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ABSTRACT

Energy-efficient Data Collection and Data Fusion in Wireless Body

Sensor Networks for Continuous Health Monitoring

Carol Habib
University of Bourgogne Franche-Comté, 2018

Supervisors: Abdallah Makhoul, Rony Darazi, Raphaël Couturier

Pervasive and ubiquitous healthcare is currently gaining a growing interest world-

wide. This phenomena is mainly supported by the advances in information technology

and data science and the need of societies to ensure a good Quality of Life. Wireless

Body Sensor Networks play a major role in this paradigm by ensuring a low-cost con-

tinuous and remote monitoring of people’s health condition. Several challenges exist in

Wireless Body Sensor Networks such as the data collection and fusion especially that

(1) wireless sensor nodes have limited energy, processing and memory resources, (2)

the amount of periodically gathered data is huge, (3) the gathered data are characterized

by a heterogeneous nature and (4) the data interpretation to ensure decision-support

is influenced by several external factors such as the provided context information of the

monitored person.

In this dissertation, firstly an energy-efficient data acquisition and collection tech-

nique is proposed. It targets the energy consumed by biosensor nodes for sensing and

transmitting vital signs. It consists of a real-time sampling rate adaptation mechanism and

a local detection system which are provided at the level of the nodes. The results show

that more than 50% of data reduction is achieved at the level of sensing and more than

80% of data reduction is achieved at the level of transmission with a negligible loss of in-

formation (Mean Square Error ≃ 0.05) and the energy consumption is 10 times decreased

over one hour of continuous monitoring.

Second, a multi-sensor data fusion model for health assessment is proposed. The

coordinator of the network performs an assessment of the patient’s health condition based

on the collected measurements of his/her vital signs. Such data is interpreted in a human-

reasoning way and are characterized by ambiguity and imprecision. Thus, we propose to

use a Fuzzy Inference System having as an input the aggregate score of vital signs and

as an output the health assessment on a scale from 0 to 1. The proposed approach is

compared with existing work and validated by healthcare experts.

i



ii Abstract

Then, a context-aware multi-sensor data fusion model for health assessment is pro-

posed. Given that vital signs are highly correlated to the context of the monitored person

such as his/her physical activity status, medical record and personal information, their in-

terpretation is highly influenced. Hesitant fuzzy sets are used to subjectively evaluate the

intensity of the person’s physical activities based on his/her personal information and the

activity’s characteristics. The results show that the proposed approach evaluates theoret-

ically intensity-classified activities differently based on the people profiles. Furthermore,

the results show that fusing vital signs and the available information about the person’s

current physical activity reduces false alarms and enhances the health assessment.

Finally, a specific monitoring application is targeted. A real-time stress detection

and evaluation framework is proposed while taking into consideration the energy con-

sumption constraint. Shimmer 3 GSR+ is used as a wireless sensor node to sense the

Photoplethysmogram (PPG) signal and the skin conductance. An android mobile applica-

tion is developed to extract from the PPG signal stress correlated vital signs such as the

heart rate, the respiration rate and the blood pressure. Preliminary results are promising.

KEYWORDS : Health Assessment, Decision-support, Energy Consumption,

Context-awareness, Stress monitoring, Fuzzy logic, Fuzzy Inference System, Quadratic

Bezier Curve, Hesitant Fuzzy Sets, Early Warning Score, Imprecise and Ambiguous Data,

One-way ANOVA, Fisher Test.



RÉSUMÉ

Acquisition, traitement et fusion de données issues des réseaux de

capteurs corporels pour une surveillance médicale continue

Carol Habib
University of Bourgogne Franche-Comté, 2018

Superviseurs: Abdallah Makhoul, Rony darazi, Raphaël Couturier

À l’heure actuelle, les soins de santé envahissants et omniprésents suscitent un

intérêt de plus en plus croissant dans le monde entier. Ce phénomène est principalement

soutenu par les progrès de la technologie de l’information et de la science des données

ainsi que le besoin des sociétés d’assurer une bonne qualité de vie. Les réseaux de

capteurs corporels sans fil jouent un rôle majeur dans ce paradigme en assurant un suivi

de l’état de santé des personnes d’une manière continue, à distance et à faible coût.

Plusieurs défis existent dans les réseaux de capteurs corporels sans fil tels que la col-

lecte et la fusion de données physiologiques dans un environnement contraignant. En

effet, les nœuds de capteurs sans fil ont des ressources limitées en énergie, traitement

et mémoire. En outre, une grande quantité de données est collectée. Ces données sont

hétérogènes, ambiguës et imprécises. Ajoutons que l’interprétation des données est in-

fluencée par plusieurs facteurs externes tels que les informations contextuelles fournies

par la personne surveillée. En conséquence la prise de décisions et l’analyse des infor-

mations extraite sont influencées.

Tout d’abord une technique de collecte de données est proposée. Celle-ci a pour

intérêt de réduire la quantité de données collectée et la consommation d’énergie. Dans

le modèle proposé, l’énergie consommée par les nœuds capteurs sans fil pour capter

et pour transmettre les signes vitaux est particulièrement ciblée. Il s’agit à la fois d’un

mécanisme temps-réel pour l’adaptation du taux d’échantillonnage et d’un système de

détection local permettant aux nœuds de transmettre uniquement les données indiquant

un changement dans l’état de santé de la personne. Les résultats montrent qu’une

réduction de plus que 50% des données est atteinte au niveau de l’acquisition et qu’une

réduction de plus que 80% des données est atteinte au niveau de la transmission avec

une perte d’information négligeable (erreur quadratique moyenne ≃ 0, 05) et que sur une

heure de surveillance continue, la consommation d’énergie est en moyenne réduite de

10 fois.

iii



iv Resumé

Deuxièmement, un modèle de fusion de données pour l’évaluation de l’état de santé

de la personne surveillée est proposé. Les données fusionnées sont les signes vitaux

de la personne qui proviennent de plusieurs capteurs. Ces données sont interprétées

de manière humaine et sont caractérisées par l’ambiguı̈té et l’imprécision. Ainsi, nous

proposons d’utiliser un système d’inférence floue ayant comme entrée le score agrégé

des signes vitaux et comme sortie l’évaluation de l’état de santé sur une échelle de 0 à

1. L’approche proposée est comparée à une autre approche existante et elle est validée

par à un expert en soins de santé.

Ensuite, nous proposons d’évaluer l’état de santé de la personne surveillée tout en

prenant en compte le contexte dans lequel elle se trouve. Étant donné que les signes vi-

taux de l’être humain ainsi que son contexte tels que: son activité physique, son dossier

médical et ses informations personnelles sont fortement corrélés, l’interpération des

signes vitaux est largement influencée. Plus particulièrement, nous proposons d’utiliser

les ensembles flous hésitants pour déterminer subjectivement l’intensité de l’activité

physique de la personne. L’approche proposée prend en considération le profil de la

personne ainsi que les caractéristiques de l’activité physique en cours. Les résultats mon-

trent que l’approche proposée évalue différemment les activités qui sont théoriquement

classés selon leur intensités. Ceci est due au fait que le profil du la personne est pris

en considération lors de l’évaluation des activités physiques. De plus, les résultats mon-

trent que la fusion des signes vitaux et de l’information disponible à propos de l’activité

physique réduit les fausses alertes et améliore l’évaluation de l’état de santé de la per-

sonne.

Finalement, une application médicale spécifique est ciblée. Nous proposons de

détecter et d’évaluer le stress en temps réel tout en considérant la consommation

d’énergie. Shimmer 3 GSR + est utilisé comme capteur sans fil pour capter le signal

Photoplethysmogram (PPG) et la conductance cutanée. Une application mobile Android

est développée pour extraire du signal PPG les signes vitaux qui sont corrélés au stress

tels que la fréquence cardiaque, la fréquence respiratoire et la pression artérielle. Les

résultats préliminaires sont prometteurs.

MOTS-CLÉS : Évaluation de l’état de santé, Aide à la décision, Consommation

d’énergie, Sensibilisation au contexte, Surveillance du stress, Logique Floue, Courbe

de Bezier, Ensembles Flous Hesitants, Score d’alerte précoce, Données imprécises et

ambigues, One-way ANOVA, Fisher Test.
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INTRODUCTION

1. GENERAL INTRODUCTION

Interest in pervasive and ubiquitous healthcare solutions is currently increasing given the

potential they have and the benefits they bring to people’s everyday life. Wireless Body

Sensor Networks (WBSNs) play a major role in this field since they ensure remote and

continuous health monitoring at a low cost and reduce unnecessary hospitalization as

well as healthcare expenditure. WBSNs have the potential to detect and even prevent

life-threatening health problems such as a heart attack. Many healthcare and well-being

applications can be fulfilled using WBSNs such as: emergency detection, health assess-

ment, disease prevention, medical diagnosis, tracking physical activity, mental health sup-

port etc, thus several populations are concerned: elderly, patients suffering from chronic

diseases, acutely-ill patients, athletes and even any average person who is interested in

continuously monitoring his/her health. These healthcare applications must satisfy multi-

ple requirements to ensure user satisfaction such as good quality of service and accuracy.

A WBSN is composed of wireless sensor nodes called biosensors and a coordinator.

The former can be invasive or non-invasive. They sense and collect physiological signals

such as Electrocardiogram (ECG), Electroencephalogram (EEG) and Photoplethysmo-

gram (PPG) etc. and vital signs such as Heart Rate (HR), Respiration Rate (RR), skin

temperature, blood pressure (BP), oxygen saturation (SpO2) etc. The latter is usually the

person’s smart phone or any other portable device. It manages the network, receives the

collected signals/measurements and performs the data analysis and fusion to reach the

healthcare’s application goal.

However, several constraints exist in WBSNs such as the limited resources of

biosensors and the environmental interference which make collected signals noisy. In this

dissertation, we take into consideration that biosensors have limited energy, processing

and memory resources and that data transmission is the most power hungry task es-

pecially that WBSNs are usually periodic and huge amounts of heterogeneous data are

periodically collected. Therefore, extending the network’s lifetime, reducing the amount of

collected data, early detecting anomalies in vital signs, and providing a continuous health

assessment and decision-support to patients and doctors are the core motivation of this

dissertation. Hence, the following two challenging tasks have been identified:

• Data collection which includes the data acquisition, processing and transmission

while taking into consideration the constraints that are present in WBSNs.

• Data fusion which includes the analysis and the extraction of knowledge and mean-

ingful information from the collected data. The data fusion model to be proposed

must take into consideration that the fusion must be made in real-time and that

the collected data is characterized by a heterogeneous, imprecise and ambiguous

nature (different vital signs, personal information, context information etc.).

3



4 Introduction

The objective of this thesis is then to propose data collection and fusion models for

WBSNs while taking into consideration the constraints and challenges that exist in such

networks.

2. MAIN CONTRIBUTIONS OF THIS DISSERTATION

The main contributions in this dissertation fall within the aforementioned data manage-

ment aspects. They fulfill the previously mentioned requirements while taking into consid-

eration the constraints that are present in WBSNs and the characteristics of the collected

data. We summarize the main contributions of our research as follows:

1. First, a self-adaptive data collection technique was proposed at the level of the

biosensor nodes in order to allow them to adapt their sampling rate in real-time while

locally detecting emergencies. Our proposal mainly targets the energy consumed

by sensor nodes to sense vital signs as well as the energy consumed to transmit

them to the coordinator. Thus, the proposed approach is two-fold: (1) the sampling

rate of the sensor node is adapted in real-time based on the evolution of the vital

sign of interest over time and the severity of the patient’s health condition, (2) using

an early warning score system, only the measurements indicating changes in the

status of the vital sign of interest are sent to the coordinator. First, the evolution

of vital signs over time is studied by applying the One-way ANOVA (Analysis of

Variance) coupled with Fisher statistical test on the sensed measurements during

several consecutive periods. Then, the adaptation of the wireless sensor node’s

sampling rate is done using a Quadratic Bezier function. As a result, oversampling

and undersampling are minimized where the former has an impact on the network’s

lifetime and considerably increases the amount of collected data and the latter has

an impact on the loss of information. Furthermore, the amount of data transmitted to

the coordinator is considerably decreased since only representative measurements

are sent and redundant information is minimized. Extensive simulations have been

made to test and validate the proposed data collection technique in terms of data

reduction, energy consumption and loss of information.

2. Second, data fusion in WBSNs has been tackled. Indeed, a health assessment

should be provided by the coordinator of the WBSN in a real-time fashion and con-

tinuously. The health assessment is inferred based on the fusion of the vital signs

that are collected by different biosensor nodes. It gives the possibility to keep track

of the evolution of the patient’s health condition whether it is stable, improving or

deteriorating. Moreover, it allows the coordinator to detect emergencies and to

make decisions such as giving medical advice or taking actions. In this context, we

have proposed a multi-sensor fusion model for health assessment based on Fuzzy

Inference Systems (FIS) and Early Warning Score systems (EWS). This model is

characterized by: (1) a certain flexibility given that the input membership functions

of the FIS are dynamically defined in terms of the number of monitored vital signs,

(2) a human-reasoning of ambiguous data given that it employs fuzzy logic, (3) a

smoothing of sudden deviations of vital signs by weighting the persistence of a vital

sign in a given state, and (4) a knowledge-driven modeling given that it requires

EWSs put by healthcare experts to evaluate vital signs. The proposed model is

compared against a data-driven, data-mining based approach from the literature
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in terms of energy consumption, data reduction, vital sign assessment and health

assessment. Moreover, the proposed health assessment model is validated by

healthcare experts.

3. Knowing that the patient’s context such as his/her personal information and his/her

physical activities greatly influences vital signs, we have decided to make the pro-

posed health assessment model context-aware. Thus, the interpretation of vital

signs is made based on the person’s current physical activity. More specifically, we

have added another input to the FIS defining the intensity level of the person’s phys-

ical activity on a scale from 0 to 1. We proposed to use Hesitant Fuzzy Sets (HFS)

in order to subjectively evaluate the intensity level of physical activities (PAs) such

that the decision-makers are the person’s attributes constituting his/her profile. An

example of these attributes are: age, body mass index, the person’s diet such as

his/her alcohol consumption per week, the person’s fitness level such as the amount

of exercise per week in minutes etc. Whereas an example of the PA’s characteristics

that are to be evaluated include: speed and inclination at which the PA is performed,

duration of the PA, additional weights carried by the person etc. The results show

that theoretically intensity-based classified PAs are evaluated differently for different

profiles. This is due to the fact that the proposed approach takes into consideration

the person’s personal information when evaluating PAs rather than assuming their

intensities. Moreover, the results show that fusing vital signs with the information

the coordinator has about the current PA being performed by the person reduces

false alarms and improves health assessment.

4. Lastly, a specific monitoring scenario has been targeted by the proposal of a stress

detection and evaluation approach followed by a real-implementation. Shimmer 3

GSR+ has been used as a mote and an Android application has been developed to

test the proposed approach in a real experimental setup. Given that skin impedance

is an indicator/detector of stress episodes, it has been considered as a triggering

event for the transmission of the PPG signal. Therefore, periodic transmission has

been reduced in order to ensure energy-efficiency. The following vital signs are ex-

tracted from the PPG signal: the heart rate, the blood pressure and the respiration

rate. Knowing that stress and the previously mentioned vital signs are correlated,

the coordinator can then evaluate the stress level of the person using a FIS. Prelim-

inary results are promising.

3. DISSERTATION OUTLINE

The dissertation is organized as follows: Chapter 1 gives an overview about biosensors

and healhcare applications. Chapters 2 and 3 expose respectively the domains of data

collection and fusion in WBSNs by presenting the scientific background and going through

some scientific research that have been made and have investigated these two domains.

Chapter 4 presents the first contribution resumed by a self-adaptive data collection tech-

nique at the level of sensor nodes. Chapter 5 presents the second contribution resumed

by a multi-sensor fusion model providing health assessment. Chapter 6 presents the third

contribution resumed by a context-aware health assessment approach based on multi-

sensor fusion and the fusion of data coming from different sources. Chapter 7 presents

the fourth contribution resumed by a stress detection and evaluation approach and its real

implementation. Chapter 8 concludes the work that has been done in this thesis.
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This part discusses the scientific background of Wireless Body Sensor Networks

(WBSNs) by presenting recent advances in this field and focusing on the two challenging

tasks that have been identified: data collection and data fusion. It is composed of three

chapters. In the first chapter, WBSNs including the architecture, biosensor nodes, health-

care applications and their requirements are covered. In the second chapter, energy-

efficient data collection in WBSNs is explored by going through significant research that

has been made in this domain. In the third chapter, the domain of data fusion in WBSNs

is investigated by presenting some of the most relevant scientific research that has been

made so far, particularly in multi-sensor fusion.





1

ADVANCES IN WBSNS AND THEIR

APPLICATION

T
his chapter explores WBSNs by presenting biosensors and focusing on their poten-

tial in ensuring a wide variety of healthcare applications. The most commonly used

biosensors in WBSNs as well as some of the available commercial and research oriented

sensor nodes are listed. A special focus is brought to the requirements that should be

satisfied by any application to ensure user satisfaction and attain the desired outcomes.

Furthermore, a discussion is made to highlight that several healthcare applications can

be tackled based on the monitoring phenomenon of interest and the target population.

1.1/ INTRODUCTION

In the past decade, wireless body sensor networks (WBSNs) emerged as a low-cost so-

lution allowing the continuous monitoring of physical and physiological parameters of the

human body. A lot of research has been made and is still being made in the design of

medical accurate invasive and non invasive sensors and the design of comfortable wear-

able health monitoring systems. In this chapter, firstly we go through the most commonly

employed sensors in WBSNs. These sensors capture physiological parameters including

vital signs and physiological signals as well as physical parameters related to body move-

ment. Additionally, we list and discuss the differences of several commercially available

wearable sensor nodes on the market. Having health related data being continuously

collected leads to a palette of body sensor network (BSN) applications. A particular fo-

cus is given to healthcare applications given that it is the main focus of this thesis. All

types of population can benefit from BSN healthcare applications, starting from toddlers

to elderly, depending on the monitoring phenomenon of interest. Furthermore, diverse

monitoring tasks can be achieved such as event detection, prediction, diagnosis etc.,

thus we provide a discussion about these tasks and depict them as a function of three

different dimensions: the type of user, the type of processing and the monitoring loca-

tion. However, BSN healthcare applications should meet a set of requirements in order to

achieve user satisfaction, perform as desired, have an impact on people’s life and ensure

continuity, especially that WBSNs have limited resources, are subject to interference and

faulty measurements and that we are dealing with sensitive medical data.

This chapter provides an overview of biosensors and BSN healthcare applications.

In Section 1.2, the components and the architecture of WBSNs is presented. In Section

11
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1.3/ BIOSENSORS

Biosensors are miniature, lightweight, low power, limited-resources and intelligent sensor

nodes that sense, process and transmit human physiological parameters such as the

ECG, the heart rate, the body temperature, the body movement etc. Figure 1.2 shows

the components of a wireless biosensor node. It is composed of three units powerd by

a battery: the sensing unit, the processing unit and the transmission unit. All three units

need power to perform their tasks. Yet, transmission is considered to be the most power-

hungry task. The sensing unit is composed of the sensor and the ADC which converts

the analog signal, which is sensed with a given frequency (Nyquist-Shannon), into a

digital signal. The latter is fed to the processing unit (processor and memory) where the

processing algorithms are run. Furthermore, the processor controls the sensing and the

transmission units and it activates and/or changes their status according to the application

and the used protocol.

Figure 1.2: The components of a biosensor node.

As shown in Figure 1.3, based on the wearability, biosensor nodes can be regrouped

under two categories: invasive (or implantable) and non-invasive (or wearable). The latter

can take several forms e.g. accessory (watch, bracelet, glasses, ring etc.), clothe (smart

shirts, gloves, shoes) and patch [116].

Table 1.1 summarizes some of the commonly used biosensors in WBSNs [163, 60,

136]. Based on the physiological parameter that they capture, they can be categorized

under two types : electrical and non-electrical signals. The former can sense electrical

signals such as the ECG, EEG, EMG etc. While the latter can sense physical and chemi-

cal signals such as the 3-axis acceleration and the blood sugar. Unobtrusive sensing can

be achieved by means of two different methods : capacitive sensing and photoplethys-

mographic (PPG) sensing [95]. Capacitive sensing employs adhesive electrodes and is

used to measure biopotentials such as the ECG, EEG, and EMG. PPG sensing involves

a light source emitting light into the tissue and a photo-detector collecting the light that

is reflected from or transmitted through the tissue. It is used for measuring vital signs
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Figure 1.3: Classification of biosensors based on wearability.

such as the SpO2, the heart rate, the respiration rate and the blood pressure. In this

dissertation we refer to electrical signals as physiological signals while we refer to other

physiological parameters, which are most of the time extracted from these signals, as vital

signs. Vital signs include the heart rate, the respiration rate, the systolic blood pressure,

the diastolic blood pressure, the oxygen saturation, the body temperature etc.

Table 1.2 reports some of the commercially available sensor nodes. Some of them

only target body movement while others also target physiological parameters. We are

mainly interested in those who enable the continuous monitoring of physiological param-

eters especially vital signs. Except Vitalpatch [5] and Hexoskin smart shirts [2], all the

reported sensor nodes are programmable and all of them allow the access to the raw

measurements of physiological signals (except Vitalpatch) which extends their potential

and their versatility given the diverse palette of healthcare applications. Hexoskin smart

shirts allow a continuous data collection but an offline data processing whereas Shimmer

sensors [4] and Movisens sensors [3] allow a real-time data collection and data process-

ing which make them suitable for real-time healthcare applications.
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Table 1.1: Commonly used biosensors in Wireless Body Sensors Networks.

Sensors Function Placement Signal

Type

Data

Rate

Power

consump-

tion

Accelerometer Obtains acceleration on the x,y and

z axis to measure body posture,

falling etc.

Wearable Continuous High Low

Gyroscope Obtains angular momentum to

measure body movement and ori-

entation

Wearable Continuous High Low

Blood pres-

sure

Measures systolic and diastolic

blood pressure

Wearable Discrete Low Low

ECG Measures electrical activity of the

heart by measuring voltage dif-

ference between two electrodes

placed on the surface of the body

Wearable Continuous High High

EEG Measures electrical activity of the

brain by measuring voltage dif-

ference between two electrodes

placed on the surface of the body

Wearable Continuous High High

EMG Measures electrical activity of the

muscles by measuring voltage dif-

ference between two electrodes

placed on the surface of the body

Wearable Continuous Very

High

High

Pulse oximetry

(SpO2)

Measures blood oxygen saturation

by absorption ratio of red and in-

frared light passing though a thin

part of body

Wearable Discrete Low High

Temperature Measures temperature of the hu-

man body

Wearable Discrete Very

Low

Low

Respiration Measures respiration parameters

indirectly by detecting the expan-

sion and the contraction of chest

abdomen

Wearable Continuous High High

Heart rate counts the number of heart contrac-

tions per minute

Wearable Continuous High High

Camera pill Detects gastrointestinal tract by

wireless endoscope technique

Implantable Continuous High High

Blood sugar Measures blood sugar level without

pricking the finger

Implantable Discrete High Extremely

low

Brain pace-

maker

Measures electrical signals of the

brain in the form of low frequency

and high frequency waves

Implantable Discrete Low Low



16 CHAPTER 1. ADVANCES IN WBSNS AND THEIR APPLICATION

Table 1.2: Commercially available sensor nodes on the market.

Model Company Description Firmware

Exclusively Body movement

Move 3 Movisens 3-axis accelerometer, barometric

air pressure and temperature.

Programmable

Shimmer

3 IMU

Shimmer inertial sensing via accelerometer,

gyroscope, and magnetometer.

Programmable

Body movement & Physiological parameters

EdaMove

3

Movisens Electrical dermal activity, 3-axis ac-

celerometer, barometric air pres-

sure and temperature.

Programmable

EcgMove

3

Movisens ECG signal to detect heart rate and

respiration rate, 3-axis accelerom-

eter, barometric air pressure and

temperature.

Programmable

Shimmer

3 ECG

Shimmer ECG signal to detect heart rate and

respiration rate, and inertial sens-

ing via accelerometer, gyroscope

and magnetometer.

Programmable

Shimmer

3 GSR+

Shimmer PPG signal to detect heart rate, res-

piration rate and blood pressure,

and inertial sensing via accelerom-

eter, gyroscope and magnetometer.

Programmable

Vitalpatch Vitalconnect ECG electrodes to detect heart

rate, 3-axis MEMS accelerometer

to detect motion, Thermistor to de-

tect skin temperature

Non-

programmable

Hexoskin

Smart

Shirts

Hexoskin Cardiac sensors: ECG signal,

Heart rate, heart rate variability,

RR interval, QRS detection Breath-

ing sensors: breathing, breathing

rate, tidal volume, minute venti-

lation and inspiration and expira-

tion events Movement sensors: 3-

axis acceleration, activity level, step

counting, cadence and energy ex-

penditure

Non-

programmable

1.4/ HEALTHCARE APPLICATIONS

BSN applications are diverse and can be regrouped under two categories healthcare

applications and non-medical applications. Non-medical applications are found in the

entertainment field and in consumer electronics. They allow more realism in the user

experience such as in video games, virtual reality applications and movies. Whereas

healthcare applications concerns all health monitoring applications whether they were

employed in critical or non-critical monitoring scenarios. All healthcare applications that

aim to provide a continuous monitoring of physiological parameters in order to capture
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life-threatening events and enable early interventions [116] as well as applications that

provide medical assistance for patients fall within the category of critical monitoring sce-

narios. For instance, these applications include: medical care applications, rehabilitation

applications and medicine intake applications. Other types of healthcare applications

concern non-critical scenarios which are not related to patient monitoring such as fitness

and sports and ambient assisted living. Therefore, different populations are targeted

given the diversity of BSN applications. Based on the monitoring scenario and applica-

tion needs, healthcare applications mainly target elderly, chronically-ill patients, acutely-ill

patients, wheelchair users, athletes, elderly and people in general seeking for perva-

sive assistance and desiring to continuously monitor their health. Figure 1.4 provides an

overview of the main healthcare applications monitoring tasks which are dominantly stud-

ied in the literature [54]. Three dimensions are used to represent the different aspects

which are tackled: the monitoring setting, the type of subject concerned and how data

is processed. Six aspects are identified: event detection, health/situation assessment,

Figure 1.4: Targeted monitoring tasks in healthcare applications based on Wireless body

sensor networks (inspired from [54]).

decision-support, event prevention, event prediction and diagnosis.

