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Title: Dynamics of a viscous incompressible flow in presence of a rigid body and of an
inviscid incompressible flow in presence of a source and a sink.

Abstract. In this thesis, we investigate properties of incompressible flows that interact with
a rigid body or a source and a sink. In the case of an incompressible viscous fluid that satisfies
the Navier Stokes equations in a 2D bounded domain well-posedness of Leray-Hopf weak
solutions is well-understood. Existence and uniqueness are proved. Moreover solutions are
continuous in time with values in L?(Q2) and they satisfy the energy equality. Recently the
problem of a rigid body moving in a viscous incompressible fluid modelled by the Navier-Stokes
equations coupled with the Newton laws that prescribe the motion of the solid, was also tackled
in the case where the no-slip boundary conditions were imposed. And the correspondent
well-posedness result for Leray-Hopf type weak solutions was proved. In this manuscript we
consider the case of the Navier-slip boundary conditions. In this setting, the existence result
for the coupled system was proved by Gérard-Varet and Hillairet in 2014. Here, we prove
that solutions are continuous in time, that they satisfy the energy equality and that they are
unique. Moreover we show an existence result for weak solutions of a viscous incompressible
fluid plus rigid body system in the case where the fluid velocity has an orthoradial part of
infinite energy.

For an inviscid incompressible fluid modelled by the Euler equations in a 2D bounded
domain, the case where the fluid is allowed to enter and to exit from the boundary was
tackled by Judovi¢ who introduced some conditions which consist in prescribing the normal
component of the velocity and the entering vorticity. In this manuscript we consider a bounded
domain with two holes, one of them is a source which means that the fluid is allowed to enter
in the domain and the other is a sink from where the fluid can exit. In particular we find the
limiting equations satisfied by the fluid when the source and the sink shrink to two different
points. The limiting system is characterized by a point source/sink and a point vortex in each
of the two points where the holes shrunk.

Keywords: Fluid mechanics, Navier-Stokes equations, fluid-structure interaction, source
and sink, Euler equations, asymptotic limit

Institution: Institut de Mathématiques de Bordeaux, 351, cours de la Libération, 33405,
Talence, France.



Titre : Dynamique d’un écoulement incompressible visqueux en présence d’un corps rigide
et d’'un écoulement incompressible non visqueux en présence d’une source et d’un puits.

Résumé. Dans cette these, nous étudions les propriétés des écoulements de fluides qui inter-
agissent avec un corps rigide ou avec une source et un puits. Dans le cas d’un fluide visqueux
incompressible qui satisfait les équations de Navier Stokes dans un domaine borné 2D, les solu-
tions faibles de Leray-Hopf sont bien comprises. L’existence et I'unicité sont prouvées. De plus,
les solutions sont continues en temps & valeurs dans L?(€2) et satisfont 1’égalité d’énergie clas-
sique. Plus récemment, le probleme d’un corps rigide en mouvement dans un fluide visqueux
incompressible modélisé par les équations de Navier-Stokes couplées aux lois de Newton qui
décrivent le mouvement du solide a également été abordé dans le cas ou des conditions aux
limites sans glissement ont été prescrites. Des résultats analogues concernant les solutions de
Leray-Hopf ont également été démontrés dans ce contexte. Dans ce manuscrit, nous étudions
le cas de conditions aux limites de Navier-Slip. Dans ce cadre, le résultat d’existence pour le
systéme couplé a été prouvée par Gérard-Varet et Hillairet en 2014. Ici, nous montrons que les
solutions sont continues en temps, qu’elles satisfont ’égalité d’énergie et qu’elles sont uniques.
De plus, nous montrons un résultat d’existence des solutions faibles dans le cas d’un fluide
incompressible visqueux auquel s’ajoute un corps rigide dans le cas ou la vitesse du fluide a
une partie orthonormale d’énergie infinie.

Pour un fluide incompressible non visqueux modélisé par les équations d’Euler dans un
domaine borné 2D, le cas ou le fluide est autorisé a entrer et a sortir de la frontiére a été traité
par Judovi¢ qui a introduit certaines conditions limites consistant a prescrire la composante
normale de la vitesse et de la vorticité entrante. Dans ce manuscrit, nous considérons un
domaine borné qui posséde deux trous. L’un d’eux est une source, ce qui signifie que le fluide
est autorisé a entrer dans le domaine et l'autre est un puits ou le fluide peut sortir. En
particulier, nous établissons les équations limites vérifiées par le fluide lorsque la source et le
puits se contractent en deux points différents. Le systeme limite est caractérisé par un point
source/puits et un point vortex en chacun des deux points ot les trous se sont contractés.

Mots-clés: Meécaniques des fluides, équations de Navier-Stokes, interaction fluide-structure,
source et puits, équations d’Euler, limite asymptotique.

Institut: Institut de Mathématiques de Bordeaux, 351, cours de la Libération, 33405, Tal-
ence, France.
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Chapter 1

Introduction (Frangais)

Dans cette bréve introduction, nous présentons les principaux résultats qui seront abordés
dans la thése. Pour une discussion plus large sur le sujet, nous renvoyons au chapitre
sutvant.

Dans ce manuscrit, nous étudions l'interaction des écoulements qui interagissent avec un
corps rigide ou avec une source et un puits. Ces problemes font partie de la branche des
mathématiques appelée mécanique des fluides, et qui a pour objectif ’étude des propriétés
d’un fluide. Nous nous limiterons ici au cas des fluides incompressibles & densité constante.
Ceux-ci sont divisés en deux classes principales: les fluides parfaits qui satisfont les équations
de type Euler et les fluides visqueux qui satisfont les équations de Navier-Stokes. Le systéme
incompressible d’Euler avec densité constante p a été introduit par Euler dans [Eul57] en 1757
et est composé des équations suivantes

p O+ (u-V)u)+Vp=0
divu =0

ou u est un champ de vitesse et p est une fonction a valeurs dans R qui désigne la pression. Les
équations de Navier-Stokes ont été introduites par Navier et Stokes dans [Sto80] et modélisent
le mouvement d’un fluide visqueux incompressible avec densité constante. Le systéme prend
la forme suivante

p O+ u-Vu) —vAu+ Vp =0
divu =0

ou p et v sont deux constantes positives décrivant la densité et la viscosité du fluide respec-
tivement. Ces systémes ont été largement étudiés au siecle dernier et les principaux résultats
d’existence et d’unicité seront traités dans la version anglaise de 'introduction.

Cette these est divisée en deux parties: dans la premiere partie, nous étudions le probleme
d’un objet rigide se déplacant dans un fluide visqueux. Ce probléme est modélisé par un
systeme couplant les équations incompressibles de Navier-Stokes aux lois de Newton décrivant

7



Chapter 1. Introduction (Francais) 8

la dynamique de I'objet. Nous étudions en particulier les propriétés des solutions faibles de
Hopf-Leray en dimension deux et prouvons que ces solutions sont continues en temps a valeurs
dans L?, satisfont 1’égalité d’énergie et sont uniques tant que le solide ne touche pas le bord. De
plus, dans le cas ou le systéme composé du fluide et du solide occupe tout R?, nous prouvons
I’existence du systeme couplé dans le cas ou ’énergie du fluide peut étre infinie.

Dans la deuxiéme partie, nous considérons 1’écoulement d’un fluide parfait incompressible
dans un domaine troué. Nous considérons en particulier le cas ol le domaine a exactement deux
trous. Du premier, le liquide ne peut qu’entrer (nous ’appellerons la source), tandis que de
lautre, le liquide ne peut que sortir (nous appellerons le puits). Les équations qui modélisent
le fluide sont les équations d’Euler. Dans cette thése, nous établissons ’équation limite lorsque
la taille de la source et celle du puits tend vers zéro. Nous démontrons également que les
solutions du systeme d’Euler avec une source et un puits macroscopiques convergent vers une
solution du systéme limite, pour des normes appropriées, lorsque les trous se contractent en
deux points distincts.

Dans les deux sections suivantes, nous présenterons les modeles mathématiques et décrirons
les principaux résultats de la these.

1.1 Modeéele mathématique d’un solide immergé dans un fluide
visqueux

Pour les problemes d’interaction fluide-structure, la dimension de I'espace physique est égale
a trois. Les modeles 2D décrivent des situations dans lesquelles le mouvement est homogene
dans une direction. Nous présentons maintenant le modele mathématique satisfait par un
solide dans un fluide visqueux soumis aux forces de Newton. Soit § est égal & R?, soit & un
sous-ensemble borné, simplement connexe et connexe, avec un bord lisse. Soit Sy un sous-
ensemble de ) fermé, connexe et simplement connexe, avec une bord lisse occupée par le
solide. Soit S(t) la position du corps rigide au temps t et F(t) = 2\ S(¢) le domaine du fluide.
Le systéme, ayant pour inconnues (S, u,p), prend la forme

p(?:+(u-V)u)—1/Au+Vp:0 pour z € F(t),

divu =0 pour z € F(t),

UN=uUsN

(D(u)n) -7 = —a(u—us) -7 pour z € 95(t),

(D(u)n) - 7 _U_Zuzg pour z € 012, si 2 borné,
lu| — 0 lz| — oo, si Q =R?, (1.1.1)
mh"(t) = —/ Ynds,
a8 (1)
Tr(t) = —/ (@ — h(D)* - Snds,
a8 ()
uli=0 = uo pour z € Fy,

h(0) = ho, K (0) =4y,  7(0) = rg.



9 1.2. Modele mathématique d’un source et d’un puits

Ici, u = (u1,u2) et p sont respectivement le champ de vitesse et la pression, p et v sont deux
constantes positives décrivent la densité et la viscosité du fluide respectivement, n et 7 sont
respectivement le vecteur normal quittant le domaine fluide et le vecteur tangent indirect, «
est une constante positive qui quantifie le glissement. De plus, m et J désignent la masse et
le moment d’inertie du corps rigide, tandis que le fluide a une densité constante de 1 et, sans
perte de généralité, on suppose que la viscosité est égale a 1. Le tenseur de contraintes de
Cauchy est défini par
Y = —pldy +2vD(u),

ot D(u) est le tenseur de déformation défini par
2D(u) = ((9ui + Ojuj))1<i,j<a-

Pour x = (x1,22) on note z le vecteur z = (—x9, 1), h/(t) est la vitesse du centre de masse
h(t) du corps rigide et r(t) est la vitesse angulaire. Nous indiquons la vitesse du solide par:

us(t,z) = h'(t) +r(t)(z — h(t))*.

1.1.1 Contribution

Prenons le cas ou €2 est borné. L’existence de solutions faibles de Hopf-Leray pour le systéme
(1.1.1) a été démontrée dans [GVH14] en dimension trois. Dans cette these, nous montrons que
la méme démonstration peut étre faite en dimension deux pour une définition plus restrictive
des solutions faibles. Nous prouvons que ces solutions sont continues en temps a valeurs dans
L?, satisfont I’égalité d’énergie et sont uniques. En particulier, pour obtenir I’égalité d’énergie,
nous avons utilisé une procédure d’approximation et une version du théoréme de Magenes-
Lions dans les domaines temporels. Ces idées ont également été utilisées dans [MNR19] pour
démontrer le caractére unique des solutions tridimensionnelles de (1.1.1) avec les conditions
de Prodi-Serrin. Pour montrer 'unicité, nous prouvons un résultat de régularité maximale
dans les espaces de Banach pour un systéme étroitement 1ié & (1.1.1), voir Théoreme 3.1.5.

Dans le cas ou 2 est le plan nous étendons le résultat d’existence [PS14] au cas ou I'énergie
cinétique du fluide peut étre infinie avec une structure tres précise. En particulier, si le solide
est un disque, le champ de vitesse se comporte comme

CBH@ b))+ on He) = aerir
u=pBH(x—h(t))" +a ou (@—W, ue L°(F)

et B est une constante en temps. Nous nous intéressons a ce probleme en vue d’étudier la
limite lorsque 'objet se contracte en un point et que la viscosité tend vers zéro. L’idée est
d’arriver a la limite & un systeéme similaire a celui étudié dans [GLS16]. Le systeme limite est
caractérisé par 1’équation d’Euler avec un vortex qui évolue sous l’effet d’une force de type
Kutta-Joukowsky. Une description plus détaillée sera présentée dans le chapitre suivant.

1.2 Modeéele mathématique d’un source et d’un puits

Commengons par présenter le systeme. Soit {2 un ouvert borné, connexe, simplement connexe
du plan avec un contour lisse. Soit ST et S~ deux sous-ensembles connexes, simplement
connexes et non vides de R? contenus de maniére compacte dans 2 avec un contour lisse et
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soit F = Q\ (8t US~) le domaine du fluide. Nous appelons S* la source et S~ le puits. Les
équations qui modélisent la dynamique pour les inconnues (u,p) prennent la forme

p(Ou+u-Vu)+Vp=0 pour (t,z) € Rt x F,
divu =0 pour (t,x) € R x F,
u-n=g pour (t,x) € RT x O.F, (1.2.1)
curlu =w™ pour (t,xr) € R x 98T,
u(0,.) =u™ pour z € F,

ot u : Rt x F — R? est un champ de vitesse, p : Rt x F — R est une pression, p est une
constante positive décrivant la densité, n le vecteur normal sortant du domaine F, g est la
composante normale de la vitesse sur le bord telle qu’elle ait une moyenne nulle et satisfasse
g< —c<0surR" x 98T, g>c>0sur Rt x 9S™, g = 0 sur R x 99, w™ est la vorticité
entrant et u™ telle que divu™ = 0 est la donnée initiale.

Le systéeme (1.2.1) a été introduit par Judovi¢ dans [Jud63]. Dans le méme article, il
a démontré 'existence et le caractére unique de solutions réguliéres pour des données ini-
tiales relativement régulier. L’existence de solutions moins réguliéres de (2.2.4) dans le cas
ou la vorticité est borné a été prouvée dans [Ale76]. L’auteur a utilisé une méthode de vis-
cosité évanescente. Dans ce manuscrit, nous présentons une démonstration alternative via un
théoréeme de point fixe de Schauder.

Le choix de compléter le systeme (1.2.1) en spécifiant la vorticité entrante n’est pas le
seul possible. Une autre possibilité consiste & prescrire des conditions sur la pression. Pour
un étude plus compléte du sujet, nous suggérons de lire [Mam10], ou I'auteur présente une
description exhaustive des travaux relatifs au systeme (2.2.4).

1.2.1 Contribution

Dans l'article [Jud63], Judovi¢ pose le probleme de la dynamique du systéme (1.2.1) lorsque
le diametres de la source et du puits tendent vers zéro. Cette question est ouverte et a été
rappelée dans [CS02], ou les auteurs ont prouvé l'existence de solutions faibles d’un systéme
comportant un nombre fini de sources. Dans ce manuscrit, nous établissons la limite du
systéme (1.2.1) quand S et S~ sont contractés respectivement en les points z; et z_ , avec
T4+ # x_. Pour décrire le systéme limite, il est plus facile de considérer la formulation en
w. On peut alors reconstituer la vitesse & partir de la vorticité via I’opérateur de Biot-Savart
Kq[] dans Q qui transforme une fonction w assez réguliére en un champ de vitesse Kq[']
comme solution a

div Kq[w] =0 pour z € 2,
curl Kgw] =w pour x € €,
Kqlw]-n=0 pour z € 0.

Nous avons également besoin de la contrepartie de I'opérateur de Biot-Savart pour résoudre
la partie du champ de vitesse associée a la source et au puits avec une divergence non nulle.
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Pour chaque fonction assez réguliere m dans €2, nous définissons Jqo[m] la solution de

div Jo[m] =m pour x € €,
curl Jo[m] =0 pour x € {2,
Ja[m]-n =0 pour z € 9f.

Une hypothese cruciale pour I’établissement du systéme limite de (1.2.1) lorsque le diameétre
de la source et du puits tend vers zéro est le fait que les intégrales de g et de gw™ sur ST
convergent vers les quantités p = p(t) et j = j(t) respectivement. Le systéme limite obtenu
est

8tw+u-Vw:j5x+—<j+jt/w>5x pour (t,z) € Rt x Q,
_F
u = Jao[pdy, — poy ]+ Kolw + Cy0y, +C_0;_] pour (t,z) € Rt x Q,
‘ t
C+(t):CZ+”—/ J pour t € R,
0
4 , t
C_(t)y=Cc" +/ w(t,.) —/ W' +/ J pour t € RT.
F F 0

Ici , désigne la mesure de Dirac au point . Nous voulons souligner que le systéme (1.2.1) est
caractérisé par la présence d’un point source et d’un vortex dans chacun des deux points z
et x_. De plus, leur intensité dépend en temps de m, j et w. Les quantités C; et C_ décrivent
les circulations respectives autour de ST et S~.
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Chapter 2

Introduction (English)

Dans cette introduction, nous présentons les résultats classiques d’existence et d’unicité pour
les équations d’Fuler et de Navier-Stokes incompressibles. Nous expliquons également les
principaux résultats de nos recherches.

Fluid dynamics is a branch of mathematics that aims to describe the behaviours of fluids.
There exists a wide literature on the subject and in this introduction we will focus on two
classical systems the FEuler equations and the Navier-Stokes equations.

Let d a natural number greater or equal to two and let  or the full space R? or an open
and bounded subset of R? with smooth boundary. Then the homogeneous incompressible
Euler equations with constant density p read as

(gtu—l—u Vu)—l—Vp:() in Rt x Q,
divu =0 in Rt x Q,
u-n=0 on RT x 99, if Q is bounded, (2.0.1)
lu| —0 as || — oo, if =R,
u(0,.) =u™ in Q,

where

uw:RT x Q — R?
is a vector field that describes the velocity of the fluid, more precisely the particle at position
x at time ¢ has velocity u(z,t). The function

p:RTxQ—R

is a scalar quantity and it describes the pressure. In the case where €2 is bounded, n denotes
the normal vector to the boundary 9§ exiting from the domain . Finally v : Q — R is
a divergence vector field tangent to the boundary and it is the initial condition. Moreover V
denotes the gradient, the i-th component of the convective term is

L Ouy

(u- Vu Zuj oz,

13
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XXI. Nous n'avons donc qu'd égaler ces forces aceélérarrices
avec les accélerations actuelles qie nous venons de trouver, & nous
obriendrans les trois équations fnivaiites :

d d f d. :.*
p— (D= +G+G)+=G)

d dv dv dv d
e—G)=G)+G)+G+=G)

1 dps d_w) 411) vv"u/) rfw)
R— (=G + @G+ G+ (G
Si nous ajoutons A ces trois équations premi¢rement celle, que nous a
fournie la confidération de la conrinuité du fluide :
dg
G

d. (J.fk d.qu. d. o
G+ +EH+(GFD) =0
& enlfuite celle que donne le rapport entre Iélafticicé p, la denfité 7,
& l'aurre qualicé », qui influé fur Vélatticicé p, ourre la denfiré 7

nous aurons cing équarions qui renferment toute la Théorie du mou-
vement des fluides.

Figure 2.1: Euler equations from [Eul57]

and the divergence operator is defined by

di —i%
vu = et
7j=1

The system (2.0.1) in dimension three was introduced in [Eul57] by L. Euler in 1757 and
it is one of the first example of PDE written in a modern style. Actually the system (2.0.1) is
a special version of the one presented by Euler in [Eul57], see in Figure 2.1, in fact we assume
the fluid to be incompressible, of constant density p and the external forces P, @ and R to be
zero. Physically the Euler system describes the behaviour of an inviscid fluid.

Later, C. L. M. H. Navier proposed a set of equations to model the motion of a homoge-
neous viscous fluid that were clarified by G. G. Stokes in [Sto80]. This system is called the
incompressible Navier-Stokes equations, and it reads as

p<;u+u-Vu)—uAu+Vp:0 in R™ x Q,
divu =0 in R x Q,
u=0 on RT x 99, if  is bounded, (2.0.2)
lu| —0 as |zr| — oo, if Q@ =R%,
u™(0,.) =ug in €,

where as before u : Rt x O — R? is a velocity field, p : RT x  — R is a pressure, the
positive constants p and v are respectively the density and the viscosity, the initial datum is
u™ : 0 — R which is a divergence free vector fields tangent to the boundary. Moreover the
Laplace operator is defined by

d 92
0“u;

Au = J
Y ]Z::lax

N

<
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The system (2.0.1) and (2.0.2) have been widely studied in the last century, in this in-
troduction we recall the classical result of well-posedness of Judovi¢ from [Jud63] relative to
(2.0.1), the existence of Leray-Hopf weak solutions and of strong solutions for the system
(2.0.2). Moreover we present the motivations and the main results of this thesis. Although we
presented the Euler system first we prefer to start by considering the results on Navier-Stokes
equations and then on the system (2.0.1).

2.1 Viscous fluids systems

This section is entirely dedicated to study some systems involving viscous fluids satisfying
the Navier-Stokes equations. We will start by recalling the classical result of existence of
Leray-Hopf weak solutions and of strong solutions in Hilbert space setting of (2.0.2). Then
we present some fluid-structure interaction problems. These types of systems couple the
equations of Navier-Stokes with the ones of some structures. The general difficulty that
occurs in the study of these systems is that the domain, where the equations are satisfied, is
time dependent and actually even depends on the solution itself. Then we will discuss about
alternative boundary conditions. Classically to couple the Navier-Stokes equations and the
fluid-structure systems, people use the no-slip boundary condition. Actually this is not the
only one that gives rise to a well-posedness theory. We will present the so called Navier-slip
boundary condition and we will explain the advantages and disadvantages in choosing this
conditions. Finally we will state our contributions concerning the study of viscous fluids.

2.1.1 Well-posedness for the Navier Stokes equations

To study well-posedness of the system (2.0.2), it is first necessary to choose an appropriate
definition of solution. In this subsection we consider two different definitions. The first one
was proposed by Leray and Hopf and deals with weak solutions and the second one establish
the concept of strong solutions in Hilbert space setting.

We start by giving the definition of Leray-Hopf weak solutions. We denote by C2°(Q;R?)
the set of smooth vector valued functions with compact support in Q, by LZ(Q2) the closure
in L2(2) of the divergence free functions in C°(€2; R%) and finally H, a0 =HgNL2.

Definition 2.1.1 (Leray-Hopf weak solutions). Let u™™® € L2(Q) the initial datum, then we

say that u € L®(R"; L*(Q)) N L*(R*; H] ((Q)) is a Leray-Hopf weak solution of (2.0.2) with
initial data u™ if

/pui"-go(o,.)dx—i—/ /pu-&tgo—i—/ /p(u-V)gD-u—l// /VUIVSDZO (2.1.1)
Q R+ Jo R+ JQ R+ JQ

for any ¢ € C®(;R%) such that divp = 0 in R x Q. Moreover it satisfies the following
energy inequality:

1 t 1 ;
f/ plul? (t,.)dz + 1// / \Vul® dedt < f/ plu'™?dz. (2.1.2)
2 Ja 0 JQ 2 Ja

for almost any ¢t € RT.
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In the special case of dimension two, it is not necessary to impose in the definition above
the condition (2.1.2). In fact any vector field u € L>®(R*;L*()) N L2(R*; H; 4()), that
satisfies (2.1.1), will verify also (2.1.2).

We now recall the definition of strong solutions in Hilbert space setting.

Definition 2.1.2. Let u™ € H_} () the initial datum, then we say that u € L*(0, T H(;O(Q)ﬂ
H2(Q))NHY0,T; L2(Q)) is a strong solution in the Hilbert space setting of (2.0.2) with initial
datum u™ if u satisfies almost everywhere (2.0.2) and u(0,.) = u®™.

The system (2.0.2) admits solutions in the sense of Definition 2.1.1 and of Definition 2.1.2.
Moreover strong solutions are unique. The situation is more complicated for weak solutions
and depends on the dimension. We postpone this discussion in Section 2.1.1.2. In what follow,
we first present the results of existence and then we treat the uniqueness issue for Leray-Hopf
solutions.

2.1.1.1 Existence

This subsection is dedicated to the study of existence of solution for the Navier-Stokes equa-
tions in the sense of Definition 2.1.1 and of Definition 2.1.2. We start by presenting the
classical existence result for Leray-Hopf weak solutions.

Theorem 2.1.1. Let u'™ € L2(2), then there exists u a weak solution of (2.0.2) in the sense
of Definition 2.1.1 with initial datum u™.

One of the possible proofs of this result makes use of a Faedo-Galerkin approximation and
the Aubin-Lions’ compactness lemma to pass to the limit in the non-linear term. For the
original proof see the works [Ler34] of Leray and [Hop50] of Hopf. About the existence of
strong solutions we can recall the classical result.

Theorem 2.1.2. Let Q bounded and let u'™ € H}(Q), then for a short time T > 0 there
exists a unique strong solution in the Hilbert space setting with initial datum u'™ in the sense
of Definition 2.1.2.

The proof of the above theorem can be done via a fixed point argument and the fact
that the Stokes operator associated with the linearisation of (2.0.2) generates an analytic
semigroup. The above result also provides uniqueness, moreover in dimension two solutions
are global, in other words T can be chosen equal to +o0o. In dimension three the solution is
global if we assume the initial data small enough in the H! norm.

Before moving to the discussion on uniqueness of weak solutions we note that if u is a
strong solution in the Hilbert space setting of (2.0.2), then w is a Leray-Hopf weak solution in
the sense of Definition 2.1.1 and satisfies the energy inequality (2.1.2).

2.1.1.2 Uniqueness

As presented before strong solutions of (2.0.2) are unique. The situation is different in the case
of Leray-Hopf weak solutions, in fact up to now uniqueness has been proved only in dimension
two by Ladyzhenskaya in [Lad67] and in dimension three it is an open problem.

We conclude this section by presenting the uniqueness result of Ladyzhenskaya and two
classical partial results of uniqueness in dimension three.
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Theorem 2.1.3. Let d = 2 the spatial dimention, let u'™™ € L2(Q) an initial datum and let u
a Leray-Hopf weak solution with initial datum u'™. Then w is continuous in time with values
in L2(Q) and satisfies the energy equality

1 t 1 ;
f/ p\u|2(t,.)dx+l// / \Vu|® dedt = f/ plut™Pdz,
2 Ja 0 Ja 2 Jo

for any t € RT. Moreover u is the unique Leray-Hopf weak solution with initial datum u™.

The proof of this result is based on the interpolation inequality

/Q|u|4 < C/Q |u|2/Q V2 (for @ c ®2) (2.1.3)

and a Gromwall estimate. The original proof is contained in [Lad67]. This proof can not be
trivially generalized in dimension three because the estimate (2.1.3) reads as

/Q uft < C (/Q W)% (/Q \WP)Q (for 0 C B,

when  is a subset of R3. As said before uniqueness of Leray-Hopf weak solutions is still open
but in the literature there are many partial results. Here we present two of them. The first
one is a strong-weak result that states that if there exists a strong solution for an initial datum
v than any Leray-Hopf weak solution with initial datum u*" is identically equal to the strong
one. And the second one is due to Prodi and states that if a Leray-Hopf solution satisfies some
better integrability property then it is unique in the class of solutions from Definition 2.1.1.
We start by stating the weak-strong uniqueness result.

Theorem 2.1.4. Let d = 3 the space dimension, let u™™ € L%(Q) an initial datum and let
@ a strong solution of (2.0.2) in sense of Definition 2.1.2 with initial datum u'. Then any
Leray-Hopf weak solution with initial datum u'™ is equal to 1.

We move to the result of Prodi. We say that a vector field u satisfies the Prodi-Serrin
condition if o
ue L3 (0,T; LP(2)) for some p € (3, +0o0]. (2.1.4)

We now state the uniqueness theorem.

Theorem 2.1.5. Let d = 3 the space dimension, let u'™ an initial datum and let u a Leray-
Hopf weak solution with initial datum u'™ such that it satisfies the Prodi-Serrin condition 2.1.4.
Then w is the unique Leray-Hopf weak solution of (2.0.2).

The original proof can be founded in [Pro59] and it is based on the fact that under the
condition (2.1.4), it is possible to close a Gronwall estimate similar to the one in [Lad67].

