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Abstract

Public clouds enable storing and sharing data with efficient cost and high availability. Never-
theless the benefits, cloud providers are recurrently breached by malicious users exposing sensitive
user content. To mitigate the lack of security guarantees, users can impose end-to-end security by
encrypting the data before remotely storing it.

Access control mechanisms specify the users who are allowed to produce or consume the re-
mote data. As data is encrypted, access control is performed cryptogrpahically, concealed from
the cloud storage. Cryptographic key management is used for regulating user access while re-
encryption techniques are used for key updates. State-of-the-art key management often trades
computational time for storage footprint, while re-encryption techniques exchange great security
guarantees for speed. In the context of very large and highly dynamic cloud specific workloads,
state-of-the-art cryptographic access control is generally inefficient.

This thesis proposes a minimal integration of Trusted Execution Environments (TEE) to achieve
efficient access control. Leveraging TEE, we perform a change in assumptions of traditional key
distribution schemes, deriving a confidential and an anonymous scheme, both achieving efficient
computational latency and low storage footprint. In addition, we propose a lightweight data re-
encryption method by processing only portions of the data in TEE directly at the provider side. We
carry out a comprehensive implementation and evaluation using Intel Software Guard Extensions
(SGX) as TEE. Benchmarking results highlight that our key management and re-encryption schemes
are few orders of magnitude better than state-of-the-art.

Keywords: security; privacy; cloud; storage; access control; confidentiality; anonymity.

Résumé

Les clouds publics permettent de stocker et de partager des données à faible coût et haute
disponibilité. Néanmoins, les avantages, les fournisseurs de cloud sont contournés de manière
récurrente par des utilisateurs malveillants exposant des contenus utilisateurs sensibles. Face au
manque de garanties de sécurité, les utilisateurs peuvent imposer une sécurité de bout-en-bout en
chiffrant les données avant de les stocker à distance.

Les mécanismes de contrôle d’accès filtrent les utilisateurs autorisés à produire ou à utiliser les
données distantes. Au fur et à mesure que les données sont chiffrées, le contrôle d’accès est effectué
de manière cryptographique, indépendamment du stockage en nuage. La gestion des clés crypto-
graphiques régule l’accès des utilisateurs, tandis que des techniques de rechiffrement sont utilisées
pour les mises à jour de clés. Une gestion des clés permet souvent d’arbitrer entre le temps de cal-
cul et l’empreinte de stockage, tandis que les techniques de rechiffrement arbitrent entre les garan-
ties de sécurité et la rapidité. Dans le cas de très volumineuses et dynamiques charges de travail
spécifiques sur le cloud, un contrôle d’accès cryptographique même performant est généralement
inefficace.

Cette thèse propose une intégration minimale des environnements d’exécution de confiance
(TEE) pour obtenir un contrôle d’accès efficace. En utilisant TEE, nous modifions les hypothèses
des schémas de distribution de clés traditionnels, en dérivant deux schémas, un confidentiel et un
anonyme, permettant à la fois d’obtenir une latence informatique supportable en même temps
qu’une faible empreinte de stockage. De plus, nous proposons une méthode légère de rechiffre-
ment des données en ne traitant que des parties des données dans TEE directement chez le four-
nisseur. Nous réalisons une mise en œuvre et une évaluation complètes en utilisant Intel Software
Guard Extensions (SGX) comme TEE. Les résultats de l’analyse comparative montrent que nos sys-
tèmes de gestion de clés et de rechiffrement accroissent l’état de la technique de plusieurs ordres
de grandeur.

Mots clés : sécurité; intimité; cloud; stockage; contrôle d’accès; confidentialité; l’anonymat.
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CHAPTER

1
Introduction

This thesis was conducted in an industrial partnership between Scille and LaBRI. In

these lines, the research activity focused exclusively on end-to-end secure cloud stor-

age. First, we identify unanswered research challenges from state-of-the-art literature.

Second, we address these challenges by efficient novel constructions. This chapter

introduces the thesis context, cloud storage, end-to-end security and access control,

and a tour of our efficient security contributions.

1.1 Industrial Context

The presented work was conducted in partnership with Scille 1. Scille is a French soft-
ware development company founded in 2016, servicing notable clients such as the French
Ministry of Interior or Ministry of Defense. Scille also performs a rich research activity.
Within this context, Scille received financing from the Ministry of Defense through a DGA
project 2 between Feb. 2017 to Jun. 2019 to develop PARSEC 3, an open source end-to-end
secured file storage and sharing solution.

The main driver of the research activity has been identifying large scale design chal-
lenges ahead of engineering work. At the time of writing (Oct. 2019) PARSEC v.1 Com-
munity Edition is in beta-testing. The subsequent version PARSEC v.2 Enterprise Edition
integrates entirely the research results presented within this dissertation. PARSEC v.2 En-
terprise Edition targets seamless integration with large size organizations, accommodating
a significant operational workload and data volumetry.

1. https://www.scille.fr/
2. Direction Générale de l’Armement (DGA) RAPID 172906010
3. https://parsec.cloud/

1



2 CHAPTER 1. INTRODUCTION

1.2 Cloud Storage Today

Cloud storage receives much attention recently and shows a fast adoption by individ-
uals, businesses or governmental institutions. Not surprisingly, various start-ups emerged
to fill the demand (e.g., Dropbox, FileCloud), while technology big-players leaped to cover
the same need (e.g., Microsoft’s OneDrive, Google Drive).

The popularity of cloud storage among end-users comes from the easiness of safe-
guarding and sharing personal data [Seybert and Reinecke, 2014]. If priory such activities
were done using direct-attached storage (e.g., hard drives), universal serial bus (USB) flash
drives, or emailing, the cloud storage offers a much simpler and cost efficient alternative.
Assuming the possession of an internet connection, cloud storage gives to end-users the
impression of handling locally stored data. The background task of moving this data to
and from the cloud is abstracted from them. Such services became so popular that Drop-
box alone reached more than 500 million active users in 2018 [Forbes, 2018].

The adoption of cloud storage by organized establishments can be further argued by
benefits. Priory, organizations typically maintained in-house data storage privately acces-
sible through the organization network. Examples are dedicated storage units such as Net-
work Attached Storage (NAS) or multiple interconnected storage units forming a Storage
Area Network (SAN). However, in-house storage has inconveniences. The hosting orga-
nization needs time, resources and therefore costs to set-up and maintain hardware and
software components of the solution. Moreover, an in-premises solution is rigid, it risks
overflowing over the maximum capacity or contrary to be under utilized. Cloud storage
mitigates the inconveniences by shifting the responsibilities from the hands of the orga-
nization into the hands of the cloud provider. The organization spending cost is lowered,
while the storage space can grow or shrink depending on use.

To enrich the landscape of cloud storage services, providers introduced the paradigm of
object, namely Binary Large Object (BLOB) storage. Examples are Amazon’s Simple Storage
Service (S3), Google Cloud Storage and Microsoft Azure Storage. The object paradigm is
a simplification of the hierarchical file storage model by considering each stored resource
as a unique immutable object. This model reduces metadata and achieves better scalabil-
ity. In this line of service, cloud providers offer additional competitive benefits. Customers
can chose to disperse their objects over multiple geographical locations, increasing data
reliability and availability. Customers can chose subscription plans depending on the fre-
quency of data access - expressed by thermic quantifiers (hot or cold data) - or pay only for
the consumed resource (space or bandwidth) referred to as pay-as-you-go.

Throughout, the adoption of cloud storage by individuals and organizations is closely
mirrored by the growth of its business market. In 2016 the cloud storage market reached
$24 billion and forecast to grow to $75 billion in 2021 [MarketWatch, 2016].
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1.3 Securing Cloud Storage

Nevertheless the benefits, security concerns hover the use of cloud storage. News re-
peatedly emerge of service providers breached by malicious attackers resulting in sensi-
tive user data exposed. For example, in 2016, it was found that 68 million Dropbox ac-
counts have been potentially compromised in an incident four years before [Guardian,
2016]. In another case, in 2016 Apple iCloud storage was breached exposing private pho-
tos of celebrities [Tripwire, 2016]. In 2018 it was revealed that an Amazon employee
potentially sold confidential user data to unauthorized parties [CNBC, 2018]. In 2018,
the United States enacted the Cloud-Act, allowing American authorities to warrant on
cloud providers data even when stored on foreign soil, attracting controversies over inter-
national sovereignty [Numerama, 2018].

Not surprisingly, both individuals and organizations list security as the main concern
for adopting cloud backed services [Computing, 2018]. While individuals mostly see the
threat endangering privacy as a civil right, business organizations can suffer major finan-
cial issues. For example, the notorious data breach of Equifax in 2017 was estimated to cost
the company $275 million [Reuters, 2017].

To mitigate the lack of proper security guarantees while enabling their use, one can
enforce the end-to-end security paradigm when using cloud storage.

End-to-End Security

The end-to-end security model considers that except the communication end-points
everyone is an adversary. As discussed, the storage provider can not be considered en-
tirely trusted - not necessarily by arguing its honesty, but by the potential threat of being
breached by malicious actors. Therefore, the storage provider is categorized as an adver-
sary. In the same way the communication links between the end-points and the provider
are potentially adversarial. Figure 1.1 illustrates the end-to-end security concept, enforc-
ing the users (end-points) as the only trusted parties.

The security requirements enforced by the end-points vary depending on the desired
security guarantees. For example confidentiality states that only end-users should be ca-
pable to comprehend the data. Integrity assures that data is not altered while authenticity

User UserProvider

 Trusted end-points

Figure 1.1 – Trusted end-points in end-to-end security.
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enables tracking with certainty the data originator. Sometimes, anonymity is desired for
hiding the identities of communicating parties.

These security properties are usually addressed by cryptographic primitives (a gentle
primer on cryptography is included in Section 2.1). Executing the cryptographic primi-
tives on the user side, keeps the key material known only to the end-points and never to
the cloud provider. Confidentiality is achieved by symmetric encryption, while integrity
and authenticity are achieved by hash methods and digital signatures. Imposing the se-
curity properties to a well-defined group of users is achieved by the means of public key
cryptography.

In the research literature a number of remote storage systems integrate end-to-end se-
curity through cryptographic primitives [Li et al., 2016a,b; Han et al., 2015; Dobre et al.,
2014; Bessani et al., 2014, 2013; Popa et al., 2011a; Wilcox-O’Hearn and Warner, 2008; Ku-
biatowicz et al., 2000]. Differently, certain systems achieve end-to-end confidentiality by
assuming the non-collusion of multiple storage providers, thus relying on the security
strength of dispersal methods [Tang et al., 2015; Resch and Plank, 2011; Chung et al., 2015].

End-to-end security was applied in other areas of systems research, such as relational
databases [Bajaj and Sion, 2013; Poddar et al., 2016; Popa et al., 2011b], email [Koh et al.,
2019; Ruoti et al., 2016] or content-based routing [Pires et al., 2016].

In the industrial landscape, even though end-to-end security has been integrated in
popular instant communication applications (e.g., WhatsUp, Signal [Rösler et al., 2018]), it
lacks wide adoption for public cloud storage applications.

Cryptographic Access Control

Access control policies specify the users who can access a certain resource (e.g., file or
object). Within end-to-end security, the users - i.e., the end-points - have the role of en-
forcing access control. As such, access control is performed in a cryptographic manner,
un-comprehensible to the adversarial cloud provider. Cryptographic access control is en-
forced by mechanisms that operate over two distinct dimensions. If the first mechanism
operates at the level of users (e.g., identities), the second dimension operates at the level
of the data (e.g., resource).

Users Dimension. In end-to-end security the data shared among multiple users is en-
crypted with a secret key known only by the users. Therefore, specifying and enforcing the
users that can access the data is performed by a distribution mechanism of the secret key.
The simplest method, popularly referred to as Hybrid Encryption (HE), symmetrically en-
crypts the data with the secret key, and then encrypts this key with public-key cryptography
- such as RSA or Eliptic Curve Cryptography [Goh et al., 2003]. Other approaches rely on
Pairing-Based Cryptography (PBC) and offer different levels of granularity. A few examples
include : Identity-Based Encryption (IBE) [Boneh and Franklin, 2001] which works simi-
larly to public-key encryption at the identity level; or Identity-Based Broadcast Encryption
(IBBE) [Delerablée et al., 2007] that can capture group-like policies. Moreover, certain key
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distribution schemes guarantee the secrecy of user identities, such as Anonymous Broad-
cast Encryption (ANOBE) [Barth et al., 2006].

Data Dimension. During an access control policy change, besides the distribution of a
new encryption key by aforementioned methods, the encrypted data needs to assimilate
this key change. Clearly, all data created after the policy change will be encrypted by the
new key. However, previously created data, needs to be re-encrypted with the new key.
Existing approaches are either low-cost by delaying re-encryption until the resource is up-
dated (lazy revocation [Kallahalla et al., 2003; Backes et al., 2005]), or prevent any further
access to the entire set of data through a high-cost full re-encryption of all resources (active
revocation).

Efficiency Issues

In the context of cloud storage, cryptographic access control can suffer prohibitive cost.
Differently than traditional storage, access control policies for cloud storage are poten-
tially large and highly dynamic [Garrison et al., 2016]. Nowadays, large scale organizations
surpass hundreds of thousands of employees [GeekWire, 2018], while companies selling
access to remotely stored data surpass millions of clients [CNN, 2019]. Moreover, data ven-
dors utilizing public cloud storage reach data-set sizes in the range of Petabytes [Toman,
2017; Genomics, 2018].

Enforcing cryptographic access control over such high loads, makes both user and data
access control dimensions ineffective. As illustrated by our preliminary benchmarks (Sec-
tions 2.4 and 2.5), managing users by state-of-the-art key distribution methods is ineffi-
cient due to the computational latency (e.g., hours) or large metadata (e.g., hundreds of
Megabytes) unsuitable for high frequency access control policy changes. Moreover, using
lazy revocation by delaying re-encryption to the first update does not apply to immutable
resources - the content type published by data vendors. Instead, such vendors need to rely
on the prohibitive active revocation or skip the re-encryption process.

Instruments for Efficiency

There exist a tension between the efficiency and the security of cryptographic access
control. However, by agreeing on certain security assumptions, one can balance this trade-
off in favor of efficient constructions. We present our efficiency empowering instruments
in the form of three security assumptions.

1. Administrators Perform Access Control. This assumption mimics the functioning
of large organizations in which only privileged users perform access control operations
(e.g., network administrators, IT-desk etc.). Differently, in state-of-the-art key distribution
schemes [Boneh et al., 2005b; Delerablée et al., 2007] user management is performed by
ordinary users.
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2. Availability of Trusted Execution Environments (TEE). TEE are processor extensions
that can provide shielded code execution while guaranteeing the isolation, confidentiality
and integrity of the computations. Intel SGX [Costan and Devadas, 2016] has been suc-
cessfully used for performing trusted computations in untrusted environments [Schuster
et al., 2015; Brenner et al., 2016]. We constrain this availability assumption to the smallest
set of system actors. In other words we can not assume that everybody is equipped with
Intel SGX capabilities. Moreover, we require that the performance overhead induced by
adopting TEE is minimal.

3. Local Caching of Plaintext. Users that entirely downloaded and viewed a resource
(e.g., file) can not be prevented to locally cache and access this copy even after they are
evicted from the access control policy. Therefore, similarly to related work [Li et al., 2016a;
Myers and Shull, 2017], we assume that the adversary did not previously downloaded the
entirety of the resource.

1.4 Our Contributions

We propose three unique contributions CON-SKY, ANO-SKY and REV-SKY 4. Each con-
tribution takes shape by joining the aforementioned efficiency instruments to a concrete
cryptographic access control problem at large scale. We deduct new theoretical constructs,
and shell them within end-to-end systems over cloud storage to prove their efficiency. Our
first two contributions tackle the user management dimension of access control, and pro-
pose a confidential and an anonymous key distribution scheme respectively. Our third
contribution focuses on the data management dimension of access control, and proposes
an efficient active revocation method.

CON-SKY: Confidential Access Control using TEE.

Our first contribution CON-SKY is a cryptographic access control extension that is ef-
ficient both in terms of computation and storage even when processing large and dy-
namic workloads of membership operations. CON-SKY leverages the first two instruments
of efficiency, thus requiring administrators to perform user management operations in
TEE. CON-SKY builds upon Identity-Based Broadcast Encryption (IBBE) [Delerablée, 2007].
IBBE’s impracticality for cloud deployments is addressed by exploiting Intel SGX to derive
cuts in the computational complexity. Moreover, a partitioning mechanism is proposed
such that the computational cost of membership update is bound to a fixed constant par-
tition size rather than the size of the whole user set.

4. The names CON-SKY, ANO-SKY, REV-SKY were inspired by the seminal work of DEP-SKY [Bessani et al.,
2013].
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Results highlight that CON-SKY performs membership changes 1.2 orders of magnitude
faster than the traditional approach of Hybrid Encryption (HE), producing metadata that
are 3 orders of magnitude smaller than HE.

ANO-SKY: Anonymous Access Control using TEE.

Our second contribution is ANO-SKY, a cryptographic access control extension capa-
ble of providing not only confidentiality but also anonymity guarantees, all while effi-
ciently scaling to large organizations. Similarly to the first contribution, ANO-SKY leverages
TEE such as Intel SGX to address the impracticality of Anonymous Broadcast Encryption
(ANOBE) [Barth et al., 2006], achieving faster execution times and shorter ciphertexts.

Differently than CON-SKY, ANO-SKY proposes a scalable design leveraging micro-
services that preserves strong security guarantees while being able to efficiently manage
realistic large user bases.

Results highlight that the ANO-SKY cryptographic scheme is 3 orders of magnitude bet-
ter than state of the art ANOBE, and an end-to-end system encapsulating ANO-SKY can
elastically scale to support groups of 10,000 users while maintaining processing costs be-
low 1 second.

REV-SKY: Efficient Revocation using TEE.

Our third contribution is REV-SKY, a practical active revocation mechanism that guar-
antees the same level of protection as full re-encryption, for a fraction of its cost. Our
scheme leverages TEE as an efficiency instrument in conjunction with the assumption that
adversaries did not entirely downloaded and viewed the data resource. Moreover, we utilize
an all-or-nothing [Rivest, 1997] transformation together with Intel SGX to re-encrypt only
small portions of the content directly in the cloud. Distributed execution enables REV-SKY

to scale-out over a cluster of re-encryption workers.
Evaluation in a realistic environment shows that REV-SKY outperforms active revoca-

tion on complete files by up to 3 orders of magnitude on industry workloads.

Remark.

Even tough the thesis main motivation is to securely share data in a cloud environment,
the proposed constructs can be adapted to securely broadcast arbitrary information to a
group of users over any shared media. Some other examples are peer-to-peer networks or
pay-per-view TV.
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1.5 Thesis Outline

This dissertation document is structured as follows. After this introductory Chapter,
we detail the building blocks and the considered model in Chapter 2. Chapter 3 discusses
related work from both security systems and applied cryptography perspectives. We largely
discuss our first contribution CON-SKY in Chapter 4, our second contribution ANO-SKY in
Chpater 5 and our third contribution REV-SKY in Chapter 6. Within Chapter 7 we present a
performance analysis of our three contributions covering micro-benchmarks and realistic
use cases. Finally, we conclude the document in Chapter 8 providing concluding remarks
and discuss future extensions.



CHAPTER

2
Background

This chapter details the building blocks for constructing end-to-end secure storage

systems enabled by cryptographic access control. We lay out a concrete model that

details the actors and the necessary assumptions. Next, we provide a quick primer

of basic cryptographic primitives, the foundation of cryptographic protocols. We de-

tail our main instrument of efficiency Trusted Execution Environments (TEE) and dive

into the details of Intel Software Guard Extensions (SGX). We then investigate existing

methods for confidential and anonymous data sharing. Moreover, we investigate effi-

cient re-encryption techniques leveraging All-Or-Nothing transformation. We present

the limitations of surveyed methods and provide an overview of open challenges.

2.1 A Primer on Cryptography

To construct cryptographic enabled systems one needs to comprehend the basic build-
ing blocks of cryptographic primitives. Cryptography versed readers can skip this subchap-
ter. We detail the functioning of symmetric encryption, message authentication codes,
hash messages, public key encryption and digital signatures. For a thorough overview the
reader is referred to seminal textbooks [Stinson, 2005; Ferguson and Schneier, 2003].

Symmetric Encryption.

A symmetric-key algorithm provides data confidentiality by the use of the same se-
cret key for both encrypting and decrypting the data. We denote by Ek (p) → c a symmet-
ric encryption primitive employing key k on the plaintext p and producing ciphertext c.
Dk (c) → p is the corresponding decryption operation.

9
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Among existing algorithms, the one defined by the AES specification has become the
de facto standard and is used worldwide [Chown, 2002]. It is a block cipher algorithm,
operating on fixed-length group of 128 bits called a block with a key size of 128, 192 or
256 bits. To securely transform amounts of data larger than a block, the cipher’s single-
block operation needs to be repeatedly applied accordingly to a block cipher mode. Many
modes of operation have been defined [Ferguson and Schneier, 2003], each one offering a
different level of performance and robustness.

Message Digests.

Message digests or simply hash functions are one-way collision resistant functions,
mapping an input data block to a short fixed size output. The role of hash functions is
to provide integrity guarantees over the data. Also, they are utilized as a preceding oper-
ation in digital signature schemes, reducing an arbitrarily large amount of data to a small
output on which the signature is applied. We denote a message digest simply by h(d).

