
HAL Id: tel-02713064
https://theses.hal.science/tel-02713064

Submitted on 1 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault-tolerant and energy-aware algorithms for
workflows and real-time systems

Li Han

To cite this version:
Li Han. Fault-tolerant and energy-aware algorithms for workflows and real-time systems. Distributed,
Parallel, and Cluster Computing [cs.DC]. Université de Lyon; East China normal university (Shang-
hai), 2020. English. �NNT : 2020LYSEN013�. �tel-02713064�

https://theses.hal.science/tel-02713064
https://hal.archives-ouvertes.fr

Numéro National de Thèse : 2020LYSEN013

THÈSE de DOCTORAT DE L’UNIVERSITÉ DE LYON
opérée par

l’École Normale Supérieure de Lyon
en cotutelle avec

East China Normal University

École Doctorale N◦512
École Doctorale en Informatique et Mathématiques de Lyon

Spécialité : Informatique

présentée et soutenue publiquement le 06/05/2020, par :

Li HAN

Fault-tolerant and energy-aware algorithms for
workflows and real-time systems

Algorithmes tolérants aux pannes et minimisant l’énergie
pour les systèmes de tâches et les systèmes temps-réel

Devant le jury composé de :

Alix MUNIER Professeur, Univ. Paris 6 Rapporteur
Denis TRYSTRAM Professeur, INP Grenoble Rapporteur
Brice GOGLIN Directeur de recherche, Inria Bordeaux Examinateur
Veronika SONIGO Maître de Conférences, Univ. Franche Comté Examinatrice
Robert SPECK Researcher, Jülich Supercomputing Center (Allemagne) Examinateur
Jing LIU Professeur, ECNU (Chine) Co-tutrice de thèse
Yves ROBERT Professeur, ENS de Lyon Directeur de thèse
Frédéric VIVIEN Directeur de recherche, Inria Lyon Co-encadrant de thèse

ii

Contents

Introduction vii

Résumé français xiii

I Scheduling and checkpointing workflows for fail-stop errors 1

1 Framework 3
1.1 Introduction . 3
1.2 Related work . 5

1.2.1 Soft and silent errors . 5
1.2.2 Fail-stop failures . 6
1.2.3 Branch and bound methods . 7

2 Optimal solutions for special classes of task graphs 9
2.1 Example . 10
2.2 Preliminaries . 11

2.2.1 Execution model . 11
2.2.2 Fault-tolerance model . 12
2.2.3 Minimal Series Parallel Graphs (M-SPG) . 13
2.2.4 Problem description and proposed approach . 14
2.2.5 Evaluation of expected makespan . 16

2.3 Scheduling M-SPGS . 16
2.4 Placing checkpoints in superchains . 17

2.4.1 From chains to superchains . 17
2.4.2 Checkpointing algorithm . 20
2.4.3 Technical remarks . 21

2.5 The CKPTNONE strategy . 22
2.5.1 #P-completeness . 22
2.5.2 Approximating the makespan . 24

2.6 Experiments . 24
2.6.1 Experimental methodology . 24
2.6.2 Expected makespan . 26

2.7 Conclusion . 28

iii

iv CONTENTS

3 Generic approaches for arbitrary task graphs 31
3.1 Example . 31
3.2 Scheduling and checkpointing algorithms . 34

3.2.1 Scheduling heuristics . 34
3.2.2 Checkpointing strategies . 35

3.3 Experiments . 37
3.3.1 Experimental methodology . 37
3.3.2 Simulator . 39
3.3.3 Results . 40

3.4 Conclusion . 49

II Energy-aware strategies for reliability-oriented real-time task allocation 51

4 Framework 53
4.1 Introduction . 53
4.2 Related work . 55

4.2.1 Scheduling real-time applications on homogeneous platforms 55
4.2.2 Scheduling for heterogeneous platforms . 56
4.2.3 Scheduling real-time applications on heterogeneous platforms 56

5 Homogeneous platforms 59
5.1 Previous approach . 59

5.1.1 Optimization problem . 59
5.1.2 Replica sets . 61
5.1.3 Mapping and static schedule . 62
5.1.4 Dynamic schedule . 62

5.2 Motivational example . 64
5.3 New strategies . 65

5.3.1 Replica sets . 65
5.3.2 Mapping and static schedule . 66
5.3.3 Dynamic schedule . 67
5.3.4 Heuristics . 69
5.3.5 Complexity analysis . 70

5.4 Performance evaluation . 73
5.4.1 Experimental methodology . 73
5.4.2 Results . 73

5.5 Conclusion . 76

6 Heterogeneous platforms 79
6.1 Model . 80

6.1.1 Platform and tasks . 80
6.1.2 Power and energy . 80
6.1.3 Reliability . 81
6.1.4 Optimization objective . 81
6.1.5 Complexity . 82

6.2 Mapping . 84
6.3 Scheduling . 85

CONTENTS v

6.4 Lower bound . 87
6.5 Performance evaluation . 88

6.5.1 Experimental methodology . 88
6.5.2 Results . 89

6.6 Conclusion . 95

Conclusion 97

Bibliography 101

Publications 111

vi CONTENTS

Introduction

In modern scientific research, the difficulty of solving problems by theory and experiment alone has
gradually increased. Numerical methods have been used to simulate the physical world to solve com-
plex problems. Computational science has become an indispensable tool for natural science research. In
Oct. 2013, the Nobel Prize in Chemistry was awarded for “development of multiscale models for com-
plex chemical systems”. The selection committee pointed out that for today’s chemists, computers have
become an equally important tool as test tubes, and the simulation of life phenomena by computers has
contributed to most of the research results of chemistry. This will undoubtedly further deepen the un-
derstanding and application of computational models and computational sciences in various disciplines,
and will lead the development of these disciplines into the next wave.

The massive calculation requirements from scientific simulations have become the most direct driv-
ing force for the development of high-performance computers (HPC)1, also known as supercomputers.
The term refers to aggregating computing components in a way that produces much higher performance
than those units working separately in solving large problems in science and engineering. It is widely
used in aerospace aircraft design, energy exploration, long-term weather forecast, image processing,
intelligence analysis, and other fields. All these areas are of great value to the development of national
economy and national defense. Although the improvement of supercomputers drives new breakthroughs
in numerous areas, it also brings new challenges. In February 2014, the ASCAC (Advanced Scientific
Computing Advisory Committee) Subcommittee identified the top ten challenges [72] to achieve the
development of an Exascale system (1018 floating point operation per second). This thesis addresses
two prominent concerns in this list, namely, resilience and energy efficiency.

Resilience, or fault-tolerance, is stated as [72]: ensuring correct scientific computation in face of
faults, reproducibility, and algorithm verification challenges. To fully develop the ability of a supercom-
puter (hundreds of thousands of cores), we have to divide a large problem into small ones, and compute
each of them in parallel by different processing units (cores). As a result, the correctness of the final
result is highly related to each single component. Indeed, with the advance of manufacturing, each indi-
vidual resource becomes more reliable, but aggregating too many of them will result in frequent failures
globally. Platform sizes have become so large that errors and failures are likely to strike at a high rate
during application execution [24] which is for sure a barrier on the road to exascale. More precisely,
the MTBF (Mean Time Between Failures) µP of the platform decreases linearly with the number of
processors P , since

µP = µind

P

where µind is the MTBF of each individual component (see Proposition 1.2 in [56]). Take µind = 10
years as an example. If P = 105 then µP ≈ 50 minutes and if P = 106 then µP ≈ 5 minutes:
from the point of view of fault-tolerance, scale is the enemy. Obviously, failure handling is critical for

1HPC could also refer to high performance computing (parallel computing), which could be clearly identified through
different contexts.

vii

viii CONTENTS

highly parallel applications that use a large number of components for a significant amount of time,
because such applications are likely to experience at least one failure during execution. If there is no
fault-tolerance mechanism, once an error occurs, one needs to spend lots of time to re-execute, then the
execution may be infinite.

In the literature, there are three terms frequently used when studying resilience: fault, error and
failure. To clarify the differences between the definition of those terms [68]: a failure means that the
external behavior is incorrect, where a system or component does not perform required function ac-
cording to its specification. The failure occurred because the system is erroneous, while an error is the
manifestation of a fault. In other words, a fault creates a latency error, which becomes effective when it
is activate; when the error affects delivered services, a failure occurs.2 Faults are mainly classified into
two categories: permanent faults and transient faults.

Permanent faults are usually induced by hardware problems, e.g., oxide wearout, power loss, etc.,
which lead to fail-stop errors (hard errors) [77]. It remains for indefinite periods till corrective action,
e.g., a part replacement, is taken. Once a fail-stop error occurs, the execution of the processor stops
immediately, all contents in its memory is lost, and the computations have to be restarted from scratch,
either on the same processor once it reboots or on a spare. The de-facto approach to handle such failures
is Checkpoint/Restart (C/R), by which application state is saved to stable storage, such as a shared file
system, throughout execution.

Transient faults are usually manifested as bit-flips and due to any of the following causes: radiation,
minimum voltage, or thermal cycling, etc., which lead to soft errors [108]. Soft errors cause a task
execution to fail but without completely losing the data present in the processor memory. The most
insidious form of soft error is silent data corruption (SDC), also known as silent errors, where the fault
induces erroneous output without interrupting the execution. To avoid silent errors, designers need to
deploy error detection mechanism. By applying the silent error detector, the execution is interrupted
once an error is detected, thereby we avoid generating incorrect outputs. But this does not reduce the
error rate nor correct the error. We call errors in this category detected unrecoverable errors (DUE). Local
checkpointing (or more precisely making a copy of all task input/output data), and/or task replication,
are the most widely used technique to recover from soft errors.

We can see that fault-tolerant strategies typically require redundancy of system resources, either
continuously (replication) or at periodic intervals (migration from faulty node to spare node, rollback
and recovery). In the latter case, the state of an application must be preserved (checkpointing), and the
system must roll back to the last saved checkpoint. However the amount of replication and/or the fre-
quency of checkpointing must be optimized carefully. For example, checkpointing frequently degrades
performance, cause the system takes time to save files instead of doing computation. On the other hand,
the application is at risk between two checkpoints, and the longer the checkpoint interval, the larger the
penalty paid for re-executing work after a failure. We will deal with the trade-off between performance
(in terms of the total execution time) and the resilience of fail-stop errors in Part I.

Redundant computations and/or communications called by the fault-tolerant methods, not only de-
grade the system performance, but also conflict with the energy minimization objective. Power man-
agement is necessary due to both monetary and environmental constraints. Presently, large computing
centers are among the largest consumers of energy. Energy is needed to provide power to the individual
cores and also to provide cooling for the system. On the 15th November 2007, the list of Green500

2Although there are slight differences in definition of those three terms, we only focus on their consequences or effects on
the execution and systems. So in the rest of this thesis, we use fault, error and failure indifferently.

CONTENTS ix

was announced at SC07 [70]. As a complement to the rank TOP500, the Green500 list ranks the su-
percomputers in the world by energy efficiency (FLOPS-per-Watt), which shows the trend that we do
not only focus on performance-at-any-cost supercomputers. Sustainable supercomputing is the new era.
Dynamic voltage and frequency scaling (DVFS) is a widely used technique to manage energy consump-
tion, but it can increase execution time and severely degrade performance. DVFS is a mechanism that
allows to adjust the CPU voltage and frequency; this is a well-known technique that trades off the pro-
cessing speed with energy savings. In the context of reliability, DVFS has a negative impact on the
transient fault rate [33]: as we decrease the supply voltage and frequency to save power, the transient
fault rate significantly increases. As a consequence, when we scale down the frequency level, we must
take into account the reliability and performance degradation. We will dig into the interplay between
energy, reliability and performance in the context of transient errors in Part II.

The main goal of this thesis is to re-design scheduling algorithms and to investigate trade-offs be-
tween multiple criteria (i.e., system performance, resilience and energy consumption). Scheduling prob-
lems have been well studied: given a set of tasks and resources, how do we allocate them and in which
order should tasks assigned on the same core to be executed? With different objectives into play, the
problem becomes even more difficult. This is a challenging but unavoidable multi-criteria optimization
problem, whose solution is critical for many applications and large-scale systems.

In Part I, we focus on task graphs (workflows) scheduling and checkpointing strategies for fail-stop
errors, starting with an application task graph deployed on a large-scale platform. With resilience into
play, which tasks should we checkpoint in order to minimize the total execution time? The objective
is to design optimal solutions for special classes of task graphs, namely M-SPG in Chapter 2, and to
provide general-purpose heuristics for arbitrary ones in Chapter 3. Then in Part II, we will consider
several application instances running on the platform, which means that tasks are periodically input to
the platform. This is in the context of real-time scheduling. Traditionally, replication is used to mitigate
the impact of transient errors. We investigate the number of replicas that are needed to achieve the
reliability goal for each task, with interplay between time constrains and energy minimization, to which
processors should these replicas be allocated and in which order should they be scheduled? This study
is done first for homogeneous systems in Chapter 5 and then for heterogeneous systems in Chapter 6.
The main contributions of each chapter are summarized as below.

Part I

This part starts with a short introduction and related work in the context of scheduling and checkpointing
workflows in Chapter 1.

Chapter 2: Optimal solutions for special classes of task graphs [C2, J1]

In this chapter, we consider the problem of orchestrating the execution of workflow applications struc-
tured as Directed Acyclic Graphs (DAGs) on parallel computing platforms that are subject to fail-stop
failures. The objective is to minimize expected overall execution time, or makespan. A solution to this
problem consists of a schedule of the workflow tasks on the available processors and of a decision of
which application data to checkpoint to stable storage, so as to mitigate the impact of processor fail-
ures. To address this challenge, we first consider in this chapter, a restricted class of graphs, Minimal
Series-Parallel Graphs (M-SPGS), which is relevant to many real-world workflow applications. For this
class of graphs, we propose a recursive list-scheduling algorithm that exploits the M-SPG structure to
assign sub-graphs to individual processors, and uses dynamic programming to decide optimally how to

x CONTENTS

checkpoint these sub-graphs. We assess the performance of our algorithm for production workflow con-
figurations, comparing it to (i) an approach in which all application data is checkpointed (CKPTALL),
which corresponds to the standard way in which most production workflows are executed today; and
(ii) an approach in which no application data is checkpointed (CKPTNONE). Results demonstrate that
our algorithm outperforms both the former approach, because of lower checkpointing overhead, and the
latter approach, because of better resilience to failures.

Chapter 3: Generic approaches for arbitrary task graphs [C3, J2]

After studying the optimal solutions for the specific type of graphs, namely M-SPGS (Minimal Series-
Parallel Graphs), in Chapter 2, in this following chapter, we deal with scheduling and checkpointing
strategies to execute general scientific workflows (task graphs) on failure-prone large-scale platforms.
To the best of our knowledge, this work is the first to target fail-stop errors for arbitrary workflows.
Most previous work addresses soft errors, which corrupt the task being executed by a processor but do
not cause the entire memory of that processor to be lost (contrarily to fail-stop errors), or only consider
a restricted type of graphs (e.g., a chain of tasks). We revisit classical mapping heuristics such as HEFT
and MINMIN and complement them with several checkpointing strategies. The objective is still to derive
an efficient trade-off between checkpointing every task (CKPTALL), which is an overkill when failures
are rare events, and checkpointing no task (CKPTNONE), which induces dramatic re-execution overhead
even when only a few failures strike during execution. Contrarily to previous work, the new approach
applies to arbitrary workflows, not just special classes of dependence graphs such as a chain of tasks
or M-SPGS. Extensive experiments report significant gain over both CKPTALL and CKPTNONE, for a
wide variety of workflows.

Part II

This part starts with a short introduction and related work in the context of scheduling real-time appli-
cations on both homogeneous and heterogeneous systems in Chapter 4.

Chapter 5: Homogeneous platforms [C4]

This chapter revisits the real-time scheduling problem on homogeneous platforms recently introduced
by Haque, Aydin and Zhu (2017). In this challenging problem, task redundancy ensures a given level
of reliability while incurring a significant energy cost. The inputs to the problem are: a set of real-time
tasks, a set of identical processors and a reliability target. Our goal is to find the replica settings that guar-
antee the target reliability threshold and meet all deadlines, while minimizing energy consumption. By
carefully setting processing frequencies, allocating tasks to processors and ordering task executions, we
improve on the previous state-of-the-art approach with an average gain in energy of 20%. Furthermore,
we establish the first complexity results for specific instances of the problem.

Chapter 6: Heterogeneous platforms

Following the study in Chapter 5, in this chapter we focus on heterogeneous platforms, which are com-
posed of processors with different (and possibly unrelated) characteristics, including speed profile, en-
ergy cost and failure rate. We provide several mapping and scheduling heuristics towards the challenging
multi-criteria optimization problem: minimize the expected energy consumption while enforcing the re-
liability threshold and meeting all task deadlines. Compared to homogeneous platforms, heterogeneity

CONTENTS xi

complicates the problem as we could not know the number of replicas needed for each task to meet
its reliability threshold before deciding its processor. For each task, we have to decide: (i) how many
replicas to use; (ii) on which processor to map each replica; and (iii) when to schedule each replica on
its assigned processor. Different mappings achieve different levels of reliability and consume different
amounts of energy. Scheduling matters because once a task replica is successful, the other replicas of
that task are cancelled, which calls for minimizing the amount of temporal overlap between any replica
pair. The experiments are conducted for a comprehensive set of execution scenarios, with a wide range
of processor speed profiles and failure rates. The comparison results reveal that our strategies perform
better than the random baseline, with a gain of 40% in energy consumption, for nearly all cases. The ab-
solute performance of the heuristics is assessed by a comparison with a lower bound; the best heuristics
achieve an excellent performance, with an average value only 4% higher than the lower bound.

xii CONTENTS

Résumé français

En février 2014, l’ASCAC (Advanced Scientific Computing Advisory Committee) sous-comite a iden-
tifie les dix principaux défis pour parvenir au développement d’un système Exascale (plates-formes
pouvant effectuer 1018 operations par secondes). Cette thèse se concentre sur deux problèmes majeurs
de cette liste, dans le contexte du calcul haute performance (HPC): la résilience et la consommation
d’énergie.

Pour fournir la puissance de calcul requise par la recherche scientifique moderne, le nombre d’unités
de calcul dans les super-ordinateurs a considérablement augmenté ces dernières années, ce qui entraîne
une augmentation de la fréquence des erreurs. Plus précisément, le temps moyen entre deux fautes
(MTBF) est proportionnel au MTBF de ses composants, mais aussi a l’inverse du nombre de processeurs
sur ces machines. Alors que la fiabilite des composants pris de maniere independante augmente, leur
nombre augmente également, et de maniere exponentielle. Par consequent, ce MTBF decroit rapide-
ment. De toute évidence, la mise en œuvre de mécanismes de tolérance aux pannes, afin d’assurer la
résilience des applications, devient critique pour les applications hautement parallèles qui utilisent un
grand nombre de composants pendant une période de temps significative. En effet, en l’absence de tout
mécanisme de tolérance aux pannes, une application pourrait être ne jamais terminer.

D’un autre côté, il est nécessaire de minimiser la consommation énergétique à cause des contraintes
budgétaires et environnementales. Actuellement, les grands centres de calcul comptent parmi les plus
gros consommateurs d’énergie. L’énergie est nécessaire pour alimenter les cœurs individuels et égale-
ment pour refroidir le système. Ceci est d’autant plus important que la résilience nécessite souvent
une redondance dans le temps (points de sauvegardes) et/ou dans l’espace (réplication), qui induit une
consommation énergétique supplémentaire. Par ailleurs, certaines des technologies qui réduisent la con-
sommation d’énergie (e.g., DVFS) ont des effets négatifs sur les performances et la résilience. Par
conséquent, lorsque nous gérons l’énergie consommée, nous devons prendre en compte la fiabilité et la
dégradation des performances.

Dans ce contexte, nous concevons des algorithmes d’ordonnancement pour étudier les compromis
entre performance, résilience et consommation d’énergie. Les problèmes d’ordonnancement ont été bien
étudiés: étant donné un ensemble de tâches et de ressources, comment pouvons-nous les allouer et dans
quel ordre les tâches assignées sur le même processeur doivent-elles être exécutées? Avec différents
objectifs en jeu, le problème devient encore plus difficile. Il s’agit d’un problème d’optimisation multi-
critère difficile mais inévitable, dont la solution est critique pour de nombreuses applications et systèmes
à grande échelle.

La Partie I de cette thèse se concentre sur l’ordonnancement des graphes de tâches sujets à des
pannes. La question est alors de décider quelle tâche doit être sauvegardée (redondance dans le temps)
afin de minimiser le temps d’exécution total. L’objectif est alors de concevoir des solutions optimales
pour des classes spéciales de graphes de tâches (Chapitre 2) et de fournir des heuristiques pour le cas
général (Chapitre 3). Nous considérons dans la Partie II l’ordonnancement d’ensembles de tâches péri-
odiques indépendantes dans un contexte temps-réel, sujet à des erreurs silencieuses. Nous étudions

xiii

xiv CONTENTS

combien de répliques sont nécessaires (redondance en espace) et analysons l’interaction entre dates bu-
toir, fiabilité, et minimisation d’énergie. Cette étude est effectuée d’abord pour les systèmes homogènes
au Chapitre 5, puis pour les systèmes hétérogènes au Chapitre 6. Les contributions principales de chaque
chapitre sont resumees ci-dessous.

Partie I:

Cette partie commence par une brève introduction et des travaux connexes dans le contexte de
l’ordonnancement et le checkpoint de graphes de tâches dans le Chapitre 1.

Chapitre 2: Solutions optimales pour des classes spéciales de graphes de tâches [C2,
J1]

Ce chapitre considère l’ordonnancement de workflows (applications structurées en forme de graphes de
tâches acycliques, ou DAGs) sur des plates-formes parallèles à grande échelle, soumises à des erreurs
fatales. L’objectif est de minimiser l’espérance du temps total d’exécution, ou makespan. Une solution à
ce problème comprend l’allocation ordonnée des tâches aux processeurs, et les décisions de checkpoint:
quelles tâches sont suivies d’un checkpoint? Même pour une solution donnée, le calcul du makespan
reste difficile. Nous nous restreignons d’abord à une classe de DAGs particuliers, les graphes séries-
parallèles minimaux, ou M-SPGS. De nombreux workflows issus des applications ont pour graphe
un M-SPG. Pour de tels graphes, nous proposons un algorithme qui utilise la structure récursive du
M-SPG pour allouer des sous-graphes à chaque processeur, et utilise la programmation dynamique
pour décider quelles tâches checkpointer. Il est alors possible de calculer efficacement le makespan via
des algorithmes d’évaluation de DAGs probabilistes à deux états. Nous établissons expérimentalement
la performance de notre approche en la comparant, sur des workflows applicatifs bien connus, avec
l’approche qui checkpointe toutes les tâches et celle qui n’en checkpointe aucune. Les résultats montrent
que notre approche réalise un bon compromis entre les deux approches extrêmes, avec moins de surcoût
de checkpoint que la stratégie qui checkpointe tout le temps, et une meilleure résilience que celle qui ne
checkpointe jamais. A notre connaissance, notre approche est la première à considérer des DAGs plus
généraux que des chaînes pour les erreurs fatales.

Chapitre 3: Une approche générique pour les graphes de tâches arbitraires [C3, J2]

A partir des resultats obtenus dans le Chapitre 2, qui se concentre sur des M-SPGS, ce chapitre etends
et generalise les stratégies pour le cas général: l’ordonnancement et les stratégies de checkpoint utiles
à l’exécution d’applications scientifiques structurées en forme DAGs généraux, sur des plateformes à
grande échelle, sujettes aux fautes. A notre connaissance, ce travail est le premier à traiter des erreurs
fatales pour des graphes de tâches arbitraires. La plupart des travaux existants traitent des erreurs silen-
cieuses, qui corrompent la tâche en train d’être exécutée sur un processeur mais ne provoquent pas la
disparition totale de la mémoire de ce processeur, contrairement aux erreurs fatales. Nous revisitons les
heuristiques d’allocation classiques telles que HEFT et MINMIN, auxquelles nous rajoutons plusieurs
stratégies de checkpoint. L’objectif est comme au chapitre precedent de trouver un juste milieu efficace
entre checkpointer toutes les tâches (CKPTALL), ce qui est trop lourd quand les erreurs surviennent
rarement, et n’en checkpointer aucune (CKPTNONE), ce qui induit des temps de ré-exécution élevés,
même quand seulement quelques fautes surgissent durant l’exécution. Contrairement à ce qui a été fait
précédemment, notre approche s’applique à des graphes de tâches quelconques, pas seulement à cer-
taines classes spéciales de graphes de tâches comme les M-SPGS (Graphe Série-Parallèle Minimal) ou

CONTENTS xv

les chaînes. Plusieurs expériences montrent un gain significatif par rapport à CKPTALL et CKPTNONE,
pour une large variété de graphes de tâches.

Partie II:

Cette partie commence par une brève introduction et des travaux connexes dans le contexte de
l’ordonnancement d’applications temps-réel sur les deux systèmes homogènes et hétérogènes dans le
Chapitre 4.

Chapitre 5: Les plates-formes homogènes [C4]

Ce chapitre s’intéresse à un problème d’ordonnancement en temps-réel sur des plates-formes homogènes
étudié par Haque, Aydin and Zhu et récemment paru dans IEEE TPDS [54]. Dans ce problème difficile,
la redondance des tâches garantit un niveau de fiabilité donné tout en entraînant un consommation én-
ergétique considérable. Les entrées du problème sont: un ensemble de tâches temps-réel, un ensemble
de processeurs identiques et un objectif de fiabilité. L’objectif est de concevoir des nouvelles stratégies
qui garantissant la fiabilité cible seuil et respecter tous les dates butoir, tout en minimisant la consom-
mation d’énergie. En définissant soigneusement les fréquences de traitement, en allouant des tâches aux
processeurs et en commandant la tâche exécutions, nous améliorons significativement les résultats de
la précédente approche avec un gain d’énergie moyen de 20%. De plus, nous établissons les premiers
résultats de complexité pour des cas particuliers du problème.

Chapitre 6: Les plates-formes heterogenes

Contrairement au chapitre précédent qui etudie des plates-formes composees de processeurs identiques,
ce travail se concentre sur les plates-formes heterogenes. Comme motive plus haut, les plates-formes
modernes comportent de plus en plus d’unites de calcul dediees, qui sont composées de processeurs
ayant des caractéristiques différentes (et éventuellement non liées), y compris profil de vitesse, coût
énergétique et taux d’erreur. Nous fournissons plusieurs heuristiques de placement et d’ordonnancement
vers le difficile problème d’optimisation multi-critère: minimiser la consommation d’énergie attendue
tout en respectant le seuil de fiabilité et en respectant toutes les échéances des tâches. Par rapport aux
plates-formes homogènes, l’hétérogénéité complique le problème car on ne connait pas le nombre de
répliques nécessaires pour que chaque tâche atteigne son seuil de fiabilité avant de décider sur quels
processeurs exécuter ces répliques. Pour chaque tâche, nous devons décider: (i) combien de répliques
utiliser; (ii) sur quel processeur allouer chaque réplique; et (iii) quand planifier chaque réplique sur
son processeur attribué. Différents placement atteignent différents niveaux de fiabilité et consomment
différentes quantités d’énergie. L’ordonnancement est important car une fois qu’une réplique de tâche
réussit, les autres répliques de cette les tâches sont annulées, ce qui nécessite de minimiser la quantité de
chevauchement temporel entre n’importe quelle paire de répliques. Les expériences sont menées pour
un ensemble complet de scénarios d’exécution, avec une large gamme de profils de vitesse de processeur
et de taux d’erreur. Les résultats de la comparaison révèlent que nos stratégies fonctionnent mieux que
la ligne de base aléatoire, avec un gain de 40% de consommation d’énergie, dans presque tous les cas.
La performance absolue de l’heuristique est évaluée par une comparaison avec une borne inférieure; la
meilleure heuristique atteint une excellente performance, avec une valeur moyenne de seulement 4%
supérieure à la borne inférieure.

xvi CONTENTS

Part I

Scheduling and checkpointing workflows for
fail-stop errors

1

Chapter 1

Framework

1.1 Introduction

In the first part of this thesis, we deal with scheduling techniques to deploy scientific workflows on
large parallel or distributed platforms subject to fail-stop processor failures, e.g., a large-scale cluster.
Scientific workflows, also named task graphs, are the archetype of HPC (High Performance Computing)
applications, which are naturally partitioned into tasks that represent computational kernels. The tasks
are partially ordered because the output of some tasks may be needed as input to some other tasks.
Altogether, the application is structured as a DAG (Directed Acyclic Graph) whose nodes are the tasks
and whose edges enforce the dependencies. Nodes are weighted by the computational requirements (in
flops) while edges are weighted by the size of communicated data (in bytes). Given a workflow and a
platform, the problem of mapping the tasks onto the processors and to schedule them so as to minimize
the total execution time, or makespan, has received considerable attention in the past.

As stated in the Introduction section, considering the increasing number of failures, the classical
mapping and scheduling problem has recently been revisited to account for the fact that errors can
strike during execution. In the case of a fail-stop error (e.g., a crash due to a power loss or some other
hardware problem), the execution of the processor stops, all the content of its memory is lost, and the
computations have to be restarted from scratch, either on the same processor once it reboots or on a
spare. The de-facto approach to handle such failures is Checkpoint/Restart (C/R), by which application
state is saved to stable storage, such as a shared file system, throughout execution. Because workflows
are structured as DAGs of tasks, they are good candidates for a C/R approach. First, tasks can be
checkpointed individually and asynchronously. Second, rather than checkpointing the entire memory
footprint of a task, it is only necessary to checkpoint its output data.

Checkpointing strategy adds redundancy in time, as intermediate results are stored in between task
executions and computations can be re-executed later on. There is an obvious trade-off between the
amount of time one is willing to spend on checkpoints, and the amount of time wasted in re-executions
in case of errors. In this part, we consider the following problem: scheduling a workflow execution
on failure-prone processors and deciding which task to checkpoint. The objective is to minimize the
expectation of the execution time, or makespan.

The common strategy used in practice is checkpoint everything, or CKPTALL: all output data of
each task is saved onto stable storage (in which case we say “the task is checkpointed”). For instance,
in production Workflow Management Systems (WMSs) [1, 2, 32, 38, 109, 110], the default behavior is
that all output data is saved to files and all input data is read from files, which is exactly the CKPTALL

strategy. While this strategy leads to fast restarts in case of failures, its downside is that it maximizes
checkpointing overhead. At the other end of the spectrum, it would be a checkpoint nothing strategy, or

3

4 CHAPTER 1. FRAMEWORK

CKPTNONE, by which all output data is kept in memory (up to memory capacity constraints) and no
task is checkpointed. This corresponds to “in-situ” workflow executions, which has been proposed to
reduce I/O overhead [119]. The downside is that, in case of a failure, a large number of tasks may have
to be re-executed, leading to slow restarts. The objective of this part is to achieve a desirable trade-off
between these two extremes.

In order to design algorithms for this optimization problem, we face two major difficulties stated as
following:

• Evaluation of expected makespan. The makespan is a random variable because task execution
times are probabilistic, due to failures causing task re-executions. The complexity of this problem
is steep. In fact, the complexity of computing the expected makespan of a given solution is already
difficult. A solution consists of an ordered list of tasks to execute for each processor; and for each
task whether or not to save its output data to stable storage after its execution. In a failure-
free execution, the makespan of a solution is simply the longest path in the DAG, accounting
for serialized task executions at each processor. With failures, however, estimating the expected
makespan of a solution is difficult. Consider the CKPTALL strategy and a solution in which each
task is assigned to a different processor. Computing the expected makespan amounts to computing
the expected longest path in the schedule. Unfortunately, computing the expected length of the
longest path in a DAG with probabilistic task durations is a known difficult problem [46, 79]. Even
in the simplified case when task durations are random variables that can take only two discrete
values, the problem is #P-complete [46]. 1 As a result, several approximation methods have
been developed to estimate the expected longest path of a DAG with probabilistic task durations,
including Monte-Carlo simulations (see Section 2.2.5 for a detailed discussion). The complexity
for computing the expected makespan for the CKPTNONE strategy is open, we proved its #P-
completeness in Section 2.5.

• Processor interference. The aim of this part is to design a strategy that achieves better perfor-
mance than CKPTALL and than CKPTNONE by checkpointing some, but not all, tasks. When all
tasks are checkpointed, failures are contained since a task can just be restarted after a failure by
reading input data that has been saved to stable storage by that task’s checkpointed predecessors.
This is no longer the case when some tasks are not checkpointed, which gives rise to new diffi-
culties when trying to estimate the expected makespan (and thus minimize it). This is because
a failure on a processor can lead to the re-execution of not only the failed task itself, but also
uncheckpointed tasks on the same processor or on other processors. As a result, we can no longer
approximate the makespan by Monte-Carlo simulations which sample independently the expected
execution time of each task. In this case, a discrete-event simulator will be needed as we described
in Section 3.3.2. Furthermore, identifying which tasks must be re-executed after a failure depends
on how inter-processor communication is performed (e.g., at which time a task’s output data is
sent to another processor after that task completes, whether the sent data is kept in the memory
of the sender and for how long). Sections 2.1 and 3.1 provide detailed examples that highlight
these difficulties. For simplicity we refer to these difficulties as “processor interference" because
a failure on a processor can cause task re-executions on other processors.

Our key observation is that a way of avoiding processor interference completely, and thus of design-
ing of a strategy that checkpoints only some tasks, is to prohibit “crossover dependencies". We define a
crossover dependency as a dependency between a task T and a direct successor T ′ that are scheduled on

1Recall that #P is the class of counting problems that correspond to NP decision problems [16, 81, 106], and that #P-
complete problems are at least as hard as NP-complete problems.

1.2. RELATED WORK 5

different processors, where the output data of T is not checkpointed. Prohibiting crossover dependencies
reduces the difficulty of our problem in four ways: 1) As discussed above and in Sections 2.1 and 3.1,
with crossover dependencies, a few failures can lead to many task re-executions and data re-transfers,
during which other failures can occur. Prohibiting crossover dependencies avoids such complex scenar-
ios because failures are contained to a single processor, thus enabling simple task restarts; 2) Without
crossover dependencies, there is no longer any need for inter-processor communications and thus for any
assumptions regarding these communications. The local storage/memory at each processor is limited to
storing data that is input to tasks that will execute on that same processor; 3) Without crossover depen-
dencies, it is possible to determine the optimal set of tasks to checkpoint for groups of tasks assigned
to a single processor (see the dynamic programming proposed in Section 2.4.2); 4) Without crossover
dependencies, computing the expected makespan reduces, as for CKPTALL, to computing the longest
path in a DAG with probabilistic task durations for M-SPGS.

To the best of our knowledge, no general solution is available for our problem. For specific ap-
plications that can be represented as a chain of n atomic tasks, Toueg and Babaoglu have proposed a
polynomial dynamic programming algorithm whose complexity is O(n3) [102]. In the following of this
part, we first present related work in Section 1.2, then we are going to explore more generic approaches,
starting with designing optimal solutions for M-SPGS in Chapter 2, where we take advantages of the
recursive structure of M-SPGS. Then in Chapter 3, we extend these results for arbitrary DAGs.

1.2 Related work

Checkpointing workflows has received considerable attention in the recent years, but no satisfactory
solution has been proposed for fail-stop failures and general DAGs. For completeness we first review
related work devoted to soft errors (Section 1.2.1). We then review work devoted, like this work, to
fail-stop errors (Section 1.2.2). We conclude with some comments on branch-and-bound methods for
scheduling, and their possible extension to include checkpoints (Section 1.2.3)

1.2.1 Soft and silent errors

Many authors have considered soft errors, by which a task execution fails but does not lead to completely
losing the data present in the processor memory. Local checkpointing, or more precisely making a copy
of all task input/output data, is the most widely used technique to address soft errors. If a soft error occurs
during its execution, a task can then be re-executed. This solution can be too costly, and it is possible
to save a copy of task input/output data only periodically, at the price of more re-execution when an
error is detected. This is the trade-off analyzed by Cao et al. [21] for Cholesky factorization. Several
authors have suggested techniques that identify tasks on the critical path, and then making scheduling
decisions that attempt to ensure the timely execution of these tasks [63, 66]. Another widely used
technique to cope with soft errors is task replication, the challenge being to avoid over-duplicating tasks
so as to strike a good balance between fast failure-free executions and resilient executions [27]. Two
representative practical frameworks are the NARBIT system [67], which recovers from soft errors via
task replication and work stealing, and Nanos [75, 97], a runtime system that supports the OpenMP
programming model.

Silent errors represent a different challenge as they do not interrupt the execution of the task but
corrupt its output data. However, their net effect is the same as other soft errors, since a task must be
re-executed whenever a silent error is detected (a silent error detector is applied at the end of a task’s ex-
ecution). Local checkpointing (making copies of input/output data) or replicating tasks and comparing

6 CHAPTER 1. FRAMEWORK

outputs, are the two common techniques to mitigate the impact of silent errors. With checkpointing, sev-
eral application-specific detectors can be used to avoid replication and increase performance in failure-
free executions. Two well-known examples are Algorithm-Based Fault Tolerance (ABFT) [17, 59, 90]
and silent error detectors based on domain-specific data analytics [9, 10, 12]. As we only consider
fail-stop errors in this part, we do not need to use fault detectors.

Several studies exist that attempt to provide resilience to arbitrary DAGs in the presence of silent
errors. All of them are based on some task replication mechanism. Hashimoto et al. [55] propose two
multiprocessor scheduling algorithms for arbitrary DAGs, but they can only work on systems victim
of at most one single silent error. The other works we are aware of try to maximize reliability, that is,
the probability that the application execution is not victim of a single failure. Girault and Kalla [42]
propose an exponential-time algorithm for bi-criteria multiprocessor scheduling which returns a static
schedule for the input DAG under upper bound constraints on the application execution time and on
the global system failure rate. Subasi et al. [96] use partial replication to improve the reliability of an
application in presence of silent and fail-stop errors. Works that optimize reliability do not guarantee
that all executions will eventually succeed (because, for instance, not all failure patterns are covered
by the chosen replication scheme). By contrast, works, like this one, that optimize the expectation
of the makespan guarantee that all executions successfully complete (otherwise, the expectation of the
makespan would be infinite!).

1.2.2 Fail-stop failures

By contrast with soft errors, relatively few published works have studied fail-stop failures in the context
of workflow applications. Fail-stop errors have far more drastic consequences than soft errors as they
induce the loss of all data present in memory. Therefore they require different solutions.

Consider first a workflow that consists of a linear chain of tasks. The problem of finding the optimal
checkpoint strategy, i.e., of determining which tasks to checkpoint, in order to minimize the expected
execution time, has been solved by Toueg and Babaoglu [102] using a dynamic programming algorithm.
Note that the tasks can themselves be parallel, but the execution flow is sequential, which dramatically
limits the amount of re-execution in case of a failure. The algorithm of [102] was later extended in [11]
to cope with both fail-stop and silent errors simultaneously.

Consider now a general workflow comprised of parallel tasks that each executes on the whole plat-
form. Therefore, the workflow execution is linearized, and in essence reduces to a chain of macro-tasks
executing on a single macro-processor, whose speed is the aggregate speed of the available processors,
and whose failure rate is proportional to the number of available processors. Checkpoints can then be
placed after some tasks. However, because the original workflow is not a chain, it is more complicated
to keep track of live output data, and the problem of placing checkpoints is NP-complete for simple join
graphs [6]. To circumvent this problem, when checkpointing a task, one can decide to checkpoint not
only the task’s own output data, but also all the live data that will be needed later on in the workflow.
This is the main idea of the algorithm proposed in Section 2.4.

Finally, consider a general workflow whose tasks do not span the whole platform when executing.
Existing work in this most general context diverges from ours as follows: either there is a limit to the
number of failures that an execution can cope with, or the optimization objective is reliability, meaning
that application execution can fail, or the method design is based on specific domain knowledge.

Limiting the number of possible failures renders the problem more tractable (and is done also in
the context of silent errors [55]). For instance, Wang et al. [107] present a replication-based approach,
called Imitator, which is only guaranteed to succeed when no more than k fail-stop failures occur during
a given execution of a DAG (which is executed repeatedly), assuming that there are k + 1 replicas.

