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Vincent Poor

Professeur, Princeton University Rapporteur

Pierre Fouilhoux
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Achille, Lamine, Ludovic, Fabio, Gérard, Fabien, Dimitrios, Alonso, Marco, Anne,

François, Elie, Nidhi, Lorenzo, for their support and the innumerable interesting

discussions we had. My thanks also go to my good friends, Guillaume, Fabien,
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Abstract

Non-orthogonal multiple access (NOMA) is a promising technology to increase the

spectral efficiency and enable massive connectivity in future wireless networks. In

contrast to orthogonal schemes, such as OFDMA, NOMA can serve multiple users

on the same frequency and time resource by superposing their signal in the power

domain. One of the key challenges for radio resource management (RRM) in NOMA

systems is to solve the joint subcarrier and power allocation (JSPA) problem.

In this thesis, we present a novel optimization framework to study a general class

of JSPA problems. This framework employs a generic objective function which can

be used to represent the popular weighted sum-rate (WSR), proportional fairness,

harmonic mean and max-min fairness utilities. Our work also integrates various

realistic constraints. We prove under this framework that JSPA is NP-hard to solve

in general. In addition, we study its computational complexity and approximability

in various special cases, for different objective functions and constraints.

In this framework, we first consider the WSR maximization problem subject to

cellular power constraint. We propose three new algorithms: Opt-JSPA computes

an optimal solution with lower complexity than current optimal schemes in the

literature. It can be used as an optimal benchmark in simulations. However, its

pseudo-polynomial time complexity remains impractical for real-world systems with

low latency requirements. To further reduce the complexity, we propose a fully

polynomial-time approximation scheme called ε-JSPA, which allows tight trade-offs

between performance guarantee and complexity. To the best of our knowledge, ε-

JSPA is the first polynomial-time approximation scheme proposed for this problem.

Finally, Grad-JSPA is a heuristic based on gradient descent. Numerical results

show that it achieves near-optimal WSR with much lower complexity than existing

optimal methods.

As a second application of our framework, we study individual power constraints.

Power control is solved optimally by gradient descent methods. Then, we develop



Acknowledgments

three heuristics: DGA, DPGA and DIWA, which solve the JSPA problem for

centralized and distributed settings. The advantage of the distributed approach

compared to the centralized one is that it reduces the computational complexity and

requires only local information. This can be used to reduce the control signaling

overhead in uplink systems for example. The downside is that the distributed power

control achieves suboptimal sum-rate performance. We prove that such a distributed

problem is a concave game and it has a unique Nash equilibrium. The performance

and computational complexity of DGA, DPGA and DIWA are compared through

simulations.
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Chapter 1

Introduction

1.1 Context

The fifth generation of cellular network technology (5G) is now becoming a reality.

It is expected to support three usage scenarios, each with different requirements (see

Figures 1.1 and 1.2). First, Enhanced Mobile Broadband (eMBB) is expected to

improve the user experience, in particular for video streaming, virtual reality and

augmented reality applications. It allows peak data rates of up to 20 Gbps, a 1000-

fold increase in the system’s capacity, as well as improved mobility management

and energy/spectrum efficiency. Secondly, Ultra Reliable Low Latency Communi-

Figure 1.1: Key capabilities in different usage scenarios (source: [1, Figure 4])

14



Section 1.1. Context

cations (URLLC) support mission critical communications with strict requirements

on latency and reliability. Some use cases are: remote surgery, autonomous vehi-

cles and industrial automation [2]. Finally, Massive Machine Type Communications

(mMTC) deal with connecting a massive number of devices in a dense environment.

mMTC would enable Internet-of-Things (IoT) applications such as sensor networks,

smart homes, connected wearables and connected car. eMBB will be the first use

case implemented in 5G New Radio Phase 1 standards [3], while URLLC and mMTC

are expected to be introduced in Phase 2 [4].

Figure 1.2: 5G enables new capabilities beyond mobile broadband (source: [5,

Figure 1])

According to the International Telecommunication Union (ITU), the global mo-

bile traffic is estimated to grow at a rate of around 50% per year between 2020 and

2030 [6]. As shown in Figure 1.3, the global mobile traffic is estimated to increase

from 60 Exabytes (EB) in 2020 to 600 EB in 2025 and 5000 EB in 2030. We can

see that the traffic for video services and machine-to-machine communications will

both increase dramatically.

To meet the ever-increasing demand of wireless access and the constantly evolv-

ing requirements in terms of system capacity, data rates, massive connectivity and

energy consumption, in 5G and beyond mobile networks, advance in different tech-

nologies is needed. Since radio spectrum is scarce, it is of fundamental importance to

study how it can be used in the most efficient manner. As radio channel is broadcast

15



Chapter 1. Introduction

Figure 1.3: Estimations of global mobile traffic by service type from 2020 to 2030

(source: [6, Figure 9])

in nature, transmissions of different users inevitably interfere with one another. To

coordinate their transmissions, multiple access schemes are needed and have been

playing a major role in the designs of all the generations of mobile cellular networks.

Non-orthogonal multiple access (NOMA) is a promising technology to increase

the spectral efficiency and enable massive connectivity in future wireless networks.

In contrast to orthogonal schemes, such as orthogonal frequency-division multiple

access (OFDMA) adopted in 3GPP-LTE and also 5G New Radio Phase 1 stan-

dards [3], NOMA can serve multiple users on the same frequency and time resource

by superposing their signal in the power domain. At the receiver side, successive

interference cancellation (SIC) is applied to decode the superposed signals.

1.2 Motivation

One of the key challenges for radio resource management (RRM) in NOMA systems

is to jointly optimize the power control and subcarrier allocation. Indeed, careful

optimization of the transmit powers is required to control the intra-carrier interfer-

ence of superposed signals and maximize the achievable data rates. Besides, due

to error propagation and decoding complexity concerns [7], subcarrier allocation for

each transmission also needs to be optimized. This problem is called joint subcarrier

and power allocation (JSPA) and has been extensively studied in the literature.

JSPA problems can be divided in three categories depending on their objective.

First, utility maximization problems consist in maximizing a utility function of the

16



Section 1.3. Contributions and Structure of the Thesis

users’ data rates given limited power budget. Secondly, power minimization prob-

lems aim at minimizing the system’s power consumption subject to minimum data

rate requirements (also called QoS constraints) [8]–[10]. Finally, energy efficiency

problems combine the above two aspects and maximize the system’s throughput to

power consumption ratio [11]–[16]. In this thesis, we only consider utility maximiza-

tion problems.

Several algorithms have been developed to perform power control in various

systems and scenarios: Lagrange multiplier methods [13], [17]–[19], dynamic pro-

gramming [20], monotonic optimization based on the branch-and-bound princi-

ple [21], [22], fractional transmit power control (FTPC) [23]–[26] and waterfilling

algorithms [27]–[29]. Similarly, the subcarrier allocation has been optimized using

matching theory [28], [30]–[32], dynamic programming [20], as well as heuristic user

pairing strategies [13], [17], [26], [33]–[35]. What is lacking is a unified framework

within which researchers can derive common properties between many problems,

develop algorithms that work in general cases and study their computational com-

plexity.

Furthermore, because of JSPA’s complexity and intractability in general, opti-

mal algorithms proposed in papers [20]–[22] cannot run in a reasonable amount of

time in real systems. Hence, most solutions in the literature are heuristics with

no theoretical performance guarantee. For example, a common approach adopted

in [13], [17], [25], [26], [30], [33]–[36] and many other papers is to solve separately the

power control and subcarrier allocation problems, therefore achieving sub-optimal

results. In this context, sub-optimal algorithms with performance guarantees (e.g.,

polynomial-time approximations) can have a significant impact on the design of

RRM schemes. Finding such algorithms remains an open problem.

1.3 Contributions and Structure of the Thesis

With the aforementioned considerations in mind, we propose in this thesis a novel

optimization framework with the following aims:

❼ To provide a unified framework covering a large class of JSPA problems. Most

data rates maximization JSPA problems in the literature are included in our

framework. Indeed, we employ a generic objective function which covers most

utilities considered in the field of resource allocation. Furthermore, we consider

the basic power and SIC constraints arising from any NOMA problems.

17



Chapter 1. Introduction

❼ To improve the understanding of NOMA optimization problems. We study

which properties can simplify the problem (separability, convexity, knapsack

constraints, etc.) and which are the intractable structures (NP-hardness of

combinatorial problems, multi-dimensional matching, etc.).

❼ To develop new tools facilitating the algorithm design. For example, although

optimal solutions cannot be computed due to the problem’s NP-hardness,

we show that tight performance guarantees with controllable complexity can

be obtained by the use of polynomial-time approximations. The techniques

developed in this thesis will in turn allow to tackle efficiently more complex

problems in the future.

❼ To be general and flexible enough to accommodate new constraints and sce-

narios. For example, QoS constraints are not considered in this work but can

be added on top of the existing constraints.

This thesis is organized as follows. We define some mathematical notations,

present the system model and explain the principle of NOMA in Chapter 2.

In Chapter 3, we present the general optimization framework, which will be used

throughout this thesis to study various JSPA problems both in terms of compu-

tational complexity and algorithm design. It employs a generic objective function,

namely the weighted generalized mean of the data rates, which can be used to

represent the popular weighted sum-rate, proportional fairness, harmonic mean and

max-min fairness utilities. Our framework also integrates realistic constraints: First,

the cellular power constraint used in downlink systems to model the power budget

available at the base station. Then, the individual power constraints used in uplink

systems to model each user equipment’s power budget. Finally, the combinatorial

constraint which limits the number of superposed signals per subcarrier due to error

propagation and decoding complexity issues [7]. We prove under this framework that

JSPA is NP-hard to solve in general. In addition, we study its computational com-

plexity and approximability in various special cases, for different objective functions

and constraints.

In the large class of objective functions covered by our framework, the weighted

sum-rate (WSR) has received much attention as it can achieve various tradeoffs be-

tween sum-rate performance and user fairness. We consider the WSR maximization

problem subject to cellular power constraint in Chapter 4. We propose three new

algorithms, namely Opt-JSPA, ε-JSPA and Grad-JSPA. Opt-JSPA computes
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an optimal solution with lower complexity than current optimal schemes in the liter-

ature. It can be used as a benchmark for optimal WSR performance in simulations.

However, its pseudo-polynomial time complexity remains impractical for real-world

systems with low latency requirements. To further reduce the complexity, we pro-

pose a fully polynomial-time approximation scheme called ε-JSPA. It stands out by

allowing to control a tight trade-off between performance guarantee and complexity.

To the best of our knowledge, ε-JSPA is the first polynomial-time approximation

scheme proposed for this problem. Finally, Grad-JSPA is a heuristic based on

gradient descent. Numerical results show that it achieves near-optimal WSR with

much lower complexity than existing optimal methods.

In Chapter 5, we study the sum-rate maximization problem with individual

power constraints, as another application of our framework. We solve the power

control sub-problem by an optimal gradient descent algorithm called GA. Further-

more, we propose a distributed game theoretic variant of this sub-problem in which

each user optimizes its power allocation using local information only. The advantage

of this approach compared to the centralized one is that it reduces the computa-

tional complexity and requires only local information. This can be used to reduce

the control signaling overhead in uplink systems for example. The downside is that

the distributed power control achieves suboptimal sum-rate performance. We prove

that this problem is a concave game and it has a unique Nash equilibrium. We

develop a pseudo-gradient descent method (PGA) which converges to the Nash

equilibrium, and a heuristic iterative waterfilling algorithm (IWA). Then, we pro-

pose a three-step heuristic to perform joint subcarrier and power allocation. This

three-step methodology requires to solve two power control sub-problems, which can

be done by any of the aforementioned schemes. When either GA, PGA or SIWA is

applied twice, we get respectively the double gradient algorithm (DGA), the double

pseudo-gradient algorithm (DPGA) and the double iterative waterfilling algorithm

(DIWA). We compare their performance and computational complexity through

simulations.

We conclude in Chapter 6 and discuss about possible extensions of our frame-

work, as well as open problems related to the design of efficient and practical JSPA

schemes for NOMA.
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Chapter 2

System Model and Notations

2.1 Mathematical Notations and Basic Definitions

2.1.1 Scalars, Vectors and Sets

We denote scalars by plain lower case letters, e.g., x, p, and vectors by bold lower

case letters, e.g., x, p. In order to differentiate variables from constant scalars in

the optimization framework, we may use plain upper case letters for constants when

suitable, e.g., P , M and W . The i-th element of a vector x is denoted by xi or x
i,

depending on the circumstances. A vector x containing elements x1, . . . , xN can be

represented by x = (x1, . . . , xN) or x = (xi)i∈{1,...,N}. The dot product x ·y between

two d-dimensional vectors x and y is defined as:

x · y ,

d∑

i=1

xiyi.

In this work, we consider the l1 norm defined as:

‖x‖1 ,
d∑

i=1

|xi|,

and the l2 (Euclidean) norm:

‖x‖2 ,
√
x · x =

√√√√
d∑

i=1

x2
i .

Finite sets are represented by upper case calligraphic letters, e.g., K, N , U .
The cardinality of a finite set K is denoted by |K|. Let R, Q and N be the set

of real numbers, rational numbers and natural numbers (non-negative integers),
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respectively. We define similarly R+, Q+ and N+ to be their restriction to positive

numbers, and R0+ , R+ ∪ {0} is the set of non-negative reals. The interval of real

numbers between a ∈ R and b ∈ R is (a, b) if it is open, and [a, b] if it is closed. In

addition, the set of integers from 1 to n ∈ N is denoted by {1, . . . , n}.

2.1.2 Functions and their Properties

Let n ∈ N, any bijective function from {1, . . . , n} onto {1, . . . , n} is called a per-

mutation of {1, . . . , n}. We represent permutations by the lower case greek letter

π : {1, . . . , n} → {1, . . . , n}.
Besides permutations, we mainly consider real-valued functions f : D → R,

where D ⊂ Rd and d ∈ N+. The gradient of a differentiable function f is de-

noted by ∇f , and the Hessian is ∇2f . If its domain D lies in R (i.e., d = 1), then

the notion of gradient reduces to the derivative, which is denoted by f ′. Similarly,

the Hessian becomes the second derivative, denoted by f ′′. In addition, notations

ln, log, and loga represent respectively the natural, base-10 and base-a logarithms

defined on D = R+.

We present here some basic notions of convex analysis. A set S is convex if for

all x,y ∈ S and t ∈ [0, 1], tx+ (1− t)y ∈ S. The convexity of a function is defined

as follows.

Definition 1 (Convexity and Concavity of a function).

A real-valued function f : D → R is convex if for all x,y ∈ D and t ∈ [0, 1], we

have:

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) . (2.1)

If f is differentiable, the convexity can be characterized by:

(∇f(x)−∇f(y)) · (x− y) ≥ 0. (2.2)

Furthermore, f is strictly convex if the inequalities in Eqn. (2.1) and (2.2) are strict.

We say that f is concave (resp. strictly concave) if −f is convex (resp. strictly

convex).

In convex optimization, the convergence rate of gradient descent algorithms de-

pends on additional properties on f , namely the α-strong convexity and β-smoothness

that we present in Definition 2. A detailed study of these properties and their im-

plications can be found in [37, Section 9.1.2].
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Definition 2 (Strong convexity and smoothness of a function).

Let β ≥ α > 0, a real-valued function f : D → R is α-strongly convex and β-smooth

if for all x,y ∈ D and t ∈ [0, 1], we have:

−αt(1− t)

2
‖x−y‖22 ≥ f(tx+ (1− t)y)−tf(x)−(1−t)f(y) ≥ −βt(1− t)

2
‖x−y‖22.

If f is differentiable, an equivalent definition is:

β‖x− y‖22 ≥ (∇f(x)−∇f(y)) · (x− y) ≥ α‖x− y‖22.
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2.2 Principle of NOMA

In multiple access systems, the total frequency bandwidth and transmission duration

are divided into resource blocks called subcarriers. The subcarriers are assigned to

users, allowing them to transmit on given radio bandwidths and time slots. Orthog-

onal multiple access (OMA) refers to technologies in which radio resources allocated

to different users are orthogonal (i.e., non-interfering) in time and frequency. As

illustrated in Figure 2.1, only one user is served on each subcarrier and their signals

do not interfere with other signals. Orthogonal frequency-division multiple access

(OFDMA) adopted in 3GPP-LTE and also 5G New Radio Phase 1 standards [3] is

an example of OMA scheme. In summary, OMA aims to avoid interference among

users and have low-complexity signal decoding at the receiver side. However, such

orthogonal schemes cannot always achieve the capacity of multi-user systems [7] and

are suboptimal in terms of spectral efficiency [38].

Figure 2.1: OMA vs NOMA. The two colors – and – represent the transmit

power of two different users’ signals

In contrast with OMA, NOMA allows to superpose several signals on the same

subcarrier. In this work, we consider power domain NOMA in which the superposed

signals are multiplexed in the power domain, as illustrated in Figure 2.1. The inter-

ference received due to superposed signals are mitigated by successive interference

cancellation (SIC) [7], [24], [39]. To ensure successful decoding of the superposed

signals and reduce the interference, the power of each signal should be thoroughly

optimized. We explain in the next subsections the principle of NOMA – signal su-

perposition and SIC – in both downlink and uplink scenarios. Moreover, we show

that NOMA achieves higher data rates than OMA in a two users system.
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2.2.1 Uplink transmission

We first describe how OMA works in a simple system with two users. Then, we

explain the principle of NOMA in the uplink and compare its achievable rate region

to OMA.

Figure 2.2: Two users OMA transmission in the uplink

We consider two users transmitting respectively signals x1 and x2 to the base

station (BS). The power of signals x1 and x2 are p1 and p2, respectively. In the

OMA system shown in Figure 2.2, user 1 is served on a fraction α ∈ [0, 1] of the

total bandwidth (or equivalently, a fraction of the subcarriers). User 2 is served on

a proportion 1− α of the total bandwidth. The received signal of user 1 at the BS

is:

y1 = h1
√
p1x1 + n,

and the received signal of user 2 is:

y2 = h2
√
p2x2 + n,

where n is a Gaussian noise, h1 and h2 are the complex channel coefficients between

the BS and users 1 and 2, respectively. In Figure 2.2, x̃1 and x̃2 are estimations of the

input signals x1 and x2. They are obtained by decoding independently y1 and y2, as

they are transmitted on orthogonal resources, i.e., non-interfering subcarriers. Given

the total bandwidth W and the noise power spectral density N0, the signal-to-noise

ratio of user 1 and 2 are:

SNR1 =
g1p1

αWN0

and SNR2 =
g2p2

(1− α)WN0

,

where g1 = |h1|2 and g2 = |h2|2 are the channel gains. The achievable data rates of

each user, R1 and R2, can be obtained by Shannon capacity formula as follows:

R1 = αW log2

(
1 +

g1p1
αWN0

)
, (2.3)
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R2 = (1− α)W log2

(
1 +

g2p2
(1− α)WN0

)
. (2.4)

Figure 2.3: Two users NOMA transmission in the uplink

In the NOMA system presented in Figure 2.3, both users transmit on the same

bandwidth W . The received signal at the BS is hence a superposition of x1 and x2:

y = h1
√
p1x1 + h2

√
p2x2 + n.

In this example, x1 is decoded first by considering x2 as noise. Its signal-to-

interference-plus-noise ratio is:

SINR1 =
g1p1

WN0 + g2p2
.

Assuming that user 1’s signal as been correctly decoded, x̃1 is then subtracted from

the superposed signal y (see block SIC in Fig. 2.3) to get signal ỹ2 ≈ h2
√
p2x2 + n,

in which the interference caused by user 1 is canceled out. This is the principle

of successive interference cancellation (SIC): when multiple signals are superposed,

the first decoded signals are subtracted from y before decoding the next signal. The

signal-to-interference-plus-noise ratio of x2 after SIC is:

SINR2 =
g2p2
WN0

.

The idea of power domain NOMA is to select signals to be multiplexed (based on

their channel gains g1 and g2) and optimize their respective power so that all signals

can be successfully decoded and to maximize each user’s data rate. In this case, the

NOMA data rates are:

R′
1 = W log2

(
1 +

g1p1
WN0 + g2p2

)
, (2.5)

R′
2 = W log2

(
1 +

g2p2
WN0

)
. (2.6)
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If x2 is decoded first, the rates become:

R′
1 = W log2

(
1 +

g1p1
WN0

)
, (2.7)

R′
2 = W log2

(
1 +

g2p2
WN0 + g1p1

)
. (2.8)

Figure 2.4 shows an example of the two users’ achievable rates in the uplink. The

curves correspond to the boundaries of each scheme’s rate region (capacity region).

That is, all points (i.e., rate pairs) below the curves are also achievable rates. The

OMA curve is obtained by varying α from 0 to 1 in Eqn. (2.3) and (2.4). Point A

corresponds to Eqn. (2.5) and (2.6), in which user 1 is decoded first. In the same

way, point C corresponds to Eqn. (2.7) and (2.8), in which user 2 is decoded first.

The rest of the NOMA curve is computed by sharing different fractions α ∈ [0, 1] of

the transmission time between the two operating points A and C. We can see that

NOMA achieves greater rates than OMA, except on point B where α = g1p1
g1p1+g2p2

.

However, this operating point may be undesired as it gives more rate to the strong

user 2 than to the weak user 1.
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Figure 2.4: Capacity regions of two users accessing an uplink AWGN channel using

NOMA, OMA or TDMA. Numerical values: g1p1
WN0

= 15 dB and g2p2
WN0

= 20 dB

In practical systems, allocating a fraction α of the total bandwidth is not always

possible and depends on the granularity of the frequency resources. As a conse-
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quence, the number of connected users in OMA is limited by the scheduling gran-

ularity and the subcarriers size. For example, if only one subcarrier were available

at each time slot, then the rates achieved by sharing time would be greatly reduced

(see TDMA curve in Fig. 2.4). In this regard, NOMA can serve significantly more

users than OMA. Since NOMA allows signal superposition, it can also be applied

to grant-free uplink transmissions for which scheduling is not possible due to low

latency requirements [40], [41]. This shows that NOMA is a promising technology

to achieve massive machine-type communications (mMTC) in beyond 5G wireless

networks [42].

2.2.2 Downlink transmission

In the downlink, the BS serves users 1 and 2 with power p1 and p2, respectively.

These power satisfy p1+ p2 ≤ P , where P is the total power budget available at the

BS. In the OMA system shown in Figure 2.5, the two users are served on orthogonal

subcarriers, where user 1 gets α ∈ [0, 1] of the total bandwidth and user 2 gets

(1− α) of the total bandwidth. Their received signals are:

y1 = h1
√
p1x1 + n,

y2 = h2
√
p2x2 + n.

Therefore, their achievable data rates are:

R1 = αW log2

(
1 +

g1p1
αWN0

)
, (2.9)

R2 = (1− α)W log2

(
1 +

g2p2
(1− α)WN0

)
, (2.10)

which are similar to Eqn. (2.3) and (2.4) obtained in the uplink case.

Figure 2.5: Two users OMA transmission in the downlink

Figure 2.3 illustrates the principle of NOMA in the downlink. The BS transmits

on bandwidth W the superposed signal
√
p1x1 +

√
p2x2. The received signal y1 and
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Figure 2.6: Two users NOMA transmission in the downlink

y2 of each user is hence a superposition of x1 and x2:

y1 = h1 (
√
p1x1 +

√
p2x2) + n,

y2 = h2 (
√
p1x1 +

√
p2x2) + n.

In this example, user 1 is considered as the weak user, and user 2 as the strong user,

i.e., g1 < g2. It has been proven in [7, Section 6.2] that the optimal rates can only be

achieved by decoding the weak user 1 first, before performing SIC and decoding the

strong user 2. This downlink optimal decoding order only depends on the channel

conditions g1 and g2. In particular, it does not depend on the transmit power.

Following the optimal decoding order at user 1 receiver side, x1 is decoded by

considering x2 as noise. Hence, its signal-to-interference-plus-noise ratio is:

SINR1 =
g1p1

WN0 + g1p2
.

Note that here the interference term is g1p2, whereas it is g2p2 in the uplink. At

user 2 receiver side, x1 is also decoded by considering x2 as noise. Then user 2

subtract x̃1 from the superposed signal y2 before decoding its own signal x2. The

signal-to-interference-plus-noise ratio of x2 after SIC is:

SINR2 =
g2p2
WN0

.

The NOMA data rates are:

R′
1 = W log2

(
1 +

g1p1
WN0 + g1p2

)
, (2.11)

R′
2 = W log2

(
1 +

g2p2
WN0

)
. (2.12)

The NOMA curve in Figure 2.7 is obtained by varying the power allocation p1

and p2 in Eqn. (2.11) and (2.12), subject to constraint p1 + p2 = P . We compute

OMA similarly from Eqn. (2.9) and (2.10) by also varying α from 0 to 1. In NOMA
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(1), the optimal decoding order is adopted to achieve rates (2.11) and (2.12), in

which the weak user 1 is decoded first. NOMA (2) refers to decoding the strong

user 2 first. NOMA (1) rate region boundary is strictly above that of OMA. This

shows that NOMA can achieve greater spectral efficiency than OMA. Furthermore,

the decoding order of SIC is particularly important as the data rates achieved by

NOMA (2) are always suboptimal and even lower than that of OMA and TDMA.

Unlike in the uplink where the decoding order may vary depending on the received

power and the desired rate pairs in Fig. 2.4, the optimal decoding order in the

downlink only depends on the channel conditions.
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Figure 2.7: Two users downlink capacity regions. NOMA (1) corresponds to decoding

the weak user 1 first, while NOMA (2) refers to decoding the strong user 2 first.

