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Notations de l'introduction

La liste suivante présente les principales notations utilisées dans l'introduction générale de la thèse (chapitre 1). Les notations spécifiques aux autres chapitres sont intégrées à ceux-ci. y) .

f Lip := sup x =y d F (f (x), f (y)) d E (x,

Introduction générale

En théorie des probabilités, l'étude du régime stationnaire de systèmes dynamiques aléatoires est un domaine de recherche très actif. Plusieurs aspects sont abordés : l'existence et l'unicité d'un tel régime, la convergence et la vitesse de convergence vers ce régime stationnaire. L'intérêt porté à ce sujet vient notamment du fait que l'évolution de nombreux phénomènes réels peut être modélisée à l'aide de systèmes dynamiques aléatoires. En particulier, les systèmes markoviens ont fait l'objet et font encore l'objet de nombreux travaux. Cependant, ce type de modèles apparaît dans certaines situations comme peu adapté ou trop restrictif. C'est donc naturellement que des dynamiques aléatoires plus générales dirigées par des bruits à mémoire ont commencé à être étudiées. Dans un cadre continu, l'étude du régime stationnaire des Équations Différentielles Stochastiques (EDS) dirigées par un processus gaussien à accroissements stationnaires suscite beaucoup d'intérêt depuis une dizaine d'années. Un exemple de tels processus est le mouvement brownien fractionnaire, qui est une généralisation du mouvement brownien standard. En particulier, les EDS fractionnaires sont utilisées dans de nombreux domaines : par exemple pour modéliser l'évolution de phénomènes physiques, biologiques ou financiers (voir [START_REF] Guasoni | No arbitrage under transaction costs, with fractional Brownian motion and beyond[END_REF][START_REF] Jeon | In vivo anomalous diffusion and weak ergodicity breaking of lipid granules[END_REF][START_REF] Kou | Stochastic modeling in nanoscale biophysics: subdiffusion within proteins[END_REF][START_REF] David J Odde | Stochastic dynamics of the nerve growth cone and its microtubules during neurite outgrowth[END_REF]). Par conséquent, ces équations apparaissent dans de nombreux travaux : sur l'existence et l'unicité d'une mesure invariante dans ce cadre a priori non markovien (voir [START_REF] Hairer | Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion[END_REF][START_REF] Hairer | Ergodic theory for SDEs with extrinsic memory[END_REF][START_REF] Hairer | Regularity of laws and ergodicity of hypoelliptic SDEs driven by rough paths[END_REF]), sur la vitesse de convergence à l'équilibre (voir [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF][START_REF] Fontbona | Rate of convergence to equilibrium of fractional driven stochastic differential equations with some multiplicative noise[END_REF][START_REF] Deya | Rate of convergence to equilibrium of fractional driven stochastic differential equations with rough multiplicative noise[END_REF]) ou encore sur l'approximation de la mesure invariante (voir [START_REF] Cohen | Approximation of stationary solutions of Gaussian driven stochastic differential equations[END_REF][START_REF] Cohen | Approximation of stationary solutions to SDEs driven by multiplicative fractional noise[END_REF]). Nous détaillerons ces derniers résultats dans la Section 1.2.1 après avoir introduit de façon précise le mouvement brownien fractionnaire dans la Section 1.1. Pour un bruit gaussien à accroissements stationnaires plus général, nous verrons dans la Section 1.2.2 que de récents résultats [START_REF] Panloup | Sub-exponential convergence to equilibrium for gaussian driven stochastic differential equations with semi-contractive drift[END_REF] nous donnent une vitesse de convergence à l'équilibre sous certaines hypothèses bien choisies.

Dans un cadre discret, Hairer dans [START_REF] Hairer | Ergodic properties of a class of non-Markovian processes[END_REF] propose des conditions générales donnant l'existence et l'unicité d'une mesure invariante pour une grande classe de processus nonmarkoviens. De plus, l'étude en temps long de systèmes discrets particuliers comme le schéma d'Euler associé à une EDS dirigée par un bruit gaussien général (dans [START_REF] Cohen | Approximation of stationary solutions of Gaussian driven stochastic differential equations[END_REF]) ou par le mouvement brownien fractionnaire (dans [START_REF] Cohen | Approximation of stationary solutions to SDEs driven by multiplicative fractional noise[END_REF]) permet d'approcher la loi stationnaire de l'EDS, ce qui est essentiel car il est difficile de la calculer explicitement dans la plupart des cas.

Dans cette thèse, nous nous intéressons à différents problèmes en lien avec l'ergodicité de tels systèmes dynamiques à mémoire, en temps continu ou discret, et tout particulièrement pour un bruit fractionnaire. Dans la suite de ce chapitre, nous allons détailler les 1. INTRODUCTION GÉNÉRALE résultats existants sur lesquels cette thèse s'appuie avant d'exposer nos résultats principaux.

Le mouvement brownien fractionnaire

Le mouvement brownien fractionnaire est l'un des principaux bruits gaussiens considérés dans cette thèse. Nous allons donc nous attacher tout au long de cette section à le définir et à donner ses principales propriétés.

Définition et propriétés

Définition 1.1.1. Soit H ∈ (0, 1). Le mouvement brownien fractionnaire (mBf) ddimensionnel de paramètre de Hurst H, noté (B t ) t≥0 , est un processus gaussien centré dont la fonction de covariance est donnée par

E B i t B j s = δ ij 2 t 2H + s 2H -|t -s| 2H pour tout t, s ≥ 0.
En particulier, les accroissements du mBf sont stationnaires :

E (B i t -B i s )(B j t -B j s ) = δ ij |t -s| 2H pour tout t, s ≥ 0,
et le mBf est un processus H-autosimilaire, c'est-à-dire tel que

L ((B ct ) t≥0 ) = L c H (B t ) t≥0
pour tout c > 0.

Remarque 1.1.1. Le processus B n'est pas une semimartingale excepté lorsque H = 1/2 (voir Liptser et Shiryaev [START_REF] Sh | Theory of martingales, volume 49 of Mathematics and its Applications[END_REF]). Dans ce cas, B n'est autre que le mouvement brownien standard et ses accroissements sont indépendants. Notons que la théorie de l'intégration d'Itô ne s'applique donc pas au mBf.

Le paramètre de Hurst H gouverne le signe de la corrélation des accroissements du mouvement brownien fractionnaire (suivant si H < 1/2 ou H > 1/2) mais prescrit aussi la régularité de ses trajectoires comme expliqué dans la proposition suivante.

Bruit fractionnaire

On considère dans toute cette section le cas de l'équation (1.2.1) lorsque G n'est autre que le mouvement brownien fractionnaire B de paramètre H ∈ (0, 1) (voir Définition 1.1.1). La mémoire relative aux accroissements du mBf implique que les solutions de (1.2.1), quand elles existent, sont non-markoviennes. Sans cette propriété, il paraît difficile de définir une mesure invariante, d'étudier son existence et la convergence éventuelle de la solution de l'équation vers celle-ci. L'idée fondatrice introduite par Hairer dans [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF] est de "grossir" l'espace en incluant tout le passé du bruit fractionnaire pour se ramener à un cadre markovien homogène. Ce principe repose sur la représentation de Mandelbrot-Van Ness du mBf définie par (1.1.1), l'objet d'intérêt n'étant plus (Y t ) t≥0 mais (Y t , (W s ) s≤t ) t≥0 où W est le mouvement brownien standard sous-jacent (voir (1.1.1)). Dans son article, Hairer construit le semi-groupe de Feller associé à (Y t , (W s ) s≤t ) t≥0 en introduisant l'espace de bruit W comme la fermeture de C ∞ 0 (R -) (fonctions C ∞ à support compact qui s'annulent en 0) pour la norme

w H := sup t,s∈R - |w(t) -w(s)| |t -s| 1-H 2 (1 + |t| + |s|) 1 2 
.

Ce semi-groupe, noté Q, est alors défini par : pour tout f : R d × W → R + mesurable,

Q t f (x, w) := E (x,w) [f (Y t , (W s ) s≤t )] . (1.2.3) 
La notion de mesure invariante peut ainsi être définie comme suit : Définition 1.2.1. Une mesure invariante pour (1.2.1) est une mesure de probabilité µ sur R d × W invariante pour Q, c'est-à-dire vérifiant

Q t µ = µ, ∀t ≥ 0.
Remarque 1.2.2. Notons que dans tous les résultats qui vont suivre, lorsqu'on parlera d'unicité de la mesure invariante, cela sera à la relation d'équivalence près suivante. Soient µ, ν deux mesures de probabilités sur R d × W. On note Sµ := L((Y µ t ) t≥0 ), c'està-dire la loi de la solution de l'EDS (1.2.1) partant de la mesure initiale µ. Alors la relation d'équivalence ∼ est donnée par : µ ∼ ν ⇔ Sµ = Sν.

Vitesse de convergence à l'équilibre

Commençons par le cas additif considéré par Hairer dans [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF], c'est-à-dire lorsque σ est une matrice constante inversible dans (1.2.1). Dans ce cadre, sous des hypothèses de croissance polynômiale sur le drift b et sa dérivée et sous la condition de stabilité suivante :

(H b ) : il existe α, α , β > 0 tels que b(x) -b(y), x -y ≤ min{ β -α|x -y| 2 , α |x -y| 2 }, ∀x, y ∈ R d , Hairer donne une borne sur la vitesse de convergence de la solution vers la mesure 1.2. Ergodicité des équations différentielles stochastiques à mémoire invariante pour la distance en variation totale. L'hypothèse (H b ) est une condition de contraction en dehors d'un compact. Théorème 1.2.1 (Hairer [36]). Sous les hypothèses décrites ci-dessus, l'équation (1.2.1) lorsque G est un mBf admet une unique mesure invariante µ . De plus, pour toute mesure initiale µ et pour tout ε > 0, il existe C ε > 0 telle que

L((Y µ s+t ) s≥0 ) -Sµ T V ≤ C ε t -(α H -ε) (1.2.4) où α H = 1 8 si H ∈ ( 1 4 , 1)\ 1 2 H(1 -2H) si H ∈ (0, 1 4 ). 
(1.2.5)

Remarque 1.2.3. £ Notons ici qu'il y a un léger abus, les conditions initiales doivent être admissibles, c'est-à-dire que leur projection sur W doit être la loi de (W t ) t≤0 . £ L'optimalité de cette vitesse est encore une question ouverte.

La preuve de ce théorème est basée sur une méthode de couplage qui est plus complexe que dans le cadre markovien classique. En effet l'idée est d'utiliser le fait que L((Y µ s+t ) s≥0 ) -Sµ T V ≤ P(τ > t)

où τ := inf{t ≥ 0 | Y 1 s = Y 2 s , ∀s ≥ t} et (Y 1 , Y 2 ) = ((Y µ t ) t≥0 , (Y µ t ) t≥0
). Il est important de noter que la méthode de couplage va comporter une étape supplémentaire par rapport au couplage classique markovien : tout d'abord l'étape 1 consiste à réussir à coller les trajectoires Y 1 et Y 2 a un instant donné, ensuite on doit essayer de les maintenir collées (étape 2 spécifique au non-markovien) et enfin en cas d'échec de l'une des deux premières étapes, on doit imposer W 1 = W 2 jusqu'à ce que les deux trajectoires reviennent dans un compact donné (où W 1 et W 2 sont les mouvements browniens sous-jacents à la représentation (1.1.1) pour les mBf associés respectivement à Y 1 et Y 2 ). Cette dernière étape permet de tenter de nouveau l'étape 1 en contrôlant le coût d'un éventuel échec de cette même étape. L'existence et l'unicité d'une probabilité invariante ont été également étudiées dans un cadre multiplicatif, c'est à dire lorsque σ n'est plus constant, par Hairer et Ohashi dans [START_REF] Hairer | Ergodic theory for SDEs with extrinsic memory[END_REF] pour H > 1/2 puis par Hairer et Pillai dans [START_REF] Hairer | Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion[END_REF] pour H ∈ (1/3, 1/2). Concernant la vitesse de convergence, le Théorème 1.2.1 a aussi été prolongé. Tout d'abord lorsque H > 1/2, Fontbona et Panloup dans [START_REF] Fontbona | Rate of convergence to equilibrium of fractional driven stochastic differential equations with some multiplicative noise[END_REF] prouvent ce même résultat lorsque σ est bornée lipschitz et inversible avec σ -1 = ∇h où h est un C 1 -difféomorphisme de R d . Ces hypothèses sur σ permettent de pallier au fait que les deux propriétés suivantes ne sont plus vraies dans le cadre multiplicatif :

• Lorsque σ est constant, si deux mBf B 1 et B 2 diffèrent d'un drift alors les solutions Y 1 et Y 2 aussi, ce qui facilite l'étape 1 du couplage.

• Sous l'hypothèse (H b ) et lorsque σ est constant, deux trajectoires dirigées par le même mBf se rapprochent automatiquement et la distance entre les deux trajectoires peut être contrôlée par une constante déterministe. 

:= lim |Π|→0 [u,v]∈Π f u (g v -g u ).
Toujours dans le cadre multiplicatif, le Théorème 1.2.1 est enfin démontré dans le cas H > 1/3 par Deya, Panloup et Tindel dans [START_REF] Deya | Rate of convergence to equilibrium of fractional driven stochastic differential equations with rough multiplicative noise[END_REF]. Ils supposent en particulier que σ est régulière bornée à dérivées bornées et inversible d'inverse borné. Dans le cas H > 1/2, cela prolonge un peu le résultat donné par [START_REF] Fontbona | Rate of convergence to equilibrium of fractional driven stochastic differential equations with some multiplicative noise[END_REF] étant donné que l'on ne suppose plus que σ est une matrice jacobienne. Le cas H ∈ (1/3, 1/2) apporte quant à lui une contribution plus signifiante qui fait appel à la théorie des trajectoires rugueuses afin de donner un sens à l'intégrale contre le mBf (voir [START_REF] Friz | A course on rough paths[END_REF] ou [START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF] pour plus de détails sur ce sujet).

Approximation de la loi stationnaire

Une fois la convergence vers la mesure invariante établie, une question naturelle est de savoir comment approcher cette mesure invariante, qui est en général difficile à calculer explicitement. Rappelons que la mesure invariante µ donnée dans le Théorème 1.2.1 est une mesure de probabilité sur R d × W, nous nous intéressons ici à sa projection sur la première marginale, que l'on va noter μ ∈ M 1 (R d ) dans la suite. Dans le but d'approcher μ , l'idée est d'utiliser le schéma d'Euler défini en (1.2.1) toujours dans le cas où G est le mouvement brownien fractionnaire. Dans [START_REF] Cohen | Approximation of stationary solutions of Gaussian driven stochastic differential equations[END_REF] pour le cas additif avec H ∈ (0, 1) et dans [START_REF] Cohen | Approximation of stationary solutions to SDEs driven by multiplicative fractional noise[END_REF] pour le cas multiplicatif avec H ∈ (1/2, 1), les auteurs utilisent la mesure d'occupation associée au schéma d'Euler (1.2.2) pour approcher μ . Plus précisément, commençons par le cas additif [START_REF] Cohen | Approximation of stationary solutions of Gaussian driven stochastic differential equations[END_REF]. En supposant que le drift b est Lipschitz et satisfait la condition de stabilité (H b ) énoncée dans la section précédente avec β = 0, les auteurs obtiennent le résultat suivant (énoncé dans le cas particulier du mBf ici) : Théorème 1.2.2 (Cohen,Panloup [15]). Soit Z défini par (1.2.2) lorsque G = B de paramètre de Hurst H ∈ (0, 1) et lorsque σ est constant et inversible. Sous les hypothèses énoncées ci-dessus sur le drift b,

lim γ→0 lim n→+∞ 1 n n-1 k=0 δ Z kγ = μ p.s.
(1.2.6) au sens de la convergence étroite sur R d .

Remarque 1.2.5. Le fait de supposer β = 0 dans l'hypothèse (H b ) permet ici de montrer l'unicité de la solution stationnaire associée à (1.2.2) (pour γ > 0 suffisamment petit) et à (1.2.1). On peut noter ici que la définition de solution stationnaire diffère légèrement de celle de Hairer [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF], il s'agit ici d'un processus solution de (1.2.1) ou (1.2.2) dont la loi est stationnaire. Il n'y a pas de condition d'adapatation du processus à la filtration naturelle engendrée par le bruit fractionnaire (B t ) t∈R . Cependant, lorsqu'il s'agit de solutions stationnaires adaptées, il y a en fait unicité même si (H b ) est vérifiée pour un β quelconque : pour le schéma d'Euler ceci est implicitement démontré dans [START_REF] Cohen | Approximation of stationary solutions to SDEs driven by multiplicative fractional noise[END_REF] (en adaptant ce qui est fait au cadre additif et pour un H ∈ (0, 1) quelconque) qui utilise les résultats de [START_REF] Hairer | Ergodic properties of a class of non-Markovian processes[END_REF] et enfin Hairer le démontre dans [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF] pour l'EDS (1.2.1) lorsque G est le mBf (comme on l'a vu précédemment).

Le Théorème 1.2.2 est adapté au cadre multiplicatif dans [START_REF] Cohen | Approximation of stationary solutions to SDEs driven by multiplicative fractional noise[END_REF] lorsque H ∈ (1/2, 1) pour un drift b sous linéaire de classe C 2 satisfaisant toujours l'hypothèse de contraction en dehors d'un compact (H b ) et pour un σ borné de classe C 2 inversible d'inverse borné. Le cadre multiplicatif avec un paramètre de Hurst H < 1/2 n'a pas encore été étudié mais comme il est expliqué dans [START_REF] Cohen | Approximation of stationary solutions to SDEs driven by multiplicative fractional noise[END_REF]Remarque 4], il semble que tous les outils pour le faire sont disponibles. Il faudrait évidemment utiliser les trajectoires rugueuses ne serait-ce que pour donner du sens à l'équation (1.2.1), mais aussi considérer un schéma d'Euler plus complexe faisant intervenir par exemple des produits d'incréments du mBf (voir [START_REF] Deya | A Milstein-type scheme without Lévy area terms for SDEs driven by fractional Brownian motion[END_REF][START_REF] Davie | Differential equations driven by rough paths: an approach via discrete approximation[END_REF]).

Bruit Gaussien général

Dans toute cette section, nous considérons l'EDS (1.2.1) pour un bruit gaussien général d-dimensionnel G centré, à accroissements stationnaires et dont les composantes sont indépendantes. De plus on se place dans le cadre additif, c'est-à-dire avec σ constant et on suppose que σ est inversible.

Un travail récent de Panloup et Richard [START_REF] Panloup | Sub-exponential convergence to equilibrium for gaussian driven stochastic differential equations with semi-contractive drift[END_REF] considère le cas d'un bruit gaussien purement non déterministe 1 à valeurs dans R d . Cette dernière propriété est équivalente dans le cadre d'un bruit gaussien centré à accroissements stationnaires au fait de posséder une représentation en moyenne mobile (voir [START_REF] Panloup | Sub-exponential convergence to equilibrium for gaussian driven stochastic differential equations with semi-contractive drift[END_REF]Annexe B]). Autrement dit, il existe {G(t)} t∈R à valeurs dans M d telle que G(t) = 0 pour tout t > 0 et

G t = R {G(s -t) -G(s)} dW s , ∀t ≥ 0 (1.2.7)
où (W t ) t∈R est un mouvement brownien standard sur R d . De plus, G est telle que R G(s -t) -G(s) 2 ds < +∞. Grâce à cette représentation, ils construisent comme Hairer [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF] dans le cas du mBf une structure markovienne au-dessus de (1.2.1) et la notion de mesure invariante. Ils introduisent ensuite l'hypothèse suivante sur le drift b :

(H b ) : il existe α, R > 0 tels que (i) b(x) -b(y), x -y ≤ 0, ∀x, y ∈ R d (ii) b(x) -b(y), x -y ≤ -α|x -y| 2 , ∀x, y ∈ R d \ B(0, R).
Remarque 1.2.6. Cette hypothèse suppose en fait que le drift b est contractant sur R d mais fortement contractant seulement en dehors d'un compact aussi grand que l'on veut.

Sous des hypothèses de contrôle sur la mémoire du processus G (reliées au contrôle de G (u) par des fonctions polynômiales) et sous (H b ), ils montrent l'existence et 1 Un processus (Xs) s∈R est dit purement non déterministe si t∈R Vect {Xs | s ∈ (-∞, t]} = {0} où Vect(A) est la fermeture dans L 2 (Ω) de l'espace engendré par A ⊂ L 2 (Ω).
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l'unicité de la mesure invariante associée à (1.2.1), notée µ ∈ M 1 (R d × W). De plus, si Y est une solution de (1.2.1) satisfaisant E[|Y 0 | 2(1+v) ] < +∞ pour un certain v > 0 alors ils montrent que L(Y t ) converge vers μ (projection de µ sur R d ) pour la distance de Wasserstein d'ordre 2 à vitesse sous-exponentielle.

Enfin, sous des hypothèses ad hoc reliées à l'inversibilité de la relation (1.2.7), ils prolongent le résultat qui vient d'être énoncé en remplaçant la distance de Wasserstein d'ordre 2 par la distance en variation totale. En particulier, toutes les hypothèses sur G s'appliquent au mBf quelque soit son paramètre de Hurst H ∈ (0, 1) et donc ce résultat montre que la vitesse obtenue par Hairer dans le Théorème 1.2.1 est améliorée sous l'hypothèse un peu plus forte (H b ) sur le drift. Notons que la question de l'optimalité de la vitesse obtenue dans le Théorème 1.2.1 par Hairer [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF] est encore une question ouverte.

Concernant l'approximation de la mesure invariante dans ce cadre additif, Cohen et Panloup [START_REF] Cohen | Approximation of stationary solutions of Gaussian driven stochastic differential equations[END_REF] montrent en fait le Théorème 1.2.2 pour un bruit gaussien général G à accroissements stationnaires et sous des conditions sur la fonction de covariance de la suite ∆ des accroissements de G.

Les travaux que nous venons de détailler sont ceux qui ont initié les différents travaux de recherche de cette thèse et donc les résultats associés. Nous décrivons ceux-ci dans la prochaine section et donnons une esquisse des principaux outils déployés pour prouver ces résultats.

Principaux résultats de la thèse

Cette thèse se découpe en trois parties que nous allons maintenant présenter. La première concerne la vitesse de convergence à l'équilibre (i.e. vers une mesure invariante) pour des dynamiques discrètes générales à mémoire. La deuxième est une étude de la concentration de la loi de la solution d'une EDS fractionnaire (dans le cas additif) en temps long. Enfin, la dernière est un travail commun avec Panloup et Tindel sur l'estimation du terme de drift dans une EDS fractionnaire additive, utilisant les travaux [START_REF] Cohen | Approximation of stationary solutions of Gaussian driven stochastic differential equations[END_REF][START_REF] Cohen | Approximation of stationary solutions to SDEs driven by multiplicative fractional noise[END_REF] précédemment cités sur l'approximation de la mesure invariante.

Ergodicité de dynamiques discrètes à mémoire

Cette première partie présente les résultats qui seront entièrement détaillés ensuite dans le Chapitre 2 qui correspond à l'article [START_REF] Varvenne | Rate of convergence to equilibrium for discrete-time stochastic dynamics with memory[END_REF]. La principale motivation à l'origine de ce travail était d'étudier la convergence à l'équilibre de dynamiques discrètes à mémoire de type fractionnaire de sorte que l'on s'affranchisse du caractère rugueux du mBf spécifique au cadre continu. Plus précisément, l'objectif initial était d'étudier comment la vitesse serait affectée par ce changement de cadre et ainsi d'évaluer la qualité des bornes obtenues dans le Théorème 1.2.1 par Hairer. Nous avons ensuite été naturellement amenés à travailler dans un cadre plus large en considérant des bruits gaussiens à mémoire quelconques.

Principaux résultats de la thèse

Nous nous intéressons ici à des dynamiques de la forme suivante : soit (X n ) n≥0 une suite de variables aléatoires sur R d définie par sa valeur initiale X 0 et la relation de récurrence

X n+1 = F (X n , ∆ n+1 ) (1.3.1)
où F : R d × R d → R d est une fonction générale a minima continue et (∆ n ) n∈Z est une suite stationnaire gaussienne d-dimensionnelle purement non-déterministe dont les composantes sont indépendantes. Les conditions sur la suite ∆ nous permettent d'utiliser le théorème de décomposition de Wold (voir par exemple [START_REF] Brockwell | Time series: theory and methods[END_REF]) qui nous donne

∀n ∈ Z, ∆ n = +∞ k=0 a k ξ n-k (1.3.2)
avec (a k ) k≥0 ∈ R N telle que a 0 = 0 et +∞ k=0 a 2 k < +∞ (ξ k ) k∈Z une suite i.i.d telle que ξ 1 ∼ N (0, I d ).

(1.3.3)

Remarque 1.3.1. Nous pouvons déjà noter ici le rôle de la suite déterministe (a k ) k≥0 qui encode en quelque sorte la mémoire du bruit gaussien ∆ puisque sa fonction de covariance

c(k) := E[∆ n ∆ n+k ] = +∞ i=0 a i a k+i ,
ne dépend que de ces coefficients (a k ) k≥0 . Plus ils décroissent vite plus la "mémoire" de ∆ est faible. Il est donc évident que le comportement asymptotique de cette suite va jouer un rôle essentiel dans l'étude de la vitesse de convergence à l'équilibre du système dynamique stochastique (1.3.1).

Pour étudier le comportement en temps long de ce type de dynamiques, l'idée est comme dans [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF][START_REF] Fontbona | Rate of convergence to equilibrium of fractional driven stochastic differential equations with some multiplicative noise[END_REF][START_REF] Deya | Rate of convergence to equilibrium of fractional driven stochastic differential equations with rough multiplicative noise[END_REF] de construire une structure markovienne autour de (1.3.1).

Structure markovienne homogène

L'idée est la suivante, au lieu de s'intéresser seulement à (X n ) n≥0 nous nous concentrons sur l'évolution du couple (X n , (∆ n+k ) k≤0 ) n≥0 . Nous nous plaçons donc sur un espace plus grand noté X × W où X := R d est l'espace d'état de la suite X et W := (R d ) Z -est l'espace du bruit associé à ∆. La dynamique (1.3.1) est ainsi équivalente à D'autre part, dans toute la suite, lorsqu'on parlera d'unicité de la mesure invariante, ce sera à la relation d'équivalence près définie ci-après. Pour toute mesure µ ∈ M 1 (X × W), on note Sµ := L((X µ n ) n≥0 ) la loi de la projection sur X de la suite (X n , (∆ n+k ) k≤0 ) n≥0 partant de la mesure initiale µ. Ainsi on dit que µ, ν ∈ M 1 (X × W) sont équivalentes et on note µ ∼ ν si et seulement si Sµ = Sν.

(X n+1 , (∆ n+1+k ) k≤0 ) = ϕ((X n , (∆ n+k ) k≤0 ), ∆ n+1 ) (1.
(

Autrement dit, on a bien unicité sur la marginale d'intérêt X . Avant d'énoncer le théorème principal au sujet de l'existence, l'unicité d'une mesure invariante et de la vitesse de convergence vers cette mesure pour la distance en variation totale, il nous faut donner quelques précisions sur la représentation en moyenne mobile (1.3.2) associée à ∆.

Inversion de la représentation en moyenne mobile

On peut associer à (1. En particulier, il n'existe pas de règle générale permettant de déduire le comportement asymptotique de la suite (b k ) en fonction de celui de la suite (a k ). Nous étudions quelques Hypothèse (H poly ): Les conditions suivantes sont satisfaites,

• il existe ρ, β > 1/2 et C ρ , C β > 0 tels que ∀k ≥ 0, |a k | ≤ C ρ (k + 1) -ρ et ∀k ≥ 0, |b k | ≤ C β (k + 1) -β . • il existe κ ≥ ρ + 1 et C κ > 0 tels que ∀k ≥ 0, |a k -a k+1 | ≤ C κ (k + 1) -κ . Hypothèse (H exp ): Il existe λ, ζ > 0 et C λ , C ζ > 0 tels que, ∀k ≥ 0, |a k | ≤ C λ e -λk et ∀k ≥ 0, |b k | ≤ C ζ e -ζk .
Nous pouvons voir assez facilement que sous ses conditions, la fonction de covariance c(k) associée à la suite ∆ décroît respectivement à vitesse polynômiale et à vitesse exponentielle lorsque k tend vers +∞. Cela donne donc en quelque sorte le poids de la mémoire de la suite ∆. Un cas mélangeant les deux types de décroissances asymptotiques pourrait également être envisagé mais pour des raisons de simplicité nous avons choisi de les traiter séparément. Notons qu'un tel cas satisferait en particulier l'hypothèse (H poly ) puisque la décroissance (asymptotique) exponentielle implique la décroissance polynômiale.

Il reste maintenant à donner quelques précisions sur la fonction F qui dirige la dynamique (1.3.1).

Hypothèse (H 1 ): Il existe une fonction continue V : X → R * + satisfaisant lim |x|→+∞ V (x) = +∞ et ∃γ ∈ (0, 1) et C > 0 tels que pour tout (x, w) ∈ X × R d , V (F (x, w)) ≤ γV (x) + C(1 + |w|).
(1.3. [START_REF] Brockwell | Time series: theory and methods[END_REF] dans [START_REF] Down | Exponential and uniform ergodicity of Markov processes[END_REF]) mais sous une forme intégrale. £ Cette condition est aussi vraie si on a l'existence d'une telle fonction V avec

V (F (x, w)) ≤ γV (x) + C(1 + |w| p ) et p > 1.
Il suffit de prendre alors V 1/p à la place de V pour vérifier (H 1 ).
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Une deuxième hypothèse sur la fonction F , notée (H 2 ) dans la suite, est nécessaire pour la preuve du théorème principal. Elle est indispensable pour la première étape de la procédure de couplage (stratégie de preuve déjà évoquée dans un cadre continu dans la Section 1.2.1 et qui est utilisée ici aussi) qui amène avec probabilité strictement positive à la coalescence des deux trajectoires à un instant donné. Cette hypothèse est à mettre en parallèle avec l'hypothèse de minoration du noyau de transition dans un cadre purement markovien. Nous avons choisi de ne pas la détailler ici pour ne pas gêner la fluidité de lecture, nous donnerons cependant dans la suite un des exemples principaux de fonctions satisfaisant cette condition (une grande classe d'exemples sera également abordée dans la remarque 2.2.5).

Nous pouvons maintenant énoncer le résultat principal de cette section. 

X V (x)Π * X µ 0 (dx) < +∞ et pour tout ε > 0, il existe C ε > 0 telle que L((X µ 0 n+k ) k≥0 ) -Sµ T V ≤ C ε n -(v(β,ρ)-ε) . où la fonction v est donnée par v(β, ρ) = sup α∈( 1 2 ∨( 3 2 -β),ρ) min{1, 2(ρ -α)}(min{α, β, α + β -1} -1/2).
(iii) En supposant de plus que (H exp ) est vérifiée, il y a unicité de la mesure invariante µ . De plus, pour toute mesure initiale µ 0 telle que

X V (x)Π * X µ 0 (dx) < +∞ et pour tout p > 0, il existe C p > 0 telle que L((X µ 0 n+k ) k≥0 ) -Sµ T V ≤ C p n -p .
Remarque 1.3.3. La vitesse polynômiale de tout ordre pour le cas exponentiel semble suggérer que l'on pourrait obtenir mieux. Pourquoi pas une vitesse exponentielle ? Cette question est difficile à traiter sans avoir détaillé la stratégie de preuve, elle sera donc abordée un peu plus loin.

Ce théorème englobe une classe de dynamiques assez générale par deux aspects : le fait que l'on ne donne pas une forme explicite à la fonction F et le fait que les hypothèses faites sur le bruit gaussien sont seulement relatives à sa mémoire. Dans la Section 2.2, nous étudions d'une part le cas où F correspond au schéma d'Euler associé à l'équation (1.2.1) et d'autre part des cas particuliers de suite (a k ) et (b k ) pour lesquelles on est capable de vérifier les hypothèses (H poly ) ou (H exp ). En particulier, dans la section qui suit nous avons choisi de développer le cas du schéma d'Euler associé à l'EDS (1.2.1) dans le cas fractionnaire.

Schéma d'Euler d'une EDS fractionnaire

Nous décrivons maintenant l'un des principaux exemples d'application du Théorème 1.3.1. On pose D'autre part, les coefficients de la représentation en moyenne mobile de la suite (∆ n ) = (B (n+1)h -B nh ) nous sont donnés par la suite (a H k ) k≥0 définie par (voir [START_REF] Diethelm | Synthesis of accurate fractional Gaussian noise by filtering[END_REF]) H) . Nous sommes donc a priori dans un cadre polynômial et nous obtenons le résultat suivant : 

F (x, w) = x + hb(x) + σ(x)w et ∆ n = B (n+1)h -B nh (1.3.9) où h > 0, b : X → X , σ : X → M d×d et B
(L1) ∃C > 0 telle que ∀x ∈ X , |b(x)| ≤ C(1 + |x|). (L2) ∃ β ∈ R et α > 0 tels que ∀x ∈ X , x, b(x) ≤ β -α|x| 2 .
a H 0 = h H κ(H)2 1/2-H a H k = h H κ(H) k + 1 2 H-1/2 -k -1 2 H-1/2 pour k ≥ 1. (1.3.10) où κ(H) = sin(πH)Γ(2H + 1) Γ(H + 1/2) .

Nous pouvons facilement vérifier que a

H k ∼ k→+∞ C h,H (k + 1) -(3/2-H) et |a H k -a H k+1 | ≤ C h,H (k + 1) -(5/2-
Proposition 1.3.1. Il existe C h,H > 0 telle que pour tout H ∈ (0, 1/2) ∀k ≥ 0, |b H k | ≤ C h,H (k + 1) -(H+1/2
v(3/2 -H, H + 1/2) = H(1 -2H) si H ∈ (0, 1/4]

Stratégie de preuve par couplage

On suppose ici que l'existence d'une mesure invariante est déjà actée. La preuve de la vitesse de convergence donnée dans le Théorème 1.3.1 repose sur une méthode par couplage à laquelle nous avons déjà fait allusion dans le cadre continu des EDS fractionnaires. On considère deux couples (X

1 n , (∆ 1 n+k ) k≤0 ) n≥0 et (X 2 n , (∆ 2 n+k ) k≤0
) n≥0 suivant la dynamique (1.3.4) et avec pour conditions initiales respectives µ 0 et µ (une mesure invariante). On note (ξ 1 n ) n∈Z (respectivement (ξ 2 n ) n∈Z ) la suite de gaussiennes sous-jacente à la représentation en moyenne mobile de ∆ 1 (respectivement de ∆ 2 ), définie en (1.3.2).

On a la majoration suivante

L((X 1 n+k ) k≥0 ) -Sµ T V ≤ P(τ ∞ > n) ∀n ≥ 0 (1.3.12) où Sµ = L((X 2 n+k ) k≥0 ) quelque soit n ≥ 0 car µ est invariante et où τ ∞ est défini par τ ∞ = inf{n ≥ 0 | X 1 k = X 2 k , ∀k ≥ n}.
Dans un cadre purement markovien, ce temps d'arrêt serait réduit au premier instant où les deux trajectoires se collent. En effet, la position suivante ne dépendant que de la position courante, elles resteraient alors automatiquement collées. On a donc ici une étape supplémentaire dans une tentative de couplage. Ainsi, une procédure de couplage se compose d'une série d'essais qui comprennent chacun trois étapes : * Étape 1: Essayer de coller les deux trajectoires à un instant donné avec un "coût contrôlé". * Étape 2: (spécifique au cadre non markovien) Essayer de maintenir les trajectoires collées. * Étape 3: Si l'une des deux étapes précédentes échoue, on attend suffisamment longtemps de façon à pouvoir réaliser l'étape 1 avec un "coût contrôlé". Pendant cette étape, on impose ξ 1 n = ξ 2 n .

Dans l'étape 1, lorsqu'on parle de coût contrôlé, il s'agit en fait d'être en mesure de contrôler la probabilité de réussite de cette étape et en même temps de contrôler l'écart entre les trajectoires en cas d'échec. Plus précisément, on ne va tenter l'étape 1 à un instant donné τ que si en cas d'échec, on est capable d'assurer que X Toute la difficulté de la preuve repose sur la construction des suites ξ 1 et ξ 2 au fur et à mesure des tentatives de couplage. Cela fait l'objet de la Section 2.4.2. Bien que ce soit deux suites i.i.d., elles vont par construction être fortement dépendantes l'une par rapport à l'autre.

La preuve du Théorème 1.3.1 repose ensuite sur l'inégalité de Markov

P(τ ∞ > n) ≤ E[τ p ∞ ] n p
pour p > 0. L'idée est de découper τ ∞ suivant les différentes tentatives de couplage et à la fin de maximiser en p tout en s'assurant que E[τ p ∞ ] < +∞. Remarque 1.3.4. Le fait de considérer l'inégalité de Markov avec des fonctions polynômiales permet de séparer complètement les contributions des différentes tentatives (via l'inégalité de Minkowski pour p > 1 ou l'inégalité élémentaire |u + v| p ≤ |u| p + |v| p pour 0 < p < 1), ce qui n'est pas possible si on prend une fonction exponentielle par exemple. Et dans ce cadre non purement markovien, c'est indispensable. Ceci explique en particulier pourquoi dans le cas de l'hypothèse (H exp ), nous avons seulement pu prouver une vitesse polynômiale de tout ordre (cet aspect est d'avantage développé dans le Chapitre 2 en remarque 2.6.1).

Inégalités de concentration en temps long pour des EDS fractionnaires

Dans cette section nous présentons les résultats obtenus dans l'article [START_REF] Varvenne | Concentration inequalities for stochastic differential equations with additive fractional noise[END_REF] 

E (exp (λ (F (X) -E[F (X)]))) ≤ exp Cα 2 λ 2 2 (1.3.16)
avec L(X) = µ. L'inégalité de Markov permet alors de conclure à de la concentration. Dans un cadre continu, les inégalités de transport L 1 et L 2 pour la loi de la solution d'une EDS fractionnaire ont été étudiées notamment par Guendouzi [START_REF] Guendouzi | Transportation inequalities for SDEs involving fractional Brownian motion and standard Brownian motion[END_REF], Saussereau [START_REF] Saussereau | Transportation inequalities for stochastic differential equations driven by a fractional Brownian motion[END_REF] et Riedel [START_REF] Riedel | Transportation-cost inequalities for diffusions driven by Gaussian processes[END_REF] (ce dernier étudie même le cas de bruits gaussiens plus généraux que le mBf). En particulier, Saussereau obtient des inégalités de concentration en temps long pour la mesure d'occupation continue associée à une EDS fractionnaire de paramètre H ∈ (1/2, 1) sous une condition de contractivité forte sur le terme de drift. Ces résultats sont dus au fait que la constante qu'il obtient dans les inégalités de transport L 2 (et donc L 1 puisque T 2 (C) implique T 1 (C)) est suffisamment bien contrôlée en fonction de l'horizon T sur lequel il considère la solution de l'EDS. L'approche développée par Saussereau ne semble pas s'adapter à notre cadre discret. Nous avons par exemple essayé d'adapter les résultats en changeant la métrique pour l'inégalité T 1 (C) puis de montrer que l'application : (y t ) t∈[0,T ] → (y k∆ ) k∈{1,...,n} est Lipschitz pour cette nouvelle métrique. Dans toutes nos tentatives pour adapter la preuve de Saussereau à une version discrétisée, nous obtenions une constante C dans l'inégalité T 1 (C) dont la dépendance en n ne nous permettait pas de déduire de la concentration en temps long. Nous avons finalement évolué vers une approche fortement inspirée de Djellout, Guillin et Wu [START_REF] Djellout | Transportation cost-information inequalities and applications to random dynamical systems and diffusions[END_REF] dans un cadre diffusif. Au lieu de démontrer une inégalité de transport L 1 directement sous la forme (1.3.14), nous nous sommes attachés à démontrer sa formulation équivalente (1.3.16). Le point de départ de [START_REF] Djellout | Transportation cost-information inequalities and applications to random dynamical systems and diffusions[END_REF] est de décomposer F (X)-E[F (X)] en accroissements de martingale comme suit : Cette méthode nous a finalement permis de montrer des résultats de concentration en temps long pour la mesure d'occupation discrète mais aussi continue associée à (1.3.13). De plus, les résultats exposés sont vrais quel que soit le paramètre de Hurst H ∈ (0, 1). Ils sont décrits ci-après.

F (X) -E[F (X)] = n k=1 E[F (X)|F k ] -E[F (X)|F k-1 ] (1.3.

Hypothèses et résultats principaux

Nous considérons l'équation (1.3.13) sous les hypothèses suivantes sur le terme de drift b :

Hypothèse 1.3.3. On suppose que b est continue et qu'il existe α, L > 0 telles que :

(i) pour tout x, y ∈ R d , b(x) -b(y), x -y ≤ -α|x -y| 2 , (ii) pour tout x, y ∈ R d , |b(x) -b(y)| ≤ L|x -y|.
Avant de donner le résultat principal, nous devons introduire quelques notations spécifiques à ce résultat. Pour un n ∈ N * et (x, y) ∈ R d n × R d n , on note d n la distance L 1 suivante :

d n (x, y) := n k=1 |x i -y i |. (1.3.18)
De même, pour un

T > 0 donné et (x, y) ∈ C [0, T ], R d × C [0, T ], R d , on note d T la distance L 1 classique : d T (x, y) := T 0 |x t -y t |dt. (1.3.19) Enfin, pour F : (R d ) n , d n → (R, |•|) et F : C [0, T ], R d , d T → (R, |•|) deux fonctions Lipschitz, on note 
F Y := F (Y t 1 , . . . , Y tn ) et FY = F ((Y t ) t∈[0,T ] ) (1.3.20) avec 0 < ∆ = t 1 < • • • < t n et t k+1 -t k = ∆ pour un ∆ > 0 donné.
Nous sommes maintenant en mesure d'énoncer un résultat de contrôle des moments exponentiels : 

Proposition 1.3.2. Soit H ∈ (0, 1) et ∆ > 0. Soient n ∈ N * , T ≥ 1 et d n , d T les distances définies respectivement par(3.2.1) et (3.2.2). Alors, 1. INTRODUCTION GÉNÉRALE (i) il existe C H,∆ > 0 telle que pour toute fonction Lipschitz F : (R d ) n , d n → (R, | • |) et pour tout λ > 0, E [exp (λ(F Y -E[F Y ]))] ≤ exp C H,∆ F 2 Lip λ 2 n 2H∨1 . (1.3.21) (ii) il existe CH > 0 telle que pour toute fonction Lipschitz F : C [0, T ], R d , d T → (R, | • |) et pour tout λ > 0, E exp λ( FY -E[ FY ]) ≤ exp CH F 2 Lip λ 2 T 2H∨1 . ( 1 
) 1≤k≤n ) ∈ T 1 (2C H,∆ n 2H∨1 ) pour la distance d n et L((Y t ) t∈[0,T ] ) ∈ T 1 (2 CH T 2H∨1 ) pour la distance d T .
De la Proposition 1.3.2 découle les inégalités de concentration suivantes :

Théorème 1.3.4. Soit H ∈ (0, 1) et ∆ > 0. Soit n ∈ N * , T ≥ 1 et d n , d T les distances définies respectivement par (1.3.18) et (1.3.19). Alors, (i) il existe C H,∆ > 0 telle que pour toute fonction Lipschitz F : (R d ) n , d n → (R, | • |) et pour tout r ≥ 0, P (F Y -E[F Y ] > r) ≤ exp - r 2 4C H,∆ F 2 Lip n 2H∨1 .
(

(ii) il existe CH > 0 telle que pour toute fonction Lipschitz F :

C [0, T ], R d , d T → (R, | • |) et pour tout r ≥ 0, P FY -E[ FY ]) > r ≤ exp - r 2 4 CH F 2 Lip T 2H∨1 .
(1.3.24)

Remarque 1.3.6. £ Il est intéressant de voir que l'on retrouve dans les cas H ∈ (1/2, 1) et H = 1/2 les mêmes ordres dans les puissances de T ou n que Saussereau [START_REF] Saussereau | Transportation inequalities for stochastic differential equations driven by a fractional Brownian motion[END_REF] et [START_REF] Djellout | Transportation cost-information inequalities and applications to random dynamical systems and diffusions[END_REF]. Cependant, l'optimalité de ces ordres n'est pas démontrée. £ Noter ici qu'évidemment on n'obtient de la concentration en temps long que pour des fonctionnelles F (respectivement F ) dont la norme Lipschitz décroît plus vite que n -H∨ 1 2 (respectivement T -H∨ 1 2 ).

Application aux mesures d'occupation continues et discrètes

Du Théorème 1.3.4, nous obtenons le résultat recherché sur les mesures d'occupation discrètes mais également sur les mesures d'occupation continues :

Théorème 1.3.5. Soit H ∈ (0, 1) et ∆ > 0. Soit n ∈ N * et T ≥ 1. Alors, 1.3. Principaux résultats de la thèse (i) il existe C H,∆ > 0 telle que pour toute fonction Lipschitz f : R d , | • | → (R, | • |) et pour tout r ≥ 0, P 1 n n k=1 (f (Y t k ) -E[f (Y t k )]) > r ≤ exp - r 2 n 2-(2H∨1) 4C H,∆ f 2 Lip . (1.3.25) (ii) il existe CH > 0 telle que pour toute fonction Lipschitz f : R d , | • | → (R, | • |) et pour tout r ≥ 0, P 1 T T 0 (f (Y t ) -E[f (Y t )])dt > r ≤ exp - r 2 T 2-(2H∨1) 4 CH f 2 Lip . (1.3.26)
Ce dernier résultat repose sur l'application du Théorème 1.3.4 aux fonctionnelles définies ci-après :

∀x ∈ (R d ) n , F (x) := 1 n n k=1 f (x i ) et ∀x ∈ C [0, T ], R d , F (x) := 1 T T 0 f (x t )dt qui sont respectivement f Lip n -Lipschitz par rapport à d n et f Lip T -Lipschitz par rapport à d T .

Esquisse de preuve de la Proposition 1.3.2 dans le cas discret

Supposons le pas ∆ égal à 1. Comme nous l'avons mentionné précédemment, la preuve repose sur la décomposition suivante :

F Y -E[F Y ] = n k=1 E[F Y |F k ] -E[F Y |F k-1 ] =: n k=1 M k -M k-1
où la filtration considérée est la filtration brownienne naturelle associée à W dans la représentation de Volterra du mBf (1.1.2).

La première étape de la preuve, qui est la plus longue, consiste à montrer que l'on peut majorer tous les moments d'ordre p des accroissements M k -M k-1 conditionnés à F k-1 de la façon suivante : Alors pour tout λ > 0,

E[ |M k -M k-1 | p | F k-1 ] ≤ C F p Lip ψ p n,k ζ p/
E[e λX ] ≤ e 2C ζλ 2 .
La dernière étape combine la majoration obtenue des moments exponentiels conditionnés avec l'implication suivante : si il existe une suite déterministe (u k ) telle que

E e λ(M k -M k-1 ) F k-1 ≤ e λ 2 u k , alors E e λMn = E e λM n-1 E e λ(Mn-M n-1 ) F n-1 ≤ exp λ 2 u n E e λM n-1 et donc E e λMn ≤ exp λ 2 n k=1 u k .
À partir de ce schéma de preuve, on obtient finalement la majoration voulue dans la Proposition 1.3.2.

Estimation paramétrique du terme de drift pour des EDS fractionnaires

Dans cette partie, nous présentons les principaux résultats obtenus dans un travail effectué en colaboration avec Panloup et Tindel [START_REF] Panloup | A general drift estimation procedure for stochastic differential equations with additive fractional noise[END_REF]. 

Y t = y 0 + t 0 b ϑ 0 (Y s ) ds + σB t , t ∈ [0, T ]. (1.3.28)
Ici y 0 ∈ R d est une condition initiale donnée et B = (B 1 , . . . , B d ) est un mouvement brownien fractionnaire d-dimensionnel de paramètre de Hurst H ∈ (0, 1), le paramètre inconnu ϑ 0 appartient à un certain ensemble noté Θ ⊂ R q (q ≥ 1), {b ϑ (•), ϑ ∈ Θ} est une famille connue de coefficients de drift avec b ϑ (•) : R d → R d , et σ ∈ M d×d est une matrice supposée connue. De nombreux travaux sur l'estimation du terme de drift pour des EDS fractionnaires du type (1.3.28) existent dans la littérature. Une partie d'entre eux traitent de coefficients b ϑ 0 (Y s ) de la forme ϑ 0 b(Y s ) ou même ϑ 0 Y s (voir par exemple [START_REF] Belfadli | Parameter estimation for fractional ornstein-uhlenbeck processes: non-ergodic case[END_REF][START_REF] Hu | Parameter estimation for fractional Ornstein-Uhlenbeck processes[END_REF][START_REF] Hu | Drift parameter estimation for nonlinear stochastic differential equations driven by fractional brownian motion[END_REF][START_REF] Kleptsyna | Statistical analysis of the fractional Ornstein-Uhlenbeck type process[END_REF][START_REF] Le Breton | Filtering and parameter estimation in a simple linear system driven by a fractional Brownian motion[END_REF][START_REF] Rao | Statistical inference for fractional diffusion processes[END_REF][START_REF] Tudor | Statistical aspects of the fractional stochastic calculus[END_REF]). Dans la plupart de ces travaux, on suppose que l'on observe le processus de façon continue ou que l'on discrétise des observations continues du processus. Neuenkirch et Tindel dans [START_REF] Neuenkirch | A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise[END_REF] améliorent ces deux aspects en proposant une estimation basée sur des observations discrètes et pour un drift b ϑ 0 (Y s ) s'exprimant sous la forme d'un gradient (ce qui reste une certaine restriction lorsque la dimension d est plus grande que 1). Dans ce papier, la consistance de l'estimateur est cependant obtenue sous l'hypothèse d'identifiabilité suivante : si on note Ȳ la solution stationnaire associée à (1.3.28) alors

E |b ϑ 0 ( Ȳ0 )| 2 = E |b ϑ ( Ȳ0 )| 2 si et seulement si ϑ = ϑ 0 .
Cette hypothèse est assez contraignante et difficile à vérifier en pratique. Notons également quelques travaux qui utilisent des méthodes non-paramétriques pour estimer le terme de drift de (1.3.28) : Mishra et Prakasa Rao [START_REF] Mishra | Nonparametric estimation of trend for stochastic differential equations driven by fractional Brownian motion[END_REF], Comte et Marie [START_REF] Comte | Nonparametric estimation in fractional sde[END_REF]. Ils considèrent des estimateurs à noyau qui reposent sur une observation continue du processus ou même l'observation de plusieurs trajectoires de (1.3.28). Dans ces deux travaux, (1.3.28) est considérée en dimension 1 et pour un paramètre de Hurst H > 1/2.