1.2. RELATED WORK 7

In terms of works that target application reliability, is the work by Assayad et al. [4] on multi-criteria
scheduling for real-time systems. They try to simultaneously minimize the application makespan and
the probability that an execution succeeds. Jacques-Silva et al. describe in [61] a modeling framework
for evaluating the dependability of streaming applications under faults that lead to data loss or silent data
corruption. This framework is used to compare three fault tolerance techniques, including checkpointing.
However, in their models, even checkpoints do not guarantee a successful application execution.

In [122], Zhu et al. proposed an automatic checkpoint algorithm on Spark to solve the long lin-
eage problem. Because of the lazy feature of transformation operation, one could get the logical graph
(lineage) before an action (submitting a job). Their solution is just tracing back the lineage, find and
keep all the RDDs which are created in the job with direct parents in the previous job so they could
recompute from these RDDs to get all the RDDs in this job. This method is based on specific domain
knowledge. In [69], they designed a checkpointing mechanism specifically for Map tasks, which creates
a checkpoint at a specific percentage of a task in progress. Checkpoints are created when the progress
reaches 0.5 or 0.25 by calculation progress rate and estimated task execution time. Hwang et al. [60]
presented a flexible framework for handling Grid failures. They divided workflow failure handling tech-
niques into two different levels, namely task-level and workflow-level. Duan et al. [37] presented the
Distributed workflow Enactment Engine (DEE) of the ASKALON application. Their approach focuses
on application-level checkpoints which triggered by precise checkpointing event defined. In [100], they
described an alternative workflow-level chekpointing scheme and every workflow node accomplishes
its own local checkpoint. They employed the Petri nets to model the workflows which is a hierarchical
non-DAG structure.

To the best of our knowledge, this work is the first approach (beyond application-specific solutions)
that (i) does not resort to linearizing the entire workflow as a chain of (macro-)tasks; (ii) can cope
with an arbitrary number of failures; (iii) always guarantees a successful application execution; and (iv)
minimizes the (expectation of) the application execution time. As a result, we propose the first DAG
scheduling/checkpointing algorithm that allows arbitrary workflows to execute concurrently on multiple
failure-prone processors in standard task-parallel fashion.

1.2.3 Branch and bound methods

Makespan minimization is a difficult problem, and finding optimal or near-optimal solutions is compu-
tationally expensive. Since Greenberg, in his pioneering paper [43], has proposed using the branch and
bound approach for scheduling DAGs, many authors have proposed methods based on meta-heuristics
that prune large portions of the solution tree. The main idea is to use some (typically complicated) eval-
uation function to estimate the makespan that can be achieved when exploring a solution sub-tree. Task
bottom-levels and critical paths are at the heart of such evaluation functions. A paper with representa-
tive state-of-the-art results is by Shahul and Sinnen [89], who use the A* meta-heuristic to optimally
schedule DAGs with up to 40 tasks. Combinatorial explosion prohibits scheduling larger DAGs. This
remains true with parallel implementations of branch and bound methods and these implementations do
not scale well (e.g., in [57] the authors report that parallel speedup plateaus when using more than 16
processors).

A limitation of our work is that we decouple the allocation of tasks to processors and the check-
pointing decisions. While the final part of the checkpointing stage is optimal, it may be possible to
improve the overall approach by making allocation and checkpointing decisions simultaneously. A
natural idea would be to extend previously proposed branch and bound methods by incorporating check-
point decisions. However, there are several difficulties: (i) since the problem is more combinatorial with
checkpoints, one could only hope to solve even smaller problems, perhaps with only up to around 20
tasks; and (ii) we lack an accurate evaluation function to prune solution sub-trees. Branch and bound

8 CHAPTER 1. FRAMEWORK

approaches require a lower-bound on the objective achievable by any solution in the considered branch.
In our context, obtaining such a bound seems a very challenging problem as we do not even know how
to estimate the expected execution time of a complete solution analytically and have to resort to Monte-
Carlo simulations instead. Therefore, new breakthroughs are needed if one hopes to extend branch and
bound methods to failure-aware DAG scheduling.

Chapter 2

Optimal solutions for special classes of task
graphs

In this chapter, we build our first approach which is to avoid crossover dependencies by restricting
the problem to a particular class of workflow DAGs: Minimal Series Parallel Graphs (M-SPGS) [104].
Despite their name, M-SPGS extend classical Series Parallel Graphs (SPGs) [15] by allowing source and
sink nodes to not be merged in series composition (see Section 2.2.3 for details). It turns out that most
real-world workflows, e.g., those executed today by production WMSs [1, 2, 32, 38, 109, 110], are M-
SPGS. The structure of these graphs makes it possible to orchestrate the execution in fork-join fashion,
by which processors compute independent sets of tasks, before joining and exchanging data with other
processors. We call these independent sets of tasks superchains, because tasks in these sets are linearized
into a chain (because they are executed by a single processor) but have forward dependencies that can
"skip over” immediate successors. We remove all crossover dependencies by always checkpointing the
output data of the exit tasks of a superchain, thus removing the difficulties associated with processor
interference.

In this chapter we propose, to the best of our knowledge, the first scheduling/checkpointing strategy
for minimizing the expected makespan of workflow applications with fail-stop failures that considers
workflow structures more general than mere linear chains of tasks. More specifically, our contributions
are:
• A scheduling/checkpointing strategy, PROPCKPT, for M-SPGS that improves upon both the de-facto
standard CKPTALL strategy and the CKPTNONE strategy (Section 2.2). PROPCKPT avoids all crossover
dependencies and relies on the two algorithms below;
• A list-scheduling algorithm, which is inspired by the “proportional mapping" approach [80], for
scheduling M-SPG workflows as sets of superchains (Section 2.3);
• An algorithm, which extends the dynamic programming algorithm by Toueg and Babaoğlu [102], to
checkpoint tasks in a superchain optimally (Section 2.4);
• The #P-completeness of the problem of computing the expected makespan for the CKPTNONE strat-
egy (Section 2.5). To the best of our knowledge, the complexity of computing, or even approximating,
the expected makespan for CKPTNONE was an open problem;
• Experimental evaluation with real-world Pegasus [32] workflows to quantify the performance gains
afforded by our proposed approach in practice (Section 2.6).

In addition to the above sections, Section 2.1 details an example with crossover dependencies,
and Section 2.7 provides concluding remarks and highlights directions for future work.

9

10 CHAPTER 2. OPTIMAL SOLUTIONS FOR SPECIAL CLASSES OF TASK GRAPHS

T1

T2

T3 T4

T5 T6

T7

Figure 2.1: Example task graph.

T1 CR T2

R T3

R T4
T5

T6 R T4
T3 R T3

T6

T7

time

P1

P2

P3

Figure 2.2: Example schedule of the workflow in Figure 2.1 on 3
processors. Processor P3 fails while executing task T6 and has to
start all its tasks again. However, processor P2 then fails and the
result of task T3 is lost, delaying the re-execution of task T6 until
task T3 is re-executed on processor P2.

2.1 Example

Consider the workflow in Figure 2.1, which comprises 7 tasks, Ti, 1 ≤ i ≤ 7. The execution of this
workflow on 3 processors, Pi, 1 ≤ i ≤ 3, for a given schedule is shown in Figure 2.2. Two failures occur
during the execution, first on P3 and then on P2 (shown as red X’s on the figure). In this example, T1 is
checkpointed. The checkpoint overhead for saving T1’s output to stable storage occurs immediately after
T1 completes (shown as C on the figure). All successors of T1 must then “recover” from that checkpoint
to begin execution, which also has some overhead (shown as R’s on the figure before the execution of
T2, T3 and T4). No other task besides T1 is checkpointed in this example. As a result, some direct (i.e.,
not via stable storage) communication is required between some tasks. Figure 2.2 shows delays due to
these communications. For instance, the first execution of T6 on P3 does not start immediately after T3
completes but only after a delay, which corresponds to the time for P2 to send T3’s output to P3.

For non-checkpointed tasks and their successors, one must define precisely how inter-processor
communications take place, i.e., when the data is transferred and for how long it is stored at the sender
and the receiver. Recall that when a failure occurs on a processor, the whole content of that processor’s
memory is lost. As a result, the way in which inter-processor communications take place can impact the
failure recovery procedure. For instance, in Figure 2.2, a failure strikes P2 after the completion of T5 but
before T7 begins executing on P1. If the output data of T5 is sent to P1 as soon as T5 completes, there
is no need to re-execute T5 for executing T7. On the contrary, if this output is sent as late as possible
(i.e., so that it is received just before the execution of T7 begins), then T5 will need to be re-executed
because its output will have been lost on P2 due to the failure. For the sake of the example in Figure 2.2,
we have chosen the former option. More formally, consider a non-checkpointed task T , executed on a
processor P , that produces data that is needed by task T ′ on a different processor P ′ (i.e., a crossover
dependency as described in Section 1.1). Then, the data is transferred from P to P ′ immediately after
T completes. This data is deleted from memory on P as soon as the data transfer has completed, and
deleted in memory on P ′ after T ′ completes. If T and T ′ are scheduled on the same processor P , then
the output data of T is in memory of P from the completion of T until the completion of T ′.

There are three phases in the schedule in Figure 2.2: (i) execution until the first failure; (ii) recovery
and execution until the second failure; and (iii) recovery and termination of the execution. The result of
the execution of T1 on processor P1 is saved to stable storage because T1 is checkpointed. Therefore, T1
will never need to be re-executed once it has executed successfully. The three successors of T1, namely
T2, T3 and T4, start their executions after reading the output data of T1 from stable storage. Upon
completion, the results of T3 and T4 are transmitted to their successors on other processors immediately.

2.2. PRELIMINARIES 11

The first failure interrupts the execution of T6 on processor P3. Due to this failure, P3 loses the
output data of T3 and T4, which are required to execute T6. Hence, both T3 and T4 must be restarted on
processors P2 and P3, respectively. The result of T1 is recovered from stable storage in order to allow
the execution of T4 on P3. Processor P2 still has the output of T1 in memory, and thus does not perform
this recovery. However, at the time of the failure, T5 is running on P2, and then the re-execution of T3
can only start once T5 completes. This is because we have made the common implicit assumption that
tasks are non-preemptible.

The second failure interrupts the re-execution of task T3 on P2. P2 then re-executes T3, which
requires recovering the output of T1 from stable storage. Once T3 completes on P2, then P3 can execute
T6. Finally, T7 is executed on processor P1 after T6 completes.

This example highlights the difficulties caused by crossover dependencies, here from T3 to T6
(where a failure on P3 causes a re-execution on P2) and from task T5 to task T7 (for which a failure
may cause a re-execution depending on assumptions on when inter-processor communications are per-
formed). The main observation is that, with crossover dependencies, a failure on a processor can cause
task re-executions on other processors. These re-executions are themselves subject to failures, and these
failures can also cause re-executions on yet other processors. As a result, a failure on one processor can
“ripple" through all processors. As a result, estimating (and thus minimizing) the expected makespan is
hopelessly combinatorial. None of the known methods designed to approximate the expected makespan
of DAGs with probabilistic task durations can be applied. To the best of our knowledge, the only option
would be to use discrete event simulation and hope to estimate the expected makespan as an average
over a large number of trials with randomly injected failures.

In the example in Figure 2.2, avoiding all crossover dependencies would require checkpointing four
additional tasks: T3, T4, T5 and T6. With these additional checkpoints, a task re-execution on a processor
only happens if a failure occurs on that processor. This avoids the failure rippling effect described above.
Without crossover dependencies, we are back to a situation where failures are contained to individual
processors, just as when all tasks are checkpointed in the CKPTALL approach.

Given the above, in this work we avoid crossover dependencies altogether. Once these dependen-
cies are eliminated, our approach views all the tasks executed by a same processor in between two
checkpoints as a single (larger) task. In other terms, we logically coalesce a group of consecutive not-
checkpointed tasks followed by a checkpointed task into a single checkpointed task. With this logical
coalescing, we can evaluate the expected makespan as that of a DAG with probabilistic task durations,
for which approximation methods exist. In summary, prohibiting crossover dependencies not only con-
tains the impact of failures, but it also enables us to estimate the expected makespan of a solution for
M-SPGS using the existing approximation methods.

2.2 Preliminaries

In this section, we first detail the execution model (DAGs) and the fault-tolerance model for failures
and checkpoints that concern both Chapter 2 and Chapter 3. Then we define M-SPGS, a special class
of workflow DAGs that we consider in this chapter. Next, we provide an overview of our proposed
approach, including how we schedule and checkpoint tasks. Finally, we briefly review methods to
compute the expected longest path in a DAG with probabilistic task durations.

2.2.1 Execution model

The execution model for a task workflow on a homogeneous system is represented as a Directed Acyclic
Graph (DAG), G = (V,E), where V is the set of nodes corresponding to the tasks, and E is the set of

12 CHAPTER 2. OPTIMAL SOLUTIONS FOR SPECIAL CLASSES OF TASK GRAPHS

edges corresponding to the dependencies between tasks. In a DAG, a node without any predecessor is
called an entry node, while a node without any successor is an exit node. For a task T in G, Pred(T) and
Succ(T) represent the set of its immediate predecessors and successors respectively. We say that a task
T is ready if either it does not have any predecessor in the dependency graph, or if all its predecessors
have been executed.

In this model, Each task Ti ∈ V has a weight (in flops), wi, i.e., its execution time in a failure-free
execution. Each dependency (Ti, Tj) ∈ E is weighted by the size of communicated data (in bytes).
We could compute the cost, cij , to store/read the data produced by task Ti and needed by task Tj ,
onto/from stable storage, by dividing the size of the file in bytes by the bandwidth of the stable storage
in byte/sec. In some real-world instances from [78], a task may generate multiple files for different
successors or generate the same file for more than one successor task. We always start executing the
task after checkpointing the crossover dependency, to make sure that all files needed are available in the
stable storage in case of failure.

Data transfer between two processors (i.e., a crossover dependency) consists in writing and reading
files from the stable storage in this chapter. While in the general case in the following chapter, direct
communications between processors take place through a communication network which is much faster
than writing/reading from the stable storage. Before the execution of Tj on processor Pk, all input
files needed by Tj must be present in the local memory of Pk. Suppose that Tj needs a file from Ti
executed on processor Pl, it will first try to retrieve the file from the local memory of Pl. If the file is
absent from local memory of Pl, then it must be read from the stable storage. The start time of Tj is
max{tcij , (tavailk + tc)}, where tcij is the finish time of checkpointing the file transferred from Ti to Tj ,
tavailk donates the available time on processor Pk, and tc is the communication time.

2.2.2 Fault-tolerance model

In this part, we consider failure-prone processors that stop their execution once a failure occurs (i.e.,
we have fail-stop errors). When a fail-stop error strikes, the execution stops, the entire content of the
processor memory is lost, and computation has to be started from scratch, either on the same processor
after a reboot, or on a spare processor (e.g., taken from a pool of spare processors specifically requested
by the job submitter, taken from a pool of spare processors maintained by the resource management
infrastructure). Each processor is a processing element that is subject to its own individual failures.
Failures can strike a processor at any time, during either task execution or waiting time (e.g., the power
supply may fail).

Consider a single task T , with weight w, scheduled on such a processor, and whose input is stored
on stable storage. It takes a time r to read that input data from stable storage, either for its first execution
or after a failure. The total execution time W of T is a random variable, because several execution
attempts may be needed before the task succeeds. We assume that failures are i.i.d. (independent and
identically distributed) across the processors and that the failure inter-arrival times at each processor
is Exponentially distributed with Mean Time Between Failures (MTBF) µ = 1/λ. Let λ � 1 be the
Exponential failure rate of the processor. With probability e−λ(r+w), no failure occurs, and W is equal
to r + w. With probability (1 − e−λ(r+w)), a failure occurs. For Exponentially distributed failures, the
expected time to failure, knowing that a failure occurs during the task execution (i.e., in the next r + w
seconds), is 1/λ − (r + w)/(eλ(r+w) − 1) [56]. After this failure, there is a downtime d, which is (an
upper bound of) the time to reboot the processor or migrate to a spare. Then we start the execution again,
first with the recovery r, the time to read data from stable storage, and then the work w. With a general
model where an unbounded number of failures can occur during recovery and work, the expected time
W to execute task T is given by W =

(
1
λ + d

) (
eλ(r+w) − 1

)
[56]. Now if the output data of task T is

2.2. PRELIMINARIES 13

checkpointed, with a time c to write it onto stable storage, the total time becomes:

W =
(1
λ

+ d

)(
eλ(r+w+c) − 1

)
. (2.1)

Equation 2.1 assumes that failures can also occur during checkpoints, which is the most general model
for failures. In the case of a sequence of non-checkpointed tasks to be executed on a processor P , the
output data of each task resides in the memory of P for re-use by subsequent tasks. When a failure
strikes P , the entire memory content is lost and the whole task sequence must be re-executed from
scratch. As a side note, Equation 2.1 is an upper bound, as we assume that all input files to task T are
stored on stable storage, the cost r is paid for starting the first execution as well as for the recovery
after a failure. In practice, some input files may already be present in local memory (e.g., generated by
predecessors of T that scheduled on the same processor) or may be transferred from other processors
through communication instead of reading from stable storage. As a result, when no failure strikes, to
start the first execution of T , one could pay less than r. Because the case is different from task to task,
and we have no simple mean to know whether some failures had previously struck, we have to resort to
this upper bound. 1

2.2.3 Minimal Series Parallel Graphs (M-SPG)

In this chapter, we consider computational workflows structured as Minimal Series Parallel Graphs (M-
SPGS) [104], which (despite their name) are generalizations of standards SPGS [15]. An M-SPG is
a restricted type of graph G = (V,E), which is defined recursively based on two operators,

→; and ||,
defined as follows:
• The serial composition operator,

→; , takes two graphs as input and adds dependencies from all sinks
of the first graph to all sources of the second graph. Formally, given two graphs G1 = (V1, E1) and
G2 = (V2, E2), G1

→; G2 = (V1 ∪ V2, E1 ∪ E2 ∪ (sk1 × sc2)), where sk1 is the set of sinks of G1 and
sc2 the set of sources of G2. This is similar to the serial composition of SPGS, but without merging the
sink of the first graph to the source of the second, and extending the construct to multiple sources and
sinks.
• The parallel composition operator, ||, simply makes the union of two graphs. Formally, given two
graphs G1 = (V1, E1) and G2 = (V2, E2), G1||G2 = (V1 ∪ V2, E1 ∪E2). This is similar to the parallel
composition of SPGS, but without merging sources and sinks.
Given the above operators, an M-SPG is then defined recursively as follows:
• A chain g1

→; . . . →; gn, where each gi is an atomic task;
• A serial composition G1

→; . . . →; Gn, where each Gi is an M-SPG; or
• A parallel composition G1|| . . . ||Gn, where each Gi is an M-SPG.

Figure 2.3 shows example M-SPG structures. Due to the above definition supporting multiple
sources and sinks, and not merging sources and sinks, M-SPGS naturally support fork, join (and there-
fore fork-join), and bipartite structures. It turns out that these structures are common in production
workflow applications. For instance, most workflows from the Pegasus benchmark suite [32, 78] are M-
SPGS. Overall, M-SPGS exhibit the recursive structure of SPGS (which is key to developing tractable
scheduling/checkpointing solutions), but are more general, and as a result maps directly to most produc-
tion workflow applications. In particular, M-SPGS can model communication patterns that cannot be
modeled with SPGS (this is the case of the bipartite structure shown in Figure 2.3(c)).

1If we assume no read time for the first execution (e.g., all input files exist in local memory), then the value of W becomes(
1
λ

+ d
)
eλr
(
eλ(w+c) − 1

)
.

14 CHAPTER 2. OPTIMAL SOLUTIONS FOR SPECIAL CLASSES OF TASK GRAPHS

g1

g2

G1 G2 G3

(a)

G1 G2 G3

g1

g2

(b)

G1 G2 G3

G4 G5 G6

(c)

Figure 2.3: Example M-SPG structures (g1 and g2 are atomic tasks whereas G1 to G6 are
M-SPGS): (a) fork: (g1

→; g2)→; (G1||G2||G3); (b) join: (G1||G2||G3)→; (g1
→; g2); (c) bipartite:

(G1||G2||G3)→; (G4||G5||G6).

2.2.4 Problem description and proposed approach

As outlined in Section 1.1, our objective is to not checkpoint all output data, so as to save on checkpoint-
ing overhead and thus reduce the expected overall execution time, or makespan. The expected makespan
includes the checkpointing and recovery overheads. This leads naturally to the following optimization
problem: given an M-SPG to execute on processors that experience failures with a given Exponential
rate, compute a schedule that does not involve direct inter-processor communications and that minimizes
the expected makespan. The schedule must specify which processor executes which tasks, when each
task begins execution, and which output data is checkpointed and when.

Our PROPCKPT approach computes a schedule that allocates tasks to processors, and that avoids
direct inter-processor communications by checkpointing particular tasks so as to remove all crossover
dependencies (See Section 2.1). It then optimally determines which additional tasks should be check-
pointed so as to minimize the expected makespan.

Consider an M-SPG, G. Without loss of generality, G = C
→; (G1|| . . . ||Gn)→; Gn+1, where C is a

chain andG1, . . . , Gn, Gn+1 are M-SPG graphs, with some of these graphs possibly empty graphs. The
schedule for G is the temporal concatenation of the schedule for C, the schedule for G1|| . . . ||Gn, and
the schedule for Gn+1. A chain is always scheduled on a single processor, with all its tasks executed in
sequence on that processor. When scheduling a parallel composition of M-SPGS, we use the following
polynomial-time list-scheduling approach, inspired by the “proportional mapping” heuristic [80]. Given
an available number of processors, we allocate to each parallel component Gi an integral fraction of the
processors in proportion to the sum of the task weights in Gi (the overhead of reading/writing data to
stable storage is ignored in this phase of our approach). In other terms, we allocate more processors
to more costly graphs. We apply this process recursively, each time scheduling a sub-M-SPG on some
number of processors. Eventually, each sub-M-SPG is scheduled on a single processor, either because
it is a chain or because it is allocated to a single processor. In this case, all atomic tasks in the M-SPG
are linearized based on a topological order induced by task dependencies and scheduled sequentially on
the processor. This algorithm is described in Section 2.3.

Each time a sub-M-SPG is scheduled on a single processor, we call the set of its atomic tasks a
superchain, because the tasks are executed sequentially even though the graph may not be a chain. We
call the entry tasks, resp. exit tasks, of a superchain the tasks in the superchain that have predecessors,
resp. successors, outside the superchain. Due to the recursive structure of an M-SPG, all predecessors
of the entry tasks in a superchain are themselves exit tasks in other superchains. Similarly, all successors

2.2. PRELIMINARIES 15

T1

T2 T3 T4

T5 T6 T7 T8 T9

T10 T11 T12

T13

Figure 2.4: Example M-SPG.

P1

P2

T1 T2 T5 T6 T10 T13

T3 T4 T7 T8 T9 T11 T12

Figure 2.5: Mapping the M-SPG of Figure 2.4 onto two processors. The two superchains are shown
inside boxes, with all internal and external dependencies from the original graph (red edges result from
the linearization). T10 is the only exit task of the top superchain while T11 and T12 are the two exit tasks
of the bottom superchain. A checkpoint is performed to save the output of each shadowed task.

of the exit tasks in a superchain are themselves entry tasks in other superchains. This has two important
consequences:
• The workflow is an “M-SPG of superchains";
• Checkpointing the output data of all exit tasks of a superchain means that this superchain never needs
to be re-executed. In this case, we say that “the superchain is checkpointed”.

A natural strategy is then to checkpoint all superchains, which avoids all crossover dependencies.
More specifically, a systematic checkpoint that saves the output data of all exit tasks of a superchain is
performed after the last task of that superchain completes. This checkpoint strategy is detailed in Sec-
tion 2.4.1. Figure 2.5 shows an example of a schedule obtained on two processors for the M-SPG
in Figure 2.4. A set of tasks is linearized on each processor (additional dependencies are added to
enforce sequential execution of tasks on a single processor). Five checkpoints are taken: after the ex-
ecutions of T1, T10, T11, T12 and T13. This guarantees that failures are contained: Once T13 begins
executing, a failure on P2 has no effect and a failure on P1 is handled by immediately re-starting T13
after a downtime and recovery.

The above approach produces a solution with the lowest number of checkpoints necessary to avoid
crossover dependencies. To evaluate the expected makespan, one can then coalesce all tasks in a su-
perchain into a single checkpointed task, leading to an M-SPG in which all tasks are checkpointed. In
our example, the four tasks of the top superchain would be coalesced into one checkpointed task, and
so would the seven tasks of the bottom superchain. One can then estimate the expected makespan using

16 CHAPTER 2. OPTIMAL SOLUTIONS FOR SPECIAL CLASSES OF TASK GRAPHS

known algorithms for DAGs with probabilistic task durations (see Section 2.2.5). While this approach
avoids all crossover dependencies, and thus makes sure that failures are contained, its expected makespan
may be far from optimal because too few tasks are checkpointed. Depending on the parallelism of the
M-SPG and the total number of available processors, superchains may contain large numbers of tasks.
If only the output data of exit tasks are checkpointed, then the expected execution time of a superchain
can be large due to many re-executions from scratch. One should then checkpoint additional output data
throughout the execution of the superchain. To this end, we propose a polynomial-time dynamic pro-
gramming algorithm that extends the approach of Toueg and Babaoğlu [102] to determine the optimal
set of output data to checkpoint. This algorithm is described in Section 2.4.2. Once these additional
checkpoints are determined, thereby creating sequences of tasks followed by a checkpoint, we logically
coalesce these sequences into a single task. Again, this is so that we can use known algorithms for
estimate the expected makespan of DAGs with probabilistic task durations.

2.2.5 Evaluation of expected makespan

As discussed in Section 1.1, computing the expected makespan for a solution with the CKPTALL strategy
(tasks being already assigned to processors and all checkpointed) amounts to computing the expected
longest graph of a DAG with probabilistic task durations. Recall that, once scheduled, the original
workflow graph is augmented with extra dependencies to enforce serial executions of tasks at each
processor.

In the DAG, task weights are random variables whose expectation is given by Equation 2.1. The
CDF of such a random variable is complicated, because one has to account for the possibility of an
arbitrary number of failures occurring at arbitrary instants. To the best of our knowledge, there is no
closed-form for this CDF.

Computing the expected longest path is #P-complete, even if one considers that the execution time of
a task is a discrete random variable that can take only 2 values [46]. However, basic probability theory
tells us how to compute the probability distribution of the sum of two independent random variables
(by a convolution) and of the maximum of two independent random variables (by taking the product
of their cumulative density functions). As a result, one can compute the makespan distribution and its
expected value if the DAG is a SPG (or an M-SPG), due to its recursive structure [19, 74]. However, the
makespan may take an exponential number of values, which makes its direct evaluation inefficient. With
only 2 values, the problem of computing the expected makespan remains NP-complete, but in the weak
sense, and admits a pseudo-polynomial solution [74]. With complicated distributions for task weights
as discussed above, the evaluation becomes intractable, and one has to resort to approximations.

Several approximation methods have been proposed, including approximating general graphs by
series-parallel graphs [19, 74], approximating task weight distributions by Normal distributions [19, 88],
or approximating the length of the longest paths [25]. Rather than using these approaches, which have
various levels of accuracy depending of DAG structure, we use the classical Monte Carlo simulation
approach [73, 93] with very large numbers of trials. Each trial consists in sampling the weight of
each task in the DAG from its distribution. This method is compute-intensive but provides an accurate
way to compare different scheduling/checkpointing strategies fairly (more accurately than using the
aforementioned approximation methods).

2.3 Scheduling M-SPGS

In this section, we describe the list-scheduling algorithm of our PROPCKPT approach, by which we
assign sub-graphs of the workflow DAG to processors. Our algorithm decides how many processors

2.4. PLACING CHECKPOINTS IN SUPERCHAINS 17

should be allocated to parallel sub-graphs. It is recursive, so as to follow the recursive M-SPG struc-
ture, and produces a schedule of superchains, as explained in Section 2.2.4. It adapts the principle of
“proportional mapping” heuristic [80] to M-SPGS. Pseudo-code is given in Algorithm 1.

Procedure ALLOCATE schedules an M-SPG G, which comprises sequential atomic tasks, onto a
finite set P of processors. It returns immediately if G = ∅ (Line 2), otherwise it decomposes G into
the sequential composition of a chain, C, a parallel composition, G1|| . . . ||Gn, and an M-SPG, Gn+1
(Line 4). Note that several such decompositions exist and some of them lead to infinite recursions. This
is the case when the chain is empty and a single graph is non-empty among {G1, . . . , Gn+1}). For
instance, the graph G could be decomposed such that C = G1 = . . . = Gn = ∅ and Gn+1 = G, or
C = G2 = . . . = Gn+1 = ∅ and G1 = G. Our algorithm avoids these superfluous decompositions
and make sure that C is the longest possible chain. It then schedules the three components in sequence.
To do so, it relies on two helper procedures: the ONONEPROCESSOR procedure, which schedules tasks
on a single processor, and the PROPMAP procedure, when more processors are available. ALLOCATE

calls ONONEPROCESSOR to schedule C (Line 5) and to schedule G1|| . . . ||Gn if a single processor is
available (Line 7). If |P| > 1, then ALLOCATE calls the second helper procedure, PROPMAP (Line 9).
This procedure takes in a set of n M-SPGS and a number of processors, p, and returns a list of M-SPGS

and a list of processor counts. ALLOCATE then simply recursively schedules the i-th returned M-SPG
onto a partition of the platform that contains the i-th processor count (Line 10-13). Finally, ALLOCATE

is called recursively to schedule Gn+1 (Line 14).
The PROPMAP procedure is the core of our scheduling algorithm. Let k = min(n, p) be the number

of returned M-SPGS and processor counts (Line 16). Initially, the k M-SPGS are set to empty graphs
(Line 17), and the k processor counts are set to 1 (Line 18). Array W contains the weight of each
returned M-SPGS, initially all zeros (Line 19). Then, input M-SPGS are sorted by non-increasing
weight, the weight of an M-SPG being the sum of the weights of all its atomic tasks (Line 20). Two
cases are then handled. If n ≥ p, PROPMAP iteratively merges each Gi with the output M-SPG that has
the lowest weight so as to obtain a total of p non-empty output M-SPGS (Line 22-25). The processor
counts remain set to 1 for each output M-SPG. If instead n < p, then there is a surplus of processors.
PROPMAP first assigns each inputGi to one output M-SPG (Line 27-29). The p−n extra processors are
then allocated iteratively to the output M-SPG with the largest weight (Line 30-35). Finally, PROPMAP

returns the lists of output M-SPGS and of processor counts.
The ONONEPROCESSOR procedure (Line 37-40) takes as input an M-SPG and a processor, per-

forms a topological sort of the M-SPG’s atomic tasks, and then schedules these tasks, which constitute
a superchain, in sequence onto the processor. After assigning all sub-graphs of G onto processors, we
complete our PROPCKPT approach by calling the CHECKPOINT procedure to decide which tasks from
each superchain L to checkpoint (Line 41-45), as described in Section 2.4.

2.4 Placing checkpoints in superchains

In this section, we describe our approach for deciding after which tasks in a superchain output data must
be checkpointed. We first describe existing results for simple chains and explain how the problem is
more difficult in the case of superchains. We then describe an optimal dynamic programming algorithm
for superchains.

2.4.1 From chains to superchains

Toueg and Babaoğlu [102] have proposed an optimal dynamic programming algorithm to decide which
tasks to checkpoint in a linear chain of tasks. For a linear chain, when a failure occurs during the

18 CHAPTER 2. OPTIMAL SOLUTIONS FOR SPECIAL CLASSES OF TASK GRAPHS

Algorithm 1: Algorithm PROPCKPT

1 Procedure ALLOCATE (G, P):
2 if G = ∅ then
3 return
4 C

→; (G1|| . . . ||Gn)→; Gn+1 ← G
5 L ← ONONEPROCESSOR (C, P[0])
6 if (|P| = 1) then
7 L ← L ∪ ONONEPROCESSOR (G1|| . . . ||Gn, P[0])
8 else
9 (Graphs, Counts)← PROPMAP (G1, . . . , Gn, |P|)

10 i← 0
11 for each graph, count in Graphs, Counts do
12 ALLOCATE (graph, {P[i], . . . ,P[i+ count− 1]})
13 i← i+ count

14 return L ∪ ALLOCATE (Gn+1, P)
15 Procedure PROPMAP (G1, . . . , Gn, p):
16 k ← min(n, p)
17 Graphs← [∅, . . . , ∅] (k elements)
18 procNums← [1, . . . , 1] (k elements)
19 W ← [0, . . . , 0] (k elements)
20 Sort [G1, . . . , Gn] by non-increasing total weight
21 if n ≥ p then
22 for i = 1 . . . n do
23 j ← arg min1≤q≤p (W [q])
24 W [j]←W [j] + weight(Gi)
25 Graphs[j]← Graphs[j] ||Gi
26 else
27 for i = 1 . . . n in Gi do
28 Graphs[i]← Gi
29 W [i]← weight(Gi)
30 ρ← p− n
31 while ρ 6= 0 do
32 j ← arg max1≤q≤n (W [q])
33 procNums[j]← procNums[j] + 1
34 W [j]←W [j]× (1− 1/procNums[j])
35 ρ← ρ− 1
36 return Graphs, procNums
37 Procedure ONONEPROCESSOR (G, P):
38 L← topological_sort(G)
39 MAP (L, P) // Schedule tasks serially on one processor
40 return {L}
41 Procedure PROPCKPT (G, P):
42 L ← ALLOCATE (G, P)
43 for L ∈ L do
44 CHECKPOINT (L) // Decide which tasks to checkpoint
45 return

2.4. PLACING CHECKPOINTS IN SUPERCHAINS 19

(a)
T1 T2

T3

T4

T5 T6

(b)
T1 T2 T3 T4 T5 T6

Figure 2.6: (a) Example M-SPG in which checkpointed tasks (T2 and T4) are shadowed. (b) Lineariza-
tion of the M-SPG on a single processor. The dependency from T3 to T4, in red, results from the
linearization. Vertical dashed lines correspond to checkpoints (after T2 and T4). Dotted lines correspond
to dependencies from tasks that have been checkpointed.

execution of a task T , one has to recover from the latest checkpoint and re-execute all non-checkpointed
ancestors of T . In this work, we target M-SPG (sub-)graphs that are linearized on a single processor.
As a result, recovery from failure is more complex than in the case of a linear chain. Consider a failure
during the execution of a task T . For T to be re-executed, all its input data must be available in memory.
Therefore, for each reverse path in the graph from T back to entry tasks of the superchain, one must
recover from the latest checkpoint, and then recover by re-executing all non-checkpointed ancestors
of T along each reverse path. Consider the M-SPG in Figure 2.6(a), and its linearization on a single
processor in Figure 2.6(b). Let us assume that tasks T2 and T4 are checkpointed (shadowed in the
figures). According to the standard definition of checkpoints, the checkpoint of T2 includes both its
output for T3 and its output for T4, while the checkpoint of T4 includes only its output for T5.

Let us now consider a single failure that occurs during the execution of T5. To re-execute T5, one
needs to recover from the checkpointed output of T4. But one also needs to re-execute T3, which was not
checkpointed, since the output of T3 is needed for executing T5. To re-execute T3, one needs to recover
from the checkpoint of T2. This sequence of recoveries and re-executions must be re-attempted until
T5 executes successfully. As a result, the problem of deciding which tasks to checkpoint to minimize
expected makespan cannot be solved by the simple linear chain algorithm in [102], which relies on a
single recovery from the latest checkpoint followed by the re-execution of all tasks executed since that
checkpoint.

We thus propose an alternative approach by which a checkpoint, which takes place after the execu-
tion of a task (named the task checkpoint), saves not only the output data from that task, but also all
non-checkpointed output data from previously executed tasks. In other words, during a checkpoint, all
non-checkpointed data that is available in the processor’s memory is saved to stable storage. Each such
data is input to a task that is yet to be executed. The rationale is that this data needs to be saved so
that after a failure execution can be restarted from the checkpointed task. This is shown in Figure 2.6,
where checkpoint times are depicted as vertical dashed lines, after each execution of a checkpointed task
(in this case T2 and T4). “Taking a task checkpoint” means saving to stable storage all output data of
previously executed but un-checkpointed tasks. Visually, this corresponds to solid dependency edges
that cross the checkpoint time, as shown in Figure 2.6. With this extended definition of checkpoints, the
checkpoint after T4 now includes the output data of T3 for T5, in addition to the output of T4 for T5.
This approach allows the algorithm in [102] to be extended to the case of superchain as described in the
next section.

20 CHAPTER 2. OPTIMAL SOLUTIONS FOR SPECIAL CLASSES OF TASK GRAPHS

2.4.2 Checkpointing algorithm

To answer the question of when to take checkpoints throughout the execution of a superchain on a
processor, we propose an O(n2) dynamic programming algorithm. For each sequence of tasks allocated
to a processor, the algorithm finds the optimal set of tasks after which output data must be checkpointed
in order to minimize its expected completion time. For each task of a sequence, it determines the
position of the last checkpoint that optimizes the expected completion time. The set of tasks after which
a checkpoint is taken can then be obtained by backtracking from the last task of the superchain.

Let us consider a superchain that contains tasks Ta, . . . , Tb (we assume that tasks T1, . . . , Tn are
numbered according to a topological sort in such a way that tasks from any superchain have con-
tiguous indices). Without loss of generality let us assume that Tj executes immediately before Tj+1,
j = a, . . . , b− 1 and that Ta starts as soon as the necessary input data is read from stable storage.

Our approach always takes a checkpoint after Tb completes to avoid crossover dependencies
(see Section 2.2.4), thus ensuring that all output data from all exit tasks of the superchain are check-
pointed. Let ETime(j) be the optimal expected time to successfully execute tasks Ta, . . . , Tj , when a
checkpoint is taken immediately after Tj completes (with possibly earlier checkpoints). Our goal is to
minimize ETime(b). To compute ETime(j), we formulate the following dynamic program by trying
all possible locations for the last checkpoint before Tj :

ETime(j) = min
(
T (a, j), min

a≤i<j
{ETime(i) + T (i+ 1, j)}

)
,

where T (i + 1, j) is the expected time to successfully execute tasks Ti+1 to Tj , provided that a check-
point occurs after task Tj completes and the previous checkpoint occurred before task Ti+1 starts. This
account for the time to read the input data, execute the tasks and perform the checkpoint. As there is no
checkpoint between tasks Ti+1 and Tj , all intermediate data are kept in memory and retrieved instantly.
This reduces the checkpoint overhead compared to CKPTALL.

From Equation 2.1, the expected time needed to execute tasks Ti to Tj for each (i, j) pair with i ≤ j
is given by

T (i, j) =
(1
λ

+ d

)(
eλ(Rji+W

j
i +Cji) − 1

)
, (2.2)

where λ is the processor’s exponential failure rate, Rji is the time necessary to read from stable storage
all data produced by tasks T1, . . . , Ti−1 and needed by tasks Ti, . . . , Tj , W

j
i = wi + . . . + wj is the

time to execute tasks Ti to Tj when no failures occur, Cji is the time taken to checkpoint the input data
of Tj+1, . . . , Tn that is produced by Ti, . . . , Tj (i.e., the non-checkpointed predecessors of Tj+1, . . . , Tn
in Ti, . . . , Tj), and d is the downtime. Formally, Rji =

∑j
k=i

∑
Tl∈Pred(Tk)\{Ti,...,Tj} clk and Cji =∑j

k=i
∑
Tl∈Succ(Tk)\{Ti,...,Tj} ckl where ckl is the cost to read or write the data produced by Tk and needed

by Tl, Pred(Tk) is the set of predecessors of Tk and Succ(Tk) is the set of successors of Tk. Note that
the data that is read (during Rji) may be produced by exit tasks of previous superchains and that the data
that is saved (during Cji) may be needed by entry tasks in next superchains. In particular, Cji is greater
than or equal to the time to checkpoint all output data of Tj .

The pseudo-code for this dynamic programming solution is given in Algorithm 2. The computation
of ETime(j) takes O(n) time, as it depends on at most j other entries. The computation of T (i, j) for
all (i, j) pairs with i ≤ j takes O(n2) time. Therefore, the overall complexity is O(n2).

