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Abstract
This new era of small UAVs currently populating the airspace introduces many safety
concerns, due to the absence of a pilot onboard and the less accurate nature of the
sensors. This necessitates intelligent approaches to address the emergency situations
that will inevitably arise for all classes of UAV operations as defined by EASA (Eu-
ropean Aviation Safety Agency). Hardware limitations for these small vehicles point
to the utilization of analytical redundancy, rather than to the usual practice of hard-
ware redundancy in manned aviation. In the course of this study, machine learning
practices are implemented in order to diagnose faults on a small fixed-wing UAV to
avoid the burden of accurate modeling needed in model-based fault diagnosis. A su-
pervised classification method, SVM (Support Vector Machines) is used to classify
the faults. The data used to diagnose the faults are gyro and accelerometer mea-
surements. The idea to restrict the data set to accelerometer and gyro measurements
is to check the method’s classification ability, with a small and inexpensive chip set
and without the need to access the data from the autopilot, such as the control in-
put information. This work addresses the faults in the control surfaces of a UAV.
More specifically, the faults considered are the control surface stuck at an angle and
the loss of effectiveness. First, a model of an aircraft is simulated. This model is
not used for the design of Fault Detection and Diagnosis (FDD) algorithms, but is
instead utilized to generate data. Simulated data are used instead of flight data in
order to isolate the probable effects of the controller on the diagnosis, which may
complicate a preliminary study on FDD for drones. The results show that for simu-
lated measurements, SVM gives very accurate results on the classification of the loss
of effectiveness faults on the control surfaces. These promising results call for further
investigation so as to assess SVM performance on fault classification with flight data.
Real flights were arranged to generate faulty flight data by manipulating the open
source autopilot, Paparazzi. All data and the code are available in the code sharing
and versioning system, Github. Training is held offline due to the need for labeled
data and the computational burden of the tuning phase of the classifiers. Results
show that from the flight data, SVM yields an F1 score of 0.98 for the classification of
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control surface stuck faults. For the loss of efficiency faults, some feature engineering,
involving the addition of past measurements is needed in order to attain the same
classification performance. A promising result is discovered when spinors are used as
features instead of angular velocities. Results show that by using spinors for classi-
fication, there is a vast improvement in classification accuracy, especially when the
classifiers are untuned. Using spinors and a Gaussian Kernel, an untuned classifier
gives an F1 score of 0.9555, which was 0.2712 when gyro measurements were used as
features. In summary, this work shows that SVM gives a satisfactory performance
for the classification of faults on the control surfaces of a drone using flight data.

Thesis Supervisor: Daniel Delahaye
Title: Professor

Thesis Supervisor: Murat Bronz
Title: Assistant Professor

2



Acknowledgments

First of all, I would like to thank to my PhD advisors, Professors Daniel Delahaye and

Murat Bronz, for supporting me during these past three years. I am grateful to Daniel

Delahaye, for his insight during the thesis and directed me to the very interesting

topic of machine learning. I would like to thank Murat Bronz for initiating the PhD

opportunity, his guidance throughout this thesis, his help for the modifications to the

Paparazzi autopilot and being the safety pilot during the flight campaigns. I would

also like to thank Stephane Puechmorel for his insight that lead to interesting results

also discussed in this thesis.

The drone team in ENAC, Yannick Jestin (the best boss), Michel Gorraz, Fabian

Garcia, Alexandre Bustico, Fabian Bonneval. You guys are great, it was such a plea-

sure.. Extra thanks for their help on flight campaigns to Torbjoern Cunis, Gauthier

Hattenberger, and Michel Gorraz. Special thanks to Torbjoern for even cooking me

dinner during difficult times. And to the triple sec; Guido Manfredi and Jim Sharples;

I am grateful to you for the all the shared moments and your endless support. And

the drone team is luckily even larger, I am so happy that we worked all together

with Jean-Philippe Condomines, Xavier Paris, Titouan Verdu, Yuchen Leng, Baizura

Bohari. All colleagues and friends with whom my last three years has passed. BEST

team ever. Felt like home. Thank you all..

My family, my mom Nergiz and father Adiguzel, I am grateful to you most, for

the most precious gift you gave me, my life. Mom, you are the reason of my freedom,

my imagination and my free will. I always admired you being competent since I first

saw you at work, passionately talking on your profession, eyes closed, hard to believe

that it was my mother. And dad, you are the reason for my artistic spirit, which

tries to burst out of me sometimes. You both always supported me on music, always

supported my choices, I was lucky to be grown as a free spirit, I think this is where I

am grateful to you the most.

My brother, you are really special to me. It is enough to make me happy just

knowing you are there.

3



My grandmom, nananem. The cleverest women I have ever known, lucky to be

raised by you. I wont forget that you being the person that I get along the best, never

even an argument, like magic. My flees to captain’s bridge has never been punished

on the way along the sea to summer house, my never finishing questions never left

unanswered, my passion for sea shells and flower seeds plugging the washing machines

have been ignored.

My uncle Cengiz, where my logic genes have been inherited. Again, the person

I have never argued even once in my lifetime, no delays in communication, or may

be sometimes when something else is been processed. The best person I have ever

known in my life, an angel. Too clever, too talented. And my lovely aunt Leyla, who

woke me up everyday, patiently, thank you many times.

Rapunzel, my companion, you have helped me a ton, you made me graduate.

Although you wont be able to read it, you won’t be the first one.

Ertan, you have helped me numerous times I stopped counting, my crisis, my

anxieties, my vulnerabilities. Those days I was about to quit, you made me back, not

let me to leave Rapunzel, told me that I can do it, and I did it.

I also thank my friend, my sister, Hale, for providing support and friendship that

I needed.

Utku, ne 3 u la, my perfect lab mate. Hope to work AI together here or there,

one day..

Estelle, I am thankful for what we have shared during three years, and grateful

for her help, especially during the last phase of this thesis.

Helen, thanks to her, the paperwork which I hated with a passion became much

of an ease. Such a nice person, kind, and gentle. Thank you very much.

I am also grateful to Sara, Micheal, and Magda for proofreading the thesis, and

Sarah for her incredible illustrations and the cover of this thesis.

This work is supported by ENGIE Ineo - Groupe ADP - Safran RPAS Chair. I am

grateful for their support that enabled me to pursue three years of research on this

interesting subject. I am also grateful to Catherine Ronfle-Nadaud for her support

during the early stages of Chaire Drones.

4



Contents

1 Introduction 21

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 State of the Art 27

2.1 Integration of Drones into Airspace . . . . . . . . . . . . . . . . . . . 27

2.2 Paparazzi Autopilot System . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Open-source Autopilots for UAS . . . . . . . . . . . . . . . . . 35

2.2.2 Introduction to Paparazzi Autopilot System . . . . . . . . . . 35

2.2.3 Open-Source Systems in Relation to the New Regulatory Context 40

2.2.4 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.5 Congestion Management . . . . . . . . . . . . . . . . . . . . . 43

2.2.6 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.7 Flight Heritage for Risk Assessment . . . . . . . . . . . . . . . 48

2.2.8 Future Evolutions . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3 Fault Tolerant Control Systems . . . . . . . . . . . . . . . . . . . . . 50

2.3.1 Loss of Control in Aviation . . . . . . . . . . . . . . . . . . . . 50

2.3.2 FTCS Terminology . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.3 Conventions for a Safe Flight . . . . . . . . . . . . . . . . . . 53

2.3.4 Methods for Fault Tolerant Control Systems . . . . . . . . . . 54

2.3.5 Fault Detection and Diagnosis . . . . . . . . . . . . . . . . . . 56

2.4 Machines on the Rise . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5



2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 Nonlinear Aircraft Model 67

3.1 Attitude motion modeling . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.1 Attitude representations . . . . . . . . . . . . . . . . . . . . . 69

3.1.2 Attitude kinematics . . . . . . . . . . . . . . . . . . . . . . . . 77

3.1.3 Attitude dynamics . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2 Translation modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2.1 Translational kinematics . . . . . . . . . . . . . . . . . . . . . 85

3.2.2 Translational dynamics . . . . . . . . . . . . . . . . . . . . . . 86

3.3 Drone model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3.1 Modeling of aerodynamic moments . . . . . . . . . . . . . . . 90

3.3.2 Modeling of aerodynamic forces . . . . . . . . . . . . . . . . . 96

3.3.3 Shortcut to modeling . . . . . . . . . . . . . . . . . . . . . . . 100

3.3.4 Sensor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.3.5 Fault Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4 Methodology 105

4.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.1.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.1.3 Steps towards the learning machine . . . . . . . . . . . . . . . 109

4.2 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.2.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5 Simulation Results 143

5.1 Fault detection from simulated flight data . . . . . . . . . . . . . . . 143

5.2 Fault detection from real flight data . . . . . . . . . . . . . . . . . . . 150

6



5.2.1 Injecting faults in flight from Paparazzi GCS . . . . . . . . . . 150

5.2.2 Modifications to Paparazzi autopilot controls to inject faults

during flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.2.3 Reading and labeling flight data . . . . . . . . . . . . . . . . . 155

5.2.4 Control surface stuck fault . . . . . . . . . . . . . . . . . . . . 161

5.2.5 Control surface loss of efficiency fault . . . . . . . . . . . . . . 168

5.2.6 Use of spinors as attributes . . . . . . . . . . . . . . . . . . . 173

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6 Conclusion 177

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

A Codes for FD from simulated data 181

A.1 Read Me file for the aircraft simulation codes in Matlab . . . . . . . . 181

A.2 configDrone.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

A.3 modelDrone.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.4 quat_to_euler.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

A.5 rungeKutta4.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

A.6 simDrone.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

B Codes for FD from flight data 197

B.1 dataRead.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

B.2 selectDataToInvest.m . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

B.3 arrangeDataSet.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

B.4 svmFD.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

B.5 svmFDtuningViaHeuristic.m . . . . . . . . . . . . . . . . . . . . . . . 213

B.6 svmFDtuningViaOptim.m . . . . . . . . . . . . . . . . . . . . . . . . 216

B.7 calcF1score.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

B.8 addFeaturesBefore.m . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7



8



List of Figures

2-1 Statue of mermaid in Riga handling airspace (for fun) . . . . . . . . . 28

2-2 SORA structure: threats, threat barriers, hazard, harm barriers, harms 31

2-3 U-space illustration [20] . . . . . . . . . . . . . . . . . . . . . . . . . 32

2-4 Airspace design for small drone operations by Amazon [4] . . . . . . . 33

2-5 Fleet of Paparazzi equipped drones from ENAC UAV laboratory in

a flight campaign with the Pyrenees in the background. Photo by

Alexandre Bustico. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2-6 Paparazzi Autopilot System overview . . . . . . . . . . . . . . . . . . 38

2-7 Ground Control Station showing trajectories of 2 Unmanned Air Vehi-

cle (UAV)s using the Traffic Collision Avoidance System (TCAS) system 39

2-8 Drone equipped with Paparazzi on a mission for meteorological studies

by Meteofrance. Photo taken by Alexandre Bustico. . . . . . . . . . . 39

2-9 Front and back view of Apogee autopilot . . . . . . . . . . . . . . . . 40

2-10 Faults altering the system . . . . . . . . . . . . . . . . . . . . . . . . 53

2-11 Variations of fault tolerant control systems . . . . . . . . . . . . . . 55

2-12 Multiple model adaptive estimation algorithm [65] . . . . . . . . . . . 58

2-13 Schematics of perceptron. The perceptron is a composition of several

neurons [96]. x1 to x
n

are the features and y is the output. . . . . . . 60

2-14 Mark 1 perceptron: the first custom-built hardware implementation of

the perceptron. It is designed for image recognition with an array of

400 photocells connected to the "neurons" randomly. Potentiometers

are used to encode the weights, and electric motors update the weights

during learning [11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

9



2-15 Humanoid and ant robot models [72] exhibiting walking and jumping

motions respectively using reinforcement learning [27]. The robots are

given objectives to go from one point to the other, but not given any

information about walking or jumping [53]. . . . . . . . . . . . . . . . 63

2-16 Autonomous helicopter from Stanford University learns to fly acrobatic

maneuvers using RL in autopilot [70] . . . . . . . . . . . . . . . . . . 64

3-1 Attitude representation is simply specifying the orientation of aircraft

body axes b1, b2, b3 in the reference frame A . . . . . . . . . . . . . . 69

3-2 Euler angle sequence [30] . . . . . . . . . . . . . . . . . . . . . . . . . 74

3-3 Rigid body rotating about an arbitrary point O, given in the N frame 81

3-4 Body frame B attached to the rigid body, given in the inertial frame N 82

3-5 Body fixed frame and North East Down (NED) frame representations 88

3-6 MAKO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3-7 Moments of inertia measurements for each axis, I
xx

, I
yy

, I
zz

. . . . . . . 89

3-8 Wind frame, airspeed vector V
T

, angle of attack ↵ and side slip angle

� representation [30] . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3-9 Relation revealed between the inertial velocity vector v, airspeed vector

V
T

and wind disturbance W [30] . . . . . . . . . . . . . . . . . . . . 94

3-10 Probable actuator faults [30]. (a) Loss of effectiveness: The actuator

does respond to the control signals but does so in an abnormal way such

as low actuation level or low response time. (b) Lock-in-place: A total

control loss of the control surface actuators. The actuator freezes at a

particular position. (c) Hard-over: A total control loss of the control

surface actuators. The actuator freezes at the minimum or maximum

position limit. (d) A total control loss of the control surface actuators.

Actuator does not contribute to the control authority. . . . . . . . . . 102

4-1 Common machine learning methodologies . . . . . . . . . . . . . . . . 106

4-2 Supervised learning basics . . . . . . . . . . . . . . . . . . . . . . . . 107

10



4-3 Regression example - Housing prices as a function of surface area of

the house [69] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4-4 Classification example . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4-5 Classification example - output vs input . . . . . . . . . . . . . . . . 112

4-6 Classification example of complex decision boundaries [69] . . . . . . 113

4-7 Classification example of complex decision boundaries . . . . . . . . . 114

4-8 Simplified guide for feature mapping . . . . . . . . . . . . . . . . . . 115

4-9 Adding an artificial feature of 1s. . . . . . . . . . . . . . . . . . . . . 116

4-10 Model selection guide . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4-11 Training and evaluating the classifier . . . . . . . . . . . . . . . . . . 124

4-12 Gradient descent convergence dependance on ✓
init

. Two different but

close choices of ✓
init

might converge to local or global minima [69]. . . 126

4-13 Underfitting, satisfactory or overfitting model examples (left to right) 127

4-14 Diagnosing machine learning problem by plotting training and cross-

validation errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4-15 SVM working principle: The aim of SVM is to find an optimal hy-

perplane maximizing the margin, which is the distance in between the

boundaries, by extending them until hitting the first data points (sup-

port vectors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4-16 Convergence of the objective function . . . . . . . . . . . . . . . . . . 136

4-17 Objective function values for different box parameter and sigma values 137

4-18 Box constraint C, kernel scale � and objective function J(✓) values

after each iteration during Bayesian Optimization. Minimum objective

(0.00096366) can be seen at iteration number 28, and corresponding

C = 911.28 (given as box ) and � = 2.7047 (given as sigma) are selected

as the best values in this tuning. . . . . . . . . . . . . . . . . . . . . . 139

4-19 Final results for the optimization, time of execution, optimal values of

box constraint and sigma values . . . . . . . . . . . . . . . . . . . . . 140

4-20 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

11



5-1 Loss of effectiveness fault simulation in aileron command and corre-

sponding accelerometer x axis measurement . . . . . . . . . . . . . . 145

5-2 Accelerometer simulation a
x

vs a
y

. . . . . . . . . . . . . . . . . . . 146

5-3 Reduced dimensional space features z1 vs z2 . . . . . . . . . . . . . . 146

5-4 Supervised learning is achieved in two steps: Training Phase in which

the model parameters are calculated given labeled data and Prediction

Phase in which the label is predicted for a new input using the trained

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5-5 Feature matrix X 2 IR

m⇥6 is comprised of accelerometer and gyro data

of m instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5-6 Posterior probability of loss in effectiveness fault for test set when a

fault is injected at t = 120s. . . . . . . . . . . . . . . . . . . . . . . . 148

5-7 A scene from one of many flight campaigns realized by ENAC UAV

laboratory team. A safety pilot can be seen holding the remote control.

Photo taken by Alexandre Bustico. . . . . . . . . . . . . . . . . . . . 149

5-8 View of fault injection tool in Paparazzi ground control station . . . . 151

5-9 SETTINGS Message saves the multiplicative and additive fault values

inserted from the GCS. [1.0 1.0 0.0 0.0] corresponds a command from

the GCS to revert back to nominal phase . . . . . . . . . . . . . . . . 152

5-10 Paparazzi autonomy modes . . . . . . . . . . . . . . . . . . . . . . . 153

5-11 Modifications on the control modes of Paparazzi autopilot . . . . . . 154

5-12 Conversion of raw flight data saved to SD card onboard to .data file to

be used in further calculations . . . . . . . . . . . . . . . . . . . . . . 155

5-13 The flying-wing: ZAGI . . . . . . . . . . . . . . . . . . . . . . . . . . 156

12



5-14 A piece of the flight data corresponding to nominal and two different

fault phases of the flight. SETTINGS message exists only if there is

a change in the multiplicative and additive fault parameters via GCS.

The first data in each row corresponds to the time stamp. Second data

in each row is the aircraft number which is 52 for this flight. Third data

in each data line corresponds to the label of information in that line. As

an example, on the last line, the label is IMU_ACCEL. This means

that this line gives accelerometer readings. Last three data in this line

are accelerometer x-axis (-1.187500), accelerometer y-axis (-0.916992)

and accelerometer z-axis (-1.717773) readings. . . . . . . . . . . . . . 157

5-15 SETTINGS message corresponding to stuck of right control surface . 159

5-16 Indexing SETTINGS, to find the fault and nominal flight intervals,

indexing GYRO measurements to AND with FAULT indexes to find

the indexes of faulty gyro measurements . . . . . . . . . . . . . . . . 160

5-17 Accelerometer readings along x-direction during flight interval just be-

fore control surface stuck (nominal, represented with blue) and during

control surface stuck at 0° until the safety pilot’s intervention . . . . . 162

5-18 Accelerometer readings along x-direction during flight interval before

control surface stuck (nominal, represented with blue) and during con-

trol surface stuck at 0° until the safety pilot’s intervention . . . . . . 163

5-19 Accelerometer measurements along z direction a
z

for faulty and nomi-

nal flight data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5-20 Angular velocity w
x

for faulty nominal flight data . . . . . . . . . . . 164

5-21 a
x

vs a
z

feature space for faulty nominal flight data . . . . . . . . . . 165

5-22 a
x

vs a
y

feature space for faulty nominal flight data . . . . . . . . . . 165

5-23 One of the features (accelerometer x-axis) of the original feature matrix

(given in Fig. 5-5) before adding extra features . . . . . . . . . . . . . 166

5-24 Addition of features to involve N � 1 previous measurements . . . . . 167

5-25 New feature matrix when spinors are used as features rather than gyro

measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

13



14



List of Tables

2.1 Comparison of popular open-source and commercial autopilots [9]. . . 36

3.1 Attitude parametrizations of the rotation group SO(3) [7] . . . . . . . 77

3.2 General specifications of MAKO [16] . . . . . . . . . . . . . . . . . . 88

3.3 Parameters of ETH drone [30] . . . . . . . . . . . . . . . . . . . . . . 90

3.4 Stability derivatives for ETH UAV [30] . . . . . . . . . . . . . . . . . 92

3.5 Stability derivatives for MAKO extracted from AVL program at 14m/s

equilibrium cruise speed [16] . . . . . . . . . . . . . . . . . . . . . . . 92

3.6 Aerodynamic force derivatives for ETH UAV [30] . . . . . . . . . . . 98

3.7 Aerodynamic force derivatives for MAKO extracted from AVL program

at 14m/s equilibrium cruise speed[16] . . . . . . . . . . . . . . . . . . 98

3.8 Thrust force coefficients for propeller ETH UAV [30] . . . . . . . . . 99

3.9 Thrust force coefficients for propeller APC SF 9⇥ 6 from wind tunnel

experiments [15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.10 Specifications of the sensor suit InvenSense MPU-9250 Nine-axis (Gyro

+ Accelerometer + Compass) MEMS MotionTracking Device[21] . . . 101

4.1 Machine learning terminology . . . . . . . . . . . . . . . . . . . . . . 107

4.2 Training set (x,y) of housing prices — one-feature example . . . . . . 108

4.3 Training set (x,y) of housing prices - multi-feature example . . . . . 109

5.1 Nominal phase start stop indexes of the flight . . . . . . . . . . . . . 159

5.2 Faulty phase start stop indexes of the flight . . . . . . . . . . . . . . 159

15



5.3 Untuned and tuned via heuristic approach and tuned via Bayesian

optimization SVM classification evaluations . . . . . . . . . . . . . . 166

5.4 Untuned and tuned via heuristic approach and tuned via Bayesian

optimization SVM classification evaluations . . . . . . . . . . . . . . 168

5.5 Untuned and tuned via heuristic approach and tuned via Bayesian

optimization SVM classification evaluations . . . . . . . . . . . . . . 169

5.6 %10 and %40 Loss of efficiency fault in left elevon classification results

with Gaussian kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.7 %40 Loss of efficiency fault in both elevon classification results with

Gaussian kernel for two different number of nominal data sets . . . . 171

5.8 %40 Loss of efficiency fault in left elevon classification results with

Gaussian kernel for 24 - 120 - 300 features cases . . . . . . . . . . . . 172

5.9 Results for untuned, tuned SVM classifiers with spinors as attributes 174

5.10 Results for untuned SVM classifiers with added features, original fea-

tures and spinors as attributes . . . . . . . . . . . . . . . . . . . . . . 175

5.11 Results for tuned SVM classifiers with added features, original features

and spinors as attributes . . . . . . . . . . . . . . . . . . . . . . . . . 175

16



Chapter 1

Introduction

Lately, the popularity and reachability of Unmanned Aircraft System (UAS) have

risen steeply thanks to the advancements in electronic components and their decrease

in cost. This accelerating trend towards small but capable flying vehicles is extending

the limits of hardware and software potential in industry and academia. Regulators

from the aviation community have become increasingly concerned by the number of

incidences of drones flying close to civil aircraft and airports. With the advent of the

new era of UAS, different institutions around the world are addressing safe integration

of UAS into airspace [9], specifically the National Aeronautics and Space Adminis-

tration (NASA) [56] and the Federal Aviation Administration (FAA) [62] in the US,

European Aviation Safety Agency (EASA) [36] in Europe and international bases

such as International Civil Aviation Organization (ICAO) [48]. The U-Space concept

in Europe (UTM in the US, which aims at enabling safe integration into airspace),

provides the insight by showing in their roadmaps that the level of drone automatiza-

tion and the level of drone connectivity (drone to drone and drone to infrastructure)

will guide the pace of the U-Space services (U1 to U4) [93]. These enablers will al-

low intelligent agents to share information and automate complex procedures in case

of emergencies. Thus, future aviation will inevitably move towards automatization.

Here we propose a concept that will contribute to the automatization of drones, to

make them more intelligent and thus contribute to their safer integration into the

airspace. These awareness abilities allow the mitigation of risks in accordance with
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the risk assessment procedures offered by JARUS (SORA) [55] defined by [38]. The

functioning abilities of a drone following an emergency should be assessed and, de-

pending on the availability of the environment, a recovery procedure may be initiated.

For cases in which recovery is not possible, safe ditching may be required in order to

reduce the potential harm in the air or on the ground.

1.1 Motivation

Improving the flight reliability is considered to be one of the main concerns for in-

tegrating UAVs into civil airspace, according to the Unmanned Systems Roadmap

by the US Office of the Secretary of Defense, DoD [82]. Achieving safe flight is

not a straightforward task, considering the multiplexity of unknowns in the system

hardware, environment, and possible system faults/failures yet to emerge. The ex-

pectation that UAVs should be less expensive than their manned counterparts effects

their reliability. Cost saving measures — other than the need to support a pilot/crew

onboard or a reduction in size — may lead to a decrease in system reliability.

Under the research and development programs and initiatives identified by the

DoD to develop technologies and capabilities for UAS, the greatest area of control

technologies is health management and adaptive control, with a budget of 74.3 m

dollars. Other safety features such as the validation and verification of flight critical

intelligent software are the second area, with 57.8 m dollars [82].

Systems are often susceptible to faults of differing nature. Existing irregularities

in sensors, actuators or controller may be intensified due to the control system design

and lead to failures. A fault may be hidden due to the control action [30].

The most widely-used method to increase reliability is to increase the use of more

reliable components and/or hardware redundancy. Both require an increase in the

cost of the UAS, conflicting with one of the main reasons of UAS’ popularity [5]. In

order to provide solutions for the different foreseen categories within the airspace, a

variety of approaches should be considered. While hardware redundancy may cope

with failure situations of UAVs in certified operations, it may not be suitable for UAVs
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in open category operations or some operations in specific category, due to budget

constraints. Analytical redundancy is another solution. This may be not as effective

and straightforward as hardware redundancy, but relies on the design of intelligent

methods in order to utilize the information on board the aircraft to deal with all

potential circumstances.

1.2 Contribution

The integration of drones into the airspace requires the introduction of ingenious

design to ensure safe solutions for drones. This necessitates intelligent approaches

to address all potential emergency situations. One of these aspects is to ensure

safe flight by designing fault detection and diagnosis systems using less expensive

avionics, common in a vast number of drones. The hardware limitations for these

small vehicles point to the utilization of analytical redundancy rather than the usual

practice of hardware redundancy in manned aviation. For that purpose, we introduce

an end-to-end design to achieve data-driven fault diagnosis for control surface faults

on drones. In the course of this thesis, machine learning practices are implemented

in order to diagnose faults on a small fixed-wing UAV, and to avoid the burden

of accurate modeling required in model-based fault diagnosis. We aim to design a

classifier via SVM to solve fault detection and diagnosis (FDD) as a classification

problem for drones with actuator faults. All data and code are available in the code

sharing and versioning system, Github.

In this thesis, fault classification simulations are investigated under two main

sections: first, the classification of faults based on simulated flight measurements;

and second, the classification of faults based on real flight data.

For the classification on data generated from simulations, a model of a MAKO

UAV [8] is simulated. Sensor measurements (accelerometer and gyro data) have

been calculated using information on the drone’s motion and the specifications of

the sensors. Generated data is usually more structured compared to real flight data.

In this preliminary application of SVM to fault diagnosis, we started with simpler
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problem and used data generated from models. Results show that the SVM classifier

was accurate and fast in diagnosing faults on the control surfaces, with a classification

accuracy of 99.999%.

Accurate results on the classification of faults with generated data have thus en-

couraged us to further investigate fault detection with real flight data. Since SVM is

a supervised classification method, labeled data is necessary to train the algorithm.

Real flights have therefore been arranged in order to generate faulty flight data by

manipulating the open source autopilot, Paparazzi. Training is held offline due to

the need for labeled data and the computational burden of the tuning phase of the

classifiers. Two main types of faults have been investigated; the control surface stuck

fault and the loss of effectiveness of the elevon. Results indicate that the control sur-

face stuck fault can be detected relatively easily with the data from three gyros and

three accelerometers, compared to the loss of effectiveness (efficiency). The results

show that over the flight data, SVM yields an F1 score of 0.98 for the classification

of the control surface stuck fault. The addition of features to accommodate previous

measurements improve the classification performance for tuned classifiers while the

performance for untuned classification deteriorates. Classification performs poorly

for the loss of efficiency faults, especially for the smaller ineffectiveness values. For

the loss of efficiency fault, some feature engineering — involving the addition of past

measurements — is needed in order to attain the same classification performance.

A very promising result is discovered when spinors are used as features instead

of angular velocities. Result show that by using spinors for classification, there is a

significant improvement in classification accuracy, especially when the classifiers are

untuned. Using spinors and a Gaussian Kernel, the untuned classifier gives an F1

score of 0.9555, which is 0.2712 when the gyro measurements are used as features.

In general, this work shows that SVM gives a satisfactory performance for the

classification of faults on the control surfaces of a drone using flight data.

This thesis contributes to the literature with the following papers:

• Baskaya, E., Bronz, M., & Delahaye, D. (2017, September). Fault detection

& diagnosis for small UAVs via machine learning. In Digital Avionics Systems
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Conference (DASC), 2017 IEEE/AIAA 36th (pp. 1-6). IEEE,

• Baskaya, E., Bronz, M., & Delahaye, D. (2017, September). Flight Simulation

of a MAKO UAV for Use in Data-Driven Fault Diagnosis. In IMAV 2017, 9th

international microair vehicle conference,

• Baskaya, E., Manfredi, G., Bronz, M., & Delahaye, D. (2016, September). Flex-

ible open architecture for UASs integration into the airspace: Paparazzi autopi-

lot system. In Digital Avionics Systems Conference (DASC), 2016 IEEE/AIAA

35th (pp. 1-7). IEEE.

1.3 Thesis Outline

Chapter 2 presents the state of the art on the following topics:

• the integration of drones into the airspace;

• Paparazzi autopilot;

• fault tolerant control systems with a focus on fault detection and diagnosis;

• machine learning and artificial intelligence in general.

The safe integration of drones into the airspace is the motivation for this thesis.

To ensure this safe integration, the design of vehicle health management systems is

crucial. Fault detection and diagnosis plays an important role in vehicle health man-

agement, and we provide a literature review of this topic. In this thesis, the method

selected to detect and diagnose faults is Support Vector Machines (SVM), which is a

machine learning method. Thus, the current state of the art for machine learning is

also provided. Paparazzi autopilot has been used to realize flights to generate faulty

data. This is also introduced in here.

Chapter 3 focuses on the equations of motion of an aircraft. Equations for transla-

tional and rotational motion are discussed separately and in detail. After the equa-

tions are derived for a generic aircraft, the calculations of forces and moments which
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are specific to an individual drone are presented. Then, modeling accelerometer and

gyro data is explained, followed by a discussion of modeling faults in the control sur-

faces of an aircraft.

Chapter 4 is dedicated to machine learning algorithms with a focus on implementa-

tion. After the general practice of machine learning applications is presented, the use

of Support Vector Machines to detect and diagnose faults is discussed in more detail.

Chapter 5 focuses on fault classification results under two main sections: first, the

classification of faults based on simulated flight measurements; and second, the clas-

sification of faults based on real flight data. In the first part, flight data is simulated

using the mathematical equations explained in Chapter 3. The SVM algorithm is

trained with the simulated data in order to classify the faulty and nominal phases

of the simulated flight. The second part commences with explanations on realized

faulty flight experiments. Paparazzi autopilot has been modified to introduce faults

to control surfaces during flight. Then, the classification of the control surface stuck

fault and the loss of effectiveness fault are investigated separately.

Chapter 6 concludes this thesis with a review of the contributions and results made.
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Chapter 2

State of the Art

This chapter includes the current state of the art for a variety of topics. The inte-

gration of unmanned systems into airspace is the first topic addressed as it is the

motivation for this thesis. The second topic addressed is the Paparazzi Autopilot

System since it is used to realize the flight campaigns for this thesis. We also discuss

how the use of the Paparazzi open source auto-pilot system can assist with the inte-

gration of unmanned aircraft system (UAS) into the airspace. Then, to achieve this

safe integration, fault tolerant control systems have been examined with a focus on

fault detection and diagnosis. Finally, the rise of machine learning methods in the

last decade is discussed as they are utilized to diagnose faults in this study.

2.1 Integration of Drones into Airspace

Commercial advantages offered by drones are already targeted by big companies

worldwide. The airspace regulatory authorities seem to be caught between the com-

panies (that demand rapid access to airspace), and the concerns of the public about

potential privacy breaches, safety and liability issues [29, 41]. Even with today’s

strictly regulated airspace, reported occurrences show that there are a number of

hurdles to overcome before the further integration of UAS into the airspace.

With the Riga Conference1 in 2015, Europe has started on a path towards a unified
1
The Future of Flying, Conference on remotely piloted aircraft systems, Riga, 6 March 2015
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Figure 2-1: Statue of mermaid in Riga handling airspace (for fun)

regulatory framework design in order to allocate airspace with the growing number of

drones. Its diversity, innovation and international structure is offering huge potential

for new jobs. EASA (European Aviation Safety Agency) has been assigned by the

European Commission to develop two main aspects:

• EU Regulatory Framework for drone operations;

• proposals for the regulation of low-risk drone operations, key elements of the

future Implementation Rules (IRs).

With a starting point of the Riga Declaration [73], and building on Regulation

(EC) No 216/2008 (Basic Regulation) [76], the A-NPA (Advance Notice of Proposed

Amendment) [36] introduces three main categories of operations and asks for public

consultation. In the report, drones are grouped under two main categories; remotely

piloted and autonomous. An autonomous drone is defined by the ICAO (International

Civil Aviation Organization) [52] as: A drone that does not allow pilot intervention

in the management of the flight. Aside from sounding like science fiction, one of the

key reasons that EASA has switched to using the term ‘drone’ and categorizing as

remotely piloted or autonomous — rather than using UAS or RPAS — is to ensure

the fast growing development of autonomous drones.
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While mentioning the efforts by different organizations to accommodate drones in

airspace, we examine the present regulatory context from European and international

perspectives. The ICAO is a United Nations Organization working with 191 Member

States of the Chicago Convention (Convention on International Civil Aviation) and

global aviation organizations. At the present time, the international circulation of

drones is not allowed by Article 8 of the Chicago Convention [51]. Starting in 2003,

the ICAO began a study on the Standards and Recommended Practices (SARPs)

for drones, to which member states refer when developing their legally enforceable

national civil aviation regulations. 2018 is the proposed year for draft SARPs with

a focus on international drone operations. Until then, the work of the ICAO can be

traced by studies of the UAS Study Group (set up by ICAO in 2007), which devel-

oped the Circular 328 AN/190 on Unmanned Aircraft Systems [48], an amendment

to Annex 2 (Rules of the Air) [49] and Annex 7 (Aircraft Nationality and Regis-

tration Marks) [50]. From a European perspective, Basic Regulation (Regulation

EC No.216/2008) [76] is that which holds at present. Article 2 and Annex II limit

the regulation to apply only to drones with a maximum take off mass above 150 kg

and/or except operations on military, customs, police, firefighting, search and rescue,

and experimental work. Those that are not covered by Basic Regulation are handled

by national aviation legislation, which are not yet harmonized and mostly designed

with an assumption that small drones are operating locally. EASA is working on

different aspects of drone integration into the airspace. Last year, EASA published

the ‘Prototype’ Commission Regulation on Unmanned Aircraft Operations [33], after

public consultancy with A-NPA 2015-10 (Advance Notice of Proposed Amendment)

[36], and its resulting Opinion [32] with an Explanatory Note of Opinion. Another

work from EASA aims to authorize general principles for the type certification for

fixed wing and helicopter drones separately, using a policy adopted by the agency in

2009 (E.Y013-01) [31].

In the proposed regulation by EASA, an operation and risk centric categorization

has been followed. Open, specific, and certified are the three categories proposed,

corresponding to the different risk levels that they entail.
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• Open Category encompasses low-risk operations, such as most leisure flights

and some professional activities. Operations falling in this category do not

require explicit authorization from civil aviation authorities. However, they are

subject to strict operational limitations (e.g., no proximity to people, traffic,

infrastructures; no dangerous items; one pilot per UAS; no item dropping).

These operational limitations are sufficient to mitigate the low risk. Though

some professional activities fit into this category, the main goal is to regulate

leisure types of operation [63].

• Specific Category regroups medium-risk operations, such as operation be-

yond visual line of sight (i.e., no visual contact between pilot and UAV during

flight). To facilitate the regulation process, several scenarios with specific oper-

ational limitations are designed. To operate within a scenario, the UAS needs

to comply with a list of requirements. For operations outside the scope of those

scenarios, a risk analysis must be carried out to show that the existing risks

are properly mitigated. To facilitate this risk analysis process, JARUS has de-

veloped a framework called the Specific Operations Risk Assessment (SORA).

SORA considers threats — which contribute to the risk — and barriers — which

mitigate the risk — in order to evaluate the actual risk of an operation, and

decide if the resulting mitigated risk is low enough to allow the operation, as

illustrated in Fig. 2-2. The risk analysis needs to be validated by the authorities

in order to authorize an operation not included in the standard scenarios [63].

• Certified Category Operations with risk that cannot be mitigated in Spe-

cific Category are evaluated in Certified Category. These represent high-risk

operations, such as a large cargo delivery in urban area. These are likely to

be operations with a risk close to current manned aviation. As such, the air-

craft, avionics, pilot/crew and operator will need to be certified in order to fly

these operations. The fact that a certification process is involved increases the

complexity of the introduction of UAS in these types of operations. Indeed,
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Figure 2-3: U-space illustration [20]

before being able to certify a piece of equipment, a standard must be developed

for this equipment. Standardization can be best understood as the process

of defining details and minimum requirements for safe and uniform operations

across a diverse range of implementations. However, at present, not all of the

parts required to fly a UAS have the corresponding standards, e.g., Detect And

Avoid (DAA) systems, C2 links, pilot training. Thus, enabling this category

of operation requires extra effort and time for the industry so as to agree on

standards. For Certified Category, harmonization at the ICAO is planned to

allow international operations [63].

Latest efforts for the integration of drones into airspace have welcomed a relatively

new concept, called the ‘U-Space’. This approach has been adopted for immediate

plans at the European level, to accommodate drones in urban areas. While EASA

continues to search for solutions for the integration of drones in a variety of presumed

airspaces, Commissioner Violeta Bulc has mentioned other pillars at a high level

conference2 in Warsaw. She offers that in parallel to the efforts of EASA, there are

two other pillars that need to be tackled; UTM (UAS Traffic Management) and the U-

2
Drones as a leverage for jobs and new business opportunities [74]
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Figure 2-4: Airspace design for small drone operations by Amazon [4]

Space. U-Space covers the usage of drones especially in ‘U-rban’ areas with an equal

share of airspace, in which case ‘U ’ stands for ‘you’. To illustrate its availability to

everyone, the services will be available through a mobile phone, as shown in Fig. 2-3.

The goals are highly challenging [20]:

• “Safe: safety at low altitude levels will be just as good as that for traditional

manned aviation. The concept is to develop a system similar to that of Air

Traffic Management for manned aviation.”

• “Automated: the system will provide information for highly automated or au-

tonomous drones to fly safely and avoid obstacles or collisions.”

• “Up and running by 2019: for the basic services like registration, e-identification

and geo-fencing. However, further U-Space services and their corresponding

standards will need to be developed in the future.”

EASA regulations already cover the airspace issued in U-Space, either under spe-
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cific or certified categories (depending on the risk of the operation). Using U-Space,

a faster integration is expected in urban areas. We do not appear to be far from the

images of flying vehicles populating the sky, as in science fiction — but even more

advanced — without drivers, and more automated.

In the US, in order to tackle the safety challenges and help the development of

regulation, NASA is currently carrying out a four-year research program (up to 2019)

to enable unmanned aircraft traffic management solutions which are structured and

flexible when needed. To ensure safety, this integration needs to be achieved through

airspace management and UAS reliability. In addition, preliminary airspace designs,

such as that proposed by Amazon shown in Fig. 2-4, identify different zones depending

on the UAS capabilities, population density and altitude.

United Arab Emirates (UAE) has accelerated the safe integration of drones into

urban airspace, by settling an agreement for UAS Traffic Management (UTM) with

Nokia, as part of its ‘Next generation network for mission-critical and smart city

services’ [71]. Aiming at tracking and managing all drones in the airspace, Nokia

is offering solutions for automated flight permissions, no-fly zone regulation, beyond

visual line of sight (BVLOS) safety operations utilizing LTE protocols for low latency,

reliable and resilient communication. For compatibility with this system, drones will

be equipped with LTE dongles and access modules for telemetry data access.

2.2 Paparazzi Autopilot System

An open-source autopilot, Paparazzi [14], has been adapted to generate faulty control

inputs during the flight. In this section, an introduction to Paparazzi open-source

autopilot system is given. Next, we discuss the properties of open-source systems

that would best serve the integration of drones into the airspace. To highlight the

advantages of Paparazzi, the best practices that are offered by EASA in its A-NPA

[36] are referred to, and the properties of Paparazzi to achieve this are discussed.
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2.2.1 Open-source Autopilots for UAS

With the new era of First Person View (FPV) flights [40], especially for multi-rotor

UAVs, there has been an exponential increase in the hardware and software of the

open-source autopilots. A brief comparison of the popular current open-source and

commercial autopilots is available in Table 2.1. Usually, the trend is to make the hard-

ware as inexpensive as possible for recreational consumers. This reality is damaging

to the reputation of open-source autopilots as they are considered as not reliable or

robust, because they are being used without experience. Indeed, there exists a differ-

ence in the quality of sensors used in the open-source autopilot systems compared to

commercial autopilots, and this is confirmed by the price of the units. This in turn

makes a difference to the flight quality of the vehicles, however, with new on-board

processing power, more complex estimation algorithms and filters are being used in

order to overcome this problem [9].

2.2.2 Introduction to Paparazzi Autopilot System

The Paparazzi Autopilot System provides a software and hardware solution for low-

cost mini and micro unmanned air vehicles. A fleet of Paparazzi equipped drones can

be seen in Fig. 2-5.

This began as a personal project in 2003 by Pascal Brisset and Antoine Drouin,

and afterwards gained the support of ENAC in 2005. Being one of the first (if not the

first) open-source autopilot system in the world, Paparazzi has attracted much atten-

tion, and has led others to start new branches and systems. The software is originally

packaged for Debian/Ubuntu but can be manually installed on any GNU/Linux oper-

ating system, even including MacOS-X. However, it is not compatible with Windows

which automatically eliminates 90% of the possible user community, and therefore it

is not as popular as other existing autopilot systems currently on the user market.
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Figure 2-5: Fleet of Paparazzi equipped drones from ENAC UAV laboratory in a
flight campaign with the Pyrenees in the background. Photo by Alexandre Bustico.

Being one of the first open-source autopilot systems in the world, Paparazzi covers

all three segments: ground, airborne, and the communication link between them, as

shown in Fig. 2-6. The ground software of Paparazzi is mainly written in Ocaml, with

some additional parts in Python and C. Thanks to its middle-ware communication

bridge called Ivy-Bus, external software can be directly connected with the publish

and subscribe method to the ground segment, without needing to modify on code.