Dans ce travail, nous proposons une méthode d'estimation paramétrique qui ne suppose aucune restriction sur H ∈ (0, 1) ou sur la dimension d ≥ 1. Comme mentionné plus haut, l'hypothèse d'identifiabilité que l'on fait repose sur la mesure invariante associée à (1.3.28), elle est donc plus générale que celle faite dans [START_REF] Neuenkirch | A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise[END_REF] évoquée plus haut. Nous pouvons maintenant exposer les hypothèses considérées.

Hypothèses du modèle

Énonçons tout d'abord une hypothèse classique de compacité sur l'ensemble de paramètre Θ : (H 0 ) : L'ensemble Θ est un compact de R q pour un certain q ≥ 1.

Nous rappelons que les estimateurs considérés se basent sur la notion de mesure invariante associée à (1.3.28). Comme nous l'avons vu plus haut, l'existence et l'unicité de celle-ci repose sur des hypothèses de coercivité sur le terme de drift b. Dans ce travail, nous allons naviguer entre deux types d'hypothèses (faible et forte) notées respectivement (C w ) et (C s ). L'hypothèse faible est donnée par : [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF]), il y a existence et unicité de la mesure invariante associée à l'équation suivante quelque soit ϑ ∈ Θ : Dans la suite, nous distinguerons deux types de schémas : le schéma à pas constant pour lequel s k = kγ avec γ > 0 que l'on notera Z ϑ,γ et le schéma à pas décroissant pour lequel la suite de pas définie par γ k = s k -s k-1 est décroissante et tend vers 0. À partir de ces deux schémas, on construit les deux estimateurs suivants : θN,n,γ = argmin Le premier résultat de consistance que nous allons décrire, qui fait intervenir l'hypothèse faible (C w ), nécessite une discrétisation de l'espace des paramètres Θ dans le sens suivant. L'hypothèse de compacité (H 0 ) et la propriété de Borel-Lebesgue nous donnent l'existence pour tout ε > 0 de k < +∞ pour un certain p ≥ p) est vérifiée pour un très grand ensemble de suites. Elle est liée à la variance des accroissements du mBf. En particulier, elle est satisfaite par toutes les suites de la forme γ k = γk -ρ avec ρ ∈ (0, 1] ou encore les suites de la forme γ k = γ(ln(k)) -β avec β > 0. En revanche, une suite de la forme γ k = γ(ln(ln(k))) -1 ne satisfait pas cette condition.

(C w ) : b ∈ C 1,1 (R d × Θ; R d ) et il existe α, β, C, L > 0 et r ∈ N telles que (i) Pour tout x, y ∈ R d et ϑ ∈ Θ, b ϑ (x) -b ϑ (y), x -y ≤ β -α|x -y| 2 et |b ϑ (x) -b ϑ (y)| ≤ L|x -y| (1.3.
dY ϑ t = b ϑ (Y ϑ t ) dt + σdB t , t ∈ [0, T ]. ( 1 
= y 0 et ∀k ≥ 0, Z ϑ s k+1 = Z ϑ s k + (s k+1 -s k )b ϑ (Z ϑ s k ) + σ ( Bs k+1 -Bs k ). ( 1 
ϑ∈Θ d 1 n n-1 k=0 δ Yt k , 1 N N -1 k=0 δ Z ϑ,γ kγ , (1.3.35) et θN,n = argmin ϑ∈Θ d 1 n n-1 k=0 δ Yt k , 1 s N N -1 k=0 γ k+1 δ Z ϑ s k , ( 1 
M ε ∈ N et Θ (ε) := {ϑ (ε) i ; 1 ≤ i ≤ M ε } ⊂ Θ Mε tels que Θ ⊂ Mε i=1 B(ϑ (ε) i , ε
θ(ε) N,n,γ ; N ≥ 1, n ≥ 1, γ > 0, ε > 0} définie par θ(ε) N,n,γ = argmin ϑ∈Θ (ε) d 1 n n-1 k=0 δ Yt k , 1 N N -1 k=0 δ Z ϑ,γ s k , N, n ∈ N, γ > 0, ε > 0 (1.
Les preuves de ces trois résultats de consistance reposent en grande partie sur les propriétés d'ergodicité des EDS (1.3.31) et du schéma d'Euler associé, résultats que l'on a décrits dans la Section 1.2. Le schéma de preuve de chacun de ces théorèmes est basé sur une propriété permettant de caractériser la convergence du minimum d'une famille de fonctions aléatoires (ϑ → L r (ϑ)) r vers le minimum de la limite de cette suite de fonctions : ϑ → L(ϑ). Autrement dit, sous des hypothèses de convergence uniforme de L r (ϑ) vers sa limite L(ϑ), on peut déduire la convergence du minimum de L r (ϑ) vers le minimum de L(ϑ). Nous sommes maintenant en mesure d'énoncer le résultat relatif à la vitesse de convergence qui repose notamment sur l'hypothèse de minoration (I s ). Théorème 1.3.9. On suppose (H 0 ), (C s ) et (I s ) satisfaites, où (1.3.33) dans l'hypothèse (I s ) est considérée pour les distances d s ou d CF,p avec p > (q + d)/2 et ς = 2/q pour un certain q ≥ 2. Soit θN,n,γ l'estimateur défini par (1.3.35). Alors, il existe C q > 0 telle que

d s (ν, µ) := +∞ i=0 2 -i (|ν(f i ) -µ(f i )| ∧ 1). ( 1 
E | θN,n,γ -ϑ 0 | 2 ≤ C q n -q 2 (2-(2H∨1)) + γ qH + T -η (1.3.42) avec η := q 2 2(q+d) (2 -(2H ∨ 1)) et T := N γ.
Remarque 1.3.12. En fait, on peut même montrer ce type de majoration pour tous les moments de | θN,n,γ -ϑ 0 |, la preuve s'adapte facilement. Cela revient juste à remplacer le 2 dans ς = 2/q par l'ordre du moment que l'on souhaite majorer. Nous avons choisi de nous restreindre à l'erreur quadratique pour simplifier la lecture.

Le Théorème 1.3.5 sur la concentration est un élément clé dans la preuve du Théorème 1.3.9. Afin de comprendre pourquoi, nous donnons maintenant quelques éléments de la preuve qui illustrent cet aspect. D'après l'inégalité (1.3.33) dans l'hypothèse (I s ) appliquée à une distance donnée d (correspondant à d s ou d CF,p ), majorer E | θN,n,γ -ϑ 0 | 2 revient à majorer E d ν θN,n,γ , ν ϑ 0 q avec q = 2/ς. Ensuite, l'idée consiste à décomposer la quantité d ν θN,n,γ , ν ϑ 0 en des termes faisant notamment intervenir la distance des mesures d'occupation (discrète et continue) à la mesure invariante, c'est-à-dire de la forme d ν ϑ 0 , 

1 n n-1 k=0 δ Yt k et d ν ϑ , 1 T T 0 δ Y ϑ t dt . C'
(x) = -ϑx ou b ϑ (x) = -x(1 + cos(ϑx)).
Les trois prochains chapitres de cette thèse développent les résultats que nous venons d'énoncer et donnent les preuves de ces résultats. Chacun correspond à un article. Le Chapitre 2 contient les résultats d'ergodicité pour des dynamiques aléatoires discrètes à mémoire [START_REF] Varvenne | Rate of convergence to equilibrium for discrete-time stochastic dynamics with memory[END_REF], le Chapitre 3 donnent les résultats sur la concentration pour la solution d'une EDS fractionnaire [START_REF] Varvenne | Concentration inequalities for stochastic differential equations with additive fractional noise[END_REF], tandis que le Chapitre 4 concerne les résultats d'estimation du drift pour des EDS fractionnaires [START_REF] Panloup | A general drift estimation procedure for stochastic differential equations with additive fractional noise[END_REF], effectués en collaboration avec Panloup et Tindel.

Rate of convergence to equilibrium for discrete-time stochastic dynamics with memory

This chapter consists in the paper [START_REF] Varvenne | Rate of convergence to equilibrium for discrete-time stochastic dynamics with memory[END_REF] 

Introduction

Convergence to equilibrium for Stochastic dynamics is one of the most natural and most studied problems in probability theory. Regarding Markov processes, this topic has been deeply undertaken through various approaches: spectral analysis, functional inequalities or coupling methods. However, in many applications (Physics, Biology, Finance...) the future evolution of a quantity may depend on its own history, and thus, noise with independent increments does not accurately reflect reality. A classical way to overcome this problem is to consider dynamical systems driven by processes with stationary increments like fractional Brownian motion (fBm) for instance which is widely used in applications (see e.g [START_REF] Guasoni | No arbitrage under transaction costs, with fractional Brownian motion and beyond[END_REF][START_REF] Jeon | In vivo anomalous diffusion and weak ergodicity breaking of lipid granules[END_REF][START_REF] Kou | Stochastic modeling in nanoscale biophysics: subdiffusion within proteins[END_REF][START_REF] David J Odde | Stochastic dynamics of the nerve growth cone and its microtubules during neurite outgrowth[END_REF]). In a continuous time framework, Stochastic Differential Equations (SDEs) driven by Gaussian processes with stationary increments have been introduced to model random evolution phenomena with long range dependence properties. Consider SDEs of the following form

dX t = b(X t )dt + σ(X t )dZ t (2.1.1)
where (Z t ) t≥0 is a Gaussian process with ergodic stationary increments and σ : R d → M d×d , b : R d → R d are functions defined in a such a way that existence of a solution holds. The ergodic properties of such processes have been a topic of great interest over the last decade. For general Gaussian processes, existence and approximation of stationary solutions are provided in [START_REF] Cohen | Approximation of stationary solutions of Gaussian driven stochastic differential equations[END_REF] in the additive case (i.e. when σ is constant). The specific situation where (Z t ) t≥0 is a fractional Brownian motion has received significant attention since in the seminal paper [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF] by Hairer, a definition of invariant distribution is given in the additive case through the embedding of the solution to an infinite-dimensional markovian structure. This point of view led to some probabilistic uniqueness criteria (on this topic, see e.g. [START_REF] Hairer | Ergodic theory for SDEs with extrinsic memory[END_REF][START_REF] Hairer | Regularity of laws and ergodicity of hypoelliptic SDEs driven by rough paths[END_REF]) and to some coupling methods in view of the study of the rate of convergence to equilibrium. More precisely, in [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF], some coalescent coupling arguments are also developed and lead to the convergence of the process in total variation to the stationary regime with a rate upper-bounded by C ε t -(α H -ε) for any ε > 0, with

α H = 1 8 if H ∈ ( 1 4 , 1)\ 1 2 H(1 -2H) if H ∈ (0, 1 4 ). 
(2.1.2)

In the multiplicative noise setting (i.e. when σ is not constant), Fontbona and Panloup in [START_REF] Fontbona | Rate of convergence to equilibrium of fractional driven stochastic differential equations with some multiplicative noise[END_REF] extended those results under selected assumptions on σ to the case where H ∈ ( 1 2 , 1) and finally Deya, Panloup and Tindel obtained in [START_REF] Deya | Rate of convergence to equilibrium of fractional driven stochastic differential equations with rough multiplicative noise[END_REF] this type of results in the rough setting H ∈ ( 1 3 , 1 2 ).

In this chapter, we focus on a general class of recursive discrete dynamics of the following form: we consider R d -valued sequences (X n ) n≥0 satisfying

X n+1 = F (X n , ∆ n+1 ) (2.1.3)
where (∆ n ) n∈Z is an ergodic stationary Gaussian sequence and F : R d × R d → R d is a deterministic function. As a typical example for F , we can think about Euler discretization of (2.1.1) (see Subsection 2.2.5 for a detailed study) or to autoregressive processes in the particular case where F is linear. Note that such dynamics can be written as (2.1.3) through the so-called Wold's decomposition theorem which implies that we can see (∆ n ) n∈Z as a moving-average of infinite order (see [START_REF] Brockwell | Time series: theory and methods[END_REF] to get more details). To the best of our knowledge, in this linear setting the litterature mainly focuses on the statistical analysis of the model (see for instance [START_REF] Brouste | Asymptotic properties of the MLE for the autoregressive process coefficients under stationary Gaussian noise[END_REF][START_REF] Brouste | Kalman type filter under stationary noises[END_REF]) and on mixing properties of such Gaussian processes when it is in addition stationary (on this topic see e.g. [START_REF] Bradley | Basic properties of strong mixing conditions. A survey and some open questions[END_REF][START_REF] Nikolaevich | On strong mixing conditions for stationary gaussian processes[END_REF][START_REF] Rosenblatt | Central limit theorem for stationary processes[END_REF]). Back to the main topic, namely ergodic properties of (2.1.3) for general functions F , Hairer in [START_REF] Hairer | Ergodic properties of a class of non-Markovian processes[END_REF] has provided technical criteria using ergodic theory to get existence and uniqueness of invariant distribution for this kind of a priori non-Markovian processes. Here, the objective is to investigate the problem of the long-time behavior of 2.1. Introduction

(2.1.3). To this end, we first explain how it is possible to define invariant distributions in this non-Markovian setting and to obtain existence results. More precisely, with the help of the moving average representation of the noise process (∆ n ) n∈Z , we prove that (X n , (∆ n+k ) k≤0 ) n≥0 can be realized through a Feller transformation Q. In particular, an initial distribution of the dynamical system (X, ∆) is a distribution

µ on R d × (R d ) Z -.
Rephrased in more probabilistic terms, an initial distribution is the distribution of the couple (X 0 , (∆ k ) k≤0 ) n≥0 . Then, such an initial distribution is called an invariant distribution if it is invariant by the transformation Q. The first part of the main theorem establishes the existence of such an invariant distribution. Then, our main contribution is to state a general result about the rate of convergence to equilibrium in terms of the covariance structure of the Gaussian process. To this end, we use a coalescent coupling strategy.

Let us briefly explain how this coupling method is organized in this discrete-time framework. First, one considers two processes (X 1 n , (∆ 1 n+k ) k≤0 ) n≥0 and (X 2 n , (∆ 2 n+k ) k≤0 ) n≥0 following (2.1.3) starting respectively from µ 0 and µ (an invariant distribution). As a preliminary step, one waits that the two paths get close. Then, at each trial, the coupling attempt is divided in two steps. First, one tries in Step 1 to stick the positions together at a given time. Then, in Step 2, one attempts to ensure that the paths stay clustered until +∞. Actually, oppositely to the Markovian setting where the paths remain naturally fastened together (by putting the same innovation on each marginal), the main difficulty here is that, staying together has a cost. In other words, this property can be ensured only with a non trivial coupling of the noises. Finally, if one of the two previous steps fails, one begins Step 3 by putting the same noise on each coordinate until the "cost" to attempt Step 1 is not too big. More precisely, during this step one waits for the memory of the coupling cost to decrease sufficiently and for the two trajectories to be in a compact set with lower-bounded probability. In the main theorem previously announced, as a result of this strategy, we are able to prove that the law of the process (X n+k ) k≥0 following (2.1.3) converges in total variation to the stationary regime with a rate upper-bounded by Cn -v . The quantity v is directly linked to the assumed exponential or polynomial asymptotic decay of the sequence involved in the moving-average representation of (∆ n ) n∈Z , see (2.2.2) (or equivalently in its covariance function, see Remark 2.2.1 and 2.2.3). Then, we apply our main theorem to fractional memory (including the Euler Scheme associated to fractional Stochastic Differential Equations). We first emphasize that with covariance structures with the same order of memory but different local behavior, we can get distinct rates of convergence to equilibrium. Secondly, we highlight that the computation of the asymptotic decay of the sequence involved in the inversion of the Toeplitz operator (related to the moving-average representation) can be a very technical task (see proof of Proposition 2.2.3). Now, let us discuss about specific contributions of this discrete-time approach. Above all, our result is quite general since, for instance, it includes discretization of (2.1.1) for a large class of Gaussian noise processes. Then, in several ways, we get a further understanding of arguments used in the coupling procedure. We better target the impact of the memory through the sequence both appearing in the moving-average representation and the covariance function of the Gaussian noise. Regarding Step 1 of the coupling strategy, the "admissibility condition" (which means that we are able to attempt Step 1 with a controlled cost) is rather more explicit than in the continuous-time setting. Finally, this chapter, by deconstructing the coupling method through this explicit discrete-time framework, may weigh in favour of the sharpness of Hairer's approach.

The following section gives more details on the studied dynamics, describes the assumptions required to get the main result, namely Theorem 2.2.1 and discuss about the application of our main result to the case of fractional memory in Subsection 2.2.7. Then, the proof of Theorem 2.2.1 is achieved in Sections 2.3, 2.4, 2.5, 2.6 and 2.7, which are outlined at the end of Section 2.2.

Setting and main results

Notations

The usual scalar product on R d is denoted by , and | . | stands either for the Euclidean norm on R d or the absolute value on R. We denote by M d×d the space of real matrices of size d × d. For a given K > 0 we denote by B(0, K) the R d closed ball centered in 0 with radius K. Then, the state space of the process X and the noise space associated to ((∆ n+k ) k≤0 ) n≥0 are respectively denoted by X := R d and W := (R d ) Z -. For a given measurable space (X 1 , A 1 ), M 1 (X 1 ) will denote the set of all probability measures on X 1 . Let (X 2 , A 2 ) be an other measurable space and f : X 1 → X 2 be a measurable mapping. Let µ ∈ M 1 (X 1 ), we denote by f * µ the pushforward measure given by :

∀B ∈ A 2 , f * µ(B) := µ(f -1 (B)).
Π X : X × W → X and Π W : X × W → W stand respectively for the projection on the marginal X and W. For a given differentiable function f : R d → R d and for all x ∈ R d we will denote by J f (x) the Jacobian matrix of f valued at point x. Finally, we denote by . T V the classical total variation norm: let ν, µ ∈ M 1 (X 1 ),

µ -ν T V := sup A⊂X 1 |µ(A) -ν(A)|.

Dynamical system and Markovian structure

Let X := (X n ) n≥0 denote an R d -valued sequence defined by: X 0 is a random variable with a given distribution and with ãk := a k a 0 . Remark 2.2.1. The asymptotic behavior of the sequence (a k ) k≥0 certainly plays a key role to compute the rate of convergence to equilibrium of the process (X n ) n≥0 . Actually, the memory induced by the noise process is quantified by the sequence (a k ) k≥0 through the identity

∀n ≥ 0, X n+1 = F (X n , ∆ n+1 ), ( 2 
∀n ∈ Z, ∀k ≥ 0, c(k) := E [∆ n ∆ n+k ] = +∞ i=0 a i a k+i .
The stochastic dynamics described in (2.2.1) is clearly non-Markovian. Let us see how it is possible to introduce a Markovian structure and how to define invariant distribution. This method is inspired by [START_REF] Hairer | Ergodic properties of a class of non-Markovian processes[END_REF]. The first idea is to look at (X n , (∆ n+k ) k≤0 ) n≥0 instead of (X n ) n≥0 . Let us introduce the following concatenation operator

: W × R d → W (2.2.4) (w, w ) → w w
where (w w ) 0 = w and ∀k < 0, (w w ) k = w k+1 . Then (2.2.1) is equivalent to the system (X n+1 , (∆ n+1+k ) k≤0 ) = ϕ((X n , (∆ n+k ) k≤0 ), ∆ n+1 ) (2.2.5)

where

ϕ : (X × W) × R d → X × W ((x, w), w ) → (F (x, w ), w w ).
Therefore, (X n , (∆ n+k ) k≤0 ) n≥0 can be realized through the Feller Markov transition kernel Q defined by

X ×W g(x , w )Q((x, w), (dx , dw )) = R d g(ϕ((x, w), δ))P(w, dδ) (2.2.6)
where P(w, dδ) := L(∆ n+1 |(∆ n+k ) k≤0 = w) does not depend on n since (∆ n ) is a stationary sequence, and g : X × W → R is a measurable function.

Definition 2.2.1.

A measure µ ∈ M 1 (X × W) is said to be an invariant distribution for (2.2.5) and then for (2.2.1) if it is invariant by Q, i.e.

Qµ = µ.
However, the concept of uniqueness will be slightly different from the classical setting. Indeed, denote by Sµ the distribution of (X µ n ) n≥0 when we realize (X µ n , (∆ n+k ) k≤0 ) n≥0 through the transition Q and with initial distribution µ. Then, we will speak of uniqueness of the invariant distribution up to the equivalence relation: µ ∼ ν ⇐⇒ Sµ = Sν. Moreover, here uniqueness will be deduced from the coupling procedure. There exist some results about uniqueness using ergodic theory, like in [START_REF] Hairer | Ergodic properties of a class of non-Markovian processes[END_REF], but they will be not outlined here.

Preliminary tool: a Toeplitz type operator

The moving-average representation of the Gaussian sequence (∆ n ) n∈Z naturally leads us to define an operator related to the coefficients (a k ) k≥0 . First, set

a (Z -, R d ) := w ∈ (R d ) Z -∀k ≥ 0, +∞ l=0 a l w -k-l < +∞ and define T a on a (Z -, R d ) by T a (w) = +∞ l=0 a l w -k-l k≥0 .
(2.2.7)

Due to the Cauchy-Schwarz inequality, we can check that for instance

2 (Z -, R d ) := {w ∈ (R d ) Z -| +∞ k=0 |w -k | 2 < +∞} is included in a (Z -, R d ) due to the assumption k≥0 a 2 k < +∞. This Toeplitz type operator T a links (∆ n ) n∈Z to (ξ n ) n∈Z .
The following proposition spells out the reverse operator. 

b 0 = 1 a 0 and ∀k ≥ 1, b k = - 1 a 0 k l=1 a l b k-l . (2.2.8) Then, ∀w ∈ a (Z -, R d ), T b (T a (w)) = w and ∀w ∈ b (Z -, R d ), T a (T b (w)) = w that is T b = T a -1 and b (Z -, R d ) = T a ( a (Z -, R d )). Proof. Let w ∈ a (Z -, R d ). Then let n ≥ 0, (T b (T a (w))) -n = +∞ k=0 b k +∞ l=0 a l w -n-k-l = +∞ k=0 +∞ i=k b k a i-k w -n-i = +∞ i=0 i k=0 b k a i-k =0 except for i=0 w -n-i = w -n .
We show in the same way that for w ∈ b (Z -, R d ), we have T a (T b (w)) = w.

Remark 2.2.2. The sequence (b k ) k≥0 is of first importance in the sequel. The sketch of the proof of Theorem 2.2.1 will use an important property linked to the sequence (b k ) k≥0 : if two sequences u and v are such that

∀n ≥ 1, u n = n-1 k=0 a k v n-k then, ∀n ≥ 1, v n = n-1 k=0 b k u n-k .
This reverse identity and the asymptotic behavior of (b k ) k≥0 play a significant role in the computation of the rate of convergence.

The following section is devoted to outline assumptions on (a k ) k≥0 and (b k ) k≥0 and then on F to get the main result.

Assumptions and general theorem

First of all, let us introduce assumptions on (a k ) k≥0 and (b k ) k≥0 . All along the chapter, we will switch between two types of assumptions called respectively the polynomial case and the exponential case.

Hypothesis (H poly ):

The following conditions hold,

• there exist ρ, β > 1/2 and C ρ , C β > 0 such that ∀k ≥ 0, |a k | ≤ C ρ (k + 1) -ρ and ∀k ≥ 0, |b k | ≤ C β (k + 1) -β . • there exist κ ≥ ρ + 1 and C κ > 0 such that ∀k ≥ 0, |a k -a k+1 | ≤ C κ (k + 1) -κ .

Hypothesis (H exp

): There exist λ, ζ > 0 and C λ , C ζ > 0 such that, ∀k ≥ 0, |a k | ≤ C λ e -λk and ∀k ≥ 0, |b k | ≤ C ζ e -ζk .
Remark 2.2.3. £ (H poly ) and (H exp ) are general parametric hypothesis which apply to a large class of Gaussian driven dynamics. These assumptions implicitly involve the covariance function of the noise process (c(k)) k∈N (see Remark 2.2.1) : there exists Cλ > 0 and for all ε ∈ [0, ρ] such that ρ + ε > 1, there exists Cρ,ε > 0 such that

∀k ≥ 0, |c(k)| ≤ Cρ,ε (k + 1) -ρ+ε under (H poly ) Cλ e -λk
under (H exp ) .

£ (H poly ) and (H exp ) also involve the coefficients appearing in the reverse Toeplitz operator T a -1 (see Proposition 2.2.1). Even though (a k ) k≥0 and (b k ) k≥0 are related by (2.2.8), there is no general rule which connects ρ and β. This fact will be highlighted in Subsection 2.2.7. Moreover, for the sake of clarity, we have chosen to state our main result when (a k ) and (b k ) belong to the same family of asymptotic decay rate. £ Due to the strategy of the proof (coalescent coupling in a non Markovian setting) we also need a bound on the discrete derivative of (a k ) k≥0 .

Let us now introduce some assumptions on the function F which defines the dynamics (2.2.1). Throughout this chapter F : X × R d → X is a continous function and the following hypothesis (H 1 ) and (H 2 ) are satisfied.

Hypothesis (H 1 ): There exists a continous function

V : X → R * + satisfying lim |x|→+∞ V (x) = +∞ and ∃γ ∈ (0, 1) and C > 0 such that for all (x, w) ∈ X × R d , V (F (x, w)) ≤ γV (x) + C(1 + |w|).
(2.2.9) Remark 2.2.4. £ As we will see in Section 2.3, this condition ensures the existence of a Lyapunov function V and then of an invariant distribution. Such a type of assumption also appears in the litterature of discrete Markov Chains (see e.g. equation ( 7) in [START_REF] Down | Exponential and uniform ergodicity of Markov processes[END_REF]) but in an integrated form. More precisely, in our non-Markovian setting, a pathwise control is required to ensure some control on the moments of the trajectories before the successful coupling procedure (this fact is detailed in Subsection 2.6.2). £ This assumption is also fulfilled if we have a function

V with V (F (x, w)) ≤ γV (x) + C(1 + |w| p ) for a given p > 1 instead of (2.2.9) since the function V 1/p satisfies (H 1 )
(with the help of the elementary inequality |u + v| 1/p ≤ |u| 1/p + |v| 1/p when p > 1).

We define F :

X × R d × R d → X by F (x, u, y) = F (x, u + y).
We assume that F satisfies the following conditions:

Hypothesis (H 2 ): Let K > 0. We assume that there exists K > 0 such that for every x := (x, x , y, y ) in B(0, K) 4 , there exist Λ x : R d → R d , M K > 0 and C K such that the following holds

• Λ x is a bijection from R d to R d . Moreover, it is a C 1 -diffeomorphism between two
open sets U and D such that R d \U and R d \D are negligible sets.

• for all u ∈ B(0, K),

F (x, u, y) = F (x , Λ x (u), y ) (2.2.10) and | det(J Λx (u))| ≥ C K . (2.2.11) • for all u ∈ R d , |Λ x (u) -u| ≤ M K . (2.2.12)
Remark 2.2.5. £ Let us make a few precisions on the arguments of F : x is the position of the process, u the increment of the innovation process and y is related to the past of the process (see next item for more details). The boundary C K and M K are independent from x, x , y and y . This assumption can be viewed as a kind of controlability assumption in the following sense: the existence of Λ x leads to the coa-lescence of the positions by (2.2.10). Rephrased in terms of our coalescent coupling strategy, this ad hoc assumption is required to achieve the first step. More precisely, as announced in the introduction, we take two trajectories (X 1 , ∆ 1 ) and (X 2 , ∆ 2 ) following (2.2.1) and we want to stick X 1 and X 2 at a given time n + 1. Through the function Λ x in (H 2 ), we can build a couple of Gaussian innovations (ξ 1 n+1 , ξ 2 n+1 ) with marginal distribution N (0, I d ) to achieve this goal (with lower-bounded probability), so that:

X 1 n+1 = X 2 n+1 which is equivalent to F x, ξ 1 n+1 , y = F x , ξ 2 n+1 , y with (x, x , y, y ) = X 1 n , X 2 n , +∞ k=1 a k ξ 1 n+1-k , +∞ k=1 a k ξ 2 n+1-k (see Subsection 2.4.
2). £ Assumption (H 2 ) can be applied to a large class of functions F , as for example:

F (x, w) = f (b(x) + σ(x)w)
where σ is continuously invertible and σ -1 and b are continuous functions (we do not need any assumption on f as we will see in the appendix Remark 2.A.2). Actually, Condition (2.2.10) can be obtained through an application of the implicit function theorem: if we assume that there exists a point (0, u x ) such that F (x, 0, y) = F (x , u x , y ) and denote by

G x : (u, u ) → F (x, u, y) -F (x , u + u x , y ), then if (∂ u G x )(0, 0) = 0,
the implicit function theorem yields (2.2.10). As we will see in Subsection 2.2.5, Condition (2.2.12) can be also easily fulfilled (see proof of Theorem 2.2.2).

We are now in position to state our main result.

Theorem 2.2.1. Assume (H 1 ) and (H 2 ). Then, (i) There exists an invariant distribution µ associated to (2.2.1).

(ii) Assume that (H poly ) is true with ρ, β > 1/2 and ρ + β > 3/2. Then, uniqueness holds for the invariant distribution µ . Furthermore, for every initial distribution µ 0 for which X V (x)Π * X µ 0 (dx) < +∞ and for all ε > 0, there exists

C ε > 0 such that L((X µ 0 n+k ) k≥0 ) -Sµ T V ≤ C ε n -(v(β,ρ)-ε) . where the function v is defined by v(β, ρ) = sup α∈( 1 2 ∨( 3 2 -β),ρ) min{1, 2(ρ -α)}(min{α, β, α + β -1} -1/2).
(iii) Assume that (H exp ) is true, then uniqueness holds for the invariant distribution µ . Furthermore, for every initial distribution µ 0 for which X V (x)Π * X µ 0 (dx) < +∞ and for all p > 0, there exists

C p > 0 such that L((X µ 0 n+k ) k≥0 ) -Sµ T V ≤ C p n -p .
Remark 2.2.6. £ In view of Theorem 2.2.1 (iii), one can wonder if we could obtain exponential or subexponential rates of convergence in this case. We focus on this question in Remark 2.6.1.

£ The rates obtained in Theorem 2.2.1 hold for a large class of dynamics. This generality implies that the rates are not optimal in all situations. In particular, when F have "nice" properties an adapted method could lead to better rates. For example, let us mention the particular case where the dynamical system (2.2.1) is reduced to: X n+1 = AX n + σ∆ n+1 where A and σ are some given matrices. As for (fractional) Ornstein-Uhlenbeck processes in a continuous setting, the study of linear dynamics can be achieved with specific methods. Here, the sequence X benefits of a Gaussian structure so that the convergence in distribution could be studied through the covariance of the process. One can also remark that since for two paths X and X built with the same noise, we have:

Xn+1 -X n+1 = A( Xn -X n ), a simple induction leads to E[| Xn -X n | 2 ] ≤ |A n | 2 E[| X0 -X 0 | 2 ]. So without going into the details, if ρ(A) := lim n→+∞ |A n | 1/n < 1, such
bounds lead to geometric rates of convergence in Wasserstein distance and also in total variation distance (on this topic, see e.g. [START_REF] Panloup | Sub-exponential convergence to equilibrium for gaussian driven stochastic differential equations with semi-contractive drift[END_REF]).

In the following subsection, we test the assumptions of our main result Theorem 2.2.1 (especially (H 1 ) and (H 2 )) on the Euler scheme of SDEs like (2.1.1).

The Euler Scheme

Recall that X = R d . In this subsection, set

F h : X × R d → X (x, w) → x + hb(x) + σ(x)w.
(

where h > 0, b : X → X is continuous and σ : X → M d×d is a continuous and bounded function on X . For all x ∈ X we suppose that σ(x) is invertible and we denote by σ -1 (x) the inverse. Moreover, we assume that σ -1 is a continuous function and that b satisfies a Lyapunov type assumption that is: In this setting the function Fh (introduced in Hypothesis (H 2 )) is given by

(L1) ∃C > 0 such that ∀x ∈ X , |b(x)| ≤ C(1 + |x|). (2.2.14) (L2) ∃ β ∈ R and α > 0 such that ∀x ∈ X , x, b(x) ≤ β -α|x| 2 . ( 2 
Fh : X × R d × R d → X (x, u, y) → x + hb(x) + σ(x)(u + y).
Theorem 2.2.2. Let h > 0. Let F h be the function defined above. Assume that b : X → X is a continuous function satisfying (L1) and (L2) and σ : X → M d×d is a continous and bounded function such that for all x ∈ X , σ(x) is invertible and x → σ -1 (x) is a continuous function. Then, (H 1 ) and (H 2 ) hold for F h as soon as 0 < h <

min 1 + α 2C 2 -1, 1 α
where α and C are given by (L1) and (L2).

Proof. For the sake of conciseness, the proof is detailed in Appendix 2.A. Regarding (H 1 ), it makes use of ideas developped in [START_REF] Cohen | Approximation of stationary solutions of Gaussian driven stochastic differential equations[END_REF][START_REF] Cohen | Approximation of stationary solutions to SDEs driven by multiplicative fractional noise[END_REF]. For (H 2 ), the construction of Λ x is explicit. The idea is to take Λ The two following subsections are devoted to outline examples of sequences which satisfy hypothesis (H exp ) or (H poly ). In particular, Subsection 2.2.7 includes the case where the process (∆ n ) n∈Z corresponds to fractional Brownian motion increments.

x (u) := σ -1 (x )σ(x)u + σ -1 (x )(x -x + h(b(x) -b(x ))) + σ -1 (x )σ(x)y -y inside B(0, K) (which

Two explicit cases which satisfy (H exp )

First, let us mention the explicit exponential case with the following definition for the sequence (a k ) k≥0

a 0 = 1 and ∀k ∈ N * , a k = C a e -λk (2.2.16) 
with C a ∈ R. Let us recall that b 0 = 1 (since a 0 = 1) and for all k ≥ 1, we can get the following general expression of b k (see Appendix 2.B for more details):

b k = k p=1 (-1) p a p+1 0     k 1 ,...,kp≥1 k 1 +•••+kp=k p i=1 a k i     .
(2.2.17)

A classical combinatorial argument shows that {(k 1 , . . . , k p ) ∈ N * | k 1 + • • • + k p = k} = k-1 p-1 .
As a consequence, when the sequence (a k ) k≥0 is defined by (2.2.16), we can easily prove that for k ≥ 1,

b k = -C a (1 -C a ) k-1 e -λk .
Hence, to satisfy (H exp ), we only need C a to be such that

ζ := λ -ln |1 -C a | > 0 and then for all k ∈ N * , we get |b k | ≤ C b e -ζk (2.2.18) with C b > 0 a constant depending on C a .
Remark 2.2.9. £ In this setting where everything is computable, it's interesting to see that the asymptotic decrease of the sequence (|b k |) is not only related to the one of the sequence (|a k |). For instance, if we take C a < 0, the simple fact that a 0 > 0 and a k < 0 for all k > 0 makes (b k ) diverge to +∞ and nevertheless, (|a k |) decreases to 0 at an exponential rate. £ If we take C a = 1, we can reduce (∆ n ) n∈Z to the following induction: ∀n ∈ Z,

∆ n+1 = ξ n+1 + e -λ ∆ n .
Let us finally consider finite moving averages, i.e. when a k = 0 for all k > m (for some m ≥ 1). In this setting, one can expect (H exp ) to be satisfied since the memory is finite. This is actually the case when the finite moving average is invertible, namely: P (λ) := 1 + m k=1 a k λ k has all its roots outside the unit circle (see [START_REF] Brockwell | Time series: theory and methods[END_REF] Theorem 3.1.2). In that case, there exists λ ∈ C such that |λ| > 1 and 1 P (λ) = +∞ k=0 b k λ k < +∞ (to get more details on this equality, see Appendix 2.B). Then, there exists C > 0 such that for all k ≥ 0, 

|b k | ≤ C

Polynomial case: from a general class of examples to the fractional case

A natural example of Gaussian sequence (∆ n ) n∈Z which leads to polynomial memory is to choose a k = (k + 1) -ρ for a given ρ > 1/2. In that case, we have the following result.

Proposition 2.2.2. Assume (H 1 ) and (H 2 ). Let ρ > 1/2. If for all k ≥ 0, a k = (k + 1) -ρ , then we have |b k | ≤ (k + 1) -ρ . Moreover, if ρ > 3/4 Theorem 2.2.1 (ii) holds with the rate v(ρ, ρ) = 2(ρ -3/4) 2 if ρ ∈ (3/4, 1] 1 2 (ρ -1/2) 2 if ρ > 1.
Remark 2.2.10. The main novelty here comes from the proof of the inequality |b k | ≤ (k + 1) -ρ for all k ≥ 0 which is outlined in Appendix 2.C and which is based on results of [START_REF] Ford | On the decay of the elements of inverse triangular Toeplitz matrices[END_REF]. The key argument in this proof is the log-convexity property of the sequence (a k ) k∈N , which means that for all k ∈ N, a k ≥ 0 and for k ≥ 1, a 2 k -a k-1 a k+1 ≤ 0. With Proposition 2.2.2 in hand, the purpose of the remainder of this section is to focus on Gaussian sequences of fractional type, i.e. when the sequence (a k ) k≥0 satisfies:

∀k ≥ 0, |a k | ≤ C ρ (k + 1) -ρ and |a k -a k+1 | ≤ Cρ (k + 1) -(ρ+1) (2.2.19)
with ρ := 3/2-H and H ∈ (0, 1) is the so-called Hurst parameter. In particular, through this class of sequences, we provide an explicit example which shows that computing the rate of convergence of the sequence (b k ) k≥0 is a hard task and strongly depends on the variations of (a k ) k≥0 . Condition (2.2.19) includes both cases of Proposition 2.2.2 with ρ := 3/2 -H and when (∆ n ) n∈Z corresponds to the fractional Brownian motion (fBm) increments (as we will see below), we therefore decided to use the terminology "fractional type". Recall that a d-dimensional fBm with Hurst parameter H ∈ (0, 1) is a centered Gaussian process (B t ) t≥0 with stationary increments satisfying

∀t, s ≥ 0, ∀i, j ∈ {1, . . . , d}, E (B i t -B i s )(B j t -B j s ) = δ ij |t -s| 2H .
In our discrete-time setting, we are thus concerned by the long time behavior of (2.2.1) if we take for h > 0

(∆ n ) n∈Z = (B nh -B (n-1)h ) n∈Z (2.2.20)
which is a stationary Gaussian sequence. It can be realized through a moving average representation with coefficients (a H k ) k≥0 defined by (see [START_REF] Diethelm | Synthesis of accurate fractional Gaussian noise by filtering[END_REF]):

a H 0 = h H κ(H)2 1/2-H and for k ≥ 1, a H k = h H κ(H) k + 1 2 H-1/2 -k - 1 2 H-1/2
(2.2.21) where

κ(H) = sin(πH)Γ(2H + 1) Γ(H + 1/2) . One can easily check that a H k ∼ k→+∞ C h,H (k + 1) -(3/2-H) and |a H k -a H k+1 | ≤ C h,H (k + 1) -(5/2-H) . Hence (a H k ) k≥0 is of fractional type in the sense of (2.2.19
). Now, the question is: how does the corresponding (b H k ) behave ? When H belongs to (0, 1/2), only a H 0 is positive and then (a H k ) is not log-convex. Therefore, we cannot use this property to get the asymptotic behavior of (b H k ) as we did in Proposition 2.2.2. However, thanks to simulations (see Figure 1a and 1b), we conjectured and we proved Proposition 2.2.3.

Proposition 2.2.3. There exists

C h,H > 0 such that for all H ∈ (0, 1/2) ∀k ≥ 0, |b H k | ≤ C h,H (k + 1) -(H+1/2) . ( 2 

.2.22)

Then, if we assume (H 1 ) and (H 2 ), Theorem 2.2.1 (ii) holds with the rate

v(ρ, 2 -ρ) = v(3/2 -H, H + 1/2) = H(1 -2H) if H ∈ (0, 1/4] 1 8 if H ∈ (1/4, 1/2).
Remark 2.2.11. For the sake of conciseness, we provided the details of the proof in Appendix 2.D. The proof of (2.2.22) is based on a technical induction which involves very sharp inequalities.

In Proposition 2.2.2 (with ρ = 3/2 -H and H ∈ (0, 1/2)) and in the above proposition, dealing with the same order of memory, we get really different orders of rate of convergence: one easily checks that for all

H ∈ (0, 1/2), v(3/2 -H, H + 1/2) < v(3/2 -H, 3/2 -H).
Finally, we have seen that managing the asymptotic behavior of (b k ) is both essential and a difficult task.

To end this section, let us briefly discuss on the specific statements on fBm increments and compare with the continuous time setting (see [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF][START_REF] Fontbona | Rate of convergence to equilibrium of fractional driven stochastic differential equations with some multiplicative noise[END_REF][START_REF] Deya | Rate of convergence to equilibrium of fractional driven stochastic differential equations with rough multiplicative noise[END_REF]). For this purpose, we introduce the following conjecture (based on simulations, see Figure 1c and1d) when H belongs to (1/2, 1):

Conjecture: There exists C h,H > 0 and β H > 1 such that ∀k ≥ 0, |b H k | ≤ C h,H (k + 1) -β H . (2.2.23)
Remark 2.2.12. We do not have a precise idea of the expression of β H with respect to H. But, we can note that if ρ < 1 and β > 1 in (H poly ), then the rate of convergence

in Theorem 2.2.1 is v(ρ, β) = (2ρ-1) 2 8
and does not depend on β. Hence, if H ∈ (1/2, 1), ρ = 3/2 -H and β H > 1, we fall into this case and then the dependence of β H in terms of H does not matter.

If the previous conjecture is true we get the following rate of convergence for H ∈ (1/2, 1) in Theorem 2.2.1: Then, when H belongs to (0, 1/2) Proposition 2.2.3 gives exactly the same rate of convergence obtained in [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF][START_REF] Deya | Rate of convergence to equilibrium of fractional driven stochastic differential equations with rough multiplicative noise[END_REF]. However, when H > 1/2 it seems that we will get a smaller rate than in a continuous time setting. The reason for this may be that Theorem 2.2.1 is a result with quite general hypothesis on the Gaussian noise process (∆ n ) n∈Z . In the case of fBm increments, the moving average representation is explicit. Hence, we may use a more specific approach and significantly closer to Hairer's, especially with 2.3. Existence of invariant distribution regard to Step 2 in the coupling method (see Subsection 2.5.2) by not exploiting the technical lemma 2.5.3 for instance. This seems to be a right track in order to improve our results on this precise example.

v(ρ, β H ) = v(3/2 -H, β H ) = (1 -H) 2 2 .
We are now ready to begin the proof of Theorem 2.2.1. In Section 2.3, we establish the first part of the theorem, i.e. (i). Then, in Section 2.4 we explain the scheme of coupling before implementing this strategy in Sections 2.5 and 2.6. Finally, in Section 2.7, we achieve the proof of (ii) and (iii) of Theorem 2.2.1.

Existence of invariant distribution

Denote by P w the law of (∆ k ) k≤0 . Since (∆ n ) n∈Z is stationary we immediately get the following property:

Property 2.3.1. If a measure µ ∈ M 1 (X × W) is such that Π * W µ = P w then Π * W Qµ = P w .
We can now define the notion of Lyapunov function.

Definition 2.3.1. A function ψ : X → [0, +∞) is called a Lyapunov function for Q if ψ is continuous and if the following holds: (i) ψ -1 ([0, a]) is compact for all a ∈ [0, +∞).
(ii) ∃β > 0 and α ∈ (0, 1) such that:

X ×W ψ(x)Qµ(dx, dw) ≤ β + α X ψ(x)(Π * X µ)(dx) for all µ ∈ M 1 (X × W) such that Π * W µ = P w and X ψ(x)(Π * X µ)(dx) < +∞.
The following result ensures the existence of invariant distribution for Q. A detailed proof of this result is given in Appendix 2.E. Finally, we get the first part (i) of Theorem 2.2.1 about the existence of an invariant distibution by setting ψ := V (with V the function appearing in (H 1 )) and by saying that ψ is a Lyapunov function for Q.

General coupling procedure

We now turn to the proof of the main result of the chapter, i.e. Theorem 2.2.1 (ii) and (iii) about the convergence in total variation. This result is based on a coupling method first introduced in [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF], but also used in [START_REF] Fontbona | Rate of convergence to equilibrium of fractional driven stochastic differential equations with some multiplicative noise[END_REF] and [START_REF] Deya | Rate of convergence to equilibrium of fractional driven stochastic differential equations with rough multiplicative noise[END_REF], in a continuous time framework. The coupling strategy is slightly different in our discrete context, the following part is devoted to explain this procedure.

Scheme of coupling

Let (∆ 1 n ) n∈Z and (∆ 2 n ) n∈Z be two stationary and purely non-deterministic Gaussian sequences with the following moving average representations

       ∆ 1 n = +∞ k=0 a k ξ 1 n-k ∆ 2 n = +∞ k=0 a k ξ 2 n-k with (a k ) k≥0 ∈ R N such that a 0 = 1 and +∞ k=0 a 2 k < +∞ ξ i := (ξ i k ) k∈Z an i.i.d sequence such that ξ i 1 ∼ N (0, I d ) for i = 1, 2.
(2.4.1)

We denote by (X 1 , X 2 ) the solution of the system:

X 1 n+1 = F (X 1 n , ∆ 1 n+1 ) X 2 n+1 = F (X 2 n , ∆ 2 n+1 ) (2.4.2) with initial conditions (X 1 0 , (∆ 1 k ) k≤0 ) and (X 2 0 , (∆ 2 k ) k≤0 ).
We assume that (X 2 0 , (∆ 2 k ) k≤0 ) ∼ µ where µ denotes a fixed invariant distribution associated to (2.2.1). The previous section ensures that such a measure exists. We define the natural filtration associated to (2.4.2) by

(F n ) n∈N = (σ((ξ 1 k ) k≤n , (ξ 2 k ) k≤n , X 1 0 , X 2 0 )) n≥0 .
To lower the "weight of the past" at the beginning of the coupling procedure, we assume that a.s,

(∆ 1 k ) k≤0 = (∆ 2 k ) k≤0
which is actually equivalent to assume that a.s (ξ

1 k ) k≤0 = (ξ 2 k ) k≤0 since the invertible Toeplitz operator defined in Subsection 2.2.3 links (∆ i k ) k≤0 to (ξ i k ) k≤0 for i = 1, 2.
Lastly, we denote by (g n ) n∈Z and (f n ) n∈Z the random variable sequences defined by

ξ 1 n+1 = ξ 2 n+1 + g n and ∆ 1 n+1 = ∆ 2 n+1 + f n . (2.4.3)
They respectively represent the "drift" between the underlying noises (ξ i k ) and the real noises (∆ i k ). By assumption, we have g n = f n = 0 for n < 0. Remark 2.4.1. From the moving average representations, we deduce immediately the following relation for all n ≥ 0,

f n = +∞ k=0 a k g n-k = n k=0 a k g n-k . (2.4.4)
The aim is now to build (g n ) n≥0 and (f n ) n≥0 in order to stick X 1 and X 2 . We set

τ ∞ = inf{n ≥ 0 | X 1 k = X 2 k , ∀k ≥ n}.
In a purely Markovian setting, when the paths coincide at time n then they remain stuck for all k ≥ n by putting the same innovation into both processes. Due to the memory this phenomenon cannot happen here. Hence, this involves a new step in the coupling scheme: try to keep the paths fathened together (see below). Recall that L((X 2 k ) k≥n ) = Sµ . The purpose of the coupling procedure is to bound the quantity P(τ ∞ > n) since by a classical result we have Step 2 fails, we wait long enough so as to allow Step 1 to be realized with a "controlled cost" and with a positive probability. During this step, we assume that g n = 0.

L((X 1 k ) k≥n ) -Sµ T V ≤ P(τ ∞ > n). ( 2 
More precisely, let us introduce some notations,

• Let τ 0 ≥ 0. We begin the first trial at time τ 0 + 1, in other words we try to stick X 1 τ 0 +1 and X 2 τ 0 +1 . Hence, we assume that ∀n < τ 0 , g n = f n = 0.

(2.4.6)

• For j ≥ 1, let τ j denote the end of trial j. More specifically, £ If τ j = +∞ for some j ≥ 1, it means that the coupling tentative has been successful.

£ Else, τ j corresponds to the end of Step 3, that is τ j + 1 is the beginning of Step 1 of trial j + 1.

The real meaning of "controlled cost" will be clarified on Subsection 2.5.1. But the main idea is that at Step 1 of trial j, the "cost" is represented by the quantity g τ j-1 that we need to build to get X 1 τ j-1 +1 = X 2 τ j-1 +1 with positive probability. Here the cost does not only depend on the positions at time τ j-1 but also on all the past of the underlying noises ξ 1 and ξ 2 . Hence, we must have a control on g τ j-1 in case of failure and to this end we have to wait enough during Step 3 before beginning a new attempt of coupling.

Coupling lemmas to achieve Step 1 and 2

This section is devoted to establish coupling lemmas in order to build (ξ 1 , ξ 2 ) during Step 1 and Step 2.

Hitting step

If we want to stick X 1 and X 2 at time n + 1, we need to build (ξ

1 n+1 , ξ 2 n+1 ) in order to get F (X 1 n , ∆ 1 n+1 ) = F (X 2 n , ∆ 2 n+1
) with positive probability, that is to get

F X 1 n , ξ 1 n+1 + +∞ k=1 a k ξ 1 n+1-k = F X 2 n , ξ 2 n+1 + +∞ k=1 a k ξ 2 n+1-k ⇐⇒ F X 1 n , ξ 1 n+1 , +∞ k=1 a k ξ 1 n+1-k = F X 2 n , ξ 2 n+1 , +∞ k=1 a k ξ 2 n+1-k . (2.4.7)
The following lemma will be the main tool to achieve this goal.

