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Lois de conservation avec flux non-local pour la
modélisation du trafic routier

Résumé: Le but principal de cette thèse est de fournir des modèles mathématiques de trafic
routier avec flux non-locaux, et des schémas numériques adaptés pour analyser numériquement
ce type de modèles. D’abord, nous considérons une classe d’équations scalaires, où le sup-
port du noyau de convolution est proportionnel à la distance d’anticipation des conducteurs.
Nous prouvons la stabilité des solutions par rapport aux données initiales et en déduisons
l’existence par un argument d’approximation basé sur un schéma de type Lax-Friedrichs.
Nous fournissons également la première preuve de convergence quand le support du noyau
tend vers +∞, ainsi que quelques simulations numériques. Ensuite, nous nous concentrons
sur une classe spécifique d’équations scalaires, en considérant des noyaux reguliers. Le but est
l’étude de problèmes d’optimisation concernant la gestion du trafic et, pour cette raison, nous
sommes intéressés par l’étude de la dépendance des solutions en fonction du noyau de convo-
lution et de la vitesse. En appliquant soigneusement la technique de doublement des variables
de Kružkov, nous dérivons la dépendance L1 -Lipschitz des solutions par rapport à la donnée
initiale, au noyau et á la vélocité. Nous montrons des simulations numériques illustrant le
comportement des solutions d’un modèle non-local de trafic, lorsque la taille et la position du
support du noyau ou la vélocité varient. En outre, nous considérons une classe de systèmes
de M lois de conservation non-locales dans une dimension d’espace. Nous considérons un
noyau anisotrope différent pour chaque équation du système. Le modèle prend en compte la
distribution de conducteurs et de véhicules hétérogènes caractérisés par leurs vitesses maxi-
males et leur horizon de vue dans un flux de trafic. Nous prouvons des estimations L∞ et BV
uniformes sur les solutions approchées obtenues par un schéma numérique de type Godunov
et nous montrons l’existence en temps petits de solutions faibles. Nous présentons également
quelques simulations numériques pour M = 2. En particulier, nous considérons le cas d’un
flux mixte de voitures et de poids lourds sur un tronçon de route et d’un flux de véhicules
mixtes autonomes et non autonomes sur une route circulaire. L’approximation numérique des
solutions de ce modèle est difficile en raison de la grande non-linéarité du système et de la
dépendance de la fonction flux du terme de convolution. Nous présentons une généralisation
des schémas de Lagrangian-Antidiffusive Remap (L-AR). Nous derivons certaines propriétés
des schémas dans les cas scalaires et multi-classe. Dans le cas scalaire, nous obtenons des
estimations uniformes L∞ et BV sur les solutions approchées calculées à l’aide des schémas
L-AR afin de prouver l’existence de solutions faibles. Nous introduisons une version du sec-
ond ordre d’un schéma numérique de type Godunov et nous présentons quelques simulations
numériques, en analysant l’erreur L1 des solutions approchées calculées avec différents sché-
mas. Nous proposons aussi un schéma WENO (FV-WENO) aux volumes finis d’ordre élevé
pour résoudre le système multi-classe non-local.
Enfin, nous proposons un modèle scalaire unidimensionnel pour une jonction de deux routes.
Ce modèle est basé sur la vitesse moyenne non-locale en aval. Il est destiné à décrire le com-
portement des conducteurs sur deux segments de route qui diffèrent par leur loi de vitesse et
leur densité maximale autorisée. Nous approchons la solution en utilisant un schéma upwind
adapté. En dérivant plusieurs propriétés du schéma, nous sommes en mesure de prouver le
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caractére bien posé du modèle.
Mots clés: lois de conservation non-locales, schémas de volumes finis, modèles de
trafic macroscopiques.



Non-local conservation laws for traffic flow modeling

Abstract: In this thesis, we provide mathematical traffic flow models with non-local fluxes
and adapted numerical schemes to compute approximate solutions to such kind of equations.
More precisely, we consider flux functions depending on an integral evaluation of the conserved
variables through a convolution product. First of all, we prove the well-posedness of entropy
weak solutions for a class of scalar conservation laws with non-local flux arising in traffic
modeling. This model is intended to describe the reaction of drivers that adapt their velocity
with respect to what happens in front of them. Here, the support of the convolution kernel
is proportional to the look-ahead distance of drivers. We approximate the problem by a Lax-
Friedrichs scheme and we provide some estimates for the sequence of approximate solutions.
Stability with respect to the initial data is obtained through the doubling of variable technique.
We study also the limit model as the kernel support tends to infinity. After that, we prove
the stability of entropy weak solutions of a class of scalar conservation laws with non-local
flux under higher regularity assumptions. We obtain an estimate of the dependence of the
solution with respect to the kernel function, the speed and the initial datum. We also prove
the existence for small times of weak solutions for non-local systems in one space dimension,
given by a non-local multi-class model intended to describe the behaviour of different groups
of drivers or vehicles. We approximate the problem by a Godunov-type numerical scheme
and we provide uniform L∞ and BV estimates for the sequence of approximate solutions,
locally in time. We present some numerical simulations illustrating the behavior of different
classes of vehicles and we analyze two cost functionals measuring the dependence of congestion
on traffic composition. Furthermore, we propose alternative simple schemes to numerically
integrate non-local multi-class systems in one space dimension. We obtain these schemes by
splitting the non-local conservation laws into two different equations, namely, the Lagrangian
and the remap steps. We provide some estimates recovered by approximating the problem with
the Lagrangian-Antidiffusive Remap (L-AR) schemes, and we prove the convergence to weak
solutions in the scalar case. We show some numerical simulations illustrating the efficiency
of the L-AR schemes in comparison with classical first and second order numerical schemes.
Moreover, we recover the numerical approximation of the non-local multi-class traffic flow
model proposed, presenting the multi-class version of the Finite Volume WENO (FV-WENO)
schemes, in order to obtain higher order of accuracy. Simulations using FV-WENO schemes for
a multi-class model for autonomous and human-driven traffic flow are presented. Finally, we
introduce a traffic model for a class of non-local conservation laws at road junctions. Instead
of a single velocity function for the whole road, we consider two different road segments,
which may differ for their speed law and number of lanes. We use an upwind type numerical
scheme to construct a sequence of approximate solutions and we provide uniform L∞ and BV
estimates. Using a Lax-Wendroff type argument, we prove the well-posedness of the proposed
model. Some numerical simulations are compared with the corresponding (discontinuous)
local model.
Keywords: non-local conservation laws, finite-volume schemes, macroscopic traffic
models.
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Introduction

The aim of this thesis is to study mathematical traffic flow models with non-local fluxes and to
provide adapted numerical schemes to compute approximate solutions of these models. The
general form of non-local conservation laws considered here is

∂tu+ divx F (t, x, u, ω ∗ u) = 0,

with t ∈ R+, x ∈ Rd, u(t, x) ∈ RN , ω(t, x) ∈ Rm×N . The term "non-local" refers to the
dependence of the flux function F on the convolution term ω ∗u, where ω is a properly chosen
matrix of kernel functions and u is the vector of conserved quantities. It is worth noticing that
conservation laws with non-local flux received growing attention in the recent years because
they are suitable to describe several phenomena arising in many fields of application, for
example: sedimentation [10], conveyor belts [51], granular flows [3], crowd dynamics [32],
supply chains [31], gradient constraint [4], etc. In this thesis we will consider the application
of this class of equations to traffic flow models.
Macroscopic traffic flow models based on fluid-dynamics equations have been introduced in
transport literature since the mid-fifties of last century, with the Lighthill, Whitham and
Richards (LWR) model [65, 67]. The LWR model consists in one scalar equation that expresses
the conservation of cars:

∂tρ+ ∂x(ρ v(ρ)) = 0,

with ρ = ρ(t, x) representing the mean traffic density, i.e. the number of vehicles per unit
length and v denoting the mean velocity. Since then, several approaches have been developed
during the years, addressing the need for more sophisticated models better describing traffic
flow. Indeed, traffic is not so easy to simulate due to the formation of traffic jams. In
particular, the classical LWR model is based on the assumption that the mean traffic velocity
is a function of the traffic density, which is not realistic in congested regimes because it
does not match the experimental data. In order to overcome these drawbacks, researchers
have started studying the so-called "second order" models, considering the two quantities as
independent, consisting in a mass conservation equation for the density and an acceleration
balance law for the speed, see the Payne-Whitham [66, 75] and the Aw-Rascle-Zhang
[7, 76] models. Recently, "non-local" versions of the LWR model have been proposed in
[11, 72]. In this type of models, the speed is assumed to depend on a weighted mean of
the downstream traffic density. As a consequence, the speed becomes a Lipschitz function
with respect to space and time variables, ensuring bounded acceleration and overcoming the
limitations of classical macroscopic models that allows for speed discontinuities. Non-local
traffic models are intended to describe the behaviour of drivers that adapt their velocity
with respect to what happens in front of them. For this reason, the flux function depends
on a "downstream" convolution term between the density of vehicles and a kernel func-
tion supported on the negative axis. The last assumption expresses the fact that drivers
only look forward, not backward. As in classical (local) models, the speed is a monotone
non-increasing function, because the higher the density of cars on a road, the lower their speed.



2 Introduction

There are general existence and uniqueness results for non-local equations in [5, 55] for
scalar equations in one-space dimension, in [31, 57] for multi-dimensional scalar equations,
and in [2] for the multi-dimensional system case. There are mainly two different approaches
to prove the existence of solutions for these non-local models. One is providing suitable
compactness estimates on a sequence of approximate solutions constructed through finite
volume schemes, as in [5, 2]. Another approach relies on characteristics and fixed-point
theorems, as proposed in [55, 57]. In [5], Kružkov-type entropy conditions are used to prove
the L1−stability with respect to the initial data through the doubling of variable technique,
while in [55, 57], the uniqueness of weak solutions is obtained directly from the fixed point
theorem, without prescribing any kind of entropy condition.

The numerical approximation of the solutions of non-local models is challenging due to
the high non-linearity of the system and the dependence of the flux function on convolution
terms, which highly impacts the computational cost. There are different ways to numerically
integrate non-local conservation laws. In [2, 5, 10, 11, 49] a first order Lax-Friedrichs-type
numerical scheme is used to approximate the problem and to prove the existence of solutions.
Indeed, in this setting, the numerical scheme is not just a tool for numerically investigating
the behaviour of solutions, but it is important from the analytical point of view, because it
allows to construct a sequence of approximate solutions in order to apply an adapted version
of Helly’s theorem, see [44]. Another first order numerical scheme is proposed in [46], where
a Godunov-type numerical scheme for a specific class of non-local flux problems is presented.
This scheme allows for physically reasonable solutions, meaning that negative velocities as
well as negative fluxes are avoided. Moreover, in comparison with Lax-Friedrichs scheme,
Godunov scheme is less diffusive. Concerning high-order numerical schemes, it is worth citing
the papers [19, 45]. In [19], the authors propose discontinuous Galerkin and finite volume
WENO schemes to obtain high-order approximations of non-local scalar conservation laws
in one space dimension, where the velocity function depends on a weighted mean of the
conserved quantity. The discontinuos Galerkin schemes give the best results, but under a
very restrictive Courant-Friedrichs-Lewy (CFL) condition. On the contrary, finite volume
WENO schemes can be implemented on larger time steps. In [45], central WENO schemes
are proposed, which, in contrast to the other high-order schemes for non-local conservation
laws, neither require a restrictive CFL condition nor an additional reconstruction step.

Non-local equations are used to model various physical phenomena and sometimes those
models might be defined in a bounded domain. The main difficulty lies in the fact that the
non-local operator may need to evaluate the unknown outside the boundaries of the spatial
domain, where it is not defined. The Initial boundary value problem for one-dimensional
scalar non-local conservation laws has been studied in [40, 47, 58], and in [38] for multiD
non-local systems. In [40], the solution is set outside the domain constantly equal to the
corresponding boundary condition values, instead in [58] a kind of right-hand-side boundary
datum is considered, which represents the external impact on the outflow. In [38, 47], the
non-local operator is modified to take into account the presence of boundaries. In the one-



Introduction 3

dimensional scalar case, the usual convolution product is replaced by

I(ρ(t))(x) =
1

z(x)

∫ b

a
ρ(t, y)ω(y − x)dy,

z(x) =

∫ b

a
ω(y − x)dy,

where ω is the kernel function and ]a, b[⊂ R is the open bounded interval considered, see [47].

Another interesting point regarding non-local conservation laws is the singular local limit,
which is defined as follows. In the multi-dimensional scalar case, a parameter η > 0 related
to the support of the kernel is fixed and the re-scaled kernel function is considered

ωη(x) =
1

ηd
ω

(
x

η

)
.

Owing to the assumption
∫
Rd ωη(x)dx = 1, when η → 0+ the family ωη converges weakly∗

in the sense of measures to the Dirac delta and we formally obtain the corresponding local
conservation law:

Non-local:

∂tuη + div (uηv(uη ∗ ωη)) = 0,

uη(0, x) = ū(x),
→ Local:

∂tu+ div (uv(u)) = 0,

u(0, x) = ū(x),

with v : R → Rd a Lipschitz continuous vector-valued function. The above derivation is
just formal and it has to be rigorously justified. The question is whether the solution uη
of the non-local Cauchy problem converges to the entropy admissible solution of the local
Cauchy problem in some suitable topology. The rigorous derivation of this limit was initially
posed in [5] for the one-dimensional scalar case motivated by numerical evidence, later
corroborated in [11]. The answer is positive if we consider an even kernel function and a
smooth compactly supported initial datum, as proved in [77]. The solution of one-dimensional
scalar non-local conservation laws converges to the entropy solution of the corresponding local
conservation laws also in the case of monotone initial data, see [56]. Nevertheless, in general,
the solution of the non-local Cauchy problem does not converge to the solution of the local
one and in [27] the authors show three counterexamples in this sense, while in [26], the role of
numerical viscosity in the numerical investigation of such non-local-to-local limit is highlighted.

Finally, it is worth citing the papers [68, 69] for the analysis of traveling wave profiles
for conservation laws with non-local flux in both the microscopic and the macroscopic case.
In [68], the authors consider a constant road condition k(x) := 1, which denotes the speed
limit of the road at point x. They derive delay differential equations satisfied by the profiles
for the microscopic Follow-the-Leader models, and delay integro-differential equations for the
traveling waves of the non-local PDE models, and they prove the existence and uniqueness of
the stationary wave profiles. In [69], the author considers a piecewise constant road condition

k(x) :=

k−, x < 0,

k+, x > 0,
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and stationary traveling wave profiles crossing x = 0 are analyzed, depending on the cases
k− > k+ and k− < k+. The author proves that there could be infinitely many profiles, a
unique profile or no profiles at all.

Available non-local traffic models

Equations with non-local flux have been introduced in traffic flow modeling to account for the
reaction of drivers or pedestrians to the surrounding density of other individuals [5, 28, 39, 72].
We give here a brief overview.

Non-local models for pedestrian traffic

In [28], the authors present a class of macroscopic models for crowd motion, in which each
individual is assumed to move towards a fixed target, deviating from the desired path according
to the instantaneous local crowd distribution. The equation reads

∂tρ+ div
(
ρ v(ρ)

(
ν(x) + I(ρ(t))(x)

))
= 0.

In this context, v is the pedestrians’ speed and the vector ν(x)+I(ρ(t))(x) describes the direc-
tion that the individual located at x follows. In particular, the vector I(ρ(t))(x) describes the
deviation from the desired direction ν(x) due to the density distribution ρ(t, ·). The operator
I is non-local and I(ρ(t))(x) depends on the values of ρ(t, ·) in a neighborhood of x. It is set
as

I(ρ(t)) = −ε ∇(ρ ∗ ω)√
1 +

∥∥∇(ρ ∗ ω)
∥∥2
,

where ω is a smooth kernel function. Numerical simulations show the phenomenon of pattern
formation. Indeed, in the case of a crowd walking along a corridor, the solution self-organizes
into lanes and the width of these lanes depends on the size of the support of the kernel
function ω. The authors prove the existence of weak entropy solutions for this model and
stability results. In particular, the present model accounts for the possibility of reducing
the exit time from a room by carefully positioning obstacles that direct the crowd flow. A
very similar model is introduced in [51] for conveyor belts. Here, the authors start from a
microscopic model which, through a phenomenological study, yields a macroscopic model.
In [31], the authors consider the following model

∂tρ+ div (ρv(ρ ∗ ω)ν(x)) = 0,

where ω is a smooth kernel function and ν(x) is the pedestrians’ direction. This model is
based on the non-local dependence of the speed function v on the density. In [31], the authors
prove the existence of weak solutions locally in time and the differentiability of solutions of
this model with respect to the initial datum. In [32], the authors generalize the models in
[28, 31] to the multi-populations case. In particular, they prove the global well-posedness for
the model in [31] and they provide numerical simulations showing that the formation of lanes
is present also in the multi-populations setting [28].
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The Arrhenius model for vehicular traffic flow

In [72], the authors introduce a traffic flow model based on Arrhenius stochastic microscopic
dynamics. Using scaling and limit arguments they obtain a macroscopic description of the
microscopic dynamics leading to higher-order dispersive partial differential equations. The
dynamics includes interactions with other vehicles ahead. The non-local traffic flow model
that derives from this stochastic process is

∂tρ+ ∂x(ρ(1− ρ) exp(−ωη ∗ ρ)) = 0,

where the kernel acts only on the space variable x in this way

ωη ∗ ρ(t, x) =

∫ x+η

x

J0

η
ρ(t, y)dy.

The kernel ωη is an anisotropic short range inter-vehicle interaction potential, η is proportional
to the look-ahead distance and J0 is the interaction strength. In [64], the authors study the
local classical solutions and show that the finite time blowup of solutions must occur at the
level of the first order derivative of the solution. Indeed, for several types of physical initial
data one has at some finite time 0 < T < +∞

lim sup
t→T

∥∥∂xρ(t, ·)
∥∥
∞ = +∞

where ρ is the classical maximal-lifespan solution.

The Blandin-Goatin model for vehicular traffic flow

While pedestrians are likely to react to the presence of people all around them, drivers mostly
adapt their velocity to the downstream traffic, assigning a greater importance to closer vehicles.
In [11, 49], the authors consider the following mass conservation equation for traffic flow with
non-local velocity depending on a mean downstream density:

∂tρ(t, x) + ∂x

ρ(t, x)v

(∫ x+η

x
ρ(t, y)ωη(y − x)dy

) = 0,

for t ∈ R+ and x ∈ R, η > 0. The kernel function ωη ∈ C1([0, η];R+) is non-increasing and the
support η is proportional to the look-ahead visibility. The mean speed function v is continuous
and decreasing. Considering BV initial data, the authors prove the well-posedness of entropy
weak solutions for the corresponding Cauchy problem providing accurate L∞, BV and L1

estimates on the sequence of approximate solutions constructed by an adapted Lax-Friedrichs
scheme. In [9], the authors also study the regularity results for the solutions of this non-
local model proving Sobolev estimates and the convergence of approximate solutions solving
a viscous non-local equation. The Blandin-Goatin model belongs to the class of equations
considered in [55].



6 Introduction

The Friedrich-Kolb-Göttlich model for vehicular traffic flow

In [46], the authors propose a general non-local vehicular traffic flow model based on a mean
downstream traffic velocity. This is the main difference with the models in [11, 21], where
drivers adapt their velocity with respect to a mean downstream traffic density. The Friedrich-
Kolb-Göttlich model reads

∂tρ+ ∂x(g(ρ)(ωη ∗ v(ρ))) = 0,

with

ωη ∗ v(ρ)(t, x) :=

∫ x+η

x
v(ρ(t, y))ωη(y − x)dy, η > 0 and g ∈ C1([0, ρmax],R), g′ ≥ 0.

The authors prove the well-posedness of entropy weak solutions approximating the problem
through a Godunov-type numerical scheme and providing suitable estimates on the sequence of
approximate solutions. Moreover, they show the better accuracy of the Godunov-type scheme
in comparison to the Lax-Friedrichs scheme by a variety of numerical examples. If the velocity
function v is linear, the Friedrich-Kolb-Göttlich model coincides with the one in [11, 21, 49].

Contribution and Structure of the thesis

• In Chapter 1, we consider a class of scalar equations that includes some vehicular
traffic flow models [11, 49, 64, 72], where the support of the kernel function is pro-
portional to the look-ahead distance of drivers. Unlike similar non-local equations
[5, 10, 28, 33, 35, 51, 77], these models are characterized by the presence of an anisotropic
discontinuous kernel, which makes general theoretical results [2, 5, 10] inapplicable as
such. We prove the stability of solutions with respect to the initial data, based on a
doubling of variable argument [59], and we derive the existence of solutions through an
approximation argument based on a Lax-Friedrichs type scheme. In particular, we prove
accurate L∞ and BV estimates on the approximate solutions. Regarding the Arrhenius
look-ahead model [72], our result allows to establish a global well-posedness result and
more accurate L∞ estimates with respect to previous studies [64]. We also provide the
first convergence proof of a limiting procedure as the look-ahead distance tends to +∞,
and some numerical simulations.

• In Chapter 2, we focus on a specific class of scalar non-local equations, considering
smooth kernel functions. Existence and uniqueness of solutions follows from [5], as well
as some a priori estimates, namely L1, L∞ and total variation estimates. The aim is the
study of optimization problems concerning traffic management. For this reason, we are
interested in analysing the dependence of solutions on the convolution kernel and on the
velocity function. While controlling the speed may seem more straightforward, varying
the interaction kernel could be of interest in applications to connected autonomous
vehicles. Estimates of the dependence of solutions of a general balance law on the flux
function can be found in [34, 62]. However, those estimates turn out to be implicit when
applied to our setting. Carefully applying the Kružkov’s doubling of variables technique,
on the lines of [10, 52], we derive the L1-Lipschitz continuous dependence of solutions
on the initial datum, the kernel and the velocity. We show some numerical simulations
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illustrating the behaviour of the solutions of a non-local traffic flow model, when the
size and the position of the kernel support or the velocity function vary. In particular,
we analyze the impact on two cost functionals, measuring traffic congestion.

• In Chapter 3, we consider a system of M non-local conservation laws in one space
dimension, given by a non-local multi-class model obtained as a generalization of the
M -populations model for traffic flow described in [8]. This is a multi-class version of
the one dimensional scalar conservation law with non-local flux proposed in [11]. We
allow different anisotropic kernels for each equation of the system. The model takes into
account the distribution of heterogeneous drivers and vehicles characterized by their
maximal speeds and look-ahead visibility in a traffic stream. The main result of this
chapter is the existence of weak solutions locally in time. We remark that, since the
convolution kernels are not smooth on R, the results in [2] cannot be applied due to the
lack of L∞-bounds on their derivatives. We do not address the question of uniqueness
of solutions. Indeed, even if discrete entropy inequalities can be derived as in [11,
Proposition 3], in the case of systems this is in general not sufficient to single out a unique
solution. We prove uniform L∞ and BV estimates on the approximate solutions obtained
through an approximation argument based on a Godunov-type numerical scheme, see
[46], and we prove the existence for small time of weak solutions applying Helly’s theorem
and a Lax-Wendroff type argument, see [63]. We also present some numerical simulations
for M = 2. In particular, we consider the case of a mixed flow of cars and trucks on a
stretch of road, and the flow of mixed autonomous and non-autonomous vehicles on a
circular road.

• In Chapter 4, we study the computation of numerical solutions for the multi-class model
proposed in Chapter 3. In [22, 21], the authors proposed first-order schemes, however
it is well known that these schemes are very diffusive. In the scalar case, high-order
Discontinuous Galerkin and Finite-Volume WENO schemes were constructed in [19].
In this chapter, we present a generalization of the Lagrangian-Antidiffusive Remap (L-
AR) schemes introduced in [15, 16] and a Finite-Volume WENO scheme, in order to
compute approximate solutions of the non-local multi-class model proposed in [22]. In
[15], one step L-AR schemes were applied to (local) multi-class traffic models and in [16]
these schemes were extended to polydisperse sedimentation models. L-AR schemes do
not rely on spectral (characteristics) information and their implementation is as easy as
that one of first- and second-order of accuracy schemes introduced in [17]. Nevertheless,
the L-AR are more accurate and efficient. We recover some properties of the schemes
in both the scalar and the multi-class cases. In the scalar case, we obtain uniform L∞

and BV estimates on the approximate solutions computed through the L-AR schemes,
which give an alternative proof of existence of weak solutions. We show a second-order
version of a Godunov-type numerical scheme and we present some numerical simulations,
analyzing the L1-error of the approximate solutions computed with different schemes
and considering smooth and discontinuous initial data. Finally, we propose a high-order
Finite-Volume WENO (FV-WENO) scheme to solve the non-local multi-class system.
The procedure proposed in [19] is used and extended to the multi-class case in order to
evaluate the non-local term that appears in the flux functions.
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• In Chapter 5, we propose a one-dimensional scalar model for a 1-to-1 junction. This
model is based on the non-local mean downstream velocity as the model [46], and it
is intended to describe the behavior of drivers on two road segments that differ for
their speed law and capacity. This model can be seen as a first step towards a non-
local network formulation. We approximate the solution using an upwind type scheme.
Deriving several properties of the scheme, such as the maximum principle and uniform
total variation (BV) estimates, and relying on a Kružkov type entropy condition, we
are able to prove the well-posedness of the model. In particular, we prove the Lipschitz
continuous dependence of weak entropy solutions with respect to the initial data, which
implies their uniqueness. Since it is still an open question whether the solution of the non-
local model tends to the solution of the corresponding local equation when the support
of the kernel function tends to zero, see the introduction of this thesis for an overview, we
investigate this issue from the numerical point of view. We show numerical simulations
fixing the support of the kernel function and we present some results regarding the limit
model as the support tends to zero.
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Chapter 1

Global entropy weak solutions for
general non-local traffic flow models

with anisotropic kernel

This chapter is devoted to present the results obtained in [21].

1.1 Modeling

We consider the following scalar conservation law with non-local flux

∂tρ+ ∂x
(
f(ρ)v(ωη ∗ ρ)

)
= 0, x ∈ R, t > 0, (1.1.1)

where

ωη ∗ ρ(t, x) :=

∫ x+η

x
ωη(y − x)ρ(t, y)dy, η > 0. (1.1.2)

In (1.1.1), (1.1.2), we assume the following hypotheses:

(H)

f ∈ C1(I;R+), I = [a, b] ⊆ R+,

v ∈ C2(I;R+) s.t. v′ ≤ 0,

ωη ∈ C1([0, η];R+) s.t. ω′η ≤ 0∫ η
0 ωη(x)dx := J0, ∀η > 0, lim

η→∞
ωη(0) = 0.

This class of equations includes in particular some vehicular traffic flow models [11, 49, 64,
72], where η > 0 is proportional to the look-ahead distance and the integral J0 is the interaction
strength (here assumed to be independent of η). In this setting, the non-local dependence of
the speed function v can be interpreted as the reaction of drivers to a weighted mean of the
downstream traffic density. The specific monotonicity assumptions on the speed function v and
the kernel ωη ensure nice properties of the corresponding solutions, such as a strong maximum
principle (both from below and above) and the absence of unphysical oscillations due to a sort
of monotonicity preservation, which make the choice (1.1.2) interesting and justified from the
modeling perspective.

Adding an initial condition

ρ(0, x) = ρ0(x), x ∈ R, (1.1.3)

with ρ0 ∈ BV(R; I), entropy weak solutions of problem (1.1.1), (1.1.3), are intended the
following sense [5, 10, 59].
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Definition 1. A function

ρ ∈ (L1 ∩ L∞ ∩ BV)(R+ × R; I)

is an entropy weak solution of (1.1.1), (1.1.3), if∫ +∞

0

∫
R

{
|ρ− κ|ϕt + sgn(ρ− κ)(f(ρ)− f(κ))v(ωη ∗ ρ)ϕx

− sgn(ρ− κ)f(κ)v′(ωη ∗ ρ)∂x(ωη ∗ ρ)ϕ
}
dxdt+

∫
R

∣∣ρ0(x)− κ
∣∣ϕ(0, x)dx ≥ 0 (1.1.4)

for all ϕ ∈ C1
c(R2;R+) and κ ∈ R.

Our aim is to prove the following results.

Theorem 1. Let hypotheses (H) hold and ρ0 ∈ BV(R; I). Then the Cauchy problem (1.1.1),
(1.1.3), admits a unique weak entropy solution ρη in the sense of Definition 1, such that

min
R
{ρ0} ≤ ρη(t, x) ≤ max

R
{ρ0}, for a.e. x ∈ R, t > 0. (1.1.5)

Moreover, for any T > 0 and τ > 0, the following estimates hold:

TV(ρη(T, ·)) ≤ eC(ωη)TTV(ρ0), (1.1.6a)∥∥ρη(T, ·)− ρη(T − τ, ·)∥∥
L1 ≤ τeC(ωη)T

(∥∥f ′∥∥ ‖v‖+ J0‖f‖
∥∥v′∥∥)TV(ρ0), (1.1.6b)

with C(ωη) := ωη(0)

(∥∥v′∥∥(∥∥f ′∥∥‖ρ0‖+ 2‖f‖
)

+ 7
2J0‖f‖

∥∥v′′∥∥) .
Above, and in the sequel, we use the compact notation ‖·‖ for ‖·‖L∞ .

Corollary 2. Let hypotheses (H) hold and ρ0 ∈ BV(R; I). As η → ∞, the solution ρη of
(1.1.1), (1.1.3) converges in the L1

loc-norm to the unique entropy weak solution of the classical
Cauchy problem ∂tρ+ ∂x

(
f(ρ)v(0)

)
= 0, x ∈ R, t > 0

ρ(0, x) = ρ0(x), x ∈ R.
(1.1.7)

In particular, we observe that C(ωη) → 0 in (1.1.6a) and (1.1.6b), allowing to recover the
classical estimates.

Section 1.2 is devoted to the proof of the stability of solutions with respect to the initial
data, based on a doubling of variable argument [59].

In Section 1.3 we derive existence of solutions through an approximation argument based
on a Lax-Friedrichs type scheme. In particular, we prove accurate L∞ and BV estimates on
the approximate solutions, which allow to derive (1.1.5) and (1.1.6). We remark once again
that these estimates heavily rely on the monotonicity properties of ωη, and do not hold for
general kernels, see [5, 11]. To our knowledge, Corollary 2 provides the first convergence proof
of a limiting procedure on the kernel support. Besides the mathematical implications of such
result, Corollary 2 may give information on connected autonomous vehicle traffic flow charac-
teristics. Indeed, large kernel supports could account for the information transmission range
between connected vehicles. We present some numerical tests illustrating this convergence in
Section 1.4.
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1.2 Uniqueness and stability of entropy solutions

The Lipschitz continuous dependence of entropy solutions with respect to initial data can be
derived using Kružkov’s doubling of variable technique [59] as in [10, 11, 49].

Theorem 3. Under hypotheses (H), let ρ, σ be two entropy solutions to (1.1.1) with initial
data ρ0, σ0 respectively. Then, for any T > 0 there holds∥∥ρ(t, ·)− σ(t, ·)

∥∥
L1 ≤ eKT ‖ρ0 − σ0‖L1 ∀t ∈ [0, T ], (1.2.1)

with K given by (1.2.5).

Proof. The functions ρ and σ are respectively entropy solutions of

∂tρ(t, x) + ∂x(f(ρ(t, x))V (t, x)) = 0, V := v(ρ ∗ ωη), ρ(0, x) = ρ0(x),

∂tσ(t, x) + ∂x(f(σ(t, x))U(t, x)) = 0, U := v(σ ∗ ωη), σ(0, x) = σ0(x).

V and U are bounded measurable functions and are Lipschitz continuous w.r. to x, since
ρ, σ ∈ (L1 ∩ L∞ ∩ BV)(R+ × R;R). In particular, we have

‖Vx‖ ≤ 2ωη(0)
∥∥v′∥∥‖ρ‖, ‖Ux‖ ≤ 2ωη(0)

∥∥v′∥∥‖σ‖.
Using the classical doubling of variables technique introduced by Kruzkov, we obtain the
following inequality:∥∥ρ(T, ·)− σ(T, ·)

∥∥
L1 ≤ ‖ρ0 − σ0‖L1 (1.2.2)

+
∥∥f ′∥∥∫ T

0

∫
R

∣∣ρx(t, x)
∣∣∣∣U(t, x)− V (t, x)

∣∣dxdt
+

∫ T

0

∫
R

∣∣f(ρ(t, x))
∣∣∣∣Ux(t, x)− Vx(t, x)

∣∣dxdt.
We observe that ∣∣U(t, x)− V (t, x)

∣∣ ≤ ωη(0)
∥∥v′∥∥∥∥ρ(t, ·)− σ(t, ·)

∥∥
L1 , (1.2.3)

and that for a.e. x ∈ R∣∣Ux(t, x)− Vx(t, x)
∣∣ ≤(2(ωη(0))2

∥∥v′′∥∥∥∥ρ(t, ·)
∥∥+

∥∥v′∥∥∥∥∥ω′η∥∥∥)∥∥ρ(t, ·)− σ(t, ·)
∥∥
L1

+ ωη(0)
∥∥v′∥∥(|ρ− σ|(t, x+ η) + |ρ− σ|(t, x). (1.2.4)

Plugging (1.2.3) and (1.2.4) into (1.2.2), we get∥∥ρ(T, ·)− σ(T, ·)
∥∥
L1 ≤ ‖ρ0 − σ0‖L1 +K

∫ T

0

∥∥ρ(t, ·)− σ(t, ·)
∥∥
L1dt

with

K = ωη(0)
∥∥v′∥∥(∥∥f ′∥∥ sup

t∈[0,T ]

∥∥ρ(t, ·)
∥∥
BV(R)

+ 2 sup
t∈[0,T ]

∥∥f(ρ(t, ·))
∥∥)

+ sup
t∈[0,T ]

∥∥f(ρ(t, ·))
∥∥
L1

(
2(ωη(0))2

∥∥v′′∥∥ sup
t∈[0,T ]

∥∥ρ(t, ·)
∥∥+

∥∥v′∥∥∥∥∥ω′η∥∥∥
)
. (1.2.5)

By Gronwall’s lemma, we get the statement.
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1.3 Existence

1.3.1 Lax-Friedrichs numerical scheme

We discretize (1.1.1) on a fixed grid given by the cells interfaces xj+ 1
2

= j∆x and the cells
centers xj = (j − 1/2)∆x for j ∈ Z, taking a space step ∆x such that η = N∆x for some
N ∈ N, and tn = n∆t the time mesh. Our aim is to construct a finite volume approximate
solution ρ∆x(t, x) = ρnj for (t, x) ∈ Cnj = [tn, tn+1[×]xj−1/2, xj+1/2]. We approximate the
initial datum ρ0 with the piecewise constant function

ρ0
j =

1

∆x

∫ xj+1/2

xj−1/2

ρ0(x)dx.

We denote ωkη := ωη(k∆x) for k = 0, ..., N − 1 and set

V n
j := v(cnj ),

where

cnj := ∆x
N−1∑
k=0

ωkηρ
n
j+k.

The Lax-Friedrichs flux adapted to (1.1.1) is given by

Fnj+1/2 :=
1

2
f(ρnj )V n

j +
1

2
f(ρnj+1)V n

j+1 +
α

2
(ρnj − ρnj+1), (1.3.1)

α ≥ 0 being the viscosity coefficient. In this way, we obtain the N + 2 points finite volume
scheme

ρn+1
j = H(ρnj−1, ..., ρ

n
j+N ), (1.3.2)

where

H(ρj−1, ..., ρj+N ) := ρj +
λ

2
α(ρj−1 − 2ρj + ρj+1)

+
λ

2

(
f(ρj−1)V n

j−1 − f(ρj+1)V n
j+1

)
,

(1.3.3)

with λ = ∆t/∆x.

Assume ρi ∈ I for i = j − 1, ..., j +N, we can compute:

∂H

∂ρj−1
=
λ

2

(
α+ Vj−1f

′(ρj−1) + ∆x v′(cj−1)ω0
ηf(ρj−1)

)
, (1.3.4a)

∂H

∂ρj
= 1− λ

(
α− 1

2
∆xf(ρj−1)v′(cj−1)ω1

η

)
(1.3.4b)

≥ 1− λ
(
α+

1

2
∆xωη(0) ‖f‖

∥∥v′∥∥) ,
∂H

∂ρj+1
=
λ

2

(
α+ ∆xf(ρj−1)v′(cj−1)ω2

η − f ′(ρj+1)Vj+1 −∆xf(ρj+1)v′(cj+1)ω0
η

)
, (1.3.4c)
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∂H

∂ρj+k
= −λ

2
∆x
(
f(ρj+1)v′(cj+1)ωk−1

η − f(ρj−1)v′(cj−1)ωk+1
η

)
, k = 2, . . . , N − 2,

(1.3.4d)
∂H

∂ρj+N−1
= −λ

2
∆xf(ρj+1)v′(cj+1)ωN−2

η , (1.3.4e)

∂H

∂ρj+N
= −λ

2
∆xf(ρj+1)v′(cj+1)ωN−1

η . (1.3.4f)

We have that (1.3.4e) and (1.3.4f) are non-negative. The positivity of (1.3.4b) follows assuming

∆t ≤ 2

2α+ ∆xωη(0) ‖f‖‖v′‖
∆x, (1.3.5)

which gives the CFL condition. Moreover, the bound

α ≥
∥∥f ′∥∥‖v‖+ ∆xωη(0)‖f‖

∥∥v′∥∥ (1.3.6)

guarantees the increasing monotonicity w.r.t. ρj−1 and ρj+1, respectively in (1.3.4a) and in
(1.3.4c). The sign of (1.3.4d) cannot be a priori determined and for this reason the numerical
scheme (1.3.2), (1.3.3) is not monotone.

