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Professeur, Université de New South Wales, Australie Examinateur

Amel Bouzeghoub

Professeur, TELECOM SudParis, France Examinateur

Lotfi Chaari

Associate professor HDR, INP Toulouse, France Examinateur

Walid Gaaloul

Professeur, TELECOM SudParis, France Directeur de thèse
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Associate professor, École Nationale d’Electronique et des
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Résumé : Face à la croissance de l’adoption des res-

sources cloud dans les tâches informatiques quoti-

diennes, la demande pour des techniques d’orches-

tration et de gestion efficaces a considérablement

augmenté. Cependant, comme le cloud souffre d’un

manque évident d’interopérabilité, l’orchestration et

la gestion des ressources cloud réparties entre des

fournisseurs hétérogènes deviennent des tâches très

complexes et coûteuses. En outre, l’élasticité, ca-

ractéristique distinctive de l’informatique en nuage,

est devenue primordiale pour préserver la qualité

de service souhaitée tout en optimisant les coûts

impliqués. Néanmoins, la dynamicité du cloud et

son hétérogénéité inhérente rendent la gestion de

l’élasticité une tâche très fastidieuse.

Afin de surmonter ces difficultés, nous visons dans

cette thèse à (i) fournir de l’orientation et de l’as-

sistance à la conception d’APIs de gestion in-

teropérables, (ii) rationaliser l’orchestration des res-

sources cloud et (iii) supporter la gestion de haut ni-

veau de l’élasticité multi-nuages. Pour atteindre le pre-

mier objectif, nous adoptons des patrons et des anti-

patrons comme moyen de représenter les bonnes et

les mauvaises pratiques des principes OCCI (Open

Cloud Computing Interface Standard) et REST (Re-

presentational State Transfer) que les développeurs

doivent prendre en compte lors de la conception de

leurs APIs. Nous proposons ensuite une approche

sémantique permettant la détection automatisée de

ces (anti) patrons tout en fournissant un support de

recommandation afin de guider les développeurs à

la révision de leurs APIs. Pour atteindre le deuxième

objectif, nous appuyons l’idée d’intégrer la norme

TOSCA (Topology and Orchestration Specification for

Cloud Applications) avec les solutions DevOps en

tant qu’une étape essentielle pour atténuer la com-

plexité liée au processus d’orchestration tout en main-

tenant le niveau d’interopérabilité souhaité. Pour sou-

tenir cette intégration, nous proposons une approche

dirigée par les modèles.

Pour assurer le troisième objectif, nous reconnaı̂trons

que les caractéristiques d’élasticité devraient être

fournies au niveau de la description de la ressource

au lieu de reposer sur des mécanismes dépendant

de la technologie. Pour ce faire, nous proposons un

nouveau modèle de description de l’élasticité basé

sur le formalisme de la machine à états. Enfin, nous

développons trois preuves de concept et réalisons

des expériences approfondies pour valider nos ap-

proches.

Title : Supporting Management and Orchestration of Cloud Resources in Multi-cloud environment

Keywords : Elasticity, Orchestration, Management, Multi-cloud, APIs, DevOps

Abstract : With the rising adoption of cloud resources

in everyday computing tasks, the demand for effective

orchestration and management techniques has consi-

derably increased. However, as there has been a clear

lack of cloud interoperability, orchestrating and mana-

ging elastic cloud resources distributed across hetero-

geneous providers become very complex and costly

missions. Moreover, elasticity, the key distinguishing

feature in cloud computing, has become primordial to

preserve the desired quality of service while optimi-

zing the involved costs. Nevertheless, the rapid dy-

namicity of the cloud and its inherent heterogeneity

make supporting elasticity a very tedious task.

To resolve these issues, in this thesis, we aim to (i)

provide guidance and assistance in the design of in-

teroperable management APIs ; to (ii) streamline the

orchestration of cloud resources and to (iii) support

high-level management of multi-cloud elasticity. To

achieve the first objective, we adopt patterns and anti-

patterns as means to represent the good and poor

practices of both OCCI (Open Cloud Computing In-

terface Standard) and REST (Representational State

Transfer) principles that API developers should be ta-

king into account when designing their APIs. We then

propose a semantic-based approach that allows au-

tomated detection of these (anti) patterns as well as

provides recommendation support to guide cloud de-

velopers in revising their management APIs.

To achieve the second objective, we support the

idea of integrating TOSCA (Topology and Orches-

tration Specification for Cloud Applications) with De-

vOps solutions as an essential step toward allevia-

ting the complexity related to the orchestration pro-

cess while maintaining a desired level of interoperabi-

lity. To support this integration, we propose a model-

driven approach following MDE principles. To ensure

the third objective, we realize that the elasticity fea-

tures should be provided at the resource description

level instead of relying on low-level and technology-

dependent mechanisms. So, we propose a new Cloud

resource elasticity description model based on the

state-machine formalism.

Institut Polytechnique de Paris
91120 Palaiseau, France
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Abstract

With the increased adoption of cloud computing, multiple and heterogeneous con-
figuration and management APIs/tools and platforms have been proposed to enable
end-to-end management and orchestration tasks. However, this proliferation is one
of the fundamental reasons that has intensified the heterogeneity issue in multiple
respects, making the cloud interoperability very difficult to achieve. With the lack of
interoperability, orchestrating and managing elastic cloud resources distributed across
heterogeneous providers become very complex and costly missions for the cloud con-
sumers.

Towards fostering cloud interoperability, standardization is a definitive method
according to many professionals and researchers from both academic and industrial
sectors. In this respect, we are interested in two relevant standards, namely OCCI
and TOSCA because of their broad adoption and holistic approaches in addressing
cloud interoperability from management and orchestration perspectives. OCCI is es-
sentially introduced to create remote management REST APIs for supporting the
management of any kind of cloud resources while preserving a high level of interoper-
ability. On the other hand, TOSCA is introduced to empower cloud interoperability
by modeling cloud applications in a technology-independent manner. With this speci-
fication, it ultimately aims at automating the whole application orchestration process,
which includes the selection, deployment, monitoring, and runtime controlling of cloud
resources.

Despite the growing interest in TOSCA and OCCI, their adoption is still not preva-
lent in modern solutions. More specifically, there is a lack of holistic orchestration
engines that supports TOSCA, while there is no assistance for developers to create
interoperable management APIs according to OCCI. In this thesis, we believe that
any innovative design and orchestration approaches adopting such standards would
be beneficial in order to cope with the heterogeneity and interoperability issues. In
addition to avoiding the above issues, preserving the desired quality of service (QoS)
while optimizing the involved cost is of paramount importance for both cloud users
and providers. Elasticity is known as a key factor to ensure this cost-QoS trade-
off. However, the rapid dynamicity of the cloud and its inherent heterogeneity make
supporting elasticity a very tedious task.

In this thesis, we aim to (i) provide guidance and assistance in the design of inter-
operable management APIs; to (ii) streamline and improve the orchestration of cloud
resources and to (iii) support high-level management of multi-cloud elasticity. To
achieve the first objective, we adopt patterns and anti-patterns as means to represent
respectively the good and poor practices of both OCCI and REST best principles
that API developers should be carefully taking on when designing their APIs. We
then propose a semantic-based approach that allows automated detection of these
(anti) patterns as well as provides recommendation support to guide cloud develop-
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ers in revising their management APIs. To achieve the second objective, we support
the idea of integrating TOSCA with DevOps solutions as an essential step toward
alleviating the complexity related to the orchestration process while maintaining a
desired level of interoperability. To support this integration, we propose a model-
driven approach following MDE principles. To ensure the third objective, we realize
that the elasticity features should be provided at the resource description level instead
of relying on low-level and technology-dependent mechanisms. So, we propose a new
Cloud resource elasticity description model based on the state-machine formalism.
Finally, to validate our approaches, we develop three proofs of concepts and conduct
a set of extensive experiments, some of which are with academics and professionals
to demonstrate their effectiveness and feasibility.
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1.1 Research context

Since its launch, Cloud Computing has revolutionized the whole IT field shaking up
both industry and academia. It is recognized as an effective technology allowing easy
and on-demand access to a shared set of configurable computing resources delivered
as services. Attracted by its economic pay-as you-go model and reduced maintenance
cost, many enterprises are competitively adopting cloud computing in order to en-
hance their business outcomes as well as achieve cost-to-performance tradeoffs. A
Gartner survey conducted in April 2019 mentioned that more than a third of enter-
prises consider the investment in the cloud as a top-three investing priority. The same
survey reported that the global market related to cloud services is estimated to grow
by 17.5% between 2018 and 2019 to go from $182.4 billion in 2018 to $214.3 billion
in 2019.

With the noteworthy growth of cloud computing, a vast variety of cloud providers
have emerged. They deliver computing resources with competitive and reduced costs.
To accommodate this momentum, multiple and heterogeneous configurations and
management APIs, tools and platforms have been suitably proposed to enable the
end-to-end management tasks. However, this proliferation is one of the fundamen-
tal reasons that has intensified the heterogeneity issue in multiple respects, making
the cloud interoperability very difficult to achieve. Cloud Interoperability refers to
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the ability of the system to execute software programs across multiple clouds and
interact with their underlying systems regardless of their physical architectures and
technical specifications [159]. In fact, with the lack of interoperability, managing a
potentially large number of cloud resources can only be done at a high cost. Un-
fortunately, enterprise applications are inherently complex and consist of multiple
individual components that potentially involve a large number of cloud resources go-
ing beyond the capacity of one provider. Thus, the development of such applications
would imperatively become distributed across multiple and heterogeneous providers,
which renders their orchestration during different phases of their life-cycle a very com-
plex and costly task. Indeed, cloud orchestration includes the creation, management,
and manipulation of cloud resources in order to fulfill the business objectives of cloud
applications [98]. Consequently, with the observed above issues, designing effective
solutions for the orchestration and management tasks spanning across multiple cloud
environments remains a deep and open challenging problem [47,135,155].

In this regard, many authors and professionals from both academic and industrial
sectors [57, 69, 75, 79, 84, 92, 135, 155, 159] noted that open standards are the key fac-
tors towards avoiding heterogeneity issues and fostering cloud interoperability. As a
consequence, many projects have been carried out as a joint effort between industry
and academia to develop open standards. In this thesis, we are interested in using
two relevant standards, namely OCCI and TOSCA because of their broad adoption
and holistic approaches in addressing cloud interoperability from both management
and orchestration perspectives. OCCI [118] is the open cloud computing interface
proposed by the Open Grid Forum (OF), to essentially address heterogeneity, inter-
operability, integration, and portability in cloud computing. In essence, OCCI was
introduced to create a remote management API to support the management of any
kind of cloud resources while preserving a high level of interoperability. To achieve
this goal, OCCI provided a set of guidelines in its different specifications, forming a
minimal set of practices to achieve interoperability by providing a uniform way to
discover and to manage cloud resources across various providers. Arguably, following
these guidelines is a definitive requirement for developers to enforce the interoperation
of cloud resources. TOSCA [116], the OASIS Topology and Orchestration Specifica-
tion for Cloud Applications, was introduced to empower cloud interoperability from
an orchestration perspective. This has been achieved thanks to TOSCA’s support
for the modeling of cloud applications in a technology-independent manner without
referring to any specific cloud provider. With such modeling, it ultimately aims at
automating the whole orchestration process of applications across multiple clouds.
In simple terms, the orchestration process (OP) includes the set of operations that
cloud users take on for selecting, deploying, monitoring, and dynamically controlling
the configuration of hardware and software resources.

Despite the growing interest in TOSCA and OCCI, their adoption is still not
prevalent in modern solutions [135, 155]. More specifically, there is a lack of holistic
orchestration engines that supports TOSCA, while there is no assistance for develop-
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ers to create interoperable management APIs according to OCCI. In this thesis, we
believe that any innovative design and orchestration approaches adopting such stan-
dards would be beneficial in order to cope with the heterogeneity and interoperability
issues.

In addition to avoiding the above issues, preserving the desired quality of service
(QoS) while optimizing the involved cost has paramount importance to both cloud
users and providers. Elasticity, the key distinguishing feature of cloud resources, is
known as a key factor to ensure this cost-QoS trade-off [11, 53]. In simple terms,
it refers to the capability of dynamically reconfiguring cloud resources to adapt to
varying resource requirements. However, the rapid dynamicity of the cloud and its
inherent heterogeneity make supporting elasticity a very tedious task. Certainly, this
issue is getting worse with the insistence on the adoption of federated cloud resources.
Therefore, in this thesis, we argue that the more effective elasticity solution should
shield resource users from cloud heterogeneity and protect cloud applications with
guaranteed QoS despite variations and dynamicity in the underlying environment.

Summing up, the ultimate goal of this thesis is providing solutions that would
aid cloud designers in creating interoperable management APIs and in supporting
orchestration and elasticity of cloud resources in heterogeneous and multi-cloud en-
vironments.

1.2 Motivation and problem statement

We intend to facilitate the management and orchestration of cloud resources in multi-
cloud environments while focusing on their elasticity nature. We, therefore, separate
research issues into three areas: 1) Interoperable management of cloud resources,
2) Interoperable orchestration of cloud resources, 3) Multi-cloud elasticity of cloud
resources.

1.2.1 Interoperable management of cloud resources

Nowadays, exploiting resources from multiple clouds has become a natural choice for
enterprises that seek to provide applications with high availability and rapid recovery
[47]. Achieving this requires seamless management of the underlying cloud resources
that could be involved during the full application life-cycle. Nevertheless, this is far
from trivial mainly due to the inherent heterogeneity and incompatibility issues that
make cloud interoperability hard to achieve. Indeed, the use of diverse cloud providers
at the same time poses a great complexity because of the lack of standardized APIs
as each provider insists on its own APIs and methods to manage cloud resources.
As mentioned above, using open standards is a definitive requirement to avoid such
issues.

To this end, there are several notable standardization bodies that have been initi-
ated with the aim of addressing cloud interoperability from a management perspective.
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Prominent and widely adopted examples include: Open Cloud Computing Interface
(OCCI), Cloud Infrastructure Management Interface (CIMI), Cloud Data Manage-
ment Interface (CDMI), and Open Virtualization Format (OVF). Because of its ability
to support all management tasks that can be related to any kind of cloud resources
(IaaS, PaaS, SaaS), OCCI has been considered as the most comprehensive and impor-
tant standard compared with the other ones that target limited management aspects
and resources [109]. More specifically, OVF is devoted for packaging and distribu-
tion of virtual appliance (VA) that is composed of one or more virtual machines in a
vendor-independent format. Whereas, CIMI concerns the management of resources
within the IaaS layer. Finally, CDMI addresses interoperable management of cloud
storage. However, it should be noted that OCCI is known by its compatibility with
some of these standards especially OVF and CDMI [159].

As a matter of fact, OCCI introduces a RESTful protocol and a unified API. The
main purpose is to provide a set of interoperable tools for common management tasks
including creation, deployment, autonomic scaling, and monitoring. To achieve this,
the management API has to be well-designed and consistently implemented so that it
can hide the heterogeneity and evolution of the managed cloud resources across vari-
ous providers while providing unified and efficient access to them. Therefore, OCCI
in its different specifications insists on a set of guidelines for a compliant creation of
these APIs. These guidelines represent the recommended best principles that have to
be carefully followed by the API designers to provide a uniform way to manage cloud
resources. Nonetheless, since they are specified in natural language, these principles
are imprecise, ambiguous and may be interpreted differently. Therefore, this can lead
to the non-compliance or poor adoption of such principles in current cloud resource
management APIs and thus to interoperability issues. In addition, OCCI basically
relies on the REST architectural style (Representational State Transfer), the de facto
standard adopted by the most modern web applications for the interaction and ma-
nipulation of the underlying software components [129]. Moreover, in a thorough and
systematic study [129] on OCCI and other cloud APIs, it is demostrated that OCCI
fails to support some good practices related to the REST APIs design (follows only
56% (41/73) of the REST best practices). Consequently, this often worsens the quality
of REST APIs and makes them hard to understand and use by developers, especially
within a complex domain like cloud computing. Interestingly, both understandability
and reusability are among the main quality characteristics whose reachability requires
following the common REST best principles in the design and development of REST
APIs.

To this end, OCCI and REST best principles have to be followed together in
the design of cloud standard-based management APIs in order to ensure the desired
interoperability on one hand and increase their reusability and understandability on
the other hand. Most importantly, cloud APIs developers have to follow the good
practice of these principles and avoid as much as possible their poor practice. In
software engineering, the good practice of a given design principle is referred to as
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Pattern, while its poor practice is known as an Anti-pattern [17]. In this thesis, we
will often use the term (anti)pattern when denoting both pattern and anti-pattern.
In fact, with the increasing number of operations and resources in cloud management
APIs, their design tends to be very complex. In addition, these APIs are always
subject to change due to the continuous evolution of target cloud resources. This can
mislead cloud designers during the REST APIs design, which in most cases leads to
introducing deviations or what is known as anti-patterns. Nevertheless, the presence
of anti-patterns in the designed cloud APIs is a sign of non-respecting one or more
best design principles intended to ensure interoperable and high-quality APIs. Thus,
the detection of these anti-patterns in cloud REST management APIs is crucial to
facilitate their correction and to promote their evolution while being aligned with the
best REST and OCCI best design principles. Furthermore, detecting patterns, i.e.
the good practices of best principles, is needed as well as it allows cloud designers
to know to what extent their APIs are compliant with these best design principles.
However, these patterns and antipatterns have to be carefully identified and formally
specified to promote their automated detection as the manual interpretation of their
presences is undoubtedly tedious and laborious.

So far, several studies have been proposed to advocate the use of (anti)patterns
in the assistance of the design and development of software systems compliant with
certain design principles. However, most of them have focused on service-oriented
architectures and object-oriented systems. Although (anti) patterns specification and
detection approaches have been proposed in the context of REST, they all target
general-purpose APIs like Facebook and Twitter or are concerned with mobile and
networking applications. Therefore, they cannot be applied to RESTful APIs devel-
opped for cloud services or resources. In addition to REST best principles, these
APIs are characterized by other principles that relate to the structure, definition, and
management of cloud resources. As mentioned above, we intend to identify these
principles from OCCI to ensure the management interoperability between different
providers.

In view of these limitations, our first objective is to assist the design of interop-
erable management APIs. We also aim to explore whether the current management
APIs follow the (i) REST best principles devoted to improving their reusability and
understandability and (ii) OCCI best principles devoted to ensuring interoperable
management of cloud resources. In doing so, we adopt (anti) patterns as means to re-
flect the poor and bad practice of these principles. By detecting these (anti) patterns
in Cloud managment Restful APIs, we intend to provide cloud API designers with
an evaluation method that quantifies the compliance degree of their APIs with these
best principles. To have a better compliance degree, we aim to help API designers
in revising their APIs by suggesting a set of correction recommendations that serve
to avoid anti-patterns. With the aim of addressing this research need, we have to
answer the following questions:

• How to adopt (anti)patterns to assist the design of interoperable management
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APIs?

• What are the (anti) patterns that have to be considered to reflect these best
design principles?

• How to formally specify these (anti)patterns for supporting their automated
detection?

• How to exploit the (anti)patterns detection in the compliance evaluation of
Cloud management APIs with respect to the best design principles?

• How to provide the correction recommendations to avoid anti-patterns?

• How efficient our approach is in terms of results quality, accuracy and useful-
ness?

• Do current APIs follow these best design principles and to what extent?

1.2.2 Interoperable orchestration of cloud resources

According to several important surveys [155], [135], [71] [134], cloud orchestration
plays an important role in allowing enterprises to meet their changing business re-
quirements. This is due to the fact that orchestration encompasses all phases in
the typical lifecycle of cloud applications as well as their underlying resources. These
phases are the description, selection, configuration, deployment, monitoring, and run-
time control of cloud resources in order to ensure a successful hosting and seamless
delivery of applications. Unfortunately, today’s enterprise applications have become
increasingly more complex, involving the composition of multiple and heterogeneous
components. These components are often powered with different virtualization tech-
nologies and distributed across different layers (SaaS, PaaS, IaaS) and multiple clouds.
Because of this, supporting the entire orchestration process of these applications is
becoming a too cumbersome and time-consuming task.

Moreover, with the growing importance of orchestration, several DevOps solutions
(Tools and platforms) have been proposed. Prominent examples that are already
adopted in the cloud community include: Docker, Kubernetees, Terraform, Puppet,
Juju, Ansible, Chef [155]. While they are powerful in terms of providing promising
configuration, management and monitoring facilities that would strengthen orchestra-
tion automation to a certain extent, there are still some open issues to be addressed.
In particular, one DevOps solution is typically not able to provide all the management
features that can be involved during the lifespan of cloud resources. In this manner,
orchestrating the whole life cycle requires DevOps users to use multiple solutions.
However, each one of these solutions relies on its own and proprietary approaches,
this includes resource description models, management capabilities, access tools and
interfaces. Therefore, using best-of-breed DevOps solutions in an integrated way while
maintaining an acceptable level of interoperability for orchestrating applications is a



Motivation and problem statement 21

difficult and costly task if not an impossible one. This is because it implies extensive
expert-driven manual efforts and requires sophisticated programming skills. More-
over, considering that DevOps users want to exploit cloud resources from multiple
clouds, the issue only increases several-fold.

As we clearly stated above, open standards are the best candidates to avoid most
of these issues. In the context of orchestration, the notable standard is the OASIS
TOSCA [116], which is estimated to be more adopted by the cloud community in
the next-generation IT solutions. The strength of TOSCA lies in providing portable,
reusable and higher-level descriptions of cloud applications along with the required
management features. This is playing an important role to facilitate the end-to-end
orchestration tasks of cloud applications while maintaining a high level of interoper-
ability between multiple clouds. However, TOSCA has focused only on the modeling
perspective of applications and their orchestration aspects, without proposing any
implementation language or appropriate mechanisms to automate their creation on
top of cloud infrastructures. Instead, it leaves all implementation concerns to inter-
ested providers and users. Moreover, there is a clear lack of software solutions that
support holistic orchestration automation driven by TOSCA. Proposing from-scratch
solutions is tedious and unnecessary, especially with the presence of a huge variety
of powerful DevOps approaches and tools that are in continuous evolution. In this
thesis, we support the idea of integrating TOSCA with DevOps solutions as an es-
sential step toward alleviating the above issues from both sides. In fact, considering
the benefits of each of them, this would streamline the orchestration process of cloud
resources while maintaining both the desired interoperability and efficiency.

So far, there has been a handful of approaches that address this integration need.
Some of them adopt a low-level and ad-hoc programmatic approach. However, this
may be time-consuming as it requires a considerable development effort and per-
petuates continuous patching. Few others have provided concepts mapping between
TOSCA and some DevOps solutions as a step to support the automated generation
of DevOps-specific artifacts that are needed at the orchestration stage. This is useful
as it allows taking advantage of the Everything as code, an innovative IT paradigm
endorsed by most DevOps solutions, which insists on capturing as much as possible
all aspects-related to orchestration such as configuration, environment, and infras-
tructure descriptions via human-readable artifacts written in YAML, JSON or any
domain-specific notation. Advantages include greatly improved automation and re-
peatability, reduction of errors, reusability, acceleration of the delivery pipelines and
more. Despite that, under these solutions, the mapping is provided at a low level
of abstraction by writing transformations using programming languages. However,
as the programming languages are inherently general-purpose, they lack appropriate
high-level constructs (or abstractions) to easily encode transformations [141]. This
makes these transformations hard to write, comprehend, maintain and extend when
needed [141].

In view of these issues, our second objective is providing mechanisms to support



22 General Introduction

the integration between TOSCA and DevOps solutions. Unlike the previous solutions,
we advocate providing the concepts mapping between TOSCA and DevOps at a
high level of abstraction as an essential step to support a seamless integration at
an acceptable cost. Indeed, this is required to automate the generation of DevOps-
specific artifacts, which allows benefiting from the Everything-as code paradigm and
its related practices. Furthermore, to support the orchestration process, the generated
artifacts require to be executed by diverse DevOps access APIs/Tools, which are
unfortunately heterogeneous and require extra effort to deal with them. To address
this research problem, we need to answer the following questions:

1. How to support the mapping between TOSCA and DevOps solutions at a high
level of abstraction?

2. How to exploit this mapping toward the automated generation of the underlying
DevOps-specific artifacts required at the orchestration stage?

3. How to avoid the heavy lifting involved when interacting with diverse DevOps
API/tools to execute these artifacts.

1.2.3 Multi-cloud Elasticity of cloud resources

To ensure the final enterprise’s business objectives, the orchestration of their cloud ap-
plications must be completely aligned with the desired QoS objectives while ensuring
an optimized operational cost. Maintaining a high-level elasticity of the underlying
cloud resources at runtime control is the key enabler for ensuring this QoS-to-cost
trade-off. The principle of elasticity lies on ensuring on-demand (de-)provisioning or
reconfiguration of the cloud resources in such a way that the over-utilization issues
that may cause unexpected cost and under-utilization issues that degrade the desired
QoS, are avoided as much as possible. Basically, elasticity is achieved through the
invocation of actions (e.g., add storage capacity, increase number of servers) that run
as a result of events (e.g., service usage increases beyond a certain threshold), allow-
ing a controller to automatically configure or re-configure cloud resources. However,
handling elasticity poses a great complexity and is still in the early stages. In partic-
ular, for the powerful support of elasticity, special attention must be paid to the new
requirements emerged as a consequence of the widespread adoption and continuous
evolution of cloud computing.

Firstly, at design time, when defining elasticity policies it has to consider that elas-
ticity can concern diverse type of resources (infrastructure, platform, and application),
can span across multiple clouds (as the underlying resources can be provided by mul-
tiple providers), can have diverse reconfiguration mechanisms and can be applied in
diverse virtualization technologies (especially: container and virtual machine-based).
Secondly, at runtime, controlling this kind of elasticity imposes both efficient and ex-
tensive monitoring and powerful controlling. Monitoring must be able to gather the
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operative data despite the variations of sources and technologies. Whereas, control-
ling should have the ability to execute required actions as fast as possible avoiding
human-based interactions and without introducing unwanted overhead or leading to
unexpected system oscillations. Hence, having a holistic solution that supports all
these requirements is essential as each one has a big importance for ensuring the
intrinsic elasticity goals.

However, despite its critical contribution in ensuring QoS-to-Cost trade-off, man-
aging cloud elasticity while supporting the above key requirements is still not yet
mature enough. Mainly, most solutions proposed by market-leading providers, De-
vOps community and researchers are dedicated only to one provider. Therefore, to
dynamically support multi-cloud elasticity, cloud users have to develop their custom
programs based on the existing procedural programming solutions of DevOps and
providers. In addition to that, they have to deal with multiple re-configurations and
monitoring APIs to enforce the elasticity over their cloud resources. This proves to be
an increasingly too challenging and time-consuming task as it requires a considerable
development effort and multiple and continuous patches. Moreover, this problem is
made even worse as the variety of cloud resources and the variations of application
resource requirements and constraints increase [93, 134]. Furthermore, under cloud
standards like TOSCA and OCCI, elasticity features are not supported. Both of them
lack suitable concepts for defining how cloud resources can be configured at runtime as
a result of workload variations. So, it is obvious that managing multi-cloud elasticity
remains a deeply challenging problem.

In view of these issues, our third objective is supporting the management of multi-
cloud elasticity. A more effective solution should allow users to specify elasticity
regardless of the technical specifications of any cloud provider or DevOps solution.
Instead of relying on low-level and procedural mechanisms or provider-specific rule
engines, we argue that models and languages for describing cloud resources should
be endowed with intuitive and automation-friendly abstractions that can be used to
specify a range of enforceable and flexible elasticity mechanisms in accordance with
high-level policies specified by users. To address this research problem, we need to
answer the following questions:

1. What is the set of abstractions that can reflect the different elasticity-related
features?

2. How can these abstractions be exploited to effectively manage elasticity despite
the heterogeneity of the involved providers, DevOps enforcement mechanisms
and dynamicity imposed by the cloud environments?

1.3 Objectives and contributions

In light of the previously described challenges and shortcomings, the main objectives
of this thesis are summarized as follow:
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• provide guidance and assistance in the design of interoperable management APIs

• streamline and improve the orchestration of cloud resources

• support a high-level management of multi-cloud elasticity

To ensure the first objective, we leverage the notions of patterns and anti-patterns
to drive respectively the good and poor practices of OCCI and REST best prin-
ciples that API developers or cloud providers should be taking carefully on when
designing their APIs. Patterns are good solutions to recurring design problems while
Anti-patterns are the poor ones. Both of them are chosen due to their important
contribution in improving the design quality and easing the evolution and mainte-
nance of software systems. Then, we propose to provide the automated detection of
these (anti) patterns as well as recommendation support to guide cloud developers
in revising their management APIs. This would assist in the design of cloud man-
agement APIs that are compliant with both OCCI and REST, which renders them
interoperable, understandable, and reusable.

To ensure the second objective, we propose to seamlessly integrate TOSCA with
the best-of-breed DevOps technologies. In fact, we realize that the key difference
between them is caused by using diverse models, entities, and languages to describe
cloud resources and implement the underlying orchestration operations. Therefore, we
propose to provide the required conceptual mapping between these two approaches,
which would be the foundation to enable their integration in an automated and seam-
less way. Furthermore, we advocate support based on model-driven and transforma-
tion languages, the key principles of Model-Driven Engineering (MDE), to ease and
manipulate this mapping at a high level of abstraction.

To ensure the third objective, we realize that the elasticity features should be pro-
vided at the resource description level instead of relying on low-level, scripting and
technology-dependent mechanisms. More precisely, we propose a set of abstractions
with which cloud elasticity features can be described in an intuitive and easy way,
without referring to any provider/DevOps specific enforcement mechanisms. Besides,
for a broader application of these abstractions, we propose to describe them inde-
pendently from the cloud resource representations (i.e. the ones provided within the
current resource description languages) and without being tied to any specific imple-
mentation languages. This will ease the integration of our elasticity solution with
any orchestration solutions that follow any standard like TOSCA or domain-specific
notations like Docker, Kubernetes, Terraform and so one.

This thesis work intends to meet the above objectives by proposing three contri-
butions.

1. The first contribution proposes a semantic-based approach for defining and de-
tecting REST and OCCI (anti)patterns and providing a set of correction recom-
mendations to comply with both REST and OCCI best principles. We analyze
both the literature and the OCCI standard with the aim of identifying the
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set of REST and OCCI (anti)patterns. We provide a formal specification of
OCCI and REST patterns and anti-patterns using an ontological model. The
proposed ontologies include the most important and relevant concepts needed
for the detection and recommendation purposes. Moreover, we introduce four
detection algorithms acting on this specification to detect OCCI (anti)patterns
and REST (anti)patterns respectively. Also, in case of any anti-pattern detec-
tion, they provide developers with a set of correction recommendations to help
them revise and correct their APIs. To validate our work, we developed a proof
of concept implementation called ORAP-Detector providing the detection and
recommendation support. Finally, using this tool, we evaluated our approach by
analyzing both OCCI and REST (anti) patterns on a real dataset that includes
five cloud RESTful management APIs: OOi, COAPS, OpenNebula Amazon S3,
and Rackspace, and assessing its feasibility in terms of accuracy and usefulness.

2. The second contribution introduces a model-driven approach for streamlining
and improving the orchestration of cloud resources. We adopt the TOSCA stan-
dard for blueprinting all modeling artifacts related to cloud resources and their
orchestration in a technology-independent manner. Moreover, to ease the inte-
gration of TOSCA with DevOps technologies, we propose a methodology that
enables the automated translation of high-level TOSCA artifacts to underlying
DevOps-specific artifacts. Further, we propose a set of high-level connectors
acting as a DevOps abstraction layer to automate the end-to-end orchestration
tasks while exploiting the obtained specific artifacts. For assessment purposes,
we developed a proof-of-concept ToDev , an integrated and standards-driven
orchestration framework based on TOSCA and DevOps technologies. The
framework includes open-source DevOps tools like Docker, Terraform, and Ku-
bernetes and is empowered with MDE facilities to manage the involved models
and transformation algorithms. Finally, to ensure the feasibility of our ap-
proach, our framework was used in diverse cloud use cases and was evaluated
using two experiments to show in particular its transformation performance as
well as its gained productivity in comparison to existing DevOps solutions.

3. The third contribution proposes a new cloud Elasticity Description Model
(called cEDM) to describe cloud elasticity at a higher level of abstraction. Our
model is based on a set of new abstractions, among them, the concept of resource
requirement State Machines (C-SM). We devote this novel abstraction for cap-
turing the elasticity-related behavior by characterizing the resource requirement
variations over time and different phases of the application life-cycle. In the pro-
posed model, states characterise application-specific resource requirements (e.g.,
CPU and storage usages), when they are needed. Transitions between states are
triggered when certain conditions are satisfied (e.g., a temporal event, applica-
tion workload increases beyond a certain threshold). Transitions automatically
trigger controller actions to perform the desired resource (re-)configurations to
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satisfy the requirements and constraints of target states.

Once defined, The C-SM can be used to manage and control the related elas-
ticity behavior. For achieving this, we propose to translate C-SM into Event-
condition action rules. These ECA rules could be then executed by any rule
engine. Motivated by its benefits in terms of expressivity and performance,
we opted for the Drools rule engine. Furthermore, we proposed an integrated
monitoring system by taking advantage of diverse and powerful open-source
DevOps systems for effectively collecting and analyzing events across different
layers and heterogeneous clouds. The proposed monitoring system will work in
tandem with the Drool engine to provide an appropriate runtime environment
to manage all elasticity aspects while mitigating its related challenges. All these
solutions have been prototypically implemented and integrated into a proof-of-
concept called cEDMCore, an integrated system for high-level management of
multi-cloud elasticity. Using the developed system, two experiments, one of
which is with academics and professionals, are conducted to demonstrate the
effectiveness of our approach in comparison to existing solutions.

It is noteworthy that the proposed solutions and mechanisms in contributions 2
and 3 could be used separately or combined together toward providing a holistic
and integrated system for an elasticity-aware orchestration of cloud resources in
a multi-cloud environment. For instance, an interesting part can leverage our
ToDeV framework to support the basic orchestration operations of cloud ap-
plications that include the selection, initialization/configuration, Deployment/
Undeployment. Moreover, using the cEDMCore system, it can support the ad-
vanced runtime orchestration operations, in particular, monitoring and elasticity
controlling.
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1.5 Thesis outline

This doctoral thesis is organized in seven chapters:

• Chapter 2: Background introduces the basic concepts related to our research
and needed to understand the rest of the work. In this chapter, we first present
cloud computing, its main service layers and its different deployment models.
Then, we give definitions of elasticity and orchestration, followed by an overview
of OCCI and TOSCA standards. Finally, we overview the main solutions that
we adopted for supporting the main contributions of this thesis. These solutions
include semantic Web technologies and model-driven engineering.

• Chapter 3: State of The Art provides an exploration and a thorough analysis
of the state of the art around the three problematic of our research work. First,
we present the work related to the use of (anti) patterns for software design
assistance. Next, we explore the different attempts to facilitate Cloud resource
orchestration. Finally, solutions that support cloud resource elasticity are also
investigated.

• Chapter 4: Assisting interoperable management APIs design using pat-
terns and anti-patterns presents our approach to assist cloud developers in
the design of interoperable management APIs that are compliant to OCCI and
REST best design principles.
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• Chapter 5: Streamlining interoperable orchestration of TOSCA with
DevOps technologies using model-driven integration introduces our ap-
proach for streamlining and improving the orchestration process of cloud re-
sources.

• Chapter 6: Managing multi-cloud elasticity using higher-level ab-
stractions based on state machine introduces our approach towards sup-
porting the high-level management of multi-cloud elasticity

• Chapter 7: Conclusion and Future Work summarizes the proposed con-
tributions and presents an outlook on the potential perspectives that we intend
to tackle in the short-medium term.
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2.1 Introduction

This chapter introduces the main concepts and background required for the under-
standing of the contributions described in the remaining chapters.

2.2 Cloud Computing

The adoption of cloud computing is now being considered an essential step by many
enterprises for improving the quality of their services and maximizing their busi-
ness outcomes. According to the National Institute of Standards and Technology
(NIST) [112], one of the cloud leading references, Cloud computing is ”a model for
enabling ubiquitous, convenient, and on-demand network access to a shared pool of
configurable computing resources that can be rapidly provisioned and released with
minimal management effort or service provider interaction”.

Basically, cloud services are classified into three layers, namely infrastructure as
a service (IaaS), platform as a service (PaaS), and software as a service (SaaS) [112].

29
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• SaaS layer includes software applications (customer relationship management,
google apps, web conference) designed to be used by the end-users via web
interfaces.

• PaaS layer provides a set of development tools and runtime environments facil-
itating the creation and deployment of new SaaS applications.

• IaaS represents the base layer providing a virtualized, distributed and auto-
mated IT infrastructure through a set of resources (servers, networks, storage)
to meet the variable needs of the PaaS and SaaS layers.

Additionally, cloud services can be deployed according to three deployment mod-
els: public cloud, private cloud, hybrid or federated cloud:

• Public cloud: cloud services are deployed for open use by the general public.

• Private cloud: Cloud services are deployed for exclusive use by a single or a
group of organizations.

• Hybrid or federated cloud: is an emerging deployment model, where computing
resources can be obtained from one or more public clouds and one or more
private clouds, combined at the behest of its users.

2.2.1 Elasticity

Elasticity is nowadays considered as one of the most essential features in cloud com-
puting. In this section, we start by defining the notion of elasticity and then describe
its main related features.

Elasticity definition There have been many definitions for elasticity in the lit-
erature. However, from our point of view, we define elasticity as ”the power of a
system to dynamically reconfigure resources to adapt to varying resource requirements
and constraints”. Usually, it is achieved through the invocation of reconfiguration
actions that run as a result of events, allowing a controller to automatically configure
or re-configure cloud resources.

Elasticity features In order to provide a precise understanding of elasticity, its
related core features have to be clarified. By examining the related academic pa-
pers and surveys on the cloud resource elasticity, we identified the following features:
Scope, Purpose, Method or Action, Mode and Provider.

• Scope: specifies the target of elasticity, which can be the infrastructure (Virtual
machine, Server, Storage, Network), platform (Container, Database, Runtime
environment) or application (service, task or unit, etc.) resources.
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• Purpose: Purposes for supporting elasticity are multiple. They include reduc-
ing the operational cost, maintaining the desired performance, ensuring avail-
ability, and saving the energy footprint.

• Elastic methods or actions: refers to the way the reconfiguration (or modi-
fication) takes to support the elasticity of cloud resources. We distinguish four
main methods: horizontal scaling, vertical scaling, migration, and application
reconfiguration.

– Horizontal Scaling (HS): represents the possibility to scale out and in by
adding or removing instances (e.g. virtual machine (VM), applications,
containers, or Database).

– Vertical Scaling (VS): in contrast to horizontal scaling, vertical scaling
aims at scaling up and down fine-grained resources of the instance such as
processing, memory, and storage rather than instances.

– Migration: refers to moving a component from its initial location to another
one. Migration can be applied at the VM level or application level. The
former is referred to as VM migration which allows transforming a VM that
is running on a physical server to another one. The latter is referred to as
application migration which allows migrating only one of the application-
specific components instead of the full VM, such as the database.

– Application Reconfiguration (AR): consists in changing specific application
aspects such DB cache size, DB recovery policy, etc. This is complementary
to vertical scaling that only concerns attributes related to the capacity of
the instance.