Airborne software is written in C, however there is an on-going effort to support C++

[9].

One of the distinguishing features of Paparazzi is to support multi-UAV flights

(Figure 2-7). Several projects have been using Paparazzi Autopilot System because

of this additional feature. The communication with each vehicle is established by the

ground control station, however air-to-air communication between flying vehicles and

the internal relay of information to the ground control station is being implemented

(for a future version).

Modules are the easiest and most flexible way of adding new code into Paparazzi.
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Figure 2-6: Paparazzi Autopilot System overview

There are over 130 modules written for Paparazzi by several developers and re-

searchers, including meteorology, imagery, surveillance, advance navigation, forma-

tion flight, and collision avoidance, etc. A photo taken during a Paparazzi mission in

a campaign for meteorological studies by MeteoFrance is provided in Fig. 2-8. Mete-

oFrance is French national meteorological service, and uses drones as tools to conduct

research for meteorological studies.

Paparazzi has its own complete flight plan language, where the user can define any

possible trajectory using existing commands, such as circle, line, hippodrome, figure-

eight, survey, etc. Additionally, any function written in C language can be called

from the flight plan and executed. This opens up a lot of application possibilities,

such as triggering a navigation procedure via a sensor output.

A real-time operating system based on ChibiOS has been used since 2015. The

first implementation was mainly for adding a separate thread in order to make on-

board logging at a high frequency. On going work is to divide all autopilot tasks into

individual threads and manage everything according to priorities which will increase
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Figure 2-7: Ground Control Station showing trajectories of 2 UAVs using the TCAS
system

Figure 2-8: Drone equipped with Paparazzi on a mission for meteorological studies
by Meteofrance. Photo taken by Alexandre Bustico.
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Figure 2-9: Front and back view of Apogee autopilot

the safety and reliability.

There exists over 20 different autopilot boards capable of running Paparazzi. Ad-

ditionally, several mission-based custom sensor boards have been designed under the

Paparazzi project, such as Meteo-Stick 3. In this thesis, flights have been realized with

an Apogee4 which is shown in Fig. 2-9.

For the faulty flight data gathering necessary for this thesis, some modifications

to the Paparazzi autopilot were necessary: first, injecting the real-time faults from

GCS; and second, editing the controller on board so that the sent faulty input values

configure the servos when changed from the GCS.

The rest of this section highlights the capacity of Paparazzi capacity to tackle

issues encountered during the integration of Unmanned Aircraft System (UAS)s into

the airspace. These issues have been grouped into three categories: modularity,

congestion management and reliability. For each category, Paparazzi offers a unique

set of features to deal with these issues.

2.2.3 Open-Source Systems in Relation to the New Regula-

tory Context

In this section, we present the Paparazzi open-source auto-pilot system and its fea-

tures, as a tool towards the safe integration of low altitude UAS into the National

3
http://wiki.paparazziuav.org/wiki/MeteoStick_v1.10

4
https://wiki.paparazziuav.org/wiki/Apogee/v1.00
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Air Space (NAS). Paparazzi is favored thanks to its modular design, its support for

congestion management and evolving reliability. We believe that the flexibility re-

quired for such solutions calls for open architecture. To ensure safety, this integration

needs to be achieved through airspace management and UAS reliability. Preliminary

airspace designs (for example, Amazon’s design) identify different zones depending

on the UAS capabilities, population density and altitude. Furthermore, the evolution

of national rules increases the push to cope variety of requirements. Open-source and

modular architectures are keys to successfully adapting to these requirements. From

UTM point of view, Paparazzi provides features to ease congestion management, such

as dynamic geofencing, trajectory communication and collision avoidance. Concern-

ing reliability, current regulations focus on flight constraints but may be expected to

involve regulations on software and hardware components as well. In such a case, the

increased cost will be inevitable for the demands of certification. In the Paparazzi

software case, parts of the code have been formally proved and stable versions have

thousands of flight hours. Such heritage may ease the certification process for smaller

companies. In addition to its flexibility and reliability, Paparazzi offers a unique set

of features as an open-source software, so as to achieve safe integration of low altitude

UAS into the airspace.

2.2.4 Modularity

The current evolving nature of regulations, and the variety of organizations in charge

of the airspace rules, demands flexible solutions to cope with this unique environ-

ments. Paparazzi, as an open-source autopilot system, is easily modifiable through

its modules to be able to offer such flexible solutions.

Airspace Categorization

The UAS in the National Air Space (NAS) project points to a performance-based

routine access to all segments of the national airspace for all unmanned aircraft sys-

tem classes, after the safety and technical issues are addressed thoroughly. Initially,
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National Aeronautics and Space Administration (NASA) and Federal Aviation Ad-

ministration (FAA) seem to have a short-term goal to integrate UAS in low-altitude

airspace as quickly as possible. They further aim to accommodate increased de-

mand safely and efficiently in the long term. NASA and FAA appear to manage the

airspace above 500 feet and that below separately. European Aviation Safety Agency

(EASA), tasked by the European Union, is planning a risk-based approach, accommo-

dating the UAS in the airspace under three different categories: low risk; specific; and

high risk [36]. Both regulators seem to categorize the airspace and scale regulatory

needs according to certain criteria. To respond to the different needs of the different

categories, flexibility given by the high level of modularity of open-source autopilot

systems will be critical. Customizability of the software and hardware depending on

the airspace gives a chance for the larger airspace community to utilize Paparazzi,

scaled for their specific needs. A larger community using the same system would lead

to a natural evolution of the system towards a better design.

National Regulations

International UAS flight is somewhat hampered by the Chicago convention unless an

agreement holds between Contracting States [36]. The International Civil Aviation

Organization (ICAO) is aiming to develop international standards and recommended

practices to which the member states can refer when developing their national civil

aviation regulations. Although member states are planning to refer to the same stan-

dards and national aviation legislations, those will not be exactly the same because of

the different expectations of nations towards UAS aviation. Thanks to the modular

nature of the Paparazzi software and hardware suite, the functionality of the system

could be enhanced according to the specific regulations held in the area of utilization.

Accommodating evolution of regulations

Prescriptive rules seem to cause some difficulties since the technical area of the UAS

systems develops rapidly [36]. Innovations, both on the aircraft and on the type of

operation of the UAS, will accelerate especially after the regulations are set. Thus,

38



regulatory bodies call for refinable operational requirements and systems architecture

to evolve into a safer and more efficient integration of UAS into the airspace. The

systems to cope with the regulations should also be modular and flexible in order to

not be superseded by innovations in the area. Thus, the aviation regulatory bodies

aim to achieve designs with flexibility where possible, and structure where needed.

Having flexible hardware and software increases modularity, which is for the most

part supported via open-source systems.

2.2.5 Congestion Management

According to UAV Factory, one of the large European UAS companies, “The future

of the UAV industry is likely to be shaped by airspace congestion” [79]. Indeed, high

level airspaces are becoming crowded, and large-scale solutions, such as NextGen (US)

or SESAR-JU (EU), are necessary to increase airspace capacity while maintaining the

current safety levels. However, there is no such existing management solution for Very

Low Level (VLL). Yet, large projects like Amazon’s Prime Air and Google’s Project

Wing are already ready to populate the VLL airspace.

Part of the congestion management problem is to avoid conflicts (and more impor-

tantly, collisions), between the UAS through strategic deconfliction and safety nets.

Another purpose of the congestion management system is to make sure that UAS

do not go where they are not supposed to go, thus requiring geofencing. In order to

implement the previously mentioned systems, the UAS autopilot needs to be able to

perform complex operations, for example, static waypoints following is likely to be

insufficient. In the following, we divide these issues into four topics of interest: 4-D

trajectory management; geofencing; safety nets; and complex operations, and show

how the Paparazzi system addresses them.

4-D Trajectory Management

As noted in [37], 4-D trajectories will be central in future airspace management meth-

ods. The principle of 4-D trajectory management is to have every UAS broadcasting
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its trajectory up to some time horizon, and to receive Unmanned Aircraft System

Traffic Management (UTM) clearances in the form of trajectories. The trajectory

information contains a path, a series of points through which the UAS will pass, and

will at times be associated with each of these points. Thanks to this information,

the idea is to perform pro-active deconfliction, as explained by Thomas et al. in [92].

It implies that UTM detects future conflicts along the trajectories of all UAS and

deconflicts them as safely and as quickly as possible. This kind of approach requires

the autopilot to represent UAS motions with trajectories and to be able to transmit

them, which is the case in Paparazzi.

Paparazzi originally supports a basic description of trajectories based on circles

and straight lines, but recent updates allow it to process advanced trajectories as

well. Indeed, Paparazzi can represent trajectories as functions in 2-D (x, y), 3-D (x,

y, z) or 4-D (x, y, z, t). The only requirement is for the function to be differentiable

at least two times at every point. The function and its closed form derivatives are

computed offline and can then be quickly evaluated online. Moreover, gains can be

calculated by tuning to adjust the convergence speed from the UAS starting point to

the given trajectory. These gains influence the convergence path to a given trajectory

and the resulting trajectory (convergence + commanded) can be computed offline,

given initial conditions and the commanded trajectory. This is of particular interest

for UTM as it allows the UAS to provide not only its trajectory over time but also

how it will reach this trajectory from its starting point.

It is important to note that UTM will have to solve conflicts between manned and

unmanned aircraft. Thus, an air traffic controller is needed as part of the process

with an appropriate display for 4-D trajectories and a communication link with both

manned and unmanned aircraft.

Safety Nets

Trajectory deconfliction is the first step to manage congestion, however safety nets

are also part of congestion management. Indeed, safety nets such as self-separation

and collision avoidance allow UAS to fly close to each other while preserving an
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acceptable safety level. Though Paparazzi does not include self-separation algorithms,

it does contain a light version of the TCAS II collision avoidance system. It considers

intruders one at a time and is capable of coordinated avoidance maneuvers.

Values such as distance thresholds have been adapted to suit the performance of

small UAS. Keeping in mind that the Parapazzi philosophy is to be configurable, so

these parameters can be easily changed from a configuration file.

A module has been recently developed to input data from traffic services and dis-

play them into Paparazzi ’s ground control station, thus providing situational aware-

ness to the remote pilot. Preliminary tests have been conducted using opensky-

network to display traffic around a given area. Based on this information, the remote

pilot can effectively perform conflict resolution.

Geofencing

Keeping UAS away from each other is important, but keeping them out of forbidden

areas is critical. Geofencing determines no-fly zones where the UAS should not enter.

To accommodate land owners while managing traffic and limiting congestion, Foina

et al. [39] have proposed a participative dynamical airspace management method:

the air-parcel model. This allows land owners to authorize/forbid flights over their

land through a web interface. However, this type of approach requires the UAS to be

able to handle dynamical geofencing. Furthermore, this model considers only cuboid

parcels; the need for more precise airspace shapes may emerge making 3-D geofencing

a fundamental need.

This type of model can be handled by Paparazzi by defining geofenced zones

manually or as a function. Zones are defined as a simple geometrical shapes (e.g., a

circle, a polygon, etc.), plus altitude limits, thus effectively creating 3-D geofencing.

These zones can be static, activated dynamically from the ground station or from the

flight plan with associated conditions.
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Complex Operations

Having 4-D trajectory management, safety nets and geofencing are useless if the UAS

cannot follow instructions from the UTM regarding these tools. Indeed, new UTM

paradigms suggest being able to change flight plans dynamically to answer to UTM

demands. In [98] two types of complex operation examples are mentioned: space

transition corridors; and temporary flight restrictions. Both methods require that

the UAS can modify its flight plan according to the new UTM instructions.

Modifying the flight plan dynamically is not possible, and not desirable, in Pa-

parazzi. However, an appropriate response to these complex operations can be pro-

vided through conditional flight plans. This enables the UAS to follow different

courses of action depending on given parameters. These parameters are defined of-

fline by the user and can then be modified online by values coming from sensors or

from UTM. This allows an intelligent reaction to exterior instructions; in particular,

it can be used by the user to give UTM control on portions of the flight.

2.2.6 Reliability

The improvement of the reliability of the flight is considered to be one of the main

goals for integrating military UAVs into civil airspace according to the unmanned

systems roadmap of US Office of the Secretary of Defense, DoD [82]. Compared to

manned counterparts, civil UAVs experienced more failures with a frequency of two

orders of magnitude compared with military UAVs. Although this has changed in the

last few years with technological improvements, making the UAVs as reliable as early

manned military aircraft does not appear to be sufficient from the DoD perspective.

This can be realized by checking the biggest portion of control technologies’ budget

for research and development, which is health management and adaptive control.

To achieve a safe flight is not an easy task considering the unknowns of the systems

hardware, environment and possible system faults and failures yet to emerge. Also,

increasing demand on cost-effective systems, resulting in smaller sensors and actuators

with less accuracy, impose the need for the software to achieve even more. The
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expectation that UAVs should be less expensive than their manned counterparts

might have a hit on reliability of the systems.

Small and Medium Enterprise (SME) and Certification Costs

Using drones for quicker and cheaper deliveries could be rewarding for SMEs. Being an

early bird might put the SMEs in an advantageous position, considering the increase

in the capabilities of the drones with ongoing research activities and their widened

application areas. Nevertheless, inexpensive access to drones and their relatively

cheap utilization cost does not seem to be enough to put them to air at present, due

to the heavy cost of certification and regulatory hurdles [81]. In this regard, capable

open-source solutions may be an effective way to loosen this restriction; otherwise,

SMEs may not survive. Even worse, they may operate them without relevant the

permissions, sacrifying a substantial fine as reported by Civil Aviation Authority

(CAA). This will compromise confidence in the system contradicting the hopes for

reliable the integration of drones into the airspace. As an open-source autopilot

system, Paparazzi is a known platform for a computer scientist who wants to test the

viability of complex software systems. Thus, parts of Paparazzi code (Ground Control

Station (GCS)) have been formally proven [94] and a stable version has thousands of

flight heritage. Furthermore, although Paparazzi is not certified, to be able to have

access to the certified airspace, users can build up their configuration on the readily

and freely available Paparazzi system, which may reduce the cost of having a certified

system reaching specific airspaces.

Individuals and Education

Individuals, as well as SMEs, suffer from the same budget constraints. Personal

UAV usage counts for a substantial amount of the drone ecosystem. Both US and

European authorities mention the importance of individuals in the utilizations of

drones. There is a community with a passion for aviation and its potential, thought

it may likely be inexperienced. Paparazzi offers a whole community to help and

educate these beginners through its forums enhanced by a rising number of users.
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A rich documentation is available through the Wikipedia page, encouraging users to

self-teach.

2.2.7 Flight Heritage for Risk Assessment

As the drone industry is extremely innovative, technical developments may supersede

the prescriptive rules as regulations. Thus, a solution may be to follow a risk-based

approach rather than to have strict rules to comply with. Predicted regulations in

Europe seem to evolve under different categories dedicated to specific operation risks.

Flight heritage and occurrence reporting is expected to be an inevitable part of safety

risk assessment in achieving reliable flight. The wide utilization of Paparazzi and

real-time connection to the ethernet could offer reliable and practical solutions to be

able report occurrences.

Support for real-time planning and onboard vehicle automation

To access low-altitude airspace with the use of small unmanned aircraft safely, an

important ability could be to implement real-time planning and on-board vehicle

automation. Amazon states that this approach will allow some flexibility to adapt

to different situations, such as weather changes, severe winds or any other emergency

needs. Paparazzi, has a real-time planning ability already implemented, allowing

the user to change the trajectory in real-time through its ground control station

via different strategies. The user could switch between trajectories already available

or even drag the waypoints to his/her preference. The automation of the vehicles

is handled in different stages. For now, the most used modes of autonomy is no

autonomy, assisted mode and fully autonomous mode. No autonomy mode, or manual

mode, gives whole responsibility of the aircraft dynamics to the pilot through the

remote control link. The assisted mode closes some attitude control loops, giving

some stability to the aircraft. This will ease the challenges of piloting which could

be a significant advantage, especially for unexperienced pilots. The fully autonomous

mode handles both heading and navigation through selected trajectories. In case of
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an emergency, the pilot takes control of the aircraft at any time, through the RC

link. Features already implemented on Paparazzi, such as geofencing, go home, and

its ease in adding and smodifying thresholds to various variables, support the safety

procedures.

2.2.8 Future Evolutions

As is the same for many open-source projects, Paparazzi is in constant evolution

through regular contributions. With its large community, it is difficult to keep track

of all ongoing projects. In this section, we present three features being currently

explored and developed at ENAC’s labs.

Though there is currently no life at stake, avoiding UAS collisions is desirable

for safety and operational reasons. Paparazzi ’s current TCAS-like collision avoidance

allows the operation of numerous UAVs with little risk of collision between them.

However, future missions will include more and more UAVs in bounded size airspaces.

In this context, an efficient collision avoidance algorithm is desirable so as to allow

closer operations with an acceptable number of nuisance alerts. Because it relies

on advanced logics and can be adapted to different types of performances, we have

chosen to implement the ACAS Xu algorithm. Though this standard’s definition has

just started, the baseline is already determined and may allow the development ofs a

simplified version for micro UAVs.

Regarding geofencing, most current methods use boundaries in the horizontal

plane into which the UAV cannot enter. However, the utilization of the VLL airspace

is likely to demand more sophisticated methods to handle 3-D geofencing where a

3-D no-fly shape can be described. Though Paparazzi can emulate 3-D geofencing, it

cannot yet use full 3-D models. Work is underway to extend the current geofencing to

allow the loading of terrain models, and padding them with arbitrarily shaped no-fly

zones.

Finally, conventional procedures to handle failures onboard could be one of the

three approaches in order to achieve safe flight. The first is the fail operational

systems, which are made insensitive to any single component failure. The second
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approach is the failsafe systems, where a controlled shut down to a safe state is

practiced whenever a critical fault is pointed out by a sensor. The third approach is

the fault tolerant control systems, in which components of the system are monitored

and actions taken in whenever needed. The key strategy is most likely to keep the

system availability and accept reduced performance. For the Paparazzi autopilot

system, there is ongoing research to implement the ingenious fault detection and

diagnosis module to enable reconfigurable controller loops.

2.3 Fault Tolerant Control Systems

The improvement of the reliability of the flight is considered to be one of the main

obstacles to integrating UAVs into civil airspace. To achieve a safe flight is not an

easy task considering the unknowns of the systems, environment and possible system

faults/failures to emerge.

2.3.1 Loss of Control in Aviation

One of the biggest contributors to fatal accidents is considered to be aircraft loss of

control (LOC). The Joint Safety Analysis Team (JSAT) defines LOC as a “significant,

unintended departure of the aircraft from controlled flight, the operational flight

envelope, or usual flight attitudes, including ground even”. Here, significant refers to

events resulting in an incidence or accident [87]. Control failures, inappropriate pilot

action (inaction) in a healthy aircraft, and vehicle impairment are examples of LOC

events [83].

LOC-I (loss of control in-flight) is defined as “an extreme manifestation of a devi-

ation from intended flight path” and is the most deadly accident type, with 37 fatal

accidents per year (for fixed-wings) [35]. Although LOC-I is the cause behind many

fatal accidents, manned aviation has a very limited use of LOC prevention and re-

covery [10]. Having no single action to prevent LOC events, technical limits in LOC

simulations, such as full stall or failure simulations, constitute some of the challenges

to LOC event prevention and recovery solutions.
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To offer prevention strategies, the causes of LOC accidents and incidents should

be thoroughly studied. LOC events have been categorized by Ref.[57] under five main

topics, two of them being the most common. Aerodynamic stall and flight control

system are the biggest factors that led to LOC accidents and upsets in 15 years log

of LOC accidents in transport airplanes. Autopilot commands and control surface

failures are considered under the flight control failures category, the second most fatal

LOC of all types [57]. The same study also shows that the percentage of flight control

system upset incidents have risen from 9% to 22% from 1993 (pre-1993 compared to

1993-2007). This could be caused by the increased complexity of onboard systems

suppressing the technological advancements in fault detection and recovery. Thus,

addressing onboard fault detection and recovery could contribute to the reduction

likelihood of LOC accidents and/or fatalities. The importance of these emergency

recovery measures are magnified for unmanned systems, considering the increase in

the number of drones, and the difficulties inherent in unmanned systems.

Unmanned systems are more susceptible to LOC events; they are less robust to

disturbances, and recovery must be held by the onboard computer or a remote pilot

[83]. Studies for drone regulations increase the pace for the assessment of risk for drone

operations. A recently published Annual Safety Review 2017 [34] discusses aviation

accidents in detail, with a chapter focusing on drones. This report by EASA involves

data from European Central Repository (ECR), experienced by EASA member states.

With an increase in the number of drones, and possibly raising consciousness on

reporting occurrences, the numbers of non-fatal accidents increased by 470% in 2016

relative to the 2011-2015 average, fortunanetly maintaining zero fatalities. Most of

the time, it is the commercial airliner pilot who reports the occurrences, and rarely

the UAS pilot. The prior key risk areas have been investigated and aircraft upsets

are, by far, the most common cause of occurrence, and are established as the first

key risk to address for the safe integration of drones into the airspace. 50% of RPAS

accidents fall in this case which often results in the damage or destruction of UAS,

following a loss of control of the drone by the pilot. The second key risk area is

airborne collision although it is rarely encountered at present. The risk is expected
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to increase due to the probable increase in the number of drones. Obstacle collision is

the third risk area which is likely to increase with the integration of drones, especially

in urban areas.

Designing recovery measures for unmanned systems has further challenges due

to the lack of redundancies utilized in manned aviation and the use of cheaper and

less accurate components. Introducing intelligent algorithms to reduce the risk of

harm is usually adopted for those systems which are limited in hardware. Fault

tolerant control systems (FTCS) are designed to provide solutions to systems which

are under fault/failure. There are a wide range of different strategies offered for this

solution such as passive or active FTCS, where the latter requires a fault detection

and diagnosis (FDD) phase [30]. FDD methods are used to discover if there is any

fault/failure in the system and to determine the type of the fault.

After the fault is known, an assessment of the current abilities of the drone is vital.

The severity of the situation must be evaluated to decide if a recovery is possible.

If so, the current situation of the drone should be considered during the design of

recovery control methodologies. In the case a recovery is likely to fail, a safe ditch

maneuver can abruptly decrease the number of fatalities. Maps pointing to zones

with no (or minimum) population could be uploaded onboard and the safest region

to ditch can be selected. Since these situations are handled by the pilot for manned

aviation, the number of works to assess and plan ditch maneuvers is few for unmanned

systems. NASA is offering Safe2Ditch [2] to offer autonomous crash management but

it is only currently at the design stage.

2.3.2 FTCS Terminology

Systems are often sensitive to faults of differing nature. Existing irregularities in

sensors, actuators, or controller may be amplified due to the control system design

and lead to failures (Fig. 2-10). A fault may be hidden thanks to the control action

[30].

Since fault tolerant control is comprised of a set of different disciplines and is

a relatively new topic, the terminology is not firmly established. “FDI” could be a
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Figure 2-10: Faults altering the system

proper example of this ambiguity. In some works, it stands for Fault Detection and

Isolation while in others it stands for Fault Detection and Identification (which could

also be named after Fault Detection and Diagnosis), meaning that identification is

added to Fault Detection and Isolation [102].

One of the first attempts to unify the terminology was carried out by the IFAC

SAFEPROCESS technical committee in 1996 and published by [54]. Fault, failure

and the methodology to handle them, such as fault detection, fault isolation, fault

identification, fault diagnosis, and supervision terms are explained separately to avoid

the ongoing ambiguity in this field. Although fault detection methods are clearer, the

difference between the methods for the two steps of fault diagnosis (namely the fault

isolation and fault identification) is not very obvious.

2.3.3 Conventions for a Safe Flight

The most widely-used method to increase reliability is to use more reliable compo-

nents and/or hardware redundancy. Both require an increase in the cost of the UAS

[5]. To offer solutions for all different foreseen categories of airspace, a variety of

approaches should be considered. While hardware redundancy may cope with the

failure situations of UAVs in the certified airspace, it may not be suitable for UAVs in

open air or some subsets of specific categories due to budget constraints. Analytical

49



redundancy is another solution, but it may be not as effective and simple as hardware

redundancy, and it relies on the design of intelligent methods to utilize all information

on board an aircraft to wisely deal with all eventualities.

There are three approaches to achieve safe FTC in standard flight conventions.

The first is the fail operational systems, which are made insensitive to any single

point component failure. The second approach is the fail safe systems, where a

controlled shut down to a safe state is practiced whenever a critical fault is noted by

a sensor. The level of degradation ensures the switch to robust (alternate) or direct

(minimal level of stability augmentation independent of the nature of the fault) mode.

Switching from nominal mode to the robust and direct modes leads to a decrease in the

available GNC functions. This causes a degradation in ease of piloting. Furthermore,

some optimality conditions may have been compromised. The third approach is the

fault tolerant control systems, in which redundancy in the plant and the automation

system are used to design software that monitors the components and takes in actions

whenever needed. This strategy is the most probable to try to keep plant availability

and to accept reduced performance [12].

RECONFIGURE project of FP7 [42] aims to address the problem of piloting

degradation and optimality compromise by Flight Parameter Estimation (FPE), which

is the online estimation of aircraft parameters, FDD and FTC in case of off-nominal

events [80]. They utilize a black box nonlinear model of aircraft, and the project uses

some outputs of a previous FP 7 project ADDSAFE leaded by Deimos Space [1].

2.3.4 Methods for Fault Tolerant Control Systems

Among the different categorizations of fault tolerance, there are options to handle

faults on-line or off-line. Employing fault diagnosis schemes on-line is a way to achieve

fault tolerance. In this case, as soon as a fault is detected, a supervisory agent is

informed via a discrete event signal. Then, accommodation of the faults is handled

with either the selection of a predetermined controller for the specific fault case, or

by designing the action online with real-time analysis and optimization [12].

Another common categorization of FTCS is passive and active FTCS. In passive
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Figure 2-11: Variations of fault tolerant control systems

FTCS, the flight controller is designed in such a way to accommodate not only the

disturbances but also the faults. Active FTCS first distinguishes the fault via the fault

detection and diagnosis module, and then switches between the designed controllers

specific to the fault case or designs a new one online [5]. While active FTCS requires

more tools to handle faults, as seen in Fig. 2-11, for faults not predicted and not

counted for during the design of the robust controller, this method most probably

fails.

Even with a long list of available methods, the aerospace industry has not imple-

mented FTC widely, except for some space systems, because of the evolving nature

of the methods, the nonlinear nature of the problem, design complexity and the high

possibility of wrong alarms in case of large disturbances and/or modeling uncertain-

ties. Thus, the hardware redundancy is now the preferred way because of its ease and
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maturity being implemented on various critical missions with human lives.

2.3.5 Fault Detection and Diagnosis

FDD is handled in two main steps; fault detection and fault diagnosis. Fault diagnosis

encapsulates fault isolation and fault identification. FDD should not only be sensitive

to faults but must also be robust to the model uncertainties and external disturbances.

Two distinct options to proceed in analytical redundancy are the model based

approaches and data-driven approaches. Model based fault diagnosis highlights the

components of a system and the connections in-between, and their corresponding

fault modes. Data-driven fault diagnosis relies on observational data, and it prefers

dense, redundant data with a frequency larger than the failure rate.

Model-Based Methods

In model based approaches, relationships between measurements and estimated states

are exploited to detect possible dysfunctions. The most common ways to implement a

model-based approach is to estimate the states, the model parameters. The accuracy

of the results depends on the type of faults (additive or multiplicative). Additive faults

affect the variables of the process by a summation whereas the multiplicative faults

affect the variables by a multiplication. When only the output signal can be measured,

signal model-based methods can be used for fault detection, such as Bandpass filters,

Spectral analysis(FFT) and maximum entropy estimation. For the case where both

the input and output signals are available, the methods used for fault detection are

called process based methods such as: state and output observers(estimators), parity

equations, and identification and parameter estimation. They generate residuals for

state variables or output variables. The most widely-used technique for sensor and

actuator faults are the state and output observers (estimators) and for process faults,

identification and parameter estimation [54].

The output of the model-based fault detection methods is the stochastic behav-

ior with mean values and variances. With the use of change detection methods,
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deviations from the normal behavior can be detected. For that purpose, three avail-

able methods are considered: mean and variance estimation, likelihood-ratio-test and

Bayes decision, run-sum test and two-probe t-test. Fault detection is only supported

by simple threshold logic or hypothesis testing in most of the applications [54].

There are a variety of different approaches for model-based fault detection and

diagnosis in the literature. Detecting sensor and actuator faults via state estimation,

utilizing an EKF is applied to a F-16 model in [46]. Parameter identification via

H1 filter is used to indicate icing in [64]. Another method to detect and isolate

actuator/sensor faults is the multiple model adaptive estimation (MMAE) method

[30]. In MMAE [61], multiple Kalman filters are used as shown in Fig. 2-12. In this

method, each Kalman filter k uses a different system model to calculate the state

estimates x̂
k

. This multiple Kalman Filters can be run in parallel, since each filter

k is not dependent on other Kalman Filters. The difference between the predicted

measurements (calculated using the estimated states) and the real measurements z,

gives the residual r
k

. Residuals are used in the hypothesis conditional probability

computation since they represent each model’s closeness to the real model. Finally,

the conditional probability p
k

for each model k is calculated. Then, based on the

conditional probabilities, state estimates are blended through a probability weighted

average, that results in the final state estimate x̂ [65].

A drawback of the model-based approaches is that they require an accurate model

of the aircraft for successful detection. In a small UAV system, which is susceptible

to various uncertainties/disturbances and usually lacks an accurate model, using a

model-based approach might fail. Furthermore, a mathematical model of a UAV

is built within the flight envelope, and does not necessarily describe the possible

dynamics invoked by an on-board failure.

A fairly old study from 1984 investigates FDI systems robust to uncertainties.

One of the two steps of FDI (residual generation and decision-making) is targeted.

They offer the ability to handle model uncertainties, by designing a robust residual

generation process [19]. Another study deals with model uncertainties by determining

the threshold of the residual in a novel way with an application to detect aileron
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Figure 2-12: Multiple model adaptive estimation algorithm [65]

actuator fault [85]. [88] uses two cascade sliding mode observers state estimation and

fault detection to guarantee staying in sliding manifold in the presence of unknown

disturbances and faults.

Data-Driven Methods

Model-based approaches have various successful applications up until now; most of

them assuming an accurate model is available on-board. With the new era of UAVs,

the airspace is expected to be populated by a strong increase in the number of UAVs.

The variety of UAVs, the expense of accurate modeling practices, the difficulty in

modeling the behavior of UAV in case of failures,all call for alternative approaches

for the quite challenging problem of FDD. The increased efficiency of on-board sen-

sors, the increase in the computational capabilities of autopilot processors, and the

advances in machine learning techniques in the last decade may offer efficient data-

driven solutions to FDD.

In data-driven methods, a detailed knowledge about the internal dynamics of the
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system is not necessary. The data available is the source of information with regard

to the behavior of the system. Supervised learning, which requires labeling the fault

cases previously in the training data, is usually used for data-centric fault detection.

In case of an unlabeled fault, the result is expected as a probability distribution of the

available normal modes, identified fault labels and a probable unknown fault. What

is needed at that point is to first detect and localize the fault, and then to consult

domain experts for labeling for the further integration of this fault into the diagnosis

scheme [91].

[43] argues artificial intelligent methods for the fault detection of complex sys-

tems. Comparison between Principle Component Analysis (PCA) and model based

stochastic parity space approaches is given in [45]. In [60], the authors argue the

use of dynamic PCA since UAV flight controls is a dynamic system itself and the

Dynamic Principle Component Analysis (DPCA) can reflect unknown disturbances,

while model-based approaches can only model typical disturbance.

2.4 Machines on the Rise

Since machine learning methods are selected to detect and diagnose actuator faults

in this thesis, a short introduction to the topic is now provided.

The mathematical analysis of learning processes goes back to the1960s when F.

Rosenblatt [84] suggested the perceptron: the first learning machine [96] (see Fig. 2-

13). Inspired by a simplified model of a biological neuron, the idea of the perceptron

was discussed for many years in the neurophysiological literature [96]. The contribu-

tions of Rosenblatt were to describe the perceptron model as a program for computers,

and to show that the model could be generalized via experiments [96]. The percep-

tron was first implemented on an IBM 704 as an algorithm. Later, a custom-built

hardware implementation of the perceptron was delivered (as shown in Fig. 2-14).

The interest in perceptron came to a halt when Minsky and Papert proved that

a single layer perceptron cannot learn an XOR function [66]. This led to a wrong

assumption that multi-layer networks would not be able produce an XOR function.

55



. . .

. . .
x1 x2 x3 x

n

y

Figure 2-13: Schematics of perceptron. The perceptron is a composition of several
neurons [96]. x1 to x

n

are the features and y is the output.

Although Grossberg published that multi-layer perceptrons are capable of producing

XOR functions, the declined interest has persisted for some years until the research

on perceptron was revived.

Back-propagation method, proposed by several authors [58, 86] independently in

1986, is considered to be the second birth of the perceptron. It is originally an older

method (1963) [17] and was used in solving control problems [96]. The application

of the method to calculate the weight simultaneously for many neurons changed the

developmental path of learning machines [96]. In 1980s, the terminology was also

changed due to an application-oriented approach in research on learning (with the

introduction of powerful computers) [96], and multi-layer perceptrons were renamed

as neural networks.

Although 1974-1980 was not very fruitful for neural networks, and was known

as the AI winter, the development of statistical learning theory endured. A novel

inductive principle, Structural Risk Minimization (SRM) inductive principle, was in-

troduced in 1974 [97]. In the SRM inductive principle, the risk in a given set of

functions is minimized by controlling two factors: the value of the empirical risk; and

the value of the confidence interval [96].
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Figure 2-14: Mark 1 perceptron: the first custom-built hardware implementation of
the perceptron. It is designed for image recognition with an array of 400 photocells
connected to the "neurons" randomly. Potentiometers are used to encode the weights,
and electric motors update the weights during learning [11].
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Support Vector Machines [97, 95] are introduced as an application of SRM by

keeping the value of the empirical risk fixed (say equal to zero), and minimizing

the confidence interval [96], as opposed to keeping the confidence interval fixed (by

choosing an appropriate construction of machine) and minimizing the empirical risk

(as in Neural Networks). Their applicability expanded thanks to its extension to

problems that require nonlinear classifiers [13] using kernel trick, [3] and also to

problems with non-separable classes [25] using soft margin separating hyperplanes.

Almost two decades after IBM’s Deep Blue beat the chess champion Kasparov

[47], Google DeepMind’s Artificial Intelligence(AI) AlphaGo [26, 18] defeating 9-dan

Go professional player raises the question: what will the next victory of AI look like?

European Parliament published a draft report with recommendations to the European

Commission on Civil Law Rules on Robotics [28], including a list of concerns for

a possible rise of the learning machines. Not only the singularity (artificial super

intelligence resulting in deep changes in human civilization) but also more inevitable

outcomes are discussed, such as AI’s effects on the workforce, ethical and legal issues

inherent to automatized systems including drones.

The winner of the Go contest, the AI, is based on a method named Reinforcement

Learning (RL). This method is used in many of the latest ground-breaking applica-

tions of AI. In reinforcement learning, the selection of actions results in consequences.

Thus, the agent interacts with its environment, by taking actions and observing the

consequences via the reward function. The goal of the agent is to calculate actions

that will maximize the reward. An example of this functioning can be demonstrated

on a robot locomotion problem. Fig. 2-15 shows a humanoid model and an ant robot

model from Google DeepMind [27, 72, 53]. The robot models have virtual sensors

which give information about their states (angle and position of the joints [72]) and

surrounding objects [53]. The objective for the robots is to move from point A to

point B. Although the robots were not explicitly programmed to walk or jump, and

were not given any information about what walking or jumping looks like, they learnt

to move in a way very similar to walking and jumping.

In recent times, we have witness very promising application results in Neural
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Figure 2-15: Humanoid and ant robot models [72] exhibiting walking and jumping
motions respectively using reinforcement learning [27]. The robots are given objec-
tives to go from one point to the other, but not given any information about walking
or jumping [53].

Networks in its various forms. Convolutional neural networks (CNN) applied to

image processing problems, and sequence models (Recurrent Neural Networks (RNN

and Long short term memory (LSTM)) applied to natural language processing have

produced remarkable results, raising interest in machine learning and AI in various

fields. Such an example is Google’s Duplex AI [59], making phone calls to restaurants

or hair salons, to book a table or arrange a meeting. AI talks to the person on the

phone and adapts to the responses of the human on the phone, and achieves its task

without being exposed that it is actually an AI.

An application of RL in aviation is demonstrated with Stanford University’s au-

tonomous helicopter [70]. Thanks to RL, the helicopter’s autopilot performs acrobatic

maneuvers, which is difficult to do with a hardcoded controller design. A photo taken

during its inverted flight can be seen in Fig. 2-16.

Machine learning has already started to take part in aviation. Operational im-

provements in aviation is one of the preliminary fields in which it has appeared. Re-

cently, in an AGE sponsored competition, data scientists designed a routing algorithm

using real flight data, and achieved a 12% improvement in fuel consumption efficiency.

Some other operational problems issued by machine learning are accurate arrival time

59



Figure 2-16: Autonomous helicopter from Stanford University learns to fly acrobatic
maneuvers using RL in autopilot [70]

estimation and calculating optimal parameters for take off, mostly with the aim of

reducing airline costs and increasing customer satisfaction. Another application is to

deal with the expected shortage of pilots, which may be inevitable in years to come,

thanks to the increasing demand for air travel. Therefore, a prospective utilization

of machine learning is to assess the competency of pilots with unsupervised learning

models in order to reduce the long duration of pilot training, hence contributing to

reducing pilot shortage. The use of data-driven approaches for pilot training could

be used not only for the assessment of the pilots but also to increase the efficiency of

training by offering trainee-focused personal training, and adapting the curriculum

to their individual skills and needs. To overcome the pilot shortage, another way to

handle the problem may be to reduce the need for one.

AI has actually already made its way into the cockpit. Garmin implemented voice

recognition features garnished with some other functions, such as changing radio

channels, to assist the pilots with its audio panels GMA 350 and GMA 35, called

Telligence. One of the goals of the autonomy researchers is to look for ways in which to

implement artificial intelligence to one of the core features of an aircraft: the autopilot.

Hence, the ability to use them remains challenging due to the inherent nature of

the methods, that is, non-determinism. EASA A-NPAs offer different categories for
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drones operations, depending on the risk of the operation of concern. The difficulties

waiting for the machine learning research are not currently well defined or widely

argued in aviation.

2.5 Conclusion

In this chapter, we discuss the current status of drone regulation, an introduction to

Paparazzi Autopilot which is used in this thesis and the advantages of open-source sys-

tems to aid drone integration into the airspace. Then, fault tolerant control systems

are introduced with a focus on fault detection and diagnosis. Two main methods,

model-based and data-driven, are discussed via reference to the literature. Then,

general advancements in artificial intelligence (AI) are addressed, since one of its

techniques — machine learning — is used as the methodology to detect the faults in

this thesis.

In Section 3, nonlinear aircraft dynamics will be discussed in order to provide

insights about flight motion, and to simulate the states of an aircraft. These states

can then be used to simulate sensor measurements on board a drone, and are necessary

to design data-driven fault detection and diagnosis algorithms.
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Chapter 3

Nonlinear Aircraft Model

The movement of any object can be represented by changes in its location (translation)

or changes in its attitude (rotation) or a combination of both. The motion of an

aircraft usually involves both translation and rotation. Studying aircraft motion is

complicated as these two motions are coupled; for example a rotation might cause a

change in aerodynamic forces which then affects the translation. Thus, to ease the

process, the motion is broken into easier problems utilizing some assumptions. Such

an assumption for the aircraft motion is to assume that the aircraft is a point mass;

all of its mass is collected at its center of gravity, so it translates from one point to

the other. Then, the aircraft’s rotation is investigated by no longer assuming it as a

point mass but a rigid body in space.

In this chapter, modeling both of these motions (translation and rotation motion)

is presented in detail. Equations of rotation and translation motion are driven for

generic aircraft. Then, calculation of forces and moments, which are required to solve

those equations, are given for two types of drones (the aerodynamic force derivatives

and stability derivatives are specific for each drone). These two examples of drones

are by ETH Zurich and MAKO (used in ENAC UAV LAB).

In this thesis, drone motion is simulated to generate data. The accelerometer

and gyro data are generated for MAKO model, considering the specifications of IMU

InvenSense MPU-9250 Nine-axis used in Paparazzi Autopilot Apogee onboard. The

models derived here are not used in detection and diagnosis algorithms. The detection
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and diagnosis algorithms implemented in this thesis only use data.

If the reader is not interested in detection and diagnosis via simulated data but in-

terested in detection and diagnosis via real data, it is not essential to read this chapter

as it explains the models that are used to simulate measurements. Nonetheless, hav-

ing background information on the physics of the system may help to understand the

features (translational acceleration and angular velocities) used in both model-based

and data-driven fault diagnosis.

3.1 Attitude motion modeling

Rotation is a change in an object’s attitude. A change in attitude is modeled using

rotations about the center of gravity. This section derives the equations for rotation

(attitude motion) in detail. Note that the equations for attitude kinematics and

attitude dynamics can be found in Equations 3.35 and 3.51, respectively.

Rotations are directly affected by external torques and moments while translations

are directly affected by external forces. The attitude of an aircraft during translation

also affects the aerodynamic forces causing changes in translation.

A force applied at a distance from the center of mass causes a rotation. A very

common approach in aircraft control is to balance those rotations, by trimming the

aircraft, such that the aircraft will not rotate.

In this section, attitude motion is represented using kinematic and dynamics equa-

tions. First different parametrization of attitude, such as Euler angles and quater-

nions, are discussed. Then, kinematic and dynamic equations of attitude motion are

derived for a general rigid body. These equations are later specified for the aircraft

as the rigid body of interest.
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Figure 3-1: Attitude representation is simply specifying the orientation of aircraft
body axes b1, b2, b3 in the reference frame A

3.1.1 Attitude representations

Let b1, b2, b3 be a triplet of unit vectors, representing an orthogonal coordinate system

attached to a rigid body such that:

b1 ⇥ b2 = b3 (3.1)

The rigid body is composed of points, which do not experience any distance change

between themselves during the motion of the body. The problem in representing

attitude can simply be thought of specifying the orientation of this triplet with respect

to some reference frame A, such as in Fig. 3-1.

