Résumé

Des sondages sismiques sont largement utilisés dans les domaines de construction et d'exploitation minière, ainsi qu'à toutes les étapes de l'exploration et développement du pétrole et du gaz. Toutes les méthodes sismiques visent à construire une image du sous-sol sans réellement pénétrer dans la croûte terrestre. Pour obtenir une telle image, on génère une onde sismique à la surface ou à une petite profondeur. Après avoir été émis, le champ d'ondes élastique se propage dans le sous-sol, où il est altéré et réfléchi par les couches et les corps géologiques. Une partie de l'énergie émise est absorbée par le milieu géologique, mais une partie importante de celle-ci revient vers le haut et atteint la surface, où des récepteurs sismiques sensibles aux vibrations minuscules sont placés pour l'enregistrer.

Les données sismiques enregistrées par plusieurs récepteurs forment des collections de traces sismiques. Dans ces collections, certaines caractéristiques cohérentes peuvent être identifiées, même avec un très mauvais rapport signal sur bruit. Ces caractéristiques cohérentes représentent des ondes sismiques distinctes, telles que des ondes réfléchies aux différentes couches géologiques aux différentes profondeurs dans le sous-sol. Connaissant l'instant d'émission du signal et son temps de propagation, connaissant aussi les positions spatiales des sources et des récepteurs et faisant des hypothèses sur les vitesses de propagation, on peut traiter les données pour obtenir des informations sur la géométrie du sous-sol et ses propriétés physiques. En augmentant le nombre de sources et de récepteurs et, par conséquent, en augmentant le nombre de signaux émis et enregistrés, on obtient une représentation encore plus précise du sous-sol.

Pour la majorité des méthodes d'imagerie sismique, il est crucial de connaître exactement le temps écoulé entre l'émission et l'enregistrement d'un signal, ainsi que les positions des sources et des récepteurs au moment de l'émission. Pour cette raison, il est important d'associer chaque signal identifié dans un enregistrement d'un récepteur à la source qui l'a émis. Ainsi, lorsque plusieurs sources émettent simultanément leurs signaux, ou lorsqu'une seule source émet un signal long (ou fait de petites pauses entre les émissions subséquentes), il faut pouvoir séparer les différentes sources et les différents tirs pour connaître l'heure exacte d'émission de chaque événement sismique rencontré dans une collection de traces.

Classiquement, les campagnes sismiques sont conçues de telle sorte que les intervalles de temps ou les intervalles spatiaux entre les tirs sont suffisamment importants pour éviter les interférences sur les fronts sismiques. Ceci est fait pour simplifier le processus de séparation qui permet d'associer la source et le moment d'émission à l'origine de l'événement à chaque événement d'une collection de traces sismiques. Il a été démontré que les interférences et les cross-talks -les pollutions provenant des autres sourcescompliquaient considérablement le traitement et finissaient par dégrader la qualité de l'image [START_REF] Lynn | Experimantal investigationof interference from other seismic crews[END_REF].

L'acquisition de données sismiques avec l'utilisation de sources simultanées permet un gain significatif de temps passé sur le terrain, ainsi qu'elle permet de réduire les coûts et l'exposition du personnel aux risques liés au terrain, sur terre comme en mer. L'idée d'acquérir les données sismiques avec plusieurs sources émettant simultanément n'est pas tout à fait nouvelle, les premières propositions datent des années 1970 [START_REF] Barbier | Sosie: A new tool for marine seismology[END_REF]Viallix, 1973, Silverman, 1979). Néanmoins, il a fallu plusieurs années et plusieurs pas ini crémentaux pour obtenir une vraie acquisition "blendée". En effet, différentes méthodes intermédiaires sont apparues afin de réduire la complexité des traitements de données associée à l'acquisition en mode sources simultanées.

Le principal défi résultant de l'émission simultanée de signaux de même contenu spectral est d'éviter de dégrader la qualité des données acquises, à cause de la superposition de signaux dans l'enregistrement sismique. Afin de séparer ces signaux et supprimer les cross-talks, il est nécessaire de proposer une méthode de traitement efficace et adaptée.

Les communautés, industrielle et académique, développent de nouvelles méthodes de séparation de sources depuis quelques années. Les méthodes proposées peuvent être classées en trois groupes principaux. Le plus souvent les méthodes des trois groupes imposent une certaine contrainte sur la manière d'acquérir les données. Notamment, il est nécessaire que les temps de tir des différentes sources soient suffisamment aléatoires les uns par rapport aux autres.

Pseudo-deblending suivi d'une suppression de bruit non cohérent. Ce sont les méthodes qui adoptent l'approche la plus intuitive, qui a été proposée initialement pour le traitement des données acquises en mode sources simultanées. Il s'agit d'aligner les données du récepteur selon les temps de tirs de la source étudiée. En faisant cela et à condition que les temps des tirs des autres sources soient aléatoires, le signal provenant de la source étudiée se présente comme étant cohérent, tandis que les signaux des autres sources apparaissent comme du "bruit" non cohérent. Ils peuvent alors être supprimés avec des procédures classiques de débruitage.

Séparation de sources basée sur l'inversion. Ce sont les méthodes de séparation basées sur l'inversion qui, contrairement au pseudo-deblending et au débruitage, traitent chaque signal de chaque source comme un signal et non pas comme un bruit. Elles visent à expliquer tous les signaux interprétables indépendamment de leur origine. L'approche d'inversion a été jusqu'à l'heure actuelle la plus réussie, notamment, [START_REF] Bagaini | The acquisition and processing of dithered slip-sweep vibroseis data[END_REF] démontrent la supériorité des méthodes de séparation basées sur l'inversion par rapport à celles d'atténuation de bruit aléatoire.

Imagerie directe des données blendées. Ce sont les méthodes qui suggèrent de travailler directement avec des données blendées, ce qui est très tentant en termes d'effort de calcul. En effet, toute séparation de sources implique une multiplication des volumes de données: un nouveau volume est créé pour chaque source après séparation, le traitement ultérieur doit être mené dans tous ces volumes, alors qu'il pourrait être appliqué directement au mélange.

Les spécialistes du domaine de l'acquisition en mode sources simultanées conviennent que travailler dans le domaine fusionné "comprimé" le plus longtemps possible est reconnu comme une accélération potentielle du traitement. Autrement dit, les méthodes du troisième groupe devraient être prometteuses pour l'avenir, mais elles ne sont pas réalistes en ce moment en raison de la complexité et du coût élevé d'algorithmes industriels déjà implémentés, qui traitent les données acquises de manière conventionnelle. Par conséquent, aujourd'hui, il est toujours préférable de séparer les signaux bruts afin de garder le traitement suivant inchangé. L'objectif de cette thèse est de proposer un algorithme de deblending efficace qui peut être appliqué aux données sismiques brutes avant tout traitement.

Dans cette thèse, nous considérons des sources qui se déplacent en tirant le long de lignes droites et des récepteurs immobiles avec un enregistrement continu, ce qui signifie ii que les récepteurs ne sont jamais éteints pendant l'acquisition et enregistrent tous les signaux sismiques produits pendant cette période.

Source 2 Source 1 x 1 1 , T 1 1 x 1 N 1 , T 1 N 1 x 2 1 , T 2 1 x 2 N 2 , T 2 N 2
points de tirs récepteur Figure 1: Schéma d'acquisition sismique de type OBN (Ocean Bottom Node) pour deux sources sismiques. Le paramètre x i n définit la coordonné spatiale du n-ème tir de la source i sur l'axe de la ligne de tirs de la i-ème source, et T i n est l'instant de ce tir; N i est le nombre de tirs effectué par la source i. Remarquons que les axes x peuvent être différents pour des sources différentes.

La variable t définit le temps, t ∈ [0, T glob ], où T glob est le temps global passé entre le début et la fin de l'acquisition du signal d(t). Les N i tirs le long d'une ligne droite à la surface sont effectués par une source sismique i à des moments donnés T i n (Figure 1). Ce type d'enregistrement est une caractéristique spécifique des campagnes simultanées. Dans les campagnes classiques, avec des sources isolées, les données sont enregistrées dans une représentation en plan (t, x) (appelée traces sismiques) et les instants des tirs T n sont automatiquement pris en compte comme les débuts des traces.

Les signaux sismiques comportent souvent des composantes très variées en magnitude. De ce fait, il est d'usage de procéder au traitement sismique de manière progressive en supprimant d'abord les bruits les plus forts, puis les bruits plus faibles. Nous avons alors proposé une méthode de deblending appartenant au deuxième groupe cité ci-dessus et basée sur une approche similaire : il s'agit de l'application aux données sismiques de la technique d'Orthogonal Matching Pursuit (OMP) -une méthode de décomposition de signaux. Les méthodes de Matching Pursuit font partie des algorithmes gloutons, i.e., elles cherchent à décomposer le signal en une somme pondérée d'éléments en commençant par les traits les plus significatifs. Ces méthodes nécessitent un dictionnaire prédéfini d'éléments (appelés atomes), ou de vecteurs unitaires. Pour assurer la convergence correcte de l'algorithme, ce dictionnaire doit être adapté au signal d'intérêt.

Nous proposons d'utiliser un dictionnaire d'événements sismiques que l'on construit au fur et à mesure. Les événements sismiques sont des caractères cohérents que l'on retrouve dans les données sismiques et qui sont définis par leurs courbes de temps d'arrivée -linéaires ou paraboliques (d'autres formes sont possibles), leurs amplitudes et leurs signatures spécifiques, ou ondelettes. Chacun de ces paramètres est essentiel pour la définition d'un événement sismique, son estimation est obtenue progressivement au cours d'une itération de l'OMP.

Afin de paramétrer un événement sismique, nous proposons un modèle construit à partir des données, et nous écrivons un atome, avant normalisation, sous la forme h w(t), où défini la convolution. Ce modèle comporte deux parties. La partie cinématique, que l'on appelle la courbe de temps de propagation h(t), contient toute l'information liée au temps de propagation d'onde (les caractéristiques du milieu), à la distance entre les sources et le récepteur et aux retards liés aux temps de tirs. La deuxième partie, que l'on appelle la signature ou l'ondelette w(t), peut être associée aux excitations émises par les sources et altérées par la propagation et la réflexion. Ainsi, nous représentons les données iii d(t) sous la forme d'une somme d'un nombre fini L d'événements sismiques

d(t) = L =1 h w (t) + R L d(t),
(1) où le terme R L d(t) définit le résidu après la décomposition du signal d(t) en une combinaison linéaire de L éléments du dictionnaire1 . Pour notre problème de séparation de sources, en considérant que l'on ne perd pas en généralité en présentant l'équation suivante pour deux sources simultanées, nous réécrivons (1) de la manière suivante

d(t) = K 1 =1 h (1) w (1) (t) + K 2 =1 h (2) w (2) (t) + R L d(t), (2) 
avec K 1 +K 2 = L et avec la première (respectivement, la deuxième) somme correspondant aux événements sismiques identifiables dans le plan (t, x) lié à la première (respectivement, la deuxième) source. Avec cette décomposition, un deblending parfait consisterait en une réduction du résidu R L d(t) au bruit ambiant. Dans ce cas, chacune des sommes correspondrait au signal isolé dû uniquement à sa source d'origine. Ainsi, afin de procéder au deblending, nous recherchons une décomposition (2) des données, où le signal isolé associé à la source i se trouve essentiellement dans la somme

S (i) = K i =1 h (i) w (i) , (3) 
autrement dit, ses caractéristiques les plus énergétiques se trouvent dans cette somme. En même temps, les diaphonies les plus énergiques provenant des autres sources sont capturées dans les autres sommes

S (j) = K j =1 h (j) w (j) avec j = i. ( 4 
)
Dans ce cas, un traitement classique appliqué au signal deblendé

S(i) = K i =1 h (i) w (i) + R L d(t) (5)
correspondrait à un traitement qui aurait été appliqué à ces données s'il n'y avait pas eu d'autres sources tirant en même temps. Maintenant, nous définissons les atomes de notre dictionnaire. Le modèle de la courbe de temps d'arrivée se base sur l'utilisation couramment réalisée en traitement sismique des transformations (ou des décompositions) de Radon linéaire et parabolique. La réalisation en sismique de la transformation de Radon linéaire, qui est souvent nommée slant-stack, est simple : il s'agit de sommer les amplitudes d'une collection de traces sismiques le long des droites définies par l'équation t = τ + px dans le plan (t, x) et de reporter chacune des sommes associées à une paire de paramètres (τ, p) dans le plan (τ, p) [START_REF] Hugonnet | La transformée de Radon généralisée et ses applications à la sismique[END_REF]. Ici les variables t et τ définissent le temps, x la coordonnée spatiale et p la pente. Pour étendre ce modèle au modèle parabolique, il est nécessaire d'ajouter un terme de courbure. Ainsi, la partie du modèle liée purement au temps de propagation h(i) (t) prend la forme

h(i) (t) = N n=1 δ   t -τ -p(x i n -x i 0 ) -q x i n -x i 0 x i max -x i min 2 -T i n   , (6) 
où on omet l'indice afin d'alléger les notations. Ici N est le nombre de traces sismiques prises en compte pour la construction de l'événement, x i 0 , x i min et x i max sont des coordonnées de référence (liées au domaine de tirs de la source i), et δ(t) est la distribution de Dirac. L'introduction du coefficient α permet de prendre en compte une variation d'amplitude linéaire en fonction de la position de la source

h (i) (t) = N n=1 1 + α(x i n -x i 0 ) δ   t -τ -p(x i n -x i 0 ) -q x i n -x i 0 x i max -x i min 2 -T i n   . ( 7 
)
L'autre partie importante de notre modèle est l'ondelette. Nous proposons une estimation de l'ondelette basée sur sa stabilité latérale. Premièrement, nous obtenons une première estimation non paramétrique ŵ(i) (t) de l'ondelette en moyennant sur les traces voisines le long de la courbe définie par (7) et en rejetant d'éventuelles valeurs aberrantes. Puis nous adoptons une représentation paramétrique de l'ondelette estimée, elle est constituée d'une somme pondérée d'atomes élémentaires connus analytiquement. Pour décomposer l'estimation non paramétrique de l'ondelette en une combinaison linéaire d'un petit nombre d'atomes d'ondelettes, nous avons choisi d'utiliser une deuxième fois l'algorithme OMP, ici dénommé OMP interne. Ainsi, nous devons choisir un dictionnaire adapté. Pour cela, nous construisons un nombre fini S de formes d'ondelettes classiques à partir d'une analyse spectrale préliminaire des données. Dans nos tests, une forme correspond à une ondelette de Ricker d'une fréquence dominante donnée, ou à une ondelette d'Ormbsy avec un ensemble donné de fréquences de coupure. L'indice s (1 ≤ s ≤ S) indique la forme de l'ondelette w s (t), et le dictionnaire est constitué d'atomes (avant la normalisation) {w s (t -τ ) : 1 ≤ s ≤ S, τ ∈ [0, T ]} (avec T > 0 un méta-paramètre à préciser). Par conséquent, nous obtenons l'écriture paramétrique suivante

ŵ(i) (t) = K k=1 a k w s k (t -τ k ) + R K ŵ(i) (t) w (i) (t) = K k=1 a k w s k (t -τ k ). (8)
Un exemple de l'utilisation de l'OMP interne est donné à la Figure 2.