• Mode: indicates the way to execute elasticity actions. We distinguish two
modes, which are: Manual and Automatic. The manual mode requires the in-
tervention of the user who is in charge of the observation, decision and reaction
phases in order to perform elasticity actions. On the other hand, the automatic
mode means that the elasticity management process is automated, that is to
say, that the system supports elasticity control without any external interven-
tion. The implementation of the automatic mode is usually based on one of the
following strategies:

– Reactive: means that elasticity actions are triggered based on rules that
indicate the system state in terms of workload or resource utilization. If
one of these rules is satisfied, the elasticity controller triggers actions to
accommodate the observed changes accordingly.

– Proactive: triggering elasticity actions is based either on predefined sched-
ules or on predictions that are defined using predictive techniques antici-
pating the future needs of the system.
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– Hybrid: combines both reactive and proactive approaches to execute elas-
ticity actions.

• Provider: elasticity actions can be applied to resources from single or multiple
cloud providers. A single cloud provider can be either public or private. Mul-
tiple clouds mean that cloud resources are obtained from more than one cloud
provider.

2.2.2 Orchestration

Cloud resource Orchestration (CRO) can be seen as an automatic process of organi-
zation and coordination between different cloud resources (server, database, network,
application, container, etc.). This process allows connecting cloud resources and man-
aging them reliably and consistently with the aim of ensuring a successful hosting of
cloud applications with the desired QoS.

Orchestration operations. The orchestration process encompasses four main op-
erations [135], which are: selection, deployment, monitoring and runtime control of
cloud resources. These operations are detailed in the following.

• Selecting resources (at design and runtime).

This operation allows application owners to select infrastructure and software re-
sources. Software resources provide the functionality required while meeting re-
source requirements and constraints (interoperability with other resources, com-
patibility with material resources, cost, availability, etc.). Compatible infras-
tructure resources are then selected and allocated to these software resources.

• Deploying resources (both design time and runtime). It encompasses
the creation and execution of different software resources (services or compo-
nents) of the application, on a specific cloud platform. This is made possible by
instantiating software resources on target cloud services and configuring them to
allow communication and interoperability with other software resources. Con-
necting an application server with a database server is a representative example
of this orchestration operation.

• Monitoring resources (runtime). This operation ensures the real-time mon-
itoring of QoS attributes (known also as metrics). More specifically, it involves
the detection of events (such as load peak) from the operation data generated
by deployed resources (for example, application usage statistics). For this pur-
pose, collecting metrics related to both PaaS (such as the container) and IaaS
(such as the virtual machine) has to be ensured. The collected metrics will be
exploited in the next operation which is the runtime control. In fact, metrics
represent measures of resource utilization or behavior that can be aggregated
and analyzed such as processor load, memory usage, and so on.
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• Controlling resources (runtime). It relies on detected events to react and
initiate corrective actions based on rules in order to ensure the proper func-
tioning of the system. This operation is essentially based on a key mechanism
which is the elasticity management. An illustrative example of a controlling op-
eration is a vertical scaling of a database by changing its initial CPU resource
configuration from small to large in order to enhance the throughput.

Figure 2.1: Cloud resource orchestration (CRO) operations in the life-cycle of an
enterprise application (Source: [135])

Figure 2.1 depicts the flow of different orchestration operations and the coordina-
tion between them in the lifecycle of an enterprise application. The process including
these operations begins with the selection, passing by the deployment and monitoring
to end with the dynamic control of cloud resources. Based on the monitoring, if cer-
tain conditions are verified, certain elasticity actions could be triggered to maintain
the proper functioning of the deployed application.

2.2.3 Cloud Standards

2.2.3.1 OCCI

In this section, we start by giving an overview of OCCI and then describe the main
concepts underlying the REST architecture style.

OCCI is an open cloud standard [59] addressing heterogeneity, interoperability,
integration, and portability in Cloud computing. More specifically, OCCI offers a
RESTful Protocol and API that can act as a service front-end in the internal man-
agement framework of a cloud provider. Figure 2.2 demonstrates the OCCI’s position
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in this architecture. Here, a service consumer can be either an end-user or other sys-
tem instance. The strength of OCCI lies in the fact that it is able to manage all
kinds of resources which include IaaS, PaaS, SaaS, and potentially XaaS ( Everything
as a Service) from hardware resources to business applications while maintaining a
high level of interoperability. With the aim of being modular and extensible, OCCI

Figure 2.2: OCCI’s position in a provider’s architecture. (Source: [114])

provides a set of specification documents [118] describing four main layers: Proto-
cols, Renderings, Core, and Extensions as illustrated in Figure 2.3. The OCCI Core

Figure 2.3: OCCI Specifications (Source: [102])

specification [114] defines a general-purpose resource-oriented model providing an ab-
straction of cloud resources, including the means to identify,classify, associate and



Cloud Computing 35

extend those resources. The UML class diagram illustrated in Figure 2.4 provides an
overview of the OCCI Core Model. Accordingly, cloud resources are represented as

Figure 2.4: UML class diagram of the OCCI Core Model. (Source: [114])

instances of Resource. These resources can be linked to each other using instances
of Link. Both Link and Resource are sub-types of the generic Entity concept. Each
Entity can be typed using an instance of the Kind concept and can be extended by
means of Mixin instances. Kind introduces additional resource capabilities in terms
of Actions, which representing invocable management operations (e.g. create, stop,
start, scale, etc.) that can be applied to resource instances. Mixin allows extending
the OCCI entity by plugging in/out a set of attributes and actions. An instance
of Mixin can be attached to any entity instance, which may provide additional ca-
pabilities both at creation time and/or run-time [114]. Mixin and Kind represent
sub-types of Category which represents the basis of the type identification mecha-
nism. Furthermore, the OCCI Core can be easily expanded using extensions, where
each one provides a particular extension of the OCCI Core model describing a specific
application domain. For instance, the OCCI Infrastructure [104] aims at abstracting
the IaaS network, storage and compute resources. Figure 2.5 depicts the class dia-
gram of these of OCCI Infrastructure types. Moreover, the OCCI Compute Resource
Templates Profile (CRTP) [50] specifies a set of well-known instances of compute
resources, such as large, small and medium computes. The OCCI Platform [105]
defines PaaS application and component resources. The OCCI Service Level Agree-
ments (SLA) [82] defines how SLA can be applied to OCCI resources.

The other OCCI specification includes renderings and Protocols representing to-
gether the way to interact with the OCCI core. Rendering specifications consist of
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Figure 2.5: Overview Diagram of OCCI Infrastructure Types. (Source: [104])

multiple documents, each one provides a specific rendering of the OCCI Core Model.
Currently, there are two rendering formats are provided, which are Text [58] and
JavaScript object notation (JSON) [115]. Similarly, the OCCI Protocol specifications
consist of multiple documents, each one describing how the model can be interacted
with over a particular protocol (e.g. HTTP, AMQP, etc.). The current protocol that
was provided by OCCI is HTTP [113], which describes a set of recommended best
principles to create unified RESTful APIs for managing cloud resources. These princi-
ples form a minimal set to ensure interoperability. For instance, Figure 2.6 represents
the textual description of the principle related to the creation of network resources
according to OCCI.

Representational State Transfer (REST) REpresentation State Transfer (REST)
was defined in the PhD thesis of Roy Thomas Fielding [65]. REST is an architectural
style defining a set of rules for the design of distributed systems that assists the design
and development of web applications. It is commonly used in the design of APIs for
modern web services. Web services supporting properly the REST architectural style
are called RESTful Web services and the application programmatic interfaces of these
services are called REST APIs. Indeed, the basic constraints driving the REST APIs
design are originally the result of architectural choices of the Web to reinforce the
scalability and robustness of networked and resource-oriented systems that are based
on HTTP. These constraints specifically include the following [65, 138]:

• Resource addressability. APIs manage and manipulate resources, which represent
any information that can be named. Each resource is uniquely recognized through
an appropriate Uniform Resource Identifier (URI).

• Resource representations. REST components apply actions on a resource through a
representation that defines the intended or current state of a resource. Generally,
the representations are associated with metadata such as content-types in the
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Figure 2.6: Textual description about the principle that has to be respected when
creating a link between resources, which is extracted from [103,113]

headers of HTTP messages. This is done in order to allow clients and servers to
correctly handle these representations.

• Representation caching. Caching is the capability to hide the resource representa-
tions with the aim of reducing network traffic between servers and clients, which
may thus enhance the performance. Caching can be achieved at the client side or
at any intermediate between clients and servers.

• Uniform interface. Resources are accessed and manipulated using the set of stan-
dard methods provided by the HTTP protocol, e.g., Get, Post, Put, Delete, Head,
etc. Each method is conceived with its own expected, standard behaviour and
standard status codes.

• Statelessness. The interactions between a client and a server should be stateless.
In other words, each request must have all the required information to be under-
standable without the use of any stored information from the server.

• Hypermedia as the engine of state. Resources can be interrelated together using
links. Links between resources are embodied in their representations. This en-
ables clients to discover and navigate relationships and to maintain a consistent
interaction state.
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2.2.3.2 TOSCA

TOSCA stands for Topology and Orchestration Specification for Cloud Applications,
which represents an OASIS standard. Its ultimate objective is to provide an inter-
operable and portable description of cloud applications with the aim of automating
their deployment and management. TOSCA offers a structured XML-based/YAML
language and a technology-independent metamodel for describing composite applica-
tions. We report here the main features of the TOSCA modeling language adopted
in this thesis.

TOSCA describes a cloud application as a service template, which is in turn spec-
ified by means of a topology template. The latter is represented as a graph consisting
of node templates and relationship templates. Node templates define the set of com-
ponents that the application consists of. Virtual machines, Databases, and TOMCAT
servers represent salient examples of application components. Relationship templates
define dependencies between application components. A web application connected
to a Mongo database could be an example of such a relationship.

Figure 2.7: The TOSCA meta-model (source: [116])

Furthermore, node templates and relationship templates are assigned to certain
types defining their semantics. A node template is typed with a Node type defining
its main properties, provided capabilities, requirements, and interfaces. Properties
are a set of attributes used to define the related node, e.g., a MySQL node has
root password and port as properties. Capability denotes certain functionalities that
the node template provides. Requirement indicates that the node template may need
a certain capability to be fulfilled by another node template. For instance, a Java ap-
plication node may expose a Java Servlet Runtime requirement, whereas the Apache
Tomcat node provides a matching Java Servlet Runtime capability. Concerning the
Interface, it defines the required management Operations (e.g., install, configure, etc.)



Cloud Computing 39

that may be applied on a node or relationship tempale to manage its life cycles. Here,
it should be noted that requirements, capabilities, interfaces, and operations are also
typed with reusable types allowing the specification of core properties characterizing
these entities. Moreover, a relationship type describes the basic properties of a rela-
tionship. In addition, node templates and relationship templates are also associated
with artifacts that are required for their deployment and the implementation of their
interface management operations. Artifacts represent the types of packages and files
that can be used by the orchestrator for deployment and implementation purposes.
Executable scripts, images, and configuration files are frequent examples of artifacts.

Listing 2.1 demonstrates the typology template for installing WordPress applica-
tion using the TOSCA YAML-based language. The described application is composed
of two software nodes, namely wordpress and mysql and one compute node named as
app-server.

1

2 tosca_definitions_version: tosca_simple_yaml_1 .2

3 description: TOSCA simple profile with wordpress and mysql.

4 node_templates:

5 wordpress:

6 type: tosca.nodes.WebApplication.WordPress

7 properties:

8 port: 8080:80

9 requirements:

10 - database_endpoint: mysql

11 -Host:app -server1

12 interfaces:

13 Standard:

14 Create:

15 implementation:

16 primary: Scripts/WordPress/install.sh

17 mysql:

18 type: tosca.nodes.Container.Application.Docker

19 properties:

20 port: 3306

21 mysqlimage:

22 file: mysql :8.0

23 type: tosca.artifacts.Deployment.Image.Container.Docker

24 repository: docker_hub

25 requirements:

26 - host: app -server2

27

28 interfaces:

29 Standard:

30 configure:

31 implementation:

32 primary: mysqlimage

33

34 app -server:

35 type: tosca.nodes.Compute

36 capabilities:

37 Host:

38 properties:

39 disk_size: 10 GB

40 num_cpus: 2



40 Background

41 mem_size: 8 GB

42

43 OS:

44 properties:

45 architecture: x86_64

46 type: Linux

47 distribution: ubuntu

48 version: 12.s

Listing 2.1: A TOSCA YML Template for a Wordpress application installation

2.3 Adopted solutions

2.3.1 Semantic Web technologies

The Semantic Web coined by Tim Berners-Lee has experienced growing attention from
both academic and industrial areas. The main objective is to elevate the meaning
of Web information resources and make them easily readable by machines through
certain key technologies [127], among which, ontologies represent the cornerstone
technology. According to Gruber et al., an ontology is defined as ”An explicit spec-
ification of a conceptualization of a given domain’ [74]. This definition is one of the
most quoted definitions in the literature, where the term ”conceptualization” refers
to an abstract model of a certain domain and which identifies the relevant concepts
of this domain. The term ”explicit” means that the type of concepts used and the
constraints on their use are defined in a clear and precise manner.

Generally, the use of an ontology is justified by the objectives that it ensures. More
precisely, an ontology provides a rigorous organization of the knowledge necessary
to achieve a comprehensive understanding of all the relevant elements in a given
domain. Thus, it facilitates the sharing of knowledge and its reuse. In addition to
that, an ontology promotes the possibility of inferring and reasoning on knowledge
through reasoning languages and techniques. Indeed, in this thesis, we define a set
of ontologies providing together a semantically-enriched description of (anti)patterns
that target the design characteristics of RESTful APIs devoted to cloud resource
management. The proposed ontologies provide knowledge to facilitate the detection
of (anti)patterns in REST APIs as well as the recommendation of corrections to assist
developers in revising their APIs.

For an ontology to be understandable and exploitable by software programs, it
has to be described by an ontology representation language. In our thesis work, we
opted for the Ontology Web Language (OWL) language to formalize and implement
our ontologies. This choice is due to the fact that OWL currently represents the most
complete and adopted language in the literature. Besides, to enable the reasoning
capability which is required for discovering new knowledge, the obtained OWL repre-
sentation has to be enhanced with the so-called inference rules, whose definition relies
mainly on rule languages. Among the important rule languages, we cite the semantic
Web rule language (SWRL) and its query-enhanced rule language (SQWRL). The
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modeled ontology and defined rules build together a knowledge base that can be later
interrogated by means of query languages to perform the desired objectives. Simple
Protocol and RDF Query Language (SPARQL) represents the notable and most used
language enabling knowledge querying. In the following, we first start by introducing
the main components used for building ontology knowledge. Next, we present the
languages cited above for ontology modeling, reasoning, and interrogation tasks.

Basic ontology components Knowledge in an ontology is formalized using five
main components namely: class, property, relation, instance, and axiom.

• Class: is known also as Concept, which represents a set of objects and their
common properties. It is the basic unit for the vocabulary description used in
ontologies.

• Property: is commonly known as Data Type Property, which represents a char-
acteristic or attribute of a class.

• Relation: is commonly known as Object Property, which represents an associa-
tion between two classes named domain and range of the relation.

• Instance: called also Individual, which designates a concrete object of a domain.
It represents an instantiation of a concept. An instance is described by its
membership in a given class and by a set of values assigned to the properties of
this class.

• Axiom: represents a logical assertion that must always be true. Axioms allow
combining concepts, relationships, and logic functions with the aim of defining
rules that can be used either for checking the ontology consistency or inferring
new knowledge.

OWL modeling language. OWL is introduced to enrich the resource description
framework schema language by providing a more complete vocabulary able to describe
complex ontologies. It is inspired by the description logic, the syntax of RDF triples,
and some elements of RDFS. The description logic is a formal language allowing
both the representation and inference of knowledge. RDF (Resource Description
Framework) is a Semantic Web language recommended by the World Wide Web
Consortium (W3C) with simplified semantics. RDF allows to formally represent Web
resources and the relationships between them by means of triplets of the following
form: <subject, predicate,object> where:

• The subject represents the resource to describe;

• The predicate represents a property type applicable to this resource;

• The object represents the value of the property.
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RDFS is an RDF extension allowing the expression of semantic relations called pred-
icates at the level of classes and properties by adding new constructors, namely:

• rdfs: class is used to define classes;

• rdfs: property allows to name relations between classes;

• rdfs: domain and rdfs: range allow to specify the source class and the target
class for an object property;

• rdfs: subClassOf is used to define a hierarchy of classes;

• rdfs: subPropertyOf is used to define a property hierarchy;

• rdfs: type binds an instance to a class.

OWL inherits all the capabilities of all the above languages, making it able to cre-
ate all the components of an ontology and have a great ability to represent web con-
tents. Also, OWL integrates new constructors for comparing properties and classes,
namely disjunction between classes (owl: disjointWith), equivalence (owl: equiva-
lentOf), restrictions (owl: Restriction), cardinalities (owl: cardinality, owl: minCar-
dinality, owl: maxCardinality ), etc. In 2012, the second version OWL2 has been
recommended by the W3C, which is the same version that we adopt in our thesis
work.

SWRL and SQWRL rules languages. SWRL is a W3C standardized language
that provides deductive reasoning capabilities by allowing users to define rules overs
OWL constructs (class, relation, property, etc.). It is built on the same logical basis
as OWL and can be extended through methods called built-ins. These methods are
defined in the SWRL specification and can be basic mathematical operators and
functions for string and date manipulations. One of the strong points in the SWRL
language is its extensibility. In fact, the SWRL language allows users to create their
personalized built-ins functions that will be integrated straightaway in SWRL rules.
We already exploited such features in order to create our custom built-ins that are
used in our semantic-detection approach.
a1

∧ a2
∧...an → b a1 , a2 , an, where

Antecedent; b : Consequent ; a and b are atoms
Atom ← C(i)|D(v)|R(i, j)|U(i, v)|built− In (p, v1, ..., vn)|i = j|i 6= j
C =Class; D=DataType; R = ObjectProperty; U = Data Type Property
i, j = Object variable names or Object individual names
v1,..., vn = Data type variable names or Data type value names;
p = Built− In names

The syntax shown above demonstrates how to express SWRL rules, which is based
on two parties: Antecedent and Consequent. The Antecedent consists of one or more
atoms with the aim of specifying the conditions that should be fulfilled. On the other
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hand, the Consequent allows the definition of the impacts that can be produced once
the conditions defined in the Antecedent are fulfilled. It often results in one or more
atoms. An atom can be a class, an Object Property, a Data type Property or a
Built-in. The latter can be SWRL built-ins (e.g., swrlb:matches) or query built-ins
(e.g., sqwrl:select) provided by the SQWRL language which is known as an SWRL-
based query language. The SQWRL language offers a set of SQL-like operators for
retrieving data from OWL ontologies that are required for the definition of the SWRL
rules. These operators (called also as SQWRL built-ins) are integrated into SWRL
rules to make use of the inferred knowledge. The example below demonstrates a
simple SWRL rule that classifies persons older than 17 as adults and lists them.

1

2 Person (?p) ^ hasAge (?p, ?age) ^ swrlb:greaterThan (?age , 17) -> Adult (?p) ^sqwrl

:select (?p)

Listing 2.2: SWRL rule example

SPARQL language. SPARQL is a query language recommended by the W3C. It
allows to express queries across diverse data models on the condition that the data is
stored following the native RDF triplets. The example below demonstrates a simple
query that exploits the ontology definition named foaf which stands for friend of a
friend. The query returns the names and emails of every person in the related dataset:

1 PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >

2 SELECT ?name

3 ?email

4 WHERE

5 {

6 ?person a foaf:Person .

7 ?person foaf:name ?name .

8 ?person foaf:mbox ?email .

9 }

Listing 2.3: SPARQL query example

Here, the PREFIX is used to indicate the address (URI) of the data source model to
be queried. SELECT extracts from the RDF graph related to the data source model
a sub-graph corresponding to a set of resources that satisfy the conditions defined in
the clause WHERE.

2.3.2 Model-driven Engineering

Model-driven Engineering (MDE) [144] is known as a software development method-
ology, where the first-class entities of the development process are models. In MDE,
models represent an essential part towards a solution for a given problem, unlike pro-
gramming methodologies in which algorithmic constructs are used to solve problems
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and models are taken only as illustrations. From a theoretical point of view, a model
is an abstract representation of knowledge related to a system from a particular do-
main, while from a practical point of view, it consists of a set of formal elements in
order to describe system entities that are being developed for a given objective.

Figure 2.8: Four-layers architecture of MDE (source: [9])

To build models, it is required to define a modeling language. The latter is
represented with other elements at a higher level of abstraction that would be the
basis to create models. Thus, the modeling language can be seen as a model of the
model, which raises the notion of meta-modeling [9]. In fact, MDE is based on a
meta-modeling architecture with four levels. These levels are defined by the Object
Management Group (OMG) as follows:

• M0 level (Reality). It specifies the real-world system. In this level, the created
elements are the instances of elements at level M1.

• M1 level (Model). It represents the model of the system. Its main concepts
provide the classifications of the elements at level M0. The model, in turn, is
an instance of the meta-model defined at M2.

• M2 level (Meta-model). It defines the modeling languages of M1 elements

• M3 level (Meta-meta-model). It represents the most abstract level, where ele-
ments of the modeling languages can be defined. In this level, we find languages
such as MOF [119] and Ecore [54]. These languages provide the constructors
and mechanisms for describing metamodels for modeling languages, such as
UML.
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2.3.2.1 Model Transformations

Model Transformation is considered as the heart and soul of MDE as it offers a
mechanism to enable the automation manipulation of models and generation of
their corresponding implementation codes. There have been many definitions
in the literature for model transformation. According to the OMG standard-
ization, model transformation is defined as ”the process of converting a model
into another model of the same system”. A more broad definition is proposed
by Mens et al [6], in which the model transformation is considered as ” the au-
tomatic generation of one or multiple target models from one or multiple source
models, according to a transformation description”. Here, a transformation de-
scription indicates how the source model elements are transformed into target
model elements.

In literature, there are two main categories of model transformations according
to the target type, which can be a text or model.

– Model to text (M2T) transformation. It translates a source model
into a text file. M2T transformation is commonly used to enable the even-
tual generation of code or textual documentation. To enable M2T trans-
formation, we distinguish two approaches [81], which are the following:

∗ Visitor-Based Approach. is considered as a very basic code generation
approach that provides a set of visitor mechanisms that is devoted to
scan the internal representation of a model and write the corresponding
code to a text stream.

∗ Template-Based Approach. is a synthesis approach generating code
from high-level specifications, called templates. Templates are ab-
stract and reusable representations of text fragments embedded with
meta-code. It comprises two parts, a static one representing the text
fragments that will appear in the output, and a dynamic one repre-
senting the code that encodes the underlying generation logic.

Compared to the Visitor-based approach, the template-Based approach
requires less programming effort from the programmers to encode code
generators. Because of its focus on abstraction and automation, it is a
widely used technique in MDE and is supported by multiple languages,
including xTend [5], Acceleo [2], Xpand [4], Jet [148], etc. In our work, we
opted for xTend2, which represents a complete programming language re-
lying on DSL providing a syntactical simplification of Java and integrated
with Xpand. This choice is justified by the fact that Xtend2 is acknowl-
edged by providing a good compromise between the expressiveness and the
performance [95], [148].

– Model to model (M2M) transformation. It translates a source model
into a target model, which can share the same or different meta-models.
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This translation is enabled by mapping entities of the source model into
entities in the target model. In general, three main approaches have been
followed to support M2M transformation [141].

∗ Direct model manipulation. enables the manipulation of the source
model using a set of procedural APIs to obtain the target model. One
advantage of this approach is that the used language to manipulate
the exposed APIs is a common general-purpose language like Java.
Thus, developers do not require extra training to write transforma-
tions. However, the major issue of this approach is that it lacks of
suitable high-level abstractions to specify transformations due to its
general-purpose nature. This makes these transformations hard to
write, comprehend, maintain and extend when needed [141].

∗ Intermediate representation. promotes the idea of exporting a source
model into a standard form such as XML, XMI, etc, then transforming
the exported model into the target model. This approach provides less
expressive power and requires considerable effort to encode even simple
model transformations [141].

∗ Transformation language support. provides a domain-specific language
that offers a set of rich constructs to explicitly specify and compose
the transformations. In our work, we rely on the transformation lan-
guage support as it offers the most potential compared to other strate-
gies [141]. In this respect, there exist many languages that can be
leveraged to define and execute the model transformation. In our
work, we selected the Query/View/Transformation Operational lan-
guage (QVTo) [120], which is an imperative language, specified by
the OMG standard. QVT allows model transformation by explicitly
specifying the required steps and mapping rules in order to produce
target models. QVTo is mainly designed to support a transformation
that deals with target models of complex structures. This is the case
with the description models of different DevOps solutions, which range
from average (e.g., Docker, Juju) to complex (e.g., AWS Cloud Forma-
tion). Moreover, it offers a good compromise between expressiveness
and scalability and has a reasonable performance.

2.4 Conclusion

In this chapter, we first introduced the basics of cloud computing. Then, we de-
tailed the elasticity by studying its core features and orchestration by illustrating
its basic operations. We also introduced the two cloud standards of our interest,
namely: OCCI and TOSCA. We then presented different techniques that we will
use in our contributions, namely: semantic Web technologies and model-driven engi-
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neering. Throughout this manuscript, we use semantic web technologies to formalize
required knowledge about (anti) patterns in cloud RESTful APIs. This knowledge
will facilitate the automated detection of these (anti) patterns as well as the recom-
mendation of appropriate corrections when needed. This approach is elaborated in
chapter 4. We also use the key principles of model-driven engineering to manage
the models and transformation algorithms that are involved in our second and third
contributions presented in chapters 5 and 6, respectively.
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3.1 Introduction

In this thesis, we aim at providing solutions to support the design of interoperable
management APIs, orchestration and elasticity of cloud resources in heterogeneous
and multi-cloud environments. Therefore we examine, in this chapter, the existing
work in the literature relevant to these topics. The goal is to position our work
versus these solutions while highlighting the current challenges that justify our thesis
directions. In doing so, we classify them according to three main research areas:
(i) On using (anti) patterns for software design assistance, (ii) On facilitating Cloud
resources orchestration, (iii) On supporting Cloud resources elasticity. For each one,
we start by presenting the related approaches. Then, we provide a thorough analysis
of the presented approaches to compare our work to these initiatives.

49
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3.2 On using (anti) patterns for software design assis-
tance

Over the last years, patterns and anti-patterns have been widely adopted by various
researchers with the aim of expressing architectural solutions and concerns in diverse
domains including Service-Oriented Architectures (SOAs), Object-Oriented Systems
and more recently in cloud computing and RESTful applications. Many studies have
been made to address different (anti) pattern concerns. Some efforts are concentrated
on identifying and documenting (anti) patterns that relate to different software do-
mains. Others proposed new models or adopted formalisms for providing a precise
specification of (anti) patterns. (Anti) patterns detection and analysis approaches are
also proposed either for assisting the design and development of diverse systems or
evaluating their quality. Hence, in this section, we investigate the existing work on
assisting the design of software systems using (anti) patterns and classify them into
three categories: (i) (Anti) patterns identification, (ii) (Anti) patterns modeling and
formalization, and (iii) (Anti) patterns analysis and detection. Then, Section 3.2.4
positions our work versus these solutions.

3.2.1 (Anti) patterns identification

(Anti) patterns identification consists of analyzing a real world system with respect to
different dimensions to derive what is good that the system users have to follow and
what is not that they must avoid. Dimensions including architecture, code and even
how the system was documented are among the relevant factors that have been widely
considered by numerous researchers. The goal is to define a catalog of (anti) patterns
that will raise the software practitioners’ awareness of good and poor practices on
their system of interest, which therefore contributes to the improvement of system
quality and comprehension. As there is a huge number of (anti) pattern catalogs,
we will only consider the most relevant ones and those that were subject to diverse
research analyses.

Initial identification efforts of (anti)patterns have begun with the object-oriented
systems. Indeed, there are various books that introduce a number of OO (anti)patterns.
For instance, Martin Fowler et al. in their highly-acclaimed [67] book introduced a
set of 22 code smells representing the most low-level anti-patterns that exist in the
source code. Another work [51] is related to J2EE-based applications suggesting 53
anti-patterns that address the biggest java issues with respect to their architecture,
design, and implementation using technologies such as JSP, EJB, Servlet, and Web
services. On the other hand, Arnaudova et al. [18] have dealt with the linguistic
aspect of OO programming and suggested 17 linguistic anti-patterns.

Moreover, SOA is also as important as the OO paradigm. Thus, numerous online
catalogs and books have been proposed introducing new patterns and anti-patterns
that characterize ”good” and ”poor” service-oriented designs. For example, Rotem-
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GalOz et al. [8] introduced in his book 23 SOA patterns and four SOA anti-patterns
while explaining their causes, consequences and suggesting their corrections as well.
Another book proposed by Erl [61] presents more than 80 SOA patterns that address
design, implementation, security, and governance aspects. Another interesting work
made by Rodriguez [139] in the context of web services, aimed at analyzing a set of
WSDL descriptions in order to define the most common Web service anti-patterns.
The proposed anti-patterns are mainly related to linguistic properties such as element
names, types, and comments used for specifying the data models in WSDL documents.
The aim is to enhance the descriptions of Web services toward ensuring an effective
service discovery.

In the REST context, some identification studies have been conducted, introduc-
ing new (anti)patterns devoted to enhancing the quality of RESTful APIs as they are
being increasingly adopted. An interesting study conducted by Petrillo et al. [129]
compiled a catalog containing more than 73 best practices related to the RESTfull
APIs design. The proposed best practices are gathered with the aim of improving
API quality properties such as understandability and reusability. Thanks to their
importance, these practices can be exploited to derive the most common REST pat-
terns and anti-patterns. In fact, a number of online documentations [128, 150] have
been already proposed by the REST specialists and practitioners to identify a list of
REST (anti)patterns while discussing how developers might cause them at design-
time. Also, Some books [46, 52] have introduced a catalog of design patterns related
to Web service that follow the REST architectural style. The aim is to design services
that comply with the REST constraints elaborated by Roy Thomas Fielding [65] in
his thesis.

Recently, the emergence of cloud computing has led to identifying new (anti) pat-
terns, most of which addressed the most common patterns in the cloud computing
system design. More specifically, some online catalogs and books have been intro-
duced both by cloud providers and academic researchers. In [63], the authors provide
a pattern-oriented view on cloud computing by introducing five categories of patterns,
namely Cloud computing fundamentals, Cloud offerings, Cloud application architec-
tures, Cloud application management, and Composite cloud applications. All the
patterns have been defined in an abstract form without referring to any concrete
provider’s technologies, programming languages, middleware or products. AWS [25],
the leader cloud provider, proposed a catalog that includes more than forty patterns,
representing a set of design ideas and solutions toward a successful use of AWS tech-
nologies in order to solve recurring design problems. Microsoft provider [106], on the
other hand, introduced a set of twenty-four design patterns addressing diverse archi-
tectural concerns related to cloud-hosted applications. Finally, an interesting book in
a catalog-like format proposed by Erl et al. [60], introduced a set of vendor-agnostic
design patterns. These patterns are devoted to enhancing operational resiliency, run-
time reliability, and automated recovery when interruptions take place.
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3.2.2 (Anti) patterns modeling and formalization

Most of the identified (anti) patterns have been informally and textually described.
This hampers the wide adoption of these (anti) patterns as well as their automated in-
tegration in the different lifecycle stages of software design and development. To over-
come this limitation, various models and formalisms have been proposed (or adopted)
to ensure a more structured, expressive and formal (anti)patterns representation.
Thereby, this laid the first foundation stone for tool support. The first attempt goes
back to Gamma et al [68], who proposed to use UML diagrams to describe each
pattern. Others, including [91, 153] extended UML and used the OCL language to
encode structural and behavioral properties related to patterns. In addition, different
modeling langauges have been introduced, including: RBML (role-based metamodel-
ing language) [86], DPML (design pattern modeling language) [99], and LePUS3 [70].
RBML relies on the notion of roles to represent design patterns at the metamodel
level, where the role can be played by any model elements such as classes, methods, or
associations. Using roles, RBML has the ability to represent various pattern perspec-
tives, namely static structure, interactions, and state-based behavior. DPML offers a
set of modeling constructs allowing the incorporation of design patterns within UML
models. LePUS3 is a formal and visual language expressing design patterns based on
a Z formula extended with graphical representations. It allows the specification of
design patterns as well as the design of JavaTM programs at any level of abstraction.
Although the proposed abstraction is interesting, its degree of expressiveness is too
restrictive, for instance, there is no means to encode the relationship between the
pattern and its instantiation.

None of the attempts mentioned above did provide any means to represent anti-
patterns, the opposite of patterns. In addition, they are tailored to be used only
for the specification of design patterns related to OO systems. So they can not
support the new considerations that emerged with technologies such as SOA, REST
and cloud computing. Consequently, Moha et al. [108], introduced a domain-specific
language allowing the representation of SOA anti-patterns in service-based systems.
The proposed language is based on new domain-specific vocabularies expressed using
Backus-Naur Form (BNF) grammars. The introduced grammars allow specifying
SOA anti-patterns in terms of metrics capturing their design static properties such
as cohesion and coupling and also dynamic properties, such as QoS criteria.

In addition to previous modeling attempts, notable formalisms including temporal
logic [151], Bayesian networks [142], and semantic web ontologies [143], have been
adopted toward a more precise and formal (anti)pattern description. In [151], authors
used the temporal logic CTL and its subclass LTL to formalize data flow-related anti-
patterns in the workflow systems specified using a workflow net with Data (WFD-
net), which represents a particular kind of Petri-net. The major advantage of this
formalization is enabling the use of standard and powerful model-checking techniques
during the discovery step of anti-patterns in WFD-nets. Moreover, [142] suggested the



On using (anti) patterns for software design assistance 53

adoption of bayesian networks to model software project management anti-patterns.
The model was dedicated to model the cause-effect relationships that stem from anti-
patterns while considering the uncertainties involved in software projects. The major
benefit of using a Bayesian network is its inherent powerful analysis for managing
uncertainty.

Other initiatives [13, 87, 143] have endorsed the use of semantic models, in par-
ticular, ontologies with the aim of providing a semantically enriched representation
of (anti)patterns. Settas et al. [143] propose to formalize software management anti-
patterns using an ontology model. The proposed ontology relies on the description
logic (DL) formalism allowing the semantic formalization of anti-patterns and the
possible relationships that can exist between them in terms of three main concepts
namely symptoms, causes, and consequences. Kirasic et al. in [87] proposed two
ontologies to create the required knowledge base for pattern recognition. The first
ontology describes code patterns that can be found, while the second provides a tax-
onomy of involved OO programming concepts, including Variable, Statement, Con-
structor, Method, Type, etc. Thus, knowledge about patterns is separated from the
programing concepts, thereby from the procedures of their recognition.

Generally, ontologies have been widely used to describe design patterns related to
OO systems. Most of these solutions followed two conceptualization approaches. The
first approach allows introducing one ontology for all design patterns, with special
focus on their classifications and documentations. This degrades the full expressive-
ness of design patterns since it does not often consider the specificity of each one
as well as its structure. Contrary to the first approach, the second approach de-
votes an ontology for each pattern. Thus, the knowledge base about all patterns is
the result of importing all defined ontologies. Despite its importance compared to
the first one, this approach may introduce significant redundancy and complexity in
the obtained knowledge base. Moreover, contrary to the widespread consideration of
patterns by the semantic approaches, anti-patterns are only rarely supported or not
at all. By contrast, in our work, we pay the same attention to patterns as well as
anti-patterns. Additionally. most of these approaches focus only on design patterns
related to OO systems. To the best of our knowledge, there is only one effort [100]
that proposes an ontology-based representation for agnostic and vendor-specific pat-
terns. The proposed representation is used to perform the automatic discovery of
cloud services and appliances. Finally, there is no semantic approach that addresses
REST (anti)patterns.

3.2.3 (Anti) patterns analysis and detection

Regardless of which software domains they approach, analysis and detection of (anti)
patterns are playing a crucial role in improving the quality of design and development.
In the following, we present the different detection approaches from diverse domains
(OO, SOA, REST and cloud computing systems) as they formed a sound basis of
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expertise and technical knowledge for our detection method. However, with respect
to analysis studies, we only focus on RESTful APIs.

Several works have been proposed to support the automated detection of (anti)
patterns. In the context of OO systems, Kessentini et al [85] proposed a two-steps
approach that intends to detect the potential design defects in the software code. The
first step allows the generation of detectors that capture how the code can deviate from
good practices. More precisely, a collection of code fragments originated from a set
of the system considered as well-designed were leveraged to generate these detectors.
The code fragments are normal code that is considered as reference. The detectors
generation step has been considered as a search problem that its resolution follows
a genetic algorithm. The latter seeks to optimize two main objectives, namely (i)
maximizing the generality of the detector so that it able to covers as much as possible
the deviations from the reference code (ii) and minimizing its similarity with the other
detectors. Afterward, the second step can be applied which aims at assessing the risk
by comparing the generated detectors with the selected code for the evaluation. A
code fragment is evaluated as a risky element if it exhibits a high similarity with one
of the detectors.

Another important effort has been made by [143]. It proposed a knowledge system
based on OWL ontology called SPARSE which provides detection support for software
project managers to detect anti-patterns during the software project management.
Based on the proposed ontology, a set of inference rules specified using the Semantic
Web Rule Language(SWRL) is defined to drive the implicit knowledge related to anti-
patterns based on their correlations. This knowledge is structured in terms of new
causes, symptoms, and consequences. Further, using the Pellet DL reasoner [145],
the ontological knowledge is mapped into an object-oriented (OO) model that is
specified in classroom object-oriented language (COOL) of the CLIPS production rule
engine [111]. Thus, a set of OO production rules are applied to the obtained model in
order to derive the required conclusions assisting project managers in the anti-patterns
discovery and detection. While relying on these rules, two matching algorithms are
proposed to support the anti-patterns detection. The first one allows the evaluation
of real data coming from software projects against the defined symptoms in order
to detect the possible anti-patterns. The second takes the matched anti-patterns as
input to retrieve other anti-patterns that share with them the same causes and/or
consequences.

In [108], Moha et al. revealed the lack of techniques and methods for detecting
SOA anti-patterns in service-based systems (SBSs). As a remedy, they proposed an
approach named SODA supported by the SOFA framework with the aim of supporting
the automated detection of SOA anti-patterns. The SODA’goal is assessing the design
of SBS as well as their QoS aspects. The authors relied on the SOA anti-patterns
specified using DSL to automatically generate their detection algorithms. Using these
algorithms, the authors intended to support both the static and dynamic analysis of
SBSs and their combination as well. The static analysis concerns the structural
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properties of SBSs at design time, while the dynamic analysis considers mainly the
runtime properties related to their QoS.

However, we noted that both OO and SOA detection methods cannot be directly
applied to RESTful APIs because OO focuses only on classes and SOA focuses on
services and WSDL descriptions. In consequence, few detection approaches [124,125]
have been proposed to improve the design quality of REST APIs, in particular,
their understandability, maintenance, and evolution. Palma et al. [124] proposed a
heuristics-based approach for detecting five REST patterns and eight REST anti-
patterns in RESTful systems. The proposed approach relies on a set of heuris-
tics indicating the design issues that are considered as symptoms for the selected
(anti)patterns. Based on the defined heuristics, a set of algorithms are implemented
to support the automated detection of REST anti-patterns. However, the authors did
not mention which formalism or languages are used to implement these algorithms.
This work is extended in [125]. The extended approach focused on the linguistic
aspects related to the uniform resource identifiers (URIs) in the REST APIs. Simi-
lar to their previous approach, the authors identified a set of linguistic patterns and
anti-patterns as well as defined their corresponding heuristics to aid their detections.
However, both approaches have supported the detection of few REST (anti) patterns
and addressed only the non-cloud RESTful APIs, including Facebook, Twitter, Drop-
box, and BestBuy. In contrast, in our work, we target the cloud RESTful APIs that
are devoted to managing cloud resources. Besides, we intend to provide a unified
method for detecting both cloud and REST (anti) patterns.