Lemma 2.4.1. Let K > 0 and µ := N (0, I d ). Under the controlability assumption (H 2 ), there exists K > 0 (given by (H 2 )), such that for every x := (x, x , y, y ) in B(0, K) 4 , we can build a random variable

(Z 1 , Z 2 ) with values in (R d ) 2 such that (i) L(Z 1 ) = L(Z 2 ) = µ,
(ii) there exists δ K > 0 depending only on K such that

P( F (x, Z 1 , y) = F (x , Z 2 , y )) ≥ P(Z 2 = Λ x (Z 1 ), |Z 1 | ≤ K) ≥ δ K > 0 (2.4.8)
where Λ x is the function given by hypothesis (H 2 ), (iii) there exists M K > 0 given by (H 2 ) depending only on K such that

P(|Z 2 -Z 1 | ≤ M K ) = 1.
(2.4.9)

Proof. Let x := (x, x , y, y ) ∈ B(0, K) 4 . First, let us denote by π 1 (resp. π 2 ) the projection from R d × R d to R d of the first (resp. the second) coordinate. Introduce the two following functions defined on R d

Λ 1 : u 1 → (u 1 , Λ x (u 1 )) Λ 2 : u 2 → (Λ -1 x (u 2 ), u 2 )
where Λ x is the function given by (H 2 ). Now, we set

P 1 = 1 2 (Λ * 1 µ ∧ Λ * 2 µ).
Let us find a simplest expression for P 1 . For every measurable function f :

R d ×R d → R + , we have Λ * 1 µ(f ) = R d f (u 1 , Λ x (u 1 ))µ(du 1 ) = R d ×R d f (u 1 , u 2 )δ Λx(u 1 ) (du 2 )µ(du 1 )
and

Λ * 2 µ(f ) = R d f (Λ -1 x (u 2 ), u 2 )µ(du 2 ) = 1 (2π) d/2 R d f (Λ -1 x (u 2 ), u 2 ) exp - |u 2 | 2 2 du 2 = 1 (2π) d/2 R d f (u 1 , Λ x (u 1 )) exp - |Λ x (u 1 )| 2 2 | det(J Λx (u 1 ))|du 1 (by setting u 1 = Λ -1 x (u 2 )) = R d f (u 1 , Λ x (u 1 )) exp |u 1 | 2 2 - |Λ x (u 1 )| 2 2 | det(J Λx (u 1 ))| =:D Λx (u 1 ) µ(du 1 ) = R d ×R d f (u 1 , u 2 )δ Λx(u 1 ) (du 2 )D Λx (u 1 )µ(du 1 ).
By construction, we then have

P 1 (du 1 , du 2 ) = 1 2 δ Λx(u 1 ) (du 2 )(D Λx (u 1 ) ∧ 1)µ(du 1 ). (2.4.10) Write S(u 1 , u 2 ) = (u 2 , u 1
) and denote by P1 the "symmetrized" non-negative measure induced by P 1 , P1 = P 1 + S * P 1 .

(2.4.11)

We then define (Z 1 , Z 2 ) as follows:

L(Z 1 , Z 2 ) = P1 + ∆ * (µ -π * 1 P1 ) = P 1 + P 2 (2.4.12)
with ∆(u) = (u, u) and P 2 = S * P 1 + ∆ * (µ -π * 1 P1 ). It remains to prove that L(Z 1 , Z 2 ) is well defined and satisfies all the properties required by the lemma.

First step: Prove that P 2 is the sum of two non-negative measures. Using (2.4.10), we can check that for all non-negative function f,

π * 1 P 1 (f ) ≤ 1 2 µ(f ) and π * 2 P 1 (f ) = π * 1 (S * P 1 )(f ) ≤ 1 2 µ(f ).
By adding the two previous inequalities, we deduce that the measure µ -π * 1 P1 is non-negative. This concludes the first step.

Second step: Prove that π * 1 (P 1 + P 2 ) = π * 2 (P 1 + P 2 ) = µ. This fact is almost obvious. We just need to use the fact that Third step: Prove (2.4.8) and (2.4.9). Let us first remark that the support of P 1 + P 2 is included in

π 1 • ∆ = π 2 • ∆ = Id
{(u, v) ∈ R d ×R d | v = Λ x (u)}∪{(u, v) ∈ R d ×R d | v = Λ -1 x (u)}∪{(u, v) ∈ R d ×R d | v = u}.
Therefore, by (2.2.12) in (H 2 ) and the fact that

(∀u ∈ R d , |Λ x (u) -u| ≤ M K ) ⇐⇒ (∀u ∈ R d , |Λ -1 x (u) -u| ≤ M K )
since Λ x is invertible on R d , we finally get (2.4.9). Then, using again (H 2 ) where K is defined and the definition of the subprobability P 1 we get

P( F (x, Z 1 , y) = F (x , Z 2 , y )) ≥ P 1 (B(0, K) × Λ(B(0, K))) =P(Z 2 =Λx(Z 1 ),|Z 1 |≤ K) (2.4.13)
and

P(Z 2 = Λ x (Z 1 ), |Z 1 | ≤ K) = 1 2 B(0, K) (D Λx (u) ∧ 1)µ(du).
It just remains to use (2.2.11) and (2.2.12) in (H 2 ) to conclude. Indeed,

P(Z 2 = Λ x (Z 1 ), |Z 1 | ≤ K) = 1 2 B(0, K) exp |u| 2 2 - |Λ x (u)| 2 2 | det(J Λx (u))| ∧ 1 µ(du) ≥ 1 2 µ(B(0, K)) exp - (M K + K) 2 2 C K ∧ 1 =: δ K > 0
which concludes the proof.

Sticking step

Now, if the positions X 1 n+1 and X 2 n+1 are stuck together, we want that they remain fastened together for all k > n + 1 which means that:

∀k ≥ n + 1, F (X 1 k , ∆ 1 k+1 ) = F (X 2 k , ∆ 2 k+1 ) ⇐⇒ ∀k ≥ n + 1, F (X 1 k , ξ 1 k+1 + +∞ l=1 a l ξ 1 k+1-l ) = F (X 1 k , ξ 2 k+1 + +∞ l=1 a l ξ 2 k+1-l ) (2.4.14) since X 1 k = X 2 k . Recall that for all k ∈ Z, g k = ξ 1 k+1 -ξ 2 k+1
is the drift between the underlying noises. Then, if we have Hence, we will try to get (2.4.15) on successive finite intervals to finally get a bound on the successful-coupling probability. The size choice of those intervals will be important according to the hypothesis (H poly ) or (H exp ) that we made. The two next results will be our tools to get (2.4.15) on Subsection 2.5.2. For the sake of simplicity we set out these results on R. On R d we just have to apply them on every marginal. Lemma 2.4.2 is almost the statement of Lemma 5.13 of [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF] or Lemma 3.2 of [START_REF] Fontbona | Rate of convergence to equilibrium of fractional driven stochastic differential equations with some multiplicative noise[END_REF]. (ii) Moreover, if b ∈ (0, 1), the previous statement holds with

∀k ≥ n + 1, ξ 1 k+1 + +∞ l=1 a l ξ 1 k+1-l = ξ 2 k+1 + +∞ l=1 a l ξ 2 k+1-l ⇐⇒ ∀k ≥ n + 1, g k = - +∞ l=1 a l g k-l , ( 2 
δ 1 b = 1 -b.
The following corollary is an adapted version of Lemma 3.3 of [START_REF] Fontbona | Rate of convergence to equilibrium of fractional driven stochastic differential equations with some multiplicative noise[END_REF] to our discrete context. (i) Then, there exists δ 1 b ∈ (0, 1), for which we can build a random variable

((ξ 1 k+1 ) k∈ 0,T , (ξ 2 k+1 ) k∈ 0,T ) with values in (R T +1 ) 2
, with marginal distribution N (0, I T +1 ) and satisfying:

P ξ 1 k+1 = ξ 2 k+1 + g k ∀k ∈ 0, T ≥ δ 1 b and P ξ 1 -ξ 2 ≤ M b = 1.
(ii) Moreover, if b ∈ (0, 1), the previous statement holds with

δ 1 b = 1 -b.
Proof. Let (u k ) k∈ 0,T be an orthonormal basis of R T +1 with u 0 = g g . We denote by (U 1 , U 2 ) a random variable which has distribution N 2 a,b (with a = g ) given in the lemma 2.4.2. Let (ε k ) k∈ 1,T be an iid random variable sequence with ε 1 ∼ N (0, 1) and independent from (U 1 , U 2 ). Then, for i = 1, 2 we define the isometry:

W i : R T +1 → W i (R T +1 ) ⊂ L 2 (Ω, F, P) u 0 → U i u k → ε k for k ∈ 1, T .
(2.4.16)

And we set for all n ∈ 0, T , ξ i n+1 := W i (e n ) where e n is the vector of R T +1 for which every coordinate is 0 except the (n + 1) th which is 1. Since (u k ) k∈ 0,T is an orthonormal basis of R T +1 , we then have:

e n = T k=0 e n , u k u k .
Hence,

ξ i n+1 = W i T k=0 e n , u k u k = U i g n g + T k=1 e n , u k ε k .
ξ i n+1 is clearly centered and Gaussian as a linear combination of independent centered Gaussian random variables and using that W i is an isometry, we get that (ξ i k+1 ) k∈ 0,T has distribution N (0, I T +1 ) for i = 1, 2. Therefore, we built ξ 1 and ξ 2 as anounced. Indeed, by Lemma 2.4.2

P ξ 1 n+1 = ξ 2 n+1 + g n ∀n ∈ 0, T = P (U 1 = U 2 + g ) ≥ δ 1 b and P ξ 1 -ξ 2 ≤ M b = P(|U 1 -U 2 | ≤ M b ) = 1.
(ii) also follows immediately from Lemma 2.4.2.

Coupling under (H poly ) or (H exp )

We can now move on the real coupling procedure to finally get a lower-bound for the successful-coupling probability. In a first subsection, we explain exactly what we called "controlled cost" and in a second subsection we spell out our bound.

Admissibility condition

The "controlled cost" is called "admissibility" in [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF]. Here, we will talk about (K, α)admissibility, as in [START_REF] Fontbona | Rate of convergence to equilibrium of fractional driven stochastic differential equations with some multiplicative noise[END_REF], but in the following sense: Definition 2.5.1. Let K > 0 and α > 0 be two constants and τ a random variable with values in N. We say that the system is (K, α)-admissible at time

τ if τ (ω) < +∞ and if (X 1 τ (ω), X 2 τ (ω), (ξ 1 n (ω), ξ 2 n (ω)) n≤τ ) satisfies ∀n ≥ 0, +∞ k=n+1 a k g τ +n-k (ω) ≤ v n (2.5.1)
and

X i τ (ω) ≤ K, +∞ k=1 a k ξ i τ +1-k (ω) ≤ K for i = 1, 2 (2.5.2)
with v n = (n + 1) -α under (H poly ) and v n = e -αn under (H exp ).

(2.5.3) Remark 2.5.1. On the one hand, condition (2.5.1) measures the distance between the past of the noises (before time τ ). On the other hand, condition (2.5.2) has two parts: the first one ensures that at time τ both processes are not far from each other and the second part is a constraint on the memory part of the Gaussian noise ∆ i τ +1 . The aim is to prove that under those two conditions, the coupling will be successful with a probability lower-bounded by a positive constant. To this end, we will need to ensure that at every time τ j , the system will be (K, α)-admissible with positive probability. We set:

Ω 1 α,τ := ω, τ (ω) < +∞, +∞ k=n+1 a k g τ +n-k (ω) ≤ v n ∀n ∈ N (2.5.4)
and

Ω 2 K,τ := ω, τ (ω) < +∞, X i τ (ω) ≤ K and +∞ k=1 a k ξ i τ +1-k (ω) ≤ K for i = 1, 2 . (2.5.5) We define Ω K,α,τ = Ω 1 α,τ ∩ Ω 2 K,τ . (2.5.6)
If ω ∈ Ω K,α,τ , we will try to couple at time τ + 1. Otherwise, we say that Step 1 fails and one begins Step 3. Hence, Step 1 of trial j has two ways to fail: either ω belongs to Ω c K,α,τ j-1

and one moves directly to Step 3 or ω belongs to Ω K,α,τ j-1 , one tries to couple and it fails.

Lower-bound for the successful-coupling probability

The main purpose of this subsection is to get a positive lower-bound for the successfulcoupling probability which will be independent of j (the number of the tentative), in other words we want to prove the following proposition Proposition 2.5.1. Assume (H 1 ) and (H 2 ). Let K > 0, α > 1 2 ∨ 3 2 -β if we are under (H poly ) and α > 0 different from ζ if we are under (H exp ). In both cases, there exists δ 0 in (0, 1) such that for all j ≥ 1,

δ 0 ≤ P(∆τ j = +∞|Ω K,α,τ j-1 ) (2.5.7)
where ∆τ j := τ j -τ j-1 and τ j is defined in Subsection 2.4.1 as the end of trial j.

Moreover, we can choose δ 1 ∈ (0, 1) such that ∀j ≥ 1, δ 1 ≤ P(τ j < ∞|τ j-1 < ∞).

(2.5.8)

The second part of Proposition 2.5.1 may appear of weak interest but will be of first importance in Subsection 2.6.2.

Step 1 (hitting step) Lemma 2.5.1. Let K > 0 and α > 0. Assume (H 1 ) and (H 2 ). Let K > 0 be the constant appearing in (H 2 ), δ 1 ∈ (0, 1) and τ be a stopping time with respect to

(F n ) n∈Z such that P(Ω K,α,τ ) > 0. We can build (ξ 1 τ +1 , ξ 2 τ +1 ) with ξ 1 τ +1 ∼ N (0, I d ) and ξ 2 τ +1 ∼ N (0, I d ) such that (i) There exist K 1 ∈ (0, K] and δ K 1 ∈ (0, 1) such that P(X 1 τ +1 = X 2 τ +1 |Ω K,α,τ ) ≥ P(ξ 2 τ +1 = Λ x (ξ 1 τ +1 ), |ξ 1 τ +1 | ≤ K 1 |Ω K,α,τ ) ≥ δ K 1 > 0 (2.5.9
) and

P Ω c K,α,τ ∪ {ξ 2 τ +1 = Λ x (ξ 1 τ +1 ) or |ξ 1 τ +1 | > K 1 } ∩ Ω K,α,τ ≥ δ 1 (2.5.10) where x := X 1 τ , X 2 τ , +∞ k=0 a k ξ 1 τ +1-k , +∞ k=0 a k ξ 2 τ +1-k and Λ x comes from (H 2 ).
(ii) There exists M K > 0 such that

|g τ | = |ξ 1 τ +1 -ξ 2 τ +1 | ≤ M K a.s.
Remark 2.5.2. The constant δ 1 is chosen independently from K and α.

Before proving this result, let us explain a bit why we add the lower-bound (2.5.10). As we already said, we will see further (in Subsection 2.6.2) that we need the (uniform) bound on the failure-coupling probability given in (2.5.8). Therefore, for every j ≥ 1, we will consider that Step 1 of trial j fails if and only if

ω ∈ Ω c K,α,τ j-1 ∪ {ξ 2 τ j-1 +1 = Λ x (ξ 1 τ j-1 +1 ) or |ξ 1 τ j-1 +1 | > K 1 } ∩ Ω K,α,τ j-1
and in this case one immediatly begins Step 3. Hence, for all j ≥ 1, thanks to Lemma 2.5.1 we get the existence of K 1 such that:

P(τ j <∞|τ j-1 < ∞) ≥ P Ω c K,α,τ j-1 ∪ {ξ 2 τ j-1 +1 = Λ x (ξ 1 τ j-1 +1 ) or |ξ 1 τ j-1 +1 | > K 1 } ∩ Ω K,α,τ j-1 ≥ δ 1
and then (2.5.8) derives from Lemma 2.5.1. This construction may seem artificial but it is necessary to prove Proposition 2.6.2. Moreover, this has no impact on the computation of the rate of convergence to equilibrium since it only affects Step 1. We can now move on the proof of Lemma 2.5.1. 4 and we can build (Z 1 , Z 2 ) as in Lemma 2.4.1. Let ξ ∼ N (0, 1) be independent from (Z 1 , Z 2 ) and set

Proof. (i) Set x := X 1 τ , X 2 τ , +∞ k=1 a k ξ 1 τ +1-k , +∞ k=1 a k ξ 2 τ +1-k . Conditionnally to Ω K,α,τ we have x ∈ B(0, K)
(ξ 1 τ +1 , ξ 2 τ +1 ) = (1 Ω K,α,τ Z 1 + 1 Ω c K,α,τ ξ, 1 Ω K,α,τ Z 2 + 1 Ω c K,α,τ ξ). (2.5.11)
Therefore, we deduce by Lemma 2.4.1 and its proof that for all K 1 ∈ (0, K],

P(X 1 τ +1 = X 2 τ +1 |Ω K,α,τ ) ≥ P(Z 2 = Λ x (Z 1 ), |Z 1 | ≤ K 1 |Ω K,α,τ ) =P(ξ 2 τ +1 =Λx(ξ 1 τ +1 ), |ξ 1 τ +1 |≤K 1 |Ω K,α,τ ) ≥ δ K 1 > 0. (2.5.12)
And the first part of (i) is proven. It remains to choose the good K 1 ∈ (0, K] to get the second part. Set p K := P(Ω K,α,τ ) and µ := N (0, I d ), then

P Ω c K,α,τ ∪ {ξ 2 τ +1 = Λ x (ξ 1 τ +1 ) or |ξ 1 τ +1 | > K 1 } ∩ Ω K,α,τ = 1 -p K + p K P {ξ 2 τ +1 = Λ x (ξ 1 τ +1 ) or |ξ 1 τ +1 | > K 1 }|Ω K,α,τ ≥ 1 -p K + p K P(|ξ 1 τ +1 | > K 1 |Ω K,α,τ ) ≥ 1 -p K + p K µ(B(0, K 1 ) c ) = 1 -p K + p K (1 -µ(B(0, K 1 ))
where the last inequality is due to Lemma 2.4.1 one more time. Finally, it remains to choose K 1 ∈ (0, K] small enough in order to get 1

-p K + p K (1 -µ(B(0, K 1 )) ≥ δ 1 . (ii) If ω ∈ Ω K,α,τ , by the previous construction and Lemma 2.4.1, we have |g τ (ω)| = |Z 1 (ω) -Z 2 (ω)| ≤ M K . And if ω ∈ Ω c K,α,τ then |g τ (ω)| = |ξ(ω) -ξ(ω)| = 0 which concludes the proof of (ii).
To fix the ideas let us recall what we mean by "success of Step 1" and "failure of Step 1" of trial j (j ≥ 1) :

{success of Step 1} = Ω K,α,τ j-1 ∩ {ξ 2 τ j-1 +1 = Λ x (ξ 1 τ j-1 +1 ), |ξ 1 τ j-1 +1 | ≤ K 1 } (2.5.13) {failure of Step 1} = Ω c K,α,τ j-1 ∪ {ξ 2 τ j-1 +1 = Λ x (ξ 1 τ j-1 +1 ) or |ξ 1 τ j-1 +1 | > K 1 } ∩ Ω K,α,τ j-1 (2.5.14)
where

x := X 1 τ j-1 , X 2 τ j-1 , +∞ k=0 a k ξ 1 τ j-1 +1-k , +∞ k=0 a k ξ 2 τ j-1 +1-k .
Step 2 (sticking step)

Step 2 of trial j consists in trying to keep the paths fastened together on successive intervals I j, . More precisely, during trial j, we set

I j,0 := {τ j-1 + 1}, I j,1 := τ j-1 + 2, τ j-1 + 2c 2 -1 and ∀ ≥ 2, I j, := τ j-1 + c 2 s , τ j-1 + c 2 s +1 -1 (2.5.15)
where c 2 ≥ 2 will be chosen further and with ∀ ≥ 2, s = 2 under (H poly ) under (H exp ).

(2.5.16)

We denote *

j := sup{ ≥ 1 | ∀n ∈ I j, -1 , g n-1 = g (s)
n-1 } (2.5.17) where g

(s)
n-1 is the successful-coupling drift defined by (2.4.15), i.e. g

(s)

n-1 = -+∞ l=1 a l g n-1-l . In other words, I j, * j is the interval where the failure occurs. If

{ ≥ 1|∀n ∈ I j, -1 , g n-1 = g (s)
n-1 } = ∅, we adopt the convention * j = 0, it corresponds to the case where the failure occurs at Step 1. When * j = +∞, trial j is successful. For a given positive α and K > 0, we set

B j, := Ω K,α,τ j-1 ∩ { * j > } ∀j ≥ 1, ≥ 0, (2.5.18)
which means that failure of Step 2 may occur at most after trials. With this notations we get

P(∆τ j = +∞|Ω K,α,τ j-1 ) = P(success of Step 1 |Ω K,α,τ j-1 ) +∞ =1 P(B j, |B j, -1 ) (2.5.19)
where the event {success of Step 1} is defined by (2.5.13).

Remark 2.5.3. There is an infinite product in this expression of the successful-coupling probability. Hence, the size choice of the intervals I j, defined in (2.5.16) will play a significant role in the convergence of the product to a positive limit.

In the following lemma, similarly to the above definitions, we consider for a stopping time τ the intervals (I τ, ) ≥1 , the integer * τ and the events B τ, , replacing τ j-1 by τ .

Lemma 2.5.2. Let K > 0, assume (H 1 ) and (H 2 ). Let α > 1 2 ∨ 3 2 -β under (H poly ) or α > 0 different from ζ under (H exp ). Let τ be a stopping time with respect to (F n ) n∈Z (defined in Subsection 2.4.1) and assume that the system is (K, α)-admissible at time τ , then there exists C K > 0 such that for c 2 ≥ 2 large enough the successful drift g (s) satisfies for = 1,

g (s) I τ,1 ≤ C K and ∀ ≥ 2, g (s) I τ, =   τ +c 2 s +1 -1 k=τ +c 2 s g (s) k-1 2   1/2 ≤ 2 -α where α := min{α, β, α + β -1} -1/2 -ε for all ε > 0 under (H poly ) min(α, ζ) under (H exp ) .
Therefore, for all ≥ 1, we can build thanks to Corollary 2.4.

1 (ξ 1 k ) k∈I τ, , (ξ 2 k ) k∈I τ, during
Step 2 in such a way that

P(B τ,1 |B τ,0 ) ≥ δ 1 K and ∀ ≥ 2, P(B τ, |B τ, -1 ) ≥ 1 -2 -α where δ 1 K ∈ (0, 1). Moreover, if 2 ≤ * τ < +∞, there exists C α > 0 independent from K such that   τ +c 2 s * τ +1 -1 k=τ +c 2 s * τ |g k-1 | 2   1/2 ≤ C α ( * τ + 1)
and if * τ = 1, g I τ,1 ≤ C K for some constant C K > 0. Remark 2.5.4. £ Under hypothesis (H poly ) the condition α > 1 2 ∨ 3 2 -β will ensure that min{α, β, α + β -1} -1/2 > 0.
£ In the polynomial case, for technical reasons α depends on ε > 0. This expression allows us to put together different cases and simplify the lemma. Indeed, if (α, β) / ∈ {1} × (0, 1] ∪ (0, 1] × {1}, we can take ε = 0.

To prove this lemma we will use in the polynomial case the following technical result which a more precise statement and a proof are given in Appendix 2.F. Lemma 2.5.3 (Technical lemma). Let α > 0 and β > 0 such that α + β > 1. Then, there exists C(α, β) > 0 such that for every ε > 0,

∀n ≥ 0, n k=0 (k + 1) -β (n + 1 -k) -α ≤ C(α, β) (n + 1) -min{α,β,α+β-1}+ε . When (α, β) / ∈ {1} × (0, 1] ∪ (0, 1] × {1}
, we can take ε = 0 in the previous inequality.

We can now move on the proof of Lemma 2.5.2.

Proof. Let us prove the first part of the lemma, namely the upper-bound of the 2 norm for the successful-coupling drift term on the intervals I τ . Indeed, the second part is just an application of Corollary 2.4.1. Since the system is (K, α)-admissible at time τ , we get by (2.5.1)

∀n ≥ 0, +∞ k=n+1 a k g τ +n-k ≤ v n . But, if
Step 2 is successful, we recall that by (2.4.15) the successful drift satisfies g (s)

τ +n = -+∞ k=1 a k g τ +n-k for all n ≥ 1, hence ∀n ≥ 1, n k=0 a k g (s) τ +n-k = - +∞ k=n+1 a k g τ +n-k =:un
and we set u 0 := g (s) τ .

Therefore thanks to Remark 2.2.2, this is equivalent to g 

τ +n | ≤ M K n k=0 |b k |v n-k .
(2.5.20)

• Polynomial case: Assume (H poly ). Then for all n ≥ 0, v n = (n + 1) -α with α > 1 2 ∨ 3 2 -β . Here, (2.5.20) is equivalent to

∀n ≥ 0, |g (s) τ +n | ≤ M K C β n k=0 (k + 1) -β (n + 1 -k) -α ≤ M K (n + 1) -min{α,β,α+β-1}+ε ,
for all ε > 0 by applying the technical lemma 2.5.3 and setting

M K := C(α, β)M K C β . We then set α := min{α, β, α + β -1} -1/2 -ε.
Hence, for all ≥ 2,

g (s) I τ, =   τ +c 2 2 +1 -1 k=τ +c 2 2 g (s) k-1 2   1/2 ≤ M K   c 2 2 +1 -1 k=c 2 2 k -2 α-1   1/2 ≤ M K × c 2 2 × (c 2 2 ) -2 α-1 1/2 = M K c - α 2 2 -α .
It remains to choose c 2 ≥ 2 ∨ (M K ) 1/ α to get the desired bound.

• Exponential case: Assume (H exp ). Then for all n ≥ 0, v n = e -αn with α > 0 and α = ζ.

Here, (2.5.20) is equivalent to

∀n ≥ 0, |g (s) 
τ +n | ≤ M K C ζ n k=0 e -ζk e -α(n-k) ≤ M K e -min{α,ζ}n ,
where we have set

M K := M K C ζ .
We then define α := min(α, ζ).

Hence, for all ≥ 2, g (s) For = 1, in both polynomial and exponential cases, the same approach gives us the existence of C K > 0 such that g (s)

I (τ ) =   τ +c 2 ( +1)-1 k=τ +c 2 g (s) k-1 2   1/2 ≤ M K   c 2 ( +1)-1 k=c 2 e -2 α(k-1)   1/2 ≤ M K × e -2 α(c 2 -2) 2 α 1 -e -2 αc
I τ,1 ≤ C K .
By combining Lemma 2.5.1, Lemma 2.5.2 and the expression (2.5.19) we finally get Proposition 2.5.1. 

(K, α)-admissibility

(j) 3 = t * ς j 2 θ * j with θ > (2(ρ -α)) -1 under (H poly ) t * + ς j + θ * j with θ > 0 under (H exp )
where * j is defined in (2.5.17) and with ς > 1 arbitrary. Then for every K > 0, there exists a choice of t * such that, for all j ≥ 0, condition (2.5.1) is a.s. true at time τ j on the event {τ j < +∞}. In other words, for all j ≥ 0,

P(Ω 1 α,τ j |{τ j < +∞}) = 1.
Remark 2.6.1. £ With Proposition 2.6.1 in hand, we are now in position to discuss the statement of Theorem 2.2.1 (iii) as mentioned in Remark 2.2.6. Adapting the proof of (2.7.3) (by taking an exponential Markov inequality), it appears that a fundamental tool to get exponential rate of convergence to equilibrium would be: for all j ≥ 1, there exist λ, C > 0 such that

E[e λ∆τ j |F τ j-1 ] ≤ C (2.6.1)
where ∆τ j := τ j -τ j-1 . But, under (H exp ), Proposition 2.6.1 shows that ∆τ j ≥ ς j with ς > 1. This dependency on j conflicts with the necessary control of the conditional expectation previously cited. £ Now, let us focus on the particular case of a finite memory: there exists m ≥ 1 such that a k = 0 for all k > m. As we saw in the second part of Subsection 2.2.6, (|b k |) decays exponentially fast. Then, an adjustment1 of the proof of Proposition 2.6.1 would lead to (2.6.1) and perhaps in such case, our robust but general approach could be simplified.

Proof. Let us begin by the first coupling trial, in other words for j = 0. We recall that g k = 0 for all k < τ 0 (see (2.4.6)), therefore

∀n ≥ 0, +∞ k=n+1 a k g τ 0 +n-k = 0 ≤ v n
and then condition (2.5.1) is a.s. true at time τ 0 . Now, we assume j ≥ 1 and we work on the event {τ j < +∞} (⊃ {τ m < +∞} for all 0 ≤ m ≤ j -1).

Let us prove that on this event we have for all n ≥ 0,

+∞ k=n+1 a k g τ j +n-k ≤ v n . Set u n := +∞ k=n+1 a k g τ j +n-k . Since g k = 0 for all k < τ 0 , we get u n = n+τ j -τ 0 k=n+1 a k g τ j +n-k .
Let us now separate the right term into the contributions of the different coupling trials. We get

u n = j m=1   n+τ j -τ m-1 k=n+τ j -τ m +1 a k g τ j +n-k   = j m=1   τ m -1 k=τ m-1 a n+τ j -k g k   ( )m
and ( ) m corresponds to the contribution of trial m, divided into two parts: success and failure. We have now to distinguish two cases: First case: * m ≥ 1, in other words the failure occurs during Step 2. We recall that in this case the system was automatically (K, α)-admissible at time τ m-1 , which will allow us to use Lemma 2.5.2 on τ m-1 .

Then, since g k = 0 on τ m-1 + c 2 s * m +1 , τ m -1 by definition of Step 3 of the coupling procedure,

( ) m = τ m-1 +c 2 s * m +1 -1 k=τ jm-1 a n+τ j -k g k = c 2 s * m -1 k=0 a n+τ j -τ m-1 -k g τ m-1 +k success + c 2 s * m +1 -1 k=c 2 s * m a n+τ j -τ m-1 -k g τ m-1 +k failure .
We have now to make the distinction between the polynomial and the exponential case.

£ Under (H poly

): s = 2 , |a k | ≤ C ρ (k + 1) -ρ and then a 2 k ≤ C 2 ρ (k + 1) -2ρ .
Using Cauchy-Schwarz inequality, the domination assumption on (a k ), and the fact that

n + τ j -τ m-1 -k + 1 ≥ n + τ m -τ m-1 -k + 1 = ∆t (m) 3 + c 2 2 * m +1 + n -k we get, |success| ≤   c 2 2 * m -1 k=0 a 2 n+τ j -τ m-1 -k   1/2   c 2 2 * m -1 k=0 g τ m-1 +k 2   1/2 ≤ C ρ   c 2 2 * m -1 k=0 (n + τ j -τ m-1 -k + 1) -2ρ   1/2   c 2 2 * m -1 k=0 g τ m-1 +k 2   1/2 ≤ C ρ   c 2 2 * m -1 k=0
(∆t

(m) 3 + c 2 2 * m +1 + n -k) -2ρ   1/2   c 2 2 * m -1 k=0 g τ m-1 +k 2   1/2 = C ρ    ∆t (m) 3 +c 2 2 * m +1 +n k=∆t (m) 3 +c 2 2 * m +n+1 k -2ρ    1/2   c 2 2 * m -1 k=0 g τ m-1 +k 2   1/2 ≤ C ρ c 2 2 * m (n + ∆t (m) 3 ) -2ρ 1/2   c 2 2 * m -1 k=0 g τ m-1 +k 2   1/2
.

By the same arguments, we obtain

|failure| ≤ C ρ c 2 2 * m (n + ∆t (m) 3 ) -2ρ 1/2   c 2 2 * m +1 -1 k=c 2 2 * m g τ m-1 +k 2   1/2 .
Hence, by the triangular inequality, we have

|( ) m | ≤ C ρ √ c 2 2 * m /2 (n+∆t (m) 3 ) -ρ         c 2 2 * m -1 k=0 g τ m-1 +k 2   1/2 (1) 
+    c * m +1 2 -1 k=c 2 2 * m g τ m-1 +k 2    1/2 (2)       .
Since * j ≥ 1, by Lemma 2.5.1 (ii) and Lemma 2.5.2, we have

(1) ≤ M K + * m -1 =1 g (s) I ≤ M K + C K + +∞ =2 2 -α =: CK and (2) ≤ max(C α , C K )( * m + 1). Therefore |( ) m | ≤ C (2) K 2 * m /2 ( * m + 1) n + ∆t (m) 3 -ρ (2.6.2)
where C

(2)

K := max(C α , C K , CK ). Moreover, recall that under (H poly ) ∆t (m) 3 = t * ς m 2 θ * m with θ > (2(ρ -α)) -1 and ς > 1. (2.6.3)
Plugging the definition of ∆t

(m) 3
into (2.6.2) and using that for all x, y > 0, (x + y)

-ρ ≤ x -(ρ-α) y -α |( ) m | ≤ C (2) K 2 * m /2 ( * m + 1)(n + ∆t (m) 3 ) -ρ ≤ C (2) K ( * m + 1)2 (1/2-θ(ρ-α)) * m (t * ς m ) -(ρ-α) (n + 1) -α . (2.6.4) Since θ > (2(ρ -α)) -1 we have C α,K = sup * >0 C (2) K ( * + 1)2 (1/2-θ(ρ-α)) * < +∞,
and (2.6.4) yields

|( ) m | ≤ C α,K (t * ς m ) -(ρ-α) (n + 1) -α under (H poly ).
(2.6.5)

£ Under (H exp ): s = , |a k | ≤ C λ e -λk and then a 2 k ≤ C 2 λ e -2λk .
Since the proof is almost the same in the exponential case, we will go faster and skip some details. Using again Cauchy-Schwarz inequality, the domination assumption on (a k ), and the fact that

n + τ j -τ m-1 -k ≥ n + τ m -τ m-1 -k = ∆t (m) 3 + c 2 ( * m + 1) + n -k -1 we get |success| ≤ C λ e λ √ 2λ e -λ(n+∆t (m) 3 )   c 2 2 * m -1 k=0 g τ m-1 +k 2   1/2
and by the same arguments,

|failure| ≤ C λ e λ √ 2λ e -λ(n+∆t (m) 3 )   c 2 ( * m +1)-1 k=c 2 * m g τ m-1 +k 2   1/2 .
As in the polynomial case, by using Lemma 2.5.1 and 2.5.2 we get the existence of C

(3)

K > 0 such that |( ) m | ≤ C (3) K ( * m + 1)e -λ(n+∆t (m) 3 
) .

(2.6.6)

Moreover, recall that under (H exp ) ∆t (m) 3

= t * + ς m + θ * m with θ > 0 and ς > 1.

(2.6.7)

Plugging the definition of ∆t

(m) 3
into (2.6.6), we get

|( ) m | ≤ C (3) K ( * m + 1)e -λ(n+∆t (m)
3

)
≤ C

(3)

K ( * m + 1)e -(λ-α)∆t (m) 3 e -αn
= C

(3)

K ( * m + 1)e -(λ-α)(t * +ς m +θ * m ) e -αn .
We set

C α,K = sup * >0 C (3) K ( * + 1)e -θ(λ-α) * < +∞.
And this gives us

|( ) m | ≤ C α,K e -(λ-α)(t * +ς m ) e -αn under (H exp ). (2.6.8) 
Second case: * m = 0, in other words, failure occurs during Step 1. This includes the case when the system is not (K, α)-admissible at time τ m-1 .

We have

( ) m = a n+τ j -τ m-1 g τ m-1 . By Lemma 2.5.1 (ii), |g τ m-1 | ≤ M K . Moreover, since n + τ j -τ m-1 ≥ n + τ m -τ m-1 = n + ∆t (m)
3 , we obtain by using the same method as in the first case,

|( ) m | ≤ M K (t * ς m ) -(ρ-α) (n + 1) -α under (H poly ) M K e -(λ-α)(t * +ς m ) e -αn
under (H exp ) .

(2.6.9)

By putting (2.6.5), (2.6.8) and (2.6.9) together, we finally get

|( ) m | ≤ max(M K , C α,K )(t * ς m ) -(ρ-α) (n + 1) -α under (H poly ) max(M K , C α,K )e -(λ-α)(t * +ς m ) e -αn
under (H exp ) .

Set S 1 = +∞ m=1 ς -(ρ-α)m and S 2 = +∞ m=1 e -(λ-α)ς m . By choosing t * large enough, we obtain for all 1 ≤ m ≤ j: which concludes the proof.

|( ) m | ≤ 1 S 1 ς -(ρ-α)m (n + 1) -α under (H poly ) 1 S 2 e -(λ-α)ς m e -

Compact return condition (2.5.2)

In the sequel, we set

E j := {τ j < ∞}(= {τ 1 < ∞, . . . , τ j < ∞}).
(2.6.11)

The aim of this subsection is to prove the following proposition:

Proposition 2.6.2. Assume (H 1 ) and (H 2 ). For all ε > 0, there exists K ε > 0 such that

P(Ω 2 Kε,τ j |E j ) ≥ 1 -ε.
(2.6.12)

At this stage, we assume that (H poly ) is true. Indeed, the exponential case will immediately follow from the polynomial one since (H exp ) implies (H poly ).

Since for every events A 1 , A 2 , A 3 and A 4 , we have P(A 1 ∩A 2 ∩A 3 ∩A 4 ) ≥ 4 i=1 P(A i )-3 , it is enough to prove that for all ε > 0, there exists K ε > 0 such that

P(|X i τ j | ≤ K ε |E j ) ≥ 1 -ε and P +∞ k=1 a k ξ i τ j +1-k ≤ K ε E j ≥ 1 -ε for i = 1, 2
(2.6.13) to get (2.6.12). Let us first focus on the first part of (2.6.13) concerning

|X i τ j | for i = 1, 2. Recall that the function V : R d → R * + appearing in (H 1 ) is such that lim |x|→+∞ V (x) = +∞.
For K > 0 large enough we then have: |x| ≥ K ⇒ V (x) ≥ K. Therefore, for i = 1, 2 and K ε large enough, using Markov inequality we get

P(|X i τ j | ≥ K ε |E j ) ≤ P(V (X i τ j ) ≥ K ε |E j ) ≤ E(V (X i τ j ) |E j ) K ε . (2.6.14)
Hence, the first part of (2.6.13) is true if there exists a constant C such that for every j ∈ N and for every K > 0,

E(V (X i τ j ) |E j ) ≤ C for i = 1, 2.
(2.6.15) Indeed, plugging (2.6.15) into (2.6.14) and taking K ε ≥ C ε yield the desired inequality. We see here that the independence of C with respect to K is essential. For the sake of simplicity, we we will first use the following hypothesis to prove (2.6.15): (H 1 ): Let γ ∈ (0, 1). There exists C γ > 0 such that for all j ∈ N, for every K > 0 and for i = 1, 2,

E   ∆τ j l=1 γ ∆τ j -l |∆ i τ j-1 +l | E j   < C γ
where ∆τ j := τ j -τ j-1 and ∆ i is the stationary Gaussian sequence defined by (2.2.2).

Proposition 2.6.3. Assume (H 1 ), (H 2 ) and (H 1 ).

Let (X 1 n , X 2 n ) n∈N be a solution of (2.4.2) with initial condition (X 1 0 , X 2 0 ) satisfying E(V (X i 0 )) < ∞ for i = 1, 2.
Moreover, assume that τ 0 = 0 and that (τ j ) j≥1 is built in such a way that for all j ≥ 1, P(E j |E j-1 ) ≥ δ 1 > 0 (where δ 1 is not depending on j) and ∆τ j ≥ log(δ 1 /2) log(γ) . Then, there esists a constant C such that for all j ∈ N and for every K > 0,

E(V (X i τ j ) |E j ) ≤ C for i = 1, 2.
Remark 2.6.2. £ Actually, hypothesis (H 1 ) is true under (H poly ) and will be proven Appendix 2.G. £ The existence of δ 1 > 0 independent from j is proven in Subsection 2.5.2. £ To get ∆τ j ≥ log(δ 1 /2) log(γ) , it is sufficient to choose t * large enough in the expression of ∆t (j) 3 (see Proposition 2.6.1). £ Since in Theorem 2.2.1 we made the assumption X V (x)Π * X µ 0 (dx) < +∞ and since an invariant distribution (extracted thanks to Theorem 2.3.1) also satisfies

X V (x)Π * X µ (dx) < +∞, we get that E(V (X i 0 )) < ∞ for i = 1, 2.
Hence, we can set τ 0 = 0.

Proof. By (H 1 ), there exist γ ∈ (0, 1) and C > 0 such that for all n ≥ 0 and for i = 1, 2 we have

V (X i n+1 ) ≤ γV (X i n ) + C(1 + |∆ i n+1 |).
By applying this inequality at time n = τ j -1, and by induction, we immediately get:

V (X i τ j ) ≤ γ ∆τ j V (X i τ j-1 ) + C ∆τ j l=1 γ ∆τ j -l (1 + |∆ i τ j-1 +l |).
(2.6.16)

By assumption ∆τ j ≥ log(δ 1 /2) log(γ)

then γ ∆τ j ≤ δ 1 2 . Moreover, since E j ⊂ E j-1 and

P(E j |E j-1 ) ≥ δ 1 , we get E[V (X i τ j-1 ) |E j ] = 1 P(E j ) E[V (X i τ j-1 )1 E j ] ≤ P(E j-1 ) P(E j ) =P(E j |E j-1 ) -1 E[V (X i τ j-1 ) |E j-1 ] ≤ δ -1 1 E[V (X i τ j-1 ) |E j-1 ].
Therefore

E[γ ∆τ j V (X i τ j-1 ) |E j ] ≤ δ 1 2 δ -1 1 E[V (X i τ j-1 ) |E j-1 ] = 1 2 E[V (X i τ j-1 ) |E j-1 ].
Hence, by taking (2.6.16), we have

E[V (X i τ j ) |E j ] ≤ 1 2 E[V (X i τ j-1 ) |E j-1 ] + C +∞ l=0 γ l + C E   ∆τ j l=1 γ ∆τ j -l |∆ i τ j-1 +l | E j   = 1 2 E[V (X i τ j-1 ) |E j-1 ] + C 1 -γ + C E   ∆τ j l=1 γ ∆τ j -l |∆ i τ j-1 +l | E j   .
Hypothesis (H 1 ) allows us to say

E[V (X i τ j ) |E j ] ≤ 1 2 E[V (X i τ j-1 ) |E j-1 ] + C 1 1 -γ + C γ .
By induction, we get the existence of a constant Cγ > 0 such that

E[V (X i τ j ) |E j ] ≤ 1 2 j E[V (X i τ 0 ) |E 0 ] + Cγ . Since P(E 0 ) = 1, it comes E[V (X i τ j ) |E j ] ≤ 1 2 j E[V (X i τ 0 )] + Cγ .
Since τ 0 = 0 and we assumed that E[V (X i 0 )] < ∞, the proof is over.

As a result of the proof of (H 1 ) (see Appendix 2.G), we get the first part of (2.6.13). The second part can be also deduced from the proof of (H 1 ) thanks to Remark 2.G.1.

Proof of Theorem 2.2.1

Now we have all the necessary elements to prove the second part of the main theorem 2.2.1 concerning the convergence in total variation to the unique invariant distribution (where the uniqueness will immediately follow from this convergence).

Proof of Theorem 2.2.1

We recall that ∆τ j denotes the duration of coupling trial j and we set j (s) := inf{j > 0, ∆τ j = +∞}.

(2.7.1) j (s) corresponds to the trial where the coupling procedure is successful. The aim of this section is to bound

P(τ ∞ > n) where τ ∞ = inf{n ≥ 0 | X 1 k = X 2 k , ∀k ≥ n}, since L((X 1 k ) k≥n ) -Sµ T V ≤ P(τ ∞ > n). But, we have P(τ ∞ > n) = P +∞ k=1 ∆τ k 1 {j (s) >k} > n
where j (s) is defined in (2.7.1). It remains to bound the right term. Let p ∈ (0, +∞).

If p ∈ (0, 1), then by the Markov inequality and the simple inequality |a+b| p ≤ |a| p +|b| p , we get

P +∞ k=1 ∆τ k 1 {j (s) >k} > n ≤ 1 n p +∞ k=1 E[|∆τ k | p 1 {j (s) >k} ] ≤ 1 n p +∞ k=1 E[E[|∆τ k | p 1 {∆τ k <+∞} | {τ k-1 < +∞}]1 {τ k-1 <+∞} ]. (2.7.2) 
Else, if p ≥ 1, by Markov inequality and Minkowski inequality, we have

P +∞ k=1 ∆τ k 1 {j (s) >k} > n ≤ 1 n p E +∞ k=1 ∆τ k 1 {j (s) >k} p ≤ 1 n p +∞ k=1 E[|∆τ k | p 1 {j (s) >k} ] 1/p p ≤ 1 n p +∞ k=1 E[E[|∆τ k | p 1 {∆τ k <+∞} | {τ k-1 < +∞}]1 {τ k-1 <+∞} ] 1/p p .
(2.7.3)

We define the event A k, := B c k, ∩ B k, -1 which corresponds to the failure of Step 2 after attempts at trial k. Both in (2.7.2) and (2.7.3), we separate the term

E[|∆τ k | p 1 {∆τ k <+∞} | {τ k-1 < +∞}] through the events A k, which gives E[|∆τ k | p 1 {∆τ k <+∞} | {τ k-1 < +∞}] = +∞ =1 E[1 A k, |∆τ k | p 1 {∆τ k <+∞} | {τ k-1 < +∞}].
(2.7.4) Moreover, thanks to Lemma 2.5.2 and the definition of the events A k, , we deduce that for ≥ 2,

P(A k, | {τ k-1 < +∞}) ≤ 2 -α (2.7.5)
where α := min{α, β, α + β -1} -1/2 -ε for all ε > 0 under (H poly ) min(α, ζ) under (H exp ).

We have now to distinguish the polynomial case from the exponential one.

£ Under (H poly ):

We have a bound of type ∆τ k ≤ C 1 ς k 2 θ (due to the value of ∆t

(k)
3 , see Proposition 2.6.1) on the event A k, where ς > 1 is arbitrary. Indeed, on A k, , we have

∆τ k = τ k -τ k-1 ≤ c 2 2 +1 + ∆t (k) 3 = c 2 2 +1 + t * ς k 2 θ ≤ C 1 ς k 2 (θ∨1) (for C 1 large enough).
Hence, in (2.7.4) we get

E[|∆τ k | p 1 {∆τ k <+∞} | {τ k-1 < +∞}] ≤ C p 1 ς kp +∞ =1 2 (θ∨1)p P(A k, | {τ k-1 < +∞}) ≤ C p 1 ς kp 2 (θ∨1)p + +∞ =2
2 ((θ∨1)p-α) using (2.7.5)

≤ Cς kp if p ∈ 0, α θ ∨ 1 .
Then for p ∈ 0, α θ∨1 ,

E[E[|∆τ k | p 1 {∆τ k <+∞} | {τ k-1 < +∞}]1 {τ k-1 <+∞} ] ≤ Cς kp P(j (s) > k -1) (2.7.6)
and it remains to control P(j (s) > k -1). We have

P(j (s) > k -1) = k-1 j=1 P(E j |E j-1 ) = k-1 j=1 (1 -P(E c j |E j-1 ))
where E j is defined in (2.6.11). By Proposition 2.5.1 and 2.6.2 applied for ε = 1/2, we get for every j ≥ 2,

P(E c j |E j-1 ) ≥ P(∆τ j = +∞|Ω K 1/2 ,α,τ j-1 )P(Ω K 1/2 ,α,τ j-1 |E j-1 ) ≥ δ 0 2
where δ 0 > 0 depends on K 1/2 . Therefore, P(j

(s) > k -1) ≤ 1 -δ 0 2 k-1
and by (2.7.6)

E[E[|∆τ k | p 1 {∆τ k <+∞} | {τ k-1 < +∞}]1 {τ k-1 <+∞} ] ≤ Cς kp 1 - δ 0 2 k-1
.

(2.7.7)

Finally, by choosing 1

< ς < 1 -δ 0 2 -1/p
, we get using (2.7.2) or (2.7.3) that for all p ∈ 0, α θ∨1 , there exists C p > 0 such that

P(τ ∞ > n) ≤ P +∞ k=1 ∆τ k 1 {j (s) >k} > n ≤ C p n -p . (2.7.8)
It remains to optimize the upper-bound α θ∨1 for p. Since α := min{α, β, α + β -1} -1/2 -ε with ε > 0 as small as necessary and since by Proposition 2.6.1: θ > (2(ρ -α)) -1 and α ∈ 1 2 ∨ 3 2 -β , ρ , we finally get (2.7.8) for all p ∈ (0, v(β, ρ)) where

v(β, ρ) = sup α∈( 1 2 ∨( 3 2 -β),ρ) min{1, 2(ρ -α)}(min{α, β, α + β -1} -1/2).
This concludes the proof of Theorem 2.2.1 in the polynomial case.

£ Under (H exp ):

The proof is almost the same. The only differences are that we use the following bound

∆τ k = τ k -τ k-1 ≤ c 2 ( + 1) + ∆t (k) 3 = c 2 ( + 1) + t * + ς k + θ ≤ C 1 ς k θ (for C 1 large enough)
on the events A k, and the upperbound P(A k, | {τ k-1 < +∞}) ≤ 2 -α given in (2.7.5). And then we get for all p > 0 the existence of C p > 0 such that

P(τ ∞ > n) ≤ P +∞ k=1 ∆τ k 1 {j (s) >k} > n ≤ C p n -p .
(2.7.9) by choosing 1

< ς < 1 -δ 0 2 -1/p
and the proof of Theorem 2.2.1 is over.

2.A Proof of Theorem 2.2.2

The beginning of the following proof makes use of ideas developped in [START_REF] Cohen | Approximation of stationary solutions of Gaussian driven stochastic differential equations[END_REF][START_REF] Cohen | Approximation of stationary solutions to SDEs driven by multiplicative fractional noise[END_REF].

Let us recall that F h (x, w) := x + hb(x) + σ(x)w.

Proof. Set V (x) = |x|. Let us begin by proving that (H 1 ) holds with V for F h with h > 0 small enough. We have:

|F h (x, w)| 2 = |x| 2 + h 2 |b(x)| 2 + 2h x, b(x) + 2 x, σ(x)w + 2h b(x), σ(x)w + |σ(x)w| 2 .
Then, using the inequality

| a, b | ≤ 1 2 (ε|a| 2 + 1 ε |b| 2 ) for all ε > 0, we get | x, σ(x)w | ≤ 1 2 (ε|x| 2 + 1 ε |σ(x)w| 2 ) and | b(x), σ(x)w | ≤ 1 2 (ε|b(x)| 2 + 1 ε |σ(x)w| 2 ).
Moreover, assumptions (L1) and (L2) on b give the existence of β ∈ R, α > 0 and C > 0 such that

| b(x), x | ≤ β -α|x| 2 et |b(x)| 2 ≤ C(1 + |x| 2 ).
Hence, we finally have

|F h (x, w)| 2 ≤ |x| 2 + Ch 2 (1 + |x| 2 ) + 2h( β -α|x| 2 ) + ε|x| 2 + 1 ε |σ(x)w| 2 + Chε(1 + |x| 2 ) + h ε |σ(x)w| 2 + |σ(x)w| 2 ≤ |x| 2 + 2h( β -α|x| 2 ) + C(ε + hε + h 2 )(1 + |x| 2 ) + 1 + h + 1 ε |σ(x)w| 2 . Now, set ε = h 2 and choose 0 < h < min 1 + α C -1, 1 α . Then, we have C(ε + hε + h 2 ) ≤ αh and 0 < 1 -αh < 1. Therefore, |F h (x, w)| 2 ≤ |x| 2 + h(γ -α|x| 2 ) + 1 + h + 1 ε |σ(x)w| 2
where γ = 2 β + α. Then

|F h (x, w)| 2 ≤ (1 -αh)|x| 2 + hγ + 1 + h + 1 ε |σ(x)w| 2 . (2.A.1)
By assumption σ is a bounded function on R d . Then, there exists C > 0 depending on h and σ such that

|F h (x, w)| 2 ≤ (1 -αh)|x| 2 + C 1 + |w| 2 .
Using the classical inequality √ a + b ≤ √ a+ √ b, we finally get the existence of γ ∈ (0, 1) and C > 0 such that for all (x, w

) ∈ R d × R d |F h (x, w)| ≤ γ|x| + C (1 + |w|) (2.A.2)
which achieves the proof of (H 1 ). We now turn to the proof of (H 2 ). Let K > 0 and take x = (x, x , y, y ) ∈ B(0, K) 4 .