2.1.2 Fluid-structure interaction

The fluid-structure interaction problems are systems of equations coming from physical models
that couple the fluid equations with the ones that describe the structure. The study of
these problems is becoming more and more important in real life applications. Examples are
available in different scientific areas. For instance a boat sailing on the ocean, where the
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Figure 2.2: The domain = F(t) US(t).

water is the fluid and the structure is the boat. A submarine, in this case the structure is
totally immersed in the liquid and a swimming fish, which is a more complicated situation.
Analogously a flying plane is an example where the fluid is supposed to be compressible (for
an appropriate range of velocities). Another case is the veins, in this situation the blood
can be modelled by a non-Newtonian fluid and the veins by an elastic structure. Some more
recent applications are the wave-energy converters which are systems composed by oscillating
structures that transform the energy received by the waves in clean electric energy.

For fluid-structure problems the physical dimension is three. In this manuscript we consider
only 2D models that predict well motions that are independent of one specific direction. In
particular the problem that we will study in this thesis models the movement of a rigid body
in a viscous incompressible fluid. The system is contained in the plane and the unknown are
the velocity of the fluid u, the pressure p and the position of the solid §. The evolution of
the velocity field of the fluid and of the pressure is modelled by the Navier-Stokes equations
in the fluid domains and to recover the position of the rigid object it is enough to know the
velocity of the center of mass [ and the angular velocity r of the solid. These two quantities
satisfy the Newton laws

ml'(t) = F(t,u,p)
Jr'(t) =G(t,u,p),

where m and J are respectively the mass and the momentum of inertia and F' and G are
respectively the force and the torque. In our setting the force F' and the torque G are modelled
by the linear hydrodynamics force and torque and they read as

F(t,u,p) = — /as(t) ¥ (u, p)nds,

Gltup) =~ | (7 ROV D)

where ¥ = —pIdy +2vDu is the stress tensor with 2Du = Vu + Vu! the symmetric gradient,
n is the normal on the boundary of the solid entering in the solid, A is the position of the
center of mass and finally 2t = (z1,29)" = (—x2, 1) is the counterclockwise perpendicular
vector to x.

We are now able to write down the equations that describe the dynamics of the system.
At a mathematical level we have a domain ) which is or bounded with smooth boundary of
the all space R?, independent in time, which is the union of two time-dependent domains F (t)
and S(t), i.e. Q= F(t)US(t) as in Figure 2.2. Here F(t) is the part of the domain fulfilled by
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an incompressible viscous fluid, which satisfies Navier-Stokes equations and S(t) the part of
the domain which is occupied by the body which rigidly moves from the initial configuration
So following Newton’s laws. The system then reads as:
ou
p E%—(u-V)u —vAu+Vp=0 for x € F(t),
divu =0 for x € F(t),

U= Ug for z € 0S(t),
u= for z € 99, if  bounded,
lu| — 0 as |z| — oo, if @ = R? (2.1.5)

ml'(t) = —/ Y(u,p)nds,
a8 (1)

Fi®) = = [ @ ho) - Supnds,
0

ulp=0 = up for x € Fo,
h(0) = ho, 1(0) = lo, r(0) = ro.

where ug = [+ (z — h(t))*r and the position of the solid S(t) is recover by the velocity [ of its
center of mass and its angular velocity r. As you can easily see the above system consists of
the Navier-Stokes equations, the first two lines, the boundary conditions, the next three lines,
the Newton laws that are coupled with the fluid equations and finally the initial conditions.

The system (2.1.5) has been widely studied and all the corresponding well-posedness results
presented in Section 2.1 were proved. The two first existence results for Leray-Hopf weak
solutions can be found in [Jud74] and in [Ser87], where the authors assume that the domain
Q is R3. Around 2000, the case where € is bounded was tackled, in particular existence of
weak solutions was shown in [GLS00] and [CSMTO00]. Moreover in the case of finitely many
bodies existence was exhibit in [DE99], [Fei02], and [SMSTO02]. Regarding well-posedness of
strong solution we refer to [DE00]-|GMO00]-[Tak03] and [TT04].

Later in dimension two the uniqueness of Leray-Hopf type weak solutions of (2.1.5) was
proved in [GS15] and in [CNM19] the weak-strong uniqueness result in dimension three was
shown for slightly different boundary conditions that will be described in the next section.
Finally this year using also two ideas from [Bral9], that will be presented in Section 4.1.1-
4.1.2, in [MNR19] was proved a uniqueness result in three dimension under some Prodi-Serrin
type conditions (see 2.1.4).

2.1.2.1 Other fluid structure models

The study of the motion of a rigid body in a viscous fluid is only an example of fluid-structure
problem. This area of research is broad and in fast evolution. We now recall some of the fluid
structure-model that have been studied in the last decade. Here we are not hoping to present
an exhaustive list but we chose some of them to contextualized our coupled-system. Moreover
we chose in most of the case the literature associated with the weak well-posedness.

A dual system to (2.1.5) is the one that describes a viscous incompressible fluid in a
cavity. The well-posedness of the system was proved in [ST12] and the long time behaviour
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was considered in [Gall7], where the author shows a stabilizing effect of the fluid on the motion
of the rigid body.

Regarding the coupled system (2.1.5), it is possible to consider similar model where the
fluid behaves differently, in this case the first two equations of (2.1.5) are different. In the works
[FHNOS|, [Fei03] and [OT18], the authors studied the motion of some rigid body respectively
in a viscous incompressible non-Newtonian, in a viscous compressible and in a viscous-plastic
fluid, and in particular they proved existence of weak solutions.

Another possibility is to change the behaviour of the solid by considering an elastic body.
In this situation an existence result of strong solutions is proved in [CS05] via a fixed point
argument. Regarding elastic structure, it is possible to consider system where the structure
is on the boundary of the fluid domain. The literature related to this problem is wide and we
give as example the works [BadV04], [Bou07], [Leql1] and [DT19].

Let us also mention [SMSTTO08] where the authors studied well-posedness for strong solu-
tions of a simplify model that describes a swimming fish. In particular they consider a body
that deforms in a prescribed way and they study its interaction with a viscous fluid.

The last type of fluid-structure problem that we recall is when a rigid body is floating on
the boundary of the fluid. Few is known about the problem and the only work we are aware of
is [MSMTT18], where the authors consider the case of a cylinder floating on a liquid modelled
by the viscous water-waves. Actually in the case the fluid is inviscid more is known and the
well-posedness of the water-waves plus floating body is treated in [IL18], [Boc18] and [Benl7].

2.1.3 Navier-slip boundary condition

Classically the no-slip boundary conditions
u=0 on 0N

are used to close the Navier-Stokes equations to obtain a well-posedness theory. Physically
they model the fact the fluid is stuck to the boundary so it has the same speed as the boundary.
In the case where these conditions are used in the fluid-structure system (2.1.5), they bring to
the non-physical paradox that a sphere, immersed in the half upper three dimensional space
and subjected only to the gravity as external force, will not touch the boundary in finite time.
See for instance [Hil07] and [HT09].

In the literature also other types of boundary conditions are considered, for instance the
so called Navier-slip boundary conditions that read as

(Dun;t- :L: —Oau D o, (Qc R?),
where 7 is the counterclockwise tangent to n to the boundary 92 and o > 0 is a positive
constant. These conditions allow the fluid to slip on 0f2 and they appear naturally for example
in the study of microfluidics see [LBS07], [Hoc73] and in the study of the rugosity limit, see
[BENWO8]. Moreover they allow collision between the body and the boundary, see for example
[GVHW15], which is in contrast with the paradox of the no-slip conditions.

The advantages of the Navier-slip boundary conditions are at a physical level that they
do not give rise to the no-collision paradox in the fluid plus rigid body model and at a
mathematical level the inviscid limit is proved whereas it is an open problem in the no-slip
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case unless imposing some additional assumptions. The disadvantage is that a more careful
analysis has to be done to prove well-posedness of the fluid-structure problem (2.1.5) with
Navier-slip boundary conditions that will be written down only later in (3.0.1)-(3.0.9). The
difficulties arise from the fact that the extension of the fluid velocity by the rigid one inside
the body does not give an H' vector field.

In the case of the fluid alone all the well-posedness results of Section 2.1 can be quite easily
carried out. In the case of the coupled system (2.1.5) with Navier-slip boundary condition the
existence result of Leray-Hopf type weak solutions was proved in [GVH14] and existence of
strong solutions in Hilbert space setting in [Wan14].

Let us also mention [Kol18] where the author proves the small-time global controllability of
the solid motion (position and velocity) in the case where Q = R? and Navier slip-with-friction
boundary condition are prescribed on the solid boundary.

Before discuss the hypothesis that the slip « is a positive constant, we notice that in case
Q is bounded the boundary of the fluid domain F(t¢) is composed by two disconnected sets
00 and OS(t), on which is possible to prescribe two different boundary conditions. One of the
choice is the so called mixed boundary condition, which corresponds to impose no-slip on 9€2
and Navier-slip on dS(t) and it is used in [CN17] and [ABCNM18] where well-posedness of
respectively Leray-Hopf type weak solutions and of strong one in Hilbert space setting were
proved. Moreover the work [CNM19], that was mentioned before, deals with weak strong
uniqueness for mixed boundary conditions.

At the beginning of the section we present the Navier-slip boundary condition with « a
positive constant. Actually it is possible to consider space dependent «, even non positive.
The first well-posedness result of (2.0.2) in two dimension with Navier-slip conditions with
positive a € C?(9Q) was considered in [CMR98], in particular in this case existence and
uniqueness of strong solutions was proved. Later in [Kel06] existence of Leray-Hopf type weak
solutions was proved for a € L>(92) without any assumption on the sign. Finally in [IS11]
existence of weak solution was tacked for a € C?(992) where Q is a bounded three dimensional
domain.

In the case of the stationary Stokes and Navier-Stokes equations, recently in [AACG19]
was proved existence of weak and strong solutions with the friction o in L?(99) and H'/2(9%)
respectively. Moreover the authors consider also the non-Hilbert space setting.

2.1.4 Contributions

In this thesis we will study the system (2.1.5) with Navier-Slip boundary condition that will
be presented only later in (3.0.1)-(3.0.9). In the case where Q2 is a bounded subset of the two
dimensional plane, the main contributions of the manuscript come from [Bral9] and deal with
the proof of the energy equality and of the uniqueness for Leray-Hopf type weak solutions.
Moreover we will prove an existence result for strong solutions in Banach space setting which is
the counterpart of the works [GGH13]-[MT18] in the case of Navier-slip boundary conditions.

In particular to prove the energy equality, see Theorem 4.1.1, we show an approximation
procedure and a Magenes-Lions type theorem in time depending domains, see Section 4.1.1-
4.1.2. These two ideas were then used in [MNR19] to extend the uniqueness result in three
dimensions under some Prodi-Serrin type conditions of the fluid-structure problem (2.1.5)
with both no-slip and Navier-slip boundary conditions. About the proof of uniqueness we
follow the strategy presented in [GS15], where we use a special version of the existence result
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of strong solutions in Banach space setting, see Theorem 3.1.5.

In the case where () is equal to R? we consider the problem (2.1.5) with Navier-slip
boundary conditions and we extend the existence result [PS14] to the case where the fluid
kinetic energy is infinite and has a strong structure, more precisely in the case where the rigid
body is a homogeneous disk the fluid velocity u is assumed to behave like

. 2|
u=(H(x —h(t))+a, where H(z)= Sla?’
B is a fixed constant and @ is an L? function in the space variables. The motivation that
drives us to study this special infinite-energy solutions is to study the “inviscid+shrinking-
body” limit. For the inviscid limit we recall the result from [PS14], where the authors proved
that as v goes to zero, the solutions u, converge to the solution of the corresponding Euler
system. In [PS14], the “rigid+body” system occupies all the space R3, in the case of R? the
situation is a bit more tricky and the argument of [PS14] holds at least in the case where the
solid is a disk, see Appendix C. Moreover by the work [GLS16], we know that as the size of
the object goes to zero (and the mass remains constant) the system converges to a variant of
the vortex-wave system where the vortex, placed in the point occupied by the shrunk body is
accelerated by a Kutta-Joukowski-type lift force. In the massless case, i.e. the density of the
object is constant respect to the scale of the object, similar results are available when the fluid
satisfies incompressible Navier-Stokes equation and no-slip boundary conditions are prescribe
on the boundary of the solid, for example in [LT17] it is proven that for a fixed viscosity the
“fluid+disk” system converges to the Navier-Stokes system in all R? when the object shrinks
to a point. The goal of further studies is to understand the limiting equations when both the
viscosity and the size of the object go to zero at the same time (in both mass and massless
cases) and to find in the limit a similar system of the one in [GLS16]. We expect that the
appearance of a Kutta-Joukowski-type lift force in the limiting system is strictly related to the
presence of the circulation due to SH, i.e. in the absence of this term we do not expect to see
any force on the point mass in the limit. Indeed in the case where the vorticity is integrable,
0 describes the circulation at infinity.

2.2 Ideal fluids systems

We go back to the Euler system (2.0.1) which describes the motion of an incompressible perfect
fluid of density 1. In this section we fix the space dimension d = 2. The equations (2.0.1)
are well studied and a huge literature is available on the subject. In this short introduction
we will recall only a classical result due to Judovi¢ from [Jud63] and then will move to a
similar system introduced in [Jud64], which describes the flow of an incompressible inviscid
fluid through a given region. The existence of regular solutions was proved in [Jud64] and
existence of solutions with bounded vorticity was proved using a vanishing viscosity method
in [Ale76]. Judovi¢ in [Jud64] left open the question of well-posedness for equations satisfied
by the flow when the domain has some holes that shrink to points. In this Thesis we will
propose an alternative proof of the result presented in [Ale76], moreover we will answer to the
question proposed by Judovi¢ in the special case of source and a sink in a two dimensional
bounded domain. For a more exhaustive presentation of the subject we refer to [Mam10],
where a detailed description of the literature is made.
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In what follows we will first recall the existence result from [Jud63], we will write down
the system studied in [Jud64] and finally we will introduce our contributions.

2.2.1 Existence and uniqueness

For simplicity we assume that the domain  C R? is a bounded simply connected with smooth
boundary. Due to the fact that the space dimension is two, the curl operator is defined by

curl : Cl(Q;RQ) — C’O(Q;R) where curlv = d1va — Oyvy.
If we apply the curl operator to the Euler system (2.0.1) the equations become

Ow +u-Vw=0 in RT x Q (2.2.1)
w(0,.) =wy in

where RT = [0, 00) and u is recovered by the elliptic system

divu =0 in R x Q
curlu =w in R x Q (2.2.2)
u-n=0 on RT x 99,

with n the normal to the boundary exiting from Q. Judovi¢ defined in [Jud63] weak solutions
of (2.2.1)-(2.2.2) in the vorticity form as follow.

Definition 2.2.1 (Weak solutions in the vorticity form). Let wy € L%°(Q), then we say that a
couple (w,u) € L®(RT; L®(;R)) x L®(RT; LL(Q;R?)) is a weak solution of (2.2.1)-(2.2.2)
if for any ¢ € C°(R* x Q), it holds

/QwOLp(O,.)—l—/]w/gwﬁtgo—i—/lw/ﬂwu-Vga:0 (2.2.3)

and u satisfies the elliptic problem (2.2.2) almost everywhere.

In the above definition ££(2) denotes the space of Log-Lipschitz functions, which is the
set of functions f € L*°(Q2) such that the following norm is finite.

B 1f(x) = f(y)]
1l zc) = 1l () + #;ggeﬂ Lz —y)

where
L) = r(1—1Inr) for r € 0,1]
1 for r > 1.

We note that equation (2.2.1) is the equivalent of (3.2) in [Jud63] and (2.2.3) of (3.6) in
the same paper. We state the classical result of Judovi¢ from [Jud63].

Theorem 2.2.1. Let wy € L*™°(Q2), then there exists a unique weak solution (w,u) of (2.2.1)-
(2.2.2) in the vorticity form with initial datum wy. Moreover for any p € [1,00), it holds
du € LY (RT; LP(Q)) and there exists Vp € Lo (RT; LP(Q)) such that (u,p) satisfies al-
most everywhere the Euler equations (2.0.1). Finally for q € [1,00] the norm ||w(t,.)||ra and

Jqw(t,.) is preserved in time.
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Following [MBO02], the proof of the theorem above can be made by an iterative schemes
as follow. Let ¢g the steady flow. Then at step n we have the flow ¢,, we define the n-th
vorticity wy, as the flow of the initial datum wg through ¢,, and we recover the velocity field u,
as the solution of the elliptic system (2.2.2). Finally ¢, is the flow associated with w,. The
above scheme converges and provides a weak solution of (2.2.1)-(2.2.2). To prove uniqueness
it is possible to perform a Gronwall estimates for the different of two solutions in the velocity
form (2.0.1).

2.2.2 A source plus a sink system

We start by presenting the system. Let 2 an open bounded connected simply-connected
non-empty subset of R? with smooth boundary. Let ST and S~ two open connected simply-
connected non-empty disjoint subsets of R? compactly contained in € with smooth boundary
and let F = Q\ (St US~) the fluid domain. We will call ST the source and S~ the sink. The
equations in the unknown (u,p) that model the dynamics read as

p(Ou+u-Vu)+Vp=0 in RT x F,
divu =0 in RT x F,
u-n=g on Rt x 0.F, (2.2.4)
curlu =w™ on RT x 98T,
u(0,.) =u™ in F,

where u : RT x F — R? is a velocity field, p : RT x F — R is a pressure, p is a positive constant,
n is the normal exiting from the domain F, g is the normal component of the velocity on the
boundary such that it has average zero and satisfies ¢ < —c < 0 on RT™ x ST, g > ¢ > 0 on
Rt x 0S~, g = 0 on Rt x 99O, w? is the entering vorticity and u** such that divu™ = 0 is
the initial datum.

The system (2.2.4) was introduced by Judovi¢ in [Jud64] where he proved existence and
uniqueness of regular solutions for smooth enough data. Existence of less regular solutions
of (2.2.4) was proved in [Ale76], where the authors showed the existence in the case where
the vorticity is bounded via a vanishing viscosity method. In this manuscript we present an
alternative approach by a Schauder fixed point theorem. Let us mention that the choice of
completing the system (2.2.4) by prescribing the entering vorticity is not the only one. Another
possibility is to prescribe a condition on the pressure. To have a more complete discussion
on the subject we suggest [Mam10], where the author presents a complete description of the
works on system (2.2.4).

2.2.3 Contributions

In [Jud64] Judovi¢ raised the issue of the dynamics of the system (2.2.4) when the diameters
of the source and of the sink tend to zero. This open question was recalled in [CS02], where
the authors proved existence for weak solutions of a system in the presence of finitely many
point sources. In this manuscript we establish the limit of the system (2.2.4) when the sets
ST and 8~ homothetically shrink to z; and x_ respectively, with . # x_. Indeed the limit
system is easier to describe thanks to the fluid vorticity w. To recover the velocity from the
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vorticity we will make use of the Biot-Savart operator Kq[-] on £ which maps any reasonable
function w to the vector field Kq|w] solution to

div Kq[w] =0 in Q,
curl Kgw] =w in €,
Kqlw]-n=0 on 0f).

To tackle the part of the velocity due to the source and to the sink we will also use the following
counterpart of the Biot-Savart operator for a nonzero divergence: for any reasonable function
m with zero integral over 2, the vector field Jo[m] is defined by

div Jo[m] =m in Q,
curl Jo[m| =0 in Q,
Jalm]-n=0 in 09Q2.

A crucial assumption in our asymptotic analysis of the system (2.2.4) is that the integrals of g
and gw™ on the boundary dS™ of the shrinking source have some limits respectively denoted
by p = p(t) and j = j(t) when the diameters of the source and of the sink tend to zero. The
limit system obtained in this manuscript then reads:

8tw+u~Vw:j5z+—(j+d/w)5m in Rt x Q,
dt Jr
u = Jao[ude, — pé; ]+ Kolw +Cydy, +C_0;_] in R x Q, (2.2.5)
A t
C.(1) :CE[‘—/j in RY,
0

. , t
C_(t):CT—i—/ w(t,.)—/ wm—i—/j in R*.
F F 0

Above the notation ¢, stands for the Delta measure in the point z. Let us highlight that the
system (2.2.4) exhibits the presence of a point source in zy, of a point sink z_ and of two
point vortices in x4 and z_ whose strength depends on time through p, j and w. The letter
¢ in the notations Cy and C_ refers to the circulations respectively around St and S~.

2.3 Plan of the thesis

This manuscript is divided in two parts. The first one deals with a fluid-structure model where
the fluid is viscous and incompressible and the structure is a rigid body that moves due to
Newton laws. In particular

> Chapter 3 is dedicated to the prove of existence of solutions of the system (2.1.5) with
Navier-slip boundary conditions, in three different settings. Namely, the case of Leray-
Hopf weak solutions where we adapt the work [GVH14] to the 2D case for a more strict
definition of weak solutions. The case of strong solutions in Banach space setting. Finally
we consider the situation of weak solutions with possibly infinite fluid kinetic energy.

>> Chapter 4 deals with the system (2.1.5) where €2 is a bounded domain and Navier-slip
boundary conditions are prescribe on the boundary of the fluid. More precisely we prove
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that Leray-Hopf weak solutions are continuous in time with values in L?, they satisfy
the energy equality and they are unique. All these three results holds until the first
contact of the solid with the boundary occurs.

In the second part we study the flow of an inviscid incompressible fluid in a domain with holes,
on which the fluid can enter or exit. In particular

> Chapter 5 is dedicated to study the behaviour of a fluid in a domain with two holes.
One of them is called source and the fluid can enter from the boundary of it, the other
is the sink from where the fluid can exit. More precisely, we will derived the limiting
system when the source and the sink shrink to two different points and we will show
that solutions of (2.2.4) converge to solutions of (2.2.5) in appropriate norms.

Finally Chapter 3 is based on [Bral9] and [Bral8] and Chapter 4 is inspired by [Bral9].

Note to the reader. In what follows, we will consider all the equations in the dimensionless
variables. Moreover we will suppose the density and the viscosity of the fluid equal to 1, unless
in Appendix C where we study a vanishing viscosity limit.



Chapter 3

Existence of solutions for a fluid
structure problem

Dans ce chapitre, nous étudions ’existence de solutions fortes et de solutions faibles pour un
systéme d’interaction fluide-structure.

This chapter is devoted to the study of existence of solutions for a fluid-structure problem
consisting of a rigid body immersed in a viscous fluid, in particular we will concentrate our
attention on two different situations. The first one is the case where the system of fluid plus
rigid body occupies a bounded domain and the fluid kinetic energy is finite (in all the Thesis
the kinetic energy of the solid is always finite). In this setting we will present a result of
existence [GVH14| due to Gérard-Varet and Hillairet where the authors proved existence of
weak solutions in dimension three and we will conclude the subsection explaining how their
proof can be reproduced in dimension two and for a more restrictive class of weak solutions.
Then we will present an existence result for strong solutions in Banach space setting. It is
based on the study of the linearised problem and on a fixed point argument to deal with the
non-linear coupled equations. The second situation is the case where the system of fluid plus
rigid body occupies the plane and the fluid kinetic energy is supposed to be infinite. In this
setting the velocity field that gives rise to the presence of infinite energy has a fixed structure.
In the same situation in Appendix C, we prove, in the special case the solid is a disk, that
weak solutions are continuous in time with values in an appropriate Hilbert space, they satisfy
an energy equality and they are unique. Moreover we tackle the vanishing viscosity limit. In
particular as the viscosity tends to zero the solutions converge to the one of a Fuler with disk
system studied in [ORT07].

Before considering the two different cases, let us present the equations which govern the
system at stake. Let 2 equal to the two dimensional Euclidean space or 2 C R? an open and
bounded set with smooth boundary and consider Sy a closed, bounded, connected and simply
connected subset of the plane compactly contained in €2 with smooth boundary. We assume
that the body initially occupies the domain Sp, has density ps, and rigidly moves so that at
time ¢ it occupies an isometric domain denoted by S(t) C Q. We set F(t) = Q\ S(¢) the
domain occupied by the fluid at time ¢ starting from the initial domain Fy = Q \ Sp.

27
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The equations modelling the dynamics of the system then read

ou

a+(u-V)u—Au+Vp:O for x € F(t), (3.0.1)
divu =0 for z € F(t), (3.0.2)
u-n=us-n
(D(u)n) - 7 = —alu—ug) - 7 for x € 0S(t), (3.0.3)
u-n=0 .
(D(u)n) -7 = —au - for x € 09Q), if Q bounded, (3.0.4)
lu| — 0 as |z| — oo, if @ = R? (3.0.5)
mh'(t) = — / Snds, (3.0.6)
a8 (1)
T = — / (@ — h(t)* - Snds, (3.0.7)
a8 (1)
ul=0 = ug for x € Fy, (3.0.8)
h(0) = hg, K (0) = £, r(0) = ro.

Here u = (uy,uz) and p denote the velocity and pressure fields, n and 7 are respectively
the unit outwards normal and counterclockwise tangent vectors to the boundary of the fluid
domain, o > 0 is a material constant (the friction coefficient). On the other hand m and J
denote respectively the mass and the moment of inertia of the body while the fluid is supposed
to be homogeneous of density 1 and the viscosity coeflicient of the fluid is set equal to 1, to
simplify the notations. The Cauchy stress tensor is defined by

Y = —pldy+2D(u),
where D(u) is the deformation tensor defined by
2D(u) = ((95ui + dyuj) i< j-

When z = (x1,22) the notation z* stands for z+ = (—z2,21), h'(t) is the velocity of the
center of mass h(t) of the body and r(¢) denotes the angular velocity of the rigid body. We
denote by us the velocity of the body:

us(t, ) = 1'(t) +r(t)(x — h(1))"

We assume from now on that hg = 0. Since S(¢) is obtained from Sy by a rigid motion, there
exists a rotation matrix

cos0(1) —smeu)] | (3.0.10)

Q) = [Sin 0(t) cosO(t)

such that the position n(t,x) € S(t) at the time ¢ of the point fixed to the body with an initial
position z is h(t) + Q(t)x. The angle 0 satisfies 6'(t) = r(t), and we choose 6(t) such that
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6(0) = 0. We note also that given h'(t) and €'(t), we can reconstruct the position of the body
trough the formula

SO () = {z =Qt)y+ h(t) forye Sy}, where
h(t) = /0 "W(t)dt and 0(t) = /0 "0ty

and Q(t) is obtain by 6 via (3.0.10). In the same spirit if the motion of the body is described
by h'(t) and 6'(t), then

Pty () = ps, (QT(D)(w — h(t))  for any x € S(1).

3.1 Bounded domain and finite energy setting

In what follow, we suppose € to be a bounded subset of R?, therefore we study the system
(3.0.1)-(3.0.9) where we choose the boundary condition (3.0.4) and not (3.0.5). In this setting
we first prove existence of weak solutions with bounded energy and secondly we prove existence
of strong solutions in Banach space setting.

3.1.1 Weak solutions

The goal of this section is to introduce an appropriate definition of weak solutions and to
present the correspondent existence result. This work is an adaptation of the result in [GVH14]
in dimension two. In particular we will prove that the solutions constructed via the method
used in [GVH14] satisfy a more restrict definition of weak solution that the corresponding
introduced in [GVH14].

In what follow we start by stating the definition of weak solutions. Then we present the
existence theorem. We discuss the differences between this result and the corresponding one
in [GVH14]. We conclude the section with the proof of existence where we emphasize only
the part of the proof of [GVH14] that we adapt.

3.1.1.1 Definition of weak solutions

We present the definition of weak solution and the existence result from [GVH14]. Let O be
an open subset of R? with Lipschitz boundary then we define

D,(0) = {¢ € D(O),divy = 0},
LZ(0) = the closure of D,(0) in L*(0), HL(0O)= H'(O)NL2(0).