Moreover, several studies have been conducted with the aim of analysis and eval-
uating the RESTful APIs. The aim is to know to what extent those APIs advanced
with respect to common REST architectural principles. Accordingly, in [138], a huge
number of data logs were collected from HTTP traffic of mobile applications with the
aim of analyzing these logs, identifying the emerged patterns and comparing them
with REST guidelines and principles. In doing so, the authors rely on a set of five
best principles that concerns the main design aspects related to REST APIs, namely:
(i) resources modeling, (ii) resources identification and resource identifiers (URIs) de-
sign, (iii) resources representation, (iv) HTTP operations definition, and (v) resources
interlinking ou hypermedia. Further, the authors define a set of heuristics based on
request metadata available on the dataset in order to determine the compliance of the
identified API with these best practices. In addition, some of these heuristics have
been leveraged again to analyze the compliance of these APIs with the levels that are
introduced in Richardson’s maturity model [137].

The proposed heuristics are all implemented in JavaScript which therefore limits
their application on REST APIs from other domains like cloud computing. On the
whole, according to the obtained findings, the highest level of maturity is only reached
by very few APIs from the analyzed ones. Also, it is shown that there is a clear gap
between theory and practice as most of the best practices have been not followed by
API developers.
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In [97], Maleshkova et al. provided a deep and comprehensive analysis of the
current state of Web APIs. More than 220 available Web APIs that include REST
were analyzed. The analysis has been manually performed and relates to the tech-
nical aspects of the evaluated APIs. More precisely, the authors investigated six
characteristics of Web APIs, including specifically, their types, output formats, input
parameter, general information, invocation details and finally their complementary
documentations. According to the authors, the analyzed Web APIs are not naturally
REST and sustained from under-specification as they omit most of the indispensable
information like HTTP methods and data-type. Therefore, this illustrates the need
to study REST APIs design in cloud services, which support the contribution of our
thesis.

In [76, 77], a framework for the structural analysis of REST APIs is proposed.
Different from all the previous approaches, the authors focused on API description
documents as the first source for the analysis of the structure of REST APIs. In addi-
tion, they introduced a canonical meta-model that is used to describe a REST API in
terms of its core concepts, including, resources, methods, representations, and URIs.
REST API description languages such as RAML [133] and Swagger [146] are used to
build this metamodel. However, at the validation step, the authors concentrated only
on Swagger since it is commonly and widely used compared to RAML. In particular, a
set of Swagger documents are transformed into the canonical metamodel. The trans-
formation serves firstly to identify all resources alongside with supported methods,
representations and transform them into the corresponding canonical entities. Rela-
tionships between the resources are also considered. However, their identification is
critical and not easy as they are not explicitly described in the Swagger documents.
This makes their transformation crisp and error-prone. After this transformation, the
obtained model is stored in a repository that can be treated by the analysis compo-
nent. The latter is composed of a set of algorithms dedicated to compute the required
metrics for the REST API analysis. Examples of these metrics include the number of
resources, used methods (Get, Post, Delete, etc.), links. Although these metrics can
provide an overview of structural properties that characterize REST APIs, they do
not reflect their compliance with the REST principles. Instead, this feature has been
considered as one of the authors’ future work.

In [129], the authors conducted a systematic study of REST best practices on
three well-known cloud APIs including, Google Cloud Platform, OpenStack, and the
OCCI standard. In doing so, a catalog including REST 73 best practices is employed
in assessing the REST features offered by selected REST APIs and their compliance
with these practices. The analysis is relied on the available documentation related
to these APIs and demonstrated that they have reached an acceptable level of ma-
turity. However, the observed values are not high enough, more particularly, it has
been demonstrated that Google Cloud follows 66% (48/73), OpenStack follows 62%
(45/73), and OCCI follows 56% (41/73) of the adopted best practices. This often
worsens the quality of these. Most importantly, the observed lack in supporting some



On using (anti) patterns for software design assistance 57

of the best REST practices by OCCI may negatively impact the understandability
and reusability of management APIs that adopt this standard.

3.2.4 Synthesis

With regard to (anti) patterns identification efforts, several domains have been ex-
plored, including OO, SOA, REST and recently Cloud computing. While OO and
SOA systems have been received a lot of attention and reached an acceptable level of
maturity with regard to the definition of the most prominent (anti)patterns, REST
and cloud computing still at early stages in this respect. Besides, all identification
(anti) patterns efforts, including books, catalogs, and online documentation has made
a considerable advance in the design quality of multiple software systems and signif-
icantly increased the designers’ awareness and understanding about their systems.
However, to the best of our knowledge, none of these efforts address the design as-
pects of cloud RESTful APIs for ensuring or assisting the interoperable management
of cloud resources. These design aspects are mainly related to REST operations for en-
suring common management tasks including creation, deployment, autonomic scaling,
and monitoring. Therefore, in our work, we are particularly interested in identifying
a set of new cloud patterns and anti-patterns to assist the creation of interoperable
management APIs by analyzing the set of guidelines introduced in the OCCI stan-
dard. Besides, for more understandable and reusable APIs, we will explore the current
REST literature and practices to identify other related (anti)patterns as the current
catalogs are too limited and only focus on patterns. In this vein, our work can be seen
as complementary to the previous efforts by proposing another (anti)patterns catalog
that addresses a new design aspect, i.e interoperable management of cloud resources.

Besides, with respect to (anti)patterns modeling and formalization, the proposed
approaches have followed two directions in order to support the description of (anti)
patterns. These directions include: (i) introducing new models based on the new
domain-specific grammars or using classical UML diagrams; (ii) adopting already-
defined formalisms. Although approaches following the first direction are known by
their expressivity power and easiness of use, they still suffer from the lack of formal
semantics. This prevents the possibility of formal reasoning about (anti) patterns
and driving new knowledge. In most cases, to support the new defined models, it is
required to develop from-scratch solutions. However, this is tedious and unnecessary
especially with the presence of software tools that can be leveraged to perform any
task related to (anti) patterns such as their detection and integration in software
design. In response to these issues, various formalisms have been adopted providing
formal and precise descriptions of (anti) patterns. In this vein, ontologies have proven
their potentials in providing a semantically enriched representation of (anti)patterns.
Most importantly, they are endowed with rigorous reasoning engines and tools that
can be exploited to infer new knowledge about (anti) patterns as well as systems
supporting them, with the assurance that the provided new knowledge is sound. This
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knowledge can be used to support any activities related to (anti)patterns, namely their
detection and integration in software design and development stages. Nevertheless,
previous researches that use ontologies, have focused only on design patterns and
anti-patterns in the OO systems. Thus, there is no initiative for providing a semantic
definition of (anti)patterns in RESTful cloud APIs. Therefore, to overcome this
limitation, we aim at using ontologies toward a semantically-enriched description of
(anti)patterns that target the design characteristics of RESTful APIs devoted to cloud
resource management.

In regards to (anti) patterns detection and analysis, various initiatives have been
proposed with the aim of leveraging patterns, anti-patterns or both in the evalua-
tion of design and development quality of several kinds of systems. Many automated
approaches have been proposed to assist the detections of (anti) patterns. Most of
them have dealt with OO and SOA (anti)patterns. Whereas few approaches targeted
the detection of (anti)patterns in RESTful APIs. In addition, the detected REST
(anti)patterns do not reflect all best REST principles (or at least the most common
ones) and related only to no-cloud environments. In our thesis, we aim at proposing a
detection method that specifically targets cloud REST APIs while being flexible and
extensible enough to support a large number of REST (anti)patterns. Different from
the previous approaches, we intend to detect new kinds of (anti)patterns toward as-
sisting for an OCCI-compliant creation of REST management APIs, as this is highly
required for ensuring interoperability. In addition, most of the current detection
methods have relied either on ad-hoc programming or domain-specific rule languages
to defined the anti-patterns detectors. Other approaches used the semantic reasoning
processes to infer new knowledge needed to detect (anti)patterns and adopted seman-
tic rules languages to defined their detectors. Motivated by the great potentials of
semantic solutions in the representation as well as reasoning, we seek likewise to use
them as underlying techniques especially in the definition of (anti)patterns detection
rules and algorithms.

Finally, with regard to RESTful APIs analysis, except this study [138], all the
other studies have been conducted manually. However, this is not practical for APIs
that involve a huge number of resources and operations and restricts the application
of these analyses on REST APIs in other domains. Also, it is obvious that such
kind of analysis requires more attention and effort from specialists. Moreover, as
key observations, the authors indicated that few of REST APIs that were selected
from general domains (Facebook, Twitter, Network, and mobile), have not reached an
acceptable maturity as most of REST-related best practices have been not followed.
This is also valid for REST APIs from three cloud computing providers: Google
Cloud Platform, OpenStack, and OCCI standard. Hence, this illustrates the need
for tools and methodologies that supports developers toward more mature APIs that
are compliant to principles and guidelines that REST architectural style has. Our
work falls within this context. However, in contrast to previous works, we aim at
supporting the automated analysis that targets specifically cloud REST management
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APIs with respect to REST and Cloud (anti)patterns that we intend to define from
the OCCI standard.

Last but not least, none of the analysis and detection approaches have considered
refactoring solutions to avoid the occurring of anti-patterns. To address this lack, we
seek to provide APIs developers with recommendation support. Summing up, In our
thesis, to address the observed shortcomings, we aim at providing a holistic approach
based on semantic technologies to allow the definition and detection of (anti)patterns
on one hand and provide recommendation support to correcting the occurring anti-
patterns on another hand. Our approach targets cloud REST management APIs and
their related (anti)patterns.

3.3 On facilitating Cloud resources orchestration

Cloud resource Orchestration is a key factor to exploit the potential of cloud comput-
ing [135]. Faced with its growing importance, various initiatives have been proposed.
Some efforts led to the creation of cloud application orchestration and management
standards, namely TOSCA [116] and CAMP [117]. Others from academic and De-
vOps communities proposed new models based on domain-specific languages to repre-
sent cloud resources and address some of their orchestration-related aspects. The idea
of exploiting solutions proposed by the DevOps community is also explored. Hence,
in this section, we position our work versus these initiatives and classify them into
three categories: (i) Standard-based approaches, (ii) Non-standard based approaches,
(iii) DevOps approaches. In the following, DevOps approaches are firstly explored
as some of the standard and non-standard approaches integrated them into their
proposed systems.

3.3.1 DevOps approaches

DevOps [96, 160] represents a new emerging IT paradigm that aims at unifying the
application development (dev) and its administration operations (ops) such as de-
ployment and testing in order to accelerate the development life cycle and offer a
continuous delivery with the desired quality. In the context of the DevOps commu-
nity, several orchestration platforms and tools are rapidly emerging. Since there is a
vast number of DevOps solutions, we analyze here the most adopted and acceptable
ones in the cloud community, which include: AWS-CloudFormation [23], Openstack-
Heat [123], Docker [49], Kubernetes [90], Terraform [149], Juju [152] , Ansible [15] ,
Puppet [131], Chef [44]. These solutions are either provider-specific or independent.

AWS-CloudFormation [23], proposed by the cloud AWS provider, provides a lan-
guage for specifying and provisioning infrastructure resources required for applications
that can be span on all AWS regions. The provided language aims at structuring cloud
resources as well as the relationships between them in a graph-like format written in
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JSON. The major limitation of this orchestrator is the fact that it allows deployment
only on Amazonâs cloud services, raising a vendor lock-in issue for its users.

OpenStack Heat [123] is an orchestration engine aiming to manage the entire
lifecycle of infrastructure and applications based on templates that represent a set
of text files manipulated like code. The definition of these templates relies on the
so-called HOT, which stands for the Heat Orchestration Template. HOT describes
the infrastructure resources for a cloud application using a YAML syntax. In addition
to the deployment, Heat supports the runtime controlling of resources by providing
auto-scaling features that are enforced by the OpenStack Telemetry service. Despite
the fact that Heat is open-source, it only targets OpenStack clouds.

Docker [49] is known as an effective lightweight virtualization technology that en-
ables packaging application code as well as its dependencies into a standard unit of
software called Containers. This provides an abstraction layer ensuring that what-
ever the environment in which the application will be deployed, the execution is still
valid. Besides, Docker offers orchestration tools facilitating container management
and deployment. As shown in Figure 3.1, notable tools include Docker Compose and
Docker Swarm. Docker Compose relies on YAML-based language to describe contain-
ers composing the applications and their dependencies. Docker Swarm represents a
cluster of nodes (e.g. hosts) and allows the configuration of containers and automatic
management of load distribution. This is enabled through its master-slave architec-
ture where each cluster consists of at least one manager node that is responsible for
managing the cluster and the distribution of tasks and any number of worker nodes
that support the execution of application units (e.g. services).

Figure 3.1: Docker Architecture (Source: [1])
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Kubernetes [90] is an open-source container orchestration platform proposed by
Google. It allows the automated deployment and management of multi-container
applications. Besides Dockerfile which is required for each application unit or service,
Kubernetes requires two other artifact files namely Deployment file and Service file to
deploy applications. Both files are defined using a specific template written in YAML.
Deployment file is a manifest file that describes the pods and containers, as well as
other properties such as the ports. Here, it should be noted that pods represent
instances of application services, where each one consists of one or more containers.
The service file is devoted to discovering the proper pod that is running.

Terraform [149] provides a highly configurable platform for building large infras-
tructure covering multiple cloud providers. Its main goal is the orchestration of re-
sources related to infrastructure. Indeed, it provides plugin interfaces for supporting
the specificity of each cloud provider. Terraform relies on a declarative configuration
language to build, modify, and versioning infrastructure descriptions. In addition,
one of Terraform’s strengths is the fact that it adopts the aspect of parallelism when
creating resources from different cloud providers. Figure 3.2 shows how Terraform
works.

Figure 3.2: The operating principle of Terraform (source: [149])

Juju [152] is an open-source, application and service modeling tool proposed by
Ubuntu. It allows the orchestration (i.e. deployment, management, scaling) of appli-
cations on private or public clouds. The key concepts of Juju are Charm and Bundle.
Charm defines the orchestration logic related to a given service using scripts, which
in turn can be implemented in any common scripting language (Python, Ruby, Unix
shell, etc.). The bundle represents a compound deployment that comprises multiple
charms and describes all their associated relations and configurations. To describe



62 State of The Art

such bundles, Juju relies on its own DSL following a YAML-based notation.

Ansible [15], Puppet [131], Chef [44] are Configuration management tools that
mainly aim at configuring and maintaining systems overs various runtime environ-
ments (e.g. Tomcat server, MYSQL server, etc.) that can be hosted on different
cloud providers. Configuration and maintenance facilities are both required to ensure
the proper deployment of applications. Each one of these configurations tools relies
on its own language. For instance, Ansible provides a declarative YAML-based DSL,
whereas, Chef uses a Ruby-based DSL.

3.3.2 Standard-based approaches

In this section, we present the standard-based approaches for supporting cloud re-
source orchestration. All reviewed work is related mainly to TOSCA as it is the
only standard that focuses on orchestration aspects of cloud applications. Few works
have been proposed to support cloud orchestration through providing runtime plat-
forms for the TOSCA standard. Notable solutions includes OpenTOSCA [43] and
CAMF [94]. OpenTOSCA [43] represents the first open-source system providing a
runtime deployment and management of TOSCA-based Cloud applications. It relied
on imperative processing that is based on defining processes called building plans
(e.g. Workflow) to specify the deployment and management logic related to each ap-
plication component. However, as nowadays most applications involve multiple and
larger numbers of components, the design of such plans becomes a very complex and
error-prone task. In our proposal, this is avoided by adopting the declarative process-
ing provided by the DevOps solutions, which allow DevOps users to orchestrate their
applications without describing the related building plans. Despite the importance of
OpenTOSCA, it does not support a runtime orchestration providing monitoring and
controlling capabilities.

CAMF [94] stands for Cloud Application Management Framework, which is an
open-source solution based on the Eclipse Rich Client Platform. In terms of orches-
tration facilities, it provided three core operations: Application description, Applica-
tion deployment, and Application monitoring. The âApplication descriptionâ aims
at providing an interoperable specification of application structure through capturing
its high-level components, relationships between them as well as their management
operations. This enabled by adopting the TOSCA standard. The âApplication de-
ploymentâ supports the submission of the application description to any cloud infras-
tructure. Finally, âApplication monitoringâ allows collecting operational data (e.g.,
metric measurements, statistics, resource states) for enabling performance monitor-
ing. Currently, to ensure the deployment operation of the application, CAMF relies
on configuration per node using native shell scripts. However, this is complex and
not scalable in scenarios that involve the configuration of multiple nodes. Besides,
instead of reusing the already proposed standard APIs such as OCCI [118] or open-
source ones such as Jcloud [16], CMAF defines its proper connecters to communicate
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with cloud providers. Actually, in our proposal, we endorse the using of configuration
tools such as Terraform, Chef to avoid direct communication with provider platforms.
These tools have already demonstrated their potential in supporting a large number
of providers [155].

Other works [12, 40, 42] tried to combine TOSCA with the CAMP standard to
support the communication with provider platforms, which is needed to enforce the
deployment and management of cloud resources involved in the orchestration life
cycle. In essence, this combination aim at exploiting the advantages of this standard
in the deployment of applications over multiple and independent cloud providers.
Specifically, [12, 40, 42] provide either model-driven and query-based transformation
with the aim of converting abstract TOSCA service templates into concrete CAMP
deployment plans. Model-driven transformation involves the mapping of TOSCA
service template entities into appropriate deployment and management entities in the
CAMP plan. Whereas query-based transformation allows interrogating the TOSCA
service templates in order to get the required data for supporting the automated
generation of deployment plans. The obtained plans can be then deployed through
the Jcloud API that allows communication with multiple and independent providers
for enforcing the deployment and management operations. However, this proposal
provides only an infrastructure-centric deployment as it does not allow the use of
external platform resources such as containers, which become now a desirable feature
for reducing the management complexity [28]. In our proposal, we support this feature
by providing mapping support between TOSCA and Docker, which represent one of
the most leading container-centric orchestration solutions.

Few initiatives have been proposed to support the integration between some De-
vOps solutions and standards in particular TOSCA. Notable approaches include [156],
[83], [41]. Wettinger et al. [156] proposed an integrated, standards-based modeling
and runtime framework that its major building block consists of transforming Juju
charm and Chef cookbooks into TOSCA nodes. The main objective is reusing the
existing DevOps artifacts to assist the creation and enrichment of TOSCA topology
models for cloud applications. The resulted topology models can be then deployed
by the TOSCA runtime environment (i.e. OpenTOSCA) of the proposed frame-
work. This limits the full exploitation of DevOps solutions potentials. Besides, this
approach is based on the intermediate representation as to its underlying transforma-
tion strategy. However, this strategy proved to be less expressive power and requires
considerable effort to encoding complex transformations [141]. Moreover, [83] and [41]
are provided mapping support between TOSCA and two DevOps solutions, namely
Chef and Docker. Both approaches rely on the direct manipulation of the code to
transform a TOSCA topology model into a running application, which could be time-
consuming, difficult to maintain and extend in case of changes.
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3.3.3 Non-Standard approaches

Other research initiatives, including CloudFM [64], Roboconf [130], CloudCAMP [31],
Occopus [88] and Denis et al. [47] provided new models based on domain-specific lan-
guages (DSLs) to describe cloud resources for management and orchestration purpose.

Ferry and al. [64] have introduced the CloudFM framework, which comprises a
tool-supported DSL called CloudML for describing the intended applications and a
models@runtime component for enforcing their provisioning, deployment, and adap-
tation at runtime. Inspired by the component-based modeling, CloudML allows devel-
opers to describe cloud applications with respect to two levels of abstraction: (i) the
Cloud Provider-Independent Model (CPIM) and the Cloud Provider Specific Model
(CPSM). CPIM intends to describe cloud applications as well as their deployment and
provisioning aspects in a cloud provider-agnostic way. Whereas CPIM represents a re-
finement of CPIM by enriching its instances with cloud provider-specific information.
To support the deployment of the obtained CPSM on top of cloud infrastructure,
CloudFM relied on Jclouds [16] and the Flexiant APIs [66].

Roboconf [130] is a cloud orchestrator allowing the deployment and runtime con-
trol of cloud applications. It is introduced as an autonomic computing system (ACS)
kernel implementing the basic administration mechanisms (sensor and effector). To
support these mechanisms, Roboconf relies on its ad-hoc components, where each
one is devoted to implement an orchestration need such as initialization, deployment,
configuration, start-up, stopping and uninstallation. Besides that, it introduces a
hierarchical DSL for expressing applications and their execution environments (e.g.
cloud platforms). Using this DSL, three file types have to be specified for any appli-
cation. Specifically, the first file represents a descriptor that specifies the Roboconf
configuration along with the application in question. The second one is a cyclic graph
devoted to specify the relationships between the application components. Finally, the
last file type includes the required configuration scripts and software packages.

CloudCAMP [31] is a platform-agnostic framework allowing the description and
deployment of cloud applications. In this framework, a domain-specific modeling
language (DSML) is used to abstract the application components and provider speci-
fications. To allow the concrete deployment, CloudCAMP transforms the application
specifications into deployable Ansible Infrastructure-as-Code script. This transforma-
tion is based on querying an already defined knowledge base and generating infras-
tructure code.

Occopus [88] is a Multi-Cloud Orchestrator that provides a DSL to describe infras-
tructure and nodes definitions. Based on these definitions, it enables the automated
deployment and maintenance of Scientific Infrastructures in the target clouds. Unlike
our solution which adopts TOSCA allowing provider-independent descriptions, Occu-
pus assumes that developers have configuration management knowledge of multiple
providers. This is difficult and requires sophisticated skills.

Denis et al. [47] propose the use of domain-specific models (DSMs) for describing
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cloud resources as well as their management strategies according to each DevOps so-
lution. To allow that, they rely on a new Entity-Relationship (ER) model to represent
these DSMs. Besides, the authors propose a set of connectors to support the auto-
mated translation of DSM objects into native resource descriptions and management
artifacts specific to the target DevOps tool. This translation is based on direct manip-
ulation of DSMs through a general-purpose programing language. Our solution differs
from the above proposal in the two following points. First, instead of the manual DSM
creation, we intend to use TOSCA to abstract the heterogeneous entities used in each
DevOps solution into high-level ones, which would be then leveraged to generate the
DSM for each DevOps solution. Second, we adopt a model-driven transformation as
an underlying technology to automate the DevOps artifacts generation.

3.3.4 Synthesis

After detailing the related work while outlining their difference to our work, we give,
in this section, a comparative analysis of each investigated category.

Table 3.1 provides a comparative overview of the DevOps approaches with re-
spect to dimensions inspired by [155]. Resource Representation indicates how cloud
resources are represented and using which notations (JSON, YAML, etc.). Operations
denote the supported orchestration capabilities, namely, configure, deploy, monitor,
control. Scope indicates which cloud resources types are considered by the orchestra-
tion. Access Method denotes how cloud resources are accessed, namely command-line
interface (CLI), graphical user interfaces (GUI), application programming interfaces
(APIs). The runtime environment is identified in terms of two sub-dimensions: Vir-
tualization technique which refers to how physical resources are abstracted to simplify
their consumption; Target environment which identifies different deployment models
such as Single (one provider), multi-cloud ( multiples providers). Interoperability sup-
port verifies if it has been supported by the proposed solution or not. Note that, in
some cases, we used ”+” to express that the corresponding criterion is fulfilled by the
corresponding approach, ”− ” if it is not fulfilled, ” + /− ” if it is partially fulfilled,
”NR” for not relevant.

By analyzing experimentally and theoretically the selected DevOps solutions, we
observed that they all hold a lot of potentials for supporting an efficient orchestration
of cloud resources. However, as it is demonstrated in the table 3.1, each DevOps
solution targets specific resource types and management operations and follow dif-
ferent virtualization techniques. Thus, the orchestration of cloud applications that
inherently involve diverse resources and virtualization techniques, would require us-
ing multiple DevOps solutions. This is extremely complex with the remarkable lack
of interoperability among these solutions as they rely on diverse and heterogeneous
resource description models, management capabilities and access methods. Moreover,
as most of DevOps solutions assume a low-level and sophisticated programmatic ap-
proach, this complexity can only increase several-fold. This is because that seamless
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Approaches Resource Operations Scope Access
Runtime environment Intero-

representation methods Virtualisation
technique

Target envi-
ronment

perability

AWS Cloud-
Forma-
tion [23]

DSL (JSON) Deploy IaaS, PaaS CLI,
APIs

OS Single -

Heat [123]
(Openstack)

DSL
(YAML)

Deploy, Mon-
itor, Control

IaaS, PaaS CLI/APIs OS Mutli (only
Open-
stack based
clouds)

+/-

Docker [49] DSL
(YAML)

Deploy,Update,
Monitor,
Control
(+/-)

PaaS GUI,
APIs,
CLI

Container Multi -

Kubernetes
[90]

DSL
(YAML)

Deploy,Update,
Monitor,
Control

PaaS GUI,
APIs,
CLI

Container Multi -

Terraform
[149]

DSL (TF) Deploy,Update,
Monitor,
Control

IaaS GUI,
APIs,
CLI

OS Multi -

Juju [152] DSL (YML) Deploy, Con-
trol

IaaS, PaaS GUI,
APIs,
CLI

OS Multi -

Ansible [15] DSL
(YAML)

Configure,
Deploy

PaaS APIs,
CLI

NR Multi -

Puppet [131] DSL Configure,
Deploy

PaaS GUI,
APIs,
CLI

NR Single -

Chef [44] DSL or Ruby Configure,
Deploy

PaaS APIs,
CLI

NR Single -

Table 3.1: Comparative analysis of DevOps solutions

integration between DevOps tools would imply considerable development effort and
continuous patching from the DevOps user side. In contrast to DevOps solutions,
we adopt the TOSCA standard as a technology-independent metamodel for provid-
ing an abstract representation of cloud resources along with orchestration aspects.
This would shield the DevOps users from heterogeneity and complexity of underlying
DevOps solutions.

Table 3.2 represents a comparative analysis of both standard and non-standard
based approaches. We rely on the same criteria used above with the addition of the
”Third-party tools” criterion which intends to check whether these solutions reuse
the existing solutions or propose their own ones (Ad-hoc). Most of these approaches
focused only on providing deployments capabilities for cloud applications. advanced
runtime orchestration aspects such as monitoring and runtime controlling have been
not handled yet by these approaches. In addition, most of them adopted os-level
hypervisors as their underlying virtualization technique. 2 out of 12 selected ap-
proaches [47, 88] supports diverse virtualization techniques, i.e. container-level, and
os-level virtualizations together. These solutions are not based on standard and as-
sumes that the developer has diverse knowledge about DevOps solutions. As indicated
above, with the presence of heterogeneity, the developer mission will be too cumber-
some and time-consuming. Besides, regarding non-standard approaches that have
been all proposed in an academic context, each one relies upon its own resources
description languages with its specific abstraction entities and syntax. However, the
heterogeneities imposed by these languages certainly impede interoperability. To
avoid such an issue, adopting open standards is highly required, which we did in our
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Approaches Resource Operations Scope Third party
Run. environment Intero-

represen-
tation

tools Ver. tech-
nique

Tar.
environ-
ment

perability

OpenTOSCA
[43]

TOSCA Deploy IaaS, PaaS shell scripts,
Chef, and
Ansible

OS Multi +

CAMF [94] TOSCA Deploy, Mon-
itor, control

IaaS, PaaS Adhoc OS Single +/-

[12,40,42] TOSCA Deploy IaaS, PaaS CAMP,
JCloud

OS Multi +

[156] TOSCA Deploy IaaS, PaaS Juju and
Chef

OS Single +

[83] TOSCA Deploy IaaS, PaaS Chef OS Single +
[41] TOSCA Deploy PaaS Docker Container - +
[64] DSL Deploy, Up-

date (+/-)
IaaS, PaaS Jcloud OS Multi -

[130] DSL Deploy IaaS, PaaS Adhoc plug-
ins

OS Multi -

[31] DSL Deploy IaaS, PaaS Ansible OS Single -
[88] DSL Deploy, Up-

date
IaaS, PaaS Config tools OS/Container Multi -

[47] DSM Configure,
Deploy,
Monitor,
Control

IaaS, PaaS Docker and
Juju

OS/Container Multi -

[140] DSM Configure,
Deploy

IaaS Ansible OS Single -

Table 3.2: Comparative analysis of standard and non-standard based approaches

Approaches Hard-
program-
ming

Uniform
interfaces

Automated Mapping

Direct Model
Manipulation

Intermediate
Representation

Transformation
Language Sup-
port

Standard-
based

[83], [41] [39] - [156] -

Non-
Standard

[88] [88] [47], [31] - [140]

Table 3.3: Comparative analysis of approaches supporting the integration of DevOps
solutions

solution.

A key observation related to both kinds of approaches, with regard to the third-
party tools (refer to table 3.2), is the integration of existing cloud open APIs and
DevOps solutions to allow the concrete execution of orchestration tasks. Cloud open
APIs have provided great potentials for communicating with providers and requesting
the execution of certain actions by their underlying management services. Some
of these APIs (OCCI, jCloud) have already integrated into DevOps solutions. But
lately, DevOps solutions become more powerful comparing to cloud APIs thanks to its
everything as code paradigm and its known advantages. Similarly to these approaches,
we will use DevOps solutions into our orchestration but in a different way emphasizing
their seamless, and easily expandable integration.



68 State of The Art

Table 3.3 provides a comparative analysis of approaches that provided integration
support with DevOps solutions. We align these approaches with respect to different
mechanisms adopted to support such integration. In this respect, we distinguish three
possible mechanisms that are followed by selected approaches: (1) Hard programming;
(2) Uniform interfaces; (3) Automated mapping. As demonstrated in the table 3.3,
some of approaches [41, 83, 88] adopted a low-level and hard programming. Hard
programming is a software development practice that consists of interpreting the
inputs models (i.e. Application typologies in our context) to get required data, which
in turn have to be injected directly into the source code. This is opposed to generating
these data and put them into stored and machine-readable artifacts that can be
processed later by procedural APIs to ensure further management tasks. It has been
already proved that this approach is hard to be maintained, extended when needed
and keep it synchronized.

Also, uniform interfaces are considered by a few approaches [39,88]. Indeed, they
are communication middlewares that aim at abstracting the inherent heterogeneity
among the different DevOps APIs and tools that can be invoked to ensure any man-
agement operations. By convention between cloud practitioners and adopters, this
mechanism is highly recommended. However, the proposed interfaces are limited only
to configuration tools specifically chef and ansible. Besides, there is is no assistance
for developers to create such interfaces automatically or at least semi-automatically,
in a way that most part of code can be generated based on predefined skeletons.

Moreover, few others have supported automated mapping which is either driven
by a standard like [156] or based on new DSMs like [140], Weerasiri, [31]. Auto-
mated mapping provides solid support to allow the generation of native artifacts (e.g.
DevOps-specific artifacts) from ones (TOSCA typologies or the new DSMs) that are
often described at a high level of abstraction and independently from technological
mechanisms. Nowadays, it became necessary to provide a methodology and tech-
niques to support automated mapping as it is able to avoid the burden of implement-
ing and defining artifacts that are closely dependent on technology-specific solutions.
This will ensure the interoperable orchestration of these artifacts while mitigating
complexity related to their implementation. Despite that, under the existing solu-
tions, the mapping is provided either based on the intermediate representation [156]
or by a direct model manipulation [31,47] using a set of procedural APIs. Both meth-
ods are less expressive as they lack appropriate high-level constructs (or abstractions)
for easily encoding transformation rules that allow such mapping. This makes these
transformations hard to write, comprehend, maintain and extend when needed [141].

Summing up, to address the observed shortcomings, the second thesis contribution
is devoted to streamlining and improving the orchestration of cloud resources. Similar
to standard-based approaches, we endorse the use of TOSCA as a technology-agnostic
resource description model allowing the interoperable and portable representation of
cloud applications. To support the orchestration of TOSCA models, we propose a
model-driven integration between TOSCA and DevOps solutions. With the aim of en-
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abling this integration in a seamless way and acceptable cost, our key mechanisms are
providing (i) high-level automated mapping and (i) DevOps abstraction layer. Unlike
the previous approaches, automated mapping is provided based on model-driven and
transformation language support toward ensuring its manipulation at a high level of
abstraction, thereby easing its synchronization and extension when needed. Besides,
we propose a set of high-level connectors building together the intended DevOps ab-
straction layer to hide the heavy lifting involved when interacting with the underlying
tools/APIs of target DevOps solutions. Unlike the proposed approaches that interface
with Chef and Ansible, our DevOps abstraction layer will target Docker, Kubernetes,
and Terraform. Finally, we rely on the model-driven generation principle to allow the
semi-automatic creation of connectors while fostering their extensibility.

3.4 On supporting Cloud resources elasticity

Despite the importance of cloud elasticity specifically in ensuring cost-to-performance
trade-offs, few approaches have been proposed to tackle with their description and
implementation aspects. In this section, we first present an extensive review of cloud
resources elasticity solutions both in research and industry. Next, we discuss the
positioning of our elasticity solution versus these attempts.

3.4.1 Commercial and open-source solutions

Herein, commercial and open-source resource elasticity solutions proposed both by
cloud providers and the DevOps community are explored.

Amazon AutoScaling [26] is an autoscaling service proposed by AWS provider
allowing the horizontal scaling by automatically increasing or decreasing Amazon
EC2 capacity according to predefined user conditions. Through Autoscaling service,
the number of Amazon EC2 instances increases continuously during peak demand to
maintain performance and decreases automatically during lower requests to minimize
costs. AutoScaling is enabled by the Amazon CloudWatch monitoring system and
based on reactive threshold-based rules. In simple terms, it allows the scaling of
EC2 instances based on the measurements retrieved by CloudWatch or predictably
according to a predefined schedule.

Azure Autoscale [107] is an autoscaling service proposed by Microsoft Azure,
almost providing the same capabilities of AWS autoscaling namely a reactive scaling
based on threshold-based rules and a proactive scaling based on the schedule. In
contrast to AWS that targets only computes instances (i.e.EC2), Azure Autoscale
is basically integrated with cloud Services, mobile Services, virtual machines, and
websites. Also, it is based on alerting-based monitoring service providing performance
measurements for enforcing scaling functionalities.

IBM AutoScaler [78] is an autoscaling service proposed by IBM Cloud, allowing
the horizontal scaling of application instance number. The provided scaling is either
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scheduled based on time or reactive based on metrics related to application perfor-
mance. In contrast to the above solutions that propose its own monitoring systems,
performance metrics related to the application are collected and analyzed by mean of
a mix of open-source tools, namely Prometheus [3] and Grafana [73].

Moreover, some of DevOps solutions support the description and controlling of
elasticity. Pod Autoscaler [90] proposed under Kubernetes aimed at providing an au-
tomated horizontal scaling of the number of pods based on observed CPU utilization.
It comprises a Kubernetes API resource and a controller. The former observes the
controller behavior by providing the CPU measurements, whereas the latter is respon-
sible for adjusting the required number of pod replicas. Kubernetes scaling service
relies on its own monitoring system called Metrics-server that has to be deployed in
the cluster for capturing the desired metrics. Pod Autoscaler allows DevOps users
to create their elasticity policies either using CLI or writing their description using
YML DSL devoted for this purpose. In contrast to Kubernetes, Docker [49] provides
manual horizontal scaling of containers using both Docker CLI or GUI. Thus, De-
vOps user has to develop their own program based on the procedural programming
languages proposed by Docker to allow the missing automated support.

Juju recently adds Juju Autoscaler [152] that allows the horizontal scaling of juju
application deployments (units or services) using rule-based algorithms. The current
release of the Autoscaler scales the number of applications units based on the CPU
usage metrics. To collect these metrics, Juju relies on the telegraph agent which allows
pushing their values into an InfluxDB database. Thus, the stored metric values can be
consumed by the Charm Autoscaling for further analysis and making scaling decisions.
The proposed solution is still in the first stage and does not provide any language
to support the description of scaling algorithms. Indeed, the only available method
for DevOps users is using Juju CLI which provides only a manual configuration of
intended algorithms.

Terraform [149] supports the definition of horizontal scaling policies for enabling
the automated adjustment of computing instances (virtual machines or servers). In-
deed, Terraform itself does not provide any specification language to define elas-
ticity aspects. Instead, it incorporates into its configuration template the scaling
policy specifications that were defined by cloud providers. Basically, in the Ter-
raform configuration template, the scaling policies are injected as configuration re-
sources, where their structural specifications are closely dependent on selected cloud
providers. For example, listing 3.1 shows an autoscaling policy that allows increasing
the AWS Compute group by adding 4 instances whenever the average CPU usage
exceeds 80%.

1

2 resource "aws_autoscaling_policy" "increasing_policy" {

3 name = "test"

4 scaling_adjustment = 4

5 adjustment_type = "ChangeInCapacity"

6 cooldown = 300

7 autoscaling_group_name = "Computeinstance_group"
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8 }

9

10 resource "aws_cloudwatch_metric_alarm" "bat" {

11 alarm_name = "terraform -test -foobar5"

12 comparison_operator = "GreaterThanOrEqualToThreshold"

13 evaluation_periods = "2"

14 metric_name = "CPUUtilization"

15 namespace = "AWS/EC2"

16 period = "120"

17 statistic = "Average"

18 threshold = "80"

19

20 resource "aws_autoscaling_group" "Computeinstance_group" {

21 availability_zones = ["us-east -1a"]

22 max_size = 5

23 min_size = 2

24 // Other configuration options are removed for brevity

25 }}

Listing 3.1: Horizontal scaling policy according to AWS autoscaling specification
incorporated into Terraform configuration template adapted from [149]

3.4.2 Research solutions

Some research approaches define languages to describe and to implement the cloud
resource elasticity. Two important works are proposed by Copil et al. [45] and et Al-
Dhuraibi [10]. [45] provides a domain-specific language, named Simple Yet-Beautiful
Language in order to specify elasticity requirements at different levels of cloud applica-
tions, including the whole application, the application component, and the component
code. The authors distinguish four main directives:

• monitoring directives for specifying which metrics need to be monitored;

• constraints directives for specifying acceptable limits for the monitored metrics;

• strategies directives for specifying actions to be taken and conditions in which
those actions need to be taken;

• and finally (4) predefined functions that devoted to obtaining information both
on the current environment and the elasticity specifications.

[10] proposed an elasticity management system called MODEMO which allows
the vertical and horizontal scaling both of VM and containers across multiple cloud
providers simultaneously. MODEMO relies on the OCCI standard to define all
elasticity-related features. Another work proposed in [157] aimed at introducing a
declarative domain-specific language called SPEEDL. SPEEDL allows the creation
of elastic scaling behavior on top of IaaS resources. It aims at simplifying the cre-
ation of event-driven policies for resource management (How many resources, and
what resource types, are needed?), as well as task mapping (Which tasks should be
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handled by which resources?). Another research effort [89] introduced a model-driven
language called SRL (Scalability Rule Language) for specifying scalability rules that
support complex adaptation scenarios of multi-cloud applications. SRL provides an
Eclipse-based tool allowing modelers to specify scalability rules while validating its
syntax. It also integrated with CloudML Language to enable associating scalability
rules with the involved components and target virtual machines. In contrast to our
work that intends to target multiple elasticity actions, SRL support only horizontal
scaling and vertical scaling policies. Also, it is not clear whether the authors imple-
ment a runtime prototype and monitoring system to enforce the SRL rules defined
in the SRL model. Finally, [80] has proposed an elasticity strategy description lan-
guage, which is tailored to be used only to define the elasticity of business processes
as service.