Numerical values: P = p1 + p2 = 1 W, g1P
WN0

= 0 dB and g2P
WN0

= 20 dB

2.3 System Model

We define in this section the system model and notations used throughout this the-

sis. We consider a multi-carrier NOMA (MC-NOMA) system composed of one base

station (BS) serving K users. Both downlink and uplink transmissions are consid-

ered. An example of downlink system is illustrated in Figure 2.8. We denote the

index set of users by K , {1, . . . , K}, and the set of subcarriers by N , {1, . . . , N}.
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The total system bandwidth W is divided into N subcarriers of bandwidth Wn, for

each n ∈ N , such that
∑

n∈N Wn = W . We assume orthogonal frequency division,

so that adjacent subcarriers do not interfere each other. Moreover, each subcarrier

n ∈ N experiences frequency-flat block fading on its bandwidth Wn.

Figure 2.8: Downlink system model

For k ∈ K and n ∈ N , let gnk and ηnk be the channel gain and the received

noise power of user k on subcarrier n. We assume that the channel can be accessed

through either downlink or uplink transmissions. For downlink scenarios, the BS

transmits a signal to each user k on subcarrier n with power pnk . For uplink scenarios,

each user k transmits a signal to the BS on subcarrier n with power pnk . In both

cases, we refer to pnk as “the allocated transmit power of user k” on subcarrier n.

User k is said to be active on subcarrier n if pnk > 0, and inactive otherwise. For

simplicity of notations, we define the normalized noise power as η̃nk , ηnk/g
n
k . We

denote by p , (pnk)k∈K,n∈N the vector of all transmit powers, pn , (pnk)k∈K is the

vector of all transmit powers on subcarrier n, and pk , (pnk)n∈N is the vector of user

k’s transmit powers.

In power domain NOMA, several users are multiplexed on the same subcarrier

using superposition coding. A common approach adopted in the literature is to

limit the number of superposed signals on each subcarrier to be no more than M .

The value of M is meant to characterize practical limitations of SIC due to decod-
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ing complexity and error propagation [7]. We represent the set of active users on

subcarrier n by Un , {k ∈ K : pnk > 0}. The aforementioned constraint can then be

formulated as ∀n ∈ N , |Un| ≤M . Each subcarrier is modeled as a multi-user Gaus-

sian broadcast channel and SIC is applied at the receiver side to mitigate intra-band

interference.

The SIC decoding order on subcarrier n is usually defined as a permutation

function over the active users on n, i.e., πn : {1, . . . , |Un|} → Un. However, for

ease of reading, we choose to represent it by a permutation over all users K, i.e.,
πn : {1, . . . , K} → K. These two definitions are equivalent in our model since the

data rates (2.15) and (2.16) does not depend on the inactive users k ∈ K \ Un, for
which pnk = 0. For i ∈ {1, . . . , K}, πn(i) returns the i-th decoded user’s index.

Conversely, user k’s decoding order is given by π−1
n (k). Hence, the signals of users

πn(1), . . . , πn(i− 1) are decoded and subtracted from the superposed signal before

decoding πn(i)’s signal. Furthermore, user πn(i) is subject to interference from users

πn(j), for j > i. In particular, πn(|Un|) is decoded last and is not subject to any

intra-band interference if the previous |Un|−1 users have been successfully decoded.

Note that the above discussion can be applied to both uplink and downlink cases.

However, the decoding order should be chosen differently depending on which case

we are addressing. For downlink scenarios, the optimal decoding order obeys the

following sorting [7, Section 6.2]:

ηnπn(1)

gnπn(1)

≥
ηnπn(2)

gnπn(2)

≥ · · · ≥
ηnπn(K)

gnπn(K)

,

which can be written as:

η̃nπn(1) ≥ η̃nπn(2) ≥ · · · ≥ η̃nπn(K). (2.13)

As explained in Subsection 2.2.2 and illustrated in Fig. 2.7, this decoding order is

optimal in the sense that it achieves greater rates than any other decoding order.

For uplink scenarios, the decoding order depends on the desired operating point

in the capacity region (e.g., Fig. 2.4). Nevertheless, if the goal is to minimize the

total transmit power to meet given target rates, then [7, Section 6.1] shows that

the optimal decoding order consists in decoding the strongest user first (in terms of

received power) and continuing towards the weakest user:

gnπn(1)p
n
πn(1) ≥ gnπn(2)p

n
πn(2) ≥ · · · ≥ gnπn(K)p

n
πn(K). (2.14)

This decoding order also ensures that the weakest user gets the best possible rate,

which is known to be the max-min fair operating point in the capacity region.
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Shannon capacity formula is applied to model the capacity of a communication

link, i.e., the maximum achievable data rate. Regarding the downlink, the achievable

data rate of user k ∈ K on subcarrier n ∈ N is given by:

Rn
k(p

n) , Wn log2

(
1 +

gnkp
n
k∑K

j=π−1
n (k)+1 g

n
kp

n
πn(j)

+ ηnk

)
,

(a)
= Wn log2

(
1 +

pnk∑K
j=π−1

n (k)+1 p
n
πn(j)

+ η̃nk

)
, (2.15)

where equality (a) is obtained after normalizing by gnk .

In the uplink, since the only receiver is the BS, all users transmitting on subcarrier

n are subject to the same noise ηn = ηnk , k ∈ K. The data rate can be written as:

Rn
k , Wn log2


1 +

gnkp
n
k∑|Un|

j=π−1
n (k)+1

gnπn(j)
pnπn(j)

+ ηn


 . (2.16)

We assume perfect SIC, therefore interference from users πn(j) for j < π−1
n (k) is

completely removed in Eqn. (2.15) and (2.16). In other words, user k is only subject

to interference from users πn(j), j > π−1
n (k).

For ease of reading, let us define the following notations: Rk ,
∑

n∈N Rn
k repre-

sents user k’s individual data rate, while Rn ,
∑

k∈K Rn
k corresponds to the sum of

data rates achieved on subcarrier n. We denote by R , (Rk)k∈K the individual data

rates vector. Data rates are function of the power allocation, nevertheless we use the

notations Rn
k , Rk, R

n and R instead of Rn
k(p), Rk(p), R

n(p), R(p), for simplicity.

We summarize the system model and related notations in Table 2.1.
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Table 2.1: System model and notations

Notation Description

K Number of users

K Index set of all users K , {1, . . . , K}
N Number of subcarriers

N Index set of all subcarriers N , {1, . . . , N}
Wn Bandwidth of subcarrier n ∈ N
W Total bandwidth,

∑
n∈N Wn = W

gnk Channel gain of user k ∈ K on subcarrier n ∈ N
ηnk Received noise power of user k ∈ K on subcarrier n ∈ N . In the

uplink, the noise power at the BS only depends on n, i.e., ηnk = ηn,

for all k ∈ K
η̃nk Normalized noise power of user k ∈ K on subcarrier n ∈ N ,

η̃nk , ηnk/g
n
k

pnk In the downlink, pnk is the transmit power from the BS to user

k ∈ K on subcarrier n ∈ N . In the uplink, pnk is the transmit power

of user k ∈ K on subcarrier n ∈ N to the BS

p Vector of all transmit powers, p , (pnk)k∈K,n∈N

pn Vector of all transmit powers on subcarrier n, pn , (pnk)k∈K

pk Vector of user k’s transmit powers, pk , (pnk)n∈N

Un Set of active users on subcarrier n ∈ N , Un , {k ∈ K : pnk > 0}
M Maximum number of active users per subcarrier

πn Decoding order on subcarrier n ∈ N
Rn

k Achievable data rate of user k ∈ K on subcarrier n ∈ N
Rk Individual data rate of user k ∈ K, Rk ,

∑
n∈N Rn

k

Rn Sum of data rates achieved on subcarrier n ∈ N , Rn ,
∑

k∈K Rn
k

R Vector of all individual data rates, R , (Rk)k∈K
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Chapter 3

Radio Resource Management: an

Optimization Framework

We explained in the previous section that each subcarrier can only serve a limited

number of users at the same time (i.e., no more than M users), the choice of allocat-

ing a user to a subcarrier is an important combinatorial optimization problem called

subcarrier allocation, also known as user selection. This can be seen as finding an

(M + 1)-dimensional matching between subcarriers and users [28], [30]–[32].

Another important problem is the power control, also known as power allocation.

It consists in computing the transmit power of each signal given a limited power

budget at the BS (in the downlink) or at each user’s equipment (in the uplink),

in order to maximize some desired system utility functions and ensure successful

decoding of the signals.

Efficient RRM schemes in MC-NOMA systems require to solve jointly both op-

timization problems, which then becomes the joint subcarrier and power allocation

problem (JSPA). We present in Section 3.1 the system utility functions that have

been studied in the literature. In addition, we introduce a general framework which

generalizes all these functions. In Section 3.2, we formulate two JSPA problems,

namely the utility maximization with individual power constraints and the utility

maximization with cellular power constraint. We discuss about the two types of

power constraints and show their importance for practical systems. Finally, we

study the computational complexity of these two JSPA problems in Section 3.3.
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Chapter 3. Radio Resource Management: an Optimization Framework

3.1 Utility Functions

One of the main objectives of RRM in wireless communication systems is to max-

imize the data rates. Since they are multiple users’ data rates R = (R1, . . . , RK)

to optimize, a utility functionM (R) should be chosen to characterize the desired

system’s performance metric. We will see later in this section that such a utility

function is chosen in practice to achieve a trade-off between user fairness and the sys-

tem sum rate (i.e., the sum of all users’ data rates). A general utility maximization

problem is of the following form:

maximize
p∈F

M (R (p)) , (P)

where M can be any non-decreasing function of the data rates R, and F is the

search space defined by some practical constraints (see Section 3.2). However, most

utilities studied in the NOMA literature belong to a smaller class of functions called

weighted generalized mean, also known as α-fairness [43]. The weighted generalized

mean is denoted by Mi,w, where i ∈ R ∪ {−∞,+∞} is a parameter and w is a

sequence of positive weights.

Definition 3 (Weighted generalized mean [44]).

LetMi,w denotes the weighted generalized mean of order i ∈ R\{0}, which is defined

with a sequence of positive weights w = {w1, . . . , wK} such that
∑K

k=1 wk = 1. For

K non-negative real numbers x1, . . . , xK, we have:

Mi,w(x1, . . . , xK) =

(
K∑

k=1

wkx
i
k

)1/i

.

It can also be extended to i ∈ {−∞, 0,+∞} by taking the limit, i.e.,Mi,w(x1, . . . , xK) =

limj→iMj,w(x1, . . . , xK).

An important property ofMi,w is the generalized mean inequality, see below:

r < q =⇒ Mr,w(x1, . . . , xK) ≤Mq,w(x1, . . . , xK) . (3.1)

Note that the equality holds if and only if x1 = · · · = xK .

In this thesis, we consider the class of weighted generalized mean maximization

problems of the following form:

maximize
p∈F

Mi,w(R1 (p) , . . . , Rk (p)) , (Pi)

where order i and weights w are given as parameters of the problem. This class

includes the following popular objective functions:
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Section 3.1. Utility Functions

1. For i = 1, we have the weighted sum rate utility, namely the weighted arith-

metic mean:

M1,w =
K∑

k=1

wkRk.

If the weights are equal w = weq = {1/K, . . . , 1/K}, it becomes the sum rate

utility:

M1,weq
=

1

K

K∑

k=1

Rk.

2. For i = 0, we have the weighted proportional fairness utility, namely the

weighted geometric mean:

M0,w =

(
K∏

k=1

(Rk)
wk

)1/
∑K

k=1 wk

,

and the proportional fairness utility (geometric mean) if the weights are equal:

M0,weq
=

(
K∏

k=1

Rk

)1/K

.

3. For i = −1, we have the weighted harmonic mean utility:

M−1,w =
K∑

k=1

wk/

(
K∑

k=1

wk

Rk

)
,

and harmonic mean utility if the weights are equal:

M−1,weq
= K/

(
K∑

k=1

(Rk)
−1

)
.

4. For i = −∞, we have the max-min utility, which does not depend on the

weights:

M−∞,w = min
k∈K
{Rk}.

Note that, i = −∞ is the most fair utility function which maximizes the minimum

rate among all users. In contrast, i = +∞ is the most unfair objective, as it

maximizes only the best user’s rate. In practical systems, the two desired objectives

are user fairness and sum rate. As a consequence, we only consider values of i ranging

from −∞ to 1, achieving various trade-offs between user fairness and sum rate. In

this regard, the aforementioned four utilities have indeed parameter i ∈ [−∞, 1].

Furthermore, most utility maximization problems in the NOMA literature belong

to these four utilities [19]–[22], [25], [26], [33]–[36], [45]–[50]. Nevertheless, our study

of the general problem Pi could provide a foundation applicable to a much larger

scope of similar subjects.
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3.2 Problem Formulation and Constraints

We present two generalized mean maximization problems with different sets of con-

straints that will be studied throughout this manuscript. The first one is called

utility maximization with individual power constraints, and it is defined as follows:

maximize
p

Mi,w(R1 (p) , . . . , Rk (p)) ,

subject to C1 :
∑

n∈N

pnk ≤ P k
max, k ∈ K,

C2 : pnk ≤ P n,k
max, k ∈ K, n ∈ N ,

C3 : pnk ≥ 0, k ∈ K, n ∈ N ,

C4 : |Un| ≤M, n ∈ N .

(PI
i )

We say that PI
i has individual power constraints, since each user k ∈ K has an

individual power budget P k
max. Constraint C1 states that the total transmit power of

user k is no more than P k
max. In C2, we further restrict the power of each user k, on

each subcarrier n, to be less than or equal to P n,k
max. This is a common assumption in

multi-carrier systems, e.g., [51], [52], to avoid practical issues with power amplifiers

such as high peak-to-average power ratio. C3 ensures that the allocated power

remain non-negative, for mathematical consistency. Due to decoding complexity and

error propagation in SIC [7], practical implementations have a maximum number of

multiplexed users per subcarrier M , which corresponds to constraint C4.

The second problem is called utility maximization with cellular power constraint.

It is defined below:

maximize
p

Mi,w(R1 (p) , . . . , Rk (p)) ,

subject to C1 :
∑

k∈K

∑

n∈N

pnk ≤ Pmax,

C2 :
∑

k∈K

pnk ≤ P n
max, n ∈ N ,

C3 : pnk ≥ 0, k ∈ K, n ∈ N ,

C4 : |Un| ≤M, n ∈ N .

(PC
i )

Problem PC
i is similar to PI

i , with the difference that it considers in C1 a total

(cellular) power budget Pmax to be allocated among all users. In addition, C2

represents a per subcarrier power constraint.

The two types of power constraints are used to model different systems and

scenarios. On the one hand, cellular power constraint is mostly used in downlink
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transmissions to represent the total transmit power budget available at the BS,

e.g., [21], [25], [26], [30], [36], [45]–[47]. On the other hand, individual power con-

straint is particularly suitable for uplink scenarios where each UE has a maximum

transmit power imposed by their power amplifier, e.g., [22], [33]–[35], [48]. Never-

theless, individual power constraint can also be applied to the downlink as in [P4],

[P5], [20] for practical features of the RRM schemes, such as guaranteeing effort-

fairness [53] or regulatory requirement on the transmit power towards each user

device [54]. Furthermore, some papers consider both cellular and individual power

constraints for full-duplex systems where users are served simultaneously on the

downlink and uplink [22], [55]–[60].

In addition to these two types of power constraints, quality of service (QoS)

constraints are often considered. QoS constraints require that each user achieve a

minimum data rate Γk, i.e., Rk(p) ≥ Γk, for all k ∈ K. This type of constraints

can be added on top of the aforementioned power constraints [19], [31], [32], [48],

[49]. To keep the optimization algorithm design simple, QoS constraints will not be

considered in this work.

3.3 Computational Complexity

In this section, we study the computational complexity of problems PI
i and PC

i . We

first explain in Subsection 3.3.1 the concept of NP optimization (NPO) problems,

and introduce a definition of NP-hardness for NPO problems. Then, we show in

Subsection 3.3.2 that PI
i is strongly NP-hard for any weighted generalized mean

utility of order i ∈ [−∞, 1]. This means that computing its optimal solution in the

general case is intractable. Nevertheless, we present some special cases in which PI
i

is polynomial-time solvable. Finally, we discuss in Subsection 3.3.3 about the com-

plexity of PC
i in various scenarios.

3.3.1 Definitions and Preliminaries

Definition 4 formalizes the idea of NP optimization problems introduced in [61].

Definition 4 (NP optimization problem (NPO)).

A NPO problem H is a 4-tuple (IH,FH, f, type) such that:

1) IH is the set of instances. Each instance is recognizable in polynomial time.
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2) For any instance x ∈ IH, FH(x) is the space of feasible solutions. Every solu-

tion y ∈ FH(x) has a size bounded by a polynomial in the size of x. Moreover,

membership in FH is decidable in polynomial time.

3) f is the objective function, computable in polynomial time.

4) type ∈ {min,max} indicates whether H is a minimization or maximization

problem.

It can be verified that PI
i and PC

i are both NP optimization problems, as they ful-

fill Definition 4. As an example, let us verify it for problem PI
i = (I,F ,Mi,w,max).

An instance x ∈ I is only defined by the following polynomial number (in N and

K) of system parameters:

x = (w, K,N,M, (Wn)n∈N , (gnk )n∈N ,k∈K, (η
n
k )n∈N ,k∈K, (P

k
max)k∈K, (P

n,k
max)n∈N ,k∈K),

therefore, x is recognizable in polynomial time as required by Condition 1) in Def-

inition 4. The feasible set F(x) is defined as the set of all power vectors satisfying

constraints C1 to C4 in PI
i . Condition 2) holds, since these constraints can be veri-

fied in polynomial time. Finally, as required by condition 3), the objective function

is computable in polynomial time.

Going back to the general problem Pi, let optPi
(x) be the global optimal of an

instance x ∈ I, then the decision version of problem Pi consists of checking if this

value is greater or equal to a given threshold T , i.e.,

optPi
(x) ≥ T. (Di)

In Garey and Johnson computational complexity framework [62, Chapter 5], a nu-

merical optimization problem Pi is said to be NP-hard if its corresponding decision

problem Di is NP-hard. A discussion about strong NP-hardness and complexity

preserving reductions can be found in [63]. We summarize these concepts in Defini-

tion 5.

Definition 5 (Strong NP-hardness).

A decision problem H is said to be NP-hard if there exists a polynomial-time re-

duction from a NP-complete problem G to H. In addition, H is said to be strongly

NP-hard if it is still NP-hard even when all its numerical parameters are bounded

by a polynomial in the size of the input.
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The subclass of problems Pi and Di in which the number of active users per

subcarrier M is fixed is denoted by Pi|M and Di|M , respectively. Any instance of

the optimization problem can be converted to an instance of the decision problem

by appending an additional threshold parameter T ∈ R, i.e.,

IDi|M
= IPi|M

× R. (3.2)

It is known that WSR maximization in OFDMA systems (i.e., with M = 1) is

polynomial-time solvable if we consider cellular power constraint [51] but strongly

NP-hard with individual power constraints [64]. More generally, the authors of [52]

proved that WSR, proportional fairness, harmonic mean utility and max-min fair-

ness maximization problems are strongly NP-hard in OFDMA systems if we consider

individual power constraints. In addition, they also proved that power minimiza-

tion problems subject to minimum rate requirements (i.e., QoS constraints) are

strongly NP-hard. In the same way, we will study in the following Subsections 3.3.2

and 3.3.3, the computational complexity of problem PI
i under individual power con-

straints and PC
i subject to cellular power constraint. We will also highlight three

tractable special cases of PI
i and PC

i in Subsection 3.3.4 and discuss about possible

polynomial time algorithms to solve them.

3.3.2 Complexity under Individual Power Constraints

It has been proven in [20] that the WSR maximization in MC-NOMA with individual

power constraints (i.e., PI
1 with i = 1) is strongly NP-hard. Theorem 6 shows more

generally that PI
i is strongly NP-hard for any fixed M ≥ 1 and i ∈ [−∞, 1].

Theorem 6 (PI
i is strongly NP-hard1).

For any i ∈ [−∞, 1] and M ≥ 1, problem DI
i|M with objective function Mi,w is

strongly NP-hard in both downlink and uplink scenarios. In particular, the sum-

rateM1,w, proportional fairnessM0,w, harmonic mean utilityM−1,w and max-min

fairnessM−∞,w versions of the problem are all strongly NP-hard.

Proof. The idea of the proof is to construct a pseudo-polynomial reduction map-

ping any instance of the 3-Dimensional Matching Problem (3DM) to an instance

of DI
i|M . 3DM is one of Karp’s 21 NP-complete problems [65] and is also known

to be NP-complete in the strong sense [66]. Details of the proof can be found in

Appendix A.

1This result has been published in [P3]
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It is interesting to note that OFDMA results [51], [52], [64] correspond to the

special case M = 1 of Theorem 6. Theorem 6 shows that computing the optimal

solution of PI
i in the general case is intractable, unless P = NP. Nevertheless, there

may exist special cases in which the problem is solvable in polynomial time. We

discuss about some special cases in Subsection 3.3.4.

3.3.3 Complexity under Cellular Power Constraint

We consider now the problem PC
i with cellular power constraint. The (equal-weight)

sum-rate (M1,weq
) maximization is polynomial time solvable in OFDMA [51]. The

sum-rate maximization is also polynomial time solvable in MC-NOMA. Indeed, we

will show in Theorem 15 of Subsection 4.3.1 that it can be solved in polynomial time

by our proposedGrad-JSPA algorithm. However, to the best of our knowledge, it is

unknown whether WSR maximization in MC-NOMA under this type of constraints

is polynomial time solvable or NP-hard. Reference [30, Proposition 1] proves that

the subcarrier optimization is NP-hard only in the case of equal power allocation

among the users. The proposed polynomial-time reduction from the NP-complete

3-dimensional matching (3DM) to the NOMA problem should have shown that all

instances of 3DM can be mapped into an instance of the NOMA problem to be

complete. Besides, the two-stage dynamic programming (TSDP) proposed in [20]

solves it optimally in pseudo-polynomial time depending on J . Therefore, WSR

maximization with cellular power constraint can only be weakly NP-hard at most

(in contrast to strongly NP-hard for the individual power constraints as mentioned

in the previous Subsection).

Only a few papers have developed optimization schemes in this setting, which are

either heuristics with no theoretical performance guarantee or algorithms with im-

practical computational complexity. For example, a greedy user selection and heuris-

tic power allocation scheme based on difference-of-convex programming is proposed

in [36]. In reference [30], a matching algorithm is developed to perform subcarrier al-

location. The authors of [21] employ monotonic optimization to develop an optimal

resource allocation policy, which serves as benchmark due to its exponential com-

plexity. The TSDP scheme in [20] achieves optimal solutions assuming the power

budget is divided in J equal parts to be allocated. It is said to be pseudo-polynomial

since its complexity depends on the total number of power values J , which is inde-

pendent of the input size N , K, and M . In addition, all system’s parameters and
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variables are encoded in O(log(J)) bits. As a consequence, TSDP mainly serves as

benchmark due to its high computational complexity when J is large.

We note that, to the best of our knowledge, no polynomial-time approximation

scheme (PTAS) has been proposed in the literature. Although PTAS is interesting

for practical considerations of NP-hard problems, as it provides theoretical perfor-

mance guarantees with controllable computational complexity. Motivated by this

observation, we developed in [P1] a fully polynomial-time approximation scheme

(FPTAS) for the WSR maximization problem with cellular power constraint. This

algorithm will be explained later in Chapter 4. Besides, PC
i can also be solved opti-

mally in polynomial-time in some particular scenarios that will be discussed in the

next subsection.

3.3.4 Polynomial Time Special Cases

We highlight here three tractable special cases of problems PI
i and PC

i . They are

obtained by relaxing the search space (removing the combinatorial constraint C4)

or fixing some parameters (K and N). We also discuss about possible polynomial

time algorithms to solve them.

1) If a user selection Un is given and fixed, for each n ∈ N , then problems PI
i

and PC
i reduce to a power control problem. In downlink, the sum-rate objective

function with equal weights weq = {1/K, . . . , 1/K} can be rewritten as:

M1,weq
(R (p)) =

∑

n∈N

|Un|∑

i=1

Rn
πn(i) ,

=
∑

n∈N

Wn

|Un|∑

i=1

log2

(
1 +

gnπn(i)
pnπn(i)∑|Un|

j=i+1 g
n
πn(i)

pnπn(j)
+ ηnπn(i)

)
,

=
∑

n∈N

Wn

|Un|∑

i=1

log2

( ∑|Un|
j=i p

n
πn(j)

+ ηnπn(i)
/gnπn(i)∑|Un|

j=i+1 p
n
πn(j)

+ ηnπn(i)
/gnπn(i)

)
,

=
N∑

n=1

Wn




|Un|−1∑

i=1

log2(α
n
i (p)) + log2(β

n(p))


 . (3.3)

For n ∈ N and i < |Un|, αn
i is obtained by combining the numerator of Rn

πn(i+1) and

the denominator of Rn
πn(i)

, i.e.,

αn
i (p) ,

∑|Un|
j=i+1 p

n
πn(j)

+ ηnπn(i+1)/g
n
πn(i+1)∑|Un|

j=i+1 p
n
πn(j)

+ ηnπn(i)
/gnπn(i)

,
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and βn contains the numerator of Rn
1 and the denominator of Rn

|Un|
, i.e.,

βn(p) ,

∑|Un|
j=1 p

n
πn(j)

+ ηnπn(1)
/gnπn(1)

ηnπn(|Un|)
/gnπn(|Un|)

.

Assuming optimal decoding order (2.13) is applied in downlink, we have for all

i < |Un|, ηnπn(i)
/gnπn(i)

≥ ηnπn(i+1)/g
n
πn(i+1). It can be verified that αn

i is a concave

homographic function and βn is linear, therefore also concave. Thus, by composi-

tion with logarithms and summation, we derive that the objective function (3.3) is

concave. In addition, the feasible set defined by C1 to C3 is a convex set. Therefore,

given a fixed and arbitrarily chosen subcarrier allocation, the sum-rate maximization

problem can be optimally solved using classical convex programming methods [37].