Expressing the basis vectors b1, b2, b3 of B in terms of basis vectors a1, a2, a3 of A

is given by :
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b1 = C11a1 + C12a2 + C13a3,

b2 = C21a1 + C22a2 + C23a3,

b3 = C33a1 + C32a2 + C33a3.

(3.2)

where C
ij

⌘ bi · aj is called direction cosine as it corresponds to the cosine of the

angle between bi and aj . When the previous equation set is written in matrix form,

we have:
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(3.3)

Here CB/A is called the direction cosine matrix, also known as the rotation matrix

or coordinate transformation matrix from A to B[100]. The direction cosines, the

elements of the direction cosine matrix, are not all independent [99].

The direction cosine matrix is an orthonormal matrix as the basis vectors of each

reference frames are orthogonal, so:

C�1
= CT (3.4)

and:

CCT
= CTC = 1 (3.5)

where 1 is the identity matrix. When the orientation is preserved, an additional

condition occurs:

���C
��� = 1 (3.6)

Matrices satisfying the last two properties belong to the special orthogonal group

SO(3). The following relations are valid between CB/A — the direction cosine matrix
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of B relative to A or the direction cosine matrix from A to B — and CA/B — the

direction cosine matrix of A relative to B, or the direction cosine matrix from B to A

— :

[CA/B

]

�1
= [CA/B

]

T
= CB/A

[CB/A

]

�1
= [CB/A

]

T
= CA/B

(3.7)

The direction cosine maps the vectors from reference frame to body frame. Let

us write an arbitrary vector H in the reference frame A and in the body frame B:

H = H1a1 +H2a2 +H3a3

= H
0

1b1 +H
0

2b2 +H
0

3b3

(3.8)

Using the direction cosine matrix in the following equation, components of the

arbitrary vector H are transformed from A to B:
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Euler Angles

One of the approaches used to represent the attitude is the use of Euler angles. It

is a procedure to rotate three times in succession about one axis of the rotated body

fixed reference frame. The first rotation is about any of the fixed body axes. The

second one is about any of the other two axes which have not been used in the first

rotation. The third one is about one of the axes which has not been used in the

second rotation. The result is a combination of 12 sets of rotation types. A sequence

of rotations about three different axes of reference frame A, describing the orientation

of the body frame B with respect to reference frame A, can be represented as:
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C3(✓3) : A
0  A,

C2(✓2) : A
00  A

0
,

C1(✓1) : B  A
00
.

(3.10)

The direction cosine matrix B relative to A can be given as:

CB/A

= C1(✓1)C2(✓2)C3(✓3) (3.11)

where ✓1, ✓2, ✓3 are the Euler angles. C
i

(✓
i

) denotes a rotation of angle ✓
i

, about

the ith axis of the body frame. The orientation of B with respect to A is given as:

CB/A

=

2

66664

1 0 0

0 cos ✓1 sin ✓1

0 � sin ✓1 cos ✓1

3

77775

2

66664

cos ✓2 0 � sin ✓2

0 1 0

sin ✓2 0 cos ✓2

3

77775

2

66664

cos ✓3 sin ✓3 0

� sin ✓3 cos ✓3 0

0 0 1

3

77775

=

2

66664

cos ✓2 cos ✓3 cos ✓2 sin ✓3 � sin ✓2

sin ✓1 sin ✓2 cos ✓3 � cos ✓1 sin ✓3 sin ✓1 sin ✓2 cos ✓3 + cos ✓1 cos ✓1 cos ✓3 sin ✓1 cos ✓2

cos ✓1 sin ✓2 cos ✓3 + sin ✓1 sin ✓3 cos ✓1 sin ✓2 sin ✓3 � sin ✓1 cos ✓3 cos ✓1 cos ✓2

3

77775

(3.12)

For aircrafts, the Euler angles (✓1, ✓2, ✓3) are called roll, pitch and yaw, respectively,

and can be seen in Fig. 3-2.

The rotation sequence can be selected in different ways depending on the needs of

the problem. An example would be selecting a rotation sequence for a transitioning

vehicle. The assumption that the pitch angle is constrained to 0 < ✓ < 90

� for

a conventional drone to avoid singularity, is not really feasible for a transitioning

vehicle which encounters �90 < ✓ < 90 pitch during the whole flight envelope. For

such a problem, selecting the sequence as yaw-roll-pitch, rather than the conventional

yaw-pitch-roll sequence, is useful.
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Thus, if the set of rotations are selected in a different way, such as:

C2(✓2) : A
0  A,

C3(✓3) : A
00  A

0
,

C1(✓1) : B  A
00
.

(3.13)

then the direction cosine matrix would differ from Eq. 3.12, and be given as:

CB/A

=

2

66664

cos ✓2 cos ✓3 sin ✓2 � cos ✓2 sin ✓3

� cos ✓1 sin ✓2 cos ✓3 + sin ✓1 sin ✓3 cos ✓1 cos ✓2 cos ✓1 sin ✓2 sin ✓3 + sin ✓2 cos ✓3

sin ✓1 sin ✓2 cos ✓3 + cos ✓1 sin ✓3 � sin ✓1 cos ✓2 � sin ✓1 sin ✓2 sin ✓3 + cos ✓1 cos ✓3

3

77775

(3.14)

Quaternions

The idea behind this representation is the Euler’s eigen-axis rotation theorem. Ac-

cording to Euler, “the most general displacement of a rigid body with one point fixed

is a rotation about some axis.” In other words, it states that there exists a unit vector

e, with the property:

Ce = e (3.15)

The e vector has the same components in body and reference frames :

e = e1a1 + e2a2 + e3a3

= e1b1 + e2b2 + e3b3
(3.16)

By rotating a rigid body about this axis e, a rotation from any given orientation

to any other orientation can be achieved. Such an axis is called an Euler axis, after

the Swiss mathematician and theoretical physicist, Leonard Euler (1707-1783).
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Euler symmetric parameters, also known as quaternions, are defined as:

q =

2

666666664

q0

q1

q2

q3

3

777777775

=

2

666666664

cos(�/2)

e1 sin(�/2)

e2 sin(�/2)

e3 sin(�/2)

3

777777775

(3.17)

where � is the Euler rotation angle. Hamilton (1805-1865) is considered to be the

first to mention quaternions. For ease of the mathematical representations, we define

a vector as :

q = e sin (�/2) (3.18)

Euler symmetric parameters are not independent, and satisfy the constraint:

qTq + q20 = q20 + q21 + q21 + q23 = 1 (3.19)

The direction cosine matrix can also be written in terms of quaternions as below

C(q) =

2

66664

q20 + q21 � q22 � q23 2(q1q2 + q3q0) 2(q1q3 � q2q0)

2(q1q2 � q3q0) q20 � q21 + q22 � q23 2(q2q3 + q1q0)

2(q1q3 + q2q0) 2(q2q3 � q1q0) �q21 � q22 + q23 + q20

3

77775

= (q20 � qTq)1+ 2qqT � 2q0Q

(3.20)

where:

Q =

2

66664

0 �q3 q2

q3 0 �q1

�q2 q1 0

3

77775
(3.21)

Given the direction cosine matrix, quaternions can be calculated as:
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q =

2

66664

q1

q2

q3

3

77775
=

1

4q0

2

66664

C23 � C32

C31 � C13

C12 � C21

3

77775

q0 = ±1

2

(1 + C11 + C22 + C33)
1
2

(3.22)

Attitude parametrization selection

In 1776, Euler showed that SO(3) has three dimensions [90]. Representations with

more than three parameters are subject to constraints. Also, [90] states that no pa-

rameter set can be both global and nonsingular. So, we are faced with choosing the

representation parameters as either singular or redundant. Euler angle representation

has its advantages, such as having a clear physical interpretation and minimum pa-

rameter set achieving no redundancy. However, due to their important disadvantage,

that is, the possibility of having singularities when describing motion, Euler angles

are not selected to represent attitude in this study. Another attitude parametriza-

tion, the Gibbs vector, is not often used, and can be thought of as an interval step on

the way to quaternion parametrization. There are other representation types, which

are not often preferred, such as the axis-azimuth representation, which will not be

discussed in this thesis [7]. Quaternion (Euler symmetric parameters) representation

will be used in this study due to its advantageous nature in simulations, and having no

singularities. Another advantage of quaternions is that the kinematic equations are

linear in terms of quaternions. Also, quaternion multiplication offers a useful way to

express composite rotations. With all of these preferable properties, quaternions are

the choice for attitude representations for many attitude control missions. Table 3.1

shows a brief comparison of attitude representations [7].

In the previous sections, a variety of parameters to represent rotations are identified

and the inherent properties of each technique have been examined. Now we exam-

ine how to represent attitude depending on time; namely the equations of motion.

Equations of motion are generally presented in two sections: the kinematic equations
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Table 3.1: Attitude parametrizations of the rotation group SO(3) [7]

Number of
Representation parameter set Properties

Minimal set
Clear physical interpretation

Often computed directly
Euler angles 3 Trigonometric functions in rotation matrix

No simple composition rule
Singular for certain rotations

Trigonometric functions in kinematic relation
Easy orthogonality of rotation matrix

Bilinear composition rule
Not singular at any rotation

Quaternions 4 Linear kinematic equations
No clear physical interpretation

One redundant parameter
Simple kinematic relation

Minimal set
Gibbs vector 4 Clear composition rule

Singular for certain rotations
Simple kinematic relation

and dynamic equations. The kinematic equations provide the relationships between

the time derivative of the attitude representation and the angular velocity, while the

dynamic (or kinetic) equations describe the development of angular velocities under

the influence of external moments.

3.1.2 Attitude kinematics

The time evolution of attitude is identified by a set of first order differential equations

called the kinematic equations. The angular velocity of a reference frame B with

respect to a reference frame A given in the B frame, can be written as follows:

!
B/A

B

= !1b1 + !2b2 + !3b3 (3.23)
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Recalling Eq. 3.3 and orthonomality property in Eq. 3.4:

2

66664

a1

a2

a3

3

77775
=

h
C

B/A

B

i�1

2

66664

b1

b2

b3

3

77775
=

h
C

B/A

B

iT

2

66664

b1

b2

b3

3

77775
(3.24)

Taking the time derivative with respect to frame A:

d

dt

2

66664

a1

a2

a3

3

77775

����������
A

=

h
˙C
B/A

B

iT

2

66664

b1

b2

b3

3

77775
+

h
C

B/A

B

iT

2

66664

˙b1

˙b2

˙b3

3

77775
=

h
˙C
B/A

B

iT

2

66664

b1

b2

b3

3

77775
+

h
C

B/A

B

iT

2

66664

! ⇥ b1

! ⇥ b2

! ⇥ b3

3

77775

=

h
˙C
B/A

B

iT

2

66664

b1

b2

b3

3

77775
+

h
C

B/A

B

iT

2

66664

0 �!3 !2

!3 0 �!1

�!2 !1 0

3

77775

2

66664

b1

b2

b3

3

77775

(3.25)

If the skew-symmetric matrix can be represented as ⌦:

⌦ =

2

66664

0 �!3 !2

!3 0 �!1

�!2 !1 0

3

77775
(3.26)

and if we rearrange the terms as such:

h
˙C
B/A

B

iT
�

h
C

B/A

B

iT
⌦

�

2

66664

b1

b2

b3

3

77775
=

2

66664

0

0

0

3

77775
(3.27)

implies:

h
˙C
B/A

B

iT
�

h
C

B/A

B

iT
⌦

�
= 0 (3.28)
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Taking the transpose and using the relationship ⌦

T
= �⌦, the kinematic differ-

ential equation for the direction cosine matrix can be written as:

˙C
B/A

B

+⌦C
B/A

B

= 0 (3.29)

Angular velocity components, given in the B reference frame, can be written as:

!1 =
˙C21C31 +

˙C22C32 +
˙C23C33

!2 =
˙C31C11 +

˙C32C12 +
˙C33C13

!3 =
˙C11C21 +

˙C12C22 +
˙C13C23

(3.30)

From that point, derivation depends on the attitude parameters used. When the

direction cosines and their derivatives are substituted with their equivalents in terms

of Euler angles, the result will give the time dependence of Euler angles. In this study

however, due to reasons already discussed, quaternions are selected to represent the

attitude, so the direction cosines will be written in terms of quaternions:

!1 = 2(q̇1q0 + q̇2q3 � q̇3q2 � q̇0q1)

!2 = 2(q̇2q0 + q̇3q1 � q̇1q3 � q̇0q2)

!3 = 2(q̇3q0 + q̇1q2 � q̇2q1 � q̇2q3)

(3.31)

The fourth equation comes from the differentiation of the quaternion norm con-

straint:

0 = 2(q̇0q0 + q̇1q1 + q̇2q2 + q̇3q3) (3.32)
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Writing in matrix form:

2

66666664

0

!1

!2

!3

3

77777775

= 2

2

66666664

q0 q1 q2 q3

�q1 q0 q3 �q2

�q2 �q3 q0 q1

�q3 q2 �q1 q0

3

77777775

2

66666664

q̇0

q̇1

q̇2

q̇3

3

77777775

(3.33)

As the matrix, which is composed of quaternions, is an orthonormal matrix, the

kinematic equations of motion in terms of quaternions can be given as [100]:

2

66666664

q̇0

q̇1

q̇2

q̇3

3

77777775

=

1

2

2

66666664

q0 �q1 �q2 �q3

q1 q0 �q3 q2

q2 q3 q0 �q1

q3 �q2 q1 q0

3

77777775

2

66666664

0

!1

!2

!3

3

77777775

=

1

2

2

66666664

0 �!1 �!2 �!3

!1 0 !3 �!2

!2 �!3 0 !1

!3 !2 �!1 0

3

77777775

2

66666664

q0

q1

q2

q3

3

77777775

(3.34)

In a more compact form:

q̇0 = �
1

2

qT

⌫

!
B/A

B

˙q
⌫

=

1

2

⇣
q⇥
⌫

+ q0I3
⌘
!

B/A

B

(3.35)

where:

x⇥
=

2

6664

0 �x3 x2

x3 0 �x1

�x2 x1 0

3

7775
(3.36)

Finally the kinematic equations of motion for the aircraft in Eq. 3.34 (first equation
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Figure 3-3: Rigid body rotating about an arbitrary point O, given in the N frame

row) can be rewritten as in Eq. 3.37, since the first column of the matrix on the right

side of the equation (first equation row in Eq. 3.34) is multiplied by zero:

2

66666664

q̇0

q̇1

q̇2

q̇3

3

77777775

=

1

2

2

6666664

�q1 �q2 �q3
q0 �q3 q2

q3 q0 �q1
�q2 q1 q0

3

7777775

2

66664

p

q

r

3

77775
(3.37)

3.1.3 Attitude dynamics

The equation describing the rotational motion of a rigid body moving relative to an

inertial frame can written as [100]:

Z
r ⇥ ¨Rdm = M0 (3.38)

Here, the rotation of the rigid body takes place about an arbitrary point O. Let

us take an infinitesimal mass element dm. In Fig.3-3, r is the position vector of dm

relative to O, R is the position vector of dm relative to the origin of the inertial frame,
¨R is the acceleration of dm, and M0 is the total external torque about point O.

Now, let us take a body fixed frame B with the origin at the center of mass of the

rigid body, as shown in Fig. 3-4. In Fig. 3-4, ⇢ is the position vector of dm mass
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Figure 3-4: Body frame B attached to the rigid body, given in the inertial frame N

with respect to the center of mass of the rigid body, R
c

is the position vector of the

center of mass of the rigid body with respect to the origin of the inertial frame N,

and R is the position vector of dm with respect to the origin of the inertial frame N.

The angular velocity of the rigid body in the inertial frame N is denoted as ! ⌘

!
B/N

B

. It represents the angular velocity of the body frame B with respect to inertial

frame N given in the body frame B. Angular momentum vector H of a rigid body

about its center of mass is given by :

H =

Z
⇢⇥ ˙Rdm (3.39)

Since R
C

is constant:

˙R =

˙R
C

+

˙⇢ =

˙⇢ (3.40)

and from rigidity of the body:

˙⇢ ⌘
⇢
d⇢

dt

�

N

=

�
�
��

⇢
d⇢

dt

�

B

+ ! ⇥ ⇢ = ! ⇥ ⇢ (3.41)

78



Then, the angular momentum is given as:

H =

Z
⇢⇥ ˙Rdm =

Z
⇢⇥ ˙⇢dm =

Z
⇢⇥ (! ⇥ ⇢)dm (3.42)

The components of ⇢ and ! in the body frame B are written as:

⇢ = ⇢1b1 + ⇢2b2 + ⇢3b3

! = !1b1 + !2b2 + !3b3

(3.43)

Then, the angular momentum can be written as:

H = H1b1 +H2b2 +H3b3 (3.44)

where

H1 = I11!1 + I12!2 + I13!3

H2 = I21!1 + I22!2 + I23!3

H3 = I31!1 + I32!2 + I33!3

(3.45)

Writing in matrix form gives:

2

66664

H1

H2

H3

3

77775
=

2

66664

I11 I12 I13

I21 I22 I23

I31 I32 I33

3

77775

2

66664

!1

!2

!3

3

77775
(3.46)

and in a compact form:

H = I! (3.47)

where I is called the inertia matrix of the rigid body about a body fixed reference

frame B with the origin at the center of the mass of the rigid body.

Let us write a set of axes to achieve all the products of inertia, or all of the
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elements of the inertia matrix except diagonal elements, are zero. This set is called

the principal axes and the moments of inertia are called the principal moments of

inertia. Assuming the axes of the body reference frame B are the principal axes, then

the equation for the angular momentum becomes:

2

66664

H1

H2

H3

3

77775
=

2

66664

I11 0 0

0 I22 0

0 0 I33

3

77775

2

66664

!1

!2

!3

3

77775
(3.48)

Now, we express the rotational equations of motion — also known as Euler’s

equations of motion — for a rigid body. Remember the angular momentum equation:

M =

˙H (3.49)

where H is the angular momentum vector of the rigid body about its center of

mass and M is the external moment acting on the rigid body about its center of

mass. We can also write it as:

˙H =

⇢
dH

dt

�

N

=

⇢
dH

dt

�

B

+ !
B/N

B

⇥H = M (3.50)

By taking the time derivative of Eq. 3.47, assuming the inertia is not dependent

on time, and evaluating in Eq. 3.50, Euler’s rotational equation of motion can be

written as:

˙!
B/N

B

= I�1
B

(M
B

� !
B/N

B

⇥ I
B

!
B/N

B

) (3.51)

3.2 Translation modeling

The movement of any object can be represented by changes in its location (translation)

or changes in its attitude (rotation), or a combination of both. Studying aircraft

motion is complicated since those two motions are coupled; for example, a rotation

might cause a change in aerodynamic forces which affects the translation. Thus, to
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ease the modeling process, the aircraft is assumed to be a point mass, with all of its

mass collected at its center of gravity, while it translates from one point to the other.

Then, the motion of the that point (at its center of gravity) is described by Newton’s

laws of motion. The translations are in direct response to external forces, namely

the lift, drag, thrust, and weight. Unfortunately, some of these forces depend on the

attitude of the aircraft.

3.2.1 Translational kinematics

The time change of the position of the aircraft x
N

expressed in the navigation frame

can be written in terms of translational velocity v
B

, expressed in the body frame as:

˙x
N

=

d

dt

�
x
N

�

=

d

dt

�
CN

B

x
B

�

=

˙CN

B

x
B

+CN

B

˙x
B

= CN

B

v
B

(3.52)

using x
B

= 0. Eq. 3.52 can also be written as :

2

66664

ẋ
n

ẋ
e

ẋ
d

3

77775
= CN

B

2

66664

u

v

w

3

77775
(3.53)

where, v
B

= [u v w]T is the inertial velocity of the center of mass of the body

expressed in the body frame B and ˙x
N

= [ẋ
n

ẋ
e

ẋ
d

]

T is the ground speed vector

expressed in the navigation frame N . N is assumed to be a local inertial frame. CN

B

is the direction cosine matrix which transforms a vector expressed in the body frame

to its equivalent expressed in the navigation frame N .
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3.2.2 Translational dynamics

The aircraft is assumed to be a point mass, with all of its mass collected at its center

of gravity while it translates from one point to an other. Then, the motion of that

point is described by Newton’s laws of motion. The translations are in direct response

to external forces, namely the lift, drag, thrust, and weight. From now on, the aircraft

will be assumed to be flying over a small region compared to size of the Earth, so

that the Earth is locally flat to neglect centripetal acceleration (due to the Earth’s

curvature). Another assumption is that the frame attached to the Earth is an inertial

frame, by ignoring Coriolis acceleration, so that Newton’s laws apply:

X

j

F
j

=

d

dt

�
mv

�����
I

(3.54)

Unfortunately, those forces that directly effect the translation depend on the at-

titude of the aircraft, complicating the dynamics.

Here, the subscript I represents the frame in which the time derivation occurs,

which is an inertial frame in this case. To represent time derivation in the inertial

frame in terms of time derivation in body frame, the relative rotation of the body

frame with respect to the inertial frame should be included, such that:

d

dt

�
mv

�����
I

=

d

dt

�
mv

�����
B

+ !B/I ⇥
�
mv

�
(3.55)

Substituting Eq. 3.55 in Eq. 3.54 and then projecting the vector variables in

the body frame, as well as assuming that mass is constant, gives:

1

m

✓X

j

F
Bj

◆
=

d
�
v
B

�

dt

�����
B

+ !
B/I

B

⇥ v
B

(3.56)

Writing the summation of forces in terms of the forces acting on the aircraft :

1

m

⇣
mg

B

+ F
thrustB + F

aeroB

⌘
=

2

66664

u̇

v̇

ẇ

3

77775
+

2

66664

p

q

r

3

77775
⇥

2

66664

u

v

w

3

77775
(3.57)
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Rearranging terms and writing the forces in more detail gives :

2

66664

u̇

v̇

ẇ

3

77775
=

2

66664

�g sin ✓

g sin� cos ✓

g cos� cos ✓

3

77775
+

1

m

2

66664

F
thrust

0

0

3

77775
+

1

m

2

66664

Xb

Y b

Zb

3

77775
�

2

66664

qw � rv

ru� pw

pv � qu

3

77775
(3.58)

which are the equations of motion of the aircraft.

3.3 Drone model

The calculation of aerodynamic forces and moments that are necessary to solve the

equations of the motion of a drone are given in this section. During the course of this

research, two kind of drones have been simulated : a drone from ETH university [30]

and MAKO (used in ENAC drone lab) given in Fig. 3-6. ETH drone has two ailerons,

two elevators and a rudder as its control surfaces, while MAKO has only two control

surfaces: elevons. An example of an elevon can be seen in the schematic of Zagi given

in Fig. 3-5. Changed in the same direction, elevons are used as an elevators (which

change the pitch), while when changed in the reverse direction they act as ailerons

(they change the roll).

First, to calculate the moments of inertia of MAKO, it is hanged from two strings,

at different orientations, as shown in Fig. 3-7, and the measurements are performed

by timing the oscillation period for each axis. The resultant moment of inertias are

given Table 3.2.
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Figure 3-5: Body fixed frame and North East Down (NED) frame representations

Table 3.2: General specifications of MAKO [16]

Parameter Value Definition
Wing span (b) 1.288 [m]

Wing surface area (S) 0.27 [m2
]

Mean aero chord (c̄) 0.21 [m]

Take-off mass (m) 0.7� 2.0 [kg]
Flight velocity 10� 25 [m/s]
I
xx

0.02471284 [kg ·m2
]

I
yy

0.015835159 [kg ·m2
]

I
zz

0.037424499 [kg ·m2
]
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Figure 3-6: MAKO

Figure 3-7: Moments of inertia measurements for each axis, I
xx

, I
yy

, I
zz

.
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Table 3.3: Parameters of ETH drone [30]

Parameter Value Definition
Wing span (b) 3.1 [m]

Wing surface area (S) 1.80 [m2
]

Mean aero chord (c̄) 0.58 [m]

Take-off mass (m) 28 [kg]
Propeller diameter (D) 28 [m]

Time constant of the engine (⌧
n

) 28 [m]

I
xx

2.56 [kg ·m2
]

I
yy

10.9 [kg ·m2
]

I
zz

11.3 [kg ·m2
]

I
zx

0.5 [kg ·m2
]

I
xz

0.5 [kg ·m2
]

3.3.1 Modeling of aerodynamic moments

The attitude of the aircraft changes with the torques applied to the airframe:

M
B

=

2

6664

L
b

M
b

N
b

3

7775
(3.59)

Here, L
b

is the roll torque, M
b

is the pitch torque, and N
b

is the yaw torque given

in body frame shown in Fig. 3-5.

The stability derivatives required to calculate the moments are given under Ta-

ble 3.4 for ETH drone and under Table 3.5 for MAKO. The values for the ETH

drone are taken from [30] while for MAKO they are calculated via AVL. AVL is an

open source program developed at MIT, and uses the vortex-lattice method for the

aerodynamic and stability calculations. The output of the program is linearized at

a selected trim condition, therefore all of the coefficients are calculated around the

equilibrium point at 14m/s cruise flight condition. The center of gravity is located

at X
CG

= 0.295m, which corresponds to 8% of the positive static margin that has

been flight tested.
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Roll torque

Roll torque is given as a multiplication of dynamic pressure q̄, wing surface area S,

wingspan b, and dimensionless roll torque C
L

as :

L
B

= q̄ S b C
L

(3.60)

Here, the dynamic pressure is calculated as :

q̄ =
⇢V 2

T

2

(3.61)

while the air density ⇢ is given by the international standard atmosphere model

for low altitude (<11000m) as :

⇢ =

p0
h
1 +

ah

T0

i5.2561

RT
(3.62)

where the temperature T is given as:

T = T0

h
1 +

ah

T0

i
(3.63)

with T0 = 288.15K, a = �6.5 ⇥ 10

�3 K/m, R = 287.3 m2K�1s�2 and p0 =

1013⇥ 10

2 Nm�2.

Next, we calculate the dimensionless roll torque in Equ. 3.60. For ETH drone, it

is given by [89, 30, 67] :

C
L

= C
La1 �a1 + C

La2 �a2 + C
Le1 �e1 + C

Le2 �e2 + C
Lp̃ p̃+ C

Lr̃ r̃ + C
L�

� (3.64)

For MAKO, the dimensionless roll torque is given by :

C
L

= C
La �a + C

Lp̃ p̃+ C
Lr̃ r̃ + C

L�
� (3.65)

where �
a1, �a2 are the aileron deflections, �

e1, �e2 are the elevator deflections, �
a
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Table 3.4: Stability derivatives for ETH UAV [30]

Parameter Value Definition
C

La1 = �CLa2 �3.395⇥ 10

�2 roll derivative
C

Le1 = �CLe2 �0.485⇥ 10

�2 roll derivative
C

Lp̃ �1.92⇥ 10

�1 roll derivative
C

Lr̃ 3.61⇥ 10

�2 roll derivative
C

L�
�1.30⇥ 10

�2 roll derivative
C

M1 2.08⇥ 10

�2 pitch derivative
C

Ma1 = C
Ma2 0.389⇥ 10

�1 pitch derivative
C

Me1 = C
Me2 2.725⇥ 10

�1 pitch derivative
C

Mq̃ �9.83 pitch derivative
C

M↵ �9.03⇥ 10

�2 pitch derivative
C

N�r
5.34⇥ 10

�2 yaw derivative
C

Nr̃ �2.14⇥ 10

�1 yaw derivative
C

N�
8.67⇥ 10

�2 yaw derivative

Table 3.5: Stability derivatives for MAKO extracted from AVL program at 14m/s
equilibrium cruise speed [16]

Parameter Value Definition
C

La �0.1956⇥ 10

�2 roll derivative
C

Lp̃ �4.095⇥ 10

�1 roll derivative
C

Lr̃ 6.203⇥ 10

�2 roll derivative
C

L�
3.319⇥ 10

�2 roll derivative
C

M0 0 pitch derivative
C

Me �0.076⇥ 10

�1 pitch derivative
C

Mq̃ �1.6834 pitch derivative
C

M↵ �32.34⇥ 10

�2 pitch derivative
C

N0 0 yaw derivative
C

Na �0.0126⇥ 10

�2 yaw derivative
C

Np̃ �4.139⇥ 10

�2 yaw derivative
C

Nr̃ �0.1002⇥ 10

�1 yaw derivative
C

N�
2.28⇥ 10

�2 yaw derivative
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Figure 3-8: Wind frame, airspeed vector V
T

, angle of attack ↵ and side slip angle �
representation [30]

is the aileron deflection for MAKO, � is the sideslip angle representing the angle

between airspeed vector VT and the projection of VT onto x
b

� z
b

plane as shown in

Fig. 3-8 and given as :

� = arcsin

v
T

V
T

(3.66)

and p̃, r̃ are dimensionless angular rates given by:

p̃ =

bp

2V
T

r̃ =
br

2V
T

(3.67)

Here, b is the wingspan, p, q are angular rates and V
T

is the norm of the airspeed

vector such as :

V
T

=

q
u2
T

+ v2
T

+ w2
T

(3.68)

Airflow acting on the aircraft is described by airspeed vector VT (see Fig. 3-8).

The wind frame is shown in Fig. 3-8 with axes (x
w

, y
w

, z
w

) where x
w

points along the

airspeed vector V
T

. Airspeed vector, in terms of its components in body frame and

in wind frame, can be given as:
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VT
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Wv

Figure 3-9: Relation revealed between the inertial velocity vector v, airspeed vector
V

T

and wind disturbance W [30]

VTB =

2

6664

u
T

v
T

w
T

3

7775
VTW =

2

6664

V
T

0

0

3

7775
(3.69)

The relationship between VTB and VTW can be written as [30]:

VTB = CB
WVTW (3.70)

Note that the inertial velocity of the aircraft v
B

= [u v w]T is different to the

airspeed vector VTB = [u
T

v
T

w
T

]

T . Those two vectors are related to wind velocity

W by :

v = VT +W (3.71)

When these vectors are projected on to body frame, the relation becomes:

v
B

= VTB +CB
NW

N

(3.72)
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and with components :

2

6664

u

v

w

3

7775
=

2

6664

u
T

v
T

w
T

3

7775
+ CB

N

2

6664

W
n

W
e

W
d

3

7775
(3.73)

Pitch torque

Pitch torque is given as a multiplication of dynamic pressure q̄, wing surface area S,

mean aero chord c̄, and dimensionless pitch torque C
M

as :

M
B

= q̄ S c̄ C
M

(3.74)

where the dimensionless pitch torque is given as for the ETH drone as :

C
M

= C
M1 + C

Ma1 �a1 + C
Ma2 �a2 + C

Me1 �e1 + C
Me2 �e2 + C

Mq̃ q̃ + C
M↵ ↵ (3.75)

and for MAKO :

C
M

= C
M0 + C

Me �e + C
Mq̃ q̃ + C

M↵ ↵ (3.76)

where the variables not introduced up to now are the dimensionless roll rate q̃,

elevator deflection �
e

and angle of attack ↵. Angle of attack ↵ is defined as the angle

between the projection of the airspeed vector VT onto the x
b

� z
b

plane and x
b

axis

as can be seen in Fig. 3-8, and calculated as :

↵ = arctan

⇣w
T

u
T

⌘
(3.77)

Yaw torque

Yaw torque can be given as:

N
B

= q̄ S b C
N

(3.78)
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with a dimensionless yaw torque for the ETH drone :

C
N

= C
N�r

�
r

+ C
Nr̃ r̃ + C

N�
� (3.79)

and for the MAKO :

C
N

= C
N0 + C

Na �a + C
Np̃ p̃+ C

Nr̃ r̃ + C
N�

� (3.80)

where q̄ is the dynamic pressure, V
T

is the total airspeed of the aircraft, ⇢ is the

air density, S is the wing total surface, b is the wing span, and c̄ mean aerodynamic

wing chord.

3.3.2 Modeling of aerodynamic forces

The position of the aircraft changes with the forces applied to the airframe. The

calculation of aerodynamic forces, lift force, drag force, lateral force, and thrust force

are given below.

Lift force

The lift force is given in the wind frame as :

Zw

= q̄ S C
Z

(↵) (3.81)

where the dimensionless lift coefficient is calculated as:

C
Z

(↵) = C
Z0 + C

Z↵↵ (3.82)

Drag force

Drag force in the wind frame is calculated as a multiplication of the dynamic pressure,

wing surface area, and the drag coefficient as given in Equ. 3.83 :

Xw

= q̄ S C
X

(↵, �) (3.83)
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where the dimensionless drag coefficient for ETH drone is given as :

C
X

(↵, �) = C
X1 + C

X↵↵ + C
X↵2↵

2
+ C

X�2
�2 (3.84)

While for MAKO, the drag force is given by [16] :

Xw

= q̄ S C
Z

(↵, �) (3.85)

and the dimensionless drag coefficient for MAKO [16] :

C
X

(↵) = C
X0 + C

Xk
C2

Z

= C
X0 + C

Xk
(C

Z0 + C
Z↵↵)

2 (3.86)

Lateral force

The lateral force is given as :

Y w

= q̄ S C
Y

(�) (3.87)

where the dimensionless lateral coefficient for ETH drone is given as :

C
Y

(�) = C
Y�
� (3.88)

and for MAKO :

C
Y

(�, p̃, r̃, �
a

) = C
Y�
� + C

Yp̃ p̃+ C
Yr̃ r̃ + C

Ya �a (3.89)

where the coefficients can be seen in Tables 3.6 and 3.7.

Thrust force model

The thrust generated by the propeller can be written as :

F
T

= ⇢n2D4C
FT (3.90)
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Table 3.6: Aerodynamic force derivatives for ETH UAV [30]

Parameter Value Definition
C

Z0 1.29⇥ 10

�2 lift derivative
C

Z↵ �3.25 lift derivative
C

X1 �2.12⇥ 10

�2 drag derivative
C

X↵ �2.66⇥ 10

�2 drag derivative
C

X↵2 �1.55 drag derivative
C

X�2
�4.01⇥ 10

�1 drag derivative
C

Y�
�3.79⇥ 10

�1 side force derivative

Table 3.7: Aerodynamic force derivatives for MAKO extracted from AVL program at
14m/s equilibrium cruise speed[16]

Parameter Value Definition
C

Z0 �8.53⇥ 10

�2 lift derivative
C

Z↵ 3.9444 lift derivative
C

Zq 4.8198 lift derivative
C

Ze 1.6558⇥ 10

�2 lift derivative
C

X0 2.313⇥ 10

�2 drag derivative
C

Xk
1.897⇥ 10

�1 drag derivative
C

Y�
�2.708⇥ 10

�1 side force derivative
C

Yp̃ 1.695⇥ 10

�2 side force derivative
C

Yr̃ 5.003⇥ 10

�2 side force derivative
C

Ya 0.0254⇥ 10

�2 side force derivative
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Table 3.8: Thrust force coefficients for propeller ETH UAV [30]

Parameter Value Definition
C

FT1 8.42⇥ 10

�2 thrust derivative
C

FT2 �1.36⇥ 10

�1 thrust derivative
C

FT3 �9.28⇥ 10

�1 thrust derivative
D 0.79m propeller diameter

Table 3.9: Thrust force coefficients for propeller APC SF 9 ⇥ 6 from wind tunnel
experiments [15]

Parameter Value Definition
C

FT1 1.342⇥ 10

�1 thrust derivative
C

FT2 �1.975⇥ 10

�1 thrust derivative
C

FTrpm
7.048⇥ 10

�6 thrust derivative
D 0.228m propeller diameter

where the dimensionless thrust coefficient for ETH drone is calculated as :

C
FT = C

FT1 + C
FT2J + C

FT3J
2 (3.91)

Here, J is the advance ratio, and for ETH drone, it is given by:

J =

V
T

n⇡D
(3.92)

The dimensionless thrust coefficient for MAKO is given by [15] :

C
FT = C

FT1 + C
FT2 · J 0

+ C
FTrpm

· n · 60 (3.93)

with advance ratio :

J 0
=

V
T

nD
(3.94)
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3.3.3 Shortcut to modeling

After the derivation of the aircraft flight kinematics and dynamics for translational

and attitude motion, the system of first order differential equations can be summarized

as follows :

˙x
N

= CN

B

v
B

˙v
B

=

1

m

⇥
mg

B

+ F
tB + F

aB

⇤
�

⇥
!

B/N

B

⇤⇥
v
B

q̇0 = �
1

2

qT

⌫

!
B/N

B

˙q
⌫

=

1

2

⇣
q⇥
⌫

+ q0I3
⌘
!

B/N

B

J ˙!
B/N

B

= M
B

�
⇥
!

B/N

B

⇤⇥
J!

B/N

B

(3.95)

where x
N

2 IR

3 is the position of the center of mass of UAV in the navigation

frame N , v
B

is the velocity of the center of mass of UAV in the body frame B,

q = [q0, qT

v

]

T 2 IR

3 ⇥ IR is the unit quaternion representing the attitude of the

body frame B with respect to navigation frame N expressed in the body frame B,

!
B/N

B

is the angular velocity of the body frame B with respect to navigation frame

N expressed in the body frame B, J 2 IR

3⇥3 is the positive definite inertia matrix

of the drone, M
B

2 IR

3 represents the moments acting on the drone, CN

B

is the

direction cosine matrix which transforms a vector expressed in the body frame to its

equivalent expressed in the navigation frame N , I3 2 IR

3⇥3 is the identity matrix,

F
tB 2 IR

3 is the thrust force expressed in the body frame and, F
aB 2 IR

3 are the

aerodynamic forces given in the body frame B. The navigation frame is assumed to

be a local inertial frame in which Newton’s Laws apply. The notation x⇥ for a vector

x = [x1 x2 x3]
T represents the skew-symmetric matrix, as given in Equ. 3.36.

3.3.4 Sensor Models

Accelerometer and gyro measurements are simulated using the angular velocity !
B/N

B

,

and translational acceleration ˙v
B

given by the system of equations of a drone summa-

rized in Equ. 3.95 and the specifications of the hardware used in Apogee Autopilot of
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Paparazzi Autopilot System. The sensor suit simulated is the InvenSense MPU-9250

Nine-axis (Gyro + Accelerometer + Compass) MEMS MotionTracking Device.

The accelerometer and gyro data is simulated as:

z
gyro

= k
gyro

!B

B/I

+ �
gyro

+ ⌘
gyro

(3.96)

z
acc

= k
acc

!B

B/I

+ �
acc

+ ⌘
acc

(3.97)

where � is the bias, and ⌘ is the zero mean Gaussian process with �2 variance

with values given in Table 3.10.

Table 3.10: Specifications of the sensor suit InvenSense MPU-9250 Nine-axis (Gyro
+ Accelerometer + Compass) MEMS MotionTracking Device[21]

Measurement � �
z
acc

x

0.142 0.0319
z
acc

y

�0.3 0.0985
z
acc

z

0.19 0.049
z
gyro

x

�1.55 0.0825
z
gyro

y

�1.13 0.1673

z
gyro

z

�1.7 0.2214

3.3.5 Fault Models

Probable faults in the control surfaces can be grouped under two main categories

[103]:

• A total control loss of the control surface actuators. The actuator does not

respond to the control signals at all. Lock-in-place, hard-over and floating

around trim are such failures (see Fig. 3-10).;

• A partial control loss of the control surface actuators. The actuator does re-

spond to the control signals but does so in an abnormal way. Loss of effectiveness

failure is shown in Fig. 3-10.
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Figure 3-10: Probable actuator faults [30]. (a) Loss of effectiveness: The actuator
does respond to the control signals but does so in an abnormal way such as low
actuation level or low response time. (b) Lock-in-place: A total control loss of the
control surface actuators. The actuator freezes at a particular position. (c) Hard-
over: A total control loss of the control surface actuators. The actuator freezes at the
minimum or maximum position limit. (d) A total control loss of the control surface
actuators. Actuator does not contribute to the control authority.

When the actuators are healthy, actual control input signal will be equal to the

given input signal. In case of a fault, the actual signal can be modeled as:

u (t) = Eu
c

+ u
f

(3.98)

where u
c

is the desired control signal, E = diag(e1, e2, e3) is the effectiveness of

the actuators where 0  e
i

 1 with (i = 1, 2, 3) and uf additive actuator fault.

This model makes it possible to simulate all four types of actuator faults shown in

Fig. 3-10.
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3.4 Conclusion

In this chapter, equations of motion of an aircraft are given. The motion of an aircraft

usually involves both translation and rotation. Here, equations for translational and

rotational motion are discussed separately and in detail. After the equations are

derived for a generic aircraft, the calculation of forces and moments, which are specific

to an individual drone, are presented (aerodynamic force derivatives and stability

derivatives are specific for each drone). For two different drone examples, a drone

from ETH Zurich and MAKO (used in ENAC UAV LAB), and the calculation of

forces and moments are given. Those forces and moments are inputs to the dynamic

equations of motion.

The models derived here are not used in detection and diagnosis algorithms. The

detection and diagnosis algorithms used in this thesis use data only. The need for

data is the driving factor to simulate the drone motion, thus, data is simulated using

the MAKO drone model and specifications of IMU InvenSense MPU-9250 Nine-axis

used in Paparazzi Autopilot Apogee onboard.

In this thesis, the diagnosis is implemented on two types of data: first, simulated

data, and second, flight data. If the reader is not interested in detection and diagnosis

via simulated data, it is not essential to read this chapter since it explains the models

that are used to simulate measurements. Despite this, having background informa-

tion on the physics of the system may help to understand the features (translational

acceleration and angular velocities) used in both model-based and data-driven fault

diagnosis.

Since the data is generated and now available for implementation, the methodology

used in this thesis to diagnose faults is discussed in the next chapter. In this thesis,

Support Vector Machines (SVM) are used as a classification method to diagnose faults

on board a drone. Since SVM is a machine learning method, an introduction to

machine learning methods is provided from an implementation perspective. We start

with an introduction to the terminology for machine learning methods, and provide

a general explanation to prepare the inputs to the machine learning algorithm. Next,
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many application details are discussed to assist the user to apply these methods to

their own problems. Finally, SVM is introduced, plus the three phases encountered

during its implementation — training, tuning and evaluation — are explained.
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Chapter 4

Methodology

In this chapter, an introduction to machine learning methods is presented. Machine

learning methods is discussed with a focus on applications. Finally, a supervised

learning method, Support Vector Machines (SVM), is explained as it is the method

used for classification in this thesis.

