
most important properties of graphene from a condensed matter physics point of view, i.e.
the band structure, the low-energy Hamiltonian, the density of states and some differences
between single and bilayer graphene. Then, the basic notions of diffusive and ballistic trans-
port and of different types of electronic noise will be revisited. After recalling the basic
notions of the quantum Hall effect, I will rapidly introduce the random phase approximation
and use it to derive the dispersions of collective excitations (plasmons and magnetoexcitons).
The overall aim of the introduction is to familiarize the reader with the zoology of “beasts”
investigated in chapters 3–5 (non-interacting fermions, plasmons and magnetoexcitons) and
to provide a basic toolbox of formulas to follow the discussion of the experimental results.
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Methods: Chapter 2 will discuss the experimental methods in two parts: the fabrication of
hBN-encapsulated graphene devices and their characterization by electronic transport and
noise measurements. In the fabrication part, I will provide details about the nano-patterning
of tungsten and gold bottom gates for Dirac fermion optics, about two different encapsulation
methods and about the characterization of encapsulated graphene by Raman spectroscopy
and atomic force microscopy. Finally, I will explain the patterning of the heterostructures and
the deposit of one-dimensional edge contacts. In the characterization part, we will discuss
direct current (DC), lock-in and 0–40 GHz vector network analyzer measurements in our
Janis cryogenic probe station and noise measurements at GHz frequency in a conventional
immersion cryostat. The aim of this methods chapter is to collect all relevant information
about the experiments, so that they do not need to be revisited in the results chapters 3–5,
which focus on physics instead.

The results chapters are loosely linked, because all three of them constitute fundamental
physics studies in quasi-intrinsic graphene-hBN heterostructures both in DC and at GHz
frequency. While chapter 3 focuses on non-interacting Dirac fermions and discusses electron-
electron interactions only peripherally as a possible explanation for deviations of our experi-
mental observations from the single-particle theory, chapters 4 and 5 both take into account
collective excitations, first in the form of plasmons at zero magnetic field and then in the
form of magnetoexcitons in the quantum Hall regime. Despite these parallels, the results
chapters can be read independently and in arbitrary order. Each of these chapters starts
with an introduction to the relevant physical concepts, possibly preceded by a brief motiva-
tion, and followed by a literature review so as to establish the context of this work. Each
has a conclusion summarizing the main findings and providing perspectives, both from a
fundamental physics point of view and for possible applications, which is why a dedicated
conclusion chapter was omitted.

Dirac fermion optics: In chapter 3, we will focus on Dirac fermion optics in a graphene
corner reflector (CR). While there have been numerous theoretical proposals for electron
optics in ballistic graphene, exploiting the refractive nature of gate-induced p-n junctions,
the experimental realizations are mostly elusive until now and limited to rather simple ge-
ometries and trajectories. Here we investigate the non-trivial geometry of a graphene field
effect transistor (FET) with a sawtooth-shaped gate electrode as opposed to a conventional
rectangular gate (c.f. fig. 1.1a-b). In the ballistic transport regime, the gate-induced p-n
junctions act like interfaces between two optical media, giving rise to reflection and refraction
of electrons, where the gate-controlled Fermi level acts as a tunable refractive index. When
the electronic prism’s refractive index is tuned to high values, total internal reflection (TIR)
of charge carriers leads to an increase in device resistance. In this regime, the transmission
of the device becomes gate-voltage independent, giving rise to resistance plateaus. At low
temperature < 40 K, resistance oscillations superimposed on these plateaus reflect construc-
tive and destructive interference of the back-reflected electrons, see fig. 1.1c. The plateau
resistance itself counter-intuitively decreases with increasing temperature, which translates
to a residual transmission proportional to the temperature, see fig. 1.1d. In fact, in this TIR
regime, the charge carriers undergo multiple round-trips inside of the prism, which makes
them susceptible even to small phonon scattering rates, where a scattering event helps the
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a) b)

c) d)

Figure 1.1 – Dirac fermion optics in a corner reflector. a) Artist view: rectangular
gate vs. prism-shaped gate in a graphene FET. b) Annotated SEM picture of a corner
reflector device. hBN-encapsulated graphene appears as a semi-transparent rectangle. Two
gate electrodes define the Fermi level in the barrier (B) and in the access (A). c) Device
resistance vs. barrier doping for various temperatures. The resistance plateau at nB ≪ 0
decreases with increasing temperature. d) Plateau transmission vs. temperature for various
access dopings. Solid lines correspond to the analytical model. Dotted lines take into account
a temperature-dependent junction length.

electron to be transmitted, as opposed to being back-scattered like in a conventional graphene
resistor. For modeling the device transmission, we use both the established ray-tracing ap-
proach and a new analytical formula, specific to the 90◦ apex prism. In the TIR regime, it
reads:

〈Tres〉 =

∫ π/2

0
T1(θ)[1 − T1(θ)]

ℓph/2h cos θ dθ (1.1)

where the only inputs are: 1) the angle-dependent transmission of one p-n junction T1(θ)
and 2) the acoustic phonon mean-free-path ℓph. Here h denotes the height of the prism.
Making use of our simple theoretical model, we reproduce the experimental data without
any adjustable parameters. Finally, I will show that the same type of device can operate at
GHz frequency, paving the way for new applications of Dirac fermion optics, for example for
the design of fast phonon detectors. In conclusion, chapter 3 demonstrates how geometric,
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coherent and weakly diffusive electron optics can be probed in the particular geometry of the
corner reflector and how a simple analytical model can be used to quantitatively describe
the response of a device with complex trajectories. These results were published in ref. [26].

a) b)

c) d)

0 20 40 60

f [GHz]

20

40

60

80

0

−20

−Y
1
2
 [
m

S
]

n [1012 cm−2]

0.0 0.5 1.0 1.5 2.0 2.5
0

10

20

30

40

50
f 0
[G
H
z
]

0 1 2

n [1012 cm−2]

0

2

Q

0.0

1.0

1.9

2.9

3.8

4.8

v
p
l/
v
F

T=30 K

Figure 1.2 – GHz plasmonics in a plasma resonance capacitor. a) Artist view and b)
microscope image of a PRC (“src” stands for source). The gate electrode is isolated from the
graphene edges by an aluminum oxide layer. c) Complex admittance spectrum of a plasma
resonance. Blue and orange solid lines are the real and imaginary part of the measured
admittance and the green and red dashed lines correspond to a fit. d) Resonance frequency
f0 and quality factor Q from fits vs. carrier density n. Black and red dashed lines correspond
to two different theoretical models.

GHz plasmonics: In chapter 4, we will discuss GHz plasmonics in a plasma resonance
capacitor (PRC). This work is motivated by the ∼ 100 GHz limit of conventional graphene
FETs. To move to higher frequencies, a paradigm change is required and plasma resonance
devices are suitable candidates, since the plasmon velocity can be much higher than the Fermi
velocity. Our sample is a hBN-encapsulated graphene device, contacted on one side by a large,
comb-shaped edge contact and covered by a gold electrode, acting simultaneously as a DC
gate and as a radio-frequency port (c.f. fig. 1.2a-b). We probe the propagation of microwaves
in the PRC by measuring its complex admittance Y with a vector network analyzer. At room
temperature, where Ohmic losses are high due to acoustic phonon scattering, the propagation
is strongly damped, and admittance spectra typical for evanescent waves are observed in
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accordance with previous studies. At cryogenic temperatures, a plasma resonance with a
quality factor Q ∼ 2 can be obtained at f0 ∼ 40 GHz by tuning the device to sufficiently
large carrier densities, see fig. 1.2c. We fit our experimental data with the following resonator
model:

Y = jZ−1∞

tan

(

f̃
√

1 − 2j/Qf̃

)

√

1 − 2j/Qf̃
(1.2)

where f̃ = πf/2f0 is the reduced frequency and Z∞ is the characteristic impedance. Measur-
ing and fitting the admittance spectra at different temperatures and carrier densities enables
us to map out the parameters f0, Q and Z∞ of the resonator (c.f. fig. 1.2d), which can also
be represented as parameters of a transmission line model: kinetic inductance, resistance
and capacitance. This enables us to measure in one and the same device the most relevant
material-specific properties, like the quantum capacitance at low doping or the acoustic-
phonon limited mean-free-path, in the simplest device structure one can imagine. While
these findings pave the way for smaller device implementations with tunable resonances in
the application-relevant THz domain, our device concept also provides a platform for fun-
damental physics studies, in particular the investigation of the propagation of plasmons in
bipolar superlattices. The results of this chapter were published in ref. [27].

Quantum Hall breakdown: In chapter 5, we will move our attention to the breakdown
(QHBD) of the integer Quantum Hall effect (IQHE) in a bilayer graphene (BLG) FET. The
intrinsic limit of the QHBD is a long-standing issue that has been investigated primarily
in semiconductor 2DEGs since the 1980s. However, most of the studies have suffered from
sample inhomogeneity, leading to a dramatic reduction of the critical electric field and current
density. Our sample is a two-terminal, hBN-supported BLG device with a gold bottom gate
electrode, c.f. fig. 1.3a. The breakdown of the IQHE regime is observed as a function of
magnetic field at cryogenic temperature. It manifests itself in the DC I-V characteristic as a
deviation from the linear Hall regime (I = GHVds) and in the GHz shot noise measurements
– much more dramatically – as an abrupt upsurge from the noiseless ballistic background.
Both phenomena are illustrated in fig. 1.3b. The breakdown occurs at extremely high electric
fields ∼ 106 V/m, current densities ∼ 103 A/m and drift velocities ∼ 105 m/s, reaching the
prediction for the intrinsic Zener breakdown field:

Ec =
~ωc

eℓB
√
N

(1.3)

where ~ωc is the cyclotron energy, ℓB is the magnetic length and N is the index of the
first unoccupied LL. This is in compatibility with the existing quasi-elastic inter-Landau-
level scattering theory, but far beyond the predictions of the bootstrap electron heating
theory. The combination of transport I(V ) and noise SI(V ) measurements allows for the
determination of the Fano factor F = SI/2eIbs (where Ibs is the back-scattering current),
which provides information about correlations in the breakdown process. A large Fano factor
F ≫ 1 and F ∝ B is consistently observed and qualifies the IQHE breakdown as a collective
mechanism.

We propose a scenario where breakdown is mediated by the spontaneous proliferation of
magnetoexcitons (MEs, see fig. 1.3c), collective inter-LL excitations of the IQHE, in close
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Figure 1.3 – Quantum Hall breakdown in a bilayer graphene FET. a) Microscope
image of the two-terminal BLG-on-hBN device. The active region (L ×W = 4 × 3 µm) is
highlighted by the red, dotted rectangle. b) Top: DC I-V characteristic at fixed B-field for
Vg = 0...− 6 V. Bottom: Noise (in units of current) vs. bias. The dashed black line marks
the onset of the breakdown. c) Imaginary part of the density-density response function in the
random phase approximation χRPA(q, ω), illustrating the existence of collective ME modes
at multiples of the cyclotron frequency ωc. At long wavelengths, these MEs coincide with
the B = 0 plasmon dispersion (green line). Due to Galilean invariance, they develop an
instability when the Landau critical velocity (orange line) is reached.

analogy with the breakdown of the superfluidity of liquid helium by spontaneous emission of
rotons. The critical field at which this ME-assisted breakdown occurs is formally identical to
the Zener field, but unlike the Zener mechanism, the ME instability naturally explains the
strong bunching effect. These experiments introduce pristine graphene devices as a model
platform to study the intrinsic QHBD at fields far beyond the typical breakdown values in
semiconductor 2DEGs, paving the way for their application as novel resistance standards.
From a fundamental physics point of view, it would be interesting to further investigate
the QHBD in single-layer graphene, where the energy spectrum of the IQHE is modified
due to the massless nature of quasiparticles in this system, and in the fractional quantum
Hall regime, where inter-LL magnetoexcitons are replaced by intra-LL magnetorotons. The
results presented in this chapter were published in ref. [28].
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1.1 Electronic properties of graphene

In the following, I will revisit the most relevant structural and electronic properties of
graphene. This section is based on the following review articles and lecture notes, that I
recommend for more details: [2, 7, 19]. The aim here is to boil the literature down to the
formulas that are essential for chapters 3–5, while keeping in mind the realm of validity of
the different approximations.

1.1.1 Atomic structure and tight binding Hamiltonian

Like diamond, graphene is an allotrope of carbon. Others worth mentioning are fullerenes
(carbon “footballs”, considered 0D) and 1D carbon nanotubes, which are essentially rolled-
up sheets of graphene [19]. A very well-known 3D allotrope is graphite, which consists of
many stacked graphene layers. In his 1947 paper on the band theory of graphite, Wallace [6]
already pointed out that, due to the large separation between the graphite layers (3.37 Å,
compared to the in-plane atomic spacing of 1.42 Å), the analysis of a 2D single layer already
gives a first approximation to the 3D graphite crystal.

The honeycomb lattice of graphene is illustrated in figure 1.4. This crystalline structure
is a result of the sp2 hybridization of the carbon atoms, leading to the formation of covalent σ
bonds between them. The out-of-plane p orbitals, which are not involved in the hybridization,
form half-filled π bands [19]. The π electrons can hop from site to site, and therefore conduct
electric currents. The band dispersion will be given below.

Sublattice A Sublattice B

a1

a2

δ1

δ3

δ2

Figure 1.4 – Graphene’s honeycomb lattice: A triangular lattice with two carbon atoms per
unit cell.

The lattice consists of two non-equivalent, but identical sublattices, denoted A and B in
the figure. The distance between two nearest-neighbor carbon atoms (i.e. the length of the
vectors δi) is δ ≈ 1.42 Å.

In second quantization, the tight binding Hamiltonian is written in terms of creation and
annihilation operators as follow:

H = − t
∑

〈i,j〉,σ

(

a†σ,ibσ,j + h.c.
)

− t′
∑

〈〈i,j〉〉,σ

(

a†σ,iaσ,j + b†σ,ibσ,j + h.c.
)

(1.4)
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where a†σ,i is the creation operator for an electron with spin σ on sublattice A at the site i.
Similarly bσ,i is the annihilation operator for an electron on sublattice B. The first sum goes
over all pairs of nearest neighbors (NNs), where t is the hopping integral, and the second
sum goes over all pairs of next-nearest neighbors (NNNs). h.c. stands for the Hermitian
conjugate. The eigenenergies of this Hamiltonian are given by:

ǫλ(k) = λt
√

3 + f(k) − t′f(k)

with f(k) = 2 cos
(√

3kyδ
)

+ 4 cos

(√
3

2
kyδ

)

cos

(

3

2
kxδ

)

(1.5)

where λ = ±1 is the band index. This dispersion is plotted in figure 1.5. In the first Brillouin
zone, there are two inequivalent points, denoted K and K′, where the conduction and valence
bands touch.

kxδ
kyδ

ε(
k

) 
[m

e
V

]

K'
K K

K'
K

K'

Figure 1.5 – Band diagram of single layer graphene, calculated from the tight binding Hamil-
tonian. Adapted from [19], where t = 2.7 eV and t′ = −0.2 t.

1.1.2 Low energy Hamiltonian

As fig. 1.5 suggests, there exists a zone of linear and isotropic dispersion around the points
where the two bands touch. Neglecting NNN coupling and linearizing the Hamiltonian
around one of these points, one can re-write the effective low energy Hamiltonian in the form
of the Dirac equation in two dimensions [19]:

− i
3tδ

2
σ · ∇ψ(r) = ǫψ(r) (1.6)

where σ is the vector of Pauli matrices σx and σy and ψ(r) is a spinor wavefunction. To make
the linear dispersion directly apparent, this Hamiltonian can be re-written as follows [7]:

HK(q) = ~vF

(

0 qx − iqy
qx + iqy 0

)

= ~vFσ · q (1.7)
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where we have introduced the Fermi velocity vF = 3tδ/2~ ≈ 106 m/s and the new wavevector
q = k−K. In momentum space, the spinor wavefunctions are given by:

ψλ,K(q) =
1√
2

(

e−iθq/2

λeiθq/2

)

(1.8)

where θq = arctan(qy/qx). Taking into account the second order q2 in the low energy
Hamiltonian leads to the so-called trigonal warping of the band structure, reflecting the
symmetry of the lattice. It only plays a role at high energies ǫ & 1 eV, which are not
accessible in transport experiments [2].

1.1.3 Sublattice pseudospin and chirality

The two-component nature of the wavefunction gives rise to a new degree of freedom called
(sublattice) pseudospin. It allows for the introduction of the helicity ĥ, defined as the pro-
jection of the momentum p = −i~∇ onto the pseudospin direction [19]:

ĥ =
1

2
σ · p

|p| (1.9)

The wavefunctions ψλ,K are eigenfunctions of the helicity operator, and the corresponding

eigenvalues are λ/2 and −λ/2, respectively. ĥ commutes with the Dirac Hamiltonian and
the helicity or chirality is therefore a conserved quantity close to the Dirac points. A direct
consequence of this conservation law is the phenomenon of Klein tunneling: massless Dirac
fermions have zero probability of reflection when they are normally incident on a potential
barrier, regardless of the barrier height [29,30].

1.1.4 Density of states and quantum capacitance

In the vicinity of the Dirac point, where the dispersion is linear ǫ = ~vFk, the density of
states per unit surface is given by [19]:

ρ(ǫ) =
∂n

∂ǫ
=
∂n

∂k

∂k

∂ǫ
=

2k

π

1

~vF
=

2ǫ

π(~vF )2
(1.10)

where we used the fact that a state occupies the volume (2π)2/LxLy in two-dimensional k-
space and that the states have fourfold degeneracy. A more thorough expression that holds
away from the Dirac point can be found in ref. [31].

The density of states is directly linked to the compressibility of the electron fluid. A finite
compressibility manifests itself in the capacitance, making it a macroscopically observable
quantum effect: Consider a small change of the potential δV across a parallel plate capacitor
formed by a graphene sheet and a metallic electrode, separated by a gap d of dielectric
constant ǫr. On one hand, this causes the “classical” change in electric potential δEd. On
the other, it modifies the charge density in graphene, giving rise to a change in chemical
potential ∂ǫ

∂nδn. The change in number density can be re-expressed in terms of a change in
charge density: δn = δσ/e. By Gauss’ theorem, we can relate the change in electric field
and the change in charge density: δE = δσ/ǫ0ǫr, so that one obtains [32]:

δV =
δσd

ǫ0ǫr
+
∂ǫ

∂n

δσ

e2
(1.11)
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leading to the following expression for the differential capacitance per unit surface:

C =
δσ

δV
=

[

(ǫ0ǫr
d

)−1
+
(

e2ρ(ǫ)
)−1
]−1

(1.12)

=

[

1

Cgeo
+

1

CQ(ǫ)

]−1

(1.13)

which is a series addition of geometric capacitance Cgeo and quantum capacitance CQ. Taking
into account the Fermi-Dirac distribution of charge carriers at finite temperature, one obtains
[33,34]:

CQ(ǫ, T ) =
2e2kBT

π(~vF )2
ln

[

2 + 2 cosh

(

ǫ

kBT

)]

(1.14)

At typical doping 1012 cm−2, corresponding to a Fermi energy of 117 meV, and temperatures
up to ambient conditions where kBT ≈ 25 meV, it is reasonable to assume that ǫ ≫ kBT ,
so that the formula simplifies to the above zero-temperature expression:

CQ(ǫ≫ kBT ) ≈ 2e2ǫ

π(~vF )2
= e2ρ(ǫ) (1.15)

At n = 1012 cm−2, the value of the quantum capacitance is CQ ≈ 27 fF/µm2. As eq. 1.13
suggests, CQ only plays a significant role, when it is . Cgeo, since in a series addition of
admittances, the smallest admittance dominates. This means that quantum capacitance is
usually only detected in devices with local gate electrodes, where Cgeo is sufficiently large
(27 fF/µm2 roughly corresponds to 1 nm equivalent silicon oxide). The energy dependence of
the density of states leads to the characteristic dip in the capacitance at the charge neutrality
point, which we observe in chapter 4. The measurement of the quantum capacitance can be
used to calculate the Fermi level, see e.g. refs. [22, 24].

1.1.5 Bilayer graphene

For bilayer graphene (BLG), one can write a similar Hamiltonian as eq. 1.4, adding additional
hopping terms for inter-layer hopping. One finds the following effective Hamiltonian in the
vicinity of the K point in the first Brillouin zone [19,35]:

HK =









−V ~vF q 0 3γ3δq
∗

~vF q
∗ −V γ1 0

0 γ1 V ~vF q
3γ3δq 0 ~vF q

∗ V









(1.16)

which is now a 4 × 4-matrix, acting on wavefunctions that are four-component spinors,
for the two sublattices and the two layers, c.f. fig. 1.6a. The potential V accounts for
interlayer asymmetry, which can be induced by applying a perpendicular electric field, and
the hopping integrals γ1 ≈ 0.4 eV and γ3 ≈ 0.3 eV correspond to A–A and B–B interlayer
hopping, respectively. A–B (and vice versa) interlayer hopping is neglected here, since the
corresponding hopping integral is very small γ4 ≈ 0.04 eV. The wavevector is a complex
quantity, as seen previously for SLG: q = qx+ iqy. When γ3 is neglected, the resulting energy
dispersion for the low energy bands is given by:

ǫλ(q)2 = V 2 + ~
2v2F q

2 +
γ21
2

+ λ

√

(2V ~vF q)2 + (γ0~vF q)2 +
γ41
4

(1.17)



12 Chapter 1: Introduction

where γ0 is the in-plane NN hopping integral. In the absence of inter-layer asymmetry,
V = 0, the dispersion can be re-written as follows [7]:

ǫλ(q) = −λmv2F + λmv2F

√

1 +

(

q

q0

)2

(1.18)

where m = γ1/2v
2
F ≈ 0.03me is the effective mass and q0 = γ1/2~vF ≈ 0.3 nm−1 is the

characteristic wavevector, where the dispersion changes from parabolic ∝ q2 (q ≪ q0) to
linear ∝ q (q ≫ q0). The corresponding threshold energy is |ǫ(q0)| ≈ 70 meV. These
hyperbolic bands are shown in fig. 1.6b. Like in single layer graphene, they are electron-hole
symmetric and gapless. Two additional bands start at higher energy (±γ1). If γ3 is not
neglected, the dispersion undergoes trigonal warping. If a finite layer-asymmetry V is taken
into account, a gap opens between conduction and valence band, c.f. fig. 1.6c.

In the following, we will use the small q approximation and treat BLG as a gapless,
massive 2DEG so that:

ǫλ(k) = λ
~
2k2

2m
(1.19)

which implies for the density of states:

ρ(ǫ) =
∂n

∂k

∂k

∂ǫ
=

2k

π

m

~2k
=

2m

π~2
(1.20)

which is energy independent, like for conventional semiconductor 2DEGs. The quantum
capacitance is therefore also energy independent: CQ = e2ρ ≈ 40 fF/µm2.

V=0, γ3=0 V≠0, γ3=0

a) b) c)

Figure 1.6 – Bilayer graphene. a) Crystal structure with hopping integrals γ1...γ4. From
[36]. b) Band structure of BLG at zero and c) finite inter-layer asymmetry. From [19].

1.1.6 Comparison with semiconductor 2DEGs

When comparing graphene to a semiconductor 2DEG like for example GaAs/AlGaAs, there
are a couple of significant differences [7]:

• Confinement. While the confinement in the third dimension is finite in semiconduc-
tor 2DEGs, giving rise to confinement sub-bands, graphene’s two-dimensional crystal
structure provides a genuine 2D environment for the electrons.

• Dispersion. The linear dispersion of SLG (and BLG at sufficiently strong doping) is in
strong contrast with the parabolic dispersion of semiconductor 2DEGs. Consequently,
the cyclotron mass and the density of states depend on the Fermi level in graphene,
while the Fermi velocity is constant.
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• Gap. Semiconductor 2DEGs have a large band gap & 1 eV, while graphene is a gapless
semimetal (except bilayer graphene in a strong electric field). This means that we can
tune continuously from electron to hole doping in graphene, but not achieve a real
insulating state.

• Chirality. Fermions in graphene exhibit chirality, which leads to interesting phenom-
ena like Klein tunneling, i.e. the absence of back-scattering. The strong impact of this
will be nicely visualized and compared to the 2DEG in the susceptibility maps in fig.
1.12.

1.2 Electronic transport in mesoscopic systems

In this section, we will revisit the very basics of diffusive and ballistic transport. The point
is mainly to recall the expressions for the conductivity of a diffusive graphene sheet and
its gate dependence for chapter 4, to list various known scattering mechanisms and their
density-dependence and finally to introduce basic notions of ballistic transport for chapters
3 and 5.

1.2.1 Diffusive transport

The conduction in a disordered conductor can be described by the well-known Drude model:
[37] For an electron in a spatially uniform and static electric field E, and in the absence of
magnetic field, the rate of change of the average momentum is given by:

d 〈p(t)〉
dt

= eE− 〈p(t)〉
τ

(1.21)

where τ denotes the collision rate and e is the electron charge. In the steady state d 〈p(t)〉 /dt =
0, one obtains 〈p〉 = eEτ or equivalently, for the drift velocity:

vd ≡ 〈v〉 =
〈p〉
m

=
eτ

m
E = µE (1.22)

where µ is the mobility of the charge carriers and m their effective mass. By re-expressing
this equation in terms of the current density j = nevd, where n is the charge carrier density,
we obtain Ohm’s law:

j =
ne2τ

m
E = σE (1.23)

where the proportionality factor between the current density and the electric field is the
conductivity σ, which is linked to the mobility by σ = neµ. Whereas charge carriers in
massive 2DEGs (with parabolic dispersion) have a constant effective mass, the cyclotron
mass in single layer graphene (SLG) depends on the Fermi level [19]: m∗ = ~kF /vF . The
link between mobility and the scattering time µ = eτ/m can therefore be re-written in the
case of SLG:

µ =
evF τ

~kF
=

e

~kF
ℓmfp (1.24)

leading to the following link between conductivity and mean free path:

ℓmfp =
hσ

2e2kF
(1.25)
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which we will use in chapter 4. A more rigorous approach to transport, taking into account
external fields, diffusion and temperature gradients, requires solving the Boltzmann equation.
For more details on this, the reader is referred to the book by Ashcroft & Mermin [37]. The
specific case of Boltzmann transport in graphene is also covered in the review by Neto et
al. [19].

Taking into account a non-uniform carrier density n(x), the net current density has
an additional diffusive contribution: j = σ(ǫ)E − eD(ǫ)∇n(x), where D(ǫ) is the diffusion
constant at the chemical potential ǫ. At equilibrium, we have j = 0 and ∇[ǫ(x)−eV (x)] = 0,
where V is the electric potential. This leads to the Einstein relation: [37]

σ(ǫ) = e2D(ǫ)
∂n

∂ǫ
= CQ(ǫ)D(ǫ) (1.26)

which establishes a link between conductivity, quantum capacitance and the diffusion con-
stant. In GHz-spectroscopy of capacitors (see chapter 4), the former two can be measured
in order to calculate the latter. [22, 38]

1.2.2 Field effect

When a gate electrode is brought close to a graphene sheet, so that the gate and the graphene
form a parallel plate capacitor with plate separation d, the voltage Vg applied between the
two can be used to modulate the carrier density n in the graphene sheet:

n =
C(Vg − V0)

e
(1.27)

where C is the capacitance per unit surface and V0 is a shift of the charge neutrality point
due to chemical doping of the graphene. This shift can be determined by identifying the
gate voltage where either the conductivity or the capacitance (see section 1.1.4) is smallest.
Note that C is in general a series addition of the geometric capacitance Cgeo = ǫ0ǫr/d and
the quantum capacitance CQ(n, T ) introduced in section 1.1.4. We can thus tune the carrier
density and therefore the conductivity σ ∝ n of our system. By measuring the slope ∂σ/∂n,
one can determine the field-effect mobility µ = ∂σ/∂n/e in a diffusive system.

1.2.3 Scattering mechanism in graphene

By re-expressing eq. 1.25 we can find the following link between conductivity and the collision
time in SLG:

σ =
kF e

2vF τ

π~
∝ kF τ (1.28)

Note that the same result can be obtained using the Einstein relation (eq. 1.26) with CQ ∝ kF
and D ∝ τ . This implies that the mobility is µ ∝ k−1F τ . Taking into account the relation
kF =

√
πn and considering various theoretical calculations of the scattering times induced

by the different scattering mechanisms, we list the carrier-density- and Fermi-wavevector-
dependence of the mobility and conductivity in table 1.1.

Note that electron-electron scattering (see e.g. [46]) was not included in this list, since
it is not directly measurable in a typical (no constrictions) transport experiment, because
the overall electron momentum is conserved. Optical phonon (OP) scattering is not listed
either, since OPs are gapped with ωOP ≈ 200 meV [7] and only play a role at high bias.
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Mechanism Scattering time Mobility Conductivity Reference

Acoustic phonons (EP) τ ∝ k−1F µ ∝ n−1 σ ∝ const. [39]

Local impurity τ ∝ k−1F µ ∝ n−1 σ ∝ const. [40]

Local impurity τ ∝ ln(kF )k−1F µ ∝ ln(n)/n σ ∝ ln(n) [41]

Dirac mass disorder τ ∝ const. µ ∝ n−1/2 σ ∝ √
n [42]

Charged impurity τ ∝ kF µ ∝ const. σ ∝ n [43]

Resonant scattering τ ∝ kF ln2(kF ) µ ∝ ln2(n) σ ∝ n ln2(n) [44]

Ripples τ ∝ k2H−1F µ ∝ nH−1 σ ∝ nH [45]

Acoustic phonons (BG) τ ∝ k2F µ ∝ √
n σ ∝ n3/2 [39]

Table 1.1 – Adapted from [22,38] and amended with mobility column and acoustic phonons
in the equipartition (EP) regime. The “exponent H characterizes the fractal dimension of
ripples” [45].

For acoustic phonon (AP) scattering, there are two distinct regimes, roughly separated by
the Bloch-Grüneisen (BG) temperature ΘBG = 2~vskF /kB ≈ 54

√
nK, where vs ≈ 2×104 m/s

is the speed of sound in graphene and n is in units of 1012 cm−2 [39]. Above this temperature,
in the equipartition regime, the AP scattering rate is ∝ T , whereas in the BG regime, it is
∝ T 4. An experimental study by Efetov & Kim [47] has shown that the linear regime is valid
down to about 0.2ΘBG. AP scattering in the equipartition regime is discussed in chapters 3
and 4.

1.2.4 Ballistic transport

If the sample size L is comparable to or smaller than the mean free path ℓmfp of the electrons,
one can no longer model the sample conductance as an average over many scattering events.
In this regime of ballistic transport, the two-terminal conductance of a device is given by the
Landauer formula [48]:

G =
ge2

h
M 〈T 〉 (1.29)

where g is the degeneracy (4 in graphene), e2/h is the quantum of conductance, M is the
number of transverse modes and 〈T 〉 is the transmission probability averaged over these
modes. We can count them by considering periodic boundary conditions in the y-direction,
so that: mλy = W , where W is the width of the rectangular channel. Taking into account
positive and negative ky, one obtains the total number of modes M = kFW/π [48]. In
chapter 3, we refer to the minimum resistance (〈T 〉 = 1) of a two-terminal device as the
Landauer resistance RL.

When we model the corner reflector in chapter 3, we calculate the angle-averaged trans-
mission of the device. Considering a uniform distribution of the incident transverse modes,
a factor of cos θ needs to be taken into account in the integral:

∫ kF

0
T (ky)dky =

∫ π/2

0
T (θ) cos θ dθ (1.30)

For the interpretation of measurements on devices with more than two terminals, one can
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rely on the Büttiker formalism [48]:

Ip =
∑

q

Gpq [Vp − Vq] (1.31)

where Ip is the current injected at terminal p and Vp, Vq are the voltages at terminals p and
q, respectively. The conductance Gpq is given by the Landauer formula Gpq = (ge2/h)T̄p←q.

1.2.5 Coherent transport

If the electrons maintain their phase coherence during transport, they can undergo inter-
ference. If this happens in a disordered conductor, it gives rise to universal conductance
fluctuations, i.e. variations of the conductance on the order of e2/h between samples due
to random differences in the disorder. This is the electronic transport equivalent of laser
speckle patterns [49].

If transport is phase-coherent in a ballistic conductor, it can give rise to Fabry-Pérot
resonances due to p-n junctions or contacts acting as mirrors, see refs. [50–52] and chapter
3 for examples in graphene. If disorder and phonons are excluded as pathways to lose
coherence, electron-electron interactions define the phase-relaxation time [48]. A rigorous
expression for this time is provided in ref. [53], but for the sake of simplicity, one can derive
a very simple formula using dimensional analysis: ~/τφ ∼ kBT/π.

1.3 Noise

Fluctuations or noise are random deviations of physical quantities from their mean values.
In the case of electronic systems, the physical quantities in question are typically the electric
current or the voltage. Measuring these fluctuations can provide valuable information about
the dynamics of the charge transport or it can be used to measure the temperature of the
electronic system. For more details about noise in solids, the reader is referred to the book
by Kogan [54] or, more specifically concerning electronic transport in mesoscopic physics, to
the review by Blanter & Büttiker [55]. Here I will introduce some basic notions for chapter
5.

1.3.1 Voltage noise vs. current noise

What we measure with a spectrum analyzer or with a digital oscilloscope capable of the fast
Fourier transformation (FFT) is the power spectral density (PSD) of the voltage noise [54]:

SV V = 2

∫ ∞

−∞
d(t− t′)eiω(t−t

′) 〈V (t)V (t′)
〉

(1.32)

which is simply the Fourier transformation of the auto-correlation function. To translate
this measured value into current fluctuations within our sample (which we are generally
interested in), we have to take into account the impedance of the external circuit Rext in
series with our sample so that [55]:

SV V =
SI

(R−1ext +R−1)2
(1.33)
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where R is the sample resistance. This relation is used for the calibration of the noise
thermometry setup described in section 2.2.3.

1.3.2 Thermal noise

In a conductor at equilibrium and finite temperature, an inevitable fundamental source of
fluctuations is the thermal agitation of the charge carriers. This results in so-called Johnson-
Nyquist noise, which has the following PSD [54,56,57]:

SI(ω) = 4kBT ReG(ω) ≈ 4kBT0
R

(1.34)

where G(ω) denotes the complex, frequency-dependent sample admittance and T0 is the
lattice temperature of the sample (in equilibrium with the electron temperature Te). If we
suppose that the sample resistance R does not depend on frequency and that ω ≪ kBT/~
(about 80 GHz at 4 K), the PSD does not depend on frequency and thermal noise can be
classified as white noise. As an example, the thermal noise PSD generated by a few-mode
ballistic conductor (R ∼ 1 kΩ) at 4 K is ∼ 2×10−25 A2/Hz. At equilibrium, Johnson-Nyquist
noise can be used for primary thermometry. We extend the validity of the above formula
to out-of-equilibrium situations, where Te > T0, so that SI & 4G kB 〈Te〉, where 〈Te〉 is the
electron temperature averaged over space. In this context, we define the noise temperature
TN = SI/4GkB.

1.3.3 Shot noise

In a non-equilibrium situation, another fundamental source of noise is the granularity of the
electronic charge. Like rain-drops produce noise when they fall on a tin roof, the electric
current contains fluctuations due to this granularity. If the current is mediated by uncorre-
lated tunneling events with small probability, which obey the Poisson distribution, the noise
PSD is given by [54,55,58]:

SI(ω) = 2eI (1.35)

Like the thermal noise, shot noise is frequency independent (white noise) in the limit ω <
eV/~ (about 200 THz at a bias voltage of V = 1 V). As an example, the full shot noise
generated at a current of 1 mA is 3 × 10−22 A2/Hz.

1.3.4 Fano factor

The Fano [59] factor F = SI/2eI is the ratio between the actually observed noise and the
Poissonian noise. For example, for an n-channel ballistic conductor, it is given by [55]:

F =

∑

n Tn(1 − Tn)
∑

n Tn
(1.36)

In a phase-coherent, but strongly disordered mesoscopic conductor, it can be shown that
the Fano factor is 1/3 [60]. This is illustrated in fig. 1.7 for samples that are smaller than
the inelastic electron-electron scattering length Le−e.

If Le−e is short enough, electrons can thermalize with each other faster than they thermal-
ize with the lattice through the emission of phonons. This leads to a hot electron population
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Figure 1.7 – Fano factor in diffusive mesoscopic systems. ℓ denotes the elastic mean
free path, Lφ is the phase coherence length, Le−e the inelastic electron-electron scattering
length, Le−ph the electron-phonon scattering length and L is the sample size. Figure from
ref. [61].

whose main heat drain are the leads, so that one has to define a position-dependent elec-
tron temperature Te(x), where Te(0) = Te(L) = T0 is the cold reservoir temperature of the
leads. In this case, it can be shown that the noise is proportional to the current with a Fano
factor of

√
3/4 [61, 62]. This is also illustrated in fig. 1.7. These Fano factors < 1 lead to

sub-Poissonian shot noise. However, there are situations where the Fano factor can be > 1
(super-Poissonian), if there are correlations in the tunneling of the charge carriers [55, 63].
This is what will be discussed in chapter 5.

1.3.5 1/f noise

In practically all studies of the current noise in semiconductors or metals, an excess noise is
observed at low frequency. Up to now, the origins of this noise are not fully understood [54].
However, by analyzing a large number of experimental studies on semiconductors and metals,
Hooge [64] found the following empirical formula, relating the noise PSD to the total number
of charges N carrying the electric current [54]:

SI
I2

=
αH

Nf
(1.37)

where αH = 2×10−3 is a constant that Hooge suspected to be universal. Studies in graphene
have yielded values for αH between 2×10−4 and 2×10−3 [22,65–67] at typical carrier densities
n ∼ 1012 cm−2. The empirical Hooge relation can be used to estimate the “crossover”
frequency fc for shot noise measurements as a function of the current I:

αH

Nfc
I2 = 2eI (1.38)

For graphene samples of typical size 1 µm2 and carrier density 1012 cm−2, one obtains:
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fc = 10−7 × I

e
(1.39)

which means that for the high currents ∼ 1 mA considered in chapter 5, the crossover
frequency is on the order of 1 GHz, which explains why the noise was measured in this
high frequency range. In a previous study [65], the currents were about 10 times smaller
at comparable sample sizes and carrier densities, which justifies the smaller measurement
bandwidth used in those experiments.

1.4 The integer quantum Hall effect

The classical Hall effect, described by Edwin Hall in 1879 [68], consists in the build-up of a
transverse voltage VH across a conductor carrying a longitudinal current I and exposed to
a perpendicular magnetic field B. This voltage builds up due to the Lorentz force evd ×B
felt by the charges carrying the current, where vd is their drift velocity. The Hall resistance
is defined as the ratio RH = VH/I = B/ne, where n denotes the charge carrier density. By
measuring the slope of RH(B), one can therefore measure the carrier density and distinguish
electron- from hole-conduction.

At strong magnetic fieldsB & 1/µ (where µ is the carrier mobility), the density of states of
the two-dimensional electron gas develops peaks corresponding to highly degenerate Landau
levels. These give rise to Shubnikov-de-Haas oscillations in the longitudinal resistivity ρxx
at moderate magnetic fields. Depending on the electronic mobility of the sample, ρxx is
completely suppressed once we reach the quantum Hall regime for B & 2π/µ. Discovered
experimentally in 1980 by von Klitzing et al. [69], the quantum Hall effect’s characteristics
are a not only ballistic longitudinal transport, but also a very accurate quantization (typically
within ∼ 10−9) of the transverse conductivity as multiples of the quantum of conductance
ge2/h, where g takes into account degeneracy. This accuracy is the reason why quantum Hall
measurements are used as a resistance standard RK = h/e2 ≈ 25.8 kΩ since 1990 [68] and
constitutes today (2019) one of the pillars of the new International System of units [70,71].

Not long after the discovery of the quantum Hall effect (QHE), the observation of a
transverse conductivity with non-integer quantization was reported for the first time in 1982
[72]. While the integer quantum Hall effect is a result of the quantization of the kinetic energy
of single electrons, the fractional quantum Hall effect (FQHE) arises from strong Coulomb
interactions between electrons [73]. The fractional states require a lot more effort from the
theoretical point of view: Depending on the numerator p and denominator q of the fraction
n = p/q, various theories have been proposed to describe the nature of the corresponding
electron liquid [68].

In the following, I will recall the basic notions of the integer quantum Hall effect, from
the Hamiltonian to the transverse conductivity, based on the textbooks refs. [32,48,74]. The
discussion of the FQHE goes beyond the scope of this thesis. In this section, as well as in
the introduction of magnetoexcitons in section 1.7, we will ignore the effect of the electric
field, which will be discussed in chapter 5.5.
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1.4.1 Hamiltonian

The time-independent Schrödinger equation for free electrons (here in two dimensions) of
effective mass mb in the presence of a magnetic field reads as follows:

1

2mb
[p̂− eA(r)]2 ψ(r) = ǫψ(r) (1.40)

where p̂ = −i~∇ is the momentum operator and A is a vector potential, so that ∇×A = B.
By choosing an appropriate gauge, e.g. the Landau gauge A(r) = Bxey, one obtains:

[

− ~
2

2mb

∂2

∂x2
+

1

2mb

(

−i~ ∂
∂y

− eBx

)2
]

ψ(x, y) = ǫψ(x, y) (1.41)

By taking into account the independence of the Hamiltonian of y, one can reduce this
equation to a one-dimensional problem in the x-direction – corresponding to the Schrödinger
equation for a one-dimensional harmonic oscillator – yielding the following eigenstates ψn(x, y):

ψN (x, y) =
1

√

Ly

eikyyχN,ky(x) (1.42)

χN,ky(x) =
π−1/4√
2nn!ℓB

e
−

(x−kyℓ2
B

)2

2ℓ2
B HN

(

x− kyℓ
2
B

ℓB

)

(1.43)

where Ly is the sample length. This solution describes a plane wave in the y-direction with
wavevector ky and exponential localization in the x-direction, where the localization length is
ℓB =

√

~/|e|B. Here HN (x) denotes the Hermite polynomial of the N -th order. The typical
width of the wave function is then given by the cyclotron radius Rc =

√
2N + 1ℓB ≈

√
2NℓB

(the first expression corresponds to the maximum of the probability density whereas the
second expression corresponds to the square root of the expectation value of r2) [74]. The
eigenstates are defined by the quantum numbers N and ky and the eigenenergies are:

ǫN = ~ωc

(

N +
1

2

)

(1.44)

where ωc = |e|B/mb is the cyclotron frequency. These discrete energy levels are called
Landau levels (LLs). Their degeneracy can be expressed in terms of the magnetic length ℓB
or the flux quantum φ0 = h/e:

NL =
LxLy

2πℓ2B
=
LxLyB

φ0
(1.45)

1.4.2 Transport

Let us suppose we have filled one or several of the aforementioned LLs with electrons. How
can conduction take place if the Fermi level is situated between filled bands? For six- or
two-terminal samples like those depicted in figure 1.8a-b, we can explain this in terms of the
confinement potential due to the finite sample width: at the sample edges this confinement
potential diverges so that all LLs lying below the Fermi level in the bulk cross the latter. If
a bias eV = µL − µR is applied across the sample, all states with energy between µL and
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a) b)

hot spots

c) d)

Figure 1.8 – Transport measurements of the QHE. a) Typical Hall bar geometry with six
terminals. Current is injected (drained) at terminals 1 (4) and the other terminals serve as
voltage probes. b) Two-terminal device with hot spots at the corners. c) Illustration of the
current carrying states crossing the Fermi levels due to the confinement caused by the finite
sample size. a-c) adapted from [48] d) Typical measurement of longitudinal and transverse
resistivity, exhibiting a large number of plateaus corresponding to integer and fractional
filling factors. Adapted from [75].

µR contribute to the conduction, c.f. fig. 1.8c [48]. This situation is similar to what we
have discussed in section 1.2.4 concerning the conductance of a two-terminal device with M
transverse ballistic modes, each of which contributing ge2/h to the overall conductance. In
a six-terminal geometry like in fig. 1.8a, one can rely on the Büttiker formula eq. 1.31 to
calculate the non-local voltages. The conductance matrix for the device in fig. 1.8a is then

Gpq =

















0 0 0 0 0 G
G 0 0 0 0 0
0 G 0 0 0 0
0 0 G 0 0 0
0 0 0 G 0 0
0 0 0 0 G 0

















(1.46)

where G = Mge2/h, assuming unity transmission (absence of backscattering). Taking into
account that current is only injected and drained at the left and right terminal (1 and 4),
so that Ip = 0 ∀p /∈ {1, 4}, and that we can arbitrarily choose one of the voltages, so that
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V4 = 0, one finds V2 = V3 = V1 and V5 = V6 = V4 = 0, which means that the longitudinal
resistance is:

Rxx =
V2 − V3
I1

=
V6 − V5
I1

= 0 (1.47)

whereas the transverse resistance is given by:

Rxy =
V2 − V6
I1

=
V3 − V5
I1

= G−1 = R2t (1.48)

which is, maybe counter-intuitively, also the resistance R2t measured across a two terminal
device like the one illustrated in fig. 1.8. Note that, at low bias, the electric field is parallel
to the vertical axis and the top (bottom) of the sample is at equilibrium with the right (left)
contact. Since the field is perpendicular to the current flow, there is no dissipation in the
sample. However, as the red circles illustrate in the figure, the carriers undergo a potential
drop µL − µR when they reach the other side of the device. This is where dissipation can
take place, as discussed in section 5.4.3.