• Health/situation assessment: It refers to the continuous assessment of an event

of interest using scoring systems, a scale/grade metric to provide the patient and

doctors with an overview of the patient’s situation over time. For instance the as-

sessment of illness [76], emotional/mental state [90, 92], physical activity/inactivity
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state [153, 117], patient’s health condition namely the deterioration, improving and

stability state based on vital signs monitoring [164], stress evaluation [141] etc. are

examples of this category.

• Event detection: It refers to the identification of unusual patterns, outliers and

critical conditions which do not conform to normality. For instance, typical exam-

ples of healthcare applications that target event detection include: fall detection,

emergency detection based on vital signs monitoring and disease-related symptom

detection such as tachycardia in heart attack [103].

• Decision-support: It refers to monitoring systems that aim to provide patients with

local and fast decisions based on the identified emergency or health related event.

Thus, ensuring a better medical intervention and preventing the worsening of the

patient’s health condition. The decisions can take the form of medical advice such

as ’to rest’, triggering actions such as a ’phonecall to doctor or family’ and reminders

such as ’drink water’.

• Event prediction: allows to identify events which have not yet occurred. Thus, it

helps in preventing the development of chronic illness and could help doctors to

make a prognosis. Several healthcare prediction applications have been proposed

in the literature such as: blood glucose level prediction, mortality prediction [45],

heart disease status prediction [162], the prediction of severe clinical events [142]

etc.

• Diagnosis: is often based on the retrieval of knowledge from vital signs which

are monitored by WBSNs and other medical information such as electronic health

records and metadata. Thus, it needs more robust information rather than only

physiological parameters collected by WBSNs. For instance, in [159], a model for

diagnosing cardiovascular autonomic nerve dysfunction is proposed and in [155] a

model for the diagnosis of non-polyp, adenoma and hyperplasi is proposed.

1.4.1/ HEALTHCARE APPLICATION REQUIREMENTS

From a user point of view, BSN healthcare applications must meet a list of requirements

in order to be accepted, adopted by societies and for their advantageous integration in

everyday life. We believe that any healthcare application, regardless of the targeted pop-

ulation and the specific monitoring task that it performs (c.f. Section 1.4), should respect

the following requirements in order to achieve good monitoring and ensure satisfactory

towards the users and the medical community.

• Acceptable delay: Ensuring an acceptable delay between data collection and their

analysis is crucial. Especially in critical monitoring and when sudden life-threatening

events occur where emergencies should be quickly reported to the medical team or

family. Therefore, data acquisition, processing and transmission at the level of sen-

sor nodes should not be time consuming and complex. Furthermore, the algorithms

that process the collected data at the coordinator level for fusion and analysis should

run in real-time and respect delay in order not to miss any important events and to

provide alarms in critical monitoring.

• Quality of Service (QoS): Huge amounts of physiological data are collected con-

tinuously in WBSNs. Furthermore, not all the data contain critical or emergency
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information. Thus, ensuring quality of service is very important in BSN healthcare

applications in order to give priority to critical data rather than normal data.

• Mobility: BSN healthcare applications should take into consideration the mobility

of the user. Thus, the wearable systems should not be bulky and should be com-

fortable. Furthermore, interference due to body movement makes pre-processing

of data an important step in data processing. Moreover, when different WBSNs are

communicating, efficient routing protocols should be proposed in order to cope with

the mobility of the user from one location to another.

• Accuracy: Health monitoring requires by nature good accuracy due to possible

life-threatening events. Thus, the algorithms proposed for data collection and fu-

sion should ensure a good accuracy by the detection of all critical events and the

inference of correct knowledge compatible with the reality.

• Robustness: WBSNs can be subject to malfunctionning sensor nodes, energy de-

pleted sensor nodes or malattachment of sensor nodes. This leads to erroneous

measurements and missing information. Thus, BSN healthcare applications which

rely on multi-sensor fusion ensures robustness as well as data availability and au-

thenticity.

• Security: Dealing with medical data demands establishing secure systems. Secu-

rity is of major importance in BSN healthcare applications. It is ensured by integrat-

ing security protocols in order to ensure safe data collection and fusion.

• Confidentiality/Privacy: Similarly medical data requires confidentiality and privacy.

Thus, BSN healthcare applications should integrate privacy mechanisms in order to

get user acceptance.

1.5/ CONCLUSION

In this chapter, an overview about biosensors that are used in WBSNs has been pro-

vided. On the one hand, different types of biosensors exist depending on wearability and

the type of signal. A lot of research is still needed in order to design more accurate and

fine-grained biosensors that take advantage of different sensing technologies such as ca-

pacitive sensing and PPG sensing. Furthermore, smart watches, textiles and patches are

currently gaining a lot of interest due to their ease of wearability and their future potential

in healthcare applications. On the other hand, WBSN enable the development of diverse

healthcare applications. These applications are able to provide different monitoring tasks.

This thesis particularly tackles health assessment, event detection and decision-support.

However, healthcare applications should meet several requirements given that WBSNs

have many constraints and that we are dealing with medical data.
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ENERGY-EFFICIENT DATA COLLECTION

E
nergy management in WBSNs is of paramount importance especially that biosen-

sors have limited energy resources and that healthcare applications are supposed to

run autonomously for long periods of time. Therefore, the data collection including the

sensing, processing and transmission of measurements should ensure energy-efficiency

without putting at cost the requirements that any healthcare application should satisfy.

In this chapter, we cover the most relevant energy-efficient mechanisms in data collec-

tion and their impact on the performance of the WBSNs as well as we discuss energy

harvesting techniques.

2.1/ INTRODUCTION

Designing long-lasting WBSNs is a challenging matter. First, WBSNs are expected

to run autonomously and continuously for long periods of time. Second, they are de-

signed for specific healthcare monitoring applications, thus they have to satisfy a group

of requirements that vary from one application to another [88]. Indeed, the batteries of

the resource-constrained wireless sensor nodes are rapidly depleted with the continu-

ous sensing, processing and transmission tasks and their frequent replacement is not

favoured especially that we want to encourage the acceptance of this technology by peo-

ple [149]. Therefore, energy management is of paramount importance in WBSNs. On

the one hand, several energy-efficient data collection mechanisms have been proposed

in the literature so far. Transmission is considered to be the most power-hungry task.

However, it has been shown that continuous sensing may consume a greater amount of

energy [149, 109]. Whereas, locally processing raw data is often possible by adopting

lightweight algorithms in order to manage the energy consumption of the node. In this

Chapter, We survey papers that target energy-efficiency in any of these data collection

steps: sensing/acquisition, processing and communication. On the other hand, energy

harvesting has been gaining a lot of attention especially that the human body produces

heat and that movement is a source of energy [132].

This chapter explores energy-efficient data collection in WBSNs. In Section 2.2, a

classification of energy-efficient mechanisms is given and relevant papers from the litera-

ture are investigated. Then, in Section 2.3 the potential of energy harvesting in WBSNs is

highlighted and some major work that has been proposed in the literature is exposed. Fi-

nally, we discuss the impact of energy-efficient mechanisms on the requirements that are

imposed by healthcare applications such as accuracy, delay, quality of service, confiden-
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tiality etc. Moreover, we highlight the potential of combining energy-efficient mechanisms

with energy harvesting in WBSNs.

2.2/ ENERGY-EFFICIENT MECHANISMS

Inspired from [149, 88, 109], energy-efficient mechanisms can be classified under the

following three categories: sensing, communication and processing (c.f. Figure 2.1).

These categories represent the energy-consuming tasks performed by the node to en-

sure continuous health monitoring. The techniques that aim at adjusting the power-on

time of biosensor nodes fall within the first category. Indeed, these techniques reduce

unnecessary sensing by turning off the sensors. Based on the surveyed papers that pro-

pose energy-efficient data collection in WBSNs, energy-efficient sensing is ensured by

adopting either sensor set selection or context-based pull requests. Whereas, techniques

that focus on ensuring efficient transmission of sensor nodes fall within the second cate-

gory. These techniques mainly try to reduce the energy consumed by biosensor nodes

for transmission. Energy-efficient communication is reached by means of data reduc-

tion techniques, radio optimization, energy-efficient routing protocols and sleep/wakeup

schemes. Some other techniques aim to reduce the amount of processing performed

by bisosensor nodes. Feature selection and adaptive classifier selection are common

methods to ensure energy-efficient processing.

Figure 2.1: Classification of energy-efficient data collection techniques.

2.2.1/ ENERGY-EFFICIENT SENSING

In this section, we cover some of the works in the literature that have tackled energy-

efficient sensing in WBSNs. As previously mentioned, we have identified two different

categories: sensor set selection and context-based pull messaging. These techniques

focus on reducing the sensing time of sensor nodes in order to preserve their energy
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level. Consequently, the sensor nodes’ unit(s) including the radio, CPU and sensor(s) are

turned off to reduce the energy consumed to perform their tasks.

• Sensor set selection: The techniques in this category focus on achieving a good

trade-off between the number of activated sensors and the classification accuracy.

Their ultimate goal is to maximize the WBSN’s lifetime while keeping a good detec-

tion performance. The sensor set selection could be made prior to deployment or

in real-time. Such an approach is used in activity detection applications [71, 147]

as well as in diseases detection applications [37]. In the latter case, the authors

build their proposal on the fact that each diseases has its specific relevant symp-

toms, thus not all the sensor nodes should continuously send their measurements.

Information gain and sensor selection are combined in order to design the sensor

selection algorithm.

• Context-based pull: Exploiting the correlation between contexts is another ap-

proach to reduce the energy consumption due to data acquisition [64, 145]. The

context aware energy management is often based on activity recognition. Instead

of adopting the current paradigm where the data is continuously streamed from the

sensor nodes to the coordinator, a pull-based asynchronous model is employed.

Thus, the coordinator requests relevant data from the sensor nodes depending on

the identified user context. As a result, the energy consumption of continuous data

acquisition and collection is reduced without compromising the requirements of the

application.

2.2.2/ ENERGY-EFFICIENT COMMUNICATION

In this section, a review of some of the existing work that aim to reduce the energy con-

sumption due to communication is exposed. Energy-efficient communication schemes

either focus on reducing the amount of transmitted data, reducing idle states, reducing

re-transmission or by adequately selecting the communication technology.

• Data Reduction: This approach aims to reduce the amount of data to be trans-

mitted to the coordinator. Several techniques exist namely: on node-processing,

adaptive sampling and compression specifically compressive sensing. Compres-

sive sensing and adaptive sampling limit the amount of unneeded samples, thus

ensuring efficient sensing and transmission.

The logic behind on-node processing is that processing consumes less energy than

data transmission. Therefore, a sensor node performs signal processing and fea-

ture extraction and only transmits the extracted features instead of the raw data

[104, 115]. Computationally inexpensive features which are representative of the

phenomena to be detected should be identified. For example in [104], some of the

selected features, based on the analysis of the accelerometer sensor data during

handshake, were: Zero Crossing (ZC), Root Mean Square (RMS), Amplitude (A),

Mean (M) and Standard Deviation (SD) etc. For instance in [115], the authors sug-

gested to perform anomaly-driven transmission such as the sensor nodes perform

on-node signal processing in order to identify critical time intervals and transmit

data from these intervals. Although on-node processing leads to an increase in

the energy consumed for computation, however it considerably reduces the energy

consumed for data transmission. This is especially true when the transmission rate
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of the sensor nodes are high (for example ECG, EEG etc.) and important events

such as a heart attack are rare.

In the adaptive sampling schemes, the main concern is to reduce the amount of

acquired data by either adapting the sensing frequency of sensor nodes to the rec-

ognized context or on the basis of spatial and/or temporal correlations among data

[101, 52, 35] while keeping the sensing accuracy within the acceptable level. Thus,

by reducing the amount of sensed data, the data transmission is reduced and the

sensor node’s lifetime is prolonged. In such approaches, it is assumed that the

energy consumption of continuous sensing is greater than the energy consumed

for transmission and that unneeded samples affect the communication and the pro-

cessing resources. In [119], the authors motivate the use of low sampling rates to

recognize the effects on battery’s lifetime without compromising the signal quality.

In the recent years, compressive sensing (CS) theory emerged as an energy-

efficient approach for wireless communication. Capitalizing on signal sparsity, CS

guarantees an accurate signal reconstruction by sampling signals at a much lower

rate than the traditional Shannon-Nyquist theorem. Thus, it has the potential to dra-

matically reduce the power consumption since the amount of wirelessly transmitted

data is considerably reduced. Furthermore, it reduces the amount of resources

required for processing and storage and it promises significant compression rates

while using computationally light linear encoders compared to traditional compres-

sion methods. CS theory has been applied in diverse domains including WSNs.

Particularly, many contributions based on CS theory have been proposed in the lit-

erature so far for WBSNs due to the fact that some biosignals such as the ECG are

sparse [129, 41, 62, 82, 63, 33, 152]. Traditional compression techniques have also

been used in WBSNs for example in [140] a lossy compression method for ECG

was developed and in [38] a novel data compression method based on overhearing

was proposed on the basis of exploiting temporal and spatial correlations among

the collected data.

• Radio Optimization: Radio parameters such as power transmission, antenna di-

rection, modulation schemes and coding have been optimized by researchers in or-

der to reduce the energy consumption of wireless transmission [122, 128, 25, 166].

However, battery preservation should not compromise signal quality.

• Energy-efficient routing protocols: Given that the deployment of a WBSN has an

impact on the network lifetime, other researchers proposed energy-efficient routing

protocols [156]. This approach reduces the energy consumed by wireless sensor

nodes for transmission and optimizes the network installation. In [81], the network

installation cost and the energy consumed by wireless sensors and relays were

taken into consideration to propose a mixed integer linear programming model in

order to optimize the number and location of relays as well as the data routing to-

wards the sink. Whereas in [77], the main goal was to reduce the data transmission

distances of the sensor nodes by using the uniform cluster structure concepts, thus

clusters ensured a load balancing in the network.

• Sleep/Wakeup schemes: Medium access control (MAC) layer is of crucial impor-

tance in energy management in WBSNs. Thus, the MAC protocol design should

ensure efficient energy consumption. The most energy wastage in existing MAC

protocols are caused by the four following sources: collisions, overhearing, con-

trol packet overhead and idle listening. The majority of the work in this domain
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[16, 39, 21] aim to reduce the idle listening time because it dominantly wastes en-

ergy. Instead of keeping the nodes awake waiting for potential data coming from

the coordinator of the network, a sleep mode is defined in order to put them into the

sleep state. This is done by turning off their radios when there is no data sent by

the coordinator. When in sleep mode, the node is inactive, it cannot receive data

and is unable to hear broadcasts. Energy is then saved and the life of the sensor

nodes is extended. A good sleep mode must ensure an acceptable trade-off be-

tween flexibility and energy efficiency. Particularly, WBSNs clearly manifest a wide

range of traffic variations given that physiological signals are collected at different

rates (such as the ECG and Temperature), thus the authors of [39] have been mo-

tivated to dynamically adapt the wake-up intervals of sensor nodes based on traffic

status. Whereas in [21], the authors suggested to achieve time synchronization be-

tween sensor nodes based on the human beat rhythm instead of using traditional

periodic timing information received by the coordinator of the network. Another as-

pect of duty-cycling is presented in [165] where the authors present a proportional

feed-forward controller in order to dynamically tune the sampling rate of the inertial

measurement unit (IMU) and the orientation estimation update rate of the Madg-

wick filte (MF). Other works [146] focused on providing time synchronized channel

hopping in order to reduce collisions and avoid interference in transmission. Fur-

thermore, wake-up radio based mechanism was used in [148, 145] to control sleep

and active modes of sensor nodes in order to save energy.

2.2.3/ ENERGY-EFFICIENT PROCESSING

Healthcare applications such as activity recognition and disease detection require power-

hungry and complex algorithms to process and classify the signals. In this section, some

of the existing work that aim to reduce the energy consumption due to processing is

exposed. Two different approaches are covered: feature selection and adaptive classifier

selection.

• Feature Selection: The selection of features impacts the performance of the classi-

fier. On the one hand, using a lot of features enhances the accuracy but consumes

a great deal of energy and requires a lot of computation. On the other hand, us-

ing a reduced number of features reduces computation and energy consumption at

the cost of a lower accuracy. Thus, there is a trade-off between delay and accu-

racy [107, 66]. In [107] a real-time feature selection model is proposed taking into

account the energy cost of individual features, thus studying the trade-off between

the WBSN’s power efficiency and classification accuracy of an activity recognition

application.

• Adaptive classifier selection: Different types of classifiers exist which are different

in terms of delay, memory and computation requirements. Therefore, in the context

of power-aware computation, some researchers have proposed to adapt the clas-

sifier choice to the monitored person’s context, battery level of the sensor nodes,

available resources such as CPU load, available memory and the application’s re-

quirements [29, 46]. The adaptation can be either made statically or dynamically.
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2.3/ ENERGY HARVESTING

Recent advances in technology have introduced two battery charging mechanisms : wire-

less power transfer [19] and energy harvesting [151]. On the one hand, the former re-

quires wirelessly transferring energy using methods such as inductive coupling, mag-

netic resonant coupling, and electromagnetic radiation. However, this battery charging

approach presents many limitations, given the deployment characteristics of a WBSN. It

requires the wearer to be in proximity (several meters) of the energy transmitter, to ensure

line of sight and to have a constant electrical source. On the other hand, energy harvest-

ing involves scavenging power from a multitude ambient and body sources, thus enabling

real-time monitoring of different physiological parameters and ensuring a self-sustainable

network [135]. This solution can be considered as a green energy supply since it reduces

system costs and electrical waste. Furthermore, it contributes in reducing the energy

constraints of WBSNs. The energy sources can be classified into the two following cat-

egories: ambient sources and human body sources [133]. Ambient sources can be of

several types such as light, heat, vibration and RF radiation. Human body sources can be

either biochemical (enzymes such as glucose, lactate etc.) or biomechanical which can

be voluntary such as body movement or involuntary such as heartbeat, blood pressure

and breathing. Biochemical energy harvesting presents many drawbacks. For instance,

the techniques are still immature and limited, small amount of energy can be currently

produced from these sources and their application-specific utilization is finite. Moreover,

biomechanical energy harvesting sources can cause discomfort and present exploiting

challenges such as the size of the harvester and the effect of a poor health condition on

the correct functioning of the harvesting technique. Involuntary sources can provide low

levels of energy whereas voluntary sources can provide sufficient amount of energy but

are dependant of the physical activity of the person and are only available when they are

performed. Concerning ambient sources, their main drawback persists in the fact that

they cannot be harvested whenever required and might not be constantly available.

2.4/ DISCUSSION

In this section, we discuss the trade-offs between energy-efficient mechanisms and the

requirements any healthcare application must ensure. Then, we investigate the poten-

tial and the advantages of combining different energy management strategies and using

cross-layer approaches. Finally, we highlight the importance of complementing energy-

efficient mechanisms by energy harvesting methods in order to achieve a self-sustainable

WBSN.

2.4.1/ ENERGY-EFFICIENT MECHANISMS V.S. HEALTHCARE APPLICATION RE-
QUIREMENTS

As previously mentioned in Chapter 1, any healthcare application should ensure an ac-

ceptable delay, QoS, mobility, accuracy, robustness, security and confidentiality. Table

2.1 reports all the energy-efficient methods that have been discussed and their effect on

delay, QoS, mobility and accuracy. The refers to the verb ”ensures” and the ✗ refers

to the verb ”impacts”. We do not cover the confidentiality and security aspects given that
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they can be ensured respectively by encryption and privacy techniques which we do not

treat. Furthermore, robustness is achieved by means of radio optimization. As it is shown

in Table 2.1, most energy-efficient methods impact accuracy. Thus, it is essential that any

proposal in these methods does not compromise accuracy.

Table 2.1: Trade-off between Energy-efficiency and healthcare application requirements.

Energy-efficient methods Delay QoS Mobility Accuracy

Sensor set selection ✗

Context-based pull ✗

Adaptive sampling ✗

Compressive sensing ✗

On-node processing ✗ ✗

Radio optimization ✗ ✗

Energy-efficient routing protocols

Sleep/wakeup schemes ✗ ✗

Feature selection ✗

Adaptive classifier selection ✗

Delay is potentially ensured by the following methods:

• Adaptive sampling: because the number of unneeded samples is reduced and thus

transmission is decreased leading to less traffic on the network.

• Energy-efficient routing protocols: since a star-topology architecture is mostly

adopted for WBSNs.

• Energy-efficient processing methods: because lightweight algorithms are imple-

mented at the node level taking into consideration delay and complexity.

QoS is mostly ensured by the following methods:

• Sensor set selection: because only sensors that are related to the identified user

context (physical activity or disease detection) are powered on, thus prioritizing

physical or physiological parameters.

• Context-based pull: because the coordinator only requests relevant parameters to

the monitoring application and to the identified user situation, thus eliminating peri-

odic transmission and irrelevant data.

• On-node processing: through the use of lightweight algorithms allowing the nodes

to locally detect emergencies, reduce transmission and sending only critical mea-

surements.

• Energy-efficient routing protocols: by using 1-hop communication and prioritizing

packets depending on their status which can contain emergency or normal data.

Mobility is mostly ensured by energy-efficient routing protocols through the manage-

ment of multi-WBSNs and the communication among nodes and relays.

Accuracy is ensured by means of compressive sensing since it is a lossless com-

pression technique and does not affect the signal of interest.
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2.4.2/ CROSS-LAYER APPROACHES AND COMBINING DIFFERENT ENERGY-
EFFICIENT MECHANISMS

A lot of research has been conducted to tackle energy consumption at multiple layers,

especially at the network, MAC and physical layers. Energy-efficiency and versatility with

changing environments can be significantly improved by an integrated cross-layer design.

Indeed, the requirements that a healthcare application should meet are closely linked and

related to each other. Cross-layer solutions allow to study such interdependence [88].

Moreover, much research have jointly exploited different energy-efficient mechanisms,

thus addressing the energy consumption at the different data collection steps to optimize

the power-aware management. For instance, in [145], the authors combine wake-up ra-

dio with a context-based pull approach to provide power management, thus combining

a hardware and a software solution to tackle the energy consumption due to sensing

and communication. Similarly, in [115] compressive sensing, anomaly-driven transmis-

sion (on-node processing) and sample aggregation have been combined to ensure ac-

curacy and QoS, and Bluetooth Low Energy (BLE) has been chosen as the low power

communication protocol. Thus, maximizing energy-efficiency in data collection. In [104],

energy-efficiency was tackled by combining a context-based pull mechanism (handshake

detection), on-node processing and feature selection allowing the node to extract a set of

selected features from raw accelerometer data, thus reducing sensing, processing and

transmission. Of course combining different techniques is not always possible, it is de-

pendant on the application. For example, in activity recognition applications requiring a

single accelerometer sensor, sensor set selection is not applicable. However, on-node

processing and feature selection could be used to reduce transmission.

2.4.3/ COMBINING ENERGY HARVESTING AND ENERGY-EFFICIENT MECHANISMS

Using energy harvesting techniques in WBSNs is alone not sufficient to make the net-

work self-sustainable, especially that most healthcare applications require continuous

monitoring and limited amount of energy can be harvested over time based on avail-

able sources. Therefore, the energy provision technique should be complemented by

an energy-efficient mechanism. Much research has jointly studied energy provision and

management in WBSNs [109]. As a consequence, energy harvesting needs are reduced

and the sensor nodes are able to perform their tasks more frequently with the scavenged

energy [124, 131]. Furthermore, given that some energy harvesting sources are depen-

dent of the user context (body movement, health condition etc.) and others are dependant

of the surrounding ambient environment (solar, heat, light etc.), a combination of different

energy harvesting techniques should be adopted to scavenge energy in order to exploit

different energy sources based on their availability.

2.5/ CONCLUSION

In this chapter, we have covered the most common energy-efficient mechanisms that are

employed in WBSNs. We have categorized them into three categories : sensing, pro-

cessing and transmission, depending on which energy consuming data collection task

is mainly targeted. Furthermore, we have highlighted the potential of energy harvesting
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techniques which are still in their early age and still need effort to ensure long lasting sen-

sor nodes. Finally, a discussion has been made regarding the trade-off between energy-

efficiency and delay, QoS, mobility and accuracy. We have concluded the chapter by

shedding the light on cross layer approaches, the potential of combining different energy-

efficient mechanisms with energy harvesting. In our opinion, any energy-efficient data

collection technique must not compromise data accuracy, especially that we are dealing

with healthcare applications and sensitive data. Furthermore, we believe that combin-

ing different techniques and/or technologies to maximize power efficiency has a great

potential in maximizing the network’s lifetime and ensuring continuous health monitoring.





3

DATA FUSION

A
s already mentioned, we are interested in providing continuous health monitoring

using WBSNs. Thus, proposing models for combining and fusing heterogeneous

data collected from different biosensor nodes is one of the main objectives of this thesis.

Multi-sensor fusion is a very challenging task in WBSNs that impacts the accuracy and

performance of healthcare applications. This chapter explores the different aspects of

multi-sensor fusion from the relationship among data sources, to the processing architec-

tures that are found in the literature and the level at which the data is processed for fusion.

Several data-related challenges exist in WBSNs that influence the chosen technique for

the fusion. Moreover, high-level fusion is gaining increasing attention due to its potential

and openings. Thus, we discuss the most relevant fusion algorithms and discuss their

limitations.

3.1/ INTRODUCTION

Currently, developing intelligent algorithms for a variety of tasks in healthcare applications

has been attracting the research community. Hence, the treatment and processing of the

collected data is an important aspect in WBSNs. For instance, data fusion in WBSNs al-

lows to combine, to correlate and to associate physiological data and medical information

coming from one or multiple biosensor nodes in order to achieve accurate situation as-

sessments about the monitored person. Particularly, multi-sensor fusion has been gaining

an ever-increasing interest driven by its potential in ensuring a unified picture about the

health condition of the patient. However, several challenges exist in WBSNs, especially

that the collected data is subject to noise, interference and faulty measurements, thus

leading to the fusion of imperfect and inconsistent data. Furthermore, real-time fusion

and good accuracy , which are two important aspects in healthcare applications, should

be satisfied by multi-sensor fusion approaches. Therefore, the choice of high-level fu-

sion techniques such as machine learning, fuzzy logic, case-based reasoning etc., which

enable feature-level and decision-level fusion, is very essential and is application-specific.