Enfin, dans notre méthode, un atome de l'OMP externe est exprimé, avant la normalisation, comme G γ (t) = h (i) w (i) (t) avec h (i) et w (i) donnés respectivement par (7) et (8), i.e.,

G γ (t) = h (i) w (i) (t) = N n=1 1 + α(x i n -x i 0 ) × × K k=1 a k w s k   t -τ -p(x i n -x i 0 ) -q x i n -x i 0 x i max -x i min 2 -T i n -τ k   , (9) 
où γ = {i, τ, p, q, α, K, {s k , a k , τ k } 1≤k≤K } est l'ensemble complet des paramètres pour la construction d'un événement sismique et g γ = Gγ Gγ , alors nous pouvons construire une décomposition (2) qui remplit les conditions requises mentionnées ci-dessus pour le deblending. Les exemples de tels atomes, donnés dans la Figure 3, montrent la capacité de l'algorithme à gérer la courbure et la variation d'amplitude. Ensuite, nous appliquons l'algorithme OMP pour construire une décomposition (2) qui répond aux conditions requises pour le deblending mentionnées ci-dessus. Il est important de noter que si deux sources différentes éclairent la même zone dans le sous-sol (par exemple, la même interface entre deux couches géologiques approximativement au même endroit), cela correspond au même événement physique ou géologique. Cependant, avec notre modèle (2), nous obtenons deux événements sismiques différents, car les événements (2) dépendent non pas seulement des propriétés du sous-sol, mais également des positions relatives des sources par rapport au récepteur et des instants de tirs. La décomposition est poursuivie itérativement jusqu'à ce qu'un critère d'arrêt soit satisfait: la norme du résidu ou son gradient est inférieur à un seuil pré-établi, le nombre maximal d'itérations est atteint, etc. Une fois la décomposition terminée, nous avons le choix de ne garder que les événements expliqués qui construisent la somme S (i) de (3), ou d'ajouter le vi résidu aux événements expliqués et d'obtenir les données deblendées S(i) de (5). Ce choix doit être motivé par le but de l'étude : en général, si une étude précise est envisagée, le résidu est préservé afin d'éviter toute perte de signal utile. Les avantages spécifiques à notre méthode par rapport à l'état de l'art sont la capacité de gérer des événements sismiques avec une courbure significative, pouvant présenter une variation significative d'amplitude versus la position de la source, ainsi que la signature spécifique à chacun des événements.

La méthode a été testée sur des données sismiques synthétiques simples et parfaitement connues, ainsi que sur des données plus complexes. La Figure 4 montre les résultats de deblending pour une collection de traces d'un récepteur commun sur les données synthétiques issues du modèle Marmousi [START_REF] Martin | Marmousi2: An elastic upgrade for Marmousi[END_REF] avec l'addition d'un bruit sismique réel. La figure de droite montre que le bruit énergétique de blending a été atténué, alors que le bruit ambiant est préservé et pourra être traité par le traitement sismique classique. Les Figures 5 et 6 montrent les résultats de deblending pour une collection de traces d'un récepteur commun pour les données sismiques réelles issues d'une acquisition faite pour Total au Gabon en 2014 [START_REF] Godart | Unpublished technical processing report. Torpille: 4D simulation with multi-sources acquisition[END_REF]. Une atténuation significative des diaphonies dues au blending peut être observée dans la figure de droite. La Figure 6 montre les parties des collections de la Figure 5 à l'intérieur des carrés rouges. Le signal cohérent caché par les diaphonies dans la figure de gauche, est dévoilé dans la figure de droite après le deblending.

Ainsi, nous avons proposé une nouvelle méthode de deblending. L'implémentation de cette méthode a permis l'obtention de résultats qui ont un niveau de qualité conforme vii à l'utilisation attendue des données sismiques, pour des données sismiques synthétiques simples et complexes, ainsi que pour des données sismiques réelles. Cette méthode peut également être utilisée pour l'atténuation de bruit, la régularisation de données sur une grille régulière ou le pointé d'événements sismiques.

Mots-clés: sismique, sources simultanées, deblending, traitement de signal, matching pursuit orthogonal.
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Abstract

Seismic surveys are broadly used for engineering and mining purposes, as well as at all the stages of oil and gas exploration and development. All the seismic methods aim to construct an image of the subsurface without actually penetrating into the Earth crust. To obtain such an image, one generates a sound wave at or close to the surface. After being emitted, the elastic wavefield propagates into the subsurface, where it is altered and reflected by the geological layers and bodies. Some of the emitted energy is absorbed by the geological medium, but a significant part of it comes back upwards and reaches the surface, where seismic receivers sensible to minute vibrations are placed to record it.

The seismic data recorded by multiple receivers forms seismic gathers, or collections of seismic traces. In these gathers, some coherent features can be noted, even with a very poor signal to noise ratio. These coherent features represent distinct seismic waves, such as waves reflected at different layer boundaries at different depths in the subsurface. Knowing the time of the signal emission and its propagation time, knowing also the spatial positions of the sources and the receivers and making assumptions on the propagation velocities, one can process the data to obtain some information on the subsurface geometry and physical properties. By increasing the number of sources and receivers and, consequently, by increasing the number of emitted and recorded signals, one achieves an even more accurate representation of the subsurface.

For the majority of the seismic imaging methods, it is crucial to know exactly the time elapsed between the emission and the recording of a signal, as well as the positions of the sources and the receivers at the emission moment. For this reason, it is important to associate each signal encountered in a receiver record to the source that emitted it. Hence, when several sources simultaneously emit their signals, or when a single source emits a long signal (or makes small pauses between subsequent shots), one has to be capable of separating the different sources and the different shots to know the exact time of emission of each seismic event encountered in a seismic gather.

Conventionally, seismic surveys are designed in such a way that the time intervals or the location intervals between shots are large enough to avoid cross-talks -pollutions from the other sources -on the seismic gathers. This is done to simplify the process of separation that allows one to associate the source and the moment of emission at the origin of the event with each event of a seismic gather. Cross-talks have been shown to significantly complicate the processing and eventually degrade the image quality [START_REF] Lynn | Experimantal investigationof interference from other seismic crews[END_REF].

The acquisition of seismic data with simultaneous sources may substantially reduce time spent in the field, reduce costs but also decrease staff exposure to risks related to the field environment, onshore and offshore. The idea of acquiring seismic data with multiple sources simultaneously transmitting their signals is not new and the first propositions date from the 1970s [START_REF] Barbier | Sosie: A new tool for marine seismology[END_REF]Viallix, 1973, Silverman, 1979). Nevertheless, it took many years and several incremental advances to demonstrate a true blended acquisition. Indeed, different intermediate methods appeared to reduce the complexity of the data processing associated with simultaneous sources.

The main challenge resulting from the simultaneous emission of signals with the same spectral content is to avoid reducing the quality of the acquired data, because of the superposition of signals in the seismic record. In order to separate these signals and suppress the cross-talks, it is crucial to propose an efficient and adapted processing method.

The industrial and academic community has been working on new methods of this type in recent years, and the methods proposed can be classified in three main groups.
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The methods of all the three groups, in general, impose a certain constraint on the way of data acquisition. In particular, it is necessary that the firing times of the different sources are sufficiently random with respect to each other.

Pseudo-deblending followed by random noise attenuation. These methods following the most intuitive approach and were initially proposed for the processing of the data acquired in simultaneous-source mode. They consist in presenting the signal coming from one (and only one) of the sources as being coherent and by removing the signals coming from the other sources with conventional denoising procedures. Indeed, by aligning the receiver data according to the firing times of the studied source, and provided that the firing times of the other sources are random enough, the signal from the studied source is coherent and the signals from other sources appear as random noise.

Inversion-based source separation. These methods, unlike pseudo-deblending and denoising, treat each signal of each source as a signal and not as noise. They aim to explain all interpretable signals regardless of their origin. The inversion approach has so far been the most successful, notably [START_REF] Bagaini | The acquisition and processing of dithered slip-sweep vibroseis data[END_REF] demonstrate the superiority of inversion-based separation methods over those of random noise attenuation.

Direct imaging of blended data. These methods suggest working with blended data without preliminary separation, which is very tempting in terms of computational effort. Indeed, any separation of sources implies a multiplication of the volumes of data, since a new volume is created for each source after separation. Thus, the subsequent processing must be carried out for all these volumes, whereas it could have been applied directly to the blended volume, if appropriate processing and imaging techniques existed.

Specialists in the field of simultaneous source-mode acquisition agree that working in the blended "compressed" domain as long as possible will lead to a potential acceleration of processing. In other words, methods from the third group should be promising in the future, but they are not realistic at the moment because of the high complexity and cost of already implemented industrial algorithms, which process data coming from single-source mode acquisition. Therefore, today it is still better to deblend the rawest signals in order to keep the following processing unchanged. The objective of this thesis is to propose an efficient deblending algorithm that could be applied to raw seismic data before any processing.

In this thesis, we consider moving sources shooting along strait lines and motionless receivers with continuous recordings, which means that the receivers are never turned off during the acquisition and record all the seismic signals that are produced during this time.

The time is denoted by t ∈ [0, T glob ], where T glob is the global time spent to acquire d(t). The N i shots along one shooting line on the surface are performed by one seismic source i at some moments in time T i n (see Figure 7). This kind of recording is a specific feature of simultaneous-source surveys. In classical surveys, with separated sources, data are recorded in a (t, x) plane representation (referred to as seismic traces) and the shot times (or shooting times) T n are automatically taken into account as the beginnings of the traces.

Seismic signals often contain components with very different magnitudes. Therefore, it is common practice to proceed with the seismic processing in a progressive manner
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Figure 7: Ocean Bottom Node (OBN) acquisition design scheme for two seismic sources. The parameter x i n denotes the nth shot of the ith source coordinate on the axis of the ith source shooting line and T i n is the time instant of this shot; N i is the number of shots made by the ith source. Note that the x axis of the sources can be different.

by successively removing the noise from the most energetic to the least energetic. We propose a method of deblending based on a similar approach, this is the application to the seismic data of the technique of Orthogonal Matching Pursuit (OMP) -a method of signal decomposition. The Matching Pursuit methods are part of greedy algorithms, i.e., they seek to decompose the signal into a weighted sum of elements starting with the most significant features. These methods require a predefined dictionary of elements (called atoms), or unit-norm vectors. To ensure the correct convergence of the algorithm, this dictionary must be adapted to the signal of interest.

We propose to use a dictionary built of seismic events -coherent characters which are found in seismic data and which are defined by their shapes -linear or curved, their amplitudes and their specific signatures, or wavelets. Each of these parameters is essential for the definition of a seismic event, their estimation is obtained progressively during an iteration of the OMP.

To parameterize a seismic event, we propose a data-derived model, and we write an atom, before normalization, in the form h w(t), where stands for convolution. This model consists of two parts. The first part, called the traveltime curve h(t), contains all the information related to the wave propagation (the characteristics of the medium), to the distance between sources and receivers, and to the delays due to firing times. The second part, called the signature or the wavelet w(t), can be associated with the excitations emitted by the sources and altered by propagation and reflection. Therefore, we represent the data d(t) as a finite sum of L seismic events

d(t) = L =1 h w (t) + R L d(t), ( 10 
)
where the term R L d(t) defines the residue after the decomposition of the signal d(t) into a weighted sum of L elements of the dictionary2 .

For our problem of deblending, considering that we do not lose generality by presenting the following equation for (only) two simultaneous sources, we rewrite (10) as follows

d(t) = K 1 =1 h (1) w (1) (t) + K 2 =1 h (2) w (2) (t) + R L d(t), (11) 
with K 1 + K 2 = L and with the first (respectively, the second) sum corresponding to the seismic events identifiable in the (t, x) plane related to the first (respectively, the xi second) source. With this decomposition, a perfect deblending would consist in reducing the residue R L d(t) to the ambient noise. In this case, each of the sums would correspond to the isolated signal of its source of origin. In summary, to deblend, we are looking for a decomposition (11) of the data, where the isolated signal associated with the source i is essentially found in the sum

S (i) = K i =1 h (i) w (i) , ( 12 
)
in other words, its most energetic characteristics are found in this sum. At the same time, the most energetic cross-talks from the other sources are captured in the other sums

S (j) = K j =1 h (j) w (j) with j = i. ( 13 
)
In this case, a classical seismic processing applied to the deblended signal

S(i) = K i =1 h (i) w (i) + R L d(t) (14)
would correspond to the processing which would have been applied to these data had there not been any other sources firing at the same time.