Here we take K = K. Hence, let us now define Λ x . For all u ∈ B(0, K), we set

Λ x (u) = A(x)u + B(x) (2.A.3) with A(x) := σ -1 (x )σ(x) and B(x) := σ -1 (x )(x-x +h(b(x)-b(x )))+σ -1 (x )σ(x)y - y .
Then, (2.A.3) is equivalent to Fh (x, u, y) = Fh (x , Λ x (u), y ) for all u ∈ B(0, K). Hence, for all u ∈ B(0, K), J Λx (u) = σ -1 (x )σ(x).

(2.A.4)

Since σ, σ -1 and b are continuous, there exist C K > 0 and m K > 0 independent from x such that for all u ∈ B(0, K),

| det(J Λx (u))| ≥ C K |Λ x (u) -u| ≤ m K .
For the sake of simplicity, let us set Λx (u) = Λ x (u) -B(x) and extend Λx to R d . Now, let K 1 > 0 be independent of x such that sup u∈B(0,K)

|A(x)u| < K 1 and set for all

u ∈ R d \ B(0, K 1 ), Λx (u) = u. Hence, Λx is a C 1 -diffeomorphism from B(0, K) to E K := {A(x)u |u ∈ B(0, K)} and from R d \ B(0, K 1 ) to itself. It remains to extend it with a C 1 -diffeomorphism from B(0, K 1 ) \ B(0, K) to B(0, K 1 ) \ E K .
To this end, we consider q the positive definite quadratic form associated to the ellipsoid E K and we denote by B := (e 1 , . . . , e d ) the orthonormal basis which diagonalizes q, so that if x = (x 1 , . . . , x d ) in B we have q(x) = d i=1 λ i (x i )2 with λ i > 0 for all i ∈ {1, . . . , d}. Let B := (e 1 , . . . , e d ) be the canonical basis and ϕ : R d → R d be the linear application such that ϕ(e i ) = 1

√

λ i e i for all i ∈ {1, . . . , d}.

Remark 2.A.1. This application ϕ gives also a

C 1 -diffeomorphism from B(0, K) to E K by construction and |u| = K ⇐⇒ |q(ϕ(u))| = K. Now, set for all u ∈ B(0, K 1 ) \ B(0, K), Λx (u) := 1 - |u| -K K 1 -K K |u| + |u| -K K 1 -K K 1 |ϕ(u)| ϕ(u).
This is just an interpolation between K |u| ϕ(u) and K 1 |ϕ(u)| ϕ(u). It is a C 1 -diffeomorphism from B(0, K 1 )\B(0, K) to B(0, K 1 )\E K and the inverse is given by, for all v ∈ B(0, K 1 )\

E K : Λ-1 x (v) := 1 - |v| -α(|v|) K 1 -α(|v|) K q(v) + |v| -α(|v|) K 1 -α(|v|) K 1 |ϕ -1 (v)| ϕ -1 (v)
with α(|v|) := |v|/ q(v). Finally, one can check that we have all the elements to conclude that Fh satisfies (H 2 ). ε p + 1 q |b| q ε q with p = 1 κ and q = 1 1-κ for the term |σ(x)w| 2 . Then, it sufficies to use |σ(x)| ≤ C(1 + |x| κ ) and to calibrate ε to get an inequality of the type:

|F (x, w)| 2 ≤ γ|x| 2 + C(1 + |w| on R d ,
we can build a function Λ x which satisfies (H 2 ) exactly in the same way as in the preceding proof.

2.B Explicit formula for the sequence (b k ) k≥0

Theorem 2.B.1. Let (u n ) n∈N and (v n ) n∈N be two sequences such that for n ∈ N,

u n = n k=0 a k v n-k (2.B.1)
then we have:

v n = n k=0 b k u n-k (2.B.2)
where

b 0 := 1 a 0 and ∀k ≥ 1, b k := k p=1 (-1) p a p+1 0     k 1 ,...,kp≥1 k 1 +•••+kp=k p i=1 a k i     .
Proof. It sufficies to reverse a triangular Toeplitz matrix. Indeed, equation (2.B.1) is equivalent to:

∀n ∈ N,      f 0 f 1 . . . f n      =       a 0 0 . . . 0 a 1 . . . . . . . . . . . . . . . . . . 0 a n-1 . . . a 1 a 0            g 0 g 1 . . . g n      . ( 2 

.B.3)

Denote by A the matrix asociated to the system. Denote by N the following nilpotent matrix:

N =       0 . . . . . . 0 1 . . . . . . . . . . . . . . . (0) 1 0       . Then, A = a 0 I n + a 1 N + • • • + a n-1 N n-1
and we are looking for B such that

B = b 0 I n + b 1 N + • • • + b n-1 N n-1 and AB = I n . Denote by S(z) = k≥0 a k z k and S -1 (z) = k≥0 b k z k ,
we are interested in the (n -1) first coefficients of S -1 (z).

2.C. Particular case: when the sequence (a k ) k≥0 is log-convex And formally,

S -1 (z) = 1 S(z) = 1 a 0 1 1 + k≥1 a k a 0 z k = 1 a 0 p≥0 (-1) p a p 0   k≥1 a k z k   p = 1 a 0 + p≥1 (-1) p a p+1 0 k≥p     k 1 ,...,kp≥1 k 1 +•••+kp=k a k 1 a k 2 . . . a kp     z k = 1 a 0 + k≥1 k p=1     (-1) p a p+1 0 k 1 ,...,kp≥1 k 1 +•••+kp=k a k 1 a k 2 . . . a kp     z k .
Finally, we identify the desired coefficients.

2.C Particular case: when the sequence (a k ) k≥0 is logconvex

This section is based on a work made by N.Ford, D.V.Savostyanov and N.L.Zamarashkin in [START_REF] Ford | On the decay of the elements of inverse triangular Toeplitz matrices[END_REF].

Lemma 2.C.1. Let (a n ) n∈N be a log-convex sequence in the following sense

a n ≥ 0 for n ≥ 0 and a 2 n ≤ a n-1 a n+1 for n ≥ 1. If a 0 > 0, then the sequence (b n ) n∈N defined by b 0 = 1 a 0 and ∀n ≥ 1, b n = - 1 a 0 n k=1 a k b n-k satisfies ∀n ≥ 1, b n ≤ 0 and |b n | ≤ b 0 a n (2.C.1) Remark 2.C.1. The sequence a n = (n + 1) -ρ is log-convex for all ρ > 0, then the corresponding (b n ) n∈N is such that ∀n ∈ N, |b n | ≤ (n + 1) -ρ .
Proof. Without loss of generality, we assume that a 0 = 1.

• First, following Theorem 4 of [START_REF] Ford | On the decay of the elements of inverse triangular Toeplitz matrices[END_REF] we can prove by strong induction that for all n ≥ 1, b n ≤ 0.

• The second property satisfied by (b n ) directly follows from the first one. Let n ≥ 1, as

we just saw b n ≤ 0 therefore |b n | = -b n . But, -b n = n-1 k=1 a k (b n-k ≤0 ) + a n b 0 ≤ b 0 a n
and the lemma is proven.

2.D Proof of Proposition 2.2.3

We recall that ρ = 3/2 -H where H ∈ (0, 1/2) is the Hurst parameter and (b n ) n∈N is defined by

b 0 = 1 a H 0 and for n ≥ 1, b n = - 1 a H 0 n k=1 a H k b n-k . (2.D.1)
and for all k ≥ 1,

a H k a H 0 = (2k + 1) 1-ρ -(2k -1) 1-ρ .
We want to show that -ρ) by induction. To this end we only need to prove that for n large enough,

|b n | ≤ C b (n + 1) -(2
S n := n k=1 (2k -1) 1-ρ -(2k + 1) 1-ρ (n + 1 -k) -(2-ρ) ≤ (n + 1) -(2-ρ) . (2.D.2)
For the sake of simplicity we assume that n is even.

S n = n/2 k=1 (2k -1) 1-ρ -(2k + 1) 1-ρ (n + 1 -k) -(2-ρ) + n k=n/2+1 (2k -1) 1-ρ -(2k + 1) 1-ρ (n + 1 -k) -(2-ρ)
S n =: S (1) n + S (2) n .

(2.D.3)

£ We begin with S

(1)

n . Summation by parts:

S (1) n = n 2 + 1 -(2-ρ) (1 -(n + 1) 1-ρ ) - n/2-1 k=1 (1 -(2k + 1) 1-ρ ) (n -k) -(2-ρ) -(n + 1 -k) -(2-ρ) = n 2 + 1 -(2-ρ) (1 -(n + 1) 1-ρ ) - n 2 + 1 -(2-ρ) -n -(2-ρ) + n/2-1 k=1 (2k + 1) 1-ρ (n -k) -(2-ρ) -(n + 1 -k) -(2-ρ) = n -(2-ρ) - n 2 + 1 -(2-ρ) (n + 1) 1-ρ + n/2-1 k=1 (2k + 1) 1-ρ (n -k) -(2-ρ) -(n + 1 -k) -(2-ρ) S (1) n = n -(2-ρ) - n 2 -(2-ρ) (n + 1) 1-ρ + n/2 k=1 (2k + 1) 1-ρ (n -k) -(2-ρ) -(n + 1 -k) -(2-ρ) .
(2.D.4)

We set Sn :

= n/2 k=1 (2k + 1) 1-ρ (n -k) -(2-ρ) -(n + 1 -k) -(2-ρ) . Then, Sn = 1 n n/2 k=1 2k + 1 n 1-ρ 1 - k n -(2-ρ) -1 - k -1 n -(2-ρ) = 2 1-ρ n n/2 k=1 k + 1/2 n 1-ρ 1 - k n -(2-ρ) -1 - k -1 n -(2-ρ)
.

Moreover,

n/2 k=1 k + 1/2 n 1-ρ 1 - k n -(2-ρ) -1 - k -1 n -(2-ρ) = (2 -ρ) 1/2 0 x + 1 2n 1-ρ (1 -x) -(3-ρ) dx - n/2 k=1 k n k-1 n x + 1 2n 1-ρ - k + 1/2 n 1-ρ (1 -x) -(3-ρ) dx (2.D.5)
and

1/2 0 x + 1 2n 1-ρ (1 -x) -(3-ρ) dx = (1 -x) ρ-2 x + 1 2n 2-ρ (2 -ρ) 1 + 1 2n 1/2 0 = 1 2 -ρ 1 + 1 2n -1 1 + 1 n 2-ρ - 1 2n 2-ρ . (2.D.6)
Hence by putting together (2.D.5) and (2.D.6) we get

Sn = 2 1-ρ n 1 + 1 2n -1 1 + 1 n 2-ρ - 1 2n 2-ρ -(2 -ρ) n/2 k=1 k n k-1 n x + 1 2n 1-ρ - k + 1/2 n 1-ρ (1 -x) -(3-ρ) dx   .
(2.D.7)

We deduce from (2.D.4) and (2.D.7) that

S (1) n ≤ n -(2-ρ) - n 2 -(2-ρ) (n + 1) 1-ρ + 2 1-ρ n 1 + 1 2n -1 1 + 1 n 2-ρ - 1 2n 2-ρ .
(2.D.8) £ Now, we look after S

(2) n :

As before, using the fact that

1/2 0 1 -x + 1 2n -ρ x -(2-ρ) dx = 1 -x + 1 2n 1-ρ x ρ-1 (ρ -1) 1 + 1 2n 1/2 0 = 1 ρ -1 1 + 1 2n -1 1 + 1 n 1-ρ (2.D.9)
we get

S (2) n = 2 1-ρ n 1 + 1 2n -1 1 + 1 n 1-ρ -(ρ -1) n/2 k=1 k n k-1 n x -(2-ρ) - k n -(2-ρ) 1 -x + 1 2n -ρ
dx .

(2.D.10)

Now, for all k ∈ {1, . . . , n/2}, we set

I k := k n k-1 n x -(2-ρ) - k n -(2-ρ) 1 -x + 1 2n -ρ dx.
Thanks to the substitution t = x -k-1 n , we have

I k = 1/n 0 t + k -1 n -(2-ρ) - k n -(2-ρ) 1 + 1 2n -t - k -1 n -ρ dt
Taylor-Lagrange expansion:

• t + k -1 n -(2-ρ) - k n -(2-ρ) = 1 n -t (2-ρ) k n -(3-ρ) + 1 2 1 n -t 2 (2-ρ)(3-ρ)ξ -(4-ρ) with ξ ∈]t + (k -1)/n, k/n[. • 1 + 1 2n -t - k -1 n -ρ = 1 + 1 2n - k -1 n -ρ +tρ 1 + 1 2n -c -ρ-1 with c ∈](k -1)/n, t + (k -1)/n[.
Therefore, we deduce that

I k ≥ 1/n 0 1 n -t (2-ρ) k n -(3-ρ) 1 + 1 2n - k -1 n -ρ dt = 2 -ρ 2n 2 k n -(3-ρ) 1 + 1 2n - k -1 n -ρ
.

Then we add the inequality for k from 1 to n/2,

n/2 k=1 I k ≥ 2 -ρ 2n × 1 n n/2 k=1 k n -(3-ρ) 1 + 1 2n - k -1 n -ρ Un . (2.D.11)
We easily show that

U n ≥ 1/2 0 y + 1 n -(3-ρ) 1 + 3 2n -y -ρ dy =: J n .
(2.D.12)

By integration by parts on J n we get:

J n = -y + 1 n -(2-ρ) 2 -ρ 1 + 3 2n -y -ρ 1/2 0 + ρ 2 -ρ 1/2 0 y + 1 n -(2-ρ) 1 + 3 2n -y -ρ-1 dy = 1 2 -ρ 1 n -(2-ρ) 1 + 3 2n -ρ - 1 2 + 1 n -(2-ρ) 1 2 + 3 2n -ρ ∼ n→+∞ n 2-ρ + ρ 2 -ρ 1/2 0 y + 1 n -(2-ρ) 1 + 3 2n -y -ρ-1 dy -→ n→+∞ 1/2 0 y -(2-ρ) (1-y) -ρ-1 dy
.

Hence, for n large enough, we have 

U n ≥ J n ≥ 1 2(2 -ρ) n 2-ρ (2.D.
I k ≥ 1 4 n 1-ρ .
Finally we get for S

(2)

n the following upper-bound for n large enough, 

S (2) n ≤ 2 1-ρ n 1 + 1 2n -1 1 + 1 n 1-ρ - ρ -1 4 n 1-ρ . ( 2 
S n ≤ (n + 1) -(2-ρ) 1 - 1 n -(2-ρ) × u n (2.D.15)
with

u n = 1 -2 2-ρ (n + 1) 1-ρ + 2 1-ρ n 1-ρ 1 + 1 2n -1 1 + 1 n 2-ρ - 1 2n 
2-ρ + 1 + 1 2n -1 1 + 1 n 1-ρ - ρ -1 4 n 1-ρ
Lastly, we have the following asymptotic expansion:

1 - 1 n -(2-ρ) × u n = 1 - 2 1-ρ (ρ -1) 4 n 2-2ρ + o 1 n
Since ρ ∈ (1, 3/2) we have 2 -2ρ ∈ (-1, 0) therefore for n large enough we conclude that S n ≤ (n + 1) -(2-ρ) .

2.E Proof of Theorem 2.3.1

Let x 0 ∈ X and µ = δ x 0 × P w . We have Π * W µ = P w therefore by Property 2.3.

1 we get ∀k ∈ N, Π * W (Q k µ) = P w . Moreover, we clearly have X ψ(x)(Π * X µ)(dx) = ψ(x 0 ) < +∞. We now set for all n ∈ N * , R n µ = 1 n n-1 k=0 Q k µ.
The aim is to prove that the sequence (R n µ) n∈N * is tight. First, let us prove that (Π * X R n µ) n∈N * is tight. By Definition 2.3.1 (ii), we have ∀k ≥ 0:

X ×W ψ(x)Q k+1 µ(dx, dw) -α X ψ(x)(Π * X Q k µ)(dx) ≤ β.
2.E. Proof of Theorem 2.3.1

By adding for k from 0 to n -1, dividing by n and reordering the terms, we get:

(

1 -α) X ψ(x)(Π * X R n µ)(dx) + 1 n n-1 k=0 X ×W ψ(x)Q k µ(dx, dw) - X ψ(x)(Π * X Q k µ)(dx) + 1 n X ×W ψ(x)Q n+1 µ(dx, dw) - 1 n X ψ(x)(Π * X µ)(dx) ≤ β. (2.E.1)
Since we are in a Polish space (here X × W) we can "disintegrate" Q k µ for all k ∈ {0, . . . , n -1} (see [START_REF] Arnold | Random dynamical systems[END_REF] for background):

Q k µ(dx, dw) = (Q k µ) x (dw)(Π * X Q k µ)(dx).
By integrating first with respect to w and then with respect to x, we get:

X ×W ψ(x)Q k µ(dx, dw) - X ψ(x)(Π * X Q k µ)(dx) = 0.
Let us return to (2.E.1),

(1 -α)

X ψ(x)(Π * X R n µ)(dx) ≤ β + 1 n X ψ(x)(Π * X µ)(dx) - X ×W ψ(x)Q n+1 µ(dx, dw) = β + 1 n X ψ(x)(Π * X µ -Π * X (Q n+1 µ))(dx). Set A n+1 = X ψ(x)(Π * X Q n+1 µ)(dx)
. By Definition 2.3.1 (ii) and by induction, we have

0 ≤ A n+1 n ≤ β n n k=0 α k + α n+1 n A 0 = β n 1 -α n+1 1 -α + α n+1 n ψ(x 0 ).
Hence we deduce that lim n→+∞ A n+1 n = 0. Then, there exists C > 0 such that ∀n ∈ N * :

(

1 -α) X ψ(x)(Π * X R n µ)(dx) ≤ C and then sup n≥1 X ψ(x)(Π * X R n µ)(dx) ≤ C 1 -α .
Let δ > 0 and

K δ := {x ∈ X | ψ(x) ≤ δ} = ψ -1 ([0, δ]). By Definition 2.3.1 (ii), K δ is a compact set. For all x ∈ X , we have 1 K c δ (x) ≤ ψ(x) δ , so ∀n ∈ N * , (Π * X R n µ)(K c δ ) ≤ C δ(1 -α)
.

By setting ε 2 = C δ(1-α) , we deduce that (Π * X R n µ) n∈N * is tight. Let us now go back to the tightness of (R n µ) n∈N * . Let K be a compact set of W such that P w (K c ) < ε 2 , this is possible since W is Polish. We then get

R n µ((K δ × K) c ) ≤R n µ(K c δ × W) + R n µ(X × K c ) = (Π * X R n µ)(K c δ ) + (Π * W R n µ)(K c ) = (Π * X R n µ)(K c δ ) + (P w )(K c ) ≤ ε 2 + ε 2 = ε.
Finally, (R n µ) n∈N * is tight. Let µ be one of its accumulation points. By the Krylov-Bogoliubov criterium we deduce that µ is an invariant distribution for Q.

2.F Proof of Lemma 2.5.3

In this section we will prove a slightly more precise result than Lemma 2.5.3 which is the following: for all α, β > 0 such that α + β > 1, there exists C(α, β) > 0 such that for all n ≥ 0,

n k=0 (k+1) -β (n+1-k) -α ≤ C(α, β)      (n + 1) -β ln(n) if α = 1 and β ≤ 1 (n + 1) -α ln(n) if β = 1 and α ≤ 1 (n + 1) -min{α,β,α+β-1} else . (2.F.1)
For the sake of simplicity, we will prove this result when n is odd. If n is even, the proof is almost the same. Set N := n+1 2 . Then, we get

n k=0 (k + 1) -β (n + 1 -k) -α = n+1 k=1 k -β (n + 2 -k) -α = N k=1 k -β (n + 2 -k) -α + n+1 k=N +1 k -β (n + 2 -k) -α = N k=1 k -β (n + 2 -k) -α + N k=1 k -α (n + 2 -k) -β n k=0 (k + 1) -β (n + 1 -k) -α = S N (β, α) + S N (α, β) (2.F.2) by setting S N (α, β) := N k=1 k -α (n + 2 -k) -β = N k=1 k -α (2N -(k -1)) -β . £ If α ∈ (0, 1), we have α + β -1 ≤ β and S N (α, β) ≤ C(α, β)(n + 1) -(α+β-1) .
2.F. Proof of Lemma 2.5.3

Indeed,

S N (α, β) = N k=1 k -α (2N -(k -1)) -β = N -(α+β-1) × 1 N N k=1 k N -α 2 - k -1 N -β ≤ N -(α+β-1) × 1 N N k=1 k N -α 2 - k N -β and lim N →+∞ 1 N N k=1 k N -α 2 - k N -β = 1 0 x -α (2 -x) -β dx
where the integral is well defined since α ∈ (0, 1). Therefore, since N = n+1 2 , we deduce that there exists C(α,

β) > 0 such that S N (α, β) ≤ C(α, β)(n + 1) -(α+β-1) . £ If α > 1, we have α + β -1 > β and S N (α, β) ≤ C(α, β)(n + 1) -β . Indeed, S N (α, β) = N k=1 k -α (2N -(k -1)) -β ≤ (2N -(N -1)) -β N k=1 k -α ≤ (N + 1) -β +∞ k=1 k -α .
Therefore, as before we deduce that there exists C(α, β) > 0 such that S N (α, β) ≤ C(α, β)(n + 1) -β .

£ If α = 1, in the same way as in the case α > 1, we get

S N (α, β) ≤ (N + 1) -β N k=1 1 k ≤ C(N + 1) -β ln(N ) Therefore, there exists C(α, β) > 0 such that S N (α, β) ≤ C(α, β)(n + 1) -β ln(n).
Finally, we get that for all α > 0 and β > 0 such that α + β > 1,

S N (α, β) ≤ C(α, β) (n + 1) -min{α,β,α+β-1} if α = 1 (n + 1) -β ln(n) if α = 1 (2.F.3)
Putting this inequality into (2.F.2) we finally get the desired inequality and the proof is finished.

2.G Proof of Hypothesis (H 1 )

We recall that we want to prove that under (H poly ), the following hypothesis is true:

(H 1 ): Let γ ∈ (0, 1). There exists C γ > 0 such that for all j ∈ N, for every K > 0 and for i = 1, 2,

E   ∆τ j l=1 γ ∆τ j -l |∆ i τ j-1 +l | E j   < C γ
where ∆τ j := τ j -τ j-1 and ∆ i is the stationary Gaussian sequence defined in Equation (2.2.2).

Remark 2.G.1. Since the proof of this assumption will exclusively use the domination assumption on (a k ) k≥0 and since (ã k ) k≥0 := (a k+1 ) k≥0 satisfies the same domination assumption, we will also get that for i = 1, 2,

E   ∆τ j l=1 γ ∆τ j -l | ∆i τ j-1 +l | E j   < C γ
where ∆i τ j-1 +l = +∞ k=0 a k+1 ξ i τ j-1 +l-k . Hence, we will get that for i = 1, 2

E | ∆i τ j | E j = E +∞ k=0 a k+1 ξ i τ j -k E j < C γ .
Then, by the Markov inequality we finally get the second part of Equation (2.6.13).

We now turn to the proof of (H 1 ). We work on the set E j = {τ j < +∞}. We have

∆τ j l=1 γ ∆τ j -l |∆ i τ j-1 +l | = τ j u=τ j-1 +1 γ τ j -u |∆ i u |.
But,

|∆ i u | = k=u -∞ a u-k ξ i k = j m=0 Λ i m (u) .
where

Λ i m (u) = τm k=τ m-1 +1 a u-k ξ i k pour m ∈ {1, . . . , j -1}, (2.G.1) Λ i 0 (u) = k=τ 0 -∞ a u-k ξ i k et Λ i j (u) = u k=τ j-1 +1 a u-k ξ i k . (2.G.2)
With these notations, we get the following upper-bound

∆τ j l=1 γ ∆τ j -l |∆ i τ j-1 +l | ≤ j m=0 τ j u=τ j-1 +1 γ τ j -u |Λ i m (u)|. (2.G.3)
The goal of the following lemmas is to get an upper-bound of the quantity

E[ sup u∈ τ j-1 +1,τ j |Λ i m (u)| |E j ] when m ∈ {0, . . . , j -1}.
Lemma 2.G.1. Assume (H poly ). Let t 0 , t 1 ∈ Z and u ∈ N such that t 0 < t 1 < u. Let (ξ k ) k∈Z be a sequence with values in R d . Then,

t 1 k=t 0 a u-k ξ k ≤ C ρ (u + 1 -t 0 ) -ρ t 1 k=t 0 ξ k + C κ t 1 -t 0 k=1 t 1 l=k+t 0 ξ l (u + 1 -t 0 -k) -κ ≤ C ρ (u + 1 -t 0 ) -ρ t 1 k=t 0 ξ k + C κ t 1 -t 0 k=1 t 1 l=k+t 0 ξ l (u + 1 -t 0 -k) -(ρ+1) .
Remark 2.G.2. The last inequality just follows from the fact that κ ≥ ρ + 1 by assumption.

Proof. The proof is essentially based on a summation by parts argument. We set

t 1 k=t 0 a u-k ξ k = t 1 -t 0 k=0 a u-t 0 -k =:a k ξ t 0 +k =:ξ k and Bk := t 1 -t 0 l=k ξ l for k ∈ 0, t 1 -t 0 .
We then have

t 1 -t 0 k=0 a k ξ k = t 1 -t 0 -1 k=0 a k ( Bk -Bk+1 ) + a t 1 -t 0 ξ t 1 -t 0 = t 1 -t 0 k=0 a k Bk - t 1 -t 0 k=1 a k-1 Bk = a 0 B0 + t 1 -t 0 k=1 (a k -a k-1 ) Bk t 1 -t 0 k=0 a k ξ k = a u-t 0   t 1 k=t 0 ξ k   + t 1 -t 0 k=1   t 1 l=k+t 0 ξ l   [a u-t 0 -k -a u-t 0 -(k-1) ].
Finally, by using triangular inequality and (H poly ) we deduce that

t 1 k=t 0 a u-k ξ k ≤ C ρ (u + 1 -t 0 ) -ρ t 1 k=t 0 ξ k + C κ t 1 -t 0 k=1 t 1 l=k+t 0 ξ l (u + 1 -t 0 -k) -κ .
In the next lemma we adopt the convention ∅ = 1. Moreover, recall that by Proposition 2.6.1, we have for every j ∈ N * , ∆τ j ≥ ς j for an arbitrary ς > 1.

Lemma 2.G.2. Assume (H poly ). We suppose that τ 0 = 0 and that there exists δ 1 ∈ (0, 1) such that for all m ≥ 1 and K > 0, P(E m |E m-1 ) ≥ δ 1 . Then, for i = 1, 2, for all p > 1 and for every ε ∈ (0, ρ -1/2), there exists C > 0 such that for all j ≥ 1, m ∈ {0, . . . , j -1} and K > 0,

E[ sup u∈ τ j-1 +1,τ j |Λ i m (u)| |E j ] ≤ C j-1 l=m+1 ς l 1/2-ρ+ε δ j-m p 1 .
(2.G.4)

Consequently, there exist η ∈ (0, 1) and C > 0 such that for all j ≥ 1 and m ∈ {0, . . . , j -1},

E[ sup

u∈ τ j-1 +1,τ j |Λ i m (u)| |E j ] ≤ Cη j-m . (2.G.5)
Proof. First of all, let us prove that (2.G.4) induces (2.G.5). Let α 1 ∈ (0, +∞) such that ς = δ -α 1

1

. One just have to remark that for j ≥ 2 and m ∈ {1, . . . , j -2},

j-1 l=m+1 ς l 1/2-ρ+ε δ m-j p 1 ≤ δ (α 1 (ρ-1/2-ε)-1/p)(j-m) 1
We choose for instance ε = 1 2 (ρ -1/2) and p > 2 α 1 (ρ-1/2) in such a way that

α 1 (ρ -1/2 -ε) -1/p > 0.
We then deduce (2.G.5). Now, it remains to show (2.G.4). For clarity, we set

E j := τ j-1 + 1, τ j .
Using that for m ≥ 1, E m ⊂ E m-1 and P(E m |E m-1 ) ≥ δ 1 ∈ (0, 1) and Hölder inequality we deduce the following inequalities,

E[ sup u∈E j |Λ i m (u)| |E j ] ≤ E[ sup u∈E j |Λ i m (u)| p |E j ] 1/p = E[ sup u∈E j |Λ i m (u)| p 1 E j ] 1 P(E j ) 1/p ≤ E[ sup u∈E j |Λ i m (u)| p 1 E j-1 ] 1 P(E j ) 1/p = E[ sup u∈E j |Λ i m (u)| p |E j-1 ] P(E j-1 ) P(E j ) 1/p ≤ δ -1/p 1 E[ sup u∈E j |Λ i m (u)| p |E j-1 ] 1/p ≤ (δ -1 1 ) j-m p E[ sup u∈E j |Λ i m (u)| p |E m ] 1/p (by induction).
It remains to prove the existence of C such that for all j ≥ 1, m ∈ {0, . . . , j -1} and

K > 0, E[ sup u∈E j |Λ i m (u)| p |E m ] 1/p ≤ C j-1 l=m+1 ς l 1/2-ρ+ε
with again the convention ∅ = 1. We separate the end of the proof into three cases.

Case 1: j ≥ 3 and m ∈ {1, . . . , j -2}. By Lemma 2.G.1, applied with t 0 = τ m-1 + 1 and

t 1 = τ m |Λ i m (u)| ≤ C ρ (u-τ m-1 ) -ρ τm k=τ m-1 +1 ξ i k +C κ τm-τ m-1 -1 k=1 τm l=k+τ m-1 +1 ξ i l (u-τ m-1 -k) -(ρ+1) . But, u-τ m-1 ≥ τ j-1 -τ m-1 ≥ j-1 l=m+1 ς l and u-τ m-1 -k ≥ τ j-1 -τ m +1 ≥ j-1 l=m+1 ς l . Let ε ∈ (0, ρ -1/2), we then have |Λ i m (u)| ≤ j-1 l=m+1 ς l 1/2-ρ+ε   C ρ (u -τ m-1 ) -(1/2+ε) τm k=τ m-1 +1 ξ i k +C κ τm-τ m-1 -1 k=1 τm l=k+τ m-1 +1 ξ i l (u -τ m-1 -k) -(3/2+ε)   .
We denote by Λi m (u) the above quantity between brackets. Hence

E[ sup u∈E j |Λ i m (u)| p |E m ] 1/p ≤ j-1 l=m+1 ς l 1/2-ρ+ε E[ sup u∈E j | Λi m (u)| p |E m ] 1/p .
We now have to prove the existence of C such that

E[ sup u∈E j | Λi m (u)| p |E m ] 1/p ≤ C for all p ∈ (1, +∞).
We write

E m = ∪ ≥0 A m, with A m, = B c m, ∩ B m, -1 (2.G.6)
where B m, is defined in Equation (2.5.18). In other words, A m,0 is the failure of Step 1 of tentative m and for ≥ 1, A m, is the event "Step 2 of trial m fails after exactly attempts". Let ∈ N, we begin by studying E[ sup

u∈E j | Λi m (u)| p |A m, ] 1/p . Since u > τ m , | Λi m (u)| ≤ C ρ (∆τ m ) -(1/2+ε) τ m-1 +∆τm k=τ m-1 +1 ξ i k + C κ ∆τm-1 k=1 τ m-1 +∆τm l=k+τ m-1 +1 ξ i l (∆τ m -k) -(3/2+ε) .
By Minkowski inequality and the fact that ∆τ m =: ∆(m, ) is constant on A m, , we get

E[ sup u∈E j | Λi m (u)| p |A m, ] 1/p ≤ C ρ (∆(m, )) -(1/2+ε) E   τ m-1 +∆(m, ) k=τ m-1 +1 ξ i k p |A m,   1/p + C κ ∆(m, )-1 k=1 (∆(m, ) -k) -(3/2+ε) E   τ m-1 +∆(m, ) l=k+τ m-1 +1 ξ i l p |A m,   1/p .
(2.G.7)

Moreover, using Cauchy-Schwarz inequality,

E   τ m-1 +∆(m, ) k=τ m-1 +1 ξ i k p |A m,   1/p = E   τ m-1 +∆(m, ) k=τ m-1 +1 ξ i k p 1 A m, |E m-1   1/p P(A m, |E m-1 ) -1/p ≤ E     τ m-1 +∆(m, ) k=τ m-1 +1 ξ i k   2p |E m-1   1/2p P(A m, |E m-1 ) -1/2p ≤ c p ∆(m, ) P(A m, |E m-1 ) -1/2p . (2.G.8)
In the last inequality we use the fact that

τ m-1 +∆(m, ) k=τ m-1 +1
ξ i k is independent from E m-1 and that its law is N (0, ∆(m, )). In the same way, we obtain

E   τ m-1 +∆(m, ) l=k+τ m-1 +1 ξ i l p |A m,   1/p ≤ c p ∆(m, ) -k P(A m, |E m-1 ) -1/2p .
(2.G.9)

We deduce from (2.G.8) and (2.G.9) that in (2.G.7)

E[ sup u∈E j | Λi m (u)| p |A m, ] 1/p ≤   c p C ρ (∆(m, )) -ε + c p C κ ∆(m, )-1 k=1 (∆(m, ) -k) -(1+ε)   P(A m, |E m-1 ) -1/2p ≤ C p,ε P(A m, |E m-1 ) -1/2p . (2.G.10)
Then by using the inequality (a + b) 1/p ≤ a 1/p + b 1/p for p > 1 and (2.G.10) for from 0 to +∞, we get

E[ sup u∈E j | Λi m (u)| p |E m ] 1/p =   ≥0 E[ sup u∈E j | Λi m (u)| p |A m, ]P(A m, |E m )   1/p ≤ ≥0 E[ sup u∈E j | Λi m (u)| p |A m, ] 1/p P(A m, |E m ) 1/p ≤ C p,ε ≥0 P(A m, |E m-1 ) -1/2p P(A m, |E m-1 ) P(E m |E m-1 ) 1/p ≤ C p,ε δ -1/p 1 ≥0 P(A m, |E m-1 ) 1/2p . But A m, ⊂ E m ⊂ E m-1 hence for > 0, P(A m, |E m-1 ) = P(B m, -1 |E m-1 )P(B c m, |B m, -1 ) ≤ P(B c m, |B m, -1 ),
Therefore, for all ε ∈ (0, ρ -1/2) and p ∈ (1, +∞), by applying Lemma 2.5.2, this gives us the existence of C such that

E[ sup u∈E j | Λi m (u)| p |E m ] 1/p ≤ C p,ε δ -1/p 1 (2 + ≥2 2 -α /2p ) < C.
The first case is now achieved.

Case 2: Let j ≥ 2 and m = j -1. The proof is almost exactly the same as in case 1. We simply use the following controls u -τ j-2 > ∆τ j-1 and u -τ j-2 -k > ∆τ j-1 -k and we do not introduce ε which is useless here since j-1 l=m+1 = ∅ .

Case 3: Let j ≥ 1 and m = 0. By assumption τ 0 = 0, then

Λ i 0 (u) = k=0 -∞ a u-k ξ i k .
By Lemma 2.G.1, for all M > 0,

| k=0 -M a u-k ξ i k | ≤ C ρ (u + 1 + M ) -ρ 0 k=-M ξ i k + C κ M k=1 0 l=k-M ξ i l (u + 1 + M -k) -(ρ+1) ≤ C ρ (1 + M ) -ρ 0 k=-M ξ i k + C κ M k=1 0 l=k-M ξ i l (M + 1 -k) -(ρ+1) = C ρ (1 + M ) -ρ 0 k=-M ξ i k + C κ M -1 k=0 0 l=-k ξ i l (k + 1) -(ρ+1) = C ρ (1 + M ) -ρ M k=0 ξ i -k + C κ M -1 k=0 k l=0 ξ i -l (k + 1) -(ρ+1) .
Since ρ > 1/2, by means of Borel-Cantelli Lemma and the fact that

M k=0 ξ i -k ∼ N (0, M + 1), we can show that lim M →+∞ (1 + M ) -ρ M k=0 ξ i -k = 0 a.s. We then get |Λ i 0 (u)| ≤ C κ +∞ k=0 k l=0 ξ i -l (k + 1) -(ρ+1) . Set W i k = k-1 l=0 ξ i -l for k > 0 and W i 0 = ξ i 0 .
Using Minkowski inequality, we have for all p ∈ (1, +∞) and for all ε ∈ (0, ρ -1/2)

E[ sup u∈E j |Λ i 0 (u)| p |E 0 ] 1/p = E[ sup u∈E j |Λ i 0 (u)| p ] 1/p ≤ C κ +∞ k=0 (k + 1) -(ρ+1/2-ε) E |W i k+1 | (k + 1) 1/2+ε p 1/p ≤ C κ E sup k≥0 |W i k+1 | (k + 1) 1/2+ε p 1 p +∞ k=0 (k + 1) -(ρ+1/2-ε) ≤ CE sup k≥0 |W i k+1 | (k + 1) 1/2+ε p 1 p because ρ + 1/2 -ε > 1. It remains to prove that for ε ∈ (0, ρ -1/2) and for p ∈ (1, +∞) E sup k≥0 |W i k+1 | (k + 1) 1/2+ε p 1 p < +∞.
Thanks to a summation by parts, we can show that

W i k+1 (k + 1) 1/2+ε = k l=0 ξ i -l (l + 1) 1/2+ε + k l=1 W i l 1 (l + 1) 1/2+ε - 1 l 1/2+ε .

2.G. Proof of Hypothesis (H 1 )

Hence, using that

1 (l+1) 1/2+ε -1 l 1/2+ε ≤ (1/2 + ε) 1 l 3/2+ε , we get |W i k+1 | (k + 1) 1/2+ε ≤ k l=0 ξ i -l (l + 1) 1/2+ε + (1/2 + ε) k l=1 |W i l | l 3/2+ε . Therefore sup k≥0 |W i k+1 | (k + 1) 1/2+ε ≤ sup k≥0 k l=0 ξ i -l (l + 1) 1/2+ε + (1/2 + ε) +∞ l=1 |W i l | l 3/2+ε .
We use again Minkowski inequality, which gives

sup k≥0 |W i k+1 | (k + 1) 1/2+ε p ≤ sup k≥0 k l=0 ξ i -l (l + 1) 1/2+ε p + (1/2 + ε) +∞ l=1 W i l p l 3/2+ε .
On the one hand, we have W i l p ≤ c p √ l because W i l ∼ N (0, l). On the other hand, set

N k := k l=0 ξ i -l (l+1) 1/2+ε
. This is a martingale with distribution N 0, k l=0 (l + 1) -(1+2ε) therefore N k p ≤ c p with c p independent from k. Hence, (N k ) k∈N converges a.s. and in L p into N ∞ ∈ L p . We then deduce by Doob's inequality that

sup k≥0 |N k | p ≤ p -1 p N ∞ p . Finalement, sup k≥0 |W i k+1 | (k + 1) 1/2+ε p < +∞.
which achieves the third case.

Proposition 2.G.1. Assume (H poly ). We suppose that τ 0 = 0 and that for all m ≥ 1 and K > 0, P(E m |E m-1 ) ≥ δ 1 ∈ (0, 1). Then (H 1 ) holds true.

Proof. First, thanks to (2.G.3), we have

∆τ j l=1 γ ∆τ j -l |∆ i τ j-1 +l | ≤ j m=0 τ j u=τ j-1 +1 γ τ j -u |Λ i m (u)|.
The aim is to bound every term in the right-hand side. For m ∈ {0, . . . , j -1} and for all u

∈ E j := τ j-1 + 1, τ j , |Λ i m (u)| ≤ sup u∈E j |Λ i m (u)|.
Since the right-hand side does not depend on u anymore, we deduce that for all m ∈ {0, . . . , j -1}

τ j u=τ j-1 +1 γ τ j -u |Λ i m (u)| ≤ sup u∈E j |Λ i m (u)| +∞ w=0 γ w = sup u∈E j |Λ i m (u)| 1 1 -γ .
Hence, Lemma 2.G.2, gives that for all m ∈ {0, . . . , j -1}

E   τ j u=τ j-1 +1 γ τ j -u |Λ i m (u)| E j   ≤ C 1 -γ η j-m
where η ∈ (0, 1). Consequently,

E   j-1 m=0 τ j u=τ j-1 +1 γ τ j -u |Λ i m (u)| E j   ≤ C (1 -γ)(1 -η) . (2.G.11)
In inequality (2.G.3), it then remains to bound the term with Λ i j (u). By substitution, we obtain for m = j

τ j u=τ j-1 +1 γ τ j -u |Λ i j (u)| = ∆τ j v=1 γ ∆τ j -v |Λ i j (v + τ j-1 )|.
As in the proof of Lemma 2.G.2, we use the decomposition of E j through the events A j, and that ∆τ j =: ∆(j, ) is constant on A j, :

E[ τ j u=τ j-1 +1 γ τ j -u |Λ i j (u)| |E j ] = ≥0 ∆(j, ) v=1 γ ∆(j, )-v E[|Λ i j (v + τ j-1 )| |A j, ]P(A j, |E j ).
(2.G.12) Using that A j, ⊂ E j ⊂ E j-1 and Cauchy-Schwarz inequality, one notes that

E[|Λ i j (v + τ j-1 )| |A j, ]P(A j, |E j ) ≤ E[|Λ i j (v + τ j-1 )| 2 |E j ] 1/2 P(A j, |E j ) 1/2 ≤ E[|Λ i j (v + τ j-1 )| 4 |E j-1 ] 1/4 P(E j |E j-1 ) 1/4 P(A j, |E j ) 1/2 ≤ sup v∈N * E[|Λ i j (v + τ j-1 )| 4 |E j-1 ] 1/4 P(E j |E j-1 ) 1/4 P(A j, |E j ) 1/2 .
(2.G.13)

But P(E j |E j-1 ) ≥ δ 1 > 0 and by Lemma 2.5.2, we have for all ≥ 2,

P(A j, |E j ) = P(A j, |E j-1 ) P(E j |E j-1 ) ≤ δ -1 1 P(B j, -1 |E j-1 )P(B c j, |B j, -1 ) ≤ δ -1 1 2 -α . (2.G.14)
We now use (2.G.13) and (2.G.14) into (2.G.12) and this gives the existence of

C δ 1 ,γ such that E[ τ j u=τ j-1 +1 γ τ j -u |Λ i j (u)| |E j ] ≤ C δ 1 ,γ sup v∈N * E[|Λ i j (v + τ j-1 )| 4 |E j-1 ] 1/4 . (2.G.15)
It only remains to show that sup

v∈N * E[|Λ i j (v + τ j-1 )| 4 |E j-1 ] 1/4 < +∞.
By Lemma 2.G.1 and the definition of Λ i j in (2.G.2),

|Λ i j (v + τ j-1 )| = v+τ j-1 k=τ j-1 +1 a v+τ j-1 -k ξ i k ≤ C ρ v -ρ v+τ j-1 k=τ j-1 +1 ξ i k + C κ v-1 k=1 v+τ j-1 l=k+τ j-1 +1 ξ i l (v -k) -(ρ+1) .
We again apply Minkowski inequality

E[|Λ i j (v+τ j-1 )| 4 |E j-1 ] 1/4 ≤ C ρ v -ρ E   v+τ j-1 k=τ j-1 +1 ξ i k 4 E j-1   1/4 + C κ v-1 k=1 (v -k) -(ρ+1) E   v+τ j-1 l=k+τ j-1 +1 ξ i l 4 E j-1   1/4 = C ρ v -ρ E   v k=1 ξ i k 4   1/4 + C κ v-1 k=1 (v -k) -(ρ+1) E   v l=k+1 ξ i l 4   1/4 ≤ c 4 C ρ v -ρ+1/2 + C κ v-1 k=1 (v -k) -(ρ+1/2)
where c 4 is related to the 4 th moment of a centered and reduced Gaussian random variable. Since ρ + 1/2 > 1, we immediately deduce that sup

v∈N * E[|Λ i j (v + τ j-1 )| 4 |E j-1 ] 1/4 < +∞. (2.G.16)
We put together (2.G.11),(2.G.15) and (2.G.16) to conclude the proof of (H 1 ).

Concentration inequalities for Stochastic Differential Equations with additive fractional noise

This chapter is based on the article [START_REF] Varvenne | Concentration inequalities for stochastic differential equations with additive fractional noise[END_REF], submitted in Electronic Journal of Probability. 

Introduction

In this chapter, we consider the solution (Y t ) t≥0 of the following R d -valued Stochastic Differential Equation (SDE) with additive noise: 

Y t = x + t 0 b(Y s )ds + σB t . ( 3 
W p (µ, ν) = inf d(x, y) p dπ(x, y) ,
where the infimum runs over all the probability measures π on E × E with marginals µ and ν. The entropy of ν with respect to µ is defined by

H(ν|µ) = log dν dµ dν, if ν µ, +∞ otherwise.
Then, we say that µ satisfies an L p -transportation inequality with constant C ≥ 0 (noted µ ∈ T p (C)) if for any probability measure ν,

W p (µ, ν) ≤ 2CH(ν|µ). (3.1.2)
The concentration of measure is intrinsically linked to the above inequality when p = 1. This fact was first emphasized by K.Marton [START_REF] Marton | A measure concentration inequality for contracting Markov chains[END_REF][START_REF] Marton | Bounding d-distance by informational divergence: a method to prove measure concentration[END_REF], M.Talagrand [START_REF] Talagrand | Transportation cost for Gaussian and other product measures[END_REF], Bobkov and Götze [START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF] and amply investigated by M.Ledoux [START_REF] Ledoux | The concentration of measure phenomenon[END_REF][START_REF] Ledoux | Concentration, transportation and functional inequalities[END_REF]. Indeed, it can be shown (see [START_REF] Ledoux | The concentration of measure phenomenon[END_REF] for a detailed proof) that (3.1.2) for p = 1 is actually equivalent to the following: for any µ-integrable α-Lipschitz function F (real valued) we have for all λ ∈ R,

E (exp (λ (F (X) -E[F (X)]))) ≤ exp Cα 2 λ 2 2 (3.1.3)
with L(X) = µ. This upperbound naturally leads to concentration inequalities through the classical Markov inequality. For several years, L 1 (and L 2 since T 2 (C) implies T 1 (C)) transportation inequalities have then been widely studied and in particular for diffusion processes (see for instance [START_REF] Djellout | Transportation cost-information inequalities and applications to random dynamical systems and diffusions[END_REF][START_REF] Wu | Talagrand's T 2 -transportation inequality w.r.t. a uniform metric for diffusions[END_REF][START_REF] Gourcy | Logarithmic Sobolev inequalities of diffusions for the L 2 metric[END_REF]). For SDE's driven by more general Gaussian processes, S.Riedel established transportation cost inequalities in [START_REF] Riedel | Transportation-cost inequalities for diffusions driven by Gaussian processes[END_REF] using Rough Path theory. However, his results do not give long-time concentration, which is our focus here.

In the setting of fractional noise, T.Guendouzi [START_REF] Guendouzi | Transportation inequalities for SDEs involving fractional Brownian motion and standard Brownian motion[END_REF] and B.Saussereau [START_REF] Saussereau | Transportation inequalities for stochastic differential equations driven by a fractional Brownian motion[END_REF] have studied transportation inequalities with different metrics in the case where H ∈ (1/2, 1). In particular, B.Saussereau gave an important contribution: he proved T 1 (C) and T 2 (C) for the law of (Y t ) t∈[0,T ] in various settings and he got a result of large-time asymptotics in the case of a contractive drift. Our first motivation to this work was to get equivalent results in a discrete-time context, i.e. for L((Y k∆ ) 1≤k≤n ) for a given step ∆ > 0 and then long-time concentration inequalities for the occupation measure, i.e. for 1 n n k=1 f (Y k∆ ) (where f is a general Lipschitz function real valued). Indeed, in a statistical framework we only have access to discrete-time observations of the process Y and such a result could be meaningful in such context. To the best of our knowledge, this type of result is unknown in the fractional setting. We first tried to adapt the methods used in [START_REF] Saussereau | Transportation inequalities for stochastic differential equations driven by a fractional Brownian motion[END_REF] in several ways as for example: find a distance such that (y t ) t∈[0,T ] → (y k∆ ) 1≤k≤n is Lipschitz and prove T 1 (C) with this metric. But the constants obtained in the L 1 -transportation inequalities were not sharp enough, so that we couldn't deduce large-time asymptotic as B.Saussereau. In [START_REF] Djellout | Transportation cost-information inequalities and applications to random dynamical systems and diffusions[END_REF], H.Djellout, A.Guillin and L.Wu explored transportation inequalities in the diffusive case and both in a continuous and discrete-time setting. In particular, for the discrete-time case, they used a kind of tensorization of the L 1 transportation inequality but the Markovian nature of the process was essential. However, they prove T 1 (C) through its equivalent formulation (3.1.3) and to this end, they apply a decomposition of the functional in (3.1.3) into a sum of martingale increments, namely:

F (X) -E[F (X)] = n k=1 E[F (X)|F k ] -E[F (X)|F k-1 ]
with X = (Y k∆ ) 1≤k≤n and Y is the solution of (3.1.1) when B is the classical Brownian motion. This decomposition has inspired the approach described in this chapter: instead of proving an L 1 transportation inequality (3.1.2), we prove its equivalent formulation (3.1.3) by using a similar decomposition and the series expansion of the exponential function. Through this strategy, we prove several results under an assumption of contractivity on the drift term b in (3.1.1). First, in a discrete-time setting, we work in the space (R d ) n endowed with the L 1 metric and we show that for any α-Lipschitz functional F : (R d ) n → R and for any λ > 0,

E (exp (λ (F (X) -E[F (X)]))) ≤ exp Cα 2 λ 2 n 2H∨1
with X = (Y k∆ ) 1≤k≤n . In a similar way, we consider the space of continuous functions C([0, T ], R d ) endowed with the L 1 metric and we prove that for any α-Lipschitz functional F : C([0, T ], R d ) → R and for any λ > 0,

E exp λ F (X) -E[ F (X)] ≤ exp Cα 2 λ 2 T 2H∨1
with X = (Y t ) t∈[0,T ] . From these inequalities, we deduce some general concentration inequalities and large-time asymptotics for occupation measures. Let us note that we have no restriction on the Hurst parameter H and we retrieve the results given by B.Saussereau for H ∈ (1/2, 1) in a continuous setting and also the result given in [START_REF] Djellout | Transportation cost-information inequalities and applications to random dynamical systems and diffusions[END_REF] for H = 1/2, namely for diffusion.