This chapter explores multi-sensor fusion in WBSNs. First, in Section 3.2 we define

data fusion while emphasizing on multi-sensor fusion. In Section 3.3, we motivate the

use of multiple sensors in healthcare applications. Then, in Section 3.4, three different

categorizations of multi-sensor fusion approaches are presented based on the relation-

ship among data sources, the processing architecture chosen for the fusion and the data

processing level at which the fusion is performed. Then, a discussion about the most rel-
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evant challenges related to health data is provided in Section 3.5. Moreover, we highlight

the difference between low-level fusion and high-level fusion, and discuss the advantages

and disadvantages of data-driven and knowledge-driven approaches in Section 3.6. Fi-

nally, a discussion about the requirements of multi-sensor fusion approaches regarding

the WBSN and the healthcare application is made in Section 3.7. Section 3.8 concludes

the chapter.

3.2/ DEFINITIONS

In this section, well-known and approved definitions in the literature for data fusion are

given as well as a specific definition for multi-sensor fusion is given. Joint Directors of

Laboratories (JDL) define data fusion as a

Definition 1: Data fusion

Multi-level process dealing with the association, correlation, combination of data

and information from single and multiple sources to achieve refined position,

identity estimates and complete and timely assessments of situations, threats

and their significance.

Another well-known definition was provided by [6] as follows:

Definition 2: Data fusion

Data fusion techniques combine data from multiple sensors and related informa-

tion from associated databases to achieve improved accuracy and more specific

inferences than could be achieved by the use of a single sensor alone.

We agree on the following definition for multi-sensor fusion [111, 58, 55]:

Definition 3: Multi-sensor fusion

Multisensor fusion enables to obtain a unified picture and a global view of the

system by combining information from several sources.

In the rest of this chapter, we focus on multi-sensor fusion in WBSNs and investigate

relevant research that has been done in this domain.

3.3/ SINGLE SENSOR V.S. MULTI-SENSOR BASED HEALTHCARE

APPLICATIONS

Much research has focused on comparing the use of a single sensor with the use of multi-

ple sensors to monitor a specific health related phenomenon such as activity recognition,

health assessment, stress detection, disease prediction etc. The multiple sensors at use

can be of the same type or can be of different types. An example of the former case is the

use of multiple accelerometers placed at different locations on the human body to monitor

the physical activity of a person. Whereas an example of the latter case is the deployment

of different physiological sensors (such as ECG, Heart rate, blood pressure, temperature

etc.) which could also be combined with motion sensors. Multi-sensor fusion improves
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detection and decision-making by providing a complete understanding of the situation of

interest. It enhances data authenticity and availability and ensures a higher level of con-

fidence and reliability and decreases uncertainty [55, 143]. Given the inconsistency and

imperfection of sensor measurements, using redundant or complementary data allow to

infer from these measurements high quality information [143, 158]. Particularly, health

monitoring applications focus on the use of multiple vital signs in order to perform health

assessment, thus achieving robustness [54, 73, 22]. Whereas, the use of a single sensor

is limited to the applications that study and analyze a specific physiological parameter

such as the ECG [160, 91].

3.4/ CLASSIFICATION OF MULTI-SENSOR FUSION APPROACHES

In this section, three different classifications of multi-sensor fusion approaches are pre-

sented [143].

3.4.1/ RELATIONSHIP AMONG DATA SOURCES

Based on the relationship among the sensors that are deployed on the person’s body,

the multi-sensor fusion can be categorized into three different groups according to [143]:

competitive, complementary and cooperative as depicted in Figure 3.1. The competi-

Figure 3.1: Relationship among data sources.

tive fusion involves the use of multiple homogeneous sensor nodes that provide through

their sensing capabilities the same information. It is used to obtain redundancy and self-

calibration. This type of fusion is not very common in WBSNs because any wearable

system should not be bulky and should be comfortable to wear. In physical activity mon-

itoring applications, equivalent sensors are deployed on different locations of the human

body (arm , chest, leg etc.) and hence do not provide competitive information but rather

complementary. Concerning the complementary fusion, it consists of employing sensors

that capture different aspects of the monitored phenomena. It is used to refine the accu-

racy and reliability of the application. For instance, in activity recognition applications, the

motion data sensed by an accelerometer and a gyroscope capture two different aspects

of physical activities. Their joint analysis enables to obtain a high-level information and
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improves accuracy and reliability. We talk about cooperative fusion when multiple physi-

ological and/or physical parameters are required in order to obtain information that could

not be achieved by analyzing any of these parameters independently. For instance, the

health assessment of acute patients requires the simultaneous monitoring of several vital

signs in order to detect emergencies and to have information about the severity of the

patient’s health condition. This type of fusion is the most common in WBSNs.

3.4.2/ PROCESSING ARCHITECTURE

In [143], three different data fusion approaches based on the processing architecture are

identified : centralized, distributed and hybrid. The centralized approach depends on a

fusion center where all the processing is performed. A distributed approach is adopted

when the sensor nodes perform independent processing on the data they have captured

and transmit the results to a fusion node. In this case, the fusion node executes a global

analysis based on the results sent by all the sensor nodes [69, 105]. Finally, hybrid

fusion concerns approaches where the sensor nodes only perform pre-processing and/or

perform partial lightweight computation on the collected data in a distributed approach

fashion while a central node fuses the gathered data and performs high-level fusion [104].

3.4.3/ DATA PROCESSING LEVEL

The authors in [143] have also categorized the multi-sensor fusion based on what level

the fusion is performed. Three categories were identified: data-level, feature-level and

decision-level. Data-level fusion is the combination of multiple homogeneous sources of

raw sensory data in order to improve the accuracy and the inferred information. Specifi-

cally, data can come from different channels of the same sensor (ex: 3-axis accelerom-

eter, ECG leads etc.) or from competitive sensors which is rare in WBSNs [67, 75, 167].

Feature-level fusion involves the combination of several feature sets extracted from differ-

ent sensor nodes to create a new high-dimension feature vector [44, 22, 56, 114, 154].

Generally, the latter constitutes the input of the classification/pattern recognition step.

The features could be in the time domain (such as mean, standard deviation, variance

etc.) and/or frequency domain (such as low/high frequency, spectral energy etc. ) and/or

other type of features (such as drift from normality, rule-based features etc.). In decision-

level fusion, a unique decision is obtained based on local or weaker decisions of multiple

sensor nodes [104, 108, 75, 161, 97]. For instance, it allows to enhance robustness

and accuracy, and is mainly used to detect anomalies or to enforce the detection of the

phenomena of interest. Most importantly, it allows to fuse the physiological data whose

measurement domains have been differently processed using different algorithms.

3.5/ CHALLENGING ASPECTS IN DATA

The collected data in WBSNs present many challenging aspects given that (1) sensor

nodes are deployed in a noisy environment, thus the sensed signals are affected and

may be corrupted, (2) the collected data is subject to data loss due to interference, (3) the

collected data can present inconsistency due to poorly attached or uncalibrated or low

battery level sensors , (4) sensor nodes capture physiological signals that are medically
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interpreted following a human-reasoning logic, thus characterizing the collected data by

imprecision. In this section, we discuss the data-centric taxonomy inspired from [58].

Data fusion techniques and algorithms can be categorized based on the following data-

challenging aspects: imperfection, correlation, inconsistency and disparateness. It is

notable that no single algorithm can solve all these challenges. We chose to discuss

uncertainty, imprecision and outlier since the data collected in WBSNs exhibits these

challenges and thus they are the mostly tackled in the literature (c.f. Figure 3.2).

Figure 3.2: Data-centric taxonomy based on the data challenging aspects.

Below is a definition provided for each of the aspects of the aforementioned data-

related challenges as depicted in Figure 3.2 to distinguish among them:

• Uncertainty: if the associated confidence degree about what is stated by the data

is less than 1, then data is uncertain. Probabilistic methods are used to express

this uncertainty such as the Bayes estimator, kalman filter, Monte Carlo simulation-

based techniques as well as Dempster–Shafer evidence theory [168, 157].

• Imprecision: if data refers to several objects rather than only one object, then data

is imprecise. Imprecision can take several forms: vagueness, ambiguity and in-

completeness. Each of these forms will be explained by an example. For instance

ambiguity can be explained by the following sentence: ”the normal heart rate is

between 51 and 90 bpm”, a well-defined yet imprecise interval is assigned to the

heart rate. Contrariwise, vagueness is characterized by ill-defined attributes. For

example, in the sentence ”the blood pressure is high”, the assigned attribute ”high”

is not well-defined and can be interpreted subjectively. An imprecise data that is

missing information is called incomplete. For example, in the sentence ”the person

has fever”, only the upper limit on the degree of confidence is given. To deal with the

aforementioned data-related challenges many popular data fusion techniques exist

in the literature. On the one hand, evidential belief reasoning enables the fusion of

uncertain and ambiguous data [168, 157, 138]. On the other hand, fuzzy reasoning

is an established approach to deal with vague and ambiguous data especially hu-

man generated data [75, 48, 134, 126]. Finally, possibilistic theory enables to tackle

incomplete data [123, 34].

• Outlier: Data collected by sensor nodes may be spurious due to permanent fail-

ures, not well attached sensor nodes or low energy level. Thus, pre-processing

techniques are applied on the acquired signals, anomaly detection techniques and

other sensor validation techniques are proposed in the literature to deal with this

problem and prevent the fusion of such data with correct data [67, 108, 72, 120].
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3.6/ HIGH-LEVEL FUSION: DATA-DRIVEN VS KNOWLEDGE-DRIVEN

APPROACHES

Currently, high-level fusion is gaining more attention especially that low-level fusion has

attained maturity. Low-level fusion concerns data-level fusion tasks which mainly address

the data-related challenges that were discussed in Section 3.5. However, feature-level

and decision-level fusion are adopted in order to infer high-level information. In this cate-

gory, multiple approaches are exploited especially supervised machine learning such as

Decision trees, Bayesian Networks, Naive Bayes, Support Vector Machine, Neural Net-

works and unsupervised machine learning such as clustering algorithms. Furthermore,

other reasoning approaches are used such as rule-based algorithms, fuzzy inference

systems and case-base reasoning. As it is noticed, the approaches are divided between

data-driven approaches and knowledge-driven approaches. Obviously, data-driven ap-

proaches are considered to be self-contained because they rely on the observations and

their assumed model: no external input is required. They are mainly used when the in-

teractions between data is not understood. In the context of WBSNs, these approaches

are extensively used in activity recognition applications and are also used for prediction

and diagnosis healthcare applications. However, they require a training phase and an

extensive amount of data to be validated. The former requires data collection for a long

period of time which consumes the energy resources of sensor nodes in a real deploy-

ment scenario, and an enough number of participants (greater than 40) in order to build an

application-specific model rather than a patient-specific model. The latter is an important

factor to consider when a real implementation and test of the application are not feasi-

ble. In that particular case, procuring enough datasets concerning a specific application

such as stress monitoring, health assessment through vital sign monitoring, emergency

detection and disease prevention is unattainable. Knowledge-based approaches make

use of prior knowledge such as rules, knowledge databases, solved cases and known

medical facts put by healthcare experts. They have the advantage of being semantically

clear and understandable by humans. However, they are weak in handling uncertainty

and temporal information and could be viewed as static or incomplete [40, 121, 70].

3.7/ DISCUSSION

The choice of sensor nodes namely their type and location on the human body depends

on the monitoring phenomenon. For instance, acute illness requires the continuous and

simultaneous monitoring of five vital signs: the heart rate, the respiration rate, the systolic

blood pressure, the temperature and the oxygen saturation [47], while stress is detectable

by monitoring the heart rate, the respiration rate, the blood pressure and the skin conduc-

tance. Thus, the type of fusion, which is discussed in Section 3.4.1, is determined by the

monitoring phenomenon. For instance, in these examples the type of fusion is coopera-

tive since each sensor provides a different aspect of the same phenomenon. Similarly,

the choice of the fusion level, which is discussed in Section 3.4.3, is determined by the

monitoring phenomenon. For instance, in [104] the authors propose collaborative WB-

SNs that detect handshakes based on joint decisions and in [108] the authors propose to

detect anomalies based on the majority voting of different sensor nodes sensing different

vital signs.
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Based on the healthcare application in hand, a subset of data-related challenges

is addressed. Indeed, there is not a single algorithm that could solve all the issues dis-

cussed in Section 3.5. Researchers combine different techniques at low-level fusion as

well as high-level fusion in order to solve different data-related challenges [75, 44, 157].

However, any multi-sensor fusion approach should be capable of ensuring real-time mon-

itoring, should take into consideration the memory, processing and energy constraints ex-

isting in WBSNs namely at both the sensor nodes and the coordinator levels, and should

be evaluated in terms of accuracy. The requirement for real-time monitoring application

guide the selection of the high-level fusion algorithm. For example frequency analysis

and neural networks are not efficient due to computational complexity while rule-based,

decision trees, temporal analysis and statistical techniques are capable of satisfying the

online data processing requirements. In [54], the authors report the lifetime of sensor

nodes and mobile phones (coordinator) for different architectures found in the literature

in hours of operation. It is noticed that the lifetime of mobile phones is shorter than

the lifetime of sensor nodes and that their energy is depleted faster. An explanation for

this observation is that mobile phones have to ensure different services other than per-

forming multi-sensor fusion tasks such as text messaging, phone call and web browsing.

Therefore, the energy consumption and processing capabilities of the coordinator should

be taken into consideration when proposing a multi-sensor fusion approach, selecting

techniques and algorithms, and choosing the processing level of the fusion (c.f. Section

3.4.2). The evaluation of a fusion algorithm is not only affected by its efficiency but also

by the quality of the input data. There is no standard or a well established evaluation

framework enabling the assessment of the performance of data fusion algorithms. In fact,

it is hard to predict the performance of algorithms in real-life applications because most of

the work is done in a simulated environment with idealized assumptions. However, most

of the multi-sensor fusion approaches in the literature are validated in terms of accuracy

especially when it employs machine learning. Validation is made either by computing the

classification accuracy based on provided datasets and/or simulated testing or is made

by collaborating with healthcare experts.

An additional usage of contextual information is gaining an increasing interest in

data fusion. It could include meta information about persons such as personal informa-

tion (ex: age, sex, weight, height etc.), medical history, fitness level and activities of daily

living. Contextual information ensures ubiquity and autonomy, as well as it enhances data

interpretation and decision-making thus making healthcare applications more robust, dy-

namic and flexible given the changing conditions of people. Furthermore, adding context-

awareness provides a palette of services such as lifestyle recommendation/suggestions,

medical advice and assessment of healthy habits.

3.8/ CONCLUSION

In this chapter, we have defined multi-sensor fusion and motivated the use of multiple

sensors in healthcare applications instead of a single sensor. This is driven by the fact

that it enhances robustness, data availability and authenticity, and reduces uncertainty

in the inferred information. The different categorization strategies of mutli-sensor fusion

approaches have been presented. Moreover, a distinction between low-level fusion and

high-level fusion has been made by presenting the most common data related challenges

in WBSNs, i.e. uncertainty, imprecision and outlier, as well as by discussing the advan-
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tages and disadvantages of data-driven and knowledge-driven approaches. Finally, a

discussion has been made concerning the potential of combining different mutli-sensor

fusion approaches, the impact of continuous data fusion on the energy consumption of

the coordinator and the evaluation of these approaches.
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4

SELF-ADAPTIVE DATA COLLECTION

I
n WBSNs, biosensors periodically collect vital signs and send them to the coordinator.

In this chapter, we target data reduction and energy consumption. We propose a two-

fold adaptive data collection approach. First, the sampling rates of biosensors are locally

adapted in real-time based on the variations of the monitored vital sign and the monitoring

importance given to it. Second, an early warning score system is used by biosensor

nodes to optimize data transmission. To evaluate our approach, we have conducted

multiple series of simulations on real sensor data. The results show that our approach

reduces the amount of collected data while maintaining data integrity, thus implying a

reduction of the energy consumption.

4.1/ INTRODUCTION

Patient monitoring involves periodic transmission of routine vital signs and alerting signals

when vital signs cross a certain threshold. We assume a network of biosensor nodes

placed on or implanted in the body of patients. They continuously send the sensed data

to the coordinator of the network. The latter is located on or near the body and is assigned

the fusion of the collected data. It forwards the data as well as the infered information

such as decisions to a sink node. The decisions include detected emergencies, advice

given to the patients as well as taken actions in case of emergency. The sink node

then sends the received data to the healthcare center or any other destination for further

processing and storage [100]. As discussed in Chapter 2, many challenges arise in

WBSNs, which are the energy consumption due to periodic transmission and the huge

amount of heterogeneous raw data captured by biosensor nodes. In this chapter we

address the energy consumption and data reduction issues which are directly related to

one another by proposing an energy-efficient data collection scheme.

Vital signs can vary from critical values to normal values and vice versa. Moreover,

the dynamics of the monitored conditions can slow down or speed up regarding the pa-

tient’s situation. For this purpose and to reduce the energy consumption, the sampling

rate in periodic data collection networks, such as WBSNs, must depend on how fast the

condition varies and at what rate the characteristics need to be captured [113, 61, 112].

Furthermore, most of the existing work in Wireless Sensor Networks (WSN) considers

that data acquisition and processing have energy consumption negligible compared to

communication. Unfortunately, this assumption is not true for all type of applications and

especially for WBSNs where sensors are used periodically. Therefore, adapting the sam-
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pling rate is an effective method to reduce the energy consumption in WBSNs due not

only to transmission but also to sensing and processing the data. Likewise, we are specif-

ically interested in establishing an early warning system, where the biosensor nodes are

capable of locally detecting emergencies and sending measurements to the coordinator

only when a change in the status of the vital sign is observed. Thus, reducing redun-

dant information and improving power efficiency. In our work, we propose an adaptive

sampling rate scheme having a direct impact on the sensing and processing tasks of the

biosensor node. Using a Quadratic Bezier Curve as a BehaVior (BV) Function, it takes

into account two parameters : the evolution of the monitored vital sign over time and its

monitoring importance. The first parameter is determined by studying the variances of

the sensed measurements over time using One-way Analysis of Variance (ANOVA) cou-

pled with Fisher test. Whereas, the second parameter is represented by a value named

risk level which is medically judged based on the patient’s health condition. However,

the overall health condition of a patient, being continuously and remotely monitored on

a long-term basis, changes over time. It is subject to many health events which can be

acute or even chronic. Thus, it can vary from day to day as well as from an improvement

state into a deterioration state and vice versa especially that acute disease go through

many different stages. As a consequence, the monitoring importance given for each vital

sign should be adapted with these changing conditions. This matter, has a direct influ-

ence on data collection, therefore on the energy consumption of the WBSN and the early

detection of critical events. Thus, we propose to dynamically adapt the risk level of a vital

sign according to the changing health condition of the patient.

The following of the chapter is organized as follows. Section 4.2 presents the related

work. In Section 4.3 early warning score systems are defined. In Section 4.4, the local

emergency detection algorithm is introduced. In section 4.5, the adaptive sampling rate

model is explained and the algorithm regrouping this model and the local emergency

mechanism is presented. The risk level of the sensor node is defined and its adaptation

is explained in Section 4.5.2. Experimental results are given in Section 4.7. Section 4.8

concludes the chapter.

4.2/ RELATED WORK

Various aspects and needs in WBSNs have been studied and discussed in the literature.

Some of them treated routing issues and QoS such as in [96] and in [74]. Others focused

on analyzing and fusing the sensed data in order to produce useful information [104, 28].

Several solutions for supporting emergency messages in WBSNs have been proposed in

the literature so far [106, 87, 24, 78]. In [87] the authors propose to locally classify the

captured reading of the vital sign, based on a preset thresholds at each sensor. If the

value of the vital sign is in the normal range, the corresponding packet is classified as

a normal packet and is put in a normal queue, otherwise it is classified as a prioritized

packet and is put in a precedence queue. A scheduler chooses first the packets in the

priority queue and puts it in a transmission queue. The authors in [24] developed a

platform, Dexter Net, that allows local processing of data both at the sensor mote and

smartphone levels. Although they stipulate that the framework, based on SPINE, allows

local data processing they did not focus on the detection of emergency events. In [106],

the authors propose a system to help finding the abnormalities of heart beat rate and

also medicine intake by the patient using Bayesian algorithm. The aforementioned work
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highlights the need of personal caring given to the patient by the hospital, thus reducing

unnecessary delay in providing treatment to a patient. It also concentrates on the network

lifetime maximization and distance metrics while moving from one network to another

network.

Unfortunately, the above related work assume that data acquisition and processing

have an energy consumption that is negligible compared to the radio communication.

Consequently, their researches aim only at minimizing radio transmission. On the other

hand, in almost all the previous solutions there was no particular attention related to

the optimization of raw data transmission and local emergency detection on the sensor

node level. The studies just focused on detecting the emergency at the base station

level where all the data is received from different sensors. For instance, some previous

work [112, 113, 18] propose an adaptive sampling algorithm in order to reduce the sen-

sors activity of periodic sensor networks. However, data transmission is still a significant

issue and emergency detection is not being handled. Indeed, an early emergency detec-

tion along with energy saving and reduction of the huge amount of raw data captured by

the sensors are the major challenges of WBSNs. In [80], the authors propose the Local

Emergency Detection (LED∗) algorithm which consists of detecting early emergencies

while saving energy. In this approach the authors suggest that sensor nodes send all

critical values, which are outside the normal range, to the coordinator. However, this ap-

proach does not reduce the amount of transmitted data in critical health monitoring where

all captured measurements are critical. Furthermore, redundant information is not taken

into consideration in this approach where a vital sign could be stable in a critical state for

a long period of time. As a consequence, the sensor node in this approach would send all

the critical captured measurements without checking the redundancy of the information.

In this chapter, we propose to bring some modification to the LED∗ algorithm to

further reduce the energy consumption and extend the lifetime of the network. Further-

more, the BehaVior (BV) function used for the sampling rate adaptation is extensively

explained by adapting its equations based on the requirements of vital signs monitoring

in terms of having a minimum sampling rate. Moreover, we propose to dynamically adapt

the monitoring importance given to a vital sign with the changing health condition of the

patient, which impacts data collection. Extensive simulations on real health sensory data

is carried out to study and validate our proposal.

4.3/ EARLY WARNING SCORE SYSTEM

An early warning score system (EWS) is a guide used by emergency medical services

staff in hospitals to determine the degree of criticality of patient situation. An EWS is used

as a systematic protocol to measure simple physiological parameters in all patients to

allow early recognition of those presenting an acute illness or who are deteriorating [43].

For each vital sign, a normal healthy range is defined. Measured values outside of this

range are allocated a score which is weighted and color-coded on the observation chart

according to the magnitude of deviation from the normal range. The weighting reflects the

severity of the physiological disturbance. Such scoring systems can give the biosensor

node the ability to locally evaluate the severity level of the vital sign being monitored and

to assign to it a score.

Figure 4.1 shows the National EWS (NEWS) [47], a standard that is employed in all
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National Early Warning Score (NEWS)*
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PARAMETERS

Heart Rate

Temperature

Systolic BP

Respiration Rate

Level of
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Oxygen
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Oxygen
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≤35.0 35.1 - 36.0 36.1 - 38.0 38.1 - 39.0 ≥39.1

≤90 91 - 100 101 - 110 111 - 219 ≥220

≤8 9 - 11 12 - 20

A V, P, or U

21 - 24 ≥25

≤91 92 - 93 94 - 95 ≥96

Yes No

*The NEWS initiative flowed from the Royal College of Physicians’ NEWS Development and Implementation Group (NEWSDIG) report, and was jointly developed and funded in collaboration with the

Royal College of Physicians, Royal College of Nursing, National Outreach Forum and NHS Training for Innovation

© Royal College of Physicians 2012

Please see next page for explanatory text about this chart.

Figure 4.1: Early Warning Score System

the hospitals of the United Kingdom (UK) for the assessment of acute-illness. We have

used NEWS in our experimental tests and examples in order to evaluate the severity

level of each of the following vital signs: temperature, heart rate, respiration rate, oxygen

saturation and systolic blood pressure. A score of 0 is assigned to the measurement if it is

in the normal range and a score of 1, 2 or 3, according to its magnitude of deviation from

the normal range, where 3 indicates the highest level of criticality. In the next section, we

will show how an EWS can be used by a local emergency detection algorithm.

4.4/ LOCAL EMERGENCY DETECTION

A WBSN is composed of biosensor nodes and a coordinator. The former is defined as a

traditional sensor node equipped with sensors that monitor vital signs such as the heart

rate (HR), respiration rate (RR), blood pressure (BP), Temperature (Temp) etc. We sup-

pose that each biosensor node is sensing one vital sign. In a traditional WBSN, each

biosensor node collects data and sends them to the coordinator in a periodic manner.

Thus, a huge amount of data is collected and sent every period to the coordinator. There-

fore, we must find a model which reduces the amount of data while guaranteeing integrity

and in the same time optimizes data transmission to reduce the energy consumption on

nodes. The first intuition is to send the first captured measurement during a period as

well as all the critical measurements to the coordinator as proposed in [80] and known as

Local Emergency Detection (LED) algorithm. Detection of abnormal situations is allowed

by providing a local warning system on each node. Thus, the score of each captured
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data is calculated, which allow to early and locally detect any emergency represented by

a score different from zero. However, data transmission can be further optimized. Indeed,

when an emergency is detected it is not always useful to send all the critical data. For

instance, suppose a biosensor node capturing the respiration rate is running the LED

algorithm. This latter, will send huge amounts of critical data if the respiration rate of the

patient is abnormal for a long time. This case is very common in unstable and deteri-

orating health conditions where all the data sensed by the biosensor nodes are critical

and redundant. Therefore, we propose to modify the LED algorithm in order to further

optimize data transmission and further reduce the energy consumption of the biosensor

nodes and extend their lifetime.

Suppose V = (v0, ..., vn) is a series of sensed data at a Rt rate, during a period p,

belonging to a given vital sign and Vscores = (score(v0), ..., score(vn)) is the series of their

corresponding scores computed using an EWS. The biosensor sends a sensed data vi

only if its score score(vi) is different from the score of the previously sent data in the

same period (cf Algorithm 1). Therefore, the transmission is optimized by eliminating

the transmission of consecutive sensed data having the same score while maintaining

data integrity by sending data each time a new score is detected. For example, suppose

V = (v0, v1, v2, v3, v4, v5, v6, v7) is a series of 8 consecutive measurements for a given vital

sign, Vscores = (1, 1, 0, 2, 2, 2, 2, 0) is the series of the corresponding consecutive scores.

By using Modi f ied LED (c.f. Algorithm 1) only the following series (v0, v2, v3, v7) is sent to

the coordinator. The latter is able to regenerate the original data series since it considers

the last value received at time t as the current one while it has not received any new

measurement at time t + 1 from the biosensor node during the same period.