1.3.2 Maximum principle

Proposition 1. Let hypotheses (H) hold. Given an initial datum ρ0
j , j ∈ Z, such that ρm =

min
j∈Z

ρ0
j ∈ I and ρM = max

j∈Z
ρ0
j ∈ I, the finite volume approximation ρnj , j ∈ Z and n ∈ N,

constructed using the scheme (1.3.2), (1.3.3), satisfies the bounds

ρm ≤ ρnj ≤ ρM ,

for all j ∈ Z and n ∈ N, under the CFL condition (1.3.5).

Proof. We follow closely the idea in [11]. We start observing that

H(ρm, ρm, ρm, ρj+2, ..., ρj+N−2, ρm, ρm) ≥ ρm, (1.3.7)

H(ρM , ρM , ρM , ρj+2, ..., ρj+N−2, ρM , ρM ) ≤ ρM . (1.3.8)

Indeed, we get

H(ρm, ρm, ρm, ρj+2, ..., ρj+N−2, ρm, ρm) = ρm +
λ

2
f(ρm)(V n

j−1 − V n
j+1),

and we have that

V n
j−1 − V n

j+1 = v(cnj−1)− v(cnj+1) = −v′(ξ)∆x
N−1∑
k=0

ωkη(ρj+k+1 − ρj+k−1) ≥ 0,

for some ξ is between cnj−1 and cnj+1. Indeed, due to the non-increasing monotonicity of ωη,
we observe that

N−1∑
k=0

ωkη(ρj+k+1 − ρj+k−1) = ρm(ωN−2
η + ωN−1

η − ω0
η − ω1

η) +
N−2∑
k=1

ρj+k(ω
k−1
η − ωk+1

η )
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≥ ρm
N−2∑
k=1

(
ωk−1
η − ωk+1

η

)
≥ 0.

In this way we have the inequality (1.3.7) and the same procedure leads to (1.3.8).
Consider now the points

Rnj = (ρnj−1, ..., ρ
n
j+N )

and
Rnm = (ρm, ρm, ρm, ρ

n
j+2, ..., ρ

n
j+N−2, ρm, ρm).

Applying the mean value theorem and using (1.3.7) one has

ρn+1
j = H(Rnj ) = H(Rnm) +∇H(Rξ) · (Rnj −Rnm) (1.3.9)

≥ ρm +∇H(Rξ) · (Rnj −Rnm),

for Rξ = (1− ξ)Rnm + ξRnj , for some ξ ∈ [0, 1]. We note that

∂H

∂ρj+k
(Rξ)(R

n
j −Rnm)k = 0, k = 2, . . . , N − 2,

since (Rnj −Rnm)k = 0 for k = 2, . . . , N − 2. Assuming (1.3.5) and (1.3.6), we conclude

∇H(Rξ) · (Rnj −Rnm) ≥ 0,

which by (1.3.9) implies that ρn+1
j ≥ ρm.

Similarly we can prove the upper bound by considering

RnM = (ρM , ρM , ρM , ρ
n
j+2, ..., ρ

n
j+N−2, ρM , ρM )

and (1.3.8).

1.3.3 BV estimates

The approximate solutions constructed using adapted Lax-Friedrichs numerical scheme have
uniformly bounded total variation.

Proposition 2. Let hypotheses (H) hold, ρ0 ∈ BV(R; I), and let ρ∆x be constructed using
(1.3.2), (1.3.3). If

α ≥
∥∥f ′∥∥‖v‖+ ∆xωη(0)

∥∥v′∥∥(‖f‖+
∥∥f ′∥∥‖ρ0‖),

∆t ≤ 2∆x

2α+ ∆xωη(0)‖v′‖(‖f‖+ ‖f ′‖‖ρ0‖)
,

then for every T > 0 the following discrete space BV estimate holds

TV(ρ∆x)(T, ·) ≤ eC(ωη)TTV(ρ0), (1.3.10)

where C(ωη) := ωη(0)

(∥∥v′∥∥(∥∥f ′∥∥‖ρ0‖+ 2‖f‖
)

+ 7
2J0‖f‖

∥∥v′′∥∥) .
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Proof. At the mesh cell Cnj there holds

ρn+1
j = ρj +

λα

2
(ρj−1 − 2ρj + ρj+1) +

λ

2
(f(ρj−1)Vj−1 − f(ρj+1)Vj+1),

and at Cnj+1

ρn+1
j+1 = ρj+1 +

λα

2
(ρj − 2ρj+1 + ρj+2) +

λ

2
(f(ρj)Vj − f(ρj+2)Vj+2),

where we omitted the index n to simplify the notation. Computing the difference between
ρn+1
j+1 and ρn+1

j and setting ∆n
j+k−1/2 = ρnj+k − ρnj+k−1 for k = 0, . . . , N + 1 we get:

∆n+1
j+1/2 = ∆j+1/2 +

λα

2
[∆j−1/2 − 2∆j+1/2 + ∆j+3/2] (1.3.11)

+
λ

2
[f(ρj)Vj ± f(ρj−1)Vj − f(ρj−1)Vj−1 − f(ρj+2)Vj+2 ± f(ρj+1)Vj+2 + f(ρj+1)Vj+1]

Applying the mean value theorem we can rewrite (1.3.11) as:

∆n+1
j+1/2 = ∆j+1/2 +

λα

2

[
∆j−1/2 − 2∆j+1/2 + ∆j+3/2

]
(1.3.12)

+
λ

2

[
Vjf

′(ζj−1/2)∆j−1/2 + f(ρj−1)(Vj − Vj−1)

−Vj+2f
′(ζj+3/2)∆j+3/2 + f(ρj+1)(Vj+1 − Vj+2)

]
.

where ζj−1/2 is between ρj−1 and ρj . Applying the mean value theorem we have

Vj − Vj−1 = v′(ξj−1/2)∆x

N−1∑
k=0

ωkη∆j+k− 1
2
,

Vj+2 − Vj+1 = v′(ξj+3/2)∆x

N−1∑
k=0

ωkη∆j+k+ 3
2
,

where ξj+3/2 is between
∑N−1

k=0 ωkηρj+k+1 and
∑N−1

k=0 ωkηρj+k+2. In this way we obtain

∆n+1
j+1/2 =

λ

2
[α+ Vjf

′(ζj−1/2) + ∆xω0
η v
′(ξj−1/2)f(ρj−1)]∆j−1/2 (1.3.13a)

+ [1− λα+
λ

2
∆xω1

η v
′(ξj−1/2)f(ρj−1)]∆j+1/2 (1.3.13b)

+
λ

2

[
α− Vj+2f

′(ζj+3/2)−∆xω0
η f(ρj+1)v′(ξj+3/2)

+∆xω2
ηv
′(ξj−1/2)f(ρj−1)

]
∆j+3/2 (1.3.13c)

+
λ

2
∆x f(ρj−1)v′(ξj−1/2)

N−1∑
k=3

ωkη∆j+k−1/2 (1.3.13d)

− λ

2
∆x f(ρj+1)v′(ξj+3/2)

N−1∑
k=1

ωkη∆j+k+3/2. (1.3.13e)
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Rearranging the indexes in (1.3.13d) and (1.3.13e) we obtain

(1.3.13d) + (1.3.13e) =
λ

2
∆x

N−2∑
k=2

[
f(ρj−1)v′(ξj−1/2)ωk+1

η − f(ρj+1)v′(ξj+3/2)ωk−1
η

]
∆j+k+1/2

− λ

2
∆x f(ρj+1)v′(ξj+3/2)ωN−2

η ∆j+N−1/2

− λ

2
∆x f(ρj+1)v′(ξj+3/2)ωN−1

η ∆j+N+1/2.

Noting that adding and subtracting f(ρj−1)ωk−1
η v′(ξj−1/2) in the sum we have

f(ρj−1)v′(ξj−1/2)ωk+1
η − f(ρj+1)v′(ξj+3/2)ωk−1

η

= f(ρj−1)v′(ξj−1/2)(ωk+1
η − ωk−1

η )

+ ωk−1
η

(
f(ρj−1)v′(ξj−1/2)± f(ρj−1)v′(ξj+3/2)− f(ρj+1)v′(ξj+3/2)

)
= f(ρj−1)v′(ξj−1/2)(ωk+1

η − ωk−1
η ) + ωk−1

η f(ρj−1)(v′(ξj−1/2)− v′(ξj+3/2))

− ωk−1
η v′(ξj+3/2)f ′(ζj)

(
∆j−1/2 + ∆j+1/2

)
,

with ζj is between ρj−1 and ρj+1. Therefore we get

∆n+1
j+1/2 =

λ

2

[
α+ Vjf

′(ζj−1/2) + ∆xω0
ηv
′(ξj−1/2)f(ρj−1) (1.3.14a)

−∆x v′(ξj+3/2)f ′(ζj)
N−2∑
k=2

ωk−1
η ∆j+k+1/2

]
∆j−1/2

+

[
1− λα+

λ

2
∆xω1

ηv
′(ξj−1/2)f(ρj−1)

− λ

2
∆x v′(ξj+3/2)f ′(ζj)

N−2∑
k=2

ωk−1
η ∆j+k+1/2

]
∆j+1/2 (1.3.14b)

+
λ

2

[
α− Vj+2f

′(ζj+3/2)−∆xω0
ηf(ρj+1)v′(ξj+3/2)

+ ∆xω2
ηf(ρj−1)v′(ξj−1/2)

]
∆j+3/2 (1.3.14c)

+
λ

2
∆x

N−2∑
k=2

[
f(ρj−1)v′(ξj−1/2)(ωk+1

η − ωk−1
η )

+ ωk−1
η f(ρj−1)

(
v′(ξj+1/2)− v′(ξj+3/2)

)]
∆j+k+1/2 (1.3.14d)

− λ

2
∆x f(ρj+1)v′(ξj+3/2)ωN−2

η ∆j+N−1/2 (1.3.14e)

− λ

2
∆x f(ρj+1)v′(ξj+3/2)ωN−1

η ∆j+N+1/2. (1.3.14f)

Observe that the assumption α ≥
∥∥f ′∥∥‖v‖ + ∆xωη(0)

∥∥v′∥∥(‖f‖ +
∥∥f ′∥∥‖ρ0‖) guarantees the

positivity of (1.3.14a). Similarly for (1.3.14c) we get α ≥
∥∥f ′∥∥‖v‖+ ∆xωη(0)‖f‖

∥∥v′∥∥ and for
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(1.3.14b) we have the following CFL condition

∆t ≤ 2∆x

2α+ ∆xωη(0)‖v′‖(‖f‖+ ‖f ′‖‖ρ0‖)
. (1.3.15)

Rearranging the indexes and taking the absolute values∑
j

∣∣∣∆n+1
j+1/2

∣∣∣ (1.3.16a)

≤
∑
j

∣∣∣∆j+1/2

∣∣∣ (1.3.16b)

×
[
λ

2

(
α+ Vj+1f

′(ζj+1/2) + ∆xω0
ηv
′(ξj+1/2) f(ρj) (1.3.16c)

−∆xv′(ξj+5/2)f ′(ζj+1)

N−2∑
k=2

ωk−1
η ∆j+k+3/2

)
(1.3.16d)

+ 1− λα+
λ

2
∆xω1

ηv
′(ξj−1/2)f(ρj−1)− λ

2
∆x v′(ξj+3/2)f ′(ζj)

N−2∑
k=2

ωk−1
η ∆j+k+1/2 (1.3.16e)

+
λ

2

(
α− Vj+1f

′(ζj+1/2)−∆xω0
ηf(ρj)v

′(ξj+1/2) + ∆xω2
ηv
′(ξj−3/2)f(ρj−2)

)
(1.3.16f)

+
λ

2
∆x

(N−2∑
k=2

f(ρj−k−1)v′(ξj−k−1/2)(ωk+1
η − ωk−1

η ) (1.3.16g)

+ ωk−1
η f(ρj−k−1)

∣∣∣v′(ξj−k−1/2)− v′(ξj−k+3/2)
∣∣∣)

−λ
2

∆x f(ρj−N+2)v′(ξj−N+5/2)ωN−2
η − λ

2
∆x f(ρj−N+1)v′(ξj−N+3/2)ωN−1

η

]
. (1.3.16h)

Due to some cancellations, the coefficient of the right-hand side of (1.3.16) becomes

1 +
∆t

2

[
− v′(ξj+5/2)f ′(ζj+1)

N−2∑
k=2

ωk−1
η ∆j+k+3/2 − v′(ξj+3/2)f ′(ζj)

N−2∑
k=2

ωk−1
η ∆j+k+1/2

+ ω1
ηv
′(ξj−1/2)f(ρj−1) + ω2

ηv
′(ξj−3/2)f(ρj−2)

+

(N−2∑
k=2

f(ρj−k−1)v′(ξj−k−1/2)(ωk+1
η − ωk−1

η ) (1.3.17)

+ ωk−1
η f(ρj−k−1)

∣∣∣v′(ξj−k−1/2)− v′(ξj−k+3/2)
∣∣∣)

− f(ρj−N+2)v′(ξj−N+5/2)ωN−2
η − f(ρj−N+1)v′(ξj−N+3/2)ωN−1

η

]
. (1.3.18)

Following [48, pp. 11–12], applying the mean value theorem to v′ and using the monotonicity
of the kernel ωη, we have∣∣∣v′(ξj−k−1/2)− v′(ξj−k+3/2)

∣∣∣ ≤ 7ωη(0)
∥∥v′′∥∥∆x.
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Therefore we have

(1.3.18) ≤ 1 +
∆t

2

2ωη(0)
∥∥v′∥∥∥∥f ′∥∥‖ρ0‖+ 2ωη(0)

∥∥v′∥∥‖f‖
+
∥∥v′∥∥‖f‖N−2∑

k=2

(ωk−1
η − ωk+1

η )︸ ︷︷ ︸∑N−3
k=1 ωkη−

∑N−1
k=3 ωkη

+7ωη(0)
∥∥v′′∥∥‖f‖∆x

N−2∑
k=2

ωk−1
η︸ ︷︷ ︸

≤J0

.

Substituting in (1.3.16) we get

∑
j

∣∣∣∆n+1
j+1/2

∣∣∣ ≤ [1 +
∆t

2

(
2ωη(0)

∥∥v′∥∥(∥∥f ′∥∥‖ρ0‖+ 2‖f‖
)

+ 7ωη(0)J0‖f‖
∥∥v′′∥∥)]∑

j

∣∣∣∆n
j+1/2

∣∣∣,
therefore we recover the following estimate for the total variation

TV(ρ∆x(T, ·)) ≤[
1 +

∆t

2

(
2ωη(0)

∥∥v′∥∥(∥∥f ′∥∥‖ρ0‖+ 2‖f‖
)

+ 7ωη(0)J0‖f‖
∥∥v′′∥∥)]T/∆tTV(ρ∆x(0, ·))

≤ e
ωη(0)

(
‖v′‖

(
‖f ′‖‖ρ0‖+2‖f‖

)
+ 7

2
J0‖f‖‖v′′‖

)
T
TV(ρ0).

From Proposition 2, the following space-time BVestimate can be derived (see [44, Corollary
5.1]).

Corollary 4. Let hypotheses (H) hold, ρ0 ∈ BV(R; I), and ρ∆x be given by (1.3.2), (1.3.3).
If

α ≥
∥∥f ′∥∥‖v‖+ ∆xωη(0)

∥∥v′∥∥(‖f‖+
∥∥f ′∥∥‖ρ0‖),

∆t ≤ 2∆x

2α+ ∆xωη(0)‖v′‖(‖f‖+ ‖f ′‖‖ρ0‖)
,

then, for every T > 0, ρ∆x satisfies the following Total Variation estimate in space and time

TV(ρ∆x;R× [0, T ]) (1.3.19)

≤ T eC(ωη)T

(
1 +

∥∥f ′∥∥‖v‖+
1

2
∆xωη(0)

∥∥v′∥∥(5‖f‖+
∥∥f ′∥∥‖ρ0‖

)
+ J0‖f‖

∥∥v′∥∥)TV(ρ0).

Proof. Let us fix T ∈ R+. If T ≤ ∆t, then TV(ρ∆x; [0, T ] × R) ≤ T TV(ρ0). Let us assume
now that T > ∆t. Let M ∈ N\{0} such that M∆t < T ≤ (M + 1)∆t. Then

TV(ρ∆x;R× [0, T ]) =

M−1∑
n=0

∑
j∈Z

∆t
∣∣∣ρnj+1 − ρnj

∣∣∣+ (T −M∆t)
∑
j∈Z

∣∣∣ρMj+1 − ρMj
∣∣∣+

M−1∑
n=0

∑
j∈Z

∆x
∣∣∣ρn+1
j − ρnj

∣∣∣.
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The spatial BV estimate yields

M−1∑
n=0

∑
j∈Z

∆t
∣∣∣ρnj+1 − ρnj

∣∣∣+ (T −M∆t)
∑
j∈Z

∣∣∣ρMj+1 − ρMj
∣∣∣ ≤ T eC(ωη)TTV(ρ0) (1.3.20)

where C(ωη) is the constant in Proposition 2. We are left to bound the term

M−1∑
n=0

∑
j∈Z

∆x
∣∣∣ρn+1
j − ρnj

∣∣∣.
Let us make use of the definition of the numerical scheme (1.3.2), (1.3.3). Applying the mean
value theorem to the function f we obtain

ρn+1
j − ρnj =

λ

2
(α+ V n

j+1f
′(ζj−1/2))(ρnj−1 − ρnj )

+
λ

2
(−α+ V n

j+1f
′(ζj+1/2))(ρnj − ρnj+1)

+
λ

2
f(ρnj−1)

(
V n
j−1 − V n

j

)
+
λ

2
f(ρnj−1)

(
V n
j − V n

j+1

)
,

where ζj−1/2 is between ρnj−1 and ρnj . Applying again the mean value theorem, we obtain

V n
j−1 − V n

j = v′(ξj−1/2)∆x
N−1∑
k=0

ωkη(ρnj+k−1 − ρnj+k)

and

V n
j − V n

j+1 = v′(ξj+1/2)∆x

N−1∑
k=0

ωkη(ρnj+k − ρnj+k+1).

Therefore we can write

ρn+1
j − ρnj =

λ

2

(
α+ V n

j+1f
′(ζj−1/2) + f(ρnj−1)v′(ξj−1/2)∆xω0

η

)
(ρnj−1 − ρnj )

+
λ

2

(
−α+ V n

j+1f
′(ζj+1/2) + f(ρnj−1)v′(ξj−1/2)∆xω1

η

+f(ρnj−1)v′(ξj+1/2)∆xω0
η

)
(ρnj − ρnj+1)

+
λ

2
f(ρnj−1)v′(ξj−1/2)∆x

N−1∑
k=2

ωkη(ρnj+k−1 − ρnj+k)

+
λ

2
f(ρnj−1)v′(ξj+1/2)∆x

N−1∑
k=1

ωkη(ρnj+k − ρnj+k+1).

Rearranging the indexes of the last two terms, we can write

ρn+1
j − ρnj =

λ

2

(
α+ V n

j+1f
′(ζj−1/2) + f(ρnj−1)v′(ξj−1/2)∆xω0

η

)
(ρnj−1 − ρnj ) (1.3.21a)

− λ

2

(
α− V n

j+1f
′(ζj+1/2)− f(ρnj−1)v′(ξj−1/2)∆xω1

η
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−f(ρnj−1)v′(ξj+1/2)∆xω0
η

)
(ρnj − ρnj+1) (1.3.21b)

+
λ

2
f(ρnj−1)∆x

N−2∑
k=1

(
v′(ξj−1/2)ωk+1

η + v′(ξj+1/2)ωkη

)
(ρnj+k − ρnj+k+1) (1.3.21c)

+
λ

2
f(ρnj−1)v′(ξj+1/2)∆xωN−1

η (ρnj+N−1 − ρnj+N ). (1.3.21d)

Observe that the coefficients in (1.3.21a) and (1.3.21b) are positive if α ≥
∥∥f ′∥∥ ‖v‖ +

∆xωη(0)‖f‖
∥∥v′∥∥. Therefore, taking the absolute values in (1.3.21), summing on j and re-

arranging the indexes we obtain∑
j∈Z

∆x
∣∣∣ρn+1
j − ρnj

∣∣∣ ≤ ∆t

2

∑
j∈Z

∣∣∣ρnj+1 − ρnj
∣∣∣

×
[
2α+ f ′(ζj+1/2)

(
V n
j+2 − V n

j+1

)
+ ∆x f(ρnj )v′(ξj+1/2)ω0

η −∆x f(ρnj−1)v′(ξj−1/2)ω1
η

−∆x f(ρnj−1)v′(ξj+1/2)ω0
η

−∆x
N−2∑
k=1

f(ρnj−k−1)
(
v′(ξj−k−1/2)ωk+1

η + v′(ξj−k+1/2)ωkη

)
−∆x f(ρnj−N )v′(ξj−N+3/2)ωN−1

η

]
≤ ∆t

2

∑
j∈Z

∣∣∣ρnj+1 − ρnj
∣∣∣ (2α+ ∆xωη(0)

∥∥v′∥∥(3‖f‖+
∥∥f ′∥∥‖ρ0‖

)
+ 2J0‖f‖

∥∥v′∥∥)
which yields

M−1∑
n=0

∑
j∈Z

∆x
∣∣∣ρn+1
j − ρnj

∣∣∣
≤ T eC(ωη)T

(
α+

1

2
∆xωη(0)

∥∥v′∥∥(3‖f‖+
∥∥f ′∥∥‖ρ0‖

)
+ J0‖f‖

∥∥v′∥∥)TV(ρ0),

(1.3.22)

since M∆t < T . Taking α =
∥∥f ′∥∥ ‖v‖+ ∆xωη(0)‖f‖

∥∥v′∥∥, we obtain the bound (1.3.19) with

C̃ = T eC(ωη)T

(
1 +

∥∥f ′∥∥‖v‖+
1

2
∆xωη(0)

∥∥v′∥∥(5‖f‖+
∥∥f ′∥∥‖ρ0‖

)
+ J0‖f‖

∥∥v′∥∥)TV(ρ0).

Note that (1.3.22) allows to recover (1.1.6b) as ∆x→ 0.

1.3.4 Discrete entropy inequalities

Following [5, 11, 49], we derive a discrete entropy inequality for the approximate solution
generated by (1.3.2), (1.3.3), which is used to prove that the limit of Lax-Friedrichs approxi-
mations is indeed a weak entropy solution in the sense of Definition 1. We denote

Gj+1/2(u,w) :=
1

2
f(u)V n

j +
1

2
f(w)V n

j+1 +
α

2
(u− w),
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F κj+1/2(u,w) := Gj+1/2(u ∧ κ,w ∧ κ)−Gj+1/2(u ∨ κ,w ∨ κ),

with a ∧ b = max(a, b) and a ∨ b = min(a, b).

Proposition 3. Under hypotheses (H), let ρnj , j ∈ Z, n ∈ N, be given by (1.3.2), (1.3.3).
Then, if α ≥

∥∥f ′∥∥‖v‖ and λ ≤ 1/α, we have∣∣∣ρn+1
j − κ

∣∣∣− ∣∣∣ρnj − κ∣∣∣+ λ
(
F κj+1/2(ρnj , ρ

n
j+1)− F κj−1/2(ρnj−1, ρ

n
j )
)

(1.3.23)

+
λ

2
sgn(ρn+1

j − k)f(κ)(V n
j+1 − V n

j−1) ≤ 0,

for all j ∈ Z, n ∈ N, and κ ∈ R.

Proof. The proof follows closely [5, 11]. We detail it below for sake of completeness. We set

H̃j(u,w, z) = w − λ
(
Gj+1/2(w, z)−Gj−1/2(u,w)

)
.

The function H̃j is monotone non-decreasing with respect to each variable for αλ ≤ 1 and
α ≥

∥∥f ′∥∥‖v‖, which are guaranteed by (1.3.5) and (1.3.6). Indeed, we have

H̃j(u,w, z) = w − λ

2

(
f(z)V n

j+1 − f(u)V n
j−1 + α(2w − u− z)

)
,

so the partial derivatives are

∂H̃j

∂u
=
λ

2

(
f ′(u)V n

j−1 + α
)
,

∂H̃j

∂w
= 1− λα,

∂H̃j

∂z
=
λ

2

(
α− f ′(z)V n

j+1

)
.

Moreover, we have the identity

H̃j(ρ
n
j−1 ∧ κ, ρnj ∧ κ, ρnj+1 ∧ κ)− H̃j(ρ

n
j−1 ∨ κ, ρnj ∨ κ, ρnj+1 ∨ κ)

= |ρnj − κ| − λ
(
F κj+1/2(ρnj , ρ

n
j+1)− F κj−1/2(ρnj−1, ρ

n
j )
)
.

By monotonicity,

H̃j(ρ
n
j−1 ∧ κ, ρnj ∧ κ, ρnj+1 ∧ κ)− H̃j(ρ

n
j−1 ∨ κ, ρnj ∨ κ, ρnj+1 ∨ κ)

≥ H̃j(ρ
n
j−1, ρ

n
j , ρ

n
j+1) ∧ H̃j(κ, κ, κ)− H̃j(ρ

n
j−1, ρ

n
j , ρ

n
j+1) ∨ H̃j(κ, κ, κ)

=
∣∣∣H̃j(ρ

n
j−1, ρ

n
j , ρ

n
j+1)− H̃j(κ, κ, κ)

∣∣∣
= sgn

(
H̃j(ρ

n
j−1, ρ

n
j , ρ

n
j+1)− H̃j(κ, κ, κ)

)
×
(
H̃j(ρ

n
j−1, ρ

n
j , ρ

n
j+1)− H̃j(κ, κ, κ)

)
= sgn

(
H̃j(ρ

n
j−1, ρ

n
j , ρ

n
j+1)− κ+

λ

2
f(κ)(V n

j+1 − V n
j−1)

)
×
(
H̃j(ρ

n
j−1, ρ

n
j , ρ

n
j+1)− κ+

λ

2
f(κ)(V n

j+1 − V n
j−1)

)
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≥ sgn
(
H̃j(ρ

n
j−1, ρ

n
j , ρ

n
j+1)− κ

)
×
(
H̃j(ρ

n
j−1, ρ

n
j , ρ

n
j+1)− κ+

λ

2
f(κ)(V n

j+1 − V n
j−1)

)
=
∣∣∣H̃j(ρ

n
j−1, ρ

n
j , ρ

n
j+1)− κ

∣∣∣+
λ

2
sgn

(
H̃j(ρ

n
j−1, ρ

n
j , ρ

n
j+1)− κ

)
f(κ)

(
V n
j+1 − V n

j−1

)
=
∣∣∣ρn+1
j − κ

∣∣∣+
λ

2
sgn(ρn+1

j − κ)f(κ)
(
V n
j+1 − V n

j−1

)
,

by definition of the scheme (1.3.2), (1.3.3), which gives (1.3.23).

Proof of Theorem 1. Thanks to Proposition 1 and Corollary 4, we can apply Helly’s theorem
stating that there exists a subsequence ρ∆x that converges to some ρ ∈ (L1 ∩L∞ ∩BV)(R+×
R; I) in the L1

loc-norm. One can then follow a Lax-Wendroff type argument to show that the
limit function ρ is a weak entropy solution of (1.1.1), (1.1.3), in the sense of Definition 1.
We just observe that the numerical flux also depends on ∆x, therefore the classical argument
on flux consistency and Lipschitz dependence must be replaced by direct estimates, like in
[11, 48].

Proof of Corollary 2. When the look-ahead distance η → ∞, the non-local flux in (1.1.1)
becomes a local one. Since the bounds (1.1.5), (1.1.6) are uniform as η →∞, the solution ρη

of problem (1.1.1), (1.3.3), tends up to a subsequence to the solution ρ of the local problem
(1.1.7) in the L1

loc-norm when η → ∞. In fact, applying Lebesgue’s dominated convergence
theorem in (1.1.4), since∣∣sgn(ρ− κ)(f(ρ)− f(κ))v(ωη ∗ ρ)

∣∣ ≤ 2|f | ||v||

and ∣∣sgn(ρ− κ)f(κ)v′(ωη ∗ ρ)∂x(ωη ∗ ρ)
∣∣ ≤ 3|f | ‖ρ‖

∥∥ωη∥∥ ||v′||,
we obtain∫ +∞

0

∫
R
{|ρ− κ|ϕt + sgn(ρ− κ)(f(ρ)− f(κ))v(0)ϕx +

∫
R
|ρ0(x)− κ|ϕ(0, x)dx ≥ 0,

which is the definition of entropy weak solution for the classical equation (1.1.7).

1.4 Numerical tests

In this section, we perform some numerical simulations to illustrate the result of Corollary 2,
taking two different choices for the speed law v, the convolution kernel ωη and the function
f . More precisely, we consider the models studied in [64, 72] and [11], which consist in the
following equations:

∂tρ+ ∂x

(
ρ(1− ρ)e−(ωη∗ρ)

)
= 0, x ∈ R, t > 0, (1.4.1)

for the Arrhenius look-ahead dynamics [72], and

∂tρ+ ∂x
(
ρ(1− ωη ∗ ρ)

)
= 0, x ∈ R, t > 0, (1.4.2)
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for the Lighthill-Whitham-Richards (LWR) model with non-local velocity [11].
Equations (1.4.1) and (1.4.2) correspond to the following choices of f ∈ C1([0, 1];R+) and
v ∈ C2([0, 1];R+):

f(ρ) = ρ (1− ρ) , v(ρ) = e−ρ, (1.4.3)

f(ρ) = ρ, v(ρ) = (1− ρ) , (1.4.4)

respectively. Besides, we will consider the following kernels ωη ∈ C1([0, η];R+), see [11, 60]:

constant: ωη(x) =
1

η
,

linear decreasing: ωη(x) =
2

η

(
1− x

η

)
.

For the tests, the space domain is given by the interval [−1, 1] and the space discretization mesh
is ∆x = 0.001. We impose absorbing conditions at the boundaries, adding N = η/∆x ghost
cells at the right boundary and just one at the left, where we extend the solution constantly
equal to the last value inside the domain. Our aim is to investigate the convergence of (1.4.3)
to the solution of the LWR model [65, 67]

∂tρ+ ∂x(ρ(1− ρ)) = 0, (1.4.5)

and the convergence of (1.4.4) to the solution of the transport equation

∂tρ+ ∂xρ = 0, (1.4.6)

as η →∞. We study both problems with the initial datum

ρ0(x) =

0.8 for − 0.5 < x < −0.1,

0 otherwise,
(1.4.7)

that describes the case of a red traffic light located at x = −0.1, which turns green at the
initial time t = 0. Figures 1.1 and 1.2 illustrate the behavior for models (1.4.1) and (1.4.2),
respectively, in agreement with the theoretical results.
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Figure 1.1: Density profiles corresponding to the non-local equation (1.4.1) with increasing
values of η = 0.1, 1, 10. We can observe that the nonlocal solution tends to the solution of
(1.4.5) (red line) as η →∞.
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Figure 1.2: Density profiles corresponding to the non-local equation (1.4.2) with increasing
values of η = 0.1, 1, 10. We can observe that the nonlocal solution tends to the solution of
(1.4.6) (red line) as η →∞.





Chapter 2

Stability estimates for non-local scalar
conservation laws

In this chapter, we focus on a specific class of non-local scalar equations. This study has been
detailed in [23]. We consider the following Cauchy problem∂tρ+ ∂x

(
f(t, x, ρ)V (t, x)

)
= 0 t > 0, x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,
(2.0.1)

where V (t, x) = v
(
(ρ(t) ∗ ω)(x)

)
, and ω is a smooth mollifier:

(ρ(t) ∗ ω)(x) =

∫
R
ρ(t, y)ω(x− y)dy.

Here and below, we set ρ(t) := ρ(t, ·) the function x 7→ ρ(t, x).
In this setting, existence and uniqueness of solutions to (2.0.1) follows from [5], as well as
some a priori estimates, namely L1, L∞ and total variation estimates, see Section 2.1 below.
Carefully applying the Kružkov’s doubling of variables techniques, on the lines of [10, 52], we
derive the L1-Lipschitz continuous dependence of solutions to (2.0.1) on the initial datum,
the kernel (see Theorem 5) and the velocity (see Theorem 6). These results are collected in
Section 2.1, while the technical proofs are deferred to Section 2.2. Finally, in Section 2.3 we
show some numerical simulation illustrating the behaviour of the solutions of a non-local traffic
flow model, when the size and the position of the kernel support or the velocity function vary.
In particular, we analyse the impact on two cost functionals, measuring traffic congestion.

2.1 Main Results

The study of problem (2.0.1) is carried out in the same setting of [5], with slightly strengthened
conditions. We recall here briefly the assumptions on the flux function f , on v and on w:

f ∈ C2(R× R× R;R+) and



sup
t,x,ρ

∣∣∂ρf(t, x, ρ)
∣∣<+∞

sup
t,x

∣∣∂xf(t, x, ρ)
∣∣<C|ρ|

sup
t,x

∣∣∣∂2
xxf(t, x, ρ)

∣∣∣<C|ρ|
∀t, x f(t, x, 0) = 0

(2.1.1)

v ∈ (C2 ∩W2,∞)(R;R) and ω ∈ (C2 ∩W1,1 ∩W2,∞)(R;R). (2.1.2)

Throughout the chapter, we make use of the following definition of solution to problem (2.0.1),
see also [5, Definition 2.1].
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Definition 2. Let T > 0. Fix ρ0 ∈ L∞(R;R). A weak entropy solution to (2.0.1) on [0, T ] is
a bounded measurable Kružkov solution ρ ∈ C0([0, T ];L1

loc(R;R)) to{
∂tρ+ ∂x

(
f(t, x, ρ)V (t, x)

)
= 0

ρ(0, x) = ρ0(x)
where V (t, x) = v((ρ(t) ∗ ω)(x)),

that is, for all ϕ ∈ C1
c(R2;R+) and k ∈ R,∫ +∞

0

∫
R

{
|ρ− k| ∂tϕ(t, x) + sgn(ρ− k)

(
f(t, x, ρ)− f(t, x, k)

)
V (t, x) ∂xϕ(t, x)

− sgn(ρ− k) f(t, x, k) ∂xV (t, x)ϕ(t, x)
}
dxdt+

∫
R

∣∣ρ0(x)− k
∣∣ϕ(0, x)dx ≥ 0.

The results in [5] ensure the existence and uniqueness of solution to (2.0.1) and provides
the following a priori estimates on the solution.

Lemma 1 ([5, Lemma 2.2, Lemma 2.4, Lemma 2.5 ]). Let conditions (2.1.1)-(2.1.2) hold. If
ρ0(x) ≥ 0 for all x ∈ R, then the solution to (2.0.1) is such that

• ρ(t, x) ≥ 0 for all (t, x) ∈ R+ × R;

• for all t ∈ R+, ∥∥ρ(t)
∥∥
L1(R;R)

≤ ‖ρ0‖L1(R;R);

• for all t ∈ R+, ∥∥ρ(t)
∥∥
L∞(R;R)

≤ ‖ρ0‖L∞(R;R) e
Lt, (2.1.3)

where L = C ‖v‖L∞(R;R) +
∥∥∂ρf∥∥L∞([0,t]×R×R;R)

∥∥v′∥∥
L∞(R;R)

‖ρ0‖L1(R;R)

∥∥ω′∥∥
L∞(R;R)

.

Proposition 4 ([5, Proposition 2.6]). Let conditions (2.1.1)-(2.1.2) hold. If ρ0(x) ≥ 0 for
all x ∈ R, then the solution to (2.0.1) satisfies the following total variation estimate: for all
t ∈ R+

TV(ρ(t)) ≤
(
K2 t+ TV(ρ0)

)
eK1 t, (2.1.4)

where

K1 =
∥∥∥∂2

ρxf
∥∥∥
L∞(Σt;R)

‖v‖L∞(R;R),

K2 =

[
3

2
C +

(∥∥∂ρf∥∥L∞(Σt;R)
+ C

)∥∥ω′∥∥
W1,∞(R;R)

‖ρ0‖L1(R;R) (2.1.5)

+
1

2

(
C +

∥∥∂ρf∥∥L∞(Σt;R)

(
2 + ‖ρ0‖L1(R;R)

∥∥ω′∥∥
L∞(R;R)

))∥∥ω′∥∥
W1,∞(R;R)

]
× ‖v‖W2,∞(R;R)‖ρ0‖L1(R;R),

with Σt = [0, t]× R× [0,Mt] and Mt = ‖ρ0‖L∞(R;R) e
Lt, as in (2.1.3).

Remark 1. The regularity assumptions required in [5] for the functions v and w, see [5,
Formula (2.2)], are actually less restrictive than (2.1.2). Indeed, to guarantee the existence of
solutions and to obtain the a priori estimates above, it is sufficient that

v ∈ (C2 ∩W1,∞)(R;R) and ω ∈ (C2 ∩W2,∞)(R;R).
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Aim of this chapter is to study the stability of solutions to (2.0.1) with respect to both
the kernel ω and the velocity function v. The following Theorem states the L1–Lipschitz
continuous dependence of solutions to (2.0.1) on both the initial datum and the kernel function.

Theorem 5. Let T > 0. Fix f and v satisfying (2.1.1) and (2.1.2) respectively. Fix ρ0, ρ̃0 ∈
L∞(R;R). Let ω, ω̃ ∈ (C2 ∩W1,1 ∩W2,∞)(R;R). Call ρ and ρ̃ the solutions, in the sense of
Definition 2, to the following problems respectively{

∂tρ+ ∂x(f(t, x, ρ)V (t, x)) = 0

ρ(0, x) = ρ0(x)
where V (t, x) = v((ρ(t) ∗ ω)(x)), (2.1.6){

∂tρ̃+ ∂x(f(t, x, ρ̃) Ṽ (t, x)) = 0

ρ̃(0, x) = ρ̃0(x)
where Ṽ (t, x) = v((ρ̃(t) ∗ ω̃)(x)). (2.1.7)

Then, for any t ∈ [0, T ], the following estimate holds

∥∥ρ(t)− ρ̃(t)
∥∥
L1(R;R)

≤
(
‖ρ0 − ρ̃0‖L1(R;R) + a(t) ‖ω − ω̃‖W1,1(R;R)

)
exp

(∫ t

0
b(r)dr

)
, (2.1.8)

where a(t) and b(t) depend on various norms of the initial data and of the functions f , v, ω
and ω̃, see (2.2.54) and (2.2.55).

