N

N

Electrical fluctuations and heat flow in a quantum
composite circuit

Emile Sivré

» To cite this version:

Emile Sivré. Electrical fluctuations and heat flow in a quantum composite circuit. Mesoscopic Systems
and Quantum Hall Effect [cond-mat.mes-hall]. Université Paris Saclay (COmUE), 2019. English.
NNT': 2019SACLS548 . tel-02798535

HAL Id: tel-02798535
https://theses.hal.science/tel-02798535v1
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-02798535v1
https://hal.archives-ouvertes.fr

universite

PARIS-SACLAY

UNIVERSITE

PARIS
SW

Electrical fluctuations and heat
flow in a quantum composite circuit

Thése de doctorat de I'Université Paris-Saclay
préparée a l'université Paris Sud

NNT : 2019SACLS548

Ecole doctorale n°564 Physique en fle-de-France (EDPIF)
Spécialité de doctorat: Physique

These présentée et soutenue a Palaiseau, le 16/12/2019, par

Emile Sivré

Composition du Jury :

Marco Aprili
Directeur de recherche, CNRS (LPS, UMR-8502) Président

Adeline Crépieux
Maitre de conférences, Université d'Aix-Marseille (CPT, UMR-7332)  Rapportrice

Clemens Winkelmann
Maitre de conférences, Institut Néel (NEEL, UPR-2940) Rapporteur

Pascal Degiovanni
Directeur de recherche, CNRS (LPENSL, UMR-5672) Examinateur

Gwendal Féve
Professeur, ENS Paris (LPENS, UMR-8023) Examinateur

Frédéric Pierre
Directeur de recherche, CNRS (C2N, UMR-9001) Directeur de thése

Anne Anthore
Maitre de conférences, Université Paris Diderot (C2N, UMR-9001) Encadrante

=
4°)
S
®)
e’
O
@)
©
()
S
()
(V)]
QD)
L
|—







This work is supported by a public grant overseen by the French National Re-
search Agency (ANR) as part of the “Investissements d’Avenir” program (Labex
NanoSaclay, reference: ANR-10-LABX-0035)



Remerciement :

Je souhaite tout d’abord remercier Anne Anthore et Frédéric Pierre, mes deux co-
directeurs de these, pour avoir accepté que j’effectue ma these dans leur équipe de
recherche. J’ai grandement apprécié votre passion pour la physique, vous étes tous
les deux des modeles pour moi, que ce soit en termes de rigueur scientifique, de vos
savoirs faire respectif, ou des exigences que vous vous posez a vous-méme. Je souhaite
ensuite remercier les membres du Jury : Adeline Crépieux et Clemens Winkelmann
pour avoir accepté d’étre rapporteur de ma these, ainsi que Marco Aprili, Pascal
Degiovanni et Gwendal Feve. Je vous remercie aussi pour les questions tres intéres-
santes, et parfois challenging, que vous m’avez posées pendant ma soutenance de
these. Un grand merci a mon compagnon de manip, Hadrien Duprez, avec qui la
discussion est si facile qu’elle fait émerger des tonnes d’idées, que ce soit en physique
ou a propos de plein d’autres choses tout aussi passionnantes. Un grand merci a
Ulf Gennser et Rebekah D’Arcy pour la relecture de ma these. Merci a Zubair et
Frangois pour vos conseille sur 1'utilisation de ce fameux échantillon (RIP fameux
échantillon), et sur plein d’autres sujet. Merci aussi a toutes les personnes que j’ai
cotoyées au sein du C2N pendant ces trois ans : Rebeca, Abdel, Yong, Dominique,
Quan, Jeremy, Pierre, Clément, Marie, Florian, Ludivine, Arnaud, Raphag¢lle, et
plein d’autres. Merci a Francesca Chiodi et Gilles Montambaux pour avoir accepté
d’étre respectivement marraine et tuteur scientifique de ma these. Merci a 1’équipe
STM pour votre retour sur l'idée farfelue que j’ai eu a propos de STM pendant ma
soutenance :-p. Merci aux organisateurs des journées des doctorants, contribuer a
I'organisation de ces événements avec vous était une expérience tres sympathique.
Merci a l'afreubo, qui m’a permis de tirer une réflexion profonde sur les notions
intriquées de mélodie et de bruit, tous les lundis soir. Merci aux “BTK?”, j'espere
que nos liens d’amitié resteront solides encore longtemps malgré nos nombreuses di-
vergences en matiere de start-up nation, de liberté individuelle, et de comment doit
se tenir une bonne soirée (no comment). Merci aux “chatons” aussi (ah c’est relou
les privates joke dans les remerciements...). Merci & tous mes amis depuis toujours,
et en particulier ceux qui sont dispos le vendredi soir pour aller découvrir tous les
bars de Paris, ou pour faire une petite partie de starcraft, ou pour faire des soirées

jeux, ou pour faire de la musique, ou pour refaire le monde, ou d’autre chose que la

4



bienséance m’empéche de nommer. Merci a mes deux sceurs, Mathilde et Melanie.

Merci a mes parents.



“Je préfere ceur qui n’y arrivent pas pour la bonne et simple raison que je n’y
arrive pas tres bien, moi-méme. Et que dans [’ensemble [’humour et l'inventivité se
situent plutot de notre coté. Quand on n’a pas ce qu’il faut pour se la péter, on est

souvent plus créatifs. Je suis plutot King Kong que Kate Moss, comme fille.”

Virginie Despentes, King Kong Théorie



Contents

Contents
Introduction

1 Experimental techniques
1.1 Imtroduction . . . . . . . . . ...
1.2 How to reach very low temperatures in a mesoscopic circuit . . . . . .

1.3 Presentation of a hybrid and highly tunable quantum circuit . . . . .

2 Noise measurements
2.1 Introduction . . . . . . . . ..
2.2 Fundamental sources of noise . . . . . . . . . ... ...

2.3 Cross-correlations and auto-correlations in a composite circuit

3 Dynamical Coulomb blockade
3.1 Introduction . . . . . . ... ...
3.2 Modelisation of the environment . . . . . . . . ... ... ... ....
3.3 Single electron tunneling theory . . . . . .. ... .. ...
3.4 Mapping with a Tomonaga-Luttinger liquid . . . .. .. .. ... ..

3.5 Predictions for the local sine-Gordon model . . . . . . . . ... ...

4 Out-of-equilibrium noise in a quantum circuit
4.1 Introduction . . . . . . . . ...
4.2 Current noise as a function of voltage bias . . . . .. ... ... ...
4.3 Shot noise induced by a temperature difference across a quantum

point contact . . . . ... L.

17
18
18
20

35
36
36
41



CONTENTS

5 Electronic heat flow in a composite quantum circuit 87
5.1 Imtroduction . . . . . . .. Lo 89
5.2 Electronic heat flow through quantum circuits . . . . . . ... .. .. 90
5.3 Predictions for heat flow in composite quantum-circuits . . . . . . . . 92
5.4 Observation of the electronic heat flow in a ballistic circuit . . . . . . 102

5.5 Observation of the electronic heat flow in a non-ballistic quantum

circuit . . ... 114

5.6 Conclusion . . . . . . . . .. 119

A Refinement about electrons temperature determination 125
A.1 Electronic base temperature determination including ac voltage . . . 125
A.2 Heating contribution by ac voltage . . . . . . . .. .. .. ... ... 126

B Conductance Formulae 127
C Résumé en francais 129
D Abbreviations and symbols 137
Bibliography 139



Introduction

Through the reduction of the size of electrical circuits and the experimental tem-
perature, driven by the progress in nano-fabrication and cryogenic techniques, new
quantum phenomena emerge. These result from quantum confinement [1; 2], or
interference effects [3; 4], in combination with the Coulomb interaction [5]. The
consequences are wide-ranging, and show-up in electrical conductance and electrical
fluctuations, as well as via thermal effect [6-8]. The general aim of this experimental
thesis is to shed light on fluctuations in the current and on electronic heat flow in
a quantum composite circuit, assembled from several elementary components. The
implemented test-bed circuit consists of a small metallic island connected to the out-
side world by several elementary quantum channels each individually fully tunable.
We address the electrical and thermal properties of the overall circuit. Because of
the interplay between Coulomb correlations and charge granularity, these cannot be
straightforwardly inferred from the properties of each individual component. Diverse
phenomena can develop depending on the circuit configuration, from the emblematic
Coulomb blockade of the electrical conduction at low voltage and low temperature
[5; 9] to exotic charge Kondo physics [10-12].

In the first chapter, we describe the sample, explain how it is characterized, and
how the conductance and the current noise are measured in practice.

In chapter 2, we detail how the current fluctuations coming from different sources
can be separately determined using complementary measurement of both auto-
correlations and cross-correlations of electrical fluctuations. After briefly review-
ing the scattering theory of noise [13-16], we establish the relations that will be
used along the thesis in order to distinguish current fluctuations according to their
sources.

In chapter 3, we review the theoretical predictions for a quantum dissipative cir-



Introduction

cuit, which consist here of a non-ballistic quantum channel connected in series with
a linear resistance. In such a circuit, the granular transfers of charge combined with
the Coulomb interaction lead to a decrease of the conductance of the overall circuit
at low voltage and low temperature [5]. This so-called dynamical Coulomb blockade
(DCB) can be addressed theoretically using a mapping onto a Tomonaga Luttinger
liquid (TLL) with a single impurity [17].

In the chapter 4, we experimentally investigate the current noise in a quantum
dissipative circuit. We start by considering the noise resulting from a dc voltage
bias. A predicted form of fluctuation-dissipation relation between variations of the
conductance with voltage and variations of the shot noise [17], both versus the volt-
age, is here established experimentally. Then, using the same circuit with balanced
voltages heating up the island, we measure a shot noise across a non-ballistic channel
resulting from a pure thermal bias. A good agreement is observed with the theory
[14; 16], as also recently shown using an atomic contact [18].

In chapter 5, we investigate the heat flowing through several channels from the
small metallic island toward cold electrodes. We start by investigating the case
where all channels are ballistic (in contrast to the setting of the device in chapter 4,
where one of the channels is not ballistic). Performing the experiment in a regime
where the coupling to phonons is negligible gives us access to the total electronic
heat flow, and thereby allows us to observe the recently predicted [19] systematic
heat Coulomb blockade of one ballistic channel at low voltage and temperature.
Pursuing this investigation beyond the ballistic limit, we observe a different heat
flow mechanism involving a combination of both the electron partition through a
non-ballistic channel and the Coulomb interaction, in agreement with a model de-
rived in this thesis.

A large part of the work in this thesis has been done in collaboration with an-
other PhD student, Hadrien Duprez, who arrived one year after me. We decided
together that my thesis would include the results concerning current noise and heat
flow in circuits. Hadrien Duprez’s thesis will include our more recent works con-
cerned with electronic Mach-Zehnder interferometers, whose published article and

submitted preprint are provided in the end of the manuscript.

10



Introduction

Summary

In this thesis, we explore the quantum laws governing the transport in a small elec-
trical circuit. To reveal these quantum behaviors, our experiments are performed
at low temperatures, on small conductors. In this context, the Coulomb interaction
combined with the granularity of the charge often leads to a violation of the classical
laws of impedances composition. The charging energy of the circuit nodes creates
correlations between the interconnected coherent conductors that have a profound
influence on transport. It is well established that these correlations can greatly re-
duce the electrical conductance, a phenomenon referred to as dynamical Coulomb
blockade. However, their influence on current fluctuations and the flow of heat re-
mains barely explored experimentally. This thesis is a first step beyond simple elec-
trical conductance in the experimental study of composite quantum circuits. The
test-bed circuit studied, represented in figure C.1, consists of a micrometer-sized
metallic island connected to several elementary quantum channels of conduction.
The number of channels as well as their individual transmissions are precisely ad-
justable. This simple circuit includes a single node formed by a metallic island whose
important charging energy Ec = ¢?/2C ~ kg x 0.3K (C' is its capacitance) can be
made much larger than thermal and electrical energies given our base temperature
Ty, ~ 8 mK. The tools at our disposal for this investigation are conductances and
current noise measurements. FElectronic noise in the circuit comes from different
sources: shot noise from the granular transfer of charge through non-ballistic quan-
tum conduction channels, and Johnson-Nyquist noise from the thermal agitation of
electrons. Both depend on the applied voltages since these also result in a Joule
heating of the central metallic island. By simultaneously performing measurements
of auto-correlations and cross-correlations of electrical fluctuations, we are able to
distinguish the different sources of noise, and thus to determine separately the tem-
perature rise of the central metallic island (T — Tp), the shot noise through the
non-ballistic channels and the heat flow. This thesis presents four results obtained
by this approach, two of which are related to measurements of current fluctuations
and two others to heat flow as further described below. These results advance our
understanding of fluctuations, electrical and thermal transport in composite quan-

tum circuit. Furthermore, we expect that the advanced noise measurement strategies
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combining auto- and cross-correlations pioneered in this thesis will open the path to
new investigations of the quantum law of transport and provide novel insights into

complex systems such as the fractional quantum Hall state.

n,€{0,1,2}

T€E[0,1]

Figure 1: False color micrograph (left) and diagram (right) representing
the test-bed sample measured during this thesis. A metallic island is in
contact with three separate branches formed in a two-dimensional electron gas lo-
cated 105 nm below the surface. The connection with large contacts (represented by
rectangles) is controlled by field effect using gates (represented in yellow) coupled
capacitively, thus forming quantum point contacts. The sample is immersed in a
perpendicular magnetic field corresponding to the quantum hall effect at a filling
factor of v = 2. The current therefore propagates along two chiral edge channels
(lines with arrows). On the configuration shown on the left, electrodes 1 and 2 are
each connected by a perfectly transmitted channel while electrode 3 is connected by

a channel partially transmitted through the quantum point contact.
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Out-of-equilibrium noise in a dissipative quantum circuit
Shot noise in the presence of dynamical Coulomb blockade

We explore here the shot noise induced by a voltage bias in a dissipative quantum
circuit and its relation with the electrical conductance when a single channel is in
series with a linear resistance. The voltage bias dependence of the two observables
are theoretically predicted to be connected by a type of fluctuation dissipation rela-
tion [17]. Accordingly, the circuit is adjusted by field effect to have one conduction
channel characterized by a fully adjustable transmission probability in series with
a linear resistance formed by N ballistic channels in parallel, thereby emulating a
resistance Re,, = Rx/N with Rx = h/e* ~ 25.8 k2 the resistance quantum and
N € {2,3}. The conductance of such a circuit is renormalized at low temperature
and low voltage (eV, kgT < N E¢, with V' the voltage applied to the large electrode
connected to the non-ballistic channel) by the dynamical Coulomb blockade phe-
nomenon (DCB): due to Coulomb interactions, the granularity of the charge makes
it possible to excite the electromagnetic modes of the environment formed by its
capacitance and the resistance R.,,, which prevents low energy charge transfers and
thus reduces the conductance. In addition, at low energy (eV, kgT < NE() this
circuit with a single non-ballistic channel is described by the Tomonaga-Luttinger
(TLL) liquid theory of interaction parameter K = 1/(1 + Ren/Rk) as theoretically
[17] and experimentally [20; 21] demonstrated.

Here, the measured noise is first compared to the predictions from the scattering
theory [13], which is a non-interacting theory into which we inject the measured
renormalized value of the conductance by DCB. These noise predictions are found
to provide a good approximation to the data. They also allow us to compute and
subtract a relatively small but non-negligible thermal noise contribution that en-
ables a precise comparison of the measured noise with the TLL predictions only
available at zero temperature for the noise. At our resolution, the measurements
do not allow to distinguish between predictions of the scattering theory using the
renormalized conductance and these of the TLL theory: although different, the two
approaches give quantitatively very close results. However, we could establish the
fluctuation-dissipation relation predicted specifically in the framework of the TLL

theory, connecting the variation of the conductance as a function of voltage with
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the variation of shot noise as a function of voltage. These results constitute a new
step in the investigation of current fluctuations in Tomonaga-Luttinger liquids and

in composite quantum circuits ruled by the Coulomb interaction.

Article:
E.Sivre, H. Duprez, A.Anthore, A. Aassime, F.D. Parmentier, A. Cavanna, A.

Ouerghi, U. Gennser, and F. Pierre. (in preparation)

Shot noise induced by a temperature difference

In this experiment, we directly test the predictions from the scattering theory for
the shot noise induced solely by a temperature difference, in the absence of a dc
voltage difference. The circuit is adjusted in the same way as in the previous ex-
periment (one non-ballistic channel, N ballistic channels). The difference is that
balanced voltages of opposite signs are applied only across the ballistic channels
such, that the central metallic island is heated up by Joule effect without any dc
voltage difference across the imperfectly transmitted channel. Using auto-correlation
and cross-correlation measurements of current fluctuations, we are able to observe
the shot noise induced by the temperature difference across the imperfect channel,
separately from the Johnson-Nyquist noise. Although predicted since a long time,
this “thermal shot noise” has been measured for the first time only very recently, in
an atomic contact [18]. We consolidate here the results of [18] by using a quantum
contact point (QPC) with a single channel of known transmission probability, thus
allowing for a direct comparison with the theory. The quantitative agreement of
our measurements with predictions further establishes the scattering theory for the

noise [13].

Published article:
E.Sivre, H. Duprez, A.Anthore, A. Aassime, F.D. Parmentier, A. Cavanna, A.
Ouerghi, U. Gennser, and F. Pierre. Electronic heat flow and thermal shot noise in

quantum circuits. Nat. Commun.10, 5638 (2019)
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Heat flow in a composite circuit
Heat Coulomb blockade of one ballistic channel

The objective is here to investigate the thermal impedance composition rules for
several ballistic channels connected in parallel to a small floating circuit node. Ac-
cordingly, the circuit is set so that the central island is connected only by N ballistic
channels (N € {2,3,4,5}). A dc voltage is applied to heat the central island. By
energy conservation, in the stationary regime the total outgoing heat flow is equal
to the well-known power injected in the island by the Joule effect. From the thermal
noise measurement, we deduce the electron temperature T in the metallic island.
Thereby, we have the total heat flow as a function of temperature. This total heat
flow includes two contributions: the electronic heat flow through the conduction
channels connected to the island, and the heat transfer from electrons to phonons
within the island. By focusing on very low temperatures (T < 25 mK), where heat
transfers to phonons become negligible, we observe a new form of Coulomb blockade
that applies specifically to the flow of electronic heat exiting the metallic island,
while the electrical conductance is not affected. Our finding is in agreement with
the theory [19], but in violation of the widespread Wiedemann-Franz’s law. This
reduction of the heat flow corresponds to the systematic suppression of a single elec-
tronic channel for heat transport, regardless of the total number of ballistic channels
N. The correlations between the channels that lead to such a selective reduction of
heat flow result from the absence of charge accumulation in the metallic island over
the entire thermal frequency range (w < kgTq/h), which is imposed when the charg-
ing energy Eg is large enough (NE¢ > kgTq). For higher temperatures, we could
separate the electronic heat flow from the non-negligible heat transfer to phonons
by exploiting that the latter depends only on the temperature and not on the num-
ber of connected channels. This allowed us to validate the theory also beyond the
low temperature regime, along the crossover towards an absence of heat Coulomb

blockade at high temperatures.

Published article:
E.Sivre, A.Anthore, F.D. Parmentier, A. Cavanna, U. Gennser, A. Ouerghi, Y. Jin
and F. Pierre. Heat Coulomb blockade of one ballistic channel. Nat.Phys. 14, 145-
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148 (2018)

Heat flow enhanced by thermal shot noise and Coulomb interaction

The investigation of the thermal impedance composition rules is here pushed one
step further, by including in the circuit one non-ballistic channel. Eploiting on the
previously established knowledge in the ballistic case allows us to determine the heat
transfers from electrons to phonons within the central metallic island (which does
not depend on the configuration of the circuit). We thereby obtained the electronic
heat transfer through N + 1 channels (N € {2,3,4}), one of which is characterized
by an intermediate transmission probability. Remarkably, the presence of the par-
tially transmitted channel gives rise to an additional contribution to the electronic
heat flow. This phenomenon results from a combined effect of the Coulomb inter-
action and of the “thermal shot noise” associated with the temperature difference
across the imperfectly transmitted channel. A very good quantitative agreement is
observed between the data and novel theoretical predictions obtained by extending
the Fokker-Planck approach of [19)].

Published article:

E.Sivre, H. Duprez, A.Anthore, A. Aassime, F.D. Parmentier, A. Cavanna, A.
Ouerghi, U. Gennser, and F. Pierre. Electronic heat flow and thermal shot noise in
quantum circuits. Nat. Commun.10, 5638 (2019)

Other published works not discussed in this thesis:

H. Duprez, E.Sivre, A.Anthore, A. Aassime, A. Cavanna, A. Ouerghi, U. Gennser,
and F. Pierre. Macroscopic electron quantum coherence in a solid-state circuit. PRX
9, 021030 (2019)

H. Duprez, E.Sivre, A.Anthore, A. Aassime, A. Cavanna, U. Gennser, and F. Pierre.
Transferring the quantum state of electrons across a metallic island with Coulomb
interaction. Science 366(6470), 1243-1247 (2019)
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CHAPTER 1. EXPERIMENTAL TECHNIQUES

1.1 Introduction

The purpose of this thesis is to investigate experimentally the behavior of a quantum
circuit in the non-equilibrium regime. To this aim, we need to perform noise and
conductance measurements with a high resolution. In this chapter we describe: the
way we proceed to reach an electronic temperature smaller than 10 mK in the sample;
the different elements constitutive of the sample; and the different measurement

procedures which will be used.

1.2 How to reach very low temperatures in a meso-
scopic circuit

The sample is inserted into a commercial cryogen-free dilution refrigerator (Oxford
instruments) of base temperature below 10 mK. In contrast to systems involving
additional cooling such as nuclear demagnetization, a dilution refrigerator can be
operated at a stable temperature over long periods of times, which is crucial for
the experiments which will be described in this thesis. The refrigerator contains

different parts, which allow us to reach different steps in temperature:

e The pulse tube cooler: To reach the temperature of 4 K the operation of
the refrigerator is based on a two-stage pulse tube technology involving the

compression and adiabatic expansion of helium.

e The dilution circuit: A mixture of *He—*He circulates in a closed loop. The
lowest temperature achieved in the mixing chamber is based on evaporation

cooling of He.

The principle of evaporation cooling of ®He is now explained. At low temperature,
a 3He —* He mixture will separate in two phases: a rich phase with a very high
concentration in liquid *He and a dilute phase composed of super-fluid *He and
liquid 3He (=~ 6% 3He at T = 0 K). When pumping the dilute phase, the 3He is
preferentially removed, because of its lower boiling temperature as described below.
In order to restore the equilibrium 3He concentration, >He atoms from the 3He

rich phase are transferred into the dilute phase. This process being endothermic,
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it absorbs heat from the surroundings, leading to a decrease of the temperature.
To remove only *He from the dilute phase, the mixing chamber is connected to a
still, which is at a temperature of approximately 0.8 K, where the *He is distilled
from the *He due to the difference in vapor pressure at the liquid/gas interface. In
practice, the vapor pumped in the dilution circuit is almost entirely made of *He.

Whereas commercial dilution refrigerators readily achieve temperatures of the mix-
ing chamber lower than 10 mK, the pertinent value in a mesoscopic circuit is the
temperature of the electrons. The strong coupling of the device to the measurement
lines connected to instruments at room temperature, the weak coupling to phonons
in the substrate, and microwave heating, make it very difficult to thermalize the

electrons below 10 mK. In the implementation used in this thesis:

e High frequency filtering and initial thermalization of the electrical lines are
performed with resistive microcoaxial cables. The photon modes propagating
through the electrical lines, which are responsible to extrinsic source of noise

and heating are then drastically attenuated [22].

e The sample is protected against spurious high energy photons by two shields

at base temperature.

e Inside the inner shield, the thermal anchoring of each measurement line is real-
ized by dipping copper wires coated with thin insulating layer into a conductive

silver epoxy together with a thermalized copper braid.

The electronic base temperature in the device reaches value as low as 7.5 mK in
the experiments which will be presented. Note that even lower temperature have
been achieved using this apparatus [23] but at a lower magnetic field than in the
experiments presented here : in presence of high magnetic field, the vibration of the

pulse tube are responsible of energy dissipation by Eddy currents.
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CHAPTER 1. EXPERIMENTAL TECHNIQUES

1.3 Presentation of a hybrid and highly tunable
quantum circuit

The circuit used in this thesis is composed of a small metallic island connected to the
external world by three short coherent quantum conductors. This circuit has been
made by Francois Parmentier and it has been used for several other experiments
[11; 12; 21; 23; 24]. A false color micrograph of the sample is provided in Fig.1.1. In

the following we present all the constitutive elements of this sample.

Figure 1.1: False color micrograph of the sample

A metallic island (light gray) is connected through a 2D electrons gas (dark gray) to
several contacts (represented here by black points). When applying a high magnetic
field, we reach the quantum Hall regime and the electrons propagates along the edge
of the 2DEG in one or several edge channels. The edge channels can be biased us-
ing the voltage source Vi, V5 and V5. The noise measuring circuits are represented
schematically by an LC circuit and a voltage amplifier. The yellow gates are de-
posited on top of the 2D electrons gas in order to create quantum point contacts by
field effects.

20
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1.3.1 Sample description
2D electrons gas (2DEG)

One of the basic ingredients of the circuit is a 2D electron gas (dark gray in Fig.1.1).
Electrons are confined in the vertical dimension, leading to a quantization of the
energy levels associated with this degree of freedoms. At low temperature, when
kgT is lower than the gap between Fermi energy and first excited energy level,
the movement of electrons along the vertical axis is frozen in the quantum ground
state. We use a heterojunction formed of GaAs and AlGaAs. The layer of the
AlGaAs semiconductor is doped with silicium, which has the effect to add free
electrons. To minimize their energies, the free electrons move in the GaAs, but
they are still attracted by the remaining positive ion in the AlGaAs. They end up
trapped at the interface between the two layers (see figure 1.2). The 2DEG has been
grown by molecular-beam epitaxy techniques by Ulf Gennser, Antonella Cavanna
and Abdelkarim Ouerghi at C2N. It is characterized by an electronic density of
2.5 x 10" ecm™2 and a mobility of 10° cm?V~1s™!. It is buried 105 nm below the

surface of the nanostructure.

Quantum Hall effect

All the experiment described in this thesis are performed in the integer quantum Hall
regime (IQHR). The quantum Hall effect occurs when a 2DEG is subject to a strong
perpendicular magnetic field [25]. From a classical point of view, the electrons follow
cyclotron orbits. When treated quantum mechanically, these orbits are quantized
and their energy levels take discrete values called Landau levels: E,, = (n+1/2)hw,
with w, = eB/m* the cyclotron frequency (e is the charge of the electrons, B is the
magnetic field and m* is the effective mass of electrons in the 2DEG). The number
of filled Landau levels depends on the density of the electrons and on the magnetic
field B. For a small density and high magnetic field, all the free electrons in the
system populate only a few highly degenerate Landau levels. As schematically rep-
resented in figure 1.3, in the quantum Hall regime the Fermi energy crosses the filled
Landau levels near the edges of the 2DEG, defining a finite number of chiral edge
channels. Electrons near the Fermi energy propagate along these one-dimensional

edge channels, which are protected from back-scattering by their chirality [26]. The
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: >
Figure 1.2: 2DEG formed in a GaAs/AlGaAs heterostructures. Conduction
band plot along the growth axis z: a quantum well traps the electrons provided by
the doping layer at the interface between the GaAs and the AlGaAs. The dynamic
of the trapped electrons along the axis z is frozen when the confinement is strong

enough.

longitudinal resistance of the device is suppressed and the Hall resistance acquires a
universal value given by vGk with Gk = €2/h the quantum of electrical conductance
and v = g—g the filling factor corresponding to the number of edge channels (two per
Landau level due to the lifting of spin degeneray by the Zeeman effect). The main

measurements reported in this thesis have be done at a filling factor v = 2.

Quantum point contact (QPC)

A quantum point contact is formed by depositing split gates on the surface of the
heterojunction, above the 2DEG [1; 2]. In the micrograph of the figure 1.1, the split
gates of the QPC are represented in yellow. When a negative DC voltage is applied
to these split gates, the electron gas beneath is progressively depleted (the density
of electrons changes locally). For a strong enough negative voltage, the electron
gas is completely pinched off and the conductance through the QPC is null. By

increasing the voltage, the width of the constriction is increased as well as the QPC
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Figure 1.3: Edge channels. In the left panel the Landau levels are represented by
blue lines. The confining potential which defines the sample increases the energy at
the boundaries of the sample (z; and zg). The Fermi energy crosses the Landau
levels near the edge of the sample. In this case, there are two Landau levels crossed
by the Fermi energy and then, as sketched in the right panel, there are two channels
propagating along the edge of the sample. By changing the magnetic field, we can

change w. = eB/m and add or remove Landau level below the Fermi energy, and
thus change the number of edge channels.

conductance. When the width of the constriction is of the order of half the Fermi
wavelength (nearly 20 nm in our sample), only one transverse mode is available
(two modes with spin). The maximum conductance through the constriction in
this case is the quantum limit of electrical conductance Gk = e/h. This quantum
limit is reached when back-scattering is negligible, for clean samples or thanks to
the topological Quantum Hall protection. A conductance measurement through a
QPC versus the split gates voltage is presented in figure 1.4. This measurement
was done in the quantum Hall regime for a filling factor v = 4. At V, = —0.6 V,
the conductance is zero. By increasing the voltage we can continuously increase the
conductance until we reach a first plateau, an then the second, etc; each plateau
corresponding to the full opening of one additional channel. Between the plateaus,
the transmission value 7(e?/h) of the last channel can be tuned finely. A QPC is

one of the basic building blocks of many quantum transport experiments, allowing

us to emulate any short coherent conductor.

23



CHAPTER 1. EXPERIMENTAL TECHNIQUES

Switch gates

Additional gates, colored in blue in the figure 1.1, are used as switches for bypassing
the metallic island, allowing us to voltage bias directly the adjacent QPC. The
conductance versus the bias gate voltage exhibits a larger plateau for these barring
gates than for a QPC; however, the step between the plateaus are narrower. In this

thesis, these gates are used mostly for thermometry (see section 1.3.3).
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Figure 1.4: Conductance of a QPC versus gate voltage. This conductance
measurement has been done at high magnetic field, corresponding to the integer
quantum Hall regime at v = 4. Each channel is opened one by one and we can tune

precisely the transmission probability 7 between each plateau.

The central metallic island

The central metallic island (light gray in Fig.1.1) is a piece of metal which is diffused
by thermal annealing in the Ga(Al)As heterojunction, forming an ohmic contact with
the 2DEG. It is constituted of nickel, germanium and gold. Note that the 2DEG has

been etched across the metallic island to ascertain that the electrons go through the
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metal. For the different experiments presented in this thesis, some characteristics

are required for the metallic island.

e Continuum of electron states: The energy level spacing inside the island must
be negligible compared to the other relevant energy scale. The level spacing
depends on the metal and the volume of the island. Based on the electronic
density of gold (main component of the metallic island) and on the volume,
we evaluate the level spacing to be 0 = kg x 0.2 uK, well below the base
temperature of the system (> 7 mK).

e Thermal electron distribution: Electrons in the island must follow a Fermi-
Dirac distribution with temperature Tq,. This is expected since the average
dwell times of the electrons in the island [27] is estimated to be much larger,
by several orders of magnitude than the typical timescale for electron-electron

inelastic collisions in similar metals (typically < 10 ns [28]) .

e Good island-2DEG contact: We need a very good connection between the
metallic island and the 2DEG. It depends in particular on the length along
which the 2DEG is in contact with the metal, and on the magnetic field. For
each experiment reported in this thesis, the probability of reflection is of the
order of one per thousand (> 99.9% of incoming electrons are absorbed in the
island).

e Relatively large charging energy: We will see that an important parameter
of the metallic island is its charging energy Ec = €*/2C. For observing the
phenomena that we aim to investigate in this thesis, we need to work with
temperatures and dc voltages inferior to this charging energy (kg7 eV < Eg).
This energy depends on the geometry of the metallic island, and is obtained
from Coulomb diamond measurements; its value is found to be equal to nearly

kg x 300 mK as further detailed in the corresponding section 1.3.3.
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1.3.2 Transport measurements
Conductance measurements

Differential conductance measurements are performed by low frequency lock-in tech-
niques (below 200 Hz). We use voltage sources connected in series with a 100-MQ2
resistance in order to current-biased the sample at three different locations. Taking
advantage of the well-defined quantum Hall resistance to grounded electrodes, the
applied current is converted on-chip into a voltage independent of the device con-
figuration: Viy; = %[inj with Rx = h/e2 ~ 25.8 k() the resistance quantum. The
contacts where we can inject both DC and ac voltages are represented by the black
points connected to the voltage sources in the figure 1.1. For differential conduc-
tance measurements, we inject AC voltages of different frequencies on each contact.
In the figure 1.1, the contacts where we measure the voltages at the three frequen-
cies are located between the contact connected to LC tanks and the ground for the
QPC 1 and 2 (not represented in figure 1.1 in order to simplify the schematics) and
by the black points connected to an amplifier for the QPC 3. The conductance of
the device can then be determined both from the reflected and transmitted current

across the circuit. The specific formulae are recapitulated in the appendix B.

Calibrations for the conductance measurements

e Injected voltages x gain of low frequency amplifiers
For each sources, the product of the injected ac voltage V;,,; and the amplifica-
tion gain of the nearby low frequency amplifier (not the noise amplifier) can be
calibrated in-situ by closing the adjacent QPC: the voltage in the measurement

contact is then the same as the injected one.

¢ Relative gains of low frequency amplifiers
In order to calibrate the gains of the conductance measurement lines, we set all
the QPC to transmission 7 = 1 (separately ascertained). In this configuration,
the ratio of measured voltages gives the ratio of the gains. We take as a
reference the voltage measured at the QPC 2. The gains are found independent

of the frequency.

e Parasitic offsets:
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The small instrumental offsets are calibrated by unplugging the voltage sources:
the remaining voltages signals constitutes these offsets. For all the measure-
ments, it is found to be inferior to 107! V (in comparison, the injected signal
is of the order of kgT/e =~ 6.10~" V). These offsets are not negligible when

accurately measuring very weak signals.

Noise measurements

The work described in the thesis relies heavily on noise measurements. In this
section we describe briefly the experimental apparatus used to measure the noise
with a very high resolution. In the circuit we measure the current fluctuations in
two locations (indicated by black points connected to LC tanks in figure 1.1), we
thus have two noise measurement lines. A noise measurement line is represented in
the figure 1.5. First, the current fluctuations are converted into voltage fluctuations
by a resonator consisting on the quantum Hall resistance R = h/ve? in parallel with
a LC tank. The LC tank consists of a superconducting inductance L ~ 400 uH
and a capacitance C' = 100 pF which develops along the coaxial line. It leads to a
resonance of frequency just below the MHz range. The bandwidth 1/27 RC' depends
on the filling factor v. At the output of the RLC resonator, the voltage fluctuations
are amplified using a cryogenic voltage amplifier working at a temperature of 4 K.
The cryogenic amplifiers are based on homemade high-electron-mobility transistors
(HEMT) [29] made by Yong Jin at the C2N. The best operating range of these
amplifiers for our devices is just below the MHz range (motivating the use of an
RLC resonator). At room temperature, the voltage fluctuations are further amplified
using commercial amplifiers and they are sent to a spectrum analyzer (in our case a
computer with a DAQ card) allowing us to calculate the power spectral density and

cross-correlations.