Algorithm 1 Modified Local Emergency Detection Algorithm Modi f ied LED

Require: S Rt (Instantaneous Sampling Rate), EWS for the vital sign of interest.

while Energy > 0 do
2: for each period do

Take first measurement v0

4: Store first measurement V [0]← v0

Send first measurement v0

6: Get score score(v0)

S = score(v0)

8: while end of period not reached do
Take measurement vi at rate S Rt

10: Store measurement V [i]← vi

Get score score(vi)

12: if score(vi)!=S then
Send measurement vi

14: S = score(vi)

end if
16: end while

end for
18: end while

Several approaches for energy saving in WSNs are proposed in the literature. How-

ever, the majority of these works consider that data sensing and processing have an

energy consumption that is negligible compared to data transmission. Consequently,

these approaches try to minimize the network’s communications. However, this assump-

tion is not always correct especially when the sensors collect data periodically, thus, a

huge amount of sensing data is collected. Moreover, medical applications require spe-



46 CHAPTER 4. SELF-ADAPTIVE DATA COLLECTION

cific sensors whose power consumption cannot be neglected [9]. For instance, popular

radio equipment used in sensor nodes ”CC1000” produced by ”Texas Instruments” con-

sumes 42mW (at 0dBm) for transmission and 29mW for reception. On the other hand,

an accelerometer ”iMEMS” by ”ADI” consumes 30mW. Therefore, if we consider that the

data acquisition phase is longer than the transmission phase, we can conclude that some

sensors may consume more energy than radio communications. As such, the Modi f ied

LED algorithm which aims to minimize the communication in the network needs to be

complemented by an efficient energy management of the sensors by considering the en-

ergy consumed for data sensing. In the next section, we show how we can adapt the

sampling rate in order to save more energy at the the biosensor node level.

4.5/ ADAPTIVE SAMPLING

In this section, we suggest an adaptive sampling rate scheme that adapts the sampling

rates of the sensors to the vital sign dynamic evolution. Therefore, the sampling rate is

adapted based on the sensed data variation as explained in [61]. For instance, if a vital

sign is unstable then the sensor node’s sampling rate should better be set to a maximum

in order not to miss any important changes and to record all variations. However, if the

vital sign is somewhat stable, then the sensor node’s sampling rate should better be set to

a minimum in order to preserve its energy level. Furthermore, we take another parameter

into consideration: the monitoring importance given to a vital sign vi (critical/uncritical)

which we call risk level ri. The idea here is to apply the One-way ANalysis Of VAriance

(ANOVA) with Fisher test in order to verify during a specific period if there is high variation

in the captured measurements. In the affirmative case the sampling rate must be set to its

maximum otherwise the sampling rate is adapted according to the variations presented

by the vital sign and its monitoring importance. Our goal is to minimize the sensing

activity and to reduce the amount of raw data sent to the coordinator. In the following,

the Fisher test with one-way ANOVA is firstly presented and the monitoring importance of

vital signs is defined. Then, the behavior function we have proposed for the sampling rate

adaptation is described and the proposed adaptive local emergency detection algorithm

is presented.

4.5.1/ FISHER TEST WITH ONE-WAY ANOVA

The Fisher test with One-way ANOVA is used to evaluate whether the expected values of

a quantitative variable in several pre-defined groups vary from each other. We propose

to test the following null hypothesis: The means of the measurements of the last h con-

secutive periods are equal. In order to do so, we compute the Fisher test with one-way

ANOVA statistic test using the following formula:

F =

S F
(h−1)

S R
(N−h)

(4.1)

where S F is the between period variation, S R is the within period variation, h is the

total of consecutive periods and N is total of measurements. S F and S R are calculated

as follows:
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S F =

h
∑

j=1

n j × (Y j − Y)2 (4.2)

S R =

h
∑

j=1

n j
∑

i=1

(y ji − Y j)
2 (4.3)

where y ji is the ith measurement of the jth period, n j is the total of measurements of

the jth period, Y j is their mean and Y is the mean of all the measurements taken during

the h consecutive periods. When the hypothesis is accepted the Fisher statistic follows

the F-distribution with (h-1, N-h) degrees of freedom. If F is greater than the critical value

Ft = Fα(h − 1,N − h) that is defined for a given Fisher risk α (false-rejection probability),

then the hypothesis is rejected. Otherwise the hypothesis is accepted. Thus, the decision

is based on F and Ft. Three situations are possible:

• F > Ft ⇒ the variance between periods is significant and the sampling rate is

balanced to the maximum sampling rate.

• F <= Ft ⇒ the sampling rate is adapted depending on the Fisher test F and the

vital sign’s risk level.

• If N < h the sampling rate is balanced to the maximum sampling rate.

4.5.2/ MONITORING IMPORTANCE OF VITAL SIGN: RISK LEVEL r

The monitoring importance given to a specific vital sign is represented by a quantitative

variable (risk level r) which can take values between 0 and 1 indicating low and high

risk levels respectively. It is set by healthcare experts based on the health monitoring

scenario. Two risk level ranges are defined:

• Low Risk: r is assigned a low value (< 0.5), indicating a low monitoring importance,

if the following conditions are met:

– If the vital sign generally does not present many variations and is usually sta-

ble.

– If the medical expert thinks that a low sampling rate is sufficient to capture any

important variation.

– If the variations do not have a drastic impact on the patient’s health.

For example, the temperature, the galvanic skin response and the oxygen saturation

meet these requirements. In this case, the biosensor nodes will preserve energy by

sampling at a low rate.

• High Risk: r is assigned a high value (≥ 0.5), indicating a high monitoring impor-

tance, if the following conditions are met:

– If the vital sign usually presents many variations.

– If the medical expert thinks that a high sampling rate is essential to capture

any important variation.
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– If any variation can have a drastic impact on the patient’s health.

For example, the heart rate, the blood pressure and the respiration rate meet these

requirements. In this case, the biosensors will be assigned high sampling rates.

Having the result of the one-way ANOVA and Fisher test as well as the risk level r ,

the behavior function used for adapting the sampling rate of the sensor node is explained

in the following section.

4.5.3/ BEHAVIOR FUNCTION

Bezier curves are flexible parametric curves that define shapes by having knowledge

about some points of interest [113]. Quadratic bezier curves are defined using three

points. They are limited by the two points P0 (start point) and P2 (end point) and their

curvature is controlled by the point P1. We define the coordinates of the three points as

follows: P0(0; ly), P1(bx; by) and P2(hx; hy) such as 0 < bx < hx and ly < by < hy.

Since P1 moves on the diagonal [AB] of the behavior rectangle where A(0; hy) and

B(hx; ly), the coordinates bx and by of P1 satisfy the equation of [AB] which is defined as

follows:

y =
ly − hy

hx

× x + hy (4.4)

In our approach, the patient’s risk level r determines the position of P1 and thus the

curvature of the BV function:

Br : [0; 1] 7−→ [0; hx] × [ly; hy]

r 7−→ (bx; by)

Thus, the following equations can be derived to find the coordinates bx and by of the

behavior point P1:

Br(r) =















bx = (1 − r) × hx

by = ly + r × (hy − ly)
(4.5)

The closer the value of r is to 1 the more patient’s health condition is judged to be

critical.

Finally, the BV function curve can be drawn using the following quadratic bezier

curve functions:

BV(F) =











































hx+ly−2by

4b2
x

F2
+

hy−ly
hx

F + ly, hx = 2bx

(hy + ly − 2by)α(F)2
+

2(by − ly)α(F) + ly, otherwise
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Figure 4.2: Behavior Function: Quadratic Bezier Curves

with α(F) = −bx +

√
b2

x−2bxF+hxF

hx−2bx
, such as 0 ≤ bx ≤ hx, 0 ≤ F ≤ hx and hx > 0.

Figure 4.2 shows the BV function which is used to adapt the sampling rate according

to the Fisher test result F and the risk level r. The x-axis represents the result of Fisher

Test F and the y-axis represents the sampling rate S R. The start point P0 corresponds

to F = 0 and S R = S Rmin and the end point P2 corresponds to F = Ft and S R = S Rmax

where Ft corresponds to the critical value given by the Fisher Test for N collected samples

during h periods. Having a maximum sampling rate S Rmax and a minimum sampling rate

S Rmin, depending on the application’s requirements, and the critical value Ft given by the

Fisher Test, the BV function is then defined as follows:

BV(S Rmax, S Rmin, r, F, Ft) = S R (4.6)

The closer F is to Ft, the more the acquired measurements in h periods present

variations. Therefore, the higher the sampling rate given to the sensor node is in order

not to miss any important variations. Whereas, the closer F is to 0, the less the acquired

measurements in h periods present variations. Therefore, the lower the sampling rate

given to the sensor node is in order to preserve its energy level. For each risk level value,

a curve is associated. The higher the risk level value, the greater the sampling rate values

and the lower the risk value, the lower the sampling rate values. As shown in Figure 4.3,

for the same value of F, if the vital sign has a low risk level r, the sensor node’s sampling

rate will take a lower value if the vital sign has a high risk level r. Thus, in the first case,

the sensor node will preserve its energy and will sense data and process measurements

at a lower rate. However, in the latter case,the biosensor node, which is monitoring a

vital sign being medically judged as essential regarding the patient’s health condition,

will be assigned a higher sampling rate in order not to miss important measurements

and events. As a consequence, the sensing and processing tasks of the sensor node

are affected: the number of sensed samples during a time period p can be increased or
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Figure 4.3: Sampling rate adaptation according to the vital sign’s risk level

decreased depending on the sensor node’s sampling rate.

4.5.4/ ADAPTIVE LED ALGORITHM

In this section, the algorithm that allows biosensor nodes to locally detect changes in

vital signs including emergencies as well as to adapt their sampling rates in real-time is

presented. The proposed algorithm, called Modi f ied LED∗ (c.f. Algorithm 2), is to be

locally performed on each biosensor node of the WBSN. The sampling rate adaptation is

performed each round k such as Roundk =
∑h+k−1

i=k pi where k ∈ N,h ∈ N and p is the time

period. In other words, it is performed at end of each period based on the measurements

that were acquired during the last h periods (sliding window of h consecutive periods with

an overlap of h − 1 periods). The sampling rate adaption depends on the result of Fisher

test F. If the means of the measurements of the last h consecutive periods are equal, thus

suggesting that the vital sign is somewhat stable, then the sampling rate is adapted using

the BV function. The latter requires the result of the Fisher Test F and the monitoring

importance given to the vital sign r. Otherwise, the sampling rate is set to its maximum

since the null hypothesis was rejected which means that the vital sign is varying.
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Algorithm 2 Modified Local Emergency Detection with Adaptive Sampling Algorithm

Modi f ied LED∗

Require: h (1 round = h periods), S Rmax (maximum sampling rate), S Rmin (minimum sampling

rate), r (risk level).

Ensure: S Rt (instantaneous sampling rate).

S Rt ← S Rmax

for h periods do
3: Run Modi f ied LED

Store measurements in V

end for
6: S Rt ←SR ADAPT(V, h)

while Energy > 0 do
for each period do

9: Run Modi f ied LED

Store measurements in V

end for
12: S Rt ←SR ADAPT(V, h)

end while

function SR ADAPT(Mes, h)

15: Compute S R, S F and F using the measurements of the last h periods.

if N < h then
S Rt ← S Rmax

18: else
Find Ft

if F < Ft then
21: S Rt ← BV(F, Ft, r, S Rmax, S Rmin) (BV function).

else
S Rt ← S Rmax

24: end if
end if
return (S R)

27: end function

4.6/ RISK LEVEL ADAPTATION

In this section, we propose to dynamically adapt the risk level r values of all the monitored

vital signs over time according to the patient’s health condition. First, the motivation for

doing so is presented then risk level evaluation function is described.

4.6.1/ SCENARIO

Tom is an elderly person living in a nursing home. In order to keep track of his health

condition, he is being remotely and continuously monitored by a WBSN. We suppose

that the WBSN is composed of n biosensor nodes, where each node monitors one vital

sign. At first, the monitoring importance for each vital sign is medically judged by the

medical team. Accordingly, the risk levels r for all the vital signs are chosen. Tom’s health

condition can change with time, he can become sick or be subject to dangerous health

events. Thus, the risk levels r should be adapted by the WBSN with Tom’s changing health

condition. Higher values should be given to the nodes in order to increase their sampling
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rate and capture important measurements and when the patient’s health condition is at a

lower risk and when it is normal, lower risk values should be given to the nodes in order

to preserve their energy level. Next, we give a proper definition to the risk level r and

discuss its initial setup.

4.6.2/ RISK LEVEL EVALUATION FUNCTION

We propose to adapt the risk level r of a vital sign, throughout the life of the WBSN,

according to the patient’s changing health condition. Let rglobal represent the patient’s

overall health condition where rglobal ∈ [0; 1] and rglobal ∈ R. rglobal is referred as the

patient’s global risk level and it indicates the severity level of his/her health condition.

rglobal is evaluated by the coordinator based on the multi-sensor data fusion which will be

presented in Chapter 5. Let S̄ be the average score of the sensed measurements for a

given vital sign during one round R, such as R = h× p where p is a time period and h ∈ N,

and S max be the maximum score that a measurement can have according to the used

EWS (cf. Section 4.3). Then, the risk level evaluation function Eval : (rglobal, S̄ ) 7−→ [0; 1]

is defined as follows:

Eval(rglobal, S̄ ) = α × rglobal + β ×
S̄

S max

(4.7)

where α and β are weight coefficients such as : 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 and α + β = 1.

The Score ratio S̄
S max

is equal to the mean score of the sensed measurements over the

maximum score that can be given to a measurement. It represents the situation of a vital

sign (its criticality) compared to the worst case (highest criticality level). S̄ is calculated

as follows:

S̄ =
1

m
×

m
∑

i=1

si (4.8)

where m is the total number of sensed measurements and si is the score of th ith mea-

surement.

Figure 4.4 shows the output of the proposed risk level evaluation function for two

different parameter setups. The blue surface corresponds to a parameterization of α =

β = 0.5, whereas the pink surface corresponds to a parameterization of α = 0.2 and

β = 0.8. In the former case, both the score ratio and the overall health condition of the

patient are given equal weights. Thus, both are equally important. In the latter case, the

score ratio is given a greater importance than the overall health condition. For example,

for both cases, the lower the global risk and the higher the score ratio, then the higher the

risk level. However, in the latter case the risk level will have higher values than the former

case for the same global risk value, since the impact of the score ratio is greater than

the impact of the global risk. The α and β values are to be judged and parameterized by

the healthcare experts, depending on whether the overall health condition of the patient

or the status of the vital sign itself is more essential given the monitoring needs. For

instance, some viruses such as flu or infections are accompanied by fever. Therefore,

the temperature should be given a higher monitoring importance given its impact on the

these types of sickness and given that healthcare experts are interested in monitoring its

variations over time. Thus, β better have a higher value than α in order to give a higher

importance to the score ratio of the temperature rather than the overall health condition

regrouping all the vital signs being monitored.
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Figure 4.4: Risk Level Evaluation Function

4.7/ EXPERIMENTAL RESULTS

To verify our suggested approaches, we conducted multiple series of simulations using a

custom Java based simulator. The objective of these simulations is two-fold:

• Firstly, we confirm that the proposed self-adaptive data collection technique can

successfully detect locally any emergency while taking into consideration desirable

energy conservation objectives.

• Secondly, we evaluate the performance of the proposed risk level adaptation model

and study the effect of dynamically adapting the risk levels of nodes over time on

the sampling rate adaptation scheme and its outcomes on the WBSN.

4.7.1/ SELF-ADAPTIVE DATA COLLECTION

In this section, the performance of the adaptive sampling scheme coupled with local emer-

gency detection is evaluated. Therefore, in our simulations we used real medical readings

collected from the online MIMIC Database [7].

We have run the different algorithms during 70 periods (approximately 2 hours) using

a Fisher risk α = 0.05. In the reported results, we are interested in two fields of biosensor

measurements (vital signs): the respiration rate and the body temperature. We have

taken into consideration two different risk levels given to vital signs, low and high risks

respectively. We have evaluated the performance of the approach using the following

parameters: a) h the number of periods per round; b) r the risk level of a vital sign. Three

metrics are used in our simulations:

• The instantaneous sampling rate after each period which reflects the amount of

data reduction

• The energy consumption

• The data integrity
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4.7.1.1/ INSTANTANEOUS SAMPLING RATE AND DATA REDUCTION

The main goal of this section is to show how our algorithm is able to reduce and adapt the

biosensor node’s sampling rate according to the monitoring importance of the vital sign.

We consider two situations, a low risk vital sign (r = 0.4) and a high risk vital sign (r = 0.9).

In the following, we will use the terms normal and critical vital sign to identify these two

monitoring importance cases respectively.

In Figures 4.5, 4.6, 4.7 and 4.8, we show the number of sampled data in each

period. We have fixed the maximum sampling rate to 50 measurements per period and the

minimum sampling rate to 10 measurements per period. Then, we compare the quantity

of sent data between LED∗ (LED coupled with the adaptive sampling) proposed in [80]

and the proposed Modi f ied LED∗ (Modi f ied LED coupled with adaptive sampling, c.f.

Algorithm 2).

First, it is clear to see that our approach adapts the sampling rate according to the

monitoring importance of the vital sign. We compare the results obtained for a normal

vital sign (r = 0.4) and a critical vital sign (r = 0.9). When comparing Figures 4.5a and

4.6a, we can see that the sampling rate in the case of a critical vital sign presents higher

values over the periods where the sampling rate is adapted. For example at period 9,

the sampling rate is decreased to 47 in the case of a critical respiration rate, however it is

decreased to 31 when the the monitoring importance of the respiration rate is low. In fact,

when the monitoring importance given to a vital sign is high, it is a necessity to monitor

it with a higher sampling rate, in order to keep track of any changes which might have

effects on the patient’s health.

Second, another parameter we took into consideration in our simulations is the num-

ber h of periods per round. This parameter indicates to the bio-sensor nodes after how

many consecutive periods they must apply the ANOVA model to find the instantaneous

sampling rate. We compare the results of our approach while assigning the values 2 and

3 to h . These comparisons can be seen by comparing Figures 4.5 and 4.7 as well as by

comparing Figures 4.6 and 4.8. We can observe that the sampling rate varies much more

for low values of h (2 in our case) than high values. This means that when h increases

(h = 3), the variation between the sensed measurements increases also. The sampling

rate becomes constant near the maximum sampling rate especially when there is high

variations in the monitored vital sign. For example, if we consider the respiration rate

(critical case): when h = 2 (round = 2 × period), the variation between the measurements

remains important but without high variations contrary to when h = 3 (round = 3 × period).

Therefore, when h = 2, the sampling rate varies more precisely with the monitoring needs

of the biosensor. This is due to having a standard deviation between the measurements

lower than the one when h = 3.

Third, we compare the quantity of sent data in each period when adopting LED∗

and Modi f ied LED∗. We can observe that both algorithms minimize the amount of data

transmitted to the coordinator (not all the sampled data are sent). In the case of the

temperature, LED∗ and Modi f ied LED∗ have the same performance since the vital sign

present stable normal score measurements over the 70 periods. In both algorithms only

the first sensed data in a period is sent. However, in the respiration rate case, Modi f ied

LED∗ algorithm outperforms LED∗ and allows data reduction 50% more than LED∗ and

from the sampled data. The reason behind, is that the respiration rate of this patient is

outside the normal range and presents critical scores for the majority of the periods. LED∗
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(a) Respiration Rate (Normal)

(b) Temperature (Normal)

Figure 4.5: Results of the Fisher Test applied on each two consecutive periods (h = 2) for

a normal vital sign.

sends all the critical sensed data during a period and therefore it is not reducing the trans-

mitted data compared to the sensing data in this case. However, Modi f ied LED∗ sends

only the measurements indicating changes in the respiration rate state and therefore re-

duces redundancy and optimizes the transmission. Data integrity is studied in Section

4.7.1.3 by showing the impact of applying adaptive sampling for collecting the data on the

sensor node level.
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(a) Respiration Rate (Critical)

(b) Temperature (Critical)

Figure 4.6: Results of the Fisher Test applied on each two consecutive periods (h = 2) for

a critical vital sign.

4.7.1.2/ ENERGY CONSUMPTION

Figure 4.9 illustrates the energy consumption on the node responsible of capturing the

respiration rate. We assume that the node has an energy level arbitrarily fixed to 700 units.

Each captured and sent measurement consumes 0.3 and 1 unit respectively. The values

correspond to a normal patient over 24 periods (40 minutes). We have compared our

algorithm Modi f ied LED∗ to A∗ and LED∗. All of the three algorithms adapt the sampling

rate of the node to the respiration rate dynamic evolution (Fisher Test h = 2 and α = 0.05).

However in A∗ all the sensed data are sent, in LED∗ all the critical data are sent and

in Modi f ied LED∗ the sent data is determined by Modi f ied LED (cf Algorithm 1). As
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(a) Respiration Rate (Normal)

(b) Temperature (Normal)

Figure 4.7: Results of the Fisher Test applied on each three consecutive periods (h = 3)

for a normal vital sign.

shown in figure 4.9, the Modi f ied LED∗ algorithm consumes less energy than LED∗ and

A∗ algorithms since the transmission is optimized. We can see that our algorithm saves

energy up to 3 to 4 times more than LED∗ and and up to 7 times more than A∗.
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(a) Respiration Rate (Critical)

(b) Temperature (Critical)

Figure 4.8: Results of the Fisher Test applied on each three consecutive periods (h = 3)

for a critical vital sign.

4.7.1.3/ DATA INTEGRITY

In this section, we examine the effect of adaptive sampling on data integrity. We have

run the adaptive sampling algorithm (h = 2 see Section 4.5) for 70 consecutive periods

(approximately 2 hours). We have fixed the maximum sampling rate to 50 measure-

ments/period and the minimum sampling rate to 10 measurements/period. Then, we

have compared the data that is sensed at each period to the data that is sensed when we

do not apply adaptive sampling on the node. This is done by comparing the distribution

of scores (NEWS). Originally, the sensed data = 100 measurements/period (no adaptive

sampling case).
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Figure 4.9: Comparison of Remaining Energy on the Respiration Rate Node

Respiration Rate Temperature

Risk Level 0.4 0.9 0.4 0.9

Average of difference

between scores of

adaptive sampled data

and non sampled data

during one period

4.5% 2.9% 0.02% 0.02%

Data Reduction 71.8% 63.5% 85.7% 75.8%

Table 4.1: Data reduction and Average of difference between the distributions of scores

in the adaptive sampling case and the no adaptation of sampling case during one period

In Table 4.1, we can clearly see that the adaptive sampling does not influence consider-

ably on the distribution of scores and therefore on the integrity of data and information

required for the decision making. Since the temperature of the patient is normal over the

70 periods, when adapting the sampling rate we do not lose information (Average differ-

ence in distribution= 0.02%) and we reduce data to 75.8% when r = 0.9 and to 85.7% when

r = 0.4. However, the respiration rate of the patient is unstable and presents many varia-

tions and critical scores. Therefore, it is very important to make sure that when applying

adaptive sampling, we do not lose important measurements and change the distribution

of scores during periods. Our results show (see table 4.1) that the average difference

between the distribution of scores obtained when we apply adaptive sampling and when

we do not is only 4.5% during one period. While data reduction is about 71.8%.

Figure 4.10 shows the quantity of sensed data (amount of measurements) by the

respiration rate node (r = 0.4 h=2) and the distribution of scores when using adaptive

sampling (AS) and when not using adaptive sampling (NS). The results of 8 periods cho-

sen from the 70 periods show that when using the adaptive sampling algorithm we reduce

the quantity of sensed data by 64.5% while maintaining 88% of the time very close dis-

tributions to the original ones (NS). For example in period 1, AS reduces the sensed

data to 50% compared to NS while maintaining approximately the same distributions of

scores. Confirming that adaptive sampling has no influence on the taken decisions by the
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coordinator.

Figure 4.10: Comparison between the quantity of sensed data and the distribution of

scores when using adaptive sampling (AS) and when no adaptive sampling is applied

(NS) on the respiration rate node

In the next section, we evaluate the performance of the risk level adaptation model

and its effects on the WBSN. The proposed local detection technique which optimizes

the amount of transmission is not taken into consideration. In the following, we suppose

that all the sampled measurements are sent to the coordinator and that the nodes do not

employ an EWS to send only the measurements indicating a change in the status of the

vital sign. Thus, we specifically study the effects of adapting the risk level of any vital sign

over time on the proposed sampling rate adaptation scheme.

4.7.2/ RISK LEVEL ADAPTATION MODEL

In order to evaluate the performance of the proposed approach, patient vital signs

datasets are collected from Multiple Intelligent Monitoring in Intensive Care (MIMIC) I

and II databases of PhysioNet [7]. We have tested our approach on different patient

records as well as different vital signs such as the heart rate (HR), the respiration rate

(RESP), the systolic blood pressure (ABPsys), the blood temperature (BLOODT) and the

oxygen saturation (SpO2). The proposed adaptive sampling rate scheme (cf. Algorithm

2) coupled with risk level adaptation is implemented and tested at the level of each node.

After running multiple experiments, noting that a minimum of 30 samples is required for

the Fisher Test and one-way ANOVA, the parameters settings are chosen as follows:

• Period p = 100 sec and Round R = 2 × p.

• Minimum sampling rate S Rmin = 1 samples/3.33 sec (corresponding to 30 samples

per period) and Maximum sampling rate S Rmax = 1 sample/1.42 sec (corresponding

to 70 samples per period).
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• Fisher Risk α f isher = 0.05.

• Initial risk level on all sensor nodes is randomly set to r = 0.4, indicating that all vital

signs are slightly critical and have the same impact on the patient’s health.

The global risk level which represents the overall health condition of the patient is deter-

mined by the coordinator by performing multi-sensor fusion. The latter approach will be

discussed in Chapter 5.

First, we show the risk adaptation over time for different α and β setups and discuss

their impact on the risk evaluation. Then we compare the results obtained in terms of

data reduction, loss of information and energy consumption for 3 different scenarios :

static risk level r = 0.4, static risk level r = 0.9 and our proposed approach.