The L1–Lipschitz continuous dependence of solutions to (2.0.1) on the velocity function v
is ensured by the following Theorem.

Theorem 6. Let T > 0. Fix f and ω satisfying (2.1.1) and (2.1.2) respectively. Fix
ρ0 ∈ L∞(R;R). Let v, ṽ ∈ (C2 ∩W2,∞)(R;R). Call ρ and ρ̃ the solutions, in the sense
of Definition 2, to the following problems respectively{

∂tρ+ ∂x(f(t, x, ρ)V (t, x)) = 0

ρ(0, x) = ρ0(x)
where V (t, x) = v((ρ(t) ∗ ω)(x)), (2.1.9){

∂tρ̃+ ∂x(f(t, x, ρ̃) Ṽ (t, x)) = 0

ρ̃(0, x) = ρ0(x)
where Ṽ (t, x) = ṽ((ρ̃(t) ∗ ω)(x)). (2.1.10)

Then, for any t ∈ [0, T ], the following estimate holds

∥∥ρ(t)− ρ̃(t)
∥∥
L1(R;R)

≤
(
c1(t) ‖v − ṽ‖L∞(R;R) + c2(t)

∥∥v′ − ṽ′∥∥
L∞(R;R)

)
exp

(∫ t

0
c3(s)ds

)
,

(2.1.11)
where the ci(t), i = 1, 2, 3, depend on various norms of the initial data and of the functions f ,
v, ṽ and ω, see (2.2.60), (2.2.61) and (2.2.62).

2.2 Proofs

The Lemma below is the building block of both Theorem 5 and Theorem 6. We remark that
we could also consider the multi-dimensional case, yet leading to a very involved proof.
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Lemma 2. Let T > 0. Fix f satisfying (2.1.1) and V, Ṽ ∈ (C2 ∩W2,∞)(R × R;R). Fix
ρ0, ρ̃0 ∈ L∞(R;R). Call ρ and ρ̃ the solutions to the following problems{

∂tρ+ ∂x(f(t, x, ρ)V (t, x)) = 0

ρ(0, x) = ρ0(x)
and

{
∂tρ̃+ ∂x(f(t, x, ρ̃) Ṽ (t, x)) = 0

ρ̃(0, x) = ρ̃0(x).
(2.2.1)

Then, for any τ, t ∈ ]0, T [, with τ < t, the following estimate holds∫
R

∣∣ρ(τ, x)− ρ̃(τ, x)
∣∣dx− ∫

R

∣∣ρ(t, x)− ρ̃(t, x)
∣∣dx (2.2.2)

+

∫ t

τ

∫
R

{∣∣∣∂xṼ (s, x)− ∂xV (s, x)
∣∣∣ ∣∣∣f (s, x, ρ(s, x)

)∣∣∣
+
∣∣∣Ṽ (s, x)− V (s, x)

∣∣∣ ∣∣∣∂xf (s, x, ρ(s, x)
)∣∣∣

+
∣∣∣Ṽ (s, x)− V (s, x)

∣∣∣ ∣∣∣∂ρf (s, x, ρ(s, x)
)∣∣∣ ∣∣∂xρ(s, x)

∣∣}dx ds ≥ 0. (2.2.3)

Proof. The proof is based on the doubling of variables method introduced by Kružkov in [59].
In particular, we follow the lines of [52, Theorem 1.3], although there the flux function has the
form l(x) g(ρ), while here it is of the form f(t, x, ρ)V (t, x). The dependence on time does not
add any difficulties in the proof, while the dependence of f on the space variable x produces
additional terms.

Let ϕ ∈ C∞c (]0;T [×R;R+) be a test function as in the definition of solution by Kružkov.
Let Y ∈ C∞c (R;R+) be such that

Y (z) = Y (−z), Y (z) = 0 for |z| ≥ 1,

∫
R
Y (z)dz = 1,

and define Yh = 1
hY
(
z
h

)
. Obviously Yh ∈ C∞c (R;R+), Yh(−z) = Yh(z), Yh(z) = 0 for |z| ≥ h,∫

R Yh(z)dz = 1 and Yh → δ0 as h→ 0, where δ0 is the Dirac delta in 0. Define, for h > 0,

ψh(t, x, s, y) = ϕ

(
t+ s

2
,
x+ y

2

)
Yh(t− s)Yh(x− y) = ϕ (· · · ) Yh(t− s)Yh(x− y). (2.2.4)

Introduce the space ΠT = ]0, T [×R. We derive the following entropy inequalities for the
solutions ρ = ρ(t, x) and ρ̃ = ρ̃(s, y) to (2.2.1):∫∫∫∫
ΠT×ΠT

{
|ρ− ρ̃| ∂tψh(t, x, s, y) + sgn(ρ− ρ̃)V (t, x)

(
f(t, x, ρ)− f(t, x, ρ̃)

)
∂xψh(t, x, s, y)

+ sgn(ρ− ρ̃) ∂x
[
f(t, x, ρ̃)V (t, x)

]
ψh(t, x, s, y)

}
dx dt dy ds ≥ 0

and∫∫∫∫
ΠT×ΠT

{
|ρ̃− ρ| ∂tψh(t, x, s, y) + sgn(ρ̃− ρ)Ṽ (s, y)

(
f(s, y, ρ̃)− f(s, y, ρ)

)
∂yψh(t, x, s, y)

+ sgn(ρ̃− ρ) ∂y

[
f(s, y, ρ) Ṽ (s, y)

]
ψh(t, x, s, y)

}
dx dt dy ds ≥ 0.
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Summing the two inequalities above and rearranging the terms therein, relying on the explicit
form of the function ψh (2.2.4), we obtain∫∫∫∫

ΠT×ΠT

{∣∣ρ(t, x)− ρ̃(s, y)
∣∣ ∂tϕ (· · · ) Yh(t− s)Yh(x− y) (2.2.5)

+ sgn(ρ− ρ̃)
(
V (t, x)f(t, x, ρ)− Ṽ (s, y)f(s, y, ρ̃)

)
∂xϕ (· · · ) Yh(t− s)Yh(x− y) (2.2.6)

+ sgn(ρ− ρ̃)
(
Ṽ (s, y)f(s, y, ρ̃)− V (t, x)f(t, x, ρ̃)

)
∂xψh(t, x, s, y) (2.2.7)

+ sgn(ρ− ρ̃)
(
Ṽ (s, y)f(s, y, ρ)− V (t, x)f(t, x, ρ)

)
∂yψh(t, x, s, y) (2.2.8)

+ sgn(ρ− ρ̃)

[
∂y

(
Ṽ (s, y) f(s, y, ρ)

)
− ∂x

(
V (t, x) f(t, x, ρ̃)

)]
ψh(t, x, s, y)

}
(2.2.9)

dx dt dy ds ≥ 0.

Consider (2.2.7) and (2.2.8): explicit the function ψh to obtain

[(2.2.7)] + [(2.2.8)]

=
sgn(ρ− ρ̃)

2
Ṽ (s, y)

(
f(s, y, ρ̃) + f(s, y, ρ)

)
∂xϕ(· · · )Yh(t− s)Yh(x− y) (2.2.10)

− sgn(ρ− ρ̃)

2
V (t, x)

(
f(t, x, ρ̃) + f(t, x, ρ)

)
∂xϕ(· · · )Yh(t− s)Yh(x− y) (2.2.11)

− sgn(ρ− ρ̃)Ṽ (s, y)
(
f(s, y, ρ̃)− f(s, y, ρ)

)
ϕ(· · · )Yh(t− s)Y ′h(x− y) (2.2.12)

+ sgn(ρ− ρ̃)V (t, x)
(
f(t, x, ρ)− f(t, x, ρ̃)

)
ϕ(· · · )Yh(t− s)Y ′h(x− y). (2.2.13)

In (2.2.9) compute

[(2.2.9)] = sgn(ρ− ρ̃)
[
∂yṼ (s, y) f(s, y, ρ) + Ṽ (s, y) ∂yf(s, y, ρ)

− ∂xV (t, x) f(t, x, ρ̃)− V (t, x) ∂xf(t, x, ρ̃)
]
ψh(t, x, s, y).

(2.2.14)

Introduce the following notation

F
(
t, x, ρ(t, x), ρ̃(s, y)

)
=sgn

(
ρ(t, x)− ρ̃(s, y)

)(
f
(
t, x, ρ(t, x)

)
− f

(
t, x, ρ̃(s, y)

))
, (2.2.15)

so that (2.2.12) – (2.2.13) now reads∫∫∫∫
ΠT×ΠT

[(2.2.12)] + [(2.2.13)]dx dt dy ds

=

∫∫∫∫
ΠT×ΠT

(
V (t, x)F (t, x, ρ, ρ̃)− Ṽ (s, y)F (s, y, ρ, ρ̃)

)
ϕ(· · · )Yh(t− s)Y ′h(x− y)dx dt dy ds

= −
∫∫∫∫
ΠT×ΠT

(
V (t, x)

d

dx
F (t, x, ρ, ρ̃)− Ṽ (s, y)

d

dx
F (s, y, ρ, ρ̃)

)
ψh(t, x, s, y)dx dt dy ds (2.2.16)

−
∫∫∫∫
ΠT×ΠT

∂xV (t, x)F (t, x, ρ, ρ̃)ψh(t, x, s, y)dx dt dy ds (2.2.17)
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−
∫∫∫∫
ΠT×ΠT

1

2

(
V (t, x)F (t, x, ρ, ρ̃)− Ṽ (s, y)F (s, y, ρ, ρ̃)

)
∂xϕ(· · · ) (2.2.18)

× Yh(t− s)Yh(x− y)dx dt dy ds,

where we also integrate by parts. Combine the integrand of (2.2.17) together with (2.2.14) to
get

− ∂xV (t, x)F (t, x, ρ, ρ̃)ψh(t, x, s, y) + [(2.2.14)]

= sgn(ρ− ρ̃)
(
∂yṼ (s, y) f(s, y, ρ)− ∂xV (t, x) f(t, x, ρ)

)
ψh(t, x, s, y) (2.2.19)

+ sgn(ρ− ρ̃)
(
Ṽ (s, y) ∂yf(s, y, ρ)− V (t, x)∂xf(t, x, ρ̃)

)
ψh(t, x, s, y). (2.2.20)

Observe that the following equality holds∫∫∫∫
ΠT×ΠT

[(2.2.6)] + [(2.2.10)] + [(2.2.11)] + [(2.2.18)]dx dt dy ds

=

∫∫∫∫
ΠT×ΠT

sgn(ρ− ρ̃) Ṽ (s, y)
(
f(s, y, ρ)− f(s, y, ρ̃)

)
∂xϕ(· · · )Yh(t− s)Yh(x− y)dx dt dy ds.

(2.2.21)

We are therefore left with∫∫∫∫
ΠT×ΠT

[(2.2.5)]+[(2.2.16)]+[(2.2.19)]+[(2.2.20)]+[(2.2.21)]dx dt dy ds ≥ 0. (2.2.22)

Let now h go to 0. The terms in (2.2.5) and (2.2.21) can be treated exactly as in [59], leading
to

lim
h→0+

∫∫∫∫
ΠT×ΠT

{
[(2.2.5)]+[(2.2.21)]

}
dx dt dy ds

=

∫∫
ΠT

{∣∣ρ(t, x)− ρ̃(t, x)
∣∣∂tϕ(t, x) (2.2.23)

+ sgn
(
ρ(t, x)− ρ̃(t, x)

)
Ṽ (t, x)

(
f
(
t, x, ρ(t, x)

)
− f

(
t, x, ρ̃(t, x)

))
∂xϕ(t, x)

}
dx dt.

(2.2.24)

Regarding (2.2.19), we simplify the notation by introducing the map

Υ1(t, x, s, y)=sgn
(
ρ(t, x)−ρ̃(s, y)

)(
∂yṼ (s, y)f (s, y, ρ)− ∂xV (t, x)f (t, x, ρ)

)
ϕ

(
t+ s

2
,
x+ y

2

)
,

so that

[(2.2.19)]

= Υ1(t, x, s, y)Yh(t− s)Yh(x− y)
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= Υ1(t, x, t, x)Yh(t− s)Yh(x− y) +
(
Υ1(t, x, s, y)−Υ1(t, x, t, x)

)
Yh(t− s)Yh(x− y)

= sgn
(
ρ(t, x)− ρ̃(t, x)

) (
∂xṼ (t, x)− ∂xV (t, x)

)
f (t, x, ρ)ϕ(t, x) Yh(t− s)Yh(x− y)

(2.2.25)

+
(
Υ1(t, x, s, y)−Υ1(t, x, t, x)

)
Yh(t− s)Yh(x− y). (2.2.26)

It is immediate to see that∫∫∫∫
ΠT×ΠT

[(2.2.25)]dxdtdyds

=

∫∫
ΠT

sgn
(
ρ(t, x)− ρ̃(t, x)

) (
∂xṼ (t, x)− ∂xV (t, x)

)
f
(
t, x, ρ(t, x)

)
ϕ(t, x) dxdt. (2.2.27)

Concerning (2.2.26), it vanishes as h goes to 0 when integrated over ΠT ×ΠT . Indeed, recall
that |Yh| ≤

(
Y (0)/h

)
χ

[−h,h]
(where χ

I
denotes the characteristic function of the interval

I ⊆ R) and apply [36, Lemma 6.2], see also [59, Lemma 2], with N = 3, X = (x, t, x),
Y = (x, t, y) and

w(s, Y ) =

(
Y (0)

)2
h2

Υ1(t, x, s, y).

Focus the attention on (2.2.16). With abuse of notation, since the function F is only Lipschitz
continuous with respect to ρ, we write

d

dx
F
(
t, x, ρ(t, x), ρ̃(s, y)

)
= ∂xF

(
t, x, ρ(t, x), ρ̃(s, y)

)
+ ∂ρF

(
t, x, ρ(t, x), ρ̃(s, y)

)
∂xρ(t, x)

= sgn
(
ρ(t, x)− ρ̃(s, y)

) (
∂xf

(
t, x, ρ(t, x)

)
− ∂xf

(
t, x, ρ̃(s, y)

))
(2.2.28)

+ ∂ρF
(
t, x, ρ(t, x), ρ̃(s, y)

)
∂xρ(t, x) (2.2.29)

and

d

dx
F
(
s, y, ρ(t, x), ρ̃(s, y)

)
= ∂ρF

(
s, y, ρ(t, x), ρ̃(s, y)

)
∂xρ(t, x)

= ∂ρF
(
t, x, ρ(t, x), ρ̃(t, x)

)
∂xρ(t, x) (2.2.30)

+
(
∂ρF

(
s, y, ρ(t, x), ρ̃(s, y)

)
− ∂ρF

(
t, x, ρ(t, x), ρ̃(t, x)

))
∂xρ(t, x). (2.2.31)

Above, the derivatives ∂ρF and ∂xρ should be intended in the sense of measures, see [13,
Lemma A2.1] and [52, Lemma 4.1] for further details. In particular observe that we can
combine (2.2.20) with (2.2.28) to get

[(2.2.20)]− V (t, x) sgn
(
ρ(t, x)− ρ̃(s, y)

)(
∂xf

(
t, x, ρ(t, x)

)
− ∂xf

(
t, x, ρ̃(s, y)

))
ψh(t, x, s, y)

= sgn
(
ρ(t, x)− ρ̃(s, y)

) (
Ṽ (s, y)∂yf (s, y, ρ)−V (t, x)∂xf (t, x, ρ)

)
ψh(t, x, s, y). (2.2.32)
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An application of [36, Lemma 6.2] yields

lim
h→0

∫∫∫∫
ΠT×ΠT

[(2.2.32)]dx dt dy ds

=

∫∫
ΠT

sgn
(
ρ(t, x)− ρ̃(t, x)

) (
Ṽ (t, x)− V (t, x)

)
∂xf

(
t, x, ρ(t, x)

)
ϕ(t, x)dx dt. (2.2.33)

In order to deal with the remaining terms, i.e. (2.2.29), (2.2.30) and (2.2.31), we need to
introduce a regularisation of the sign function. In particular, for α > 0 set

sα(u) = (sgn ∗Yα) (u).

Observe that s′α(u) =
2

α
Y

(
u

α

)
. Recall the definition of the map F (2.2.15) and compute∫∫∫∫

ΠT×ΠT

−V (t, x)× [(2.2.29)]× ψh(t, x, s, y)dxdtdyds

= lim
α→0

∫∫∫∫
ΠT×ΠT

{
s′α
(
ρ(t, x)− ρ̃(s, y)

) (
f
(
t, x, ρ(t, x)

)
− f

(
t, x, ρ̃(s, y)

))
(2.2.34)

+ sα
(
ρ(t, x)− ρ̃(s, y)

)
∂ρf

(
t, x, ρ(t, x)

)}
(2.2.35)

×
(
−V (t, x)

)
∂xρ(t, x)ψh(t, x, s, y)dx dt dy ds. (2.2.36)

By the Dominated Convergence Theorem, as α goes to 0, since∣∣∣∣∣ 2α Y
(
ρ− ρ̃
α

) (
f
(
t, x, ρ(t, x)

)
− f

(
t, x, ρ̃(s, y)

))
V (t, x) ∂xρ(t, x)ψh(t, x, s, y)

∣∣∣∣∣
≤ 2

α
Y

(
ρ− ρ̃
α

)∫ ρ

ρ̃

∣∣∂ρf(s, y, r)
∣∣dr ‖V ‖L∞(ΠT ;R)

∣∣∂xρ(t, x)
∣∣ψh(t, x, s, y)

≤ 2 ‖Y ‖L∞(R;R)

∥∥∂ρf∥∥L∞(ΠT×R;R)
‖V ‖L∞(ΠT ;R)

∣∣∂xρ(t, x)
∣∣ψh(t, x, s, y) ∈ L1(ΠT ×ΠT ;R),

we get ∫∫∫∫
ΠT×ΠT

[(2.2.34)]× [(2.2.36)]dx dt dy ds→ 0.

Therefore we have∫∫∫∫
ΠT×ΠT

−V (t, x)× [(2.2.29)]× ψh(t, x, s, y)dx dt dy ds

=−
∫∫∫∫
ΠT×ΠT

sgn
(
ρ(t, x)− ρ̃(s, y)

)
V (t, x) ∂ρf

(
t, x, ρ(t, x)

)
∂xρ(t, x)ψh(t, x, s, y)dx dt dy ds.

(2.2.37)

The term ∫∫∫∫
ΠT×ΠT

Ṽ (s, y)× [(2.2.30)]× ψh(t, x, s, y)dx dt dy ds
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can be treated exactly in the same way, leading to∫∫∫∫
ΠT×ΠT

sgn
(
ρ(t, x)− ρ̃(t, x)

)
Ṽ (s, y) ∂ρf

(
t, x, ρ(t, x)

)
∂xρ(t, x)ψh(t, x, s, y)dx dt dy ds.

(2.2.38)
Introduce now the notation

Υ2(s, y) = sgn
(
ρ(t, x)− ρ̃(t, x)

)
Ṽ (s, y)− sgn

(
ρ(t, x)− ρ̃(s, y)

)
V (t, x)

and apply [36, Lemma 6.2]:

lim
h→0

[(2.2.38)] + [(2.2.37)]

=

∫∫
ΠT

sgn
(
ρ(t, x)− ρ̃(t, x)

)(
Ṽ (t, x)− V (t, x)

)
∂ρf

(
t, x, ρ(t, x)

)
∂xρ(t, x)ϕ(t, x)dx dt.

(2.2.39)

In order to deal with the last term, i.e. (2.2.31), exploit the same regularisation of the sign
function as above and compute∫∫∫∫

ΠT×ΠT

Ṽ (s, y)× [(2.2.31)]× ψh(t, x, s, y)dx dt dy ds (2.2.40)

= lim
α→0

∫∫∫∫
ΠT×ΠT

[
s′α
(
ρ(t, x)− ρ̃(s, y)

) (
f
(
s, y, ρ(t, x)

)
− f

(
s, y, ρ̃(s, y)

))
(2.2.41)

− s′α
(
ρ(t, x)− ρ̃(t, x)

) (
f
(
t, x, ρ(t, x)

)
− f

(
t, x, ρ̃(t, x)

))
(2.2.42)

+ sα
(
ρ(t, x)− ρ̃(s, y)

)
∂ρf

(
s, y, ρ(t, x)

)
− sα

(
ρ(t, x)− ρ̃(t, x)

)
∂ρf

(
t, x, ρ(t, x)

)]
× Ṽ (s, y) ∂xρ(t, x)ψh(t, x, s, y)dx dt dy ds. (2.2.43)

By the Dominated Convergence Theorem, as α goes to 0, we get∫∫∫∫
ΠT×ΠT

[(2.2.41)]× [(2.2.43)]dx dt dy ds→ 0,

∫∫∫∫
ΠT×ΠT

[(2.2.42)]× [(2.2.43)]dx dt dy ds→ 0.

Indeed,∣∣∣∣∣ 2α Y
(
ρ− ρ̃
α

) (
f
(
s, y, ρ(t, x)

)
− f

(
s, y, ρ̃(s, y)

))
Ṽ (s, y) ∂xρ(t, x)ψh(t, x, s, y)

∣∣∣∣∣
≤ 2

α
Y

(
ρ− ρ̃
α

)∫ ρ

ρ̃

∣∣∂ρf(s, y, r)
∣∣dr∥∥∥Ṽ ∥∥∥

L∞(ΠT ;R)

∣∣∂xρ(t, x)
∣∣ψh(t, x, s, y)

≤ 2 ‖Y ‖L∞(R;R)

∥∥∂ρf∥∥L∞(ΠT×R;R)

∥∥∥Ṽ ∥∥∥
L∞(ΠT ;R)

∣∣∂xρ(t, x)
∣∣ψh(t, x, s, y) ∈ L1(ΠT ×ΠT ;R).

Therefore we have

[(2.2.40)]
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=

∫∫∫∫
ΠT×ΠT

[
sgn

(
ρ(t, x)− ρ̃(s, y)

)
∂ρf

(
s, y, ρ(t, x)

)
− sgn

(
ρ(t, x)− ρ̃(t, x)

)
∂ρf

(
t, x, ρ(t, x)

)]
× Ṽ (s, y) ∂xρ(t, x)ψh(t, x, s, y)dx dt dy ds.

Introduce the notation Υ3(s, y) = sgn
(
ρ(t, x)− ρ̃(s, y)

)
∂ρf

(
s, y, ρ(t, x)

)
and bound the above

quantity as follows

[(2.2.40)] ≤
∥∥∥Ṽ ∥∥∥

L∞(ΠT ;R)

∫∫∫∫
ΠT×ΠT

∣∣Υ3(s, y)−Υ3(t, x)
∣∣∣∣∂xρ(t, x)

∣∣ψh(t, x, s, y)dx dt dy ds,

the left hand side clearly vanishing as h goes to 0, thanks to [36, Lemma 6.2] and to the fact
that ρ has bounded variation.

Collecting together all the estimates obtained in (2.2.23), (2.2.24), (2.2.27), (2.2.33) and
(2.2.39), we get

lim
h→0

[(2.2.22)]

=

∫∫
ΠT

{∣∣ρ(t, x)− ρ̃(t, x)
∣∣∂tϕ(t, x) (2.2.44)

+ sgn
(
ρ(t, x)− ρ̃(t, x)

)
Ṽ (t, x)

(
f
(
t, x, ρ(t, x)

)
− f

(
t, x, ρ̃(t, x)

))
∂xϕ(t, x)

+ sgn
(
ρ(t, x)− ρ̃(t, x)

) (
∂xṼ (t, x)− ∂xV (t, x)

)
f (t, x, ρ)ϕ(t, x)

+ sgn
(
ρ(t, x)− ρ̃(t, x)

) (
Ṽ (t, x)− V (t, x)

)
∂xf

(
t, x, ρ(t, x)

)
ϕ(t, x)

+ sgn
(
ρ(t, x)− ρ̃(t, x)

)(
Ṽ (t, x)− V (t, x)

)
∂ρf

(
t, x, ρ(t, x)

)
∂xρ(t, x)ϕ (t, x)

}
dx dt.

(2.2.45)

Let now h > 0 and r > 1. Fix 0 < τ < t < T , define

Φh(s) = αh(s− τ)− αh(s− t), where αh(z) =

∫ z

−∞
Yh(ζ) dζ ,

and
Ψr(x) =

∫
R
Y (|x− y|)χ{|y|<r}(y)dy.

Observe that, as h goes to 0, Φh → χ
[τ,t]

, and Φ′h → δτ − δt. Moreover, Ψ′r(x) = 0 for

|x| < r − 1 or |x| > r + 1 and, as r tends to +∞, Ψr → χ
R
. Choose ϕ(t, x) = Φh(t) Ψr(x)

in [(2.2.44)· · · (2.2.45)] and pass to the limits h → 0 and r → +∞ to obtain the desired
estimate [(2.2.2)–(2.2.3)]:∫

R

∣∣ρ(τ, x)− ρ̃(τ, x)
∣∣dx− ∫

R

∣∣ρ(t, x)− ρ̃(t, x)
∣∣dx

+

∫ t

τ

∫
R

{∣∣∣∂xṼ (s, x)− ∂xV (s, x)
∣∣∣ ∣∣∣f (s, x, ρ(s, x)

)∣∣∣
+
∣∣∣Ṽ (s, x)− V (s, x)

∣∣∣ ∣∣∣∂xf (s, x, ρ(s, x)
)∣∣∣
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+
∣∣∣Ṽ (s, x)− V (s, x)

∣∣∣ ∣∣∣∂ρf (s, x, ρ(s, x)
)∣∣∣ ∣∣∂xρ(s, x)

∣∣}dx ds ≥ 0.

Proof of Theorem 5. We can apply Lemma 2 to problems (2.1.6) and (2.1.7). By Lemma 1,
with obvious notation, for all t ∈ [0, T ] we have∥∥ρ(t)

∥∥
L∞(R;R)

≤ ‖ρ0‖L∞(R;R) e
L t = Mt,

∥∥ρ̃(t)
∥∥
L∞(R;R)

≤ ‖ρ̃0‖L∞(R;R) e
L̃ t = M̃t.

For the sake of simplicity introduce the space

Σt = [0, t]× R× [0,max{Mt, M̃t}]. (2.2.46)

Let τ → 0 in [(2.2.2)· · · (2.2.3)]:∥∥ρ(t)− ρ̃(t)
∥∥
L1(R;R)

≤ ‖ρ0 − ρ̃0‖L1(R;R) (2.2.47)

+

∫ t

0
‖f‖L∞(Σs;R)

∫
R

∣∣∣∂xV (s, x)− ∂xṼ (s, x)
∣∣∣dxds (2.2.48)

+

∫ t

0
‖∂xf‖L∞(Σs;R)

∫
R

∣∣∣Ṽ (s, x)− V (s, x)
∣∣∣dxds (2.2.49)

+

∫ t

0

∥∥∂ρf∥∥L∞(Σs;R)

∫
R

∣∣∂xρ(s, x)
∣∣ ∣∣∣V (s, x)− Ṽ (s, x)

∣∣∣dxds. (2.2.50)

Consider (2.2.48). By the definitions of V and Ṽ , compute∫
R

∣∣∣∂xV (s, x)− ∂xṼ (s, x)
∣∣∣dx

=

∫
R

∣∣∣v′((ρ(s) ∗ ω)(x))
(
ρ(s) ∗ ∂xω

)
(x)− v′((ρ̃(s) ∗ ω̃)(x))

(
ρ̃(s) ∗ ∂xω̃

)
(x)
∣∣∣dx

≤
∥∥v′∥∥

L∞(R;R)

(∥∥ρ(s)− ρ̃(s)
∥∥
L1(R;R)

min
{
‖∂xω‖L1(R;R), ‖∂xω̃‖L1(R;R)

}
+ ‖∂xω − ∂xω̃‖L1(R;R) min

{∥∥ρ(s)
∥∥
L1(R;R)

,
∥∥ρ̃(s)

∥∥
L1(R;R)

})
+
∥∥v′′∥∥

L∞(R;R)
min

{∥∥ρ(s)
∥∥
L1(R;R)

‖∂xω‖L∞(R;R),
∥∥ρ̃(s)

∥∥
L1(R;R)

‖∂xω̃‖L∞(R;R)

}
×
(∥∥ρ(s)− ρ̃(s)

∥∥
L1(R;R)

min
{
‖ω‖L1(R;R), ‖ω̃‖L1(R;R)

}
+‖ω − ω̃‖L1(R;R) min

{∥∥ρ(s)
∥∥
L1(R;R)

,
∥∥ρ̃(s)

∥∥
L1(R;R)

})
≤
(∥∥v′∥∥

L∞(R;R)
+
∥∥v′′∥∥

L∞(R;R)
min

{
‖ρ0‖L1(R;R)‖∂xω‖L∞(R;R), ‖ρ̃0‖L1(R;R)‖∂xω̃‖L∞(R;R)

})
×
(∥∥ρ(s)− ρ̃(s)

∥∥
L1(R;R)

min
{
‖ω‖W1,1(R;R), ‖ω̃‖W1,1(R;R)

}
+‖ω − ω̃‖W1,1(R;R) min

{
‖ρ0‖L1(R;R), ‖ρ̃0‖L1(R;R)

})
,
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where we exploit also Lemma 1. Therefore,

[(2.2.48)]

≤
(∥∥v′∥∥

L∞(R;R)
+
∥∥v′′∥∥

L∞(R;R)
min

{
‖ρ0‖L1(R;R)‖∂xω‖L∞(R;R), ‖ρ̃0‖L1(R;R)‖∂xω̃‖L∞(R;R)

})
×

(
min

{
‖ω‖W1,1(R;R), ‖ω̃‖W1,1(R;R)

} ∫ t

0
‖f‖L∞(Σs;R)

∥∥ρ(s)− ρ̃(s)
∥∥
L1(R;R)

ds (2.2.51)

+ ‖ω − ω̃‖W1,1(R;R) ‖f‖L∞(Σt;R) min
{
‖ρ0‖L1(R;R), ‖ρ̃0‖L1(R;R)

}
t

)
.

Consider (2.2.49): compute∫
R

∣∣∣V (s, x)− Ṽ (s, x)
∣∣∣dx ≤ ∥∥v′∥∥L∞(R;R)

min
{
‖ω‖L1(R;R), ‖ω̃‖L1(R;R)

} ∥∥ρ(s)− ρ̃(s)
∥∥
L1(R;R)

+
∥∥v′∥∥

L∞(R;R)
min

{∥∥ρ(s)
∥∥
L1(R;R)

,
∥∥ρ̃(s)

∥∥
L1(R;R)

}
‖ω − ω̃‖L1(R;R)

≤
∥∥v′∥∥

L∞(R;R)
min

{
‖ω‖L1(R;R), ‖ω̃‖L1(R;R)

} ∥∥ρ(s)− ρ̃(s)
∥∥
L1(R;R)

+
∥∥v′∥∥

L∞(R;R)
min

{
‖ρ0‖L1(R;R), ‖ρ̃0‖L1(R;R)

}
‖ω − ω̃‖L1(R;R).

In this way we have

[(2.2.49)] ≤∥∥v′∥∥
L∞(R;R)

min
{
‖ω‖L1(R;R), ‖ω̃‖L1(R;R)

}∫ t

0
‖∂xf‖L∞(Σs;R)

∥∥ρ(s)− ρ̃(s)
∥∥
L1(R;R)

ds

+ ‖∂xf‖L∞(Σt;R)

∥∥v′∥∥
L∞(R;R)

min
{
‖ρ0‖L1(R;R), ‖ρ̃0‖L1(R;R)

}
‖ω − ω̃‖L1(R;R) t. (2.2.52)

Finally, consider (2.2.50) and compute∣∣∣V (s, x)− Ṽ (s, x)
∣∣∣ ≤ ∥∥v′∥∥L∞(R;R)

min
{
‖ω‖L∞(R;R), ‖ω̃‖L∞(R;R)

}∥∥ρ(s)− ρ̃(s)
∥∥
L1(R;R)

+
∥∥v′∥∥

L∞(R;R)
min

{∥∥ρ(s)
∥∥
L∞(R;R)

,
∥∥ρ̃(s)

∥∥
L∞(R;R)

}
‖ω − ω̃‖L1(R;R)

≤
∥∥v′∥∥

L∞(R;R)
min

{
‖ω‖L∞(R;R), ‖ω̃‖L∞(R;R)

}∥∥ρ(s)− ρ̃(s)
∥∥
L1(R;R)

+
∥∥v′∥∥

L∞(R;R)
min

{
Ms, M̃s

}
‖ω − ω̃‖L1(R;R).

Hence,

[(2.2.50)] ≤
∥∥v′∥∥

L∞(R;R)
min

{
‖ω‖L∞(R;R), ‖ω̃‖L∞(R;R)

}
×
∫ t

0

∥∥∂ρf∥∥L∞(Σs;R)
TV

(
ρ(s)

) ∥∥ρ(s)− ρ̃(s)
∥∥
L1(R;R)

ds (2.2.53)

+
∥∥∂ρf∥∥L∞(Σt;R)

TV
(
ρ(t)

) ∥∥v′∥∥
L∞(R;R)

min
{
Mt, M̃t

}
‖ω − ω̃‖L1(R;R) t.

Therefore, the inequality [(2.2.47)· · · (2.2.50)] can be estimated as follows∥∥ρ(t)− ρ̃(t)
∥∥
L1(R;R)
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≤ ‖ρ0 − ρ̃0‖L1(R;R) + a(t) ‖ω − ω̃‖W1,1(R;R) +

∫ t

0
b(s)

∥∥ρ(s)− ρ̃(s)
∥∥
L1(R;R)

ds,

where, thanks to the total variation estimate provided by Proposition 4,

a(t) (2.2.54)

= t

[
min

{
‖ρ0‖L1(R;R), ‖ρ̃0‖L1(R;R)

}
‖f‖L∞(Σt;R)

×
(∥∥v′∥∥

L∞(R;R)
+
∥∥v′′∥∥

L∞(R;R)
min

{
‖ρ0‖L1(R;R)‖∂xω‖L∞(R;R), ‖ρ̃0‖L1(R;R)‖∂xω̃‖L∞(R;R)

})
+ min

{
‖ρ0‖L1(R;R), ‖ρ̃0‖L1(R;R)

}
‖∂xf‖L∞(Σt;R)

∥∥v′∥∥
L∞(R;R)

+
∥∥∂ρf∥∥L∞(Σt;R)

(
K2t+ TV(ρ0)

)
eK1t

∥∥v′∥∥
L∞(R;R)

min
{
Mt, M̃t

}]
and

b(s) (2.2.55)

= ‖f‖L∞(Σs;R) min
{
‖ω‖W1,1(R;R), ‖ω̃‖W1,1(R;R)

}
×
(∥∥v′∥∥

L∞(R;R)
+
∥∥v′′∥∥

L∞(R;R)
min

{
‖ρ0‖L1(R;R)‖∂xω‖L∞(R;R), ‖ρ̃0‖L1(R;R)‖∂xω̃‖L∞(R;R)

})
+ ‖∂xf‖L∞(Σs;R)

∥∥v′∥∥
L∞(R;R)

min
{
‖ω‖L1(R;R), ‖ω̃‖L1(R;R)

}
+
∥∥∂ρf∥∥L∞(Σs;R)

(
K2s+ TV(ρ0)

)
eK1s

∥∥v′∥∥
L∞(R;R)

min
{
‖ω‖L∞(R;R), ‖ω̃‖L∞(R;R)

}
,

K1 and K2 being specified in (2.1.5). An application of Gronwall Lemma yields∥∥ρ(t)− ρ̃(t)
∥∥
L1(R;R)

≤ ‖ρ0 − ρ̃0‖L1(R;R) + a(t) ‖ω − ω̃‖W1,1(R;R)

+

∫ t

0

(
‖ρ0 − ρ̃0‖L1(R;R) + a(s)

)
b(s) exp

(∫ t

s
b(r)dr

)
ds.

Since a(s) ≤ a(t) for any s ∈ [0, t] and

∫ t

0
b(s) exp

(∫ t

s
b(r)dr

)
ds =

− exp

(∫ t

s
b(r)dr

)t
0

= −1 + exp

(∫ t

0
b(r)dr

)
,

we obtain

∥∥ρ(t)− ρ̃(t)
∥∥
L1(R;R)

≤
(
‖ρ0 − ρ̃0‖L1(R;R) + a(t) ‖ω − ω̃‖W1,1(R;R)

)
exp

(∫ t

0
b(r)dr

)
,

(2.2.56)
concluding the proof. �
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Remark 2. Notice that, when t = 0, the right hand side of (2.2.56) is equal to
‖ρ0 − ρ̃0‖L1(R;R), since a(0) = 0.

Remark 3. Compare our estimate (2.2.56) with the one in [10, Theorem 4.1]:∥∥ρ(t)− ρ̃(t)
∥∥
L1(R;R)

≤ eC2 t‖ρ0 − ρ̃‖L1(R;R),

where

C2 = ‖f‖L∞(Σt;R)

(∥∥v′∥∥
L∞(R;R)

‖∂xω‖L1(R;R)

+
∥∥v′′∥∥

L∞(R;R)
‖∂xω‖L∞(R;R)‖ω‖L1(R;R) min

{
‖ρ0‖L1(R;R), ‖ρ̃0‖L1(R;R)

})
+
∥∥f ′∥∥

L∞(Σt;R)
TV

(
ρ(t)

) ∥∥v′∥∥
L∞(R;R)

‖ω‖L∞(R;R).

The main hypotheses there are the following:

• f(t, x, ρ) = f(ρ);

• ω = ω̃, thus the kernel functions are the same;

• different initial data: ρ0 6= ρ̃0.

It is immediate to see that, once the estimate for the total variation of ρ(t) is inserted, the
bound C2 bears a strong resemblance with our b(t) (2.2.55), provided the L1-norm of the
kernel ω and of its derivative are controlled by ‖ω‖W1,1(R;R).