The chapter is organised as follows. In the next section, we describe the assumptions on the drift term and we state the general theorem about concentration, namely Theorem 3.2.2. Then, in Subsection 3.2.3, we apply this result to specific functionals related to the occupation measures (both in a discrete-time and in a continuous-time framework). Section 3.3 outlines our strategy of proof which is fulfilled in Sections 3.4 and 3.5.

Setting and main results

Notations

The usual scalar product on R d is denoted by , and | . | stands either for the Euclidean norm on R d or the absolute value on R. We denote by M d (R) the space of real matrices of size d × d. For a given n ∈ N * and (x, y) ∈ R d n × R d n , we denote by d n the following L 1 -distance:

d n (x, y) := n k=1 |x i -y i |. (3.2.1)
Analogeously, for a given T > 0 and (x, 

y) ∈ C [0, T ], R d × C [0, T ], R d ,
F Lip := sup x =y d E (F (x), F (y)) d E (x, y)
its Lipschitz norm.

Assumptions and general result

Let B be a d-dimensional fractional Brownian motion (fBm) with Hurst parameter H ∈ (0, 1) defined on (Ω, F, P) and transferred from a d-dimensional Brownian motion W through the Volterra representation (see e.g. [START_REF] Decreusefond | Stochastic analysis of the fractional Brownian motion[END_REF][START_REF] Carmona | Stochastic integration with respect to fractional Brownian motion[END_REF])

∀t ∈ R + , B t = t 0 K H (t, s)dW s , (3.2.3) with K H (t, s) := c H t H-1 2 s H-1 2 (t -s) H-1 2 -H - 1 2 t s u H-3 2 s H-1 2 (u -s) H-1 2 du . (3.2.4)
We consider the following R d -valued stochastic differential equation driven by B:

Y t = x + t 0 b(Y s )ds + σB t , t ≥ 0. (3.2.5)
Here x ∈ R d is a given initial condition, B is the aformentioned fractional Brownian motion and σ ∈ M d (R).

We are working under the following assumption :

Hypothesis 3.2.1. We have b ∈ C(R d ; R d
) and there exist constants α, L > 0 such that:

(i) For every x, y ∈ R d , b(x) -b(y), x -y ≤ -α|x -y| 2 . (ii) For every x, y ∈ R d , |b(x) -b(y)| ≤ L|x -y|.
Remark 3.2.1. This contractivity assumption on the drift term is quite usual to get long-time concentration results (see [START_REF] Djellout | Transportation cost-information inequalities and applications to random dynamical systems and diffusions[END_REF][START_REF] Saussereau | Transportation inequalities for stochastic differential equations driven by a fractional Brownian motion[END_REF] for instance). At this stage, a more general framework seems elusive.

Let T > 0 and n 

∈ N * . Let F : (R d ) n , d n → (R, | • |) and F : C [0, T ], R d , d T → (R, | • |)
(R d ) n , d n → (R, | • |)
and for all λ > 0,

E [exp (λ(F Y -E[F Y ]))] ≤ exp C H,∆ F 2 Lip λ 2 n 2H∨1 . (3.2.7)
(ii) there exist CH > 0 such that for all Lipschitz function F : 

C [0, T ], R d , d T → (R, | • |) and for all λ > 0, E exp λ( FY -E[ FY ]) ≤ exp CH F 2 Lip λ 2 T 2H∨1 . ( 3 
(R d ) n , d n → (R, | • |)
and for all r ≥ 0,

P (F Y -E[F Y ] > r) ≤ exp - r 2 4C H,∆ F 2 Lip n 2H∨1 .
(3.2.9)

(ii) there exist CH > 0 such that for all Lipschitz function F :

C [0, T ], R d , d T → (R, | • |)
and for all r ≥ 0,

P FY -E[ FY ]) > r ≤ exp - r 2 4 CH F 2 Lip T 2H∨1 .
(3.2.10)

Proof. We use Markov inequality and Proposition 3.2.1. Then, we optimize in λ to get the result.

Remark 3.2.3. The dependency on the Lipschitz constant of F and F is essential since they may depend on n and T . Hence, if they decrease fastest than n -2H∨1 and T -2H∨1 , we get large time concentration inequalities.

In the following subsection, we outline our main application of Theorem 3.2.2 for which long time concentration holds.

Long time concentration inequalities for occupation measures

We now apply our general result to specific functionals to get the following theorem. and for all r ≥ 0, 

P 1 n n k=1 f (Y t k ) -E[f (Y t k )] > r ≤ exp - r 2 n 2-(2H∨1) 4C H,∆ f 2 Lip . ( 3 
T T 0 (f (Y t ) -E[f (Y t )])dt > r ≤ exp - r 2 T 2-(2H∨1) 4 CH f 2 Lip . ( 1 

.2.12)

Proof. We apply Theorem 3.2.2 with the following functions F and F : 

∀x ∈ R d n , F (x) = 1 n n k=1 f (x i ) and ∀x ∈ C [0, T ], R d , F (x) = 1 T T 0 f (x t )

Sketch of proof

Recall that F Y and FY are defined by (3.2.6). The key element to get the bound (3.2.7) and (3.2.8) is to decompose F Y and FY into a sum of martingale increments as follows. Let (F t ) t≥0 be the natural filtration associated to the standard Brownian motion W from which the fBm is derived through (3.2.3). For all k ∈ N, set

M k := E[F Y | F t k ] and Mk := E[ FY | F k ]. (3.3.1)

Sketch of proof

With these definitions, we have:

F Y -E[F Y ] = M n = n k=1 M k -M k-1 and FY -E[ FY ] = M T = T k=1 Mk -Mk-1 (3.3.2)
where T denotes the least integer greater than or equal to T .

With this decomposition in hand, we first estimate the conditional exponential moments of the martingale increments M k -M k-1 and Mk -Mk-1 to get Proposition 3.2.1. This is the purpose of Proposition 3.5.2 for which the proof is based on the following lemma: Lemma 3.3.1. Let X be a centered real valued random variable such that for all p ≥ 2, there exist C, ζ > 0 such that

E[|X| p ] ≤ Cζ p/2 pΓ p 2 .
Then for all λ > 0,

E[e λX ] ≤ e 2C ζλ 2 with C = 1 ∨ C.
Proof. Since X is centered, by using the series expansion of the exponential function, we have:

E [exp (λX)] ≤ 1 + C +∞ p=2 λ p ζ p 2 pΓ p 2 p! ≤ 1 + +∞ p=2 λ p (C ζ) p 2 pΓ p 2 p! (3.3.3) with C = 1 ∨ C. We set t 2 = λ 2 C ζ, then 1 + +∞ p=2 (t 2 ) p 2 pΓ p 2 p! = 1 + +∞ p=1 (t 2 ) p 2pΓ (p) (2p)! + +∞ p=1 (t 2 ) p+ 1 2 (2p + 1)Γ p + 1 2 (2p + 1)! = 1 + 2 +∞ p=1 (t 2 ) p Γ (p + 1) (2p)! + |t| +∞ p=1 (t 2 ) p Γ p + 1 2 (2p)! ≤ 1 + (2 + |t|) +∞ p=1 (t 2 ) p p! (2p)! ≤ 1 + 1 + |t| 2 (e t 2 -1) since 2(p!) 2 ≤ (2p)! .
Since for all t ∈ R, |t| 2 ≤ e t 2 , we get |t| 2 (e t 2 -1) ≤ e t 2 (e t 2 -1) which is equivalent to

1 + 1 + |t| 2 (e t 2 -1) ≤ e 2t 2 ,
so that:

1 + +∞ p=2 (t 2 ) p 2 pΓ p 2 p! ≤ e 2t 2 .
Hence, we have in (3.3.3):

E [exp (λX)] ≤ exp 2λ 2 ζC
which concludes the proof.

Remark 3.3.1. The previous proof follows the proof of Lemma 1.5 in Chapter 1 of [START_REF] Rigollet | High dimensional statistics[END_REF].

We chose to give the details here since this step is crucial to get our main results.

Finally, the end of the proof of Proposition 3.2.1 (i) is based on the following implication: if there exists a deterministic sequence (u k ) such that

E e λ(M k -M k-1 ) F k-1 ≤ e λ 2 u k , then E e λMn = E e λM n-1 E e λ(Mn-M n-1 ) F n-1 ≤ exp λ 2 u n E e λM n-1 so that E e λMn ≤ exp λ 2 n k=1 u k .
The same arguments are used for item (ii) of Proposition 3.2.1. Sections 3.4 and 3.5 are devoted to the proof of Proposition 3.2.1. The first step, detailed in Section 3.4, consists in giving a new expression to the martingale increments and to control them. The second step, which is outlined in Section 3.5.1, focuses on managing the conditional moments of these increments to get Proposition 3.5.2. The proof of Proposition 3.2.1 is finally achieved in Section 3.5.2.

Throughout the chapter, constants may change from line to line.

Control of the martingale increments

For the sake of clarity, we set ∆ = 1 in the sequel, so that by (3.2.6) we have t k = k. When ∆ > 0 is arbitrary, the arguments are the same, it sufficies to apply a rescaling.

Through equation (4.1.2) and the fact that b is Lipschitz continuous, for all t ≥ 0, Y t can be seen as a measurable functional of the time t, the initial condition x and the Brownian motion (W s ) s∈ [0,t] . Denote by Φ :

R + × R d × C(R + , R d ) → R d this functional, we then have ∀t ≥ 0, Y t := Φ t (x, (W s ) s∈[0,t] ). (3.4.1) By (3.4.6), d du |X u -Xu | 2 = 2 X u -Xu , b(X u ) -b( Xu ) + X u -Xu , σ 1 0 ∂ ∂u K H (u + k -1, s + k -1)d(W (k) -w(k) ) s ≤ -2α|X u -Xu | 2 + α|X u -Xu | 2 + |σ| 2 2α 1 0 ∂ ∂u K H (u + k -1, s + k -1)d(W (k) -w(k) ) s 2 ≤ -α|X u -Xu | 2 + |σ| 2 2α 1 0 ∂ ∂u K H (u + k -1, s + k -1)d(W (k) -w(k) ) s 2 .
We then apply Gronwall's lemma to obtain

|X u -Xu | 2 ≤ e -α(u-2) |X 2 -X2 | 2 + |σ| 2 2α u 2 e -α(u-v) 1 0 ∂ ∂v K H (v + k -1, s + k -1)d(W (k) -w(k) ) s 2 dv.
(3.4.8) Now, we set for all v ≥ 2,

ϕ k (v) := 1 0 ∂ ∂v K H (v + k -1, s + k -1)d(W (k) -w(k) ) s = c H 1 0 v + k -1 s + k -1 H-1 2 (v -s) H-3 2 d(W (k) -w(k) ) s . (3.4.9)
We apply an integration by parts to ϕ k taking into account that W

(k) 0 = w(k) 0 = 0: ϕ k (v) = c H v + k -1 k H-1 2 (v -1) H-3 2 (W (k) 1 - w(k) 1 ) -c H (1/2 -H) 1 0 (v + k -1) H-1 2 (s + k -1) -H-1 2 (v -s) H-3 2 (W (k) s -w(k) s )ds -c H (3/2 -H) 1 0 v + k -1 s + k -1 H-1 2 (v -s) H-5 2 (W (k) s -w(k) s )ds =: c H (I 1 (v) + I 2 (v) + I 3 (v)). (3.4.10)
Recall that by (3.4.8), our goal here is to manage

u 2 e -α(u-v) |ϕ k (v)| 2 dv ≤ 3c 2 H u 2 e -α(u-v) |I 1 (v)| 2 dv + u 2 e -α(u-v) |I 2 (v)| 2 dv + u 2 e -α(u-v) |I 3 (v)| 2 dv (3.4.11)
To control each term involving I 1 , I 2 and I 3 in (3.4.11), we will need the following inequality:

u 2 e -α(u-v) k 1-2H (v -1 + k) 2H-1 (v -1) 2H-3 dv ≤ C H k 1-2H (u -1) 4H-4 + (u -1) 2H-3 for H > 1/2 (u -1) 2H-3 for H < 1/2 . ( 3 
.4.12) Inequality (3.4.12) is obtained through Lemma 3.4.2 and the elementary inequalities

(v -1 + k) 2H-1 ≤ (v -1) 2H-1 + k 2H-1 if H > 1/2 and (v -1 + k) 2H-1 ≤ k 2H-1 if H < 1/2. Lemma 3.4.2. Let α, β > 0. Then, for all u ≥ 2, u 2 e -α(u-v) (v -1) -β dv ≤ C α,β (u -1) -β .
Proof. It is enough to apply an integration by parts and then use that

sup v∈[2,u] e -α(u-v) (v -1) -β-1 = max e -α(u-2) , (u -1) -β-1
to conclude the proof.

It remains to show how the terms involving I 1 , I 2 and I 3 in (3.4.11) can be reduced to the term (3.4.12). Let us begin with I 1 which is straightforward:

u 2 e -α(u-v) |I 1 (v)| 2 dv ≤ |W (k) 1 -w (k) 1 | 2 u 2 e -α(u-v) k 1-2H (v -1 + k) 2H-1 (v -1) 2H-3 dv ≤ sup s∈[0,1] |W (k) s -w (k) s | 2 u 2 e -α(u-v) k 1-2H (v -1 + k) 2H-1 (v -1) 2H-3 dv. (3.4.13)
Then, using the definition of

I 2 , u 2 e -α(u-v) |I 2 (v)| 2 dv ≤ (1/2 -H) 2 u 2 e -α(u-v) (v -1 + k) 2H-1 (v -1) 2H-3 (k -1) -2H-1 1 0 |W (k) s -w (k) s |ds 2 dv ≤ C H sup s∈[0,1] |W (k) s -w (k) s | 2 u 2 e -α(u-v) k 1-2H (v -1 + k) 2H-1 (v -1) 2H-3 dv. (3.4.14) Finally, u 2 e -α(u-v) |I 3 (v)| 2 dv ≤ (3/2 -H) 2 u 2 e -α(u-v) (v -1 + k) 2H-1 (v -1) 2H-5 1 0 (s + k -1) 1 2 -H |W (k) s -w (k) s |ds 2 dv ≤ C H sup s∈[0,1] |W (k) s -w (k) s | 2 u 2 e -α(u-v) (v -1 + k) 2H-1 (v -1) 2H-3 1 0 (s + k -1) 1 2 -H ds 2 dv ≤ C H sup s∈[0,1] |W (k) s -w (k) s | 2 u 2 e -α(u-v) k 1-2H (v -1 + k) 2H-1 (v -1) 2H-3 dv (3.4.15)
where the last inequality is given by the following fact: there exists C H > 0 such that for all k = 1, sup

s∈[0,1] (s + k -1) 1 2 -H ≤ C H k 1 2 -H .
It remains to combine the three above inequalities (3.4.13), (3.4.14) and (3.4.15) with (3.4.12) to get the following in (3.4.11):

u 2 e -α(u-v) |ϕ k (v)| 2 dv ≤ C H sup s∈[0,1] |W (k) s -w (k) s | 2 k 1-2H (u -1) 4H-4 + (u -1) 2H-3 for H > 1/2 (u -1) 2H-3 for H < 1/2 .
Putting this inequality into (3.4.8) gives the result (we can replace u -1 by u, the inequality remains true when u ≥ 2 up to a constant).

When k = 1 Lemma 3.4.3. Let k = 1. Then, for all u ≥ 2, |X u -Xu | 2 ≤ e -α(u-2) |X 2 -X2 | 2 +Ψ H (u, 1) sup v∈[0,1/2] 1 0 s 1 2 -H (1 -vs) H-3 2 d W (1) -w(1) s 2
where Ψ H is defined in Proposition 3.4.1.

Proof. The proof begins as in the proof of Lemma 3.4.1. We have through inequality (3.4.8):

|X u -Xu | 2 ≤ e -α(u-2) |X 2 -X2 | 2 + |σ| 2 2α u 2 e -α(u-v) |ϕ 1 (v)| 2 dv (3.4.16) with ϕ 1 (v) = c H v H-1 2 1 0 s 1 2 -H (v -s) H-3 2 d(W (1) -w(1) ) s = c H v H-1 2 v H-3 2 1 0 s 1 2 -H 1 - s v H-3 Since for v ≥ 2, v H-1 2 is bounded when H < 1/2, we have u 2 e -α(u-v) |ϕ 1 (v)| 2 dv ≤ c H u 2 e -α(u-v) v (4H-4)∨(2H-3) 1 0 s 1 2 -H 1 - s v H-3 2 d(W (1) -w(1) ) s 2 dv ≤ C H sup v ∈[0,1/2] 1 0 s 1 2 -H 1 -v s H-3 2 d(W (1) -w(1) ) s 2 u 2 e -α(u-v) v (4H-4)∨(2H-3) dv.
Then, we use Lemma 3.4.2 in the previous inequality, which gives: -3) .

u 2 e -α(u-v) |ϕ 1 (v)| 2 dv ≤ C H sup v ∈[0,1/2] 1 0 s 1 2 -H 1 -v s H-3 2 d(W (1) -w(1) ) s 2 (u -1) (4H-4)∨(2H
This inequality combined with (3.4.16) concludes the proof (we can replace u -1 by u, the inequality remains true when u ≥ 2 up to a constant).

Second case : u ∈ [0, 2]

The idea here is to use Gronwall lemma in its integral form. By Hypothesis 3.2.1, b is L-Lipschitz so that:

|X u -Xu | ≤ L u 0 |X s -Xs |ds + 1∧u 0 K H (u + k -1, s + k -1)d(W (k) -w(k) ) s .
Then, for u ∈ [0, 2],

|X u -Xu | ≤ 1∧u 0 K H (u + k -1, s + k -1)d(W (k) -w(k) ) s + u 0 1∧v 0 K H (v + k -1, s + k -1)d(W (k) -w(k) ) s e L(u-v) dv ≤ e 2L sup v∈[0,2] 1∧v 0 K H (v + k -1, s + k -1)d(W (k) -w(k) ) s (3.4.18)
For all k ≥ 1 and for all v ∈ [0, 2], we set 

G (k) v (W -w) = 1∧v 0 K H (v + k -1, s + k -1)d(W (k) -w(k) ) s . ( 3 

Conditional exponential moments of the martingale increments

Conditional moments of the martingale increments

Proposition 3.5.1. (i) There exists C, ζ > 0 such that for all k ∈ N * and for all p ≥ 2,

E[|M k -M k-1 | p |F k-1 ] 1/p ≤ C F Lip ψ n,k ζ p/2 pΓ p 2 1/p a.s. (3.5.

1)

(ii) There exists C, ζ > 0 such that for all k ∈ N * and for all p ≥ 2,

E[| Mk -Mk-1 | p |F k-1 ] 1/p ≤ C F Lip ψ T,k ζ p/2 pΓ p 2 1/p a.s. (3.5.2)
where

ψ n,k := n-k+1 u=1 Ψ H (u, k), ψ T,k := T -k+1 0 Ψ H (u ∨ 1, k)du and Ψ H is defined in Proposition 3.4.1.
To prove this result, we first need the following intermediate outcome.

Lemma 3.5.1. For all k ∈ N * , let G (k) be defined by (3.4.19). Then, for all p ≥ 2, there exists C > 0 such that

E[|M k -M k-1 | p |F k-1 ] 1/p ≤ 3C F Lip ψ n,k   E sup v∈[0,1]
|W (1) v -

W (1) v | p 1/p + E sup v∈[0,2] |G (k) v (W -W )| p 1/p +E sup v∈[0,1/2] 1 0 s 1 2 -H (1 -vs) H-3 2 d(W (1) -W (1) ) s p 1/p   a.s.
Or equivalently, since W (k) and W (k) are iid we can replace Proof. For the sake of simplicity, assume that F Lip = 1. By inequality (3.4.2), we have for all p ≥ 2,

W (k) -W (k) by √ 2W (k) : E[|M k -M k-1 | p |F k-1 ] 1/p ≤ 3C √ 2 F Lip ψ n,k   E sup v∈[0,1] |W (1) v | p 1/p + E sup v∈[0,2] |G (k) v (W )| p 1/p +E sup v∈[0,1/2] 1 0 s 1 2 -H (1 -vs) H-3 2 dW (1)
|M k -M k-1 | p ≤ Ω n-k+1 u=1 |X u -Xu | P W (d w) p .
Now, we use Proposition 3.4.1 and for the sake of clarity we set

W (k) -w(k) ∞,[0,1] := sup v∈[0,1] |W (k) v - w(k) v |, A(W (k) -w(k) ) := sup v∈[0,1/2] 1 0 s 1 2 -H (1 -vs) H-3 2 d(W (k) -w(k) ) s and C k (W (k) -w(k) ) := sup v∈[0,2] |G (k) v (W -w)|.
Then, by Jensen inequality,

|M k -M k-1 | p ≤ C p ψ p n,k Ω W (k) -w(k) ∞,[0,1] + A(W (k) -w(k) ) + C k (W (k) -w(k) ) P W (d w) p ≤ 3 p-1 C p ψ p n,k Ω W (k) -w(k) p ∞,[0,1] P W (d w) + Ω A(W (k) -w(k) ) p P W (d w) + Ω C k (W (k) -w(k) ) p P W (d w) Recall that W (k) = (W s+k-1 -W k-1 ) s≥0 and thus W (k) is independent of F k-1 . Then, E[|M k -M k-1 | p |F k-1 ] ≤ 3 p-1 C p ψ p n,k E Ω W (k) -w(k) p ∞,[0,1] P W (d w) + Ω A(W (k) -w(k) ) p P W (d w) + Ω C k (W (k) -w(k) ) p P W (d w) F k-1 ≤ 3 p-1 C p ψ p n,k E Ω W (k) -w(k) p ∞,[0,1] P W (d w) + Ω A(W (k) -w(k) ) p P W (d w) + Ω C k (W (k) -w(k) ) p P W (d w)
We denote by F (k) the filtration associated to W (k) , we rewrite

E [|M k -M k-1 | p |F k-1 ] ≤ 3 p-1 C p ψ p n,k E E W (k) -W (k) p ∞,[0,1] F (k) 1 + E E A(W (k) -W (k) ) p F (k) 1 +E E C k (W (k) -W (k) ) p F (k) 1 = 3 p-1 C p ψ p n,k E W (k) -W (k) p ∞,[0,1] + E A(W (k) -W (k) ) p +E C k (W (k) -W (k) ) p
Using the elementary inequality (a + b) 1/p ≤ a 1/p + b 1/p , we finally get :

E [|M k -M k-1 | p |F k-1 ] 1/p ≤ 3Cψ n,k E W (k) -W (k) p ∞,[0,1] 1/p + E A(W (1) -W (1) ) p 1/p + E C k (W (k) -W (k) ) p 1/p
and the proof is over since W (k) and W (k) have respectively the same distribution as W (1) and W [START_REF] Arnold | Random dynamical systems[END_REF] .

In the same way, we prove the result for M by using (3.4.3) which gives 

| Mk -Mk-1 | p ≤ Ω T -k+1 0 |X u -Xu | P W (d w)
|W (1) v | p 1/p ≤ ζ p/2 pΓ p 2 1/p , (3.5.3) E sup v∈[0,1/2] 1 0 s 1 2 -H (1 -vs) H-3 2 dW (1) s p 1/p ≤ ζ p/2 pΓ p 2 1/p (3.5.4) and E sup v∈[0,2] |G (k) v (W )| p 1/p ≤ ζ p/2 pΓ p 2 1/p . ( 3 
|G (k) v (W )| p 1/p ≤ 2 α H E G (k) p α H ,[0,2] 1/p
for all α H ∈ (0, 1). Hence, it remains to get (3.5.4). To this end, we set for all v ∈ [0, 1/2],

Gv :=

1 0 s 1 2 -H (1 -vs) H-3 2 dW (1) s . Let 0 ≤ v < v ≤ 1/2, we have E[| Gv -Gv | 2 ] = 1 0 s 1-2H [(1 -vs) H-3 2 -(1 -v s) H-3 2 ] 2 ds = 1 (3/2 -H) 2 1 0 s 1-2H v v (1 -us) H-5 2 du 2 ds.
Since for all u ∈ [0, 1/2] and for all s ∈ [0, 1] we have 1 2 ≤ 1 -us ≤ 1, we deduce that

E[| Gv -Gv | 2 ] ≤ C H (v -v ) 2 1 0 s 1-2H ds = C H 2 -2H (v -v ) 2 .
Hence, for all α ∈ (0, 1),

sup 0≤v <v≤ 1 2 E[| Gv -Gv | 2 ] 1/2 |v -v | α < +∞ (3.5.6)
Now, following carefully the proof of Proposition 3.B.2 in Appendix 3.B, one can show that (3.5.6) and the fact that G is a Gaussian process implies (3.5.4) since for all α ∈ (0, 1)

E sup v∈[0,1/2] | Gv | p 1/p ≤ 2 -α E G p α,[0,1/2] 1/p + E[| G0 | p ] 1/p .

Proof of Proposition 3.2.1

We have the following result: Proposition 3.5.2. (i) There exists C , ζ > 0 such that for all k ∈ N * and for all λ > 0,

E[exp(λ(M k -M k-1 ))|F k-1 ] ≤ exp 2λ 2 F 2 Lip ψ 2 n,k C ζ a.s. ( 3 

.5.7)

(ii) There exists C , ζ > 0 such that for all k ∈ N * and for all λ > 0, Let us now conclude the proof of Proposition 3.2.1 (i). By the decomposition (3.3.2) and Proposition 3.5.2 (i), we have the following recursive inequality :

E[exp(λ( Mk -Mk-1 ))|F k-1 ] ≤ exp 2λ 2 F 2 Lip ψ 2 T,k C ζ a.s. ( 3 
E e λMn = E e λM n-1 E e λ(Mn-M n-1 ) F n-1 ≤ exp 2λ 2 F 2 Lip ψ 2 n,n C ζ E e λM n-1
which gives (ii) Let T ≥ 1 and (ψ T,k ) be defined as in Proposition 3.5.1. There exists

E e λMn ≤ exp 2λ 2 F 2 Lip C ζ n k=1 ψ 2 n,k . ( 3 
C H > 0 such that T k=1 ψ 2 T,k ≤ C H T 2(H∨ 1 2 ) . Proof. (i) Recall that ψ n,k = n-k+1 u=1 Ψ H (u, k) with Ψ H (u, k) := C H u 2H-3 if H ∈ (0, 1/2) k 1-2H u 4H-4 + u 2H-3 if H ∈ (1/2, 1)
and C H > 0. £ First case: H ∈ (0, 1/2). We have

n-k+1 u=1 u H-3 2 ≤ +∞ u=1 u H-3 2 < +∞.
Then,

n k=1 ψ 2 n,k ≤ C H n
which concludes the proof for H ∈ (0, 1/2).

£ Second case: H ∈ (1/2, 1). We have

n-k+1 u=1 u H-3 2 ≤ n-k+1 0 t H-3 2 dt = 1 H -1/2 (n -k + 1) H-1 2 and n-k+1 u=1 u 2H-2 ≤ n-k+1 0 t 2H-2 dt = 1 2H -1 (n -k + 1) 2H-1 .
Then,

n k=1 ψ 2 n,k ≤ C 1,H n k=1 (n -k + 1) 2H-1 + C 2,H n k=1 k 1-2H (n -k + 1) 4H-2 ≤ C 1,H n 2H + C 2,H (n + 1) 2H 1 n + 1 n+1 k=1 k n + 1 1-2H 1 - k n + 1 4H-2 . Since 1 n + 1 n+1 k=1 k n + 1 1-2H 1 - k n + 1 4H-2 -→ n→+∞ 1 0 x 1-2H (1 -x) 4H-2 dx < +∞
we finally get the result when H ∈ (1/2, 1).

(ii) Recall that ψ T,k = T -k+1 0 Ψ H (u ∨ 1, k)du. £ First case: H ∈ (0, 1/2). We have T -k+1 0 (u ∨ 1) H-3 2 du ≤ 1 + +∞ 1 u H-3 2 du < +∞.
Then,

T k=1 ψ 2 T,k ≤ C H T ≤ CH T
which concludes the proof for H ∈ (0, 1/2).

£ Second case: H ∈ (1/2, 1). We have

T -k+1 0 (u ∨ 1) H-3 2 du = 1 + 1 H -1/2 [(T -k + 1) H-1/2 -1] ≤ 1 H -1/2 (T -k + 1) H-1 2 and T -k+1 0 (u ∨ 1) 2H-2 du = 1 + 1 2H -1 [(T -k + 1) 2H-1 -1] ≤ 1 2H -1 (T -k + 1) 2H-1 .
Then,

T k=1 ψ 2 T,k ≤ C 1,H T k=1 (T -k + 1) 2H-1 + C 2,H T k=1 k 1-2H (T -k + 1) 4H-2 ≤ C 1,H T T 2H-1 + C 2,H ( T + 1) 2H 1 T + 1 T +1 k=1 k T + 1 1-2H 1 - k T + 1 4H-2 . Since 1 T + 1 T +1 k=1 k T + 1 1-2H 1 - k T + 1 4H-2 -→ T →+∞ 1 0 x 1-2H (1-x) 4H-2 dx < +∞
we finally get the result when H ∈ (1/2, 1).

3.A Sub-Gaussianity of the supremum of the Browian motion

Proposition 3.A.1. Let (W t ) t≥0 be a d-dimensional standard Brownian motion. There exist η, η > 0 such that ∀x ≥ 0, P sup

t∈[0,1] |W t | > x ≤ η e -ηx 2 (3.A.1) α,[0,2]
Consequently, for all p ≥ 2,

E sup t∈[0,1] |W t | p ≤ η 2 1 η p/2 pΓ p 2 (3.A.2)
where Γ(x) :=

+∞ 0 e -u u x-1 du.

Proof.

sup

t∈[0,1] |W t | = sup t∈[0,1] d i=1 |W i t | 2 1/2 = sup t∈[0,1] d i=1 |W i t | 2 1/2 ≤ d i=1 sup t∈[0,1] |W i t | 2 1/2 ≤ d i=1 sup t∈[0,1] |W i t |.
Therefore for all x ≥ 0, we have

P sup t∈[0,1] |W t | ≥ x ≤ P d i=1 sup t∈[0,1] |W i t | ≥ x ≤ d i=1 P sup t∈[0,1] |W i t | ≥ x = d×P sup t∈[0,1] |W 1 t | ≥ x .
Since sup

t∈[0,1] |W 1 t | = max sup t∈[0,1] (-W 1 t ), sup t∈[0,1] W 1 t and (W 1 t ) t≥0 L = (-W 1 t ) t≥0 , we have P sup t∈[0,1] |W t | ≥ x ≤ d P sup t∈[0,1] (-W 1 t ) ≥ x + P sup t∈[0,1] W 1 t ≥ x = 2d×P sup t∈[0,1] W 1 t ≥ x .
By the reflection principle, we know that P sup

t∈[0,1] W 1 t ≥ x = 2P(W 1 1 ≥ x) which induces finally that P sup t∈[0,1] |W t | ≥ x ≤ 4d P(W 1 1 ≥ x) = 4d √ 2π +∞ x e -1 2 s 2 ds ≤ C d e -1 4 x 2 . (3.A.3)
Then, (3.A.2) follows from (3.A.1) by using the formula E[X] = +∞ 0 P(X > x)dx for non-negative random variables and a simple change of variable.

3.B Uniform sub-Gaussianity of G (k)

α, [0,[START_REF] Arras | A new approach to the stein-tikhomirov method: with applications to the second wiener chaos and dickman convergence[END_REF] In this section, we consider the following Gaussian processes:

for all k ∈ N * , ∀v ∈ [0, 2], G (k) v := 1∧v 0 K H (v + k -1, s + k -1)dW s (3.B.1)
where (W t ) t∈[0,T ] is a d-dimensional Brownian motion and K H is defined by (3.2.4).

Remark 3.B.1. Since we are interested in the law of G (k) , we have replaced W (k) by W in the expression of G (k) given by (3.4.19).

First, we have the following control on the second moment of G (k) -increments.

Proposition 3.B.1.

There exists C H > 0 such that for all k ∈ N * and for all 0

≤ v < v ≤ 2, E G (k) v -G (k) v 2 ≤ C H |v -v | 2α H (3.B.2)
with α H := H if H < 1/2 H 2 if H > 1/2 . Proof. Let 0 ≤ v < v ≤ 2. Then, G (k) v -G (k) v = 1∧v 0 K H (v + k -1, s + k -1) -K H (v + k -1, s + k -1)dW s + 1∧v 1∧v K H (v + k -1, s + k -1)dW s = 1∧v 0 v v ∂ ∂u K H (u + k -1, s + k -1)du dW s + 1∧v 1∧v K H (v + k -1, s + k -1)dW s (3.B.3) with ∂ ∂u K H (u + k -1, s + k -1) = c H u + k -1 s + k -1 H-1 2 (u -s) H-3 2 . (3.B.4)
Then, we deduce the following expression for the moment of order 2:

E |G (k) v -G (k) v | 2 = 1∧v 0 v v ∂ ∂u K H (u + k -1, s + k -1)du 2 ds + 1∧v 1∧v K H (v + k -1, s + k -1) 2 ds =: I 1 (v, v ) + I 2 (v, v ). (3.B.5)
Now, let us distinguish the two cases: k > 1 and k = 1:

£ First case: k > 1
We begin with the first integral in (3.B.5), namely I 1 (v, v ): let us note that in the expression (3.B.4)

sup k>1 sup u,s∈[0,2] u + k -1 s + k -1 H-1 2 < +∞. α,[0,2]
Hence,

I 1 (v, v ) ≤ C H 1∧v 0 v v (u -s) H-3 2 du 2 ds = C H (H -1/2) 2 1∧v 0 (v -s) H-1 2 -(v -s) H-1 2 2 ds ≤ C H (H -1/2) 2 v 0 (v -s) H-1 2 -(v -s) H-1 2 2 ds ≤ C H (v -v ) 2H if H < 1/2 (v -v ) H if H > 1/2 . (3.B.6)
and the last inequality is given by the following estimate:

Lemma 3.B.1. There exists CH > 0 such that for all 0 ≤ v < v ≤ 2, v 0 (v -s) H-1 2 -(v -s) H-1 2 2 ds ≤ CH (v -v ) 2H if H < 1/2 (v -v ) H if H > 1/2 .
Proof. First, we easily have

v 0 (v -s) H-1 2 -(v -s) H-1 2 2 ds = 1 2H v 2H + v 2H -(v -v ) 2H -2 v 0 [(v -s)(v -s)] H-1 2 ds. Now, since [(v -s)(v -s)] H-1 2 ≥ (v -s) 2H-1 if H < 1/2 (v -s) 2H-1 if H > 1/2
we get after some computations

v 0 (v -s) H-1 2 -(v -s) H-1 2 2 ds ≤ 1 2H v 2H -v 2H + (v -v ) 2H if H < 1/2 v 2H -v 2H -(v -v ) 2H if H > 1/2 . Moreover, when H > 1/2, for all 0 ≤ v < v ≤ 2, v 2H -v 2H + (v -v ) 2H = (v H -v H )(v H + v H ) -(v -v ) 2H = (v -v ) H v H + v H -(v -v ) H ≤ C H (v -v ) H
and when H < 1/2, v 2H -v 2H < 0. So finally, we have the desired result.

We can now move on the second term in (3.B.5), namely I 2 (v, v ). By Theorem 3.2 in [START_REF] Decreusefond | Stochastic analysis of the fractional Brownian motion[END_REF], we have the following upperbound

I 2 (v, v ) ≤ c 2 H 1∧v 1∧v (s + k -1) -2|H-1 2 | (v -s) -2( 1 2 -H) + ds
where x + = max(x, 0). Then, since sup £ Second case: k = 1

k>1 sup s∈[0,2] (s + k -1) -2|H-1 2 | < +∞, we have I 2 (v, v ) ≤ C H 1∧v 1∧v (v -s) -2( 1 2 -H) + ds = C H (1 ∧ v -1 ∧ v ) 2(H∧ 1 2 ) ≤ C H (v -v ) 2(H∧ 1 2 ) ≤ CH (v -v ) 2H if H < 1/2 (v -v ) H if H > 1/2 . ( 3 
Let us divide this part of the proof into three new cases: First, consider 0 ≤ v < v ≤ 1, then G (1) coincides in law with the fractional Brownian motion:

E |G (1) v -G (1) v | 2 = (v -v ) 2H .
Secondly, for 1 ≤ v < v ≤ 2, by (3.B.5):

E |G (1) v -G (1) v | 2 = 1 0 v v ∂ ∂u K H (u + k -1, s + k -1)du 2 ds ≤ v 0 v v ∂ ∂u K H (u + k -1, s + k -1)du 2 ds + v v K H (v + k -1, s + k -1) 2 ds = (v -v ) 2H .
Finally, if 0 ≤ v < 1 ≤ v ≤ 2, we get the following by using the two previous cases:

E |G (1) v -G (1) v | 2 ≤ 2E |G (1) v -G (1) 1 | 2 + 2E |G (1) 1 -G (1) v | 2 ≤ 2 (v -1) 2H + (1 -v) 2H ≤ 4(v -v ) 2H .
This inequality concludes the proof of Proposition 3.B.1 for k = 1.

We can now state the result of uniform Sub-Gaussianity:

Proposition 3.B.2. There exist η, η > 0 such that for all k ∈ N * , ∀x ≥ 0, P G (k) α H ,[0,2] > x ≤ η e -ηx 2 (3.B.8) with 0 < α H < α H and α H is defined in Proposition 3.B.1. α,[0,2]
Consequently, for all k ∈ N * and for all p ≥ 2,

E G (k) p α H ,[0,2] ≤ η 2 1 η p/2 pΓ p 2 (3.B.9)
where Γ(x) :=

+∞ 0 e -u u x-1 du.

Proof. Let us first note that since G (k) is a centered Gaussian process (for all k ∈ N * ), there exists C > 0 such that for all p ≥ 1 and for all 0 ≤ v < v ≤ 2:

E G (k) v -G (k) v p 1/p ≤ C √ p E G (k) v -G (k) v 2 1/2
.

Then, we obtain through Proposition 3.B.1, 

∀p ≥ 1, sup 0≤v <v≤2 E G (k) v -G (k) v p 1/p |v -v | α H ≤ CH √ p. ( 3 
E exp η 1 G (k) 2 α H ,[0,2]
< +∞ and by Lemma A.17 in [START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF] (characterization of Gaussian integrability), this condition is equivalent to the existence of η, η > 0 (depending only on η 1 ) such that (3.B.8) is true. Then, (3.B.9) follows from (3.B.8) by using the formula E[X] = +∞ 0 P(X > x)dx for non-negative random variables and a simple change of variable.

A general drift estimation procedure for Stochastic Differential Equations with additive fractional noise

This chapter is based on the article [START_REF] Panloup | A general drift estimation procedure for stochastic differential equations with additive fractional noise[END_REF], this is a joint work with Panloup and Tindel submitted in Electronic Journal of Statistics. 

Introduction

Let B be a d-dimensional fractional Brownian motion with Hurst parameter H ∈ (0, 1) defined on a complete probability space (Ω, F, P). We recall that B is a centered Gaussian process. Its law is thus characterized by its covariance function, which is defined by

E B i t B j s = 1 2 t 2H + s 2H -|t -s| 2H 1 {0} (i -j), s, t ∈ R.
The variance of the increments of B is then given by

E |B i t -B i s | 2 = |t -s| 2H , s, t ∈ R, i = 1, . . . , m, (4.1.1) 
and this implies that almost surely the fBm paths are γ-Hölder continuous for any γ < H.

In this chapter, we will consider the following R d -valued stochastic differential equation driven by B:

Y t = y 0 + t 0 b ϑ 0 (Y s ) ds + σB t , t ∈ [0, T ]. (4.1.2)
Here y 0 ∈ R d is a given initial condition, B = (B 1 , . . . , B d ) is the aforementioned fractional Brownian motion (fBm), the unknown parameter ϑ 0 lies in a certain set Θ which will be specified later on, {b ϑ (•), ϑ ∈ Θ} is a known family of drift coefficients with b ϑ (•) : R d → R d , and σ is a d × d-matrix which is supposed to be known. More precisely, we do not discuss here the problem of estimation of the diffusion parameter σ and of the Hurst index H (on this topic, see e.g. [START_REF] Coeurjolly | Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths[END_REF], [START_REF] Istas | Quadratic variations and estimation of the local Hölder index of a Gaussian process[END_REF] or [START_REF] Tudor | Variations and estimators for self-similarity parameters via Malliavin calculus[END_REF]). For the sake of simplicity, we also assume throughout the chapter that σ is invertible (on this topic, see Remark 4.2.4). Our aim is to get an accurate estimation of ϑ 0 according to some discrete observations of Y .

The estimation problem for the drift term in equation (4.1.2) has received a lot of attention in the recent past (see e.g [START_REF] Belfadli | Parameter estimation for fractional ornstein-uhlenbeck processes: non-ergodic case[END_REF][START_REF] Hu | Parameter estimation for fractional Ornstein-Uhlenbeck processes[END_REF][START_REF] Hu | Drift parameter estimation for nonlinear stochastic differential equations driven by fractional brownian motion[END_REF][START_REF] Kleptsyna | Statistical analysis of the fractional Ornstein-Uhlenbeck type process[END_REF][START_REF] Le Breton | Filtering and parameter estimation in a simple linear system driven by a fractional Brownian motion[END_REF][START_REF] Rao | Statistical inference for fractional diffusion processes[END_REF][START_REF] Tudor | Statistical aspects of the fractional stochastic calculus[END_REF]). However, the following restrictions hold in all those contributions:

• The coefficient b ϑ 0 (Y s ) is of the form ϑ 0 b(Y s ) or even ϑ 0 Y s when Ornstein-Uhlenbeck processes are involved.
• The observation is either in continuous time or a discretized version of continuous observations. • Rates of convergence of the estimators are not computed, a noticeable exception being the central limit theorems obtained in [START_REF] Hu | Parameter estimation for fractional Ornstein-Uhlenbeck processes[END_REF]. Let us also mention the nonparametric method put forward in the interesting recent paper [START_REF] Comte | Nonparametric estimation in fractional sde[END_REF]. The context in [START_REF] Comte | Nonparametric estimation in fractional sde[END_REF] is much more general than in the aforementioned references, but the estimation procedure is based on the observation of several paths of (4.1.2). This makes its practical implementation delicate.

With these considerations in mind, let us recall that the article [START_REF] Neuenkirch | A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise[END_REF] proposed an estimator valid for a wide class of functions b in (4.1.2), directly based on discrete observations of the process. This estimator is obtained through a least square procedure which is easily implemented. It is fairly general, but still exhibits some drawbacks:

• For all values of the parameter ϑ, the drift b ϑ (•) is assumed to be of the form ∇F (•; ϑ) for a real valued function F . This is obviously a restriction when d > 1.

• The result in [START_REF] Neuenkirch | A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise[END_REF] is obtained in a quite standard ergodic framework, but it is also supposed that for the stationary solution Ȳ0 to (4.1.2) we have

E |b ϑ 0 ( Ȳ0 )| 2 = E |b ϑ ( Ȳ0 )| 2 iff ϑ = ϑ 0 . (4.1.3)
This identifiability condition is hard to verify in practice.

The current work proposes thus to improve on the two aspects mentioned above. It introduces a procedure which applies to non gradient drifts and is valid under less restrictive conditions than (4.1.3).

Main results

In this section we will first give some general notation which will be used throughout the chapter. Then we will specify our assumptions on the coefficients of (4.1.2) and describe the estimator we are considering. Eventually we give our almost sure convergence result as well as the convergence rate we have been able to obtain.

Notations

We consider the set of parameters Θ as a subset of R q for q ≥ 1. Let f : R d × Θ → R be a C p 1 ,p 2 function, where p 1 , p 2 are two integers greater than 1. Then for any p ≤ p 1 and any tuple (i 1 , . . . i p ) ∈ {1, . . . , d} p , we set

∂ i 1 ...ip x f for ∂ p f ∂x i 1 ...∂x ip . Analogously, for p ≤ p 2 we use the notation ∂ i 1 ...ip ϑ f for ∂ p f ∂ϑ i 1 ...∂ϑ ip whenever (i 1 , . . . i p ) ∈ {1, . . . , q} p . Moreover, we will write ∂ x f (resp. ∂ ϑ f ) for the Jacobi-matrices (∂ x 1 f, . . . , ∂ x d f ) (resp. (∂ ϑ 1 f, . . . , ∂ ϑq f )).
Let M 1 (R d ) denotes the set of probability measures on R d . We say that d is a distance on M 1 (R d ) if it metrizes its usual topology, namely the weak convergence topology. Among those distances We will consider the p-Wasserstein distance, which is defined as follows: for every ν, µ ∈ M 1 (R d ), we introduce the set C(ν, µ) of couplings between ν and µ, that is

C(ν, µ) = {(X, Y ); L(X) = ν, L(Y ) = µ} . ( 4.2.1) 
Then the p-Wasserstein distance is written as

W p (ν, µ) = inf E[|X -Y | p ] 1 p ; (X, Y ) ∈ C(ν, µ) . (4.2.2)
Remark 4.2.1. The distance W 1 can also be represented as

W 1 (ν, µ) = sup{|ν(h) -µ(h)|; h Lip ≤ 1}. (4.2.3) 
We will denote by D p the set of distances on M 1 (R d ) dominated by the p-Wasserstein distance for a given p > 0. Namely, we set

D p := {distances d on M 1 (R d ); ∃ c > 0 such that ∀ν, µ ∈ M 1 (R d ), d(ν, µ) ≤ cW p (ν, µ)} (4.2.4)
In particular, a distance d that belongs to D p induces a weaker topology than the p-Wasserstein distance. When necessary in some of the next results (or in the numerical experimentations), we will introduce specific distances which belong to D p . 

d FM (ν, µ) = sup {|E[h(X)] -E[h(Y )]|; where X ∼ µ, Y ∼ ν, and h Lip ≤ 1, h ∞ ≤ 1} ,
is also easily seen to be an element of D 1 thanks to (4.2.3). In this chapter we shall work with the distances d cf,p and d s introduced below in Section 4.2.5, which are trivially proved to sit in D 1 (due to relation (4.2.3)).

For a given function f defined on R + and with values in a Banach space E, we denote by δf s,t the increment between some positive s and t: δf s,t = f t -f s .

Assumptions

Before we proceed to a specific statement of our estimator, let us describe the assumptions under which we shall work. We start by a standard hypothesis on the parameter set Θ, which is supposed to be a compact set. (H 0 ) : The set Θ is compactly embedded in R q for a given q ≥ 1.

Next we recall that our drift estimators rely on the invariant measure for the solution of equation (4.1.2). The existence and uniqueness of this invariant measure is usually obtained under some coercivity assumptions on the drift b. In the current chapter we will distinguish between two notions of coercivity, respectively named weak and strong and denoted by (C w ) and (C s ). The weak assumption can be summarized as follows.

(C w ) : We have b ∈ C 1,1 (R d × Θ; R d )
and there exist constants α, β, C, L > 0 and r ∈ N such that:

(i) For every x, y ∈ R d and ϑ ∈ Θ we have b ϑ (x) -b ϑ (y), x -y ≤ β -α|x -y| 2 and |b ϑ (x) -b ϑ (y)| ≤ L|x -y| (4.2.5)
(ii) For every x ∈ R d and ϑ ∈ Θ the following growth bound is satisfied:

|∂ ϑ b ϑ (x)| ≤ C (1 + |x| r ) . ( 4.2.6) 
The main part (4.2.5) of assumption (C w ) states that the coefficient b is inward looking, except maybe on a compact set which is a neighborhood of 0. We now state the strong assumption (C s ), which specifies that b should be inward looking everywhere, and can be expressed as a particular case of (C w ). (C s ) : Assumption (C w ) holds with β = 0.

As mentioned above, Hypothesis (C w ) combined with the invertibility of σ (and therefore (C s )) classically involves (see e.g. [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF]) the existence of a unique stationary solution for the solution of the following equation for any ϑ ∈ Θ:

dY ϑ t = b ϑ (Y ϑ t ) dt + σdB t , t ∈ [0, T ]. (4.2.7) 
Notice that the system (4.2.7) is identical to our original equation (4.1.2). However, let us notice that the fBm is unobserved. Moreover, the uniqueness of the stationary measure must be understood in a weak sense. Namely there exists a unique distribution

P ϑ on C([0, ∞), R d ) such that if ( Ȳ ϑ t
) denotes a process with distribution P ϑ , then ( Ȳ ϑ t ) t≥0 is a stationary solution to (4.2.7), i.e. shift-invariant (when one considers its canonical version). We denote by ν ϑ the distribution of Ȳ ϑ at any instant t ≥ 0, that is

ν ϑ = L( Ȳ ϑ 0 ). (4.2.8)
Remark 4.2.3. Note that in this non-Markovian setting, ν ϑ is not exactly the invariant distribution. More precisely, owing to [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF], one can embed (4.2.7) into an infinite-dimensional Markovian structure which allows the construction of an adapted ergodic theory. An invariant distribution νϑ is then defined on this enlarged structure. Without going into the details, one can just say that in this theory, the probability ν ϑ can be retrieved as a marginal of the "true" invariant distribution. In the sequel, we will thus talk about marginal invariant distribution ν ϑ .

Remark 4.2.4. As mentioned before, the invertibility assumption on σ combined with (C w ) ensures uniqueness of the invariant distribution. However, even though this hypothesis is of first importance under (C w ) (in order to use irreducibility-type arguments), it could be entirely removed under (C s ). Actually, in this case, the contraction assumption implies that two solutions of (4.2.7) driven by the same fBm but starting from different initial conditions come together at ∞, a.s. and in L 2 , which classically involves uniqueness (see e.g. [15, Lemma 3(ii)] for details). This remark also holds for the Euler scheme (4.2.13) introduced in the next section but for sufficiently small step γ (see again [START_REF] Cohen | Approximation of stationary solutions of Gaussian driven stochastic differential equations[END_REF]Lemma 3(ii)] for details).