4.7.2.1/ RISK ADAPTATION OVER TIME

Figure 4.11 shows the ABPSys sensor node’s risk level adaptation over 70 periods for 3

different parameter setups. In our proposed approach, α and β respectively denote the

weights accorded for the patient’s overall health condition and for the vital sign’s severity

level. Initially, the sensor node’s risk level is set to 0.4, it is clear to see that in the 3 cases

the risk evaluation function has yielded most of the time a risk value different than 0.4

and whose values range from low to high risk levels. Hence, pointing out the importance

of dynamically adapting the risk level of each sensor node according to the changes in

the patient’s health condition. When comparing Figures 4.11a and 4.11b, we can clearly

see the influence of both parameters on the risk level evaluation. For example, between

period 45 and period 60, the risk level is mainly between 0.4 and 0.6 for α = 0.7 and

β = 0.3, however it ranges between 0.6 and 0.8 for α = 0.3 and β = 0.7. This is due

to the fact that between these periods the severity level of the ABPSys represented by

the score ratio is more critical than the patient’s overall health condition. Hence, giving

the score ratio a higher impact than the overall health condition has yielded a higher risk

level (see Figure 4.11c) than in the opposite case (see Figure 4.11b). Whereas, between

periods 8 and 18, the results show that the overall health condition is more critical than

the severity level of the ABPSys. The risk level ranges between 0.2 and 0.4, in the case

of α = 0.7 and β = 0.3 (see Figure 4.11b), however it ranges between 0.1 and 0.2 in the

case of α = 0.3 and β = 0.7 (see Figure 4.11c). Hence, the parameters α and β of the

risk level evaluation function should be medically judged by the healthcare experts on the

basis of the importance given to each of the vital sign’s severity level and the patient’s

overall health condition. In the rest of this section, the results correspond to a setup of

α = β = 0.5.

4.7.2.2/ SAMPLING RATE ADAPTATION AND ENERGY CONSUMPTION

In this section, we compare the sampling rate adaptation and the energy consumption

between two cases: static (constant) risk level and our proposal of dynamic risk level. We

study the sampling rate adaptation and the energy consumption of the HR sensor node

over 70 periods for 2 different patients. Patient 1 corresponds to record s01840-3454-

10-24-18-46nm from MIMIC II database whereas patient 2 corresponds to record 276n

from MIMIC database . According to the available datasets, all of the 5 vital signs are

monitored for patient 1 and only the HR and the ABPSys are monitored for patient 2.
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(c) α = 0.3 and β = 0.7

Figure 4.11: ABPSys sensor node’s risk level adaptation over 70 periods with different α

and β setups

Figure 4.12 shows the sampling rate adaptation of the HR sensor node for both

patients for 3 different cases: static risk r=0.4, static risk r=0.9 and dynamic risk. For both

patients, when comparing the two static cases (see Figures 4.12c, 4.12e, 4.12d, 4.12f),

we can notice that the sampling rate adaptation results in higher sampling rates when

r = 0.9 than when r = 0.4. For example periods 2 and 10 in Figures 4.12c, 4.12e and

from period 50 till period 70 in Figures 4.12d and 4.12f. This is due to the definition of the

BV function which results in higher sampling rates for higher risk level values. However, if
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we compare the results obtained in the dynamic risk level case with the results of the two

static cases for patient 1, we can notice that the total of sampled measurements during

the 70 periods are less than the total of sampled measurements in the case of the static

risk r = 0.9 and slightly less than the case of static risk r = 0.4. This indicates that our

proposed approach has evaluated the HR risk level around 0.4 (less than 0.9). Thus, the

amount of sampled data is reduced during the 70 periods which will have an impact on

the energy consumption. While, if we compare the results obtained for patient 2, we can

notice that the amount of sampled measurements in the case of dynamic risk is greater

than the amount of samples in the case of static risk r = 0.4 and less than the amount of

samples in the case of static risk r = 0.9. This indicates that our proposed approach has

evaluated the HR risk level less than 0.9. Thus, the amount of sampled data is reduced

during the 70 periods compared to a static risk of 0.9 and slightly increased compared to

a static risk of 0.4. Therefore, adapting the risk level value over time has an impact on the

Fisher test result since the amount of sampled data changes from one period to another,

as well as on the BV function and thus on the output of the sampling rate adaptation

scheme. This will have an impact on the energy consumption.
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(a) Patient 1: Dynamic Risk
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(b) Patient 2: Dynamic Risk
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(c) Patient 1: Static Risk r = 0.4
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(d) Patient 2: Static Risk r = 0.4
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(e) Patient 1: Static Risk r = 0.9
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(f) Patient 2: Static Risk r = 0.9

Figure 4.12: Comparison of HR sensor node’s sampling rate adaptation over 70 periods

between 3 different cases for 2 different patients.

Figure 4.13 shows the HR sensor node’s remaining energy at the end of 70 periods
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for both patient 1 and 2. We suppose that 1 unit of energy is equal to 152 Joules : the

sensing task consumes 6 Joules, the processing task consumes 24 Joules, the trans-

mission task (TX) consumes 60 Joules and the receiving task (RX) consumes 62 Joules

[145]. Thus, we suppose that each sampled measurement needs 0.6 units of energy to

be sent to the coordinator. It includes 0.04 units of energy for the sensing task, 0.16 units

of energy for the processing task and 0.4 units of energy for the transmission task. Having

the initial energy randomly set to 4000 units, the dynamic approach has consumed the

least energy among the 3 cases in the case of patient 1. The remaining energy is 1463.8

units when setting the risk level to 0.9, is 1687 units when setting the risk level to 0.4 and

1753.6 units when adapting the risk level over the 70 periods. However, the results of the

HR sensor node’s sampling rate adaptation of patient 2 shows that adapting the risk level

over time has reduced the energy consumption compared to setting the risk level value to

0.9 but it has increased the energy consumption compared to setting the risk level value

to 0.4. The remaining energy is 1703.2 units when setting the risk level to 0.9, 2031.4

units when setting the risk level to 0.4 and 1888.6 units when adapting the risk level over

the 70 periods. Thus, adapting the risk level of a vital sign over time adapts the lifetime of

a sensor node to the patient’s changing health condition.
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(a) Patient 1: Energy Consumption of the HR sensor node over 70
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(b) Patient 2: Energy Consumption of the HR sensor node over 70

periods

Figure 4.13: Comparison of the HR sensor node’s remaining

energy at the end of 70 periods between 3 different cases.
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4.7.2.3/ DATA REDUCTION VS LOSS OF INFORMATION

In this section, we study the data reduction performed at the sensor node level following

the sampling rate adaptation and discuss its impact on the loss of information. We com-

pare the results obtained for the adaptive sampling rate scheme with static risk level and

with dynamic risk level for patient s01840-3454-10-24-18-46nm. Table 4.2 shows the data

reduction performed at the level of each sensor node for the three scenarios. Theoreti-

cally, if the Fisher Test null hypothesis is rejected for all 70 periods then a data reduction

of only 30% is achieved given that the maximum sampling rate is S Rmax = 1 sample/1.42

sec (corresponding to 70 samples out of 100 per period). Whereas, if the Fisher Test

null hypothesis is accepted for all 70 periods with F = 0 then a maximum data reduction

of 70% is achieved given that the minimum sampling rate is S Rmin = 1 sample/3.33 sec

(corresponding to 30 samples out of 100 per period) (cf. Algorithm 2). The results show

that for both patients and for all the monitored vital signs the percentage of data reduc-

tion is bounded by 30% and 70% such as the data reduction is strictly higher than 30%

demonstrating that the F-test is a suitable statistical test for this type of medical data. As

shown in Table 4.2, a total data reduction of about 48% compared to the original dataset

has been achieved in our approach, of 43% in the case of a static risk r = 0.9 and of

47% in the case of a static risk r = 0.4. We compare the scores of the measurements of

the sampled datasets to the ones of the original dataset in each of the three scenarios,

while taking the time granularity of the original dataset (1 sec). We choose the mean-

squared error to measure the average of the squares of the errors or deviations given

that MS E = 1
M×N

∑M
i=1

∑N
j=1

(a(i, j) − b(i, j))2 where M is the total of monitored vital signs,

N is the total of measurements for each vital sign during the simulation, a is the score of

the jth measurement of the ith vital sign in the original dataset and b is the score of the

jth measurement of the ith vital sign in the sampled dataset. The results (cf. Table 4.3)

show that the MSE of the three scenarios are very close to 1, thus the loss of information

is negligible. Our approach has reduced the amount of sampled data 5% more than the

case of static risk r = 0.9 with a MSE difference of 0.0017. Table 4.4 shows the percent-

age of critical events detected over 70 periods compared to the critical events recorded in

the original dataset. As we can see, the percentage is greater than about 70% for all vital

signs for the three scenarios. However, it is important to note that the percentage of criti-

cal events in the original dataset for each of the HR, SpO2, BLOODT, RESP and ABPSys

which do not last more than 2 seconds are respectively 38%, 1%, 20%, 5% and 17%.

Thus, in three scenarios and for all vital signs, all of the persistant critical events have

been detected. Finally, Figure 4.14 shows the HR sensor node’s totals for each score for

the 3 different scenarios in comparison with the totals of the original dataset. As we can

see, although our proposed approach has reduced the amount of HR sampled data to

47% (cf. Table 4.2), the totals of all scores were conserved. Consequently, our proposed

approach allows a sensor node to dynamically adapt its risk level over time based on the

state of the vital sign it is monitoring as well as the overall health condition of the patient.

Fixing the risk level to a high value when it is not needed increases the energy consump-

tion and the amount of sampled data over time whereas in some scenarios, fixing the risk

level to a low value can increase the loss of information and some critical events can be

passed unseen.
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Table 4.2: Data reduction performed for each monitored vital sign of record s01840-3454-

10-24-18-46nm from MIMIC II compared to original dataset in 3 different scenarios.

Risk Level

Setup
HR SpO2 BLOODT Resp ABPSys

Static Risk

r = 0.9
40% 44% 65% 34% 34%

Static Risk

r = 0.4
45% 48% 65% 37% 37%

Dynamic Risk 47% 48% 65% 38% 38%

Table 4.3: Mean squared error between original dataset and sampled dataset of patient

s01840-3454-10-24-18-46nm from MIMIC II for 3 different scenarios.

Risk Level

Setup
MSE

Static Risk

r = 0.9
0.0128

Static Risk

r = 0.4
0.0144

Dynamic Risk 0.0145

Table 4.4: Percentage of detected critical changes compared to original dataset of patient

s01840-3454-10-24-18-46nm from MIMIC II for 3 different scenarios.

Risk Level

Setup
HR SpO2 BLOODT Resp ABPSys

Static Risk

r = 0.9
76% 97% 80% 97% 86%

Static Risk

r = 0.4
72% 96% 80% 97% 85%

Dynamic Risk 69% 95% 80% 97% 86%
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Figure 4.14: The HR sensor node’s totals for each score for three different scenarios in

comparison with the original dataset.
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4.8/ CONCLUSION

In this chapter, we have proposed an energy-efficient data collection approach for WB-

SNs. This approach is classified under the data reduction techniques since it reduces

the amount of sensed and transmitted data. The proposed Modi f ied LED∗ algorithm al-

lows biosensor nodes to adapt their sampling rate in real-time as well as to locally detect

changes in vital signs including emergencies. The former is ensured by statistically study-

ing the acquired measurements and taking into consideration the monitoring importance

given to vital signs, whereas the latter is made possible by using early warning score sys-

tems. We have conducted a series of simulations on real medical data recordings to show

the effectiveness of our algorithms and approaches. The results show that our approach

reduces considerably the sensed and the transmitted data and the energy consumption

while maintaining data integrity.





5

MULTI-SENSOR FUSION FOR HEALTH

ASSESSMENT

I
n this chapter, a multi-sensor fusion approach for WBSNs is proposed. It allows to

perform a health assessment based on vital signs of interest which are collected by

biosensor nodes. The approach employs a fuzzy inference system in order infer from the

aggregate score of vital signs the severity level of the patient’s health condition. An al-

gorithm, called Health Risk Assessment and Decision-Making (Health-RAD), is proposed

at the level of the coordinator. It describes the coordinator’s behavior and integrates the

proposed model. The proposed multi-sensor fusion approach is tested with the energy-

efficient data collection scheme presented in Chapter 2, thus forming a complete frame-

work. It is evaluated on real healthcare datasets and the results are compared with an

existing approach in terms of data reduction, energy consumption, assessment of vital

signs, the severity assessment of the patient’s health condition and accuracy.

5.1/ INTRODUCTION

Several challenges arise in WBSNs. The energy consumed by the biosensor nodes for

sensing and transmitting is a highly critical issue, since important physiological variations

can be missed out and the data fusion process can be affected if one or more biosensor

nodes are dead [9]. Furthermore, the fusion of large amounts of heterogeneous data

collected by several biosensor nodes is another challenge in such networks. It enables

the coordinator to represent the global situation of the patient and consequently make the

corresponding decision. Several data analysis and processing approaches in WBSNs for

anomaly detection, prediction and decision making [54, 58] have been proposed in the

literature so far. In the majority of these approaches the data fusion techniques require

either offline training, high computation resources or do not take into consideration the

energy consumption on the sensor nodes level. To the best of our knowledge, no one

has so far tackled the problem of monitoring and fusing the vital signs of a patient in order

to determine the severity of his/her health condition while taking into consideration data

reduction for energy consumption requirements.

The major contributions of this chapter are threefold:

1. A generalized multi-sensor data fusion approach is proposed by defining the in-

put membership functions in terms of the number of vital signs of interest. Thus,

presenting a flexible model that can be applied in any health assessment scenario

69
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regardless the number of vital signs of interest. Fuzzy sets are used to deal with

uncertainties and ambiguities and a Fuzzy Inference System (FIS) to map the ag-

gregate score of vital signs to the patient’s risk level. We believe that the gen-

eralization of the multi-sensor fusion model is very promising since it is a flexible

knowledge-based model, does not require any training, takes into consideration the

uncertainty and the ambiguity that exist in medical data (such as vital signs) that

are collected by biosensor nodes through fuzzy sets and assesses patients’ health

condition following a human reasoning logic through the fuzzy inference system.

2. A Health Risk Assessment and Decision-Making algorithm (Health-RAD) is pro-

posed. It is implemented on the coordinator of the WBSN that is deployed on the

patient’s body. Health-RAD employs the proposed multi-sensor data fusion model.

It assesses the patient’s health condition routinely and each time a critical situation

is detected and consequently makes an appropriate decision. The decisions are

either medical advice or triggered emergency actions. Furthermore, it regularly up-

dates the scores of vital signs and only considers the persistence of a vital sign in a

certain state by smoothing sudden deviations.

3. Extensive simulations are performed to validate the proposed multi-sensor data fu-

sion approach. Moreover, it is combined with the energy-efficient data collection

technique that is presented in Chapter 4, thus forming a complete framework (from

data collection to fusion). It is compared to an existing approach [14] from the liter-

ature in order to validate it.

The purpose of our framework is to ensure a continuous and remote monitoring of

the vital signs of an acutely ill patient recovering at home after a surgical intervention,

present at the hospital or even living in a nursing home in case of the elderly. Indeed, an

acute disease requires immediate medical attention and continuous assessment due to

life-threatening possibilities. Therefore, Health-RAD allows the early detection of emer-

gencies, deterioration and improving condition of the patient regardless of his/her loca-

tion. The remainder of the Chapter is organized as follows. Section 5.2 presents the

related work. The multi-sensor data fusion model is explained in Section 5.3. Then,

Health-RAD is presented in Section 5.4. Experimental results are shown and discussed

in Section 5.5. Finally Section 5.6 concludes the chapter.

5.2/ RELATED WORK

Multi-sensor fusion in WBSN is currently gaining more and more attention since it

introduces many advantages in a network that suffers from many limitations such as:

data loss, inconsistency and affected sensor samples. It has the potential to reduce

uncertainty by increasing the confidence of the collected data and the inferred decisions

as well as enhancing the robustness of the healthcare application [143]. Assessing the

health condition of a patient suffering from a particular disease or an acutely-ill patient,

such as in our scenario, requires a continuous collection of multiple vital signs in order to

form a complete view of the patient’s situation and perform an accurate health assess-

ment. To this end, multi-sensor fusion is a must to combine and infer heterogeneous data.
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Diverse applications based on WBSNs, existing in the literature, propose multi-

sensor data fusion techniques such as activity recognition applications, mental health

related applications and health monitoring applications.

• Activity recognition: Many researchers have proposed approaches to recognize ac-

tivities by relying on multi-sensor fusion [79, 102, 83]. For instance, [91] has studied

the sensor fusion impact on activity recognition in order to determine the best combi-

nation of sensors and their positions. Feature extraction and selection accompanied

by different supervised classification methods are compared.

• Mental health: [75] has proposed a physiological signal classification technique

based on multisensor data fusion and case-based reasoning in order to asses the

stress level of the individual being monitored. The matching between cases is done

using fuzzy logic [15]. [44] has proposed a smartphone-based driver safety mon-

itoring system. This system is based on data fusion and uses a fuzzy bayesian

network to classify the drowsiness level of the driver.

• Health monitoring: [36] has designed an algorithm combining sensor selection and

information gain allowing a better management of the WBSN. The information gain

is defined as the minimum compact set of features required to identify a disease.

[23] has proposed a physiological data fusion model for multisensor wearable health

monitoring system (WHMS) called Prognosis. The proposed model generates the

prognoses of the patient’s health conditions using fuzzy regular language and fuzzy

finite-state machine. [14] has proposed a framework that performs real-time anal-

ysis of physiological data in order to monitor people’s health condition. The frame-

work determines the severity level of the patient being monitored by computing a

global risk. It uses historical data and data mining techniques for model building and

performs real-time analysis of the collected vital signs measurements. It has been

tested on intensive care unit datasets and the results show that simple K-means

has acceptable results and can be used as a clustering algorithm. However, en-

ergy consumption due to continuous sensing and transmission was not taken into

consideration and the network lifetime was not studied. Furthermore, the health

assessment is based on the offline training phase which requires enough medically

validated datasets.

We chose to compare our proposed multi-sensor fusion approach to the approach

presented in [14] in terms of accuracy given that the same problem is targeted: patient

health assessment. Both approaches ensure a continuous and real-time assessment of

the severity level of the patient’s health condition based on vital signs monitoring using a

WBSN. Furthermore, our complete framework, including the data collection and fusion, is

compared to the framework presented in [14] to demonstrate the effect of data reduction

on the fusion and the energy consumption in the WBSN.

5.3/ PROPOSED APPROACH: MULTI-SENSOR DATA FUSION MODEL

In this section, we present the multi-sensor data fusion model having as inputs N vital

signs collected by N biosensor nodes and as an output the assessment of the patient’s
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health condition which we represent by the patient’s risk level rglobal (severity). The pro-

posed model can be classified under the cooperative sensor fusion techniques since

multiple sensor signals (N vital signs) are needed in order to assess the patient’s health

condition. Furthermore, from the processing point of view, the coordinator performs the

required fusion of the gathered data by the biosensor nodes, thus the proposed model is

centralized. In terms of data processing level of abstraction, the proposed model can be

classified under the feature-level fusion category [143] (c.f. Chapter 3).

Figure 5.1 shows the architecture of the proposed model which is composed of the

following blocks: the extraction of the up-to-date scores, their aggregation, the mapping

to the patient’s risk level using a FIS and finally the decision selection. The proposed

multi-sensor data fusion approach including all the mentioned blocks (c.f. Figure 5.1) is

performed by the coordinator of the WBSN. A FIS can determine the patient’s risk level

using the information it has about how much the patient’s health condition is critical. Fuzzy

logic is a widely used technique for representing ambiguity in high-level data fusion tasks

[13, 31]. Medical data such as vital signs and physiological signals are characterized

by uncertainty and ambiguity given that sensor nodes collecting these types of signals

are subject to interference, noise and faulty measurements. Moreover, medical data are

interpreted in a human reasoning way which enforces the ambiguity presented in such

data. Thus, membership functions (MFs) are defined for the input and the output of the

FIS and human-language rules are set. In this chapter, we generalize the membership

functions of the input of the FIS in order to make our proposed approach more flexible

and applicable for any number of monitored vital signs.

In the following, we first discuss the extraction of the up-to-date scores which is

performed at regular time intervals by the coordinator. Then, we discuss the input of

the FIS being the aggregate score, its fuzzification and we discuss its output being the

patient’s risk level. Finally, the whole fuzzy inference system is discussed including the

fuzzy rule base as well as the decision-making process.

Figure 5.1: Architecture of the Multi-sensor Data Fusion Model
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5.3.1/ UP-TO-DATE SCORE

The biosensors running the Modi f ied LED∗ algorithm keep the coordinator updated with

changes in vital signs (cf. Algorithm 2 in Chapter 4). The latter receives several mea-

surements for each vital sign during one round R where R = m × p, m ∈ N∗. It calculates

the up-to-date score st for each vital sign at instant t using an EWS (c.f. Section 4.3 in

Chapter 4) as follows:

st =
st−1 + scoret

2
(5.1)

with s0 = score0 and where score0 is the score of the first measurement sent dur-

ing round R, scoret is the vital sign’s instantaneous score at time t and st−1 is the score

calculated at time t − 1. Therefore, the instantaneous score scoret and the score st−1,

representing the history of the vital sign, are given equal weights. For example, suppose

that biosensor B1 sends a score of zero at instant t = 0. While no other measurement is

received during round R, the score st of the vital sign is equal to zero. However, if a new

score scoret = 1 is received at time t, the new st would become 0.5 according to equation

(5.1). Supposing that no other measurement is received until the end of round R (stable

score), if the coordinator updates the vital sign’s score st each δt, then st will converge to

1 depending on δt and the remaining time until the end of round R such as:

lim
st−1→b

st = lim
st−1→b

st−1 + b

2
= b (5.2)

where b represents the value of the stable score. Thus, the persistence of a vital

sign in the same critical level contributes in the scoring and instantaneous measurements,

presenting a deviation, have a lower impact on the scoring.

5.3.2/ AGGREGATE SCORE

Health experts and doctors use the aggregate score of the monitored vital signs of a given

patient in order to assess his/her health condition. This total score represents the early

warning score. It allows them to determine the criticality level of the patient’s condition as

well as the intervention mode that should be adopted [11]. The aggregate score is used

in our approach as an input into the FIS in order to get as an output the patient’s risk level.

It is calculated as follows:

AggS core =

N
∑

i=1

si (5.3)

where si is the up-to-date score (see equation 5.1) of the ith vital sign during a round

R and N is the number of monitored vital signs (biosensors).

The analysis and the interpretation of medical data is ambiguous and vary from one

subject to another, thus we believe that the assessment of the patient’s health condition

should be done using fuzzy theory. The input of the FIS is the aggregate score AggS core

(see equation 5.3). First, the input is fuzzified using 3 fuzzy membership functions: Low,
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Medium and High. Then, the process of determining the patient’s risk level is executed

using a set of fuzzy logic rules.
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Figure 5.2: Aggregate Score Membership Functions

The aggregate score fuzzy membership functions f1(x) (Low), f2(x) (Medium) and

f3(x) (High) are defined as follows:

f1(x) =



























1, x ≤ 1

1
1−N

x + N
N−1
, 1 ≤ x ≤ N

0, otherwise

(5.4)

f2(x) =
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(x − 1), 1 ≤ x ≤ N
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(x + 1 − 2 × N), N ≤ x ≤ 2N − 1

0, otherwise

(5.5)

f3(x) =



























2( x
N
− 1), N ≤ x ≤ 3

2
N

1, x ≥ 3
2
N

0, otherwise

(5.6)

where x represents the aggregate score AggS core and N is the number of moni-

tored vital signs. The definition of these functions was inspired by EWSs and the medical

analysis carried out by doctors when assessing vital signs and physiological measure-

ments. Figure 5.2 shows the MFs for N = 5 vital signs. The aggregate score is Low if

0 < AggS core < 5, Medium if 1 < AggS core < 9 and High if AggS core > 5.

5.3.3/ PATIENT RISK LEVEL

As previously mentioned, the objective of the proposed multi-sensor fusion model is to

determine the patient’s risk level according to the received measurements of the vital

signs which are represented by the aggregate score. The patient’s risk level rglobal is

expressed using a quantitative variable and can range from 0 up to 1. It represents the

severity of the patient’s health condition. The higher the risk value, the more critical/severe

the patient’s health condition is. The following fuzzy membership functions are defined for
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the evaluation of the risk level: Low-Risk, Medium-Risk and High-Risk as shown in Figure

5.3. A patient is at low risk if 0 < r < 0.5, at medium risk if 0.2 < r < 0.8 and at high risk if

0.5 < r < 1.
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Figure 5.3: Patient Risk Level Membership Functions

5.3.4/ FUZZY INFERENCE SYSTEM AND DECISION-MAKING

Figure 5.4 shows the FIS and decision selection blocks of the proposed multi-sensor data

fusion model. Having measurements from the N biosensors, the patient’s risk level is

computed in order to make a decision. The latter is some predictive or corrective advice

given to the patient and could be a trigger to a specific action. The input of the FIS is the

aggregate score AggS core of the N monitored vital signs (cf. Section 5.3.2). Its output is

the patient’s risk level. It uses the fuzzy membership functions described in Section 5.3.2

and a fuzzy rule base to map the input to the output. The fuzzy rule base is shown in

Figure 5.4: Fuzzy Inference System and Decision Selection Blocks

Table 5.1. For example Rule 1 is: if the aggregate score is Low then the patient’s risk level

is Low-Risk. Finally, the risk level is defuzzified using the centroid method to obtain a crisp

patient’s risk level rglobal. A decision, some advice or even an action is selected based

on the value of rglobal. It is selected from an association table between the patient’s risk

values and the decisions (c.f. Table 5.2). Such a table is set by healthcare experts. The
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Table 5.1: Fuzzy Rule Base

Rule No. Agg Score Patient Risk Level

1 Low Low-Risk

2 Medium Medium-Risk

3 High High-Risk

Table 5.2: Example of an Association Table between patient risk values and decisions

Decisions Risk value range

d1 rglobal < 0.25

d2 0.25 ≤ rglobal < 0.4

d3 0.4 ≤ rglobal < 0.6

d4 0.6 ≤ rglobal < 0.8

d5 rglobal ≥ 0.8

decisions/advices include for example: rest, take medicine, call the doctor etc. depending

on the trigger level. For example if 0 ≤ r < 0.2 then decision 1 is taken.

5.4/ HEALTH RISK ASSESSMENT AND DECISION-MAKING ALGO-

RITHM

A Health Risk Assessment and Decision-Making (Health-RAD) algorithm at the coordi-

nator level (cf. Figure 5.5) is proposed based on the data fusion model explained in the

previous section. The coordinator receives the measurements sent by different biosensor

nodes running Modi f ied LED∗. Its role is to perform the multisensor data fusion in order to

obtain meaningful information about the patient’s health condition which is represented by

the patient’s risk level rglobal. Depending on the value of rglobal, some advice or a decision

is given to the patient. The coordinator sends the collected data and the taken decisions

to the medical center. The coordinator operates in rounds where round R = m × p and

where p is the common period of all the biosensors at which they are running Modi f ied

LED∗ (cf. Algorithm 2) and m ∈ N∗.