Remark 4. One may wonder why there is the need to exploit the doubling of variables method
and to go through all the steps of the proof instead of using the available estimate provided
in [62, Theorem 2.5 or Proposition 2.9]. The reason lies in the coefficient κ∗ appearing in the
estimates presented in that work. Indeed, with our notation, this coefficient reads

κ∗ =

∥∥∥∥∥∂ρ∂x
(
f(t, x, ρ)

(
V (t, x)− Ṽ (t, x)

))∥∥∥∥∥
L∞(Σt;R)

.

Computing the derivatives yields

κ∗ ≤
∥∥∂x∂ρf∥∥L∞(Σt;R)

∥∥∥V − Ṽ ∥∥∥
L∞([0,t]×R;R)

+
∥∥∂ρf∥∥L∞(Σt;R)

∥∥∥∂xV − ∂xṼ ∥∥∥
L∞([0,t]×R;R)

.

Substitute now the definitions of V and Ṽ , using also the estimates for (2.2.48) and (2.2.50)
computed in the proof of Theorem 5: we obtain an estimate for κ∗ depending on the term
‖ρ− ρ̃‖L1(R;R). Going back to the estimate presented in [62], we see that the coefficient κ∗

appears in the term eκ
∗ t‖ρ0 − ρ̃0‖L1(R;R). Therefore, the authors get a dependence of the

exponential function on the L1 norm of the difference ρ− ρ̃, which is clearly not what desired
since the final goal is to control from above

∥∥ρ(t)− ρ̃(t)
∥∥
L1(R;R)

.

Proof of Theorem 6. We can apply Lemma 2 to problems (2.1.9) and (2.1.10). Let us start
from the inequality [(2.2.2)–(2.2.3)]. Introduce the following notation, based on Lemma 1:∥∥ρ(t)

∥∥
L∞(R;R)

≤ ‖ρ0‖L∞(R;R) e
L t ∥∥ρ̃(t)

∥∥
L∞(R;R)

≤ ‖ρ0‖L∞(R;R) e
L̃ t.
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Define Gt = ‖ρ0‖L∞(R;R) e
max{L,L̃} t. Similarly to (2.2.46), introduce the space

Σt = [0, t]× R× [0,Gt].

Let τ → 0 in [(2.2.2)–(2.2.3)] and recall also the assumption supt,x
∣∣∂xf(t, x, ρ)

∣∣ < C|ρ|:

∥∥ρ(t)− ρ̃(t)
∥∥
L1(R;R)

≤
∫ t

0
‖f‖L∞(Σs;R)

∫
R

∣∣∣∂xV (s, x)− ∂xṼ (s, x)
∣∣∣dx ds (2.2.57)

+

∫ t

0

∫
R
C
∣∣ρ(t, x)

∣∣ ∣∣∣Ṽ (s, x)− V (s, x)
∣∣∣dx ds (2.2.58)

+

∫ t

0

∥∥∂ρf∥∥L∞(Σs;R)

∫
R

∣∣∂xρ(s, x)
∣∣ ∣∣∣V (s, x)− Ṽ (s, x)

∣∣∣dx ds. (2.2.59)

By the definitions of V and Ṽ , compute:∣∣∣V (s, x)− Ṽ (s, x)
∣∣∣

=
∣∣v((ρ(s) ∗ ω)(x))− ṽ((ρ̃(s) ∗ ω)(x))

∣∣
≤ min

{∥∥v′∥∥
L∞(R;R)

,
∥∥ṽ′∥∥

L∞(R;R)

}
‖ω‖L∞(R;R)

∥∥ρ(s)− ρ̃(s)
∥∥
L1(R;R)

+ ‖v − ṽ‖L∞(R;R)

and ∫
R

∣∣∣∂xV (s, x)− ∂xṼ (s, x)
∣∣∣dx

=

∫
R

∣∣∣v′((ρ(s) ∗ ω)(x))
(
ρ(s) ∗ ∂xω

)
(x)− ṽ′((ρ̃(s) ∗ ω)(x))

(
ρ̃(s) ∗ ∂xω

)
(x)
∣∣∣dx

≤ min
{∥∥v′∥∥

L∞(R;R)
,
∥∥ṽ′∥∥

L∞(R;R)

}
‖∂xω‖L1(R;R)

∥∥ρ(s)− ρ̃(s)
∥∥
L1(R;R)

+
∥∥v′ − ṽ′∥∥

L∞(R;R)
‖∂xω‖L1(R;R) min

{∥∥ρ(s)
∥∥
L1(R;R)

,
∥∥ρ̃(s)

∥∥
L1(R;R)

}
≤ min

{∥∥v′∥∥
L∞(R;R)

,
∥∥ṽ′∥∥

L∞(R;R)

}
‖∂xω‖L1(R;R)

∥∥ρ(s)− ρ̃(s)
∥∥
L1(R;R)

+
∥∥v′ − ṽ′∥∥

L∞(R;R)
‖∂xω‖L1(R;R)‖ρ0‖L1(R;R),

where we exploit also Lemma 1. Therefore the inequality [(2.2.57)– (2.2.59)] can be estimated
as follows:∥∥ρ(t)− ρ̃(t)

∥∥
L1(R;R)

≤ c1(t) ‖v − ṽ‖L∞(R;R) + c2(t)
∥∥v′ − ṽ′∥∥

L∞(R;R)
+

∫ t

0
c3(s)

∥∥ρ(s)− ρ̃(s)
∥∥
L1(R;R)

ds,

where, thanks to the total variation estimate provided by Proposition 4,

c1(t) = t
(
C ‖ρ0‖L1(R;R) + (K2 t+ TV(ρ0)) eK1 t

∥∥∂ρf∥∥L∞(Σt;R)

)
, (2.2.60)

c2(t) = t ‖f‖L∞(Σt;R) ‖∂xω‖L1(R;R) ‖ρ0‖L1(R;R), (2.2.61)

c3(s) = ‖f‖L∞(Σs;R) min
{∥∥v′∥∥

L∞(R;R)
,
∥∥ṽ′∥∥

L∞(R;R)

}
‖∂xω‖L1(R;R)

+
(
C ‖ρ0‖L1(R;R) + (K2 s+ TV(ρ0)) eK1 s

∥∥∂ρf∥∥L∞(Σs;R)

)
(2.2.62)
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×min
{∥∥v′∥∥

L∞(R;R)
,
∥∥ṽ′∥∥

L∞(R;R)

}
‖ω‖L∞(R;R),

K1 and K2 being specified in (2.1.5). An application of Gronwall Lemma yields

∥∥ρ(t)− ρ̃(t)
∥∥
L1(R;R)

≤
(
c1(t) ‖v − ṽ‖L∞(R;R) + c2(t)

∥∥v′ − ṽ′∥∥
L∞(R;R)

)
exp

(∫ t

0
c3(s)ds

)
,

concluding the proof. �

2.3 Numerical Integrations

In this section, we investigate the dependence of solutions to (2.0.1) on the kernel and the
velocity function via numerical integrations. To this end, we discretize (2.0.1) on a fixed grid
given by the cells interfaces xj+ 1

2
= j∆x and the cells centres xj = (j− 1

2)∆x for j ∈ Z, taking
a space step ∆x and a time step ∆t, so that tn = n∆t is the time mesh. The Lax-Friedrichs
flux adapted to (2.0.1) is given by

Fnj+1/2 :=
1

2

(
f(tn, xj , ρ

n
j )v(Rnj ) + f(tn, xj+1, ρ

n
j+1)v(Rnj+1)

)
− α

2
(ρnj+1 − ρnj ) (2.3.1)

where α ≥ 0 is the viscosity coefficient and Rnj := ∆x
∑
k∈Z

ρnj+kω
k
η , denoting ωkη := ωη(k∆x) for

k ∈ Z. In this way we have the finite volume scheme

ρn+1
j = ρnj − λ

[
Fnj+1/2 − F

n
j−1/2

]
, (2.3.2)

with λ = ∆t/∆x. A rigorous study of the convergence of Lax-Friedrichs type schemes for
non-local conservation laws has been carried out in [2, 5, 11]. Here we limit the study to
the derivation of sufficient conditions ensuring that the above discretization (2.3.1)–(2.3.2) is
positivity preserving.

Lemma 3. For any T > 0, under the CFL conditions

λ

(
α+

(
C ∆x+ 2

∥∥∂ρf∥∥L∞(ΣT ;R)

)
‖v‖L∞(R;R)

)
< 1, (2.3.3)

α ≥
∥∥∂ρf∥∥L∞(ΣT ;R)

‖v‖L∞(R;R), (2.3.4)

the scheme (2.3.1)–(2.3.2) is positivity preserving on [0, T ]× R.

Proof. Let us assume that ρnj ≥ 0 for all j ∈ Z. It suffices to prove that ρn+1
j in (2.3.2) is

non-negative. For the sake of simplicity, in the following we omit the dependence on n and
introduce the notation fi(ρj) = f(tn, xi, ρj) and vj = v(Rnj ). Compute

ρn+1
j = ρj +

λα

2
(ρj+1 − 2 ρj + ρj−1)− λ

2

[
fj+1(ρj+1) vj+1 − fj−1(ρj−1) vj−1

]
= ρj(1− λα) +

λα

2
(ρj+1 + ρj−1)
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− λ

2

[(
fj+1(ρj+1)− fj+1(ρj)

)
vj+1 +

(
fj−1(ρj)− fj−1(ρj−1)

)
vj−1

+
(
fj+1(ρj)− fj−1(ρj)

)
vj+1 + fj−1(ρj)

(
vj+1 − vj−1

)]
= ρj

(
1− λα+

λ

2

fj+1(ρj+1)− fj+1(ρj)

ρj+1 − ρj
vj+1 −

λ

2

fj−1(ρj)− fj−1(ρj−1)

ρj − ρj−1
vj−1

)

+ ρj+1

(
λα

2
− λ

2

fj+1(ρj+1)− fj+1(ρj)

ρj+1 − ρj
vj+1

)

+ ρj−1

(
λα

2
+
λ

2

fj−1(ρj)− fj−1(ρj−1)

ρj − ρj−1
vj−1

)

− λ

2
vj+1

(
fj+1(ρj)− fj−1(ρj)

)
− λ

2
fj−1(ρj)

(
vj+1 − vj−1

)
.

Observe that, thanks to the assumption (2.3.4) on α,

α+
fj−1(ρj)− fj−1(ρj−1)

ρj − ρj−1
vj−1 =α+ ∂ρfj−1(ζj−1/2) vj−1≥α−

∥∥∂ρf∥∥L∞(ΣT ;R)
‖v‖L∞(R;R)≥0,

α− fj+1(ρj+1)− fj+1(ρj)

ρj+1 − ρj
vj+1 =α− ∂ρfj+1(ζj+1/2) vj+1≥α−

∥∥∂ρf∥∥L∞(ΣT ;R)
‖v‖L∞(R;R)≥0.

Moreover,
vj+1

(
fj+1(ρj)− fj−1(ρj)

)
≤ 2C ‖v‖L∞(R;R) ∆x ρj

and
fj−1(ρj)

(
vj+1 − vj−1

)
≤ 2

∥∥∂ρf∥∥L∞(ΣT ;R)
‖v‖L∞(R;R)ρj .

Hence,

ρj

(
1− λα+

λ

2

fj+1(ρj+1)− fj+1(ρj)

ρj+1 − ρj
vj+1 −

λ

2

fj−1(ρj)− fj−1(ρj−1)

ρj − ρj−1
vj−1

)

− λ

2
vj+1

(
fj+1(ρj)− fj−1(ρj)

)
− λ

2
fj−1(ρj)

(
vj+1 − vj−1

)
≥ ρj

(
1− λα− 2λ

∥∥∂ρf∥∥L∞(ΣT ;R)
‖v‖L∞(R;R) − λC ‖v‖L∞(R;R) ∆x

)
≥ 0,

by the CFL condition (2.3.3).

Fix T = 0.5. Let us now consider the following problem, describing traffic flow on a
circular road with variable speed limit in space and time, starting from a constant initial
density ρ0 ≡ 0.6 (for simplicity, the maximal density is here normalised to 1):∂tρ+ ∂x(f(t, x, ρ)v(ωη,δ ∗ ρ)) = 0, t ∈ [0, T ], x ∈ ]− 1, 1[ ,

ρ(0, x) = 0.6,
(2.3.5)

with periodic boundary conditions at x = ±1 and

f(t, x, ρ) = Vmax(t, x)ρ(1− ρ), ρ ∈ [0, 1], (2.3.6)
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v(ρ) = (1− ρ)m−1(1 + ρ)m, m ∈ N∗, (2.3.7)

ωη,δ(x) =
1

η6

16

5π
(η2 − (x− δ)2)

5
2χ[−η+δ,η+δ], η ∈ ]0, 1], δ ∈ [−η, η]. (2.3.8)

In (2.3.6), Vmax(t, x) is given by the convolution between the gaussian kernel g(x) =
1

σ
√

2π
e−

1
2

( x
σ

)2
with σ = 10 and the following piece-wise constant function:

ϕ(t, x) =


7 if x ∈ ]− 1,−1/3] ∪ ]1/3, 1],

3 if x ∈ ]− 1/3, 1/3], t ∈ [0, 1/6] ∪ ]1/3, 1/2],

1.5 if x ∈ ]− 1/3, 1/3], t ∈]1/6, 1/3],

see Figure 2.1. The function Vmax(t, x) is chosen to mimic the presence of a slow speed sector,
whose speed limit depends on the time of the day. In (2.3.7), m can be seen as a fitting
parameter of the Greenshield fundamental diagram. In (2.3.8), we define a symmetric kernel
function ωη,δ: the parameter η represents the radius of the kernel support and describes the
maximal interaction distance between vehicles, while δ is the point at which the maximum of
the kernel function is attained and it determines the location of the kernel support. Note that
assumptions (2.1.1)-(2.1.2) are fulfilled.

Figure 2.1: 2D plot of the function Vmax(t, x)

As a metric of traffic congestion, we consider the two following functionals [29, 30, 37]:

J(T ) =

∫ T

0
d
∣∣dxρ(t, ·)

∣∣dt, (2.3.9)

Ψ(T ; a, b) =

∫ T

0

∫ b

a
ϕ(ρ(t, x)) dx dt, (2.3.10)

where

ϕ(r) =


0 r < 0.75,

10 r − 7.5 0.75 ≤ r ≤ 0.85,

1 0.85 < r ≤ 1.
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The functional J defined in (2.3.9) measures the integral with respect to time of the spatial
total variation of the traffic density. The results of Theorems 5 and 6 apply to the present
setting and ensure the continuous dependence of J on the parameters m, η and δ. Indeed, the
map δ → ωη,δ is Lipschitz continuous with respect to the W1,1 distance, the map η → ωη,δ
is continuous with respect to the W1,1 distance and the map m → v is continuous with
respect to the W1,∞ distance. Theorem 5 then ensures that the map ωη,δ → ρ, where
ρ solves (2.3.5)–(2.3.8), is continuous with respect to the W1,1 distance, while Theorem 6
ensures the continuity of the map v → ρ. Finally, the map ρ → J is lower semicontinuous,
as showed in [30, Lemma 2.1]. Therefore, any minimising sequence of solutions converges,
guaranteeing the existence of optimal choices of the parameters η, δ and m.

The functional Ψ in (2.3.10) was introduced in [37] and it is obviously continuous with
respect to ρ in the L1-distance. It measures the queue that forms in the space interval [a, b],
which is chosen equal to [−4/5,−1/3] in the numerical simulations below to be located just
upstream the lower speed limit region.

For the tests, we fix the space discretization mesh to ∆x = 0.001. Figures 2.2–2.3 show
the values of the functionals J and ψ when we vary the value of one of the parameters η, δ
and m, keeping the other fixed. In particular, the functionals are evaluated on the following
grids:

η = 0.1, 0.2, . . . , 0.9, 1, δ = −0.1,−0.08, . . . , 0.08, 0.1, m = 1, 2, . . . , 9, 10.

We observe that the functionals are in general not monotone and display some extrema in the
considered intervals. Figures 2.5, 2.6 and 2.7 show the behaviour of the solutions corresponding
to some of these extremal values. More precisely, Figures 2.5a, 2.5b and 2.5c show the solutions
corresponding to η = 0.2, 0.5, 1 for m = 3 and centered kernel (δ = 0). In particular, the
solutions displayed in 2.5a and 2.5c correspond to the minimum and maximum values of the
functional J (2.3.9) for η ∈ [0.1, 1] (see Figure 2.2, left). Figure 2.6a shows the solution
obtained for δ = −0.04 (and m = 3, η = 0.1) and corresponding to the point of minimum of
both J and Ψ functionals, while Figures 2.6b and 2.6c correspond to the points of maximum
of the functionals J and Ψ, respectively (see Figure 2.3). Finally, in Figures 2.7a and 2.7b we
give the solutions corresponding to the maximum and minimum points of the functional J for
m ∈ {1, . . . , 10} for η = 0.1 and δ = 0 (see Figure 2.4).
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Figure 2.2: Functionals J (2.3.9) (left) and Ψ (2.3.10) (right) withm = 3, δ = 0 and η ∈ [0.1, 1].
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Figure 2.3: Functionals J (2.3.9) (left) and Ψ (2.3.10) (right) with η = 0.1, m = 3 and
δ ∈ [−η, η].
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Figure 2.4: Functionals J (2.3.9) (left) and Ψ (2.3.10) (right) with η = 0.1, δ = 0 and
m ∈ [1, 10].
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(a) (b) (c)

Figure 2.5: (t, x)-plots of the solution to (2.3.5)–(2.3.8), for m = 3 and δ = 0, and, from the
left, η = 0.2, 0.5, 1.

(a) (b) (c)

Figure 2.6: (t, x)-plots of the solution to (2.3.5)–(2.3.8), for m = 3 and η = 0.1, and, from the
left, δ = −0.04, 0.06, 0.08.

(a) (b)

Figure 2.7: (t, x)-plots of the solution to (2.3.5)–(2.3.8), for η = 0.1, δ = 0, and m = 3 on the
left, m = 10 on the right.





Chapter 3

Non-local multi-class traffic flow
models

In this chapter, we present results obtained in [22].

3.1 Modeling

We consider the following class of non-local systems of M conservation laws in one space
dimension:

∂tρi(t, x) + ∂x
(
ρi(t, x)vi((r ∗ ωi)(t, x))

)
= 0, i = 1, ...,M, (3.1.1)

where

r(t, x) :=

M∑
i=1

ρi(t, x), (3.1.2)

vi(ξ) := vmax
i ψ(ξ), (3.1.3)

(r ∗ ωi)(t, x) :=

∫ x+ηi

x
r(t, y)ωi(y − x)dy, (3.1.4)

and we assume:

(H1) The convolution kernels ωi ∈ C1([0, ηi];R+), ηi > 0, are non-increasing functions such
that

∫ ηi
0 ωi(y)dy = Ji. We set W0 := maxi=1,...,M ωi(0).

(H2) vmax
i are the maximal velocities, with 0 < vmax

1 ≤ vmax
2 ≤ . . . ≤ vmax

M .

(H3) ψ : R+ → R+ is a smooth non-increasing function such that ψ(0) = 1 and ψ(r) = 0 for
r ≥ 1 (for simplicity, we can consider the function ψ(r) = max{1− r, 0}).

We couple (3.1.1) with an initial datum

ρi(0, x) = ρ0
i (x), i = 1, . . . ,M. (3.1.5)

Model (3.1.1) is obtained generalizing the n-populations model for traffic flow described in [8]
and it is a multi-class version of the one dimensional scalar conservation law with non-local
flux proposed in [11], where ρi is the density of vehicles belonging to the i-th class, ηi is
proportional to the look-ahead distance and Ji is the interaction strength. In our setting, the
non-local dependence of the speed functions vi describes the reaction of drivers that adapt
their velocity to the downstream traffic, assigning greater importance to closer vehicles, see
also [21, 49]. We allow different anisotropic kernels for each equation of the system. The



54 Chapter 3. Non-local multi-class traffic flow models

model takes into account the distribution of heterogeneous drivers and vehicles characterized
by their maximal speeds and look-ahead visibility in a traffic stream.

Due to the possible presence of jump discontinuities, solutions to (3.1.1), (3.1.5) are
intended in the following weak sense.

Definition 3. A function ρ = (ρ1, . . . , ρM ) ∈ (L1 ∩ L∞)([0, T [×R;RM ), T > 0, is a weak
solution of (3.1.1), (3.1.5) if∫ T

0

∫ ∞
−∞

(
ρi∂tϕ+ ρivi(r ∗ ωi)∂xϕ

)
(t, x)dx dt+

∫ ∞
−∞

ρ0
i (x)ϕ(0, x) dx = 0

for all ϕ ∈ C1
c(]−∞, T [×R;R), i = 1, . . . ,M .

The main result of this chapter is the proof of existence of weak solutions to (3.1.1), (3.1.5),
locally in time. We remark that, since the convolution kernels ωi are not smooth on R, the
results in [2] cannot be applied due to the lack of L∞-bounds on their derivatives.

Theorem 7. Let ρ0
i (x) ∈ (BV ∩ L∞) (R;R+), for i = 1, . . . ,M , and assumptions (H1) -

(H3) hold. Then the Cauchy problem (3.1.1), (3.1.5) admits a weak solution on [0, T [×R,
for some T > 0 sufficiently small.

We do not address the question of uniqueness of the solutions to (3.1.1). Indeed, even if
discrete entropy inequalities can be derived as in [11, Proposition 3], in the case of systems
this is in general not sufficient to single out a unique solution.

The chapter is organized as follows. Section 3.2 is devoted to prove uniform L∞ and BV
estimates on the approximate solutions obtained through an approximation argument based
on a Godunov type numerical scheme, see [46]. In Section 3.3 we prove the existence in
finite time of weak solutions applying Helly’s theorem and a Lax-Wendroff type argument,
see [63]. In Section 3.4 we present some numerical simulations for M = 2. In particular, we
consider the case of a mixed flow of cars and trucks on a stretch of road, and the flow of mixed
autonomous and non-autonomous vehicles on a circular road. In this latter case, we analyze
two cost functionals measuring the traffic congestion, depending on the penetration ratio of
autonomous vehicles. The final Section 3.5 contains alternative L∞ and BV estimates, based
on approximate solutions constructed via a Lax-Friedrichs type scheme, which is commonly
used in the framework of non-local equations, see [2, 5, 11].

3.2 Godunov type approximate solutions

First of all, we extend ωi(x) = 0 for x > ηi. For j ∈ Z and n ∈ N, let xj+1/2 = j∆x be the
cell interfaces, xj = (j − 1/2)∆x the cells centers and tn = n∆t the time mesh. We aim at
constructing a finite volume approximate solution ρ∆x =

(
ρ∆x

1 , . . . , ρ∆x
M

)
, with ρ∆x

i (t, x) = ρni,j

for (t, x) ∈ Cnj = [tn, tn+1[×]xj−1/2, xj+1/2] and i = 1, ...,M.

To this end, we approximate the initial datum ρ0
i for i = 1, ...,M with a piecewise constant

function
ρ0
i,j =

1

∆x

∫ xj+1/2

xj−1/2

ρ0
i (x) dx, j ∈ Z.
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Similarly, for the kernel, we set

ωki :=
1

∆x

∫ (k+1)∆x

k∆x
ωi(x) dx, k ∈ N,

so that ∆x
∑+∞

k=0 ω
k
i =

∫ ηi
0 ωi(x) dx = Ji (the sum is indeed finite since ωki = 0 for k ≥ Ni

sufficiently large). Moreover, we set rnj+k =
M∑
i=1

ρni,j+k for k ∈ N and

V n
i,j := vmax

i ψ

∆x
+∞∑
k=0

ωki r
n
j+k

 , i = 1, . . . ,M, j ∈ Z. (3.2.1)

We consider the following Godunov-type scheme adapted to (3.1.1), which was introduced
in [46] in the scalar case:

ρn+1
i,j = ρni,j − λ

(
ρni,jV

n
i,j+1 − ρni,j−1V

n
i,j

)
(3.2.2)

where we have set λ = ∆t
∆x .

3.2.1 Compactness estimates

We provide here the necessary estimates to prove the convergence of the sequence of approxi-
mate solutions constructed via the Godunov scheme (3.2.2).

Lemma 4. (Positivity) For any T > 0, under the CFL condition

λ ≤ 1

vmax
M ‖ψ‖∞

, (3.2.3)

the scheme (3.2.2) is positivity preserving on [0, T ]× R.

Proof. Let us assume that ρni,j ≥ 0 for all j ∈ Z and i ∈ 1, ...,M. It suffices to prove that ρn+1
i,j

in (3.2.2) is non-negative. We compute

ρn+1
i,j = ρni,j

(
1− λV n

i,j+1

)
+ λ ρni,j−1V

n
i,j ≥ 0 (3.2.4)

under assumption (3.2.3).

Corollary 8. (L1-bound) For any n ∈ N, under the CFL condition (3.2.3) the approximate
solutions constructed via the scheme (3.2.2) satisfy∥∥ρni ∥∥L1 =

∥∥∥ρ0
i

∥∥∥
L1
, i = 1, . . . ,M, (3.2.5)

where
∥∥ρni ∥∥L1 := ∆x

∑
j

∣∣∣ρni,j∣∣∣ denotes the L1 norm of the i-th component of ρ∆x.

Proof. Thanks to Lemma 4, for all i ∈ {1, ...,M} we have∥∥∥ρn+1
i

∥∥∥
L1

= ∆x
∑
j

ρn+1
i,j = ∆x

∑
j

(
ρni,j − λρni,jV n

i,j+1 + λ ρni,j−1V
n
i,j

)
= ∆x

∑
j

ρni,j ,

proving (3.2.5).
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Lemma 5. (L∞-bound) If ρ0
i,j ≥ 0 for all j ∈ Z and i = 1, ...,M , and (3.2.3) holds, then

the approximate solution ρ∆x constructed by the algorithm (3.2.2) is uniformly bounded on
[0, T ]× R for any T such that

T <

(
M
∥∥∥ρ0

∥∥∥
∞
vmax
M

∥∥ψ′∥∥∞W0

)−1

.

Proof. Let ρ̄ = max{ρni,j−1, ρ
n
i,j}. Then we get

ρn+1
i,j = ρni,j

(
1− λV n

i,j+1

)
+ λ ρni,j−1V

n
i,j ≤ ρ̄

(
1 + λ

(
V n
i,j − V n

i,j+1

))
(3.2.6)

and

∣∣∣V n
i,j − V n

i,j+1

∣∣∣ = vmax
i

∣∣∣∣∣∣∣ψ
∆x

+∞∑
k=0

ωki r
n
j+k

− ψ
∆x

+∞∑
k=0

ωki r
n
j+k+1


∣∣∣∣∣∣∣

≤ vmax
i

∥∥ψ′∥∥∞∆x

∣∣∣∣∣∣
+∞∑
k=0

ωki (rnj+k+1 − rnj+k)

∣∣∣∣∣∣
= vmax

i

∥∥ψ′∥∥∞∆x

∣∣∣∣∣∣−ω0
i r
n
j +

+∞∑
k=1

(ωk−1
i − ωki )rnj+k

∣∣∣∣∣∣
≤ vmax

i

∥∥ψ′∥∥∞∆xM‖ρn‖∞ωi(0) (3.2.7)

where ‖ρ‖∞ =
∥∥(ρ1, . . . , ρM )

∥∥
∞ = maxi,j

∣∣ρi,j∣∣. Let now K > 0 be such that
∥∥∥ρ`∥∥∥

∞
≤ K,

` = 0, . . . , n. From (3.2.6) and (3.2.7) we get∥∥∥ρn+1
∥∥∥
∞
≤ ‖ρn‖∞

(
1 +MKvmax

M

∥∥ψ′∥∥∞W0∆t
)
,

which implies
‖ρn‖∞ ≤

∥∥∥ρ0
∥∥∥
∞
eCn∆t,

with C = MKvmax
M

∥∥ψ′∥∥∞W0. Therefore we get that
∥∥ρ(t, ·)

∥∥
∞ ≤ K for

t ≤ 1

MKvmax
M ‖ψ′‖∞W0

ln

(
K∥∥ρ0
∥∥
∞

)
≤ 1

Me
∥∥ρ0

∥∥
∞v

max
M ‖ψ′‖∞W0

,

where the maximum is attained for K = e
∥∥ρ0

∥∥
∞.

Iterating the procedure, at time tm, m ≥ 1 we set K = em
∥∥ρ0

∥∥
∞ and we get that the

solution is bounded by K until tm+1 such that

tm+1 ≤ tm +
m

Mem
∥∥ρ0

∥∥
∞v

max
M ‖ψ′‖∞W0

.

Therefore, the approximate solution remains bounded, uniformly in ∆x, at least for t ≤ T

with

T ≤ 1

M
∥∥ρ0

∥∥
∞v

max
M ‖ψ′‖∞W0

+∞∑
m=1

m

em
≤ 1

M
∥∥ρ0

∥∥
∞v

max
M ‖ψ′‖∞W0

.
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Remark 5. Figure 3.1 shows that the simplex

S :=

ρ ∈ RM :
M∑
i=1

ρi ≤ 1, ρi ≥ 0 for i = 1, . . . ,M


is not an invariant domain for (3.1.1), unlike the classical multi-population model [8]. Indeed,
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Figure 3.1: Numerical simulation illustrating that the simplex S is not an invariant domain
for (3.1.1). We take M = 2 and we consider the initial conditions ρ1(0, x) = 0.9χ[−0.5,−0.3]

and ρ2(0, x) = 0.1χ]−∞,0] +χ]0,+∞[ depicted in (a), the constant kernels ω1(x) = ω2(x) = 1/η,
η = 0.5, and the speed functions given by vmax1 = 0.2, vmax2 = 1, ψ(ξ) = max{1 − ξ, 0} for
ξ ≥ 0. The space and time discretization steps are ∆x = 0.001 and ∆t = 0.4∆x. Plots
(b) and (c) show the density profiles of ρ1, ρ2 and their sum r at times t = 1.8, 2.8. The
function maxx∈R r(t, x) is plotted in (d), showing that r can take values greater than 1, even
if r(0, x) = ρ1(0, x) + ρ2(0, x) ≤ 1.

let us consider the system

∂tρi(t, x) + ∂x
(
ρi(t, x)vi(r(t, x))

)
= 0, i = 1, ...,M, (3.2.8)

where r and vi are as in (3.1.2) and (3.1.3), respectively. We have the following:

Lemma 6. Under the CFL condition

λ ≤ 1

vmax
M

(
‖ψ‖∞ + ‖ψ′‖∞

) ,
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for any initial datum ρ0 ∈ S the approximate solutions to (3.2.8) computed by the upwind
scheme

ρn+1
j = ρnj − λ

[
F(ρnj ,ρ

n
j+1)− F(ρnj−1,ρ

n
j )
]
, (3.2.9)

with F(ρnj ,ρ
n
j+1) = ρnj ψ(rnj+1), satisfy the following uniform bounds:

ρnj ∈ S ∀j ∈ Z, n ∈ N. (3.2.10)

Proof. Assuming that ρnj ∈ S for all j ∈ Z, we want to prove that ρn+1
j ∈ S. Rewriting (3.2.9),

we get

ρn+1
i,j = ρni,j − λ

[
vmax
i ρni,jψ(rnj+1)− vmax

i ρni,j−1ψ(rnj )
]
.

Summing on the index i = 1, . . . ,M , gives

rn+1
j =

M∑
i=1

ρn+1
i,j =

M∑
i=1

ρni,j − λ
M∑
i=1

[
vmax
i ρni,jψ(rnj+1)− vmax

i ρni,j−1ψ(rnj )
]

= rnj + λψ(rnj )

M∑
i=1

vmax
i ρni,j−1 − λψ(rnj+1)

M∑
i=1

vmax
i ρni,j .

Defining the following function of ρnj

Φ(ρn1,j , . . . , ρ
n
M,j) = rnj + λψ(rnj )

M∑
i=1

vmax
i ρni,j−1 − λψ(rnj+1)

M∑
i=1

vmax
i ρni,j ,

we observe that

Φ(0, . . . , 0) = λψ(0)
M∑
i

vmax
i ρni,j−1 ≤ λ‖ψ‖∞v

max
M ≤ 1

if λ ≤ 1/vmax
M ‖ψ‖∞ and

Φ(ρn1,j , ..., ρ
n
M,j) = 1− λψ(rnj+1)

M∑
i=1

vmax
i ρni,j ≤ 1

for ρnj ∈ S such that rnj =
∑M

i=1 ρ
n
i,j = 1. Moreover

∂Φ

∂ρni,j
(ρnj ) = 1 + λψ′(rnj )

M∑
i=1

vmax
i ρni,j−1 − λψ(rnj+1)vmax

i ≥ 0

if λ ≤ 1/vmax
M

(
‖ψ‖∞ +

∥∥ψ′∥∥∞). This proves that rn+1
j ≤ 1. To prove the positivity of (3.2.9),

we observe that

ρn+1
i,j = ρni,j

(
1− λvmax

i ψ(rnj+1)
)

+ λvmax
i ρni,j−1ψ(rnj ) ≥ 0

if λ ≤ 1/vmax
M ‖ψ‖∞.
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Lemma 7. (Spatial BV-bound) Let ρ0
i ∈ (BV ∩ L∞) (R,R+) for all i = 1, ...,M. If (3.2.3)

holds, then the approximate solution ρ∆x(t, ·) constructed by the algorithm (3.2.2) has uni-
formly bounded total variation for t ∈ [0, T ], for any T such that

T ≤ min
i=1,...,M

1

H
(
TV(ρ0

i ) + 1
) , (3.2.11)

where H = ‖ρ‖∞ vmax
M W0M

(
6MJ0‖ρ‖∞

∥∥ψ′′∥∥∞ +
∥∥ψ′∥∥∞).

Proof. Subtracting the identities

ρn+1
i,j+1 = ρni,j+1 − λ

(
ρni,j+1V

n
i,j+2 − ρni,jV n

i,j+1

)
, (3.2.12)

ρn+1
i,j = ρni,j − λ

(
ρni,jV

n
i,j+1 − ρni,j−1V

n
i,j

)
, (3.2.13)

and setting ∆n
i,j+1/2 = ρni,j+1 − ρni,j , we get

∆n+1
i,j+1/2 = ∆n

i,j+1/2 − λ
(
ρni,j+1V

n
i,j+2 − 2 ρni,jV

n
i,j+1 + ρni,j−1V

n
i,j

)
.

Now, we can write

∆n+1
i,j+1/2 =

(
1− λV n

i,j+2

)
∆n
i,j+1 (3.2.14)

+ λV n
i,j∆

n
i,j−1/2

− λρni,j
(
V n
i,j+2 − 2V n

i,j+1 + V n
i,j

)
. (3.2.15)

Observe that assumption (3.2.3) guarantees the positivity of (3.2.14). The term (3.2.15) can
be estimated as

V n
i,j+2 − 2V n

i,j+1 + V n
i,j =

=vmax
i

ψ
∆x

+∞∑
k=0

ωki r
n
j+k+2

− 2ψ

∆x

+∞∑
k=0

ωki r
n
j+k+1

+ ψ

∆x

+∞∑
k=0

ωki r
n
j+k




=vmax
i ψ′(ξj+1)∆x

+∞∑
k=0

ωki r
n
j+k+2 −

+∞∑
k=0

ωki r
n
j+k+1


+ vmax

i ψ′(ξj)∆x

+∞∑
k=0

ωki r
n
j+k −

+∞∑
k=0

ωki r
n
j+k+1


=vmax

i ψ′(ξj+1)∆x

+∞∑
k=1

(ωk−1
i − ωki )rnj+k+1 − ω0

i r
n
j+1


+ vmax

i ψ′(ξj)∆x

+∞∑
k=1

(ωki − ωk−1
i )rnj+k + ω0

i r
n
j


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=vmax
i (ψ′(ξj+1)− ψ′(ξj))∆x

+∞∑
k=1

(ωk−1
i − ωki )rnj+k+1 − ω0

i r
n
j+1


+ vmax

i ψ′(ξj)∆x

+∞∑
k=1

(ωk−1
i − ωki )(rnj+k+1 − rnj+k) + ω0

i (r
n
j − rnj+1)


=vmax

i ψ′′(ξ̃j+1/2)(ξj+1 − ξj)∆x

+∞∑
k=1

M∑
β=1

ωki ∆n
β,j+k+3/2


+ vmax

i ψ′(ξj)∆x

 M∑
β=1

N−1∑
k=1

(ωk−1
i − ωki )∆n

β,j+k+1/2 − ω
0
i ∆

n
β,j+1/2

 ,

with ξj ∈ I
(

∆x
∑+∞

k=0 ω
k
i r
n
j+k,∆x

∑+∞
k=0 ω

k
i r
n
j+k+1

)
and ξ̃j+1/2 ∈ I

(
ξj , ξj+1

)
, where we

set I(a, b) =
[
min{a, b},max{a, b}

]
. For some ϑ, µ ∈ [0, 1], we compute

ξj+1 − ξj =ϑ∆x

+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k+2 + (1− ϑ)∆x

+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k+1

− µ∆x
+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k+1 − (1− µ)∆x
+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k

=ϑ∆x
+∞∑
k=1

ωk−1
i

M∑
β=1

ρnβ,j+k+1 + (1− ϑ)∆x
+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k+1

− µ∆x

+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k+1 − (1− µ)∆x

+∞∑
k=−1

ωk+1
i

M∑
β=1

ρnβ,j+k+1

=∆x

+∞∑
k=1

[
ϑωk−1

i + (1− ϑ)ωki − µωki − (1− µ)ωk+1
i

] M∑
β=1

ρnβ,j+k+1

+ (1− ϑ)∆xω0
i

M∑
β=1

ρnβ,j+1 − µ∆xω0
i

M∑
β=1

ρnβ,j+1

− (1− µ)∆x

ω0
i

M∑
β=1

ρnβ,j + ω1
i

M∑
β=1

ρnβ,j+1

 .