4.1 Machine Learning

The aim of machine learning methods is to train a model with a given data set in

order to predict the output values corresponding to a new input. According to Arthur

Samuel, who coined the term machine learning, "Machine learning is the field of

study that gives computers the ability to learn without being explicitly programmed".

Another definition offered by Tom Mitchell in 1998, relatively new compared to the

definition by Samuel in 1959, is stated as: "A computer program is said to learn from

experience E with respect to some task T and some performance measure P, if its

performance on T, as measured by P, improves with experience E".

4.1.1 Introduction

Machine learning methods are covered under two main categories: supervised and

unsupervised learning, as shown in Fig. 4-1.
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MACHINE LEARNING

Supervised Learning
(True answers are given)

Unsupervised Learning
(True answers are not given)

Regression
(output y is 
continuous 

valued)

Classification
(output y is 

discrete valued)

Clustering

Figure 4-1: Common machine learning methodologies

In supervised learning, "right answers" are available for each training input in the

data set. Supervised learning methods are made up of two phases; the learning and

the prediction, as shown in Fig. 4-2. The first phase is comprised of learning from

the available data to understand how the system behaves. In the second phase, the

idea is to predict what the output of the system for a given input will be, depending

on the knowledge about the system that is gained via the learning phase.

The most common types of supervised learning are the regression and classification

problems. Since these are both supervised learning types, the "right answer" (right

values of the output y) for each example is assumed to be known.

In unsupervised learning, the "right answers" corresponding to the training input

are not available. There are other machine learning algorithms, such as reinforcement

learning, that are a combination of supervised and unsupervised learning.

4.1.2 Terminology

A basic introduction to frequently used terms in machine learning is provided in

this section. Table 4.1 shows representations of commonly used variables in machine

learning. Although representations may differ from one reference to the other, we

follow one coherent representation throughout this paper (see Table 4.1).
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Training Phase

Training
Data 
Set

Learning 
Algorithm

Prediction Phase

Hypothesis

New
Input

Output

Figure 4-2: Supervised learning basics

Table 4.1: Machine learning terminology

x input variable or feature
y output variable or target variable
X input variable vector or feature vector
y output variable vector or target variable vector
m number of training examples
n number of features
i index of training examples
j index of features
x(i)
j

ith training example for feature j
y(i) ith training output
h✓(x) hypothesis function (model)
✓ parameter set
J(✓) cost function
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Table 4.2: Training set (x,y) of housing prices — one-feature example

training example index (i) Size in feet2 (x) Price in 1000$s (y)
1 2104 460
2 1416 232
3 1534 315
4 852 178
... x(i) y(i)

m x(m) y(m)

Many of the machine learning tools, such as MATLAB Statistics and Machine

Learning Toolbox or Tensorflow, have default settings which make them easier for

beginners to use. Although they would most probably not achieve optimized results

(as would be the case in the hands of an experienced user), a beginner can easily start

using these tools by sending input and output vectors as arguments to the machine

learning functions.

The configurations of input and output vectors to feed the learning algorithms may

change from one to the other, but there is still a common convention that would be

compatible with many. In this representation, each instance is given in different rows

of the input vector. An example of predicting housing prices taken from Ref. [68]

is provided to show the way in which to constitute the input and output matrix.

Table 4.2 uses a supervised learning regression example to show input and output

vector representations. The aim of the problem in this example is to predict the

prices of houses for a given the surface area. For that, known examples of houses

with a surface area and corresponding price are given. Since the aim of the problem

is to predict the price of a house given the surface area, the price of the house is

the output of the problem. To predict the price, the available information that is

known to effect the price of the house is the surface area of the house, making it the

input variable. So, in Table 4.2, each row corresponds to a different house, the second

column (surface area of house) constitutes the input vector and the last row (price in

$1000s) corresponds to the output vector.

In this problem, there is an assumption that the price of a house is only dependent
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Table 4.3: Training set (x,y) of housing prices - multi-feature example

training
example
index (i)

Size in
feet2 (x(i)

1 )
Number
of bed-
rooms
(x(i)

2 )

Feature j
(x(i)

j

)
Feature n
(x(i)

n

)
Price in
1000$s (y)

1 2104 5 x(1)
j

x(1)
n

460
2 1416 3 x(2)

j

x(2)
n

232
3 1534 3 x(3)

j

x(3)
n

315
4 852 2 x(4)

j

x(4)
n

178
... x(i)

1 x(i)
2 x(i)

j

x(i)
n

y(i)

m x(m)
1 x(m)

2 x2j(m) x(m)
n

y(m)

on the surface area which does not hold in the real case. In real problems, it is

more common that the output would not depend on only one variable but on many

variables. For this reason, the input vector in a realistic example would more likely

be an input matrix having different features in its columns, as given in Table 4.3.

Here, in this example, the output is still the price of the house, but now the features

which correspond to each column of an input matrix (or sometimes called the feature

matrix) are the surface area, the number of bedrooms, and can be enlarged up to a

chosen number of features. It should be kept in mind that the selection of features

that would lead to a better prediction of the output is a challenging problem, and

would usually require some considerable experience on the system of interest.

4.1.3 Steps towards the learning machine

Visualizing the data

A preliminary investigation of data may give the designer an idea about the ways in

which to tackle a problem, since it is the designer who selects the features, the model

and the type of cost function. It is true that the algorithms are optimizing some

parameters of the model and the cost function but the structure itself is still usually

supplied by a human.
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Figure 4-3: Regression example - Housing prices as a function of surface area of the
house [69]

Fig. 4-3 shows the housing price depending on the surface area corresponding to

the data given in Table 4.2. In this example, house prices are the output (target)

variable given in y-axis and size (surface area in feet2) is the feature (input) variable

given in x-axis. Since the output y is the price which is a continuous value (thus not

a label representing a class), this problem is called a regression problem. Plotting the

given data, shows that the problem could be modeled by a linear model (a linear line

to fit the data given). Then, linear regression can be applied.

Since an example of a regression problem has been given above, we now take

a preliminary look at the classification problem. Fig. 4-4 presents a classification

problem, since the aim is to distinguish the class that a new input instance will

belong to. Here, the vertical dimension is not the output, as in the previous example

of linear regression, but is another feature (x2 in this example).

The information about the output is represented by the colors of the samples in

the feature space. Fig. 4-5 shows the output vs. inputs of a classification problem.
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Figure 4-4: Classification example

This is simply to show the difference between regression and classification problem

figures. Usually in regression problems the y-axis represents the output. Here, there is

a direct analogy by representing a classification problem as a regression problem, with

the x-axis representing the input and the y-axis representing the output. However,

usually in classification problems, the value of y (which class it corresponds to) is

represented by discrete values representing the different classes, as shown in Fig. 4-4.

By plotting the samples, as in this example, it seems that logistic regression could

yield satisfactory results, since the data seems to be separated by a linear decision

boundary. A decision boundary is a curve that separates the training data examples

which belong to different classes.

It is possible to choose the model structure that would represent the problem

satisfactorily via visualizing the data set when the number of features is not large.

With an increasing number of features, determining the degree of the polynomial

via visualizing the data to represent the input/output relationship could be more

complicated. In this case, the user should refer to model selection techniques rather

than the insights gained by data visualization.

Feature Mapping

Depending on the results from visualizing data, it may be necessary to map the fea-

tures, since a straightforward implementation of linear/logistic regression may result
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Figure 4-5: Classification example - output vs input

in linear model and linear decision boundary, respectively. For the cases in which a

linear model will not be satisfactory to describe the training data, feature mapping

should be applied.

The housing price prediction problem can be revisited here to provide an example

of feature mapping. The data given in Table 4.2 and plotted in Fig. 4-3 is a regression

problem with one feature (surface area of house). To fit more accurately to the

training data given, new features can be artificially added to the system as below,

where the new features will be functions of the original feature:

h
✓

(x) = ✓0 + ✓1x1 + ✓2x2 + ✓3x3

= ✓0 + ✓1(size) + ✓2(size)
2
+ ✓3(size)

3
(4.1)

where:

x1 = size

x2 = size2

x3 = size3

(4.2)

By changing the model via adding features, it is now possible to fit a nonlinear
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Figure 4-6: Classification example of complex decision boundaries [69]

curve to the training data, as given in Fig. 4-13.

Another example that requires a nonlinear model to fit the data set is the mi-

crochip assessment problem. This example is taken from the lecture notes of a ma-

chine learning course by Andrew Ng [68]. This is a two-class classification problem,

where one class of microchips is faulty while the other class is functional. It is seen

from the Fig. 4-6 that a linear decision boundary will not appropriately serve to

classify the data. So, in order to apply logistic regression for this problem, feature

mapping is necessary. An example of a mapped feature vector that could provide a

satisfactory decision boundary to classify the two classes could be given as:

xmapped =

h
1 x1 x2 x2

1 x1x2 x2
2 x3

1 · · · x1x5
2 x6

2

i
T (4.3)

Mapping of the features could be done in various ways. We now take another

example of a binary (two-class) classification problem with 100 features, which needs

a nonlinear decision boundary to achieve a satisfactory classification. One way to map
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Figure 4-7: Classification example of complex decision boundaries

the feature set could be such that only the quadratic terms are taken into account,

which would result in a new feature set such as:

xmapped =

h
x2
1 x1x2 x1x3 · · · x1x100 x2

2 x2x3 · · · x2
3 x3x4 · · ·

i
T (4.4)

with a complexity O(n2
) ⇠ n

2

2 .

If 3rd order terms are considered, the new feature set becomes:

xmapped =

h
x3
1 x1x2x3 x2

1x2 · · · x11x13x17 · · ·
i

T (4.5)

It is important to point out that, with a higher dimensional feature vector, the

model will tend to fit more accurately with the training set but may generalize poorly

to new input. This is called overfitting, which is a common problem for many machine

learning applications. Further explanation about overfitting and ways to overcome

it will be offered in the regularization section. Increasing the dimensionality of the

features, the model might also become computationally more expensive.

To fit a model or decision boundary of a circular or elliptical shape, only a subset
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Figure 4-9: Adding an artificial feature of 1s.

of features can be considered, such as:

xmapped =

h
x2
1 x2

2 x2
3 · · · x2

N

i
T (4.6)

Finally, when the number of features are small, but cannot fit complex models or

boundaries, such as in Fig. 4-7, then the addition of higher terms such as those given

in Equ. 4.4 or the use of Neural Networks should be considered. A scheme to help

select the strategy for mapping is given in Fig. 4-8.

Vectorized form of the problem

The model can be written in a vectorized form in order to accommodate the larger

number of features in a more compact form. To write in compact form, an extra

feature x0 = 1 is added to the feature vector, such as:

x =

h
x0 x1 x2 · · · x

n

i
T

(4.7)

Fig. 4-9 shows the addition of the artificial feature in the feature matrix.

Also, parameters of the model are given in vectorial form, such as:

✓ =

h
✓0 ✓1 ✓2 · · · ✓

n

i
T

(4.8)
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So, for the linear regression problem with a single feature, the model is given as:

h✓(x) = ✓0 + ✓1x1 (4.9)

and the model for n features:

h✓(x) = ✓0 + ✓1x1 + ✓2x2 + · · ·+ ✓
n

x
n

(4.10)

Introducing the vectorial forms of x and ✓ enables the model to be written in a

compact generic form, such as:

h✓(x) = ✓|x (4.11)

Cost Function

To calculate ✓ that will fit a better model with the training data, optimization al-

gorithms are used to minimize the cost function J(✓). Usually, the cost function

and its gradient are given to the optimization algorithm as an input. Here, widely-

used cost functions for linear regression (regression problem) and logistic regression

(classification problem) are given.

The cost function for linear regression can be given as:

J(✓) =
1

2m

mX

i=1

⇣
h✓(x

(i)
)� (y(i))

⌘2

(4.12)

and the cost function for logistic regression (classification) is given for a two-class

classification problem (e.g y 2 {0, 1}) as:

J(✓) =
1

m

mX

i=1

h
� y(i)log(h✓(x

(i)
))� (1� (y(i)))log(1� h✓(x

(i)
))

i
(4.13)
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Selecting the model

With a larger set of features, it may be difficult to have a sense of which model would

be a better fit for a particular problem. In these cases, model selection techniques

could be applied to decide which model will yield better accuracy.

To explain the procedure, first assume a model structure is already selected or

given. In such a problem, during the training process, training data is used to calcu-

late the best model parameter vector ✓ that would minimize the objective function,

J
tranining

(✓). The the trained model is then assessed with a new independent data

set J
test

to evaluate the overfitting biases favoring the training data and avoid an

over-optimistic view of the abilities of the learning algorithm.

In the model selection technique, each model is represented by a number d as

shown below:

d = 1, h✓(x) = ✓0 + ✓1x �! ✓(1) �! J
cv

(✓(1))

d = 2, h✓(x) = ✓0 + ✓1x+ ✓2x
2 �! ✓(2) �! J

cv

(✓(2))

d = 3, h✓(x) = ✓0 + ✓1x+ ✓2x
2
+ ✓3x

3 �! ✓(3) �! J
cv

(✓(3))

...

d = k, h✓(x) = ✓0 + ✓1x1 + · · ·+ ✓
k

xk �! ✓(k) �! J
cv

(✓(k))

In the previous problem of a given model structure, only the model parameter

vector ✓ is calculated to minimize the cost function J
training

(✓). Now, since the best

model is not known, it is also necessary to find the best d to minimize the cost

function. Since now there are two parameters to fit, ✓ and d, three different sets

of data are necessary for training, tuning and evaluation. Similar to the case where

training and evaluating the model with the same data (for a given model) may lead

to a biased evaluation, the added necessity to also select (or tune) the model also

requires an extra set of data. These three separate sets of data are called training,

cross-validation and test sets.
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So, the idea is to have different subsets of data to train the model (calculating

✓), to select the model structure and to evaluate the selected model structure and its

corresponding parameter set. In order to do that, three distinct data sets are needed,

as shown in Fig. 4-10, to train parameters ✓, to select the model structure d and to

associate an error value with the chosen model. Then, the model structure d which

yields the smallest J
cv

(✓(d)
) once minimized is selected and its generalized error is

calculated with the test set J
test

(✓(d)
).

Fig. 4-10 summarizes the steps to be followed, which are explained in more detail

as:

1. Train the model for each model structure (d = 1,2,3 .. k) by using the training

set (60% of all data, randomly selected) which will output the parameters ✓(d)

for the corresponding model (d). This phase is explained in more detail in the

section Calculating parameters ✓, however briefly, the general idea is to calculate

the ✓ that will minimize the cost function J
training

given as:

J
training

(✓) =
1

2m
training

mtrainingX

i=1

⇣
h✓(x

(i)
training

)� (y(i)
training

)

⌘2

(4.14)

2. Then, by using the cross validation data set (20% of all data, randomly selected)

calculate cross validation error for each model and select the model with the

smallest cross validation error:

J
cv

(✓) =
1

2m
cv

mcvX

i=1

⇣
h✓(x

(i)
cv

)� (y(i)
cv

)

⌘2

(4.15)

3. Then, by using the test set (20% of all data, randomly selected) the generalized

error is estimated for the selected model:

J
test

(✓) =
1

2m
test

mtestX

i=1

⇣
h✓(x

(i)
test

)� (y(i)
test

)

⌘2

(4.16)
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Normalization (Scaling)

The next step is to normalize the data in order to constrain the values of features to

change within the same order of magnitude. This helps to improve the convergence

rate of the optimization algorithm during the calculation of the model parameters ✓.

Although there are different methods for normalization, a common method is to use

this formula:

x̄
j

=

x
j

� µ
j

s
j

(4.17)

where the mean µ
j

and range s
j

are given by:

µ
j

=

mP
i=1

xi

j

m

s
j

= max(x
j

)�min(x
j

)

(4.18)

An important point is to keep values µ
j

and s
j

(or standard deviation in the cases

it is preferred instead of range s
j

) which are calculated during training. These values

are saved since they will also be used to scale the new inputs during the prediction

phase.

Training and evaluation of the Classifier

Here, it is assumed that we have selected one model and we train the parameters of

only this selected model. If multiple models are to be evaluated, this training phase

will be applied to all different models. Then, the selection of the best model should

be done, as already explained under Selecting the model section.

Before the training phase, the data should be split into two parts: training and test

sets. Then, the parameters ✓ are learnt using the training data. Finally, the trained

classifier is evaluated by calculating the test set error using the test set. Those steps

are given in more detail as follows:

1. Split the data set to two parts (30% for the test set and 70% for the training
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set). Note that if the data set is randomly ordered, the first 70% can be used for

training and the rest for testing, but if the data is not randomly ordered (data

is time dependent or if there is any correlation), the percentage of the data set

for traing should be randomly selected between 30% and 70%;

2. Allow the model to learn the parameters ✓ from the new training set (70% of the

whole data set). This step is further explained under Calculating parameters ✓

section;

3. Calculate the test set error by using the test set (30% of all data) with the

parameters learnt by using the training set (70% of all data).

For linear regression, the test set error is the cost function evaluated by the test

set (x
test

(i), y
test

(i)) pairs and the parameters trained by using the training set

(x
train

(i), y
train

(i)) and can be given as:

J
test

(✓) =
1

2m
test

mtestX

i=1

⇣
h✓(x

(i)
test

)� (y(i)
test

)

⌘2

(4.19)

For logistic regression, the test set error is given as:

J
test

(✓) = � 1

m
test

mtestX

i=1

h
y(i)
test

log( h✓( x
(i)
test

))+(1�(y(i)
test

)) log( h✓( x
(i)
test

))

i
(4.20)

Sometimes the misclassification error (between 0 and 1), given in Equ. 4.21, is

used instead of Equ. 4.20:

test error =
1

m
test

mtestX

i=1

⇣
err( h✓( x

(i)
test

), (y(i)
test

)

⌘
(4.21)
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where the error function is given as:

err(h
theta

(x), y) =

8
><

>:

1 if h✓ � 0.5, y = 0 or if h✓ < 0.5, y = 1

0 otherwise
(4.22)

Fig. 4-11 visualizes and summarizes the procedure explained above.

Calculating parameters ✓

The cost function is minimized to calculate the best ✓ with the use of optimization

algorithms. To fit the parameters ✓, we will try to find those that minimize the cost

function J(✓):

✓
min J(✓) (4.23)

For the case of a simplified example with one feature, the minimization problem

can be written as:

✓0, ✓1
min J(✓0, ✓1) (4.24)

To achieve this minimization problem, there are a variety of algorithms available.

A classical approach is the gradient descent method. Others include but are not lim-

ited to, conjugate gradient, BFGS (Broyden-Fletcher-Goldfarb-Shannon) algorithm,

and L-BFGS (Limited-memory BFGS). They usually require the cost function, its

gradient and the Hessian approximation in order to calculate the best ✓ values.

Gradient Descent

Gradient descent will be presented for one feature problem due to its simplicity.

Here, a linear regression problem is considered, where its hypothesis (model) and cost

function is given in Equ. 4.25:
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h✓(x) = ✓0 + ✓1x1

J(✓1, ✓2) =
1

2m

mX

i=1

⇣
h✓(x

(i)
)� (y(i))

⌘2 (4.25)

The gradient descent algorithm for one feature is given as :

Algorithm 1 Gradient Descent for one feature only
1: function GradDesOneFeat(X, y, theta_init, alpha, num_iters)

. Inputs: X - training inputs, y - training outputs, theta - parameters,
2: alpha - learning rate, num_iters - number of iterations (termination condition)
3: theta0 = theta(1))
4: theta1 = theta(2))
5: m = length(y) . Number of training examples
6: for j = 1 to iter_num do . Do until satisfied
7: for j = 1 to m do . Do for all training examples
8: initialize each grad to zero
9: grad0 grad0 + (costFunc(x)� y)

10: grad1 grad1 + (costFunc(x)� y) ⇤ x
11: end for
12: theta0 theta0� alpha ⇤ grad0
13: theta1 theta1� alpha ⇤ grad1
14: end for
15: end function

The conventional approach is to assign an initial value to ✓ is to set ✓
init

= 0. It

is important to know that for different initial values, ✓ might converge to different

values (local minima but not the global one), as in Fig. 4-12. However, for linear

regression, it is shown that the cost function shown above is convex, meaning that

it has only one global minima with no other local minima. An example of the cost

function converging to different solutions depending on initialization is given in Fig.4-

12. A slightly different choice of ✓
init

might lead to a convergence to the local minima,

where J(✓) is smaller compared to local changes in ✓, but J(✓) is still not at its global

minimum.

Learning rate, ↵, gives the gradient descent its step size, so a larger value means

a faster convergence. However, note that for a larger alpha, the solution might not

converge or even diverge, while too small values might lead the optimization to con-
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Figure 4-12: Gradient descent convergence dependance on ✓
init

. Two different but
close choices of ✓

init

might converge to local or global minima [69].

verge very slowly. A set of ↵ should be tried and evaluated by their performances.

Armigo-Goldstein rule can be used to set ↵.

An important point in the algorithm is to update the ✓ simultaneously. Thus,

during one iteration, the same ✓ values should be substituted into h
✓

(x), in order to

calculate the next values of ✓0, ✓1.

Overfitting

Overfitting is common for complicated models or decision boundaries with high order

polynomial terms such as:

xmapped =

h
1 x1 x2 x2

1 x1x2 x2
2 x3

1 · · · x1x5
2 x6

2

i
T (4.26)

If the model is suffering from overfitting, the trained model might end up fitting

well to the training set, but may fail to generalize to the new data during the pre-

diction phase. This means that the training set error is not a good predictor of how

well the model would predict on new examples.
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Figure 4-13: Underfitting, satisfactory or overfitting model examples (left to right)

Fig. 4-13 shows three model examples plotted with the data that they are trained

with. From left to right, these three regression problem models are underfitted,

satisfactory or overfitted. But for problems with more features it might not be that

obvious. Sometimes it may not even be possible to plot the model to realize if it is

overfit or not. In such cases, methods to detect overfitting should be used. To avoid

overfitting, a regularization parameter is used, as explained in the next section.

Regularization

Regularization is practiced in order to avoid overfitting. In regularization, a term

is added to the cost function in order to penalize parameters ~✓ for being too large (i.e.,

to make ~✓ as small as possible), except for ✓0 which is not penalized by convention.

The cost function for linear regression with the added term for regularization is given

as:

J(✓) =
1

2m


mX

i=1

⇣
h
✓

(x(i)
)� (y(i))

⌘2

+ �
nX

j=1

✓2
j

�
(4.27)

For logistic regression the regularized cost function can be written as (for two-class

e.g y 2 {0, 1}):

J(✓) =
1

m

mX

i=1

h
� y(i)log(h

✓

(x(i)
))� (1� (y(i)))log(1� h

✓

(x(i)
))

i
+

�

2m

nX

j=1

✓2
j

(4.28)
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Here, the challenge is to find the appropriate value for � which serves as a weight

between the original part of the cost function and the second part, which penalizes ✓

for being too large. So, it tends to decrease the values of ✓. But if this lambda is too

large, then the model converges to:

h
✓

(x) = ✓0 (4.29)

since all terms are penalized except ✓0 (which is not penalized by convention),

such that:

h
✓

(x) = ✓0 +��HH✓1x +���HHH✓2x
2
+���HHH✓2x

3
+ · · ·+���HHH✓

n

xn (4.30)

Thus, the model becomes underfitted for large values of �, and it should be tuned

to acquire the optimal value.

Visualizing error to diagnose over-fit/under-fit problems

To further debug the model, a guide is given in Fig. 4-14. Here, the errors for training

and cross validation sets have to be calculated for a variety of polynomial degrees or

regularization parameters. When training and cross-validation errors are plotted as a

function of polynomial degree (or complexity of model), a larger training and cross-

validation error shows that the model is likely to be an under-fit (high bias) model.

A large cross-validation and low training error shows that the model is likely to be an

over-fit model (high variance). Training and cross-validation errors are calculated as

in Equations 4.14 and 4.15. Here, it is assumed that there is no regularization term

in the cost function. The training and cross-validation errors are calculated in the

same way as the cost function, since the cost function itself is a measure of error.

In the case that the cost function is regularized as given in Equ. 4.27, the training

and cross-validation errors are calculated ignoring the regularization term, so they

are defined exactly the same as given in Equations 4.14 and 4.15, respectively.
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Another way to diagnose learning problems is to plot training and cross-validation

errors with respect to training set size, also named as the learning curves (the two

rightmost curves in Fig. 4-14). Although, the training set size is normally constant,

here we artificially reduce the number of training examples and calculate the training

and cross-validation errors. For that, the model parameters ✓ are fit to this reduced

training set, and then the training and cross-validation errors are also calculated over

this reduced training data set. For the cases where the resulting curves give a low

training error and a high cross-validation error for smaller training set sizes, and also

high training and cross-validation errors for larger training sizes, the problem is most

likely to be suffering from under-fit (high bias). Another signature of an under-fit

problem is that the training and cross-validation errors are similar in magnitude.

If the learning curves give a low training error and a high cross-validation error

for the smaller training set size, and also the training error is increasing with training

set size while the cross-validation error is decreasing without leveling off, the problem

is more likely to be suffering from overfitting (high variance). Another important

signature of an over-fit model is that the training error will be less than the cross-

validation error, and the difference between them would remain significant.

Best practices

After diagnosing the problem as over-fit or under-fit, the following practices are helpful

to know.

To fix an under-fit model, it may help to tr:

• adding features;

• adding polynomial features;

• decreasing the regularization term.

To fix an over-fit model, it may help to try:

• adding more training examples;
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• decreasing the number of features;

• increasing the regularization term.

Prediction

Finally, for a new set of input data, the output can be predicted using the trained

model/classifier. One point to remember is that if scaling is applied to the training

set, new data should be scaled as well before being fed to the model/classifier, using

the same mean and standard deviation values previously calculated from the training

set. After that, h(✓) could be evaluated using optimized ✓ and the scaled new data

set x_new_scaled. So, h
✓

(x_new_scaled) gives:

h
✓

(x_new_scaled) = P
⇣
y = 1 | x; ✓

⌘
(4.31)

which is the probability that y = 1 given x_new_scaled parametrized by ✓.

4.2 Support Vector Machines

4.2.1 Introduction

SVM is a relatively new approach for classification, offering promising generalization

properties thanks to its foundations on the structural risk minimization principle,

while other classifiers (such as logistic regression) usually minimize the empirical risk

[44, 101]. This advances the capacity of generalization, even with a small number

of instances, by reducing the risk of overfitting with properly tuned parameters. It

can be applied to nonlinear systems and problems offering a vast number of features.

Since the problem is represented as a convex optimization problem, SVM avoids local

minima, to which Neural Networks(NN) are inherently prone.

The aim of SVM is to find an optimal hyperplane maximizing the margin, which

is the distance in between the boundaries, by extending them until hitting the first

data point, as in Fig. 4-15. These data points that are closest to the hyperplane
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optimal hyperplane

max. 
margin

x2x2

x1x1

Figure 4-15: SVM working principle: The aim of SVM is to find an optimal hyperplane
maximizing the margin, which is the distance in between the boundaries, by extending
them until hitting the first data points (support vectors)

(decision boundary) are called the support vectors and are the representatives of the

data sets to be used for the decision process. This helps to abruptly decrease the

data to handle, enhancing the ability to cope with the curse of dimensionality and

reducing the computational complexity.

SVM implements the idea of having confidence in the prediction by using the con-

cept of separating data with a large margin. Some other classification methods, such

as logistic regression, output the probability of a new instance belonging to a partic-

ular class, thus inherently giving the confidence of the prediction as an output. On

the other hand, SVM does only output if the new instance’s probability of belonging

to a particular class, so does not give its confidence on this decision explicitly. Rather

than including this confidence information as an output in terms of probabilities, this

information is introduced with the functional and geometric margins. Methods are

available for calculating the posterior probabilities, which is the probability that the

new measurements belongs to its predicted class [78].

The training data set includes labeled data where the label can belong to one
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of two possible cases. This data set is saved in a matrix X 2 IR

m⇥n where m,n

correspond to number of instances and features, respectively. The label information

corresponding to the measurement instances is also fed to the SVM algorithm during

the training phase as output vector y 2 {�1, 1}.

The aim of SVM is to find an optimal hyperplane maximizing the margin by

solving the optimization problem for non-linearly separable datasets:

min
�,!,b

1

2

k!k2 + C
mX

i=1

⇠
i

(4.32)

s.t. yi(!Tx(i)
+ b) � 1� ⇠

i

, i = 1, · · · ,m (4.33)

⇠
i

� 0, i = 1, · · · ,m (4.34)

Here, the aim is to calculate the parameters ! and b of the hypothesis by min-

imizing the objective function. In SVM, we drop the convention of denoting the

hypothesis as h(x) = ✓T x and use h
!,b

(x) = g(!T x+ b) where g(z) = 1 if z � 0, and

g(z) = �1 otherwise. In order to generalize to the non-linearly separable datasets,

⇠
i

is introduced in the equation’s inequality constraint. Now, in the non-separable

case, the functional margins (yi(!Tx(i)
+b)) of the instances (examples) are permitted

to have a value less than 1, different from when the case is separable. In order to

ensure that most of the examples still do not violate the boundary, and thus have

a functional margin of at least 1, the objective function is also increased by C⇠
i

. C

is called the box constraint, and usually needs to be tuned to achieve a satisfactory

performance.

Introducing the dual form of the optimization problem, the use of kernels (to

work efficiently in higher dimensional spaces) is eased. The dual form also allows

the use of efficient optimization solvers such as Sequential Minimal Optimization

(SMO) [77], which is the solver used in this work as well. Conventionally, the training

phase of SVM requires the solution of a large quadratic programming (QP) problem.

Especially for a large training set, the computational heaviness of this phase may
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limit the applicability of SVM to specific problems sets. To overcome this constraint,

SMO breaks the QP problem into a series of smaller QP problems which can be solved

analytically.

SVM has other options to deal with not linearly separable problems, such as

using kernels to map data into higher dimensional feature spaces where they can be

separated with a linear hyperplane. Kernels are at the core of efficient SVM classifiers.

A kernel, in general, is defined as:

K(x, z) = �(x)T�(z) (4.35)

where � represents the feature mapping. Usually the original features of the

systems are named as attributes while the mapped set are called the features. In

other words, � maps the attributes to the features. Kernels offer various elegant

properties such as computational efficiency. Cleverly selected, SVM classifiers can

learn in high dimensional spaces represented by � without the need to explicitly find

or represent �, but instead calculating K(x, z), which might be computationally more

efficient.

4.2.2 Application

A binary classifier is used in this work to classify two classes, faulty and nominal.

SVM, being a supervised classification algorithm, has two main phases as shown in

Fig. 4-2: training and prediction.

In the training phase, the model learns to fit the labeled data that is fed to

the SVM algorithm. The labeled data set is first divided into two portions with

percentages of 80% and 20%, where the larger chunk is the training set and the

remaining is the test set, respectively.

This phase is usually followed with a tuning phase where some of the parameters

of SVM are changed. Further, the training set is divided into cross-validation and

training sets. The idea to split data is to avoid overfitting. When a model is overfit,

it fits very accurately to the data it is trained with but fails to generalize to new data.
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This results in a poor prediction performance. To avoid overfitting, which is the main

problem of parametric discrimination approaches such as neural networks, parameter

C is tuned to result in an optimal fit with the cross-validation set. Tuning C also gives

the user the ability to change the classifier’s sensitivity to outliers, since sometimes

finding a hyperplane separating all data perfectly is not the favorable option (it may

cause overfitting). Then, the final performance of the classifier is tested on the test

set.

The classifier with the best performance is selected and then used in the prediction

phase. For new data input, the classifier is used to predict which class the new data

belongs to.

Training of the classifier

The first step is to normalize the features of the data as shown in Eq. 4.17 in order to

make the values of features change within the same order of magnitude. Normalization

offers advantages for the optimization algorithm and its convergence rate, during the

calculation of model parameters. An important point is to keep the values of the

mean and range µ
j

, s
j

(calculated with Eq. 4.18) and standard deviation (if it is used

instead of range s
j

). During the prediction phase, the data should first be scaled with

these values attained from training data.

Default settings for SVM binary classification, included in Matlab Statistics and

its Machine Learning Toolbox, utilizes SMO for optimization if outlier fractions are

not specified during the function call.

Default settings of Matlab’s binary SVM classifier fits a linear model, which results

in a linear decision boundary. In this study, a Gaussian Kernel, which corresponds

to an infinite dimensional feature mapping, is used to map the attributes:

K(x, z) = exp

✓
� kx� zk2

2�2

◆
(4.36)
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Figure 4-16: Convergence of the objective function

Tuning of the classifier

The training phase is usually followed by a tuning phase where some of the parameters

of SVM are tuned and the results are compared in order to have the best fit via cross

validation set. This is the phase where the parameters of the classifier are fixed to be

used in the last phase; prediction.

To avoiding overfitting, which is the main problem of parametric discrimination

approaches such as neural networks, C (box constraint) and � (kernel scale), are

tuned. The classifier is trained with the training set and tuned via the cross-validation

set, and then the selected classifier is evaluated with the test set. The cross-validation

set selection of Matlab uses a random selection over the data set. To compare different

methodologies for tuning and also the untuned classifiers, the script has been revised

to generate random values from the same seed value to be consistent in comparisons.

Box constraint (C) and kernel scale (�) are tuned considering the presence of the

outliers to generalize the distribution of the data rather than resulting in fine fits for

each individual datum in the training set.
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Figure 4-17: Objective function values for different box parameter and sigma values

Two different ways are used to tune the classifier, heuristic and Bayesian opti-

mization. In heuristic optimization, the strategy is to try a geometric sequence of the

kernel scale (sigma parameter) scaled at the original kernel scale. Also, box constraint

parameters from a geometric sequence have been tried (11 values, from 1e-5 to 1e5

by a factor of 10). Increasing box constraint might decrease the number of support

vectors, but may also increase the training time. Usually, increasing box constraint

too much induces overfitting (high variance).

The Bayesian optimization tool from Matlab can be used in conjunction with

the classification tool to optimize box constraint and the kernel scale. During op-

timization, the objective function is printed with respect to function evaluations by

the optimization tool, as shown in Fig. 4-16. Here, the objective is to successfully

converge to its minimum value after 21 function evaluations. Fig. 4-17 shows the

objective function values for a variety of box constraint and kernel scale values. The
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optimized values for box constraint and kernel scale in each iteration are also pre-

sented as a table (see Fig. 4-18). Also, a summary of Bayesian optimization showing

the calculated and estimated best values for sigma and box constraint is given at the

end of optimization (see Fig. 4-19).

Evaluating the classifier

The performance of the classifier is first quantified by the loss of classification (rep-

resented as kFoldLoss in results) in this work. The training data set is separated into

10 folds. For each fold, the loss of classification is computed for in-fold observations

with a model trained on out-of-fold observations. Finally, taking an average of the

loss of classification of 10 folds, the final classification error is calculated. The idea

to split and evaluate the performance of classifiers on different data sets is to avoid

overfitting, since the fitted classifier would give better results on the data set that it

learnt from but may not generalize well to new data.

Another means by which to evaluate the performance of a classifier, available

under Matlab Statistics and Machine Learning Toolbox, is via observing the clas-

sification edge. The edge is the weighted mean of the classification margins. Here,

the classification margin for a binary classifier is defined for each observation, as the

difference between the classification score for the true class (faulty measurements

in the considered problem) and the classification score for the false class (nominal

measurements in the considered problem). In this definition, the classification score

is considered as the signed distance from each observation to the decision boundary.

While all of these variables would be satisfactory for the performance analysis of

classifiers, due to the skewed-class nature of the problem, another means of evaluation

is necessary. When the number of instances for different classes in a data set has a big

difference, it is named as a skewed-class problem. The inherent trickiness to evaluate

classifiers for such problems lies with the fact that predicting only the more frequent

class may lead to a misunderstanding that the classifier gives superior performance,

although it might not be even learning at all. For the problem of the fault detection

of a control surface, it would serve as a good example to clarify more. Since nominal
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Figure 4-18: Box constraint C, kernel scale � and objective function J(✓) values after
each iteration during Bayesian Optimization. Minimum objective (0.00096366) can
be seen at iteration number 28, and corresponding C = 911.28 (given as box ) and
� = 2.7047 (given as sigma) are selected as the best values in this tuning.
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Figure 4-19: Final results for the optimization, time of execution, optimal values of
box constraint and sigma values

data is not difficult to generate in real flight, while it is difficult to fly faulty, the

nominal data is much more vast compared to the faulty data

For such problems, in order to define a single metric to evaluate the abilities of

classification, precision and recall should be defined. Fig. 4-20 shows the confusion

matrix which is used to calculate the precision and recall. Here, in general, the class

indicated by 1 is the skewed class, corresponding to the fault class in this study. True

positive refers to the number of instances that are predicted faulty and are actually

faulty, false positive refers to the number of nominal instances that are miscalculated

or predicted as faulty, false negative is the number of instances that are actually faulty

but the classifier predicted that they are nominal, and finally the true negative is the

number of instances that are predicted as nominal and are actually nominal. Precision

gives a measure on the fraction that was actually faulty of all the measurements that

were predicted as faulty. Precision can be related to number of false alarms which is

cautiously avoided in flight control systems. Precision is defined as :

precision =

true positives

true positives+ false positives
(4.37)
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Figure 4-20: Confusion matrix

Recall refers to the fraction of correctly detected faults in all situations that were

actually faulty. Recall can be related to the sensitivity of diagnostic systems. Indeed,

an ideal health monitoring system is the one which accomplishes a reasonable balance

between the false alarm rate and the ability to detect reasonably small faults:

recall =
true positives

true positives+ false negatives
(4.38)

Finally, as a single metric to evaluate the performance of the classification, the F1

score is defined as:

f1Score =
2 ⇤ precision ⇤ recall
precision+ recall

(4.39)

The F1 score, indicated as f1Score in the tables throughout this study, is used as

the main parameter to evaluate classifiers.

4.3 Conclusion

In this chapter, an introduction to machine learning algorithms is presented. Two

main branches of machine learning — supervised and unsupervised learning — are
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introduced. Terminology and construction of input and output vectors are presented

using easy examples of regression and classification. Regression and classification are

two common problems discussed under supervised learning problem. The problems

that are frequently encountered during machine learning applications are discussed

and best practices to achieve more accurate results are presented.

After this generic introduction to machine learning implementations, Support Vec-

tor Machines (SVM) are discussed. A very brief section explains their mathematical

background and then application procedures are presented.

The next chapter explains the simulation results by applying SVM to drone flight

data. First, results from the application of SVM to simulated measurements are

presented. Then, SVM is applied to flight data. To be precise on how the data is

generated, the injection of faults during flight, and the modifications to the Paparazzi

autopilot in order to realize the faults, are explained in detail.
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Chapter 5

Simulation Results

This chapter focuses on the results of fault classification simulations under two main

sections: classification of faults based on simulated flight measurements and classi-

fication of faults based on real flight data. In the first part, flight data simulation

uses the mathematical equations explained under mathematical modeling chapter of

this thesis. The second part commences with a thorough explanation of the path

taken to generate faults in real flight for two reasons: first, the importance of having

knowledge on data, how it is generated/labeled; and second, constructing a guide for

researches so that they can realize their own faulty flight campaigns. Following this,

the classification for the control surface stuck fault and the loss of effectiveness fault

are investigated separately.

5.1 Fault detection from simulated flight data

In this section, the model of an aircraft is simulated in Matlab using the equations

of motion given in Equ. 3.95. This drone model will not be used for the design of

FDD algorithms, but rather to generate data that will be used by the FDD algo-

rithms. After the equations of motion of the drone have been solved numerically,

the accelerometer and gyro measurements are simulated based on the statistics of the

onboard sensors. This part of the study uses the model of a MAKO drone to simulate

the measurements, while the real flights (that will be explained in the forthcoming
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section) use a ZAGI drone.

For the MAKO simulation, the stability and aerodynamic force coefficients are

generated by AVL. The input vector can be written as u (t) 2 IR

3:

u (t) =
h
�
a

�
e

n
iT

(5.1)

Here, �
a

aileron deflection angle is in degrees, �
e

elevator deflection angle is in

degrees, and n engine speed is in rev/s.

When the actuators are healthy, the actual control input signal will be equal to

the given input signal. In the case of a fault, the actual signal can be modeled as:

u (t) = Eu
c

+ u
f

(5.2)

where u
c

is the desired control signal, E = diag(e1, e2, e3) is the effectiveness of

the actuators where 0  e
i

 1 with (i = 1, 2, 3) and u
f

is the additive actuator fault.

This model makes it possible to simulate all four types of actuator faults shown in

Fig. 3-10.

Most of the FDD algorithms are designed considering open-loop systems, ignoring

the probable influence of the controller on the detection performance [75]. Through-

out this first section, the system is also open-loop. In this chapter, a step by step

approach is followed. In this first section (diagnosis with simulated data), the effect

of the controller is ignored, while in the next section (diagnosis with real flight data),

diagnosis is achieved alongside a functioning controller.

The code for simulations in this section can be reached in Github1. First, the

measurements are simulated for faulty and nominal flight conditions. An example

control input (75% loss of efficiency), could be an actual aileron command of �a
a

= 1

�

corresponding to a desired �d
a

= 4

�. In the simulation, this fault is introduced after

120 s. Actual aileron command and corresponding simulated accelerometer x� axis

readings can be seen in Fig. 5-1. The measurements are labeled, and an example plot

showing simulated measurements in two-dimensional feature space, a
x

- a
y

, is given

1
https://github.com/benelgiz/curedRone
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Figure 5-1: Loss of effectiveness fault simulation in aileron command and correspond-
ing accelerometer x axis measurement

in Fig. 5-2.

It is always important to visualize the features to be able to comprehend data

structure before applying machine learning algorithms. For that reason, the available

observations form the six-dimensional pattern space, ~x =

h
a
x

a
y

a
z

!
x

!
y

!
z

i

can be visualized in pairs, such as in Fig. 5-2. There are further methods used to

visualize multidimensional data such as Tours [6, 22, 23] and the GGobi data visual-

ization system [24]. In this work, the dimensionality reduction technique, Principle

Component Analysis (PCA), is utilized for visualization. If briefly explained, the fea-

ture vector x 2 IR

n is mapped to a lower dimensional space where the new feature set

will be represented by z 2 IR

k. The final two-dimensional feature set can be plotted

to give an idea about the distribution of faulty and nominal measurements’ in feature

space, as shown in Fig. 5-3.