The same result applies to uplink transmissions with sum-rate rewritten as:

M1,weq
(R (p)) =

∑

n∈N

Wn log2

(∑|Un|
j=1 g

n
πn(j)

pnπn(j)
+ ηn

ηn

)
.

In particular, if M = K, then all users can be multiplexed on all subcarriers. It

directly follows that PI
i and PC

i are solvable by convex programming such as the

projected gradient descent algorithm.

2) Now let’s suppose that K = 1, then both PI
i and PC

i become equivalent to

the following single-user problem:

maximize
p

R1 (p1) ,

subject to C1 :
∑

n∈N

pn1 ≤ P,

C2 : pn1 ≤ P n, n ∈ N ,

C3 : pn1 ≥ 0, n ∈ N ,

where P corresponds to P 1
max in PI

i , and Pmax in PC
i . Similarly, P n is equal to P 1,n

max

in PI
i , and P n

max in PC
i . Here, we remove constraint C4 as it is always satisfied, i.e.,

at most 1 ≤ M user is assigned to each subcarrier. The optimal solution to this

single-user data rate maximization problem can be computed by the well known

waterfilling power allocation [38].

3) In case there is only one subcarrier, i.e., N = 1, and assuming that the

best M users are already selected, optimal closed-form solutions can be obtained

for several subproblems. The authors of [31] solved the single-carrier power control

problem for max-min fairnessM−∞,w, sum-rateM1,weq
and energy efficiency with
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QoS constraints. The WSR problem M1,w, with arbitrary weights w, has been

tackled in [18] using the Lagrange multiplier method for M = 2, and in [30] using

geometric programming for general M ≥ 1.
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Chapter 4

WSR Maximization with Cellular

Power Constraint

In this chapter, we focus on the WSR maximization problem with cellular power

constraint:

maximize
p

M1,w(R (p)) =
∑

k∈K

wk

∑

n∈N

Rn
k (p

n),

subject to C1 :
∑

k∈K

∑

n∈N

pnk ≤ Pmax,

C2 :
∑

k∈K

pnk ≤ P n
max, n ∈ N ,

C3 : pnk ≥ 0, k ∈ K, n ∈ N ,

C4 : |Un| ≤M, n ∈ N .

(PC
1 )

This problem is a particular case of PC
i for which i = 1. Since cellular power

constraint is applied to downlink systems, we compute the data rates using for-

mula (2.15). The WSR objective function has received much attention as its weights

w can be chosen to achieve different tradeoffs between sum-rate performance and

fairness [67]. Moreover, when implemented in a scheduling system, the weights can

also be tuned at each time slot to perform fair resource allocation [68]–[70].

For ease of reading, we summarize some system parameters of a given instance

of PC
1 , for all n ∈ N , as follows:

In = (w,K,Wn, (g
n
k )k∈K, (η

n
k )k∈K) .

In Section 4.1, we transform PC
1 into a finite-sum problem with separable objec-

tive functions fn
i . These functions fn

i satisfy particular unimodality and convexity
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properties, so that their maximum can be computed in constant time (see Algo-

rithm 1). We then formulate the single-carrier power control and single-carrier user

selection sub-problems in Section 4.2, which are solved by algorithms SCPC and

SCUS, respectively. We show that they can be improved by performing precom-

putation to avoid repeated operations each time they are executed. The improved

algorithms are denoted by i-SCPC and i-SCUS. These algorithms are used as ba-

sic building blocks in Section 4.3 to design algorithms Opt-JSPA, ε-JSPA and

Grad-JSPA for the joint subcarrier and power allocation problem:

❼ Opt-JSPA computes an optimal solution with lower complexity than current

optimal schemes in the literature [20], [21]. It can be used as a benchmark

for optimal WSR performance in simulations. However, its pseudo-polynomial

time complexity remains impractical for real-world systems with low latency

requirements.

❼ ε-JSPA is a fully polynomial-time approximation scheme (FPTAS), which we

propose to reduce the complexity. Its design is based on techniques from the

multiple choice knapsack problem [71]. By definition of FPTAS, its perfor-

mance is within a factor 1 − ε of the optimal, for any ε > 0. Moreover, it

has polynomial complexity in both the input size and 1/ε. Since, no approxi-

mation has been studied in the literature, ε-JSPA stands out by allowing to

control a tight trade-off between performance guarantee and complexity.

❼ Grad-JSPA is a heuristic based on gradient descent. Numerical results in

Section 4.4 show that it achieves near-optimal WSR with much lower com-

plexity than existing optimal methods. Moreover, we prove that when the

weights are all equal, the problem becomes concave. Hence, Grad-JSPA

solves optimally the sum-rate maximization problem in polynomial-time.

In Section 4.4, we perform simulations with randomly deployed users and realistic

channel conditions. Numerical results show the performance of the aforementioned

algorithms, i.e., Opt-JSPA, ε-JSPA and Grad-JSPA, as well as their computa-

tional complexity. The results presented in this chapter have been published in [P2]

and [P1].
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4.1 Equivalent Separable Problem

Let us consider the following change of variables:

∀n ∈ N , xn
i ,





∑K
j=i p

n
πn(j)

, if i ∈ {1, . . . , K},
0, if i = K + 1.

(4.1)

We define x , (xn
i )i∈{1,...,K},n∈N and xn , (xn

i )i∈{1,...,K}.

Lemma 7 (Equivalent problem PC′
1 ).

Problem PC
1 is equivalent to problem PC′

1 formulated below:

maximize
x

∑

n∈N

K∑

i=1

fn
i (x

n
i ) + A, (PC′

1 )

subject to C1′ :
∑

n∈N

xn
1 ≤ Pmax,

C2′ : xn
1 ≤ P n

max, n ∈ N ,

C3′ : xn
i ≥ xn

i+1, i ∈ {1, . . . , K}, n ∈ N ,

C3′′ : xn
K+1 = 0, n ∈ N ,

C4′ : |U ′
n| ≤M, n ∈ N ,

where for any i ∈ {1, . . . , K} and n ∈ N , we have:

fn
i (x

n
i ) ,





Wn log2

((
xn
1 + η̃nπn(1)

)wπn(1)
)
, if i = 1,

Wn log2

(
(xn

i +η̃n
πn(i))

wπn(i)

(

xn
i +η̃n

πn(i−1)

)wπn(i−1)

)
, if i > 1,

and where U ′
n , {i ∈ {1, . . . , K} : xn

i > xn
i+1}. The constant term A is equal to:

A =
∑

n∈N

wπn(K) log2
(
1/η̃nπn(K)

)
,

and it is chosen so that PC
1 and PC′

1 have exactly the same optimal value.

Proof. See Appendix B.1.

The advantage of this formulation PC′
1 is that it exhibits a separable objective

function in both dimensions i ∈ {1, . . . , K} and n ∈ N . In other words, it can be

written as a sum of functions fn
i , each only depending on one variable xn

i . In the

following sections, we take advantage of this separability property to design efficient

algorithms to solve PC′
1 . The solution of PC

1 can then be obtained by solving PC′
1 .
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4.1.1 Analysis of the Separable Functions fn
i

We introduce auxiliary functions to help us in the analysis of fn
i and the algorithm

design. For n ∈ N , i ∈ {1, . . . , K} and j ≤ i, assume that the consecutive variables

xn
j , . . . , x

n
i are all equal to a certain value x ∈

[
0, P̄ n

]
. We define fn

j,i as:

fn
j,i(x) ,

i∑

l=j

fn
l (x) =





Wn log2

((
x+ η̃nπn(i)

)wπn(i)
)
, if j = 1,

Wn log2

(
(x+η̃n

πn(i))
wπn(i)

(

x+η̃n
πn(j−1)

)wπn(j−1)

)
, if j > 1.

This simplification of notation is relevant for the analysis of PC′
1 and the algorithm

design. Indeed, if users j, . . . , i − 1 are not active (i.e., j, . . . , i − 1 /∈ U ′
n), then

xn
j = · · · = xn

i , therefore
∑i

l=j f
n
l can be replaced by fn

j,i and xn
j+1, . . . , x

n
i are

redundant with xn
j . If constraint C4′ is satisfied, up to M users are active on each

subcarrier. Thus, evaluating the objective function of PC′
1 only requires O(MN)

operations.

We study the properties of fn
j,i in Lemma 8. Note that fn

i = fn
i,i, therefore

Lemma 8 also holds for functions fn
i . Fig. 4.1 shows the two general forms that can

be taken by fn
j,i.

Lemma 8 (Properties of fn
j,i).

Let n ∈ N , i ∈ {1, . . . , K}, and j ≤ i, we have:

❼ If j = 1 or wπn(i) ≥ wπn(j−1), then fn
j,i is increasing and concave on [0,∞).

❼ Otherwise when j > 1 and wπn(i) < wπn(j−1), f
n
j,i is unimodal. It increases on

(
−η̃πn(j−1), c1

]
and decreases on [c1,∞), where

c1 =
wπn(j−1)η̃πn(i) − wπn(i)η̃πn(j−1)

wπn(i) − wπn(j−1)

.

Besides, fn
j,i is concave on

(
−η̃πn(j−1), c2

]
and convex on [c2,∞), where

c2 =

√
wπn(j−1)η̃πn(i) −

√
wπn(i)η̃πn(j−1)√

wπn(i) −
√
wπn(j−1)

≥ c1.

Proof. See Appendix B.2.

We present in Algorithm 1 the pseudocode Argmaxf which computes the max-

imum of fn
j,i on

[
0, P̄ n

]
following the result of Lemma 8. Argmaxf only requires a

constant number of basic operations, therefore its complexity is O(1).

49



Chapter 4. WSR Maximization with Cellular Power Constraint

max at c1

change of convexity at c2

f n
j ,i , for w

πn(i) < w
πn(j−1)

f n
j ,i , for w

πn(i) ≥ w
πn(j−1)

Figure 4.1: The two general forms of functions fn
j,i

Algorithm 1 Compute maximum of fn
j,i on

[
0, P̄ n

]
(Argmaxf)

function Argmaxf
(
j, i, In, P̄ n

)

1: a← πn(i)

2: b← πn(j − 1)

3: if j = 1 or wa ≥ wb then

4: return P̄ n

5: else

6: return max
{
0,min

{
wbη̃a−waη̃b

wa−wb
, P̄ n

}}

7: end if

end function

4.2 Single-Carrier Optimization

In this section, we focus on a simpler problem, in which there is a single subcarrier

n ∈ N and a power budget P̄ n is given for this subcarrier:

F n
(
P̄ n
)

= max
xn

K∑

i=1

fn
i (xn

i ) + An, (PC′
SC(n))

subject to C2–3′ : P̄ n ≥ xn
1 ≥ . . . ≥ xn

K ≥ 0,

C4′ : |U ′
n| ≤M,

where An = wπn(K) log2

(
1/η̃nπn(K)

)
. C2–3′ is obtained by combining C2′, C3′ and

C3′′. F n
(
P̄ n
)
denotes its optimal value. Algorithms SCPC and SCUS are devel-

oped to tackle respectively the single-carrier power control and single-carrier user

selection sub-problems that arise from PC′
SC(n). We provide technical details of these

algorithms below, and we show how precomputation can further improve their com-
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putational complexity. They will be used as basic building blocks in Section 4.3

to design efficient algorithms Grad-JSPA, Opt-JSPA and ε-JSPA for the joint

subcarrier and power allocation problem.

4.2.1 Single-Carrier Power Control

The single-carrier power control problem PC′
SCPC(n) is equivalent to problem PC′

SC(n),

with the exception that a fixed user selection U ′
n (or equivalently Un) is given as input

instead of being an optimization variable. It is defined below:

F n
(
U ′
n, P̄

n
)

= max
xn

K∑

i=1

fn
i (xn

i ) + An, (PC′
SCPC(n))

subject to C2–3′ : P̄ n ≥ xn
1 ≥ . . . ≥ xn

K ≥ 0.

We denote its optimal value by F n
(
U ′
n, P̄

n
)
.

Since inactive users k /∈ Un have no contribution on the data rates, i.e., pnk = 0

and Rn
k = 0, we remove them for the study of this sub-problem. Without loss of gen-

erality, we index the remaining active users on subcarrier n by in ∈ {1n, . . . , |U ′
n|n}.

For example, if U ′
n = {4, 7, 10}, then 1n = 4, 2n = 7 and 3n = 10. For simplicity of

notation, we add an index 0n = 0, which does not correspond to any user. From the

definition of U ′
n, variables xn

l with index from l = (i − 1)n + 1 to in are equal, for

any i ≥ 1. In the above example, we would have x1 = x2 = x3 = x4 > x5 = x6 =

x7 > x8 = x9 = x10. Thus, the objective function of PC′
SCPC(n) can be written as:

K∑

i=1

fn
i (x

n
i ) + An =

|U ′
n|∑

i=1

fn
(i−1)n+1,in

(
xn
in

)
+Bn, (4.2)

where Bn = An if the last active user’s index is |U ′
n|n = K, and Bn = fn

|U ′
n|n+1,K (0)+

An otherwise. For 1 ≤ j ≤ i ≤ K, we simplify some notations as follows:

f̃n
j,i (U ′

n, ·) , fn
(j−1)n+1,in (·) ,

Argmaxf̃
(
j, i, In,U ′

n, P̄
n
)
, Argmaxf

(
(j−1)n+1, in, In, P̄ n

)
.

We reformulate the problem as:

F n
(
U ′
n, P̄

n
)

= max
xn
in

|U ′
n|∑

i=1

f̃n
i,i

(
U ′
n, x

n
in

)
+Bn, (PC′

SCPC(n))

subject to C2–3′ : P̄ n ≥ xn
1n ≥ . . . ≥ xn

|U ′
n|n
≥ 0.
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Algorithm 2 presents the SCPC method. The idea is to iterate over variables xn
in for

i = 1 to |U ′
n|, and compute their optimal value x∗ = Argmaxf̃(i, i, In,U ′

n, P̄
n) at

line 3. If the current allocation satisfies constraint C3′, then xn
in gets value x∗. Other-

wise, the algorithm backtracks at line 6 and finds the highest index j ∈ {1, . . . , i−2}
such that xn

jn ≥ Argmaxf̃(j + 1, i, In,U ′
n, P̄

n). Then, variables xn
(j+1)n

, . . . , xn
in are

set equal toArgmaxf̃(j+1, i, In,U ′
n, P̄

n) at line 10. The optimality and complexity

of SCPC are presented in Theorem 9.

Algorithm 2 Single-carrier power control algorithm (SCPC)

function SCPC
(
In,U ′

n, P̄
n
)

1: for i = 1 to |U ′
n| do

2: ⊲ Compute the optimal of f̃n
i,i

3: x∗ ← Argmaxf̃
(
i, i, In,U ′

n, P̄
n
)

4: ⊲ Modify x∗ if this allocation violates constraint C3′

5: j ← i− 1

6: while xn
jn < x∗ and j ≥ 1 do

7: x∗ ← Argmaxf̃
(
j, i, In,U ′

n, P̄
n
)

8: j ← j − 1

9: end while

10: xn
(j+1)n

, . . . , xn
in ← x∗

11: end for

12: return xn
1n , . . . , x

n
|U ′

n|n

end function

Theorem 9 (Optimality and complexity of SCPC).

Given subcarrier n ∈ N , a set U ′
n of M active users and a power budget P̄ n, al-

gorithm SCPC computes the optimal single-carrier power control. Its worst case

computational complexity is O(M2).

Proof. See Appendix B.3.

In JSPA schemes, such as Grad-JSPA and ε-JSPA, it is often required to

compute the optimal single-carrier power control for many different values of power

budget P̄ n. Running many times SCPC is actually not efficient in terms of com-

plexity, since several computations may be repeated. To avoid this, we propose

in Algorithm 3 an improved SCPC algorithm (i-SCPC). The idea is to perform
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precomputation before runtime by calling SCPC(In,U ′
n, Pmax) and storing its re-

sult xn
1n , . . . , x

n
|U ′

n|n
as a global variable (also called lookup table). Any subsequent

evaluation with input In, U ′
n, P̄

n, where P̄ n ≤ Pmax, can be obtained as in line 1.

Theorem 10 (Optimality and complexity of i-SCPC).

Given subcarrier n ∈ N and a set U ′
n of M active users, the precomputation of

i-SCPC has complexity O(M2). Any subsequent evaluation costs O(M). Hence,

for C different power budgets, algorithm i-SCPC computes their respective optimal

single-carrier power control with overall complexity O(M2 + CM).

Proof. See Appendix B.4.

Algorithm 3 Improved SCPC algorithm with precomputation (i-SCPC)

input: In,U ′
n, Pmax

global variable: xn
1n , . . . , x

n
|U ′

n|n

initialization: xn
1n , . . . , x

n
|U ′

n|n
← SCPC(In,U ′

n, Pmax)

function i-SCPC
(
P̄ n
)

1: return min{xn
1n , P̄

n}, . . . ,min{xn
|U ′

n|n
, P̄ n}

end function

Remark. Note that SCPC and i-SCPC returns |U ′
n| values xn

1n , . . . , x
n
|U ′

n|n
repre-

senting only the active users’ variables. These values are sufficient to compute the

optimal power allocation and WSR of PC′
SCPC(n) as shown in Eqn. (4.2). If needed,

the full vector xn can be obtained by the following procedure in O(K) operations:

1: for i = 1 to |U ′
n| and l = (i− 1)n + 1 to in do

2: xn
l ← xn

in

3: end for

4: for l = |U ′
n|n + 1 to K do

5: xn
l ← 0

6: end for

4.2.2 Single-Carrier User Selection

Unlike in the previous subsection, we consider here furthermore the user selection U ′
n

optimization under the SIC constraint C4′, i.e., we solve PC′
SC(n). We first develop a

dynamic programming (DP) procedure in Algorithm 4 (SCUS). Then, we propose

an improved version (i-SCUS) which performs SCUS as precomputation.
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The idea of SCUS is to compute recursively the elements of three arrays V , X,

U . Let m ∈ {0, . . . ,M}, j ∈ {1, . . . , K} and i ∈ {j, . . . , K}, we define V [m, j, i] as

the optimal value of the following problem PC′
SC [m, j, i]:

V [m, j, i] , max
xn
j , ... , x

n
K

K∑

l=j

fn
l (x

n
l ), (PC′

SC [m, j, i])

subject to C2–3′ : P̄ n ≥ xn
j ≥ . . . ≥ xn

K ≥ 0,

C4′ : |U ′
n| ≤ m,

C5′ : xn
j = · · · = xn

i .

This problem is more restrictive than PC′
SC(n). The objective function only depends

on variables xn
j , . . . , x

n
K . C4′ limits the number of active users to m. Moreover,

variables xn
j , . . . , x

n
i are equal according to C5′.

It is interesting to note that V [M, 1, 1] is the optimal value of PC′
SC(n), since the

objective function is
∑K

l=1 f
n
l (x

n
l ) for j = 1 and constraint C5′ becomes trivially

true for j = i. Let xn
j
∗, . . . , xn

K
∗ be the optimal solution achieving V [m, j, i]. We

define X[m, j, i] , xn
i
∗, which is also equal to xn

j
∗, . . . , xn

i−1
∗ due to constraint C5′.

The idea of SCUS is to recursively compute the elements of V through the following

relation:

V [m, j, i] =





vact, if vact > vinact

and x∗ > X [m− 1, i+ 1, i+ 1],

vinact, otherwise,

(4.3)

where x∗ = Argmaxf
(
j, i, In, P̄ n

)
, and vact (resp. vinact) corresponds to the opti-

mal allocation assuming user i is active (resp. inactive):

vact = fn
j,i (x

∗) + V [m− 1, i+ 1, i+ 1],

vinact = V [m, j, i+ 1].

During SCUS’s iterations, the array U keeps track of which previous element of

V has been used to compute the current value function V [m, j, i]. This allows us to

retrieve the entire optimal vector xn at the end of Algorithm 4 (at lines 28-35) by

backtracking from index (M, 1, 1) to ∅, where ∅ is set at initial indices (see lines

5 and 11) to indicate the recursion termination. To sum up, X and U have two

different recurrence relations depending on the cases in Eqn. (4.3).

If V [m, j, i] = vact, then:

X [m, j, i] = x∗,
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Algorithm 4 Single-carrier user selection algorithm (SCUS)

function SCUS
(
In,M, P̄n

)

1: ⊲ Initialize arrays V , X, U for m = 0 and i = K

2: for i = K to 1 and j = i to 1 do

3: V [0, j, i]← fn
j,K (0)

4: X [0, j, i]← 0

5: U [0, j, i]← ∅

6: end for

7: for m = 1 to M and j = K to 1 do

8: x∗ ← Argmaxf
(
j,K, In, P̄n

)

9: V [m, j,K]← fn
j,K (x∗)

10: X [m, j,K]← x∗

11: U [m, j,K]← ∅

12: end for

13: ⊲ Compute V , X, U for m ∈ [1,M ] and j ≤ i ≤ K − 1

14: for i = K − 1 to 1 and m = 1 to M and j = i to 1 do

15: x∗ ← Argmaxf
(
j, i, In, P̄n

)

16: vact ← fn
j,i (x

∗) + V [m− 1, i+ 1, i+ 1]

17: vinact ← V [m, j, i+ 1]

18: if vact > vinact and x∗ > X [m− 1, i+ 1, i+ 1] then

19: V [m, j, i]← vact

20: X [m, j, i]← x∗

21: U [m, j, i]← (m− 1, i+ 1, i+ 1)

22: else

23: V [m, j, i]← vinact

24: X [m, j, i]← X [m, j, i+ 1]

25: U [m, j, i]← (m, j, i+ 1)

26: end if

27: end for

28: ⊲ Retrieve the optimal solution xn

29: xn1 , . . . , x
n
K ← 0

30: (m, j, i)← (M, 1, 1)

31: repeat

32: xnj , . . . , x
n
i ← X [m, j, i]

33: (m, j, i)← U [m, j, i]

34: until (m, j, i) = ∅

35: return xn

end function
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U [m, j, i] = (m− 1, i+ 1, i+ 1).

If V [m, j, i] = vinact, then:

X [m, j, i] = X [m, j, i+ 1] ,

U [m, j, i] = (m, j, i+ 1).

When m = 0, no user can be active on this subcarrier due to constraint C4′.

Therefore, V , X, U can be initialized by:

V [0, j, i] = fn
j,K (0) ,

X [0, j, i] = 0,

U [0, j, i] = ∅.

For simplicity, we also extend V , X and U on the index i = K and j ≤ K and

initialize them as follows:

V [m, j,K] = fn
j,K (x∗) ,

X [m, j,K] = x∗,

U [m, j,K] = ∅.

A detailed analysis is given in Appendix B.5.

Theorem 11 (Optimality and complexity of SCUS).

Given a subcarrier n ∈ N , a power budget P̄ n and M ≥ 1, algorithm SCUS com-

putes the optimal single-carrier power control and user selection of PC′
SC(n). Its worst

case computational complexity is O(MK2).

Proof. See Appendix B.5.

We present i-SCUS in Algorithm 5, which performs precomputation to avoid

repeating the DP procedure when multiple evaluations are required. The algorithm

precomputes vectors V , X, U from SCUS(In,M, Pmax) before runtime, at line 1.

Then, in lines 2-5, it retrieves the active users set U ′
n and optimal solution xn

1 , . . . , x
n
K

of each V [M, 1, i], i ∈ {1, . . . , K}, and stores them in collection. Any subsequent

evaluation with a lower budget P̄ n ≤ Pmax, can be obtained by searching the best

allocation among the K possibilities in collection (lines 6-7). Each allocation is

truncated as in i-SCPC
(
P̄ n
)
to satisfy budget P̄ n. The optimality and complexity

of Algorithm 5 are given in Theorem 12.
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Theorem 12 (Optimality and complexity of i-SCUS).

Given a subcarrier n ∈ N , a power budget P̄ n and M ≥ 1, the precomputation

of i-SCUS has complexity O(MK2). Any subsequent evaluation costs O(MK).

Hence, for C different power budgets, i-SCUS computes their respective optimal

power control and user selection PC′
SC(n) with overall complexity O(MK2 +CMK).

Proof. See Appendix B.6.

Algorithm 5 Improved SCUS algorithm with precomputation (i-SCUS)

input: In,M, Pmax

global variable: collection

initialization:

1: Get V,X, U from SCUS(In,M, Pmax)

2: for i = 1 to K do

3: Retrieve the active users set U ′
n of V [M, 1, i] and its corresponding optimal

solution xn
1 , . . . , x

n
K

4: Add (U ′
n, x

n
1 , . . . , x

n
K) to collection

5: end for

function i-SCUS
(
P̄ n
)

6: Get (U ′
n, x

n
1 , . . . , x

n
K) in collection that maximizes F n(U ′

n, P̄
n), where

F n(U ′
n, P̄

n) =

|U ′
n|∑

l=1

f̃n
l,l

(
U ′
n,min{xn

ln , P̄
n}
)
+Bn

7: return min{xn
1 , P̄

n}, . . . ,min{xn
K , P̄

n}
end function

Table 4.1 summarizes the complexity of the single-carrier algorithms developed

in this section. They will be used as basic building blocks to design JSPA schemes

in Section 4.3.