Hash functions work by splitting the data into fixed size blocks, and iteratively applying
a compression function with an intermediate state [Ferguson and Schneier, 2003]. Secure
Hash Algorithms (SHA) are a class of secure hashes standardized by NIST in three family
sets (SHA-1, SHA-2, and SHA-3). The first set has been proved insecure due to collision at-
tacks – two inputs producing the same hash [Wang et al., 2005]. The second set is a popular
choice producing outputs of 256, 384, and 512 bits. Lastly, the third family SHA-3 was stan-
dardized by NIST – not as a replacement to SHA-2 but as a robust alternative if someday
the latter is to be found insecure.

Authenticated Encryption by Message Authentication Codes (MAC).

Message Authentication Codes (MAC) can prove the integrity and authenticity of a sym-
metrically encrypted message with respect to the encryption key. As such, the MAC can be
used to detect any change to a ciphertext that have transited an untrusted party. Symmet-
ric encryption modes that produce a MAC are called authenticated encryption modes. We
denote by AEk (p) → (c, t ) an authenticated encryption primitive that besides the cipher-
text c produces the MAC t , and by ADk (c, t ) → {p,⊥} the authenticated decryption that
either successfully decrypts the plaintext p or fails if the MAC is not valid.

AES Galois Counter Mode (GCM) is a block cipher mode that performs both encryp-
tion and authentication by using operations in a finite (Galois) field. GCM is defined for
block ciphers with a block size of 128 bits. Implementing GCM can make efficient use of
Carry-less Multiplication (CLMUL), an extension to the x86 instruction set used by micro-
processors from Intel and AMD [Gueron and Kounavis, 2010].
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Public Key Encryption.

Differently than symmetric encryption, public key encryption assumes that each user
has two keys, one public and one private kept secret by the user. This asymmetry enables
one party to encrypt a message for a different party without the two possessing a shared
secret. As such, the encryption operation (denoted by EPK (p) → c) uses the public key PK
of the destinatary while the decryption (denoted by Dpr i (c) → p) is done by the recipient
using the private key (pr i ). The most popular implementations of public key encryption
rely on RSA or Elliptic Curve Cryptography.

RSA is a public key cryptosystem based on the difficult mathematical problem of fac-
toring the product of two arbitrarily large prime numbers. The key sizes employed by RSA
require a much larger length as compared to symmetric encryption, because solving the
mathematical problem is faster than a brute force attack iterating over all possible keys.

Elliptic Curve Cryptography (ECC) is a relatively novel direction in public key cryptosys-
tems [Koblitz, 1987], that besides a considerable interest from academia has also been in-
tegrated within technical solutions like Bitcoin, SSH, and TLS [Bos et al., 2014]. The advan-
tage of ECC over the traditional RSA is the small nature of key sizes, implying an increase
of computational speed. ECC is based on the difficult mathematical problem of discrete
logarithm when the computations are performed over the points of an elliptic curve. The
security of the ECC cryptosystem is highly correlated to the choice of the curve equation.
Various curves have been proposed and formally reviewed, such as the ones standardized
by NIST.

Digital Signatures.

Digital signature algorithms are employed for proving the authenticity of a data block
with respect to the user private key. Moreover, they provide the properties of non-
repudiation and integrity, meaning that the signing users can not deny themselves as sign-
ers and that the data block content is not altered. The verification of the message and sig-
nature pair can be openly performed by anybody knowing the user public key. We denote
by Spr i (p) →σ and Vpub(p,σ) → {tr ue,⊥} the signature and verification primitives.

The popular implementations of digital signatures – similarly to public key encryption
– rely on the aforementioned RSA or Eliptic Curve Cryptography.

Security Guarantees.

Semantic Security. A cryptographic scheme is considered secure if it achieves semantic
security. In a simplistic manner, semantic security guarantees that attackers who are given
a set of plaintexts and a set of ciphertexts, can not deduce which ciphertext corresponds
to which plaintext unless they have knowledge of the key. As the attackers can chose the
plaintexts at will, semantic security is also referred to as Indistinguishability under Chosen
Plaintext Attack, or shortly IND-CPA.
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Chosen Ciphertext Security. When the attackers are given the option of choosing the set
of ciphertexts at will, and also given the decryption of chosen ciphertexts, if they are unable
to deduce the secret key then we say that the scheme guarantees Indistinguishability under
Chosen Ciphertext Attack, or shortly IND-CCA.

A Note on Performance.

When used in the context of securing remote storage, and not necessarily for access
control, the implementation choice of cryptographic primitives influences the system per-
formance. As such, the choice of a specific configuration highly depends on the expected
security level, the size and type of data to store and the access pattern to these data. The
best scheme for a given situation, such as a write-heavy workload of mostly small files, is
not necessarily the most appropriate for a different situation such as a read-only workload
of large files. For concrete details over the pros and cons of properly choosing cryptographic
primitives the reader is referred to our practical experience report [Contiu et al., 2017].

2.2 Trusted Execution Environments

We propose relying on Trusted Execution Environemtns (TEE) and namely Intel Soft-
ware Guard Extensions (SGX) as an instrument for efficient security. TEE are processor
extensions that can provide shielded code execution while guaranteeing the isolation, con-
fidentiality and integrity of the computations.

Intel SGX is an instruction extension available on modern x86 CPUs manufactured by
Intel. Similarly to ARM Trustzone [Azab et al., 2014] or Sanctum [Costan et al., 2016], SGX
aims to shield code execution against attacks from privileged code (e.g., infected operat-
ing system) and certain physical attacks. A unit of code protected by SGX is called an en-
clave. Computations done inside the enclave cannot be seen from the outside [Costan and
Devadas, 2016]. SGX seamlessly encrypts memory so that plaintext data is only present
inside the CPU package. The assumption is that opening the CPU package is difficult for
an attacker, and leaves clear evidence of the breach. Encrypted memory is provided in a
processor-reserved memory area called the Enclave Page Cache (EPC), which is limited to
128 MB in the current version of SGX. The Trusted Computing Base (TCB) of an SGX en-
clave is composed of the CPU itself, and the code running within. The TCB constitutes the
surface of attack and is depicted in Figure 2.1. Differently, when not using Intel SGX, the
system exposes a wider surface of attack that also includes the operating system, the bios
or the hypervisor.

Attesting Intel SGX.

Intel provides a way for enclaves to attest each other. After the attestation process,
enclaves will be sure that each other is running the code that they are meant to execute.
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Figure 2.1 – System attack surface without (left) and with (right) Intel SGX.

The attestation process can be extended to remote attestation that allows a piece of soft-
ware running on a different machine to make sure that a given enclave is running on a
genuine Intel SGX-capable CPU. An Intel-provided online service – the Intel Attestation
Service (IAS) – is used to check the signature affixed to a quote created by the CPU [Costan
and Devadas, 2016]. As part of the attestation process, it is possible to provision the en-
clave with secrets. They will be securely transmitted to the enclave if and only if the remote
attestation process succeeds.

Shortcomings of Intel SGX.

Intel SGX comes with a run-time performance overhead, notably due to transitioning
latency between trusted and untrusted zones, as well as page swapping when exceeding
the limited memory size of the enclave page cache (EPC).

Moreover, one cannot rely on widespread adoption of such enabling technology. In-
stead, one needs to consider the end-users heterogeneity, including various microproces-
sor architectures, mobile users or even Internet of things (IoT) devices.

Finally, SGX enclaves were recently documented as being potentially subject to side
channel [Lee et al., 2017] or speculative execution [Van Bulck et al., 2018] attacks. We see
these attacks as out-of-scope within our work. We consider that they do not dismiss the
concept of TEEs in general and will be addressed by evolution of the concept’s implemen-
tation.

2.3 Group Sharing Model

Users and Administrators

We separate the end-users of our group-based data sharing system into users and ad-
ministrators.



14 CHAPTER 2. BACKGROUND

Users are humans or software agents and are uniquely identifiable. Users are organized
into uniquely named groups. A user can be a member of multiple groups. Users that are
part of a group are called active users, while the ones that are no longer part of a group are
denoted as revoked users.

Administrators are privileged users managing group membership – they decide who
joins and leaves the group. Users can discriminate the administrators among the fellow
users. Administrators perform three operations : create a group, and add or remove a user
from the group. To capture group membership, administrators define access control poli-
cies.

Access Control Policies

Access Control Policies specify the group members and their capabilities – read or
write. Conceptually, these policies are very similar to Access Control Lists (ACL), a pop-
ular way of specifying access capabilities in file systems.

Some examples of access control policies for a group G are :

acl (G) = { Alice, Bob, Carol } (2.1)

acl (G) = { Dave : read, write; Eve : read; Frank : read } (2.2)

acl read(G) = { Dave, Eve, Frank } (2.3)

acl write(G) = { Dave } (2.4)

Example 2.1 shows a group in which all three users have identical capabilities. Exam-
ple 2.2 illustrates a group in which only user Dave can create content while everybody else
can only read. This example can be re-written by dividing the group per capability – Ex-
amples 2.3 and 2.4. Moreover, if Dave is the creator of the data, we call him sometimes the
owner of the data.

Such a simple yet powerful access control model has found wide adoption with public
cloud providers. For example Dropbox uses editor, viewer, and owner capabilities, while
Amazon S3 specifies permissions as read, write and full control. Group based access con-
trol is also present in social networks (e.g., Facebook Groups) or instant communication
(e.g., Whats-up).

Our group access control policy is a simplification of Role-Based Access Control
(RBAC) [Sandhu, 1998]. RBAC is designed to capture capabilities that represent generic
actions within an organization, and not necessarily data level access. Other access con-
trol models allow more complex policies, for example Attributed-Based Access Control
(ABAC) [Hu et al., 2015] assigns attributes to users and data, and then grants access if
attributes match. We argue our choice of policy representation due to its simplicity and
popularity.
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Figure 2.2 – Cryptographic Group Access Control.

The Group Key gk.

Within the end-to-end security paradigm the data is encrypted before being stored on
the cloud. To make sure that different groups do not comprehend each others data, each
group employs a different encryption key. We refer to this encryption key generically as
the group key gk. Intuitively, at any given time only the active users should posses the
knowledge of gk and not the revoked users, nor the cloud storage.

The group access control policies acl (G) therefore specify who can access and with
what capability the gk. Figure 2.2 illustrates two groups of users, each with a different
group key gk, allowing them access to two distinct group data-sets.

Confidential Distribution of gk.

We require that gk is cryptographically known only to active users of the group and to
nobody else. We denote by key enveloping the process of wrapping gk in an envelope with
the property that only active members of the group can open the envelope. It should be
cryptogaphically infeasible to the revoked users or the cloud storage to open this envelope.
Building the envelope represents therefore a key distribution mechanism that offers confi-
dentiality guarantees (detailed in Subchapter 2.4). Of course, such a mechanism needs to
satisfy the notion of semantic security (IND-CPA).

Since administrators perform policy changes, they also construct or change the key
envelopes. The lifetime of an envelope is linked to the lifetime of the underlying key gk.
Therefore if the gk changes – like in the case of a revocation – the envelope will change as
well.

Anonymous Distribution of gk.

In some cases we want to make sure that users in the group do not know each other –
in other words a receiver of the envelope should not infer who else is a receiver of the same
envelope. In such a case, we need an anonymous key distribution mechanism (detailed in
Subchapter 2.5). Differently than for the confidential distribution scheme, active users can



16 CHAPTER 2. BACKGROUND

mount attacks in order to discover peer users, choosing ciphertexts at will for which they
know the encryption key gk. We therefore require the anonymous key distribution scheme
to be secure under the tougher Chosen Ciphertext Attack (IND-CCA) model.

Revocation of gk.

Whenever a user is evicted from an access policy it is imperative that a new group key
gk is created and broadcasted to all the remaining active users in the group. The operation
of changing the gk is called re-keying. Even though our model links a re-key to a revocation
event, the same procedure could be applied when users join the group in order to maintain
the secrecy of past shared data.

Within the context of revocation one can wonder about what happens to the data dur-
ing a re-key. Within the model of lazy revocation [Kallahalla et al., 2003], data created after
revocation is encrypted using the new gk, but existing data remains encrypted by the old
gk. The scheme sets the lower bound in terms of computational costs, requiring no re-
encryption. However, we argue that such a model does not offer the best possible security
guarantees. Instead we require our model to satisfy a tighter security model, namely active
revocation model. Active revocation imposes that all prior data be re-encrypted with the
new group key.

We consider that users who entirely downloaded, decrypted and viewed a resource, can
cache the plaintext of the resource locally. After revocation, these users can continue ac-
cessing their local copy, even if the remotely stored resource is replaced with a re-encrypted
one. As such, the security guarantees of revocation target resources not entirely down-
loaded by revoked users while being active.

Remote Storage Assumptions.

We assume that the remote storage supports a simplified interface for resource down-
load and upload, denoted by g et (i d) → d and put (i d , d) where i d is the identifier of the
resource while d is the data content. Sometimes, the cloud storage can also be used as a
broadcasting interface for group access control changes. In such a model, administrators
are communicating with the cloud each time a group membership operation takes place
so that users can be notified of the group membership update.

Availability of TEE Assumptions.

We assume a limited availability of TEE for our system actors. Among end-users, we
assume that only administrators are equipped with TEE namely Intel SGX capabilities, and
not the regular users. Such an assumption is reasonable considering the small number of
administrators compared to users. For example, even in a very large size organization, only
a handful of employees (e.g., IT desk) administrate access control.
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We assume that the cloud possesses limited TEE capabilities. Clients can outsource
to the cloud TEE data-locality enabled tasks, which do not interfere with the cloud data
delivery interface. As such, we consider that users can not use the cloud TEE to download
or upload data by proxy-ing the data through the TEE. The performance limitations of SGX
can not enable such a scenario, notably when aiming for high servicing throughput.

Threats Overview

Untrusted Cloud Storage. We assume that the cloud storage satisfies liveliness assump-
tion and does not deny service. However, the cloud storage employs an untrusted hard-
ware and software environment that can be exposed to an attacker. Such an attacker can
be interested in getting access to the group data – thus breaking the confidentiality – or dif-
ferently learning the composition of the group – breaking the anonymity guarantee. The
preferred threat model in the literature of untrusted cloud storage emerges as honest-but-
curious [Garrison et al., 2016]. Such a model specifies that the cloud storage plays by the
protocol but it’s not trusted for knowing the data shared by the users. Moreover, similarly to
related work [Bacis et al., 2016] the cloud storage is not trusted with performing the access
control to the data.

Revoked Users. Users that have been revoked or are external to the system behave ar-
bitrarily. They try to discover shared content or sometimes group members identities. To
do so, they can intercept, decipher and alter exchanged messages (i.e., Dolev-Yao adversar-
ial model [Dolev and Yao, 1983]). Also, as the cloud storage is not trusted for performing
access control, revoked users can recuperate remotely stored content at will.

Active Users. We consider that group members are trusted for keeping the gk secret
while they are active, and thus preserving confidentiality. Even though, intuitively, active
group members are an entity of trust, it is not always the case. We consider two cases of
active users manifesting an illicit behavior. First, in order to break the anonymity guar-
antee, active users might behave in an untrusted manner to find who else is a member of
the group. Second, group members could try to over-provision as much sensitive crypto-
graphic materials (e.g., keys) as possible while active with the intent of making use of them
later once revoked.

Out of Scope. We consider out-of-scope hiding the size of groups, how often members
communicate and the size of the content that they exchange. We also consider that the
untrusted storage does not keep a history of versions of all the stored data, but only keeps
the latest version – a reasonable assumption considering the very large volume of data and
the storage cost that this would entail [Bacis et al., 2016].
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2.4 Confidential Key Distribution

We describe next state-of-the-art enveloping methods for distributing a group key gk

with confidentiality guarantees.

Hybrid Encryption (HE)

Suppose that we want to come up with a simple, yet secure, enveloping scheme for a
group key gk. We can make use of an asymmetrical encryption primitive [Ferguson and
Schneier, 2003], based on RSA or Elliptic Curve Cryptography (ECC). As each user in the
system possesses a public-private key pair, the scheme consists in encrypting gk using the
public key of each member in the group. The ciphertext resulted from this encryption con-
stitutes the key envelope. Users of the group can then deduce gk by decrypting the frag-
ment of the envelope that was encrypted with their public key by using their private key.
In order to point the users to their ciphertext fragment in the envelope, one can include a
mapping from the user identity to the ciphertext fragment. This construction is sometimes
referred to as Hybrid Encryption (HE) [Garrison et al., 2016], or Trivial Broadcast Encryp-
tion Scheme [Stinson, 2005]. HE is utilized as an access control methodology for Windows
Encrypted File System (WinEFS) or the Pretty Good Privacy (PGP) [Zimmermann, 1995]
program, used for cryptographic protection of file or emails,.

However, HE comes with a number of weaknesses. First, the size of the key envelope
grows linearly with the number of members in the group, making it impractical in the con-
text of very large groups (as seen later in the final part of the sub-chapter). Second, during
revocation, when a new key gk needs to be created; the entire envelope also needs to be
generated again by encrypting the latest value of gk. As the group size increases, the com-
putational cost of the scheme grows linearly. Likewise, the latency incurred for putting,
getting and storing the key envelope on the cloud storage will also seriously expand.

Identity-Based Encryption (IBE).

Moreover, when performing group membership operations, the administrators need
to entrust the authenticity of the public keys linked to the identity of the members. Public
Key Infrastructure [Ferguson and Schneier, 2003] can be used to solve this issue. Besides
the trust risks that the PKI brings [Ellison and Schneier, 2000], one needs to account for
the practical costs of setting up, running and accessing PKI. To mitigate these risks, one
could choose to substitute public-key primitives with identity-based ones. Identity-Based
Encryption (IBE) [Boneh and Franklin, 2001; Waters, 2005] makes use of arbitrary strings
as public keys; we can therefore use a user name directly as a public key. The user secret
key is generated at setup phase or later by a Trusted Authority. Obviously, both Hybrid
Encryption with PKI (HE-PKI) and Hybrid Encryption with Identity-Based Encryption (HE-



2.4. CONFIDENTIAL KEY DISTRIBUTION 19

IBE) have the same inner functioning, when making abstraction of the key methodology
choice.

Broadcast Encryption (BE)

Broadcast Encryption [Fiat and Naor, 1993] is a public-key cryptosystem with a unique
public key that envelopes the entire system, contrary to the Hybrid Encryption scheme
where each user uses a different public key. However, each user in a Broadcast Encryp-
tion (BE) system has a unique private key generated by a trusted authority. To randomly
generate a group key gk and the associated envelope (named encrypt operation within BE
systems), one makes use of the system-wide public key. On the other side, when users want
to reveal gk (decrypt in BE systems), they make use of their individual private key.

As BE schemes come with different contextual models, we impose a number of con-
ditions. First, to maintain the same threat model as Hybrid Encryption (HE), we are only
investigating the use of fully collusion-resistant BE schemes [Boneh et al., 2005b], in which
no coalition of members outside of the group could reveal gk. Second, the set of users
participating in the system is not initially known, thus we rely on the usage of dynamic BE
schemes [Delerablée et al., 2007]. Third, as in the case of HE, we would prefer construc-
tions that can accommodate the use of Identity Based Encryption (IBE).

Identity-Based Broadcast Encryption (IBBE)

Piercing through the existing research literature, we identified an Identity-Based Broad-
cast Encryption (IBBE) scheme [Delerablée, 2007] that not only fulfills all the aforemen-
tioned requirements, but also operates with key envelopes and user private keys of con-
stant sizes. Moreover, the scheme has an additional strategic advantage that proves ben-
eficial in our context: the system-wide public key size is linear in the maximal size of any
group.

Upon analyzing the computational complexity of the selected IBBE scheme, one can
notice that creating gk given a set of members, as well as decrypting it as a user, are op-
erations with a quadratic complexity in the number of members. Therefore, even though
the scheme brings a tremendous gain in the size of group key envelope, the computational
cost of IBBE might be excessive for practical use.

Inefficiency of Existing Key Management Schemes

Figure 2.3 exemplifies the performance of HE-PKI, HE-IBE and IBBE schemes in their
raw form, before any integration with SGX is considered. The sub-figure on the left dis-
plays the total time taken for the operation of creating a group while the one on the right
shows the size occupied by the expansion of group key envelope. The optimality of IBBE
regarding the size of the envelope is immediately obvious. It always produces 256 bytes,
regardless of the number of users per group. That is preferable compared to HE-PKI and
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Figure 2.3 – Performance of HE-PKI, HE-IBE and IBBE.

HE-IBE, which produce increasingly larger values, as much as 27 MB for groups of 100,000
users, and 274 MB for the largest benchmarked group size. On the other hand, IBBE per-
forms much worse than HE-PKI when considering the execution time. It is 150× and 144×
slower for groups of 10,000 and 100,000 users, respectively.

There is no doubt that running the IBBE scheme in this form in TEE is inadequate. In
the course of a future chapter of this dissertation (Chapter 4), we describe two innovative
propositions, one that changes the traditional assumption of the IBBE scheme, and a sec-
ond that lowers the user decryption time.

2.5 Anonymous Key Distribution

We describe next state-of-the-art enveloping methods for distributing a group key gk

not only considering confidentiality but also anonymity guarantee. In the presented form,
none of the aforementioned schemes (HE-PKI, HE-IBBE, IBBE) guarantee the anonymity
of participants in the scheme.

Preserving the anonymity of group members only against outside and not inside at-
tackers has been proved easier to tackle [Fazio and Perera, 2012], however we aim for full
anonymity against both peer members and outside attackers.