Figure 1.8d shows a typical measurement of longitudinal and transverse resistance vs.
magnetic field of a GaAs/AlGaAs Hall bar with a mobility ∼ 106 cm2/Vs [75]. As the
magnetic field is swept, the LLs spacing (∝ B) is adjusted so that the effective number of LLs
below the Fermi level varies. In accordance with the above expressions, at integer filling of the
LLs, the longitudinal resistance drops to zero and the transverse resistance forms quantum
Hall plateaus at Rxy = h/νe2, where ν = Nel/NL is called the filling factor and Nel is the
total number of electrons. At low B-fields the transverse resistance is linear (corresponding
to the classical Hall resistance) and the longitudinal resistance exhibits Shubnikov-de-Haas
oscillations. The figure also illustrates a large number of fractional states, thanks to the high
electronic quality of this system.

1.4.3 IQHE in graphene

Without writing down the Hamiltonian for relativistic Dirac electrons in a magnetic field,
let us only point out the main phenomenological differences to be expected for a magneto-
transport experiment in graphene. Due to the exotic band structure of single layer graphene,
the Landau level energies are not equidistant like in a massive 2DEG. Instead they are given
by [76,77]:

ǫN = ±
√

2e~v2FNB (1.49)

where positive and negative values are possible due to the gapless nature of the system.
Interestingly, this spectrum contains an N = 0 state with zero energy, which means that
even at low electron or hole doping and strong magnetic fields, the lowest LL is populated.
This is sketched in fig. 1.9c, which shows a change of sign of the transverse conductivity σxy
as a function of the density n, here expressed in units of the density of states per LL gB/φ0
(c.f. eq. 1.45), where g is the degeneracy and φ0 = h/e is the flux quantum. For a bilayer,
the QHE energy spectrum is given by [35,78]:

ǫN = ±~ωc

√

N(N − 1) (1.50)

This spectrum has two zero energy states ǫ0 and ǫ1 for electron- and hole-doping, respectively.
In the conventional massive 2DEG, the lowest LLs have finite energy, so that the lowest LL
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2DEG BLG SLG
a) b) c)

Figure 1.9 – Filling Landau levels in different 2D systems leads to differences in the sequence
of transverse conductivity steps. a) In a conventional 2DEG, g = 2 and σxy = 0 at the origin.
b) In BLG, g = 4 and there is a ∆σxy = 8e2/h jump at the origin. c) In SLG, g = 4 and
there is a ∆σxy = 4e2/h jump at the origin. Figure from [78].

is unfilled (or only partially filled as shown in fig. 1.8d) around charge neutrality or at very
high magnetic fields. This is why σxy = 0 around the origin in fig. 1.9a. Interestingly,
all these systems exhibit equidistant steps of σxy vs. carrier density n or inverse magnetic
field 1/B, where the step height is 2e2/h for conventional 2DEGs and 4e2/h for single- and
bilayer graphene, due to the additional valley degeneracy. The coincidence in energy of the
N = 0 and N = 1 states in bilayer graphene leads to an effective degeneracy of g = 8 for the
zero-energy level, leading to a step height of 8e2/h at the origin in fig. 1.9b.

Figure 1.10 shows recent (2019) examples for magnetotransport measurements in high-
quality hBN-encapsulated graphene with graphite gates, both in a Corbino- [80] and in a Hall-
bar-geometry [79]. The sample design ensures extremely well-defined potential landscapes
and a large number of fractional quantum Hall states can be resolved. Note that the large
minima of σxx and plateaus of σxy at filling factors ν = 2 and ν = 6 in fig. 1.10d are specific
to the case of SLG, as was pointed out above (see also fig. 1.9c). The particular geometry of
the Corbino-disk, not discussed in the above, implies that there are no edge states linking the
source and drain terminals. In comparison to the case of a rectangular channel illustrated in
figure 1.8b, this leads to a marked difference in the two-terminal conductance: Gxx vanishes
at well-defined filling of the LLs, as shown in fig. 1.10b.

In chapter 5, we will investigate the breakdown of the IQHE in BLG over a large range
of densities, magnetic fields and filling factors. Here, BLG will act as a model system for
massive 2DEGs and we will use the corresponding formalism, keeping in mind that in the
large N limit, the spinorial character of the BLG wavefunctions loses its relevance and that
the energy spacing of the LLs (relevant for the breakdown) is equivalent between 2DEG and
BLG.

1.5 Linear response theory: towards many-body physics

For proper introductions on linear response theory in many-body physics, the random phase
approximation and more, the reader is referred to the books by Giuliani & Vignale [32] or
Coleman [81]. In the following, I will only provide the most crucial elements required to
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a) b)

c) d)

Figure 1.10 – FQHE in graphite-gated graphene. a+c) Artist view of a Corbino disk
and a Hall bar with top and bottom graphite gate. b+d) Corresponding magnetotransport
charts of the longitudinal conductance, demonstrating that a large number of fractional filling
factors can be resolved in these samples. From refs. [79, 80].

understand how the graphene plasmon dispersion can be calculated using RPA and how the
calculation of the RPA-susceptibility of the 2DEG in a strong magnetic field gives rise to
magnetoexcitons.

1.5.1 The Lindhard function

Within linear response theory, the causal response of an observable Â of a system to a time
dependent field that couples linearly to another observable B̂ of the system is given by the
retarded linear response function χAB. In the case of a periodic perturbation with frequency
ω, the Lehmann representation (or exact eigenstates representation) of this response function
is defined as follows in terms of the eigenstates ψn of the system [32]:

χAB(ω) =
1

~

∑

m,n

Pm − Pn

ω − ωnm + iη
AmnBnm (1.51)

where ωnm = ωn − ωm is the energy difference between the two states, η → 0+ (a finite
η represents level broadening due to disorder), Amn ≡ 〈ψm|Â|ψn〉 and similarly for Bnm

and Pn is the equilibrium population of the state ψn (for fermions this is simply the Fermi-
Dirac distribution, which can be replaced by a Heaviside step function at zero temperature).
In order to study the response at a point r of a charge distribution to a periodic external
electric potential at a point r′, we need to calculate the density-density response function.
For a homogeneous, translation-invariant system, this is given by the following expression in
Fourier space:

χnn(q, ω) =
1

~Ld

∑

nm

Pm − Pn

ω − ωnm + iη
|〈n|n̂(q)|m〉|2 (1.52)
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which is also known as the Lindhard function [32,82]. Here n̂(q) is the single-particle number-
density operator in momentum space:

n̂(q) = e−iq·̂r (1.53)

At zero temperature, the imaginary part of the response function is directly proportional
to the dynamical structure factor S = − ~

π Imχnn, which represents the absorption spectrum
for positive frequency and the stimulated emission spectrum for negative frequencies. In the
case of our density-density susceptibility the dynamical structure factor corresponds to the
particle hole excitation spectrum (PHES) [32].

1.5.2 The particle hole excitation spectrum

Figure 1.11 is an illustration of the possible and forbidden particle-hole excitations in graphene,
both at zero doping (panel 1) and at finite electron doping (panels 2 and 3). In the follow-
ing, we will discuss the dynamical structure factor, i.e. the particle-hole excitation spectrum
(PHES), for the doped case.

Figure 1.11 – Single particle excitations in undoped (1) and doped (2+3) graphene. BC and
BV denote the conduction and valence band, respectively. Taken from [83].

The PHES is plotted in the two top panels of figure 1.12 for SLG and for a standard
massive 2DEG, with the Fermi level lying in the conduction band in both cases. A marked
difference is that in the 2DEG, the spectral weight is significant within the entire region of
authorized intraband transitions (q2 − 2kF q <

2mω
~

< q2 + 2kF q), whereas in graphene, it
is concentrated on the line ω = vF q (c.f. process b in panel 3 of fig. 1.11). This is a direct
consequence of the conservation of pseudospin, which forbids back-scattering (c.f. process a
in fig. 1.11).

Due to the Pauli exclusion principle, which forbids the excitation of an electron towards
an already occupied state (c.f. process b in the second panel of fig. 1.11), we can define a
gap region (I in the figure, for vF q < ω < 2µ − vF q), where the spectral weight is exactly
zero. Region II corresponds to interband transitions.

1.5.3 The random phase approximation

In order to take into account interactions between particles, i.e. the response to internal
fields, a first approach would be to write down the Hamiltonian for an independent particle
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Figure 1.12 – Spectral density for the non-interacting (top row) and the interacting case (bot-
tom row) in graphene (left column) and in a semiconducting massive 2DEG (right column).
Adapted from [83].

propagating in a self-consistent field generated by all surrounding particles. This is known
as the Hartree-Fock approximation. However, as the particle moves, it will itself act on the
surrounding distribution of particles, which will in turn provoke a feedback on the motion of
the particle. This issue is solved by the time-dependent Hartree approximation, also known
as random phase approximation (RPA), within which the particles respond not only to an
external field, but also to a time-dependent Hartree potential.

The RPA susceptibility can be calculated using an intuitive linear response argument or
using a diagrammatic calculation, for more details see ref. [32]. It is given by the following
simple formula:

χRPA
nn (q, ω) =

χnn(q, ω)

ǫRPA(q, ω)
=

χnn(q, ω)

1 − v(q)χnn(q, ω)
(1.54)

where ǫRPA is the dielectric function and v(q) is the instantaneous interaction potential,
e.g. the Coulomb potential, in Fourier space. The poles of χRPA

nn in the lower half of the
complex frequency plane correspond to the dispersion of collective modes. They are usually
found by looking for the zeros of ǫRPA [32]. Similarly to what was mentioned for the non-
interacting response function above, these poles correspond to peaks in the spectral function
∝ ImχRPA

nn (q, ω), which is plotted in the bottom two panels of figure 1.12, again for graphene
and a massive 2DEG. In both cases one observes the apparition of a peak in the spectral
weight, which corresponds to the collective modes called plasmons. Both in graphene and
in the 2DEG, the plasmon disperses with ω ∝ √

q at small wavevectors q and is strongly
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damped once it approaches the phase space of intraband transitions (III in the figure). In
the case of graphene, a clear broadening of the plasmon is furthermore observed when it
enters region II, where it is damped by interband transitions.

1.6 Plasmons in graphene

Surface plasmon polaritons (SPPs, in the following simply plasmons) are modes that gener-
ally occur at the interface of a conductor and a dielectric. In the past decades, plasmons have
been studied extensively in noble metals and have been exploited for a large range of applica-
tions, for example for plasmonic waveguides, high-confinement guiding and focusing, surface
enhanced Raman spectroscopy, enhancement of fluorescence, metamaterials and others [84].

Due to the high charge carrier densities ∼ 1022 cm−3 in metals, well-confined SPPs
only exist in the visible and near-infrared part of the EM spectrum in these systems. At
lower frequencies, the field penetration of the EM field into the metal becomes negligible.
Semiconductors, having much lower charge carrier densities can support plasmons in the mid
infrared and even in the THz domain [84].

Figure 1.13 – Fourier transform infrared spectroscopy can be used to detect plasmon res-
onances (data points) in graphene nanoresonators. These plasmons hybridize with the
phonons of the SiO2 and hBN substrate, in accordance with theory (colorplot). Figure
from ref. [85]. The frequency range shown here corresponds roughly to 20-80 THz.

Graphene, as a semimetal with a tunable (but low, compared to metals) carrier density
and therefore a tunable plasmonic response, is thus a great platform for studies in these
low-frequency domains, which might pave the way for the development of novel detectors
and emitters in this notoriously elusive part of the EM spectrum between electronics (radio
frequency) and optics (visible light). These emitters and detectors are particularly interesting
from an application point of view, in telecommunication, homeland security, chemical sensing
and many other domains [86].
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Detailed reviews of graphene plasmonics in the infrared and THz domains can be found
in refs. [86–88]. In this thesis, graphene plasmons are investigated at even lower frequency,
namely in the GHz domain, as will be discussed in chapter 4. As illustrated in figure
1.13, graphene plasmons hybridize with substrate phonons in the infrared range [85, 89,
90], which means that a shift to lower frequencies is required to study “pure” graphene
plasmons. Theoretically, plasmons can be approached from a variety of starting points, for
example by solving Maxwell’s equations with appropriate boundary conditions [86] or using a
hydrodynamical approach [91–93]. The approach I will present here is based on the random
phase approximation (see refs. [94–96]). Another approach using a transmission line model
(see refs. [97–100]) is explained in section 4.2. In the long-wavelength, low-frequency limit,
all the different approaches yield equivalent results, both for the free-standing and for the
gated graphene sheet.

For a short literature review about graphene plasmonics from an experimental point of
view, the reader is referred to the appendix 6.4, where I describe the evolution of the field
from pure material studies (2008-2012) by electron energy loss spectroscopy [101], infrared
spectroscopy [102] and near-field optical microscopy [103, 104] over first device implementa-
tions (2016) [105] towards functional, resonant devices (2018) in the THz- [106] and in the
GHz-domain [27].

1.6.1 Unscreened SLG plasmons from RPA

The approach used in the following to calculate the unscreened and screened plasmon dis-
persions using the random phase approximation is well-known and can be found e.g. in
references [32, 83, 107, 108]. In the long-wavelength limit (q → 0 compared to the Fermi
wavevector, with ω > vF q), the non-interacting response function for single layer graphene
is given by [107,108]:

χnn(q → 0, ω) =
gq2

8π~ω

[

2EF

~ω
+

1

2
ln

∣

∣

∣

∣

2EF − ~ω

2EF + ~ω

∣

∣

∣

∣

− i
π

2
Θ(~ω − 2EF )

]

(1.55)

where g = 4 takes into account spin and valley degeneracy and EF is the Fermi energy. At
low energy (~ω ≪ 2EF ), the Heaviside Θ term disappears and we neglect the logarithmic
term (∝ ~ω/2EF in this limit):

χnn(q → 0, ω → 0) =
q2EF

π(~ω)2
(1.56)

We can now find our plasmons by looking for the zeros of the RPA dielectric function ǫRPA,
corresponding to the poles of the RPA susceptibility χRPA

nn :

ǫRPA(q, ω) = 1 − v(q)χnn(q, ω) = 0 (1.57)

By inserting the unscreened Coulomb potential v(q) = e2/2ǫ0ǫrq (in two-dimensional Fourier
space) and the long-wavelength, low-energy form of χnn in this equation, we obtain:

1 − e2EF q

2πǫ0ǫr(~ω)2
= 0 (1.58)
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We can simplify this expression by introducing the dimensionless “fine-structure constant”
αee = e2/4π~vF ǫ0ǫr ≈ 0.7 (for ǫr = 3.2 corresponding to hBN-encapsulation), where vF de-
notes the Fermi velocity. This leads to the following expressions for the low-energy dispersion
of unscreened plasmons in single layer graphene:

~ω

EF
=

√

2αee
q

kF
or ω = vF

√

2αeekF q (1.59)

As pointed out previously regarding the RPA susceptibility map in fig. 1.12, these unscreened
plasmons disperse with ω ∝ √

q. Note that the SLG plasmon’s frequency dependence on

carrier density is ω ∝ n1/4, unlike in semiconductor 2DEGs or in BLG, where it is ω ∝ n1/2.

1.6.2 Screened SLG plasmons from RPA

In order to take into account the screening effect of a proximate gate electrode, we use the
mirror-charge approach. In figure 1.14, we consider the potential felt by a test charge e at
position r′ due to an identical charge at position r. Both charges are located in the graphene
sheet which is separated from the gate electrode by a distance d. Assuming that the gate
electrode behaves as a perfect metal (electric field lines perpendicular to the surface), we can
model its screening effect by introducing a third “mirror charge” of opposite sign −e below
the gate electrode.

gate

graphene

e, r

-e

d

d

e, r'
|r-r'|

Figure 1.14 – Illustration of the concept of a mirror charge.

The total potential felt by the test charge is now:

vscreened(r, r′) =
e2

4πǫ0ǫr|r− r′| −
e2

4πǫ0ǫr
√

(r− r′)2 + (2d)2
(1.60)

which, in Fourier space, corresponds to:

vscreened(q) =
e2

2ǫ0ǫrq

(

1 − e−2qd
)

(1.61)

When the gate electrode is very far away (d ≫ 1/2q), we recover the unscreened potential
used above. When the gate electrode is extremely close (d ≪ 1/2q) – which is the case for
the devices that will be discussed in chapter 4, where the plasmonic wavelength is several
orders of magnitude larger than the graphene-gate spacing d – we can Taylor-expand the
exponential term of the screened potential and obtain:

vd→0
screened(q) =

de2

ǫ0ǫr
(1.62)
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Inserting this potential in equation 1.57 yields the following dispersion for highly screened
plasmons in single layer graphene:

~ω

EF
= 2
√

αeekFd
q

kF
or ω = 2vF

√

αeekFd q (1.63)

which is a linear dispersion. This is why these screened plasmons are also called acoustic
plasmons, c.f. e.g. refs. [96, 109]. If the gate distance d becomes comparable to the Fermi
wavelength λF , so that kFd ∼ 1, we reach a regime where the plasmon phase velocity is on
the order of the Fermi velocity vp & vF , as we will see further below in figure 1.15. Note
that it cannot be smaller than the Fermi velocity, because Landau damping inhibits plasmon
propagation when the plasmon branch enters the particle-hole continuum, see fig. 1.12.

1.6.3 Comparison of screened/unscreened SLG/BLG plasmons

Figure 1.15 shows a comparison of the calculated dispersion of screened (d = 10 nm, ǫr = 3.2)
and unscreened SLG plasmons, together with the unscreened case for BLG. The calculation
is done using the above equations at a typical doping value of n = 1012 cm−2, corresponding
to a Fermi energy of EF = 117 meV in SLG (plotted as a black dashed line for reference).
In the left panel, the curves are plotted on a linear scale. The SLG and BLG plasmons
have a very similar dispersion at this doping, however the BLG plasmons are a bit slower
than their SLG equivalent. The effect of screening is quite dramatic, in particular for long
wavelengths (q → 0). On the one hand, the dispersion becomes linear – as was pointed
out above – and on the other, the plasmons are slowed down enormously by the presence
of the gate electrode. The three stars on the plots in fig. 1.15 highlight the large frequency
difference between previous studies in the infrared and THz domain (e.g. [103,109]) and this
work in the GHz frequency range. This jump is only possible thanks to the use of high
mobility hBN-encapsulated graphene at cryogenic temperatures, where ωτ . 1 even in the
GHz range.

0 10 20 30

q [μm−1]

0

5

10

15

20

25

30

f
[T
H
z
]

∞ 628 314 209

λ [nm]

0

21

41

62

83

103

124

E
[m

e
V
]

104 105 106 107 108

q [m−1]

1010

1011

1012

1013

1014

f
[H
z
]

lig
h
t 
c
o
n
e

SLG unscreened

BLG unscreened

SLG screened

SLG EF at n=1012 cm-2

SLG Fermi velocity

lig
ht c

one

SLG unscreened

BLG unscreened

SLG sc
re

ened

SLG
 F

erm
i v

elo
cit

y

SLG EF at n=1012 cm-2

Figure 1.15 – Plasmon dispersions in single- (SLG) and bilayer graphene (BLG) for the
unscreened and the screened case on a linear (left) and logarithmic (right) scale. ⋆ Example
for an infrared [103] and ⋆ a THz study [109] compared to ⋆ this work.
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a)

b) c)

Figure 1.16 – Photoelectric detection of screened SLG plasmons. a) Scattering-type
scanning near-field optical microscopy combined with gate induced p-n junctions is used to
produce photocurrent maps. b) Plasmon interference patterns in the photocurrent, recorded
near the sample edges for different excitation frequencies. c) The resulting dispersion is
characteristic for screened plasmons. Dashed black line corresponds to linear dispersion, c.f.
eq. 1.63. Blue density plot is a finite-temperature local RPA calculation. Solid blue line
is the unscreened plasmon dispersion and dotted blue line is the light cone. Figure from
ref. [109].

The screening effect is experimentally established in semiconductor 2DEGs [97] and was
recently demonstrated in graphene [109]: Figure 1.16 illustrates how a scattering-type near-
field optical microscopy setup is used to launch plasmons into a gated graphene sample. By
recording the photocurrent as a function of tip position, interference patterns are detected
close to the sample edges and the plasmon wavelength is extracted. The dispersion (red
dots in fig. 1.16c) deviates strongly from the unscreened plasmon dispersion (solid thin blue
line), due to the local gate electrodes. This effect is particularly strong due to the THz
frequency range used in this experiment. In the infrared regime, i.e. an order of magnitude
higher in frequency and smaller in wavelength, the screening term e−2qd in eq. 1.61 is less
dominant. This is particularly interesting for the present work (red star in fig. 1.15), since
at the wavelengths that we consider, the screening effect reduces the resonance frequency
by more than an order of magnitude. Without this, we could not have obtained the results
presented in chapter 4.5.4.

The light cone ω = cq with c = 3 × 108 ms−1 is plotted as a solid (dotted) blue line in
figure 1.15 (1.16) to highlight the large wavevector mismatch between light propagating in
free space and the confined plasmon modes. In optical studies, various wavevector matching
techniques (grating coupling, prism coupling, near-field coupling, see appendix 6.4) are used
to overcome this mismatch. In this work, the capacitor cavity imposes the wavevector.
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1.7 Magnetoexcitons in a massive 2DEG

After discussing collective excitations at zero magnetic field, let us now consider their equiv-
alent in the integer quantum Hall regime: Magnetoexcitons were theoretically introduced in
1984–1985 [110–113]. We can calculate their dispersion using the random phase approxima-
tion introduced in section 1.5, similarly to what was done for plasmons at B = 0 in section
1.6.1. Here we will use the same approach: Calculate the Lindhard function (the density-
density response function) χnn(q, ω) for a 2DEG in the QHE regime, derive the RPA response
function χRPA

nn (q, ω) = χnn(q, ω)/ǫRPA(q, ω) from this and look for the peaks in its imaginary
part, or, look for the zeros of the RPA dielectric function ǫRPA(q, ω) = 1 − v(q)χnn(q, ω),
where v(q) = e2/2ǫ0ǫrq is the Coulomb potential in two dimensional Fourier space. Here I
will use the results from Giuliani & Vignale’s book [32].

In order to calculate the Lindhard function, we first need to evaluate the matrix element
〈n, ky|e−iq·r|n′, k′y〉 of the single-particle density operator using the wavefunctions |n, ky〉
given in equation 1.42. This calculation is demonstrated in appendix 6.5 and yields for
n ≥ n′ (a similar expression is obtained for n′ > n):

〈n, ky|e−iq·r|n′, k′y〉 = δk′y−ky ,qye
−iqxℓ2

2
(ky+k′y)e−

1
2
|α|2αn−n′

√

n′!

n!
Ln−n′
n′ (|α|2) (1.64)

where α = ℓB(qy − iqx)/
√

2 is the complex wavevector, Lm
n is the associated Laguerre poly-

nomial and δk′y−ky ,qy is the Kronecker delta function ensuring momentum conservation. Let
us insert this into the Lindhard function, eq. 1.52, here re-written in terms of the relevant
quantum numbers (we do not worry about spin degeneracy at this point):

χnn(q, ω) =
1
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2
(1.65)

In the zero-temperature limit, where the Fermi Dirac occupation probabilities Pn approach
a Heaviside step function centered at the Fermi level, and taking into account the aforemen-
tioned momentum conservation which simplifies the sum over ky and k′y to a multiplication
by the number of possible ky per LL (eq. 1.45), one obtains (see appendix 6.5 for details):

χnn(q, ω) =
e−
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− 1
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(1.66)

where we are now summing over all LLs j and the LLs j ± k whose transitions to j are
authorized. The sum over j thus goes over the range max(0, NF −k) < j ≤ NF , where NF is
the highest occupied LL. As mentioned before, the imaginary part of this function describes
the particle-hole excitation spectrum (PHES) and is plotted in fig. 1.17a. The spectral
weight is concentrated in the realm of authorized electron-hole excitations delimited by the
two black parabolas, a property that will play a role in section 5.5. The distinct “islands” of
high spectral weight in this PHES arise from the various different contributing transitions
between LLs [114].
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Figure 1.17 – Spectral density of a) the single-particle- and b) the RPA-response function
χnn(q, ω) of a semiconductor 2DEG. The level broadening is η = 0.2 ωc and the highest filled
LL is NF = 3. Reproduced according to ref. [114].

Let us now focus on ImχRPA
nn , which is easily calculated from the non-interacting sus-

ceptibility using the above formula. The result is plotted in fig. 1.17b. We still observe
horizontal lines of significant spectral weight in the realm of intraband excitations. They are
vertically shifted by multiples of the cyclotron frequency ωc. These are the collective modes
called magnetoexcitons (MEs). At small wavevectors q there is a branch of non-zero spectral
weight that disperses ∝ √

q and then merges with the black line delimiting the intraband
excitations. This branch corresponds to the B = 0 plasmons shown in the susceptibility map
in figure 1.12. In order to highlight this, the lowest order plasmon dispersion is plotted as a
green line according to eq. 1.59.

By looking for the zeros of the dielectric function ǫRPA(q, ω), one obtains the following
expression for the ME dispersion [32]:

ωME(q) ≈ mωc +
e2

~ǫbℓB
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B

2
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∑
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q2ℓ2B
2

)]2

(1.67)

where ǫb is the dielectric constant. For the fundamental ME mode (m = 0), this dispersion
is plotted as a gray dashed line on top of the susceptibility map in fig. 1.17b.

Calculating the ME dispersion within the time-dependent Hartree-Fock approximation
(TDHFA) leads to small shifts in the ME energy. These shifts increase with the wavevector,
but remain small compared to the cyclotron gap, so they do not play a significant role for the
analysis in chapter 5. For more details see refs. [32,112,113]. In ref. [115], the ME dispersion
is calculated explicitly for bilayer graphene at small filling factors, revealing that the spinorial
character of the wavefunctions combined with interaction effects gives rise to significant shifts
in the ME energy. In section 5.5, we will consider MEs at large filling factors, where the
difference between BLG and a semiconductor 2DEG is less pronounced, as we will point out
again in that section. In the fractional quantum Hall effect, inter-LL magnetoexcitons are
replaced by intra-LL magnetorotons with longitudinal polarization [32,116]. The discussion
of collective excitations in the FQHE, as well as a more specific analysis of MEs in BLG or
TDHFA calculations all go beyond the scope of this thesis.
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2
Experimental methods

In this chapter, I will explain the experimental methods used throughout this thesis, from
sample fabrication and characterization to DC and high frequency transport and noise mea-
surements. The motivation for accumulating this information in a single chapter is to avoid
redundancy in the results chapters 3-5 which will focus on physical insights, rather than
experimental details. Whereas the transport and noise measurements were all carried out at
ENS in Paris, the nanofabrication was done partly at NTU in Singapore, where two facilities
were used: the cleanrooms of the Nanyang NanoFabrication Centre (N2FC) and Prof. Lew
Wen Siang’s laboratory at the School of Physical & Mathematical Sciences (SPMS).

Three types of high-mobility graphene samples were fabricated throughout this thesis.
The corner reflectors for Dirac fermion optics and the plasma resonance capacitors for GHz
plasmonics use hBN-encapsulated graphene. The noise-thermometry experiment for the
investigation of the breakdown of the quantum Hall effect relies on graphene-on-hBN. Most
measurements were performed in a cryogenic microwave probe station. Noise thermometry
was carried out at high magnetic field in an immersion cryostat.

2.1 Nanofabrication of encapsulated graphene devices

Since the first isolation of graphene crystals and the fabrication of first graphene devices [1],
which already showed electronic mobilities comparable to silicon devices, a huge progress
could be observed in terms of sample quality, notably thanks to the identification of hexagonal
boron nitride (hBN) as a suitable substrate for graphene [14]. This suitability stems from the
fact that it has the same crystalline structure as graphene, without being itself conducting
(in fact it has a bandgap of ∼ 6 eV [117] and a breakdown voltage of around 0.7 V/nm, which
makes it a robust gate dielectric). Furthermore, hBN crystals can be cleaved by exfoliation,
much like graphene, which creates atomically flat surfaces and therefore minimizes random
strain in graphene. The absence of trapped charges minimized charged impurity scattering
and hysteresis. The isolation of both hBN and graphene flakes is described in section 2.1.1.

Eventually, the encapsulation of graphene between two hBN crystals [118] has made it

35



36 Chapter 2: Experimental methods

possible to reach the acoustic phonon limited mobility (∼ 100 000 cm2/Vs) at room temper-
ature and mean free paths of up to 28 µm at cryogenic temperatures [119].

At the beginning of this thesis project, a considerable amount of work was invested to
integrate two encapsulation methods at Ecole Normale Supérieure: the “original” method
used by the Columbia group [118] and a CVD-graphene-compatible method developed by
Luca Banszerus at RWTH Aachen [120]. Both methods will be described in section 2.1.3.
The sample characterization by Raman spectroscopy and atomic force microscopy will be
detailed in section 2.1.4.

Similarly to graphene, atomically thin hexagonal boron nitride layers can now also be
synthesized by chemical vapour deposition or sputtering on copper [15, 121] and directly
on dielectric substrates [16, 122]. These advances might pave the way towards wafer-scale
fabrication of graphene-on-hBN or encapsulated graphene devices.

Recent works have shown that despite the encapsulation of graphene in hBN, the un-
derlying substrate (often SiO2) still has an impact on the maximum mobility that can be
reached in the graphene sample, in particular if the bottom hBN layer is too thin [123]. This
is why many groups choose to use metallic bottom gates to screen charge inhomogeneities.
Graphite flakes are particularly popular for this purpose, due to their compatibility with the
hBN-G-hBN heterostructures [79,124–127]. However, graphite being a microwave absorber,
it cannot be used in our high frequency devices. Instead, we have used thin tungsten or gold
films, since the technology for nano-structuring these materials was already partly established
in our laboratory. This technology, explained in section 2.1.2, is particularly important for
the definition of sharp, gate-induced p-n junctions that are used for Dirac fermion optics in
chapter 3.

Once a hBN-G-hBN stack has been fabricated – and possibly deposited on top of the
above-mentioned gate structures – it has to be shaped into the desired geometry and con-
tacted in order to prepare for electronic transport measurements. This last fabrication pro-
cess is explained in section 2.1.5. For detailed step-by-step recipes, the reader is referred to
the appendix 6.1.

2.1.1 Base materials: graphene and hexagonal boron nitride

All the hexagonal boron nitride used in this thesis was obtained from Takashi Taniguchi and
Kenji Watanabe at the National Institute for Materials Science in Japan [117,128], who are
internationally renowned for large, high-quality crystals. In appendix 6.6, we compare this
hBN with new samples from Laboratoire des Multimatériaux et Interfaces in Lyon, France,
in terms of dielectric properties.

In the early stages of this project, hBN was exfoliated using adhesive tape, but later
mostly using thick (∼ 5 mm) PDMS wedges, which can be used to transfer thin flakes onto
silicon substrates or onto “Aachen”-type stamps (see section 2.1.3). Using this method, thin
(∼ 20 nm) boron nitride crystals of up to ∼ 50 µm in lateral size could be deposited on SiO2

(and up to ∼ 100 µm on stamps).

Graphene was obtained by exfoliation (a.k.a. “micromechanical cleavage”) from large
(10 − 20 mm) graphite crystals bought from NGS Naturgraphit GmbH. A thin, clean and
homogeneous layer of graphite was isolated on a large piece of adhesive tape (Blue Low Tack
tape from Semiconductor Equipment Corp.). The tape was repeatedly folded to thin down
the graphite until large, homogeneous (on the scale of & 1 mm) and slightly transparent
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domains were observed. The tape was then stuck to the destination substrate, which was
usually silicon with 280 nm of SiO2 and a grid of numbered alignment crosses, exposed to
oxygen plasma for 5 minutes in the plasma cleaner prior to exfoliation. The tape was carefully
flattened with a piece of hard plastic, e.g. the head of a screwdriver or of a pair of scissors.
The substrate – with the adhesive tape – was then placed on a hot plate at 100◦C for 2
minutes, following ref. [123]. Finally, the adhesive tape was slowly and carefully removed.
Atomically thin flakes were found among thicker graphite crystals after some searching under
the optical microscope. Single-, bi- and few-layer graphene could be distinguished by the
increasing contrast they made with the SiO2 substrate. Using this method, single layer
graphene crystals of up to 70 µm in lateral size could be obtained (about one or two large
> 30 µm flakes per cm2 of SiO2).

Even though monocrystalline CVD graphene is now available in-house at ENS (grown by
Aurélie Pierret), all the CVD graphene used in this thesis was fabricated at RWTH Aachen
by Luca Banszerus and more recently by Zachary Winter. Their growth process is described
in ref. [120].

2.1.2 Nanostructured local bottom gates

The development of the nano-patterning process for tungsten constituted a major part of
the work of Quentin Wilmart during his PhD (2012−2015). The motivation for this work
was the design of gate-induced p-n junctions for Dirac fermion optics and the technology
was eventually used for the fabrication of high frequency graphene transistors with gated
contacts [23,129].

For Dirac fermion optics, it is also possible to work with dual (top and bottom) gates,
like in ref. [130], but this has the drawback of coupling one region of the device to two gates.
Besides, top gates make the illumination of the channel difficult and are therefore not suitable
for opto-electronic characterization. Finally, the potential profile obtained using dual gates is
usually rather smooth, but – as will be explained in chapter 3 – we prefer sharp p-n junctions
in our devices, which means that the gap between the gate electrodes should be on the order
of the Fermi wavelength, which is 35 nm in graphene at typical doping 1012 cm−2.

In order to define such nanometric gaps, conventional lift-off techniques are not feasible,
since it is difficult for the developer to “wash out” the material from these tiny gaps. This
is why all techniques described in the following are based on the etching of thin metallic
films. The thickness of these films is chosen to be on the order of the required resolution,
i.e. ∼ 20 nm.

During his PhD, Quentin has carried out nanostructuring experiments on a wide range of
materials [23]: focused ion beam (FIB) on gold, electron beam lithography (EBL) combined
with reactive ion etching (RIE) on palladium, niobium, graphite, silicon-on-insulator and
tungsten. In many cases (gold, palladium, niobium) the limiting factor was the annealing step
(300◦ in Ar/H2 atmosphere) required for the graphene-on-boron-nitride (GoBN) technology.
Some materials seemed to become hydrogenated and the thin gold films simply melted.
Eventually, tungsten was identified as the best candidate for the nano-patterned bottom
gates, due to its refractory nature, its thermal stability, its acceptable resistivity and the
good compatibility with reactive ion etching.

In the following, we will revisit the fabrication of tungsten gate electrodes according to
the recipe developed by Quentin. I will then show how this recipe was adapted for the



38 Chapter 2: Experimental methods

fabrication of gold gates and point out some difficulties that were encountered.

Tungsten gates

The substrate is prepared by sputtering a thin 20−30 nm film of tungsten on a high resistivity
(> 3000 Ωcm) silicon substrate with a 280 nm SiO2 dielectric layer. This is done by Löıc
Becerra at Institut des Nanosciences de Paris (INSP). The substrates are then spin coated
with a 50 nm PMMA layer at 4000 rpm for 30 seconds and annealed at 160◦C.

The PMMA solution is prepared by mixing MicroChem PMMA 950K A6 with anisole
1:2-1:3, corresponding to a total dilution of 1-2% PMMA in anisole. The required dilution
ratio is not always the same depending on the substrate, and the effective thickness depends
on the age of the solution. It is good practice to carry out spin coating tests from time to
time and to check the real thickness with a Dektak profilometer.

The fine structures (i.e. the 20 nm lines) are defined with a Raith EBL at 20 kV acceler-
ation voltage, 7.5 µm aperture (the smallest available) with a step size of 2 nm. I always use
the normal “area exposure” even though the Raith EBL also supports a mode for single pixel
line exposure. After development, the sample is etched in a Corial 200R RIE with an SF6

plasma at a pressure of 6 mTorr, a flowrate of 25 sccm and RF power of 10 W. The system
is equipped with a laser endpoint detection (EPD), which enables us to detect a minimum
in the laser reflection once the tungsten film is completely etched. This is the case after
about 40 seconds and we typically overetch by another 40 seconds in order to minimize the
risk of short circuits. In order to remove the remaining PMMA layer, we perform a short
O2 stripping step (100 mTorr, 100 sccm, 30 W), again using the EPD to track the etching
progress. A second lithography and etching step is carried out to define the rough structures.
Then a third EBL step is carried out on a thicker PMMA layer (∼ 500 nm) to define the
contact pads (Cr/Au) which are subsequently deposited by Joule evaporation. The whole
process is illustrated in figure 2.1.

200 µm

Figure 2.1 – Illustration of the fabrication process for nanostructured bottom gates.

Gold gates

Thanks to the use of encapsulated graphene, the annealing step that was used to remove
polymer residues from graphene-on-hBN devices was no longer required for the devices fabri-
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cated in the course of this thesis, which means that gold was no longer excluded as a possible
gate material. Due to its lower resistivity, it is more suitable for the design of high frequency
transistors.

Series of tests were carried out both at NTU and at ENS in order to adapt the tungsten
etching process to thin gold films. These films were prepared by Joule or e-beam evaporation
of Cr/Au (1/30 nm) on high resistivity silicon with a 280 nm oxide layer (as previously). The
lithography to define nanostructures was carried out on a 50 nm PMMA layer with three
more or less equivalent Raith eLine electron beam lithography systems, depending on their
(geographic) availability:

• at the Nanyang NanoFabrication Centre (N2FC), cleanroom 2 (NTU)

• in Prof. Lew Wen Siang’s spintronics laboratory at the School of Physical and Math-
ematical Sciences (SPMS, NTU)

• in the ENS cleanroom

In order to identify a suitable etching process, I have tried various dry etching systems,
listed in table 2.1 with the approximate etch rates for Au and PMMA. For the lithography
to be feasible, the etching process should have a decent selectivity, i.e. the Au etch rate
should be higher than or similar to the PMMA etch rate. As the table shows, this was only
the case for the ion beam milling system at SPMS and for the RIE in the ENS cleanroom.
These two systems also have the advantage that they are equipped with end point detection:
In the RIE, this is the aforementioned laser, whereas in the ion beam milling system, it is a
secondary ion mass spectrometry (SIMS).

Equipment (Location) Process
Au etch

rate [nm/min]
PMMA etch

rate [nm/min]

PlasmaTherm
PTi790 PECVD
(N2FC cleanroom 1)

Ar 42 sccm,
CF4 9 sccm,
32 mTorr, 150 W

10 190

PlasmaTherm
PTi790 PECVD
(N2FC cleanroom 1)

Ar 40 sccm,
50 mTorr, 120 W

10 180

Cello Nascal-20L RIE
(N2FC cleanroom 2)

Cl2 50 sccm,
50 mTorr, 200 W [131]

<10 90

AJA International IBM
(SPMS)

Ion beam milling 30 10

Corial 200R RIE
(ENS)

Ar 40 sccm,
50 mTorr, 85 W

20 ∼10

Table 2.1 – Dry etching processes for gold. Suitable candidates with sufficient selectivity
are highlighted bold.

Most of these processes are using only physical etching, i.e. the ions do not chemically
react with the gold film (gold being a noble metal, a chemical reaction is not easy to achieve).
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Interestingly, the argon recipe that worked in the Corial 200R RIE at ENS did not work as
well in the PlasmaTherm PTi790 PECVD. In particular, the PMMA etch rate was much
higher, which was probably due to residues (oxygen...) in the etching chamber.

Removing the PMMA residues after the etching procedure turned out to be quite difficult,
since the PMMA got hardened (cross-linked). It could not be removed with acetone. One
also had to be careful with plasma cleaners and with piranha (H2SO4+H2O2) solution since
both can damage the nanostructures. The best results were obtained using the stripping
program (O2 plasma, 30 W) combined with laser end point detection in the Corial 200R
RIE. Unfortunately, the ion beam milling system cannot create an oxygen plasma for the
stripping of resist residues.

30 nm

Ion beam milling

CR-AuEG-3

CR-AuEG-26 CR H9.4

Gold final result Tungsten for comparison

CR-AuEG-17.BL

stripping without purging

CR-AuEG-13.BL CR-AuEG-17.BL

RIE before stripping

stripping with purging

20 nm line, 1100 µC/cm2 10 nm line, 900 µC/cm2

a)

c)

e)

b)

d)

f)

Figure 2.2 – SEM pictures of gold (a-e) and tungsten (f) gates. Scale bars are 1 µm.

Figure 2.2 shows SEM pictures of a couple of examples out of the 27 sets of gold gates that
have been fabricated. Panel (a) demonstrates that a nice 30 nm gap could be achieved with
the ion beam milling system. However the surface of the metal still looks rough, which might
be due to the roughness of the Au film, but more likely due to polymer residues. Panel (b)
shows a sample fabricated with the RIE at ENS before oxygen stripping and panel (d) shows
the same sample after oxygen stripping. It turned out to be important to purge the etching
chamber with oxygen (for ∼ 5 minutes; or to simply vent it and load the sample again)
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before stripping, otherwise the gold film got damaged (see panel c). Even after many tests,
the results of the gold etching were still less satisfying than those obtained with tungsten,
see panels (e-f). The main difference is that the argon etching process is much more physical
than the SF6 process, therefore:

• It therefore etches more anisotropically.

• The PMMA is etched much slower.

• A thin PMMA layer (≤ 50 nm) is therefore particularly important.

• The nominal EBL line width has to be increased from 10 to 20 nm.

• Purging of the RIE chamber is crucial (5 min Ar before etching and 5 min O2 before
stripping).

Figure 2.3 – p-n junction profile. a) Geometry of the COMSOL simulation. The color plot
corresponds to the distribution of the electric potential in the hBN slab. b) [c)] Potential on
the surface of the hBN slab for constant d0 [t] and varying t [d0].
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Remarks on the p-n potential profile

In order to estimate the real potential profile of our gate-induced p-n junctions, we have
carried out COMSOL finite element simulations. Figure 2.3a shows the simulated geometry:
A slab of hBN with a thickness of t and a relative permittivity of ǫr = 3.2 is lying on the
two gate electrodes – assumed to be perfect conductors and separated by a gap of width d0
– with potentials VgA and VgB.

In panels (b) and (c) we show the potential distribution at the top surface of the hBN-
slab. In panel (b) we keep the gap size d0 constant and vary the thickness of the hBN slab
and in panel (c) we keep t constant and vary d0. The data from the COMSOL-simulation is
well fitted with a Fermi-type function, similar to Cayssol et al.’s model for the p-n junction
profile in graphene [132], which will be used in chapter 3:

V (x) = VgA +
VgB − VgA

1 + e−2 ln(10)x/d
(2.1)

where the pre-factor 2 ln(10) ≈ 4.6 in the exponential serves as a scaling factor for the
junction length, so that d is the distance over which V (x) reaches 90% of its final value.

These simulations show that a thin gate dielectric is crucial for a sharp p-n junction
profile. They further demonstrate that a Fermi-type function is indeed adequate for the
description of realistic p-n potential profiles. Due to the finite charge carrier density in
graphene (which was ignored in our simulations), a realistic calculation should take into
account non-linear screening effects [133]. Qualitatively, screening should reduce the effective
junction length, which means that we stay in the sharp junction limit required for Dirac
fermion optics. A more involved analysis of screening goes beyond the scope of this thesis.
In conclusion, the desired sharp p-n junctions can be obtained with our tungsten and gold
electrodes, as long as the gate dielectric is kept thinner than the junction length.

Remarks on the junction roughness

A recent experimental work by Zhou et al. [127] points out the importance of minimizing
the junction roughness in order to obtain well-defined interfaces for Dirac fermion optics
experiments. They study the effective junction roughness of gate-induced p-n junctions
using scanning tunneling microscopy. This technique enables them to spatially map the
Fermi level in an encapsulated graphene sample while a p-n junction is induced using local
gate electrodes.

They compare two types of devices, illustrated in figure 2.4b and c, respectively: On the
one hand, they look at poly Si gates, defined by photolithography with a 100 nm spacing,
buried underneath a layer of SiO2 of 100 nm thickness. On the other hand, they consider a
single graphite gate, created by micromechanical cleaving, whereas the other side of the p-n
junction is still gated using the silicon substrate.

The authors claim that for the creation of sharp p-n junctions, cleaved edge graphite
gates are required, based on the analysis of the STM topography (fig. 2.4g-h) and dI/dV -
maps (fig. 2.4i-j). However they also mention the important influence of inhomogeneities in
their SiO2 dielectric, which had to be taken into account for both types of devices.

While an STM study of our tungsten/gold-gate induced p-n junctions goes beyond the
scope of this thesis, I would like to point out two arguments as to why our p-n junctions should
be comparable in quality to the graphite-gate-induced junctions studied in ref. [127]: Firstly,
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a) b) c)

d)

e) f)

g) h)

i) j)

Figure 2.4 – Junction roughness. a) Sketch of the device structure for DFO devices. b)
Sketch of poly Si- and c) graphite-gated devices studied in ref. [127]. d-f) SEM pictures of
a tungsten gate with increasing zoom. g-h) STM topography images and i-j) STM dI/dV -
maps of the junctions illustrated in b and c, respectively. Panels b-c) and g-j) taken from
ref. [127].

we use high-resolution electron beam lithography to define our gate electrodes, creating gaps
on the order of 20 nm (see fig. 2.4d-f with increasing zoom), i.e. one order of magnitude
smaller than the ones discussed in ref. [127]. Fig. 2.4f shows that these gate electrodes are
smooth on a scale ≪10 nm. Secondly, there is no SiO2 layer between either of the two gate
electrodes and the hBN-encapsulated graphene sample, which means that inhomogeneities
in the SiO2 are not an issue in our case.