3.4.3 Synthesis

In this section, we provide a comparative analysis with the aim of positioning our work
versus the existing attempts according to a set of important dimensions reflecting the
description and execution support for elasticity. Language is devoted to checking
whether the solution provides language support to describe the different features that
can be evolved when describing elasticity behavior. Acess methodes denotes how
cloud elasticity is managed (i.e. edited, updated and controlled). In this respect, we
distinguish three common methods, namely command-line interface (CLI), graphical
user interfaces (GUI), application programming interfaces (APIs). Scope indicates
which cloud resources type from the following list (IaaS, PaaS, SaaS) is concerned by
the elastic handling. Elasticity mode indicates whether the solution provides manual
(M) or automatic (A) support for executing elasticity. Action types and Event types
respectively present which elasticity actions (VS : Vertical scaling ; HS : Horizontal
scaling ; AR: Application Reconfiguration, M : Migration)) and events (RRE : Resource
Related Event ; TE : Temporal Events) that solution support.

Moreover, the Runtime environment (R. environment) is identified through the
adopted Virtualization technique and Target environment. Virtualization technique
indicates whether a solution support OS or Container level virtualization; Target
environment is identified by two values: Single or Multiple. Single indicates that only
one cloud provider is supported, while Multiple indicates that the elasticity control
is spread across multiple cloud providers simultaneously. Enforcement capabilities
(E. Capabilities) indicate whether the solution provides the concrete execution of
elasticity in terms of supporting its monitoring and controlling functionalities. Finaly,
User Types reflect the level of expertise of the involved users, which can be DevOps
(application developers and system administrators) or Domain-Experts (an expert in
a particular domain that needs to exploit cloud resources and have very little or no
programming expertise).

In Table 3.4, we align the selected approaches according to the dimensions de-
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Solutions Lan A. ScopeMode Met- Events
R. environment E. capabilities

User

guges Methods hods V.
Tech-
nique

T.
Envi-
ron-
ment

Moni-
tor-
ing

Exe-
cu-
tion

Type

P.S
[26] CF GUI,

CLI
IaaS A HS RRE,

TE
OS Single + +

[107]
- GUI SaaS,

IaaS
A HS RRE,

TE
OS Single + +

[78] - GUI SaaS A HS RRE,
TE

OS Single + +

D.S

[90] KDSL CLI PaaS A HS RRE Container Single + +

[49] - CLI PaaS M HS RRE Container Single + + Dev-
Ops

[152]
- CLI SaaS A/M HS RRE OS Single + +

[149]
TCL CLI IaaS A HS RRE OS Multi + +

R.S

[45] SYBL - IaaS/
SaaS

A HS,
VS,
AR

RRE OS Single + +

[89] SRL GUI IaaS A HS RRE,
TE

OS Multi - -

[157]
SPEEDL - IaaS A HS RRE OS Single - -

[80] START GUI SaaS A HS RRE - Single - -

[10] MoD-
EMO

GUI IaaS,
PaaS

A HS,
VS

RRE,
TE

Container,
OS

Multi + +

Table 3.4: Comparative analysis of elasticity solutions

scribed above. Providers leading solutions (refer to P.S in the table 3.4) such as
Amazon AutoScaling [26], IBM AutoScale [78] and Azure Autoscale [107] rely on
graphical user interfaces and command-line syntax to support the definition of elas-
ticity policies that focus often on the horizontal scaling of cloud resources. Except for
AWS [14] that provides a set of constructs to define the elasticity features as part of
the CloudFormation template [23], the other two solutions [78,107] do not provide any
language support. Generally, providers’ elasticity solutions are very suitable for cloud
users that will exploit cloud resources only from these providers. However, in the case
of a multi-provider scenario, cloud users are obliged to follow low-level scripting mech-
anisms that are not intuitive for them as they do not have configuration management
knowledge of multiple providers.

Despite the significance and effectiveness of DevOps solutions (refer to D.S in
the table 3.4), the provided solutions for supporting elasticity features are still in the
early stages [155]. This has been observed through three main issues. Firstly, under
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these solutions, in particular, Juju [152] and Docker [49], the execution of elasticity
is still done manually. Terraform [149] and Kubernetes [90] provide dynamic support
for elasticity, but both are still exclusive to experienced developers as they provide
low-level scripting languages. Secondly, all of them [49, 90, 149, 152] only support
horizontal scaling and restricted to limited resources types. Regrading the target
environment dimension, Terraform [149] is the only solution that has the capability
of supporting multi-cloud elasticity. Despite that, such support is still not mature
and costly as Terraform relies on the low-level and provider-specific description of
elasticity features. This imposes an expert-driven manual effort and high technical
expertise. The other DevOps solutions are still restricted to one provider. Thirdly,
for holistic support of elasticity (i.e. considering multiple elasticity methods and the
multi-cloud environment), DevOps users that rely on these DevOps solutions have
to develop their custom program based on the programming languages proposed by
these. Also, they have to use multiple reconfigurations and monitoring APIs to enforce
their elasticity policies, which proves increasingly too challenging and time-consuming
task as it requires a considerable development effort and multiple continuous patches.

In contrast to provider and DevOps solutions, we intend to provide high-level
modeling abstractions that facilitate the description of elasticity without referring to
any low-level languages, providers-specific formats, and their related technical con-
straints.

Research approaches (refer to R.S in the table 3.4) that handle the modeling
and runtime support of elasticity are still limited compared to the immense effort
that was devoted to cloud resource description. 3 out of 5 (i.e. [80, 89, 157]) selected
approaches support only the modeling of horizontal scaling without providing concrete
enforcement support in terms of monitoring and execution facilities. In addition,
most of the approaches are tailored only to be used in the context of single provider
deployment and os-level virtualization. To best of our knowledge, in terms of elasticity
modeling support, MODEMO [10] is the only approach that handles elasticity in a
holistic way while providing its runtime support. However, it should be noted that
this proposal as well as the implementation of the related runtime system, have been
performed recently and have been published after our contribution [35]. Despite that,
our approach is still different as it intends to handle elasticity at a higher abstraction
level and using intuitive modeling constructs.

Finally, as an observation applied to the reviewed approaches (refer to User
Type criterion in the table 3.4), the proposed solutions can only be handled by
professional DevOps, and not by domain-expert users that generally do not have
sufficient programming expertise. In this respect, we believe that domain-experts
and even end-users will be proportionally interested in exploiting cloud resources
if they find suitable and intuitive tools aligned with their programming expertise
and skills. This was already observed in the academic context, where researchers
and teachers want to exploit cloud resources and specify their elasticity requirements
without having to deal with the related modeling and implementation issues.
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In light of observed shortcomings, the third thesis contribution is devoted to pro-
viding holistic support for managing elasticity in a multi-cloud environment. We pro-
vide such support by considering diverse elasticity features, that are multiple modes,
multiple methods, multiple events, multiple resource types, and multiple virtualiza-
tion techniques. In contrast to most of the above approaches, these features will
be provided at a high level of abstraction with the intention to be more intuitive
and user-friendly. Instead of relying on low-level, scripting and technology-dependent
mechanisms, we argue that models and languages for describing cloud resources should
be endowed with intuitive constructs that can be used to specify a range of flexible
elasticity policies. To this end, we propose a new elasticity description model based on
the state-machine formalism. The latter has been broadly used to model the reactive
behavior of systems, which makes it very suitable to capture the elasticity behavior.

3.5 Conclusion

In this chapter, we provided an exploration of solutions relevant to our work. We
classified them into three main categories: (1) on using (anti) patterns for software
design assistance, (2) on facilitating Cloud resources orchestration, and (3) on sup-
porting Cloud resources elasticity. For each category, we briefly introduced the related
approaches and provided a thorough analysis in order to position our work versus
these attempts. With regard to the first category (1), we showed that most of (anti)
patterns-based approaches for the design assistance have focused on SOA and OO
systems. Although (anti) patterns specification and detection approaches have been
proposed in the context of REST, they all target general-purpose and non-cloud APIs.

With regard to the second category which relates to cloud orchestration, we ex-
plored three categories of approaches, namely the DevOps approaches, Standard-
based approaches, and Non-standard approaches. We showed that a single DevOps
approach is not able to provide all the orchestration capabilities that can be related
to diverse cloud resource types. Regarding standard-based approaches, we revealed
that most of them focus only on providing deployments capabilities for cloud appli-
cations. Advanced runtime orchestration aspects such as monitoring and runtime
controlling have been not handled yet. Regarding non-standard-based approaches,
they all employ their own resources description languages, which impede cloud inter-
operability. We also revealed that some of the standard and non-standard approaches
tried to integrate DevOps solutions into their systems as third-party tools to ensure
the execution of the orchestration operations. However, this integration is still poorly
supported. Finally, with respect to the third category (3), we showed that the man-
agement of multi-cloud elasticity in existing solutions is still not mature and requires
a considerable development effort from the user side.

We start presenting in detail our approaches in the next chapters. In chapter
4, we elaborate on how we assist the design of interoperable management APIs. In
chapter 5, we introduce our model-driven approach to streamlining and improving
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the orchestration of cloud resources. In chapter 6, we show how we can use a state-
machine model to simplify and support the management of multi-cloud elasticity at
a high-level of abstraction.
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4.1 Introduction

This chapter introduces our approach for assisting the design of interoperable cloud
management APIs that have to be compliant with both OCCI and REST best design
principles. Our approach promotes the use of (anti) patterns to guide this assistance.
In particular, we define compliance to OCCI best principles as OCCI patterns and

77



78Assisting interoperable management APIs Design using patterns and anti-patterns

non-compliance to OCCI best principles as OCCI anti-patterns. In like manner, we
define compliance to REST best principles as REST patterns and non-compliance to
REST best principles as REST anti-patterns. Next, we support the automated detec-
tion of the identified (anti) patterns in order to evaluate the compliance of manage-
ment APIs with the OCCI and REST best principles. In tandem with this detection,
recommendation support is also provided by suggesting correction explanations for
preventing the occurrence of anti-patterns. Thus, we contribute in designing interop-
erable, understandable, and reusable cloud management REST APIs.

Toward this end, we concretely made two contributions. We first review the OCCI
standard and the literature with the aim of identifying the set of patterns that must be
respected and anti-patterns that should be averted to conform with both REST and
OCCI best principles. Then, we propose a semantic-based approach for supporting
the definition and detection of REST and OCCI (anti)patterns in Cloud RESTful
APIs. More specifically, it supports the followings:

1. Proposing semantic modeling of cloud management APIs-related knowledge re-
quired for the detection and recommendation purposes

2. Proposing semantic definition of REST and OCCI (anti)patterns and specify-
ing their detection rules in terms of SWRL rules in conjunction with SQWRL
queries.

3. Proposing detection algorithms based on SPARQL queries to provide an auto-
mated detection of both OCCI and REST (Anti) patterns along with a set of
correction recommendations in case of any anti-pattern occurrence.

To evaluate our approach, we developed ORAP-Detector tool as a proof of concept.
Our tool aims at providing a compliance evaluation of cloud management APIs with
respect to OCCI and REST best principles as well as recommendation support to
comply with these principles. To conduct this evaluation, we rely on a validation
dataset that includes five real-world Cloud RESTful APIs: OOi [122], COAPS [110],
OpenNebula OCCI [121], Amazon S3 [21], and Rackspace [132]. The effectiveness of
our approach has been demonstrated by analyzing the accuracy of the detection rules
and the usefulness of the provided detection and recommendation support.

In the following, we start by presenting the OCCI and REST patterns and anti-
patterns that we have considered after analyzing OCCI standard and existing lit-
erature on REST. Then, we introduce our semantic-based approach in Section 4.3.
Finally, Section 4.4 presents a validation of our approach and an interpretation of the
experiment results.

The work in this chapter was published in conference proceedings [38] and peer-
reviewed journal [37]
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4.2 Identifying REST/ OCCI (Anti)patterns

In this section, we present the REST and OCCI patterns and anti-patterns that we
identified after analyzing both the literature and the OCCI standard. This analysis
is done in context of OCCIware project 1. OCCIware is a scientific research project
that aimed at providing a new precise metamodel for OCCI, along with an enhanced
tooling environment called OCCIware Studio. Both OCCIware metamodel and Studio
are developed for designing, managing and analyzing any kind of cloud resources.
In the following, we provide and summarize both REST and OCCI (anti)patterns
definitions.

4.2.1 REST (Anti)patterns

REST (anti) patterns represent the good and bad practices in the REST APIs re-
gardless of any cloud standard. To identify them, we conduct a literature review both
in research and industry. We performed our research using Google Scholar, Elsevier
Scopus, ACM Digital Library, Web of Science, IEEE Xplore and arXiv.org with spe-
cial focus on the critically-reviewed research conferences, journals and magazines that
were relevant to our research context from the year of 2004. Initially, 25 approaches,
catalogs and technical reports on REST (anti) patterns were chosen. However, some
of these works contain redundant contents. After filtering them, we ended up with 7
studies, including [101], Rodrigues et al. [138], Palma et al. [124, 125], Vinoski [154],
Stowe [147], Richardson and Ruby [137]. We analyzed all the above studies to define
the REST (anti)patterns and organize them into categories, while inspiring from the
work of Masse [101]. Tables 4.1, 4.2, 4.3, 4.4 and 4.5 define (anti)patterns we specified
for each category.

• URI (anti)patterns: They represent the poor and good practices in URIs and how
they are exposed by services (see Table 4.1).

• HTTP methods (anti)patterns: They represent the poor and good practices in
HTTP methods and how they must be used by REST APIs (see Table 4.2).

• Error Handling (anti)patterns: They represent the poor and good practices in HTTP
messages and how they must be used as a response of a HTTP request method (see
Table 4.3).

• HTTP Header (anti)patterns: They represent the poor and good practices in HTTP
headers and how they must be used to complete requests with metadata or comple-
mentary data (see Table 4.4).

• Hypermedia (anti)patterns: They represent the poor and good practices in hyper-
media representation and how it should be supported to link between resources (see
Table 4.5).

1Available at www.occiware.org

www.occiware.org
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Table 4.1: URI Design (Anti)Patterns

1. Tidy URIs vs. Amorphous URIs
Description: URIs in the REST resources should be simple to read and tidy. The Tidy URIs
pattern appears when URIs use suitable lower resource naming and do not contain trailing
slashes, underscores and extensions. While, the Amorphous URI anti-pattern appears when
URIs contain symbols, capital letters, underscores, etc. This results in decreased readability
and understandability of these URLs [125,129].
2. Verbless URIs vs. CRUDy URIs
Description: Verbless URIs pattern appears when URIs use one of the Standard HTTP
methods, namely POST, GET, DELETE or PUT. While, CRUDy URIs anti-pattern is ap-
peared as consequence of using CRUDy terms such as read, create, delete, update or their
equivalent in URIs. Using these terms in actions or resource URIs can be overloading the
HTTP methods and prevent API users to employ the appropriate and common HTTP
methods [125,129].
3. Singularized nodes vs. pluralized nodes
Description: URIs should correctly employ singular/ plural nouns for resources naming
within an API [125,129]. Singularized nodes pattern occurs when the last node is provided as
a singular noun in the URI of Delete/ Put requests and as a plural noun in POST requests.
Contrariwise, the Pluralized Nodes anti-pattern can occur when singular nouns used in POST
requests or plural names used in DELETTE/PUT requests. The occurrence of such anti-
pattern may have negative impacts in certain cases. For instance, if the last node in Delete
(or PUT) request URL is provided as plural, the API clients are not able to create or delete
a collection of resources, which leads to 403 Forbidden as a server response.

Table 4.2: HTTP methods (anti)patterns

1. Correct use of POST, GET, PUT, DELETE, HEAD vs. Tunneling every
things through GET and POST
Description: The correct use of POST, GET, PUT, DELETE, or HEAD pattern is occurred,
whether the following principles are correctly considered by the API developer: [129]:
- GET must be used to retrieve a representation of a resource
- POST must be used to create a new resource in a collection or to execute controllers
- HEAD should be used to retrieve response headers
- PUT must be used to both insert and update a stored resource
- DELETE must be used to remove a resource

In contrast, the Tunneling every things through GET and POST anti-pattern can occur if the
API developer relies only on GET or POST methods to execute any kind of actions or
operations including deleting, updating or creating a resource. In general, the occurrence
of this anti-pattern may lead to several problems: violation of the semantic purpose of each
HTTP method, the crawlers from search engines can cause inappropriate side effects [126].

Table 4.3: Error handling (Anti)Patterns
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1. Supporting Status Code vs. Ignoring Status Code
Description: The status codes in REST APIs from the classes 2xx, 3xx, 4xx, and 5xx
allow servers and clients to communicate in a semantic way. Supporting status code pattern
can occur when the provided status code in the response is correct. In general, the correct
use of status codes should be as follows [129]:
200 (OK) should be used to indicate non-specific success
200 (OK) must not be used to communicate errors in the response body
201 (Created) must be used to indicate successful resource creation
202 (Accepted) must be used to indicate successful start of an asynchronous action
204 (No Content) should be used when the response body is intentionally empty
302 (Found) should not be used
304 (Not Modified) should be used to preserve bandwidth
400 (Bad Request) may be used to indicate non specific failure
401 (Unauthorized) must be used when there is a problem with the clients credentials
403 (Forbidden) should be used to forbid access regardless of authorization state
404 (Not Found) must be used when a client’s URI cannot be mapped to a resource
405 (Method Not Allowed) must be used when the HTTP method is not supported
406 (Not Acceptable) must be used when the requested media type cannot be served
409 (Conflict) should be used to indicate a violation of resource state
500 (Internal Server Error) should be used to indicate API malfunction
In contrast, the wrong or unsupported status codes in REST APIs lead to Ignoring Status
Code anti-pattern. Consequently, this would decrease the reusability, and hinder the loose
coupling and good interoperability of these APIs.

Table 4.4: HTTP Header (Anti)Patterns

1. Supporting Caching vs. Ignoring Caching
Description: REST developers and clients often prefer to not use the caching capability as
its implementation is complex. Nevertheless, caching capability is considered as one of the
fundamental REST constraints [124,129]. Supporting Caching pattern appears when the API
developer does not indicate no-cache or no-store for Cache-Control parameter or specifies
an ETag in the response header. Otherwise, the Ignoring Caching anti-pattern can take place.
As a result of this anti-pattern, throughput and scalability in requests-per-second would be
decreased, which degrades the overall performance.
2. Supporting MIME Types vs. Ignoring MIME Types
Description: The server should allow defining resources in different format, including xml,
json, pdf, etc., which in turn may enable clients to develop a more adaptable service con-
sumption using diverse languages. Supporting MIME Type pattern appears when the server
supports multiple resource representation formats. In contrast, the Ignoring MIME Types
anti-pattern can occur when the server relies on a unique representation or uses personalized
formats. Consequently, this restricts the accessibility, reusability as well as the readability
of the resources [124,129].

Table 4.5: Hypermedia (Anti)Patterns
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1. Supporting Hypermedia vs. Forgetting Hypermedia
Description: Hypermedia provides the way of linking resources together. Supporting Hy-
permedia pattern occurs when the API developer includes consistent links within the resource
representations. In contrast, the absence of links within these representations leads to For-
getting Hypermedia anti-pattern. Consequently, the dynamic communication between clients
and servers would be decreased because the servers do not provide for clients any link to
follow.

4.2.2 OCCI (Anti)patterns

OCCI (anti)patterns represent the good and bad practices of the presented guidelines
in the OCCI RESTful Protocol [113]. To identify them, we conducted an analysis
study with 6 participants (1 computer science Professor, 2 computer science PHD
students, 1 master student, 1 computer science post-doc, 1 engineer) that are familiar
with OCCI standard. We devised the 6 participants into two groups of 3 participants
each. We asked each group to manually analyse each textual description of each
guideline provided in the OCCI specification and identify the appropriate patterns
and anti-patterns. After this task, we have organized a meeting between two groups
to share and to discuss the finding results. Finally, as a result of this study, we have
considered all OCCI patterns and anti-patterns that have been commonly identified
by both groups and extracted from each OCCI guideline that must (or should) be
followed.
Ultimately, three categories of OCCI (anti)patterns have been distinguished: Cloud
OCCI REST Related (Anti)Patterns, Structure Related (Anti)Patterns, Management
Related (Anti)Patterns.

• OCCI REST Related (Anti)Patterns: They represent the poor and good practices
related to REST API components. In contrast to general REST (Anti) patterns
defined previously (section 4.2.1), OCCI REST (Anti) Patterns are defined according
to OCCI standard. We identify 3 OCCI REST (anti)patterns that relate to the URL,
response header and request header (see Table 4.6).

• Cloud Structure Related (Anti)Patterns: They represent the poor and good practices
to link cloud resources between each other as well as to create a collection of resources
using a Mixin, with respect to OCCI perspective (see Table 4.7).

• Management Related (Anti)Patterns: They represent the poor and good practices
in the main management operations applied on cloud resources and services, with
respect to OCCI perspective (see Table 4.8). We define 6 patterns and their cor-
responding anti-patterns respectively in Query interface, Create, Retrieve, Update,
Delete operations and in Trigger actions.

Here, it should be noted that, in contrast to REST anti-patterns, where the occurrence
of each one may lead to a specific impact, the occurrence of each OCCI anti-pattern
would restrict the discovery and the interoperability of cloud resources [113].
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Table 4.6: OCCI REST Related (Anti)Patterns

1. Compliant URL vs. Non-Compliant URL
Description: A URL path should be compliant, i.e. whenever the URL path is rendered it
must be either a string or as defined in RFC6570 [113]. The non-Compliant URL anti-pattern
occurs when one of these guidelines is ignored.
2. Compliant Request Header vs. Non-Compliant Request Header
Description: A Request Header can be considered compliant, i.e. client (e.g. OCCI client)
:
- should specify the media types its implementation data formats (e.g. OCCI Data formats)
support in the Accept header,
- must specify the implementation (e.g. OCCI version) version number in the User-Agent
header,
- must specify the media type its implementation data format (e.g. OCCI data format)
support in the Content-type header [113].
The Non-Compliant Request Header anti-pattern occurs when one of these guidelines is
ignored.
3. Compliant Response Header vs. Non- Compliant Response Header
Description: A Response Header can be considered compliant, i.e. a server (e.g. OCCI
server):
- should specify the media types its implementation data formats (e.g. OCCI Data formats)
support in the Accept header,
- must specify the media type its implementation data format (e.g. OCCI data format) used
in an HTTP response in Content-type header,
- must specify the implementation (e.g. OCCI version) version number in the Server header
[113].
The Non-Compliant Response Header anti-pattern occurs when one of these guidelines is
ignored.

Table 4.7: Cloud Structure (Anti)Patterns

1. Compliant Link between Resources vs. Non-Compliant Link between Re-
sources
Description: To create a Link between two resources, HTTP POST must be used and its
kind as well as a “source” and “target” attributes must be provided. The Non-Compliant
Link Anti-pattern may occur when one of these attributes is omitted.
2. Compliant Association of Resource(s) with Mixin vs. Non-compliant Associ-
ation of Resource(s) with Mixin
Description: To associate a Resource with a Mixin in accordance with OCCI, the HTTP
POST must be used and the URIs that uniquely identify the resources must be introduced
within the request. The Non-compliant Association anti-pattern may occur when one of these
guidelines is ignored.
3. Compliant Dissociation of Resource(s) From Mixin vs. Non-compliant disso-
ciation of resource(s) From Mixin
Description: To dissociate a resource from a Mixin in accordance with OCCI, the HTTP
DELETE must be used and the URIs that uniquely identify the resources must be introduced
within the request. The Non-compliant Dissociation of Resource(s) anti-pattern may occur
when one of these guidelines is ignored.
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Table 4.8: Management Related (Anti)Patterns
1.Query Interface Support vs Missing Query Interface
Description: To be compliant with OCCI, Query interface must be implemented, which
enables the client to discover all provider capabilities [113]. It defines three operations
applied on Mixins, Actions and Kind, including requesting of all available Kinds, Actions
and Mixins, and adding or removing a Mixin. Query interface must be found at the path /-/
on the implementation root and carried out through the HTTP method GET, POST and
DELETE. The no support of query interface on all requests engenders the Missing Query
Interface anti-pattern.
2. Compliant Create vs. Non-Compliant Create
Description: The creation of any OCCI entity (i.e., Resource, Mixin) should be compliant
with OCCI guidelines defined in OCCI RESTful Protocol specification [113], which include
the following constraints:
- To create a Mixin, the HTTP POST must be used and HTTP Category term, scheme and
location must be introduced in the request.
- To create a Resource instance within Mixin or collections, the HTTP POST must be
used, otherwise HTTP PUT must be used. Additionally, the HTTP Category rendering
that uniquely defines a particular Kind instance must be provided to define the kind of
a resource instance. The Non-Compliant Create anti-pattern may occur when one of these
guidelines is not supported.
3. Compliant Update vs. Non-Compliant Update
Description: The update of any OCCI entity should be compliant with OCCI guidelines
defined in OCCI RESTful Protocol specification [113], which includes specifically the fol-
lowing :
- To fully update a Mixin, the HTTP PUT must be used and all URIs defined in the
collection of Mixin must be specified within the update request.
- To partially update a Resource or Link, the HTTP POST must be used and the new
information that will be updated must be specified within the update request.
- To fully update a Resource or Link, the HTTP PUT must be used in the request.
The Non-Compliant Update anti-pattern may occur when one of these guidelines is poorly
adopted.
4. Compliant Delete vs. Non-Compliant Delete
Description: The Delete of a Resource, Mixin or Link should be compliant with OCCI
guidelines defined in OCCI RESTful Protocol specification [113]. These guidelines specifi-
cally include the following:
- To remove a Mixin, HTTP DELETE must be used and the Mixin URI defining the Mixin
that will be deleted, must be defined in the request.
- To delete a Resource or Link below a given path or only one, the HTTP DELETE must
be used and only the URI identifying the entity that will be removed must be provided.
The Non-Compliant Delete anti-pattern may occur when one of these guidelines is poorly
adopted.
5. Compliant Retrieve vs. Non-Compliant Retrieve
Description: The retrieve of a Resource or Link should be compliant with the OCCI guide-
lines defined in the OCCI RESTful Protocol specification [113]. These guidelines specifically
include the following:
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- To retrieve a Resource or Link instance, the HTTP GET must be used and the server must
provide as a response the HTTP Category associated with a set of attributes that identify
the resource or link kind.
- To retrieve all Resources belonging to kind or mixin, the HTTP GET must be used and
a list comprising all instances of a resource that belonging to the requested mixin (or kind)
must be returned in the response.
The Non-Compliant Retrieve anti-pattern may occur when one of these guidelines is poorly
adopted.
6. Compliant Trigger Action vs. Non-Compliant Trigger Action
Description: To trigger an action on a Resource or Link while following the OCCI guide-
lines, the HTTP POST must be provided and the URI must contain a query with the action
term. Additionally, the specific HTTP Category that identifies the applied action, must be
also introduced in the request. The Non-Compliant Trigger Action anti-pattern may occur
when one of these guidelines is poorly adopted.

4.3 Approach Overview

After defining OCCI and REST patterns and anti-patterns, in this section, we describe
our approach to detect their occurrences. The proposed approach relies on ontologies
with the aim of formally specifying OCCI and REST (anti)patterns, ensuring their
automatic detection and providing a set of correction recommendations in case of any
anti-pattern detection. As shown in Fig. 4.1, the proposed approach proceeds in four
steps as follows:

Step 1. Definition of OCCI/REST (Anti)Patterns: This step consists in defin-
ing the basic ontology (Anti)Patterns Ontology allowing a semantic specification of
OCCI and REST patterns and anti-patterns. The proposed ontology embodies the
most important and relevant concepts needed for the detection and the recommenda-
tion purposes.
Step 2. Analysis and Definition of Detection Rules: This step aims to ana-
lyze the textual definitions of OCCI and REST (anti) patterns detailed in Section 4.2
for eliciting their pertinent properties. These pertinent properties will be then ex-
ploited to specify the semantic rules to detect patterns and anti-patterns as well as the
explanations of suggested recommendations. Both (Anti)Patterns Ontology and de-
tection rules form the knowledge base (KB), which will be later interrogated through
SPARQL queries for the detection and recommendation purposes.
Step 3. Detection of (Anti) Patterns: This step aims at checking the compliance
of the selected Cloud REST API with both REST and OCCI best principles while
suggesting appropriate recommendations in case of the anti-pattern detection. As
shown in Fig. 4.1, this step includes the following two phases:

• Check compliance for REST principles: This step aims at applying on Cloud REST
API the REST detection rules specified in Step 2 to detect REST (anti)patterns. If
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Figure 4.1: Approach overview

no REST anti-pattern is detected, the evaluated REST API is considered as REST-
compliant and details related to REST patterns will be provided to the Cloud API
developer for analysis or understanding purposes. Otherwise, details related to both
REST patterns and anti-patterns will be displayed. While regarding REST anti-
patterns, a set of recommendations is also returned to avoid their occurrence.

• Check compliance for OCCI principles: This step aims at applying, on cloud REST
API, the OCCI detection rules specified in Step 2 to detect OCCI (anti)patterns. If
no OCCI anti-pattern is detected, the evaluated REST API is considered as OCCI-
compliant and details related to OCCI patterns will be given to the Cloud API
developer for analysis or understanding purposes. Otherwise, details related to both
OCCI patterns and OCCI anti-patterns along with a set of suggested recommen-
dations to avoid the OCCI anti-patterns occurrence, will be displayed. It is worth
mentioning that the assessed REST API can be considered as OCCI and REST
compliant when it does not contain any REST and OCCI anti-pattern.

Step 4. Cloud REST API Correction: This step allows developers to manually
revise their API by following the obtained recommendations on REST and OCCI
anti-patterns in order to avoid their occurrences observed in Step 3. Here, it should
be noted that the developer can take into consideration or ignore the suggested rec-
ommendations basing on the relevance of the detected anti-patterns.
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Figure 4.2: (Anti) Patterns Ontology

In the following sections, we detail the first three steps of our approach namely,
definition of OCCI/REST (Anti)Patterns, analysis and definition of detection rules,
and detection of (Anti)Patterns.

4.3.1 Definition of OCCI/REST (Anti)Patterns

In this step, a domain analysis on RESTful API documentations and the OCCI
specification for cloud resources is performed with the aim of building the (Anti)
Patterns Ontology. The (Anti) Patterns Ontology aims at providing a semantic
specification of OCCI and REST (anti) patterns using the common Web Ontology
Language (OWL) [7]. It is defined as a collection of four ontologies, which are
mainly: Anti-Pattern Ontology, Pattern Ontology, and OCCI Ontology and REST
API Ontology.
Pattern Ontology : The Pattern Ontology, as depicted in Fig. 4.2, defines the rele-
vant information describing OCCI and REST pattern through the attributes that are
associated to its core concept Ptt:Pattern. Those attributes (i.e. correspond to data
type properties in OWL language) are Ptt:name, Ptt:description and Ptt:required,
which represents a boolean value indicating that the given pattern is required or
no. In addition, the Ptt:Pattern concept holds two relationships: Ptt:Disjoint and
Ptt:Concerns. The Ptt:Disjoint relationship defines the opposite anti-pattern for
a given pattern. The Ptt:Concerns relationship depicts that a pattern relate to a
given OCCI Type (i.e. Resource, Link, etc.). Finally, the Ptt:Pattern concept also
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represents the range of Rest:hasPattern, indicating that a given API or its elements
can have this pattern.
Anti-Pattern Ontology : As depicted in Fig. 4.2, the definition of Anti-Pattern
Ontology is similar to the Pattern Ontology. However, as opposed to OCCI or REST
patterns, we use OCCI or REST anti-patterns to capture a bad practice of such
OCCI or REST principles. Each anti-pattern denoted by Att: AntiPattern , is defined
by Att:name and Att:description, and associated with the concept Att:Recommendation
through the Att:has relationship. Att:Recommendation defines the suggested recom-
mendation to avoid the anti-pattern that is associated with once it occurs. More
precisely, it contains Att:Recomm-desc that provides a textual explanation explaining
which best principle is not respected, that leads to the occurrence of the associated
anti-pattern and suggesting as a result an advice to avoid it.

REST API Ontology : The REST API ontology allows providing a seman-
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Figure 4.3: (a) OCCI Ontology; (b) REST API Ontology

tic definition of the functional and structural features of the REST APIs. To
build this ontology, we examine several documentation on REST APIs while
considering OCCI RESTful API into account. The principal concept is Rest:API
representing a REST API, which is linked, as shown in Fig. 4.3 (b), to the
following concepts: Rest:AuthorizationProtocol, Rest:Element, Rest:Operation.
Rest:AuthorizationProtocol concept defines the authorization protocol used to
access the REST API. The Rest:Element describes through its subclasses the most
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important components that we can find in a REST API, including, response header,
request header, code status, URL, operation, response, request, response body,
request body etc. Finally, we use the Rest:Operation concept to define the possible
operations that can be applied on cloud resources e.g., Create a Server.

OCCI Ontology: All RESTful API operations are applied on OCCI types
(i.e. Resource, Link, etc.) that are already specified both in OCCI Infrastruc-
ture [104] and OCCI Core [114]. To allow such capability, we specify the OCCI
ontology that presents a semantic specification of the cloud resources abstraction
provided in these two specifications while following the OCCI Rendering syntax
of these resources [58, 115]. As shown in Fig. 4.3 (a), the heart of this ontology
is the Occi:Resource concept, which in turn associated with three concepts: Occi:
Compute, Occi: Network and Occi: Storage. Accordingly, a cloud resource may be
a virtual switch, a virtual storage, a virtual sever, etc. Additionally, Occi:Resource
is associated to the Occi:Link concept, which used to link one resource instance
with another. We distinguish two type of link Storage Link and Network Interface.
Each type is described through two attributes (e.g. Occi:source, Occi:target). Both
Occi:Resource and Occi:Link inherit the Occi:Entity concept. The Occi:Kind is the
core of the classification type system built into the OCCI Core Model. Occi:Kind is
a specialization of Occi:Category and introduces additional capabilities in terms of
actions. Occi:Action describes a set of operations applicable to an entity instance.
The last type specified by the OCCI Core Model is the Occi:Mixin, which allows
extending the OCCI entity by plugging in/out a set of attributes and actions. An
instance of Mixin can be attached to an entity instance, which may provide additional
capabilities at run-time [114].

4.3.2 Analysis and Definition of Detection rules

In this step, the textual definitions of the (anti)patterns listed in Tables 4.1 to 4.8 were
analyzed with the aim of eliciting their pertinent properties. We then exploit these
properties to specify the semantic rules needed to detect (anti)patterns. To do so,
we adopt SWRL language to express these rules. The syntax used to express SWRL
rules has been already explained in Chapter 2 Section 2.3.1 (refer to the paragraph
on SWRL and SQWRL rules languages ) .
Listings 4.1 and 4.2 illustrate, respectively, the SWRL rules for Verbless URI pattern
and their anti-pattern CRUDy URIs.

Listing 4.1: SWRL rule for Verbless URIs Pattern

1 1.Rest:Operation (? operation) ∧ Rest:hasHttpMethod (?operation , ?httpmethod) ∧

Rest:verb(? httpmethod , ?verb) ∧ detection: matchesOne (?verb , "POST", "PUT",

"GET", "DELETE ") ∧ Rest:hasURL (?operation , ?url)∧ Rest:value(?url ,? urlval)
∧ detection:contain (?return ,?urlval , "create", "update", "read", "delete ")
∧ swrlb:matches (?return , "False ") → Rest:hasPattern (?operation , Ptt:
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Verbless_URIs)

As shown in Listing 4.1, the SWRL rule for the Verbless URIs pattern aims at eval-
uating an operation of each request in the API (i.e., Rest:Operation(?operation)).
This evaluation consists of checking whether the verb of HTTP method (i.e.,
Rest:verb(?httpmethod, ?verb)) included in the operation contains one of the HTTP
common verb i.e., POST, PUT, GET, DELETE. This is accomplished through
our custom built-in “detection: matchesOne(?verb, ”POST”, ”PUT”, ”GET”,
”DELETE”)”. Additionally, the occurrence of this pattern also requires that the URL
value (i.e., Rest:value(?url, ?urlval) does not contain one of the common CRUDy terms
i.e., create, update, read, delete. The detection:contain built-in consists of checking
whether the URL value contains one of the CRUDy terms and returns a boolean value
as a result. This value will then be checked through swrlb:matches to make sure that
its value corresponds to the “False” term.

Listing 4.2: SWRL rules for CRUDy URIs Anti-pattern

1 1.Rest:Operation (? operation) ∧ Rest:hasHttpMethod (?operation , ?httpmethod) ∧

Rest:verb(? httpmethod , ?verb) ∧ detection:matchesOne (?verb , "create", "

update", "read", "delete ") → Rest:hasAntipattern (?operation , Att:

CRUDy_URIs)

2 2.Rest:Operation (? operation) ∧ Rest:hasURL (?operation , ?url) ∧ Rest:value(?url

,? urlval) ∧ detection:contain (?return ,?urlval , "create", "update", "read",

"delete ") ∧ swrlb:matches (?return , "True") → Rest:hasAntipattern (?

operation , Att:CRUDy_URIs)

In contrast, as shown in Listing 4.2, the CRUDy URIs anti-pattern can be de-
tected through two SWRL rules. The first rule consists of checking for each opera-
tion, through the built-in detection:matchesOne (?verb, “create”, “update”, “read”,
“delete”), whether the used verb of HTTP method contains one of the common
CRUDy terms. The positive satisfaction of this condition indicates the occurrence
of CRUDy URIs anti-pattern. The second rule consist of evaluating the URL of each
operation defined in an API in order to detect whether its value contains one of the
common CRUDy terms. Both detection:contain and swrlb:matches are exploited to
carry out this detection. The existence of one of the CRUDy terms in the URL value
results in the occurrence of CRUDy URIs anti-pattern in the analyzed operation.

Listing 4.3: SWRL rule for Compliant Link between Resources Pattern

1 1. Rest:Operation (?op) ∧ Rest:hasHttpMethod (?op , ?httpmd) ∧Rest:verb(?httpmd , ?

verb) ∧ swrlb:matches (?verb , "POST") ∧ Rest:hasRequest (?op ,?req) ∧ Rest:has

(?req , reqbody)∧ Rest:hasParameterDefinition (?reqbody , ?pradef) ∧ Occi:Link

(?link) ∧Rest:isComposedOf (?pradef , ?link)∧ Occi:identifiedBy (?link , ?kind)
∧ Occi:term(?kind , ?term) ∧ detection:matches (?term , "Storagelink", "

Network Interface ")∧ Occi:scheme (?kind , ?schee) ∧ Occi:class(?kind , "kind")
∧ Occi:source (?link , ?source) ∧ Occi:target (?link , ?target) → Rest:

hasPattern (?op , Ptt:Compliant_Link)
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In the same way, as shown in Listing 4.3, we define a SWRL rule to detect Compliant
Link between Resources Pattern, which aims at checking for each link operation the
verb of HTTP Method , the Kind of link and whether its source and target attributes
do exist or not. A given link operation is reported as it has Compliant Link between
Resources Pattern if we ensure that the used HTTP verb is “POST”, the Kind term
?term has either “Network Interface” or “Storage Link”, the Kind scheme (?kind,
?scheme) is not empty, the Kind class ?class has as value “kind”. Finally, the link
source and target attributes of the concerned link should not contain empty values.
Fig. 4.4 shows a partial instantiation of the (Anti) Pattern Ontology with information
that we have extracted from a REST operation in the OOi RESTful API2 in order
to add a storage link between a volume and an instance of a VM. Once the detection
rule for Compliant Link pattern was executed, the relationship ”Rest:hasPattern” illus-
trated with red color, was instantiated between the Ptt:Compliant Link (Ptt:Pattern
instance) and the Rest:Link Volume to Instance (REST:Operation instance).