We now specify the atoms of our dictionary. The model of the traveltime curve is based on the common use in seismic processing of linear and parabolic Radon transformations (or decompositions). The implementation of the linear Radon transform in seismic processing, where it is often called slant-stack, is simple: it is a matter of summing the amplitudes in a seismic gather along the straight lines defined by the equation t = τ + px in the (t, x) plane, and reporting to the (τ, p) plane each of the sums associated with a pair of parameters (τ, p) [START_REF] Hugonnet | La transformée de Radon généralisée et ses applications à la sismique[END_REF]. Here the variables t and τ define the time, x the spatial coordinate and p the slope. To extend this model to the parabolic model, it is necessary to add a curvature term. Hence, the part of the model purely related to the traveltime h(i) (t) takes the form

h(i) (t) = N n=1 δ   t -τ -p(x i n -x i 0 ) -q x i n -x i 0 x i max -x i min 2 -T i n   , ( 15 
)
where we omit the index in order to alleviate the notations. Here, N is the number of seismic traces taken into account for the construction of the event, x i 0 , x i min and x i max are reference coordinates (related to the shot point range of the source i) and δ(t) is the Dirac distribution. Furthermore, we introduce the coefficient α which allows taking into account a linear amplitude variation with respect to the position of the source

h (i) (t) = N n=1 1 + α(x i n -x i 0 ) δ   t -τ -p(x i n -x i 0 ) -q x i n -x i 0 x i max -x i min 2 -T i n   . ( 16 
)
The other important part of our model is the wavelet. We propose a wavelet estimation based on its lateral stability. First, we obtain a non-parametric estimation ŵ(i) (t) of the wavelet by averaging the neighboring traces along the curve defined by ( 16) and rejecting eventual outliers. Then, we adopt a parametric model to represent the wavelet, which consists of a weighted sum of analytically known elementary wavelets. To decompose xii the estimated wavelet into a linear combination of a small number of wavelet atoms, we chose to use the OMP algorithm, called here inner OMP, a second time. Thus, we must create a suitable dictionary. For this, we choose a finite number S of classical wavelet shapes from a preliminary spectral analysis of the data. In our tests, the shapes correspond to either a Ricker wavelet with a given dominant frequency or an Ormsby wavelet with a given set of cut-off frequencies. The index s (1 ≤ s ≤ S) specifies the shape of the wavelet w s (t), and the dictionary consists of atoms (before normalization) {w s (t -τ ) : 1 ≤ s ≤ S, τ ∈ [0 , T ]} (with T > 0 a meta-parameter). Therefore, we get the following parametric wavelet representation

ŵ(i) (t) = K k=1 a k w s k (t -τ k ) + R K ŵ(i) (t) w (i) (t) = K k=1 a k w s k (t -τ k ). ( 17 
)
An example of the use of the inner OMP is given in Figure 8. Finally, in our method, an atom of the outer OMP is represented, before normalization, by G γ (t) = h (i) w (i) (t) with h (i) and w (i) given respectively by ( 7) and (8), i.e.,

G γ (t) = h (i) w (i) (t) = N n=1 1 + α(x i n -x i 0 ) × × K k=1 a k w s k   t -τ -p(x i n -x i 0 ) -q x i n -x i 0 x i max -x i min 2 -T i n -τ k   , ( 18 
)
where γ = {i, τ, p, q, α, K, {s k , a k , τ k } 1≤k≤K } is the complete set of parameters allowing the construction of a seismic event. Examples of such atoms, given in Figure 9, show the ability of the algorithm to handle curvature and amplitude variation.

Then we apply the OMP algorithm to construct a decomposition (11) that meets the aforementioned requirements for deblending. It is important to note that if two different sources illuminate the same area in the subsurface (for example, the same interface xiii between two geological layers at approximately the same location), this corresponds to the same physical event (e.g., geological layer). However, with our model ( 11), we obtain two different seismic events. The decomposition proceeds iteratively until a stopping criterion is satisfied, e.g., when the norm of the residue or its decay rate is inferior to an established beforehand threshold, the maximal number of iterations is reached, etc. Once the decomposition is completed, we have the choice between only keeping the explained events constructing the sum S (i) in ( 12), or adding the residue to the explained events and obtain the deblended data -S(i) in ( 14). This choice must be guided by the aims of the study, e.g., in general, if a precise study is envisioned, the residue is preserved in order to avoid any loss of useful signal.

The specific advantages of our method compared to the state of the art are the ability to handle seismic events with a significant curvature, amplitude variation versus distance between the sources and the receiver, as well as the signature specific to each event.

The method was tested on simple and perfectly known synthetic seismic data, as well as on more complicated data. Figure 10 shows the results of deblending for a common receiver gather from synthetic data modeled using the Marmousi model [START_REF] Martin | Marmousi2: An elastic upgrade for Marmousi[END_REF] with the addition of real seismic noise. The right-hand-side plot shows that the energetic blending noise has been attenuated, while the ambient noise is preserved and can be processed by conventional seismic processing.

Figures 11 and12 show the results of deblending for a common receiver gather from a real seismic data set from the OBN Torpille acquisition in Gabon, made for Total in 2014 [START_REF] Godart | Unpublished technical processing report. Torpille: 4D simulation with multi-sources acquisition[END_REF]. A significant cleanup of blending noise can be perceived in the right-hand-side plot. Figure 12 shows zoom on the parts highlighted by the red rectangles in Figure 11. The coherent signal hidden by the cross-talk in the left-hand-side plot, is revealed in the right-hand-side plot after deblending.

In conclusion, we proposed a new deblending method. The implementation of this method has yielded results that have a quality level consistent with the expected use of seismic data, for simple and complicated synthetic seismic data, as well as for real seismic data. This method can also be used for noise attenuation, regularisation of the seismic data on a regular grid, and seismic event picking. xvi Chapter 1
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Modern seismic exploration

Introduction to seismic exploration

Seismic surveys are broadly used for engineering and mining purposes, as well as at all the stages of oil and gas exploration and development. All the seismic methods aim to construct an image of the subsurface without actually penetrating into the Earth crust.

To obtain such an image, as shown in Figure 1.1, one generates a sound wave at or close to the surface. After being emitted, the elastic wavefield propagates into the subsurface, where it is altered and reflected by the geological layers and bodies. Some of the emitted energy is absorbed by the geological medium, but a significant part of it comes back upwards and reaches the surface, where seismic receivers sensible to minute vibrations are placed to record it. The seismic data recorded by multiple receivers forms seismic gathers, or collections of seismic traces. In these gathers, some coherent features can be noted, even with a very poor signal to noise ratio. These coherent features represent distinct seismic waves, such as waves reflected at different layer boundaries at different depths in the subsurface. Knowing the time of the signal emission and its propagation time, knowing also the spatial positions of the sources and the receivers and making assumptions on the propagation velocities, one can process the data to obtain some information on the subsurface geometry and physical properties. By increasing the number of sources and receivers and, consequently, by increasing the number of emitted and recorded signals, one achieves an even more accurate representation of the subsurface.

v 1 , ρ 1 v 2 , ρ 2 v 3 ,
For the majority of the seismic imaging methods, it is crucial to know exactly the time elapsed between the emission and the recording of a signal, as well as the positions of the sources and the receivers at the emission moment. For this reason, it is important to associate each signal encountered in a receiver record to the source that emitted it. Hence, when several sources simultaneously emit their signals, or when a single source emits a long signal (or makes small pauses between subsequent shots), one has to be capable of separating the different sources and the different shots to know the exact time of emission of each seismic event encountered in a seismic gather.

Ideally, to recover the exact impulse response of the subsurface, a seismic source should have an infinite bandwidth. In reality, typical seismic sources used in petroleum exploration and production industry emit a band-limited signal with a range of 5 -150 Hz.

In oil and gas seismic exploration, the sound wave sources are usually dynamite (Figure 1.2a) or vibrator trucks (Figure 1.2c) for land surveys, and airguns (Figure 1.3) for marine surveys. These sources have slightly different bandwidths and signatures, but their signals are in general comparable after some processing. For shallow subsurface characterization (used for engineering purposes, for example), the use of a simple hammer (Figure 1.2b) as a seismic source is sufficient. Constant research is going on to develop new seismic sources, that would be lighter than the conventional vibrators, environmentally acceptable, portable and still powerful enough for their signal to penetrate into deep subsurface layers. Conventionally, seismic surveys are designed in such a way that the time intervals or the location intervals between shots are large enough to avoid cross-talks on the seismic gathers. This is done to simplify the process of separation that allows one to associate the source and the moment of emission at the origin of the event with each event of a seismic gather. Cross-talks have been shown to significantly complicate the processing and eventually degrade the image quality [START_REF] Lynn | Experimantal investigationof interference from other seismic crews[END_REF].

In most cases, the raw seismic signal cannot be interpreted directly: a seismic gather contains information not only about the reflected wavefield, but also about direct waves, surface waves, diffractions, multiple reflections inside the water layer (for marine seismic), which do not possess any information about the deep geological layers, and internal multiples, the utilization of which is not yet a convention (see Figure 1.1). All of these wavefields are conventionally treated as coherent noise and are attenuated at the processing stage. After processing, the primary reflections are propagated backwards and focused to all depth levels (migrated) to obtain an image of the subsurface [START_REF] Claerbout | Towards a unified theory of reflector mapping[END_REF]. Many imaging techniques have been developed, though all of them are impacted by the quality of the input data, and specifically, the quality of separation of the reflected wavefield from all the others. Some inversion methods, such as Full Waveform Inversion (FWI) are capable of dealing with the whole wavefield [START_REF] Tarantola | Inversion of seismic reflection data in the acoustic approximation[END_REF], but have been until now insufficiently precise and are only used for velocity model estimation.

A seismic experiment involves seismic sources and receivers deployed according to a chosen survey design and functioning with respect to a predefined scheme. The choice of an appropriate survey design depends on the purpose of the survey, as well as on the depth and geometry of the supposed layer or geological body of interest. Usually, for exploration purposes, huge surfaces have to be covered with seismic in very restricted time frames. This is done to understand if the area is interesting enough to acquire exploration permits.

At this stage, 2D surveys are usually performed: seismic lines are designed to be sparse, but covering the whole area of interest. The image resulting from a 2D seismic survey commonly has sufficient quality for obtaining structural interpretation and getting some general information on the subsurface. Nevertheless, it is insufficient for more precise studies of the subsurface properties, because one only attempts to get a vertical slice of the Earth, putting shots and receivers along the same line on the surface. If our world were a 2D world, an accurate image could be issued from such an acquisition, as shown in Figure 1.1. Fortunately or not, our world is a 3D one, so the signals emitted at the surface propagate in all directions in the subsurface, are reflected and scattered and come back to the receivers equally from all the directions. The direction the signal is coming from cannot be taken into account, when a 2D acquisition is held and a 2D processing is applied. Consequently, for reservoir identification and characterization these 3D effects should be taken into account, and a 3D seismic survey followed by a 3D processing and imaging is required.

Even more precise studies called 4D surveys are needed for reservoir monitoring. These are seismic campaigns in which the exact same survey is repeated in time in order to follow the reservoir evolution during production. To obtain an image of sufficient quality, one has to increase source and receiver sampling, in other words, make more shots and place more sensors. This creates logistics issues, especially for marine surveys, and increases the time and money spent to acquire the seismic information.

Motivation for simultaneous shooting and history of the method

Simultaneous-source seismic data acquisition has recently attracted great attention both in the oil and gas industry and in academia. Promising benefits include the acquisition of larger amounts of data in reduced acquisition time [START_REF] Pecholcs | Over 40,000 vibrator points per day with real-time quality control: Opportunities and challenges[END_REF], which might be beneficial in harsh meteorological environment [START_REF] Kommedal | ISS on ice -seismic acquisition in the arctic[END_REF] or because of environmental regulations.

The idea of allowing multiple seismic sources to fire simultaneously is not new: it was first introduced for marine seismic by [START_REF] Barbier | Sosie: A new tool for marine seismology[END_REF]. The Sosie method they proposed relied on shooting different airguns separately following certain pseudo-random time sequences. This would result in overlapping signals of single airguns, which would be relatively easy to separate thanks to the low correlation of the pseudo-random sequences. Simultaneous sources for land seismic were introduced by [START_REF] Silverman | Method of three dimensional seismic prospecting[END_REF], who proposed to use at least two spaced apart vibratory seismic sources with different reference signals or with the same signal, but in opposite phases. This would simplify the subsequent separation of these signals to obtain a cross-talk-free image.

Nevertheless, it was not until 1996 that a sort of simultaneous shooting was first implemented for land vibroseis acquisition in the Middle East [START_REF] Rozemond | Slip-sweep acquisition[END_REF]. There is no haphazard in the location of the first high productivity acquisitions; the two main reasons for this are the enormous surfaces to acquire in desert environment with no or very little constraints on vibrators displacement [START_REF] Postel | Reduced vibroseis cycle time technique increases land crew productivity[END_REF], and the relative simplicity to manage the source's signal: reverse polarity and more sophisticated sweeps management [START_REF] Moerig | Simultaneous shooting using cascaded sweeps[END_REF][START_REF] Xia | Orthogonal vibroseis sweeps[END_REF][START_REF] Krohn | Vibroseis productivity: shake and go[END_REF]. Research in the domain of sweep generation and management is still actively ongoing [START_REF] Liu | Simultaneous sources and deblending using multiple sweeps[END_REF], Moldoveanu et al., 2017[START_REF] Zhukov | Simultaneous pseudo-random shuffle-sweep generation and increased seismic data acquisition productivity[END_REF]. The first two simultaneous sweeping techniques were slip-sweep [START_REF] Rozemond | Slip-sweep acquisition[END_REF][START_REF] Meunier | Analysis of the slip sweep technique[END_REF], Meunier and Bianchi, 2005), in which the separation is based on the frequency differences; and DS3 -distance separated simultaneous sweeping [START_REF] Bouska | Distance separated simultaneous sweeping for fast, clean, vibroseis acquisition[END_REF], in which a distance constraint is imposed to the simultaneously sweeping vibrator trucks. In the latter case, the interferences are inevitable, but they arrive later, which corresponds to occurring lower in the depth seismic section. One can compute an optimal distance for each survey, which should correspond to the depth of the layers of interest. [START_REF] Beasley | A new look at simultaneous sources[END_REF] were the first to propose simultaneous shooting with no constraint on the source pattern (no encoding or specific sweep management). Nevertheless, the actual implementation of appropriate logistics, survey design and processing has taken nearly a decade. Indeed, for best wavefield separation, shooting times of different sources should be dithered with respect to each other, while real time communication and synchronization of the sources in the field, as was proposed by [START_REF] Vaage | Method and system for acquiring marine seismic data using multiple seismic sources[END_REF], appeared quite complicated. For this reason, BP tested in 2006 a new approach -Independent Simultaneous Sourcing (ISS ®3 ), in which no effort is made to synchronize the sources [START_REF] Howe | Independent simultaneous sweeping -a method to increase productivity of land seismic crews[END_REF], and the only constraint is on the receivers side: the recording has to be continuous.