As said previously, we shall obtain our drift estimators through the analysis of the marginal invariant distribution ν ϑ defined by (4.2.8). If we want this strategy to be successful, it is natural to assume that ν ϑ characterizes ϑ. We thus label this hypothesis as follows.

(I w ): For all ϑ ∈ Θ, we have

ν ϑ = ν ϑ 0 iff ϑ = ϑ 0 . It is worth noticing that if d denotes a distance on M 1 (R d ), then one can recast (I w ) as: d(ν ϑ , ν ϑ 0 ) = 0 iff ϑ = ϑ 0 . ( 4.2.9) 
We shall use this characterization in order to construct the estimator θ (see (4.2.12) below). Also notice that (I w ) refers to a "weak" identifiability condition, which will be resorted to in order to derive the consistency of our estimator θ. In contrast, the following "strong" identifiability assumption (I s ) defined for a given distance d on M 1 (R d ) will be used to get rates of convergence.

(I s ) There exists a constant C > 0 and a parameter ς ∈ (0, 1] such that ∀ϑ ∈ Θ,

d(ν ϑ , ν ϑ 0 ) ≥ C|ϑ -ϑ 0 | ς . (4.2.10)
Remark 4.2.5. We will construct a class of equations, basically obtained as perturbations of Langevin type equations, for which our assumptions (I w ) and (I s ) are satisfied. See Section 4.6 below.

Statistical setting and construction of the estimator

We wish to construct an estimator based on discrete observations. In this context, the simplest situation (which will mostly prevail in the chapter) is to assume that the solution (Y t ) t≥0 of (4.2.7) is discretely observed at some instants {t k ; 0 ≤ k ≤ n}, with t k+1 -t k = κ for a given time step κ > 0. Under (C w ), it can be shown (see Proposition

4.3.3 below) that 1 n n-1 k=0 δ Yt k n→+∞ =⇒ ν ϑ 0 a.s, ( 4.2.11) 
where =⇒ stands for the weak convergence of probability measures in R d . With this convergence in mind, the heart of our estimation method is then the following observation: under the identifiability assumption (I w ), the most natural way to estimate ϑ 0 is to consider

θ = argmin ϑ∈Θ d 1 n n-1 k=0 δ Yt k , ν ϑ , ( 4.2.12) 
where d is a given (arbitrary) distance on M 1 (R d ). However, in spite of the fact that our formula (4.2.12) is simple enough, it is also easily understood that ν ϑ is far from being explicitly known (except in some very particular cases such as the Ornstein-Uhlenbeck process). In this chapter, we propose to circumvent this difficulty by considering some estimators based on numerical approximations of ν ϑ . Specifically, the numerical approximations we will resort to are built through an Euler-type discretization of the stochastic process Y ϑ solution to (4.2.7). Namely, let (s k ) k≥0 be an increasing sequence of numbers such that s 0 = 0, and lim k→∞ s k = +∞. The Euler-Maruyama scheme Z ϑ is then recursively defined by Z ϑ 0 = z 0 ∈ R d and:

For all k ≥ 0, δZ ϑ s k s k+1 = (s k+1 -s k )b ϑ (Z ϑ s k ) + σ δ Bs k s k+1 , (4.2.13) 
where B is a (simulated) m-dimensional fractional Brownian motion which is a priori different from the driving process B in equation (4.2.7) (since B is unobserved). When s k = kγ for a given γ > 0, we say that the Euler scheme is a constant step sequence and we denote it by Z ϑ,γ . When γ k = s k -s k-1 is a non-increasing sequence such that γ k → 0 as k → +∞, the Euler scheme will be called decreasing step Euler scheme. We will work with these two types of schemes in the sequel.

Remark 4.2.6. In practice it is natural to set Z ϑ 0 = Y 0 where Y 0 is the first observation of the process (Y t ) t≥0 . Let us also remark that in the sequel, for notational sake, one usually denotes by B the fBm related to the Euler scheme Z ϑ . However, the reader has to keep in mind that the fact that the fBms in (4.2.7) and in (4.2.13) are different. This certainly prevents us from any pathwise comparison between the observed process and the simulated one. Remark 4.2.7. We refer to Section 4.7 for background on the simulation of the increments of the fBm.

Let us now give an explicit expression for the estimator we are considering in this chapter. We will focus on the constant step setting in (4.2.13) for sake of simplicity. Observe that under (C w ), it can be shown (see Proposition 4.3.4 below) that

1 N N -1 k=0 δ Z ϑ,γ kγ n→+∞ =⇒ ν γ ϑ a.s. (4.2.14)
where ν γ ϑ denotes the unique marginal invariant distribution of the Euler scheme Z ϑ . By marginal, we mean again that Z ϑ,γ can be endowed with a Feller infinite-dimensional Markov structure which admits a unique invariant distribution under (C w ) (see [START_REF] Varvenne | Rate of convergence to equilibrium for discrete-time stochastic dynamics with memory[END_REF] for details). The first marginal of this invariant distribution is ν γ ϑ . Similarly to what we proposed in (4.2.12), such a result suggests to define our estimator for ϑ as θN,n,γ = argmin

ϑ∈Θ d 1 n n-1 k=0 δ Yt k , 1 N N -1 k=0 δ Z ϑ,γ kγ , ( 4.2.15) 
where d is again a distance on M 1 (R d ). Note that in the decreasing step case analogous constructions may be carried out, and will be introduced later. Let us also remark that relation (4.2.15) only involves one Euler scheme path, which is relevant for numerical implementations.

We are now in a position to state our main results. We divide the presentation in two parts. In the next section, we focus on strong consistence results related to the family { θN,n,γ ; N ≥ 1, n ≥ 1, γ > 0} defined by (4.2.15), as well as its decreasing step counterpart. Then Section 4.2.5 is dedicated to the rate of convergence of the estimator θN,n,γ . In particular, this second part will involve concentration results related to the SDE and to its Euler discretization.

Main consistency results

We begin with a first result involving the weak assumption (C w ), which requires to discretize the set Θ in the following sense. According to our hypothesis (H 0 ), the set Θ is compact in R q . Therefore the Borel-Lebesgue property gives us the existence, for every ε > 0, of M ε ∈ N and (ϑ

(ε) i ) 1≤i≤Mε ∈ Θ Mε such that Θ ⊂ Mε i=1 B(ϑ (ε)
i , ε). Thanks to this property, we define the following discretization for all ε > 0 and ϑ ∈ Θ: 

ϑ (ε) := argmin ϑ ∈{ϑ (ε) i } |ϑ -ϑ|. ( 4 
θ(ε) N,n,γ ; N ≥ 1, n ≥ 1, γ > 0, ε > 0} defined by θ(ε) N,n,γ = argmin ϑ∈Θ (ε) d 1 n n-1 k=0 δ Yt k , 1 N N -1 k=0 δ Z ϑ,γ s k , N, n ∈ N, γ > 0, ε > 0 (4.2.17)
where

Θ (ε) := {ϑ (ε) i ; 1 ≤ i ≤ M ε }. Then θ(ε) N,n,γ is a strong consistent estimator of ϑ 0 . Specifically, we have lim ε→0 lim γ→0 lim N,n→+∞ θ(ε) N,n,γ = ϑ 0 a.s.
Let us remark that the discretization of Θ given by (4.2.16) is needed to get strong consistency, due to the fact that under (C w ) we loose uniformity with respect to ϑ in some of our convergence results. For instance, (C w ) only warranties the simple convergence of d(ν γ ϑ , ν ϑ ) to 0 as γ → 0 (see Proposition 4.3.4). The proof of Theorem 4.2.1 is achieved in Section 4.4.3.

We now turn to our main estimator defined in (4.2.15). The proof of the theorem below is detailed in Section 4.4.3. We close this section with a result concerning the approximation of invariant measures by an Euler scheme with decreasing time step. Namely we consider an approximation scheme denoted also by Z ϑ , which is defined similarly to Z ϑ,γ in (4.2.13) except for the fact that the sequence (s k ) k≥0 satisfies:

s k+1 -s k = γ k+1 , k ≥ 0, (4.2.18) 
where (γ k ) k≥1 is a non-increasing sequence of positive numbers such that k≥1 γ k = +∞ and lim

k→+∞ γ k = 0. (4.2.19)
The convergence theorem we obtain in the decreasing step case is the following. 

δ Yt k , 1 s N N -1 k=0 γ k+1 δ Z ϑ s k , N ∈ N. (4.2.20)
Then, ( θN,n ) N,n is a strong consistent estimator of ϑ 0 , namely:

lim N,n→+∞ θN,n = ϑ 0 a.s. Remark 4.2.8. The technical condition (4.4.3) ( k≥1 γ p H+1 k s -1 k < +∞ for a given p ≥ p)
is true in a very large setting. For instance, it can be checked that this is satisfied for any polynomial step sequence : γ k = γk -ρ with ρ ∈ (0, 1] and γ ∈ R * + , but also for less decreasing sequences such as γ k = γ(log k) -1 . However, this is not true in full generality (the condition does not hold when γ k = (log(log k)) -1 for instance).

Rate of convergence

Under our strong identifiability condition (I s ), we will be able to get a rate of convergence for some of our estimators. In order to carry out this task, we shall assume that condition (I s ) is verified for some specific distances on probability measures called respectively d CF,p and d s . These distances are defined in the following way: (i) Let X and Y be R d -valued random variables and p > ( d 2 ∨ 1). We consider the integrable kernel g p (ξ) := c p (1 + |ξ| 2 ) -p where c p := R d (1 + |ξ| 2 ) -p dξ -1 . Then the d CF,p distance between L(X) and L(Y ) is defined by:

d cf,p (L(X), L(Y )) := R d E[e i ξ,X ] -E[e i ξ,Y ] 2 g p (ξ)dξ 1/2 . ( 4.2.21) 
(ii) Let {f i ; i ≥ 1} be a family of C 1 b , supposed to be dense in the space C 0 b of continuous and bounded functions and decreasing to 0 at ∞. Consider two probability measures ν and µ in M 1 (R d ). Then the distance d s between ν and µ is defined as:

d s (ν, µ) := +∞ i=0 2 -i (|ν(f i ) -µ(f i )| ∧ 1). (4.2.22)
Remark 4.2.9. It is readily checked that both d CF,p and d s metrize the convergence in law (their induced topology are in fact exactly the one induced by the convergence in law). The distance d CF,p is technically convenient for our purpose and close in spirit to the smooth Wasserstein distance invoked in the Stein method literature (see e.g [START_REF] Arras | A new approach to the stein-tikhomirov method: with applications to the second wiener chaos and dickman convergence[END_REF]). The distance d s is called weak-distance in [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften[END_REF] and also used in [START_REF] Xiong | An introduction to stochastic filtering theory[END_REF] for filtering problems. Also notice that both d CF,p and d s are elements of D 1 where D 1 is defined by (

With the distances d CF,p and d s in hand, our main result about rates of convergence is the following: Theorem 4.2.4. Assume (H 0 ), (C s ) and (I s ) hold true, where (4.2.10) in hypothesis (I s ) is considered for d = d s or d = d CF,p with p > (q + d)/2 and ς = 2/q for a given q ≥ 2. Let θN,n,γ be the estimator given by (4.2.15). Then, we get the following rate of convergence: there exists C q > 0 such that

E | θN,n,γ -ϑ 0 | 2 ≤ C q n -q 2 (2-(2H∨1)) + γ qH + T -η (4.2.23 
)

with η := q 2 2(q+d) (2 -(2H ∨ 1)
) and T := N γ.

Remark 4.2.10. This non-asymptotical bound theoretically enables to calibrate the "free parameters" γ and N in terms of the number of observations n, which is fixed by the statistical setting. For instance, when ς = 1 (i.e. when q = 2), the first term is of order n -(2-(2H∨1)) and hence, in order to to preserve this rate order, we have to fix

γ ≤ n -1-(H∨ 1 
2 ) H and N ≥ n 4+2d 4 γ -1 . More precisely, for these choices of parameters, the quadratic error induced by this estimator (when

ς = 1) is of order n -1 2 if H < 1/2 and n H-1 2 if H > 1/2.
The constant ς, which appears in Assumption (I s ), comes from the fact that, the bounds are first established on the distances between the invariant distributions ν θN,n,γ and ν ϑ 0 . Nevertheless, except some particular settings such as the Ornstein-Uhlenbeck process, this exponent ς is unfortunately difficult to compute in some general settings. Finally, let us remark that L p -bounds can be easily deduced from the proof for any p ≥ 2. However, since they do not modify significantly the results, we chose here to only state the quadratic one.

Preliminary Results

In this section we label some basic results about equation (4.2.7) and its invariant measure for further use. We first recall some ergodic properties of stochastic differential equations driven by a fBm, then we study the continuity of the invariant measure ν ϑ with respect to the parameter ϑ. Under the strong coercivity assumption (C s ), we quantify the distance between the empirical measures respectively related to the process Y ϑ and its Euler approximation Z ϑ . Eventually we give some convergence results for the quantities involved in the right hand side of (4.2.17).

Ergodic properties of the SDE and of the Euler scheme

In this section we review several ergodic properties for equation (4.2.7). These properties are at the heart of our estimation procedure.

Convergence of L(Y t )

We start by giving the basic convergence in law towards the invariant distribution for our processes Y ϑ . Proposition 4.3.1. Assume (H 0 ) and (C w ) and consider the family of processes {Y ϑ ; ϑ ∈ Θ} defined by (4.2.7). Then the following properties hold true: (i) Existence and uniqueness hold for the invariant distribution related to the dynamical system (4.2.7). Furthermore, having in mind the notations introduced in (4.2.8), for all ε > 0 there exists a constant C ε > 0 independent of ϑ ∈ Θ such that

d tv L Y ϑ t , ν ϑ ≤ C ε t -(α H -ε) , (4.3.1)
with an exponent α H given by

α H = 1 8 if H ∈ ( 1 4 , 1)\ 1 2 H(1 -2H) if H ∈ (0, 1 4 ). 
(ii) For any p > 0 and for any distance d ∈ D p , the following upper bound holds uniformly in ϑ ∈ Θ:

d L(Y ϑ t ), ν ϑ ≤ C t - α H 4p , ( 4.3.2) 
for a strictly positive constant C. In particular, for any p > 0, we have

sup t≥0 E[|Y t | p ] < +∞. (4.3.3)
Proof. We prove the two statements of our proposition separately.

Proof of item (i).

The only difference between our claim and [36, Theorems 1.2 and 1.3] is the uniformity with respect to ϑ ∈ Θ in the convergence in total variation result. However, following carefully the proof of [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF], it can be shown that the constants therein do not depend on ϑ if Hypothesis (C w ) is satisfied. Therefore the constant C ε in (4.3.1) is uniform in ϑ.

Proof of item (ii). Relation (4.3.3) is proved in Proposition 4.A.1 of the Appendix. In order to prove (4.3.2), consider a couple (X 1 , X 2 ) of random variables such that X 1 ∼ Y ϑ t and X 2 has distribution ν ϑ . By Cauchy-Schwarz inequality,

E[|X 1 -X 2 | p ] 1 p = E[|X 1 -X 2 | p 1 (X 1 =X 2 ) ] 1 p ≤ E[|X 1 | 2p ] 1 2p + E[|X 2 | 2p ] 1 2p P(X 1 = X 2 ) 1 2p . ( 4.3.4) 
We now bound separately the two terms on the right hand side of (4.3.4). If we denote by C(Y ϑ t , ν ϑ ) the set of couplings between L(Y ϑ t ) and ν ϑ (defined as in (4.2.1)), then we have

d tv L Y ϑ t , ν ϑ = inf P( X1 = X2 ); ( X1 , X2 ) ∈ C(Y ϑ t , ν ϑ ) .
Therefore, owing to (4.3.1) we can choose a coupling (X 1 , X 2 ) ∈ C(Y ϑ t , ν ϑ ) and a constant C > 0 such that

P(X 1 = X 2 ) ≤ Ct -(α H -ε) . (4.3.5)
In addition, according to (4.3.3) and a uniform integrability argument, we easily get the following inequality for the coupling (X 1 , X 2 ) we have chosen in (4.3.5):

E[|X 1 | 2p ] 1 2p + E[|X 2 | 2p ] 1 2p ≤ 2 sup ϑ∈Θ sup t≥0 E[|Y ϑ t | 2p ] 1 2p < +∞. (4.3.6) 
We plug (4.3.5) and (4.3.6), applied to ε = α H /2, into (4.3.4). Going back to the definition (4.2.2) of the distance W p , we obtain that there exists a strictly positive constant C such that for any t ≥ 0 and any ϑ ∈ Θ we have

W p (L(Y ϑ t ), ν ϑ ) ≤ Ct - α H 4p .
The result (4.3.2) follows.

Next we observe that whenever (C s ) is fulfilled, the polynomial convergence in (4.3.2) can be replaced by an exponential rate. This is summarized in the following proposition. Proposition 4.3.2. Let {Y ϑ ; ϑ ∈ Θ} be the family of processes defined by (4.2.7). Suppose that Hypothesis (H 0 ) and Hypothesis (C s ) are met. Let d be a distance in D p . Then, we have

d(L(Y ϑ t ), ν ϑ ) ≤ c 1 e -c 2 t ,
with c 2 = α/2 where α is the constant featured in equation (4.2.5), and where

c 1 = c 1 (H, α).
Proof. Let Ȳ ϑ be the stationary solution of equation (4.2.7). One can easily show, by means of the same arguments as in [START_REF] María | Discretization of stationary solutions of stochastic systems driven by fractional Brownian motion[END_REF], that

E |Y ϑ t -Ȳ ϑ t | p 1/p ≤ c 1 e -c 2 t . (4.3.7)
The result follows trivially.

Ergodic Theorems for the SDE

We now summarize the limit theorems obtained for equation (4.2.7) which will be relevant for our purposes, with a special emphasis on the occupation measure δ Y ϑ s . Proposition 4.3.3. Let Y ϑ be the unique solution of (4.2.7) obtained for a parameter ϑ ∈ Θ. Assume (H 0 ) and (C w ) hold true and let ν ϑ be the measure defined by (4.2.8). Then for all ϑ ∈ Θ, for any p > 0 and for any distance d ∈ D p , we have (i) The distance between ν ϑ and the normalized occupation measure of Y ϑ converges to 0 as t → ∞. , ν ϑ = 0.

In particular, the following uniform bound holds true: As far as the identification of the limit is concerned, the proof follows the lines of [START_REF] Cohen | Approximation of stationary solutions of Gaussian driven stochastic differential equations[END_REF] and is detailed in Section 4.A.2.

sup ϑ∈Θ sup n≥1 1 n n-1 k=0 |Y ϑ t k | p < ∞ a.s. ( 4 

Ergodic Theorems for the Euler scheme

Recall that we denote by (Z ϑ,γ kγ ) k≥0 the Euler scheme with step γ related to (Y ϑ t ) t≥0 , as defined in (4.2.13). This section focuses on the asymptotic behavior of Z ϑ,γ kγ as k → ∞ and γ → 0. Proposition 4.3.4. Let Y ϑ be the unique solution of (4.2.7) and consider the Euler scheme (Z ϑ,γ kγ ) k≥0 with step γ related to (Y ϑ t ) t≥0 . Assume (H 0 ) and (C w ) hold true. Then for all ϑ ∈ Θ, for any p > 0 and for any distance d ∈ D p , we have (i) There exists γ 0 > 0 and a unique family of measures (ν γ ϑ ) γ≤γ 0 such that for all ϑ ∈ Θ and γ ∈ (0, γ 0 ], we have

lim N →∞ d 1 N N -1 k=0 δ Z ϑ,γ kγ , ν γ ϑ = 0.
In particular, we get the following uniform bound for the p-th powers of Z ϑ,γ kγ :

sup ϑ∈Θ sup N ≥1 1 N N -1 k=0 |Z ϑ,γ kγ | p < ∞ a.s. (4.3.11)
(ii) The invariant measure ν γ ϑ for the Euler scheme converges to the invariant measure ν ϑ of Y ϑ as the mesh of the partition goes to 0:

lim γ→0 d ν γ ϑ , ν ϑ = 0.
Proof. The weak convergence of

1 N N -1 k=0 δ Z ϑ,γ kγ
to ν γ ϑ as n → +∞, as well as the convergence of ν γ ϑ to ν ϑ as γ → 0 are consequences of [START_REF] Cohen | Approximation of stationary solutions to SDEs driven by multiplicative fractional noise[END_REF]Theorem 1]. The extension to distances d dominated by W p follows from Proposition 4.A.2. More precisely for (ii), we can deduce from Proposition 4.A.2 and from Fatou's lemma that for any M > 0, for any γ ∈ (0, γ 0 ],

ν γ ϑ (|x| p ∧ M ) ≤ lim inf N →+∞ 1 N N -1 k=0 E[|Z ϑ,γ kγ | p ] ≤ C
where C is a positive constant independent of M and γ. Hence, taking limits as M goes to ∞, this yields sup 

γ∈(0,γ 0 ] ν γ ϑ (|x| p ) <
such that Y ϑ 1 t -Y ϑ 2 t L p (Ω) ≤ C T,p |ϑ 1 -ϑ 2 |. (4.3.12)
Proof. By monotonicity of the norms in L p (Ω), it is enough to consider the case p ≥ 2. Furthermore, it is readily seen from (4.2.7) that we have

Y ϑ 1 t -Y ϑ 2 t = t 0 (b ϑ 1 (Y ϑ 1 s ) -b ϑ 2 (Y ϑ 2 s ))ds. (4.3.13)
Starting from (4.3.13), we easily get the following identity for the square of 

Y ϑ 1 t -Y ϑ 2 t : d dt Y ϑ 1 t -Y ϑ 2 t 2 = 2 Y ϑ 1 t -Y ϑ 2 t , b ϑ 1 (Y ϑ 1 t ) -b ϑ 2 (Y ϑ 2 t ) . ( 4 
d dt Y ϑ 1 t -Y ϑ 2 t 2 = 2 Y ϑ 1 t -Y ϑ 2 t , b ϑ 1 (Y ϑ 1 t ) -b ϑ 1 (Y ϑ 2 t ) + 2 Y ϑ 1 t -Y ϑ 2 t , b ϑ 1 (Y ϑ 2 t ) -b ϑ 2 (Y ϑ 2 t ) ≤ c 1 Y ϑ 1 t -Y ϑ 2 t 2 + 2c 2 |ϑ 1 -ϑ 2 | 1 + Y ϑ 2 t r Y ϑ 1 t -Y ϑ 2 t ,
where c 1 and c 2 are two strictly positive constants. Now apply the elementary inequality

|ab| ≤ 1 2 (|a| 2 + |b| 2 ) with a = |ϑ 1 -ϑ 2 |(1 + |Y ϑ 2 t | r ) and b = |Y ϑ 1 t -Y ϑ 2 t |.
We deduce the existence of a constant c > 0 such that Let us now get some information about a generic p-th power of

d dt Y ϑ 1 t -Y ϑ 2 t 2 ≤ c Y ϑ 1 t -Y ϑ 2 t 2 + |ϑ 1 -ϑ 2 | 2 1 + |Y ϑ 2 t | 2r . ( 4 
Y ϑ 1 t -Y ϑ 2 t
for p ≥ 2. To this aim, we resort to Jensen's inequality in relation (4.3.16). This gives the existence of a constant c(T, p) such that for any t ∈ [0, T ] we have

Y ϑ 1 t -Y ϑ 2 t p ≤ c(T, p)|ϑ 1 -ϑ 2 | p t 0 1 + |Y ϑ 2 s | 2r p 2 ds.
Taking the expectation, we finally get 

E Y ϑ 1 t -Y ϑ 2 t p 1/p ≤ c(T, p)|ϑ 1 -ϑ 2 | t 0 E 1 + |Y ϑ 2 s |
W p (ν ϑ 1 , ν ϑ 2 ) ≤ 2 sup ϑ∈Θ W p (L(Y ϑ t ), ν ϑ ) + Y ϑ 1 t -Y ϑ 2 t L p (Ω) . ( 4 

Further controls under (C s )

Up to now we have derived properties of the system (4.2.7) under the weak coercive assumption (C w ). In this section, we focus on possible additional bounds one can obtain under the stronger hypothesis (C s ). We will first see how (C s ) guarantees a uniform control on the distance between the Euler scheme and the SDE, for a general decreasing sequence of time steps. Then we will show that (C s ) ensures a some additional uniform continuity in ϑ for the occupation measures of Y ϑ . We consider here Euler type approximations in continuous time, with time steps γ n satisfying (4.2.19). In order to define this Euler approximation (Z ϑ t ) t≥0 , we set s 0 = 0 and s n = n i=1 γ i for all n ≥ 1. Then for any n ≥ 0, the process (Z ϑ t ) t≥0 is given recursively by (4.3.21). We assume that (C s ) holds. Then the following assertions hold true. (i) For any p ≥ 2, there exist some positive constants ρ and C such that for any n ≥ 1 we have

Z ϑ sn+t = Z ϑ sn + tb ϑ (Z ϑ sn ) + σ(B sn+t -B sn ), t ∈ [0, s n+1 -s n ]. ( 4 
|Y ϑ sn -Z ϑ sn | p ≤ e -ρsn |Y ϑ 0 -Z ϑ 0 | p + C n-1 k=0 φ k,p (Z ϑ s k )e -ρ(sn-s k+1 ) , (4.3.22)
where the function φ k,p is defined, for any k ≥ 0, by

φ k,p (z) = γ p+1 k+1 |b ϑ (z)| p + γ k+1 0 |B s k +t -B s k | p dt. (4.3.23)
(ii) Assume in addition that γ n → 0 as n → +∞. Then for any p ≥ 2, there exists n 0 ∈ N and some positive constants ρ and C such that for any n ≥ n 0 we have 

|Y ϑ sn -Z ϑ sn | p ≤ e -ρ(sn-sn 0 ) |Y ϑ sn 0 -Z ϑ sn 0 | p + C n-1 k=n 0 φ k,p (Y s k )e -ρ(
ε t = Y ϑ sn -Z ϑ sn + sn+t sn b ϑ (Y ϑ s ) -b ϑ (Z ϑ sn ) ds. (4.3.25)
Starting from this equation, we divide the proof in several steps.

Step 1: Contracting bound for ε t . Consider a parameter η > 0. We wish to use the coercivity assumption (C s )(i) in order to get an upper-bound on the following derivative:

e ηt |ε t | p = e ηt p|ε t | p-2 ε t , ε t + η|ε t | p . ( 4.3.26) 
To this aim, observe that thanks to (4.3.25) the quantity ε t , ε t can be expressed as:

ε t , ε t = Y ϑ sn+t -Z ϑ sn+t , b ϑ (Y ϑ sn+t ) -b ϑ (Z ϑ sn ) = Y ϑ sn+t -Z ϑ sn+t , b ϑ (Y ϑ sn+t ) -b ϑ (Z ϑ sn+t ) + Y ϑ sn+t -Z ϑ sn+t , b ϑ (Z ϑ sn+t ) -b ϑ (Z ϑ sn ) .
Then we invoke (C s )(i) and the elementary inequality ab ≤ a 2 + b 2 , valid for all a, b ≥ 0. We obtain 

ε t , ε t ≤ -α|Y ϑ sn+t -Z ϑ sn+t | 2 + α 2 |Y ϑ sn+t -Z ϑ sn+t | 2 + 2 α |b ϑ (Z ϑ sn+t ) -b ϑ (Z ϑ sn )| 2 ≤ - α 2 |ε t | 2 + 2L 2 α |Z ϑ sn+t -Z ϑ sn | 2 , ( 4 
|Y ϑ s n+1 -Z ϑ s n+1 | p ≤ e -ηγ n+1 |Y ϑ sn -Z ϑ sn | p +C γ n+1 0 e -η(γ n+1 -t) (t p |b ϑ (Z ϑ sn )| p +|B sn+t -B sn | p )dt,
which yields

|Y ϑ s n+1 -Z ϑ s n+1 | p ≤ e -ηγ n+1 |Y ϑ sn -Z ϑ sn | p + C γ p+1 n+1 |b ϑ (Z ϑ sn )| p + γ n+1 0 |B sn+t -B sn | p )dt . (4.3.31) Thus, setting φ n,p (x) = γ p+1 n+1 |b ϑ (x)| p + γ n+1 0
|B sn+t -B sn | p )dt , an elementary induction procedure yields the following relation for every n ≥ 1:

|Y ϑ sn -Z ϑ sn | p ≤ |Y ϑ 0 -Z ϑ 0 | p e -ηsn + n-1 k=0 φ k,p (Z ϑ s k )e -η(sn-s k+1 ) .
This proves our claim (4.3.22).

Step 3: Proof of (4. 3.24). In order to obtain our second statement (4. Since lim n→∞ γ n = 0, one checks easily that there exists a n 0 such that for any n ≥ n 0 we have the following inequality:

e -ηγ n+1 + Cγ p+1 n+1 ≤ e -η 2 γ n+1 .
Plugging this information into (4.3.32), we end up with

|Y ϑ s n+1 -Z ϑ s n+1 | p ≤ e -η 2 γ n+1 |Y ϑ sn -Z ϑ sn | p + Cφ k,p (Y sn ).
Our assertion (4.3.24) then follows by an induction procedure exactly as for Step 2.

We now give a continuity results (with respect to the parameter ϑ) for some occupa- (ii) The occupation measures of the Euler approximation Z ϑ,γ are also Lipschitz with respect to ϑ. Namely there exists γ 0 > 0 such that: for any γ ∈ (0, γ 0 ], there exists a positive random variable C p (γ) such that for all N ≥ 1

d 1 N N -1 k=0 δ Z ϑ 1 ,γ kγ , 1 N N -1 k=0 δ Z ϑ 2 ,γ kγ ≤ C p (γ)|ϑ 1 -ϑ 2 |. (4.3.34) Remark 4.3.1.
In the sequel we will analyze several quantities like (4.3.34), where we compare two discrete random measures on

R d ν 1 = 1 N N i=1 δ X i and ν 2 = 1 N N i=1 δ Y i with X i = X i (ω) and Y i = Y i (ω).
In this context we will always upper bound quantities of the form d(ν 1 , ν 2 ) for a distance d in D p . To this aim, resorting a trivial coupling between ν 1 and ν 2 , it is enough to prove an almost sure upper bound on

1 N N i=1 |X i -Y i | p .
We will adopt this strategy throughout the chapter, the typical outcome being an a.s. bound on d(ν 1 , ν 2 ). Straightforward extensions to a continuous time setting allow to handle quantities of the form (4.3.33).

Proof of the consistency theorems

The aim of this section is to achieve the proof of Theorems 4.2.1, 4.2.2 and 4.2.3. We first establish a general asymptotic result for a family of contrasts in Sections 4.4.1 and 4.4.2. Then we will combine this general proposition with our preliminary results of Section 4.3 in order to prove our main claims.

Uniform convergence of the contrast

In this section we state some uniform convergence results for the contrast, i.e for the function involved in the definition of estimators such as (4.2.15). We should notice at this point that our uniform convergence results hold only under the assumption (C s ). In case of a constant time step Euler scheme, we get the following result. In particular, we have lim

γ→0 sup ϑ∈Θ d(ν ϑ , ν γ ϑ ) = 0.
(ii) The occupation measure of the Euler scheme converges to the invariant measure ν γ ϑ as the number of steps goes to ∞, that is:

lim N →+∞ sup ϑ∈Θ d 1 N N -1 k=0 δ Z ϑ,γ s k , ν γ ϑ = 0. (iii) We have lim γ→0 lim N,n→+∞ sup ϑ∈Θ d 1 n n-1 k=0 δ Yt k , 1 N N -1 k=0 δ Z ϑ,γ s k -d(ν ϑ 0 , ν ϑ ) = 0.
Proof. We prove the three items separately.

Proof of (i). For sake of simplicity, we only detail the proof for p = 2. The extension to a general p does not generate particular difficulties and can be done as in Proposition 4.3.7.

We start from the following inequality:

d ν γ ϑ , ν ϑ ≤ d L Z ϑ,γ N γ , L Y ϑ N γ + d ν γ ϑ , L Z ϑ,γ N γ + d L Y ϑ N γ , ν ϑ . (4.4.1)
Let us consider the three terms of the right-hand side of (4.4.1) successively. First, without loss of generality, we can assume that Y ϑ 0 = Z ϑ,γ 0 . Furthermore, we have that Z ϑ,γ nγ = Z ϑ nγ for all n ≥ 1, where Z ϑ is defined by (4.3.21). Then, by Proposition 4.3.7 (i) applied with γ n = γ, we have

E[|Y ϑ nγ -Z ϑ,γ nγ | 2 ] ≤ C n-1 k=0 E[φ k,2 (Z ϑ,γ kγ )]e -ργ(n-1-k) ,
where we recall that φ k,p is defined by (4.3.23). Using that b ϑ is sublinear (uniformly in ϑ) and the fact that the increments of B satisfy relation (4.1.1), one obtains

E[|Y ϑ nγ -Z ϑ,γ nγ | 2 ] ≤ C n-1 k=0 γ 3 1 + E[|Z ϑ,γ kγ | 2 ] + γ 2H+1 e -ργ(n-1-k) .
It 

lim sup n→+∞ γ -2H E[|Y ϑ nγ -Z ϑ,γ nγ | 2 ] < ∞.
We now consider the term d(ν γ ϑ , L(Z ϑ,γ N γ )) in the right hand side of (4.4.1). Using that ν γ ϑ is invariant, we remark that

d ν γ ϑ , L Z ϑ,γ N γ ≤ E[|Z ϑ,γ N γ -Zϑ,γ N γ | 2 ] 1 2
where Zϑ,γ denotes a stationary Euler scheme built with the same noise process as for for Z ϑ,γ . Thus, thanks to the fact that

Z ϑ,γ kγ -Zϑ,γ kγ = Z ϑ,γ (k-1)γ -Zϑ,γ (k-1)γ + γ b(Z ϑ,γ (k-1)γ ) -b( Zϑ,γ (k-1)γ )
a straightforward induction under assumption (C s ), similar to (4.3.27), leads to

Z ϑ,γ kγ -Zϑ,γ kγ 2 ≤ (1 -2γα + γ 2 L 2 ) k Z ϑ,γ 0 -Zϑ,γ 0 2 . (4.4.2)
We choose γ 0 = α/L 2 in such a way that 2α -γL 2 ≥ α for any γ ∈ (0, γ 0 ]. In addition, recall that Z ϑ,γ 0 = z 0 . Then, by possibly picking a smaller value of γ 0 , we deduce from Proposition 4.A.2 that lim sup

N →+∞ sup ϑ∈Θ d ν γ ϑ , L Z ϑ,γ N γ = 0.
Eventually, the last term in the right hand side of (4.4.1) tends to 0 uniformly in ϑ as N → +∞ by Proposition 4.3.1. This concludes the proof of (i). Proof of (ii). By Proposition 4.3.4, the convergence of d(

1 N N -1 k=0 δ Z ϑ,γ kγ , ν γ ϑ )
to 0 is true for the simple convergence. In order to extend this result to a uniform convergence in ϑ, we use Proposition 4.3.8(ii) to obtain that the family {ϑ → d(

1 N N -1 k=0 δ Z ϑ,γ kγ , ν γ ϑ ); N ≥ 1, ϑ ∈ Θ}
is equicontinuous for a fixed γ ∈ (0, γ 0 ]. Actually, for some given ϑ 1 and ϑ 2 ,

d 1 N N -1 k=0 δ Z ϑ 1 ,γ kγ , ν γ ϑ 1 -d 1 N N -1 k=0 δ Z ϑ 2 ,γ kγ , ν γ ϑ 2 ≤ d(ν γ ϑ 1 , ν γ ϑ 2 )+d 1 N N -1 k=0 δ Z ϑ 1 ,γ kγ , 1 N N -1 k=0 δ Z ϑ 2 ,γ kγ .
The second term goes to 0 as ϑ 1 -ϑ 2 → 0 by Proposition 4.3.8(ii). This is also the case for the first one by letting N go to ∞ in Proposition 4.3.8(ii) (for instance).

Proof of (iii). This is a simple consequence of the two previous statements and of Proposition 4.3.3(ii).

We 

sup ϑ∈Θ d 1 n n-1 k=0 δ Yt k , 1 s N N -1 k=0 γ k+1 δ Z ϑ s k -d(ν ϑ 0 , ν ϑ ) = 0. (4.4.4)
Proof. For notational convenience, the proof will be detailed for the continuous-time Euler approximation (Z ϑ t ) t≥0 defined by (4.3.21), with step sequence (γ n ) n≥1 . An application of the triangular inequality allows us to bound the left hand side of (4.4.4) as follows:

d 1 n n-1 k=0 δ Yt k , 1 s N N -1 k=0 γ k+1 δ Z ϑ s k -d(ν ϑ 0 , ν ϑ ) ≤ A 1,n + A 2,N (ϑ). ( 4 

.4.5)

with

A 1,n := d 1 n n-1 k=0 δ Yt k , ν ϑ 0 , A 2,N (ϑ) := d 1 s N N -1 k=0 γ k+1 δ Z ϑ s k , ν ϑ .
Our claim can thus be reduced to prove that lim n→+∞ A 1,n = 0, and lim

N →+∞ sup ϑ∈Θ A 2,N (ϑ) = 0.
Furthermore, the fact that lim n→+∞ A 1,n = 0 is a direct consequence of Proposition 4.3.3-(ii). We thus focus on the asymptotic behavior of A 2,N in the remainder of the proof.

In order to bound A 2,N , let us set s = max{s k , s k ≤ s}. Then we observe that

1 s N N -1 k=0 γ k+1 δ Z ϑ s k = 1 s N s N 0 δ Z ϑ s ds.
Therefore we can split A 2,N into

A 2,N (ϑ) ≤ A 21,N (ϑ) + A 22,N (ϑ) + A 23,N (ϑ) (4.4.6)
where the quantities A 2j,N (ϑ) for j = 1, 2, 3 are defined as follows: This means that we are reduced to prove the following limit :

A 21,N (ϑ) := d 1 s N s N 0 δ Z ϑ s ds, 1 s N s N 0 δ Y ϑ s ds , A 22,N (ϑ) := d 1 s N s N 0 δ Y ϑ s ds, 1 s N s N 0 δ Y ϑ s ds , ( 4 
sup ϑ∈Θ 1 s N s N 0 |Y ϑ t -Y ϑ t | p dt N →+∞ -----→ 0 a.s. ( 4.4.9) 
To this aim, we first note that Furthermore, since b ϑ is uniformly sublinear in ϑ and owing to (4.3.9) we know that

|Y ϑ t -Y ϑ t |
C 1 := sup ϑ∈Θ sup N ≥1 1 s N s N 0 |b ϑ (Y ϑ s )| p ds = sup ϑ∈Θ sup N ≥1 1 s N N -1 k=0 s k+1 s k |b ϑ (Y ϑ s )| p ds < +∞ a.s.
Moreover, lim k→+∞ γ p k+1 = 0. Hence, for all ε > 0 there exists k 0 ≥ 0 such that for all k ≥ k 0 , we have γ p k+1 < ε. One can thus deduce that

sup ϑ∈Θ 1 s N N -1 k=0 γ p k+1 s k+1 s k |b ϑ (Y ϑ s )| p ds ≤ sup ϑ∈Θ 1 s N k 0 -1 k=0 γ p k+1 s k+1 s k |b ϑ (Y ϑ s )| p ds + sup ϑ∈Θ 1 s N N -1 k=k 0 γ p k+1 s k+1 s k |b ϑ (Y ϑ s )| p ds ≤ C 1 γ p 1 s k 0 s N + ε , (4.4.13)
from which it is easily seen that

sup ϑ∈Θ 1 s N N -1 k=0 γ p k+1 s k+1 s k |b ϑ (Y ϑ s )| p ds N →+∞ -----→ 0 a.s. ( 4.4.14) 
We can conclude that the first term in the right hand side of (4.4.11) vanishes as N → +∞ due to our identity (4.4.12). In order to prove that the second term in the right hand side of (4.4.11) converges to 0, we invoke Kronecker's lemma (in its continuous version, see [START_REF] Robert | A continuous time kronecker's lemma and martingale convergence[END_REF]Theorem 2.1]). We get that it is sufficient to prove that:

+∞ 0 |B t -B t | p 1 + t dt < +∞ a.s.
However, due to the fact that (t -t) ≤ γ k+1 if t ∈ [s k , s k+1 ), we have,

E +∞ 0 |B t -B t | p 1 + t dt ≤ +∞ 0 1 1 + t (t -t) p H dt ≤ c +∞ k=1 γ p H+1 k+1 s k < +∞
where c is a positive constant and where the last inequality stems from hypothesis (4.4.3). Hence, Kronecker's lemma yields Going back to our decomposition (4.4.6), we still have to prove that lim N →+∞ sup ϑ∈Θ A 21,N (ϑ) = 0. To this end, let us write A 21,N (ϑ) in its discrete form:

1 s N s N 0 |B t -B t | p ds N →+∞ -----→ 0 a.s. ( 4 
A 21,N (ϑ) = d 1 s N N -1 k=0 γ k+1 δ Z ϑ s k , 1 s N N -1 k=0 γ k+1 δ Y ϑ s k . (4.4.16)
Then invoking Remark 4.3.1 once more, we are reduced to prove We now bound the right hand side of (4.4.17) by means of (4.4.18) whenever k ≤ n 0 and invoking (4.3.24) when k ≥ n 0 + 1. This gives

1 s N N -1 k=0 γ k+1 |Y ϑ s k -Z ϑ s k | p N →+∞ -----→ 0 a.s. ( 4 
1 s N N -1 k=0 γ k+1 |Y ϑ s k -Z ϑ s k | p ≤ C(ω) p 1 s N   n 0 k=0 γ k+1 + N -1 k=n 0 +1 γ k+1 e -ρ(s k -sn 0 )   + 1 s N N -1 k=n 0 +1 γ k+1 k-1 =n 0 φ ,p (Y ϑ s )e -ρ(s k -s +1 ) . ( 4.4.19) 
The first term in the right-hand side of (4.4.19) is clearly evanescent as N → +∞. Let us focus on the second one. By a Fubini type transformation, we get

N -1 k=n 0 +1 γ k+1 k-1 =n 0 φ ,p (Y ϑ s )e -ρ(s k -s +1 ) = N -2 =n 0 φ ,p (Y ϑ s ) N -1 k= +1 γ k+1 e -ρ(s k -s +1 ) ≤ N -2 =0 φ ,p (Y ϑ s ) N -1 k= +1 γ k e -ρ(s k -s +1 )
where the last inequality is due to the fact that (γ k ) is non increasing. Since x → e -ρx is a non-increasing function, we remark that for ∈ {0, . . . , N -2},

N -1 k= +1 γ k e -ρ(s k -s +1 ) ≤ e ρs +1 s N -1 s e -ρx dx = 1 ρ e ργ +1 -e -ρ(s N -1 -s +1 ) ≤ C ρ .
Thus, in order to see that the right hand side of (4.4.19) vanishes as N → +∞, it remains to show that lim

N →+∞ sup ϑ∈Θ 1 s N N -1 =0 φ ,p (Y ϑ s ) = 0 (4.4.20)
where we recall that φ ,p is defined by (4.3.23) and thus 

1 s N N -1 =0 φ ,p (Y ϑ s ) = 1 s N N -1 =0 γ p +1 +1 |b ϑ (Y ϑ s )| p + 1 s N N -1 =0 γ +1 0 |B s +t -B s | p dt. ( 4 
sup N ≥1 1 s N N -1 =0 γ +1 |Y ϑ s | p < +∞ a.s.
Furthermore, since b ϑ is uniformly sublinear in ϑ and lim →+∞ γ p +1 = 0, it easily follows along the same lines as for (4.4.14) that:

sup ϑ∈Θ 1 s N N -1 =0 γ p +1 +1 |b ϑ (Y s )| p N →+∞ -----→ 0. ( 4 

.4.22)

We now turn to the term in (4.4.21) involving the fBm, for which we use the classical discrete Kronecker lemma. To this aim, we remark that

E +∞ k=1 1 s k γ k+1 0 |B s k +t -B s k | p dt = 1 p H + 1 +∞ k=1 γ p H+1 k+1 s k < +∞, (4.4.23) 
where the last inequality stems from assumption (4.4.3). From (4.4.23), it is easily seen that

+∞ =0 1 s γ +1 0 |B s +t -B s | p dt < +∞ a.s.
We are thus in position to apply Kronecker's lemma to the sequence ( Eventually, plugging this information into (4.4.5) yields our claim (4.4.4).

γ +1 0 |B s +t - B s | p dt) ≥0 . This yields 1 s N N -1 =0 γ +1 0 |B s +t -B s | p dt N →+∞ -----→ 0. ( 4 

A general convergence result

The consistence of our estimators will rely on the following general proposition about convergence of minimizers for a sequence of random functions. Observe that our sequences below are indexed by a generic r which sits in an unspecified set. This simplifies the subsequent applications of the proposition to our indices N, n, γ in the remainder of the section.

Proposition 4.4.3. Let Θ be a compact set and (ϑ → L r (ϑ)) r denote a family of nonnegative random functions. Assume that:

1. With probability one, lim r L r (ϑ) = L(ϑ) uniformly in ϑ ∈ Θ.

2. The function ϑ → L(ϑ) is non-random and continuous on Θ.

3. For any r, the set argmin{L r (ϑ), ϑ ∈ Θ} is nonempty.

Then, for a fixed r, let θr ∈ argmin{L r (ϑ), ϑ ∈ Θ}. Let A denote the limit points of ( θr ) r . Then we have A ⊂ argmin{L(ϑ), ϑ ∈ Θ}.

In particular, if L attains its minimum for a unique ϑ , then lim r θr = ϑ .

Proof. Let ϑ be an element of argmin{L(ϑ), ϑ ∈ Θ}. We consider a generic element ϑ ∞ ∈ A and its related convergent subsequence ( θrn ) n≥0 . Then we can upper bound L(ϑ ∞ ) as follows: 

L(ϑ ∞ ) ≤ L rn ( θrn ) + |L(ϑ ∞ ) -L rn ( θrn )|. ( 4 

Proofs of the convergence theorems

With all our preliminary considerations in hand, we are now ready to prove the main convergence results for our estimators. This is briefly outlined below. 

= (N, n, γ) ∈ N 2 × R * + . We set L N,n,γ (ϑ) = d( 1 n n-1 k=0 δ Yt k , 1 N N -1 k=0 δ Z ϑ,γ s k ). By Proposition 4.4.1, we have uniformly in ϑ ∈ Θ, lim γ→0 lim N,n→+∞ L N,n,γ (ϑ) = d(ν ϑ 0 , ν ϑ ) =: L(ϑ). ( 4 
(ε) |L N,n,γ (ϑ) -L(ϑ)| = 0,
where L is defined by (4.4.29). Now, denote by A (ε) the set of limit points of ( θ(ε) N,n,γ ) N,n,γ . From Proposition 4.4.3, one deduces that

A (ε) ⊂ argmin{L(ϑ), ϑ ∈ Θ (ε) }.
Furthermore, L is a continuous function such that L(ϑ 0 ) = 0.

Thus, since dist(ϑ 0 , Θ (ε) ) → 0 as ε → 0, one deduces that min ϑ∈Θ (ε) L(ϑ) → 0 as ε → 0. Owing to (I w ), this implies that any sequence (ϑ (ε) ) ε of A (ε) converges to ϑ 0 . This concludes the proof.

Rate of convergence: proof of Theorem 4.2.4

All along this section, we assume (C s ) and (I s ). Our aim is to bound the quantity

E[| θN,n,γ -ϑ 0 | 2 ]
where θN,n,γ is defined by (4.2.15). Owing to (I s ), we are reduced to study

E d ν ϑ 0 , ν θN,n,γ q (4.5.1)
where q := 2/ς and ς ∈ (0, 1] is given in (I s ). Our strategy of proof is based on the following decomposition Lemma 4.5.1. Let θN,n,γ be the estimator defined by (4.2.15) and recall that ν ϑ is defined by (4.2.8) for all ϑ ∈ Θ. Then d ν ϑ 0 , ν θN,n,γ can be decomposed as

d ν ϑ 0 , ν θN,n,γ ≤ 2D (1) n + 2 sup ϑ∈Θ D (2) N,γ (ϑ) + 2 sup ϑ∈Θ D (3) N,γ (ϑ) (4.5.2)
where D

(1)

n , D (2) 
N,γ (ϑ), and D

N,γ (ϑ) are respectively by Proof. Let us write θ for θN,n,γ throughout the proof in order to ease notations. We first apply the triangular inequality, which yields

D (1) n := d ν ϑ 0 , 1 n n-1 k=0 δ Yt k , (4.5.3) D (2) N,γ (ϑ) := d 1 N N -1 k=0 δ Z ϑ,γ kγ , 1 N N -1 k=0 δ Y ϑ kγ , ( 4 
d ν ϑ 0 , ν θ ≤ d ν ϑ 0 , 1 n n-1 k=0 δ Yt k + d 1 n n-1 k=0 δ Yt k , 1 N N -1 k=0 δ Z θ,γ kγ + d 1 N N -1 k=0 δ Z θ,γ kγ , ν θ
where (Y t ) t≥0 is the observation process given by (4.1.2). Next, we invoke the fact that θ minimizes the quantity d 

1 n n-1 k=0 δ Yt k , 1 N N -1 k=0 δ Z ϑ,γ kγ in Θ, which gives d ν ϑ 0 , ν θ ≤ d ν ϑ 0 , 1 n n-1 k=0 δ Yt k +d 1 n n-1 k=0 δ Yt k , 1 N N -1 k=0 δ Z ϑ 0 ,γ kγ +sup ϑ∈Θ d 1 N N -1 k=0 δ Z ϑ,γ kγ , ν ϑ . (4.5.6) constant C > 0 such that 1 n n-1 k=0 E[f (Y t k )] -ν ϑ 0 (f ) ≤ 1 n n-1 k=0 E[|f (Y t k ) -f ( Ȳt k )|] ≤ C n f Lip . ( 4 
D (11) n ≤ max d CF,p ν ϑ 0 , 1 n n-1 k=0 E[δ Yt k ] , d s ν ϑ 0 , 1 n n-1 k=0 E[δ Yt k ] ≤ C n . (4.5.11)
The term D [START_REF] Carmona | Stochastic integration with respect to fractional Brownian motion[END_REF] n is handled in Proposition 4.5.1 below and specifically in relation (4.5.12). Therefore, plugging (4.5.11) and (4.5.12) into (4.5.9), relation (4.5.8) is proved. Then,

E d 1 n n-1 k=0 δ Yt k , 1 n n-1 k=0 E[δ Yt k ] q ≤ C q n -q 2 (2-(2H∨1)) . (4.5.12)
The proof of the proposition is based on the following lemma:

Lemma 4.5.3. Recall that (Y t ) t≥0 is given by (4.1.2). Then for all q ≥ 1 and for all Lipschitz function f :

R d → R, E 1 n n-1 k=0 f (Y t k ) -E[f (Y t k )] q ≤ C q f q Lip n -q 2 (2-(2H∨1)) . ( 4 

.5.13)

Proof. We invoke a concentration result for large time borrowed from [START_REF] Varvenne | Concentration inequalities for stochastic differential equations with additive fractional noise[END_REF]Theorem 2.3]. This result asserts that: there exists C > 0 such that for all Lipschitz functions f : R d → R and for all r ≥ 0,

P 1 n n-1 k=0 f (Y t k ) -E[f (Y t k )] ≥ r ≤ exp(-C f -2 Lip r 2 n 2-(2H∨1) ). (4.5.14)
Therefore, one can check that (4.5.13) holds true by plugging inequality (4.5.14) into the classical formula

E[X q ] = +∞ 0 qx q-1 P(X ≥ x)dx,
which is valid for any positive random variable X.