By monotonicity of ωi we have

ϑωk−1
i + (1− ϑ)ωki − µωki − (1− µ)ωk+1

i ≥ 0 .

Taking the absolute values we get

∣∣ξj+1 − ξj
∣∣ ≤ ∆x


+∞∑
k=2

[
ϑωk−1

i + (1− ϑ)ωki − µωki − (1− µ)ωk+1
i

]
+ 4ω0

i

M‖ρn‖∞
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≤ ∆x


+∞∑
k=2

[
ωk−1
i − ωk+1

i

]
+ 4ω0

i

M‖ρn‖∞

≤ ∆x 6W0M‖ρn‖∞ .

Let now K1 > 0 be such that
∑

j

∣∣∣∆`
β,j

∣∣∣ ≤ K1 for β = 1, . . . ,M , ` = 0, . . . , n. Taking the
absolute values and rearranging the indexes, we have∑

j

∣∣∣∆n+1
i,j+1/2

∣∣∣ ≤∑
j

∣∣∣∆n
i,j+1/2

∣∣∣ (1− λ
(
V n
i,j+2 − V n

i,j+1

))
+ ∆tHK1,

where H = ‖ρ‖∞ vmax
M W0M

(
6MJ0‖ρ‖∞

∥∥ψ′′∥∥∞ +
∥∥ψ′∥∥∞) . Therefore, by (3.2.7) we get

∑
j

∣∣∣∆n+1
i,j+1/2

∣∣∣ ≤∑
j

∣∣∣∆n
i,j+1/2

∣∣∣ (1 + ∆tG) + ∆tHK1,

with G = vmax
M

∥∥ψ′∥∥∞W0M‖ρ‖∞. We thus obtain∑
j

∣∣∣∆n
i,j+1/2

∣∣∣ ≤ eGn∆t
∑
j

∣∣∣∆0
i,j+1/2

∣∣∣+ eHK1n∆t − 1,

that we can rewrite as

TV(ρ∆x
i )(n∆t, ·) ≤ eGn∆tTV(ρ0

i ) + eHK1n∆t − 1

≤ eHK1n∆t
(
TV(ρ0

i ) + 1
)
− 1 ,

sinceH ≥ G and it is not restrictive to assumeK1 ≥ 1. Therefore, we have that TV(ρ∆x
i ) ≤ K1

for

t ≤ 1

HK1
ln

(
K1 + 1

TV(ρ0
i ) + 1

)
,

where the maximum is attained for some K1 < e
(
TV(ρ0

i ) + 1
)
− 1 such that

ln

(
K1 + 1

TV(ρ0
i ) + 1

)
=

K1

K1 + 1
.

Therefore the total variation is uniformly bounded for

t ≤ 1

He
(
TV(ρ0

i ) + 1
) .

Iterating the procedure, at time tm, m ≥ 1 we set K1 = em
(
TV(ρ0

i ) + 1
)
− 1 and we get that

the solution is bounded by K1 until tm+1 such that

tm+1 ≤ tm +
m

Hem
(
TV(ρ0

i ) + 1
) . (3.2.16)
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Therefore, the approximate solution has bounded total variation for t ≤ T with

T ≤ 1

H
(
TV(ρ0

i ) + 1
) .

Corollary 9. Let ρ0
i ∈ (BV ∩ L∞) (R;R+). If (3.2.3) holds, then the approximate solution

ρ∆x constructed by the algorithm (3.2.2) has uniformly bounded total variation on [0, T ]× R,
for any T satisfying (3.2.11).

Proof. If T ≤ ∆t, then TV(ρ∆x
i ; [0, T ]×R) ≤ TTV(ρ0

i ). Let us assume now that T > ∆t. Let
nT ∈ N\{0} such that nT∆t < T ≤ (nT + 1)∆t. Then

TV(ρ∆x
i ; [0, T ]× R)

=

nT−1∑
n=0

∑
j∈Z

∆t
∣∣∣ρni,j+1 − ρni,j

∣∣∣+ (T − nT∆t)
∑
j∈Z

∣∣∣ρnTi,j+1 − ρ
nT
i,j

∣∣∣︸ ︷︷ ︸
≤T supt∈[0,T ] TV(ρ∆x

i )(t,·)

+

nT−1∑
n=0

∑
j∈Z

∆x
∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣.
We then need to bound the term

nT−1∑
n=0

∑
j∈Z

∆x
∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣.
From the definition of the numerical scheme (3.2.2), we obtain

ρn+1
i,j − ρ

n
i,j = λ

(
ρni,j−1V

n
i,j − ρni,jV n

i,j+1

)
= λ

(
ρni,j−1

(
V n
i,j − V n

i,j+1

)
+ V n

i,j+1

(
ρni,j−1 − ρni,j

))
.

Taking the absolute values and using (3.2.7) we obtain∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣ ≤ λ(vmax
i

∥∥ψ′∥∥∞M‖ρn‖∞ωi(0)∆x
∣∣∣ρni,j−1

∣∣∣+ vmax
i ‖ψ‖∞

∣∣∣ρni,j−1 − ρni,j
∣∣∣) .

Summing on j, we get∑
j∈Z

∆x
∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣ = vmax
i

∥∥ψ′∥∥∞M‖ρn‖∞ωi(0) ∆t
∑
j∈Z

∆x
∣∣∣ρni,j−1

∣∣∣
+ vmax

i ‖ψ‖∞∆t
∑
j∈Z

∣∣∣ρni,j−1 − ρni,j
∣∣∣,

which yields

nT−1∑
n=0

∑
j∈Z

∆x
∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣
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≤vmax
M ‖ψ‖∞T sup

t∈[0,T ]
TV(ρ∆x

i )(t, ·)

+ vmax
M

∥∥ψ′∥∥∞MW0T sup
t∈[0,T ]

∥∥∥ρ∆x
i (t, ·)

∥∥∥
L1

∥∥∥ρ∆x
i (t, ·)

∥∥∥
∞

that is bounded by Corollary 8, Lemma 5 and Lemma 7.

3.3 Proof of Theorem 7

To complete the proof of the existence of solutions to the problem (3.1.1), (3.1.5), we follow a
Lax-Wendroff type argument as in [11], see also [63], to show that the approximate solutions
constructed by scheme (3.2.2) converge to a weak solution of (3.1.1). By Lemma 5, Lemma
7 and Corollary 9, we can apply Helly’s theorem, stating that for i = 1, . . . ,M , there exists
a subsequence, still denoted by ρ∆x

i , which converges to some ρi ∈ (L1 ∩ BV)([0, T ]× R;R+)

in the L1
loc-norm. Let us fix i ∈ {1, . . . ,M}. Let ϕ ∈ C1

c([0, T [×R) and multiply (3.2.2) by
ϕ(tn, xj). Summing over j ∈ Z and n ∈ {0, . . . , nT } we get

nT−1∑
n=0

∑
j

ϕ(tn, xj)
(
ρn+1
i,j − ρ

n
i,j

)

= −λ
nT−1∑
n=0

∑
j

ϕ(tn, xj)
(
ρni,jV

n
i,j+1 − ρni,j−1V

n
i,j

)
.

Summing by parts we obtain

−
∑
j

ϕ((nT − 1)∆t, xj)ρ
nT
i,j +

∑
j

ϕ(0, xj)ρ
0
i,j

+

nT−1∑
n=1

∑
j

(
ϕ(tn, xj)− ϕ(tn−1, xj)

)
ρni,j

+ λ

nT−1∑
n=0

∑
j

(
ϕ(tn, xj+1)− ϕ(tn, xj)

)
V n
i,j+1ρ

n
i,j = 0.

(3.3.1)

Multiplying by ∆x we get

−∆x
∑
j

ϕ((nT − 1)∆t, xj)ρ
nT
i,j + ∆x

∑
j

ϕ(0, xj)ρ
0
i,j (3.3.2)

+ ∆x∆t

nT−1∑
n=1

∑
j

(
ϕ(tn, xj)− ϕ(tn−1, xj)

)
∆t

ρni,j (3.3.3)

+ ∆x∆t

nT−1∑
n=0

∑
j

(
ϕ(tn, xj+1)− ϕ(tn, xj)

)
∆x

V n
i,j+1ρ

n
i,j = 0. (3.3.4)

By L1
loc convergence of ρ∆x

i → ρi, it is straightforward to see that the terms in (3.3.2), (3.3.3)
converge to∫

R

(
ρ0
i (x)ϕ(0, x)− ρi(T, x)ϕ(T, x)

)
dx+

∫ T

0

∫
R
ρi(t, x)∂tϕ(t, x) dx dt, (3.3.5)
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as ∆x→ 0. Concerning the last term (3.3.4), we can rewrite

∆x∆t

nT−1∑
n=0

∑
j

ϕ(tn, xj+1)− ϕ(tn, xj)

∆x
V n
i,j+1ρ

n
i,j

= ∆x∆t

nT−1∑
n=0

∑
j

ϕ(tn, xj+1)− ϕ(tn, xj)

∆x

(
ρni,jV

n
i,j+1 − ρni,jV n

i,j

)
(3.3.6)

+ ∆x∆t

nT−1∑
n=0

∑
j

ϕ(tn, xj+1)− ϕ(tn, xj)

∆x
ρni,jV

n
i,j .

By (3.2.7) we get the estimate

ρni,jV
n
i,j+1 − ρni,jV n

i,j ≤ vmax
i

∥∥ψ′∥∥∞∆xM‖ρ‖2∞ωi(0).

Set R > 0 such that ϕ(t, x) = 0 for |x| > R and j0, j1 ∈ Z such that −R ∈ ]xj0− 1
2
, xj0+ 1

2
] and

R ∈ ]xj1− 1
2
, xj1+ 1

2
], then

∆x∆t

nT∑
n=0

∑
j

ϕ(tn, xj+1)− ϕ(tn, xj)

∆x
(ρni,jV

n
i,j+1 − ρni,jV n

i,j)

≤ ∆x∆t‖∂xϕ‖∞
nT∑
n=0

j1∑
j=j0

vmax
i

∥∥ψ′∥∥∞M‖ρ‖2∞ωi(0) ∆x

≤ ‖∂xϕ‖∞ vmax
i

∥∥ψ′∥∥∞M‖ρ‖2∞ωi(0) ∆x 2RT ,

which goes to zero as ∆x→ 0.

Finally, again by the L1
loc convergence of ρ∆x

i → ρi, we have that

∆x∆t

nT−1∑
n=0

∑
j

(
ϕ(tn, xj+1)− ϕ(tn, xj)

)
∆x

ρni,jV
n
i,j− 1

2

→

∫ T

0

∫
R
∂xϕ(t, x)ρi(t, x)vi(r ∗ ωi) dx dt.

3.4 Numerical tests

In this section we perform some numerical simulations to illustrate the behaviour of solutions
to (3.1.1) for M = 2 modeling two different scenarios. In the following, the space mesh is set
to ∆x = 0.001.

3.4.1 Cars and trucks mixed traffic

In this example, we consider a stretch of road populated by cars and trucks. The space domain
is given by the interval [−2, 3] and we impose absorbing conditions at the boundaries, adding
N1 = η1/∆x ghost cells for the first population and N2 = η2/∆x for the second one at the
right boundary, and just one ghost cell for both populations at the left boundary, where we
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extend the solution constantly equal to the last value inside the domain. The dynamics is
described by the following 2× 2 system∂tρ1(t, x) + ∂x

(
ρ1(t, x)vmax

1 ψ((r ∗ ω1)(t, x))
)

= 0,

∂tρ2(t, x) + ∂x
(
ρ2(t, x)vmax

2 ψ((r ∗ ω2)(t, x))
)

= 0,
(3.4.1)

with

ω1(x) =
2

η1

(
1− x

η1

)
, η1 = 0.3,

ω2(x) =
2

η2

(
1− x

η2

)
, η2 = 0.1,

ψ(ξ) = max {1− ξ, 0} , ξ ≥ 0,

vmax1 = 0.8, vmax2 = 1.3.

In this setting, ρ1 represents the density of trucks and ρ2 is the density of cars on the road.
Trucks moves at lower maximal speed than cars and have grater view horizon, but of the same
order of magnitude. Figure 3.2 describes the evolution in time of the two population densities,
correspondent to the initial configurationρ1(0, x) = 0.5χ[−1.1,−1.6],

ρ2(0, x) = 0.5χ[−1.6,−1.9],

in which a platoon of trucks precedes a group of cars. Due to their higher speed, cars overtake
trucks, in accordance with what observed in the local case [8].

3.4.2 Impact of connected autonomous vehicles

The aim of this test is to study the possible impact of the presence of Connected Autonomous
Vehicles (CAVs) on road traffic performances. Let us consider a circular road modeled by
the space interval [−1, 1] with periodic boundary conditions at x = ±1. In this case, we
assume that autonomous and non-autonomous vehicles have the same maximal speed, but the
interaction radius of CAVs is two orders of magnitude grater than the one of human-driven
cars. Moreover, we assume CAVs have constant convolution kernel, modeling the fact that
they have the same degree of accuracy on information about surrounding traffic, independent
from the distance. In this case, model (3.1.1) reads

∂tρ1(t, x) + ∂x
(
ρ1(t, x)vmax

1 ψ((r ∗ ω1)(t, x))
)

= 0,

∂tρ2(t, x) + ∂x
(
ρ2(t, x)vmax

2 ψ((r ∗ ω2)(t, x))
)

= 0,

ρ1(0, x) = β (0.5 + 0.3 sin(5πx)),

ρ2(0, x) = (1− β) (0.5 + 0.3 sin(5πx)),

(3.4.2)

with

ω1(x) =
1

η1
, η1 = 1,
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Figure 3.2: Density profiles of cars and trucks at increasing times corresponding to the non-
local model (3.4.1).
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ω2(x) =
2

η2

(
1− x

η2

)
, η2 = 0.01,

ψ(ξ) = max {1− ξ, 0} , ξ ≥ 0,

vmax1 = vmax2 = 1.

Above ρ1 represents the density of autonomous vehicles, ρ2 the density of non-autonomous
vehicles and β ∈ [0, 1] is the penetration rate of autonomous vehicle. Figure 3.3 displays the
traffic dynamics in the case β = 0.9.

As a metric of traffic congestion, given a time horizon T > 0, we consider the two following
functionals:

J(β) =

∫ T

0
d| ∂xr| dt, (3.4.3)

Ψ(β) =

∫ T

0

[
ρ1(t, x̄)vmax

1 ψ((r ∗ ω1)(t, x̄)) + ρ2(t, x̄)vmax
2 ψ((r ∗ ω2)(t, x̄))

]
dt, (3.4.4)

where x̄ = x0 ≈ 0. The functional J measures the integral with respect to time of the spatial
total variation of the total traffic density, see [30]. The functional Ψ measures the integral
with respect to time of the traffic flow at a given point x̄, corresponding to the number of
cars that have passed through x̄ in the studied time interval. Figure 3.4 displays the values
of the functionals J and Ψ for different values of β = 0, 0.1, 0.2, . . . , 1. We can notice that
the functionals are not monotone and present minimum and maximum values. The traffic
evolution patterns corresponding these stationary values are reported in Figure 3.5, showing
the (t, x)-plots of the total traffic density r(t, x) corresponding to these values of β.

3.5 Lax-Friedrichs numerical scheme

We provide here alternative estimates for (3.1.1), based on approximate solutions constructed
via the following adapted Lax-Friedrichs scheme:

ρn+1
i,j = ρni,j − λ

(
Fni,j+1/2 − F

n
i,j−1/2

)
, (3.5.1)

with

Fni,j+1/2 :=
1

2
ρni,jV

n
i,j +

1

2
ρni,j+1V

n
i,j+1 +

α

2

(
ρni,j − ρni,j+1

)
, (3.5.2)

where α ≥ 1 is the viscosity coefficient and λ = ∆t
∆x . The proofs are very similar to those

exposed for Godunov approximations.

Lemma 8. For any T > 0, under the CFL conditions

λα < 1, (3.5.3)

α ≥ vmax
M ‖ψ‖∞, (3.5.4)

the scheme (3.5.2)-(3.5.1) is positivity preserving on [0, T ]× R.
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Figure 3.3: Density profiles corresponding to the non-local problem (3.4.2) with β = 0.9 at
different times.
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Figure 3.4: Functional J (left) and Ψ (right)
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Figure 3.5: (t, x)-plots of the total traffic density r(t, x) = ρ1(t, x) + ρ2(t, x) in (3.4.2) cor-
responding to different values of β: (a) no autonomous vehicles are present; (b) point of
minimum for Ψ; (c) point of minimum for J ; (d) point of maximum for J .
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Proof. Let us assume that ρni,j ≥ 0 for all j ∈ Z and i ∈ 1, ...,M. It suffices to prove that ρn+1
i,j

in (3.5.1) is non-negative. Compute

ρn+1
i,j = ρni,j +

λ

2
α(ρni,j+1 − 2ρni,j + ρni,j−1) +

λ

2

(
ρni,j−1V

n
i,j−1 − ρni,j+1V

n
i,j+1

)
(3.5.5)

= ρni,j−1

λ

2

(
α+ V n

i,j−1

)
+ ρni,j(1− λα) + ρni,j+1

λ

2

(
α− V n

i,j+1

)
, (3.5.6)

under assumptions (3.5.3) and (3.5.4), we obtain that ρn+1
i,j is positive.

Corollary 10. (L1 bound) For any T > 0, under the CFL conditions (3.5.3)-(3.5.4) the
scheme (3.5.2)-(3.5.1) preserves the L1 norm of the i-th component of ρ∆x.

Proof. See proof of Corollary 8.

Lemma 9. (L∞-bound) If ρ0
i,j ≥ 0 for all j ∈ Z and i = 1, ...,M , and the CFL condi-

tions (3.5.3)-(3.5.4) hold, the approximate solution ρ∆x constructed by the algorithm (3.5.2)-
(3.5.1) is uniformly bounded on [0, T ]× R for any T such that

T <

(
M
∥∥∥ρ0

∥∥∥
∞
vmax
M

∥∥ψ′∥∥∞W0

)−1

. (3.5.7)

Proof. From (3.5.6) we can define

ρn+1
i,j =

λ

2
ρni,j−1

(
α+ V n

i,j−1

)
+ (1− λα)ρni,j +

λ

2
ρni,j+1

(
α− V n

i,j+1

)
Let ρ̄ = max

{
ρni,j−1, ρ

n
i,j , ρ

n
i,j+1

}
. Then we get

ρn+1
i,j ≤ ρ̄

[
1 +

λ

2

(
V n
i,j−1 − V n

i,j+1

)]
and by (3.2.7)

∣∣∣V n
i,j−1 − V n

i,j+1

∣∣∣ = vmax
i

ψ
∆x

+∞∑
k=0

ωki rj−1+k

− ψ
∆x

+∞∑
k=0

ωki rj+1+k


 (3.5.8)

= −vmax
i ∆xψ′(ξj)

+∞∑
k=0

ωki (rj+1+k − rj−1+k)

 (3.5.9)

= −vmax
i ∆xψ′(ξj)

+∞∑
k=1

ωk−1
i rj+k −

+∞∑
k=−1

ωk+1
i rj+k

 (3.5.10)

= −vmax
i ∆xψ′(ξj)

+∞∑
k=1

(ωk−1
i − ωk+1

η )rj+k − ω0
i rj−1 − ω1

i rj

 (3.5.11)

≤ 2vmax
M

∥∥ψ′∥∥∞∆xωi(0)M‖ρ‖∞. (3.5.12)
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where ‖ρ‖∞ =
∥∥(ρ1, . . . , ρM )

∥∥
∞ = maxi |ρi| and we have used the fact that rj ≥ 0 for j ∈ Z,

guaranteed by Lemma 8. Therefore, until ‖ρn‖∞ ≤ K, for some K ≥
∥∥ρ0

∥∥
∞, we get∥∥∥ρn+1

∥∥∥
∞
≤ ‖ρn‖∞

(
1 +MKvmax

M

∥∥ψ′∥∥∞W0∆t
)
,

and we can reason as in the proof of Lemma 5, which implies

‖ρn‖∞ ≤
∥∥∥ρ0

∥∥∥
∞
eCn∆t, (3.5.13)

where C = MKvmax
M

∥∥ψ′∥∥∞W0 andW0 := maxi=1,...,M ωi(0). Therefore we get that
∥∥ρ(t)

∥∥
∞ ≤

K for

t ≤ 1

MKvmax
M ‖ψ′‖∞W0

ln

(
K∥∥ρ0
∥∥
∞

)
≤ 1

Me
∥∥ρ0

∥∥
∞v

max
M ‖ψ′‖∞W0

,

where the maximum is attained for K = e
∥∥ρ0

∥∥
∞. Iterating the procedure, at time tm, m ≥ 1

we set K = em
∥∥ρ0

∥∥
∞ and we get that the solution is bounded by K until tm+1 such that

tm+1 ≤ tm +
1

Mem
∥∥ρ0

∥∥
∞v

max
M ‖ψ′‖∞W0

.

Therefore, the approximate solution satisfies the bound (3.5.13) for t ≤ T with

T ≤ 1

M
∥∥ρ0

∥∥
∞v

max
M ‖ψ′‖∞W0

+∞∑
m=1

1

em
=

1

M(e− 1)
∥∥ρ0

∥∥
∞v

max
M ‖ψ′‖∞W0

.

Lemma 10. (BV estimates) Let ρ0
i ∈ (BV ∩ L∞) (R,R+) for all i = 1, ...,M . If (3.5.4)

holds and

∆t ≤ 2

2α+ ∆x ‖ψ′‖∞W0 vmax
M ‖ρ‖∞

∆x, (3.5.14)

then the solution constructed by the algorithm (3.5.2)-(3.5.1) has uniformly bounded total vari-
ation for any T such that

T ≤ min
i=1,...,M

1

D
(
TV(ρ0

i ) + 1
) , (3.5.15)

where D = ‖ρ‖∞ vmax
M W0M

(
3MJ0‖ρ‖∞

∥∥ψ′′∥∥∞ + 2
∥∥ψ′∥∥∞).

Proof. Subtracting the following expressions

ρn+1
i,j+1 = ρni,j+1 +

λ

2
α(ρni,j − 2ρni,j+1 + ρni,j+2) +

λ

2

(
ρni,jV

n
i,j − ρni,j+2V

n
i,j+2

)
,

ρn+1
i,j = ρni,j +

λ

2
α(ρni,j−1 − 2ρni,j + ρni,j+1) +

λ

2

(
ρni,j−1V

n
i,j−1 − ρni,j+1V

n
i,j+1

)
,

we get

∆n+1
i,j+1/2 =

λ

2
α∆n+1

i,j−1/2 + (1− λα)∆n
i,j+1/2 +

λ

2
α∆n+1

i,j+3/2
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+
λ

2

[
V n
i,j∆

n
i,j−1/2 + ρni,j−1

(
V n
i,j − V n

i,j−1

)
− V n

i,j+2∆i,j+3/2 + ρi,j+1

(
V n
i,j+1 − V n

i,j+2

)]
.

Now, we can write

V n
i,j − V n

i,j−1 = vmax
i ψ′(ξj−1/2)∆x

+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k − ρnβ,j+k−1

= vmax
i ψ′(ξj−1/2)∆x

+∞∑
k=0

ωki

M∑
β=1

∆n
β,j+k−1/2

= vmax
i ψ′(ξj−1/2)∆x

 M∑
β=1

+∞∑
k=0

(ωki − ωk+1
i )ρβ,j+k − ω0

i ρβ,j−1

 ,

and

V n
i,j+2 − V n

i,j+1 = vmax
i ψ′(ξj+3/2)∆x

+∞∑
k=0

ωki

M∑
β=1

∆n
β,j+k+3/2

= vmax
i ψ′(ξj+3/2)∆x

 M∑
β=1

+∞∑
k=1

(ωk−1
i − ωki )ρβ,j+k+1 − ω0

ηρβ,j+1

 .

We get

∆n+1
i,j+1/2 =

=
λ

2

(
α+ V n

i,j

)
∆n
i,j−1/2 + (1− λα) ∆n

i,j+1/2 +
λ

2

(
α− V n

i,j+2

)
∆n
i,j+3/2

+
λ

2
ρni,j−1

vmax
i ψ′(ξj−1/2)∆x

 M∑
β=1

+∞∑
k=0

(ωki − ωk+1
η )ρnβ,j+k − ω0

ηρ
n
β,j−1




− λ

2
ρni,j+1

vmax
i ψ′(ξj+3/2)∆x

 M∑
β=1

+∞∑
k=1

(ωk−1
i − ωki )ρnβ,j+k+1 − ω0

i ρ
n
β,j+1




=
λ

2

(
α+ V n

i,j

)
∆n
i,j−1/2 + (1− λα) ∆n

i,j+1/2 +
λ

2

(
α− V n

i,j+2

)
∆n
i,j+3/2

+
λ

2
(ρni,j−1 − ρni,j+1)

(
V n
i,j − V n

i,j−1

)
+
λ

2
ρni,j+1

vmax
i ψ′(ξj−1/2)∆x

 M∑
β=1

+∞∑
k=0

(ωki − ωk+1
i )ρnβ,j+k − ω0

ηρ
n
β,j−1


± vmax

i ψ′(ξj+3/2)∆x

 M∑
β=1

+∞∑
k=0

(ωki − ωk+1
i )ρnβ,j+k − ω0

i ρ
n
β,j−1


−vmax

i ψ′(ξj+3/2)∆x

 M∑
β=1

+∞∑
k=1

(ωk−1
i − ωki )ρnβ,j+k+1 − ω0

i ρ
n
β,j+1



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=
λ

2

(
α+ V n

i,j

)
∆n
i,j−1/2 + (1− λα) ∆n

i,j+1/2 +
λ

2

(
α− V n

i,j+2

)
∆n
i,j+3/2

− λ

2

(
V n
i,j − V n

i,j−1

)(
∆n
i,j−1/2 + ∆n

i,j+1/2

)
+
λ

2
ρni,j+1

vmax
i ψ′′(ξj+1)(ξj−1/2 − ξj+3/2)∆x

 M∑
β=1

+∞∑
k=0

(ωki − ωk+1
i )ρnβ,j+k − ω0

ηρ
n
β,j−1


+ vmax

i ψ′(ξj+3/2)∆x

 M∑
β=1

+∞∑
k=0

(ωki − ωk+1
i )(ρnβ,j+k − ρnβ,j+k+2) −ω0

i (ρ
n
β,j−1 − ρnβ,j+1)

)]

=
λ

2

(
α+ V n

i,j−1

)
∆n
i,j−1/2 (3.5.16)

+

(
1− λα− λ

2

(
V n
i,j − V n

i,j−1

))
∆n
i,j+1/2 (3.5.17)

+
λ

2

(
α− V n

i,j+2

)
∆n
i,j+3/2 (3.5.18)

+
λ

2
ρni,j+1

vmax
i ψ′′(ξ̃j+1)(ξj−1/2 − ξj+3/2)∆x

+∞∑
k=0

ωki

M∑
β=1

∆n
β,j+k−1/2


+ vmax

i ψ′(ξj+3/2)∆x

+∞∑
k=0

(ωk+1
i − ωki )

M∑
β=1

(
∆n
β,j+k+1/2 + ∆n

β,j+k+3/2

)

+ω0
i

M∑
β=1

(
∆n
β,j−1/2 + ∆n

β,j+1/2

)
 .

where ξ̃j+1 ∈ I(ξj+1/2, ξj+3/2). For some ϑ, µ ∈ [0, 1], we compute

ξj−1/2 − ξj+3/2 = ϑ∆x
+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k + (1− ϑ)∆x
+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k−1

− µ∆x
+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k+2 − (1− µ)∆x
+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k+1

= ϑ∆x

+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k + (1− ϑ)∆x

+∞∑
k=−1

ωk+1
i

M∑
β=1

ρnβ,j+k

− µ∆x
+∞∑
k=2

ωk−2
i

M∑
β=1

ρnβ,j+k − (1− µ)∆x
+∞∑
k=1

ωk−1
i

M∑
β=1

ρnβ,j+k

= ∆x

+∞∑
k=2

[
ϑωki + (1− ϑ)ωk+1

i − µωk−2
i − (1− µ)ωk−1

i

] M∑
β=1

ρnβ,j+k

+ ϑ∆x

ω0
i

M∑
β=1

ρnβ,j + ω1
i

M∑
β=1

ρnβ,j+1


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+ (1− ϑ)∆x

ω0
i

M∑
β=1

ρnβ,j−1 + ω1
i

M∑
β=1

ρnβ,j + ω2
i

M∑
β=1

ρnβ,j+1


− (1− µ)∆x

ω0
i

M∑
β=1

ρnβ,j+1

 .

By monotonicity of ωη we have

ϑωki + (1− ϑ)ωk+1
i − µωk−2

i − (1− µ)ωk−1
i ≤ 0.

Taking the absolute values we get

∣∣∣ξj−1/2 − ξj+3/2

∣∣∣ ≤ ∆x


+∞∑
k=2

[
µωk−2

i + (1− µ)ωk−1
i − ϑωki − (1− ϑ)ωk+1

i

]
+ 3ωi(0)

M‖ρn‖∞

≤ ∆x


N−2∑
k=2

[
ωk−2
i − ωk+1

i

]
+ 3ωi(0)

M‖ρn‖∞

≤ ∆x 6ωi(0)M‖ρn‖∞.

Observe that assumption (3.5.4) guarantees the positivity of (3.5.16) and (3.5.18). Similarly,
(3.5.14) ensures the positivity of (3.5.17).

Until
∑

j

∣∣∣∆n
β,j

∣∣∣ ≤ K1 for β = 1, ...,M for some K1 ≥
∑

j

∣∣∣∆0
β,j

∣∣∣, taking the absolute
values and rearranging the indexes, we have∑

j

∣∣∣∆n+1
i,j+1/2

∣∣∣ ≤∑
j

∣∣∣∆n
i,j+1/2

∣∣∣ (1 +
λ

2

(
Vi,j−1 − Vi,j+1

))
+ ∆tDK1

where D = ‖ρ‖∞ vmax
M W0M

(
3MJ0‖ρ‖∞

∥∥ψ′′∥∥∞ + 2
∥∥ψ′∥∥∞) . Therefore, by (3.5.8) we get∑

j

∣∣∣∆n+1
i,j+1/2

∣∣∣ ≤∑
j

∣∣∣∆n
i,j+1/2

∣∣∣ (1 + ∆t C) + ∆tDK1

with C = vmax
M

∥∥ψ′∥∥∞W0M‖ρ‖∞. In this way we obtain∑
j

∣∣∣∆n+1
i,j+1/2

∣∣∣ ≤ eCn∆t
∑
j

∣∣∣∆0
i,j+1/2

∣∣∣+ eDK1n∆t − 1,

that we can rewrite as

TV(ρi,∆x)(n∆t, ·) ≤ eCn∆tTV(ρ0
i ) + eDK1n∆t − 1

≤ eDK1n∆t
(
TV(ρ0

i ) + 1
)
− 1, (3.5.19)

since D ≥ 2C and it is not restrictive to assume K1 ≥ 1
2 . Therefore we have that TV(ρi,∆x) ≤

K1 for

t ≤ 1

DK1
ln

(
K1 + 1

TV(ρ0
i ) + 1

)
,



3.5. Lax-Friedrichs numerical scheme 75

where the maximum is attained for some K1 ≤ e
(
TV(ρ0

i ) + 1
)
− 1 such that

ln

(
K1 + 1

TV (ρ0
i ) + 1

)
=

K1

K1 + 1
.

Therefore the total variation is uniformly bounded for

t ≤ 1

De
(
TV(ρ0

i ) + 1
) .

Iterating the procedure, at time tm, m ≥ 1 we set K1 = em
(
TV(ρ0

i ) + 1
)
− 1 and we get that

the solution is bounded by K1 until tm+1 such that

tm+1 ≤ tm +
m

Dem
(
TV(ρ0

i ) + 1
) . (3.5.20)

Therefore, the approximate solution satisfies the bound (3.5.19) for t ≤ T with

T ≤ 1

D
(
TV(ρ0

i ) + 1
) .

Corollary 11. Let ρ0
i ∈ BV(R; [0, 1]). If (2.3.3)-(2.3.4) holds, then the approximate solution

ρ∆x constructed by the algorithm (3.5.2)-(3.5.1) has uniformly bounded total variation on
[0, T ]× R, for any T satisfying (3.5.15).

Proof. Let us fix T ∈ R+ such that (3.5.15) and (3.5.7) hold. If T ≤ ∆t, then TV(ρi,∆x;R×
[0, T ]) ≤ TTV(ρi,0). Let us assume now that T ≥ ∆t. Let M ∈ N\{0} such that nT∆t < T ≤
(nT + 1)∆t. Then

TV(ρi,∆x;R× [0, T ]) (3.5.21)

=

nT−1∑
n=0

∑
j∈Z

∆t
∣∣∣ρni,j+1 − ρni,j

∣∣∣+ (T − nT∆t)
∑
j∈Z

∣∣∣ρnTi,j+1 − ρ
nT
i,j

∣∣∣︸ ︷︷ ︸
≤T supt∈[0,T ] TV(ρ∆x

i )(t,·)

+

nT−1∑
n=0

∑
j∈Z

∆x
∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣
(3.5.22)

The spatial BV estimate yields

nT−1∑
n=0

∑
j∈Z

∆t
∣∣∣ρni,j+1 − ρni,j

∣∣∣+ (T − nT∆t)
∑
j∈Z

∣∣∣ρnTi,j+1 − ρ
nT
i,j

∣∣∣ ≤ TeC1n∆t
(
TV(ρ0

i ) + 1
)
. (3.5.23)

We then need to bound the term

nT−1∑
n=0

∑
j∈Z

∆x
∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣. (3.5.24)
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Let us make use of the definition of the numerical scheme (3.5.2)-(3.5.1), we obtain

ρn+1
i,j − ρ

n
i,j

=
λ

2

(
α+ Vi,j+1

)
(ρi,j−1 − ρi,j)−

λ

2

(
α− Vi,j+1

)
(ρi,j − ρi,j+1)

+
λ

2
ρi,j−1

(
Vi,j−1 − Vi,j+1

)
.

If (2.3.4) holds, we can take the absolute value∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣
=
λ

2

(
α+ Vi,j+1

) ∣∣ρi,j−1 − ρi,j
∣∣− λ

2

(
α− Vi,j+1

) ∣∣ρi,j − ρi,j+1

∣∣
+
λ

2

∣∣ρi,j−1

∣∣∣∣Vi,j−1 − Vi,j+1

∣∣.
Summing on j and rearranging the indexes we get∑

j∈Z
∆x
∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣
=

∆t

2

∑
j∈Z

∣∣ρi,j+1 − ρi,j
∣∣ (2α+ Vi,j+2 − Vi,j+1

)
+

∆t

2

∑
j∈Z

∣∣ρi,j−1

∣∣ ∣∣Vi,j−1 − Vi,j+1

∣∣
=

∆t

2

∑
j∈Z

∣∣ρi,j+1 − ρi,j
∣∣ (2α+ vmax

M

∥∥ψ′∥∥∞∆xωη(0)M‖ρ‖∞
)

+ ∆t
∑
j∈Z

∣∣ρi,j−1

∣∣∆x vmax
M

∥∥ψ′∥∥∞W0M‖ρ‖∞

which yields
nT−1∑
n=0

∑
j∈Z

∆x
∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣
≤TeC1n∆t

(
TV(ρ0

i ) + 1
) (

α+
1

2
vmax
M

∥∥ψ′∥∥∞∆xW0M‖ρ‖∞
)

+ T sup
t∈[0,T ]

∥∥∥ρ∆x
i (t, ·)

∥∥∥
L1
vmax
M

∥∥ψ′∥∥∞W0M
∥∥∥ρ∆x

i (t, ·)
∥∥∥
∞
.

Proof of Theorem 7. Let us define

g(ρni,j , ..., ρ
n
i,j+N ) :=

1

2
ρni,jV

n
i,j +

1

2
ρni,j+1V

n
i,j+1 +

α

2

(
ρni,j − ρni,j+1

)
.

Fix i ∈ {1, ...,M}. Let ϕ ∈ C1
c([0, T ] × R) and multiply (3.5.1) by ϕ(tn, xj). Summing over

j ∈ Z and n ∈ {0, 1, ..., nT } we get
nT−1∑
n=0

∑
j

ϕ(tn, xj)
(
ρn+1
i,j − ρ

n
i,j

)
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= −λ
nT−1∑
n=0

∑
j

ϕ(tn, xj)
(
g(ρni,j , ..., ρ

n
i,j+N )− g(ρni,j−1, ..., ρ

n
i,j+N−1)

)
.