Gain calibration for the noise measurements

Here, we explain how we deduce the current noise in the circuit from the measured

voltage noise.

e Auto-correlation:

The auto-correlated voltage noise measured in the output of the amplification
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chain ¢ (with ¢ =1 or 2 ), behind the QPC ¢, is:
Sve (w) = |Gi(w)[*(Sv (w) + Sy™ (w)) (1.1)

with G;(w) the gain of the amplifiers , Si/"*(w) the noise added by the amplifi-

cation chain and Sy (w) the voltage noise in the output of the RLC resonator:
Sv(’w) = 4kBTR€ZRLCi(w) + |ZRLCZ‘(U})|QSI(U)) (12)

The first term in equation 1.2 is the thermal noise emitted by the impedance
of the RLC resonator Zgrci(w). The second term comes from the current
fluctuations in the sample which are precisely the noise we want to measure.
We then integrate Sy (w) over the RLC' resonance on a bandwidth optimizing
the signal to noise ratio. The excess current noise coming from the sample
with respect to that at zero bias voltage (V=0) is deduced from the formula:
1 w2
AS; = - /w1 (Sy (V) = Sy (V = 0)) dw (1.3)
with )
ci= [ 1G () Zrrci(w)] du

wl

The coefficient ¢; is calibrated from the shot noise. At high voltage (eV >>
kgT) the current noise of a single quantum channel of transmission 7 is given
by:

Si=2eVr(1—7) 4 ST

Injecting this expression into equation 1.3 and fitting the resulting equation
with measurements done in the adequate configuration of the device allows us

to characterize c;.

Cross-correlation:

For identical resonators, the gain for the cross-correlated spectral density
should be ,/cic; with ¢; and ¢, the gains characterizing the two amplifica-
tion chains. However, a small difference between the resonators leads to a
reduction with respect to y/cic;. To calibrate this reduction, the sample is
tuned with the QPC 3 closed and the other two QPCs opened. Then, by cur-

rent conservation, the excess auto-correlation noises are equal to the absolute
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value of the cross-correlation noise. This procedure allows us both to check
that ¢; and ¢y are well characterized, and to evaluate precisely the gain for
the cross-correlation noise. In the two different runs where this procedure was

used, we found the value of ,/c1¢5/1.000 for the first run and /c1c5/1.007 for

the second run.
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Figure 1.5: Electrical diagram of the noise measurement line: The current
fluctuations are converted in voltage fluctuations using a RLC resonator of resonance
frequency around the MHz. Then the voltage fluctuations are amplified using a
cryogenic HEMT which works at a temperature of 4 K. The voltage fluctuations are

again amplified at room-temperature and are analyzed with a spectrum analyzer.

1.3.3 Sample settings in this thesis

In this section we describe the different configurations of the sample used for this
thesis. First, we deal with the configurations allowing us to characterize the system,

and then we discuss the configurations used in the experiments themselves.

Determination of the base electronic temperature and amplifiers gain

For a short coherent conductor with a transmission 7 connecting two terminals, the
excess power spectrum of the current fluctuation at zero frequency S; can be derived
using the scattering approach [13] :

62

eV
AS; = = —4kgT7T(1 — 7) + 2eV7(1 — 7) coth <2kBT)] (1.4)
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In this relation, the transmission 7 is assumed energy independent. Measuring this
noise allows us to determine the electronic temperature 7" without the knowledge
of the amplification chain [30]. In practice, we use the switch gates (represented in
blue in figure 1.1 and 1.6) in order to directly voltage bias one of the QPCs (yellow
in figure 1.1 and 1.6). In the figure 1.6, we show a raw measurement of the noise
S;re® versus a bias voltage. Note the offset coming from both the amplification
chain and the sample. When subtracting the offset, the data should follow the
relation given for AS; in equation 1.4 times the factor ¢; discuss in the previous
section. In practice, fixing 7 ~ 1/2 in order to maximize the signal, we fit the
data using this equation with the factor ¢;, the temperature, and an offset as free
parameters. Averaging several sweeps allows us to determine precisely the gain of
the amplification chain and the temperature (with a standard error of around 0.1
mK for the temperature). Typically, we perform such measurements both before
and after the main experiment. The gains are found stable and are averaged from

all the values measured during a cool down.

Figure 1.6: Determination of the electronic temperature. Left panel: con-
figuration of the device for measuring the electronic base temperature and the gain
of the amplifiers. This configuration is used for both QPC 1 and 2 simultaneously.
Right panel: raw measurement of the noise versus dc voltage in the output of the
amplification chain. The red dashed line indicates the shot noise limit 2eV 7(1 — 7).
The black dashed line indicates the thermal noise limit. The offset comes from both

the amplification chain and the sample.
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Charging energy characterization by Coulomb diamond measurements

The charging energy of the floating ohmic contact is determined by setting the device
to a single electron transistor (SET) configuration (see Fig.1.7, left panel). To do
this, one of the QPC is closed and the two others are set to the tunnel regime with
transmission values 7 inferior to 0.1. In this configuration, the charge in the island
is discretized. Sweeping the voltage of a lateral gates allows us to change the charge
of the island and observe Coulomb oscillations. The 2D plot of the conductance
of the device versus DC voltage applied to the circuit in the y-axis and the voltage
applied to the lateral gate in the x-axis follows a pattern called Coulomb diamond on
which the conductance is zero (see Fig.1.7, right panel). The height of the Coulomb
diamond allows us to determine the charge energy of the metallic island using the
relation Ec = eVyiam/2 [31].
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Figure 1.7: Left: a single electron transistor formed by a metallic island and two
QPC tuned in the tunnel regime (7 < 1) Right: Coulomb diamond measurement.
The color is red for vanishing conductance and become yellow when the conductance
increases. The height of the diamond is equal to two times the charge energy, which

gives here approximately Fc ~ 25.5 uV.

Device tuned into a quantum dissipative circuit

The dynamical Coulomb blockade (DCB) manifests itself through the reduction of

the conductance at low temperature and low voltage. It has been first studied
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in circuit including a tunnel junction in series with a linear impedance [32; 33].
Here, we pursue the investigation of dynamical Coulomb blockade phenomena in a
circuit composed of a one-dimensional short quantum conductor characterized by an
arbitrary transmission probability 7., €]0,1] (beyond the tunnel limit 7., < 1), in
series with an environment consisting of an ohmic impedance. To reproduce such a
circuit with the device presented above, we tune one of the QPCs in the non-ballistic
regime, where one channel is partially transmitted (it is usually the QPC 3 in figure
1.1, but control experiments have been done using the other QPCs). The other
QPCs are tuned to the ballistic regime for respectively n; and ns channels. In this

way, they act as a linear ohmic impedance of resistance Rx /N with N = n; + na.

Renv=Ry/N

Figure 1.8: Circuit in configuration ”"quantum dissipative circuit”. Left:
false color micrograph of the sample. The red lines represent the edge channels for
the configuration "quantum dissipative circuit” with an impedance Re,, = Rk/N

with N = n; 4+ ny (here N = 2). Right: equivalent electrical circuit.

Dissipated Joule power and temperature bias

When we apply a voltage bias to a quantum conductor, we also dissipate a Joule
power. Let us consider a quantum conductor of resistance R connecting two large

reservoirs labeled 1 and 2, the total dissipated Joule power is:

(Vi = 1p)?

Py= ey

The Joule power is equally dissipated between the two reservoirs. The relation

for the dissipated Joule power in one reservoir, which will be used in the following,
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is then:
(Vi — Va)?

2R
This dissipated Joule power heat up the elements of the circuit. The only ohmic

PJ/res =

contact impacted is the central metallic island: the other contacts are large enough
to thermalize efficiently to the base temperature by electron-phonon coupling. For
our experiments, this heating of the metallic island will be both a disadvantage and
an advantage, depending on what we wish to do. It is a disadvantage when we are
only concerned about the behavior in voltage: due to the heating, the system is not
canonical as we would have preferred. Conversely it allows us to heat up the metallic
island and apply a controlled temperature gradient. When the device is tuned to
a quantum dissipative circuit, the procedure for applying a temperature gradient
without voltage gradient to the non-ballistic channel is to bias the two environmental
(ballistic) QPCs with voltages Vi and V5, such that niV; = —nyV,. Then, the
average voltage in the central metallic island is null and the temperature of the
central metallic island increases due to the Joule power J = n,V{?/2Rk +no Vi /2 Rk

dissipated on it (figure 1.9).
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Figure 1.9: Procedure in order to apply a thermal bias to a QPC. We inject
DC voltages V; and V5 such that the voltage in the metallic island remains null. The
dissipated Joule power has the effect of increasing the temperature of the metallic

island Tq above the base temperature Tj.
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Noise measurements
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CHAPTER 2. NOISE MEASUREMENTS

2.1 Introduction

The objective in this chapter is to expose the method used to separate the noise
contributions coming from different sources, namely the noise coming from the dif-
ferent reservoirs and the noise emitted from the electrons partition at the different
QPCs. Measuring noise in an electrical circuit can be puzzling for someone unaccus-
tomed to such measurements. To demystify this for the concerned reader, we start
by explaining how the noise is characterized, and what information can be revealed
by noise measurements. We then derive the relations which will be used throughout

the thesis for the noise analysis.

2.2 Fundamental sources of noise

2.2.1 Generality about current noise

When measuring a current, the current noise consists of current fluctuations in time
around the mean value of the signal. In signal processing, the noise is an unwanted
disturbance of the signal. In contrast, in the study of mesoscopic circuits, it is
a probe which reflects the thermal agitation and correlations of electrons. The
current noise can be characterized by the power spectral density (sometimes called
noise power), which is the Fourier transform at frequency w of the symmetrized
current-current correlation function (we use the same convention for the Fourier
transform as in ref [13]). In the following, 01,(t) = I,(t)— < I, > denotes current
fluctuations, ie departure from the mean value, measured in a contact labeled .
The current-current correlation function is defined by:
1 (72
(0Lt +10)0, (1)) = Jim - [ 8L, (¢ + 10)o1, (1) (2.1)

Then, the power spectral density is given by:

Sy (W) = / (0L (t + t0)d1,(t0)) + (01, (t + t0)dL.(t)))e™" dt. (2.2)
The power spectral density can be the auto-correlation of the current fluctuations
(Siz), or the cross-correlation between the current fluctuations measured in different
locations in the circuit (S;, with = # y). The fundamental sources of noise are the

following:
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e The Johnson—Nyquist noise comes from the thermal agitation of electrons
[34]. At equilibrium, the thermal current power spectral density is found,
based on the equipartition theorem [35], to be related to the resistance R and

the temperature 7' of the system by the following formula:
S = 4kgT/R. (2.3)

This relation, measured for the first time by Johnson in 1927 [34], is valid only
for small frequencies compared to kgT'/h (~ 150 MHz for the smallest base
temperature reached for the experiments described in this thesis). Indeed, for
larger frequencies, quantum effects have to be considering (in the same way
as Planck’s law for the black-body radiation). At high frequency, the relation

becomes [35]:
2hw/R

Slw) = exp(hw/kgT) — 1

This relation can be derived in the more general framework of the fluctuation

(2.4)

dissipation theorem [36]. Measuring the Johnson—-Nyquist noise, and knowing
the conductance -which can be determined by specific measurements- allows
one to determine the temperature of the electrons. Note that in equation 2.4,
the zero frequency limit gives a factor 2 instead of the factor 4 of equation 2.3:
we need to symmetrize negative and positive frequency in order to recover

equation 2.3.

e The shot noise originates from the discrete nature of electronic charge [37]. In
devices such as a tunnel junction or a vacuum tube, the electrons are transmit-
ted randomly and independently of each other: the transfers of electrons can
then be described by Poisson statistics (used to analyze uncorrelated events in
time). In this kind of device, the shot noise reaches the value S = 2el (with [
the average current and e the charge of electrons). This value changes in pres-
ence of correlations: for instance in a ballistic channel, the stream of electrons
is completely correlated (in time) by the Pauli principle and the shot noise is
suppressed [16; 38; 39]. Beyond the interest to investigate it for itself, the shot
noise gives information about correlations which are not necessary available by
low frequency conductance measurement [40; 41], and may allow one to probe

the effect of Coulomb interaction [42]: for instance the noise is sensitive to the
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charge of quasiparticles [43-45]. Note that in macroscopic samples, the shot

noise is averaged out to zero by inelastic scatterings [46].

2.2.2 The scattering theory of thermal and shot noises

The noise in quantum conductors can be derived within the scattering approach,
which relates the current to the scattering properties of electrons in the conductor
[16]. The main assumption for this approach is that electrons cross the conductor
without any loss of quantum coherence: they experience only elastic scattering.
Here, we give the predicted current noise in the simple case of a quantum conductor
connecting two large, voltage fixed electrodes labeled R and L for the right and
left electrodes respectively. An electrode a (o € {L, R}) is characterized by a
temperature T, and a chemical potential yu,. The distribution function of electrons
in each electrode is a Fermi distribution function:
1
e (ER)

fa(E) = (2.5)

The electrodes act as reservoirs for the electrons propagating across the quantum
conductors. The quantum conductor can be decomposed in n transverse modes,
each of them characterized by a probability of transmission 7,(E).

At zero frequency, the power spectral density in the right reservoir is given by
[14; 16]:

2¢e?
Sun ="y [ S m(B) (Y~ Ju(B) + fa(B)(1 ~ fu(F))) AE
2e?
+— ZTn )1 = 7u(E))(fL(E) — fr(E))* dE. (2.6)
The power spectral density in the left reservoir Sy, is identical due to charge con-
servation. The cross-correlation are Sg;, = S r = —SL, = —Sgr[16]. Up to the end
of this section, we use: S = Sgr = Sr, = —Srr = —SLr

Assuming an energy independent transmission probability (7,(E) = 7,), the first
term in the relation 2.6 does not depend on the voltage and depends only on the

mean temperature T = (T, + Tr)/2. As a result:
- 2e? oo
§ = kT Y1/ R+~ Y71 = 72) /_ (fu(E) — fo(E)2dE.  (2.7)
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This equation matches the Johnson-Nyquist noise discussed above at equilibrium,
when AT = AV = 0, since f; = fr in that case. The second term can be inter-
preted as the non-equilibrium shot noise whose partition character is revealed by
the characteristic factor 7,,(1 — 7).

Equation 2.6 can also be rewritten as:

5= ie; /_O:o S T(EV(fr(E)(1 = fL(B)) + fr(E)(1 — fr(E))) dE

[ B - mB)(fu(B)( ~ falB)) + falE) ~ fu(E))) dE,
(2.8)

which leads, for energy independent transmission probabilities:

S = 4I€BTZT,2L/RK

* ff; 2 (1l =) /_o:o<fL(E>(1 — fr(E)) + fr(E)(1 - fu(E))dE.  (2.9)

The interest of this formulation, which mixes shot noise and thermal noise is that at
increasingly high voltage compared to the temperature, the second term in the right-
hand side of equation 2.9 progressively becomes independent of the temperature, in
contrast with the second term in the right-hand side of equation 2.7. In the high
voltage limit, the temperature effects are encapsulated in the first term of equation
2.9.

Full low-frequency noise at homogeneous temperature AT =T — T, =0

At thermal equilibrium AT = 0 and energy independant 7,, the second term in
equation 2.7 is easily integrable:

2
S =4kgT > 7./Rx + ;‘/Zm(l - Tn)(COth<
n K n

v ) — 2kBT). (2.10)

2kgT eV

Note that this is the equation we use for thermometry (see the section 1.3.3). In the

zero-temperature limit, it becomes:

>on Tl —Tn)
Ry '

This relation gives what is usually called shot noise. In the limit of low transparency

S(T = 0) = 2V (2.11)

T << 1, we recover the Poisson noise S = 2el discussed above.
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Full low-frequency noise at zero voltage bias AV =Vz -V, =0

From equation 2.7, we note that even at voltage equilibrium but in the presence of
a temperature gradient AT = T; — Tg, there is a thermal shot noise induced by
the partition of electrons through a partially transmitted channel. No analytical
solution of the integral of equation 2.7 is currently available when a thermal gra-
dient is applied to a quantum conductor. However, the integral can be calculated
numerically. We can also perform a Taylor development in AT of this expression,
which result in [18]:
2e* [ 9 kgAT? 72 2 9 12
=[S nen) (e ) dE = Y m(1-m) B (2= = 5) | +o(AT/T).
mh J-o - T 9 3

(2.12)
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2.3 Cross-correlations and auto-correlations in a

composite circuit

2.3.1 Problematics

Figure 2.1: Drawing of the sample. Simplified representation of the sample: S1,
S2 and S3 are voltage sources. We measure the current noise in the contacts M1
and M2 (not in M3). The QPCs are represented by the yellow triangles. The QPCs
1 and 2 let pass, respectively, n; and ny ballistic channels (n; = 2 and ny = 1 in
this specific representation). The QPC 3 includes only one channel of transmission

7 between 0 and 1.

The noise measured in a quantum composite circuit constituted of several QPCs,
contains contributions from all its elements. The objective is here to provide the

relations connecting theses sources of noise to the measured noise.

In the following, the current noise generated across a QPC ¢ is denoted Sgpei.
The circuit is tuned in a quantum dissipative circuit as explained in section 1.3.3:
The QPC 1 and 2 let pass, respectively, n; and no ballistic channels and the QPC

3 lets pass only one channel of arbitrary transmission probability 7, as sketched in
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the figure 2.1. Current fluctuations are measured in contacts M1 and M2 behind
QPC 1 and 2, respectively. The presence of a floating metallic node results in a
redistribution of the current noise generated at the different QPCs. All the contacts
are assumed to be at the same temperature Ty except the central metallic island
which is heated up by the Joule effect to a temperature Tg. For ballistic channels,
since there is no partition of electrons, the generated current noise is only the thermal
noise Sy = 4kgT/Rk, where T = (T + Ty)/2 is the average temperature. From
the noise measurements, we want to separately extract the temperature Tq, and
the noise Sype3 generated across the QPC 3. In the case where ny = ngy, because
the power spectral density in M1 and M2 are the same by symmetry, we need a
different observable if we want to extract both T and Sgpe3. For this purpose, we
will use the cross-correlations between current fluctuations in M1 and M2. We will
see below that it gives the same information as a noise measurement in contact
M3 would have provided. As the noise is measured in the MHz range, we can
neglect capacitive effects (C' = 3.1 fF= 1/RxC ~ 10GHz>MHz). We first derive
a very general formula for the different measurements, which is independent of the
configuration of the device. Then we derive the formula connecting measurements

to noise sources.

2.3.2 Relations between auto-correlations and cross-correlations

Let us start with a simple derivation allowing us to obtain a simple but robust for-
mula about power spectral noise and cross correlation in the device. Assuming only
that charge accumulation in the island is negligible at the measurement frequencies,
by current conservation the sum of all current fluctuations in-going in contacts M1
(1 € {1,2,3}) are equal to the sum of all current fluctuations emitted in the source

contacts, whatever the configuration of the device:
0 + 0l ppo + 01 ns = 01g1 + 0lgo + 01 g3 (2.13)

Here, Ig; are the current fluctuations out-going from the contact Si, as sketched
in figure 2.2. I,; are the current fluctuations in-going into the contact Mi. These
current fluctuations depend on the thermal agitation in contact S1, 52, S3 and in

the central metallic island, and on the potential fluctuations of the floating metallic
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Figure 2.2: Drawing of the sample. Simplified representation of the sample: by
current conservation, the out-going current fluctuations from the sources S1, S2 and
S3 are equal to the in-going current fluctuations in the contact M1, M2 and M3,
whatever the configuration of the device, as long as the charge accumulation in the

central part can be ignored.

island. From equation 2.13 we derive the correlation < §I%,; >. Using equation 2.2,

we obtain:

Swamz =< 6135 >= Sainnn+Suana+2Svinma+ Y Ssisi—2 < (0Ivn+61n2) > 61s; > .

(2.14)

The last term can be written as:
3

where G; is the fraction of current emitted from contact Si and impinging in the
contact M 7. As the noise coming from the source contact involves only thermal noise
at the same temperature, we can take it out Sg;s; of the sum. The conductance Gj;
may depend of the voltage, however we have Y7 G;; = Z? Gi; = 1 from current

conservation and time reversal symmetries [47]. As the Sg;s; does not depend of the
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voltage, when focusing on the excess noise we obtain:
ASyans = ASwvnan + ASuaarz + 2ASw1ar2- (2.16)

This relation indicates that although we only have two noise measurement lines al-
lowing us to measure the noise in contact M 1land M2 only, cross-correlation between
these two contacts makes it possible to obtain the missing information which will
be bringing by measuring the auto-correlation in the contact M3. This relation
indicates also that the role of the QPCs (with two tuned to the ballistic regime and
one kept non-ballistic) can be inverted. Note that if one of the QPC is closed we
will have:

YR
where we have replaced the notation MeM j by ij. Due to current conservation, all

the measurements become redundant if one of the QPC is closed [40].

2.3.3 Excess thermal and shot noise in a quantum dissipa-

tive circuit

We now detail the formula allowing us to extract T and Sype3 from the excess power
spectral density AS7; and ASy and from the excess cross-correlation ASis for the
configuration depicted in figure 2.1. N denote the number of ballistic channels
(N =ny + nay).

No assumptions are made about the QPC 3, whose conductance is affected by DCB,
and the noise is not presumed to follow the relations given by the scattering theory.
For the QPC 1 and 2, which are tuned to have ballistic channels, we assume that the
generated noise can be decomposed into the standard Johnson-Nyquist contributions

from in-going and out-going channels:

Sqpei = S;Zci + 5;’;‘27 (2.18)
with

Sin i = 2ksTon;/ R, (2.19)

S:;;; = QkBTQTLl/RK, (220)
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as the incoming (outgoing) current fluctuations along the n; ballistic channels of
QPC i are all emitted from the cold reservoirs (hot floating island).

First let us now consider how a single (isolated) current fluctuations d/,,.3 injected
in the island from the QPC 3 manifests itself in the noise. At the MHz measure-
ment frequencies where charge accumulation is negligible, the injected current is
compensated by the total current from the resulting island’s voltage fluctuations
Vo = 0ypesRx/(N + 7). As a result, a current §/,,3n;/(N + 7) is sent effec-
tively simultaneously toward the measurement electrodes Mi with ¢ € {1,2}. The

auto-correlation signal resulting from this current fluctuations is then given by:

n?

ngpcg = qucS (221)

The cross-correlation between current fluctuations in M1 and M2 originating from
01,pc3 are positive and given by:

ning

qpe3
S 12 — qucS

(2.22)

Second, we consider a current fluctuations 01,,.; generated across QPC i (i € {1,2})
of spectral density Sgp.;. Similarly, it will result in M7, with ¢ # 7, in the following

auto-correlation signal:

n2

qu;m - quci (N _: 7_)2' (2-23>

For Mi the situation is different, as generated current fluctuations toward Mi (0194%)

and corresponding effectively simultaneously redistributed fluctuations (—d7, ;;fcti”i /(N+

7)) add up. Consequently, we need to consider separately out-going fluctuations
emitted from the island across QPC i (see below). In contrast, the result from in-

coming current fluctuations (§77..) in the auto-correlation signal in Mi is obtained

qpci
similarly to the noise generated at other QPCs:

2

Saper—im — gm o1 2.24
K23 qu'L (N _|_ 7_)2 ( )
And the cross correlation is:
Sper—imn — gm 1) 2.25
12 gpci (N + 7)2 ( )

[out

apei thermally emitted from the is-

Regarding the out-going current fluctuations o

land toward the contact M. These are partially compensated by the out-going
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redistributed fluctuations —§7°%“. - The net current impinging in electrode M7 is

qpci N+1
then 612" (1 — =) and the resulting noise is:
N
Gapei—out _ goul (1 - ) . 2.26
i gpci N+7 ( )

In the same way, the cross-correlation contribution is given by:

ci—out out ni no out na ny
St T Papel (1_ N+T) (N+T) - Pape (1_ N+T> (N+T>' (2:27)

Summing all the contributions we get for the auto-correlation:

n2

i in ni ? ou
Sii = m(sqpc?) + Sqmj + Schi) + (1 - N + ’r) quzi + Soffse“ (2'28)

where Spffser corresponds to the thermal noise along the v — n; channels reflected
at the QPC 1 and along the v channels propagating from M1 to the ground as well

as the noise of the amplification chain. For the cross-correlation we have:

ninsa mn in
Sia = N 12 (Sapes + Seper T Sepea)
n n2 out ng n out
N <1_N+T> N rowe (1_N—|—T) I (2:29)

Note that despite the fermionic statistic, the cross-correlations given by equation
2.29 may be positive (for instance at zero-temperature), as it can be expected [48]
and measured [49] in presence of inelastic scattering. Focusing on the excess signal

with respect to the applied voltage, one obtains from equations 2.19, 2.28 and 2.29 :

. RK ASH ASQQ ASlgN
TQ B TO N 2I€B ( 2711 * 2712 2n1n2 ) (230>
ASH ASQQ (N + 7')2 + 7'2
AS 3 = (N + 2 ASjg———F—. 2.31
qu 3 ( + T) ( 2n1 * QTLQ > * 512 2711712 ( 3 )

Note that the determination of the excess temperature of the metallic island does
not depend of the transmission probability across the non-ballistic channel.

As an illustration, we use these formulae, replacing 7 by the simultaneously measured
differential conductance, in order to extract the excess temperature and the current
noise from the non-ballistic QPC. We performed this illustrative measurement at
a relative high base temperature of T, = 15.5 mK in two different but equivalent

configurations in the figure 2.3.3:
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e Config.1: The voltage is applied behind the QPC 3, which is tuned in a
non-ballistic regime with a transmission probability about 0.5 (it changes with
voltage due to the strong renormalization of the conductance by the dynamical
Coulomb blockade). The QPC 1 and 2 are tuned such that ny = ny = 1. In the
top left panel we display ASi;, ASss and ASiy as a function of the voltage.
By symmetry, AS;; = ASy. Using equation 2.30, we extract the excess
temperature displayed in the left bottom panel as red triangle. Using equation
2.31, we extract the noise coming from the non-ballistic QPC displayed in the

right bottom panel as red triangle

e Config.2: The voltage is applied behind the QPC 2, which is tuned in a
non-ballistic regime within the same transmission probabilities than the QPC
3 in config. 1. The QPC 1 and 3 are tuned such that ny = nz = 1. In the top
right panel we display AS71, ASs and ASy, as a function of the voltage. Using
equations 2.30, 2.31 as well as equation 2.16, we extract the excess temperature
and the noise coming from the non-ballistic QPC. The result is displayed as

black triangles in the bottom left and the bottom right panel respectively.

2.3.4 What should be measured behind the QPC 37

We will see in the following chapter that some theoretical predictions about the
noise in the device deals with what would be measured behind the QPC 3 (seen
from the metallic island) in electrode M3. To access experimentally to the excess
noise we would have measured in electrode M3, we use equation 2.16: ASs33 =
2A 515 + ASt; + ASss. Injecting equations 2.19, 2.28 and 2.29, we obtain:

N7%  2kg(To —To) N \?
ASsy = A 2.32
S m () A 232)

Now, following equation 2.6, let us decompose ASg,;s in a purely thermal term

(Johnson-Nyquist noise) and a shot noise term:

e (Try, — T,
2k (To — T) + AST (2.33)

RK gpc3

ASypes =
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Figure 2.3: Extraction of the excess temperature and of the noise from the
non-ballistic QPC. Left top panel: we display ASi;, ASyy and ASy as voltage

in the configuration 1 (see legends and text). Right top panel: we display ASi,

ASs, and ASis as voltage in the configuration 2. Left bottom panel: we display

the excess temperature for the two configurations obtained using equations 2.30 and

2.16. Right bottom panel: we display the spectral density of the noise originating

from the non-ballistic QPC for the two configurations, obtained using equations 2.31

and 2.16.
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Then, equation 2.32 can be recast as:

TN 2kg(To — Tp) N \? . .
AS33 = N+T RK + <N 7_> A*9'1123’63’ (234)
2kp(To — Tp) N \? . .
= G gt ()OS (2.35)

with Gg 3 the conductance of the sample seen from the electrodes M3. The purely
thermal term in the right-hand side of equation 2.34 corresponds to the one given by
the fluctuation dissipation theorem applied to the overall sample. The other term
corresponds to the shot noise from the QPC 3 times a factor which comes from the

current redistribution in the metallic island.
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CHAPTER 3. DYNAMICAL COULOMB BLOCKADE

3.1 Introduction

A diffusive short quantum conductor embedded in a resistive circuit exhibits a drop
of its electrical conductance at low voltage and low temperature, in violation of
the classical laws of impedance composition [20; 50; 51]. An illustration of such
a drop in the conductance is provided in figure 3.1. This quantum phenomena,
the so-called dynamical Coulomb blockade (DCB), results from the excitations of
the electromagnetic modes of the circuit by a charge pulse passing through the
quantum conductors [5]. In this chapter, we review some theoretical developments
on this phenomenon: we start by the quantum description of the environment, then
we will deal with the well-established single electron tunneling theory which works
for small transmission through the quantum conductor. We continue by describing
a mapping between a quantum dissipative circuit composed of a single non-ballistic
channel in series with an ohmic impedance, and a Tomonaga-Luttinger liquid with
a single impurity [17]. This mapping allows us to describe the full crossover from a

ballistic channel to a disconnected channel as the temperature is reduced [21; 52].

dI/dVv (e?/h)

0.1 A I . I . I . I
0 5 10 15 20

V (1V)

Figure 3.1: Drop of the electrical conductance. The black line displays mea-
surement of the differential conductance as a function of the voltage in a device
consisting of a single diffusive channel in series with an impedance R = h/e?. The

electronic temperature is approximately 8 mK.
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3.2 Modelisation of the environment

The system we consider consists of a small quantum conductor connected to a dissi-
pative electromagnetic environment. The coupling between these two parts changes
the properties of the overall circuit. The main problem of addressing dissipation at
the quantum level is that quantum mechanics usually deals with the Hamiltonian
formalism, where the total energy of the system is a conserved quantity, whereas
here we want to describe the mechanism which leads to an irreversible loss of energy.
The idea introduced by Caldeira and Leggett [53] is to modelize the environment
as an infinite set of LC oscillators in parallel. This model does not come from a
microscopic description, but is a phenomenological approach.

In the following, we introduce the phase associated to a circuit:

6(t) = ;/too V) dt, (3.1)

where V' is the voltage applied to the circuit. Each LC oscillator can be described
quantum mechanically using the canonical commutation of the charge ¢ and the

phase ¢, which are conjugate variables:

[0,q] = ie (3.2)
with the quantum Hamiltonian of a LC circuit:

2 2
¢ 9
H=gz+57 (3.3)

which is that of a harmonic oscillator.

As illustrated in the figure 3.2, the quantum conductor can be decomposed into
a pure conductor of resistance R = h/(e’r) in parallel with a capacitor C. The
relevant impedance of the environment is the parallel combination of this capacitance
and the resistance of the circuit in which the quantum conductor is embedded:

Z(w) =1/(jwC 4 1/Repy). The Hamiltonian describing the environment is then:

_0Q? @ (0 —pn)®
Hem; - f + ; 2Cn + 2Ln . (34)

0@ and dy are departure from the equilibrium value of the charge and of the phase
of the capacitor C. The first term describes the charging energy of the quantum con-

ductor. The second term describes R.,,, as an infinite sum of LC oscillators bilinearly
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| :
[f : Reny

Figure 3.2: A quantum conductor in series with a resistive environment.
The quantum conductor, inside the dashed frame, can be decomposed into a conden-
sator C in parallel with a pure conductor of resistance R = h/(e*r). The relevant
impedance of the environment Z(w) is the parallel combination of this capacitance

and the resistance of the circuit in which the quantum conductor is embedded.

coupled to dp. As detailled in the following the important quantity for the transport
is the phase-phase correlation function J(t) =< [dp(t) — 0¢(0)]de(0) > which is di-

rectly connected to the impedance Z(w) through the fluctuation dissipation theorem

[5]:

e R[Z(w)] e =1 dw
P s KR

54



CHAPTER 3. DYNAMICAL COULOMB BLOCKADE

3.3 Single electron tunneling theory

3.3.1 Perturbation approach

The total Hamiltonian of the system described in the figure 3.2 can be written as:
H=H,+ H + Hep, + Hr. (3.6)

The two first terms describe the quasi-particles in the leads of the quantum conduc-

tor:

Hoty = Y €kr(ChyCha)s (3.7)
k,r(l)

and Hrp is the tunneling Hamiltonian from one lead to the other:

iep
Y

HT = Z TthL_,'_q’TCk’le (38)
l

e
h

The operator e’ shifts the charge Q by e (as Q and ¢ are conjugate variables),
which provides the coupling between the electrons in the electrodes with the elec-
tromagnetic degrees of freedom of the environment. The first attempt to capture
the physics of the DCB was done using perturbation techniques: in the tunnel
regime, when the transmission probability through all the elementary conduction
channels is well below one, we can use the Fermi golden rule in order to estimate
the transmission rate for an electron to tunnel through the junction and excite the
electromagnetic modes of the environment [5]. According to the Fermi golden rule,
the rates for transitions between an initial state |i) and the final state |f) is given
by

Loy = 20\ < flHrli > PO(E, — By). (3.9)

The tunneling rate from one electrode to the other can be written as a convolu-
tion product involving the energy distribution in each electrode and the probability

P(AF) that the electromagnetic environment absorbs an energy AE = E — E”:

r(V) = G—;" / JU(E)[L = f.(E' 4+ eV)|P(E — E')dEAE’, (3.10)

e

where f(E) and f.(E) are the Fermi distribution in the left and the right lead
respectively. P(AFE) is the Fourier transform of exp(.J(t)) with J(¢) the phase-phase

correlation function which is given in equation 3.5, and G, is the unrenormalized
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conductance of the quantum conductor (G, = 7€?/h for the single channel case
illustrated in figure 3.2). The current flowing through the quantum conductor is
then:

I(V)=e(l(V)=T(-V)), (3.11)

The conductance of the quantum conductor, renormalized by Coulomb interaction,
is:

G(V) = aw) = &O/fl(E);‘i/[fT(E/ +eV)— f.(E'—eV)|P(E — E')dEdE'.

A% e
(3.12)
This formula is valid as long as the transmission through the quantum conductor is
much smaller than one. Notably, we can use different temperatures for each elec-
trode and for the environment, allowing us to investigate theoretically the influence
of a temperature bias in a dissipative circuit. This theory cannot be expanded be-

yond the tunnel regime.

3.3.2 Asymptotic limits:

At zero temperature and low voltage compared to the charging energy Ec = 2 /2C

the conductance is given by [5]:

(QRenv/RK + 1)(71’/ eXp(’y))2chV/RK
['(2 + 2Renv/ Rx)

6V ) 2Renv/RK

(Renv/RK =

G(V) = Gue i

. (3.13)

with v ~ 0.5772 the Euler’s constant and I" the gamma function. At zero voltage

and low temperature compared to E¢ it results in [54]:

7T1/2+3Renv/RKF(1 + RGHV/RK)

GT) = G35 370 R/ Re)

k T 2Renv/RK
D > (3.14)

(Renv/RK Eic

In both cases, the conductance follows a power law in 2R,,,/Rk. Note that using
these two previous equations, we can extract the temperature from the measurement

of the conductance renormalization by DCB versus voltage [23].
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3.4 Mapping with a Tomonaga-Luttinger liquid

A different approach, suggested by the power law behavior at small transmission,
was found in order to treat the case of any value of transmission probabilities through
a quantum conductor composed of a single channel and an environment composed
of an arbitrary ohmic impedance. It was demonstrated that the Hamiltonian of the
system is the same as the one of a Tomonaga-Luttinger liquid (TLL) with a single
impurity [17]. This mapping allows one to exploit TLL theoretical developments to
get a better understanding of the DCB phenomena. It also allows one to probe the

TLL physics experimentally with engineered circuits [55].