Occi:
StoragelinkCategory

Occi:
StorageLinkinsatnce

Occi:identifiedBy

Occi:sheme: http://schemas.ogf.org/occi/infrastructure#xsd:String

Occi:term: storagelink :xsd:String

Occi:class:Kind :xsd:String

Rest:
OOiAPI

Rest:
HTTP 1.1

Rest:hasAuthorization...

Rest:
Link Volume to Instance

Rest:
Code201

Rest:
POSTMethod

Rest:
Request

Rest: LinkURL

Rest:
LinkBody

Rest:ComposedOf

Rest:HttpMethod

Rest:hasRequest

Rest:hasURL

Rest:has

Rest:hasCode

Rest:appliedOn

Occi:target :"http://localhost:8787/compute/'$VM':xsd:String"

Occi:source :"http://localhost:8787/storage/'$VOL':xsd:String"

Rest:
Link Parameter Definition

Rest:hasParameterDefinition

Rest:value :localhost:8787/storage/link/: xsd:String

Rest:verb: POST :xsd:String

Restvalue :201 :xsd:String

Rest :isComposedOf

Ptt:Compliant_Link

Rest:hasPattern

Figure 4.4: A partial instantiation of the (Anti) Pattern Ontology with information
extracted from a REST operation in the OOi API, shows the impact after executing
the SWRL rule for the Compliant Link between Resources Pattern

2Available at http://ooi.readthedocs.io/en/stable/user/usage.html

http://ooi.readthedocs.io/en/stable/user/usage.html
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Listing 4.4: SWRL rules for Non-Compliant Link between Resources Anti-pattern

1 1.Rest:Operation (?op) ∧Rest:type (?op, "linkResource ")∧Rest:hasHttpMethod (?op ,

?httpmd) ∧Rest:verb(?httpmd , ?verb)∧swrlb:notEqual (?verb , "POST") → Rest:

hasAntiPattern (?op , Att:Non -Compliant_Link)

2

3 2. Rest:Operation (?op) ∧Rest:type (?op, "linkResource ")∧ Rest:hasRequest (?op ,?

req)∧Rest:has(?req ,? reqbody) ∧Rest:hasParameterDefinition (?reqbody , ?pradef

) ∧Occi:Link(?link) ∧Rest:isComposedOf (?pradef , ?link) ∧ Occi:identifiedBy

(?link , ?kind) ∧ Occi:term(?kind , "") → Rest:hasAntiPattern (?op, Att:Non -

Compliant_ Link)

4

5 3.Rest:Operation (?op) ∧ Rest:type (?op, "linkResource ")∧ Rest:hasRequest (?op ,?

req)∧ Rest:has(?req ,? reqbody) ∧ Rest:hasParameterDefinition (?reqbody , ?

pradef) ∧ Occi:Link(?link) ∧Rest:isComposedOf (?pradef , ?link) ∧ Occi:source

(?link , "") → Rest:hasAntiPattern (?op, Att:Non -Compliant_ Link)

6

7 4.Rest:Operation (?op) ∧ Rest:type (?op, "linkResource ") ∧ Rest:hasRequest (?op ,?

req) ∧ Rest:has(?req , ?reqbody) ∧ Rest:hasParameterDefinition (?reqbody , ?

pradef) ∧ Occi:Link(?link) ∧ Rest:isComposedOf (?pradef , ?link) ∧ Occi:

target (?link , "") → Rest:hasAntiPattern (?op, Att:Non -Compliant_ Link)

Contrariwise, Non-Compliant Link between Resources Anti-pattern is reported if at least
one of the above listed practices was not respected. As shown in Listing 4.4, we specify
four SWRL rules defining the different symptoms needed to detect this anti-pattern.

4.3.3 Detection of OCCI/REST (Anti)Patterns

In this section, we aim at evaluating the compliance of the selected Cloud REST
API with both REST and OCCI best principles by detecting both patterns and anti-
patterns. Also, in case of any anti pattern detection, we intend to provide developers
with a set of correction recommendations to help them revise and correct their APIs.
As mentioned above, this step involves two phases: Check compliance for REST
principles and Check compliance for OCCI principles.
The first phase allows applying, on the Cloud REST API, the SWRL detection rules
defined above to detect both REST patterns and anti-patterns, along with a set of
SPARQL queries. These SPARQL queries are used to obtain the related details on
each detected REST pattern and anti-pattern, as well as the suggested recommen-
dation to avoid the detected anti-pattern. To do that, we firstly propose a REST
pattern detection algorithm with the aim of performing the REST pattern detection.

Listing 4.5: The REST Pattern Detection Algorithm

1Input:(Anti)patternOntology.owl , SWRL_Detection_Rules_List_For_RESTPatterns ,

SPARQL_queries_RESTpatterns_list

2Output:REST Patterns_List with relevant Details

3begin

4For (each SWRL_rule in SWRL_Detection_Rules_List_For_RESTPatterns) do

5{

6run(SWRL_rule)
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7}

8For (each query in SPARQL_queries_RESTpatterns_list) do

9{

10result=execute(query)

11if( Exist(result) ) then

12Display ("the pattern detected and related details ")

13else

14Display ("no pattern is detected ")

15}

16end

As shown in Listing 4.5, the provided algorithm takes as input (Anti) Pattern Ontol-
ogy, the list of SWRL rules to detect REST patterns and the list of SPARQL queries
to return relevant details related to each REST pattern. As output, it returns the list
of patterns with relevant details, which may help developers in the analysis or under-
standing. During the execution, the proposed algorithm proceeds as follows: apply
the inference process that allows executing all SWRL rules using the Drools engine3

to detect REST patterns (lines 4-7), execute all SPARQL queries defined in the list
using the Pellet reasoner4, which return for each pattern the relevant details once it
is detected or ”no pattern detected” text otherwise (lines 8-15). All the SPARQL
queries were defined in the same way, but they differ only in respect to the name of
the pattern that would be interrogated. In Listing 4.6, we present a SPARQL query
that returns the Verbless URIs pattern, each REST element that contains this pattern
and the related contents.

Listing 4.6: SPARQL Query to retrieve the relevant details for Verbless URIs pattern

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

2 PREFIX owl: <http :// www.w3.org /2002/07/ owl#>

3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf -schema#>

4 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>

5 PREFIX base: <http :// www.semanticweb.org/asus/ontologies /2017/5/ APatterns -

ontology#>

6

7 SELECT distinct ?pattern ?restelement ?content

8 WHERE {? restelement base:Rest:content ?content. ?restelemnt base:Rest:

hasPattern ?pattern. ?pattern base:Ptt:name ?name.

9 FILTER (?name="Ptt:Verbless_URIs "^^xsd:string)

10 }

Like the REST pattern detection, we propose a REST anti-pattern detection algo-
rithm based on a set of SWRL rules and SPARQL queries. As shown in Listing 4.7,
our algorithm takes as input (Anti)Pattern Ontology, the list of SWRL rules to detect
REST anti-patterns and the list of SPARQL queries to return relevant details related
to each REST anti-pattern along with suggested recommendations to avoid its oc-
currence. As output, it provides the detected anti-patterns associated with relevant

3Drool: is a business rule management system that is based on forward and backward chaining

inference to produce and execute rules. More details can be found at http://www.drools.org/
4https://www.w3.org/2001/sw/wiki/Pellet

http://www.drools.org/
https://www.w3.org/2001/sw/wiki/Pellet
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details and suggested recommendations which can be further exploited by cloud API
developers to correct these anti-patterns.
Similar to the execution process within the above algorithm, SWRL rules would be
firstly executed to infer the existence of anti-patterns on the selected API (lines 4-7).
Then, the SPARQL queries would be executed with the aim of providing the detected
anti-patterns associated with relevant details and suggested recommendations that
are useful for the correction purpose (lines 8-15). For example, Listing 4.8 shows
the SPARQL query that we defined for the CRUDy URI anti-pattern. It returns
each REST element that has this anti-pattern and its related contents as well as the
following textual recommendation: ”Method name or resource URL contains one of
the following terms âreadâ, âcreateâ, âdeleteâ, âupdateâ. Please change the given
value into one from the following terms: âPostâ, âGetâ, âDeleteâ or âPutâ”. Thus,
the cloud API developer may use these details and the suggested recommendations to
revise her API. It is worth mentioning that the developer can take into consideration
the detected anti-patterns and therefore the correction step can take place. Otherwise,
the developer can ignore the detected anti-patterns because she thought that they are
not relevant.

Listing 4.7: The REST Anti-pattern Detection Algorithm

1Input:(Anti)patternOntology.owl , SWRL_Detection_Rules_List_For_RESTAntiPatterns

, SPARQL_queries_REST_Antipatterns_list

2Output:REST AntiPatterns_List with relevant Details

3begin

4For (each SWRL_rule in SWRL_Detection -Rules -list for antipattern) do

5{

6run(SWRL_rule)

7}

8For (each query in SPARQL_query_antipattern_list) do

9{

10result=execute(query)

11if( Exist(result) ) then

12Display (" Detected anti -pattern with Relevant Details and Recommendation

Text)

13else

14Display ("no Anti -pattern is detected ")

15}

16end

Listing 4.8: SPARQL Query to retrieve the relevant details and suggested recommen-
dations for CRYDy URI Anti-pattern

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

2 PREFIX owl: <http :// www.w3.org /2002/07/ owl#>

3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf -schema#>

4 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>

5 PREFIX base: <http :// www.semanticweb.org/asus/ontologies /2017/5/ APatterns -

ontology#>

6
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7 SELECT distinct ?antipattern ?restelement ?content ?recommendation

8 WHERE {? restelement base:Rest:content ?content. ?restelemnt base:Rest:

hasAntipattern ?antipattern. ?antipattern base:Att:

hascorrectionrecommendation ?recommendation. ?antipattern base:Att:name ?

name.

9 FILTER (?name="Att:CRYDy_URI "^^xsd:string)

10 }

After checking the compliance with REST principles via detecting both REST pat-
terns and anti-patterns, checking the compliance with OCCI principles can take place.
Like REST (anti) patterns, we conduct the detection of OCCI (anti) patterns using
two algorithms while relying on both SWRL rules and SPARQL queries.

4.4 Experiments and Validation

In this section, we discuss the evaluation of our proposed approach. We conduct
this evaluation through a proof of concept implementation and a validation study
on a dataset that we built based on a set of cloud management APIs. In fact, our
evaluation objective is twofold. Firstly, we assess the compliance of Cloud REST
APIs with both OCCI and REST principles. Then, we show the effectiveness of our
approach by analyzing the accuracy of the detection rules and the usefulness of the
provided detection and recommendation support. In the following, we firstly present
the proof of concept ORAP-Detector. Secondly, we describe the hypotheses and the
experimental setup followed to conduct the validation of our approach. Finally, we
analyze and interpret the experiment results.

4.4.1 Proof of Concept: ORAP-Detector

ORAP-Detector [34] is provided as a web application based on J2EE solutions to
support the (anti) patterns detection step described in Section 4.3.3. It provides to
API developers two main functionalities, which are mainly: Check compliance for
REST principles and Check compliance for OCCI principles. Moreover, we relied on
three semantic Web APIs namely Pellet API5, Apache Jana API6 and SWRL API7

to implement the different algorithms described above for the detection of (anti)
patterns. These APIs are exploited to handle SPARQL/SQWRL queries and SWRL
rules. Moreover, for the evaluation purpose, our ORAP-Detector was deployed on
top of the AWS EC2 service [14].

4.4.2 Hypotheses and Experimental Setup

Hypotheses. To evaluate the effectiveness of the proposed approach, we formulate
the following hypotheses:

5https://github.com/stardog-union/pellet
6https://jena.apache.org/
7https://github.com/protegeproject/swrlapi

https://github.com/stardog-union/pellet
https://jena.apache.org/
https://github.com/protegeproject/swrlapi
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Table 4.9: List of the 5 analyzed Cloud APIs and their on-line documentations
Cloud RESTful
APIs

On-line documentations

OOi RESTful API http://ooi.readthedocs.io/en/stable/user/usage.html

COAPS RESTful
API

http://www-inf.it-sudparis.eu/SIMBAD/tools/COAPS/

OpenNebula OCCI
RESTful API

http://archives.opennebula.org/documentation:archives:

rel4.0:occiddoverview

Amazon S3 REST-
ful API

http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html

Rackspace REST-
ful API

https://developer.rackspace.com/docs/cloud-servers/v2/

api-reference/

• H1 (Accuracy). The set of all defined rules have an average precision, recall and
F-measure of more than 85%. This value is chosen based on the threshold base used
in the previous detection methods [85,108,124–126], which have been considered as
effective.

• H2 (Usefulness). The key detection rules and provided recommendations are useful
and relevant.

Experimental Setup. We perform an analysis in the Cloud RESTful APIs of cloud
services to build the experimental dataset. As shown in Table 4.9, 5 candidates
including OOi, COAPS, OpenNebula, Amazon S3 and Rackspace were selected. This
selection has been done because their associated REST operations are well illustrated.
Using the operations details existing in each API, we have collected all the requests
and responses that build the required knowledge for semantically describing each API.
Regarding the accuracy evaluation, we have to build our truth knowledge. Suitably,
we manually evaluated the REST operations in order to identify the true positives and
false negatives required to compute precision, recall and F1-measure values. Precision
is the ratio between the true detected (anti) patterns and detected (anti) patterns
reported as positive. Recall is the ratio between the true detected (anti) patterns
and all existing true (anti) patterns. Finally, the F1-measure defines the weighted
harmonic mean of the precision and recall values.
Moreover, the usefulness is determined via a questionnaire that provides the partici-
pants feedbacks about our detection rules and suggested recommendations in case of
any anti-pattern detection. Participants were recruited from software engineering ex-
perts who have sophisticated understanding of REST and Cloud APIs. The question-
naire consists of two main parts: Usefulness evaluation and Insights/Improvements.
The usefulness evaluation questions aim at evaluating whether the detection rules and
suggested recommendations are useful and relevant. Whereas, the Insights/Improve-
ments provide some suggestions for improving our detection and recommendation
support. The detailed definition of the list of questions is provided in Appendix A.

http://ooi.readthedocs.io/en/stable/user/usage.html
http://www-inf.it-sudparis.eu/SIMBAD/tools/COAPS/
http://archives.opennebula.org/documentation:archives:rel4.0:occiddoverview
http://archives.opennebula.org/documentation:archives:rel4.0:occiddoverview
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://developer.rackspace.com/docs/cloud-servers/v2/api-reference/
https://developer.rackspace.com/docs/cloud-servers/v2/api-reference/
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Table 4.10: Detection results of the REST (Anti) Patterns
Cloud REST API OOi

(28)
COAPS
(18)

Open-
Nebula
OCCI
(20)

Amazon
S3 (71)

Rack-
space
(72)

O.P. Total
(209)

URI Design (Anti) Patterns
Tidy URIs (156/209) 6 13 17 70 50 74% 156

(74%)
Amorphous URIs (52/209) 21 5 3 1 22 52% 52 (24%)
No Detection (0/209) 0 0 0 0 0 0% 0 (0%)
Verbless URIs (205/209) 28 16 20 69 72 98% 205

(98%)
CRUDy URIs (4/209) 0 2 0 2 0 1% 4 (1%)
No Detection (0/209) 0 0 0 0 0 0% 0 (0%)
Singularized nodes (73/96) 6 3 6 33 25 76% 73 (34%)
Pluralized nodes (23/96) 8 3 3 6 4 23% 23 (11%)
No Detection (0/96) 0 0 0 0 0 0% 0 (0%)
Request methods (Anti) Patterns
Correct use of POST (49/53) 8 7 3 4 27 92% 49 (23%)
Correct use of GET (74/74) 0 6 11 25 32 100% 74 (35%)
Correct use of PUT (29/29) 0 0 3 22 4 100% 29 (14%)
Correct use of DELETE (34/34) 6 3 3 13 9 34% 34 (16%)
Correct use of HEAD (5/5) 0 0 0 5 0 100% 5 (2%)
Tunneling every things through
POST (4/53)

0 2 0 2 0 7% 4 (2%)

Tunneling every things through
GET (0/47)

0 0 0 0 0 0% 0 (0%)

No Detection (0/199) 0 0 0 0 0 0% 0 (0%)
Error handling (Anti) Patterns
Supporting Status Code (191/209) 28 18 20 70 55 91% 191

(91%)
Ignoring Status Code (18/209) 0 0 0 1 17 8% 18 (8%)
No Detection (0/209) 0 0 0 0 0 0% 0 (0%)
HTTP Header (Anti) Patterns
Supporting Caching (71/209) 0 0 0 71 0 33% 71 (33%)
Ignoring Caching (138/209) 28 18 20 0 72 66% 138

(66%)
No Detection (0/209) 0 0 0 0 0 0% 0 (0%)
Supporting MIME Types (188/209) 8 18 20 71 71 89% 188

(89%)
Ignoring MIME Types (21/209) 20 0 0 0 1 10% 21 (10%)
No Detection (0/209) 0 0 0 0 0 0% 0 (0%)
Hypermedia (Anti) Patterns
Supporting hypermedia (36/133) 8 13 0 0 15 27% 40 (17%)
Forgetting hypermedia (87/133) 0 0 14 31 42 63% 87 (41%)
No Detection (10/133) 10 0 0 0 0 7% 10 (4%)

4.4.3 Results Analysis and Findings

In this section, we present respectively the detection results of REST (anti) patterns
and OCCI (anti) patterns in all selected Cloud REST APIs. Then, a compliance
evaluation of the selected API with OCCI and REST best principles is described.
Finally, we discuss the validation of our approach in terms of accuracy and usefulness.

4.4.3.1 Detection of REST of (anti) patterns

We present in Table 4.10 the detection results of 21 REST patterns and anti-patterns
for the five Cloud RESTful APIs. The first column reports the patterns and anti-
patterns, while the analyzed Cloud RESTful APIs are presented in the following
columns. For each Cloud RESTful API, we show the occurrence number of each
REST pattern and anti-pattern. The last three columns report respectively: the
occurrence percentage (OP) of each (anti) pattern compared to the total number of
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Table 4.11: Detection results of the OCCI (Anti)patterns
Cloud REST API OOi

(28)
COAPS
(18)

Open-
Nebula
(20)

Amazon
S3 (71)

Rack-
space
(72)

O.P. Total
(209)

Management Related (Anti)patterns
Query Interface Support (0/161) 0 0 0 0 0 0% 0 (0%)
Missing Query Interface (5/161) 1 1 1 1 1 3% 5 (2%)
No Detection (0/161) 0 0 0 0 0 0% 0 (0%)
Compliant Create (6/31) 4 1 0 1 0 19% 6 (2%)
Non-Compliant Create (24/31) 0 1 3 11 9 77% 24 (11%)
No Detection (1/31) 1 0 0 0 0 3% 1 (0.4%)
Compliant Update (15/24) 3 2 3 0 7 62% 15 (7%)
Non-Compliant Update (8/24) 0 0 0 8 0 8% 8 (3%)
No Detection (1/24) 0 0 0 1 0 4% 1 (0%)
Compliant Delete (32/32) 3 2 3 14 10 100% 32 (15%)
Non-Compliant Delete (0/32) 0 0 0 0 0 0% 0 (0%)
No Detection (0/32) 0 0 0 0 0 0% 0 (0%)
Compliant Retrieve (26/90) 10 5 11 0 0 28% 26 (12%)
Non-Compliant Retrieve (64/90) 0 0 0 31 33 71% 70 (30%)
No Detection (0/90) 0 0 0 0 0 0% 0 (0%)
Compliant Trigger Action (0/21) 0 0 0 0 0 0% 0 (0%)
Non-Compliant Trigger Action
(21/21)

0 7 0 3 11 100% 21 (10%)

No Detection (0/21) 0 0 0 0 0 0% 0 (0%)
Cloud Structure (Anti)patterns
Compliant Link between Resources
(4/5)

2 0 2 0 0 80% 4 (1%)

Non-Compliant Link between Re-
sources (1/5)

0 0 0 0 1 20% 1 (0.4%)

No Detection (0/5) 0 0 0 0 0 0% 0 (0%)
Compliant Association of Resource
with Mixin

- - - - - - -

Non-Compliant Association of Re-
source with Mixin

- - - - - - -

No Detection - - - - - - -
Compliant Dissociation of Resource
from Mixin

- - - - - - -

Non-Compliant Dissociation of Re-
source from Mixin

- - - - - - -

No Detection - - - - - - -
REST Related (Anti) Patterns
Compliant URL (209/209) 28 18 20 71 72 100% 209

(100%)
Non-Compliant URL (0/209) 0 0 0 0 0 0% 0 (0%)
No Detection (0/209) 0 0 0 0 0 0% 0 (0%)
Compliant Req.H (0/209) 0 0 0 71 72 68% 143 (68%)
Non-Compliant Req.H (209/209) 28 18 20 0 0 66% 66 (31%)
No Detection (0/209) 0 0 0 0 0 0% 0 (0%)
Compliant R.H (143/209) 0 0 0 71 72 68% 143 (68%)
Non-Compliant R.H (66/209) 28 18 20 0 0 100% 66 (31%)
No Detection (0/209) 0 0 0 0 0 0% 0 (0%)

operations that may contain such (anti) pattern (i.e. the percentage of Correct use
of POST is computed compared only with the existing POST operations) and finally
the total number of occurrences of each (anti) pattern compared to the total number
of all existing operations.
As specified in Table 4.10, the most commonly followed REST pattern is Verbless
URIs. It’s quite evident that Cloud API designers are aware of avoiding the use of
any of common CRUDy terms or their equivalent. This represents a good practice
to obviate confusing API client developers. Additionally, more than 91% of the ana-
lyzed operations (191 out of 209) support compliant status codes. This enhances the
understandability for clients APIs. Also, it is very reassuring to observe that more
than 89% (188 out of 209) of the analyzed operations follows MIME type pattern,
which increases the resource or service accessibility and re-usability. In contrast, it is
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frustrating to observe that the most selected Cloud APIs except Amazon S3 failed to
support the caching capability, although it is one of the principle REST constraints.

4.4.3.2 Detection of OCCI (anti) patterns

Table 4.11 summarizes the detection results of 24 OCCI patterns and anti-patterns
on the five Cloud RESTful APIs. As shown in Table 4.11, we observe that the most
frequent patterns (Compliant Delete and Compliant Update patterns) dominate the
management related (anti) patterns category. It seems that Cloud API designers
follow either explicitly or implicitly the OCCI guidelines to delete and update a cloud
resource. On the contrary, Non-Compliant Trigger Action and Non-Compliant Create
represent the most recurrent anti-patterns in this category. In fact, most of the Cloud
RESTful APIs do not specify the resource category needed to define a specific type
of the resource to be created. In addition, it seems that the cloud API designers
ignore both the query exposing the term of the action and its associated HTTP
category defining its functionality in the REST operation to trigger an action on a
resource. Regarding the Cloud Structure (Anti)Patterns category, Compliant Link
between Resources pattern is the most commonly followed pattern. It should be
noted that there is not a large number of operations we find to test this pattern as
the link resource is rarely considered in the selected APIs. Moreover, we find no
occurrence of (anti) patterns related to the association and dissociation of resources
from Mixin. Regarding the REST anti-patterns and patterns according to OCCI
perspective, 100% of the analyzed URIs are compliant with OCCI principles that are
related to URI format. In addition, all analyzed request and response headers both
in Amazon S3 and Rackspace are compliant with OCCI. In contrast, even though
OOi, OpenNebula OCCI and COAPS are OCCI-based APIs, they failed to support
compliant headers in any of their operations.

4.4.3.3 Compliance Evaluation

Herein, we aim at assessing whether the selected cloud APIs are compliant with
REST and OCCI best principles by computing for each one its compliance degree.
The compliance degree shows the percentage of patterns (OCCI or REST) that each
API has over all its operations, which is defined as follows:

Compliance degree= 1
N
∗
∑N

i=1 (
∑

Pi∑
OPP i

)

where N is the number of patterns (e.g. 12 patterns for REST), Pi is a pattern (for
instance P1 denotes the Tidy URIs pattern),

∑
Pi the number of operations that

really contain the pattern Pi (e.g. only 6 operations contain the Tidy URIs pattern
in OOi RESTful API),

∑
OPP i is the total number of operations that may contain

the pattern Pi (e.g. 28 operations that may contain the Tidy URIs pattern in OOi
RESTful API).
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Now, we discuss the compliance of the selected Cloud REST APIs with REST good
principles before assessing their compliances with the OCCI ones. As described in
Fig. 4.5, we observe that all selected API have reached acceptable REST compliance
degrees as mean value for all selected APIs is greater than 50% with reasonable
difference. This shows the maturity of these APIs regarding the REST best principles.
Indeed, Amazon S3 API represents the most compliant API with REST best principles
with 78% of compliance degree, which means that 78% of its operations properly follow
the REST best principles. This is not surprising as Amazon S3 is one of important
cloud leaders aiming to attract API developers to increase the use of their API.
Moreover, we report that OCCI OpenNebula API reaches 70%, Rackspace reaches
69%, OOi reaches 66% and finally COAPS reach 63% as compliance degree, which
are also good values.
Regarding the OCCI best principles, as illustrated in Fig. 4.6, OOi and OpenNebula
OCCI APIs represent the most compliant APIs with OCCI best principles. This is
not surprising because both APIs are already based on OCCI standard. However, the
reached compliance degree is still not convenient enough. It would be more reassuring
if future releases of OCCI plan to improve this as the OCCI REST API will be au-
tomatically generated from a meta-model instead of designed by hand. Additionally,
Rackspace as well as Amazon S3 have reached 48% and 42% of compliance degree re-
spectively. This means that over 40% of operations in those APIs implicitly follow the
OCCI standard, although they have based on own model to describe cloud resources.
In contrast, even though COAPS API is an OCCI-based API, it reaches only 45%,
which shows that its developers did not carefully follow all OCCI best principles.

Figure 4.5: REST Compliance Degrees of Cloud RESTful APIs
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Figure 4.6: OCCI Compliance Degrees of Cloud RESTful APIs

4.4.3.4 Discussion of validation results

In this section, we aim at discussing the validation hypotheses mentioned in Sec-
tion 4.4.2.
Evaluation of H1 (Accuracy). The hypotheses H1 is evaluated according to three
parameters: Precision, Recall and F-measure. Two validations were conducted to
evaluate this hypothesis. Table 4.12 illustrates the results of the first validation that
aim at evaluating our approach validation in detecting REST patterns and anti-
patterns on OOi and Rackspace RESTful APIs. The first column presents the iden-
tified (anti)patterns. The remaining columns list the two selected APIs for the val-
idation, including Validated (i.e., the number of validated pattern (or anti-pattern)
considered as true which is ensured manually), P (i.e., the number of pattern occur-
rences reported as positives by our detection algorithms), TP (i.e., the number of
pattern occurrences reported as true positives), Precision, Average Precision, Recall
and Average Recall. Finally, we report the total average of Precision, Recall and
F-measure on the last two rows respectively. Regarding OOi RESTful API, it was
pleasantly surprising that our REST detection algorithms allow detecting of REST
patterns and anti-patterns on average with a precision of 100% and Recall of 95,1
%, signifying that all the detected (anti) patterns are in the list that we determined
manually. Also, we obtain on average almost similar values for Rackspace RESTful
API viz. a precision of 100 % and a recall of 91,2. On the whole, we obtain on average
F-measure of 97,4 % for OOi and 95,3% for Rackspace.
Table 4.13 illustrates the results of the second validation of our approach in detecting
OCCI (anti) patterns on OOi and Rackspace RESTful APIs. Similarly, as for the
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Figure 4.7: Usefulness Detection Rate for (a) REST patterns: Correct use of POST,
Tidy URLs; (b) REST anti-patterns: Amorphous URIs, Forgetting Hypermedia; (c)
OCCI patterns: Compliant Delete, Compliant URL; (d) OCCI anti-patterns: Non-
Compliant Create, Non-Compliant Trigger Action

REST (anti) pattern detection, our approach has reached good results. More pre-
cisely, we obtain, on average, precision of 100%, recall of 97,9%, F-measure of 98,9%
for OOi API and, precision of 100%, recall of 97%, F-measure of 98% for Rackspace.
Accordingly, giving this observation and the above one, we confirm the truth of the
first hypothesis H1 with significant difference.
Evaluation of H2 (Usefulness). In this evaluation, we ask participants to rate the
usefulness of the detection of a set of OCCI/REST patterns and anti-patterns using a
0-5 scale. We examined 2 REST patterns (Correct use of POST, Tidy URLs), 2 REST
anti-patterns (Amorphous URIs, Forgetting Hypermedia ), 2 OCCI patterns (Com-
pliant Delete, Compliant URL), and 2 OCCI anti-pattern (Non-Compliant Create,
Non-Compliant Trigger Action). Moreover, to evaluate the detection of these (anti)
patterns, we employ a set of REST operations from three different management APIs
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mainly, Rackspace, COAPS and OOI.
As shown in Fig. 4.7 (a) (b), regarding the detection of selected REST patterns/anti-
patterns (i.e., Correct use of POST and Tidy URLs patterns, Amorphous URIs and
Forgetting Hypermedia anti-patterns), we observed that the mean usefulness rate is
greater than 4, which represents a good and acceptable rate. Similarly, the most of
participants have positively rated the detection usefulness of the selected OCCI pat-
terns and anti-patterns (i.e., Compliant Delete and Compliant URL patterns, Non-
Compliant Create and Non-Compliant Trigger Action anti-patterns) as the observed
score is greater than 3.9 (refer to Fig. 4.7 ((c) (d) ). Overall, participants reported
that the provided detection and recommendation support are considerably useful.
Given this observation, we confirm that the key detection rules and the provided rec-
ommendations are useful and relevant. Moreover, as feedback for improvement, most
participants highlight the need of sophisticated way to visualize both the detected
patterns and anti-patterns. Regarding the detected patterns, it has been suggested
to provide a short text explaining it as well as its importance. While regarding anti-
patterns, it is better to provide instead of a just an explanation a link that present
this explanation in more details and to represent recommendations using markers
(i.e., colors, formatting, etc.).

4.5 Conclusion

In this chapter, we achieved the two objectives mentioned in the thesis problematic
(section 1.2.1) which are:(1) assisting the design of interoperable management APIs
and (2) exploring whether the current management APIs follow the REST and OCCI
best principles. In doing so, we answered the different questions raised in this same
section (section 1.2.1), which were all around the way of exploiting (anti) patterns
towards ensuing these two objectives.
Concretely, we adopted patterns and anti-patterns as means to represent respectively
the good and poor practices of both OCCI and REST best principles that API de-
velopers or cloud providers should be carefully taken on when designing their APIs.
Moreover, we analyzed both the literature and the OCCI standard to identify these
(anti)patterns. Furthermore, semantic models, in particular ontologies, have been
adopted as an appropriate means relying on SWRL, SQWRL and SPARQL languages
to specify and to detect both patterns and anti-patterns and to provide correction
recommendations in case of any anti-pattern detection. We proposed a semantic def-
inition of 21 common REST (anti) patterns and 24 OCCI (anti) patterns for Cloud
RESTful APIs and four detection algorithms acting on these specifications to detect
OCCI (anti)patterns and REST (anti)patterns respectively.
We validated our approach by analyzing both OCCI and REST (anti) patterns on
real world Cloud RESTful APIs, and assessing its feasibility in term of accuracy and
usefulness. The observed accuracy shows that our approach is an effective technique
for detecting OCCI and REST (anti) patterns in Cloud RESTful APIs, which may
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assist cloud API developers and providers when assessing the quality of their APIs
and correcting them to avoid the anti-patterns occurrences. In addition, through the
usefulness evaluation, we proved that the key detection rules and provided recom-
mendations are useful and relevant.
Besides, through the compliance analysis, regarding REST best principles, we ob-
served that the most of the analyzed Cloud RESTful APIs have reached an acceptable
level of maturity by considering the most of good REST principles. In opposition, we
observed also through the obtained OCCI compliance degrees, that there is no correct
and adequate adoption of the OCCI best principles in the selected Cloud RESTful
APIs. Hopefully, this inspires the developers of these APIs and other practitioners to
include REST and OCCI good principles as much as possible. Thus, we will contribute
to the improvement of OCCI specifications as supporting of REST best principles in
OCCI-based APIs would make them more visible and easy to understand.
Finally, by assisting in creating interoperable management APIs that is compliant
with an open standard like OCCI, our approach presents an important contribution
toward facilitating cloud interoperability from a management perspective. However,
cloud interoperability to be a concrete truth, it demands to be addressed from other
perspectives. Within this context, the following chapter falls. In particular, it aims at
supporting the seamless integration between TOSCA standard and current DevOps
approaches toward interoperable orchestration of cloud resources.
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Table 4.12: Complete validation of REST patterns and anti-patterns on OOi and Rackspace
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Tidy URIs 6 5 5 100%
100%

83%
91.7%

20 19 19 100%
100%

95%
97.5%Amorphous URIs 8 8 8 100% 100% 20 20 20 100% 100%

No Detection 0 0 0 - - 0 0 0 - -
Verbless URIs 10 10 10 100%

100%
100%

100%
20 20 20 100%

100%
100%

100%CRUDy URIs 0 0 0 - - 0 0 0 - -
No Detection 0 0 0 - - 0 0 0 -
Singularized nodes 6 5 5 100%

100%
83%

91.7%
20 18 18 100%

100%
90%

70%Pluralized nodes 8 8 8 100% 100% 4 2 2 100% 50%
No Detection 0 0 0 - - 0 0 0 - -
Correct use of POST 8 6 6 100%

100%

75%

87.5%

10 10 10 100%

100%

100%

97.2%

Correct use of GET 0 0 0 - - 10 10 10 100% 100%
Correct use of PUT 0 0 - - - 4 4 4 100% 100%
Correct use of DELETE 6 6 6 100% 100% 9 9 8 100% 0.88%
Correct use of HEAD 0 0 0 - - 0 0 0 - -
Tunneling E.T.T POST 0 0 0 - - 0 0 0 - -
Tunneling E.T.T GET 0 0 0 - - 0 0 0 - -
No Detection 0 0 0 - - 0 0 0 -
Supporting Status Code 10 10 10 100%
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100%

100%
20 20 20 100%
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100%

100%Ignoring Status Code 0 0 0 - - 10 10 10 100% 100%
No Detection 0 0 0 - - 0 0 0 -
Supporting Caching Code 0 0 0 -

100%
-
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0 0 0 -

100%
-

100%Ignoring Caching 10 10 10 100% 100% 10 10 10 100% 100%
No Detection 0 0 0 - - 0 0 0 -
Supporting MIME Types 8 8 8 100%

100%
100%

100%
10 9 9 100%

100%
90%

90%Ignoring MIME Types 10 10 10 100% 100% 0 0 0 - -
No Detection 0 0 0 - - 0 0 0 -
Supporting hypermedia 5 4 4 100%

100%
80%

90%
10 7 7 100%

100%
70%

75%Forgetting hypermedia 0 0 0 - - 10 8 8 100% 80%
No Detection 4 4 4 100% 100% 0 0 0 - -

Average
Precision 100% Recall 95,1% Precision 100% Recall 91.2%
F-measure 97.4% F-measure 95.3%
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Table 4.13: Complete validation results of OCCI patterns and anti-patterns on OOi and Rackspace REST APIs
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Query interface support 0 0 0 -
100%

-
100%

0 0 0 -
100%

-
100%Missing query interface 1 1 1 100% 100% 1 1 1 100% 100%

No Detection 0 0 0 - - 0 0 0 - -
Compliant Create 4 3 3 100%

100%
75%

75%
0 0 0 -

100%
-

100%Non-Compliant Create 0 0 0 - - 9 9 9 100% 100%
No Detection 0 0 0 - - 10 10 10 100% 100%
Compliant Update 3 3 3 100%
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100%Non-Compliant Update 0 0 0 - - 0 0 0 - -
No Detection 0 0 0 - - 6 6 6 100% 100%
Compliant Delete 3 3 3 100%
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100%Non-Compliant Delete 0 0 0 - - 0 0 0 - -
No Detection 0 0 0 - - 0 0 0 -
Compliant Retrieve 10 10 10 100%
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0 0 0 -
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-

90%Non-Compliant Retrieve 10 0 0 - - 10 9 9 100% 90%
No Detection 0 0 0 - - 0 0 0 -
Compliant Trigger Action 0 0 0 -
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-
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-

80%Non-Compliant Trigger Action 0 0 0 - - 10 8 8 100% 80%
No Detection 8 8 8 100% 100% 0 0 0 -
Compliant Link between Re-
sources

2 2 2 100%
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0 0 0 -%
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-
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Non-Compliant Link between
Resources
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Compliant Association of re-
source with Mixin
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100%
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100%
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-
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-Non-Compliant Association of
resource with Mixin
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Compliant Dissociation of re-
source from Mixin
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-
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-

-

-Non-Compliant Dissociation of
resource from Mixin
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No Detection 6 6 6 100% 100% - - - -
Compliant URL 10 10 10 100%
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10 10 10 100%
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100%Non-Compliant URL 0 0 0 - - 0 0 0 - -
No Detection 0 0 0 - - 0 0 0 -
Compliant Request Header 0 0 0 -

100%

-

100%

10 10 10 100%

100%

100%

100%
Non-Compliant Compliant Re-
quest Header

10 10 10 100% 100% 0 0 0 - -

No Detection 0 0 0 - - 0 0 0 -
Compliant Response Header 0 0 0 -
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-
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10 10 10 100%
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Non-Compliant Compliant Re-
sponse Header

10 10 10 100% 100% 0 0 0 - -

No Detection 0 0 0 - - 0 0 0 -

Average
Precision 100% Recall 97,9% Precision 100% Recall 97%
F-measure 98.9% F-measure 98%
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5.1 Introduction

This chapter introduces our approach to streamline and improve the orchestration
process of cloud resources. The intrinsic goal is providing an automated integra-
tion between TOSCA, the de facto cloud orchestration standard, and the open-source
leading DevOps technologies. In doing so, cloud users would benefit from the good us-
ability of TOSCA and its agnostic nature for convenient modeling of their applications
on one hand, and the efficiency of DevOps technologies in enabling the end-to-end
orchestration tasks on the other hand.
Toward a seamless integration, as we desired, we propose to automate the mapping
between TOSCA and DevOps technologies. This will close the gap existing between
them which is mainly due to the use of diverse models, entities, and languages when
describing cloud resources as well as orchestration aspects. In addition, since DevOps
technologies employ several different types of heterogeneous tools/APIs to orches-
trate cloud resources, we propose a DevOps abstraction layer that hides their related
complex low-level details and avoids dealing with their diverse technical specifica-
tions. This alleviates users from the heavy lifting involved when interacting with
these DevOps tools/APIs.
A key part of our approach involves leveraging MDE principles namely: the use of
models as first-class entities and high-level model transformations. Indeed, in addi-
tion to TOSCA that is naturally model-driven, we use models to represent DevOps
underlying specification and languages, where their specific low-level details are ab-
stracted and organized into high level, meaningful and machine-readable constructs.
This will support their manipulations at a high level of abstraction. Besides, we rely
on the MDE transformation principle as an underlying technique for the automated
mapping between TOSCA and DevOps solutions.
More specifically, the contribution of this chapter aim at ensuring the following ob-
jectives:

1. Adopting the TOSCA standard for describing cloud resource-related artifacts
in a technology-independent way. These artifacts form among themselves the
cloud application to be orchestrated.