2.1.3 Graphene encapsulation

Throughout this thesis, two methods have been used to perform the encapsulation of graphene
and the transfer of hBN-G-hBN stacks onto gate electrodes or SiO2 substrates: The“Columbia”
method, which was used for the first reported fabrication of a graphene edge contact [118]
and the “Aachen” method, which was developed by Luca Banszerus at RWTH Aachen for
the pick-up of CVD graphene from copper [120].

The principle of both methods is to exploit the van-der-Waals force between hBN and
graphene, which is stronger than the adhesion between these materials and the substrate
(SiO2 or copper). A transparent polymer stamp is used for the transfer of the crystals.
The polymer can be melted by heating it beyond its glass temperature and re-solidified by
cooling it back down. Its transparency enables us to see through the stamp and align crystals
underneath a microscope. Initially, one exfoliates or picks up a hBN flake on the stamp. This
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20x long WD objective

XYZ translation of stamp

a) b)

XY translation of substrate

Peltier heating/cooling element

stamp

Figure 2.5 – The custom made transfer stations in the ENS cleanroom (a) and in the Nanyang
NanoFabrication Centre cleanroom 2 (b).

top hBN is then brought in firm contact with a monocrystal of exfoliated or CVD graphene,
which adheres to the hBN thanks to the strong van-der-Waals bonds between the two almost
lattice matched materials. Finally, the stack is deposited on a bottom hBN flake. The stacks
can then either be transferred onto local bottom gate electrodes or be patterned directly on
the bottom hBN substrate. The entire process is illustrated in figure 2.6.

For both methods, we use a custom-made transfer station, consisting of a Mitutoyo
microscope with long working distance lens, an XYZ-stage for the positioning of the stamp
and an XY-stage carrying a heating plate (20-130◦C). A photograph of the setup is shown in
figure 2.5a. During the course of this thesis, the setup was upgraded significantly by myself
and Romaric LeGoff; it was particularly helpful to upgrade the heater from a simple heating
resistance to a Peltier element, which allows for active (faster) cooling. Another, simpler
setup was built from scratch during my time at NTU in collaboration with PhotoniTech
(Asia) Pte Ltd. It is shown in figure 2.5b. I built the temperature controller and provided
the company with the translation stages and the design plan of the setup. The company
provided the microscope and the assembly.

Other groups have put considerable efforts into the fabrication of particularly clean van
der Waals heterostructures, e.g. using a hot pick-up technique [134], layer by layer stacking
in vaccum [135] or “squeezing out” impurities [123]. Furthermore, it has recently become
possible to assemble heterostructures in an automated manner [136], which might be a first
step in the direction of scalable fabrication of 2D material based devices. These improvements
go beyond the scope of this thesis. In the following, I will provide details about the two
methods that I have used.

“Columbia” method

The stamps are fabricated by placing a PDMS cube (∼ 2 mm) on a microscope slide. Scotch
tape (Duck HD Clear) is placed on top of the PDMS cube, forming a “bubble” around the
cube. Polypropylene carbonate (PPC) is spin coated on a silicon chip (∼ 1 × 1 cm2) and
subsequently picked up using a piece of scotch tape with a ∼ 5 × 5 mm2 hole. In this way,
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a) b)
microscope

Figure 2.6 – Fabrication of van der Waals heterostructures: a-d) Illustrations of the three
pick-up processes (hBN, graphene, hBN, first pick-up is optional) followed by the (optional)
deposit of the finished stack on gate electrodes. e) The contact zone during the pick-up of a
top hBN flake (while heating). The nearly circular shape of this zone and the surrounding
interference pattern are due to the “bubble” shape of the “Columbia” stamp. f) Similar
picture for the graphene flake (highlighted by the red contour). g) Similar picture for the
bottom hBN flake. The contour of the contact zone is not visible here, because this picture
corresponds to a deposit. h) Micrograph of a hBN-G-hBN stack after its deposit onto gate
electrodes. The “channel-like” transparent features surrounding the center show where the
PPC detached from the stamp. Scale bars are 200 µm.

the PPC film can be fixed on top of the “bubble”, aligning the hole with the PDMS cube.

The glass slide is now mounted in the transfer station and aligned over a flake of hBN
that was previously exfoliated on a chip of Si/SiO2. The PPC film is carefully brought into
contact with the wafer, such that the contact zone is close to – but not touching – the hBN
flake of interest. The temperature of the heating plate is then gradually increased (to about
50-60◦C), so that the PPC starts melting and enclosing the flake (c.f. figure 2.6e). In order
to pick it up, the substrate is cooled down to 40◦C and the stamp is detached. This sequence
is repeated for the pick-up of the graphene and the bottom hBN flake (c.f. figure 2.6f-g).
For the deposit, the substrate is heated to ∼ 100◦C and the stamp is detached, leaving the
sandwich and a PPC layer on the destination substrate (c.f. figure 2.6h).

For the deposit of large stacks & 30 × 30 µm2, this method had to be modified, because
these stacks tended to stay on the stamp even though the surrounding PPC was transferred
to the destination substrate. The trick is to heat to 105◦C for 10 minutes, detach the stamp
as far as possible, leaving only the center (where the heterostructure is located) in contact,
then cool down to about 35◦C and detach completely. Finally, the PPC stamp is removed
from the substrate in an acetone bath and the sample is rinsed with IPA.
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“Aachen” method

For this method, the stamps are fabricated on top of a (half) microscope slide covered with
scotch tape: First, a thin layer of polyvinyl alcohol (PVA, 13% in H2O) is spread with a
pipette and annealed at 95◦C for around 10 minutes. A layer of PMMA (chain length 50k,
4% in ethyl lactate, AR-P 639.04 from Allresist) is then spin coated at 1000 rpm for 60 s
and annealed at 110◦C for another 10 min.

The actual stamp only consist of the PVA+PMMA layers, the glass slide just serves as
a support for the stamp fabrication and the scotch tape serves as a buffer layer, so that the
stamp can easily be cut into small squares (. 1 × 1 cm2) and detached.

The major advantages of these stamps over the “Columbia” stamps are:

• stability: The rigid PVA+PMMA stamps can be manipulated with tweezers. Even
if they stay stuck on a substrate, they can quite “violently” be pulled off without
damaging the crystals they hold.

• direct exfoliation: Since the stamps are relatively flat and rigid, the top hBN can
be exfoliated directly onto the PMMA surface. By identifying a suitable hBN crystal
underneath the optical microscope, the stamp can be cut out around the crystal.

• mass production: The “Aachen” stamps are quickly fabricated and one half micro-
scope slide can provide at least a handful of top hBN stamps.

• CVD compatibility: The high pressure required to pick up CVD graphene from its
copper substrate cannot be applied on “Columbia” stamps.

The disadvantage is that due to the flat nature of the “Aachen” stamps, the contact area
is much larger, which results in picking up and depositing a large number of crystals and
leads to the pollution of the substrate.

For the actual stacking process, the stamp (with or without top hBN) is placed on a
small PDMS square (. 1 × 1 cm2) of around 2 mm thickness sitting on a microscope slide.
No glue is required, neither for the stamp/PDMS nor for the substrate. The glass slide is
mounted in the transfer station and aligned over the (exfoliated or CVD) graphene. The
stamp is brought into contact with the substrate and heated to around 130◦C. After a couple
of minutes, when all interference fringes have disappeared from the microscope image, the
substrate is cooled down to below 50◦C and the stamp is detached. Sometimes, in particular
when picking up CVD graphene (see fig. 2.7), the stamp will stay attached to the substrate
and has to be carefully peeled off using tweezers. The process is repeated for the bottom
hBN. I have found that it helps to expose the bottom hBN substrate to an oxygen plasma
(plasma cleaner for 5 minutes, before exfoliating the hBN) in order to promote the adhesion
of the polymer stamp. The PVA is then removed from the destination substrate using a 95◦C
water bath with intermediate IPA rinsing steps. Finally, the PMMA residues are removed
with acetone and a last IPA rinse.

Since the hot water bath damaged our thin tungsten films, graphene stacks could not be
transferred to the nanostructured tungsten gates using the “Aachen” method. They were as-
sembled using PVA+PMMA stamps and subsequently characterized by Raman spectroscopy
and AFM, but the last transfer step was carried out using the “Columbia” PPC stamps de-
scribed above.
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a) b)

c)

Figure 2.7 – Encapsulation of CVD graphene. a) Illustration of the growth and b)
encapsulation of CVD graphene, highlighting the re-usability of the copper substrate. c)
Microscope image of a typical ∼ 100 µm graphene flake grown in Aachen. Reproduced
from [120].

2.1.4 Characterization of encapsulated samples

Raman spectroscopy

Raman spectra (and maps) were obtained with a Renishaw inVia Raman microscope and an
excitation wavelength of 532 nm. Figure 2.8 shows typical spectra for encapsulated single-
and bilayer graphene. The most prominent features are the graphene G-peak at ∼ 1580 cm−1,
the 2D-peak at ∼ 2700 cm−1 [137, 138] and the hBN-peak at ∼ 1365 cm−1 [139, 140]. The
D-peak at ∼ 1345 cm−1 is either absent or too weak to be distinguished from the hBN-peak,
which is an indication for a small density of defects in our samples [137]. A strong difference
between the spectra of single- and bilayer graphene lies in the shape of the 2D band, which
has four components in bilayer graphene [137], three of which can clearly be distinguished
in the spectrum shown here.

A systematic study by Banszerus et al. [141] has shown that Raman spectroscopy can
be used to study strain variations and substrate-induced doping in graphene, where the
positions of the G and 2D peak, as well as the width of the latter were identified as relevant
quantities. However, variations in the width of the 2D peak can also be a consequence
of misalignment between the hBN and the graphene lattices, resulting in a so-called moiré
superlattice. A study by Cheng et al. [142] establishes a link between the moiré wavelength
(i.e. the twist angle) and the 2D peak width. In a more recent work by Ribeiro-Palau et
al. [143], the 2D peak width could be tuned in situ by rotating a hBN flake with respect to
the graphene sample using an AFM tip. This means that a narrow width of the 2D peak
alone cannot be a discriminating criterion for a good encapsulated graphene sample (with
high electronic mobility). Instead we used the Raman microscope to confirm the successful
pick-up of (mostly single-layer) graphene and to identify homogeneous regions for subsequent
device fabrication.
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Figure 2.8 – Characterization by Raman spectroscopy. a) A white light micrograph of
the stack TR-2018-04-19, which was used to fabricate PRC-D7. The red scale bar corresponds
to 50 µm and the red dotted box denotes the area of the Raman maps in panels b and c.
b) A map of the intensity of the 2D peak. The black scale bar corresponds to 20 µm. c)
A map of the width of the 2D peak, consistently around 18 cm−1 in this sample. d) A
sample spectrum from these maps. e) A sample spectrum from a bilayer graphene sample
(TR-2018-08-31.1), which was used to fabricate PRC-D9.
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Atomic force microscopy

Even though atomic force microscopy (AFM) does not necessarily give us new information
about the quality of the hBN-G-hBN stack, it can be helpful to check for residual surface
contamination due to the transfer polymer, and – more importantly – it is used to measure
the bottom and top hBN thickness. This information can then be used to calculate the
geometric gate capacitance Cgeo = ǫ0ǫr/thBN (however, the gate capacitance can also be
measured using the VNA, c.f. chapter 4 or using the quantum Hall effect [144]).

Figure 2.9 shows an example of a complete characterization cycle: After the fabrication
of the hBN-G-hBN stack, the graphene layer can in some cases already be seen as a very
weak contrast in the optical micrograph (panel a). Raman spectroscopy validates this first
impression (panel b). An AFM image is then acquired with a Bruker Dimension Edge AFM
(panel c) and used to measure the step height corresponding to the bottom hBN (23 nm
here) and the top hBN (15 nm here), c.f. panel d.

63 nm

-60 nm

1200

30

b)a)

c) d)

Figure 2.9 – Full characterization chain: Raman spectroscopy and atomic force
microscopy (AFM). a) A white light micrograph of the stack TR-2018-08-31.1, which was
used to fabricate PRC-D9. b) A Raman map of the G-peak intensity, showing clearly the
location of the encapsulated graphene. c) AFM image of the sample. d) Height profile along
the x-direction in the red dotted box in c). White scale bars 50 µm, black scale bar 20 µm.
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2.1.5 Defining structures

Etching the heterostructures

The encapsulated graphene samples are etched into the desired shape using reactive ion
etching (RIE). This is a dry etching process where a plasma attacks the material both
chemically and physically. The chemical reaction removes the material in a much more
isotropic manner than the physical one, because the latter is controlled by the direction of
the electric field applied in the etching chamber (c.f. gold gate fabrication in section 2.1.2).

For the fabrication of corner reflector devices (chapter 3), PMMA was used as an etching
mask: The sample was coated in PMMA, EBL was used to expose it where the heterostruc-
ture should be removed, i.e. everywhere around the active region, RIE was carried out and
eventually the sample was cleaned in acetone (see also top row of fig. 2.10). The disadvan-
tage of this method is that etching tends to cross-link the resist, which makes it very difficult
to remove with acetone and leads to PMMA residues on the entire device.

This is why, for the fabrication of plasma resonance capacitors (chapter 4), we used an
aluminum hard mask: the first step is again to coat the sample with PMMA and to use EBL,
this time to define the region where the heterostructure should stay. A thin layer (∼ 50 nm)
of aluminum is then deposited. After the lift-off in acetone, the aluminum film only stays
where we want to protect the stack. RIE is carried out and, finally, the aluminum mask
is removed using a KOH solution. In both cases, RIE was done in a Corial 200R with a
CHF3/O2 plasma at flow rates of 40 and 4 sccm respectively, a pressure of 6 mTorr and a
RF power of 60 W. This etch recipe corresponds to the one used in ref. [118].

Alternatively, a hydrogen-silsesquioxane (HSQ) hard mask could be patterned directly
by EBL [118] and the etching could be carried out using SF6 and Ar plasma [120]. It is also
possible to stop the etching process precisely on top of the graphene sheet, see e.g. ref. [145].
The edge profile resulting from these etch processes is typically tilted enough to deposit a
metal layer on the side: the edge contact.

Figure 2.10 – Defining structures. Top: Illustration of the etching of heterostructures.
Bottom: Illustration of the fabrication of edge contacts.
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Depositing contacts

Already in the first reported fabrication of a one-dimensional edge contact [118], a study
of different contact metals is given in the supplementary material. Cr/Au and Cr/Pd/Au
were identified as particularly suitable. Another group has reported working Ti/Al contacts,
see e.g. the supplementary material of [146], but the only time I tried it did not work.
All working samples fabricated throughout this thesis project have Cr/Au contacts. The
thickness was typically 5 nm Cr and 100−200 nm Au.

Figure 2.11 – Atomic force microscopy image of the edge contact on PRC-D3.

Contacts were defined using EBL on a PMMA resist and the contact metal was deposited
using a resistive (Joule) evaporation process in an Edwards E306A evaporator (see also
bottom row of fig. 2.10). In order to reduce the contact resistance of the plasma resonance
capacitors (chapter 4), the 1D contact “surface” was enhanced by cutting it into a comb-
shape. An AFM picture of such a contact is shown in fig. 2.11.

Passivation of edges

If the graphene edge is exposed around the entire sample, depositing a top gate electrode is
difficult without creating a gate-graphene short circuit via the edge. For the bottom gated
corner reflector devices (chapter 3), this was not an issue, but for the top gated plasma
resonance capacitors (chapter 4), the edges of the hBN-G-hBN heterostructure had to be
passivated by depositing a layer of aluminum oxide.

This was done in two steps: first, two thin layers of aluminum (1 nm) were deposited by
Joule-evaporation and then, each time, left to oxidize for about 15 minutes at 200 mbar O2.
Then, about 10 nm of Al2O3 were deposited using an Anric AT400 atomic layer deposition
(ALD) at 175◦C performing 100 cycles.

It turned out that this layer had pretty catastrophic adhesive properties: if we deposited
contact pads directly on top of the aluminum oxide, the probe tips would simply rip them
off. The lift-off of aluminum oxide proved to be nearly impossible, so a wet-etch approach
was employed: EBL on PMMA defined the regions where the Al2O3 film would be removed
subsequently by submerging the sample in a KOH bath for a couple of minutes.
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Depositing top gates

Top gates are patterned using EBL on PMMA and deposited using a Joule-evaporation
process of Cr/Au in an Edwards E306A evaporator, exactly like the edge contacts men-
tioned above. The thickness was typically 5 nm Cr and 200 nm Au. This was usually done
simultaneously with the definition of coplanar waveguides, see below.

Defining coplanar waveguides

In order to make the devices compatible with high frequency characterization in our Janis
cryogenic probe station, they have to be embedded in a coplanar waveguide (CPW). This
CPW has to fit the 100 µm pitch (tip separation) of the probe tips and to be 50 Ω impedance
matched.

For the design of these CPWs, we use Broadcom (formerly Avago) AppCAD. The software
predicts a characteristic impedance of 49.2 Ω for a CPW with a center conductor width of 70
µm surrounded by gaps of 40 µm. This tip access is tapered towards the actual device width.
If the device width is e.g. 25 µm, we can use AppCAD to calculate the corresponding gap size
16 µm to keep a ∼ 50 Ω characteristic impedance. Between the access and the sample, we
interpolate with straight lines, c.f. figure 2.17 for an example. The phase velocity predicted
for these geometries is 0.40 c, where c is the speed of light in vacuum.

The CPWs are defined by EBL, followed by the deposit of Cr/Au (5/200 nm), in the
same manner as the contacts and the top gates were fabricated.

2.2 Device characterization

2.2.1 The Janis cryogenic probe station

The electronic transport measurements presented in chapters 3 and 4 were all carried out
in a Janis cryogenic probe station which operates between T ≈ 6 K and 450 K. Figure 2.12
show pictures of the probe station itself (open), of the instrument rack and of the screen
showing the G-S-G probe tips in contact with a sample.

Samples are fixed on the chuck using silver paint, which ensures an electrical contact be-
tween the chuck and the substrate (silicon in our case). Since the chuck is electrically isolated
from the rest of the chamber, its voltage can be controlled independently by connecting it
to the Yokogawa voltage source. This is used for substrate-gating in chapter 4.

Before cooling down the probe station, a lid is placed on top of the vacuum chamber. A
window in the lid enables the user to observe the sample and the probe tips using the camera.
A combination of primary pump and turbo pump is then used to reduce the pressure in the
vacuum chamber to around 10−5 mbar at room temperature.

Liquid helium (LHe) is then inserted into the cooling capillary of the cryostat. Unlike in
many other cryostats, where LHe is inserted only once and then a measurement campaign
can run for a couple of days without supervision, this probe station requires a constant flow of
LHe. This can be done without supervision if the pressure in the LHe dewar stays constant,
but that is not always easy to guarantee.

The probe tips are moved using remote micrometer screws, which enables the user to
precisely place them on the extremities of the coplanar waveguides leading to our samples.
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Figure 2.12 – Janis cryogenic probe station. a) The cryogenic vacuum chamber with
coaxial 40 GHz access lines. b) The instrument rack. c) A screen showing a microscope
image of the probe tips. From ref. [24].

On the other hand, instruments are connected to the probe tips via the coaxial connectors
denoted “DC/RF probe access”.

Lock-in characterization of corner reflector devices

Most of the measurements discussed in chapter 3 were carried out using the Zurich Instru-
ments lock-in amplifier. It was connected to the drain electrode of the sample via a 2.2 kΩ
voltage divider, c.f. fig. 2.13.

At the lowest temperature (6 K), the thermal excitation corresponds to kBT ≈ 0.5 meV.
However, since the contact resistance (∼ 5 kΩ) in series with the 2.2 kΩ voltage divider
represents a much higher resistance than the typical sample resistance . 1 kΩ, it seemed
safe and reasonable to use an excitation amplitude of 5 mV. A frequency sweep from 102

to 107 Hz was carried out to identify a frequency range where the device response was
flat and the measurement frequency was chosen in the center of this window (10.013 kHz).
The time constant (200 µs) was chosen short enough to follow the gate voltage sweep (on
the order of 20 ms per data point). Similarly the sampling rate was set to a reasonable
value (900 Hz). The device resistance was deduced from the lock-in measurement Rds =

2.2 kΩ × V rms
in /(V rms

out − V rms
in ), where V rms

in/out = V peak
in/out/

√
2. The 100 kΩ voltage dividers at

the gate terminals were used initially to detect potential gate leakage, but were then removed
in order to increase the sweep speed.
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Figure 2.13 – Wiring scheme for the lock-in characterization.

High frequency characterization of corner reflector devices

Figure 2.14 shows the wiring scheme for the VNA characterization of the corner reflector
devices. Bias tees (Marki BTN0040 1417, 40 kHz−40 GHz) were used to decouple the DC
gate/drain bias from the RF probe signal. A 100 kΩ voltage divider was used at the access
gate. Here the voltage is swept very slowly. At the barrier gate terminal, which is swept
much quicker – and via a bias tee – we omitted this voltage divider in order to avoid delays
induced by charging times. The drain voltage was kept constant at 10 mV and the DC
device resistance was measured simultaneously with the RF response via the 2.2 kΩ voltage
divider.

2
.2
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Ω

Bilt

VgA VgmA VgB Vd Vdm

100 kΩ

bias tee bias tee

Anritsu VNA

Port 1 Port 2

drain gate B

gate A

source

Figure 2.14 – Wiring scheme for the VNA characterization of corner reflector devices.
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The RF power was typically set to -27 dBm, which corresponds to an amplitude voltage
of 10 mV. At cryogenic temperature, this exceeds the thermal excitation kBT ∼ 0.9 meV,
but taking into account the losses in the coaxial access lines (frequency dependent, ∼ 10 dB)
and due to the contact resistance, this power level stays a reasonable choice and provides a
decent signal to noise ratio.

High frequency characterization of plasma resonance capacitors

The wiring scheme for the characterization of the plasma resonance capacitors (PRCs) is
shown in figure 2.15. As mentioned above, bias tees were used to decouple the gate voltage
from the RF signal and again, a 100 kΩ resistor was used as a voltage divider. The chuck
of the probe station was connected to a Yokogawa 7651 voltage source, which enabled us
to apply an additional gate voltage, since the silicon substrate of the PRCs is glued to the
chuck using conductive silver paint. The RF power was typically set to -27 dBm, as explained
previously.

Bilt

Vg Vgm

1
0

0
 k
Ω bias tee bias tee

Anritsu VNA

Port 1 Port 2

gate source

Yokogawa

Vchuck

Figure 2.15 – Wiring scheme for the VNA characterization or plasma resonance capacitors.

2.2.2 VNA measurements

The vector network analyzer (VNA) is a powerful characterization tool for high frequency
electronics. It enables a broadband measurement of the amplitude and phase of a microwave
with respect to a reference signal and can therefore be used to measure the reflection and
transmission coefficients of an n-port network [147].

Scattering, admittance and cascade matrices

Throughout this thesis we will concentrate on 2-port networks, such as illustrated in figure
2.16. The VNA measures the scattering matrix Smn, defined as follows:

Sij =
bi
aj

∣

∣

∣

∣

ak=0 for k 6=j

with {i, j} ∈ {1, 2} (2.2)
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Figure 2.16 – The two-port network: scattering (a) and admittance (b).

where ai and bi are the complex amplitudes entering and exiting (respectively) the network
at port i [148]. Throughout this thesis, we will focus a lot more on the so-called admittance
matrix Yij , because it is more closely related to the actual circuit elements. It is defined as
follows:

Yij =
Ii
Vj

∣

∣

∣

∣

Vk=0 for k 6=j

(2.3)

where Ii and Vi are the current entering and the voltage across port i, see fig. 2.16b. It can
be calculated from the scattering matrix [148]:

Y =
1

Z0∆

[

(1 − S11)(1 + S22) + S12S21 −2S12
−2S21 (1 + S11)(1 − S22) + S12S21

]

(2.4)

where ∆ = (1 + S11)(1 + S22) and Z0 = 50 Ω in our case. For de-embedding (see below),
we will additionally make use of the transmission/cascade matrix (ABCD-matrix, denoted
A in the following). Its purpose is to easily calculate the behavior of composite systems by
multiplying their cascade matrices and it can be calculated e.g. from the scattering matrix:

A =
1

2S21

[

(1 + S11)(1 − S22) + S12S21 Z0 [(1 + S11)(1 + S22) − S12S21]

Z−10 [(1 − S11)(1 − S22) − S12S21] (1 − S11)(1 + S22) + S12S21

]

(2.5)

Calibration

In order to account for changes of the physical characteristics of the VNA over time, but
also for the frequency response of the cables and probe tips connecting the instrument to
our “device under test” (DUT), a calibration has to be carried out prior to the measurement.
The calibration enables the instrument to remove the phase propagation and attenuation due
to the cables from the measurement. Throughout this thesis, a short-open-load-reciprocal
(SOLR) calibration protocol was used. It consists in measuring the frequency response of
a short and an open circuit, a 50 Ω impedance match and a thru-line of arbitrary length,
all of which are accommodated on a calibration substrate (CS-5 from GGB Industries, Inc.)
which is placed inside the Janis cryogenic probe station, next to the substrate containing the
DUT.

The calibration moves the so-called “calibration plane” from the macroscopic coaxial
VNA ports to the end of the microscopic probe tips. It is carried out after every change of
temperature (i.e. after each cool-down), in order to compensate for dilation/compression of
the coaxial lines. The possibility of in situ calibration of the phase is a major advantage of
our probe station compared to “classical” cryostats.
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De-embedding

Since our devices are embedded in a co-planar waveguide (CPW), the phase propagation on
both sides of the CPW and the parasitic capacitances should be taken into account. In order
to de-embed the response of our DUT from these contributions, we fabricate two kinds of
reference devices on the same chip: “thru” and “dummy”. The thru is a symmetric CPW
without any active component in the center, simply connecting the two probes. The dummy
has the same geometry as the DUT, but without the active component, i.e. it is an open
circuit.

In order to de-embed the phase propagation of the CPW access from the DUT and
the dummy, the ABCD matrix of the thru, dummy and DUT (Athru, Adummy, ADUT) are
calculated from their scattering parameters. By taking the square root of Athru, we obtain
the half-thru response, which we can then de-embed from the DUT’s and dummy’s ABCD
matrices, simply by multiplying the inverse of the half-thru on both sides [24]:

A′DUT =
(

Athru
1/2
)−1

· ADUT ·
(

Athru
1/2
)−1

(2.6)

A′dummy =
(

Athru
1/2
)−1

· Adummy ·
(

Athru
1/2
)−1

(2.7)

The cascade matrices are then converted to admittance parameters (Y ′dummy, Y ′DUT).
Stray capacitances can now be removed from the DUT measurement by subtracting the
dummy’s admittance:

Y ′′DUT = Y ′DUT − Y ′dummy (2.8)

Figures 2.17a and c show an example picture and spectrum of a thru. The S12 and
S21 spectra of the thru shows that we have a transmission of almost unity (about 3%
loss/reflection on average) with a constant dephasing of ∆φ/∆f = −60◦/40 GHz. The
propagation velocity of the electromagnetic wave can be deduced from this phase shift:

v =
2πLthru∆f

∆φ
(2.9)

where Lthru is the length of the thru. If we take into account a probe overlap of about 30
µm in from both ends of the device, the effective propagation length between the tips is
Lthru = 490 µm, which results in v = 0.39 c where c is the speed of light in vacuum. This
is in good agreement with the value 0.40 c predicted by AppCAD (see section 2.1.5). This
also means that an uncertainty of 10 µm in the tip position corresponds to a ∼ 1◦ phase
uncertainty at 40 GHz, which is reasonably small.

Figures 2.17b and d show a picture and a typical admittance matrix Y ′dummy of a dummy,
which was already de-embedded from the thru. Even though it is difficult to see in the picture,
there is a small gap between the “gate” electrode coming from the left and the “contact”
electrode on the right. The device has the same shape as the corresponding “device under
test” (DUT), which is a plasma resonance capacitor, but does not contain graphene. This
enables us to measure the parasitic gate-source capacitance, which appears as a constant slope
jωCgs in the imaginary part of the admittance spectrum, where Cgs ∼ 1 mS/(2π×40 GHz) =
4 fF.
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Figure 2.17 – De-embedding. a) Microscope image of a thru-line. b) Microscope image of
a dummy structure. In both cases the scale bar corresponds to 200 µm. The black dashed
lines indicate the calibration plane after de-embedding the propagation in the thru-line. c)
Transmission parameters (S12 and S21, magnitude and phase) of a thru-line. d) Complex
admittance matrix of a dummy structure.

Small signal model of a graphene transistor

Since the design of novel high frequency transistors is not the main aim of this thesis, and
the RF measurements presented in chapter 3 are first and foremost a proof of concept of
GHz operation of a Dirac fermion optics device rather than a detailed study of the high
frequency figures of merit (cut-off frequency etc.), I will only provide the crucial formulas
that are used to extract transconductance, source-drain resistance and gate capacitance from
the admittance matrix [149]:

Y11(ω) = j(Cgs + Cgd)ω (2.10)

Y12(ω) = −jωCgd (2.11)

Y21(ω) = gm − jωCgd (2.12)

Y22(ω) = gds + jωCgd (2.13)

where Cgs and Cgd are the gate-source and gate-drain capacitances respectively, gm =
∂Id/∂Vgs|Vds=const. is the transconductance and gds = R−1ds is the drain-source conductance.
The corresponding small-signal equivalent circuit is illustrated in figure 2.18.

Here we are assuming that the charging resistance of the gate and the transit time are
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−1

Figure 2.18 – Small-signal equivalent circuit of a graphene FET. Parasitic capacitance
and gate resistance were omitted in this scheme. Adapted from [150].

negligible. The latter assumption is justified by the fact that the dwell times in our transistor
are on the order of the picosecond (vF = 106 ms−1 and L ∼ 10−6 m), which leads to ωτ ≪ 1
in the GHz range. For a more detailed analysis, the reader is referred to Quentin Wilmart’s
thesis [23, p. 117], Frank Schwierz’ book [149, pp. 221-231] and article [150] on this topic.

2.2.3 Noise measurements

The DC transport and noise measurements discussed in chapter 5 were carried out by Wei
Yang. In this section I will briefly describe the setup used for these measurements.

Whereas all measurements presented in chapters 3 and 4 were carried out in a Janis
cryogenic probe station, these noise measurements were done in an Oxford immersion cryostat
(see fig. 2.19f) equipped with a superconducting coil to apply strong magnetic fields (up to
9 T). The sample is cooled down to 4.2 K by immersing it in liquid helium. The same setup
has been used in the past by Chaste et al. [151] for noise measurements in carbon nanotubes
and by Betz et al. [22, 65, 152] to study cooling pathways in graphene. While these studies
were done with a bandwidth of 1 GHz, Wei Yang’s measurements cover a frequency range
0-10 GHz [144] which is required to overcome 1/f -noise at high currents (for an order of
magnitude calculation, see section 1.3).

The sample (fig. 2.19c) is wirebonded to the sample holder (designed by Anne Denis,
see fig. 2.19d), which is equipped with coaxial “end launch” connectors (K standard, 2.92
mm, Southwest Microwave) that can be used up to 40 GHz. DC voltages are applied using
Yokogawa 7651 voltage sources and measured using Keithley 2000 voltmeters. They are
decoupled from the RF measurement by a capacitor (C2 in the wiring scheme in figure
2.19a). The circuit is 50 Ω-impedance matched in order to minimize RF reflection. The
noise signal is amplified (32 dB) at cryogenic temperature by a Caltech low noise amplifier
with a bandwidth of 12 GHz. The signal is amplified again at room temperature (35 dB)
before it enters the oscilloscope. Attenuators (-3 dB) were added to the amplification chain in
order to damp standing waves. The noise spectra are obtained by fast Fourier transformation
(FFT) of the time domain signal, which was done directly by the oscilloscope (using a Hann
window function and averaging 200 times).
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a) b)

c) d) e) f)

Figure 2.19 – Noise thermometry setup. a) Wiring scheme. b) Example spectra, flat
around 5 GHz. c) Sample wirebonded to the d) sample holder. e) The sample holder attached
to the LNA on the cryostat insert. f) The cryostat. a-b) taken from the supplementary
material of ref. [144] c, e and f) taken from ref. [25].

In order to calibrate the power gain of the amplification chain and spurious noise in the
setup, the noise of an Al/AlOx/Al tunnel junction is measured. Due to its low transmission,
its noise is Poissonian (white noise) with a Fano factor of unity: SV V ∝ 2eI. By measuring
the voltage power spectral density (PSD) SV V (f, I) at a given frequency f as a function of
the current I, one therefore obtains a linear relation. Extrapolating this to the current where
SV V (f, I = −Inoise(f)) = 0, one obtains the current value Inoise(f), which – in combination
with the voltage noise at zero current SV V (f, I = 0) – is used to calculate the current noise
generated by the sample:

Ssample
I (f, I) =

(

SV V (f, I)

SV V (f, I = 0)
− 1

)

2eInoise(f) (2.14)

For the mathematical details of this calibration method the reader is referred to the PhD
theses of Andreas Betz [22] and Simon Berthou [25]. The fitting procedure is illustrated in
the fig. 2.20a, with the extracted values for Inoise(f) plotted in panel b.

The value of Inoise can also be used to calculate the noise temperature of the overall
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Figure 2.20 – Noise calibration. Left panel: Linear fits on noise as a function of current
are used to extract Inoise and Tnoise, plotted in the panels on the right for all frequencies.

experimental setup (see also panel c of figure 2.20):

Tsetup =
2eInoise(f)Rin

4kB
(2.15)

where Rin is the input impedance of the amplification chain. Subtracting the 4.2 K of the
helium bath temperature, one obtains approximately 4 K excess noise (at 5 GHz) due to the
amplifiers.

As we can see in the example spectra shown in fig. 2.19, the current noise spectra
obtained in this manner still suffer from spurious resonances, caused by imperfections of
the calibration process due to the difference between the resistance of the tunnel junction
and the graphene channel. The optimization of this circuitry is work in progress and the
measurements discussed in chapter 5 are obtained by averaging the PSD between 4.5 and
5.5 GHz, where the spectra are flat.
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3
Dirac fermion optics

In this chapter, we will build upon the notions explained in chapter 1 and introduce the
concepts of Dirac fermion optics (DFO). Then, a short review of various theoretical proposals
and experimental realizations of DFO shall be given. The device we will focus on afterwards
is the corner reflector (CR), a graphene transistor with a sawtooth-shaped gate electrode
(artist view in fig. 3.1). I will first provide an analytical model for the transmission of this
device and explain ray tracing simulations. Then I will show our experimental results and
emphasize that it is possible to study geometric, coherent and weakly diffusive electron optics
in the same device. It turns out that – besides being a useful platform to study electron
optics – our reflector device is extremely sensitive to minute scattering rates, so that it can
be used for acoustic phonon sensing. This sensitivity combined with the GHz operation that
we demonstrate at the end of the experimental section makes our device a good candidate
for high speed phonon sensing. At the end of the chapter, I will provide perspectives for
future experiments.

Figure 3.1 – Artist view (credit: David Darson) of ballistic fermion transport in a rectangular
barrier (left) and in a sawtooth gate transistor (right).

63
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3.1 Principles of Dirac fermion optics

Already Louis de Broglie’s 1924 thesis of the wave-particle duality points out a fundamental
analogy between photons and electrons (and all other particles for that matter): They have
momentum like a particle, but they can interfere like waves. The idea of doing optics with
electrons, for example in a scanning electron microscope [153] is almost as old as de Broglie’s
thesis. Even though it was carried out at a point of time when the scientific community had
little doubt about the electron’s wave character, Donati et al.’s 1973 double-slit experiment
with electrons clearly demonstrated electron interference [154].

Beyond that, Dirac fermions in graphene bear a whole range of analogies with photons:
First and foremost their dispersion is also linear in the vicinity of the so-called Dirac points,
even though their phase velocity is 300 times smaller than the speed of light. In principle,
if we are dealing with a clean graphene sample, these fermions can travel significant lengths
(∼ 1 µm at room temperature [118] and ≫ 10 µm at cryogenic temperature) without being
scattered, thanks to the weak electron-phonon coupling. On length scales smaller than the
scattering length, graphene forms a transparent medium for the charge carriers, the electronic
transport is ballistic.

A more detailed discussion of analogies between classical optics and mesoscopic/quantum
physics can be found in references [155] and [156].

3.1.1 Snell-Descartes law

θ ϕ

n p

Figure 3.2 – Left: Sketch of a p-n junction in graphene with incident, reflected and trans-
mitted trajectory. Note that due to the opposite sign of the Fermi energy/wavevector on the
two sides of the junction, the refraction is negative. Right: Illustration of how such a p-n
junction can be induced in graphene using gate electrodes.

The analogy that we will be mostly concerned with throughout this chapter occurs at a
p-n junction, which can be induced in situ by placing two local gate electrodes in the vicinity
of the graphene sheet (c.f. figure 3.2). A fermion incident on this junction can either be
reflected with opposite angle or it can be transmitted, in which case the link between the
incident and the transmitted angle is given by the following law:

kF1 sin θ = kF2 sinφ (3.1)
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where θ and φ are the incident and transmitted angle and kF1,F2 are the Fermi wavevectors
on either side of the junction. This law is the electronic equivalent of the Snell-Descartes
law in classical optics, where the Fermi wavevector (or the Fermi energy EF = ~vFkF )
acts as the refractive index. Note that this law – like in classical electrodynamics – is a
consequence of the conservation of the wavevector component parallel to the junction ky
due to translational invariance. Since the Fermi energy can be easily tuned in 2D materials
by applying a gate electrode, it is possible to define “optical” elements of in situ tunable
refractive index η = kF1/kF2 = EF1/EF2.

First studies of electron refraction in GaAs-AlGaAs 2DEGs were carried out by Spector
et al. [157, 158] and Sivan et al. [159] in 1990. Due to the absence of a bandgap, and unlike
in semiconductor 2DEGs, the graphene Fermi level can be continuously tuned from n- to
p-doping, which makes negative refraction possible and has therefore led to the proposal of
exotic device designs like the electronic Veselago lens [160], which is a lens based on flat
interfaces and exploiting a negative refractive index.

3.1.2 The critical angle

Like in conventional optics, the phenomenon of refraction entails the existence of a critical
angle when traveling from a more refractive to a less refractive medium:

θc = arcsin

(∣

∣

∣

∣

EF2

EF1

∣

∣
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∣

)

= arcsin

(
√

∣
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∣

n2
n1

∣

∣

∣

∣

)

(3.2)

where |EF2| < |EF1| and n1,2 are the charge carrier densities on either side of the junc-
tion. The critical angle can thus be tuned by the gate voltage. For example n1/n2 = 10,
corresponding to an effective refractive index

√
10 = 3.2 leads to a critical angle θc = 18◦.

3.1.3 Fresnel relation

The angular dependence of the transmission probability varies strongly with the sharpness
of the junction with respect to the Fermi wavelength, i.e. on the product kFd. Consequently,
different expressions for different limits have been proposed. The transmission probability
for an abrupt barrier (kFd≪ 1) and for a sharp/smooth (symmetric) n-p junction (kFd≫ 1)
were derived in 2006 by Katsnelson et al. [30] and by Cheianov et al. [161] respectively. By
matching the wavefunctions on both sides of a sharp junction, one obtains:

Tsharp(θ) = cos2 θ (3.3)

Cheianov et al.’s expression for a smooth junction was modified in 2007 by Huard et al. [162]
to take into account asymmetric (still bipolar) junctions:

Tsmooth(θ) = e
−2πd

k2
F1

|kF1|+|kF2|
sin2 θ

(3.4)

The trajectories of electrons with oblique incidence on the smooth junction are gradually
bent away, so that a classically forbidden zone arises. The exponential dependence in eq. 3.4
represents the tunneling probability through this zone. Allain and Fuchs wrote a pedagogical
review for the abrupt/smooth junction/barrier case four years later [163]. The essence of
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these derivations can also be found in Quentin Wilmart’s thesis [23]. Sajjad et al. proposed
yet another modified version of Cheianov’s expression for the case of an asymmetric n-p or
n-n’ junction in 2012 [164]. In all the above-mentioned works, a linear function was used to
model the smooth potential profile. Cayssol et al. [132] have proposed an analytical solution
for the transmission probability of a possibly more realistic potential landscape defined by a
Fermi-type function:

EF (x) = EF1 +
EF2 − EF1

e−x/w + 1
(3.5)

In order to make the junction length w used in this expression a bit more meaningful,
we will rather consider the effective junction length d = 2w ln(10) in the following, which is
the width over which 90% of the potential variation takes place. Cayssol et al.’s expression
for the junction transparency is:

T (θ) = 1 − sinh(πwκ+−) sinh(πwκ−+)

sinh(πwκ++) sinh(πwκ−−)
(3.6)

where κρσ = kF1(1 + ρ cos θ) − kF2(1 − σ cosφ) and ρ, σ are either + or −. This expression
can interpolate between the smooth and the sharp limit.

In figure 3.3, we compare some of the expressions for the transmission probability given
in the above-mentioned literature. Panel (a) is a color plot of equation 3.4 and panel (b) is
a color plot of equation 3.6, which is valid also in the unipolar n-n’ regime. In both cases,
we plot the results for an experimentally relevant carrier density n1 = 1012 cm−2, which
corresponds to a Fermi wavelength of λF1 = 35 nm. Since equation 3.4 is only valid in the
smooth junction limit, we use d = 100 nm and observe a good qualitative agreement; both
formulas predict a strong collimation effect in the bipolar regime. In the unipolar regime,
Cayssol et al. (arguably) predict a transmission of almost unity for the entire angular range.
The dashed white lines highlight the critical angle (c.f. equation 3.2) as a function of the
doping ratio. Above this angle, no transmission can take place.

In panel (c), we plot T (θ) for a symmetric bipolar junction (n2 = −n1). The solid
lines are calculated using equation 3.6, while the dotted and dashed lines are obtained from
equation 3.3 and equation 3.4 for the sharp and the smooth case respectively. We see that
there is a good agreement of Cayssol’s expression both with the smooth and the sharp limit.
Slight deviations can be understood in terms of the difference in the underlying potential
shape and our ad-hoc choice of the effective junction length d = 2w ln(10). Furthermore, the
plot emphasizes how the collimation effect of the junction becomes stronger with increasing
junction smoothness. However, considering now the angle-averaged transmission of the junc-
tion (weighted by a cos θ distribution) in panel (d), this increased collimation results in a
much lower junction transparency in the bipolar regime. Due to its suitability for modeling
smooth and sharp junctions, which is required when we vary the refractive indices over a
large range and therefore modify the effective junction sharpness kFd, we will use Cayssol et
al.’s expression for the junction transparency in the following.

3.1.4 Klein tunneling

In figure 3.3, which illustrates the angular dependence of the transmission probability, an-
other peculiarity of Dirac fermions comes into play: At normal incidence on the junction
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a)

c) d)

b)

Figure 3.3 – Angular dependence of n-p junction transmission. a) Transmission as a function
of doping ratio and incident angle following ref. [162]. b) Same plot following ref. [132].
Dashed white lines correspond to the critical angle θc = arcsin(

√

n2/n1). c) Transmission
as a function of incident angle for a symmetric n-p junction in the sharp (red) and smooth
(black) case. Solid lines are calculated following ref. [132], dashed lines following ref. [161]
and the dotted line corresponds to the sharp junction case, c.f. eq. 3.3. d) Angle-averaged
transmission from Cayssol’s expression [132] for the smooth (black) and the sharp (red) limit
as a function of doping ratio.

(θ = 0) – no matter what the height of the potential step is – their transmission probability
is unity. This behavior is named Klein tunneling after Otto Klein who already described
in 1929 for a particle following Dirac’s relativistic dynamics [29]. It is however not a real
tunneling behavior in the conventional quantum mechanical sense, since it is not mediated
by an evanescent wave [163].
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3.1.5 Summary

A summarizing list of the principles introduced in this section is given in table 3.1. Following
these principles, we can define a set of design criteria for Dirac fermion optics devices. These
are listed in table 3.2. Note that in principle, the required junction type depends on the
purpose of the device. In a collimator, for example, one might want to exploit the narrow
transmission window of a smooth junction, see fig. 3.3c. At the end of section 3.4.1, after
familiarizing ourselves with the phenomenology of corner reflectors, we will discuss why sharp
junctions are required for these objects.

Photon optics (3D) Dirac fermion optics (2D)

Medium transparent ballistic

Dispersion linear linear

Phase velocity 3 × 108 ms−1 106 ms−1

Snell-Descartes n1 sin θ1 = n2 sin θ2 EF1 sin θ1 = EF2 sin θ2

Critical angle θc = arcsin
(

n2
n1

)

θc = arcsin
(∣

∣

∣

EF2
EF1

∣

∣

∣

)

Fresnel relation T = 1 −
∣

∣

∣

n1 cos θ1−n2 cos θ2
n1 cos θi+n2 cos θ2

∣

∣

∣

2
T = 1 − sinh(πdκ+−) sinh(πdκ−+)

sinh(πdκ++) sinh(πdκ−−)

Table 3.1 – The analogy between Dirac fermions in graphene and photons. The photon
Fresnel relation is valid for light polarized perpendicularly to the plane of incidence. A similar
expression exists for the opposite polarization. The “Fresnel relation” for Dirac fermions is
from ref. [132] and κρσ = kF1(1 + ρ cos θ) − kF2(1 − σ cosφ). Alternative expressions are
given in refs. [30, 161,162,164]

Criterion Solution

Transparent medium, i.e. the mean free
path should exceed the device size: lmfp > L

Use of high-mobility encapsulated graphene
and fabrication of small devices. L ≤ 1 µm
for room-temperature compatibility.