Proof of Proposition 4.5.1. We will only give details about d CF,p since d s can be treated exactly along the same lines. Furthermore, since our parameter q is greater than 2, by using Jensen inequality and the linearity of E into the definition (4.2.21) of d CF,p , we get:

E d CF,p ν ϑ 0 , 1 n n-1 k=0 E[δ Yt k ] q ≤ R d E 1 n n-1 k=0 f ξ (Y t k ) -E[f ξ (Y t k )] q g p (ξ)dξ,
where f ξ (x) = e i ξ,x . Since f ξ Lip ≤ |ξ|, we thus deduce from Lemma 4.5.3 that

E d CF,p ν ϑ 0 , 1 n n-1 k=0 E[δ Yt k ] q ≤ C q n -q 2 (2-(2H∨1)) R d |ξ| q g p (ξ)dξ.
The integral in the last inequality is finite owing to the fact that we chose p > (q + d)/2. Our claim thus follows. 

sup ϑ∈Θ D (2) N,γ (ϑ) ≤ 1 N N -1 k=0 sup ϑ∈Θ |Y ϑ kγ -Z ϑ,γ kγ |.
We thus deduce that

E sup ϑ∈Θ |D (2) N,γ (ϑ)| q ≤ E 1 N N -1 k=0 sup ϑ∈Θ |Y ϑ kγ -Z ϑ,γ kγ | q .
Recall that q ≥ 2. Hence a direct application of Jensen's inequality gives 

E sup ϑ∈Θ |D (2) N,γ (ϑ)| q ≤ 1 N N -1 k=0 E sup ϑ∈Θ |Y ϑ kγ -Z ϑ,γ kγ | q . ( 4 
|Y ϑ kγ -Z ϑ,γ kγ | q ≤ Cγ qH .
Gathering this information with (4.5.16), inequality (4.5.15) is easily deduced.

L q bound on D

(3) N,γ

The quantity (4.5.5) is the hardest to treat among the terms in our decomposition (4.5.2), due to the fact that we wish to achieve a uniform bound in ϑ. We summarize our analysis in the following lemma. N,γ (ϑ) q ≤ C q γ qH + T -η (4.5.17)

with η := q 2 2(q+d) (2 -(2H ∨ 1 
)) and T = N γ.

Proof. We will further decompose the term D

(3)

N,γ and then divide our analysis in several steps. First, let us introduce some notations: denote by T the quantity N γ and for all t ∈ [0, T ], set t := inf{kγ | kγ ≤ t < (k + 1)γ} as we did in the proof of Proposition 4.4.2. With this notations in hand, we have D where

D (31) N,γ (ϑ) = d ν ϑ , 1 T T 0 δ Y ϑ t dt and D (32) N,γ (ϑ) = d 1 T T 0 δ Y ϑ t dt, 1 T T 0 δ Y ϑ t dt .
We will now handle those two terms separately:

Step 1: Bound on D 

N,γ (ϑ) ≤ 1 T T 0 sup ϑ∈Θ |Y ϑ t -Y ϑ t |dt. (4.5.19) 
We now proceed as in Section 4.5.2 in order to get the equivalent of (4.5.16) thanks to Jensen's inequality. We get

E sup ϑ∈Θ |D (32) N,γ (ϑ)| q ≤ 1 T T 0 E sup ϑ∈Θ |Y ϑ t -Y ϑ t | q dt. ( 4 

.5.20)

In order to bound the right hand side of (4.5.20), we start by recalling the bound (4.4.10) for Y ϑ t -Y ϑ t :

|Y ϑ t -Y ϑ t | ≤ t t |b ϑ (Y ϑ s )|ds + σ |B t -B t |.
The drift term above is now bounded thanks to the sublinear growth of b ϑ given by (4.2.5) and the uniform bound on the L q moments of Y ϑ t given by Proposition 4.A.1. As far as the term |B t -B t | is concerned , we obviously have thanks to (4.1.1) and the fact that |t -t| ≤ γ:

E |B t -B t | q ≤ C H γ qH .
From here, it is readily checked that

E sup ϑ∈Θ |Y ϑ t -Y ϑ t | q ≤ C H γ qH .
Plugging this information into (4.5.20) we end up with

E sup ϑ∈Θ |D (32) 
N,γ (ϑ)| q ≤ C q γ qH . (4.5.21)

Step 2: Bound on D N,γ (ϑ) will be handled similarly to Section 4.5.1. Namely, along the same lines as for relation (4.5.9) we write

D (31) N,γ (ϑ) ≤ d ν ϑ , 1 T T 0 E[δ Y ϑ t ]dt + d 1 T T 0 E[δ Y ϑ t ]dt, 1 T T 0 δ Y ϑ t dt . (4.5.22)
Then the first term in the right hand side of (4.5.22) is handled exactly as (4.5.10) in Section 4.5.1, which yields

1 T T 0 E[f (Y ϑ t )]dt -ν ϑ (f ) ≤ C T f Lip . (4.5.23)
The second term in the right hand side of (4.5.22) can be upper bounded thanks to a continuous time version of Lemma 4.5.3 (also based on [70, Theorem 2.3] and left to the reader for the sake of conciseness). We get 

E 1 T T 0 f (Y ϑ t ) -E[f (Y ϑ t )] dt q ≤ C q f q Lip T -q 2 (2-(2H∨1)) . ( 4 
N,γ (ϑ)| q = E d ν ϑ , 1 T T 0 δ Y ϑ t dt q ≤ C q T -q + T -q 2 (2-(2H∨1)) (4.5.25) (31) 
where C q is a positive constant which does not depend on ϑ.

Step 3: Bound on sup ϑ∈Θ D

N,γ (ϑ). In order to gor from (4.5.25) to a bound for the supremum over Θ, we proceed to a discretization of the parameter space Θ as in Section 4.2.4. Towards this aim, we will use the following notation: for any ϑ ∈ Θ, we set

ϕ(ϑ) := d ν ϑ , 1 T T 0 δ Y ϑ t dt . (4.5.26) Let ε > 0 and recall that Θ (ε) := {ϑ (ε) i | 1 ≤ i ≤ M ε } is defined at the beginning of Subsection 4.2.4 in such a way that Θ ⊂ Mε i=1 B(ϑ (ε) i , ε). Then, for any ϑ ∈ Θ, ϕ(ϑ) ≤ |ϕ(ϑ) -ϕ(ϑ (ε) )| + |ϕ(ϑ (ε) )|
where ϑ (ε) is defined by (4.2.16). Therefore

ϕ(ϑ) ≤ |ϕ(ϑ) -ϕ(ϑ (ε) )| + max 1≤i≤Mε |ϕ(ϑ (ε) i )|
and finally

E sup ϑ∈Θ ϕ(ϑ) q ≤ c q E sup ϑ∈Θ |ϕ(ϑ) -ϕ(ϑ (ε) )| q + c q E max 1≤i≤Mε |ϕ(ϑ (ε) i )| q ≤ c q E sup ϑ∈Θ |ϕ(ϑ) -ϕ(ϑ (ε) )| q + c q Mε i=1 E |ϕ(ϑ (ε) i )| q . (4.5.27)
Owing to inequality (4.5.25) for a fixed ϑ ∈ Θ, we can deduce from (4.5.27) that

E sup ϑ∈Θ ϕ(ϑ) q ≤ c q E sup ϑ∈Θ |ϕ(ϑ) -ϕ(ϑ (ε) )| q + c q M ε T -q + T -q 2 (2-(2H∨1)) . (4.5.28)
In the remainder of the step, we thus focus on the first right hand term in (4.5.28). Namely we will show the existence of an integrable random variable ζ T > 0 such that for all ϑ 1 , ϑ 2 ∈ Θ we have

|ϕ(ϑ 1 ) -ϕ(ϑ 2 )| ≤ ζ T |ϑ 1 -ϑ 2 | a.s. (4.5.29)
For this purpose, let us split the quantity |ϕ(ϑ 1 ) -ϕ(ϑ 2 )| in two terms

|ϕ(ϑ 1 ) -ϕ(ϑ 2 )| ≤ d (ν ϑ 1 , ν ϑ 2 ) + d 1 T T 0 δ Y ϑ 1 t dt, 1 T T 0 δ Y ϑ 2 t dt . ( 4.5.30) 
Then, one can show the following inequalities for any 

d ∈ D 1 d (ν ϑ 1 , ν ϑ 2 ) ≤ C|ϑ 1 -ϑ 2 | sup ϑ∈Θ ν ϑ (| • | r ) (4.5.31) d 1 T T 0 δ Y ϑ 1 t dt, 1 T T 0 δ Y ϑ 2 t dt ≤ C|ϑ 1 -ϑ 2 | 1 T T 0 sup ϑ∈Θ |Y ϑ s |
ϕ(ϑ) q ≤ c q sup T >0 E[ζ q T ]ε q + c q M ε T -q + T -q 2 (2-(2H∨1)) . ( 4 

.5.33)

For all ε > 0, since Θ is a compact of R d , we can choose M ε ≤ C Θ ε d and then if we choose ε := T -η for some η > 0, we finally get

E sup ϑ∈Θ ϕ(ϑ) q ≤ c q sup T >0 E[ζ q T ]T -qη + c q C Θ T -q+dη + T -q 2 (2-(2H∨1))+dη ≤ c q sup T >0 E[ζ q T ]T -qη + c q C Θ T -q 2 (2-(2H∨1))+dη .
The result follows.

In other words, this result says that in the diffusion setting, the identifiability assumption is true if Proj F (b ϑ -b ϑ 0 ) is not the null function for any ϑ = ϑ 0 . Notice that this is always true in the one-dimensional case or if b ϑ is a gradient. Unfortunately, the generalization of this simple characterization to SDEs driven by fBm is far from being straightforward.

Fractional Brownian motion case

In this section we wish to check (I s ) for some specific examples of equation (4.2.7) and for the distance d cf,p . Specifically, we shall consider a family Y ϑ,λ of real valued processes defined by

dY λ,ϑ t = -ϑ Y λ,ϑ t + λb ϑ (Y λ,ϑ t ) dt + σ dB t (4.6.1)
where B is a 1-dimensional fractional Brownian motion. In equation (4.6.1) the quantity λ is a small enough parameter, which is assumed to be known. The estimation procedure is still for ϑ only. The coefficient b ϑ is bounded together with its derivatives with respect to y and ϑ. The process Y ϑ,λ has to be seen as a small perturbation of a fractional Ornstein-Uhlenbeck process with parameter ϑ. We also assume that ϑ is a 1-dimensional parameter and:

ϑ ∈ [m, M ], with 0 < m < M < ∞. (4.6.2) 
Let us start our analysis by the case X ϑ ≡ Y 0,ϑ , that is the fractional Ornstein-Uhlenbeck process itself, solution of the following equation: 

dX ϑ t = -ϑ X ϑ t dt + σ dB t . ( 4 
d cf,p (µ ϑ 1 , µ ϑ 2 ) ≥ c m,M,H |ϑ 1 -ϑ 2 |. (4.6.5)
Proof. It is well-known (see e.g [START_REF] Buchmann | Maxima of stochastic processes driven by fractional Brownian motion[END_REF]) that for the fractional Ornstein-Uhlenbeck process we have 

µ ϑ = N (0, σ 2 ϑ ), with σ 2 ϑ = c H ϑ 2H . ( 4 
d 2 cf,p (µ ϑ 1 , µ ϑ 2 ) = R exp - c H 2ϑ 2H 1 ξ 2 -exp - c H 2ϑ 2H 2 ξ 2 2 g p (ξ)dξ,
where the quantities I 1j and I 3 are defined by

I 1j = R E exp iξ Ȳ λ,ϑ j -E exp iξY λ,ϑ j t 2 g p (ξ) dξ I 3 = R E exp iξX ϑ 1 t -E exp iξX ϑ 2 t 2 g p (ξ) dξ,
and where we recall that the Ornstein-Uhlenbeck process X ϑ is given by (4.6.3). In equation (4.6.10), we also have

I 2 = R E exp iξY λ,ϑ 1 t -E exp iξX ϑ 1 t -E exp iξY λ,ϑ 2 t + E exp iξX ϑ 2 t 2 g p (ξ) dξ.
In the definitions above, t is an arbitrarily large time, to be determined later on. Our goal is now to lower bound I 3 and upper bound I 1,j and I 2 .

Lower bound for I 3 . In order to lower bound I 3 , we proceed as in Lemma 4.6.1. Indeed, Lemma 4.6.1 stems from a lower bound on

|E[e iξX ϑ 1 ∞ ] -E[e iξX ϑ 2 ∞ ]|,
while we are interested here in a lower bound on

|E[e iξX ϑ 1 t ] -E[e iξX ϑ 2 t ]|,
for a fixed t. However it is readily checked from (4.6.4) that there exists t 0 > 0 such that for all t ≥ t 0 we have

I 3 ≥ c 1 |ϑ 1 -ϑ 2 | 2 (4.6.11)
with a given constant c 1 > 0 depending on m, M .

Upper bound for I 1j . Recall that both b ϑ and ∂ y b ϑ are bounded by 1. We also assume that λ is small enough so that λ ≤ m(1 -ε) with ε > 0. Then it is readily checked that x → -ϑx + λb ϑ (x) satisfies the condition (C s ). Hence one can see as in (4.3.7) that

I 1j ≤ Ce -mε 2 t .
If we wish to have

I 1j ≤ c 3 |ϑ 1 -ϑ 2 | 2 , with c 3 arbitrarily small, it is thus sufficient to pick t ≥ t 1 with t 1 = C log 1 |ϑ 1 -ϑ 2 | 2 .
In the sequel we choose this time t 1 such that

I 1/2 11 + I 1/2 12 ≤ √ c 1 4 |ϑ 1 -ϑ 2 |. ( 4 
.6.12)

Upper bound for I 2 . We start by recalling that

X ϑ = Y 0,ϑ . Next we set R = [ϑ 1 , ϑ 2 ] × [0, λ] and for r, τ ∈ [0, 1] we define a(r, τ ) = Y 0,ϑ 2 t + r Y 0,ϑ 1 t -Y 0,ϑ 2 t + τ Y λ,ϑ 2 t -Y 0,ϑ 2 t + rτ ∆ R Y t , (4.6.13)
where the rectangular increment ∆ R Y t is given by

∆ R Y t = Y λ,ϑ 1 t -Y 0,ϑ 1 t -Y λ,ϑ 2 t + Y 0,ϑ 2 t . (4.6.14)
Notice that I 2 can be expressed as 

I 2 = R E [∆ R ψ ξ (Y t )] 2 g p (ξ) dξ, ( 4 
∆ R ψ ξ (Y t ) = [0,1] 2 ∂ 2 rτ [ψ ξ (a(r, τ ))] drdτ,
and computing the differential 

∂ 2 rτ [ψ ξ (a(r, τ ))] explicitely we get ∆ R ψ ξ (Y t ) = [0,1] 2 ψ ξ (a(r, τ ))∂ 2 rτ a(r, τ ) + ψ ξ (a(r, τ ))∂ r a(r, τ )∂ τ a(
I 2 ≤ C p E |Y 0,ϑ 2 t -Y 0,ϑ 1 t | + |∆ R (Y t )| |Y λ,ϑ 2 t -Y 0,ϑ 2 t | + |∆ R (Y t )| + E [|∆ R (Y t )|] 2 ≤ C p,m,M,ε E ∂ λ Y ϑ 2 ∞ + ∂ ϑ Y ϑ 2 ∞ + ∂ 2 λϑ Y ϑ 2 ∞ 2 λ 2 |ϑ 1 -ϑ 2 | 2 . ( 4 
.6.17)

In order to bound the right hand side of (4.6.17), we are now reduced to the estimation of ∂ λ Y λ,ϑ , ∂ ϑ Y λ,ϑ and ∂ 2 λϑ Y λ,ϑ .Let us now show how to establish a bound for ∂ λ Y λ,ϑ . To this aim, differentiating formally equation (4.6.1), the process ∂ λ Y λ,ϑ solves a system of the form 

d[∂ λ Y λ,ϑ ] t dt = -ϑ + λ∂ y b ϑ (Y λ,ϑ t ) ∂ λ Y λ,ϑ t + b ϑ (Y λ,ϑ t ). ( 4 
∂ λ Y ϑ ∞ + ∂ ϑ Y ϑ ∞ + ∂ 2 λϑ Y ϑ ∞ ≤ c m,M,ε .
Whenever d is the p-Wasserstein distance, an explicit computation of the distance d in (4.2.15) is possible if the observation Y is 1-dimensional. To this aim, one can use the following representation (see [START_REF] Vallander | Calculations of the Vasseršteȋn distance between probability distributions on the line[END_REF]): if µ and ν are two one-dimensional probabilities with c.d.f F and G respectively, then for all p > 0 we have

W p p (µ, ν) = 1 0 |F -(t) -G -(t)| p dt,
where F -and G -denote the (left or right) pseudo-inverse of F and G. Moreover, when µ = n 1 i=1 p i δ x i and ν = n 2 j=1 q j δ y j , the computation of the right hand side above can be made explicit through a reordering (and using the fact that F -1 and G -1 are stepwise constant). In particular, when n 1 = n 2 = n and p i = q j = 1/n, the Wasserstein distance between µ and ν simply reads

W p p (µ, ν) = 1 n n i=1 |x (i) -y (i) | p . (4.7.1)
We will use this representation in our simulations. In higher dimension, the computation of the Wasserstein distance generally requires approximation/optimization methods which are out of the scope of this paper. In this context it seems to be numerically simpler to work with an approximation of the distance d CF,p (defined in (4.2.21)), which is also used for our analysis of the rate of convergence. Such an approximation can be obtained by a standard discretization of the integral which appears in the definition (4.2.21).

Minimization of the distance with respect to ϑ:

Eventually the implementation of our estimation procedure relies on an optimization problem in order to compute the argmin in (4.2.15). More specifically, in case the estimator is built with a constant step Euler scheme, this consists in minimizing the function

F d : ϑ → d 1 n n-1 k=0 δ Yt k , 1 N N -1 k=0 δ Z ϑ,γ kγ . ( 4.7.2) 
In this paper, we only use the naive approach which consists in evaluating the function on a (finite) grid and then computing the minimum on this finite set. This minimization algorithm is clearly restricted to a low dimensional setting. A rigorous investigation of this question would involve more sophisticated optimization methods, such as gradienttype descents.

Observe that a gradient descent should be reasonably straightforward to implement on a distance like d CF,p , for which the computation of the gradient has an explicit expression. However, the additional workload in order to carry out this optimization method would clearly lead us too far. We have thus chosen to postpone this study to a future paper.

Numerical illustrations:

Let us now turn to some numerical tests, for which we consider two one-dimensional examples.

£ We begin with the classical Ornstein-Uhlenbeck (OU) process: we consider the process X ϑ defined by (4.6.3), where ϑ is assumed to sit in a compact interval of (0, +∞) like in (4.6.2). Let us recall that this case is a toy example since the Gaussian linear structure of the OU-process allows to develop specific estimation methods (on this topic, see [START_REF] Kleptsyna | Statistical analysis of the fractional Ornstein-Uhlenbeck type process[END_REF] or more recently [START_REF] Xiao | Parameter estimation for fractional Ornstein-Uhlenbeck processes at discrete observation[END_REF] and [START_REF] Brouste | Design for estimation of the drift parameter in fractional diffusion systems[END_REF]). The assumptions (H 0 ) and (C s ) are clearly satisfied, whereas (I s ) follows from Lemma 4.6.1. Using the strategy described in the first part of this section, we get a discretely observed path of Y with the following parameters: account the scale difference in the y-axis between the left and right part of Figure 2, it can also be observed that the derivative of F d gets smaller for smaller values of H. This is consistent with the fact that H → σ 2 ϑ in (4.6.6) is an increasing function. £ We now consider a second example with a non linear dependence in ϑ, namely an equation of the form:

dY ϑ t = -Y ϑ t (1 + cos(ϑY ϑ ))dt + dB t .
In this case, we only compute the Wasserstein distance for different values of p with the same choices of parameters. Once again, the minimum of the function F Wp is attained close to ϑ 0 = 2. One also observes that the local behavior in the neighborhood of ϑ 0 is similar to the linear case. 

4.A Tightness and convergence of the occupation measures

In this Appendix, we first show some uniform estimates for Y ϑ and Z ϑ,γ and their respective occupation measures, as well as some convergence result for the occupation measure of Y ϑ . Those results are all used in the proof of Proposition 4.3.3 and 4.3.4.

4.A.1 Moment estimates

We start by bounding the moments of Y ϑ and its occupation measure. Proof. We treat our three items separately. (i) The proof is done in [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF]. It is based on a comparison with the moments of the fractional Ornstein-Uhlenbeck process, similarly to what is done in step (ii) below. Since the constants in (C w ) are independent from ϑ, we get the uniformity with respect to ϑ.

(ii) Let p > 0. By Cauchy-Schwarz inequality it is enough to prove the result with 2p instead of p. Let us denote by (X t ) t≥0 the fractional Ornstein Uhlenbeck process defined by (4.6.3) with ϑ = 1 and starting from y 0 , i.e. Let us also denote by X the stationary Ornstein-Uhlenbeck process related to (4.A.1).

Then the proof of item (ii) is based on the following inequality:

1 T T 0 |Y ϑ t | 2p dt ≤ 3 2p-1 1 T T 0 |Y ϑ t -X t | 2p dt + 1 T T 0 |X t -Xt | 2p dt + 1 T T 0 | Xt | 2p dt (4.A.
2) Let us start by bounding the two last term in the right hand side of (4.A.2). First, since ( Xkκ ) k≥0 is a stationary Gaussian sequence and since E[ Xκ X(n+1)κ ] -→ n→+∞ 0 (according to [START_REF] Cheridito | Fractional Ornstein-Uhlenbeck processes[END_REF]Theorem 2.3]), a criterion for Gaussian processes (see [START_REF] Maruyama | The harmonic analysis of stationary stochastic processes[END_REF]) gives that ( Xkκ ) k≥0 is ergodic. Therefore, we get Now it remains to treat the first term in the right hand side of (4.A.2). To this end, we will invoke our hypothesis (C w ) and a classical argument based on Gronwall's lemma. Namely, note that for all ε > 0,

d dt |Y ϑ t -X t | 2 = 2 Y ϑ t -X t , b ϑ (Y ϑ t ) + X t = 2 Y ϑ t -X t , b ϑ (Y ϑ t ) -b ϑ (X t ) + 2 Y ϑ t -X t , b ϑ (X t ) + X t ≤ 2β -2α|Y ϑ t -X t | 2 + 1 ε |Y ϑ t -X t | 2 + ε C(1 + |X t | 2r ),
where the last inequality stems from (C w ), Young's inequality and the linear growth of b ϑ entailed by (4.2.5). We then set ε = 1/α, which gives

d dt |Y ϑ t -X t | 2 ≤ 2β -α|Y ϑ t -X t | 2 + C α (1 + |X t | 2r ).
Hence from Gronwall's lemma, we deduce that (iii) We let the patient reader check the details for item (iii). It follows the same lines as item (ii), except for the fact that the discretization procedure is avoided.

Our next result is an analog of Proposition 4.A.1 for the Euler scheme Z ϑ,γ . Proposition 4.A.2. Let Z ϑ,γ be the Euler approximation scheme defined by (4.2.13). Assume (H 0 ) and (C w ). Then, there exists γ 0 > 0 such that for all p > 0, We first prove some bounds on Σ itself, which are labeled in the following lemma Since Σ is a Gaussian process, the extension from a second order moment to a moment of order 2p is trivial. We thus omit details for sake of conciseness.

(ii) Let γ 0 ∈ (0, 1) and γ ∈ (0, γ 0 ). First note that by induction, we have for all k ≥ 1:

Σ kγ = (1 -γ) k y 0 + σ k-1 j=0 (1 -γ) j ∆ k-j , (4.A.10)
where ∆ k-j := (B (k-j)γ -B (k-1-j)γ ). In equation (4.A.10), we apply the triangular inequality for the norm in L 2 (Ω) and we invoke the fact that E[(∆ i k ) 2 ] 1/2 = γ H for all i ∈ {1, . . . , d}. This yields In order to prove (4.A.13) we make a change of variable = k -1 -j and apply Fubini's theorem. This gives

E[|Σ kγ | 2 ] 1/2 ≤ (1 -γ) k |y 0 | + |σ| k-1 j=0 (1 -γ) j E[|∆ k-j | 2 ]
1 N N -1 k=1 k-1 j=0 (1 -γ) j |∆ k-j | 2p = 1 N N -2 =0 |∆ +1 | 2p N -1 k= +1 (1 -γ) k-1- ≤ 1 γ 1 N N -2 =0 |∆ +1 | 2p ≤ d p -1 γ d i=1 1 N N -2 =0 (∆ i +1 ) 2p .
Since the sequence (∆ i n ) n≥1 is ergodic for every i ∈ {1, . . . , d}, we have

1 N N -2 =0 (∆ i +1 ) 2p -→ N →+∞ E[(∆ i 1 ) 2p ] = c p γ 2pH
and our claim (4.A.13) follows. This finishes the proof.

With those preliminary considerations on Σ in hand, we can now prove our Proposition 4.A.2.

Proof of Proposition 4.A.2. As previously, we will prove the result for 2p instead of p. Moreover, for sake of simplicity, we write Z ϑ instead of Z ϑ,γ . According to the dynamics (4.A.8) for Σ and (4. Then, we invoke our condition (C w ) to bound the first term in the right hand side above and Young's inequality for the second term. Similar manipulations can be performed for the third term in (4.A.14). We let the patient reader check that for some arbitrary parameters ε, ε we get

|Z ϑ kγ -Σ kγ | 2 ≤ 2βγ + (1 -2γα)|Z ϑ (k-1)γ -Σ (k-1)γ | 2 + γ ε |Z ϑ (k-1)γ -Σ (k-1)γ | 2 + γε|Σ (k-1)γ + b ϑ (Σ (k-1)γ )| 2 + γ 2 2ε |Σ (k-1)γ + b ϑ (Σ ϑ (k-1)γ )| 2 + γ 2 L 2 ε 2 |Z ϑ (k-1)γ -Σ (k-1)γ | 2 .
We now choose ε = 1 α and ε = α γL 2 , which yields

|Z ϑ kγ -Σ kγ | 2 ≤ 2βγ + 1 - γα 2 |Z ϑ (k-1)γ -Σ (k-1)γ | 2 + γ α + γ 3 L 2 2α |Σ (k-1)γ + b ϑ (Σ (k-1)γ )| 2 .
Observe that under (C w ), b ϑ is sublinear. Hence there exists C > 0 depending only on α, β, L such that

|Z ϑ kγ -Σ kγ | 2 ≤ (1 -γ α) |Z ϑ (k-1)γ -Σ (k-1)γ | 2 + Cγ 1 + γ 2 1 + |Σ (k-1)γ | 2 (4.A.15)
where we have set α := α/2 in order to ease our next computations. We now choose 0 < γ 0 < 1/α. By a direct induction, it comes

|Z ϑ kγ -Σ kγ | 2 ≤ Cγ 1 + γ 2 k-1 j=0 (1 -γ α) k-1-j 1 + |Σ jγ | 2 .
Finally, applying Jensen's inequality similarly to what is done in (4.A.12), we end up with With this inequality in hand and Proposition 4.A.1 (i), inequality (i) is proved.

|Z ϑ kγ -Σ kγ | 2p ≤ C p γ αp -1 1 + γ 2 p k-1 j=0 (1 -γ α) k-1-j 1 + |Σ jγ | 2 p ≤ C p 2 α p-1 γ 1 + γ 2 p k-1 j=0 (1 -γ α) k-1-j 1 + |Σ jγ | 2p . ( 4 
(ii) First, we take successively the supremum over Θ and the expectation in (4.A.16). We then multiply by γ 2p(1-H) and perform the same kind of manipulations as for (i). With the help of Proposition 4.A.1 (ii), we get that 

4.A.2 Proof of Proposition 4.3.3

We will focus on the proof of (4.3.8) only, the discrete counterpart of Proposition 4.3.3 being obtained by similar argument. We also note that (4.3.8) cannot be obtained as a consequence of Birkhoff's theorem. Indeed, Birkhoff's theorem would yield a νϑ -a.s. convergence in (4.3.8), where νϑ is the invariant measure alluded to in Remark 4.2.3. In order to avoid any reference to the support of the invariant measure νϑ , our relation (4.3.8) gives a weak convergence result which does not include any condition on the initial value of Y ϑ 0 . In order to prove (4.3.8), we first observe that according to (4.3.9), the family of measures { 1 t t 0 δ Y ϑ s ds; t ≥ 0} is a.s. tight. Therefore it only remains to prove that any limit is ν ϑ . We now focus on the convergence of 1 t t 0 δ Y ϑ s ds. To this aim, we consider an additional family of probability measures on C([0, ∞), R d ) in the following way:

π ϑ t = 1 t t 0 δ Y ϑ s+.
ds where Y ϑ s+. = (Y ϑ s+u ) u≥0 . We will first prove that {π ϑ t ; t ≥ 0} is an a.s. tight family in the set M 1 (C([0, ∞), R d )), where we recall that the notation M 1 is introduced in Section 4.2.1. The tightness of {π ϑ t ; t ≥ 0} can be handled in the following way: we have seen ds is necessarily the law of a stationary solution Ȳ ϑ to SDE (4.2.7). This step in turn implies the result by uniqueness of the stationary solutions. We thus easily get that µ is stationary. Now, let us prove that µ is the law of a solution to (4.2.7). Without loss of generality, we can say that a process (x t ) t≥0 is a solution to (4. In addition, by construction G(Y ϑ s+. ) = B s+. -B s . Hence the fact that µ • G -1 is the law of a fBM follows again from the ergodicity of the increments of the fBM. Summarizing our considerations, we have proved that µ is a stationary measure related to the system (4.2.7). Therefore we have µ = L(( Ȳ ϑ t ) t≥0 ), which concludes the proof.

4.B Proof of Proposition 4.3.8

For sake of conciseness, we will focus on the proof of Proposition 4.3.8 (i). The proof of item (ii) relies on the same kind of tools, plus the discrete computations invoked in the proof of Proposition 4.A.2. In order to prove item (i), let us consider t ≥ 1 and a parameter ρ > 0 to be chosen later on. An easy elaboration of (4. 3.14) shows that 

ϑ 1 (Y ϑ 1 s ) -b ϑ 2 (Y ϑ 2 s ) = b ϑ 1 (Y ϑ 1 s ) -b ϑ 1 (Y ϑ 2 s ) + b ϑ 1 (Y ϑ 2 s ) -b ϑ 2 (Y ϑ 2 s ).
We now combine the assumption (C s ) (including the contraction property, the fact x → b ϑ (x) is uniformly Lipschitz in ϑ and the fact that ∂ ϑ b ϑ (x) has polynomial growth) and Young's inequality |ab| ≤ 1 2ε |a| 2 + ε 2 |b| 2 for an arbitrary ε > 0. This yields the existence of a constant L > 0 such that

b ϑ 1 (Y ϑ 1 s )-b ϑ 2 (Y ϑ 2 s ), Y ϑ 1 s -Y ϑ 2 s ≤ -α + L 2 ε 2 |Y ϑ 1 s -Y ϑ 2 s | 2 + C|ϑ 1 -ϑ 2 | 2 (1 + |Y s | r ) 2 2ε .
Plugging this inequality into (4.B.1) and setting ε = L 2 /α and ρ = α/2, we have thus obtained 

e ρt |Y ϑ 1 t -Y ϑ 2 t | 2 ≤

Perspectives

Sur l'ergodicité de dynamiques discrètes fractionnaires

Rappelons que le premier travail de cette thèse correspondant au chapitre 2 porte sur le comportement en temps long de dynamiques discrètes à mémoire de la forme

X n+1 = F (X n , ∆ n+1 ) (5.1.1)
où (∆ n ) n∈N est un processus gaussien stationnaire et ergodique (voir l'article [START_REF] Varvenne | Rate of convergence to equilibrium for discrete-time stochastic dynamics with memory[END_REF]). En s'inspirant de Hairer [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF], Fontbona-Panloup [START_REF] Fontbona | Rate of convergence to equilibrium of fractional driven stochastic differential equations with some multiplicative noise[END_REF] et Deya-Panloup-Tindel [START_REF] Deya | Rate of convergence to equilibrium of fractional driven stochastic differential equations with rough multiplicative noise[END_REF] dans un cadre continu et sous de bonnes hypothèses sur F et sur le bruit gaussien, nous avons construit une structure markovienne au dessus de (5.1.1), montré l'existence et l'unicité d'une mesure invariante et donné une borne sur la vitesse de convergence de la loi du processus vers cette mesure (pour la distance en variation totale). La vitesse obtenue dépend de la décroissance asymptotique de la fonction de covariance du bruit gaussien ∆ (ou de façon équivalente de celle des coefficients intervenants dans la représentation en moyenne mobile de ∆).

Un premier objectif d'extension de ce travail serait d'établir la vitesse lorsque la dynamique (5.1.1) correspond au schéma d'Euler d'une EDS dirigée par un mouvement brownien fractionnaire (mBf) de paramètre de Hurst H > 1/2. En effet, si dans le cas H < 1/2, on retrouve les ordres des vitesses du cadre continu (voir Hairer [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF]), il ne nous est actuellement pas possible d'obtenir le même type de résultat dans le cas H > 1/2. Précisément, le contrôle de l'opérateur d'inversion de la représentation en moyenne mobile (et des b k associés) n'est pas suffisant pour conclure. À la lecture des arguments du cadre continu (voir Lemme 5.1 de contrôle utilisé par Hairer [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF]), il semble qu'une idée pourrait être de tirer profit de la régularité locale du mBf lorsque H > 1/2 (ou du noyau de Mandelbrot associé). Cet outil n'est d'apparence pas nécessaire dans le cadre discret où les objets sont bien définis pour tout H. Néanmoins, mimer l'argument (de type intégration par parties) du continu pourrait probablement permettre d'obtenir le résultat souhaité.

Une autre question plus générale en lien avec ce travail serait d'étudier (toujours pour le schéma d'Euler) comment se comporte la vitesse de convergence avec le pas de discrétisation. En l'état, la dépendance en le pas du schéma semble difficile d'accès, cela nécessiterait une étude plus précise et spécifique du schéma.

Sur la concentration pour des EDS fractionnaires

Le deuxième chapitre de cette thèse porte sur la concentration en temps long à la fois pour des fonctionnelles de la solution d'une EDS fractionnaire additive (de paramètre de Hurst H ∈ (0, 1)) sur un intervalle [0, T ] et pour des fonctionnelles d'observations discrètes de ce processus (voir l'article [START_REF] Varvenne | Concentration inequalities for stochastic differential equations with additive fractional noise[END_REF]). Le résultat général obtenu est ensuite appliqué à des fonctionnelles spécifiques liées aux mesures d'occupations (discrètes ou continues) de la solution de l'EDS.

Rappelons l'EDS considérée : 

Sur l'estimation du drift pour des EDS fractionnaires

Le dernier chapitre, qui expose un travail effectué en collaboration avec Panloup et Tindel [START_REF] Panloup | A general drift estimation procedure for stochastic differential equations with additive fractional noise[END_REF], porte sur l'estimation paramétrique du drift (non linéaire) pour une EDS fractionnaire additive de paramètre de Hurst H ∈ (0, 1). Nous utilisons une estimation par minimum de contraste basée sur l'identification de la mesure invariante (dont une approximation est construite à partir d'observations discrètes de l'EDS). Nous démontrons la consistance des estimateurs considérés et obtenons des bornes non asymptotiques sur l'erreur quadratique. Nos résultats sont illustrés par des simulations numériques. Enfin, nous montrons sur une classe d'exemples que l'hypothèse d'identifiabilité relative à ce problème d'estimation (intrinsèquement liée à la mesure invariante) est satisfaite. Nous aimerions maintenant améliorer deux aspects. Premièrement, le récent article de Comte-Marie [START_REF] Comte | Nonparametric estimation in fractional sde[END_REF] traite de l'estimation non paramétrique du terme de drift (en dimension 1) lorsque H > 1/2 en utilisant les propriétés d'ergodicité de l'EDS. Cependant, les auteurs supposent que le processus est observé continûment ce qui n'est pas le cas en général. Un aspect important à étudier est de voir si une estimation non paramétrique du drift est possible en se basant sur des observations discrètes.

Définition 1 . 3 . 1 .

 131 3.4) où ϕ : (X × W) × R d → X × W ((x, w), w ) → (F (x, w ), w w ) avec (w w ) 0 = w et ∀k < 0, (w w ) k = w k+1 . On peut alors définir le noyau de transition Q associé à ce nouveau système (1.3.4) comme suit : pour toute fonction1. INTRODUCTION GÉNÉRALE mesurable g : X × W → R, X ×W g(x , w )Q((x, w), (dx , dw )) = R d g(ϕ((x,w), δ))P(w, dδ) (1.3.5) où P(w, dδ) := L(∆ n+1 |(∆ n+k ) k≤0 = w) ne dépend pas de n car (∆ n ) n∈Z est une suite stationnaire. On peut donc réaliser la suite (X n , (∆ n+k ) k≤0 ) n≥0 à partir d'une mesure initiale µ ∈ M 1 (X × W) et du noyau de transition Q. Comme dans la Section 1.2.1, on obtient alors la définition de mesure invariante dans ce cadre, à savoir Une mesure invariante pour (1.3.1) ou de façon équivalente pour (1.3.4) est une mesure de probabilité µ sur X × W invariante pour Q, c'est-à-dire telle que Qµ = µ.

7 )

 7 3.2) de façon naturelle l'opérateur noté T a suivant T a (w) := +∞ l=0 a l w -k-l k≥0 pour toute suite w ∈ (R d ) Z -telle que la quantité ci-dessus soit finie quelque soit k ≥ 0. Nous montrons que cet opérateur est inversible et que l'inverse est tout simplement T b où (b k ) k≥0 est la suite définie récursivement par La relation qui relie les suites (a k ) et (b k ) est complexe, l'expression explicite de (b k ) en fonction seulement de (a k ) est donnée dans le Chapitre 2 et est assez technique.

Proposition 2 . 2 . 1 .

 221 Let T b be the operator defined on b (Z -, R d ) in the same way as T a but with the following sequence (b k ) k≥0

( 9 Figure 1 -

 91 Figure 1 -(log |b H k |) according to (log(k + 1)) with different Hurst parameters H.

Theorem 2 . 3 . 1 .

 231 If there exists a Lyapunov function ψ for Q, then Q has at least one invariant distribution µ , in other words Qµ = µ .

.4. 5 ) 1 :

 51 Hence, we realize the coupling after a series of trials which follows three steps: * Step Try to stick the positions at a given time with a "controlled cost". * Step 2: (specific to non-Markov processes) Try to keep the paths fastened together. * Step 3: If

  and the symmetry property of P1 , i.e. π * 1 P1 = π * 2 P1 .

Lemma 2 . 4 . 2 .

 242 Let µ := N (0, 1). Let a ∈ R, b ≥ |a| and M b := max(4b, -2 log(b/8)).

  (i) For all b ≥ |a|, there exist δ 1 b and δ 2 b ∈ (0, 1), such that we can build a probability measure N 2 a,b on R 2 with every marginal equal to µ and such that: N 2 a,b ({(x, y) | y = x + a}) ≥ δ 1 b and N 2 a,b ({(x, y) | |y -x| ≤ M b }) = 1.

Corollary 2 . 4 . 1 .

 241 Let T > 0 be an integer, b > 0, g = (g 0 , g 1 , . . . , g T ) ∈ R T +1 such that g ≤ b where . is the euclidian norm on R T +1 and set M b := max(4b, -2 log(b/8)).

τ

  +n = n k=0 b k u n-k for all n ≥ 0. By the admissibility assumption, we have ∀k ∈ {0, . . . , n -1}, |u n-k | ≤ v n-k and by Lemma 2.5.1 (ii), |u 0 | ≤ M K . Hence, we get ∀n ≥ 0, |g (s)

2

 2 

1 / 2 (

 12 by integral upper-bound) ≤ e -α (by choosing c 2 ≥ 2 large enough) ≤ 2 -α .

Remark 2 .

 2 A.2. £ If we relax the boundedness assumption on σ and assume that |σ(x)| ≤ C(1 + |x| κ ) for some κ ∈ (0, 1), only the proof of (H 1 ) is changed. The beginning of the proof is exactly the same. From (2.A.1), we use the classical Young inequality |ab| ≤ 1 p |a| p
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Theorem 3 . 2 . 3 .

 323 Let H ∈ (0, 1) and ∆ > 0. Let n ∈ N * and T ≥ 1. Then, (i) there exist C H,∆ > 0 such that for all Lipschitz function f : R d , | • | → (R, | • |)

  .2.11) (ii) there exist CH > 0 such that for all Lipschitz function f : R d , | • | → (R, | • |) and for all r ≥ 0, P

.4. 19 )

 19 The inequality (3.4.18) combined with Lemma 3.4.1 and Lemma 3.4.3 finally prove Proposition 3.4.1.

  where ψ n,k = n-k+1 u=1 Ψ H (u, k) and Ψ H is defined in Proposition 3.4.1. The same occurs for M instead of M by replacing F by F and ψ n,k by ψ T,k = T -k+1 0 Ψ H (u ∨ 1, k)du.

p and Proposition 3 . 4 . 1 .

 341 Proof of Proposition 3.5.1. With Lemma 3.5.1 in hand, we just need to prove that there exist ζ > 0 such that for all k ∈ N * and for all p ≥ 2 E sup v∈[0,[START_REF] Arnold | Random dynamical systems[END_REF] 

.5. 5 )

 5 Condition (3.5.3) is given in Appendix 3.A and condition (3.5.5) follows from Proposition 3.B.2 since E sup v∈[0,2]

.5. 8 )

 8 where ψ n,k := n-k+1 u=1Ψ H (u, k), ψ T,k := T -k+1 0 Ψ H (u ∨ 1, k)du and Ψ H is defined in Proposition 3.4.1.Proof. Let us prove (i). From E[M k -M k-1 |F k-1 ] = 0 and Proposition 3.5.1, we immediately get the result by using Lemma 3.3.1.

.5. 9 )Equation ( 3 . 5 . 9 )Lemma 3 . 5 . 2 .

 9359352 combined with Lemma 3.5.2 (see below) finally proves Proposition 3.2.1 (i). The proof of item (ii) is exactly the same. (i) Let n ∈ N * and (ψ n,k ) be defined as in Proposition 3.5.1. There exists C H > 0 such that n k=1 ψ 2 n,k ≤ C H n 2(H∨ 1 2 ) .

.B. 7 )

 7 By using (3.B.6) and (3.B.7) in (3.B.5), we end the proof of Proposition 3.B.1 for k > 1.
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Remark 4 . 2 . 2 .

 422 The family of p-Wasserstein distances obviously provides examples of distances in D p . The Fortet-Mourier distance (see e.g [72, Chapter 6]), defined by

Theorem 4 . 2 . 2 .

 422 Assume (H 0 ), (C s ) and (I w ). As in Theorem 4.2.1, let p be a strictly positive real number and consider a distance d on M 1 (R d ) which belongs to D p . Then the family { θN,n,γ ; N ≥ 1, n ≥ 1, γ > 0} defined by (4.2.15) is a strong consistent estimator of ϑ 0 in the following sense: lim γ→0 lim N,n→+∞ θN,n,γ = ϑ 0 a.s.

.3. 10 )

 10 Proof. Relations (4.3.9) and (4.3.10) are proved in Proposition 4.A.1.

Proposition 4 . 4 . 1 .

 441 We consider the same setting as in Proposition 4.3.8. In particular, we assume that (C s ) holds true for the coefficients of equation (4.2.7). Then the following assertions hold true. (i) The invariant measure ν γ of the Euler scheme converges uniformly to the invariant measure of Y ϑ . Namely lim sup γ→0 γ -H sup ϑ∈Θ d(ν ϑ , ν γ ϑ ) < +∞.

8 )

 8 We will now treat those three terms separately.The term A 23,N is easily handled by applying Proposition 4.3.3 (i) (simple convergence) and Proposition 4.4.1 (i) (equicontinuity). We thus get lim N →+∞sup ϑ∈Θ A 23,N (ϑ) = 0. Now, let us prove that lim N →+∞ sup ϑ∈Θ A 22,N (ϑ) = 0. Since d ∈ D p ⊂ D p , we can assume without loss of generality that d = W p . We invoke the strategy outlined in Remark 4.3.1.

.4. 15 )

 15 Now inequality (4.4.11) combined with (4.4.14) and (4.4.15) easily yields (4.4.9). We conclude that lim N →+∞ sup ϑ∈Θ A 22,N (ϑ) = 0 .

.4. 25 )

 25 We now bound the two terms in the right hand side of(4.4.25). On the one hand, by definition of θr , L rn ( θrn ) ≤ L rn (ϑ ).Hence, thanks to the fact that lim r L r (ϑ) = L(ϑ) for all ϑ ∈ Θ, we getlim sup n→+∞ L rn ( θrn ) ≤ L(ϑ ). (4.4.26)On the other hand, we also have|L(ϑ ∞ ) -L rn ( θrn )| ≤ |L(ϑ ∞ ) -L( θrn )| + sup ϑ∈Θ |L(ϑ) -L rn (ϑ)|. (4.4.27) Therefore we can invoke the continuity of L to bound the first term in the right hand side of (4.4.27), plus the uniform convergence of L r to L in order to handle the second term. This yealds lim sup n→+∞ |L(ϑ ∞ ) -L rn ( θrn )| = 0 (4.4.28) Plugging (4.4.28) and (4.4.26) into (4.4.25), we obtain that L(ϑ ∞ ) ≤ L(ϑ ) and thus ϑ ∞ belongs to the set argmin{L(ϑ), ϑ ∈ Θ}. This finishes the proof.

Proposition 4 . 5 . 1 .

 451 Let d be one of the two distances d s and d CF,p with p > (q + d)/2.

Lemma 4 . 5 . 4 .

 454 Let D(3) N,γ be the random variable defined by (4.5.5), and assume that d is either d s or d CF,p with p > (q + d)/2. Then, we have

( 32 )

 32 N,γ . As in Section 4.5.2, since d ∈ D 1 whenever d = d s or d = d CF,p ,

( 31 )

 31 N,γ (ϑ) for a fixed ϑ. For a fixed value of ϑ ∈ Θ, the term D[START_REF] Gourcy | Logarithmic Sobolev inequalities of diffusions for the L 2 metric[END_REF] 

.5. 24 )

 24 Therefore putting together (4.5.23) and (4.5.24) and arguing as in Section 4.5.1, we get that for d = d CF,p with p > (q + d)/2 or d = d s and for any ϑ ∈ Θ, E |D

  Figure 2ϑ → F d CF,2 (ϑ) for H = 0.3 (left) and H = 0.7 (right).

Figure 3

 3 Figure 3 below is devoted to a comparison between the different p-Weisserstein distances as p varies. Namely we fix H = 0.3 and we compute the function F d defined by (4.7.2) with d = W p for different values of p. Notice that in the 1-dimensional case we are considering we can resort to formula (4.7.1), since we have chosen N = n. The true parameter is still ϑ = 2. Our distances all perform correctly, although p = 4 seems to yields a slightly sharper contrast.

Figure 3 -

 3 Figure 3ϑ → F Wp (ϑ), H = 0.3.

Figure 4 -

 4 Figure 4ϑ → F d CF,2 (ϑ) for H = 0.3 (left) and H = 0.7 (right).

  dX t = -X t dt + σ dB t X 0 = y 0 . (4.A.1) In this proof, we set t := inf{kκ | kκ ≤ t < (k + 1)κ} and T := nκ. With this notations, similarly to what is done in the proof of Proposition 4.4.2

||X

  Xkκ | 2p = E[| Xκ | 2p ] < +∞, (4.A.3)where the limit holds in the almost sure sense. In order to treat the second term in the right hand side of (4.A.2), we resort to equation (4.A.1). From there it is readily checked thatd dt |X t -Xt | 2 = -2|X t -Xt | 2 ,and thus |X t -Xt | 2 = e -2t |y 0 -X0 | 2 . In particular, we have lim k→+∞ |X kκ -Xkκ | 2p = lim k→+∞ e -2pkκ |y 0 -X0 | 2p = 0 and the corresponding Cesaro summation tends also to 0, i.e. kκ -Xkκ | 2p = 0. (4.A.4)

|Y ϑ t -X t | 2 ≤ t 0 e( 1 + 1 -ee 0 ( 1 +C p e ακ α 1 T T 0 ( 1 + 1 0

 011011011 -α(t-s) 2β + C α |X s | 2r ) ds. (4.A.5)Starting from (4.A.5), one can easily get a bound on |Y ϑ t -X t | 2p . Namely, due to the fact that t 0 e -α(t-s) ds = α -1 (1 -e -αt ), a direct application of Jensen's inequality yields|Y ϑ t -X t | 2p ≤ -α(t-s) (1 + |X s | 2pr )ds.Then, by using Fubini theorem, -α(t-s) (1+ |X s | 2pr )ds dt ≤ C p T T |X s | 2pr ) T s 1 [0,t] (s)e -α(t-s) dt ds. (4.A.6)In addition, for t ∈ [0, T ] we have 1 [0,t] (s)e -α(t-s) ≤ e ακ e -α(t-s) . Hence integrating the right hand side of (4.A.6) we get1 T T 0 |Y ϑ t -X t | 2p dt ≤ |X s | 2pr ) 1 -e -α(T -s) ds ≤ C p e ακ α |X s | 2pr ds .Finally, by the same type of arguments used in the first part of the proof (see (4.A.4)), we can show that limT →+∞ 1 T T 0 |X s | 2pr ds = E[| X0 | 2pr ] < +∞.Thus we have obtained sup -X t | 2p dt < +∞. (4.A.7) Plugging (4.A.3), (4.A.4) and (4.A.7) into (4.A.2), our claim (ii) is now proved.