Anonymous Hybrid Encryption

In practical systems, PGP [Zimmermann, 1995] which relies on Hybrid Encryption (HE)
for access control, addresses the anonymity criteria with a simple solution. In anonymous
mode (or hidden recipient as called by PGP), after performing the symmetric encryption of
the content and public key encryptions of the symmetric key, all the public key mappings
are dropped from the resulting ciphertext (i.e., the envelope). As such, an outside adversary
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cannot infer the public keys of the recipients. At decryption time, as the recipients have no
pointer to their key-envelope ciphertext fragment, they need to perform several private key
decryption trials until they succeed ( n

2 trials on average, where n is the group size).

Anonymous Broadcast Encryption (ANOBE)

The theoretical problem of devising a cryptographic scheme that can guarantee both
confidentiality and anonymity is referred to as anonymous (or private) broadcast encryp-
tion (ANOBE). Theoretical research literature proposes a number of such schemes, how-
ever without assessing their practicality within real systems.

The private broadcast encryption proposed by Barth et. al. [Barth et al., 2006] (de-
noted hereafter BBW, per the authors’ initials) achieves inner and outer anonymity. Their
construction extends the public key enveloping model of PGP, by incorporating strongly
unforgeable signatures [Boneh et al., 2006] such that an active attacker who is member of
the group cannot reuse the envelope to broadcast arbitrary messages to the group, and
thus achieving Indistinguishability under Chosen Ciphertext Attack (IND-CCA). Moreover,
to decrease the number of decryption trials, they propose the construction of publicly-
known labels, unique for each member of every single encryption operation, by relying
on the security assumption of Diffie-Hellman (DH). The ciphertext fragments created by
the key enveloping process are therefore ordered by their label. During decryption, after
reconstructing the label, the user can seek the corresponding ciphertext fragment in loga-
rithmic time before performing a single asymmetric decryption. The scheme was further
extended by Libert et. al. [Libert et al., 2012] by suggesting the use of tag-based encryp-
tion [MacKenzie et al., 2004] to hint users to their ciphertext fragment. To the best of our
knowledge, no practical system has integrated tag-based encryption in practice.

As both anonymous schemes discussed above make use of Hybrid Encryption (HE),
their performance is lower bounded by the performance of HE. In the same time, the pre-
vious chapter (Figure 2.3) argued the inefficiency of HE which transitively applies to the
anonymous schemes. We require therefore the exploration of alternative anonymous con-
structions that can scale to cloud specific access control workloads. Within a later section
of this dissertation (Chapter 5) we present an innovative ANOBE design that can leverage
TEE for only a subset of operations to achieve practical performance.

2.6 Data Revocation

If the two prior sub-chapters investigated the existing methods for enveloping gk

for active users, the current sub-chapter focuses on what happens to the data during
a revocation. Active revocation offers the best security guarantees by performing a full
re-encryption of all the data resources upon a revocation. However, active revocation
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Data

All or nothing transform (AONT) Reverse AONT

Figure 2.4 – AONT Scheme.

AONT is reversible if and only if all transformation output is known.

schemes are highly impractical due to their high processing and data access costs. We
focus next on existing techniques for achieving practical active revocation.

Super Blocks.

An alternative approach is to implement active revocation with the re-encryption of
only a small subset of the data. The resource (e.g., data file) is split in fixed-size blocks. All
these blocks are necessary in order to reconstruct the file at the client side. Only a few of
the blocks however, are re-encrypted using the new gk upon a revocation. These blocks
are called super-blocks. Other blocks remain encrypted with the original key. In order to
prevent pre-provisioning attacks – in which active users pre-provision sensitive material
to make use of after revocation – it is necessary to enforce that all blocks be necessary to
reconstruct the file but also to possibly determine which are the super blocks. To address
these inconveniences one can make use of All or Nothing Transform detailed in the follow-
ing.

All or Nothing Transform (AONT).

The AONT [Rivest, 1997] transformation is reversible only if all of its resulting output is
known (Fig. 2.4). In addition, any incomplete sub-set of this output reveals nothing about
the input data. Rivest introduced AONT for hardening against key determination brute
force attacks for block ciphers, by having them performed on the whole ciphertext rather
than on a single block [Rivest, 1997]. The transformation employs a symmetric encryption
coupled with the hashing of each encrypted block. All encrypted block hashes are xor-
ed with the symmetric key, resulting in a small packet that we commonly refer to as tail
and that is appended to the output of the transformation. AONT is also used for defining
Optimal Asymmetric Encryption Padding (OAEP) [Boyko, 1999] and is standardized as a
padding technique for RSA [Kaliski and Staddon, 1998].

Intuitively, the use of AONT can significantly lower the processing cost of an active re-
vocation scheme by requiring to re-encrypt only the tail and not an entire file. It is however
sensitive to pre-provisioning attacks, which can considerably augment the power of the at-
tacker under our threat model. A malicious user can indeed selectively pre-provision the
sensitive information that are the tail blocks. In a second phase, once revoked, this user
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could download the remaining blocks and decrypt them using the previously downloaded
tail. Our goal is instead to build a re-encryption scheme that is robust to a curious user
arbitrarily provisioning sensitive information.

Data Locality and TEE.

While security is the most important aspect for active revocation, the data locality of the
re-encryption operation has a strong impact on performance, which may in turn increase
the duration of the revocation operation and increase the power of a malicious revoked
user. A naive solution would be to download all data blocks subject to re-encryption at
the data owner side, re-encrypt them, and upload them again to the cloud. This approach
satisfies confidentiality requirements, but it is impractical for large data sets.

Instead, under the assumption that the cloud storage is equipped with TEE we can re-
quire that re-encryption is performed on-site, as close as possible to the data. TEEs are
becoming commonplace in public cloud IaaS offerings [Russinovich, 2017]. However, the
sole use of a TEE for active revocation is not sufficient to reach efficiency. Re-encrypting
the entirety of the data within one or more SGX enclaves is as impractical as rekeying at
the data vendor. Within Chapter 6 we present an innovative construct that leverages the
guarantees offered by TEE together with an AONT, to securely identify and re-encrypt only
the super blocks without leaking these to the otherwise untrusted cloud storage or to ma-
licious clients.

2.7 Open Challenges Summary

The conclusive driver of our work is the construction of efficient end-to-end remote
storage systems, incorporating three cryptographically enabled pillars : confidential key
distribution, anonymous key distribution and practical data revocation.

1. Confidential key distribution. State-of-the-art schemes HE-PKI, HE-IBE, IBBE are
impractical for highly dynamic and large workloads (Figure 2.3). The schemes are either
computational efficient but not storage footprint optimal, or the other way round. Our first
open challenge is to find such a scheme that is both computational and storage efficient.
To do so, we can use our instrument of efficiency : TEE availability for group administra-
tors. A functional end-to-end system is required to prove the practicality of the approach.

2. Anonymous key distribution. State-of-the-art schemes guaranteeing anonymity
(ANOBE) are as inefficient as their non-anonymous counterparts. As such, the open chal-
lenge is to find an efficient underlying anonymous scheme that can leverage TEE within a
limited deployment and prove its efficiency within a realistic end-to-end system design.

3. Practical data revocation. Entirely re-encrypting data locally and then re-uploading it
to the cloud is practically prohibitive. Efficient approaches leverage All-Or-Nothing trans-
form (AONT), in order to re-encrypt just a part of the resource. However, they do not lever-
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age data-locality. The open challenge is therefore to find an efficient end-to-end system
design incorporating TEE at the provider side and AONT to re-encrypt only a part of the
data, while preventing malicious users to over-provision these data parts.

We address these three challenges in subsequent chapters. But first, next chapter sur-
veys related work.



CHAPTER

3
Related Work

This chapter surveys related work. We give examples of applied cryptographic con-

structs and secure end-to-end systems that solve problems related to our context. If

the previous Background Chapter 2 presented the building blocks of our contribu-

tions, this chapter solely exemplifies similar systems.

We present related work from three perspectives. First, we look into related cryptogr-
pahic schemes that are closely related to access control. Second, we survey a number of
end-to-end systems that make use of Trusted Execution Environments (TEE) and notably
Intel SGX. Finally, we survey end-to-end systems over untrusted storage that relate to our
problem definition.

3.1 Applied Cryptography for Access Control

Besides the building blocks described by Chapter 2 (HE, IBBE, and ANOBE), related
work contains a number of other applied cryptography constructs used in the context of
access control.

Attribute Based Encryption (ABE) is a cryptographic construction that allows a fine-
grained access control by matching attributes labeled to both users and content. Depend-
ing on the labeled location, one can distinguish between key-policy ABE [Goyal et al., 2006]
and ciphertext-policy ABE [Bethencourt et al., 2007]. However, when employed for simple
access control policies, such as our group sharing context, ABE has substantially greater
costs than identity-based encryption [Garrison et al., 2016].

Hierarchical Identity Based Encryption (HIBE) [Boneh et al., 2005a] and Functional En-
cryption (FE) [Boneh et al., 2011] are two cryptographic schemes offering functionalities
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for access control that, similarly to IBE and ABE, rely on pairing-based cryptography. HIBE
is specifically designed to target hierarchical organizations where a notion of descendants
exists. FE is a powerful construction that can arbitrarily encapsulate programs as access
control, but unsuitable for practical use when relying on pairings [Fisch et al., 2017].

Proxy re-encryption [Ateniese et al., 2006] is a cryptographic system in which the owners
of encrypted data can delegate the re-encryption of the data to a proxy, with the intent
of sharing it with other users. For the re-encryption to take place, the data owner needs to
generate and transmit to the proxy a re-encryption key. The scheme proves to be beneficial
for the cloud environment, as the re-encryption and the storage of the data can happen on
the same premises. A number of approaches have shown how proxy re-encryption can be
combined with identity-based encryption [Green and Ateniese, 2007], or with attribute-
based encryption [Green et al., 2011; Sahai et al., 2012].

Secure Multicast. The related research area of multicast communication security [Stin-
son, 2005; Canetti et al., 1999] defines efficient schemes focusing exclusively on revoca-
tion aspects. Logical Key Hierarchy [Wallner et al., 1999] is a re-keying scheme in which
communications for revocation operations are minimized to logarithmic sizes. Other
schemes [Fiat and Naor, 1993; Naor and Pinkas, 2000] exploit a secret sharing mechanism,
considering that no coalition of revoked users larger than a threshold number is trying to
decrypt the transmission.

Diffie-Hellman Group Key Agreement. Communication secrecy can also be achieved
by enabling a group of participants to interactively derive a group key. Such techniques
are popular among communication systems (e.g., WhatsApp, Threema) by using Diffie-
Hellman (DH) group key agreement and derivation [Rösler et al., 2018]. Such protocols
require all active participants to contribute to the creation of the group key and achieve
confidentiality. Pung [Angel and Setty, 2016] uses private information retrieval (PIR) in
conjunction to a group DH key derivation to achieve anonymity. One should note that
such a mechanism is different from our target model, in which users do not need to ac-
tively participate in the creation of the group key, no matter the number of groups they
belong to.

Cryptographic Secure Deletion relates to access control as it is equivalent to revoking ac-
cess to the last member of a group. A straw-man approach is to encrypt the data and then
“forget” the encryption key [Boneh and Lipton, 1996]. For example, secure deletion by
randomized keys [Peterson et al., 2005] – similarly to Hybrid Encryption (Section 2.4) –
encrypts every file with a random symmetric key, and then over-encrypts the key with a
second key. When a deletion happens, only the second key changes but not the inner key.
This approach allows for fast deletions but does not satisfy our requirements. Malicious
users can indeed provision all the file keys and then, once deleted, retrieve the encrypted
content without requiring the outer key.



3.2. SYSTEMS USING INTEL SGX AS TEE 27

3.2 Systems using Intel SGX as TEE

Intel SGX has been extensively used in shielding applications and infrastructure plat-
form services that handle sensitive data. We detail in the following a number of such sys-
tems.

VC3 [Schuster et al., 2015] relies on SGX as TEE to guarantee the confidentiality and cor-
rectness of MapReduce computations. If the confidentiality is tackled by requiring each
mapper and reducer node to run computations in SGX, the correctness is achieved by ag-
gregating small profs validated by an administrative verifier entity. Besides TEE, the ap-
proach relies solely on standard cryptographic constructs (Section 2.1). Moreover, as the
system is open to external users to load their code in enclaves, run-time errors such as un-
safe memory access can increase the attack surface. VC3 solves the issue by memory read
and write invariants that keep access within the enclave’s memory. Differently our model
(Section 2) considers that the code running in TEE is entirely trusted once attested.

Iron [Fisch et al., 2017] is close to the thesis scope in the sense that it takes advantage of
SGX to build a practical encryption scheme for an unpractical strategy thus far. They use
an enclave that holds a master secret as root for later key derivations. They target, however,
functional encryption. The enclave generates a key that is associated to a function, so that
the computation can be performed without revealing the data on top of which it is applied.
The results of applying such function, though, are presented in clear. The authors show
that this approach outperforms by orders of magnitude other cryptographic schemes that
also offer functional encryption.

SCBR [Pires et al., 2016]. At the level of infrastructure services, SCBR proposes a content-
based routing solution where the filtering step is put inside enclaves, thus allowing the
matching of publications against stored subscriptions in a safe manner. It is shown to be
one order of magnitude faster than an approach with comparable security guarantees. The
gain comes from the plaintext operations done inside the enclave against the counterpart
that needs to perform computations over encrypted data.

Hybster [Behl et al., 2017] relates to our goal with regards to the reduction of overhead for
an otherwise costlier design. Hybster proposes a hybrid state-machine replication proto-
col. Hybster it does tolerate arbitrary faults but yet it assumes that some nodes may crash.
It relies on SGX features such as isolation, replay protection and trusted counters to achieve
a parallelization scheme that makes it a viable solution for demanding applications, reach-
ing higher numbers of operations per second in comparison to traditional approaches.

SecureKeeper [Brenner et al., 2016] addresses the confidentiality of ZooKeeper distributed
coordination by also employing SGX. SecureKeeper targets a rich adversarial model,
by guaranteeing confidentiality of state keys and values stored in ZooKeeper’s tree like
database. The system leverages an entry enclave communicating with end clients, and
sharing a long term secret with the worker enclaves. A second enclave type is used to han-
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dle specific ZooKeeper sequential naming per each leader replica. Differently than Secure-
Keeper, our model assumes that the storage provider is honest-but-curious and therefore
respects the serviced protocols.

DelegateTEE [Matetic et al., 2018] proposes a mechanism to delegate access control for
online services. Account owners can specify a group of additional users – delegatees – able
to access the services on behalf of the owners, while not disclosing the secret credentials
of the owners. The approach relies on TEE and notably Intel SGX encalves to proxy the
requests to and from the target service. Two architectural choices are presented, a peer-
to-peer one requiring TEE enabled delegatees, and a second centrally brokered design.
Similarly to our goals, DelegateTEE considers two use cases : confidential and anonymous
delegation guarantees.

ShieldStore [Kim et al., 2019] proposes a TEE enabled design guaranteeing the confiden-
tiality of in-memory key-value stores. The current version of Intel SGX limits the mem-
ory size of the enclave page cache (EPC) to 128 mega-bytes, making it unsuitable for in-
memory key-value stores that surpass this threshold. The approach proposes storing the
underlying key-value data structure (i.e., a hash table with chaining lists) encrypted within
the untrusted zone. During get operations the values are decrypted and validated for in-
tegrity within the enclave. Moreover the approach replaces the paging mechanism of Intel
SGX with a finer grained custom implementation at the level of keys.

Libseal [Aublin et al., 2018] proposes an out-of-the-box replacement for the transport layer
security (TLS) library that besides the functionalities of the latter produces service au-
dit logs, capable of proving client or remote service violations of service level agreements
(SLA). To do so, Libseal requires that the TLS connections are terminated in Intel SGX en-
claves at the service provider side. To speed-up the TLS termination implementation, the
authors propose a provisioning of batch memory allocations inside the enclave and storing
the data sent through TLS outside the enclave. Differently than our model, Libseal targets
only integrity, and not confidentiality nor anonymity.

X-Search [Mokhtar et al., 2017] uses TEE to enable private web search queries. Owning to
Intel SGX, X-Search performs orders of magnitude better than state-of-the-art while offer-
ing stronger security guarantees. The system uses an Intel SGX enabled proxy. The users
TLS their query to the proxy’s enclave, who in turn adds obfuscation keywords to the query,
while retaining the user query for future obfuscation use. Upon receiving the obfuscated
query result from the web provider, the proxy filters and forwards the actual result to the
user. The unlinkability property targeted by X-Search is identical to the sender and recipi-
ent anonymity of our model. However, X-Search’s indistinguishability property is relevant
within the web search scenario and does not apply in our cloud storage use case. If in
the web search scenario the provider sees the user plaintext but can not distinguish it as
genuine, our model requires that the provider never sees the data (i.e., confidentiality).
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3.3 Remote Untrusted Storage Systems

We review a number of systems that similarly to our model consider the storage
provider untrusted. Even tough our model (Section 2) targets the properties of confidential-
ity, anonimity, cryptographic access control, and revocation we extend our survey of related
work to systems that include properties such as : consistency, freshness, de-duplication, and
dispersal methods. Consistency states whether the latest write to the data is immediately
(i.e., strong consistency) or eventually recorded. Freshness on the other side requires read
operation to receive the latest recorded value protecting from an accidental or adversarial
roll-back. De-duplication consists of storing only once two or more identical logical data
blocks. Data dispersal consists of transforming the data in many shares such that a subset
of shares can reconstruct the data.

SCFS [Bessani et al., 2014] is a "shared cloud-backed file system" interfacing user end-points
with multiple cloud storage, optionally providing confidentiality guarantees for user data.
The clients have strong consistency and POSIX semantics (i.e., file system specific) while
being backed by eventually consistent remote storage. The system makes use of a trusted
coordination layer that stores file metadata including access control and a locking service
for concurrent writes. To optimize operations SCFS uses a caching component on client
side and cleans old versions of data based on administrative policies. For confidentiality,
files are encrypted and the key is dispersed on multiple non-colluding servers [Shamir,
1979]. SCFS trusts the infrastructure hosting the access control monitor and a sub-set
of the remote storage containing the encryption keys. Differently, our goal is to develop
access control mechanisms cryptographically, undecipherable to the possibly adversarial
service provider.

CloudProof [Popa et al., 2011a] similarly considers the cloud storage untrusted and pro-
vides confidentiality, integrity, consistency (i.e., a total order on write operations), and
freshness (i.e., reads service latest write) guarantees. The access control is implemented
cryptographically by enveloping a symmetric key and a signing key for read and write ca-
pabilities. The enveloping is done using Broadcast Encryption (BE) [Boneh et al., 2005b].
Changes in groups membership trigger a lazy revocation method – data is re-encrypted
with the new group key during the first read. In order to guarantee consistency and fresh-
ness, the system makes use of attestations issued by both client and cloud operations. At-
testations are chained by a hash-and-sign mechanism, making it possible to iterate the
chain backwards to observe correctness. Differently than our threat model which consid-
ers the cloud honest-but-curious, owing to the attestation mechanism CloudProof targets
an enriched entirely untrusted cloud provider. However, BE and notably it’s identity version
IBBE do not offer satisfactory performance for large workloads (Figure 2.4).

Tahoe [Wilcox-O’Hearn and Warner, 2008] is a cloud backed file-system running on un-
trusted clouds. Tahoe error encodes the encrypted data and disperses the shares over mul-
tiple storage. Tahoe extends read and write data access capabilities by a verification capa-
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bility, which validates that data is un-modified. If it’s the case, verification can efficiently
point the compromised sections due to a Merkle Tree built over the ensemble of shares.
Write capabilities are introduced through asymmetric key pairs. Freshness is achieved by
validating the latest version by a quorum. Tahoe, however, does not explain how these ca-
pability keys – which are used for protecting the resources similarly to our gk (Section 2.3)
– are distributed among users. As such, there are no assumptions of a cryptographic key
distribution mechanism.

Sieve [Wang et al., 2016] platform allows users to store data encrypted in the cloud and
discretionary delegate access to the data to third party web services. Sieve makes use of
attribute based encryption (ABE) for access control policies. During revocation a key ho-
momorphism [Boneh et al., 2013] is used for re-encrypting the whole data at the provider
side. It should be noted that ABE is slower than the public key operations of HE (our base-
line – Figure 2.3) while the employed additive key homomorphism is orders of magnitude
slower than symmetric encryption. Utilizing the two concepts for cryptographic access
control does not fit with our scalability goal of supporting very large user bases and data
volumetry.

Reed [Li et al., 2016a] reconciles the procedure of re-keying (i.e., changing the key as during
a revocation) and out-sourcing to remote storage encrypted de-duplicated data. Similar
to our target context, Reed regulates access control in a cryptographic way. They chose
Attribute Based Encryption (ABE) [Bethencourt et al., 2007] – which, as illustrated by their
evaluation, is suitable only for hundreds of users (see Figure 8.a. of [Li et al., 2016a]) –
and therefore not fit for very large user volumetry. Reed enables de-duplication and re-key
by using convergent encryption (i.e., using the hash of the data as the encryption key) and
an all-or-nothing transform (Section 2.6). During re-keys only a small (64 bytes) package
is re-encrypted. However, under our model (Section 2.6), provisioning this package is as
harmful as provisioning the encryption key.

Oceanstore [Kubiatowicz et al., 2000] proposes a global-scale shared storage system over
untrusted infrastructure. The system is enabled with confidentiality by symmetric encryp-
tion. For read access a user needs to be in possesion of the encryption key while for writes
the server checks an attached signature. Note that there is no mention of how these keys
are distributed to users – therefore not considering access control. Ocenastore further pro-
poses a distributed routing solution for locating resources, leveraging Bloom Filters for
efficiency. The system provides a deep archival functioning achieved by erasure codes.
Explicitly stated as "under development", it is unclear if such a system can be practically
efficient to meet its ambitious goals. The project lacks a benchmarking phase, while no
further update report was issued by the authors.