3.4.1 Tomonaga-Luttinger liquid: the replacement of Fermi

liquid in one dimension

Fermi liquid theory is a theoretical model of interacting fermions that describes the
normal state of most metals at sufficiently low temperatures [56]. The basic result is
that interacting fermions can be seen as non-interacting quasi-particles with renor-
malized parameters (for example the mass of electrons). Although this model gives
a good description of a lot of systems, it fails to describe the behavior of interacting
fermions in one dimension where interaction results in collective behavior, as illus-
trated in the figure 3.3. In 1981, Haldane [57] proposed the Luttinger liquid theory
as a replacement for the Fermi liquid theory in one dimension. Following the idea
developed in previous work from Tomonaga in 1950 [58] and Luttinger in 1963 [59],
it consists of describing the low energy excitations in a one dimensional system as
collective bosons modes. Luttinger liquids have generated a lot of interest, owing
to their exotic properties and striking differences from Fermi liquids. An example
of theoretical predictions that have already been observed are the spin-charge sep-
aration [60; 61], the fractionalization of injected charges [62-65], the behavior as
a power law of the correlation functions which are associated with critical physics
[66]. Note that the experimental investigation of TLL physics in 1D conductors is

not easy since the impurities tends to localize the excitations [67].
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Figure 3.3: High dimensional versus one dimensional system. In the left, at
high dimension, nearly free quasiparticle excitations are possible. In the right, in
a one-dimensional interacting system, an individual electron cannot move without

pushing all the electrons: only collective excitations can exist.

3.4.2 Linearization of electronic excitation: the case of spin-

less electrons hopping on 1D lattice

A

>

ke ke

Figure 3.4: Excitations spectrum of free spinless electrons hopping on 1D
lattice. When focusing on low energy excitations, the energy spectrum can be

linearized near the Fermi points =k and it results in the straight red line.

Here, we review two key elements for describing a one-dimensional system: lin-
earization of the energy spectrum and bozonization. Let us consider spinless elec-

trons hopping on a 1D lattice with the following Hamiltonian [68]:

%4
H = —tz C;-Cj.i_l + Bl Z c;cjc}chH + h.c. (3.15)
j j
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t is the hopping strength and V,,_,, is the interaction strength between near-neighbor
particles. For V,,_,, = 0, the energy is given by F = —2tcos(k) with k£ < 7 and is
plotted in figure 3.4. When focusing on low energy excitations, we neglect high
energy excitations, and those well below the Fermi level are blocked by the Pauli
principle. We can thus linearize the energy spectrum near the Fermi points +kp:

Oeg

€ = UF<]{Z F ]{ZF) with Vr = G g

the introduction of two species of fermions: right moving fermions cf = ¢, 11 and

the Fermi velocity. This linearization leads to

left moving fermions ¢} = ¢_, 1. The Hamiltonian becomes:

H = vak‘(ck’kcak - CLkCL,k). (3.16)
ks

The sum is performed using an arbitrary cutoff A in order to allow momentum
between [kr — A, kr + A] (and the same thing for the opposite Fermi point). In this
linear approximation, the dispersion relation of particle-hole excitations generated
by ¢} 4 4C is simply given by Ex(q) = vpq with g the momentum: the energy does not
depend of k. One can write the Hamiltonian in this new basis. To do this we use the

density fluctuations operator which is a superposition of particle-hole excitations:
pH(a) = 3 chgln (3.17)
ke

In fact, deriving commutation relation of this operator, we can demonstrate its
bosonic character [69]. Then, using the appropriate relation one can write the
Hamiltonian of a spinless electrons hopping on 1D lattice in term of boson oper-
ators. Notably, the kinetic Hamiltonian, which is quadratic in terms of fermion
modes, remains quadratic in terms of boson modes. Regarding the interaction term,
it is quartic in term of fermion operators which make it difficult to diagonalize it.

Now, in term of bosonic modes, it is given by [69]:
1
H; = 573 Van(@)p(9)p(=9)- (3.18)
q

It has also a quadratic form which allows to diagonalize it. This procedure of
linearizing the energy spectrum and writing the Hamiltonian in term of bosonic
modes, the so-called bosonization technique, is at the core of theoretical procedure
when dealing with one-dimensional systems.

In term of bosonic fields IT = (pgr — pr) and Vé = —7(pr + pr), with IT and ¢ which
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are conjugate variables, the Hamiltonian of spinless electrons hopping on 1D lattice

can be written as [69]:

H= 2U/ [K(wH(x))2 + ll((ng(x))Q du, (3.19)

™

which is the way this Hamiltonian is often written in the literature. It can be shown
[69] that this Hamiltonian is more general and describes any gapless one-dimensional
system, whether based on underlying fermionic, or bosonic particles [70]. The whole
physics of TLL is embodied in two parameters: the dimensionless interaction param-
eter K and the velocity of density excitations U. These two parameters depend on
the model and the value of interaction. K = 1 means that we are dealing with free
electrons, K > 1 corresponds to attractive interactions and K < 1 corresponds to
repulsive interactions. The smaller K is, stronger are the repulsive interactions. For
the observable that we are observing experimentally in this thesis, ie the differential

conductance and the current noise, only the parameter K is relevant.

3.4.3 Mapping to a Tomonaga Luttinger liquid

Let us come back to the circuit: the mapping between the circuit and a TLL comes
from the collective TLL excitations that can be described as bosonic density modes
corresponding to the electromagnetic mode decomposition of the linear environment.
First, we reformulate the Hamiltonian of the circuit in a different way as in section
3.3.1: the two formulations are equivalent but the one presented now is more natural
for exploring the crossover from a near-ballistic to a disconnected channel. The

Hamiltonian of the circuit can be rewritten as:
H = Hgp + Hj + Heny + He, (3.20)
with Hgp the Hamiltonian of the unperturbed quantum channel:
Hop = Zekc,tck, (3.21)
k
Hj is the Hamiltonian describing the impurity emulated by the QPC:

Hy =S V(k—K)chew. (3.22)

kK
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A small H; corresponds to the initial near ballistic case. H,,, is the Hamiltonian
describing the environment which is given by the equation 3.4. The coupling between

quasiparticles and the electromagnetic modes of the environment is given by:
H, = —QVy, (3.23)

with @ the charge transferred through the quantum conductor and V. = V —8,® the
voltage across the quantum conductor, where d is a bosonic operator corresponding
to the time integral of the voltage across the impedance. Using the approach of lin-
earization of low energy excitations and bosonization, it can be shown that the first
term describing left moving and right moving electrons through the unperturbed
quantum channel corresponds to the TLL Hamiltonian (equation 3.19) for an inter-
action parameter K = 1 (ie without interaction). At low frequency in front of the
cutoff R.,,C, it was demonstrated [17] that the sum of this Hamiltonian with H.,,,
and H, can be written as an effective Hamiltonian that corresponds to the one of
the equation 3.19, with an interaction parameter K such that:

1

K=—°- 3.24
1+ Reny/ Rk ( )

Details of this calculation can be found in the thesis of Sebastien Jezouin [71]. In
the limit of small frequency in front of the cutoff 1/R.,,C, the total Hamiltonian of

the circuit is:

i = [ [KG0@)? + o (To()?] detVo(— L V6(r = 0)+ —cos(26(x = 0))

T

(3.25)
The first term corresponds to the TLL Hamiltonian without scattering, and the
second and third terms correspond to the barrier Hamiltonian expressed in terms
of bosonic fields ¢ and II. Note that the second term induces a simple phase shift
and can be ignored. In this equation, @ ~ 1/A is a high energy cutoff [69] (see
section 3.4.2). This Hamiltonian corresponds to the local sine-Gordon model and
it describes an infinite Luttinger liquid of interaction parameter K, with a single
impurity leading to back-scattering. Notably, it is the same Hamiltonian as the one
describing a QPC in the fractional quantum Hall regime for certain filling factors
[67; 72]. The impurity is implemented by the single channel electronic contact, of

scattering strength characterized by the unrenormalized transmission probability of
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electrons 7,,. The conductance of the device in absence of impurity is given by
G = Ke?/h. When adding the impurity, the system experiences a quantum phase
transition from a metallic to an insulating state. At equilibrium, the crossover from
one state to the other is predict to follow a universal scaling flow characterized by a

beta function Sk (G) which does not depend of the energy scale:

G
o = Bx(G). (3.26)
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3.5 Predictions for the local sine-Gordon model

3.5.1 Predictions for certain interaction parameters

The sine-Gordon model has captured the attention of theoreticians as this model has
been proposed to describe the edge states in fractional quantum Hall effect devices.
Notably, it allows a connection with the quasiparticles introduced by Laughlin to
explain the fractional quantum Hall effect [73]. The conductance of a system gov-
erned by the local sine-Gordon model as a function of both the temperature and
the voltage, for the special cases of an interaction parameter K = 1/m with m
an integer, was calculated using the thermodynamic Bethe ansatz (TBA) in refer-
ences [67; 72]. For a given interaction parameter, the conductance is then described
by three parameters: the voltage V, the temperature T, and a scaling energy kgTj,
which depends on the impurity strength and on details of the high energy cutoff. The
conductance could be cast as a function of T'/ T; and eV/ kgTi. In the device which
is investigated in this thesis, the interaction parameters implemented are K = 2/3
and K = 3/4; we then need specific predictions not given in reference [67; 72].
The equilibrium predictions (zero voltage) for the conductance specific for the case
K = 2/3 are derived and compared with experimental data in [21]. Furthermore,
we also have new equilibrium predictions for K = 3/4 and K = 4/5 [74] which are

in good agreement with the corresponding data in [21].

3.5.2 Zero-temperature predictions for the conductance for

all interaction parameters

The conductance was derived for all interaction parameters K (not only K = 1/m)
in the limit of 7' = 0. The differential conductance G = dI/dV is calculated from
the derivative of the current at 7' = 0 in terms of two different power series for the

regimes of high and low voltages, which together cover the full range of voltages
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67; 72]:
V Ke? 00 174 2n(K—-1)
: [1 K 3 anlK) » (VI) ]
(V) = (3.27)
€2V 00 1 \% 2n(%71)
= nz::l an(E) (Vl) ;

where the functions a,(x) read:

an(a) = (—1yr+ VAL

TG+ 1)) (3:28)

and with the scaling voltage V; related to the temperature scale 7} through [72]:

2/l <27 i) F

(I-K)
Vi = ———— ka1 3.29
© ! KF(*) B ( )

201-K)

For a direct comparison with experimental data, it is possible to eliminate the scaling
energy kgT} (or equivalently eV}) by considering the logarithmic derivatives of the
conductance dG/dIn'V or dG/dInT which do not depend on this parameter (it is the
procedure used in reference [21] in order to investigate the zero voltage conductance).
Note that the low voltage asymptotic behavior is given by the first order of the sum
of the equation 3.27 and it is the same as the one found using a perturbation method

in the tunnel limit in the first section of this chapter (equation 3.13).

3.5.3 Prediction for the current noise

The current noise resulting from the scattering at an impurity in a Tomonaga-
Luttinger liquid has been calculated in references [43; 75; 76]. It is predicted that,
at zero temperature, the shot noise S*" in the limit of strong-backscattering limit
(strong impurity) matches with what is expected from the tunneling of uncorrelated

electrons (Poisson noise):

S = el (3.30)

with I the current flowing through the device and e the charge of the electron. In
this case, the system can be interpreted as two Luttinger liquids with a small con-

nection between them.
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In the weak-backscattering limit, the noise is predicted to result from the uncorre-
lated tunneling of quasiparticles with fractional charge e* = Ke, where we recall

that K is the interaction parameter of the considered TLL:
S = 26*Iback7 (331)

with I the backscattered current. Measurement of the slope of the noise versus
voltage at high enough voltage allows one then to determine the charge of the quasi-
particles. Such measurements have been performed for different filling factors in the
fractional quantum Hall regime (FQHR)[44; 45]. Note the recent measurements of
fractional charge in the FQHR using photo-assisted noise measurement [77] follow-
ing prediction of reference [78], and using microwave photon detection [79].

Between the limits of weak and strong backscattering, a relation connecting the
derivative of the zero-temperature current noise to the logarithmic derivative of the

conductance has been proposed in reference [17], generalizing a result of reference

[67]:
e 1 —Kds™
= . .32
din(V) ~ Ke dv (3:32)

This expression can be interpreted as an analog of the fluctuation-dissipation the-

orem for a Luttinger liquid at zero temperature [67]. Note that for K = 1, the
left-hand side of this equation vanishes, as the conductance becomes voltage inde-

pendent.
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CHAPTER 4. OUT-OF-EQUILIBRIUM NOISE IN A QUANTUM CIRCUIT

4.1 Introduction

In this chapter, we measure the current noise in a dissipative quantum circuit firstly
as a function of voltage bias, and secondly as a function of temperature bias. We use
the circuit described in the chapter 2, tuned in order to have a single non-ballistic
quantum channel characterized by a transmission 7 between zero and one, in series
with ballistic quantum channels that emulate an ohmic environment.

The circuit in this condition can be described using the Tomonaga-Luttinger liquid
theory, as seen in the previous chapter. One main objective is to test the predicted
link between the noise and the renormalization of the conductance by the Coulomb
interaction.

We first investigate the current noise versus voltage for two configurations of the “bal-
listic” QPC: one where two channels are ballistic, emulating a resistance of Rk /2
corresponding to a TLL interaction parameter K = 2/3, and one where three chan-
nels are ballistic emulating a resistance of Rk /3 and a TLL interaction parameter
K = 3/4. For both configurations we note a good agreement at experimental accu-
racy with both the non-interacting scattering theory of noise, where the measured
renormalized conductance is used, and with the prediction for a TLL with an im-
purity for the corresponding interaction parameter K. Indeed, the two predictions
are close compared to measurement uncertainties. Moreover, we establish the link
between voltage dependence of noise and conductance specifically (only) predicted
in the TLL framework.

Then, we investigate the effect that a thermal bias has on the current noise. To
do this we heat up the metallic island between the non-ballistic channel and the
ballistic channels by applying voltages across the ballistic channels such that the av-
erage voltage in the metallic island remains zero. We thereby measure the shot noise
produced by the resulting temperature gradient through the non-ballistic QPC, in
the absence of a dc voltage. A good agreement with the scattering theory of noise

is observed.
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4.2 Current noise as a function of voltage bias

The work presented here is in the continuity with the work presented in the reference
[21], performed in the team just before my arrival. In [21], the authors investigate
the equilibrium and out-of-equilibrium behavior of the electrical conductance for
different interaction parameters. The novelty here is the concomitant measurement

of current fluctuations.

Renv

A .

4 G.=alloV
T K=1[1+R /Ry

Figure 4.1: Simple schematic of the sample. The circuit is tuned as a quantum

dissipative circuit, which consists here of a non-ballistic channel in series with a

linear resistance R,y .

4.2.1 Conductance characterization of the circuit

First, we check if the conductance of the device follows the zero temperature uni-
versal curve predicted for a TLL with a single impurity [67]. For different settings
of the non-ballistic QPC, we measure both the differential conductance and the cur-
rent noise as explained in chapter 1. We perform this measurement for two different
configurations of the environment: R.,, = Rk/2 and Re,, = Rx/3, leading respec-
tively to the TLL interaction parameters K = 2/3 and K = 3/4. The dimensionless
differential conductance G5/K (in unit of €?/h), seen from the electrode M3 (see
figure 1.1,2.1 and simplified schematic in figure 4.1), versus the voltage is displayed
for the two environments in the figure 4.2. In this experiment, the voltage is applied
on electrode S3 (see figure 1.1 and 2.1), behind the QPC 3 which is the one tuned in
a non-ballistic regime. The open circles (full diamonds) correspond to Re,, = Rk /2

(Renyv = Rx/3). We observe that, as expected, the low voltage reduction of the
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Figure 4.2: Conductance of the device versus voltage. The data points dis-
play the dimensionless differential conductance (Gs/K) Rk. The open circle (full
diamond) points correspond to an environment Rey, = Rk /2 (Reny = Rk /3). For a
given setting of the environment, each color denotes a different configuration of the

QPC.

conductance is less pronounced for a smaller resistance of the environment. We also
observe that even for very weak impurity (transmission through the non-ballistic
QPC very close to one) the conductance is notably affected by the DCB. As the
behavior of the conductance at positive and negative voltages is symmetric, we av-

erage both in the following.

The excess temperature of the metallic island, resulting from the Joule heating
when a voltage is applied to the circuit, is separately extracted using the formula

derived in chapter 2, equation 2.30:

Rx (AS AS. NAS
Ty — T, = 2K ( 1o, 8o 12> (4.1)

2k \ 2ny 2n4 2n1ng

where we recall that AS7; and ASs, are excess current spectral densities measured

in electrode M2 and M1, AS;, are the cross-correlation, N = nj 4+ ny is the number
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0 . 10 . 20 . 30
V (uv)
Figure 4.3: Heating of the metallic island. The temperature of the metallic
island and the differential conductance of the sample (here not renormalized by K)
are displayed versus dc voltage in the top and in the bottom panel, respectively.
The dashed (full) lines display data corresponding to K = 2/3 (K = 3/4). The
different colors correspond to different tunings of the non-ballistic QPC (using the

same color code as in the figure 4.2).

of ballistic channels constituting the environment, with n; and ny the number of
ballistic channel through the QPC 1 and 2. For a base temperature of T ~ 8 mK,
we present the temperature of the metallic island for the two configurations K = 2/3
and K = 3/4 in the bottom panel of figure 4.3, while the top panel displays the as-
sociated conductance. Since for a given voltage, the injected Joule power increases
when the conductance of the device increases, the excess temperature of the metallic
island is higher for transmission through the non-ballistic channel closer to one.

In the figure 4.4, for the same configuration as in figure 4.3, we display the differential
conductance versus eV/kgT}. T} = cxT} is the scaling temperature, which charac-
terizes the strength of the impurity and depends on the setting of the non-ballistic
channel. ¢k is a coefficient chosen in order to respect the conventional criterion
G(T/T; = 1) = (Ke?/h)/2 at V = 0 (in the same way as in reference [21]). For
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0.01 0.1 1 10 100
eV/ksT,

0.0

Figure 4.4: Comparison of the conductance with the theoretical prediction.
The data points display the differential conductance versus eV/kgTi. The black
lines are the theoretical predictions from [67]. The data are the same as in the
previous figure (figure 4.3) with the same color codes. The full points correspond to
6kpT < |eV| < h/(6RenC) with T = (T + Tpy)/2. For clarity, an offset of +0.1 is
applied to the data and to the theoretical curve corresponding to K = 3/4.

each configuration, 77 is determined at zero dc voltage where it is predicted and
measured that the conductance follows the equilibrium prediction for a TLL with a
single impurity [21]. With 77 determined in the equilibrium regime, we can directly
compare the data to the theoretical non-equilibrium prediction at zero temperature,
which are drawn as black lines in the figure 4.4. This comparison was already done
n [21] for K = 2/3. Here we also observe a good agreement between the data
points and the theoretical curve at intermediate voltages, where a TLL behavior is
expected, now including K = 3/4. For low voltages, deviations from zero tempera-
ture predictions come from the non-negligible temperature. The deviations at high
voltages come from the capacitive cutoff (= h/(RenC')) above which the mapping to
a TLL does not hold. From the figure 4.4 we assume in the following that our circuit

is in the TLL regime and can be compared with the zero temperature prediction for
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dc voltages V' such that:
6kpT < V| < h/(6RenC) (4.2)

where T = (T + Ty)/2. In figure 4.4, the points for which this criterion is (not)
respected are displayed as full (open) symbols.

4.2.2 Comparison of the measured current noise with the

scattering theory of noise

The current noise associated with the theoretical predictions from the mapping to
a TLL is the current noise which would be measured in electrode M3 (see figure 1.1
and 2.1). In practice, we measure ASj;, ASs and ASj, from which AS33 can be
deduced from charge conservation (see equation 2.16): AS33 = 2AS19+AS11+ASs,.
Before comparing with the TLL prediction, we first compare the current noise to the
prediction from the non-interacting scattering approach of noise (reviewed briefly in
chapter 2). The excess noise is given by (equation 2.32 in chapter 2):

2kp(Tq —Ty) Nt2 2
A thy _ B ( ) A .
%33 Re (V12 T \Niq) B

The first term in equation 4.3 is the thermal (Johnson-Nyquist) noise from the

(4.3)

ballistic channels. In this first term we obtain 7 from the measured differential
conductance. The second term is the excess noise from the QPC 3, AS,,.3, times
a redistribution factor. This redistribution factor comes from the redistribution
of the current fluctuations in the central metallic island (see chapter 2) and 7 is
therefore also obtained from the measured differential conductance. According to
the scattering theory, the noise from the QPC 3, which is open for only one channel,

is given by the relation (equation 2.8 in chapter 2):

2e2 [0

Sapes(Vae, T, To) = — | 7(E)* [fa(E)(L = fa(E)) + fo(E)(1 - fo(E))] dE

7Th —00
2e% oo

Th J oo

T(E)(1 —7(E)) [fa(E)(1 = fo(E)) + fo(E)(1 — fo(E))] dE,
(4.4)

where V. is the dc voltage applied to the QPC 3. Each term of the integrand in the
first integral of the right hand side of equation 4.4 is large only for energy close to
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the voltage of the considered Fermi distribution, and becomes very small otherwise.
Making the assumption that the value of 7(E) is constant on the interval where the
integrand is non-negligible, we replace 7(E) by the fixed value 7 obtained from the
measured differential conductance of the non-ballistic QPC. For the second integral
in equation 4.4, the integrand is roughly constant for £ € [0,eV,.] and vanishes
exponentially outside this range. In this case, a more appropriate approximation is
to replace 7(E) by the dc conductance I/V.

We display the total excess current noise as well as the theoretical prediction from
equations 4.3 and 4.4 in figure 4.5 for Re,, = Rk /2 and figure 4.6 for Re,, = Rx/3.
We find, for both environments investigated here, a good agreement with the non-
interacting theory.

We have to keep in mind that, here, we have injected the measured Coulomb renor-
malized conductance in the noise formula. In contrast, the TLL predictions give the
complete behavior of the noise, without the need to inject the measured renormalized

conductance.
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V (uv)

Figure 4.5: Noise versus voltage for R.,, = Rk/2 (K = 2/3). The data points
display the excess current noise Ss33(V') — S33(V = 0) versus the voltage for different
tuning of the non-ballistic QPC. The lines display the predictions according to the
scattering theory of noise. Offsets are added, indicated by the dashed lines, in order

to improve the visibility.

4.2.3 Comparison of the measured current noise with pre-

diction in the framework of the TLL mapping

Here, we will show that the voltage dependence of the noise is related to the voltage
dependance of the conductance as predicted by the TLL theory. The current shot
noise derivative by the voltage at T" = 0 is predicted to be related to the conductance

by the following formula [17]:

1 - KdS™  dg

f— 4-
eK?2 dV dinV’ (4.5)

where g = (Gs/K)Rxk is the dimensionless conductance. Thus, this formula links
the variation of the conductance by DCB to the variation of the noise. Furthermore,

the right hand side of equation 4.5 is equal to the S—function describing the full
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Figure 4.6: Noise versus voltage for R.,, = Rk /3 (K = 3/4). The data points
display the excess current noise Ss33(V') — S33(V = 0) versus the voltage for different
tuning of the non-ballistic QPC. The lines display the prediction according to the
scattering theory of noise. Offsets are added, indicated by the dashed lines, in order

to improve the visibility.

scaling flow of the conductance crossover:

dg
dinV

= Bk (9) (4.6)

In order to investigate this relation, we display the discrete differentiation of the noise
Ss3 by the voltage, times the factor (1 — K)/eK?, as a function of the conductance
in the figure 4.7, keeping only the data such that 6kgT < eV < h/(6RenyC) (it is
the same data as that displayed in figures 4.5 and 4.6). We also display the discrete
differentiation of the dimensionless conductance, g = G,/K in unit of €?/h, by
In(V) as colored lines, and the predicted -function derived from the equations 3.27
as black line. Furthermore, we display the theoretical prediction from the scattering
theory: the dashed lines in figure 4.7 displays [-functions-like derived using the

relation 4.5 and the prediction from the scattering approach (at zero temperature),
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keeping the conductance as voltage independent:

dSs3(Vee, T = 0) 1-K ([ d N \?
2 33\ Vqc» o s o
ek ( v )g‘ K2 (dV [26%7(1 T)<N+T) Dg

2(N — Kg)Kg(N(1 — Kg) — Kg)
- e . (4.7)

Note that the non-interacting curve is very close to the TLL S-function: it explains
the success of the scattering theory in our circuit despite the strong Coulomb inter-
action.

On the one hand, the conductance is found to follow the theoretical S-function, and
this is not a surprise as it was already observed in figure 4.4. Note that the small
deviations are more important in this representation. On the other hand, for both
environments, we note that the noise data follow the theoretical J—function at low
conductance, but detach from the theoretical curve as the conductance increases
due to the resulting increase of heating. It can be quantitatively accounted for in
the framework of the scattering theory: at non-zero temperature, the scattering
approach gives the following relation for the noise:

2

G

() 25 [ B - 7B [faB)1 ~ fo(B) + foEY1 ~ folE))] 4.
(4.8)

This equation is calculated using equation 4.3 and equation 4.4, where we have re-
placed 7(E) by 7 in the first integral on the right hand side. The standard approach
for focusing on the AV-shot noise is to focus on the excess noise, ignoring the ther-
mal term. However, in our approach, when applying a voltage to the sample, we
also heat up the central metallic island as a function of the voltage. Whereas the
effect on the conductance is not overwhelming, it is the case for the noise where even
in focusing on the excess noise, it has for effect to increase the first term in equation
4.8 (term which should be null at zero temperature). In the following we therefore
subtract this term from the total noise, in order to investigate the shot noise versus
voltage without being polluted by the temperature increase from the Joule effect,
which would impede the comparison with the zero temperature prediction. Note

that this thermal contribution at large voltage (eV > kgT') does not correspond
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to the Johnson-Nyquist noise given by the fluctuation dissipation theorem (which is
proportional to Gy, whereas the thermal contribution at large voltage is in G2, see
chapter 2). In figure 4.8 we display the result of this subtraction. When subtracting
the thermal term of equation 4.8, the noise data fall down toward the predicted
p-function as well as the experimental dg/dInV | experimentally highlighting the re-
lation 4.5. However, the experimental resolution does not allow us to discriminate
between the prediction from the non-interacting scattering theory (dashed lines) and
the TLL predictions (full lines). In order to focus on the TLL relation between con-
ductance variations and noise variations, we display in figure 4.9 the experimental
dg/dInV versus [(1 — K)/eK?) x dS/dV, where we expect the points to follow the
x =y line (black line).

Note that in the limit of weak back-scattering, it is expected that the noise is propor-
tional to the charge of quasiparticles with fractional charge e* = Ke. In principle,
we may test this theoretical prediction for the data for which 7 is the closer to one.
However, the shot noise signal is very weak compared to heating. Although the
data seems consistent with e* = Ke (not shown), further investigation is needed to

ascertain a robust treatment of heating.

4.2.4 Conclusion

In this section, we have investigated the current noise in an electronic dissipative
quantum circuit. The motivation was to compare the noise measurement to the
prediction for a Tomonaga Luttinger liquid with a single impurity. Remarkably, the
theoretical prediction from the non-interacting scattering theory already constitutes
a good approximation, provided the conductance renormalized by DCB is injected.
In practice we do not have the experimental resolution for discriminating between the
scattering theory as a function of renormalized conductance and the TLL predictions.
However, in addition, the relation between voltage dependence of conductance and

shot noise, which is a specific TLL prediction, could be established experimentally.
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Figure 4.7: Comparison with TLL beta function. For a given setting of 7,
the full data points are a discrete voltage differentiation of the total noise times
the factor (1 — K)/K?e. The colored lines correspond to the measured dg/dInV
with ¢ = G/K. The TLL predictions are shown as full black lines. The dashed
black lines display predictions from the scattering theory of noise (equation 4.7). For
visibility, an offset of 0.2 is added to data and prediction corresponding to K = 2/3.

The color code is the same as in the figure 4.2.

4.3 Shot noise induced by a temperature differ-

ence across a quantum point contact

4.3.1 Previous measurements

Although predicted by the scattering theory of noise [13], a shot noise induced by
a temperature gradient had never been measured until very recently [18]. In this
paper, the authors investigate the noise specifically produced by a difference of
temperature across an atomic contact. Although convincing, their measurements
suffer from the fact that the number of open channels in the atomic contact is not

ascertained. Here we perform measurements of this thermal shot noise through a
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Figure 4.8: Comparison of heatless noise with TLL beta function. For a
given setting of 7, the full data points are a discrete voltage differentiation of the
noise subtracted from the thermal term (see text), times the factor (1 — K)/K?e.
The colored lines correspond to the measured dg/dInV with ¢ = Gs/K. The TLL
predictions are shown as full black lines. The dashed black lines display predictions
from the scattering theory of noise (equation 4.7). For visibility, an offset of 0.1 is
added to data and prediction corresponding to K = 2/3. The color code is the same
as in the figure 4.2.

single quantum channel with an adjustable transmission probability, using a QPC
in the quantum Hall regime. We use the same configuration of the circuit as in
the previous section, except for the voltage bias. A Joule power is injected through
the ballistic channels connected to electrodes biased at voltages of opposite signs
(electrodes S1 and S2 in figure 2.1), such that the average voltage of the metallic

island remains null.
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Figure 4.9: dg/dinV versus [(1 — K)/eK?| x dS/dV. The open (full) points cor-
respond to data for K = 2/3 (K = 3/4). The color code is the same as in
the figure 4.2. The black lines correspond to the expected behavior dg/dInV =
[(1—K)/eK? x dS/dV .

4.3.2 Procedure for focusing on the AT-shot noise

The extraction of the island’s temperature is performed in the same way as in the
previous section, using equation 2.30 for different tunings of the non-ballistic QPC.
We extract the excess noise source across the non-ballistic QPC using the equations
2.31 in chapter 3:

AS1; ASy

2’]7,1 + 277/2

(N+71)2+ 12
2n1ny

AquC = (N + 27') ( > + A512 s (49)

with AS1; (ASsy) the excess spectral density measured in electrodes 1 (2) and
AS, the excess cross-correlations. ASgy,. includes two contributions: the Johnson-

Nyquist noise involving the average temperature of the electrodes 3 and the metallic
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Figure 4.10: AT-shot noise. Left panel: symbols represent the experimental QPC
noise at N = 2 from which the average thermal noise was removed. Measurements
at different gate voltage tunings of the QPC are shifted vertically, with the applied
offsets shown as horizontal dashed lines. Open and full symbols distinguish separate
sequences of measurements. Continuous lines display predictions of equation 4.11.
Right panel: the 7(1 — 7) partition signature is shown as a continuous line versus
7. Symbols represent the experimental QPC noise from which the average ther-
mal noise was removed, divided by the 7-independent functions F(7Tq,Tp), which
is the predicted thermal shot noise’s temperature dependence. A lighter (darker)
symbol coloring indicates a small (large) T, — Tj corresponding to a higher (lower)

experimental uncertainty.

island, and the thermal shot noise associated with the temperature difference. Fol-
lowing [18], we focus on the thermal shot noise by subtracting the “excess” Johnson-

Nyquist noise given by the standard fluctuation dissipation formula:

ASgpe = ASqpe — 2kn(To — To)7/ Ry, (4.10)
For a base temperature of Ty &~ 8mK, we display the result AS@Z in the left panel

of the figure 4.10, adding offsets in order to distinguish each measurement. The
colored lines correspond to the theoretical predictions of the scattering theory for

the thermal shot noise, given by:

2

asi =20 1) [(o(B) - fa(E) B, (111)
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with fy and fq the Fermi distribution of the electrons in the cold electrodes at tem-
perature Ty and in the hot metallic island at temperature T, respectively, and where
T is obtained from the simultaneously measured differential conductance renormal-
ized by the DCB (note that I/V = dI/dV since there is no voltage bias applied
to the non-ballistic QPC). The integration is performed numerically. We note that
the predictions closely match the data. In the right panel of the figure 4.10 the
data points represent the experimental shot noise renormalized by the predicted
T—independent temperature function F = % (fo(E) — fa(E))*>dE. In this panel,
a lighter (darker) symbol coloring indicates a small (large) Tq — T corresponding
to a higher (lower) experimental uncertainty. The good agreement with 7(1 — 7)
(black line) attests the partition origin of this shot noise induced by a difference of
temperature.

We performed control measurements for other values of N (N =3 and N = 4),
shown in figure 4.11, where both demonstrate a good agreement with theoretical
predictions. The measurements are also shown for a larger base temperature Ty ~ 16
mK in figure 4.12.

4.3.3 Conclusion

In this section, we have investigated the shot noise across a non-ballistic channel
resulting from a pure thermal bias. A good agreement is observed with the scat-
tering theory of noise [13], as also recently shown using an atomic contact [18], and
despite the Coulomb renormalization of the conductance in our specific case. Our
understanding of the non-equilibrium thermal noise will make it possible to address

heat and noise in more complex quantum systems.
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Figure 4.11: Control measurement for N = 3 and N = 4 at base temperature
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CIRCUIT

5.1 Introduction

In this chapter, we investigate the effect of Coulomb interaction upon the heat flow
in a small quantum circuit. As the size of the sample and temperature of electrons
decrease, quantum mechanics and Coulomb interaction become preponderant. As
already seen in the previous chapter, the classical laws of electrical impedance com-
position may not apply anymore and we need to discover the new laws of electricity
[20; 80]. The improvement in the experimental control of small circuit allow one
now to investigate the heat flow at the nano-scale [6; 8; 81; 82]. Note also the recent
measurement of fundamental temperature fluctuations in [83].

Here, we investigate the electronic heat flow, from a small metallic island of
relatively important Coulomb charging energy, through several electronic quantum

channels toward large cold reservoirs.

e First, we conduct this experiment in the case where all the channels are bal-
listic. For N =1,2,3,4 and 5 ballistic channels connecting the metallic island,
we directly observe the systematic heat Coulomb blockade of one ballistic
channel at low temperature while the electrical conductance is unaffected (no
blockade)[84], as recently predicted by theory [19].

e Then we investigate the electronic heat flow beyond the ballistic limit, with
a controlled back-scattering in one of the channels. We observe an additional
mechanism of the electronic heat flow, which involves both the Coulomb in-

teraction and the shot noise through the non-ballistic channel.
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5.2 Electronic heat flow through quantum circuits

5.2.1 Heat flow across a short quantum channel connected

to large reservoirs

The heat flow through a quantum conductor connecting two large reservoirs, as
represented in figure 5.1, can be calculated using the scattering theory [85; 86]. For a
single quantum channel of an energy independent arbitrary transmission probability
T, connecting two reservoirs with Fermi distribution fi(E — eVi,T1) and fr(E —
eVr, Tr) for the left and right reservoir respectively, the net heat current in reservoir

R is given by (equation 16¢ in reference [85]):

J = %/(E —eVR)(fu(E —eWL) — fr(E —eVr))dE

(Vr — VL)2 7T2k123 2 2
= T — T,
T R +T 6h (17, R)

The first term is the Joule power dissipated when the channel is biased with a voltage
AV = Vi — V. The factor of 1/2 with respect to the total Joule power AV is
because only one of the reservoirs is considered here. The second term is the heat
flow Jjeqr which results from the difference of temperature AT = T}, — Tr between

the two reservoirs, and which can be related to the thermal conductance:
th 1 272
G" = Al%%o Jheat /AT = 1°kgTT/3h

The multi-channel case may be obtained by simply adding contributions of each
independent channel. To my knowledge, a quantitative measurement of the heat flow
in a simple QPC with an arbitrary transmission 7 €]0, 1| has never been reported
before. Note however that relative variations of the thermal conductance, up to an
unknown prefactor, were probed in [87], and an order of magnitude estimate was

previously performed in [88].

Wiedemann-Franz law

Remarkably, the quantum result above for a non-interacting single channel is in

agreement with the Wiedemann-Franz law broadly observed in classical conductor,

90



CHAPTER 5. ELECTRONIC HEAT FLOW IN A COMPOSITE QUANTUM
CIRCUIT

<
¢

Figure 5.1: A single channel quantum conductor of electron transmission probability
T connecting two larges reservoirs, each of them characterized by a voltage and a

temperature.

which states that the ratio between the electrical conductivity and the thermal
conductivity in conductors is proportional to the temperature:

Gin

=LT.
Gel

The proportionality constant L, called Lorenz number, is equal to:
2 k 2
L= <_E> '
3 \e

For a non-interacting ballistic quantum channel (7 = 1) the heat flow reaches the

Quantum limit of heat flow

quantum limit of heat flow through a quantum conductor [82; 85; 86]:

k3
6h

JG = (TE — TR). (5.1)

In the same way as the quantum of electrical conductance, the quantum of ther-
mal conductance Gq = 72k3/3h does not depend on the material constituting the
conductor. Moreover, the quantum of thermal conductance is predicted [89] and
measured to be the same for phonons [90], photons [91], and electrons [82]. However,
we note the observation of half-integer thermal Hall conductance in the fractional
quantum Hall regime at a filling factor v = 5/2 [92], which may indicate the presence

of non-abelian anyons at this particular filling factor.
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5.3 Predictions for heat flow in composite quantum-

circuits

In our device, we assume that heat is evacuated by two mechanisms: by electrons
through the electronic channels and by the electron-phonon interaction in the metal-
lic island, Jieot = J& + Jfﬁ; " In the work presented here we are interested in the
first one: the electronic heat flow Jﬁlly. Here we start by deriving the theoretical
prediction for the electronic heat flow in the presence of Coulomb interaction. Then

we will address the heat flow toward the cold phonons.