2.4. PLACING CHECKPOINTS IN SUPERCHAINS 21

Algorithm 2: CHECKPOINT

1 Procedure CHECKPOINT (Ta, . . . , Tb):
2 last_ckpt← [0, . . . , 0] (b− a+ 1 elements)
3 for j = a . . . b do
4 ET ime(j)← T (a, j)
5 last_ckpt[j]← 0
6 for i = a . . . j − 1 do
7 temp← ET ime(i) + T (i+ 1, j)
8 if temp < ET ime(j) then
9 ET ime(j)← temp

10 last_ckpt[j]← i

11 Ckpts← ∅ // List of tasks to checkpoint
12 while b 6= a // Backtracking
13 do
14 Ckpts← Ckpts ∪ {Tb} // Checkpoint after task Tb
15 b← last_ckpt[b]
16 return Ckpts

2.4.3 Technical remarks

Remark #1 – Our model assumes that faults may occur while reading or writing data to stable storage.
We could also use the simpler assumption that faults only occur during computations, as done in many
previous works, by replacing Equation 2.2 by (1

λ + d)(eλW
j
i − 1) +Rji + Cji .

Remark #2 – It may appear wasteful to read files from stable storage that were just written by the same
processor and that may still be in memory or accessible locally on disk. An alternative strategy would be
to assume that the processor still has access to each data item that it has computed before (until a failure
strikes). The initial read time would then be reduced to Rji −

∑j
k=i

∑
Tl∈Pred(Tk)∩Alloc(Ti)\{Ti,...,Tj} clk

where Alloc(Ti) is the set of tasks allocated to the same processor as Ti (i.e., we no longer include the
task predecessors that were on the same processor). However, the recovery cost should also include
the time to read all these data back from stable storage in case of failure. This cost would be Rji +∑i−1
k=1,Tk∈Alloc(Ti)

∑
Tl∈Succ(Tk)∩Alloc(Ti)\{T1,...,Tj} ckl. Note that in case of multiple failures on the same

processor, data may be read back from stable storage more than once, which is also wasteful (it would be
more efficient to recover data whenever they are needed instead), but this overestimation of the recovery
cost is necessary to apply our dynamic programming approach. For low failure probability, it may thus
be advantageous to use this alternative strategy, because the higher recovery cost is offset by the lower
initial cost. We did not explore this option further, but our method can be easily extended to encompass
it.
Remark #3 – Algorithm 2 can be further improved by adjusting the checkpointing costs of files that are
systematically saved (the outputs of exit tasks that are required by other superchains). When these files
are large compared to the others, the dynamic programming approach may lead to fewer checkpoints
than with small such files because each aggregated checkpoint cost (Cji) is large. However, these files
are always checkpointed (to avoid crossover dependencies) and should have no impact on where to place
additional checkpoints. A solution is to integrate the cost of each such checkpoint (ckl) into the cost of
its producing task (wk), assuming that this checkpoint is done directly after the execution of the task,
and to discard these costs from the aggregated checkpoint costs (Cji). This optimization is particularly
useful when these necessary checkpoints are costly.
Remark #4 – We said that a superchain is checkpointed when the output data of all its exit tasks are
checkpointed. However, this does not mean that these output data need to be checkpointed after the
execution of the last task of the superchain. Consider the superchain in the example of Figure 2.5 with

22 CHAPTER 2. OPTIMAL SOLUTIONS FOR SPECIAL CLASSES OF TASK GRAPHS

two exit tasks T11 and T12. Algorithm 2 systematically takes a checkpoint after the last task T12 but not
necessarily after T11. If a checkpoint is taken after T11, then its output data is saved before T12 executes.
Otherwise, this output data is saved when T12 completes. Both options are possible. Regardless, the
structure of M-SPGS ensures that T11 and T12 have the same successors outside the superchain, and
thus recovery is straightforward.

2.5 The CKPTNONE strategy

In this section we establish the complexity of computing the expected makespan of a scheduled task
graph when the CKPTNONE strategy is used. In Section 2.5.1 we construct a simple instance and
show that it is already #P-complete, thereby establishing the #P-completeness of the problem. Then
in Section 2.5.2 we derive a simple formula to approximate the expected makespan.

2.5.1 #P-completeness

Let us define the following problem:

Definition 2.1 (DAG-MKS). Consider a task graph with n tasks. Each task Ti is scheduled on its own
processor Pi and has a unitary cost. Each task can thus start executing as soon as all its predecessors
have completed (there are no resource constraints). There is a fixed probability pi that each processor
Pi fails when it executes its allocated task Ti for 1 ≤ i ≤ n. Once Pi has failed, it restarts at the next
time-step and it cannot fail again. Hence, if Pi fails while executing Ti, it will successfully re-execute Ti
during the next time-step. The problem is to compute the expected makespan of the schedule.

In this simplified problem, we have discrete times-steps, and failures hit processors only once, simi-
larly to the approximated execution model given in Equation 2.1. Note that with this simple model, the
schedule is always executed in bounded time.

Theorem 2.1. DAG-MKS is #P-complete.

Proof. We show this result with a reduction from REL [46, 81], a #P-complete problem. Consider a
DAG with a source vertex, and let Vi be the set of vertices with a path of length i−1 from the source. In
the following, we consider layered graphs, and Vi is thus the set of vertices on layer i. A transportation
DAG is a graph in which edges go only from the source v1 ∈ V1 to vertices in V2, from vertices in V2
to vertices in V3 and from vertices in V3 to the sink vn ∈ V4. In other words, this is a four-layer graph
shaped as a directed bipartite graph with a source and a sink (see Figure 2.7).

Definition 2.2 (REL). We consider a transportation DAG with possibly multiple edges and where each
edge may fail with probability p. The objective is to determine the probability that there is a path between
the source and the sink.

We first transform an instance of REL into an instance of a related problem in which the vertices fail
instead of the edges. Each initial vertex remains unchanged and cannot fail. We replace each edge by
a vertex that can fail with probability p and connect this vertex to the predecessor and the successor of
the edge. This leads to a transformed graph with 7 layers of vertices. Vertices in even layers fail with
probability p, whereas vertices in odd layers do not fail. The probability that there is a path between the
source and the sink is the same as with the initial REL instance.

We now build an instance of DAG-MKS with the same graph structure, and we let pi = 1 − p for
all vertices of even layers and pi = 0 otherwise. We will prove that determining the probability that the
makespan of this DAG is equal to 10 solves the REL instance. We introduce some notations for the REL

2.5. THE CKPTNONE STRATEGY 23

v1

v2 v3 v4 v5

v6 v7 v8

v9

V1

V2

V3

V4

v1

v2 v3 v4 v5

v6 v7 v8

v9

v10 v11 v12 v13

v14 v15 v16 v17v18 v19

v20 v21 v22

v23

v24

v25

v26

v27

v28

v29

V1

V2

V3

V4

V5

V6

V7

V8

V9

→

Figure 2.7: The transportation graph of the REL instance (left) and the corresponding DAG-MKS in-
stance (right). In the REL instance, each edge may fail with probability p. In the DAG-MKS instance,
tasks with a double circle (v10 to v22) may fail with probability 1− p, while other tasks never fail.

instance. LetEij be the event that occurs when the edge from vertex vi to vj succeeds (Pr[Eij] = 1−p).
All Eij are independent. Let F ji be the event that occurs when there is a path from the source to a vertex
vi ∈ Vj in the REL instance. Then, F1 always occurs, Fi = E1i for vi ∈ V2, Fi =

⋃
j∈Pred(vi) Fj ∩ Eji

for vi ∈ V3 and Fn =
⋃
j∈Pred(vn) Fj ∩ Ejn =

⋃
j∈Pred(vn)

⋃
k∈Pred(vj)E1k ∩ Ekj ∩ Ejn (recall that

Pred(vi) is the set of predecessors o vi). Solving REL consists in determining Pr[Fn].
We now focus on the DAG-MKS instance. Let Gi be the event that occurs when vertex vi in layer

Vj fails at step j and is re-executed, for j ∈ {2, 4, 6} (recall that vertices in odd layers never fail).
We have Pr[Gi] = 1 − p, which is equivalent to the event Epred(vi)succ(vi) (we use pred, resp. succ,
in lowercase to denote a single predecessor, resp. successor). All Gi are independent. Let Ci be the
completion time of vertex vi. Consider the first three layers. The event {C1 = 1} always occurs,
because the source vertex never fails. For vi ∈ V2, either no fault occurs (Gi) and Ci = 2, or a fault
occurs and it takes one more time-step to execute task vi, i.e., we derive that Gi = {Ci = 3}. Finally,
{Ci = 4} = {Cpred(vi) = 3} = Gpred(vi) for vi ∈ V3. Analogously, for the two next layers, we
have: {Ci = 6} = {Cpred(vi) = 4} ∩ Gi for vi ∈ V4 and {Ci = 7} =

⋃
j∈Pred(vi){Cj = 6} =⋃

j∈Pred(vi){Cpred(vj) = 4} ∩Gj for vi ∈ V5. For the last two layers, we have: {Ci = 9} = {Cpred(vi) =
7} ∩Gi for vi ∈ V6 and {Cn = 10} =

⋃
j∈Pred(vi){Cj = 9} =

⋃
j∈Pred(vn){Cpred(vj) = 7} ∩Gj . After

simplification, we have {Cn = 10} =
⋃
j∈Pred(vn)

⋃
k∈Pred(pred(vj))Gpred(pred(vk))∩Gk ∩Gj . We see that

Pr[{Cn = 10}] = Pr[Fn] because the graph structure of the DAG-MKS instance is the same as REL.
It remains to prove that determining the probability that the makespan is 10 (i.e., Pr[{Cn = 10}]) can

be done by determining the expected makespan. We use a technique similar to the one used in [46]. We
simply add a series of 7 never-failing vertices between the source and the sink, in parallel of the previous
graph (see Figure 2.7). Then, the expected makespan of this new DAG is Pr[{Cn = 10}] + 9.

24 CHAPTER 2. OPTIMAL SOLUTIONS FOR SPECIAL CLASSES OF TASK GRAPHS

The general problem (i.e., when task costs are not unitary, when several tasks may be allocated to
a given processor, when there is a probability of failure during re-execution, when there are recovery
costs, etc.) is thus also #P-complete, and likely more challenging than DAG-MKS.

2.5.2 Approximating the makespan

Section 2.5.1 shows the difficulty of computing the makespan of a schedule where no task is check-
pointed. Still, we can derive the following approximation:

Theorem 2.2. Consider a schedule for an M-SPG G with p processors, with all tasks assigned to
processors and no checkpoint. Let Wpar be the parallel time of the schedule with no failure, and let λ
be the processor’s exponential failure rate. An approximation of the expected makespan EM(G) is

EM(G) =
(1
pλ

+ d

)
(epλWpar − 1)

Proof. The idea is to consider a single task of weight Wpar and to compute its expected execution time
as in Equation 2.2. The only differences are that: (i) we use the platform’s Exponential failure rate
pλ [56]; and (ii) we neglect the recovery cost.

While this formula is likely to be inaccurate, we are not aware of any better approximation. In Sec-
tion 2.6, we do not use EM(G) to evaluate the expected makespan of the CKPTNONE strategy; instead,
we use Monte-Carlo simulations. We consider a single task of weight Wpar and compute its expected
execution time by sampling its exponential distribution with failure rate pλ. After repeating this op-
eration for a large number of trials, each of which produced a sample makespan, we approximate the
expected makespan as the average over these samples, thereby obtaining an accurate evaluation.

2.6 Experiments

In this section, we present experimental results that quantify the effectiveness of the proposed
PROPCKPT algorithm.

2.6.1 Experimental methodology

Our experiments are for representative workflow applications generated by the Pegasus Workflow Gen-
erator (PWG) [13, 78, 92]. PWG uses the information gathered from actual executions of scientific
workflows as well as domain-specific knowledge of these workflows to generate representative and real-
istic synthetic workflows (the parameters of which, e.g., total number of tasks, can be chosen). We con-
sider three different classes of workflows generated by PWG, namely MONTAGE, LIGO and GENOME,
which are all M-SPGS2 (information on the corresponding scientific applications is available in [65,
78]):
• MONTAGE: The NASA/IPAC Montage application stitches together multiple input images to cre-

ate custom mosaics of the sky. The average weight of a MONTAGE task is 10s. Structurally,
MONTAGE is a three-level graph [31]. The first level (reprojection of input image) consists of a
bipartite directed graph. The second level (background rectification) is a bottleneck that consists

2MONTAGE is not fully an M-SPG because of some transitive edges that go from the source tasks to the exit tasks of
the second layer. However, this does not impact PROPCKPT because the source tasks are also exit tasks and are thus always
checkpointed.

2.6. EXPERIMENTS 25

in a join followed by a fork. Then, the third level (co-addition to form the final mosaic) is simply
a join.
• LIGO: LIGO’s Inspiral Analysis workflow is used to generate and analyze gravitational wave-

forms from data collected during the coalescing of compact binary systems. The average weight of
a LIGO task is 220s. Structurally, LIGO can be seen as a succession of Fork-Joins meta-tasks, that
each contains either fork-join graphs or bipartite graphs (see the LIGO IHOPE workflow in [78]).
Depending on the number of tasks required, PWG may not output an M-SPG Ligo workflow be-
cause of some incomplete bipartite graphs. In these cases, to ensure full fairness when comparing
approaches, the baseline strategies process the original workflow while PROPCKPT processes a
workflow where bipartite graphs have been extended with dummy dependencies for zero-size files
(which adds synchronizations but no data transfers).
• GENOME: The epigenomics workflow created by the USC Epigenome Center and the Pegasus

team automates various operations in genome sequence processing. The average weight of a
GENOME task depends on the total number of tasks and is greater than 1000s. Structurally,
GENOME starts with many parallel fork-join graphs, whose exit tasks are then both joined into
a new exit task, which is the root of fork graphs (see the Epigenomics workflow in [78]).

We generate MONTAGE, LIGO, and GENOME workflows with various number of tasks. For each
task Ti in the workflow, its weight wi is generated by PWG. We compute the time required to read or
save the data produced by task Ti and needed by task Tj , cij , by dividing the size of the file in bytes by
the stable storage bandwidth in byte/sec. The file sizes are generated by PWG. In some instances, a task
may generate the same file for more than one successor task. In this case a checkpoint saves the file only
once.

In the experiments we consider different exponential processor failure rates. To allow for consistent
comparisons of results across different M-SPGS (with different numbers of tasks and different task
weights), we simply fix the probability that a task fails, which we denote as pfail, and then simulate
the corresponding failure rate. Formally, for a given M-SPG, G = (V,E) and a given pfail value, we
compute the average task weight as w̄ =

∑
i∈V wi/|V |, where wi is the weight of the i-th task in V . We

then pick the failure rate λ such that pfail = 1 − e−λw̄. We conduct experiments for three pfail values:
0.01, 0.001, and 0.0001.

An important factor that influences the performance of checkpointing strategies, and more precisely
of the checkpointing and recovery overheads, is the data-intensiveness of the application. The workflows
generated by PWG give task durations in seconds and file sizes in bytes, which makes it difficult to
quantify data-intensiveness. Instead, we define the Communication-to-Computation Ratio (CCR) as the
time needed to store all the files handled by a workflow (input, output, and intermediate files) divided
by the time needed to perform all the computations of that workflow on a single processor. The total
store time is the total file size divided by the bandwidth to the stable storage. Instead of picking arbitrary
bandwidth values, which would have different meanings for different workflows, we vary the CCR by
scaling file data sizes by a factor. This makes it possible to consider and quantify the data-intensiveness
of all workflows in a coherent manner across experiments and workflow classes and configurations.

The experiments compare PROPCKPT to the two extreme approaches, CKPTALL and CKPTNONE.
For all strategies, we use Monte-Carlo simulations [73, 93] to compute the expected makespan of the
solutions. A task in the DAG succeeds or fails as determined by sampling the exponential time-to-
failure distribution, and a task can fail more than once. After sampling, the DAG is deterministic and its
makespan can be computed as the length of its longest path. This operation is repeated for a large number
of trials, each of which produces a sample makespan. These samples approach the actual makespan
distribution as the number of trials increases. Following [25], we use 300,000 trials and approximate
the expected makespan as the average over the resulting 300,000 makespan samples. This enormous

26 CHAPTER 2. OPTIMAL SOLUTIONS FOR SPECIAL CLASSES OF TASK GRAPHS

CKPTALL CKPTNONE

pfail = 0.01 pfail = 0.001 pfail = 0.0001

50 tasks
P = 3
P = 5
P = 7
P = 10

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−05 5e−04 5e−03 5e−02

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

●

●

●
●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●
●●●●●

21111111
107776768

avg
max

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−05 5e−04 5e−03 5e−02

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

●

●

●
●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●
●●●●●

11111111
43333343

avg
max

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−05 5e−04 5e−03 5e−02

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

●

●

●
●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●
●●●●●

11111111
22222222

avg
max

300 tasks
P = 18
P = 35
P = 52
P = 70

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−05 5e−04 5e−03 5e−02

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

64444444
2015151513171515

avg
max

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−05 5e−04 5e−03 5e−02

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

11111111
65555555

avg
max

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−05 5e−04 5e−03 5e−02

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

11111111
33333232

avg
max

1000 tasks
P = 61
P = 123
P = 184
P = 245

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−05 5e−04 5e−03 5e−02

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

1411111111111111
3529292827282727

avg
max

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−05 5e−04 5e−03 5e−02

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

22222111
99888888

avg
max

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−05 5e−04 5e−03 5e−02
0.

6
0.

8
1.

0
1.

2
1.

4
1.

6

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

11111111
44444444

avg
max

Figure 2.8: Expected makespan of CKPTALL and CKPTNONE relative to that of PROPCKPT for the
GENOME workflow, three different failure rates, three workflow sizes, and varying Communication-to-
Computation Ratio (CCR).

number of trials is prohibitively expensive in practice, but provides us with an accurate ground truth to
compare the different strategies. Code is publicly available at [47].

2.6.2 Expected makespan

In this section, we compare the expected makespan of two baseline strategies (CKPTALL and CKPT-
NONE) over that of our proposed strategy (PROPCKPT). Figures 2.8 to 2.10 show expected makespans
for CKPTALL and CKPTNONE relative to that of PROPCKPT vs. Communication-to-Computation Ratio
(CCR). Data points above the y = 1 line denote cases in which our strategy outperforms a competitor
(i.e., achieves a lower expected makespan). Each figure shows results for workflows with 50, 300 and
1000 tasks, for various numbers of processors P , and for the three pfail values (0.01, 0.001, and 0.0001).
We report the average and maximum number of failures that occur for the 300,000 trials of each ex-
ecution. These numbers are shown above the horizontal axis in each figure, labeled as avg and max.
For different workflows, we pick the number of processors, P , as follows: we compute the maximum
parallelism of the workflow, p, and pick P ∈ {p/4, p/2, 3p/4, p}.

A clear observation is that PROPCKPT always outperforms CKPTALL.3 In each scenario, above
some CCR value, which depends on the failure rate and the workflow size, PROPCKPT leads to signifi-
cant improvement over CKPTALL. As the CCR decreases, the relative expected makespan of CKPTALL

3There are in fact a couple of CCR values for Ligo with 300 tasks for which this is not true. This is an artifact of our slight
transformation of the Ligo workflow (see Section 2.6.1 for details).

2.6. EXPERIMENTS 27

CKPTALL CKPTNONE

pfail = 0.01 pfail = 0.001 pfail = 0.0001

50 tasks
P = 7
P = 14
P = 21
P = 28

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−05 5e−04 5e−03 5e−02

0.
5

1.
0

1.
5

2.
0

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

21111111
117777666

avg
max

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−05 5e−04 5e−03 5e−02

0.
5

1.
0

1.
5

2.
0

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

11111111
43333334

avg
max

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−05 5e−04 5e−03 5e−02

0.
5

1.
0

1.
5

2.
0

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●
●●●●

11111111
22222222

avg
max

300 tasks
P = 49
P = 98
P = 147
P = 196

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−05 5e−04 5e−03 5e−02

0.
5

1.
0

1.
5

2.
0

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

84444444
2516161314141513

avg
max

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−05 5e−04 5e−03 5e−02

0.
5

1.
0

1.
5

2.
0

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

11111111
77556565

avg
max

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−05 5e−04 5e−03 5e−02

0.
5

1.
0

1.
5

2.
0

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

11111111
33333232

avg
max

1000 tasks
P = 166
P = 331
P = 496
P = 662

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−05 5e−04 5e−03 5e−02

0.
5

1.
0

1.
5

2.
0

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

2714121111111111
6330282528252524

avg
max

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−05 5e−04 5e−03 5e−02

0.
5

1.
0

1.
5

2.
0

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

32222222
127767778

avg
max

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−05 5e−04 5e−03 5e−02
0.

5
1.

0
1.

5
2.

0

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

11111111
44333333

avg
max

Figure 2.9: Expected makespan of CKPTALL and CKPTNONE relative to that of PROPCKPT for the
MONTAGE workflow, three different failure rates, three workflow sizes, and varying Communication-to-
Computation Ratio (CCR).

decreases and converges to 1. This is because when checkpointing becomes cheap enough PROPCKPT

decides to checkpoint every task, and thus is equivalent to CKPTALL.
Another common trend is that the relative expected makespan of CKPTNONE increases as the CCR

decreases since as checkpoints become cheaper not checkpointing becomes a losing strategy (poorer
resilience to failures, but little saving on checkpointing overhead). Overall, CKPTNONE becomes worse
whenever there are more failing tasks, i.e., when the failure rate increases (going from the rightmost
column to the leftmost one in the figures), and/or when the number of tasks increases (going from the
topmost row to the bottom one in the figures). When the failure rate is high and the workflows are large
(the bottom left corner of the figures), the relative expected makespan of CKPTNONE is so high that it
does not appear in the plots.

PROPCKPT achieves better results than CKPTNONE except when (i) checkpoints are expensive (high
CCR) and/or (ii) failures are rare (low pfail). In these cases, checkpointing is a losing proposition, and
yet PROPCKPT by design always checkpoints some tasks (it checkpoints all exit tasks of superchains).
In practice, in such cases, the optimal approach is to bet that no failure will happen and to restart the
whole workflow execution from scratch upon the very rare occurrence of a failure. The results above for
our particular benchmark workflows, and our experimental methodology in general, make it possible to
identify these cases so as to select which approach to use in practical situations.

Besides the results shown in Figures 2.8 to 2.10, we performed more comprehensive experiments
to assess the performance of our strategy PROPCKPT on a larger workflow set, e.g., GENOME and
MONTAGE with 100, 500 and 700 tasks, LIGO with 100 and 400 tasks [50]. All results show the same
trends as the results presented in this section.

28 CHAPTER 2. OPTIMAL SOLUTIONS FOR SPECIAL CLASSES OF TASK GRAPHS

CKPTALL CKPTNONE

pfail = 0.01 pfail = 0.001 pfail = 0.0001

50 tasks
P = 3
P = 6
P = 9
P = 12

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−04 5e−03 5e−02 5e−01

0.
95

1.
00

1.
05

1.
10

1.
15 ●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●
●●●●●

11111111
87867766

avg
max

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−04 5e−03 5e−02 5e−01

0.
95

1.
00

1.
05

1.
10

1.
15 ●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●
●

●●●●●

11111111
33333333

avg
max

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−04 5e−03 5e−02 5e−01

0.
95

1.
00

1.
05

1.
10

1.
15 ●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●
●

●●●●●

11111111
22222222

avg
max

300 tasks
P = 19
P = 38
P = 57
P = 76

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−04 5e−03 5e−02 5e−01

0.
95

1.
00

1.
05

1.
10

1.
15

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●
●

●●●●●

44444444
1515141314141315

avg
max

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−04 5e−03 5e−02 5e−01

0.
95

1.
00

1.
05

1.
10

1.
15

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●
●

●●●●●

11111111
55555656

avg
max

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−04 5e−03 5e−02 5e−01

0.
95

1.
00

1.
05

1.
10

1.
15

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●
●

●●●●●

11111111
32233332

avg
max

1000 tasks
P = 61
P = 122
P = 183
P = 245

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−04 5e−03 5e−02 5e−01

0.
95

1.
00

1.
05

1.
10

1.
15 ●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

1211111111111111
3128282831292827

avg
max

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−04 5e−03 5e−02 5e−01

0.
95

1.
00

1.
05

1.
10

1.
15 ●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

22222212
989888108

avg
max

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

5e−04 5e−03 5e−02 5e−01
0.

95
1.

00
1.

05
1.

10
1.

15 ●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●

11111111
44433444

avg
max

Figure 2.10: Expected makespan of CKPTALL and CKPTNONE relative to that of PROPCKPT for the
LIGO workflow, three different failure rates, three workflow sizes, and varying Communication-to-
Computation Ratio (CCR).

2.7 Conclusion

We have proposed a scheduling/checkpointing algorithm, called PROPCKPT, for executing workflow
applications (M-SPGS) on parallel computing platforms in which processors are subject to fail-stop
failures. The objective function to be minimized is the expectation of the makespan, which is a random
variable due to probabilistic task re-executions due to failures. For general Directed Acyclic Graphs
(DAGs), this problem is intractable and even computing the objective function is itself a #P-complete
problem. However, by restricting our work to a class of structured recursive DAGs, Minimal Series-
Parallel Graphs (M-SPGS), which are broadly relevant to production workflow applications, we are
able to design a sensible algorithm and to accurately compute the expected makespan of the solutions it
produces. A competing approach, CKPTALL, side-steps part of the difficulty of solving the problem by
saving all application data to stable storage so as to minimize the impact of failures, with the drawback
of maximizing checkpointing overhead. This is the approach employed by default in most production
workflow executions, in which each task is an executable that reads all its input from files and writes
all its output to files. Another competing approach, CKPTNONE, is a risky zero-overhead approach
in which the entire workflow is re-executed from scratch in case of a failure. The broad objective of
our algorithm is to produce solutions that strike a good compromise between these two extremes. For
the CKPTNONE approach, when applied to general DAGs, we have established that the problem of
computing the expected makespan is #P-complete, which to the best of our knowledge is a new result.

We have evaluated the effectiveness of our algorithm by considering realistic workflow configura-
tions produced by a workflow generator from the Pegasus community [13, 78, 92]. We have shown

2.7. CONCLUSION 29

that our PROPCKPT algorithm does indeed provide an attractive compromise between the CKPTALL

and CKPTNONE approaches. More specifically, PROPCKPT always outperforms CKPTALL and is only
outperformed by CKPTNONE when checkpoints are expensive and/or failures are rare. Our experimen-
tal methodology provides the quantitative means to identify these cases (based on application CCR,
platform scale, and failure rates), so as to select which approach to use in practice.

Next step in Chapter 3, we will extend these techniques to enable the approach for arbitrary work-
flows. We point out that PROPCKPT can be straightforwardly extended to deal with General Series
Parallel Graphs, which are defined in [104] as graphs whose transitive reductions are M-SPGS.

Another promising direction is to refine the linearization algorithm for superchains (Algorithm 1).
Instead of choosing the topological sort arbitrarily, one may try and reduce the total volume of output
files, in the hope of reducing the total checkpointing cost when applying Algorithm 2 after the lineariza-
tion. This problem is related to the sum cut problem [34], which is NP-complete for general DAGs, but
may be amenable to efficient solutions for M-SPGS.

Finally, it may be possible to improve the overall approach by making allocation and checkpointing
decisions simultaneously, possibly extending branch and bound methods for scheduling DAGs. This is
a challenging proposition, and for now a solution seems out of reach.

30 CHAPTER 2. OPTIMAL SOLUTIONS FOR SPECIAL CLASSES OF TASK GRAPHS

Chapter 3

Generic approaches for arbitrary task graphs

In the previous Chapter 2, we took advantage of the recursive structure of M-SPGS and used propor-
tional mapping [80] for scheduling and checkpointing M-SPG workflows as sets of superchains, which
leads to an optimal checkpointing strategy (given the mapping and all exit tasks of superchains are au-
tomatically checkpointed). In this following chapter, we propose a generic approach for arbitrary task
graphs. Given any DAG and a set of processors on which fail-stop failures strike with Exponentially
distributed inter-arrival times, the objective is to schedule the task executions and potential checkpoints
such that the expected completion time (or makespan) is minimized. For general graphs, we have to re-
sort to classical scheduling heuristics such as HEFT [101] and MINMIN [18], two reference scheduling
algorithms widely used by the community. We provide extensions of HEFT and MINMIN that allow for
a smaller subset of tasks to be checkpointed and lead to better makespans than the versions where each
task (CKPTALL) or no task (CKPTNONE) is checkpointed.

The main contributions of this chapter are the following:
• We deal with arbitrary dependency graphs, and require no graph transformation before applying

our scheduling and checkpointing algorithms;
• We compare several mapping strategies and combine them with several checkpointing strategies;
• We design an event-based simulator to evaluate the makespan of the proposed solution (described

in Section 3.3.2). Indeed, computing the expected makespan of a solution is a difficult problem (as
shown in Section 2.2.5), and simple Monte-Carlo based simulations cannot be applied to general
DAGs unless all tasks are checkpointed: otherwise, sampling the weight distribution for each task
independently is not enough to compute the makespan, since a failure may involve re-executing
several tasks (as shown in Section 3.1);
• We report extensive experimental evaluation with both real-world and randomly generated work-

flows to quantify the performance gain achieved by the proposed approach.
The rest of the chapter is organized as follows. First in Section 3.1, we work out an example to un-

derstand the difficulties in general graphs. Then we detail our scheduling and checkpointing algorithms
in Section 3.2. We give experimental results in Section 3.3. Finally, we provide concluding remarks
and directions for future work in Section 3.4. Please refer to Section 2.2.1 and Section 2.2.2 for the
description of the execution model and the fault-tolerance model respectively.

3.1 Example

In this section, we illustrate the difficulty of deciding where to place checkpoints in a general workflow.
Consider the example of Figure 3.1 with 9 tasks, Ti, 1 ≤ i ≤ 9, that have been mapped on 2 processors
as shown on the figure. Note that this DAG cannot be reduced to an M-SPG and the previous approach

31

32 CHAPTER 3. GENERIC APPROACHES FOR ARBITRARY TASK GRAPHS

P1

P2

T1 T2

T3

T4

T5

T6 T7 T8 T9

Figure 3.1: Schedule of a workflow with 9 tasks on 2 processors (each edge corresponds to a file depen-
dence between tasks).

T1 T2 T1 T2

T3 T5 T3 T5
T4 T6 T7 T8 T9

time

P1

P2

Figure 3.2: Sample execution of the workflow in Figure 3.1 without any checkpoint, with two failures
striking during the execution of T2 on P1 and during that of T5 on P2.

in Chapter 2 cannot be applied for this graph. While most tasks are assigned to processor P1, some tasks
are assigned to the second processor, P2, to exploit the parallelism of the DAG. Any dependency between
two tasks represents a file that is required to start the execution of the successor task; hence, T1 → T2
represents a file produced by task T1 that is required for the execution of task T2 to start. Because T1 and
T2 are both executed on processor P1, this file is kept in the memory of P1 after T1 completes. However,
for the dependency T1 → T3, because the tasks T1 and T3 are executed on different processors, the
corresponding file must be retrieved by P2. Such a dependency between two tasks assigned to two
different processors is called a crossover dependency as stated in Section 2.1.

In a first scenario, let us suppose that no task is checkpointed as showed in Figure 3.1: then if no
failure strikes, the makespan will be the shortest possible, consisting only of the execution time of each
task and of retrieving the necessary input files. However, as soon as a failure happens, we may need to
restart the whole application from the very beginning. To study such a scenario, we need to explicit the
memory management. Let us assume that once a processor has sent a file to another processor, then this
file is deleted from the memory of the producing processor. For instance, as soon as P2 has received
from P1 the file corresponding to the dependency T1 → T3, this file is erased from the memory of P1.
Remember that a failure wipes out the whole content of the memory of the struck processor. Thus, if
a failure strikes during the execution of T5, to be able to re-attempt to execute T5, T3 will need to be
re-executed before (because the file T3 → T5 is no longer available), which requires T1 to be re-executed
first (because the file T1 → T3 is no longer available). Hence, a single failure in a part of the graph may

P1

P2

T1 T2

T3

T4

T5

T6 T7 T8 T9

Figure 3.3: A purple crossover checkpoint is performed for each file produced by one processor and
used by another one.

3.1. EXAMPLE 33

T1 13 T2 T1 T2

T3 34 T5 13 T3 T5 59

34 T4 T6 T7 T8 T9

time

P1

P2

Figure 3.4: Sample execution of the application in Figure 3.3 with two failures striking during the
execution of T2 on P1 and that of T5 on P2, with crossover checkpoints. Label ij indicates the file from
Ti to Tj . Now T4 can start before the re-execution of T3 since its output was checkpointed.

P1

P2

T1 T2

T3

T4

T5

T6 T7 T8 T9

Figure 3.5: Blue induced checkpoints are used to isolate task sequences on a processor (labeled in green,
such as the sequence T4, T6, T7 and T8 on P1). Finally, additional checkpoints can be added inside an
idle-free task sequence through a dynamic programming algorithm: the orange checkpoint corresponds
to such an addition.

require the re-execution of most of the workflow, which is known as the domino effect in fault tolerance
protocols and needs to be mitigated. Figure 3.2 shows an example of execution of the DAG when no task
is checkpointed. To execute T4, we need both T2 and T3 to finish successfully, and that no fault strikes
neither P1 nor P2 between the completion of these tasks and the start of T4. Here, T2 does not finish so
T1 is re-executed. When P2 fails, we need to re-execute T3, which requires input from T1. Luckily (!),
P1 already suffered from a failure, so T1 has already been re-executed. Otherwise, we would have had
to restart the execution of the whole workflow because of the failure of P2.

To avoid rolling back to the beginning in case of failures, we can try to place some checkpoints
inside the workflow. As commonly assumed in workflow management systems [1, 2, 32, 38, 109, 110],
any file produced by one processor and required by another processor is necessarily saved to stable
storage. Thus, an error on one processor will not lead to re-execution on another processor. In the
second scenario shown in Figure 3.3, we decide to checkpoint every crossover dependency (files from
T1 to T3, T3 to T4, and T5 to T9). An execution of that schedule is shown in Figure 3.4. Cyan boxes
represent file checkpoints while yellow boxes represent data being read. We can see that thanks to
the crossover checkpoints, T4 does not need to wait for the completion of the second execution of T3
anymore, as the output data from T3 to T4 has already been checkpointed. Moreover, if only a failure on
P2 happened, instead of rolling back to task T1 to re-execute T3 as it was the case before, T3 could have
restarted directly (although the entire content of the processor memory is lost, so all inputs of T3 must be
recovered from stable storage after a downtime before the execution of T3 can restart). Note that we start
executing the target task of a crossover dependency after checkpointing, to make sure that all files needed
are available in the stable storage in case of failure. The motivation to checkpoint all files involved in
crossover dependencies is to isolate the processors. Indeed, if all crossover files are checkpointed, a
failure on a processor will never lead to the re-execution of a task successfully executed on another
processor. Overall, we will lose less time recomputing tasks or waiting for their second completion.
However, reading from stable storage and checkpointing also take time. Same as the previous chapter,

34 CHAPTER 3. GENERIC APPROACHES FOR ARBITRARY TASK GRAPHS

finding the right trade-off is the main focus: deciding which tasks should be checkpointed, so that the
overhead added by the checkpointing and reading of files is not more expensive than the re-execution of
tasks.

We conclude by informally introducing examples of checkpointing strategies that achieve desirable
trade-offs (see Section 3.2.2 for details). Two additional checkpoints, in blue, called induced task check-
points, have been added in Figure 3.5. Their role is to secure the fast re-execution of tasks that are the
target of a crossover dependency, namely T4 and T9. The blue task checkpoint after T2 isolates the
execution of the task sequence S1 = {T4, T6, T7, T8} on P1. To this purpose, it is necessary to check-
point all intermediate results that may be used after the execution of T2 (also refer to the definition of a
task checkpoint in Section 2.4.1): these are the files generated by previous tasks, namely T1 → T7 and
T2 → T4. This way, when a failure strikes, previous tasks do not have to be restarted and the computa-
tion may be restarted directly from T4. This way, tasks in the sequence S1 may be sequentially executed
without idle time. It would not have been possible to include T1 and T2 in S1 because T4 could have
waited for the completion of T3 leading to idle time in some scenarios. Similarly, the second blue task
checkpoint isolates the execution of T9.

Finally, once the four tasks T4, T6, T7 and T8 of the sequence S1 have been “isolated” from other
tasks, it is possible to use a dynamic programming algorithm similar to that proposed in Section 2.4.2
in order to introduce additional task checkpoints. In the example of Figure 3.5, a single additional task
checkpoint, in orange, is inserted after T7.

3.2 Scheduling and checkpointing algorithms

In this section, we first present heuristics to map tasks to processors. Then we propose three different
checkpointing strategies that can be used simultaneously.

3.2.1 Scheduling heuristics

We map tasks to processors and schedule them using two classical scheduling heuristics, HEFT [101]
and MINMIN [18]. We run these heuristics as if the platforms were not subject to failures, that is, with-
out considering checkpoints. Therefore, we decide first on which processor a task will be executed, and
the order in which a processor will execute tasks, before deciding when and what to checkpoint (see Sec-
tion 3.2.2). However, we present variants of HEFT and MINMIN, named HEFTC and MINMINC, that
are specifically designed for our failure-prone framework.

Heterogeneous Earliest Finish Time first (HEFT) is presented as the HEFTC variant in Algo-
rithm Algorithm 3. The original HEFT algorithm comprises two phases. In a first task prioritizing
phase, the bottom-level of all tasks is computed and tasks are ordered by non-increasing bottom-levels.
The bottom-level of a task is the maximum length of any path starting at the task and ending in an exit
task, considering that all communications take place [29]. In the second processor selection phase, the
first unscheduled task is scheduled as early as possible on a processor that minimizes its completion
time. In all cases, ties are broken arbitrarily. To these original two phases, we add a third one, the chain
mapping phase (Line 7 and Line 8 of Algorithm 3). If the newly mapped task T is the head of a chain
in the task graph, which means T only has one successor whose only predecessor is T , then this whole
chain is mapped on the same processor as T , and the tasks will be executed consecutively. Ensuring that
entire chain of tasks are scheduled on the same processor decreases the number of crossover dependen-
cies and thus, the time to checkpoint them. HEFTC has a complexity of O(n2) for a workflow with n
tasks. During the processor selection phase, the earliest finish time of a task is computed in HEFTC

3.2. SCHEDULING AND CHECKPOINTING ALGORITHMS 35

while assuming that the newly mapped task must start after all tasks previously scheduled on that pro-
cessor have completed. On the contrary, the original HEFT heuristic is allowed to perform backfilling
following a classical insertion-based policy, as long as the completion time of no task is delayed. Allow-
ing backfilling is more expensive at scheduling time but should lower the execution time (the complexity
of HEFT with backfilling is also O(n2) with homogeneous processors). We do not allow backfilling for
HEFTC because it could be antagonistic to the chain mapping phase if it led to backfill the head of the
chain, but not the whole chain.

Algorithm 3: HEFTC

1 Compute the bottom-level of all tasks by traversing the graph from the exit tasks
2 Sort the tasks by non-increasing values of their bottom-levels
3 while there are unscheduled tasks do
4 Select the first task Ti
5 k ← arg min1≤k≤p EarliestFinishTime(Ti, Pk)
6 Schedule task Ti on processor Pk
7 if Ti is the head of a chain of tasks then
8 Schedule the whole chain continuously on Pk

The MINMIN scheduling algorithm is presented in the MINMINC variant in Algorithm 4. The
original MINMIN algorithm is a simple loop which, at each step, schedules the task that can finish the
earliest among unscheduled tasks. Therefore, at each step it considers all ready tasks and, for each of
them, all the processors. We (try to) improve this heuristic by adding a chain mapping phase exactly as
previously (Line 5 and Line 6 of Algorithm 4). MINMINC has a complexity of O(n2p) for a workflow
with n tasks and p processors.

Algorithm 4: MINMINC

1 ReadyTasks ← entry tasks
2 while there are unscheduled tasks do
3 Pick a task T ∈ ReadyTasks and a processor P such that the completion time of T on P is

minimum among the Earliest Finish Times of all ready tasks
4 Schedule task T on processor P
5 if T is the head of a chain of tasks then
6 Schedule the whole chain continuously on P
7 Update ReadyTasks

3.2.2 Checkpointing strategies

While the previous scheduling algorithms provide mappings of tasks to processors, it remains to de-
cide which files must be checkpointed and when. This section introduces finer strategies than the two
extremes solutions that consist of checkpointing no task or all tasks. These two extreme solutions,
CKPTNONE and CKPTALL, are denoted with the suffixes NONE and ALL, respectively.