CDStore [Li et al., 2016b] proposes the design of a distributed storage solution that tar-
gets both reliability and security by employing an all or nothing transform (AONT) (Sec-
tion 2.6) and then error encoding the data over multiple providers. As such, the providers
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can not recover the original data unless they collude. The solution was designed to target
backup scenarios – thus write dominated workloads – where the concept of de-duplication
can bring considerable savings. To re-conciliate data disperssion and de-duplication, the
authors propose the use of convergent encryption where the key is the actual hash of the
data. As convergent encryption is prone to side channel attacks (i.e., guessing the plain-
text based on an identical hash), client application only de-duplicates the user data, and
not the one of other users. Further, at server side, inter-user de-duplication is enabled,
assuming that cloud does not collude with compromised users. Differently than CDStore,
in our model we do not target confidentiality guarantees by non-colluding assumption of
multiple cloud storage. Instead we require it to be enabled cryptographycally by a key
management scheme.

UniDrive [Tang et al., 2015] similarly relies on multiple clouds to achieve reliability and se-
curity, with a focus on client observed performance. The proposed solution is solely client
side, without a proxy-like coordination layer or an agent running at cloud storage. Files
metadata are symmetrically encrypted while data is error encoded with a non-systematic
code over multiple clouds. One should note that if symmetric encryption provides seman-
tic security, using a non-systematic code does not – the generative matrix used by the latter
can be easily obtained when both plaintext and ciphertext are known. The system provides
de-duplication and improves performance by over-provisioning parity blocks on clouds
with faster network links. The system makes no assumption of handling the encryption
keys. UniDrive does not consider sharing operations among users – as such no access con-
trol mechanism is discussed.

Cyrus [Chung et al., 2015] proposes a client-defined architecture targeting security and
reliability of remotely stored data, with a focus on the heterogeneity of cloud providers.
Rather than using a centralized metadata layer Cyrus disperses the metadata – similarly
to the data – on many clouds. Cyrus considers identical providers that use the same host-
ing infrastructure (e.g. Dropbox similarly to S3 relies on Amazon Datacenters) a colluding
group. Therefore, it infers this relationship among providers and uses it when dispersing
the data. Similarly to UniDrive, Cyrus uses a non-systematic erasure code to generate the
data shares, however it seeds the generative matrix by the user secret key to obtain user
independent transformations. The system keeps track of cloud storage selection to learn
and optimize future availability times. The APIs of Cyrus do not incorporate access control.

Dep-Sky [Bessani et al., 2013] proposes leveraging multiple cloud storage for reliably and
securely storing user data. The work particularly focuses on addressing client read and
write operations by a quorum mechanism within the byzantine setting – meaning that if f
clouds are malicious then 3f +1 clouds are necessary. The system proposes a locking mech-
anism for concurrent writes. To enable confidentiality the data is encrypted while the keys
are dispersed by a secret sharing scheme [Shamir, 1979] over many cloud storage. Even
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though this latter approach mitigates key management, it is unsure how access control
could be adopted by the system without an additional trusted component.

Iris [Stefanov et al., 2012] address the outsourcing of enterprise class file systems to the
cloud, guaranteeing data integrity and freshness. Clients communicate with a middle layer,
proxy-ing requests to the cloud storage. The proxy sits in a trusted environment while the
clouds have a byzantine behavior. The proxy ensures integrity by constructing Merkle Trees
and periodically issuing proofs of retrievability (POR) against the cloud storage to ensure
data freshness. The proxy is reliably distributed over multiple nodes by using memcached.
Compared to our requirements, Iris does not guarantee confidentiality and anonymity.

3.4 Closing Remarks

Even though much related work focused on untrusted storage systems, no conclusive
work addressed cryptographic access control of end-to-end secure systems for highly large
and dynamical workloads. Designing such a system would need first re-visiting the under-
lying cryptographic access control constructs.

We reiterate that the previous Backround Chapter 2 listed three open challenges (Sec-
tion 2.7) in the context of the thesis : creating efficient (1) confidential and (2) anony-
mous access control extensions, and (3) an efficient revocation capability. The following
three chapters will each address one of these problems. They will introduce novel crypto-
graphic schemes and incorporate them in end-to-end systems – much like the ones sur-
veyed within this chapter – to prove their efficiency.
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CON-SKY: Confidential Key

Distribution with TEE

State-of-the-art schemes for confidential key management are impractical for highly
dynamic and large workloads. This chapter presents a novel key management tech-
nique that leverages trusted execution environments (TEE) for the minimal set of ad-
ministrative operations. Such change of assumptions permits deriving a computa-
tional complexity cut for Identity-Based Broadcast Encryption (IBBE) from quadratic
to linear for the key enveloping operation. To speed up the user de-enveloping oper-
ation we propose a partitioning mechanism, splitting the group into sub-groups and
thus bounding the user computational effort to the partition size. Finally, we detail an
end-to-end system for confidential key distribution, namely CON-SKY.

The innovative concepts presented within this chapter have been published in the

International Conference on Dependable Systems and Networks (DSN) [Contiu et al.,

2018a].

Within the end-to-end security paradigm a confidential data sharing scheme consists
of making available a group key gk exclusively to the active members of the group. To do
so, the key is enveloped within a ciphertext that can be publicly transmitted across the un-
trusted medium, the cloud in our case. In the earlier Chapter 2 we observed that existing
methods for enveloping gk are inefficient for highly dynamic and large group member-
ships. For example, Hybrid Encryption with Public Key Infrastructure (HE-PKI) or Identity-
Based Encryption (HE-IBE) are inefficient mostly due to the linear growth of the envelope
size (Figure 2.3). Differently Identity-Based Broadcast Encryption (IBBE) produces a small
constant size envelope but has an impractical computational cost.

In order to achieve a practical confidential sharing scheme, we retain the small stor-
age benefit of IBBE and derive a complexity cut for its computational time. We leverage
an instrument of efficiency : we consider that administrators are equipped with SGX ca-
pabilities. As such, administrators besides performing group membership changes, hold a
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secured SGX enclave that acts as a Trusted Authority (TA). Adapting IBBE scheme to such
a change of assumption gives birth to a new scheme that we name IBBE-SGX.

We build an end-to-end confidential sharing system CON-SKY that makes use of IBBE-
SGX. To further optimize the end-users computational time, CON-SKY makes use of a par-
titioning mechanism. Finally we deploy CON-SKY over an untrusted storage and prove its
practicality through micro- and macro- benchmarks (Section 7.1.1 and 7.2.1).

4.1 Key Management in CON-SKY

We will describe key management methodology of CON-SKY within three steps: (i) trust
establishment and private key provisioning (Section 4.1.1); (ii) group key provisioning (Sec-
tions 4.1.2 and 4.1.3); and (iii) membership changes and key updates (Section 4.1.4).

4.1.1 Trust Establishment

CON-SKY makes use of Identity-Based Broadcast Encryption (IBBE). IBBE schemes
generate a single public key that can be paired with several private keys, one per user.
Users, in turn, need to be sure that the private key they receive is indeed generated by
someone they trust, otherwise they would be vulnerable to malicious entities trying to im-
personate the key issuer. To achieve that, we rely upon a PKI to provide verifiable private
keys to users.

Another security requirement of CON-SKY is that the key management must be kept in
a TEE. Therefore, there must be a way of checking whether that is the case. On that front,
Intel SGX makes it possible to attest enclaves. Running this procedure gives the assurance
that a given piece of binary code is truly the one running within an enclave, on a genuine
Intel SGX-capable processor (Section 2.2).

Figure 4.1 illustrates the initial setup of trust that must be executed at least once before
any key leaves the enclave. Initially, the enclaved code generates a pair of asymmetric keys.
While the private one never leaves the trusted domain, the public key is sent along with the
enclave measurement to the Auditor (1), who is both responsible for attesting the enclave
and signing its certificate, thus also acting as a Certificate Authority (CA). Next, the Auditor
checks with IAS (2) if the enclave is genuine. Being the case, it compares the enclave mea-

Admin server

Enclave
IAS Auditor

(CA)
user private 

key

1

2
3

4

Figure 4.1 – CON-SKY initial setup.
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surement with the expected one, so that it can be sure that the code inside the shielded
execution context is trustworthy. Once that is achieved, the CA issues the enclave’s certifi-
cate (3), which also contains its public key. Finally, users are able to receive their private
keys and the enclave’s certificate (4). The key will be encrypted by the enclave’s private key
generated in the beginning. To be sure they are not communicating with rogue key issuers,
users check the signature in the certificate and then use the enclave’s public key contained
within. All communication channels described in this scheme must be encrypted by cryp-
tographic protocols such as Transport Layer Security (TLS).

4.1.2 Group Key Provisioning

Traditionally, the IBBE scheme [Boneh et al., 2005b; Delerablée et al., 2007] consists of
the following four operations :

1. System Setup. The system setup operation is run once by a Trusted Authority (TA)
and generates a Master Secret Key MSK and a system-wide Public Key PK .

2. Extract User Secret Key. The TA then uses the Master Secret Key MSK to extract the
secret key USK for each user U .

3. Envelope Group Key. The broadcaster generates a randomized group key gk for a
given set of receivers S (i.e., the acl of the group), by making use of PK . Together
with gk, the operation outputs the envelope as a public broadcast ciphertext c. The
broadcast ciphertext can be publicly sent to members of S so they can derive gk.

4. Unveil (or De-envelope) Group Key. Any member of S can discover gk by performing
the de-envelope operation given the secret key USK and (S,c).

Traditional IBBE requires a Trusted Authority (TA) to perform the System Setup and Ex-
tract User Secret Key operations. We rely on SGX enclaves as a TA design choice. Therefore,
the master secret key MSK used by the two aforementioned operations is made available in
plaintext exclusively inside the enclave, and securely sealed if stored outside of the enclave
for persistence reasons.

Change of Assumption.

Within traditional IBBE the Envelope Group Key and Unveil Group Key operations rely
on the system public key PK , and are thus usable by any user of the system. But differ-
ently than traditional IBBE usage scenario, our model requires that all group membership
changes - generating the group key and envelope — are performed by an administrator.
Therefore similarly to setting up the system and extracting user keys, administrators can
make use of the MSK for the Envelope Group Key operation. The de-enveloping opera-
tion, however, remains identical to the traditional IBBE approach, being executed by any
arbitrary user. We call an IBBE scheme adopting this change of assumption as IBBE-SGX.
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IBBE-SGX vs. IBBE

We now describe the computational simplification opportunities introduced by IBBE-
SGX compared to IBBE [29]. First, by making use of MSK inside the enclave, the com-
plexity of the enveloping operation drops from O(|S|2) for IBBE to O(|S|) for IBBE-SGX,
where |S| is the number of users in the group. The reason behind the complexity drop is
bypassing a polynomial expansion of quadratic cost, necessary in the traditional IBBE as-
sumptions. We argue that this complexity cut is sufficient to tackle the impracticality of
the IBBE scheme emphasized earlier in our preliminary benchmarks (see Figure 2.3). Sec-
ond, by relying on MSK , one can build efficient access control specific operations, such as
adding or removing a user from a group. IBBE-SGX can accommodate O(1) complexities
for both operations.

Unfortunately, IBBE-SGX maintains an O(|S|2) complexity for the user de-enveloping
operation, during which, similarly to IBBE enveloping, the algorithm performs a polyno-
mial expansion of quadratic cost. We address this drawback by introducing a partitioning
mechanism as described later in Section 4.1.4.

Finally, we consider a re-keying operation, for optimally generating a new gk and en-
velope when the identities of users in the group S do not change. The operation can be
performed in O(1) complexity for both IBBE and IBBE-SGX.

4.1.3 Formal Specification of IBBE-SGX

Similarly to IBBE [Delerablée, 2007], IBBE-SGX conceptually relies on the idea of bilin-
ear maps. Notated as: e (·, ·) : G1 ×G2 → GT , a bilinear map is defined by using three cyclic
groups of prime order p, imposing bilinearity and non-degeneracy. El Mrabet et. al. pro-
vide a thorough overview of bilinear maps usage within the cryptographic setting [El Mra-
bet and Joye, 2017]. Moreover, the IBBE scheme implies the public knowledge of a cryp-
tographic hash function H, that differently than the hash methods described in Subsec-
tion 2.1 maps user identity strings to values in Z∗

p .

System Setup

The initial operation is identical for IBBE and IBBE-SGX. The algorithm receives (λ,m)
as input, where λ represents the security strength level of the cryptosystem, and m en-
capsulates the largest envisioned group size. The output consists of the Master Secret Key
MSK and the system Public Key PK . To build MSK , the algorithm randomly picks g ∈G1 and
γ ∈ Z∗

p : MSK = (
g ,γ

)
. To construct PK , the algorithm computes w = gγ and v = e

(
g ,h

)
,

where h ∈ G2 was randomly picked : PK =
(
w, v,h,hγ,hγ2

, ...,hγm
)
. The computational

complexity of the system setup algorithm is linear to m.
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User Key Extraction

The key extraction operation is identical for IBBE and IBBE-SGX. For a given user iden-
tity u, the operation makes use of MSK and computes :

USK = g (γ+H(u))−1

(4.1)

Envelope Group Key

The algorithm for constructing a group key differs by considering the specific usage
assumption. If for IBBE the algorithm relies on PK , for IBBE-SGX one can make use of
MSK . In both cases, the group key is randomly generated by choosing a random value
k ∈Z∗

p and computing:

gk= vk (4.2)

The envelope, i.e., the group ciphertext (C1,C2) is then constructed by:

C1 = w−k (4.3)

C2 = h
k· ∏

u∈S
(γ+H(u))

(4.4)

For IBBE, γ cannot be used directly for computing C2. Instead, the computation is
carried out with a polynomial expansion of the exponent that uses the public key elements:

C2 =
((

hγn
)
·
(
hγn−1

)E1 ·
(
hγn−2

)E2 · ... · (hγ
)En−1

)k

(4.5)

where :

E1 =∑
u∈S H (u)

E2 =∑
u1,u2∈S,u1 6=u2H (u1) ·H (u2)

E3 =∑
u1,u2,u3∈S,u1 6=u2 6=u3H (u1) ·H (u2) ·H (u3)

...

En−1 =∏
u∈S H(u)

For IBBE, computing C2 is bound by the computations of allE, thus requires a quadratic
number of operations O

(|S|2). In the case of IBBE-SGX, having access to MSK allows com-
puting C2 directly using Formula 4.4. It thus requires a linear number of operations.

Moreover, we augment the envelope ciphertext values with C3, which will prove useful
for the subsequent operations:

C3 = h
∏

u∈S
(γ+H(u))

(4.6)

Note that C3 can be stored publicly as it can be computed entirely from PK .
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Unveil (or De-envelope) Group Key

The de-envelope operation is executed identically for IBBE and IBBE-SGX, and relies
on PK . A user can make use of the secret key uSK to compute gk, given (S,C)

gk=
(
e(C1,hP) ·e(Uskr ,C2)

)( ∏
u∈S\{r }

H(u)
)−1

(4.7)

P= 1

γ
·
( ∏

u∈S\{r }
H(γ+u)− ∏

u∈S\{r }
H(u)

)
Similarly to enveloping a group key for IBBE, the decryption algorithm requires a

polynomial expansions to compute the exponent P, thus bounding the complexity to a
quadratic number of operations in O(|S|2).

Add User to Group Key

As the joining user uadd is allowed to decrypt group secrets prior to joining, there is
no need of a re-key operation by changing the value of gk. The only required change is
therefore to incorporate uadd into S, and H (uadd ) into C2.

For IBBE, including H(uadd ) into all E values requires a quadratic number of opera-
tions. For IBBE-SGX, by making use of MSK , one has access to γ, thus the new user is
included in constant time:

C2 ← (C2)γ+H(uadd ) (4.8)

Remove User form Group Key

Whenever removing a user ur em , all group elements gk,S and C need to change. gk

and C1 can be computed by Formulas 4.2 and 4.3, once a new random value for k ∈ Z∗
p is

picked.
Within the traditional assumption, C2 is computed similarly to enveloping group key

operation, consuming a quadratic number of operations. Within IBBE-SGX, having access
to γ through the MSK allows first changing C3 and then C2 in constant time:

C3 ← (C3)(γ+H(ur em ))−1

(4.9)

C2 ← (C3)k (4.10)

Re-key Group Key

Sometimes, it is necessary to change the value of gk without performing any group
membership changes. This re-keying operation can be performed optimally in constant
time under both usage model assumptions, by making use of C3.
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Figure 4.2 – Partitioning mechanism using IBBE-SGX and AES to protect the group key gk.

First, a new random k ∈Z∗
p is generated and the new key computed by Formula 4.2. C1

can be computed by Formula 4.3, while C2 is computed from C3 by Formula 4.10.

4.1.4 Partitioning Mechanism

Although IBBE-SGX produces a minimal envelope expansion and offers an optimal cost
for group membership operations, it suffers from a prohibitive cost when a member needs
to de-envelope the group key gk. To address this issue, we introduce a partitioning mech-
anism.

As the de-enveloping is bound to the number of users in the receiving set, we split the
group into partitions (sub-groups) and therefore limit the user de-enveloping time to the
number of members in a single partition. Moreover, each partition group key wraps the
prime group key gk, so that members of different partitions can communicate by making
use of gk. The partition mechanism is depicted in Figure 4.2. The first step consists in
splitting the group of users in fixed-size partitions. The administrator can then use the
envelope functionality of IBBE-SGX to generate a sub-group (broadcast) key bk and its en-
velope ck for each partition k. Next, for each partition, the group key gk is encrypted using
symmetric encryption such as AES, by using the partition key bk as the symmetric encryp-
tion key. The entire group envelope of IBBE-SGX is therefore represented by the set of all
pairs composed of the partition envelope and the encrypted group key (i.e., (ci , yi ) in Fig-
ure 4.2). The untrusted cloud storage can then publicly receive and store this entire group
envelope. Whenever a membership change happens, the administrator will update the list
of group members and send the affected partition envelope to the cloud. The clients, in
turn, can detect a change in their group by listening to updates in their envelope.

Partitioning Implications.

The partitioning mechanism has an impact on the computational complexity of the
IBBE-SGX scheme on the administrator side. First, as the public key PK of the IBBE system
is linear in the maximal number of users in a group [Delerablée, 2007], results that the
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Table 4.1 – IBBE-SGX and IBBE operations complexities per the number of partitions of
a group (|P |), the fix size of a partition (|p|) and the cardinality of the group members set
(|S|).

Operation IBBE-SGX IBBE [Delerablée, 2007]

System Setup O(|p|) O(|S|)
Extract User Key O(1) O(1)
Envelope Group Key |P |×O(|p|) O(|S|2)
Add User to Group O(1)
Remove User from Group |P |×O(1)
Unveil (or De-envelope) Group Key O(|p|2) O(|S|2)

public key for the IBBE-SGX scheme is linear in the maximal number of users in a partition
(denoted by |p|). Therefore, both the computational complexity and storage footprint of
the system setup phase can be reduced by a factor representing the maximal number of
partitions, without losing any security guarantee. Second, the complexities of IBBE-SGX
operations change to accommodate the partitioning mechanism, as shown in Table 4.1.
Enveloping a group key becomes the cost of enveloping as many IBBE-SGX partitions that
the fixed partition size dictates. Adding a user to a group remains constant, as the new
user can be added either to an existing partition or to a brand new one. Removing a user
implies performing a constant time re-keying for each partition. Finally, the de-enveloping
operation gains by being quadratic in the number of users of the partition rather than the
whole group.

The partitioning mechanism also has an impact on the storage footprint. Compared to
IBBE when considering a single partition, the footprint is augmented by the symmetrically
encrypted partition key (i.e., yi ) and the nonce required for this symmetric encryption.
When considering an entire group, the cost of storing the group envelope is represented
by the cost of a single partition multiplied by the number of partitions in the group, in
addition to a metadata structure that keeps the mapping between users and partitions.

Although the partition mechanism induces a slight overhead, the number of partitions
in a group is relatively small compared to the group size. Second, partition metadata are
only manipulated by administrators, so they can locally cache it and thus bypass the cost of
accessing the cloud for metadata structures. Third, as our model accepts that the identities
of group members can be discovered by the cloud, there is no cryptographic operation
needed to protect the mappings within the partition metadata structure.

Determining the optimal value for the partition size mainly depends on the dynamics
of the group. Indeed, there is a trade-off between the number and frequency of operations
performed by the administrator for group membership and those performed by regular
users for de-enveloping the group key. A small partition size reduces the de-enveloping
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time while a larger one reduces the number of operations performed by the administrator
to run IBBE-SGX and to maintain the metadata.

4.2 Operations Design

The operation for creating a group key is described in Algorithm 1. Once the fixed-size
partitions are determined (line 1), the execution enters the SGX enclave (lines 2 to 7) during
which the random group key is enveloped by the hash of each partition broadcast key. The
ciphertext values, as well as the sealed group key, leave the enclave to be later pushed to
the cache and the cloud (line 8).