The aim of machine learning methods is to train a model with a given data set in

order to predict the output values corresponding to a new input. A binary classifier

141



-3 -2 -1 0 1 2 3

ax

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

a
y

normal
fault

Figure 5-2: Accelerometer simulation a
x

vs a
y

-6 -5 -4 -3 -2 -1 0 1 2 3

z
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

z
2

normal

fault
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Figure 5-4: Supervised learning is achieved in two steps: Training Phase in which the
model parameters are calculated given labeled data and Prediction Phase in which
the label is predicted for a new input using the trained model.

is used in this work to classify two classes; faulty and nominal. The fault considered

in this study is the loss of effectiveness of the control surfaces. SVM is a supervised

classification algorithm and has two main phases as shown in Fig. 5-4. In the training

phase, the model is learnt to fit with the labeled data that is fed to the SVM algorithm.

This phase is usually followed by a tuning phase, where some of the parameters of

SVM are changed and the results with the best fit are compared via cross validation in

order to avoid overfitting. The last phase is the prediction, where for a new instance,

the classifier predicts whether it corresponds to a faulty or nominal condition.

Training data is comprised of labeled data where the label can belong to one of

two possible cases. This data set is saved in X 2 IR

m⇥n where m,n correspond to

number of instances and features, respectively (shown in Fig. 5-5).

acct
x

acc(t+1)
x

acc(t+m�1)
x

X =

acct
y

acct
z

acc(t+1)
y

gyrot
x

gyrot
y

gyrot
z

acc(t+1)
z

gyro(t+1)
x

gyro(t+1)
y

gyro(t+1)
z

acc(t+m�1)
y

acc(t+m�1)
z

gyro(t+m�1)
x

gyro(t+m�1)
y

gyro(t+m�1)
z

Figure 5-5: Feature matrix X 2 IR

m⇥6 is comprised of accelerometer and gyro data
of m instances

The label information corresponding to the measurement instances is also fed to
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Figure 5-6: Posterior probability of loss in effectiveness fault for test set when a fault
is injected at t = 120s.

the SVM algorithm during the training phase as an output vector y 2 {�1, 1}. The

aim of SVM is to find an optimal hyperplane maximizing the margin by solving the

optimization problem for non-linearly separable datasets. For further details on SVM

and machine learning in general, the reader could refer to the methodology chapter

of this thesis.

To avoiding overfitting — which is the main problem of parametric discrimination

approaches such as neural networks — parameter C (box constraint) is tuned to result

in the optimal fit for the cross validation set. Box constraint C controls the values

of the parameters learnt during the training phase, and is further explained in the

methodology chapter. The data set available is first divided into two portions with a

percentage of 20%; 80% where the bigger chunk is the training set and the remaining

is the test set. Further, the training set is divided as cross-validation and training

sets. The data is split in order to avoid overfitting. In overfitting, the models fit very

accurately to the data that they are trained with, but they fail to generalize to new

inputs, resulting in bad prediction performance for the new data. To improve the
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Figure 5-7: A scene from one of many flight campaigns realized by ENAC UAV
laboratory team. A safety pilot can be seen holding the remote control. Photo taken
by Alexandre Bustico.

performance of the classifier trained with the training data, it is tuned with the cross-

validation data. Finally, the ability of the classifier is tested on the test set. This

parameter is also tuned for the outliers to generalize the distribution of the data,

rather than having fine fits for all individual data in the training set. A satisfactory

result of the training and tuning is followed by prediction, where the classifier predicts

if the new measurement data belongs to the faulty or nominal class. The output of the

SVM classification is not the probability that the new measurement belongs to one

class (as in traditional classification problems), but the class information it belongs

to. To investigate the performance of the classifier on the test set, a method [78]

is used to calculate the posterior probabilities given the probability that the new

measurements belong to a faulty mode. Results in Fig. 5-6 show that proper tuning

achieves very accurate and instant detection of the drone fault.
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5.2 Fault detection from real flight data

This second section of this chapter discusses the classification results using real flight

data. Flight campaigns have been realized in the presence of a safety pilot to recover

the drone in the case of loss of control when the faults are injected. A scene from one

of the many flight campaigns realized by the ENAC UAV laboratory team is given in

Fig. 5-7. The safety pilot can be seen in the photo holding the remote control.

In this section, the injection of faults to the flights are explained in detail. The

Paparazzi GCS has been altered to inject real-time faults, and controllers in some of

the flight modes have been changed to accommodate faults. Next, the selection of the

faults and nominal phases, and also labeling data, are presented. Finally, the labeled

data used to train classifiers for elevon stuck and loss of efficiency faults separately

and the classifiers are evaluated. We implement a variety of techniques to improve

performance, such as feature engineering and tuning the classifiers.

5.2.1 Injecting faults in flight from Paparazzi GCS

For the faulty flight data gathering, some modifications to the Paparazzi autopilot

was necessary in two main parts: first, injecting the faults real-time from GCS; and

second, editing the controller onboard so that the sent faulty input values configures

the servos as manipulated from the GCS.

In order to inject faults real-time from GCS, a slider is added to the GCS to set

the fault during flight and then set it back to normal flight conditions if necessary.

Fig. 5-8 shows the GCS view with the fault settings open. This pane can be found

under Settings > FAULT as highlighted in pink in Fig. 5-8. The four-row configu-

ration represents, from top to bottom, the multiplicative error in the right elevon,

the multiplicative error in the left elevon, the additive error in the right elevon, and

finally, the additive error in the left elevon. The nominal condition where there is no

fault, is given by [right left right_offset left_offset] = [

1.0 1.0 0 0

].

This configuration allows the user to realize all types of actuator faults, such as con-

trol surface inefficiency or stuck. To generate the fault of the right elevon stuck at
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Figure 5-8: View of fault injection tool in Paparazzi ground control station
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its nominal position, setting the first slider (right) to zero is enough. The generate

stuck fault at other positions, right_offset slider should be changed to the desired

stuck position while keeping the first slider at zero. As soon as Settings is changed

from the GCS (from nominal to faulty or from faulty to nominal), a message is saved

to Paparazzi Messages (onboard SD card) with the values set in the GCS, as shown

in Fig. 5-9 (SETTINGS Message). This message includes the time (the moment that

the Settings are changed from the GCS), the aircraft number, and the values set from

the GCS ([right left right_offset left_offset]).

2303.4170 52 SETTINGS 1.000000 1.000000 0.000000 0.000000}

right
control
surface

multiplicative

left
control
surface

multiplicative

}}}
right

control
surface
additive

left
control
surface
additive

time } }

A/C 
#

Figure 5-9: SETTINGS Message saves the multiplicative and additive fault values
inserted from the GCS. [1.0 1.0 0.0 0.0] corresponds a command from the GCS to
revert back to nominal phase

5.2.2 Modifications to Paparazzi autopilot controls to inject

faults during flight

For the second part, which is to modify the servo command from the autopilot to

the servos, we examine the Paparazzi flight modes is necessary. For the majority

of time, there are three modes for fixed-wings from the control perspective: Auto 1,

Auto 2, Manual. In Auto 1, the pilot is still in the loop and gives the desired pitch

and roll values to the controller. The desired elevator and aileron commands are then

calculated by the autopilot and passed to control allocation where the final desired

servo commands are sent to servos (highlighted by Auto 1 in Fig. 5-10. In the Auto

2 mode, there is no need for a pilot, since the navigation is also held by the autopilot

for a given flight plan. This mode is also given as Auto 2 in Fig. 5-10. In Manual
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mode, the pilot gives the desired elevator and aileron commands, and the desired

servo commands are calculated in the autopilot’s control allocation phase. So, there

is still a very low sense of autonomy in the manual phase.

RC 
Transmitter

Stabilization Control
Allocation

Servos
Pitch & Roll
Desired

Elevator
 & Aileron
Desired

Servo
Commands

AUTO 1

Guidance

Flight Plan

Pitch & Roll
Desired

Attitude & Climb
Rate Desired

AUTO 2

Figure 5-10: Paparazzi autonomy modes

Flying with faults is a challenge. The risk of crashing is increased on purpose, so a

back up plan is necessary so as to recover from faulty situations if the drone seems to

be out of control and/or about to crash. For that purpose, the faults are only injected

to Auto modes, and Manual mode is always free of faults even a fault is given from

the ground station. Thus, when the pilot sees a safety problem during the faulty

operation, s/he can switch to Manual mode from the remote controller and then has

the control of the control surfaces free from faults. Depending on the nature of the

fault injected, such as for some severe stuck control surface fault data gathering, this

could be a game changer, since the drone would crash unless action is taken. This is

shown in Fig. 5-11 with a switch initiated by the pilot’s remote control.

This figure also shows that during the control allocation phase — which is the cal-

culation of the desired servo commands from given desired elevator/aileron commands

— faults are injected if the mode is Auto 1 and Auto 2 when fault multiplicative or

fault additive values are changed from the GCS by the operator. When switched to

Manual mode, the control allocation does not consider the injected faults.
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Figure 5-11: Modifications on the control modes of Paparazzi autopilot

The modifications in the control allocation code in order to consider additive and

multiplicative faults can be seen in the Paparazzi code (in C) given below. In Manual

mode, the servos are not changed by the injected faults. The desired elevator and

aileron commands given by the pilot are changed to servo commands by control allo-

cation as usual. In case of Auto 1 and Auto 2 modes, control allocation is modified by

adding the additive faults (vfault_offset_left,vfault_offset_right) and multi-

plying by the multiplicative faults (vfault_left, vfault_right). This changes the cal-

culation of servo commands (AILEV ON_LEFT and AILEV ON_RIGHT ) in the

line of code (set servo = AILEV ON_LEFT and set servo = AILEV ON_RIGHT ).

In the case of a nominal flight, or setting the drone back into the nominal flight, since

the multiplicative faults (vfault_left, vfault_right) are set to 1.0 and additive

faults (vfault_offset_left,vfault_offset_right) are set to 0.0, the allocation of

the control commands into the servo commands are not modified. In the case of

Manual mode, the autopilot ignores the fault injection with the same idea; that is,

multiplicative faults (vfault_left, vfault_right) are set to 1.0 and additive faults

(vfault_offset_left,

vfault_offset_right) are set to 0.0.
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<command_laws>

<let var="aileron" value="@ROLL * AILEVON_AILERON_RATE"/>

<let var="elevator" value="@PITCH * AILEVON_ELEVATOR_RATE"/>

<let var="manual" value="(fbw_mode==FBW_MODE_MANUAL)"/>

<let var="vfault_left" value="100 * ($manual ? 1 : fault_left)"/>

<let var="vfault_right" value="100 * ($manual ? 1 : fault_right)"/>

<let var="vfault_offset_left" value="($manual ? 0 : fault_offset_left)"/>

<let var="vfault_offset_right" value="($manual ? 0 :

fault_offset_right)"/>

<set servo="MOTOR" value="@THROTTLE"/>

<set servo="AILEVON_LEFT" value="(($elevator - $aileron) * $vfault_left)

/ 100 + $vfault_offset_left"/>

<set servo="AILEVON_RIGHT" value="(($elevator + $aileron) *

$vfault_right) / 100 + $vfault_offset_right"/>

</command_laws>

5.2.3 Reading and labeling flight data

Flight data saved to the onboard SD card should be converted to data format by

using the sd2log program of Paparazzi. To do this, from the terminal, browse into the

folder including the log file in LOG format, which is the file format for the onboard

data saved in Paparazzi.

flightData.LOG
 .~/paparazzi/sw/logalizer/sd2log flightData.LOG .

flightData.log
flightData.tlm

flightData.data

Figure 5-12: Conversion of raw flight data saved to SD card onboard to .data file to
be used in further calculations

Run the program under paparazzi/sw/logalize/sd2log and specify the file to be

converted to .data format and where to export it, as shown in Fig. 5-12 (’.’ means
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extract to current folder).

An example of part of the flight data2 is given in Fig. 5-14, and the whole file is

available in Github3. The UAV used to realize the faulty flights in order to generate

labeled data is given in Fig. 5-13.

Figure 5-13: The flying-wing: ZAGI

The duration of the flight was approximately one hour. The flight has also been

practiced under a strong wind. Thirty-four different faults are injected. During the

flight, the effect of the faults on the drone were sometimes visible to human eye, and

sometimes not. For the control surface stuck faults, even if only one control surface

was stuck, the drone was immediately out of control and the safety pilot then takes the

initiative. Thanks to the piloting skills, no crashes occurred. For the ineffectiveness of

the control surface faults — where the controller has still an effect but not as efficient

as before — error in navigation was observed.

After converting the flight data file to .data format, the file can be read from

Matlab. The next step is to detect the time stamps at which the faults are injected

and then label all of the data corresponding to this fault interval, as designated with

different colors in Fig. 5-14. As there is usually more than one fault type gener-

ated during flights, another step in data manipulation is to choose which faults to
2
17_07_06__10_21_07_SD.data

3
https://github.com/benelgiz/cureDDrone/tree/master/

data/v4_multiplicativeAdditive_MURET_06_07_2017
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2813.0450 52 ACTUATORS 1499,1536,1560
2813.0450 52 ACTUATORS 1499,1536,1560
2813.0450 52 COMMANDS 4597,1246,2574
2813.0450 52 RC -14,116,4770,116,7299,7306,0,0,0,0,0,0,0,0,0,0
2813.0450 52 RC -14,116,4770,116,7299,7306,0,0,0,0,0,0,0,0,0,0
2813.0450 52 DESIRED 0.52 0.09 6.0 -55 132 279 0.9 12.0
2813.0450 52 ATTITUDE 0.534017 -0.392163 0.025543
2813.0450 52 IMU_MAG 0.000000 0.000000 0.000000
2813.0450 52 IMU_GYRO -0.089355 0.260010 0.254639
2813.0450 52 IMU_ACCEL 0.966797 -0.396484 -8.825195
2813.0450 52 SETTINGS 0.000000 1.000000 0.000000 0.000000
2813.0610 52 IMU_MAG 0.000000 0.000000 0.000000
2813.0610 52 IMU_GYRO -0.114258 0.258057 0.254639
2813.0610 52 IMU_ACCEL 1.234375 -0.439453 -9.596680
2813.0780 52 IMU_MAG 0.000000 0.000000 0.000000
2813.0780 52 IMU_GYRO -0.125000 0.253662 0.257324
2813.0780 52 IMU_ACCEL 1.457031 -0.489258 -9.568359
2813.0950 52 NAVIGATION 4 0 -36.7 62.0 0.0 68.1 35 0
2813.0950 52 GPS 3 36027419 481365983 3291 271855 1825 46 1956 378498400 31 0
2813.0950 52 ACTUATORS 1499,1540,1416
2813.0950 52 ACTUATORS 1499,1540,1416
2813.0950 52 COMMANDS 4597,1313,2533
2813.0950 52 RC -14,116,4770,116,7299,7306,0,0,0,0,0,0,0,0,0,0
2813.0950 52 RC -14,116,4770,116,7299,7306,0,0,0,0,0,0,0,0,0,0
2813.0950 52 DESIRED 0.52 0.09 6.0 -55 132 279 0.9 12.0
2813.0950 52 ATTITUDE 0.529850 -0.381465 0.029789
2813.0950 52 IMU_MAG 0.000000 0.000000 0.000000
2813.0950 52 IMU_GYRO -0.119629 0.240479 0.261230
2813.0950 52 IMU_ACCEL 1.541016 -0.420898 -9.800781
2813.1110 52 IMU_MAG 0.000000 0.000000 0.000000
2813.1110 52 IMU_GYRO -0.114746 0.208496 0.267090
2813.1110 52 IMU_ACCEL 1.696289 0.000000 -11.002930
2813.1280 52 IMU_MAG 0.000000 0.000000 0.000000
2813.1280 52 IMU_GYRO -0.134521 0.132812 0.264893
2813.1280 52 IMU_ACCEL 1.583984 0.058594 -12.596680
2813.1450 52 ACTUATORS 1499,1541,1416
2813.1450 52 ACTUATORS 1499,1541,1416

N
O
M
I
N
A
L

F
A
U
L
T

#
23

...
2815.0990 52 DESIRED 0.52 0.36 0.2 -34 171 279 1.6 12.0
2815.0990 52 ATTITUDE -0.444056 -0.559515 -0.610577
2815.0990 52 IMU_MAG 0.000000 0.000000 0.000000
2815.1000 52 IMU_GYRO -0.610107 -0.126465 -0.329834
2815.1000 52 IMU_ACCEL -0.690430 0.520508 -3.229492
2815.1000 52 SETTINGS 0.000000 1.000000 0.000000 1521.000000
2815.1150 52 IMU_MAG 0.000000 0.000000 0.000000
2815.1150 52 IMU_GYRO -0.604248 -0.142578 -0.311279
2815.1150 52 IMU_ACCEL 0.178711 -0.672852 -5.609375
2815.1320 52 IMU_MAG 0.000000 0.000000 0.000000
2815.1320 52 IMU_GYRO -0.646484 -0.125488 -0.298340
2815.1320 52 IMU_ACCEL -0.178711 -0.291992 -6.009766
2815.1490 52 ACTUATORS 1601,1586,1492
2815.1490 52 ACTUATORS 1601,1586,1492
2815.1490 52 COMMANDS 5612,9600,9600
2815.1490 52 RC -14,116,4770,116,7299,7306,0,0,0,0,0,0,0,0,0,0
2815.1490 52 RC -14,116,4770,116,7299,7306,0,0,0,0,0,0,0,0,0,0
2815.1490 52 DESIRED 0.52 0.36 0.2 -34 171 279 1.6 12.0
2815.1490 52 ATTITUDE -0.469559 -0.566175 -0.619640
2815.1490 52 IMU_MAG 0.000000 0.000000 0.000000
2815.1490 52 IMU_GYRO -0.602295 -0.114746 -0.277100
2815.1490 52 IMU_ACCEL -1.187500 -0.916992 -1.717773

F
A
U
L
T

#
24

...

...

Figure 5-14: A piece of the flight data corresponding to nominal and two different
fault phases of the flight. SETTINGS message exists only if there is a change in
the multiplicative and additive fault parameters via GCS. The first data in each
row corresponds to the time stamp. Second data in each row is the aircraft number
which is 52 for this flight. Third data in each data line corresponds to the label of
information in that line. As an example, on the last line, the label is IMU_ACCEL.
This means that this line gives accelerometer readings. Last three data in this line are
accelerometer x-axis (-1.187500), accelerometer y-axis (-0.916992) and accelerometer
z-axis (-1.717773) readings.
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investigate.

The fault injection or change from fault condition to nominal mode is done via

the GCS, with a corresponding message saved to the SD card onboard in Paparazzi

Messages indicated via Settings. Settings gives multiplicative fault and additive fault

values, and only appears in the flight data when one of the control surface effectiveness

values is changed. The value of the Settings for the nominal phase is [1.0 1.0 0.0 0.0],

and a corresponding example line in the data (corresponding to a command to revert

to nominal condition) can be seen in Fig. 5-9.

This means that to multiply the value given by the controller by 1 and add 0,

it does not change the values given by the autopilot. As soon as any of the control

surface effectiveness values are changed in the GCS, a new Settings value is saved to

the file (shown with arrows in Fig. 5-14).

To find the indexes where the nominal and faulty data starts and ends, the values

of the Settings message is investigated. So when there is a Settings message in the

flight, it should be either a fault generation or a return to nominal condition after a

fault. If the message contains the Settings message equal to [1.0 1.0 0.0 0.0], this data

index is selected as the nominal condition start index and a previous index before the

next Settings message is the last index of this nominal phase. The matrix holding

the start and end index for the nominal phases are saved as nominal_start_stop, as

shown in Table 5.1, where the first row corresponds the start index of each nominal

set and the second row corresponds to the last index of the corresponding as nominal

phase. As an example, we check the second nominal phase of the flight. The first

nominal phase is the flight before any fault is injected, starting from take off to the

first fault injection. After the fault injected for the first time, we wait a certain

amount of time and then set the Settings back to normal (1.0 1.0 0 0) from the GCS.

This corresponds to the 516,919th data line entry (which is SETTINGS 1.0 1.0 0

0 ) in the whole data set (see nominal_start_stop(1,1) in Table 5.1). Then, another

fault is injected at the time corresponding to the 521,966th line in the data file, thus

until this index (see nominal_start_stop(2,1) in Table 5.1) the data corresponds to

the second nominal phase.
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Table 5.1: Nominal phase start stop indexes of the flight

nominal phase number 2 3 4 5 · · · 12
nominal start
nominal_start_stop(1,:) 516919 551627 755227 824545 · · · 1048055

nominal stop
nominal_start_stop(2,:) 521965 622015 782580 924704 · · · 1065548

For the fault indexes, a similar approach is followed except that the Settings

messages selected are the ones that are different to [1.0 1.0 0.0 0.0]. An example is

Fault #23 in Fig. 5-15 and its corresponding start and end indexes given in Table 5.2.

2813.0450 52 SETTINGS 0.000000 1.000000 0.000000 0.000000

Figure 5-15: SETTINGS message corresponding to stuck of right control surface

Table 5.2: Faulty phase start stop indexes of the flight

fault phase number 1 2 · · · 23 · · · 34
fault start
fault_start_stop(1,:) 456888 473827 · · · 924705 · · · 1076847

fault stop
fault_start_stop(2,:) 473826 485762 · · · 925390 · · · 1077117

The next step is to choose the phases of the flight to work with. As an example,

a phase of the flight where there is enough nominal data followed with an extreme

fault injection is selected. This corresponds to the fourth nominal phase of the flight

followed by the 23rd fault selected. Fault #23 corresponds to the right control surface

stuck and can be seen in Fig. 5-14. The next step is to select the measurement cor-

responding to these selected time intervals, and this is achieved by logically AND ing
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the indexes of interest, such as the indexes of fault and gyro data measurements as

shown in Fig. 5-16. The script for labeling the nominal and faulty measurements is

the selectDataToInvest.m file given in Appendix B.2. The output of this file is the

accelerometer and gyro measurements corresponding to the selected phases of the

flight.

2813.0450 52 ACTUATORS 1499,1536,1560
2813.0450 52 ACTUATORS 1499,1536,1560
2813.0450 52 COMMANDS 4597,1246,2574
2813.0450 52 RC -14,116,4770,116,7299,7306,0,0,0,0,0,0,0,0,0,0
2813.0450 52 RC -14,116,4770,116,7299,7306,0,0,0,0,0,0,0,0,0,0
2813.0450 52 DESIRED 0.52 0.09 6.0 -55 132 279 0.9 12.0
2813.0450 52 ATTITUDE 0.534017 -0.392163 0.025543
2813.0450 52 IMU_MAG 0.000000 0.000000 0.000000
2813.0450 52 IMU_GYRO -0.089355 0.260010 0.254639
2813.0450 52 IMU_ACCEL 0.966797 -0.396484 -8.825195
2813.0450 52 SETTINGS 0.000000 1.000000 0.000000 0.000000
2813.0610 52 IMU_MAG 0.000000 0.000000 0.000000
2813.0610 52 IMU_GYRO -0.114258 0.258057 0.254639
2813.0610 52 IMU_ACCEL 1.234375 -0.439453 -9.596680
2813.0780 52 IMU_MAG 0.000000 0.000000 0.000000
2813.0780 52 IMU_GYRO -0.125000 0.253662 0.257324
2813.0780 52 IMU_ACCEL 1.457031 -0.489258 -9.568359
2813.0950 52 NAVIGATION 4 0 -36.7 62.0 0.0 68.1 35 0
2813.0950 52 GPS 3 36027419 481365983 3291 271855 1825 46 1956 378498400 31 0
2813.0950 52 ACTUATORS 1499,1540,1416
2813.0950 52 ACTUATORS 1499,1540,1416
2813.0950 52 COMMANDS 4597,1313,2533
2813.0950 52 RC -14,116,4770,116,7299,7306,0,0,0,0,0,0,0,0,0,0
2813.0950 52 RC -14,116,4770,116,7299,7306,0,0,0,0,0,0,0,0,0,0
2813.0950 52 DESIRED 0.52 0.09 6.0 -55 132 279 0.9 12.0
2813.0950 52 ATTITUDE 0.529850 -0.381465 0.029789
2813.0950 52 IMU_MAG 0.000000 0.000000 0.000000
2813.0950 52 IMU_GYRO -0.119629 0.240479 0.261230
2813.0950 52 IMU_ACCEL 1.541016 -0.420898 -9.800781
2813.1110 52 IMU_MAG 0.000000 0.000000 0.000000
2813.1110 52 IMU_GYRO -0.114746 0.208496 0.267090

2815.1000 52 SETTINGS 0.000000 1.000000 0.000000 1521.000000
2815.1150 52 IMU_MAG 0.000000 0.000000 0.000000
2815.1150 52 IMU_GYRO -0.604248 -0.142578 -0.311279
2815.1150 52 IMU_ACCEL 0.178711 -0.672852 -5.609375
2815.1320 52 IMU_MAG 0.000000 0.000000 0.000000
2815.1320 52 IMU_GYRO -0.646484 -0.125488 -0.298340
2815.1320 52 IMU_ACCEL -0.178711 -0.291992 -6.009766
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Figure 5-16: Indexing SETTINGS, to find the fault and nominal flight intervals,

indexing GYRO measurements to AND with FAULT indexes to find the indexes of

faulty gyro measurements

156



The SVM classifier has been trained and tuned with the flight data, generated by

following the steps covered above, in order to classify the faulty and nominal classes.

The simulations have been developed under the Matlab coding environment. Some

tools, such as the calculation of the f1Score, were written as Matlab scripts rather

than changing some of the arguments of the toolbox functions, since they were not

found available in the toolbox (either they did not exist or were difficult to obtain).

The simulations have been executed on HP Z820 Workstation with 3.1 GHz, 32

cores.

This work investigates only binary classification, rather than multi-class classifi-

cation considering multiple different faults. However, different faulty cases have been

studied to further attack the problem of multi-class classification in future studies.

The classifier’s abilities in different fault conditions have been investigated. The main

two types of faults of interest in this study are the control surface stuck fault and

the LOE. The flight data4 and code5 that have been developed are publicly available

under Github.

All three steps (training, tuning and evaluation) explained thoroughly in the SVM

application section, have been applied and the results are given below.

5.2.4 Control surface stuck fault

During the flights, the most challenging fault to realize was the control surface stuck.

The drone reacted very fast with an uncontrollable dive towards the ground and the

safety pilot initiated a manual recovery by triggering the safety switch, shown in

Fig. 5-11. So the time taken from starting the ignition of the control surface stuck

fault until the manual pilot’s intervention was very short (⇠2 seconds), which can be

seen from the accelerometer x-direction readings in Fig. 5-17.

This causes the problem of skew-class classification where there is a big difference

between the number of instances belonging to different classes and requires some

4
https://github.com/benelgiz/cureDDrone/tree/master/

data/v4_multiplicativeAdditive_MURET_06_07_2017

5
https://github.com/benelgiz/cureDDrone/tree/master
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special treatment, as explained above under Section 4.2.2.

2796 2798 2800 2802 2804 2806 2808 2810 2812 2814
-1.5
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0

0.5

1

1.5

2

Figure 5-17: Accelerometer readings along x-direction during flight interval just before

control surface stuck (nominal, represented with blue) and during control surface stuck

at 0° until the safety pilot’s intervention

The first problem considered for classification is the right elevon stuck at 0°. Gyro

and accelerometer measurements are saved to onboard SD card at 60 Hz. Nomi-

nal class involves ⇠5 minutes of accelerometer and gyro data while the faulty class

comprises ⇠2 seconds of data, thus the problem is treated as skew-class classification.

Having knowledge about data is critical for machine learning applications. Usu-

ally, the performance of the learning algorithms are dependent on the level of the

engineer’s experience, since some of the critical decisions are handled by her/him

such as selection of features (though not for all machine learning methods). Fig. 5-17

shows accelerometer x-axis measurements for a duration of ⇠20 seconds. Measure-

ments plotted in blue indicate the part of the flight where the elevon works correctly,

while the red part of the plot corresponds to the faulty phase. It can be interpreted

from the Fig. 5-17 that the fault injected shows a distinct change in the x-axis ac-
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celerometer measurements when the fault is injected.
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Figure 5-18: Accelerometer readings along x-direction during flight interval before

control surface stuck (nominal, represented with blue) and during control surface

stuck at 0° until the safety pilot’s intervention

To investigate further, measurements have been plotted during a larger time scale

involving ⇠70 seconds of measurements, as shown in Fig. 5-18. Here, it is seen that

the accelerometer measurements corresponding to the faulty phase could be observed

during the nominal flight phase as well, thus it may be necessary to check the time

change of translational acceleration to observe a difference in behavior.

Fig. 5-19 and Fig. 5-20 show the accelerometer measurements along z-direction

and angular velocities along x-direction during a short time interval. Here, although

an average of faulty measurements would result in an obvious difference, individual

measures might correspond to the nominal phase of the flight as well.

The measurements are also plotted in feature spaces a
x

-a
z

and a
x

-a
y

as shown in

Fig. 5-21 and Fig. 5-22. It shows that a
x

-a
z

space gives a distribution that would
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make it easier to classify the faulty and nominal phases, while in a
x

-a
y

feature space,

the measures are quite similar and difficult to classify.
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Figure 5-19: Accelerometer measurements along z direction a
z

for faulty and nominal

flight data
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Figure 5-20: Angular velocity w
x

for faulty nominal flight data
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Figure 5-21: a
x

vs a
z

feature space for faulty nominal flight data
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Figure 5-22: a
x

vs a
y

feature space for faulty nominal flight data

Table 5.3 shows the results of SVM classification for the untuned linear kernel, the

untuned Gaussian kernel, and the tuned Gaussian kernel via two methods (heuristic

and Bayesian), respectively, in its columns. Although a variety of variables used in
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Table 5.3: Untuned and tuned via heuristic approach and tuned via Bayesian opti-
mization SVM classification evaluations

Untuned
linear
kernel

Untuned
Gaussian
kernel

Tuned heuristic
Gaussian kernel

Tuned Bayesian
Gaussian kernel

kernel scale 1 1 2.1187 10.3581
box constraint 1 1 1 1323.1
margin 10.5927 2.0248 2.4763 5.3004
edge 10.5875 2.0245 2.4761 5.3004
kFoldLoss 0.2 x 10

�2 1.2 x 10

�3 7.571 x 10

�4 1.2 x 10

�3

precision 0.76 1 1 0.913
recall 0.8261 0.8696 0.913 0.913
f1Score 0.7917 0.9302 0.9545 0.913
comp. time 3.75s 3.4s 5917.5s 1784.7s

the evaluation of classifiers have been presented to the reader for completeness, the

f1Score will be the main variable of concern for this study for the reasons explained

before. The classifier with a box constraint = 2.11 and a kernel scale = 1 have been

found to give the highest f1Score (f1Score = 0.9545).

To introduce the time change behavior of the system, the feature set has been

widened with the additions of data from past measurements for each feature. We

consider one of the features (shown in Fig. 5-23), accelerometer data in x-axis, cor-

responding to one of six columns (one of six features) in the feature matrix given in

Fig. 5-5.

acct
x

acc(t+1)
x

acc(t+2)
x

acc(t+m�1)
x

A
x

=

Figure 5-23: One of the features (accelerometer x-axis) of the original feature matrix

(given in Fig. 5-5) before adding extra features
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Figure 5-24: Addition of features to involve N � 1 previous measurements

Finally, this feature addition is applied to all features of the original feature matrix,

resulting in X 0 2 IR

m⇥6N :

X
0
=

h
A

0
x

A
0
y

A
0
z

G
0
x

G
0
y

G
0
z

iT
(5.3)

where A
0
y

, A0
z

, G0
x

, G0
y

, G0
z

are constructed in the same way as A
0
x

detailed in

Fig. 5-24. For N = 4, the number of features have been increased to 24 in Table 5.4,

which means only three previous measures for each different attribute have been added

to the feature set ((3 past + 1 instant) * 6 axis). This addition to the feature set, in

general, has deteriorated the performance of the classifier, especially for the classifier

with an untuned Gaussian kernel (f1Score= 0.4167) (�f1Score = �0.5135). For the

classifiers with tuned Gaussian kernels, the f1Score decreases by a small amount for

the classifier tuned with heuristic method (f1Score = 0.9444) and increases by an

even smaller amount (f1Score = 0.9143), hence the effect is not very obvious.

Table 5.4 and first three columns of Table 5.5 are the result of the same algorithm

with same number of features and percentage of training/test set ratio. Due to the

usage of random functions, the seed value has been set to a constant value for repro-

ducibility. Stratified sampling has been implemented in order to ensure a reasonable

amount of data from both classes in both sets (training and test). Finally, it has been

discovered that even with the selection of the same number of data for the training

and test sets for both classes (faulty and nominal), some combinations of possible

training/test set selections result in more precise classifiers than others. This can be
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Table 5.4: Untuned and tuned via heuristic approach and tuned via Bayesian opti-
mization SVM classification evaluations

Untuned
24 features

Tuned
Heuristic
24 features

Tuned
Bayesian Opt.
24 features

kernel scale 1 6.0609 67.33
box constraint 1 10 47330
margin 1.9733 3.6353 5.6484
edge 1.9678 3.6317 5.6404
kFoldLoss 5.6 x 10

�3 3.44 x 10

�4 6.19 x 10

�4

precision 1 1 1
recall 0.2632 0.8947 0.8421
f1Score 0.4167 0.9444 0.9143
comp. time 12.4s 5581.9s 1205.2s

seen by observing the tuned f1Scores (f1Scores=0.9444 in and f1Score= 0.9143) in

Table 5.4 increasing to the f1Score (f1Score= 1) in Table 5.5.

Table 5.5 shows the evaluation results of the SVM classifiers trained with a differ-

ent percentage of training and test sets. The first three columns present the results for

a test to training set ratio of 1/4 while the last three columns present the ratio of 2/3.

The f1Score trained and tuned with 80% training data implies that this percentage

is a good choice for this problem (with an f1Score of 1 for tuned classifiers).

5.2.5 Control surface loss of efficiency fault

The loss of efficiency fault was generally more difficult to diagnose. First, a fault of

10% loss of efficiency on the left elevon has been investigated (SETTINGS 1.0 0.9

0.0 0.0). This fault was the first injected fault in the course of the flight, so the

corresponding nominal phase is quite long. During the first minutes of the flight, the

nominal mode was kept long so as to gather more nominal data from the flight before

initiating the fault sequences. The results showed the insufficiency of the method

to diagnose the fault (see Table 5.6 noted as LOE1), even with a Gaussian kernel,

which resulted in exceptional results for stuck control surface diagnostics. One of the

explanations for that might be that since the control surface is not moving in a wide
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Table 5.6: %10 and %40 Loss of efficiency fault in left elevon classification results
with Gaussian kernel

Untuned
LOE1

Tuned
Heuristic
LOE1

Tuned
Bayesian
Opt.
LOE1

Untuned
LOE2

Tuned
Heuristic
LOE2

Tuned
Bayesian
Opt.
LOE2

f1Score NaN 0.1235 0.0111 0.2716 0.2756 NaN
kFoldLoss 5.32 x 10

�2 5.19 x 10

�2 5.33 x 10

�2 3.84 x 10

�2 3.7 x 10

�2 5.33 x 10

�2

precision 1 0.66 NaN 1 0.66 NaN
recall 0.0016 0.119 0 0.0016 0.119 0

range during the nominal course of action, a 10% degradation in the movement of

the elevon does not noticeably change the dynamic behavior of the drone, and this

is not easy to establish from the measurements. Another reason, likely to be the

main driver, could be the compensation of the fault via the controller. The aim of

the controller onboard is to minimize the error to track a given reference trajectory

and corresponding attitude references. Hence, when this error is not minimized, for

one reason or another, the controller re-computes the control signal to minimize this

error. So, due either to due to a different wind condition error or a fault in the

control surface, the controller’s duty is to minimize this error, and a well-designed

controller might handle that especially in the condition where the effect of disturbance

is not catastrophic. This controller’s compensation for the fault could be known by

observing the output of the controller and feeding this information, as well the set of

instances. However, during the course of this study, the abilities of a classifier without

the information from the controller is investigated. The main reason behind this is

to challenge the abilities of a small and inexpensive set of health monitoring system

that does not rely on information from the autopilot.

The loss of efficiency of the left elevon is increased to 40% degradation in order

to investigate if, in this case, the SVM classifier will be able to classify the fault.

This fault is coined as LOE2 Table 5.6. The results show no recuperation in the

classification results for either untuned or tuned classifiers, with f1Score= 0.0032 and

f1Score= 0.2, respectively.
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Table 5.7: %40 Loss of efficiency fault in both elevon classification results with Gaus-
sian kernel for two different number of nominal data sets

Untuned Tuned
Heuristic

Tuned
Bayesian
Opt.

Untuned Tuned
Heuristic

Tuned
Bayesian
Opt.

⇠15min ⇠15min ⇠15min ⇠3min ⇠3min ⇠3min

f1Score NaN 0.1235 0.0111 0.2712 0.2756 NaN
kFoldLoss 4.76 x 10

�2 4.62 x 10

�2 4.73 x 10

�2 19.01 x 10

�2 18.87 x 10

�2 20.61 x 10

�2

precision NaN 0.66 0.27 0.7109 0.6992 NaN
recall 0 0.0681 0.0057 0.1679 0.1716 0

Since the results were very poor in terms of classifying faults, the faults have

been increased to have a 40% degradation in both elevons. The idea is to see at

which level the result of classification will improve, and also to explore any reasons

behind this ineffectiveness, except for the controller’s compensation. Another issue

to investigate is the effect of the number of instances for the larger datasets (nominal

class) on classification. For that purpose, three different sizes for nominal data set

(⇠15min, ⇠6min, ⇠3min) were investigated in terms of their effects on classification

performance for a faulty measurement data set of ⇠1min. Classification results for

two of the situations (⇠15min, ⇠3min) are given in Table 5.7. The reduction of the

nominal data set was not a random selection throughout the complete set, but was

only for the last part of the nominal data set, which is closer to the faulty data in

terms of flight time instance selected. The first simulation involved ⇠15min nominal

measurements, hence the most skewed classification. An untuned SVM classifier with

a Gaussian kernel was not able to classify (f1Score= NaN) the fault. Even when

tuned, the classification performance was too poor to be used for predicting faults

(f1Score= 0.12), as shown in Table 5.7. Reducing the number of the larger class, gyro

and accelerometer measurements during nominal phase, an untuned SVM classifier

with Gaussian kernel still shows poor results in classification (f1Score= 0.0073), and

tuning does not provide much help (f1Score= 0.13). Compared to the larger nominal

class measurements case, it gives the idea that reducing the number of instances of the

bigger class might help to improve classification performance (�f1Score = 0.01). A
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Table 5.8: %40 Loss of efficiency fault in left elevon classification results with Gaussian
kernel for 24 - 120 - 300 features cases

Untuned
Tuned
Heuris-
tic

Untuned
Tuned
Heuris-
tic

Untuned
Tuned
Heuris-
tic

24 24 120 120 300 300

f1Score 0.1375 0.6414 NaN 0.9635 NaN 0.9896
kFoldLoss 0.1898 0.1194 0.2075 0.0308 0.2071 0.0091
precision 0.9545 0.7254 NaN 0.9804 NaN 0.9981
recall 0.0741 0.5732 0 0.9471 0 0.9812

further reduction in the number of instances of the nominal class (⇠3min) still gives

poor classification results with an untuned SVM classifier with a Gaussian kernel

(f1Score = 0.2712), although an improvement is observed compared to the wider

nominal data set (�f1Score = 0.2616). Tuning the classifier did not enhance the

classification result noticeably (f1Score = 0.2756).

Since reducing the number of instances of the larger class (nominal phase mea-

surements) in the classification does help to a certain extent but does not result in

satisfactory results for classification, adding new attributes to the feature set is con-

sidered. For that, the previous measurements of the same attribute are added to

the input matrix to give the time dependent change in the behavior of the observed

physical variable. Results for a set of total number of 24, 100 and 300 features are

shown in Table 5.8. We now discuss the effect of adding previous measurements as

separate features to the feature set (previous, three measurements were added to the

input data set), resulting in 4 x 6 = 24 features. Adding three previous instance in

time for each sensor measurement decreased the performance of the untuned classifier

with a Gaussian kernel f1Score = 0.1375, which is classification performance decrease

of �f1Score = 0.1341. By adding more features, the classifier was still not able to

classify when untuned, but by tuning, the f1Score can be improved noticeably, pro-

ducing a classifier with an f1Score of 0.9635 for 120 feature case and can be even more

refined to an f1Score of 0.9896 for 300 features in total. So, adding features advances

the classification but only when proper tuning is achieved. Otherwise, untuned, the
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results are even worse than before adding the features.

5.2.6 Use of spinors as attributes

In this thesis, until now, the use of feature engineering to ameliorate the classification

performance has been performed mainly by utilizing the addition of new features to

include previous measurements in all instances. The purpose was to include the time

evolution of the signal, as well as the instantaneous measurements in the instances.

Here, another idea has been applied as feature engineering: to replace angular velocity

measurements from gyros with spinors, such that a feature matrix is given, as in

Fig. 5-25.
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x

acc(t+m�1)
x

X =

acct
y

acct
z

acc(t+1)
y

spinort
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spinort
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z
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spinor(t+m�1)
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spinor(t+m�1)
y

spinor(t+m�1)
z

Figure 5-25: New feature matrix when spinors are used as features rather than gyro
measurement

To calculate the spinors, the kinematic equations given in Eq. 5.4 are solved

numerically to attain quaternions from angular velocities:

q̇0 = �
1

2

qT

⌫

!

˙q
⌫

=

1

2

⇣
q⇥
⌫

+ q0I3
⌘
!

(5.4)

Given the quaternion definition in Eq. 5.5:

q =

h
cos

⇣
✓

2

⌘
sin( ✓2)e

i
(5.5)

the spinor is calculated via taking the logarithm of quaternion described as in Eq.
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5.6:

log(q) =
h
0

✓

2e
i

(5.6)

The result given in Table 5.9 shows an improvement in classification with an

f1Score reaching up to 0.9915.