Table 4.1: Summary of the single-carrier resource allocation schemes

Algorithm Complexity to perform C evaluations

SCPC O(CM2)

i-SCPC O(M2 + CM)

SCUS O(CMK2)

i-SCUS O(MK2 + CMK)
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4.3 Joint Subcarrier and Power Allocation

Recall that F n
(
P̄ n
)
is the optimal value of the single-carrier problem PC′

SC(n) with

power budget P̄ n. We have F n
(
P̄ n
)
=
∑K

i=1 f
n
i (x

n
i ) + An, where xn

1 , . . . , x
n
K is the

output of i-SCUS
(
P̄ n
)
or (equivalently SCUS

(
P̄ n
)
). Using this notation, PC′

1 can

be simplified as the following multi-carrier resource allocation problem:

maximize
P̄

∑

n∈N

F n
(
P̄ n
)
, (PC′

MC)

subject to P̄ n ∈ FMC ,

where P̄ n, for n ∈ N , are intermediate variables representing each subcarrier’s power

budget. P̄ ,
(
P̄ 1, . . . , P̄N

)
denotes the power budget vector. The feasible set

FMC , {P̄ :
∑

n∈N

P̄ n ≤ Pmax and 0 ≤ P̄ n ≤ P n
max, n ∈ N}

is chosen to satisfy C1′ and C2′ in PC′
1 .

4.3.1 Gradient Descent Based Heuristic: Grad-JSPA

Grad-JSPA is an efficient heuristic based on projected gradient descent. Its prin-

ciple is to perform a two-stage optimization as presented in Fig. 4.2. The first-stage

is a projected gradient descent on P̄ in the search space FMC . The evaluations of

each function F n and its derivative are done by i-SCUS in a second-stage optimiza-

tion. We denote the derivative of F n at P̄ n by F n′
(
P̄ n
)
. Lemma 13 shows how to

compute it.

Lemma 13 (Derivative of F n).

Let xn
1 , . . . , x

n
K be the output of i-SCUS

(
P̄ n
)
. The left derivative of F n at P̄ n, can

be computed as follows:

F n′
(
P̄ n
)
=

Wnwπn(l)(
xn
l + η̃nπn(l)

)
ln(2)

=
Wnwπn(l)(

P̄ n + η̃nπn(l)

)
ln(2)

,

where l is the greatest index such that xn
l = P̄ n.

Proof. See Appendix B.7.

The pseudocode of Grad-JSPA is described in Algorithm 6. Input ξ corre-

sponds to the error tolerance at termination, as we can see at line 8. The search
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First-stage algorithm: projected gradient descent

Follow the gradient of
∑

n∈N Fn(P̄n) and update

each subcarrier’s power budget P̄n in the simplex FMC

Second-stage algorithm: i-SCUS

Compute the optimal single-carrier user selection and power

allocation xn under budget P̄n and constraint |U ′
n| ≤ M

Input:

M,Pmax, P
n
max

in out

Output:

optimal power allocation

among subcarriers P̄

For each Fn evaluation:

In, M, P̄n

in out

Fn(P̄n), Fn′

(P̄n)

Figure 4.2: Overview of Grad-JSPA

Algorithm 6 Gradient descent based heuristic (Grad-JSPA)

function Grad-JSPA
(
(In)n∈N ,M, Pmax, P

n
max, ξ

)

1: Let P̄ ← (0, . . . , 0) be the starting point

2: repeat

3: Save the previous vector P̄
′ ← P̄

4: Determine a search direction ∆←
(
F 1′
(
P̄ 1
)
, . . . , FN ′

(
P̄N
))

5: Choose a step size α

6: Update P̄ ← projection of P̄ + α∆ on FMC

7: until ||P̄ ′ − P̄ || ≤ ξ

8: return P̄

end function

direction at line 4 is the gradient of
∑

n∈N F n evaluated at P̄ . Since F 1, . . . , FN are

independent, it is equal to the vector of F 1′
(
P̄ 1
)
, . . . , FN ′

(
P̄N
)
. Note that the step

size α at line 5 can be tuned by backtracking line search or exact line search [37,

Section 9.2]. We adopt the latter to perform simulations. The projection of P̄ +α∆

on the simplex FMC at line 6 can be computed efficiently [37, Section 8.1.1], the

details of its implementation are omitted here.

We proved in [P2] thatGrad-JSPA worst case complexity isO(log(1/ξ)NMK2)

when SCUS is used to evaluate functions F n, n ∈ N . We now show in Theorem 14

that the complexity of Grad-JSPA can be reduced by the use of i-SCUS.
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Theorem 14 (Complexity of Grad-JSPA1).

Let ξ be the error tolerance at termination. Algorithm Grad-JSPA has complexity

O(NMK2 + log(1/ξ)NMK) when i-SCUS is used to evaluate functions F n, n ∈ N .

Proof. See Appendix B.7.

Although i-SCUS (or equivalently SCUS) is optimal, the returned F n
(
P̄ n
)
is

not necessarily concave in P̄ n. As a consequence, Grad-JSPA is not guaranteed

to converge to a global maximum. Nevertheless, we show by numerical results in

Section 4.4 that it achieves near-optimal WSR performance with low complexity.

Moreover, Theorem 15 shows that Grad-JSPA solves optimally the sum-rate max-

imization problem in polynomial-time. The idea of the proof is that F n becomes

concave when the weights are all equal, for all n ∈ N .

Theorem 15 (Grad-JSPA is optimal for PC
1 with equal weights).

Algorithm Grad-JSPA solves optimally PC
1 with equal weights w = weq = {1/K,

. . . , 1/K} in polynomial-time. As a consequence, the sum-rate maximization problem

with cellular power constraint is polynomial-time solvable.

Proof. See Appendix B.8.

4.3.2 Power Discretization

The JSPA problem as formulated in PC′
MC has real variables P̄ n on a continuous

search space FMC . However, the study of NP-hard optimization problems and their

approximation requires parameters and variables to be represented by a bounded

number of bits [62], i.e., with bounded precision. This is also a reasonable assump-

tion in practice since MC-NOMA systems are subject to minimum transmit power

limitation at the BS and floating-point arithmetic precision of the hardware. As a

consequence, we discretize the search space FMC , in the same way as in [20]. Let δ

be the minimum transmit power such that the variables P̄ n can only take value of

the form l · δ, for l ∈ {0, 1, . . . , ⌊Pmax

δ
⌋}. We denote the number of non-zero power

values as J = ⌊Pmax

δ
⌋. The feasible set then becomes:

F ′
MC , {P̄ :

∑

n∈N

P̄ n ≤ Pmax and 0 ≤ P̄ n ≤ P n
max, n ∈ N ,

and P̄ n = l · δ, l ∈ {0, . . . , J}, n ∈ N}.
1This theorem can also be found in [P1]
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We rewrite problem PC′
MC with search space F ′

MC as follows:

maximize
y

∑

n∈N

J∑

l=1

cn,lyn,l, (MCKP)

subject to
∑

n∈N

J∑

l=1

an,lyn,l ≤ Pmax,

J∑

l=1

an,lyn,l ≤ P n
max, n ∈ N ,

J∑

l=1

yn,l ≤ 1, n ∈ N ,

yn,l ∈ {0, 1}, n ∈ N , l ∈ [1, J ] ,

where cn,l = F n(l · δ) and an,l = l · δ. The discretized JSPA problem, denoted

by MCKP, is known as the multiple choice knapsack problem [71]. It has N disjoint

classes each containing J items to be packed into a knapsack of capacity Pmax. Each

item has a profit cn,l and a weight an,l, representing respectively the WSR and power

consumption of this allocation on subcarrier n. The binary variable yn,l takes value

1 if and only if item l in class n is assigned to the knapsack. The problem consists

in assigning at most one item from each class to maximize the sum of their profit.

We define y , (yn,l)n∈N , l∈{0,...,J}, and we denote the optimal value of MCKP by

F ∗
MCKP .

According to [71, Appendix A.1], the input size of the integer multiple choice

knapsack problem is linear in the number of items and in log2(c), where c is the

integer knapsack capacity. This precision is important: an algorithm is said to be

polynomial only if its complexity is polynomial in log2(c). Any algorithm with com-

plexity polynomial in c is said to be pseudo-polynomial, e.g., the primal dynamic

programming algorithm presented in [71, Section 5.2]. One may wonder if the nu-

merical parameter Pmax in MCKP plays the same role as c. The answer is no, since

Pmax and δ can be normalized by a factor α, while multiplying gnk by α for all k ∈ K
and n ∈ N , without changing the problem and its complexity. Nevertheless, we

see that J remains constant after such a normalization and seems to be similar

to c in the integer multiple choice knapsack problem. To prove this, we show be-

low that MCKP can be transformed in polynomial-time into the following integer

multiple choice knapsack problem:

maximize
y

∑

n∈N

J∑

l=1

cn,lyn,l, (Int-MCKP)
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subject to
∑

n∈N

J∑

l=1

a′n,lyn,l ≤ J,

J∑

l=1

a′n,lyn,l ≤ ⌊P n
max/δ⌋, n ∈ N ,

J∑

l=1

yn,l ≤ 1, n ∈ N ,

yn,l ∈ {0, 1}, n ∈ N , l ∈ [1, J ] .

Int-MCKP has the same input as MCKP except that the following parameters are

normalized by δ:

❼ The minimum transmit power δ′ is equal to 1 after normalization by δ,

❼ The total power budget is J = ⌊Pmax/δ⌋,

❼ Following the first two points, the weights a′n,l now take integer values between

0 and J . That is, a′n,l = lδ′ = l, for l ∈ {0, 1, . . . , J} and n ∈ N .

❼ The per-subcarrier budget is now ⌊P n
max/δ⌋.

Int-MCKP is obtained by a solution-preserving polynomial transformation of MCKP.

MCKP is itself computed in polynomial time from the discretized version of PC
i . We

deduce from known properties of Int-MCKP, that J is a relevant numerical input

of both MCKP and the discretized version of PC
i , so that their input size is linear

in N , K and log2(J).

We will see in the following subsections that algorithms TSDP and Opt-JSPA

are polynomial in J , therefore we will qualify their complexity as pseudo-polynomial.

On the contrary, ε-JSPA is a polynomial algorithm, as its complexity is polynomial

in log2(J).

4.3.3 Pseudo-Polynomial Time Optimal Scheme: Opt-JSPA

The discrete problem MCKP can be solved optimally by dynamic programming by

weights studied in [71, Section 11.5]. Based on this idea, we proposeOpt-JSPA (see

Algorithm 7) to solve optimally PC′
MC . We first transform PC′

MC to problem MCKP:

from line 1 to 5, every item’s profit cn,l is computed using i-SCUS. Then, we per-

form dynamic programming by weights at line 6. We summarize the optimality

and complexity of Opt-JSPA in Theorem 16. Detailed analysis of the dynamic

programming can be found in Appendix B.9.

62



Section 4.3. Joint Subcarrier and Power Allocation

Theorem 16 (Optimality and complexity of Opt-JSPA).

Given a minimum transmit power δ, algorithm Opt-JSPA computes the optimal

of PC′
MC on the discrete set F ′

MC. Its computational complexity is O(NMK2 +

JNMK + J2N), which is pseudo-polynomial in J .

Proof. See Appendix B.9.

Opt-JSPA is said to be pseudo-polynomial since it depends on the total num-

ber of power values J , which is independent of the input size N , K, and M . In

addition, all system’s parameters and variables are encoded in O(log(J)) bits. As a

consequence, in practical systems, the contribution of J to the computation time is

way higher than parameters N , K, M .

Algorithm 7 The pseudo-polynomial time optimal scheme (Opt-JSPA)

function Opt-JSPA
(
(In)n∈N ,M, Pmax, P

n
max, δ

)

1: ⊲ Compute the parameters of MCKP

2: for n ∈ N and l ∈ [0, J ] do

3: an,l ← l · δ
4: cn,l ← F n (l · δ)
5: end for

6: return optimal allocation from the dynamic programming by weights [71]

end function

4.3.4 Fully Polynomial Time Approximation: ε-JSPA

We develop a FPTAS to avoid the pseudo-polynomial complexity in J that is in-

herent to the optimal schemes Opt-JSPA and TSDP [20]. According to [72], an

algorithm is said to be a FPTAS if it outputs a solution within a factor 1− ε of the
optimal, for any ε > 0. Moreover, its running time is bounded by a polynomial in

both the input size and 1/ε. A FPTAS is the best trade-off one can hope for an

NP-hard optimization problem in terms of performance guarantee and complexity,

assuming P 6= NP.

The proposed FPTAS, called ε-JSPA (see Algorithm 8), is based on dynamic

programming with scaled profits. Scaling the profits is a common technique to

reduce the number of items computed in MCKP. First, we compute an estimation U

of MCKP’s optimal value, such that U ≥ F ∗
MCKP ≥ U/4. We explain the estimation
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procedure in Appendix B.10. Then, instead of computing all JN profit values cn,l,

we only consider the subset Ln of items on each subcarrier n such that:

Ln ,

{
l′ ∈ {1, . . . , J} : ∃ l ∈

{
0, . . . ,

4N

ε

− 1
}
, cn,l′ ≥ l

εU

4N
> cn,l′−1

}
.

This can be seen as considering only one profit value per interval of the form

[(l − 1) · εU/4N, l · εU/4N ], for l ∈ {1, . . . , 4N/ε}. Each Ln, for n ∈ N , can be

obtained by multi-key binary search [73]. All function evaluations required by the

multi-key binary search are done by i-SCUS.

Finally, we apply the dynamic programming by profits [71, Section 11.5] in line 5.

It is known that the optimal solution obtained by dynamic programming by profits

considering only items in Ln, differs from F ∗
MCKP by at most a factor 1 − ε. The

performance and complexity of ε-JSPA are summarized in Theorem 17. We provide

more details on the estimation U in Appendix B.10 and the dynamic programming

by profits in Appendix B.11.

Algorithm 8 The proposed FPTAS (ε-JSPA)

function ε-JSPA
(
(In)n∈N ,M, Pmax, P

n
max, δ, ε

)

1: Compute an estimation U of F ∗
MCKP

2: for n ∈ N do

3: Get an,l, cn,l, for l ∈ Ln by multi-key binary search

4: end for

5: return ε-approximate allocation from the dynamic programming by profits [71]

end function

Theorem 17 (Performance and complexity of ε-JSPA).

Given a minimum transmit power δ and an approximation factor ε, algorithm ε-JSPA

computes an ε-approximation of PC′
MC on the discrete set F ′

MC. The algorithm is a

FPTAS with asymptotic complexity:

O

(
NMK2+min

{
log(J)

N2MK

ε

+
N3

ε
2
, JNMK+J2N

})
.

Proof. See Appendix B.11.

4.3.5 Comparison of JSPA Algorithms

In Table 4.2, we compare the performance and complexity of the proposed algo-

rithms with JSPA schemes in the literature. Reference [21] studied an optimal
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monotonic optimization framework, which has exponential complexity in K and

N . The two-stage dynamic programming algorithm (TSDP) proposed by Lei et

al. has complexity O(J2NMK) according to [20, Theorem 13]. Both TSDP and

the proposed Opt-JSPA are optimal. However, Opt-JSPA has lower complexity

than TSDP. Indeed, the right term J2N is lower by a factor MK, the middle term

JNMK by a factor J . The left term NMK2 also improves the complexity, since

reference [P4] shows that in practical systems J ≥ Θ(min{K,MN}). This result

is verified by simulation in Section 4.4. ε-JSPA is the proposed FTPAS. Its com-

plexity is polynomial in N/ε and log(J). If N/ε < J , it has a lower complexity

than Opt-JSPA. Otherwise, if N/ε ≥ J , its complexity exceeds Opt-JSPA’s com-

plexity. Thus Opt-JSPA can be applied instead to achieve optimal result. Finally,

Grad-JSPA is a heuristic. Its performance is evaluated through simulation in the

next section. When applied in a discrete setting, the error tolerance or precision ξ

is related to δ = 2ξ. Hence, its complexity is proportional to log(J), which is way

lower than the optimal schemes with pseudo-polynomial complexity due to J .

Table 4.2: Comparison of some JSPA schemes proposed in this work and in the literature

Algorithm
Performance

guarantee

Complexity for J discrete

power values

Monotonic optimization

with outer polyblock

approximation [21]

Optimal Exponential in K and N

TSDP [20] Optimal O(J2NMK)

Opt-JSPA Optimal O(NMK2 + JNMK + J2N)

ε-JSPA FPTAS O
(
NMK2+min

{
log(J) N2MK

ε
+N3

ε
2 ,

JNMK+J2N
})

Grad-JSPA Heuristic O(NMK2+log(J)NMK)
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4.4 Numerical Results

We evaluate the WSR and computational complexity of Opt-JSPA, ε-JSPA and

Grad-JSPA through numerical simulations. We compare them with the optimal

benchmark scheme TSDP introduced in [20]. We consider a hexagonal cell of di-

ameter 1000 meters, with one BS located at its center and K users distributed uni-

formly at random in the cell. The users’ weights are generated uniformly at random

in [0, 1]. The number of users K varies from 5 to 60, and the number of subcarriers

is N = 20. We assume a system bandwidth of W = 5 MHz and Wn = W/N for

all n. The minimum transmit power is δ = 0.01W. The cellular power budget is

Pmax = 10W, therefore the number of power values is J = 103. Each point in the

following figures is the average value obtained over 1000 random instances. Only

Fig. 4.6 and 4.7 represent a single instance. The simulation parameters and channel

model are summarized in Table 4.3.

Table 4.3: Simulation parameters (cellular power constraint)

Parameter Value

Cell radius 1000 m

Min. distance from user to BS 35 m

Carrier frequency 2 GHz

Path loss model 128.1 + 37.6 log10 d dB, d is in km

Shadowing Log-normal, 10 dB standard deviation

Fading Rayleigh fading with variance 1

Noise power spectral density −174 dBm/Hz

System bandwidth W 5 MHz

Number of subcarriers N 20

Number of users K 5 to 60

Total power budget Pmax 10 W

Minimum transmit power δ 0.01 W

Number of power values J 103

Error tolerance ξ 10−4

Parameter M 1 (OMA), 2 and 3 (NOMA)

Fig. 4.3 shows the WSR performance of Opt-JSPA and TSDP, for M = 1, 2

and 3. We only simulate TSDP for K = 5 to 30, due to its high running time.

We see that Opt-JSPA and TSDP achieve the same WSR performance, which

66



Section 4.4. Numerical Results

5 10 15 20 25 30 35 40 45 50 55 60

Number of users K

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

W
e

ig
h

te
d

s
u

m
-r

a
te

(b
it
/s

)

×107

OPT-JSPA, M = 3

OPT-JSPA, M = 2

OPT-JSPA, M = 1

TSDP, M = 3

TSDP, M = 2

TSDP, M = 1

Figure 4.3: WSR of the optimal schemes for different number of users K
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Figure 4.4: Performance loss of Grad-JSPA compared to the optimal WSR

is consistent with the fact that they are both optimal. Indeed, the optimality of

Opt-JSPA is shown in Theorem 16, and the optimality of TSDP has been proven

in [20, Theorem 13]. Although both algorithms have the same performance, we will
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see further on in Fig. 4.5 that Opt-JSPA has lower computational complexity than

TSDP. The performance gain of NOMA with M = 2 (resp. M = 3) over OMA

(i.e., M = 1) is about 8% (resp. 10%), for K = 60.

Fig. 4.4 illustrates the performance loss of Grad-JSPA compared to the opti-

mal, for M = 1, 2 and 3. The performance loss is defined as:

Optimal WSR−Grad-JSPA WSR

Optimal WSR
.

The markers represent the average performance loss, while the upper intervals indi-

cate the 90th percentile. For example, for K = 10 and M = 1, 90% of Grad-JSPA

results have less than 9×10−4 of performance loss. We observe that the average per-

formance loss is always below 6×10−4. Hence, our proposed heuristic Grad-JSPA

achieves near-optimal solutions in these simulation settings. It is also suitable for

large systems, since the performance loss decreases as K or M increases.

In Fig. 4.5, we count the number of basic operations (additions, multiplications,

comparisons) performed by each algorithm, which reflects their computational com-

plexity. The term “improved” in the legend represents the complexity of Opt-JSPA

and Grad-JSPA when using i-SCPC and i-SCUS instead of SCPC and SCUS.

There is a significant speed up by employing i-SCPC and i-SCUS as basic building

blocks. Indeed, for K = 60 and M = 1, 2 or 3, there is a factor of at least 10

between Opt-JSPA and its improved version. Besides, the improved Opt-JSPA

outperforms TSDP in terms of complexity. For instance, Opt-JSPA reduces the

complexity by a factor 330, for K = 30 and M = 3. Finally, Grad-JSPA has low

complexity, which makes it a good choice for practical implementation.

Fig. 4.6 and 4.7 present the WSR and complexity of ε-JSPA versus 4N/ε. We

choose such a normalized x-axis, as it is equal to the number of items evaluated in

each subcarrier, i.e., |Ln| = 4N/ε. It can be directly compared to J , which is the

total number of items in each subcarrier in the discretized problem MCKP. Here,

we simulate a single instance with K = 60 users to show how ε-JSPA behaves as a

function of ε. In Fig. 4.6, we also present its performance guarantee. Recall that the

performance guarantee is 1 − ε times the optimal. As expected, ε-JSPA is always

above its performance guarantee. As N/ε increases, the approximation guarantee

tends to the optimal. In this instance, the algorithm already achieves a near-optimal

solution for 4N/ε = 400, i.e., ε = 0.2. In Fig. 4.7, we also plot the complexity of the

improved Opt-JSPA for comparison. As explained in Section 4.3.4, the complex-

ity increases with N/ε and becomes (asymptotically) equal to that of Opt-JSPA
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Figure 4.5: Number of basic operations performed by each algorithm versus K

for N/ε = Ω(J). In this regime, there is apparently no benefit of using ε-JSPA,

since Opt-JSPA achieves the optimal with the same complexity. Nevertheless, in

practice, we can see that even for 4N/ε ≥ J , ε-JSPA has less operations than Opt-

JSPA. This is because the number of items computed by ε-JSPA increases slowly

and smoothly as a function of ε. This behavior is not captured in the asymptotic

complexity (big-O notation). This is verified in Fig. 4.7 for up to 4J = 4000. In

summary, ε-JSPA allows us to control the trade-off between WSR and complexity

with ε.

69



Chapter 4. WSR Maximization with Cellular Power Constraint

0 500 J = 1000 1500 2000 2500 3000 3500 4000

4N/ε

5.2

5.4

5.6

5.8

6.0

6.2

6.4
W

e
ig

h
te

d
s
u

m
-r

a
te

(b
it
/s

)

×107

M = 3 :

M = 2 :

M = 1 :

ε-JSPA

ε-JSPA

ε-JSPA

Perf. guarantee

Perf. guarantee

Perf. guarantee

Figure 4.6: WSR of ε-JSPA and its guaranteed performance bound versus 4N/ε

0 500 J = 1000 1500 2000 2500 3000 3500 4000

4N/ε

107

N
u

m
b

e
r

o
f

b
a

s
ic

o
p

e
ra

ti
o

n
s

M = 3 :

M = 2 :

M = 1 :

ε-JSPA

ε-JSPA

ε-JSPA

improved OPT-JSPA

improved OPT-JSPA

improved OPT-JSPA

Figure 4.7: Number of basic operations performed by ε-JSPA versus 4N/ε

70



Chapter 5

Sum-Rate Maximization with

Individual Power Constraints

In this chapter, we consider the sum-rate maximization problem with individual

power constraints:

maximize
p

M1,weq
(R (p)) =

∑

k∈K

∑

n∈N

Rn
k (p

n),

subject to C1 :
∑

n∈N

pnk ≤ P k
max, k ∈ K,

C2 : pnk ≤ P n,k
max, k ∈ K, n ∈ N ,

C3 : pnk ≥ 0, k ∈ K, n ∈ N ,

C4 : |Un| ≤M, n ∈ N .

(PI
1 )

We explained in Chapter 4 that problem PC
1 with cellular power constraint can

be transformed into a separable problem PC′
1 . In contrast, PI

1 is not separable due

to the individual power constraints in C1, which makes it a challenging problem and

requires to develop different optimization tools than those presented in Chapter 4.

For this reason, we restrict our study to the equal-weight case (weq), which ensures

that the objective functionM1,weq
is concave. We take advantage of the objective

function’s concavity to develop centralized and distributed schemes.

In Section 5.1, we solve optimally the power control sub-problem (given a fixed

subcarrier allocation) with a centralized gradient descent algorithm, denoted here

by GA. In Section 5.2, we propose a distributed game theoretic approach in which

each user optimizes its own data rate using local information only (the user’s own

channel conditions and received interference). The advantage of this approach com-

pared to the centralized one is that it reduces the computational complexity and
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requires only local information. This can be used to reduce the control signaling

overhead in uplink systems for example. The downside is that the distributed power

control achieves suboptimal sum-rate performance. We first prove that this problem

is a concave game [74], [75] which has a unique Nash equilibrium. Then, we study

in Subsection 5.2.1 a distributed pseudo-gradient descent algorithm called PGA to

compute the equilibrium. Finally, we propose in Subsection 5.2.2 the synchronous

iterative waterfilling algorithm (SIWA), and we show that it converges to the equi-

librium if M = 2.

A heuristic three-step methodology is introduced in Section 5.3 to perform joint

subcarrier and power allocation. This three-step methodology requires to solve

two power control sub-problems, which can be done by any of the aforementioned

schemes. When either GA, PGA or SIWA is applied twice, we get respectively the

double gradient algorithm (DGA), the double pseudo-gradient algorithm (DPGA)

and the double iterative waterfilling algorithm (DIWA). We show numerical results

of these schemes in Section 5.5. The content of this chapter has been published

in [P4] and [P5].

For ease of reading, we consider downlink transmissions as in the previous chap-

ter. The distributed approach studied in Section 5.2 may not be relevant to the

downlink, in which the allocation is computed centrally at the BS. Nevertheless,

it is relevant for the uplink optimization, which can be performed similarly to the

downlink optimization by replacing the decoding order with (2.14), and computing

the data rates using formula (2.16). We summarize some system parameters of an

instance of PI
1 as I = (K, (W )n∈N , (gnk )k∈K, n∈N , (ηnk )k∈K, n∈N ).