The interest was again drawn to the subject in 2008, when Hampson et al. published several tests on synthetic and real data that they performed to prove the reliability of data 1.3. Classical seismic processing sequence acquired in simultaneous-source mode. No specific processing technique was proposed at that time, stacking noise attenuation capacity was considered sufficient for acceptable cross-talk suppression. The same year, the Delphi Consortium expressed their belief that conventional seismic acquisition would be shortly replaced by simultaneous (or blended) surveys [START_REF] Berkhout | Changing the mindset in seismic data acquisition[END_REF], Berkhout et al., 2008). The first marine ISS ® seismic survey was held by BP in 2009 [START_REF] Abma | An overview of BP's marine Independent Simultaneous Source field trials[END_REF].

After the first field tests, real full-scale seismic surveys accomplished using ISS ® followed. The first surveys were only held at the exploration stage, in zones where structural interpretation was needed [START_REF] Dai | Least-squares migration of multisource data with deblurring filter[END_REF][START_REF] Verschuur | Seismic migration of blended shot records with surface-related multiple scattering[END_REF][START_REF] Henin | Deblending 4-component simultaneous-source data -A 2D OBC case study in Malaysia[END_REF]. Specific processing techniques were developed in order to work with such data. However, today the industry would like to use simultaneous shooting to speed up their seismic campaigns at all exploration and development stages, including those having reservoir characterization [START_REF] Paramo | AVO analysis of Independent Simultaneous Source OBC data from Trinidad[END_REF][START_REF] Shipilova | Simultaneous-source seismic acquisitions: do they allow reservoir characterization? A feasibilty study with blended onshore real data[END_REF] and monitoring [START_REF] Krupovnickas | Marine simultaneous source OBS survey suitability for 4D analysis[END_REF][START_REF] Davies | Evaluating the impact iof ISS HD-OBC acquisition on 4D data[END_REF][START_REF] Haacke | Simultaneous shooting for sparse OBN 4D surveys and deblending using modified Radon operators[END_REF][START_REF] Eggenberger | Signal apparition-enabled parallelsource acquisition of 4D-grade seismic data: Results from a field test in the North Sea[END_REF] purposes. Consequently, more sophisticated processing is needed to achieve the high precision necessary at these stages. Finally, simultaneous-source processing methods can also be used to suppress interference between different seismic surveys, as proposed by Moore (2010a).

Classical seismic processing sequence

The standard seismic signal processing sequence aims at cleaning and rearranging the data in order to bring them to the state they would have been in had the acquisition conditions been ideal: if the signal emitted by the source had an ideally flat spectrum, if the sources and the receivers were well coupled with the soil (for onshore surveys), if there were no absorption and signal attenuation, no equipment noise, no swell noise for the offshore surveys, etc. The effects to be compensated for are numerous and include spherical divergence, curved ray path, absorption, scattering, poor energy transmission between low and high-impedance layers, coupling and sensitivity of the equipment, interferences (coming from electrical network at 50 or 60 Hz, for example), weathering near-surface zone with very low consolidation resulting in very low seismic velocities, source stability and directivity, and many other effects. Moreover, conventional seismic processing removes all the seismic waves except the primary reflections: direct arrival, surface waves, refracted waves, dispersed waves, multiple reflections, etc. Therefore, processing procedures before migration include

• SEG-Y file reformating: starting from this moment, the seismic data is represented as seismic traces (in (t, x) domain) and follow the conventional binary format [START_REF] Hagelund | SEG-Y r2.0: SEG-Y revision 2.0 Data Exchange format[END_REF], established by the Society of Exploration Geophysicsts (SEG);

• acquisition grid definition: positioning data is used to attribute the correct geometry to every component of the seismic data;

• bandpass (or highpass) filtering in Fourier domain: suppression of the unnecessary frequency components only containing non-interpretable noise;

• spherical divergence correction;

• source designature and other equipment influence corrections: modifying the wavelet according to the modeled source response in order to make it zero-phase and get rid of the source ghost and bubble effect (in marine surveys);

• denoising: progressive suppression of all types of noise (coherent and incoherent), starting from the most energetic noise, commonly, direct arrivals;

• compensation for the near surface variability: surface consistent processing (statics, amplitude, spectral compensations);

• multiples attenuation: modeling and subtraction of multiple reflections;

• velocity analysis: estimation of a subsurface velocity model;

• regularization: is required to correct for acquisition irregularities;

• Q-compensation: scalar parameter application common for the geographical area in order to compensate for absorption.

This list of procedures is not exhaustive (see Section 2.5 on page 16 for more details) and is usually modified in order to fit to the given seismic data. Some of the steps, such as different denoising types, may be repeated further in the sequence if required, the parameters for each procedure are chosen manually through testing. Further on, after all the corrections applied, we image the data using an estimated velocity model in order to bring the reflections to their true positions in depth. This is known as the migration step, which can be performed either in time or in depth.

Do we need deblending?

In analogy with blended whiskey, simultaneous-source seismic data containing many sources contributions, is called blended data, as suggested by Pr. Berkhout. Therefore, deblending refers to the separation of signals coming from different sources. Whether deblending is necessary remains an open question. In theory, Full Waveform Inversion (FWI) can be used to estimate velocity models irrespective of cross-talk without deblending; however, most of the current imaging techniques, which would use the velocity models issued from FWI, are not capable of handling cross-talk and can only use primary reflections to build the image. Even when methods such as Least-Squares Reverse Time Migration (LSRTM) are able to handle cross-talk, one still has to deblend in order to isolate the primary reflections from all the other types of waves. Hence, an initial deblending step is still included in most processing sequences. One major advantage of such approach is that there is no need for changing any of the conventionally used processing algorithms.

The processing techniques cited in the previous section could be directly applied to the blended data once they are sorted to one of the conventional data representations (conventional data representation and visualization, as well the ones specific for simultaneoussource data will be detailed further). Unfortunately, such direct application does not yield results acceptable in terms of quality. This quality loss is mainly related to cross-talk. Indeed, if the origin of the cross-talk is poorly interpreted, i.e., the signal is attributed to the wrong source, the migration algorithms based on sources and receivers location fail to correctly position the signals.

One can imagine transforming the whole processing sequence, so that all the procedures could directly deal with blended data. Doing so should be feasible from a technical 1.4. Do we need deblending? point of view, but is not realistic at the moment because of the high complexity and cost of already implemented industrial algorithms. Therefore, it is now preferable to deblend the rawest signals in order to keep the following processing unchanged.

The objective of this thesis is to propose an efficient deblending algorithm that could be applied to raw seismic data before any processing. To achieve this, we propose a representation of seismic data, which provides the possibility of separating the signals originating from different seismic sources.

Chapter 2

Seismic methods used for simultaneous-source surveys

In this chapter, we present a brief state of the art in modern seismic exploration, as well as the techniques and methods used for simultaneous-source surveys. We start by introducing the notation that will be used throughout the manuscript (Section 2.1). Then, we speak about the seismic exploration fundamentals, including the common seismic data representation and conventional seismic processing (Sections 2.2 -2.5). After that we present simultaneous-source data processing techniques available up to this moment (Section 2.6). We finish this chapter by presenting greedy signal processing methods used for seismic data processing (Section 2.7). More details on greedy methods and their application to other problems are provided in the next chapter.

Notation

Throughout this thesis, the following notation convention is followed with occasional exceptions:

• Matrices are denoted by bold symbols, both upper-and lower-case. In most cases, lower-case bold symbols, such as d, refer to data matrices, while capital bold letters, such as A define operators.

• Vectors are denoted by italic underlined symbols, such as d.

• Scalars are denoted by italic upper-and lower-case letters, such as ρ or M .

• Sets (e.g., vectorial spaces are sets) are denoted by Euler font capital letters, such as D.

Seismic method fundamentals

The seismic exploration method is based on the propagation of sound waves through the geological layers inside the Earth. This propagation depends on the elastic properties of the subsurface and, thus, can help reveal them. In this section we describe the fundamentals of seismic exploration, which can be useful for further understanding of the problem we are studying.

A sound wave propagating within the subsurface applies a force (stress, which is commonly denoted by σ) on the rocks, so that they change in shape and dimensions. Several fundamental types of such changes, that are commonly called strains and denoted by ε, are defined in seismic exploration (e.g., see [START_REF] Sheriff | Exploration Seismology[END_REF]).

Seismic theory is mainly based on two basic laws: Newton's second law of motion stating that the acceleration of motion a is proportional to the applied force F : F = ma, and Hooke's law stating that the displacement u is proportional to the applied force F : F = -cu. More generally, σ ij = c ijkl ε kl , where c ijkl is the rank-4 elasticity tensor [START_REF] Hilst | 510 Introduction to Seismology[END_REF], σ ij is the rank-2 stress tensor and ε kl is the rank-2 strain tensor: u, v, w) the vector of displacement according to (x 1 , x 2 , x 3 ) = (x, y, z). These two laws combined provide the basics to develop the theory of elastic wave propagation in solids.

ε kl = 1 2 ∂u k ∂x l + ∂u l ∂x k with (u 1 , u 2 , u 3 ) = (
It has been noted that the changes in dimensions resulting from the normal strains (relative increases in length) induce volume changes, or dilation (change of volume per unit), and is denoted by ∆ = ε xx + ε yy + ε zz . The simplified Hooke's law for isotropic media (when properties do not depend on the direction) can be expressed as follows

σ ii = λ∆ + 2µε ii with i = x, y, z, σ ij = 2µε ij with i, j = x, y, z, i = j (2.1)
where λ and µ are Lamé constants. In other words, a normal stress is susceptible to produce strain in directions other that the direction of the stress itself [START_REF] Telford | Applied Geophysics[END_REF]). Newton's second law of motion states that the unbalanced force is proportional to the acceleration, as noted above. Hence, in terms of stress, the equation of motion in the x direction can be written as follows:

ρ ∂ 2 u ∂t 2 = ∂σ xx ∂x + ∂σ xy ∂y + ∂σ xz ∂z , ( 2.2) 
where ρ denotes density. Equation (2.2) can be rewritten in terms of displacement, using Hooke's law (2.1)

ρ ∂ 2 u ∂t 2 = λ ∂∆ ∂x + 2µ ∂ε xx ∂x + 2µ ∂ε xy ∂y + 2µ ∂ε xz ∂z = (λ + µ) ∂∆ ∂x + µ∇ 2 u, (2.3)
where ∇ 2 u is the Laplacian of u:

∇ 2 u = ∂ 2 u ∂x 2 + ∂ 2 u ∂y 2 + ∂ 2 u ∂z 2 .
By analogy, motion equations can be written for displacements in other directions

ρ ∂ 2 v ∂t 2 = (λ + µ) ∂∆ ∂y + µ∇ 2 v, (2.4) ρ ∂ 2 w ∂t 2 = (λ + µ) ∂∆ ∂z + µ∇ 2 w. (2.5)
By differentiating (2.3), (2.4) and (2.5) with respect to x, y and z, respectively, and by adding them together [START_REF] Sheriff | Exploration Seismology[END_REF], one obtains the wave equation

ρ ∂ 2 ∂t 2 ∂u ∂x + ∂v ∂y + ∂w ∂z = (λ+µ) ∂ 2 ∆ ∂x 2 + ∂ 2 ∆ ∂y 2 + ∂ 2 ∆ ∂z 2 +µ∇ 2 ∂u ∂x + ∂v ∂y + ∂w ∂z , (2.6) which is ρ ∂ 2 ∆ ∂t 2 = (λ + 2µ)∇ 2 ∆, (2.7) 2.2. Seismic method fundamentals or 1 α 2 ∂ 2 ∆ ∂t 2 = ∇ 2 ∆ with α 2 = λ + 2µ ρ .
(2.8)

Now subtracting the derivative with respect to z of (2.4) from the derivative with respect to y of (2.5), we obtain

ρ ∂ 2 ∂t 2 ∂w ∂y - ∂v ∂z = µ∇ 2 ∂w ∂y - ∂v ∂z , (2.9) that is 1 β 2 ∂ 2 θ x ∂t 2 = ∇ 2 θ x with β 2 = µ ρ .
(2.10) By analogy, one can obtain the corresponding equations for θ y and θ z . These are particular examples of the wave equation, which is commonly written in general form, in order to show the relation between the time derivative of a displacement and its spatial derivative

1 V 2 ∂ 2 ψ ∂t 2 = ∇ 2 ψ.
(2.11)

The simplest and the most physical solution to the wave equation is D'Alembert's (or plane wave) solution. Indeed, if we assume that ψ only depends on x and t

1 V 2 ∂ 2 ψ ∂t 2 = ∂ 2 ψ ∂x 2 ,
(2.12) then any function

ψ(x, t) = f (x -V t) + g(x + V t), (2.13)
where f (x -V t) and g(x + V t) represent propagation in the positive and negative xdirection, respectively, is a solution of (2.12), under the condition that ψ and its first two derivatives are continuous [START_REF] Hilst | 510 Introduction to Seismology[END_REF]. As ψ does not depend on y or z, the disturbance has to be constant along the wavefront, which can be locally approximated by a plane perpendicular to the x axis. The plane-wave solution to the wave equation allows one to apply considerably simpler models of wave propagation, e.g., harmonic waves of the form

ψ(x, t) = a(x) cos( x V -t) + j sin( x V -t) , (2.14)
which enable efficient wave propagation modeling methods, such as the one proposed by [START_REF] Berkhout | Seismic Migration, imaging of acoustic energy by wave field extrapolation[END_REF] Ψ(x, ω) = A(ω)e -jω(x/V ) .