We also define the finite dimensional space of rigid vector fields in R?
R={ps, ps(x)=V +wzt, forsomeV eR% we R},
and the space of initial data

Hs, = {v € L2(Q), there exists vy € L2(Q) and there exists
vg € R such that v = vp on Fy, v = vg on Sy}, (3.1.1)
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with norm
v, = [, vbde+ [ psodde = [oll oy +mlof? + 772
0 0

where [, and 7, are related to vs via vs(t,x) = l,(t) + r,(t)(x — ho)*, with hg = 0 the center
of mass of Syp. We define for any T" > 0 the space of solutions
Vr = {u € L>®(0,T; L2(R)), there exists ur € L*(0,T; H()),
ug € L*(0,T;R) such that u(t,.) = up(t,.) on F(t),
u(t,.) = us(t,.) on S(t), for a.e. t €[0,7)},

Note that for any ¢ € Vr we have ¢f(,.) - n = ¢s(t,.) - n on S(t); analogously we define

Wr = {u € L>®(0,T; L2()), there exists ur € L>(0,T; HX(Q)) N WH(0,T; L2(Q2)),
ug € WH(0,T;R) such that u(t,.) = up(t,.) on F(t),
u(t,.) = us(t,.) on S(¢), for a.e. t € [0,T]}.

Moreover we denote by Wy r the set of ¢ in Wr such that ¢ = 0 in a neighbourhood of T'.
We are now able to give the definition of weak solution.

Definition 3.1.1. Let © C R? an open set with smooth boundary, Sy a closed, bounded,
connected and simply connected subset of €2, with smooth boundary and uy € Hg,. A weak
solution of (3.0.1)-(3.0.9) on [0,T"), associated with the initial data (Sp,us,) is a couple (S, u)
satisfying

> S(t) C Q is a bounded domain of R* for all ¢ € [0,T), such that xgs(t,z) = 1g(z) €
L>((0,T) x Q),

> u belongs to the space Vr where F(t) = Q\ S(¢) for all t € [0,T),

> for any ¢ € Wp 7, it holds

T T
—/ / up - Opppdrdt — / / psus - Orpgdrdt
o JF@®) 0 JS()

T T
—/ / ur @ up : Vopdrdt + 2/ / Dup : Doppdxdt (3.1.2)
0 JF@) 0 JF({)

t T
+2a/ / up - ppdsdt + 2a/ / (up —ug) - (pr — @g)dsdt
0 Joq o Jos)
= / upo - Prli=odx +/ PSUS,0 - s t=od.
F(0) 5(0)

In what follow we sometimes do not write explicitly the variables in which the integra-
tions are made to shorten the notation.

> S is transported by the rigid vector fields ug, i.e. it holds

/OT , atw+/OT/S(t) ug.v¢:[50¢|t:0, (3.1.3)

S(
for any ¢ € C2°([0,7); D(£2)).
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The formal derivation of equations (3.1.2)-(3.1.3) from (3.0.1)-(3.0.9) is presented in Sec-
tion 1 of [GVH14]. Equation (3.1.3) ensures that the solid is transported via the rigid vector
field vg. Equation (3.1.2) is a weak version of (3.0.1)-(3.0.9), in fact the sum of the first and
the third term of (3.1.2) correspond to the convective derivative in the equation (3.0.1), the
sum of the second and the fourth term of (3.1.2) corresponds to the pressure and the viscous
term in (3.0.1) together with the Newton equations (3.0.6)-(3.0.7) associated with the solid
motion, the fifth and the sixth term correspond respectively to the boundary condition (3.0.4)
and (3.0.3), and finally the last line corresponds to the initial condition (3.0.8)-(3.0.9).

3.1.1.2 An existence result
Let us conclude this section with recalling the existence result from [GVH14].

Theorem 3.1.1 (Theorem 1 of [GVH14]). Let Q C R? an open, bounded, connected set
with smooth boundary, Sy a closed, bounded, connected and simply connected subset of Q0 with
smooth boundary and uy € Hs,. There exists a weak solution (S,u) to the problem (3.0.1)-
(3.0.9) with initial data (So,uo) for some T > 0. Moreover either T' = 400 and S(t) € Q for
anyt >0 or T < 400 and it holds S(t) € Q fort € [0,T) and dist (S(t),00) — 0 ast — T~

The theorem above states that weak solutions exist up to collision, in fact by Definition
3.1.1 we have that the position of the solid is continuous in time and the condition S(t) € Q2
implies that dist (S(¢),92) > 0, this means that the solid never touches the boundary until
the final time ¢t = T', when dist (S(7"),092) = 0.

Theorem 3.1.1 differs from Theorem 1 of [GVH14] in two points. The first one is that
Theorem 3.1.1 deals with the 2D case whereas Theorem 1 of [GVH14] deals with the 3D case,
but the proof of Theorem 1 of [GVH14] can be straightforwardly adapted to the 2D case. The
second difference is the set of test functions used in (3.1.2), in fact in (3.1.2) we substitute the
space

Tor ={¢ € C%([0,T); L2(2)), there exists o € C*°([0,T); Dy (Q)),
ps € C*([0,T); R) such that ¢(t,.) = ¢p(t,.) on F(t), (3.1.4)
o(t,.) = ps(t,.) on S(t), for all t € [0,T)},

which is the space of test functions mentioned in Definition 1 of [GVH14], by Wy 1. But the
weak solutions constructed in [GVH14] satisfy (3.1.2) for any test function in Wy in the
2D case. Moreover observe that there is no energy inequality in Definition 3.1.1. Indeed in
Theorem 4.1.1 we are going to prove that any solution satisfies an energy equality.

3.1.1.3 Proof of Theorem 3.1.1

As pointed out previously it is possible to follow the proof presented in [GVH14] and to prove
that there exists a weak solution which satisfies (3.1.2) for any test function in 7o 7 (recall the
definition in (3.1.4)).

We prove that the solution satisfies (3.1.2) for any test functions in Wy . The proof
in [GVH14] is based on a local-in-time existence which leads to concatenate solutions up to
collision, see last paragraph of Section 5.7 of [GVH14|. Therefore it is enough to prove that
the local-in-time existence result holds also for the restriction in time of the element of W 7.
We state the local-in-time existence result.
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Theorem 3.1.2. Let Q C R? an open, bounded, connected set with smooth boundary, Sy a
closed, bounded, connected and simply connected subset of 2 with smooth boundary, uy € Hsg,
and 6 > 0 such that dist(02, Sp) > 25. There exists T > 0 and a couple (S,u) satisfying

> S(t) C Q is a bounded domain of R? for all t € [0,7], such that xs(t,z) = 1y (z) €
L>((0,7) x Q),

> w belongs to the space V; where F(t) = Q\ S(t) for all t € [0, 7],

> for any ¢ € W, it holds

—/ / up - Opppdzdt —/ / psus « Oppgdxdt
0 JF®) 0 JS(t)

- / / wp @ up : Vopdrdt + 2 / / Duy : Doppdadt
0 JF®) 0 JF(t)

+2a/ / up - ppdsdt + 204/ / (up —ug) - (pr — @g)dsdt
o Joo o Joas(t)
= / upo - Pr|=odr +/ pPSUS - Psli=odx (3.1.5)
F(0) S(0)

_/ ”F'90F|t=rdif—/ psus - @s|t=rdz.
F(7) S(7)

> S is transported by the rigid vector fields ug, i.e. it holds

/ atw+// us~w:/ wrtj—/ leo,
0 Js@) 0 Js@) S(r) So

for any v € C>([0,7]; D(Q)).
> dist(0Q,S(t)) > 6 for almost any t € [0, 7].

Proof. By the proof in [GVH14] we already know that this theorem holds with test functions in
T+, which is the set of ¢|(g ;) where ¢ € To 7. We prove that (3.1.5) holds for any test function
in W;. To do so we approximate the test functions in W, by admissible test functions of
the approximate problem defined in [GVH14, Section 2]. To do so we need an equivalent of
Proposition 12 in [GVH14], i.e. we prove the following claim.

Claim 1. Let a > 0 and let ¢ € W,. Then there exists a sequence " € W1°(0,7; L2(Q)) N
L>(0,7; HL(Q)) of the form
¢" = (1 = X5)er + X5¢5,
that satisfies
> [ VXE(9E = 08)ll e (0.7:20()) = O(n=*/PF9)) for any p € (1, 00) and for any ¢ > 0,
> @™ — ¢ strongly in L*°(0,7;LP) for p e (1,00),
> @™l oo 0,711 () = O(n*I=YP)) for any p € (1,00),

> [Ix2(0 + Phu™ - V) (0% — ©9)|lLago.rre@)) = O(n=*~P)/2P) for any p € (1,2] and ¢ €
(1,00), in particular x(8; + PZu™ - V)(¢% — pg) converges to 0 in L%(0,7; L*(9)).
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> (0 + Pu"™ - V)" — (0; + Psu- V)p weakly* in L*°(0,7; LP(§2)) for any p € (1, 2].

Proof of the claim. To prove this claim we make the same construction as [GVH14|. The main
difficulty is not the lack of regularity in time but the lack of regularity in space. By the fact
that the construction of this approximation is quite technical and involved, we present here
quite rapidly the construction and we refer to [GVH14, Section 5.3] for more details.

Recall that a weak solution (S, u), constructed in [GVH14] comes as a limit of solutions
(Sn, ) of some approximate problems and recall the flow ¢,, € W1*°(0, 7; C*) from [GVH14],
ie. ¢n(t) : R? — R? is a C*-diffeomorphism and it is the flow associated with PZu,. We
define an approximation ¢, of ¢ € W, using the flow ¢,.

The idea of Gérard-Varet and Hillairet is to use ¢, to translate the problem to a “fixed”
domain and then approximate. Define @g and i)% via

SOS(tv ¢n(tv y)) =don (t7 y)(&)g(ta y))v PF <t7 On (ta y)) = don (ta y)((i)% (t7 y))

‘5@ and é}? are defined in a fixed solid domain in the sense that the solid part is fixed, i.e.

¢nls, + So = Sp(t). In the approximation we do not change ¢ in the fluid part so we define

CPn|(o,T)>< Fr) = <,0|(07T)X Fo(t) and @p in the solid part such that it is closed to a solid rotation

and such that it makes o, an L?(0,7; H(Q)) function. To do so we approximate @g by
g = @?75 + @721757 Where

O g = B + x(n"2) (P — ®) — [(85 — OF) - ezlez),

and P ¢ is zero on the boundary and it is defined in such a way to make @3 divergence free
following the construction in [Galll] Chapter III. This leads us to define

ng’(tv ¢n(t, y)) = d¢n(ta y)(q)g'(t’ y))

Note that

H‘I’?,S - ‘i’SHLoc(o,T;LP(so))
:HX(”%)(@% - ‘i)g*) - [(Ng - &’713) : ez]ez)HLO"(O,T;LP(SO)))
<[x(n®2) || La(sop | (@F — @5) — [(BE — D) - e:]ezl| L= (0.7:17(50)))
<C(n)Ix(n®2)| a1 (@F — 8F) — (D — BF) - e:]ez| oo 0,rm1(s0))
<C(ryn=*/1,

where 1/¢+ 1/r = 1/p. In a similar way

197 5 — sl Lo (0,112 (S0))
=[x (n®2) (P — D) — [(BE — DF) - ezlex) || oo 0,m11 (50)))
<C + [n*Vx(n“2) || La(sy))
[(@F — ®F) — [(BE — BR) - exlexlloe (0,mLm(50))
<C+ C(r)n*IHO||(BF — 0F) — [(BE — D) - e:lezll Lo (o,mm1(50)))
<C + C(r)n®(=Ya),
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Moreover

|95 sl Lo (0,527(S0)) SC()I1P5 5l £oo (0,717 (50))

IN

(r)
C(r)|| div @7 gl oo (0,717 (S0))
C(r) HX(”QZ)JH||L<>°(0,T;Lr(so))
(r)
(r)

IN

C(r)Ix(n*2)[| Leso) [T " [ Loo (0,7:L2(S0))

C(ryn=/?,

IA

where J" = div(z > ((®% — %) — [(PL — %) - esle.), 1 —2/r = —2/pie. 7= 2p/(p+2)
and it holds 1/p+1/2 = 1/r. In a similar way

195 sl Lo (0.7:11(Sp)) < | div @ gl Lo (0,7:12(50)) < C-

The estimates above prove the first three points of the claim. For the last two points we
follow the computation of [GVH14|, namely

ng(at + Pgun : V)(S"g - SDS))HLOO(O’T;Lp(Q))

< Hgtdw(t,y)(@g ~ ag)

L (0,7;LP(Q))
<CNde™ (t, y) lw.oo (0,750 () (HX(”QZ)||L°°(O,T;L2P/(27p)(ﬂ))H(I)TIZ,S - (i)SHleq(O,T;L?(Q)))
<Cn-ov/D),

where we use the estimate [|0;®% gl za(0,7:02(0)) < Cll0H(PT 5 — éS)HLq((LT;LQ(Q)). For the last
point we compute

(Or + Pgu™ - V)" — (0 + Psu - V) = (1 — x5)(0; + Pgu" - V) (¢ — ¢F)
+ X5(0 + Pgu" - V) (0§ — ¢s) + (1 = x§)(9¢ + Pgu" - V)or
+ X5(0 + Pgu" - V)ps,

which converges weakly* to 0 by the strong convergence of x¢ and the weak convergence of
Pgu™. O

The above claim proves that there exists a good approximation ¢, for ¢ € W,. Passing
to the limit in the approximate problem, we deduce that the weak formulation holds for any
test function in W;.

O]

3.1.2 Strong solutions

This section is dedicated to the proof of existence and uniqueness of solutions of the problem
(3.0.1)-(3.0.9) in the Banach space setting L? — L? in the case where {2 is a bounded domain.
To obtain this result we follow the approach presented in [MT18], where the authors studied
the system (3.0.1)-(3.0.9) in both two and three dimensions and no-slip boundary conditions
are prescribed on the boundary of the fluid domain.
This section is divided in six subsections. In the first one we present the functional space
setting and the theorem of existence and uniqueness. In the second one we recall a well-known
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change of variables that will be used along all the Thesis. In the third one we present the
equations (3.0.1)-(3.0.9) in the new variables. In the forth we study the linearised system
associated with (3.0.1)-(3.0.9) in the new variables. In the fifth we prove the existence and
uniqueness result via a fixed point argument and finally we present an existence and uniqueness
result for a special system, which will appear in the Section 4.2.1.

3.1.2.1 Functional spaces and result

We start by specifying the notation that we will use for all this section. Let O be an open,
bounded subset of R? with smooth boundary, then we denote by W*4(0) the usual Sobolev
spaces with k € Nt and ¢ € [1,00] and we add tilde to denote the restriction to the functions
with zero average, i.e. we define

£9(0) = { f € L9(O) such that /O f= o} and  TWHI(0) = L9(0) N WHE(0).

For ke NT,0<s < kand 1< p,q< +oo, we denote by

B,(0) = (10), wH(0))

the Besov spaces obtained by real interpolation of Sobolev spaces.

Fix T > 0 and let Or : [0,7] — {open, bounded subset of R? with smooth boundary} a
time-dependent domain such that there exists a Cl-differomorphis A(t,.) from O(0) to O(t)
such that it is continuous up to the first derivative in time and the second derivatives in space.
For function v(t,.) : O(t) — R we denote 0(t,y) = v(t,A(t,y)) and we define for 1 < p,q < o0
and 0 < s < 2 the time-dependent spaces

) ={v | o€ LP(0,T; LY (O(0)))},

) ={v | o€ Lr0,T;W(0(0))},
) ={v|oew(0,T; Lq(C’)(O)))},
) ={v 5(000)) }

LP(0,T; LY(O(.
LP(0,T; W29(0O(.
wlP(0,T; LY(O(.
C([0,T]; B, ,(O(

O(. | o€ C([0,T]; B

Finally we present the set of initial datum. Let Sy and Fyp = Q\ Sy the initial position of the
solid and the fluid such that the origin is the center of mass of the solid. We define the space

X = LL(F) x R* x R,
the domain D(A%g) of the operator will be defined in (3.1.9) and finally
D‘IaP(Q) - (X7 D(A%'S))l—l/p,p

where for 0 < 6 < 1 we denote (.,.)g, the real interpolation space. We recall from [Shi07] that
Dyp C By (1 /P)  R? x R and for 2/p+1/q+#2,2/p+1/q# 1 the norm D, ,(2) of (u,l,7)

is eqmvalent to the sum of the norm By (1 P) of 4 and Euclidian norms for [ and r. We are
now able to state the main theorem of the section.
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Figure 3.1: Change of variables Y7, which is the inverse of Xr.

Theorem 3.1.1. Let 1 < p,q < oo satisfying the conditions 1/p+1/q <3/2, 2/p+1/q # 2
and 2/p+1/q # 1 and let (ug,lo,ro) € Bgv(p}_l/p) xR2 xR satisfying the compatibility conditions

divug =0 inFy, w-n=0indQ and u-n=(l —|—7"093J‘) ‘nin 08y.
Moreover if 1 > 2/p+ 1/q, we also assume that
(D(up)n) -7 = —aug -7 on dQ  and  (D(ug)n) -7 = —alug — lo — roz) - 7 on 8So.

Then for some T > 0 there exists a unique strong solution (u,p,l,7) of (3.0.1)-(3.0.9) such
that

1wl e, w2z )2 + lullwreorLaF )2 + ||U||Loo(0’T;B§§;—1/p)(f(,)))Q
1P oo, mvraz )y + llwreorre + I7lwieorr)
< C (Mol -1z + ol + Il )

The next four subsections are devoted to the proof of the above theorem. The idea of the
proof is to use a change of variables that moves the problem in a time-independent domain,
to study the linearised problem in the time-independent setting and than conclude by a fixed
point argument. In the next subsection we will present the change of variables.

3.1.2.2 Change of variables

Let S(t) € ©Q and F(t) = Q\ S(t) respectively the domain occupied by the rigid body and
the fluid domain. We will now present a well-known geometric change of variables, see for
instance [IW77, Proposition 2.1], [CT08, Lemma 2.1 and Lemma 2.2], that fixes the position
of the solid and is the identity on a neighbourhood of 02, see also Figure 3.1. Moreover it is
rigid in a neighbourhood of the solid. This change of variables will be used many times in the
thesis so we will detail the construction. Let h € W1°°([0, T],R?) and r € L*([0,T],R) such
that S(t) = 8" (t) and such that there exists a & for which

tgﬂolg] (dist(S(t),00)) > 9.
Finally let ¢ € C°(Q;R) be a cut-off, such that ¢ = 1 for any x with dist(z, 9Q) > 6/2 and
¥ = 0 for any = with dist(z, 09Q) < §/4. We define w in [0,7T] x Q by

_ 2
w(t, ) = (x — h(t))t - b (t) + ICUg(mr(t),



37 3.1. Bounded domain and finite energy setting

and we define A : [0,7] x Q — R? by
A(t,z) = §$2 o, (3.1.6)

where ug; is the i-th component of ug(t, ) = h'(t)+r(t)(x—h(t))*. Then A € L>(0,T;C*(1))
for any k € N, A(t,z) = 0 for all ¢ in (0,7") when dist(xz,0Q) < /4, divA(t,z) = 0 for any
(t,z) and A(t,z) = W (t) +r(t)(x — h(t))* for any ¢ in (0,T) and for any z in S(t).

We define the change of variables associated with the flow A.

Proposition 3.1.1. Let A defined in (3.1.6). Then there exists a unique solution X : [0,T] x
Q = Q with X € WH(0;T; C*(Q)) for any k € N of the equation

9 X(t,y) = AL, X(t,y)) in (0,T) x Q,
X(0,y) =1y in Q.
Moreover it holds
> X(t,.) is a C*°-diffeomorphism for any t € [0,T],

> det VX (t,.) =1 for any t € [0,T],

> Y(t,.) = [X(t,.)]7! is the inverse of X(t,.) for any t € [0,T).

3.1.2.3 Equation in the time-independent frame

In this subsection we present the system (3.0.1)-(3.0.9) in the time-independent frame associate
with the change of variables X defined in Proposition 3.1.1. We use a classical idea introduced
in [IW77] and we follow the notation introduced in [GGH13]. Define

o(t,y) = VY(,X(ty)ult, X(ty)),
m(t,y) = pt X(ty)),
w(t) = r(t),
oty = QTmI(),
T(ty),n(ty) = QTHX(QM)ult,y),p(t,y)Q(t)).

In this new variables the equations become
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%—l—(/\/l Lv+N(@w)+Gr=0 for x € Fo,

dive =0 for x € Fy,

V-n=0s'N

(D) 7= —a(v—vg)-7 T T €I,
e for z € 002 (3.1.7)
(-D(U)n)'T:—Oé’U~T or x 9 .
mﬁ’(t) = — T (v, m)nds — meL,
880
Ju'(t) = - / vt T (v, m)nds,
0S80
v]¢=0 = uo for x € Fy,
£(0) = lo, w(0) = ro.

where M, L, N and G are defined as follows

2 2
(Ew)z = Z Bj (g”@kwi) + 2 Z gkl'y;k(?le

g,k 7.k, l=1
2
+> (ak (g"'T% + Z g" T )) wj,
Jik,l m=1

2 2
(Nw)i = ijé)jwi + Z F;-’k:ll“}kijk,

j=1 4. k=1
and
2 . 2 ..
= Z Y;0;w; + Z ( ]kYk aky)(ank)) wj, (Gq)i = Zg”aqu
J=1 k=1 j=1
where
2 2
=Y (YD) (ORY)), g5 = D_(0:Xk)(0;Xk),
k=1 k=1

jk_ ZQ (0igj1 + 0591k — OkGij)-
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3.1.2.4 Study of the linearised problem

In this subsection we prove existence and uniqueness for solutions of the linearised problem of

(3.1.7), which read as

%—A’U—{—Vﬂ':f for x € Fo,
dive =0 for x € Fo,
V-n=1v5-Nn for x € 08y,
(D(w)n)-7=—-alv—uvs) -1 for z € 05y,
v-n=0 for x € 092, (3.1.8)
(D(w)n) -7=—-av-1 for z € 09,
me'(t) - Y(v,m)nds + g1,
0So
Jo() = — /88 (& — h(t)* - S(v, )nds + g,
V]i=0 = Vo for x 06 Fo,
£(0) = 4o, w(0) = wp.

where we introduce the source terms f € LP(0,T; L4(Q)), g1 € LP(0,T;R?) and L?(0,T;R).
We are now able to present the existence and uniqueness result.

Theorem 3.1.2. Let 1 < p,q < oo satisfying the conditions 1/p+1/q <3/2,2/p+1/q # 2
and 2/p+1/q # 1, let f € LP(0,T;LY(Fy)), g1 € LP(0,T;R?) and go € LP(0,T;R) and let
(ug,lo, o) € Bg%_l/p) x R2 x R satisfying the compatibility conditions

divug=0 inFg, ug-n=0im9oQ and u-n= (l0+r0xL)-n in 0Sy.
Moreover if 1 > 2/p + 1/q, we also assume that
(D(up)n) -7 =—aug -7 on Q2 and (D(ug)n) 7= —a(uy —lp — roxJ‘) -7 on 08y.

Then there exists a unique solution (v, 7,¢,w) of (3.1.8) such that it satisfies

HUHLP(O,T;WM(J—‘O))"’HUHWLP(O,T;M(J—'O)) + HWHLP(Q,T;WM(;O))

+Hllwre o2y Hwllwieorr) < C(||U0HB§7<p171/p>(FO) + [ o] + |wol
Il ze om0 )y + 191l Le0,7m2) + 192l Lo 0,7:R)) -

To prove the result we will prove that we can rewrite the above system in the abstract
form

Z(t) =Az(t) +f, =z(t)=0,

and we prove that 2 is a R-sectorial operator. This will implies Theorem 3.1.2 by the well-
known result of Weis [Wei01]. We recall the definition and the basic properties of R-sectorial
operators in the Appendix B.
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3.1.2.5 Reformulation of (3.1.8)

To reformulate problem (3.1.8), we need some notation. Let P the projection
Po7 : LU Fo; R?) — LI(Fo; R?).
Then we define the operator A?: D(A?) — L(Fp) such that for any u € D(A?),
Aty =Py 5 Au,

and
D(A?) = LL(Fo) N {u € W*4(Fy) s.t. D(u) -7 = —au-T on 3]—"0} :
We define (S(1,t), Spr(l, 1)) € L(R? x R; W29(Fy) x WH4(Fp)) to be the solution (v, p) of
—Av+Vp=0  forz € Fy,

dive =0 for x € Fo,
v-on=(I+rzt) n

(D)) -7 = —a(v— (I+wat)). 7 FTE 980,
v-n=20
(D) -7 = —av-7  TTEN
We define the operator Apg : D(Apg) — X with
X = Li(Fo) x R* x R,
D(Ars) = {(Pu,L¥) € X | Pu—PSs(L,v) € D(A,)}, (3.1.9)
and
Ars = (K—lcl K-1C, ) !
where K is the mass plus the added mass matrix, i.e.
k= + Vo, - Vo;dx
[ 0 J Fo ’ i,j=1,2,3

with ¢; the Kirchhoff potentials defined as

—A¢; =0 on Fo,
Vo -n=K; in 08y,
V¢, -n=0 in 092,

where ¢; : Fo = Rand K; =e; -n for i = 1,2 and K3 = 2+ - n.

-2 s D(Pv)ndy + /as N(APv - n)ndy
Ci (PU) = 0 0
—2/ y* - D(Pv)ndy + / y - N(APv - n)ndy
380 aSO
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[ o [ D(IA—P)S(L,t))ndy
-
v 9 /88 vt D(Id=P)S(1, ) )ndy,

where Nh = ¢ is defined by Ag = 0 in Fo, 9 = h on 9F.
Moreover we define Ng(h) = N(1s,h) and (g1, 2)" = (K~1(g1,92)7)7.

Theorem 3.1.3. Let f € LP(0,T;LL(Fo)), g1 € LP(0,T;R?) and go € LP(0,T;R). Then
(v, 7, 6w) € LP(0, T; W?P(Fo)) N WHP(0, T LE(Fo)) x LP(0,T; Whi(Fo)) x LP(0,T5R?) x
LP(0,T;R) is a solution to the system (3.1.8) if and only if it satisfies

Pu Pu Pf Pu(0) Puo
|l L |=Aps| L |+ ]| 31 |, ) | =1 4% |,
w w 3o w(0) wo

(I-=Pow=(I-P)S¢,w),
m=N(APv-n) — Ns(({ + ztw') -n),
where (G1,32)" =K (g1, 92)" .

Proof. The proof is contained in [MT18, Section 3.1], in fact the only boundary condition that
they use is v -n = (£ + wz') - n, and the second one is not relevant. O

Before moving to the proof of R-sectoriality for the operator Aprg we note that the map
(Pu, £, w) = |Pullw2acr) + gz + wlr is a norm on D(A%g) equivalent to the graph
norm. See for instance [Ray10][Proposition 3.3]. And the fact that (S([,v), Sp(I,v)) € L(R? x
R; W24(Fy) x WH4(Fy)) is proved in [Bral9][Proposition 7.3].
3.1.2.6 R-sectoriality of the operator Apg

To prove LP — L1 regularity we prove R-sectoriality of the operator —Apg.

Theorem 3.1.4. Let 1 < g < co. Then —Apg = —A%g is a R-sectorial operator of angle
0 <m/2.

Proof. To prove this theorem we just show that in some sense the operator Agpg is a small
perturbation of the operator A,. To do so we write

Aps = Aps + Brs

- (A, —APS 0 0
AFS_(O 0 ) BFS(K—101 K‘1(32>'

—Apg is an R-sectorial operator of angle 6 < 7/2 on the same domain of Apg, in fact

where

AAId —Apg) ™! = (A(Md A7 —A(AId —Aq)—1p5+795>

0 Id

and the desired resolvent estimates follow by the R-boundedness of the resolvent of A, and the
continuity of PS. Finally C; and Cy are linear and continuous operators with finite dimension
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codomain. The proof is exactly the same as [MT18, Theorem 3.11], in fact the estimates are
only based on the normal boundary condition and on the interior regularity (i.e. the fact that
u € W24(Fy) or the fact that divu = 0). This prove that Brg is a finite rank operator on
D(Arg), which implies that Brg is a Apg-bounded operator with bound zero. To conclude
the proof we apply Proposition B.0.1. O

3.1.2.7 Fixed point argument

To perform the fixed point is now standard and can be done following exactly the same
estimates of Section 5 and 6 of [GGH13]. Note that in [GGH13] they study the problem in
dimension three so we have just to change the coefficients of the embedding.