5.1 Centralized Power Control with Fixed Sub-

carrier Allocation

Given a fixed subcarrier allocation Un, for all n ∈ N , constraint C4 can be relaxed,

thus problem PI
1 can be written as the following power control sub-problem:

maximize
p

∑

k∈K

∑

n∈N

Rn
k (p

n),

subject to C1 :
∑

n∈N

pnk ≤ P k
max, k ∈ K,

C2 : pnk ≤ P n,k
max, k ∈ K, n ∈ N ,

C3 : pnk ≥ 0, k ∈ K, n ∈ N .

(PI
1 (Un))
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The set of feasible powers for user k ∈ K is denoted by:

Pk , {pk :
∑

n∈N

pnk ≤ P k
max and 0 ≤ pnk ≤ P n,k

max, n ∈ Nk}. (5.1)

We also define P as the joint feasible set of all users’ powers, which can be expressed

by the Cartesian product of all Pk, for k ∈ K, i.e,

P ,
∏

k∈K

Pk. (5.2)

We prove the concavity of problem PI
1 (Un) in Theorem 18.

Theorem 18 (PI
1 (Un) is a concave maximization problem).

PI
1 (Un) is a concave maximization problem over the non-empty simplex (convex)

feasible region P.

Proof. See Appendix C.1.

A direct implication of Theorem 18 is that PI
1 (Un) can be optimally solved

through classical convex programming methods [37]. Since its feasible region P is a

standard simplex on RK×N
0+ , we choose the projected gradient descent method [76]

to solve PI
1 (Un). The pseudocode is given in Algorithm 9.

Algorithm 9 Projected gradient descent algorithm (GA)

function GA

(
I, (Un)n∈N ,

(
P k
max

)
k∈K

,
(
P n,k
max

)
n∈N ,k∈K

, ξ
)

1: Let p← (0, . . . , 0) be the starting point

2: repeat

3: Save the previous vector p′ ← p

4: Determine a search direction ∆← ∇
(∑

k∈K

∑
n∈N Rn

k

)
(p′)

5: Choose a step size α

6: Update p← projection of p+ α∆ on P
7: until ||p′ − p|| ≤ ξ

8: return p

end function

In Algorithm 9, the operator ∇ represents the gradient with respect to the power

vector p. The step size α at line 5 can be tuned by backtracking line search or exact

line search [37, Section 9.2]. We adopt the latter to perform simulations. ξ is a small

constant chosen for the termination condition. At line 6 we perform the euclidian
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projection on the feasible set P . Note that the projection can be obtained as in [37,

Section 8.1.1]. The details of the projection or omitted here. The convergence

analysis of Algorithm 9 can be found in [77, Section 2.2.4], and [37], [76].

5.2 Distributed Power Control with Fixed Sub-

carrier Allocation

In this section, we study the power control sub-problem from a game theoretic point

of view. That is, we consider a distributed version of PI
1 (Un), in which each user

allocates power to its assigned subcarriers so as to maximize its individual data rate

Rk. Each user treats the interference from other users after SIC as additional white

Gaussian noise (AWGN). In this case, the power control problem can be seen as a

K-player game [74], where pk is the power allocation strategy of player k and Pk

in (5.1) is its feasible strategy set. P represents the joint strategy space of all players

in the system and is defined in (5.2). Note that the terms user and player both

refer to elements of K. They will be used interchangeably in this section.

For k ∈ K, let p−k , (p1,p2, . . . ,pk−1,pk+1, . . . ,pK). We denote by Nk the set

of subcarriers allocated to user k ∈ K, i.e., Nk , {n ∈ N : k ∈ Un}. We define:

uk(pk,p−k) , Rk(pk,p−k) =
∑

n∈Nk

Rn
k(pk,p−k),

as the utility function of user k ∈ K. Additionally, let u , (u1, u2, . . . , uK). This

game is characterized by the pair (P ,u). A common equilibrium concept in game

theory is the Nash equilibrium, which is defined in Definition 19.

Definition 19 (Nash equilibrium).

A power allocation strategy p̃ , (p̃1, p̃2, . . . , p̃K) ∈ P is called a Nash equilibrium if

the following holds for all k ∈ K and any pk ∈ Pk,

uk(p̃k, p̃−k) ≥ uk(pk, p̃−k,).

At a Nash equilibrium, no player can increase its data rate by unilaterally chang-

ing its strategy, i.e, no user has incentive to change its strategy at a Nash equilibrium.

Theorem 20 shows the existence of Nash equilibrium in concave games. This the-

orem is a corollary of the fundamental theorem in game theory [78]–[80], a proof

and further details can be found in [74]. All three conditions in the theorem are
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satisfied by our problem, thus (P ,u) is a concave game and it has at least one Nash

equilibrium.

Theorem 20 (Existence of Nash equilibrium in concave games [74]).

If for each k ∈ K, the following three statements hold:

(i) Pk is compact and convex,

(ii) uk is continuous in p,

(iii) uk is concave in pk for any given p−k,

then (P ,u) is called a concave game, and it has at least one Nash equilibrium.

Next, we prove that the Nash equilibrium of (P ,u) is unique. LetD ,
∑

k∈K |Nk|,
and Φ : P → RD be the pseudo-gradient of u as defined in [74]:

∀p ∈ P , Φ(p) , (∇1u1(p), . . . ,∇KuK(p)) , (5.3)

in which ∇k denotes the gradient with respect to user k’s power vector pk. That is,

∇kuk is the vector of uk’s derivatives with respect to pnk , for each n ∈ Nk:

∇kuk(p) =


 Wn(∑|Un|

j=π−1
n (k)

pnπn(j)
+ η̃nk

)
ln(2)




n∈Nk

. (5.4)

Since the uniqueness of Nash equilibrium is related to the monotonicity of Φ [74], we

first show in Theorem 21 that Φ is strongly monotone. The uniqueness then follows

in Theorem 22. The definition of strong monotonicity can be found in [75].

Theorem 21 (Strong monotonicity of Φ).

Φ is strongly monotone, i.e., there exists a constant c < 0 such that for all p,p′ ∈ P,

(Φ(p)− Φ(p′))T · (p− p′) ≤ c||p− p′||22.

Proof. See Appendix C.2.

Theorem 22 (Uniqueness of the Nash equilibrium).

The game (P ,u) has a unique Nash equilibrium.

Proof. Theorem 21 shows that the pseudo-gradient of this game, Φ, is strongly

monotone. Hence, the game has a unique Nash equilibrium according to [74], [75].
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5.2.1 Pseudo-Gradient Descent Method

We know from Theorem 22 that the K-player concave game (P ,u) has a unique

Nash equilibrium. Therefore, the pseudo-gradient descent method converges to the

unique Nash equilibrium according to [74]. We state in Algorithm 10 the pseudo-

code of the distributed pseudo-gradient descent procedure performed by each user

k ∈ K. Besides, we define for k ∈ K and n ∈ Nk:

Ĩnk ,

|Un|∑

j=π−1
n (k)+1

pnπn(j) + η̃nk , (5.5)

as the normalized interference plus noise received by user k ∈ K on subcarrier

n ∈ N . In addition, we define Ĩk , (Ĩnk )n∈Nk
. We see from Eqn. (5.4) that ∇kuk

only depends on pk and Ĩk, thus we can write equivalently ∇kuk

(
pk, Ĩk

)
. Similarly,

we use notation Rn
k(p

n
k , Ĩ

n
k ) and Rk

(
pk, Ĩk

)
for the data rates of user k ∈ K.

Algorithm 10 Pseudo-gradient descent algorithm (PGA)

1: procedure of user k

2: initialization: Let pk ← (0, . . . , 0) be the starting point

3: when Ĩk changes or ||p′
k − pk|| > ξ do

4: Save the previous power vector p′
k ← pk

5: Determine a search direction ∆k ← ∇kuk

(
pk, Ĩk

)

6: Choose a step size αk

7: Update pk ← projection of pk + αk∆k on Pk

8: end

9: end procedure

An iteration of the gradient descent is triggered at line 3 either when the interfer-

ence Ĩk changes or if the pseudo-gradient has not converged yet, i.e. ||p′
k−pk|| > ξ.

Variable p′
k is chosen initially so that ||p′

k − pk|| > ξ.

The pseudo-gradient descent algorithm is distributed in the sense that each user

k ∈ K only needs to know the channel gains between itself and the BS, P k
max,

P n,k
max and Ĩk. These information are available locally or can be obtained using

channel estimation techniques between the user and the BS. Indeed, at line 5 of

Algorithm 10, ∇kuk only depends on pk, Ĩk, and implicitly η̃nk . At line 6, the step

size αk, computed by line search or other methods, depends on Rk

(
pk, Ĩk

)
and its

derivatives with respect to pk. The projection on Pk at line 7 only requires the

information of the individual power budgets P k
max and P n,k

max.
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5.2.2 Synchronous Iterative Waterfilling Algorithm

We propose here a heuristic, the synchronous iterative waterfilling algorithm (SIWA),

based on the well known waterfilling algorithm [38, Sections 10.4 and 10.5]. The wa-

terfilling algorithm computes the optimal power allocation for a user k assuming the

other users’ power allocation is fixed, i.e., Ĩk is fixed. This optimal power allocation

is also called the waterfilling power allocation. Details are given in Theorem 23.

Theorem 23 (The waterfilling power control maximizes the individual data rate [38]).

Suppose that Ĩnk for n ∈ Nk are fixed. Then, p∗
k ∈ Pk maximizes Rk

(
p∗
k, Ĩk

)
if and

only if there exists ωk ∈ R0+ such that:

pn∗k =
[
ωk − Ĩnk

]P n,k
max

0
, for n ∈ Nk, (5.6)

where

[x]ba =





a, if x ≤ a,

x, if a ≤ x ≤ b,

b, if b ≤ x,

and ∑

n∈Nk

pn∗k = P k
max. (5.7)

The lowest value wk ≥ 0 satisfying Eqn. (5.6) and (5.7) is called the water level.

We define ϕk :
∏

k′ 6=k P ′
k → Pk as the waterfilling function of user k which takes

as input p−k and returns the waterfilling power allocation (pn∗k )n∈Nk
defined in The-

orem 23. Since Theorem 23 only requires the received interference and not the full

power vector p−k, one can also write ϕk

(
Ĩk

)
instead of ϕk(p−k). Furthermore, we

define ϕ : P → P as the joint waterfilling function of all users, which is given as

follows:

ϕ(p1,p2, . . . ,pK) , (ϕk(p−k))k∈{1,K}.

The idea of the iterative waterfilling algorithm (IWA) is that each user k ∈ K
applies iteratively ϕk to update its power allocation (see Algorithm 11). Since this

procedure is performed in a distributed manner, it may not always converge to a

fixed point. The synchronous iterative waterfilling algorithm (SIWA) presented in

Algorithm 12 further assumes that users are synchronized and that they update their

power allocation simultaneously. We denote the power of user k ∈ K on subcarrier
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Algorithm 11 Iterative waterfilling algorithm (IWA)

1: procedure of user k

2: initialization: Let pk ← (0, . . . , 0) be the starting point

3: when user is activated do

4: Get the normalized interference plus noise Ĩk

5: Update pk ← ϕk

(
Ĩk

)

6: end

7: end procedure

Algorithm 12 Synchronous iterative waterfilling algorithm (SIWA)

1: procedure of user k

2: initialization: Let pk(0)← (0, . . . , 0) be the starting point

3: when user is activated at iteration t do

4: Get the normalized interference plus noise Ĩk(t− 1)

5: Update pk(t)← ϕk

(
Ĩk(t− 1)

)
, ϕk(p−k(t− 1))

6: end

7: end procedure

n ∈ Nk at iteration t by pnk(t) and the individual power vector by pk(t). From a

centralized point of view, SIWA’s iterations are given as follows:

(p1(t+ 1),p2(t+ 1) . . . ,pK(t+ 1)) = ϕ(p1(t),p2(t), . . . ,pK(t)),

with pk(0) = (0, . . . , 0) for all k ∈ K. Asynchronous versions of the IWA [81], [82]

would be more suitable for practical applications, as they do not require simultane-

ous updates. However, synchronicity in distributed systems is out of the scope of

this thesis, therefore we consider SIWA for simplicity. We show in Theorem 24 that

SIWA is guaranteed to converge when |Un| ≤ 2, for all n ∈ N .

Theorem 24 (Convergence of SIWA).

If |Un| ≤ 2 for all n ∈ N , then SIWA converges.

Proof. See Appendix C.3.
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5.3 Joint Subcarrier and Power Allocation as a

Three-Step Heuristic

We propose a three-step heuristic to tackle the JSPA problem PI
1 . Step 1 relaxes

the problem by setting Un = K, for all n ∈ N . The resulting power control sub-

problem PI
1 (K) is solved using either GA, PGA or SIWA. Step 2 is a heuristic

which determines the final subcarrier allocation Ûn satisfying constraint C4 and

taking into account the data rates obtained in Step 1. In Step 3, the powers are

optimized again, by eitherGA,PGA or SIWA, considering the subcarrier allocation

Ûn. We illustrate this three-step method in Fig. 5.1 and give the pseudo-code below.

Step 1: Perform power control given Un = K, for all n ∈ N ,

to get the power allocation p′

Step 2: For each subcarrier n ∈ N , Ûn gets

the top-M users in terms of individual data

rates achieved with the power allocation p′

Step 3: Perform power control given the input Ûn,
for all n ∈ N , to get the final power allocation p

Input:

M,P k
max, P

n,k
max

in

out

Power allocation p′

in

out

Subcarrier allocation

Ûn, for all n ∈ N
in

out

Output:

Power allocation p

Figure 5.1: Overview of the three-step heuristic

Step 1: Solve the power control sub-problem PI
1 (K) given the subcarrier allocation

Un = K. The obtained power vector is denoted by p′.

Step 2: Allocate subcarriers to users based on the data rates R(p′) obtained in

Step 1. For each subcarrier n ∈ N :
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❼ If M or more users have positive power on subcarrier n, allocate sub-

carrier n to the M users who have the top-M highest individual data

rates on subcarrier n, with ties broken arbitrarily.

❼ If less than M (but not 0) users have positive power on subcarrier n,

allocate subcarrier n only to these users.

❼ If no user has positive power on subcarrier n, allocate subcarrier n to

user k∗, where k∗ , argmink∈K η̃nk , with ties broken arbitrarily.

The resulting subcarrier allocation is denoted by Ûn. It satisfies constraint
C4, i.e., |Ûn| ≤M for all n ∈ N .

Step 3: Solve the power control sub-problem PI
1 (Ûn) using the subcarrier allocation

Ûn obtained in Step 2. The final power allocation is denoted by p in Fig. 5.1.

Either algorithm GA, PGA or SIWA can be used to perform power control in

Step 1 and Step 3. When GA is applied in both Step 1 and Step 3, this three-

step method is called the double gradient algorithm (DGA). Similarly, we refer to

double pseudo-gradient algorithm (DPGA) and double iterative waterfilling algorithm

(DIWA), when PGA and SIWA are used, respectively.

5.4 Computational Complexity Analysis

In this subsection, we analyze the asymptotic computational complexity of the pro-

posed centralized and distributed power allocation algorithms, which are the key

components of our designed three-step resource allocation framework. Besides, we

also discuss the complexity of the benchmark schemes: LDDP [20] and FTPC [23],

[24], [26]. We summarize these results in Table 5.1.

1) Complexity of GA: According to Theorem 18, the optimization problem PI
1 (Un)

is concave over a simplex feasible region. One can prove as in Appendix B.7,

that the objective function is furthermore α-strongly concave and β-smooth, for

some parameters α and β. Therefore, PI
1 (Un) can be solved in a centralized man-

ner by Algorithm 9 in O(log(1/ξ)) iterations [77, Section 2.2.4], where ξ is the

error tolerance at termination. Each iteration requires to compute the gradient

∆← ∇
(∑

k∈K

∑
n∈N Rn

k

)
(p′) with respect to the power vector p′. For each n ∈ N
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Table 5.1: Complexity comparison of the proposed algorithms and benchmark schemes

Proposed

Algorithms

Number of

iterations

Time complexity

of each iteration

in Step 1

Time complexity

of each iteration

in Step 3

Projected

gradient descent

(centralized)

O(log(1/ξ)) O(NK2) O(NM2)

Pseudo-gradient

descent

(distributed)

O(log(1/ξ)) O(NK) O(NM)

SIWA

(distributed)

Exponentially fast

in ξ (empirical)
O(NK) O(NM)

Benchmark

Algorithms
Time complexity

LDDP O(CNMKJ2)

FTPC O(NK)

and k ∈ K, the (k, n)-th element of this gradient is:

∆n,k =
∑

j≤π−1
n (k)

∂Rn
πn(j)

∂pnk
, (5.8)

where of ∂·
∂pn

k

is the partial derivative with respect to pnk . Equation (5.8) can be

computed by at most O(|Un|) operations, therefore each iteration has O(N |Un|2)
time complexity. In our three-step heuristic, the complexity in Step 1 and Step 3

are respectively O(NK2) and O(NM2).

2) Complexity of PGA: According to [74] and Theorem 22, Algorithm 10 con-

verges to the unique fixed point within O(log(1/ξ)) iterations. In line 5 of Algo-

rithm 10, each user k ∈ K only computes its pseudo-gradient ∇kuk

(
pk, Ĩk

)
which

consists of |Nk| ≤ N elements. Thus, each iteration’s time complexity is O(N |Un|).
When applied in Step 1 of our three-step method, PGA has complexity O(NK).

In Step 3, its complexity reduces to O(NM).

3) Complexity of SIWA: By simulation results in Section 5.5, we observe that

SIWA converges exponentially fast in ξ. Since in Step 1 all users can use N subcar-

riers simultaneously, each waterfilling step has O(NK) time complexity. The time

complexity becomes O(NM) in Step 3, as no more than M users are active on each
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subcarrier.

4) Complexity of LDDP : As seen in Subsections 3.3.3 and 4.3.5, the complex-

ity of LDDP is O(J2NMK) for cellular power constraint. According to [20], the

complexity of LDDP for individual power constraints is O(CJ2NMK), where the

additional parameter C represents the number of sub-gradient optimization itera-

tions upon termination. Recall that the power budget P k
max is divided in J discrete

power steps of value P k
max/J and power allocation is performed by distributing these

discrete power pieces among users and subcarriers. In Subsection 5.5.4, we study

the trade-off between sum-rate performance and computational complexity of LDDP

for different values of J . We determine that for the system described in Table 5.2,

LDDP with J = 10K is an appropriate choice as a near-optimal benchmark since

its sum-rate does not improve significantly by further increasing J . In addition, we

analyze how the performance gain in LDDP’s optimization depends on J , N , K and

M . We deduce that J = O(min{K,MN}) is a good choice achieving near-optimal

sum-rate in practice.

5) Complexity of FTPC : The complexity of FTPC is O(NK), see [23], [24], [26].

5.5 Numerical Results

We evaluate the performance of the proposed algorithms by simulations. The radius

R of the cell is set to 250 meters. Within the cell, there is one BS located at the

center and K users uniformly distributed inside it. The system bandwidth W is

assumed to be 5 MHz and Wn = W/N for n ∈ N , where N = 10. The noise power

spectral density is assumed to be -174 dBm/Hz. In the radio propagation model,

we include the distance-dependent path loss, shadow fading and small-scale fading.

The distance-dependent path loss is given by 128.1 + 37.6 log10 d, in which d is the

distance between the transmitter and the receiver in km. Log-normal shadowing

has a standard deviation of 8 dB. For small-scale fading, each user experiences

independent Rayleigh fading with variance 1. Each point in the following figures is

the average value obtained over 2000 random instances. Only figures 5.2, 5.3 and 5.4

represent a single instance. The simulation parameters are summarized in Table 5.2.

We will compare the performance of the following schemes:

❼ Double iterative waterfilling algorithm (DIWA): we adopt the proposed three-

step optimization framework and use SIWA in both Step 1 and 3.
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Table 5.2: Simulation parameters (individual power constraints)

Parameter Value

Cell radius 250 m

Min. distance from user to BS 35 m

Path loss model 128.1 + 37.6 log10 d dB, d is in km

Shadowing Log-normal, 8 dB standard deviation

Fading Rayleigh fading with variance 1

Noise power spectral density -174 dBm/Hz

System bandwidth, W 5 MHz

Number of subcarriers N 10

Number of users K 3 to 20

Individual power budget P k
max 0.5 W

Error tolerance ξ 10−4

Number of power values J for LDDP 10K (10 for each user)

Decay factor of FTPC 0.4

Parameter M 1 (OMA), 2 to 6 (NOMA)

❼ Double gradient algorithm (DGA): the projected gradient descent algorithm

(Algorithm 9) is considered in both Step 1 and Step 3.

❼ Double pseudo-gradient algorithm (DPGA): we apply pseudo-gradient descent

algorithm (Algorithm 10) in both Step 1 and Step 3.

❼ NOMA-SIWA-FTPC: in this scheme SIWA is applied in Step 1 to perform

subcarrier allocation in Step 2. Then, FTPC optimizes the power control in

Step 3.

❼ LDDP: the near-optimal scheme proposed in [20].

❼ OMA-FTPC: we apply FTPC in OMA system, that is M = 1.

5.5.1 Convergence of the Power Control Schemes

We investigate here the convergence of SIWA, DGA and DPGA in both Step 1 and

Step 3 of our three-step scheme. The number of users is K = 10 and the number of

active users per subcarrier is set to M = 2.

83



Chapter 5. Sum-Rate Maximization with Individual Power Constraints

0 1 2 3

Number of iterations

0.2

0.4

0.6

0.8

1.0

W
a

te
r

le
ve

l
(w

a
tt
)

User 1

User 4

User 7

User 10

Figure 5.2: Convergence of SIWA in Step 1
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Figure 5.3: Convergence of SIWA in Step 3

Fig. 5.2 and Fig. 5.3 show the convergence of SIWA in Step 1 and Step 3, re-

spectively. We choose four users on an arbitrary chosen instance and use their water

levels at each iteration to demonstrate the convergence. As expected from the proof

of Theorem 24 and from the fact that M = 2, the water level of each user in Step 3
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Figure 5.4: Convergence of DGA and DPGA

is monotonically increasing.

Fig. 5.4 shows the sum-rate over the iterations of DGA and DPGA in Step 1

and Step 3. In this example, these gradient descent based power control algorithms

converge rapidly, which is consistent with the convergence analysis in Section 5.4.

5.5.2 Sum-Rate Performance

In Fig. 5.5 and 5.6, we compare the sum-rate performance of LDDP and DGA

in NOMA system, as well as the performance of OMA-FTPC in OMA system.

Parameter M is set to 2 and 3 in Fig. 5.5 and Fig. 5.6, respectively. In Fig. 5.5, we

see that the sum-rate of each scheme increases with the number of users K. For any

given K, LDDP has the best performance among the three schemes. Nevertheless,

DGA achieves comparable performance to that of LDDP, see for example, when

K = 20 and M = 2, the proposed DGA has a performance loss of only 3.14% when

compared with LDDP. In addition, OMA-FTPC has the worst system performance

among all. Similar conclusions can be drawn from Fig. 5.6. It is worth mentioning

that the proposed scheme becomes more efficient when M increases. For example,

when K = 20 and M = 3, the performance loss of DGA compared to LDDP is

reduced to 1.71%.

In Fig. 5.7 and 5.8, we show the performance loss of our three-step heuristics:
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DGA, DPGA, DIWA, and NOMA-SIWA-FTPC. The sum-rate performance loss

when compared to the near-optimal LDDP is defined as follows:

∑
k∈K

∑
n∈N Rn

k(LLDP )−∑k∈K

∑
n∈N Rn

k∑
k∈K

∑
n∈N Rn

k(LLDP )
, (5.9)

where
∑

k∈K

∑
n∈N Rn

k(LLDP ) and
∑

k∈K

∑
n∈N Rn

k refer to the solutions of LDDP

and the three-step algorithm, respectively. In Fig. 5.7 we set M = 2, and in Fig. 5.8

we set M = 3. In both figures, DGA has the smallest performance loss among the

four schemes. Meanwhile, DIWA has a similar performance to that of DPGA. In

addition, NOMA-SIWA-FTPC has the largest performance loss among all.

Fig. 5.9 presents the sum-rate of LDDP and our proposed heuristics versus the

number of multiplexed users M . The number of users K is fixed and equal to 6.

It can be seen that when M increases, the performance gap between LDDP and

our proposed schemes decreases. For example, when M = 4, the proposed DGA

and SIWA have almost the same performance to that of LDDP, i.e., a performance

loss of approximately 0.0016% and 0.0074%, respectively, while DPGA stagnates at

0.036% and NOMA-SIWA-FTPC has a performance loss of 0.37%.
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Figure 5.5: Sum-rate vs. K, for M = 2

86



Section 5.5. Numerical Results

4 6 8 10 12 14 16 18 20

Number of users K

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05
S

u
m

o
f

d
a

ta
ra

te
s

(b
it
s
/s

)

×108

LDDP

DGA

OMA-FTPC

Figure 5.6: Sum-rate vs. K, for M = 3
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Figure 5.8: Performance loss vs. K, for M = 3

2 3 4 5 6

Number of multiplexed users M

8.48

8.50

8.52

8.54

8.56

S
u

m
o

f
d

a
ta

ra
te

s
(b

it
s
/s

)

×107

LDDP

DGA

DPGA

DIWA

NOMA-SIWA-FTPC

Figure 5.9: Sum-rate vs. M
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5.5.3 Number of Operations

In this subsection, we evaluate the number of basic operations (additions, multi-

plications, comparisons) used by each algorithm, which reflects their computational

complexity. In figures 5.10 and 5.11, the number of multiplexed users M is fixed to

2 and 3, respectively. The number of operations performed by each scheme increases

with K. LDDP has the highest computational complexity. OMA-FTPC performs

the fewest operations of all. In addition, the proposed DIWA uses approximately

the same number of operations as NOMA-SIWA-FTPC and slightly more operations

than OMA-FTPC but much less operations than DPGA and DGA. For any K, all

of the proposed schemes are much more time efficient than LDDP especially when

the number of users is large. For example, when K = 20 and M = 2, the number

of operations required by DIWA, DPGA and DGA is less than 0.01%, 0.2%, and

0.27% of that required by LDDP, respectively. Besides, when K = 20 and M = 3,

the number of operations of DIWA, DPGA and DGA is around 0.01%, 0.07%, and

0.1% of that needed by LDDP, respectively.
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Figure 5.10: Number of operations vs. K, for M = 2

Fig. 5.12 shows the number of operations versus different values of M given a

fixed number of users K = 6. The number of operations performed by LDDP is

the highest of all. In addition, when M increases, the computational complexity of

LDDP has the fastest growth rate among all the schemes.
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Figure 5.11: Number of operations vs. K, for M = 3
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5.5.4 Impact of J on LDDP’s Performance

We show in this subsection how the sum-rate and complexity of LDDP depends on

the number of power levels J and the system’s parameters. We present in figures 5.13

and 5.14 the sum-rate and number of operations of LDDP for different number of

power values J = 10, 20, 50, 200 and 10K, and compare them to the performance of

DGA. As expected from [20], when J increases, the sum-rate of LDDP increases and

tends the optimal, while the computational complexity increases in O(CNMKJ2).