5.3.1 Heat Coulomb blockade prediction

In this section we derive the predictions for the electronic heat flow out-going from
the metallic island through N ballistic channels and an additional channel of ar-
bitrary transmission probability 7 € [0,1]. We use the same approach as the one
used in [19] for ballistic systems. In Ref. 19, it is shown that the expressions of the
currents found using the bosonization technique can be recovered using the semi-
classical Langevin approach. Here we will use the Langevin approach. The idea of

the derivation is as following;:

e for each channel, we formulate the heat current in terms of high frequency
electrical current fluctuations [19]. The current fluctuations in the circuit have

for origin uncorrelated noise sources of thermal and partition origins;

e to derive the electrical current fluctuations in each channel, we need also to
consider the charge and subsequent RC discharge of the metallic island. We
first express the charge fluctuation §(¢) as a function of the uncorrelated noise

sources;

e then, the electronic heat flow in each channel is calculated including the dis-
charge current fluctuations dVi,/ Rk with 6V = 0Q/C.
We first detail the calculation for ballistic channels where there is no partition
noise, and subsequently for the non-ballistic channel where we need to consider

the partition noise.

92



CHAPTER 5. ELECTRONIC HEAT FLOW IN A COMPOSITE QUANTUM
CIRCUIT

Link between electronic heat flow and current fluctuations in a quantum

channel

out
AIR,(V

in
AR,

Figure 5.2: A reservoir R is connected to a quantum edge channel «. The outgoing

current fluctuations are denoted AI%Y, and the in-going one are denoted A[}"{fa.

The current fluctuations AIR%, outgoing from a floating reservoir R of capaci-

tance C' in a chiral quantum channel « (see figure 5.2) are given by:

0Q

AL = oIf, + ReC

(5.2)

In this equation, the first term on the right side is a current Langevin source cor-
responding to the thermal electrons emitted from the reservoir R into the channel
a. In the following we assume that the thermal current Langevin source associated

with different reservoirs or/and channels are uncorrelated (< 5[&%5] “5@

a # o or R # R'). The second term results from the fluctuation of the overall
charge 6() of the reservoir. Note that voltage biased electrodes can be modeled by
very large capacitances such that §Q)/ RxC' — 0. The current noise spectral density
associated with the thermal current fluctuations 67§", emitted from a reservoir R at

temperature 7" is given by [19]:

hw /Ry

T “1fexp [hw/ksT] (5:3)

Sita(w)

In the following, in order to lighten the notation we replace S§',(w) by S™(T).
Note that this expression is the full, frequency dependent quantum noise, needed to
compute the flow of heat (equation 5.4), in contrast with the low frequency relation
used in the chapter 2 for the noise measured in the low-frequency MHz range (hx1
MHz/kg =50 pK << T'). Because of the chirality, a factor of 2 is missing compared
to the relation 2.4 presented in the chapter 2. The heat flow propagating along the

chiral channel, where the current Alﬁzfé is injected, is determined by integrating the
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resulting current noise spectral density SR, (w) [19]:
Jout o h o] Sout S d g
Ra — 2762 . [ R,a(w) - vacuum(bd)} w, ( . )

with Syacuum(w) the vacuum fluctuations at zero temperature. In the same way, the
incoming heat flow injected in the contact R from the channel « is determined by
integrating the current noise spectral density Sf{ja(w) associated with the incoming

current fluctuations AT :

o= oy [ [80(0) — Sl do (55)

2¢?

The net electronic heat flow out going from the reservoir R by the channel « is then:
Jo = TR = Jha (5.6)

For one ballistic channel connecting two reservoirs at temperatures 77, and Tg (for

left and right reservoirs), the calculation of the net electronic heat flow leads to

Je = WZZ‘% (T?—T%), recovering the quantum limit of heat flow J§ defined in equation
5.1. The additional channel of transmission probability 7 € [0,1] brings about
a few differences in comparison to the calculation performed in reference [19]: the
symmetry between channels is broken and a partition noise emerges at the channel of
transmission 7 when 7 # 0 and 1. Note also that the in-situ transmission probability
7 depends on the temperatures due to dynamical Coulomb blockade. In practice we
assume it is independent of the frequency and equal to the measured renormalized

transmission probability.

The island’s charge fluctuations

In the following, we are considering the complete device used throughout this thesis
(see a graphical representation in figure 5.3). The floating metallic island, labeled
Q, is characterized by a temperature Ty,. The other electrodes, labeled E| are all
large and at the same temperature Tj (as the other contacts are all voltage biased
and at the same temperature Ty, it is equivalent to consider only one contact FE).
Charge conservation allows us to determine the fluctuation 6¢) of the charge of the
floating island:

iwd@Q = AI'™ — AT, (5.7)
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Figure 5.3: Noise schematic. Graphical representation of the different current and

voltage fluctuations involve in the derivation of the heat flow.

with AI™ and AI°“, respectively, the total incoming and outgoing current fluctu-
ations (summed over all channels). The corresponding island’s voltage fluctuations
0Q/C result in the emission of current fluctuations §Q)/RxC in each connected
channel, which contribute to A7°%:

0Q

N
AT =361 + 018, + (N + 1)@’ (5.8)

Jj=1

with NV the number of ballistic channels and ¢ labeling the single non-ballistic chan-

nel. Tt also shows up in AI™, because of the (1 —7) fraction of the current reflected
at the non-ballistic QPC:

N
AI'™ =3 0I5 + ol + (1 =) [51;{;1 + }chl +OI;". (5.9)
K

=1

Note that AI™ also includes an additional shot noise contribution §7 0 from the

non-ballistic channel, as further discussed in the section “current fluctuations in the
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non-ballistic channel”. We now introduce 7q, defined as the sum of the transmission

probabilities of all the channels connected to the island:
T =N+T.

Injecting equations 5.8 and 5.9 in equation 5.7, we deduce the charge variation as a

function of the uncorrelated noise sources (Mgfj, (5[}%, oIm):

5Q 1 ol on
BC = RO YOIy, =618 + 7(615, — 0I5 ) + oL . (5.10)

j=1

Current fluctuations along the ballistic channels

The current fluctuations in-coming into the island from a ballistic channel j are
equal to the current fluctuations emitted in this channel from electrode F, and they

involve only thermal fluctuations:
ALy, = 01y (5.11)
The corresponding current spectral density is:
iy = ((AIF)?) (w) = S™(Ty), (5.12)

with S (T,) given equation 5.3. The current fluctuations out-going from the island
Q2 in a ballistic channel j are given by:

Q.

out __ th
AIG = Ol + 1

(5.13)

where we consider the voltage fluctuation of the metallic island. The corresponding

current spectral density obtained using the expression of 6() given equation 5.10 is:

27, h
(cuRKC)Q2 + 78 [S (TQ)}

iz [(ra = (1= ) (87 (T0) + (1) + 57
(5.14)

Se = ((AIZ)?) (w) = S™(Ty) —

1

+ ((,URKC)

where we have introduce S = <(AI§”)2> (w).

96



CHAPTER 5. ELECTRONIC HEAT FLOW IN A COMPOSITE QUANTUM
CIRCUIT

Current fluctuations along the non-ballistic channel

(7) Current fluctuations in the €2 side of the non-ballistic QPC

The current fluctuations in-going into the metallic island from the non-ballistic
channel ¢ are given by:

0Q)
RiC

Al =761 + (1 —7)dI8 + (1 —7) + oI, (5.15)

where we have added the additional Langevin source 6I;" coming from the electrons
partition. The corresponding spectral density obtained using the expression of Q)

given equation 5.10 is:

Sty = ((ALG,)?) () = T 5™(Ty) + (1 = 7)*S"(Ta)

(1—71)2 . . .
(WRKC)? + 72 [(TQ —7(1 — 7)) (S™Ty) + S™(Ty)) + S }
et t ¢ t sn
O g 9 = (=) (87T + 5T 457
e (5.16)

The current fluctuations out-going from the island €2 in the non-ballistic channel ¢

(before reaching the quantum point contact) are given by:

0Q

Algﬁ - 516}?(1 + m (517)
The corresponding current spectral density obtained is:
2T
out out __ Qth Q th
Saq = ((AI39)?) (w) = 8™(Tn) — (@WRKC)? + 72 75" (To)|
1 th th sn
* RO [(ra = 7(1 = 7)) (S™(Tw) + S™(To) ) + ]
(5.18)

In principle, the knowledge of S&' ', and S‘mt is sufficient to calculate the net heat
flow from equations 5.4, 5.5 and 5.6. However, as detailed in the next section, we
also need to compute the current fluctuations on the other side of the QPC in order

to straightforwardly determine S*".
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(#7)Current fluctuations in the E side of the non-ballistic QPC

The transmitted current through the non-ballistic channel ¢ impinging upon the
electrodes F on the F side of the QPC is:

06
RxC

ALy, = 7015, + (1= 7)0I3, — 61" + 7 (5.19)

The associated current spectral density is given by:

qu = <(A]f£q)2> (W) = 728"(To) + (1 — 7)25™"(Ty) + S*"
2770

+ (WRkC)? + 73

2

i RK;)Q e (70— 7(1 = 7)) (S™(Ta) + S™(T0)) + S*"]
(5.20)
The current out-going from the electrodes E is simply given by:
AL =617, (5.21)
The associated current spectral density is given by:
St = ((AIF)?) (w) = S™(Ty) (5.22)

Determination of 5"

In the equations above, the only missing ingredient is the “shot noise” S*". The

required knowledge can be determined from global heat conservation:
Ty = Jg = T, = T~ IR (523)
Using equations 5.4,5.5,5.16,5.18 and 5.20,5.22, this condition imposes that:

00 T —7(1—7) =277
S x |1 dw =
f s l T RO 1 2 1 ©

[ [ e ¢ (87 4 5 ) e 620

This condition does not give the full shot noise, but only the part of the shot noise
relevant for the calculation of the electronic heat flow. Note that this result is the

same for a single channel without interaction.
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Net out-going electronic Heat flow

The net out-going heat flow through all the channels, using the previous equations
(5.3, 5.4, 5.5, 5.12, 5.14, 5.16, 5.18, and 5.24), can be written as:

N+1

el out mn
Ty =2 (J8 = Jiy)

=1

w2k h(tq —7(1 —1)) htq/RkC htq/RkC
T2 . T2 o Cx _ Cx
on oI g m o S ke ) TS okt )]

(5.25)

where we recall that 7q = N + 7, and with the function & given by:

iy [ F 1 d
(@) /o 224+ 22exp(z) — 1 :

SRE-EL e

with ¢(z) the digamma function. At 7 =0 or 1, Eq. 5.25 reduces to the expression

derived for a ballistic system [19].

Asymptotic behavior in ballistic case (1 =0, 1)

The function & has the asymptotic forms:
2
Jr<l)~ —, J(ar>1)~ —,
(v < 1) > 1)~

v
2
with a crossover centered on x ~ 1. Note that the crossover from one asymptote to
the other depends thus of the number of channels connected to the metallic island.
At T\ Tq < NE¢/mkg (x> 1), Eq. 5.25 with 7 = 0 therefore reduces to

T2k

6h

Joy ~= (N —1) (T3 —T3) = (N — 1) x Jg, (5.27)

with precisely one electronic ballistic channel effectively suppressed for heat conduc-
tion, whatever the total number N of ballistic channels.

At NE¢/mkg < Ty, To (x < 1), Eq. 5.25 at 7 = 0 becomes

2k

6h

Eckp

T2 -T2 — N
(T~ 15) - N=,

Joy = N (To — To), (5.28)

which corresponds to a net reduction of the heat conductance (|7y — Tg| — 0) per

ballistic electronic channel by the fixed amount AGSL,, = Eckg/2h (always small
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with respect to Ggl in the considered high-temperature limit).
At Ty < NE¢/mkp < Tq, Eq. 5.25 at 7 = 0 becomes
w2k Eckg

where the relative reduction due to heat Coulomb blockade progressively vanishes
as T increases.

In the figure 5.4 we show the theoretical prediction for a temperature 7y = 8 mK
for different number of ballistic channels connected to the island. Note the different

crossover temperature, given by N E¢/7mkg, for each configuration.
Asymptotic behavior for 7 €]0,1]
At low temperatures, Eq. 5.25 simplifies into:

h 1— 2/€2
g (TO,TQ < 8 ) ~ (m P T>> x W6h (T2 - T2).  (5.30)

kg RxC T
In this case, in addition to the systematic blockade of one ballistic channel (—1 in
the prefactor) with respect to the non-interacting case (7q in the prefactor), we find
an additional contribution to the flow of heat, whose partition character is signaled
by the characteristic 7(1 — 7) dependence.
At high temperatures, Eq. 5.25 reduces to the non-interacting result matching the
widespread Wiedemann-Franz law (without additional contribution from the parti-

tion noise):

hrq 7r2k;2
J N Ty, T — 2 )~ T3 —T¢ 5.31
thy ( 0, Lo > kBRKC) Q 6h ( Q ) ( )

5.3.2 Heat evacuation by electron-phonon coupling

Assuming the metallic island can be described as a Fermi liquid with electrons at
hot temperature T, and a phonons bath at the base temperature Tj, the standard

formula used for modeling the transfers of heat toward the phonons is given by [93]:
Jer—pn = 2QUTE — T¢) (5.32)

where €2 is the volume of the metallic island, and ¥ a constant parameter involving

the electron-phonon coupling. The parameter o depends of the disorder:
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2 345 xEg /nkg
I T I T I

J Ny &

Figure 5.4: Heat Coulomb blockade prediction for ballistic channels
Crossover from NJg at Tq >> NE¢/mkg to (N — 1)Jg at To << NE¢/7kg.
Colored continues lines display the theoretical prediction normalized by the quan-
tum limit of heat flow per channel for different numbers N of ballistic channels
and versus the metallic node temperature Ti,. The vertical dotted lines display the

different thermal crossovers.

e In the case of a clean material with a phonon wavelength A,;, well below the
electron mean free path [, the heat transfer toward the phonons is predicted

to follow a power law in 7° (o = 5) [93].

e In the disordered limit (A, >> lo), the heat flow toward phonons is expected
to follow a power law in T with a between 4 and 6, depending of the nature
of the disorder. Although most of the experiments measuring the transfers of
heat between electrons and phonons found a result matching with the clean-
limit case, other results are possible. For instance in reference [94], the authors
have measured a heat flow in T° as expected for “vibrating” disorder (defects
moving together with the lattice atoms). In our case, the metallic island which

is a diffused allow, is most likely not as clean as a pure metal.

101



CHAPTER 5. ELECTRONIC HEAT FLOW IN A COMPOSITE QUANTUM
CIRCUIT

5.4 Observation of the electronic heat flow in a

ballistic circuit

First, we focus on the heat flow in the simplest ballistic limit, when only ballistic

channels are connected to the metallic island.

5.4.1 Procedure to investigate heat flow

The approach used to measure the electronic heat flow is represented in figure 5.5.
It is similar to the one introduced in order to measure the quantum limit of heat
flow across an electronic channel [82]. A Joule power Pj is dissipated into the
electronic fluid within the island. As a result the metallic island heats up to a
steady-state electronic temperature Ty, above the base temperature 7j such that the
dissipated Joule power and the net outgoing heat flow .Jj.,; exactly compensate each
other (Juear = Py). The determination of Ty, through noise measurements therefore
directly provides the heat flow-temperatures characteristics (Jpeat(7q)). The total

heat flow is expected to contain two contributions:
Jheat = Jel(TQa TD) + Jel_ph(TQa TO)

J¢" is the heat current carried by electrons along the N connected ballistic channels
and J°P" is an additional mechanism by which the heat is evacuated, which is
attributed to coupling between electrons and phonons. In contrast to the previous
work [82], the present measurement performed at low temperatures down to 8 mK
allows for the direct observation of the electronic heat flow. Indeed, electronic heat
flow is supposed to follow a power law in 7% whereas the heat flow by electron-
phonon coupling should follow a power law in 7% with « between 4 and 6 [95].
At sufficiently low temperature, the heat flow by electron-phonon coupling may be

negligible in comparison to the electronic heat flow, as we will see in the following.

5.4.2 Experimental procedure

First, we set all the QPCs in the ballistic regime with a total of N ballistic channels
connecting the metallic island. To check that we are well in the ballistic regime,

we measure the electrical conductance of the device G5 seen from the electrode M1
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Figure 5.5: Experimental principle: We inject a well-known Joule power Pj in
the metallic island by applying a dc voltage to the circuit. By energy conversation,
the out-going electronic heat flow is equal to the injected Joule power. We measure
the resulting temperature T which allows us to determine the heat flow versus
temperature characteristic. At very low temperature, the heat transfer toward the

phonons is negligible in comparison to the electronic heat flow.

and Gp seen from the electrode M3 versus the voltage applied to the electrode M3
(see figure 1.1). These measurements are shown in the left panel of the figure 5.6.
The four colors represent four different configurations, which are depicted by the

following table:

N N;i Ny Ns

2 1 0 1
3 1 1

1 2 1
5 2 2 1

with NN; the number of ballistic channels through the QPC i (i € {1,2,3}). As
shown in the left panel of the figure 5.6, the electrical conductances are not affected
by the applied voltage, as is expected for ballistic channels [96; 97]. At the same
time, we measure the increase in the current noise impinging on electrode M1. The
spectral density of this excess current noise is shown in the right panel of the figure
5.6. Since the channels are ballistic, there is no shot noise: the measured noise

increase comes only from the augmentation of the temperature from the dissipated
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Joule power. Note that we checked that when the QPCs are all closed, we do not
observe any variation of the current noise spectral density versus the voltage applied
in any electrode. This indicates that the source electrodes and the electrode where
we measure the noise stay at the same base temperature. The only element of the
circuit whose temperature is substantially increased is the central metallic island.
In the right panel of the figure 5.6, the symmetric behavior in V' is consistent with
the absence of any thermo-electric effect, as expected for ballistic channels.

The following fluctuation dissipation relation [82; 98]:
(To — Tb)2kpGs = Sexc, (5.33)

allows us to determine the temperature increase in the metallic island (see chapter 2
for a derivation; here with a simplification arising from the fact that there is no shot-
noise). The Joule power dissipated in the island is given by Py = V2Gp/2. Using
these formulae and averaging for positive and negative voltages, we show in the figure
5.7 the augmentation of the temperature of the metallic island as a function of the
injected Joule power. For a given Joule power injected, the different temperatures
for the different configurations attest of the role of the electronic channel for the
evacuation of heat: the greater is the number of channels, the better the heat is
evacuated, and the lower is the temperature of the metallic island. At high injected
Joule power, this difference tends to vanish: it is because the evacuation of heat by
electron-phonon coupling becomes much higher than the electronic heat flow through

the quantum electronic channels.

5.4.3 Observation of the heat Coulomb blockade of one bal-

listic channel on the electronic heat flow

We first observe the total heat flow at very low temperature, for a base temperature
of Ty = 8 mK and a temperature of the metallic island T, below 25 mK. The
result is shown in figure 5.8. The heat flow is shown versus squared temperature
to directly compare with the quadratic power law expected for the electronic heat
flow: the good agreement with straight lines indicates that the heat flow toward the
cold phonons is negligible at these temperatures. The remarkable observation is the

systematic suppression of one ballistic channel for the transport of heat. In contrast
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Figure 5.6: Conductance and noise versus dc voltage. The conductance of
the sample seen from electrode M1 where the noise is measured (Gs) and seen from
electrode M3 where the voltage is applied (Gp) are plotted in the left panel. The
device electrical conductances Ggp (lines, see text) match their expected quantum
limited values independently of V: they are not reduced by Coulomb blockade. The
right panel shows the excess noise measured in electrode M1, resulting from the

augmentation of the temperature of the metallic island.

the electric current is not affected, in violation of the Wiedemann-Franz law. Indeed,
the data match with the line corresponding to (N — 1)Jg. This reduction of the
overall electronic heat flow, which precisely obey the theoretical prediction derived
in the previous section, is the main result of this section.

Control experiments of this observation are displayed in figure 5.9. First, we
implement the case N = 2 with 3 different configurations of the device, finding
concordant measurements of the Coulomb blockade of the heat flow. Second, we
perform the experiment at a twice higher temperature of the large reservoir T, = 16
mK. In the two panels, the bottom dashed lines correspond to the low-temperature
asymptotic limits of the theory, whereas the full black lines are the quantitative
prediction of the heat Coulomb blockade. The top dashed line corresponds to the
prediction for the electronic heat flow across two ballistic channels in the absence of
the heat Coulomb blockade. We also perform the experiment at filling factor v = 3

(data not shown).
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Figure 5.7: Temperature versus injected Joule power. The island electron
temperature Ty, is plotted versus the dissipated Joule power Py, for different numbers
N of connected ballistic channels. It is obtained from the excess noise spectral

density Sexe measured on electrode M1.

5.4.4 Crossover from (N —1) x J§ to N x J§

The purpose of this part is to compare our measurement with the theoretical pre-
dictions for the temperature dependence of the heat Coulomb blockade, which is
expected to progressively cancel out as the temperature becomes much higher than
NEc¢/mkg. The practical difficulty is that this crossover takes place on a temper-
ature range where electron-phonon heat transfers are predominant in our device,
which impedes a direct observation of the electronic heat flow to observe signatures
of the heat Coulomb blockade crossover. We exploit the fact that the heat flow from
the hot electrons in the metallic island at a given T toward the cold surrounding
phonons is independent of the number of channels connecting the metallic island,
whereas the crossover around N E¢/7mkg depends on the number N of channels.
Then, subtracting from the total heat flow Jyeqt(N,Tq), measured in one config-
uration, from the total heat flow Jyeqt(Nyer, T) in another configuration used as

a reference, allows us to cancel the phonon contribution: Jheat(N) — Jheat(Nres)-
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Figure 5.8: Heat Coulomb blockade of one ballistic channel. Symbols (sta-
tistical uncertainties shown when distinctly larger) represent the overall heat flow
(Jheas = Py) displayed versus Tg — 17, at low temperatures where electron-phonon
interactions are negligible (T, < 25mK). The nearby straight dashed lines show

(N —1) x Jg, corresponding to a systematic heat current suppression of 1 x JS.

The result is independent of the electron-phonon coupling and can be compared to
Joy (N, Ta) — J4y(Nees, Ta). The results using N,oy = 4 and normalized by the
quantum limit of heat flow for one channel are plotted in figure 5.10 as symbols. In
this representation, a departure from (/N — 4) signals a difference in the crossover.
The quantitative prediction, given by equation 5.25 without any fitting parameter,
is shown as continuous lines. For N — N,.y = =2 (N = 2, N,y = 4), the larger
crossover signal follows the theoretical prediction up to T ~ 60 mK (right panel
of figure 5.4 and figure 5.10). At higher temperature, the scatter of the data points
rapidly increases due to the overwhelming subtracted electron-phonon contribution.
This observation further establishes experimentally the full heat Coulomb blockade

theory for ballistic channels at arbitrary temperatures, beyond the low-temperature
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Figure 5.9: Control experiments. Left panel: control experiment at T, = 16
mK. Right panel: Comparison of three device configurations implementing N=2 (as
detailed in the figure).

systematic suppression of one ballistic quantum channel.

5.4.5 Electron-phonon coupling

Having established the heat Coulomb blockade prediction for ballistic channels, we
now use this prediction in order to investigate the additional mechanism for the dis-
sipation of heat, which we attribute to the coupling between electrons and phonons.
The figure 5.11 shows this additional contribution, obtained by subtracting the the-
oretical prediction for the electronic heat flow (equation 5.25) from the total heat
flow. All the data collapse into a single curve, independently of the number N of
electronics channels. It can be fitted by a simple power-law as expected for the heat

flow toward the phonons [93]:
JPh = B(TS — T (5.34)

We observe that the data correspond to an exponent of & = 5.85, above the exponent
of 5 characterizing the clean limit but in agreement with what can be expected for

the heat evacuation through coupling between hot electron and cold phonon in the
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Figure 5.10: Heat Coulomb blockade crossover. Symbols (continuous lines)
show the measured (predicted) heat current variation when changing N from
Nt = 4 at fixed Tq, renormalized by the quantum limit per channel Jg. The
crossover toward the low-temperature heat Coulomb blockade of one ballistic chan-
nel specifically shows as a difference with respect to the nearby horizontal dashed

line, whereas electron-phonon thermal transfers are canceled out.

presence of disorder: a € [4,6] [93]. The prefactor = 39 nW/K® is typical, given
the volume of the metallic island (volume of ~3 wm?3) and its composition: for
the gold, which is the main constituent of the metallic island, the electron-phonon
coupling constant is measured to be equal to 2.4 x 10° Wm *K~® for temperature
between 80 mK and 1.2 K and assuming a T° power law [99]. Note that the same
power law (same exponent and same prefactor) is found in a verification experiment
at the twice higher base temperature Ty = 16 mK. This verification ascertains that
the temperature of the phonons is the same as the electron temperature in the cold

reservoir that is measured by quantum shot noise for the electrons.
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Figure 5.11: Electron-phonon heat transfers. Subtracting heat Coulomb block-
ade predictions, the displayed remaining part of the heat current (symbols) collapse
onto a single curve for all N € {2,3,4,5}, fitted by a T3® functional (line, J&,).

ph

Inset, direct comparison between Jij, + Jie, (black continuous lines) and measured

total heat current Jyen (superimposed colored dashed lines).

5.4.6 Comparison of the theory with the raw noise data

For completeness, we here compare directly the theory to the raw data in the figure
5.12. The noise predictions are obtained from the heat flow predictions. The noise
data are the same as the one displayed in the figure 5.6 (right panel). Full lines
display the theoretical noise derived using the fluctuation dissipation formula (equa-
tion 5.33), with the excess temperature determined from the heat Coulomb blockade
theory (equation 5.25) and the electron-phonon coupling calibration (equation 5.34
with @ = 5.85 and f = 39 nW/K®). Dashed lines display the theoretical noise
derived without the electron-phonon coupling (which is only negligible at low island

temperature, ie low bias voltages).

110



CHAPTER 5. ELECTRONIC HEAT FLOW IN A COMPOSITE QUANTUM
CIRCUIT

AS;; (102°A%/Hz)

Figure 5.12: Direct comparison raw data/theory. In the main panel, we display
as points the same raw data of the figure 5.6 (right panel) using the same color code.
The colored full lines display the theoretical noise derived using the heat Coulomb
blockade theory and the heat flow from electrons to phonons. The colored dashed
lines display the theoretical noise without including the electron-phonon heat flow.

Offsets are added in order to improve the visibility.

5.4.7 Discussion about the heat Coulomb blockade of one

ballistic channel
Comparison with other experiments

In the previous experiment [82] performed in the team before my PhD, it was also
attempted to determine the full electronic heat flow. However, the contribution
of electron-phonon heat flow remained non-negligible in the previous experiment.
Therefore, a power law in 7° (o = 5 in equation 5.34) was assumed ad hoc for
modeling the transfers of heat from the hot electrons toward the cold phonons. In-
triguingly, no heat Coulomb blockade was detected with this electron-phonon model.

Re-analyzing these previous data without imposing a power law in 7°, we find that
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they are compatible with the presently observed heat Coulomb blockade. The overall
heat flow may be interpreted as the electronic heat flow reduce by the heat Coulomb
blockade observed plus a heat flow toward the cold phonons following the standard
relation 3(T> —T§') with a = 4.7 and § = 27 nW/K?.

Other measurements of the heat flow which may give rise to heat Coulomb blockade
have been reported in [92; 100]. In the reference [100], the main experiment, per-
formed at a base temperature of around 11 mK, was done in the fractional quantum
Hall regime. Although the electron-phonon contribution was assumed to be negligi-
ble, it is possible that the charging energy in their setup is too small, below kgx10
mK, for the heat Coulomb blockade to develop.

Why is exactly one channel blocked for the thermal transport?

As further discussed in section 5.3.1, the suppression of precisely one quantum of
thermal conductance for the transport of heat at low temperature can be explained
by the fact that the Coulomb interaction introduces correlations between the dif-
ferent electronic channels. In a similar way as the dipole-charge separation for
two interacting edge channels [101; 102], the N ballistic electronic channels can be
mapped onto a single charge mode (for example, identical current fluctuations on all
electronic channels) and N — 1 independent neutral modes (for example, opposite
current fluctuations on each of N —1 pairs of electronic channels). The charged mode
is interacting with the charge of the metallic island whereas the neutral modes are
totally decoupled from it. Therefore, in the limit of a low island capacitance where
fluctuations of the overall island’s charge are quenched because of the associated high
charging energy, no heat can be evacuated in the form of electronic current fluctua-
tions emitted along the single charge mode. However, heat evacuation through the

(N — 1) neutral modes is not impacted by the Coulomb charging energy.

The one channel limit

Note that this situation cannot be addressed in our device as we need more than one
channel for heating-up the island by Joule effect and for determining the tempera-
ture by noise measurement. In the single channel case (N =1) the heat Coulomb

blockade theory [19] predicts that the electronic heat flow is completely blocked at
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low temperature. Because of the strong link between heat, entropy and informa-
tion transfers [103], one may wonder if any quantum information is communicated
between electrons in the connected channels and the many Fermi quasiparticles in
the metallic island. The answer is no: remarkably, it is predicted [104] and now
experimentally observed in an interferometer [105] that the quantum phase of in-
going electrons is imprinted into the out-going electrons. I am co-first author of this

experiment that will be presented in the PhD thesis of Hadrien Duprez.
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5.5 Observation of the electronic heat flow in a

non-ballistic quantum circuit

5.5.1 Focusing on the electronic heat flow

Now, one of the channels is set to an arbitrary transmission probability 7 € [0, 1],
whereas the N other channels remain ballistic. This correspond to the “quantum
dissipative circuit” configuration presented in section 1.3.3. In this configuration, the
electrical conductance of the additional channel or arbitrary transmission probability
7 is affected by the dynamical Coulomb blockade and therefore depends on the
temperature. The Joule power Pj is injected through ballistic channels connected
to electrodes biased at voltage of opposite signs, such as the average voltage of
the metallic island remains null. This allows for a pure temperature bias across
the non-ballistic channel (without voltage bias), and also makes the injected Joule
power independent of the renormalized 7. In order to access to the electronic heat
flow over a broader temperature range, we subtract from Pj the heat flow toward
phonons Jg_pp separately calibrated with only ballistic channels (see figure 5.13). In
practice, for each measurement of the heat flow which will be presented hereafter, we
also performed a measurement at 7 = 1 in order to calibrate the heat flow toward the
cold phonons. As in the previous cooldown of the same sample, all the measurement
at 7 € {0,1} collapse into a single curve very close to the one presented in the
previous section. A fit performed on the ensemble of data shown in figure 5.13,
gives a heat flow toward the phonons Jo_p, = 2.7 x 1078(T57 — Ty").

5.5.2 Results

In the previous section, it was shown that the thermal conductance from a small
heated node connected to ballistic channels is reduced by precisely one quantum of
thermal conductance at low temperature from what is expected according to the
Wiedemann-Franz law. With such fixed reduction, the increment of the thermal
conductance when adding an extra ballistic channel is still linear, in accordance
with the Wiedemann-Franz law. Is it also the case when increasing continuously the

transmission probability across an electronic channel from 7 = 0 to 17 The answer
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Figure 5.13: Electron-phonon heat transfers. Subtracting heat Coulomb block-
ade predictions, the displayed remaining part of the heat current (symbols) collapse
onto a single curve for all N € {2,3,4}, fitted by a T3" functional (black full line).
The dashed line correspond to the fit obtained in the previous section (in a different

cooldown of the same sample).

is no, as predicted by our model in section 5.3.1, and as we will experimentally show
now. In the figure 5.14 we present the measured electronic heat flow normalized
by the quantum limit per channel, for different settings of the circuit, spanning the
full range of 7 at N = 2. The two black thick lines display the heat Coulomb
blockade prediction in the ballistic case for 7 = 0 (bottom line), and 7 = 1 (top
line). The different settings of the non-ballistic QPC are encoded by the different
colors. The dashed lines correspond to linear, Wiedemann-Franz-like, interpolations
between ballistic predictions at N and N + 1, weighted respectively by 1 — 7 and
7 measured for the corresponding data. The deviation from the dashed lines is
particularly significant at intermediate 7. This shows that the heat flow increases
when increasing the transmission 7 does not reduce to a linear increase. In contrast,
the novel predictions of equation 5.25 lie close to the data, without any adjustable

parameter. Note that in our theoretical treatment, the dynamical Coulomb blockade
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renormalization of the electron transmission probability 7 is considered separately:
the renormalized 7 simultaneously measured is injected in equation 5.25. In the
figures 5.15 and 5.16, we show similar measurement for N = 3 and N = 4 ballistic
channels, presented in figure 5.15 and 5.16. We performed additional test at higher
temperature Ty =16 mK, shown in the figure 5.17 where all configurations (N=2,3

and 4 ballistic channels) are plotted in the same panel.

22 T T T T T
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Figure 5.14: Heat flow through N = 2 ballistic and one partially transmit-
ted channel. Data points show the measured heat flow for 2 ballistic channels and
different settings of 7. The thick black lines display the Heat Coulomb blockade
prediction for ballistic channels (N = 2 for the bottom, N = 3 for the top). The
dashed lines are linear interpolations between ballistic predictions at N = 2 and
N = 3 weighted respectively by 7 and 1 — 7. The full colored lines are the pre-
diction derived in section 5.3.1, where we have injected the measured transmission

probability of the QPC 3.
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Figure 5.15: Heat flow through N = 3 ballistic and one partially transmitted
channel. Data points show the measured heat flow for 3 ballistic channels and
different settings of 7. The thick black lines display the Heat Coulomb blockade
prediction for ballistic channels (N = 3 for the bottom, N = 4 for the top). The
dashed lines are linear interpolations between ballistic predictions at N = 3 and
N = 4 weighted respectively by 7 and 1 —7. The full colored lines are the prediction
derived in section 5.3.1 where we have injected the measured transmission probability
of the QPC 3.

5.5.3 Comparison with predicted deviations from a Wiedemann-

Franz increase of Jj

At low temperatures Tq, Ty << h/kgRC, the difference between the prediction and
linear interpolation of the ballistic theory reads:

(1 —171)

J _ (N —1) x J3* =~
Q (N7 ) Q N+

max
X JQ

Note that J% = 0 for N = 0 at low temperatures, whatever the value of 7. Note also
that the combined role of electron-partition and Coulomb interaction is attested by

the 7(1—7) factor and by the fact that this difference progressively vanishes together
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Figure 5.16: Heat flow through N = 4 ballistic and one partially transmitted
channel. Data points show the measured heat flow for 4 ballistic channels and
different settings of 7. The thick black lines display the Heat Coulomb blockade
prediction for ballistic channels (N = 4 for the bottom, N = 5 for the top). The
dashed lines are linear interpolations between ballistic predictions at N = 4 and
N = 5 weighted respectively by 7 and 1 —7. The full colored lines are the prediction
derived in section 5.3.1 where we have injected the measured transmission probability
of the QPC 3.

with Coulomb effects as the temperatures is increased. In the figures 5.18, 5.19 and
5.20 we display the electronic heat flow for respectively N = 2, 3, and 4 subtracted
from the interpolation between ballistic predictions, normalized by the quantum
limit of heat flow per channel. We plot only points for temperature T between 20
and 60 mK where the statistical uncertainty are the smallest. The continuous line

displays the low temperature prediction 7(1 — 7)/(N + 7).
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Figure 5.17: Control experiment at a bath temperature of 16 mK. Electronic
heat flow for N = 2 (circle), 3 (diamond) and 4 (triangle) ballistic channels. The
higher statistical uncertainties compared to the scattering of the points, which seems
similar to the measurements done at lower temperature, come from the determina-

tion with lower resolution of the bath temperature Tj,.