We choose to present the main ingredients of the fixed point argument for the sake of
completeness. Let start by introducing the following spaces to short the notation. We set

Xpq=W"P(0,T; LU(Fo)) N LP(0, T; W?U(Fp)), and Y[, = LP(0,T; WHI(Fp)),
with norms respectively
lxz, = Ilwreomzery) + ooy and lllvz = [ e rmwra )

Moreover, the subset of functions of respectively X;: o Yp:g and WP(0,T) that are zero at
initial time is denoted by

XT 0 YT

P.a; pgo and Wl’p’o((), T).

To define the contractive map, we lift the initial condition as follow. Let (v*,7*,¢* w*)
the solution of

aﬁvt — AV +Vr" =0 for z € Fy,
dive® =0 for x € Fy,
vt en=0v5-n for z € 08y,
(D(w")n) -1 =—a(v" —vg) T for z € 08y,
v*n=20 for z € 012,
(D(w*)n)-7=—av* -7 for z € 09,
m*)(t) = - Y(w*, m*)nds,
0So
T@)W) = = [ (o= h)* =@ )nds,
0S80
V¥ |4=0 = vo for x € Fy,
5(0) = 4o, w*(0) = wp.

Moreover, from Theorem 3.1.2, it holds

IlLxg, + 7l + 1€ T + e lwsatoary < € (ool oy + 6ol + ol )
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A

Let 0 =v—0v*, #=m—n* 0 =0—¢* and & = w — @, then the quadruple (0,7, 0,0) satisfies

00

E—AU—I—V%—FO(ﬁﬁéA) for z € Fo,
divo =0 for x € Fo,
v-n=170s-n for z € 08y,
(D(O)n) - 7=—a(d—0s) -7 for x € 98y,
0-n=0 for x € 092, (3.1.10)
(D(O)n) -7=—-ad-T for z € 09,
ml'(t) +/ N(0,7)nds = Fi(0,7,0,0),
0So
ja/(t)+/8$ (@ — h(D) - (6, #)nds = Fy(d,7),
0
Oly=o =0 for x € Fo,

£(0) = 0, &(0) = 0.

Fo(0,7,0,0) = = N(®+v*) = M +0*) 4+ (L = A)(®+v*) + (G — V) (7 — 1) — Av*,

F(0,7,0,0) = —m(@—w)({{+ )+ | (S=T)(d,7)n,
50

B.#) = [ ot (S-T) @ mm.
0So
Note that the operators N/, M, £, G and T depends on the change of variables therefore on
[, ¢*, & and w*. To find the solution of (3.1.10), we perform a fixed point argument. Consider
the set
ICZq ={(v,m lw) € ngq X qu:q x WHP9(0, T) such that
lollxr  +lnllyr 416w lwmor) < B),

where p,q satisfy 1/p+1/q < 3/2,2/p+1/q # 2 and 2/p + 1/q # 1. Let define the map
ng ICT — ICT as follow

;}_ FU(Qj?fra%w) :.
gbg 7 Fl(aaﬁ-7£7 7}) =

14 o l

~ FQ(U, 7T)

w w

where (v, 7, ¢,w) is the solution of problem (3.1.8) with right hand side Fy, F} and F» and zero
initial datum In the remaining part of the subsection we prove, for small enough 7, R > 0,
that ¢£( ) C Ing, and qﬁ% is a contraction.

The ﬁrst ingredient of the proof are some estimates on the change of variables. This

correspond to Lemma 6.5 of [GGH13].



Chapter 3. Existence of solutions for a fluid structure problem 44

Lemma 3.1.1. For T > 0 and for h = 1,2, we consider two triples ({5,wp,) € WHPO(T) such
that ||(Ln, wn)|lwivory < R and Xp, Yy, the change of variables associated with (£y + £*,wp, +
w*). Then it holds

1009;? |12 0,1y x 7o + 11009)? 1o 0,1y x 7o + 10% (Th) sl Lo (01 x 7 < C

and

10a(97 — 99) | =01y 7 + 110a(gt — 95) oo 0.1y x 7 O™ (Tr) 3k — (Tn) 3 | e (0.7 x 7o
<CT||[(lr — L, w1 — w2)| Lo (0,7)

for all multi-indeces alpha with 0 < |a| < 1 and the constant C' depends on R and the norm
of the initial datum.

The second ingredient is the embedding theorem Proposition 4.3 of [GGH13].

Theorem 3.1.3. Let O C R? an open, connected, bounded set with smooth boundary. Let
p,q € (1,00), a € (0,1) and Ty > 0. Then

XT0 s WoP(0, Ty; W2I-99(0)).
In particular, if r,s € (1,00) U{oo}, p € {0,1} and

2—p
2

w |

1 11
+-—- Z )
r q p
then for T € (0,Tp)
X0 s L3(0, To; WH(0)).
Moreover, there exists a constant Cy = C(Tp), independent of T € (0,Tp), such that the
estimate

||U||L5(O,T0;W”’T((’))) < CHUHXZ%
T
holds true for all u € X, .

With the help of these last two ingredients we will provide estimates for M, N, £ — A and
J (X —T) where

hn
T WW(Fy RP?) = R, h— 950 ,

- hn

0So

in particular it holds |7 (u)| < C||g[lw1.»(F,;r2x2). The inequalities correspond to the one in
Lemma 6.6 of [GGH13].

Lemma 3.1.2. Let Ty, let 1/p+1/q < 3/2, let s =3/p, s =3p/2, r = 3q, ' = 3q/2, finally
for 0 < T < Ty we denote by

Cu(T) = HVU*HLS’(QT;LT’(]-'O) + HU*HLS(O,T;L"}‘O)~
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Then the following holds

1Ml Lo o,7:00(70) < C(TH? + Tl/p)Hvngqv
[NV e o,7500(F)) < CUR+ Ci(T))* + 17,
10 = A)oll oo zinacry < CT + T2 £ TVP) o] p
G = V)T) e 0,100(70) <CTpllyr,-

Moreover, we obtain
17 (S = T)w, W) iwor) < CT ol xr, -

Proof. The proof is based on the estimates for the change of variables from Lemma 3.1.1 and
the embedding from Theorem 3.1.3. In particular if we apply Lemma 3.1.1 to (¢1,w;) and
(o, wy) = (—0*, —w™), we have

g7 = dijll L 0.7:000 (7o) < CTIN(01 + €5, w1 +w*) [wiwoy < CT(R + Co).
And from Theorem 3.1.3, we have the embedding

XL, = L0, T L (F)), XL, < L¥(0,T;Wh" (Fy)),
and X, — LF(0,T; W"(F))

where k = 0o if p > 2 and 1/k = 1/p — 1/2 otherwise. In the estimates the difficult terms are
the one with the higher other derivatives, i.e. £ — A and G — V and the nonlinear term N.

The proof is exactly the same of the one in [GGH13], so to be more instructive, we treat only
the terms G — V and N.

(G = V)7l oo, 7;19(F0)) < Csu]? 197 = Gijll oo (010 (7o) < CT|mllyr,.
]7

and

||NUHLP(0,T;Lq(J—‘O)) <||(v- V)UHLP(O,T;Lq(fo)) +sup ||F§‘k|\Loo(o,T;Loo(7—‘o) ||U||%2q(O,T;L2q(]-'O))

7]7
<loll 0,735 EN IVl L 0,755 oy T CT2 P/ I10ll i0,7:120(7)
<C[(R+ C.(T))* + T

where 1/k = 1/p+1/2¢ — 1. With this choice of k, it holds X, < L¥(0,T; L*(Fy)), k > 2p
and 2 — 4p/k > 1 by using the hypothesis 1/p+ 1/q < 3/2. O

At this point we have all the instruments to prove that gbg maps ICE into itself. The
following is Lemma 6.7 of [GGH13].

Lemma 3.1.3. For T and R enough small we have ng(ICE) C IC%.

Proof. By Theorem 3.1.2, we know that the norm of (v, ,£,w) = ¢=(9, 7, ¢,&) depend on the
norm of the initial data, which in our case is zero, and on the source terms Fy, F; and F5. It
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is then enough to prove that Fp, F} and F> are enough small. As before we choose only one
term as example. Consider

| Fo(, 7, £,0) || Lo (0,13 0a(Fo)) < | = N (0 +v*) = M(0 +v%) + (£ — A)(D + v7)
+(G = V(& = 7") — Av*|| Lo (0,7:19(F0))
<C[TY? +TY? + (R+ C.(T))%.

After performing similar estimates on F; and F5, we obtain

R (D, 7, N@)H;cg <C(||Fo(8, 7, £, @) || o o,rL0 (7)) + I1FL (0,7, £,8) || Locorm)
+ |1 F2 (0, 7)[ e 0,1))
<CTY? +TY? + (R+ Cu(T))?)
<R,

when we choose R and T small enough. Note that C,(7T) converge to zero as T' goes to zero.
O

The last step of the proof is to show that the map qb% is a contraction, which correspond
to Lemma 6.8 of [GGH13]

Lemma 3.1.4. For R and T enough small the map QSE is contractive.

Proof. The system (3.1.10) is linear which implies that is enough to estimates the difference
of the source term. To do that we notice that the operator M, N, £ and G depends on the
solution itself. Let (%1, 71,¢1,&1) and (g, 72, f2, @2) in Kh. One of the term to estimate is

1(G1 = V)71 — (G2 — V)@2ll Lo (o, La(70)) <G — V)(F1 = 72) || Lo (0,09 (7o)
+[[(G1 — Go)71 || o (0,7500(Fo))
< COT||7y = Tollyr

+ CT”(gl - 5727(:)1 - @2)||W1,p(07T).

Where for the term G; — Go we use Lemma 3.1.1. The other difficult term is A, but in this
case we prefer not to treat it. To conclude, following Lemma 6.8 of [GGH13| we prove

||¢£(@1,7}1,Zl,@1) - ¢£(627ﬁ27g27w2)||K£ S

< Lpr|(91, 71,61, 01) — (?7277?2,5727@2)”/@’

where Lg 1 converge to zero as R and T converges to zero. Which implies gz% is a contraction.
O

Theorem 3.1.1 is proved. We move to the existence result for a similar system.
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3.1.2.8 Special system

In this subsection we study an auxiliary system that we will use in the next Chapter. Let
1 € C(0,T;R?), let r € C(0,T;R) such that S(t) = S'"(t) € Q and let F(t) = Q\ S(t).
Consider the system in the unknowns (v, p, [, t)

g:—Av—&—Vp:f for x € F(t),
dive =0 for x € F(t),
v-n=vs-n for z € 0S(t),
(D(w)n) -7=—-alv—uvs) -7 for z € 0S(t),
v-n=0 for z € 09, (3.1.11)
(D(w)n) -7=—-av- T for x € 092,
ml(t) = —/ (v, p)nds + mi(t),
a8 (1)
TEW - Tr0) = ~ [ (@) S, p)nds
aS(t)
V|t=0 =0 for x € Fy,
[(0) =0, t(0) = 0.

The above system is characterized by a time dependent domain which, in contrast to
(3.0.1)-(3.0.9), does not depend on the solution itself. Moreover we will prove short in time
existence with 0 initial datum. These makes the analysis easier.

Theorem 3.1.5. Let f € L*/3(0,T; L*3(Q)). Then for some T € (0,T) there exists a unique
solution of (3.1.11) such that

1Vl ars o mwars ) F 0 llwrarso mspars ey + 1P zaias o))
o 07:m2) + Ielwramozim) < CU o Fizas)
s 7m2) + 17l ors o 7im)

The proof of the theorem follow the same strategy of the Theorem 3.1.1. Moreover the fixed
point argument is easier due to the fact that the domain does not depend on the solution.

3.2 Full space and infinite energy setting

We study the Cauchy problem (3.0.1)-(3.0.9) when we allow the fluid kinetic energy to be
infinite. In the case where the fluid is alone and satisfies the two dimensional Navier-Stokes
equations (2.0.2), well-posedness of (2.0.2) for solutions with possibly infinite energy has
been studied a lot in the past years. We recall the work [GMOS8S], where the authors prove
existence for initial data which have measure vorticity and the corresponding uniqueness result
is available in [GGO05]. Other interesting works are [LR02] and [MMP19], where the authors
prove existence of weak solutions in loc-uniform Lebesque spaces. The first result deals with
solutions defined in the three dimensional space, the second one defined in the half space Ri.
For exterior domains, where no slip boundary condition are prescribed on the boundary, it was



Chapter 3. Existence of solutions for a fluid structure problem 48

proved in [KY95] an existence result for initial data in the weak-L? space with some restriction
on the concentration of the initial energy. These solutions will remain uniformly bounded in
weak-L? norm for almost every time and bounded in the K, norm which is the Kato norm for
p=4.

Regarding the fluid structure problem (3.0.1)-(3.0.9), in [PS14], the existence of global weak
solutions with finite energy were established in the case where the whole system occupies all
R3. Moreover, several properties of these solutions were exhibited. We consider here the 2D
case, for which our analysis can be carried out for initial data corresponding to unbounded
fluid kinetic energy. More precisely we will study the Cauchy problem (3.0.1)-(3.0.9) when Q
is the two dimensional space R?. The system is characterized by condition (3.0.5) and not
(3.0.4) and the fluid velocity is not in general square integrable.

To study the system we use a change of variables to move it in the body frame. Let h(t)
the position of the center of mass of the solid S(¢) and Q(¢) the rotation matrix and let u a
smooth solution of (3.0.1)-(3.0.9) without (3.0.4). Then the functions

ot z) = QT (Hu(t, h(t) + QT (t)z), q(t, ) = p(t, h(t) + Q(t)x),
() =QT )W (t) and r(t) =r(t)

satisfy the system

ov

Fn + {(v —0—rzt). V} v+t +Vg=Av for z € Fy, (3.2.1)

dive =0 for x € Fo,

v-n=(L+rzt) n
(¢+ret)

(D(U)n) ‘T = —OC(U — 0 — rxj-) -7 for z € 05, (3'2-2)

|v| — 0 as x| — oo,
ml'(t) = 7/ onds — mrlt,
9So

Jr'(t) = —/ - onds,
8So

v(0, ) = vo(x) x € Fo,
£(0) = Lo, r(0) = 7o, (3.2.3)

where n and 7 are the unit outwards normal and counterclockwise tangent vectors to the
boundary of Fy and o is the stress tensor equal to —qIds +2D(v).

3.2.1 Leray-type solutions with infinite energy

We are interested in solution with initial data (vg, o, ro) with fluid velocity of the form

vo = ¥ + BHs, € L*(Fo) ® RHs,,
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where v is divergence free in a distributional sense and Hg, is the unique solution of

divHs, =0 for z € Fo,
curl Hs, = 0 for x € Fy,
HSO-TLZO for x € 98y,

Hs,-17ds =1,
o)

|Hs,| — 0 as |z| — oc.

See, for instance, [Kik83]. This solution is smooth and decays like 1/|x| at infinity. For any
xo in the interior of Sy, we also have

Hs,,VHg, € L*°(Fp) and (3.2.4)
(x — x0)*

Hs, VHs,, Hg, —(x—x0)" VHs, € L*(F),

 2m|z — x|
but Hg, is not a L? function. In the case of regular solutions to the Euler equations this
vector field is useful to take the velocity circulation around the body into account, which is a
conserved quantity according to Kelvin’s theorem.

First of all we note that the couple (u, q) = (Hs,, —|Hs,|?/2), satisfies the equations (3.2.1)-
(3.2.2) unless the second boundary condition (3.2.2) for ¢ and r equal to zero. This leads us
to expect that a solution (v,4,r,¢q) of (3.2.1)-(3.2.3) with initial data (99 + 8Hs,, o, T0) has
fluid velocity v of the form

v="10+ PHs,, with v € LQ(}-())

and g is independent of time.

We now introduce a definition of Leray-type solutions for these initial data. First of all in
the literature, for example in [PS14], there is already a definition of weak solutions of Leray-
type with finite energy, i.e. with § = 0, so we want to be coherent with this definition. In
the next subsection we recall the definition of weak solution with finite energy coming from
[PS14] and then we notice that we can extend this definition in a straightforward way to our
setting.

3.2.2 A weak formulation with finite energy

We use the notation H for the space Hg, defined in (3.1.1) and we denote by

V= {«zs e [ IVotw)Pay < +oo} |

v={oen| [ Vol + IRy < +f,

P={oeV|dls € Lin(FD)}
with norms respectively
10lly = lolln + VOl 2 Fay), ol = 18l + [Vl
and  [|6llg = ¢lly + 9]l -

1
L2(Fo,(1+]y[?) 2dy)’
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Let emphasize that VY CV CV. We define formally for appropriate u and v,

a(u,v) = —a« /650(u —ug)- (v—uvs) — - D(u) : D(v)

b(u,v,w) = / <[(u —ug) - V] - v — ot - w)) — mr it - Ly
Fo
The next proposition clarify in which spaces a and b are defined.

Proposition 3.2.1. The following holds true:

1. b is a trilinear continuous map from Y x VY xV to R, i.e. there exists a constant C > 0
such that for any (u,v,w) € Y x VY x V,

[b(u, v, w)| < Cllully [[v]ly [[wlly.
Moreover if v € ¥V it holds b(u,v,v) = 0 and if v,w € V, it holds b(u,v,w) = —b(u, w,v).

7. b can be extended to a continuous map from H x H X V to R, i.e. there exists a constant
C > 0 such that for any (u,v,w) € H X H XV,

[b(u, v, w)| < Cllulla o]l 1wl

iti. a(.,.) is a continuous map from Y x YV to R, i.e. for any u,v in Y,
|a(u, v)| < Cllully [[v]ly-

Proof. We present here only the proof of point i..

|b(u, v,w)| = ‘/}_0 ([(u —us) - Vw]-v — ot w)) — mr bt - Ly,

< ‘/]‘—0 ([(u NV)w] - v — rqut w)) — by - Loy, (3.2.5)

—i—‘/ [(us - V)w] - v
Fo
We separately estimates (3.2.5) and (3.2.6). By Holder and interpolation inequalities, it holds

(3.2.5) < Cllully [vlly [lwlly < Cllully [[olly [wllv,

. (3.2.6)

and by the fact that us = £, + r,a", we have

/ [(Cy + ruz™) - V)] - v
Fo

< CMU’HVUJHB(}'O)HUHL?(J”@) + C\TuHHiUWwHB(fO)HUHL2(f0)

(3.2.6) =

< Cllully [olly [lwlly + Cllully [[vlly [w]lv-

We are now able to state the definition of weak solution defined in [PS14].

Definition 3.2.1. Let vy € H, we say that v € C(0,T;H) N L?(0,T;)) is a weak so-
lution of (3.2.1)-(3.2.3) with finite energy if for all ¢ € C{°([0,T]; H) such that ¢|r €
C>(0,T;C>(Fy)) and for a.e. t € [0,T] it holds

(o, PI(0) — (ol = [ [0 000+ 2a(0,19) = b))
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3.2.3 A weak formulation with infinite energy

To extend the definition of weak solution in the case of unbounded energy we start with
noticing that we can continuously extend the map a and b in our new setting. First of
all for X one of the spaces H, V, V or )A/, the space X & RH is endowed with the norm
lullxerg = || + BH||xere = ||@]|x + |5], moreover we use the convention that us = s,
ly =1z and 7, = g, i.e. we extend the function H by 0 inside the solid Sp.

Proposition 3.2.2. The map a and b can be linearly extended as follow:

i. the map b can be continuously extended to a trilinear map on (VY ORH) x YV x (VORH)
by
b .w) = [ (16w us) - Ful -5 = - w)) = mrabd -t
Fo

The continuity assumption is equivalent to the following inequality : there exists a con-
stant C' > 0 such that for any (u =+ 1 H,v,w =w+PsH) € VORH)xVYx(VORH),

[b(u, 0, w)| < C([[ally + 15 [olly (l@lly +[8s))-

it. The map b(H,.,.), ( .., H) are continuous bilinear map from Y x YV to R and by Blasius
lemma b(H,v,H) =0 for any v € ¥V (we refer to [GLS16, Lemma A.1] for the Blasius
lemma,).

iti. Foru € Y ® RH and v € ¥V, we have b(u,v,v) = 0. Moreover if v,% € V, it holds
b(u, v, w) = —b(u, w, ).

. The trilinear map b can be extended in a unique way on (H & RH) x H x (]7 RH)
in a continuous way, i.e. there exists a constant C > 0 such that for any (u,v,w) =
(a_‘_ﬁlH)ﬁ?w_'—BZ’»H)}

[b(u, 0, w)| < C([[allw + [Br]) [[oll (@]l + [8s])-

v. a(.,.) can be extended to a continuous bilinear map from (¥ ® RH) x ¥V to R, where for
any (u,v)

Proof. Point i. is direct consequence of point . so we begin by 4. For (@,7) € ¥ x V,

b(a,@,H):/FD[a-VH]-@/fo[zﬁ-VH]-@ra/FO(xL-VHHL)-@

is well defined thanks to the properties (3.2.4), moreover there exists C' > 0 such that
b(a, v, H)| < Clla|y||o]ly. For (8,w) € ¥ x ¥V, b(H,9,w) = [z [H - V]w- . Thanks to
(3.2.4), it is clear that |b(H, v, w)| < C||9|ly||w|ly. Moreover, for any © € ¥V

b(H, 5, H) :/ \H2(0y + roa™) -n = 0,
0So
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where in the first step we use the fact curl H = 0 and an integration by part. In the second
step we use the Blasius lemma and the Cauchy’s Residue theorem as for the terms Cf. in
[GLS16]. This concludes the proof of point i. and ii..

For iii., we use an integration by parts to see that for any © € ¥V we have b(H,v,0) = 0,
which implies, together with point 7. of Proposition 3.2.1, that it holds b(u,v,v) = 0 for any
u=1u+pBH €)Y ®RH. Integrating by part we have also that for any ©v € ¥ & RH, for any
v,w €V, b(u,v,w) = —b(u,w, D).

Point 4v. is trivial after notice that VH € L*° and recall #. of Proposition 3.2.1.

Finally to prove v. we use the same procedure of point . of Proposition 3.2.1. ]

We now introduce the definition of weak solution, with possibly unbounded energy, of the
system (3.2.1)-(3.2.3).

Definition 3.2.2. Let vg =0+ SH € H®RH and T > 0. We say that v =0 + SH where
5 € Cu([0,T);H) N L2(0,T; V)
is a weak solution of (3.2.1)-(3.2.3) if for any test function ¢ € C*([0,T]; H) such that plx €

CH([0, T); C&*(Fo))

@ P(0) — ol = [ [0 000 +2a(0,) ~ b, 0)]

Observe that we took into account here that H is time independent, and 3 as well. For
our convenience we give an equivalent but more explicit definition of weak formulation of the
system (3.2.1)-(3.2.3).

Definition 3.2.3 (Weak solution with S circulation at infinity). Let 99 € H and T > 0 given.
We say that

o € Cuw([0,T); H) N L2((0,T); V)
is a weak solution for 2D Navier-Stokes with /3 circulation at infinity if for every test function
0 € CY([0,T]; H) with ol= € C([0,T]; C*(Fp)), it holds
t
(@(0), £()se = (30, 0O = [ [(0.000) + 20(0,) + 28a(H, )

To conclude this section, we observe that any smooth solution of (3.2.1)-(3.2.3) with infinite
energy is also a weak solution.

Proposition 3.2.3. Let v = © + SH a smooth solution of (3.2.1)-(3.2.3) with initial data
vg = Vg + BH, then ¥ is a weak solution for 2D Navier-Stokes with [ circulation at infinity.

Proof. Multiply the equation (3.2.1) by the test function ¢, integrate in all Fy, integrate by
parts and use the boundary condition. O
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3.2.4 Existence result: infinite energy case

The following result establishes the existence of global weak solutions of the system (3.2.1)-
(3.2.3).

Theorem 3.2.1. Let 99 € H and let T > 0. Then there exists a weak solution © € H of 2D
Navier-Stokes with (8 circulation at infinity in Cy([0,T);H) N L?(0,T;Y) such that satisfies
the following energy inequality: for almost every t € [0,T] we have

1 - t L .
S50t ) + 2 D@P+2a [ [ J5-asP <1+l
0 JOSy

(0,t)><.7:0
where C depends on T, Sy and 3. Moreover (£,7) € H'(0,T;R? x R).

Proof. The proof of this theorem follows the proof of Theorem 1 in [PS14]. The main difficulty
is to deal with the fact that the function H is not an L?(Fp) function. In this work we
emphasize only the changes in the proof in [PS14], for this reason we divide the proof in
several steps as in the paper mentioned above.

The idea of the proof is to use an energy estimate to prove that the Galerkin approximation
converges. To get the energy estimate at a formal level is enough to test the equation with ,
but this does not work because b is not bounded in ¥V x ¥V x ¥V but only in ¥ x ¥ x V. The idea
is to use a truncation of the solid velocity far from the solid. This procedure was introduced
by [ORT07] in a slightly different setting.

For simplicity in the proof we consider the case 8 = 1. Dealing with 5 # 1 is not an issue.

» Truncation. As said in the beginning we refer to [PS14] for more details. Let Ry such
that So C B(0, Rg/2). For R > Ry, let xr : R? — R? the map such that

xr(z) = Eot for x in R?\ B(0, R/2).

z|

(@) = {XR(QU) =zt for z in B(0, R/2);

Note that for w € V we have that
Xr-Vw =zt -Vw in L*(R?) as R — +oo0.
We can use the functions y g to truncate the solid velocity in the following way: we define

vsr(t,z) = L(t) +r(t)xr(T),
and the forms

br(u, v, w) = mr s - IF + Jorarere + . [(u—us.g) - V)w] v —ryvt - wde.
0
The advantage of bgr is that it is a continuous form from ¥V x ¥V x ¥V to R. Moreover there
exists a constant C' independent from R such that for any (u,v,w) € Y xV xV, [br(u,v,w)| <
Cllully[[vlly|lwlly and for any (u,v) € ¥ x V. [br(u,u,v)] < C([[ullFsz) + lull3)lvlly. The
cancellation property still hold, in fact for any (u,v) € ¥ x V, bg(u,v,v) = 0. Finally we note
that for any (u,v,w) € ¥ x ¥V x V br(u,v,w) — b(u,v,w) when R goes +o0.
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» FExistence for the truncated system. In this step we present the existence of a solution
for the truncated system. We claim that for any 99 € H and T > 0, there exists O €
C([0,T); H) N L%([0, T); V) such that for all ¢ € C°°([0,T); 1) and pl= € C([0,T]; C=(Fo)),
and for all ¢ € [0, T, it holds

(1), £~ (@m0, 9O = [ [(0m, o) +20(0m,0) + 20l )

—~br(0r, 0, Or) — b(H, ¢, 0r) — b(or, o, H)|dt.

Moreover o satisfies for almost every ¢ € [0,T] the energy inequality

1 T t
SIon@B+ [ [ fon—onslPdsit+ [ [ 1D@R) ot
2 0 Jasy 0 JFo
T 2
< c/ (Ioml3, + 1) dr.
0
The idea of the proof is based on the Galerkin method. We consider the set

Y = {u € LZ(R?)| there exist up € Co%(R?) and up € R

such that u|r = up|r and uls, = usls, },

which is dense in V, see Lemma A.0.2 in the appendix. Therefore there exists a base {w;}ien
of the Hilbert space V such that w; € Y for all i. We consider the approximate solution

(tm)_vNRtx ZgzN wz

where we forgot R for simplicity. The function 9y satisfies

(8t17N,wj)H ZQG(@N,U}]‘) + QG(H, ’wj) + bR(ﬁNﬂ?N,w]‘)
—b(H,wj,ﬁN) —b(@N,w]‘,H), (327)
N |t=0 =00,

where Upq is the orthogonal projection in ‘H of ¥y onto the space spanned by wi,...,wy. The
existence of such g; v is due to the Cauchy-Lipschitz theorem applied to the system of ODE:

Gy =My 2ANGN + 2AN 1 — By, (Gn) — By, (Gn) + By (Gn, Gn)]

Gn(0) =Gno,
where
My = [(wi, w;)uli<ij<n, Gy =[N gnN]T,
N
An = [a(wi, wihi<igen, By ()], = Y urb(H, wj,wy),
k= 1N
[BNH3 Zuz wlijv > [BN u, U Z uvEbr wzawjawk)
i,k=1

and  [An,g]; = a(H, wj).
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Note that My is invertible because {w;};cn are linear independent in H.