Table 5.9: Results for untuned, tuned SVM classifiers with spinors as attributes
Untuned

Gaussian kernel
Untuned

linear kernel
Tuned heuristic
Gaussian kernel

Tuned Bayesian
Gaussian Kernel

f1Score 0.9555 0.6878 0.9795 0.9915
kFoldLoss 0.0213 0.1047 0.0098 0037
precision 0.9618 0.9758 0.9704 0.9925
recall 0.9492 0.5311 0.9887 0.9906
boxConstraint 1 1 10

5 9.6 x 10

4

kernelScale 1 1 5.6611 3.8346
compTime 5.17s 5.47s 11470.03s 11373.91

Untuned classification superiority

The first promising result by using spinors for classification is its advantage in untuned

classifiers. This can be seen by checking the f1Score of the SVM classifier without

tuning (see Table 5.10). As mentioned before, the untuned classifier for added fea-

tures gives poor results, although it increases the classification accuracy when tuned

properly. An untuned SVM classifier with spinors as attributes results in an increased

classification performance, with an f1Score of 0.6878. Using a Gaussian Kernel which

is mathematically represented as in Eq. 5.7, the f1Score even increases up to 0.9555.

K(x, z) = exp

✓
� kx� zk2

2�2

◆
(5.7)

Tuned classification Bayesian optimization efficiency

Table 5.11 shows the results, except for the simulations using spinors. The heuristic

optimization gives a better performance for tuning the classifier, while the Bayesian

optimization is likely to converge to a local minima. However, when spinors used,
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Table 5.10: Results for untuned SVM classifiers with added features, original features
and spinors as attributes

Untuned
Gaussian kernel

300 feat.

Untuned
Gaussian kernel

24 feat.

Untuned
Gaussian kernel

original feat.

Untuned
Linear kernel

spinors

Untuned
Gaussian kernel

spinors
f1Score NaN 0.1375 0.2712 0.6878 0.9555

Bayesian optimization results in a better performance in tuning the classifier, as shown

in Table 5.11 in the Tuned Gaussian Kernel spinors row.

Table 5.11: Results for tuned SVM classifiers with added features, original features
and spinors as attributes

Heuristic
tuning

Bayesian
tuning

Tuned Gaussian kernel
300 feat. 0.98 0.92

Tuned Gaussian kernel
24 feat. 0.64 0.35

Tuned Gaussian kernel
original feat. 0.2756 NaN

Tuned Gaussian kernel
spinors 0.97 0.99

5.3 Conclusion

In this chapter, we focus on the results of SVM classification application to the fault

detection and diagnosis problem. Fault classification simulations are explained under

two main sections: classification of faults based on simulated flight measurements;

and the classification of faults based on real flight data.

The first part of this chapter gives the results of SVM classification on data gener-

ated from simulations. To simulate the data, equations of motions given in Nonlinear

Aircraft Model have been numerically solved for the states. Then sensor measure-

ments (accelerometer and gyro data) have been calculated using the states and the

specifications of the sensors. Generated data is usually more structured compared

to the real flight data. In this preliminary application of SVM to fault diagnosis,
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we start with an easier problem, and use data generated from models. There is no

controller involved in the model in this preliminary application of SVM to detection,

in order to discard the controller’s effect on the diagnosis.

The second part investigates fault detection with real flight data. SVM, being

a supervised learning algorithm, requires labeled data for both nominal and faulty

flight conditions. Thus, faulty flights were realized with a security pilot ready for

recovery in the event of loss of control of the aircraft. For the faulty flight data

gathering, some modifications to the Paparazzi autopilot was necessary in two main

parts: first, injecting the faults real-time from GCS; and second, and editing the

onboard controller so that the faults injected reconfigures the servos as manipulated

from the GCS.

With the flight data, two main classes of faults — control surface stuck and loss

of effectiveness — have been investigated separately. A variety of techniques have

been implemented to improve the performance of the classification, such as feature

engineering and tuning the classifiers.
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Chapter 6

Conclusion

The integration of drones into the airspace demands the introduction of innovative

designs to provide safe solutions for drones. One aspect of this issue is to ensure safe

flight by designing fault detection and diagnosis systems with less expensive avionics,

common in a vast number of drones. This work aims to design a classifier via SVM

to solve FDD for drones with actuator faults. For that purpose, we introduce an

end-to-end design to achieve data-driven fault diagnosis for the control surface faults

in drones. All the data and the software code are available in the code sharing and

versioning system Github.

In this thesis, fault classification simulations are investigated under two main

sections: first, the classification of faults based on simulated flight measurements;

and second, the classification of faults based on real flight data. We started with the

easier problem: classification of faults based on simulated flight measurements.

For the classification problem using data generated by simulations, a model of

a MAKO Unmanned Aerial Vehicle (UAV) is simulated. Sensor measurements (ac-

celerometer and gyro data) are simulated using the information on the drone’s motion

and the specifications of the real sensors. Generated data is usually more structured

compared to real flight data. There are no flight control loops involved in the model:

discarding the controller’s effect eases the diagnosis. The results show that the SVM

classifier is accurate and fast in diagnosing the fault on the control surfaces, with a

classification accuracy of 10�5.
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Next, fault detection with real flight data is investigated. Since SVM is a super-

vised classification method, labeled data is necessary in order to train the algorithm.

For this reason, real flights are arranged to generate faulty flight data by manipulat-

ing the open source autopilot, Paparazzi. Training is held offline due to the need for

labeled data and the computational burden of the tuning phase of the classifiers. Two

types of faults are the focus of the investigation: a stuck elevon fault and the loss of

effectiveness of the elevon. Results indicate that the control surface stuck fault can

be detected relatively easily with three gyros and three accelerometer measurements,

compared to the loss of effectiveness fault. The results show that over the flight data,

tuned SVM yields an F1 score of 0.98 for the classification of control surface faults.

The addition of features to accommodate the previous measurements improves the

classification performance for tuned classifiers, while the untuned classification per-

formance deteriorates. Classification performs poorly for the loss of efficiency faults,

especially for small losses of effectiveness. For the loss of efficiency fault, some feature

engineering — involving the addition of past measurements — is needed in order to

attain similar classification performance.

A very promising result is discovered when spinors are used as features instead of

angular velocities. Thus, the kinematic equations have been solved so as to calculate

the quaternions using angular velocity measurements. Then spinors are calculated

as a function of quaternions. Results show that by using spinors for classification,

there is a vast improvement in classification accuracy, especially when the classifiers

are untuned. Using spinors and a Gaussian Kernel, the untuned classifiers give an F1

score of 0.9555 which was 0.2712 when the gyro measurements were used as features.

This work thus shows that SVM yields a satisfactory performance levels for the

classification of faults on the control surfaces of a drone using real flight data. The

FDD algorithm designed here is a first step towards safer drone flights. The next

section introduces possible future steps.
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6.1 Future Work

For each failure type — jammed elevon or ineffective elevon — this thesis applies a

two class classification problem: faulty data and nominal data. Future work should

consider multi-class classification since it will lead to a more realistic application of

fault diagnosis for drones; but the problem could be very complicated due to the vast

number of possible faults. For such a problem, methods such as deep learning could be

selected instead of SVM, since deep learning offers appealing performance on classifi-

cation problems with a large number of classes. Another possible workaround could

be to label the faults as severe, moderate and mild. Then, rather than determining

the exact nature of the fault, at least an awareness of the severity of the fault could

be gained. Fault Detection and Diagnosis should also be complemented by recovery.

The abilities of a drone after a fault should be assessed and a control action should

be taken to mitigate the faulty situation. If recovery is not a viable option, a ditching

maneuver could be undertaken to reduce the harm on the ground. Knowledge of the

fault’s severity could be used to choose an adequate mitigation measure.
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Appendix A

Codes for FD from simulated data

A.1 Read Me file for the aircraft simulation codes in

Matlab

HOW TO:

1. run simDrone.m

2. If you want to change aircraft parameters, change them from configDrone.m.

3. If you want to change simulation time, change sim_duration_min in sim-

Drone.m

ASSUMPTIONS:

1. NED (North East Down) navigation frame is inertial where Newton’s law apply.

2. Attitude sequence considered is Yaw-Pitch-Roll. And yes sequence matters!

INFO FOR BEGINNERS: Sequential Euler angle rotations relate the orientation

of the aircrafts body-fixed frame to the navigation frame. For simulations quaternion

preferred due to singularity issues of Euler angles. It is proven that attitude repre-

sentations will either have a redundant component (4 components) as in quaternions

or singularity (Euler angles have 3 components resulting in singularity for
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pitch (theta) = 90 degrees - devision by 0). Quaternion representation used here has

the scalar component as the first component: q = q0 + q1 * i + q2 * j + q3 k

w , angular velocity vector with components p, q, r w = [p q r]’ in detail, w

describes the angular motion of the body frame b with respect to navigation frame n

(NED), expressed in body frame.

Attitude transformation matrix (Direction Cosine Matrix) is used to change the

frame of interest that the vector or points expressed in. Lets say that we have a vector

A fixed in inertial frame. Its representation in two frames will differ even it is the same

vector. The frame to express it could be changed utilizing a direction cosine matrix.

In this work, to express vectors in different frames is necessary which makes the use

of DCM essential. Cb

n

transforms the vector A expressed in the navigation frame An

into Ab, a vector expressed in the drone body-fixed frame. Ab

= Cb

n

⇤An —–> in the

code : c_n_to_b Likewise a direction cosine matrix Cn

b

, changes the representation

of vector A expressed in drone body-fixed frame Ab, to a representation of the same

vector A in navigation frame(NED) An. An

= Cn

b

⇤ Ab and beware the relationship

between these to transformation: Cn

b

= inverse(Cb

n

) = transpose(Cb

n

)

TIPS AND TRICKS: Forces and Moments in the dynamical equations of motion

for the attitude and translational motion, are calculated in modelDrone. During the

numerical integration of dynamic and kinematic equations (more specifically during

the function evaluations for calculating k1 k2 k3 k4), modelDrone is evaluated with

different states (due to the nature of RK4). Since forces and moments are calculated

in this model, beware that they are evaluated with different state values, since they

are modeled as a function of states, ending up the change of forces and moments

during one time step of numerical integration.
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A.2 configDrone.m

% Copyright 2016 Elgiz Baskaya

% This file is part of curedRone.

% curedRone is free software: you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation, either version 3 of the License, or

% (at your option) any later version.

%

% curedRone is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You should have received a copy of the GNU General Public License

% along with curedRone. If not, see <http://www.gnu.org/licenses/>.

clear all;

clc;

global g_e mass inert wing_tot_surf wing_span m_wing_chord prop_dia nc

tho_n cl_alpha1 cl_ele1 cl_p

global cl_r cl_beta cm_1 cm_alpha1 cm_ele1 cm_q cm_alpha cn_rud_contr

cn_r_tilda cn_beta cx1

global cx_alpha cx_alpha2 cx_beta2 cz_alpha cz1 cy1 cft1 cft2 cft3

% Earth gravitational constant

g_e = 9.81;

% UAV mass [kg]

mass = 28;
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% UAV inertia matrix [kg*m^2]

inert = [2.56 0 0.5; 0 10.9 0; 0.5 0 11.3];

% wing total surface S [m^2]

wing_tot_surf = 1.8;

% wing span b [m]

wing_span = 3.1;

% mean aerodynamic wing chord c [m]

m_wing_chord = 0.58;

% diameter of the propeller prop_dia [m]

prop_dia = 0.79;

% engine speed reference signal nc

nc = 80;

% time constant of the engine tho_n [s]

tho_n = 0.4;

% roll derivatives

cl_alpha1 = - 3.395e-2;% cl_alpha2 = - clalpha1

cl_ele1 = - 0.485e-2;% cl_ele2 = - clele1

cl_p = - 1.92e-1;

cl_r = 3.61e-2;

cl_beta = - 1.3e-2;

% pitch derivatives

cm_1 = 2.08e-2;

cm_alpha1 = 0.389e-1;% cmalpha2 = cmalpha1
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cm_ele1 = 2.725e-1;% cmele2 = cmele1

cm_q = -9.83;

cm_alpha = -9.03e-2;

% yaw derivatives

cn_rud_contr = 5.34e-2;

cn_r_tilda = -2.14e-1;

cn_beta = 8.67e-2;

% lift, drag, side force derivatives

cx1 = -2.12e-2;

cx_alpha = -2.66e-2;

cx_alpha2 = -1.55;

cx_beta2 = -4.01e-1;

cz_alpha = -3.25;

cz1 = 1.29e-2;

cy1 = -3.79e-1;

% thrust derivatives

cft1 = 8.42e-2;

cft2 = -1.36e-1;

cft3 = -9.28e-1;
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A.3 modelDrone.m

% Copyright 2016 Elgiz Baskaya

% This file is part of curedRone.

% curedRone is free software: you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation, either version 3 of the License, or

% (at your option) any later version.

%

% curedRone is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You should have received a copy of the GNU General Public License

% along with curedRone. If not, see <http://www.gnu.org/licenses/>.

% inputs : stateInitial .:. States from the previous time t - 1.

% VT .:. total airspeed of the aircraft

% conAil1, conAil2, conEle1,conEle2, conRud .:. controlTorques

% Attitude kinematic and dynamic equations of motion

% Translational Motion

function state_dot = modelDrone(state_prev, contr_deflect, wind_ned)

global g_e inert mass wing_tot_surf wing_span m_wing_chord prop_dia

cl_alpha1 cl_ele1 cl_p

global cl_r cl_beta cm_1 cm_alpha1 cm_ele1 cm_q cm_alpha cn_rud_contr

cn_r_tilda cn_beta cx1
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global cx_alpha cx_alpha2 cx_beta2 cz_alpha cz1 cy1 cft1 cft2 cft3 tho_n nc

quat_normalize_gain = 1;

% q .:. quaternion

% q = q0 + q1 * i + q2 * j + q3 * k;

q0 = state_prev(1);

q1 = state_prev(2);

q2 = state_prev(3);

q3 = state_prev(4);

% w .:. angular velocity vector with components p, q, r

% w = [p q r]’

% w describes the angular motion of the body frame b with respect to

% navigation frame ned, expressed in body frame.

p = state_prev(5);

q = state_prev(6);

r = state_prev(7);

% x .:. position of the drone in North East Down reference frame

% x = [x_n y_e z_d]’;

% x_n = state_prev(8);

% y_e = state_prev(9);

% z_d = state_prev(10);

% v .:. translational velocity of the drone

% v = [u_b v_b w_b]

u_b = state_prev(11);

v_b = state_prev(12);

w_b = state_prev(13);

% Engine speed
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eng_speed = state_prev(14);

% Flight altitude

altitude = state_prev(10);

% Control surface deflections

con_ail1 = contr_deflect(1);

con_ail2 = contr_deflect(2);

con_ele1 = contr_deflect(3);

con_ele2 = contr_deflect(4);

con_rud = contr_deflect(5);

% If A is any vector

% A^n = C^n_b * A^b = c_b_to_n * A^b = inv(c_n_to_b) * A^b = c_n_to_b’ * A^b

% Direction cosine matrix C^b_n representing the transformation from

% the navigation frame to the body frame

c_n_to_b = [1 - 2 * (q2^2 + q3^2) 2 * (q1 * q2 + q0 * q3) 2 * (q1 * q3 - q0

* q2); ...

2 * (q1 * q2 - q0 * q3) 1 - 2 * (q1^2 + q3^2) 2 * (q2 * q3 + q0 * q1); ...

2 * (q1 * q3 + q0 * q2) 2 * (q2 * q3 - q0 * q1) 1 - 2 * (q1^2 + q2^2)];

vel_t = [u_b; v_b; w_b] - c_n_to_b * wind_ned;

% Total airspeed of drone

vt = sqrt(vel_t(1)^2 + vel_t(2)^2 + vel_t(3)^2);

% alph .:. angle of attack

alph = atan2(vel_t(3),vel_t(1));

% bet .:. side slip angle

bet = asin(vel_t(2)/vt);
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% Low altitude atmosphere model (valid up to 11 km)

% t0 = 288.15; % Temperature [K]

% a_ = - 6.5e-3; % [K/m]

% r_ = 287.3; % [m^2/K/s^2]

% p0 = 1013e2; %[N/m^2]

% t_= t0 * (1 + a_ * altitude / t0);

% ro = p0 * (1 + a_ * altitute /t0)^5.2561 / r_ / t_;

t_ = 288.15 * (1 - 6.5e-3 * altitude / 288.15);

ro = 1013e2 * (1 - 6.5e-3 * altitude / 288.15)^5.2561 / 287.3 / t_;

dyn_pressure = ro * vt^2 / 2;

p_tilda = wing_span * p / 2 / vt;

r_tilda = wing_span * r / 2 / vt;

q_tilda = m_wing_chord * q / 2 / vt;

% calculation of aerodynamic derivatives

% (In the equations % CLalpha2 = - CLalpha1 and so on used not to inject

new names to namespace)

cl = cl_alpha1 * con_ail1 - cl_alpha1 * con_ail2 + cl_ele1 * con_ele1 -

cl_ele1 * con_ele2 ...

+ cl_p * p_tilda + cl_r * r_tilda + cl_beta * bet;

cm = cm_1 + cm_alpha1 * con_ail1 + cm_alpha1 * con_ail2 + cm_ele1 *

con_ele1 + cm_ele1 * con_ele2 ...

+ cm_q * q_tilda + cm_alpha * alph;

cn = cn_rud_contr * con_rud + cn_r_tilda * r_tilda + cn_beta * bet;

l = dyn_pressure * wing_tot_surf * wing_span * cl;

m = dyn_pressure * wing_tot_surf * m_wing_chord * cm;

n = dyn_pressure * wing_tot_surf * wing_span * cn;

moment = [l m n]’;
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% tilda is to ignore output of the quat2angle function, since it is not

% used, a warning appears otherwise

[~, teta fi] = quat2angle([q0 q1 q2 q3]);

% ft .:. thrust force

ft = ro * eng_speed^2 * prop_dia^4 * (cft1 + cft2 * vt / prop_dia / pi /

eng_speed + ...

cft3 * vt^2 / prop_dia^2 / pi^2 / eng_speed^2);

% Model of the aerodynamic forces in wind frame

% xf_w .:. drag force in wind frame

xf_w = dyn_pressure * wing_tot_surf * (cx1 + cx_alpha * alph + cx_alpha2 *

alph^2 + ...

cx_beta2 * bet^2);

% yf_w .:. lateral force in wind frame

yf_w = dyn_pressure * wing_tot_surf * (cy1 * bet);

% zf_w .:. lift force in wind frame

zf_w = dyn_pressure * wing_tot_surf * (cz1 + cz_alpha * alph);

% describe forces in body frame utilizing rotation matrix c^w_b

% A^w = C^w_b * A^b OR A^b = C^b_w * A^w = (C^w_b)’ * A^w here

% c_b_to_w = C^w_b

c_b_to_w = [cos(alph)* cos(bet) sin(bet) sin(alph) * cos(bet);...

-sin(bet) * cos(alph) cos(bet) -sin(alph) * sin(bet); -sin(alph) 0

cos(alph)];

force = mass * [- g_e * sin(teta); g_e * sin(fi) * cos(teta); g_e * cos(fi)

* cos(teta)] +...

([ft; 0; 0] + c_b_to_w’ * [xf_w; yf_w; zf_w]);

% Kinematic and dynamic equations of motion of the drone

% Attitude dynamics of drone
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% Skew symmetric matrix is used for cross product

pqr_dot = inert \ (moment - [ 0 -r q; r 0 -p; -q p 0] * (inert * [p q r]’));

% Attitude kinematics of drone

q_dot = 1 / 2 * [-q1 -q2 -q3; q0 -q3 q2; q3 q0 -q1; -q2 q1 q0] * [p q r]’

...

+ quat_normalize_gain * (1 - (q0^2 + q1^2 + q2^2 + q3^2)) * [q0 q1 q2

q3]’;

% x_dot is in NED frame. So a change in expression of v is needed.

x_dot = c_n_to_b’ * [u_b v_b w_b]’;

% dynamics for translational motion of the center of mass of the drone

v_dot = force / mass - [(q * w_b - r * v_b); (r * u_b - p * w_b); (p * v_b

- q * u_b)];

% dynamics for engine speed

eng_speed_dot = - 1 / tho_n * eng_speed + 1 / tho_n * nc;

state_dot = [q_dot; pqr_dot; x_dot; v_dot; eng_speed_dot];
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A.4 quat_to_euler.m

% Copyright 2016 Elgiz Baskaya

% This file is part of curedRone.

% curedRone is free software: you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation, either version 3 of the License, or

% (at your option) any later version.

%

% curedRone is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You should have received a copy of the GNU General Public License

% along with curedRone. If not, see <http://www.gnu.org/licenses/>.

function euler_ang = quat_to_euler(quater)

euler_ang = [atan2(2 .* (quater(3,:) .* quater(4,:) - quater(1,:) .*

quater(2,:)), ...

2 * ((quater(1,:)).^2 - 1 + (quater(4,:)).^2));...

- atan((2 * (quater(2,:) .* quater(4,:) + quater(1,:) .* quater(3,:)))

./ sqrt(1 - (2 * (quater(2,:) .* quater(4,:) + quater(1,:) .*

quater(3,:))).^2)); ...

atan2(2 * (quater(2,:) .* quater(3,:) - quater(1,:) .* quater(4,:)), ...

2 * ((quater(1,:)).^2 - 1 + 2 * (quater(2,:)).^2))];
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A.5 rungeKutta4.m

% Copyright 2016 Elgiz Baskaya

% This file is part of curedRone.

% curedRone is free software: you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation, either version 3 of the License, or

% (at your option) any later version.

%

% curedRone is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You should have received a copy of the GNU General Public License

% along with curedRone. If not, see <http://www.gnu.org/licenses/>.

function xn = rungeKutta4(func, xo, cntrl, wind_ned, h)

k1 = feval(func, xo, cntrl, wind_ned);

k2 = feval(func, xo + 1/2 * h * k1, cntrl, wind_ned);

k3 = feval(func, xo + 1/2 * h * k2, cntrl, wind_ned);

k4 = feval(func, xo + h * k3, cntrl, wind_ned);

xn = xo + 1/6 * h * (k1 + 2 * k2 + 2 * k3 + k4);

end
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A.6 simDrone.m

% Copyright 2016 Elgiz Baskaya

% This file is part of curedRone.

% curedRone is free software: you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation, either version 3 of the License, or

% (at your option) any later version.

%

% curedRone is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You should have received a copy of the GNU General Public License

% along with curedRone. If not, see <http://www.gnu.org/licenses/>.

% DRONE DYNAMICS SIMULATION

configDrone;

ti = 0.1;

sim_duration_min = 10;

tf = 60 * sim_duration_min;

t_s = 0 : ti : tf;

x_real = zeros(14,length(t_s));

% initial condition for the states
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% xReal = [q0 q1 q2 q3 p q r x_n y_e z_d u_b v_b w_b eng_speed]’;

x_real(:,1) = [1 0 0 0 0 0 0 0 0 0 1e-5 1e-5 1e-5 1e-2]’;

control_deflections = [0 0 0 0 0]’;

% controlTorque = [contAileron1 contAileron2 contElevator1 contElevator2

% contRudder]’

wind_ned = [0 0 0]’;

% wind_ned .:. [wind_n wind_e wind_d]’

for i=1:length(t_s)-1

% Nonlinear attitude propagation

% Integration via Runge - Kutta integration Algorithm

x_real(:,i+1) = rungeKutta4(’modelDrone’, x_real(:,i),

control_deflections, wind_ned, ti);

end
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Appendix B

Codes for FD from flight data

B.1 dataRead.m

% Written by Ewoud Smeur

% Modified by Elgiz Baskaya

%%%%%%% This part from Ewoud %%%%%%%%%

% filename = ’17_04_20__14_22_51_SD.data’; % Mulitplicative fault only

filename = ’17_07_06__10_21_07_SD.data’; % Muret with Michel

% filename = ’17_09_07__10_07_55_SD.data’;

formatSpec = ’%f%f%s%f%s%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f’;

formatSpecHeader = ’%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%[^\n\r]’;

delimiter = ’ ,’;

startRow = 1;

fileID = fopen(filename,’r’);

header = textscan(fileID, formatSpecHeader,1, ’Delimiter’, delimiter,

’EmptyValue’ ,NaN);

dataArray = textscan(fileID, formatSpec, ’Delimiter’, delimiter,

’EmptyValue’ ,NaN,’HeaderLines’ ,startRow, ’ReturnOnError’, false);
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fclose(fileID);

N = length(dataArray{1, 1})-1;

%%%%%%% This part from Elgiz %%%%%%%%%

% Selecting the drone with whose data you want to work with

index_drone_select = find(dataArray{1,2}==52);

drone_select_id = zeros(length(dataArray{1,1}),1);

% Set indexes to 1s if it is the drone of interest

drone_select_id(index_drone_select) = 1;

% Finding flight interval

index_altitude = find(dataArray{1,8}>190000);

altitude_limit_id = zeros(length(dataArray{1,8}),1);

% Sets indexes to 1s if the altitude is greater than the given limit

altitude_limit_id(index_altitude) = 1;

% dataArray{1,8} can be something else then GPS data so select the GPS

% indexed as well

gps_id = strcmp(dataArray{1,3},’GPS’);

% find out the first time of pass of the altitude limit of drone of interest

% and last time of pass of the altitude limit of the drone of interest

% And indexes i. if it is GPS data

% ii. if it is greater than the altitude of interest

% iii. if it is drone of interest

index_drone_gps_alt = altitude_limit_id & gps_id & drone_select_id;

first_altPass = find(index_drone_gps_alt, 1, ’first’);

last_altPass = find(index_drone_gps_alt, 1, ’last’);

194



% All the times in between the first passing of altitude limit and last

% passing of the altitude limit are assumed to be the flight duration

flight_duration_id = zeros(length(dataArray{1,1}),1);

flight_duration_id(first_altPass:last_altPass) = 1;

%%%%%%%%% Ewoud again ! %%%%%%%%%%%%%

array_col_5 = zeros(length(dataArray{1, 5}),1);

for i = 1:length(dataArray{1, 5})

try

array_col_5(i) = str2num(dataArray{1,5}{i});

end

end

%%%%%%%% Here we welcome Elgiz %%%%%%%

% The idea is to AND all the required indexes

gyro_id_only = strcmp(dataArray{1,3},’IMU_GYRO’);

gyro_id = gyro_id_only & drone_select_id & flight_duration_id;

gyro(:,1) = dataArray{1, 4}(gyro_id);

gyro(:,2) = array_col_5(gyro_id);

gyro(:,3) = dataArray{1, 6}(gyro_id);

t_gyro = dataArray{1, 1}(gyro_id);

accel_id_only = strcmp(dataArray{1,3},’IMU_ACCEL’);

accel_id = accel_id_only & drone_select_id & flight_duration_id;

accel(:,1) = dataArray{1, 4}(accel_id);

accel(:,2) = array_col_5(accel_id);

accel(:,3) = dataArray{1, 6}(accel_id);

t_accel = dataArray{1, 1}(accel_id);

commands_id_only = strcmp(dataArray{1,3},’COMMANDS’);

commands_id = drone_select_id & commands_id_only & flight_duration_id;
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commands_index = find(commands_id == 1);

commands(:,1) = dataArray{1, 7}(commands_id);

commands(:,2) = dataArray{1, 8}(commands_id);

t_commands = dataArray{1, 1}(commands_id);

gps_id = drone_select_id & gps_id & flight_duration_id;

altitude(:,1) = dataArray{1, 8}(gps_id)/1000;

t_altitude = dataArray{1, 1}(gps_id);

% Labeling outputs (Fault, Normal)

% FAULT (Here different faults are all labeled under one category which is

fault)

% Finding the faulty command indexes

% SETTINGS give the multiplication factor that is used to inject the fault

% to control surfaces.

% Each time a fault is injected from the ground station, there

% appears a SETTINGS message, with the information on the fault signal.

% An example : 535.8420 18 SETTINGS 1.000000 0.500000

% [time droneNum typeMass leftContSurfaceEfficiency

% rightContSurfaceEfficiency]

% The values 1.000000 and 0.500000 are manual inputs from GCS by operator.

settings_id = strcmp(dataArray{1,3},’SETTINGS’);

settings_index = find(settings_id == 1);

% Indexes of setting command where drone set to nominal control surface

% condition (1.00 1.00 for multiplicative fault)

set_nominal = settings_index((dataArray{1,4}(settings_index)==1)&...

(array_col_5(settings_index)==1)&(dataArray{1,6}(settings_index)==0)&...

(dataArray{1,7}(settings_index)==0));
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% number of fault sets

num_fault_set = length(settings_index) - length(set_nominal);

% Initialization fault_start_stop and nominal_start_stop vectors

fault_start_stop = zeros(2, num_fault_set);

% adding the intervals before any fault injected (after an certain altitude

% to first fault anf after the last fault finishes to a certain altitude)

nominal_start_stop = zeros(2, length(set_nominal) + 1);

j = 1;

k = 2;

for i = 1 : (length(settings_index) - 1)

if ~any(set_nominal==settings_index(i))

% fault_start_stop rows : starting_index end_index

% coloum : each coloumn is for a different fault

% injected

fault_start_stop(1:2,j) = [settings_index(i) (settings_index(i + 1)

- 1)]’;

j = j + 1;

else

nominal_start_stop(1:2,k) = [settings_index(i) (settings_index(i +

1) - 1)]’;

k = k + 1;

end

end

% Adding the nominal intervals starting from passing an altitude to the

% first falut injected (at start of the flight) and starting after the last

% fault finishes until it descents until the same altitude limit (at the

% end of the flight)

nominal_start_stop(1:2,1) = [first_altPass (fault_start_stop(1,1) - 1)]’;
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nominal_start_stop(1:2,length(set_nominal) + 1) =

[fault_start_stop(2,num_fault_set)+1 last_altPass]’;

%%%%%%%%% Hello Ewoud %%%%%%%%%%

% act_id = strcmp(dataArray{1,3},’ROTORCRAFT_CMD’);

% u_in(:,1) = dataArray{1, 4}(act_id);

% u_in(:,2) = array_col_5(act_id);

% u_in(:,3) = dataArray{1, 6}(act_id);

% u_in(:,4) = dataArray{1, 7}(act_id);

% t_act = dataArray{1, 1}(act_id);

%

% gps_id = strcmp(dataArray{1,3},’GPS_INT’);

% ecefv(:,1) = dataArray{1, 11}(gps_id)/100;

% ecefv(:,2) = dataArray{1, 12}(gps_id)/100;

% ecefv(:,3) = dataArray{1, 13}(gps_id)/100;

% t_gps = dataArray{1, 1}(gps_id);

B.2 selectDataToInvest.m

% Copyright 2017 Elgiz Baskaya

% This file is part of cureDDrone.

% cureDDrone is free software: you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation, either version 3 of the License, or

% (at your option) any later version.

%

% curedRone is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
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% GNU General Public License for more details.

%

% You should have received a copy of the GNU General Public License

% along with curedRone. If not, see <http://www.gnu.org/licenses/>.

% FAULT DETECTION VIA SVM

% This code assumes that you already have a data set of normal and faulty

% situation sensor outputs.

%% FAULT SELECTION

% to check available fault indexes (the index when they are set by

% operator) setdiff(settings_index,set_nominal)

% and their corresponding start_index end_index, check fault_start_stop

fault_id = zeros(length(dataArray{1,1}),1);

% Select which fault interval you would like to investigate

% fault_id(fault_start_stop(1,FAULT_NUM_YOU_WANTTO_SIMULATE):...

% fault_start_stop(2,FAULT_NUM_YOU_WANTTO_SIMULATE)) = 1;

% % One surface stuck at zero fault

% fault_id(fault_start_stop(1,23):fault_start_stop(2,23)) = 1;

% One surface loss if efficiency fault

fault_id(fault_start_stop(1,3):fault_start_stop(2,3)) = 1;

% All faulty phase indexes

% for i = 1 : length(fault_start_stop)

% fault_id(fault_start_stop(1,i):fault_start_stop(2,i)) = 1;

% end

gyro_fault_cond_id = fault_id & gyro_id_only;
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gyro_fault_cond(:,1) = dataArray{1, 4}(gyro_fault_cond_id);

gyro_fault_cond(:,2) = array_col_5(gyro_fault_cond_id);

gyro_fault_cond(:,3) = dataArray{1, 6}(gyro_fault_cond_id);

t_gyro_fault_cond = dataArray{1, 1}(gyro_fault_cond_id);

accel_fault_cond_id = fault_id & accel_id_only;

accel_fault_cond(:,1) = dataArray{1, 4}(accel_fault_cond_id);

accel_fault_cond(:,2) = array_col_5(accel_fault_cond_id);

accel_fault_cond(:,3) = dataArray{1, 6}(accel_fault_cond_id);

t_accel_fault_cond = dataArray{1, 1}(accel_fault_cond_id);

% Selection of nominal condition

% to check available fault indexes (the index when they are set by

% operator) : see variable set_nominal

% and their corresponding start_index end_index, check nominal_start_stop

nominal_id = zeros(length(dataArray{1,1}),1);

% Select which nominal phase interval you would like to investigate

% nominal_id(nominal_start_stop(1,NOMINAL_COND_NUM_YOU_WANTTO_SIMULATE):...

% nominal_start_stop(2,NOMINAL_COND_NUM_YOU_WANTTO_SIMULATE)) = 1;

% % One surface stuck at zero fault

% nominal_id(nominal_start_stop(1,5):nominal_start_stop(2,5)) = 1;

% One surface loss if efficiency fault

nominal_id(nominal_start_stop(1,1):nominal_start_stop(2,1)) = 1;

% All nominal phase indexes

% for i = 1 : length(nominal_start_stop)

% nominal_id(nominal_start_stop(1,i):nominal_start_stop(2,i)) = 1;

% end
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gyro_nominal_cond_id = nominal_id & gyro_id_only;

gyro_nominal_cond(:,1) = dataArray{1, 4}(gyro_nominal_cond_id);

gyro_nominal_cond(:,2) = array_col_5(gyro_nominal_cond_id);

gyro_nominal_cond(:,3) = dataArray{1, 6}(gyro_nominal_cond_id);

t_gyro_nominal_cond = dataArray{1, 1}(gyro_nominal_cond_id);

accel_nominal_cond_id = nominal_id & accel_id_only;

accel_nominal_cond(:,1) = dataArray{1, 4}(accel_nominal_cond_id);

accel_nominal_cond(:,2) = array_col_5(accel_nominal_cond_id);

accel_nominal_cond(:,3) = dataArray{1, 6}(accel_nominal_cond_id);

t_accel_nominal_cond = dataArray{1, 1}(accel_nominal_cond_id);

% Forming the feature and output vectors to apply classification.

% Here we form the matrix as

% feature_vector = [acc_x_nominal acc_y_nom acc_z_nom gyro_x_nom gyro_y_nom

gyro_z_nom

% acc_x_fault acc_y_fault acc_z_fault gyro_x_faul

gyro_y_fault gyro_z_fault]

feature_vector = [accel_nominal_cond gyro_nominal_cond; accel_fault_cond

gyro_fault_cond];

% Assuming the time steps for the gyro and the accelerometers are sync.

t_features = [t_accel_nominal_cond; t_accel_fault_cond];

% Assuming same number of gyro and accelerometer data

% Labelling data

% nominal_label = cell(length(gyro_nominal_cond),1);

% nominal_label(:) = {’nominal’};

% fault_label = cell(length(gyro_fault_cond),1);

% fault_label(:) = {’fault’};
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% label = [nominal_label; fault_label];

% output_vector = label;

nominal_label = zeros(length(gyro_nominal_cond),1);

fault_label = ones(length(gyro_fault_cond),1);

output_vector = [nominal_label; fault_label];

%% ADD FEATURES OF CONSEQUENT MEASUREMENTS

% % Number of next (and previous) measurements to add to the feature vector

: N

% feature_vector_original = feature_vector;

% clear feature_vector;

% N = 3;

% [row,col] = size(feature_vector_original);

%

% addedFeat = zeros(row, N + 1);

% for i = 1 : col

% % If features added before the current time measurement

% addedFeat = addFeaturesBefore(feature_vector_original(:,i),N);

% feature_vector(:,((i-1)*(N+1)+1):((i-1)*(N+1)+1+N)) = addedFeat;

%

% % If features added both before and after the current time measurement

% addedFeat = addFeaturesBeforeAfter(feature_vector_original(:,i),N);

% feature_vector(:,((i-1)*(2*N+1)+1):((i-1)*(2*N+1)+1+2*N)) = addedFeat;

% end

% Figures to visualize data

% feature = [accel_nominal_cond;accel_fault_cond];

gscatter(feature_vector(:,1),feature_vector(:,3),output_vector,’gr’)

legend(’normal’,’fault’)
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set(legend,’FontSize’,11);

xlabel({’$a_x$’},...

’FontUnits’,’points’,...

’interpreter’,’latex’,...

’FontSize’,15,...

’FontName’,’Times’)

ylabel({’$a_y$’},...

’FontUnits’,’points’,...

’interpreter’,’latex’,...

’FontSize’,15,...

’FontName’,’Times’)

print -depsc2 feat1vsfeat3.eps

B.3 arrangeDataSet.m

% Copyright 2017 Elgiz Baskaya

% This file is part of cureDDrone.

% cureDDrone is free software: you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation, either version 3 of the License, or

% (at your option) any later version.

%

% curedRone is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You should have received a copy of the GNU General Public License

% along with curedRone. If not, see <http://www.gnu.org/licenses/>.
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% FAULT DETECTION VIA SVM

% This code assumes that you already have a data set of normal and faulty

% situation sensor outputs.

%% Arrange training/test sets

feature_vec = feature_vector;

output_vec = output_vector;

% training set (around %80 percent of whole data set)

trainingDataExNum = ceil(80 / 100 * (length(feature_vec)));

% Select %80 of data for training and leave the rest for testing

randomSelectionColoumnNum = randperm(length(feature_vec),trainingDataExNum);

% Training set for feature and output

% feature_vec_training .:. feature matrix for training

% output_vec_training .:. output vector for training

feature_vec_training = feature_vec(randomSelectionColoumnNum, :);

output_vec_training = output_vec(randomSelectionColoumnNum, :);

% Test set for feature and output

feature_vec_test = feature_vec;

feature_vec_test(randomSelectionColoumnNum, :) = [];

output_vec_test = output_vec;

output_vec_test(randomSelectionColoumnNum, :) = [];

test_set_time = t_features;

test_set_time(randomSelectionColoumnNum) = [];
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% To have same partions for cross-validations

rng(1);

cFold = cvpartition(length(feature_vec_training),’KFold’,10);

B.4 svmFD.m

% Copyright 2017 Elgiz Baskaya

% This file is part of cureDDrone.

% cureDDrone is free software: you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation, either version 3 of the License, or

% (at your option) any later version.

%

% curedRone is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You should have received a copy of the GNU General Public License

% along with curedRone. If not, see <http://www.gnu.org/licenses/>.

% FAULT DETECTION VIA SVM

% This code assumes that you already have a data set of normal and faulty

% situation sensor outputs.

%% TRAINING PHASE

tic

% SVMModel is a trained ClassificationSVM classifier.
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SVMModel = fitcsvm(feature_vec_training,output_vec_training,

’KernelFunction’,’rbf’,’Standardize’,true,’ClassNames’,{’0’,’1’});

toc

% Support vectors

sv = SVMModel.SupportVectors;

%% CROSS VALIDATION

% 10-fold cross validation on the training data

% inputs : trained SVM classifier (which also stores the training data)

% outputs : cross-validated (partitioned) SVM classifier from a trained SVM

% classifier

% CVSVMModel is a ClassificationPartitionedModel cross-validated classifier.

% ClassificationPartitionedModel is a set of classification models trained

% on cross-validated folds.

CVSVMModel = crossval(SVMModel,’CVPartition’,cFold);

% To assess predictive performance of SVMModel on cross-validated data

% "kfold" methods and properties of CVSVMModel, such as kfoldLoss is used

% Evaluate 10-fold cross-validation error.

% (Estimate the out-of-sample misclassification rate.)

crossValClassificErr = kfoldLoss(CVSVMModel);

% Predict response for observations not used for training

% Estimate cross-validation predicted labels and scores.

[elabelUntuned,escoreUntuned] = kfoldPredict(CVSVMModel);

max(escoreUntuned)

min(escoreUntuned)
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% FIT POSTERIOR PROBABILITES fitPosterior(SVMModel) /

fitSVMPosterior(CVSVMModel)

% [ScoreCVSVMModel,ScoreParameters] = fitSVMPosterior(CVSVMModel);

% Predict does not work here?

%% PREDICTION PHASE

[labelUntuned,scoreUntuned] = predict(SVMModel,feature_vec_test);

% %% FIT POSTERIOR PROBABILITES fitPosterior(SVMModel) /

fitSVMPosterior(CVSVMModel)

% % "The transformation function computes the posterior probability

% % that an observation is classified into the positive class

(SVMModel.Classnames(2)).

% % The software fits the appropriate score-to-posterior-probability

% % transformation function using the SVM classifier SVMModel, and

% % by conducting 10-fold cross validation using the stored predictor data

(SVMModel.X)

% % and the class labels (SVMModel.Y) as outlined in REF : Platt, J.

% % "Probabilistic outputs for support vector machines and comparisons

% % to regularized likelihood methods". In: Advances in Large Margin

Classifiers.

% % Cambridge, MA: The MIT Press, 2000, pp. 61-74"

% ScoreSVMModel = fitPosterior(SVMModel);

% [~,postProbability] = predict(ScoreSVMModel,feature_vec_test);

%% EVALUATING THE PERFORMANCE OF CLASSIFICATION WITH NEW DATA

% Evaluating the prediction performance of classification via
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% CompactClassificationSVM class methods (e.g compareHoldout, edge, loss,

margin,

% predict)

eUntuned = edge(SVMModel, feature_vec_test, output_vec_test);

mUntuned = margin(SVMModel, feature_vec_test, output_vec_test);

% Evaluating the prediction performance of classification via confusion

matrix

[f1scoreUntuned, precisionUntuned, recallUntuned] =

calcF1score(output_vec_test, str2double(labelUntuned));

%% Plot results

figure

gscatter(feature_vec_training(:,1),feature_vec_training(:,2),output_vec_training)

hold on

plot(sv(:,1),sv(:,2),’ko’,’MarkerSize’,10)

legend(’normal’,’fault’,’Support Vector’)

legend(’normal’,’fault’)

hold off

set(legend,’FontSize’,11);

xlabel({’$a_x$’},...

’FontUnits’,’points’,...

’interpreter’,’latex’,...

’FontSize’,15,...

’FontName’,’Times’)

ylabel({’$a_y$’},...