(2.15) Such assumptions work as asymptotic high-frequency approximations implying that the medium (apart from sharp discontinuities, which can be handled) varies smoothly compared to the wavelength. Ray theory [START_REF] Cervený | Ray theory in Seismology[END_REF], based on the planewave solution and acting as a high-frequency approximation, is a successful alternative to derivation of an exact analytical solution of the wave equation, in which a point on the wavefront is tracked rather than the complete wavefield. Ray theory is an integral part of many seismological techniques, including body wave tomography, migration of reflection data, and earthquake relocation.

Seismic data 2D representation

Visualization of seismic data is a crucial component of seismic analysis. There exist several methods to sort seismic data and visualize it on a plane (Figure 2.1). Irrespective of the method used, it is assumed that the sensors and the shot points, appearing in the same representation, are aligned. Regardless of the sorting method, data will be represented by any seismic visualization software in the form of seismic traces: each ray-path from the source to the receiver in Figure 2.1 corresponds to one vertical seismic trace. In the following we will refer to such representation as to seismic traces domain (t, x): the vertical axis corresponds to arrival time, the horizontal axis corresponds to the spacing between the sources or the receivers. Although a seismic plot is two-dimensional, the seismic amplitude is often shown in the horizontal plane, or using color (see Figure 2.2). 3D seismic data is acquired to form seismic cubes with two space dimensions and one time dimension (t, x, y). Nevertheless, 3D seismic data is most commonly visualized in 2D, choosing only one of the space dimensions. 2D visualization is faster and until now more conducive to interpretation. However, 3D visualization is slowly gaining popularity for obtaining a global view of complex structures.

Separability

Separability conditions are crucial to take into account while aiming at separating seismic signals. In some cases seismic signals can be perfectly separated, in other cases, one would need specific processing techniques to perform separation.

Separation in space -time domain

Separation by shot time

Let us suppose that a single source emits multiple times. The source starts its kth emission at time instant T k and emits during Θ k at the location x k . Subsequently, it remains silent (or emits a null signal) until instant T k+1 , which corresponds to the beginning of its next emission (k + 1). The source may move between the two consecutive emissions. Time separation consists in waiting for a sufficient time between two successive shots. More precisely, the waiting time, or the pause, must be longer that the listening time T l , which refers to the time during which the receivers "listen" to the echos caused by an emission; the listening time may depend on the depth of the zone one wishes to image. In other words, the criterion for time separation may be written as

T k+1 > T k + Θ k + T l (∀k ≥ 1).
(2.16) Thus, one should wait sufficiently long between consecutive shootings, so that the energy of the previous signal becomes negligible. Conventional seismic data acquisition is held under this condition, without simultaneous shooting.

Separation by distance

Separation by distance is actually equivalent to separation by time. Indeed, the distance between the source and the receiver affects the waves traveltime, so that the condition (2.16) becomes

|x k+1 -x D | > |x k -x D | + T l V, (2.17)
where V is the wave propagation velocity and x D is the position of the receiver. Said differently, the offsets (distances between the sources and the receiver) have to be sufficiently different, so that the signal from the furthest source reaches the receiver at a moment when the closest source's signal has already faded away. Separation by distance is widely used in techniques called DS 3 -distance separated simultaneous sweeping [START_REF] Bouska | Distance separated simultaneous sweeping for fast, clean, vibroseis acquisition[END_REF] and DS 4 -distance separated simultaneous slip-sweep [START_REF] Rach | Incremental improvements in vibration technology[END_REF].

Separation by distance may be interpreted in a different way: the sources emitting at the same time have to be far enough from each other, so that their signals are not captured by the same receivers. In other words, if a receiver at point x D records the signal from source at point x k , it would not be recording any signal from point x k+1 , because it is too far away.

According to the "Seismic with Simultaneous Sources: Where Does the Industry Stand?" workshop discussion on November 21, 2017 in Muscat (El-Taha and May, 2018), it is debatable, whether these types of seismic survey should be considered simultaneoussource surveys; in this work distance separation is not considered.

Separation in frequency domain

Frequency-domain separation consists in imposing different frequency contents for signals to be separated; such separation may be perfect if the frequency contents of the different signals do not overlap. This can be achieved for narrowband vibratory seismic sources, proposed by [START_REF] Dellinger | Seismic acquisition using narrowband seismic sources[END_REF]. Using sources with different frequency content may be beneficial for certain specific applications. A technique called Dispersed Source Arrays (DSA) was first proposed by TU Delft researchers [START_REF] Berkhout | Blended acquisition with dispersed source arrays[END_REF][START_REF] Caporal | Seismic acquisition with Dispersed Source Arrays: First results[END_REF], and then implemented and tested by the industry [START_REF] Tsingas | Broadband acquisition, deblending, and imaging employing dispersed source arrays[END_REF].

Another way of separation in the frequency domain is managing the same frequency bandwidth sweeps in an appropriate way. The first simultaneous sweeping technique of this type was slip-sweep [START_REF] Rozemond | Slip-sweep acquisition[END_REF][START_REF] Meunier | Analysis of the slip sweep technique[END_REF], Meunier and Bianchi, 2005), when the vibrator trucks emit the same sweeps in such a way that the higher frequencies of the previous sweep are only overlapping with lower frequencies of the next one.

Completely different sweeps can also be programmed for different vibrator trucks: encoded sweeps (Liu andAbma, 2017, Moldoveanu et al., 2017), pseudo-random sweep [START_REF] Scholtz | Pseudo-random sweeps for built-up area seismic surveys[END_REF], shuffle-sweep [START_REF] Zhukov | Simultaneous pseudo-random shuffle-sweep generation and increased seismic data acquisition productivity[END_REF], etc. Separation in the frequency domain was also proposed and patented for permanent reservoir monitoring by [START_REF] Meunier | Method for seismic monitoring of an underground zone by simultaneous use of several vibroseismic sources[END_REF]. This idea was further used for the SeisMovie™ technology. The separation itself is either held in frequency -space (f -x) domain, or frequency -wave-number (f -k) domain.

A unique method proposing separation in the frequency domain is the signal apparition technique developed by [START_REF] Robertsson | Signal apparition for simultaneous source wavefield separation[END_REF]. Their method consists in a specific shot time management for different sources, so that the sources' signals are perfectly separable within a part of the f -k plot which the authors call flawless diamonds [START_REF] Andersson | Flawless diamond reconstruction for simultaneous source separation[END_REF]. The other parts of the spectrum can be separated by sophisticated interpolation.

In our work, we will not consider separation in the frequency domain.

Separation by apparent velocities

While the previous separation conditions, cited in Sections 2.4.1 and 2.4.2, are applicable to single shots as well as to sequences of multiple shots for every source, the two conditions presented in Sections 2.4.3 and 2.4.4 are only valid if each source emits a certain number of shots at different locations.

The apparent velocities of seismic waves not only significantly depend on the subsurface properties, but also depend up to a point upon the relative locations of sources and receivers, or, more precisely, on the angle and the direction of incidence of the waves. As an illustration, signals arriving from opposite sides of the receiver will have opposite apparent velocities. Indeed, Figure 2.3 shows a case in which the two sources move from the left to the right and the shot times T 1 , . . . , T N are exactly the same for the two sources. The beginnings of the traces in Figure 2.3 correspond to these shot times. In this case, the resulting data recorded by the receiver in the middle contains seismic events with opposite dipping angles, which makes them easily separable in f -k or τ -p (or linear Radon) domains.

Separation by shot times randomization

In real seismic acquisition environments, a source location separation is not always possible. For instance, for marine seismic acquisition, the sources that we would wish to separate can be towed by the same vessel. In this case, the apparent velocities of both sources are almost identical, and one needs another separability condition.
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In our work, we rely on the randomization of the shooting times of one source with respect to the other. This means that T 1 , . . . , T N are no longer the same for different sources, but are unique to each of them.

We will denote by T i n the instant of the nth shot of the source i, and by N i the number of shots of the source i. Since the shooting times are no longer identical, we have to present two seismic plots instead of one, as illustrated in Figure 2.4. The beginnings of the seismic traces in the left-hand plot correspond to shot times T 1 n of the first source, whereas those in the right-hand plot correspond to shot times T 2 m of the second source. The signals originating from the non-reference sources appear random. We will discuss more precisely in Section 4.2.2 on page 53, how to obtain such plots.

According to multiple discussions during the "Seismic with Simultaneous Sources: Where Does the Industry Stand?" workshop in Oman in 2017, the industry experts in simultaneous-source operations have not yet arrived to a common definition of the randomness. The shooting times should actually be "pseudo-random" or "quasi-random" in order to assure minimal repetition. The terms "separable", or "assuring separability" were also proposed as more appropriate ones for seismic exploration.

Related to dithered shooting times are irregular source positions. Several researchers go in the direction of optimization of the sources patterns in terms of compressive sensing [START_REF] Mosher | Increasing the efficiency of seismic data acquisition via compressive sensing[END_REF][START_REF] Li | Compressive sensing: US Patent 20150124560 A1[END_REF][START_REF] Baraniuk | Compressive sensing: A new approach to seismic data acquisition[END_REF][START_REF] Byrne | Applied iterative methods[END_REF]. In addition to the time reduction provided by simultaneous shooting, such methods require fewer samples of the wavefield, hence, allowing one to perform fewer shots for the same signal quality. Namely, [START_REF] Mosher | Non-uniform optimal sampling for seismic survey design[END_REF] propose a non-uniform optimal sampling (NUOS), which enables a sparse signal representation, advantageous sampling, and successful signal recovery, allowing at the same time a significant improvement of 1.8

2 acquisition efficiency.
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Conventional seismic data processing

It is quite difficult to define a conventional seismic data processing sequence, as often the appropriate procedures and parameters are chosen by testing on a case-by-case basis.

Nevertheless, some general rules can be outlined. As already mentioned in the introduction, the aim of seismic processing is bringing the data to a state corresponding to ideal acquisition conditions and only leave primary reflections in the data; in other words, the aim of seismic processing is to obtain data as close as possible to the true Earth reflectivity.

Processing always starts by reformatting the data into a conventional format, most commonly SEG-Y. SEG-Y is a binary exchange format containing seismic traces in timespace (t, x) (or (t, x, y) for 3D) domain and other important information in specific bytes, such as source type, sources and receivers positions, information on topography, sampling interval, and other crucial components essential to understand the acquired data (Norris andFaichney, 2002, Hagelund and[START_REF] Hagelund | SEG-Y r2.0: SEG-Y revision 2.0 Data Exchange format[END_REF].

After SEG-Y reformatting and integration of the positioning data, the signal processing itself begins. It has been noted [START_REF] Brunellière | Seismic processing for reservoir characterization course[END_REF]) that a seismic trace can be represented as a combination of different components affecting the quality of the data, as illustrated in Figure 2.5 and listed below:

• source wavelet: in marine surveys, impulsive emissions produced by several airguns going off at the same moment are typically used; in land surveys, dynamite explosions have the same effect; as already mentioned in the introduction, these impulses are never perfect Dirac distributions, meaning that the source signature must be corrected in processing; in vibratory land surveys, the source emits a sweep -long oscillating signal with changing frequency -which has to be cross-correlated with the recorded signal in order to retrieve reflectivity; [START_REF] Sheriff | Factors affecting seismic amplitudes[END_REF]).

• source ghost (in marine) or source coupling (on land): the reverberation between the source and the sea surface, or the possible issues at the interface between the source and the ground on land;

• absorption: the loss of energy due to propagation is frequency dependent, the higher frequencies are attenuated more than the lower frequencies;

• instrument response: sources' and receivers' transfer functions, and noise, generated by the equipment;

• receiver ghost (in marine) or receiver coupling (on land): the reverberation between the receiver and the sea surface, or the poor coupling at the interface between the receiver and the ground on land.

These effects together with coherent and incoherent noise are naturally combined with the reflectivity -the value a geophysicist would finally like to reveal. The term coherent noise is widely used to denote any signal which we cannot use for imaging and interpretation.

In conventional seismic processing and imaging, only primary reflections are considered as useful signal. Other types of waves -ground roll (low frequency, strong amplitude and low group velocity wave), guided waves traveling along the water bottom (especially detrimental in shallow water areas with hard water bottom), air wave with a 300 m/s velocity, water bottom and interbed multiple reflections, P-S conversions -are considered as noise and are filtered out during processing [START_REF] Yilmaz | Seismic data processing[END_REF]. It is now proposed to use some of these, namely, the surface waves [START_REF] Masoni | Robust Full Waveform Inversion of surface waves[END_REF] and multiple reflections [START_REF] Berkhout | Imaging of multiple reflections[END_REF] for better imaging of particular zones (near surface, structurally complex subsurface). Nevertheless, in most cases a conventional processing flow is applied as described next.

A common seismic signal processing sequence starts with source designature to compensate for the source wavelet. As mentioned above, the signal emitted by both impulsive and vibratory sources is far from the ideal Dirac distribution. For this reason, the source signal is corrected at the beginning of the workflow. For example, in marine seismic, the source signal is first modeled using a specific software, e.g. Gundalf [START_REF] Laws | Computer modelling of clustured airguns[END_REF], taking into account the number of airguns in a source array, their geometry and, consequently, directivity to model the source impulse. The software takes full account of all airgun interactions including interactions between subarrays. An example of a marine source signature and its amplitude spectrum is shown in Figure 2.6. The source wavelet is not zero-phase; on both the signal itself and its amplitude spectrum, bubble and ghost effects can be seen. After modeling, a specific zero-phasing and bubble-removing operator is derived and applied to the seismic data. The ghost effect is treated further in the sequence.