The Cauchy-Lipschitz theorem ensures a local in time existence for the functions g; n.
To prove that the existence is in all the interval [0,7] we need an estimate that leads us to
conclude that the function g; v are defined in all [0, 7. To do that we multiply (3.2.7) by g; n
and we sum over j to obtain

1d
L2 ol + 2/ D(o3)|%de + 2a/ (i — T.s[2ds (3.2.8)
2dt Fo 9S8

= QG(H, @N) — b('ﬁN, 1~)N, H)

We now estimate the right hand side of the last equality. Note that for any e there exists C;
such that

la(H, )| < Cs + e (/ Do)z + [ o - @N,s|2ds)
7 9o
and that  [b(oy, oy, H)| < Cllon %,

where C' and C: do not depend on N and R. If we integrate (3.2.8) in (0,¢), we use the two
inequality above and we bring on the left the terms multiplied by € we get

t t

ontid+ [ [ ip@wPdr+ [ [ o - oxsPds

0 JFo 0 JOSo
t ~ 2 ~ 2
< [ (C+ lowlie) de + ool

Using the Gronwall lemma we obtain the estimate

- t - -

Jonl < te'® (€5 + ool ) + Ct+ ool

which leads us to conclude that the function g; xy can be extended in all [0, 7.
Moreover, by the fact that || on0l|% < ||00||% and by the Korn inequality, we conclude that

UN E LOO((O,T);H)
27N S L2((O’T);£)

are uniformly bounded in both the spaces. This leads us to conclude that there exists ¥ €
L>®((0,T); H)NL2((0,T); V) such that ¥y converges to © weakly in L2((0,7);V) and *-weakly
in L>°((0,7T);H) as N goes to +oo.

We pass to the limit in (3.2.7). The only not triviality is to prove the convergence of the
non-linear term, i.e. br(¥n, VN, w;) converges to br(0, v, w;). The idea is to notice that iy is
relatively compact in L2((0,T); L2 .(R?)), in fact this follows from the proof of Theorem 1 in

[PS14], where the only difference is the estimate
Ifnlly < COL+ onlly + Ion 1),
with fx defined by

<fN,w> = 2a(f1N,w) + QG(H,IU) + bR(@N,ﬁN,w) - b(H,w,@N) - b(IN)N,w, H)
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At this point we are able to pass to the limit in

(o (), ) — 0,00 = [ (0w 00+ 2a(0w, 0) + 20l )
—br(BN. 0, ON) — b(H. 0, 5x) = b(n, o, H))| dt.

which means that o = U satisfies

E(0) £~ (om0, 9O = [ (@8 + 20(0m, 0) + 20(H, )

—br(Or, ¢, ) — b(H, ¢, Tr) — b(0r, ¢, H)] dt.

» Limit of the solutions of the truncated problems. We note that the energy estimate do
not depend on R, so there exists sequence g, converging to & € C((0,T); H) N L3((0,7);V)
*-weakly in L>((0,T); H) and weakly in L((0,T);V) as k goes to +oo.

This convergence does not lead us to pass directly to the limit because of the non-linearity
of br, in other words we have to find an argument to prove that

t t
/ br, (6k,Rk76k,Rka ) — / b(0,0, p)dz, as k goes to + oo.
0 0

As presented in the paper [PS14], it is enough to prove that oy g, is relatively compact in
L%((0,T); L} .(R?)). We have already presented this compactness property for @y, g, but the

loc
estimates are R depending so we cannot directly conclude.

The idea is to apply the Aubin-Lions lemma to get the compactness result. First of all we
note that @ g, are uniformly bounded in L*(0,T; L*(Fp)), in fact

t
~ 4 ~ 4
ok ooy < ) Pkl

t
S/O 158,25 72 () ||V Ok Ry 1 72
<0k, ri Ml oo (0,152 Fo)) IV O, Ry L2 00,7512 (70 )) -

This leads us to prove that 0;vx g, is uniformly bounded in L?((0,7);V"), in fact the only
non-linear term that can be an issue is

/ [(Ox,ry, - V)9] - Uk,R, d,
Fo

where g € L?(0,7;V), but it can be bound by

T
< C/O 15k, 1747 V9l L2t

T
/ / [(ﬁk,Rk . V)g] . ’Dk’de:IZdt
0 Fo

< Oll9k, me 174 0,518 o 191 22 0720

For every ball B,(0) of radius € N such that Sp C B,(0), the Aubin-Lions lemma applies
and implies that {oy r,|B, (0)}ken is relatively compact in L?(0,T; L?(B,(0))). By extracting

a diagonal subsequence we get that {x g, ken is relatively compact in L2(0,T; L} (R?)).
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We can now pass to the limit in the weak formulation to get the desired result.

» Improved reqularity for (I,7). In two dimensions the Kirchhoff potentials are the solu-
tions ® = (P;);i=1,2,3 of the following problems:

—A®, =0 forx e Foy,

®;, — 0 for |z| — oo,
0P,
on

=K, forxz e dF,

where
(K1, K, K3) = (n1, na, ot - n).

These functions are smooth and decay at infinity as follows:
1 ) 1
V&, =0|— ) and V°®;, =0 — | asz — oc.
|z[? |z
We now define three functions wu;, for ¢ = 1,2, 3, defined by

i = Vb, in Fy and u; = { “ i - ; 2 in &, (3.2.9)

and which are V. The body’s equations can then be rephrased as follows:

/
M [ﬁ] = (20’(67 uz) + 2(1(H7 uz) + b(ﬁv v, ’U,Z) + b(H7 v, ul) - b(’ﬁv U, H))ie{l,...,?)}?

where
M= Mz O +[ Vd, - Vb, dr .
0 J Fo a,be{1,2,3}
Since the matrix M is symmetric and positive definite, applying Proposition 3.2.2 yields that
(¢,7) is in H'(0,T;R? x R). O

3.3 Future directions and open problems
In this section we discuss some open problems related to Chapter 3.

> The first question is if it is possible to extend the existence results with finite fluid kinetic
energy also in the case where many objects are considered. We believe that the answer is
yes and only some technicality are missing. The methods that are presented here should
apply also in that setting.

> The second question is if it is possible to extend the proof of existence after that the
solid touches the boundary. We believe that in the case of strong solution this is not
possible because the norm of the second derivatives in space blows up. Regarding the
case of weak solutions, it is not clear that the method of [GVH14| can be applied and
the existence after contact is an open problem unless in the case where some artificial
source terms are added, see for instance [Sta03].
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> The third question is if there exists strong solutions in Banach space setting with mized
boundary conditions. The answer is yes but a complete proof is missing. The idea is
that to prove R-sectoriality of the operator associated only with the fluid, it is enough
to consider the problem in the entire space and in the half space. And then use a
localization argument to deal with bounded domains. In the case of a solid immersed in
a viscous fluid where contact does not occur, the boundary of the fluid is composed by
two connected components with empty intersection. While performing the localization
argument it is possible to translate the problems into one that contains at maximum
one type of boundary conditions. Which implies that is possible to prove R-sectoriality
for the operator associated with the mixed boundary conditions.

> The fourth question is if it is possible to deal with viscous coefficient o non positive and
non-constant in the space variables. To prove existence of weak solutions with infinite
kinetic energy, it is enough to assume o € L* and also non-positive. The demonstration
can be adapted as in [Kel06]. In the case of weak solutions in bounded domain, the proof
in [GVH14] is more involved and is not clear if it can be perform with only L* friction
coefficient. Regarding existence of strong solutions in Banach space setting @ € L™ is
probably too weak. Regarding the case of the fluid alone the weakest assumption that
we are aware are presented in [AACG19], where they show existence of weak solutions
for o € L? and of strong solutions for o € W1/22. Moreover they treat also the case in
the non-Hilbert space setting.

> The fifth question is if it is possible to prove uniqueness for the fluid-structure problem
with infinite energy. We believe that uniqueness holds but for technical reasons we
are not able. The difficulty lies in the term involving z'. In the case the solid is a
disk, to move the problem to a fixed domain is enough a translation, and the situation
become easier. In the Appendix C, we show existence and uniqueness of weak solution
with infinite energy of the type studied in Section 3.2. Moreover we prove that as the
viscosity tend to zero the solutions converge to one of an Euler plus disk system studied
in [ORTO07].



Chapter 4

Continuity, energy equality and
uniqueness

Dans ce chapitre, nous étudions la continuité, [’égalité d’énergie et le caractére unique des
solutions faibles d’un systéme d’interaction fluide-structure.

This chapter is completely dedicated to the proof of the continuity in time with values
in L2(Q), the energy equality and uniqueness for weak solutions of the system (3.0.1)-(3.0.9)
in the case where €0 is bounded. In the first section we prove the continuity in time and the
energy equality. At a formal level the equality is obtained by testing the weak formulation
(3.1.2) with the solution itself and by some integrations by parts. To perform a rigorous proof,
we construct smooth enough approximations and we pass to the limit in the weak formulation
tested with these approximations of the solution. To be able to conclude we finally need a
Lions-Magenes type lemma in time dependent domain.

The second part of the chapter is devoted to the proof of uniqueness and follow the ideas
from [GS15]. The difficulty arises from the fact that the domain of definition of the weak
solution is time dependent and we cannot naively take the difference of two weak solutions.
To solve this issue we use a change of variables to have the same geometry for the two weak
solutions and we use the existence result of strong solutions from Section 3.1.2 to perform a
Gronwall estimate that leads us to the proof uniqueness.

4.1 Energy equality and continuity

As announced before in this section we will present and prove the continuity in time and the
energy equality for weak solutions of the system (3.0.1)-(3.0.9). Let us state the result.

Theorem 4.1.1. Let Q C R? an open, bounded set with smooth boundary, So a closed,
bounded, connected and simply connected subset of 0 with smooth boundary, uo € Hs,, and
(S,u) a weak solution of (3.0.1)-(3.0.9) with initial data (Sp,uo) for some T > 0. Then

we C([0,7); L2(Q)). (4.1.1)

59
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Moreover, for every T € [0,T), the following energy equality holds:

1 1 T
7/ lup(r, .)|2+f/ ps\uS(T,.)|2+2/ / \Dup|?
2 JFe) 2 Js(r) 0 JF(t)
+2a/ / |uF|2—|—2a// lup — ug? (4.1.2)
o Joa o Jos)

5 [ turol + 5 [ pstuosP
=35 UF,0 o S|uo,S| -
2JF 2 Js, P

Before going straight in the proof of the above theorem, we will present two results. The
first one is a way to construct a smoother in time approximation of the solution and the second
one is a Lions-Magenes type Lemma in time dependent domain. We emphasize that these two
results are one of the main novelty in this work and they have been used in [MNRI19] to
prove uniqueness of weak solution of the the system (3.0.1)-(3.0.9) with both no-slip or Navier
boundary conditions in dimension three under a Prodi-Serrin type hypothesis on fluid velocity.

4.1.1 Construction of an approximation

The goal of this section is to present a Hilbert space &, with the two following properties:
> &, contains V., the set where weak solutions are searched,
> &, is the closure of W;, the set of test functions, in the norm of &,

Moreover the norm on &; has to be strong enough to be able to pass to the limit in the weak
formulation.
We consider the space

& = {v e L*(0,7; LZ(9)), there exists vy € L*(0,7; HX(Q)),
vg € L*(0,7;R) such that v(t,.) = vp(t,.) on F(t),
v(t,.) = vg(t,.) on S(t), for a.e. t € [0,7]},

with norm ||v||¢. given by

oI, = [ lorlnrapdt+m [P @+ T [ i

where vg is decomposed into vg(t) = l,(t) + (x — h(t))>ry(t).

It is immediate to see that &, is an Hilbert space and satisfies point one. To verify point
two we will construct explicitly, for any element u in &, a sequence u. in W, that converges
to w in the norm of £,. This construction is made in the lemma that follow.

Lemma 4.1.1. The space W, is dense in E;.

Proof. To prove this lemma we show for any element f of & there exists an approximating
sequence in W, that converges to f in £,. We present all the details of this construction
because we use its special properties to prove Theorem 4.1.1. Let f an element of &, this
element is not in the space W, because is not regular enough in time. To regularize f in time
and preserve the rigidity of the motion inside S(¢) we use the geometric change of variables X
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from Claim 3.1.1 that fixes the position of the solid. We make a convolution in time in these
variables. Finally we go back to the original variables.

Let n € C°(—1,1) be an even function such that = 1 in a open neighbourhood of 0,
0<np<1land [n=1andletn =n(/e)/e. Let p € CX(R) such that 0 < <1 and such
that ¢» =1 in an open neighbourhood of [0, 7]. Finally let X, be the extension in (—o0, +00)
of X defined in Claim 3.1.1, i.e.

X(0,y) for t <0 and any y € €,
X (t,y) =< X(t,y) for t € (0,7) and any y € €, (4.1.3)
X(7,y) for t > 7 and any y € Q.
And in analogous way we extend the inverse Y., h, and @Q,. In what follows we do not write
the index 7 for simplicity.
We introduce the functions
o(t,y) = VY (£, X(t,y)) f(t, X(t,9)),

Us(t,y) = QT (1) fs(t, h(t) + Q(t)y), (4.1.4)
that satisfy © € L>(0,7; L2(Q)), s € L*(0,7;R) and 9 € L(0,7; HL(Q)). Let v, vg and vp
the following extension of v, Ug and ¥ in (—o0, +00), i.e.

P(t)0(0,.) for t <0,
u(t,.) = S (t)o(t,.) for t € (0,7),
Y ()o(r,.) for t > 7,
then we define v. = 7. * v and in an analogous way vg. = 7. * vg and vpe = 1. * vp. We
notice that when we convolute in time we average velocities associated or only with the fluid,
in the case y € Fq or only with the body, in the case y € Sy, see Figure 3.1. We are now able
to define
fe(t,x) =VX(t,Y(t,z))v(t, Y (t, x)),
fselt,x) = Q(t)vs(t, QT (z — h(t))), (4.1.5)
Jre(t @) = VX, Y(t,2))vpe(t, Y (¢, 2)).
Note that
fselt:) = Q) (n-+ (QT1y)) (&) + (z = h()) Hne x 74 (2).
Then it holds that f. € W; (observe that X(¢,y) = h(t) + Q(t)y in a neighbourhood of

S(t)) and that fo — f in LQ(O,T;Lg(Q)), fre — fr in L2(0,T;H;(Q)) and fg. — fs in
L?(0,7;R). O

4.1.2 A Lions-Magenes type lemma

In this section we present a Lions-Magenes Lemma for time-dependent domain. One of the
more general version can be found in [LM68]|[Chapter I, Theorem 3.1]. Here we are interested
in an application so we prefer to present this result on a concrete example. The proposition
that follows is Theorem 3 of Chapter 5 Section 9 of [Eval0] and is the toy model of the result
that we are going to prove in time-dependent domain.
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Proposition 4.1.1. Let w € L%(0,7; H}(Q)), with w' € L?(0,T; H~1()).
1. Then w € C°([0,7]; L?(Q)) after possibly being redefined on a set of measure zero.

2. The mapping t — Hw(t)H%Q(Q) is absolutely continuous, with

d
%Hw(t)H%z(Q) =2(w'(t),w(t))  for almost any 0 <t < 7.

To state our result we need two ingredients. The first one is £ the dual space of & and
we embed &; into £ through the inner product of H-.

The second ingredient is the convective derivative. Let (S,u) a weak solution for some
T > 0, for any function f € W, we define the convective derivative associated with u via

Oufr+ur-Vfr for a.e. (t,x) € U {t} x F(t),
u te[0,7]

dt / Oufs +us - Vs for a.e. (t,x) € U {t} x S(t),
te[0,7]

In what follows we will not write the dependence on u of the convective derivative. Moreover
note that the second line of the convective derivative can be rewritten in the following way:

2 F6) = U(0) + (0 = B 7 (0) — (@~ RO ra(t)rs (1),

where fg is decomposed into fs(t,x) = l¢(t) + (z — h(t))trs(t).

Definition 4.1.1. Given w € &;, we say that w admits a convective derivative

D
_ g*
at o

if there exists a representative w and F' € &£ such that for almost every t; < t2 € [0, 7], it
holds

(Pl ime),, . =(0t2),9(t2)1050, = ((t), (00,

to D to D
— W — dxdt—/ / w - — pdxdt,
/t1 /]—'(t) dt” t JS(t) POt ®

for any ¢ € W;, where 1, ;,) is the characteristic function on (¢1,2). In this case we will

denote
D

= —w.
dt
Note that the above definition is an extension of the classical definition for the space &;

and in what follows we will denote by (.,.) the pairing (.,.)ex ¢, .
We are now able to state rigorously the main theorem of the section.

F

Theorem 4.1.2. Let w € V,, with %w € &;.

1. Then w € C°([0,7]; L2(S2)) after possibly being redefined on a set of measure zero.
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2. It holds D ) .
_ 2 2
<dtw’“’>% = Sl By, (1) = 510l (0.

Proof. The proof of the two points of the theorem are based on the same idea and on similar
computation. To avoid to perform this computation two times, we will assume point one and
prove the second point. At the end we will show point one.

From point one we have w € C°([0,7]; L2(92)). Let w. be the approximation of w as in
Lemma 4.1.1, in other words let w. defined as in (4.1.5) where we replace f by w. We are
going to prove

D 1, 1,
(weve) = 5ol (7) = 5l O (4.1.6)

and D D
<dtwa,w5> _ <dtw, WE> +o.(1), (4.1.7)

where W, € W, converges to w in &, and o.(1) is a quantity that tends to zero as £ converges
to zero (we will use the same notation also in the sequel). The proof of the second point of
the theorem follows from the assumption on the regularity of w, (4.1.6) and (4.1.7), in fact

1 1 1 1
SlwelBige, (1) = S lwelBigy O = Slwly, (7) = 5 llig, (0),

2
1 1 D
§||w€”’2}{s(7) (T) - §”w€||%[5(0) (0) = <dtw7 WE> + OE(]‘)’

D D
<dtw’ WE> + 06(1) - <dtwvw> 3
as € goes to 0.

To prove (4.1.6), we use the fact that Dw. € &, the identification of &- in & through
the scalar product in Hg and Reynold’s transport Theorem, see for instance [CNM19, Lemma
2.1].

Let now tackle (4.1.7). We define W, as follows:

) = [ s~ 0QWQTOLWd, ()= [ nfs — (o)t

—0o0 —0o0

Wse = lw. + (z — h(t)) rw,, (4.1.8)

where for simplicity we wrote I instead of l,,, and 7. instead of 7, and wg.(t,z) = l(t) +
(= h(t)) " re(t),

Wre(t,x) = Z /OO Ne(s — )VY(t, 2)0m X (s, Y (t,2))0: X;(s, Y (¢, x))

m,li” ~
UF,a,i(Say(t>x))dsa
Weit,z) =Y / De(s — )V Yo (8, 2)0m Xu(s, Y (2, 7)) (4.1.9)
myli” ~®

0iXi(s,Y (t,x))ve (s, Y (¢, z))ds,



Chapter 4. Continuity, energy equality and uniqueness 64

where X and Y are defined in (4.1.3) and v. and vp. are defined in (4.1.5), if we replace f;
and fr. by w. and wpg.

Observe that W, € W, and W, converges to w in &;. To prove (4.1.7), it is sufficient to
prove

/OT rire = — /OT Twry. (0) + 7o (T)rw. (7) — 7w (0)rw,. + 02 (1), (4.1.10)
/T ILole=— /T Lo -y, + L (T) - lw. (7) — 1u(0) - lw (0) + 0-(1), (4.1.11)
0 0

and

/ / (Orwe - we + (u - V)we - we) dedt =
o JFw)

47/"l/ (w - OWe + (u- V)W, - w) dzdt (4.1.12)
0 JF(@)

1 1
+ 3 /]:(‘r) w(r,.) - We(r,.)dx — 3 /fo w(0,.) - W.(0,.)dz + o0.(1).

We start with the proof of (4.1.10). From (4.1.5), we have that r. = . xry,. The following
computation holds

T +o0 0 +o00
/ rire :/ rL(t)re(t)dt — / rire — / rire
0 —00 —00 T
400 +o0 0 +o0
:/ (/ n'(t — s)rw(s)ds> re(t)dt — / rire — / rir,
—+o00 “+o0 0 —+o0
- _ / Tw(8) (/ n' (s — t)rs(t)dt) ds — / rire — / rire

T +00
=_ / Tw(5) (/ 7' (s — t)rg(t)dt> ds + ry(T)rw. (1)
0 —0o0
— 1 (0)rw. (0) + 0z(1)
= — / rwr{/vs + 70 (7). (T) — 7w (0)7rw. (0) + 0:(1).
0
where to go from line 2 to line 3 we use the fact that 1’ is odd and in the last line we use

(4.1.8).
We perform similar computation to prove (4.1.11). Clearly we have that

T +o0 0 +o0
/ z;.zgz/ z;-zs—/ z;.zg_/ Il (4.1.13)
0 —00 —00 T

and that

0 1
/ L+ ledt = 1, (0)  and /

— 00 T

+o00 1
L l.dt — —§|lw|2(7) as e — 0. (4.1.14)

We recall that by definition (4.1.5) of wg,. we have

L0 = Q) [ nelt— QT (5)huls)ds.
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Using this definition we have
/_ :O () - 1 (t)dt = / ow / Tt — $)OT (5)lo(5)ds - 1. (t)dt
+ 0w [T = QT @us)ds -t

We use he fact that 1’ is odd and we invert the integration in s and ¢ to arrive at

(@116) == [ QT [ s~ QT WL t)aras
/ Q7 ( / (s — DQT (£)1(¢)dtds

:/_J:O L (s) - /_Oo n-(s — )Q'(s)QT (t)l.(t)dtds
—/_:olw(s)'as/_;“m(s_t)Q(s)QT(t)za(t)dtds,

We summarize the last computations to arrive at

/+oo I(1) - 1(8)dt = (4.1.15) + (4.1.17) + (4.1.18).

—00

Moreover by the fact that 9;(Q(t)Q™ (1)) = Q"(1)QT (t) + Q(t)(QT)'(t) = 0 we have
(4.1.15) + (4.1.17) -0 ase — 0.

Gathering (4.1.13), (4.1.14), (4.1.19), (4.1.20) and using that

i, = = [Tty = 0000) T, 0) + Gl Ty, (7) + 0.1,

we obtain

/OT U ldt = — /OT 1 (s) - 04 /_:O 0 (s — DQ()Q" (D)l (t)dtds
+ () - tw. (T) = Lw(0) - lw.(0) + 0-(1)

- /0 o (5) - Ly ds + Lo(7) - I () — L (0) - I (0) + 0-(1).

where we use (4.1.8).
We are left with the proof of (4.1.12). We start with the term

T +0o0
/ / Orwe - wedxdt :/ / Oywe - wedxdt
0o JFw oo JF@)

1 1
—— | w*0,.)dz + = w?(7,.)dz + 0. (1).
2 JF 2 JF(r)

(4.1.15)

(4.1.16)

(4.1.17)

(4.1.18)

(4.1.19)

(4.1.20)
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As before we start the computation by the definition (4.1.5) of the approximate sequence w,
(we exchange f with w) and we compute the derivative in time. We recall the definition (4.1.4)
and (4.1.5):

vm(tv y) = Z al}/m(t? X(t7 y))wl(t’ X(tv y))’
l

we (t, ) ZE) Xi(t, Y (t,z))vem(t, Y (¢, )).

If we compute explicitly the derivative in time we get

/ / Oy, - wedxdt =
—oo JF(t)

Z /_ O:o / oy O X0 (12 e (0, (12 0 2) (4.1.21)
Y (t, )00 X (t, Y (t,
+l§k/ F(t) OO X1 (1 Y1) (4.1.22)
Vem(t, Y (t, x))we i (t, x)dzdt
+Z [ O:O /f (1Y ()0 (0, (1), )l (4.1.23)

0, T 8t T
+l7zn:k/ 7 () AU L) (4.1.24)

8kv€,m(ta Y(ta x))we,l(t, l')dilfdt

Using the change of variables and the fact that the determinant of the Jacobian of the change
of variables is 1 we have

(4.1.23) = > / / O Xi(t, y)Orvem (8, y) 0 Xi(t, y)ve (L, y)dydt

l,m,i

/ /f / Ne(t — 8)vm(s,y)dsOm X (t,y)
Im,i” —00
0 Xi(t, y)vei(t, y)dydt

/ /fovm Y /_ Ne(s = t)0mXi(t, y)

9: Xy (t, y)ve i(t, y)dtdyds

/ /fovmsy </_ ne(5 — 1)0m X (t, y)

O X1t ), y)dt) dyds

== 3 [ ] ¥l Xs (s, X(s,9)

l,m,i,n

s (/ Ne(s — 1) 0mXi(t, ¥)0i Xy (t, y)ve i(t, y)dt) dyds,
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where in the second line we use the definition of convolution, in the third line we exchange
the integration in ¢ with the integration in s and we use the fact that n is even which implies
that ' is odd, in the fourth line we use a property of the derivative of a convolution and in
the last one we use the relation (4.1.4) between w and v.

Going back to the original variables we get that the last line is equal to minus

> [ . 0.Yo(s, yun(s, )0, ([t = )0, Xi(8,Y (5,2)

l,m,i,n
0iXi(t,Y (s,x))vei(t, Y (s, x))dt) dxds (4.1.25)
plus the following three terms
/ D, Yom (5, 2)wn(s, ) / ne(t — )0,Yo (s, 2) (4.1.26)
ILmymn,e” F(s) -
8eale(t7 Y($7 x)>aZXl(t7 Y(87 x))vs,i<t7 Y(Sv a;))dtdacds,
Z / / ( )8nYm(8, x)wp (s, :L")/ Ne(t — 8)0m X (t,Y (s, 2)) (4.1.27)
ILmjin,e” Fs —o©
aSY;i(Sa Zli)aeain(t, Y(S7 x))v&‘,’i(ta Y(Sv x))dtda;ds,
/ /( )OnYm(s,x)wn(s,x)/ Ne(t — 8)0m X (t,Y (s, x)) (4.1.28)
Imjn,e” Fs -

0iXi(t,Y (5,2))0sYe(s, x)0cve i(t, Y (s, x))dtdzds.

We isolate wy, (s, ). To do this we note that (4.1.25) is equal to the difference of the following
two terms

lv,%n/—oo /]—'(5) ’wn(S,x)as(/_oo 775(15— S)anYm(s,x) (4'1'29)
ale(t,Y(S,x))ain(t,Y(s,x))ve,i(t,Y(S,x))dt>dxd3
177;2-7” /_O:o /}_(S) ’U}n(S,«T) LZ n&(t — S)asanYm(S,.’E)ale(t’Y(&x)) (4130)

0iXi(t,Y (s,x))vei(t, Y (s, z))dtdzds.
We arrive at
/ O:O [ B waddt =(41.21) + (41.22) — (41.29) + (41.30) + (41,20
+(4.1.27) + (4.1.28) + (4.1.24).