The minimum strategy that is required to isolate processors consists in checkpointing all files (file
checkpoints) that must be transferred between any pair of processors, i.e., exactly the files corresponding
to crossover dependencies. In this case, any failure on a processor will not require any re-execution on
other processors. The strategy is denoted with a “C” in the checkpoint suffix.

36 CHAPTER 3. GENERIC APPROACHES FOR ARBITRARY TASK GRAPHS

For the next two additional strategies, we apply task checkpoints as proposed in Section 2.4. While
a simple file checkpoint consists of writing to stable storage a file that corresponds to a dependency be-
tween two tasks, a task checkpoint consists of writing all files that (i) reside in memory on a processor;
(ii) will be used later by tasks assigned to the same processor; and (iii) have not already been check-
pointed. In the example in Section 3.1, for each crossover dependency we did a simple file checkpoint
rather than a full task checkpoint. A task checkpoint after task T3 would have also checkpointed the
file corresponding to the dependency T3 → T5. A non-trivial task checkpoint for the example of Sec-
tion 3.1 would be a task checkpoint for task T2. This checkpoint would require checkpointing the files
corresponding to the dependencies T2 → T4 and T1 → T7.

When a task checkpoint is performed after the execution of a task, multiple files may be checkpointed
“at the same time” (either newly created files or previously created ones that will later be used). If several
files are checkpointed, they are all checkpointed after the task completion, one after the other (in any
order). When absent from memory (following a failure), input files are read from stable storage as late
as possible, just before the execution of the task that needs them.

Checkpointing crossover dependencies enables to isolate processors, in that there is no re-execution
propagation from a processor to another. However, when a task is the target of a crossover dependency,
its starting time is the maximum of the availability times of all its input files, and these files come
from different processors. Therefore, its starting time may be delayed by failures occurring on other
processors. Because failures can strike during idle time, it may be beneficial to try to use the potential
waiting time by performing a task checkpoint of the task preceding the target task. This way, the whole
content of the memory will be preserved, the cost of the checkpoint may be offset by some waiting time,
and if a failure strikes during the remaining waiting time all input files remain available. Therefore, we
propose a new checkpointing strategy denoted with “I” in the checkpoint suffix. This strategy consists
of checkpointing all induced dependencies. A dependency Ti → Tj is an induced dependency if Ti and
Tj are scheduled on the same processor P and there exists a crossover dependency Tk → Tl such that
Tl is scheduled on P after Ti and before Tj (or Tl = Tj). Checkpointing these induced dependencies
is done by performing a task checkpoint of the task preceding Tl on P . In the example of Section 3.1,
the dependencies T2 → T4 and T1 → T7 are both induced dependencies because of the crossover
dependency T3 → T4. As a side note, we point out that our induced task checkpoints are not related
to those introduced in [8] to track consistency among execution traces of general applications: we deal
with simple task graphs and can easily regenerate missing data by following the dependencies.

So far, we have only introduced checkpoints to isolate processors, either to avoid failure propagation
or to try to minimize the impact of processors having to wait from each other. We further consider
checkpoints that more directly optimize expected total execution time. We present an additional strategy,
denoted by the suffix “DP”, which adds additional checkpoints through a O(n2) dynamic programming
algorithm, which is a transposition of that of Section 2.4.2. This dynamic program considers a maximal
sequence of consecutive tasks that are all assigned to the same processor, and that are isolated from other
tasks: the sequence contains no checkpoint and none of its tasks is the target of a crossover dependency,
except for its first task. Let Ta, . . . , Tj be such a sequence of tasks. By definition, all input data produced
by some previous tasks have been checkpointed. ETime(j) is the optimal expected time to successfully
execute this sequence, when a checkpoint is taken immediately after Tj completes (with possibly earlier
checkpoints). Please refer to Section 2.4.2 for the detailed formulation of ETime(j). Here we point out
that as stated in Section 2.2.2, the calculation of T (i, j) =

(
1
λ + d

) (
eλ(Rji+W

j
i +Cji) − 1

)
is an upper

bound, whereRji (resp.W j
i and Cji) is the sum of the recovery (resp. execution and checkpointing) costs

of tasks Ti to Tj . The recovery costs concern all input files of these tasks that are on the stable storage,
while the checkpointing costs concern all files that will be checkpointed when a task checkpoint is done

3.3. EXPERIMENTS 37

after Tj . Although some files may be locally available and other files in the stable storage should be read
as late as possible (just before the execution of the task that needs them), this is a necessary condition
to be able to reuse, in some way, the dynamic programming approach of Section 2.4.2. This algorithm
requires, by construction, that induced dependencies be checkpointed. However, we heuristically use
it even when this condition is not satisfied. In this case, we take a maximal sequence while allowing
tasks to be the target of crossover dependencies, and behave as if these crossover dependencies were
not existing: we discard any potential waiting time that may be due to these crossover dependencies
(because we have no means to estimate them).

3.3 Experiments

In this section, we describe the experiments conducted to assess the efficiency of the checkpointing
strategies. In Section 3.3.1, we describe the parameters and applications used during our experimental
campaign, then in Section 3.3.2 we present the simulator used to run the applications and simulate the
behavior of large-scale platforms. Finally, we present our results in Section 3.3.3.

3.3.1 Experimental methodology

We consider workflows from real-world applications, namely representative workflow applications gen-
erated by the Pegasus Workflow Generator (PWG) [13, 65, 92], as well as the three most classical
matrix decomposition algorithms (LU, QR, and Cholesky) [26], and randomly generated DAGs from
the Standard Task Graph Set (STG) [99].

Pegasus workflows. PWG uses the information gathered from actual executions of scientific work-
flows as well as domain-specific knowledge of these workflows to generate representative and realistic
synthetic workflows (the parameters of which, e.g., the total number of tasks, can be chosen). We con-
sider all of the five workflows [78] generated by PWG, including three M-SPGS (GENOME, LIGO,
and MONTAGE introduced in Section 2.6.1) that are used to compare our new general approach with
PROPCKPT, the strategy for M-SPGS proposed in Chapter 2. Other two workflows, namely CYBER-
SHAKE and SIPHT, are more general DAG that we used to evaluate the performance of the strategies in
this chapter.
• CYBERSHAKE: The CYBERSHAKE workflow is used by the Southern Calfornia Earthquake Cen-

ter to characterize earthquake hazards in a region. The average weight of a CYBERSHAKE task is
25s. Structurally, the CYBERSHAKE workflow starts with several forks. Then each of the forked
tasks has two dependencies: one to a single task (join) and one to a specific task for each of the
tasks. Finally, all these new tasks are joined without another dependency this time.
• SIPHT: The SIPHT workflow, from the bioinformatics project at Harvard, is used to automate the

search for untranslated RNAs (sRNAs) for bacterial replicons in the NCBI database. The average
weight of a SIPHT task is 190s. Structurally, the SIPHT workflow is composed of two different
parts that are joined at the end: the first one is a series of join/fork/join, while the other is made of
a giant join.

We generate these workflows with 50, 300, and 700 tasks (these are the number of tasks given to the
generator, the actual number of tasks in the generated workflows depend on the workflow shape). The
task weights and file sizes are generated by PWG. In some instances, a single file may be used by more
than one task and a dependency may represent multiple files to transfer between two tasks. In the first
case, whenever a file is common to multiple dependencies, the file is only saved once. In the second
case, files are aggregated into a single one.

38 CHAPTER 3. GENERIC APPROACHES FOR ARBITRARY TASK GRAPHS

Matrix factorizations. We consider the three most classical factorizations of a k × k tiled matrix:
LU, QR, and Cholesky factorizations.
• The LU decomposition is the factorization of any matrix into a product of one lower-triangular

(L) and one upper-triangular (U) matrices. Structurally, the DAG is made of k steps, with at step i,
one task having two sets of k− i− 1 children, and each pair of tasks between the two sets having
another child.
• The QR decomposition is the decomposition of a matrix into a product of an orthogonal matrix

(Q) and upper-triangular matrix (R), i.e., A = QR with QQT = Id. Structurally, the QR de-
composition looks like the LU decomposition but it has more complex dependencies between the
k − i− 1 children at step i.
• Cholesky is a factorization of a positive and definite matrix into the product of a triangular matrix

and its transpose, i.e., A = BBT where B is lower-triangular and has non-zero values of the
diagonal. The Cholesky decomposition DAG is the representation of a panel algorithm and can
be constructed recursively by removing the first row and the first column of submatrices, to keep
factorizing the trailing matrix.

For each factorization, we perform experiments with k = 6, 10, and 15, for a total of 3 × 3 = 9
DAGs with up to 1240 tasks. The number of vertices in the DAG depends on k as follows: the Cholesky
DAG has 1

3k
3 + O(k2) tasks, while the LU and QR DAGs have 2

3k
3 + O(k2) tasks. There are 4 types

of tasks in LU, QR, and Cholesky, which are labeled by the corresponding BLAS kernels [26], and their
weights are based on actual kernel execution times as reported in [5] for an execution on Nvidia Tesla
M2070 GPUs with tiles of size b = 960.

Random graphs. The STG benchmark [99] includes 180 instances for each size of DAGs (from 50
to 5 000). This set is often used in the literature to compare the performance of scheduling strategies.
Instead of choosing part of the instances for each size, we did experiments on all instances of size 300
and 750. For each instance, one of the four DAG generators specifies the structure of the dependencies
(e.g., layer-by-layer) and one of the six cost generators provides the distribution of the processing times
(e.g., uniform).

Failure distribution. In the experiments, we consider different exponential processor failure rates.
As what we did in Section 2.6.1, to allow for consistent comparisons of results across different DAGs
(with different numbers of tasks and different task weights), we simply fix the probability that a task
fails, which we denote as pfail, and then simulate the corresponding failure rate. Formally, for a given
DAG, G = (V,E) and a given pfail value, we compute the average task weight as w̄ =

∑
i∈V wi/|V |,

where wi is the weight of the i-th task in V . We then pick the failure rate λ such that pfail = 1− e−λw̄.
We conduct experiments for three pfail values: 0.01, 0.001, and 0.0001.

Checkpointing costs. An important factor that influences the performance of checkpointing strate-
gies, and more precisely of the checkpointing and recovery overheads, is the data-intensiveness of the
application. We define the Communication-to-Computation Ratio (CCR) as the time needed to store
all the files handled by a workflow (input, output, and intermediate files) divided by the time needed to
perform all the computations of that workflow on a single processor. For Pegasus workflows, LU, QR,
and Cholesky, we vary the CCR by scaling file sizes by a factor as previously. As STG only provides
task weights, we compute the average communication cost as c̄ = w̄ × CCR. Communication costs
are generated with a lognormal distribution with parameters µ = log(c̄) − 2 and σ = 2 to ensure an
expected value of c̄. This distribution with parameter σ = 2 has been advocated to model file sizes [35].
This allows considering and quantifying the data-intensiveness of all workflows in a coherent manner
across experiments and workflow classes and configurations.

Reference strategies. In the experiments, we compare our strategies to the two extreme approaches
CKPTALL and CKPTNONE. We use the simulator described in Section 3.3.2. For each parameter setting

3.3. EXPERIMENTS 39

of each workflow, we run 10,000 random simulations and approximate the makespan by the observed
average makespan.

3.3.2 Simulator

In order to evaluate the performance of our strategies, we implemented a discrete event sim-
ulator. The C++ code for the simulator is available at http://github.com/vlefevre/
task-graph-simulation. To simulate the execution of applications on large-scale platforms,
we operate in three steps:

1. We first read an input file describing the task-graph and the scheduling/mapping strategy;
2. Then we generate a set of fail-stop error times for each processor during a time horizon (that is

set by the user);
3. Finally, we execute ready tasks by mapping them to a processor and we keep doing this until all

tasks are executed.
The first part is basically reading a file that describes the following important elements for the sim-

ulation:
• For each task,

– its ID,
– its weight (i.e., duration),
– the ID of the processor it has been mapped to,
– several booleans indicating whether the task has to be checkpointed or not, one for each

checkpointing strategy.
• For each dependency between two tasks,

– the ID of the parent,
– the ID of the child,
– the list of files with their time to be loaded/written that creates the dependency (i.e., there

are some of the output files of the parent and some of the input files of the child).
• For each processor, its schedule: a list of tasks that have been mapped to it and that respects the

causal order of the task-graph.
The second part is done by using the inversion sampling method: we generate error times accord-

ing to a random variable that follows an exponential distribution, and this exponential distribution is
generated from an (assumed) uniform distribution between 0 and 1 obtained by calling the C function
rand(), and dividing its result by the C constant RAND_MAX. In our case, if U is a random vari-
able following a uniform distribution between 0 and 1, then − logU

λ follows an exponential distribution
of parameter λ. We generate errors on each processor, until the time of one error is greater than the
horizon parameter. In the experiments, it was set to at least 2 times the expected makespan we have
with the CKPTALL strategy, which we computed using the Monte-Carlo method. In practice, most of
the simulations were done before the horizon was reached except for NONE with large pfail.

For the last step, we keep a global time t on all the processors, and we generate events happening on
each processor (either a failure or the successful completion of a task). Each processor holds the time
of its last event in a variable ti. At each moment of the simulation, we have ti ≥ t,∀i. The algorithm
repeats these steps until all tasks are marked executed:
• For each processor Pi,

– we look at the next task to be executed on Pi (following the list scheduling given as input) if
the current task is finished at time t;

– if it is ready, we compute its full execution time by computing the time of reading the nec-
essary input files, the weight of the task (given as input) and potentially some writing (in

http://github.com/vlefevre/task-graph-simulation
http://github.com/vlefevre/task-graph-simulation

40 CHAPTER 3. GENERIC APPROACHES FOR ARBITRARY TASK GRAPHS

case of crossover dependencies or if the checkpoint strategy requires this task to be check-
pointed);

– we look at the next error happening after time t: if it is before the end of the task then we
set ti to be the time of that failure, otherwise ti is set to the time when the task ends and the
task is marked executed.

• We set t = min
i
ti.

There are two more things to detail: the computation of reading times and how we rollback when
there is a failure. For the first problem, we keep a set of all files loaded on each processor. Before
reading an input file, we check if it is already loaded (i.e., belongs to that set). If it is already loaded, we
count a cost of 0, otherwise we add the communication/reading time for that file that is given as input.
Files are added to the set whenever they are loaded or written (not necessarily a checkpoint). The set is
cleared whenever a fail-stop error strikes on the processor.

When there is a failure, the rollback is easy because we always checkpoint crossover dependencies
and the execution of a task always starts after the checkpoint is done. This implies that a failure on a
processor Pi will only impact the tasks that have been executed on Pi since the last checkpointed task
that was mapped to Pi. To rollback we explore the list of tasks backward from the current task to the last
checkpointed one (we keep two pointers on these two tasks at each time to access them instantaneously),
we mark each task unexecuted, we clear the set of loaded files and we can start simulating again from
the last checkpointed task as if nothing happened. In the case of CKPTNONE, the simulation is rolled
back from the first task anytime an execution or communication is interrupted.

Finally, the simulator computes the following measures: the number of file checkpoints taken, the
number of task checkpoints taken, the number of failures, the total time spent checkpointing data and
the execution time of the application.

3.3.3 Results

In this section, we first compare the expected makespan of our proposed checkpointing strategies (CDP
and CIDP) over two baseline strategies (ALL and NONE) with the same task mapping and scheduling
strategy. Remind that “C”, “I” and “DP” stands for checkpointing crossover dependencies, checkpoint-
ing induced dependencies and dynamic programming respectively. Then, we compare the solutions
(different task mapping and scheduling heuristics combined with several checkpointing strategies) from
this work with the method PROPCKPT proposed in Chapter 2 for M-SPGS.

In Figure 3.6 through Figure 3.10, we compare the four considered task mapping and scheduling
strategies: HEFT and MINMIN, with their chain-mapping variants HEFTC and MINMINC using box-
plots. On these figures, the lower the better and the baseline at 1 is the performance of HEFT. The
chain-mapping variants have the same performance or improve that of their basic counterparts, espe-
cially when communications are expensive (rightmost parts of the graphs). The other conclusion is that
MINMIN (resp. MINMINC) almost always achieves same or worse performance than HEFT (resp.
HEFTC). This is easily explained by the fact that HEFT and HEFTC take into account the critical path
of workflows. These trends are representative of the trends that can be observed for all considered graphs
and workflows, but suffer from some exceptions. The chain-mapping variants can be superceded by their
basic counterparts for workflows that do not include any chains (like LU in Figure 3.7), because the basic
variants can use backfilling. However, backfilling sometimes backfires, even in the absence of chains,
like for SIPHT in Figure 3.9 where HEFTC can decrease the expected makespan by more than 30%
with respect to HEFT. Overall, of the four considered task mapping and scheduling heuristics, HEFTC
never achieves significantly bad performance, and most of the time achieves the best performance. This
is the reason why we focus on it in the remainder of this section.

3.3. EXPERIMENTS 41

CIDP CDP ALL

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

0.6

0.8

1.0

1.2

Communication-to-Computation Ratio

R
a

tio
 t

o
 H

E
F

T mapping

HEFTC

MinMin

MinMinC

Figure 3.6: Relative performance of the four task mapping and scheduling strategies for Cholesky.

CIDP CDP ALL

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

0.6

0.8

1.0

1.2

Communication-to-Computation Ratio

R
a

tio
 t

o
 H

E
F

T mapping

HEFTC

MinMin

MinMinC

Figure 3.7: Relative performance of the four task mapping and scheduling strategies for LU.

42 CHAPTER 3. GENERIC APPROACHES FOR ARBITRARY TASK GRAPHS

CIDP CDP ALL

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

0.6

0.8

1.0

1.2

Communication-to-Computation Ratio

R
a

tio
 t

o
 H

E
F

T mapping

HEFTC

MinMin

MinMinC

Figure 3.8: Relative performance of the four task mapping and scheduling strategies for QR.

CIDP CDP ALL

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

0.6

0.8

1.0

1.2

Communication-to-Computation Ratio

R
a

tio
 t

o
 H

E
F

T mapping

HEFTC

MinMin

MinMinC

Figure 3.9: Relative performance of the four task mapping and scheduling strategies for Sipht.

3.3. EXPERIMENTS 43

CIDP CDP ALL

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

0.6

0.8

1.0

1.2

Communication-to-Computation Ratio

R
a

tio
 t

o
 H

E
F

T mapping

HEFTC

MinMin

MinMinC

Figure 3.10: Relative performance of the four task mapping and scheduling strategies for CyberShake.

Figure 3.11 through Figure 3.18 present the expected makespans achieved by CDP, CIDP and NONE

divided by that of ALL when the Communication-to-Computation Ratio increases. Therefore, the lower
the better and data points below the y = 1 line denote cases in which these strategies outperform the
competitor ALL (i.e., achieve a lower expected makespan). Each figure shows results for workflows
with different number of tasks, ranging from 50 to 1240 tasks (each line of subfigure is for a different
size, the number of tasks being reported on the rightmost column), for various number of processors
P (different line styles), and for the three pfail values (0.0001, 0.001, 0.01). We report on these figures
the average number of failures that occur for the 10,000 random trials for each setting. These numbers
are reported in black above the horizontal axis in each figure. The other two lines of numbers are the
number of checkpointed tasks for the CDP and CIDP strategies, each number is printed with the same
color as the curve of the corresponding strategy.

A clear observation is that CIDP never achieves worse performance than ALL: either it achieves a
similar performance or it outperforms ALL, especially when communications, and thus checkpoints, are
expensive (in the rightmost parts of graphs). It should be noted that when checkpoints come for free
(leftmost parts of graphs), ALL and CIDP have the same performance as they do the same thing: they
checkpoint all tasks. When the number of failures rises, the optimal solution is to checkpoint more tasks,
potentially all of them, and the gain of CIDP with respect to ALL therefore decreases. This can be seen,
for instance, on Figure 3.12 when pfail = 0.01, n = 385 and there are 385 tasks checkpointed.

In the majority of cases, CDP also achieves similar or better performance than ALL. As we explained
in Section 3.2, the dynamic programming algorithm is well-defined for CIDP, which checkpoints all in-
duced dependencies. However, CDP tries to save some checkpointing overhead by not systematically
checkpointing induced dependencies. As a consequence, the dynamic programming algorithm estima-
tions of expected execution times may be inaccurate, which explains the sometimes bad performance of
CDP. There are only a couple of CCR values for CYBERSHAKE for which CDP achieves a significantly
worse performance than ALL. On the contrary, CDP often has better performance than CIDP when
checkpointing cost is high. In all scenarios, CDP checkpoints less or the same number of tasks than
CIDP. Depending on the checkpointing cost and failure rate, CDP can lead to significant improvement
over ALL. For workflows as dense as LU, we save more than 10% when CCR = 1 for both strate-
gies (see Figure 3.12), and CDP even achieves 35% saving for SIPHT (see Figure 3.17). As the CCR

44 CHAPTER 3. GENERIC APPROACHES FOR ARBITRARY TASK GRAPHS

Table I: Identify suitable cases to apply each approach

Strategy Description

ALL when checkpoints are free and/or extremely high pfail

CIDP always achieves a similar performance or outperforms ALL

CDP better than CIDP when checkpointing cost is high
NONE when checkpoints are expensive and/or extremely low pfail

50 50 50 50 50 50 50 50
28 25 23 23 23 23 21 17
1 1 1 1 1 1 1 1

210 210 210 210 210 210 210 210
154 150 150 150 150 151 152 149

1 1 1 1 1 1 1 1

665 665 665 665 665 665 665 665
552 548 547 547 547 547 547 547

1 1 1 1 1 1 1 1

51 50 50 50 50 50 50 50
51 37 28 25 23 23 21 17
1 1 1 1 1 1 1 1

211 210 210 210 210 210 210 210
211 164 154 150 150 151 152 149

1 1 1 1 1 1 1 1

666 665 665 665 665 665 665 665
666 573 552 548 547 547 547 548

1 1 1 1 1 1 2 4

56 56 51 50 50 50 50 50
56 56 51 37 29 26 26 24
1 1 1 1 1 1 1 2

220 220 211 210 210 210 210 211
220 220 211 164 158 154 154 160

2 2 2 2 2 3 5 10

680 680 666 665 665 665 665 666
680 680 666 574 571 557 563 570

6 6 6 6 7 9 14 32

pfail=0.0001 pfail=0.001 pfail=0.01

5
6

2
2

0
6

8
0

0.01 1.00 0.01 1.00 0.01 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Communication-to-Computation Ratio

R
a

tio
 t
o

 A
L

L

strategy

CIDP

CDP

NONE

#proc

5

10

30

60

100

200

Figure 3.11: Performance of the different checkpointing strategies for Cholesky using HEFTC for task
mapping and scheduling.

decreases, the ratio converges to 1. As already pointed out, this is because both strategies decide to
checkpoint most, if not all, tasks, when checkpointing becomes cheaper.

CDP and CIDP achieve better results than NONE except when (i) checkpoints are expensive (high
CCR) and/or (ii) failures are rare (low pfail). In these cases, checkpointing is a losing proposition, and
yet our strategies, by design, always checkpoints some files (they checkpoint all crossover files and even
induced dependencies for CIDP). In practice, in such cases, the optimal approach is to bet that no failure
will happen and to restart the whole workflow execution from scratch upon the very rare occurrence
of a failure. NONE becomes worse whenever there are more failing tasks, i.e., when the failure rate
increases (going from the leftmost column to the rightmost one in the figures), and/or when the number
of tasks increases (going from the topmost row to the bottom one in the figures). When the failure
rate is high and the workflows are large (the bottom right corner of the figures), the relative expected
makespan of NONE is so high that it does not appear in the plots. The above results, and our experimental
methodology in general, make it possible to identify these cases so as to select which approach to use in
practical situations. We summarize the major observations in Table I:

Figure 3.19 presents the aggregated results for the 180 STG random DAGs with boxplots. The trends
on these graphs are the same as already reported. This confirms the generality of our conclusions.

Finally, we compare our new general approach with PROPCKPT, the approach specific to M-SPGS

that we proposed in Chapter 2. Figure 3.20 through Figure 3.22 present this comparison for Montage,

3.3. EXPERIMENTS 45

85 85 85 85 85 85 85 85
57 49 44 44 44 43 42 32
1 1 1 1 1 1 1 1

375 375 375 375 375 375 375 375
287 277 261 261 263 264 244 244

1 1 1 1 1 1 1 1

1225 1225 1225 1225 1225 1225 1225 1225
1045 1026 1026 1021 1024 1024 921 924

1 1 1 1 1 1 1 1

86 85 85 85 85 85 85 85
86 73 58 50 44 43 42 40
1 1 1 1 1 1 1 1

376 375 375 375 375 375 375 375
368 307 287 277 271 266 244 247

1 1 1 1 1 1 1 2

1225 1225 1225 1225 1225 1225 1225 1225
1207 1092 1046 1026 1027 1024 924 928

2 2 2 2 2 2 3 6

91 91 86 85 85 85 85 85
91 91 86 75 68 55 54 57
1 1 1 1 1 1 2 3

385 385 376 375 375 375 375 376
385 385 376 312 293 286 263 272

4 4 4 4 4 5 8 17

1240 1240 1226 1225 1225 1225 1226 1226
1240 1240 1220 1092 1056 1040 937 953

11 11 11 12 13 17 26 58

pfail=0.0001 pfail=0.001 pfail=0.01

9
1

3
8

5
1

2
4

0

0.01 1.00 0.01 1.00 0.01 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Communication-to-Computation Ratio

R
a

tio
 t
o

 A
L

L

strategy

CIDP

CDP

NONE

#proc

5

10

30

60

100

200

Figure 3.12: Performance of the different checkpointing strategies for LU using HEFTC for task map-
ping and scheduling.

81 81 81 81 81 82 83 82
49 38 34 32 30 34 31 30
1 1 1 1 1 1 1 1

370 370 370 372 372 372 372 373
268 251 245 238 229 225 237 248

1 1 1 1 1 1 1 1

1222 1220 1219 1219 1219 1219 1220 1219
1011 985 966 949 963 978 979 917

1 1 1 1 1 1 1 1

86 82 81 81 81 82 83 82
86 68 50 44 34 36 32 34
1 1 1 1 1 1 1 1

376 371 370 372 372 372 372 373
367 301 274 248 235 226 238 256

1 1 1 1 1 1 1 2

1224 1220 1219 1219 1219 1219 1220 1219
1134 1083 1018 971 975 990 982 959

2 2 2 2 2 2 3 6

91 91 86 82 82 82 83 82
91 91 86 70 57 50 48 49
1 1 1 1 1 1 2 3

385 385 376 372 372 372 372 376
385 385 376 307 283 259 264 310

4 4 4 4 5 6 8 18

1240 1240 1226 1220 1219 1220 1222 1225
1240 1240 1213 1080 1061 1047 1039 1056

13 13 13 13 14 17 26 60

pfail=0.0001 pfail=0.001 pfail=0.01

9
1

3
8

5
1

2
4

0

0.01 1.00 0.01 1.00 0.01 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Communication-to-Computation Ratio

R
a

tio
 t
o

 A
L

L

strategy

CIDP

CDP

NONE

#proc

5

10

30

60

100

200

Figure 3.13: Performance of the different checkpointing strategies for QR using HEFTC for task map-
ping and scheduling.

46 CHAPTER 3. GENERIC APPROACHES FOR ARBITRARY TASK GRAPHS

48 48 47 47 47 47 47 47
30 16 13 14 15 14 12 14
1 1 1 1 1 1 1 1

298 298 298 298 298 297 297 296
244 216 185 179 186 194 188 185

1 1 1 1 1 1 1 1

698 698 698 698 698 698 698 698
629 579 553 538 551 540 538 505

1 1 1 1 1 1 1 1

48 48 48 48 48 47 47 47
47 38 32 18 15 15 13 15
1 1 1 1 1 1 1 1

298 298 298 298 298 298 298 297
298 270 248 208 189 195 188 194

1 1 1 1 1 1 1 1

699 699 698 698 698 698 698 698
699 649 630 588 554 544 543 518

1 1 1 1 1 1 2 3

49 48 48 48 48 48 48 48
49 47 47 38 29 27 23 28
1 1 1 1 1 1 1 1

300 299 298 298 298 298 298 298
300 299 298 272 257 242 232 254

2 2 2 2 3 3 5 11

700 699 699 699 698 698 698 698
700 699 699 652 626 610 618 617

5 5 5 5 6 7 11 28

pfail=0.0001 pfail=0.001 pfail=0.01

5
0

3
0

0
7

0
0

0.01 1.00 0.01 1.00 0.01 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Communication-to-Computation Ratio

R
a

tio
 t
o

 A
L

L

#proc

5

10

30

60

70

140

strategy

CIDP

CDP

NONE

Figure 3.14: Performance of the different checkpointing strategies for Montage using HEFTC for task
mapping and scheduling.

13 13 13 13 14 13 12 12
11 11 11 10 10 9 9 9
1 1 1 1 1 1 1 1

78 78 78 79 78 81 82 84
71 71 70 70 68 71 73 73
1 1 1 1 1 1 1 1

183 183 182 182 187 189 190 190
171 171 170 168 173 173 178 177

1 1 1 1 1 1 1 1

14 13 13 13 14 13 12 12
12 11 11 11 11 10 10 9
1 1 1 1 1 1 1 1

85 79 79 80 79 82 83 84
78 72 72 73 72 74 74 73
1 1 1 1 1 1 1 1

193 192 189 187 190 191 191 191
182 180 177 175 178 176 180 180

1 1 1 1 1 1 1 2

24 19 15 15 15 15 14 14
23 18 13 13 12 13 12 13
1 1 1 1 1 1 1 2

126 90 85 85 85 85 85 86
125 87 82 80 80 80 81 85

4 4 4 4 4 4 5 7

339 234 199 196 197 197 197 198
338 232 194 188 190 191 195 197

8 8 8 8 8 9 10 17

pfail=0.0001 pfail=0.001 pfail=0.01

4
7

2
9

7
6

9
9

0.01 1.00 0.01 1.00 0.01 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Communication-to-Computation Ratio

R
a

tio
 t
o

 A
L

L

#proc

5

10

30

60

70

140

strategy

CIDP

CDP

NONE

Figure 3.15: Performance of the different checkpointing strategies for Genome using HEFTC for task
mapping and scheduling.

3.3. EXPERIMENTS 47

25 25 25 25 25 25 25 25
23 22 21 19 18 18 18 17
1 1 1 1 1 1 1 1

151 151 150 150 150 150 150 149
146 145 144 127 126 122 126 122

1 1 1 1 1 1 1 1

506 502 502 503 502 502 505 504
480 479 478 459 454 454 458 460

1 1 1 1 1 1 1 1

36 26 26 26 26 26 25 26
35 24 23 22 21 19 19 18
1 1 1 1 1 1 1 1

222 157 152 152 152 152 152 151
216 151 146 145 144 130 128 124

1 1 1 1 1 1 1 1

729 541 515 512 512 511 513 512
702 503 481 479 477 472 468 470

1 1 1 2 2 2 2 3

40 37 37 27 26 26 26 26
39 36 36 25 23 22 22 22
1 1 1 1 1 1 1 2

249 226 223 161 153 153 153 153
248 224 218 155 148 147 148 145

4 3 4 4 4 4 5 7

837 747 731 549 521 521 521 521
826 727 707 512 482 483 484 487
10 10 11 11 11 12 14 23

pfail=0.0001 pfail=0.001 pfail=0.01

5
0

3
0

0
1

0
0

0

0.01 1.00 0.01 1.00 0.01 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Communication-to-Computation Ratio

R
a

tio
 t
o

 A
L

L

strategy

CIDP

CDP

NONE

#proc

5

10

30

60

100

200

Figure 3.16: Performance of the different checkpointing strategies for Ligo using HEFTC for task
mapping and scheduling.

47 47 47 47 46 44 32 32
15 18 16 17 12 17 12 12
1 1 1 1 1 1 1 1

288 288 288 288 288 278 278 277
178 183 171 168 170 165 188 135

1 1 1 1 1 1 1 1

671 671 671 671 671 658 648 648
493 442 455 472 450 430 441 365

1 1 1 1 1 1 1 1

48 47 47 47 46 46 34 34
18 20 16 17 14 19 12 12
1 1 1 1 1 1 1 1

288 288 288 288 288 288 288 287
187 192 178 169 179 174 190 136

1 1 1 1 1 1 1 1

671 671 671 671 671 672 671 671
520 464 475 476 462 452 450 368

1 1 1 1 1 1 1 2

48 48 48 47 46 46 34 34
21 24 21 21 17 20 15 15
1 1 1 1 1 1 1 2

290 289 288 288 288 288 288 287
225 209 195 188 198 190 209 156

3 3 3 4 4 4 5 7

677 674 671 671 671 672 671 671
562 504 511 519 504 492 496 414

7 7 8 8 8 8 10 17

pfail=0.0001 pfail=0.001 pfail=0.01

4
8

2
9

0
6

7
7

0.01 1.00 0.01 1.00 0.01 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Communication-to-Computation Ratio

R
a

tio
 t
o

 A
L

L

#proc

5

10

30

60

70

140

strategy

CIDP

CDP

NONE

Figure 3.17: Performance of the different checkpointing strategies for Sipht using HEFTC for task
mapping and scheduling.

48 CHAPTER 3. GENERIC APPROACHES FOR ARBITRARY TASK GRAPHS

47 45 45 46 45 45 45 41
38 35 33 32 29 27 32 29
1 1 1 1 1 1 1 1

299 296 297 297 294 267 266 268
235 215 214 215 215 203 191 182

1 1 1 1 1 1 1 1

700 697 697 695 689 652 654 618
556 494 495 493 501 490 470 425

1 1 1 1 1 1 1 1

50 49 47 46 47 49 49 45
50 44 38 34 33 29 34 33
1 1 1 1 1 1 1 1

300 300 299 298 295 296 298 298
300 276 238 216 217 212 216 213

1 1 1 1 1 1 1 1

700 699 699 696 696 697 697 696
699 631 563 495 502 505 499 497

1 1 1 1 1 1 1 1

50 50 50 49 49 49 49 46
50 50 50 43 41 36 37 36
1 1 1 1 1 1 1 1

300 300 300 300 297 298 300 299
300 300 300 282 245 225 219 223

4 4 4 4 4 4 4 4

700 700 700 699 697 699 699 696
700 700 699 634 583 522 502 515

8 8 8 8 8 8 8 8

pfail=0.0001 pfail=0.001 pfail=0.01

5
0

3
0

0
7

0
0

0.01 1.00 0.01 1.00 0.01 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Communication-to-Computation Ratio

R
a

tio
 t
o

 A
L

L

#proc

5

10

30

60

70

140

strategy

CIDP

CDP

NONE

Figure 3.18: Performance of the different checkpointing strategies for CyberShake using HEFTC for
task mapping and scheduling.

1 1 1 1 1 1 1 2 1 1 1 1 2 3 6 17 8 8 9 10 13 25 65 246

pfail=0.0001 pfail=0.001 pfail=0.01

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

0.00

0.25

0.50

0.75

1.00

Communication-to-Computation Ratio

R
a

tio
 t

o
 A

L
L strategy

CIDP

CDP

NONE

Figure 3.19: Average performance of the different checkpointing strategies for the STG task graphs
using HEFTC for task mapping and scheduling.

3.4. CONCLUSION 49

CIDP CDP ALL

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

0.95

1.00

1.05

1.10

Communication-to-Computation Ratio

R
a

tio
 t

o
 H

E
F

T mapping

HEFTC

MinMin

MinMinC

Prop

Figure 3.20: Relative performance of the four task mapping and scheduling strategies and of PROPCKPT

for Montage.

Ligo and Genome, which are the three M-SPGS considered in Chapter 2. Overall, the new approaches
perform better than PROPCKPT.

3.4 Conclusion

This chapter tackles the challenging problem of executing arbitrary workflows on homogeneous proces-
sors, with reasonable performance in presence of failures but without incurring a prohibitive cost when
no failure strikes. While CKPTALL meets the first objective by expensively checkpointing every task and
CKPTNONE meets the second one by avoiding any checkpoint at all, we propose new strategies that pro-
vide different trade-offs between these two extremes. First, all crossover dependencies, corresponding
to file transfers between processors, are checkpointed, which prevents re-execution propagation between
processors in case of failure. Then, a DP (Dynamic Programming) solution is used to insert additional
checkpoints to minimize the expected completion time. Additional (induced) task checkpoints may
be added prior to the DP execution to provide it with more accurate information. Moreover, different
scheduling strategies that extend classical ones to reduce the number of checkpoints were also proposed.
To the best of our knowledge, these new strategies are the first to be tuned to minimize the need for
checkpointing while mapping tasks. Extensive experiments with a discrete event simulator, conducted
for both synthetic and realistic instances, show that our approaches significantly outperform CKPTALL

and CKPTNONE in most scenarios.
Future work will aim at extending our approach to workflows with parallel moldable tasks [36].

Such an extension raises yet another significant challenge: now the number of processors assigned to
each task becomes a parameter to the proposed solutions, with a dramatic impact on both performance
and resilience.

50 CHAPTER 3. GENERIC APPROACHES FOR ARBITRARY TASK GRAPHS

CIDP CDP ALL

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

0.6

0.8

1.0

1.2

Communication-to-Computation Ratio

R
a

tio
 t

o
 H

E
F

T mapping

HEFTC

MinMin

MinMinC

Prop

Figure 3.21: Relative performance of the four task mapping and scheduling strategies and of PROPCKPT

for Ligo.

CIDP CDP ALL

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

0.4

0.6

0.8

1.0

1.2

Communication-to-Computation Ratio

R
a

tio
 t

o
 H

E
F

T mapping

HEFTC

MinMin

MinMinC

Prop

Figure 3.22: Relative performance of the four task mapping and scheduling strategies and of PROPCKPT

for Genome.

Part II

Energy-aware strategies for
reliability-oriented real-time task allocation

51

Chapter 4

Framework

4.1 Introduction

In the second part of this thesis, we focus on scheduling techniques to allocate periodic independent
tasks onto real-time platforms subject to transient faults. In real-time systems, the workload consists
of a specific set of periodic tasks with timing constraints, which is expressed as deadlines. The system
must complete each task before its corresponding deadline. The timeliness of the output is as important
as its logical correctness. This is because for real-time systems the lack of adherence to the predefined
deadlines can (or will) result in catastrophic system failure. A periodic task has multiple instances that
are released repetitively at well-determined time points. The minimum inter-arrival time between two
consecutive instances is called the period of the task. A real-time task set typically contains multiple
tasks, possibly with different periods. The least common multiple (LCM) of all the periodic tasks is
called the hyperperiod.

A wide range of applications in real-time computing domain are safety-critical, e.g., railway control
systems, aerospace system. Therefore, tolerating faults and achieving high reliability levels is a manda-
tory requirement. The most common way to tolerate transient faults in real-time system is replication,
where several instances (replicas) of each task are executed by the system. In case of error, the primary
replica of the task fails. However, we still have secondary replicas to ensure that we will achieve the
predefined reliability target. Note that it is never possible to guarantee success in any case because of
the probabilistic nature of failures.

Another very desirable feature of real-time systems is energy awareness. Replication strategy adds
redundancy in system resources, e.g., spare processing units, to be able to execute more replicas of
tasks. However, this conflicts with the energy-saving objective. If we do not consider energy, we can
run all replicas at the maximum processor frequency and add as many replicas as possible to guarantee
the reliability threshold of the system, but this may lead to a very large energy consumption. To be able
to manage the energy consumption, we can use Dynamic Voltage and Frequency Scaling (DVFS) when
executing tasks on processors. As stated in the Introduction section, DVFS is a well-known technique
that trades off the processing speed with energy savings, but in the context of reliability, it has a negative
impact on the transient fault rate: as we decrease the supply voltage and frequency to save power, the
transient fault rate significantly increases [33]. As a consequence, when we scale down the frequency
level, we must take into account the reliability degradation.

In a nutshell, this part deals with the following optimization problem: given a set of independent
real-time tasks subject to (possibly different) periodic deadlines, how to execute them on a parallel
platform and match all deadlines while minimizing the expected energy consumption? The problem is
complicated by the need to enforce some reliability threshold.