1 k=0

 1 ϑ,γ N γ | p ] < +∞. (ii) sup γ∈(0,γ 0 ] sup N ≥0 γ p(1-H) E[sup ϑ∈Θ |Z ϑ,γ N γ | p ] < +∞. (iii) Fix γ ∈ (0, 1]. Then sup ϑ∈Θ sup |Z ϑ,γ kγ | p < +∞ a.s.The strategy for the proof of Proposition 4.A.2 is based on a comparison between Z ϑ,γ and the Euler scheme Σ related to the Ornstein-Uhlenbeck process X given by (4.A.1). Namely define Σ recursively by Σ 0 = y 0 and:Σ (k+1)γ = (1 -γ)Σ kγ + σ((B (k+1)γ -B kγ )), ∀k ≥ 0.(4.A.8)

Lemma 4 .A. 1 . 1 N N - 1 k=0

 4111 Let Σ be the Euler scheme defined by (4.A.8). There exists γ 0 > 0 such that for all p > 0 we have(i) sup γ∈(0,γ 0 ] lim sup N →+∞ E[|Σ N γ | p ] < +∞. (ii) sup γ∈(0,γ 0 ] sup N ≥0 γ p(1-H) E[|Σ N γ | p ] < +∞. (iii) Fix γ ∈ (0, γ 0 ]. Then sup N ≥1 |Σ kγ | p < +∞ a.s.Proof. By Cauchy-Schwarz inequality, it is enough to show the three results for 2p instead of p. We treat again the three items separately.(i) Let γ 0 ∈ (0, 1). By Lemma 2 in [15], we know that sup γ∈(0,γ 0 ] lim sup N →+∞ E[|Σ N γ | 2 ] < +∞. (4.A.9)

1 / 2 ≤) 2 ] 1 / 2 ≤ ( 1 - 1 j=0( 1 -|y 0 | 2 + 2d 2 |σ| 2 whichγ 2 -( 1 -( 1 - 1 k=0( 1 -( 1

 1221211122211111 (1 -γ) k |y 0 | + |σ| γ) k |y 0 | + d|σ|γ H kγ) j ≤ |y 0 | + d|σ|cγ H-1 .Therefore, we easily get thatγ 2-2H E[|Σ kγ | 2 ] ≤ 2γ 2-2H |y 0 | 2 + d 2 |σ| 2 γ 2H-2 ≤ 2γ 2-2H 0 2H E[|Σ N γ | 2 ] < +∞.Exactly as in item (i), we now resort to the Gaussian nature of Σ in order to conclude that supγ∈(0,γ 0 ] sup N ≥0 γ 2p(1-H) E[|Σ N γ | 2p ] < +∞,for all p ≥ 1. (4.A.11) (iii) We start from identity (4.A.10). Applying Jensen's inequality we deduce that|Σ kγ | 2p ≤ 2 2p-1 (1 -γ) 2kp |y 0 | 2p + 2 γ γ) j |∆ k-j | 2p ≤ 2 2p-1 |y 0 | 2p + 2 γ γ) j |∆ k-j | 2p . |Σ kγ | 2p ≤ (2 2p-1 + 1)|y 0 | 2p + 2 γ γ) j |∆ k-j | 2p .Therefore our claim (iii) is reduced to show that sup -γ) j |∆ k-j | 2p < +∞. (4.A.13)

  2.13) for Z ϑ , we have for all k ≥ 1,|Z ϑ kγ -Σ kγ | 2 = |Z ϑ (k-1)γ -Σ (k-1)γ | 2 +2γ Z ϑ (k-1)γ -Σ (k-1)γ , Σ (k-1)γ +b ϑ (Z ϑ (k-1)γ ) +γ 2 |Σ (k-1)γ +b ϑ (Z ϑ (k-1)γ )| (4.A.14)In order to treat the second term in (4.A.14), we recast it asZ ϑ (k-1)γ -Σ (k-1)γ , Σ (k-1)γ + b ϑ (Z ϑ (k-1)γ ) = Z ϑ (k-1)γ -Σ (k-1)γ , b ϑ (Z ϑ (k-1)γ ) -b ϑ (Σ (k-1)γ ) + Z ϑ (k-1)γ -Σ (k-1)γ , Σ (k-1)γ + b ϑ (Σ (k-1)γ )

.A. 16 ) 1 + 2 .

 1612 With those preliminary considerations in hand, we now prove the three items in Proposition 4.A.2 separately.(i) We start from relation (4.A.15). Since γ ∈ (0,γ 0 ], C(1 + γ 2 ) ≤ C for a constant C > 0 |Z ϑ kγ -Σ kγ | 2 ≤ (1 -γ α) |Z ϑ (k-1)γ -Σ (k-1)γ | 2 + γ α C α |Σ (k-1)γ |We now invoke the convexity of x → |x| p in order to get|Z ϑ kγ -Σ kγ | 2p ≤ (1 -γ α) |Z ϑ (k-1)γ -Σ (k-1)γ | 2p + γ α Cp αp 1 + |Σ (k-1)γ | 2 p ≤ (1 -γ α) |Z ϑ (k-1)γ -Σ (k-1)γ | 2p + Cp γ 1 + |Σ (k-1)γ | 2p .Then we take expectations and upper limits in k, which giveslim sup k→+∞ E[|Z ϑ kγ -Σ kγ | 2p ] kγ | 2p ] .

  sup γ∈(0,γ 0 ] sup k≥0 γ 2p(1-H) E[sup ϑ∈Θ |Z ϑ kγ -Σ kγ | 2p ] < +∞. (4.A.17)Having achieved the upper bound (4.A.17), our claim (ii) now stems from another direct application of Proposition 4.A.1 (ii).(iii) Here, we just need to sum (4.A.16) for k from 0 to N -1 and divide by N . Then, we use Fubini theorem on the right hand side combined with Proposition 4.A.1 (iii) to conclude that sup ϑ∈Θ sup kγ -Σ kγ | 2p < +∞. Finally, by using again Proposition 4.A.1 (iii), the result follows.

0 F

 0 pathwise) convergent sequence with limiting distribution µ where {t n ; n ≥ 1} is an increasing sequence converging to +∞. We first prove that µ is the law of a stationary process. Namely, for any bounded functionalF : C([0, ∞), R d ) → R, we have µ(F • θ T ) -µ(F ) = lim n→+∞ 1 t n tn 0 [F (Y ϑ s+T +. ) -F (Y ϑ s+. )]ds.However, a simple change of variables reveals that a.s. (Y ϑ s+. )ds = 0.

2 . 7 )

 27 if x . -x 0 -. 0 b ϑ (x u )du is a fBm. In other words, we have to prove that µ • G -1 is the law of a fBm where G(x) = x . -x 0 -. 0 b ϑ (x u )du. Since G is continuous for the u.s.c topology, it is readily checked that µ • G -1 = lim

e ρt |Y ϑ 1 t -Y ϑ 2 t | 2 = t 0 e

 1220 ρs ρ|Y ϑ 1 s -Y ϑ 2 s | 2 + 2 b ϑ 1 (Y ϑ 1 s ) -b ϑ 2 (Y ϑ 2 s ), Y ϑ 1 s -Y ϑ 2 s ds.(4.B.1) In addition, one can write b

  dX t = b(X t )dt + σB t (5.2.1) où b : R d → R d est une fonction au minimum continue, σ ∈ M d×d et B est un mBf de paramètre H ∈ (0, 1). Un sujet d'intérêt est la relaxation d'une hypothèse sur le drift b. Dans le chapitre 3, on suppose que le drift b est fortement contractant, c'est-à-dire que x -y, b(x) -b(y) ≤ -α|x -y| 2 . Cette hypothèse induit que deux trajectoires de (5.2.1) partant de deux conditions initiales distinctes convergent l'une vers l'autre à vitesse exponentielle. Cependant, sous l'hypothèse plus faible x -y, b(x) -b(y) ≤ β -α|x -y| 2 , l'ergodicité de l'EDS (5.2.1) est démontrée (voir [36]), mais aucun résultat de concentration en temps long sous cette hypothèse plus faible n'existe à ce jour. À notre connaissance, il semble qu'il existe peu de résultats dans le cadre diffusif (c'est-à-dire lorsque B est le mouvement brownien standard dans (5.2.1)) sans cette hypothèse de forte contractivité. Un premier travail pourrait être d'étudier la relaxation de cette hypothèse dans le cas diffusif pour lequel les solutions sont markoviennes. En particulier, nous pourrions commencer par relaxer l'hypothèse de forte contractivité en une hypothèse de forte contractivité en dehors d'un compact et faible contractivité dans ce compact (correspondant à l'hypothèse (H b ) section 1.2.2).

  

  1. INTRODUCTION GÉNÉRALE Remarque 1.2.4. Notons que la restriction à H > 1/2 permet d'utiliser la théorie des intégrales de Young qui donne un sens aux intégrales du type t 0 f s dg s pour deux fonctions f et g Hölder d'indices respectifs α 1 , α 2 avec α 1 + α 2 > 1 : pour toute subdivision Π de l'intervalle [0, t],

	t
	f s dg s
	0

  1.3. Principaux résultats de la thèse exemples qui illustrent ce phénomène dans les Sections 2.2.6 et 2.2.7. Nous aurons donc besoin d'hypothèses sur les deux suites pour le théorème principal.

	Hypothèses et théorème principal
	Nous allons considérer deux jeux d'hypothèses sur les coefficients (a

k ) et (b k ) : le cas dit polynômial et le cas dit exponentiel.

  Nous retrouvons le taux donné dans un cadre continu par Hairer dans[START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF]. La preuve de la Proposition 1.3.1 est très technique et demande des majorations très fines. Nous n'avons pour l'instant qu'une conjecture pour le comportement asymptotique de la suite (b H k ) dans le cas où H ∈ (1/2, 1) et le taux conjecturé nous donne une vitesse plus faible que celle de Hairer dans le cas continu. Une démarche spécifique tenant compte de l'expression exacte de la suite (a H k ) est une piste éventuelle pour améliorer ce résultat. D'autres exemples de suites (a k ) sont également étudiées dans les Sections 2.2.6 et 2.2.7 satisfaisant l'une ou l'autre des hypothèses (H poly ) ou (H exp )

1 8 

si H ∈ (1/4, 1/2).
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  Principaux résultats de la thèse un compact fixé au préalable et que le drift entre les bruits ∆ 1 τ et ∆ 2 τ est suffisament petit (voir condition (2.5.1)). Ceci est réalisable en calibrant la durée de l'étape 3 qui impose ξ 1 n = ξ 2 n . Cette étape permet d'alléger petit à petit le poids du passé et donc d'obtenir le retour des trajectoires dans un compact donné.

1 τ et X 2 τ sont dans 1.3.

  Y k∆ où ∆ > 0 est un pas fixé. En statistique, le processus est observé uniquement à des temps discrets, c'est pourquoi cette question est essentielle. Un moyen classique d'obtenir des inégalités de concentration est d'utiliser les inégalités de transport. Précisons de quoi il s'agit. Une mesure de probabilité µ sur un espace métrique (E, d) satisfait une inégalité de transport1. INTRODUCTION GÉNÉRALEL p si et seulement si pour toute mesure de probabilité ν sur E, il existe une constante On note alors µ ∈ T p (C). Dans le cas où p = 1, cette inégalité est très fortement reliée à la concentration. Cet aspect a d'abord été abordé par Marton[START_REF] Marton | A measure concentration inequality for contracting Markov chains[END_REF][START_REF] Marton | Bounding d-distance by informational divergence: a method to prove measure concentration[END_REF],

	La question principale qui a motivé ce travail était donc d'établir des inégalités de concentration en temps long pour des mesures du type 1 n n W p (µ, ν) ≤ 2CH(ν|µ) (1.3.14) où W p (µ, ν) := inf π∈Π(µ,ν) E×E d(x, y) p dπ(x, y) 1/p (1.3.15) est la distance de Wasserstein d'ordre p et H(ν|µ) := log dν dµ dν, si ν µ, +∞ sinon, k=1 δ C > 0 telle que est l'entropie.

et qui seront développés dans le Chapitre 3. L'idée de ce travail est née au cours du projet sur l'estimation du drift pour des EDS fractionnaires dont les résultats seront présentés à la prochaine section. Pour obtenir une vitesse de convergence de l'estimateur que l'on considérait, il est apparu indispensable de démontrer des résultats de concentration pour des mesures d'occupation discrètes associées à l'EDS (1.2.1) dans un cadre additif et fractionnaire. Plus précisément, nous considérons ici l'EDS suivante : soit (Y t ) t≥0 un processus à valeurs dans

R d tel que Y 0 = x ∈ R d et dY t = b(Y t )dt + σdB t (1.3.13)

où b : R d → R d est une fonction au minimum continue, σ ∈ M d×d et B est un mouvement brownien fractionnaire d-dimensionnel de paramètre de Hurst H ∈ (0, 1). Talagrand

[START_REF] Talagrand | Transportation cost for Gaussian and other product measures[END_REF]

, Bobkov et Götze

[START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF] 

et amplement exploré par Ledoux

[START_REF] Ledoux | The concentration of measure phenomenon[END_REF][START_REF] Ledoux | Concentration, transportation and functional inequalities[END_REF]

. On peut montrer que l'inégalité (1.3.14) pour p = 1 est en fait équivalente à la propriété suivante : pour toute fonction F à valeurs réelles µ-integrable et α-Lipschitz, et pour tout λ ∈ R, on a

  Principaux résultats de la thèse "suffisamment bien" tous les moments conditionnels de ces accroissements de martingale puis en utilisant le développement en série de la fonction exponentielle, nous avons pu montrer une inégalité du type(1.3.16). Cette démonstration repose sur la représentation de Volterra du mBf donnée par (1.1.2) et la filtration naturelle associée au mouvement brownien standard (W

[START_REF] Comte | Nonparametric estimation in fractional sde[END_REF] 

où dans notre cas X = (Y k∆ ) 1≤k≤n et Y est la solution de

(1.3.13)

. Ensuite en contrôlant 1.3. t ) t≥0 sous-jacent. L'utilisation de cette représentation ici n'est pas anodine. Elle permet en effet d'avoir E[F (X)|F 0 ] = E[F (X)], ce qui est cohérent avec l'égalité (1.3.17), contrairement à la représentation de Mandelbrot Van-Ness (1.1.1) qui fait intervenir un mouvement brownien indexé sur R.

  .3.22) Remarque 1.3.5. Il est important de noter que ces inégalités sont du type de (1.3.16). Comme mentionné dans l'introduction de cette section, cette proposition est donc équivalente à ce que L((Y k∆

  Ceci s'obtient à l'aide du lemme suivant (tiré du Chapitre 1 de[START_REF] Rigollet | High dimensional statistics[END_REF] et dont une démonstration est donnée dans la Section 3.3) qui permet pour une variable aléatoire réelle X centrée de passer d'une majoration des moments à une majoration de E[e λX ] pour tout λ > 0.

	2 pΓ	p 2	(1.3.27)

où C, ζ > 0, ψ n,k est une suite de coefficients fortement liés au noyau K H de la représentation de Volterra du mBf et Γ est la fonction d'Euler. Conditionnellement à F k-1 , M k et M k-1 peuvent être vues comme des fonctionnelles de processus dont le bruit associé ne diffère que sur l'intervalle [0, 1]. Comme les fonctionnelles en jeu sont lipschitziennes, contrôler |M k -M k-1 | revient en réalité à contrôler l'impact de cette perturbation du bruit sur la distance entre les trajectoires associées. L'hypothèse de forte contraction joue ici un rôle majeur.

La deuxième étape de la preuve a pour objectif de majorer les moments exponentiels 1. INTRODUCTION GÉNÉRALE des accroissements M k -M k-1 conditionnés à F k-1 . Lemme 1.3.1. Soit X une variable aléatoire réelle centrée telle que pour tout p ≥ 2, il existe C, ζ > 0 telles que E[|X| p ] ≤ Cζ p/2 pΓ p 2 .

  Pour tout x ∈ R d et ϑ ∈ Θ la majoration suivante est satisfaite :

	1. INTRODUCTION GÉNÉRALE	
	(ii) |∂ ϑ b ϑ (x)| ≤ C (1 + |x| r ) .	(1.3.30)
	L'hypothèse forte est alors définie comme suit :	
	(C s ) : L'hypothèse (C w ) est satisfaite pour β = 0.	
	Sous l'hypothèse (C w ) (ou sous (C s ) qui est plus forte) et à condition que σ soit
	inversible, d'après le Théorème 1.2.1 énoncé plus haut (dû à Hairer	
		29)

Théorème 1.3.6. On

  suppose (H 0 ), (C w ) et (I w ) satisfaites. Soit p > 0 et soit d une distance sur M 1 (R d ) appartenant à D p (où D p est défini par (1.3.37)). Alors la famille {

	). De cette façon, on définit la discrétisation de Θ	
	ϑ (ε) := argmin	|ϑ -ϑ|.	(1.3.38)
	ϑ ∈Θ (ε)		
	Ceci nous amène à notre premier résultat de consistance	

Théorème 1.3.8. On

  suppose (H 0 ), (C s ) et (I w ) satisfaites. Soit p ≥ 2 et soit d une distance sur M 1 (R d ) appartenant D p . On considère le schéma d'Euler à pas décroissant dont la suite de pas (γ k ) k≥1 satisfait la condition technique (4.4.3) (en plus des conditions déjà évoquées plus haut). Alors la famille { θN,n ; N ≥ 1, n ≥ 1} définie par (1.3.36) est un estimateur fortement consistant de ϑ 0 au sens suivant :

	lim N,n→+∞	θN,n = ϑ 0 p.s.
	Remarque 1.3.10. La condition technique (4.4.3) ( k≥1 γ p H+1 k	s -1
					3.39)
	est un estimateur fortement consistant de ϑ 0 . Plus précisément, on a
	lim ε→0	lim γ→0	lim N,n→+∞	θ(ε) N,n,γ = ϑ 0 p.s.
	Remarque 1.3.9. La discrétisation de Θ est indispensable sous (C w ) car sous cette hy-
	pothèse plus faible, nous perdons certains résultats de convergence uniforme en ϑ valables
	sous (C s ) (typiquement dans les Propositions 4.4.1 et 4.4.2). Ces résultats sont essentiels
	pour démontrer les deux théorèmes de consistance qui suivent.
	Nous pouvons maintenant énoncer les deux résultats principaux de consistance. Le
	premier concerne l'estimateur défini en (1.3.35) lié au schéma d'Euler à pas constant.
	Théorème 1.3.7. On suppose (H 0 ), (C s ) et (I w ) satisfaites. Comme dans le Théorème
	1.3.6, soit p > 0 et d une distance sur M 1 (R d ) appartenant à D p . Alors la famille
	{ θN,n,γ ; N ≥ 1, n ≥ 1, γ > 0} definie par (1.3.35) est un estimateur fortement consistant
	de ϑ 0 au sens suivant :			
	lim γ→0	lim N,n→+∞	θN,n,γ = ϑ 0 p.s.
	Enfin, un dernier résultat de consistance de l'estimateur (1.3.36) utilisant le schéma
	à pas décroissant est le suivant.		

aller plus loin, précisons de quelles distances il s'agit. Définition 1.3.2. On définit sur M 1 (R d ) les deux distances suivantes : soient ν et µ de mesures de probabilités sur R d , (i) On considère le noyau intégrable g p (ξ) := c p (1 + |ξ| 2 ) -p où

  Tout ceci est décrit précisément par la Proposition 4.4.3 tandis que la Section 4.4.3 explique comment ce résultat général est appliqué pour la preuve des Théorèmes de consistance 1.3.6, 1.3.7 et 1.3.8.

	Vitesse de convergence						
	Pour une classe de distances sur M 1 (R d ) plus restreinte, il est possible d'obtenir des
	vitesses de convergence. Avant d'c p := R d (1 + |ξ| 2 ) -p dξ -1 . Alors, la distance d CF,p entre ν et µ est définie par
	d cf,p (ν, µ) :=	R d	ν e i ξ,• -µ e i ξ,• 2	g p (ξ)dξ	1/2	.	(1.3.40)
	(ii) Soit {f i ; i ≥ 1} une famille de C 1 b , supposée dense dans l'espace C 0 b des fonctions
	continues, bornées et décroissant vers 0 à l'infini. Alors, la distance d s entre ν et
	µ est définie par						
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  We provide in Remark 2.A.2 the necessary adjustments of the proof to get this result.

ensures (2.2.10) with K = K), to set Λ x (u) := u outside an other ball B(0, K 1 ) with a well chosen K 1 (which almost gives (2.2.12)) and to extend Λ x into R d by taking into account the various hypothesis on Λ x . Remark 2.2.8. The coefficient σ is assumed to be bounded but we can relax a bit this assumption: if |σ(x)| ≤ C(1 + |x| κ ) for some κ ∈ (0, 1), then Theorem 2.2.2 is true again.

  When the invertibility is not fulfilled, the situation is more involved but (H exp ) is still true up to another Wold decomposition. More precisely, one can find another white noise ξ and another set of coefficients a k such that the invertibility holds true, on this topic see e.g.[START_REF] Brockwell | Time series: theory and methods[END_REF] Proposition 4.4.2.

1 |λ| k and finally (H exp ) holds true.

  Remark 2.4.2. The successful g k defined by relation (2.4.15) is F k -measurable. This explains why we chose to index it by k even if it represents the drift between ξ 1

	.4.15)
	the identity (2.4.14) is automatically satisfied.
	k+1 and
	ξ 2 k+1 .

  be the duration of Step 3 of trial j for j ≥ 1. The purpose of the next proposition is to prove that thanks to a calibration of ∆t

	2.6.1 On condition (2.5.1)
	(j) Let ∆t 3 (j) 3 , one satisfies almost surely
	condition (2.5.1) at time τ j .

Proposition 2.6.1. Assume (H 1 ) and (H 2 ). Let α ∈ 1 2 ∨ 3 2 -β , ρ if we are under (H poly ) and α ∈ (0, λ) different from ζ if we are under (H exp ). Assume that for all j ≥ 1, ∆t

  13) By combining (2.D.11) and (2.D.13) we get for n large enough

	n/2
	k=1

  we denote by d T the classical L 1 -distance:

	T		
	d T (x, y) :=	|x t -y t |dt.	(3.2.2)
	0		
	Let F : (E, d		

E ) → (E , d E ) be a Lipschiz function between two metric spaces, we denote by

  be two Lipschitz functions and setF Y := F (Y t 1 , . . . , Y tn ) and FY = F ((Y t ) t∈[0,T ] ) (3.2.6) with 0 < ∆ = t 1 < • • • < t n and t k+1 -t k = ∆ for a given ∆ > 0.We are now in position to state our results for general functionals F and F . First, we prove a result on the exponential moments of F Y and FY which is crucial to get Theorem 3.2.2. Let H ∈ (0, 1) and ∆ > 0. Let n ∈ N * , T ≥ 1 and d n , d T be the metrics defined respectively by (3.2.1) and (3.2.2). Then, (i) there exist C H,∆ > 0 such that for all Lipschitz function F :

	Proposition 3.2.1.

  Some discrete versions of (4.3.8) and (4.3.9) are also available. Specifically, let η > 0 and set t k = kη for k ≥ 0. Then for any ϑ ∈ Θ we have

	That is	lim t→∞	d		1 t		0	t	δ Y ϑ s ds, ν ϑ = 0.	(4.3.8)
	In particular, we have an almost sure uniform bound for the p-th powers of Y ϑ s :
		sup ϑ∈Θ	sup t≥1	1 t	0	t	|Y ϑ s | p ds < ∞ a.s.	(4.3.9)
	(ii) lim n→∞	d		1 n	n-1 k=0	δ Y ϑ t k

  +∞, for any p > 0. Then one can conclude as in the proof of Proposition 4.3.1 (see relation (4.3.4)), where the distance d tv (ν γ ϑ , ν ϑ ) is upper bounded thanks to [16, Theorem 1]. The convergence of our estimator θN,n,γ defined by (4.2.15) depends crucially on continuity properties of the family {ν ϑ ; ϑ ∈ Θ}. To this aim, we first prove a basic result on the continuity of the map ϑ → Y ϑ t . Let ϑ 1 and ϑ 2 be elements of Θ, and consider the respective solutions (Y ϑ 1 t ) t≥0 and (Y ϑ 2 t ) t≥0 of equation (4.2.7). Assume hypothesis (H 0 ) and (C w ) are satisfied. Then for any p > 0 and T > 0, there exists C T,p > 0 independent of ϑ 1 and ϑ 2

	4.3.2 Continuity of ϑ → d(ν ϑ , ν ϑ 0 )
	Proposition 4.3.5.

  .3.14) We now invoke the fact that b is Lipschitz continuous under (C w ) plus inequality (4.2.6) on ∂ ϑ b ϑ in order to get

  We now state the announced continuity property for the family {ν ϑ ; ϑ ∈ Θ}. Let {Y ϑ ; ϑ ∈ Θ} be the family of processes defined by (4.2.7). Assume (H 0 ) and (C w ) hold true and consider the family {ν ϑ ; ϑ ∈ Θ} of invariant measures given by Proposition 4.3.1. Let p > 0 and pick any distance d ∈ D p , where we recall that D p is defined by (4.2.4). Then the map ϑ → d(ν ϑ , ν ϑ 0 ) is continuous on Θ.Proof. Owing to the very definition (4.2.4) of D p , it is enough to prove the result for d = W p and for an arbitrary p ≥ 1. Next we apply the triangle inequality and the fact that W p is defined in (4.2.2) by an infimum over all couplings. This yields the following inequality, valid for any t ≥ 0:

	1/p	
	pr ds	,
	where c(T, p) is another finite constant. Hence our result (4.3.12) follows from the bound
	(4.3.3).	
	Proposition 4.3.6.	

  .3.17) We now bound the two terms in the right hand side of (4.3.17). In order to handle the term W p (L(Y ϑ t ), ν ϑ ), we consider a small parameter ε > 0. By Proposition 4.3.1(ii),We will fix this value of t 0 in the right hand side of (4.3.17). Then the difference Y ϑ 1 t 0 -Y ϑ 2 t 0 is handled thanks to Proposition 4.3.5. Namely consider δ > 0 such that (with the notations of Proposition 4.3.5) we have C t 0 δ ≤ ε 2 . We get that for all (ϑ1 , ϑ 2 ) ∈ Θ 2 such that |ϑ 1 -ϑ 2 | ≤ δ, we have , ϑ 2 ) ∈ Θ 2 such that |ϑ 1 -ϑ 2 | ≤ δ.The continuity of ϑ → W p (ν ϑ , ν ϑ 0 ) on Θ follows.

	there exists t 0 large enough such that			
	2 sup ϑ∈Θ	W p (L(Y ϑ t 0 ), ν ϑ ) ≤	ε 2	.	(4.3.18)
	Y ϑ 1 t -Y ϑ 2 t	L p (Ω) ≤	ε 2	(4.3.19)
	We conclude by plugging (4.3.18) and (4.3.19) into (4.3.17). This yields
	W p (ν ϑ 1 , ν ϑ 2 ) ≤ ε,			(4.3.20)
	for all (ϑ 1				

  .3.21) Notice that the fractional Brownian motion B in (4.3.21) is the same as the fBm driving equation (4.2.7). The control we get on Z ϑ is summarized in the following proposition. Let Y ϑ be the solution of equation (4.2.7), and consider the continuous-time Euler scheme (Z ϑ t ) t≥0 with a time steps sequence (γ n ) n≥1 defined by

	Proposition 4.3.7.

  sn-s k+1 ) .Proof. Let n ≥ 0 and consider the dynamics ofY ϑ -Z ϑ on [s n , s n+1 ). That is, set ε t := Y ϑ sn+t -Z ϑ sn+t for t ∈ [0, γ n+1). Then ε t verifies the relation

	(4.3.24)

  | p-2 t 2 |b ϑ (Z ϑ sn )| 2 + |σ| 2 |B sn+t -B sn | 2 . (4.3.28)Eventually we apply Young's inequality with parameters p = p/(p -2) and q = p/2 and some appropriate weights to(4.3.28). This yields the existence of a constantC = C p,L such that p|ε t | p-2 ε t , ε t ≤ -pα 4 |ε t | p + C t p |b ϑ (Z ϑ sn )| p + |B sn+t -B sn | p . (4.3.29) We are now ready to give some information about expressions of the form e ηt |ε t | p . Namely we set η = pα/4, then we apply identity (4.3.26) and inequality (4.3.29). This easily yields e ηt |ε t | p ≤ e ηt C(t p |b ϑ (Z ϑ sn )| p + |B sn+t -B sn | p ). Step 2: Inductive procedure. Let us integrate (4.3.30) on the interval [0, γ n+1 ], where we recall that γ n+1 = s n+1 -s n . With the definition (4.3.25) in mind, this gives

	.3.27) where the second inequality is due to relation (4.2.5) and the definition (4.3.25) of ε t . We now plug relation (4.3.21) into this inequality in order to get ε t , ε t ≤ -α 2 |ε t | 2 + 2L 2 α tb(Z ϑ sn ) + σ(B sn+t -B sn ) 2 , from which we easily end up with p|ε t | p-2 ε t , ε t ≤ -pα 2 |ε t | p + 4pL 2 α |ε t (4.3.30)

  tion measures related to our processes of interest. The proofs are postponed to Appendix 4.B. As inProposition 4.3.6, let Y ϑ be the solution of equation (4.2.7) and consider the Euler scheme Z ϑ,γ defined by (4.2.13). Also consider p > 0 and d ∈ D p . We assume that (C s ) holds true. Then, (i) The occupation measures of the process Y ϑ are Lipschitz with respect to ϑ, that is there exists a positive random variable C p such that for all t ≥ 1:

	Proposition 4.3.8. d	1 t	0	t	δ Y ϑ 1 s	ds,	1 t	0	t	δ Y ϑ 2 s	ds ≤ C p |ϑ 1 -ϑ 2 |.	(4.3.33)

  now generalize Proposition 4.4.1 to the case of a decreasing time step for the Euler scheme (4.2.13). We consider the same setting as in Proposition 4.3.8. In particular, we assume that (C s ) holds true for the coefficients of equation (4.2.7). Let p ≥ 2 and consider d ∈ D p . Let {s k ; k ≥ 0} be the sequence of time steps defined by (4.2.18), which is assumed to verify ∃ p ≥ p such that

	Proposition 4.4.2. +∞ k=1	γ p H+1 k+1 s k	< +∞.	(4.4.3)
	Then we have			
	lim N,n→+∞			

  ≤where we have introduced the additional notation s = min{s k , s k > s}. Taking into account the fact that |t -s| ≤ γ k+1 for any s, t ∈ [s k , s k+1 ), we end up with

													t		
														|b ϑ (Y ϑ s )|ds + σ |B t -B t | ,	(4.4.10)
													t			
	and thus there exists a constant c p ,σ such that
	1 s N	0	s N	|Y ϑ t -Y ϑ t | p dt ≤ c p,σ		1 s N	0	s N	t	t	|b ϑ (Y ϑ s )|ds	p	dt +	1 s N	0	s N	|B t -B t | p dt .
																	(4.4.11)
	Next we upper bound the first term in the right hand side of (4.4.11) invoking successively
	Jensen's inequality and Fubini's theorem. We obtain that
				s N	t	|b ϑ (Y ϑ s )|ds	p	dt ≤	s N	|t -t| p -1	t	|b ϑ (Y ϑ s )| p ds dt
				0	t									0			t
													=	s N	|b ϑ (Y ϑ s )| p	s	|t -s| p -1 dt ds ,
														0			s
					0	s N	t	t	|b ϑ (Y ϑ s )|ds	p	dt ≤	N -1 k=0	γ p k+1	s k s k+1	|b ϑ (Y ϑ s )| p ds.	(4.4.12)

  22,N and A 23,N are respectively defined by (4.4.7) and (4.4.8) with d = W p . Furthermore, we have seen that lim N →+∞ sup ϑ∈Θ A 22,N (ϑ) = 0 and lim N →+∞ sup ϑ∈Θ A 23,N (ϑ) = 0 . We immediately deduce that lim

								.4.21)
	Let us begin by the term involving b ϑ in (4.4.21). First notice that
	W p	1 s N	0	s N	δ Y ϑ s ds, ν ϑ ≤ A 22,N (ϑ) + A 23,N (ϑ),
	where A N →+∞	sup ϑ∈Θ	W p	1 s N	0	s N	δ Y ϑ s ds, ν ϑ = 0.

Moreover, by Proposition 4.A.1 for instance, we have sup ϑ∈Θ ν ϑ (| • | p ) < ∞. We thus deduce that sup ϑ∈Θ

  Proof of Theorem 4.2.2. Recall that the family { θN,n,γ , (N, n, γ) ∈ N 2 × R * + } is defined by (4.2.15). We wish to apply Proposition 4.4.3 with r

  + } defined by (4.2.17). However, since we only assume (C w ) instead of (C s ), one is only able to obtain simple convergence properties on Θ. In order to circumvent this problem, we have restricted our analysis to the discretized parameter set Θ (ε) introduced in (4.2.17). For a given ε > 0, Θ (ε) is finite and hence,

				n-1 k=0	δ Yt k ,	1 N	N -1 k=0	γ k+1 δ Z ϑ s k
	Proof of Theorem 4.2.1 . We still wish to apply Proposition 4.4.3 to the family
	{	θ(ε)			
	one deduces from Propositions 4.3.3(ii) and 4.3.4, that
		lim γ→0	lim N,n→+∞	sup ϑ∈Θ	

.4.29) In addition, owing to Proposition 4.3.6 and Assumption (I w ), L is continuous and ϑ 0 is the unique minimum of L. We have thus checked that the hypothesis of Proposition 4.4.3 are fulfilled, from which Theorem 4.2.2 is easily deduced. Proof of Theorem 4.2.3 . The proof goes along the same lines as for Theorem 4.2.2. Namely we apply Proposition 4.4.3 to the sequence { θN,n , (N, n) ∈ N 2 } defined by (4.2.20). To this aim, we set L N,n (ϑ) = d 1 n . Then according to Proposition 4.4.2, the sequence (L N,n ) N,n converges uniformly to L defined by (4.4.29) when N, n → +∞. Furthermore, the continuity of L follows as in the proof of Theorem 4.2.2. Our claim is thus easily deduced. N,n,γ , (N, n, γ) ∈ N 2 × R *

  .5.10) It remains to take into account the distance d. Recall that we only consider the two distances d CF,p and d s defined in Subsection 4.2.5. We thus easily deduce from (4.5.10) and the definitions of d CF,p and d s that there exists a positive constant C such that

  Our aim in this section is to get an equivalent of relation (4.5.8) for the term D N,γ is either d s or d CF,p . To this end, resorting to the fact that d CF,p and d s are both elements of D 1 , the quantity (4.5.4) can be upperbounded as follows:

	(2) N,γ 4.5.2 L q bound on D			
					(2)
					N,γ
	defined by (4.5.4), namely			
	E sup ϑ∈Θ	|D	(2) N,γ (ϑ)| q ≤ Cγ qH .	(4.5.15)
	where the distance d in the definition of D	(2)

  .6.15) where ψ ξ is the oscillating function e iξx and ∆ R ψ ξ (Y t ) still denotes a rectangular increment as in(4.6.14). Moreover, resorting to the path a introduced in (4.6.13) we get

  Proposition 4.A.1. Let Y ϑ be the unique solution of (4.2.7). Assume (H 0 ) and (C w ). Then the following inequalities hold true for p ≥ 1.

	(i) sup t≥0	E[sup ϑ∈Θ	|Y ϑ t | p ] < +∞.
	(ii) sup ϑ∈Θ	sup n≥1	1 n	n-1 k=0 |Y ϑ kκ | p < +∞ a.s.
	(iii) sup ϑ∈Θ	sup t>0	1 t	t 0 |Y ϑ

t | p dt < +∞ a.s.

  4.A. Tightness and convergence of the occupation measures Y ϑ s ds; t ≥ 0} is a.s. tight in M 1 (R d ). Therefore a classical criterion (see e.g. [4, Theorem 8.3]) ensures that {π ϑ t ; t ≥ 0} is a.s. tight if for every positive T , η and ε, there exists δ > 0 such that for all t 0 ∈ [0, T ], |Y ϑ s+u -Y ϑ s+t 0 | r ds ≤ C r,T δ 1+ρ a.s. (4.A.19) Let us now prove (4.A.19). On the interval [t 0 , t 0 + δ], we have |B s+u -B s+t 0 |. (4.A.20) Using Jensen's inequality and Fubini's Theorem, we get that for any r > 0, Hr , (4.A.22) where the limit in (4.A.22) holds in the a.s. sense. Choosing r > sup{2, 1/H} in (4.A.21) and (4.A.22), then plugging (4.A.21) and (4.A.22) into (4.A.20), we get that (4.A.19) is satisfied. We have thus proved the a.s. tightness of {π ϑ t ; t ≥ 0}. The second step is then to show that any limiting distribution of 1

	that { 1 t	t 0 δ lim sup t→+∞	1 t	0	t	1 δ	1 {sup u∈[t 0 ,t 0 +δ] |Y ϑ s+u -Y ϑ s+t 0	|≥ε} ds ≤ η a.s.	(4.A.18)
	Moreover, inequality (4.A.18) holds true as long as there exist some positive r and ρ
	such that							
		lim sup t→+∞	1 t	0	t	sup u∈[t 0 ,t 0 +δ]
		|Y ϑ s+u -Y ϑ s+t 0 | ≤		t 0 +δ t 0	|b ϑ (Y ϑ s+u )|du + sup u∈[t 0 ,t 0 +δ]
		1 t	0	t	t 0 t 0 +δ	|b ϑ (Y ϑ s+u )|du	0	t+t 0 +δ	|b(Y ϑ
										t	t 0 +δ	|b ϑ (Y ϑ s+u )|du
										0	t 0
										t	t 0 δ Y ϑ s+.

r ds ≤ δ r-1 1 t s )| r ds .

Furthermore, since b ϑ is sublinear according to (C w ), it follows from (4.3.10) that lim sup

t→+∞ 1 t r ds ≤ Cδ r-1 (4.A.21)

for a constant C > 0. On the other hand, by the ergodicity of the increments of the fBm and its self-similarity,

1 t t 0 sup u∈[t 0 ,t 0 +δ] |B s+u -B s+t 0 | r ds t→+∞ ----→ E[ sup u∈[0,δ] |B u | r ] = C r δ

  C|ϑ 1 -ϑ 2 | 2 |Y ϑ 1 s -Y ϑ 2 s | 2 ds ≤ C|ϑ 1 -ϑ 2 | 2 tHence a direct application of inequality (4.3.9) yields the existence of a random variable C = C(ω) such that for all (ϑ 1 , ϑ 2 ) ∈ Θ 2 we have|Y ϑ 1 s -Y ϑ 2 s | 2 ds ≤ C|ϑ 1 -ϑ 2 | 2 .This concludes the proof of Proposition 4.3.8 (i) for a distance d ∈ D 2 . To extend the result to any p ≥ 2, one can apply Jensen's inequality to (4.B.2) and follow the same lines as for d ∈ D 2 .

									4.B. Proof of Proposition 4.3.8
	Thus, using Fubini's theorem, one deduces that		
	1 t	0	t			0	t	(1 + |Y ϑ 2 s | 2r	t u	e ρ(s-u) dsdu
					≤ C ρ |ϑ 1 -ϑ 2 | 2 1 +	1 t	0	t	(1 + |Y ϑ 2 s | 2r du .
			sup t≥1	1 t	0	t		
									t
									e ρs (1 + |Y ϑ 2 s | 2r ds.	(4.B.2)
									0

Si cette hypothèse est difficile à vérifier pour les EDS fractionnaires, elle est vraie pour des diffusions dans un cadre assez général (voir Proposition 4.6.1).

INTRODUCTION GÉNÉRALE 

In this case, we can fix the duration of Step 3 equal to m since the memory only involves the m previous times.

 1-κ ). We conclude that (H 1 ) holds with V (x) := |x| 1-κ . £ Let us consider the family of functions given by F (x, w) = f (b(x) + σ(x)w). Provided that f is well defined on R d , σ is continuously invertible and σ -1 and b are continuous

DISCRETE-TIME STOCHASTIC DYNAMICS WITH MEMORY

d(W[START_REF] Arnold | Random dynamical systems[END_REF] w(1) ) s .(3.4.17) 

Remerciements

Now, let k ≥ 1, we have

With exactly the same procedure, we get

(3.4.3)

Let us introduce now some notations. First, for all t ≥ 0 set u := t -k + 1, then for all u ≥ 0, we define

otherwise, and Xu := Φ u+k-1 x, (W s ) s∈[0,k-1] ( ws ) s∈[k-1,u+k -1] .

We then have Since

, we deduce from (3.4.4) and (3.4.5) that for all u ≥ 0

where we have set (W

In the remainder of the section, we proceed to a control of the quantity |X u -Xu |. We have the following upperbound on |X u -Xu |:

where X u -Xu is defined in (3.4.6), Ψ H is defined by

with C H > 0 and G (k) is given by

In Subsections 3.4.1 and 3.4.2, we prove Proposition 3.4.1.

First case

where Ψ H is defined in Proposition 3.4.1.

Proof. Let u ≥ 2. In the following inequalities, we make use of Hypothesis 3.2.1 on the function b and to the elementary Young inequality a, b ≤ 1 2 ε|a| 2 + 1 ε |b| 2 with ε = 2α.

We further split the second term in the right hand side of (4.5.6) as follows:

and resort to a similar decomposition for the third term in the right hand side of (4.5.6).

It is then readily checked that plugging (4.5.7) into (4.5.6) we end up with our claim (4.5.2).

In the remainder of the section, we shall handle the L q -moments of D 

L q bound on D (1) n

We start this section by giving a notation concerning expectations of empirical measures. Notation 4.5.1. Let Y be the solution of equation (4.2.7) and t ≥ 0. As previously, δ Yt denotes the Dirac measure at Y t , considered as a random measure. Then E[δ Yt ] is the deterministic measure such that for all continuous and bounded f : R d → R we have

With this notation in mind, we can now deliver our L q estimate for D [START_REF] Arnold | Random dynamical systems[END_REF] n .

Lemma 4.5.2. Let D

(1) n be the random variable defined by (4.5.3). Then, whenever d is given by d CF,p or d s , defined respectively by (4.2.21) with p > (q + d)/2 and (4.2.22), we have:

Proof. We decompose D

(1) n as follows:

δ Yt k =: D (11) n + D (12) n . (4.5.9)

For the term D [START_REF] Buchmann | Maxima of stochastic processes driven by fractional Brownian motion[END_REF] n , we can use the contractivity assumption (C s ) on the drift b which implies that two solutions of the SDE (4.1.2) with different initial conditions converge exponentially pathwise to each other as t → +∞ (see e.g. [START_REF] María | Discretization of stationary solutions of stochastic systems driven by fractional Brownian motion[END_REF]). More specifically, we have already seen in (4.3.7) that the arguments of [START_REF] María | Discretization of stationary solutions of stochastic systems driven by fractional Brownian motion[END_REF] entail Y t -Ȳt L p (Ω ≤ c 1 e -c 2 t for two positive constants c 1 , c 2 , where we recall that Ȳ designates the stationary solution of (4.2.7). Hence for a Lipschitz function f : R d → R we easily get the existence of a It just remains to optimize in η to conclude that:

). By putting together (4.5.18) with both (4.5.21) and (4.5.34), this concludes the proof of (4.5.17).

Let us now conclude the section. Through inequality (4.5.2) and the control of the three right hand side terms, namely (4.5.8), (4.5.15) and (4.5.17), we are in position to conclude that Theorem 4.2.4 holds true.

Identifiability assumption

In this section we will provide some examples of equations of the form (4.1.2) for which the crucial assumptions (4.2.9) and (4.2.10) are satisfied. We first review briefly the diffusion case in Section 4.6.1, and then give a particular example in the fractional Brownian motion case in Section 4.6.2.

Case of a diffusion process

In this section we consider equation (4.1.2) in the case H = 1 2 , that is when the equation is driven by a d-dimensional Wiener process. Our considerations are summarized in the following proposition. 2 . We assume Hypothesis (H 0 ) and (C w ) to be met and call ν ϑ the invariant measure corresponding to the coefficient b ϑ . We pick ϑ 1 , ϑ 2 ∈ Θ and set

If this condition is satisfied for all couples (ϑ 1 , ϑ 2 ) ∈ Θ 2 , then (I w ) holds true.

Proof. For ϑ ∈ Θ, let L ϑ denote the linear operator defined on C 2 (R d , R) by:

where D 2 f denote the Hessian matrix of f . By a classical criterion, ν ϑ is invariant for (4.1.2) when H = 1 2 if and only if

from which our claim (4.6.5) is easily proved. Notice that the fact that ϑ is bounded away from 0 is crucial here in order to ensure the continuity of ϑ → σ ϑ in (4.6.6) on the interval [m, M ].

Let us also state an elementary bound on ordinary differential equations for further use.

Lemma 4.6.2. Let f, g : R + → R be two functions such that there exist some constants κ, M > 0 satisfying f r ≥ κ, and |g r | ≤ M, for all r ∈ R + .

(4.6.7)

Let y be the solution of the following differential equation:

Then y is uniformly bounded in t and verifies

Proof. Equation (4.6.8) admits an explicit solution under the form

Plugging the bounds (4.6.7) into the above expression, we easily get

which is our claim.

We now wish to extend Lemma 4.6.1 to the model given by equation (4.6.1). Namely we wish to prove the following proposition. Proposition 4.6.2. Let Y λ,ϑ be the process defined by (4.6.1) and consider p > 3/2. We assume ϑ ∈ [m, M ] and λ ∈ (0, λ 0 ) with a small enough λ 0 = λ 0 (m, M, p). Also assume (without loss of generality

ϑy b ϑ are all bounded by 1. Then the following lower bound holds true for any ϑ 1 , ϑ 2 ∈ [m, M ]:

(4.6.9)

Proof. Owing to the definition (4.2.21) of the distance d CF,p , we have

We will decompose this quantity as follows:

, (4.6.10)

Plugging this inequality into (4.6.17), we end up with

We now choose λ such that λ ≤ 1 4

, where c 1 is defined by (4.6.11) and ε = 1/2. This yields

We now gather (4.6.19) and (4.6.12) into (4.6.10), which proves our claim with λ 0 = 1 4

Numerical Discussions and Illustrations

In this section, we provide several numerical examples in order to illustrate our main results. To this end, we first investigate several numerical questions which are related to our theoretical results.

Simulated data and Euler scheme:

In order to test our results, we have chosen to simulate our observations. Nevertheless, the fractional SDE (4.1.2) cannot be simulated exactly, except in some particular cases. Therefore we have opted for a discretization procedure thanks to a simple first order Euler scheme with very small step γ (namely γ = 10 -3 ) in order to get a sharp approximation of the true process.

Let us recall that in the additive setting of equation (4.1.2) the simple Euler scheme converges strongly to the true SDE, while this is not true in general in the multiplicative case (see e.g. [START_REF] Nourdin | Schémas d'approximation associés à une équation différentielle dirigée par une fonction höldérienne; cas du mouvement brownien fractionnaire[END_REF]). The convergence of the scheme can be checked for instance through Proposition 4.3.7(i), applied with constant step γ. Furthermore, taking the expectation in Proposition 4.3.7(i) leads to a marginal control of the L 2 -distance between the Euler scheme and the true SDE (with same fBm) of order γ H (independently of the horizon). This confirms that our approximation of the observations is reasonable when H is not too small (getting a control for the uniform distance is more involved).

Let us also recall that the increments of the fBm can be simulated through the Wood-Chan method (see [START_REF] Andrew | Simulation of stationary Gaussian processes in [0, 1] d[END_REF]), which is based on the embedding of the covariance matrix of the fractional increments in a symmetric circulant matrix (whose eigenvalues can be computed using the Fast Fourier Transform). Therefore up to the approximation of the true SDE detailed above, we now assume that we are given a sequence (Y kγ ) k≥0 , where (Y t ) t≥0 is a solution to (4.2.7) with a given θ 0 . Then we select from this path a subsequence of observations (Y t k ) n k=1 where t k = kγ, which means in particular that we assume γ to be of the form k 0 γ with k 0 ∈ N * .

Computation of the distance between empirical measures:

The theoretical construction of an estimator like (4.2.15) involves in practice the computation of the distance d between the empirical measures of the observed process and of the Euler scheme, for a distance d ∈ D p as defined in (4.2.4). We briefly describe how to compute this kind of distance.

ABSTRACT

In this thesis, we focus on three problems related to the ergodicity of stochastic dyllamics with memory (in a discrete-time or continuous-tinJe setting) and especially of Stochastic Differential Equations (SDE) driven by fractional Brownian motion.

In the first chapter, we study the long-time behavior of a general class of discrete-time stochastic dynamics driven by an ergodic and stationary Gaussian noise. Following the seminal p_ape~• written by [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF] on the ergodicity of fractional SDE (see also [START_REF] Fontbona | Rate of convergence to equilibrium of fractional driven stochastic differential equations with some multiplicative noise[END_REF] and Deya-Panlollp-Tindel (2019)), we first build a Markovian structure above the dynamics, we show existence and uniqueness of the invariant distribution and then we exhibit some upper-bounds on the rate of convergence to equilibrium in terms of the asymptotic behavior of the covariance function of the Gaussian noise ( or more precisely, of the asymptotic behavior of the coefficients appearing in its moving average representation).

The second chapter establishes long-time concentration inequalities both for functionals of the whole solution on an interval [0, T] of an additive fractional SDE and for functionals of discrete-time observations of this process. Then, we apply this general result to specific functionals related to discrete and coutinuoustime occupation measures of the process.

The last chapter, which uses the results developped in Chapter 2, is a joint work with Panloup and Tindel which focuses on the parametric estimation of the (non linear) drift term in an additive fractional SDE. \Ne use a minimum contrast estimation based on the identification of the invariant distribution (for which we build an approximation from discrete-tîme observations of the SDE). \Ve provide consistency results as well as non-asymptotic estima tes of the corresponding quadratic error. Sorne of our results are illustrating through numerical discussions. \Ve also give some examples for which the identifiability condition related to our estimation procedure (iutrinsically linked to the invariant distribution) is fulfilled. j l