Suppose that 5 different vital signs are being monitored. Let R0 = (r1, r2, r3, r4, r5) be

the vector of the first measurements received from the 5 biosensors at the beginning of

each round. According to Modi f ied LED∗, these measurements are sensed and sent to

the coordinator at the beginning of each period p.

Let S core0 = (score1, score2, score3, score4, score5) be the vector of the computed

scores corresponding to R0 and S t = (st1, st2, st3, st4, st5) be the vector of the up-to-date

scores at instant t.

At the beginning of each round, the coordinator reads R0, computes S core0 and sets

S 0 = S core0. Each time, the coordinator receives a measurement, it identifies the sending

biosensor Bi in order to compute scorei using an EWS table and to update S coret and

S t. Then, it checks whether scorei is different from zero. If this is the case, it detects

an emergency and sends a query to the other biosensors in order to get their measure-

ments. After receiving them, the coordinator computes S coret using the EWS, updates S t

(cf. equation 5.1) and calculates the aggregate score AggS core (cf. equation 5.3). The
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N = 5: heart rate (HR), the respiration rate (RESP), the systolic blood pressure (ABPsys),

the blood temperature (BLOODT) and the oxygen saturation (SpO2). Thus, we suppose

that 5 biosensors are deployed on the patient’s body. In the following, when a different

number of vital signs is monitored, the value of N as well as the vital signs of interest will

be indicated. Modi f ied LED∗ (cf. algorithm 2) is implemented on the biosensor nodes

and NEWS (cf. Figure 4.1) is used as a local detection system. The parameters settings

for Modi f ied LED∗ on all biosensors are set as follows:

• Period p = 100 sec and Round R = 2 × p.

• Minimum sampling rate S Rmin = 1 samples/5 sec and Maximum sampling rate

S Rmax = 1 sample/2 sec.

• Fisher Risk α = 0.05.

• The monitoring importance (risk) of vital signs r = 0.9. Indicating that all vital signs

are highly critical and have the same impact on the patient’s health.

The parameters settings for Health-RAD, which is implemented on the coordinator,

are set as follows:

• N = 5 vital signs by default.

• Round R = p = 100 sec.

• Update interval δt = 1 sec.

The existing approach [14] to which the obtained results are compared is imple-

mented in R language. The datasets used in the training phase to build a general in-

tensive care model are taken from MIMIC database and the list is found in [10]. The

parameters settings are the following:

• Sampling rate on the sensors: 1 Hz (time granularity of the database 1 measure-

ment/sec).

• Sampling interval on the coordinator: 3 sec.

• Sliding time window size: 10 samples.

• Absolute and Normality thresholds are found in [14].

• k coefficients and h weights for the risk components are found in [10].

• The clustering algorithm: simple K-means.

• The number of risk levels n is set to 3 indicating 4 possible levels (0 to n) : 0, 1, 2

and 3. The higher the level, the more the criticality/severity.

• The number of clusters for the 3 risk components: Cmax = 5

In the rest of the chapter, we refer to the existing approach [14] that is chosen from the

literature as data mining based framework.



5.5. EXPERIMENTAL RESULTS 79

In the data mining based framework, the signal (vital sign) features: offset, slope

and distance are used to compute the following risk components: sharp changes, long-

term trends and distance from normal behavior (formulas are found in [14]). Then, the

health risk associated to signal (vital sign) x at time t is obtained by combining its risk

components as follows

riskx(t) =
∑

i ki,xC(zi(x))
∑

i ki,x
× n

Cmax

where i ranges from 1 to 3 for the three zi risk components, ki,x ∈ [0, 1] are weights

for the ith component of signal x, Cmax is the number of discrete levels (the same for

every risk component) set during model building and C(z) is the function returning the

risk level associated to risk component z. The risk function is normalized to return a

value indicating the severity level from 0 to n. Finally, the risk levels of each vital sign are

combined together in order to obtain a global risk level for the patient as

risk(t) = max
x∈X

(riskx(t))

where X designates the monitored vital signs.

The two approaches are compared on the following levels, for different patient

records and different number of monitored vital signs:

• Data Reduction

• Energy Consumption

• Vital Signs Assessment

• Health Assessment

The proposed approach is validated against the assessment of a medical expert.

First, the data reduction performed by Modi f ied LED∗ at the biosensor nodes level

is highlighted. For this purpose, the measurements of different monitored vital signs for

a given record, being received by the coordinator over time are shown. Furthermore, the

percentages of data reduction compared to the data mining approach are reported for

different patient records and different number of monitored vital signs.

5.5.1/ DATA REDUCTION

The signals of the original dataset of a given patient are shown in Figure 5.6. The dataset

is taken from MIMIC II (s01840-3454-10-24-18-46nm record). The signals show the vari-

ation of the 5 vital signs of interest over approximately 2 hours, where the sampling rate is

set to 1 Hz for all vital signs. Figure 5.7 shows the signals that are sent to the coordinator

over 70 periods, where each signal is sent by a biosensor node sensing the correspond-

ing vital sign. When comparing the original signal of the HR (Figure 5.6), for example, to

the sent signal by the HR biosensor (Figure 5.7), it is remarkable to see that the num-

ber of small oscillations is considerably reduced while maintaining the general shape and

progession of the HR curve over time. This is due to Modi f ied LED∗, where only the 1st

measurement and changes in the vital sign’s score are sent to the coordinator in a period
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Figure 5.6: Original dataset showing the variation of the 5 vital signs of interest over 2

hours.
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Figure 5.7: The received vital signs signals at the coordinator having been sent by 5

biosensor nodes running the Modi f ied LED∗.

p. Thus, the amount of redundant data in a period p is reduced and only informative mea-

surements, indicating a decrease or an increase in the vital sign’s score, are sent. Hence,

the shape and the progression of the HR curve over time are conserved. An overall data

reduction of about 97% is performed compared to the original dataset, while maintaining

information about changes in the 5 vital signs’ score.

For different patient records and different number of monitored vital signs, Tables 5.3

and 5.4 show the percentages of data reduction performed at the sensing level and the

transmitting level in our framework (biosensor nodes running Modi f ied LED∗) compared

to the existing approach [14] in which data are sensed and transmitted each 1 second.

The results obtained are over 70 periods (7000 sec). The requests sent by the coordina-

tor running Health-RAD, when critical situations are detected, are taken into consideration

in the calculations corresponding to our framework. Missing values in the datasets are
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Table 5.3: Data reduction performed for each monitored vital sign of record s01840-3454-

10-24-18-46nm from MIMIC II compared to [14].

Vital Sign

Reduction of

sensed data

(%)

Reduction of

transmitted

data(%)

HR 63.33 96.91

SpO2 79.58 96.85

BLOODT 64.81 96.93

Resp 72.11 95.56

ABPsys 68.08 95.53

ignored and not taken into consideration.

Table 5.4: Total data reduction of four patient records compared to [14].

Database
Patient

Record

Monitored

vital signs

Reduction of

sensed data

(%)

Reduction of

transmitted

data(%)

MIMIC
276n HR, ABPsys 69.91 88.03

039n

HR, SpO2,

RESP,

ABPsys

69.73 92.2

MIMIC II

s01840-3454-

10-24-18-

46nm

HR, SpO2,

RESP,

ABPsys,

BLOODT

67.87 94.09

s15480-2803-

10-21-19-

54nm

HR, SpO2,

RESP,

ABPsys,

BLOODT

69.57 96.36

5.5.2/ ENERGY CONSUMPTION

We study the energy consumed by the biosensor nodes for sensing and transmitting. The

remaining energy after 36 periods in the WBSN in the case of our framework and in the

case of the data mining based framework are compared. Figure 5.8 shows the results

obtained for patient records s01840-3454-10-24-18-46nm (MIMIC II), 039n (MIMIC I),

3000190 and 3100038 (MIMIC III). We assume that the total initial energy of a sensor

node is arbitrarily fixed to 3200 units. The total initial energy in the WBSN is then N × 3200

where N can be equal to 2, 3, 4 or 5. The node consumes 0.04 units for sensing, 0.4

units for transmitting (TX mode) and 0.4 units for receiving (RX mode) [145]. For example,

for patient record s01840-3454-10-24-18-46nm, at the end of 36 periods the remaining

energy in the WBSN in the case of our framework is about 15010.81 units, however it

is only about 8080.0 units in the case of the data mining based framework, suggesting

that the energy consumption in the WBSN implementing our framework is about 8 times

less than the data mining based framework at the end of 36 periods. The number of vital
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signs of interest N has been varied and the results show that: at the end of one hour,

the average energy consumption in the WBSN when applying the proposed approach

is approximately 6 times less than the energy consumption in the WBSN when applying

the data mining based approach such as the vital signs of interest are the following: HR

and RESP (record 300190) and is 16 times less such as the vital signs of interest are

the following : HR, RESP and SpO2 (record 3100038) and about 10 times less for record

039n where the vital signs of interest are the HR, REP, SpO2 and ABPSys. Therefore,

our approach considerably reduces the energy consumption on the biosensor nodes and

extends the WBSN lifetime.
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Figure 5.8: Comparison of the remaining energy in the WBSN after 36 periods (1 hour) for

different patient records and different number of monitored vital signs: proposed frame-

work (in red) vs data mining based framework (in blue)

In the following, we compare the results of the two multi-sensor data fusion ap-

proaches of the two frameworks. We start by comparing the results obtained at the level

of the analysis of the measurements for several vital signs for different patients. Then, we

compare the results obtained in the assessment of the patient’s health condition (severity

level) after performing the data fusion in both frameworks.

5.5.3/ A COMPARISON OF THE SEVERITY LEVEL ASSESSMENT OF VITAL SIGNS

In our approach, Health-RAD regularly updates the scores of the monitored vital signs.

In addition, the severity level of a given vital sign is represented by a score between 0

and 3 with score ∈ R. According to the proposed multi-sensor data fusion model, the

score of each vital sign is updated each δt and each time a measurement is received

from a given biosensor node indicating a change in the status of the vital sign including

critical situations. Using equation 5.1, the update of the scores is done while taking into

consideration the history and the current score of the vital sign during one round R. As

for the data mining based framework, the severity level of the vital sign is represented

by a risk variable taking values between 0 and n − 1, where n is the number of severity

levels specified by the user and risk ∈ N. We set n = 4 since the scoring system used
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in our approach uses four levels ranged between 0 and 3. Figures 5.9 and 5.10 show

the assessment of the HR and the SpO2 of patient record s01840-3454-10-24-18-46nm

during 1000 sec and 2000 sec respectively. The time intervals were chosen randomnly.

On the one hand, Figures 5.9a and 5.10a show the scores assigned to the HR and SpO2

respectively, when applying the data mining based framework which relies on feature ex-

traction and clustering (K-Means) for the online classification. On the other hand, Figure

5.9b and 5.10b show the scores assigned to the same vital signs during the same time

interval, but when applying Health-RAD. In Figure 5.9b, the score of the HR is stable and

is equal to zero from t1 = 1400 sec until t2 = 1800 sec, indicating that it is normal and not

critical. Indeed, according to the measurements of the HR between t1 and t2, the values

vary between 75 bpm and 87 bpm (cf. 5.9a) which corresponds to the normal range ac-

cording to NEWS (cf. 4.1). However, Figure 5.9a shows that the score of the HR between

t1 and t2 vary between 0 and 1 but is, most of the time, equal to 0. Therefore, K-Means

has not classified all the HR signal as normal, since at some instants, it was assigned a

score of 1. Yet, most of the HR signal between t1 and t2 was considered as normal.
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Figure 5.9: Severity level assessment of the HR of patient record s01840-3454-10-24-

18-46nm using the data mining based framework [14] (a) and the proposed approach

(b)
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After t2 = 1800 sec, Figure 5.9b shows that the calculated score values are between 0 and

1. However, for long time intervals and most of the time, it reaches stability and takes a

score of 1. This is due to the stabilization of the received score to 1. When a new score is

received, Health-RAD does not affect it automatically to the vital sign, instead it computes

a new score based on the last calculated score (history) and the new one received. Since,

the fact that a patient has an instantaneous measurement in another score range does not

necessarily indicate that his/her health condition is degrading or improving. It is his/her

persistence in such conditions which contributes to the risk level. The score of the HR

reaches 0 for very short time intervals and this is due to the fast alternation of the HR

measurements between score 0 and 1. Hence, our approach assigns to the HR scores

between 0 and 1 until stability. Figure 5.9a shows that the HR is assigned most of the

time a score of 1, which is compatible to the resuts we obtained in our approach, however

K-Means classified it for some instants in a higher risk and assigned it a score of 2.

Figures 5.10a and 5.10b show the assessment of the SpO2 during tstart = 2000 sec and

tend = 4000 sec. Likewise, both of the approaches assigned alternating scores of 1 and 2

at the beginning. At t = 2800 sec, both of them detected a higher level of criticality and

assigned a higher score (a score of 3 in the data mining based framework and a score

increasing from 2 to 3 in the proposed approach). At t > 3500 sec, both of the approaches

mostly assigned a score of 1, while the data mining based framework detected some

scores of 2. Likewise, Figure 5.11 shows the assesment of the ABPsys of patient record

267n during 1000 seconds. Both approaches detected high levels of criticality between

t1 = 2500 sec and t2 = 3000 sec. Health-RAD assigned to the ABPsys a score up to 3

while the other approach assigned a score of 2.

Therefore, the proposed framework analysed and assessed the vital signs of different

patients coherently compared to the data mining based approach. However, the proposed

approach takes into consideration the limited energy resources requirement in WBSNs.

It overcomes the data mining based framework in terms of energy consumption (around

86% less energy consumption) and data reduction (around 70% for sensing and more

than 90% for transmission).

5.5.4/ A COMPARISON OF THE PATIENT HEALTH ASSESSMENT: PATIENT SEVER-
ITY LEVEL

In this section, we compare the results regarding the patient’s health assessment. In both

approaches, this is done by performing a multi-sensor data fusion. Figure 5.12 shows the

health assessment of the three following patients 3100038, 3000190 and 039n. The first

two records are taken from MIMIC III database and the last record is taken from MIMIC I

database. For patient 3000190, only the HR and RESP are being monitored, whereas for

patient record 3100038 only the HR, RESP and SpO2 are being monitored and for patient

039n the HR, RESP, SpO2 and ABPSys are being monitored (the energy consumption of

these records was reported in Section 5.5.2).

In order to compare the patient’s risk value of the proposed approach to the global

risk of the data mining approach, Table 5.5 is used. The average patient’s risk per period

for each record based on the proposed approach is 0.36 (record 3000190), 0.26 (record
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Figure 5.10: Severity level assessment of the SpO2 of patient record s01840-3454-10-

24-18-46nm using the data mining based framework [14] (a) and the proposed approach

(b)

3100038) and 0.53 (record 039n). Thus, the proposed approach has assigned a global

risk of 2 to the records 3000190 and 039n, and a global risk of 1 to the record 3100038.

Similarly, the average global risk per period based on the data mining based approach for

record 039n is also 2, and it is 1 for record 3100038. However, the average global risk per

period based on the data mining based approach for record 3000190 is 1.

As shown in the plots of record 3100038, both approaches have similarly assessed

the patient’s health condition over time: the majority of the time the global risk was 1 and

alternatively 2. Similarly, as shown in the plots of record 039n, both approaches have in

the majority of the time given a global risk of 2 whilst the proposed approach after 2000

sec have alternatively assigned a global risk of 3. For patient record 3000190, the plot of

the data mining based approach show that in the majority of the time the global risk was

equal to 1 and stable for a longer time compared to when it was equal to 2. Whereas,

for the same patient record, the plot of the proposed approach show that a score of 3

was given much more times to the patient’s health condition than it was given in the data

mining based approach. As a consequence, the average patient’s risk per period for

record 3000190 was not the same in both approaches.

The results show then that both approaches have detected a critical situation over
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Figure 5.11: Severity level assessment of ABPsys of patient record 267n using the data

mining based framework [14] (a) and the proposed approach (b)

1 hour (absence of patient′s risk < 0.2 and global risk = 0), that both approaches have

similarly assessed the patient’s health condition when the vital signs were stable over

long periods of time, however the proposed approach reached higher risk values than

the data mining based approach when the vital signs presented instability on short time

periods and that the data mining based framework is more sensitive to single deviating

vital signs.

Table 5.5: Equivalence Table between Patient’s Risk of proposed approach and Global

Risk of data mining based approach.

Patient’s Risk Global Risk

[0, 0.2[ 0

[0.2, 0.35[ 1

[0.35, 0.65[ 2

[0.65, 1] 3

Tables 5.6 and 5.7 show respectively the average patient’s risk per period for 10

records where only the HR and RESP are monitored and the average risk per period

for 10 other records where only the HR, RESP and SpO2 are monitored based on both
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Figure 5.12: Comparison of health assessment during 36 periods (1 hour) for different pa-

tient records and different number of monitored vital signs: data mining based framework

(second row) vs proposed multi-sensor fusion (second row)

approaches. The results show that 50% of the 2 vital signs monitoring records (cf. Table

5.6) have been similarly assessed by both approaches whereas 90% of the 3 vital signs

monitoring records (cf. Table 5.7) have been similarly assessed by both approaches. In

all the records where the health assessment was different, the proposed approach has

given a higher global risk of one class than the data mining based framework (for example

patient record 3000190).

Table 5.6: Average Patient’s Risk per period based on the proposed approach and Av-

erage Global Risk per period based on the data mining based framework for 10 patient

records such as the vital signs of interest are the HR and RESP.

Record
Average Patient’s

Risk per period

Average Global

Risk per period

3000190 0.36 1

3000203 0.33 1

3000598 0.49 2

3000611 0.53 1

3000710 0.27 1

3300295 0.35 1

3300312 0.4 1

3300380 0.23 1

3300430 0.3 1

3300446 0.78 2

Now, a comparison is made based on the default settings of both approaches. In

the data mining based framework, the monitored vital signs are the default ones chosen

by the authors of [14]: HR, SpO2, ABPdias and ABPsys. In our approach, as per NEWS,

the following five vital signs are chosen to perform the patient’s health assessment: HR,
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Table 5.7: Average Patient’s Risk per period based on the proposed approach and Av-

erage Global Risk per period based on the data mining based framework for 10 patient

records such as the vital signs of interest are the HR, RESP and SpO2.

Record
Average Patient’s

Risk per period

Average Global

Risk per period

3100038 0.26 1

3100140 0.37 2

3100308 0.23 1

3100331 0.23 1

3100524 0.25 1

3200013 0.33 1

3200059 0.64 2

3200163 0.41 1

3200268 0.26 1

3200359 0.25 1

RESP, ABPsys, BLOODT and SpO2. In the data mining based framework, the patient’s

health condition is represented by a global risk being the maximum of the scores assigned

to the monitored vital signs.
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Figure 5.13: The health assessment of patient record s01840-3454-10-24-18-46nm using

the data mining based framework [14] (a) and the proposed approach (b)



5.5. EXPERIMENTAL RESULTS 89

This could in some cases trigger false alarms, if it is generated by only one deviating

vital sign. This usually occurs when a sensor node is collecting faulty measurements.

However, our proposed approach represents the patient’s health condition by a patient’s

risk level. For this purpose, our multi-sensor data fusion model aggregates the scores

of all monitored vital signs. Then, it uses the aggregate score as an input into a FIS to

generate the patient’s risk level. Figure 5.13 shows the results of the health assessment of

patient record s01840-3454-10-24-18-46nm during 7000 sec using the data mining based

framework and the proposed approach. Clearly, the patient presented high severity levels

in the same intervals in both approaches between 2000 sec and 2800 sec and medium

severity levels between 4000 sec and 5700 sec and lower ones between 1000 sec and

1500 sec. In our approach, a decision/advice or action is triggered according to the range

to which the computed patient risk level belongs.
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Figure 5.14: Comparison of the total of health assessment triggers over 1 hour between

Health-RAD and the real-time assessment algorithm of the data mining based framework.

Finally, Figure 5.14 depicts the total of health assessment triggers over 1 hour for

the four patient records : 3000190, 3100038, 039n and s01840-3454-10-24-18-46nm. The

health assessment algorithm of the data mining based framework is triggered at a fixed

time interval of 3 sec. Whereas, the proposed algorithm Health-RAD which implements

the proposed multi-sensor fusion approach is triggered periodically (each 100 sec) and

each time a critical situation is detected (cf. Section 5.4). As shown in the results, Health-

RAD performs an average of 871, 5 health assessments less than the algorithm of the data

mining based framework over a time period of 1 hour. Therefore, by using Health-RAD the

coordinator’s processing resources are less used which extends the coordinator’s battery

lifetime. This matter did not affect, as shown previously in this section, the health assess-

ment of these patient records because both approaches assessed the health condition of

the patients in a similar way.

5.5.5/ MEDICAL DOMAIN EXPERT VALIDATION

The data collection technique and the EWS based vital sign assessment, used in our

framework, have been compared to the classification done by an expert in the medical

domain. The comparison focuses on detecting critical events: when the measurements
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of a given vital sign deviate from the normal range (score , 0). Table 5.8 shows the

results obtained for record s15480-2803-10-21-19-54n for each of the HR, ABPSys and

RESP over 28 hours and 46 minutes. It shows the accuracy and false positives of the

Table 5.8: Accuracy of critical events detection and rate of false positives compared to

medical domain expert classification.

HR ABPSys RESP

Accuracy (%) 93 85 72

False positives (%) 20 15.4 36.3

detection of critical events. For each vital sign, we have divided the first 100000 sec of the

record into 100 time frames each of about 1000 sec. If the time frame contains at least

one critical event (score , 0) then it is counted as a positive event, otherwise it is counted

as a negative event. The medical expert has classified the 100 time frames based on the

knowledge that the record belongs to an ICU patient of a given sexe and age and based

on their used vital signs normality thresholds. All of the critical events were detected

by our approach for all the vital signs. An average accuracy of about 83% is achieved

compared to the expert’s classification. However, an average false alarm rate of about

24% is recorded. This is mainly due to narrower normality ranges, which are used in our

system, compared to the expert’s classification, making it more sensitive to variations.

These thresholds can be easily configured depending on the EWS implemented at both

the biosensor nodes and coordinator levels.

5.6/ CONCLUSION

In this chapter, a multi-sensor fusion approach for health assessment was proposed. A

health risk assessment and decision-making algorithm has been presented within a com-

plete acute illness monitoring system using a WBSN deployed on the patient’s body. A

comparison with an existing approach from the literature has been done. The results

show that our approach reduces data transmission while preserving the required infor-

mation. In addition, it reduces the energy consumption due to sensing and transmitting,

therefore extending the lifetime of the network of about 10 times over 1 hour of continu-

ous monitoring compared to the other framework proposed in the literature. Furthermore,

the assessment of the vital signs and of the global health condition of the patient in both

approaches are compatible: risks are detected on time.
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CONTEXT-AWARE MULTI-SENSOR

FUSION

C
hanges in vital signs and physiological signals do not always indicate a critical event.

In fact, they are influenced by the person’s context: personal information, current

physical activity and the surrounding environment. In this chapter, a multi-sensor data

fusion approach is proposed for the assessment of the person’s health condition given

his/her context. Hesitant Fuzzy Sets (HFS) are used to subjectively evaluate the intensity

of physical activities and a Fuzzy Inference System (FIS) is used to assess the person’s

health condition given the intensity of his/her current physical activity and his/her vital

signs.

6.1/ INTRODUCTION

Context-awareness in pervasive healthcare allows a more robust fusion and interpreta-

tion of the collected vital signs [130]. It complements the information one has about the

physiological measurements allowing by that a better assessment of the patient’s health

condition and a better detection of emergencies. It allows the association of the pa-

tient’s physical activity and the environment with the sensed biosignals and interprets

them based on these information [20]. In Chapter 5, we have proposed a multi-sensor

data fusion model for the assessment of the patient’s health condition based only on vi-

tal signs. In this chapter, we propose to assess the monitored person’s health condition

based on his/her vital signs which are collected by the biosensor nodes and his/her con-

text. More specifically, we target the problem of interpreting vital signs while taking into

consideration the person’s current physical activity, since they are highly correlated. For

instance, an increase of the heart rate indicates a critical event if it occurs when the per-

son is resting, however, it is not a triggering event if the person is running. Using a Fuzzy

Inference system (FIS), the severity level of the patient’s condition is determined based on

the aggregate score of vital signs and the intensity of the person’s current physical activity.

Knowing that the latter is a subjective classification, we propose a Hesitant Fuzzy Sets

(HFS) based evaluation model to assess the intensity of the physical activity performed

by the person using its characteristics (speed, duration, incline, additional weights etc.)

and his/her personal information (age, Body Mass Index, Alcohol Consumption etc.).

The remainder of the chapter is organized as follows. Section 6.2 discusses the related

work. The WBSN architecture and the scenario are highlighted in Section 6.3. In Section

6.4, the proposed context-aware health assessment model is presented. Experimental

91
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results are shown and discussed in Section 6.5. Finally Section 6.6 concludes the chap-

ter.

6.2/ RELATED WORK

The definition of context-awareness is given by [8] as:

Definition 4: Context-awareness

Any information that can be used to characterize the situation of an entity, where

an entity can be a person, place, or physical or computational object.

Identifying the context of the monitored people is one of the benefits of pervasive

healthcare. It enables the understanding of the person’s conditions, the identifying of

unusual patterns and the making of more precise inferences about any situation [17].

Context-awareness can be achieved by fusing information gathered by several sensors:

biosensors, accelerometers, ambient sensors as well as other other type of data such as

the patient’s personal information and can be extended to monitoring the person’s activ-

ity on social media [50]. Several context-aware approaches in the domain of pervasive

healthcare exist in the literature. These approaches make use of WBSNs to collect peo-

ple’s vital signs, physiological measurements and motion data as well as of smartphones

or other portable devices to get additional contextual information such as the temperature,

location, personal information etc. Context-aware solutions can target different aspects of

a pervasive environment: energy consumption in the WBSN, management of the WBSN,

health services providing [32, 42] and complementing biosignals and enriching the health

assessment [65]. In [150], the authors propose a solution ’SituMan’ that provides situa-

tion awareness to another application ’MoodBuster’, providing mental health assessment

based on patient self-assessments. ’SituMan’ is based on a fuzzy inference engine and it

identifies the patient’s situation (daily routine) using context data gathered from the sen-

sors embedded in mobile devices (location, time and user activity). In [53, 94], the authors

propose a pervasive health care system which they name CARA (Context Aware Real-

time Assistant) enabling the provision of personalized healthcare services for elderly. The

data fusion approach combines context awareness, case-based reasoning, and general

domain knowledge in a healthcare reasoning framework. It uses a fuzzy inference en-

gine and case-based reasonning to perform the following reasoning tasks: continuous

contextualization of the physical state of a person, prediction of possibly risky situations

and notification of emergency situations indicating a health risk, home automation or user

prompting within a smart home environment. In [110], the authors present an emergency

situation monitoring service using context motion tracking for chronic disease patients.