2. Proposing a Model-Driven Transformation Technique allowing an automated
translation of cloud resource artifacts (designed using TOSCA) into DevOps-
specific artifacts ready to be executed by the DevOps tools and APIs.
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3. Providing Connectors acting as a DevOps abstraction layer that serves to estab-
lish the bridge between DevOps-specific artifacts (e.g., Docker compose model)
and the underlying DevOps tools/APIs (e.g., Docker compose tool and remote
management API).

4. Demonstrating the applicability of our integration approach using two case stud-
ies based on Docker and Terraform solutions.

5. Proposing a proof-of-concept called ToDev , an integrated and standards-driven
orchestration framework based on TOSCA and DevOps technologies.

6. Validating our approach by conducting three experiments using ToDev frame-
work in order to particularly demonstrate the gained productivity, introduced
overhead and the transformation performance.

The rest of this chapter is organized as follows: Section 5.2 articulates our motiva-
tions and work fundamentals by providing the classification of the DevOps artifacts.
In Section 5.3, we detail our approach. Section 5.4 and 5.5 demonstrate our ap-
proach applicability using the selected DevOps solutions. In section 5.6, we describe
the ToDev framework and its underlying architecture. Section 5.7 presents the ap-
proach validation using the implemented framework. Finally, Section 5.8 concludes
the chapter.
The work in this chapter was published in a conference proceeding [32].

5.2 Motivations and fundamentals

In this section, we first investigate through a motivating example, specific challenges
among existing DevOps solutions to orchestrate cloud resources that are involved
in the typical cloud application’s lifecycle. Afterward, we give an overview of the
available artifacts provided by the DevOps solutions.

5.2.1 Motivating scenario

Our motivating scenario relies on a composite cloud application that is to be deployed
on two cloud platforms. This application is composed of two parts. A frontend
part developed by Python and Node.js services that respectively allow implementing
a graphical voting interface of multiple options and a visualization of the voting
results. A backend part composed by the Redis service that collects the votes that
are transmitted, via a NET worker service, to a Postgres database. The application
will be hosted on two cloud provider platforms namely AWS and Google Compute
Platform (GCP). The topology of the intended application is shown in Figure 5.1.
Typically, to support the orchestration life cycle of this application, DevOps users first
need to describe the involved services, requirements in terms of cloud resources and
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Figure 5.1: Voting application topology

the dependency relationships that may exist between these services, e.g. connected-
to and hosted-on. To realize this task, DevOps users may use one of the available
DevOps solutions such as Docker [49]. Thus, the DevOps user has to specify some
of the Docker-specific artifacts, essentially the so-called Compose file and Dockerfiles.
Then, by using Docker APIs/tools, the DevOps users rely on these artifacts in order
to orchestrate necessary resources known as Containers on a given cluster (a set of
computing nodes such as VMs or servers). Currently, in Docker, the configuration of
this cluster is still performed manually using low-level commands [49]. So, another
DevOps tool would be needed such as Terraform [149] or Ansible [15] to provide an
easy way to orchestrate the entire cluster. This results in adding a new kind of artifacts
to be managed by DevOps users. Therefore, DevOps users are forced to understand
and analyze different DevOps tools (Docker, Kubernetes, Ansible, Terraform, etc.)
to specify the related artifacts. Moreover, most of these solutions inherently rely on
heterogeneous, low-level and ad-hoc script-based languages. Certainly, these issues
are getting worse with the desire of users to exploit resources from multiple clouds.
The contribution of this chapter is mainly devoted to resolving such challenges by pro-
viding integration support between the TOSCA standard and the underlying DevOps
solutions. Combining TOSCA with DevOps solutions would significantly streamline
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DevOps Tools Node-centric
Artifacts

Environment-centric
Artifacts

Docker
Kubernetes
Terraform
Juju
Chef

Dockerfile
Dockerfile
-
shell scripts
Cookbooks

Compose file
Service file, Deployment file
*.tf files  (e.g. instances.tf)
Charms, Bundles
-Chef

OpenStack Heat

CloudFormation

Cookbooks
-Puppet modules, 
Cookbooks, Shell 
scripts
-Puppet modules, 
Cookbooks, Shell 
scripts

-
Heat Template

CF Template

Table 5.1: Examples of DevOps solutions and their related artifacts

the orchestration process of cloud resources while maintaining the desired efficiency
and interoperability. In the following, we provide some required details on the DevOps
artifacts.

5.2.2 DevOps artifacts

Recently there is a continuous proliferation of DevOps solutions. Each solution relies
on its individual and proprietary artifacts to effectively orchestrate cloud resources.
Basically, these artifacts vary in how they are designed and how they are used. Wet-
tinger et al. [156] provided a classification of DevOps artifacts depicting their concep-
tual and technical variability. Accordingly, two major categories can be distinguished:

• Node-centric artifacts (NCAs). include scripts, images, and low-level configura-
tion definitions, that are designed to be executed on a single node such as a
container or a virtual machine. Technically, NCAs can not be used to deploy
the entire application topology since the dependencies between nodes are not
explicitly specified.
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Figure 5.2: Model-driven integration approach overview

• Environment-centric artifacts (ECAs). are designed to be executed in an en-
vironment and can be used to deploy the entire application topology. Unlike
NCAs, they include scripts, bundles, and, templates, in which multiple nodes
can exist and their dependencies can be explicitly expressed.

Most of the DevOps solutions rely on both artifacts kinds as ECAs natively use and
orchestrate NCAs. For instance, Docker uses Compose file and Dockerfiles. Compose
file represents an ECA specified in a YAML-like format, which describes a collection
of services and their dependencies. Whereas, Dockerfile is an NCA used to configure
required containers related to each service. Technically, a Compose file needs to employ
Dockerfile to configure and orchestrate the involved resource containers. Table 5.1
depicts for each DevOps solution the NCAs and ECAs that it uses. Similar to Docker,
most of these solutions employ both artifacts such as Juju Charms [152] employs Unix
shell scripts, and so on. Both artifact kinds and the way how they are designed,
represent the foundation of our transformation logic.
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5.3 Model-driven integration approach

In this section, we detail our model-driven integration toward streamlining and im-
proving the orchestration of cloud applications. Figure. 5.2 provides a high-level
overview of our approach, depicting its main three steps, namely: Definition of Meta-

models, Transformation of TOSCA into DevOps-specific Artifacts and Orchestration of

DevOps-specific Artifacts. The first step defines both TOSCA and DevOps related
knowledge for the transformation purpose. The second step defines the underly-
ing logic and techniques for transforming any TOSCA topology model into DevOps-
specific artifacts. The third step consumes the generated DevOps artifacts to manage
orchestration tasks. At present, we applied our approach to a diverse range of solu-
tions including Docker, Kubernetes, Terraform. It should be noted that our approach
is generic enough to be applied to other tools. In fact, six solutions among the most
important ones (e.g., Docker, Kubernetes, Terraform, Juju, OpenStack Heat, and
CloudFormation), have been considered when defining this approach. In the follow-
ing, our approach steps are discussed in detail.

5.3.1 Definition of Meta-models

Here, knowledge including TOSCA metamodel and DevOps metamodels have to be
defined. As we mentioned above in chapter 2, TOSCA offers a structured language
and a metamodel for describing service templates. Since DevOps users have to model
TOSCA-compliant applications typologies, TOSCA meta-model represents the first
foundation stone for our integration approach. The basics concepts of the TOSCA
meta-model relevant for our approach are illustrated in Figure 5.3. We extracted
these concepts by analyzing the YAML-based TOSCA specification in [116] and all
previous modeling attempts [30]. The definition of each concept is previously given
in chapter 2 (refer to Section 2.3.2 about the TOSCA standard). In the remainder of
the chapter, we use TOSCAMM to denote the TOSCA meta-model.
In addition to TOSCAMM, DevOps meta-models have to be defined. Indeed, despite
the importance of DevOps solutions, most of them lack of formal meta-models to
describe cloud resource artifacts (ECA and NCA). As shown in Figure 5.2 (refer to
step 1) , during this step, we perform an extensive domain analysis on DevOps related
references and repositories with the aim of identifying the corresponding meta-models
as well as their underlying representations. More specifically, we identify key entities
as well as possible relationships between them, used for describing artifacts according
to each DevOps solution.

5.3.2 Transformation of TOSCA artifacts into DevOps artifacts

As shown in Figure.5.2 (refer to step 2) , the entry point of the transformation step,
is a TOSCA topology model capturing the required cloud resources as well as their
related artifacts. This step relies on a novel model-driven translation technique that
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Figure 5.3: TOSCA Metamodel (TOSCAMM)

serves to translate any TOSCA topology into DevOps tool-specific artifacts compli-
ant to DevOps models and their underlying representations. Instead of directly ma-
nipulating code which is a time-consuming and error-prone task, we adopted MDE
transformation languages as underlying techniques for the proposed transformation
technique. By considering the DevOps artifact categories explained in Section. 5.2.2,
the proposed translation technique includes two transformation sub-steps:

• Transformation of TOSCA Topology to ECA (TTopology2ECA)): This step aims to
generate an ECA for the whole TOSCA topology while considering all its nodes
and possible dependencies between them. This involves two phases: M2M Trans-
formation and M2T Transformation. Firstly, an M2M transformation is conducted,
transforming TOSCA topology into DevOps-specific target ECA model. Then, an
M2T transformation is used to produce the textual definition files (template, scripts,
etc.) from the generated ECA model. Ideally, this fit with MDE transformation best
principles, that is, an intermediate structural model for representing target ECA is
firstly generated rather than generating directly plain text for these artifacts. In-
evitably, we need such intermediate model to capture, in the generated ECA model,
all complex dependencies that may exist between nodes in the TOSCA topology
model.

• Transformation of TOSCA Node to NCA (TNode2NCA): as stated earlier, ECA
basically uses and orchestrate NCAs. So this transformation can be viewed as com-
plementary to the above transformation step. More precisely, this step aims at gen-
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erating for each node specified in the TOSCA topology, the corresponding NCA if
needed. Similar to the TTopology2ECA transformation, the TNode2NCA transfor-
mation proceeds in two main transformation steps, namely: M2M transformation and
M2T transformation. M2M transformation is firstly performed, transforming each
TOSCA node into a DevOps-specific NCA model that defines this artifact. Then, an
M2T transformation is followed in order to produce the textual definition files from
the obtained NCA model.

5.3.3 Orchestration of DevOps-specific artifacts

Orchestration is the responsibility of the Orchestrator service (also called orchestra-
tion engine) that is exposed to DevOps users. This Orchestrator receives a TOSCA
template in order to generate the required DevOps-specific artifacts and to execute
the end-to-end orchestration operations related to the described application. The lat-
ter task requires communicating with the underlying DevOps solutions and requesting
the execution of certain management actions. However, DevOps solutions inherently
employ multiple and heterogeneous tools/APIs to execute these actions, which com-
plicates the orchestrator task. To avoid that, we propose a DevOps abstraction layer
that is empowered with a set of Connectors for alleviating the orchestrator from the
heavy lifting involved when interacting with different DevOps tools/APIs.
Connectors seek to establish the bridge between the high-level description artifacts
generated and the underlying cloud orchestration DevOps solutions. Fundamentally,
Connectors are application programming interfaces (APIs) devoted to ensure commu-
nication with target DevOps tools/APIs. Each connector defines a set of high-level
management operations initiating the corresponding API calls and low-level actions
specific to the target DevOps solution. To ensure the well-foundation of our Con-
nectors, we defined a set of requirements by considering an important set of software
development qualities:

• Connectors have to be enough extensible becuase DevOps curators often require
to add new functionalities ( i.e. operations).

• The development of Connectors has to promote the reusability since the from-
scratch development of code is a tedious task. In addition, this would speed up
the development time.

• The development of Connectors has to promote the ease of maintenance of code
since Connectors are continuously subject to frequent updates to be able to
accommodate the changes in target DevOps tools.

To meet these requirements, we introduce the Essential Connecter Metamodel
(ECMM) describing the common and basic concepts that may be involved when
developing the native code of every desired connector. By doing so, we are able to



116
Streamlining interoperable orchestration of TOSCA with DevOps technologies using

model-driven integration

Interface
Identity

Definition

Init ()
Syntax: The signature of this operation is defined as follows: Init (String DSA Directo-
ryPath): String.
Semantics: This operation enables the analysis of generated artifacts to interrupt what-
ever necessary in their next deployment. Based on the selected DevOps solution and cloud
providers, the initialization may result in the generation of other necessary configuration
files and download of the dependencies.
Data Types and Constants: The operation requires the directory-path, where the ar-
tifact files are located. The operation returns a message indicating the operation state
(success/ failure) along with details summarizing the taken treatments.

Deploy ()
Syntax: The signature of this operation is defined as follows: Deploy (String FilePath):
Object.
Semantics: This operation enables the deployment of one or more cloud resources defined
in the inputted artifact. Indeed, it allows executing the low-level deployment actions
related to the target DevOps solution.
Data Types and Constants: The operation requires the file path of the concerned
artifact and returns an object consisting of a deployment-id and a message that indicate
whether the deployment has been successfully completed, completed with errors or has
been failed.

Configure()
Syntax: The signature of this operation is defined as follows: Control (String Action
actiondef): Message.
Semantics: This operation enables the execution of requested action on the target re-
source defined by the deployment-id, which is stated in the action definition actiondef.
These actions specify how a cloud resource should behave when certain events occur,
which include horizontal scaling, vertical scaling, migration, application reconfiguration,
and basic actions. The precise definition of each action is given in the next chapter.
Data Types and Constants: The operation requires the Action object that indicates
the definition of the action to be executed along with the concerned cloud resource which
is often indicated by a precise logic name or a deployment-id. As a result, it returns a
message indicating the operation state (success/ failure) along with details describing the
new state of configured cloud resource.

Undeploy()
Syntax: The signature of this operation is defined as follows: Undeploy (String
Deployment-id): Message.
Semantics: This operation allows canceling the already deployed cloud resources. It can
be applied to a single cloud resource or the entire deployed model.
Data Types and Constants: The operation requires the deployment-id of the deployed
cloud resource or model and returns a message indicating the success/failure of the op-
eration.

List()
Syntax: The signature of this operation is defined as follows: List (String Deployment-
id):ResourcesList .
Semantics: This operation allows listing all already deployed cloud resources, services
and some details describing their states.
Data Types and Constants: The operation requires the deployment-id of the deployed
model and returns a list of resources (i.e ResourcesList) along with their state details.

Table 5.2: Connector basic Interface Operations

apply MDE transformation to automatically generate most code parts. The gener-
ated code may require to be completed by the DevOps developers. Moreover, the
core ECMM concepts are extracted by analyzing the orchestration capabilities and
operations of the selected DevOps Tools/APIs. The resulting ECMM is illustrated in
Figure 5.4. Accordingly, the core connector interface has to support five management
operations: Init, Deploy, Control, Undeploy and List as they are supported by every
DevOp tool/API. The definition of each of these operations is detailed in table 5.2
while following the Software Engineering Institute template [27] used for the interface
documentation.
In our ECMM (see Figure 5.4), each operation is conceptually composed of one or
more Input and one Output parameters and one or more Scripts. The concrete imple-
mentation of these scripts is organized into patterns to facilitate later their injection
in the whole connector code when proceeding with its generation. Indeed, these
scripts are closely related to the target DevOps solution and are parameterized with
the input parameters that have to be passed during the execution time. Besides, the
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Figure 5.4: The Essential Connector Meta-model (ECMM)

execution of scripts can involve the invocation of specific third-party APIs. For this
reason, the type of script (e.g. Shell, REST, etc.) has to be specified. We defined
the Shell utility pattern that encapsulate the common code to execute a shell scripts
using command-line interface. Finally, ConneteorType is introduced to promote the
reusability of each created connector. The default type is Root Connector denoted
by ”ECMM.Connector.Root” that all other connector types derived from, which rep-
resent the basic definition of each connector. Up to now, we defined two normative
types: ECMM.Connector.Docker and ECMM. Connector. Terraform as a result of
the concrete implementation of Docker and Terraform Connectors. Figure 5.5 depicts
a partial view of the Terraform Connector model, from which a corresponding java
code is automatically generated.

5.4 Docker case-study

5.4.1 Building DevOps metamodels

Since both Docker-Compose file (as ECA) and Dockerfile (as NCA) are the main
Docker-specific artifacts, a metamodel to represent Compose file (referred as Com-
poseMM) and a metamodel to represent Dockerfile (referred as DockerfileMM) have
to be specified.
Regarding the Docker-Compose, Figure 5.6 presents the resulting ComposeMM af-
ter analyzing Docker-specific sources. Compose is the root concept defining the full
application stack. Service represents a software piece, by which the application is
composed. Each Service can depend on another service and may be connected to
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Figure 5.5: A partial view of the Terraform Connector model, which represents an
instance of ECMM

one or more Networks and be attached with one or more storage Volumes. It can be
deployed in one or more Containers. Image contains required instructions to install
and to run each Container and stored in a private or public Registry. Resources related
to each container specify the needed requirements and constraints that should be re-
spected at the runtime. Finally, Properties include name-value pairs for describing
service, volume, network or container-specific properties (e.g., port). Furthermore,
by analyzing the Dockerfile reference and recommended best practices, we build the
corresponding eDockerfile as in Figure 5.7. Dockerfile is the root concept which spec-
ifies all required instructions, whose executions result in creating the corresponding
Docker image. Each Dockerfile consists of one or more Stages defined through one
or more Instructions. Each Instruction has an execution order and is defined over a
set of Commands, Arguments and Environment Variables (EnvVars). We distinguish 8
instruction types. For instance, FromInstruction defines the base image from which
a new Docker image builds and CMDinstruction provides the default command to
execute a container resource.

5.4.2 Transformation of TOSCA to Docker-specific artifacts

Illustration example. We present in Figure 5.8 a partial TOSCA topology model
for our motivation scenario. It consists of 2 TOSCA nodes, where vote has ”Web
Application” type and redis has ”Container.Application.Docker” type. This topology
model will act as a source model for the transformation of TOSCA to Docker-specific
artifacts.
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Figure 5.6: Docker Compose Metamodel (ComposeMM)

5.4.2.1 Transformation of TOSCATopology2Compose.

This step involves two phases: M2M Transformation and M2T Transformation.
Firstly, an M2M transformation is conducted, transforming any TOSCA topology
model (an instance of TOSCAMM) into the Compose model (an instance of Com-
poseMM). Then, an M2T transformation is followed in order to produce the YAML
definition file from this Compose model. To enable M2M transformation, it is essen-
tial to clarify the conceptual mapping between TOSCAMM and ComposeMM. We
summarize in Table 5.3 both possible and no possible mappings between these two
metamodels. As depicted in the top part of the table, some of TOSCAMM con-
cepts do not have any mapping in ComposeMM. This is expected due to the generic
nature of TOSCAMM. These concepts are the concepts devoted for the reusabil-
ity, namely EntityType including all its inherent types (NodeType, RelationshipType,
RequirementType, Capabilitytype, InterfaceType) and for the orchestration, including
Interface, Operation and Parameter.
Despite that, the mapping of most of the concepts between TOSCAMM and Com-
poseMM is still possible. This mapping acts as a method to translate any TOSCA
topology model to the Compose model. In fact, as indicated in the rest of the Table
5.3 , NodeTemplate can be mapped to one of the key ComposeMM entities namely
Service, Network or Volume. This is the case of One-to-Many mapping which de-
mands special treatment for inferring the exact ComposeMM entity to be mapped
with NodeTemplate. Basically, the EntityType associated with the NodeTemplate by
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Figure 5.7: Dockerfile Metamodel (DockerfileMM)

Figure 5.8: Partial part of the TOSCA Topology for the motivating example in Figure
5.1

means of type reference, can straightforwardly resolve this mapping. Accordingly,
a NodeTemplate in TOSCAMM can be mapped to Service in ComposeMM iff it is
typed with one of EntityTypes devoted for software solutions (e.g., Application, Web
application, Database, to name a few).
Furthermore, the Properties associated with each NodeTemplate, can be easily mapped
to Properties associated with each Compose entities based on a syntax matching.
Moreover, TOSCA RelationshipTemplate and Requirement can be mapped to depend-
son, a reference-related to the Service, which captures the possible dependencies
between services. For instance, in case of RelationshipTemplate, the first member of
depend-on reference corresponds to the source of RelationshipTemplate and second to
its target. Additionally, NodeTemplate Name or its associated Artifact if exist can be
matched with the Image associated with each Service in ComposeMM.
Based on this mapping, we define M2M transformation outlined in Algorithm 1 to
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TOSCA concept Compose concept
EntityType –
Interface, Operation –
NodeTemplate Service/ Volume/ Network
Properties Properties
Requirement dependson/PlacementConstraint

NodeTemplate Name/Artifact Image
Capability Resources

Table 5.3: Mapping of TOSCA concepts to ComposeMM concepts

translate any TOSCA topology model to the Compose model. For instance, lines 4-8
allows to transform any NodeTemplate, typed with one of the common software types
such as ”Application”, ”Database” to Service. Figure 5.9 (a) depicts the produced
Compose model for the used source TOSCA topology, as a result of applying the
M2M transformation.

Algorithm 1 M2M transformation Algorithm for transforming TOSCA typology
into Docker Compose model

1: input: TOSCAMM, ComposeMM, TOSCA application typology TOat, Soft-
ware types Softype, platform types Platype, Volume types V oltype, Network types
Nettype

2: output: Docker Compose Model COmo

3: for node ∈ TOat do
4: if node.type ∈ Softypes ∩ Platypes then
5: COmo.service=map Node2Service()
6: CoOmo.service.properties=map NodeProperties2ServiceProperties()
7: if node.artifact.name = ”myimage” then
8: COmo.service.image=map NodeArtifact2ServiceImage()
9: end if

10: COmo.service.dependson=resolve NodeRequirement2Servicedependson()
11: else if node.type ∈ V oltypes then
12: COmo.volume=map Node2V olume()
13: CoOmo.volume.properties=map NodeProperties2V olumeProperties()
14: else
15: COmo.network=map Node2Network()
16: COmo.Network.properties=map NodeProperties2NetworkProperties()
17: end if
18: end for

Once the M2M transformation step is achieved, the M2T transformation can take
place. Algorithm 2 illustrates the main steps of the M2T transformation for generating
the underlying YAML representation of the generated Compose model. Figure 5.9
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Figure 5.9: Transformation of TOSCA topology depicted in Figure 5.8 to Compose-
specific artifacts: (a) Compose model; (b)compose.yml

(b) depicts a partial fragment of the YAML representation for the Compose model,
after applying the M2T transformation.

Algorithm 2 M2T transformation Algorithm for generating YAML scripts from the
Compose Model

1: input: Docker Compose Model COmo

2: output: Compose yaml scripts compose.yml
3: for service ∈ COmo do
4: Generate service-specific Scripts
5: end for
6: for volume ∈ COmo do
7: Generate volume-specific Scripts
8: end for
9: for network ∈ COmo do

10: Generate network-specific Scripts
11: end for

5.4.2.2 Transformation of TOSCANode2Dockerfile

In this step, each TOSCA NodeTemplate is transformed into the corresponding Dock-
erfile. To enable this, a mapping between TOSCA NodeTemplate and Dockerfile
metamodel (eDockerfile), has to be explained. Table 5.4 summarizes the possible
mapping between TOSCA NodeTemplate and eDockerfile, that is useful to generate a
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Dockerfile for any NodeTemplate if needed.

NodeTemplate eDockerfile
name, type Dockerfile
Properties(port) Exposeinstruction, port
Operation Stage
Primary Artifact From/Copy (or Add)/CMD instructions
Depedency Artifact From/Copy (or Add)/Run instructions
Input Environment Variable

Table 5.4: Mapping of TOSCA NodeTemplate to Dockerfile

As specified, type and name in NodeTemplate are used to extract dockerfile concept.
More specifically, the type is firstly checked to decide whether we need to create a
Dockerfile or not. This is done by verifying whether this type is different to the
Nodetypes used to denote Docker, Compute, Volume and Network types while it should
belong to one of the Nodetypes devoted for software and platform services. If so, the
name in NodeTemplate will be matched to name in eDockerfile.
Furthermore, port property will be matched to the Envvar port in eDockerfile. Thus, an
Exposeinstruction can be built based on this port and Expose command. Similarly, all
Operations defined in the standard Interface in the NodeTemplate need to be exploited
to infer other Dockerfile Instructions. In particular, each Artifact within each Interface
Operation will be mapped to a set of equivalent Instructions. The primary Artifact is
directly mapped to Frominstruction, Copyinstruction (or Addinstruction), and CMDin-
struction. While dependency Artifact is directly mapped to FromInstruction (Iff its
artifacttype is different to one in primary Artifact), Copyinstruction (or Addinstruction),
and RUNinstruction. Both Artifact Properties and Inputs Operation are respectively
mapped to Arguments and EnvVars that will be used in each above Instruction. For
instance, artifacttype property within each artifact is mapped to the Argument Ba-
seimage in the FromInstruction.
Finally, the order property of each Dockerfile instruction is a vital requirement that
has to be considered in order to properly generate Dockerfile. This last is defined
while considering artifact kinds (primary or dependency) and the instruction orders
defined in the Dockerfile reference [49]. As a result, in each Stage for each Interface
Operation, FromInstruction is firstly specified as well as From (if needed), Add and Run
instructions for each dependency artifact and Expose instruction should be specified
respectively before specifying all related instructions for the primary artifact.
After defining the relevant mapping between TOSCA NodeTemplate and eDocker-
file, the transformation steps can be defined. Similar to TOSCATopology2Compose
transformation, we proceed in two transformation steps, mainly M2M transforma-
tion outlined in Algorithm 3 and M2T transformation illustrated in the generation
algorithm 4. Consequently, after applying the Algorithm 3, Figure 5.10 (a) de-
picts a partial Dockerfile Model for the NodeTemplate vote. Here, Create operation
and primary artifact in the vote node are respectively matched to Create:Stage and
Fromins:Frominstruction, Addins: ADDinstruction and Cmdins:CMDinstruction in the
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Algorithm 3 M2M transformation Algorithm for transforming TOSCA Node into
Dockerfiles model

1: input: TOSCAMM, DockerfilesMM, TOSCA application typology TOat, Soft-
ware types Softype, platform types Platype, Docker types Doktypes

2: output: Dockerfiles Model DFmo

{Verifying the need for generating a Dockerfiles for the node}
3: for node ∈ TOat do
4: if node.type ∈ (Softypes ∩ Platypes) Doktypes then
5: DFmo.name= node.name
6: for operation ∈ node.interface do
7: DFmo.stage= map Operation2Statege()

{Mapping Primary artifacts into the corresponding instructions}

8: DFmo.stage.FromIns=map PrimaryArtifact2FomIns()
9: resolveOrder()

10: for file ∈ operation.primaryartifact do
11: DFmo.stage.AddIns=map File2AddIns()
12: resolveOrder()
13: end for
14: DFmo.stage.CMDIns=map PrimaryArtifact2CMDIns()
15: resolveOrder()

{Mapping Dependency artifacts into the corresponding instruc-
tions}

16: if operation.dependencyartifact.type! = operation.primaryartifact.type
then

17: DFmo.stage.FromIns2=map DependencyArtifact2FomIns()
18: resolveOrder()
19: end if
20: for file ∈ operation.dependencyartifact do
21: DFmo.stage.AddIns2=map File2AddIns()
22: resolveOrder()
23: end for
24: DFmo.stage.RUNIns=map DependencArtifact2RUNIns()
25: resolveOrder()
26: end for

{Mapping Port properties into the Expose instruction}
27: if Exist(node.port) then
28: stageexp=create newStage()
29: stageexp.ExposeIns=map Port2EXPOSEIns()
30: resolveOrder()
31: end if
32: end if
33: end for
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resulted vote dockerfile model. Additionally, Figure 5.10 (b) depicts the generated
dockerfile scripts for the vote Dockerfile model, after applying the generation algo-
rithm.

Algorithm 4 M2T Transformation Algorithm for generating Dockerfiles scripts from
the Dockerfiles Model

1: input: Dockerfiles Model DFmo

2: output: Dockerfiles scripts Dockerfiles
{Sorting the instructions in DFmo according to their execution orders}

3: OrderedListOfins= Sort Executionorders(DFmo);
4: for instruction ∈ OrderedListOfins do
5: Generate Instruction Scripts
6: end for

Figure 5.10: Transformation of the node template ”vote” depicted in Figure 5.8 to
Dockerfile-specific artifacts: (a) Dockerfile model; (b)Dockerfile script for installing
”vote” service

5.5 Terraform case-study

5.5.1 Building Terraform metamodel

Terraform [149] relies on a declarative configuration language to build, modify, and
versioning infrastructure descriptions. The aim is providing facilities to seamlessly
manage large infrastructures that can span across multiple cloud providers. By an-
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Figure 5.11: Terraform Metamodel (TerraformMM)

alyzing multiple Terraform references, we build the corresponding Terraform meta-
model (refer to Figure 5.11) that we named as TerraformMM. Terraform is the root
concept defining an encapsulated set of Modules. Modules are used to organize a set
of Terraform configurations with the aim of creating reusable groups of resource con-
figurations that can be easily shared between open-source developers. A Configuration
represents the core Terraform entity, which enables the definition of any infrastruc-
ture object by assigning values to its specific attributes. Any configuration definition
involves two key constructs, namely Arguments and Blocks. An Argument represents
a simple assignment of value to a particular attribute. Whereas, Block encompasses
a collection of Arguments needed to build a Configuration. There exist multiple kinds
of block as follows:

• Resource: A resource block defines a particular infrastructure object with de-
termined settings, such as compute instances, virtual networks, storage objects,
etc.

• Provider: A provider block aims at configuring the cloud provider, from which
the resources will be provisioned. This configuration requires specifying some
provider settings such as authentication credentials, endpoint URLs, regions,
and so one.

• Provisioner: A provisioner block defines specific operations that have to be
executed on the remote or local machine for preparing the use of infrastructure
objects by services. For instance, an operation can be the installation of an
Apache Tomcat server on a given compute instance. Typically, the provisioner
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Figure 5.12: Concrete block types: (a) Compute resource types; (b) Cloud provider
types

block is defined inside the resource block and whose execution can be at the
creation or destruction of the related resource.

• Connection: The connection block defines how a provisioner can access to given
resources. It typically defined inside resource or provisioner blocks.

• Variable: Variable block describes the input parameters for any Terraform con-
figuration module. Typically, the defined variables are assigned to the argument
values in the Terraform blocks.

• Output: Output block is used to define the return parameters after the execution
of a given Terraform configuration. Typically, these parameters are passed to
other Terraform configurations for subsequent management or communicated
to the interested users.

Each one of the above blocks may have any number of specific arguments and require
considering particular principles recommended by the Terraform curators. To support
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this, we introduced the concept named as Blocktype, while its structure is inspired by
the Entitytype which was introduced in the TOSCA standard. Blocktype is used to
define the semantics of a block that has assigned to this type. As a result, multiple
block types inherit the Blocktype are defined, including Resourcetype, Providertype,
Provisionertype, Variabletype, Connectiontype, etc. For instance, the resource block is
typed with Resourcetype, similarly, Providertype is used to define the type of a provider
block, and so one. This classification is a natural result of the existence of multiple
kinds of cloud resources, providers, middleware platforms that in turn dramatically
contributed to introducing multiples resource and service configurations. Generally,
through the ArgumentDefinitions and Constraints, each block type specifies the allowed
properties and considerations that the related block may have. In addition, block
types may inherit from each other, for instance, the Computetype which is specific
to computing resources may inherit from the generic Resourcetype which is used to
capture the general resources.
Furthermore, besides the abstract Terraform meta-model, we defined a set of norma-
tive block types by analyzing Terraform open-source projects and available configura-
tion modules from the Terraform Registry [48]. These normative types represent the
most recurring terraform configuration patterns, that can be either integrated as are
or customized in other configurations. As depicted in Figure 5.12, these types include
the following: Compute types define resource configuration blocks specific to AWS,
OpenStack and Google engine compute; Provider types define provider configuration
blocks for the same providers; And Provisioner types define provisioner configuration
blocks that are devoted for installing Docker and ApacheTomacat server on a remote
machine. It should be noted that other types can be defined in the same way. Fi-
nally, the defined types would be reused by our transformation method to produce
configuration blocks compliant to these types.

5.5.2 Transformation of TOSCA to Terraform

Illustration example. Basically, Terraform is intended to support two main func-
tionalities, namely the creation and provisioning of infrastructure and the configura-
tion of appropriate middleware environments that allow the successful deployment of
services on this infrastructure. In order to illustrate how our transformation could
support these two functionalities, we rely on the TOSCA topology illustrated in Fig-
ure 5.13, partially reflecting our motivating example. The topology involves tow
TOSCA nodes. The first node named vote representing a voting service that has to
be hosted on the second node named as app-server1 representing the compute resource
that would be provisioned by AWS provider with specific capabilities. This topology
model will act as a source model for the transformation of TOSCA into Terraform-
specific Artifacts.
Assumptions
As terraform is closely related to cloud providers and middleware platforms regarding
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Vote

Requirement

- database_endpoint: redisProperties:
port: 5000:80

Lifecycle.Standard

Create: 

implementation:

primary: 

A tifa tty th

app-server1

tosca.nodes.Computetosca.nodes.WebApplication.vote

Hosted On

Capabilities

host

properties:

disk_size: 10 GB

num_cpus: 2

mem_size: 8 GB

Properties:
name: nodeserver

1

Artifacttype:python

File: ……/app.py

dependencies: 

Artifacttype:text

File: 

…./demoapp/requirements.txt

OS

properties:

architecture: x86_64

type: Linux

distribution: ubuntu

version: 12.04

Metadata
provider: AWS

location: Europe

image: ubuntu

type: micro

provisioner: Docker

Connector: Terraform

Metadata
Connector: Docker

Figure 5.13: TOSCA topology

the way, in which resource, provider and provisioner configurations are described, we
assume the following assumptions:

• Assumption 1: The provider-specific information has to be known before launch-
ing the transformation. For instance, in the case where a user selects AWS as a
target provider, information includes the type of resource ( e.g., Large, Micro,
Medium, etc. [20]) and image (e.g. Ubuntu 64) could be computed from the
properties related to the computing node capabilities (CPU, RAM, OS, etc)
using one of the available selection algorithms [158]. Notice that the provider
itself can be selected automatically if the user wants this choice. Furthermore,
because they are irrelevant to the TOSCA topology and may contradict with
its technology-agnostic nature, these data are added in the metadata section
(refer to app-server1’s metadata in Figure 5.13) related to any compute node
and their computing is totally transparent to the user.

• Assumption 2: The used middleware platform has to be added in the metadata
section of any compute node for being able to determine which provisioner has
to be generated later. Similarly, the inferring of this data is done transparently
to the user. Indeed, the Host-On relationship, type of hosted service and target
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connector (Docker, or Kubernetes), if they are fixed by the user, represent the
main indicators to pick up which middleware platform has to be installed and
configured in the related compute node.

Transformation. Similarly to Docker Compose or any other DevOps solution, the
transformation of TOSCA into Terraform-specific artifacts involves two phases: M2M
Transformation and M2T Transformation. M2M Transformation is first performed
allowing the generation of the Terraform configuration model from the pre-defined
nodes for the infrastructure and middleware components. M2T Transformation is
then required to produce the underlying Terraform definition files from the generated
model at the first step. In addition to the mentioned assumptions, it is necessary to
clarify the possible mapping between TOSCA and Terraform meta-models to enable
both steps of transformation. The resulting mapping is summarized in Table 5.5.

Table 5.5: Mapping of TOSCA concepts to Terraform concepts
TOSCA concepts Terraform concepts
TopologyTemplate TerraformConfiguration
NodeTemplate Module with Resource, provider, connection

and provisioner blocks
Inputs Module with Input blocks
Outputs Module with Output blocks
Properties Arguments
RelationshipTemplate/Requirement dependson

As demonstrated the root concept TopologyTemplate can be mapped to TerraformCon-
figuration, which is a root concept in the target TeraformMM. Moreover, all Nodes
template building the intended infrastructure can be represented by the same Mod-
ule that comprises multiple configurations blocks: Resource, Provider, Connection,
and Provisioner block. More precisely, while considering the provider-dependent data
specified in its metadata section, each node typed with one of the common infras-
tructure types (e.g. Compute) will be represented by a configuration with a single
resource block. Likewise, the provider and provisioner configurations are interpreted
from the related node’s metadata section that is obtained according to the Assump-
tions 1 and 2. Furthermore, each TOSCA node that represents a connection between
two nodes, will be mapped to one connection configuration block. Indeed, current
version of TOSCA does not include a node type that reflects such a connection object.
Thus, the connection configuration block will be generated per default in the target
Terraform configuration model. Moreover, the TOSCA inputs are directly mapped to
a separate module, whose configuration is specified by means of input variable blocks.
Here, each input will be represented by a separate variable block. In a similar way,
TOSCA outputs will be mapped to a separate module containing one or more output
configuration blocks. In addition, the set of block-related arguments can be deduced
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Algorithm 5 M2M transformation Algorithm for transforming a TOSCA typology
into a Terraform configuration model

1: input: TOSCAMM, TerraformMM, TOSCA application typology TOat, Com-
pute Types Comtypes

2: output: Terraform configuration model TCmo

3: Module main, output, variable; Configuration Cpro, Cre, Ccon, Cprov; Target-
Provider Tr; TargetProvisioner Tp;
{Checking whether the node type is one of the compute types}

4: for node ∈ TOat do
5: if node ∈ Comtypes then
6: TCmo.main=map Node2Module();

{Determining what is the target provider AWS, OpenStack, etc.}
7: Tr=Resolve (node.metadata.provider);
8: TCmo.main.Cpro= map Node2ProviderConfiguration (Tr);
9: TCmo.main.Cre= map Node2ResourceConfiguration (Tr);

10: for pro ∈ node.metadata.provisioner do
11: Tp=Resolve(pro); {Determining what is the target provisioner, e.g.