Homogeneous medium, i.e. doping varia-
tions should be kept minimal in order to
avoid mirage effects.

Use of atomically flat hBN as a gate dielec-
tric.

Avoid diffraction for geometrical optics, i.e.
the device should be much larger than the
Fermi wavelength: L > λF

L > 0.1 µm for operation at typical densi-
ties n ∼ 1012 cm−2

Transparent, therefore sharp, junctions (see
note in the main text), i.e. d . λF

Nanostructured bottom gates defined by e-
beam lithography, c.f. section 2.1.2.

Flat interfaces (on the length scale of λF ) see above

Table 3.2 – Design criteria for Dirac fermion optics devices.
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3.2 Review of relevant DFO theory and experiments

Even though the rich phenomenology of the graphene p-n junction was understood quite
early after graphene’s discovery in 2004 and despite the fact that many device proposals have
been made, the experimental demonstration of “actual” DFO devices only became possible
recently, due to the advances in sample fabrication (encapsulation), which were crucial to
attain ballistic transport.

3.2.1 Rectangular barriers

The rectangular potential barrier is the simplest “composite” DFO device and consists of two
straight and parallel p-n junctions. Its optical equivalent is a glass slide, transparent if the
graphene is ballistic between the two junctions, “milky” if it’s diffusive.

The possible use of such a barrier as a Veselago lens – i.e. a flat lens with negative
refractive index – was already identified by Cheianov et al. in 2007 [160]. In 2008, Shytov et
al. [165] theoretically modeled the magneto-transport across such a barrier, also taking into
account its nature as a Fabry-Pérot cavity.

In the same year, first experimental results by Gorbachev et al. [169] and Young &
Kim [50] showed evidence for ballistic transport and signatures of electronic interference (see
fig. 3.4b) in such a rectangular barrier, induced using a (top and bottom) dual gate approach
(see fig. 3.4a). In both cases, the barrier width was on the order of 100 nm. In 2009, the
same device structure was studied by Stander et al. [170]. Again, signatures of quasi-ballistic
transport could be found, quantum interference was not discussed.

Similarly small devices were fabricated by Williams et al. in 2011 [166], who had the orig-
inal idea to study electronic transport parallel instead of perpendicular to the p-n junctions
and who showed that the rectangular barrier can be used as a“waveguide” for electrons, much
like fiber optics for photons (see fig. 3.4c). This experiment was repeated more thoroughly
in suspended graphene by Rickhaus et al. in 2015 [171].

Much larger barriers ∼ 1 µm were realized in 2013 by Rickhaus et al. [51] and Grushina
et al. [172] using suspended graphene in combination with bottom gates. Even over these
large distances, coherent transport was observed in the form of Fabry-Pérot oscillations. Also
studying a suspended sample, Oksanen et al. observed similar oscillations not only in the
conductance, but also in the shot noise [173].

In 2015, Rickhaus et al. found evidence for so-called “snake states”, which are skipping
trajectories along a p-n junction occurring due to magnetic focussing (see also next section)
along the interface in a moderate magnetic field [174]. While this observation is not directly
linked to coherent or geometric electron optics discussed here, the effect they observed is
aided by the high Klein tunneling probability at normal incidence and it is a further example
for the richness of the physics of the graphene p-n junction. In a unipolar semiconductor
heterostructure 2DEG, these states can only be generated by locally inverting the direction
of the magnetic field.

Even though the above-mentioned experiments provided no angular resolution for the
resistance/transmission measurement, which would be a crucial ingredient to directly observe
Klein tunneling, most of the works mentioned here claim to have observed this phenomenon
(or evidence for it), since the absence of back-scattering is part of the Fresnel-expression that
they use to model their device.
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Figure 3.4 – Rectangular barriers and angle-resolved studies. a) Illustration of a
dual gate graphene device, adapted from [50]. b) Fabry-Pérot oscillations in the differen-
tial conductance, adapted from [50]. c) Illustration of p-n-guiding in a rectangular barrier,
adapted from [166]. d) Angle-selective contacts and e) non-local resistance peak correspond-
ing to refracted trajectories, taken from [167]. f) Illustration of a Veselago lens device, taken
from [167]. g) Illustration of fermion trajectories in a magneto-transport experiment through
a gate-induced p-n junction, h) the confirmation of Snell’s law and i) of the Fresnel relation,
extracted from non-local resistance measurements, adapted from [168].

3.2.2 Angle-resolved studies

In order to directly probe the refraction effect or the angular dependence of transmission,
angle-resolved studies require more complex device designs in combination with non-local
measurements and ideally some additional control over electron trajectories using a magnetic
field:

Lee et al. [167] studied the refraction effect in 2015 by measuring the non-local resistance
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both in a square-shaped Veselago lens (fig. 3.4f) and in a more complex device with angle-
selective contacts (fig. 3.4d). In this work, a peak of the non-local resistance (fig. 3.4e) occurs
at the gate voltage ratio that corresponds to the refraction which is required to “bend” the
charge carrier trajectory from the source to the detector contact. A similar approach was
used by Rahman et al. [175], but their results were slightly more ambiguous.

By combining the non-local measurement with a small (non-quantizing) magnetic field,
Chen et al. removed the necessity of having angle-selective contacts, since the magnetic
field could be used to “guide” the electrons across the p-n junction from the source to the
destination contact. They carried out an extensive magneto-transport study in 2016 [168],
where they managed to map out both the Snell-Descartes and the Fresnel relation (see fig.
3.4g-i) using the established method of transverse magnetic focusing (c.f. e.g. [176–180]).

The same magneto-transport approach was employed by Barnard et al. in 2017 [181]
to probe the effectiveness of so-called pinhole collimators for Dirac fermions. Again, the
resistance peak in a non-local measurement was used to detect the intensity of an electron
beam, while the magnetic field was used to control the beam deviation. They demonstrated
a significant reduction of the angular spread of the electron beam by evacuating charge
carriers with oblique incidence through a grounded contact. Note that this is yet a new
way to collimate the electron beam, in addition to the collimation mechanisms provided by
refraction and by the Fresnel relation.

3.2.3 Tilted junctions and electronic switches

Due to the absence of a bandgap, graphene is not a great candidate for transistors, in
particular for logic applications. In bilayer graphene, such a gap can be induced by applying
an out-of-plane electric field [126,182–186].

Even in monolayer graphene, a gap can be forced by the sample geometry: by reducing
the width of the sample towards a quasi-1D channel, quantum confinement leads to an
effective energy gap [192, 193]. However, the edge roughness of these thin ribbons is often
non-negligible and leads to local resonances rather than a uniform confinement. The quest
for the gap in graphene has thus motivated more exotic proposals, building upon the above-
mentioned collimation and reflection properties of the graphene p-n junction. Already in
2006, Katsnelson et al. [30] pointed out that the comparison of a barrier perpendicular to
a graphene channel with a 45◦ tilted barrier (c.f. fig. 3.5a) should yield a big difference in
resistance, since Klein tunneling assists transmission in the perpendicular barrier. However,
a detailed analysis of the 45◦ case and its possible use as a switch was not provided.

A first proposal by Sajjad et al. in 2011 [187] suggests the“illumination”of a gate-induced
n+-p junction with a point source of electrons. A barrier is placed at the junction center to
suppress all trajectories with normal incidence (see fig. 3.5b). The remaining trajectories
undergo total internal reflection when the switch is in the OFF state, whereas they are
refracted around the barrier when the switch is in the ON state.

After providing a theoretical analysis [164] of the experimental characterization of a
tilted p-n junction by Sutar et al. in 2012 [194], Sajjad et al. proposed in 2013 [188]
the combination of two p-n junctions, tilted with respect to each other (see fig. 3.5c), to
induce a transmission gap in a graphene device, predicting ON/OFF ratios on the order of
up to 105. They emphasize the advantage of using a transmission gap, as opposed to the
“structural gap”: It does not reduce the number of channels available for conduction and
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a) b)

c) d)

e) f)

g) h)

Figure 3.5 – Tilted junctions and electronic switches. a) First proposal for a device to
probe Klein tunneling, from [30]. b) Sketch of an electronic switch using the DFO critical
angle, from [187]. c) Sketch of the polarizer-analyzer approach to achieve an OFF effect,
supported by NEGF simulations, from [188]. d) Proposal for a sawtooth gate device, taken
from [189]. e) Illustration of the OFF-state of such a device and f) calculated transmis-
sion/current density as a function of the barrier charge density, from [190]. g) Experimental
resistance of a sawtooth gate device as a function of barrier density, resistance increase on
the left corresponds to OFF-state, from [130]. h) Comparison of various switch geometries,
including a dual-source design, from [191].
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therefore preserves high electronic mobility. Furthermore, they draw yet another analogy
with optics by comparing the pair of p-n junctions to polarizer and analyzer in optics, where
the transmitted intensity is governed by Malus’s law I ∝ cos2 θ.

While Sajjad et al. used an analytical approach combined with non-equilibrium Green’s
function (NEGF) simulations to model their double-junction, Jang et al. studied a similar
device geometry [189] consisting of a sawtooth gate electrode (c.f. fig. 3.5d) by means of
finite difference time domain simulation (GraFDTD) and predicted more modest ON/OFF
ratios on the order of ∼ 100. The same geometry was studied using ray tracing simulations by
Wilmart et al. in 2014 [190], in particular in the light of variations of the sawtooth’s opening
angle and for finite drain-source bias (the latter again by means of NEGF simulations). They
found more conservative predictions for the ON/OFF ratio on the order of 6 and stress the
importance of using sharp p-n junctions for achieving high transparency in the ON regime,
see fig. 3.5e-f. In yet another theoretical ray tracing study, Tan et al. examine the use
of so-called Klein tunnel transistors (c.f. fig. 3.5c) for analog high frequency applications
and predict a 10-fold increase in the maximum operating frequency fmax compared to a
conventional graphene FET [195].

In 2015, Rickhaus et al. [196] fabricated tilted p-n junctions in suspended bilayer graphene.
They demonstrated that these junctions could be used as beamsplitters and further showed
that the effective junction position could be shifted significantly by applying asymmetric gate
voltages, which makes the beamsplitter suitable for use in a tunable electronic interferome-
ter. In 2017, Morikawa et al. fabricated the first sawtooth-gate device [130], based on the
proposal by Wilmart et al. and indeed observed a switching effect, in qualitative agreement
with theory (c.f. fig. 3.5g), and a small ON/OFF ratio on the order of 1.3. Since the control
of the device geometry was limited in this study (rough p-n junctions, non-uniform current
injection, tilted channel) and the data analysis was complicated due to the use of dual gates
– i.e. there is no independent control of the doping on either side of the junction – a more
quantitative understanding of the experimental data was not possible. In this thesis, almost
the same geometry is studied, but with a much more precise control of the doping and an
overall improved sample quality. Furthermore, our study focuses on understanding different
regimes of electron optics.

As far as the electronic switch is concerned, a recent (2019) study by Wang et al. [197]
re-iterated the initial device design of tilted p-n junction switches [188] in order to overcome
edge scattering, “multiple bounce trajectories” and leakage at the sawtooth tips, as discussed
by Elahi et al. [191]: Using an isosceles right triangle with contacts on all sides of the prism
is supposed to lead to direct absorption of charge carriers by one of the source contacts if
they are reflected by the hypotenuse junction on the drain side. This is illustrated in fig.
3.5h.

3.2.4 Other DFO studies

Similarly to studies of electron quantum optics in the one dimensional edge channels of semi-
conductor heterostructures in strong magnetic fields [198], graphene has become a platform
for this type of experiment [199–201]. Its advantages compared to semiconductor 2DEGs
are the tunability of the charge carrier density and the additional possibility to explore
electron-hole symmetry. However, due to its gapless nature, it is much more difficult to cre-
ate completely isolating regions in graphene and its etched boundaries promote scattering.
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As mentioned in section 3.2.3, the absence of a gap can be overcome by applying an electric
field to bilayer graphene, making it a potential candidate for this kind of experiment.

Beyond what is discussed here, more complex DFO device structures and experiments
have been proposed, like a two-dimensional solid-state electron microscope [202] and chaotic
ray dynamics giving rise to a so-called “relativistic quantum chimera” [203]. An example for
a more complex experimentally studied system is the analogy with Mie scattering by Caridad
et al. [204].

Dirac fermion optics has also been explored beyond the pure transport approach, e.g.
by combining transport with scanning gate microscopy to probe a DFO lens [205] or with
scanning tunneling microscopy and spectroscopy to characterize the local doping profile of
graphene p-n junctions at the atomic scale [127].

3.2.5 Conclusion

To summarize, there have been many theoretical proposals on how to study and exploit
Dirac fermion optics throughout the last 10-15 years, but the systems studied experimentally
have been extremely simple so far, which is understandable if we take into account the
technological challenges involved in the fabrication of such devices.

The device structure discussed in the following was initially inspired by the tilted-junction
proposals mentioned above. It was theorized in 2014 by Wilmart et al. [190] as a Klein
tunneling transistor (KTT), demonstrated experimentally by Morikawa et al. [130] as a
Dirac fermion reflector (DFR) in 2017 and – because we are now looking at the special case
of a 90◦ apex prism – we will call it corner reflector (CR) throughout this thesis.

It turns out that progress in terms of device fabrication and the independent control of
refractive indices using nanostructured bottom gates enabled us to go further than previ-
ous studies and to quantitatively understand electronic transport in this functional device
structure.
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3.3 Modeling the corner reflector

Before we start discussing the trajectories in our “electronic” prism, let us first have a look
at its optical equivalent. Figure 3.6 shows photographs of a 90◦ glass prism illuminated by
a green laser. The prism was placed on a black table in a dark room and the light rays were
made visible by blowing smoke on the experimental set up. Both in panel (a) and in panel

a) b)

c) d)

Figure 3.6 – Table-top experiment with a laser pointer and a 90◦ glass prism. a) and c)
Top and side view of sub-critical incidence. b) and d) Top and side view of super-critical
incidence. The red arrow illustrates the incident laser beam.

(b) we can see that a small fraction of the laser beam is reflected before it even enters the
prism. The beam then undergoes two reflections inside the prism and exits the prism under
the original angle. Of course, a small fraction of the beam is reflected back into the prism at
the exit point, undergoes two reflections again and reaches a different exit point. Upon close
inspection this second exit point can be identified in panel (b). A lot of the physics that we
will discuss in the following is already captured in this simple picture. However, there are
two substantial differences to the 2D electronic prism:

Firstly, as we can see in panel (a), there are incidence angles for which our optical prism
cannot guarantee total internal reflection (TIR) on the tilted sides of the prism and the laser
beam can escape to the other side. As we will see in the following, our electronic prism can
be tuned to very high refractive indices, which guarantees TIR for all incidence angles.

Secondly, the refractive index of the glass prism is obviously positive. The electronic
prism however will be operated in the negative refraction regime, where it turns out to work
best.
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3.3.1 Analytical model

Let us now analyze in more detail the prism geometry mentioned in the previous section.
This analysis is based on references [23,190] and on the Supplementary Material of ref. [26].
Figure 3.7 shows a typical trajectory of a Dirac fermion inside a α = 90◦ apex prism. The
fermion beam hits the “base” junction (1) with an incidence angle θ and – if it is transmitted
– travels inside the prism with angle φ. In the following, we will refer to the doping inside
(outside) of the prism as nB (nA).

Even if some of the following analysis is valid for arbitrary doping ratios, we will mostly
focus on the case of bipolar junctions (nAnB < 0) with a higher refractive index inside the
prism |nB| > |nA|. This means that the refraction on junction (1) is negative and that the
incident fermion beam is collimated to an angular spread of −θc ≤ φ ≤ +θc.

nBnA

1

2

3

ϕ

ϕ'

θ
ϕ2

ϕ3

α

β

h

Figure 3.7 – A typical TIR trajectory with two round-trips inside the prism with α ≈ 90◦

apex.

We will first consider the case of arbitrary apex angle (not too far from 90◦) and introduce
the opening angle β = (180◦ − α)/2 of the prism. In this case, the incidence angles on the
first (φ2) and the second tilted junction (φ3) and the “return angle” to the baseline (φ′) are
given by:

φ2 = β − φ (3.7)

φ3 = 180◦ − 3β + φ (3.8)

φ′ = 180◦ − 4β + φ (3.9)

If we want to ensure total internal reflection (TIR) – for all incidence angles θ – on both
titled junctions (2) and (3) during the first round-trip of the fermion, we require φmin

2 , φmin
3 >

θc. Now φmin
2 = β − θc and φmin

3 = 180◦ − 3β − θc, which yields the conditions:
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where we used the definition of the critical angle from equation 3.2. For the 90◦ apex prism,
both conditions are satisfied by [190]:

∣

∣

∣

∣

nB
nA

∣

∣

∣

∣

> 6.8 (3.12)

which corresponds to an effective refractive index of η =
√

6.8 = 2.6. It is important to point
out that in the context of conventional photon optics, this is a very high refractive index.
Window glass has η ≈ 1.5, while diamond reaches η ≈ 2.4. Figure 3.6a and c illustrates
this with a glass prism and a green laser: for some incidence angles, the laser can escape
the prism. A naturally occuring material that could potentially be compared to our Dirac
fermion CRs is moissanite with η ≈ 2.7, but we will see in the following section that our
DFO experimental range goes far beyond these values.

It is clear that in the case of the “magic” 90◦ apex prism – which we call corner reflector
– equation 3.9 simplifies to φ′ = φ, which means that when the fermion is reflected from
the “base” junction (1) back into the prism, it will go through recurrent trajectories; the
incidence angles on all junctions will stay the same. For the case of the glass prism, this
phenomenon can be observed in figure 3.6b, where one can see (i) the initial back-reflection
of the laser before entering the prism, (ii) the beam exiting the prism after one round-trip
and (iii) the beam exiting after the second round-trip, parallel in direction and similar in
intensity to the initial back-reflection (i).

The probability to stay in the prism after one round trip is Pstay = (1−T2)(1−T3)(1−T1),
where Ti corresponds to the exit transmission probability at the ith junction. We have
dropped the angle dependence for better readability: Ti ≡ Ti(θ) ≡ TB→A(φi). The probability
to be reflected through the “base” junction after one cycle is Rcycle = (1−T2)(1−T3)T1. The
total reflection probability after N cycles can be written in the form of a geometric series:

R(N)
CR (θ) = 1 − T1(θ) + T1(θ)

N−1
∑

i=0

P i
stay(θ)Rcycle(θ) (3.13)

= 1 − T1(θ)
[

1 −Rcycle(θ)
1 − PN

stay(θ)

1 − Pstay(θ)

]

where the first term 1 − T1 represents the probability of being reflected before entering the
prism. We can rewrite this as a transmission probability:

T (N)
CR (θ) = T1(θ)

[

1 −Rcycle(θ)
1 − PN

stay(θ)

1 − Pstay(θ)

]

(3.14)

The reason why we initially consider the sum over the cycle reflection Rcycle and not
the cycle transmission Tcycle = T2 + (1 − T2)T3 is that the latter is zero in the TIR regime
|nB/nA| > 6.8 where T2 = T3 = 0. However, as we will see in the experimental section, a
residual transmission Tres is observed even in the TIR regime. We explain this by taking
into account a finite scattering rate within the prism, using the simple hypothesis that a
scattering event definitely leads to a transmission. This means that we overestimate the
residual transmission, since the scattering event could also lead to a reflection. Within this
approximation, the residual transmission is obtained by truncating the sum over the cycle
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reflection after N = ℓmfp/ℓ1 cycles, where ℓmfp denotes the mean free path and ℓ1 is the
single cycle dwell length. For small φ, i.e. for sufficiently collimated beams, this is ℓ1 ≈ 2h,
where h is the height of the prism. In the TIR regime, where T2 = T3 = 0, Rcycle = T1 and
Pstay = 1 − T1, the above expression simplifies to:

T (N)
res (θ) = T1(θ)[1 − T1(θ)]N (3.15)

Including a cos θ weight to take into account the distribution of the incident modes
and averaging equations 3.14 and 3.15 over all angles yields the following formulas for the
transmission of the corner reflector for a given mean free path:

〈TCR〉 =

∫ π/2

0
T1(θ)



1 −Rcycle(θ)
1 − Pℓmfp/ℓ1

stay (θ)

1 − Pstay(θ)



 cos θ dθ (3.16)

〈Tres〉 =

∫ π/2

0
T1(θ)[1 − T1(θ)]ℓmfp/ℓ1 cos θ dθ (3.17)

where the second formula is specific to the TIR regime. Note that while the Snell-Descartes
relation still enters implicitly in equation 3.16 for the calculation of the angles φ2 and φ3,
it loses drastically in significance for equation 3.17. In the TIR regime, the Snell-Descartes
relation is encoded in T2 = T3 = 0 and the residual device transmission is essentially governed
by the Fresnel relation 3.6, which is constant for high refractive indices, c.f. figure 3.3d.
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Figure 3.8 – Residual transmission vs. number of round-trips. 〈TKT〉 ≈ 0.46 is the
transmission of a single straight p-n junction. Inset: Angular dependence of the transmission
of increasing number of round-trips: 0 (blue), 1 (orange etc.), 2, 3, 5, 10. The dashed black
line is cos(θ), by which transmissions are weighted.

In figure 3.8, we consider various junction lengths d around 30 nm, an access density nA =
0.5 × 1012 cm−2 (unless indicated otherwise) and a barrier density of nB = −5 × 1012 cm−2,
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which corresponds to a refractive index of −
√

10 ≈ −3.2. We plot the residual transmission
〈Tres〉 as a function of the number of round-trips in the prism according to eq. 3.17. For
zero round-trips, we recover the transmission of a straight p − n junction with the same
parameters, 〈TKT〉 ≈ 0.46. Here we used the Cayssol-Huard formula, c.f. eq. 3.6, for
the junction transparency T1(θ). This evaluation shows that the residual transmission is
robust and does not significantly vary with the junction length or the doping ratio nB/nA.
The inset illustrates the suppression of the angle-dependent residual transmission for an
increasing number of round-trips N = 0, 1, 2, 3, 5, 10. At zero round trips, again, we recover
the transmission of a p − n junction, which is unity at zero incidence angle, due to Klein
tunneling. This maximum is suppressed immediately by the effect of the CR, since normal
incidence trajectories are back-reflected with a probability of unity after one round-trip.
Trajectories with oblique incidence have a longer dwell-time in the prism, which means that
they can still contribute to the residual transmission after a considerable number of round-
trips. For a given incidence angle θ, eq. 3.15 enables us to estimate the number of round-trips
required to reduce the transmission to a small value ǫ:

Nǫ(θ) =
log(ǫ) − log(T1(θ))

log(1 − T1(θ))
(3.18)

For example, for θ = 30◦, we read T1(30◦) ≈ 0.5 from the inset of fig. 3.8. In order to
achieve a 99% reflection (ǫ = 0.01), we thus require Nǫ ≈ 6 round-trips. These considerations
demonstrate how useful the analytical approach is for making predictions of the behavior of
a complex DFO device.

For smooth junctions with d ≫ 20 nm, the angle-averaged transmission is smaller than
for the sharp junctions considered here, see fig. 3.3c. This means that the zero-round-
trip transmission is significantly reduced in this case, and for the same reason, the residual
transmission exhibits a weaker dependence on the number of round-trips. This will be
discussed again at the end of section 3.4.1.

3.3.2 Ray tracing simulations

In order to numerically model DFO devices, ray tracing simulations – a.k.a. the billiard
model – have been used by various groups (including our own) [124, 130, 190, 191, 195, 197].
For this thesis, similar simulations were done using a home-made Python code. The principle
is simple: Fermions are considered to be infinitely small, non-interacting particles moving in
straight lines unless they are reflected or refracted by a p-n junction. The probability weight
of the fermions is initially ν = 1, or weighted by a cos(θ) distribution at the injection elec-
trode in order to take into account a uniform distribution of transverse wavevectors. When
fermions hit a p-n junction, the new probability weight for the reflected/transmitted fermion
is calculated according to the Fresnel relation (eq. 3.6). By integrating the probability weight
of the fermions transmitted through the “electronic prism” over all possible trajectories, one
obtains the total transmission across the device:

〈T (nA, nB)〉θ =
1

2h

h
∑

0

∆y

π/2
∑

−π/2

∆θ T (nA, nB, y, θ) cos(θ) (3.19)

where ∆y and ∆θ are the discretizations for the initial position and the incidence angle of
the fermion, respectively, and h is the height of the right-angle prism. The sum over y only
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goes to half the total length of the prism baseline, due to the symmetry of the problem.

Examples for the calculated trajectories, including the probability weight as a color code,
are given in figure 3.9. Panel (a) depicts the situation of a low doping contrast nB/nA = −2
– corresponding to a refractive index nr = −1.4 and a critical angle of φc = 45◦ – where
total internal reflection is not guaranteed for all incidence angles. The light red arrows on
the “drain” (right) side of the prism illustrate this. The other panels (b-e) show that this is
no longer the case for a sufficiently high doping ratio |nB/nA| = 10.

mfp

a) b) c) d) e)

mfp mfp mfp mfp

Figure 3.9 – Ray tracing simulations. Panels (a-e) show calculated trajectories with
color-coded probability weight for different doping ratios, incidence angles and mean free
paths.

The panels (b-d) of the figure illustrate trajectories for increasing incidence angles. At
small angles (θ = 5◦), almost the entire probability weight is reflected after one round trip in
the prism. At θ = 20◦, multiple round-trips with significant probability weight are possible.
At high incidence angle θ = 60◦, almost the entire probability weight is reflected before even
entering the prism. For the residual transmission this means that intermediate incidence
angles contribute the most, as illustrated in the inset of fig. 3.8.

Scattering (impurity, defect, phonon, ...) inside the prism can be taken into account
by truncating the total dwell length at the mean free path ℓph (that we assume here to be
limited by phonons), which is indicated by the little black stars in fig. 3.9. At this point,
there are a couple of options from the simulation point of view:

• The fermion can be transmitted to the drain side with 100% probability, in accordance
with the assumption used in the analytical model.

• The fermion can be transmitted to the drain side with 50% probability, or be reflected
back to the source.

• The trajectory can continue with a new direction of propagation sampled from a uni-
form distribution.

• The trajectory can continue with a new direction of propagation sampled from a prob-
ability distribution that eliminates back-scattering, e.g. 1 − cos θ.
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The first option has the advantage of being extremely simple and 100% compatible (at
least in the total internal reflection regime) with the analytical model described in the pre-
vious section, as we will see in the comparison with the experimental data in section 3.4.1.
It has the disadvantage of overestimating the residual transmission.

We have carried out ray tracing simulations with both the first (section 3.4.1) and the
third method (appendix 6.3). Both show a linear 〈Tres〉 ∝ ℓ−1mfp dependence with prefactors
of the same order of magnitude, which suggests that the exact scattering distribution does
not play a major role for the leak transmission.

A more detailed analysis of these ray tracing simulations and possible improvements, like
e.g. the use of a Monte-Carlo approach to sample the scattering lengths from an exponential
distribution, goes beyond the scope of this thesis. As mentioned above, ray tracing is a very
common tool to study DFO problems, but it can be very costly in terms of calculation time
and programming effort. We will see in this chapter that the simple analytical model from
the previous section is sufficient to quantitatively reproduce the experimental data, which
is good news, considering the effort that has been invested in complicated simulations of
similar geometries [130,190,191,195,197].

3.4 Experimental results

The challenges inherent to the fabrication of CRs are manifold, c.f. the design criteria in table
3.2. In particular the fabrication of leak-free gate electrodes with ≤30 nm separation, the
deposit of hBN-encapsulated graphene on top of the active zone and the precise alignment
≤50 nm of the e-beam lithography for the fabrication of contacts are difficult steps. For
more details on the fabrication process, see section 2.1 and appendix 6.1.1. Despite these
challenges, which explain the long delay between the proposal by Wilmart et al. in 2014
[190] and this experimental work [26], a reasonable number (eight) of samples survived the
complete fabrication process. The hBN-graphene-hBN stacks were mostly assembled by Luca
Banszerus in Aachen and subsequently transferred onto the bottom gates in Paris. In the
following, we will primarily focus on two samples: CR H9.4 with tungsten gates for “DC”
and CR AuEG-17.ML with gold gates for high frequency measurements. More details on
the other fabricated devices including a comparison of their performances can be found in
section 3.4.5.

There are four main results that will be presented and discussed in the following sec-
tions. The first three cover the various optical regimes that have been explored in the CR:
geometrical, coherent and (weakly) diffusive optics. The last result is the observation of the
reflection effect at elevated frequency (10 GHz). These results are published in ref. [26].

The electronic transport measurements were carried out in the Janis cryogenic (0-40 GHz)
probe station at temperatures T = 6 . . . 300 K. For the first three results, a lock-in amplifier
was used for measuring the device resistance, whereas for the high frequency measurements,
it was measured simultaneously with a vector network analyzer and using DC sources in
combination with a voltage divider. For more details on the protocol, see chapter 2.

3.4.1 The reflection effect as a hallmark of geometrical DFO

Before discussing the measurements, let us briefly recall the the device design and introduce
the relevant variables. To this end, figure 3.10a shows a SEM picture of the device CR-H9.4,
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which will be in the focus of our discussion in the following sections (except for the high
frequency measurements). The encapsulated graphene sample is visible as a transparent
rectangle (1.6 × 1.2 µm2) in the center of the picture. It covers the two gate electrodes –
separated by a slit of around 20 nm (for a simulation of the resulting electrostatic profile and
comments on junction roughness, see section 2.1.2) – and overlaps on the top and bottom
side, where the drain and source electrode form 1D edge contacts with the graphene sheet.

b)a)

Figure 3.10 – The corner reflector device. a) SEM micrograph of sample CR-H9.4. b)
Color plot of the reflector resistance at T = 100 K as a function of carrier density in the
access and barrier regions. The access resistance measured at nB = nA has been subtracted
(dashed white line).

The inner gate electrode VgB defines the doping nB in the barrier region, consisting of
four overlapping right-angle prisms with a base length of 600 nm and a height of 300 nm.
An overlap between neighboring prisms has been added to avoid short gate effects and direct
source-drain tunneling. The minimum gate length is 100 nm ≫ λF and the total gate width
is 1.6 µm. The outer gate electrode VgA controls the doping nA in the access region.

Compared to the combined top- and bottom-gate approach used in ref. [130], the use of
bottom gates only ensures an independent control of the refractive indices inside and outside
of the prisms, since the capacitive coupling of the A gate to the B region – and vice versa –
is kept minimal, illustrated by the orthogonal charge neutrality lines in fig. 3.10b. A similar
approach was used in ref. [197].

Let us now look at the device resistance as a function of these two charge carrier concen-
trations. For a first qualitative impression, this is plotted in figure 3.10b at a temperature
of 100 K. Making use of the hypothesis that the device is fully transparent when the access
and the barrier are tuned to the same doping, we have subtracted the access resistance:
RCR(nA, nB) = Rraw(nA, nB)−Rraw(nB = nA). Note that for an ideal ballistic two-terminal
device, one should actually measure the Landauer resistance RL at full transparency, which
is taken into account further below.

At this temperature, the phase coherence length ℓφ = π~vF /kBT = 240 nm is sufficiently
small compared to the single path dwell length ℓ1 = 600 nm, so that interference effects can
be ignored. However, the acoustic phonon mean free path ℓph ≈ 0.8 µm× 300K/T = 2.4 µm
is still much longer than ℓ1, so that scattering should not majorly disturb the reflection effect
(c.f. design criteria in table 3.2).

The resistance peak at zero nB simply corresponds to the charge carrier depletion at
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the charge neutrality point (CNP). For nA = 0, this resistance peak was overcompensated
by subtracting R(nB = nA). The shading of the quadrants (dark blue = low resistance in
unipolar and light blue = high resistance in bipolar quadrants) is typical for a n-n’-n (n-p-n)
barrier and can be found in refs. [50, 162] for rectangular barriers or in refs. [130, 197] for
geometries similar to the one discussed in this section.

However, we can report here for the first time on a very clear resistance resurgence in the
bipolar n-p-n regime, typical for a corner reflector. As predicted by theory in section 3.3.1,
this resistance resurgence occurs for |nB| > 6.8|nA|, i.e. between the dashed black line and
the x-axis (nA = 0) in fig. 3.10.

A similar, but much weaker resistance increase can be observed in the unipolar and in
the p-n-p quadrants. As we will see below, the resistance increase in the unipolar region is
actually expected to be much higher according to our theory, but this might be due to an
overestimation of the base junction transparency by the Cayssol-Huard model in this regime.
Furthermore, since we are typically dealing with n-doped contacts (see chapter 4), we expect
spurious p-n junction effects when the access region is p-doped. This justifies our choice of
the n-p-n experimental window for the following analysis.

Let us now focus on the data in the red dashed box in fig. 3.10, i.e. on the window
0.2 × 1012 cm−2 ≤ nA ≤ 1 × 1012 cm−2 and −8 × 1012 cm−2 ≤ nB ≤ 4 × 1012 cm−2, which
corresponds to Fermi wavelengths of 35 nm ≤ λFA ≤ 79 nm and λFB ≥ 12 nm. Note that
in this window, our effective junction length d ≈ 30 nm (see COMSOL simulation in section
2.1.2) is neither particularly smooth nor particularly sharp, which justifies the use of the
Cayssol-Huard expression for the junction transparency.

In terms of the effective refractive index η = sign(nB/nA)
√

|nB/nA|, we are exploring a
very wide range −6.3 < η < 4.4, going to much higher values than what can be reached in
conventional optical media (e.g. diamond with η = 2.4).

The data of this experimental window is plotted in figure 3.11a. Here we clearly see the
sharp peak at the barrier CNP nB = 0, the resistance dips on both sides for |nB/nA| ∼ 1
followed by a resurgence for |nB/nA| ≫ 1. As mentioned before, the resurgence is less
dramatic in the n-n’-n regime than in the n-p-n regime. Eventually, the resistance saturates
on both sides, forming resistance plateaus. On the n-p-n side, the plateau resistance clearly
decreases with increasing nA, which could intuitively be understood by taking into account
(a) the increasing ratio of refractive indices, therefore a smaller critical angle and a stronger
total internal reflection effect and/or (b) the increasing number of ballistic modes M =
kFAW/π impinging from the access region.

For the smallest value of nA, the plateau resistance exceeds the value at the charge
neutrality point, highlighting the significance of this reflection effect.

The resistance RCR(nA, nB) = R(nA, nB) − R(nA = nB) can easily be converted into a
transmission: TCR(nA, nB) = RL(nA)/[RCR(nA, nB) + RL(nA)], where RL(nA) is the two-
terminal resistance of a ballistic sample with M modes and a four-fold degeneracy:

RL(nA) =
h

4e2
π

kFAW
(3.20)

This transmission is shown in figure 3.11c. The plateaus for different nA coincide when
plotted as a transmission, which strongly suggests that the variation of the plateau resistance
in fig. 3.11a is primarily due to the variation of M , c.f. hypothesis (b) above.
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a) b)

d)c)
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Figure 3.11 – The reflection effect. a) Experimental (T = 100 K) and b) simulated
(ℓph = 2.4 µm) device resistance as a function of barrier doping nB for various access doping
values nA. c) Experimental and d) simulated device transmission. In the simulation panels,
solid lines correspond to analytical calculations according to eq. 3.16, while dashed lines in
(b) are from a full ray tracing simulation. The dashed-dotted blue line describes a rectangular
barrier, while the dotted blue line corresponds to the CR resistance/transmission in the case
of infinite round-trips. Both are calculated for nA = 0.24 × 1012 cm−2.

The fact that the plateau transmission is eventually independent of both nA and nB
might initially surprise the reader, since the TIR effect discussed in section 3.3.1 is a direct
consequence of the high ratio of refractive indices, but – as we established at the end of that
modeling section – the residual device transmission in the TIR regime is no longer governed
by the Snell-Descartes relation, but purely by the “base” junction transparency, which is
constant for large |nB/nA|, see fig. 3.3d.

The panels (b) and (d) of figure 3.11 show the calculated resistance and transmission, re-
spectively. The solid lines are computed using equation 3.16, inserting the phonon mean free
path ℓph = 2.4 µm (for T = 100 K), the junction length d = 30 nm and a leak transmission
of Tleak = 9.5%, the origin of which will become clear in section 3.4.3. The plateau values
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in resistance and transmission are reproduced by this calculation with remarkable precision,
without any adjustable parameters. The dashed lines in panel (b) illustrate the results of a
corresponding ray tracing simulation as described in section 3.3.2. Both the resistance dip
and the plateau value are in quantitative agreement with the analytical formula. Between the
dip and the plateau, there is a slight deviation due to the limited validity of the assumptions
underlying eq. 3.16 and due to the discretization of the ray-tracing simulation, but this is
irrelevant to the analysis in the following, where we will focus on the resistance plateaus.

For comparison, the dashed-dotted blue line in the simulation figures represents the
computed resistance/transmission of a rectangular ballistic barrier. Obviously, in this geom-
etry, there is no resistance resurgence due to total internal reflection. As already shown in
ref. [190], the resistance dip (“ON” effect) of the CR on the n-p-n side basically corresponds
to the resistance of a rectangular junction and therefore depends on the p-n junction length,
c.f. fig. 3.3.

Again for comparison, the dotted blue line illustrates the situation ℓph = ∞. In this
case, the transmission drops to zero (or to 9.5% when taking into account the leak) and
resistance rises to infinity in the TIR regime. The strong deviation between this scattering-
free picture [190] and our experimental observation highlights the importance of taking into
account a finite escape probability for the fermions that undergo multiple internal reflections
inside the prism.

The fact that the “Dirac peak” at nB = 0 is much sharper in the simulation than in the
experiment can be explained considering that neither thermal smearing nor a residual charge
carrier density are taken into account in this calculation.

In Morikawa et al. [130], similar resistance resurgences are observed in a device with a
prism opening angle β ∼ 20◦. However, a resistance plateau could not be observed. This
might have several reasons: The doping ratio required to achieve total internal reflection on
the first tilted junction in such a device is |nB/nA| > 33, c.f. equation 3.10, which is larger
than the experimental window explored in ref. [130] (|nB/nA| . 3). Furthermore, the AFM
images shown in the article indicate a non-negligible junction roughness (an uncertainty of
±5◦ is stated), which is another bottleneck for TIR to be effective. Interestingly, Morikawa
et al. observe a similar discrepancy as we do in the n-n’-n regime, where one would expect
a much stronger resistance increase from theoretical predictions. Also interestingly, they
observed no TIR resistance increase at all for a prism with β ∼ 45◦. One might want to
study their specific sample shape – the graphene channel has an almost 45◦ angle to the
horizontal axis and the charge injection is very localized compared to our sample – in order
to better understand their observation.

The results published by Wang et al. [197] can hardly be compared to this work, since
the doping ratios – i.e. the refractive indices – that their article focuses on are on the order
of ±1. In this weakly refractive regime, total internal reflection on the tilted junction cannot
be guaranteed at all, which is why no resistance resurgence is observed. Furthermore, the
larger gap between the back gate electrodes (possibly convoluted by a high hBN thickness,
information not provided in the article) leads to a reduced transparency of the p-n junction,
i.e. to a smaller resistance dip.

Why sharp junctions? The corner reflector operates in two experimentally distinguishable
regimes. Transmission (resistance dip in fig. 3.11) at small refractive index and reflection,
limited by scattering inside the prism, at high refractive index (resistance plateau in fig.
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3.11). In this context, smooth junctions have two disadvantages: At small refractive index,
the transmission of the device would be reduced due to the narrow angular transmission
window (see fig. 3.3c), whereas at high refractive index, fermions would stay trapped in the
prism for longer, increasing the possibility of scattering-induced leaks. Overall this would
lead to a smaller contrast between the two regimes.

3.4.2 Coherent Dirac fermion optics in a corner reflector

Let us now focus on the low temperature behavior of the CR. Figure 3.12a shows RCR(nB)
at fixed nA ≈ 0.5 × 1012 cm2 for various temperatures between 10 and 280 K. At the lowest
temperature, we can clearly see resistance oscillations superimposed on the TIR plateau.
Panel (b) of the same figure is a zoom on the plateau (−8 × 1012 cm−2 < nB < −3 ×
1012 cm−2), this time plotted vs. the wavevector within the prism kFB.

a) b)

c)

Figure 3.12 – Coherent DFO. a) As temperature increases, the CR resistance plateaus
decrease. b) Quantum oscillations are superimposed to the resistance plateaus for temper-
atures lower than 40 K. c) Sketch illustrating the equivalence between the CR and a Fabry
Pérot cavity for normal incidence trajectories.

The resistance oscillations are periodic in kFB with a period of ∆k = 1.3 × 107 m−1

and their amplitude decreases progressively with increasing temperature. They disappear at
around 40 K.

Even though our prism is not a Fabry-Pérot cavity, we have already established in section
3.3.1 that all trajectories with near-normal incidence (or that are simply sufficiently colli-
mated by the Snell-Descartes and the Fresnel effects) have approximately the same length
ℓ1 = 2h = 600 nm. This means that we can re-interpret our corner reflector’s geometry as a
Fabry-Pérot interferometer with one semitransparent and one fully reflecting mirror, parallel
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to each other and separated by a distance h. This is illustrated in fig. 3.12c. The criterion
for constructive interference is then 2h = mλFB = 2πm/kFB, i.e. kFB = mπ/h = m∆kFB.
This means we can measure the size of the electrostatically defined prism using the resistance
oscillations:

hmeas =
π

∆kFB
= 240 nm (3.21)

which is in fair agreement with the nominal value h = 300 nm. Actually, the deviation
between the nominal and the measured value is only two junction widths (d ≈ 30 nm) and
therefore within the uncertainty of the gate-defined geometry. The temperature where the
oscillations disappear is in accordance with the theoretical smearing temperature Tsmear =
π~vF /kBℓ1 = 40 K. A more involved analysis of coherent transport inside the corner re-
flector could be done by repeating the ray tracing simulations mentioned earlier, taking into
account a phase term that depends on the propagation length. For the simpler geometry of
a rectangular barrier, such a calculation was done in ref. [50]. However, this goes beyond the
scope of this thesis and we will content ourselves with the oscillations as a confirmation of
the geometrical reflection effect and as a “calibration” of the cavity size.

Morikawa et al. [130] mention the existence of “coherent resistance oscillations” at low
temperatures, but they intentionally avoid this regime by characterizing their device at 120
K. Besides, the very clear signature that we show in fig. 3.12b is specific to the 90◦ apex
prism; a different geometry might not ensure a constant round-trip path length.

Wang et al. [197] do not mention any signatures of coherent transport, but, as we pointed
out in the previous section, they do not achieve high enough doping ratios to ensure TIR and,
beyond that, their two-source geometry might affect the possible interference phenomena.

3.4.3 Diffusive optics due to acoustic phonon scattering

Besides the resistance oscillations, another striking feature of fig. 3.12a is the decrease
of the resistance plateau with increasing temperature. Compared to the acoustic phonon
limited resistivity of dR/dT ≈ 0.14 Ω/K measured in a “bulk” graphene sample in ref.
[47], the sensitivity of our CR thermometer is approximately −2 Ω/K if we look at the
dependence of the plateau resistance on temperature, c.f. figure 3.13a and b. Note the
unconventional minus sign of the temperature dependence in our experiment. The fact
that thermal excitations enhance the electronic transmission, instead of reducing it, is a
hallmark of the corner reflector. It violates Matthiessen’s rule that resistance is additive in
the scattering mechanisms and suggests an alternative rule, that it is the transmission that
is additive in the scattering mechanisms. We shall use this property below when we take
into account the corner reflector leakage due to imperfections.

This resistance decrease corresponds to a systematic increase of the residual transmission
of the corner reflector with temperature, see fig. 3.13c (the transmission value is taken as
an average over the plateau −8 × 1012 cm−2 < nB < −5 × 1012 cm−2). Again, we note that
the transmission values are very similar for different values of access doping nA. A linear
increase of the residual transmission can be observed between 0 and 100 K. From 100 K
upwards, the transmission saturates at around 13%.

This linear behavior suggests once more that the residual transmission is assisted by
acoustic phonon scattering. The lowest transmission value, i.e. the extrapolation of this
slope to T = 0 gives us the leak transmission Tleak = 9.5%, that was already used above. We
attribute this constant leak to:
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• conduction at the rough edges of the graphene sample

• leakage at the tips of our prisms

• residual impurity- or defect-scattering

Let us now compare the experimental evolution of the residual transmission with our
analytical model. Since we are strictly in the TIR regime, we can use the simple equation
3.17 and insert the acoustic phonon mean free path ℓph = 0.8 µm×300 K/T (see also section
4.5.2). We observe a good quantitative agreement between the parameter-free model and the
experimentally measured transmission up to T = 100 K (solid lines in the figure). Beyond

a) b)

Figure 3.13 – CR temperature dependence. a) Temperature dependence of resistivity in
a bulk graphene sample, taken from ref. [47]. b) Plateau resistance of the CR as a function
of temperature. c) The plateau transmission increases with temperature up to 100 K, where
it saturates. Solid lines are calculated using equation 3.17. The dotted lines, too, but with
d = 30 nm + 2.25 pm/K2T 2.
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this temperature, the experimentally observed residual transmission saturates. At the same
time, the resistance dip (c.f. fig. 3.12a) starts to be smeared out.