53

54 CHAPTER 4. FRAMEWORK

In Chapter 5, first the focus is on homogeneous systems, which means that we have identical process-
ing units. We revisit the most recent results on this problem presented by Haque, Aydin and Zhu [54].
We call [54] the reference paper throughout the text. In homogeneous systems, for each processor, we
have a set of available frequency levels. For each task, we could calculate the number of replicas needed
to meet the reliability goal at each frequency level before allocating it. The energy consumed by each
single replica depends upon the frequency chosen for its execution. The lower the frequency, the less en-
ergy consumed. However, when a task has more than one replica, the total expected energy consumption
(sum up of all replicas) does not decrease linearly with the frequency levels. The reason is that we need
more replicas for a lower frequency level, and existing research indicates that arbitrarily slowing down
a task is not always energy-efficient [39, 62, 123], due to the frequency-independent power. In other
words, there is a processing frequency below which the total energy consumption increases. Moreover,
a lower frequency leads to a longer execution time which may prevent the deadline to be matched. So
we need to choose a frequency level for each task (or each replica) so as to minimize the energy con-
sumption while satisfying all deadlines and the reliability threshold. Also, we noticed that it is sufficient
to complete only one replica successfully. If the primary replica is successfully executed, then we can
safely cancel the remaining replicas immediately in order to save energy. Consequently, if the execution
of the replicas of a given task do not overlap, energy consumption will be minimal whenever the first
execution succeeds. Based on this cancellation mechanism, we try to enhance each optimization step
of the reference paper in order to reduce the overlapping between replicas, including how to choose the
frequency settings, how to map the tasks to processors, and how to schedule them.

Then in Chapter 6, we extend these energy-aware strategies for allocating real-time tasks onto het-
erogeneous platforms. Heterogeneous platforms have been used for safety-critical systems for many
years [44]. With the advent of multiple hardware resources such as multi-cores, GPUs, and FPGAs,
modern computing platforms exhibit a high level of heterogeneity, and the trend is increasing. The mul-
tiplicity of hardware resources with very different characteristics in terms of speed profile, reliability
level and energy cost, raises an interesting but challenging problem: given several device types, which
ones should we keep and which ones should we discard in order to achieve the best possible tri-criteria
trade-off (time, energy, reliability)? The design of mapping and scheduling heuristics is much more
technical than in the case of homogeneous platforms (identical processors). Intuitively, this is because
the reliability and energy consumption of a replica of a task instance depends upon the processor which
executes it. We will explain the challenges induced by heterogeneity in more detail afterwards.

Overall, the objective is to minimize the expected energy consumption while matching all deadlines
and reliability constraints. The expected energy consumption is the average energy consumed over all
failure scenarios. Consider a sample execution: whenever the execution of a task replica succeeds, all
the other replicas are instantaneously deleted; therefore, the actual amount of energy consumed depends
both upon the error scenario (which replica is the first successful) and upon the overlap between replicas
(some replicas are partially executed and interrupted when the successful one completes). Given a
mapping, the scheduling should aim at minimizing the expected energy consumption by avoiding overlap
between any two replicas of the same task, in other words, one should execute primary replica as soon
as possible and postpone secondary replicas. Note that having an overlap-free scheduling is not always
possible because of utilization constraints. Also, deciding whether an overlap-free scheduling exists for
a given mapping is NP-hard, which will be proved in Section 5.3.5, Even if the task deadline is not
constraining, the problem would remain NP-hard which will be proved in Section 6.1.5. Moreover, in
actual real-time systems, tasks often complete before their worst-case execution times, or WCETs, so
that execution times are routinely modeled as stochastic. In the end, the expected energy consumption
must also be averaged over all possible values for execution times in addition to over all failure scenarios.
Therefore, to assess the effectiveness of our heuristics, we will use a comprehensive set of execution

4.2. RELATED WORK 55

scenarios with a wide range of parameters. Besides comparing to the state-of-the-art strategy [54], which
is available for the problem studied in Chapter 5, we analytically derive a lower bound for the expected
energy consumption of any solution as a reference in Chapter 6 when there is no existing similar works.

4.2 Related work

We first review related work devoted to real-time task allocation on homogeneous platforms (Sec-
tion 4.2.1). We then briefly summarize studies related to scheduling non-periodic tasks for heteroge-
neous platforms (Section 4.2.2). Finally, we review studies devoted to scheduling of real-time tasks on
heterogeneous platforms (Section 4.2.3).

4.2.1 Scheduling real-time applications on homogeneous platforms

There is a very significant literature on real-time scheduling for multiprocessor systems. Liu and Lay-
land first introduced the Earliest Deadline First (EDF) and the Rate Monotonic (RM) scheduling policies
for real-time systems and provided the utilization bounds for both policies in 1973 [71]. Since then, the
real-time scheduling problem has been extensively studied. However, most work is devoted to homo-
geneous processor systems, as exemplified by the survey [30] which ignores altogether heterogeneous
systems, and by the more recent survey [91] where only 9 of the 78 references deal with heterogeneous
platforms. [54] minimizes the energy when scheduling independent tasks with different deadlines on a
homogeneous platform while satisfying some threshold on reliability. As we try to improve the solution
from [54] in Chapter 5, here we review the relevant work citing paper [54] with the aim of complement-
ing the related work already covered in the reference paper: in [98], Taherin et al. propose an approach
for energy management that is only applied on “low-criticality tasks in low-criticality mode to preserve
the original reliability of the system”. This approach cannot guarantee that a reliability threshold is met.
Keeping the maximum power consumption below the chip thermal design power, Ansari et al. [3] have
proposed a peak power management approach to meet thermal design power in fault-tolerant system.
However, in the scheduling task graph, all tasks have the same period/deadline. Cao et al. in [23] pro-
posed an affinity-driven modeling and scheduling approach to makespan optimization. They optimize
average peak temperature and makespan, but not energy minimization. To improve quality in real-time
system, Cao et al. in [22] proposed QoS-adaptive approximate real-time computation optimization. Ap-
proximate results of tasks are allowed that each task is composed of a mandatory part and an optional one
that refines the result of the mandatory task. However, failures are not considered. Zhou et al. consider
in [121] both transient and permanent faults. They try to improve soft-error reliability while satisfying a
lifetime reliability constraint, but do not attempt to minimize energy consumption. Moreover, [53] con-
siders the same problem as [54]; however, it uses checkpointing to cope with failures when we consider
replication.

We refer the interested reader to [30, 54, 91] for a comprehensive overview of the related work for
homogeneous platforms. Heterogeneous platforms make the problem even harder because processors
can have different speeds, energy costs, and failure rates. Therefore, the processor preferred for one
task by one of the objectives and constraints —deadline satisfaction, energy minimization, reliability
threshold satisfaction— may be the worst processor for another objective or constraint. Heuristics have
thus to perform complicated trade-offs in our three-criteria settings.

56 CHAPTER 4. FRAMEWORK

4.2.2 Scheduling for heterogeneous platforms

There is a huge literature on scheduling for heterogeneous platforms, and even dedicated workshops.
Here, we only refer some very recent work closely related to our problem but dealing with non-periodic
tasks. [111] maximizes the reliability of an energy-constrained DAG executed on a heterogeneous
platform while using DVFS. Conversely, [115] minimizes the energy consumption of a reliability-
constrained DAG executed on a heterogeneous platform while using or not DVFS. A group of authors
published a book [114] and several articles on the problem of DAG scheduling on heterogeneous plat-
forms. In Chapter 2 of book [114] and in [112] these authors consider the energy minimization when
scheduling a DAG with or without DVFS. In [113] they considered the same problem while satisfying
some reliability goal. However, these two results do not consider reliability.

Overall, these studies do not consider real-time applications. The deadlines constraining real-time
tasks and applications make problems significantly harder to tackle.

4.2.3 Scheduling real-time applications on heterogeneous platforms

Some related work targets the scheduling of real-time applications on heterogeneous platforms, but
without considering fault tolerance. For instance, [118] targets the execution of a DAG, but considering
neither energy consumption nor fault-tolerance (when DAGs are scheduled, tasks are always assumed
to have the same deadline). [48] targets the execution of independent tasks that access shared resources,
the access to resources being exclusive. Their objective is to maximize the number of instances for
which a solution is found. [76], [86] and [117] minimize energy consumption by using DVFS, [76]
when scheduling independent tasks, [86] a DAG, and [117] a moldable application. [105] considers
the scheduling of independent tasks and DAGs under an energy constraint, while [103] considers the
scheduling of independent tasks under a thermal constraint. [116] proposes a fully polynomial-time
approximation scheme (FPTAS) for minimizing the energy consumption for a set of independent tasks
executed on a set of heterogeneous (unrelated) processing elements.

Some of the related work considers the execution of real-time applications on heterogeneous failure-
prone platforms but is limited to coping with a single failure per task or per processor. [82] maximizes
the reliability of the considered DAG but does not consider energy consumption and follows the pri-
mary/backup technique and, thus, is limited to at most one failure per task of the DAG. [83] attempts
to maximize resource utilization (and does not consider energy) when scheduling a set of independent
tasks. It assumes that at most one processor can fail, which enables the simultaneous scheduling of
several backup tasks on the very same processor as at most one of them will need to be executed. [58]
minimizes the energy consumed for the execution of a DAG while satisfying a reliability threshold. The
proposed solution uses DVFS and Power Mode Management (i.e., the ability to switch off idle proces-
sors to low-power inactive state). This solution, however, cannot produce a schedule more reliable than
the original one. It also supports at most one fault per processor. [45] minimizes the energy consumed
for the execution of a set of independent tasks while satisfying a reliability threshold using DVFS and
following a primary-backup approach.

Very few studies consider the execution of real-time applications on heterogeneous failure-prone
platforms and can cope with two or more failures per task. [95] minimizes the energy consumed for the
execution of a set of independent tasks while satisfying a reliability threshold. The proposed solution
uses DVFS. This solution, however, is based on a primary-backup approach that is then extended. This
approach, by design, cannot produce a schedule more reliable than the original one with two replicas per
task, strongly relies on DVFS, and schedules several replicas of a same task on the same processor (what
most other approaches forbid). [44] targets the execution of a DAG on a heterogeneous platform while
satisfying a reliability threshold. However, the objective is not the minimization of energy consumption

4.2. RELATED WORK 57

but the maximization of the utilization of energy consumption, which can be seen as a yield of reliability
improvement with respect to increase energy consumption. As a consequence, [44] produces energy
greedy schedules (see subplots (a-1), (b-1), and (c-1) of Figure 1 in [44]). In Chapter 3 of the already
mentioned book [114], the authors consider cost minimization (which can be energy minimization) when
scheduling a DAG under deadline and reliability constraints. Therefore, we consider the same problem
but for a set of independent tasks rather than for a DAG. Because of the dependence between tasks
and the chosen as-soon-as-possible scheduling of [114], this solution tends to schedule simultaneously
the different replicas of a single task. As discussed previously that this can lead to a significant waste
of energy. Therefore, it would have been unfair to compare our solution to that of [114] applied on
independent tasks.

From what precedes, we have only identified a single existing solution that enables to schedule
real-time tasks on heterogeneous platforms while minimizing energy consumption and satisfying some
bound on the overall reliability as the problem will be studied in Chapter 6. However, this solution being
dedicated to DAGs lacks the possibility to minimize the overlapping between replicas of a same task,
what we specifically targeted (cf. Section 6.3).

58 CHAPTER 4. FRAMEWORK

Chapter 5

Homogeneous platforms

In this chapter, we study the optimization problem starting with homogeneous platforms, and revisit the
most recent results solving this problem presented by Haque, Aydin and Zhu [54] (the reference paper).
Section 5.1 provides a detailed description of the optimization problem, and of the three-step approach
used to solve it: (i) for each task, compute a set of replicas and their frequencies; (ii) map and statically
schedule all replicas onto the platform; (iii) dynamically update the schedule based on actual completion
times (instead of worst-case ones) and observed successful executions. These three steps are described
in Section 5.1.2 to Section 5.1.4 respectively. We try to improve this state-of-the-art approach, in terms
of energy saving, by refining it step by step. The main contributions of this chapter are the following:
• An example to identify the limitation of the scheduling strategies proposed in [54] (Section 5.2).

Then we improve the latest approach in the reference paper through three steps listed below;
• In the first step, we revisit the estimation of energy consumption and use a different formula,

which is expected to be closer to the actual execution scenarios (Section 5.3.1);
• In the mapping phase, we use a layered Worst-Fit Decreasing heuristic to avoid imbalance between

processors, and try to evenly allocate the primary replicas of different tasks (Section 5.3.2);
• For the dynamic schedule, we implement several novel aggressive strategies to reorder and delay

chunks in order to reduce overlapping between replicas of the same task. The basic ideas are
described in Section 5.3.3 and Section 5.3.4 summarizes these new heuristics;
• A new complexity result that establishes the combinatorial nature of the scheduling step when the

mapping is given (Section 5.3.5);
• A comprehensive experimental comparison of the results of the reference paper against those

obtained with our improved approach in Section 5.4.1

In addition to the above sections, Section 5.5 gives concluding remarks and hints for future work.

5.1 Previous approach

In this section, we present the optimization problem in full details, and we describe the approach of the
reference paper. Key notations are summarized in Table I.

5.1.1 Optimization problem

The inputs to the optimization problem are a set of real-time tasks, a set of processors and a reliability
target:

1The algorithms are implemented in C++ and R and the related code, data and analysis are available at https://doi.
org/10.6084/m9.figshare.9778319.v1.

59

https://doi.org/10.6084/m9.figshare.9778319.v1
https://doi.org/10.6084/m9.figshare.9778319.v1

60 CHAPTER 5. HOMOGENEOUS PLATFORMS

Tasks – There are N periodic real-time tasks τ1, τ2, ..., τN . Task τi has worst-case execution time
(WCET) ci under the maximum available frequency fmax. Tasks actually complete execution earlier
than their estimated WCET: execution times are assumed to be data-dependent and non-deterministic,
randomly sampled from some probability distribution whose support is upper bounded by the WCET.
Task τi generates a sequence of instances with period pi, which is equal to its deadline. The whole input
pattern repeats every hyperperiod of length L = lcm1≤i≤n pi. Each task τi has L

pi
instances within the

hyperperiod.

Processors – The platform consists of M homogeneous processors, with same set F of frequencies
ranging from fmin to fmax. Without loss of generality, we normalize the frequencies to enforce fmax =
1. At frequency fj , a processor needs up to ci,fj seconds, which is equal to ci

fj
in the reference paper, to

complete an instance of task τi. The utilization ui,fj of task τi at frequency fj is defined as ui,fj =
ci,fj
pi

.
The utilization of a processor is the sum of the utilizations of all tasks that are assigned to it.

Fault model – One considers transient faults, modeled by an exponential distribution with average
arrival rate λ. It has been widely proved that the fault rate λ increases when the frequency is scaled
down to save energy using DVFS [33]. Let λ0 denote the fault rate at frequency fmax. Then the fault

rate at frequency fi is λ(fi) = λ0 × exp
d(1−fi)
1−fmin , where d is the sensitivity factor; d is a measure of

how quickly the transient fault rate increases when the system supply voltage and frequency are scaled.
At the end of execution, there is an acceptance test to check the occurrence of soft errors induced by
the transient faults. It is assumed that acceptance tests are 100% accurate. The duration of the test
is included within the task WCET. The reliability of a task instance is the probability of executing it
successfully, in the absence of permanent faults. The reliability of a single instance of task τi running at
frequency fj is Ri(fj) = exp−λ(fj)ci,fj .

Reliability threshold – Let Ri denote the reliability threshold for each instance of task τi; Ri may be
given as part of the input as in Chapter 6, or the reliability threshold is given for the whole task system
over the hyperperiod as in the reference paper: then Ri is computed using the Uniform Reliability
Scaling technique [120]. We have ω = φi,target

φ̂i
for all i, where ω is the uniform probability of failure

scaling factor (given as part of the input), φi,target is the failure probability of task τi (φi,target = 1 −
Rihi , where hi is the number of instances of task τi in the hyperperiod) and φ̂i is the failure probability
of task τi when a single replica at maximum frequency is executed (φ̂i = 1−Ri(fmax)hi). This leads to

Ri = hi

√
1− ω(1−Ri(fmax)hi). Now, given the reliability threshold Ri, the question is to determine

how many replicas to use, and at which frequency to execute them, so that Ri is enforced while energy
consumption is kept minimal. Note that all replicas of a given task instance will have the same execution
time if run at the same frequency, because they operate on the same data.

Optimization objective – The objective is to determine a set of replicas for each task and their execution
frequencies, and to build a static schedule of length the hyperperiod, where the replicas of each instance
of each task are mapped onto the processors, so that energy consumption is minimized, while matching
the deadline pi and reliability thresholdRi for each instance of each task τi. We detail below how energy
consumption is estimated. To further complicate matters, the static schedule is dynamically modified on
the fly to take actual execution times rather than WCET into account. Also, as soon as one replica of a
given task instance completes its execution successfully, all its other replicas become redundant and are
terminated instantaneously.

5.1. PREVIOUS APPROACH 61

Table I: Key Notations

Notation Explanation

N and M number of tasks and of processors
ci WCET for task τi under max. available frequency
pi period (deadline) for each task instance of task τi
hi number of instances of task τi in the hyperperiod
fj frequency fj ∈ F = {fmin, . . . , fmax = 1}
ci,fj WCET for task τi at frequency fj
ui,fj utilization of task τi at frequency fj
fopt(i) most energy-efficient frequency for task τi
Ri(fj) reliability of one instance of task τi under fj
Ri target reliability threshold for one instance of task τi
w uniform probability of failure scaling factor
ki,fj min. replica number for task τi under fj to meetRi
E(τi, fj , ki,fj) energy cost for task τi with ki,fj replicas under fj

5.1.2 Replica sets

In the reference paper, the first step is to construct a table with all information needed. For each task τi
and each possible frequency we compute the number of replicas needed, the corresponding energy cost
and the CPU time.

Given a frequency fj , we start by computing the number ki,fj of copies that are needed for (each

instance of) τi. The reliability using a single task instance (no replica) is Ri(fj) = exp−λ(fj)ci,fj . If
Ri(fj) ≥ Ri, the reliability threshold is enforced, and we need no replica, hence ki,fj = 1. Otherwise,
using r additional replicas, the reliability increases to Rri (fj) = 1 − (1 − Ri(fj))r+1 (the task fails
only if all r + 1 copies fail), and we take the minimum value r such that Rri (fj) ≥ Ri. This leads

to ki,fj = r + 1 =
⌈

log(1−Ri)
log(1−Ri(fj))

⌉
with Ri = hi

√
1− ω(1−Ri(fmax)hi) (see Section 5.1.1). The

reference paper maps different copies onto different processors, so necessarily ki,fj ≤ M . If no value
of ki,fj can be found, frequency fj cannot be used, and a higher frequency must be selected.

Once we have determined the number ki,fj of copies of τi at frequency fj (with 1 ≤ ki,fj ≤M), we
compute the corresponding energy cost. The reference paper adopts a conservative strategy and sums up
the energy cost of all copies. This is pessimistic because as soon as a copy is successful, the remaining
copies are interrupted (if already started) or simply cancelled (if not started). The energy cost of a copy
is estimated as the power times the execution time ci,fj = ci

fj
, which is an upper bound. As for the power

P (fj) at frequency fj , we use

P (fj) = Pstatic + gPdyn(fj) = Pstatic + g(Pindep + C × f3
j)

where Pstatic (the static power), Pindep (the frequency-independent part of dynamic power) and C
(the effective switching capacitance) are system-dependent constants. g represents the system state
and indicates whether dynamic power Pdyn(fj) is currently being consumed or not: when execut-
ing a task at frequency fj on the processor, g = 1, otherwise g = 0. The energy cost E(τi, fj , 1)
for one copy of task τi at fj is then: E(τi, fj , 1) = P (fj) × ci,fj . The final energy cost with ki,fj
copies is estimated as E(τi, fj , ki,fj) = ki,fj × E(τi, fj , 1). The total CPU time is then estimated as
S(τi, fj , ki,fj) = ki,fj × ci,fj .

Furthermore, each processor always consumes static power when idle (this consumption can be
eliminated only by a complete shutdown). Hence, we account for static power whenever the mapping
and scheduling phases described below leave processors idle.

62 CHAPTER 5. HOMOGENEOUS PLATFORMS

5.1.3 Mapping and static schedule

The first step provides an initial configuration as input to the second step, the mapping and static schedul-
ing onto processors. The initial configuration consists of an assigned frequency and number of replicas
for each task instance. Given a configuration, the mapping builds a schedule for an hyperperiod of length
L = lcm(pi) as follows:
• sort the tasks by decreasing total CPU time; renumber them to have

S(τ1, fj(1), k1,fopt(1)) ≥ S(τ2, fj(2), k2,fopt(2)) ≥ . . .

where fopt(i) is the frequency leading to the lowest energy consumption to meet the reliability threshold;
• for i ranging from 1 to N , successively map all ki,fopt(i) copies of τi onto ki,fopt(i) different processors,
using the First-Fit Decreasing (FFD) bin packing heuristic [64]. When mapping all the L

pi
instances of

a given task copy on a processor (bin), we use the standard Earliest Deadline First (EDF) scheduling
heuristic [71]. EDF tells us that a given processor (bin) is a fit for that copy if and only if the utilization
of that processor does not exceed 1. Recall that the utilization of a processor is the sum of the utilizations
of all task instances assigned to it.

Hence, for a given task, the mapping finds the first processor whose utilization makes it a fit for the
first task copy (and all its instances). Then it finds the first next processor whose utilization makes it a
fit for the second task copy (and all its instances), and so on. If the mapping succeeds, we have built a
static schedule for the hyperperiod. But it may well be the case that it is impossible to find a processor
onto which to map a given task copy in the procedure, because all processor utilizations are too high to
accommodate that copy. Then the reference paper proposes to enter an iterative procedure as follows:
• Change the initial configuration into the one where every task copy executes at maximal speed
fmax = 1. This requires to fetch the values ki,fmax from the table and reordering the tasks by
decreasing total CPU time S(τi, fmax, ki,fmax).
• Apply the mapping heuristic (FFD mapping and EDF schedule) to the new configuration.
Now, if the latter mapping fails again, there is no solution, resource utilization is too high. However,

if the mapping succeeds, its energy cost may be very high. The reference paper proposes a refinement
scheme where some tasks are relaxed, meaning that their frequency is decreased down to its predecessor
(going from their current value fj down to fj−1). Initially, all tasks have frequency fmax, and some
tasks are greedily selected for relaxation. If relaxing a task τi fails to lead to a successful mapping, or if
we have reached its energy-optimal frequency fopt(i), then τi is marked as ineligible. The scheme stops
when all tasks become ineligible. The reference paper uses three different greedy criteria to pick up the
next task to be relaxed among eligible tasks, Largest Energy First (LEF), Largest Power First (LPF),
and Largest Utilization First (LUF). We refer to the reference paper for details. We have implemented
the first two variants, LEF and LPF, because they are shown to outperform LUF in the reference paper.

5.1.4 Dynamic schedule

The static schedule, also called canonical schedule, is based upon the WCET of each task and EDF. It
is never executed exactly as such, because the actual execution time of a task instance will be shorter
than its WCET. Still, it is used as the baseline to guide dynamic updates. From the canonical schedule,
each processor has an assignment list made up with all task instances that it has to execute during the
hyperperiod.

Let us follow the operation of a given processor P . For simplicity, assume that P computes the full
EDF schedule for all tasks in its assignment list, during the entire hyperperiod. The reference paper uses
a data structure, called Canonical Execution Queue (CEQ), to avoid the high cost of computing the static

5.1. PREVIOUS APPROACH 63

schedule, while preserving the same outcome. Recall that the EDF schedule uses the WCET of each
task, and preemption, so that a given task instance may well be split into several chunks. Hence P has
an ordered list of chunks together with their starting and finish times in its EDF schedule.

Let t be the starting time of the next chunk ch, from task instance τ , to be processed by P in its EDF
schedule (initially, t = 0). In the canonical schedule, this chunk executes in the interval [ts, tf], where
ts is the starting time and tf the finish time on P . Let k be the number of copies of τ in the canonical
schedule, distributed over k different processors. A major idea of the reference paper is to differentiate
the action of P depending upon whether its own copy of τ is the first copy to start execution among the
k processors. So if the chunk ch is indeed the first chunk of any copy of τ to start execution, then P
promotes its copy of τ to the status of primary replica, and all the chunks of τ as primary chunks. P
signals the other k − 1 processors that their copies (and their copy chunks) are secondary replicas (or
chunks). Otherwise, the chunk ch has already been marked either as primary (if it is not the first chunk
of τ , but τ has been marked primary on P previously) or as secondary (if some other processor has
signalled P previously). The action of P is the following:
• if ch is a primary chunk, then P starts its execution immediately, using the frequency given by the

canonical schedule. This execution will last for a duration of tf − ts seconds in the worst case;
• if ch is a secondary replica, then P executes it at frequency fmax, and using ALAP (As Late As

Possible) scheduling, as further detailed below.
The rationale for executing secondary chunks at highest frequency fmax is that it allows for a minimal
execution time, hence a maximal delay for ALAP scheduling. When delaying secondary chunks, we
hope that the primary copy will complete before secondary copies actually start, hence will be cancelled
whenever the primary copy succeeds. At least, this ALAP strategy should minimize overlap between
primary and secondary copies, hence minimize redundant work. We point out that the choice for pri-
mary/secondary replicas is done dynamically, by the first processor to start a task instance in the actual
execution of the hyperperiod. It may well be the case that two different instances of the same task have
not the same primary processor.

There remains to explain in full details how secondary chunks are scheduled on P . In fact, all
secondary chunks are delayed according to the finish time of τ in the canonical schedule. Recall that
the canonical schedule provides an execution interval [ts, tf] for every chunk of τ . Assume there are m
chunks. For notational convenience, let [ts(i), tf (i)], 1 ≤ i ≤ m denote the m execution intervals in
the canonical schedule. The sum of these m interval lengths tf (i) − ts(i), 1 ≤ i ≤ m is equal to c

f ,
where c is the WCET of τ and f is its frequency from the canonical schedule. Since we have decided to
execute τ at frequency fmax = 1, we only need c seconds, in the worst-case, to execute τ . For instance,
if f = 0.5, we only need (at most) half the time planned in the canonical schedule. The reference paper
uses backfilling and reserves a total of c seconds in the dynamic schedule, starting from the last interval
and going backwards to the first interval, allocating slots until c seconds are reserved. Then P will
execute τ greedily using these intervals from the beginning until completion of τ . Finally, all chunks of
τ will be scheduled across n new intervals [t′s(i), t′f (i)], where 1 ≤ i ≤ n and n ≤ m, because very
likely τ will finish before its WCET. Here are two examples with c = 20, f = 0.5 and m = 3:
• the intervals in the canonical schedule are [5, 35], [40, 46] and [50, 54]. We reserve 20 seconds out

of the 40 available in these three intervals by keeping the third interval entirely (4 seconds), then
keeping the second interval entirely (6 seconds) and then keeping the last 10 seconds of the first
interval. Then P will use these reserved slots ([25, 35], [40, 46] and [50, 54]) to execute its copy
of τ at frequency fmax starting from time 25.
• the intervals in the canonical schedule are [10, 18], [40, 46] and [50, 76]. We reserve 20 seconds

out of the 40 available in the three intervals by just keeping the last fraction [56, 76] of the third
interval (20 seconds), and leaving the first and second intervals empty.

64 CHAPTER 5. HOMOGENEOUS PLATFORMS

1 2 1 2 1P

time
0 1 2 3 4 5 6

τ2 τ2 τ2
τ1 τ1 τ1 τ1

Figure 5.1: Canonical Execution Queue (CEQ) with two tasks τ1 and τ2 (c1 = c2 = 0.5, p1 = 2 and
p2 = 3) on each processor, at frequency f = 0.5.

1 2 1 2 1

1 2 1 2 1

P1

P2

time
0 1 2 3 4 5 6

τ2 τ2 τ2
τ1 τ1 τ1 τ1

Figure 5.2: Executions when prioritizing primaries while delaying secondaries at maximum frequency
as in the Canonical Execution Queue (CEQ).

In both cases, P will consume the slots from the beginning of the first reserved interval, until con-
suming all time units needed to finish τ , say at time t′ (t′ ≤ t′f (n)). Once the copy of τ on the processor
P is successfully executed, all other copies (chunks) of τ are removed from the EDF list on other pro-
cessors. Then P will start processing the next chunk ch′ in its list right at time t′ if ch′ is primary,
otherwise, the chunks are delayed using the same mechanism.

To summarize, consecutive primary replicas are scheduled ASAP (As Soon As Possible), while sec-
ondary replicas are scheduled ALAP, which aims at reducing the overlap between copies over different
processors, so as to minimize energy consumption.

5.2 Motivational example

We illustrate one limitation of the strategy in [54] with a simple example with two tasks τ1 and τ2 and
two processors P1 and P2. Assume that: (i) for WCET, c1 = c2 = 0.5 at maximum frequency fmax = 1;
(ii) for periods p1 = 2 and p2 = 3; (iii) τ1 and τ2 have been scheduled to run at frequency f = 0.5,
which takes 1 time unit; and (iv) the reliability threshold is met with one replica per processor for each
task. For simplicity, also assume that: (i) each instance of τ1 is a primary replica on P1 and secondary
on P2, while each instance of τ2 is a primary replica on P2 and secondary on P1; and (ii) there is no
difference between actual execution times and the WCETs.

Figure 5.1 shows the CEQ (same for both processors) for the example. Figure 5.2 shows the ex-
ecution on both processors with a CEQ-based strategy as described in Section 5.1.4. Recall that for
secondary replicas, the strategy delays their executions according to CEQ and runs them at fmax. In the
example, there is a complete overlap between each primary and each secondary replica due to the con-
straint given by the CEQ. This is wasteful because the secondary replica can never be canceled whenever
the primary replica succeeds. However, it would be possible to avoid any overlapping by advancing each
primary replica while delaying each secondary replica. In the example, this simply means interchanging

5.3. NEW STRATEGIES 65

τ1 and τ2 on P2. Without overlap, the executions of all secondary replicas at maximum frequency will
be cancelled most of the time, leading to a substantial energy gain.

5.3 New strategies

We identify several possible reasons why the approach in the reference paper may be sub-optimal:
• All optimizations in the dynamic schedule aim at reducing overlap among replicas, so as to avoid

redundant work. In their final schedule, the primary replica of task τi is executed at assigned
frequency fj , but the frequency of all ki,fj − 1 secondary replicas is increased to fmax. However,
energy consumption is estimated with all replicas at frequency fj . We revisit the estimate for
energy consumption and use a different formula, with one copy executing at fj , and the rest at
fmax: this is expected to be closer to actual execution scenarios;
• The mapping uses the First-Fit Decreasing (FFD) bin-packing heuristic, which is likely to cre-

ate imbalance across processors. Instead, we use the Worst-Fit Decreasing (WFD) bin-packing
heuristic [28], which selects the least-loaded processor that is a fit for the current task copy. WFD
has been shown to reduce imbalance in a related framework [7]; we use it with a similar motive;
• The mapping maps all copies of a task before proceeding to the next task. Instead, we map the

first copy of each task, and then the second copy of each task (whenever it exists), and so on. This
layered approach is expected to: (1) evenly map primary replicas onto processors; (2) decrease
the overlap among copies of the same task as long as EDF priority constraints do not call for a full
reordering of the tasks during (or after) the mapping. For instance, assume for simplicity that all
tasks have the same period, so that the schedule is not constrained by EDF. Then, the mapping of
the reference paper will place all replicas of the first task at the beginning of the assignment list
of the processors, with possibly more primary replicas on the first processors, while it is better to
delay all copies but one and insert first copies of other tasks instead.
• For the dynamic schedule, we keep the idea of running one primary replica of an instance of task
τi at assigned frequency fj and to execute all other replicas at frequency fmax, but we implement
several novel aggressive strategies to reorder and delay chunks.

We outline these modifications step by step below, in Sections 5.3.1 to 5.3.3, which are the respective
counterpart, with the same title, of Sections 5.1.2 to 5.1.4. Section 5.3.4 summarizes our new heuristics.
Note that we have both online and offline scheduling heuristics. For online scheduling strategies, which
are able to determine dynamically the primary copy and secondary copies on the fly, all copies are
mapped onto processors using frequency fj : this is because we must reserve enough room for each copy
in the mapping. In other words, we assume that each copy is a primary copy in the mapping, and some
of them become secondary only during execution. On the contrary, for offline scheduling strategies, we
have decided primary copy and secondary copies during the mapping phase, which means we map one
replica at fj and the rest at fmax. In both scenarios, recall that we use different formulas to estimate the
energy cost in both cases. Finally, Section 5.3.5 is devoted to complexity results.

5.3.1 Replica sets

For task τi at frequency fj , the reference paper determines the number of copies ki,fj needed to match
the reliability threshold Ri and estimates the energy cost as ki,fjE(τi, fj , 1) where E(τi, fj , 1) is the
energy cost for a single copy. Instead, we propose to estimate the energy cost as:

E(τi, fj , ki,fj) = E(τi, fj , 1) + (ki,fj − 1)E(τi, fmax, 1) (5.1)

66 CHAPTER 5. HOMOGENEOUS PLATFORMS

because secondary replicas are actually executed at fmax in the reference paper. Equation 5.1 is an
accordance with the pessimistic scenario where no replica is cancelled.

Note that since we do not use the same estimation formula for the energy cost as in the reference
paper, we may find a different frequency fopt(i) to be used for the mapping step. Again, only one
copy (the primary copy) will actually be executed at frequency fopt(i), while all remaining copies (the
secondaries) will be executed at frequency fmax. For each task τi and a given primary frequency fj , we
determine the minimum number of replicas ri such that the reliability threshold Ri for each instance is
met. Recall that the reliability using a single task instance (no replica) is Ri(fj) = exp−λ(fj)ci,fj . If
Ri(fj) ≥ Ri, the reliability threshold is enforced, and we need no replica, hence ki,fj = 1. Otherwise,
using r additional replicas at fmax, the reliability increases to 1− (1−Ri(fj))(1−Ri(fmax))r, instead
of 1 − (1 − Ri(fj))r+1, and we take the minimal value of r such that this reliability exceeds Ri =
hi

√
1− ω(1−Ri(fmax)hi). This leads to r =

⌈
log(1−Ri

1−Ri(fj))
log(1−Ri(fmax))

⌉
. The new value of r may be smaller

than before, because each replica is more reliable. Of course, the new value of r leads to a new value
of ki,fj = r + 1. We use this new value of ki,fj to compute the energy cost. Note that the reference
paper assumed that task WCETs are inversely proportional to the assigned frequency where ci,fj = ci

fi
,

but in reality, the interplay between task execution time and frequency is complicated [94]. To be closer
to real cases, we let WCETs obey a randomized speedup function similar to Amdhal’s law: specifically
for task τi at frequency fj , ci,fj = sici + (1− si) cifj , where the sequential fraction si is drawn uniformly
and randomly in the interval [0.1, 0.3].

We retain the frequency fopt(i) that minimizes Equation 5.1, and we use ki,fopt(i) copies of task τi all
running at frequency fopt(i) as input to the mapping phase for all online scheduling strategies. On the
contrary, for offline scheduling strategies, we use one copy at frequency fopt(i) and ki,fopt(i) − 1 copies
at fmax as we explained before. Note that we tried through all possible frequencies between fmin and
fmax = 1, but the final number of valid frequency levels may be smaller than the number of available
frequency levels. There are several possibilities: 1) We should not consider lower frequency levels that
makes the task τi miss its deadline. 2) As we decrease the frequency level, the number of required
replicas may increase or remain the same, the energy consumption is not strictly decreasing. 3) A lower
frequency may introduce more overlap that can not be avoided than a higher frequency, so we enforce
that ci,fj + ci,fmax ≤ pi.

5.3.2 Mapping and static schedule

We map each replica to a processor while ensuring that no two replicas of the same task are assigned to
the same processor. The mapping is done for a whole hyperperiod, with the following constraint for each
task: when the first iteration (in case the period differs from the hyperperiod) of a replica is assigned to
a given processor, all the other iterations of the same replica will be assigned to the same processor. It
allows a simple feasibility check based upon the utilization of all the replicas assigned to the processor.

Recall that any success of a primary replica leads to the immediate cancellation of the secondary
replicas, a crucial source of energy saving. The objective of the proposed mapping is thus to avoid
overlapping between the execution of the primary and secondary replicas for each task: the primary
must be terminated as soon as possible, while the secondaries must be delayed as much as possible.
To this end, the mapping strategy ventilates primaries on all processors, in order to minimize conflict
among several primary executions. Moreover, it allocates the secondaries while leaving idle time on all
processors. This slack can then be used at execution time to delay the execution of the secondaries.

As shown in Algorithm 5, given a list of primary and secondary replicas for each task, and their
execution times, we first execute the Worst-Fit Decreasing (WFD) allocation on the primaries ordered

5.3. NEW STRATEGIES 67

Algorithm 5: Mapping (WFD layer by layer)
Input: The WCET ci, the period pi, the assigned frequency fi, the number of secondary replicas ri, the number of

instances hi
Output: An allocation of all replicas on the processors σm

1 begin
2 execute WFD on the primaries considering non-increasing order of ci,fi × hi
3 if will do online scheduling afterwards then
4 fi ← fi
5 else
6 fi ← fmax
7 execute WFD on the secondaries layer-by-layer considering non-increasing order of ci,fi × hi while ensuring

that no processor executes more than one replica of each task
8 if ∃m,

∑
τi∈σm

ci,fi
pi

> 1 then
9 return not feasible

10 else
11 return σm

by their total execution time (Line 2). For all secondaries, we assign the same frequency as the primary
if preparing for online scheduling afterwards. We assign them the maximum frequency fmax otherwise
(Line 3-6). Then we execute WFD on the secondaries layer-by-layer and ordered by their total execution
time (Line 7), which means we consider the first secondary of all tasks, then the second and so on (as
long as it exists). If we successfully map all replicas onto the processors, and the sum of the utilization
of each replica on each processor is less than or equal to one (see Section 5.1.3), then we return this
allocation. Otherwise, we could not find a feasible mapping with this replica setting (Line 8-11). We
observed that the competitor strategy FFD in the reference paper tends to compact all replicas onto the
minimum number of processors, while WFD spreads replicas among all available processors, which
may give a higher static energy cost. To reduce the influence of static power, we first run WFD with the
number of processors used by FFD. If WFD is not able to find a feasible mapping, then we increase the
number of processors by one up to the total available number.

We use this allocation mechanism to determine the number of replicas and their frequencies for each
task (see Algorithm 6). As described in Section 5.3.1, we already know for each task, at each frequency
level, how many replicas are needed to meet the reliability threshold. If we can find a feasible mapping
with each task at its energy-optimal frequency fopt(i), then we return this optimal setting (Line 2-7).
Otherwise, we check the other end, all tasks run at fmax that takes the shortest time possible. If it is still
impossible to map all replicas, then there does not exist a feasible mapping (Line 8-13). If there exists a
feasible mapping, we will enter the relaxing phase that decreases each primary frequency fi iteratively
until it is no longer possible (Line 14-19). Finally, we return the solution with a frequency level and
number of secondary replicas for each task (Line 20).

5.3.3 Dynamic schedule

For the scheduling phase, it is important to start primary replicas as soon as possible, and to delay
secondary replicas as much as possible to minimize the overlapping, while still meeting all deadlines.
As explained in Section 5.1.4, the reference paper uses the canonical schedule to compute the maximum
delay for secondary replicas. Our improvements rely on the following techniques:

• Consider a scheduling interval defined by two consecutive deadlines in the global schedule. Inside
the interval, task chunks to be executed are ordered by the EDF policy. We observe that we can
freely reorder the chunks without missing any deadline, by definition of an interval. It means

68 CHAPTER 5. HOMOGENEOUS PLATFORMS

Algorithm 6: Replication setting
Input: A set of tasks with cost ci and reliability requirementRi
Output: A set of minimum frequency fi and number of secondary replicas ri

1 begin
/* start with all primaries at energy-optimal frequency */

2 for i ∈ [1, . . . , N] do
3 fi ← fopt(i)

/* reliability requirement */

4 ri ←
⌈

log(1−Ri
1−Ri(fi))

log(1−Ri(fmax))

⌉
5 map the tasks to the processors with Algorithm 5
6 if feasible then
7 return {fi, ri}

/* reset all primaries at fmax */
8 for i ∈ [1, . . . , N] do
9 fi ← fmax

/* reliability requirement */

10 ri ←
⌈

log(1−Ri
1−Ri(fi))

log(1−Ri(fmax))

⌉
11 map the tasks to the processors with Algorithm 5
12 if not feasible then
13 return does not exist a feasible mapping

/* enter the relaxing phase */
14 while any primary frequency can be decreased do
15 select task i with LEF or LPF criteria
16 fi ← fi−1

17 ri ←
⌈

log(1−Ri
1−Ri(fi))

log(1−Ri(fmax))

⌉
18 map the tasks to the processors with Algorithm 5
19 restore fi and mark task i can not be further decreased if mapping is not feasible
20 return {fi, ri}

5.3. NEW STRATEGIES 69

that in each interval, we should reorder to execute all primary replicas first, and then secondary
replicas.