Docker install}
12: TCmo.main.Cpro= map Node2ProvisionerConfiguration (Tp);

{Adding the provisioner Configuration to the resource configu-
ration}

13: Add(TCmo.main.Cre, TCmo.main.Cpro);
14: end for

{Creating a default Connection Configuration, whose type is SSH}

15: TCmo.main.Ccon=Create ConnectionConfiguration (SSH, ur, pwr);
{Adding the connection Configuration to the resource configura-
tion}

16: Add(TCmo.main.Cre, TCmo.main.Ccon);
17: end if
18: end for
{Mapping of relationship, inputs, and outputs are removed for brevity}
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from the properties related to each TOSCA entity (Node, Input, Output etc). Re-
garding relationships and requirements which capture the links between nodes, they
are mapped to dependson links, which in turn reflect the potential relations between
the resource configuration blocks.
After defining the relevant mapping between TOSCA and TerraformMM, the M2M
and M2T transformation steps can take place. Algorithm 5 represents the M2M
transformation logic. As a result of applying this algorithm to the source model de-
picted in Figure 5.13, a target Terraform model is automatically produced (see Figure
5.14). Accordingly, both demoGlobalconfig:Terraform and main:Module instances in
the target model are introduced for the well-structuring of the target model. Besides,
the source compute node ”app-server1” is transformed into a target resource block
named as nodeserverconfi, whose arguments are obtained from the metadata related
to this latter.

module

configuration

blockype

AWSECinstance

nodeserverconfig: Resource

label: resource

name: nodeserver

T _i t

AWS: Providertype

AWSconfig: Provider

label: provider

name: AWS

Arguement: 

region=«eu-west-1a »

demoGlobalconfig:Terraform

Configuration
DockerInstaller :

Provisionertype

InstallDocker: Provisioner

Swarmconfiguration:

Provisioner

blockype

block
block

contains

main:Module

1

AWSECinstance: 

Resourcetype
Type: aws_instance

Argument: ami=ami-123456789

Argument: instance_type=t2.micro

nodeSSHconnect:Connection

label: Connection

name: sshconnection

Argument: type= ssh

Argument: user = « username »

Argument: password = « password »

Argument: private_key = default

SSHconnection:

Connectiontype

Provisioner

ConfigureSwarmworker:

Provisioner

blockype

blockype
blockype

contains

contains

Figure 5.14: Target Terraform configuration model

In addition, since the source compute node is supposed to be provisioned by AWS
provider, the target nodeserverconfig is assigned to AWS instance type. Further-
more, the provider metadata related to the source node is used to create the provider
block named as AWSconfig, whose blocktype refers to AWS provider type and region
argument assigned to ”eu-west-1a”. Similarly, the provisioner metadata filled with
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”Docker” in the source node is used to create two provisioner blocks named ”In-
stallDocker” and ”ConfigureSwarmworker”, that are contained in the target resource
block. These latter blocks are of type ”DockerInstaller” and ”Swarmconfiguration”,
respectively. Finally, the connection block named nodeSSHconnect is generated by
default.
Finally, the obtained target Terraform model will be the main input of the M2T
transformation defined by a corresponding algorithm. As a result, Figure 5.15 presents
ready-to-execute Terraform scripts for a concrete deployment of the expected cloud
infrastructure.

# AWS # Setup the cloud provider "Amazon Web Services" (AWS)

provider "aws" {

access_key = "${var.access_key}"

secret_key = "${var.secret_key}"

region = "${var.region}"

}

# Setup of docker_manager resource

# removed for brevity as it is generated regardless of TOSCA Topology

# Configuration of nodeserver" resource mapped from the TOSCA compute node: nodeserver

resource "aws_instance" "nodeserver" {

ami = "${var.ami}"

instance_type= "${var.instance_type}"

#Define how to connect to this resource via ssh protocol

connection {

# Connection type# Connection type

type = "ssh"

user = "username"

private_key = "${file("InstanceAccessKeys/privateKey.pem")}" 

password = "password"} 

#Provisioner block is used to execute the required scripts to deal with docker services deployed on this resource

provisioner "remote-exec" {

script = "install-docker.sh"

}

provisioner "remote-exec" {

inline = [

"docker swarm join --token ${data.external.swarm_join_token.result.worker} 

${aws_instance.docker_swarm_manager.private_ip}:2377"

]}}

Figure 5.15: Terraform configuration scripts

5.6 Implementation

In this section, we discuss the implementation of our proposed approach. We devel-
oped a proof-of-concept called ToDev, an integrated and standards-driven orchestra-
tion framework based on TOSCA and DevOps technologies. The framework includes
open-source DevOps solutions, namely Docker, Terraform, and Kubernetes (Partially)
and empowered with MDE facilities to manage the involved models and transforma-
tion algorithms.
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5.6.1 Proof of Concept: ToDev

Our ToDev proof-of-concept aims at supporting DevOps users in the orchestration of
their cloud applications without a significant learning curve. As shown in Figure 5.16,
the internal architecture of ToDev is organized into diverse layers communicating with
each other.

DevOps users DevOps curators

Model

Frond-end layer

TOSCA ModelerUser Interface

Orchestration layer
Interpret DevOps

Meta-models
Connectors

EMF Editors Connector Editor

Control 
Create Create Develop

TOSCA2DSA 
Transformation 

DevOps Abstraction  layer

Integration Knowledge Layer

CR Orchestration 

Deploy

ControlUndeploy

Monitor

Native DevOps
Artifacts 

Orchestrator 

TOSCA Typology
YML/XMI

Generate
Transformers

(Transformation 
rules)

TOSCA 
Meta-model

Initialize

Execute

Docker 
Connector

Terraform
Connector

Kubernetes
Connector

DevOps Solutions 
layer

Provisioning layer

Figure 5.16: ToDev Architecture

• Frond-end layer. It is consists of two components: TOSCA modeler and
User interface. TOSCA modeler allows DevOps users to graphically model a
TOSCA-compliant application typology, representing the required services and
resources as nodes while capturing the dependencies between them by means
of relationships. The obtained application instance is then simply serialized as
YAML/XML file and communicated to the Orchestration layer for ensuring
the subsequent orchestration operations of the described application. A key
part of our TOSCA modeler implementation involves integrating xtext [56] and
Sirius [55] technologies. xText is acknowledged as an Eclipse-based development
framework for creating textual programming languages. Whereas, Sirius is an
open-source Eclipse project allowing the creation of graphical workbenches for
the domain-specific models based on four main dialects: diagrams, trees, tables,
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and matrices. The second important component in the Front-end layer is the
User interface which is devoted to act as the mediator between DevOps users
and the underlying orchestrator.

• Integration layer. It is in charge of providing the desired integration between
TOSCA and DevOps solutions. Precisely, this layer implements the core part
of our model-driven integration approach. Herein, appropriate meta-models,
transformations, and connectors are defined and registered. We assume that
one DevOps curator (e.g. domain expert) for a particular DevOps solution can
contribute to this task. With the aim of implementing this layer, we adopted the
Eclipse Modeling Framework (EMF) [54] for building all required meta-models
and generating the corresponding manipulation and testing plugins to support
their utilization later in the transformation phase. EMF is chosen as it is the
most widely used modeling framework today, providing rich constructors and
mechanisms for describing meta-models and automating their implementation
code as well.

1

2 modeltype TOSCA uses "http ://www.example.org/TOSCA";

3 modeltype compose uses "http :// www.example.org/compose ";

4

5 transformation TOSCAToComposeTransformation(in Source: TOSCA , out Target:

compose);

6 main() {

7 var a := Source.rootObjects ()[ServiceTemplate ];

8 a.map TOSCAToCompose ();

9 }

10

11 mapping ServiceTemplate :: TOSCAToCompose (): Compose {

12 description :=self.description;

13 services :=self.topologytemplate.entitytemplate ->map NodeMaptoService ();

14 networks :=self.topologytemplate.entitytemplate ->map NodeMaptoNetwork ();

15 volumes :=self.topologytemplate.entitytemplate ->map NodeMaptoVolume ();}

16

17 mapping EntityTemplate :: NodeMaptoService () : Service

18 when {self.type=" Application" and self.Resourcetype =" DataBase" and ...} {

19 name:=self.name;

20 dependon :=self.oclAsType(NodeTemplate).requirements.nodetemplate.late

resolve(Service);

21 properties :=self.properties ->map ToProperties ();

22 image:=self.oclAsType(NodeTemplate).artifacts -> map toImage ();

23 // mapping of other attributes

24 }

25

26 mapping EntityTemplate :: NodeMaptoNetwork () : Network

27 when {self.oclIsTypeOf(NodeTemplate) and self.type=" tosca.nodes.

Network "} {

28 name:=self.name;

29 // mapping of other attributes

30 }

31

32 mapping EntityTemplate :: NodeMaptoVolume () : Volume

33 when {self.oclIsTypeOf(NodeTemplate) and self.type=" tosca.nodes.

Storage "} {
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34 name:=self.name;

35 // mapping of other attributes

36 }

Listing 5.1: QVTo implementation of the Algorithm 1 for the TOSCA2Compose
M2M transformation

In addition, we implement our model-driven transformation technique as a set
of automated transformers, each one represents a concrete implementation of
a particular transformation algorithm presented above. More specifically, we
selected QVTo language to implement the M2M transformation and Xtend2
language to implement M2T transformation. For instance, in the context of the
TOSCA to Docker transformation, listing 5.1 presents a QVTo implementation
of Algorithm 1 for TOSCA2Compose M2M transformation, whose main steps
are specified using the so-called mapping rules. Whereas, listing 5.2 represents
the implementation of Compse2Yaml transformation (See Algorithm 2) using
the Xtend2 template features.

1def ComposeModel2Composefile(Compose composeinstance , IFileSystemAccess

fsa) {

2fsa.generateFile(composeinstance.name +".yml", ’’’

3version: <<composeinstance.version >>

4services:

5<<FOR service: composeinstance.services >>

6<<service.name >> :

7image: <<service.image.name >>:<<service.image.version >>

8ports:

9"-<<service.ports >>"

10depondon:

11<<FOR element: service.dependon >>

12-<<element.name >>

13<<ENDFOR >>

14networks:

15<<FOR network: service.networks >>

16-<<network.name >>

17<<ENDFOR >>

18volumes:

19<<FOR volume: service.volumes >>

20-<<volumes.name >>

21<<ENDFOR >>

22deploy:

23replicas: -<<service.replica >>

24/* Adding other service properties is possible */

25<<ENDFOR >>

26networks:

27<<FOR network: composeinstance.networks >>

28<<network.name >> :

29<<ENDFOR >>

30volumes:

31<<FOR volume: composeinstance.volumes >>

32<<volume.name >> :

33<<ENDFOR >>

34’’’)}

Listing 5.2: xTend2 template implementation of Compose2Yaml transformation
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Besides, we provided a Connector editor that enables DevOps curators to define
the desired Connector as an instance of the ECMM meta-model. Once the con-
nector instance is defined, an M2T transformation algorithm implemented using
xTend2 is applied to generate the native java code related to this connector. If
needed, this connector code must be completed by DevOps curators.

• Orchestration layer. Orchestration layer is governed by the so-called Or-
chestrator component which is in charge of managing the typical application
life cycle at the behest of DevOps users. This orchestrator firstly interprets the
TOSCA application typology defined by the DevOps user in order to gener-
ate all DevOps-specific artifacts required for the orchestration purpose. This
generation is done by executing the appropriate transformers that exist in the
Integration layer, on the source application typology. Once the required arti-
facts are available, the DevOps user can initiate the orchestration process of the
provided application. For doing so, the orchestrator collaborates with the De-
vOps abstraction layer that is empowered by a set of Connectors to execute
the end-to-end orchestration operations. In the scope of this chapter, four main
operations are supported, namely: Initialisation, Deployment, Undeployment
and Controlling (Start, Stop, Restart). Other operations including monitoring
and advanced runtime controlling, in particular, scaling and dynamic reconfig-
uration are the subject of the next chapter as they are especially devoted to
support the multi-management of elasticity.

• DevOps and Provisioning layers. Both layers include the external compo-
nents of our ToDev framework. DevOps solutions layer consists of the DevOps
solutions that offer the concrete execution of orchestration operations by com-
municating with cloud providers’ platforms and requesting the enforcement of
the appropriate management actions. Whereas, Provisioning layer includes the
different cloud providers infrastructures providing resource capabilities to ensure
the successful hosting and management of user applications.

5.7 Experiments and Validation

This section discusses the validation of our approach by conducting three experiments
using the ToDev framework described above. In the following, we present our eval-
uation objectives, describe the diverse use cases that we used, and finally detail and
analyze the conducted experiments.

5.7.1 Objectives

In order to evaluate the effectiveness of our approach, we fixed the following objectives
while outlining the utility of each one:
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1. Since we want to demonstrate that our model-driven integration between
TOSCA and DevOps solutions can streamline the orchestration process, we will
evaluate the gained productivity in comparison to a specific DevOps solution
that implies the manual configuration of Docker and Terraform.

2. Since our underlying solutions (i.e. model-driven transformation and Connec-
tors) for supporting the desired integration may introduce a counter-effect, we
will evaluate the overhead introduced by our approach in comparison to the
manual configuration of Docker and Terraform.

3. Because of our model-driven transformation technique represents a key factor
for offering the desired integration, we will evaluate the performance (in terms
of execution time) of transforming of TOSCA into DevOps-specific artifacts.

5.7.2 Use cases

With the aim of evaluating the above objectives: we adopted the following application
use cases.

1. Use case 1: represents an open-source Wordpress application that comprises
a Web application front-end installed onto a local Apache Tomcat server.

2. Use case 2: represents the application of the motivating example, with the
only difference that it has to be deployed only on the Google Compute Platform
(GCP). It consists of five services and 2 GCP virtual servers.

3. Use case 3: represents the application of the motivating example, with the only
difference that it has to be deployed only on the amazon web service platform.
It consists of five services and 2 AWS virtual servers.

4. Use case 4: represents the application of the motivating example that will be
deployed both on AWS and GCP platforms. It consists of five services and 2
AWS virtual servers and 2 GCP virtual servers.

5. Use case 5: represents a pizza store application consists of Nodejs, MongoDB,
Elasticsearch, Logstash, and Kibana services. Each one of these services has to
be deployed on a separate server from AWS cloud. In addition, a demo pizza
application has to be hosted on the Nodejs server which is enabled by some
monitoring facilities using the Syslog and Collectd services that are devoted to
collect the logs. In total, there are seven services and five AWS servers, which
are created with this deployment.

5.7.3 Testbed environment

Through this evaluation, we have used the testbed environment shown in Table 5.6.
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Characteristics Local DELL machine AWS Servers GCP Servers

Description A physical machine in
which ToDev is deployed

2 to 6 elastic compute
cloud (EC2) instances
of a1.large type, that
are used to deploy ser-
vices in the use cases 2,
4, and 5

3 compute instances
of n1-standard-1 type
that are used to deploy
services in the use cases
3 and 4

Memory 11 GB 4 GB 4 GB
Processor Intel(R) Xeon (R)CPU

W3530 @2.80GHz
2 vCPU 2 vCPU

Disk 233.3 GB 8 GB 64 GB
Operating
system (OS)

Ubuntu 16.04 LTS amd64

Table 5.6: Characteristics of the used Testbed environment

5.7.4 Experiment 1: Productivity evaluation

We evaluate the productivity in terms of (i) the time taken to complete the mod-
eling task and (ii) the total number of lines-of-code (LOC) of the DevOps-specific
artifacts generated by our transformation technique for three uses cases 2, 3 and 4.
For instance, Figure 5.17 provides a tree structure view on the generated artifacts
regarding the third use case. More precisely, our approach generated compose.yml file
describing all involved services, 2 Dockerfiles for Vote and Result nodes and a set of
Terraform scripts files devoted for configuring the virtual servers provisioned from the
AWS provider. We checked the correctness of all these artifacts by executing their full
deployment on AWS. For quantitative comparison purposes, we performed the same
task with Docker and Terraform without any support from our approach, that is all
DevOps-specific artifacts are manually created based on the technical requirements of
each involved DevOps solution. The results of the experiment in Table 6.5 shows the

Figure 5.17: Generated artifacts for Docker and Terraform from the TOSCA typology
of use case 3

time taken and LOC using our ToDev framework and the combination of Docker &
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Parameters Our Approach Docker & Terraform

Case 2
time for the modeling task
(min)

31.6 120

lines-of-code 381 (TOSCA YML file+ gen-
erated artifacts)

247

Case 3
time for the modeling task
(min)

31.6 120

lines-of-code 382 (TOSCA YML file+ gen-
erated artifacts)

246

Case 4
time for the modeling task
(min)

45.9 140

lines-of-code 544 (TOSCA YML file+ gen-
erated artifacts)

360

Table 5.7: Evaluation of the overall productivity

Terraform, for each selected use case. As shown, the time taken to complete the task
was significantly reduced using our approach in comparison to the other solution (i.e.,
Docker & Terraform). For instance, regarding Case 2, it was reduced by 70%, where
the task took, on average 31,6 min using our approach and 120 min using Docker &
Terraform. We argue that the adopting of a standard like TOSCA improves the time-
to-modeling. Moreover, considering the mapping and translation support offered by
our approach to generate the required artifacts, the time-to-modeling can only im-
prove several-fold. Moreover, the number of LOC was increased using our approach.
For instance, regarding Case 2, Docker & Terraform required 247 lines-of-code while
our approach produces 381 lines-of-code, where 135 lines are related to the TOSCA
model that is designed by the user and 246 lines are generated from this model. Given
these observations, we confirm the improved DevOps productivity offered by our ap-
proach in terms of reducing modeling time and generating the corresponding artifacts
without any loss.

5.7.5 Experiment 2: Overhead evaluation

We evaluate the overhead introduced by our approach regarding both the single and
multi-cloud of cloud applications. Accordingly, we deployed the applications intro-
duced in use cases 1, 2, 3, 4 according to two scenarios; (i) using our approach and (ii)
using deployment scripts executed directly by the Terraform and Docker command-
line interfaces. For better estimation of the introduced overhead, we repeat the de-
ployment of each use case according to the two scenarios ten times.
Table 5.8 shows the results in terms of variance, average, minimum and maximum
time values, as well as the overhead introduced by our approach for deploying each
use case. There is no stark difference between the obtained overhead for the different
uses cases. Even though the use case 4 involves multi-cloud deployment across two
providers, which requires more configurations comparing to the use cases 2 and 3, it
does not provide the highest overhead. Indeed, from a technical point of view, we
can say that the coordination between the Orchestrator and the underlying DevOps
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Use cases Scenario variance minimum
(sec)

maximum
(sec)

average
(sec)

Overhead

Use case 1: Baseline
deployment scripts 0.9 9 12 10,5 -

Local deployment Our approach 0.9 10 13 11,5 1,09 %

Use case 2:
deployment scripts 2,6 162 167 164,4 -

Single deployment on
GCP

Our approach 8,9 165 176 171,4 1,04%

Use case 3:
deployment scripts 2,6 152 157 154,7 -

Single deployment on
AWS

Our approach 4,7 160 166 162,4 1,04%

Use case 4:
deployment scripts 4,2 325 330 327,4 -

Multi-deployment on
AWS and GCP

Our approach 2,9 340 345 341,7 1,04%

Table 5.8: Deployment Overhead

connectors is the main reason for introducing the observed overhead (∼ 1%). Despite
that, we can confirm that the introduced overhead by our approach is very small and
still negligible compared to the provided benefits.

5.7.6 Experiment 3: Transformation evaluation

With the aim of evaluating the transformation performance, we perform a series of
transformations using all of the selected use cases. Accordingly, we first use our
ToDev framework to model the corresponding TOSCA topology model for each use
case. Afterward, we execute the transformation for each TOSCA topology model to
generate the equivalent DevOps-specific artifacts ten times. Here we note that we
use the first use case to establish our baseline transformation as it only contains a
WordPress node hosted on a server node.

Parameters Case 1 Case 2 Case 3 Case 4 Case 5

Complexity (LoC) 45 135 136 184 227

Average transformation Time
(sec)

5 10,4 10,1 11,5 13

Table 5.9: Evaluation of the transformation performance.

Table 5.9 shows both the complexity of the TOSCA topology model for each use case
and the average time of its transformation toward DevOps-specific artifacts. The
complexity of each TOSCA topology is measured in terms of number of lines-of-
code. For example, Case 2 has 135 lines of code, which in turn corresponds to 41
instances of TOSCA elements computed as follows: 8 nodes+8 types+8 properties+5
requirements +5 operations+7 artifacts. By looking at the obtained transformation
times, we observed that it remained consistently small for each use case. Although
the complexity is growing, the time for each use case remained between 5 and 13
ms. Therefore, we confirm the reasonable performance offered by our transformation
technique.
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5.8 Conclusions

In this chapter, we achieved our objective mentioned in the thesis problematic which
is streamlining and improving the orchestration of cloud resources. For doing so, we
provided two key mechanisms to support a seamless integration between TOSCA and
DevOps solutions. Concretely, we provided a model-driven translation technique to
translate TOSCA applications into native DevOps-specific artifacts that are ready
to be executed by the underlying DevOps tools and APIs. Our translation tech-
nique follows the key MDE principles, i.e. the use of models as first-class entities
and transformation language support. This has been advocated in order to ensure
an automated mapping between TOSCA and DevOps solutions at a high level of
abstraction, which eases its synchronization and extension when needed. Besides, the
second mechanism is the DevOps abstraction layer that is based on a set of high-
level connectors in order to avoid the heavy lifting involved when interacting with the
underlying tools/APIs of target DevOps solutions.
Our model-driven approach is concretized by creating a proof-of-concept called
ToDev which leverages open-source DevOps solutions and MDE facilities. We vali-
dated our approach by conducting a set of experiments especially devoted for demon-
strating its gained productivity, introduced overhead and its transformation perfor-
mance. Experiments demonstrate that our approach provides a powerful enhance-
ment to DevOps productivity, introduces negligible overhead and has a reasonable
transformation performance.
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6.1 Introduction

This chapter introduces our approach towards supporting the high-level management
of multi-cloud elasticity. Specifically, we focus on providing high-level abstractions
with which cloud elasticity features can be intuitively and easily described, as a
step toward coping with the actual cloud heterogeneity and the inherent techno-
logical challenges. With this in mind, we advocate the support of elasticity features
at the resource description level by decoupling its specifications from low-level and
technology-dependent resource reconfigurations.
Concretely, we propose a novel cloud Elasticity Description Model (cEDM) to specify
elasticity features related to cloud resources regardless of the technical specifications
of any resource provider platform or any enforcement mechanisms. Our model is en-
dowed with a novel abstraction known as Cloud resource requirement and constraint
State Machines (C-SM) that allow capturing elasticity behavior through a flexible
characterization of resource requirement variations during different phases of the ap-
plication life-cycle. More precisely, in this abstraction, we use the notion of states
to characterize application-specific resource requirements (e.g., CPU and storage us-
ages), and constraints in terms of costs and SLA objectives (such response time should
be less 3 seconds, etc.). Whereas, we use the notion of transitions to automatically
trigger controller actions (scale-out VM, migrate VM, etc.) when certain conditions
(i.e. resource CPU usage increases beyond a certain threshold, etc.) are satisfied in
order to perform the desired resource (re-) configurations to satisfy the requirements
and constraints of target states.
To support the execution of our C-SM, we generate the appropriate low-level artifacts
required for the online monitoring, execution and controlling of all elasticity policies
described under C-SM. With the aim of avoiding the complexity incurred when ma-
nipulating and maintaining these kinds of artifacts which are often heterogeneous,
we propose to structure them as Event-Condition Action (ECA) rules. These ECA
rules would then exploited by a rule engine in order to support the enforcement and
runtime control of elasticity. We choose to deal with the Drools rule engine because it
is known by providing a good compromise between the expressivity and performance.
Furthermore, for making decisions about which elasticity actions have to be executed,
it is required to provide the related operation data, including resource metrics, states,
events, etc. To provide this need, we propose an integrated monitoring system that
is generic and technology-independent enough for being able to collect and analyze
data across different layers and heterogeneous clouds. The proposed monitoring sys-
tem will work in tandem with the Drools engine to provide an appropriate runtime
environment to execute elasticity policies defined in our model.
Finally, all these solutions have been prototypicality implemented toward providing
a holistic and integrated system for high-level management of multi-cloud elasticity,
that we named as cEDMCore. With the aim of validating the feasibility of our
system, we conduct two extensive experiments that specially devoted to evaluate two
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Figure 6.1: Cloud resources and their elasticity requirements for deploying an E-
commerce application

assessment criteria: productivity and performance. The productivity evaluation is
performed using a case-study with academic and professional users and their results
compared to existing solutions like the IBM Softlayer Auto Scale [78] and AWS Auto
Scaling [26] and Terraform [149].
The remainder of this chapter is structured as follows: In section 6.2, we articulate
the motivations of our novel model through a real cloud scenario. In section 6.3,
we introduce our model, which consists of a set of high-level abstractions to capture
the elasticity behavior related to cloud resources. Section 6.4 describes our proposed
system and the underlying components. Section 6.5 presents the evaluation of our
work and the interpretation of the experimental results. Finally, an overview of our
chapter conclusions is given in Section 6.6.
The work in this chapter was published in conference proceedings [35] and peer-
reviewed journal [36].

6.2 Motivation

In this section, we investigate through a motivating example, specific limitations
among existing cloud resources elasticity solutions.
Motivating Scenario. Consider a cloud user wants to specify resource require-

ments, constraints and elasticity policies for deploying an e-commerce application
(refer to Figure 6.1), which consists of a MongoDB service, a JS application based
on a NodeJS server and online-payment service . The cloud user selects Amazon web
services (AWS), where each application service could be hosted on a separate Virtual
machine (VM). For instance, he/she needs 5 instances to be always available for a
specified period regarding the VM that will host the JS application. Each VM in-
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stance has 8 GB RAM and 4 GHz CPU. As QoS constraints, the user would like that
the availability for each instance must be at least 99%. Moreover, when the average
CPU usage for 5 minutes is greater than or equal 80%, she wants 5 more instances for
each VM to be added from AWS. In contrast, these 5 instances should be removed
whenever the average CPU usage is less than 20%. However, during the business
spikes every weekend, whenever the application reaches 10 instances in AWS, she
wants to horizontally scale out into another cloud like Openstack or Google compute
platform (GCP) by adding 6 instances. In the same way, the requirement, constraints
and elasticity policies for the other application resources can be defined.
To realize this scenario, the cloud user has two possible solutions to follow: using
proprietary solutions of the selected cloud provider or developing from scratch a cus-
tomized program. While the first solution requests less development effort than the
second, it limits the cloud user to one cloud provider. Precisely, proprietary solutions
of a particular cloud provider cannot be applied to manage and control elasticity of
cloud resources acquired from other providers. Therefore, cloud user has to follow the
second solution to exploit cloud resources from multiple providers. This implies that
cloud user has to employ multiple monitoring and enforcement tools either from cloud
providers (e.g. AWS, Openstack, GCP) or existing DevOps solutions (e.g. Docker,
Terraform, Juju, etc.) to support different management aspects related to elasticity.
However, with the expanding complexity of cloud, this proves as too cumbersome
and time consuming task. Moreover, the fact that each cloud solution employs its
individual resource description models, management interfaces and capabilities and
relies on low-level script-based APIs, can only complicate this task several-fold .
Based on these observations, we concluded that existing cloud resources description
models (RDMs) and elasticity solutions (1) are rarely transparent and adaptive to sup-
port the management of resources across various providers; (2) oblige users to acquire
new expertise in multiple RDMs and different elasticity implementation mechanisms;
and (3) lead to a costly environments and potential vendor lock-in as exploiting
resources from a new provider demands an extensive programming effort [47]. To
resolve the challenges related to cloud resources description, previous research fol-
lows two possible approaches: proposing a new unified model or using standards like
TOSCA [116] and OCCI [118]. However, less attention has been paid to elasticity fea-
tures, especially the issue of their modeling. Therefore, in our work, we are specifically
interested in providing high-level modeling abstractions, with which cloud resource
elasticity features can be intuitively described without referring to any Provider/De-
vOps specific elasticity mechanisms (e.g . specific monitoring and reconfiguration
APIs)

6.3 An embryonic elasticity description model

In this section, we identify a set of key high-level modeling abstractions that allow
users to specify their required cloud resources and associate them with the intended



An embryonic elasticity description model 147

Figure 6.2: UML class diagram for the cloud elasticity Description Model (cEDM)

elasticity polices without referring to any low-level or specific technologies. To do so,
our original intent orients toward understanding the common concepts and character-
istics used when describing cloud resources and their elasticity features from several
providers, including AWS [26], Azure [107], GCP [72] , IBM [78], Openstack [123] and
from diverse DevOps solutions, including, kubernetes [90], Docker [49], Juju [152], and
Terraform [149]. We selected these solutions as they are widely adopted, represent
the range of different types of available cloud solutions (commercial offers and open
source implementations) and target diverse cloud resource types (IaaS, PaaS, SaaS).
Our analysis strategy is enough rational, and is based on two main principles:

• determine a set of abstractions that are very simple, so we can start from a
minimal base and progressively extend it as needed.

• avoid the complex abstractions that we could have thought useful, and that may
even be needed in some cases, but that are rarely used in practice.

Accordingly, in Section 6.3.1, we focus on the basic abstractions to be included when a
cloud resource is acquired from a single provider. Whereas we are showing in Section
6.3.2 how to extend these abstractions in order to support the multi-provider scenario.

6.3.1 Abstractions overview

Fig. 6.2 represents the conceptual UML model illustrating the main abstractions of
our cloud elasticity Description Model (cEDM). To illustrate it, we rely on the moti-
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vating example previously described in section 6.2, which consists in deploying an E-
commerce application both on AWS and OpenStack. As shown in Fig.6.2, cRDMEn-
tity is the top level entity in our model, which can be specialized into CloudResource,
Group, C-SM, .

• CloudResource: indicates the target of elasticity (i.e. scope), which can in-
frastructure, platform, or a software object, and potentially everything as a
service from hardware resources to business applications. It is described by a
reference id and name inheriting from the cEDM entity. id is assigned automat-
ically by the system, name indicates the used reference name for this resource
in the resource description model. Here it should be noted that the entire de-
scription of the concerned resource is given by the used resource description
model, which is TOSCA [116] in our context, but it can any other model. Typ-
ically, Cloud users have diverse requirements that need to be satisfied by the
provider when selecting the desired cloud resources. In addition to the require-
ments, cloud users naturally may define constraints over cloud resources, which
must be respected at the selection and runtime. Motivated by these needs, we
associate the cloud resource entity with the following two concepts: Resource
Requirements, Resource Constraints

– Resource Requirements: include the set of requirements regarding cer-
tain cloud resource properties. The set of Resource Requirements is defined
by a logic name and a reference id and consists of one or more require-
ments, where each one is defined by property-value pairs for describing the
desired requirement, such as CPU, RAM, provider, region, etc.

– Resource Constraints: include the set of constraints regarding certain
cloud resource properties that need to be respected at the selection phase
and runtime. Resource Constraints are defined through a reference id and
a logic name and is composed of one or more constraints. Each constraint
is expressed through a set of attributes including property indicates the
resource metric; operator indicates the comparison operator such =, >=,
etc.; value indicates a value for this property ; and unit indicates the used
unit if needed.

• Group: is introduced with the aim of simplifying for cloud users the manip-
ulation and the configuration of complex systems that involve exploiting a big
number of cloud resources. It allows grouping cloud resources that share the
same elasticity behavior and managing them as one group. It is defined through
a reference id, a name, a description and is composed of at least two cloud re-
sources.

• CSM: represents an extended version of the traditional state machine, allowing
the definition of the elasticity behavior of a cloud resource. Indeed, state-based
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models have been broadly used to model the reactive behavior of systems. This
inspires us to use this model in order to capture the elasticity behavior by
characterizing the resource requirement variations over time and different phases
of the application life-cycle. For instance, a conference submission site will
require more resources one week before each deadline, but less at other times.
Conceptually, the C-SM machine is defined through a logic name, a reference
id and is composed of a set of states and a set of transitions. We describe state
and transition abstractions in the subsections 6.3.1.1 and 6.3.1.2.

Figure 6.3: C-SM: Cloud resource requirement and constraint State Machines

6.3.1.1 States

We use states to characterize application specific resource requirements and con-
straints, therefore we associate it with the Resource requirements and Resource con-
straints abstraction as shown in Fig.6.3. As well, each state has an id, a name and a
type indicates whether the state is initial, intermediate or final.
Example. As illustrated in the figure 6.4, CSM instance consists of four states S1,
S2, S3 and S4 that VM1,VM2 in VM-group may go through during the application
life cycle where S1 is the initial state and S4 represents the final state. Additionally,
each state is annotated with resource requirements that should be satisfied under that
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Figure 6.4: cEDM instance provided by the cloud user for the motivating scenario

state. For example, in case of VM1, the state S1 can only be reached if 5 instances
of VM1 from AWS have been started.

6.3.1.2 Transitions

We use transitions to express the possible elasticity policies (also called re-
configuration policies) that may be occurred during the whole life-cycle of a cloud
resource. In particular, these transitions will be automatically triggered when certain
events are detected. This will ultimately triggers actions that perform the desired
resource re-configurations to satisfy the requirements and constraints of target states.
Conceptually, as shown in Fig. 6.2, each transition is specified by id that indicates the
identifier to refer this transition, a logic name, source that indicates the source state
and target that indicates the target state. It consists of zero or one event and zero or
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one re-configuration action that must be triggered once the related event occurs.

6.3.1.3 Events.

As in software engineering, Event in the context of cloud resources represents the
occurrence of any change that results in triggering of certain actions on a cloud
resource to adapt to that change. Typically, events can be triggered by the user, the
cloud resource itself in a consequence of the satisfaction of some conditions overs its
resource-related metrics, or out of the cloud resource context like time, environment,
market, and so forth. Accordingly, we distinguish three event types to trigger a
reconfiguration action: Temporal Events, Resource Related Events, and User Action
Events (refer to Fig. 6.2). Each event is specified through a logic name, a reference
id, a predefined predicate type and an expression that encompasses the body of the
event according to the predefined predicate type using EBNF common grammars.
Temporal Events. Actions may require that certain temporal events must be oc-
curred to be executed. We identify two patterns that these events can take: specified
date and periodicity patterns as they are the most used in practice [26,78]. The spec-
ified date pattern specifies that an action needs to be executed at a specified date.
We define it through a predicate called TS-Event(c) with c defined as follows:

1 <c>::= ’Date=’ <D> | ’Date=’ ’[’ <D> ’,’ { <D> ’,’ } ’]’

2 <D>:: <yy >’-’<mm>’-’<dd > ’ ’ <hh >’-’<mm>’-’<ss > <format >

3 <format >:: ’am ’| ’pm’

with Date is a clock, and D is an absolute date which can be expressed as yy-mm-dd
hh-mm-ss am/pm format. For example, as shown in Fig.6.4, TS-Event (Date=2019-
12-31 11:00:00 am) within the transition T5, T6 and T7 represents a temporal event
expressed using this pattern, which will be triggered on 2019-12-31 at 11:00:00 am.
Whereas periodicity pattern specifies that a certain action needs to be executed follow-
ing a certain periodicity rule over time, which is defined using TP-Event (p) predicate
with p is defined as follows:

1 <D>::= ’Every ’ <weakday > ’-’ { <weakday > ’-’ } ’at’ <Time >

2 | ’Everyday ’ ’at ’ <Time > ’Except ’ ’ <weakday > ’-’ { <weakday > ’-’}

3 <weakday >::= Mo | Tu | Wed | Th | Fr | Sa | Su

4 <Time >::= <Hour >’:’<Minute >’:’<Second >’am ’|’pm’

5 <Hour >::= 01 | 02 | 03 | 04 |.... | 12

6 <Minute >::= 00 | 01 | 02 | 03 |.... | 60

7 <Second >::= 00 | 01 | 02 | 03 |.... | 60

For instance, as shown in Fig.6.4, TP-Event (Every Saturday at 8:00:00 am) within
T3 represents a temporal event, expressed using the above notations, which shall be
triggered every Saturday at 08:00:00 am.



152
Managing multi-cloud elasticity using higher-level abstractions based on state

machine

Resource Related Events. An action needs to be executed once certain resource
metric meets a predefined reference value (i.e., threshold) . That type of events
includes two sub-types of event that we call Resource Usage Events and QoS Events.
The former is defined using metrics related to the usage percentage of a resource such
CPU usage, RAM usage, etc. Whereas the latter is expressed through QoS (i.e.,
Quality of Service) metrics such availability, response time, throughput, etc. Both
event sub-types are defined using the predicate type Q-event(m, k, fc, op, rv, un, w,
tm, tg), where:

• m is the metric; k precises the metric kind whether measurable or abstract;

• fc precises the metric evaluation way (e.g. none, average, maximum, minimum,
etc...);

• op ∈ {==, 6=, <, >, <=, >=}; rv is the reference value; un is the used unit;

• w defines a time window during which the metric could be evaluated;

• tm defines the number of consecutive times that an event has to occur to trigger
the action;

• tr represents which target resource this metric is related to, which by default
represents the resource associated with the state machine and it is assigned auto-
matically by the system.

Example. In our motivation example, as shown in Fig.6.4, the cloud user defines
their resource-related event in terms of CPU usage, such as Q-Event (CPUusage,
average, >=, 80%, 120s, 3, g1) within T1, which checks whether the CPU
usage average is greater than or equal 80% during a window of 2 minutes for 3
consecutive times across all VM1 (in case of VM1) or VM2 (in case of VM2) instances.

User Action Events. Actions are executed at the behest of a cloud user. For
instance, a cloud user can demand to set manually the capacity of his/her VM in-
stances. These events are defined through a predicate called U-Event (u) over a set
of messages M, with u defined as follows:

u::= message=e (T r)

with message is an incoming action message from a user and e ∈ M and the
T r is the name of the target resource. For example, U-Event (message=Stop
(VM1)) will be triggered when we receive from user a stop message related to
the VM1 resource. Other messages include delete, restart and start. Advanced
messages related to migrate, scale, and update actions will be considered in the future.
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6.3.1.4 Reconfiguration actions.

Reconfiguration actions specify how a cloud resource should behave when certain
events occur. In our model, we have considered five reconfiguration action categories:
horizontal scaling, vertical scaling, migration, application reconfiguration and basic
actions. Each reconfiguration action is defined by a name and a set of action
attributes that define required inputs to execute this action. Both name and action
attributes of each action are defined depending the category of action (refer to Fig.
6.2). For the sake of clarity, in the following, we choose JSON schema to show the
required attributes for each action.

Horizontal Scaling (HS): As shown in listing 6.1, an horizontal scaling action has
as name Scale-in or Scale-out and it should contain the following action attributes:
resource-target, adjustment-type, adjust, cooldown. The resource-Target represents
the name of the resource that will be adjusted. The adjustment-type specifies
the way of change which can be change in capacity (i.e. Add/Remove the given
number of resource instances), exact-capacity (Set the current number of resource
instances to the given number) or percent-change-in-capacity (Add/Remove the given
percentage to the number of resource instances). The adjust specifies a value, its
meaning depends on adjustment-type and finally the cooldown indicates the time pe-
riod during which no other reconfiguration actions for the same resource will be taken.

1 { "HorizontalScalingAction" : {"id" :{" type": "string"},

2 "name " :{" type": "enum[’scale -in’, ’scale -out ’]"},

3 "actionattributes ":{

4 "resource -target ":{" type ":" string"},

5 "adjustment -type ":{" type ":" enum[’exact -capacity ’, ’change -in-capacity

’, ’percent -change -in -capacity ’]"},

6 "adjust ":{" type": "string"},

7 "cooldown ":{" type": "number "}

8 } }}

Listing 6.1: Horizontal Scaling specification

Vertical Scaling (VS): As shown in listing 6.2, a vertical scaling action has as name
Scale-up or Scale-down while it has the same action attributes of horizontal scaling
type. Moreover, we add along with the provided attributes the “attribute-target” to
indicate the attribute name (e.g. CPU, RAM) of a resource to be modified.

1 { "VerticalScalingAction" : {"id" :{" type": "string"},

2 {"name": {"type" : "enum [’scale -up ’, ’scale -down ’]"},

3 "actionattributes ":{

4 "resource -target ":{" type ":" string"},

5 "attribute -target ":{" type": "string"},
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6 "adjustment -type": {"type ":" enum[’exact -capacity ’, ’change -in

capacity ’, ’percent -change -incapacity ’]"}, "adjust ":{" type": "string"},

7 "cooldown ":{" type": "number "}

8 }}}

Listing 6.2: Vertical Scaling specification

Migration: As mentioned above, we distinguish two types of migration: VM
Migration and Application migration. In this category, we find only one action which
is a migrate action. As shown in listing 6.3, a migrate action has as name “migrate”
and contains a set of attributes: The Target represents the name of the VM or the
application component that will be migrated. The “host” which can be filled by
the host name (e.g. the name of a node in case of a VM migration or the name of
VM in case of an application component of a cloud user). In some cases, it is filled
by “None”, so the controller must choose the appropriate host automatically. The
migration type indicates the type of migration: Cold (requires to turn off a VM or
application component before transferring it to another host) or Hot (allows to move
a VM or application component without stopping it).