The movement of the user is observed by using cameras and motion sensors. Mea-

surement sensors such as temperature, humidity and illumination sensors are installed

in rooms to complete the context of the monitored person. The authors use a semantic

inference engine to propose a smart health service to the patient based on the inferred

situation. We propose to use context-awareness to complement the information that the

coordinator of the WBSN has about the monitored person’s vital signs. Assessing the

person’s health condition based only on his/her vital signs is insufficient. Thus, combin-

ing this information with the information the WBSN has about the intensity of the physical

activity being performed at the same moment by the person, enriches and solidifies the

continuous health assessment and the detection of emergencies when they occur. A
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great deal of research has covered real-time activity recognition [49, 84, 86, 59, 118, 51].

Moreover, some research covered the problem of estimating the speed of the person’s

movement in real-time [85, 98, 12]. Whereas, others proposed to assess the activity level

of the monitored person [144, 11, 127]. To the best of our knowledge, nobody proposed

to subjectively assess the intensity level of physical activities based on contextual data

such as the person’s personal information (age, Body Mass Index (BMI), alcohol con-

sumption, smoking rate etc.) and on the characteristics of the physical activity such as

speed, inclination, duration, resistance etc.

6.3/ WBSN ARCHITECTURE AND SCENARIO

The goal of the context-aware health assessment model we are proposing in this Chapter

is to ensure a continuous health monitoring and to detect emergencies related to abnor-

mal vital signs variations when they occur. The target population of such an application

could be elderly in nursing homes, post-surgery patients recovering at home, acutely ill

or chronically ill patients. In other words, people who require continuous and remote

monitoring because they are at risk of life-threatening emergencies. Furthermore, any

average person who requires a continuous follow-up of his/her health condition and fit-

ness can benefit from such an application. The WBSN consists of biosensor nodes and

accelerometer(s) placed on the body of the person and a coordinator. These components

wirelessly communicate together under a star topology. We suppose that each biosensor

node senses at a given sampling rate only one vital sign. Therefore if N vital signs are

being monitored then N biosensor nodes are required. The biosensor nodes periodically

send to the coordinator the collected measurements for fusion. When the coordinator

detects a possible emergency based on the fusion of vital signs (outside normal range or

aggregate score of vital signs is greater than a threshold specified by healthcare experts),

it sends a request to the accelerometer(s) to get recent acceleration data (accx, accy and

accz). This data is collected during the last h consecutive periods such as h is chosen by

physicians. The coordinator can then evaluate the intensity of the current physical activity

of the person and can assess his/her health condition. Otherwise, the health assessment

is made at the end of each round R where R = m × p where p is the WBSN’s common

period .

6.4/ CONTEXT-AWARE HEALTH ASSESSMENT MODEL

The context-aware health assessment model (cf. Figure 6.1) is composed of two mod-

ules: the physical activity (PA) intensity evaluation model and the health assessment

model. First, the intensity level of the PA performed by the person is subjectively evalu-

ated based on the PA’s characteristics as well as the person’s profile (attributes). Then,

the severity of the person’s health condition is assessed based on the collected vital

signs and the PA’s intensity. In the following, we detail the two modules (Sections 6.4.3

and 6.4.4). But first, the definition and the classification of physical activities, as found in

the literature, are given in Section 6.4.1 and Hesitant Fuzzy Sets are defined in Section

6.4.2.
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Figure 6.1: Context-aware Health Assessment Model Block Diagram.

6.4.1/ CLASSIFICATION OF PHYSICAL ACTIVITIES

Physical activity (PA) is any movement of the body that requires effort to be performed and

that uses the energy produced by skeletal muscles. Examples of PAs include: walking,

climbing stairs, running, playing soccer and many other examples of being active. We

define physical inactivity as the absence of movement. It can indicate multiple states

depending on the person’s posture: resting, sleeping, sitting, standing still etc. According

to the WHO, the intensity of a physical activity refers to the effort required to perform it.

Therefore, PAs can be divided into two categories:

• Moderate Intensity: A moderate amount of effort is required which noticeably accel-

erates the heart rate.

• Vigorous Intensity: A large amount of effort is required which causes rapid breathing

and a considerable increase in the heart rate.

Based on Metabolic equivalents (METs), a general classification of PAs into the two cate-

gories can be found in the literature. However, the intensity is a subjective classification.

It depends on the person’s gender, age, Body Mass Index (BMI), medical history, fitness

level and lifestyle. Therefore, this classification remains very general and does not take

into consideration different populations and human characteristics. For instance, if we

only consider the person’s age, walking can be evaluated as slightly moderate for a per-

son who is 18 years old, whereas it can be evaluated as quite vigorous for a person

who is 70 years old. Furthermore, taking into consideration the PA’s characteristics such

as speed and duration, the intensity of the PA can be evaluated differently. For exam-

ple, considering only the duration of a PA, walking for 10 minutes can be evaluated as

slightly moderate, whereas walking for 30 minutes can be evaluated as somewhat vigor-

ous. Hence, by fusing the information we have about the patient’s current PA and his/her

attributes, it is possible to build the context in which the patient is found at a given instant.

6.4.2/ HESITANT FUZZY SETS

A hesitant fuzzy set (HFS) allows the membership to have a set of possible values [93].

Let X be a fixed set, a HFS on X is in terms of a function that when applied to X returns a

subset of [0,1]. It can be expressed as follows:

A = {< x, hA(x) > |x ∈ X} (6.1)

where hA(x) is called Hesitant Fuzzy Element (HFE) and is a set of some values in [0,1]

indicating the possible membership degrees of the element x ∈ X to the set A. HFSs are

used in many decision-making problems. They come in help when the decision-makers

are usually hesitant and irresolute for one thing or another. Indeed, in this work, we are
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dealing with ambiguous and imprecise data such as the person’s attributes and the PA’s

characteristics. Moreover, evaluating a PA’s intensity is a subjective matter that follows

a human-reasoning logic. Thus, HFSs are used to reach a final agreement about the

intensity value that should be given to a particular PA.

6.4.3/ PHYSICAL ACTIVITY INTENSITY EVALUATION MODEL

Let X = {x1, x2, ..., xn} be the set of characteristics that describe a PA where n is the total

of characteristics. Examples of such characteristics include: speed, duration, inclination,

additional weights, etc.

Let D = {d1, d2, ..., dm} be the set of decision-makers (DM) where m is the total of DMs.

In our approach, the person’s attributes are the DMs that are going to evaluate the PA’s

characteristics in order to evaluate its intensity. Examples of such attributes include per-

sonal and health information such as: Body Mass Index (BMI), age, alcohol consumption

(L/week), smoking status (cigarettes/week) etc. Based on its value, each DM contributes

differently in the evaluation of the PA.

For each characteristic x, each DM d is asked to give its evaluation while taking into con-

sideration its own impact. For instance, if the DM age is 50 years old, then evaluating the

characteristic speed of 6 km/h would yield a different result than if the DM age is 18 years

old.

Then, hA(x) represents the set of the DMs’ opinions regarding the characteristic x of a

given PA. In our approach, we refer to opinion by the term evaluation which reflects how

much a given DM d considers a characteristic x of a PA intense. Furthermore, we replace

the notation hA(x) by hPA(x) for more convenience.

Let hPA(x) = {e1, e2, ..., em} be the set of evaluations given by the m DMs to the charac-

teristic x of a given PA such that ei ∈ [0, 1]. The closer the value of ei is to 1, the more

the characteristic x is considered intense by the DM d. We define the evaluation function

E( f1, f2) as follows:

ei = E( f1, f2) =
2 × f1 + f2

3
(6.2)

where f1 and f2 are features representing the intensity of the characteristic x and the

impact of the DM d respectively. Following a human-reasoning logic, we chose to give

the PA’s characteristic a greater weight than the DM given that we are after all evaluating

PAs which differ from each other due to their characteristics. The feature f1 is defined as

follows:

f1 = x/Maxx (6.3)

where Maxx represents the predefined maximum value that can be given to a char-

acteristic x. The closer the value of x is to Maxx the closer f1 is to 1. The further the value

of x is from Maxx the closer f1 is to zero. For example, if the maximum speed is 12km/h

and if the monitored person’s current PA’s speed is 5km/h, then f1 = 0.416 indicating a

more intense speed than if its value is 2km/h where f1 will be equal to 0.166.

Whereas the feature f2 is defined as follows:

f2 = S core(Di)/MaxS coreDi
(6.4)
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Table 6.1: Scoring Table of the decision-maker Age.

Age 18-30 31-45 46-60 ≥ 60

Score 1 2 3 4

where S core(Di) is the score of the ith DM and MaxS coreDi
is its maximum score

given a predefined scoring table put by healthcare experts. The latter assigns a score s

for each DM value range such that s ∈ N. The higher the score is, the more the DM’s

value is considered as a contributor to a higher intensity and the higher the impact of

the DM. For instance, the older the human being gets the more a given PA is considered

intense, thus an example of the scoring table related to the DM age can be given in Table

6.1.

Therefore, given the above definitions, we define the HFS of a PA having n attributes

and m DM to evaluate its intensity as follows:

PA = {< x1, e1, e2, ..., em >, < x2, e1, e2, ..., em >,

..., < xn, e1, e2, ..., em >}
(6.5)

We propose the following aggregation function in order to calculate the intensity of

the PA based on the DM evaluations:

IPA =

n
∑

i=1

αi(maxn
i=1(hPA(xi))) (6.6)

For each characteristic x of a given PA, the max function returns the highest intensity

evaluation given by the DMs to it. Thus, keeping the highest evaluations given for each

characteristic x, suggesting an influence on the person’s vital signs. Then, a weighted

average is calculated to find the final intensity of the PA. For each characteristic x, a

weight factor is fixed given that their influence on the PA’s intensity level is not equally

judged. For instance, the speed at which a PA is performed influences its intensity level

more than the time spent doing it does. The weight factors αi are set by physicians or

healthcare experts such as
∑n

i=1 αi = 1

6.4.4/ HEALTH ASSESSMENT MODEL

A Fuzzy Inference System (FIS) uses fuzzy set theory to map inputs to outputs. Fuzzy

theory is widely used to represent uncertainty and ambiguity in data fusion techniques

[13, 31]. Assessing vital signs and subjectively evaluating PA intensities constitute a high-

level data fusion task that requires following the human reasoning and the implication

of uncertain and ambiguous data. Such data include vital signs that are collected by

the WBSN and PA intensity information deduced from the collected motion data and the

person’s profile. Figure 6.2 shows the proposed FIS block diagram. The inputs of the FIS

are : the aggregate score of the monitored vital signs and the intensity IPA of the person’s

current physical activity at the moment of the heath assessment.

Using Early Warning Score System (EWS), healthcare experts are able to assess

vital signs based on their values. In our work, we chose the National Early Waring Score

System (NEWS)[47], a standard in the United Kingdom, to assess any of the following
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Figure 6.2: Fuzzy Inference System Block Diagram.

vital signs: Heart Rate (HR), Respiration Rate (RR), Systolic Blood Pressure (ABPSys),

Temperature (Temp) and Oxygen Saturation (SpO2). The aggregate score can then be

calculated as follows:

AggS core =

V
∑

i=1

si (6.7)

where si is the score of the ith vital sign and V is the number of monitored vital signs.

The two inputs of the FIS need to be fuzzified, for this purpose membership functions

(MFs) for the AggS core and the IPA are defined. Based on Chapter 5, three MFs are

defined for the AggS core in terms of the total number of vital signs N : Low, Medium and

High (cf. Figure 6.3). Three other MFs are defined for IPA: Negligible, Moderate and

Vigorous (cf. Figure 6.4).
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Figure 6.3: Aggregate Score Membership Functions.

As we have previously mentioned in the beginning of this section, the health assess-

ment model assesses the person’s health condition using a FIS and based on the PA’s

intensity IPA and the aggregate score AggS core of the person’s monitored vital signs. We

define the person’s risk level rglobal as the output of the FIS such as rglobal ∈ [0, 1]. The

closer rglobal is to 1 the more the person is at risk and is considered in a critical situation.

The membership function of the person’s risk level rglobal is shown in Figure 6.5. Two MFs

are defined: Low and High.
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Figure 6.4: Physical Activity Intensity Membership Functions.
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Figure 6.5: Person’s Risk Level Membership Functions.

Table 6.2 shows the fuzzy rule base of the FIS. For example If the AggScore is

Low and the IPA is Negligible then the Risk Level is Low. A typical scenario of such a

rule is the health assessment of a person who is resting and whose vital signs are in the

normal range suggesting that he is not at risk because its current PA and vital signs match

together. Another example of rules is : If the AggScore is High and the IPA is Negligible

then the Risk Level is High. A typical scenario is the health assessment of a person who

is resting and whose vital signs are far from the normal range suggesting that the person

is at risk because its current PA and vital signs do not match together. In this case, an

emergency should be triggered because an abnormal situation is identified: the person

could be having a heart attack for example.

6.5/ EXPERIMENTAL RESULTS

We have run a series of simulations to test and validate the proposed approach using

Matlab. Firstly, the proposed PA intensity evaluation approach is tested and its perfor-

mance is shown by comparing its results to predefined and fixed PA intensities [127].

Indeed in [127], the PAs are supposed to have fixed intensities based on the speed at

which they are performed. Thus, we emphasize on the dynamicity and the ability of the

proposed approach to take into consideration multiple PA characteristics as well as the
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Table 6.2: Fuzzy Rule Base

Aggregate Score PA Intensity Risk Level

Low Negligible Low

Medium Moderate Low

High Vigorous Low

Low Moderate Low

Medium Vigorous Low

High Negligible High

Low Vigorous High

Medium Negligible High

High Moderate Low

person’s profile (attributes) in evaluating the intensity of any PA. Moreover, the effect of

the person’s profile on the effort required to perform a PA is highlighted.

Second, the performance of the proposed health assessment model is evaluated.

Real medical datasets are collected from the PPG During Exercise database of PhysioNet

[7]. This database contains wrist PPG signals as well as a reference chest ECG which

are recorded during walking, running and bike riding. The vital signs which are used

for the health assessment of the subjects are the Heart Rate (HR) and Respiration Rate

(RR). The latter are extracted from the ECG and PPG signals [137]. The results of the

two following scenarios are compared:

• Health assessment based only on vital signs (HR and RR).

• Health assessment based on vital signs (HR and RR) and contextual information

(Person’s profile and PA’s characteristics).

Thus, showing the interest in fusing both physiological and contextual information in the

detection of abnormalities/emergencies and the identification of low risk and high risk

situations.

6.5.1/ PA INTENSITY EVALUATION

In this section, we study the impact of the characteristics of a PA as well as of the person’s

profile (attributes) on the assessment of the intensity of PAs. Recall that the proposed PA

intensity evaluation model generates the PA’s intensity as IPA ∈ [0, 1] such that the closer

the value of IPA is to 1, the more the PA is judged to be vigorous. Whereas, the closer

its value is to 0, the more the PA is judged to be light/negligible. Table 6.3 shows the

association that we have created between the static/predefined PA intensity classifica-

tion provided in [127] and the proposed PA intensity evaluation model. We assume the

following:

• If the PA’s intensity IPA ∈ [0, 0.5[, then its is considered to be Light (Negligible).

• If the PA’s intensity IPA ∈ [0.5, 0.6[, then its is considered to be Moderate.

• If the PA’s intensity IPA ∈ [0.6, 1], then its is considered to be Vigorous.
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Table 6.3: Association table between a fixed PA intensity classification presented in [127]

and the PA intensity values of the proposed PA intensity evaluation model.

Activity Intensity Intensity Value

Walking <5 Km/h Light [0, 0.5[

Fast Walking
5-6 Km/h Moderate [0.5, 0.6[

7 Km/h Vigorous [0.6, 1[

Running ≥ 8 Km/h Vigorous [0.6, 1]

Based on the classification provided in [127], Figures 6.6 and 6.7 show the intensity

values calculated by the proposed PA intensity evaluation approach. The PA characteris-

tics that were taken into consideration are the following:

• Speed with maximum speed set to 15 Km/h and αspeed = 0.8 (c.f. Equation 6.6).

• Duration with maximum duration set to 30 min corresponding to the required time for

which the intensity of the performed PA becomes stable. αduration = 0.2 (c.f. Equation

6.6).

• Inclination of the ground with maximum inclination set to 15◦ and αincl = 0 (c.f.

Equation 6.6).

The duration and inclination were respectively fixed to 15 min and 0◦ during the

simulation. Whereas the speed was varied for each PA intensity category. Moreover, the

person’s attributes (the DMs) that were taken into consideration are the following:

• Age. Please refer to Table 6.1 to view the scoring.

• Body Mass Index (BMI). Table 6.4 shows the scoring that was used based on clas-

sification found in the medical literature. If the person’s BMI is less than 18.5, then

he/she is underweight, if it is between 18.5 and 24.9, then the person is normal, if it

is between 25 and 29.9, then the person is overweight and finally if it is greater than

30 then the person is obese.

Table 6.4: Scoring Table of the decision-maker BMI.

BMI Range <18.5 [18.5-25[ [25-30[ ≥30

Score 2 1 2 3

Figure 6.6 shows the results obtained for a fixed BMI of 22 indicating that the person

is normal and a varying age. As shown in Figure 6.6a, for all age ranges and for a speed

less than 4 Km/h, the proposed PA intensity evaluation model assessed the PA as light

except for a person who is aged over 60 years old. If the latter is walking at a speed of

4Km/h, then our proposal judged his/her PA as moderate. Whereas, walking at a speed

of 6 Km/h was only judged as moderate for a person whose age is between 45 and 60.

However, it was judged as light for a person whose age is less than 45 and vigorous for a
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person whose age is greater than 60 (cf. Figure 6.6b). Finally, Figure 6.6c shows that for

all age ranges and for a PA speed varying from 8 Km/h to 14 Km/h, most of the PAs were

judged as vigorous with some exceptions. For instance, the PA was judged as light if a

person, whose age is less than 30 years old, is running at a speed of 8 Km/h. Whereas,

it was judged as moderate for a person, whose age is between 30 and 45, is running at a

speed of 8Km/h. Moreover, if a person, whose age is less than 45, is running at a speed

of 10 Km/h the PA was also judged as moderate. Thus, the following conclusions can be

drawn:

• The higher the speed of the PA is, the closer the PA is to vigorous and thus the

higher the intensity value is.

• For a same PA, the older the person is, the greater the effort to perform it is and

thus the higher the intensity value is.
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Figure 6.6: Intensity evaluation of different PAs ranging from light intensity (a) to moderate

intensity (b) to vigorous intensity (c) for different age ranges and different speeds.

Figure 6.7 shows the results obtained for a fixed age of 18 indicating that the person

is young and a varying BMI. As shown in Figure 6.7a, for all BMI ranges and for a speed

less than 4 Km/h, the proposed PA intensity evaluation model assessed the PA as light

except for a person who is obese. If the latter is walking at a speed of 4Km/h, then our

proposal judged his/her PA as moderate. Whereas, walking at a speed of 6 Km/h was

only judged as moderate for a person who is under weight or over weight. However, it

was judged as light for a normal person and vigorous for an obese person (cf. Figure

6.7b). Finally, Figure 6.7c shows that for all age ranges and for a PA speed varying from

8 Km/h to 14 Km/h, most of the PAs were judged as vigorous with some exceptions. For

instance, the PA was judged as light if a normal person is running at a speed of 8 Km/h.

Whereas, it was judged as moderate for an over weight or under weight person running
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at a speed of 8 Km/h as well as for a normal person running at a speed of 10 Km/h. Thus,

the following conclusion can be also drawn:

• For a same PA, the farther the person’s BMI is from the normal range, the greater

the effort to perform it is and thus the higher the intensity value is.
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Figure 6.7: Intensity evaluation of different PAs ranging from light intensity (a) to moderate

intensity (b) to vigorous intensity (c) for different BMI ranges and different speeds.

In comparison to [127], the proposed PA intensity evaluation model takes into con-

sideration multiple PA characteristics other than the speed at which it is performed as well

as the person’s attributes which affect the effort required to perform it. As shown in the re-

sults, instead of having theoretically fixed PA intensity categories, the proposed approach

dynamically and subjectively evaluates the intensity of PAs based on contextual informa-

tion. Finally, Table 6.5 shows the intensity of walking at a speed of 6 Km/h for 20 min

for two different profiles, as per the proposed PA intensity evaluation model. As shown,

the PA intensity is assessed to a value of 0.44 for Profile 1 compared to 0.64 for Profile 2.

Noting that the first profile represents a healthy person who regularly exercises whereas

the second profile represents an overweight person who do not exercise. Thus, based on

the person’s profile, the same PA is judged to be light in one case and somewhat vigorous

in the another case.

6.5.2/ CONTEXT-AWARE HEALTH ASSESSMENT

In this section the proposed context-aware health assessment model is compared to the

health assessment model presented in Chapter 5. The records of the PPG During Exer-
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Figure 6.8: (a) Heart Rate (HR) and Respiration (RR) of a 26 years old person, whose

BMI is normal (b) Speed of PA and intensity evaluation over time (c) Proposed context-

aware health assessment model vs health assessment based only on vital signs.

cise database correspond to healthy subjects (average age is 26.5) who are performing

for a short period of time (between 4 to 6 min), one or more of the following activities:

walk, run, pedal on an exercise bike set at a low resistance and pedal on an exercise bike

set at a higher resistance [125]. We supposed that all subjects have a BMI in the normal

range since no other indication was given in the database.

Figure 6.8 shows the results obtained for record s4 run. The latter subject is running

at a speed of 10 Km/h during approximately 5 min. Figure 6.8a shows his/her HR and

RR which are respectively extracted from the ECG and the PPG signals each 32 sec.

Both vital signs are outside the normal range (51-90 bpm for HR and 12-20 rpm for

RR c.f. Figure 4.1 in Chapter 4). Each 64 sec, a PA intensity evaluation as well as a
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Table 6.5: Intensity of walking at a speed of 6 km/h for 20 min for two different profiles.

Profile Age BMI
Fitness Level

(min/week)
Intensity

1 25 20 450 0.44

2 25 28 0 0.64

health assessment are performed. Figure 6.8b shows that, given the person’s profile,

the proposed PA intensity evaluation model considered running at a speed of 10 Km/h

during 5 min as moderate. An intensity value of approx 0.48 was assigned to the PA.

Based on the person’s vital signs and the performed PA, the proposed context-aware

health assessment model assessed the situation as a low risk (0.36) compared to a high

risk (0.82) as per the health assessment model presented in Chapter 5. This is due

to the fact that our model takes into consideration not only the vital signs but also the

information available about the PA that is being performed by the person. Thus, the

proposed approach has correctly classified the record whereas the other model, which

only takes into consideration the person’s vital signs, has wrongly classified the record. All

the records were classified as low risk by the proposed context-aware health assessment

model. We would like to emphasize that the records that included moderate to vigorous

activities such as running and pedaling on an exercise bike set to a high resistance (level

6 to 8) were correctly assessed by the proposed approach and were classified as low risk

resulting in the absence of false alarms.

6.6/ CONCLUSION

In this Chapter, a context-aware health assessment model was proposed. It is composed

of two modules: PA intensity evaluation and health assessment. Contextual information

such as the person’s profile and the physical activity being performed were taken into

consideration for the health assessment. We proposed to subjectively assess physical

activities based on the person’s profile using hesitant fuzzy sets. The results show that

the PA intensity evaluation model subjectively assessed activities compared to another

approach in the literature which considers fixed classifications. Moreover, the results

showed that there were no false alarms when assessing the health condition of people

that are performing moderate or vigorous activities.
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REAL APPLICATION: REAL-TIME

STRESS DETECTION & EVALUATION

S
tress is a physical, mental or emotional factor that causes bodily or mental tension.

It is generally recognized as one of the major factors leading to a spectrum of health

problems. Therefore, people with high risks of getting stressed should be continuously

monitored in order to detect any stress signs before it causes health problems. Wireless

body sensor networks (WBSNs) provide opportunities to monitor stress and can provide

initial treatment. In this chapter, we propose an energy-efficient stress detection and

evaluation framework by adapting the previously presented techniques to the application

of interest.

7.1/ INTRODUCTION

Stress is your body’s way of responding to any kind of demand. It can be caused by

emotional, mental or physical situations. It is a common problem that affects almost all

of us at some point in our lives. Stress detection and monitoring technology have the po-

tential to help people better understand and release stress by increasing their awareness

of higher levels of stress that would otherwise go undetected. Stress and physiological

signs are correlated. For example when a person is in a stress situation, his/her body

releases hormones like adrenaline and cortisol which causes an increase of the heart

rate and stronger contractions of the heart muscle. Stress can be monitored by using a

Wireless Body Sensor Network (WBSN) which is a self-configuring network composed of

small biosensor nodes, communicating using radio signals.

Many existing approaches have been proposed to detect stress levels using the

human being’s physiological signals. In these approaches, authors have used neural

networks (NN), which firstly need to be trained, to determine the stress level using as

input the captured physiological signals. In these approaches, stress is calculated offline

using physiological signals data which are previously collected by biosensor nodes, and

only after several hours or even days the person is able to know his/her stress level.

Most of the existing approaches, require a huge amount of data to train the system in

order to calculate stress levels. However, nowadays, there exists no medically verified

data sets that prove and determine accurately stress level based on human physiological

signals. This means that in these works, unverified data has been used for the training

phase of the system, therefore we cannot confirm that these approaches have yielded
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accurate stress detection and evaluation. Another challenge directly related to WBSNs

is the energy consumption due to the continuous transmission of data. In a WBSN, data

transmission consumes the most power, consequently the sensors’ lifetime is reduced.

Therefore, data transmission should be then taken into consideration.