The number of power levels considered here is always greater than 10, otherwise

LDDP would not have enough discrete power steps to serve all N = 10 subcarriers.
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Figure 5.13: Sum-rate for different values of J , and M = 3

We observe in Fig. 5.13 that LDDP’s sum-rate for J = 200 and J = 10K are very

close, i.e. they have less than 0.01% of difference for any number of users. Hence,

LDDP’s sum-rate does not improve significantly by further increasing J over 10K.

Furthermore, the sum-rate is reduced significantly as J decreases. This justifies the

choice of LDDP with 10 power steps per user, i.e. J = 10K, as a benchmark near-

optimal scheme in our simulations. Of course this value only holds for the system’s

parameters described in Table 5.2. We discuss below how J can be set in other

systems depending on N , K and M .
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Figure 5.14: Number of operations for different values of J , and M = 3

As the number of resource increases (N , K and M), J should also increase in

order to achieve similar gain in the joint subcarrier and power allocation. The idea is

that each allocated user should have enough power steps to optimize the allocation

of their individual power budget P k
max among the subcarriers in LDDP. Given that

the number of allocated user is at most min{K,MN}, we choose empirically J =

Θ(min{K,MN}), which achieves good performance by simulation. For example, we

choose J = 10K in Fig. 5.13, since K < MN = 30.

In Fig. 5.14, all LDDP schemes have higher complexity than DGA. Among these

schemes, only LDDP with J = 50, 200, 10K achieve better sum-rate than DGA.

The performance gains compared to DGA, for K = 20 users, are respectively 1.04%

and 1.74% for J = 50 and J = 10K = 200, while the increase in complexity are

approximately 100 and 1000 folds. Moreover, DGA outperforms both LDDP with

J = 10 and J = 20 in terms of higher sum-rate and lower complexity. For K = 20

users, the performance loss of LDDP with J = 10 and J = 20 compared to DGA

are respectively 3.20% and 1.54%.

In summary, DGA has close to the best LDDP’s sum-rate, while requiring less

computational complexity. The latter statement can be explained by comparing the
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asymptotic complexity of LDDP iteration O(NMKJ2) and DGA iteration O(NK2).

As discussed previously, we can assume J = O(min{K,MN}). If K ≤MN (which

is the case considered in our simulations), LDDP iteration’s complexity can be

written as O(NMK3). In this case, DGA requires MK times less operations than

LDDP, which explains the results shown in Fig. 5.10, 5.11, 5.12 and Fig. 5.14.

Otherwise if K > MN , then LDDP iteration’s complexity becomes O(N3M3K).

This complexity is in practice higher than DGA’s iteration complexity. Indeed,

let’s consider a 3GPP-LTE use case [83] with a bandwidth of 10 MHz divided in

N = 50 resource blocks, and let M = 2, DGA remains advantageous in terms of

computational complexity as long as K < N2M3, i.e. up to 20, 000 connected users.

5.5.5 User Fairness

Previous sections reveal the tradeoff between sum-rate performance and computa-

tional complexity achieved by the proposed resource allocation algorithms. We show

in this subsection that various tradeoffs between sum-rate performance and user fair-

ness can be obtained by adjusting the individual power budgets P k
max, for k ∈ K.

This is particularly suitable for downlink systems, in which the BS can arbitrarily

set the individual power constraints, as long as
∑

k∈K P k
max ≤ Pmax, where Pmax is

the total power budget available at the BS.

We adopt Jain’s fairness index [84] to evaluate the user fairness in Fig. 5.15. It

is defined as:
(
∑K

k=1 Rk)
2

K
∑K

k=1 R
2
k

.

For simplicity, we choose DGA as an example to demonstrate the fairness perfor-

mance. Similar conclusions can be obtained for the other three-steps heuristics.

We choose M = 2 and we consider two individual power constraints strategies. In

the first strategy, denoted by DGA equal power constraints, each user has the same

power budget, i.e., P k
max = Pmax/K, where k ∈ K. In the other strategy, denoted by

DGA proportional power constraints, the power budget of user k is given as follows:

P̄ k
max =

(
∑

n∈N gnk )
−1

∑
j∈K(

∑
n∈N gnj )

−1
Pmax. (5.10)

We see in Fig. 5.15 that DGA under proportional power constraints has higher

fairness index than that of DGA with equal power constraints. For example, for

K = 20, DGA with proportional power constraints improves Jain’s fairness index

by 60% when compared to that of equal power constraints scheme.
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Fig. 5.16 shows the sum-rate performance of the two aforementioned strategies.

DGA under equal power constraints achieves higher sum-rate than DGA with pro-

portional power constraints since the latter scheme assigns more power to users with

weak channel conditions. When K = 20, DGA with proportional power constraints

has 7.3% performance loss compared to the equal power strategy.
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Figure 5.15: Fairness index vs. K, for M = 2
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Chapter 6

Conclusion

In this thesis, we introduce a novel optimization framework to tackle a general class

of utility maximization JSPA problems. We show that these problems are NP-hard

to solve in general. Nevertheless, we discuss about special cases in which optimal

solutions can be computed in polynomial time. Then, we apply more specifically our

framework to two constrained optimization problems: the WSR maximization with

individual power constraints and the sum-rate maximization with cellular power

constraint.

We propose three new algorithms for the WSR maximization with individual

power constraints, namely Opt-JSPA, ε-JSPA and Grad-JSPA. Opt-JSPA

computes an optimal solution with lower complexity than current optimal schemes

in the literature, which makes it a suitable benchmark for optimal WSR performance

in simulations. However, its pseudo-polynomial time complexity remains impracti-

cal for real-time applications. To further reduce the complexity, we propose a fully

polynomial-time approximation scheme called ε-JSPA. It stands out by allowing

to control a tight trade-off between performance guarantee and complexity. To the

best of our knowledge, ε-JSPA is the first polynomial-time approximation scheme

proposed for this problem. Finally, Grad-JSPA is a heuristic based on gradient

descent. Numerical results show that it achieves near-optimal WSR with much lower

complexity than existing optimal methods.

Regarding the sum-rate maximization with cellular power constraint, we first

solve the power control sub-problem by an optimal gradient descent algorithm called

GA. Furthermore, we propose a distributed game theoretic variant of this sub-

problem in which each user optimizes its power allocation using local information

only. We develop a pseudo-gradient descent method (PGA) which converges to
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the unique Nash equilibrium, and a synchronous iterative waterfilling algorithm

(SIWA). Finally, we extend these three power control algorithms to perform joint

subcarrier and power allocation. The resultant schemes are called DGA (for the

centralized problem), DPGA and DIWA (in the distributed settings). Numerical

results show that these schemes have less than 5.5% of performance loss compared to

the optimal in our simulations settings. Since DGA is centralized, simulations show

that it achieves better performance than DPGA and DIWA. However, DPGA and

DIWA require respectively around 30% and 90% less computations than DGA,

while their average sum-rate is no less than 99% of that achieved by DGA. Finally,

we show that various tradeoffs between sum-rate performance and user fairness can

be obtained by adjusting the individual power budgets.

6.1 Future Work and Open Problems

In this section, we discuss about possible future research directions related to NOMA

resource allocation problems. The first idea would be to apply the tools developed

in our framework to new objective functions. For example, max-min fairness [85],

[86] and connectivity maximization [87], [88] are of particular interest to increase

the number of connected devices and enable mMTC. Our framework can also be

extended to new constraints, such as the QoS constraints mentioned in Section 3.2.

In this thesis, as well as in many papers in the literature, the SIC decoding

capability of the system is modeled as a limit M on the number of active users

per subcarrier (see constraint C4 in PI
i and PC

i ). The superposition of at most M

signals is assumed to be always perfectly decoded. A more realistic model would be

to consider error propagation issues in the successive decoding procedure. Imperfect

SIC has been studied in [47], [89]–[92]. It remains an open problem in many MC-

NOMA scenarios and objectives, such as WSR and connectivity maximization.

In this work, we assume that the channel gains are perfectly known. Two more

realistic models using only partial CSI can be considered instead: imperfect CSI

studied in [10], [13], [93], for which the channel gains are given with a known es-

timation error probability distribution, and second order statistics (SOS) adopted

in [94], for which only the distances between users and BS are known. In both cases,

JSPA becomes a stochastic optimization problem, and it remains to be solved in

many scenarios.

Another interesting direction is to further develop distributed resource allocation
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algorithms. In multi-cell heterogeneous networks, the control signaling between BSs

can be prohibitive for URLLC use cases. Hence, resource allocation can be done

by each BS in a distributed manner, using mostly local information, and through

managing the interference caused to other cells. Uplink grant-free NOMA is another

important use case, which has received much attention [40], [41], [95].

The NP-complexity class is not enough to determine whether a problem can be

solved efficiently or not. Indeed, as we show in Chapter 4, although computing an

optimal solution of JSPA is intractable, good approximations can be obtained with

low complexity. Thus, we believe that approximation algorithms and approximabil-

ity classes [96] can have a significant impact on the design of RRM schemes.

Besides, machine learning and deep learning are promising methods to handle

the increasing complexity of RRM in 5G and future wireless networks. They have

already found many applications in the physical layer design of NOMA [91], [95],

[97]–[100]. Consider modulation and channel detection as an example, the idea is

to represent the system composed of a transmitter, the channel and the receiver as

an autoencoder neural network [101]. However, only a few papers have considered

deep learning for NOMA resource allocation problems. The authors of [49] use deep

reinforcement learning (DRL) to solve the subcarrier allocation problem for sum-

rate maximization with QoS constraint and for max-min fairness utility subject to

cellular power constraint. In this case, the impact of deep learning is limited as

these two problems can be tackled efficiently by classical optimization algorithms.

Moreover, the proposed DRL requires to run a training phase each time the system

changes, i.e., when the number of users and subcarriers varies, while these are simple

inputs of the classical algorithms. We discuss here some examples in which deep

learning has an advantage over classical optimization methods. First, deep learning

can be applied to communication systems with a big number of complex parameters.

In this respect, reference [102] developed a DRL approach for power allocation in a

cache-aided NOMA system, and [92] considers a heterogeneous IoT system accessing

the channel from a cognitive radio perspective and taking into account imperfect

SIC. Secondly, machine learning methods are suitable for online resource allocation.

The work in [103] optimizes the decoding order and power allocation of a satellite

NOMA downlink system based on each user’s packet buffer and time-varying channel

state over the long-term. Finally, the authors of [104] use reinforcement learning

to perform power allocation in the presence of smart jamming. This shows that

machine learning approaches can be applied in adversarial environment.
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Appendix A

Proofs of PI
i Strong NP-Hardness

First, let us define the 3-Dimensional Matching Problem (3DM) as follows.

Definition 25 (3-Dimensional Matching Problem).

The 3-dimensional matching problem (3DM) takes four finite sets as inputs: X,

Y , Z, and S such that |X| = |Y | = |Z| and S ⊆ X × Y × Z. Let I3DM denotes

the set of all possible inputs. The problem consists of deciding whether there ex-

ists a 3-dimensional matching S ′ ⊆ S such that no two distinct triplets (x1, y1, z1),

(x2, y2, z2) ∈ S ′ overlap, i.e.,

(x1, y1, z1) 6= (x2, y2, z2) =⇒ x1 6= x2, y1 6= y2, z1 6= z2,

and all elements are covered by S ′, i.e.,

|S ′| = |X|. (A.1)

For this NP-hardness proof, we consider pseudo-polynomial reductions tM : I3DM

7→ IDI
i|M

mapping any instance of 3DM to an instance of DI
i|M , for M ≥ 1, i ∈

[−∞, 1]. Pseudo-polynomial transformations preserve NP-hardness in the strong

sense [63] and are defined for all instances x3DM ∈ I3DM as:

(i) x3DM has a matching ⇐⇒ optPi
(tM(x3DM)) ≥ T ,

(ii) tM is polynomial time computable in the size of x3DM ,

(iii) The largest numerical value of tM(x3DM) is lower and upper bounded by poly-

nomials in the size of x3DM .

In the following subsections, we will prove that DI
i|M is strongly NP-hard for any

fixed M ≥ 1 and i ∈ [−∞, 1] by constructing the aforementioned pseudo-polynomial
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reduction tM . To this end, we first prove it in Lemma 26 for the sum-rate objective

function M1,w with no more than M = 1 active user per subcarrier. Then, we

extend this proof in Lemma 27 to any M ≥ 1. Finally, we generalize it to any

objective functionsMi,w, i ≤ 1, which proves Theorem 6.

A.1 Sum-Rate Maximization with M = 1

Lemma 26. For M = 1, problem DI
1|M with sum-rate objective function M1,w is

strongly NP-hard in both downlink and uplink scenarios.

Proof. The idea of the proof is to construct a reduction t1 : I3DM 7→ IDI
1|1

mapping

any instance of 3DM to an instance of DI
1|1 in which no more than one user is

allocated to each subcarrier. We first detail t1 and show that it satisfies conditions

(ii) and (iii). Then, we prove condition (i) for T = 3. As a result, t1 is a well defined

pseudo-polynomial reduction, and it follows from 3DM’s strong NP-hardness [66]

that DI
1|1 is also strongly NP-hard.

Let x3DM = (X, Y, Z, S) ∈ I3DM . Without loss of generality, we can assume

that |S| ≥ |X|, otherwise x3DM has trivially no matching according to (A.1). The

corresponding instance t1(x3DM) ∈ IDI
1|1

is given by:

❼ K = |S| users. There is a bijective mapping between users k ∈ K and triplets

(xk, yk, zk) ∈ S.

❼ N = |S|+ 2|X| subcarriers divided into four groups NX , NY , NZ and NR.

The first three groups NX , NY , NZ are called primary subcarriers and are in bi-

jection with X, Y and Z respectively. For notational simplicity, we index them by

their corresponding set, e.g., nx ∈ NX corresponds to x ∈ X. The same goes for

Y and Z. This way, we have NX = NY = NZ = |X| subcarriers in each of these

primary groups. The set NR is called the residual group, it contains NR = |S|− |X|
subcarriers.

The channel gains of user k ∈ K whose corresponding triplet is (xk, yk, zk) ∈ S are

set as follows:

∀n ∈ N , gnk =





1 if n ∈ {nxk
, nyk , nzk},

1 if n ∈ NR,

0 otherwise.
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And the noise powers are set as follows:

∀n ∈ N , ηnk =




3/7 if n ∈ NR,

1 otherwise.

Noise powers are the same for all users on a given subcarrier, therefore both downlink

and uplink scenarios are covered in this proof. We further consider equal weights

w = {1/K, . . . , 1/K} in the objective function, assume that Wn = 1 for all n ∈ N
and P̄k = 3 for all k ∈ K. Moreover, its allocated power on each subcarrier n ∈ N
is subject to constraint C2 such that:

p̄nk =




1 if n ∈ NX ∪NY ∪NZ ,

3 if n ∈ NR.
(A.2)

For this reduction, we set the decision problem’s threshold (3.2) to be T = 3.

We have characterized above the transformed instance t1(x3DM) and its parameters.

The number of parameters is polynomially bounded in the size of x: there are |S|
users, |S|+2|X| subcarriers, and so on. Thus, by construction our reduction satisfies

property (ii). Condition (iii) is also satisfied, since all numerical values are constant,

regardless of the size of x. It only remains to prove (i) in order to conclude that t1

is indeed a pseudo-polynomial reduction, i.e.,

x3DM has a matching ⇐⇒ optP1(t1(x3DM)) ≥ 3. (A.3)

No more than one user can be served on each subcarrier according to M = 1 in

C4. If we suppose that the total system power
∑

k∈K P̄k = 3K can be distributed

among the N subcarriers without constraint C1, then the optimal is obtained by

the following waterfilling power allocation [38]:

∀n ∈ NR, R
n = log2(1 +

3

3/7
) = 3, (A.4)

∀n ∈ NX ∪NY ∪NZ , R
n = log2(1 +

1

1
) = 1. (A.5)

The best solution consists in having the maximum allowable power on every subcar-

rier while meeting the constraint C2. The corresponding user allocation allocates

one user on every primary subcarrier with maximum power 1 and one user per resid-

ual subcarrier with maximum power 3. According to the problem setting, there is no

other optimal power and subcarrier allocation. There are 3|X| primary subcarriers

and |S| − |X| residual subcarriers, thus the sum-rate objective is:

M1,w(R) =
3|X| × 1 + (|S| − |X|)× 3

K
= 3. (A.6)
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Since our problem is constrained by C1, the optimal cannot be greater than (A.6),

i.e., optP1(t1(x3DM)) ≤ 3. It follows that the equivalence (A.3) to prove together

with the derived upper bound can be rewritten as:

x3DM has a matching ⇐⇒ optP1(t1(x3DM)) = 3. (A.7)

Proof of the part ⇐= : Let x3DM = (X, Y, Z, S) be an instance of 3DM. Assume

that the corresponding instance t1(x3DM) has a power and subcarrier allocation

which is optimal and equal to 3. We have seen that the only possibility to achieve

this optimum is to allocate every triplet of subcarriers (nx, ny, nz) ∈ X × Y × Z to

a user for which channel gain is 1 with power 1 and every residual subcarrier to

the remaining |S| − |X| users with power 3. Now, let us define S ′ ⊂ S such that

(x, y, z) ∈ S ′ iff nx, ny and nz are allocated to the same user. By construction, S ′ is

a matching for x3DM .

Proof of the part =⇒ : Let x3DM = (X, Y, Z, S) be an instance of 3DM for which

there exists a matching S ′. Consider the following power and subcarrier allocation:

for every indexes (xk, yk, zk) ∈ S ′ allocate subcarriers nxk
, nyk , nzk to user k with

power 1; allocate the remaining users to the residual subcarriers with power 3. Then

the objective function is exactly 3, which is also an upper bound. As a consequence,

opt(t1(x3DM)) = 3.

A.2 Sum-Rate Maximization with M ≥ 1

Lemma 27. For any M ≥ 1, problem DI
1|M with sum-rate objective functionM1,w

is strongly NP-hard in both downlink and uplink scenarios.

Proof. The idea of this proof is to extend Lemma 26’s reduction to any M ≥ 1

by adding N(M − 1) dummy users. For each subcarrier n ∈ N , we create M − 1

dummy users, denoted by the index set Dn = {dn1 , . . . , dnM−1}. Thus, the set of all

users becomes K′ = K∪D1∪· · ·∪DN , where K is the users set defined in Lemma 26’s

proof. All parameters of the transformation tM(x3DM) ∈ IDI
1|M

related to user k ∈ K
and subcarriers n ∈ N remain as t1(x3DM) in Lemma 26’s proof. In addition, we

keep equal weights w = {1/|K′|, . . . , 1/|K′|}.
The following construction aims to guarantee that dummy users in Dn can only

be active on subcarrier n. For any j ∈ {1, . . . ,M − 1}, parameters of user dnj on
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subcarrier n′ ∈ N are set as follows:

gn
′

dnj
=




1 if n′ = n,

0 otherwise.
(A.8)

and,

p̄n
′

dnj
=




P̄dnj

if n′ = n,

0 otherwise.
(A.9)

The total power constraint C1 is extended as follows:

P̄dnj
=




14× 8M−j−1 if n ∈ NX ∪NY ∪NZ ,

24× 8M−j−1 if n ∈ NR.
(A.10)

Let p∗ = (pn∗k )k∈K′,n∈N denotes the optimal power allocation of tM(x3DM). Let

n ∈ N , since dummy users in Dn have greater power budget than any other user

in K (compare (A.10) to (A.2)), it is straightforward to see that the optimal is

achieved when all M − 1 dummy users in Dn are multiplexed on subcarrier n with

the following power allocation:

∀j ∈ {1, . . . ,M − 1}, pn∗dnj = P̄dnj
. (A.11)

We consider the following decoding order:

∀j ∈ {1, . . . ,M − 1}, πn(j) = dnj . (A.12)

This decoding order satisfies (2.13) and (2.14), therefore both downlink and uplink

scenarios are covered in this proof. It is interesting to note that any desired decoding

order can be achieved by adjusting the above dummy users’ channel gains, noise

powers and power budgets.

It remains that subcarrier n can be allocated to an additional non-dummy user

k ∈ K, while respecting constraints C4. In this case, according to (2.13) and (2.14),

user k is decoded last, i.e., πn(M) = k. Thus, k is not subject to interference from

the dummy users on subcarrier n. Furthermore, at the optimal, no more than one

user in K can be multiplexed on each subcarrier n. It follows that the optimal

subcarrier and power allocation of users K in tM(x3DM) is the same as in t1(x3DM)

and we have:

optP1(t1(x3DM)) = 3 ⇐⇒ optP1(tM(x3DM)) =
3K +

∑
n∈N

∑M−1
j=1 Rdnj

(p∗)

|K′| .

(A.13)
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Using (A.8-A.12), we can compute the optimal data rate of dummy user dnj , for any

j ∈ {1, . . . ,M − 1}, on primary subcarriers n ∈ NX ∪NY ∪NZ as

Rdnj
= log2(1 +

P̄dnj∑M−1
j′=j+1 P̄dnj

+ 2
)

= log2(1 +
14× 8M−j−1

∑M−1
j′=j+1 14× 8M−j′−1 + 2

)

= log2(1 +
14× 8M−j−1

14(1− 8M−j−1)/(1− 8) + 2
) (A.14)

= 3 (A.15)

where (A.14) is obtained by calculating the partial sum of the geometric sequence
∑M−1

j′=j+1 14× 8M−j′−1 with ratio 8 and M − j − 1 terms. In the same way, we prove

that for all residual subcarriers n ∈ NR,

Rdnj
= 3. (A.16)

Combining (A.15) and (A.16), equivalence (A.13) then becomes

optP1(t1(x3DM)) = 3 ⇐⇒ optP1(tM(x3DM)) =
3K + 3N(M − 1)

|K′| = 3. (A.17)

Last equality is deduced from |K′| = |K ∪ D1 ∪ · · · ∪ DN | = K +N(M − 1). Equiv-

alence (A.18) follows from (A.17) and (A.7), which implies that tM is a pseudo-

polynomial reduction.

x3DM has a matching ⇐⇒ optP1(tM(x3DM)) = 3. (A.18)

We then conclude from (A.18) and Lemma 26 that DI
1|M is also strongly NP-hard,

for any M ≥ 1.

A.3 Generalized Mean Utility Maximization with

M ≥ 1

Theorem 6. For any i ∈ [−∞, 1] and M ≥ 1, problem DI
i|M with objective function

Mi,w is strongly NP-hard in both downlink and uplink scenarios. In particular,

the sum-rateM1,w, proportional fairnessM0,w, harmonic mean utilityM−1,w and

max-min fairnessM−∞,w versions of the problem are all strongly NP-hard.
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Proof. Let i ∈ [−∞, 1), M ≥ 1 and x3DM ∈ I3DM be an instance of 3DM. Using

Lemma 27’s reduction tM , we showed that finding a 3-dimensional matching of

x3DM is equivalent to verifying optP1(tM(x3DM)) = 3, i.e., (A.18). More precisely,

when (A.18) is satisfied, all users achieve the same data rate. Indeed, for any user

k ∈ K, there are three possibilities:

❼ k is a dummy user then Rk = 3 according to (A.15) and (A.16), or

❼ k is not a dummy user and it is active on a residual subcarrier n ∈ NR with

power 3 so that Rk = Rn
k = log2(1 +

3
3/7

) = 3, i.e., (A.4), or

❼ k is not a dummy user and it is active on three primary subcarriers nxk
∈ NX ,

nyk ∈ NY and nzk ∈ NZ so that Rk = R
nxk

k +R
nyk

k +R
nzk

k = 3 log2(1 +
1
1
) = 3,

i.e., (A.5).