1 { "MigrationAction" : {"id" :{" type": "string"},

2 "name": "migrate",

3 "actionattributes ":{

4 "target ":{" type": "string"},

5 "host ":{" type": "string", "default ": "None"},

6 "type ":{" type": "enum [’Cold ’, ’Hot ’]"},

7 "cooldown ":{" type": "number "}

8 }}}

Listing 6.3: Migration action specification

Application Reconfiguration (AR): In that category, we find only one action
which is an update action. As shown in listing 6.4, an update action has as name
“update” and contains a set of attributes: the Target represents the name of the
concerned application component; the “attribute-target” indicates the attribute
name (e.g. cache-size) to be modified and finally the “attribute-value ” indicates the
new value to be assigned.

1 { "ApplicationReconfigurationAction" : {"id ":{" type": "string"},

2 "name": "update",

3 "actionattributes ":{

4 "resource -target ":{" type": "string"},

5 "attribute -target ":{" type": "string"},

6 "attribute -value ":{" type": "string "}

7 }}}

Listing 6.4: Application Reconfiguration specification
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Basic Actions: regroup the basic actions applied on a cloud resource including:
Start (start the running of a resource), Stop (stop the running of a resource), Restart
(restart the running of a resource) and Delete (delete definitely a resource). As
shown in listing 6.5 each basic action should contain a name that should be Start,
restart, Stop, or Delete and resource-target as attribute that indicates the name of
the resource to be manipulated.

1 { "BasicAction" : { {"id" :{" type": "string"},

2 "name": {"type" : "enum [’start ’, ’stop ’, ’delete ’, ’restart ’]"},

"actionattributes ":{

3 "resource -target ": {"type": "string "}

4 }}}

Listing 6.5: Basic action specification

Example. In our motivation example, as shown in Fig.6.4, the cloud user used both
the horizontal scaling and basic actions. For example, Scale-out (“VM1 compute”,
“AWS”, “change-in-capacity”, 5, 60s) within T1 represent an instance from horizon-
tal scaling action, which allows to add for VM1 compute resource 5 instances from
AWS provider, where 60s represent a clowdown period that must be respected after
triggering this action. While Delete (VM1 compute) within T5, T6, T7 represents a
basic action that aims at removing definitely the resource VM1 compute.

6.3.2 Supporting Multi-Providers Abstractions

The previous section has outlined the key aspects to be included when specifying
elasticity features for cloud resources from a single provider. However, our proposed
model is also able to support several providers. To do so, we need to consider that
a cloud resource can be acquired from several providers during a cloud user’service
life-cycle. As we have defined the resource requirements in a more general way, they
are enough to support multi-cloud scenarios. For example, regarding the requirement
attribute, we only need to instantiate an attribute “Provider” to indicate the provider
that offers a given resource. Moreover, we need to identify all events or even required
that lead a cloud user to acquire cloud resources from a new provider or to definitely
migrate its services to be deployed on other cloud resources. As well, re-configurations
actions need to be extended in order to support these new situations. Indeed, in prac-
tice, once a service has been deployed in a cloud resource from a specific provider,
different situation can occur at runtime, which are mainly:
(1) Service can be scaled manually (i.e., User Action Events) or dynamically (i.e.
Resource Related or Temporal Events) by adding or removing cloud resource from a
new provider,
(2) Service can be migrated to another provider at the behest of its cloud user (i.e.,
User Action Events),
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Figure 6.5: Migration of Demo app that is deployed on the VM1 to other VM from
GCP as it provides the same resource with a better price

(3) Service can be migrated in case that the provider does not respect the QoS con-
straints (i.e. Resource Related Events),
(4) finally, service can be migrated to another provider when this new provider offers
better utility to a cloud user than the previous provider.
Consequently, our basic resource model should be simply extended to support these
new considerations. To support (1), (2) and (3) we need only to extend the recon-
figuration actions (i.e. horizontal and vertical scaling, migration, etc.) by adding
the property “provider” as an attribute to these actions. For instance, the Scale-out
(“VM1 compute”, “Openstack”, “change-in-capacity”, 10, “60s”) within T3 shows a
horizontal scaling from a new provider than AWS, which is OpenStak. Furthermore,
to support (4), a new type of events should be defined along with the above defined
events, that we call Market related events. Market related events depend on QoS and
resource properties too, we define it as one of the types of Resource Related Events.

Market Related Events. Events occur as a result of changes within cloud market.
Such events can be triggered whenever there is a cloud resource offer providing QoS
or any other resource property (e.g., price) better than the one is currently using by
the user. They are expressed through the predicate M-Event(m, r, op, tr, u, p), with
q is the QoS or resource property, r is the concerned resource, and op, tr and u have
the same definition within Q-event. While p indicates the new provider which can
be filled by the provider name such ”GCP” or by ”any”, so, the runtime controller
must automatically choose the appropriate provider that satisfies the user needs. For
example, Fig.5 illustrates a market related event that consists to trigger the migration
of the Demo app that was hosted on the AWS VM1 in other VM from GCP provider
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as it offers the same VM with a price less than or equal 0.02 $/h.

6.4 Monitoring and execution of Elasticity

In this section, we present cEDMCore system [33] which represents the execution
environment of our cEDM model. More specifically, it supports the modeling, moni-
toring, and execution of elasticity features that were defined using the above presented
abstractions. Figure 6.6 provides a high-level overview of the underlying parts that
our system architecture relies on. Firstly, using cEDMcore designer, the cloud user
can graphically instantiate from cEDM model the cEDM instance that corresponds
to their elasticity requirements. This instance is then simply serialized as JSON/XMI
file, which represents a list of required cloud resources, each one is associated with
the state machine C-SM that describes the related elasticity behavior.

Figure 6.6: Architecture Overview

After that, our runtime system exploits each defined C-SM to generate the ECA
execution rules using a rules generator component, whose underlying logic is explained
later in Section 6.4.2. These rules would be then exploited by the rule engine in order
to support the enforcement and runtime control of elasticity. To choose the suitable
rule engine, we performed a comparative analysis between Drools [136] and Espers [62]
as they represent the most known and used rule engines. According to this analysis,
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we opted for the Drools rule engine because it provides a good compromise between
expressivity and performance, has good documentation and all its components are
open-source.
Furthermore, our runtime system deploys a monitoring service on each cloud resource
defined in the cEDM with the aim of collecting the related operational data that are
needed later to execute ECA rules. The management of all involved monitoring
services and the persistence of collected data are handled by a monitoring system
explained in Section 6.4.3.
Finally, at the behest of the Drools engine, the concrete enforcement of elasticity
actions defined in ECA rules, is made by the DevOps systems. Three DevOps systems
are integrated into our system, namely Docker, Kubernetes, and Terraform. The
communication between Drools engine, Monitoring system and DevOps systems is
ensured by a set of connectors.
In the following, we detail the main components of our cEDMCore system, namely
cEDMcore designer, ECA rule generator, and the Monitoring system.

Figure 6.7: The visual features of the cEDM editor for specifying the concerned cloud
resources, the desired resource requirements and constraints
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6.4.1 cEDM design tool

cEDMcore designer enables cloud users to describe the elasticity behavior related to
their cloud resources. It is composed of two editors: cEDM editor and CSM editor.
cEDM editor (refer to Figure 6.7) enables a cloud user to instantiate from cEDM
model his/her corresponding cEDM instance. It also allows cloud users to attach each
cloud resource or group of multiple cloud resources to one or more CSM machines
for defining the desired elasticity behavior. Here, cloud users have also to supply the
required access credentials of cloud providers of their choices. Whereas, CSM editor
(refer to Figure 6.8) is devoted to design the involved CSM machines. Both editors are
provided with (i) textual (JSON) and visual notations to allow editing models, both
graphically and textually, and (ii) model views to represent the model hierarchical
tree. In addition, these editors have been provided with automatic completion and
quick fixes functionalities enabling cloud users to evaluate their models and to fix
design errors when occurred. A key part of our editors implementation involves
integrating MDE frameworks such EMF [54], xtext [56] and Sirius [55]. These MDE
frameworks are used to facilitate the design of cEDM model and the code generation
of its manipulation plugins.

Figure 6.8: The visual features of the CSM editor that describes cloud resource elas-
ticity through a state machine
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6.4.2 ECA rules Generator

In this section, we present our ECA rule generator that serves to generate ECA
rules from a given C-SM. For the sake of clarity, we use the JSON notation when
exemplifying the C-SM machine elements (i.e. State, transition, action, event).
Indeed, under the Drools engine, the ECA rules are defined in a text file called DRL
with .drl extension. DRL stands for Drools Rule Language. Listing 6.6 gives an
overview of the rule syntax in the DRL file.

1

2 rule "name"

3 attributes

4 when

5 LHS: <conditional element >*

6 then

7 RHS: <action >*

8 end

Listing 6.6: Drools’ ECA rule syntax

Accordingly, each rule must have a unique name, and is composed of two parts:
LHS and RHS. The Left Hand Side (LHS) denotes the conditional part of the rule,
which includes zero or more conditional elements. The LHS always follows the when
keyword. The Right Hand Side (RHS) indicates the consequence of the rule, which
may contain a list of actions to be executed. An action defines a specific code to
be executed whenever the LHS part is satisfied. The RHS follows the then keyword.
Furthermore, a rule may contain a set of Attributes and Timers defining how the rule
should behave. For instance, a timer associated within a rule indicates when this rule
can fire. It is a property defined by Drools engine to reason about the time dimension.
In our work, we will use the timer functionality to specify any temporal event. In
addition to the rules, any DRL file may include some global variables. Generally,
these variables represent the means (i) to provide data, services or APIs that rules
need to use and (ii) return data, logs or values added as a consequence of the rules
execution.
Back to our ECA rule generator shown in Figure 6.9, it relies on M2T transformation
that takes as input a C-SM model (e.g. CSM.csm) which is also represented as JSON
file and generates the corresponding DRL file. The M2T transformation serves to
create for each transition description a DRL-compliant rule while taking its source
and target state. Our generator follows a straightforward procedure, whose mains
steps are depicted at the bottom part of Figure 6.9 while using a concrete example
of a Transition that we pick up from the C-SM related to our motivating example.
Accordingly, the first step (1) consists of generating the rule name from the given
transition name concatenated with the transition id. Secondly, (2) the transition’s
source state will be used to generate a conditional element in the LHS part of the rule
that aims to verify whether the concerned current state (represented by a global vari-
able named ”currentState” ) has already reached or no. Moreover, (3) the transition’s



Monitoring and execution of Elasticity 161

Figure 6.9: Automated generation of native execution DRL rules from C-SM

target state will be used to generate the modify action in the RHS part of the rule,
which allows updating the current state of the C-SM as a consequence of executing
the desired reconfiguration action. As a result of this modification, the runtime of
C-SM moves from the source state ”S2” to the new state ”S3”. This feature helps
the cloud users to track the behavior of their C-SM machines at runtime.
Furthermore, the fourth step (4) concerns the generation of DRL expression that cor-
responds to the transition event. Here, it should be noted that this generation depends
on the event type. As mentioned above, we supported three event types to trigger
a reconfiguration action, mainly temporal events including specified date/periodic-
ity rule-based events, a resource-related event including QoS event and User-action
events. Currently, we propose generation support for the two temporal events (i.e.,
TS-Event, TP-Event) and the resource-related event (i.e., Q-Event). After exploring
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the DRL specification for events, we reveal that each resource-related event has to
be mapped into a conditional element in the LHS part of the rule which consists of
verifying the resource metric value captured from the monitoring system with the
predefined threshold. Whereas, each temporal event has to be mapped into a timer
Cron expression in the attributes part of the rule. The Cron expression is a string of
seven fields separated by a white space, which is commonly used to specify the sched-
ule details in a machine-readable way. The syntax of a Cron expression is depicted
in Figure 6.10.

Figure 6.10: Syntax of Cron expression

According to the Cron syntax, Figure 6.11 shows an example of transforming the
specific date event, which is based on the TS-Event predicate, into the corresponding
Cron expression ready to be triggered by the runtime system once it is reached.

Figure 6.11: Transforming TS-Event expression into a Cron expression

In a similar way, we transform the following TP-Event expression ”Every Saturday
at 8:00:00 am” into the following Cron expression ”timer (cron: 0 0 8 * * 7)”, where
7 means Saturday and the * symbol means any value (i.e., any day of the month and
any month). Finally, the last step (5) allows the generation of DRL expression that
corresponds to the transition action. More specifically, it maps the high-level reconfig-
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uration action into its corresponding low-level action that has to be executed whether
the LHS part of the rule is satisfied. In our solution, all low-level actions are executed
by means of suitable connectors through their Control operations. For instance, in
the given example, TerraformConnector.Control operation takes the imputed data
related to the horizontal scaling action of VM1 and initiates the corresponding API
calls and low-level scripts specific to the Terraform tool in order to increase the VM1
instance number by adding six instances from GCP provider.

6.4.3 Monitoring system

The monitoring system enables the monitoring of cloud resources and the collecting
of the data that are required for making decisions about the execution of elastic-
ity actions. Currently, we support the monitoring of containers, virtual machines,
and servers. Our monitoring system has to be able to gather any data despite the
variations of sources and technologies due to the use of multiple and heterogeneous
cloud providers, DevOps enforcement systems and virtualization mechanisms. To sat-
isfy this critical requirement, we performed an exploration and comparative analysis
of the existing monitoring tools and plugins. The examined solutions include AWS
CloudWatch [19], Docker Stats [49], Nagios [24] , Prometheus [3] and Grafana [73].
Briefly, any solution that dependent on cloud providers such as AWS CloudWatch or
DevOps systems such as Docker Stats has been excluded because it contradicts the
technology-independence requirement that our monitoring solution should satisfy. In
addition, traditional monitoring systems such as Nagios do not fit our needs as they
do not take into consideration the monitoring of containers.
As a result, we propose to use the Prometheus system. Prometheus allows Data
analysis, storage, and visualization. It supports the monitoring of containers and
servers by integrating the corresponding plugins. It also allows the capture of sev-
eral types of metrics and facilitates their extraction and manipulation via the query
language (PromQL). Despite these obvious advantages, Prometheus has some dis-
advantages that can be summarized in the following two points: it does not offer
ergonomic visualization interfaces and does not visualize data in real-time. To rem-
edy these shortcomings, we propose to integrate the Grafana dash-boarding tool with
Prometheus. Indeed, Grafana has very advanced presentation capabilities via cus-
tomized dashboards. It also allows for real-time tracking of metrics.
With all this in mind, we propose an integrated monitoring system that takes advan-
tage of diverse and powerful open-source systems for effectively collecting, analyzing
and visualization of data that can be obtained from diverse resources and hetero-
geneous clouds. Figure 6.12 provides a high-level overview of the proposed system.
Our system provides three tasks, namely Retrieval of monitoring Data, Storage of
monitoring Data, and Visualization of monitoring Data. To support them, it relies
on the following components:

• Rest Connection API: is used to connect our system to the authentication server.
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Figure 6.12: Architecture Overview

• Caddy web server : represents an authentication server that is necessary to con-
trol the access to monitoring data and launching queries to retrieve metrics
data.

• CAdavisor : is a real-time monitoring tool for containers. It allows for exposing
a set of container metrics.

• Node-Exporter: is a plugin that allows the monitoring of virtual machines and
servers in a given cloud host.

• MongoDB: is a database used to save the monitoring data retrieved from
Prometheus.

• Grafana: is used to create supervision dashboards on data saved in the Mon-
goDB.
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6.5 Evaluation

For evaluation purposes, we conducted two experiments using our cEDMCore sys-
tem. The first experiment intends to assess the overall productivity of cEDMCore in
comparison to the existing solutions. Whereas, in the second experiment, we aim at
assessing the overhead that is introduced by our approach in comparison to manual
and provider-dependent configuration regarding the multi-cloud deployment.

6.5.1 Experimentation 1

6.5.1.1 Experimental setup

We evaluated the productivity of our cEDM by conducting a deeper user-study with
32 participants: 25 Data Scale master students from the university of Paris-Saclay
and 7 professional users (1 PHD student working on cloud orchestration, 1 master
student in cloud computing, 5 DevOps engineers). Indeed, our ultimate goal from
this evaluation is to essentially check whether the proposed modeling abstractions
are enough intuitive and do not require an extensive programming effort from the
user side for being used. Therefore, we intentionally selected our participants from
3 groups having diverse levels of technical expertise: (1) Beginners (12 participants
out of 25 master students ): who do not have any knowledge of cloud solutions ; (2)
Generalists: who have a little knowledge of cloud solutions (13 participants out of 25
master students ) and (3) Experts (7 participants from the professional users): who
have a sophisticated understanding of cloud solutions. Such diversity in participants is
quite relevant for our analysis as it aids us to have a global view about the productivity
of our abstractions from different user categories.
Moreover, the productivity is tested in terms of the efficiency and the usefulness of
cEDM in describing cloud resources elasticity behaviour. The efficiency is measured
in terms of the time taken to complete the modeling and configuration tasks. The use-
fulness is determined via a questionnaire that asses the participants feed-backs about
our cEDM. The questionnaire devised into four main parts: Background, Function-
ality, Usability, Insights/Improvements. We provide the complete list of questions
in Appendix B. The background questions aim to confirm whether the participants
are familiar or no with existing cloud resource elasticity tools. The functionality
questions verify whether the participants correctly understand the main functionali-
ties of cEDM. The usability questions sought to discover whether the key modeling
abstraction offered are easy and intuitive.
We asked all participants to model all the elalsticity requirements described in our
motivation scenario using our cEDM Core while considring only AWS provider. For
quantitative comparison purpose, we asked them to do the same scenario with two
provider-specific solutions viz. the IBM Softlayer Auto Scale [78] and AWS Auto Scal-
ing [26] and by using Terraform [149]. A total of 32 out of 32 participants participated
in AWS Auto Scaling and IBM Softlayer Auto Scale based experiments respectively.
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cEDM Core AWS Autoscaling IBM Soflayer AutoScale Terraform

Average  (min) 37,7 51,6 51 41,42

Observations 32: 12(B)+13(G)+7(E) 32: 12(B)+13(G)+7(E) 32: 12(B)+13(G)+7(E) 7: 0(B)+0(G)+7(E)

Variance 32 175,7 219 4.2
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Figure 6.13: Time to complete the task; (a) (b) (c) (d) Time grouped by level of
expertise; (e) Average time for all the participants.

However, only a total of 7 out of 32 participants participated in Terraform based
experiment. This is due to the fact that only expert participants have expertise and
confidence in using this tool.

6.5.1.2 Evaluation Results

Results of the experiment in Fig. 6.13 (a) (b) (c) (d) show the time taken using
cEDMcore, AWS Auto Scaling, IBM Softlayer Auto Scale, and Terraform, for com-
pleting the task. As shown, it is surprising that there is no big difference in times
between the different user categories, i.e. Beginners, Generalists, Experts when using
the cEDM Core. In contrast, we notice a stark difference in times between these cate-
gories when using the other tools, i.e. AWS Auto Scaling, IBM Softlayer Auto Scale ,
and Terraform. This clearly shows that our cEDM Core does not require extensive de-
velopment skills and high technical expertise in specific cloud tools and programming
compared to the other tool that insists on particular technical expertise. Overall, the
time taken to complete the task was reduced in comparison to other solutions. On the
whole, as shown in Fig.6.13 (e), the participants took on average 37,7 min using our
cEDMcore, 51 min using IBM Softlayer Auto Scale, 51,6 min using AWS Auto Scaling
and 41,42 min using Terraform. This demonstrates the efficiency of our cEDMcore
system. In fact, we argue that technology-independent elasticity abstractions and
declarative model like state machine to describe the elasticity behaviour significantly
reduce the time-to-modeling.
Moreover, to evaluate the cEDM usability, we use the Usability section of the ques-
tionnaire by asking participants to rate the usability for each abstraction (scale 0-5).
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Figure 6.14: Usability Rate of the main cEDM abstractions

We examined the basic cEDM abstractions: Cloud Resource, Group, Resource Re-
quirement, Resource Constraint, State, Event, Reconfiguration action. We observed
that the mean score for all abstractions in Figure. 6.14 is greater than the neutral
value of 3 with a noticeable difference. Overall participants reported that our model
is a familiar and intuitive, especially C-SM is not far from natural language and allows
defining cloud resources elasticity behaviour in a very simple and easy way. Accord-
ingly, giving these observations, we confirm that the key modeling abstractions offered
are useful and comprehensible. Moreover, as feedbacks for improvement, some of the
participants highlighted the need for mechanisms that help users to choose the best
thresholds when defining elasticity policies based on resource-related events. Some
others suggested adding a cost computing method that allows users to have an idea
about the expected cost of their policies. We will take all those points and add the
requested features in the future.

6.5.2 Experimentation 2

We evaluated the overhead introduced by our approach regarding the execution
of elasticity related to containers and virtual machines acquired from two cloud
providers: AWS and Google compute platform (GCP). More specifically, two re-
configurations policies were considered. The first consists of scaling Node-bookshop
service by adding 4 containers whenever the cpu usage exceeds 80% to two contain-
ers already exist. The second one allows scaling the virtual machine VM1 that was
already deployed on AWS, by adding 4 instances from GCP whenever the cpu usage
exceeds 80%.
Moreover, to determine the overhead introduced by our cEDM Core regarding the
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elasticity, we execute these policies according to two cases: (1) using cEDM core
by defining the corresponding C-SM machine for each elasticity policy and (2) using
native scripts that directly executed on the infrastructure provider in case of VM
elasticity and on the Docker platform in case of container elasticity. For the evaluation
purpose, we simulated an increase in CPU usage on a VM and a container using the
Stress tool. Stress is a workload generator, imposing on the system a configurable
amount of CPU, memory, I / O and disk. In addition, for a better estimation of
overhead, we repeated the execution of each policy ten times.
As a result of this experiment, we report the variance, average, minimum and maxi-
mum times values as well the introduced overhead for executing each elasticity policy.
Table 6.2 shows the observed values regarding VM horizontal scaling. Accordingly,
the introduced overhead by cEDM Core is 1.01%, which is too low value. Finally,
Table 7 presents the time values as well as the introduced overhead for the horizontal
scaling related to container resources. As demonstrated, the obtained overhead is 1.1
%.

Table 6.1: Horizontal elasticity of virtual machines
solution variance minimum (sec) maximum (sec) average (sec) Overhead

Manual config-
uration

92,9 253 287 266,5 -

cEDM Core 91,8 256 288 270,4 1.01%

Table 6.2: Horizontal elasticity of containers
solution variance minimum (sec) maximum (sec) average (sec) Overhead

Manual config-
uration

2,04 29 33 30,4 -

cEDM Core 8,8 31 38 33,8 1.1 %

Based on the above observations, we confirm that the cEDM Core does not provide
a significant overhead, which yields good performance. The introduced overhead is
negligible compared to the benefits provided by our solution. This is thanks to the
use of the Drools engine which is known by its speed and scalability. Indeed, the
Drools engine relies on an enhanced implementation of the Rete algorithm which has
been proved that it performs efficiently, accurately and quickly.

6.6 Conclusions

The work presented in this chapter meets our third thesis objective, namely: sup-
porting high-level management of multi-cloud elasticity. In doing so, we proposed a
novel Cloud Elasticity Description Model (cEDM) based on a state machine (C-SM),
that provides high-level abstractions to describe elasticity features related to cloud
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resources. Instead of directly manipulating low-level interfaces and scripting elastic-
ity rules over complex cloud services/APIs, C-SM reason about resource requirement
states, a recurring and intuitive abstraction in modern IT resources management
processes.
Our cEDM model has been implemented and executed using a software system called
cEDMcore. It relies on the Drools engine and an integrated monitoring system,
coordinating together to govern the elasticity behavior encapsulated in the different
state machines. Our system enables cloud users to intuitively describe their elasticity
policies and to support their execution without referring to any resource provider or
DevOps enforcement mechanism.
For assessment purposes, we (i) demonstrated the gained productivity of our model
using a user-case study with academics and professionals and (ii) evaluated the intro-
duced overhead of our system. Through the productivity evaluation, we revealed that
the adoption of state machine formalism greatly hides the actual complex implemen-
tation within cloud DevOps and provider solutions. Moreover, the overhead-related
experiment demonstrates that our approach supports the execution of elasticity poli-
cies without introducing significant overhead.
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Chapter 7

Conclusion and Future Work
In this chapter, we first summarize our contributions in this thesis to support

the interoperable management and orchestration of cloud resources in multi-cloud
environments while focusing on their elasticity nature. Next, we discuss our future
research directions.

7.1 Fulfillment of Objectives

With the rising adoption of cloud resources in everyday computing tasks, the demand
for effective orchestration and management techniques that promote interoperability
has considerably increased. In addition, elasticity, the key distinguishing feature in
cloud computing, has become primordial to preserve the desired quality of service
while optimizing the involved costs. In this thesis, we identified three main objectives
in order to accommodate these needs. We aimed specifically to (1) provide guidance
and assistance in the design of interoperable management APIs; to (2) streamline and
improve the orchestration of cloud resources and to (3) support high-level management
of multi-cloud elasticity. Consequently, we proposed three major contributions in
order to cover the different objectives.
In the first contribution, we tackled the first objective by providing a compliance
evaluation of OCCI and REST best principles and recommendation support to com-
ply with these principles. First, we leveraged patterns and anti-patterns to derive
respectively the good and poor practices of OCCI and REST best principles. Then,
we proposed a semantic-based approach for defining and detecting REST and OCCI
(anti) patterns and providing a set of correction recommendations to comply with
both REST and OCCI best principles. We validated this approach by applying it
on cloud REST APIs and evaluating its accuracy and usefulness. We found that
our approach accurately detects OCCI and REST(anti)patterns and provides useful
recommendations. According to the compliance results, we reveal that there is no
widespread adoption of OCCI principles in existing APIs. In contrast, these APIs
have reached an acceptable level of maturity regarding REST principles. Cloud API
developers can benefit from our approach and defined principles to accurately evalu-
ate their APIs from OCCI and REST perspectives. This can contribute to the design
of interoperable, understandable, and reusable Cloud management APIs.

171



172 Conclusion and Future Work

The second contribution aims at streamlining and improving the orchestration process
of cloud resources. To reach this goal, we provided a model-driven approach that
integrates TOSCA with the open-source DevOps solutions in a seamless way and
at an acceptable cost. TOSCA is adopted to provide a convenient and technology-
independent description of cloud applications, whereas DevOps solutions are leveraged
to ensure the runtime of these applications by executing the required orchestration
operations.
Our model-driven approach provides two mechanisms to close the existing gap be-
tween TOSCA and DevOps solutions. The first mechanism is a model-driven trans-
lation technique that serves to transform TOSCA applications into native DevOps-
specific artifacts ready to be executed by the underlying DevOps tools/APIs. Our
translation technique follows the key MDE principles. We used models to represent
DevOps specifications and languages at a high level of abstraction using meaningful
and machine-readable constructs. In addition, we relied on transformation language
support to encode transformations between the DevOps models and TOSCA that are
required to generate the native DevOps-specific artifacts. Besides, the second mecha-
nism is the DevOps abstraction layer that is based on a set of high-level connectors to
automate the end-to-end orchestration tasks while exploiting the generated DevOps
artifacts. The proposed layer is especially devoted to simplifying the orchestrator task
by avoiding the heavy lifting involved when interacting with the underlying DevOps
tools/APIs.
To validate our approach, we developed a proof of concept ToDev, an integrated
and standards-driven orchestration framework. TODev includes three open-source
DevOps solutions, namely Docker, Terraform, and Kubernetes, and features MDE
capabilities. We performed experiments with diverse cloud use cases considering both
the single and multi-deployment. Experimental results showed that our approach (i)
provides a powerful enhancement to DevOps productivity, (ii) introduces negligible
overhead and (iii) has a reasonable transformation performance. Our approach allows
DevOps users to benefit from the strengths of both TOSCA and DevOps approaches.
The earned benefit is simplifying the orchestration process while maintaining the
desired level of interoperability and efficiency.
In the third contribution, we are interested in supporting high-level management of
multi-cloud elasticity. In this work, we proposed a novel Cloud Resource Elasticity
Description Model based on a state machine, that provides high-level abstractions to
describe elasticity features related to cloud resources. These abstractions have been
designed with the intention to be more intuitive and user-friendly. The proposed
model is dedicated to manage and control the elastic behavior of resources in a multi-
cloud environment. In doing so, we relied on a model-driven generation technique that
exploits the proposed model to generate appropriate low-level artifacts required for
online monitoring, execution and controlling elasticity. These artifacts are structured
into ECA rules which are then executed using the Drools engine. Furthermore, we
proposed a monitoring system to effectively collect and analyze events related to



Future work 173

resources and services. The monitoring system has been integrated with the Drools
engine in order to provide an appropriate runtime environment to manage and control
elasticity. All these solutions have been prototypicality implemented into a proof of
concept named cEDMCore.
To validate our approach, we relied on two experiments. The first experiment was
conducted with academics and professionals to evaluate the productivity of our ap-
proach compared to existing solutions like the IBM Softlayer AutoScale [78], AWS
Autoscaling [22], and Terraform [149]. The evaluation results showed that our ap-
proach does not require extensive development skills and high technical expertise in
specific cloud tools and programming compared to the other solutions that insist on
particular technical expertise. On the other hand, the second experiment was de-
voted to evaluate the approach performance by testing its introduced overhead. The
obtained results demonstrated that our approach does not introduce a significant
overhead, which yields a good performance. The introduced overhead is negligible
compared to the benefits provided by our solution.

7.2 Future work

Our work opens several research perspectives to accomplish in short and middle terms.
More precisely, we will focus on extending our two approaches presented in Chapters
5 and 6 and considering other related research issues as well. In the following, we start
by presenting how to enhance the transformation mechanism related to our model-
driven approach (Section 7.2.1). Next, specifically in Sections 7.2.2, 7.2.3, 7.2.4, we
explain how our elasticity approach can be extended to cover other elasticity aspects
and optimize the configuration of elasticity policies.

7.2.1 High Order Transformations

Our model-driven integration approach presented in Chapter 5 demonstrated that the
integration between TOSCA and DevOps solutions is possible and can be automated
by (i) generating all DevOps-specific artifacts that are necessary to perform the re-
lated orchestration tasks and (ii) providing a set of Connectors that establish the
bridge between both solutions. However, any change in the target DevOps solutions
or resource providers pushes the need for continuously adapting the provided connec-
tors and transformations. Currently, this adaptation is done manually. Even though
our approach was designed with the intention to be easily extended by following MDE
principles, the manual adaptation may be worrisome for DevOps curators that are
often interested in agile automation. To resolve this, we are currently investigat-
ing the potentials of Higher-Order Transformations (HOT) to automatically create
(or update) the corresponding transformation rules. HOT is considered as an ad-
vanced model-driven technique that aims to automatically generate transformations.
A HOT takes as input a correspondence model representing the possible conceptual
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mapping between source and target meta-models and transforms it into a transforma-
tion model. Then, a transformation engine uses the resulting transformation model
to translate the source model into the target model.
Furthermore, we will also investigate how semantic web and machine learning tech-
niques may help to automatically identify the model mappings that are required for
HOT. Here, it should be noted that the conceptual mappings that we have already
specified within our approach represent the starting point for the definition of the
possible correspondence patterns that may exist between different resource models.
In addition, they can serve as a reference data-set that can be used later to check the
accuracy of the obtained correspondence models.

7.2.2 More expressiveness and automation

We are also working on the extension of the third contribution presented in Chapter
6. Firstly, we are considering more sophisticated elasticity policies, whose definition
involves the notion of composite events and composite actions. For instance, a cloud
user wants to vertically scale the current resources of CPU, RAM, Storage when there
is a remarkable exceeding over CPU, RAM, and Storage usages. Such an elasticity
policy may be defined through (1) a composite action which involves the simultaneous
execution of three actions, mainly CPU scaling, RAM scaling and Storage scaling;
(2) a composite event as well, which is in turn defined through three resource-related
events that shall occur at the same time.
Secondly, we want to enhance our C-SM with autonomic features by considering (i)
the proactive mode of elasticity and (ii) the obstacles that could impede the successful
execution of elasticity actions [29]. In doing so, we are working on augmenting the
C-SM abstraction with (i) the concept of Nested state machine that may exist in each
basic state and (ii) Means that help to perform prediction and repairing tasks. The
aim is to provide the C-SM machine with a method allowing it to manage itself in case
of unexpected conditions that can be related to cloud users or cloud environments.
Learning-based approaches represent a suitable area to be investigated for supporting
this objective.
Furthermore, we envision to define more event patterns such as service level agreement
(SLA) violation Event, whose consequence may often lead to disconnecting from the
actual provider and migrating to a new one. We also plan to enhance our model with
context information that allows providing personalized editors aligned with a given
context (i.e. expertise level, application domain, etc.).

7.2.3 Verification

According to users’ feedback, we are confident that our elasticity model (i.e CEDM)
provides an intuitive and user-friendly mean to describe their elasticity policies. How-
ever, in practice, cloud users are also interested in possible assurances that any new
model can provide in order to meet their requirements and QoS expectations. There-
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fore, we intend to provide cloud users with verification support that allows checking
the correctness of the elasticity policies both at design time and runtime. Currently,
we are working on the design-time verification of elasticity. Given that flexible elas-
ticity policies require time-related constraints (e.g., latency and response time, and
variable application workload in different time windows), we propose to translate C-
SM state-machine into timed-automata. Timed automata are well suited for formal
verification as they provide a mathematically well-founded analysis and are endowed
with powerful checking techniques.
Using the obtained automata, we specifically interested in verifying whether there is
no conflict between the defined elasticity policies in C-SM. This can be ensured by
verifying the absence of deadlock in target timed automata. Furthermore, we propose
to use the properties of liveness, safety, and reachability in order to verify whether the
defined policies will lead to the expected elasticity behavior. We also aim to verify
whether the defined C-SM can give any guarantees to reach an expected designer cost.
This is required to avoid situations that can lead to unexpected costs.

7.2.4 Optimization and Learning from previous elasticity executions

Acting on user feedback given in the conducted case study, we envision to provide
guidance and assistance to the cloud users in the design of their elasticity state ma-
chine by recommending optimized configurations. These configurations may be re-
lated to elements such as threshold conditions in the transitions, or pricing strate-
gies that allow satisfying some cost constraints, to name a few. In this respect,
optimization-based methods could be the best candidate to ensure such recommen-
dations. Furthermore, we intend to help the cloud users to enhance and evolve their
state machines by learning from previous elasticity executions. This may also be
useful for diagnostic and repair tasks.
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Appendix A

Evaluation Questionnaire in
Chapter 4

This questionnaire aims at evaluating the usefulness of the detection and recommen-
dation support provided by our approach. It focuses on 6 (anti)patterns as follows:
2 REST patterns (Correct use of POST, Tidy URIs), 2 REST anti-patterns (Amor-
phous URIs, Forgetting Hypermedia ), 2 OCCI patterns (Compliant Delete, Compli-
ant URL), and 2 OCCI anti-pattern (Non-Compliant Create, Non-Compliant Trigger
Action).
The questionnaire includes 2 sections:

• The section named ”Usefulness Questions” should be completed during the
experiment.

• The section ”Insights/Improvements” should be completed after the experiment.

A.1 Usefulness Questions

The answer format to each usefulness question is as follow:

A.1.1 REST Patterns

Correct use of POST pattern: POST must be used to create a new resource or to
execute an action.
Tidy URLs: appears when URIs use lower resource naming and does not contain
trailing slashes and underscores.

1. How useful do you think the detection of the ”Correct use of POST” pattern?

2. How useful do you think the detection of the ”Tidy URLs” pattern?
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A.1.2 REST Anti-Patterns

Amorphous URIs anti-pattern: appears when URIs contain symbols, capital letters,
underscores, etc., making them hard to read and employ.
Forgetting Hypermedia anti-pattern: appears when links (i.e., hrefs and rels) within
the resource representations are absent.

1. How useful do you think the detection of the ”Amorphous URIs” anti-pattern
and the suggested recommendations to avoid it?

2. How useful do you think the detection of the ”Forgetting Hypermedia” anti-
pattern and the suggested recommendations to avoid it?

A.1.3 OCCI Patterns

Compliant Delete pattern: HTTP DELETE must be used and only the URI identi-
fying the resource that will be removed must be provided.
Compliant URL pattern: URL must be either a string or as defined in RFC6570.

1. How useful do you think the detection of the ”Compliant Delete pattern”?

2. How useful do you think the detection of the ”Compliant URL” pattern?

A.1.4 OCC Anti-Patterns

Non-Compliant Create anti-pattern: appears when other HTTP method instead of
POST or PUT is used, or the resource definition is not complete (for instance, the
Category defining a particular resource Kind is missing) .
Non-Compliant Trigger Action anti-pattern: appears when other HTTP method in-
stead of POST is used, or the action definition is not complete (for instance, the
Category defining a particular action is missing) .

1. How useful do you think the detection of the ”Non-Compliant Create” anti-
pattern and the suggested recommendations to avoid it?

2. How useful do you think the detection of the ”Non-Compliant Trigger Action”
anti-pattern and the suggested recommendations to avoid it?

A.2 Insights/Improvements

Please provide some suggestions for improving the detection and recommendation
support and feel free to provide your criticism about it.

1. What the points you don’t like in the detection and the recommendation

2. How would you improve the detection and the recommendation?

3. Do you have any other comments?



Appendix B

Evaluation Questionnaire in
Chapter 6

This questionnaire includes 4 sections.

• The section named ”Background Questions” should be completed before the
experiment.

• The section named ”Functionality Questions” should be completed during the
experiment.

• The sections named ”Usability Questions” and ”Insights/Improvements” should
be completed after the experiment.

7.1 Background Questions

Please answer all the questions before starting the experiment.

1. How familiar are you with Cloud providers tools?

2. How familiar are you with the AWS Auto Scale/AWS CLI?

3. How familiar are you with the IBM softlayer Auto Scale?

4. How familiar are you with Docker?

5. How familiar are you with Terraform?

The answer format to each question is as follow:
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7.2 Functionality Questions

1. How many States you need to describe the provided case study?

2. How many Transitions needed between the states?

3. What are the types of events you need to describe in the case study?

4. How many VM instances needed to handle the application workload during the
high peak phase?

5. How many transitions led to the final state?

7.3 Usability Questions

Please answer all the questions. note: Make sure you finish the experiment before
answering these questions.

1. How intuitive do you think the Cloud Resource concept?

2. How intuitive do you think the Group concept?

3. How intuitive do you think the Resource Requirements concept?

4. How intuitive do you think the Constraint concept?

5. How intuitive do you think the State concept

6. How intuitive do you think the Events concept (e.g Temporal events, Resource
usage events, QoS events, Market related events, User action events?

7. How intuitive do you think the Reconfiguration Action concept?

8. Do you think the cEDMCore system is useful for your day-to-day tasks?

The answer format to each question is as follow:
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7.4 Insights/Improvements

1. What the points you don’t like in the cEDMCore system?

2. How would you improve the cEDM Core system?

3. Do you have any other comments?
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