Summing by parts we obtain

−
∑
j

ϕ((nT − 1)∆t, xj)ρ
nT
i,j +

∑
j

ϕ(0, xj)ρ
0
i,j +

nT−1∑
n=1

∑
j

(
ϕ(tn, xj)− ϕ(tn−1, xj)

)
ρni,j

+ λ

nT−1∑
n=0

∑
j

(
ϕ(tn, xj+1)− ϕ(tn, xj)

)
g(ρni,j , ..., ρ

n
i,j+N ) = 0. (3.5.25)

Multiplying by ∆x

−∆x
∑
j

ϕ((nT − 1)∆t, xj)ρ
nT
i,j + ∆x

∑
j

ϕ(0, xj)ρ
0
i,j + ∆x∆t

nT−1∑
n=1

∑
j

(
ϕ(tn, xj)− ϕ(tn−1, xj)

)
∆t

ρni,j

(3.5.26)

+ ∆x∆t

nT−1∑
n=0

∑
j

(
ϕ(tn, xj+1)− ϕ(tn, xj)

)
∆x

g(ρni,j , ..., ρ
n
i,j+N ) = 0. (3.5.27)

By L1
loc convergence of ρi,∆x → ρi, it is straightforward to see that the first two terms in

(3.5.26) converge to∫
R

(ρ0
i (x)ϕ(0, x)− ρi(T, x)ϕ(T, x)) dx+

∫ T

0

∫
R
ρi(t, x)∂tϕ(t, x) dx dt (3.5.28)

as ∆x→ 0. Concerning the last term, we can observe that∣∣∣g(ρni,j , ..., ρ
n
i,j+N )− ρni,jV n

i,j

∣∣∣
≤ α

2

∣∣∣ρni,j+1 − ρni,j
∣∣∣+

1

2

∣∣∣∣(ρni,j+1 − ρni,j)V n
i,j+1 + ρni,j

(
V n
i,j+1 − V n

i,j

)∣∣∣∣
≤
α+ vmax

M ‖ψ‖∞
2

∣∣∣ρni,j+1 − ρni,j
∣∣∣+

1

2
W0∆xTV(ρi,∆x(tn, ·))vmaxM

∥∥ψ′∥∥∞
≤
α+ vmax

M ‖ψ‖∞
2

∣∣∣ρni,j+1 − ρni,j
∣∣∣+ J ∆x.

where J = 1
2v

max
M

∥∥ψ′∥∥∞W0TV(ρi,∆x(T, ·)). Therefore, the last term in (3.5.25) can be rewrit-
ten as

∆x∆t

nT−1∑
n=0

∑
j

ϕ(tn, xj+1)− ϕ(tn, xj)

∆x
g(ρni,j , ..., ρ

n
i,j+N )

=∆x∆t

nT−1∑
n=0

∑
j

ϕ(tn, xj+1)− ϕ(tn, xj)

∆x
ρni,jV

n
i,j

+ ∆x∆t

nT−1∑
n=0

∑
j

ϕ(tn, xj+1)− ϕ(tn, xj)

∆x
(g(ρni,j , ..., ρ

n
i,j+N )− ρnj V n

i,j).



78 Chapter 3. Non-local multi-class traffic flow models

By L1
loc convergence of ρi,∆x → ρi and boundedness of ωi, the first term in the above decom-

position converges to ∫ T

0

∫
R
ρi(t, x)v(r ∗ ωη)∂xϕ(t, x) dx dt.

Set R > 0 such that ϕ(t, x) = 0 for |x| > R and j0, j1 ∈ Z such that −R ∈]xj0−1/2, xj0+1/2[

and R ∈]xj1−1/2, xj1+1/2[, then

∆x∆t

nT−1∑
n=0

∑
j

ϕ(tn, xj+1)− ϕ(tn, xj)

∆x
(g(ρni,j , ..., ρ

n
i,j+N )− ρni,jV n

i,j)

≤ ∆x∆t‖∂xϕ‖∞
nT−1∑
n=0

j1∑
j=j0

(
α+ vmax

M ‖ψ‖∞
2

∣∣∣ρni,j+1 − ρni,j
∣∣∣+ J ∆x

)

=
α+ vmax

M ‖ψ‖∞
2

‖∂xϕ‖∞∆x∆t

nT−1∑
n=0

j1∑
j=j0

∣∣∣ρni,j+1 − ρni,j
∣∣∣+ ‖∂xϕ‖∞ J ∆x 2Rτ

≤
α+ vmax

M ‖ψ‖∞
2

‖∂xϕ‖∞TV(ρi,∆x(T, ·))∆x+ ‖∂xϕ‖∞ J ∆x 2Rτ

which goes to zero when ∆x → 0. Finally, again by the L1
loc convergence of ρ∆x

i → ρi, we
have that

∆x∆t

nT−1∑
n=0

∑
j

(
ϕ(tn, xj+1)− ϕ(tn, xj)

)
∆x

ρni,jV
n
i,j →

∫ T

0

∫
R
∂xϕ(t, x)ρi(t, x)vi(r ∗ ωi) dx dt.



Chapter 4

Numerical schemes for non-local
traffic flow models

This chapter contains the results obtained in [25, 24].
We consider the class of non-local systems of M conservation laws in one space dimension
[22], like in Chapter 3. We couple (3.1.1) with an initial datum (3.1.5). Due to the possible
presence of jump discontinuities, solutions to (3.1.1), (3.1.5) are intended in the weak sense
of Definition 3.
The computation of numerical solutions for (3.1.1) is challenging due to the dependence of
the flux function on convolution terms. In this chapter, we present a generalization of the
L-AR schemes introduced in [15, 16], and a high-order Finite-Volume WENO (FV-WENO)
scheme, in order to compute approximate solutions of the non-local multi-class model (3.1.1)
proposed in [22].The chapter is organized as follows. Section 4.1 presents the Lagrangian-
Antidiffusive Remap schemes. We recover some properties of the L-AR schemes in both scalar
and multi-class cases. In the scalar case, we obtain uniform L∞, BV estimates on the ap-
proximate solutions computed through the L-AR schemes in order to prove the existence of
weak solutions. In Section 4.2 we recall classical first-order schemes used to approximate the
solutions of the non-local problem (3.1.1) and we show a second-order version of a Godunov
type numerical scheme. In Section 4.3 we present some numerical simulations, analyzing the
L1-error of the approximate solutions of (3.1.1) computed with different schemes and consid-
ering smooth and discontinuous initial data. In Section 4.4, we describe the implementation of
the high-order FV-WENO scheme for the non-local system (3.1.1). Finally, in Section 4.5, we
provide a couple of numerical tests in the case of three populations (M = 3) and convergence
studies for third, fifth and seventh accuracy order.

4.1 Lagrangian-Antidiffusive Remap (L-AR) schemes

4.1.1 Discretization

First of all, we extend ωi(x) = 0 for x > ηi. For j ∈ Z and n ∈ N, let xj+1/2 = j∆x be
the cells interfaces, xj = (j − 1/2)∆x the cells centers and tn = n∆t the time mesh. In the
chapter, we will set λ = ∆t

∆x . We aim at constructing a finite volume approximate solution

ρ∆x =
(
ρ∆x

1 , . . . , ρ∆x
M

)
, with ρ∆x

i (t, x) = ρni,j for (t, x) ∈ Cnj = [tn, tn+1[×]xj−1/2, xj+1/2] and
i = 1, ...,M.

To this end, we approximate the initial datum ρ0
i for i = 1, ...,M with a piece-wise constant

function
ρ0
i,j =

1

∆x

∫ xj+1/2

xj−1/2

ρ0
i (x) dx, j ∈ Z. (4.1.1)
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Similarly, for the kernel, we set

ωki :=
1

∆x

∫ k∆x

(k−1) ∆x
ωi(x) dx, k ∈ N∗, (4.1.2)

so that ∆x
∑+∞

k=1 ω
k
i =

∫ ηi
0 ωi(x) dx = Ji (the sum is indeed finite since ωki = 0 for k ≥ Ni

sufficiently large). Moreover, we set rnj+k =
M∑
i=1

ρni,j+k for k ∈ N and

V n
i,j+1/2 := vmax

i ψ

∆x
+∞∑
k=1

ωki r
n
j+k

 , i = 1, . . . ,M, j ∈ Z. (4.1.3)

We formally rewrite (3.1.1) as

∂tρi + ρi∂x(vi(r ∗ ωi)) + vi(r ∗ ωi)∂xρi = 0, i = 1, . . . ,M. (4.1.4)

L-AR schemes are obtained splitting (4.1.4) into two different equations, which are solved
successively for each time iteration. To advance the solution from time t to t + ∆t, we first
apply a Lagrangian method [50] to solve

∂tρi + ρi∂x(vi(r ∗ ωi)) = 0, (4.1.5)

and we use this solution, evolved over a time interval of length ∆t, as initial condition for
solving in a second step the transport equation [12]

∂tρi + vi(r ∗ ωi)∂xρi = 0, (4.1.6)

whose solution, again evolved over a time interval of length ∆t, provides the sought approxi-
mate solution of (3.1.1) valid for t+ ∆t.

4.1.2 Discretization of the Lagrangian step.

We observe that, defining τi := 1/ρi, one obtains from (4.1.5) the conservation mass equation
in Lagrangian coordinates

ρi∂tτi − ∂x(vi(r ∗ ωi)) = 0. (4.1.7)

In other words, solving (4.1.5), or equivalently (4.1.7), means solving the original equation
(3.1.1) on a moving referential mesh with velocity vi. Assume now that {ρni,j}j∈Z, i = 1, . . . ,M

is an approximate solution of (3.1.1) in the sense of finite volume methods (4.1.1)-(4.1.3) at
time t = tn, then a numerical solution {ρn+1,−

i,j }j∈Z of the equation (4.1.7) at time ∆t can be
naturally computed by

ρn+1,−
i,j [∆x+ (V n

i,j+1/2 − V
n
i,j−1/2)∆t] = ∆xρni,j , i = 1, . . . ,M, j ∈ Z, (4.1.8)

since (4.1.8) expresses that the initial mass in the cell [xj−1/2, xj+1/2] at time tn equals the
mass in the modified cell [x̄j−1/2, x̄j+1/2] at time ∆t, where x̄j+1/2 = xj+1/2 + V n

i,j+1/2∆t are
the new interface positions for all j. We have the following properties.
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Lemma 11. Assume that the time step satisfies the following condition:

∆t ≤
(
vmax
M

∥∥ψ′∥∥∞‖rn‖∞W0

)−1
. (4.1.9)

If {ρn+1,−
j }j∈Z denotes the numerical solution computed by the scheme (4.1.8), then the fol-

lowing bounds hold:

(i) If ρni,j ≥ 0 for all j ∈ Z, then ρn+1,−
i,j ≥ 0 for all j ∈ Z.

(ii) In the scalar case M = 1, the following maximum property holds:

min{ρnj , ..., ρnj+N} ≤ ρ
n+1,−
j ≤ max{ρnj , ..., ρnj+N} ∀j ∈ Z. (4.1.10)

Proof. (i) Suppose that ρni,j ≥ 0 for all j ∈ Z and i = 1, ...,M. From (4.1.8) we have

ρn+1,−
i,j =

ρni,j

1 + λ
(
V n
i,j+1/2 − V

n
i,j−1/2

) . (4.1.11)

If V n
i,j+1/2 ≥ V n

i,j−1/2 then it is clear that ρn+1,−
i,j ≥ 0. Consider now the case V n

i,j+1/2 ≤
V n
i,j−1/2. We can compute

V n
i,j−1/2 − V

n
i,j+1/2 = −vmax

i ψ′(ξi,j)∆x

+∞∑
k=1

ωki r
n
j+k −

+∞∑
k=1

ωki r
n
j+k−1


≤ −vmax

i ψ′(ξi,j)∆x

+∞∑
k=1

(ωki − ωk+1
i )rnj+k − ω1

i r
n
j


≤ vmax

i ∆xW0

∥∥ψ′∥∥∞‖rn‖∞,
for some ξi,j ∈ I

(
∆x
∑+∞

k=1 ω
k
i r
n
j+k−1,∆x

∑+∞
k=1 ω

k
i r
n
j+k

)
, where we have set I(a, b) =[

min{a, b},max{a, b}
]
. Therefore ρn+1,− ≥ 0 under (4.1.9).

(ii) Assume M = 1 and set V n
j+1/2 := V n

1,j+1/2, ω
k := ωk1 and vmax := vmax

1 . Let us
prove the upper bound, the lower one resulting from a symmetric procedure. Define
ρ̄j = max{ρnj , ..., ρnj+N}. Consider first the case V n

j+1/2 ≥ V
n
j−1/2. Then it is clear that

ρn+1,−
j =

ρnj

1 + λ
(
V n
j+1/2 − V

n
j−1/2

) ≤ ρ̄j ,
Consider now the case V n

j+1/2 ≤ V
n
j−1/2. We note that

ρnj

1 + λ
(
V n
j+1/2 − V

n
j−1/2

) ≤ ρ̄j ⇐⇒ ρ̄j − ρnj + λρ̄j

(
V n
j+1/2 − V

n
j−1/2

)
≥ 0.

According with (i), we have the estimation

V n
j−1/2 − V

n
j+1/2 = −vmaxψ′(ξj)∆x

+∞∑
k=1

(
ωk − ωk+1

)
ρnj+k − ω1ρnj


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≤ vmax
∥∥ψ′∥∥∞∆x

(
ω1ρ̄j − ω1ρj

)
≤ vmax

∥∥ψ′∥∥∞∆x
(
ρ̄j − ρj

)
W0

Finally we obtain that

ρ̄j − ρnj − λρ̄j
(
V n
j−1/2 − V

n
j+1/2

)
≥ (ρ̄j − ρnj )

(
1−∆tvmaxρ̄j

∥∥ψ′∥∥∞W0

)
≥ 0

holds if ∆t ≤
(
vmax

∥∥ψ′∥∥∞‖ρn‖∞W0

)−1
.

Remark 6. Due to the lack of uniform L∞ estimates on approximate solutions [22], the time
step should in principle be recomputed at each iteration to comply with (4.1.9). In practice,
since the computed solutions stay uniformly bounded in time, it is possible to choose a fixed
time step, as we did in Section 4.3. Moreover, we remark that, in the particular case M = 1,
the maximum principle (4.1.10) guarantees that ‖ρn‖∞ ≤

∥∥ρ0
∥∥
∞ for all n ∈ N∗.

4.1.3 Remap Step: Antidiffusive scheme

After the Lagrangian step, the new value ρn+1,−
i,j represents approximate values of the density

of the i-th class on a moved mesh with new cells [x̄j−1/2, x̄j+1/2] for all j. To avoid dealing
with moving meshes, a so-called remap step is necessary to define the new approximations
ρn+1
j on the uniform mesh with cells [xj−1/2, xj+1/2]. This averaging step can equivalently be

reformulated by using the solution of the transport equation (4.1.6) with initial data defined
by ρn+1,−

i,j on each cell [xj−1/2, xj+1/2], i.e. we consider a numerical scheme in the form

ρn+1
i,j = ρn+1,−

i,j − V̄ n
i,jλ

(
ρn+1,−
i,j+1/2 − ρ

n+1,−
i,j−1/2

)
, i = 1, . . . ,M j ∈ Z. (4.1.12)

Here, V̄ n
i,j is a velocity value, defined in terms of available density, which will be chosen in such

a way that the complete scheme (4.1.5) plus (4.1.12) is conservative with respect to (3.1.1).
The quantities ρn+1,−

i,j+1/2 are numerical fluxes associated with the cell interfaces xj+ 1
2
and will

be chosen such that the scheme (4.1.12) has certain stability and consistency properties. In
particular, the choice ρn+1,−

i,j+1/2 = ρn+1,−
i,j for all j ∈ Z produces a diffusive and stable scheme,

while ρn+1,−
i,j+1/2 = ρn+1,−

i,j+1 yields an antidiffusive but unstable scheme. For this reason, we

proceed as in [12, 41] and we choose ρn+1,−
i,j+1/2 as close to the anti-diffusive value ρn+1,−

i,j+1 as
possible, subject to the following consistency condition

mi,j+1/2 := min{ρn+1,−
i,j , ρn+1,−

i,j+1 } ≤ ρ
n+1,−
i,j+1/2 ≤Mi,j+1/2 := max{ρn+1,−

i,j , ρn+1,−
i,j+1 }, (4.1.13)

and maximum principle
mi,j+1/2 ≤ ρn+1

i,j ≤Mi,j+1/2, (4.1.14)

which resume the properties of the scheme defined by (4.1.12).
Let us now define

b+i,j := Mi,j+1/2 +
ρn+1,−
i,j −Mi,j+1/2

max{vni,j−1/2, v
n
i,j+1/2}λ

, B+
i,j : mi,j+1/2 +

ρn+1,−
i,j −mi,j+1/2

max{vni,j−1/2, v
n
i,j+1/2}λ
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and
ai,j+1/2 := max{b+i,j ,mi,j+1/2}, Ai,j+1/2 := max{B+

i,j ,Mi,j+1/2}.

In the next lemma, which is a slight modification of Lemma 4.1 in [15], we summarize the
existence and properties of the scheme defined by (4.1.12).

Lemma 12. Assume that the following CFL condition holds

∆t ≤ ∆x

vmax
M ‖ψ‖∞

. (4.1.15)

Then ai,j+1/2 ≤ ρ
n+1,−
i,j ≤ Ai,j+1/2 for all j ∈ Z, and for any numerical flux that satisfies

ρn+1,−
i,j+1/2 ∈ [ai,j+1/2, Ai,j+1/2], for all j ∈ Z, (4.1.16)

the scheme (4.1.12) is L∞-stable, that is

ρn+1
i,j ∈ I(ρn+1,−

i,j , ρn+1,−
i,j+1 ), for all j ∈ Z, (4.1.17)

and TVD, i.e., ∑
j∈Z

∣∣∣ρn+1,−
i,j+1 − ρ

n+1,−
i,j

∣∣∣ ≤∑
j∈Z

∣∣∣ρni,j+1 − ρni,j
∣∣∣. (4.1.18)

In particular, for each j ∈ Z, there exist numbers αi,j ∈ [0, 1] such that

ρn+1,−
i,j = αi,jρ

n+1,−
i,j−1/2 + (1− αi,j)ρn+1,−

i,j+1/2. (4.1.19)

4.1.4 Choice of numerical flux

In this subsection, we explain how to compute ρn+1,−
i,j+1/2 for the scalar caseM = 1, the procedure

can be applied component-wise in the multi-class case M > 1. We here proceed as in [15] and
consider the so-called U-Bee method proposed in [41] for linear transport equation, which is
defined by

ρn+1,−
j+1/2 := ρn+1,−

j +
1− λ̄j

2
ϕj(ρ

n+1,−
j+1 − ρn+1,−

j ), (4.1.20)

where λ̄j = λmax{V n
j−1/2, V

n
j+1/2}, ϕj := ϕ(Rj , λ̄j), with Rj :=

ρn+1,−
j −ρn+1,−

j−1

ρn+1,−
j+1 −ρn+1,−

j

and

ϕ(R, λ̄) := ϕUB(R, λ̄) = max

{
0,min

{
2

1− λ
,
2R

λ

}}
. (4.1.21)

Similarly, the so-called N-Bee method described, in [12], corresponds to a second-order scheme
in space and it is more diffusive that the U-Bee scheme. It is defined as in (4.1.20) with

ϕ(R, λ̄) := ϕNB(R, λ̄) := max

{
0,min

{
1,

2R

λ

}
,min

{
R,

2

1− λ̄

}}
. (4.1.22)

It is proved in [12] that the numerical flux (4.1.20) for U-Bee and N-Bee methods satisfies the
assumptions of Lemma 12.
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4.1.5 Lagrangian-Antidiffusive Remap scheme

Assume that ρn =
(
ρn1 , . . . , ρ

n
M

)
approximates the solution of (3.1.1) at time t = tn and

we wish to advance this solution to tn+1 = tn + ∆t. To this end, two steps are performed
successively:

1. Lagrangian step. Consider that ρn are initial data for (4.1.5). First, we define the
intermediate velocities vni,j+1/2 by using (4.1.3), then we compute the numerical solution
ρn+1,−
i,j of equation (4.1.5) after an evolution over a time interval of length ∆t, using

scheme (4.1.8).

2. Antidiffusive remap step. Solve (4.1.6) with initial data ρn+1,−
i,j using an antidiffusive

scheme (4.1.12) for a specific choice of V̄ n
i,j , obtaining a numerical solution ρn+1 which

approximates the solution of (3.1.1) a time tn+1.

In the next theorem, the choice of V̄ n
i,j is motivated by the existence of a classical conser-

vative update formula for the whole L-AR scheme (4.1.5) plus (4.1.12).

Theorem 12. Under the stability conditions (4.1.9) and (4.1.15), there exists a definition of
V̄ n
i,j ∈ I(vni,j−1/2, v

n
i,j+1/2) such that the complete Lagrangian-Antidiffusive remap scheme can

be written in the conservative form

ρn+1
i,j = ρni,j − λ

(
ρn+1,−
i,j+1/2V

n
i,j+1/2 − ρ

n+1,−
i,j−1/2V

n
i,j−1/2

)
, j ∈ Z. (4.1.23)

Proof. Let {ρn+1,−
i,j }j∈Z, be a solution of (4.1.5) obtained by scheme (4.1.8). Using this solution

we solve (4.1.6) by the scheme (4.1.12), where the value V̄ n
i,j still needs to be determined in

such a way that the resulting scheme is conservative. Replacing ρn+1,−
i,j in (4.1.12) we obtain

ρn+1
i,j = ρni,j − λ

(
V n
i,j+1/2 − V

n
i,j−1/2

)
ρn+1,−
i,j − V̄ n

i,jλ
(
ρn+1,−
i,j+1/2 − ρ

n+1,−
i,j−1/2

)
. (4.1.24)

As ρn+1,−
i,j+1/2 satisfies the assumptions of Lemma 12, there exist αi,j ∈ [0, 1] satisfying (4.1.19).

Setting V̄ n
i,j := αi,jV

n
i,j−1/2 + (1− αi,j)V n

i,j+1/2 in (4.1.24), we obtain (4.1.23).

Note that in the scheme (4.1.23), the numerical flux Fni,j+1/2 := ρn+1,−
i,j+1/2V

n
i,j+1/2 is consistent

with the flux fi(ρ) = ρiv(r ∗ ωi) due to (4.1.13). As a consequence of Lemmas 11 and 12, we
have the following property.

Lemma 13. (Positivity) For any T > 0, under the stability conditions (4.1.9) and (4.1.15),
the scheme (4.1.23) is positivity preserving on [0, T ]× R.

Moreover, in the scalar case, we have the following estimates.

Lemma 14 (L∞ estimate, case M = 1). Under conditions (4.1.15) and (4.1.9), and as a
consequence of (4.1.10) and (4.1.17), we have

ρn+1
j ∈ I(ρnj−1, ρ

n
j+1) for all j ∈ Z.
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Lemma 15 (BV estimates, case M = 1). Assume (4.1.15) and

∆t ≤ 1

vmax‖ψ′‖∞
∥∥ρ0
∥∥
∞W0

. (4.1.25)

Let ρ∆x be constructed using (4.1.23). Then for every T > 0 the following discrete space BV
estimate holds

TV(ρ∆x(T, ·)) ≤ ev
maxW0‖ρ0‖∞

(
3‖ψ′‖∞+5‖ψ′′‖∞‖ρ0‖∞J1

)
TTV(ρ0).

Proof. Setting v(ξ) := vmaxψ(ξ), from (4.1.8) we recover

ρn+1,−
j+1 − ρn+1,−

j = ρnj+1 − ρnj − λρ
n+1,−
j+1

(
V n
j+3/2 − V

n
j+1/2

)
+ λρn+1,−

j

(
V n
j+1/2 − V

n
j−1/2

)
.

We have

− λρn+1,−
j+1

(
V n
j+3/2 − V

n
j+1/2

)
+ λρn+1,−

j

(
V n
j+1/2 − V

n
j−1/2

)
(4.1.26a)

=− λρn+1,−
j+1 v′(ξj+1)∆x

+∞∑
k=1

ωk
(
ρnj+k+1 − ρnj+k

)
+ λρn+1,−

j v′(ξj)∆x

+∞∑
k=1

ωk
(
ρnj+k − ρnj+k−1

)
(4.1.26b)

=−∆t
[
ρn+1,−
j+1 − ρn+1,−

j

]
v′(ξj+1)

+∞∑
k=1

ωk
(
ρnj+k+1 − ρnj+k

)
(4.1.26c)

−∆tρn+1,−
j

[
v′(ξj+1)− v′(ξj)

] +∞∑
k=1

ωk
(
ρnj+k+1 − ρnj+k

)
(4.1.26d)

−∆tρn+1,−
j v′(ξj)

+∞∑
k=1

ωk(ρnj+k+1 − ρnj+k)−
+∞∑
k=1

ωk(ρnj+k − ρnj+k−1)

 (4.1.26e)

=−∆t
[
ρn+1,−
j+1 − ρn+1,−

j

]
v′(ξj+1)

+∞∑
k=1

ωk
(
ρnj+k+1 − ρnj+k

)
(4.1.26f)

−∆tρn+1,−
j

[
v′(ξj+1)− v′(ξj)

] +∞∑
k=1

ωk
(
ρnj+k+1 − ρnj+k

)
(4.1.26g)

−∆tρn+1,−
j v′(ξj)

+∞∑
k=1

ωk(ρnj+k+1 − ρnj+k)−
+∞∑
k=1

ωk(ρnj+k − ρnj+k−1)

 (4.1.26h)

This implies1 + ∆t v′(ξj+1)
+∞∑
k=1

ωk
(
ρnj+k+1 − ρnj+k

)(ρn+1,−
j+1 − ρn+1,−

j

)
(4.1.27a)

= ρnj+1 − ρnj (4.1.27b)

−∆tρn+1,−
j

[
v′(ξj+1)− v′(ξj)

] +∞∑
k=1

ωk
(
ρnj+k+1 − ρnj+k

)
(4.1.27c)
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−∆tρn+1,−
j v′(ξj)

+∞∑
k=1

ωk(ρnj+k+1 − ρnj+k)−
+∞∑
k=1

ωk(ρnj+k − ρnj+k−1)

 (4.1.27d)

(4.1.27e)

Observe that

1 + ∆t v′(ξj+1)
+∞∑
k=1

ωk
(
ρnj+k+1 − ρnj+k

)
≥ 1−∆t

∥∥v′∥∥∞∥∥∥ρ0
∥∥∥
∞
W0

which is positive if ∆t ≤
(∥∥v′∥∥∞∥∥ρ0

∥∥
∞W0

)−1
. Moreover, we have that

v′(ξj+1)− v′(ξj) = v′′(ζj+1/2)(ξj+1 − ξj),

with ζj+1/2 ∈ I
(
ξj , ξj+1

)
. We can compute

ξj+1 − ξj = ϑ∆x
+∞∑
k=1

ωkρnj+k+1 + (1− ϑ)∆x
+∞∑
k=1

ωkρnj+k

− µ∆x

+∞∑
k=1

ωkρnj+k − (1− µ)∆x

+∞∑
k=1

ωkρnj+k−1

=ϑ∆x
+∞∑
k=2

ωk−1ρnj+k + (1− ϑ)∆x
+∞∑
k=1

ωkρnj+k

− µ∆x
+∞∑
k=1

ωkρnj+k + (1− µ)∆x
+∞∑
k=0

ωk+1ρnj+k

=∆x

+∞∑
k=2

[
ϑωk−1 + (1− ϑ)ωk − µωk − (1− µ)ωk+1

]
ρnj+k

+ ∆x
[
(1− ϑ)ω1ρnj+1 − µω1ρnj+1 − (1− µ)ω1ρnj − (1− µ)ω2ρnj+1

]
.

By monotonicity of ω we have

ϑωk−1 + (1− ϑ)ωk − µωk − (1− µ)ωk+1 ≥ 0.

Taking the absolute values we get

∣∣ξj+1 − ξj
∣∣ ≤ ∆x

∥∥∥ρ0
∥∥∥
∞


+∞∑
k=2

[
ϑωk−1 + (1− ϑ)ωk − µωk − (1− µ)ωk+1

]
+ 3ω1


= ∆x

∥∥∥ρ0
∥∥∥
∞

{
ϑω1 + (1− µ)ω2 + 3ω1

}
≤ ∆x 5

∥∥∥ρ0
∥∥∥
∞
W0.

Taking the absolute values in (4.1.27) we get
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(
1−∆t

∥∥v′∥∥∞∥∥∥ρ0
∥∥∥
∞
W0

)∑
j

∣∣∣ρn+1,−
j+1 − ρn+1,−

j

∣∣∣
≤

1 +


 ∞∑
k=1

ρn+1,−
j−k

∣∣v′(ξj+1−k)− v′(ξj−k)
∣∣ωk − ρn+1,−

j−k v′(ξj)(ω
k − ωk+1)



−ρn+1,−
j v′(ξj)ω

1

∆t

∑
j

∣∣∣ρnj+1 − ρnj
∣∣∣

≤

1 + 5∆t
∥∥∥ρ0
∥∥∥2

∞
W0

∥∥v′′∥∥∆x
∞∑
k=1

ωk + 2 ∆tW0

∥∥∥ρ0
∥∥∥
∞

∥∥v′∥∥∞
∑

j

∣∣∣ρnj+1 − ρnj
∣∣∣

≤

[
1 + ∆t

∥∥∥ρ0
∥∥∥
∞
W0

(
2
∥∥v′∥∥∞ + 5

∥∥v′′∥∥∞∥∥∥ρ0
∥∥∥
∞
J1

)]∑
j

∣∣∣ρnj+1 − ρnj
∣∣∣,

which, together with the TVD property of the remap step [12, 15], implies

TV(ρ∆x(T, ·)) ≤

1 + ∆t
∥∥ρ0
∥∥
∞W0

(
2
∥∥v′∥∥∞ + 5

∥∥v′′∥∥∞∥∥ρ0
∥∥
∞J1

)
1−∆t ‖v′‖∞

∥∥ρ0
∥∥
∞W0


T
∆t

TV(ρ∆x(0, ·))

≤ e‖ρ
0‖∞W0

(
3‖v′‖∞+5‖v′′‖∞‖ρ0‖∞J1

)
TTV(ρ0).

Next Theorem follows from Theorem 12 and Lemmas 13, 14 and 15.

Theorem 13 (Convergence to weak solutions, case M = 1). Let us consider the Cauchy
problem (3.1.1)-(3.1.5) with M = 1, ρ0(x) ∈ BV(R; [0, 1]), under the assumptions (H1) -
(H3). If (4.1.15) and (4.1.9) hold, then the approximate solution ρ∆x constructed by the
scheme (4.1.23) converges to a weak solution of (3.1.1)- (3.1.5).

Proof. Under conditions (4.1.15) and (4.1.9), the approximate solutions ρ∆x constructed by
the numerical scheme (4.1.23) are uniformly bounded and uniformly bounded total variation.
The result follows by standard application of Helly’s Theorem.

4.2 Two simple schemes for the non-local multi-class traffic flow
model

In Section 4.3, we consider the following conservative schemes for the multi-class model (3.1.1)
in the form

ρn+1
i,j = ρni,j − λ

(
Fni,j+1/2 − F

n
i,j−1/2

)
, i = 1, ...,M. (4.2.1)
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First, we consider the Godunov-type scheme , which was introduced in [46] in the scalar case
and then extended to (3.1.1) in [22] (see chapter 3), with numerical flux

Fni,j+1/2 := ρni,jV
n
i,j+1/2. (4.2.2)

We recall that for scheme (4.2.1)-(4.2.2) the positivity is guaranteed if

λ ≤ 1

vmax
M ‖ψ‖∞

.

We consider also the approximate solutions constructed via the following adapted Lax-
Friedrichs flux, that was used [11, 21] in the scalar case and in [22] for system (3.1.1) (see
chapters 1 and 3):

Fni,j+1/2 :=
1

2

(
ρni,jV

n
i,j−1/2 + ρni,j+1V

n
i,j−3/2

)
+
α

2

(
ρni,j − ρni,j+1

)
, (4.2.3)

where α ≥ vmax
M ‖ψ‖∞ is the viscosity coefficient and λα ≤ 1 the CFL condition.

4.2.1 A second-order Godunov scheme

Schemes (4.2.1)-(4.2.2) and (4.2.1)-(4.2.3) being only first-order accurate, we propose here
a second-order accuracy scheme, constructed using MUSCL-type variable extrapolation and
Runge-Kutta temporal differencing. To implement it, we approximate ρi(x, tn) by a piecewise
linear functions in each cell, i.e. ρ̂i,j(x, t

n) = ρni,j + σni,j(x − xj), where the slopes σni,j are
calculated via the generalized minmod limiter, i.e.

σni,j =
1

∆x
minmod(ϑ(ρni,j − ρni,j−1),

1

2
(ρni,j+1 − ρni,j−1), ϑ(ρni,j+1 − ρni,j)),

where ϑ ∈ [1, 2] and

minmod(a, b, c) :=

sgn(a) min{|a|, |b|, |c|} if sgn(c) = sgn(b) = sgn(a)

0 otherwise.

This extrapolation enables one to define left and right values at the cell interfaces respectively
by

ρLi,j+1/2, := ρ̂i,j(xj + ∆x/2, tn) = ρni,j + σni,j∆x/2,

ρRi,j−1/2, := ρ̂i,j(xj −∆x/2, tn) = ρni,j − σni,j∆x/2.

In order to define the corresponding velocity approximations, we set

r̂nj+k =
M∑
i=1

ρ̂ni,j+k = rnj+k + Θn
j+k(x− xj+k),

where Θn
j+k :=

M∑
i=1

σni,j+k, and

V̂ n
i,j+1/2 := vi((r̂ ∗ wi)(tn, xj+1/2)) = vmax

i ψ

∆x
+∞∑
k=1

ωki r
n
j+k + ∆x

+∞∑
k=1

ω̃ki,jΘ
n
j+k

 (4.2.4)
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for i = 1, . . . ,M , j ∈ Z, where ω̃ki,j := 1
∆x

∫ ∆x/2
−∆x/2 yωi(y + (k − 1/2)∆x) dy . The MUSCL

version of the i-th flux component thus reads

fni,j+1/2 := ρLi,j+1/2V̂
n
i,j+1/2.

To achieve formal second-order accuracy also in time, we use second-order Runge-Kutta (RK)
time stepping. More precisely, if we write our scheme with first-order Euler time difference
and second-order spatial difference formally as

ρn+1
j = ρnj − λLj(ρn) := ρnj − λ

(
Fnj+1/2 − Fnj−1/2

)
, (4.2.5)

then the RK version takes the following two-step formρ
(1)
j = ρnj − λLj(ρn)

ρn+1
j = 1

2(ρnj + ρ
(1)
j )− λ

2Lj(ρ
(1)
j )

(4.2.6)

Lemma 16. For any T > 0, under the CFL condition

∆t ≤ ∆x

2vmax
M ‖ψ‖∞

, (4.2.7)

the scheme (4.2.6) is positivity preserving on R× [0, T ].

Proof. Let us assume that ρni,j ≥ 0 for j ∈ Z and i = 1, . . . ,M . The positivity of the
reconstructed values ρLi,j+1/2 and ρLi,j+1/2 is guaranteed by the positivity preserving property
of the chosen limiter [73, 74]. It suffices to prove that ρn+1

i,j ≥ 0 in (4.2.5). Due to ρni,j =
1
2(ρRi,j−1/2 + ρLi,j+1/2), the i-th term in (4.2.5) can be written in the form

ρn+1
i,j =

1

2
ρRi,j−1/2 +

(
1

2
− λV̂ n

i,j+1/2

)
ρLi,j+1/2 + λρLi,j−1/2V̂

n
i,j−1/2 ≥ 0,

under the CFL condition (4.2.7).

4.3 Numerical results

In the following numerical tests, we solve (3.1.1) numerically in the intervals x ∈ [−1, 1] and
t ∈ [0, T ], for values of T specified later. We propose several test cases in order to illustrate the
behaviour of the Lagrangian-Antidiffusive remap (L-AR) scheme in comparison with first-order
Lax-Friedrichs and Godunov (4.2.2) schemes and the second-order Godunov scheme (4.2.6).
For each integration, we set ∆t to satisfy the most restrictive CFL condition (4.2.7).

Since we cannot compute the exact solution explicitly, we use the second-order Godunov
scheme with a refined mesh to obtain a reference solution. The L1-error for the cell average
is given by

L1(∆x) =

M∑
i=1

 1

N

N∑
j=1

|ρi,j − ρ
ref
i,j |

 ,

where ρi,j and ρrefi,j are the cell averages of the numerical approximation and the reference
solution respectively. The Experimental Order of Accuracy (E.O.A.) is naturally defined by

γ(∆x) = log2

(
L1(∆x)/L1(∆x/2)

)
.
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Figure 4.1: Test 1: Comparison of the numerical solutions at T = 0.1 corresponding to
the initial condition (4.3.1), computed with 1/∆x = 80 and different kernel functions. (a)
ω(x) = 1/η, (b) ω(x) = 2(η − x)/η2, (c) ω(x) = 3(η2 − x2)/(2η3).

4.3.1 Test 1, scalar case

We consider the problem (3.1.1) for M = 1, with initial datum

ρ0(x) =

1, if 1/3 ≤ x ≤ 2/3

0, otherwise,
(4.3.1)

for x ∈ [0, 1], with absorbing boundary conditions, and different non-increasing kernel func-
tions with η = 0.1. In Figure 4.1, we display the numerical approximations obtained with
the schemes presented in the previous sections, computed with 1/∆x = 80 at T = 0.1.
Fig. 4.1a show the result for ω(x) = 1/η, Fig. 4.1b for ω(x) = 2(η − x)/η2 and Fig. 4.1c
for ω(x) = 3(η2 − x2)/(2η3). The reference solution is computed with 1/∆x = 10240. The
numerical solutions obtained with L-UBee and L-NBee approximate adequately shocks and
rarefaction waves according to the theoretical results of Theorem 13. In particular, concerning
the shock waves, L-AR schemes capture the reference solution better than the second-order
Godunov scheme, whereas the solutions computed with Lax-Friedrichs and Godunov schemes
are more diffusive. In the presence of rarefaction waves, L-UBee scheme produces “staircaising”
due to the particular choice of the antidiffusive scheme. We can observe the same “staircaising”
phenomena also for the linear advection and other equations [12, 15].

Table 4.1 shows the approximate L1-errors and the numerical orders of accuracy γ(∆x)

for the different schemes. We computed numerical approximations with 1/∆x = 40 × 2q for
q = 1, 2, ..., 5. Clearly, the error of the L-AR schemes decreases when the mesh is refined and
we observe that for each level of refinement, the L1-error of the L-AR schemes is smaller
than the respective errors of Lax-Friedrichs and Godunov schemes. In conclusion, when the
solution presents discontinuities, we can compare the performances of the L-AR schemes with
those of a second-order scheme.