’FontUnits’,’points’,...

’interpreter’,’latex’,...

’FontSize’,15,...

’FontName’,’Times’)

print -depsc2 feat1vsfeat2.eps
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B.5 svmFDtuningViaHeuristic.m

% Copyright 2017 Elgiz Baskaya

% This file is part of cureDDrone.

% cureDDrone is free software: you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation, either version 3 of the License, or

% (at your option) any later version.

%

% curedRone is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You should have received a copy of the GNU General Public License

% along with curedRone. If not, see <http://www.gnu.org/licenses/>.

% FAULT DETECTION VIA SVM

% This code assumes that you already have a data set of normal and faulty

% situation sensor outputs.

%% TUNING THE SVM CLASSIFIER using heuristic approach to select kernel scale

tic

% SVMModelTune is a trained ClassificationSVM classifier

% By passing ’KernelScale’,’auto’ the software utilizes a heuristic

% approach to select kernel scale
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SVMModelTune1 = fitcsvm(feature_vec_training,output_vec_training,

’KernelFunction’,’rbf’,

’KernelScale’,’auto’,’Standardize’,true,’ClassNames’,{’0’,’1’});

%% CROSS VALIDATION

% 10-fold cross validation on the training data

% inputs : trained SVM classifier (which also stores the training data)

% outputs : cross-validated (partitioned) SVM classifier from a trained SVM

% classifier

% CVSVMModelTune is a ClassificationPartitionedModel cross-validated

classifier.

% ClassificationPartitionedModel is a set of classification models trained

% on cross-validated folds.

CVSVMModelTune1 = crossval(SVMModelTune1,’CVPartition’,cFold);

% To assess predictive performance of SVMModelTune on cross-validated data

% "kfold" methods and properties of CVSVMModelTune, such as kfoldLoss is

used

% Evaluate 10-fold cross-validation error.

% (Estimate the out-of-sample misclassification rate.)

crossValClassificErrTuning1 = kfoldLoss(CVSVMModelTune1);

% Predict response for observations not used for training

% Estimate cross-validation predicted labels and scores.

[elabelTune1,escoreTune1] = kfoldPredict(CVSVMModelTune1);

max(escoreTune1)

min(escoreTune1)

%% RETRAIN SVM CLASSIFIER
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% Retrain for different values of BoxConstraint and KernelScale

% This KernelScale is the KernelScale found by the heuristic approach

sampleSpace = 11;

kernelScaleFactor = zeros(1,sampleSpace + 1);

boxConstraint = zeros(1,sampleSpace + 1);

crossValClassificErrTuning2 = zeros(sampleSpace,sampleSpace);

ks = SVMModelTune1.KernelParameters.Scale;

boxConstraint(1) = 1e-5;

kernelScaleFactor(1) = 1e-5;

minCrossValClassificError = 100;

for i = 1 : sampleSpace

for j = 1 : sampleSpace

SVMModelTune2 = fitcsvm(feature_vec_training,output_vec_training,

’KernelFunction’,’rbf’, ’KernelScale’,ks *

kernelScaleFactor(j),’BoxConstraint’,boxConstraint(i),...

’Standardize’,true,’ClassNames’,{’0’,’1’});

% CrossValidate

CVSVMModelTune2 = crossval(SVMModelTune2,’CVPartition’,cFold);

crossValClassificErrTuning2(i,j) = kfoldLoss(CVSVMModelTune2);

if crossValClassificErrTuning2(i,j) < minCrossValClassificError

minCrossValClassificError = crossValClassificErrTuning2(i,j);

kernelScaleOptim = SVMModelTune2.KernelParameters.Scale;

boxConstraintOptim = SVMModelTune2.ModelParameters.BoxConstraint;

end

kernelScaleFactor(j + 1) = kernelScaleFactor(j) * 10;

end

boxConstraint(i + 1) = boxConstraint(i) * 10;

end

211



toc

%% TRAIN AGAIN WITH THE TUNED KernelScale and BoxConstraint

SVMModelTune = fitcsvm(feature_vec_training,output_vec_training,

’KernelFunction’,’rbf’,

’KernelScale’,kernelScaleOptim,’BoxConstraint’,boxConstraintOptim,...

’Standardize’,true,’ClassNames’,{’0’,’1’});

%% PREDICTION PHASE

[labelTune,scoreTune] = predict(SVMModelTune,feature_vec_test);

%% EVALUATING THE PERFORMANCE OF CLASSIFICATION WITH NEW DATA

% Evaluating the prediction performance of classification via

% CompactClassificationSVM class methods (e.g compareHoldout, edge, loss,

margin,

% predict)

eTune = edge(SVMModelTune, feature_vec_test, output_vec_test);

mTune = margin(SVMModelTune, feature_vec_test, output_vec_test);

% Evaluating the prediction performance of classification via confusion

matrix

[f1scoreTune, precisionTune, recallTune] = calcF1score(output_vec_test,

str2double(labelTune));

B.6 svmFDtuningViaOptim.m
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% Copyright 2017 Elgiz Baskaya

% This file is part of cureDDrone.

% cureDDrone is free software: you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation, either version 3 of the License, or

% (at your option) any later version.

%

% curedRone is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You should have received a copy of the GNU General Public License

% along with curedRone. If not, see <http://www.gnu.org/licenses/>.

% FAULT DETECTION VIA SVM

% This code assumes that you already have a data set of normal and faulty

% situation sensor outputs.

%% TUNING THE SVM CLASSIFIER using Bayesian Optimization

sigma = optimizableVariable(’sigma’,[1e-5,1e5],’Transform’,’log’);

box = optimizableVariable(’box’,[1e-5,1e5],’Transform’,’log’);

minfn = @(z)kfoldLoss(fitcsvm(feature_vec_training,output_vec_training,...

’CVPartition’,cFold,’KernelFunction’,’rbf’,’BoxConstraint’,z.box,...

’KernelScale’,z.sigma));

results = bayesopt(minfn,[sigma,box],’IsObjectiveDeterministic’,true,...

’AcquisitionFunctionName’,’expected-improvement-plus’)
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z(1) = results.XAtMinObjective.sigma;

z(2) = results.XAtMinObjective.box;

SVMModelTuned = fitcsvm(feature_vec_training,output_vec_training,...

’KernelFunction’,’rbf’,’KernelScale’,z(1),’BoxConstraint’,z(2));

%% CROSS VALIDATION

% 10-fold cross validation on the training data

% inputs : trained SVM classifier (which also stores the training data)

% outputs : cross-validated (partitioned) SVM classifier from a trained SVM

% classifier

% CVSVMModel is a ClassificationPartitionedModel cross-validated classifier.

% ClassificationPartitionedModel is a set of classification models trained

% on cross-validated folds.

CVSVMModelTuned = crossval(SVMModelTuned,’CVPartition’,cFold);

% To assess predictive performance of SVMModel on cross-validated data

% "kfold" methods and properties of CVSVMModel, such as kfoldLoss is used

% Evaluate 10-fold cross-validation error.

% (Estimate the out-of-sample misclassification rate.)

crossValClassificErrTuned = kfoldLoss(CVSVMModelTuned);

%% PREDICTION PHASE

[labelTuned,scoreTuned] = predict(SVMModelTuned,feature_vec_test);

%% EVALUATING THE PERFORMANCE OF CLASSIFICATION WITH NEW DATA

% Evaluating the prediction performance of classification via
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% CompactClassificationSVM class methods (e.g compareHoldout, edge, loss,

margin,

% predict)

eTuned = edge(SVMModelTuned, feature_vec_test, output_vec_test);

mTuned = margin(SVMModelTuned, feature_vec_test, output_vec_test);

% Evaluating the prediction performance of classification via confusion

matrix

[f1scoreTuned, precisionTuned, recallTuned] = calcF1score(output_vec_test,

labelTuned);

B.7 calcF1score.m

function [f1Score,precision,recall] = calcF1score(labelActual,

labelPredicted)

truePositive = sum(labelPredicted & labelActual);

falsePositive = sum(~((~labelPredicted)|labelActual));

falseNegative = sum((~labelPredicted) & labelActual);

% trueNegative = sum(~(labelPredicted|labelActual));

precision = truePositive / (truePositive + falsePositive);

recall = truePositive / (truePositive + falseNegative);

f1Score = 2 * precision * recall / (precision + recall);

end

B.8 addFeaturesBefore.m
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% Copyright 2017 Elgiz Baskaya

% This file is part of cureDDrone.

% cureDDrone is free software: you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation, either version 3 of the License, or

% (at your option) any later version.

%

% curedRone is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You should have received a copy of the GNU General Public License

% along with curedRone. If not, see <http://www.gnu.org/licenses/>.

% FAULT DETECTION VIA SVM

% This code assumes that you already have a data set of normal and faulty

% situation sensor outputs.

%% FEATURE ADDITION

% Add features (measurements) of up to N - 1 measurements before

% An example : Lets say N = 3

% Before adding the features the feature vector

% v = [v1

% v2

% v3

% v4

% v5

% v6
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% .

% .

% v_m] where m is the number of measurements

% For a given feature matrix above this file outputs

% REMINDER the number of measurements before and after you want to add to

% the feature vector is N - 1 both sides of the original feature vector.

% So this file will add N - 1 coloumns before and N - 1 coloumns after

% the original feature vector. And the indexes for the resulting matrix

will be:

% m is the number of measurements and also the number of rows in the

% feature vector

% Coloumn marked with * is the original feature vector

% *

% v_(2-N) ... v_(-1) v_0 v_1

% v_(2-N+1) ... v_0 v_1 v_2

% v_(2-N+2) ... v_1 v_2 v_3

% v_(2-N+3) ... v_2 v_3 v_4

% . ... . . .

% . ... . . .

% v_(m-N) ... v_(m-2) v_(m-1) v_m

function [vNew] = addFeaturesBefore(v,N)

N = N + 1;

v_b = v;

vNew(:,N) = v;

for i = 1 : N - 1

v_b(2:end,:) = v_b(1:end-1,:);

vNew(:,N - i) = v_b;

end
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Abstract—The new era of small UAVs necessitates intelligent
approaches towards the issue of fault diagnosis to ensure a
safe flight. A recent attempt to accommodate quite a number
of UAVs in the airspace requires to assure a safety level. The
hardware limitations for these small vehicles point the utilization
of analytical redundancy rather than the usual practice of
hardware redundancy in the conventional flights. In the course of
this study, fault detection and diagnosis for aircraft is reviewed.
An approach of implementing machine learning practices to
diagnose faults on a small fixed-wing is selected. The selection
criteria behind is that, data- driven fault diagnosis enables
avoiding the burden of accurate modeling needed in model-based
fault diagnosis.

In this study, first, a model of an aircraft is simulated. This
model is not used for the design of Fault Detection and Diagnosis
(FDD) algorithms, but instead utilized to generate data and test
the designed algorithms. The measurements are simulated using
the statistics of the hardware in the house. Simulated data is
opted instead of flight data to isolate the probable effects of the
controller on the diagnosis, which will complicate this preliminary
study on FDD for drones.

A supervised classification method, SVM (Support Vector
Machines) is used to classify the faulty and nominal flight
conditions. The features selected are the gyro and accelerometer
measurements. The fault considered is loss of effectiveness in
the control surfaces of the drone. Principle component analysis
is used to investigate the data by reducing the feature space
dimension. The training is held offline due to the need of
labeled data. The results show that for simulated measurements,
SVM gives very accurate results on the classification of loss of
effectiveness fault on the control surfaces.

I. INTRODUCTION

The cost effectiveness and reachability of COTS elements,
shrinking size of electronics serve as a perfect environment
for small flying vehicles to emerge. This accelerating trend
towards small but capable flying vehicles is pushing the limits
of both hardware and software potentials of industry and
academia. Increasing usage of these vehicles for a variety of
missions pushes a further liability to secure the flight.

To achieve a safe flight is not an easy task considering the
unknowns of the systems hardware, environment and possible
system faults and failures to emerge. Also, increasing demand

on cost effective systems, resulting in the smaller sensors
and actuators with less accuracy, impose the software to
achieve even more. The expectation that UAVs should be less
expensive than their manned counterparts might have a hit on
reliability of the system. Cost saving measures other than the
need to support a pilot/crew on board or decrement in size
would probably lead to decrease in system reliability.

Systems are often susceptible to faults of different nature.
Existing irregularities in sensors, actuators, or controller could
be amplified due to the control system design and lead to
failures. A fault could be hidden thanks to the control action
(1).

The widely used method to increase reliability is to use
more reliable components and/or hardware redundancy. Both
requires an increase in the cost of the UAS conflicting one
of the main reasons of UAS design itself band consumer
expectations (2). To offer solutions for all different foreseen
categories of airspace, a variety of approaches should be
considered. While hardware redundancy could cope with the
failure situations of UAVs in the certified airspace, it may
not be suitable for UAVs in open or some subsets of specific
categories due to budget constraints. Analytical redundancy
is another solution, may be not as effective and simple as
hardware redundancy, but relies on the design of intelligent
methods to utilize every bit of information on board aircraft
wisely to deal with the instances.

There are three approaches to achieve safe FTC in standard
flight conventions. First one is the fail operational systems
which are made insensitive to any single point component
failure. The second approach is the fail safe systems where
a controlled shut down to a safe state is practiced whenever
a critical fault is pointed out by a sensor. The level of
degradation assures to switch to robust (alternate) or direct
(minimal level of stability augmentation independent of the
nature of the fault) mode. Switching from nominal mode
to the robust and direct modes leads to a decrease in the
available GNC functions. This causes a degradation in ease
of piloting. And also some optimality conditions could have
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been compromised. The third approach is fault tolerant control
systems in which redundancy in the plant and the automation
system is employed to design software that monitors the
components and takes in action whenever needed. The strategy
is most probably to try to keep plant availability and accept
reduced performance (3).

II. METHODS FOR FTCS
A common categorization of FTCS is passive and active

FTCS. In passive FTCS, the flight controller is designed in
such a way to accommodate not only the disturbances but
also the faults. Active FTCS first distinguishes the fault via
fault detection and diagnosis module and then switch between
the designed controllers specific to the fault case or design a
new one online (2). While active FTCS requires more tools
to handle faults as seen in Fig. 1, for faults not predicted and
not counted for during the design of the robust controller, this
method most probably fails.

Even with a long list of available methods, aerospace
industry has not implemented FTC widely, except some space
systems, due to the evolving nature of the methods, the tricks
coming with the nonlinear nature of the problem, design
complexity and high possibility of wrong alarms in case
of large disturbances and/or modeling uncertainties. So the
already carried reliability measures concerning the hardware
redundancy is now the preferred way because of its ease and
maturity being implemented on various critical missions with
considering human lives.

III. FAULT DETECTION AND DIAGNOSIS

FDD is handled in two main steps; fault detection and fault
diagnosis. Fault diagnosis encapsulates fault isolation and fault
identification. The methods for detection and diagnosis are
investigated for their frequency of utilization separately for
sensor, actuator, process and controller faults in (4). FDD

should not only be sensitive to the faults but also robust to
the model uncertainties and external disturbances.

Two distinct options to proceed in analytical redundancy
are the model based approaches and data-driven approaches.
They form the two ends of a continuous solution set line,
so utilizing them in a combination might end up with better
solutions. Model based fault diagnosis highlights the compo-
nents of a system and the connections in-between, and their
corresponding fault modes. Data driven fault diagnosis rely on
the observational data and prefers dense, redundant and with
a frequency larger than the failure rate.

A. Model Based

In model based approaches, relations between measure-
ments and estimated states are exploited to detect possible
dysfunction. The most common ways to implement a model
based approach is to estimate the states, estimate the model
parameters, or parity-space. The accuracy of the results depend
on the type of faults (additive or multiplicative). Additive faults
affects the variables of the process by a summation whereas
the multiplicative faults by a multiplication. When only output
signal can be measured, signal model based methods can
be employed for fault detection such as Bandpass filters,
Spectral analysis(FFT) and maximum entropy estimation. For
the case, both the input and output signals are available, the
utilized methods for fault detection are called the process
based methods: State and output observers(estimators), Parity
equations and Identification and parameter estimation. They
generate residuals for state variables or output variables. When
previous works investigated, it is concluded that the most
widely used technique for sensor and actuator faults is the
state and output observers (estimators) and for process faults,
identification and parameter estimation (4).

The output of the model based fault detection methods
is the stochastic behaviour with mean values and variances.
With the use of change detection methods, deviations from
the normal behavior can be detected. For that purpose, three
available methods considered are, mean and variance estima-
tion, likelihood-ratio-test and Bayes decision, run-sum test and
two-probe t-test. Fault detection is only supported by simple
threshold logic or hypothesis testing in most of the applications
(4).

A bunch of studies discovers the band of different ap-
proaches for model-based fault detection. Detecting sensor and
actuator faults via state estimation, utilizing an EKF is applied
to a F-16 model in (5). Parameter identification via H1 filter
is used to indicate icing in (6).

A drawback of model-based approaches is that they re-
quire accurate model of the aircraft for successful detection.
In a small UAV system susceptible to various uncertain-
ties/disturbances and most of the cases does not have an
accurate model, leading a model-based approach might fail.
And also, a mathematical model of a UAV is constructed
within the flight envelope, and does not necessarily describe
the possible dynamics invoked by a failure on board.



A way to handle that is to offer solutions to cope with
the uncertainties. A fairly old study in 1984, investigates the
design problem FDI systems robust to uncertainties within
the models. One of the two steps of FDI, two steps being
the residual generation and decision-making, is targeted. They
offer to handle model uncertainties, by designing a robust
residual generation process (7). Another study deals with
model uncertainties by determining the threshold of the resid-
ual in a novel way with an application to detect aileron actuator
fault (8). (9) utilize two cascade sliding mode observers state
estimation and fault detection to guarantee staying in sliding
manifold in the presence of unknown disturbances and faults.

B. Machine Learning
Model-based approaches had various successful applications

until now, most of them assuming accurate model is available
on board. With the new era of UAVs, the airspace is expected
to be populated by an abrupt increase in the number of
UAVs. The variety of UAVs, expense of accurate modeling
practices, the difficulty in modeling the behavior of UAV
in case of failures, call for alternative approaches for the
quite challenging problem of FDD. The increased efficiency of
sensors on board, the increase in the computational capabilities
of autopilot processors, and the advances in machine learning
techniques in the last decade may offer efficient data-driven
solutions to FDD.

In data driven methods, a detailed knowledge about the
internal dynamics of the system is not necessary. The data
available is the source of information with regard to the
behavior of the system. Supervised learning, which requires
to label the fault cases previously in the training data, is
usually utilized for data-centric inference of causes. In case
of an unlabeled fault, the result is expected as a probability
distribution of the available normal modes, identified fault
labels and a probable unknown fault. What is needed at that
point is to first detect and localize the fault and then to consult
domain experts for labeling for further integration of this fault
into the diagnosis scheme (10).

Amidst data driven methods for FDD, such as Neural
Networks (11) and Principal Component Qnalysis (PCA) (12),
Support Vector Machines (SVM) appear more recently in the
literature. (13) argues artificial intelligence methods for fault
detection of complex systems. Comparison between PCA and
model based stochastic parity space approaches is given in
(14). In (15), the authors argues to use dynamic PCA since
UAV flight controls is a dynamic system itself and DPCA can
reflect unknown disturbances, while model-based approaches
can only model typical disturbance.

SVM is introduced in 1964 in the statistical learning theory
domain and relies on structural risk minimization principle
(16). Although the theory has old roots, its application to
classification as a machine learning algorithm is recent and
originally offer solutions for two-class classification (17; 18).
SVM’s first application as a classifier was mainly on object
classification in images and followed by fault detection lately.
The use of SVM on fault detection has gained popularity

Fig. 2. Common actuator faults (1)

thanks to its improvement in accuracy of detection (19).
Application of SVM on fault detection is mostly held in
mechanical machinery, such as roller bearings, gear box, turbo
pump rotor and sometimes other systems; semi-conductors,
refrigeration systems and chemical processes. Its application
on complex systems has not been very widely adopted yet and
forms the basis of study for our research.

IV. SYSTEM MODELING

In this study, first, a model of an aircraft is simulated. This
model, will not be used for the design of FDI algorithms, but
instead will be utilized to test them. Nonlinear aircraft flight
dynamics for translational and attitude motion can be given as
a system of first order partial differential equations
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where x
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2 IR3 is the position of the center of mass of
UAV with respect to inertial frame I expressed in the body
frame B, vb is the velocity of the center of mass of UAV with
to I expressed in B, q = [q0, qT

v

]T 2 IR3 ⇥ IR is the unit
quaternion representing the attitude of the body frame B with
respect to inertial frame I expressed in the body frame B,
J 2 IR3⇥3 is the positive definite inertia matrix of the drone,
M 2 IR3 represents the moments acting on the drone. The
notation x⇥ for a vector x = [x1 x2 x3]T represents the
skew-symmetric matrix
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Fig. 3. Loss of effectiveness fault simulation in aileron command and
corresponding accelerometer x axis measurement

The stability and aerodynamic force coefficients are gener-
ated by AVL. The input vector can be written as u (t) 2 IR3

u (t) =
⇥
�
a

�
e

n
⇤T (7)

Here �
a

aileron deflection angle in degrees, �
e

elevator
deflection angle in degrees, n engine speed in rev/s.

When the actuators are healthy, actual control input signal
will be equal to the given input signal. In case of a fault the
actual signal can be modeled as

u (t) = Eu
c

+ u
f

(8)

where u
c

is the desired control signal, E = diag(e1, e2, e3)
is the effectiveness of the actuators where 0  e

i

 1 with
(i = 1, 2, 3) and u

f

additive actuator fault. This model makes
it possible to simulate all four types of actuator faults shown
in Fig. 2. Most of the FDI algorithms are implemented to
open-loop systems, ignoring the probable influences of the
controller might cause on the detection performance (20). Here
the system is open-loop as well. Further implementation of a
controller is foreseen to understand the effect of the selected
controllers. So we follow a step by step approach and hope
to end with a more realistic case, in which real flight data is
utilized and diagnosis is achieved online aside a functioning
controller.

Since it is not possible to see all features, we take advantage
of the dimensionality reduction technique called Principle
Component Analysis (PCA) for visualization. Here what we
do is to map the feature vector, x 2 IRn to a lower dimensional
space where the new feature set will be represented by
z 2 IRk. Fig. 4 shows the resulted most significant elements
for a mapped feature space from six dimensional feature vector
to two.
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Fig. 4. Principal component analysis for visualization of faulty and normal
data in reduced dimensional feature space

V. CLASSIFICATION OF FAULT VIA SVM

SVM is a relatively new approach for classification offering
better generalization property thanks to its foundations on the
structural risk minimization principle (21; 22) while other
classifiers usually only minimizes the empirical risk. This
advances the capacity of generalization even with a small
number of instances by reducing the risk of overfitting for a
nicely tuned parameters setting. It can be applied to nonlinear
systems and problems offering a vast number of features. Fur-
thermore, taking advantage of convex optimization problems
in the solution of SVM models, another attractive reason to
use SVM rises as avoidance of global minimas, while Neural
Networks is inherently prone to local minimas.

The idea behind SVM is to find an optimal hyperplane
that will linearly separate the classes. This is achieved with
the introduction of maximum margin concept which is the
distance in between the boundaries when they are extended
until hitting the first data point as in Fig. 5. The points closest
to the hyperplane (decision boundary) are called the support
vectors and are the representatives of the data sets to be used
for the decision process. This helps to decrease the data to
handle abruptly, enhancing the ability to cope with the curse
of dimensionality and reducing the computational complexity.

SVM has other tricks to deal with not linearly seperable
problems such as using kernels to map data into higher
dimensional feature spaces where they can be separated with
a linear hyperplane.

A binary classifier is used in this work to classify two
classes, faulty and nominal. The fault considered in this study
is the loss of effectiveness of the control surfaces. SVM being
a supervised classification algorithm has two main phases as
shown in Fig. 6. In the training phase, the model is learned as
a fit to the labeled data that is fed to the SVM algorithm. This
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phase is usually followed with a tuning phase where some of
the parameters of SVM is changed and results are compared
to have the best fit via cross validation to avoid overfitting.
The last phase is the prediction, where for a new instance
the classifier predicts if it corresponds to a faulty or nominal
condition.

Training data is comprised of labeled data where the label
can belong to one of two possible cases. This data set is saved
in X 2 IRm⇥n where m,n correspond to number of instances
and features respectively. The label information corresponding
to the measurement instances is also fed to the SVM algorithm
during the training phase as output vector y 2 {�1, 1}. The
aim of SVM is to find an optimal hyperplane maximizing the
margin by solving the optimization problem for non-linearly
separable datasets
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To avoiding overfitting, which is the main problem of
parametric discrimination approaches such as neural networks,
parameter C is tuned to result in the optimal fit for the cross
validation set. The data set available is first divided to two
portions with a percentage of %20, %80 where the bigger
chunk is the training set and the remaining is the test set.
Further, the training set is divided as cross-validation and
training sets. The idea to split data is to avoid overfitting.
Overfitting means that the models trained being very accurate
fit for the data they are trained to but fail to generalize with
new inputs resulting in bad prediction performance for the
new data. To assess the performance of the classifier trained
with the training data is tuned to give a better performance
with the cross validation data. And then the final ability of
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Fig. 6. Supervised learning basics
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Fig. 7. Posterior probability of loss in effectiveness fault for test set when a
fault is injected at t = 120s.

the classifier is tested on the test set. This parameter also
tuned for the outliers to generalize the distribution of the
data rather than resulting in fine fits for each individual data
in the training set. With a satisfactory result of the training
& tuning is followed by the prediction where the classifier
predicts if the new measurement data belongs to the faulty or
nominal class. The output of the SVM classification is not the
probability that the new measurement belongs to one class as is
in the traditional classification problems, but directly the class
information it belongs to. For investigating the performance of
the classifier on the test set, a method (23) is used to calculate
the posterior probabilities giving the probability that the new
measurements belongs to faulty mode. Results shows as in
Fig. 7 that prober tuning achieves very accurate and instant
detection for the drone fault.

VI. CONCLUSION

Integration of drones into airspace needs the introduction of
indigenous designs that will serve safe solutions for drones.
One of the aspects of the problem is to assure a safe flight by
designing fault detection and diagnosis with cheaper avionics
common in a vast number of drones projected. This work aims
to design a classifier via SVM to solve FDD of drones with



actuator faults. This problem possess various challenges. This
work focuses on a loss of effectiveness fault which is more
difficult than a stuck fault to diagnose, but easier to mitigate.

A model of a MAKO UAV is simulated to generate data
and test the designed algorithms. The simulated data of gyro
and accelerometer measurements are given to classifier to train
for the two class labeled data set. A supervised classification
method, SVM (Support Vector Machines) is used to classify
the faulty and nominal flight conditions. Principle component
analysis is used to investigate the data by reducing the feature
space dimension. The training is held offline due to the need of
labeled data but prediction is envisioned be held real time. The
results show that for simulated measurements, SVM gives very
accurate results on the classification of loss of effectiveness
fault on the control surfaces.

Further study is envisaged to deal with the controller diag-
nosis interaction and classification of multiple faults. Also dis-
cussion of SVM for online training might be addressed since
SVM is in need for labeled data which requires generating the
labeled data during flight.
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Abstract—Air safety authorities are forced to develop regu-
lations for UAS due to incidents disturbing public safety and
demands from UAS operators. Despite numerous studies from
the FAA and EASA, none of them decided on a regulation for
UASs. The reliability of the flight is considered to be one of
the main obstacles for UAVs integration. This is not an easy
topic considering the unknowns of the systems, environment and
possible failures. We believe the flexibility required for such
solutions calls for open architectures. More specifically, this paper
shows how the use of the Paparazzi open source auto-pilot system
can ease the integration of low altitude UAS. To ensure safety, this
integration needs to be achieved through airspace management
and UAS reliability.

Preliminary airspace designs, e.g. Amazon’s, identify different
zones depending on the UAS capabilities, population density and
altitude. Plus, national rules evolution push to cope with a variety
of requirements. Open source and modular architectures are key
to adapt to these requirements. From a UTM point of view,
Paparazzi provide features to ease congestion management, such
as dynamic geofencing, trajectory communication and collision
avoidance. Concerning reliability, current regulations focus on
flight constraints but might be expected to involve regulations
on software and hardware components as well. In such case, the
increased cost will be inevitable for the demands of certification.
In the Paparazzi software case, parts of the code have been
formally proved and stable versions have thousands of flight
hours. Such heritage might ease the certification process for
smaller companies.

On top of its flexibility and reliability, Paparazzi offers a
unique set of features, as an open source software, to achieve safe
integration of low altitude UAS in the G airspace. To conclude
this work, desirable new features and future work are discussed.

I. INTRODUCTION

The cost effectiveness and reachability of commercial off-
the-shelf elements, and shrinking size of electronics serve as
a perfect environment for small flying vehicles to emerge. Al-
though inherited as military purposes in its infancy, nowadays
Unmanned Aircraft System (UAS) are becoming efficient plat-
forms for scientific/commercial domains. They offer benefits
in terms of cost, flexibility, endurance as well as realizing
missions that would be impossible with a human onboard.
Increasing usage of these vehicles for a variety of mis-
sions, such as defense, civilian tasks including transportation,
communication, agriculture, disaster mitigation applications
pushes demand on the airspace. Furthermore, this congestion

is predicted to accelerate with the growing diversity of these
systems.

Commercial advantages, offered by these efficient systems,
are already targeted by big companies worldwide, specifically
in the US. The airspace regulatory authorities seem to be
squeezed in between the companies, demanding a fast as
possible access to airspace, and the concerns of the public
about potential privacy breaches, safety and liability issues
[1], [2]. Even with today’s strictly regulated airspace, reported
occurrences show that there are hurdles to solve before a
further integration of UAS to airspace.

Advent of the new era of UAS seems to be hold by
an unseen barrier of lack of regulatory framework for now.
Different institutions all over the world, specifically National
Aeronautics and Space Administration (NASA) and Federal
Aviation Administration (FAA) in US, easa in Europe and
international bases such as International Civil Aviation Or-
ganization (ICAO) are addressing safe integration of UAS in
airspace. Although the approaches of regulatory bodies may
vary, the aim remains the same: safe integration as soon as
possible.

The tackles of safety during integration of UAS to airspace
refer to different technical and organizational aspects including
but not limited to control of traffic in segregated and non-
segregated airspace, reliable communication, robust control
of the Unmanned Air Vehicle (UAV), trajectory planning,
detect&avoid.

In this study, we present the Paparazzi open source auto-
pilot system, and its features, as a tool to ease the safe
integration of low altitude UAS into National Air Space
(NAS). In our argument, Paparazzi is favored thanks to its
modular design, its support for congestion management and
evolving reliability.

II. OPEN-SOURCE AUTOPILOTS FOR UAS
With the new era of First Person View (FPV) flights,

especially for multi-rotor UAVs, there has been an exponential
increment on the hardware and software of the open-source
autopilots. A brief comparison of the popular current open-
source and commercial autopilots is available in Table I.
Usually the trend is to make the hardware as cheap as
possible for recreational consumers. This reality is damaging
the reputation of open-source autopilots as being not reliable



or robust, just because they are being used without attention.
There exists a difference on the quality of sensors used on
the open-source autopilot systems compared to commercial
autopilots for sure, and this is extremely represented on the
price of the units. This makes a difference on the flight quality
of the vehicles, however with the new on-board processing
power, more complex estimation algorithms and filters are
being used in order to overcome this problem.

III. THE PAPARAZZIUAV PROJECT

The Paparazzi Autopilot System aims to provide a software
and hardware solution for low-cost mini and micro unmanned
air vehicles. It is started as a personal project in 2003 by
Pascal Brisset and Antoine Drouin, and afterwards supported
by ENAC in 2005. Being one of the first (if not the first) open-
source autopilot system in the world, Paparazzi has attracted
attention and led the others to start new branches and systems.
The software is originally packaged for Debian/Ubuntu but can
be manually installed on any GNU/Linux operating system
even including MacOS-X. However, it is not compatible with
Windows which automatically eliminates 90% of the possible
user community and therefore it is not as popular as other
existing autopilot systems on the user market.

A. System Architecture
The system architecture of Paparazzi consists of three

segments: Ground, Airborne, and the communication link
between (Figure 1). The ground software of Paparazzi is
mainly written in Ocaml, with some additional parts in Python
and C. Thanks to its middle-ware communication bridge called
Ivy-Bus, external softwares can be directly connected with
publish and subscribe method to the ground segment without
needing to modify and code at all. Airborne software is
completely written in C, however there is an on-going work
which implements the possibility of adding some C++ code
parts.

B. Distinguishing Features
One of the distinguishing property of the Paparazzi is to

support multi-UAV flight (Figure 2). Several projects have
been using Paparazzi Autopilot System because of this ad-
ditional feature. The communication of each vehicle is being
transmitted to the ground control station directly on the current
version, however air to air communication between flying
vehicles and internal relay of information to ground control
station is being implemented for a new coming version.

Modules are the easiest and most flexible way of adding
new code into Paparazzi. There are over 130 modules written
for Paparazzi by several developers and researchers includ-
ing subjects on meteorology, imagery, surveillance, advance
navigation, formation flight and collision avoidance, etc...

Paparazzi has its own complete flight plan language, where
the user can define any possible trajectory by existing com-
mands such as circle, line, hippodrome, figure-eight, survey,
etc... Additionally any function, written in C language, can
be called from the flight plan and executed. This opens up a

Fig. 1. Paparazzi autopilot system overview.

Fig. 2. Ground Control Station showing trajectories of 2 UAVs using the
TCAS system

lot of application possibilities such as triggering a navigation
procedure via a sensor output.

A real-time operating system based on ChibiOS is started to
be used since 2015. The first implementation was mainly for
adding a separate thread in order to make on-board logging
at a high frequency. On going work is to divide all autopilot
tasks into individual threads and manage everything according
to priorities which will increase the safety and reliability.

C. Hardware

There exists over 20 different autopilot boards capable of
running Paparazzi. Additionally, several mission based custom
sensor boards have been designed under the Paparazzi project,
such as Meteo-Stick1.
The rest of this work highlights Paparazzi’s capacity to tackle
the issues encountered during integration of UASs in the
airspace. These issues have been grouped in three categories:
modularity, congestion management and reliability. For each

1http://wiki.paparazziuav.org/wiki/MeteoStick v1.10



TABLE I
COMPARISON OF POPULAR OPEN-SOURCE AND COMMERCIAL AUTOPILOTS.

Open-Source Vehicle type Hardware Multi
UAV

Flight
Plan Path Definition Geofencing Collision

Avoidance

Latest
stable
release

Paparazzi Fully configurable varied yes scriptable Formula Based 3-D UAV
TCAS 21-06-16

PixHawk Fully configurable specific yes scriptable Circles Lines Patterns 3-D none 06-08-16

Ardupilot Copter Plane Rover varied alpha scriptable Circles Lines Patterns 2-D none 22-06-16

OpenPilot multicopter specific none NA NA none none 15-05-15

AeroQuad multicopter varied none NA NA none none 31-01-13

Commercial
Picollo Copter Plane specific none dynamic Way Point NC NC NC

MicroPilot Copter Plane Rover Blimp specific yes dynamic Way Point NC NC NC

category, Paparazzi offers a unique set of features to deal with
the issues at hand.

D. Security
Latest micro processors used in the Paparazzi hardware has

an additional feature that can be use for security augmentation.
The cryptographic processor can be used to both encipher and
decipher data using the DES, Triple-DES or AES (128, 192,
or 256) algorithms. It is a fully compliant implementation of
the following standards:

• The data encryption standard (DES) and Triple-DES
(TDES) as defined by Federal Information Processing
Standards Publication (FIPS PUB 46-3, 1999 October
25). It follows the American National Standards Institute
(ANSI) X9.52 standard.

• The advanced encryption standard (AES) as defined by
Federal Information Processing Standards Publication
(FIPS PUB 197, 2001 November 26)

Since, with Paparazzi, the uav needs to be flashed after each
modification, it is easy to rely on the random generator of the
operating system (/dev/random under linux) to generate a key
that will be flashed alongside with firmware, so this key will
be :

• shared between UAV and groundstation
• regenerated for each flight, this make hostile decypher

difficult
• in a multi UAV configuration, each UAV will have private

cypher key
For the moment, the crypto driver for chibiOS is being

written in order to be implemented into Paparazzi soon. This is
generally a complicated task, however as the datalink bandwith
is low, it becomes easier compared to a device driver.

E. Regular Use
Highly flexible architecture of the Paparazzi systems comes

with the disadvantage of being too complex for a regular

user such as a recreational (model aircraft) pilot. From the
developer’s point of view this is a great property, however
beginners and regular users do not need to use all of the
new features right away so they do not need to maintain the
software at the latest version. Therefore the regular user will be
using a recent stable release of the system, and usually will
keep on using it without modification till he needs the new
additional features coming from the developer community.

On the other hand, the developers will be able to use the
software versioning system with GIT, maintained at Git-Hub,
and can check out and contribute to the latest software version
in the beta test status. The tools that the developers need in
order to do that are not too different than the ones that are
required for other software projects.

IV. MODULARITY

The current evolving nature of regulations and the variety
of organizations in charge of the airspace rule making calls
for flexible solutions to cope with these fruitful environments.
Paparazzi, as an open source autopilot system, is largely
modifiable through its modules to offer such flexible solutions.

A. Airspace Categorization
The UAS in the NAS project points to a performance-

based routine access to all segments of the national airspace
for all unmanned aircraft system classes, after the safety and
technical issues are addressed thoroughly. As a start, NASA
and faa seem to have a short term goal to integrate UAS in
low-altitude airspace as early as possible. They further aim to
accommodate increased demand safely, efficiently in the long
term. NASA and faa seem to handle the airspace above 500
feet and the one below separately. European Aviation Safety
Agency (EASA), tasked by the European Union, is planning a
risk based approach, accommodating the UAS in the airspace
under three different categories, low risk, specific and high
risk [3]. Both regulators seem to categorize the airspace and
scale regulatory needs according to some criteria. To answer



different needs of different categories, flexibility given by the
high level of modularity of open source autopilot systems will
be a handy tool. Customizability of the software and hardware
depending on the airspace gives a chance for larger airspace
community to utilize Paparazzi scaled for their specific needs.
A larger community using the same system would lead to a
natural evolution of the system toward a better design.

B. National Regulations

Circulation of UAS internationally is somewhat prevented
by the Chicago convention unless an agreement holds between
Contracting States [3]. ICAO is aiming to develop international
standards and recommended practices to which the member
states could refer to when developing their national civil
aviation regulations. Even though a similar base is aimed,
national aviation legislations will not be the same because
of the different expectations of nations about UAS aviation.
Thanks to the modular nature of the Paparazzi software
and hardware suite, the functionality of the system could be
enhanced according to the specific regulations held in the area
of utilization.

C. Accommodating evolution of regulations

Prescriptive rules seem to cause some difficulties since the
technical area on UAS systems develop rapidly [3]. Inno-
vations both on the aircraft and the operation type of UAS
will accelerate especially after the regulations are set. Thus,
regulatory bodies call for refinable operational requirements
and system architectures to evolve into a safer and efficient
integration of UAS into airspace. The systems to cope with the
regulations should also be modular and flexible in order not to
be superseded by the innovations in the area. Thus, the aviation
regulatory bodies aim to achieve designs with flexibility where
possible, structure where needed. Having flexible hardware
and software points to modularity, which is pretty much best
supported via open source systems.

V. CONGESTION MANAGEMENT

According to UAV Factory, one of the large European
UAS companies, “The future of the UAV industry is likely
to be shaped by airspace congestion” [4]. Indeed, high level
airspaces are getting crowded and large scale solutions, such as
NextGen (US) or SESAR-JU (EU), are necessary to increase
airspace capacity while maintaining the current safety levels.
However, there is no such management solution existing for
Very Low Level (VLL). Yet, large projects like Amazon’s
Prime Air and Google’s Project Wing are already waiting to
populate the VLL airspace.

Part of the congestion management problem is to avoid con-
flicts, and more importantly collisions, between UAS through
strategic deconfliction and safety nets. Another mission of the
congestion management system is to make sure that UAS do
not go where they are not supposed to go, thus requiring
geofencing. In order to implement the previously mentioned
systems, the UAS autopilot needs to be able to perform
complex operations, e.g. static waypoints following is likely

to be insufficient. In the following, we divide these issues into
four topics of interest: 4-D trajectory management, geofencing,
safety nets, complex operations, and show how the Paparazzi
system addresses them.

A. 4-D Trajectory Management

As noted in [5], 4-D trajectories will be central in future
airspace management methods. The principle of 4-D trajectory
management is to have every UAS broadcast its trajectory
up to some time horizon and receive Unmanned Aircraft
System Traffic Management (UTM)’s clearances under the
form of trajectories. The trajectory information contains a
path, the series of points through which the UAS will pass,
and times associated to each of these points. Thanks to this
information, the idea is to perform pro-active deconfliction, as
explained by Thomas et al. in [6]. In clear, it implies that UTM
detects future conflicts along the trajectories of all UAS and
deconflicting them as safely and early as possible. This kind
of approach requires the autopilot to represent UAS motions
with trajectories and to be able to transmit them, which is the
case in Paparazzi.

Paparazzi originally supports a basic description of trajecto-
ries based on circles and straight lines, but recent updates allow
it to process advanced trajectories as well. Indeed, Paparazzi
can represent trajectories as functions in 2-D (x, y), 3-D
(x, y, z) or 4-D (x, y, z, t). The only requirement is for
the function to be differentiable at least two times on every
point. The function and its derivatives analytical formulas are
computed offline and can then be quickly evaluated online.
Moreover, gains can be tuned to adjust the convergence speed
from the UAS starting point to the given trajectory. These
gains influence the convergence path to a given trajectory and
the resulting trajectory (convergence + commanded) can be
computed offline given initial conditions and the commanded
trajectory. This is of particular interest for UTM as it allows
the UAS to provide not only its trajectory over time but also
how it will reach this trajectory from its starting point.

It is important to note that UTM will have to solve conflicts
between manned and unmanned aircraft. So an air traffic
controller is needed in the loop with an appropriate display for
4-D trajectories and a communication link with both manned
and unmanned aircraft.