As established in section 3.4.1, the resistance dip measures the single junction transmis-
sion which is linked to the junction width. A smaller dip corresponds to a larger junction
length (inversely said: a sharper junction is more transparent). By introducing an ad-hoc
phenomenological temperature dependence of the junction length d = 30 nm + γT 2, we can
fit our data very well with γ = 2.25 pm/K2 (dotted lines in the figure). However, this implies
d = 200 nm at room temperature, which means that the junctions would extend almost over
the entire prism or at least over the minimal gate length where the prisms overlap. Introduc-
ing this temperature dependence in the junction length is only one of many ways of taking
into account a decrease of junction transparency with increasing temperature, and should
not be taken too “literally”. The T 2 dependence in our ad-hoc expression however suggests
that electron-electron (e-e) interactions might mediate this effect.

In general, e-e interactions and “viscous effects” [206, 207] are not taken into account in
our model, but they could play a non-negligible role in particular at temperatures where the
e-e scattering length becomes comparable to or shorter than the acoustic phonon scattering
length. For EF > kBT , which is always the case in the operating regime of our device, the
e-e scattering length ℓee is on the order of [46]:

ℓee ∼
1

α2
ee

(~vF )2
√
πn

(kBT )2
(3.22)

Here αee ≈ 0.7 is the fine structure constant in hBN-encapsulated graphene (see section
1.6.1), so that ℓee ∼ 5 µm at 100 K. In ref. [206] (supplementary material), more sophisticated
numerical calculations based on the RPA find ℓee ≈ 0.3 µm at 220 K and 3 × 1012 cm−2,
which extrapolates to ℓee ≈ 2 µm at 100 K and 6 × 1012 cm−2. This value is comparable to
the acoustic phonon mean free path at the same temperature, c.f. figure 3.13c.

In the access region, where the doping can be as low as 3 × 1011 cm−2, the e-e mean
free path is on the order of ℓee ∼ 1 µm at 100 K according to the above formula, which is
comparable to the sample width.

There are thus three ways in which e-e interactions could affect the CR transmission at
high temperatures T & 100 K:

• as an additional scattering channel in the barrier, in which case the residual transmis-
sion should increase at high temperature, opposite to the experimental observation

• scrambling the flow of electrons in the access region and therefore cause an increased
back-flow leading to a lower transmission, in accordance with the experimental obser-
vation

• as a renormalization of the junction transmission (Fresnel relations), for which no
theory exists to our knowledge

Morikawa et al. [130] also characterize the temperature dependence of their device by
studying the resistance difference ∆R between two arbitrarily chosen points along the re-
sistance slope for VgB < 0. This would correspond to the left side of our resistance dip.
They observe a weak increase of this ∆R between 0 and 150 K and then a stronger decrease
between 150 and 300 K. This is in accordance with our experiment, c.f. fig. 3.12a: the
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resistance dip stays almost the same up to 140 K, and then decreases gradually from 140 to
280 K. This high temperature behavior corroborates the above-mentioned hypothesis that a
modification to the junction transparency might be required for T & 100 K. Since Morikawa
et al. did not observe the resistance plateaus, the effect of acoustic phonon scattering for
T . 100 K could not be studied in their experiment. Their maximum ∆R is on the order of
150 Ω for a channel width of around 2.4 µm, i.e. 360 Ωµm, whereas the maximum ∆R in
our experiment is ∼ 500 Ω (c.f. fig. 3.11a) for a channel width of 1.6 µm, i.e. 800 Ωµm.

Wang et al. [197] report an ON-OFF ratio that is constant with temperature. Their ON-
OFF ratio is defined between the extreme values of R(VgB ≪ 0) and R(VgB ≫ 0). Again,
the fact that the effect of acoustic phonon scattering is not observed in Wang et al.’s work
is simply explained by the fact that they do not explore the high refractive index regime.
However, a modified junction transparency should still be detectable in the high temperature
limit, provided their device is indeed ballistic.

3.4.4 A corner reflector operating at GHz frequency

Whereas the previously described corner reflector characterization was carried out with a
lock-in amplifier in the kHz range, measurements at GHz frequency require a modification of
the instrumentation: For this type of acquisition, we use a VNA combined with DC sources
and voltmeters, decoupled by bias tees. This was explained in section 2.2, where I also
mentioned the origin of the real and imaginary parts of the HF transistor admittance in
terms of a small signal circuit model.

Figure 3.14 shows a full set of complex admittance parameters Yij of the device CR-
AuEG-17.ML with both gates set to 0 V and a source drain bias voltage of Vds = 10 mV.
The data was acquired between 0 and 21 GHz and at T = 60 K. This temperature was
chosen in order to avoid the coherent CR regime, while observing a strong TIR effect.

For clarity, the small signal circuit quantities – i.e. the drain-source conductance R−1ds , the
transconductance gm = ∂Ids/∂VgB and the various intrinsic (and parasitic: superscript zero)
capacitances, as introduced in section 2.2 – are indicated on the graphs. In the following,
we focus in particular on R−1ds and gm. It is clear from figure 3.14 that both are very small:
R−1ds < 1 mS and gm ∼ 1 µS. Compared to admittances on the order of 10 mS for the plasma
resonance capacitors discussed in chapter 4, this small signal is obviously more prone to noise
and an increased influence of systematic errors, as we will see in the following.

Even taking into account the small device width of ∼ 1 µm, these values are disappoint-
ingly low compared to state of the art graphene transistors, where drain-source conductances
on the order of 8 mS/µm per unit width can be reached [144]. The main issue here is the
high contact resistance ∼ 5 kΩ of the CR devices. This could be addressed by gating the
contact [27,129] or enhancing the contact length by etching it into a comb shape [27].

The transconductance is in principle proportional to the applied DC bias Vds, but since
we want to preserve the ballistic CR effect, we cannot apply biases on the order of 1 V,
where the transconductance can go up to ∼ 300 µS/µm in state of the art devices [144].

Due to the weak response of our device, the de-embedding was kept at a minimum: no
thru-line was used, only the dummy parasitic capacitances were subtracted (c.f. section 2.2).
Since the reference device did not have exactly the same geometry as the device under test
in the center region, the de-embedding is approximative, which might explain certain offsets
observed in the following.
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Figure 3.14 – CR admittance spectra. Complex admittance parameters of CR-AuEG-
17.ML at T = 60 K, VgA, VgB = 0 and Vds = 10 mV.

In order to study the CR behavior at high frequency, we performed gate voltage sweeps
in the same manner as in the previous sections: The access gate VgA was kept fixed while
the barrier gate VgB was swept. For each point in VgB, only a “narrow bandwidth” spectrum
9.5 . . . 10.5 GHz was acquired, because time was a limiting factor (liquid helium consumption,
stability of the device behavior, probe tip jumps). This frequency range was chosen because
it was still relatively noise-free, compared to the data at 20 GHz, see fig. 3.14.

The data was then averaged over this frequency range and the result is plotted in fig.
3.15. The panels on the left show the DC device resistance and transconductance (calculated
by numerical differentiation) and the panels on the right show the corresponding values
extracted from the VNA spectra. For clarity, and similarly to section 3.4.1, only a reduced
set of (n-doped) VgA is shown.

Even though we observe large offsets between the DC and the 10 GHz data both in Rds

and in gm, the resistance dips and plateaus, which are characteristic for the CR, are clearly
visible in both data sets. The transconductance has two sharp peaks close to the charge
neutrality point, but remains relatively flat otherwise, in accordance with the weak slope of
Rds(VgB) in the vicinity of the plateaus. The inset of figure 3.15 shows a plot of the drain-gate
capacitance, extracted from the slope of Im(Y12). Here again, the absolute value of ∼ 0.5 fF
is only in approximate agreement with the predicted value (3 fF/µm2 × 0.3 µm2 = 0.9 fF),
but we observe the characteristic quantum dip of capacitance around the charge neutrality
point. Interestingly, the capacitance seems to depend on the access gate voltage, which might
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a) b)

c) d)

Figure 3.15 – CR operating at GHz frequency. a/c) DC device resis-
tance/transconductance as a function of barrier gate voltage for various access gate voltages.
Inset a) Micrograph of device CR-AuEG-17.ML with 200 µm scale bar. b/d) Source-drain
resistance/transconductance at 10 GHz. Inset d) Gate-drain capacitance.

be due to cross-talk between the access and the barrier region.
Even though these results imply that our device is not a great candidate for high frequency

electronics applications, they still constitute – to my knowledge – the first demonstration of
Dirac fermion optics in this very high frequency range. From a fundamental point of view,
this observation is not surprising since the dwell time of fermions in the device is on the
order of picoseconds: compared to this timescale, GHz measurements are still quasi-static
and higher frequencies or larger devices are required to actually probe the dynamics (dwell
time) of the charge carriers.

Due to the aforementioned issues with contact resistance, a more detailed analysis of
cut-off frequency, power gain and other figures of merit of high speed transistors and the
comparison with theoretical proposals [195], in particular concerning the dwell time [208],
are beyond the scope of this thesis.
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3.4.5 Comparison of all fabricated devices

A total of eight corner reflectors was fabricated throughout this thesis. They are listed in
table 3.3 and SEM pictures of all devices are shown in 3.16. Out of this series, three devices
were defective: CR H8.2 and CR H8.4 had broken contacts, CR-AuEG-11.MC had a leak
between the two gate electrodes. The remaining five samples all showed the desired reflection
effect (increase in resistance for high doping contrast).

gate contact apex bottom hBN nA
sample material material angle thickness [nm] [1012cm−2] T [K]

CR H4 1x3 W Cr/Au 90◦ 6 -0.17 20

CR H5 2x3 W Cr/Au 90◦ 25 -0.11 20

CR H8.2 W Ti/Al 90◦ 8 defective

CR H8.4 W Ti/Al 90◦ ∼12 defective

CR H9.4 W Cr/Au 90◦ 9 0.33 60

CR-AuEG-11.MC Au Cr/Au 120◦ 21 defective

CR-AuEG-17.BL Au Cr/Au 90◦ 19 -0.34 7

CR-AuEG-17.ML Au Cr/Au 90◦ 5 0.85 60

Table 3.3 – List of fabricated CRs. nA and T denote the charge carrier density (positive for
electron, negative for hole doping) and the working temperatures used in figure 3.17. The
two samples that we have mostly focused on are highlighted in bold.

CR H4 1x3 CR H5 2x3 CR H8.2 CR H8.4

CR H9.4 CR AuEG-11.MC CR AuEG-17.BL CR AuEG-17.ML

Figure 3.16 – SEM micrographs of the corner reflector samples fabricated throughout this
thesis. The blue scale bar in each picture corresponds to 1 µm. Red crosses indicate samples
that could not be characterized because they broke early.

This is illustrated in figure 3.17, where the device resistance (minus the minimum re-
sistance, similarly to what was explained previously) at the “working point” is plotted as a
function of the doping ratio nB/nA. Here I define the “working point” as the combination
of access density nA and temperature T (c.f. table 3.3) where I obtained the best data for a
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given device. Since the devices also have different gate capacitances, it makes sense to plot
the resistance as a function of the dimensionless density ratio for comparability.

−15 −10 −5 0 5 10 15
nB/nA

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R C
R

[k
Ω]

CR H4 1x3
CR H5 2x3
CR H9.4
CR-AuEG-17.BL
CR-AuEG-17.ML

Figure 3.17 – Scaling of the reflection effect. Device resistance (minus minimum resis-
tance) for all working CRs as a function of the dimensionless doping ratio nB/nA at the
working point nA, T given in table 3.3. Vertical black lines correspond to |nB/nA| = 6.8.

While all devices show the characteristic resistance dips on either side of the barrier
charge neutrality point, the first two devices CR H4 1x3 and CR H5 2x3 have much broader
“Dirac” resistance peaks and only a weak resistance increase due to the reflection effect. This
can be understood qualitatively in terms of lower mobility (more impurities) and geometric
imperfections, which are clearly visible in fig. 3.16. The other three samples show quantita-
tively comparable behavior, with resistance dips around 0.5 kΩ and plateaus around 1 kΩ in
the bi-polar regime and a much weaker resistance increase for nB/nA ≫ 1 in the uni-polar
regime.

Overall, this scaling behavior shows that the reflection effect is robust and reproducible,
which paves the way for the implementation of DFO principles in real-world applications.

3.5 Conclusion and perspectives

In this chapter, we have investigated gate-tunable corner reflectors for Dirac fermions. Our
state-of-the-art nanofabrication technology has enabled us to explore a broad doping range
and to observe experimental evidence of the reflection effect in the form of a resistance
increase at high doping contrasts. The device transmission eventually saturates, forming
well-defined plateaus that are independent of barrier- and access-doping and which represent
a new phenomenology for this kind of device. In addition to conventional ray-tracing simu-
lations, we have introduced a simple analytical model to calculate the device transmission in
the bipolar regime, in excellent agreement with the experiment. The residual transmission
of our device increases linearly with temperature, leading to an anomalous R(T ) behavior,
which was explained quantitatively by including acoustic phonon scattering as a limit for the
number of round-trips in our model. At the lowest temperatures, quantum oscillations are
superimposed on the resistance plateaus. To our knowledge, Fabry-Pérot oscillations have
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not been reported in this kind of geometry before. Their period corresponds to the round
trip length of the TIR trajectories, providing further evidence for a well-defined potential
landscape (homogeneous prism with a sharp tip and low interface roughness). Finally, and
for the first time to our knowledge, we have performed DFO experiments at GHz frequency.
Due to the large Fermi velocity and the ballisticity of the devices, the demonstration of DFO
at high frequency is not a fundamental surprise, but still a technological achievement, paving
the way for new DFO-based applications. In conclusion, we have studied coherent, geometric
and weakly diffusive optics in the CR devices. We have demonstrated their extreme sensi-
tivity to small scattering rates and their high frequency operation. This makes them ideal
candidates for high speed phonon sensing.
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Figure 3.18 – Phonon time-of-flight measurement. Two CRs in series could detect the
time of flight of (ballistic) phonons as peaks in the source-drain current.

A possible future experiment could therefore be a phonon time-of-flight measurement,
using two CRs in series. This is illustrated in fig. 3.18. A picosecond laser pulse illuminates
a micrometer-sized spot in the vicinity of the CRs, while the sample is under constant bias.
Before the illumination, we would measure the dark current corresponding to a constant
phonon population at T ∼ 10 K. The laser locally heats the sample, creating a phonon pulse
of typical width 10 ps, which travels (ideally ballistically, as ref. [209] suggests) through the
two CRs, causing leak current boosts, as sketched in the graph in fig. 3.18. With a phonon
velocity of approximately 20 km/s, the current peaks should be separated by ∼ 50 ps if the
CRs are separated by ∼ 1 µm distance. The photo-current generated by the laser is not
taken into account in this simple sketch, but it should in principle travel much faster than
the phonons (vF ≫ vph), leading to an early current peak before the two phonon-induced
peaks.

Apart from this application of the CR, a couple of more basic improvements to the
device design could be envisaged: The GHz response could be improved significantly by
reducing the contact resistance, for example by increasing the contact surface with a comb
shape (c.f. plasma resonance capacitors in chapter 4) or by adding contact gates (which
might be difficult due to the geometry imposed by the CPWs). In order to benchmark the
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quality of our tungsten/gold nanostructured gates, reference devices could be fabricated with
graphite gates (c.f. refs. [79, 80, 127]), even though these cannot be used for high frequency
characterization. As was pointed out in the results section, our device still suffers from a
residual leak transmission of 9.5%, which we attribute to scattering at the sample edges and
to possible diffraction effects at the prism tips. The first issue could be solved by eliminating
the sample edges altogether, by creating a Corbino-type device with a flat and a sawtooth-
shaped p-n junction ring, forming a “sunflower” transistor.

As far as GHz transport measurements are concerned, it would make sense to scale up
the devices to a size where the dwell-time enters the high frequency measurement domain.
With a 70 GHz VNA we can access dynamics on the order of ∼ 10 ps, so scaling the prisms
up by a factor of 10 (which should be difficult, but feasible with state of the art encapsulated
graphene samples and a lot of patience) and reducing the contact resistance could enable us
to measure this dwell-time. The transport dynamics could also be investigated by measuring
the shot noise of the corner reflector.

Another interesting experiment would be to submit the CR to a weak magnetic field.
This should significantly change the CR transmission, since the recurrent trajectories would
be destroyed. By fine-tuning the cyclotron radius to some value close to the prism height
h, the TIR effect should be overcome and a transmission close to the rectangular barrier
transmission should be restored. The required field is on the order of B = ~kF /2eh ∼ 0.5 T.

Beyond these CR-related perspectives, I would find it highly interesting to examine DFO
devices with imaging techniques like scanning gate microscopy [205,210,211], a single electron
transistor on an AFM tip [212] or NV centers in diamonds [213]. This could lead to a direct
observation of the refraction/reflection effects and at the same time remove doubts about the
domains of validity of the non-interacting DFO picture. The principles of DFO are obviously
not limited to graphene and can be investigated in other Dirac matter, such as 3D topological
insulators [214] or in Dirac-Weyl materials [215].



4
GHz plasmonics

Based on the notions of plasmonics introduced in chapter 1, we will focus in this chapter on
graphene plasmonics at GHz frequencies. I will first provide a brief motivation of this work
in terms of the high frequency limits of the graphene field effect transistors (GFETs). Then,
I will introduce the transmission line model for plasmonics and show how it reproduces
the plasmon dispersions found from the RPA in chapter 1. A brief bibliography of GHz
plasmonics will be provided, illustrating how the spectral gap in the (sub-)THz regime can
be addressed when Ohmic losses are minimized. The device we will focus on afterwards is
the plasma resonance capacitor (PRC), see fig. 4.1. After providing an analytical model
of the PRC’s admittance, I will show some simulated spectra for both overdamped and
resonant devices. We will then discuss the experimental results, in particular the plasma
resonance observed at ∼ 40 GHz with a quality factor of ∼ 2 at cryogenic temperature. [27]
I will emphasize that GHz spectroscopy is a powerful characterization tool, giving access
to the inductance, capacitance, conductivity of the sample as a function of carrier density
and temperature. Due to the absence of drain-source bias in capacitors, we probe the true
equilibrium properties of the electronic system of interest. Finally, possible applications of
these results will be pointed out and interesting future experiments will be discussed.

Figure 4.1 – Artist view of a plasma resonance capacitor.
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4.1 Motivation

As pointed out in the previous chapter, graphene transistors are not very attractive for
logic applications due to the absence of a gap in graphene, leading to poor ON/OFF ratios.
However, GFETs stay interesting candidates for high frequency applications [150]. Two
important figures of merit of RF transistors are the transit frequency fT and the maximum
oscillation frequency fmax. The former is the frequency were the current gain is unity and
is relevant for logic applications, whereas the latter is the frequency where the power gain
is unity and is relevant for power applications. High mobilities in graphene enable high
drift velocities, and current saturation can be obtained via substrate phonons [216], see
also figure 4.2a [144]. Current saturation is required to obtain a high fmax, since it is
anti-proportional to the square root of the differential source drain conductance gds, which
vanishes at saturation [149,217].

To estimate the fmax of an intrinsic device (which is limited by the material properties
of pristine graphene rather than by impurities in the channel, access resistance or parasitic
capacitances) it is worthwhile considering the BLG transistor from ref. [144], which is also
the subject of chapter 5. With a contact resistance Rc ∼ 150 Ωµm, a transconductance
gm & 0.25 mS/µm, a voltage gain A = gm/gds ∼ 8 (see fig. 4.2c) and a gate capacitance of
C ≈ 1.15 fF/µm2, one predicts a cut-off frequency around fTL ≈ gm/2πC ≈ 34 GHz µm
and a cut-off ratio fmax/fT ≈

√

A/4gmRc ≈ 7, so that for a 2 µm long channel, a maximum
oscillation frequency on the order of 100 GHz can be envisioned.

As examples of actual realizations of such RF transistors, fig. 4.2d and e show the
extraction of fT and fmax from references [218] (gate length 200 nm) and [219] (gate length
500 nm), respectively. We see that between 2011 and 2019, the extrinsic transit frequency of
state-of-the-art devices has increased from fTL ≈ 2 GHz µm to 15 GHz µm. Extrapolated
cut-off frequencies as high as 100 GHz (gate length 240 nm) have been reported in the
literature [220], but fmax remains desperately small. The upper limit of graphene FETs
is currently under investigation at ENS: Figure 4.2 shows an example of an encapsulated
bilayer graphene FET fabricated by David Mele.

Taking into account the fact that within more than a decade of research, the 100 GHz
operation of a GFET has still not been demonstrated and that even for an intrinsic device,
this frequency represents the theoretical limit, it is necessary to explore new device opera-
tion modes, moving from the broadband “fermionic” devices to the narrowband “plasmonic”
devices. Plasma resonance devices could operate in the 0.1−1 THz window, which is par-
ticularly interesting for telecommunication (“5G”) and high resolution RADAR applications.
Intuitively, this can be understood by considering the plasmon velocity, which is several times
larger than the Fermi velocity.

An emblematic device for this paradigm change is the plasma resonance transistor (PRT),
conceptually invented by Dyakonov and Shur in 1993, which exploits a hydrodynamic insta-
bility of the electron fluid to generate or rectify THz radiation [221, 222]. In this chapter,
we focus on a similar, but simpler device, the plasma resonance capacitor, which sustains
quarter wave resonances at longer wavelengths due to its asymmetric boundary conditions.



4.1. MOTIVATION 99

a)

Pallecchi et al. 2011 Bonmann et al. 2019

Voltage gainb)

c)

e) f)

d)

g)

10 µm

Figure 4.2 – fmax of GFETs. a) Current saturation for various gate voltages in a BLG FET,
ref. [144] b) Voltage gain of the device as a function of source-drain and gate voltage. Inset:
Photo of the device. c) Extrinsic (blue) and de-embedded (red) current gain of a graphene-
on-sapphire FET from ref. [218] Inset shows voltage gain U and maximum available gain
(MAG). d) Same quantities from ref. [219]. e and f) SEM pictures of the device from refs. [218]
and [219], respectively. g) Optical image of an encapsulated-graphene high frequency FET
fabricated at ENS.
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4.2 Transmission line model of graphene plasmons

Since we characterize our devices in the electronic (hyperfrequency, GHz) domain it is suit-
able to use an electronic description for plasmons, which is done using circuit models: The
graphene sheet is modeled as a transmission line (TL) and the electron interactions are en-
coded in distributed (lineic) capacitance and inductance. The presence of screening due to a
gate electrode can be taken into account by adding a corresponding capacitive element [223].
Ohmic and radiative losses can be taken into account by adding a resistance [224,225].

a) b)

Figure 4.3 – Transmission line theory. a) Distributed element circuit model of a two-
dimensional electron system. Resistance R, inductance L, capacitance C and “leak” conduc-
tance G are defined per unit length. Adapted from ref. [224]. (b) The infinitesimal elements
R,L, C can be calculated by applying Maxwell’s equations to a static charge distribution
corresponding to a plasmon of wavelength λ. Taken from ref. [225].

Such a transmission line is shown in figure 4.3a. The phase velocity and the characteristic
impedance for electromagnetic waves traveling along such a TL are given by:

vp =

√

1

LC (4.1)

Z∞ =

√

L
C

(4.2)

The expressions for these circuit elements can be derived in various manners, for example
by solving Maxwell’s equations for a static“plasmonic”charge distribution [223,225] as shown
in figure 4.3b or by adequately rewriting the hydrodynamics equations [224]. In the following,
we will simply state these expressions and show that they lead to the same dispersion as the
RPA calculations described in the introduction. All expressions are given per unit length of
the graphene channel, where W denotes its width. Typical values will be given for single layer
graphene with a doping of n = 1012 cm−2, corresponding to a Fermi level of EF = 117 meV,
a Fermi wavevector of kF = 1.77 × 108 m−1 and an electron wavelength of λF = 35 nm.
We will use a plasmon wavelength of λpl = 2π/q = 100 µm, which is very long compared
to infrared and THz studies, but corresponds to the GHz plasmons studied in this chapter.
For hBN-encapsulated devices with a thin dielectric layer, a typical gate-channel distance is
d = 20 nm (with ǫr = 3.2).
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Kinetic inductance: This term can be derived from the collective kinetic energy of a
shifted Fermi disk, as demonstrated e.g. in the supplementary material of ref. [226] or in
ref. [100]. One obtains:

LK =
π~2

We2EF
= 73 pH/W at n = 1012 cm−2 (4.3)

where EF denotes the Fermi energy. The kinetic inductance can therefore be tuned by the
gate voltage. Another example for tunable kinetic inductance is in Josephson junctions,
where this quantity depends on the Josephson phase across the junction. [227]

Faraday inductance: The Faraday inductance can be derived from Maxwell’s equations
for a plasmon of wavelength λpl = 2π/q, taking into account a charge distribution as shown
in figure 4.3b. For the derivation see refs. [223,225]:

LF =
µ0

2qW
= 10 pH/W at λpl = 100 µm (4.4)

which is significantly smaller than LK , even at the very long wavelength considered here.
In infrared studies, where the wavevector is ∼ 1000 times larger, the Faraday inductance is
obviously much smaller.

In-plane electrostatic capacitance: Similarly to the Faraday inductance, this term can
be derived from Maxwell’s equations [223,225]:

CES = 2ǫ0ǫrqW = 3.6 × 10−3 fF/µm2 ×W at λpl = 100 µm (4.5)

where ǫr is the relative permittivity of the surrounding dielectric.

Geometric capacitance: This screening term is simply the capacitance of a parallel plate
capacitor with a plate-separation d:

Cgeo =
ǫ0ǫr
d
W = 1.4 fF/µm2 ×W at d = 20 nm (4.6)

Quantum capacitance: At zero temperature, the quantum capacitance of single layer
graphene is given by:

CQ =
2e2EFW

π(~vF )2
= 27 fF/µm2 ×W at n = 1012 cm−2 (4.7)

Note that while the competition between CES and Cgeo should be seen as “parallel”, i.e. the
larger capacitance dominates [223], Cgeo and CQ are in series (i.e. the smaller dominates) [38].
At the carrier density considered here, we can safely neglect the quantum capacitance since
CQ ≫ CES , Cgeo. In the following we will also neglect LF for simplicity, leaving only LK ,
CES and Cgeo for further analysis.

Unscreened plasmons: The “free” plasmon dispersion is easily found by neglecting the
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presence of the gate electrode, i.e. d → ∞ and Cgeo → 0. In this limit the phase velocity
along the TL is given by:

vp =

√

1

LKCES
=

[

π~2

We2EF
2ǫ0ǫrqW

]− 1
2

= vF

√

2αeekF
q

≈ 1.2
√

kF /q vF (4.8)

leading to the same result for ω = vpq that was obtained from the random phase approxi-
mation, see equation 1.59.

Screened plasmons: For strongly screened plasmons, we simply neglect the in-plane elec-
trostatic capacitance CES (which is valid in the limit λpl ≫ d) and find:

vp =

√

1

LKCgeo
=

[

π~2

We2EF

ǫ0ǫrW

d

]− 1
2

= 2vF
√

αeekFd ≈ 1.7
√

kFd vF (4.9)

in accordance with the linear dispersion found from the RPA, c.f. equation 1.63.

Bilayer graphene plasmons: We can simply find the plasmon dispersion of BLG using
the kinetic inductance of a massive 2DEG, c.f. e.g. ref. [97, 100]:

LK =
m∗

ne2W
(4.10)

where m∗ = 0.03me is the effective electron mass in bilayer graphene. One obtains (see also
ref. [7]):

vp =

[

m∗

ne2W
2ǫ0ǫrqW

]− 1
2

=

√

ne2

2ǫ0ǫrm∗q
(4.11)

which is valid both for BLG and for“conventional”semiconductor 2DEGs. Note that here the
plasmon velocity is proportional to n1/2 as opposed to n1/4 in SLG, which makes the effect of
doping modulation – by applying a gate voltage – more dramatic in bilayer graphene. This
increased tunability of the plasmon velocity in BLG was recently exploited for resonant THz
photodetection in ref. [106]. For screened BLG plasmons, one obtains (see also ref. [97]):

vp =

[

m∗

ne2W

ǫ0ǫrW

d

]− 1
2

=

√

ne2d

ǫ0ǫrm∗
(4.12)

We have seen that the TL model reliably reproduces the dispersion of two-dimensional
plasmons in various limiting cases. Not only is this approach reasonable with respect to
the (electronic) spectral range that we will consider, it also enables us to calculate the
complex admittance of the plasma resonance capacitor (section 4.4) and to take into account
additional circuit elements, like the finite access resistance or p-n junctions in the graphene
channel (see conclusion and perspectives).

4.3 Literature review

Graphene plasmons have been probed using a variety of techniques, ranging from electron
energy loss spectroscopy [101,228–230] over angle-resolved photo-emission spectroscopy [231]
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and scanning tunneling spectroscopy [232] to a whole series of optical studies, mostly in
the far infrared part of the EM spectrum, but also going down to frequencies in the THz
range. These optical studies employed grating coupling [102, 233] or near-field coupling
[103, 104, 234–237] in scattering-type scanning near-field optical microscopes to probe the
plasmons. The latter can be combined with an electrical readout [105,109,238], which paves
the way towards plasmonic devices, such as THz photo-detectors [106,239]. A more detailed
review of these works is provided in section 6.4.

This section is split into three parts: First I will summarize my research group’s previous
works on GHz spectroscopy in order to introduce this technique and demonstrate how it can
be used for material characterization while simultaneously providing access to fundamental
physical properties. Remarkably, the devices under test in all these studies were capacitors,
i.e. one of the simplest electronic components one can imagine. I will then briefly show how
increasing scattering lengths, thanks to improving sample quality, enables the transition from
THz to GHz plasmonics in semiconductor 2DEGs. Finally, I will summarize a few recent
works, in which graphene plasmons (or signatures of electron-electron interactions) have been
detected in the GHz frequency range.

4.3.1 GHz spectroscopy in capacitors

Figure 4.4 shows a summary of the aforementioned GHz spectroscopy studies. Three different
2D systems have been explored, namely graphene, HgTe-based 2D topological insulators
(TIs) and Bi2Se3 topological surface states (TSS). The top row of the figure shows the
respective device sketch and a microscopic image, the middle row shows GHz spectra acquired
for different gate voltages – corresponding to different Fermi levels and carrier densities –
and the bottom row shows an emblematic result of each individual study.

The journey begins in 2011 with a simple graphene field effect capacitor [38], made from
exfoliated graphene, contacted on one side by a drain electrode and covered on the other
side by an aluminum-oxide insulation layer which separates the graphene sheet from the
gate electrode, see fig. 4.4a. The VNA spectra recorded between 0 and 10 GHz (fig. 4.4b)
show variations of the capacitance (slope of the imaginary part of the admittance at low
frequency) as a function of applied gate voltage, which are due to the energy-dependence of
the density of states. The DOS is directly related to the quantum capacitance and has its
minimum at the charge neutrality point. At the same time, the frequency of the crossover
between real and imaginary part increases with increasing doping, which can be intuitively
understood as a reduced charging time of the capacitor due to the increase of the conductivity
with charge carrier density. Since both the quantum capacitance CQ and the conductivity
σ can be extracted from fits to the RF spectra, one can determine the diffusion constant D
using the Einstein relation σ(EF ) = CQ(EF )D(EF ) (where EF denotes the Fermi energy set
by the gate voltage). In the samples studied in ref. [38], this diffusion constant – which is
proportional to the scattering rate – was shown to be independent of the Fermi level (fig.
4.4c), a behavior that is not compatible with phonon- or impurity-scattering, but could be
explained by Dirac mass disorder.
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The same approach was used by Inhofer et al. in 2017 [240] to study the electron com-
pressibility and scattering in HgTe heterostructures. The spectra shown in fig. 4.4e are
similar to those obtained for graphene and were again used to extract the quantum capaci-
tance, the conductivity and thus the diffusion constant. Interestingly, the diffusion constant
had a non-monotonous energy-dependence, which indicated the onset of an additional scat-
tering channel (see “VPS1” in figure 4.4f). This behavior – along with other anomalies that
occurred at high applied fields – could be explained by the existence of massive surface
states (Volkov-Pankratov states) in addition to the expected massless topological surface
states. In a more recent work by Dartiailh et al. [242], the same material was investigated
in the quantum well limit, where topological surface states are substituted by edge states,
and two distinct modes were identified in the spectra when the Fermi level was tuned close
to the gap (c.f. the middle spectrum in fig. 4.4g). By further analyzing the dependence of
these modes on the sample geometry (in particular scaling with length), the modes could be
attributed to 2D (“bulk”) and 1D (edge) contributions, see fig. 4.4h.

Another three-dimensional TI, namely Bi2Se3, grown as a thin layer on a high quality gate
dielectric (hBN) using chemical vapor deposition (CVD), was studied using RF spectroscopy
[241]. The quantum capacitance of the top surface states was observed in a regime where the
bulk was depleted, and capacitive coupling to the bottom surface states could be detected.

Note that in the first study in 2011 the mobility at typical charge carrier densities
(1012 cm−2) was approximately 4500 cm2/Vs, whereas the mobility of the TSS studied in
ref. [240] (2017) was about 120 000 cm2/Vs. Still, the spectra observed in all of these studies
correspond to evanescent waves inside of the capacitor. In the hBN-encapsulated graphene
capacitors studied in the present work we reach mobilities of up to 250 000 cm2/Vs, where
the damping effect of impurity- and phonon-scattering becomes weak enough to observe
propagating waves and therefore a resonance in our capacitor cavity.

4.3.2 From THz to GHz plasmons in massive 2DEGs

In order to detect the effect of electron interactions in the form of kinetic inductance (see
chapter 4.2) or of plasmonic resonances, the measurement frequency should be higher than
the typical momentum scattering rate: ωτ > 1. This scattering rate depends both on
the material quality (absence of defects and impurities) and on intrinsic parameters (e.g.
phonon scattering). High quality two-dimensional electron systems have been available in
semiconductors (e.g. Si inversion layers or GaAs/AlGaAs heterostructures) a long time
before graphene was even isolated for the first time.

Already in the 1970s, the two-dimensional plasmon could be observed by means of far-
infrared transmission spectroscopy in a silicon MOSFET device, equipped with a grating
that couples the incident THz field to the plasmons in the inversion layer [243]. Note that
this is the semiconductor-2DEG-equivalent to the 2011 experiment with graphene by Ju et
al. [102] shown in the appendix 6.4. In this study, the maximum mobility was 16 000 cm2/Vs,
corresponding to τ = mµ/e ≈ 2 ps with an effective mass of m = 0.2 me. Figure 4.5a
shows the relative change in infrared transmission as a function of frequency, where one can
identify the Drude tail, oscillations due to inteferences in the silicon substrate, and – more
interestingly – a pronounced peak due to the plasmon resonance. Tracking this resonance as
a function of charge carrier density leads to the

√
n-law expected for a massive 2DEG and

plotted in fig. 4.5b.
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a)

c) d)

-Δ
T
/T

b)

Figure 4.5 – Plasmon resonances in massive 2DEGs. a) Far-infrared spectrum of a sili-
con inversion layer (relative change in transmission). Resonance at f ≈ 30 cm−1 = 0.9 THz.
b) Experimental vs. theoretical carrier-density-dependence of the resonance frequency. In-
set: Sketch of the device with grating pattern. c) Real and imaginary part of the complex
impedance of a GaAs/AlGaAs 2DEG. d) Phase velocity as a function of carrier density. a-b)
from [243], c-d) from [97].

The scattering rates are even lower in GaAs/AlGaAs (and similar) heterostructures,
where it is possible to achieve electronic mobilities on the order of 106 cm2/Vs corresponding
to scattering rates ∼ 100 ps. In the year 2000 this enabled Burke et al. to observe plamon
resonances at extremely low frequencies ∼ 1 GHz using vector network analyzer characteri-
zation [97]. Figure 4.5c shows the real and imaginary part of the impedance, obtained from
the microwave reflection coefficient. Multiple harmonics are observed and – by plotting the
phase velocity as a function of carrier density – the familiar

√
n-dependence is recovered, c.f.

fig. 4.5d.

As illustrated in the inset of fig. 4.5c, Burke et al. have introduced the transmission line
(TL) model to calculate the theoretical complex impedance of their 2DEG. The TL model
has since been extensively used to describe the high frequency behavior of carbon nanotubes
[98, 244–246], but that goes beyond the scope of this thesis. A particular advantage of
transmission line theory is the cascade matrix (introduced in section 2.2.2), which facilitates
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the calculation of the response of composite TLs, for example in order to describe plasmonic
crystals [224,247]. Within this formalism, ref. [224] predicts the existence of localized states
at the boundaries of finite plasmonic crystals. Experimental evidence for the existence of
these so-called Tamm states (again in the THz domain) was found in ref. [248].

a)

c)

b)

Figure 4.6 – Plasmonic crystal. a) Top view of the device, a width-modulated 2DEG with
top gate, embedded in a CPW. b) Side view sketch of the device. c) VNA transmission
parameter S12 plotted vs. frequency. Taken from [100]

Plasmonic crystals have also been studied in the GHz domain. By etching an GaAs/AlGaAs
2DEG into a periodic pattern, thus repeatedly modulating the plasmon impedance (anti-
proportional to the width), Andress et al. [249] fabricated a GHz plasmonic crystal, embed-
ded in a co-planar waveguide (see fig. 4.6a-b). By measuring the transmission S12 of the
device, they observed the plasmonic bandgap between 24 and 34 GHz (see fig. 4.6c). In
the same study, the authors also demonstrate two-dimensional plasmonic crystals and plas-
monic interferometers operating in the GHz range, which shows how versatile these patterned
2DEGs are for controlling coherent plasmon propagation.

An advantage of the aforementioned materials, compared to graphene, is that they can be
grown in a very clean manner, at the wafer scale, by molecular beam epitaxy (MBE). This is
in contrast to the high-quality state-of-the-art graphene devices studied in this thesis, which
are still limited in size by the dimensions of the exfoliated crystals. Still, due to its gapless
nature, graphene could become a platform for new and intriguing plasmonics. In particular
the investigation of gate-modulated plasmonic crystals (similar to those in ref. [248]) with p-n
junctions could become highly interesting. To my knowledge, there is currently no theory for
the propagation of plasmons in such a periodic lattice of Klein-tunneling junctions. Similarly
to the evolution in semiconductor 2DEGs described above, it is necessary to increase the
scattering times in graphene from ∼ 1 ps to at least ∼ 10 ps in order to move from far
infrared to GHz plasmonics.

4.3.3 GHz plasmonics in graphene

In early microwave studies of CVD-grown graphene transmission lines [250,251], the sample
quality was still comparably low, leading to the conclusion that graphene behaves “as a
wideband resistor with negligible kinetic inductance”.
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Kumada et al. have carried out time-resolved studies (with nanosecond resolution) of
plasmon propagation in graphene grown on SiC, where the “bulk” mobility is on the order
of 12 000 cm2/Vs [252, 253]. Whereas a quantitative agreement with theory was difficult
to obtain for “bulk” plasmons [254] (probably due to the high damping rate), exposing the
sample to quantizing magnetic fields gives rise to so-called edge magnetoplasmons (EMP),
which are less prone to losses and could therefore be probed in accordance with theory both
in time-resolved [252,253] and spectroscopic [253] measurements.

a) b) c)

d) e)

Figure 4.7 – Kinetic inductance in graphene a) Graphene transistor with a ∼ 20 µm
long channel, embedded in a b) CPW. c) Sketch of the device design. d) Device resistance
and e) inductance with theoretical expectation (solid lines) at T = 30 K. Adapted from
ref. [226].

Thanks to the progress in device fabrication, in particular the encapsulation of graphene
(see section 2.1.3), Yoon et al. [226] have fabricated a gated graphene transmission line
with a mobility of around 390 000 cm2/Vs at cryogenic temperatures, which enabled them
to extract the kinetic inductance from their VNA spectra. They linked this inductance to
the “collective dynamical mass” of the charge carriers, which corresponds to the effective
cyclotron mass (per carrier) m∗ = ~kF /vF introduced in section 1.2.1.

In their L ∼ 20 µm long channel they measured an inductance of L ∼ 100 pH per square
and a gate capacitance of C ∼ 0.15 fF/µm2 at typical doping values of n ∼ 1012 cm−2,
which corresponds to plasmon phase velocities of vp = 1/

√
LC ∼ 8 × 106 ms−1. Since their

cavity has symmetric boundary conditions, it supports λ/2 resonances fres = mvp/2L ∼
m× 200 GHz with m = 1, 2, 3..., which are beyond their 0−50 GHz measurement window.

In this chapter I will demonstrate how a resonant cavity can be made using encapsulated
graphene of comparable mobility (250 000 cm2/Vs) and length (24 µm) by making use of the
asymmetric boundary conditions of a capacitor (leading to λ/4 resonances) and by bring-
ing the gate electrode closer to the graphene, hence increasing the geometric capacitance
(screening) and reducing the plasmon velocity.
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4.4 Modeling the plasma resonance capacitor

In the broad frequency range addressed in the course of this project, a graphene capacitor
cannot per se be modeled as a discrete electronic component, but one has to take into account
wave propagation, which is done by using the transmission line model, introduced in section
4.2, with distributed resistance, inductance and capacitor components (c.f. figure 4.8b).
This type of approach is well established for the high-frequency modeling of low-dimensional
systems, such as GaAs/AlGaAs 2DEGs [97,100] and carbon nanotubes [98, 244,246].

source

gate

a)

b)

c)

Figure 4.8 – The plasma resonance capacitor (PRC). a) Sketch of the device design. The red
curved line illustrates the electric field, with a node at the source contact and an anti-node
at the other extremity. b) Transmission line model for this device. c) Optical micrograph of
the sample PRC-D7.

4.4.1 General complex admittance formula

The complex admittance of such a capacitor, illustrated in fig. 4.8a (in reality embedded in
a co-planar waveguide) can easily be calculated using the TL model introduced in section
4.2. This calculation can be found in appendix 6.2 or in refs. [22,24] for the diffusive case. If
the kinetic inductance is taken into account, one finds the following expression for the PRC’s
admittance:

Y =
γ

r + jωLK
tanh (γL) (4.13)

where γ =
√

jωC (r + jωLK) is the propagation constant, r is the resistance, LK the kinetic
inductance, C the capacitance per unit length and L is the cavity length. Note that the ca-
pacitance has two components: the geometric capacitance Cins and the quantum capacitance
CQ (c.f. figure 4.8b), which are in series so that C = CQCins/(CQ + Cins).

In this simplified model, we are neglecting the in-plane electrostatic capacitance (c.f.
Ref. [223]), which amounts to considering plasmons in the screened limit. Furthermore, we
are not taking into account the Faraday inductance LF = µ0λpl/4πW which is ∼ 1.2 pH/µm
at the first resonance for a device with aspect ratio L/W = 3.
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4.4.2 Important limiting cases

The low frequency admittance is given by the series expansion at ω = 0:

Yω→0 = jωCL+
1

3
rL(ωCL)2 + O

(

ω3
)

(4.14)

which means that the linear imaginary part of the low frequency admittance provides a
direct measurement of the total capacitance of the device, whereas the quadratic real part
can subsequently be used to calculate the device resistance. Here, “low frequency” obviously
also implies that r ≫ jωLK . In diffusive capacitors, where this is always the case, the high
frequency behavior is given by evanescent wave propagation in the capacitor:

Y diffusive
ω→∞ =

1 + j√
2

√

ωC

r
(4.15)

This high frequency admittance has a constant phase π/4 and is simply proportional to
the square root of the frequency.

4.4.3 Electric potential distribution

The potential V (x) within the capacitor is given by the following equation, derived in the
appendix 6.2:

V (x) = V0
cosh (γ(x− L))

cosh(γL)
(4.16)

4.4.4 Access resistance

Since a realistic PRC has a finite access resistance due to the metal-graphene contact and
possibly due to ungated regions in the vicinity of the capacitor’s “channel”, a corresponding
lumped element Ra is added to our model, leading to the following expression of the total
admittance of our device:

Ytot =
1

Y −1 +Ra
(4.17)

Note that this additional real term causes a splitting of the high frequency real and
imaginary part of the admittance. In an ideal diffusive capacitor, these are identical if
the contact resistance is zero (see above). In order to de-embed spectra from the contact
resistance, which will be done in sections 4.5.1 to 4.5.3, we simply solve this equation for Y
and insert the experimental admittance data for Ytot.

4.4.5 Tunable plasmon characteristics in the PRC

The phase velocity vp and the characteristic impedance Z∞ of our plasmon are given by
textbook transmission line formulas [148] (in the lossless approximation):

vp =
1√
LKC

(4.18)

Z∞ =

√

LK

C
(4.19)
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Here the reader is also referred to the derivation of the plasmon dispersion for the screened
case from the random phase approximation in chapter 1 (eq. 1.63) and from the transmission
line model in this chapter (eq. 4.9).