The operation of adding a user to a group (Algorithm 2) starts by finding the set of all
partitions with remaining capacity (line 1). If no such a partition is found, a new partition
is created for the user (line 3) and the group key is enveloped by the group key of the new
partition (lines 4 to 6), before persisting its ciphertexts (line 7). Otherwise, a partition that
is not empty is randomly picked, and the user is added to it (lines 9, 10). Since the partition
key remains unchanged, only the ciphertext needs to be adapted to include the new user
(line 10). The partition members and ciphertext are then updated on the cloud (line 12).
Note that there is no need to push the encrypted group key yadd as it was not changed.

Removing a user from a group (Algorithm 3) proceeds by removing the user from the
partition (lines 1 and 2). Next, a new group key is randomly generated (line 3). The former
user hosting partition key and envelope are changed to reflect the user removal (line 4)
and then used for enveloping the new group key (line 5). For all the remaining partitions,
a constant time re-keying regenerates the partition key and ciphertext that envelopes the
new group key (lines 6 to 9). After sealing the new group key (line 10), the changes of

Alg. 1 CON-SKY Create Group
Input: Group g , Members S = {u1, ...,un}, Partition size m

1 P← { {u1, ...,um}, {um+1, ...,u2m}, ... }
begin ecall

2 gk←RandomKey()
3 for all p ∈P do
4 (bp ,cp ) ← sg x_i bbe_cr eate_par ti t i on(MSK, p)
5 yp ← Eh(bp )(gk)
6 seal ed_g k ← sg x_seal (gk)
7 endfor

end ecall

8 Store: (1) seal ed_g k; (2) ∀p ∈ P : 〈∀u ∈ p, yp ,cp〉
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Alg. 2 CON-SKY Add User to Group
Input: Group: g , Partitions of g : P, User to add: uadd , Sealed group key: seal ed_g k.

1 P′ ←∀p ∈P, such that |p| < m.
2 if P′ =; then
3 padd ← {uadd }

begin ecall

4 (badd ,cadd ) ← sg x_i bbe_cr eate_par ti t i on(MSK, padd )
5 gk← sg x_unseal (seal ed_g k)
6 yadd ← Eh(badd )(gk)

end ecall

7 Store: 〈{uadd }, yadd ,cadd 〉
8 else
9 padd ← RandomI tem(P′)
10 padd ← pu ∪ {uadd }

begin ecall

11 cadd ← sg x_add_user _to_par ti t i on(MSK, padd ,uadd )
end ecall

12 Update: 〈∀u ∈ padd ,∗,cadd 〉
13 endif
14 P← padd ∪P

Alg. 3 CON-SKY Remove User ur em from Group g
Input: Group: g , Partitions of g : P, User to remove: ur em .

1 pr em ← p ∈P, such that ur em ∈ p.
2 pr em ← pr em \ {ur em}

begin ecall

3 gk← RandomKey()
4 (br em ,cr em) ← sg x_r emove_user (MSK, pr em ,ur em)
5 yr em ← Eh(br em )(gk)
6 for all p ∈P\ pr em do
7 (bp ,cp ) ← sg x_r eke y_par ti t i on(p)
8 yp ← Eh(bp )(gk)
9 endfor
10 seal ed_g k ← sg x_seal (gk)

end ecall

11 Update: (1) 〈∀ui ∈ pr em , yr em ,cr em〉 (2) ∀p ∈P\ pr em : 〈∗, yp ,cp〉



4.2. OPERATIONS DESIGN 43

metadata for the group partitions are pushed to the cloud (line 11). Note that the partition
members only need to be updated for the removed user hosting partition.

Re-partitioning

As many removal operations can result in partially unoccupied partitions, we propose
the use of a re-partitioning scheme whenever the partition occupancy is too low. We imple-
ment a heuristic to detect a low occupancy factor such that if less than half of the partitions
are only two thirds full, then re-partitioning is triggered. Re-partitioning consists in simply
re-creating the group following Algorithm 1.

CON-SKY Implementation

In order to implement the system, we used the PBC [Lynn et al., 2006] pairing-based
cryptography library which, in turn, depends on GMP [Granlund et al., 1991] to perform
arbitrary precision arithmetic. They both have to be used inside SGX enclaves. There are
several challenges when porting legacy code to run inside enclaves. Besides having severe
memory limitations (Section 2.2), it also considers privileged code running in any protec-
tion ring but user-mode (ring 3) as not trusted. Therefore, enclaves cannot call operating
system routines.

Although memory limitations can have performance implications at run-time, they
have little influence on enclave code porting. Calls to the operating system, on the other
hand, can render this task very complex or even unfeasible. Luckily, since both PBC and
GMP mostly perform computations rather than input and output operations, the chal-
lenges on adapting them were chiefly restrained to tracking and adapting calls to glibc.
The adaptations needed were done either by relaying operations to the operating sys-
tem through outside calls (ocalls), or performing them with enclaved equivalents. The
outside calls, however, do not perform any sensitive action that could compromise secu-
rity. Aside from source code modifications, we dedicated efforts to adapt the compilation
toolchain. This happens because one has to use curated versions of standard libraries (like
the ones provided by Intel SGX SDK), besides having to prevent the use of compiler’s built-
in functions and setting some other code generation flags. The total number of lines of
code (LoCs) or compilation toolchain files that were modified were 32 lines for PBC and
299 for GMP.

Apart from changes imposed by SGX, we also needed to use common cryptographic
libraries. Although some functions are provided in v.1.9 of the Intel SGX SDK [Intel, 2017a],
its Advanced Encryption Standard (AES) implementation is limited to 128 bits. Since we
aim at the maximal security level, we used the AES 256 bits implementation provided in
Intel’s port of OpenSSL [Intel, 2017b]. The end-to-end system encapsulating both IBBE-
SGX and HE schemes consists in 3,152 lines of C/C++ code and 170 lines of Python.
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4.3 Security Analysis

Our reductionist security analysis proposes arguing the security of IBBE-SGX by reduc-
ing it to three underlying hard problems : the robustness of TEE, the security of formal
IBBE-SGX specification with no partitioning (see Section 4.1.3), and finally the robustness
of the partitions mechanism. We infer that adversaries can not break our cryptographic
system unless they can break one of the three hard problems aforementioned.

Robustness of TEE

TEE robustness is relying on the assumption that Intel is trusted for implementing the
hardware module and software SDK of the SGX technology. Moreover, we state as orthog-
onal any side-channel vulnerability [Lee et al., 2017] and consider that such issues will be
addressed by future iterations of the technology. Both the hardware enclave and the code
running inside Intel SGX are attested as genuine before being provisioned with long term
secrets (i.e., the master secret key MSK ). For a comprehensive security model and defini-
tions of TEE as a secure hardware scheme, the reader is referred to Fisch et al. [Fisch et al.,
2017].

Security of IBBE-SGX without partitions

We show that IBBE-SGX without the partitioning mechanism – formalized in Sec-
tion 4.1.3 – is equivalent to the traditional IBBE. Traditional IBBE has been proved to
achieve semantic security [Delerablée et al., 2007]. In doing so, the authors provided a
computational security proof that makes use of a generalization of the Diffie-Hellman ex-
ponent assumption – as a hard problem – within the context of pairing based cryptogra-
phy [Boneh et al., 2005a].

By accepting the hardness of TEE, the semantic security of traditional IBBE, and the
output equivalence of IBBE-SGX with IBBE, then the semantic security of IBBE-SGX tran-
sitively follows. We will first show the correctness of IBBE-SGX in Theorem 1 and then it’s
equivalence to IBBE in Theorem 2.

Theorem 1. IBBE-SGX satisfies correctness as : gk = De-envelope(uSK , Envelope(MSK , PK )).

Proof. Let β be the base and p the exponent of the de-enveloping Formula 4.7, such that
gk=βp . Then by using the same Formula 4.7 :

β= e(C1,hP) ·e(Uskr ,C2) = e(w−k ,hP) ·e
(
g (γ+H(u))−1

,h
k· ∏

u∈S
(γ+H(u)))

= e(w,h)−kP ·e(w,h)
k

∏
u∈S\{r }

(γ+H(u)) = e(w,h)
k

∏
u∈S\{r }

H(u)
= gk

1
p

βp = gkp−1p = gk
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Theorem 2. Given an identical set of values π = (g ,h,γ,k), the two schemes IBBE(π) and
IBBE-SGX(π) produce identical gk and envelope C= (C1,C2,C3).

Proof. gk, C1, and C3 are computed by identical formulas for the two schemes, concretely
Formulas 4.2, 4.3, 4.6. Differently C2 is computed by Formula 4.5 for IBBE and Formula 4.4
for IBBE-SGX. The equivalence of the two formulas is immediate as the second one makes
use of a polynomial expansion of the first one.

Robustness of partitioning

The partitioning mechanism makes use of symmetric encryption to encapsulate the
overall group key gk using the partition key – the latter obtained through IBBE-SGX. Sym-
metric encryption achieves semantic security by using a randomization that ensures non-
determinism for the obtained chipertext – addressed by a sufficiently large (e.g., 256 bits)
initialization vector used only once and an encryption mode that propagates the non-
determinism (e.g., chaining mode). Such constraints are included in the system’s imple-
mentation.

4.4 Closing Remarks

Within this chapter we have presented CON-SKY: an end-to-end group sharing sys-
tem with confidentiality guarantees. CON-SKY uses a change of assumption of traditional
Identity-Based Broadcast Encryption (IBBE) schemes by requiring the enveloping opera-
tion to be run by a Trusted Authority (TA) in SGX. CON-SKY also provides a partitioning
design that can efficientize the performance at the user side.

A number of further improvements can be argued for CON-SKY. The first is to dynam-
ically adapt the partition sizes based on the undergoing workload. This would optimize
the speed of administrator- and user-performed operations. A second challenge would
be to adapt CON-SKY to a distributed set of administrators that would perform member-
ship changes concurrently on the same group or partition by using lock-free techniques.
Moreover, in a setup with multiple administrators, one can envision certifying blocks of
membership operations logs through blockchain-like technologies.

Even though CON-SKY’s underlying cryptographic scheme (i.e., IBBE-SGX) achieves se-
mantic security, the system does not consider the privacy of its participants but only the
confidentiality of the shared data. As such, IBBE-SGX similarly to IBBE does not provide
anonymity guarantees. A user always knows the peer members in the group. However, in
more constrained threat models, one might desire that participants do not know who else
can access the shared encrypted data. Building an anonymous key distribution mechanism
requires the investigation of other cryptographic constructs than IBBE or IBBE-SGX. The
following Chapter 5 provides a novel cryptographic construct and an end-to-end system
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ANO-SKY capable of anonymity guarantees, that like CON-SKY leverages TEE for a minimal
set of operations.



CHAPTER

5
ANO-SKY: Anonymous Key

Distribution with TEE

State-of-the-art anonymous key management is inefficient when considering large
and highly dynamic group membership. Within this chapter we describe ANO-SKY,
an innovative anonymous data sharing system that leverages Trusted Execution Envi-
ronments (TEE) for key distribution and writing data to the cloud. Moreover, ANO-SKY

uses an indexing mechanism that leverages TEE to optimize the user computational
time.

We describe ANO-SKY by first having an overall look into the proposed architecture. We
continue by detailing the design of each system operation. Finally, we briefly discuss
the security guarantees of our scheme.

The novel construct ANO-SKY has been published in the International Symposium on

Reliable Distributed Systems (SRDS) [Contiu et al., 2019b].

Within end-to-end security, the data shared by a group is encrypted with a secret group
key gk. Broadcasting the key to active group users is done through a key management
mechanism. Besides confidentiality, this chapter focuses on the anonymity guarantee of
such key management mechanism in which active users should not be able to infer who
else is an active member of the group. Consider for example military organizations that
define access groups based on security clearances. Besides protecting the shared infor-
mation that is specific to a clearance level (e.g., confidential, secret and top secret), users
sharing the same clearance level do not know each other. Likewise, dispatching confi-
dential medical programs (e.g., for HIV patients) needs to ensure that patients’ privacy is
guaranteed [Dwyer III et al., 2004] and therefore fellow patients cannot infer their identity.

State-of-the-art anonymous key management relies on hybrid encryption - a symmetric
encryption of the message by gk and the construction of a key envelope by asymmetric
encryptions of gk. To ensure anonymity, no mapping metadata is transmitted to recipients
(Section 2.5). As such each recipient performs trials of asymmetric decryptions to find the

47
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symmetric key within the key envelope. We already argued hybrid encryption as inefficient
due to the computational cost of public key operations, and also due to the size expansion
of the key envelope (Figure 2.3b).

Adapting IBBE-SGX, our contribution from the previous CON-SKY Chapter 4, to sup-
port anonymity is not straightforward. IBBE-SGX requires the group composition to be
known at de-enveloping time (see Equation 4.7 in Section 4.1.3), thus breaking anonymity.
In addition, to prevent active attackers to reuse gk by broadcasting malicious crafted mes-
sages [Barth et al., 2006], it is imperative that gk changes per each message. Therefore the
partitioning mechanism of IBBE-SGX in which only partitions sub-keys change but not gk
is not applicable in the anonymous setting.

Our solution ANO-SKY minimally makes use of Trusted Execution Environments (TEE)
and conceptually relies on two paradigms : a cryptographic key management solution and
a data delivery protocol. By handling keys within TEE the enveloping can be performed
without leaking users identities. Moreover, TEE enables the replacement of the costly pub-
lic key primitives with symmetric ones, enabling ANO-SKY to be practical efficient.

5.1 Key Management in ANO-SKY

ANO-SKY leverages Intel Software Guard Extensions (SGX) as a TEE. In order to avoid
passing all the system operations through a TEE-enabled administrative monitor, we pro-
pose a design in which only data owners (i.e.,, writers) are constrained to pass through
such a proxy. Readers anonymously consume confidential content without needing to pass
through the TEE-enabled monitor, therefore not incurring service time penalties. The ben-
efits of using a monitor exclusively for write operations are manifold. First, the monitor
acts as an outbound trusted authority (TA) authenticating all the content passing through.
Second, it can mask the identities of data writers. Third, as the monitor executes in a TEE,
traditional anonymous key management schemes [Barth et al., 2006; Libert et al., 2012]
can be modified to accommodate a new entity of trust for the key enveloping operation,
therefore allowing more efficient operations.

Figure 5.1 displays the overview of ANO-SKY solution. The ANO-SKY monitor sits in
between end-users and the cloud storage and is logically split in two roles. First, it pro-
vides a cryptographic mechanism for storing and enforcing access control to the data, by
offering a cryptographic key management solution (the ACCESSCONTROL service). Second,
upon successful access verification, it acts as an outgoing proxy for write operations (the
WRITERSHIELD service). As system scalability is of paramount importance, the two log-
ical entities (ACCESSCONTROL and WRITERSHIELD services) can independently adapt to
undergoing load.
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Figure 5.1 – ANO-SKY solution overview. ANO-SKY monitor services are ACCESSCONTROL

(A) and WRITERSHIELD (W).

Key Management Change of Assumption.

The first building block of ANO-SKY is a cryptographic key management solution. Data
owners have to write content through the TEE-enabled monitor such that only authorized
readers (who are not passing through the TEE monitor) can decrypt the data, all while hav-
ing anonymity guarantees. In traditional anonymous key sharing solutions [Barth et al.,
2006], a TA performs two operations: setting up the key management system and extract-
ing user private keys. The operations of key enveloping together with content encryption
and decryption are performed by end users. As such, public key cryptographic primi-
tives are employed so that end users can cryptographically protect content for other users,
whose identities are represented by public keys. Differently, our model that leverages a TEE
as an outgoing monitor requires that the TA does not only set up the system and extracts
user keys, but also executes the key enveloping operation, which in the traditional assump-
tions was executed by end users. This change of assumption therefore allows us to use a
much simpler cryptographic construct to achieve the same result as traditional schemes.
Concretely, the TA can directly make use of users’ secret keys during the key-enveloping
operation. As such, this shared secret between the TA and end users opens the way to the
use of symmetric rather then public key cryptography, and therefore benefit from the per-
formance advantages of the former, e.g.,, hardware acceleration and smaller ciphertexts.
Second, as the traditional scheme [Barth et al., 2006] requires the construction of a sig-
nature key-pair per each key enveloping, under the new assumptions we can leverage the
signature of the TA. Moreover, the shared secret between users and TA allows to construct
efficient key de-enveloping methods that increase the performance of the decryption op-
eration performed by end users.

Data Delivery Protocol.

ANO-SKY allows users to write the encrypted shared content through the WRITER-
SHIELD service, which acts as a proxy. The service checks with the ACCESSCONTROL
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whether a user is granted the permission to write in a given group. Being the case, it au-
thenticates the outgoing content and does the writing itself. We can therefore securely
store the cloud storage credentials in the WRITERSHIELD service.

5.2 TEE Trust Establishment

Before relying on any service of the ANO-SKY monitor, it is necessary to validate that
the service is running on a trustworthy Intel SGX platform, and that the instances of the
ACCESSCONTROL and WRITERSHIELD services are genuine. This validation phase is per-
formed by administrators (see Section 2.3).

As such, the SGX enclaves are required to construct a proof that incorporates the di-
gest of the code and data inside the enclave, signed by the fused CPU private key (also
known as quote [Costan and Devadas, 2016]) and whose corresponding public key is re-
tained by Intel. The attestation packages are retrieved by the administrators, who in turn
check that the received digests are identical to known ACCESSCONTROL or WRITERSHIELD

digests. They then contact Intel’s remote attestation service to validate that the quote signa-
ture is indeed genuine. Upon a successful verification, administrators rely on the remote
attestation functionality to establish a secure channel using a DH key exchange with both
the ACCESSCONTROL and WRITERSHIELD services [Costan and Devadas, 2016]. This secure
channel is used for subsequent access control operations, such as user creation, addition
or removal of members from groups. Besides, administrators are able to securely provide
the cloud storage credentials to the WRITERSHIELD service along with a long term signing
key si g nT A that is employed on all upcoming transiting content.

5.3 Operations Design

This subsection formally defines the operations of the ACCESSCONTROL and WRITER-
SHIELD services.

We recall from Section 2.1 that Ek (p) → c and Dk (c) → p define symmetric encryption
and decryption algorithms; AEk (p) → (c, t ) and ADk (c, t ) → {p,⊥} authenticated encryp-
tion and decryption algorithms; Spr i (p) → σ and Vpub(p,σ) → {tr ue,⊥} digital signature
and verification schemes; h denotes a one way cryptographic function and || denotes the
literal concatenation operation.

ACCESSCONTROL Operations.

The ACCESSCONTROL service is responsible for storing credentials, membership infor-
mation and to enforce them. Its methods are invoked by administrators through the se-
cure channel established upon successfully performing the trust attestation process (Sec-
tion 5.2).
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The ACCESSCONTROL service generates user secret keys. Given a unique user identi-
fier u, the service constructs a random secret key for the user, to whom it is sent through a
transport layer security (TLS) channel.

The ACCESSCONTROL service further exposes methods for group management. Specif-
ically, administrators can create groups, as well as add or remove users from groups. De-
pending on the granted access capabilities, users can hold the roles of content reader,
writer, or both. The ACCESSCONTROL service captures such capabilities within persistent
dictionaries, g r oupr and g r oupw , which store lists of users belonging to each group iden-
tifier (e.g.,, g r oupw [gi d ] = {ua , ...,uz}). Administrators are the only entities that can modify
the keys and values of those two dictionaries.

Alg. 4 ANO-SKY Key enveloping (ACCESSCONTROL)
Input : user identity ui d , group identifier gi d , symmetric key gk.
Output : an envelope ciphertext of the access control key.

begin ecall

1 envelope ←;
2 if ui d ∈ g r oupw [gi d ] then
3 for all users u ∈ g r oupr [gi d ] do
4 usk ← ke y s[u]
5 (ck , t ) ← AEusk (gk)
6 envelope ← envelope ∪ {(ck , t )}
7 endfor
8 endif
9 Return envelope

end ecall

The operation of enveloping an access key for a group of anonymous members is de-
noted by KeyEnveloping and is depicted in Alg. 4. Given the identity of the writing user,
the group unique identifier and gk, the algorithm produces a ciphertext envelope that can
be anonymously de-enveloped. The operation proceeds by first checking that the user has
writing capabilities for the group (line 2). If true, the envelope is constructed by including
the ciphertext and the authentication tag resulted from encrypting the gk using the secret
key of each group member (lines 3-7).

WRITERSHIELD Operations.

As the WRITERSHIELD is the sole service possessing the write credentials for the cloud
provider, it constitutes a necessary hop for uploading the file. Its main operation is
Pr ox yF i l e (Alg. 5). The method verifies that the invoking user has write capabilities for
the desired group (line 1). If positive, the content is authenticated by using the long term
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Alg. 5 ANO-SKY Proxy file (WRITERSHIELD)
Input : user identity ui d , group identifier gi d , file ciphertext C, ACCESSCONTROL instance
A.

begin ecall

1 if ui d ∈ g r oupw [gi d ] then
2 σ← Ssi g nT A (C)
3 Upload to cloud : (C,σ)
4 endif

end ecall

TA signature (line 2). Both parts, file ciphertext and the corresponding signature, are finally
uploaded to the cloud (line 3).

Alg. 6 ANO-SKY User write file to group
Input : user identity ui d , group identifier gi d , file plaintext P , ACCESSCONTROL and WRIT-
ERSHIELD instances A and W.

1 gk← Random symmetric key
2 envelope ←A.KeyEnveloping(ui d , gi d ,gk) i.e., Alg. 4
3 ci pher ← Egk(P )

4 C← envelope || ci pher
5 W.ProxyFile(ui d , gi d ,C,A) i.e., Alg. 5

User Operations.