The next major processing step is denoising. As mentioned above, we distinguish coherent and incoherent noise in seismic data. Usually, the coherent noise is the most difficult to deal with, as it often has the same properties as the coherent signal, but it should not be further used in imaging.

Remark 1. It is important to note that it is common practice to remove noise progressively, from the most energetic noise to the least energetic one. An example of such approach is shown in Figure 2.7. It is also strongly recommended to treat different types of noise independently and not attempt to remove all the noise in one pass [START_REF] Brunellière | Seismic processing for reservoir characterization course[END_REF].

In the majority of processing cases, the most energetic noise turns out to correspond to the seismic waves arriving directly from the source to the receiver, without traveling through the subsurface. Other waves that are challenging to suppress are surface waves, which occur especially in land surveys. These waves have low-frequency content, significant amplitudes and slow apparent velocities. These coherent noise types appear as linear noise in seismic gathers and are quite successfully removed using linear Radon transform, provided that the spatial sampling fulfills the usual Radon decomposition/inversion requirement. However, it is recommended to remove strong punctual noise (spikes, anomalous traces, etc.) before the multi-channel filtering in Radon or Fourier domain, in order to avoid smearing the strong noise among the processing window. Residual random noise is usually not very energetic and cannot be confused with useful reflections, so it can be removed at the last denoising stage. Although multiple reflections are also considered as coherent noise, their attenuation is usually taken out as a proper big processing stage, especially in marine seismic. The reason for that is the complexity of multiples attenuation, especially in some environments. Geophysicists distinguish several types of multiple reflections shown schematically in Figure 2.8: water bottom multiples (bouncing within the water layer), water layer multiples, or peg leg (proper reflection within the subsurface contaminated by an additional bounce within the water layer), surface-related multiples (bouncing between the air surface and any reflector within the subsurface), interbed and intrabed multiples (complex traveling paths within the subsurface, can occur both in marine and land surveys). The latter are usually the most difficult to identify and attenuate.

Simpler cases, e.g., water bottom multiples in deep water environment (water depth superior to 200 meters), can be quite easily identified and attenuated. Because these multiples tend to have much lower velocities, as they travel mostly in the water layer, where the sound velocity is lower than in sediments, they can be distinguished from primaries using hyperbolic Radon transform (Figure 2.9), which was first proposed by [START_REF] Hampson | Inverse velocity stacking for multiple elimination[END_REF]. Short-period multiples can also be attenuated by predictive deconvolution, which uses the temporal periodicity of this phenomenon.

More sophisticated methods for multiple prediction and suppression have been proposed during the last decades, for instance, the widely used surface-related multiple elimination (SRME), some of the modifications of which use prior knowledge of the velocity and depth of the water layer [START_REF] Verschuur | Surface-related multiple elimination: an inversion approach[END_REF]. Shallow-water and internal multiples have to be treated with even more sophisticated methods [START_REF] Verschuur | Seismic multiple removal techniques: past, present and future[END_REF], as they are hardly distinguishable from primaries. These multiples are modeled and then subtracted from the data in an adaptive manner: once generated, the multiple model is matched to input data using least-squares adaptive subtraction (LSAS). Wave-equation-based techniques are used for modeling. Parameters of the adaptive subtraction are key to demultiple success and primaries preservation.
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As for other types of coherent and incoherent noise, it is recommended to remove the strongest multiples first and then process sequentially. In some cases, the method and the order of demultiple procedures are governed by the temporal period of the multiples.

An important step in the seismic data processing sequence is the estimation of the velocities of the subsurface. Classically, the velocity model is estimated from a velocity analysis based on hyperbolic Radon transform. This approach uses the fact that for a horizontal reflector the traveltime curve -the function describing the dependence of the arrival time on the offset -takes the shape of a hyperbola:

t 2 = x 2 /v 2 +4h 2 /v 2 = x 2 /v 2 +t 2
0 , where x denotes the offset, h the depth of the reflector, v the velocity, and t 0 the traveltime for a receiver at the source-point. The velocity is found using the variation of normal move out with record time [START_REF] Garotta | Continuous analysis of the velocity function and of the move out corrections[END_REF]. More sophisticated techniques for velocity model building include tomography [START_REF] Jones | Tutorial: Velocity estimation via ray-based tomography[END_REF] and Full Waveform Inversion (FWI) [START_REF] Tarantola | Inversion of seismic reflection data in the acoustic approximation[END_REF].

The next step of a common seismic processing sequence is regularization. It is required to correct for acquisition irregularities: non-homogeneous shots and receivers pattern, missing traces due to obstructions or equipment failure, etc. In order to achieve better imaging, empty areas are filled by interpolation and redundant traces are combined to avoid irregularities. Successful regularization reduces migration generated noise and acquisition footprint.

Once the data is regularly distributed among the acquisition grid and contains only primary reflections, it can be migrated. Migration is the key step in the processing chain: it impacts the positioning, focusing and amplitude of reflected events, and has a strong impact on signal-to-noise ratio. Many migration algorithms exist (Kirchhoff, Beam, Reverse Time Migration -RTM, Wavefield Extrapolation Migration -WEM, etc.), the choice of the appropriate one for a particular case relies on processing and imaging specialists. Different migration algorithms require more or less accuracy in the velocity model estimation, but all of them do need a subsurface velocity model. This model is either derived from previous processing (e.g., from hyperbolic Radon transform), or estimated specifically for imaging, using FWI.

Simultaneous-source data processing

Before 2008, no specific processing was proposed for simultaneous-source data, and the industry was mainly relying on conventional denoising and stacking or migration, as described in the previous section. This approach has multiple names in the industry: pseudodeblending [START_REF] Berkhout | Changing the mindset in seismic data acquisition[END_REF], passive separation [START_REF] Bagaini | Marine seismic acquisition with phase-controlable sources[END_REF], combing [START_REF] Chen | Deblending by iterative orthogonalization and seislet thresholding[END_REF], source slicing, etc. It consists in expanding the blended data, i.e., copying the blended shot record as many times as there are shots overlapping, and further "decoding", or applying the corresponding shot times to each of the traces [START_REF] Doulgeris | Inversion methods for the separation of blended data[END_REF]. In the case when the shot time encoding allows separation, the useful signal in each of the resulting shot gathers should appear coherent and interpretable, whereas other sources contributions, which are also called cross-talks, are seen as incoherent noise.

In order to increase the final quality of the data acquired in simultaneous-source mode, [START_REF] Berkhout | From simultaneous shooting to blended acquisition[END_REF] proposed two possible ways of dealing with cross-talk: preliminary deblending, followed by a conventional processing on one hand, and direct imaging on the other. Subsequently, many academic and exploration geophysicists have started to work on the subject. As already mentioned in the introduction, there were two motivations: reducing the time of seismic acquisitions, and improving the data quality by increasing the shot density, as was forecasted by [START_REF] Berkhout | Changing the mindset in seismic data acquisition[END_REF].

Whether deblending (or separation of signals coming from different sources) is necessary remains an open question; however, most papers proposing direct imaging without deblending have been until now purely theoretical with few practical applications.

Pseudo-deblending followed by denoising

As mentioned earlier, deblending was historically associated with denoising. Until now, the deblending problem has often been seen as a denoising problem, that can be solved by filtering applied in addition to the conventional denoising. Different filtering methods have been proposed: median filtering [START_REF] Huo | Simultaneous source separation via multidirectional vector-median filtering[END_REF][START_REF] Peng | Deblending of simulated simultaneous sources using an iterative approach: an experiment with variable-depth streamer data[END_REF][START_REF] Gan | Deblending using a structuraloriented median filter[END_REF], prediction error filtering [START_REF] Spitz | Simultaneous source separation: A prediction-subtraction approach[END_REF], or combinations of these filters [START_REF] Kim | Source separation of simultaneous source OBC data[END_REF][START_REF] Zhang | The direct arrival in blended data[END_REF].

Rank reduction

One of the most common approaches is the rank-reduction approach, also called matrix rank reduction method, or multichannel singular spectrum analysis (MSSA). This method is used not only for simultaneous-source data separation but also for incoherent noise attenuation and missing data reconstruction and consists in eliminating contributions from some eigenvalues. [START_REF] Oropeza | Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis[END_REF] propose to look at the seismic data as a 3D matrix: as if the data were acquired on a regular 2D grid S(m, n, ω), m = 1, . . . , N y , n = 1, . . . , N x, and ω is a given frequency. Thus, the signal at a monochromatic frequency can be seen as the following matrix

S =       S(1, 1) S(1, 2) . . . S(1, N x ) S(2, 1) S(2, 2) . . . S(2, N x ) . . . . . . . . . . . . S(N y , 1) S(N y , 2) . . . S(N y , N x )       , (2.18)
where the ω argument is omitted for simplicity.

To start with the multichannel method, one has first to build a Hankel matrix of each row of S. For example, the Hankel matrix of the row j is written as

R j =       S(j, 1) S(j, 2) . . . S(j, K x ) S(j, 2) S(j, 3) . . . S(j, K x + 1) . . . . . . . . . . . . S(j, L x ) S(j, L x + 1) . . . S(j, N x )       .
(2.19) K x and L x are chosen to keep the Hankel matrix approximately square. The authors propose to take

L x = Nx 2 + 1 and K x = N x -L x + 1
, where refers to the integer part of the argument. When the whole block Hankel matrix is constructed, it has the following structure

M =       R 1 R 2 . . . R Ky R 2 R 3 . . . R K y+1 . . . . . . . . . . . . R Ly R L y+1 . . . R Ny      
.

(2.20) K y and L y are chosen with the same logic as K x and L x :

L y = Ny 2 + 1 and K y = N y -L y + 1.
After defining the Hankelization operator P H as

M = P H S, (2.21) 
the authors state that noise and erasures in the data increase the rank of the matrix M. This hypothesis is fulfilled for data that is sparse in the sense that the number of plane events in the data is limited. [START_REF] Oropeza | Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis[END_REF] consider continuous data, consisting of linear events in (t, x, y) domain, or corresponding to

S(m, n, ω) = A(ω)e -iω(qm+pn) (2.22)
in the space-frequency domain, where (p, q) denotes a nondimensional slowness vector. The simple signal given by (2.22) leads to a block Hankel matrix M of rank 1. If the data consists of k superposed linear events, the rank of M will be equal to k. Thus, for this simple data model, the rank-reduction hypothesis is valid, and a rank reduction method for data reconstruction makes perfect sens. Consequently, one would like to approximate the matrix M of rank f > k by a matrix M k of rank k in such a way, that the Frobenius norm J of the approximation error E = M -M k is minimized:

J = E 2 F = k l |E(k, l)| 2 .
(2.23)

According to the Eckart-Young theorem [START_REF] Eckart | The approximation of one matrix by another of lower rank[END_REF], the k-rank matrix that minimizes J is given by

M k = U k Σ k V T k , (2.24)
where Σ k are the singular values of the matrix M, U k and V k are its left and right singular vectors respectively, and V T k is the transpose complex conjugate transform of V k . The matrices U k and V k are unitary (UU T = I and VV T = I), and

Σ k is a diagonal matrix (Σ ij k = 0, if i = j).
The decomposition (2.24) is called singular value decomposition (SVD) and is also used for rank reduction in other scientific areas. A comprehensive description of the algorithm is given by [START_REF] Byrne | Applied iterative methods[END_REF] and [START_REF] Press | Numerical recipes. The art of scientific computing[END_REF]. According to Freire and Ulrych (1988), (2.24) can also be written as follows

M k = P R M,
(2.25)

where P R represents the rank reduction operator.

The simplest way to revert back to the data is now to average the anti diagonals of each block of the block Hankel matrix M k with the averaging operator P A . Thus, the reconstructed data Ŝ is represented as follows:

Ŝ = P A M k .
(2.26)

After combining (2.21), (2.25) and (2.26), we obtain the formula for the MSSA filter

Ŝ = P A P R P H S.
(2.27) [START_REF] Oropeza | Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis[END_REF] show that MSSA can help recover missing seismic data. In order to recover the missing data, they use an iterative approach similar to POCS described by [START_REF] Abma | 3D interpolation of irregular data with a POCS algorithm[END_REF]. They show some results on synthetic data (very simple, compatible with the plane events model) and also some real seismic data. Nagarajappa (2012) uses Hankel matrix rank reduction for coherent noise estimation. This method is used by several other authors in the seismic processing domain for deblending [START_REF] Cheng | Separation and reconstruction of simultaneous source data via iterative rank reduction[END_REF], Kumar et al., 2015[START_REF] Maraschini | Source separation by iterative rank reduction -theory and applications[END_REF], 2016).

Inversion-based separation methods

In contrast to pseudo-deblending and denoising, inversion-based separation methods treat every source signal as signal, not as noise. Such methods aim to explain all the interpretable signals regardless of their origin. The inversion approach has been until now the most successful one, for instance, [START_REF] Bagaini | The acquisition and processing of dithered slip-sweep vibroseis data[END_REF] demonstrate the superiority of the inversion-based separation methods over the random-noise attenuation ones.