5.6 Conclusion

In this chapter, we presented measurements of the electronic heat flow through
circuits composed of several quantum channels. We observed two mechanisms in-
fluencing the heat flow in the presence of Coulomb interactions combined or not
with shot noise. This leads to different deviations from the Wiedemann-Franz law.

These discoveries advance our understanding of heat quantum transport and open
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Figure 5.18: Deviation from linear interpolation for N = 2. The difference
between the data points and the corresponding linear interpolations for N = 2
ballistic channels, versus the transmission probability of the QPC 3 is plotted. The
black line correspond to the asymptotic limit at 7' << h/kgRC: 7(1 —7)/(N + 7).

Open and full symbols distinguish separate sequences of measurements.
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Figure 5.19: Deviation from linear interpolation for N = 3. The difference
between the data points and the corresponding linear interpolations for N = 3
ballistic channels, versus the transmission probability of the QPC 3 is plotted. The
black line corresponds to the asymptotic limit at 7' << h/kgRC: 7(1 —7)/(N + 7).

new perspectives for managing heat in small nano-devices.
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Figure 5.20: Deviation from linear interpolation for N = 4. The difference

between the data points and the corresponding linear interpolations for N=4 ballistic

channels, versus the transmission probability of the QPC 3 is plotted. The black
line corresponds to the asymptotic limit at 7" << h/kgRC: 7(1 —7)/(N + 7).
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Conclusion

In this thesis, we have investigated the shot noise and the heat flow in elementary
quantum circuits composed of a few quantum channels connected to a single, small
metallic node. In practice, three quantum point contacts formed by field effect in a
2D electron gas provide test-beds for arbitrary short quantum channels, and were
connected to a micrometer-sized metallic island. Whereas quantum channels con-
nected in parallel to voltage-biased electrodes are independent from one another, the
Coulomb charging energy of the floating island/circuit node correlates the channels
with a profound influence on transport. It is well-established that these correlations
can strongly reduce the electrical conductance, the dynamical Coulomb blockade.
However, experimental studies of their impact on shot-noise and heat flow remained
wanting. This PhD work constitutes a first step in the experimental investigation of
the influence of Coulomb interaction on the noise and heat transport of composite

quantum circuits. Four mains achievements can be singled out:

e The observation of a type of fluctuation-dissipation relation between the vari-
ation of the shot noise and the variation of the renormalized conductance as
a function of bias voltage. This relation takes place in a quantum dissipative
circuit composed of one non-ballistic quantum channel in series with a lin-
ear resistance, and was predicted in the connected Tomonaga-Luttinger liquid

context.

e The observation of the ‘thermal” shot noise solely induced by a temperature
difference. Our work complements and strengthens the nearly simultaneous
observation in atomic contacts [18], and directly establishes the predictions

from the scattering theory of quantum transport.

e The observation of a new form of Coulomb blockade that only applies to heat in
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ballistic circuits, whereas the dc electrical transport is not affected. This ‘heat
Coulomb blockade” manifests as the universal suppression of a single ballistic

channel for the transport of heat, whatever the total number of channels.

e The observation of a new heat flow mechanism with non-ballistic channels,
involving a combination of both the Coulomb interaction and the ‘thermal’

shot noise.

On the technical side, one crucial advance that made possible most of these achieve-
ments was the implementation of advanced noise measurement strategies combining
simultaneous measurements of the auto- and cross-correlations of current fluctua-
tions. The complementary information allowed us to distinguish between different
sources of noise, namely the thermal emission from the heated-up metallic node and
the shot-noise across non-ballistic channels. We expect that the developed methods
will form the basis for further investigations of the quantum laws of heat, noise and
thermoelectricity in circuits and may also help elucidating intriguing behaviors in
the fractional quantum Hall regime. In this PhD work, only a single channel at
most was not ballistic. The straightforward next step is to extend this investigation
to circuits including several arbitrary channels, where the Coulomb-induced corre-
lations between channels can give rise to exotic many-body phenomena such the
multi-channel Kondo effect. Another future step will be to go beyond the short
quantum channels presently studied. In channels formed by an interferometer or a
resonant quantum dot, the energy corresponding to h (the Planck constant) over the
electrons transit time, and the connected energy dependence of electrons’ transmis-
sion probabilities are expected to constitute novel important energy scales. Already,
a remarkable achievement would be to demonstrate the quantum phase control of

heat flow along an electronic Mach-Zehnder interferometer.
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Appendix A

Refinement about electrons

temperature determination

A.1 Electronic base temperature determination

including ac voltage

For precise measurement of the base temperature, the injected ac voltage used to
simultaneously measure the transmission probability has an influence on the excess
noise that should be included in the analysis. To take into account this effect, we
add the contribution of the ac voltage in the formula equation 1.4. We use the

Taylor development at order two in V,.:

e(V + Vae) eV
h{— | ~ h
(V + V) cot ( T ) V cot <2kBT>

+ erC {—1+evcoth( eV >}cosinh2< eV >
2kpT 2kpT 2kpT 2kgT )’

where V,. is the RMS value of the injected voltage. In practice, the effect of the
ac voltage would be to increase artificially the measured temperature by around 0.1

mK if its contribution was not included in the analysis.
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DETERMINATION

A.2 Heating contribution by ac voltage

Although weak, the injection of ac voltage (V* & 0.23 uV ) in order to simultane-
ously determine the differential conductance of the sample heats up the small central
metallic island above the base temperature measured by shot noise thermometry,
even in absence of dc voltage. In order to determine this small increase of tempera-
ture, we measure the cross-correlation at zero dc voltage. The instrumental offset is
calibrated before and after each measurement. The difference of offset between the
calibration and the measurement is attributed to a heating of the metallic island
whose excess temperature is given by the relation:

1Mo
N+

S12(V = 0) = —2kpThoe/ Ric (A.1)

This formula comes straightforwardly from the fluctuation dissipation theorem (see
chapter 2). The effect of shot noise is completely negligible for this small excess
temperature, which is typically in the order of 0.3 mK (always below 0.6 mK). This
small temperature difference is included in the experimental determination of T¢, for
all experiments presented in this thesis, except the experiment concerning the heat
flow through ballistic channels where only auto-correlation noise was measured. The
effect of the ac voltage injected is also taking into account in order to determine the

total dissipated Joule power using the relation:

3 ‘/;ac 2
Py=3 ( 5 ) G, (A.2)
i=1

where G ; is the conductance of the sample seen from electrode M7 and V;* the ac
voltage applied in electrode Si (see figure 1.1). In practice, P$¢ is below 1% of the
total Joule power injected for T, > 20 mK.
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Appendix B
Conductance Formulae

In the following, we note Var; the voltage measured in electrode ¢ (see figure 1.1) at
frequency j, and V; the injected voltage, which is by current conservation, the sum
of the three voltages measured at the same frequency f;: V; = Z§:1 Viarj. We can
calculate the conductance of the sample by two redundant ways: considering in one
case the current transmitted through the sample or in the other case, the current

reflected.

Conductance from reflected current

By current conservation we have:

v v G
e
Rk Rx Rx

with Gg; the differential conductance of the sample seen from electrodes i. It leads

Viafi (B.1)

to the relation: -
Gei=v(1- @f> B.2
i=v(1- (B:2)

Conductance from the transmitted current

By current conservation we have:

Gsi v v . . . .
ViRiI; — j@fiR—K+Vk@fiR—K, with j, k # iand j # k. (B.3)
Which leads to the relation:
Viari + Viari
Goy=v (W> (B.4)
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Conductance of each QPC

We note G; the conductance of the QPC 7. The conductance of the sample seen

from electrode i as function of the conductance of each QPC is:

Gi(G; + Gy)
Gy = 2 "2 B.5
TG +G Gy (B:5)
If none of the QPC is completely pinched off, once we have determined Gg; for
i = 1,2, 3 using equation B.2 or B.4, we can invert the equation system and find the

conductance of each QPC.
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Appendix C
Résumé en francais

Dans cette these, nous explorons les lois quantiques régissant le transport dans un
petit circuit électrique. Pour révéler ces comportements quantiques, nos expériences
sont réalisées a basse température, sur de petits conducteurs. Dans ce contexte,
I'interaction de Coulomb combinée a la granularité de la charge conduit souvent a
une violation des lois classiques de la composition des impédances. L’énergie de
charge des nocuds du circuit crée des corrélations entre les conducteurs cohérents
interconnectés qui ont une profonde influence sur le transport. Il est bien établi
que ces corrélations peuvent réduire considérablement la conductance électrique,
un phénomene appelé blocage de Coulomb dynamique (DCB). Cependant, leur in-
fluence sur les fluctuations de courant et le flux de chaleur reste a peine explorée
expérimentalement. Cette these est une premiere étape dans I’'étude expérimentale,
au-dela de la simple conductance électrique, des circuits quantiques composites. Le
circuit étudié, représenté sur la figure C.1, est constitué d’un ilot métallique de taille
micrométrique relié a plusieurs canaux de conduction quantiques élémentaires. Le
nombre de canaux ainsi que leurs transmissions individuelles sont réglables avec pré-
cision. Ce circuit simple comprend un noeud unique formé par un ilot métallique
dont I'importante énergie de charge Fc = €2/2C ~ kg x 0,3K (C est sa capacité)
peut étre beaucoup plus grande que les énergies thermique et électrique, étant donné
la température de base Ty =~ 8 mK. Les outils a notre disposition pour cette étude
sont les conductances et les mesures de bruit de courants. Le bruit électronique dans
le circuit provient de différentes sources : le bruit de grenaille provient du transfert

granulaire de charge a travers les canaux de conduction quantique non balistique
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et le bruit de Johnson-Nyquist provient de I’agitation thermique des électrons. Les
deux dépendent des tensions appliquées car ’application de ces tensions entrainent
également un chauffage par effet Joule de I'llot métallique central. En effectuant
simultanément des mesures d’auto-corrélations et de corrélations croisées de fluc-
tuations électriques, nous sommes en mesure de distinguer les différentes sources
de bruit, et ainsi de déterminer séparément ’augmentation de température de I'ilot
métallique central (Tg — Tp), le bruit de grenaille a travers les canaux non balis-
tiques et le flux de chaleur. Cette these présente quatre résultats obtenus par cette
approche, dont deux sont liés aux mesures des fluctuations de courant et deux autres
au flux de chaleur comme décrit ci-dessous. Ces résultats font progresser notre com-
préhension des fluctuations de courant, du transport électrique et thermique dans
un circuit quantique composite. En outre, nous nous attendons a ce que les straté-
gies avancées de mesure du bruit combinant des auto-corrélations et des corrélations
croisées mises au point dans cette these ouvrent la voie a de nouvelles recherches
sur les lois quantiques du transport et fournissent de nouvelles perspectives sur des

systemes complexes tels que les états de l'effet Hall quantique fractionnaire.

130



APPENDIX C. RESUME EN FRANCAIS

Figure C.1: Micrographe en fausses couleurs (a4 gauche) et schéma (a

droite) représentant ’échantillon mesuré au cours de cette these. Un
ilot métallique est en contact avec trois branches distinctes formées dans un gaz
électronique bidimensionnel situé a 105 nm sous la surface. La connexion avec de
grands contacts (représentés par des rectangles) est controlée par effet de champ a
'aide de grilles métallique (représentées en jaune) couplées capacitivement, formant
ainsi des contacts ponctuels quantiques (QPC). L’échantillon est immergé dans un
champ magnétique perpendiculaire correspondant a l’effet hall quantique avec un
facteur de remplissage de v = 2. Le courant se propage donc le long de deux canaux
de bord chiraux (lignes avec fleches). Sur la configuration illustrée a gauche, les
électrodes 1 et 2 sont chacune connectées par un canal parfaitement transmis tandis
que l'électrode 3 est connectée par un canal partiellement transmis par le contact

ponctuel quantique.
Bruit hors équilibre dans un circuit quantique dissipatif

Bruit de grenaille en présence de blocage de Coulomb dynamique

Nous explorons ici le bruit de grenaille induit par une polarisation de tension dans
un circuit quantique dissipatif et sa relation avec la conductance électrique lorsqu’un
seul canal est en série avec une résistance linéaire. Il est prévut théoriquement que la

dépendance en tension de polarisation des deux observables est reliée par une relation
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de type fluctuation-dissipation [17]. Le circuit est ajusté par effet de champ pour
avoir un canal de conduction caractérisé par une probabilité de transmission entiere-
ment réglable en série avec une résistance linéaire formée de N canaux balistiques
en parallele, émulant ainsi une résistance R.,, = Rk/N avec Rx = h/ e? ~ 25,8
kQ le quantum de résistance et N € {2,3}. La conductance d'un tel circuit est
renormalisée a basse température et a basse tension (eV, kgT < NE¢, avec V
la tension appliquée a la grande électrode connectée au canal non balistique) par
le phénomene de blocage dynamique de Coulomb (DCB): du fait des interactions
coulombiennes, la granularité de la charge permet d’exciter les modes électromag-
nétiques de l'environnement formés par sa capacité et la résistance R.,,, ce qui
empéche les transferts de charges a faible énergie et réduit ainsi la conductance. De
plus, & basse énergie (eV, kgT < N E() ce circuit avec un seul canal non balistique
est décrit par la théorie des liquides de Tomonaga-Luttinger (TLL) avec comme
parametre d’interaction K = 1/(14 Reny/Rx ), comme théoriquement [17] et expéri-
mentalement [20; 21] démontré.

Ici, le bruit mesuré est d’abord comparé aux prédictions de la théorie de diffusion
[13], qui est une théorie sans interaction dans laquelle nous injectons la valeur renor-
malisée mesurée de la conductance par le DCB. Ces prévisions de bruit fournissent
une bonne approximation des données. Ils nous permettent également de calculer
et de soustraire une contribution relativement faible mais non négligeable du bruit
thermique qui permet une comparaison précise du bruit mesuré avec les prédictions
TLL uniquement disponibles a température nulle pour le bruit. A notre résolution,
les mesures ne permettent pas de distinguer entre les prédictions de la théorie de
diffusion utilisant la conductance renormalisée et celles de la théorie TLL : bien que
différentes, les deux approches donnent des résultats quantitativement tres proches.
Cependant, nous pouvons établir la relation de fluctuation-dissipation prévue spé-
cifiquement dans le cadre de la théorie TLL, reliant la variation de la conductance
en fonction de la tension a la variation du bruit de grenaille en fonction de la ten-
sion. Ces résultats constituent une nouvelle étape dans 1’étude des fluctuations de
courant dans les liquides Tomonaga-Luttinger et dans les circuits quantiques com-

posites régis par 'interaction de Coulomb.

Article :
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E.Sivre, H.Duprez, A.Anthore, A. Aassime, F.D. Parmentier, A. Cavanna, A. Ouerghi,

U. Gennser et F. Pierre. (en préparation)

Bruit de grenaille induit par une différence de température

Dans cette expérience, nous testons directement les prédictions de la théorie de diffu-
sion pour le bruit de grenaille induit uniquement par une différence de température,
en 'absence d’une différence de tension continue. Le circuit est ajusté de la méme
maniére que dans 'expérience précédente (un canal non balistique, N canaux bal-
istiques). La différence est que des tensions équilibrées de signes opposés ne sont
appliquées qu’a travers les canaux balistiques, de sorte que I'tlot métallique central
est chauffé par effet Joule sans aucune différence de tension continue a travers le
canal imparfaitement transmis. FEn utilisant des mesures d’auto-corrélation et de
corrélation croisée des fluctuations de courant, nous pouvons observer le bruit de
grenaille induit par la différence de température a travers le canal imparfait, séparé-
ment du bruit de Johnson-Nyquist. Bien que prévu depuis longtemps, ce "bruit de
grenaille thermique” n’a été mesuré pour la premiere fois que tres récemment, dans
un contact atomique [18]. Nous consolidons ici les résultats de [18] en utilisant un
QPC avec un seul canal de probabilité de transmission connue, permettant ainsi une
comparaison directe avec la théorie. L’accord quantitatif de nos mesures avec les

prédictions établit en outre la théorie de diffusion pour le bruit [13].

Article publié :

E.Sivre, H.Duprez, A.Anthore, A. Aassime, F.D. Parmentier, A. Cavanna, A. Ouerghi,
U. Gennser et F. Pierre. Electronic heat flow and thermal shot noise in quantum
circuits. Nat.Commun. 10, 5638 (2019)
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Flux de chaleur dans un circuit composite
Blocage de Coulomb de la chaleur d’un canal balistique

L’objectif est d’étudier les regles de composition d’'impédance thermique pour plusieurs
canaux balistiques connectés en parallele a un petit nceud de circuit flottant. En
conséquence, le circuit est réglé de sorte que I'ilot central n’est connecté que par des
canaux balistiques N (N € {2,3,4,5}). Une tension continue est appliquée pour
chauffer I'llot central. Par conservation de I’énergie, en régime stationnaire, le flux
de chaleur sortant total est égal a la puissance, bien connue, injectée dans I'ilot par
effet Joule. Par la mesure du bruit thermique, nous déduisons la température des
électrons Tq, dans I'llot métallique. Ainsi, nous déduisons le flux de chaleur total en
fonction de la température. Ce flux de chaleur total comprend deux contributions
le flux de chaleur électronique a travers les canaux de conduction connectés a
Illot et le transfert de chaleur des électrons aux phonons a l'intérieur de I'llot. En
nous concentrant sur les tres basses températures (T < 25 mK), ou les transferts
de chaleur vers les phonons deviennent négligeables, nous observons une nouvelle
forme de blocage de Coulomb qui s’applique spécifiquement au flux de chaleur élec-
tronique sortant de I'llot métallique, tandis que la conductance électrique n’est pas
affectée. Notre conclusion est en accord avec la théorie [19], mais en violation de la
loi de Wiedemann-Franz. Cette réduction du flux thermique correspond a la sup-
pression systématique d’un canal électronique unique pour le transport de chaleur,
quel que soit le nombre total de canaux balistiques N. Les corrélations entre les
canaux qui conduisent a une telle réduction sélective du flux de chaleur résultent
de T'absence d’accumulation de charge dans I'llot métallique sur toute la plage de
fréquence thermique (w < kgTa/h), qui est imposée lorsque 1’énergie de charge E¢
est suffisamment grande (NE¢ > kgTg). Pour des températures plus élevées, on
peut séparer le flux de chaleur électronique du transfert de chaleur non négligeable
vers les phonons en exploitant le fait que ce dernier ne dépend que de la température
et non du nombre de canaux connectés. Cela nous a permis de valider la théorie
également au-dela du régime des basses températures, le long du crossover vers une

absence de blocage de Coulomb de la chaleur a haute température.

Article publié :
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E.Sivre, A.Anthore, F.D. Parmentier, A. Cavanna, U. Gennser, A. Ouerghi, Y. Jin
et F. Pierre. Heat Coulomb blockade of one ballistic channel. Nat. Phys. 14, 145-148
(2018)

Flux de chaleur augmenté par le bruit de grenaille thermique et ’interaction
de Coulomb

L’étude des regles de composition d’impédance thermique est ici poussée un peu
plus loin, en incluant dans le circuit un canal non balistique. L’exploitation des con-
naissances précédemment établies dans le cas balistique nous permet de déterminer
les transferts de chaleur des électrons aux phonons a l'intérieur de I'tlot métallique
central (qui ne dépend pas de la configuration du circuit). Nous avons ainsi obtenu
le transfert de chaleur électronique via N + 1 canaux (N € {2,3,4}), dont I'un est
caractérisé par une probabilité de transmission intermédiaire. Remarquablement, la
présence du canal partiellement transmis donne lieu a une contribution supplémen-
taire au flux de chaleur électronique. Ce phénomene résulte d'un effet combiné de
I'interaction de Coulomb et du "bruit de grenaille thermique” associé a la différence
de température a travers le canal imparfaitement transmis. Un tres bon accord quan-
titatif est observé entre les données et les nouvelles prédictions théoriques obtenues
en étendant I'approche de Fokker-Planck de [19].

Article publié :

E.Sivre, H.Duprez, A.Anthore, A. Aassime, F.D. Parmentier, A. Cavanna, A. Ouerghi,
U. Gennser et F. Pierre. Electronic heat flow and thermal shot noise in quantum
circuits. Nat.Commun. 10, 5638 (2019)

Autres travaux publiés non abordés dans cette these :

H. Duprez, E.Sivre, A.Anthore, A. Aassime, A. Cavanna, A. Ouerghi, U. Gennser,
and F. Pierre. Macroscopic electron quantum coherence in a solid-state circuit. PRX
9, 021030 (2019)

H. Duprez, E.Sivre, A.Anthore, A. Aassime, A. Cavanna, U. Gennser, and F. Pierre.
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Transferring the quantum state of electrons across a metallic island with Coulomb
interaction. Science 366(6470), 1243-1247 (2019)
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Appendix D

Abbreviations and symbols

2DEG | Two dimensional electron gas
DCB | Dynamical Coulomb blockade
QHE | Quantum Hall effect
QPC | Quantum point contact

SET | Single electron transistor

TLL | Tomonaga-luttinger liquid

Table D.1: List of acronyms
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e~1.60x 1071 C
h~6.63x1073*J.s
h=h/2m

kp =~ 1.38 x 10723 J/K
Ric = h/e? =~ 25.8 kQ
Gk = é*/h

o

C ~31f1F

Eq = e?/2C

N

-

Ty

To

v

Electron charge

Planck constant

Reduced Planck constant

Boltzmann constant

Resistance quantum

Conductance quantum

Fractional charge

Capacitance of the metallic island

Charging energy of the metallic island

Number of ballistic channels

Transmission probability of the non-ballistic channel
Electrons base temperature

Electrons temperature in the central metallic island

Filling factor
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Heat Coulomb Blockade of One Ballistic Channel
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Quantum mechanics and Coulomb interaction dictate
the behavior of small circuits. The thermal implications
cover fundamental topics from quantum control of heat to
quantum thermodynamics, with prospects of novel thermal
machines and an ineluctably growing influence on nano-
circuit engineering!"?.  Experimentally, the rare observa-
tions thus far include the universal thermal conductance
quantum® 7 and heat interferometry®. However, evidences
for many-body thermal effects paving the way to markedly
different heat and electrical behaviors in quantum circuits
remain wanting. Here we report on the observation of
the Coulomb blockade of electronic heat flow from a small
metallic circuit node, beyond the widespread Wiedemann-
Franz law paradigm. We demonstrate this thermal many-
body phenomenon for perfect (ballistic) conduction chan-
nels to the node, where it amounts to the universal sup-
pression of precisely one quantum of conductance for the
transport of heat, but none for electricity’. The inter-
channel correlations that give rise to such selective heat
current reduction emerge from local charge conservation,
in the floating node over the full thermal frequency range
(Stemperaturexkp/h). This observation establishes the dif-
ferent nature of the quantum laws for thermal transport in
nanocircuits.

The non-interacting ‘scattering’ approach to quantum
transport describes coherent conductors as a set of in-
dependent channels!®''. However, in circuits with small
floating nodes, the Coulomb interaction induces inter-
channel correlations, including among distinct conduct-
ors connected to the same node. Consequences are wide-
ranging, from the emblematic ‘Coulomb blockade’ sup-
pression of electrical conduction at low voltages and
temperatures'? 1% to exotic ‘charge’ Kondo physics'%17.
Remarkably, Coulomb effects can be profoundly differ-
ent in the charge and heat sectors, in violation of the
standard Wiedemann-Franz ratio between electronic con-
ductances of heat and electricity (7?k37/3e* with e the
elementary electron charge, kg the Boltzmann constant,
T the temperature). For ballistic conductors, along
which electrons are never reflected backward, the elec-
trical conductance Geec is predicted'® 20 and found?' 2
immune against Coulomb blockade, essentially because
charge flow is noiseless (Geee = N x Gy, with N the
number of channels, G¢, = e?/h the electrical conduct-
ance quantum and h the Planck constant). Nonetheless,
theory predicts? a universal suppression of the heat con-
ductance Gheat across ballistic conductors connected to a

* e-mail: frederic.pierre@Qu-psud.fr

Figure 1.
small metallic island (brighter) is in galvanic contact with three

Experimental setup. a, Device micrograph. A

distinct branches of a two-dimensional electron gas (darker grey;
etched trenches visible underneath the island). The connection
to large electrodes further away (represented by rectangles for
branches 1 and 2) is controlled by field effect using capacitively
coupled gates (grey with a bright delimitation). The sample is set
in the integer quantum Hall regime at filling factor v = 2, where the
current propagates along two chiral edge channels (lines with ar-
rows). In the displayed configuration, electrodes 1, 2 and 3 are
connected by, respectively, one, two and zero fully transmitted
channels (N1 = 1,N2 = 2, N3 = 0). Applying a dc bias voltage
V to electrode 1 dissipates the Joule power Pj into the island. The
resulting temperature rise T — T is determined from the meas-
ured increase of electrical fluctuations on electrode D. b, Heat flow
schematic. Injected power and net outgoing heat current exactly
compensate each other in the steady state (Py = J&._ + J]fat). The
N ballistic electronic channels (here N = 3 shown as black lines) can
be mapped onto one channel-symmetric charge mode suppressed
by the heat Coulomb blockade (crossed symmetric charge pulses),
and N —1 independent dipole (neutral) modes decoupled from the
island’s charge (antisymmetric charge pulses).

small, floating circuit node by precisely one quantum of
thermal conductance Gg =12 kET/3h (Ghear = (N - 1) x

Gg), as presently observed experimentally.



This violation of the Wiedemann-Franz relation does
not result from an energy dependent electronic density
of states, nor from the high-pass energy filtering across
single electron transistors?*2>. We describe the underly-
ing mechanism in the spirit of Ref. 9, specifically focusing
on a metallic node connected to large voltage biased elec-
trodes through a total of N ballistic channels (Fig. 1a,b).
Electronic heat currents can be viewed as the propaga-
tion of electrical current fluctuations within a broad fre-
quency bandwidth, extending up to the thermal cutoff
~ kgT/h. For a voltage biased electrode, the emitted
fluctuations result from the thermal broadening of the
electron Fermi distribution. For a floating circuit node,
charge conservation imposes that the thermal emission
of a net charge through a current pulse is also accom-
panied by an opposite charge accumulation in the node.
Such charge accumulation relaxes in the characteristic
RC time (with R = 1/NG?;2 here, and C' the node geo-
metrical capacitance), which suppresses the overall (net)
charge fluctuations emitted from the node (thermal plus
subsequent relaxation) at frequencies below ~ 1/RC. At
low temperature kpT <« h/RC (kT <« NE¢ here, with
E¢ = €2/2C the node charging energy), where this sup-
pression covers the full thermal frequency range, it can
result in an important reduction of the total heat current.
Note that the electrical fluctuations emitted from such a
floating node were previously explored in the context of
using a ‘voltage probe’ to emulate inclastic mechanisms
within the scattering theory of quantum transport (see
e.g. Ref. 26 and references within). An intuitive way to
understand why, for ballistic conductors this reduction
amounts universally to one heat transport channel, is to
note” that N ballistic electronic channels can be mapped
onto a single charge mode (e.g. identical current fluc-
tuations on all electronic channels) and N -1 independ-
ent neutral modes (e.g. opposite current fluctuations on
each of N -1 pairs of electronic channels), as schem-
atically illustrated Fig. 1b. The N — 1 ballistic neutral
modes are completely decoupled from the global charge of
the island, and therefore contribute each by one (univer-
sal) quantum of thermal conductance Gg. In contrast,
the electrical current fluctuations propagating along the
single charge mode are directly connected with fluctu-
ations of the node’s charge. Negligible charge accumula-
tion in the node for frequencies $ kgT'/h therefore com-
pletely blocks the charge mode and suppresses its contri-
bution to heat transport, resulting in Gpeat = (N—l)ng.

The experiment expands on an approach introduced
to measure the thermal conductance quantum across
electronic channels®. In contrast to previous works®S,
the present implementation down to electronic temper-
atures of 8mK (Methods) allows for the direct observa-
tion of the heat Coulomb blockade, which requires that
energy transfers between electrons and phonons in the
node remain negligible with respect to those through
one ballistic channel. The device consists of a cent-
ral metallic island (the circuit node, see Fig. 1a) sep-
arately connected to three large electrodes indexed by

i € {1,2,3} through, respectively, N; ballistic quantum
channels (N = Ni+Ny+N3). A Joule power Py = V2Gp/2
controlled by the dc voltage V applied to electrode 1 dis-
sipates into the electronic fluid within the island (the
remaining voltage generator power going into the large
electrodes, see Methods), with electrodes 2 and 3 being
grounded and Gp the corresponding conductance across
the device (here, Gp = Gg/ [Nl‘1 + (N +N3)‘1]). As
a result, the metallic island heats up to a steady-state
electronic temperature T, > T (with T the base elec-
tronic temperature), such that P; and net outgoing heat
flow Jheat exactly compensate (Pj = Jheat). The de-
termination of T through thermal noise measurements
therefore directly provides the Jueat-(To — T') charac-
teristics. In general, Jpea; is the sum of different con-
tributions, including mainly the electronic heat current
J& (N,Tqo,T) and thermal transfers to the substrate
phonons Jlfé;t(TQ,T ): Jheat = JEL, + Jfl’;t. However, at
To < 20mK, the rapidly decreasing energy transfers to-
ward phonons are found to become negligible such that
Py = Jheat = Jﬁ(leay

The ballistic electronic channels are realized in a
high-mobility Al(Ga)As two-dimensional electron gas
(2DEG), tuned in the integer quantum Hall regime to
the filling factor v = 2 with an applied perpendicu-
lar magnetic field B ~ 4.1T. Without loss of gener-
ality, we benefit from the topologically protected bal-
listic character of the chiral quantum Hall channels (lines
with arrows in Fig. la). With v channels propagat-
ing along each edge, it is possible to adjust separately
N; €{0,1,2} using the field effect. The device was tuned
to N €{2,3,4,5} with at least one ballistic channel con-
necting the central island to both the large electrodes one
and two (N7 =1, Ny € {1,2} and N3 € {0, 1,2}, except for
tests in Methods). The micrometer-scale metallic island,
mainly composed of gold, is associated with a continu-
ous electronic density of states and a charging energy
Ec ~ kg x 0.3K (Methods). By thermal annealing, we
achieve negligible levels of electron reflection probabil-
ity at the 2DEG /island interface, as detailed per channel
in Methods. This is essential not only to reach the bal-
listic limit, but also because residual reflections would im-
pede the noise thermometry through additional quantum
shot noise. The electron temperature is obtained from
electrical current fluctuations, resolved down to a stat-
istical uncertainty of +510732 A%/Hz at frequencies near
1 MHz, using a homemade preamplifier®” cooled to 3.9K.
Quantum shot noise measurements provide the in-situ
calibrations of the noise amplification chain gain (+0.1%,
all uncertainties and displayed error bars are statistical
standard errors), and of the base electronic temperature
T ~ 8mK (£1%, further confirmed by dynamical Cou-
lomb blockade thermometry®, see Methods). At non-
zero Joule power, the temperature increase T — T of the
metallic island electrons is directly connected to a rise in
emitted current noise. In the spirit of the robust Johnson-
Nyquist thermometry, the excess noise Sey. measured on
the floating electrode D (Fig. 1a) with respect to the noise
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Figure 2.

Heat Coulomb blockade of one ballistic channel. a, The island electron temperature T, is plotted versus dissipated

Joule power Pj, for different numbers N of connected ballistic channels. It is obtained from the excess noise spectral density Sexc measured
electrode D, shown in the bottom-right inset versus the dc voltage V applied to electrode 1: T = T+ Sexc/(2ksGs), Py = V2Gp /2. Top-left

inset, the device electrical conductances Gg p (lines, see text) match their expected quantum limited values (superimposed thick ticks on

side axis) independently of V: they are not reduced by Coulomb blockade. b, Symbols (statistical uncertainties shown when distinctly

larger) represent the overall heat flow (Jpeat = Py) displayed versus Té -T2, at low temperatures where electron-phonon interactions are

reduced (T < 25mK). The nearby straight dashed lines show (N -1) x JS, corresponding to a systematic heat current suppression of

1><J84

at V =0 reads®?62%: S, = 2Gskp(To—-T), with Gg the
electrical conductance across the device from electrode
2 to electrodes 1 and 3 (in absence of electrical Cou-
lomb blockade, Gs = G&/[N5'+ (Ny + Ns)™]). Note
that further tests made in order to eliminate possible ex-
perimental artifacts are described in Methods.

In Fig. 2a we show measurements of the excess noise
spectral density Sexe (bottom-right inset) and of the
conductances Gg (left side of top-left inset) and Gp
(right side of top-left inset), all as a function of the dc
voltage V applied to electrode 1. Each color corresponds
to one device configuration N [Ny, No, N3] € {2[1,1,0],
3[1,1,1], 4[1,1,2], 5[1,2,2]}, with a color code fixed
from now on. The island heating is manifested in the
increase of Sexc at finite V. In contrast, both Gg
and Gp remain indistinguishable from their maximum
quantum limit (respectively G/ [Nz‘1 +(Ny + N3)‘1]
and Gg/ [Nl_l +(Na + Ng)_l}, displayed as thick ticks),
independently of V. This demonstrates the absence of
Coulomb blockade reduction of the electrical conductance
across ballistic channels, at an experimental accuracy
better than 0.1% (see also Refs 21-23). Lines in the main
panel of Fig. 2a represent, in a log-log scale, the electron
temperature in the metallic island, T, versus the injec-
ted Joule power Py, with Tq obtained from Seyx. and the
separately calibrated base temperature T' ~ 8.1 mK. As
generally expected, Tq is higher when there are fewer
electronic channels to evacuate the dissipated Pj;. Fig-
ure 2b displays as symbols the same data, as well as a sub-
sequent run at T ~ 8.0 mK, but now as the net heat flow
Jheat = Py versus T3 —T?, and focusing on low temperat-

ures (T < 25mK) where the phonon contribution Jﬁé;t
is reduced and where a full suppression of one electronic
thermal channel is predicted® (Methods). The straight
dashed line closest to the data for N ballistic channels is
(N -1) x J&, with J& = 72k3 (T2 - T?)/6h the quantum
limit of heat flow per electronic channel. The mere ob-
servation that Jyeas is well below predictions for N inde-
pendent ballistic channels (N x JS) directly demonstrates
the specific suppression of heat transport from small cir-
cuit nodes, whereas electrical transport remains at the
maximum quantum limit. Moreover, we find at such low-
temperatures a high-precision agreement with heat Cou-
lomb blockade predictions for electronic heat flow, both
in the quantitative prediction of a universal suppression
of exactly one electronic channel whatever NV and in the
temperature power-law o< (13 —1?). This direct demon-
stration of heat Coulomb blockade in the absence of elec-
trical Coulomb blockade constitutes the central result of
the present work (see Methods for additional tests estab-
lishing the robustness of this observation).