Notice that as € goes to 0 we have
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(4121) > 3 / - / o DOm0 (1200 Yo (1) 1 21, 2)

Immn” —®

(4.1.30) —» > / / n(t, 2) 0400 Yon (t, 2) 0 Xy (8, Y (L, ) )wy (¢, z)dxdt,
_F

l,m,n

(4.1.26) > ¥ / / Yo (£, ) (£, )0, Yo (t, 2)0eDm Xu(1, Y (1, 2))

I,m,n.e

wy(t, z)dzxdt.
Moreover using that 0;(VX (t,Y (t,2)VY (¢,x)) = 0, we arrive at

(4.1.21) + (4.1.30) + (4.1.26) — 0.
We study the terms (4.1.22), (4.1.27), (4.1.28), (4.1.24). As ¢ goes to 0 we have

(4.1.22),(4.1.27) — > / Oy Yi(t, 2)0pOm X1 (t, Y (t, 7))
Lk =00 JF(t)

b b E - m I ) t Y

Okvom (8, Y (¢, z))wi (t, x)dzdt.
Moreover it holds

S kO Xi(t, Y (£, )0 (£, Y (£, %)) + O Xi(8, Y (£,2)) Do (£, Y (¢, 7))

= 3" 0L X (8, Y (8, 2))0;Yi(t, 2)0:0m Xi(8, Y (1, ) Yo (1, Y (E, 7))

m,i,j
+ Z 0p X (t,Y (t,2))0;Yi(t, x)0m Xy (t,Y (t, 2))0sum (t, Y (L, x))
m,i,J
= Z 8ka (t, Y(t, a:))é)jwl(t, IL’),

J
where we multiply by the identity matrix >°; 0x X;(t,Y (¢, 2))0;Yi(t, x) = dx; and by the fact
that Y is the inverse of X, it holds X (¢, Y (¢,x)) = x, which implies that

0=0(X;(t,Y(t,x))) = 0X;(t,Y(t,x) +ZakX (t,Y(t,z))0Yx(t, ).
k

Combining the two last equalities, we have that

> 0 Y(t, ) OpOm Xy (1Y (t, @) ) (, Y (£, 2))

m,k
+ O Yy (t, )0 X (¢, Y (t, ) Okvm (8, Y (¢, z))

= Z 0 Yy (t, )0 X;(t,Y (t,x))0jw(t, x)
7,k

:-Z@t (t, Y (t,2)) 05w (t, x),
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which implies that
(4.1.22) 4 (4.1.27) 4 (4.1.28) 4 (4.1.24) —

+o00
—2% / / 0,X,(1, Y (£, )0 w(t, 2)wy(t, @) dxdt.
j1 /o F(t)

We note that X (defined in (4.1.3)) does not change in time respectively in the intervals
(—00,0] and in [, 400) and by an integration by parts we have

(4.1.22) + (4.1.27) + (4.1.28) + (4.1.24) —
- 2/0T /f(t)[(u(t, z) - Vw(t,z)] - w(t, r)dzdt.

Recall the definition of W, from (4.1.9) and let W., the n-th component of W, with this
notation, it holds

+oo
(4.1.29) :/ / w - O Wedxdt

—/ / w - O Wedxdt
w(0,.) - W.(0,.)dz — f/ We(r,.)dx + o-(1).
2 Fo ]-'(7')
To conclude the proof of (4.1.12) we note that

/T/ (Opwe - we + (u - V)we - we) dzdt

+0o0
—/ Oywe - wedxdt + = / ,)2dx — / ,)2dz + 0-(1)
F) 2 2

/ / u - V)we - wedxdt

—=(4.1.22) + (4.1.27) + (4.1.28) + (4.1.24) — (4.1.29) — /f lw(0,.))?dx

+/ N2dz + o.(1 +/ / (u- V)we - wedxdt
F(t)
1

—// (w~8tW5+(u-V)Wgw)d:cdt—f/ w(0,.) - W.(0, )dz

0 JF® 2JF

1
+f/ w(r,.) - We(r, )dz + o0.(1).

2 JF@)

We go back to the proof of continuity. Let w. be the approximation of w as in Lemma
4.1.1, in other words let w. defined as in (4.1.5) where we replace f by w. To show the
continuity (4.1.1) in time of the solution we follow a standard technique. The idea is to
consider the approximation sequence w, defined in (4.1.5) and to prove that the sequence is
a Cauchy sequence in C°([0, 7]; L2(Q2)). To do so, we suppose without loss of generality that
ws(0) — w(0) in Hg, then

Jae(t,) = w0, gy = 1000,) = w0, B +2 ( (= ), we — s
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If we show that the convective derivative of w, is uniformly bounded in £}, the equality above
proves that w, is a Cauchy in the space C°([0,7]; L2(Q2)), in fact L2 and gy norms are
equivalent as long as supycpg - dist(S(t), 0Q2) > 0

In what follow we prove that the convective derivative of w. is uniformly bounded in
&X which is equivalent to show that for any ¢ € W, such that ¢ is identically zero in a
neighbourhood of 0 and 7, there exists a constant independent of ¢ such that

D
< .
(Guee)| < Clil,

But this is clear from the computations performed to prove point two, in fact

(L) = (D) + 52

where || @, (s, < Cll¢lls,, F- is uniformly bounded in £ and ®. and F; are defined as follow.

()= [ s~ QWL o ()= [ nls — ol

—0o0 —00

(I)S,e = lcps + (.%' — h(t))J'Tcpe,

where pg(t, ) = lp(t) + (z — h(t))an(t),

Op.(t,x) = /_O:O Ne(t — s) (VX(S,Y(t,x))VY(t,x))T or(s, X(s,Y(t,x)))ds,

O (t,x) = /_O:o Ne(t —s) (VX(s,Y(t,2))VY(t, x))T o(s, X (s,Y(t,x)))ds,

where X and Y are defined in (4.1.3) and the map F' is defined as

+oo +o0
(B = [ QW [ nelt = 9Qs) (9)luls)ds - Lo(e)dt
[ @) [t - Q" Wit

+o0
4 / / OVX (LY (t2))) Ve - w.dudt
F(t)

+/+00/f(t VYSiv))T/_;OO’OE(S—t)X
(0sY (s,2) - V) (VX (t,Y (s5,2)) T o(t, X (t,Y (s, z)))dtdzds

+o0

+/H5Lu (VY ()T [ s = (TX (Y (5,0))

o0

(0sY (s,z) - VX(t,Y(s,2))V) p(t, X(t, Y (s,x)))dtdzds

+ /zow L04(VY (s,2))T /:o n-(s — D(VX (L Y (s, 2))) %
o(t, X(t,Y (s,x)))dtdzds.
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4.1.3 Proof of the energy equality

In this subsection we conclude the proof of Theorem 4.1.1. Let (S,u) a weak solution with
initial data (Sp,ug) for some T' > 0. Fix a representative of u. For almost every 7 € [0,T) it

holds:
—/ / up - Oppprdzdt —/ / psus « Oppgdxdt
o JFw o Jsw)

- / / wp @ up : Vopdrdt + 2 / / Duy : Doppdadt
0 JF®) 0 JF(t)
+2a/ / up - prdsdt + 2a/ / (up —ug) - (pr — ps)dsdt (4.1.31)
0 Joa 0 Joas()
= / upo - PFli=0dr + / psus,0 - Psli=odw
F(0) 5(0)
—/ (uF-on)It:Td:v—/ (psuso - s)li=rdz,
F() S(7)

for all test functions ¢ € W,. Formally the energy equality is a direct consequence of (4.1.31),
in fact the equation (4.1.31) tested by the solution w itself is the energy equality. To do this
in a rigorous way we reformulate (4.1.31) in such a way that we can test with less regular in
time functions. We notice that

D
- g*
at <

Indeed (4.1.31) tells us that for almost every t; < to € [0, 7] it holds
to to
/ /(t up - at‘PF_/ / psUS - 8t905+/ (ur - oF)|i=t,
+/ (psus - @s)le=tr — / up - =t —/ psus * psi=t,
F(t1) S(t1)
to to
/ / up Qup : Vop = —2 / Dup : Dpp
t1

to to
—2a/ / Up + goF—Qa/ / (ur —us) - (pF — ¢s)
t1 N

and the following estimate holds
T T
’2// DuF:D<pp+2a// Up - PF
0 JF() 0 JoQ
T
w20 [T (e us)- (or ~ 0)| < Clell,
0 Jos)

This implies that u € C°([0, 7]; L2(2)) from Theorem 4.1.2, moreover we can write the weak
formulation (4.1.31) in the following way

D T T
<u,<p>:—2/ DuF:DgoF—Qa/ / Up - QF
dt 0o Jre 0 Joo

~ 2 /oT /as(t) (ur —us) - (pF — ps).
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The advantage of this formulation is that we can test it with any function in &;. In fact W;
is dense in &; and we can pass to the limit in norm of &,.
If we test the equation with u, we obtain

D T t
<u,u>:—2/ / DuF:DuF—Qa// UR * UR
dt 0 JF(®) 0 JoQ

- Qa/oT /BS(t)(UF —ug) - (up — ug).

For almost every 7 € (0,7) the proof of the energy equality (4.1.2) therefore follows from
Theorem 4.1.2.

4.2 Uniqueness

In this section we present a result of uniqueness for weak solutions of the system (3.0.1)-(3.0.9)
in the case where (2 is bounded. More precisely, we will prove that given a weak solution (S, u)
such that at initial time the distance of the solid from the boundary is a positive quantity
then (S, u) is the unique weak solution of (3.0.1)-(3.0.9) up to the first contact.

This result is rigorously stated in the following theorem.

Theorem 4.2.1. Let Q C R? an open set with smooth boundary, Sy be a closed, bounded,
connected and simply connected subset of Q with smooth boundary, uy € Hs,. Let (S,u) a
weak solution of (3.0.1)-(3.0.9) with initial data (So,uo) for some T > 0. Then (S,u) is the
unique weak solution to (3.0.1)-(3.0.9) with initial data (So,ug) in [0,T).

To prove the uniqueness result we will show a Gronwall type estimate for the difference
of two solutions. In the case of parabolic equations with a time independent domain, this
estimate is obtained by considering the difference of the weak formulations satisfied by the
two weak solutions tested with the difference of the two solutions. This strategy cannot
directly apply in our setting so the idea is to use a change of variables such that the solutions
are defined on the same domain and then we perform the standard strategy. To deal with the
extra terms coming from the change of variables, we need some improved regularity result.

The rest of the section is divided in three parts. In the first one we show the regularity
results, in the second one we present the change of variables and in the third one we prove
the Gronwall estimate that implies uniqueness.

4.2.1 Regularity in time for the solutions

We present some estimates that are the keypoint for the proof of uniqueness. Fix now (S, u)
a weak solution of (3.0.1)-(3.0.9) in a time interval [0,7"). We define:

Fr = Ueo,m){tt x F (1)
The first estimates are the following.

Lemma 4.2.1. The following holds true

((u-V)u,u) € L3 (Fp;RY).



73 4.2. Uniqueness

Proof. The estimates follow by interpolation inequality and Hoélder inequality. O
The second estimates are related to the regularization result due to viscosity.
Lemma 4.2.2. There exists a strictly positive T < T such that the following hold true
tu e Li((0,T); W23 (F(t), (tdu,tVp) € L3 (FpRY).

Proof. The proof is based on the study of an auxiliary system. Let [ and 7 such that ug(x,t) =
I(t) + (z — h(t))*r(t). Then consider the system in the unknowns (I, ¢, v, p)

%7A0+Vp:u7tu~Vu for z € F(t),
dive =0 for x € F(t),
v-n=vs-n for x € 0S(t),
(D(v)n)-7=—a(v—uvs) - T for x € 0S(t),
v-n=0 for x € 09, (4.2.1)
(D(v)n)-7=—av-T for x € 012,
ml'(t) = — / Y(v,p)nds + ml(t),
a8 (1)
FEW=Trt) = ~ [ (@=h(t)* L. p)nds,
a8 (1)
V]i=p = for x € Fy,
0)=0,  ©(0)=0.

The following holds true:

1. Weak solution of (4.2.1) are unique (we can test the equation with the difference of two
solutions because the domain is not an unknown of the problem);

2. There exists a unique strong solution ([, v, v,p) of (4.2.1) in LA3 — A3 for a short time
see Theorem 3.1.5.

3. Any strong solution of (4.2.1) is a weak solution (by some integrations by parts);

4. tu is a weak solution of (4.2.1), so it is strong for short time.

4.2.2 Solution in the new frame

Let (S1,u1) and (S2,u2) two weak solutions of (3.0.1)-(3.0.9) on some common time interval
[0,T), with T" > 0. In this subsection we present a change of variables that moves Sy on &1
and the equations satisfy by o, which is uo after the change of variables.

We recall that if (S;,u;) is one of the two weak solutions, then for any 7 € (0,7") there
exist [; € C([0,7];R?) and r; € C([0,7];R) such that S; = S’ and there exists § > 0 such
that dist(S;, 92) > 0 for any i = 1,2 and for any ¢ € [0, 7].

We define X; as in Claim 3.1.1, where in addition we ask that X; coincides with the solid
motion associated with S; for any (¢, x) such that dist(z, 9§2) > §/2, X; is the identity in a §/4
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neighbourhood of 62, i.e. X;(t,x) = x for any (¢, z) such that dist(z,9Q) < §/4, and we define

the change of variables ¢ : [0, 7] x Q — Q and its inverse ¢ : [0, 7] x Q — Q as follow p(t,z) =

Xo(t, X (t,2)) and (t,y) = X1(t, X5 1 (t, ). We easily see that p,¢ € C1(0,7;C®(Q)).
We can define

t ),
et w))Um( (),
asa(t, 2) =Q1(1)Q3 (tusa(t, ha(t) + Q2(H)QT (t)(z — ha(1))).

)
dsa(t7) =Q1(1)QF (1) (la(t) + Qa(QT (1) (z — ha(£)ra(t))
=Q1(H)QF (Da(t) + (x = hu (£)) 17 (1),

so we define Ir(t) = Q1 (t)Q¥ (t)lo(t) and 7(t) = r5(t). Finally by Lemma 4.2.2 in the previous
section we have proved that for a short time we have improved regularity that leads us to
define the pressure pa(t, ), so we define pa(t, x) = pa(t, ¢(t, 2)). We are now able to write the
equations satisfied by s, ly, 75 and Py. The computations were done in Section 3.1.2.3. The
first equation of (3.1.7) reads as

Optis + (M — L)ty + Nag + Gpa =0
If we multiply on the left the above equality by Vi, we sum and subtract the expression
Oslin + (ﬂg . V)ﬂg — Atis + Vo,

we write explicitly M, £, N and G and we use Einstein’s summation convention, the i-th
component of the equation reads as

0 =0yl + W, + dipa — Alih
+ (O’ — 6ir) Oyt + O 05 (0x0)') + (00" )5 + (O7y0") (Or") i

+ @0y (O’ — i) + (Ofp")bath + Okpa (00" — dur,) (4.2.2)
— Q"™ (021 ) D50 — (D O™ O — 6310 jund 1) 021k
— O Oty (97;4)

— 0™ (D) 050 s — (O 0") 020 s — (O7,0") 053! 050 Oyl

The equation above is true almost everywhere if we restrict the time interval where the esti-
mates of Lemma 4.2.2 hold.

4.2.3 Gronwall estimate

In this subsection we present the Gronwall estimate for the w; — @9, which implies the proof
of Theorem 4.2.1.

Recall that equation (4.2.2) is true almost everywhere if we restrict the time interval where
the estimates of Lemma 4.2.2 hold. Moreover the change of variables conserves the Navier-slip
boundary conditions, i.e. it holds (Dtgn) - 7 = —a(tg — tgz2) and 4y - n = Ugz2 - n on IS(t),
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because it is rigid in an open neighbourhood of S(t) and of 9Q2. We multiply the equation
(4.2.2) with a test function ¢ € W, associated with the motion of S; to arrive at

T T
—/ / Upg - Oppr —/ / psis2 - Ops
.7'—1(15 81

+/ / Upo @ Upy : V(pF—i-?/ DUF2 Dy
Fu(t Fu(t

+2a// iip - ¢F+2a/ /BS um*usz) (er — ¢s)
l

—/ Up2 - ¢rl=o —/ psts2 - Psli=0
F1(0) S1(0)

+/ (Ur2 - ¢F)|i=r +/ (psiis2 - ps)|i=r = —/ / f - ordtde,
.7'—1(7') 51(7') 0 .7'—1(75)

where f is just the last five lines of (4.2.2). We denote by @& = uj — @z, and we take the
difference of the weak formulations satisfied by u; and 49 to obtain

—/ / Up - Oppr — / / psis - Opps — / / up1 @UF : Vog
0 fl(t) 0 Sl(t) 0 fl(t)
T T
+2/ DfLFiDSOF+2a// Up - pp
0o JE@ 0o Joo
i
+2a/ / (ip —s) - (pr — ps) — / ip - @rli=o
0 asl(t) ]'—1(0)

- / psiis - 9slico + / (iir - or) s + / (psis - 95)ier
51(0) .7:1(7') 51(7')

—/ / Up @up2 : Vopdrdt — / / f prdtdz,
0 JFu(t) 0 JFi(t)

for any ¢ € W,. The vector field fulfil the hypothesis of Theorem 4.1.2, in fact 4 € V; and
Dy e &r, which implies that we can test the previous equation with 4 to obtain

1
f/ i (r, d:v+/ pslas?(r, dx+2// Dy [2dzdt
2 JFi(r)

+2a/ / 7l dsdt—|—2a/ / \uF—uS\ dsdt
081 (t
—/ / Up ® Up?2 Viupdzdt — / / f - Updtdz.
0 JFi(t) 0 JFi(t)

We have to estimate the right hand side of the above inequality. The first of the two terms
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can be estimated via a standard technique i.e.

Up ® UpF Vﬁpdl’dt’

Fi1
<e / |Vip |2 dzdt
F1(t)

1/2

L 1/2
+ */ (/ |ﬁF|4d:U> </ |uF,2|4dx> dt
€.Jo Fi(t) Fa(t)

gzs// |Viip|?dzdt
0 .7'—1(15)

C T A
Sy [ [ lapfds [ ViugsPdedt
S 0 JFi(t) Fi(t)

To absorb on the r.h.s. the norm of the gradient of @r, we use the Korn inequality (Theorem
3.1 of [DL76]). For the second one we follow the estimate of [GS15], in fact these estimates
do not depend on the boundary condition of our problem, if we take as example the first term

of f we have the estimates

(Opy" — 5ik)8tﬂ’§apda;dt‘
.7:1(t)

}(aldpi—@'k) ) 1405 || /s (7, (o 18P | a7 1))
<C [ 1Dl e 180T | asscr, o0 o
<C [ NP 0 N0HT 5 1

e / OIS 5, ) Il 2272 ) |V 2 oy
<C [ NP 0 N0HT 5 1

O [T 10T 5 N

-
+Ce [ IV r oyt
In an analogous way we can obtain the following Gronwall estimate

(T, M2z, 1)) + mlla(r)] + Tlra(r)?

g/o CB(t) [max (s, MZ2(p s + max

h,0,1,7
€[0,1] s€[0,t] (h,6,1,7)

2
[

where
B(t) =llaall o727y (1 + 1V 2 (t, )l 2m o)
~ o 1/2 ~ -
+ HU2||L/oo(07T;L2(]:1(t)))”vu2(t)||L2(]:1(t))||tvu2(t)HL4(]-'1(t))

4/3
t (I1tBetiall /o gz iy + 2 lwzasa gz iy + BB paramey) -
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Moreover we have d

dt
and we have B € L'(0,7). The Grénwall lemma leads us to conclude that uniqueness holds
locally in time.

Moreover, by a continuation argument, we deduce that uniqueness holds on the whole time
interval [0, 7).

(IR2 +1612) < CAIP + 7[> + 1B + 101)

4.3 Future directions and open problems
In this section we discuss some open problems related to Chapter 4.

> The first question is if it possible to prove continuity in time with values in L?, the energy
equality and uniqueness in the case of many objects. We believe that this is possible and
we believe that our approach is enough robust.

> The second question is if uniqueness holds after contact. We believe that the answer
is negative but a proof is missing. In the case where no-slip boundary conditions are
prescribed on the boundary of the fluid, non uniqueness was showed in [Sta03| with the
help of an artificial source term. The key idea of the demonstration is that when the solid
touches the boundary and no-slip boundary condition are prescribed, the admissible test
functions for the weak formulation are identically zero in the solid domain. For Navier-
slip conditions this is not true and is the main issue to proceed as in [Sta03].

> The third question is if the proof of uniqueness can be adapted to different boundary
conditions. The answer is yes an for example the proof can be carry out also in the case
of mixed boundary condition. Moreover it has been adapted for example in [MNR19]
to prove uniqueness of fluid-structure problem in three dimension under Prodi type
boundary conditions.
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Chapter 5

Asymptotic limit of a shrinking
source and sink

Dans ce chapitre, nous établissons le systéme limite d’un écoulement dans un domaine
caractérisé par une source et un puits macroscopiques qui se contractent en deux points
distincts.

This Chapter is dedicated to the study of a system that describes the flow of an incom-
pressible inviscid fluid in a region characterized by the presence of a source and a sink, in
particular we will study the limiting equations as the size of the source and of the sink tends
to zero. We briefly recall the system (2.2.4) that was introduced in Section 2.2.2. Let © an
open bounded connected simply-connected non-empty subset of R? with smooth boundary, let
St and S~ two open connected simply-connected non-empty disjoint subsets of R? compactly
contained in  with smooth boundary and let 7 = Q\ (ST US~) the fluid domain. We will
call ST the source and S~ the sink. The equations in the unknown (u,p) that model the
dynamics read as

ou+u-Vu+Vp=0 in Rt x F,
divu =0 in Rt x F,
u-n=g on RT x OF, (5.0.1)
curlu =w™ on RT x 98T,
u(0,.) =u™ in F,

where v : Rt x F — R? is a velocity field, p : Rt x F — R is a pressure, n is the normal
exiting from the domain F, g is the normal component of the velocity on the boundary such
that it has average zero and satisfies g < —¢c < 0onRT x9S8T, g >c>0onR* xdS8~, g =10
on Rt x 09, w' is the entering vorticity and «" such that divu = 0 is the initial datum.
The target of this chapter is to show that when the source ST and the sink S~ shrink
homothetically to x4 and z_ respectively, with x4 # x_, the system (5.0.1) converges to the

79
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coupled equations:

. o d .
atw+“‘vwzj5w+_(]+ﬁ/fw>5x in Rt x Q,
u = Joludé 6z ]+ Kolw + Cy6z, +C_0y_] in RT x Q, (5.0.2)
=C - / J in RT,

. A t
:CT+/w(t,.)—/wm+/g’ in RT,
F F 0

where ;1 and j are the limit of the integrals on OS™ of the quantities respectively g and
wTg. Above the notation J, stands for the Delta measure in the point z and Kq and Jq are
respectively the Biot-Savart operator in 2 and the counterpart of the Biot-Savart operator for
nonzero divergence. For the definitions of Kq and Jq, see Section 2.2.3 of the introduction.
Let us highlight that the system (2.2.4) exhibits the presence of a point source in x4, of a point
sink in z_ and of two point vortices in x and z_ whose strength depends on time through p,
j and w. The letter ¢ in the notations C; and C_ refers to the circulations respectively around
ST and S™.

Because of the singular terms in the system (5.0.2) it is natural to consider a weak for-
mulation. Indeed the solutions that we will obtain in this chapter are weak solutions of the
system (5.0.2) in the following sense.

Definition 5.0.1. Let 2, and x_ two different points in Q, let w™ € L>(), let CT and C™
two real constants, let u € L} (R') such that u < 0, let j € L}, (RT) such that supp(j) C
supp(u) and let ¢ € (1,2). We say that a couple (w,u) € LZOS’C(IRJr L>®(Q)) N L (RT; LI(Q))
is a weak solution of (5.0.2) if

> for any ¢ € C°(RT x Q),

/wmap(O,.)daE —i—/ /wﬁtgoda:dt—i—/ /u~Vg0wda:dt:/ Jp(,xy)dt (5.0.3)
Q R+ JQ R+ JQ R+

_ /R+ Jp(,x_)dt + /medmcp((),x,) + - </Qw(t, )dac) Op(., z_)dt,

> for any & € C*°(Q) and for almost any time,
/Qu -Védr = pé(xy) — p&(zo), (5.0.4)
> for any ¢ € C2°(Q2) and for almost any time,

/ﬂu.wm _ _/Qw(t,.)(dx + [cz‘g —/Otjdt} C(zs) (5.0.5)

+ {CT—F/dex—/me—l—/otjdt} C(x—

The plan of the chapter is to rewrite the system (5.0.1) in the vorticity form, to give a
definition of weak solutions for the vorticity form of (5.0.1) and recall an existence result from
[Ale76]. Then we will state the main result, followed by a section dedicated to the reflection
method and finally we prove the main theorem. We conclude the chapter with an existence
result based on a Schauder fixed point method whereas the proof in [Ale76] is based on a
vanishing viscosity method.



81 5.1. Weak vorticity formulation and existence result for Judovié¢’s system

5.1 Weak vorticity formulation and existence result for Ju-
dovic’s system

Weak solutions of the limit system (5.0.2) will be obtained by passing to the limit in a weak
formulation of the vorticity form of (5.0.1). Let us therefore recall first the strong formulation
of the vorticity form of (5.0.1). We apply the curl to the first equation of (5.0.1) to obtain a
transport equation for the vorticity w and we recover the velocity field by solving a div-curl
system associated with the vorticity, the normal component of the velocity on OF and the
circulations around S+ and OS~. In the case where v-n = 0 on OF, Kelvin’s theorem ensures
that the circulation around 0S™, S~ and 02 remains constant. In our setting this is not
true anymore. Indeed the circulation around 0S? evolves according to the equations

d% U(t") ~Tds = —7{ w(ta')g(ta')d5> % U(O,') -Tds = % Uin - Tds
dt Josi oS oS o

for i € {—,+} and it is constant around 9f2, where we denoted by 7 the counterclockwise
tangent vectors to the boundary. The equations above were obtained for example in Lemma
1.2 of [Jud63] by explicit computations assuming that the solution is regular enough. Moreover
if we denote the circulations by

Co = ]ggv(t,.)-Tds, Co(t) = ?{w o(t,)-7ds and C_(t) = }25, o(t,.) - 7ds,
it holds
/Fw(t, )z = Co + C(£) + C_(2).

With this preliminary, the system (5.0.1) in the vorticity form reads as

Ow +u - Vw =0 in R™ x F,
w=wt on Rt x ST, (5.1.1)
w(0,.) =w™ in F,

where u is recovered by the elliptic system:

divu =0 in F,
curlu =w in F,
u-n=g on OF, (5.1.2)

, t
Ci(t)=C — /0 fg&_ wh g dsdt,

, ¢
C_(t)y=C" — / % wg dsdt.
0 JOoS—

We now turn to the weak vorticity formulation of the system (5.1.1)-(5.1.2).

Definition 5.1.1. Let w™ € L*(F) the initial datum, let Ci* and C'™ real constants, let
g € LY (RT; WH(9F)) such that ¢ < —c < 0in 98T, g > ¢ > 0in 987, g = 0 on

loc

0 and such that §y5r 9 + $95- 9 = 0 and let wt € L7 (RT; L>°(0S™)). Then a triple

loc
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(wyw™,u) € LY (RT;L®(F)) x L (RT x dS87) x LY (RT; LL(F)) is a weak solution of

loc loc loc

(5.1.1)-(5.1.2) if for any ¢ € C®(R* x F),

/wmgp((), .)dw—i—/ /watgodxdt—i—/ /u-chwdacdt (5.1.3)
F R+ JF R+ JF

:/ 7{ gw+g0dsdt+/ f gw™ pdsdt,
R+ JOoS+ Rt JOS—

for any £ € C°°(F) and for almost any time,

/fu -Védr = 7{9& g€ds + jé& g€ds, (5.1.4)

for any ¢ € C°°(F) such that ¢ = 0 on 9 and constant on S~ and on St with some real
values respectively denoted by ¢(dS1) and ¢(0S™) and for almost any time,

/}_u SVi¢de = —/fw(t,.){dx + [CT - /Ot fw gw*dsdt} ¢(0S™) (5.1.5)

+ [Cm - -/Ot fgs+ gwdsdt} C(087).

Moreover

Jw(®)l|ze(r) < max {[|lw™ |z (m), o o z=(@s+)}  and
™ | zoo((0,6) xas~) < max {meHLw(m ||W+||L°°(O,t;L°°(8S+))} :
Let us now recall the following existence theorem for the system (5.1.1)-(5.1.2).