The common mathematical formulation of such methods is given by [START_REF] Abma | Separating simultaneous sources by inversion[END_REF]:

d = Γm, (2.28)
where d is the recorded data, m is the data as if it was acquired in a single-source manner and Γ is a matrix containing information on the timing of the sources, also called blending matrix by [START_REF] Berkhout | Changing the mindset in seismic data acquisition[END_REF]. Unfortunately, (2.28) cannot provide useful separation without additional information. Many authors work on specific coherency constraints, which can potentially help separation, so that (2.28) becomes

d ≈ ΓSm, (2.29)
where S is a coherency constraint [START_REF] Abma | Independent simultaneous source acquisition and processing[END_REF] and m ≈ Sm, which incorporates the condition that the wave-field is regular [START_REF] Abma | High-quality separation of simultaneous sources by sparse inversion[END_REF]. Usually, these constraints are expressed in data spaces other than the simple (t, x) space; for that, different transforms are applied to the blended data and the separation itself is held in these transformed spaces, e.g., Fourier domain [START_REF] Abma | High-quality separation of simultaneous sources by sparse inversion[END_REF][START_REF] Wapenaar | On the relation between seismic interferometry and the simultaneous-source method[END_REF][START_REF] Abma | Popcorn shooting: Sparse inversion and the distribution of airgun array energy over time[END_REF][START_REF] Abma | Independent simultaneous source acquisition and processing[END_REF], Radon domain [START_REF] Akerberg | Simultaneous source separation by sparse Radon transform[END_REF][START_REF] Moore | Simultaneous source separation using dithered sources[END_REF][START_REF] Moore | Simultaneous sources -processing and applications[END_REF], curvelet domain (Lin andHerrmann, 2009, Mansour et al., 2012), seislet domain [START_REF] Chen | Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization[END_REF][START_REF] Chen | Deblending by iterative orthogonalization and seislet thresholding[END_REF], or in more sophisticated domain combinations [START_REF] Doulgeris | Separation of blended impulsive sources using an iterative approach[END_REF][START_REF] Rach | Incremental improvements in vibration technology[END_REF], Mahdad et al., 2011[START_REF] Mahdad | Deblending of seismic data[END_REF][START_REF] Doulgeris | Inversion methods for the separation of blended data[END_REF].

Radon domain

One of the most common approaches, and also one of the first approaches that appeared in this scientific area, consists in assuming that the data is sparse and separable in the Radon transform domain. [START_REF] Moore | Simultaneous source separation using dithered sources[END_REF] proposed to represent the blended data as follows

d = (D 1 T 2 D 2 ) m 1 m 2 = Γm, (2.30)
where operators D i map the models m i to the data spaces in S i -time, operator T 2 shifts the traces from the time reference related to S 2 into that related to S 1 , and

(D s ) jk = e iωx sj p sk , (T 2 ) jk = e iωt j δ jk , (2.31)
where x s , p s and t correspond to trace locations, slowness, and timing delays, respectively, for linear Radon applied in the frequency domain. Similar reasoning is proposed by [START_REF] Akerberg | Simultaneous source separation by sparse Radon transform[END_REF], [START_REF] Moore | Simultaneous sources -processing and applications[END_REF] and [START_REF] Henin | Deblending 4-component simultaneous-source data -A 2D OBC case study in Malaysia[END_REF]. Linear Radon, or τ -p coherency constraint is also considered in the PhD theses by [START_REF] Mahdad | Deblending of seismic data[END_REF] and [START_REF] Doulgeris | Inversion methods for the separation of blended data[END_REF]. [START_REF] Doulgeris | Separation of blended impulsive sources using an iterative approach[END_REF][START_REF] Doulgeris | Iterative separation of blended marine data: discussion on the coherency-pass filter[END_REF][START_REF] Doulgeris | Convergence analysis of a coherency-constrained inversion for the separation of blended data[END_REF], [START_REF] Doulgeris | Inversion methods for the separation of blended data[END_REF], [START_REF] Mahdad | Separation of blended data by iterative estimation and subtraction of blending interference noise[END_REF][START_REF] Mahdad | Deblending of seismic data[END_REF], and Abma (2010), [START_REF] Abma | Independent simultaneous source acquisition and processing[END_REF].

f -k domain Two-dimensional (f -k) and tree-dimensional (f -k r -k s ) coherency-pass filters are considered by
In his PhD thesis, [START_REF] Mahdad | Deblending of seismic data[END_REF] investigated the advantages and drawbacks of f -k and median filters as coherency constraints for the inversion. Finally, he suggests using a combined median-f -k filter: used in combination with f -k, a median filter is less impacted by random spikes in the data. [START_REF] Doulgeris | Inversion methods for the separation of blended data[END_REF] continues in this direction, and compares f -k to τ -p coherencypass filters. He also introduces the notion of orthogonality into his reasoning: in order to assure that the deblending is successful, the columns of the blending matrix have to be orthonormal, and the coherency-pass filter must be an orthogonal projection. [START_REF] Kontakis | Deblending via sparsity-constrained inversion in the focal domain[END_REF] propose to perform deblending in the domain of focal transform, which, similarly to migration, aims at explaining the recorded wavefield as a superposition of primary reflections (Berkhout and Verschuur, 2006a). The main difference between migration and focal transform consists in the ability of the latter to estimate and focus the reflectivity for a limited number of depth levels [START_REF] Kutscha | The utilization of the double focal transformation for sparse data representation and data reconstruction[END_REF]. Thus, the chosen number of reflections is focused into points in the transform domain, which assures their separability.

Focal transform domain

However, it was noted that the focal transform acts much better around the apexes of the reflections, while the longer offsets linear parts are not being explained with the same success. Hence, the authors propose combining the focal transform with linear Radon transform [START_REF] Kontakis | Combined focal and coherency-based deblending strategy[END_REF] or with curvelet transform [START_REF] Kontakis | Using a hybrid focal -curvelet transform for deblending[END_REF] for improved separation results.

Orthogonal projections

The projection onto convex sets (POCS) algorithm was initially proposed for photographic image processing, and solves the following problem

find x ∈ R n such that x ∈ C ∩ D, (2.32)
where C and D are closed convex sets. Starting with an arbitrary value for x 0 , the algorithm creates the sequence

x k+1 = P C (P D (x k )), (2.33)
where P C and P D denote projections on C and on D respectively. The method was then adapted for seismic by [START_REF] Abma | 3D interpolation of irregular data with a POCS algorithm[END_REF]; the authors propose to apply a 2D FFT to the data, then set a threshold and get rid of the low amplitudes (below the threshold), apply the inverse 2D FFT to what is left, and in the end, reinsert the original traces in order to enforce the requirement not to change the original traces. The threshold varies linearly from its maximum at the first iteration to its minimum at the last iteration. The authors state that POCS algorithm might be used with other transforms than Fourier, for example, with Radon transform. One should note that in the beginning the algorithm was proposed for irregular data interpolation. [START_REF] Abma | Popcorn shooting: Sparse inversion and the distribution of airgun array energy over time[END_REF] and [START_REF] Zhou | A POCS method for iterative deblending constrained by a blending mask[END_REF] show some real data examples of the POCS algorithm applied to the deblending problem. [START_REF] Beasley | A 3D simultaneous source field test processing using alternating projections: a new active separation method[END_REF] proposed an approach similar to POCS algorithm that they called alternating projection method (APM). A simple illustration of the principle of this method is shown in Figure 2.10. Here, the APM principle is implemented for a toy-example consisting of vectors in R 2 following (2.34), as proposed by [START_REF] Beasley | A 3D simultaneous source field test processing using alternating projections: a new active separation method[END_REF]) (2.34) where i = 1, 2, . . . , m; D n i is the estimate of data due to the ith source after the nth iteration, and and the APM methods is that APM employs a corrective operator in order to improve estimates of the separated sources. [START_REF] Chen | Random noise attenuation using local signal-and-noise orthogonalization[END_REF] and [START_REF] Chen | Deblending by iterative orthogonalization and seislet thresholding[END_REF] proposed using additional orthogonalization after a conventional denoising processing, as well as for deblending: after denoising, some signal is frequently filtered out with the noise. This orthogonalization method allows the compensation of the signal leakage by weighting. The method is based on the assumption that the random noise is orthogonal to the coherent seismic signal in the time-space domain. (2.36)

D 1 i = P 0 i D and D n+1 i = D n i + k =i P n i D n k - k =i P n k D n i ,
P n i is the nth projection onto D i . The main difference between the POCS (a) (b) (c)

Inversion with shaping regularization

The two equations (2.35) and (2.36) can be written together as (2.37) where

Fm = d,
F = I T T -1 I , m = d 1 d 2 , d = d T -1 d (2.38)
The authors propose to iteratively construct the solution m using shaping regularization:

m n+1 = S m n + B( d -Fm n ) , (2.39)
where m n is the deblended data estimation at the iteration n, S shapes the estimated model into the space of admissible models [START_REF] Fomel | Shaping regularization in geophysical estimation problems[END_REF] at each iteration, B performs the inverse mapping from the data space to the model space. [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF] prove that, if S is an appropriate nonlinear thresholding operator and B = F T , where F T is the adjoint operator of F, then iteration (2.39) converges to the solution of the following equation with L 1 regularization term:

min m Fm -d 2 2 + µ A -1 m 1 , (2.40)
where µ is the resulting threshold and A -1 is a sparsity-promoting transform, such as a seislet transform [START_REF] Fomel | Towards the seislet transform[END_REF][START_REF] Fomel | Seislet transform and seislet frame[END_REF]. The seislet transform is a 2D transform created specifically for seismic data, which combines the classical 1D wavelet transform with local horizontal coherency encountered in seismic data. By making the assumption that the neighboring seismic traces can be predicted from each other following local slopes characterizing seismic events, the authors obtain sparser representations of seismic data than using Fourier or wavelet transforms.

In addition, the authors assume that any coherency-promoting operator can be chosen instead. For instance, the operator can be chosen to be coherency-promoting in the t -x domain -domain of the data (f -x predictive filter, median filter, etc.), or in some appropriate transform domain (Fourier, Radon, wavelet, seislet, etc.) combined with a threshold.

Coherent simultaneous shooting

Unlike the majority of researchers working in the domain of simultaneous-source acquisition and processing, [START_REF] Tang | A coherent simultaneous shooting scheme and its source separation[END_REF] propose exact simultaneous sources detonation in order to make the resulting recorded data coherent in all sorting domains. This approach highly resembles the conventional source array acquisition, when several seismic sources are placed close to each other and act exactly at the same time in order to increase the energy provided. The difference, however, consists in the desire to eventually separate the individual sources' contributions.

The separation of the signals of different sources is based on the applicability of linear interpolation for seismic data in the spatial plane, and the regularity of the patterns of the seismic acquisition. Indeed, taking a simple example of a regularly spaced source array consisting of two sources each, the blending scheme can be described as

    d 1 d 3 . . .     =     1 1 0 0 . . . 0 0 1 1 . . . . . .           s 1 s 2 s 3 . . .       , (2.41)
where s i are the different individual sources signals, and d j are the recorded data, corresponding to the superposition of two neighboring sources signals s i each. [START_REF] Tang | A coherent simultaneous shooting scheme and its source separation[END_REF] propose to deal with these data as if they were acquired by grouped sources followed by a decimation step, meaning that shots are omitted periodically for the sake of cost reduction. The authors show that by means of interpolation, the omitted records dj can be retrieved

         d 1 d2 d 3 d4 . . .          =          1 1 0 0 0 . . . 0 1 1 0 0 . . . 0 0 1 1 0 . . . 0 0 0 1 1 . . . . . .                     s 1 s 2 s 3 s 4 s 5 . . .           
.

(2.42)

Supposing dj known, one can perfectly reconstruct the individual s i .

Real data results, originating from a pilot acquisition in Oman in 2014 and presented in the paper, show a good match between the blended and the non-blended data except for a slight loss of high frequencies in the deblended data set.

Direct imaging approach

Directly working with blended data is very tempting in terms of computational effort. Specialists in the domain of simultaneous-source acquisition agree that the consideration of working in the "compressed" blended domain as long as possible is a potential processing speed-up. Indeed, any sources separation presented in the previous subsections implies encrease of the number of data volumes: one new volume is created for each source after separation, the further processing has to be held in all of these volumes, while it could have been applied directly to the blended volume, if adapted processing and imaging techniques existed. Some researchers are working in this direction: they try to understand which procedures of the conventional seismic processing can be held on blended data and which, on the contrary, need preliminary deblending. For instance, [START_REF] Ma | Free-surface multiple attenuation for blended data[END_REF] propose an extension of commonly used methods for free-surface multiple attenuation that is able to work directly on simultaneous-source data.

Unfortunately, even if some of the now existing methods are able to handle cross-talk, others are not, which makes source separation necessary at the current stage. Indeed, imaging through migration does not handle cross-talk neither between real seismic sources, nor between natural sources, such as primaries and multiples. Thus, just like we have a processing step of separating the primary reflections from the multiples, we should also have one for separating the real seismic sources. Nevertheless, theoretical work is going on in the direction of direct imaging of blended data and we will present the existing approaches in this subsection.

As mentioned in the introduction, Full Waveform Inversion (FWI) can be used to estimate velocity models without deblending. FWI relies on seismic data modeling and optimization. The modeling can be done for any source configuration, including simultaneous emission modeling. [START_REF] Alexander | Processing results of simultaneous source surveys compared to conventional surveys[END_REF] have applied FWI on pseudo-deblended shots and have shown that even though the computation time for the FWI has significantly increased, the results were not degraded by cross-talk.

Moreover, some imaging methods, such as Least-Squares Reverse Time Migration (LSRTM), are able to handle cross-talk. However, LSRTM is only capable of working with reflected waves, meaning that all the other types of waves, including multiple reflections, have to be eliminated before migration. In order to achieve a proper primary reflections isolation, one still has to pass through a deblending step. As blending shots is a type of seismic data compression, one can imagine accelerating the LSRTM by "reblending" the primaries afterwards using blending as a sort of encoding. Therefore, combinations of deblending and migration or inversion methods can potentially offer fast and accurate solutions. [START_REF] Berkhout | Changing the mindset in seismic data acquisition[END_REF] proposes to include a sort of deblending into migration. It is also proposed to consider multiple reflections as signals coming from other sources. Hence, the CFP (common focus point) blended gathers FP - bl consist of the blended incident source wavefields WS + bl and the blended incident multiple wavefields:

FP - bl = RWS + bl + RWP + bl , (2.43)
where R represents the desired real reflectivity (deblended, angle-dependent) at a given depth, W is the forward extrapolation operator and F corresponds to the focusing operator (or back extrapolation operator). All capital bold symbols here refer to matrices, more details on the widely known WRW model can be found in the work by [START_REF] Berkhout | Seismic Migration, imaging of acoustic energy by wave field extrapolation[END_REF].