The two operations performed by users are sharing a file with a group (i.e.,, writing)
and reading a shared file. The user write operation leverages the TEE-enabled monitor. As
shown in Alg. 6, the user first randomly creates a symmetric key (line 1) and asks the AC-
CESSCONTROL service to perform an enveloping for this key (line 2), so that it can be anony-
mously de-enveloped by any group member. He then encrypts the file by using the prior
generated symmetric key (line 3). Finally, the two obtained ciphertexts—the key envelope
and the file ciphertext—are concatenated (line 4) and transmitted to the WRITERSHIELD to
be uploaded to the cloud storage (line 5).

Users can read files by following the procedure of Alg. 7. As previously stated, reading
operations do not involve services running in a TEE. The first step is to download the
ciphertext package from the cloud storage (line 1), that can then be validated by checking
the signature (line 2) that has been appended by the WRITERSHIELD. Should the signature
be valid, the user then splits the package between the key envelope and the file ciphertext
(line 3). Next, the user iterates over all envelope fragments, trying to decrypt each of them
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Alg. 7 ANO-SKY User read file
Input : user secret key usk .

1 Download from cloud: (C,σ)
2 if Vpub−si g nT A (C,σ) 6= ⊥ then
3 envelope, ci pher ← split(C)
4 for all pairs (ck , t ) in envelope do
5 gk← ADusk (ck , t )
6 if gk 6= ⊥ then
7 P ← Dgk(ci pher )

8 Return P
9 endif
10 endfor
11 endif
12 Return ⊥

by using the user secret key usk (lines 4-5). If successful, the obtained plaintext is the gk,
that the user can use to symmetrically decrypt the file ciphertext (lines 7-8).

5.4 Indexing for Efficient Decryption

Following the methodology of traditional anonymous broadcast encryption (ANOBE)
schemes [Barth et al., 2006; Libert et al., 2012], we propose a method that can reduce the
user decryption time by circumventing the need to perform several key decryption trials
(line 4 of Alg. 7) by trading it off for a slight increase in key enveloping time and envelope
size. To this end, publicly known labels are constructed for each user fragment in the enve-
lope, such that the label can be recomputed by the target recipients. User keys are ordered
by labels in the envelope, so that each key can be easily located within it and a single key
decryption operation is performed. Traditionally, the cost of building such labels was asso-
ciated to performing modular exponentiation [Barth et al., 2006] or by using the theoretical
constructs of tag-based encryption [Libert et al., 2012]. Given the change of assumption
brought by ANO-SKY compared to traditional ANOBE, we now have a TA running in a TEE
performing the key enveloping. It results that the shared secret between users and the TA
can also be used to construct efficient decryption labels. ANO-SKY can therefore propose
a much simpler and efficient labeling mechanism by relying on the cryptographic hash of
the shared secret (i.e.,, the user secret key).

The efficient variant of key enveloping (Alg. 8) introduces the creation of labels (line
6) as the salted hash of the user secret key. A random nonce is generated for each key
enveloping call to be used as a salt value, publicly included in the envelope. The envelope
fragments can therefore be sorted using the label values (line 10).
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Alg. 8 ANO-SKY Key enveloping with efficient decryption.
Input : user identity ui d , group identifier gi d , symmetric key gk.
Output : an envelope ciphertext of the access control key.

1 envelope ←;
2 if ui d ∈ g r oupw [gi d ] then
3 nonce ← Random
4 for all users u ∈ g r oupr [gi d ] do
5 usk ← ke y s[u]
6 lu ← h(usk || nonce)
7 (ck , t ) ← AEusk (gk)
8 envelope ← envelope ∪ {(lu ,ck , t )}
9 endfor
10 Sort envelope by l (i.e.,, l abel )
11 endif
12 Return nonce || envelope

Alg. 9 ANO-SKY User read file with efficient decryption.
Input : user secret key usk .
Output : file plaintext.

1 Download from cloud : (C,σ)
2 if Vpub−si g nT A (C,σ) 6= ⊥ then
3 nonce, envelope, ci pher ← split(C)
4 lu ← h(usk || nonce)
5 (ck , t ) ← binary search for ke y : lu in envelope
6 if (ck , t ) 6= ⊥ then
7 gk← ADusk (ck , t )
8 P ← Dgk(ci pher )

9 Return P
10 endif
11 endif
12 Return ⊥

A user read operation (Alg. 9) requires the label reconstruction (line 4) followed by a
binary search of it among the envelope fragments (line 5). When the proper label is located,
the gk can be retrieved (line 7), allowing at last the file decryption (lines 8–9).

The trade-off brought by this efficient decryption method is therefore an overhead of
O(n · logn), due to the sorting of the labels during the key enveloping operation. The gain
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Figure 5.2 – Data model of user and group documents stored in MongoDB.

is reflected during decryption time, replacing O(n) trials of symmetric decryption with a
O(logn) binary search and a single symmetric decryption.

5.5 Implementation

ACCESSCONTROL

The ACCESSCONTROL service is the only stateful component of ANO-SKY. It is respon-
sible for generating and storing user keys, and for maintaining group membership infor-
mation. Since it deals with sensitive information, its core runs entirely within enclaves.
All external exchanges are encrypted by using TLS connections that are terminated inside
trusted environments.

We divide the ACCESSCONTROL service into two sub-components. The first one consti-
tutes the entry-point for service requests. It is developed in C++, for a total of 3000 LoCs.

The other one holds users and groups metadata within a replicated database. For this
purpose, we use a triple-replicated cluster of MongoDB [MongoDB Inc., 2019] servers.
MongoDB offers out-of-the-box scale-out support, and is well suited to store denormal-
ized documents. In order to perform queries against it from the first sub-component, we
ported the official MongoDB client library [MongoDB Inc., 2018] to run inside an enclave.
Each replica of the entry-point sub-component is provisioned with the master key Mk at
attestation time; its purpose is to secure the data stored in the MongoDB backend.

As the storage backend runs outside of enclaves, we make sure that every piece of data
that we store is either hashed using the HMAC-SHA256 construct or encrypted using AES
Galois counter mode (GCM). We thus guarantee that the entity that provides the Mon-
goDB instances cannot infer any information about users or groups (barring the size of
each group, which is already leaked in the envelopes). Fig. 5.2 shows how we organize
data in MongoDB. We use 2 collections, one for users and one for groups. Each user is
stored once in the users collection and once per group it is a member of. This denormal-
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ization prevents the service provider from inferring which groups a user belongs to as the
attributes of a given user are hashed or encrypted differently for each representation (i.e.,,
we use the name of the group as salt when hashing, and different initialization vectors (IVs)
when encrypting). Each document is wholly signed using HMAC signatures to ensure its
integrity.

There are two kinds of users interested in communicating with the ACCESSCONTROL

service: regular users, who need to retrieve their randomly-generated 256 bit private
key, and administrators, who perform group access control operations. All these interac-
tions happen through a TLS-encrypted REST-like protocol. Exchanges are represented in
JavaScript object notation (JSON), for which we slightly modified a C++ library [Lohmann
et al., 2018]. In order to terminate TLS connections in the enclave, we use a port of OpenSSL
for SGX [Intel, 2017b].

Another duty of the ACCESSCONTROL service is to generate key envelopes upon user
requests. An envelope contains a gk encrypted several times, once per group member.
The gk as well as the user keys, are 32 bytes long. We use AES GCM, which generates a tag
of 16 bytes for integrity. Considering the addition of 12 bytes for the initialization vector,
each group member adds 60 bytes to the envelope.

In order to avoid having to perform O(n) decryption trials, we can index the keys within
the envelope (Section 5.4). First, we generate a nonce for each envelope, that we staple to
it. Each user key is then hashed using the SHA224 algorithm, using the nonce as a salt.
This adds 28 bytes to the envelope for each group member. The list of keys is sorted using
the hashes as a sorting key. As a consequence, readers can look for their own key by doing
a binary search, therefore decreasing the complexity to O(logn) comparisons followed by
one single decryption.

WRITERSHIELD

The WRITERSHIELD serves two purposes: protecting cloud storage credentials, and hid-
ing user identities by proxying their requests to the cloud storage. When forwarding user
requests to write files, the WRITERSHIELD checks with the ACCESSCONTROL that the query
comes from a user who has the correct permissions to write files. User requests, including
file contents, cross over the enclave boundary. This obviously slows down transmission
rates because of content re-encryption and trusted/untrusted edge transitions. Therefore,
we have also implemented a different variant where temporary access tokens are given to
users, allowing them to upload their content without the aforementioned content need-
ing to enter the TEE. Note that the ciphertext digest still needs to be authenticated by the
signing key available in the TEE-enabled service (necessary for IND-CCA). In such case,
users are responsible for using appropriate proxies that can conceal the origin of the re-
quest. One approach to hide the identities is by using peer-to-peer relay networks backed
by enclaves [Pires et al., 2018]. Also, it is a requirement to only communicate with the cloud
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storage using encrypted connections. Even if the file data is encrypted, the metadata can
leak group information to every entity listening to the network traffic.

We modeled the cloud storage component using Minio [Minio, Inc., 2019], a distributed
object store that is fully compatible with the application programming interfaces (APIs) of
Amazon S3. As we need to perform operations against the cloud storage from within an
enclave, we ported the Java version of the Minio client library to C++ so that it can run to-
gether with the WRITERSHIELD. These modifications amount to 4000 LoCs of C++. Without
accounting for external libraries, the WRITERSHIELD consists of 800 LoCs.

Client

As part of our prototype implementation, we developed a full-featured client in 1200
LoCs of Kotlin. The client can be set up to operate in all possible configurations of
ANO-SKY: keys in linear or indexed envelopes, writes through the WRITERSHIELD, or
through a standard proxy onto a Minio or Amazon S3 storage back-end with short-lived
token-based authentication. Kotlin’s full interoperability with the Java ecosystem allows us
to easily integrate with the Java Microbenchmark Harness (JMH) [Shipilev et al., 2018] and
Yahoo! cloud serving benchmark (YCSB) [Cooper et al., 2010] frameworks that we use to
perform the evaluation of ANO-SKY (Section 7.2.2).

Deployment

All our components can be independently replicated to provide availability, fault tol-
erance or cope with the load. Therefore, we have packaged our micro-services as indi-
vidual containers, which we then orchestrate using an SGX-aware adaptation of Kuber-
netes [Vaucher et al., 2018]. The proposed deployment considers that there exists a fast
data link between the organization premises and the infrastructure where the TEE-enabled
micro-services are hosted.

5.6 Security Analysis

We discuss the security guarantees of ANO-SKY and provide a brief intuition for the
formalism of a reductionist security proof. We hypothesize that ANO-SKY achieves in-
distinguishability with respect to adaptively-chosen ciphertexts (i.e., IND-CCA2). Within
IND-CCA2 security, the adversary can be an active member of the group and therefore can
rightfully decrypt group messages. Such an attacker is allowed to try as many additional
group encryptions (i.e.,, key envelopings) of arbitrarily constructed groups, without be-
ing able to infer if the resulted ciphertexts (i.e.,, envelopes) are pointing to the same group
members. Note that proving ANO-SKY as IND-CCA2 implicitly assures security guarantees
against non adaptive chosen ciphertext (IND-CCA) and plaintext (IND-CPA) attacks. Dif-
ferently than IND-CCA2, IND-CCA assumes that the adversary is given only one chance to
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try a set of group encryptions. Within IND-CPA or semantic security, the adversary is a pas-
sive group member that only observes and does not have the ciphertext choice capability.
Intuitively, the security guarantees extend to adversaries that are not members of a group.

Before laying out the security proof sketch, we recall the two pillars of ANO-SKY:
authenticated encryption (AE) and trusted execution environments (TEEs). AE primi-
tives are considered secure in the adaptive chosen ciphertext attack when employing the
encrypt-then-mac composition method [Bellare and Namprempre, 2000]. Such a guar-
antee forces to choose a specific AE mode for AES, as described in Section 5.5. On the
other side, TEEs have been used in the composition of functional encryption cryptographic
primitives shown to achieve IND-CCA2 guarantees [Fisch et al., 2017]. In the following, we
retain the formalism of Fisch et. al. [Fisch et al., 2017] that abstracts TEEs as a secure hard-
ware scheme.

Theorem 1. Assuming that AE is IND-CCA2 and a TEE is a secure hardware scheme,
then ANO-SKY is IND-CCA2.

Proof. We provide a reductionist method that lays the frame for a formal proof.
ANO-SKY can be seen as a reduction of the anonymous broadcast encryption scheme of
Barth et. al. [Barth et al., 2006] (BBW ), by considering two arguments: (1) AE in conjunc-
tion with a secure hardware scheme replaces the public key encryption (PKE) scheme, and
(2) secure hardware scheme signatures replace the strongly unforgeable signature. As BBW
has been proved IND-CCA2 secure by Libert et. al. (Theorem 1 of [Libert et al., 2012]),
relying on the two aforementioned replacements, one can construct identical adversary-
challenger game steps (Def. 2 in [Libert et al., 2012]) and employ a similar sequence of
experiments (Appendix A in [Libert et al., 2012]) that can prove that ANO-SKY is immune
to chosen ciphertext attacks.

5.7 Closing Remarks

We have presented ANO-SKY, an anonymous file sharing end-to-end system. ANO-SKY

achieves practical efficiency by performing the key management within trusted execution
environments (TEE) and for writing the data to the cloud. A comprehensive performance
benchmark of ANO-SKY is presented in Chapter 7.

Future work could enable ANO-SKY to benefit from edge computing gateways sitting at
the border of the organization. By considering that attested TEE micro-services are self-
contained with respect to the hosting environment, other deployment options arise by
elastically handling ACCESSCONTROL and WRITERSHIELD instances between the organi-
zation edge and the user or cloud premises, if the latter two are equipped with such capa-
bilities.

Even tough ANO-SKY has a small key envelope – 60 bytes per group member – it is un-
sure if an anonymous key management scheme can achieve both small constant envelope
size – no matter the group size – and efficient computational time. If for confidentiality-
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only schemes such construct is possible (Section 4.1.3), for anonymous schemes such chal-
lenge is an open research problem.





CHAPTER

6
REV-SKY: Practical Revocation with

TEE

A full re-encryption during revocation can have prohibitive costs for very large file re-
sources. This chapter presents REV-SKY, a practical active revocation scheme lever-
aging All-or-Nothing Transform (AONT) and Trusted Execution Environments (TEE).
REV-SKY is illustrated by its three main components : (1) The trust establishment pro-
tocol attesting the re-encryption workers; (2) The protocol that the users follow to read
and write files; (3) The distributed re-encryption protocol leveraging SGX enclaves.
Following implementation details, the chapter ends with an analysis of the security
guarantees.

End-to-end security specifies that user data is encrypted before sent to the untrusted
storage. If the two previous chapters focused on the distribution mechanism of the en-
cryption key – namely gk – the current chapter centers on what happens to the data during
revocation.

State of the art revocation methods inflict a penalty on security by delaying re-
encryption to the first update of the data (e.g., lazy revocation) or differently favor security
by re-encrypting the entirety of the data (e.g., active revocation). Such methods trade-off
security for efficiency or the other way round. REV-SKY achieves both efficiency and se-
curity by presuming two assumptions : (1) users that downloaded and viewed the entirety
of a resource (e.g., file) can not be prevented to continue access their local copy of the file,
and (2) the storage provider is equipped with TEE capabilities.

As such, REV-SKY leverages TEE for data locality performing re-encryption directly on
the storage provider side. Only portions of the data (i.e., super blocks) need to be re-
encrypted by REV-SKY due to an All or Nothing Transform (see Section 2.6) performed on
the user side. Moreover, REV-SKY prevents malicious users to provision super blocks by
making the latter unknown unless the user downloaded the whole file resource.

61
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Assumptions

REV-SKY uses standard cryptographic primitives, making it both easy to parse and im-
plement. Recall that Ek (d) and Dk (d) denote symmetric encryption and decryption; h(d)
a one-way cryptographic function; AEpub(d) and ADpri(d) asymmetric encryption and de-
cryption primitives and Spri(d) and Vpub(d) are asymmetric signature and verification. Let
⊕ denote exclusive or operation.

We assume the existence of past (i.e., gk) and new (i.e gk') group keys. The latter is
known only to non-revoked members of the group. Moreover, we assume that the storage
service provider is equipped with a set of machines with SGX capabilities. Each SGX en-
clave is equipped with a unique private key sgx-key, accessed locally using the quoting
enclave [Costan and Devadas, 2016]. Its corresponding public key is retained by Intel.

To better isolate and explain our revocation method, we simplify the model actors to
data owners that make data available to users over untrusted storage. Within this simplified
model data owners create content while users only consume content. Data owners are also
administrators, making gk known to active users by a key management technique (e.g.,
CON-SKY of Chapter 4). Moreover, re-encryption workers are computing agents sitting on
the cloud storage performing the actual re-encryption tasks within TEE.

6.1 Trust Establishment

The bootstrapping of the system consists of establishing trust among the agent trig-
gering the revocation (i.e., the data owner) and the re-encryption workers that enable it.
Re-encryption workers need to certify the validity of the administrator, while the admin-
istrator must certify that the workers have SGX capabilities and are instantiated with the
REV-SKY code. Attested SGX enclaves are provided with a long term REV-SKY private key
(i.e., sgx-key). This key will be subsequently used by the re-encryption protocol. Trust
can be established with an arbitrary number of storage-side re-encryption workers, that
we simply denote to as workers in the following.

Figure 6.1 illustrates the methodology for trust establishment. A higher trusted certify-
ing authority (CA) is being used as a point of trust for both administrators and workers.

In a first step, the administrator authenticates its public key, signed by the CA. Upon
the successful verification by using the CA’s public key, workers retain the administrator
public key with the scope of accepting re-encryption requests exclusively signed by this
administrator key.

In a second step, each worker produces two items : (1) a digest of the code and data
instantiated in the SGX enclave (commonly refereed to as a quote in the SGX literature)
and (2) the public component of an asymmetric key generated inside the enclave. The
worker signs both the digest and the enclave public key using the fused SGX key sgx-key.
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In the third step, the administrator contacts the Intel Attestation Service and validates
that the signature of the quote is indeed a genuine SGX key.

In the final step, the administrator provides to the enclave the long term rsky-key. To
do so, the administrator encrypts rsky-key using the public key sent by the enclave, and
signs it using the administrative private key. Upon receiving the ciphertext, the workers
decipher rsky-key after validating the administrator signature. To persist the rsky-key,
enclaves use the standard sealing mechanism offered by SGX [Costan and Devadas, 2016]
(see Section 2.2).

6.2 Operations Design

Client Write with REV-SKY

In the following we describe the protocol that the data owner follows to write a file
to the untrusted storage, such that REV-SKY can be used to implement active revocation
operations.

The core of the solution is to employ an All or Nothing Transform together the super-
encryption of some of the resulted blocks by using the group key gk.

LetD represent an input data file. The write operations proceeds by splittingD in equal
size blocks d0,d1, ...,dn . An AONT follows, by generating a random symmetric key, that we
refer to as the File Key F K . This key is used for encrypting each block of D:

(c0, c1, ... cn) = (EF K (d0), EF K (d1), ... , EF K (dn)) (6.1)

The hashes of the resulted ciphertexts are then chained together with F K using succes-
sive exclusive-or operation, forming a tail packet, that we refer to as metadata:

metaF K = h(c0)⊕h(c1)⊕ ...⊕h(cn)⊕F K (6.2)

Re-encryption 
Layer

sgx

sgx
Administrator

Intel Att. Service

Certificate Auth.

Cloud Storage

sgx

...

Figure 6.1 – REV-SKY trust establishment protocol.



64 CHAPTER 6. REV-SKY: PRACTICAL REVOCATION WITH TEE

One can notice that possessing all ciphertexts (c0, ...,cn) and metaF K allows deriving
F K . In order to prevent the finding of the entire set of hashes unless gk is known, we
randomly choose a subset of ciphertext blocks, and super encrypt them by using gk. We
call these blocks the super blocks:

(sei , ..., sek ) = (Egk(ci ), ...,Egk(ck )) (6.3)

Non-super blocks are using the single encrypted version obtained in Equation 6.1. We
push to the cloud storage the super blocks, the metadata packet, and the non-super blocks.
When a re-keying happens, only the super blocks need to be re-encrypted from gk to gk'.

Our scheme is so far secure against malicious users who are not in the possession of gk.
However, knowing the indices of super blocks (i , ...,k in Equation 6.3) prior to downloading
a file allow easily implementing a pre-provisioning attack by selectively downloading a ver-
sion of these blocks and use this stored version to access the file after their re-encryption,
by deriving F K . To protect against such attack, and make sure that the power of malicious
users is not greater than with full-file re-encryption, we constrain the active users to down-
load an entire file before being able to find out which of the file’s blocks actually are super
blocks. We employ for this purpose a second AONT that allows only revealing the indices
of the super blocks once the whole file has been downloaded, but not before. Let SK be a
symmetric key, used for encrypting the indices of the super blocks:

metaindex = ESK (i , ...,k) (6.4)

The second AONT xor-chains SK together with the hashes of the blocks that were stored in
the cloud:

metaSK = h(c0)⊕ ...⊕h(sei )⊕ ...⊕h(sek )⊕ ...⊕h(cn)⊕SK . (6.5)

To allow access to metaSK only by valid group members, we over-encrypt it using gk.
Only the super blocks are subject to re-encryption when gk changes to gk'. This means

that a re-encryption worker needs to know the indices of these super blocks. Rather than
requiring a worker to perform the reverse AONT, requiring a processing cost linear in the
file size, we use a fact-track, constant-cost alternative. We ask that during the REV-SKY

write operation, the key SK that reveals the indices be encrypted by the public key asso-
ciated with rsky-key. Re-encryption workers are in the possession of the corresponding
decryption key, provided at the end of trust establishing protocol (Subsection 6.1). There-
fore, a new metadata package is constructed:

metasgx = AErsky-pub-key(SK ) (6.6)

Finally, the metadata packages are appended to the stored content on the cloud. Fig-
ure 6.2 illustrates the complete REV-SKY write procedure with two super blocks for a file.
Steps 1 to 3 correspond to the first AONT. Step 4 performs the super encryption of two
blocks. Step 5 encrypts the super block index, and step 6 implements the second AONT.
Step 7 asymmetrically encrypts the access to super block indices, while step 8 lists the
packages that are copied to the cloud.
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Figure 6.2 – REV-SKY client writing a file to the storage.