Theory? further predicts quantitatively a crossover of
the electronic heat flow from (N-1) ><J(31 to NxJg, which
extends mostly over one temperature decade around
NEc¢/mkg (Methods). However, the relatively important
and rapidly increasing thermal transfers between elec-
trons and phonons at these higher temperatures prevent
a direct observation from Jpeat (T ). Following Ref. 5, we
separately consider the electronic heat current by focus-
ing on the difference at the same value of T, between two
numbers of connected ballistic channels (N € {2,3,5} and
Nyef = 4). Indeed, any mechanism that does not depend
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Figure 3. Heat Coulomb blockade crossover and additional mechanisms. a, Symbols (continuous lines) show the measured
(predicted) heat current variation when changing N from Nyt = 4 at fixed T, renormalized by the quantum limit per channel Jal. The
crossover toward the low-temperature heat Coulomb blockade of one ballistic channel specifically shows as a difference with respect to
the nearby horizontal dashed line, whereas electron-phonon thermal transfers are canceled out. b, Subtracting heat Coulomb blockade
predictions, the displayed remaining part of the heat current (symbols) collapse onto a single curve for all N € {2,3,4,5}, fitted by a Tg'SS

JPh
heat
(superimposed colored dashed lines).

functional (line, thy

on N cancels out in Jheat (N, T,T0) — Jheat (Nvet, T, T02),
including the electron-phonon contribution and the uni-
versal low-temperature suppression of one ballistic chan-
nel. However, signatures of the (N —1) x Jal to N x Jg
crossover can be observed since the temperature at which
the crossover takes place increases with N (Methods).
Measurements of Jheat (N €{2,3,5},T,Tq) — Jheat (NVyet =
4,T,Tq), normalized by the quantum limit of heat flow
per channel JS(T7 Tq), are shown as symbols versus
T in Fig. 3a. In this representation, deviations from
N — Nyt (N -4, horizontal dashed lines) are specific sig-
natures of the heat Coulomb blockade crossover. The
quantitative prediction, without any fitting parameter, of
the full heat Coulomb blockade theory (continuous lines,
Methods) closely matches the data. For N — Ny = £1
(N € {3,5}, Nyt = 4) the crossover signal is small,
barely discernible at experimental accuracy, although in
sign and magnitude agreement with predictions. For
N = Nyt = =2 (N = 2, Npr = 4), the larger cros-
sover signal precisely follow the theoretical prediction
up to T ~ 60mK, while at higher T 2 60mK the
scatter of the data points rapidly increases due to the
overwhelming (subtracted) electron-phonon contribution

Jﬁ’:at. These observations further establish experiment-

). Inset, direct comparison between Jel o+ Jf:ehat

(black continuous lines) and measured total heat current Jyeat

ally the full heat Coulomb blockade theory for ballistic
channels at arbitrary temperatures, beyond the universal
low-temperature suppression of one quantum channel.

We now investigate the additional heat transfer mech-
anisms at work in our device. The main panel of
Fig. 3b shows as symbols, in a log-log scale versus
Tq, the measured Jheat(N) reduced by the heat Cou-
lomb blockade prediction for N ballistic electronic chan-
nels. We observe that the reduced data collapse for
all N onto a single curve, which is closely reproduced
by the functional 3.91078(T5* - T58°) W (continuous
line). This compares well with theoretical expectations
for the electron-phonon contribution Jﬁ’:at in disordered
conductors, where a temperature exponent of 4 or 6 is
predicted depending on the nature of disorder®®. In
the inset of Fig. 3b, we directly confront the measured
Jheat (N € {2,3,4,5},Tq) (colored dashed lines) with the
essentially indistinguishable calculations (black continu-
ous lines) obtained by adding up the full heat Coulomb
blockade prediction and the above T5®° functional at-
tributed to electron-phonon interactions.

Finally, we point out that the presently observed heat
Coulomb blockade of one ballistic channel should be con-
sidered when exploiting the total outgoing heat flow from
a floating node to investigate elusive exotic states®.
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METHODS

Sample. The sample nanostructuration is performed by
standard e-beam lithography in a Ga(Al)As two-dimensional
electron gas buried 105nm below the surface, of density
2.510" em™ and of mobility 10°cm?V~'s™. The central
micron-sized island is composed of a metallic multilayer of
nickel (30nm), gold (120nm) and germanium (60nm). Its
galvanic, ohmic contact with the two-dimensional electron
gas is realized by thermal annealing (440 °C for 50s).

The interface quality between the metallic island and the two-
dimensional electron gas is fully characterized, through the
individual determination of the electron reflection probability
at the interface for each connected quantum Hall channel,
with the self-calibrated experimental procedure detailed in
Methods of Ref. 17. We find a reflection probability below
$0.001% (the statistical uncertainty) for the three channels
closest to the edge (the outer edge channel of each of the
three 2DEG branches), 0.08% for the inner edge channel
toward electrode 3 used only for N € {4,5}, and 0.5% for the
inner edge channel toward electrode 2 used only for N = 5.
The typical electronic level spacing in the metallic island is
estimated to be negligibly small (§ » kg x 0.2 uK), based on
the electronic density of states of gold (vp ~ 1.1410%7 J7'm™%)
and the metallic island volume (~ 3 m?).

Finally, an important device parameter is the charging
energy Ec = 62/20. The value Ec ~ kg x 0.3K is ob-
tained by standard Coulomb diamond characterization,
from the dc voltage height Vgjam of the observed diamonds
(Fc = €eViiam/2). These measurements are performed in
the same cooldown, at the same magnetic field (data not
shown, see e.g. Fig. 1lc of Ref. 28 for a similar character-
ization of this sample at a higher quantum Hall filling factor).

Experimental setup. The device is fixed to the mixing
chamber plate of a cryofree dilution refrigerator. Electrical
measurement lines connected to the sample include several
filters and thermalization stages. Two shields at base
temperature screen spurious high-frequency radiations.
Conductances are measured by standard low-frequency
lock-in techniques, below 200 Hz. Further details, including
on the noise measurement setup used for the electronic
thermometry, are provided in the supplementary information
of Ref. 28.

Electronic temperature. The electronic temperature
in the device is extracted from on-chip quantum shot-
noise measurements®®.  For this purpose, we effectively
short-circuit the central metallic island (equivalent circuit
schematic shown bottom-left of Extended Data Fig. 1a)
using the lateral continuous gate in the 2DEG branch #2
(gate closest to the bottom in Fig. 1a). The quantum point
contact used to set N2 (bottom-right split gate in Fig. 1a) is
here tuned to transmit a single channel with a transmission
probability 7 ~ 0.5. Extended Data Fig. 1a shows as symbols
the measured excess noise versus dc bias voltage V, and as a
red continuous line the theoretical prediction at T = 7.97 mK
for the simultaneously measured value 7 ~ 0.515 (variations
of 7 with V' remain below 0.003 and are ignored). The very
low statistical uncertainty of the data shown in the main
panel (+5107°2 A%/Hz, below one tenth of the symbols size)
is obtained by averaging 153 sweeps. In practice, we fit each
of the individual sweeps separately and extract from the
statistical analysis of this ensemble of distinct measurements
(shown as symbols in inset) the mean value of the temperat-

ure and the standard error (here T' = 7.97 + 0.06 mK). The
same shot noise thermometry is performed both just before
and just after each run of the full experiment (two runs
shown in the manuscript, the first one at 7"~ 8.1 mK and the
second at 7'~ 8.0 mK).

In addition, we consolidate the device electronic temperature
T with a different on-chip thermometry method based on
dynamical Coulomb blockade, following Ref. 28. For this
purpose, the same quantum point contact (2DEG branch #2)
is set to the tunnel regime 7 ~ 0.1 (in absence of dynamical
Coulomb blockade renormalization), and the device is tuned
to N1 =0 and N3 = 2, effectively implementing the schematic
circuit shown in the bottom-left of Extended Data Fig. 1b
with a series resistance h/2e®. The temperature is obtained
by fitting the conductance data displayed as symbols in
the main panel of Extended Data Fig. 1b, using the known
values of the series resistance and of Ec. We find T' = 8 mK
(corresponding calculation shown as a red line), in agreement
with quantum shot noise thermometry within the larger
uncertainty of dynamical Coulomb blockade thermometry,
which we estimate to +1 mK (grey area).

Gain calibration of noise amplification chain. The
gain Gamp of the noise amplification chain is calibrated
with the quantum shot noise thermometry described in
section ‘Electronic temperature’, from the linear slope of
the measured shot noise at e|V| > kgT (see Ref. 28 for
a detailed discussion). As for the determination of T, we
extract a different value of Gamp from each individual sweep
of noise versus dc voltage. From an ensemble of 409 values,
Gamp 1s extracted with a statistical uncertainty of +0.1%.
Note that the transmission probability 7 enters as a factor
7(1 - 7) in the determination of Gamp. Here the value of 7
is precisely measured simultaneously. Although 7 exhibits
a weak dependence with V' (below 0.003), it is sufficiently
small to have a negligible impact on Gamp at the ~ 0.1% level
(note the particularly low impact in the vicinity of 7 = 0.5)
and was not taken into account.

The Gamp calibration was consolidated at an uncertainty level
of ~ 1%, by additional quantum shot noise measurements
at 7 ~ 0.16 (for 7'~ 8 mK) and also at the higher electronic
temperature 7" ~ 16 mK (for 7 ~ 0.5). The comparison
between the different quantum shot noise and dynamical
Coulomb thermometry described in the section ‘Electronic
temperature’ further establishes the absolute calibration of
Gamp, although at a less precise level of ~ 10%. Finally, we
point out that the low-temperature heat Coulomb blockade
reduction of heat current by precisely one Jél was also
observed at the different integer quantum Hall filling factors
v = 3 and 4, using specific quantum shot noise calibrations for
the modified gain of the noise amplification chain (with our
on-chip current to voltage conversion based on the quantum
Hall resistance 1/vG5, a larger v therefore results in a lower
Gamp)~

Dissipated Joule power. The expression Py = V2Gp/2 is
used to calculate the Joule power dissipated in the electronic
fluid of the floating metallic node, due to the applied dc bias
voltage V (see Fig. 1a). It corresponds to one half of the
standard two-terminal total power V2Gp provided by the
voltage generator. This expression can be straightforwardly
derived for non-interacting electrons, within the Landauer-
Biittiker scattering formalism. Essentially, it amounts to
sharing equally the dissipation between cold electrodes, on



the one hand, and central island, on the other hand, as
expected in symmetric configurations. In the presence of
interactions, one might wonder if the floating character of
the central metallic node could possibly break this symmetry.
However, the dc voltage of the central island as well as the
dc current across it remain unchanged compared to their
free-electron values, at experimental accuracy (with the
island dc voltage deduced from the measured emitted current
through the quantum limited electrical conductance of the
connected ballistic channels, see top-left inset of Fig. 2a) and
in agreement with theory for the present case of ballistic
channels. This provides further evidence that the resulting
Joule power dissipated into the central metallic island retains
here its standard, non-interacting expression Py = V2Gp /2.
We also point out that the same non-interacting expression
for Pj is specifically expected, on qualitative grounds (a
direct quantitative derivation is yet to be done), within the
theoretical heat Coulomb blockade framework for ballistic
channels of Ref. 9 (Eugene Sukhorukov, private communica-
tion).

Heat Coulomb blockade predictions. We provide the
theoretical expression Jﬁlly derived from Ref. 9 for the net out-
going heat current Ji,, through N ballistic electronic chan-
nels connecting a floating metallic node of charging energy Fc
and at the temperature Tq, to large electrodes at temperature
T, for arbitrary values of Tq and T

2
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with the function I given by
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where (z) is the digamma function. All the displayed
theoretical predictions of the full heat Coulomb blockade
theory (continuous lines in Fig. 3a, inset of Fig. 3b, Extended
Data Fig. 2, Extended Data Fig. 3a, inset of Extended
Data Fig. 3b and Extended Data Fig. 4) were calculated
using Eq. 1, without any fitting parameter Note that these
predictions assume a hot Fermi function characterized by
the temperature T for the distribution probability of the
electrons in the metallic island. This is expected since the
average dwell time of the electrons in the metallic island
™ = h/ON ~ 200/N us (see e.g. Ref. 31) is estimated to be
much larger, by about four orders of magnitude, than the
typical timescale of ~ 10ns for electron-electron inelastic
collisions in similar metals (see e.g. Ref. 32 for the connected
measurement of the electron coherence time in gold).
Asymptotic limits of predictions. The function [ in
Egs. 1 and 2 has the asymptotic forms

I(m<<1):21, I(gr:>>1):67r—27 (3)
x x

with a crossover centered on x ~ 1.
At T,To « NEc/mks, Eq. 1 therefore reduces to

7TkB

Jiny = (N -1) (T&-T7) = (N -1) x J§, (4)

with precisely one electronic channel effectively suppressed for
heat conduction.
At NEc/mks < T,Tq, Eq. 1 reads

Ec kB

”B(TSZ—T) NZCB (T -T),  (5)

Jthy

which corresponds to a net reduction of the heat conductance
(IT - Tq| - 0) per ballistic electronic channel by the fixed
amount AGSL,, = Eckp/2h (always small with respect to GE)
in the considered high-temperature limit).

At T < NEc/mks < Tq, Eq. 1 becomes

Eckp
2h

ﬂ'k'B

U (NTE - (N-DT?) - N

Jiny = To,  (6)
where the relative reduction due to heat Coulomb blockade
progressively vanishes as Tq increases.

Control experiment at T~16 mK. We here demonstrate
the robustness of our result with respect to base temperature
T. The experiment is performed at a temperature twice as
large as before, 7" ~ 15.9 = 0.1 mK, for the setting N =
As seen from the Jpeas Vs Tg% —T? data shown as symbols
in Extended Data Fig. 3a, this is still sufficiently low to
directly and quantitatively establish the heat Coulomb
blockade suppression of one ballistic channel. Note that this
robustness also further validates the specific tests performed
to rule out possible experimental artifacts (additional power
injection by the measurement lines, voltage-dependent noise
offset, calibration and thermometry issues).

We also find that exactly the same functional
3.9107%(T5% - T°%%), attributed to electron-phonon
(black continuous line in main panel of Extended Data
Fig. 3b), matches the present 7' ~ 16 mK data reduced by
the predicted electronic heat flow (symbols in main panel
of Extended Data Fig. 3b). Note that the observed inde-
pendence of the electron-phonon coupling with temperature
is a commonly used criterion to show that cold electrons
and phonons are at the same temperature T" (see e.g. Ref. 33).

Supplementary experimental tests. We also performed
the following tests:

(i) At N =0, the measured noise is found to be independent
of dc bias (applied either within the same 2DEG branch or
in a disconnected branch, with the current flowing toward
cold grounds not shown in Fig. 1), at experimental accuracy.
In the language of Ref. 6, the ‘source noise’ is negligible.

(1) At V =0, the absolute measured noise does not change
when tuning N to different values or by connecting the
amplification noise chain to an edge channel emitted from
a cold ground. This directly shows that the temperature
T is homogeneous (the same T for all large electrodes and
the metallic island, whatever N), and also that the power
injected into the central island is negligible at V' =0 (in the
presence of e.g. significant heating from the measurement
lines, the central island temperature and consequently the
noise measured would depend on Nj 2 3; note that such an
heating takes place in one of the test configurations discussed
n (4ii)).

(#it) We checked that the observed heat Coulomb blockade is
independent of the specific channel realization, by comparing
three different device configurations all corresponding to
N =2 (see Extended Data Fig. 4): (N1 =1,Nz =1,N3 =0)
(main manuscript, red squares in Extended Data Fig. 4),



(N1 =0,Nz = 1,N3 = 1) (violet squares in Extended Data
Fig. 4) and (N1 = 1,N2 = 0,N3 = 1) (black squares in
Extended Data Fig. 4). The first two configurations give
exactly the same result at experimental accuracy. The
third configuration has the additional complication that,
in order to perform the noise thermometry of the central
island, we had to make use of an otherwise disconnected
measurement line within the 2DEG branch 3, through which
a non-negligible power was dissipated into the island even
at V = 0 (as seen with measurements as discussed in (%),
and also with other tests including quantum shot noise and
dynamical Coulomb blockade measurements). Nonetheless,
heat Coulomb blockade predictions (and a full agreement
with the first two device configurations) are verified when
taking into account the separately calibrated temperature
offset To(V =0) - T ~ 5mK (obtained through the approach
of test (7)) and the additional dissipated power of 0.06 fW
at V =0.

(iv) Finally, we verified the robustness of our results with
respect to the integer quantum Hall filling factor v at which
the experiment is performed. The heat Coulomb blockade
suppression of one ballistic channel was quantitatively
observed experimentally not only at v = 2 (main manuscript),
but also at v =3 and v =4.

Comparison with previous experiments. In the pre-

vious works Refs 5,6, besides the robust AJhea.t approach
to extract the quantum limit of electronic heat flow J&, it
was also attempted to determine the full electronic heat
flow despite the non-negligible electron-phonon contribution
at T 2 25mK. For this purpose, a Tg — T° power-law was
assumed to model the transfer of energy from electrons at
Tq toward phonons at T. With this model, no heat Coulomb
blockade was detected®®. However, we here point out the
sensitive influence of the electron-phonon power law exponent
in the analysis of these previous experiments. Together with
the higher 7', it essentially impeded the observation of the
heat Coulomb blockade. We illustrate this with the most
accurate data of Ref. 5, obtained at integer quantum Hall
filling factor v = 3. As pointed out in the supplementary
materials of Ref. 5, fitting the data for reference channel
number Nyt = 4 of this previous experiment with the
electron-phonon temperature exponent as a free parameter
(instead of assuming an exponent of 5) leads to a reduced
overall electronic heat flow of ~ 3.5 x JE;, a factor in between
Nret and Nyer — 1, predicted respectively in the absence and
in the presence of a heat Coulomb blockade. Reanalyzing
these previous data with the electron-phonon power-law left
as a free parameter, we find that they are indeed compatible
at experimental accuracy with the present observation of the
heat Coulomb blockade of one ballistic channel.
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Extended Data Figure 1. Electronic temperature. a, Quantum shot noise thermometry. Symbols in the main panel represent
the measured excess spectral density of the current fluctuations across a quantum point contact set to transmit a single electronic channel
with a probability 7 ~ 0.516, and biased with the dc voltage V' (see configuration schematic). The statistical uncertainty of +5 10732 A2/Hz
on Sexc is below one tenth of the symbols size. The red continuous line is the calculated excess current fluctuations for 7' = 7.97 mK and
7 =0.516. Inset: the different electronic temperatures T" shown as symbols are each obtained by fitting a different (successive) voltage bias
sweep of the quantum shot noise (symbols in the main panel represent the average of these sweeps). From the statistical analysis of these
153 values, we find T' ~ 7.97 + 0.06 mK (horizontal red line). b, Dynamical Coulomb blockade thermometry. The electronic temperature
is here obtained by fitting the device conductance G (symbols) versus voltage bias with the dynamical Coulomb blockade theory in the
presence of a known series resistance R = h/2e? (sce configuration schematic). We find 7'~ 8 mK from the fit shown as a continuous line.
The estimated uncertainty of +1 mK is displayed as a grey background best visible in the inset showing only low voltages.
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Extended Data Figure 2. Heat Coulomb blockade versus temperature. a, Crossover from N x J&l at T >» NEc/mkp to
(N-1)x JS at T « NEc/mkg. Colored continuous lines display the theoretical prediction of Eq. 1 (T = 8.07mK, Ec = 0.3 x kg K)
normalized by the quantum limit of heat flow per channel J&, for different numbers of ballistic channels N € {2,3,4,5} and versus the
metallic node temperature Tg, in log scale. b, The normalized difference between heat flows at N = 2 and N = 4 (double arrow in a,
previously shown in the bottom of Fig. 3a on the experimentally explored temperature range) is displayed on the full temperature range

where the crossover takes place. The black continuous line is the prediction of Eq. 1. The same data previously shown in the bottom part
of Fig. 3a are displayed as symbols.
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Extended Data Figure 3. Control experiment at T~ 16 mK. a, Heat Coulomb blockade of one ballistic channel. Measurements
at N = 2 of the overall heat flow (Jheat = Py) versus ng — T2 are displayed as symbols, for low temperatures where the electron-phonon
contribution remains relatively small (T < 30 mK). The bottom dashed line, close to low-temperature data points, corresponds to the
low-temperature asymptotic suppression of precisely one J. The quantitative heat Coulomb blockade prediction of Eq. 1 for the electronic
thermal transport is shown as a continuous line. The top dashed line corresponds to the prediction for the electronic thermal current
across two ballistic channels in the absence of heat Coulomb blockade, QJS. b, Additional mechanisms. As in Fig. 3b, we display as
symbols the measured heat current reduced by the quantitative heat Coulomb blockade prediction (N =2, T' = 15.9mK). We observe an
exact match with the same Té'85 functional (line) obtained at the base temperature of 8 mK. Inset, the sum of heat Coulomb blockade
predictions and T3-8% functional (black continuous line) is directly compared to measured Jheat(Z6) (symbols).
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Extended Data Figure 4. Comparison of three device configurations implementing N=2. The three sets of symbols,
each displayed with a different color, correspond to measurements of Jyeat vs Tszl - T? with the device tuned in different configurations
[N1, N2, N3] (as detailed in the figure), all associated with the same total number of ballistic channels connected to the node (N =2). The
bottom and top dashed lines correspond, respectively, to JS and 2 x JS. The continuous line is the quantitative heat Coulomb blockade
prediction for electronic thermal transport given by Eq. 1.
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When assembling individual quantum components into a mesoscopic circuit, the interplay
between Coulomb interaction and charge granularity breaks down the classical laws of
electrical impedance composition. Here we explore experimentally the thermal con-
sequences, and observe an additional quantum mechanism of electronic heat transport. The
investigated, broadly tunable test-bed circuit is composed of a micron-scale metallic node
connected to one electronic channel and a resistance. Heating up the node with Joule dis-
sipation, we separately determine, from complementary noise measurements, both its
temperature and the thermal shot noise induced by the temperature difference across the
channel. The thermal shot noise predictions are thereby directly validated, and the electronic
heat flow is revealed. The latter exhibits a contribution from the channel involving the
electrons’ partitioning together with the Coulomb interaction. Expanding heat current pre-
dictions to include the thermal shot noise, we find a quantitative agreement with

experiments.
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eating generally drives the crossover from quantum to

classical behaviors; nevertheless, heat itself is ruled by

quantum mechanics. In recent years, experimental
explorations of quantum thermal phenomena have been emer-
ging at a rising pace!=3. In particular, the quantum of thermal
conductance, a universal basic building block of heat quantum
transport, is now firmly established for bosons!4, fermions>®, and
quasiparticles that may be anyons’, as well as up to macroscopic®
and room temperature®!0 scales. However, despite the strong
influence of Coulomb interaction on electricity in small quantum
circuits!1-14, its impact on the quantum transport of heat remains
barely explored experimentally!>~17. In a first step for perfectly
ballistic circuits, where there is no back-scattering along any of
the connected electronic channels, a recent observation!® was
made of the predicted!® heat Coulomb blockade taking place
without any concomitant reduction of the electrical conductance.
In this limit and at low temperatures, the Coulomb interaction
manifests itself as the systematic suppression of a single channel
for the evacuation of heat from a small circuit node!®18. Here we
address elementary quantum circuits including one generic
electronic channel of arbitrary electron transmission probability.
An unexpected increase in the flow of heat is observed and
quantitatively accounted for by an additional quantum heat
transport mechanism, involving the association of shot noise and
Coulomb interaction.

We obtain the heat current-temperature characteristics by
controllably injecting a dc power into a small floating circuit node
connecting a quantum channel to a linear resistance, and by
monitoring in situ the resulting increase in the electrons’ tem-
perature. A complication is that the partition of electrons in the
generic channel breaks the Johnson-Nyquist proportionality
between excess noise and node temperature increasel%20,
which was previously used for the thermometry of ballistic cir-
cuits> 71617, We overcome this difficulty with an experimental
procedure involving complementary measurements of both the
auto- and cross-correlations of electrical fluctuations. This pro-
vides us, separately, with the local electronic temperature in the
metallic node, as well as with the thermal shot noise. The latter is
found in good agreement with predictions derived within
the scattering approach!®2l, in which Coulomb effects have
been encapsulated in the temperature-dependent conductance
(reduced by the dynamical Coulomb blockade!!). The node
temperature increase, both in terms of injected power and elec-
tron transmission probability across the channel, exposes an
additional heat current contribution involving thermal shot noise.

Results

Test-bed for electronic channels in dissipative environments.
An e-beam micrograph of the device is shown in Fig. 1a together
with a schematic representation of the measurement setup. The
small floating circuit node that is heated is materialized by the
central micron-scale metallic island (in brighter gray), of sepa-
rately characterized self-capacitance C ~ 3.1{F. It is in essentially
perfect electrical contact with a standard Ga(Al)As two-
dimensional (2D) electron gas underneath the surface. The 2D
gas is immersed in a perpendicular magnetic field corresponding
to the integer quantum Hall regime at filling factor two. In this
regime, the current flows along two adjacent quantum Hall edge
channels depicted by lines with arrows indicating the propagation
direction. Three quantum point contacts (QPCs) are formed in
the 2D electron gas by applying negative voltages on surface split
gates coupled capacitively. A single (spin-polarized) short elec-
tronic channel of tunable transmission probability 7 € [0, 1] is
implemented at the left QPC. The top and right QPCs are tuned
to a different, ballistic regime: they are set to fully transmit,
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Fig. 1 Experimental approach. a Device e-beam micrograph with
measurement setup schematic. A single generic channel of arbitrary
electron transmission probability 7, as well as N; and N, ballistic (perfectly
transmitted) channels, are separately connected to a small metallic island.
b Schematic heat balance representation between injected Joule power (P})
and outgoing heat currents, from electrons to phonons (Jgh) and through
the connected electronic channels (JS). ¢ Excess auto- and cross-
correlation measurements versus V; = —V,, in the illustrative configuration
N=2(N;=N, =1, 7~ 0.5. d Extracted excess noise sources per
ballistic channel (Sgy;) and across the generic single-channel quantum point
contact of transmission = (S¢ic), from the data in .

respectively, N; and N, channels forming together an adjustable
linear resistance?>?> R = Ry /N, with Ry = h/e* the electrical
resistance quantum (h the Planck constant and e the electron
charge) and N =N, + N,. Further away, the quantum Hall
channels are connected to large electrodes at base temperature
T ~ 8 mK, represented in Fig. 1a by gray rectangles.

Electronic heat flow determination. The electrons within the
central island are heated to T, by dissipating a known Joule
power P;~ (N,Vi+ N,V3)/2R, with V, (V,) the voltage
applied to the top (right) large electrode (Methods). The island’s
dc voltage is pinned to (V) = 0, by imposing NV, = —N,V,,
such that the generic channel experiences a pure temperature bias
T, — T without dc voltage. As illustrated in Fig. 1b, energy
conservation in the stationary regime implies P, =] te +] Ph, with
]g‘ being the heat flow across the connected electronic channels

and ] gh the heat transferred from the electrons within the island
to the phonons. In practice, electron-phonon heat transfers are
negligible only for T, < 20 mK!°. However, as ]gh only depends
on temperatures (T, T), and not on the connected electronic
channels (7, N), it can be calibrated by tuning the circuit to the
ballistic regime (7 € {0, 1}). Using the previously established heat
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Coulomb blockade predictions for ballistic channels!®18, we
find that all the data with 7€ {0,1}, N¢€{2,3,4} and
T € {8,16} mK can be accurately reproduced using the same

TP~ 2.7x 1078 (Tf)‘7 — T5'7) W (Methods). At intermediate
transmission probability (0 < 7 < 1), the unknown electronic
heat flow is then obtained by subtracting the above ]gh from the

injected Joule power (J& = P; — JB").

Local temperature increase measurement. The island’s electro-
nic temperature T, is determined from the low-frequency (MHz)
current fluctuations measured on the top (1) and right (2) large
electrodes (Methods). The excess auto- and cross-correlation
spectral density, from which the zero-bias offset is removed, are
plotted in Fig. 1c versus V, for the illustrative configuration N, =
N, =1 at 7 ~ 0.5. In a nutshell, combining these data gives us
access separately to the current noise sources originating from the
QPC hosting a single generic channel (S;,.) and from the ballistic
channels (S, per channel), both shown in Fig. 1d. This is pos-
sible because these two noise sources contribute with the same
sign to the experimental autocorrelation signal, while with an
opposite sign to the cross-correlation (Methods). The tempera-
ture T is then obtained using solely the ballistic noise source
Span> directly resulting from the thermal fluctuations of the elec-
tronic states’ population in the baths. This robust connection
manifests itself as a straightforward, and previously used>~7-16:17,
generalization of the fluctuation-dissipation relation for the
thermal noise S,,; = 4kyT /Ry, where T = (T + T)/2 is the
average temperature!?24. In practice, the excess noise data (with
respect to V,, = 0) gives us access to the temperature increase

T — T, while T is separately measured (Methods).

Shot noise induced by a temperature difference. Generic
channels driven out-of-equilibrium are generally expected to
exhibit, in addition to the average thermal noise, a shot noise
induced by the electron partitioning into a transmitted electron
and a reflected electron!®?l. In particular, the current noise
spectral density at low frequencies (w < kyT/h), for a single
channel of transmission probability 7, reads!®:

hale 20029 [ 45 7, (6) ()

Ry Ry
with frp (E) the Fermi distributions in the connected baths at
different temperatures and/or voltages. The average thermal noise
and the shot noise are, respectively, the first and second term on
the right-hand side of Eq. (1). Whereas the shot noise induced by
either a voltage difference or a frequency irradiation is experi-
mentally well established (see references in ref. 19 and also ref. 2°),
the thermal shot noise resulting from the partition of electrons in
the sole presence of a temperature difference was observed only
recently20. Although convincing, this observation did not allow for
a one-to-one comparison of the individual data points with the
theory, because the possibly multiple electronic channels were
incompletely characterized by the measurement of their parallel
conductance. In contrast, in the present work with a single generic
channel, the QPC conductance G, = te?/h completely deter-
mines the transmission probability 7. In Fig. 2a, following ref. 20,
we focus on the thermal shot noise AS,. obtained by removing
the average Johnson-Nyquist noise (ASg,. = Sq,c — 4k TT/Ry).
The AS,. data at N; = N, =1 (symbols) are plotted versus T,
for several gate voltage tunings of the single-channel QPC. The
predictions (continuous lines), calculated without any adjustable
parameter using Eq. (1), closely match the data (for control
experiments, see Supplementary Fig. 1 at other {N,,N,} and

2
Sthy _
qpe T )

(1)

Supplementary Fig. 2 at a larger base temperature T ~ 16 mK).
Note that the simultaneously measured G, = 7e*/h depends on
the temperatures T and T, because of the quantum back-action
of the series RC circuit!® also referred to as the dynamical Cou-
lomb blockade!!. Remarkably, we find that the effect of Coulomb
interaction is accurately encapsulated, at experimental resolution,
into the renormalized 7 injected in Eq. (1). Figure 2b directly
reveals the partition origin of the shot noise induced by a tem-
perature difference. The data points represent this experimental
shot noise renormalized by the predicted, r-independent tem-

perature function F (T, T) = (2/Rg) [dE {an (E) —fT(E)r.

The good agreement observed between AS . /F and 7(1— 1)
attests of the underlying partition mechanism.

Electronic heat flow from a small quantum circuit node. We
now address the electronic flow of heat across the QPC and
ballistic channels. In conductors, the thermal conductance G, is
frequently found to be directly proportional to the electrical
conductance G, through the so-called Wiedemann-Franz (WF)
law G, = LG, with £ = n?kj/3¢> the Lorenz number. While
this relation holds between the quantum of thermal and electrical
conductances, it generally breaks down in quantum circuits
assembled from several interconnected channels. In particular, it
was shown that the thermal conductance from a small, heated
circuit node connected by ballistic channels is reduced from the
WEF expectation by precisely one quantum of thermal con-
ductance at low temperatures!®!8, whatever the total number of
channels. With such a fixed reduction, the increment by £/Ry of
the thermal conductance when adding an extra ballistic channel
(starting from at least one) nevertheless follows the WF relation.
Is this also the case if the electrical conductance is increased
continuously, by sweeping the transmission probability across an
electronic channel from 7 = 0 to 1? The answer is no, as we will
now show.

Figure 3a exhibits as symbols, versus T, the experimental
electronic heat flow ]g normalized by the quantum limit per
channel ]lém = m’k; (T2 — T?)/6h, for different circuit settings
spanning the full range of 7 at both N =2 and N =3 (see
Supplementary Fig. 3b for N = 4, and Supplementary Fig. 4 for a
control experiment at T ~ 16 mK). The three thick black
continuous lines display the full, temperature-dependent heat
Coulomb blockade prediction for two (bottom), three (middle),
and four (top) ballistic channels!8 (Methods). Note the small,
predicted deviations developing with temperature from the
complete heat Coulomb blockade of a single channel
J3/Te" =N —1) that only applies in the limit of low
temperatures T, T < fi/kzRC. Open and full circles (full
diamonds) are data points obtained for N = 2 (N = 3) ballistic
channels, with different settings of the generic channel encoded
by different colors. The dashed lines represent linear interpola-
tions between ballistic predictions at N and N + 1 weighted,
respectively, by 1 — 7 and 7 measured for the compared data
(same color). For example, the brown dashed line in the top part
of Fig. 3a (closest to ]‘é/]lém ~ 2.5) is given by 7(Tg) times the
prediction for three ballistic channels (thick black line near
]%/ ]lém ~ 2; Methods) plus 1 — 7(T,) times the prediction for
four ballistic channels (thick black line near ]g / ]lém ~ 3), with
7(Ty,) the renormalized conductance simultaneously measured
during the acquisition of the top brown data points of
corresponding T', (in practice a linear interpolation is performed
between discrete measurements of 7(T)). The difference
between dashed lines and data points is particularly significant
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Fig. 2 Thermal shot noise. a Symbols represent the experimental QPC noise at N = 2 from which the average thermal noise was removed

(ASgpe = Sqpe — 4kyTT/Ryg, with T = (T + T)/2). Measurements at different gate voltage tunings of the QPC are shifted vertically, with the applied offsets
shown as horizontal dashed lines. Open and full symbols distinguish separate sequences of measurements. Continuous lines display Eq. (1) predictions.
b The 7(1 — 7) partition signature is shown as a continuous line versus 7. Symbols represent Aquc/}', where the 7-independent function F (T, T) is the
predicted thermal shot noise’s temperature dependence (see text). A lighter (darker) symbol coloring indicates a low (large) T, — T corresponding to a

higher (lower) experimental uncertainty.

at intermediate 7. This shows that the thermal conductance
increase does not reduce to a linear, WF-like, function of the
electrical conductance. In contrast, quantitative predictions based
on the Langevin approach in ref. 18 but including the partition
noise from the generic channel (colored continuous lines,
Methods) lie close to the data, without any adjustable parameter.
At low temperatures T, T < h/kyRC, the difference between

theory (thy) predictions ]gy and the WF extension (linear in ) of

heat Coulomb blockade predictions for ballistic channels

(N+7-1) X]gm, reads:

7(1—1)
N+

Note that J g‘y = 0 for N = 0 at low temperatures, whatever the
value of 7 (see refs. 26-28 for the electrons’ state preservation
concomitant to the absence of heat transfers). The 7(1— 1)
numerator attests of the role of electron partition in this
additional heat transport mechanism. We also point out that
this heat current contribution vanishes at higher temperatures,
when Coulomb effects become negligible (Methods). This shows
straightforwardly the essential role of Coulomb interaction, which
combines with electron partition into a different form of
quantum heat transport. Figure 3b provides direct experimental
evidences for an underlying partition mechanism (see also
Supplementary Fig. 3a, c), by subtracting from the renormalized
electronic heat flow at N =2 (symbols in Fig. 3a) the
corresponding WF (linear) interpolation (dashed lines in Fig. 3a).
Focusing here on the temperature range T, € [17,65] mK where
measurements are most accurate (see error bars in Fig. 3a), a
convincing agreement is found with 7(1 — 7)/(2 + 7) plotted as a
continuous line versus 7.

]gy—(N—l—T—l)x]gm: x]lém. (2)

Discussion

We have experimentally investigated the heat flow and thermally
induced shot noise in an elementary quantum circuit composed
of one small metallic node (island) connected by several ballistic
channels and by one generic electronic channel of arbitrary
electron transmission probability. Applying a temperature bias,

without dc voltage across the generic channel, we measured the
thermal shot noise?® and determined the overall electronic heat
flow from the island. The former is found in direct quantitative
agreement with thermal shot noise predictions computed using
the known transmission probability!®. The latter displays an
additional heat flow contribution. The underlying mechanism
involves in particular the Coulomb charging energy of the island,
which effectively freezes its total charge at low temperatures and
thereby induces correlations between the heat carrying electrical
current fluctuations propagating along the connected channels!®
(Methods). In a fully ballistic circuit (without thermal shot noise),
these correlations amount to the recently observed systematic
blockade of a single channel for the flow of heat, independently of
the total number of channels!®!8. Here, with a generic channel, a
thermal shot noise is impinging on the island and fractionalized
among all the outgoing channels by the frozen island charge
imposed by Coulomb interaction?®. This combination of Cou-
lomb interaction and thermal shot noise underpins the presently
observed additional heat transport mechanism (Methods).