Due to the asymmetric boundary conditions of the PRC (short circuit on the source
side, open circuit on the gate side), it forms a quarter-wave resonator with odd harmonics
fm = (2m+ 1)fres, where the fundamental frequency f0 is given by:

f0 = fres =
vp
4L

(4.20)

We define the quality factor of our cavity as the ratio between the characteristic impedance
and the total resistance of the graphene strip:

Q =
2Z∞
rL

(4.21)

where the factor of 2 ensures compatibility with the common definition Q = fres/∆f (where
∆f is the full width at half maximum of the resonance). Since the width ∆f of the resonances
stays the same for higher harmonics, the quality factor of the m-th harmonic is Qm =
(2m + 1)Q. In terms of the “resonator” variables fres and Q, the general formula for the
admittance of a capacitor, eq. 4.13, can be recast to better reflect the resonating property:

Y = jZ−1∞

tan

(

f̃
√

1 − 2j/Qf̃

)

√

1 − 2j/Qf̃
(4.22)

where f̃ = πf/2fres is the reduced frequency. This formula exhibits resonances with a quality
factor Q at the reduced frequencies f̃m = (2m+ 1)π/2.

Armed with this set of expressions, we can now study the tunability of our PRCs. In
table 4.1 we compare how the quality factor, the resonance frequency etc. vary as a function
of carrier density, device length, hBN thickness and electronic mobility. A typical value
for reasonable device parameters is also provided. We neglect the influence of quantum
capacitance, so that C = Cins ∝ 1/d, where d is the insulator thickness, and use LK ∝ E−1F ,
where EF is the Fermi energy, which is ∝ n1/2 in single layer graphene and ∝ n in bilayer
graphene.

From this evaluation, it becomes clear that – in particular as far as SLG is concerned
– the in situ tunability of the resonance frequency via modulation of the charge carrier
density is very limited, which implies that the observation (or not) of a resonance is mostly
determined by the fabrication of a device with adequate dimensions. In principle, we were
aiming for lateral dimensions as large as possible in order to obtain the lowest possible
resonance frequency. However, the exfoliation of crystals bigger than 50 × 50 µm2 proved
to be difficult and the stacking process often resulted in cracks or bubbles, limiting the
usable encapsulated graphene size to about 30 × 30 µm2 (hence the conservative choice for
L = 25 µm in table 4.1). Even with these limitations, we predict a resonance at ∼ 30 GHz
with a quality factor of ∼ 1, compatible with the measurement window 0 − 40 GHz of our
Janis cryogenic probe station.
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SLG
BLG

carrier
density

length
hBN

thickness
mobility typical value at

n = 2 × 1012 cm−2

µ = 250 000 cm2/Vs
L = 25 µm
d = 20 nm

vp ∝
n1/4

n1/2
√
d

3.7 × 106 m/s
3.6 × 106 m/s

Z∞ ∝ n−1/4

n−1/2
√
d

190 Ωµm
190 Ωµm

fres ∝
n1/4

n1/2
1
L

√
d

37 GHz
36 GHz

Q ∝ n3/4

n1/2
1
L

√
d µ

1.2
1.2

tunability gate
litho-

graphy
stacking “luck”

Table 4.1 – PRC tunability and typical values. For the chosen point in parameter space, the
SLG and BLG plasmon characteristics almost overlap completely.

4.4.6 Modeled spectra and field from resonant to diffusive regime

Figure 4.9 shows an exemplary set of PRC admittance spectra, calculated using eq. 4.13,
and the corresponding potential distribution, calculated using eq. 4.16, in a capacitor of
typical length L = 25 µm and carrier density n = 2 × 1012 cm−2. The mobility was varied
in order to demonstrate the transition from the resonant to the diffusive regime.

Panel (a) illustrates the admittance spectrum of a resonant cavity with a relatively high
quality factor Q ≈ 5.0, which can be obtained with a very clean graphene sample [119].
The first harmonic fres ≈ 38 GHz is within our experimental measurement window and the
second harmonic is at f2 = 3 × fres ≈ 114 GHz as expected for a quarter-wave cavity. The
amplitude and the phase of the electric potential for these two harmonics are plotted in
panels (d) and (e), where we clearly see the node at x = 0 and the anti-node at x = L,
imposed by the boundary conditions of our device.

In panel (b) we consider a more conservative prediction for the device mobility µ =
250 000 cm2/Vs, resulting in a quality factor of Q ≈ 1.2 and, as the figure shows, the first
two harmonics can still be clearly distinguished.

Panel (c) shows the case of a diffusive capacitor with a much lower mobility of µ =
10 000 cm2/Vs. This type of spectra has been analyzed extensively in order to study scatter-
ing processes in graphene [38] and in topological insulators [240], as shown in the literature
review in section 4.3.1. The corresponding evanescent potential at f = 5 GHz is plotted in
panel (f).

In all spectra we can see the low frequency approximation (eq. 4.14) in the form of a
linear imaginary and a parabolic real part of the admittance. In the diffusive case, it is easy
to recognize the constant π/4 phase of the admittance at high frequency as predicted by eq.
4.15.
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f=38 GHz

f=114 GHz

f=5 GHz

µ = 250,000 cm2/Vs

µ = 10,000 cm2/Vs

µ = 1,000,000 cm2/Vsa)

b)

c)

d)

e)

f)

(d)

(f)

(e)

Figure 4.9 – Admittance spectra and electric potential in a PRC for various electronic mo-
bilities.
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4.5 Experimental results

Even though the sample fabrication of the PRCs discussed here is less demanding than
that of CRs in terms of lithography resolution and alignment, the difficulty here lies in the
required lateral sample dimensions. While it was not impossible to exfoliate sufficiently
large (> 20 × 20 µm2) hBN and graphene flakes, it was not easy to stack them in a way
as to preserve a sufficiently large crack- and fold-free zone. Due to the risk of damaging or
misaligning the active zone during the last transfer process, the idea of using bottom gates
like in the previous chapter was quickly abandoned. Using top gates required an additional
passivation step in the fabrication recipe, which led to adhesion problems of gate and contact
pads. On top of these issues, electronic mobility had to be high enough and contact resistance
low enough to observe a resonance. A comparison of all fabricated PRCs is given in section
4.5.4. The fabrication and characterization of these devices was done in close collaboration
with David Mele. Some of them were made using CVD graphene grown by Luca Banszerus
and Zachary Winter in Aachen.

10 µm

Encapsulated SLG

Bottom

hBN

Top 

hBN

250 nm

0 nm
10 µm

10 µm
10

30

a) b)

c) d)

Figure 4.10 – Fabrication of PRC-D7. a) AFM image of the hBN-graphene-hBN stack.
The dashed line shows the outline of the graphene flake. b) Microscope image of the stack
after etching. c) Raman map of the 2D peak width. d) Final device with contact and gate.

The fabrication process is illustrated in fig. 4.10. A hBN-graphene-hBN heterostructure
is assembled using the van der Waals pick-up technique and characterized by atomic force
microscopy (panel a) and Raman spectroscopy (panel c). It is etched into the PRC shape
(panel b) and a contact electrode is deposited on the comb-shaped access region. After
depositing an Al2O3 passivation layer and subsequently etching away the oxide in the contact-
pad regions, the gate electrode and the CPW are deposited (panel d). For more details on
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the sample fabrication, see section 2.1.

In this section, we will focus on sample PRC-D6 and discuss the observation of a quarter-
wave plasma resonance and the full characterization of all relevant parameters (introduced
in the previous section) as a function of both charge carrier density and temperature. These
results have been published in ref. [27].

The electronic transport measurements were carried out in a Janis cryogenic probe sta-
tion. The high frequency measurements were carried out using a vector network analyzer and
DC sources in combination with a bias tee. For more details on the GHz characterization,
see section 2.2.

4.5.1 Evanescent waves in a diffusive capacitor

Before discussing the resonant behavior, let us first study the simpler case of evanescent
waves. Figure 4.11a shows a typical admittance spectrum of a diffusive graphene capaci-
tor (sample PRC-D6 at room temperature). For clarity, only fourth data point is plotted.
The phase propagation in the CPW access and parasitic capacitances have already been sub-
tracted using the de-embedding protocol explained in section 2.2.2. Here the silicon substrate
is connected to the ground (Vchuck = 0).

a) b)
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Figure 4.11 – Admittance spectra of a diffusive capacitor. a) Before and b) after de-
embedding from the contact resistance. To distinguish the experimental data from the fit in
panel a, only every fourth data point is plotted.

The spectra are fitted using equations 4.13, without the inductive term (which can be
neglected when r ≫ jωLK), but taking into account a finite access resistance, modeled as
a discrete series contribution, c.f. equation 4.17. This access resistance contains both the
contribution of the contact and the resistance of the graphene in the immediate vicinity of
the contact, where it is not covered by the top gate. Figure 4.11b shows the same spectrum,
but de-embedded from the access resistance, as explained in section 4.4.4. Here and in the
following, the experimental spectrum is plotted as a solid line. As predicted by eq. 4.15 and
illustrated in fig. 4.9c, real and imaginary part overlap at high frequency.

The fit results – i.e. resistance, capacitance (re-expressed as conductivity and capacitance
per unit surface Csurf) and access resistance – are given in fig. 4.11b for Vg = −0.5 V, and
are plotted for all applied gate voltages in fig. 4.12. We observe a conductivity minimum at
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Figure 4.12 – Fit parameters (conductivity, capacitance and contact resistance) as a function
of gate voltage / carrier density. The red dots highlight the fit results from fig. 4.11.

Vg = −1 V, which defines our charge neutrality point V top
0 and enables us to calculate the

charge carrier density n = Csurf(Vg−V top
0 )/e (since we are actually measuring the capacitance

here, we do not have to calculate it from the hBN thickness). The capacitance also has a
minimum at the charge neutrality point, which is a manifestation of the reduced density of
states.

In the diffusive transport model, we can obtain the mobility directly from the slope
of σ(n) = neffeµ, where neff =

√

n2 + n20 and n0 is a residual charge carrier density. By
fitting the conductivity data with this model, we obtain a room temperature mobility of
µ = 86 000 cm2/Vs and a residual charge carrier density of n0 = 0.7 × 1011 cm−2.

The access resistance has a particularly interesting behavior: Around the charge neu-
trality point of the channel, it exhibits a local minimum followed by a local maximum. The
maximum at weak n-doping can be qualitatively understood in terms of a partial depletion
of the contact-adjacent region when the channel is at neutrality. The minimum at weak p-
doping however is difficult to justify and its analysis goes beyond the scope of this thesis. At
large positive or negative channel doping, the access resistance saturates. Assuming that we
have a reasonably homogeneous graphene sample, the chemical doping should be the same
in the contact-adjacent region as in the capacitor channel. The former should therefore be
intrinsically n-doped, which is why we observe a significantly lower access resistance when
the channel is also n-doped (120 instead of 210 Ω). This is illustrated by the sketches in fig.
4.12c.

Interestingly this intrinsic n-doping is roughly the same in all of our samples, c.f. table
4.2. The contact resistance can be further reduced by applying a positive gate voltage
(typically Vchuck ∼ 10 V) on the silicon substrate, which increases the charge carrier density
in the contact-adjacent region, but also pushes V top

0 to a lower value. The leverage of the
substrate gate (beneath 280 nm of silicon dioxide) is about 10 times weaker than that of the
top gate, Csubstrate ≈ 3.9 ǫ0/280 nm = 0.12 fF/µm2 compared to Csurf ∼ 1 fF/µm2. This
means that for a shift ∆Vchuck of the voltage applied to the substrate, the top gate charge
neutrality point will move by ∆V top

0 ≈ −∆Vchuck/10.

With this preliminary understanding of our sample, we can now explore the low temper-
ature, high mobility regime.
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4.5.2 Resonance in a quasi-ballistic capacitor

T=30 K

Figure 4.13 – Admittance spectra of a resonant capacitor. As the carrier density is dialed
up, the quality factor of the resonance increases up to ∼ 2.

Figure 4.13 shows exemplary admittance spectra from the same sample PRC-D6, this
time at much lower temperature T = 30 K. The spectra are recorded at increasing charge
carrier density going from left to right. Here the substrate was gated at Vchuck = 10 V,
pushing the top gate charge neutrality point to V top

0 = −2.2 V. The additional doping in the
access region reduced the access resistance to Ra = 43 Ω. The spectra shown in the figure
have been de-embedded from this access resistance.

For clarity, the fitting model is plotted for a larger frequency range (0−70 GHz), so that
the resonant behavior becomes more apparent. Here, the fitting to equation 4.13 or 4.22 was
carried out by first adjusting the channel capacitance value to fit the low frequency imaginary
part of the admittance and then the values of f0 and Q to fit the resonance. Note that Z∞ is
implicitly adjusted by this procedure, since it can be expressed in terms of the capacitance
C and the resonance frequency f0: Z∞ = (4Lf0C)−1. The fitted resonator parameters f0,
Q and Z∞ are indicated on the plots in fig. 4.13.

At the lowest doping n = 0.2×1012 cm−2, the admittance is reminiscent of the evanescent-
wave spectrum presented in fig. 4.11 of the previous section. Here the real and the imaginary
part do not overlap at high frequency (as predicted by the high frequency limit in eq. 4.15)
because the kinetic inductance is no longer negligible. At this particularly low doping, an
increased access resistance might also play a role; this is further discussed in section 4.5.3.
As the doping is increased to n = 1×1012 cm−2, the imaginary part of the admittance starts
to approach zero, indicating the rise of the resonance, and at n = 2× 1012 cm−2, we observe
a fully developed resonance at f0 ∼ 40 GHz with a quality factor of Q ∼ 2. These values
corresponds reasonably to the predictions in table 4.1.

In plasmonics, a typical figure of merit is the confinement ratio λ0/λpl = c/vpl, where
λ0 denotes the free-space wavelength and c is the speed of light in vacuum. In metals this
ratio is typically ∼ 1, in graphene it can be more than an order of magnitude larger, e.g.
λ0/λpl = 66 in the infrared range in ref. [237] or λ0/λpl ≈ 75 in this work. The plasmon
lifetime τ = 2Q/ω is on the order of tens of femtoseconds in metals, whereas it reaches 1.6
ps in graphene at T = 60 K in ref. [237] and similar values at T = 30 K in this work.

A more detailed analysis of the fit parameters is shown in figure 4.14. RF spectra were
recorded for charge carrier densities in the range −0.5 < n/(1012 cm−2) < 2.5 and for
temperatures between 10 and 300 K and fitted with the resonator model. The fit parameters
f0, Q and Csurf = C/W at T = 30 K are plotted in panel (a), its inset and panel (c),
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Figure 4.14 – Fit parameters (resonance frequency, quality factor and capacitance) and de-
rived parameters (plasmon velocity, characteristic impedance, kinetic inductance per square
� and conductivity) as a function of carrier density for PRC-D6 at T = 30 K unless oth-
erwise indicated. Black and green dashed lines represent the theoretical expectations for
capacitance, inductance, impedance, resonance and conductivity (at low T ).

respectively. A second y-axis was added to panel (a), in order to compare the plasmon phase
velocity vpl = 4Lf0 to the Fermi velocity vF ≈ 106 m/s.

From these parameters – using equations 4.18 to 4.21 – it is straightforward to calculate
the characteristic impedance Z∞ (formula above, plotted in panel b of fig. 4.14) and the
inductance per unit length LK = (16f20L

2C)−1 (panel c). Similarly, one can calculate the
resistance per unit length r = 2Z∞/QL and finally the conductivity σ = (rW )−1 (panel d).

The theoretical expectation for the capacitance is in excellent agreement with the mea-
surements, as shown by the black dashed line in fig. 4.14. Here the only adjustable parameter
is the geometric capacitance which was found to be Cgeo = 0.98 fF/µm2. Theoretically, for
a top hBN thickness of 17 nm we expect 1.7 fF/µm2. This value is reduced by the series
contribution of the ∼ 10 nm aluminum oxide dielectric layer.

The theoretical expectation for the resonance frequency and characteristic impedance is
plotted as black dashed lines in panels a and b of fig. 4.14. Here we used the expression for
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the kinetic inductance from equation 4.3, for the geometric capacitance from equation 4.6
and for the quantum capacitance from equation 1.14. There is a good qualitative agreement
of our data with the theory, but we still observe a deviation that exceeds the uncertainty of
our fitting procedure. The offset between experiment and theory is also reflected in the plot
of the kinetic inductance and reaches up to 30 pH. In the next section, we will discuss this
offset in terms of an additional series inductance.

The conductivity as a function of carrier density, plotted for various temperatures in fig.
4.14, exhibits two limiting behaviors: At low temperatures, it is proportional to the carrier
density (σ ∝ n), which is characteristic for charged impurity scattering, c.f. section 1.2.3,
with a constant mobility of µ = 250 000 cm2/Vs. At high temperature, the conductivity
saturates at large n (σ ∝ const.), which is reminiscent of acoustic phonon scattering, c.f.
section 1.2.3.

The acoustic phonon mean free path is inversely proportional to kF and T in the equipar-
tition regime [39]. Figure 4.15a shows the mean free path calculated from the conductivity
using ℓmfp = σh/(2e2

√

π|n|). A quick analysis shows that the room temperature mean
free path at a typical doping of 1012 cm−2 is approximately 0.65 µm. Taking into account
the impurity scattering length ℓimp

mfp = ~

√
π1012 cm−2 × 250 000 cm2/Vs/e ≈ 3 µm at this

doping, one finds, according to Matthiessen’s rule, an acoustic phonon mean free path of
ℓ300 K
AP = 1/(ℓ−1mfp − ℓ−1imp) ≈ 0.8 µm. This has been used in chapter 3.

a) b)

Figure 4.15 – Temperature dependence of the mean free path. a) Mean free path as
a function of carrier density for various temperatures. b) Fitting of the mean free path at
n = 2× 1012 cm−2. Black dashed line is an unweighted fit, red dashed line is a weighted fit.

A more detailed analysis is shown in panel b of figure 4.15, where the mean free path
at n = 2 × 1012 cm−2 is plotted vs. temperature and fitted with a normal [weighted] least-
squares fit to the formula ℓ = 1/(ℓ−1imp + ℓ−1APT/300 K), visualized by the black [red] line. For
the red line fit, the data points are weighted by their spacing so that the high temperature
data is better taken into account.

The fits confirm the 1/T behavior of the acoustic phonon mean free path and suggest a
charged impurity scattering length between 5 and 6 µm, comparable to the device width (8
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µm). We can compare the room temperature phonon mean free path ℓph to literature values
for the equipartition regime using the formula from ref. [39]:

ℓph =
4(~vF )2√

πn

ρmv
2
ph

D2

1

kBT
= ℓ300 K

ph (n) × 300 K

T
(4.23)

where ρm = 7.6 × 10−7 kg/m2 is the mass density, vph is the sound velocity and D denotes
the deformation potential in graphene. Inserting the values vph = 2×104 m/s and D = 19 eV
from ref. [39], one obtains ℓ300 K

ph = 0.79 µm at n = 2 × 1012 cm−2. Using instead the values

from the experimental study by Efetov & Kim [47], vph = 2.6×104 m/s and D = 25 eV, one
finds ℓ300 K

ph = 0.77 µm. Both values are in good agreement with the result of the weighted
fit in figure 4.15.

4.5.3 70 GHz spectrum with K-connectors

Even though our Janis cryogenic probe station is equipped with K-type coaxial lines which
are only specified up to 40 GHz, the delivery of a new Rohde & Schwarz ZVA67 vector
network analyzer (0−70 GHz) made it tempting to push the experimental setup to the highest
possible frequency in order to see the other side of the PRC resonance. Unfortunately, the
new Cascade cryogenic 70 GHz probe station did not arrive in time for these measurements
to be done with a more suitable system.
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Figure 4.16 – Thru line measured with a 70 GHz VNA on a 40 GHz probe station.

In order to get a first idea of the transmission properties of the coaxial lines inside and
outside of the cryostat, a thruline (see section 2.2.2) was characterized, see figure 4.16. The
magnitude and the phase behaved as expected up to about 45 GHz, where a strong resonance
was observed, and then continued their typical trend with increasing noise up to about 65
GHz. Beyond this frequency, both magnitude and phase were extremely noisy.

After this encouraging first test, the device discussed in the previous section (PRC-
D6) was characterized once more at 30 K, with the chuck voltage set to 10 V to obtain a
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T=30 K

Figure 4.17 – Admittance spectra of a resonant capacitor. The 70 GHz spectral range enables
us to see the right hand side of the resonance from fig. 4.13.

low contact resistance. Figure 4.17 shows a set of example spectra from this measurement
campaign, de-embedded from the access resistance. Even though the data is a bit more noisy
than what was presented in fig. 4.13 – due to a less optimal calibration – the overall behavior
of the device is reproducible:

• we observe diffusive behavior (Q≪ 1) at low doping

• at ∼ 2 × 1012 cm−2 doping, we observe a resonance at ∼ 40 GHz with Q ∼ 2

• the access resistance is again 43 Ω

However, thanks to the larger frequency window, we can now also clearly see the decrease
of the real part of the admittance at f > fres and the imaginary part of the admittance crosses
over to negative values at the resonance.

Figure 4.18 shows the resonator parameters extracted from the fits to the 70 GHz spectra.
In order to push the data analysis a bit further, two things have been modified with respect
to the previous characterization in fig. 4.14:

The first modification is the introduction of a constant additional series inductance of
40 pH/� (the total inductance, like the resistance depends on the number of squares � in
series) in the red dashed lines in panels a and c. Such a series addition excellently reproduces
the experimental data, concerning both the inductance and the resonance frequency. This
could be due to a Faraday inductance as mentioned in section 4.2, which was estimated to
be ∼ 10 pH/� at the resonance and is therefore of the corresponding order of magnitude.
However, it cannot be excluded that the additional inductance is due to coupling to the
electrons in the charged silicon substrate, as stated in ref. [27]. A more detailed analysis of
this could be done by studying the inductance offset as a function of chuck voltage, but that
goes beyond the scope of this thesis.

The second modification is the fitting strategy close to the charge neutrality point: On
the right side of the vertical dotted lines in fig. 4.18, the spectra were fitted in the habitual
manner, with a fixed access resistance of Ra = 43 Ω. As already pointed out in 4.5.1, the
access resistance indeed saturates at high doping, but close to the CNP it usually increases.
However, in this regime, the contact resistance, the resonance frequency and the quality
factor are not independent fit parameters, which means that we have to fix one of them.
Since the additional series inductance reasonably reproduces our data in the high doping
regime, we now use the theoretical curve to fix the resonance frequency in the low doping
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Figure 4.18 – Fit parameters and derived parameters like in fig. 4.14. Red dashed lines
correspond to the theoretical expectation (black and green dashed lines), corrected by an
additional series inductance. Black dotted line indicates transition from fitting with fixed
(right) and adjustable (left) access resistance.

regime (on the left of the vertical dotted lines) and leave the contact resistance as adjustable
parameter. This way, we obtain a Ra(n) reminiscent of the one in fig. 4.12, peaking at a
similar value ∼ 300 Ω.

4.5.4 Comparison of all PRC samples

In total, 12 PRCs were fabricated throughout this thesis. They are listed in table 4.2 and
microscope images of all samples are shown in figure 4.19. Five of them were made using
CVD graphene from RWTH Aachen and seven were made using exfoliated graphene. The
encapsulation was mostly done at École Normale Supérieure and almost all of the devices
are top-gated. Out of the 12 samples, six survived the full fabrication process and three
had a sufficiently high mobility (almost phonon-limited at room temperature) to potentially
sustain a plasma resonance at cryogenic T . One of these samples (PRC-D3) started to leak
and the other one (PRC-D7) did not reach high enough mobility after cooldown. Only
PRC-D6 exhibited the required electronic quality to observe the plasma resonance.
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H-plasmo3 EGTG-1 PRC-D1 PRC-D2

PRC-D3 PRC-D4-1 PRC-D4-2 PRC-D5

PRC-D6 PRC-D7 PRC-D8 PRC-D9

Figure 4.19 – Microscope images of all PRC samples. Red crosses indicate defective samples.
The scale bars correspond to 20 µm.

This might seem surprising in comparison with the success rate of the sample fabrication
in the previous chapter, where five out of eight devices at least showed a hint of the desired
ballistic effect, in particular when one takes into account the relatively simple device design
of the PRCs compared to the CRs. In fact, the advantage of the CRs is the small size
∼ 1 × 1 µm2 of their active zone. It is relatively easy to identify a suitable homogeneous
zone in a hBN-G-hBN heterostructure and to align it on top of the device structure. As for
the PRCs, even if we fabricate top-gate devices (which removes the necessity of aligning the
heterostructures with bottom gates during the deposit), it is difficult to obtain sufficiently
large > 20 µm zones that are homogeneous. Here it is advisable to improve the sample
fabrication, for example by de-bubbling the heterostructures as detailed in ref. [123], in
order to obtain larger homogeneous zones, before the fabrication of more complex devices is
envisaged, for example incorporating bottom gate arrays.
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type L W Cgeo V top
0 µRT µ10K

sample * [µm] [µm] [fF/µm2] [V] [cm2/Vs] [cm2/Vs] comment

H-plasmo3 bSC 28 2.5 - - - - hole in
graphene

EGTG-1 tSC 44 2.7 - - - - bad ad-
hesion of
gate

PRC-D1 tSC 40 3 - - - - died during
ALD

PRC-D2 tSC 40 4 1.2 -1.0 - <10 000 first work-
ing (but
diffusive)
PRC

PRC-D3 tSe 48 4 1.1 -1.0 ∼80 000 - sample
started
leaking

PRC-D4-1 tSe 30 10 - - - - problem
with gate
deposit

PRC-D4-2 tSe 25 8 - - - - problem
with gate
deposit

PRC-D5 tSe 33 11 0.7 -0.6 20 000

PRC-D6 tSe 24 8 0.9 -1.0 80 000 250 000 best PRC so
far

PRC-D7 tSe 27 9 0.6 -0.9 70 000 .150 000

PRC-D8 tSC 48 16 - - - - crack ap-
peared in
the stack
during
fabrication

PRC-D9 tBe 15 5 1.3 -1.1 30 000 60 000

Table 4.2 – List of fabricated PRCs. (*) The first letter of the “type” corresponds to top (t)
or bottom (b) gate, the second letter to single- (S) or bilayer (B) graphene and the third
letter denotes CVD (C) or exfoliated (e) graphene.
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4.6 Conclusion and perspectives

In this chapter, we have investigated a plasma resonance in a graphene capacitor by GHz
spectroscopy. We have discussed the 0− 40 GHz experimental results, first at room temper-
ature (diffusive capacitor), then at cryogenic temperature (resonant capacitor with tunable
quality factor) and finally for all intermediate temperatures in order to study mobility limits
and the evolution of the acoustic phonon mean free path. The resonance parameters (fre-
quency, characteristic impedance, etc.) were in reasonable agreement with the theoretical
prediction. The remaining offset could possibly be justified with coupling to the electron
system in the silicon substrate. Finally, we have shown preliminary experimental data for
the 0−70 GHz frequency window, where we now observe the full resonance. Furthermore we
have provided better fits to the theory by taking into account a phenomenological additional
inductance and by adapting the fit strategy close to the charge neutrality point.

In conclusion, our study constitutes – to our knowledge – the first observation of a
GHz plasma resonance in a graphene device (not taking into account edge magnetoplasmon
resonances [253]). By scaling down the device size to ∼ 1 µm, this resonance can be moved
to THz frequencies and room temperature operation can be envisaged. This paves the way
to the design of novel, resonant THz detectors [106].

Possible future experiments therefore include the embedding of these devices in bowtie
antennas for THz characterization. Even with co-planar waveguides similar to those currently
used, a characterization up to 500 GHz (at room temperature) is feasible, e.g. at the THz
and mm-wave Laboratory at Chalmers University, Gothenburg, where we have carried out
first experiments in collaboration with Xinxin Yang. However, since our waveguides were
not compatible with the pitch of the 350−500 GHz probe station and calibration was thus
quite difficult, no exploitable data has been obtained so far. In principle, since the absolute
FWHM ∆f of the resonances is supposed to be independent of the harmonic order, one
expects the quality factor of the mth harmonic to be (2m + 1) times as high as that of the
zeroth harmonic, so that our room-temperature Q ∼ 0.2 at f0 ∼ 40 GHz scales to Q ∼ 2.2
at f5 ∼ 440 GHz.

As far as further GHz experiments are concerned, the fabrication of in situ tunable
plasmonic crystals [224, 248, 249, 255] should be considered. The combination of top gated
capacitors (or transistors) with nano-patterned bottom gates such as used in chapter 3 could
be exploited to introduce a sharp p-n junction in the capacitor channel [83,256]. This device
could then be used to study the dynamic properties of graphene p-n junctions, i.e. to see
to what extent they exhibit capacitive or inductive behavior, in analogy with a Josephson
junction. In the transmission line model, one would have to introduce corresponding dis-
crete (lumped) elements. The next step would be to fabricate periodic p-n junctions in the
graphene channel. This is sketched in figure 4.20a.

The channel is split into N unit cells of length a, each comprising two differently doped
regions. The resulting dispersion (for an infinite plasmonic crystal) can be calculated using
the cascade matrix approach in combination with Bloch’s theorem (see ref. [224]) and is
sketched in fig. 4.20b. The orange line represents the linear dispersion of the unmodulated
channel. The green line represents the resonance frequency of a unit cell. The coupling of
these cells in a plasmonic crystals leads to the opening of a gap (here quite dramatically
because I chose a large impedance mismatch between the sub-cells). In a transistor, one
would probe λ/2 resonances, indicated by the red vertical line, and observe a decrease of the
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Figure 4.20 – Gate-tunable plasmonic crystals. a) Sketch of the proposed device design.
b) Calculated dispersion in the first Brillouin zone of a plasmonic crystal (here actually
calculated for a width modulation, not a doping modulation).

resonance frequency as the modulation is switched on. In terms of applications, this type of
device could be used for resonant THz detection with a highly tunable resonance frequency.
For fundamental physics, it would be particularly interesting to study the effect of inducing
a bipolar superlattice. To our knowledge, there is no theory for the propagation of plasmons
in p-n junction lattices.

Having studied a monolayer graphene device in detail, it would also be interesting to
fabricate better bilayer graphene samples (PRC-D9’s mobility was not high enough to observe
a resonance), since the resonance frequency is more tunable in BLG (∝ n1/2) than in SLG
(∝ n1/4). Finally, exposing the sample to a strong enough magnetic field should activate the
quantum Hall effect and one could probe the capacitive and inductive response of the 1D
edge channels, and potentially observe edge magnetoplasmon resonances [253].

As recent theoretical proposals suggest, plasmons in graphene and other Dirac matter
might still bear a lot of surprises, like for example quantum oscillations in Dirac magneto-
plasmons [257] or “tachyon ghost modes” [258] which lead to sharp plasma resonances even
though the loss rate is high. Thanks to the high electronic quality and the easy tunability of
graphene, it has become the ideal platform to study many-body effects in two dimensions.



5
Quantum Hall breakdown

Having introduced the notions of the integer quantum Hall effect in chapter 1, the present
chapter will focus on its breakdown (QHBD) in a bilayer graphene (BLG) sample. I will
first revisit the high-bias properties of the sample at zero magnetic field, highlighting the
powerful cooling effect of the hyperbolic phonon polaritons (HPPs) of the hBN substrate.
Then, I will provide a short overview of the physical quantities relevant for the intrinsic
QHBD, followed by a brief literature review, summarizing a couple of experiments and the
existing theories for the intrinsic limit of the QHE in semiconductor 2DEGs and graphene,
in particular quasi-elastic inter Landau level tunneling and bootstrap electron heating. The
former requires impurity scattering, while the latter relies on phonon relaxtion. We will then
discuss our own experimental results: The QHBD at very high fields (∼ 106 V/m), current

QHE breakdown

Figure 5.1 – DC current and GHz noise current as a function of source-drain bias for various
magnetic fields and carrier densities |n| = 0...4.3×1012 cm−2 in a bottom gated BLG sample
of dimensions L×W = 4×3 µm. Below breakdown (black dashed lines) transport is ballistic,
I-V behavior is defined by the Hall conductance and noise is suppressed. Breakdown is
characterized by a deviation from the Hall conductance and more prominently by an abrupt
and strong increase of the noise.
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densities (∼ 103 A/m) and drift velocities (∼ 105 m/s), characterized both by DC transport
and by noise measurements in a 1 GHz-bandwidth window around 5 GHz (see figure 5.1). We
provide a new explanation for intrinsic QHBD due to a collective magnetoexciton instability.
At the end of the chapter, a short conclusion is followed by a discussion of possible future
experiments.

5.1 HPP cooling revealed by GHz noise thermometry

The sample used in this chapter is a two-terminal BLG transistor, see fig. 5.2a (inset). Its
high bias properties in the absence of a magnetic field were already studied extensively in
a previous work [144]. We will summarize these findings here and use them as an intro-
duction to GHz noise measurements. At the same time, this summary will later illustrate
how the zero-B-field cooling mechanism loses its relevance under quantizing magnetic fields
where electronic waves are localized into discrete Landau states. The setup used for these
measurements is explained in section 2.2.3.

a)

b)

c)

Figure 5.2 – Zener-Klein transistor cooled by hyperbolic phonon polaritons. a)
Low-bias resistance of the two-terminal device as a function of gate voltage. Left inset:
microscope image of the device. The graphene channel is highlighted by the red rectangle.
Right inset: R(Vgs) on a semi-logarithmic scale. b) Current density vs. bias for gate voltages
Vgs = 0... − 7 V (carrier densities n = 0... − 5 × 1012 cm−2). Red dashed line indicates the
onset of Zener-Klein tunneling. c) Noise temperature vs. bias for the same gate voltages.
Black dashed line corresponds to a model of Wiedemann-Franz cooling. Colored arrows
correspond to threshold field from panel b. Figure adapted from [144].
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The graphene channel dimensions are L×W = 4× 3 µm. The channel is separated from
the local bottom gate (gold) by a 23 nm thick exfoliated hBN flake, giving rise to a gate
capacitance of Cgs = 1.15 fF/µm2. The BLG is as-exfoliated, i.e. it did not have to undergo
any etching steps, which minimizes edge disorder.

Its low bias (Vds = 10 mV) resistance at LHe temperature (4 K) is plotted in fig. 5.2a.
One can extract a mobility of around µ = 30 000 cm2/Vs. The second inset of this panel
shows the resistance on a semi-logarithmic scale. In the hole-doping regime, the two-terminal
resistance reaches values as low as 40 Ω at Vg = −7 V. The Sharvin resistance [259] at the

corresponding density |n| = 5 × 1012 cm−2 is RS =
[

4e2kFW/πh
]−1 ≈ 20 Ω indicating the

high transparency of the contacts. In order to benefit from this, all measurements described
in the following were carried out in the hole-doping regime. Furthermore, since the sample
was submitted to very high source-drain voltages (comparable to the gate voltage), the drain-
gating (Vs = 0 here) had to be compensated by shifts in the gate voltage. In order to do
this, the charge neutrality point (maximum in the source-drain resistance) was tracked as
a function of Vds and Vgs to obtain V CNP

gs = αVds, where α ≈ 0.4. After this “calibration”,

measurements are taken at the effective gate voltage V eff
gs = Vgs − αVds.

Figure 5.2b shows the source-drain current density as a function of applied field for
different hole densities (Vgs = 0... − 7 V). This corresponds to the first top row panel
of fig. 5.1, where we plotted current against bias. At low bias, there is a steep current
increase limited by intraband velocity saturation, followed by a regime where the differential
conductance σds = ∂Ids/∂Vds saturates towards a bias- and doping-independent value σzk.
This regime of constant σds is reached at lower bias for lower channel doping. The red
dashed line indicates the onset field of Zener-Klein tunneling (ZKT) Ezk = 2EF /eℓzk, where
EF denotes the Fermi energy and ℓzk is a density-dependent tunneling length that can be
extracted from the low doping Zener-Klein conductance σzk ∝ kF ℓzk.

Figure 5.2c shows the noise temperature as a function of the electric field, for the same
hole densities that were shown in panel b. This corresponds to the first bottom row panel
of fig. 5.1, but the current noise SI/2e was re-expressed as a noise temperature kBTN =
SI/4G, where G is the sample’s conductance. The noise temperature follows a steep, weakly
super-linear increase at low bias, in accordance with a Wiedemann-Franz cooling mechanism
(black dashed line). At the onset of ZKT, illustrated by colored arrows that refer to the
corresponding fields in panel b, the noise temperature starts to saturate, indicating the
activation of a new cooling pathway. At zero doping, this mechanism is activated at Vds =
0.2 V (see inset of panel c), corresponding to the energy of the type-II hyperbolic phonon
polaritons ~ΩII ≈ 0.2 eV.

The fact that this cooling pathway opens only in the ZKT regime can be understood in
terms of population inversion: the high bias generates electron-hole pairs which relax through
HPP emission, otherwise inhibited due to Pauli blocking. Since the excess Joule power is
equilibrated by the HPP cooling power in this sample, the overall noise temperature becomes
bias-independent, leading to the plateaus in figure 5.2c. HPP cooling is highly efficient,
evacuating heat at rates on the order of ∼ 1 GW/m2.

These experiments have demonstrated how a clean graphene-on-boron-nitride sample,
pushed to its intrinsic limits, can be used to study fundamental physics (coupling to HPPs)
and at the same time establish new perspectives for industrial applications: efficient cooling
pathways for semiconductors. In this chapter, we will study the high-bias current and noise
in the same BLG sample, under quantizing magnetic fields, in order to revisit an “old”
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fundamental physics question (the breakdown of the QHE) which naturally has a direct
application in quantum Hall resistance standards.

5.2 Dimensional analysis of the breakdown

In the following, I will introduce the quantities of interest for an intrinsic breakdown of the
quantum Hall effect. In the literature review below, we will see that this corresponds roughly
to the 1986 findings of Eaves & Sheard [260].

When exposed to a strong enough magnetic field, the density of states of the two-
dimensional electron gas develops periodic peaks, corresponding to the Landau levels (LLs).
Their width depends on the homogeneity of the sample. The longitudinal resistivity ρxx
drops to zero and the transverse conductivity σxy has discrete plateaus at νe2/h, where ν is
called the filling factor. In semiconductor 2DEGs and BLG, ν = g(N+1), where g takes into
account spin and valley degeneracy and N is the highest filled LL. In SLG, ν = g(N + 1/2).
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Figure 5.3 – Landau levels in a high electric field. a-c) Landau levels (LLs) in massive
2DEGs are evenly split by the cyclotron energy ~ωc. If an electric field is applied, the levels
are inclined. Intrinsic breakdown occurs when the wavefunctions of adjacent LLs (spatial
extent Rc) overlap, giving rise to the back-scattering current Ibs. d-e) Current lines (black
arrows) and electric field (green arrow) at negligible (d) and finite (e) source drain bias. f)
Zoom on the LLs from panel c.

In a two-terminal device at low bias, the longitudinal voltage measures the transverse
resistivity ρxy since the two transverse channel edges are at equilibrium with the source and
drain contact, respectively; see fig. 5.3d and also ref. [261]. Even though we measure a
finite resistance, the transport is dissipationless since the electric field is perpendicular to
the current. The corresponding “band diagram in real space” is shown in fig. 5.3a, where the
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bold lines illustrate full LLs; see also ref. [74, p. 48]. In BLG and semiconductor 2DEGs,
the LLs are evenly spaced by the cyclotron gap ~ωc. In a 2DEG:

ǫN = ~ωc

(

N +
1

2

)

(5.1)

where N = 0, 1, 2, 3, ... is the index of the LLs and the cyclotron frequency ωc is given by:

ωc =
eB

m∗
(5.2)

where m∗ denotes the effective mass of the charge carriers. This is in contrast with SLG,
where the energy spacing of the Landau levels decreases with their index [76, 77]. In BLG,
the LLs are actually shifted by ~ωc/2 and their gap depends slightly on the LL index as
pointed out in section 1.4.3, but we will ignore this difference in the following. In BLG,
m∗ ≈ 0.03me, so that ~ωc ≈ 4 meV/T × B. As the source-drain bias is dialed up, the LLs

become tilted ǫE 6=0
N (y) = ǫN + eEyy and the electric field rotates towards the horizontal; see

fig. 5.3b and e. The longitudinal component of the electric field gives rise to dissipation of
power E · j.

The spatial extent of the wavefunctions of the QHE is determined by the cyclotron radius,
defined as follows [32]:

Rc =
√

2NℓB (5.3)

where ℓB is the magnetic length (a.k.a. Larmor radius):

ℓB =

√

~

eB
(5.4)

The threshold field for an intrinsic Zener breakdown can therefore be derived from pure
dimensional analysis: the wavefunctions of two adjacent LLs will have a maximum overlap
when the electric field corresponds to the ratio of the cyclotron gap ~ωc and the typical
spatial extent ∼

√
NℓB. This is illustrated in fig. 5.3c and f. We thus obtain the following

expression for the critical Zener field:

Ec = ρxyjc =
~ωc

eℓB
√
N

∝ B3/2 (5.5)

where ρxy = h/νe2. Using the expression for the Hall conductivity σH = ne/B, the definition
of the current density j = nevd in terms of the drift velocity vd and Ohm’s law j = σE, one
can easily obtain the relation vd = E/B (where we call 1/B the Hall mobility), so that the
critical drift velocity vc is given by:

vc =
~ωc

eℓB
√
NB

=
ωcℓB√
N

(5.6)

It is also straightforward to derive an expression linking the critical drift velocity vc to
the critical electric field Ec, which we will use in section 5.4:

vc =

[

~e

Nm∗2
Ec

]1/3

(5.7)
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5.3 Short review of quantum Hall breakdown

In this section, I will start by summarizing the first experimental studies of the QHBD
from 1983. I will then provide a little more detail about two theories that first came up
in 1985 and 1986, respectively: the bootstrap electron heating theory and the quasi-elastic
inter-Landau-level scattering theory. I will finally summarize a couple of other experiments
in semiconductor 2DEGs and move on to studies in single- and bilayer graphene, where I
will also quantitatively confront the two theories with each other and with the experiments,
highlighting how the sample under discussion in this chapter sticks out from the bibliography.
For a more detailed review of the breakdown, the reader is referred to ref. [262].

5.3.1 Pioneering studies

Only a short time after the integer quantum Hall effect (IQHE) was discovered by von Klitz-
ing et al. in 1980 [69], its physical limitations were studied by various groups. The knowledge
of the phase space of stable quantization – i.e. the knowledge of critical current, field, carrier
density and temperature – is important, because from the moment of its discovery onwards,
the IQHE became a candidate for a high-precision resistance standard, which constitutes
today (2019) one of the pillars of the new International System of units [70, 71]. Already in
1983, first experimental studies of the critical current were published [263,264].
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Figure 5.4 – First studies of breakdown. a) Longitudinal electric field Ex as a function
of the current density jx in a GaAs/AlGaAs hallbar (bottom inset). The top inset shows
Shubnikov-de-Haas oscillations. b) Typical “triangular” shape of the B-field dependence of
the breakdown current and the activation energy W . Reproduced from [263].

Figure 5.4a shows Ebert et al.’s measurements [263] on a Hall bar fabricated in a GaAs-
AlGaAs 2DEG with a mobility of 105 cm2/Vs and a width of 380 µm. They observed an
abrupt breakdown of the dissipationless quantum Hall current at a critical current density of
jcr ≈ 0.56 A/m, where the longitudinal electric field Ex increases by a factor of 10 000 for a
current variation smaller than 1%. By measuring the longitudinal resistivity as a function of
temperature, they extract an activation energy. This energy (circles) and the critical current
density (crosses) are plotted as a function of the magnetic field in fig. 5.4, centered around a
magnetic field that corresponds to a filling factor of 2, with the Fermi level centered between
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two Landau levels (LLs). As the Fermi level moves closer to an adjacent Landau level (upon
sweeping the B-field), both the critical current and the activation energy decrease. Ebert
et al. conclude that the dissipation is mostly due to transitions between Landau levels and
they propose a thermal instability as a mechanism of breakdown.

At the same time, Cage et al. [264] carried out studies on similar heterostructures and
established that the breakdown is highly inhomogeneous in these samples, which means that
the notion of a critical current density has to be handled with care. The authors also note
that the onset of the breakdown is associated with strong broadband noise spanning from
0−5 MHz.

A whole range of experimental works followed these first studies and entailed a certain
number of theories for the mechanism of the breakdown: Zener-tunneling between LLs [265],
spontaneous emission of phonons when the drift velocity exceeds the sound velocity [266],
percolation between the two sample edges across localized bulk states [267], quasi-elastic
inter-Landau-level scattering [260,268] and bootstrap electron heating [269]. In the following,
I will provide some more details about the last two of these.

5.3.2 Bootstrap electron heating

In order to gain more insight into the heating effects proposed as a cause of the breakdown,
Komiyama et al. [269] conducted an experimental study in 1985, in which the onset of
dissipation was detected in W = 50 µm large GaAs/AlGaAs hall bars as a function both of
the applied field and of the lattice temperature TL (see fig. 5.5a). The breakdown occurred
at fields on the order of 4 × 103 V/m in the ν = 4 state (σxy = νe2/h), corresponding to a
critical current density jc ∼ 0.6 A/m.

a) b)

Figure 5.5 – Bootstrap electron heating. a) Experimental and b) modeled longitudinal
conductivity as a function of the electric field for various lattice temperatures. From [269].