It follows that:

x3DM has a matching ⇐⇒ ∀k ∈ K, Rk(p
∗) = 3, (A.19)

where p∗ is the optimal power allocation. Since i < 1, the generalized mean inequal-

ity (3.1) implies that optPi
(tM(x3DM)) is also upper bounded by 3 and the equality

holds when all individual data rates are equal to 3, i.e.,

optPi
(tM(x3DM)) = optP1(tM(x3DM)) = 3 ⇐⇒ ∀k ∈ K, Rk(p

∗) = 3, (A.20)

where p∗ is an optimal power allocation of either Pi or P1 (this choice does not mat-

ter, as they are equal when (A.20) is satisfied). Finally, we derive equivalence (A.21)

from (A.19) and (A.20), which proves that DI
i|M is strongly NP-hard.

x3DM has a matching ⇐⇒ optPi
(tM(x3DM)) ≥ 3. (A.21)
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Appendix B

Proofs of Chapter 4

B.1 Proof of Lemma 7

Proof. The objective of PC
1 can be written as:

∑

k∈K

wk

∑

n∈N

Rn
k (p

n) =
∑

n∈N

∑

k∈K

wkR
n
k (p

n),

(b)
=
∑

n∈N

Wn

K∑

i=1

wπn(i) log2

( ∑K
j=i p

n
πn(j)

+ η̃nπn(i)∑K
j=i+1 p

n
πn(j)

+ η̃nπn(i)

)
,

(c)
=
∑

n∈N

Wn

K∑

i=1

log2




(∑K
j=i p

n
πn(j)

+ η̃nπn(i)

)wπn(i)

(∑K
j=i+1 p

n
πn(j)

+ η̃nπn(i)

)wπn(i)


,

(d)
=
∑

n∈N

Wn

[
wπn(1) log2

(
K∑

j=1

pnπn(j) + η̃nπn(1)

)

+
K∑

i=2

log2




(∑K
j=i p

n
πn(j)

+ η̃nπn(i)

)wπn(i)

(∑K
j=i p

n
πn(j)

+ η̃nπn(i−1)

)wπn(i−1)




+ wπn(K) log2

(
1

η̃nπn(K)

)]
.

Equality (b) comes from the definition of Rn
k in (2.15). At (c), the weights wπn(i)

are put inside the logarithm. Finally, (d) is obtained by combining the numerator

of the i-th term with the denominator of the (i− 1)-th term, for i ∈ {2, . . . , K}.
By applying the change of variables shown in (4.1), we derive the equivalent

problem PC′
1 . The constant term is A =

∑
n∈N wπn(K) log2

(
1/η̃nπn(K)

)
. Constraints

C1′ and C2′ are respectively equivalent to C1 and C2 since xn
1 =

∑K
j=1 p

n
πn(j)

=
∑

k∈K pnk , for n ∈ N . Constraints C3′ and C3′′ come from C3 and the fact that
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xn
i − xn

i+1 = pnπn(i)
, for any i ∈ {1, . . . , K} and n ∈ N . In the same way, the active

users set in C4′ is defined as U ′
n , {i ∈ {1, . . . , K} : xn

i > xn
i+1}.

B.2 Proof of Lemma 8

Proof. We study the first and second derivatives of fn
j,i, denoted by fn

j,i
′ and fn

j,i
′′. If

j = 1, then we have:

fn
1,i

′(x) =
Wnwπn(i)(

x+ η̃nπn(i)

)
ln(2)

, (B.1)

which is strictly positive and decreasing for x ≥ 0. Hence, fn
1,i is increasing and

concave. For j > 1, the first and second derivatives are as follows:

fn
j,i

′(x) =
Wn

ln(2)

(
wπn(i)

x+ η̃nπn(i)

− wπn(j−1)

x+ η̃nπn(j−1)

)
,

fn
j,i

′′(x) =
Wn

ln(2)




wπn(j−1)(
x+ η̃nπn(j−1)

)2 −
wπn(i)(

x+ η̃nπn(i)

)2


 .

We know that η̃nπn(j−1) ≥ η̃nπn(i)
by definition of the optimal downlink decoding order

in Eqn. (2.13). If, in addition, we have wπn(i) ≥ wπn(j−1), then fn
j,i

′(x) ≥ 0 and

fn
j,i

′′(x) ≤ 0 for all x ≥ 0. We deduce that fn
j,i is increasing and concave. This proves

the first point of Lemma 8. Now suppose that wπn(i) < wπn(j−1) instead. Values c1

and c2 defined in Lemma 8 are the unique roots of the first and second derivatives,

i.e., fn
j,i

′(c1) = 0 and fn
j,i

′′(c2) = 0. fn
j,i

′ is positive on
(
−η̃πn(j−1), c1

)
and negative

on (c1,∞). This implies that fn
j,i is unimodal and has a unique global maximum at

c1 for x > 0. Similarly, fn
j,i

′′ is negative on
(
−η̃πn(j−1), c2

)
and positive on (c2,∞).

Therefore, fn
j,i is concave before c2 and convex after c2. This proves the second point

of Lemma 8.

B.3 Proof of Theorem 9

Proof. The complexity and optimality proofs of SCPC are presented below.

Complexity analysis: At each for loop iteration i, the while loop at line

6 has at most i iterations. Thus, the worst case complexity is proportional to
∑|U ′

n|
i=1 i = O(|U ′

n|2) = O(M2).
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Optimality analysis: Without loss of generality, we can suppose that the xn
in ’s

are initialized to zero. We will prove by induction that at the end of each iteration

i at line 10 of Algorithm 2, the following loop invariants are true:

H1(i):
∑i

l=1 f̃
n
l,l is maximized by xn

1n , . . . , x
n
in ,

H2(i): C2–3′ is satisfied, i.e., P̄ n ≥ xn
1n ≥ · · · ≥ xn

in ≥ 0.

Basis: For i = 1, x∗ computed at line 3 is indeed the optimal of f̃n
1,1. The while loop

has no effect since j = 0 < 1, therefore xn
1n ← x∗ and statements H1(1) and H2(1)

are both true.

Inductive step: Assume that xn
1n(i − 1), . . . , xn

(i−1)n
(i − 1) are the variables veri-

fying H1(i− 1) and H2(i− 1) at iteration i− 1 < K. Let the variables at iteration

i be xn
1n , . . . , x

n
in . We consider two cases:

i) We first suppose that:

x∗ = Argmaxf̃(i, i, In, P̄ n) ≤ xn
(i−1)n(i− 1). (B.2)

In this case, Algorithm 2 sets xn
in = x∗ and xn

ln
= xn

ln
(i − 1), for all l < i.

The induction hypothesis H2(i− 1) states that P̄ n ≥ xn
1n ≥ · · · ≥ xn

(i−1)n
≥ 0.

By taking into account Eqn. (B.2), this inequality becomes P̄ n ≥ xn
1n ≥ · · · ≥

xn
(i−1)n

≥ x∗ = xn
in ≥ 0. Thus, H2(i) is satisfied. In addition, we know

from H1(i− 1) that xn
1n , . . . , x

n
(i−1)n

maximizes
∑i−1

l=1 f̃
n
l,l. Since, the objective is

separable and xn
in = x∗ maximizes f̃n

i,i by construction, H1(i) is true.

ii) Now, suppose that we have the opposite:

x∗ = Argmaxf̃(i, i, In, P̄ n) > xn
(i−1)n(i− 1). (B.3)

In this case, the allocation mentioned above would violate constraint C2–3′.

The algorithm finds the highest index j ∈ {1, . . . , i− 2} such that xn
jn(i− 1) ≥

Argmaxf̃(j+1, i, In,U ′
n, P̄

n) in the while loop at line 6. Such an index exists

since all variables are upper bounded by P̄ n and xn
1n = P̄ n due to Lemma 8.

Let us show by contradiction that H1(i) and H2(i) are only satisfied if xn
(j+1)n

=

· · · = xn
in . If it is not the case, let k > j + 1 be the last index such that xn

kn
=

xn
(k+1)n

= · · · = xn
in and xn

(k−1)n
> xn

kn
. We know from the while condition that

xn
(k−1)n

< x∗′, with x∗′ = Argmaxf̃(k, i, In,U ′
n, P̄

n). According to Lemma 8,

f̃n
k,i is increasing on [0, x∗′]. Therefore, we can improve the objective function
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by setting xn
kn
, . . . , xn

in ← xn
(k−1)n

. This is a contradiction with xn
(k−1)n

> xn
kn
,

we have thus xn
(j+1)n

= · · · = xn
in . Furthermore, at the termination of the while

loop, we have Argmaxf̃(j+1, i, In,U ′
n, P̄

n) ≤ xn
jn(i−1), which can be treated

as in case i). Hence, variables xn
(j+1)n

, . . . , xn
in are set equal to Argmaxf̃(j +

1, i, In,U ′
n, P̄

n) at line 10, and it satisfies H1(i) and H2(i).

We proved that, in both cases i) and ii), the allocation xn
1n , . . . , x

n
in computed by

Algorithm 2 satisfies H1(i) and H2(i). Therefore, by mathematical induction, the

allocation returned at line 12 satisfies H1(|U ′
n|) and H2(|U ′

n|). We note that H1(|U ′
n|)

and H2(|U ′
n|) are equivalent to an optimal solution of PC′

SCPC(n), which concludes

the proof.

B.4 Proof of Theorem 10

Proof. The complexity and optimality proofs of i-SCPC are presented below.

Complexity analysis: The initialization consists in running SCPC, with com-

plexity O(M2) (see Theorem 9). Each subsequent evaluation requires to compute

min{xn
in , P̄

n}, for i ∈ {1, . . . , |U ′
n|}, with complexity O(M).

Optimality analysis: Let xn
1n , . . . , x

n
|U ′

n|n
be the optimal allocation of SCPC

with budget Pmax. We consider now a lower budget P̄ n ≤ Pmax. At each iteration i of

the loop in SCPC
(
In,U ′

n, P̄
n
)
, the valueArgmaxf̃

(
j, i, In,U ′

n, P̄
n
)
can be replaced

by min{Argmaxf̃(j, i, In,U ′
n, Pmax) , P̄

n}, since they are equal by definition. One

can show, by mathematical induction on in, that the function SCPC
(
In,U ′

n, P̄
n
)

returns min{xn
1n , P̄

n}, . . . ,min{xn
|U ′

n|n
, P̄ n}. Therefore, the latter allocation is also

optimal.

B.5 Proof of Theorem 11

Proof. The complexity and optimality proofs of SCUS are presented below.

Complexity analysis: The complexity mainly comes from the computation

of V , X and U in the for loop from lines 13 to 27, which requires M
∑K−1

i=1 (i) =

O(MK2) iterations. Each iteration has a constant number of operations. Thus, the

overall worst case computational complexity is O(MK2).

Optimality analysis: We will prove by induction that at any iteration m ∈
{0, . . . ,M}, j ∈ {1, . . . , K} and i ≥ j of Algorithm 4, the construction of V [m, j, i]
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is the optimal value of problem PC′
SC [m, j, i]. It follows directly that V [M, 1, 1] is the

optimal value of PC′
SC(n).

Basis: For m = 0, no user can be active due to constraint C4′. Thus, V [0, j, i] =

fn
j,K(0) and X[0, j, i] is initialized to zero. Furthermore, U [0, j, i] = ∅ to indicate

that there is no previous index in the recursion. For simplicity of the algorithm,

V,X, U are also initialized for j ≤ i = K as explained in Section 4.2.2.

Inductive step: Let m ∈ {1, . . . ,M} and 1 ≤ j ≤ i ≤ K − 1. Assume that

V [m′, j′, i′] is the optimal value of PC′
SC [m

′, j′, i′] for any m′ ≤ m, j′ ≥ j and i′ > i.

We denote the optimal solution of problem PC′
SC [m, j, i] by xn

j , . . . , x
n
K . Let vact

(resp. vinact) be the optimal value of PC′
SC [m, j, i], given that user i is active (resp.

inactive). Let xn∗
(i+1)n

= X[m − 1, i + 1, i + 1] be the optimal value of xn
(i+1)n

in

PC′
SC [m−1, i+1, i+1]. If x∗ ≤ xn∗

(i+1)n
, then we can prove as in case ii) of Appendix B.3,

that user i is inactive in the optimal solution. In this case, V [m, j, i] = vinact.

Otherwise, the optimal is V [m, j, i] = max{vact, vinact}. Values vact and vinact are

computed as follows:

❼ Case vinact: Suppose that the optimal solution of problem PC′
SC [m, j, i] is achieved

when user i is inactive, then we have xn
i = xn

i+1 by definition of U ′
n. It follows from

C5′ that xn
j = · · · = xn

i+1. We obtain, by definition, V [m, j, i] = V [m, j, j + 1],

which we denote by vinact.

❼ Case vact: Suppose now that user i is active. Since x∗ > xn∗
(i+1)n

satisfies C3′, and

the objective is separable, the optimal is obtained when maximizing independently

fn
j,i and

∑K
l=i+1 f

n
l with m− 1 active users. That is, V [m, j, i] = vact , fn

j,i (x
∗) +

V [m− 1, i+ 1, i+ 1], where x∗ = Argmaxf
(
j, i, In, P̄ n

)
in line 15.

Hence, V [m, j, i], as computed in (4.3), corresponds to the optimal of PC′
SC [m, j, i].

We derive, by mathematical induction, that V [M, 1, 1] is the optimal value of PC′
SC [M,

1, 1], which is equivalent to PC′
SC(n). The corresponding optimal allocation xn is

retrieved in lines 28 to 35.

B.6 Proof of Theorem 12

Proof. The complexity and optimality proofs of i-SCUS are presented below.

Optimality analysis: Let yn1 , . . . , y
n
K be the optimal solution of PC′

SC(n) subject

to a power constraint P̄ n. Let i ∈ {1, . . . , K} be the unique index such that yn1 =

· · · = yni and yni > yni+1. We know from Lemma 8 that yn1 = · · · = yni = P̄ n.
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Therefore, yni+1, . . . , y
n
K are all strictly less than P̄ n. Let xn

1 , . . . , x
n
K be the optimal

solution of PC′
SC [M, 1, i] in the execution of SCUS(In,M, Pmax), i.e., subject to a

power budget Pmax. According to Lemma 8, xn
1 = · · · = xn

i = Pmax. We deduce from

f ’s unimodality in Lemma 8, that yni+1, . . . , y
n
K is the optimal solution of PC′

SC [M, i+

1, i + 1] given any power budget no less than P̄ n. In particular, we have xn
l = ynl ,

for all l ∈ {i+ 1, . . . , K}. Hence, xn
1 , . . . , x

n
K and yn1 , . . . , y

n
K correspond to the same

user selection U ′
n, and we derive ynln = min{xn

ln
, P̄ n}, for 1 ≤ l ≤ |U ′

n|.
We proved above that, for any P̄ n ≤ Pmax, there exists (U ′

n, x
n
1 , . . . , x

n
K) in

collection, such that the optimal allocation subject to the power constraint P̄ n

is min{xn
1n , P̄

n}, . . . ,min{xn
|U ′

n|n
, P̄ n}. Thus, the optimal user selection and power

control is the one maximizing F n(U ′
n, P̄

n) =
∑|U ′

n|
l=1 f̃

n
l,l

(
U ′
n,min{xn

ln
, P̄ n}

)
+ Bn over

all elements in collection, as shown at line 6 of Algorithm 5.

Complexity analysis: The initialization consists in running SCUS, with com-

plexity O(MK2) (see Theorem 11). Each subsequent evaluation has complexity

O(MK). Indeed, there are K active users sets U ′
n in collection, one for each solu-

tion of PC′
SC [M, 1, i], for i ∈ {1, . . . , K}. For each of the K possible active users set

U ′
n in collection, we compute F n(U ′

n, P̄
n) with complexity O(|U ′

n|) = O(M).

B.7 Proofs of Lemma 13 and Theorem 14

We first provide in Lemma 29 an important property on the solution maximizing
∑i

l=1 f̃
n
l,l subject to C2–3′, for i ≤ |U ′

n|. This Lemma will be used subsequently in

the proofs of Lemma 13 and Theorem 14.

Lemma 29.

Assume we are given a subcarrier n ∈ N , a set U ′
n of active users, a power budget

P̄ n, and an index i. Let xn
1n , . . . , x

n
in be the allocation maximizing

∑i
l=1 f̃

n
l,l

(
U ′
n, x

n
ln

)
,

while also satisfying C2–3′, i.e., P̄ n ≥ xn
1n ≥ · · · ≥ xn

in ≥ 0. xn
1n , . . . , x

n
in can

be partitioned into sequences of consecutive terms with the same value. That is,

sequences of the form xn
qn , . . . , x

n
q′n
, where xn

qn = · · · = xn
q′n

and 1 ≤ q ≤ q′ ≤ |U ′
n|,

q = 1 or xn
(q−1)n

> xn
qn, q

′ = |U ′
n| or xn

q′n
< xn

(q′+1)n
. Any such sequence satisfies:

xn
qn = · · · = xn

q′n
= Argmaxf̃

(
q, q′, In,U ′

n, P̄
n
)
.

Proof. In this proof, we simplify notation f̃n
l,l (U ′

n, ·) as f̃n
l,l (·). Let xn

qn , . . . , x
n
q′n

be

a sequence of consecutive terms with the same value, as defined in Lemma 29.

Assume, for the sake of contradiction, that xn
qn = · · · = xn

q′n
6= x∗, where x∗ =
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Argmaxf̃
(
q, q′, In,U ′

n, P̄
n
)
. Without loss of generality, we consider the case xn

qn <

Argmaxf̃
(
q, q′, In,U ′

n, P̄
n
)
and q > 1. Let yn1n , . . . , y

n
in be an allocation defined as:

ynln ,




min{xn

(q−1)n
, x∗}, if q ≤ l ≤ q′,

xn
ln
, otherwise.

(B.4)

We have the following inequalities:

i∑

l=1

f̃n
l,l

(
ynln
)
=

∑

l /∈{q,...,q′}

f̃n
l,l

(
xn
ln

)
+ f̃n

q,q′

(
ynln
)
, (B.5)

>
∑

l /∈{q,...,q′}

f̃n
l,l

(
xn
ln

)
+ f̃n

q,q′

(
xn
ln

)
=

i∑

l=1

f̃n
l,l

(
xn
ln

)
. (B.6)

Equality (B.5) comes from the definition in (B.4). According to Lemma 8, f̃n
q,q′

is increasing on [0, x∗], which implies inequality (B.6). In summary, yn1n , . . . , y
n
in

satisfies C2–3′ by its definition in (B.4), and it achieves greater value of
∑i

l=1 f̃
n
l,l

than xn
1n , . . . , x

n
in . This is a contradiction, therefore it must be that

xn
qn ≥ Argmaxf̃

(
q, q′, In,U ′

n, P̄
n
)
. (B.7)

If q = 1, the same reasoning can be applied by replacing min{xn
(q−1)n

, x∗} by P̄ n

in Eqn. (B.4). We can perform a similar proof by contradiction on the case xn
qn >

Argmaxf̃
(
q, q′, In,U ′

n, P̄
n
)
to deduce that:

xn
qn ≤ Argmaxf̃

(
q, q′, In,U ′

n, P̄
n
)
. (B.8)

The desired result follows from (B.7) and (B.8).

The proofs of Lemma 13 and Theorem 14 are given below.

Proof. Let xn
1 , . . . , x

n
K be the output of i-SCUS

(
P̄ n
)
, and U ′

n the corresponding

active users set. For i ∈ {1, . . . , K}, there exists q ≤ i and q′ ≥ i, such that

xn
qn = · · · = xn

q′n
= Argmaxf̃

(
q, q′, In,U ′

n, P̄
n
)
, according to Lemma 29. We have:

f̃n
q,q′

(
U ′
n,min{xn

qn , P̄
n}
)
=




f̃n
q,q′

(
U ′
n, P̄

n
)
, if P̄ n ≤ xn

qn ,

f̃n
q,q′

(
U ′
n, x

n
qn

)
, if P̄ n > xn

qn .

We consider it as a function of P̄ n. Its left derivative at P̄ n = xn
qn is 0, according

to Lemma 8. Its right derivative at P̄ n = xn
qn is 0, as it is constant for P̄ n > xn

qn .

Hence, f̃n
q,q′(U ′

n,min{xqn , ·}) is continuously differentiable on [0, Pmax].
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Let l be the greatest index such that xn
l = P̄ n. The function F n(U ′

n, P̄
n) can

be written as fn
1,l

(
P̄ n
)
+
∑K

i=l+1 f
n
i,i (x

n
i ) + Bn. Its derivative can be obtained by

applying Eqn. (B.1) of Appendix B.2 as follows:

F n′
(
U ′
n, P̄

n
)
= fn′

1,l

(
P̄ n
)
=

Wnwπn(l)(
P̄ n + η̃nπn(l)

)
ln(2)

. (B.9)

As F n(P̄ n) = maxU ′
n
{F n(U ′

n, P̄
n)}, where max is taken over all active users sets

in collection of i-SCUS, and the max operator only preserves semi-differentiability,

Eqn. (B.9) is the left derivative of F n. This proves Lemma 13.

In addition, the second left derivative of F n satisfies:

β ≤ F n′′
(
P̄ n
)
=

−Wnwπn(l)(
P̄ n + η̃nπn(l)

)2
ln(2)

≤ α < 0, (B.10)

where β and α are constant and defined as:

β =
−Wnwπn(l)(
η̃nπn(l)

)2
ln(2)

,

α =
−Wnwπn(l)(

Pmax + η̃nπn(l)

)2
ln(2)

.

Although F n is only semi-differentiable at some points, it is twice differentiable on

each interval where the optimal user selection U ′
n does not change. Appendix B.6

shows that there are K such intervals. Eqn. (B.10) implies that F n is piece-wise

twice differentiable, α-strongly concave and β-smooth. Therefore, the projected

gradient descent on the simplex FMC converges in O(log(1/ξ)) iterations, according

to [77, Section 2.2.4]. This proves Theorem 14.

B.8 Proof of Theorem 15

Proof. We first deduce from Eqn. (2.15) that for each subcarrier n ∈ N , the rates

Rn
k of all users k ∈ K can be sorted in the same order as the decoding order πn.

That is, for any power allocation pn on subcarrier n ∈ N , we have:

Rn
πn(1)(p

n) ≤ Rn
πn(2)(p

n) ≤ · · · ≤ Rn
πn(K)(p

n).

If the weights w = weq = {1/K, . . . , 1/K} are all equals, we then derive:

wπn(1)R
n
πn(1)(p

n) ≤ wπn(2)R
n
πn(2)(p

n) ≤ · · · ≤ wπn(K)R
n
πn(K)(p

n).
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Hence, the optimal active user set on subcarrier n ∈ N maximizing the objective

functionM1,weq
(R (p)) =

∑
k∈K wk

∑
n∈N Rn

k (p
n), with no more than M users, is:

U∗
n = {πn(K −M + 1), . . . , πn(K)}, in the initial problem formulation PC

1 ,

U ′∗
n = {K −M + 1, . . . , K}, in the separable problem formulation PC′

1 .

We know by definition that F n(P̄ n) = maxU ′
n
{F n(U ′

n, P̄
n)}. Eqn (B.9) in Ap-

pendix B.7 shows that F n(U ′
n, P̄

n) is twice differentiable, α-strongly concave and

β-smooth, for any user selection U ′
n. However, F

n(P̄ n) is only piece-wise concave in

general due to the max operator. In our case, since U ′∗
n is the optimal user selection,

we can remove the max operator and write F n(P̄ n) = F n(U ′∗
n , P̄

n). Thus, F n(P̄ n)

is twice differentiable, α-strongly concave and β-smooth. The same can be said for
∑

n∈N F n
(
P̄ n
)
, which is the objective of PC′

MC . We conclude that the projected gra-

dient descent on the simplex FMC converges to the global optimum in O(log(1/ξ))

iterations, according to [77, Section 2.2.4].

B.9 Proof of Theorem 16

Proof. Let us first briefly explain the principle of dynamic programming by weights.

Let Z be a 2D-array such that Z[n, l] is defined as the optimal value of MCKP

restricted to the first n classes and with restricted capacity l · δ. It is initialized as

Z[0, l] = 0, for any l = 0, . . . , J . For n ∈ N and l = 0, . . . , J , Z[n, l] is defined by

the following recurrence relation:

Z[n, l] = max
l′≤l
{Z[n− 1, l − l′] + cn,l′}.

The complexity and optimality proofs of Opt-JSPA are presented below.

Complexity analysis: In Algorithm 7, we first transform PC′
MC to MCKP:

from line 1 to 5, every item’s profit cn,l is computed using i-SCUS in O(NMK2 +

JNMK). Then, we perform dynamic programming by weights at line 6. According

to [71], its complexity is O(J2N), which is the number of items N (J + 1) multiplied

by the number of possible power values J + 1. Therefore, the overall complexity is

O(NMK2 + JNMK + J2N).

Optimality analysis: Reference [71] proves that dynamic programming by

weights is optimal for MCKP. Since problems PC′
MC and MCKP are equivalent, the

proposed Opt-JSPA based on dynamic programming by weights is also optimal

for PC′
MC .
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B.10 Estimation U in Algorithm 8

In this section, we denote by F ∗
MCKP (Pmax) the optimal value of MCKP with cellular

power budget Pmax. We provide some properties in Lemma 30 that will be used for

the analysis of the estimation procedure.

Lemma 30 (Monotonicity and sublinearity of F ∗
MCKP ).

F ∗
MCKP is a non-decreasing and sublinear function of Pmax. That is, for any P1 < P2,

F ∗
MCKP (P1) ≤ F ∗

MCKP (P2) and F ∗
MCKP (P1 + P2) ≤ F ∗

MCKP (P1) + F ∗
MCKP (P2).

Proof. We first prove the monotonicity of F ∗
MCKP . Let F ′

1 and F ′
2 be two feasible

sets of PC′
MC with power budget P1 and P2 respectively. Assuming P1 < P2, then any

solution of F ′
1 is also a solution of F ′

2, i.e., F ′
1 ⊂ F ′

2. Since PC′
MC is a maximization

problem over F ′, we have F ∗
MCKP (P1) ≤ F ∗

MCKP (P2). This proves that F ∗
MCKP is

non-decreasing.