Advancing our understanding of the mechanisms of quantum
heat transport and establishing the thermal shot noise contribu-
tion is essential for exploiting heat and noise to unveil exotic
physics!73031, and is bound to play a role in the thermal and
signal to noise management of future quantum devices. The
present work also demonstrates measurement strategies widening
the range of experimental systems eligible for thermal explora-
tions: by exploiting complementary auto- and cross-correlation
measurements of the electrical fluctuations, we have shown that
the different sources of noise can be accessed separately. We
expect that such advanced combinations of fluctuation mea-
surements will play an increasing role in the thermal and noise
investigations of quantum circuits.

Methods

Sample. The Al(Ga)As 2DEG has an electron density of 2.5x 10! cm ™2, a mobility
of 10°cm? V157! and is located 105 nm below the surface. The central island is
formed from a metallic layering of nickel (30 nm), gold (120 nm), and germanium
(60 nm), which is thermally annealed at 440 °C for 50 s to make an electrical
contact with the 2DEG. The two quantum Hall edge channels at filling factor v = 2
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Fig. 3 Electronic heat flow. a Experimental J§//&™ (with Ji* = 72k}

(T2, — T?)/6h) are plotted as symbols versus T, with N = 2 (circles) and
N = 3 (diamonds), for a broad range of QPC tunings (colors). Error

bars represent the standard statistical error. Black continuous lines are
predictions at T = 0 for N = 2 (bottom), 3 (middle), and 4 (top). Dashed
lines are interpolations between ballistic predictions, linear in the measured
7. Continuous lines are theoretical predictions. b Symbols represent the
difference AJfDl between experimental Jg (N=2,T, €[17,65] mK in panel
a) and the corresponding interpolation between ballistic predictions,
normalized by ng. The continuous line displays versus 7 the low-
temperature prediction 7(1—7)/(N + 1) for N = 2.

are found in near perfect contact with the island, with a reflection probability below
6x 10% (see Methods in ref. !4 for a detailed description of the characterization
procedure). The short ~1 pum distance between metallic island and QPC combined
with the low temperatures (T, < 80 mK) ascertains that the interaction between
co-propagating channels can be safely ignored (see e.g. ref. 32), as in previous works
with the same sample!42333-35 The self-capacitance of the island C ~ 3.1 {F
(corresponding to a charging energy E. = €?/2C = ky x 0.3K) is obtained from
standard Coulomb diamond measurements (with all channels connected to the
device tuned in the tunnel regime).

Noise measurement setup. The time-dependent current fluctuations 41, (¢) and
81, (t) impinging, respectively, on electrodes 1 and 2 are first amplified with a
cryogenic amplifier located on the 4K stage of a dilution refrigerator, and with a
room temperature amplifier. They are then digitized at 10 Mbit/s and sent to a
computer. The Fourier auto- and cross-correlations analysis are performed over a
180 kHz bandwidth centered on 0.855 MHz (the resonant frequency of the LC
oscillators shown in Fig. 1a). The amplification gains Gj"" are separately calibrated
from the same standard shot-noise vs voltage bias measurements used to determine
the base temperature T (see corresponding section). We find that G5 are stable
along each run, but slightly different from cooldown to cooldown. Averaging 862
(2840) shot noise vs voltage bias sweeps, the statistical uncertainty on G5’ is below
0.09% (0.04%) for the first (second) experimental run shown here. The cross-

correlation gain Gy ¥ is also impacted by the matching between the two resonators.
For a perfect match, GY'¥ = 1/G} "G, *. In general, a correction factor c,, needs
to be introduced GY'¥ = 1/G{"? G, * x ¢,. This factor c,, is experimentally
characterized at T = 0 (N, , #0) from the robust relation AS;; = AS,, = —AS,,,
which directly results from the negligible charge accumulation on the island at the
measurement frequencies. In practice, we find an essentially perfect resonators’
match (¢, ~ 1.000 and 0.993 for the first and second cooldown, respectively).

Dissipated Joule power. The bulk of the Joule power dissipated within

the electronic fluid in the metallic island is given by the expression

Py ~ (N, V} 4+ N, V3)/2Ry. We also include the small additional contributions P3¢
due to the extra power dissipated from the small ac voltages Vi, ; ~ 0.23 uV,
applied (at different low frequencies) to the three source electrodes (to simulta-
neously measure with lock-in the conductances across each of the three QPCs), as
well as a separately characterized small triboelectric voltage from the pulse tube
vibrations specifically developing on the source electrode 1 (feeding the top QPC)
Vi ~ 0.4 pv

rms*

ac 1 2 ib 2
= [{(V3)? + (Vi) IN (N, +
] ZRK(N+T)X[{(1> (VI®) IN|(N, + 1) 3)
+ (VE) Ny (N, +7) + (V59)'N].

In practice, P € [2,6] aW is below 1% of P at T, 2 20 mK. It corresponds
to a temperature increase in the island of ~0.3 mK at zero dc bias (see section
Base electron temperature). Note that we avoid possible mismatch from the
thermoelectric voltage developing along the measurement lines by applying a
current dc bias. It is converted onchip into a voltage exploiting the well-defined
quantum Hall resistance Ry /v connecting current biased electrodes and cold
electrical grounds.

Base electron temperature. The base electronic temperature T is extracted from
standard shot-noise measurements, applying a dc bias voltage directly to a QPC set
to a transmission probability of one half, with the floating island bypassed using
side gates (see Methods in ref. 34 for further details).

Due to the small Pj (see section Dissipated Joule power), the temperature of
the floating island is slightly higher than T even in the absence of a dc voltage. This
small temperature increase is obtained by measuring the cross-correlations at zero
dc bias V|, = V, = 0 (carefully calibrating instrumental offsets just before and after
each measurement sequence), from the relation:

Ry N+t

Ta(Vi, =0 —T~———
n( 1,2 ) 2k; N|N,

S;(Vy2 =0), (4)
which straightforwardly relies on the generalized fluctuation-dissipation relation.
Although there are deviations from the generalized fluctuation-dissipation relation
in the presence of a generic channel, as studied in this work, this approximation is
excellent for small T(,(V,, =0) — T < T such as in the present case. We find
To(Vi,=0)— T ~ 0.3mK (always below 0.6 mK), consistent with expectations
based on the value of Pj° given by Eq. (3). This small temperature difference is
included in the experimental determination of T,.

Excess electron temperature and shot noise. This section details how are
obtained the excess electron temperature, AT, = T, — T(V;, = 0), and the
resulting excess noise generated across the generic QPC,

Sepe = <51<21pc> — (Mflpc)(VLz =0). A schematic representation of the circuit is
shown in Fig. 4 with arrows indicating the chirality also corresponding to the con-
vention used for positive currents. The large electrodes labeled E, (n € {1,2})
include each a measurement electrode M, and a voltage biased source electrode S,.
The floating central metallic node is labeled Q.

First, let us separately consider a current fluctuation 61, generated across the
generic QPC (see Fig. 4), and determine the resulting current fluctuations 815, 5/,
impinging on the measurement electrodes M ,. As the corresponding charge
accumulated in the island relaxes very fast compared to the measurement
frequencies (1/RyC ~ 10 GHz >> 1 MHz), the current 81, injected in the island
is compensated by the outgoing current from the resulting voltage fluctuation 6V,
of the floating island. This reads 61y, = (N + 7)6V /Ry (for a treatment of
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Fig. 4 Noise schematic. Graphical representation of the different current
and voltage fluctuations discussed in the text.

charge relaxation at arbitrary frequencies see section Heat Coulomb blockade
predictions). Then, 61}}1’1((2) = N0V /R = 01, Ny5)/ (N + 7). Consequently,
the QPC noise’s contribution to the autocorrelation signal is

2
Scllfczz qucNZ( )/(N + T) ) (5)
and its contribution to the cross-correlation signal is
S(llgc = quchNZ/(N + T)z' (6)

Second, we separately consider a current fluctuation (‘)\Ij‘H emitted from the
island, by the thermal fluctuations of electronic states’ population at T, into a
ballistic channel j. From the fast charge relaxation of the island pointed out in the
previous paragraph, one obtains 6V, /Ry = —(SIJ-QA/(N + 7). On the one hand,
the current fluctuation measured on the electrode M; if the channel j propagates
toward the electrode M, (j € M,) is then 8I5% = —N, /(N + T)“;%Mz The
corresponding autocorrelation signal on M, resulting from the thermal current
fluctuations emitted toward M, (summing all j € M,) therefore reads:

NZ

N% Q-2 — x N%
¥ 2O =N s

SQ‘Q

((819)%), (7)

where the unimportant channel index j is omitted in ((81%)%) = ((81{“)2>
(independent of j). On the other hand, the current fluctuation measured on the
electrode M, if the channel j is also connected to the electrode M, (j € M)

includes both the direct term 8[12;“ and the smaller 6V, contribution:

Sy = [1— Ny /(N +7)]81%y,. As a result
. N, 2 & 2
s = (1) e
= (8)
_ Ny o
_N1><<1 NH) (617 Y2),
and

((6197)?). (9)

N, \ N
-l — N | 2
12 ‘X< N+7)N++t

Summing up the independent contributions from the QPC (41, and from all

)
qpe
ballistic channels (emitted 8119— and absorbed 6[;’"%), one straightforwardly

obtains for the autocorrelation signal:

Nl(Z) : NN, 02
S =N 1-— —= | (5"~
11(22) 1(2) [( N+r> +(N+1)2 (( ) w0
2

N? N3, N
@ 12) \2
(N + T)2 qpc (N + T)z <(81b ) > + Soffsetl(z)ﬂ

+

with Sgre1(2) @ noise offset mostly corresponding to the amplification chain, and
also including the thermal noise along the 2 — N, reflected channels and along

the 2 quantum Hall channels propagating from measurement (M) to source (S)
contacts (for the experimental bulk filling factor v = 2; see Fig. 4). Similarly, one
gets for the cross-correlation signal:

N\N,

E\2
N +N((OrE )L

[ (N +27)((817)?) + Sy (11)

12 —

Focusing on the excess signal with respect to V, , = 0, one obtains from
Egs. (10) and (11):
o S SE SN W)
ball T IN, ' 2N, 2N|N,’

with Sg& = ((6IQH)2> - (((SI(H)2>(V1_2 = 0) the excess noise generated across
one ballistic channel. From the Johnson-Nyquist-type relation well established in
the ballistic case5-716-18 ((§19=)?) = 2k, T, /Ry, the excess island’s temperature
reads:

AT, = R (SKE Sy SEN (13)
© 7 2k, \2N, T 2N, 2N|N,
Solving Egs. (10) and (11) also provides Sg:
gexe  gexe (N+7)°+17
S5 _ (N +2 11 22 S 14
qpe = (N + T><2N1+2N2 - 2N, N, ()

Heat Coulomb blockade predictions. In this section we derive the predictions
shown as continuous lines in Fig. 3 and Supplementary Figs. 3 and 4, for the
electronic flow of heat ]% in the presence of a generic quantum channel. We follow
the Langevin approach developed for ballistic systems in ref. 18, and expand it to
the case where the current is partially reflected with a probability 1 — 7 on a QPC
inserted along one of the channels (the other channels remaining ballistic, see
schematic in Fig. 4). The three main differences with ref. 18 are: (i) the symmetry
between channels is broken, (ii) a partition noise emerges at the generic QPC, (iii)
the transmission probability 7 depends on the temperatures due to dynamical
Coulomb blockade.

The heat flow J; propagating in one direction (—) along one electronic
channel (j) is obtained from the time-dependent electrical current fluctuations
AIL” propagating in the same direction at the considered location!8:

i =5 [ do((a5 )~ (7))

with () cqum referring to the vacuum fluctuations at zero temperature.
If AL directly originates from the large, voltage biased electrodes (S, , ; in

(15)

E, ,3), then it only includes the emitted thermal current fluctuation SIE"A (see

Fig. 4). These thermal fluctuations are assumed uncorrelated ((61E HtSIE"’H> =0

for j# k even at m = n) and of variance given by the usual thermal noise expression
at the base temperature T18:

E,—\2 B hw/Ry

(01 )w) = —1+ explhw/kyT] (16)
Note the factor two difference with the standard low-frequency expression

2ky T /Ry, in which the contribution at positive and negative frequencies are added.
Injecting Eq. (16) into Eq. (15), one obtains the usual expression

Jg = (kg T)? /6h.

In contrast to the voltage biased electrodes, the floating metallic node’s
electrochemical potential exhibits fluctuations 8V, (related to charge fluctuations
as, e.g., in the voltage probe and dephasing probe models, see ref. 19 and references
therein). These result in the emission of identical current fluctuations 8V, /Ry in
all outgoing channels!®1%, Such current fluctuations add up with the thermal

emission BIJ-QH of electrons from the central node: A j(P = 6[].fP + 8V /Ry, with
(8[?*6&”} =0 for j#k and a variance ((5I?A)Z> given by the same Eq. (16) but
with the island temperature T, instead of T. The integrand in Eq. (15) therefore
includes such correlations as ((SIJ-QﬁéVQ). These can be obtained from the

connection to the island’s charge fluctuations 6Q = CéV, (6Q = Q — (Q) with Q
the overall charge of the island, and C its self-capacitance), which obey the charge
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conservation relation:
N+1
iwdQ = Z(AI;Q — AI?T)
j=1
= AI? - 01} — 6Q/RyC (17)

or — NOQ/RiC,

Mz

Q-
J1%) —

j
where we separated in the second equality the generic channel labeled with the
index q (first line) from the N ballistic channels (second line). In channel g, the

incoming current fluctuations toward the island AI;Q include three contributions:

AL7® = 7815~ 4+ (1 - 1) (az;’a + SQ/RKC) +or, (18)

with the third term corresponding in the Langevin description to an uncorrelated
noise source induced by the electrons’ partition at the QPC. At equilibrium
(T = Tg,), the Johnson-Nyquist relation at low frequencies imposes 2((61;")2) =
7(1 — 1) x 4k T /Ry (the factor two is because positive and negative frequencies are
included for this comparison). In the non-equilibrium regime (T = T,), the
information needed on &I for the heat current will be directly obtained from
energy flow conservation at the input and output of the QPC (see below). Note that
we neglect in Eq. (18) the small time delay associated with the round loop path
island-QPC-island (a delay of about 20 ps using a typical velocity of 10° m/s), and
that the transmission probability 7 is taken as a frequency independent value (that
depends on T and T, due to dynamical Coulomb blockade, see e.g. ref. 23).
Combining Eqs. (17) and (18) allows us to write §Q as a function of uncorrelated
noise sources:
(io + 7 /R C)8Q = 7(8I2 ™ — 817 )

N
+OID + > (81F = 817), (19)
=

where we introduced 7, defined as the sum of the transmission probabilities of the
channels connected to the island:

o =N+r1. (20)

This straightforwardly makes it possible to formulate the integrands ( (AI;Q)2> and

((AI?ﬁ)z) as functions of uncorrelated noise sources (independently of 6V ). As
an illustration, we obtain for the latter:

((OF)) + (1 — (1 — )((81F7)°)
72, + (R C)*
12
+(1+

—1(1—1)—2771 \2
72 Q) (e1%7)7),
where the arbitrary index j is omitted. The only missing ingredient is 0I3". As

{(a19)") =

(1)

74 + (wR C

pointed out above, the required information can be obtained most robustly from
global heat conservation at the QPC: ]Eﬁ =Joq PRI ]Qq , with ]E-ﬁ

flow of heat from the large electrode E; toward the QPC, ] the flow of heat from
the island toward the QPC, Ja HE3 the flow of heat from the QPC toward E;, and
T aqﬂ the flow of heat from the QPC toward the island. Using Eq. (15), this equality
reads:

1+

[ da o)

:/‘ dor(1—7)|1+

2 2
x {(E1)) + (1))}
Summing up the contributions of all channels and performing the integration in
Eq. (15), we obtain for the net heat flow from the metallic island:

]thy Nz:(lgr ]aln)

j=1

T —1(1 — 1) — 2170
2, + (R C)?

10— 1(1 —7) — 217 (22)
75 + (R C)

kg (o 2 h(rg —t(1-71)) (23)
=To g B(Ty - T%) - QW
hto /R C hto/RgC
Y Q/ K o Q/ 8k
<G -2 (o))

with the function ' given by

a0~ o) -2-v(2) o

with y(z) the digamma function. Equation (23) was used to calculate the

1077 F E
1078 F 3
Eol e é
_19 1 1
10 0.01 0.1
Ta(K)

Fig. 5 Electron-phonon heat transfers. Symbols represent the flow of heat
J'g‘ from the electrons within the metallic island to the phonons at

T ~ 8 mK. Different symbols represent data points from different
configurations N € {2, 3,4} and 7 € {0, 1}, including measurements
performed in two different cooldowns. All the data collapse on J%h =

2.752x1078(T37%° — T>79%) W (continuous line).

predictions shown as continuous lines in Fig. 3a, Supplementary Fig. 3b and
Supplementary Fig. 4.

At T =0 or 1, Eq. (23) reduces to the expression derived for a ballistic system!8
(see Methods in ref. 16 for a similar formulation). At high temperatures, Eq. (23)
reduces to the non-interacting result matching the widespread Wiedemann-Franz
law (without additional contribution from the partition noise):

212
thy hrg . T kg 2 2
Ta (T7 Ta> kBRKC> =a~g, (To = T7) (25)

:'TQ]lg“.

At low temperatures, Eq. (23) simplifies into:
7K
)) (TZ _ TZ)

thy ht, ~ _ T(l
Ja <T TQ<<kRKC> (TQ 1+ = on
T(l—1 .
~ (Tn -1 +7( ))]l(‘z'“.
Ta

In this case, in addition to the systematic blockade of one ballistic channel (—1)
with respect to the non-interacting case (7,), we find an additional contribution to
the flow of heat whose partition character is signaled by the characteristic 7(1 — 7)
dependence.

(26)

Electron-phonon heat transfers. The Fig. 5 displays the amount of heat trans-
ferred from electrons in the metallic island to cold phonons at base temperature
T ~ 8mkK. It is obtained by subtracting from the injected Joule power P; the

known electronic heat flow ]% when the circuit is tuned in the ballistic regime (for
the subtracted expression of J&, see Eq. (23) with 7 € {0, 1} or refs. 1618). The data
from all ballistic configurations (N € {2,3,4}, 7 € {0,1}) collapse on the same
curve, fitted by /% = $(T% — T%) with £ = 2.752x 10 WK* and & = 5.709.
We checked that this power law also precisely accounts for I%‘ at the larger tem-
perature T ~ 16 mK (data not shown).

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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Macroscopic Electron Quantum Coherence in a Solid-State Circuit
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The quantum coherence of electronic quasiparticles underpins many of the emerging transport properties
of conductors at small scales. Novel electronic implementations of quantum optics devices are now
available with perspectives such as “flying-qubit” manipulations. However, electronic quantum interfer-
ences in conductors remained up to now limited to propagation paths shorter than 30 zm independent of the
material. Here we demonstrate strong electronic quantum interferences after a propagation along two
0.1-mm-long pathways in a circuit. Interferences of visibility as high as 80% and 40% are observed on
electronic analogues of the Mach-Zehnder interferometer of, respectively, 24-ym and 0.1-mm arm length,
consistently corresponding to a 0.25-mm electronic phase coherence length. While such devices perform
best in the integer quantum Hall regime at filling factor 2, the electronic interferences are restricted by the
Coulomb interaction between copropagating edge channels. We overcome this limitation by closing the
inner channel in micron-scale loops of frozen internal degrees of freedom combined with a loop-closing
strategy providing an essential isolation from the environment.

DOI: 10.1103/PhysRevX.9.021030

I. INTRODUCTION

Ballistic electrons allow for advanced quantum manip-
ulations at the single-electron level in circuits, in the spirit
of the manipulation of photons in quantum optics [1-3].
Perspectives notably include a different paradigm for
quantum-information processing with a nonlocal architec-
ture based on “flying-qubits” encoded, for example, by the
presence or absence of an electron within a propagating
wave packet [1,2,4-7]. Electronic edge states topologically
protected against disorder constitute promising solid-state
platforms. In particular, the emblematic chiral edge chan-
nels propagating along a two-dimensional (2D) conductor
in the quantum Hall regime are generally considered
ideal 1D conductors. Their analogy with light beams, their
in situ tunability by field effect, and the availability of
single-electron emitters were exploited to implement the
electronic analogues of optical devices, such as the inter-
ferometers of types Fabry-Perot [8], Mach-Zehnder [9],
Hanbury-Brown and Twiss [10], and Hong-Ou-Mandel
[11]. In contrast to photons, the Coulomb interaction
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between charged electrons provides a natural correlation
mechanism to realize, e.g., CNOT gates [1,2,4,5]. However,
the same Coulomb interaction generally entangles the
propagating electrons efficiently with numerous degrees
of freedom, including the surrounding electrons, which
gives rise to quantum decoherence [12] (see Ref. [13] for a
notable exception).

In practice, the maximum electron phase coherence
length L was previously found to reach remarkably similar
values at the lowest accessible temperatures in very diverse
systems, from diffusive metal (L, ~20 ym reported in
Ref. [14] at 40 mK) to near ballistic two-dimensional
electron gas (L, ~ 20 um reported in Ref. [15] at 30 mK)
and graphene (L, ~3-5 pym estimated in Ref. [16] at
260 mK). Along the ballistic quantum Hall edge channels
of specific interest for electron quantum optics, L, =~
24 ym was demonstrated at 20 mK [17] at the most
advantageous magnetic field tuning corresponding to fill-
ing factor v = 2 in a Ga(Al)As 2D electron gas. We also
point out two promising findings: An important temper-
ature robustness of small conductance oscillations mea-
sured across a 6-um-long Ga(Al)As device, from which a
large value of L, ~ 86 ym was indirectly inferred [18] and
conductance oscillations of very high visibility along a
graphene p-n junction [19]. Here, we establish a macro-
scopic electron phase coherence length of 0.25 mm
achieved along quantum Hall channels by nanocircuit
engineering.

Published by the American Physical Society
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At low temperatures, short-range electron-electron inter-
actions within the same chiral edge channel of the integer
quantum Hall regime are predicted to increase the elec-
trons’ propagation velocity but not to limit their coherence
[20,21]. The dominant dephasing mechanism is generally
attributed to the interaction between electrons located in
adjacent edge channels [20,22] (except at v =1 and
fractional filling factors where the stronger decoherence
[23,24] is not clearly understood). This picture is estab-
lished by complementary signatures including energy
transfers [25,26], charge fractionalization [27-29], and
Hong-Ou-Mandel characterizations [30]. However, addi-
tional dissipative mechanisms yet unidentified were also
evidenced experimentally, even in the most canonical
v = 2 case [25-27]. In this work, we demonstrate a circuit
design strategy that very efficiently suppresses the essential
decoherence mechanisms.

II. NANOENGINEERING THE PHASE
COHERENCE LENGTH

The electronic version of the Mach-Zehnder interferom-
eter [MZI, schematically depicted in Fig. 1(a)] essentially
consists in a quantum Hall edge channel following two
separate paths, and in two quantum point contacts (QPCs)
used as tunable beam splitters [9]. The quantum Hall
regime is realized in a Ga(Al)As 2D electron gas immersed
in a perpendicular magnetic field of 4.3 T corresponding to
a filling factor v = 2, with two copropagating edge chan-
nels. The interfering MZI paths involve only the outer edge
channel [thick black lines in Fig. 1(a)]. The two beam-
splitter QPCs are formed by field effect using split gates
[colored orange in Fig. 1(a) with suspended bridges to
contact the top parts]. The quantum phase difference
between the two paths is proportional to the enclosed
magnetic flux. It is here controlled by fine-tuning the lower
edge path with the voltage V/, applied to a lateral plunger
gate [colored green in Figs. 1(a) and 1(b)]. The quantum
interferences are evidenced by sweeping V, from the
resulting oscillations of the transmitted current impinging
on the metallic electrode labeled D in Fig. 1(a). Their
energy dependence with respect to the bias voltage V.
applied to the source electrode is obtained from a con-
comitant noise in the transmitted current. The second MZI
output is connected to the central metallic electrode
(elongated yellow disk in Fig. 1), which is electrically
grounded through a suspended bridge. In contrast to
previous MZI implementations, our devices include two
long surface gates [light gray in Figs. 1(a) and 1(b)] with a
particular comb shape with both shafts and teeth placed
over the 2D electron gas. This shape is essential for the
presently demonstrated strong increase of the electron
coherence. As illustrated in Fig. 1(a), these gates can be
biased to form inner channel loops along the interfering
outer edge channel paths. In order to unambiguously
demonstrate and accurately measure very large phase

VAR R R e — = S R U N

FIG. 1. Nanocircuit engineering of electronic coherence.
(a) Sample schematic. Two chiral edge channels (black and gray
lines with arrows) propagate along a 2D electron gas (blue) set in
the integer quantum Hall regime at filling factor v = 2. The outer
channel (black) follows two separate paths between tunable beam
splitters implemented by quantum point contacts (orange),
thereby forming a Mach-Zehnder interferometer. The inner edge
channel (gray) can be closed into well-separated loops with
specific comb-shaped gates (light gray) voltage biased to reflect
only this channel. Sweeping the voltage on a lateral plunger gate
(green) results in MZI oscillations of the current transmitted from
source (§) to detector (D). (b) Colored scanning electron micro-
graph of the sample with MZI arms of symmetric length
L ~24 ym. (c) Optical image of the L ~0.1 mm MZI. The
inner edge channel loops have nominally identical perimeters of
9 pm, except one of 5 um for the lower left loop of each sample.

coherence lengths, we fabricate two MZIs with extraordi-
narily long symmetric arms of length L ~ 24 um [Fig. 1(b)]
and 0.1 mm [Fig. 1(c)]. For a straightforward comparison at
different L, the two devices are made concurrently (a few
millimeters away on the same chip) with identical designs
except for the length of the elongated central area and are
simultaneously cooled down to 10 mK.

How can L, be increased? It was initially shown that
most of the electrons’ energy relaxation can be frozen
within the outer edge channel at v = 2 (along an 8-um path)
by closing into a loop the inner channel [31]. This freezing
was explained by the electronic levels’ quantization within
the loop, which effectively quenches the phase space for
inelastic collisions with the inner loop’s electrons (for a
level spacing larger than the available energy) [31,32]. As
inelastic collisions also result in decoherence, a similar
approach was subsequently tested on L, using an electronic
MZI [33]. However, the increase in L, by forming inner
channel loops was limited to a factor of 2 [33], relatively
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FIG. 2. Quantum oscillations. (a)—(c) Schematics of the different configurations. (d),(e) Continuous lines show versus plunger gate

voltage V,

the measured fraction 7y, of current transmitted from S to D along the outer channel of the L ~ 24 ym (d) and 0.1 mm

(e) MZI [same color as the box enclosing the corresponding schematic in panels (a), (b), or (c); darker shade for the shorter device].
Horizontal dashed lines display the predicted 7z extrema for the same L, = 0.25 mm in both MZIs. (f) Continuous lines show the
power spectral density of 7y (V) determined along large V,, sweeps (extending between 50 and 80 mV) measured several times
[same color code as in panels (d),(e)]. For the challenging case of L ~ (0.1 mm in configuration (c) (light blue line), the Fourier analysis
is restricted to plunger gate-voltage windows exhibiting oscillations larger than 66% of their maximum amplitude.

modest compared to the freezing of energy relaxation. Our
conjecture is that the weaker impact on L, reflects a
fundamental design limitation in the MZI implementation
of Ref. [33], where an otherwise negligible coupling
between two different outer edge channels could be
mediated by the rigid displacements of the inner loops.
These rigid displacements provide an additional mecha-
nism for both decoherence and energy relaxation: Even if
the inner loops’ electronic degrees of freedom are not
excited, the loops’ presence can strongly enhance the
capacitive coupling between different propagative edge
channels adjacent to separate portions of the same loops.
The present MZI implementation suppresses this mecha-
nism while preserving a 2D bulk at v = 2 through a gate
design allowing for a much larger separation of the inner
loops from additional quantum Hall channels (see Fig. 4 for
an illustration, and Sec. II in the Appendix for further
discussion).

III. QUANTUM OSCILLATIONS
VERSUS LOOP FORMATION

We present in Fig. 2 illustrative MZI oscillations versus
plunger gate voltage V, (a positive bias of +0.35 V is
applied during cooldown). The displayed 717 corresponds
to the transmission probability across the MZI from source
S to detector D. It is given by the fraction measured at the
electrode D of the current injected into the outer edge
channel at the electrode S. The two L ~ 24 uym and 0.1 mm
MZIs are each tuned in three different configurations
[Figs. 2(a)-2(c)]. The green lines in Figs. 2(d) and 2(e)
are data obtained with both devices set in the configuration

shown in Fig. 2(a). Their flatness demonstrates directly in
the presence of inner channel loops the absence of 7y
oscillations when all the transmitted current goes through a
single MZI arm (the lower arm; in this specific case
Tvz = Tope since 7gpe = 1). The red and blue lines in
Figs. 2(d) and 2(e) are obtained with both QPC beam
splitters set to half transmission probability for the outer
edge channel (zGpe = 78pc = 0.5, the inner edge channel
being always fully reflected at the QPCs) in the configu-
rations illustrated in Figs. 2(b) and 2(c). In the conventional
MZI configuration [no loops, Fig. 2(b)], small oscillations
of period 6.4 mV are observed only on the L ~24 ym
device [dark red lines in Figs. 2(d) and 2(f)]. Their visibility
V= (7% — i) /(T + i) &~ 6% corresponds to a
typical phase coherence length value of L, ~17 ym
(despite a relatively low temperature 7'~ 10 mK) obtained
from the standard relationship for a symmetric MZI:

2L
V=4 TSPC(I - TSPC)TI()PC(I - TIQPC) exXp <L—¢> (1)

which assumes a perfect absorption of the outer edge
channel by the central metallic contact connected to
electrical ground (separately checked; see the
Appendix). In contrast, for the L ~0.1 mm device, no
oscillations can be detected without inner channel loops as
expected from Eq. (1) (V~ 107 calculated with L =
0.1 mm and Lq,, = 17 um). Instead, we observe a slowly
evolving 7y, which is markedly below 0.5. This low
mean value reflects the tunneling of electrons from outer
to inner edge channels, which becomes significant over
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such a long propagation distance. As a result, a larger
(smaller) fraction of the current injected into the outer
edge channel is absorbed by the grounded central Ohmic
contact (detected at D). Specific measurements of the
tunneling between copropagating channels are discussed
in the Appendix (Sec. V).

With inner channel loops formed [Fig. 2(c)], high-
amplitude oscillations of maximum visibility V ~ 80%
and 40% are observed for the L ~24 ym and 0.1 mm
MZIs, respectively. Their sinusoidal shape is, however,
perturbed by jumps as well as amplitude modulations,
which are attributed to fluctuators such as moving charges
in the MZI vicinity. A sudden variation in surrounding
charges will indeed appear as a phase jump. In contrast,
relatively rapid fluctuations with respect to the experimen-
tal integration time (approximately 1 s) but slow with
respect to the electron quantum coherence time will
artificially reduce the amplitude of MZI oscillations, below
their intrinsic value limited by L, according to Eq. (1). As
illustrated with the emblematic single-electron transistor,
individual charge fluctuators are usually influenced by
surrounding gate voltages. Accordingly, we observe mod-
ulations of the phase jump density and of the amplitude of
oscillations with gate voltages. Note that two sources of
moving charges are specific to the present MZI imple-
mentation with inner channel loops: (i) the voltage bias
applied to the very long surface gates used to form the loops
and (ii) jumps in the number of electrons within each of the
many inner channel loops (from the possible tunneling of
electrons between outer channel and inner loops). We now
further establish by a train of evidence that the large

(a) 100 T T T T

Visibility (%)

L
TQprc

FIG. 3.

oscillations observed with inner channel loops result from
the quantum interferences between the two MZI paths and
that their maximum visibility accurately reflects L.

IV. OSCILLATION CHARACTERIZATION

First, a well-defined plunger gate-voltage period of
2.2 mV is observed for the smaller L ~24 ym MZI, as
directly evidenced from the power spectral density [dark
blue lines in Figs. 2(d) and 2(f)]. A compatible but broader
oscillation periodicity can also be perceived for the
L ~ 0.1 mm MZI but only if the FFT analysis is restricted
to plunger gate-voltage windows where the oscillation
amplitude is relatively large [light blue line in Fig. 2(f)].
The period for L ~24 ym with loops is shorter than
without, as expected from the stronger influence of the
plunger gate voltage. This reduction is a consequence of the
quenched screening from isolated inner channel loops
hosting a discrete number of electrons as compared to a
copropagative inner channel. It also implies that any nearby
moving charges will have a stronger impact on the MZI
quantum phase.

Second, as shown in Fig. 3(a), the maximum oscillation
visibility (highest symbols) follows the hallmark MZI

signature 4 /7¢pe (1 — 7Gpe) (continuous lines) when vary-

ing the outer edge channel transmission probability across
the left QPC beam splitter TéPC. For this purpose, we
measure 7y;z;(V) over many periods on both devices and
for various settings of 7(pe at fixed z8pe ~0.5 (see the
Appendix). Each symbol in Fig. 3(a) (full and open

(b) - 7

1000 |

o] 2‘5 50
Vael (uV)

Excess PSD (fA%Hz)
8
T

1 10
Vel WV)

100

Beam-splitter and bias-voltage tunings. Open (full) symbols are data points obtained on the L ~24(100) ym MZI. (a) The

local quantum oscillations’ visibility in the presence of inner channel loops [Fig. 2(c)] separately extracted period per period along
large V, sweeps is displayed as symbols versus the transmission probability répc of the outer channel across the left QPC (at fixed
TSPC ~0.5). Continuous lines are Eq. (1)’s predictions for Ly = 0.25 mm with L = 24 ym or 0.1 mm. (b) The excess power spectral
density of temporal fluctuations in the transmitted MZI current with respect to zero dc bias and averaged in V/,; is shown versus source
(S) dc voltage V 4. The gray straight lines represent a quadratic (dashed) and linear (dash-dotted) increase. The black continuous lines in
the main panel display the noise contribution from phase fluctuations calculated with L, (V4.) = (0.25 mm) x exp[—(V4./26 uV)?]

(shown in the inset).
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corresponding to the L ~24 ym and 0.1 mm MZIs,
respectively) displays the “locally” extracted visibility of
the oscillations obtained by analyzing a restricted plunger
gate-voltage window of one period (2.2 mV). The close
agreement between the highest data points and MZI
expectations confirms that the observed oscillations result
from the two-path quantum interferences.

Third, we find a quantitative data or theory agreement
with the same Ly~ 0.25 mm for both devices, despite a
factor of 4 in their size. The continuous lines in Fig. 3(a)
are calculated using Eq. (1) with Lj, =0.25 mm, the
corresponding MZI length L = 24 ym or 0.1 mm, and
TSPC = 0.5. This agreement provides strong evidence that
the measured maximum “local” visibility closely captures
the intrinsic MZI visibility determined solely by L, (note
that L, will otherwise be underestimated).