• It is possible to use only a fraction α of each scheduling interval, where α is the utilization.
Here is why: at the mapping phase, as long as the total utilization of replicas that are mapped
onto the processor is less than or equal to one, then we are able to find a valid scheduling using
EDF. Assume we have mapped three tasks ti, tj , tk onto processor p, and that the utilization is
α = ci,fi

pi
+

cj,fj
pj

+ ck,fk
pk

. Either we keep the mapping and have a fraction 1 − α of the interval
where p is idle, or we slow down the execution time of all three tasks by a factor α, then we will
have a new utilization β = ci,fi

piα
+

cj,fj
pjα

+ ck,fk
pkα

= 1, which also gives us a feasible mapping
without any idle time. This idea can be used in two ways:

1. Schedule while keeping a fraction 1 − α of idleness in each interval. Then, each primary
replica is pushed to be beginning of the interval, while secondaries are pushed back to the
end of the interval, with idleness in between.

2. Scale the WCET of all tasks by 1
α , which also gives a valid canonical schedule, but with

longer worst case expected execution time for all tasks. This gives a better reference to
further delay the start time of secondary replicas.

• Because we have delayed the start time of secondary replicas, there are some idle slots in the
schedule. We take advantage of these idle slots by pre-fetching other primary replica chunks in
the availability list: those primaries have been released but were scheduled later because they have
lower EDF priority than the current secondary replicas.

5.3.4 Heuristics

Based on the above ideas, we propose several new scheduling heuristics which improve upon
EDF_PAPER, the adaptive dynamic scheduling (and the most efficient) heuristic of the reference pa-
per.

EDF_PAPER_PF is an adaptive online scheduling that simply adds the pre-fetching mechanism to
EDF_PAPER.

EDF_PAPER_PF_UTILITY is an online scheduling heuristic where we refine EDF_PAPER_PF
by using the utilization of each processor. We scale the worst case execution time of all replicas of a
given processor by a factor 1

α , where α is the utilization of that processor.
EDF_IDLE_CEQ is an offline scheduling that builds the EDF schedule for the whole hyperperiod.

In each interval defined by two consecutive deadlines, we only use (on each processor) a fraction of the
interval defined by the static utilization. It consists in the following steps:

1. consider at each interval the EDF schedule with the constraint of keeping a fraction 1− α of idle
time. For secondaries, we refer to the canonical schedule to delay its start time without missing
any deadline;

2. start the primary replicas and put aside the secondary replicas in a waiting list to be executed at the
end of the interval. Note that for each secondary, as it is impossible to know its actual execution
time before its execution, we need to reserve the space for its WCET and to finish execution within
the interval;

3. fill in the idle period by inserting other primary replicas that are available;

70 CHAPTER 5. HOMOGENEOUS PLATFORMS

4. finish the execution of the interval with the secondary replicas in the waiting list, with their actual
execution time.

EDF_IDLE_CEQ_ONLINE is the online version of EDF_IDLE_CEQ. It has two major advan-
tages compared to the offline version: (1) we can dynamically decide the primary copy of each task
instance, which gives us the flexibility to speed up replicas on the fly; (2) as long as we finish one replica
successfully, we can safely cancel other replicas of the same task instance earlier than in static sched-
ules, which gives us more flexibility to adjust the schedule afterwards. Moreover, all algorithms have
to reserve for the secondaries some time slots corresponding to their WCET. As their actual execution
times are usually shorter, this dynamically frees some time slots that the online schedule uses to prefetch
available primary replica chunks.

5.3.5 Complexity analysis

This section is devoted to the proof of several complexity results for the scheduling phase. The global
optimization problem is obviously NP-hard, since it is a generalization of the makespan minimization
problem with a fixed number of parallel processors [41]. However, the complexity of the sole scheduling
phase is open: if the number or replicas has already been decided for each task, and if the frequency and
assigned processor of each replica has also been decided, the sole scheduling phase aims at minimizing
the expected energy consumption. In this section, we first state a lower bound for this scheduling prob-
lem, and then we assess the complexity of achieving this lower bound. We show that the instance with
identical WCETs is polynomial, while the instance with different WCETs is NP-complete in the strong
sense.

Lower bound

Consider the following instance of the scheduling phase:
• All tasks have the same period p, hence there is a single instance of each task in the hyperperiod of

length L = p. hence EDF constraints do not apply, and each task is scheduled without preemption
(as a single chunk)
• F = 1: there is a unique frequency fmax = 1
• For 1 ≤ i ≤ n, task τi has ki replicas, including itself. The j-th replica, with 1 ≤ j ≤ ki,

is mapped onto processor Palloc(i,j), where1 ≤ alloc(i, j) ≤ M . For each task τi, replicas are
mapped onto different processors: alloc(i, j1) 6= alloc(i, j2) for 1 ≤ j1 < j2 ≤ ki.
• The WCET of any replica of task τi is ci, its reliability is Ri = Ri(fmax), and its consumed

energy is Ei = E(τi, fmax, 1).
• Pstatic = 0, meaning that no energy is spent when a processor is idle

Thus, each of the M processors has a list of assigned replicas to execute. It can choose any ordering
because all tasks have the same period, hence all deadlines will be enforced, regardless of the ordering.
We further assume that the mapping is valid, which translates on each processor Pq, 1 ≤ q ≤M , by the
condition: ∑

1≤i≤n,1≤j≤ki,alloc(i,j)=q
WCETi ≤ p

Proposition 5.1. A lower bound on the total expected energy consumed is

ELB =
n∑
i=1

Ei ki∑
j=1

(1−Ri)j−1

 (5.2)

5.3. NEW STRATEGIES 71

P0
P1,1
P1,2
P1,3
P2,1
P2,2
P2,3
P3,1
P3,2
P3,3
P4,1
P4,2
P4,3

R1 F1,1,2
R2 F1,2,2
R3 F1,3,2
F2,1,1 R1 F2,1,2
F2,2,1 R2 F2,2,2
F2,3,1 R3 F2,3,2

F3,1,1 R1 F3,1,2
F3,2,1 R2 F3,2,2
F3,3,1 R3 F3,3,2

F4,1,1 R1
F4,2,1 R2
F4,3,1 R3

R1 R2 R34 6 10 8 7 5 3 11 6 9 7 4

Figure 5.3: Scheduling for a solution of I of 3-Partition, with m = 4, B = 20, and (a1, ..., a12) =
(4, 3, 8, 9, 7, 6, 11, 6, 7, 10, 4, 5). On processor P0 the digits are the sizes of the Ai’s.

The bound ELB is met if and only if the scheduling achieves no overlap between any two replicas of the
same task.

Proof. For each task, we need to execute the replica which is scheduled in first position. If this replica
fails, with probability 1 − Ri, we need to execute the replica which is scheduled in second position. If
both replicas fail, we need to execute the replica which is scheduled in third position, and so on. This
directly leads to the lower bound ELB .

Now if any two replicas of the same task, say τi, do overlap, then with some non-zero probability,
both replicas will execute, and the consumed energy will be strictly higher than the contribution of τi to
Equation (5.2). This concludes the proof.

Identical costs

Proposition 5.2. When all tasks have the same WCET (ci = c for 1 ≤ i ≤ n), one can build a schedule
meeting the lower bound of Equation (5.2) in polynomial time.

Proof. We construct a bipartite graph with tasks on the left (withN vertices) and processors on the right
(with M vertices). Task τi has ki edges, connecting each of its replicas to the assigned processor. Hence
we have K =

∑n
i=1 ki edges. Let δ be the maximum degree of a vertex in the graph. According to

Konig’s edge coloring theorem, one can find a collection of δ perfect matchings that cover all edges in
the graph, in time O(δK) [87]. Since δK ≤ (n+M)3, this is indeed polynomisal in the problem size.
These mappings directly lead to a schedule with minimal makespan δc. By construction, this schedule
is guaranteed overlap-free.

Arbitrary costs

Proposition 5.3. When tasks have different WCET, determining whether the lower bound of Equa-
tion (5.2) can be met, is a problem which is NP-complete in the strong sense.

72 CHAPTER 5. HOMOGENEOUS PLATFORMS

Proof. Let NOOVERLAP denote the problem with different WCETs. NOOVERLAP clearly belongs
to the class NP: a certificate can be the description of the schedule with start and end times for each
replica, and one can check in quadratic time that no two replicas of the same task overlap. We establish
completeness in the strong sense through a reduction from 3-Partition [41]. Let I be an instance of
3-Partition. I comprises 3m integers, a1, ..., a3m such that

∑3m
i=1 ai = mB and B

4 < ai <
B
2 for all i.

The question is: can we partition the ai’s into m subsets S1, ..., Sm such that each subset has total size
B:
∑
j∈Si aj = B? The size of I is O(m+B). From the instance I of 3-Partition, we build an instance

J of NOOVERLAP: this instance contains three types of tasks: some replicated tasks (the Ri’s), some
filling tasks which constrain the replicated tasks (the Fi,j’s), and the tasks corresponding to the integers
in instance I (the Ai’s). Specifically:

• There are 1 +m(m− 1) processors denoted P0 and Pi,j with 1 ≤ i ≤ m and 1 ≤ j ≤ m− 1.

• All tasks have the same period p = (2m− 1)B.

• There are m− 1 replicated tasks of size B, R1, ..., Rm−1. For any i, 1 ≤ i ≤ m− 1, there is one
replica of Ri on processor P0, and 1 on each of the processors Pk,i, 1 ≤ k ≤ m. Thus, each Ri’s
is replicated m+ 1 times.

• Two tasks Fi,j,1 and Fi,j,2 are mapped on each processor Pi,j , 1 ≤ i ≤ m − 1, 1 ≤ j ≤ m.
Fi,j,1 is of size 2(i − 1)B and Fi,j,2 is of size 2(m − i)B. The total load of processor Pi,j is
B + 2(i− 1)B + 2(m− i)B = (2m− 1)B and there is no slack on that processor. Note that, to
ease the writing, we have kept in our description a null size task on processors Pi,1 and Pi,m.

• In addition to one replica of each of the tasks R1, Rm−1, 3m tasks A1, ..., A3m are mapped to
processor P0, where task Ai has size ai. Therefore, the total load of processor P0 is (m− 1)B +∑3m
i=1 ai = (2m− 1)B and there is no slack on that processor either.

Instance J contains 1+m(m−1) processors and (m−1)(m+1)+2m(m−1)+3m = 3m2 +3m−1
replicas. All tasks have size O(mB). Hence, the size of J is polynomial in the size of I. We now prove
that if I has a solution, then J has a solution. Let S1, ..., Sm be the solution of I. Then we schedule the
tasks of J as follows and as illustrated by Figure 5.3:

• For any i, 1 ≤ i ≤ m− 1, and any j, 1 ≤ j ≤ m, on processor Pi,j , task Fi,j,1 is executed during
the interval [0, 2(i − 1)B], a replica of Rj during the interval [2(i − 1)B, (2i − 1)B], and Fi,j,2
during the interval [(2i− 1)B, (2m− 1)B].

• For any i, 1 ≤ i ≤ m− 1, a replica of Ri is executed on P0 during the interval [(2i− 1)B, 2iB].

• For any j, 1 ≤ j ≤ m, the tasks corresponding to the j-th partition of I, i.e., the tasks Ak such
that k ∈ Sj , are executed on P0 during the time interval [2(j − 1)B, (2j − 1)B].

One can easily check that this schedule is valid and that two replicas of a task Ri are never executed
simultaneously. Therefore there exists a schedule without overlap for J if there exists a solution for I.

Let us now assume that there exists a valid schedule for J , i.e., a schedule without any overlap. Let
us consider any i, 1 ≤ i ≤ m − 1. Processor Pi,1 (respectively Pi,m) contains a replica Ri and a task
of size (2m − 2)B (we do not care about the null-size task). Therefore, the replica Ri is executed on
Pi,1 (resp. Pi,m) either during the interval [0, B] or during [(2m − 2)N, (2m − 1)B], Then, for any j,
1 < j ≤ m

2 , processor Pi,j (respectively Pi,m−j+1) contains a replica Ri, a task of size (2i − 1)B and
one of task 2(m − i)B. From what precedes, there is already a replica of Ri executed during the time
interval [0, B] and one during [(2m − 2)B, (2m − 1)B]. Therefore, the replica Ri is executed on Pi,j

5.4. PERFORMANCE EVALUATION 73

(resp. Pi,m−j+1) either during the interval [(2i − 1)B, 2iB] or during [(2m − i)B, (2m − i + 1)B].
Overall, on processor P0, the replicaRi must be executed during one of the intervals [(2j−1)B, (2j)B],
for 1 ≤ j ≤ m − 1, because at all the other instants, there is already one Ri replica being executed on
one other processor, and because the schedule is without any overlap. However, there are m − 1 such
intervals and m − 1 such replicas. Therefore, the tasks Ai’s must be executed during the intervals
[(2j − 2)B, (2j − 1)B], for 1 ≤ j ≤ m. This is a set of m intervals each of size B. Because the
schedule is valid, all the Ai’s are executed during these intervals. Let Sj , 1 ≤ j ≤ m, be the set of the
indices of the Al’s executed during [(2j − 2)B, (2j − 1)B]. Then the subsets Sj define a solution to
I.

5.4 Performance evaluation

In this section, we present the simulation results to evaluate the performance of our whole strategy
compared to the best solution proposed in the reference paper [54]. In Section 5.4.1, we describe the
parameters and settings used during the experimental campaign. We present the results in Section 5.4.2.

5.4.1 Experimental methodology

We designed a discrete event simulator, which is publicly available at [51]. For each data point, we
considered 2, 000 data sets with 20 tasks. Task periods are randomly generated between 10ms and
100ms. The utilization of each task is generated randomly using the UUnifast scheme [14], with the
total utilization Utot as input. The set of frequencies is taken from a real microprocessors [85] which has
F = 5 frequency levels including 1.0, 0.8, 0.6, 0.4 and 0.15. We also validate our methods on two other
real frequencies sets [40, 94]. Following [54], in the rest of the section, we assume that the transient
fault arrival rate at fmax is λ0 = 10−6 and the system sensitivity factor d = 4. The static power and the
frequency-independent are set to 5% and 15% respectively of the maximum frequency-dependent power
consumption with C = 1. We use the ratio βb/w of the best-case over the worst-case execution time, to
model workload variability. The actual execution time of each task instance is determined according to
a uniform distribution between βb/wci and ci. To compare the strategies under all parameter settings, we
covered all of the variables from [54]. For the rest of the section, we keep the number of cores at 8, vary
the value of Utot from 1.5 to 3.5 to study the impact of system load, vary βb/w from 0.2 to 1.0 to show the
influence of workload variability, and vary the probability of failure scaling factor w from 10−5 to 10−1

to evaluate the impact of target reliability. We consider heuristic LPF for choosing the candidate task for
relaxation, which is shown to be the best heuristic in [54]. However, a full set of results supplemented
with two additional real frequencies sets and a larger range si, si ∈ [0.1, 0.5] can be found in [84]. All
results show the same trends as the results described below.

5.4.2 Results

We use the same baseline scheme as the reference paper2, i.e., classic EDF scheduling with First-Fit
Decreasing mapping and replica sets from [54] (where it is called the static scheme). Figures 5.4
and 5.5 present the energy consumption of our strategies and of the best performance strategy from the
reference paper, divided by the energy consumption of the baseline. Therefore, the lower the better and
data points below the y = 1 line denote cases in which these strategies outperform the static scheme
(i.e., achieve a lower energy consumption). These figures represent the trends with various parameters.

2The authors of [54] have not provided their source code to us; we did our best to ensure a fair assessment and comparison
of results.

74 CHAPTER 5. HOMOGENEOUS PLATFORMS
20

00

20
00

20
00

20
00

20
00

20
00

20
00

20
00

20
00

20
00

20
00

20
00

20
00

20
00

20
00

20
00

20
00

20
00

20
00

20
00

Mapping: First-Fit Decreasing Mapping: Worst-Fit Decreasing

R
eplica

set:reference
paper

R
eplica

set:ournew
set

1e-05 1e-04 1e-03 1e-02 1e-011e-05 1e-04 1e-03 1e-02 1e-01

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

PofTarget Scaling Factor w
(a) Utot=1.5

20
00

20
00

20
00

20
00

20
00

20
00

20
00

20
00

20
00

20
00

19
20

19
98

19
98

19
98

19
98

19
21

19
98

19
98

19
98

19
98

Mapping: First-Fit Decreasing Mapping: Worst-Fit Decreasing

R
eplica

set:reference
paper

R
eplica

set:ournew
set

1e-05 1e-04 1e-03 1e-02 1e-011e-05 1e-04 1e-03 1e-02 1e-01

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

PofTarget Scaling Factor w
(b) Utot=2

18
79

20
00

20
00

20
00

20
00

18
79

20
00

20
00

20
00

20
00

84
6

19
66

19
66

19
66

19
66

84
9

19
66

19
66

19
66

19
66

Mapping: First-Fit Decreasing Mapping: Worst-Fit Decreasing
R

eplica
set:reference

paper
R

eplica
set:ournew

set

1e-05 1e-04 1e-03 1e-02 1e-011e-05 1e-04 1e-03 1e-02 1e-01

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

PofTarget Scaling Factor w
(c) Utot=2.5

65 20
00

20
00

20
00

20
00

65 20
00

20
00

20
00

20
00

31 10
93

10
93

10
93

10
93

31 10
93

10
93

10
93

10
93

Mapping: First-Fit Decreasing Mapping: Worst-Fit Decreasing

R
eplica

set:reference
paper

R
eplica

set:ournew
set

1e-05 1e-04 1e-03 1e-02 1e-011e-05 1e-04 1e-03 1e-02 1e-01

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

PofTarget Scaling Factor w
(d) Utot=3.5

R
at

io
to

th
e

St
at

ic
Sc

he
m

e

LowerBound Online Offline Scheduling EDF_Idle_CEQ_Online EDF_Paper EDF_Paper_PF EDF_Paper_PF_Utility EDF_Idle_CEQ

Figure 5.4: Impact of Utot and w with βb/w = 1.

Each subfigure shows results for a different combination of mapping and replica settings. Each
line of subfigures is for a different replica sets (either from the reference paper or our new set) while
each column is for a different mapping (FFD and WFD). For example, the bottom right plot presents
energy savings of several scheduling approaches (different line colors) with WFD mapping and our
replica setting. We report in these figures the number of seeds (out of 2000 in total) that could find a
feasible solution for each setting. These numbers are reported in black above the horizontal axis in each
figure. Note that WFD tends to find fewer or the same number of feasible solutions than FFD. This is
because FFD tries to pack more tasks onto processors while WFD tends to spread tasks onto less loaded
processors. Moreover, we plot the lower bound for online scheduling and offline scheduling (different
line styles) in black lines, by which we could know the maximum energy saving that can be achieved
without any overlapping and failure. We can notice that when we apply our replica setting, the lower
bound of the offline scheduling is sometimes slightly lower than that of the online scheduling. The
reason is that during the mapping phase, in the online scheduling, we assign all secondaries the same
frequency as the primary, which makes it more difficult to find a feasible mapping than in the offline
scheduling that assigns secondaries the maximum frequency. Hence, the offline scheduling may pick a
lower frequency (see Section 5.3.2).

5.4. PERFORMANCE EVALUATION 75
18

79

20
00

20
00

20
00

20
00

18
79

20
00

20
00

20
00

20
00

84
6

19
66

19
66

19
66

19
66

84
9

19
66

19
66

19
66

19
66

Mapping: First-Fit Decreasing Mapping: Worst-Fit Decreasing

R
eplica

set:reference
paper

R
eplica

set:ournew
set

1e-05 1e-04 1e-03 1e-02 1e-011e-05 1e-04 1e-03 1e-02 1e-01

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

PofTarget Scaling Factor w
(a) βb/w=0.2

18
79

20
00

20
00

20
00

20
00

18
79

20
00

20
00

20
00

20
00

84
6

19
66

19
66

19
66

19
66

84
9

19
66

19
66

19
66

19
66

Mapping: First-Fit Decreasing Mapping: Worst-Fit Decreasing

R
eplica

set:reference
paper

R
eplica

set:ournew
set

1e-05 1e-04 1e-03 1e-02 1e-011e-05 1e-04 1e-03 1e-02 1e-01

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

PofTarget Scaling Factor w
(b) βb/w=0.4

18
79

20
00

20
00

20
00

20
00

18
79

20
00

20
00

20
00

20
00

84
6

19
66

19
66

19
66

19
66

84
9

19
66

19
66

19
66

19
66

Mapping: First-Fit Decreasing Mapping: Worst-Fit Decreasing

R
eplica

set:reference
paper

R
eplica

set:ournew
set

1e-05 1e-04 1e-03 1e-02 1e-011e-05 1e-04 1e-03 1e-02 1e-01

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

PofTarget Scaling Factor w
(c) βb/w=0.6

18
79

20
00

20
00

20
00

20
00

18
79

20
00

20
00

20
00

20
00

84
6

19
66

19
66

19
66

19
66

84
9

19
66

19
66

19
66

19
66

Mapping: First-Fit Decreasing Mapping: Worst-Fit Decreasing

R
eplica

set:reference
paper

R
eplica

set:ournew
set

1e-05 1e-04 1e-03 1e-02 1e-011e-05 1e-04 1e-03 1e-02 1e-01

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

PofTarget Scaling Factor w
(d) βb/w=0.8

R
at

io
to

th
e

St
at

ic
Sc

he
m

e

LowerBound Online Offline Scheduling EDF_Idle_CEQ_Online EDF_Paper EDF_Paper_PF EDF_Paper_PF_Utility EDF_Idle_CEQ

Figure 5.5: Impact of βb/w and w with Utot = 2.5.

76 CHAPTER 5. HOMOGENEOUS PLATFORMS

A clear observation is that our scheduling heuristics outperform EDF_PAPER under almost all com-
binations of settings. In particular, EDF_IDLE_CEQ_ONLINE always achieves the best performance.
EDF_IDLE_CEQ_ONLINE could save up to 25% with respect to EDF_PAPER (see Figure 5.4(c)). It
should be noted that to clearly see the different capabilities of the scheduling heuristics in reducing the
overlapping, we need more than one replica for each task. As we decrease the value of w, more replicas
are needed to meet the reliability target. In Figure 5.4, we keep the value of βb/w at 1 and increase the
system load. We observe that the energy savings are closer to the lower bound at lower utilization, as
we can find a feasible partitioning without overlapping for the minimum energy configurations. In Fig-
ure 5.5, for a fixed system load (Utot = 2.5), the higher the βb/w ratio, the lower the workload variability,
and the further from the lower bound. This is because as βb/w increases, jobs have larger execution times
and there is a higher chance of overlap between the primary and the secondary replicas.

Another common trend is that, in the majority of cases, WFD and our new replica setting help save
energy. By considering our replica setting, we could find a lower fopt(i). This is because our replica set-
ting plans for one replica at fi and x replicas at fmax while the reference setting plans to run all replicas
at fi. By considering WFD, we usually: 1) achieve the highest energy savings, 2) improve the average
performance of scheduling heuristics. For example, in Figure 5.4(a), from the two plots in the second
row (with the same replica set but with different mappings), we can see that more scheduling heuristics
achieve the lower bound with WFD than with FFD (with whom only EDF_IDLE_CEQ_ONLINE did).
In Figure 5.4(d), we could see that applying the replica sets and mapping of the reference paper (top
left plot), the best energy savings are achieved by EDF_IDLE_CEQ_ONLINE (around 37.5%), while
the other heuristics save less that 25%. With our replica sets and mapping (bottom right), our schedul-
ing heuristics achieve more than 40% energy savings. Even the EDF_PAPER saves up to 25%. Thus,
our solutions outperform those of the reference paper. These improvements are representative of the
trends that can be observed for all considered graphs, but suffer from some exceptions. For example,
in Figure 5.4(a), when w = 10−5, applying our replica set gives a higher lower bound which means we
will lose even without any overlapping in the schedule. Overall, our task mapping and replica setting
never achieves significantly bad performance, and most of the time achieves the best performance. The
average improvement of our method over [54], computed across all our experiments, can be estimated
to be of the order of 20%.

5.5 Conclusion

In this chapter, we have revisited the challenging problem presented by Haque, Aydin and Zhu in [54],
namely minimizing the expected energy consumption of a set of preemptive periodic real-time tasks,
executing on a parallel platform where processors are subject to transient failures. Replication is used
to enforce the reliability threshold, and all deadlines should be met as well. We have improved the
approach of [54] as follows. First, we use a different formula to estimate the energy consumption,
which is supposed to be closer to actual execution scenarios. Secondly, in the mapping phase, we
apply a layered WFD strategy, which is expected to be helpful for load-balancing, and for decreasing
the overlap among copies of the same task. Finally, we implement several novel scheduling strategies,
which introduce the idea of reordering chunks in between deadlines and of taking advantage of the
utilization of the processor. Moreover, we have established that the sole problem of scheduling tasks
with different WCETs, knowing the number of replicas, frequency and assigned processor for each
task, is NP-complete in the strong sense. We have evaluated the improvement of our strategies with a
discrete event simulator (made publicly available). Extensive experiments conducted for various range
of parameters have shown that: 1) Our new replica sets and WFD help finding a lower frequency,

5.5. CONCLUSION 77

which gives good pre-condition for further energy savings; 2) our scheduling heuristics significantly
outperform EDF_PAPER. More specifically, EDF_IDLE_CEQ and EDF_IDLE_CEQ_ONLINE have
the best performance under a wide range of scenarios, with an average gain in energy of 20%.

In the next chapter, we will deal with the same problem with independent tasks, but targeting het-
erogeneous multicore systems.

78 CHAPTER 5. HOMOGENEOUS PLATFORMS

Chapter 6

Heterogeneous platforms

As stated in Section 4.1, the design of the mapping and scheduling heuristics to solve the tri-criteria
problem on heterogeneous platforms is much more technical than in the case of identical processors
studied in Chapter 5. This is because the reliability of a replica of task τi depends upon the processor
which executes it. More precisely, the reliability of a replica of task τi mapped on processor mk is
R(τi,mk) = e−λkci,k , where ci,k is the execution time of τi on mk, and λk the failure rate of mk. The
total reliability of τi is a function of the reliability of all replicas (which we will explicit in Equation 6.4);
hence, it is not known until the end of the mapping process (unless we pre-compute an exponential num-
ber of reliability values). Then there are many processors to choose from, and those providing a high
reliability, thereby minimizing the number of replicas needed to match the reliability threshold, may
also require a high energy cost per replica: in the end, it might be better to use less reliable but also less
energy-intensive processors. Furthermore, the reliability is not enough to decide for the mapping: if two
processors offer similar reliabilities for a task, it might be better to select the one with smaller execution
time, in order to increase the possibility of mapping other tasks without exceeding any deadline. Alto-
gether, we face a more complicated decision than Chapter 5, and we provide several criteria to guide the
mapping process.

To assess the performance of our heuristics, we use a comprehensive set of execution scenarios, with
a wide range of processor speed profiles and failure rates. When the failure rate is low, most heuristics
are equivalent, but when the failure rate is higher, only a few heuristics achieve a good performance.
Because we have no guarantee on the performance of the global mapping and scheduling process, we
analytically derive a lower bound for the expected energy consumption of any mapping. This bound
assumes no overlap between any two replicas of the same task, and it cannot always be met because of
utilization constrains. Nevertheless, we show that the performance of our best heuristics remain quite
close to this bound in the vast majority of simulation scenarios. The main contributions of this chapter
are the following:

• The formulation of the tri-criteria optimization problem on heterogeneous platforms;
• The design of several mapping and scheduling heuristics;
• The characterization of a lower bound for performance;
• An experimental evaluation based on a comprehensive set of simulations scenarios, showing that

two of the heuristics always achieve the best performance, and are always very close to the lower
bound.

The rest of the chapter is organized as follows. Section 6.1 provides a detailed description of the
optimization problem under study, including a few notes on its complexity. The mapping and scheduling
heuristics are described in Section 6.2 and Section 6.3 respectively. The performance lower bound is

79

80 CHAPTER 6. HETEROGENEOUS PLATFORMS

introduced in Section 6.4. Section 6.5 is devoted to a comprehensive experimental comparison of the
heuristics. Finally, Section 6.6 gives concluding remarks and hints for future work.

Table I: Key Notations

Notation Explanation

N and M number of tasks and of processors
p period (deadline) for each task instance
ci,k WCET for task τi on processor mk

ui,k = ci,k

p
utilization of task τi executing on processor mk

uk utilization of mk (sum of utilization of replicas assigned to mk)
Ri target reliability threshold for task τi
λk failure rate of processor mk

P (mk) power consumed per time unit on processor mk

Es total static energy consumption
Ed(τi,mk) dynamic energy cost of task τi on processor mk

R(τi,mk) reliability of task τi on processor mk

6.1 Model

The inputs to the optimization problem are a set of real-time independent tasks, a set of non-identical
processors and a reliability target. Key notations are summarized in Table I.

6.1.1 Platform and tasks

The platform consists of M heterogeneous processors m1,m2, . . . ,mM and a set of N periodic atomic
tasks τ1, τ2, . . . , τN . Each task τi has WCET ci,k on the processor mk. The WCETs among different
processors are not necessarily related. In the experiments, we generate the ci,k values with the method
proposed in [20], where we have two parameters to control the correlation among task execution times
and processors (see Section 6.5.1 for details). Each periodic task τi generates a sequence of instances
with period p, which is equal to its deadline. In this work, we assume that all tasks have the same period
p, so that a single instance of each task must execute every p seconds. Note that assuming that all tasks
are atomic and with same period is the standard assumption for real-time task graphs (or DAGs) [113].

As already mentioned, real-time tasks usually complete execution earlier than their estimated
WCET: execution times are assumed to be data-dependent and non-deterministic, randomly sampled
from some probability distribution whose support is upper bounded by the WCET. See Section 6.5.1 for
details on the generation of actual execution times from WCET values. The utilization ui,k of task τi
executing on processor mk is defined as ui,k = ci,k

p . The utilization of a processor is the sum of the
utilizations of all tasks that are assigned to it.

6.1.2 Power and energy

The power consumed per time unit on processor mk is expressed as

P (mk) = Pk,s + gPk,d (6.1)

where Pk,s is the static power; g represents the system state and indicates whether dynamic power Pk,d
is currently being consumed by mk: when mk executes a task, g = 1, otherwise g = 0. To summarize,

6.1. MODEL 81

we have 2M input values, {P1,s, P2,s . . . PM,s} for static powers and {P1,d, P2,d . . . PM,d} for dynamic
powers.

The dynamic energy consumption Ed(τi,mk) of task τi on processor mk is estimated using the
WCET:

Ed(τi,mk) = Pk,d × ci,k (6.2)

but we use the value derived from the actual execution time in the experiments. The total static energy
consumption is simply given by

Es =
∑

k∈Used

Pk,s × p (6.3)

where Used denotes the index set of the processors used by the schedule.

6.1.3 Reliability

We consider transient faults, modeled by an Exponential probability distribution of rate λk on processor
mk. Thus, fault rates differ from one processor to another. This is a very natural assumption for a
heterogeneous platform made of different-type processors. At the end of the execution of each task,
there is an acceptance test to check the occurrence of soft errors induced by the transient faults. It is
assumed that acceptance tests are 100% accurate, and that the duration of the test is included within the
task WCET [54].

The reliability of a task instance is the probability of executing it successfully, in the absence of
permanent faults. The reliability of task τi on processor mk with WCET ci,k is R(τi,mk) = e−λk×ci,k .
During the mapping phase, task τi will have several replicas executing on different processors, in order
to match some reliability threshold. Let alloc(i) denote the index set of the processors executing a
replica of τi. The mapping achieves the following reliability R(τi) for task τi:

R(τi) = 1−Πk∈alloc(i)(1−R(τi,mk)) (6.4)

Indeed, the task will succeed if at least one of its replicas does: the success probability is thus equal to 1
minus the probability of all replicas failing, which is the expression given in Equation 6.4.

Each task τi has a reliability threshold Ri which is an input of the problem and that must be met
by the mapping. In other words, the constraint writes R(τi) ≥ Ri for 1 ≤ i ≤ N . Because the tasks
are independent, it is natural to assume that they might have different reliability thresholds: a higher
threshold means that more resources should be assigned for the task to complete successfully with a
higher probability. In the experiments we use Ri = R for all tasks, but our heuristics are designed to
accommodate different thresholds per task.

6.1.4 Optimization objective

The objective is to determine a set of replicas for each task, a set of processors to execute them, and to
build a schedule of length at most p, so that expected energy consumption is minimized, while matching
the deadline p and reliability thresholdRi for each task τi.

As already mentioned in the introduction, the expected energy consumption is an average made over
all possible execution times randomly drawn from their distributions, and over all failure scenarios (with
every component weighted by its probability to occur). An analytical formula is out of reach, and we
use Monte-Carlo sampling in the experiments. However, we stress the following two points:
• To guide the design of the heuristics, we use a simplified objective function; more precisely, we

use WCETs instead of (yet unknown) actual execution times, and we conservatively estimate the

82 CHAPTER 6. HETEROGENEOUS PLATFORMS

dynamic energy of a task as the sum of the dynamic energy of all its replicas. Because mapping
decisions are based upon WCETs, the number of enrolled processors does not depend upon actual
execution times and the static energy is always the same for all scenarios, namely the length of
the period times the sum of the static powers of the enrolled processors (see Equation 6.3).
• To assess the absolute performance of the heuristics, we derive a lower bound for the energy con-

sumption. This bound is based upon actual execution times but neglects scheduling constraints and
assumes no overlap between any two task replicas, hence it is not reachable in general. However,
we show that our best heuristics achieve performance close to this bound.

6.1.5 Complexity

The global optimization problem is obviously NP-hard, since it is a generalization of the makespan
minimization problem with a fixed number of parallel processors [41]. The optimization of the sole
scheduling phase is also NP-hard: if the number of replicas has already been decided for each task, and
if the assigned processor of each replica has also been decided, the scheduling phase aims at minimiz-
ing the expected energy consumption by avoiding overlap between the replicas of a same task (proved
in Section 5.3.5). Even if the task deadline was not constraining (very large deadline with respect to the
worst-case execution time of tasks), the problem would remain NP-hard. We formally state this latter
problem and show that it is NP-hard.

Definition 6.1 (MINENERGYMAXRELIABILITY). Consider an heterogeneous platform composed of
M heterogeneous processors, m1, ...,mM , and N (non-periodic) tasks τ1, τ2, ..., τN . Executing task τi
on processor mk has an energy cost of E(τi,mk) and has a probability of success of R(τi,mk). Let
E and R be two constants. The MINENERGYMAXRELIABILITY decision problem is: is it possible to
schedule the tasks on the processors so that: (i) the total energy consumed does not exceed E; and (ii)
the probability that all tasks succeed is at leastR?

Lemma 6.1. Problem MINENERGYMAXRELIABILITY is NP-complete.

Proof. We prove this result by a reduction from the 2-PARTITION problem [41]. Let I1 be an instance
of 2-PARTITION with N positive integers, a1, ..., aN . Let S =

∑N
i=1 ai. The question is: is it possible

to find a subset A of {1, ..., N} such that

∑
1≤i≤N
i∈A

ai =
∑

1≤i≤N
i/∈A

ai = S

2 .

From I1 we build an instance I2 of MINENERGYMAXRELIABILITY as follows. We have M = 2
processors. Then we have N tasks each having the same execution times on both processors: ci,1 =
ci,2 = ai. The failure rates are defined by: λ1 = 1

S and λ2 = 1. The static energy is null, P1,s = P2,s =
0, and the dynamic energy is defined by P1,d = 1, P2,d = 1

S . Therefore, we have:{
E(τi,m1) = ai and R(τi,m1) = e−

ai
S

E(τi,m2) = ai
S and R(τi,m2) = e−ai

Finally, we let E = 1
2(S + 1) andR = e−

1
2 (S+1) = e−E .

One can easily check that the size of I2 is polynomial in the size of I1, that all the E(τi,mk)’s are
positive and that all the R(τi,mk)’s are strictly between 0 and 1.

6.1. MODEL 83

Let us consider any mapping of the M tasks on the two processors. Let A be the index set of tasks
mapped on processor 1 in this mapping, and let A =

∑
i∈A ai. The total energy E consumed by this

mapping is:

E =

 ∑
1≤i≤N
i∈A

E(τi,m1)

+

 ∑
1≤i≤N
i/∈A

E(τi,m2)



=

 ∑
1≤i≤N
i∈A

ai

+

 ∑
1≤i≤N
i/∈A

ai
S


= A+ 1

S
(S −A)

= A
(

1− 1
S

)
+ 1

= AS − 1
S

+ 1

The reliability R of the whole set of tasks is:

R =

 ∏
1≤i≤N
i∈A

R(τi,m1)

×
 ∏

1≤i≤N
i/∈A

R(τi,m2)



Taking logarithms, we obtain:

ln(R) =

 ∑
1≤i≤N
i∈A

ln(R(τi,m1))

+

 ∑
1≤i≤N
i/∈A

ln(R(τi,m2))



=

 ∑
1≤i≤N
i∈A

−ai
S

+

 ∑
1≤i≤N
i/∈A

(−ai)



=
(
−A
S

)
+ (−(S −A))

= −S +A(1− 1
S

)

= −S +AS − 1
S

84 CHAPTER 6. HETEROGENEOUS PLATFORMS

Now let us assume that I2 has a solution:{
E ≤ E
R ≥ R ⇔

{
E ≤ E
ln(R) ≥ ln(R) ⇔


AS − 1

S
+ 1 ≤ 1

2(S + 1)

−S +AS − 1
S
≥ −1

2(S + 1)
⇔


AS − 1

S
≤ 1

2(S − 1)

AS − 1
S
≥ 1

2(S − 1)
⇔


A ≤ S

2
A ≥ S

2
Therefore, I2 has a solution if and only if I1 has a solution.

6.2 Mapping

In the mapping phase, we need to define the number of replicas for each task, as well as the execution
processor for every replica, aiming at meeting the reliability target while minimizing the energy cost.
One difficulty introduced by platform heterogeneity is that we do not know the number of replicas
needed for each task to reach its reliability threshold, before completing the mapping process, because
different processors have different failure rates and speeds and, hence, they provide different reliabilities
for each replica. Therefore, the simpler three-step method of Chapter 5 cannot be applied.

As shown in Algorithm 7, given a set of tasks with their reliability targets and a set of heterogeneous
processors, we first order the tasks according to TASKMAPCRITERIA, which includes:

• deW (inW): decreasing (increasing) average work size c̄i = ci,1+ci,2+···+ci,M
M ;

• deMinW (inMinW): decreasing (increasing) minimum work size c̄i = min1≤k≤M ci,k;

• deMaxW (inMaxW): decreasing (increasing) maximum work size c̄i = max1≤k≤M ci,k:

• random: random ordering.

Then, for each task in the ordered list, we order the processors for mapping its replicas according to
PROCMAPCRITERIA, which includes:

• inE: increasing energy cost;

• deR: decreasing reliability;

• deP: decreasing ratio of − log10(1−R(τi,mk))
E(τi,mk) (explained below);

• random: random ordering.