Now, in order to determine the correct order of accuracy of the L-AR schemes, we consider
a smooth initial datum

ρ0(x) = 0.5 + 0.4 sin(πx) (4.3.2)

for x ∈ [−1, 1], with periodic boundary conditions and compute the numerical approximation
at T = 0.15 for different kernel functions with η = 0.1. The reference solution is computed
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Scheme ω(x) = 1/η ω(x) = 2(η − x)/η2 ω(x) = 3(η2 − x2)/(2η3)

1/∆x L1− error EOA L1− error EOA L1− error EOA
Godunov 80 1.81e-02 – 1.62e-02 – 1.64e-02 –

160 1.12e-02 6.98e-01 7.73e-0.3 1.06 8.72e-03 9.11e-01
320 7.85e-03 5.10e-01 6.15e-03 3.29e-01 6.53e-03 4.19e-01
640 5.33e-03 5.58e-01 3.43e-03 8.43e-01 4.01e-03 7.04e-01
1280 3.62e-03 5.58e-01 2.51e-0.3 4.50e-01 2.76e-03 5.39e-01

Lax-F 80 3.48e-02 – 2.89e-02 – 2.94e-02 –
160 2.50e-02 4.81e-01 1.72e-02 7.50e-01 1.91e-02 6.23e-01
320 1.86e-02 4.24e-01 1.35 e-02 3.46e-01 1.48e-02 3.67e-01
640 1.29e-02 5.28e-01 8.94e-03 5.7e-01 1.02e-02 5.38e-01
1280 8.72e-03 5.64e-01 6.670e-03 4.23e-01 7.30e-03 4.70e-01

L-NBee 80 9.30e-03 – 8.93e-03 – 9.24e-03 –
160 4.29e-03 1.11 4.78e-03 9.01e-01 4.50e-03 1.03e-01
320 2.51e-03 7.47e-01 2.52e-03 9.27e-01 2.37e-03 9.25e-01
640 1.58e-03 1.11 1.15e-03 1.13 1.08e-03 1.13
1280 6.57e-04 8.17e-01 6.46e-04 8.31e-01 6.19e-04 8.05e-01

L-UBee 80 1.00e-02 – 8.90e-03 – 9.09e-03 –
160 4.58e-03 1.13 4.40e-03 1.02 4.82e-03 9.16e-01
320 2.7e-03 7.62e-01 2.87e-03 6.61e-01 2.62e-03 8.80e-01
640 1.15e-03 1.23 1.38e-03 1.05 1.37e-03 9.30e-01
1280 9.48e-04 2.76e-01 9.69e-04 5.13e-01 9.00e-04 6.11e-01

Godunov2 80 1.20e-02 – 1.08e-02 – 1.01e-02 –
160 6.54e-03 8.70e-01 5.5e-03 9.71e-01 5.96e-03 8.86e-01
320 3.82e-03 7.73e-01 3.35e-03 7.17e-01 3.51e-03 7.64e-01
640 2.29e-03 7.42e-01 1.76e-03 9.25e-01 1.94e-03 8.53e-01
1280 1.23e-03 8.89e-01 1.02e-03 7.87e-01 1.08e-03 8.42e-01

Table 4.1: Test 1. Approximate L1-error and E.O.A. for different numerical schemes and with
different kernel functions and η = 0.1 corresponding to the initial condition (4.3.1).

with 1/∆x = 10240. In Table 4.2 and Figure 4.3 we compute the L1-error and E.O.A. γ(∆x).

We recover the correct order of accuracy for the second-order Godunov scheme. Instead, we
obtain just first-order accuracy for L-AR schemes. However, it is worth underlying that the
L1-error of the L-NBee scheme is smaller than the corresponding error for Lax-Friedrichs and
Godunov schemes. For the L-UBee scheme, we obtain first order accuracy and the L1-error
for each level of refinement is bigger than the error of the other first order numerical schemes,
due to the antidiffusive property of the UBee scheme.

4.3.2 Test 2. Cars and trucks mixed traffic

In this test case, we consider a stretch of road populated by cars and trucks as in the example
proposed in [22, Section 4.2]. The space domain is given by the interval [−1, 1] and we impose
absorbing conditions at the boundaries. The dynamics is described by the equation (3.1.1)
with M = 2, and the following initial conditions and parameter values

ρ1(0, x) = 0.5χ[−0.6,−0.1](x), ω1(x) =
2

η1

(
1− x

η1

)
, η1 = 0.3, vmax

1 = 0.8,

ρ2(0, x) = 0.5χ[−0.9,−0.6](x), ω2(x) =
2

η2

(
1− x

η2

)
, η2 = 0.1, vmax

2 = 1.3.

(4.3.3)



92 Chapter 4. Numerical schemes for non-local traffic flow models

1 2 3 4 5

q

10 -4

10 -3

10 -2

10 -1

L
1
 e

rr
o
r

Godunov

Lax-Friedrichs

Godunov2

L-NBee

L-UBee

(a)

1 2 3 4 5

q

10 -4

10 -3

10 -2

10 -1

L
1
 e

rr
o
r

Godunov

Lax-Friedrichs

Godunov2

L-NBee

L-UBee

(b)

1 2 3 4 5

q

10 -4

10 -3

10 -2

10 -1

L
1
 e

rr
o
r

Godunov

Lax-Friedrichs

Godunov2

L-NBee

L-UBee

(c)

Figure 4.2: Test 1. Initial condition (4.3.1). Approximate L1-error for different numerical
schemes with: (a) constant kernel function ω(x) = 1/η, (b) decreasing kernel function ω(x) =

2(η − x)/η2, (c) concave kernel function ω(x) = 3(η2 − x2)/(2η3).
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Figure 4.3: Test 1. Initial condition (4.3.2). Approximate L1-error for different numerical
schemes with: (a) constant kernel function ω(x) = 1/η, (b) decreasing kernel function ω(x) =

2(η − x)/η2, concave kernel function ω(x) = 3(η2 − x2)/(2η3) (c).

In this setting, ρ1(t, x) and ρ2(x, t) describe the density of trucks and cars respectively. We
have a red traffic light located at x = −0.1, which turns green at the initial time t = 0. In
Figure 4.4, we display the reference solution of equation (3.1.1) with initial conditions and
parameters (4.3.3), computed with with 1/∆x = 5120 at increasing time instants (T = 0.25

in Fig. 4.4a, T = 0.5 in Fig. 4.4b and T = 1 in Fig. 4.4c.

In Figure 4.5, we display separately the two density components of the approximate solu-
tions computed using all the considered schemes with 1/∆x = 80, compared to the reference
solution of Figure 4.4. The numerical tests indicate that for M > 1, the L-AR solutions are
anti-diffusive for each class and they keep this anti-diffusive behavior for the whole simulation
time. We observe that the L-NBee solution approaches very well the reference solution for
each class at different times. Instead, the L-UBee solution shows “stairs” in the presence of
rarefaction-waves.

In Table 4.3 and Figure 4.6, we compute the approximate L1-error and the E.O.A at time
T = 0.5. We observe that the performance of L-AR schemes are comparable with those of
the second order Godunov scheme. In particular, we have that the L-NBee L1-error is the
smallest for each level of refinement.
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Scheme ω(x) = 1/η ω(x) = 2(η − x)/η2 ω(x) = 3(η2 − x2)/(2η3)

1/∆x L1− error EOA L1− error EOA L1− error EOA
Godunov 80 1.28e-03 – 1.33e-03 – 1.33e-03 –

160 6.44e-04 9.88e-01 6.73e-0.4 9.95e-01 6.68e-04 9.94e-01
320 3.23e-04 9.94e-01 3.38e-04 9.97e-01 3.34e-04 9.97e-01
640 1.62e-04 9.97e-01 1.69e-04 9.99e-01 1.67e-04 9.98e-01
1280 8.11e-05 9.98e-01 8.47e-0.5 9.99e-01 8.38e-05 9.99e-01

Lax-F 80 1.58e-03 – 1.92e-03 – 1.76e-03 –
160 7.24e-04 1.12 8.14e-04 1.24 7.73e-04 1.18
320 3.46e-04 1.07 3.70e-04 1.14 3.59e-04 1.10
640 1.69e-04 1.03 1.77e-04 1.06 1.74e-04 1.05
1280 8.35e-05 1.02 8.67e-04 1.03 8.55e-05 1.02

L-NBee 80 4.55e-04 – 4.30e-04 – 4.36e-04 –
160 2.23e-04 1.02 2.24e-04 9.43e-01 2.24e-04 9.65e-01
320 1.10e-04 1.01 1.14e-04 9.72e-01 1.13e-04 9.83e-01
640 5.49e-04 1.01 5.76e-05 9.86e-01 5.69e-05 9.92e-01
1280 2.74e-05 1.00 2.89e-05 9.93e-01 2.85e-05 9.96e-01

L-UBee 80 2.30e-03 – 2.14e-03 – 2.16e-03 –
160 1.75e-03 3.96e-01 1.23e-03 7.97e-01 1.26e-03 7.72e-01
320 1.48e-03 2.49e-01 1.18e-03 5.59e-02 1.20e-03 8.05e-02
640 9.82e-04 5.89e-01 8.39e-04 4.98e-01 8.41e-04 5.09e-01
1280 5.06e-04 9.56e-01 4.53e-04 8.88e-01 4.63e-04 8.61e-01

Godunov2 80 2.86e-05 – 2.89e-05 – 2.89e-05 –
160 6.80e-06 2.07 6.74e-06 2.10 6.76e-06 2.09
320 1.53e-06 2.15 1.53e-06 2.14 1.53e-06 2.14
640 3.42e-07 2.16 3.42e-07 2.16 3.41e-07 2.16
1280 7.72e-08 2.15 7.75e-08 2.14 7.73e-08 2.14

Table 4.2: Test 1. Approximate L1-error and E.O.A., with smooth initial condition (4.3.2)
and different kernels function with η = 0.1.

4.3.3 Test 3. Autonomous and human-driven mixed traffic

The aim of this test is to study the possible impact of the presence of Connected Autonomous
Vehicles (CAVs) on road traffic performances, as proposed in [21, Section 4.2]. Let us consider
a circular road modeled by the space interval [−1, 1] with periodic boundary conditions at
x = ±1. Autonomous and non-autonomous vehicles have the same maximal speed, but the
interaction radius of CAVs is much grater than the one of human-driven cars. Moreover, we
can assign a constant convolution kernel to CAVs, since we assume that the degree of accuracy
on information they have about surrounding traffic is transmitted through wireless connections
and does not depend on distance. We consider the following initial data and parameters

ρ1(0, x) = β(0.5 + 0.3 sin(5πx)), ω1(x) =
1

η1
, η1 = 1.0, vmax

1 = 1,

ρ2(0, x) = (1− β) (0.5 + 0.3 sin(5πx)), ω2(x) =
2

η2

(
1− x

η2

)
, η2 = 0.05, vmax

2 = 1,

(4.3.4)

where ρ1 is the density of autonomous vehicles and ρ2 the density of human-driven vehicles.
The parameter β ∈ [0, 1] gives the penetration rate of autonomous vehicle.

Figure 4.7 displays the reference solution of (3.1.1)-(4.3.4) with β = 0.9, computed by the
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Figure 4.4: Test 2: Density profiles corresponding to (3.1.1)-(4.3.3), computed by second-order
Godunov scheme with 1/∆x = 5120, at different times.

1/∆x Godunov Lax-F L-NBee L-UBee Godunov2
1/∆x L1-err γ(∆x) L1-err γ(∆x) L1-err γ(∆x) L1-err γ(∆x) L1-err γ(∆x)

80 2.7e-02 – 4.8e-02 – 5.2e-03 – 1.6e-02 – 8.5e-03 –
160 1.9e-02 0.53 3.4e-02 0.52 2.9e-03 0.83 5.8e-03 1.5 5.5e-03 0.64
320 1.3e-02 0.57 2.3e-02 0.55 1.2e-03 1.3 2.4e-03 1.2 3.0e-03 0.84
640 8.6e-03 0.58 1.6e-02 0.57 5.1e-04 1.3 1.4e-03 0.74 1.7e-03 0.87
1280 5.7e-03 0.59 1.0e-02 0.58 3.6e-04 0.51 9.4e-04 0.63 8.0e-04 1.0

Table 4.3: Test 2. Non-local multi-class LWR model. Initial condition (4.3.3), with decreasing
kernel functions, final time T = 0.5. The reference solution is computed with 1/∆x = 5120.

second-order Godunov scheme with 1/∆x = 10240 at times T = 1.5 in Fig. 4.7a.
In Figure 4.8, we display separately the two classes and we compare the approximate

solutions computed by all the considered schemes with 1/∆x = 320, and the reference solution.
Again, the numerical solutions obtained using the L-AR schemes are more anti-diffusive than
those produced by first-order schemes. We observe a good behavior of the L-NBee scheme.
Instead, the L-UBee scheme approaches the reference solution very well in the presence of
shock-waves. On the other hand, the usual “stairs” appear in presence of rarefaction-waves.

In Table 4.4 and Figure 4.7b we compute the approximate L1-error and the E.O.A at time
T = 1.5. We observe that the performances of L-NBee schemes are comparable with those
of the second order Godunov scheme. It is worth pointing out that despite the ”staircaising”
phenomenon the L-UBee L1-error is still smaller than the L1-error of the other first-order
schemes.

Godunov Lax-F L-NBee L-UBee Godunov2
1/∆x L1-err γ(∆x) L1-err γ(∆x) L1-err γ(∆x) L1-err γ(∆x) L1-err γ(∆x)

320 5.2e-02 – 8.5e-02 – 3.0e-03 – 1.3e-02 – 3.1e-03 –
640 3.1e-02 0.76 5.8e-02 0.56 1.4e-03 1.1 5.7e-03 1.3 1.4e-03 1.1
1280 1.7e-02 0.87 3.5e-02 0.73 3.9e-04 1.8 2.8e-03 1.0 3.7e-04 1.9
2560 8.9e-03 0.93 1.9e-02 0.85 1.9e-04 1.0 1.4e-03 1.0 2.0e-04 0.84

Table 4.4: Test 3. Initial condition (4.3.4), with different kernel functions, final time T = 1.5.
The solutions are computed with 1/∆x = 160× 2q for q = 1, ..., 4.
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Figure 4.5: Test 2. (a)-(c)-(e) Profile of ρ1; (b)-(d)-(f) profile of ρ2 computed with different
numerical schemes at different times and 1/∆x = 80.
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Figure 4.7: Test 3. (a) Reference solution of Test 3 computed with 1/∆x = 10240. (b)
Approximate total L1-error for different numerical schemes.

4.4 High-order Finite Volume WENO schemes for non-local
multi-class traffic flow models

In this section, we solve the non-local system of conservation laws (3.1.1) by using a high-order
finite volume WENO scheme [70, 71]. First we consider {Ij}Nj=1 as a partition of [−L,L] and
the points xj are the center of the cells Ij = [xj− 1

2
, xj+ 1

2
], with length |Ij | = ∆x = 2

N . We
denote the unknowns by ρi,j(t), the cell average of the exact solution ρi(t, ·) in the cell Ij :

ρi,j(t) :=
1

∆x

∫
Ij

ρi(t, x)dx.
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Figure 4.8: Test 3. (a) Profile of ρ1; (b) profile of ρ2, computed with different numerical
schemes at time=1.5 and 1/∆x = 320.

We extend ωi(x) = 0 for x > ηi, and set

ωki :=
1

∆x

∫ k∆x

(k−1) ∆x
ωi(x) dx, k ∈ N∗, (4.4.1)

so that ∆x
∑+∞

k=1 ω
k
i =

∫ ηi
0 ωi(x) dx = Ji (the sum is indeed finite since ωki = 0 for k ≥ Ni

sufficiently large). Moreover, we set rj(t) :=
∑M

i=1 ρi,j(t) and define the convolution term in
the form Ri(t, x) := (r ∗ ωi)(t, x). Integrating (3.1.1) over Ij we obtain

d

dt
ρi,j(t) = − 1

∆x

(
fi(t, xj+1/2)− fi(t, xj−1/2)

)
, i = 1, . . . ,M, ∀j ∈ Z,

where fi(t, xj+1/2) := ρi(t, xj+ 1
2
)vi(Ri(t, xj+ 1

2
)). This equation is approximated by the semi-

discrete conservative scheme

d

dt
ρi,j(t) = − 1

∆x

(
fi,j+ 1

2
− fi,j− 1

2

)
, i = 1, . . . ,M, ∀j ∈ Z, (4.4.2)

where fi,j+ 1
2
is a consistent approximation of flux ρivi(Ri) at interface xj+1/2. Here, we

consider the multi-class version of the Godunov scheme [22]

fi,j+ 1
2

:= f(ρl
i,j+ 1

2

, ρr
i,j+ 1

2

) = ρl
i,j+ 1

2

vi(R
r
i,j+1/2), (4.4.3)

where ρl
i,j+ 1

2

and ρr
i,j+ 1

2

are some left and right high-order WENO reconstructions of ρi(t, xj+ 1
2
)

obtained from the cell averages
{
ρi,j(t)

}
j∈Z. In this work, we consider the classical WENO

scheme proposed in [70, 71]. Rri,j+1/2 is the right approximation of Ri(t, x) at the interface
xj+1/2. Since Ri is defined by a convolution, we naturally set Rri,j+1/2 = Ri(t, xj+1/2) :=

Ri,j+1/2(t).
In order to compute the integral Ri,j+1/2, we use the technique proposed in [19], i.e.,

we consider a reconstruction of ρi(x, t) on Ij by taking advantage of the high-order WENO
reconstructions ρr

i,j− 1
2

and ρl
i,j+ 1

2

at the boundaries of Ij , as well as the approximation of the
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cell average ρni,j . We consider a quadratic polynomial pi,j(x) defined on Ij such that

pi,j(xj− 1
2
) = ρr

i,j− 1
2

, pi,j(xj+ 1
2
) = ρl

i,j+ 1
2

,
1

∆x

∫
Ij

pi,j(x)dx = ρni,j .

In particular, we take

pi,j(x) := ai,j,0v
(0)(ξj(x)) + ai,j,1v

(1)
(
ξj(x)

)
+ ai,j,2v

(2)
(
ξj(x)

)
, x ∈ Ij , (4.4.4)

with

v(0)(y) = 1, v(1)(y) = y, v(2)(y) =
1

2

(
3y2 − 1

)
, ξj(x) =

x− xj
∆x/2

.

Coefficients in (4.4.4) can be easily computed as

ai,j,0 = ρni,j , ai,j,1 =
1

2

(
ρl
i,j+ 1

2

− ρr
i,j− 1

2

)
, ai,j,2 =

1

2

(
ρl
i,j+ 1

2

+ ρr
i,j− 1

2

)
− ρni,j .

Now, summing for i = 1, . . . ,M , we have

Pj(x) :=
M∑
i=1

pi,j(x) = âj,0v
(0)(ξj(x)) + âj,1v

(1)
(
ξj(x)

)
+ âj,2v

(2)
(
ξj(x)

)
, x ∈ Ij ,

with

âj,0 :=

M∑
i=1

ai,j,0 = rj , âj,1 :=

M∑
i=1

ai,j,1, âj,2 :=

M∑
i=1

ai,j,2.

With this polynomial Pj(x), we can compute Ri,j+ 1
2
as

Ri,j+ 1
2

=
M∑
k=1

∫
Ij+k

Pj+k(y)ωi(y − xj+ 1
2
)dy (4.4.5)

=

N∑
k=1

∫
Ij+k

ωi(y − xj+ 1
2
)

2∑
l=0

âj+k,lv
(l)(ζj+k(y))dy

=
M∑
k=1

2∑
l=0

âj+k,l

∫
Ij+k

ωi(y − xj+ 1
2
)v(l)(ζj+k(y))dy

=

M∑
k=1

2∑
l=0

âj+k,l
∆x

2

∫ 1

−1
ωi

(
∆x

2
y + (k − 1

2
)∆x

)
v(l)(y)dy︸ ︷︷ ︸ =

M∑
k=1

2∑
l=0

âj+k,lΓi,k,l,

where the coefficients Γi,k,l are computed exactly or using a high-order quadrature approxi-
mation.

The utilization of the quadratic polynomial on each cell to evaluate the convolution term
suggests the following algorithm to approach the solution of non-local system (3.1.1):
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Algorithm: FV-WENO scheme for non-local multi-class traffic models

Given ρni,j for j ∈ Z, i = 1, . . . ,M , approximation of the cell averages of ρi(x, t) at tn.

1. Compute ρl
i,j+ 1

2

and ρr
i,j+ 1

2

, the left and right high-order WENO approximations for
j ∈ Z and i = 1, . . . ,M ;

2. Calculate Ri,j+ 1
2
for j ∈ Z and i = 1, . . . ,M ;

3. Calculate the Godunov numerical flux (4.4.3) for j ∈ Z and i = 1, . . . ,M ;

4. Use a high-order accurate Runge-Kutta method to solve the semi-discrete system (4.4.2),
with the CFL condition

∆t

∆x
vmax
M ‖ψ‖∞ ≤

1

2
. (4.4.6)

In this chapter, we use the WENO method of third (WENO3), fifth (WENO5) and seventh
(WENO7) accuracy order proposed by [70, 71]. For the temporal discretization, in order to
match the order of spatial accuracy, fifth or seventh explicit Runge-Kutta schemes are used
[14].

4.5 Numerical tests

In the following numerical tests, we solve (3.1.1) numerically in the intervals x ∈ [−1, 1] and
t ∈ [0, 2]. We propose two tests in order to illustrate the dynamics of the model (3.1.1) for
autonomous and human-driven vehicles, using FV-WENO5 scheme with 1/∆x = 400. For
each integration, we set ∆t to satisfy the CFL condition (4.4.6).

To test the accuracy order of the proposed method, since we cannot compute the exact
solution explicitly, we use a reference solution ρref obtained using FV-WENO7 on a refined
mesh (1/∆x = 6400). The L1-error for the cell average is given by

L1(∆x) =
M∑
i=1

 1

N

N∑
j=1

|ρi,j − ρ
ref
i,j |

 ,

where ρi,j and ρrefi,j are the cell averages of the numerical approximation and the reference
solution respectively. The Experimental Order of Accuracy (E.O.A.) is naturally defined by

γ(∆x) = log2

(
L1(∆x)/L1(∆x/2)

)
.

4.5.1 Test 1, circular road

The aim of this test is to study the possible impact of the presence of Connected Autonomous
Vehicles (CAVs) on road traffic performances, as proposed in [22, Section 4.2]. Let us consider
a circular road modeled by the space interval [−1, 1] with periodic boundary conditions at
x = ±1. The interaction radius of CAVs is much grater than the one of human-driven cars.
Moreover, we can assign a constant convolution kernel to CAVs, since we assume that the
information they get about surrounding traffic is transmitted through wireless connections
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(a) α = 0.5, β = 0.3, γ = 0.2, (b) α = 0.5, β = 0.5, γ = 0.

Figure 4.9: (t, x)−plots of the total density r(t, x) = ρ1(t, x) + ρ2(t, x) + ρ3(t, x) computed
with the FV-WENO5 scheme, corresponding to different penetration rates of autonomous and
non-autonomous vehicles: (a) mixed autonomous / human-driven traffic, (b) fully autonomous
traffic.

and its degree of accuracy does not depend on distance. We consider the following initial data
and parameters

ρ1(0, x) = αp(x), ω1(x) =
1

η1
, η1 = 0.3, vmax

1 = 0.8, (4.5.1)

ρ2(0, x) = β p(x), ω2(x) =
1

η2
, η2 = 0.3, vmax

2 = 1.2, (4.5.2)

ρ3(0, x) = γ p(x), ω3(x) =
2

η3

(
1− x

η3

)
, η3 = 0.05, vmax

3 = 1.2, (4.5.3)

where p(x) = 0.5 + 0.3 sin(5πx) is the total initial density, α, β, γ ≥ 0 and α + β + γ = 1.
Above, ρ1 represents the density of autonomous trucks, ρ2 is the density of autonomous cars
and ρ3 is the density of human-driven cars. In Figure 4.9a we consider the penetration rates

α = 0.5, β = 0.3, γ = 0.2,

and we can compare the total density r = ρ1 + ρ2 + ρ3 with that one in Figure 4.9b where we
have no human-driven cars:

α = 0.5, β = 0.5, γ = 0.

We observe that oscillations are reduced if only autonomous vehicles are present.
Finally, we compute the E.O.A. for the FV-WENO schemes. We consider parameters

α = 0.5, β = 0.3, γ = 0.2 , and compute the L1-error at T = 0.2 in Table 4.4. As expected,
we obtain the correct order.

4.5.2 Test 2, stretch of straight road

In this test case, we consider a stretch of road populated by cars and trucks as in the example
proposed in [22, Section 4.1]. The space domain is given by the interval [−1, 1] and we impose
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FV-WENO3 FV-WENO5 FV-WENO7
1/∆x L1-err γ(∆x) L1-err γ(∆x) L1-err γ(∆x)

100 1.51e-03 – 1.09e-04 – 5.64e-05 –
200 1.38e-04 3.44 9.44e-06 3.53 1.54e-06 5.19
400 1.20e-05 3.53 4.01e-07 4.56 1.58e-08 6.61
800 1.27e-06 3.24 1.26e-08 4.99 1.68e-10 6.55
1600 1.05e-07 3.01 3.60e-10 5.12 4.71e-12 5.15

Table 4.5: E.O.A. Test 1, initial condition (4.5.1)-(4.5.3), with α = 0.5, β = 0.3, γ = 0.2

and final time T = 0.2. The reference solution is computed with FV-WENO7 scheme for
1/∆x = 6400.

absorbing conditions at the boundaries. The dynamics is described by the equation (3.1.1)
with M = 3, and the following initial conditions and parameter values

ρ1(0, x) = 0.5χ[−0.6,−0.1](x), ω1(x) =
2

η1

(
1− x

η1

)
, η1 = 0.1, vmax

1 = 0.8, (4.5.4)

ρ2(0, x) = α1χ[−0.9,−0.6](x), ω2(x) =
1

η2
, η2 = 0.5, vmax

2 = 1.3. (4.5.5)

ρ3(0, x) = β1χ[−0.9,−0.6](x), ω3(x) =
2

η3

(
1− x

η3

)
, η3 = 0.05, vmax

2 = 1.3. (4.5.6)

In this setting, ρ1(t, x) describes the density of human-driven trucks, ρ2(x, t) the density of
autonomous cars and ρ3(x, t) is density of human driven cars. We have a red traffic light
located at x = −0.1, which turns green at the initial time t = 0.

(a) α1 = 0.25, β1 = 0.25, (b) α1 = 0, β1 = 0.5.

Figure 4.10: (t, x)−plots of the total density r(t, x) = ρ1(t, x) + ρ2(t, x) + ρ3(t, x) computed
with FV-WENO5 scheme, corresponding to different penetration rates of cars and trucks.

In Figure 4.10a we consider the rates

α1 = 0.25, β1 = 0.25,

and we can compare the space-time evolution of the total density r = ρ1 + ρ2 + ρ3 with the
one in Figure 4.10b, where

α1 = 0, β1 = 0.5.
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Figure 4.11: Test 2(a). (a) Profile of ρ1; (b) profile of ρ2, (c) profile of ρ3 computed with
different numerical schemes at time=0.5 and 1/∆x = 400. The reference solution is computed
with 1/∆x = 3200.

In this case, the presence of autonomous cars in a heterogeneous traffic of human-driven
vehicles induces higher vehicle densities during the overtaking phase, but for shorter time. In
Figure 4.11 we display the density profiles of ρ1, ρ2 and ρ3 computed with different FV-WENO
schemes at time t = 0.5 in the same setting of Test 2(a). We can appreciate the efficiency
of FV-WENO schemes in presence of discontinuities in comparison with the finite volume
Godunov type scheme.



Chapter 5

A non-local traffic flow model for
1-to-1 junctions

In this chapter, we propose the study detailed in [20].
In this non-local scalar model, the flux function may involve different velocity functions on
different parts of the road. The model focuses on a non-local mean downstream velocity and
can therefore describe the behavior of drivers travelling on a road changing maximal velocity
and capacity at a given point, without violating the maximal density constraint on each road
segment. In Section 5.1, we present our model and the main result of this work. In Section 5.2,
we prove the Lipschitz continuous dependence of weak entropy solutions with respect to the
initial data, which implies their uniqueness. In Section 5.3, we introduce an adapted upwind
type scheme and derive important properties: the maximum principle, uniform total variation
(BV) estimates and a discrete entropy inequality. Afterwards, we prove the convergence of
the scheme and the main theorem in Section 5.4. In the last Section 5.3, we show numerical
simulations fixing the support of the kernel function that appears in the non-local flux and we
present some results regarding the limit model as the support tends to zero.

5.1 Modeling

Based on the model presented in [46] we consider the following conservation law

∂tρ(t, x) + ∂xf(t, x, ρ) = 0, x ∈ R, t > 0, (5.1.1)

where
f(t, x, ρ) := ρ(t, x)V1(t, x) + g(ρ(t, x))V2(t, x), (5.1.2)

with

g(ρ) := min{ρ, ρ2
max}, (5.1.3)

V1(t, x) :=

∫ min{x+η,0}

min{x,0}
v1(ρ(t, y))ωη(y − x)dy, (5.1.4)

V2(t, x) :=

∫ max{x+η,0}

max{x,0}
v2(ρ(t, y))ωη(y − x)dy, (5.1.5)

for any η > 0. We couple the equation (5.1.1) with the initial datum

ρ(0, x) = ρ0(x) ∈ BV(R),

s.t. ρ0(x) ∈ [0, ρ1
max] for x < 0 and ρ0(x) ∈ [0, ρ2

max] for x > 0.
(5.1.6)
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Figure 5.1: Illustration of the non-local traffic flow model (5.1.1) and (5.1.6) for different
parameters on each road segment

The model assumes that drivers adapt their speed based on a weighted mean of downstream
velocities. In the considered setting, changes in road characteristics at x = 0 may translate
in different velocity functions, v1 and v2, and in different road capacities, ρ1

max and ρ2
max, for

x < 0 and x > 0 respectively. In (5.1.2), the flux also accounts for the maximum capacity of
the second road segment. An illustration of the model can be seen in Figure 5.1.

The special structure of the flux function (5.1.2) does not fit into the framework proposed
in e.g. [21, 46, 55]. Only for v1 ≡ v2 and therefore ρ1

max = ρ2
max the model coincides with the

one presented in [46]. Therefore, we have to investigate its well-posedness in the general case.
We impose the following reasonable hypotheses on vi, i ∈ {1, 2} and ωη:

vi ∈ C2([0, ρimax];R+) : v′i ≤ 0, vi(ρ
i
max) = 0,

ωη ∈ C1([0, η];R+) : ω′η ≤ 0,

∫ η

0
ωη(x)dx = 1 ∀η > 0,

(5.1.7)

where η represents the look-ahead distance of the drivers.
Since the flux function (5.1.2) is continuous in x, entropy weak solutions of (5.1.1), (5.1.6)

are intended in the following way:

Definition 4 (Entropy weak solution (see [59])). A measurable function

ρ : ΠT := [0, T [×R→ [0,max{ρ1
max, ρ

2
max}]

is an entropy weak solution of the initial value problem (5.1.1)–(5.1.6) if for any test function
ϕ ∈ C1

c (ΠT ;R+) and for any constant c ∈ R,∫∫
ΠT

(
|ρ− c|ϕt + sgn(ρ− c)(f(t, x, ρ)− f(t, x, c))ϕx − sgn(ρ− c)f(t, x, c)xϕ

)
dxdt

+

∫ ∞
−∞
|ρ0(x)− c|ϕ(0, x) dx ≥ 0.

(5.1.8)

The main result of this chapter is the following theorem:

Theorem 14. Let ρ0 ∈ BV(R; [0,max{ρ1
max, ρ

2
max}]) such that ρ0(x) ≤ ρ1

max for x < 0 and
ρ0(x) ≤ ρ2

max for x ≥ 0, and hypotheses (5.1.7) hold. Then the Cauchy problem∂tρ(t, x) + ∂xf(t, x, ρ) = 0, x ∈ R, t > 0,

ρ(0, x) = ρ0(x), x ∈ R,
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admits a unique entropy weak solution in the sense of Definition 4 and

0 ≤ ρ(t, x) ≤ ρ1
max for a.e. x < 0, t > 0,

0 ≤ ρ(t, x) ≤ ρ2
max for a.e. x ≥ 0, t > 0.

Theorem 14 is proved at the end of Section 5.4.

5.2 Uniqueness

Let us start to prove the Lipschitz continuous dependence of weak entropy solutions with
respect to the initial data, which ensures the uniqueness of entropy solutions of the model
(5.1.1)–(5.1.6). We follow [11, 21, 46], using Kružkov’s doubling of variables technique [59].

Theorem 15. Under hypotheses (5.1.7), let ρ and ρ̃ be two entropy solutions of (5.1.1) with
initial datum ρ0 and ρ̃0, respectively. Then, for any T > 0, there holds∥∥ρ(t, ·)− ρ̃(t, ·)

∥∥
L1 ≤ exp(KT )‖ρ0 − ρ̃0‖L1 ∀t ∈ [0, T ], (5.2.1)

with K given by (5.2.7).

Proof. The functions ρ and ρ̃ are weak entropy solutions of

∂tρ(t, x) + ∂x
(
ρ(t, x)V1(t, x) + g(ρ)V2(t, x)

)
= 0, ρ(0, x) = ρ0(x),

∂tρ̃(t, x) + ∂x

(
ρ̃(t, x)Ṽ1(t, x) + g(ρ̃)Ṽ2(t, x)

)
= 0, ρ̃(0, x) = ρ̃0(x),

respectively. Vi, Ṽi for i = 1, 2 are defined as in (5.1.4) and (5.1.5), where the convolution is
computed over the velocity of ρ and ρ̃, respectively. They are bounded measurable functions
and Lipschitz continuous w.r.t. x since ρ, ρ̃ ∈

(
L1 ∩ L∞ ∩ BV

)
(R+ × R;R).

Using the classical doubling of variables technique, see [52, 59], we get the following inequality:

∥∥ρ(t, ·)− ρ̃(t, ·)
∥∥
L1 ≤‖ρ0 − ρ̃0‖L1 +

∫ T

0

∫
R

∣∣∂xρ(t, x)
∣∣∣∣∣V1(t, x)− Ṽ1(t, x)

∣∣∣dxdt
+

∫ T

0

∫
R

∣∣∂xρ(t, x)
∣∣∣∣∣V2(t, x)− Ṽ2(t, x)

∣∣∣dxdt (5.2.2)

+

∫ T

0

∫
R
|ρ|
∣∣∣∂xV1 − ∂xṼ1

∣∣∣dxdt+

∫ T

0

∫
R

∣∣g(ρ)
∣∣∣∣∣∂xV2 − ∂xṼ2

∣∣∣dxdt,
where ∂xρ must be understood in the sense of measures. Applying the mean value theorem
and using the properties of the kernel function, we deduce∣∣∣Vi(t, x)− Ṽi(t, x)

∣∣∣ ≤ ωη(0)
∥∥v′i∥∥∞∥∥ρ(t, ·)− ρ̃(t, ·)

∥∥
L1 , for i = 1, 2. (5.2.3)
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Using the Leibniz integral rule and again the mean value theorem, we can also obtain for a.e.
x ∈ R

∣∣∣∂xV1(t, x)− ∂xṼ1(t, x)
∣∣∣ =



0, if x > 0,∣∣∣∫ 0
x (v1(ρ(t, y))− v1(ρ̃(t, y)))ω′η(y − x)dy

+
(
v1(ρ̃(t, x))− v1(ρ(t, x))

)
ωη(0)

∣∣∣ , if − η < x < 0,∣∣∣∫ x+η
x (v1(ρ(t, y))− v1(ρ̃(t, y)))ω′η(y − x)dy

+
(
v1(ρ̃(t, x+ η))− v1(ρ(t, x+ η))

)
ωη(η)

+
(
v1(ρ̃(t, x))− v1(ρ(t, x))

)
ωη(0)

∣∣∣ , if x < −η

≤
∥∥∥ω′η∥∥∥∞∥∥v′1∥∥∞∥∥ρ(t, ·)− ρ̃(t, ·)

∥∥
L1 (5.2.4)

+ ωη(0)
∥∥v′1∥∥∞ (|ρ− ρ̃|(t, x+ η) + |ρ− ρ̃|(t, x)

)
.

Similarly, we obtain∣∣∣∂xV2(t, x)− ∂xṼ2(t, x)
∣∣∣ ≤ ∥∥∥ω′η∥∥∥∞∥∥v′2∥∥∞∥∥ρ(t, ·)− ρ̃(t, ·)

∥∥
L1 (5.2.5)

+ ωη(0)
∥∥v′2∥∥∞ (|ρ− ρ̃|(t, x+ η) + |ρ− ρ̃|(t, x)

)
. (5.2.6)

Plugging (5.2.3), (5.2.4), (5.2.5) into (5.2.2), we obtain∥∥ρ(t, ·)− ρ̃(t, ·)
∥∥
L1 ≤ ‖ρ0 − ρ̃0‖L1

+ max
i=1,2

{∥∥v′i∥∥∞}∫ T

0

∥∥ρ(t, ·)− ρ̃(t, ·)
∥∥
L1dt

[
2ωη(0) sup

t∈[0,T ]

∥∥ρ(t, ·)
∥∥
BV(R)

+
∥∥∥ω′η∥∥∥∞

(
sup
t∈[0,T ]

∥∥ρ(t, ·)
∥∥
L1 + sup

t∈[0,T ]

∥∥g(ρ(t, ·))
∥∥
L1

)
+ max
i=1,2

{∥∥v′i∥∥∞}ωη(0)

(
sup
t∈[0,T ]

∥∥ρ(t, ·)
∥∥
∞ + sup

t∈[0,T ]

∥∥g(ρ(t, ·))
∥∥
∞

)
∫ T

0

∫
R

(
|ρ− ρ̃|(t, x+ η) + |ρ− ρ̃|(t, x)

)
dxdt

≤‖ρ0 − ρ̃0‖L1 +K

∫ T

0

∥∥ρ(t, ·)− ρ̃(t, ·)
∥∥
L1dt,

with

K := max
i=1,2

{∥∥v′i∥∥∞}
[

2ωη(0) sup
t∈[0,T ]

∥∥ρ(t, ·)
∥∥
BV(R)

+
∥∥∥ω′η∥∥∥∞

(
sup
t∈[0,T ]

∥∥ρ(t, ·)
∥∥
L1 + sup

t∈[0,T ]

∥∥g(ρ(t, ·))
∥∥
L1

)

+2ωη(0)

(
sup
t∈[0,T ]

∥∥ρ(t, ·)
∥∥
∞ + sup

t∈[0,T ]

∥∥g(ρ(t, ·))
∥∥
∞

) . (5.2.7)
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By Gronwall’s lemma we get the statement and for ρ0 = ρ̃0 the uniqueness of entropy solutions.