Fourth, as shown in Fig. 3(b), out-of-equilibrium mea-
surements of the transmitted current noise around
0.86 MHz further confirm the presence of MZI interfer-
ences accompanied by phase fluctuations and allow prob-
ing the energy dependence of L. The displayed data points
represent measurements of the excess power spectral
density of the current impinging on the electrode D versus
the dc bias voltage V. applied to the source electrode S.
MZI phase variations, such as those produced by nearby
charge fluctuators, are expected to manifest as a quadratic
increase of the noise power at low V. (see the Appendix
and Ref. [34]), as we experimentally observe. At larger
bias, the generally expected reduction of L, also progres-
sively diminishes the influence of the quantum phase and,
consequently, the current noise induced by phase fluctua-
tions. Experimentally, such a collapse is observed and can
be accounted for using the same L, (V) for both devices:
The two black continuous lines (main panel) are calcu-
lations based on Eq. (1) (see the Appendix, Eq. (A2)]
using the empirically determined L, = (0.25 mm) x
exp[—(V4./26 uV)?] (shown in the inset). Ultimately, a
linear noise increase is recovered as expected for the shot-
noise contribution [34] (see the Appendix).

V. DISCUSSION

The large phase coherence length presently achieved
provides information for the design of novel quantum Hall
devices. It sets an upper bound to possibly relevant
decoherence mechanisms along the quantum Hall edges
in addition to the dominant interchannel coupling and
narrows down the mechanisms for a frequently observed
but still mysterious additional dissipation [25-27,35].

We establish that nearby metallic gates are completely
compatible with large phase coherence lengths, despite the
presence of many diffusive electrons. Note their beneficial
screening of the long-range part of Coulomb interaction (to
approximately 3.5 pum, the loop-gates’ period, whether the
loops are formed or not), which could otherwise provide an
effective decoherence mechanism [36-39] as well as an

unwanted coupling to spurious low-energy modes and
distant channels [35,40,41]. In practice, a strong capacitive
shortcut (100 nF) is included at the low-temperature end of
the electrical lines controlling the gates of our samples in
order to further suppress both extrinsic and thermal noise
sources.

We also find that the additional neutral modes predicted
for a realistic smooth confinement potential at the edge
[42—44] can essentially be ignored. Either these neutral
modes are missing in the outer channel along our etched-
defined edges or they are very weakly coupled to the usual
charge mode of the same channel. This finding is consistent
with thermal conductance measurements across narrow
constrictions perfectly transmitting one or several quantum
Hall channels at integer bulk filling factors, where the extra
heat transfer that would be expected from additional edge
modes is not observed [45-47].

Finally, we mention that the two-dimensional quantum
Hall bulk does not provide here a substantial path to
quantum decoherence, at least when broken into small
areas of a few micron squares (within the inner channel
loops) and with the long-range part of Coulomb interaction
screened by metallic gates. This finding contrasts with the
observations of an unexpected heat flow away from the
edge at lower filling factors [48—50] and of a long-distance
capacitive coupling across the two-dimensional bulk
[40,41].

VI. CONCLUSION

We demonstrate that the electron quantum coherence in
solid-state circuits can be extended to the macroscopic
scale by strongly suppressing through circuit nanoengin-
eering the dominant decoherence mechanism. The present
implementation on quantum Hall edge channels is particu-
larly well suited for the coherent control and long-distance
entanglement of propagative electrons. Future optimiza-
tions include the understanding and suppression of the slow
electron phase fluctuations here often, although not sys-
tematically, observed. Our work gives access to electron
quantum optics devices of a higher complexity level, in line
with the direction taken by this field of research [1-3,18].
More generally, increasing the electron phase coherence is
essential to progress toward functional quantum devices
involving multiple quantum manipulations, such as infor-
mation processing with electronic flying qubits.
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APPENDIX: EXPERIMENTAL METHODS

1. Samples

Both samples are made of the same Ga(Al)As
heterojunction hosting a two-dimensional electron gas of
mobility 10° cm®> V™'s™! and density 2.510' ¢cm™?
located 105 nm underneath the surface. They are nano-
fabricated by e-beam lithography, dry etching, and metallic
deposition. The central metallic electrode (nickel [30 nm],
gold [120 nm], and germanium [60 nm]) forms an Ohmic
contact with the 2DEG obtained by thermal annealing (at
440°C for 50 s) and is set to electrical ground through a
suspended bridge. The two arms of each MZI are designed
to be as symmetric as possible, such that the thermal
smearing of the visibility induced by an asymmetry remains
negligible by a large margin as previously observed
[17,33]. The elongated shape of the central area is chosen
to limit the overall magnetic flux enclosed between the two
arms and, hence, the effect of environmental magnetic
noise (e.g., from the pulse tube vibrations) on the particu-
larly sensitive MZI phase in these very large devices. Note
that a positive bias voltage of +0.35 V is applied to all used
gates during cooldown. This is a widespread procedure in
Ga(Al)As devices to reduce the charge noise induced by
biasing the gates, although it is probably not essential here
due to the relatively low bias voltages used to form inner
channel loops.

2. Loop gate design

Figure 4 recapitulates the different kinds of inner channel
loops in the energy-relaxation experiment [31] [one inner
loop enclosed only by the outer channel; see Fig. 4(a)] in
the first MZI implementation [33] [inner loops enclosed by
a metallic gate, the MZI outer channel, and another
counterpropagating outer channel; see Fig. 4(b)] and in
the present MZI implementation [inner loops enclosed by a
metallic gate and the MZI outer channel; see Fig. 4(c)].
Now focusing on the present implementation, the gates’

(a) (b) (©)

QO L T

=

FIG. 4. Loop design. Inner loop design in previous energy-
relaxation experiment [31] (a), previous MZI experiment [33], (b)
and in the present implementation (c). The outer (inner) edge
channel is represented by a black (gray) line. A schematic of the
gates used to reflect the inner edge channel is displayed in red.

width of 200 nm reflects a compromise between the
separation with additional quantum Hall channels on the
other side of the gates, which should be sufficiently large to
result in a negligible coupling, and the wish to limit the
v = 1 area underneath the gates, as very weak interferences
are often observed if the whole 2D bulk is set to v =1
(either by tuning B without gates or using a broad top gate
fully covering the 2D bulk; see, e.g., Ref. [24]). The
distance between the inner channel loops and the propa-
gative (inner) quantum Hall channel on the other side of the
gates (opposite the MZI outer channel) should therefore be
larger than 200 nm. This is more than 1 order of magnitude
larger than the narrow incompressible strip normally
separating adjacent edge channels (typically 10 nm
[51]). The loops’ perimeter should also be chosen small
enough such that the separation between the quantized
electronic levels is larger than the available energy of
approximately k7. Assuming a typical drift velocity
between 10* and 10° m/s along the sample edges, we
find that the 9-um loop perimeter corresponds to a level
spacing within 4.6 and 46 ueV, always larger than the
thermal energy (3kpT ~2.6 peV at 10 mK) and compa-
rable to the characteristic 26-uV dc bias voltage over which
Ly (V) is found to decrease [Fig. 3(b)]. Finally, the gates
are designed elongated to minimize their overlap with the
outer MZI edge channel, as at these locations their
capacitive coupling is maximal and the lateral edge con-
finement is modified. Note also that one should be
particularly careful about the electrical noise introduced
by the measurement lines connected to the very long gates
used to form the inner channel loops. These gates are
indeed much more strongly coupled to the MZI phase than
typical lateral plunger gates due to their very long size and
because the inner loop efficiently mediates the capacitive
coupling between the metallic gate and the MZI outer edge
channel.

3. Experimental setup

The two simultaneously cooled devices are thermally
anchored to the mixing chamber of a cryo-free dilution
refrigerator. Electrical lines connected to the samples
include multiple filters and thermalization stages. Note
the important RC filter (200 k€2, 100 nF) implemented at
base temperature on the lines connected to the gates,
including the long gates used to form the inner channel
loops. Spurious high-frequency radiation is screened by
two shields at base temperature. The fraction of transmitted
current 7y7; 1s measured with lock-ins at a frequency below
200 Hz and using an effective integration time close to 1 s
per point (corresponding to equivalent noise bandwidth of
0.8 Hz). The power spectral density of temporal current
fluctuations is measured over a much larger bandwidth of
180 kHz around 0.86 MHz, using a homemade cryogenic
amplifier and a tank circuit based on a superconducting
coil. The temperature of electrons in the devices is extracted
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from the quantum shot noise across a quantum point
contact (the right beam splitter QPC of the L ~24 ym
MZI set to TI(SPC ~(.5). See Ref. [52] for further details on
the same experimental setup.

4. Central Ohmic contacts characterization

The quality of the grounded central Ohmic contact is
characterized by the ratio of reflected to impinging current.
Ideally, there should be no reflected current. In practice, if
the impinging current is carried only by the outer edge
channel (used for the interferometer), the reflected current
is found to be negligible for both devices (below 1%). If the
impinging current is carried by both the inner and outer
edge channels, we find a reflected current in the range of
11%-21% corresponding to a 22%-42% reflection of the
inner edge channel from the central Ohmic contact of the
L ~ 24 ym paths’ MZI, whereas for the L ~ 0.1 mm MZI,
the reflected current remains essentially negligible (below
1%). Note that a good Ohmic contact with the outer channel
is assumed in Eq. (1) (an imperfect contact will further limit
the amplitude of MZI oscillations).

S. Tunneling between inner and outer channels

Tunneling of electrons between adjacent copropagating
channels is usually negligible at filling factor v = 2.
However, the propagation distances in the present devices
can be considerable. Following standard procedures [53],
we determine the electron interchannel tunneling along the
MZI arms between the two QPC beam splitters when the
inner edge channel is not formed into small loops. Note that
the tunneling of electrons in the presence of small inner
channel loops is expected to be much smaller because of
the electronic level quantization within the loops and
because of the Coulomb blockade of tunneling into (nearly)
isolated islands (although this tunneling cannot be mea-
sured because there is no dc current toward closed loops).
The tunneling between copropagative inner and outer edge
channels is obtained by applying a small bias selectively on
one of the two channels and by measuring at the end of the
path the current in the other channel. We find that the
tunneling remains small for the L ~ 24 ym MZI [between
2.5% and 5% (approximately 0%) of the injected current is
detected on the second channel after propagating along the
lower (upper) MZI arm]. The tunneling is more important
for the L ~ 0.1 mm MZI [between 30% and 48% (between
10% and 26%) of the injected current is detected on the
second channel after propagating along the lower (upper)
MZI path].

6. Cross-talk characterization

Changing a gate voltage also slightly influences the other
nearby gates. We take into account this small capacitive
cross-talk correction on the beam-splitter quantum point

contacts (of at most 6% attained for the lateral plunger gate
effect on the nearby left QPC).

7. Formation of inner channel loops

The comb-shaped gates of homogeneous width (200 nm)
are polarized with a positive voltage of +0.35 V during the
cooldown from room temperature. A broad gate-voltage
window is found to fully reflect the inner quantum Hall
channel while completely letting through the outer channel
(with a minimal common window from O to 0.13 V that
applies simultaneously to each arm of both devices). Such a
behavior is usually observed on similar 2DEGs, thanks to
the large energy separation between the two lowest Landau
levels at filling factor v = 2. Note that the results corre-
sponding to closed inner channel loops that we present in
the manuscript are not specific to a precise gate-voltage
setting (chosen within the minimal common window) but
representative of the general behavior observed when the
inner edge channel loops are completely closed while the
outer edge channel is fully propagative.

8. Visibility of conductance oscillations
versus QPC transmission

Here we provide more details on the procedure followed
to extract the oscillations visibility data displayed in
Fig. 3(a). We perform relatively large plunger gate-voltage
sweeps of 50 mV corresponding to approximately 21
periods (with a step of 50 uV corresponding to 1/46 of
a period) and repeat several times the same sweep (twice
for the L ~ 24 ym MZI, 14 times for the more challenging
L ~0.1 mm MZI). Each sweep is then decomposed into
one-period intervals with half a period of overlap between
consecutive intervals, and a local visibility of the
oscillations in 7y is extracted from V = (¢ — s/
(Thax 4 7 in each of these intervals. The symbols in
Fig. 3(a) display the many different values of V obtained by
this procedure.

9. Temporal noise spectral density

Here we provide more details on the noise data and
calculations displayed in Fig. 3(b). The data points re-
present the excess power spectral density of the current
detected on electrode D [see Fig. 1(a)], i.e., the total noise
from which is subtracted the equilibrium noise offset at
Ve = 0 (that includes the contribution of the amplification
chain). To make sure that the noise dependence in the MZI
quantum phase is fully averaged out, the displayed data
represent the average of many noise measurements equally
distributed in a range of the plunger gate voltage corre-
sponding to several periods (240 [40] values of V,
distributed over approximately five [2] periods for the
L ~24[100] pum MZI). The displayed calculations (con-
tinuous lines) include only the contribution of “slow”
fluctuations in the MZI quantum phase §¢(¢) detected
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within a 180-kHz window around 0.86 MHz and not
the quantum shot-noise contribution that we further
discuss below. From the relationship 7y (2) =
0.5{1 + Vsin [(¢) + 6¢()]}, it is straightforward to
obtain that the resulting noise in the transmitted current
is given by [34]

2 4
Vice
h2

(Ip)e V2, (A1)
with & the Planck constant and e the elementary electron
charge. At low V. bias (as long as the oscillation visibility
V is not significantly reduced), one thus expects a quadratic
increase. Using the relationship between visibility and
phase coherence length given Eq. (1), this expression

becomes
V2 et —4L
2 dc
(I54) o 2z XP (L_¢>

The calculations displayed as black continuous lines
are obtained from Eq. (A2) using for both devices
the same empirical expression L,(Vy) = 0.25 mm x
exp[—(V4./26 uV)?] (displayed in the inset) the corre-
sponding MZI length L = 24 um or 0.1 mm and where the
unknown prefactor (depending on the number and coupling
strength of the phase noise sources) is considered here as a
free parameter for each device. The smaller quantum shot-
noise contribution [not included in Eq. (A2)] is linear in V 4,
and does not rely on the presence of MZI quantum
interferences. As expected, if the vanishing current noise
results from a quantum decoherence by “fast” phase
fluctuations [34] (compared to the electron quantum
coherence), the amplitude of the linear noise is found
strongly suppressed compared to the naive expectation
(I?) = 2e(Vace?/h) (tmz) (1 = (tmzi)) by a factor of 4 (6)
for the MZI of arm length L ~24(100) pm.

(A2)

10. Comparison of voltage-bias robustness with and
without inner channel loops

In the absence of inner channel loops, the negligible MZI
phase noise does not allow us to probe L,,(V ) through the
power spectral density of the transmitted current’s temporal
fluctuations. However, on the L ~24 ym MZI where
quantum oscillations are visible without loops, it is possible
to determine, versus dc voltage bias, their visibility Vg in
the transmitted differential current dlyz;/dV 4. The “dift”
subscript is introduced here to clearly distinguish between,
on the one hand, this usually measured Vg and, on the
other hand, the visibility V' of oscillations in the total
transmitted current Iy that is probed through noise
measurements [Fig. 3(b)]. These two quantities are simply
connected by the relation [54]

Viier = |V + Vg OV/ OV y|. (A3)

Measurements of Ve (V) on the L ~ 24 ym MZI without
loops are shown in Fig. 5 as open red circles. We find that
Vaiee displays a single side lobe with a first minimum at
[Vl =5 pV and becomes negligible below our experi-
mental resolution at |Vy.|= 15 uV. The data can be
reproduced by the simple single side-lobe expression
derived in Ref. [54] assuming a Gaussian phase averaging
(continuous line in Fig. 5):

. Vi Vi
V(Ci}iet%lssmn — Vo‘l - dec exp (— 2_‘%>, (A4)
0 0

with V; = 0.06 the zero bias visibility and Vj =5 uV the
characteristic voltage scale also corresponding to the
position of the intermediate minimum. In order to compare
the robustness of MZI interferences with and without inner
channel loops, we convert the noise data in Fig. 3(b) into
the corresponding V. The resulting Vg 1s displayed in
Fig. 5 as open dark blue circles and full light blue triangles
for, respectively, the L ~24 and 100 ym MZI with loops.
This conversion first involves the determination of V from
Eq. (A1) (using the measured noise spectral density from
which the linear shot-noise contribution observed at large
V4e 1s subtracted). The unknown proportionality coefficient
in Eq. (A1) is fixed by adjusting the visibility at low bias
with its direct V4. & 0 measurement displayed in Fig. 3(a).
The resulting V is then injected into Eq. (A3) to obtain V.

T T T T T T T T T T T
O 24 pm no loops Q
100 - o 24 um with loops 7
. file) o
(from noise) &5 i
100 pm with loops ' ::.
80 L (from noise) H :
— o)
2
E J
3 ¢
2
Z w0} i
$
20 |
°
<
O ’
0 b 24 404000 0 0 O
75 -50
FIG. 5. Out-of-equilibrium visibility in the differential current

Vaise- The red circles represent measurements of the visibility of
the oscillations in the differential transmitted current across the
L ~ 24 ym MZI without inner channel loops as a function of the
applied dc bias voltage. The continuous red line is calculated
from Eq. (A4) (see text). The dark blue circles (light blue full
triangles) connected by dashed lines represent the differential
visibility on the L ~ 24(100) pm MZI with formed inner channel
loops, which is extracted from the noise measurements displayed
in Fig. 3(b) (see text).
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Comparing the two datasets at the same L ~ 24 ym (open
circles), we find that the robustness of the MZI visibility
with V. is approximately 4 times larger in the presence of
loops (dark blue) than without them (red).
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The Coulomb interaction generally limits the quantum propagation of electrons.
can also provide a mechanism to transfer their quantum state over larger distances.

However, it
Here, we

demonstrate such a form of teleportation, across a metallic island within which the electrons are
trapped much longer than their quantum lifetime. This effect originates from the low temperature
freezing of the island’s charge @ which, in the presence of a single connected electronic channel,
enforces a one-to-one correspondence between incoming and outgoing electrons. Such high-fidelity
quantum state imprinting is established between well-separated injection and emission locations,
through two-path interferences in the integer quantum Hall regime. The added electron quantum
phase of 2rQ/e can allow for strong and decoherence-free entanglement of propagating electrons,

and notably of flying qubits.

A disordered environment, with a large number of in-
teracting degrees of freedom, is generally considered as
the nemesis of quantum technologies. This is exempli-
fied by a metallic island, often pictured as a reservoir of
thermal electrons, with its large energy density of states
1/ and limited number N of connected electronic chan-
nels. Indeed, the interval between inelastic collisions de-
stroying the quantum coherence of the electrons [1, 2] is
typically much smaller than their dwell time inside the
island (7p = h/N¢ for perfect channels [3], with h the
Planck constant). However, we show experimentally that
the Coulomb interaction in such an island can, under the
right circumstances, lead to a near perfect preservation
of the quantum state of electrons transferred across it.
In the employed quantum Hall regime implementation,
where injection and emission points are physically sepa-
rated by chirality, this constitutes a form of teleportation
of the electrons’ states without transmitting the physical
particles themselves. This phenomenon is different from
the standard ‘quantum teleportation’ protocol [4], and
similar to the ‘electron teleportation’ proposed in [5].

The voltage probe model of a metallic Fermi sea [6]
is widely used to mimic the electrons’ quantum deco-
herence and energy relaxation toward equilibrium (see
e.g. [7] and references therein). However, independent
absorption and emission of electrons result in fluctua-
tions of the total island charge @, with a characteris-
tic charging energy Ec = e¢?/2C (with C the geometrical
capacitance of the island and e the elementary electron
charge). At low temperatures T <« E¢/kp (with kg the
Boltzmann constant) this energy is not available, and the
macroscopic quantum charge state @ is effectively frozen
[8, 9] (although not quantized in units of e as long as one
channel is perfectly connected [10-12]). Consequently,
correlations develop between absorbed and emitted elec-
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trons. These culminate if only one transport channel is
connected to the island, in which case theory predicts
that the electrons entering it and those exiting it are in
identical quantum states [9, 13]. Effectively, the elec-
tronic states within the connected quantum channel are
decoupled from the many quasiparticles within the is-
land, despite the fact that the incoming (outgoing) phys-
ical electron particles penetrate into (originate from) the
island. Another consequence is that heat evacuation from
the island’s internal states along the channel is fully sup-
pressed [8]. In contrast, in the presence of two or more
open channels the coherence is lost [9], and heat evacua-
tion is restored in agreement with the recently observed
systematic heat Coulomb blockade of one ballistic chan-
nel [14]. Interestingly, the ‘electron teleportation’ pro-
posed in [5] also relies on the ‘all-important’ Coulomb
charging energy of a small island, although combined in
that case with Majorana bound states in an altogether
different mechanism.

We demonstrate the high-fidelity replication of electron
quantum states across a metallic island through quantum
interferences. For this purpose, an injected current is first
split along two separate paths that are subsequently re-
combined, thereby realizing an electronic Mach-Zehnder
interferometer (MZI). In contrast with usual MZI im-
plementations [15-19], one of the paths can controllably
be diverted toward a small floating metallic island (see
Fig. 1). In that case, any two-path quantum interfer-
ences involve both the initial electrons (direct left path)
and the reemitted ones (interrupted right path, assum-
ing a perfect contact with the island). Therefore a high
interference visibility directly ascertains a high fidelity of
the electron state replication.

A colorized e-beam micrograph of the measured device
is shown in Fig. 1. The sample was nanofabricated from
a high-mobility Ga(Al)As two dimensional electron gas,
and immersed in a perpendicular magnetic field B ~ 5T
corresponding to the integer quantum Hall filling factor
v = 2. In this regime, two quantum Hall channels co-



FIG. 1. Device e-beam micrograph. Areas with a Ga(Al)As
two-dimensional electron gas underneath the surface appear
darker. The applied perpendicular magnetic field B ~ 5T
corresponds to the integer quantum Hall regime at filling fac-
tor two. Capacitively coupled gates colored green and blue
control, respectively, the Mach-Zehnder interferometer beam
splitters for the outer quantum Hall edge channel (lines with
arrow, here corresponding to the schematic in Fig. 2(b)) and
the connection to the floating metallic island (yellow) in good
ohmic contact with the buried 2D electron gas. One of the
two MZI outputs is the central small ohmic contact (orange)
connected to ground through a suspended bridge. The sec-
ond one, larger and located further away, is schematically
represented by the top white circle. The MZI phase differ-
ence is controlled through B or the plunger gate voltage V.
The red dashed line visually represents the non-local quantum
state transfer across the island, between electrons’ injection
(starting point) and emission (arrow).

propagate along the edges (the electron gas was etched
away in the brighter areas), and the MZI is formed using
only the outer edge channel. The followed paths are rep-
resented by thick lines with arrows for the configuration
where one MZI arm goes through the floating metallic is-
land (corresponding schematic shown in Fig. 2(b)). The
two MZI beam splitters, each tuned to half transmission,
are realized with quantum point contacts formed by field
effect using split gates (colored green; the inner quan-
tum Hall channel, not shown, is fully reflected). One of
the two MZI outputs is the small central metallic elec-
trode (orange), which is grounded through a suspended
bridge. The quantum interferences are characterized by
the oscillations of the current transmitted to the second
MZI output formed by a much larger electrode 60 pm
away (represented in Fig. 1 by the top white circle),
while sweeping either the magnetic field B or the volt-
age Vp1 applied to a lateral plunger gate (purple). The
floating metallic island (yellow) consists of 2 um? of a
gold-germanium-nickel alloy diffused into the Ga(Al)As
heterojunction by thermal annealing. From the typical
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FIG. 2. Quantum oscillations versus magnetic field. (a,b,c),
Schematics of implemented MZI configurations. (d), Frac-
tion Tvzr of the outer edge channel current transmitted across
the MZI as a function of B. Continuous lines are measure-
ments performed in the configuration framed by a box of
the same color in (a,b,c). The horizontal black dashed lines
represent the myzr extrema for the standard and floating is-
land MZI configurations (schematics in (a) and (b), respec-
tively), corresponding to a high quantum oscillations visibility
of V ~90%. With a second channel connected to the floating
island (configuration shown Fig. 2(c)), the quantum oscilla-
tions are strongly reduced to a visibility V ~ 20%, consistent
with the separately characterized small residual reflection of
~ 3% (see text and [20]), and the average (Tmzi) is dimin-
ished as part of the current is transmitted across the island
toward a remote electrical ground. (e), Symbols display the
magnetic field position of consecutive extrema (both peaks
and dips increment the index number). The larger slope for
the floating island MZI configuration (black squares) corrob-
orates the electron quantum state transfer between different
injection and emission locations across the floating metallic
island.

metallic density of states of such metals vp ~ 1047 J"'m ™3

(1.14x10%7 for gold, the main constituent), the electronic
dwell time is 7p ~ 60 us. This is much longer, by more
than three orders of magnitude, than the energy relax-
ation and phase decoherence times of electrons observed
in similar metals, which is at most in the 20ns range
(2, 21]. In the absence of Coulomb-induced correlations,
no interferences would therefore be expected from the
reemitted electrons, by a wide margin. The gates barring
the broad way on each side of the floating island (blue)
are normally tuned to either fully reflect or fully transmit
the outer edge channel, in order to implement the MZI
configurations schematically represented Figs. 2(a,b,c).



Note that the second (inner) quantum Hall edge channel
is always completely reflected at the barring gate, and
can therefore be ignored [9]. The island charging energy
Ec ~ kg x 0.3K was obtained from standard Coulomb
diamond measurements (in a specifically tuned tunnel
regime, see Fig. 3(b) and [20]). At the experimental elec-
tronic temperature 7' ~ 10mK (measured on-chip from
shot noise [22]), the criterion kT <« E¢ for fully de-
veloped Coulomb-induced correlations is therefore well
verified. Note the previous experiments performed in the
opposite ‘high-temperature’ regime kg7 > F¢ of negligi-
ble Coulomb correlations, in which case, unsurprisingly,
a complete quantum decoherence [23] and energy relax-
ation [24] of electrons were observed with a single con-
nected channel. Finally, the transparency of the contact
between the floating island and the outer quantum Hall
edge channel plays an essential role since, if it is poor,
many electrons would simply be reflected at the inter-
face. Here, 2 97% of the incoming current penetrates
into the floating island [20], which is also ascertained by
the striking changes of behavior detailed later.

In Fig. 2, we show illustrative MZI oscillations ver-
sus B of myzr, the fraction of outer edge channel cur-
rent transmitted across the device. The measurements
were performed in the three configurations depicted in
Figs. 2(a,b,c). The red continuous line in Fig. 2(d) cor-
responds to a standard electronic MZI, with the float-
ing metallic island bypassed (schematic in Fig. 2(a)).
In that case, the oscillations are of high visibility V =
(riex — mimin ) [ (ries + i) ~ 90% and, as expected for
the Aharonov-Bohm phase, the magnetic field period
of 241 £ 3uT (red symbols in Fig. 2(e) show consecu-
tive extrema positions) closely corresponds to one flux
quantum (241 uT x S ~ 0.98h/e using the nominal area
S ~16.8 um?). A small asymmetry in the Tvz; data (the
average is slightly above 0.5) results from a small reflec-
tion of the outer edge channel on the grounded central
ohmic contact (of ~ 5%, see [20]). The black continuous
line in Fig. 2(d) was measured with the right MZI arm de-
viated to go through the floating ohmic island (edge chan-
nel paths displayed in Fig. 1, and schematic in Fig. 2(b)).
We observe first that the quantum interferences’ visibil-
ity remains of the same high amplitude, which corre-
sponds to a perfect fidelity (at experimental accuracy) of
the replicated quantum states imprinted on the electrons
reemitted from the island, in agreement with low tem-
perature predictions [9, 13]. Second, the magnetic field
period of 305+4 uT is found to be larger than in the stan-
dard MZI configuration of Fig. 2(a) (see black symbols in
Fig. 2(e)). This increase is opposite to the reduction that
would be expected from the Aharonov-Bohm period with
the larger surface enclosed by the outer channel path and
the inner boundary of the floating metallic island (see [20]
for a graphical representation, S ~ 18.4 ym? would corre-
spond to an Aharonov-Bohm period of 225 uT ~ h/eS).
Such opposite evolution and relatively important discrep-
ancy (36%) establish that the MZI phase does not reduce
to the usual Aharonov-Bohm phase acquired by a single

electron propagating along two different paths. Instead,
the larger period corroborates the transfer of the elec-
trons’ state across the island, thereby amputating the
electron path from a section (the 2DEG/metal interface)
and making the Aharonov-Bohm notion of enclosed sur-
face ill-defined.
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FIG. 3. Quantum phase versus island charge. (a), Color
plot of mmzi(B,Vp1) in the floating island MZI configura-
tion (schematic in Fig. 2(b)), with the larger values shown
brighter, which establishes the equivalent role of B and V};.
(b), Coulomb diamonds characterization of the floating island
(larger differential conductance shown brighter, with the is-
land here weakly coupled on both sides and Vg, the applied
dc bias voltage). A comparison with panel (a), plotted using
the same V[, scale, reveals that the addition of a charge of
e on the island precisely corresponds, in the floating island
MZI configuration, to an electron quantum phase of 27 (one
quantum oscillation period). (c), The top and bottom panels
display measurements of Tnvzi(Vp1) with the device set in the
floating island MZI configuration (black line) and in the stan-
dard MZI configuration (red line, schematic in Fig. 2(a)). The
MZI oscillations’ period in Vj, is shorter by a factor of 1/160
when the island is connected. Note an additional modulation
of fixed period (» 15mV).

The blue continuous line in Fig. 2(d) was measured
with one MZI arm going through the floating island, and
in the presence of a second electronic channel connected
to it (configuration schematically displayed in Fig. 2(c)).
We find strongly suppressed conductance oscillations cor-
responding to a full decoherence of the electrons going
through the island. The residual visibility V < 0.2 is
consistent with the proportion 1 - Tiglana S 3% of re-
flected electrons, not penetrating into the island. In-
deed, the MZI contribution of the reflected electrons at
small 1-7igang < 1 reads V()(4/3)\/ 1 — Tislana $ 0.21, with
Vo ~ 90% the MZI visibility in the standard configura-



tion [20, 23]. The magnetic field period of 246 + 4 T for
these smaller oscillations (see blue symbols in Fig. 2(e))
is found close to the period observed in the standard
MZI configuration shown in Fig. 2(a), suggesting that
the residual reflections take place at the level of the bar-
ring gate (colored blue, left of island in Fig. 1). Note
that the average (mpzr) ~ 0.39 is shifted below 0.5 be-
cause part of the injected current is evacuated toward
a remote electrical ground through the second channel
connected to the floating island ({(Tamz1) = 0.375 expected
from current conservation for a floating island and a cen-
tral ohmic contact both perfectly connected).

We now investigate the relation between the island’s
charge and the electron phase shift associated with the
quantum state transfer. For this purpose, Fig. 3 focuses
on the influence on mviz1 of the voltage Vj, applied to a
plunger gate (colored purple in Fig. 1) which is relatively
far from the MZI outer quantum Hall channel, but close
to the island. The equivalent role on the MZI phase of
Vo1 and B is first directly established, in Fig. 3(a), with
the device set in the floating island MZI configuration
(schematic in Fig. 2(b)). Figure 3(b) displays Coulomb
diamond measurements of the conductance across the
island as a function of the same plunger gate voltage
Vo1, with here the island weakly connected through tun-
nel barriers such that @ is quantized in units of e (only
in that specific case) and without two-path interferences
(see device schematic in [20]). Remarkably, the MZI gate
voltage period in Fig. 3(a) precisely matches the Coulomb
diamonds’ period in Fig. 3(b), as can be seen by directly
comparing the two panels plotted using the same Vj;
scale. In the floating MZI limit of strongly connected
channels @ = eV,1/A, with A ~ 1.7mV the Coulomb di-
amond period [10-12]. A quantum phase shift of 27Q/e
therefore applies to the transferred electrons, as specif-
ically predicted theoretically [9, 13], and in agreement
with Friedel’s sum rule. Comparing with the device set

in the standard MZI configuration, we show in Fig. 3(c)
that the vz oscillations (red line) are of identical maxi-
mum visibility ¥V ~ 90% than with one arm going through
the metallic island (black line), as also seen versus mag-
netic field in Fig. 2(d). However, the Vj, period is in-
creased by a large factor of 160, from 1.7mV to 270 mV,
which reflects the weak coupling of the plunger gate volt-
age to the MZI outer edge channel (see [20] for an ex-
tended Vj,; range). This provides a final evidence that
the electrons contributing to the quantum oscillations in
the floating island configuration indeed penetrate into
the metal. Note the presence of an additional, smaller
signal of fixed period 15mV visible in both configura-
tions (in the form of direct oscillations or of an amplitude
modulation), which might originate from the progressive
charging of a nearby defect.

This experimental work demonstrates that the
Coulomb interaction has two facets. It can both destroy
and preserve quantum effects. Although a metallic is-
land is often pictured as a floating reservoir of uncorre-
lated electrons [6, 25], we establish that a high-fidelity
electron quantum state transfer can take place across
it, enforced by the Coulomb charging energy. This pro-
vides a mean to overcome limitations imposed by the
decoherence of individual electrons. Moreover, the ob-
served universal 27 electron phase shift for one elemen-
tary charge e on the island allows for a strong entangle-
ment of single-electron states, both between themselves
or with other quantum degrees of freedom, with a negligi-
ble loss of coherence. Such controllable, strong-coupling
mechanism constitutes a key element in the context of
quantum Hall edges envisioned as platforms for the ma-
nipulation and transfer of quantum information via prop-
agating electrons [19, 26-31]. In particular, it is remark-
ably well suited to implement quantum gates for these
‘flying qubits’, such as the CNOT proposal involving a
conditional phase shift of 7 described in [30].
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Résumé : L'interaction de Coulomb influence
fortement toutes les propriétés de transport des
circuits composites quantique a  basse
température. Dans cette thése, nous étudions les
fluctuations de courant et le flux de chaleur dans
un circuit quantique, composé de plusieurs
canaux de conduction ¢élémentaires. Nous
utilisons la mesure combinée des corrélations
croisées et des auto-corrélations des fluctuations
de courant, ce qui nous permet d'extraire
séparément, d'une part, le bruit de grenaille
provenant du partitionnement des €électrons via un
canal partiellement transmis et, d'autre part, la
température des ¢électrons dans le dispositif. Nous
commengons notre investigation dans le cas ou
un canal quantique élémentaire arbitraire est
inséré dans un circuit linéaire. Dans ce cas, nous
établissons expérimentalement une relation

reliant la suppression de conductance induite par
l'interaction de Coulomb et la variation du bruit
de grenaille en fonction de la tension.
Deuxiémement, dans le méme circuit, nous
mesurons le bruit de grenaille au travers d'un
canal élémentaire unique résultant du transfert de
charges induit par un pur gradient thermique.
Troisiémement, nous ¢étudions l'effet de
l'interaction de Coulomb sur le flux de chaleur
¢électronique. Dans un circuit composé
exclusivement de canaux Dbalistiques, nous
démontrons expérimentalement le blocage de
Coulomb de la chaleur systématique de 1'un des
canaux. Au-dela de la limite balistique, nous
observons un nouveau mécanisme sur le flux de
chaleur reli¢ a la fois au partitionnement
¢électronique a travers un canal non balistique et a
l'interaction de Coulomb.

Title: Electrical fluctuations and heat flow in a quantum composite circuit
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Abstract: The Coulomb interaction strongly
influences all transport properties of quantum
composite circuits at low temperature. In this
thesis, we investigate the current fluctuations
and the flow of heat in a quantum circuit,
composed of several elementary conduction
channels. We use combined measurement of
cross-correlations and auto-correlations of the
current fluctuations, allowing us to extract
separately, on the one hand, the current shot
noise coming from the partitions of electrons
through a partially transmitted channel and, on
the other hand, the temperature of the electrons
in the device. We start our investigation with an
arbitrary  elementary = quantum  channel
embedded in a linear circuit. In this case, we
establish experimentally a relation connecting

the conductance suppression induced by the
Coulomb interaction and the shot noise variation
as a function of the voltage. Second, in the same
circuit, we measure the shot noise through a
single elementary channel resulting from the
transfer of charge induced by a pure thermal
bias. Third, we investigate the effect of
Coulomb interaction on the electronic heat flow.
In a circuit exclusively composed of ballistic
channels, we demonstrate experimentally the
systematic heat Coulomb blockade of one of the
channels. Beyond the ballistic limit, we observe
a new heat flow mechanism connected to both
the electron-partition through a non-ballistic
channel and to the Coulomb interaction.
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