6.3. SCHEDULING 85

Table II: Example

mk E(τi,mk) R(τi,mk) 1−R(τi,mk) R(τi,mk)
E(τi,mk) − log10(1−R(τi,mk))

E(τi,mk)

1 1 0.9 0.1 0.9 1
2 2 0.99 0.01 0.495 1
3 1 0.99 0.01 0.99 2
4 2 0.9 0.1 0.45 0.5

We use the example shown in Table II to explain how to design a better criteria in PROCMAPCRI-
TERIA. Assume there are four processor sets with different energy and reliability configurations. Con-
sidering only the reliability, we cannot distinguish between the second and third sets. Apparently, the
third set is better since its processors consume less energy and provide the same level of reliability. The
problem is the same when ordering processors only according to energy cost. This gives us a hint that
we need to consider energy and reliability interactively. A first idea would be to use the ratio R(τi,mk)

E(τi,mk) ,
which expresses the reliability per energy unit of task τi executing on processor mk. But consider a
task instance with a reliability target Ri = 0.98: it requires either one processor from the second set or
two processors from the first set. Both solutions match the reliability goal with the same energy cost 4.
We aim at a formula that would give the same weight to both solutions. The ratio − log10(1−R(τi,mk))

E(τi,mk)
is a good candidate, because the total energy cost is the sum of all processors while the reliability is a
product. This discussion explains how we have derived the third criteria deP in PROCMAPCRITERIA,
namely to order processors by decreasing ratio of − log10(1−R(τi,mk))

E(τi,mk) .
For the mapping phase, we add replicas for task τi in the order of the processor list until the reliability

target Ri is reached. The algorithm uses the probability of failure PoF = 1− R(τi) = Πk∈alloc(i)(1−
R(τi,mk)) (Equation 6.4). The mapping process always ensures that: (i) no two replicas of the same
task are assigned to the same processor; (ii) the utilization uk of each processor does not exceed 1.

6.3 Scheduling

In the scheduling phase, we aim at ordering the tasks mapped on each processor, with the objective to
minimize the energy consumption during execution. Recall that the success of any replica leads to the
immediate cancellation of all the remaining replicas, a crucial source of energy saving. Our approach is
to identify a primary replica for each task, then all its other replicas become secondaries. The goal of the
proposed scheduling is to avoid overlap between the execution of the primary and secondary replicas for
each task: the primary must be terminated as soon as possible, while the secondaries must be delayed
as much as possible. Whenever a primary replica of a task succeeds, the energy consumption will be
minimal for that task if no secondary replica has started executing yet. Our scheduling algorithm uses a
layered approach: first me map the first replica of each task, which we call the primary replica; and then,
in a round-robin fashion, we map the remaining replicas (if they exist), which we call the secondaries.
Here is a detailed description of Algorithm 8:

1. First we order tasks by criterion TASKSCHEDCRITERIA, for which we propose:

• deNR (inNR): decreasing (increasing) number of replicas;

• deU (inU): decreasing (increasing) total utilization (sum up the utilization of all replicas);

• random: random ordering.

2. Then we process the list of tasks in that order, and select a primary replica for each task, which
we execute as soon as possible on its assigned processor, right after already scheduled primary

86 CHAPTER 6. HETEROGENEOUS PLATFORMS

Algorithm 7: Replication setting and mapping
Input: A set of tasks τi with reliability targetsRi;
a set of heterogeneous processors mk

Output: An allocation σm of all replicas on the processors
1 begin
2 order all the tasks with TASKMAPCRITERIA and renumber them τ1, . . . , τN

/* initialize the utilization of all processors to zero */
3 u← [0, . . . , 0]

/* iterate through the ordered list of tasks */
4 for i ∈ [1, . . . , N] do

/* order processors for each task */
5 order all processors for task τi with PROCMAPCRITERIA and renumber them proc1, . . . , procM

/* this ordered list may differ from task to task */
6 k = 1
7 PoF = 1
8 while 1− PoF < Ri do
9 temp = uk + ui,k

10 if temp ≤ 1 then
11 uk = temp
12 PoF = PoF × (1−R(τi,mk))
13 add one replica of τi on prock
14 k + +
15 if k > m then
16 return not feasible
17 return σm

replicas (if any). We use two different criteria PRIMARYSCHEDCRITERIA for selecting primary
replicas:

• time: choose the processor that can complete the execution of the replica the earliest (given
already made scheduling decisions);

• energy: choose the processor that can execute the replica with smallest dynamic energy.

3. Once primary replicas have all been scheduled, we reverse the order of the list of tasks, and we
schedule the remaining replicas (considered in a round-robin fashion in the reversed list) as late as
possible on their assigned processor. The idea is to mimimize potential overlap between primary
and secondaries for each task, hence to delay secondary replicas until the end of the period. The
rationale for reverting the task list is that the primary replica of some task τ at the end of the
list may have been scheduled after some other primary replica τ ′, hence the idea to process the
secondary replica of τ ′ before that of τ and push it further away at the end of the period.

4. Finally, there only remains to detail which secondary replica of a task is scheduled first (whenever
the task has three replicas or more). We also have two criteria SECONDARYSCHEDCRITERIA for
choosing secondary replicas:

• time: choose the replica whose start-up time can be the latest (given already made scheduling
decisions); the idea is to minimize overlap by maximizing slack;

• energy: choose the replica whose energy is the highest; the idea is again to minimize overlap,
thereby increasing the probability of this costly replica to be cancelled.

As we have two different criteria for both selecting primaries and secondaries, in total, we have four
possible combinations, namely time-time, time-energy, energy-time and energy-energy. For the baseline
scheduling (randomShuffling), we randomly order tasks on each processor and execute them in sequence
and as early as possible (no idle time until the end of the period).

6.4. LOWER BOUND 87

Algorithm 8: Scheduling
Input: An allocation σm of all replicas on the processors
Output: An order of execution on each processor

1 begin
2 order all the tasks with TASKSCHEDCRITERIA and renumber them τ1, . . . , τN

/* insert the primary replica for each task at the beginning of each
processor schedule */

3 for i ∈ [1, . . . , N] do
4 if PRIMARYSCHEDCRITERIA is “time” then
5 schedule the primary replica of task τi that could finish at the earliest
6 else if PRIMARYSCHEDCRITERIA is“energy” then
7 schedule the primary replica of task τi that consumes the minimum energy

/* insert the secondaries backwards from the end of each processor
schedule */

8 reverse the task ordering
9 while there is still at least one replica to be scheduled do

10 for i ∈ [1, . . . , N] do
11 if there is still a replica of τi to be scheduled then
12 if SECONDARYSCHEDCRITERIA is “time” then
13 schedule the secondary replica of task τi that could start the latest
14 else if SECONDARYSCHEDCRITERIA is “energy” then
15 schedule the secondary replica of task τi that consumes the maximum energy

6.4 Lower bound

In this section, we explain how to derive a lower bound for the expected energy consumption of a
solution to the optimization problem, namely a mapping/scheduling heuristic that uses some of the
selection criteria outlined in Sections 6.2 and 6.3.

For each problem input, namely N tasks τi with reliability thresholds Ri, M processors mk with
failure rates λk, and with all WCET ci,k, we compute a solution, i.e., a mapping and ordering of all
replicas. We first use Monte-Carlo simulations (see Section 6.5) and generate several sets of values for
the actual execution time wi,k of τi on mk. The values wi,k are drawn uniformly across processors as
some fraction of their WCET ci,k (refer to Section 6.5.1 for details).

Now, for each set of values wi,k, we generate a set of failure scenarios, compute the actual energy
consumed for each scenario, and report the average of all these values as the expected energy consump-
tion. A failure scenario operates as follows. We call an event the end of the execution of a task replica
on some processor. At each event, we flip a biased coin (weighted with the probability of success of
the replica on that processor) to decide whether the replica is successful or not. If it is, we delete all
other replicas of the same task. At the end of the execution, we record all the dynamic energy that has
been actually spent, accounting for all complete and partial executions of replicas, and we add the static
energy given by Equation 6.3. This leads to the energy consumption of the failure scenario. We average
the values over all failure scenarios and obtain the expectation, denoted as E({wi,k}).

In addition, we also compute a lower bound LB({wi,k}) as follows. Our goal is to accurately
estimate the energy consumption of an optimal solution. Because the static energy depends upon the
subset of processors that are used in the solution (see Equation 6.3), we need to try all possible subsets.
Given a processor subset S, we consider each task τi independently, and try all possible mappings of
replicas of τi using only processors in S. Thus we explore all subsets T of S. A subset T is safe if
mapping a replica of τi on each processor of T meets the reliability criteria Ri, and if no strict subset
of T is safe. Note that safe sets are determined using the WCETs ci,k, and not using the wi,k, because
this is part of the problem specification. Now for each safe subset T , we try all possible orderings (there

88 CHAPTER 6. HETEROGENEOUS PLATFORMS

are k! of them if |T | = k); for each ordering, we compute the expected value of the dynamic energy
consumption as follows: if, say, T = {m1,m3,m4} and the ordering is m3,m4,m1, then we compute

P3,dwi,3 + (1− e−λ3wi,3)P4,dwi,4 + (1− e−λ3wi,3)(1− e−λ4wi,4)P1,dwi,1

We see that we optimistically assume no overlap between the three replicas, and compute the dynamic
energy cost as the energy of the first replica (always spent) plus the energy of the second replica (paid
only if the first replica has failed) plus the energy of the third replica (paid only if both the first and
second replicas have failed). Note that here we use execution times and failure probabilities based upon
the actual execution times wi,k and not upon the WCETs ci,k. The value of the sum depends upon the
ordering of the processors in T , hence we check the 6 orderings and retain the minimal value. We do this
for all safe subsets and retain the minimal value. Finally we sum the results obtained for each task and
get the lower bound for the orignal processor subset S. We stress that this bound is not necessarily tight,
because our computation assumes no overlap for any replica pair, and does not check the utilization
of each processor (which may exceed 1). The final lower bound LB({wi,k}) is the minimum over
all processor subsets. Although the computation has exponential cost, due to the exploration of all
processor subsets S, the computation of the expected energy for a given ordering in a subset T of S
obeys a closed-form formula.

6.5 Performance evaluation

This section assesses the performance of our different strategies to map and schedule real-time tasks
onto heterogeneous platforms. In Section 6.5.1, we describe the parameters and settings used during
the experimental campaign. We present the results in Section 6.5.2. The algorithms are implemented in
C++ and in R. The related code, data and analysis are publicly available in [49].

6.5.1 Experimental methodology

In the experiments, we have M = 10 processors and N = 20 tasks which have all the same period p =
100. The set of WCETs is generated by the method proposed in [20], as mentioned in Section 6.1.1. The
WCET values are controlled by the correlation factor between the different tasks (cortask) and between
the different processors (corproc). These two parameters vary between 0 and 1.1 For example, cortask = 0
(resp. corproc = 0) means that the WCET values between different tasks on one processor (resp. between
different processors for one task) are completely randomly generated. Inversely, cortask = 1 (resp.
corproc = 1) means that the WCET values between different tasks on one processor (resp. between
different processors for one task) are all the same. We also define a parameter basicWork as the estimated
total utilization of the system with a single replica per task, in order to study the impact of system
pressure:

basicWork =
∑
i,k ci,k

M2p
=
∑
i,k ui,k

M2 (6.5)

In Equation 6.5, we use the average WCETs on the M processors (
∑

k
ci,k

M) to estimate the execution
time of task τi. We have M processors available during period p, hence basicWork represent an estimate
of the fraction of time processors are used if each task has a single replica. In the experiments, we vary
basicWork from 0.1 to 0.3.

1We ignored the case when cortask = 0 and corproc = 1 for the parameter set with big failure rate, because when tasks are
completely unrelated, there (very likely) is a task with very long execution time on all processors (corproc = 1). The number
of replicas needed to meet its reliability goal will exceed the number of available processors.

6.5. PERFORMANCE EVALUATION 89

To generate the actual execution times of tasks from their WCETs, we use two parameters. The first
one, βb/w, is global to all tasks: βb/w is the ratio between the best-case execution time and the worst-case
execution time. It is the smallest possible ratio between the actual execution time of a task and its WCET.
Therefore, the actual execution time of task τi on processor mk belongs to [βb/wci,k, ci,k]. We consider
five possible values of βb/w: 0.2, 0.4, 0.6, 0.8, and 1. The second parameter, βi, is task dependent: βi
describes whether the instance of a task is a small one or a large one. βi is randomly drawn in [0, 1]. A
value of βi = 0 means that task τi has the shortest execution time possible, and βi = 1 means that the
actual execution is equal to its worst case execution time. Overall, the actual execution time of task τi
on processor mk is thus defined as: wi,k = (βb/w + (1− βb/w)βi)ci,k.

For a processor mk in the platform, we fix the static power Pk,s at 0.001 as in previous works [111,
113, 115]. But for the dynamic power and the failure rate, we have two sets of parameters. The first
set also follows values similar to those of the previous works [111, 113, 115]. For this set, we have
a relatively large power and a very small failure rate. Therefore, the replicas using this first set of
parameters succeed in almost all cases. Thus, to evaluate our heuristics in the context when failures
occur more frequently, we introduce a second set of parameters where the replicas have a smaller power
and a larger failure rate. For the first set, we choose randomly the dynamic power Pk,d between 0.8 and
1.2, and the failure rate λk between 0.0001 and 0.00023. And for the second set, we have Pk,d 10 times
smaller (between 0.08 and 0.12), and λk 100 times larger (between 0.01 and 0.023). With the second
set of parameters, the actual reliability of one replica ranges from 0.1 to 0.99. To be more realistic, in
our experiments, processors with a larger dynamic power Pk,d have a smaller failure rate λk. It means
that, a more reliable processor costs always more energy than a less reliable one. We guarantee this by
ordering inversely the Pk,d’s and the λk’s after generating the random values.

We vary the local reliability target Ri between 0.9 and 0.98 for the first set and between 0.8 and
0.95 for the second set. This is to give the system a reasonable freedom while mapping and scheduling.
The reliability target is relatively high, implying that tasks need plural replicas to reach it. Therefore, we
give more tolerance (smaller relialbility threshold) to the second set with a larger failure rate, because
otherwise we may not be able to find feasible mappings.

Table III: Ratio of energy consumption of different mapping and scheduling (considering different cri-
teria for ordering tasks) to the baseline method

map
sch

deNR inNR deU inU random

deW 0.5655 0.5662 0.5655 0.5660 0.5663
inW 0.5631 0.5635 0.5630 0.5635 0.5635
deMinW 0.5658 0.5662 0.5657 0.5661 0.5665
inMinW 0.5637 0.5642 0.5637 0.5642 0.5641
deMaxW 0.5658 0.5664 0.5657 0.5663 0.5665
inMaxW 0.5629 0.5633 0.5629 0.5633 0.5633
random 0.5633 0.5639 0.5633 0.5638 0.5639

6.5.2 Results

In this section, we analyze the impact of the different parameters on the performance of the heuristics.
We choose as default values βb/w = 1, basicWork = 0.3, Ri = 0.95 for the set with big failure rate,
and Ri = 0.98 for the set with small failure rate. This set of parameters is chosen to constrain the
solution so that we can observe the most interesting results. These trends are representative and more
comprehensive set of results are available in [52]. For cortask and corproc, we fix them at 0.5 as default
value. Each experiment is the average of 10 sets of WCET values. For each set, we generate 10 sets

90 CHAPTER 6. HETEROGENEOUS PLATFORMS

0.
10

0.
10

0.
10

0.
10

0.
10

20
.0

0

20
.0

0

20
.0

0

20
.0

0

20
.0

0

cortask = 0.5

tim
e-tim

e

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

1.25

Processor correlation

R
at

io
to

th
e

ba
se

lin
e

mapping LowerBound deP deR inE random

(a) Comparing mapping strategies when using time-time as
scheduling strategy

0.
10

0.
10

0.
10

0.
10

0.
10

20
.0

0

20
.0

0

20
.0

0

20
.0

0

20
.0

0

cortask = 0.5

deP

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

1.25

Processor correlation

R
at

io
to

th
e

ba
se

lin
e

scheduling LowerBound
energy-energy

energy-time
time-energy

time-time
randomShuffling

(b) Comparing scheduling strategies when using deP as map-
ping strategy

Figure 6.1: Ratio of energy consumption using different mapping and scheduling strategies under small
failure rate, when varying corproc, with basicWork = 0.3, βb/w = 1,Ri = 0.98 and cortask = 0.5.

of random Pk,d and λk values. For each Pk,d and λk generated, the final result is the average of 10
executions. Overall, we run 1, 000 randomly generated experiments for each set of βb/w, basicWork,
Ri, cortask and corproc values. The total number of experiments ran is 3,075,000 for each heuristic.
Each result is represented as a ratio to the random baseline method which is defined as follows: for
each task, we add replicas randomly on available processors until reaching its reliability target during
the mapping phase; for scheduling, we randomly order replicas mapped on each processor and execute
them in sequence and as soon as possible. We also compare different strategies with the lower bound
proposed in Section 6.4. We report on these figures the average number of replicas needed in total for
20 tasks (on the left side) and of failures that occur for the 1, 000 random trials for each setting (on the
right side). These numbers are reported in black above the horizontal axis in each figure.

Ordering tasks for mapping and scheduling

In Table III, we calculated the ratio of combinations of different mapping and scheduling methods to the
baseline method, when considering different criteria for ordering tasks. We can see that, in the whole
set of experiments, all criteria for ordering tasks perform equally well (around 56%). The difference
between the best and the worst performance is only around 0.36%. Hence these criteria do not critically
influence energy consumption. In the following results, for the task ordering, we only consider the de-
creasing average WCET (deW) for the mapping, and the decreasing utilization (deU) for the scheduling,
which give priority to the tasks that putting more pressure to the system. We then focus on select-
ing processors during the mapping phase, and on choosing primary and secondary replicas during the
scheduling phase.

Processor correlation

Figures 6.1 and 6.2 show results when processor correlation varies, under small and big failure rate
respectively. We found that our strategies consume less than 25% of the energy needed by the baseline
strategy when corproc = 0, and the result is close to the lower bound. But we can observe that this
percentage increases with corproc.

6.5. PERFORMANCE EVALUATION 91

1.
20

1.
80

2.
50

4.
00

5.
20

22
.2

0

25
.3

0

28
.8

0

36
.0

0

40
.5

0

cortask = 0.5

tim
e-tim

e

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

1.25

Processor correlation

R
at

io
to

th
e

ba
se

lin
e

mapping LowerBound deP deR inE random

(a) Comparing mapping strategies when using time-time as
scheduling strategy

1.
00

1.
60

2.
10

3.
70

5.
20

20
.7

0

23
.5

0

26
.6

0

34
.5

0

39
.9

0

cortask = 0.5

deP

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

1.25

Processor correlation

R
at

io
to

th
e

ba
se

lin
e

scheduling LowerBound
energy-energy

energy-time
time-energy

time-time
randomShuffling

(b) Comparing scheduling strategies when using deP as map-
ping strategy

Figure 6.2: Ratio of energy consumption using different mapping and scheduling strategies under big
failure rate, when varying corproc, with basicWork = 0.3, βb/w = 1,Ri = 0.95 and cortask = 0.5.

For the mapping phase, in Figure 6.1a we observe that, in the small failure rate case, ordering the
processors by decreasing reliability (deR) has a worse performance than ordering them by increasing
energy cost (inE) or decreasing proportion (deP) in nearly all cases. This is reasonable because, in
this case, the reliability of all tasks on all processors is relatively high and only one replica per task is
enough to meet its reliability threshold. Therefore, we cannot have significant improvements by using
more reliable processors, but these can cost much more energy. Furthermore, inE and deP perform
similarly and have a performance close to that of the lower bound, except when corproc ≈ 1. In the big
failure rate case (Figure 6.2a), we see that, when corproc is not equal to 1, inE performs better than deR.
But when corproc increases to 1, the performance of deR catches up. And in all cases, deP performs
better than, or similarly to the best strategy between deR and inE.

And for the scheduling strategies, Figures 6.1b and 6.2b show that, there is little difference between
our different criteria, the random one excepted. But we can still observe more difference in the big
failure rate case. With corproc 6= 1, we have energy criteria for primary replica choosing slightly better
than time, and when corproc = 1, the energy becomes worse than the time.

This is because, for most of the cases, the reliability of our replica is high, so that we can simply
choose the replica which costs the least energy as primary, and delete all secondary when it finishes
successfully. But in the case of corproc = 1, the WCETs of each task on different processors are the
same, so the order of the processors for any task is the same, and is relative to the power and reliability
parameters (Pk,d and λk). This can result in a few fully used processors, with the other processors
being empty. Also, for time criteria, primary replicas will be randomly balanced on different fully used
processors, because every replica of a task has the same WCET. But for energy, the processors which
cost less energy are the same for all tasks. Then these processors will execute all mapped replicas as
primary, and others will execute all mapped replicas as secondary, which increases the overlap. This is
why, when corproc = 1, we cannot save as much energy as in other cases, and this is why the energy
criteria performs worse than the time criteria.

92 CHAPTER 6. HETEROGENEOUS PLATFORMS
0.

10

0.
10

0.
10

0.
10

0.
10

20
.0

0

20
.0

0

20
.0

0

20
.0

0

20
.0

0

0.
10

0.
10

0.
10

0.
10

0.
10

20
.0

0

20
.0

0

20
.0

0

20
.0

0

20
.0

0

corproc = 0.5 corproc = 1

tim
e-tim

e

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

βb/w

R
at

io
to

th
e

ba
se

lin
e

mapping LowerBound deP deR inE random

(a) Comparing mapping strategies when using time-time as
scheduling strategy

0.
10

0.
10

0.
10

0.
10

0.
10

20
.0

0

20
.0

0

20
.0

0

20
.0

0

20
.0

0

0.
10

0.
10

0.
10

0.
10

0.
10

20
.0

0

20
.0

0

20
.0

0

20
.0

0

20
.0

0

corproc = 0.5 corproc = 1

deP

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

βb/w

R
at

io
to

th
e

ba
se

lin
e

scheduling LowerBound
energy-energy

energy-time
time-energy

time-time
randomShuffling

(b) Comparing scheduling strategies when using deP as map-
ping strategy

Figure 6.3: Ratio of energy consumption using different mapping and scheduling strategies under small
failure rate when varying βb/w, with basicWork = 0.3,Ri = 0.98 and cortask = 0.5.

1.
70

1.
90

2.
10

2.
30

2.
50

28
.8

0

28
.8

0

28
.8

0

28
.8

0

28
.8

0

3.
40

3.
90

4.
30

4.
80

5.
20

40
.5

0

40
.5

0

40
.5

0

40
.5

0

40
.5

0

corproc = 0.5 corproc = 1

tim
e-tim

e

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

βb/w

R
at

io
to

th
e

ba
se

lin
e

mapping LowerBound deP deR inE random

(a) Comparing mapping strategies when using time-time as
scheduling strategy

1.
50

1.
60

1.
80

1.
90

2.
10

26
.6

0

26
.6

0

26
.6

0

26
.6

0

26
.6

0

3.
40

3.
90

4.
30

4.
80

5.
20

39
.9

0

39
.9

0

39
.9

0

39
.9

0

39
.9

0

corproc = 0.5 corproc = 1

deP

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

βb/w

R
at

io
to

th
e

ba
se

lin
e

scheduling LowerBound
energy-energy

energy-time
time-energy

time-time
randomShuffling

(b) Comparing scheduling strategies when using deP as map-
ping strategy

Figure 6.4: Ratio of energy consumption using different mapping and scheduling strategies under big
failure rate when varying βb/w, with basicWork = 0.3,Ri = 0.95 and cortask = 0.5.

Task variability

Figures 6.3 and 6.4 present the results with small and big failure rates when βb/w varies. We observe that,
for almost all the mapping and scheduling criteria, the results are similar whatever the value of βb/w. This
is because we map and schedule tasks based on their WCETs, so the mapping and scheduling results are
independent of the value of βb/w. Furthermore, each task i has the same βi on the different processors.
Therefore the energy consumption ratios tend to be similar. But in the case of corproc ≈ 1, we can see
from Figure 6.4b (under big failure rate where more than one replica per task needed) that the ratio of all
scheduling criteria increases slightly with βb/w, and the two strategies using energy as primary replica
choosing criteria increase faster than the two others which use time. In fact, when we have a larger value
of βb/w, the actual execution time is closer to the WCET. So that, although the mappings and schedulings
are the same for different βb/w, replicas will take longer time during the actual execution. At the same
time, as explained in the previous paragraph, we have a more serious overlap in the case of corproc = 1
and for energy criteria. This is why corproc = 1 performs differently when varying βb/w. However this
phenomenon is not obvious (≈ 5%), so we can always conclude that the result is independent of βb/w.
When βb/w is small, actual execution times can greatly differ from the WCETs used for mapping and
scheduling. However, in this case, our heuristics have a performance similar to that of the lower bound,
which shows that they are very robust.

6.5. PERFORMANCE EVALUATION 93
0.

10

0.
10

0.
10

20
.0

0

20
.0

0

20
.0

0

0.
10

0.
10

0.
10

20
.0

0

20
.0

0

20
.0

0

0.
10

0.
10

0.
10

20
.0

0

20
.0

0

20
.0

0

0.
10

0.
10

0.
10

20
.0

0

20
.0

0

20
.0

0

R = 0.9 R = 0.98

cor
p
r
o
c =

0.5
cor

p
r
o
c =

1

0.10 0.15 0.20 0.25 0.300.10 0.15 0.20 0.25 0.30

0.00

0.25

0.50

0.75

1.00

1.25

0.00

0.25

0.50

0.75

1.00

1.25

Basic Work

R
at

io
to

th
e

ba
se

lin
e

mapping LowerBound deP deR inE random

(a) Comparing mapping strategies when using time-time as
scheduling strategy

0.
10

0.
10

0.
10

20
.0

0

20
.0

0

20
.0

0

0.
10

0.
10

0.
10

20
.0

0

20
.0

0

20
.0

0

0.
10

0.
10

0.
10

20
.0

0

20
.0

0

20
.0

0

0.
10

0.
10

0.
10

20
.0

0

20
.0

0

20
.0

0

R = 0.9 R = 0.98

cor
p
r
o
c =

0.5
cor

p
r
o
c =

1

0.10 0.15 0.20 0.25 0.300.10 0.15 0.20 0.25 0.30

0.00

0.25

0.50

0.75

1.00

1.25

0.00

0.25

0.50

0.75

1.00

1.25

Basic Work

R
at

io
to

th
e

ba
se

lin
e

scheduling LowerBound
energy-energy

energy-time
time-energy

time-time
randomShuffling

(b) Comparing scheduling strategies when using deP as map-
ping strategy

Figure 6.5: Ratio of energy consumption using different mapping and scheduling strategies when vary-
ing basicWork andRi, under small failure rate, with βb/w = 1 and cortask = 0.5.

Utilization and reliability threshold

From Figures 6.5 and 6.6, we observe the performance of different mapping and scheduling criteria
when varying basicWork andRi.

We remark that the results are similar under big and small failure rates when we have corproc not
close to 1. For example, we can see the case corproc = 0.5 in the first row of Figures 6.5 and 6.6. During
the mapping phase, deR has a slightly worse performance than inE and deP, which perform similarly
to the lower bound. During the scheduling phase, all criteria have similar performance, including the
random strategy and the lower bound.

On the contrary, with corproc ≈ 1, the heuristics perform differently with big and low failure rates.
For the small failure rate, during the mapping phase, we see from the second row of Figure 6.5a that deR
is worse than inE and deP and has a performance similar to the random case, while inE and deP provide
results similar to the lower bound. During the scheduling phase, in the second line of Figure 6.5b we
can still see similar performance for all criteria. For the big failure rate case, during the mapping phase,
the second row of Figure 6.6a shows that the difference between different criteria becomes smaller when
basicWork and Ri increase. Inversely, the difference with the lower bound becomes larger, but it is still
less than 10% (except random), even in the worst case. For small values of basicWork and Ri, deR
performs worse, but when basicWork and Ri increase, deR becomes similar to inE, or even better. deP
has always better or similar performance than deR and inE. For the scheduling phase, from the second
row of Figure 6.6b, we can still find similar performance on all our criteria, but their difference with the
lower bound increases to 10% as in the mapping phase. The reason is that with the increase of system
load, it becomes harder to map all replicas to their best processors, while the lower bound is calculated
without considering utilization constraints.

Number of failures

We counted the number of replicas that failed during the execution in each experiment. In the set with
small failure rate, we have on average 0.44% failed replicas. Thus, in most of the cases, it is enough to

94 CHAPTER 6. HETEROGENEOUS PLATFORMS
1.

10

1.
80

2.
40

20
.1

0

20
.3

0

20
.7

0

1.
60

3.
00

4.
50

20
.0

0

20
.8

0

22
.8

0

1.
00

1.
70

2.
50

21
.4

0

25
.0

0

28
.8

0

1.
70

3.
40

5.
20

24
.8

0

33
.7

0

40
.5

0

R = 0.8 R = 0.95

cor
p
r
o
c =

0.5
cor

p
r
o
c =

1

0.10 0.15 0.20 0.25 0.300.10 0.15 0.20 0.25 0.30

0.00

0.25

0.50

0.75

1.00

1.25

0.00

0.25

0.50

0.75

1.00

1.25

Basic Work

R
at

io
to

th
e

ba
se

lin
e

mapping LowerBound deP deR inE random

(a) Comparing mapping strategies when using time-time as
scheduling strategy

0.
80

1.
40

1.
90

20
.0

0

20
.0

0

20
.1

0

1.
40

2.
70

4.
20

20
.0

0

20
.3

0

21
.8

0

0.
80

1.
50

2.
10

20
.4

0

23
.4

0

26
.6

0

1.
50

3.
30

5.
20

23
.9

0

32
.9

0

39
.9

0

R = 0.8 R = 0.95

cor
p
r
o
c =

0.5
cor

p
r
o
c =

1

0.10 0.15 0.20 0.25 0.300.10 0.15 0.20 0.25 0.30

0.00

0.25

0.50

0.75

1.00

1.25

0.00

0.25

0.50

0.75

1.00

1.25

Basic Work

R
at

io
to

th
e

ba
se

lin
e

scheduling LowerBound
energy-energy

energy-time
time-energy

time-time
randomShuffling

(b) Comparing scheduling strategies when using deP as map-
ping strategy

Figure 6.6: Ratio of energy consumption using different mapping and scheduling strategies when vary-
ing basicWork andRi, under big failure rate, with βb/w = 1 and cortask = 0.5.

have a single replica mapped on the processor that costs the least energy, because failures are scarce. On
the contrary, in the set with big failure rate, the average rate of failed replicas increases to 7.57%. We
can observe that the deP mapping method used in conjunction with time criterion for choosing primary
replica when processors are highly correlated, or with energy criterion in other cases achieves the best
performance, or a performance similar to the best observed one, in both cases. This confirms that the
performance of our best heuristics is not affected by the failure rate.

Success rate

All the tested heuristics were able to find a valid solution in all tested configurations with small failure
rate. And in the big failure rate cases, heuristics were able to build valid solutions for more than 99.94%
of the instances. The very high success rate of our experiments shows the robustness of our approach.

Summary

In conclusion, our strategies can save more than 40% of the energy consumed by the baseline, except in
the high processor correlation case. The ratio to the baseline can be as low as 20% in the best case.

As for the different criteria used in the heuristics, we find that the deP method is the best processor
ordering during the mapping phase.

For scheduling, we can find from the result that, all our primary-secondary choosing criteria have
a similar result as the lower bound, except a difference of 10% in the case of corproc ≈ 1. This means
that our primary-secondary choosing heuristic performs well. On the other hand, we point out that
strategies with the same method for choosing the primary replica but different methods for choosing
secondary replicas, perform similarly. Hence the strategy for choosing the primary replica has much
more impact than the one for choosing secondary replicas. We can find that, time-time and time-energy
criteria performs better when corproc ≈ 1, and energy-energy and energy-time have better performance
in other cases.

6.6. CONCLUSION 95

The performance of these best heuristics is only 17.0% higher than the lower bound in the worst case.
Furthermore, we report a median value only 3.5% higher than that of the lower bound; and the average
value is only 4.3% higher. We can confidently conclude that our best strategies perform remarkably well
over the whole experimental setting.

6.6 Conclusion

In this work, we have studied the problem of executing periodic real-time tasks on an heterogeneous
platform, with several objectives: minimizing the energy consumption, guaranteeing some reliability
thresholds, and meeting all deadlines. For each task, we decide how many replicas should be launched,
and on which processors to map them. We tagged one replica per task as “primary” replica and the other
ones as “secondary” replicas. To obtain an absolute measure for the evaluation of our heuristics, we
have computed a theoretical lower bound on energy consumption. Extensive simulations show that our
best heuristic always achieve very good performance, very close to the lower bound (on average only
4% higher than this lower bound). This performance was reached by considering processors in the deP
order when mapping the replicas of a task (roughly speaking, deP is the ratio of a task failure rate by its
energy cost), by executing primary replicas as soon as possible and secondary ones as late as possible,
and by tagging replicas as “primary” using an earliest completion time criterion when processors are
highly correlated, using an smallest energy criterion otherwise. Furthermore, while all decisions are
taken with the worst-case execution times (WCETs) of tasks as only input, the simulations used the
actual execution times; the best heuristic always achieved excellent performance even when the actual
execution times were far smaller than the WCETs, showing the robustness of our approach.

Future work will aim at extending the algorithms to periodic graphs of tasks instead of independent
task sets. The dependences between tasks will dramatically complicate the mapping and scheduling
problems.

96 CHAPTER 6. HETEROGENEOUS PLATFORMS

Conclusion

In this thesis, we have studied two challenging problems, namely, resilience and energy efficiency, that
must be addressed to cope with future Exascale platforms. More precisely, we designed new scheduling
strategies to take multiple different objectives into account (e.g., minimizing execution time, achiev-
ing predefined reliability goal, minimizing energy consumption). Given a multi-criteria optimization
problem, we first studied its complexity. Either we proved its NP-completeness and designed efficient
polynomial-time heuristics, or we proposed optimal solutions (for certain steps). Then, we used ex-
tensive simulations to evaluate the effectiveness of our methods, during which we compared with the
state-of-the-art results whenever there exist, or we analytically computed the lower bound as a reference.

There are two parts in this manuscript, where we studied workflow applications and real-time ap-
plications respectively. In Part I, we focused on scheduling workflows (task graphs) onto a parallel
platform, which is subject to fail-stop errors. Checkpointing is applied to cope with failures, but it
also introduces redundancy in time. Obviously, in order to minimize the total execution time, the fre-
quency of checkpointing (putting checkpoints after which tasks) should be carefully designed, which
is supposed to depend on failure rate, task execution time and checkpointing cost etc. By studying the
actual executions (see examples in Sections 2.1 and 3.1), we identified ‘processor interference’ as the
main source of massive re-execution in case of a failure. It is because a failure on one processor will
cause task re-execution on other processors, during which another failure may occur. This may lead to
infinite execution time if there is no appropriate checkpointing strategies. Based on this observation,
we succeeded in designing optimal strategies for M-SPGS and general-purpose heuristics for arbitrary
workflows. The main work and contributions are summarized in the following two paragraphs:

Optimal solutions for special classes of task graphs (Chapter 2)

In the first step, we took advantage of the recursive structure of M-SPGS and scheduled them as a set
of superchains using proportional mapping heuristic, which enabled us to optimally checkpoint inside
each of the super chain given that all exit tasks are checkpointed. We proposed a novel idea of ‘task
checkpoints’ that save not only the output files of the checkpointed task, but also unsaved files in local
memory that will be used afterwards. Moreover, our method enables us to evaluate the makespan by
sampling the expected execution time of each task individually and by Monte-Carlo simulations. For
CKPTNONE strategy, when applied to general DAGs, we have established that the problem of computing
the expected makespan is #P-complete.

Generic approaches for arbitrary task graphs (Chapter 3)

Following the previous results, we extended our methods to general task graphs. Besides checkpointing
all the crossover dependencies in order to avoid processor interference, we identified ‘induced tasks’, by
checkpointing which we could take advantage of possible idle times and isolate a sequence of tasks with-
out waiting time. This enabled us to properly reuse the dynamic programming proposed in Chapter 2

97

98 Conclusion

to optimally put checkpoints inside each sequence of tasks. Moreover, we provided a loose checkpoint-
ing strategy in case that the failures are rare. We revisited the classical list scheduling algorithms and
provided their variations in order to reduce the crossover dependencies, thus checkpointing cost. To
evaluate the makespan, we designed a discrete-event simulator. Extensive simulations showed that our
strategies achieved an efficient trade-off between CKPTALL and CKPTNONE. To the best of our knowl-
edge, we proposed the first scheduling and checkpointing strategies for general workflows beyond a
chain of tasks.

In Part II, we studied real-time task allocation onto homogeneous/heterogeneous platforms that are
subject to transient faults. Replication is considered to ensure a prescribed reliability threshold, which
also introduces resources redundancy that may lead to huge energy consumption and/or exceeding dead-
lines. We do not want to add replicas at any cost (in terms of energy consumption), nor miss any
deadline, because timeliness is as important as correctness for real-time systems. Therefore, we faced
a complicated tri-optimization problem. We identified overlaps between replicas as a main source of
energy consumption. It is because once a task replica succeed, we could safely interrupt the current
executing replicas of the task or completely cancel those have not been launched yet. By simultaneously
considering the three criteria (i.e., deadlines, reliability and energy), we designed heuristics to decide
the number of replicas for each task, to map and schedule replicas onto processors, in order to meet all
deadlines and the predefined reliability threshold, while minimizing energy consumption by reducing
overlaps between replicas. We also proved several complexity results for the sole scheduling phase. The
main contributions are summarized as below:

Homogeneous platforms (Chapter 5)

This chapter is dedicated to homogeneous platforms, which means that we have identical processors.
This gave an advantage that we could pre-compute the number of replicas needed for each task at each
frequency level to meet its reliability goal. We improved the state-of-the-art approach through three
steps: 1) we used a more realistic formula for expected energy consumption at the replica setting phase;
2) we used a layered WFD mapping heuristic in order to spread primaries and secondaries over proces-
sors and lead to a more balanced load; and 3) we designed several scheduling heuristics to start primary
replicas as soon as possible and to delay secondary replicas to minimize overlapping, which is achieved
by re-ordering chunks between intervals, pre-fetching available primary replicas and taking advantages
of idle times. Extensive experiments conducted for various range of parameters shown that our best
scheduling heuristics significantly outperform the competitor with an average gain in energy of 20%.

Heterogeneous platforms (Chapter 6)

Here, we faced a more complicated problem than in the previous chapter, as each processor has different
parameters (i.e., speed, failure rate, power). The set of processors chosen for each task matters, no only
for minimizing overlapping, but also because each processor performs differently for each single task.
In other words, a processor achieves different levels of reliability and consumes different amount of en-
ergy for different tasks. We were able to conclude that: 1) in which order we consider processors in the
mapping phase and 2) how to choose primary replica and secondary replicas in the scheduling phase are
the two most important criteria for minimizing energy. To assess the performance of proposed heuris-
tics, besides comparing to the random baseline, we computed a theoretical lower bound and launched
exhaustive experiments with comprehensive set of parameters. Results showed that our best heuristic
always achieves a performance that is far better than the baseline (with a gain of 40%), and is very close
to the lower bound (with an average value only 4% higher than the lower bound).

99

Perspectives and future work

The work conducted in this thesis can be pursued in multiple directions. Throughout this thesis, at the
end of each chapter, we have pointed out several interesting future directions. We review here some
short-term and long-term perspectives.

Short-term perspectives

In short term, we plan to improve the identified weaknesses in our current work, as well as extend our
solutions to different types of applications or to more general models. We list below several promising
topics:

• In the work of Part I, we focused on a DAG of atomic tasks. Extending our approach to a DAG
of parallel tasks would be an interesting topic. Such an extension raises yet another significant
challenge: the number of processors assigned to each task becomes a parameter to the proposed
solutions, which will cause a dramatic impact on both performance and resilience; in particular,
changing the processor number will also change the probability of failure;

• In the study of homogeneous real-time platforms (Chapter 5), we were able to pre-compute replica
sets for different frequency levels. But the actual energy consumption of the most energy efficient
replica configuration is not necessarily minimal. For example, a lower frequency with more repli-
cas may lead to unavoidable overlapping or may use more processors that consume more static
energy. We should further study the influences of different replica configurations on the total
number of processors needed and on the optimization steps afterwards. Moreover, the formula
for calculating expected energy consumption at the first step could be further refined, as now we
pessimistically assumed that all replicas are executed sequentially;

• For real-time heterogeneous platforms studied in Chapter 6, we could extend our strategies to
processors with multiple frequency levels and/or a set of tasks with multiple deadlines. Different
deadlines complicate the problem, as we have to take into consideration task preemption, instead
of simple permutation of tasks in the same interval. This will call for a different scheduling
strategy, e.g., EDF, as well as advanced approaches for minimizing overlaps;

• It could also be interesting to implement and test our methods in practice. But the difficulty would
be that it is not easy to control the failure rate on real machines, thus to verify the effectiveness of
our approaches under different scenarios.