Now, let us tackle its sublinearity. We first prove that the fn
j,i are sublinears. If

j = 1 or wπn(i) ≥ wπn(j−1), then fn
j,i is concave according to Lemma 8. Therefore,

it is also sublinear. Otherwise, fn
j,i is concave before c2 and decreasing after c1 ≤

c2. In this case, fn
j,i is thus also sublinear. Secondly, for any subcarrier n and

user selection U ′
n, PC′

SCPC(n) consists in maximizing a sum of separable sublinear

functions fn
j,i subject to a budget constraint P̄ n. Hence, F n

(
U ′
n, P̄

n
)
is sublinear

in P̄ n. Thirdly, the optimal of PC′
SC(n) can be seen as the best allocation over all

possible user selections, i.e., F n(P̄ n) = maxU ′
n
{F n

(
U ′
n, P̄

n
)
}. The max operator

preserves sublinearity. Therefore, F n(P̄ n) is sublinear in P̄ n. Finally, F ∗
MCKP is

sublinear in Pmax, since PC′
MC is a separable sum maximization of F n subject to

budget constraint Pmax.

Let us introduce a variant of MCKP, denoted by MCKP’. The differences are

as follows. Its cellular power budget is 2Pmax. The item’s weights can only take

value of the form an,l = l⌊J/N⌋δ for n ∈ N , l ∈ {0, . . . , 2N}. The profits values are
defined similarly as cn,l = F n(an,l). Consequently, MCKP’ only contains 2N + 1

items per class. The idea of the proof is to show that a greedy solution of MCKP’

is a constant factor approximation of MCKP optimal value. The value of U is then

easily obtained using the greedy Dyer-Zemel algorithm [71, Section 11.2]. In this

case, the complexity is independent of J and negligible compared to the rest of the

algorithm. One could also get an estimation by applying the Dyer-Zemel algorithm
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directly to MCKP. However, the complexity would be proportional to O(J) which

is against the idea of polynomial-time approximation.

Let y∗n,l, for n ∈ N , l ∈ {0, . . . , 2N}, be an optimal solution of this problem. In

addition, we denote by y′n,l for n ∈ N , l ∈ {0, . . . , 2N}, a 1/2-approximation given

by the Dyer-Zemel algorithm. On the one hand, we have:

∑

n∈N

2N∑

l=1

cn,ly
′
n,l ≥

1

2

∑

n∈N

2N∑

l=1

cn,ly
∗
n,l, (B.11)

≥ 1

2

∑

n∈N

F n

(⌈
P̄ n∗

⌊J/N⌋δ

⌉⌊
J

N

⌋
δ

)
, (B.12)

≥ 1

2

∑

n∈N

F n
(
P̄ n∗

)
=

1

2
F ∗
MCKP (Pmax) , (B.13)

where P̄ n∗ is the power allocated to subcarrier n in F ∗
MCKP (Pmax). The 1/2-approximation

of y′n,l translates into Eqn. (B.11). The right term of Eqn. (B.12) corresponds to

a valid allocation of MCKP’, with item l = ⌈P̄ n∗/(⌊J/N⌋δ)⌉ allocated in class n.

Indeed, by definition of the ceiling and floor functions, we have:

P̄ n∗
(e)

≤
⌈

P̄ n∗

⌊J/N⌋δ

⌉⌊
J

N

⌋
δ < P̄ n∗ +

⌊
J

N

⌋
δ ≤ P̄ n∗ +

Pmax

N
.

Therefore,

∑

n∈N

⌈
P̄ n∗

⌊J/N⌋δ

⌉⌊
J

N

⌋
δ <

∑

n∈N

(
P̄ n∗ +

Pmax

N

)
= 2Pmax.

In other words, the power budget is also satisfied. As it is a valid allocation for

MCKP’, it must have a total profit not greater than the optimal profit:

∑

n∈N

2N∑

l=1

cn,ly
∗
n,l,

which proves inequality (B.12). We derive Eqn. (B.13) from inequality (e) and the

monotonicity of F n (see Lemma 30).

We have, on the other hand:

∑

n∈N

2N∑

l=1

cn,ly
′
n,l ≤

∑

n∈N

2N∑

l=1

cn,ly
∗
n,l, (B.14)

≤ F ∗
MCKP (2Pmax) , (B.15)

≤ 2F ∗
MCKP (Pmax) . (B.16)

115



Chapter B. Proofs of Chapter 4

The optimality of y∗n,l implies Eqn. (B.14). Eqn. (B.15) comes from the fact that the

items of MCKP’ is a subset of MCKP items, given a budget 2Pmax. Eqn. (B.16)

follows from the sublinearity of F ∗
MCKP (see Lemma 30).

Let U , 2
∑

n∈N

∑2N
l=1 cn,ly

′
n,l. We derive from inequalities (B.13) and (B.16) the

desired approximation bound:

U ≥ F ∗
MCKP (Pmax) ≥ U/4.

B.11 Proof of Theorem 17

Proof. The complexity and optimality proofs of ε-JSPA are presented below.

Complexity analysis: We divide the complexity analysis of Algorithm 8 in

four parts as follows. The overall complexity can be obtained by summing the

complexity of each part.

i. Precomputation: The precomputation required for setting up i-SCUS on each

subcarrier has complexity O(NMK2).

ii. Line 1: The estimation procedure presented in Appendix B.10, consists in

O(N2) function evaluations and O(N2) iterations of the Dyer-Zemel algorithm. Each

function evaluation is computed by i-SCUS, therefore the complexity of this part is

O(N2MK).

iii. Lines 2-4: Each Ln, for n ∈ N , is obtained by multi-key binary search [73].

For each Ln, we need to find 4N/ε keys in an array {cn,1, . . . , cn,J} of length J .

Since repetition is not allowed, the binary search returns at most min{4N/ε, J}
items. More precisely, it computes each of the 4N/ε keys in time log(J), with

at most J function evaluations in total. Therefore, the binary search performs

O(min{log(J)N/ε, J}) function evaluations. Multiplied by the complexity of each

function evaluation on each subcarrier, we get O(min{log(J)N2MK/ε, JNMK}).
iv. Lines 5-6: Let us first briefly explain the dynamic programming by profits [71].

Let Y be the DP array such that Y [n, q] denotes the minimal weight, i.e., minimal

power budget, required to achieve WSR q ·εU/4N when problem MCKP is restricted

to the first n classes. It is initialized as Y [0, 0] = 0 and Y [0, q] = +∞, for q =

1, . . . , ⌊4N/ε⌋. For n ∈ N and q = 0, . . . , ⌊4N/ε⌋, the recurrence relation is:

Y [n, q] = min
l∈Ln




Y
[
n− 1, q −

⌊
4cn,lN

εU

⌋]
+ an,l, if q·εU

4N
≥ cn,l,

+∞, otherwise.
(B.17)
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This recursion has complexity O(min{N3/ε2, J2N}), which is the number of all

considered items
∑

n∈N |Ln| = min{4N2/ε, JN} multiplied by the number of com-

parisons in Eqn. (B.17), |Ln| = min{4N/ε, J}.
Approximation analysis: As proved in [71, Section 11.9], the optimal so-

lution obtained by dynamic programming by profits considering only items in Ln,

differs from F ∗
MCKP by at most a factor 1− ε.

In summary, ε-JSPA achieves ε-approximation with polynomial complexity in

1/ε and N , M , K. Therefore, ε-JSPA is a FPTAS, which concludes the proof.
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Appendix C

Proofs of Chapter 5

C.1 Proof of Theorem 18

Proof. The basic idea is to check that P is a non-empty simplex, and that the

objective function is concave. The feasible power region is non-empty as the zero

vector satisfies constraints C1 to C3. We deduce from (5.1) and (5.2) that P is a

standard simplex, thus it is also convex.

It remains to show that
∑

k∈K

∑
n∈N Rn

k (p) is a concave function of p:

∑

k∈K

∑

n∈N

Rn
k (p) =

N∑

n=1

Wn

K∑

k=1

log2


1 +

pnk∑|Un|

j=π−1
n (k)+1

pnπn(j)
+ η̃nk


 ,

=
N∑

n=1

Wn

|Un|∑

i=1

log2

(
1 +

pnπn(i)∑|Un|
j=i+1 p

n
πn(j)

+ η̃nπn(i)

)
,

=
N∑

n=1

Wn

|Un|∑

i=1

log2

( ∑|Un|
j=i p

n
πn(j)

+ η̃nπn(i)∑|Un|
j=i+1 p

n
πn(j)

+ η̃nπn(i)

)
,

=
N∑

n=1

Wn log2

(∑|Un|
j=1 p

n
πn(j)

+ η̃nπn(1)∑|Un|
j=2 p

n
πn(j)

+ η̃nπn(1)

×
∑|Un|

j=2 p
n
πn(j)

+ η̃nπn(2)∑|Un|
j=3 p

n
πn(j)

+ η̃nπn(2)

× · · · ×
pnπn(|Un|)

+ η̃nπn(|Un|)

η̃nπn(|Un|)

)
,

=
N∑

n=1

Wn log2

(∑|Un|
j=1 p

n
πn(j)

+ η̃nπn(1)

η̃nπn(|Un|)

×
∑|Un|

j=2 p
n
πn(j)

+ η̃nπn(2)∑|Un|
j=2 p

n
πn(j)

+ η̃nπn(1)

× · · · ×
pnπn(|Un|)

+ η̃nπn(|Un|)

pnπn(|Un|)
+ η̃nπn(|Un|−1)

)
,
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=
N∑

n=1

Wn

|Un|−1∑

i=1

log2

(∑|Un|
j=i+1 p

n
πn(j)

+ η̃nπn(i+1)∑|Un|
j=i+1 p

n
πn(j)

+ η̃nπn(i)

)
,

+
N∑

n=1

Wn log2

(∑|Un|
j=1 p

n
πn(j)

+ η̃nπn(1)

η̃nπn(|Un|)

)
,

=
N∑

n=1

Wn




|Un|−1∑

i=1

log2(α
n
i (p)) + log2(β

n(p))


 , (C.1)

where αn
i (p) ,

∑|Un|
j=i+1 p

n
πn(j)

+η̃n
πn(i+1)

∑|Un|
j=i+1 p

n
πn(j)

+η̃n
πn(i)

and βn(p) ,

∑|Un|
j=1 pn

πn(j)
+η̃n

πn(1)

η̃n
πn(|Un|)

in Eqn. (C.1).

Furthermore, αn
i can be written as:

αn
i = 1 +

η̃nπn(i+1) − η̃nπn(i)∑|Un|
j=i+1 p

n
πn(j)

+ η̃nπn(i)

.

It follows from η̃nπn(i+1) − η̃nπn(i)
≤ 0 in Eqn. (2.13) that αn

i is a concave function of

p and βn is linear to p. Hence, both αn
i and βn are concave functions of p. Since

the logarithm is concave and non-decreasing, log2(α
n
i ) and log2(β

n) are concave by

function composition. Concavity is also preserved by summation, we deduce that
∑

k∈K

∑
n∈N Rn

k (p) is concave. This completes the proof.

C.2 Proof of Theorem 21

We first introduce the auxiliary Lemma 31, which will be used in the proof of

Theorem 21.

Lemma 31.

Let (bi)i∈{1···Q} ∈ R
Q
+ be a non-increasing sequence with Q positive real values, i.e.,

b1 ≥ b2 ≥ · · · ≥ bQ−1 ≥ bQ > 0. Then, for all (xi)i∈{1···Q} ∈ RQ,

Q∑

i=1

Q∑

j=i

xixj

bi
≥
∑Q

i=1 x
2
i

2bi
≥
∑Q

i=1 x
2
i

2b1
. (C.2)

Proof. The second inequality in (C.2) follows directly from the fact that b1 ≥ b2 ≥
· · · ≥ bQ−1 ≥ bQ. We will prove the first inequality by mathematical induction.

Basis : For Q = 1, we have directly:

x1x1

b1
≥ x2

1

2b1
.

Inductive step: Assume that Eqn. (C.2) is true for Q = q, i.e.,

q∑

i=1

q∑

j=i

xixj

bi
≥
∑q

i=1 x
2
i

2bi
. (C.3)
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Consider the case where Q = q + 1. According to Eqn. (C.2), we have:

q+1∑

i=1

q+1∑

j=i

xixj

bi
−

q+1∑

i=1

x2
i

2bi

=
x2
q+1

bq+1

+
x2
q

bq
+

xqxq+1

bq
+

q−1∑

i=1

q+1∑

j=i

xixj

bi
− (

x2
q+1

2bq+1

+
x2
q

2bq
+

q−1∑

i=1

x2
i

2bi
),

≥ x2
q+1

2bq
+

x2
q

2bq
+

xqxq+1

bq
+

q−1∑

i=1

q+1∑

j=i

xixj

bi
−

q−1∑

i=1

x2
i

2bi
,

=
(xq+1 + xq)

2

2bq
+

q−1∑

i=1

q+1∑

j=i

xixj

bi
−

q−1∑

i=1

x2
i

2bi
.

(C.4)

Note that the inequality in (C.4) holds because bq+1 ≤ bq. We then define an

auxiliary variable x′
i as follows:

x′
i ,

{
xi if i < q,

xq+1 + xq if i = q.
(C.5)

We deduce from Eqn. (C.4) and (C.5) the following inequality:

q+1∑

i=1

q+1∑

j=i

xixj

bi
−

q+1∑

i=1

x2
i

2bi
=

(xq+1 + xq)
2

2bq
+

q−1∑

i=1

q+1∑

j=i

xixj

bi
−

q−1∑

i=1

x2
i

2bi
,

=
x′2
q

2bq
+

(
q∑

i=1

q∑

j=i

x′
ix

′
j

bi
− x′2

q

bq

)
−

q−1∑

i=1

x′2
i

2bi
,

= − x′2
q

2bq
+

q∑

i=1

q∑

j=i

x′
ix

′
j

bi
−

q−1∑

i=1

x′2
i

2bi
,

≥ − x′2
q

2bq
+

x′2
q

2bq
, by induction hypothesis

= 0.

Therefore, the statement (C.2) is true for Q = q + 1, which completes the proof by

induction.

The proof of Theorem 21 is given below.

Proof. For all p,p′ ∈ P , according to (5.3) and (5.4), we have:

(Φ(p)− Φ(p′))T · (p− p′) =
Wn

ln(2)

K∑

k=1

N∑

n=1

( 1
Înk
− 1

Î
′n
k

)
(pnk − p

′n
k ), (C.6)
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where

Înk =

|Un|∑

j=π−1
n (k)

pnπn(j) + η̃nk and Î
′n
k =

|Un|∑

j=π−1
n (k)

p
′n
πn(j) + η̃nk .

We re-arrange Eqn. (C.6) as follows:

(Φ(p)− Φ(p′))T · (p− p′) =
Wn

ln(2)

K∑

k=1

N∑

n=1

(pnk − p
′n
k )
(∑|Un|

j=π−1
n (k)

(p
′n
πn(j)
− pnπn(j)

)
)

Înk Î
′n
k

,

=
Wn

ln(2)

N∑

n=1

|Un|∑

i=1

(pnπn(i)
− p

′n
πn(i)

)
(∑|Un|

j=i (p
′n
πn(j)
− pnπn(j)

)
)

Înπn(i)
Î

′n
πn(i)

,

= − Wn

ln(2)

N∑

n=1

|Un|∑

i=1

|Un|∑

j=i

xn
i x

n
j

bni
, (C.7)

where, for n ∈ N and i ∈ {1, 2, . . . , |Un|}, xn
i = pnπn(i)

− p
′n
πn(i)

and

bni = Înπn(i)Î
′n
πn(i) =




|Un|∑

j=i

pnπn(j) + η̃nπn(i)






|Un|∑

j=i

p
′n
πn(j) + η̃nπn(i)


 .

We define Cn

2
,

(∑|Un|
j=1 min{P πn(j)

max , P
n,πn(j)
max }+ η̃nπn(1)

)2
, which gives us the following

upper bound for bn1 :

bn1 =




|Un|∑

j=1

pnπn(j) + η̃nπn(1)






|Un|∑

j=1

p
′n
πn(j) + η̃nπn(1)


 ≤ Cn

2
.

Based on Lemma 31 and the previous upper bound, we have:

−
N∑

n=1

Wn

ln(2)

|Un|∑

i=1

|Un|∑

j=i

xn
i x

n
j

bni
≤ −

N∑

n=1

Wn

ln(2) · 2bn1

|Un|∑

i=1

(xn
i )

2 ≤ −
N∑

n=1

Wn

ln(2) · Cn

|Un|∑

i=1

(xn
i )

2.

We then obtain from Eqn. (C.7):

(Φ(p)− Φ(p′))T · (p− p′) ≤ c||p− p′||22,

where c is a constant such that −∑N
n=1

Wn

ln(2)·Cn
≤ c < 0. This completes the proof.

C.3 Proof of Theorem 24

Let ωk(t) be the water level of user k at time t. From Eqn (5.6) and (5.7), we have:

∑

n∈Nk

[
ωk − Ĩnk

]P n,k
max

0
= P k

max. (C.8)
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Note that ωk(t+ 1) can be seen as a function of Ĩk(t), and we denote it by:

ωk(t+ 1) , hk(Ĩk(t)). (C.9)

We consider two waterfilling scenarios for user k. The normalized interference

on subcarrier n in the two scenarios are denoted by Ĩnk and Ĩnk
′
, respectively. After

performing waterfilling, we denote the water levels in the two scenarios by ωk and

ω′
k, respectively. With this setting, we have the following lemma:

Lemma 32. For any k ∈ K, if Ĩnk ≥ Ĩnk
′
for all n ∈ Nk, then hk(Ĩk) ≥ hk(Ĩ

′

k).

Proof. Let Ĩnk ≥ Ĩnk
′
for all n ∈ Nk, and ωk , hk(Ĩk), ω

′
k , hk(Ĩ

′

k). Let us assume

by contradiction that ωk < ω′
k. Since w′

k is the lowest non-negative value satisfying

Eqn. (5.6) and (5.7), and the power budgets are positive (i.e., P k
max > 0 and P n,k

max >

0, for n ∈ N ), we know that there exists at least one subcarrier m ∈ N such that

0 < ω′
k − Ĩmk

′ ≤ P m,k
max . It follows that:

[
ω′
k − Ĩmk

′]P m,k
max

0
= ω′

k − Ĩmk
′
>
[
ωk − Ĩmk

′]P m,k
max

0
≥
[
ωk − Ĩmk

]P m,k
max

0
, (C.10)

where the first strict inequality comes from ωk − Ĩmk
′
< ω′

k − Ĩmk
′ ≤ P m,k

max , and the

second inequality is due to Ĩnk ≥ Ĩnk
′
. For any other subcarrier n ∈ N , n 6= m, we

have the following non-strict inequalities:

[
ω′
k − Ĩnk

′]P n,k
max

0
≥
[
ωk − Ĩnk

′]P n,k
max

0
≥
[
ωk − Ĩnk

]P n,k
max

0
. (C.11)

By summing inequalities (C.10) and (C.11) over all subcarriers, we obtain:

∑

n∈Nk

[
ω′
k − Ĩnk

′]P n,k
max

0
>
∑

n∈Nk

[
ωk − Ĩnk

′]P n,k
max

0
≥
∑

n∈Nk

[
ωk − Ĩnk

]P n,k
max

0
.

According to (C.8), the inequalities in (C.3) are equivalent to:

P k
max >

∑

n∈Nk

[
ωk − Ĩnk

′]P n,k
max

0
≥ P k

max,

which is a contradiction, therefore ωk ≥ ω′
k.

The proof of Theorem 24 is given below.

Proof. Since |Un| ≤ 2, there are at most two active users in subcarrier n. We denote

the subset of subcarriers in which user k ∈ K is decoded first by Tk, and the subset

of subcarriers in which user k is decoded secondly by Sk, i.e., Sk = Nk \ Tk. For
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n ∈ Tk, we define −kn as the index of the user that shares subcarrier n with user k

(i.e., the secondly decoded user).

Since each user has limited power due to constraints C1 and C2, Ĩnk (t) is bounded

from above for all k ∈ K and n ∈ N . Therefore, according to (C.8), ωk(t) is also

bounded from above for all k. The convergence of SIWA is established by proving

by induction that ω(t) , (ω1(t), ω2(t), . . . , ωK(t)) is monotonically increasing, i.e.,

for any t ≥ 1,

ω(t+ 1) � ω(t), (C.12)

where � indicates that ωk(t+ 1) ≥ ωk(t) for all k.

Basis : Since p
(0)
k = 0 for all k, we have Ĩnk (0) = η̃nk for all k and n. Thus,

Ĩnk (1) ≥ Ĩnk (0). Lemma 32 and (C.9) imply ω(2) � ω(1).

Inductive step: Suppose (C.12) holds for t = L, i.e.,

ω(L+ 1) � ω(L). (C.13)

First, consider n ∈ Sk. By the definition of Sk, Ĩnk (t) = η̃nk for all t, which implies:

Ĩnk (L+ 1) = Ĩnk (L), for n ∈ Sk. (C.14)

Next, consider n ∈ Tk. According to (5.5), for any t, we have:

Ĩnk (t) = pn−kn(t) + η̃nk , for n ∈ Tk. (C.15)

By the definition of Tk, user −kn experiences no intra-band interference in subcar-

rier n. The waterfilling method gives:

pn−kn(t) = [ω−kn(t)− η̃n−kn ]
P n,−kn
max

0 .

Substituting it back to (C.15), we obtain:

Ĩnk (t) = [ω−kn(t)− η̃n−kn ]
P n,−kn
max

0 + η̃nk , for n ∈ Tk,

which, for t = L+1 and together with the inductive hypothesis in (C.13), implies:

Ĩnk (L+ 1) ≥ Ĩnk (L), for n ∈ Tk. (C.16)

Invoking Lemma 32 with (C.14) and (C.16) and using (C.9), we obtain ω(L+ 2) �
ω(L+ 1), which completes the proof.
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Résumé : L’accès multiple non-orthogonal (NOMA)

est une technologie d’accès radio prometteuse pour

améliorer l’efficacité spectrale et augmenter massive-

ment la connectivité des réseaux sans fil. Contraire-

ment aux méthodes d’accès orthogonal, telles que

l’OFDMA, NOMA peut multiplexer en puissance plu-

sieurs signaux sur une même ressource radio. Un

des principaux défis de NOMA est de résoudre le

problème d’allocation des sous-porteuses et de la

puissance (JSPA).

Dans cette thèse, nous présentons un nouveau

cadre théorique permettant l’étude d’une classe de

problèmes d’optimisation JSPA. Nous considérons di-

verses contraintes réalistes et une fonction d’objec-

tif générique pouvant représenter, entre autres, les

fonctions suivantes : somme pondérée des débits

(WSR), équité proportionnelle, moyenne harmonique

et équité max-min. Nous prouvons que JSPA est NP-

difficile en général. De plus, nous étudions sa com-

plexité et son approximabilité dans divers cas particu-

liers et pour différentes fonctions et contraintes.

Nous tentons d’abord de maximiser la WSR avec

des contraintes de puissances cellulaires. Nous pro-

posons trois algorithmes : OPT-JSPA est optimal

et sa complexité est moindre que les méthodes

optimales existantes. Étant donné sa complexité

pseudo-polynomiale, il ne peut pas être exécuté en

temps réel, mais convient pour des simulations. Afin

de réduire cette complexité, nous développons un

schéma d’approximation entièrement en temps po-

lynomial (FPTAS) appelé ε-JSPA. Celui-ci garantit

d’obtenir une solution optimale à un facteur 1+ε en

temps polynomial. A notre connaissance, ε-JSPA est

le premier FPTAS proposé pour ce problème. Fina-

lement, GRAD-JSPA est une heuristique fondée sur

la descente de gradient. Des simulations montrent

que GRAD-JSPA atteint des performances proches

de l’optimum avec une faible complexité.

Nous étudions des contraintes de puissances indivi-

duelles dans un second temps. L’allocation des puis-

sances est optimisée par descente de gradient et

est optimale. Ensuite, nous développons trois heuris-

tiques pour l’allocation des sous-porteuses dans le

problème JSPA : DGA qui est centralisé, ainsi que

DPGA et DIWA qui sont répartis. Leurs performance

et complexité sont évaluées par simulations.

Title : Resource allocation and optimization for the non-orthogonal multiple access

Keywords : NOMA, SIC, resource allocation, convex and combinatorial optimization

Abstract : Non-orthogonal multiple access (NOMA)

is a promising technology to increase the spectral ef-

ficiency and enable massive connectivity in future wi-

reless networks. In contrast to orthogonal schemes,

such as OFDMA, NOMA can serve multiple users on

the same frequency and time resource by superpo-

sing their signal in the power domain. One of the key

challenges for radio resource management (RRM) in

NOMA systems is to solve the joint subcarrier and po-

wer allocation (JSPA) problem.

In this thesis, we present a novel optimization fra-

mework to study a general class of JSPA problems.

This framework employs a generic objective function

which can be used to represent the popular weigh-

ted sum-rate (WSR), proportional fairness, harmonic

mean and max-min fairness utilities. Our work also in-

tegrates various realistic constraints. We prove under

this framework that JSPA is NP-hard to solve in gene-

ral. In addition, we study its computational complexity

and approximability in various special cases, for dif-

ferent objective functions and constraints.

In this framework, we first consider the WSR maxi-

mization problem subject to cellular power constraint.

We propose three new algorithms: OPT-JSPA com-

putes an optimal solution with lower complexity than

current optimal schemes in the literature. It can be

used as an optimal benchmark in simulations. Ho-

wever, its pseudo-polynomial time complexity remains

impractical for real-world systems with low latency re-

quirements. To further reduce the complexity, we pro-

pose a fully polynomial-time approximation scheme

called ε-JSPA, which allows tight trade-offs between

performance guarantee and complexity. To the best

of our knowledge, ε-JSPA is the first polynomial-time

approximation scheme proposed for this problem. Fi-

nally, GRAD-JSPA is a heuristic based on gradient

descent. Numerical results show that it achieves near-

optimal WSR with much lower complexity than exis-

ting optimal methods.

As a second application of our framework, we study

individual power constraints. Power control is solved

optimally by gradient descent methods. Then, we de-

velop three heuristics: DGA, DPGA and DIWA, which

solve the JSPA problem for centralized and distri-

buted settings. Their performance and computational

complexity are compared through simulations.
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