Client Read with REV-SKY

We describe the protocol a user needs to follow for reading a file from the cloud storage.
We consider that this user is a legitimate group member in possession of gk. We assume
that the data owner provides the user with the list of files and corresponding blocks when
registering it to a dataset group.

Once all the blocks for a file are downloaded from the cloud, the user decrypts metaSK

by using gk. Next, the client performs the reverse of the second AONT in order to find SK ,
the key that allows the decryption of the indices of super blocks. Upon knowing the indices
of super blocks, the client can decipher them by using gk. The super blocks plaintext is
used with the rest of the blocks for the reverse of the first AONT, which reveals F K and
allows decrypting the file plaintext.

REV-SKY Re-encryption Protocol

Active revocation can take place as soon as re-encryption workers are validated and
provisioned with rsky-key, which they can use for determining and accessing super-
blocks. Re-encryption is performed in parallel over a number of workers. As the number of
workers increases, the probability of a crash of one of the workers also increases. The dis-
tributed re-encryption must therefore tolerate faults and ensure the completeness of the
operation, i.e., that all files’ super blocks have been properly re-encrypted with the new
key. REV-SKY builds on a replicated coordination kernel (Apache ZooKeeper in our imple-
mentation) to assign and monitor the completion of the distributed re-encryption tasks.

The re-encryption protocol is triggered by the data owner (i.e., administrator), who
starts by splitting the list of files shared by the group into batches, forming re-encryption
tasks. These tasks are orchestrated by a fault-tolerant master process built over the coordi-
nation kernel. Each task is associated with metadata, including the values of keys gk and
gk' encrypted with the provisioned REV-SKY key, only allowing the attested enclaves to
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access plaintext keys:

metatask = Sadmin−key(AErsky-pub-key(gk,gk')) (6.7)

Next, workers receive the task metadata from the master. They check its authenticity,
i.e., that it has been created by an administrator, by validating its signature. They decrypt
keys gk and gk' as

gk,gk'= ADrsky-key(Vadmin−key(metatask)) (6.8)

At this point the worker starts processing the task. For each file in the task, the worker
fetches the index metadata (metasgx and metai ndex).

In order to determine the indexes of the super blocks, it calculates SK (Equation 6.9)
and uses it to symmetrically decrypt the index (Equation 6.10):

SK = ADrsky-key(metasgx) (6.9)

(i , ..., j ) = DSK (metaindex) (6.10)

Knowing the super blocks identity, a worker fetches these blocks for processing within
the enclave. It decrypts each super-block by using the old gk (Equation 6.12) and encrypts
it again using the new key gk' (Equation 6.12):

(ci , ...,ck ) = (Dgk(sei ), ...,Dgk(sek )) (6.11)

(sei , ..., sek ) = (Egk'(ci ), ...,Egk'(ck )) (6.12)

Moreover, as the hashes of super blocks are changed, metaSK needs to be updated, so
that the clients can perform an AONT to find SK . Therefore, metaSK is downloaded from
the storage to the enclave, and decrypted by using gk. Old digests are hashed out from
metaSK while the new ones are hashed in, by executing Equation 6.13 twice, before and
after the super blocks re-encryption. Finally, metaSK is encrypted by gk' and pushed to
the storage:

metaSK = metaSK ⊕h(sei )⊕ ...⊕h(sek ) (6.13)

The worker finally pushes back the re-encrypted super blocks to the storage. It then
signals task completion by notifying the master using the coordination kernel.

The master process monitors the progress of tasks by the workers, and can re-assign
tasks of failed workers to alive ones if necessary. This may result in some duplicated work
but does not bear risks of data corruption. A failure of the master is mitigated by the spawn
of a new master, who recovers from the state stored in the replicated coordination ker-
nel – this follows the classical master-worker task distribution described by Junqueira and
Reed [Junqueira and Reed, 2013].

We note that a balance of the load between workers is easier to obtain than with full
re-encryption. The revocation requires re-encryption of a fixed number of super blocks
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per file, and the super block identifiers are available to the enclave. This results in a fixed
cost per file, regardless of its size, allowing balancing the load by balancing the number of
files in the assigned tasks. Differences in execution speed between workers and resulting
imbalances could be addressed by implementing a form of work stealing, which we leave
to future work.

Size and Number of Super Blocks

The number of super blocks, and the fixed size of all blocks, are parameters that can be
set by the data owner.

As we detail in the following security analysis Section 6.4, a single super block is actu-
ally sufficient if we consider the attacker’s benefit expectation in terms of accessible files
after revocation. A malicious user implementing a pre-provisioning attack cannot gain
access to more files in expectation than a malicious user downloading, decrypting and
saving complete files for later use. Using more super blocks only increases the difference
between these two strategies, in favor of the latter. However, using more super blocks is a
way to increase the cost of the pre-provisioning attacks, requiring more storage space per
pre-provisioned file. Using more super blocks increases the cost of the re-encryption at
the server side, and marginally increases the cost of the decryption at the client side. Our
recommendation is that in the majority of cases, a single super block should be sufficient.

The size of the blocks is a compromise between the costs imposed at the cloud storage
side (and, ultimately, on the data owner paying for virtual machines), and the performance
observed by the clients when accessing the store. A small block size reduces the cost of re-
encryption on the server side, but also results in more I/O operations and calls to the cloud
storage for users, which often limits bandwidth efficiency.

6.3 Implementation

Our system architecture (see Figure 6.3) relies on Apache ZooKeeper to coordinate the
distributed re-encryption and on Apache Cassandra for the cloud storage. The clients are
considered to communicate directly with the storage cluster, while the administrator com-
municates with the ZooKeeper service.

The Cassandra (v3.11.3) ring stores both files metadata and blocks in a structured man-
ner in two tables linked through a foreign key. The cluster is deployed over 4 physical ma-
chines. It is configured to use one replica per node and two seed nodes. The data directory
of each Cassandra node points to a folder on the local SSD drive, with an available capabil-
ity of 2 TB.

Our ZooKeeper (v3.4.12) deployment relies on a single master node. A production de-
ployment would employ several replicated nodes. The distributed master-slave orchestra-
tion uses a hierarchy of four types of ZooKeeper znodes. The workers znodes store the
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Figure 6.3 – REV-SKY System Architecture.

identifiers of workers that have an active connection to the master. The tasks znodes
store the re-encryption batches created by the administrator. The assign znodes are filled
by the master and contain the assignment of re-encryption batches for each worker. Fi-
nally, the status znodes are filled by re-encryption workers signaling the completion of a
batch. The administrator watches these last znodes and decides of a revocation termina-
tion when all initial tasks batches have positive termination status. To tolerate failures, the
implementation relies on ZooKeeper exceptions in combination with notifications of state
changes signaling failure codes.

We utilize AES-256 as our symmetric encryption operation, SHA-256 as the one way
function used for the All or Nothing Transform, and asymmetric RSA encryption with OAEP
padding with keys of 4,096 bits.

All machines hosting re-encryption workers have CPUs supporting Intel SGX. The re-
encryption operation utilizes a single ecall while four ocalls are utilized for fetching and
writing file metadata and blocks. We leverage the user-check attribute for data blocks
that pass the enclave border, as they are already in ciphertext form. This optimizes en-
clave transitioning time. We use the sgx-ssl library to perform cryptographic operations
within an enclave, while the clients rely on openssl library. The workers make use of the
asynchronous version of C bindings for ZooKeeper.

6.4 Security Analysis

A malicious user implementing a pre-provisioning attack will seek to maximize its gain,
defined as the number of files it will have access to past its revocation. The baseline strat-
egy is the download of entire files to local storage during the malicious user’s membership
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period. To be of interest, the pre-provisioning attack must allow accessing more files after
revocation for the same bandwidth budget.

Metadata packages are small in size (a few Bytes). We consider that these are all pre-
provisioned by the malicious user. The interest of the attacker is therefore to pre-provision
the super blocks prior to their re-encryption.

It is not possible to obtain the indices of the super blocks without an access to all blocks,
thanks to the second All-or-nothing Transform. The only possible strategy is to randomly
download a subset of the blocks, in the hope that these will contain all the super blocks and
allow accessing the file past revocation by downloading missing regular blocks. We analyze
how much blocks of data an attacker needs to pre-provision on average in order to fetch
the super blocks.

Theorem 3. Let s > 0 be the number of super-encrypted blocks out of a total of n blocks
composing a file, with s ≤ n. Then the average number of block downloads necessary for an
attacker to obtain all s super blocks is:

A(n, s) = s

s +1
(n +1) (6.14)

Proof. We prove by induction. We proceed from the base case n = 1, therefore s = 1.
Clearly, the attacker needs to download the single composing block that happens to be
a super block (i.e., A(1,1) = 1).

We prove next the inductive step for n +1, i.e. :

A(n +1, s) = s

s +1
(n +2) (6.15)

When one extra non super block is added, one falls in two outcomes: with probability
s

n+1 there are s−1 out of n blocks left, and differently with probability n+1−s
n+1 there are left s

out of n blocks. Therefore:

A(n +1, s) = s

n +1
(1+ A(n, s −1))+ n +1− s

n +1
(1+ A(n, s))

= 1+ s

n +1

s −1

s
(n +1)+ n +1− s

n +1

s

s +1
(n +1)

= 1+ (s −1)+ (n +1− s)

s +1
s = s

n +2

s +1
= A(n +1, s)

The inductive step for s +1 is omitted as it is proved similarly.

We zoom within the effect of Theorem 3 when using a relatively small number of super
blocks. Intuitively, the values of A grow fast for small consecutive values of s (e.g., 1, 2, and
3), as the coefficient of (n +1) goes down from 1

2 to 2
3 and to 3

4 . This means that when one
super block is utilized the attacker would roughly have to download half of data, for two
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Figure 6.4 – Analysis of a 64 blocks file case for which an attacker tries to provision super
blocks.

blocks: two thirds, for three: three fourths and so on. We illustrate this effect in Figure 6.4a
using an example of a file composed from 64 blocks. When utilizing just a single super
block the attacker needs to download in average 32.5 blocks. With just few increases in
the number of super blocks the average number of downloads increases quickly to values
approaching 60 out of 64 blocks when utilizing 12 blocks. Therefore, with just few incre-
ments in the complexity of the system to put up with, the attacker needs to download and
increasingly larger number of blocks to stand a chance of owning useful data comprising
all super-blocks. This effect can be concretely observed by illustrating the first derivative
A(n, s)dn., a rate of change that is inverse proportional to a quadratic number of super
blocks (observed with dashed line in Figure 6.4a).

In conclusion, opting for a small number of super blocks can already protect against
attackers that would have to inefficiently download large volumes of data. Additionally,
small increases when utilizing a small number of super blocks has large implications on
the number of blocks an attacker needs to pre-provision.

We generalize now our analysis by considering the total number of block downloads
that the attacker is bounded to.

Theorem 4. Let t be the number of block downloads that an attacker is bound to, n the total
number of blocks and s the number of super blocks, where s ≤ t ≤ n. Then the probability
that all s blocks were fetched by the attacker is :

P (n, s, t ) = t ! (n − s)!

n! (t − s)!
(6.16)
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Proof. Denote by o = n − s the number of ordinary (i.e., not super) blocks. We notice that
the probability of discovering all the super blocks is equal to the probability of consecu-
tively discovering only ordinary blocks. Therefore:

P (n, s, t ) = n − s

n
· n − s −1

n −1
· ... · n − s −o +1

n −o +1

= (n −o)! (n − s)!

n! (n − s −o)!
= t ! (n − s)!

n! (t − s)!

Figure 6.4b shows the value of P for the same case of a file of 64 blocks. We consider up
to 5 super blocks. This figure actually allows estimating the expectation of the number of
accessible files after revocation, for a given fraction of blocks downloaded at random. With
a single super block, downloading 50% of the blocks yields an expectation of 0.5 available
files. Only with 100% of the blocks can the attacker guarantee an expectation of one avail-
able file, falling back to the arguably simpler strategy of downloading entire files in the
clear prior to revocation. Adding more super blocks greatly decreases the effectiveness of
this partial random download attack: the expectation of accessible files when download-
ing 75% of the blocks of one file is actually 0.25 file, when using five super blocks. In this
case, the strategy of downloading entire files is clearly superior to a pre-provisioning attack,
making the latter ineffective.

6.5 Closing Remarks

This chapter introduced REV-SKY, a practical and efficient approach to active data revo-
cation. Active revocation prevents further access to both new and existing data by revoked
users. REV-SKY offers active revocation at a fraction of the cost of an implementation using
full re-encryption. It splits files in fixed-size blocks and only needs to re-encrypt a fixed
small subset of these (typically just one), called super blocks, upon a revocation. The use
of All-or-Nothing Transforms effectively prevents pre-provisioning attacks and guarantees
the same level of security as full re-encryption. REV-SKY implements efficient and secure
re-encryption operations directly at the storage side by leveraging the availability of TEE.

As pointed by our performance evaluation (see Section 7.2.3), REV-SKY can prevent
further access to a dataset of 132 TB in only 11 minutes using 5 modest servers, compared
to the 8.6 days required for full re-encryption.

Future extension of REV-SKY are envisioned by considering a strengthened threat
model than honest-but-curious for the cloud storage. For example, the storage can lunch
a rollback attack by serving outdated content to the re-encryption workers. Such an at-
tack can be mitigated by administrators aggregating proofs of correct data re-encryption or
differently by using out-of-the-shelf SGX rollback prevention mechanisms [Matetic et al.,
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2017]. Moreover, in a strengthened threat model, one can consider the cloud colluding
with malicious users, communicating to them metadata regarding the super blocks. Such
a threat can be addressed by enabling re-encryption workers with Oblivious RAM [Stefanov
et al., 2013] techniques, already integrated with Intel SGX [Ahmad et al., 2018]. However it
is unclear if such a construction provides the necessary efficiency for both data access and
re-encryption operations.



CHAPTER

7
Performance Evaluation

This chapter presents a performance evaluation of our three unique contributions
CON-SKY, ANO-SKY, and REV-SKY. We first benchmark the functionalities in iso-
lation (micro-benchmarks) and then within end-to-end real life scenarios (macro-
benchmarks).

Results highlight that

— CON-SKY can performs membership changes 1.2 orders of magnitude (OoM)
faster than the traditional approach of Hybrid Encryption (HE), producing group
metadata that are 3 OoM smaller than HE.

— ANO-SKY cryptographic scheme is 3 OoM better than state-of-the-art ANOBE,
and an end-to-end system encapsulating ANO-SKY can elastically scale to sup-
port groups of 10,000 users while maintaining processing costs below 1 second.

— REV-SKY outperforms active revocation on complete files by up to 3 OoM on ex-
isting industry workloads.

7.1 Micro-benchmarks

Micro-benchmarks isolate and measure the performance of specific functionalities. We
evaluate each contribution CON-SKY, ANO-SKY, and REV-SKY within a separate dedicated
sub-section. The choice of separating the benchmarks is due to the different model and
architectural constraints that each contribution implements.

7.1.1 CON-SKY

CON-SKY experiments are performed on a quad-core Intel i7-6600U machine, having
a processor at 3.4 GHz with 16 GB of RAM, using Ubuntu 16.04 LTS. We benchmark the

73
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Figure 7.1 – CON-SKY Bootstrap Performance

CON-SKY system from two different perspectives first by measuring the IBBE-SGX opera-
tions performance in isolation, and then by comparing them to Hybrid Encryption (HE).
We chose to compare IBBE-SGX only to HE as the latter already shows better computa-
tional complexity than IBBE (see Figure 2.3a).

First, we evaluate the performance of the bootstrap phase. This phase consists of set-
ting up the system (Figure 7.1a) and generating secret user keys (Figure 7.1b). One can
notice that the setup phase latency increases linearly per partition size, with a growth of
1.2s per 1,000 users. In contrast, extracting secret user keys gives an average throughput of
764 operations per second, independent of the partition size.

Next, we evaluate the behavior of IBBE-SGX operations compared to HE. Figure 7.2
displays the computational cost for operations of creating a group, removing a user from
a group, and the storage footprint of the group metadata. One can notice that all three
operations are better than their HE counterparts by approximately a constant factor. The
computational cost of create and remove operations of IBBE-SGX is on average 1.2 orders
of magnitude faster than HE. Compared to the original IBBE scheme, IBBE-SGX is better
by 2.4 orders of magnitude for groups of 1,000 users and 3.9 orders of magnitude for one
million users (see Figure 2.3a). Storage-wise, IBBE-SGX is up to 3 orders of magnitude
better than HE. Moreover, right column plots of Figure 7.2 zoom into the performances
of IBBE-SGX create and remove operations, and the storage footprint respectively, when
considering different sizes of partitions. One can notice that the remove operation takes
half the time than the create operation. Considering the storage footprint, the degradation
brought by using smaller partition sizes is fairly small (e.g., 432 vs. 128 kilo-bytes for groups
of 1 million members).

The cumulative density function (CDF) of latencies for adding a user to a group is
shown in Figure 7.3a. The operation has a constant time complexity for both IBBE-SGX
and HE. As the add operation of IBBE-SGX can take two paths, either adding a user to an
existing partition or creating a new one if all the others are full, the plot points the differ-
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Figure 7.2 – CON-SKY evaluation of create and remove operations and storage footprint, by
varying the partition size for IBBE-SGX (1000, 2000, 3000 and 4000).

ence between the two at the CDF value of 0.8. Moreover, the HE add operation is generally
twice as fast as IBBE-SGX.

The client de-enveloping performance is shown in Figure 7.3b. The de-enveloping op-
eration, like the add operation, is faster within the HE approach than IBBE-SGX. The dif-
ference of 2 orders of magnitude is caused by the quadratic cost of the IBBE-SGX opera-
tion. We argue that a slower de-enveloping time for IBBE-SGX can be acceptable in prac-
tice. First, the performance is overshadowed by the slow cloud response time necessary for
clients to download the group envelope that always precedes a de-enveloping operation.
Second, the cost remains bounded to a partition size, independent on the number of users
in the group.
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Figure 7.3 – CON-SKY performance of the adding a user to a group and de-enveloping op-
erations. Continous red line IBBE-SGX. Dashed line HE.

7.1.2 ANO-SKY

ANO-SKY experiments run on a cluster of 5 SGX-enabled Dell PowerEdge R330 servers,
each having an Intel Xeon E3-1270 v6 processor and 64 GB of memory. Additionally, we use
3 Dell PowerEdge R630 dual-socket servers, each equipped with 2 Intel Xeon E5-2683 v4
CPUs and 128 GB of RAM. One of the latter machines is split in 3 virtual machines to han-
dle the roles of Kubernetes master, Minio server and benchmarking client (when a sec-
ond client is needed). SGX machines use the latest available microcode revision 0x8e, and
have the Hyper-threading feature disabled to mitigate the Foreshadow security flaw [Bulck
et al., 2018]. Communication between machines is handled by a Gigabit Ethernet network.
When error bars are shown, they represent the 95% confidence interval.

We first isolate and measure the performance of the underlying cryptographic prim-
itive of ANO-SKY. We employ the ANOBE scheme defined by Barth et. al. [Barth et al.,
2006] (BBW ) as a baseline. Our implementation of BBW uses an elliptic curve integrated
encryption scheme as the IND-CCA2 public key cryptosystem used by the original scheme.
Both cryptographic schemes key materials (i.e.,, keys, curve) are chosen to meet 256 bits of
equivalent security strength [Barker et al., 2007]. Moreover, we implement the efficient de-
cryption of BBW , as suggested in the paper by relying on the hardness of the DH problem,
however in the context of much faster elliptic curves (ECDH). As the content encryption is
similarly implemented for the two schemes, we choose to only measure and present the
key enveloping and de-enveloping performance. We consider that the user keys are avail-
able at the time of the calls.

Table 7.1 shows the speed of cryptographic key enveloping and de-enveloping by re-
porting the number of group members handled per second. If BBW can envelope groups of
only 330 members per second, ANO-SKY can handle 3.7 orders of magnitude (OoM) more
users per second. The considerable speed difference is justified by the performance gap
between public key (used by BBW ) and symmetric encryption (used by ANO-SKY) primi-
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Table 7.1 – Throughput comparison (i.e.,, group size per second: |G|/s) of ANO-SKY

cryptographic scheme and BBW [Barth et al., 2006], isolating enveloping (Env.) and de-
enveloping (Dnv.) operations, in the standard and efficient decryption (ED) mode.