The authors proposed a theory, later coined bootstrap electron heating (BSEH), to ex-



134 Chapter 5: Quantum Hall breakdown

plain their measurements in terms of a thermal instability. A review about this theory can
be found in ref. [270]. In the following, I will summarize the derivation of the critical field
from that reference:

In order for the electron temperature to be stable, the rate G at which the electrons gain
energy should not exceed the rate L at which electrons lose heat to the lattice. The gain and
loss rates are given by:

G = σxx(Te)E
2
y (5.8)

L =
Z(Te) − Z(TL)

τǫ
(5.9)

where Te and TL denote the temperature of the electron system and of the lattice, respec-
tively, τǫ is the energy relaxation time and Z(T ) stands for the internal energy of the electron
system:

Z(T ) = 2

∫ ∞

ǫF

(ǫ− ǫF )D(ǫ)f(ǫ, T ) dǫ (5.10)

where f(ǫ, T ) is the Fermi-Dirac distribution at temperature T , D(ǫ) is the density of states
of the LLs and ǫF denotes the Fermi energy, lying at the middle between two adjacent LLs.
Approximating the LL DOS by a delta function, one finds:

Z(Te) = (πℓ2B)−1~ωc exp

(

− ~ωc

2kBTe

)

(5.11)

where (πℓ2B)−1 is the degeneracy of each LL. Under the simple assumption that the lattice
temperature is zero, it is easy to show that Z(TL) = 0. The longitudinal component of the
conductivity is given by the empirical activation law:

σxx(Te) =
e2

h
exp

(

− ~ωc

2kBTe

)

(5.12)

Now, at zero Te, the energy gain is matched by the dissipation to the lattice for any Ey.
However, for this to be a truly stable state, it must also resist against fluctuations of Te. At
the threshold one obtains:

∂G

∂Te

∣

∣

∣

∣

Te=0+
=

∂L

∂Te

∣

∣

∣

∣

Te=0+
(5.13)

Inserting the expressions for σxx(Te) and Z(Te) into those for the gain G and the loss L,
combining this with the stability criterion in eq. 5.13 and solving for Ey yields the following
expression for the critical field:

Eb =

√

2~

m∗τǫ
B (5.14)

As pointed out in ref. [270], the energy loss rate 1/τe is expected to be proportional to
the magnetic field, so that the BSEH breakdown field Eb ∝ B3/2, like the Zener field in eq.
5.5. In their original article [269], Komiyama et al. used their low-field σxx(T ) to determine
the activation law, and an electron energy loss rate 1/τǫ estimated from their measurements
to model the high-field behavior of the longitudinal conductivity, in excellent agreement with
the experiment, see figure 5.5b.
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The formula was adapted for the single layer graphene case in ref. [271]:

Eb =

√

4B~ωc

ηeτe
(5.15)

where η takes into account spin and valley degeneracy, i.e. η = 4 in graphene and η = 2 in
standard semiconductor 2DEGs.

The BSEH theory can explain the hysteresis observed in some experiments [269,272] and
the “triangular” shape of jc(B) illustrated in fig. 5.4 [270]. Furthermore, it explains the
dependence of the breakdown on the constriction length observed in refs. [273, 274], since
electrons have to travel and gain heat over a certain length until a new (stable) equilibrium
temperature is reached, giving rise to an avalanche of inter-LL excitations. Within this
picture, Komiyama et al. [274] also justify why Bliek et al. [275] might have obtained much
higher breakdown currents in their short constrictions, see next section. For more details on
the BSEH theory, the reader is referred to the review article by Komiyama et al. [270].

5.3.3 Quasi-elastic inter-Landau-level scattering

Arguing that previous studies were limited by “spurious inhomogeneities, reducing the ef-
fective widths of the samples”, Bliek et al. [275] investigated the breakdown in narrow con-
strictions (W = 1 µm and 66 µm) of GaAs/AlGaAs 2DEGs in 1986 and indeed, they
found much higher critical current densities than the previous works, with values peaking at
jc = 32 Am−1 for ν = 2. Their results were published simultaneously with a theory by Eaves
& Sheard [260], in which they attribute the breakdown to quasi-elastic inter-Landau-level
scattering (QUILLS).

N+1

N

Slope=eE

E

RN RN+1

x x0 x'0

φN(x-x0)

ħωc

φN+1(x-x'0)

Figure 5.6 – Quasi-elastic inter-Landau-level scattering. Illustration of wavefunction
overlap between adjacent LLs close to the critical electric field. Taken from ref. [260].

In its essence, this theory is very similar to the Zener analysis in section 5.2: The authors
calculate the solutions of the single-electron Schrödinger equation in crossed magnetic and
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electric fields and find that a maximum overlap between the wavefunctions of adjacent LLs
is obtained at the critical field:

Ec =
~ωc

eℓB
[√

2N + 1 +
√

2N + 3
] (5.16)

which differs from our order-or-magnitude expression in eq. 5.5 only as far as the N -
dependent term in the denominator is concerned, because Eaves & Sheard’s calculation
actually takes into account the sum of the cyclotron radii of the two LLs N and N + 1. This
is illustrated in figure 5.6. In the large N limit, the square-bracket-term reduces to 2

√
2N ,

implying a correction of about 2
√

2 ≈ 2.8 to eq. 5.5.

Since the wavevector mismatch is very large (∼ 2kF ) between the LLs, Eaves & Sheard
mention various mechanisms that could solve the momentum conversation issue in the
inter-LL tunneling process: impurities, charge inhomogeneities, many-body effects or long-
wavelength acoustic phonons. The energy of these phonons would be very small compared
to the cyclotron gap, which is why the proposed mechanism was coined quasi-elastic.

Their theory was in excellent quantitative agreement (10% deviation) with Bliek et al.’s
experiment, predicting breakdown current densities of 29 and 14 A/m for the ν = 2 and the
ν = 4 plateaus, respectively, at B = 6.3 T. Note that these values are more than an order
of magnitude larger than those reported by Komiyama et al. [269].

5.3.4 Summary of experiments: from 2DEG to graphene

A large number of experiments, some of which have already been mentioned, have been
carried out to better investigate the mechanism of the QHBD. A particularly important
question concerns the homogeneity of the current flow at the breakdown, where the current
is generally thought to fill the bulk instead of being localized at the sample edges [262]. In
low mobility devices, the breakdown current was observed to be proportional to the device
width [276,277], whereas a sublinear dependence was observed in high mobility samples [278].
Nachtwei [262] attributes this to short- and long-range scatterers respectively. In order
to further investigate this question, Nachtwei et al. [272] have fabricated antidot arrays in
GaAs/AlGaAs 2DEGs in order to study how modifications in the homogeneity of the current
flow affect the breakdown. They find that aperiodic arrays lead to a lower critical current due
to localized peaks in the current density, see fig. 5.7a. Sample homogeneity is particularly
questionable when the breakdown occurs in discrete voltage steps. This kind of behavior was
observed for example in refs. [263,279].

In order to locally image the potential profile in the sample when it approaches the
breakdown regime, Panos et al. [283] have probed Hall bars using scanning force microscopy.
Even though this method enables the determination of the homogeneity of the potential
landscape, and therefore the distinction between edge- and bulk-dominated breakdown, it
cannot distinguish between the proposed breakdown mechanisms.

Apart from the aforementioned Hall bars, constrictions and antidot arrays, another in-
teresting geometry for the investigation of the QHBD is the Corbino disk, where the QHE
manifests itself in the absence of edge currents and an isolating bulk, leading to a suppression
of the source-drain current, see fig. 5.7b and c. In GaAs/AlGaAs 2DEGs of this geometry,
the QHBD was investigated in conjunction with noise measurements in the 0 − 200 kHz
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Figure 5.7 – QHBD experiments. a) Breakdown currents are higher in periodic (N) than
in aperiodic (�) antidot arrays. From [272]. b) Source-drain conductivity vs. B-field of a
Corbino disk (inset) shows minimum at filling factor 2. c) Breakdown I-V characteristics of
the Corbino device at (◦) and around (�,N, ⋆) ν = 2. From [280]. d) Comparison of GaAs
and graphene as candidates for quantum Hall resistance standards. 100 K operation can be
realized with graphene. From [281] e) The damping of Shubnikov-de Haas oscillations can be
used to determine electron energy loss rates and scattering rates as a function of temperature
and applied current. From [282].

range [280, 284]. They observe super-Poissonian Fano factors at the breakdown and justify
this within the framework of the avalanche mechanism in BSEH.

Due to the large Landau gaps of both single layer and bilayer graphene and their highly
tunable carrier density, compared to semiconductor 2DEG systems, they both constitute
candidates for novel quantum Hall resistance standards (see fig. 5.7d) that can potentially
operate up to room temperature [285]. There have been a few studies of the breakdown both
in exfoliated [282,285,286], epitaxial (grown on SiC) [271,281,287], suspended [288,289] and
hBN-encapsulated [290] single- and bilayer graphene. The chosen geometry was typically
a Hall bar, except for refs. [288, 289], where Corbino disks were investigated. The carrier
mobilities for most of the devices (except the suspended and encapsulated ones) was on the
order of 5000 − 10000 cm2/Vs and breakdown current densities were typically on the order
of 1− 5 A/m at temperatures around 0.3− 2 K. In most of these works, the breakdown was
characterized around B = 9 − 10 T and the filling factor ν = 2.
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The 2013 work by Alexander-Webber et al. [271] sticks out here: The authors report
unprecedented (both in graphene and semiconductor 2DEGs) breakdown current densities
of up to 43 A/m at B = 23 T, ν = 2 in epitaxial graphene on SiC. Note that this record value
is mostly due to the high magnetic field, which results in a large cyclotron gap ~ωc ∝ B.
At B = 7 T, closer to the other works mentioned above, the authors report a breakdown
current density of 4 A/m. Still, we can translate the record current density 43 A/m to a
record breakdown field Ec = jch/νe

2 ≈ 5 × 105 V/m, which – so far – only compares to
the breakdown fields ∼ 105 V/m observed for the ν = 0 scenario by Laitinen et al. [288] in
suspended graphene.

Alexander-Webber et al. [271] benchmark their results against the critical current den-
sities predicted for the BSEH theory and compare to previous studies. This comparison is
reproduced in table 5.1 and amended by the Zener breakdown current densities jZc = σxyE

Z
c ,

where EZ
c is the Zener breakdown field from equation 5.5, so that:

jZc =
νe2

h

~ωc

eℓB
√
N

(5.17)

where N denotes the first unoccupied Landau level. For example, both in a semiconductor
2DEG and in SLG at ν = 2, it will be N = 1. In BLG, N = 1 corresponds to ν = 4. Let us
also recall the BSEH critical current density (c.f. eq. 5.15):

jBSEH
c =

νe2

h

√

4B~ωc

ηeτe
(5.18)

Table 5.1 has also been amended with the work by Bliek et al. [275], who have attained
record current densities in a GaAs system, and the second row (concerning ref. [291]) has
been re-calculated, taking into account the correct B-field value and filling factor ν from that
reference. The scattering times τe can be calculated from electron energy loss measurements
using Shubnikov-de Haas oscillations, c.f. refs. [282, 292–295] and fig. 5.7e. The relaxation
time is measured at the critical temperature, which is why it decreases with increasing
cyclotron gap (increasing critical temperature).

Material B ν ~ωc Experiment BSEH Zener width
(geometry ⋆) (T) (meV) τe (ps) jc (Am−1) jc jc (µm)

GaAs (c) 6 2 10 100 [292] 32 2.6 74 1 [275]

GaAs (H) 5.7 4 10 100 [292] 1.4 5.2 100 35 [291]

InSb (H) 7 2 40 500 [293] 0.3 2.6 320 600 [293]

Graphene (H) 7 2 105 80 [294] 4.3 7.3 840 35 [271]

Graphene (H) 23 2 200 6 [294] 43 71 2900 5 [271]

BLG (c) 7 4 27 100 † [295] 150 6.7 430 3 [28]

Table 5.1 – Material comparison for the QHBD. Measured critical current densities
from various works in comparison with the theoretical breakdown densities predicted by the
BSEH theory and the ILLT theory. ⋆c denotes constriction, while H stands for Hall bar.
†Order of magnitude, assuming doping on the order of 1012 cm−2 and critical temperature
on the order of 10 K. Table adapted from ref. [271].
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Inspection of the order of magnitude of the theoretical values shows immediately that
the BSEH theory predicts critical current densities (and critical electric fields) one or two
orders of magnitude smaller than the QUILLS/Zener approach. It is obvious that so far, the
critical currents observed experimentally have mostly been in the “BSEH range”, with the
exception of Bliek et al.’s early study [275].

When comparing the current densities in graphene to those in semiconductor 2DEGs, one
has to keep in mind that the carrier densities in the latter are typically one order of magnitude
smaller (∼ 1011 cm−2, see e.g. ref. [280] for GaAs and ref. [293] for InSb systems). Since
j = nev, this implies higher current densities in graphene at the same drift velocity, unless
the graphene is intentionally weakly doped like in ref. [271], where n . 1012 cm−2, see table
5.1. The critical current density listed in that table for our own BLG sample was measured
at n ≈ 7 × 1011 cm−2, ensuring comparability with the other works.

At comparable magnetic field and filling factor, the critical current density jc ≈ 150 A/m
in our BLG sample (last line of the table) is five times larger than Bliek et al.’s record value
and four times larger than Alexander-Webber et al.’s value recorded at B = 23 T. It is more
than twenty times larger than the critical current predicted by the thermal bootstrap theory
and reaches the range of the theoretical Zener field.

5.4 Experimental results in BLG

Our sample is an as-exfoliated BLG-on-hBN sample with a local bottom gate electrode as a
particularly homogeneous model system for the breakdown of the IQHE, since the bottom
gate screens trapped charge potentials from the semiconducting/insulating substrate. The
sample was described in section 5.1 and is shown again in fig. 5.8a (inset). It was fabricated
by Xiaobo Lu, Guangyu Zhang and Wei Yang. In order to gain insight into the dynamics
of the QHBD, we study DC transport and noise, measured by Wei Yang. To overcome
1/f noise at these high source-drain currents, the noise power spectral density is measured
in a 1 GHz bandwidth window around 5 GHz, which requires the sample to be embedded
in a two-terminal co-planar waveguide, contrarily to most other studies, where the sample
geometry is either a Hall bar or a Corbino disk. In short, we are combining the homogeneous
constrictions introduced by Bliek et al. [275] with noise measurements similar to those carried
out by the Kobayashi group [280,284,296] and an intrinsic BLG sample from Yang et al. [144]
to shed a new light on the old problem of the quantum Hall breakdown.

Since the contact resistance of the device is more than a factor of two smaller for a p-
doped channel (Rcont ≈ 40 Ω), we will focus in the following on the negative gate-voltage
range. There are two reasons for this: a) Since we are dealing with a two-terminal device,
we cannot directly extract the contact resistance and therefore need to minimize it as much
as possible towards the Sharvin limit [259] and b) we send high currents through the device
and measure the electronic temperature via the noise, so we want to avoid any spurious noise
due Joule dissipation in the contacts. The results presented in the following were published
in ref. [28].

Let us first look at the low-bias magnetotransport. For a magnetic field of B = 0 → 4 T,
the conductance σ of the device is plotted as a function of applied gate voltage in figure 5.8a,
where the emblematic quantum Hall plateaus are observed for multiples of the quantum of
conductance 4e2/h, corresponding to the incremental filling of the quantum Hall states. The
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conductance steps are consistently multiples of 4e2/h, which is specific to bilayer graphene
[78], since in single layer graphene the smallest filling factor is 2 [77]. The steps between the
plateaus are strongly smeared, which indicates a very low density of localized states due to
impurities or charge inhomogeneities and underlines the high quality of the device.

Figure 5.8b shows the typical Landau fan diagram of the differential conductance ∂Gds/∂Vg
as a function of gate voltage and magnetic field. The plateaus of panel (a) correspond to
the blue triangles emanating from the origin. They are numbered according to the lowest
unoccupied LL, denoted N , so that the filling factor is simply ν = 4N . States from N = 0
to N ∼ 10 can be clearly distinguished, where the median value N = 5 is highlighted by a
yellow dashed line. We observe the splitting of the zero energy states, which is an additional
confirmation of the high quality of the sample.

Panels (c-j) of figure 5.8 show the DC current and the shot noise (in units of current:
SI/2e) as a function of source-drain voltage for increasing magnetic fields. Each panel shows
the measurements taken for gate voltages ranging from 0 to −6 V, corresponding to hole
densities between 0 and 4.3 × 1012 cm−2. The applied bias corresponds to extremely high
electric fields on the order of 106 V/m, leading to extremely high current densities on the
order of 103 A/m.

At zero magnetic field (panel c), a saturation behavior due to Zener-Klein tunneling
is observed. It is limited by the excitation of hyperbolic phonon polaritons of the hBN
substrate, which acts as a highly efficient cooling pathway for the hot electrons in the device.
This zero-B-field behavior was discussed in section 5.1 and ref. [144]. It is important to
point out that at B = 0, the noise clearly is non-negligible regardless of source-drain bias,
compared to what we are about to see for quantizing magnetic fields:

With increasing B-field, both the current and the noise start to exhibit two distinct
regimes: At low source-drain bias, the current increases linearly with the bias (where the
slope is simply given by the Hall conductance as we will see in the following) and the noise
is completely suppressed (as one would expect for dissipationless transport in the ballistic
quantum Hall channels). When a certain threshold – highlighted by the vertical dashed
lines in the figure – is reached, the current shows a trend towards saturation, leading to a
differential conductance ∂Ids/∂Vds ≈ 0.6 mS = Gsat that becomes independent of the gate
voltage and the magnetic field, and the noise increases abruptly, up to values that by far
exceed the zero-B-field noise.

Comparing the abrupt increase of the noise to the gradual saturation of the DC current
immediately qualifies the noise as much more clear-cut indicator for the breakdown. As
expected, the threshold source-drain bias clearly increases with the applied magnetic field.
The fully developed shot noise under quantizing fields furthermore suggests that the cooling
mechanism due to the substrate phonons described in section 5.1 and ref. [144] are suppressed
at high magnetic fields.
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Figure 5.8 – Raw data. a) The device conductance vs. gate voltage, plotted for B = 0 → 4 T
(step 0.4 T) exhibits smeared steps of 4e2/h. Inset is a microscope image of the sample. b)
Typical Landau fan diagram of the differential conductance ∂Gds/∂Vg at fixed Vds = 5 mV.
The plateaus of panel a correspond to the minima (blue) of the differential conductance.
They follow lines B = CVgh/4e

2N where C = 1.15 fF/µm2 is the gate capacitance per
unit surface and N is the lowest unoccupied LL. The yellow dashed line highlights the
experimental median N = 5. c-j) DC source-drain current (top) and 5 GHz noise in units
of current (bottom) for increasing B = 0 → 7 T. Black dashed lines mark the onset of the
noise.
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5.4.1 Scaling of the DC current

In order to make the dataset from figure 5.8 easier to analyze, we can scale the measured
quantities using intensive units that are relevant to the QHE. By re-expressing all the DC
current measurements as drift velocities vd = Jds/ne where n = C|Vg|/e is the hole density
and plotting it as a function of the applied electric field E = Vds/W , we obtain individual
sets of overlapping lines for each applied magnetic field, c.f. figure 5.9a, the slope of which
is given by the Hall mobility µ = 1/B, as shown in the figure’s inset.

0.2 0.4 0.6 0.8 1.0 1.20
0

0.5

1.0

1.5

2.0

Figure 5.9 – Scaling of current and noise. a) Drift velocity vd = Ids/Wne vs. electric
field E = Vds/W for various gate voltages and magnetic fields B = 2 → 7 T. Below the
breakdown, the various density curves collapse on single lines defined by vd = µE where
µ = 1/B is the Hall mobility (inset). The breakdown is characterized by the fanning out
of these lines. The black dashed line is the critical drift velocity eq. 5.7 with N = 5
corresponding to the experimental median value. Black squares represent the onset of the
noise. b) Noise energy vs. bias at fixed density for increasing magnetic field. At B ≥ 2 T,
the low bias noise is fully suppressed, as opposed to B < 2 T. c) Noise energy scaled by
cyclotron gap vs. electric field scaled by maximum Zener field ~ωc/eℓB.

Upon increasing the electric field and therefore the drift velocity, the overlapping lines
gradually fan out; this is the breakdown regime. Comparing this point of “fanning-out”
to the breakdown field determined from the abrupt rise in the noise measurement (vertical
dashed lines in figure 5.8) leads to a good agreement, except at very high E-fields, where the
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drain-gating compensation described in section 5.1 is not fully effective anymore.

The black dashed line in figure 5.9 corresponds to the critical Zener velocity vc defined
in equation 5.7, where a constant filling factor of N = 5 was used – corresponding to the
experimental median value. There is an excellent agreement between this intrinsic theoretical
prediction and the experimentally determined breakdown fields, both in the current and –
particularly – in the noise measurement.

5.4.2 Scaling of the noise

Figure 5.9b shows the noise measurements from figure 5.8, this time represented as a noise
energy SI/4Gsat and at constant charge carrier density n = 2.15 × 1012 cm−2 for the entire
magnetic field range 0 ≤ B ≤ 7 T. The difference between low and high B-field is striking
in this figure: Whereas the noise increases quickly with applied bias at zero magnetic field,
due to the creation of a hot carrier population, noise reduction becomes apparent already at
a moderate field B = 1 T until noise is completely suppressed under fully quantizing fields
B & 2 T (µB & 2π).

The noise data can now also be scaled in terms of quantities that are relevant to the QHE:
In figure 5.9c, the electric field is scaled by the maximum Zener field ~ωc/eℓB =

√
NEbd and

the noise energy is scaled by the LL energy spacing ~ωc. At the breakdown field, the noise
curves of panel (b) collapse. This scaling of the noise data with the QHE-relevant quantities
is strong evidence for the fundamental origin of the noise.

Besides, we notice two interesting features: (a) The onset of the noise occurs at a reduced
electric field of 1/

√
5, in accordance with the black dashed line from fig. 5.9a and (b) the

noise energies reach extremely high values, two orders of magnitudes larger than the LL
spacing ~ωc. This suggests that, when breakdown is reached, charge carriers are spread over
a very large number of LLs. Conversely, close to the charge neutrality point at Vg = 0, the
breakdown occurs at a higher reduced electric field 1/

√
1, as expected [288].1

5.4.3 Contact heating

Since we are applying significant bias voltages, giving rise to significant current densities,
even below the breakdown field, one is naturally curious about the noise evolution below
the threshold. So far we have simply stated that the noise is suppressed in this regime, due
to the ballistic source-drain transport, but let us have a closer look at this low-bias noise.
Figure 5.10a recalls the DC current and noise data from fig. 5.8f.

Panel b shows a zoom on the bias range Vds = 0 → 1.5 V of the noise data. We
observe a linear increase (with a slope dependent on the gate voltage) of the noise up to
Vds = 0.8 V (black dashed line), where it starts to increase abruptly. By plotting the Fano
factor F = SI/2eI in panel c, we see that it is bias independent, that it depends only
weakly on the gate voltage and, most importantly, that it is small : 0.02 ≤ F ≤ 0.04. It is
small compared to the Fano factor 1/3 of a disordered phase-coherent conductor [60] or to
the Fano factor

√
3/4 of hot-electron shot noise [61, 62], which is why we attribute it to a

residual proximity heating as the electrons relax in the contacts.

1A detailed experimental investigation of the N = 1 state is difficult due to the doping inhomogeneity
associated with drain gating.
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Figure 5.10 – Noise floor. a) Source-drain current and noise vs. bias at B = 3 T for various
densities. b) Zoom on the low bias regime of the noise. c) Fano factor F = SI/2eI in the
same regime. The black dashed line marks the threshold beyond which SI(Vds) deviates from
linear behavior.
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Figure 5.11 – Contact heating. THz-emission maps of a GaAs/AlGaAs Hall bar at filling
factor ν = 2.43. Figure adapted from ref. [297]

This phenomenon of contact heating was nicely visualized in a semiconductor 2DEG by
Ikushima et al. [297] who measured the THz emission due to transitions between LLs. Figure
5.11 shows a map of this cyclotron emission, obtained using a THz microscope tuned to the
cyclotron resonance frequency. The Hall bar’s dimensions are L ×W = 3 × 0.5 mm. One
can identify localized hot-spots at the source (left) and the drain (right) electrode. These
hot-spots grow significantly with the bias current, whereas the emission from the upper and
lower sample edges (where the current flows) stays confined and relatively small.

5.4.4 The Fano factor as a hallmark of a collective breakdown

The Fano factor F is the ratio between the current and its shot noise SI = 2eIF and contains
information about statistical correlations (“bunching”) in the tunneling process that generates
the noise. For independent single particle tunneling, one would expect Poissonian shot noise
with a Fano factor of ≤ 1, depending on the tunneling probability (see section 1.3). For
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collective tunneling mechanisms the noise is super-Poissonian (F > 1).

a) b)

Figure 5.12 – Superpoissonian noise. a) Noise (left axis, solid lines) and backscattering
current (right axis, dashed lines) vs. source-drain voltage for various gate voltages at B =
3 T. The ratio between the two scales corresponds to the Fano factor F = SI/2eIbs = 7.5.
Inset: Fano factor vs. B-field. The Fano factor is linear in B with a slope of 2.7 T−1. b)
Sketch illustrating the backscattering current Ibs.

In figure 5.12a, we compare the noise (in units of current, SI/2e, solid lines, left axis) at
constant magnetic field B = 3 T to the noise-generating backscattering current Ibs (dashed
lines, right axis), which we obtain from the deviation between the measured source-drain
current and the extrapolated ballistic (i.e. noise-free) Hall current (see also the illustration
in fig. 5.12b):

Ibs =
neVds
B

− Ids (5.19)

An excellent overlap of current and noise for a large gate voltage range −2 V ≥ Vg ≥ −5 V
can be obtained by fitting a Fano factor F = 7.5 between the two vertical scales. Performing
a similar adjustment between current and noise for other magnetic field values shows that
F ∝ B, consistently with the scaling behavior discussed above.

Considering that the Fano factor describes the bunch size Nbunch = F in a correlated
tunneling event, we can provide a tentative explanation for the proportionality between the
Fano factor and the B-field. If the inter-edge charging energy is ǫc ∼ e2/ǫW ≈ 2 meV,
then it takes Nbunch ∼ ~ωc/ǫc ≈ 2 T−1 × B carriers to temporarily restore a sub-threshold
local electric field. This is in reasonable agreement with the experimental observation F ≈
2.7 T−1 ×B. A more involved theory goes beyond the scope of this thesis.

The fact that Fano factors ≫ 1 are reached in the breakdown regime rules out a single
particle tunneling mechanism, such as QUILLS. From a theoretical point of view, a single
particle mechanism is problematic anyway, since the large momentum jump q = 2kF re-
quired for single particle backscattering is only achievable with the help of impurities (which
our sample lacks). In the following, we propose a collective breakdown mechanism due to
the spontaneous proliferation of magnetoexcitons, where electron-electron interactions help
overcome the aforementioned momentum mismatch.
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5.5 Magnetoexciton instability

Magnetoexcitons are collective excitations between the Landau levels of the integer quantum
Hall effect [110–112]. In section 1.7 and in the appendix 6.5, we discuss how their dispersion
arises from the random phase approximation in the case of a generic massive 2DEG.

Here we are dealing with bilayer graphene and not a standard 2DEG. However, it is
possible to represent the eigenstates of the bilayer graphene quantum Hall Hamiltonian in
terms of the eigenstates |n, ky〉 of the non-relativistic Hamiltonian [68,115]:

ψλ,n 6=0,ky =
1√
2

(

|n− 2, ky〉
λ |n, ky〉

)

(5.20)

where λ is the band index and n > 1. The calculation of the matrix elements therefore
remains unchanged up to a correction on the order of 1/NF , where NF is the highest filled
LL. Since we consider the large NF limit here, we can neglect this correction and use the
matrix elements of the standard 2DEG in the following:

ψ†λ,n,kye
iq·rψλ′,n′,k′y ≈ 〈n, ky| eiq·r |n′, k′y〉 (5.21)

Within this approximation, we can still use the Lindhard function χnn(q, ω) from eq. 1.66
and the associated RPA susceptibility χRPA(q, ω) = χnn(q, ω)/ǫRPA(q, ω). The imaginary
part of the latter is plotted once again in figure 5.13. The magnetoexciton modes appear at
multiples of the cyclotron frequency ωc and do not significantly disperse at large wavevectors.
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Figure 5.13 – Magnetoexciton instability. Color plots of ImχRPA(q, ω). Here NF = 3.

If we want to take into account the finite in-plane electric field induced by the drain-
source bias, the Hamiltonian in eq. 1.40 has to be amended by a corresponding potential
energy term. In appendix 6.5, we show that this modifies the QHE eigenstates by shifting
the guiding center of the QH states and that it adds a field-dependent shift to the energy
eigenvalues. However, when we re-calculate the Lindhard function χnn(q, ω), only a global
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energy shift ω → ω−vdqy remains.2 The same shift has to be taken into account in the RPA
susceptibility χRPA(q, ω) and the ME dispersion ωME(q, ω), so that:

χE 6=0
nn (q, ω) = χE=0

nn (q, ω − vdqy) (5.22)

χE 6=0
RPA(q, ω) = χE=0

RPA(q, ω − vdqy) (5.23)

ωE 6=0
ME (q) = ωE=0

ME (q) − vdqy (5.24)

where vd = E/B is the drift velocity. In other words, the system obeys Galilean invariance.
This means that the magnetoexciton dispersion develops an instability ωME(q0) = 0 when a
finite electric field is applied (resulting in a finite drift velocity vd). However, this instability
will only play a significant role, if the spectral weight ImχRPA(q0, 0) is non-negligible, which
is only the case in the realm intraband excitations −2qkF < 2mbω/~ − q2 < 2qkF (black
dashed lines in figure). This translates to 0 < |q| < 2kF for small ω.

We can therefore define a critical velocity (orange line in fig. 5.13) as the ratio between
the first ME resonance frequency ωME = ωc and the maximum wavevector q = 2kF where
the spectral weight is non-negligible:

vc ≈
ωc

2kF
∼ ωcℓB√

N
(5.25)

where we used kF ∼
√
N/ℓB in the last step in order to emphasize the equivalence between

the ME critical velocity and the Zener critical velocity from eq. 5.6. Indeed, an intrinsic
breakdown due to the magnetoexciton instability occurs roughly at the same field that is pre-
dicted by the Zener/QUILLS theories. However, the collective nature of the ME instability
also qualitatively explains the large experimentally observed Fano factors.

ΔE

p

E

q0

vLq

Figure 5.14 – Sketch of the roton dispersion in superfluid helium. Adapted from [298].

A very similar theory for the breakdown mechanism was brought forward by Martin et
al. in 2003 [299]. Their work takes into account ionized impurities which locally enhance
the flow velocity of the quantum Hall fluid until a critical velocity is reached, activating

2Note that in this calculation, we consider the scenario just before the breakdown, where, despite the
out-of-equilibrium situation, the Fermi level remains stuck between the LLs NF and NF +1, where NF is the
highest occupied LL at equilibrium. This enables us to perform the sum over all LLs leading to equations
5.22-5.24, see appendix 6.5.
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the magnetoexciton instability. The authors also point out the equivalence between ME
instability and QUILLS [260] as far as the critical field is concerned. This impurity-assisted
magnetoexciton instability was proposed as an explanation for the experiment in ref. [279],
where the QHBD occurred in a series of small, quantized voltage steps. In our clean sample,
the breakdown behavior is abrupt, not step-like, indicating a uniform activation of the ME
instability.

Furthermore, there is an interesting analogy between the proposed scenario of the QHBD
due to a magnetoexciton instability and the breakdown of another macroscopic quantum
state, namely the superfluidity of helium. It is limited by the spontaneous proliferation of
rotons [300] when a critical flow velocity – called the Landau velocity vL – is reached. Again,
due to Galilean invariance, the roton dispersion of the moving fluid is simply tilted with
respect to its dispersion at rest: ω(q) → ω(q) − vq, where v denotes the flow velocity. The
activation of the roton instability occurs, when the excitation gap ∆E of the minimum of
this dispersion disappears: ∆E − vLq0 = 0. This is sketched in figure 5.14 where the critical
Landau velocity is drawn as a straight line ω(q) = vLq, touching the roton minimum.

5.6 Conclusion and perspectives

In this chapter, we have investigated the breakdown of the quantum Hall effect in a quasi-
intrinsic, two-terminal, locally gated BLG-on-hBN device. The breakdown occurs at un-
precedented electric fields ∼ 106 V/m, current densities ∼ 103 A/m and drift velocities
∼ 105 m/s. We have discussed the scaling of the DC current and emphasized the excellent
agreement of the onset of the breakdown between scaled DC transport measurements, noise
measurements and the theoretical prediction for an intrinsic Zener breakdown. A similar
scaling was demonstrated for the noise measurements and a short analysis for the low-bias
noise due to contact heating was provided.

Finally, we have seen that the Fano factor of the noise-generating back-scattering current
is super-Poissonian, indicating a collective breakdown mechanism. We have then discussed
how a magnetoexciton instability could be a new candidate for this mechanism, with a
critical velocity comparable to the Zener critical velocity. This implies an analogy with the
spontaneous emission of rotons in superfluids moving faster than the critical Landau velocity.
In conclusion, we have shed a new light on the old problem of the QHBD by combining an
extremely clean and homogeneous sample with GHz shot noise measurements.

From a theoretical point of view, a more quantitative model is required, since the ar-
guments brought forward in this chapter are mostly based on orders of magnitude. In
particular, the dependence of the bunching (Fano factor) on the magnetic field should be
analyzed theoretically and brought in agreement with the ME instability model.

Recommended future experiments obviously include the investigation of the breakdown in
single layer graphene. However, this massless Dirac system does not obey Galilean invariance,
which means that the change of reference ωE 6=0

ME (q) = ωE=0
ME (q) − vdq is no longer possible.

In SLG, a Lorentz boost is required to calculate the ME dispersion in the moving frame
of reference. In a Lorentz transformation, energy is not conserved, which could lead to
smaller breakdown fields. Figure 5.15 shows a comparison of the conventional 2DEG and
SLG in terms of the RPA density-density response function. [301] The SLG susceptibility is
dominated by the appearance of linear magnetoplasmons (diagonal lines). However, in order
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to define a critical velocity, we need to use the lowest-energy collective excitations at large
(∼ 2kF ) wave vectors, where the magnetoplasmons are far too high in energy, so that the
breakdown should still be mediated by magnetoexcitons, not visible in fig. 5.15b.

2DEG

q lB q lB

graphene

ω
/ω

C

a) b)

Figure 5.15 – a) Magnetoexciton dispersion in a standard 2DEG compared to b) the mag-
netoplasmon dispersion in single layer graphene. Figures from [301].

A natural next step would be to study the breakdown of the fractional quantum Hall
effect, where inter-LL magnetoexcitons [110–112] are replaced by intra-LL magnetorotons
[116]. Unlike magnetoexcitons which have transverse polarization, magnetorotons have a
longitudinal one, bringing the analogy with superfluid breakdown even closer. Well-defined
fractional quantum Hall states have recently been observed in hBN-encapsulated graphene
samples with patterned graphite gates, both in gate-defined Hall bars [79] and in Corbino
disks [80]. This was illustrated in fig. 1.10 of the introduction chapter. While the use of
graphite gates was not an option for the corner reflectors in chapter 3 or for the plasma
resonance capacitors in chapter 4, due to the incompatibility with GHz-operation, it is not
excluded for GHz-frequency noise measurements, since the gate electrode is only driven with
DC signals in these experiments. A systematic study of the breakdown as a function of
the device width and length would also be instructive, e.g. to investigate if the inter-edge
charging energy e2/ǫW is really linked to the Fano factor or to check if the critical breakdown
current decreases with increasing sample length like in ref. [274]. The effective channel width
could also be modulated electrostatically like in a quantum point contact [302].

This chapter has once again shown how the recent availability of extremely clean and
highly tunable layer-by-layer assembled heterostructures based on 2D materials has provided
a platform to study the intrinsic properties of two-dimensional electron systems. It has
been shown that simple modifications in the stacking of these materials can lead to highly
surprising phenomena, for example in twisted bilayer graphene, where superconductivity [12],
the formation of a Mott-like insulator [13] or the emergence of a network of topological
channels [52] have recently been demonstrated. These discoveries imply that our fundamental
understanding of these systems is still limited and that the journey is far from being over.
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6
Appendix

6.1 Fabrication recipes

In the following, I will provide step-by-step recipes (as seen in previous theses [22–24]) for
the fabrication of corner reflectors and plasma resonance capacitors. These recipes should
be seen as the “average” fabrication process, meaning that sometimes small deviations from
the recipe were required, depending on the individual device. All electron beam lithography
(EBL) steps were done on poly(methyl methacrylate) resist (PMMA) with 950k molecular
weight. The different thickness values mentioned below were obtained by diluting the mother
solution (6% in anisole from Microchem or Allresist). They are nominal values and might
vary depending on the substrate and the age of the solution.

6.1.1 Corner reflector devices

Gate nano-patterning.

See also Quentin Wilmart’s thesis [23]. He developed the process for tungsten etching.

step description tool(s) parameters

1 substrate
preparation

acetone, IPA,
sonicator

5 min

2 substrate
preparation

Harrick plasma
cleaner

5 min O2 plasma, . 20 µbar, 200 W

3 tungsten or gold
deposit

sputtering (at
INSP) or Edwards
E306A

20∼30 nm; for gold: 1 nm Cr,
∼ 10−6 mbar, ∼ 0.1 nm/s, 30 nm
Au, ∼ 10−5 mbar, ∼ 0.2 nm/s

4 substrate
preparation

acetone, IPA,
sonicator

5 min

151
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step description tool(s) parameters

5 spin coating spin coater &
PMMA 50 nm

4000 rpm, 4000 rpm/s, 30 s

6 annealing heater plate 160◦, 10 min

7 EBL 1: fine etch
[CPW etch]

Raith e-Line acceleration: 20 kV
aperture: 7.5 [120] µm
dose: 900 [300] µC/cm2

step: 2 [100] nm

8 development MIBK:IPA (1:3) &
IPA

MIBK:IPA 30 s, IPA 30 s

9 RIE Corial 200R for tungsten: SF6 25 sccm, 6
mTorr, 10 W, ∼ 1min30 (laser
EPD)

for gold: Ar 40 sccm, 50 mTorr, 85
W ∼ 2min30 (laser EPD)

NB: chamber clean before sample
loading and purge before etch is
recommended

10 stripping Corial 200R O2 100 sccm, 100 mTorr, 30 W,
10∼20 s (laser EPD)

NB: purge before etch is
recommended

11 spin coating spin coater &
PMMA 50 nm

4000 rpm, 4000 rpm/s, 30 s

12 annealing heater plate 160◦, 10 min

13 EBL 2: rough etch Raith e-Line acceleration: 20 kV
aperture: 10 µm
dose: 240 µC/cm2

step: 10 nm

14 development MIBK:IPA (1:3) &
IPA

MIBK:IPA 30 s, IPA 30 s

15 RIE Corial 200R c.f. step 9

16 stripping Corial 200R c.f. step 10

17 spin coating spin coater &
PMMA 550 nm

4000 rpm, 4000 rpm/s, 30 s

18 annealing heater plate 160◦, 10 min
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step description tool(s) parameters

19 EBL 3: CPW
deposit

Raith e-Line acceleration: 20 kV
aperture: 120 µm
dose: 280 µC/cm2

step: 100 nm

20 development MIBK:IPA (1:3) &
IPA

MIBK:IPA 70 s, IPA 30 s

21 stripping Corial 200R O2 100 sccm, 100 mTorr, 30 W, ∼
10 s

22 CPW deposit Edwards E306A (Cr 2 nm, ∼ 10−6 mbar,
∼ 0.1 nm/s), Au 200 nm,
∼ 10−5 mbar, ∼ 0.4 nm/s

23 lift-off & rinse acetone & IPA acetone over night, IPA ∼ 1 min

24 short-circuit tests Cascade probe
station & Keithley
source meter

ambient conditions

Stack transfer.

hBN-graphene-hBN stacks for the corner reflector devices were fabricated by Luca Banszerus
according to ref. [120]. The procedure is described in section 2.1.3. Homogeneous zones were
identified by Raman spectroscopy. These were then aligned with the gate electrodes and the
stacks were deposited using a modified “Columbia” method, also described in section 2.1.3.

Stack etching and edge contact.

step description tool(s) parameters

1 spin coating spin coater &
PMMA 150 nm

4000 rpm, 4000 rpm/s, 30 s

2 annealing heater plate 160◦, 10 min

3 EBL 4: etch fine
[rough]

Raith e-Line acceleration: 20 kV
aperture: 10 [120] µm
dose: 280 µC/cm2

step: 10 [100] nm

4 development MIBK:IPA (1:3) &
IPA

MIBK:IPA 70 s, IPA 30 s

5 RIE Corial 200R CHF3 40 sccm, O2 4 sccm, 60
mTorr, 60 W, 1-2 min

6 cleaning acetone & IPA



154 Chapter 6: Appendix

step description tool(s) parameters

7 spin coating spin coater &
PMMA 300 nm

4000 rpm, 4000 rpm/s, 30 s

8 annealing heater plate 160◦, 10 min

9 EBL 5: edge contact Raith e-Line acceleration: 20 kV
aperture: 10 µm
dose: 300 µC/cm2

step: 10 nm

10 stripping RIE Corial 200R O2 100 sccm, 100 mTorr, 30 W,
1∼2 s

11 evaporation Edwards E306A Cr 5 nm, ∼ 0.1 nm/s, ∼ 10−6 mbar,
Au 100 nm, ∼ 0.3 nm/s,
∼ 10−5 mbar

12 lift-off & rinse acetone & IPA acetone over night, IPA ∼ 1 min

6.1.2 Plasma resonance capacitor devices

Preparation of PDMS for top-hBN exfoliation.

Polydimethylsiloxane (Sylgard 184) was prepared in a disposable plastic beaker by mixing
3 g of the curing agent with 30 g of the elastomer. The mix was poured in a �9 cm Petri dish,
which was then placed in a desiccator for about 24 hours, in order solidify and to remove
bubbles. The PDMS was cut in quarters. A couple of hBN crystals (from NIMS, Japan)
were placed between two of these wedges and exfoliated by repeatedly pressing the PDMS
wedges together in various orientations.

Preparation of the substrate for bottom-hBN/graphene exfoliation.

The substrate was high-resistivity silicon (> 3000 Ωcm) with a 280 nm SiO2-layer. Markers
(numbered crosses) were fabricated using UV-lithography. Note that the exposure times
mentioned below obviously vary with lamp intensity.

step description tool(s) parameters

1 substrate
preparation

acetone, IPA,
sonicator

5 min

2 substrate
preparation

Harrick plasma
cleaner

5 min O2 plasma, . 20 µbar, 200 W

3 spin coating spin coater &
AZ5214E

4000 rpm, 4000 rpm/s, 30 s

4 annealing heater plate 125◦C for 2 min
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step description tool(s) parameters

5 UV lithography
(alignment crosses)

SUSS MicroTec
MJB4

2 s exposure (hard contact 5 s)

6 annealing (image
reversal)

heater plate 125◦C for 2 min

7 UV flood exposure SUSS MicroTec
MJB4

20 s

8 developing AZ726MIF & H2O 35 s MIF, 30 s H2O

9 stripping RIE Corial 200R O2 100 sccm, 100 mTorr, 30 W,
10∼20 s

10 evaporation Edwards E306A Cr 5 nm, ∼ 0.1 nm/s, ∼ 10−6 mbar,
Au 50 nm, ∼ 0.3 nm/s,
∼ 10−5 mbar

11 lift-off & rinse acetone acetone over night, IPA ∼ 1 min

12 cleaning (if required
again)

c.f. steps 1-2

Preparation of the polymer stamps.

The “Aachen type” stamps are prepared on standard glass microscope slides (cut in half).

step description tool(s) parameters

1 cover the slide with
scotch tape

Duck HD Clear
Tape

2 spread PVA film poly vinyl alcohol
13% (in H2O),
pipette

3 anneal heater plate 90◦C, ∼ 10 min

4 spin coat spin coater &
PMMA (50k, 4% in
ethyl lactate)

1000 rpm, 30 s

5 anneal heater plate 110◦C, ∼ 10 min

Assembly of the stack.

hBN-graphene-hBN stacks were assembled using the “Aachen” method described in section
2.1.3, using either CVD or exfoliated graphene. The exfoliation of graphene and bottom
hBN was done on Si/SiO2 substrates with alignment crosses (see above and section 2.1.1).
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Top-hBN was transferred directly to the polymer stamps by pressing them on the PDMS
wedges. A suitable flake was identified under the optical microscope, then it was used to
pick up the graphene and finally everything was deposited on the bottom hBN.