B. Safety Nets

Trajectory deconfliction is the first step to manage con-
gestion, however safety nets are also part of the congestion
management. Indeed, safety nets such as self-separation and
collision avoidance allow UAS to fly close to each other while
preserving an acceptable safety level. Though Paparazzi does
not include self-separation algorithms, it do contains a light
version of the TCAS II collision avoidance system. It considers
intruders one at a time and is capable of coordinated avoidance
maneuvers. There is no strengthen resolution as the resolutions
are not speed rates but an objective altitude to reach as fast as
possible.



TABLE II
TYPICAL VALUES FOR MAIN VARIABLES OF THE Paparazzi TCAS

MODULE.

TAU TA TAU RA DMOD ALIM
10s 6s 15m 10m

Values such as distance thresholds have been adapted to
suite the performances of small UAS. Table II shows example
values used for fixed-wing UASs. Keep in mind that the Para-
pazzi philosophy is to be configurable, so these parameters can
be easily changed from a configuration file.

On top of the TA and RA provided by the TCAS, a module
has been recently developed to input data from traffic services
and display them into Paparazzi’s ground control station, thus
providing situational awareness to the remote pilot. Prelimi-
nary test have been done using opensky-network to display
traffic around a given area, based on these information the
remote pilot can effectively perform conflict resolution.

C. Geofencing
Keeping UAS away from each other is an important point.

But keeping them out of forbidden areas is also crucial.
Geofencing allows determining no-fly zones where the UAS
should not enter. To accommodate land owners while manag-
ing traffic and limiting congestion, Foina et al. [7] proposed a
participative dynamical airspace management method: the air-
parcel model. It allows land owners to authorize/forbid flights
over their lands through a web interface. However, this type of
approach asks from the UASs to be able to handle dynamical
geofencing. Plus, though initially this model considers only
cuboid parcels, the need for more precise airspace shapes may
emerge making 3-D geofencing a need.

This type of model can be handled by Paparazzi by defining
geofenced zones manually or programmatically. The zone
is defined as a simple geometrical shape (e.g. a circle, a
polygon, etc.) plus altitude limits thus effectively creating a 3-
D geofencing. These zones can be static, activated dynamically
from the ground station or from the flight plan with associated
conditions.

D. Complex Operations
Having 4-D trajectory management, safety nets and ge-

ofencing is useless if the UASs cannot follow the instruction
from UTM regarding these tools. Indeed, new UTM paradigms
imply being able to change flight plans dynamically to answer
to UTM demands. In [8] two types of complex operations
examples are mentioned: space transition corridors and tem-
porary flight restriction. Both these airspace management
methods require from the UAS to be able to modify its flight
plan according to new UTM instructions.

Modifying the flight plan dynamically is not possible, and
not desirable, in Paparazzi. However, appropriate response to
these complex operations can be provided through conditional
flight plans. These enable the UAS to follow different courses
of action depending on given parameters. These parameters are
defined offline by the user and can then be modified online

by values coming from sensors or from UTM. This allows
intelligent reaction to exterior instruction, in particular it can
be used by the user to give UTM control on portions of the
flight.

VI. RELIABILITY

Improvement of the reliability of the flight is considered
to be one of the main goals for integrating military UAVs
into civil airspace according to Unmanned systems roadmap
by US Office of the Secretary of Defense, DoD [9]. Com-
pared to manned counterparts, UAVs experienced failures
with a frequency of two orders of magnitude more in the
military domain. Although this changed last years with the
technological improvements, making the UAVs as reliable as
early manned military aircraft, it seems not enough from
the DoD perspective. This can be realized by checking the
biggest chunk of control technologies budget for research
and development, which is health management and adaptive
control.

To achieve a safe flight is not an easy task considering
the unknowns of the systems hardware, environment and
possible system faults and failures to emerge. Also, increasing
demand on cost effective systems, resulting in smaller sensors
and actuators with less accuracy, impose the software to
achieve even more. The expectation that UAVs should be less
expensive than their manned counterparts might have a hit
on reliability of the systems. Cost saving measures other than
the need to support a pilot/crew onboard or decrement in size
would probably lead to decrease in system reliability.

A. Small and Medium Enterprise (SME)s and Certification
Costs

Utilizing drones for quicker and cheaper deliveries could
be rewarding for SMEs since cost per mile of a drone is less
then 1 / 30 of the average diesel truck. Being an early bird
might put the SMEs in an advantageous position, considering
the increase in the capabilities of the drones with inevitable
acceleration thrusted by research activities and their widened
application areas. Nevertheless, the fairly cheap access to
drones and their relatively cheap utilization cost does not
seem to be enough to put them to air right now due to the
heavy cost of certification and regulatory hurdles [10]. In this
concern, capable open source solutions could be a good way to
loosen the tie. Otherwise, SMEs, an important factor in drone
business might not survive. Even worse, they might operate
them without relevant permission, scarifying a substantial fine
as reported by Civil Aviation Authority (CAA). This will
compromise security in the system contradicting the hopes for
reliable integration of drones into airspace. As an open source
autopilot system, Paparazzi is a known platform for computer
scientist who want to test the viability of complex software
systems. Thus parts of Paparazzi code (Ground Control Station
(GCS)) have been formally proven [11] and stable version have
thousands of flight heritage. Furthermore, although Paparazzi
is not certified, to be able to have access to the certified
airspace, the users can built up their configuration on readily



and freely available Paparazzi system, which might reduce the
cost to have a certified system to reach specific airspaces.

B. Individuals and Education

Individuals, as well as SMEs, suffer from the same budget
constraints. Personal UAV usage counts for a substantial
amount of the drone ecosystem. Both US and European au-
thorities mention the importance of individuals in utilizations
of drones. There is a community with a passion of aviation and
potential, but most probably not very experienced. Paparazzi
offers a whole community to help/educate these beginners
through its forums enriched by rising number of its users. A
rich documentation is available through the Wikipedia page,
encouraging users to self-teach.

C. Flight Heritage for Risk Assessment

Drone industry being extremely innovative, technical devel-
opments could supersede the prescriptive rules as regulations.
Thus a solution might be to follow a risk based approach rather
that to have strict rules to cope with. Predicted regulations in
Europe seems to evolve under different categories dedicated
to specific operation risks. Flight heritage and occurrence
reporting is expected to be an inevitable part of safety risk
assessment to achieve reliable flight. Wide utilization of
Paparazzi and real time connection to ethernet could offer
reliable and practical solutions to report occurrences.

D. Support for real time planning and onboard vehicle au-
tomation

To access low-altitude airspace with the use of small un-
manned aircraft safely, an important ability could be to im-
plement real-time planning and on-board vehicle automation.
Amazon offers that this approach will allow some flexibility
to adapt to variable situations such as weather changes, severe
winds or any other emergency needs. Paparazzi, has a real-
time planning ability already implemented, letting the user
change the trajectory in real-time through its ground control
station via different strategies. The user could switch between
trajectories already available or even drag the waypoints to
his/her preference. The automation of the vehicles is handled
in different stages. For now, the most used modes of autonomy
is no autonomy, assisted mode and the fully autonomous
mode. No autonomy mode, or manual mode, gives whole
responsibility of the aircraft dynamics to the pilot through the
RC link. The assisted mode closes some attitude control loops,
giving some stability to aircraft. This will ease the challenges
of piloting which could be a great advantage especially for
the unexperienced pilots. The fully autonomous mode handles
both heading and navigation through selected trajectories. In
case of an emergency, the pilot take the control of the aircraft
anytime, through the RC link. Features already implemented
on Paparazzi, such as geofencing, go home, and its ease
in adding/modifying thresholds to various variables, support
safety procedures.

VII. FUTURE EVOLUTIONS

As many open source projects Paparazzi is in constant evo-
lution through regular contributions. With its large community,
it is hard to keep track of all the ongoing projects. In this
section we present three features being currently explored and
developed at ENAC’s labs.

Though there is no life a stake, avoiding UAS collisions
is desirable for safety and operational reasons. Paparazzi’s
current TCAS-like collision avoidance allows operating nu-
merous UAVs with little risk of collision between them.
However, future missions will include more and more UAVs in
bounded size airspaces. In this context, an efficient collision
avoidance algorithm is desirable to allow closer operations
with an acceptable amount of nuisance alerts. Because it relies
on advanced logics and can be adapted to different types of
performances, we have chosen to implement the ACAS Xu
algorithm. Though this standard’s definition just started, the
baseline is already determined and may allow developing a
simplified version for micro UAVs.

Regarding geofencing, most current methods use boundaries
in the horizontal plane in which the UAV cannot enter. How-
ever, the utilization of the VLL airspace is likely to demand
more sophisticated methods to handle 3-D geofencing where
a 3-D no-fly shape can be described. Though Paparazzi can
emulate 3-D geofencing, it cannot use full 3-D models yet.
Work is underway to extend the current geofencing to allow
loading terrain models and padding them with arbitrary shaped
no-fly zones.

Finally, conventional procedures to handle failures onboard
could be one of three approaches in order to achieve safe
flight. First one is the fail operational systems which are made
insensitive to any single point component failure. The second
approach is the failsafe systems where a controlled shut down
to a safe state is practiced whenever a critical fault is pointed
out by a sensor. The third approach is fault tolerant control
systems in which components of the system are monitored
and action taken in whenever needed. The strategy is most
probably to try to keep the system availability and accept
reduced performance. For Paparazzi autopilot system, there is
ongoing research to implement indigenous fault detection and
diagnosis module to enable reconfigurable controller loops.

VIII. CONCLUSION

The introduction of UASs in the VLL airspace comes with
numerous challenges. Though various ways to address them
have been proposed, there is still no certainty about how it
will be done in the end. One sure thing is that it will involve
two main actors: UTM and UASs. This work focused on the
later.

When it comes to autopilot systems, there exist a wide range
of solutions. However, in the context of a quickly evolving reg-
ulation and technology, we showed that it may be beneficial to
rely on an open source solution. Indeed, the community around
it and the ability to adapt it to one’s needs are precious assets.
Among open source solutions, the Paparazzi autopilot system
distinguishes itself with a unique set of features that, we have



showed, allow tackling many of the existing challenges in
the UASs integration. The most interesting feature being its
linux-like philosophy which confers it an unparalleled level of
configurability. With a complete control, the user is not limited
by the software and nothing stops him from doing the smartest
designs.

Paparazzi is a living project and keeps evolving to satisfy it
community, both from the research and industry. New features
are added on a regular basis and the shape it will take in the
future only depends on the new members that join the project.
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ABSTRACT

Last decade witnessed the rapid increase in num-
ber of drones of various purposes. This pushes
the regulators to rush for safe integration strate-
gies in a way to properly share the utilization
of airspace. Accommodating faults and failures
is one of the key issues since they constitute
the bigger chunk in the occurrence reports avail-
able. The hardware limitations for these small
vehicles point the utilization of analytical redun-
dancy rather than the usual practice of hardware
redundancy in the conventional flights. In the
course of this study, fault detection and diag-
nosis for aircraft is reviewed. Then a nonlinear
model for MAKO aircraft is simulated to gener-
ate faulty and nominal flight data. This platform
enables to generate data for various flight condi-
tions and design machine learning implementa-
tions for fault detection and diagnosis.

1 INTRODUCTION

Unmanned Aircraft Systems (UAS) are becoming more
efficient platforms everyday for scientific/commercial do-
mains offering benefits in terms of cost, flexibility, endurance
as well as realizing missions that would be impossible with
a human onboard. Increasing usage of these vehicles for a
variety of missions, such as defense, civilian tasks including
transportation, communication, agriculture, disaster mitiga-
tion applications pushes demand on the airspace. Further-
more, this congestion is predicted to accelerate with the grow-
ing diversity of these vehicles[1].

Improvement of the reliability of the flight is considered
to be one of the main goals for integrating UAVs into civil
airspace according to Unmanned systems roadmap by US Of-
fice of the Secretary of Defense, DoD [2]. To achieve a safe
flight is not an easy task considering the unknowns of the sys-
tems hardware, environment and possible system faults and
failures to emerge. Also, increasing demand on cost effec-
tive systems, resulting in the smaller sensors and actuators
with less accuracy, impose the software to achieve even more.
The expectation that UAVs should be less expensive than their
manned counterparts might have a hit on reliability of the sys-
tem. Cost saving measures other than the need to support a

⇤Email addresses: elgiz.baskaya@enac.fr, murat.bronz@enac.fr,
daniel.delahaye@enac.fr

pilot/crew onboard or decrement in size would probably lead
to decrease in system reliability.

Systems are often susceptible to faults of different na-
ture. Existing irregularities in sensors, actuators, or controller
could be amplified due to the control system design and lead
to failures. A fault could be hidden thanks to the control ac-
tion [3].

Under the research and development programs and initia-
tives identified by DoD in order to develop technologies and
capabilities for UAS, the biggest chunk in control technolo-
gies is the health management and adaptive control with a
budget of 74.3 M dollars. Other safety features such as vali-
dation and verification of flight critical intelligent software is
the second with 57.8 M dollars [2].

The widely used method to increase reliability is to use
more reliable components and/or hardware redundancy. Both
requires an increase in the cost of the UAS conflicting one of
the main reasons of UAS design itself band consumer expec-
tations [4]. To offer solutions for all different foreseen cate-
gories of airspace, a variety of approaches should be consid-
ered. While hardware redundancy could cope with the failure
situations of UAVs in the certified airspace, it may not be suit-
able for UAVs in open or some subsets of specific categories
due to budget constraints. Analytical redundancy is another
solution, may be not as effective and simple as hardware re-
dundancy, but relies on the design of intelligent methods to
utilize every bit of information onboard aircraft wisely to deal
with the instances.

There are three approaches to achieve safe FTC in stan-
dard flight conventions. First one is the fail operational sys-
tems which are made insensitive to any single point com-
ponent failure. The second approach is the fail safe sys-
tems where a controlled shut down to a safe state is prac-
ticed whenever a critical fault is pointed out by a sensor. The
level of degradation assures to switch to robust (alternate) or
direct (minimal level of stability augmentation independent
of the nature of the fault) mode. Switching from nominal
mode to the robust and direct modes leads to a decrease in
the available GNC functions. This causes a degradation in
ease of piloting. And also some optimality conditions could
have been compromised. The third approach is fault toler-
ant control systems in which redundancy in the plant and the
automation system is employed to design software that mon-
itors the components and takes in action whenever needed.
The strategy is most probably to try to keep plant availability
and accept reduced performance [5].



RECONFIGURE project of FP7 [6] aims to attack at this
problem of piloting degradation and optimality compromisa-
tion by attacking Flight Parameter Estimation (FPE) which is
the online estimation of aircraft parameters, FDD and FTC in
case of off-nominal events [7] They utilize a black box non-
linear model of aircraft and The project uses some outputs of
a previous FP 7 project ADDSAFE leaded by Deimos Space
[8].

2 METHODS FOR FTCS
Since fault tolerant control is comprised of a set of differ-

ent disciplines and a relatively new topic, the terminology is
not solid. FDI could be a proper example to this ambiguity. In
some works, it stands for Fault Detection and Isolation while
in some other Fault Detection and Identification, which could
also named after Fault Detection and Diagnosis, meaning that
identification is added to Fault Detection and Isolation [9].

One of the first attempts to unify the terminology is car-
ried out by IFAC SAFEPROCESS technical committee in
1996 and published by [10]. Fault, failure, and the method-
ology to handle those such as fault detection, fault isolation,
fault identification, fault diagnosis and supervision terms ex-
plained separately to avoid the ongoing ambiguity in this
field. Although fault detection methods are clearer in the
work, difference between the methods for two steps of fault
diagnosis, namely the fault isolation and fault identification
is not very obvious.

Among different categorizations for the fault tolerance,
there are options to handle faults on-line or off-line. Em-
ploying fault diagnosis schemes on-line is a way to achieve
fault tolerance. In this case, as soon as a fault detected, a su-
pervisory agent is informed via a discrete event signal. Then
accommodation of the faults are handled either with the selec-
tion of a predetermined controller for the specific fault case,
or by designing the action online with real-time analysis and
optimization [5].

Another common categorization of FTCS is passive and
active FTCS. In passive FTCS, the flight controller is de-
signed in such a way to accommodate not only the distur-
bances but also the faults. Most of the times it a robust con-
troller and does not require a diagnosis scheme. Active FTCS
first distinguishes the fault via fault detection and diagnosis
module and then switch between the designed controllers spe-
cific to the fault case or design a new one online [4]. While
active FTCS requires more tools to handle faults as seen in
Fig. 1, for faults not predicted and not counted for during the
design of the robust controller, robust controller most proba-
bly fails.

Even with a long list of available methods, aerospace in-
dustry has not implemented FTC widely, except some space
systems, due to the evolving nature of the methods, the tricks
coming with the nonlinear nature of the problem, design com-
plexity and high possibility of wrong alarms in case of large
disturbances and/or modeling uncertainties. So the already

Fault Tolerant Control 
Systems

ACTIVE PASSIVE

Fault Detection and 
Diagnosis + Adaptive Control

Robust Controller 
Design

Model Based

Data-Driven

Figure 1: Variations of fault tolerant control systems

carried reliability measures concerning the hardware redun-
dancy is now the preferred way because of its ease and matu-
rity being implemented on various critical missions with con-
sidering human lives.

3 FAULT DETECTION AND DIAGNOSIS

FDD is handled in two main steps; fault detection and
fault diagnosis. Fault diagnosis encapsulates fault isolation
and fault identification. The methods for detection and diag-
nosis are investigated for their frequency of utilization sep-
arately for sensor, actuator, process and controller faults in
[10]. FDD should not only be sensitive to the faults but also
robust to the model uncertainties and external disturbances.

Two distinct options to proceed in analytical redundancy
are the model based approaches and data-driven approaches.
They form the two ends of a continuous solution set line, so
utilizing them in a combination might end up with better solu-
tions. Model based fault diagnosis highlights the components
of a system and the connections in-between, and their corre-
sponding fault modes. Data driven fault diagnosis rely on the
observational data and prefers dense, redundant and with a
frequency larger than the failure rate.

This work constitutes the basis for our research on fault
detection. The idea to simulate the data using the MAKO
model given here first, rather than utilizing flight data, is to
start small in order to isolate some probable consequences
such as the probable effect of the controller on the diagnosis.
Detection of faults from real data is a challenging goal to start
with as can be seen in Figure 2 real data accelerometer read-
ings showing that it seems impossible to classify in case of a
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fault with one of the control surfaces is 50% less efficient.
Most of the FDI algorithms are implemented to open-

loop systems, ignoring the probable influences of the con-
troller might cause on the detection performance [11]. Here
the system is open-loop as well. So we follow a step by
step approach and hope to end with a more realistic case in
the future, in which real flight data is utilized and diagnosis
is achieved on-line aside a functioning controller. Here we
present a literature survey for FTC of drones followed by ef-
forts to deliver a full drone simulation which will serve as an
environment to simulate measurements. A MAKO simulation
is given in Matlab script which is freely available though the
GIT 1 platform, using specifications MAKO, stability deriva-
tives, aerodynamic force derivatives generated by AVL.

4 METHODOLOGY AND SIMULATIONS

In this study, first, a model of an aircraft is simulated. This
model, will not be used for the design of FDI algorithms, but
instead will be utilized to test them. Nonlinear aircraft flight
dynamics for translational and attitude motion can be given
as a system of first order differential equations
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1https://github.com/benelgiz/curedRone/tree/MAKOmodel

Figure 3: MAKO

where x
n

2 IR3 is the position of the center of mass of
UAV in navigation frame N , vb is the velocity of the center
of mass of UAV in body frame B, q = [q0, qT

v

]T 2 IR3 ⇥ IR
is the unit quaternion representing the attitude of the body
frame B with respect to navigation frame N expressed in the
body frame B, !b

b/n

is the angular velocity of the body frame
B with respect to navigation frame N expressed in the body
frame B, J 2 IR3⇥3 is the positive definite inertia matrix of
the drone, M 2 IR3 represents the moments acting on the
drone, Cn

b

is the direction cosine matrix which transforms
a vector expressed in the body frame to its equal expressed
in the navigation frame, I3 2 IR3⇥3 is the identity matrix,
F b

t

2 IR3 is the thrust force expressed in the body frame,
F b

a

2 IR3 are the aerodynamic forces given in the body frame.
The navigation frame is assumed to be a local inertial frame
in which Newton’s Laws apply. The notation x⇥ for a vector
x = [x1 x2 x3]T represents the skew-symmetric matrix

x⇥ =

2

4
0 �x3 x2

x3 0 �x1

�x2 x1 0

3

5 (6)

The stability derivatives and aerodynamic force coeffi-
cients are generated by AVL and given in Appendix A. AVL
is an open source program developed at MIT and uses vortex-
lattice method for the aerodynamic and stability calculations.
The output of the program is linearized at a selected condi-
tion, therefore all the coefficients are calculated around the
equilibrium point at 14m/s cruise flight condition. The cen-
ter of gravity is located at X

CG

= 0.295m, which corre-
sponds to a 8% of positive static margin that has been flight
tested.
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As an addition to the aerodynamic coefficients and sta-
bility derivatives, it is useful to have the moments of inertia
of the aircraft so that one can use the model in a simulator.
For that purpose, the aircraft is hanged by two strings, at dif-
ferent orientations, as shown in Figure 4, and measurements
performed by timing the oscillation period for each axis. The
resultant moment of inertias are given Table 1.

Further, the equations for calculation of forces and mo-
ments are given in Appendix B to simulate translational and
rotational motion of a MAKO UAV.

The input vector can be written as u (t) 2 IR3

u (t) =
⇥
�
a

�
e

n
⇤T (7)

Here �
a

aileron deflection angle in degrees, �
e

elevator
deflection angle in degrees, n engine speed in rev/s.

To validate the written translational and attitude motion
dynamics and kinematics, MATLAB Simulink 6DOF block
has been utilized. This block accepts inputs as the force
and moment and outputs the states of aircraft motion Fig. 6.
To compare the generated model and Simulink 6DOF block,
forces and moments have been calculated via equations and
constants given in Appendix A and Appendix B. The simu-
lated states from the model script have been saved in advance
and called from Simulink by From Workspace blocks then
compared with the 6DOF outputs. The difference found to
be negligible indicating the validity of the model.

When the actuators are healthy, actual control input signal
will be equal to the given input signal. In case of a fault the
actual signal can be modeled as

u (t) = Eu
c

+ u
f

(8)

where u
c

is the desired control signal, E =
diag(e1, e2, e3) is the effectiveness of the actuators where
0  e

i

 1 with (i = 1, 2, 3) and uf additive actuator fault.

This model makes it possible to simulate all four types of ac-
tuator faults shown in Fig. 5.

The measurements are simulated using the statistics of
the hardware in the house. The sensor suit simulated is the
InvenSense MPU-9250 Nine-axis (Gyro + Accelerometer +
Compass) MEMS MotionTracking Device.

z
gyro
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gyro
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b/i
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+ ⌘
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z
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= k
acc

!b

b/i
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acc

+ ⌘
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(10)

Here � is the bias, and ⌘ is the zero mean Gaussian pro-
cess with �2 variance and given in Table 5. For faulty and
normal measurement values, drone model simulation which
outputs the measurements as well should be run twice with
different control surface input values. As an example, a faulty
situation can be that even the controller gives an desired out-
put of 4 degrees to the control surface, the control surface
might have stuck at 1 degrees. Generated set of measure-
ments can be visualized in feature space one by one. Such an
example is the normalized accelerometer measurement com-
ponents plotted Fig. 7.

It is always important to visualize the features to have a
grasp of data structure. For that reason, available observations
forms the 6-dimensional pattern space, z 2 IR6 can be visual-
ized in pairs to observe. There are further methods to visual-
ize multidimensional data such as Tours methods [12, 13, 14],
and GGobi data visualization system [15].

In this study, dimensionality reduction technique called
Principle Component Analysis (PCA) is used for visualiza-
tion. In PCA, the idea in general is to map the feature vector,
x 2 IRn to a lower dimensional space where the new feature
set will be represented by z 2 IRk. Fig. 8 shows the resulted
most significant elements for a mapped feature space from six
dimensional feature vector to two. The structure of the data
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Figure 6: Validation with Simulink 6DOF aircraft model
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gives insight for the selection of some parameters or kernels
for the purpose of classification. Here, it seems that a lin-
ear kernel is satisfactory by discarding the outliers. Another
point is that the classifier might need a nice tuning due the
the presence of outliers. The learning phase utilizes data in-
cluding outliers and preciseness to fit the model to each of the
data might end up an overfitted model, resulting in worse per-
formance to generalize to new data coming in the prediction
phase.

5 CONCLUSION

In this work, first a review on fault tolerant control for
UAVs is given by pointing out its importance on today’s chal-
lenging task of safe integration of drones into airspace. Data-
driven methods for fault diagnosis is aimed to avoid the bur-
den of modeling each craft especially considering for small
drones it is not very realistic for most of the applications to
have an accurate model for a variety reasons such as cost.
AVL program is used to generate the coefficients for MAKO
and a full simulation is realized. Statistics of the sensor suite
in house is used for simulation of accelerometer and gyro
data. For a preliminary investigation on data, six dimensional
feature space is mapped to two dimensions via PCA for visu-
alization purposes. The data shows that a linear kernel might
be satisfactory for the purpose of two class classification. Due
to the presence of outliers, fine tuning or using optimization
techniques could be needed to avoid overfitting or under fit-
ting during the learning phase of the classification problem.

ACKNOWLEDGEMENTS

This work was supported by the ENGIE Ineo - Groupe
ADP - SAFRAN RPAS Chair. Special thanks to Gautier Hat-

-6 -5 -4 -3 -2 -1 0 1 2 3

z
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

z
2

normal

fault

Figure 8: Reduced feature space z1 vs z2

tenberger and Torbjoern Cunis for code modifications to Pa-
parazzi autopilot system, Xavier Paris, Michel Gorraz and
Hector Garcia de Marina, and the rest of the ENAC Drone
Lab for their help during test flights. Last but not least, we
acknowledge Paparazzi community for their contributions to
the autopilot system.

REFERENCES

[1] Elgiz Baskaya, Guido Manfredi, Murat Bronz, and
Daniel Delahaye. Flexible open architecture for uass in-
tegration into the airspace: Paparazzi autopilot system.
In Digital Avionics Systems Conference (DASC), 2016
IEEE/AIAA 35th, pages 1–7. IEEE, 2016.

[2] Unmanned Systems Roadmap 2005 - 2030, 2005.

[3] Guillaume JJ Ducard. Fault-tolerant flight control and
guidance systems: Practical methods for small un-
manned aerial vehicles. Springer Science & Business
Media, 2009.

[4] Plamen Angelov. Sense and avoid in UAS: research and
applications. John Wiley & Sons, 2012.

[5] Mogens Blanke, Christian W Frei, Franta Kraus, Ron J
Patton, and Marcel Staroswiecki. What is fault-tolerant
control. In Preprints of 4th IFAC Symposium on Fault
Detection Supervision ans Safety for Technical Pro-
cesses, SAFEPROCESS, pages 40–51, 2000.

[6] Philippe Goupil, Josep Boada-Bauxell, Andres Mar-
cos, Paulo Rosa, Murray Kerr, and Laurent Dalbies.
An overview of the fp7 reconfigure project: indus-
trial, scientific and technological objectives. IFAC-
PapersOnLine, 48(21):976–981, 2015.



[7] RECONFIGURE FP7 Project. reconfigure.deimos-
space.com/, Accessed: 2016-07-19.

[8] ADDSAFE FP7 Project. http://addsafe.deimos-
space.com/, Accessed: 2016-07-09.

[9] Youmin Zhang and Jin Jiang. Bibliographical review
on reconfigurable fault-tolerant control systems. Annual
reviews in control, 32(2):229–252, 2008.

[10] Rolf Isermann and Peter Ballé. Trends in the application
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mateur d?état non linéaire embarqué pour le pilotage-
guidage robuste d?un micro-drone en milieu com-
plexe. PhD thesis, INSTITUT SUPERIEUR DE
L’AERONAUTIQUE ET DE L’ESPACE (ISAE), 2015.

APPENDIX A: MAKO COEFFICIENTS

Table 1: General specifications of MAKO [16]

Parameter Value Definition
Wing span 1.288 [m]
Wing surface area 0.27 [m2]
Mean aero chord 0.21 [m]
Take-off mass 0.7� 2.0 [kg]
Flight velocity 10� 25 [m/s]
I
xx

0.02471284 [kg ·m2]
I
yy

0.015835159 [kg ·m2]
I
zz

0.037424499 [kg ·m2]

Table 2: Stability derivatives for MAKO extracted from AVL
program at 14m/s equilibrium cruise speed

Parameter Value Definition
C

La �0.1956⇥ 10�2 roll derivative
C

Lp̃ �4.095⇥ 10�1 roll derivative
C

Lr̃ 6.203⇥ 10�2 roll derivative
C

L� 3.319⇥ 10�2 roll derivative
C

M0 0 pitch derivative
C

Me �0.076⇥ 10�1 pitch derivative
C

Mq̃ �1.6834 pitch derivative
C

M↵ �32.34⇥ 10�2 pitch derivative
C

Na �0.0126⇥ 10�2 yaw derivative
C

Np̃ �4.139⇥ 10�2 yaw derivative
C

Nr̃ �0.1002⇥ 10�1 yaw derivative
C

N� 2.28⇥ 10�2 yaw derivative

Table 3: Aerodynamic force derivatives for MAKO extracted
from AVL program at 14m/s equilibrium cruise speed

Parameter Value Definition
C

Z0 �8.53⇥ 10�2 lift derivative
C

Z↵ 3.9444 lift derivative
C

Zq 4.8198 lift derivative
C

Ze 1.6558⇥ 10�2 lift derivative
C

X0 2.313⇥ 10�2 drag derivative
C

Xk 1.897⇥ 10�1 drag derivative
C

Y� �2.708⇥ 10�1 side force derivative
C

Yp̃ 1.695⇥ 10�2 side force derivative
C

Yr̃ 5.003⇥ 10�2 side force derivative
C

Ya 0.0254⇥ 10�2 side force derivative



Table 4: Thrust force coefficients for propeller APC SF 9⇥ 6
from wind tunnel experiments [17]

Parameter Value Definition
C

FT1 1.342⇥ 10�1 thrust derivative
C

FT2 �1.975⇥ 10�1 thrust derivative
C

FTrpm
7.048⇥ 10�6 thrust derivative

D 0.228m propeller diameter

Table 5: Specifications of the sensor suit InvenSense MPU-
9250 Nine-axis (Gyro + Accelerometer + Compass) MEMS
MotionTracking Device[18]

Measurement � �
z
acc

x

0.142 0.0319
z
acc

y

�0.3 0.0985
z
acc

z

0.19 0.049
z
gyro

x

�1.55 0.0825
z
gyro

y

�1.13 0.1673

z
gyro

z

�1.7 0.2214

APPENDIX B: FORCE, MOMENT CALCULATIONS
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flight sensor calibration, long-term planning guidance and fault-tolerant attitude control for the small
information satellites,



Worked on robust attitude determination algorithms, Earth’s Magnetic Field modeling, orbit prop-
agation. This was a joint project with Samara State Technical University and was funded by
TUBITAK (The Scientific and Technological Research Council of Turkey) and Russian Science
Foundation.

• Improve the e↵ectiveness of communications and interactions with others

Researcher - Control and Avionics Laboratory 2010 - 2013

High precision ADCS and indiginous bus architecture design and development project for Nano Satel-
lites,
Developed the onboard orbit propagator and attitude determination software in MATLAB for
ITUpSAT 2, which is the 2nd small satellite project of ITU funded by TUBITAK. Additionally,
worked on the design and development of the software/hardware-in-the loop system utilizing MAT-
LAB/Simulink and STKConnect Module to verify the indigenous ADCS which enjoys a redundant
reaction wheel set for reliability.

• Constantly sharpen and update skills

Resillience2050, EU 7th RTD Framework Programme
Worked on Decision Support Tools for Air Tra�c Management to enable designs fostering safety,
agility and resillience for Air Tra�c Management.
Real time ATC Operator and Pilot Automation and Decision - Support Systems Design for New
ATM Concept,
Worked on Decision Support Tools for Air Tra�c Management. Specialized on development of
algorithms to estimate trajectory of aircraft and detect collision in the presence of uncertainties.
The project is funded by TUBITAK.

Researcher - Space Systems Laboratory 2008 - 2010

Pico Satellite Design, Development of Engineering and Flight Models,
System Engineer during the design, assembly and test phases of ITUpSAT 1, which was launched
on 23 September 2009 from Satish Dhawan Space Center India. ITUpSAT 1, funded by TUBITAK,
is the first orbiting student satellite designed and manufactured in Turkey.

Researcher - Vestel Defense Industry 2008

Studied on verification of the estimated model parameters with the use of measurements via least
squares method.

Researcher - Vestel Defense Industry 2007

Developed codes on estimation of aircraft model using Extended Kalman Filter.

Teaching

Experience

Teaching Assistant - Faculty of Aeronautics & Astronautics 2009 - 2015

Istanbul Technical University, Istanbul, Turkey

Probability & Statistics 2015, 2014
Orbital Mechanics 2014
Heat Transfer 2013
Thermodynamics 2013
Attitude Determination & Control 2014, 2013, 2012, 2011
Avionics 2012, 2011
Principles of Aircraft Design 2012, 2011
Flight Stability and Control, 2011
Automatic Control 2011, 2009
Introduction to Sci&Eng. Comp. - C Programming Language 2011
Dynamics 2009
Spacecraft System Design 2009

Presented “Developments in Satellite Technology in Turkey” during GAP Astronomy Journey to
Southeastern Anatolia to educate and inform students on recent subjects. Funded by Republic of



Turkey, Regional Development Administration,
Southeastern Anatolia 2010

Course given to Okyanus College students on “Space, Science and Technology Demonstrations”
Okyanus College, Istanbul 2009, 2010

Internship Baykar Technologies, Istanbul, Turkey
Intern 2006

Summer Internship in one of the two unmanned air vehicle design companies in Turkey. Trained on
Kalman Filtering.

TAI (Turkish Aerospace Industries, Inc.), Ankara, Turkey
Intern 2005

Summer Internship in R&D Department. Trained on satellite thermal control system. Developed
codes on thermal network method in Matlab to verify the in-house developed satellite thermal system
simulator.

Publications E. Baskaya, M. Bronz, D. Delahaye, “Fault diagnosis for UAVs using flight data via machine learn-
ing,” (in preperation)

T. Cunis, E. Baskaya, “Controllability of Unmanned Aircrafts in the Event of Loss-of-control,” 10th

International Micro Air Vehicles (IMAV), (accepted)

G. Manfredi, E. Baskaya, J. Sharpes, Y. Jestin, “Unmanned Aerial System Operations for Retail, ”
14th International Conference on Autonomic and Autonomous Systems (ICAS), May 20 - 24, 2018

E. Baskaya, M. Bronz, D. Delahaye, “Fault Detection & Diagnosis for Small UAVs via Machine
Learning ” 14th IEEE/AIAA Digital Avionics Systems Conference (DASC), September 17 - 21,
2017

E. Baskaya, M. Bronz, D. Delahaye, “Flight Simulation of a MAKO UAV for Use in Data-Driven
Fault Diagnosis ” 9th International Micro Air Vehicles, September 18 - 21, 2017

E. Baskaya, G. Manfredi, M. Bronz, D. Delahaye “Flexible open architecture for UASs integra-
tion into the airspace: Paparazzi autopilot system” 35th IEEE/AIAA Digital Avionics Systems
Conference (DASC), September 25 - 29, 2016

E. Baskaya, G. Komurgoz, I. Ozkol, “Investigation of Oriented Magnetic Field E↵ects on Entropy
Generation in an Inclined Channel Filled with Ferrofluids, Entropy, 19(7), 377, 2017

E. Baskaya, G. Komurgoz, I. Ozkol, “Entropy Generation and Equipartition Phenomenon Investiga-
tion in a Variable Viscosity Channel Flow under Constant Magnetic Field via Generalized Di↵erential
Quadrature Method (GDQM) , ” Heat Transfer Research (accepted)

E. Baskaya, G. Komurgoz, I. Ozkol, “Analysis of Variable Viscosity Channel Flow under Constant
Magnetic Field via Generalized Di↵erential Quadrature Method, ” Advanced Materials Research,
vol. 1016, pp.564-568, 2014

E. Baskaya, U. Daybelge, A. Sofyali, E. Topal, C. Yarim, “Developments in Astrodynamics in the
Light of Chaos ” Journal of Istanbul Kultur University, vol.4, pp.191-212, 2006

E. Baskaya, G. Komurgoz, I. Ozkol “Analysis of a Variable Viscosity Channel Flow under Con-
stant Magnetic Field via Generalized Di↵erential Quadrature Method” ICMAE 5th International
Conference on Mechanical and Aerospace Engineering, July 18 - 19, 2014



E. Baskaya, M. Fidanoglu, et at. “Investigation of MHD Natural Convection Flow Exposed to a
Variable Magnetic Field via Di↵erential Quadrature Method” ASME 12th Biennial Conference on
Engineering Systems Design and Analysis, June 24 - 27, 2014

M. Fidanoglu, E. Baskaya, et at. “Application of Di↵erential Quadrature Method and Evolution-
ary Algorithm to MHD Fully Developed Flow of a Couple-Stress Fluid in a Vertical Channel With
Viscous Dissipation and Oscillating Wall Temperature” ASME 12th Biennial Conference on Engi-
neering Systems Design and Analysis, June 24 - 27, 2014

E. Baskaya, G. Inalhan, et al. “Design and Development of a Reliable ADCS and Indigenous Bus
Architecture for Nanosatellites : ITUpSAT II” 63rd International Astronautical Congress, October
1- 5, 2012

E. Baskaya, U. Eren, G. Inalhan “Development of High - Precision Attitude Determination and Con-
trol System : ITUpSAT II project ” National Aeronautical and Astronautical Conference, September
12 - 14, 2012

E. Baskaya, E. Koyuncu, G. Inalhan “Design of a Multi - Purpose Nanosatellite Bus : ITUpSAT II
project ” National Aeronautical and Astronautical Conference, September 12 - 14, 2012

E. Baskaya, U. Eren, et al. “A Precise ADCS Design for ITUpSAT II” International Conference on
Student Small Satellites, April 25 - 27, 2012

U. Eren, E. Baskaya, et al. “Design of a Flexible Bus System for ITUpSAT II” International
Conference on Student Small Satellites, April 25 - 27, 2012

E. Koyuncu, E. Baskaya, et al. “ITUpSAT II : High - Precision Nanosatellite ADCS Development
Project” 5th International Conference on Recent Advances in Space Technologies, June 9 - 11, 2011

G. Inalhan, E. Koyuncu, E. Baskaya, et al. “Design and Development of ITUpSAT II : On Orbit
Demonstration of a High - Precision ADCS for Nanosatellites ” 8th International ESA Conference
on Guidance & Navigation Control Systems, June 5 - 10, 2011

E. Baskaya, C. Hajiyev, G. Inalhan “Estimation of Small Satellite Attitude Dynamics via EKF
using Magnetometers - ITUpSAT II Project” National Aeronautical and Astronautical Conference,
September 16 - 18, 2010

Workshops E. Baskaya, “ITUpSAT II ADCS : Getting Ready for Launch” 8th Annual CubeSat Developers’
Workshop, April 20 - 22, 2011

E. Baskaya, G. Inalhan “ITUpSAT II - Nanosatellite Platform for In-Space R&D” 7th Annual
CubeSat Developers’ Workshop, April 21 - 23, 2010

Poster

Presentations

U. Eren, Elgiz Baskaya, et al. “Design of a Flexible Nanosatellite Bus for Science Missions ” AIAA
SPACE 2012 Conference & Exposition, September 11- 13, 2012

E. Baskaya, U.Eren, et al. “ITUpSAT II - Design and Development ” Innovation Week Turkey,
December 6- 8, 2012

Workshops,

Meetings &

Lectures

Attended

Tutorial on Approaches to Software Design Assurance for Avionics and Flight Controls: DO-178C
and Beyond (Part 1 & Part 2), by Tom Ferrell, 2018

Tutorial on Reliable Navigation for Unmanned Aircraft Systems (UAS), by Maarten Uijt de Haag,



2018

Object Oriented Programming with C++, 160 hours course on Objected Oriented Programming
with C++ in C System Programmers Association, 2014 - 2015

C Programming Language Training and Certificate, 160 hours course on C Programming language
in C System Programmers Association, 2013 - 2014

Practical Adaptive Control, International Graduate School on Control, by Prof Anuradha An-
naswamy, MIT Active Adaptive Control Laboratory, May 15 - 19, 2017

Tutorial on Multi-Sensor Navigation Focus on UAV Navigation, by Assist. Prof. Demoz Gebre-
Egziabher, University of Minnesota, November 14, 2016

Resillience 2050 Progress Meeting, November 15 - 16, 2012

Research in Decision Support Tools for Future Air Tra�c Management, HALA! SEZAR Research
Network Summer School, July 9 - 12 2012

Lecture on Space System Engineering & CUBESATs by Prof. Dr. Eberhard GILL, May 24, 2012

Small Satellite Formations for Distributed Survelliance: System Design and Optimal Control Con-
siderations, NATO-RTO Lecture Series SCI-231, April 14 - 15 2011

Multifunctional Structures and System Technologies for Small Spacecraft, NATO RTO-AVT171,
April 12 - 15, 2010

Astronet Workshop, The Astrodynamics Network, March 30 - April 1, 2009

Skills • Languages: Turkish (native), English (fluent)(Toefl IBT : 97), French(beginner)
• Programming Languages : MATLAB, C, C++, Fortran
• Simulation/ CAD Tools: MATLAB/Simulink, STK, STKConnect, Mathematica, R, CATIA
• OS: MacOS, Linux, Windows

Professional

Activities

• President of Aerospace Engineering Research Assistants (2010 - 2011)
• Member of UUMK (Aeronautics and Astronautics Engineering Club) (2003 - 2007)
• Member of TEGV (Turkish Education Volunteers) (2002 - 2004)

Recreational /

Personal

Activities

• Pianist and Tango dancer in Galata Festival in 2007, still practicing both as a hobby
• Pianist in concert as PERA Fine Arts High-school students in 2000 in AKM (Ataturk Cultural

Center) opera house
• Practicing Shotokai Karate once per week (orange belt) since 2016
• Dedicated Baroque music fan, especially by Bach and Glenn Gould
• Licensed volleyball player in 1999 and 2000 and won two cups as the best team in the town
• Member of the best team in group discussion challenge throughout town in 2002