Theorem 5.1.1. Let w'™ € L®(F), let C'" and C'™ real constants, let g € LS (RT; WH(9F))
such that g < —c < 0indS*, g >c¢>0indS~, g =0 on IQ and such that §55: g+ 55— 9 =0
and let wt € L2 (RT; L°(0ST)). Then there exists a weak solution (w,w™,u) of (5.1.1)-

(5.1.2) in the sense of Definition 5.1.1.

As already mentioned, the above Theorem was proved in [Ale76] by a vanishing viscosity
limit. Let us also refer to [CC13] where the same method is used in a slightly different setting.
In Section 5.5 we present an alternative approach by a Schauder fixed point theorem.

5.2 Main result: the source and sink shrinking limit

In this section we present the asymptotic result. Let 2, ST and S~ as before, let z; € S* for
i1 = 4+, — , then we denote by

S{i:{xER2 s.t mi_{_w—xi 652},
€

for ¢ < 1, moreover we assume that for any fixed ¢ the closure of S¢ are contained in {2 and are
disjoint (these properties are clearly satisfied if S are convex). We denote the fluid domain
by F. = Q\ USL
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Before stating the main result we note that the limit velocity u defined in (5.0.2) is the
sum of a regular vector field Kq[w] and a singular one Jo[ud,, — pdy_|+ Kq[C40z, +C_0,_].
Moreover the singular part has a rather explicit expression as the sum of a singular vector
field L which is associated with pu, j, Ci" and C and defined by

L(t,z) = p(t) —— T 4 (ci" - /Otj(s)ds> (e —ay) (5.2.1)

2rt|le — xy |? 2rt|le — xy |?

T —x_ : - t (x—a_)*
_ ti C'LTL d _ wm d N\ =7
M()Qﬂ]x—x_\2+< _+/Qw$ /Qw +/0‘7(S) s) 21|x — w_ |2’

and a regular part denoted by R which corrects the boundary condition of L. The vector field
R is the unique solution of the system

divR =0 in Q,
curl R =0 in Q, (5.2.2)
VR-n=—-L-n on Of).

The decomposition of u as the sum of L + R + Kq[w] will be useful in the proof of Theorem
5.2.1. We are now able to state the main theorem.

Theorem 5.2.1. Let w'™ € L*®(Q) the initial vorticity, let C\". and C™, real constants, let
g € LS (RY; WHX(OF,)) such that g- < —c. < 0 on 8SF, g > cc > 0 on S-, g = 0

on O and such that §y5+ ge + $o5- 9= = 0 and let w € Lj5, (RT; L>(9ST)) such that the

following conditions hold: ||w;‘||Loo(0 7,150 (9S)) < Or for any T € RT with Cr independent of
g, CZ’Q. — C fori=+,—,

fasj ge(t,.)ds — p(t), 725: ge(t, )l (t, )ds = j(t), and Y| g.(t, M agasiy = 0,

(5.2.3)
in L) (RT) with r > 1 as € converges to zero, with ¢ € (1,2) and i = +,—. Moreover let
(we, ue) weak solutions associated with the data w™|x., Cfg, ge and wX. Then there exists a
sequence {ep tnen, €n — 0 such that

> we, — w in LSS (RT; L®(Q)) as n converges to infinity where we extended w., by zero
in S,

> U, — u = L+ R+ Kqlw| in L] (RT,LIY(Q)) as n converges to infinity where we
extended ue, by zero in St and L and R are defined respectively in (5.2.1)-(5.2.2),

> the couple (w,u) is a weak solution of (5.0.2) in the sense of Definition 5.0.1.

The above result states that if a source and a sink shrink to two different points x; and
x_, the liming system is characterized by a point source/sink and a point vortex in each
of x4 and z_. We conclude the section with an example of g. and w that give rise to a
point source/sink and a point vortex in the limit in 4 and in z_. Let p, j such that p is
non-positive,

pe L, (RY), jeLi (RY) st supp(j) Csupp(p) and j/pe Lis.(RY), (5.2.4)
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where we define j/u =0 in R* \ supp(u). Consider

-1 -1
g = He (/ 1d3> in 08F, g.= _He </ 1ds> in 05 (5.2.5)
e \Jasf € \Josy

and w! = L in oS, (5.2.6)
u
where
—e if 0> p(t) > —e,
pe(t) = p(t)  if —e>p(t) > -1,
- ifpt) < -2

With this choice
ge(t,.)ds — p(t) and ge(t, Jw (t,.)ds — j(t)  in L, (R™).
as+ a8+ c o

1
1Jr5—>0fo1"q<2asg

Moreover g. satisfies the third hypothesis of (5.2.3), in fact useé_
converges to zero.

In particular given w™ € L*®(Q), C* , C™, p and j satisfying (5.2.4), Theorem 5.2.1,
applied to w™, Cl“; = Ci", g. and w defined as in (5.2.5)-(5.2.6), shows existence of weak
solutions of (5.0.2) in the sense of Definition 5.0.1 associated with the initial data w, C*, u
and j.

In the rest of the chapter we prove Theorem 5.1.1 and 5.2.1. Before going directly in the
proof of these results, we present the reflection method which is a key ingredient in the proof

of Theorem 5.2.1.

5.3 An introduction to the reflection method

This subsection is entirely dedicated to present the reflection method which aims to translate
the Laplace problems in F. in others where scale estimates can be performed. Let [5.] =
(85,8, 8% € LI(dST) x LI(DST) x LI(ON) where LI is the set of LY with average zero,
moreover we use the notation 3. € LI(dF.) to denote the functions that restricted respectively
to 08T, 0S- and 0N are equal to S, - and ﬁ?. Then we define h[f;] to be the solution of

—AhR[B.] =0 in Q, (5.3.1)
Vh|[B] - n = B on 99,

and for i € {—,+}, we define fi[3] to be the solution of

~AfBl =0 in R?\ S,
Vg -n=p on dS?, (5.3.2)
/2182 =0 as |z| — oo,

finally we define '
ne[B) = hlg]+ 3 f AP

+
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which satisfies

—AI’IE =0 in fEa
Vn[B:]-n =B +V ( o fi [5;’ — Vh[B:]las; n]) .n on 09, (5.3.3)
i=—,+
Vn.[B] -n=BL+V (f; |8 = VA8 ]lyss -] ) - on 8SI, with j € {+,—}\ {i}.

From the above system we deduce that on the boundary dF.
Vine[Be] - n = (Id +7:)[ 5]

where
v fi |[BL = Vh[B]las: -n| | -n  on0Q,
SN L RACER e -
V(f |8 - VhlBlys - m]) - m on 8S:, with j € {+,—}\ {i}.
Let now a. = [aF, a7, af] € LY(0SF) x LI(OST) x LI(0S2) and consider the problem
“Atlfa.] =0 in ., (5.3.5)
Vil [ae] - n = ae on 0F;..

From (5.3.3) and (5.3.4), if (I + 7) is invertible then
Uelae] = n[(T+T) o) (5.3.6)

This implies that to perform estimates independent of € for the problem (5.3.5), it is enough
to study the operator 7 and the £ dependence of the solutions of the systems (5.3.1) and
(5.3.2).

In what follow we will prove that Id+7 is invertible for ¢ small enough and that (5.3.6)
holds. To do that we start by recalling well-posedness results for (5.3.1), (5.3.2), (5.3.3) and
finally we prove that Id +7 is invertible.

Lemma 5.3.1. For any [.] € L9(dS+) x LI(dS-) x LI(9R) the system (5.3.1) has a unique
solution h[B:] in LI(Q)) . Moreover in any compact subset of Q, h[Be] is of class C* and the
norm is controlled by the LY norm of 6?

Lemma 5.3.2. For any . € LI(8S?), there exists a unique solution fi[51] to (5.3.2), moreover
for q € (1,2) it satisfies

Ce2-1/q ; _
< ——IBllLaasiy  for |z > Ce,

IV 7218 oy < CY9BEIaosyy and |V FIB] lz — ]
(5.3.7)

where C' and C are constant independent of €.

Proof. The proof of the first estimates is due to scaling. The second one follow from (D.0.1)
which is proved in the Appendix D and the Holder estimate

_1
1<l prosi) < Ce'allBell Lacas:
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Lemma 5.3.3. There exist £ > 0 such thaf for any 0 < e < ¢, the operator Te, defined in
(5.3.4), is a 1/2 contraction on LI(0ST) x LI(OS=) x L1(9RQ).

Proof. Let [af,az,af] € LY(0St) x LI(DS) x LI(dS). From the previous lemma we have

, 1
T (a < Ce* )|l — Vh|a i ;
1T ()l La(o0) 1:%: o [ae]los: -l Laass) || —— 2l zoomy
<Ce* ( > ekl paas:) + ||0<§||Lq(ag)) ; (5.3.8)
i=+,—
where C is € independent. Similarly
_ ; 1
1T (@)l Lagosiy < Ce* Vol = Vhlad|ygs - 2l Lacosi) p—
J 11 La(80)
<Y1 (|l ogosp) + 0L oom) ) - (5.3.9)

If we choose ¢ small enough 7 is an 1/2 contraction.
O

Theorem 5.3.1. There exists £ > 0 such that for positive ¢ < & and for any [aF,aZ,af] €

LI(0SF) x LI(DST) x LI(9R), it holds
L[E[az_aaa_aa?] = nE[Bi:/Ba_aﬁg]v
where |8, B, ﬁg] = (Id+T) ol oz, a?}

Proof. The proof follows from uniqueness of solutions of system (5.3.3) and the fact that Id +7
is invertible for € smaller or equal to £follows from Lemma 5.3.3. ]

For now on we assume always 0 < ¢ < £&. We are now able to state one of the key lemma
in the proof of the asymptotic convergence.

Lemma 5.3.4. Let ol € L9(0SY) and let [al] the extension by zero of ol in LI(dSF) x
L1087 ) x L1(0N) then

< Ce V10l || agasi)- (5.3.10)

|vclal) = v Filadl], . <

Proof. We are in the situation where Id +7 is invertible. Define [8.] = (Id+7)"* ([@]), by
Theorem 5.3.1 we have ${.[at] = n.[3.] which leads us to rewrite

defal] - filod) = hlBd + Y FilBe), (5.3.11)
i=+,—
where for k € {Q,+, —}
BE itk =0,
BE = BE = VhIB.] - nlgsn if ki # d,

Bf - Vh[ﬁg] : n‘ask - Oéé if k=1.
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We want to estimates [3:] — [@]. To do that we note that [3.] —[al] = =T (Id+7) ' [@}] and

(8] - la]

< 2|7 ()

La(8SF)x La(8S8 ) x La (8% La(8SF)x L9(8S= ) x La(o%)

due to the fact that 7 and (Id —7)~! commute. With the help of (5.3.8)-(5.3.9), it holds

|82 - &)

< CE 0| pagostyx a(ose ) Eaoe):
La(0ST)x La(88 )x La(0Q) — eNNLa(85")x La(0S2") x L1 (9)

It is straightforward to see that it also holds

|15

To conclude the proof it is enough to estimate the gradient of the right hand side of (5.3.11).
The worst term is the one related to h[f:] for which it holds

: : < O\ o astyx Eaase yx Lo on)-
L9(88F)x La(08 )x La(0Q) — ellLa(0S)x L9(0S: ) x L1(99)

~ ~ _1l
IVAB Il oz < ClIB N Lao) < C*7 7 [lol]l paasy):
O

Corollary 5.3.1. Let [a.] = [od,a7,0f] € LI(OST) x LI(dST) x LI(9R), and let w. the
solution of the div-curl system

divw, =0 mn Fe,
curlw, =0 in Fe,
We * N = Qe on 0F,
we - T =0,
oSt

then it holds )
|lwe = Vh|oe]|| pa(zy < CetllaelLas+)xLa@s-)x La(59)-

Proof. We can write the solution w, = Vil [a:] = Vi [a2] + Vil[aF] + Vi [aS] by linearity.
If we recall (5.3.7) and (5.3.10), we have for ¢ = +, — that

. . e e 1o
V06 1r e < (V812 — VA0 pacmy + IV A0 ingmy < Ot 0kl agosy. (5:3.12)
where we use 2 — 1/q > 1/q for ¢ > 1. To deal with Vi [a$}] we note that

Vile [54?] — Vhlae| = ViL[B],

g _ [0 it k=0
c Vh[ag] : ’I’L|8Sz' if k= +, —.

with

Using (5.3.12) we have

1 ; Lo
IVS[ad) = Vhloe) | paz) < Cev Y 1Bl sagassy < Cevllalllzawo)-
i=+,—
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5.4 Proof of Theorem 5.2.1

In this section we prove Theorem 5.2.1. Before attaching the main result, we prove some
bounds independent of € for weak solutions (we,w; , us) that satisfies the hypothesis of Theo-
rem 5.2.1.

Lemma 5.4.1. Let (we,wS, ue) be solutions of (5.1.1)-(5.1.2) in the sense of Definition 5.0.1,
that satisfy the hypothesis of Theorem 5.2.1 and let T > 0 a time. Then it holds

> flwellzoo((0,1)x0) < maX{meHLoo(Q)aCT}: where [|wZ || o (0,110 (95+)) < O
> [Jwz Iz (0,1 x05-) < maX{meHLOO(Q)aCT}a where ||w || oo o, (95+)) < O
> |JuellLro,r;za(0)) < C(T) where q € (1,2).

Proof. The first two points are direct consequence of the definition of weak solutions and the
hypothesis of Theorem 5.2.1. We now move to prove the third point. By assumption u,
is Log-Lipschitz which implies that it satisfies the div-curl system (5.1.4)-(5.1.5) in a strong
sense. We decompose u. in the same fashion as the limiting velocity field u. To do that we

define L. : F. — R? as
i
T — x4 T —T4)
L.(t = SO A
e(t,2) (725: ga> 27|z —33+|2 / %}SJF ¢ } 2|z — x4 |2

~(fe o) i W’”* o)~ Lo [ f
as:ge 2mlx — x_|? e as+

and R. the unique solution of

(r—2 )t

°] 2mz — x|

divR. =0 in €,
curl R, =0 in Q, (5.4.1)
VR. - n=—L.-n on 0f).

The vector field u. = L. + R. + Kqwe] + we where w, satisfies the div-curl system

divw. =0 in Fe,
curlw, =0 in F,
we - =ge — (Le + Re + Kqlwe]) - n on 0F;,
we -7 =0 for i =4, —.
oS

The vector fields Kqlw:|, Ls and R. are uniformly bounded in L"(0,7; L4(f2)) for ¢ € (1,2)
from the hypothesis of Theorem 5.2.1, in fact

| Kalwelll o (0,1;2(0)) < Cllwell Lo (0,315 (02))

which is uniformly bounded by point one. Regarding L., it is sum of four terms of the type
Lk ()l (x) where [, depends only on the space variables and it is of the form

xr — xp, (x —xp)*
27|z — x|? 27|z — x|?
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and ¢; depends only in time and it is of the type

. t ) . t
j{ g- or CU'-— / 7{ wige or C"+ [ we(t)— / Wi +/ j{ wZ ge.
oSt 0 Jast Fe Fe 0 Jost

The [, are uniformly bounded in L4(2) for ¢ < 2 and the ¢}, are uniformly bounded in L"(0,7")
due to the first point of the lemma and for the hypothesis

]{ Je — [, CZ"; —C™  and % wlge — j.
a8+ 88+

Regarding R., it is enough to have a uniform estimates of L. -n in L"(0,7"; LY(0%2)) due to
the inequality

| Rellr0,1:L0(0)) < CllLe - nllLr0,1500(50))-

The above estimate follows from the fact that the unique solution of the div-curl system (5.4.1)
is the solution of a Laplace problem with Neumann boundary conditions, see for instance
[GLS16] systems (76)-(79). To estimates L. - n on (0,7) x 92 we use the same strategy as
for L., in fact L. - n is the sum of four terms ¢x(¢)l}, where the ¢, are as before and the only
difference is that [, is of the form

T — xp, (x — @)t

2w — 22 o 2w — 22

and they are uniformly bounded in L?(092).

Finally, it remains to show that w. is bounded. Actually we will prove that w. converges
to zero in L"(0,T; L1(Q2)). Note that w.-n = 0 on 0Q and ws-n = g. — (L: — R: — Kqlw])-n €
LI(dS?) for i = 4, —. Moreover £'/|w, - n| La(asi) converges to zero as ¢ tend to zero, due
to the hypothesis on g., the fact the R. and Kq[w.] are uniformly bounded in C°(2) and the

scaling estimates

T — T — x;
(2 7 07

La(88%)

27|z — @il |l aasy) 2|z — x;]?

where we use the assumption ¢ € (1,2). If we apply Corollary 5.3.1, we have

1 .
lwellpagr) < Cev Y we - nllpapsy =0 in L7(0,T).
i=+,—

O

Lemma 5.4.2. Let (we,w_ ,us) be solutions of (5.1.1)-(5.1.2) in the sense of Definition 5.0.1,
that satisfy the hypothesis of Theorem 5.2.1. Then it holds

|Owwe || L (0,7 w 10 (02)) < Clp, T)

where C(T) does not depend on € and p € (2,00) is the dual exponent of q.
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Proof. The proof is a consequence of the hypothesis on the data g. and wl and of Lemma
5.4.1, in fact from the weak formulation (5.1.3) we have

[{Owwe, )| =

T ,
/ / weOppdxdt — / we(T, . )e(T, .)dx + / w(0,.)dx
0 JFe Fe Fe

T T T
/ / Ue - Vpwdxdt / 7{ gswgF pdsdt / f gewg pdsdt
0 JF 0 Jast 0 Jas:

T T
| [ e Vo) Sloclzmqomry [ [ lue- Vil dodt

< + +

Y

Slwell Lo o,y x o lte o, @) IV Lo (0.1 22 )

<C(T) ||<PHLT’(0,T;WLP(Q))=

<Nlwd Nl o o.71%085:) 192l £r 0,721 05 12 | 2o (0.7 L0 ()

r -
/0 ‘%BSE?F ngs 90
and similarly

T
[} o
0 Jos:

<@l (0,T;Whe(Q))

SHO‘]s_HLOO([O,T]XBSE)||g«€”Lr(0,T;L1(8Ss))||90”LT’(07T;LOO(Q))

<C(T) ||90”LT/(07T;W1«P(Q))5
O

Proof of Theorem 5.2.1. The idea of the proof is to use some a priori estimates to pass to
the limit in the weak formulations (5.1.3)-(5.1.4)-(5.1.5) to reach (5.0.3)-(5.0.4)-(5.0.5). Let
(we, w7, us) a weak solutions of (5.1.1)-(5.1.2) in the sense of Definition 5.0.1. From Lemma
5.4.1, we have the a priori estimate

ol e 0,110 723y < max {lwl | e (7)1 | e 0.y o7 b < mae{ ™[ oo ), Cr-

If we extend w. by 0 in S! then there exists a decreasing subsequence {e, },en that converges
to 0 such that
we, 2w in L((0,T) x Q) as n — 4o0.

n

To pass to the limit in the non linear term of (5.1.3), we prove strong convergence of the
velocity. To do that we decompose the velocity field u. = L. + Re + Kq|we] + we as in Lemma
5.4.1. We have already proved in Lemma 5.4.1 that w. converges to zero in L] (R*;L1(12)).
Now we show that

L.~ L, R.— R and Kgw.]— Kqlw] in L] .(R";LY(Q)). (5.4.2)

r
loc

About the first convergence of (5.4.2) the difficulty is to prove

([ wxte) M ([ wte.) M
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It suffices to show by using Arzela-Ascoli that

Ag(t):/f welt, ) —>/Qw(t,.) in C2_(R*).

We need to verify the hypothesis of Arzela-Ascoli, in particular we have to show that A, is
uniformly bounded and equicontinuous in C°(0,7) for any T > 0. We start by proving that
A are equicontinuous. If we test (5.1.3) with the characteristic function on [s,t], we obtain

adding the absolute values on both side
t t
+W:gs+/ ]{ e
A8 s JOS,

‘/ we(t,.) — wg(s,.)‘:
€ 5 S
‘ t
< —2max W || ooy, C /j{
= {” Iz (Q) T} \ 68:95

the equicontinuity follows from the fact that | st $as+ ge converges to pin Ly, (RT). The uniform

boundedness in C%(0,7) follows from the equicontinuty and point one of Lemma 5.4.1. For
the moment we only proved that A. converges to a function A(t) in C°(0,T). It remains to
show A(t) = [qw(t,.). Let ¢ € C°(0,T) then by the weak-star convergence in L*°, we have

/()T/fsws¢—>/0T/Qw@Z), at the same time /OT/J:EWE¢=/()TA(t)E¢—>/()TA(t)¢

which imply A(t) = [, w(t,.) for almost any time.
The convergence of R. to R follow from the fact that L. -n — L-n in L"(0,T; L1(09))
as shown in the proof of point three of Lemma 5.4.1. The prove of the convergence of L. - n
is the same as the one of L.. We concentrate now to Kqlw.] — K,[Q] in L] (RT, L1(()).
As before we prove via Arzela-Ascoli that the sequence Kqlw:] — K in CP (RT; L4(Q)) for
€ (1,2). Moreover by the fact that Kqlw.] satisfies the div-curl system in a weak sense, we
can pass to the limit in the weak formulation and conclude that K = Kg[w]. To do that let

T > 0, to apply Arzela-Ascoli we need to show
> Kqlwe] are uniformly bounded in C°(0, T; L4(R2)),
> Kqlwe] are equicontinuous in C°(0, T; L4(R)),

We prove the equicontinuity. To do that let 0 <t < s < T and let G the Green function
on ) with 0 Dirichlet boundary condition on 0f2, we have to estimate

[KolweI(t) = Kol (9l iz = swp | [ (Kolwdl(t) = Kolwl(s) - nda

HTIHLP <Q)§1

(we(t,y) — we(s,y)) VEG(z,y) - n(x)dydz

||77||LP(Q>

—  swp / (wltey) ~wels.) ([ V4Gl nla)de) dy
Inll 2 gy <1 19 0

< Sup ||atngLr sW-Lp(Q H/ VJ_G(SC’y) . n(ﬂf)dl‘
||77||LP(Q)<1( (ta ’ p( ))) Q LT/(t,S;WOLp(Q))

<C sup (HatweHLr(t,s;W—Lp(Q))) 171l Lo () (s — v,
||77HL1;(Q)S1



Chapter 5. Asymptotic limit of a shrinking source and sink 92

where we use Fubini and the equation satisfied by w.. Note that to use the equation we have
to verify that

olt.y) = | V-Gla.yna@)da,

is an admissible test function. To check that after an integration by parts and using the zero
boundary values for G, it is straightforward to see that

Ay = curln in Q,
=0 on 0f).

The function ¢ is an admissible test function, moreover ”‘PHWOLP(Q) < |eurlnlly-1p@) <
7/l r(@)- The equicontinuity follows by the second point of Lemma 5.4.2 and the estimates
Il < llzoge

At this point we know that

We, ~w in L®((0,T)xR?)  and  we, — u=L+R+Kpe[w] in L}, (RT; L] (R?)),
as n converges to infinity with ¢ € (1,2).

It remains to show that (w,u) is a solution of (5.0.2) in the sense of Definition 5.1.1. To
do that we first pass to the limit in € in the weak formulation (5.1.3) to obtain (5.0.3) and
by the explicit expression of u, we check a posteriori that (5.0.4)-(5.0.5) are satisfied. The

difficulty arises while passing to the limit in the term involving w_ . To avoid it, we note that
by testing (5.1.3) with a constant in space function ¢(t,z) = ¥ (t) € C°(R* x F) we obtain

(/Ewi;”) VO + (/w) = (725: wjgs) v L (fgs; w;g€> ¥, (5.4.3)

Moreover, if we test (5.1.3) with functions ¢ € C° ((O,T) X ?) for some T' > 0, the right

hand side converges to the right hand side of (5.0.3) as € goes to zero by using the weak-star
convergence of we in L>((0,7") x ) and the strong one of u. in L"(0,7"; LY(2)). The left hand
side reads as

/ j{ gwjnpdsdt—k/ j{  gew, pdsdt
Rt JostH R+ JOS:
= (f ggwjds> o(., vy )dt + (7{ gew; ds) (., z_)dt
oSt a8z
/ ]{ L9 (p—o(,24)) dsdt—l—/ ]{ gewz (o — (., x_)) dsdt
R+ Jos R+
= (7{ geWJd8> (x4 )dt + (/ wé”) (0, 2-) (5.4.4)
R+ \JoS .

() )am.,:c)— L. (fa3+w:gs)so<.,x> (5.4.5)

/R+]£S+ (p =l 21) dsdt+/]{ gewz (¢ — (., x2)) dsdt. (5.4.6)
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By the strong convergence of §y5+ gwl to j in L"(0,T) and the weak-star convergence of w.
to w in L>®((0,T") x §), we have

(5.4.4) — (5.4.5) — /R+ Jjo(, zq)dt + (/Q wmdm) go(O,art_)—i—/RJr (/Q wdm) Orp(.,x_)dt
- [ detaaot

which is the right hand side of (5.0.3). It remains to show that (5.4.6) converges to zero. The
term

Lo o (o= plap)) dsat

S w2 oo o7 a5 192 0,111 25 19 = 90 2 oo 0,710 052y
<Cr(1+ ||l (o) LeDTH™ — 0,

where C7 is the one of the hypothesis of the theorem, L is the Lipschitz norm of ¢ and D is
the diameter of 9S;". The second term of (5.4.6) converges also to zero and the only difference
is that we will use point two of Lemma 5.4.1 to estimate the L°°-norm of w_ .

Finally to verify that u satisfies (5.0.4)-(5.0.5), we consider ¢ € C2°(€2) and we integrate
by part

/ u - Vodz.
Q

The function u can be explicitly written as u = L + R + Kq[w], the difficulty is to integrate
by parts the not smooth enough terms, that are the one of the form

z— (x —a)*

S SN R C RV
27|z — x4 o 27|z — x4

Denote by B.(x) C R? the open ball centred in z of radius ¢. Then

/ €T — x; v / xr— x; " / xr— x;
B 27l —wi T Joman Znle— w2 Joo 2mlm— w2

The first term converges to ¢(x;) and the second term will cancel with one from R.

5.5 Proof of Theorem 5.1.1

In this section we propose an alternative proof of Theorem 5.1.1, based on the Schauder fixed
point theorem, to the one presented in [Ale76]. For small enough 7' > 0, that will be fixed
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later, consider the space
Z = {(w,w”) € L(0,T; L®(F)) x L*(0,T; L(9S ™)) such that

i Wollzmomascen < Wo®lleny — [ [ ololdsat

Jooll oo 073007y < mex { ™[ oo ), 19t | o 0 72 (954 }

™ oo,z (05-)) < max {[lw™[| e (ry, ot | o o.sz 05+ }
i [ OwllL2rw-13(7)) <1 }

Note that Z is non empty.
Consider the map V : Z — Z such that (w,w™) is send to (&,&~) defined as follow. First
we consider v the solution to

dive =0 in R™ x F,
curlv =w in RT x F,
v-n=g on RT x OF, (5.5.1)
A t
7{ U'T:CT—/% gw™ in RT,
oS+t 0 JOSt

A t
% U'T:CT—/% g~ in RT.
oS~ 0 JOS—

The vector field v satisfies for p > 2

cr

0]l Lo 0,0:w 10 (7)) < Cpllwll e 0,2 (7)) + ’Cf‘ + (5.5.2)
+ (1 + w ¥ oo, Lr(88)) + Hw_HLp(o,T;Lp(aS))) 191 oo (0.7: 1.5 (85)) ) -

From Theorem 4.1 of [Boy05], there exist a unique renormalized solution (@, ™) to the trans-
port equation

0w +v-Va =0 in [0,7] x F,
O =wh on [0,7T] x dS™,
O =wm in F.

We define V(w,w™) = (@,07).

Let us prove that V(Z) C Z. Point i. follows from Theorem 4.1. in [Boy05] and the second
point is a direct consequence of the weak formulation of (&, ™) and a priori bounds point i.
of the definition of Z for T" small enough . Note that the a priori estimates in 4. are uniform,
these allow us to choose T uniform respect to the element of Z.

Now we endow the space Z with the norm LP(0,T; LP(F)) for some p > 2 and we observe
that Z is a closed convex subset of LP(0,T; LP(F)).