PRC nano-fabrication.

step description tool(s) parameters

1 Raman Renishaw inVia 100x objective, 532 nm, power 5%,
resolution ∼ 1 µm, exposure 1 s

2 AFM Bruker Dimension
Edge

tapping mode

3 spin coating spin coater &
PMMA 300 nm

4000 rpm, 4000 rpm/s, 30 s

4 annealing heater plate 160◦, 10 min

5 EBL 1a (fine
alignment markers)

Raith e-Line acceleration: 20 kV
aperture: 10 µm
dose: 280 µC/cm2

step: 2 nm

6 development MIBK:IPA (1:3) &
IPA

MIBK:IPA 70 s, IPA 30 s

7 EBL 1b (define
encapsulated
graphene shape)

Raith e-Line acceleration: 20 kV
aperture: 10 µm
dose: 280 µC/cm2

step: 2 nm

8 Al hard mask
deposit

Edwards E306A Al 50 nm, ∼ 10−5 mbar, ∼ 0.5 nm/s

9 lift-off acetone & IPA acetone over night, IPA 3 min

10 RIE Corial 200R CHF3 40 sccm, O2 4 sccm, 60
mTorr, 60 W, 2-3 min

11 hard mask removal KOH & H2O 2 KOH tabs (≈ 0.22 g) + 30 ml
H2O, 1min30, rinse in H2O

12 spin coating spin coater &
PMMA 550 nm

4000 rpm, 4000 rpm/s, 30 s

13 annealing heater plate 160◦, 10 min

14 EBL 2 (source
contact)

Raith e-Line acceleration: 20 kV
aperture: 60 µm
dose: 300 µC/cm2

step: 8 nm
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step description tool(s) parameters

15 development MIBK:IPA (1:3) &
IPA

MIBK:IPA 70 s, IPA 30 s

16 stripping Corial 200R O2 100 sccm, 100 mTorr, 30 W, 2 s

17 source contact
deposit

Edwards E306A Cr 5 nm, ∼ 10−6 mbar, ∼ 0.1 nm/s,
Au 200 nm, ∼ 10−5 mbar,
∼ 0.3 nm/s

18 lift-off acetone & IPA acetone over night, rinse in IPA

19 Raman (optional) Renishaw inVia s.a.

20 AlOx passivation
layer deposit

Edwards E306A &
Anric AT400 ALD

2 nm of Al in Edwards evaporator
with 15 min intermediate O2

exposure (200 mbar) after each
nanometer, ALD 300 mTorr, 100
cycles, 175◦C

21 spin coating spin coater &
PMMA 550 nm

4000 rpm, 4000 rpm/s, 30 s

22 annealing heater plate 160◦C, 10 min

23 EBL 3 (oxide layer
etching)

Raith e-Line acceleration: 20 kV
aperture: 120 µm
dose: 300 µC/cm2

step: 80 nm

24 development MIBK:IPA (1:3) &
IPA

MIBK:IPA 70 s, IPA 30 s

25 oxide removal KOH & H2O 2 KOH tabs (≈ 0.22 g) + 30 ml
H2O, 5 ∼ 10 min, rinse in H2O

26 spin coating spin coater &
PMMA 550 nm

4000 rpm, 4000 rpm/s, 30 s

27 annealing heater plate 160◦, 10 min

28 EBL 4 (coplanar
waveguide)

Raith e-Line acceleration: 20 kV
aperture: 60 µm
dose: 300 µC/cm2

step: 10 nm

29 development MIBK:IPA (1:3) &
IPA

MIBK:IPA 70 s, IPA 30 s

30 CPW deposit Edwards E306A Cr 5 nm, ∼ 10−6 mbar, ∼ 0.1 nm/s,
Au 200 nm, ∼ 10−5 mbar,
∼ 0.3 nm/s
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step description tool(s) parameters

31 lift-off acetone & IPA acetone over night, rinse in IPA

6.2 Derivation of PRC formulas

The plasma resonance capacitor can be modeled as a two-port network incorporating a
transmission line (TL), which is depicted in figure 6.1:

x=0 x=L

gate
source

v(x) v(x+dx)

i(x) i(x+dx) LK dxr dx

Cins dx

CQ dx

i1

i2

v1 v2

CPW ground

Figure 6.1 – The PRC transmission line model.

Note that in this simplified model, the capacitive coupling to the ground plane of the
coplanar waveguide (CPW) is neglected, i.e. we are dealing with an already de-embedded
model. We are also neglecting the resistivity of the “gate” metal with respect to that of the
graphene sheet. In this distributed element model, the resistance r, the inductance LK and
the capacitances CQ and Cins are defined per unit length.

Let us first note some basic properties regarding the admittance of this device. By current
conservation, we can state that i1 = −i2. Since we are neglecting the coupling to the CPW
ground plane, we can arbitrarily define one of the two terminal potentials, v1 or v2. Only
the difference v1 − v2 = v12 matters. v12 = v1 if v2 = 0 and v12 = −v2 if v1 = 0, so:

v1|v2=0 = −v2|v1=0 (6.1)

The Y parameters are defined as follows:

Y11 =
i1
v1

∣

∣

∣

∣

v2=0

Y12 =
i1
v2

∣

∣

∣

∣

v1=0

Y21 =
i2
v1

∣

∣

∣

∣

v2=0

Y22 =
i2
v2

∣

∣

∣

∣

v1=0

With this definition and the above symmetry relations for i and v in mind, we can easily
relate the Y parameters to each other in the following way:

Y11 = Y22 = −Y12 = −Y21 (6.2)

Let us now proceed to the calculation of this admittance for the above TL model. By
applying Kirchhoff’s voltage law between two unit cells of the TL, we easily find:

v(x) − v(x+ dx) = (r + jωLK) i(x) dx (6.3)
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If we now apply Kirchhoff’s current law at one of the nodes, we find:

i(x) − i(x+ dx) = jωC v(x) dx (6.4)

where C = CQCins/(CQ + Cins)We can rewrite these two equations in the differential form:

dv(x)

dx
= −(r + jωLK) i(x)

di(x)

dx
= −jωC v(x) (6.5)

Combining the two equations yields the following second order differential equation:

d2v(x)

dx2
= jωC (r + jωLK) v(x) (6.6)

The general solution for this equation is:

v(x) = A exp(γ x) +B exp(−γ x) (6.7)

where γ =
√

jωC (r + jωLK) is the propagation constant of the left/right-going wave. Thus,
we obtain for the current:

i(x) = − γ A

r + jωLK
exp(γ x) +

γ B

r + jωLK
exp(−γ x) (6.8)

Since we are dealing with a capacitor and the current has to be zero after the right-most unit
cell of figure 6.1 (i(x = L) = 0)1, we can use this boundary condition to find the relation
between the pre-factors A and B.

i(L) = − γ A

r + jωLK
exp(γ L) +

γ B

r + jωLK
exp(−γ L) = 0 (6.9)

It is clear that A = D exp(−γ L) and B = D exp(γ L) solves this equation, which yields:

v(x) = 2 D cosh (γ (x− L)) (6.10)

i(x) = − 2 γ D

r + jωLK
sinh (γ (x− L)) (6.11)

If we want to express this in terms of the voltage applied at the source v0 = v(0), we find:

v(x) = v0
2 D cosh (γ (x− L))

2 D cosh (γ (0 − L))
(6.12)

= v0
cosh (γ (x− L))

cosh (γL)
(6.13)

We can now calculate the admittance, e.g. Y11:

Y11 =
i1
v1

∣

∣

∣

∣

v2=0

=
i(x = 0)

v(x = 0)
=

−γ sinh (−γL))

(r + jωLK) cosh (−γL))
(6.14)

=
γ

(r + jωLK)
tanh(γL) (6.15)

An important difference between this capacitor TL model and a “textbook” version of the
TL model is that only one end of the capacitor TL is connected to a port, the other port is
actually connected to the conventional “ground” (i.e. in this capacitor model, v2 is not the
voltage across the last capacitors; v2 6= v(x = L) in general!).

1The current i(x=L) is not the current going up to the last capacitor in the drawing (that would be
i(x=L-dx)), it is the current going “out of the picture” (which is why it has to be zero).
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6.3 Modifying the corner reflector scattering model

The simple formula for the corner reflector transmission derived in section 3.3.1 assumes
that any scattering event inside the prism will automatically lead to a transmission of the
fermion to the drain side. While the analytical model cannot accommodate more complex
scattering models – like a uniform randomization of the direction of propagation – it is easy
to implement such random scattering in a ray tracing simulation.
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Figure 6.2 – Uniform scattering. a) CR resistance from ray tracing simulation (dashed

lines) and analytical model (solid lines) with a scaled mean free path ℓanalyt.mfp = γℓraymfp. b)
CR transmission vs. mean free path and temperature from a ray tracing simulation (dots).
Solid (dotted) lines are from the analytical model with unscaled (scaled) mean free path.

In order to compare the results of ray tracing and analytical calculations, it is important
to keep in mind the “recurrent” nature of the trajectories in the TIR-regime, and the fact
that all round-trip trajectories approximately have the same length ℓ1 = 0.6 µm. For mean
free paths ℓmfp between multiple integers of ℓ1, the results of the ray tracing simulations do
not change. At the same time it should be avoided to choose ℓmfp as an exact integer multiple
of ℓ1, since this can lead to numerical “accidents”. For good comparability, one should choose
ℓmfp = Nℓ1 + ǫ, where N ∈ Z

+
0 and ǫ ≪ ℓ1. For example, for the ray tracing simulation in

fig. 3.11b, N = 4 and ǫ = 50 nm, so that ℓmfp = 2.45 µm.
Repeating the ray tracing simulations from fig. 3.11 with a uniform random scattering

model produces the results shown in figure 6.2. In panel (a), we compare the results of the
ray tracing (dashed lines) to the results of the analytical formula (solid lines) and observe
a good agreement if we choose a renormalization prefactor γ = 2 for the acoustic phonon
(AP) mean free path used in the analytical model ℓanalyt.mfp = γℓraymfp. Similarly, the dots
in panel (b) represent results from the ray tracing simulation and are in good agreement
with the analytical model with γ = 2 (dotted lines), whereas the solid lines correspond to
γ = 1. This means that – unsurprisingly – uniform scattering leads to a reduction of the
residual transmission by 50% compared to the hypothesis used in section 3.3.1. Without
more information on the actual distribution of scattering, we conclude that we cannot use
our CR device as a precise meter for the AP mean free path, but it nevertheless stays a very
sensitive AP detector.
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6.4 Literature review of graphene plasmonics

From an experimental point of view, plasmons can be probed using a whole range of tech-
niques, e.g. angle resolved photoemission spectroscopy (ARPES), inelastic light scattering,
scanning tunneling spectroscopy (STS) or electron energy loss spectroscopy (EELS) [87].

Studying the interaction of plasmons with electromagnetic waves is particularly interest-
ing for applications (e.g. resonant photodetectors) and will be discussed extensively in the
following. However, optical measurements are restricted to a small energy range and suffer
from the large momentum mismatch between the free-space wave and the confined plasmon.

Due to the extremely low scattering rates 1/τ in high-quality encapsulated graphene at
cryogenic temperatures [119], graphene plasmons can be probed down to very low frequencies.
In this section, I will omit the GHz-frequency studies, and refer to chapter 4, where these
are discussed in detail.

a) b)

Figure 6.3 – Electron energy loss spectroscopy. a) HREELS spectra of graphene on
SiC(0001). The 2D-plasmon loss peak disperses with increasing momentum transfer q. b)
Comparison of the experimental results with the theoretical

√
q-dispersion. The red line

corresponds to a fit taking into account non-local effects. Figure adapted from ref. [101].

High-resolution reflection electron-energy-loss spectroscopy (HREELS) has been used
early on to probe graphene plasmons over a large range of energies and wavevectors [101,
228–230]. With this technique, the plasmon can be identified as a peak in the EELS spectrum
(see figure 6.3a). Since these studies were carried out in epitaxial graphene grown on a silicon
carbide substrate, the plasmon hybridizes with the surface phonon modes of the substrate.
Still, as shown in figure 6.3b, the long-wavelength

√
q-behavior is confirmed qualitatively

and the overall energy range of the study reaches from this long wavelength limit to far
beyond the interband threshold (unlike the optical studies discussed in the following). In
ARPES [231] and STS [232] measurements, the plasmon might have been detected indirectly
as a many-body correction to the spectral function.

In order to excite/probe plasmons with light, wavevector-matching techniques are re-
quired. This can be achieved using prism coupling, grating coupling, highly focused optical
beams or near-field excitation [84]. The works mentioned in the following are also summa-
rized at the end of this section in table 6.1, which provides some insights in the experimental
conditions (frequency and temperature range) and the sample type (encapsulated or not,
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gated or not). The table highlights that most studies were carried out in the THz/infrared
range and under ambient conditions.

a)

b)

c)

d) e)

Figure 6.4 – Grating coupling. a) and b) top and side view of a graphene micro-ribbon
device, gated with an ion gel. c) AFM image of the micro-ribbon array. d) Infrared absorption
spectra of the device for different gate voltages. Incident field is polarized perpendicular to
the ribbons. Inset: No absorption peaks are observed for parallel polarization. e) Comparison
of the absorption peaks for different doping values and grating periodicities, scaled by 1/

√
w,

where w is the width of the ribbons. The resonance frequency scales with n1/4, as expected
for graphene. Figure adapted from ref. [102].

The grating coupling method was used by Ju et al. in 2011 [102]: A CVD graphene
sample was patterned into micro-ribbon arrays of different periodicities (2 − 8 µm, see fig.
6.4a-c). The infrared absorption of the sample was measured using Fourier transform infrared
spectroscopy (FTIR) and a plasmon-induced absorption peak (fig. 6.4d) was observed when
the incident light was polarized perpendicular to the ribbons. Modulating the charge carrier
density using an ion gel gate, a good agreement with the expected n1/4-dependence of the
plasmon frequency was obtained (fig. 6.4e).

The same experimental technique (FTIR & nano-ribbon array) was combined with a
strong magnetic field in 2013 by Poumirol et al. [233] In quantizing fields, FTIR-spectroscopy
can detect transitions between Landau-levels (see also sections 1.4 and 1.7), but the hy-
bridization of these transitions with the plasmon resonance leads to a shift. By measuring
this shift, the plasmon can be detected indirectly.

The near-field coupling method was used by Fei et al. [103,303] and by Chen et al. [104]
in 2011-2012. Here, the wavevector mismatch was overcome by employing scattering-type
scanning near-field optical microscopy (sSNOM) at frequencies ∼ 30 THz. In refs. [103,104],
plasmons were launched into tapered graphene ribbons by illuminating a metallized AFM tip
close to the graphene surface with infrared light (see fig. 6.5a). The plasmons are reflected
by the sample edges, which leads to interference between the incident and the reflected
plasmons, so that position-dependent maxima and minima can be detected in the infrared
light that is coupled back out of the graphene sample. This way, localized modes could be
detected in the tapered ribbons (see fig. 6.5b) and their gate voltage (doping) dependence
could be mapped out in accordance with theoretical predictions (panel c).

The same method was later used to study plasmons in hBN-encapsulated graphene sam-
ples, where – unsurprisingly – plasmon propagation is enhanced with respect to the exper-
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iments on silicon dioxide, since the electronic scattering rates are reduced thanks to the
clean, flat and almost lattice-matched substrate [234]. At the same time, the slight lattice
mismatch between graphene and hBN can lead to moiré patterns that affect the plasmon
dispersion [235].

b)a)

c)

d) e)

Figure 6.5 – Near-field coupling. a) Illustration of the sSNOM experimental setup. A
metallized AFM tip close to the graphene surface acts as antenna to couple the incident
(green arrow) infrared light to the graphene surface plasmons, which are subsequently re-
flected from the sample edges. The resulting electric field is encoded in the back-scattered
infrared amplitude (blue arrow). Figure from ref. [103]. b) Near-field amplitude images of
a tapered graphene ribbon revealing localized modes whose position depends on the applied
gate voltage. c) Wavelength of these localized modes (red circles correspond to red arrows in
previous panel, green crosses correspond to additional dataset) plotted as a function of gate
voltage and Fermi energy, in good agreement with calculated plasmon dispersion. Panels b
and c from ref. [104]. d) Sketch of a patterned gold antenna on top of a single layer graphene
device with a trapezoidal bilayer region (light gray). At the tilted interface between SLG
and BLG one expects plasmon refraction due to the different dispersion in the two regions.
d) Near-field image of the sample. Panels d and e from ref. [236].

In these near-field studies, plasmons cannot only be launched from the tip of the imaging
apparatus, but also from impurities that can be patterned on top of the graphene sample,
see e.g. refs. [236,237] and figure 6.5d.

The beauty of these imaging techniques lies in the possibility to map out the plasmon
propagation in real space, which on one hand gives direct access to the attenuation of the
plasmon and on the other hand can reveal interesting propagation phenomena, like the
“bending”of the trajectory at a SLG-BLG interface: Since the wavevector component parallel
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to the interface has to be conserved, the difference in phase velocities leads to a refraction
effect, similarly to what happens at graphene p-n junctions in chapter 3. The experimental
observation of this is illustrated in the near-field image in fig. 6.5e [236].

a) setup

b) mid-infrared experiment

c) THz experiment

Figure 6.6 – Photocurrent nanoscopy. a) The experimental setup in the studies refs.
[109, 238] consists of an encapsulated graphene device with two local gate electrodes that
induce a p-n junction. An AFM tip is used to couple the incident infrared/THz light to the
graphene plasmons. b) Top: The infrared photocurrent map reveals plasmon interferences
in the vicinity of the sample edges. Bottom: A vertical average from the data shown in the
top panel over the interval 0.2 µm < x < 0.4 µm. c) Top and middle: Equivalent to b,
but with data recorded at four different THz frequencies. Bottom: The dispersion of the
detected plasmons follows the calculated dispersion for screened plasmons (blue color plot),
simplified by the linear approximation (black dashed line) similar to eq. 1.63. The light cone
is represented by the dashed blue line and the solid blue line corresponds to the unscreened
plasmon dispersion. Figures adapted from refs. [109,238].

Whereas in the aforementioned works plasmons were detected by measuring the reflected
infrared light, it is possible to combine the near-field scanning technique with an electrical
readout [105], i.e. measuring the photocurrent. The photothermoelectric detection mecha-
nism is due to variations of the local Seebeck coefficient, which can be maximized by inducing
a p-n junction using local gate electrodes (see fig. 6.6a). In 2017, Alonso-González et al. [109]
and Lundeberg et al. [238] have used this technique to create photocurrent images of stand-
ing graphene plasmons at ∼ 3 THz and ∼ 30 THz, respectively. In both studies, interference
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patterns near the graphene edges enable to measure the plasmon wavelength, see top and
middle panels of fig. 6.6b and c. By performing this experiment at different frequencies,
one can map out the dispersion, see bottom of fig. 6.6c. The linear dispersion observed
in ref. [109] is in strong contrast with the theoretical prediction for unscreened plasmons
and can be explained by the screening effect of the gate electrodes, which slows down the
plasmons significantly.

a) b)

c) e)

d)

Figure 6.7 – Photodetectors. a) Sketch of a graphene-on-SiO2 device embedded in a log-
periodic antenna. b) Its responsivity as a function of gate voltage. Panels a-b from ref. [239]
c) Sketch of an encapsulated graphene sample embedded in a d) bow-tie antenna. e) Its
responsivity as a function of gate voltage at T = 10 K (red line) and at T = 77 K (blue line).
The upper inset is a zoom on the responsivity for positive gate voltages. The oscillations
in the responsivity correspond to plasma resonances in the FET channel. Panels c-e from
ref. [106].

Since these imaging techniques provide rather precise information about both the wave-
length and the damping of the plasmons, they have culminated in fundamental studies inves-
tigating quantum non-local corrections to the plasmon dispersion in the THz range [304] and
the intrinsic damping limits of graphene plasmons due to “dielectric [losses], acoustic-phonon
scattering and intervalley scattering” [237].

The combination of graphene plasmonics with electronic transport is highly interesting,
since it paves the way for the design of novel emitters and detectors in the elusive THz range.
An emblematic device for this purpose is the plasma resonance transistor (PRT). Its working
principle is based on Dyakonov and Shur’s theory from the early 1990s, which states that
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ballistic DC currents in field effect transistors (FETs) may be unstable and lead to plasma
oscillations and consequently to the emission of THz radiation [221]. This phenomenon can
also be described as an electronic equivalent of the acoustic flute [305]. Dyakonov and Shur
further predict that by creating asymmetric boundary conditions, i.e. by applying a bias to
a FET, an incident THz field can be rectified and detected as a DC voltage offset [306]. Both
in the emission- and in the detection-case, resonances are supposed to occur at frequencies
corresponding to the modes of the “plasmonic cavity” formed by the ballistic FET channel.

The emission of THz radiation from such a FET (more specifically, an InGaAs high elec-
tron mobility transistor) was demonstrated by Knap et al. in 2004 [307]. In GaAS/AlGaAs
2DEGs, a weak resonant detection effect at f = 600 GHz was demonstrated at cryogenic
temperature (8 K) in 2002 [308] and – in the same type of device – at room temperature in
2005 [309]. A review on this type of THz detection can be found in ref. [310]

In graphene, non-resonant THz detection was achieved at room temperature with an
exfoliated graphene sample on an SiO2 substrate in 2012 [239]. Figure 6.7a and b show a
sketch of the device and its responsivity as a function of gate voltage. Due to the relatively
low electronic mobility in this kind of device and the room-temperature operation, plasma
oscillations were heavily damped, which is why no resonance could be observed. Thanks
to the improvements of sample quality (van der Waals stacking) and the strongly enhanced
mobilities and mean free paths, resonant detection of THz radiation could be demonstrated
in a similar (but hBN-encapsulated) device structure in 2018 [106], see fig. 6.7c and d. At
cryogenic temperatures, plasma resonances were observed in the responsivity for various gate
voltages, see fig. 6.7e.

This summary of infrared and THz graphene plasmonics clearly shows an evolution from
pure optical characterization in 2011 towards device implementation with actual application
perspectives in 2018. The interference patterns in figure 6.6 nicely illustrate the order of
magnitude of the plasmon wavelength in all these studies: Whereas the mid-infrared exper-
iment (f ∼ 30 THz) detects plasmons with a wavelength on the order of 100 nm, the THz
experiment (f ∼ 3 THz) yields wavelengths of ∼ 1 µm. Extrapolating this tendency linearly
to f ∼ 30 GHz, the frequency range addressed in this work, yields a wavelength on the order
of 100 µm. In chapter 4, we investigate resonances of these “ultra-long” wavelength plasmons
in hBN-encapsulated graphene devices.
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year [ref.] technique f T [K] enc. gate

2011 [102] microribbon array & FTIR 1.2-12 THz 300 no yes

2012 [239] non-resonant photodetector &
THz source

0.3 THz 300 no yes

2012 [303] sSNOM 27-38 THz 300 no yes

2012 [104] sSNOM 27-33 THz 300 no yes

2012 [103] sSNOM 27 THz 300 no yes

2012 [311] disk arrays & FTIR 1.2-10 THz 300 no yes

2013 [89] microribbon array & FTIR 20-90 THz 300 no no

2013 [233] microribbon array, FTIR & B-field 6-21 THz 4.2 no no

2013 [312] sSNOM 30-32 THz 300 no no

2013 [313] sSNOM 26-31 THz 300 no no

2013 [252] time-of-flight in QH states - 1.5 no yes

2014 [85] nanoresonators & FTIR 20-80 THz 300 no no

2014 [254] time-of-flight - 1.5 no yes

2014 [253] resonant GHz spectroscopy &
time-of-flight in QH states

0-65 GHz 4-80 no no

2014 [314] near-field interferometry 28 THz 300 no no

2014 [226] non-resonant GHz spectroscopy 10-50 GHz 30, 300 yes yes

2014 [236] sSNOM & metal antenna on
graphene

26-29 THz 300 no no

2015 [235] sSNOM 27 THz 300 no no

2015 [234] sSNOM 28 THz 300 yes yes

2016 [105] “near-field IR nanoscopy with
electrical read-out”

28 THz 300 yes yes

2017 [109] “nanoscale-resolved THz
photocurrent near-field
microscopy”

2.5-5.7 THz 300 yes yes

2017 [238] sSNOM & transport (p-n junction) 28 THz 300 yes yes

2017 [304] s.a. 3.1 THz 300 yes yes

2017 [315] s.a. 28 THz 300 yes yes

2018 [237] sSNOM & metal launchers 27 THz 60-300 yes yes

2018 [106] resonant photodetector & THz
source

0.13-2 THz 10, 77, 300 yes yes

2018 [27] resonant GHz spectroscopy 0-40 GHz 10-300 yes yes

Table 6.1 – Graphene plasmonics bibliography. The column “enc.” indicates whether
samples were hBN-encapsulated and the column “gate” indicates if a gate electrode was used
to modulate the carrier density.
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6.5 More on magnetoexcitons

In this section, we will derive the Lindhard function for a massive 2DEG in the integer
quantum Hall regime. This is given as an exercise in chapter 10 of Giuliani & Vignale’s
book [32]. The following calculation roughly corresponds to the one provided in the appendix
of ref. [20]. At the end of the section, we will investigate the influence of a uniform electric
field on the quantum Hall Hamiltonian, its eigenstates and the Lindhard function. As pointed
out in refs. [32,74], the electric field does not significantly change the eigenfunctions, except
for a shift in their center position and a tilt of the associated energy levels.

6.5.1 Matrix element of the density operator

In the following, we will use the eigenfunctions |n, ky〉 (see eq. 1.42) of the quantum Hall
Hamiltonian (see eq. 1.40) in the Landau gauge. Here we use the notation n instead of N for
numbering the eigenstates χn,ky of the quantum harmonic oscillator. We want to calculate

the matrix element F
kyk′y
nn′ (q) = 〈n, ky|e−iq·r|n′, k′y〉:

F
kyk′y
nn′ (q) =

∫

dx dy e−iqxxe−iqyyψ∗n(x, y)ψn′(x, y) (6.16)

=
1

Ly

∫

dy e−iqyye−ikyyeik
′
yy

∫

dx e−iqxxχ∗n,ky(x)χn′,k′y(x) (6.17)

= δk′y−ky ,qy

∫

dx e−iqxxχ∗n,ky(x)χn′,k′y(x) (6.18)

where δk′y−ky ,qy denotes the Kronecker delta, meaning that the matrix element is only non-
zero if qy = k′y − ky. Here the states χn,ky and χn′,k′y are both eigenstates of the quantum
harmonic oscillator, with the same associated energy levels, but different center coordinates
kyℓ

2 and k′yℓ
2, where ℓ is the magnetic length. We can re-write this as follows:

F
kyk′y
nn′ (q) = δk′y−ky ,qy

∫

dx e−iqxxχ∗n(x− kyℓ
2)χn′(x− k′yℓ

2) (6.19)

where χn are the eigenstates of the quantum harmonic oscillator centered at x = 0. Now we
perform a change of variables x→ x+ kyℓ

2:

F
kyk′y
nn′ (q) = δk′y−ky ,qy

∫

dx e−iqx(x+kyℓ2)χ∗n(x)χn′(x+ (ky − k′y)ℓ2) (6.20)

= δk′y−ky ,qye
−iqxkyℓ2

∫

dx e−iqxxχ∗n(x)χn′(x+ (ky − k′y)ℓ2) (6.21)

and use the generator of translation T̂ (x) = exp(− ix·p̂
~

) – where T̂ (x) |r〉 = |r + x〉 – to
“shift” χn′ as follows:

F
kyk′y
nn′ (q) = δk′y−ky ,qye

−iqxkyℓ2
∫

dx e−iqxxe
ip̂x(ky−k′y)ℓ2

~ χ∗n(x)χn′(x) (6.22)

= δk′y−ky ,qye
−iqxkyℓ2 〈n|e−iqxxe

−ip̂xqyℓ2

~ |n′〉 (6.23)
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where we used qy = k′y − ky in the last step. We can re-express the matrix element in terms
of the ladder operators for the quantum harmonic oscillator:

x̂ =
ℓ√
2

(

â+ â†
)

(6.24)

p̂x =
~

i
√

2ℓ

(

â− â†
)

(6.25)

which leads to:

F
kyk′y
nn′ (q) = δk′y−ky ,qye

−iqxkyℓ2 〈n|e−iqx
ℓ√
2
(â+â†)e

−qy
ℓ√
2
(â−â†)|n′〉 (6.26)

Since [x̂, p̂x] = i~ which commutes with both x̂ and p̂x, we can use the Baker-Campbell-

Hausdorff formula eÂeB̂ = eÂ+B̂e
1
2
[Â,B̂] for the above matrix element, where

1

2

[

Â, B̂
]

=
1

2

[

−iqx
ℓ√
2

(

â+ â†
)

,−qy
ℓ√
2

(

â− â†
)

]

(6.27)

=
iℓ2

4
qxqy

[

â+ â†, â− â†
]

(6.28)

= − iℓ
2

2
qxqy (6.29)

which leads to:

F
kyk′y
nn′ (q) = δk′y−ky ,qye

−iqxkyℓ2e−
iℓ2

2
qxqy 〈n|e−iqx

ℓ√
2
(â+â†)−qy ℓ√

2
(â−â†)|n′〉 (6.30)

= δk′y−ky ,qye
− iqxℓ2

2
(ky+k′y) 〈n|eαâ†−α∗â|n′〉 (6.31)

where α = ℓ(qy− iqx)/
√

2 and α∗ is its complex conjugate. Since [â, â†] = 1 which commutes
with both â and â†, we can use the Baker-Campbell-Hausdorff formula from above (this time
the other way round) and obtain:

F
kyk′y
nn′ (q) = δk′y−ky ,qye

− iqxℓ2

2
(ky+k′y) 〈n|eαâ†e−α∗âe−

1
2
[αâ†,−α∗â]|n′〉 (6.32)

= δk′y−ky ,qye
−iqxℓ2

2
(ky+k′y)e−

1
2
|α|2 〈n|eαâ†e−α∗â|n′〉 (6.33)

= δk′y−ky ,qye
−iqxℓ2

2
(ky+k′y)e−

1
2
|α|2

∞
∑

m=0

〈n|eαâ† |m〉 〈m|e−α∗â|n′〉 (6.34)

where we inserted the identity in the last line. Let us Taylor-expand the exponential function
in the matrix element 〈n|eαâ† |m〉:

〈n|eαâ† |m〉 =
∞
∑

µ=0

αµ

µ!
〈n|(â†)µ|m〉 (6.35)

The only non-zero term of this sum is for µ = n−m (where m ≤ n), so that:

〈n|eαâ† |m〉 =
αn−m

(n−m)!

(√
m+ 1

√
m+ 2 . . .

√
n
)

(6.36)

=
αn−m

(n−m)!

√

n!

m!
(6.37)
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Similarly, when we Taylor expand the second matrix element 〈m|e−α∗â|n′〉, the only non-
zero term is for µ′ = n′ −m where m ≤ n′:

〈m|e−α∗â|n′〉 =
(−α∗)n′−m

(n′ −m)!

(√
n′
√
n′ − 1 . . .

√
m+ 1

)

(6.38)

=
(−α∗)n′−m

(n′ −m)!

√

n′!

m!
(6.39)

We obtain:

F
kyk′y
nn′ (q) = δk′y−ky ,qye

−iqxℓ2

2
(ky+k′y)e−

1
2
|α|2

nmin
∑

m=0

αn−m

(n−m)!

(−α∗)n′−m

(n′ −m)!

√

n!

m!

√

n′!

m!
(6.40)

= δk′y−ky ,qye
−iqxℓ2

2
(ky+k′y)e−

1
2
|α|2

√
n!n′!

nmin
∑

m=0

(−1)n
′−mαn−m

(n−m)!

(α∗)n
′−m

(n′ −m)!

1

m!
(6.41)

where the sum now goes from zero to nmin = min(n, n′). Let us now assume that n′ ≤ n and
“invert” the sum by introducing the new index λ = n′ −m:

F
kyk′y
nn′ (q) = δk′y−ky ,qye

−iqxℓ2

2
(ky+k′y)e−

1
2
|α|2

√
n!n′!

×
n′
∑

λ=0

(−1)λαn−n′+λ

(n− n′ + λ)!

(α∗)λ

λ!

1

(n′ − λ)!
(6.42)

= δk′y−ky ,qye
−iqxℓ2

2
(ky+k′y)e−

1
2
|α|2

√
n!n′! αn−n′

×
n′
∑

λ=0

(−1)λ|α|2λ
λ!

1

(n− n′ + λ)!

1

(n′ − λ)!
(6.43)
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= δk′y−ky ,qye
−iqxℓ2

2
(ky+k′y)e−

1
2
|α|2αn−n′

√

n′!

n!
Ln−n′
n′ (|α|2) (6.45)

where Ln−n′
n′ (x) denotes the associated Laguerre polynomial. The modulus squared of α is:

|α|2 =

∣

∣

∣

∣

ℓ(qy − iqx)√
2

∣

∣

∣

∣

2

=
ℓ2q2

2
(6.46)

where q = |q|. This leads to the following expression for the matrix element if n ≥ n′:

F
kyk′y
nn′ (q) = δk′y−ky ,qye

−iqxℓ2

2
(ky+k′y)e−

ℓ2q2

4

[

ℓ(qy − iqx)√
2

]n−n′√
n′!

n!
Ln−n′
n′

(

ℓ2q2

2

)

(6.47)
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In the case n′ > n, we introduce the index λ′ = n−m, do the same analysis as demon-
strated above and obtain:

F
kyk′y
nn′ (q) = δk′y−ky ,qye

−iqxℓ2

2
(ky+k′y)e−

1
2
|α|2(−α∗)n′−n

√

n!

n′!
Ln′−n
n (|α|2) (6.48)

where the only change with respect to equation 6.47 is that the indices n and n′ are swapped
and that we replace a α by −α∗.

6.5.2 Lindhard function

We now insert this matrix element into the Lindhard function (equation 1.52), the imaginary
part of which will provide us with the particle-hole excitation spectrum:

χnn(q, ω) =
1

~LxLy

∑

n,n′

∑

ky ,k′y

Pn′ − Pn

ω − ωnn′ + iη

∣

∣〈n, ky|n̂(q)|n′, k′y〉
∣

∣

2
(6.49)

where the energy difference between the states ωnn′ = (n− n′)ωc obviously does not depend
on the wavevectors ky or k′y. Note that we did not take into account spin degeneracy here.
In the zero temperature limit, and assuming that we are dealing with completely filled or
empty LLs, the population factors Pn do not depend on the wavevector either and can be
replaced by Heaviside step functions Pn = Θ(NF −n), where NF is the highest filled LL and
we use the convention Θ(0) = 1.

Since the modulus square of the matrix element does not explicitly depend on ky (in eq.
6.47, ky and k′y only affect the complex phase) and the Kronecker delta forces k′y = ky + qy,
the sum over ky and k′y reduces to a multiplication by the LL degeneracy from eq. 1.45:

χnn(q, ω) =
1

2π~ℓ2

∑

n,n′

Θ(NF − n′) − Θ(NF − n)

ω − ωnn′ + iη

∣
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∣

∣

2
(6.50)

The only non-zero terms in this sum are for transitions between full and empty LLs, i.e.
either n ≤ NF and n′ > NF or vice versa. This means we can re-write the sum as follows:

χnn(q, ω) =
1

2π~ℓ2

×
∞
∑

k=1

∑

j

[

|〈j + k, ky|n̂(q)|j, ky + qy〉|2
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ω + kωc + iη

]

(6.51)

where k is now the distance between two LLs |n′ − n| and the sum over j goes from the
lowest reachable filled LL max(0, NF − k+ 1) to the highest filled LL NF . Using eq. 6.47 for
the first term (n > n′) and 6.48 for the second term (n′ > n) in the square brackets leads to:
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− 1
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]

(6.52)
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6.5.3 Effect of the electric field

Let us now consider what happens if an in-plane electric field is applied to the 2DEG.
This case is also investigated in chapter 10 of Giuliani and Vignale’s book [32]. The time
independent Schrödinger equation 1.40 (TISE) has to be adapted as follows:

1

2mb
[p̂− eA(r)]2 ψ(r)−eV (r)ψ(r) = ǫψ(r) (6.53)

where A is the vector potential such that ∇×A = B and V is the electric potential. Choosing
the Landau gauge A(r) = Bxey and aligning the electric field with the x direction so that
V = −Ex, one finds:

[

− ~
2

2mb

∂2

∂x2
+

1

2mb

(

−i~ ∂
∂y

− eBx

)2

+eEx

]

ψ(x, y) = ǫψ(x, y) (6.54)

As mentioned in section 1.4.1, we can insert plane-wave solutions for the y-direction
ψn(x, y) = eikyyχn,ky(x)/

√

Ly, so that the problem reduces to a one dimensional TISE:

[

− ~
2

2mb

∂2
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+
mbω

2
c

2

(

x− kyℓ
2
)2

+eEx

]

χn,ky(x) = ǫχn,ky(x) (6.55)

which we can re-write as follows [32]:
[

− ~
2

2mb
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+
mbω

2
c

2
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x−Xky

)2
+eEkyℓ

2 − mbv
2
d
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]

χn,ky(x) = ǫχn,ky(x) (6.56)

where Xky = kyℓ
2 − vd/ωc. Similarly to the zero-E-field case, this is the TISE for the

one-dimensional quantum harmonic oscillator (QHO). The solution is given by the QHO
eigenfunctions centered around Xky (i.e. shifted by −vd/ωc with respect to the zero-E-field
case) and the energy eigenvalues are given by:

ǫn,ky =

(

n+
1

2

)

~ωc+eEXky +
mbv

2
d

2
(6.57)

For the calculation of the matrix element 〈n, ky| eiq·r |n′, k′y〉, the shift of the QHO center
only results in a complex phase prefactor that cancels out once we take the modulus squared
(c.f. the change of variables between eq. 6.19 and eq. 6.21). As far as the Lindhard function
is concerned, it therefore only enters as an energy shift depending on qy:

ωnn′ =
1

~

(
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(6.59)

= (n− n′)ωc−vdqy (6.60)

which leads to the following expression for the Lindhard function:
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This finally leads to the conclusion that our system obeys Galilean invariance:

χE 6=0
nn (q, ω) = χE=0

nn (q, ω − vdqy) (6.62)

χE 6=0
RPA(q, ω) = χE=0

RPA(q, ω − vdqy) (6.63)

ωE 6=0
ME (q) = ωE=0

ME (q) − vdqy (6.64)

6.6 Dielectric characterization of hBN

For the design and fabrication of hBN-encapsulated graphene devices with local gate elec-
trodes it is important to know the hBN permittivity ǫr (in order to calculate the charge
carrier density) and its breakdown voltage Vbd (in order to estimate the operation limits of
the device). Since it is a hyperbolic material, hBN’s permittivity is anisotropic [316], but due
to the structure of our devices, we are only interested in the out-of-plane permittivity. In
the literature, one can find values ranging from 2.9 to 4.9 [316, 317], depending on material
thickness and frequency.

In the framework of the GoBN (graphene on boron nitride) ANR (French National Re-
search Agency) project, two different hBN sources were characterized in terms of ǫr (at
radio frequency . 10 GHz) and Vbd. The first source was used for all the devices of this
thesis and is widely used throughout the research community. This hBN was synthesized
by Takashi Taniguchi and Kenji Watanabe at the National Institute for Materials Science
(NIMS) in Japan, by a High-Pressure-High-Temperature (HPHT) method at ∼ 6 GPa and
∼ 2000◦C. [128] The second sample was synthesized by Yangdi Li, Catherine Journet and
Bérangère Toury at Laboratoire des Multimatériaux et Interfaces (LMI) in Lyon, France,
using a polymer-derived ceramics process. [318]

Figure 6.8 – Microscope image of device 01 of the series NIMS-MIMS-3. Scale bar is 100
µm.

The crystals were exfoliated (see section 2.1.1) in order to obtain flakes with a thickness
on the order of tens of nanometers. Each flake was then transferred (see section 2.1.3)
onto a gold electrode embedded in a co-planar waveguide. Finally, a second gold electrode
was patterned on top of the flake by electron beam or optical lithography, so that the two
electrodes form a parallel plate capacitor with a hBN dielectric. An example is shown in
figure 6.8. In the following, we define d as the thickness of the hBN flake, measured using
atomic force microscopy, and S as the surface of the capacitor, measured using scanning
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electron microscopy. The sample fabrication was done by Aurélie Pierret, José Palomo,
Michael Rosticher and Mohamed Boukhicha.

6.6.1 Permittivity measurements

The capacitance was obtained by measuring the complex admittance Y = jωC of the device,
either using a lock-in amplifier or (mostly) using a vector network analyzer (VNA), c.f.
section 2.2. This characterization was done by David Mele, Aurélie Pierret, Andreas Inhofer,
Mohamed Boukhicha and myself.

Supposing that the total capacitance C is a series addition of the hBN-capacitance and
the spurious capacitance of air gaps or polymer residues (induced by the fabrication process
and considered to be independent of d), we can write:

1

C
=

d

ǫ0ǫrS
+

1

Cp
(6.65)

where ǫr is the permittivity of hBN that we want to measure. This can be re-written as
follows:

d = ǫr
ǫ0S

C
− ǫ0ǫrS

Cp
(6.66)

By plotting the hBN thickness d as a function of ǫ0S/C, where C is the measured capaci-
tance, we obtain the permittivity ǫr as the slope and any parasitic, thickness-independent
capacitance encoded as the offset of the data. Figure 6.9 shows the results obtained on six
series of devices, mostly characterized by VNA at room temperature. The data points for
hBN from LMI are red, those for hBN from NIMS are green and black. The black and
the red data points are fitted with a linear function to extract the permittivity and the
aforementioned offset.

Figure 6.9 – Determining the out-of-plane permittivity of hBN from capacitance measure-
ments.

The blue line corresponds to the value ǫr = 3.2 used throughout this thesis and measured
in ref. [144] by calibration against quantum Hall plateaus. Preliminary (CapaBN and Ca-



6.6. DIELECTRIC CHARACTERIZATION OF HBN 175

paBN2) capacitance measurements on thin (< 20 nm) hBN flakes were in accordance with
this value.

Our linear fits suggest that the hBN from LMI has a significantly higher permittivity
ǫr ≈ 3.6 than the one from NIMS where we find ǫr ≈ 2.5. However, the data obtained for
the NIMS samples is scattered around the fit beyond the reach of the error bars and the
fit exhibits a significant offset, indicating that spurious series capacitances due to sample
imperfections still play a role. A new sample generation with graphene/graphite contacts
might solve this issue, since air gaps and polymer residues can be avoided this way.

In conclusion, the permittivity of hBN is still the least precisely known quantity in our
devices. For the corner reflectors discussed in chapter 3, this might result in a systematic
error ∼ 20% for the calculation of the carrier densities n, but also for the transmission of the
device, which is calculated by taking into account the number of transverse modes kFW/π,
where kF =

√
πn. For the plasma resonance capacitors discussed in chapter 4 and the BLG

FET in chapter 5, this uncertainty is less of a problem, because the gate capacitance was
measured in both cases.

6.6.2 Breakdown measurements

The breakdown was measured in the same samples by repeatedly sweeping the applied DC
voltage and increasing the range after every sweep. The breakdown was identified as a sharp
increase in the leak current. This is illustrated in figure 6.10. The hysteresis between forward
and backward sweep (arrows) is due to the finite charging time of the capacitor and can be
reduced by increasing the measurement delay. The breakdown voltages for the positive (V+)
and negative (V−) sweep are highlighted by vertical black lines (two each, in order to indicate
the measurement uncertainty).

Figure 6.10 – Leak current as a function of applied voltage for device 32 of series NIMS-
MIMS-3.

Figure 6.11 shows the collected results of the breakdown measurements on samples made
with LMI (red) and NIMS (black) hBN. The positive and negative breakdown voltages over-
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lap, indicating a reproducible measurement. From the present dataset, no evident difference
between the two hBN types can be established. The blue line is a guide for the eye and
corresponds to Vbd = 0.8 V/nm, which is close to the 0.7 V/nm quoted in ref. [14]. Within
the thickness range used in this thesis (10nm . d < 50 nm), there is a good agreement be-
tween the data and this line. For samples exceeding this range (thinner or thicker), smaller
breakdown fields were measured, indicating that the breakdown field might depend on the
sample thickness.

V- LMI

V+ LMI

V- NIMS

V+ NIMS

Figure 6.11 – Breakdown voltage as a function of hBN thickness for positive (V+) and
negative (V−) applied voltages.
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[140] L. Schué, I. Stenger, F. Fossard, A. Loiseau, and J. Barjon, “Characterization methods
dedicated to nanometer-thick hBN layers,” 2D Materials, vol. 4, no. 1, 2017.

[141] L. Banszerus, H. Janssen, M. Otto, A. Epping, T. Taniguchi, K. Watanabe,
B. Beschoten, D. Neumaier, and C. Stampfer, “Identifying suitable substrates for high-
quality graphene-based heterostructures,” 2D Materials, pp. 1–6, 2016.

[142] B. Cheng, P. Wang, C. Pan, T. Miao, Y. Wu, T. Taniguchi, K. Watanabe, C. N. Lau,
and M. Bockrath, “Raman spectroscopy measurement of bilayer graphene’s twist angle
to boron nitride,” Applied Physics Letters, vol. 107, no. 3, 2015.

[143] R. Ribeiro-Palau, C. Zhang, K. Watanabe, T. Taniguchi, J. Hone, and C. R. Dean,
“Twistable electronics with dynamically rotatable heterostructures,” Science, vol. 361,
pp. 690–693, aug 2018.

[144] W. Yang, S. Berthou, X. Lu, Q. Wilmart, A. Denis, M. Rosticher, T. Taniguchi,
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graphene,” Physical Review B - Condensed Matter and Materials Physics, vol. 89,
no. 12, pp. 1–5, 2014.

[174] P. Rickhaus, P. Makk, M. H. Liu, E. Tóvári, M. Weiss, R. Maurand, K. Richter, and
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