Remark 7. Note that we cannot directly apply previous results in the literature [23, 34, 52] to
the present model, because it does not fit precisely the assumptions therein. Moreover, direct
computations allow to recover sharper estimates on the coefficients.

5.3 Numerical scheme

In order to prove the well-posedness of model (5.1.1)–(5.1.6), we prove the existence of solutions
via a numerical scheme which is based on the scheme from [46]. Even though this scheme has
been introduced in [46] as a Godunov type scheme, it reduces to an upwind type scheme.
For j ∈ Z and n ∈ N, let xj−1/2 = j∆x be the cell interfaces, xj = (j + 1/2)∆x the
cells centers, corresponding to a space step ∆x such that η = Nη∆x for some Nη ∈ N,
and let tn = n∆t be the time mesh. In particular, x = x−1/2 = 0 is a cell interface. We
aim at constructing a finite volume approximate solution ρ∆x such that ρ∆x(t, x) = ρnj for
(t, x) ∈ [tn, tn+1[×[xj−1/2, xj+1/2[. To this end, we approximate the initial datum ρ0 with the
piecewise constant function

ρ0
j =

1

∆x

∫ xj+1/2

xj−1/2

ρ0(x)dx, j ∈ Z.

Following [46], we consider the numerical flux function

Fnj+1/2(ρnj ) := ρnj V
1,n
j + g(ρnj )V 2,n

j (5.3.1)

with

V 1,n
j =

min{−j−2,Nη−1}∑
k=0

γkv1(ρnj+k+1), V 2,n
j =

Nη−1∑
k=max{−j−1,0}

γkv2(ρnj+k+1), (5.3.2)

γk =

∫ (k+1)∆x

k∆x
ωη(x)dx, k = 0, . . . , Nη − 1, (5.3.3)

where we set, with some abuse of notation
∑b

k=a = 0 whenever b < a. In this way we can
define the following finite volume numerical scheme

ρn+1
j = ρnj − λ

(
Fnj+1/2(ρnj )− Fnj−1/2(ρnj−1)

)
with λ :=

∆t

∆x
. (5.3.4)

Note that, due to the accurate calculation of the integral in (5.3.3) and the definition of the
convoluted velocities in (5.3.2), there holds

0 ≤ V 1,n
j ≤ v1

max, 0 ≤ V 2,n
j ≤ v2

max, 0 ≤ V 1,n
j + V 2,n

j ≤ max{v1
max, v

2
max}, ∀ j ∈ Z, n ∈ N.

We set

‖v‖ := max{‖v1‖∞, ‖v2‖∞}, ‖v′‖ := max{‖v′1‖∞, ‖v′2‖∞}, ‖ρ‖ := max{ρ1
max, ρ

2
max}
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and consider the following CFL condition:

λ ≤ 1

γ0‖v′‖‖ρ‖+ ‖v‖
. (5.3.5)

We will show that, under this CFL condition, the numerical scheme (5.3.1)–(5.3.4) satisfies
a maximum principle, uniform BV estimates and a discrete entropy inequality. Equipped
with these properties, we will show in Section 5.4 that the sequence of approximate solutions{
ρ∆x

}
converges towards the entropy solution of (5.1.1)–(5.1.6). Note that, for v1 ≡ v2, the

scheme (5.3.1)–(5.3.4) coincides with the scheme in [46].
In the following proofs, we will omit the dependence on n of the flux function and the

velocity whenever possible, in order to simplify the notation.

5.3.1 Maximum principle

The solutions generated by the numerical scheme (5.3.4) stay always positive and they are
bounded by the maximum road capacity of each road segment as stated by the following
lemma.

Lemma 17. Under hypothesis (5.1.6) and the CFL condition (5.3.5), the sequence generated
by the numerical scheme (5.3.1)–(5.3.4) satisfies the following maximum principle:

0 ≤ ρnj ≤ ρ1
max for j ≤ −1 and 0 ≤ ρnj ≤ ρ2

max for j ≥ 0, ∀n ∈ N.

Proof. We start by showing the positivity. We directly obtain

ρn+1
j = ρnj − λ

(
Fn
j+ 1

2

(ρnj )− Fn
j− 1

2

(ρnj−1)

)
≥ ρnj − λFnj+ 1

2

(ρnj ) ≥ ρnj − λ‖v‖ρnj ≥ 0.

Here we used the CFL condition (5.3.5) and g(ρnj ) ≤ ρnj .
The rest of the proof follows closely the proof of [46, Theorem 3.1]. Therefore, we compute
the differences of the velocities and obtain

V 1,n
j−1 − V

1,n
j =



∑Nη−1
k=1 (γk − γk−1)v1(ρnj+k)− γNη−1v1(ρnj+Nη) + γ0v1(ρnj ), j ≤ −Nη − 1,∑−j−1
k=1 (γk − γk−1)v1(ρnj+k) + γ0v1(ρnj ), −Nη ≤ j ≤ −2,

γ0v1(ρn−1), j = −1,

0, j ≥ 0,

(5.3.6)
and

V 2,n
j−1 − V

2,n
j =


0, j ≤ −Nη − 1,

−γNη−1v2(ρn0 ), j = −Nη,∑Nη−1
k=−j (γk − γk−1)v2(ρnj+k)− γNη−1v2(ρnj+Nη), −Nη + 1 ≤ j ≤ −1,∑Nη−1
k=1 (γk − γk−1)v2(ρnj+k)− γNη−1v2(ρnj+Nη) + γ0v2(ρnj ), j ≥ 0.

(5.3.7)
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It is easy to see that the following estimates hold:

V 1,n
j−1 − V

1,n
j ≤

γ0v1(ρnj ) j ≤ −1,

0, j ≥ 0,

V 2,n
j−1 − V

2,n
j ≤

0 j ≤ −1,

γ0v2(ρnj ), j ≥ 0.

Using v1(ρ1
max) = v2(ρ2

max) = 0 and the mean value theorem we get

V 1,n
j−1 − V

1,n
j ≤

γ0‖v′‖(ρ1
max − ρnj ) j ≤ −1,

0, j ≥ 0,

V 2,n
j−1 − V

2,n
j ≤

0 j ≤ −1,

γ0‖v′‖(ρ2
max − ρnj ), j ≥ 0.

Now we consider the case j ≤ −1 and multiply the first inequality by ρ1
max, subtract V

1,n
j ρnj

and we get

V 1,n
j−1ρ

1
max − V

1,n
j ρnj ≤

(
γ0‖v′‖‖ρ‖+ V 1,n

j

)
(ρ1

max − ρnj ).

Similarly, we get

V 2,n
j−1g(ρ1

max)− V 2,n
j g(ρnj ) ≤ V 2,n

j

(
g(ρ1

max)− g(ρnj )
)
≤ V 2,n

j (ρ1
max − ρnj ).

Adding the last two inequalities we obtain,

V 1,n
j−1ρ

1
max − V

1,n
j ρnj + V 2,n

j−1g(ρ1
max)− V 2,n

j g(ρnj ) ≤
(
γ0‖v′‖‖ρ‖+ ‖v‖

)
(ρ1

max − ρnj ).

Due to the CFL condition (5.3.5), we have for j ≤ −1

ρn+1
j ≤ ρnj + λ

(
V 1,n
j−1ρ

1
max − V

1,n
j ρnj + V 2,n

j−1g(ρ1
max)− V 2,n

j g(ρnj )
)
≤ ρ1

max.

For j ≥ 0 the bound

V 2,n
j−1ρ

2
max − V

2,n
j ρnj ≤

(
γ0‖v′‖‖ρ‖+ ‖v‖

)
(ρ2

max − ρnj )

follows analogously to above. Note that V 1,n
j = 0 for j ≥ −1. Since g(ρnj−1) ≤ ρ2

max holds
even for j = 0 and g(ρnj ) = ρnj for j ≥ 0, we obtain

ρn+1
j ≤ ρnj + λ

(
V 2,n
j−1ρ

2
max − V

2,n
j ρnj

)
≤ ρ2

max.

This concludes the proof.

Remark 8. The role of the limiter g given by (5.1.3) in the flux function (5.1.2) is essential
for the maximum principle above. Indeed, let us consider for example an approximate initial
datum ρ0

j = ρ1
max for j ≤ −1, ρ0

0 = ρ2
max in the first cell on the right of x = 0 and ρ0

j = 0 for
j ≥ 1. The flux entering the cell j = 0 is given by (1− γ0)v2

maxρ
1
max and the flux leaving this

cell is given by v2
maxρ

2
max. Obviously, choosing ρ1

max > ρ2
max/(1 − γ0) results in a violation of

the maximum principle in the cell j = 0 (as long as η > ∆x).
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5.3.2 BV estimate

In addition to the L∞ bound, we also need a uniform estimate on the total variation of the
sequence of approximate solutions. The crucial part here lies in the presence of the limiter g
at x = 0.

Lemma 18. Let ρ∆x be constructed by (5.3.1)–(5.3.4) and let the CFL condition (5.3.5) hold,
then for every T > 0 the following discrete space BV estimate is satisfied:

TV (ρ∆x(T, ·)) ≤ exp
(
Twη(0)

(
2‖v‖+ ‖v′‖‖ρ‖

)) (
TV (ρ0) + T2ωη(0)‖v‖‖ρ‖

)
=: K(T ).

(5.3.8)

Proof. We set
∆n
j := ρnj+1 − ρnj .

In the following we consider a regularization of the function g defined in (5.1.3), namely

gε(ρ) =
1

2

(
ρ+ ρ2

max −
√

(ρ− ρ2
max)2 + ε

)
, ε > 0. (5.3.9)

The function gε is differentiable for every ε > 0 with ‖g′ε‖ ≤ 1 for all ε > 0. This will allow us
to use the mean value theorem in the following computations. In particular, we will denote
by ξnj a value between ρnj and ρnj+1 such that g′ε(ξnj )∆n

j = gε(ρ
n
j+1)− gε(ρnj ) holds. We obtain:

∆n+1
j =∆n

j − λ
(
Fn
j+ 3

2

(ρnj+1)− 2Fn
j+ 1

2

(ρnj ) + Fn
j− 1

2

(ρnj−1)

)
=∆n

j − λ
((

V 1,n
j+1 + g′ε(ξ

n
j )V 2,n

j+1

)
∆n
j −

(
V 1,n
j−1 + g′ε(ξ

n
j−1)V 2,n

j−1

)
∆n
j−1

+ρnj

(
V 1,n
j+1 − 2V 1,n

j + V 1,n
j−1

)
+ gε(ρ

n
j )
(
V 2,n
j+1 − 2V 2,n

j + V 2,n
j−1

))
.

Let us now consider the differences of the velocities. With the differences already computed
in (5.3.6) and (5.3.7) and the help of the mean value theorem, where ζnj is a value between ρnj
and ρnj+1 for which v′i(ζ

n
j )∆n

j = vi(ρ
n
j+1)− vi(ρnj ) for i ∈ {1, 2} holds, we derive

V 1,n
j+1 − 2V 1,n

j + V 1,n
j−1 =

∑Nη−1
k=1 (γk−1 − γk)v′1(ζnj+k)∆

n
j+k + γNη−1v

′
1(ζnj+Nη)∆n

j+Nη
− γ0v

′
1(ζnj )∆n

j , j ≤ −Nη − 2,∑Nη−1
k=1 (γk−1 − γk)v′1(ζnj+k)∆

n
j+k − γNη−1v1(ρn−1)− γ0v

′
1(ζnj )∆n

j , j = −Nη − 1,∑−j−2
k=1 (γk−1 − γk)v′1(ζnj+k)∆

n
j+k + (γ−j−1 − γ−j−2)v1(ρn−1)− γ0v

′
1(ζnj )∆n

j , −Nη ≤ j ≤ −3,

(γ1 − γ0)v1(ρn−1)− γ0v
′
1(ζnj )∆n

j , j = −2,

γ0v1(ρn−1), j = −1,

0, j ≥ 0,

and

V 2,n
j+1 − 2V 2,n

j + V 2,n
j−1 =
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

0, j ≤ −Nη − 2,

γNη−1v2(ρn0 ), j = −Nη − 1,

γNη−1v
′
2(ζnj+Nη)∆n

j+Nη
+ (γNη−1 − γNη)v2(ρn0 ), j = −Nη,∑Nη−1

k=−j (γk−1 − γk)v′2(ζnj+k)∆
n
j+k

+γNη−1v
′
2(ζnj+Nη)∆n

j+Nη
+ (γ−j−2 − γ−j−1)v2(ρn0 ), −Nη + 1 ≤ j ≤ −2,∑Nη−1

k=1 (γk−1 − γk)v′2(ζnj+k)∆
n
j+k

+γNη−1v
′
2(ζnj+Nη)∆n

j+Nη
− γ0v2(ρn0 ), j = −1,∑Nη−1

k=1 (γk−1 − γk)v′2(ζnj+k)∆
n
j+k

+γNη−1v
′
2(ζnj+Nη)∆n

j+Nη
− γ0v

′
2(ζnj )∆n

j , j ≥ 0.

Putting everything together we have

∆n+1
j =

(
1− λ

(
V 1,n
j+1 + g′ε(ξ

n
j )V 2,n

j+1 − γ0a
n
j

))
∆n
j + λ

(
V 1,n
j−1 + g′ε(ξ

n
j−1)V 2,n

j−1

)
∆n
j−1

+ λ

Nη−1∑
k=1

(γk−1 − γk)bnj+k∆n
j+k + λγNη−1c

n
j+Nη∆n

j+Nη

+ λdnj

(
ρjv1(ρn−1)− gε(ρnj )v2(ρn0 )

)
, (5.3.10)

where

anj =


v′1(ζnj )ρnj , j ≤ −2,

0, j = −1,

v′2(ζnj )ρnj , j ≥ 0,

bnj+k =


−v′1(ζnj+k)ρ

n
j , j + k ≤ −2,

0, j + k = −1,

−v′2(ζnj+k)gε(ρ
n
j ), j + k ≥ 0,

cnj+Nη =


−v′1(ζnj+Nη)ρnj , j ≤ −Nη − 2,

0, j = −Nη − 1,

−v′2(ζnj+Nη)gε(ρ
n
j ), j ≥ −Nη,

dnj =



0, j ≤ −Nη − 2,

γNη−1, j = −Nη − 1,

γ−j−2 − γ−j−1, −Nη ≤ j ≤ −2,

−γ0, j = −1,

0, j ≥ 0.

Since the coefficients in (5.3.10) are positive due to the CFL condition (5.3.5), we take absolute
values, sum over j and rearrange the indices, which gives us

∑
j

|∆n+1
j | ≤

∑
j

[(
1− λ

(
V 1,n
j+1 + g′ε(ξ

n
j )V 2,n

j+1 − γ0a
n
j

))
|∆n

j |

+λ
(
V 1,n
j−1 + g′ε(ξ

n
j−1)V 2,n

j−1

)
|∆n

j−1|

+ λ

Nη−1∑
k=1

(γk−1 − γk)bnj+k|∆n
j+k|+ λγNη−1c

n
j+Nη |∆

n
j+Nη |

+λ|dnj |
∣∣∣ρjv1(ρn−1)− gε(ρnj )v2(ρn0 )

∣∣∣]
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=
∑
j

[
1− λ

(
V 1,n
j+1 + g′ε(ξ

n
j )V 2,n

j+1 − V
1,n
j − g′ε(ξnj )V 2,n

j

)

+ λ

(
γ0a

n
j +

Nη−1∑
k=1

(γk−1 − γk)bnj + γNη−1c
n
j

)]
|∆n

j |

+
∑
j

λ|dnj |
∣∣∣ρjv1(ρn−1)− gε(ρnj )v2(ρn0 )

∣∣∣ .
Now we use that V i,n

j − V i,n
j+1 ≤ γ0‖v‖ and ‖g′ε‖ ≤ 1 for the first term and for the second term

we have anj ≤ 0 and bnj , c
n
j ≤ ‖v′‖‖ρ‖, which gives us∑

j

|∆n+1
j | ≤

(
1 + λγ0

(
2‖v‖+ ‖v′‖‖ρ‖

))∑
j

|∆n
j |

+
∑
j

λ|dnj |
∣∣∣ρjv1(ρn−1)− gε(ρnj )v2(ρn0 )

∣∣∣ .
Since

∑
j |dnj | = 2γ0 holds, using also λγ0 ≤ ∆tωη(0) we finally obtain

∑
j

|∆n+1
j | ≤

(
1 + ∆tωη(0)

(
2‖v‖+ ‖v′‖‖ρ‖

))∑
j

|∆n
j |+ ∆t2ωη(0)‖v‖(‖ρ‖+

√
ε

2
).

This estimate holds for any ε > 0 and for ε→ 0 we obtain the following estimate for the total
variation

TV (ρ(T, ·)) ≤
(

1 + ∆tωη(0)
(
2‖v‖+ ‖v′‖‖ρ‖

))T/∆t (
TV (ρ0) + T2ωη(0)‖v‖‖ρ‖

)
≤ exp

(
ωη(0)

(
2‖v‖+ ‖v′‖‖ρ‖

)
T
) (
TV (ρ0) + T2ωη(0)‖v‖‖ρ‖

)
.

To finally apply Helly’s Theorem we also need an estimate for the discrete total variation
in space and time, which we are now able to provide.

Lemma 19. Let ρ∆x be constructed by (5.3.1)–(5.3.4) and let the CFL condition (5.3.5) hold,
then for every T > 0 the following discrete space and time total variation estimate is satisfied:

TV (ρ∆x;R× [0, T ]) ≤ TK(T )(1 + ‖v′‖‖ρ‖+ ‖v‖)

with K(T ) defined as in (5.3.8).

Using the regularization of g given by (5.3.9), the proof is entirely analogous to the one of
[46, Theorem 3.3].

5.3.3 Discrete Entropy Inequality

In the following, we use the notation a∧b = max{a, b}, a∨b = min{a, b} and follow [5, 21, 46].
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Lemma 20. Let ρ∆x be constructed by (5.3.1)–(5.3.4). If the CFL condition (5.3.5) holds,
then for c ∈ R we have the following discrete entropy inequality∣∣∣ρn+1

j − c
∣∣∣ ≤ ∣∣∣ρnj − c∣∣∣− λ(Hn

j+1/2(ρnj )−Hn
j−1/2(ρnj−1)

)
(5.3.11)

− λ sgn(ρn+1
j − c)

(
Fnj+1/2(c)− Fnj−1/2(c)

)
,

where
Hn
j+1/2(u) = Fnj+1/2(u ∧ c)− Fnj+1/2(u ∨ c).

Proof. Let
Gnj (u,w) = w − λ(Fnj+1/2(w)− Fnj−1/2(u)).

Under the CFL condition (5.3.5) and using the regularization (5.3.9) of g, Gj is monotone in
both its arguments, since we obtain

∂Gnj
∂w

= 1− λ(V 1,n

j+ 1
2

+ g′ε(w)V 2,n

j+ 1
2

) ≥ 0,
∂Gnj
∂u

= λ(V 1,n

j− 1
2

+ g′ε(u)V 2,n

j− 1
2

) ≥ 0.

The monotonicity implies that

Gnj (ρnj−1 ∧ c, ρnj ∧ c) ≥ Gnj (ρnj−1, ρ
n
j ) ∧Gnj (c, c) (5.3.12)

Gnj (ρnj−1 ∨ c, ρnj ∨ c) ≤ Gnj (ρnj−1, ρ
n
j ) ∨Gnj (c, c). (5.3.13)

Subtracting (5.3.13) from (5.3.12), we obtain∣∣∣Gnj (ρnj−1, ρ
n
j )−Gnj (c, c)

∣∣∣ ≤ ∣∣∣ρnj − c∣∣∣− λ(Hn
j+1/2(ρnj )−Hn

j−1/2(ρnj−1)
)
. (5.3.14)

The left side of (5.3.14) is
∣∣∣ρn+1
j − c+ λ(Fnj+1/2(c)− Fj−1/2(c))

∣∣∣, and we get∣∣∣ρn+1
j − c+ λ(Fnj+1/2(c)− Fnj−1/2(c))

∣∣∣
≥ sgn(ρn+1

j − c)
(
ρn+1
j − c+ λ(Fnj+1/2(c)− Fnj−1/2(c))

)
=
∣∣∣ρn+1
j − c

∣∣∣+ λ sgn(ρn+1
j − c)

(
Fnj+1/2(c)− Fnj−1/2(c)

)
. (5.3.15)

The proof is completed by combining (5.3.14) and (5.3.15).

5.4 Convergence

Lemma 21. Let ρ = ρ(t, x) ∈ L1 ∩ L∞ ∩ BV(R+ × R; [0,max{ρ1
max, ρ

2
max}) be the L1

loc-limit
of approximations ρ∆x generated by the upwind scheme (5.3.4) and let c ∈ R, ϕ ∈ C1

c (ΠT ).
Then ρ satisfies the entropy inequality given by (5.1.8).

Proof. Let ϕ ∈ C1
c (ΠT ) and set ϕnj = ϕ(tn, xj). We multiply the discrete entropy inequality

(5.3.11) by ϕnj ∆x, and then apply summation by parts to get

∆x∆t
∑
n≥0

∑
j∈Z

∣∣∣ρn+1
j − c

∣∣∣(ϕn+1
j − ϕnj )/∆t+ ∆x

∑
j

∣∣∣ρ0
j − c

∣∣∣ϕ0
j (5.4.1)
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+ ∆x∆t
∑
n≥0

∑
j∈Z

Hn
j−1/2(ϕnj − ϕnj−1)/∆x (5.4.2)

−∆x∆t
∑
n≥0

∑
j∈Z

sgn(ρn+1
j − c)

(
Fnj+1/2(c)− Fnj−1/2(c)

)
ϕnj /∆x ≥ 0. (5.4.3)

By Lebesgue’s dominated convergence theorem, as ∆x→ 0, we have

(5.4.1)→
∫∫

ΠT

|ρ− c|ϕtdxdt+

∫ ∞
−∞
|ρ0(x)− c|ϕ(0, x)dx.

As ∆x → 0, the sums in (5.4.2) converge by standard arguments, see [10], [11, Sec. 4 Proof
of Theorem 1], [53], to ∫∫

ΠT

sgn(ρ− c)(f(t, x, ρ)− f(t, x, c))ϕx dxdt.

Now let us study the sum (5.4.3) and we have

(5.4.3) =−∆x∆t
∑
n≥0

∑
j∈Z

sgn(ρn+1
j − c)

(
cV 1

j + g(c)V 2
j − cV 1

j−1 − g(c)V 2
j−1

)
ϕnj /∆x

=−∆x∆t
∑
n≥0

∑
j∈Z

sgn(ρn+1
j − c)

(
c
V 1
j − V 1

j−1

∆x
+ g(c)

V 2
j − V 2

j−1

∆x

)
ϕnj

=−∆x∆t
∑
n≥0

∑
j∈Z

(sgn(ρn+1
j − c)− sgn(ρnj − c))

(
c
V 1
j − V 1

j−1

∆x
+ g(c)

V 2
j − V 2

j−1

∆x

)
ϕnj

−∆x∆t
∑
n≥0

∑
j∈Z

sgn(ρnj − c)

(
c
V 1
j − V 1

j−1

∆x
+ g(c)

V 2
j − V 2

j−1

∆x

)
ϕnj .

The second term in the last equality clearly converges to

−
∫ T

0

∫ −η
−∞

sgn(ρ− c)
(
c(V1)x + g(c)(V2)x

)
ϕ)dxdt.

We will show now that the first term vanishes as ∆x → 0. We follow here [10, 11] and we
perform a summation by parts, which gives us:

∆t
∑
n≥0

∑
j∈Z

sgn(ρn+1
j − c)ϕnj

[
c

[(
V 1,n+1
j − V 1,n+1

j−1

)
−
(
V 1,n
j − V 1,n

j−1

)]

+g(c)

[(
V 2,n+1
j − V 2,n+1

j−1

)
−
(
V 2,n
j − V 2,n

j−1

)]]
+ ∆t∆t∆x

∑
n≥0

∑
j<0

sgn(ρn+1
j − c)

×

c
(
V 1,n+1
j − V 1,n+1

j−1

)
∆x

+ g(c)

(
V 2,n+1
j − V 2,n+1

j−1

)
∆x


(
ϕn+1
j − ϕnj

)
∆t

.
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As can be seen in (5.3.6) and (5.3.7) V i,n+1
j − V i,n+1

j−1 ≤ ∆xωη(0)‖v‖ holds and due to the
compactness of the support function the second term vanishes as ∆x,∆t → 0. For the first
term we first obtain that(

V 1,n+1
j − V 1,n+1

j−1

)
−
(
V 1,n
j − V 1,n

j−1

)

=



Nη−1∑
k=1

(γk−1 − γk)(v1(ρn+1
j+k − v1(ρnj+k))

+ γNη−1(v1(ρn+1
j+Nη

)− v1(ρnj+Nη))− γ0(v1(ρn+1
j )− v1(ρnj )),

j ≤ −Nη − 1,

−j−1∑
k=1

(γk−1 − γk)(v1(ρn+1
j+k )− v1(ρnj+k))− γ0(v1(ρn+1

j )− v1(ρnj )), −Nη ≤ j ≤ −2,

γ0(v1(ρn+1
−1 )− v1(ρn−1)), j = −1,

and (
V 2,n+1
j − V 2,n+1

j−1

)
−
(
V 2,n
j − V 2,n

j−1

)

=


0, j ≤ −Nη − 1,

γNη−1(v2(ρn+1
j+Nη

)− v2(ρnj+Nη)), j = −Nη,∑Nη−1
k=−j (γk−1 − γk)(v2(ρn+1

j+k )− v2(ρnj+k))

+γNη−1(v2(ρn+1
j+Nη

)− v2(ρnj+Nη)), −Nη + 1 ≤ j ≤ −1.

Now we use the compact support of the test function. There exist T > 0 and R > 0 such
that ϕ(t, x) = 0 for t > T and |x| > R. Let nT ∈ N and j0, j1 ∈ Z be such that T ∈
]nT∆t, (nT + 1)∆t],−R ∈]xj0− 1

2
, xj0+ 1

2
], R ∈]xj1− 1

2
, xj1+ 1

2
]. We only consider j0 < 0, since

otherwise the term is already 0. In addition, similar to [46, Theorem 3.3], the following
estimate is derived during the proof of Lemma 19:

NT∑
n=0

∑
j

∆x|ρn+1
j − ρnj | ≤ K̃,

By plugging in the equality obtained before, using the mean value theorem, the above men-
tioned estimate and g(c) ≤ c we obtain

∆t
∑
n≥0

∑
j<0

sgn(ρn+1
j − c)ϕnj

[
c

((
V 1,n+1
j − V 1,n+1

j−1

)
−
(
V 1,n
j − V 1,n

j−1

))

+g(c)

((
V 2,n+1
j − V 2,n+1

j−1

)
−
(
V 2,n
j − V 2,n

j−1

))]

≤ ∆t

∆x
‖ϕ‖‖v′‖c

γNη−1

NT∑
n=0

min{−1,j1}∑
j=j0

∆x|ρn+1
j+Nη

− ρnj+Nη |+

Nη−1∑
k=1

(γk−1 − γk)
NT∑
n=0

min{−1,j1}∑
j=j0

∆x|ρn+1
j+k − ρ

n
j+k|+ γ0

NT∑
n=0

min{−1,j1}∑
j=j0

∆x|ρn+1
j − ρnj |





116 Chapter 5. A non-local traffic flow model for 1-to-1 junctions

≤ ∆t‖ϕ‖‖v′‖cK̃2ωη(0),

which goes to zero as ∆x→ 0 (and then ∆t→ 0). This concludes the proof.

Proof of Theorem 14.
Similar to [21, Theorem 1], [46, Theorem 2.3] or [11, Theorem 1], the convergence of the
approximate solutions constructed by the upwind scheme (5.3.4) to the unique weak entropy
solution can be proven by applying Helly’s theorem, see [44, Lemma 5.6]. Due to Lemma 17
and Lemma 19, there exists a sub-sequence of approximate solutions that converges to some
ρ ∈ (L1∩L∞∩BV)(R+×R; [0,max{ρ1

max, ρ
2
max}]). Lemma 21 shows that the limit function ρ is

a weak entropy solution of (5.1.1)–(5.1.6) in the sense of Definition 4. Adding the uniqueness
result in Theorem 15, we conclude the proof of Theorem 14. �

5.5 Numerical simulations

The aim of this section is to give some numerical examples to show our model’s behaviour.
To this end, we will consider Riemann initial data of the type

ρ0(x) =

ρL, if x < 0,

ρR, if x > 0.
(5.5.1)

We take a spatial step size of ∆x = 10−3. The time step size ∆t is given by the CFL condition
(5.3.5).
We divide this section into three parts. In the first part we analyze how our model behaves for
a fixed look ahead distance η > 0. For non-local conservation laws, it is still an open question
whether the model tends to the corresponding local equation for η tending to zero (see for
example [26] for a recent overview). For this reason, we will investigate the limit question
as η → 0 from the numerical point of view in Section 5.5.2. Overall, we will consider the
following settings:

Test 1: vi(ρ) = vimax

(
1−

(
ρ

ρimax

)2
)

for i ∈ {1, 2}, with v1
max = 1, v2

max = 2, ρ1
max = ρ2

max =

1, ρL = 0.75, ρR = 0.5;

Test 2: as in Test 1, but with v1
max = 2, v2

max = 1;

Test 3: vi(ρ) = vimax

(
1− ρ

ρimax

)
for i ∈ {1, 2}, with v1

max = 2, v2
max = 1, ρ1

max = 0.5, ρ2
max =

1, ρL = 0.25, ρR = 0.5;

Test 4: vi as in Test 3, but with v1
max = 1, v2

max = 2, ρ1
max = 1, ρ2

max = 0.5, ρL = 0.5, ρR = 0.25.

The first two settings are used to show that the obtained solutions are reasonable also for
non-linear velocity functions, while the last two settings turn out to be interesting in Section
5.5.2. For all the tests, the kernel function is given by ωη(x) = 2(η − x)/η2 and the final
simulation time is T = 1.
Finally, in Section 5.5.3, we will show that our model can be easily extended to more than
two stretches and therefore to a sequence of 1-to-1 junctions to simulate traffic.
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Figure 5.2: Numerical solutions at T = 1 corresponding to Test 1 (left) and Test 2 (right).

5.5.1 Fixed look-ahead distance

We set the look-ahead distance η = 0.1. Let us consider the first test. Here we start with a
congested situation on the first road segment. In addition, the maximum velocity on the first
road is lower than the one on the second road segment. Therefore, the traffic jam resolves
over time as can be seen in Figure 5.2, left. In contrast to Test 1, Test 2 presents the opposite
situation: the velocity on the first road segment is now higher than the second one. Hence,
the traffic jam can not resolve and we get a backward traveling increase of the density (see
Figure 5.2, right).

In the last two settings we can see that the presence of the look ahead distance results in
a smoothing of the density close to the end of the first and the beginning of the second road
segment, see Figure 5.3.

5.5.2 Look-ahead distance tending to zero

As mentioned above, the behaviour of solutions for η tending to zero is of special interest for
non-local conservation laws. Concerning non-local LWR traffic flow models as in [21, 46], or
model (5.1.1) with v1 ≡ v2, so far the convergence to the classical LWR traffic flow model
[65, 67] can only be proven for monotone initial data (see [26, 56]), since the solution is
monotonicity preserving and therefore has a strict maximum principle and a bounded total
variation, uniformly in η. Unfortunately, similar results do not hold for model (5.1.1) with
v1 6= v2, since the model is, in general, not monotonicity preserving even for constant initial
data. Therefore, we just investigate the limit numerically.

The local (discontinuous) conservation law corresponding to model (5.1.1) is given by:

ρt + f(x, ρ)x = 0, with f(x, ρ) := H(−x)ρv1(ρ) +H(x)ρv2(ρ), (5.5.2)



118 Chapter 5. A non-local traffic flow model for 1-to-1 junctions

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

ρ
Test 3

numerical solution initial conditions x = 0

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x
ρ

Test 4

Figure 5.3: Numerical solutions at T = 1 for the Test 3 (left) and Test 4 (right).

where H(x) is the Heaviside function. As pointed out in [1, 18], (5.5.2) admits many L1

contraction semigroups, one for each so-called (A,B)-connection. The two most common
connections are the one corresponding to the supply-demand approach [61], and the vanishing
viscosity solution (see [54, Definition 3.1]), which is a weak solution satisfying, besides the
Kruzkov entropy inequalities for x < 0 and x > 0, the Γ-condition of [42, 43], see also [54,
Definition 3.1] and [6].
For instance, the vanishing viscosity solution can be obtained by a Godunov scheme
considering a grid where x = 0 is a cell midpoint, see [54]. In the following, we will consider
η ∈ {50∆x, 10∆x, 2∆x} and compare it to the solution of (5.5.2)–(5.5.1), which will be
computed by the Godunov scheme as presented in [54], since we are interested in the vanishing
viscosity solution. Note that, due to the different grids, we do not compute L1-errors between
the different solutions. We will now investigate the previous four test cases. In the first
two settings, as η → 0 the solution of (5.1.1) with initial conditions (5.5.1) is very similar
to the vanishing viscosity solution of the corresponding local problem, see Figure 5.4. We
also remark that, in the parameters settings Test 1 and Test 2, the solution obtained by the
supply-demand approach is equal to the vanishing viscosity solution.

Let us now consider Tests 3 and 4. The initial datum in both of them is exactly the density
corresponding to the maximum fluxes attainable on each road segment. Therefore, the solution
of the supply and demand approach is given by a stationary discontinuity coinciding with the
initial datum. As can be seen in Figure 5.5, in both tests the limit of model (5.1.1) behaves
as the vanishing viscosity solution. In Test 4, the numerical results also coincide with supply-
demand solution. The most interesting case is Test 3. For these parameters, the vanishing
viscosity solution differs from the supply-demand solution and, as can be seen in Figure 5.5
(left picture) the solution of the model (5.1.1) seems to converge to the vanishing viscosity
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Figure 5.4: Numerical solutions at T = 1 corresponding to Test 1 (left) and Test 2 (right) and
different values of η.

solution for η tending to zero.

5.5.3 Linear network scenario

Finally, we show that the model can be extended to more than two stretches of a road. We
consider the case of road works on a highway, modeled by the segment [0, L], with L = 2,
where the road capacity and the maximal speed are smaller. Therefore, we have three different
road segments, ]−∞, 0[, [0, L[ and [L,∞[, and we consider the linear velocity function as in
Test 3, with v1

max = v3
max = ρ1

max = ρ3
max = 1 before and after the road works, and v2

max = 0.5

and ρ2
max = 0.8 for x ∈ [0, L]. We start with a higher density on the segment with the road

works, i.e.

ρ0(x) =


0.4, if x < 0,

0.5, if 0 < x < L,

0.4, if L < x

(5.5.3)

As in Section 5.5.1, the look ahead distance is η = 0.1, and as in Section 5.5.2 we also present
the vanishing viscosity solution obtained by the Godunov scheme of [54] to get an impression
of the corresponding local problem. As can be seen in Figure 5.6, the presence of the road
works results in a traffic jam upstream and a decrease of the density downstream. As noticed
in Section 5.5.2, the numerical solution of the non-local problem tends for small η towards the
vanishing viscosity solution.
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Figure 5.5: Numerical solutions at T = 1 corresponding to Test 3 (left) and Test 4 (right) and
different values of η
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Figure 5.6: Numerical solution for three road segments at T = 1



Conclusions and perspectives

In this work, we introduced and studied non-local traffic flow models and different schemes to
numerically approximate their solutions. In particular, we presented a scalar non-local traffic
flow model, proving its well-posedness through a Lax-Friedrichs type numerical scheme and
analyzing the limit model as the support of the kernel function tends to infinity. Moreover,
under higher regularity assumptions, we showed the stability with respect to the kernel func-
tion, the velocity and the initial datum. Then, we presented a non-local multi-class traffic
flow model taking into account the behaviour of different classes of vehicles or drivers. We
extended the L-AR schemes proposed in [15, 16] to compute approximate solutions of this
multi-class system. The proposed numerical tests indicate that these schemes are competitive
with the first and second-order schemes proposed in the literature, in particular when more
than one class are involved. If the initial datum has jump discontinuities, the performance
of L-AR schemes are comparable with those of the second-order Godunov scheme. We also
applied high-order finite volume WENO schemes to the non-local multi-class traffic flow model
proposed in [22]. Finally, we presented a non-local flux model, which can handle changes of
velocities and maximum capacities on the road and therefore can model a 1-to-1 junction.
Numerical examples suggest that the solution tends to the vanishing viscosity solution of the
corresponding local conservation law as the look-ahead distance goes to 0. The above men-
tioned results open several perspectives for future research. We intend to further investigate
the analytical limit model question in future work for all the non-local models presented in
this thesis. In addition, the model based on the mean downstream velocity may be extended
to more general junctions to model traffic flow on networks. Hence, in the future, we aim
to extend this model from the current simple network structure to a more general network
formulation. Another perspective is the study of other high-order numerical schemes for these
non-local equations. It could be interesting to also analyze the validation and calibration of
all these non-local models, if appropriate data will be available. Optimal control of traffic
flow is a powerful subject and we could also work in this setting to improve performances.
Other open problems are the analysis of non-local space-discontinuous models, the description
of other non-local models for pedestrian traffic, a second-order non-local traffic flow model,
micro-macro limits and other studies of the initial boundary value problem for non-local con-
servation laws.
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