Let us prove that V is relatively compact. Let (wp,w,, ) a sequence of elements of Z, we
denote by (0,0~) = V(w,w™) and v, the velocity field defined in (5.5.1) associated with w,.
Consider v, the solution of (5.5.1) with the vorticity w and the circulations around S and
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0S8~ identically zero. First we deduce from estimate (5.5.2) that v, — v, is uniformly bounded
in LP(0,T; WP(F)). Then we recall that any element ¢ in C3%((0,7) x F) can be written

as ¢ = V¢ where ¢ satisfies AC = curlp in F, ( =0 on F, ¢ = ¢; on 9S?, for i = +, —, for
appropriate choices of the ¢;. Recall that v satisfies a div-curl system so

frocm fce (e [ gy Yoo (e [ f, o)

We can compute

/W/fv'at@:/w/fv'atVLC:—/w/fwﬁtC + L (}gs+gw+)é(88+)
e

'/R+ /fv : 31:@‘ <|Cllz20,mswr3F)) < Cllell2o,:08(F))-

If we take the modulus, we use point ii. of Z, we obtain

By Aubin-Lions’ Lemma the sequence v,, — v, converges up to subsequence to a vector field v,,
in LP(0,T; LP(F)). As a consequence vy, converges to v = vy + 9, in LP(0,T; LP(F)). Thanks
to [BFO7, Theorem 4] (&, ,@,, ) converges in LP([0,T]; LP(F)) x LP([0,T]; LP(0S~)) to the
solution (&, @™) of the transport equation associated with v.

Finally we show that V is continuous. To do that let (wy,w; ) a sequence in Z that
converges to (w,w™). Due to estimates (5.5.2) the velocity v, associated with (wy,,w,, ) through
(5.5.1) converges to v associated with (w,w™), and as before by the stability Theorem 4 from
[BFOT], it follows that V(wp,w,, ) = (@n,w,, ) converges to V(w,w™) = (&,07).

We proved that V is continuous, relatively compact map from two bounded closed convex
subset of a Banach space. By the Schauder fixed point V admits a fixed point. The couple
(w,w™,v), where w is the fixed point and v is recover by (w,w™) thought (5.5.1) is a solution
of (5.1.1)-(5.1.2) in the sense of Definition 5.1.1.

5.6 Future directions and open problems

In this section we discuss some open problems related to Chapter 5.

> The first question is if it is possible to extend the result in the case of multiple sources
and sinks. If one sink is present and there are many sources the above demonstration
can be carry out with no difficulties. In the case of more than one sink, it is not possible
to use (5.4.3) to pass to the limit in the terms of (5.1.3) involving the exiting vorticity

w™. At this stage we believe that we can treat this difficulty by using some auxiliary
functions to isolate the different sinks.

> The second question is the enquiry of Judovic in [Jud63] . We recall that in [Jud63], the
author studied the motion of a inviscid fluid in a time dependent domain with holes and
the fluid was allowed to enter and exit from the domain in a prescribed way. Judovic¢
asked if there is a theory that can deal with the case when holes can at a certain time
become points. We believe that the setting of solutions with bounded vorticity is the
right one to obtain an existence theory in the case of holes with possible empty interior.
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> The third question is if it is possible to prove uniqueness for solutions in the sense of
Definition 5.0.1 of the limiting system (5.0.2). Uniqueness for similar equations was
proved in [LMO09], where the authors studied the wave-vortex system and more recently
in [LM19], where a similar system was tackled. In both the works a crucial hypothesis
is that the vorticity is constant around the moving point vortices. In our setting this
assumption in not natural and the question is open. Moreover they use some energy
estimates typical of the impermeable setting.



Appendix A

Some density arguments

In this appendix we present two density results. For the first one we do not claim originality
but we are not able to find a reference in the literature. The second result is used in the proof
of Theorem 3.2.1. Lemma A.0.2 is also essential in [PS14], where we propose to change the set
T ={p € CZ(R?)|D(p) = 0 in Sp} with the set defined in (A.0.1) in the proof of Theorem
1. The set 7 is not dense in V neither in V. On the other hand we will introduce below, cf.
(A.0.1), a set Y which is dense and has all the property to make the proof of Theorem 1 of
[PS14] working. To see that 7 is not dense in V, it is enough to consider Sy = B;(0) and the
function

o) = {0 in B1(0),

V- (22y) elsewhere,

where x is a smooth cut off such that x = 1 in B3(0) and xy = 0 outside By(0). It is clear
that f € V C V. Suppose by contradiction that there exist approximations f. € 7 such
that f. — fin V, then [y, — Iy = 0 and ry. — ry = 0. By continuity, f. =[5 + 7“fgacL
in By(0) which implies f:lop,0) = Ip. +rr.a" — lf +rpat = 0 in L*(9B1(0)). Moreover
f€|R2\B1(O) — f’RQ\Bl(O) in Hl(RQ \ B1(0)), then by trace theorem fE’6B1(O) — f’aB1(0)v but
flaB, o) = 22 # 0 which is a contradiction.

We start by presenting the first density result.

Lemma A.0.1. Let  an open, bounded subset of R? with smooth boundary such that O =
UL; where T'; fori=0,...,n are open connected components of the boundary with T;NT; = ()
for i # j, then the set C°(Q) N L2(Q) of smooth divergence-free functions with 0 normal
component on the boundary OS) is dense in H' () N L2(£).

Proof. Let v € HY(Q) N L2(Q), then by [GR12, Corollary 3.3] there exists a stream function
v such that V¢ = v and ¢ € H%(Q). Using the condition v-n = 0 on 9, v satisfies w.l.o.g.

—Avy = —curlw in €,
P =0 on I'y,
=g on I';,
for some constant ¢;. Consider 7. a symmetric convolution kernel of mass 1 with support in

B.(0) and consider x. the characteristic function such that y.(z) = 1 if dist(z, Q) > ¢ and 0
else. We define
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—At)e = — (x3e curlv) * 7, in Q,
P =0 on I'y,

e = ¢ on I';.

The functions v, = V+1. are the desired approximations of v. First of all we prove that
ve € C°(Q) N L2(Q2). This is clear by elliptic regularity and v. - n = V4. -n =V -7 =0
on 02 (1. is constant in any I';). To prove the convergence we use the elliptic regularity from
[Eval0, Theorem 4, Chapter 6] (in particular the remark that follow Theorem 4), we have

[ve = vl () < e — Ylla20) < Cll (X3¢ curlv) * me — curlvl|p2(q) — 0.

Lemma A.0.2. The set

Y = {u € LL(R?)| there exist up € C3%.(R*) and ug € R (A.0.1)

such that u|r = up|r and uls, = usls, },
is dense in V, YV and H.

Proof. The proof is easy in the case of H. We turn to the case of ¥V and V. The difference
between the two spaces is the integrability at +oo but this will not change much the proof so
we will do it only for V.

Let v € Y and let [ and 7 such that vg = [ + z*r. For p > 0 such that p > diam(Sp), we
define x, to be a smooth cut off function such that 0 < x, <1, x, = 1in B,(0), x, = 0 outside
B, (0) and |Vx,| < C/p. Fix R > 0 such that R/4 > diam(Sy), we decompose v = u + v1,
where u = V+(xp/4(—I+-a+r/2|z|?)). The function u € C3%(R?) and v1| 7, € H'(R?)NLEZ(F)
and v1|s, = 0. By Theorem 3.3 of [GR12] there exists ¢ € H2(Bag(0)\Sp) such that v; = V>
We decompose v; = w + z where w = V+(xryp). The function z is such that z|Br(0) = 0 and

zlr2\Br(0) € Ho(R*\ Br(0)) N L3 (R* \ Br(0)) = E, where

———-lm

E={C3(R*\ Br(0))}

see for example [Galll, Section III.4.2]. This provides the existence of a sequence Z. €
C3%.(R?\ Bg(0)) such that Z. — z|g2\ g, (o) in H'(R*\ Bg(0)). Let z to be the extension by
0 of z. inside Bg(0), then z. — z in V. We now study w. The function w € H'(B4g(0) \
So) N L2(B4r(0)\ Sp). By Lemma A.0.1 there exist w. € C°°(Byr(0)\ So) N L2((B4r(0)\ So)
such that w. — 11)|B4R(0)\‘,;—0 in HY(B4g(0) \ So). Let 1. € H*(B4g(0) \ Sp) such that w. =
V+1p.. The function 1. is unique up to a constant, so we choose the unique 1. such that
me(O)\m Y- = 0. Define w. = V+(x2rt:) and denote by w = w|B4R(0)\ST)' We have

[0 = el 1 g, onGo) SN — Dell g, piongs) T CNEell i1 (B (0)\Bar (0))
+ H(VLX2R)¢6||H1(B4R(0)\S*0)
<o(&) + Clldel i1 (Ban(0)\Bor(0)) F Cllell L2(Bir 00\ Bor(0)))
<0(e) + Cll@ell 1 (Bys(0)\Bar (0)) = 0(€);
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in fact we can use the Poincaré inequality on the ¢ and |[@:|| g1(, ,(0)\Bo(0)) = 0(€) because
w = 0 in B4r(0) \ Bar(0) (C is a constant that change from line to line). Let w. be the
extension by 0 of w.. The functions

Ve =uU+wWs+ 2. = v in),

Moreover v, u, we and z. are element of ) (where we extend w, by 0 in the interior of Sy). [
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Appendix B

On R-sectorial operators

In this section we briefly present the relation between R-sectoriality of an operator A and
maximal regularity. For a complete treatment of the subject we refer to [DHP03]. Consider
the abstract Cauchy problem

{z(t) = Az(t) + f(t), (B.0.1)

z(0) =0,

where A : D(A) C H — H is a closed densely-defined unbounded linear operator and H is
an Hilbert space. It is a classical result that for any f € L?(0,T; H) there exists a unique
solution z € Wh2(0,T; H) with Az € L?(0,T; H) if and only if there exists w € R such that
—A + w is a sectorial operator of angle 6 < 7/2.

If we want to prove an analogous result in the Banach space setting,i.e. A: D(A)C E — FE
with E a Banach space, the sectoriality of A is not enough. To solve this problem Weiss proved
in [Wei01] that given £ a UMD Banach space and given the abstract Cauchy problem (B.0.1)
where A : D(A) C E — E is a closed densely-defined unbounded linear operator and given
1 < p < oo it holds that for any f € LP(0,T; E) there exists a unique solution to (B.0.1) with
z € WHP(0,T; E) and Az € LP(0,T; E) if and only if there exists w € R such that —A + w is
R-sectorial of angle 6 < /2.

Recall that E is a UMD-Banach space if the Hilbert transform extends to a bounded
operator on LP(R; FE) for 1 < p < 400, or equivalently the function m(t) = sign(¢) is a
Fourier multiplier on LP(R; E'). Note that any closed subspace of LP is a UMD space. We now
recall the definition of R-bounded family of operators and of R-sectoriality for an unbounded
operator.

Definition B.0.1 (R-bounded family of operators). Let X and Y Banach spaces. A family of
linear operators 7 C L£(X,Y) is called R-bounded on £(X,Y), if there exist constant C' > 0
and p € [1,00) such that for every n € N, {T}}7_; C T, {z;}]_; C X and for all sequences
{rj(-)}}j=; of independent, symmetric, {—1,1} valued random variables on [0, 1], we have

<C

> ()T,
j=1

> i),
j=1

Lr([0,1];Y) Lp([0,1];X)

Definition B.0.2 (R-sectorial operator). Let A be a densely defined closed linear operator
on a Banach space X with domain D(A). Then A is said R-sectorial of angle 6 € (0, ) if
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the spectrum o(A4) C {A € C\ 0| Jarg()\)| < 0} and for any 6; > 6 the set {\(A] — A)~! |0, <
larg(A)| < 7} is an R-bounded family of operators.

We conclude the section with an important property of stability of R-sectorial operator
(which is used in Section 3.1.2.6).

Definition B.0.3 (A-bounded operator of bound zero). Let X a Banach space, let A and B
two closed densely-defined unbounded linear operator with domains D(A) C D(B) C X, then
B is called A-bounded operator of bound zero if for any § > 0 there exists a constant C(J)
such that

| Bz|| < 0||Az|| + C(0)|z|| for any z € D(A).

Proposition B.0.1. Let A a closed densely-defined unbounded linear operator with domain
D(A) C X, such that —A+ w is R-sectorial for some w € R and let B an A-bounded operator
of bound zero, then there exists w > w such that —A + B + W is R-sectorial with the same
angle as —A + w.



Appendix C

Special case where the solid is a disk

In this appendix we consider the special case of a disk immersed in a viscous fluid with infinite
energy as in Section 3.2. In this setting we show that weak solutions are continuous in time
with values in L2(R?), they satisfy an energy equality and they are unique. Moreover we prove
that as the viscosity v vanish, the solutions converge to an Euler plus rigid body system.

We start by presenting the system and the well-posedness result. We denote by B the solid
which is a disk of radius 1, in other words

B= {a; € R? such that |z| < 1},

and the fluid domain is F = R? \ B. Under this simplification, to translate the problem
(3.0.1)-(3.0.9) on a fix time independent domain, it is enough to use a translation as change
of variables. Let consider the new variables

v(t,y) =ult,y +h(t), qlt,y) =p(t,y+h(t) U(t)="n(t), and r(t)=r(t).

The equations read as

o+ [(v—=1(t)) - Vv —vAv+Vg=0 forz € F
divv =0 forx € F
Vn=1v5-Nn
D(U)n'T:—Oé(U—uS)'T for x € OB
lv| — 0 as |z| — 0, (C.0.1)
ml'(t)=— | Ynds
oB
Jr'(t) = —/ - Ynds
oB
v(0,y) = vo(y) on F

1'(0) = lo, (0) = 70,

as usual n and 7 are the unit outwards normal and counterclockwise tangent vectors to the
boundary of F, « is the friction coefficient and ¥ is the stress tensor equal to —qIds +2vD(v).
For this system we define weak solutions with § circulation at infinity as in Section 3.2.3. As
before we introduce the maps a and b and the definition of weak solutions as follow

a(u,v):—a/ (u—us) - (v—us)— Du : Dv,
830 ]'—0
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b(u,v,w) = /fo[(u — 1) - V]w - v.

Note that in (C.0.1) r does not play a role in the dynamics due to the special shape of B
and it can be recover via

jr’(t) = —ay/ (v—1,) -7, 7(0)=ro.

oB

For this reason we introduce the spaces
Hp = {v € L2(R?)| there exists | € R? such that v =1 in B},
and we endowed it with the norm
lols = loll 2, + mlil
In a similar fashion, we define
V= {v € Hg| there exists vp € H'(R?) such that v = vp in F},
and we endowed it with the norm
[0l = vl ) + mll] = [[Voll2@z) + o]l

We present the definition of weak solution with g circulation at infinity for the system
(C.0.1).

Definition C.0.1 (Weak solution with § circulation at infinity). Let 09 € Hp and T > 0
given. We say that
7 € Cu([0,T);Hi) N L*((0,T); Vi)

is a weak solution for (C.0.1) with § circulation at infinity if for every test function ¢ €
C([0,T]; Hg) with ol € C1 ([0, T); C2(F5)), it holds
t
(0(8), (6t~ (G0 0Ot = [ [(0060)m + 2v0(5.2) + 250 H. )

- b(ﬂa 2 ﬁ) - ﬁb(H7 2 QN)) - ﬂb(i)? 2 H)j| dt.
The next section deals with the well-posedness result for the system (C.0.1), in paricular

we show continuity in time of the solutions, the fact that they satisfy an energy equality and
uniqueness.

C.1 Well-posedness for a moving rigid disk in a viscous fluid
with infinite kinetic energy

We tackle the well-posedness of weak solutions with § circulation at infinity of the system
(C.0.1), in particular we prove the following theorem.
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Theorem C.1.1. Let 99 € Hp given and let T > 0 be a fixed time. Then there exists a unique
weak solution © € C([0,T); Hg) N L3([0,T); V) with B circulation at infinity and with ¥ as
initial datum. Moreover it satisfies the following energy equality

1
SOl |v0|yHB+2u/ / |Dv\2dxdt+2ow/ / 16 — 1, 2 dsdt
= /QVBCL( 0) + b(0, H, 0).
0

Proof. The proof of the theorem follows from the fact that the trilinear map b is bounded
in (Vg ®RH) x Vg x (Vg @ RH) and the classical Faedo-Galerking methods applies. In
particular we do not have to consider the truncated trilinear map br. The other three results,
the continuity in time, the energy equality and the uniqueness follow from the fact that
O € L?(0,T;V5). Here Vi is the dual of Vg where we identify the element of Vp through
the scalar product in Hp. We prove 0,4 € L*(0,T;V}5). From the weak formulation we have
that

(50, 90t — 0,00t — [ 0,000 = [ [2va(0, ) + 200l )

0
It is enough to estimates the right hand side. The proof is classical and it is possible to proceed
as in the case where the fluid is alone. O

C.2 Well-posedness for a disk in a perfect fluid

In this section we study the well-posedness for a model that describes the motion of a disk
in an incompressible inviscid fluid. In particular we consider the well-posedness for classical

solutions. The system in the unknown (v, 1%, ¢%) reads as
O + [(WF —17) - VuF 4+ V¢F =0 for z € F
dive? =0 for x € F
P n=vE -n for x € OB
|| — 0 as |z|] — 0, (C.2.1)

BN/ _ Ens
m(®) () == [ gFnd

JrEY = —/ - ¢Pnds
oB
vE(0,2) = vF () on F
1£(0) =1 and 7#(0) = r§.

Note that as before the angular velocity does not play a role in the dynamics due to the
shape of B. In particular 7¥(t) = r{ is constant in time, in fact 2 -n = 0 on 9B. Moreover,
the above system admits a unique classical solution for Holder continuous initial data with
compactly supported vorticity.
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Theorem C.2.1. Let A € (0,1), let T > 0, let vff € CYNF) and IF € R? such that

divef =0in F, of n=1E -nondB and lim o =0,
Tr——+00
and such that ng = curl vég is compactly supported. Then there exists a unique solution
(vE,1F) € C°0,T; LP(F)) x CL(0,T) for p € (2,+0), such that vE, ¥, VoF, Vp¥ are
CY(F) and they satisfy the system (C.2.1) in a classical sense.

We are not aware of a proof of the above result in the literature but it can be deduced
using the strategy in [ORT07] and [GS12]. To be more precise this result is not contained in
[ORT07] because the authors require the initial vector field vy to be H', which is not the case

if
/wég—i-/ vl T #0.
F B

Proof. In [ORTO07] the authors ask the initial datum to be in H! to perform a vanishing
viscosity method to prove existence of solution with bounded vorticity. Our idea is to use the
existence result of [GS12] to show existence and uniqueness of solution with L* vorticity. In
particular this result does not required the bound on the H' norm of the initial data. Then
we conclude using the idea of [ORTO07] to improve the regularity of the solutions.

More precisely vy € C*(F) and wg = curlvg is compactly supported. This implies that
wo € L°(F). We are in the hypothesis of Theorem 1 of [GS12]. There exists a unique
solution (vF,1%) € L>(0,T; LL(F)) x C1(0,T). To show that (vF,1¥) solution satisfies the
regularity property of the theorem, we use the following idea of [ORT07]. The vector field
vP € L>(0,T; LL(F)), which implies that it admits a flow ¢(¢,2) and its inverse and (¢, x)
Lipschitz in time and Holder continuous in space. See Theorem 3.7 of [BCD11]. The vorticity

w? = curlvg can be define by the inverse flow as follow

wh(t,2) = wi (Y (t, ).

The Hélder continuity of the initial datum and of the inverse flow 1, implies that w? is
Holder continuous in space and time. To recover v we solve a div-curl system with Holder
continuous source terms. By Schauder estimates v¥ is differentiable in space variables with
Holder continuous differential. The other assertions follow as in [ORTO07].

Before moving to the proof of the vanishing viscosity limit we notice that the solution v

can be decomposed as
vF =P + {/ wég—i-/ véE-T} H, where o¥ € L*(F).
F oB

Note that the quantity in front of H is constant in time. Moreover with the use of this
decomposition the following energy equality holds true

I I b B -
S5 @ — 51813 = = [ b(o”, %, H)d,

with 8 = [rwl + [pof - T.

This equality follow from the fact that v” satisfies (C.2.1) in a classical sense. We multiply
the first equation of (C.2.1) by 9¥ and we integrate in F. Some integrations by parts give the
equality.
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C.3 Vanishing viscosity limit
In this section we state and prove the vanishing viscosity result.

Theorem C.3.1. Let A € (0,1), let T > 0, let vy € C*NF) and Iy € R? such that

divig=0inF, wvyg-n=Ily-n ondB and 113_1 vg = 0,

and such that wg = curlwvgy is compactly supported. Denote by
ﬁ:/ wo—l—/ vo-7T and Uy =vy— BH.
F oB

Moreover let (0¥,1") the weak solution of (C.0.1) in the sense of Definition C.0.1, with
circulation at infinity, with viscosity v and with initial datum (g, ly). Analogously let (v +
BH,IE) the classical solution of (C.2.1) with initial datum (vo,lg). Then it holds

> If a = a” satisfies av converges to zero, then
v — oY in L®(0,T;H)
VUl 2o ry) — 0 and  avl|¥ — 17| p2o,m)xom) — 0.
> Moreover ¥ — I¥ in H'(0,T).
Proof. Consider w = ¥ — o, We estimate

lo@®)lF, =@ =07, 8" — %),
=" ()05 + 187 () 305 — 28", 9% )0

t
—(To0llZ1 + 178 a0 — 205", 57 )0 +4/0 va(#, ) + va(H, )t (C.3.1)
t
—2/ b(e”, o, H) + b(oF, %, H)dt,
0

where we use the energy equality for the ¥ and #. If we test the weak formulation of ¢¥

with oF, we get
t
(0,5 )3 (t) = (80,05 )15 + /0 (0", 0" )u + b(87, 87, 87) + b(H, 5", 87)  (C.3.2)
— (2", 9F, H) 4 2va(v”, %) + 2va(H, 57)dt.
We recall that o satisfies
(8t17E7 @)'HB = b(’[)Ev 77E7 SO) + b(H7 6E7 SD) - b(ﬁEa 2 -H)

for any ¢ € C*([0, T]; Hp) such that elx € C([0,T]; C(Fop)), because is a classical solution.
If we tested with ¢ = 0¥ we get

(0,07, 0 ) gy = b(OF, 08, 07) + b(H, 7, 07) — b(o¥, 9", H).
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If we inject the last equality in (C.3.2), we get

t
(07, 57 )205 (t) = (B0, B )20 + / b(o", 5", 0") + b(H, ", 3")
0

—b(oF, 9", H) + b(v", 0", 0%) + b(H, ", oF) (C.3.3)
—b(v", o, H) 4 2va(?¥,9F) + 2va(H, %) dt.

If we plug (C.3.3) into (C.3.1), we have

t
w]3ys = llwoll3, — 2/ b(oF, 0% ") — b(oF, 07, H) + (8", ", 9F) — b(#", 97, H)
0

+ 2va(v”,9%) + 2va(H,o7) — 2va(v¥, ") — 2va(H, )
+ (3%, 0%, H) + b(tF, 5%, H)dt.

Note that

b(oF, oF, ") — b(oF, 07, H) + b(@", ", 5F) — b(8¥, 97, H) + b(#", 8", H) + b(oF, %, H)
=b(w, ", %) — b(oF, w, H) + b(w, ", H)
=b(w,w, v%) — b(6¥,w, H) + b(¢", w, H)
=b(w, w, o) + b(w,w, H).

Which implies
t
Hw||3{8 = HwOH%B — 2/ b(w,w,f)E) + b(w,w, H) — 2va(t”,w) — 2va(H,w)dt
0
t
= HUJOH%{B - 2/ b(w,w, 5%) + b(w, w, H) — 2va(w, w) — 2va(H,w)
0
— 2wa(t”, w)dt.

We can conclude that

t t
ol = lwolieg =2 [ atw.w) < [ CUO i+ I1H i)l
+ 3v(a(d”,9%) + a(H, H))dt.

The difference of the initial datum wyq is identically zero. By Gromwall and letting v to zero
we prove point one. Regarding the second point, it is obtained by the formulas

(M(l”)'(t))i =2va(v”,w;) + 2va(H,u;) + b(0”, 0", u;) + b(H, 0", u;) — (0", usy, H),
(MAEY(8)) = b(oF, 57, i) + b(H, 57, i) — b(0", us, H),

where u; are the gradients of the Kirchhoff potentials defined in (3.2.9) and the added mass
is defined by

m 0

—+ [ / U - u]‘dw] .

0 m F ije{1,2}

o
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The matrix M is symmetric and positive definite. The scalar product (z,y) = z - My is then
equivalent to the Euclidean one. It holds

@y = @&y, -afyy<c Yy, ( a(®,u;))? + v2(a(H, )% + b — 7,0, u;))2

1=1,2
+ (0@, 8 = 57, w))? + (b(H, 7" — 0, w)? + (0" — 07, wi, H))?). (C.3.4)
We estimate the right hand side.
a(®”,ui)? < 2a(8”,9")a(u;, u;),
(b(8" = 0,0, 43))? < CO[8” = 0% |3119" |3l luil 1)
<Ol = 0, (5713 + 15 — 715,) Nl 2y

(@, 8" =7, u;))? <CIo75110" — 0% |3, lwillfipr)
H,0" — 9%, u;))? <C|H| g 0" — UE||H||VUZHL2(}') and

(
(@ = 0%, ui, H))? <C8" = 0 F il oy | H I ip(7)-

S

We integrate (C.3.4) in time and we use the above estimates. From the first point of the

theorem we conclude that also the second points holds true.
O

Before concluding this appendix, we briefly discuss the asymptotic of the solid rotation.
Suppose that r§ = r{’ = ro. Then r* and r¥ associated with respectively (v”,1”) and (v¥,1¥)
evolve as
av

(rV>/ — 7

Which imply that also ¥ — r¥ = rq in H*(0,T).

(v =1")-7 and rE(t) =ro.
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Appendix D

Estimates for Neumann Laplacian

This appendix is devoted to the study of solutions of the Laplace problem in exterior domain
with non-homogeneous Neumann boundary condition. Let £ an exterior domain such that
R2\ £ is closed, connect, simply-connected, bounded subset of R? with smooth boundary and
without loss of generality suppose that the origin is contained in R? \ £. The system reads as

_Afa = S¢ in &,
Vi-n=a. in 0&;,
|fel =0 as |x| — oo.

We will look for uniform estimates independent of the parameter €. To study the system we
use a change of variables associated with the biholomorphic map T : & — R? \ B1(0) and we
denote T, = T'(x/¢).

Proposition D.0.1. Let f., sc and a. smooth functions such that

—Af. = s in e,
Vie-n=a on 0.,
|fel =0 as |x| — oo.,
and let
L) = £ey), @) = onm P and au(Tey) = oot
VT (z,y)] VI (z,y)|
Then f. satisfies the system
—Af. =3 in R?\ By(0),
st-n:ds on 0B1(0),
AR as |x| — oo.
Lemma D.0.1. Let a. € LY(0F.) then
&l L1081 (0)) = lleellzioz.)-
Proof. The prove follow by a change of variables. O
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Proposition D.0.2. Suppose s. = 0 for any e and let a. € L'(0F.) of average zero. Then
there exists R independent of € such that

Cllac L1 or.)
|z|?

Vfe(z) <e for z € R*\ B.r(0) (D.0.1)

Proof. We use the change of variables T. to move the problem in the fixed geometry R?\ By (0).
Recall that [|&c||L1(98, (0)) = llac|lr1(o7,) and @. has average zero. Using the representation of
the Green’s function

|z]]y]

afyl - |

||y
z —y|?

= 1
i + log

1
GN,Bl(O)C(x>y) = log |
from [STT17], we have that

N Cllacll L1 (a8, (0))
#)| <
V(7)) < |j‘2

for # € R*\ Bx(0).

After changing back the variables we obtain the desired result

Cllaell L1 (#.)

|Vf€(33)| SE |£U|2

for 2 € R*\ B.r(0).
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