Env. [|G|/s] Dnv. [|G|/s] Env.ED [|G|/s] Dnv.ED [µs]

BBW 3.3×102 5 ×103 3 ×102 <4
ANO-SKY 1.9×106 2.5×106 1.2×106 <4

Faster by 3.7 OoM 2.6 OoM 3.6 OoM n/a

tives. Likewise, a performance increase of 2.6 OoMs is observed for the de-enveloping op-
eration. BBW provides an efficient decryption mode that can achieve fast decryption times
(less than 4 µs for the highest tested group size), but with a high cost of only 300 group
size envelopings per second. ANO-SKY is able to support the same efficient decryption
speed, by performing 1.2 million group size envelopings per second, a gain of 3.6 OoMs
compared to BBW . Furthermore, as explained in §6.3, ANO-SKY produces a ciphertext of
60 B and 88 B respectively for the standard and efficient decryption modes, per each group
member, compared to 126 B and 154 B bytes per member for BBW .

We further evaluate the throughput of operations performed by administrators when
varying the number of ACCESSCONTROL instances. Requests are distributed among the in-
stances of ACCESSCONTROL by exposing a service in Kubernetes. Fig. 7.4 shows our results.
The scalability of adding a user to a group or revoking its rights is limited, as these op-
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Figure 7.4 – ANO-SKY throughput achieved by ACCESSCONTROL: (i) adding or revoking
users to/from groups of various sizes, and (ii) creating users.
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Figure 7.5 – ANO-SKY throughput of enveloping a message for groups of various sizes with
varying instances of the ACCESSCONTROL micro-service.

erations require to perform one read-modify-write (RMW) cycle to check and update the
signature of the group document. The larger the group, the more the operation takes time
as each signature encompasses every user within the group. This effect could be mitigated
by, e.g.,, batching multiple operations on a given group together. On the other hand, the
operation that creates users scales linearly with the number of ACCESSCONTROL instances,
allowing more than 5000 user creations per second with 10 instances.

Next, we evaluated the number of keys that can be included in an envelope per unit
of time, also when varying the number of instances of the ACCESSCONTROL service. A
close-to-linear trend can be observed according to number of instances in Fig. 7.5, showing
that this operation also benefits from horizontal scalability. With groups of 1000 to 10 000
members, the throughput ceases to increase with more than 7 instances as the MongoDB
backend becomes a bottleneck. For smaller groups, the performance is diminished due to
the overhead associated with each request (e.g.,, network connection, REST request, en-
clave transitions, etc.), although increasing the number of ACCESSCONTROL instances pro-
vides greater benefits. Additionally, we ran the same experiment with the indexing feature
turned on. For groups of 10 000 users, the throughput is reduced by 6 % to 26 %, having a
marginal impact on smaller groups where the performance mostly depends on fixed costs.

We also evaluated the latency of the enveloping operation by increasing the throughput
until saturation, again with indexing turned off and on. Looking at Fig. 7.6, we notice that
for groups which are larger than 100 users, latency increases linearly according to the group
size, while the saturation throughput decreases linearly.

To evaluate the performance of the WRITERSHIELD, we conduct two experiments. In
the first one, data written to the cloud is proxied through the TEE. In the second one, the
WRITERSHIELD is only used as a facilitator to obtain temporary access tokens for the cloud
storage, with write operations being proxied through an NGINX server in TCP reverse-
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Figure 7.6 – ANO-SKY throughput vs. latency plot of enveloping a message for groups of
various sizes.

proxy mode. In order to establish a baseline, we also wrote the data directly to the cloud
storage service, without any intermediary. Results are shown in Fig. 7.7. Looking at the bar
plot on the left-hand side, we notice that, for files of 1 kB and 10 kB the difference in perfor-
mance is negligible, whereas bigger files cause more performance degradation when using
the token feature. When the WRITERSHIELD is used to forward data instead (right-hand
side), we see that the throughput increases with the number of service instances until it
seems to plateau at about the same values as with the tokenized variant. For files of 1 MB,
adding WRITERSHIELD instances shows no benefit. This effect happens due to the satu-
ration of enclave resources acting as a TLS bridge between clients and the cloud storage
server. Overall, using tokens would be the most efficient approach, although in this case
the client would be responsible for using adequate proxies in order to hide its identity from
the cloud storage.

7.1.3 REV-SKY

REV-SKY is benchmarked on a cluster of 11 machines with 4-core Intel(R) Core(TM)
i7-7567U @ 3.50GHz CPU, and 32 GB of RAM. The machines run Ubuntu 16.04.3 LTS. We
consider the median of 10 successive executions for each operation. We do not present
standard deviations as these happen to be negligible in all considered experiments. We
use a single file of 522 MB, representing the median file size of the satellite images dataset
– used later for a macro-benchmark scenario (Figure 7.11a). We vary the block size from
256 KB to 4 MB. We vary the number of super blocks from 1 to 3. As a client comparison
baseline, we use a plain encryption scheme, in which similarly to REV-SKY files are split
into blocks, but where each block is encrypted using AES.

Figure 7.8a and 7.8b show the REV-SKY execution time for writing and reading data.
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Figure 7.7 – ANO-SKY throughput of writing data to the cloud storage in different ways:
directly (baseline), through a TCP proxy using a temporary token for authentication, and
through varying number of in-enclave WRITERSHIELD instances.

Both operations show nearly constant times for block sizes of 1 MB and larger. Figure 7.8c
illustrates that writing a file using REV-SKY induces a small overhead compared to a simple
encryption of each block. REV-SKY performs 1.11 times slower for writes when considering
a single super block of 256 KB. Similarly, Figure 7.8d shows the performance degradation
of REV-SKY when reading a file. Compared to a simple decryption of each block, REV-SKY

introduces a slowdown of 1.38 when considering a single super block of 256 KB. The per-
formance penalty of REV-SKY at the client side comes mostly from the use of hashing and
xor operations performed for the All or Nothing Transformations. There is however only a
negligible impact on memory and bandwidth usage for retrieving the file from the cloud
storage, as only a small metadata element is fetched in addition to the file’s blocks.

As a service provider comparison baseline, we compare REV-SKY against full re-
encryption, in which all blocks of the file are re-encrypted – directly at the provider side
within SGX. One should note the chosen baseline already improves over the possible worst-
case which is downloading all the blocks at owner side, re-encrypting them and pushing
the new ciphertexts to the cloud. Figure 7.8e presents the latency of the re-encryption op-
eration. One can notice that for each block size, the time increases nearly linearly with the
number of super blocks (with increments on the 10−2 scale).

Figure 7.8f shows the performance improvement of REV-SKY compared to a full re-
encryption. Our scheme is 100 times faster when considering a single super block of 4 MB
and up to 1,263 times faster with blocks fo 256 KB.

An important property of REV-SKY is that the revocation operation is independent of
the size of the file. Figure 7.8g shows the number of files that can be re-keyed per sec-
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Figure 7.8 – REV-SKY micro-benchmarks at client and storage provider side.
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ond using REV-SKY. The throughput ranges from 3.3 files per seconds when using 3 super
blocks of 4 MB to 40 files per second when using a single super block of 256 KB.

7.2 Macro-benchmarks

We evaluate now the performance of our three unique contributions in real life scenar-
ios. First, we use the access control traces of the Linux Kernel git repository to simulate
collaborative data exchanges over an untrusted hosting infrastructure. Then, to simulate
real life usage conditions for anonymous file sharing we leverage the well known Yahoo
Cloud Servicing Benchmarks (YCSB). Finally we test the practicality of revocation on large
satellite imagery and genomic data.

7.2.1 Access Control using Linux Kernel Git

To capture the performance of the CON-SKY’s IBBE-SGX scheme within a realistic sce-
nario, we decide to replay an access control trace based on the membership changes in the
version control repository of the Linux Kernel [Schmidt et al., 2017]. We derive the mem-
bership trace by considering the first commit of a user as the add to group operation. The
remove from group operation is represented by the user’s last commit. The generated trace
contains 43,468 membership operations that spawn across a period of 10 years, during
which the group size never exceeds 2803 users. We replay the generated trace sequentially
for both HE and IBBE-SGX by varying the partition size. We also capture the total time
spent by the administrator to replay the trace and the average user de-enveloping time.

Figure 7.9 displays the results. Considering the administrator replay time, IBBE-SGX
performs better when the partition size converges to the number of users in the group. Us-
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Figure 7.9 – CON-SKY : Measuring total administrator replay time and average user de-
enveloping time per different partition sizes using the Linux Kernel ACL data-set.
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ing a small partition size of 250 is almost twice as inefficient when compared to a partition
of 1000 users. Compared to HE replay time, IBBE-SGX is generally 1 order of magnitude
faster. On the other hand, de-envelope time for IBBE-SGX grows quadratically per parti-
tion size while in HE it remains constant. This evidentiates IBBE-SGX’s trade-off caused by
different partition sizes on the performances of membership changes and user decryption
time. A prior estimation of the maximal group size (2803 in our case) suggests the choice
of a small partition for practical use (such as 750), so that it can manifest satisfactory out-
comes both in terms of administrator performance and user de-envelope time.

7.2.2 Anonymous File Sharing with YCSB

We use YCSB [Cooper et al., 2010] to observe the behavior of ANO-SKY under different
usage conditions that are specific to data serving systems. We implemented an interface
layer to link the benchmarking tool to ANO-SKY. As our system is not capable of direct-
access writes, update operations are replaced by read-modify-write (RMW) operations. In
order to capture usage conditions, we run YCSB workloads A (update heavy), B (read heavy)
and C (read only), to which we add an insert-only workload. We consider files of 3 different
sizes from 1 KiB to 1 MiB. We simulate 100 000 operations across 64 concurrent users and
report upon the user operation throughput. At times, we add a second simultaneously-
running instance of YCSB that simulates 8 administrators doing group membership oper-
ations. The administrative operations are equally distributed between adding a user to a
group and revoking one, so that the size of the user database stays more-or-less constant.

0 50 100
0

1,000

2,000

3,000

4,000

5,000

U
se

r
th

ro
u

g
h

p
u

t
[o

p
s/

s]

0 50 100
0

1,000

2,000

3,000

Concurrent administrative operations [ops/s]

50% read / 50% RMW 100% read

95% read / 5% RMW 100% write

0 50 100
0

100

200

300

400
1 KiB files 100 KiB files 1 MiB files

Figure 7.10 – ANO-SKY : User throughput observed by our YCSB-based macro-benchmark,
with various file access patterns, varying file sizes, and addition of simultaneous adminis-
trative operations.
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Figure 7.11 – REV-SKY : File sizes distribution

Fig. 7.10 shows the results of our experiment. One can notice that the user through-
put is not influenced by concurrent administrative operations, as each type of operation
involves separate components of our architecture. For small files of 1 KB, an increasing
proportion of writes causes a degradation in performance from 4100 ops/s for read only to
628 ops/s for write-only workloads. With larger 1 MiB files, the difference is more nuanced,
with a throughput of 320 ops/s for the read-only workload compared to 155 ops/s for the
write-only workload. Therefore, the fixed costs are largely dominant when writing small
files (e.g.,, enveloping the file key), but are increasingly amortized for larger file sizes. We
can also observe that the throughput in B/s (i.e.,, multiplying the result in ops/s to the file
size) is largely superior for larger files, as we have already noticed in Fig. 7.7. In a nutshell,
we retain that the end-user experience offered by ANO-SKY is not influenced by concurrent
administrative operations, and that the overhead of the additional operations required for
writing become smaller for larger files.

7.2.3 Revocation of Satellite and Genomic Data

REV-SKY macro-benchmark uses 11 physical machines : one for the admin operations,
4 for the Cassandra cluster, one for the ZooKeeper master node and the remaining 5 for
the re-encryption workers. The machines profile is identical to the ones used in REV-SKY

micro-benchmark (Section 7.1.3).
We utilize data-sets specific to a satellite imagery provider and a genome processing

organization.
For the satellite imagery, we use images acquired by the European Space Agency’s satel-

lite Sentinel 2 [GoogleCloud, 2019]. The dataset contains more than four million images,
ranging in size from 2 MB to 1.4GB, with an average size of 454 MB and a median size of
522 MB (see Figure 7.11a). The satellite images dataset totals more than 2 PB of data.

For the genome processing organization, we use the data from the 1,000 genomes
project [IntenrationalGenome, 2019]. The dataset contains almost 500,000 files ranging
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Figure 7.12 – REV-SKY re-encryption scale-out

in size from a few KB to up to 600 GB, with an average of 1.3 GB and a median of 19 MB (see
Figure 7.11b). This accounts for a total of more than 650 TB of data.

We first benchmark the scale-out capabilities of REV-SKY when increasing the number
of worker nodes. We re-encrypt a sample of 4.3 TB of the satellite data set. This corresponds
to a total of 10,000 files. We use a block size of 256 KB, and a single super block per file. As
shown in Figure 7.12, the total time for the re-encryption of the data set decreases from 231
seconds for one single worker to 63 seconds when using 12 workers.

We now report the total time for an active revocation when varying the number of files
from 100 to 100,000. For both use cases, we generate sample (random) files that mimic the
file size distribution of the corresponding datasets, as described in Figure 7.11. Note that
we do not need to use the actual data and impose costs for downloading it to its providers,
as cryptographic operations have a cost that is independent of the actual content and only
the file size matters in our case. For REV-SKY, we use blocks of 256 KB with one single
super block and measure the total time for completing the revocation procedure. For full
re-encryption, we use blocks of 256 KB and compute the total time by multiplying the time
for re-encrypting one single block by the total number of blocks divided by the number of
workers. This corresponds to an estimation since we do not take into account the overhead
of I/O and coordination service, but it is sufficient to estimate the orders of magnitude. Fig-

ESA Sentinel 2 Genomic Data
Files Count REV-SKY Size full re-encryption Size full re-encryption

1,000 7.5 s 450 GB 42.2 m 1.3 TB 2.2 h

10,000 59 s 4.3 TB 6.7 h 13 TB 19.2 h

100,000 11.1 m 43.3 TB 2.8 d 132 TB 8.6 d

Figure 7.13 – Results of running REV-SKY on real workloads, using a single 256 KB super
block with 12 workers
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ure 7.13 shows that REV-SKY enables active revocation of 1,000 files in less than one minute
whereas it would take hours using full re-encryption. When considering large volume of
data, REV-SKY makes active revocation practicable in few minutes while it would take sev-
eral days otherwise.

7.3 Closing Remarks

The chapter presented the performance capabilities of our three systems CON-SKY,
ANO-SKY, and REV-SKY.

A supplementary benchmark option can be envisioned by integrating the three – cur-
rently disjointly evaluated – contributions into a single system. However, the complexity
of constructing such System of systems goes beyond the functioning of the benchmarking
mechanism and requires revisiting the architectural and design concepts of each contri-
bution for a thoughtful integration. We leave such task to future work.



CHAPTER

8
Conclusion

This final chapter concludes the thesis. We recapitulate the context and problem state-

ment, our unique constructions and future work directions. We present two additional

research projects that incorporate parts of the presented contributions.

8.1 Contributions Overview

Nevertheless the benefits, public cloud storage miss to give complete security guaran-
tees to end users for their stored data. To address the issue, users can chose to encrypt the
data before sending it to the cloud provider. However, encryption complicates the access
control to the data, reshaping it into a cryptographic access control mechanism – usually ad-
dressed by the management of the encryption key. State-of-the-art cryptographic access
control is not generally well suited for cloud specific workloads (Section 2.4) characterized
by large user bases, large data volumetry and as highly dynamic [Garrison et al., 2016]. This
thesis presented three unique contributions that use applied cryptographic constructs to
tackle efficient cryptographic access control for cloud specific workloads :

— CON-SKY enables efficient confidential access control by leveraging Trusted Execu-
tion Environments (TEE). CON-SKY relies on Identity Based Broadcast Encryption
(IBBE) for key management. IBBE is known to achieve small constant size meta-
data. By leveraging TEE, we change the assumptions of traditional IBBE and derive a
new scheme (IBBE-SGX) with faster computational time while maintaining the small
constant size metadata benefit. To further optimize user time, CON-SKY introduces
a partitioning mechanism for efficient key update. CON-SKY is 1.6 orders of magni-
tude (OoM) faster than state of the art while producing metadata that is 3 OoM less
(Section 7.1.1).

87
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— ANO-SKY enables not only confidential, but also anonymous access control, made
efficient by the use of TEE. ANO-SKY builds upon Anonymous Broadcast Encryp-
tion (ANOBE) and similarly to CON-SKY uses TEE to perform a change in assump-
tions, offering faster computational time and lower storage footprint. In addition,
ANO-SKY design accommodates multiple administrative TEE instances, enabling
scalability within a large organization deployment. ANO-SKY is 3 OoM better than
state-of-the-art ANOBE while an end-to-end system can handle groups of 10,000
users with a throughput of 100,000 key derivations per second per service instance
(Section 7.1.2).

— REV-SKY targets access revocation to large data-sets of considerable size through
a lightweight re-encryption mechanism. REV-SKY leverages All Or Nothing Trans-
form (AONT) and TEE to re-encrypt only portions of the data directly at the storage
provider side. For considerably large file sizes (Section 7.2.3) REV-SKY makes active
revocation practicable in few minutes while it would take several days otherwise.

Scientific Dissemination

The presented contributions were published within a number of international research
conferences : DSN [Contiu et al., 2018a], SRDS [Contiu et al., 2019b], and DAIS [Contiu
et al., 2017]. One scientific collaboration (see Section 8.3) appeared in Middleware [Da Silva
et al., 2019]. Worth mentioning publications in French National conferences : Com-
pas [Contiu et al., 2019a, 2018b], and RESSI [Contiu, 2019].

Industrial Impact

Scille is the laureate (July 2019) of a financing from the Region Île-de-France through a
PIA 1 project, partially secured for the integration of the original contributions of this thesis
within the PARSEC product [Innov’up, 2019].

8.2 Avenues for Future Work

We introduce next three general lines for extensions to this work. We kindly remind
the reader that additional in-depth future work items are also given within the Closing Re-
marks sub-chapters of each of the three contributions (Section 4.4 for CON-SKY, Section 5.7
for ANO-SKY, and Section 6.5 for REV-SKY).

Asymmetric TEE integration

We propose a new research axis for improving the performance of established crypto-
graphic schemes by an asymmetric integration of TEE. Cryptographic schemes often have

1. from the french programme d’investissements d’avenir : investments for the future.
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uneven (asymmetric) roles for the interacting actors (e.g., signer, verifier, prover). We pro-
pose therefore the adaptation of cryptographic schemes with TEE only for the minimal set
of roles. Contrary, a symmetric integration of TEE means that all the actors in the scheme
posses TEE. The same idea of asymmetric TEE integration is underlying the change of
assumptions of CON-SKY and ANO-SKY, in which only the enveloping operation is out-
sourced to TEE but not the de-enveloping one. Few examples that could similarly benefit
from such an integration are : (1) Attribute Based Encryption (ABE) [Bethencourt et al.,
2007] could chose to outsource either the encryptor or decryptor to TEE; (2) Group Signa-
ture Schemes [Ateniese et al., 2000] – either the signer or the verifier; (3) Zero-Knowledge
Proofs [Rackoff and Simon, 1991] – either the challenger or the prover. Off course, such
assumption changes need to be justified by real usage scenarios.

Blockchain

Blockchain like technologies have shown adoption for strengthening the dependability
and security guarantees of systems running in untrusted environments. In such lines, our
group sharing system could benefit from blockchain in many ways. First, we can employ
decentralized ledgers to guarantee traceability for all access control operations, certifying
that a user had certain capabilities at a given time 2. Second, we can decentralize trust over
many administrative agents who need to decide together whether to take an administrative
action (e.g. add or remove members). Third, blockchain tokens could be utilized as an
incentive for end-users to provide local storage to a confidential distributed storage system,
eliminating the necessity of a cloud provider.

Filesystem Integration

A third axis of research is the integration of the presented cryptographic constructs
in a full fledged file system backed by cloud storage. Such systems – notably illustrated
by SCFS [Bessani et al., 2014] – require addressing many system challenges and not only
key management. First, one needs to bridge the gap between eventual consistency usu-
ally supported by cloud providers and strong consistency required by file systems. Sec-
ond, an efficient synchronization mechanism needs to keep up-to-date the data shared
among end-users, probably through a confidential publish-subscriber mechanism [Pires
et al., 2016]. Third, in certain usage conditions the data volume can easily become a bot-
tleneck. As such, one might consider an incremental delta-changes mechanism enabled
with confidentiality. Otherwise, secure de-duplication [Li et al., 2016a], garbage collec-
tion [Bessani et al., 2014], or compression enabled encryption [Zheng et al., 2017] could be
envisioned to lower the storage cost.

2. If anonymity is desired, traceability can be antagonic to privacy - unless if traceability is performed in
a zero-knowledge manner, probably using TEE capabilities.
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8.3 Scientific Collaborations

The author is part of two additional scientific collaborations that incorporate certain
aspects introduced in this thesis :

1. Privacy-Preserving Edge-Assisted Video Streaming using TEE [Da Silva et al., 2019].
Quality of experience (QoE) of video streaming can benefit from aggregating provisioned
content at edge peers. However, relying on edge peers requires protecting both the identity
and viewing preferences among end users. Besides obfuscating video requests, the solu-
tion makes use of Trusted Execution Environments (TEE). TEE enabled clients are attested
by the mechanism discussed in Sections 4.1.1 and 5.2 and provisioned with long term se-
crets. Furthermore, renewing the provisioned secrets can be efficiently performed through
a cryptographic access control mechanism, CON-SKY or ANO-SKY depending on desired
security guarantees.

2. Improving Tor dependability using TEE. Tor enables anonymous communication by
routing a multi-layer package (called onion) through many nodes. Each node on the route
only understands one layer of the onion. Whenever a route fails, the process restarts with
a new onion. The proposed solution leverages TEE to re-build onions on-the-fly and re-
sume the travel with a newly crafted terminating route. The solution makes use of our TEE
attestation and access control mechanisms.
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