In this chapter, we propose a real-time stress detection framework using a wireless

biosensor node and a fuzzy inference system (FIS). First, the skin conductance (SC) is

analyzed. If stress signs are detected, then stress level is evaluated via the FIS based

on the monitored person’s vital signs. These vital signs are: the Heart Rate (HR), the

Respiration Rate (RR) and the Systolic Blood Pressure (ABPSys). Our method requires

analyzing the SC signal on the coordinator to detect stress signs. The chosen vital signs

are the most affected by stress when it occurs. In our proposed approach, the stress level

evaluation process is only triggered when the coordinator detects stress signs, therefore

data transmission is reduced and the biosensor nodes’ energy resources last longer.

The remainder of this chapter consists of a state of the art in relation with stress

detection presented in Section 7.2. The system’s architecture is presented in Section

7.3. The stress detection system is described in detail in Section 7.4. An evaluation of

the system is provided in Section 7.5. Section 7.6 shows and discusses some preliminary

results. Finally, Section 7.7 concludes the chapter.

7.2/ RELATED WORK

Different existing approaches and techniques have been proposed and developed to

study a subject’s stress level. In [99], a real-time personalized stress detection algo-

rithm using the heart rate and the body temperature as inputs to a fuzzy logic system is

proposed. In [30], the authors have developed a fuzzy logic system to detect stress in

real-time. However, only two physiological signs have been used and no further analysis

or assessment of the stress level is provided. Nonetheless, it is not common to focus

only on one or two physiological signals but to focus on many of them in order to obtain

further and more precise information about the stress level. Considering this multimodal

approach, there are several articles which study a variety of parameters and signals, as

well as the combination of them [26, 68]. Most of these approaches use deep learning

or support vector machine (SVM) [27, 89] to determine the stress level of an individual.

However, no explanation about the used data in the training phase of these intelligent sys-

tems is provided neither the data that is used are provided. In modern days, there exists

no medically verified data for stress that can be used to train a deep learning system to

correctly calculate the stress level. Therefore, the existing approaches have been trained

using proprietary stress related data making the algorithms imprecise and not general-

ized. While in other approaches, a limited number of physiological signs have been used

to detect stress, thus decreasing their robustness and accuracy. Most of the previously

mentioned approaches do not operate in real-time, but rather operate in two phases: first

the data is collected then it is analyzed offline to get the results. To the best of our knowl-

edge, none of the stress detection approaches in the literature have given any concern

about the energy consumption that reduces the sensors’ lifetime.

In this chapter, a real-time stress detection and evaluation approach is proposed.

It uses multiple vital signs as input and determines the stress level using a FIS. It also

takes into consideration the data transmission to maximize the sensor nodes’ lifetime.
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We develop a system composed of a Shimmer3 GSR+ sensor node and by extracting

the HR, the ABPSys and the RR, the stress level is calculated. An android application is

developed to test the proposed approach and the whole system.

7.3/ SYSTEM ARCHITECTURE

Figure 7.1 shows the system architecture of the proposed stress monitoring application.

The two main components of the network are the biosensor node and the coordinator.

The former is attached to the person’s wrist and has a PPG sensor and a GSR sen-

sor. The latter is the person’s smartphone. The two devices communicate wirelessly via

bluetooth. The coordinator performs both the detection and the evaluation of the stress.

The former is done based on the person’s average skin conductance (SC) over a time

period, such that the SC is extracted from the GSR signal. The latter is done based

on the person’s vital signs (HR, RR and ABPSys) which are extracted from the Photo-

plethysmogram (PPG) signal. The stress evaluation process is triggered only when the

coordinator detects stress signs. In the following sections, the stress detection and eval-

uation processes as well as the extraction of the SC and the vital signs are explained.

Figure 7.1: System Architecture

7.4/ STRESS DETECTION

In our proposed method, the coordinator continuously receives skin conductance (SC)

measurements from the GSR sensor node. In order to reduce the transmission of data,

we propose to use the lowest sampling frequency possible (1 Hz [169]) indicated by the

constructor of the sensor node. The Stress Detection Algorithm S tressD operates as

follows (cf. Algorithm 3). A window size of 10 minutes is required to detect stress, thus

the coordinator must record the received SC measurements. Stress detection can be

made by calculating the average of the SC measurements over a time window of 10

minutes. If the average is above the normal range (greater than 1 MOhm [169]), then the

person is going through a stress episode and stress should be evaluated to determine

its level. If the average is within the normal range, then the person has not reached
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a stress episode yet. In both cases, we use a sliding time window of 10 minutes to

recalculate the SC average after a time period T of two minutes. The SC average should

only be considered when the person is not doing some physical efforts. During sports, the

person skin glands produce a lot of sweat to keep his/her body cooled down, therefore,

the SC measurements exceed the normal range. In our work, we suppose that the WBSN

can detect physical activity using the accelerometer feature in the used sensors and only

evaluates the stress level when the person’s high SC is not related to physical effort. T is

a time period that allows the coordinator to calculate the stress level frequently. Its value

is updated depending on the evaluated stress level.

Algorithm 3 Stress Detection Algorithm

Require: Time period T , SC Threshold threshold = 1MΩ

repeat
Store the received SC data

until ReceivingT ime > 600000 ms

Initialize T to 5 mins

Set calcS tress = True

Calculate avgS C average of received SC data

repeat
if avgS C > threshold then

Evaluate S tressLevel

if S tressLevel > 3 then
repeat

Re-Evaluate S tressLevel after time period T

Update T

until S tressLevel <= 3

calcS tress = f alse

else
calcS tress = f alse

end if
else

Re-calculate avgS C each T = 2 mins over a sliding window of 10 mins.

end if
until calcS tress = f alse

When stress is detected from the SC data, the coordinator will first ask to receive

PPG signal to determine vital signs values and then calculate the stress level immediately,

then after each time period T, the stress level will be re-calculated until its value is within

the normal range, then in this case the stress detection algorithm will stop.

7.5/ STRESS EVALUATION

Stress evaluation is done using a FIS and the following vital signs: the HR, the RR and

the ABPSys. In the following, we show the correlation between each of the vital signs

and stress and we explain the methods used to extract them from physiological signals.

Then, we present the components of the FIS. Vital signs and stress are highly correlated.

Indeed the HR, RR and ABPSys vary and exceed the normal range when a person is

experiencing acute stress due to an increase of the amounts of hormones in his/her body.

• The Heart Rate: When a person is under a stressful situation, the body increases
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the production of stress-hormones known as adrenaline, noradrenaline and cortisol.

During this moment, the blood vessels dilate which leads to an increase in the HR.

Figure 7.2: PPG Waveform

The HR can be calculated from the PPG signal (shown in figure 7.2) using the

following equation:
60 ∗ x

T imeToDetect(s)
(7.1)

x (number of peaks) is specified in the setup phase of the coordinator. The higher

x is, the more accurate the HR value is. However, the extraction will require more

processing time. In this chapter, we set x to a default value of 3.

• The Blood Pressure: Acute stress is accompanied by an increase of the ABPSys.

Short-term stress-related spikes in the blood pressure added up over time may put

the person at risk of developing long-term high blood pressure. ABPSys can be

predicted from the PPG signal. According to [1], ABPSys, for an adult aged 18 and

above, is calculated using the following equation:

ABPS ys(mmHg) = (−0.6881 ∗ PTT ) + 210.94 (7.2)

where PTT represents the pulse transit time in milli-seconds (ms). To calculate PTT,

the time interval between a waves peak of the PPG signal and the Dicrotic notch of

the same waveform is determined (c.f. Figure 7.2).

• The Respiration Rate: When a person is under acute stress, the RR increases to

distribute oxygen and blood quickly to the body core. If the stress level is very high,

it may lead to Tachypnea having severe consequences on people with breathing or

heart disease problems. To calculate the RR, there exists an algorithm called ”Multi-

parameter Respiratory Rate Estimation From the Photoplethysmogram” [57] which

consists of studying the variations of the PPG signal values (frequency, intensity,

and amplitude) over a fixed time window to calculate the RR.

We have chosen to use a FIS because it is an intelligent decision system that uses

several variables as input to determine the output and it is easy to implement and con-

figure in a mobile application. Also, in a FIS the training phase can be skipped, as long

as we know the domain we are modelling and its reaction/behaviour rules. Moreover, the

readings of medical data such as the vital signs can be vague and imprecise as well as the

evaluation of the stress level follows a human-reasoning logic, thus the FIS is appropriate

to the type of data and reasoning since it uses fuzzy logic. According to the universal

pain assessment tool [139], stress is measured in a scale of 1 to 10, 10 being the highest

level. Table 7.1 shows the average range of each vital sign with its corresponding stress

level.
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Table 7.1: Stress categories

Low Stress Medium Stress High Stress

HR (Bpm) 40-70 70-90 >90

RR (Rpm) 8-16 16-20 >20

ABPSys (mmHg) 80-120 120-139 139

Stress Level 0-3 3-7 7-10

The FIS has three inputs: the HR, the RR and the ABPSys and has one output: the

stress level. For this purpose, membership functions are defined for the three inputs as

well as for the output. The membership are in a ramp shapes which are built according

to Table 7.1. In the proposed approach, the FIS rules are defined manually based on

national health organization reports on stress and its effect on a person’s vital signs.

When the coordinator detects stress signs based on the SC values, it orders the

sensor node to stop streaming SC data and to start sending the PPG signal, and then

it orders the sensor to stop when the vital signs are extracted. We propose to adapt the

time period T at which the stress level is evaluated according to the evolution of the stress

level value as follows:

• If the stress level is high, T decreases in order to evaluate the stress level more

frequently.

• If the stress level is low, T increases in order to reduce the frequency at which

the coordinator requests the PPG signal and evaluates the stress level and then it

preserves its processing and energy resources.

When the stress level reaches the normal range (below 3), the stress detection process

repeats from the beginning, where the system detects stress from the SC data.

7.6/ PRELIMINARY RESULTS

The coordinator is a smartphone running an Android application implementing the pro-

posed stress detection and evaluation approach. It uses Bluetooth to communicate with

the Shimmer3 GSR+ sensor node. The experiment was made on a person doing an oral

presentation. The main outcome of the experiment is to test the coherence and accuracy

of the proposed FIS and minor interest was given to the stress detection phase. The

sensor node was configured to send the PPG signal to the coordinator for the vital signs

extraction. The collection of the person’s vital signs started before the beginning of his

presentation in order to view how they change when he encounters stress.

Figures 7.3a, 7.3b and 7.3c show the variation of HR, ABPSys and RR respectively

over time during the three following stages: before the presentation, during the presen-

tation and after the presentation (during question time). Figure 7.3d shows the stress

level variation during the three stages of the experiment. As shown in the figures, at the

beginning the vital signs are in the normal. Then, they increase when the person starts

his presentation to reach important levels during the presentation. This does not mean

that stress is the only reason for this increase but could be a main one. We can see how

the stress level is at a low level before the person has started the presentation. Then,
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(a) HR Variation (b) ABPSys Variation

(c) RR Variation (d) Stress level Variation

Figure 7.3: Vital signs and stress level variation along the oral presentation.

it reaches medium level and at some instants high level during the presentation and the

question stages. In our experiment, stress level is evaluated based on the HR, ABPSys

and RR. We cannot say that our approach gives precise results in stress level deter-

mination, because, there exists no medically proven method or data that can be used

to accurately determine stress level using vital signs. However, based on these results,

it is clear that vital signs are correlated with stress level. When a person is stressed,

his/her vital signs exceed the normal range and when he/she is relaxed they are in the

normal range. Moreover, the stress evaluation process yielded coherent results with the

three different experiment stages of the oral presentation. Therefore, our approach is well

designed and its implementation has given a good evaluation of the stress level.

7.7/ CONCLUSION

In this work, we have proposed a real-time stress detection and evaluation framework

using WBSN. Our method consists of analyzing the SC signal transmitted by the GSR

sensor node to the coordinator. When stress signs are detected the coordinator requests

the PPG signal from the PPG sensor node to extract the vital signs and evaluate the

stress level using the FIS. The results show that the proposed approach gave a good

prediction of the stress level.
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CONCLUSION & PERSPECTIVES

8.1/ CONCLUSION

In this thesis, data collection as well as data fusion approaches for wireless body sensor

networks have been proposed in order to ensure continuous health monitoring. Sev-

eral constraints have been taken into consideration while designing the models. Some

constraints characterize WBSNs while others characterize the collected data. For in-

stance, biosensor nodes are characterized by limited energy resources that rapidly get

depleted due to periodic transmission as well as sensing and processing the acquired

data. Moreover, the collected data is of huge amount, present redundant information,

is heterogeneous, imprecise, ambiguous and sensitive. It includes vital signs, motion

signals and other type of medical and personal data. Such data are interpreted in a

human-reasoning logic in order to infer high-level information. Furthermore, important

requirements of healthcare applications were taken into consideration such as accuracy

and quality of service while designing the proposed approaches.

This dissertation is composed of two parts: the first part covers the scientific back-

ground of WBSNs, whereas the second one presents the contributions that have been

made in this thesis. First, recent advances in WBSNs have been presented. A general

overview about the architecture of WBSNs and the composition of biosensor nodes was

given. The different types of the most commonly used biosensor nodes in WBSNs have

been presented and some of the commercially available nodes on the market were listed.

A special focus has been given to healthcare applications that are based on WBSNs. A

classification of the latter was provided on the basis of the target monitoring task that is

aimed. Finally, the requirements that any healthcare application must respect in order to

ensure user as well as medical acceptance and satisfaction were highlighted.

Second, given that an energy-efficient data collection approach was proposed in

this thesis, the most relevant energy-efficient data collection techniques, that are found

in the literature, were covered. A classification of these techniques was provided on the

basis of the targeted energy-consuming task: sensing, processing and communication.

Then, energy-harvesting techniques were presented. This technology is promising but

is still in its early stages. Furthermore, a discussion was provided about the trade-off

between energy-efficient mechanisms and the requirements that healthcare applications

should ensure. The requirements include: accuracy, delay, QoS, mobility, robustness, se-

curity and privacy. Moreover, a discussion about cross-layer approaches as well as about

the potential of combining different energy-efficient mechanisms was made. Additionally,

combining energy harvesting and energy-efficient mechanisms in order to ensure a self-
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sustainable WBSN was discussed. Finally, we have concluded that any energy-efficient

data collection technique must not compromise data accuracy especially that WBSNs

collect medical and sensitive data. Furthermore, we have motivated the combination of

different energy-efficient mechanisms in order to maximize the network’s lifetime.

Third, data fusion is another challenge that was tackled in this thesis. Indeed,

proposing multi-sensor fusion models for WBSNs was another objective in this thesis.

Therefore, data fusion and multi-sensor fusion in WBSNs were defined. Multi-sensor

based healthcare applications were motivated rather than single sensor based applica-

tions. Moreoever, three classifications of multi-sensor fusion approaches were provided

based on different aspects of the fusion. Then, the challenging aspects of the collected

data in WBSNs were presented and discussed. Furthermore, high-level fusion challenges

were briefly discussed. Finally, a discussion highlighting that data fusion in WBSNs is

application-specific and that no single algorithm can solve all the data-related challenges

was made. Furthermore, a focus is brought to the fact that data fusion approaches should

not only take into consideration the energy and processing resources of biosensor nodes

but also the resources of the coordinator of the network.

In the second part of the dissertation, the contributions were presented. First, a self-

adaptive data collection approach is presented. It allows biosensor nodes to adapt their

sampling rate in real-time and to locally detect emergencies. The proposed approach

targets the energy consumption due to sensing and transmission by means of data re-

duction. The results show that more than 50% of data reduction is achieved at the level of

sensing and more than 80% of data reduction is achieved at the level of transmission with

a negligible loss of information (Mean Square Error ≈ 0.05) and the energy consumption

is 10 times decreased over one hour of continuous monitoring.

Second, a multi-sensor data fusion model providing continuous health assessment

is presented. Vital signs collected by different biosensor nodes are fused by the coordina-

tor in order to infer a health assessment on a scale from 0 to 1. The higher the value, the

more the monitored person is at risk and the lower the value, the less the monitored per-

son is. The results show that compared to an existing data mining based approach, the

proposed approach has coherently assessed vital signs as well as the patient’s health

condition. Furthermore, by combining the proposed data collection technique with the

proposed multi-sensor data fusion model, the network’s lifetime is increased without com-

promising information accuracy as compared to the other existing approach.

Given that vital signs are correlated to physical activity, performing health assess-

ment in a context-aware setup increases the reliability of data fusion. Therefore, a context-

aware multi-sensor data fusion model is thirdly presented. We have proposed to subjec-

tively evaluate the intensity of physical activities by taking into account the person’s pro-

file and the characteristics of the physical activity. A physical activity intensity evaluation

model based on hesitant fuzzy sets is proposed. The results show that for a same physi-

cal activity, its intensity classification varies from one subject to another. This is due to the

fact that the proposed approach takes into account the persons’ profile when evaluating

his/her current physical activity. Moreover, the results show the proposed context-aware

health assessment model reduces false alarms and enhances the health assessment.

Finally, a specific healthcare application was targeted by adapting our proposed ap-

proaches. A real-time stress detection and evaluation framework was presented. Real

experiments were conducted by using Shimmer 3 GSR+ as a node to collect the data and

an android mobile application was developed in order to process the collected data and
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perform the data fusion. Preliminary results are promising.

8.2/ PERSPECTIVES

In this thesis, data collection and fusion models were proposed to ensure continuous

health assessment and to detect emergencies when they occur. In fact, the perspec-

tives to consider are numerous in a domain that continuously evolves and that has great

potential in changing people’s lives. Notwithstanding, specific perspectives, for each of

the contributions that have been proposed, will be firstly discussed. Afterwards, general

perspectives that target different lines of research will be provided.

First, the proposed energy-efficient data collection is two-fold. It consists of an adap-

tive sampling rate model and of a local emergency detection model. The sampling rate

of nodes is adapted using Quadratic Bezier curve as a behavior function and One-way

ANOVA coupled with Fisher test to statistically study the collected measurements. Other

statistical tests that can be applied on medical data could be exploited and compared to

the used method. Moreover, other types of behavior functions could be proposed and

compared to the performance of the proposed adaptive sampling rate scheme. In our

proposal, the local detection of status changes and emergencies requires early warning

score systems. Such scoring systems are available in the medical literature for vital signs

and human behavioral aspects. The first question that comes to the mind is how can local

detection be provided for other types of physiological parameters such as signals like the

ECG, PPG and body acceleration? For these type of data, what is more energy-efficient:

transmitting the sensed raw signals to the coordinator or performing some on-node pro-

cessing to detect emergencies and send only informative data? Another issue that comes

to the mind is that, when applying adaptive sampling, raw data showing the evolution of

a specific physiological parameter over time is lost. This motivates reconstruction algo-

rithms and techniques that can be applied to regenerate the pseudo-original data based

on the received data. Finally, the proposed approach could be studied at the level of

processing energy and resources it requires and compared to other emerging techniques

such as compressive sensing.

Second, the proposed multi-sensor fusion approach employs the aggregate score

of vital signs. Driven by the fact that the persistence of a vital sign in a given state is

a reliable indicator of change, a smoothing technique was proposed in order to smooth

sudden score changes that could be due to faulty measurements and to regularly update

scores. However, other features could be taken into consideration in the multi-sensor fu-

sion. For instance, the correlation between vital signs could be exploited to better detect

emergencies, reduce false alarms and identify malfunctioning nodes. Indeed, the aggre-

gate score can be affected by outliers and faulty measurements. Hence, the potential of

combining the aggregate score with the knowledge of correlation that exists in vital signs

on reducing false positives and identifying erroneous sensor nodes.

Third, the proposed context-aware muli-sensor fusion approach requires motion sen-

sors attached to the patient body. Thus, a deeper study can be provided concerning their

energy-efficient management and operation in the network. For instance, we have men-

tioned in our proposal that motion sensors only transmit data when the coordinator de-

tects an abnormal aggregate score. However, no further study is provided concerning the

context-based pull mechanism and its effect on the energy consumption of the network.
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Moreover, the proposed physical activity intensity evaluation model employs quantitative

variables to represent the person’s profile such as age, BMI, average minutes of exer-

cise per week etc. What if qualitative variables, which are essential in representing the

person’s profile are to be used? How can they be integrated? Some of these variables in-

clude sex and medical record (yes/no information regarding diseases, allergies, medicine

intake etc.). Thus, another future work that can be considered is the integration of quali-

tative variables in assessing physical activities and vital signs.

Fourth, the proposed stress detection and evaluation framework is tested in a spe-

cific scenario. In fact, a PhD student will surely present some signs of stress when pre-

senting his thesis in front of the audience. Clearly, the proposed framework identified

stress episodes coherently with the steps of the thesis presentation. However, this work

opens up many perspectives. What about if the stress detection was to be performed

in everyday life? What sort of information should it integrate in order to accurately iden-

tify stress episodes? Facial expressions and body behavior are key elements in stress.

Therefore, combining heterogeneous sources of information constitute a great challenge

to achieve a reliable stress monitoring application. Recent advances in data science, sug-

gest using deep learning as a mean to infer high level information from incomprehensible

and complex data relationships.

Finally the works that have been done in this thesis open up limitless perspectives in

different lines of research. For instance, context-awareness is mostly exploited in ambient

assisted living solutions where the user is surrounded by connected objects. It enables

context-aware services which can be proposed to the user. Such services include medical

advice, reminders, rehabilitation follow-up and evaluation as well as suggestions. In the

domain of healthcare applications, combining WBSNs with other sources of information

such as ambient/environmental sensors and medical records allows to assess the pa-

tient’s health condition in terms of its surroundings. Thus, a complete analysis and study

of behavioral patterns can be made by studying specific diseases such as Alzheimer and

predicting life-threatening diseases such as heart attacks. Multiple challenges arise in a

heterogeneous network where massive amounts of data are periodically collected. On

one hand, data management constitutes a domain apart. It encompasses data reduc-

tion, aggregation, processing, fusion, analysis and storage. With the emergence of edge

computing, data analysis techniques and complex algorithms can be achieved close to

the end user, thus ensuring timeliness. Delay is then taken into consideration by creating

time-critical and powerful healthcare applications. At the level of WBSNs, specifically ap-

proaching the energy consumption requirement, the proposed data collection technique

could be complemented by an energy-harvesting technology and tested in a real imple-

mentation setup to study the self-sustainability of such a network. Furthermore, context

information can be used in order to provide energy management in the network. For

instance, the proposed physical activity intensity assessment model could be used to

manage the operation and the power-on time of accelerometers placed on the person’s

body. Two important aspects that have been not studied in this thesis are privacy and

security. The proposed data collection technique can be complemented by a privacy

mechanism that anonymizes the gathered data of different WBSNs existing in the same

location (hospital, nursing home etc.). Furthermore lightweight encryption algorithms can

be implemented at the level of the nodes to ensure secure data transmission. Finally,

a real implementation of the proposed approaches is desirable in order to validate them

and to study user and medical satisfaction.
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[31] KULKARNI, R. V., FÖRSTER, A., AND VENAYAGAMOORTHY, G. K. Computational

intelligence in wireless sensor networks: a survey. Communications Surveys

& Tutorials, IEEE 13, 1 (2011), 68–96.

[32] LO, C.-C., CHEN, C.-H., CHENG, D.-Y., AND KUNG, H.-Y. Ubiquitous healthcare

service system with context-awareness capability: Design and implementa-

tion. Expert Systems with Applications 38, 4 (2011), 4416–4436.

[33] MAMAGHANIAN, H., KHALED, N., ATIENZA, D., AND VANDERGHEYNST, P. Com-

pressed sensing for real-time energy-efficient ecg compression on wireless

body sensor nodes. IEEE Transactions on Biomedical Engineering 58, 9 (Sept

2011), 2456–2466.

[34] ROY, P. C., GIROUX, S., BOUCHARD, B., BOUZOUANE, A., PHUA, C., TOLSTIKOV,

A., AND BISWAS, J. A possibilistic approach for activity recognition in smart

homes for cognitive assistance to alzheimer’s patients. In Activity Recognition

in Pervasive Intelligent Environments. Springer, 2011, pp. 33–58.

[35] U., T. G. M. L. S. L. E. B. A. M. N. S. S.-M. D. M. Optimal time-resource

allocation for energy-efficient physical activity detection. IEEE Transactions

on Signal Processing 59 (2011).

[36] WANG, H., CHOI, H.-S., AGOULMINE, N., DEEN, M. J., AND HONG, J. W.-K.

Information-based energy efficient sensor selection in wireless body area

networks. In Communications (ICC), 2011 IEEE International Conference on

(2011), IEEE, pp. 1–6.

[37] WANG, H., S. CHOI, H., AGOULMINE, N., DEEN, M. J., AND HONG, J. W. K.

Information-based energy efficient sensor selection in wireless body area

networks. In 2011 IEEE International Conference on Communications (ICC) (June

2011), pp. 1–6.

[38] WU, C. H., AND TSENG, Y. C. Data compression by temporal and spatial corre-

lations in a body-area sensor network: A case study in pilates motion recog-

nition. IEEE Transactions on Mobile Computing 10, 10 (Oct 2011), 1459–1472.



124 BIBLIOGRAPHY

[39] ALAM, M. M., BERDER, O., MENARD, D., AND SENTIEYS, O. Tad-mac: Traffic-

aware dynamic mac protocol for wireless body area sensor networks. IEEE

Journal on Emerging and Selected Topics in Circuits and Systems 2, 1 (March

2012), 109–119.

[40] CHEN, L., HOEY, J., NUGENT, C. D., COOK, D. J., AND YU, Z. Sensor-based

activity recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part

C (Applications and Reviews) 42, 6 (Nov 2012), 790–808.

[41] FAUST, O., ACHARYA, U. R., MA, J., MIN, L. C., AND TAMURA, T. Com-

pressed sampling for heart rate monitoring. Computer methods and programs

in biomedicine 108, 3 (2012), 1191–1198.

[42] FENZA, G., FURNO, D., AND LOIA, V. Hybrid approach for context-aware ser-

vice discovery in healthcare domain. Journal of Computer and System Sciences

78, 4 (2012), 1232–1247.

[43] .G.K, R., AND BASKARAN, K. A survey on futuristic health care system: Wban.

Procedia Engineering 30, 0 (2012), 889 – 896.

[44] LEE, B.-G., AND CHUNG, W.-Y. A smartphone-based driver safety monitoring

system using data fusion. Sensors 12, 12 (2012), 17536–17552.

[45] MARLIN, B. M., KALE, D. C., KHEMANI, R. G., AND WETZEL, R. C. Unsupervised

pattern discovery in electronic health care data using probabilistic clustering

models. In Proceedings of the 2nd ACM SIGHIT International Health Informatics

Symposium (2012), ACM, pp. 389–398.
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