Long-term perspectives: failure-aware DAG scheduling

For workflows, we would like to study failure-aware DAG scheduling, with could enable us to simul-
taneously consider the scheduling and checkpointing phases. As already pointed out, this would give a
chance to global improvements, but we are lacking techniques for the moment. Extending the branch
and bound methods reviewed in Section 1.2.3 for scheduling DAGs would be a possible way. A natural
idea would be incorporating checkpoint decisions into the evaluation function to estimate the makespan
that can be achieved when exploring a solution sub-tree. However, to achieve a satisfactory result, our
first step would be finding an accurate evaluation function to prune solution sub-trees; in other words,
we have to answer how to analytically estimate the expected execution time of a complete solution. This
is the core to apply the branch and bound method, as the approach requires a lower-bound on the objec-
tive achievable by any solution in the considered branch. The second question to answer would be the

100 Conclusion

scalability of the approach since the problem is more combinatorial with checkpoints than it was. What
is limitation on the size of graphs we could tackle? Overall, this is a challenging proposition, and we
hope to get some new breakthroughs.

Long-term perspectives: energy-aware real-time workflow allocation

Considering real-time workflows instead of independent task sets is an interesting direction, and the
dependencies between tasks will further complicate the problem. As already pointed out, the over-
lap between replicas is a main source for energy consumption. We would like to dig into workflow
scheduling techniques aiming at reducing overlaps between replicas of the same task while meeting all
deadlines. From what we have seen from literature, the common assumption for real-time workflows is
that all the tasks in one workflow instance have the same deadline, which gives more flexibility when
scheduling tasks. Also, there is a work considering the same problem but for a DAG. In [114] (Chap-
ter 3), the authors consider cost minimization (which can be energy minimization) when scheduling a
DAG under deadline and reliability constraints. In this work, because of the dependency between tasks
and the as-soon-as-possible scheduling, their solution tends to schedule the different replicas of a single
task simultaneously. This can lead to a significant waste of energy in our context. Therefore, designing
a real-time workflow allocation method, which obeys all dependencies and deadlines and maximizing
slots between primary replica and secondary replicas of a same task instance, will be our first step to
extend our work to real-time workflow applications.

Bibliography

[1] M. Albrecht, P. Donnelly, P. Bui, and D. Thain. “Makeflow: A portable abstraction for data
intensive computing on clusters, clouds, and grids.” In: 1st ACM SWEET SIGMOD. ACM. 2012.

[2] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock. “Kepler: an extensible
system for design and execution of scientific workflows.” In: Proc. of 16th SSDBM. IEEE, 2004,
pp. 423–424.

[3] M. Ansari, S. Safari, A. Y. Khaksar, M. Salehi, and A. Ejlali. “Peak Power Management to
Meet Thermal Design Power in Fault-Tolerant Embedded Systems.” In: IEEE Transactions on
Parallel and Distributed Systems (2018).

[4] I. Assayad, A. Girault, and H. Kalla. “A Bi-Criteria Scheduling Heuristic for Distributed Embed-
ded Systems under Reliability and Real-Time Constraints.” In: Dependable Systems Networks
(DSN). IEEE, 2004.

[5] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. “StarPU: a unified platform for task
scheduling on heterogeneous multicore architectures.” In: Concur. and Comp.: Pract. and Exp.
23.2 (2011), pp. 187–198.

[6] G. Aupy, A. Benoit, H. Casanova, and Y. Robert. “Scheduling computational workflows on
failure-prone platforms.” In: Int. J. of Networking and Computing 6.1 (2016), pp. 2–26.

[7] H. Aydin and Q. Yang. “Energy-Aware Partitioning for Multiprocessor Real-Time Systems.” In:
Proc. 17th Int. Symp. Parallel and Distributed Processing. IPDPS ’03. IEEE Computer Society,
2003.

[8] R. Baldoni, J. .-.-. Helary, A. Mostefaoui, and M. Raynal. “A communication-induced check-
pointing protocol that ensures rollback-dependency trackability.” In: Proc. IEEE 27th Interna-
tional Symposium on Fault Tolerant Computing. IEEE, 1997, pp. 68–77.

[9] L. Bautista Gomez and F. Cappello. “Detecting and Correcting Data Corruption in Stencil Ap-
plications through Multivariate Interpolation.” In: FTS. IEEE, 2015.

[10] L. Bautista Gomez and F. Cappello. “Detecting Silent Data Corruption Through Data Dynamic
Monitoring for Scientific Applications.” In: SIGPLAN Notices 49.8 (2014), pp. 381–382.

[11] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. “Assessing general-purpose algorithms to cope
with fail-stop and silent errors.” In: ACM Trans. Parallel Computing 3.2 (2016).

[12] E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, and F. Cappello. “Lightweight Silent Data Cor-
ruption Detection Based on Runtime Data Analysis for HPC Applications.” In: HPDC. ACM,
2015.

[13] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and K. Vahi. “Characterization of
scientific workflows.” In: Workflows in Support of Large-Scale Science (WORKS). IEEE, 2008,
pp. 1–10.

[14] E. Bini and G. C. Buttazzo. “Measuring the performance of schedulability tests.” In: Real-Time
Systems 30.1-2 (2005), pp. 129–154.

[15] H. L. Bodlaender and B. de Fluiter. “Parallel algorithms for series parallel graphs.” In: Algo-
rithms - ESA’96. Springer, 1996, pp. 277–289.

101

102 APPENDIX . BIBLIOGRAPHY

[16] H. L. Bodlaender and T. Wolle. “A Note on the Complexity of Network Reliability Problems.”
In: IEEE Trans. Inf. Theory 47 (2004), pp. 1971–1988.

[17] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou. “Algorithm-based fault tolerance applied to
high performance computing.” In: J. Parallel Distrib. Comput. 69.4 (2009), pp. 410–416.

[18] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I. Reuther, J. P. Robertson,
M. D. Theys, B. Yao, D. Hensgen, et al. “A comparison of eleven static heuristics for mapping
a class of independent tasks onto heterogeneous distributed computing systems.” In: Journal of
Parallel and Distributed computing 61.6 (2001), pp. 810–837.

[19] L. C. Canon and E. Jeannot. “Correlation-Aware Heuristics for Evaluating the Distribution of
the Longest Path Length of a DAG with Random Weights.” In: IEEE Trans. Parallel Distributed
Systems (2016).

[20] L.-C. Canon, M. El Sayah, and P.-C. Héam. “A markov chain monte carlo approach to cost
matrix generation for scheduling performance evaluation.” In: 2018 International Conference
on High Performance Computing & Simulation (HPCS). IEEE. 2018, pp. 460–467.

[21] C. Cao, T. Herault, G. Bosilca, and J. Dongarra. “Design for a Soft Error Resilient Dynamic
Task-Based Runtime.” In: IPDPS. IEEE, 2015, pp. 765–774.

[22] K. Cao, G. Xu, J. Zhou, T. Wei, M. Chen, and S. Hu. “QoS-Adaptive Approximate Real-
Time Computation for Mobility-Aware IoT Lifetime Optimization.” In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2018), pp. 1–1. ISSN: 0278-0070.
DOI: 10.1109/TCAD.2018.2873239.

[23] K. Cao, J. Zhou, P. Cong, L. Li, T. Wei, M. Chen, S. Hu, and X. S. Hu. “Affinity-driven modeling
and scheduling for makespan optimization in heterogeneous multiprocessor systems.” In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (2018).

[24] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir. “Toward Exascale Resilience:
2014 update.” In: Supercomputing frontiers and innovations 1.1 (2014).

[25] H. Casanova, J. Herrmann, and Y. Robert. “Computing the expected makespan of task graphs
in the presence of silent errors.” In: P2S2’2016, the 9th Int. Workshop on Programming Models
and Systems Software for High-End Computing. IEEE Press, 2016.

[26] J. Choi, J. J. Dongarra, L. S. Ostrouchov, A. P. Petitet, D. W. Walker, and R. C. Whaley. “De-
sign and implementation of the ScaLAPACK LU, QR, and Cholesky factorization routines.” In:
Scientific Programming 5.3 (1996), pp. 173–184.

[27] M. Chtepen, F. H. A. Claeys, B. Dhoedt, F. D. Turck, P. Demeester, and P. A. Vanrolleghem.
“Adaptive Task Checkpointing and Replication: Toward Efficient Fault-Tolerant Grids.” In:
IEEE Trans. Parallel Distributed Systems 20.2 (2009), pp. 180–190.

[28] E. G. Coffman Jr., M. R. Garey, and D. S. Johnson. “Approximation Algorithms for Bin Packing:
A Survey.” In: Approximation Algorithms for NP-hard Problems. Ed. by D. S. Hochbaum. PWS
Publishing Co., 1997, pp. 46–93.

[29] A. Darte, Y. Robert, and F. Vivien. Scheduling and automatic parallelization. Birkhäuser, 2000.
ISBN: 978-3-7643-4149-7.

[30] R. I. Davis and A. Burns. “A Survey of Hard Real-time Scheduling for Multiprocessor Sys-
tems.” In: ACM Comput. Surv. 43.4 (Oct. 2011), 35:1–35:44. ISSN: 0360-0300. DOI: 10.1145/
1978802.1978814. URL: http://doi.acm.org/10.1145/1978802.1978814.

https://doi.org/10.1109/TCAD.2018.2873239
https://doi.org/10.1145/1978802.1978814
https://doi.org/10.1145/1978802.1978814
http://doi.acm.org/10.1145/1978802.1978814

103

[31] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, G. B.
Berriman, J. Good, et al. “Pegasus: A framework for mapping complex scientific workflows
onto distributed systems.” In: Scientific Programming 13.3 (2005), pp. 219–237.

[32] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling, R. Mayani, W. Chen,
R. Ferreira da Silva, M. Livny, and K. Wenger. “Pegasus, a Workflow Management System for
Science Automation.” In: Future Generation Computer Systems 46 (2015), pp. 17–35.

[33] A. Dixit and A. Wood. “The impact of new technology on soft error rates.” In: 2011 International
Reliability Physics Symposium. IEEE. 2011, 5B–4.

[34] J. Dıaz, J. Petit, and M. Serna. “A survey of graph layout problems.” In: ACM Computing Surveys
34.3 (2002), pp. 313–356.

[35] A. B. Downey. “The structural cause of file size distributions.” In: MASCOTS 2001. IEEE. 2001,
pp. 361–370.

[36] M. Drozdowski. Scheduling for Parallel Processing. Computer Communications and Networks.
Springer, 2009.

[37] R. Duan, R. Prodan, and T. Fahringer. “Dee: A distributed fault tolerant workflow enactment
engine for grid computing.” In: International Conference on High Performance Computing and
Communications. Springer. 2005, pp. 704–716.

[38] T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri, S. Podlipnig, J. Qin, M.
Siddiqui, H.-L. Truong, et al. “Askalon: A development and grid computing environment for
scientific workflows.” In: Workflows for e-Science. Springer, 2007, pp. 450–471.

[39] X. Fan, C. S. Ellis, and A. R. Lebeck. “The synergy between power-aware memory systems
and processor voltage scaling.” In: International Workshop on Power-Aware Computer Systems.
Springer. 2003, pp. 164–179.

[40] Frequency Behavior-Intel. https://en.wikichip.org/wiki/intel/frequency_
behavior.

[41] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, 1979.

[42] A. Girault and H. Kalla. “A novel bicriteria scheduling heuristics providing a guaranteed global
system failure rate.” In: IEEE Trans. Dependable and Secure Computing 6.4 (2009), pp. 241–
254.

[43] H. H. Greenberg. “A Branch-Bound Solution to the General Scheduling Problem.” In: Oper. Res.
16.2 (1968), pp. 353–361.

[44] T. Guo, J. Liu, W. Hu, and M. Wei. “Energy-Aware Fault-Tolerant Scheduling Under Reliability
and Time Constraints in Heterogeneous Systems.” In: Intelligent Computing Methodologies. Ed.
by D.-S. Huang, M. M. Gromiha, K. Han, and A. Hussain. Springer, 2018, pp. 36–46.

[45] Y. Guo, D. Zhu, H. Aydin, J.-J. Han, and L. T. Yang. “Exploiting primary/backup mechanism
for energy efficiency in dependable real-time systems.” In: Journal of Systems Architecture 78
(2017), pp. 68–80. ISSN: 1383-7621. DOI: https://doi.org/10.1016/j.sysarc.
2017.06.008. URL: http://www.sciencedirect.com/science/article/
pii/S1383762116302624.

[46] J. N. Hagstrom. “Computational complexity of PERT problems.” In: Networks 18.2 (1988),
pp. 139–147.

https://en.wikichip.org/wiki/intel/frequency_behavior
https://en.wikichip.org/wiki/intel/frequency_behavior
https://doi.org/https://doi.org/10.1016/j.sysarc.2017.06.008
https://doi.org/https://doi.org/10.1016/j.sysarc.2017.06.008
http://www.sciencedirect.com/science/article/pii/S1383762116302624
http://www.sciencedirect.com/science/article/pii/S1383762116302624

104 APPENDIX . BIBLIOGRAPHY

[47] L. Han. Checkpointing Workflows: Simulation Code. https://doi.org/10.6084/m9.
figshare.5057650.v3. 2017.

[48] J.-J. Han, W. Cai, and D. Zhu. “Resource-aware Partitioned Scheduling for Heterogeneous Mul-
ticore Real-time Systems.” In: Proceedings of the 55th Annual Design Automation Conference.
DAC ’18. San Francisco, California: ACM, 2018, 124:1–124:6. ISBN: 978-1-4503-5700-5. DOI:
10.1145/3195970.3196103. URL: http://doi.acm.org/10.1145/3195970.
3196103.

[49] L. HAN. “Heterogeneous real-time systems.” In: (Mar. 2020). DOI: 10 . 6084 / m9 .
figshare . 11925423 . v1. URL: https : / / figshare . com / articles /
Heterogeneous_real-time_systems/11925423.

[50] L. Han, L.-C. Canon, H. Casanova, Y. Robert, and F. Vivien. Checkpointing Workflows for Fail-
Stop Errors. Research Report 9068. Short version appears in the proceedings of the IEEE Cluster
Conference, 2017 Extended version will appear in IEEE Trans. Computers, 2018. INRIA, May
2017.

[51] L. Han, L.-C. Canon, J. Liu, f. vivien frédéric, and Y. Robert. Code to schedule for pe-
riodic real-time tasks under reliability constraints with minimal energy consumption. Sept.
2019. DOI: 10.6084/m9.figshare.9778319.v1. URL: https://figshare.
com/articles/Code_to_schedule_for_periodic_real- time_tasks_
under_reliability_constraints_with_minimal_energy_consumption/
9778319/1.

[52] L. Han, Y. Gao, J. Liu, Y. Robert, and F. Vivien. Energy-aware strategies for reliability-oriented
real-time task allocation on heterogeneous platforms. Research report 92324. INRIA, Feb. 2020.

[53] Q. Han. “Energy-aware Fault-tolerant Scheduling for Hard Real-time Systems.” PhD thesis.
Florida International University, 2015. DOI: 10.25148/etd.FIDC000077.

[54] M. A. Haque, H. Aydin, and D. Zhu. “On reliability management of energy-aware real-time
systems through task replication.” In: IEEE Transactions on Parallel and Distributed Systems
28.3 (2017), pp. 813–825.

[55] K. Hashimoto, T. Tsuchiya, and T. Kikuno. “Fault-secure scheduling of arbitrary task graphs to
multiprocessor systems.” In: Proceeding International Conference on Dependable Systems and
Networks. DSN 2000. 2000, pp. 203–212. DOI: 10.1109/ICDSN.2000.857536.

[56] T. Hérault and Y. Robert, eds. Fault-Tolerance Techniques for High-Performance Computing.
Computer Communications and Networks. Springer Verlag, 2015.

[57] U. Hönig and W. Schiffmann. “A Parallel Branch–and–Bound Algorithm for Computing Opti-
mal Task Graph Schedules.” In: Grid and Cooperative Computing: Second International Work-
shop, GCC 2003, Shanghai, China, December 7-10, 2003, Revised Papers, Part II. Ed. by M. Li,
X.-H. Sun, Q. Deng, and J. Ni. Springer, 2004, pp. 18–25.

[58] K. Huang, X. Jiang, X. Zhang, R. Yan, K. Wang, D. Xiong, and X. Yan. “Energy-Efficient Fault-
Tolerant Mapping and Scheduling on Heterogeneous Multiprocessor Real-Time Systems.” In:
IEEE Access 6 (2018), pp. 57614–57630. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2018.
2873641.

[59] K.-H. Huang and J. A. Abraham. “Algorithm-Based Fault Tolerance for Matrix Operations.” In:
IEEE Trans. Comput. 33.6 (1984), pp. 518–528.

https://doi.org/10.6084/m9.figshare.5057650.v3
https://doi.org/10.6084/m9.figshare.5057650.v3
https://doi.org/10.1145/3195970.3196103
http://doi.acm.org/10.1145/3195970.3196103
http://doi.acm.org/10.1145/3195970.3196103
https://doi.org/10.6084/m9.figshare.11925423.v1
https://doi.org/10.6084/m9.figshare.11925423.v1
https://figshare.com/articles/Heterogeneous_real-time_systems/11925423
https://figshare.com/articles/Heterogeneous_real-time_systems/11925423
https://doi.org/10.6084/m9.figshare.9778319.v1
https://figshare.com/articles/Code_to_schedule_for_periodic_real-time_tasks_under_reliability_constraints_with_minimal_energy_consumption/9778319/1
https://figshare.com/articles/Code_to_schedule_for_periodic_real-time_tasks_under_reliability_constraints_with_minimal_energy_consumption/9778319/1
https://figshare.com/articles/Code_to_schedule_for_periodic_real-time_tasks_under_reliability_constraints_with_minimal_energy_consumption/9778319/1
https://figshare.com/articles/Code_to_schedule_for_periodic_real-time_tasks_under_reliability_constraints_with_minimal_energy_consumption/9778319/1
https://doi.org/10.25148/etd.FIDC000077
https://doi.org/10.1109/ICDSN.2000.857536
https://doi.org/10.1109/ACCESS.2018.2873641
https://doi.org/10.1109/ACCESS.2018.2873641

105

[60] S. Hwang and C. Kesselman. “Grid workflow: a flexible failure handling framework for the
grid.” In: High Performance Distributed Computing, 2003. Proceedings. 12th IEEE Interna-
tional Symposium on. IEEE. 2003, pp. 126–137.

[61] G. Jacques-Silva, Z. Kalbarczyk, B. Gedik, H. Andrade, K. L. Wu, and R. K. Iyer. “Modeling
stream processing applications for dependability evaluation.” In: Dependable Systems Networks
(DSN). IEEE, 2011.

[62] R. Jejurikar and R. Gupta. “Dynamic voltage scaling for systemwide energy minimization in
real-time embedded systems.” In: Proceedings of the 2004 international symposium on Low
power electronics and design. ACM. 2004, pp. 78–81.

[63] H. Jin, X.-H. Sun, Z. Zheng, Z. Lan, and B. Xie. “Performance Under Failures of DAG-based
Parallel Computing.” In: CCGRID ’09. IEEE Computer Society, 2009.

[64] D. Johnson, A. Demers, J. Ullman, M. Garey, and R. Graham. “Worst-Case Performance Bounds
for Simple One-Dimensional Packing Algorithms.” In: SIAM Journal on Computing 3.4 (1974),
pp. 299–325.

[65] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi. “Characterizing and
profiling scientific workflows.” In: Future Generation Computer Systems 29.3 (2013), pp. 682–
692.

[66] E. Kail, P. fchtpen, and M. Kozlovszky. “A novel adaptive checkpointing method based on in-
formation obtained from workflow structure.” In: Computer Science 17.3 (2016).

[67] M. C. Kurt, S. Krishnamoorthy, K. Agrawal, and G. Agrawal. “Fault-tolerant Dynamic Task
Graph Scheduling.” In: SC ’14. IEEE Press, 2014, pp. 719–730.

[68] J.-C. Laprie. “Dependable computing and fault-tolerance.” In: Digest of Papers FTCS-15 (1985),
pp. 2–11.

[69] C.-Y. Lin, T.-H. Chen, and Y.-N. Cheng. “On improving fault tolerance for heterogeneous
hadoop mapreduce clusters.” In: 2013 International Conference on Cloud Computing and Big
Data. IEEE. 2013, pp. 38–43.

[70] List of Green500. https://www.top500.org/green500/.

[71] C. L. Liu and J. W. Layland. “Scheduling algorithms for multiprogramming in a hard-real-time
environment.” In: Journal of the ACM (JACM) 20.1 (1973), pp. 46–61.

[72] R. Lucas, J. Ang, K. Bergman, S. Borkar, W. Carlson, L. Carrington, G. Chiu, R. Colwell, W.
Dally, J. Dongarra, et al. “Top ten exascale research challenges.” In: DOE ASCAC subcommittee
report (2014), pp. 1–86.

[73] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and Prob-
abilistic Analysis. Cambridge University Press, 2005.

[74] R. H. Möhring. “Scheduling under Uncertainty: Bounding the Makespan Distribution.” In: Com-
putational Discrete Mathematics: Advanced Lectures. Ed. by H. Alt. Springer, 2001, pp. 79–97.

[75] J. A. Moreno, O. S. Unsal, J. Labarta, and A. Cristal. “NanoCheckpoints: A Task-Based Asyn-
chronous Dataflow Framework for Efficient and Scalable Checkpoint/Restart.” In: 23rd Euromi-
cro PDP. 2015, pp. 99–102.

[76] S. Moulik, R. Chaudhary, and Z. Das. “HEARS: A heterogeneous energy-aware real-time sched-
uler.” In: Microprocessors and Microsystems 72 (2020), p. 102939. ISSN: 0141-9331. DOI:
https://doi.org/10.1016/j.micpro.2019.102939. URL: http://www.
sciencedirect.com/science/article/pii/S0141933119302017.

https://www.top500.org/green500/
https://doi.org/https://doi.org/10.1016/j.micpro.2019.102939
http://www.sciencedirect.com/science/article/pii/S0141933119302017
http://www.sciencedirect.com/science/article/pii/S0141933119302017

106 APPENDIX . BIBLIOGRAPHY

[77] “CHAPTER 1 - Introduction.” In: Architecture Design for Soft Errors. Ed. by S. Mukher-
jee. Burlington: Morgan Kaufmann, 2008, pp. 1–41. ISBN: 978-0-12-369529-1. DOI: https:
//doi.org/10.1016/B978- 012369529- 1.50003- 3. URL: http://www.
sciencedirect.com/science/article/pii/B9780123695291500033.

[78] Pegasus. Pegasus Workflow Generator. https://confluence.pegasus.isi.edu/
display/pegasus/WorkflowGenerator. 2014.

[79] M. L. Pinedo. Scheduling: Theory, Algorithms, and Systems. 5th. Springer, 2016.

[80] A. Pothen and C. Sun. “A mapping algorithm for parallel sparse Cholesky factorization.” In:
SIAM J. on Scientific Computing 14.5 (1993), pp. 1253–1257.

[81] J. S. Provan and M. O. Ball. “The Complexity of Counting Cuts and of Computing the Proba-
bility that a Graph is Connected.” In: SIAM J. Comp. 12.4 (1983), pp. 777–788.

[82] X. Qin and H. Jiang. “A novel fault-tolerant scheduling algorithm for precedence constrained
tasks in real-time heterogeneous systems.” In: Parallel Computing 32.5-6 (2006), pp. 331–356.

[83] W. Qiu, Z. Zheng, X. Wang, and X. Yang. “An efficient fault-tolerant scheduling algorithm for
periodic real-time tasks in heterogeneous platforms.” In: 16th IEEE International Symposium on
Object/component/service-oriented Real-time distributed Computing (ISORC 2013). June 2013,
pp. 1–7. DOI: 10.1109/ISORC.2013.6913213.

[84] Results with three real frequencies sets. https : / / figshare . com / s /
7cd9483ae5e56421d0e7.

[85] N. B. Rizvandi, A. Y. Zomaya, Y. C. Lee, A. J. Boloori, and J. Taheri. “Multiple frequency
selection in DVFS-enabled processors to minimize energy consumption.” In: Energy-Efficient
Distributed Computing Systems (2012), pp. 443–463.

[86] M. Safari and R. Khorsand. “Energy-aware scheduling algorithm for time-constrained workflow
tasks in DVFS-enabled cloud environment.” In: Simulation Modelling Practice and Theory 87
(2018), pp. 311–326. ISSN: 1569-190X. DOI: https://doi.org/10.1016/j.simpat.
2018.07.006. URL: http://www.sciencedirect.com/science/article/
pii/S1569190X18300984.

[87] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Vol. 24. Algorithms and
Combinatorics. Springer-Verlag, 2003.

[88] D. Sculli. “The Completion Time of PERT Networks.” In: The Journal of the Operational Re-
search Society 34.2 (1983), pp. 155–158.

[89] S. Shahul and O. Sinnen. “Scheduling Task Graphs Optimally with A*.” In: J. Supercomput.
51.3 (2010), pp. 310–332.

[90] M. Shantharam, S. Srinivasmurthy, and P. Raghavan. “Fault Tolerant Preconditioned Conjugate
Gradient for Sparse Linear System Solution.” In: ICS. ACM, 2012.

[91] S. Z. Sheikh and M. A. Pasha. “Energy-Efficient Multicore Scheduling for Hard Real-Time
Systems: A Survey.” In: ACM Trans. Embed. Comput. Syst. 17.6 (Dec. 2018), 94:1–94:26. ISSN:
1539-9087. DOI: 10.1145/3291387. URL: http://doi.acm.org/10.1145/
3291387.

[92] R. F. da Silva, W. Chen, G. Juve, K. Vahi, and E. Deelman. “Community resources for enabling
research in distributed scientific workflows.” In: e-Science (e-Science), 2014 IEEE 10th Interna-
tional Conference on. Vol. 1. IEEE. 2014, pp. 177–184.

https://doi.org/https://doi.org/10.1016/B978-012369529-1.50003-3
https://doi.org/https://doi.org/10.1016/B978-012369529-1.50003-3
http://www.sciencedirect.com/science/article/pii/B9780123695291500033
http://www.sciencedirect.com/science/article/pii/B9780123695291500033
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://doi.org/10.1109/ISORC.2013.6913213
https://figshare.com/s/7cd9483ae5e56421d0e7
https://figshare.com/s/7cd9483ae5e56421d0e7
https://doi.org/https://doi.org/10.1016/j.simpat.2018.07.006
https://doi.org/https://doi.org/10.1016/j.simpat.2018.07.006
http://www.sciencedirect.com/science/article/pii/S1569190X18300984
http://www.sciencedirect.com/science/article/pii/S1569190X18300984
https://doi.org/10.1145/3291387
http://doi.acm.org/10.1145/3291387
http://doi.acm.org/10.1145/3291387

107

[93] R. M. van Slyke. “Monte Carlo Methods and the PERT Problem.” In: Operations Research 11.5
(1963), pp. 839–860.

[94] D. C. Snowdon, G. Van Der Linden, S. M. Petters, and G. Heiser. “Accurate run-time predic-
tion of performance degradation under frequency scaling.” In: Workshop on Operating Systems
Platforms for Embedded Real-Time applications. 2007, p. 58.

[95] R. Sridharan and R. Mahapatra. “Reliability Aware Power Management for Dual-processor
Real-time Embedded Systems.” In: Proceedings of the 47th Design Automation Conference.
DAC ’10. Anaheim, California: ACM, 2010, pp. 819–824. ISBN: 978-1-4503-0002-5. DOI: 10.
1145/1837274.1837480. URL: http://doi.acm.org/10.1145/1837274.
1837480.

[96] O. Subasi, G. Yalcin, F. Zyulkyarov, O. Unsal, and J. Labarta. “Designing and Modelling Selec-
tive Replication for Fault-Tolerant HPC Applications.” In: CCGRID. IEEE, 2017.

[97] O. Subasi, O. S. Ünsal, J. Labarta, G. Yalcin, and A. Cristal. “CRC-Based Memory Reliability
for Task-Parallel HPC Applications.” In: IPDPS. 2016, pp. 1101–1112.

[98] A. Taherin, M. Salehi, and A. Ejlali. “Reliability-Aware Energy Management in Mixed-
Criticality Systems.” In: IEEE Transactions on Sustainable Computing (2018).

[99] T. Tobita and H. Kasahara. “A standard task graph set for fair evaluation of multiprocessor
scheduling algorithms.” In: Journal of Scheduling 5.5 (2002), pp. 379–394.

[100] R. Tolosana-Calasanz, J. Á. Bañares, P. Álvarez, J. Ezpeleta, and O. Rana. “An uncoordinated
asynchronous checkpointing model for hierarchical scientific workflows.” In: Journal of Com-
puter and System Sciences 76.6 (2010), pp. 403–415.

[101] H. Topcuoglu, S. Hariri, and M.-y. Wu. “Performance-effective and low-complexity task
scheduling for heterogeneous computing.” In: IEEE transactions on parallel and distributed
systems 13.3 (2002), pp. 260–274.

[102] S. Toueg and Ö. Babaoğlu. “On the Optimum Checkpoint Selection Problem.” In: SIAM J. Com-
put. 13.3 (1984).

[103] T. Tsai, Y. Chen, X. He, and C. Li. “STEM: A Thermal-Constrained Real-Time Scheduling for
3D Heterogeneous-ISA Multicore Processors.” In: IEEE Transactions on Computers 67.6 (June
2018), pp. 874–889. ISSN: 2326-3814. DOI: 10.1109/TC.2017.2783941.

[104] J. Valdes, R. E. Tarjan, and E. L. Lawler. “The Recognition of Series Parallel Digraphs.” In:
Proc. of STOC’79. ACM, 1979, pp. 1–12.

[105] E. B. Valentin. “Scheduling hard real-time tasks in heterogeneous multiprocessor platforms sub-
ject to energy and temperature constraints.” PhD thesis. Universidade Federal do Amazonas,
2017.

[106] L. G. Valiant. “The Complexity of Enumeration and Reliability Problems.” In: SIAM J. Comput.
8.3 (1979), pp. 410–421.

[107] P. Wang, K. Zhang, R. Chen, H. Chen, and H. Guan. “Replication-Based Fault-Tolerance for
Large-Scale Graph Processing.” In: 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks. June 2014, pp. 562–573.

[108] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt. “Techniques to reduce the soft error
rate of a high-performance microprocessor.” In: ACM SIGARCH Computer Architecture News
32.2 (2004), p. 264.

https://doi.org/10.1145/1837274.1837480
https://doi.org/10.1145/1837274.1837480
http://doi.acm.org/10.1145/1837274.1837480
http://doi.acm.org/10.1145/1837274.1837480
https://doi.org/10.1109/TC.2017.2783941

108 APPENDIX . BIBLIOGRAPHY

[109] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and I. Foster. “Swift: A language
for distributed parallel scripting.” In: Parallel Computing 37.9 (2011), pp. 633–652.

[110] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen, S. Soiland-Reyes,
I. Dunlop, A. Nenadic, P. Fisher, et al. “The Taverna workflow suite: designing and executing
workflows of Web Services on the desktop, web or in the cloud.” In: Nucleic acids research
(2013), gkt328.

[111] X. Xiao, G. Xie, C. Xu, C. Fan, R. Li, and K. Li. “Maximizing reliability of energy constrained
parallel applications on heterogeneous distributed systems.” In: Journal of Computational Sci-
ence 26 (2018), pp. 344–353. ISSN: 1877-7503. DOI: https://doi.org/10.1016/
j.jocs.2017.05.002. URL: http://www.sciencedirect.com/science/
article/pii/S1877750317304933.

[112] G. Xie, G. Zeng, X. Xiao, R. Li, and K. Li. “Energy-Efficient Scheduling Algorithms for Real-
Time Parallel Applications on Heterogeneous Distributed Embedded Systems.” In: IEEE Trans-
actions on Parallel and Distributed Systems 28.12 (Dec. 2017), pp. 3426–3442. ISSN: 2161-
9883. DOI: 10.1109/TPDS.2017.2730876.

[113] G. Xie, Y. Chen, X. Xiao, C. Xu, R. Li, and K. Li. “Energy-efficient fault-tolerant schedul-
ing of reliable parallel applications on heterogeneous distributed embedded systems.” In: IEEE
Transactions on Sustainable Computing 3.3 (2018), pp. 167–181.

[114] G. Xie, G. Zeng, R. Li, and K. Li. Scheduling Parallel Applications on Heterogeneous Dis-
tributed Systems. Springer Singapore, 2019.

[115] H. Xu, R. Li, C. Pan, and K. Li. “Minimizing energy consumption with reliability goal on het-
erogeneous embedded systems.” In: Journal of Parallel and Distributed Computing 127 (2019),
pp. 44–57.

[116] C. Yang, J. Chen, T. Kuo, and L. Thiele. “An approximation scheme for energy-efficient schedul-
ing of real-time tasks in heterogeneous multiprocessor systems.” In: 2009 Design, Automation
Test in Europe Conference Exhibition. Apr. 2009, pp. 694–699. DOI: 10.1109/DATE.2009.
5090754.

[117] H.-E. Zahaf, A. E. H. Benyamina, R. Olejnik, and G. Lipari. “Energy-efficient scheduling for
moldable real-time tasks on heterogeneous computing platforms.” In: Journal of Systems Ar-
chitecture 74 (2017), pp. 46–60. ISSN: 1383-7621. DOI: https://doi.org/10.1016/
j.sysarc.2017.01.002. URL: http://www.sciencedirect.com/science/
article/pii/S138376211730019X.

[118] H.-E. Zahaf, N. Capodieci, R. Cavicchioli, M. Bertogna, and G. Lipari. “A C-DAG task model
for scheduling complex real-time tasks on heterogeneous platforms: preemption matters.” work-
ing paper or preprint. Jan. 2019. URL: https://hal.archives-ouvertes.fr/hal-
01971594.

[119] F. Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki, and H. Abbasi. “Enabling In-situ
Execution of Coupled Scientific Workflow on Multi-core Platform.” In: Proc. 26th IEEE IPDPS.
2012, pp. 1352–1363.

[120] B. Zhao, H. Aydin, and D. Zhu. “Energy management under general task-level reliability con-
straints.” In: 18th Real-Time and Embedded Technology and Applications Symposium (RTAS).
IEEE. 2012, pp. 285–294.

https://doi.org/https://doi.org/10.1016/j.jocs.2017.05.002
https://doi.org/https://doi.org/10.1016/j.jocs.2017.05.002
http://www.sciencedirect.com/science/article/pii/S1877750317304933
http://www.sciencedirect.com/science/article/pii/S1877750317304933
https://doi.org/10.1109/TPDS.2017.2730876
https://doi.org/10.1109/DATE.2009.5090754
https://doi.org/10.1109/DATE.2009.5090754
https://doi.org/https://doi.org/10.1016/j.sysarc.2017.01.002
https://doi.org/https://doi.org/10.1016/j.sysarc.2017.01.002
http://www.sciencedirect.com/science/article/pii/S138376211730019X
http://www.sciencedirect.com/science/article/pii/S138376211730019X
https://hal.archives-ouvertes.fr/hal-01971594
https://hal.archives-ouvertes.fr/hal-01971594

109

[121] J. Zhou, T. Wei, M. Chen, X. S. Hu, Y. Ma, G. Zhang, and J. Yan. “Variation-aware task alloca-
tion and scheduling for improving reliability of real-time MPSoCs.” In: DATE. 2018, pp. 171–
176.

[122] W. Zhu, H. Chen, and F. Hu. “ASC: Improving spark driver performance with automatic spark
checkpoint.” In: 2016 18th International Conference on Advanced Communication Technology
(ICACT). IEEE. 2016, pp. 607–611.

[123] J. Zhuo and C. Chakrabarti. “System-level energy-efficient dynamic task scheduling.” In: Pro-
ceedings of the 42nd annual Design Automation Conference. ACM. 2005, pp. 628–631.

110 APPENDIX . BIBLIOGRAPHY

List of publications

Articles in International Refereed Journals

[J1] L. Han, L. Canon, H. Casanova, Y. Robert, and F. Vivien. “Checkpointing Workflows for Fail-
Stop Errors.” In: IEEE Transactions on Computers 67.8 (Aug. 2018), pp. 1105–1120. ISSN:
2326-3814. DOI: 10.1109/TC.2018.2801300.

[J2] L. Han, V. L. Fèvre, L.-C. Canon, Y. Robert, and F. Vivien. “A generic approach to scheduling
and checkpointing workflows.” In: The International Journal of High Performance Computing
Applications 33.6 (2019), pp. 1255–1274. DOI: 10.1177/1094342019866891. eprint:
https://doi.org/10.1177/1094342019866891. URL: https://doi.org/10.
1177/1094342019866891.

Articles in International Refereed Conferences

[C1] L. Han, J. Liu, T. Zhou, J. Sun, and X. Chen. “Safety Requirements Specification and Verifi-
cation for Railway Interlocking Systems.” In: 2016 IEEE 40th Annual Computer Software and
Applications Conference (COMPSAC). Vol. 1. Atlanta, GA, USA, June 2016, pp. 335–340. DOI:
10.1109/COMPSAC.2016.182.

[C2] L. Han, L. Canon, H. Casanova, Y. Robert, and F. Vivien. “Checkpointing Workflows for Fail-
Stop Errors.” In: 2017 IEEE International Conference on Cluster Computing (CLUSTER). Hon-
olulu, HI, USA, Sept. 2017, pp. 487–497. DOI: 10.1109/CLUSTER.2017.14.

[C3] L. Han, V. Le Fèvre, L.-C. Canon, Y. Robert, and F. Vivien. “A Generic Approach to Scheduling
and Checkpointing Workflows.” In: Proceedings of the 47th International Conference on Par-
allel Processing. ICPP 2018. Eugene, OR, USA: ACM, 2018, 28:1–28:10. ISBN: 978-1-4503-
6510-9. DOI: 10.1145/3225058.3225145. URL: http://doi.acm.org/10.1145/
3225058.3225145.

[C4] L. Han, L.-C. Canon, J. Liu, Y. Robert, and F. Vivien. “Improved energy-aware strategies for pe-
riodic real-time tasks under reliability constraints.” In: 40th IEEE Real-Time Systems Symposium
(RTSS). IEEE. 2019.

111

https://doi.org/10.1109/TC.2018.2801300
https://doi.org/10.1177/1094342019866891
https://doi.org/10.1177/1094342019866891
https://doi.org/10.1177/1094342019866891
https://doi.org/10.1177/1094342019866891
https://doi.org/10.1109/COMPSAC.2016.182
https://doi.org/10.1109/CLUSTER.2017.14
https://doi.org/10.1145/3225058.3225145
http://doi.acm.org/10.1145/3225058.3225145
http://doi.acm.org/10.1145/3225058.3225145

	Introduction
	Résumé français
	I Scheduling and checkpointing workflows for fail-stop errors
	Framework
	Introduction
	Related work
	Soft and silent errors
	Fail-stop failures
	Branch and bound methods

	Optimal solutions for special classes of task graphs
	Example
	Preliminaries
	Execution model
	Fault-tolerance model
	Minimal Series Parallel Graphs (M-SPG)
	Problem description and proposed approach
	Evaluation of expected makespan

	Scheduling M-SPGs
	Placing checkpoints in superchains
	From chains to superchains
	Checkpointing algorithm
	Technical remarks

	The CkptNone strategy
	#P-completeness
	Approximating the makespan

	Experiments
	Experimental methodology
	Expected makespan

	Conclusion

	Generic approaches for arbitrary task graphs
	Example
	Scheduling and checkpointing algorithms
	Scheduling heuristics
	Checkpointing strategies

	Experiments
	Experimental methodology
	Simulator
	Results

	Conclusion

	II Energy-aware strategies for reliability-oriented real-time task allocation
	Framework
	Introduction
	Related work
	Scheduling real-time applications on homogeneous platforms
	Scheduling for heterogeneous platforms
	Scheduling real-time applications on heterogeneous platforms

	Homogeneous platforms
	Previous approach
	Optimization problem
	Replica sets
	Mapping and static schedule
	Dynamic schedule

	Motivational example
	New strategies
	Replica sets
	Mapping and static schedule
	Dynamic schedule
	Heuristics
	Complexity analysis

	Performance evaluation
	Experimental methodology
	Results

	Conclusion

	Heterogeneous platforms
	Model
	Platform and tasks
	Power and energy
	Reliability
	Optimization objective
	Complexity

	Mapping
	Scheduling
	Lower bound
	Performance evaluation
	Experimental methodology
	Results

	Conclusion

	Conclusion
	Bibliography
	Publications