The author believes that the estimation of R can be accurate using both blended source wavefields and surface multiples (double illumination). However, the work stays quite general: no practical solution is proposed. This approach of utilizing multiple reflections in imaging is developed and brought to application in the PhD thesis of [START_REF] Kumar | [END_REF]. Several other authors [START_REF] Ayeni | Joint preconditioned least-squares inversion of simultaneous source time-lapse seismic data sets[END_REF], Tang and Biondi, 2009[START_REF] Leader | The separation and imaging of continuously recorded seismic data[END_REF], Xue et al., 2016), also propose to directly image the blended data without preliminary separating the signals originating from different sources. Their approach is somewhat close to that of [START_REF] Berkhout | From simultaneous shooting to blended acquisition[END_REF] and consists in extending the least-squares inversion (LSI) formulation so that it takes blending into account. Thus, [START_REF] Tang | Least-squares migration/inversion of blended data[END_REF] formulate the inverse problem as follows

d = ΓBR = BR, (2.44)
where d is the modeled blended seismic data, B is the Born forward modeling operator, briefly described by [START_REF] Ayeni | Joint preconditioned least-squares inversion of simultaneous source time-lapse seismic data sets[END_REF], which is not exactly the same as W in (2.43), but somewhat close to it; Γ corresponds to the blending matrix, R stands for reflectivity and corresponds to R in (2.43), and B = ΓB is the Born forward modeling operator, which takes blending into account. We will further be using the latter notations for the sake of homogeneity.

Remark 2. It is important to note the difference between the equations (2.28) on page 24 and (2.44), and more precisely, the difference between m in (2.28) and R in (2.44). In (2.28), m refers to seismic data, as it would have been if it were acquired in a conventional, non simultaneous manner. This formulation implies further conventional processing and imaging of the separated signals. On the contrary, R in (2.44) is the true reflectivity of the subsurface, which is aimed to be recovered directly by inversion. This approach is much more ambitious, but also more issues may be encountered while applying it.

In order to solve this problem, [START_REF] Ayeni | Joint preconditioned least-squares inversion of simultaneous source time-lapse seismic data sets[END_REF] minimize the objective function defined in (2.45) through a gradient-based optimization scheme, which iteratively reconstructs the parameters of the model as

F (R) = BR -d obs
where d obs is the observed blended data, A is a regularization operator imposing prior information on the model (reflectivity) R, and ε is a trade-off parameter controlling the strength of the regularization. The authors have tested their LSI-based method on the Marmousi model [START_REF] Versteeg | The Marmousi experience: Velocity model determination on a synthetic complex data set[END_REF], and their results prove that the cross-talk may be successfully removed by formulating the imaging problem as a least-squares inverse problem.

The same methodology is extended by [START_REF] Ayeni | Joint preconditioned least-squares inversion of simultaneous source time-lapse seismic data sets[END_REF] to 4D seismic data applications for the base and the monitor surveys to be processed together. The authors point out, that the main constraint for using simultaneous-source acquisitions for reservoir monitoring purposes, is the difficulty to exactly repeat the acquisition design while using the independent simultaneous sourcing (ISS ® ) technique. The proposed solution is based on the least-squares inversion approach: knowing the B matrices both for the baseline survey and for the monitor ( B0 and B1 respectively), one can rewrite (2.45) as follows

F (R 0 , R 1 ) = B0 0 0 B1 R 0 R 1 - d 0 d 1 2 2 + ε A R 0 R 1 2 2 .
(2.46)

Therefore, the authors are able to image the time-lapse seismic data without preliminary deblending. The results obtained on the synthetic Marmousi model are quite encouraging as a modeled 4D signal is well reconstructed from the blended data.

Another group of authors suggests using LSRTM approach. [START_REF] Xue | Seismic imaging of incomplete data and simultaneous-source data using least-squares reverse time migration with shaping regularization[END_REF] propose an extended LSRTM with shaping regularization (LSRTM-SR). The method is applied both to blended and incomplete data imaging. Actually, this method is very close to the previously mentioned least-squares inversion. The only operator that is changing is the forward modeling operator B. Thus, the problem defined in (2.44) is rewritten as

d = M j=1 Γ j B j R, (2.47)
where Γ j , j = 1, . . . , M correspond to the blending matrices and B j , j = 1, . . . , M to the forward modeling operators for each of the M simultaneous sources. The solution to this problem is found more or less in the same way as that of [START_REF] Tang | Least-squares migration/inversion of blended data[END_REF], by minimizing a cost function having the same structure as (2.45). [START_REF] Xue | Seismic imaging of incomplete data and simultaneous-source data using least-squares reverse time migration with shaping regularization[END_REF] also investigate the possibility of introducing a so called shaping regularization operator [START_REF] Fomel | Shaping regularization in geophysical estimation problems[END_REF].

Greedy methods in seismic signal processing

As mentioned in Section 2.5 on page 16, many conventional seismic signal processing techniques act on the most pertinent problems first, e.g., the most energetic noise is eliminated before the less energetic one. This intuitive approach made us think of greedy algorithms, which, by definition, aim to achieve a locally optimal solution at each stage in the hope to reach a globally optimal solution in the end. Greedy algorithms have already been applied to seismic data for several different purposes, such as filtering [START_REF] Nguyen | Matching pursuit of two dimensional seismic data and its filtering application[END_REF][START_REF] Hugonnet | Beyond aliasing regularisation by plane event extraction[END_REF][START_REF] Hugonnet | Local linear events extraction and filtering in the presence of time-shifts[END_REF], seismic data interpolation and regularization [START_REF] Wang | Seismic data interpolation by greedy local Radon transform[END_REF][START_REF] Adamo | Weak orthogonal matching pursuit with geophysical atom selection[END_REF], seismic data compression and sparse storage [START_REF] Boßmann | Asymmetric chirplet transform for sparse representation of seismic data[END_REF]Ma, 2015, Hu et al., 2015), or reflectivity inversion [START_REF] Zhang | Seismic sparse-layer reflectivity inversion using basis pursuit decomposition[END_REF], but not for different sources signals separation.

2.7. Greedy methods in seismic signal processing [START_REF] Hugonnet | Beyond aliasing regularisation by plane event extraction[END_REF] and [START_REF] Hugonnet | Local linear events extraction and filtering in the presence of time-shifts[END_REF] proposed a method close to a matching pursuit for linear noise suppression. It is supposed that seismic data can be represented as a superposition of linear events of the form event(t, x) = w(t -[τ + px]),

(2.48) where (t -[τ + px]) is the classical linear Radon formulation with one spatial variable x = {x i for i = 1, . . . , N } for N seismic traces, taken in any 2D data representation introduced in Section 2.3 on page 12, and w(t) is a short seismic wavelet which is supposed to be constant along the whole event; w(t) can be interpreted as a complex wavelet associated to a seismic event.

The algorithm (see Algorithm 1) starts with a linear Radon transform, followed by a specific intelligent event picking. The aim of the intelligent picking is to subtract the most energetic (or significant) events in the first place. This is done in two stages: choice of an initial estimation, or first guess, followed by a local minimum search through optimization, as shown in (2.49). After this step a set of = 1, . . . , L events characterized by parameters {τ , p , w (t)} are found. Dipping angles p and wavelets w (t) are then refined within an optimization procedure. 11 end Algorithm 1: Linear events filtering (modified from [START_REF] Hugonnet | Local linear events extraction and filtering in the presence of time-shifts[END_REF]).

Input

The refinement is achieved through a non-linear conjugate gradient algorithm applied at each iteration j on the following objective function:

(p , w ) j = arg min   N i=1 R j d(t, x i ) - L =1 w t -[τ + p x i ] 2   .
(2.49)

Note that the reference times τ are not refined within the optimization routine and are directly obtained from the Radon transform. It is proposed to apply the method in an iterative manner, so that lower amplitude events hidden beneath the higher amplitude ones can still be captured. At each iteration, the residue is updated in the following manner

R j+1 d(t, x i ) = R j d(t, x i ) - L =1 w * t -[τ + p * x i ] (1 ≤ i ≤ N ), (2.50)
where (p * , w * ) is the solution of (2.49).

As the method allows one to discriminate the data into sets of linear events, various criteria, e.g., slope above a certain threshold, can be used afterwards to filter some of the events out.

This method can be extended by adding time-shift values σ i at each trace and for each event. Hence, (2.49) is written as

(p , w , {σ i }) j = arg min   N i=1 R j d(t, x) - L =1 w t -[τ + p x i + σ i ] 2   .
(2.51)

By doing so, the authors account for time shifts that can originate from geological reasons (angle of incidence dependence, complex travel-path, etc.) or from positioning inaccuracies and need for statics correction. Curved seismic events can also be handled by this approach, however, no explicit parabola is introduced.

In 2010, Wang et al. proposed to use greedy algorithms for seismic data interpolation. In particular, they introduced a greedy Radon transform (see Algorithm 2). Their algorithm also starts with a linear Radon transform but the picking is performed using an amplitude threshold and the optimization within each loop is held on a small portion of the Radon space. The processing order is based on priority attributed according to the energy level of each portion. In 2014, Adamo et al. benchmarked several orthogonal matching pursuit (OMP) modifications according to their performance on seismic data interpolation. Because of equipment failure or a too sparse acquisition grid, it is sometimes necessary to interpolate the missing seismic data within the regularization step of the common seismic processing sequence, presented in Section 2.5 on page 16, right before migration. More details on the Matching Pursuit algorithms can be found in the following chapter.

The authors also introduced their own method that they call Geophysical Orthogonal Matching Pursuit (GeOMP). First, a linear Radon transform is applied to the data, and a plot m is obtained. The GeOMP algorithm then selects n points of m = m(i, j), one at a time such that (i 0 , j 0 ) = arg max i,j |m(i, j)| , and m = m(i 0 , j 0 ).

(2.52)

Once the maximal value m is found, a neighborhood in the τ axis is chosen to take into account the whole wavelet. In such a way, the authors obtain their geophysical atom for OMP decomposition. The inverse Radon transform applied to the full dictionary in the τ -p domain gives the reconstructed seismic data.

In 2015 the same group of authors presented a comparison of pursuit algorithms [START_REF] Fioretti | Comparison of pursuit algorithms for seismic data interpolation imposing sparseness[END_REF] applied to the seismic data interpolation. The authors compare simple Fourier transform to Matching Pursuit and the so-called Stagewise Conjugate Gradient Pursuit (SCGP). There are two main ameliorations in the SCGP comparing to the MP: more than a single coefficient is selected at each iteration because of the stagewise strategy, and the update of all the coefficients is made within a conjugate gradient algorithm. The main difference with OMP is that there is no full orthogonalization; instead, the authors propose making an approximation of re-orthogonalization by applying updated coefficients to make the consecutive directions conjugate.

In the end of 2015, Boßmann and Ma introduced a dictionary-free variant of OMP using the asymmetric Gaussian chirplet model (AGCM). The authors recognize that sparse representations of seismic data can be beneficial for different manipulations of the data; in their paper, they demonstrate numerical results for seismic data approximation, sparse storage, envelope, and arrival-time detection 

A p (t) = E p (t)F p (t),
(2.53)

E p (t) = e -α(1-β tanh(C(t-τ )))(t-τ ) 2 , (2.54) F p (t) = cos(f (t -τ ) + γ(t -τ ) 2 + θ), (2.55)
with the envelope part E p and the frequency part F p , where p denotes a parameters set p = (α, β, τ, f, γ, θ) with the bandwidth factor α > 0, the asymmetry factor β ∈ (-1, 1), the time shift τ > 0, the center frequency f ∈ [0, 2π), the chirp rate γ ∈ [0, 2π), and the phase θ ∈ [0, 2π); tanh(Ct) = -i tan(iCt) is the hyperbolic tangent function that for large C is approximately 1 for t > 0 and -1 for t < 0, C = const > 0 is chosen a priori. Thus, the AGCM is a model of the seismic signal (trace by trace) that allows its parameterization. Logically, the authors assume that the seismic data can be approximated using a limited amount of AGCM waves; in other words, seismic data are sparse in the AGCM domain

d(t) ≈ L k=1 a k A p k (t), (2.56)
where L is a small number, a k ∈ R is the amplitude of each atom A p k (t), and p k is the parameters set

p k = (α k , β k , τ k , f k , γ k , θ k ) for each k, 1 ≤ k ≤ L.
The whole set of parameters {p k } L k=1 can be difficult to reconstruct, as the data contains noise; consequently, the authors propose reconstructing only the envelope (low-frequency) part of the model:

Env(d)(t) ≈ L k=1 a k E p k (t), (2.57)
which reduces the number of parameters to four for each element, including the amplitude a k . Equation (2.57) is solved through OMP. The authors note that it is not possible to create and store the complete dictionary that is needed for OMP. Thus, it is necessary to introduce a dictionary-free OMP version, in which at each iteration an atom is constructed using a set of parameters, in other words, the algorithm is looking for a set of parameters p such that

p = arg p min R d -a E p 2 ,
(2.58)

where R d denotes the residue after subtraction at the th iteration of OMP. The authors point out that the computation of the gradient of E p can be unstable, thus, it is more appropriate to make an assumption on the first atom to choose. Assuming that the envelope E p reaches its maximum at time position t = τ ,

τ = arg max t R d(t), (2.59) a = R d(τ ).
(2.60)

Given the parameters τ and a , one can calculate α and β from (2.54):

R d(t) ≈ a e -α (1-β tanh(C(t-τ )))(t-τ ) 2 , (2.61)
for t close to τ . After choosing the atom with parameters obtained in (2.59), (2.60) and (2.61), the OMP algorithm performs the adjustment of the amplitudes of all the previously selected atoms in order to separate the overlapping atoms. The authors call the presented algorithm adapted dictionary-free orthogonal matching pursuit (ADOMP) and are planning to extend the AGCM to high-dimensional denoising based on the spatial coherence of seismic data. They show some promising approximation results on synthetic and real marine seismic data. All possible applications of the model still have to be identified.

The same issue of Geophysics (November-December 2015) contains another paper on the matching pursuit (MP) method. [START_REF] Hu | Compression of local slant stacks by the estimation of multiple local slopes and the matching pursuit decomposition[END_REF] propose using matching pursuit decomposition for data compression before beam migration. As mentioned in Section 2.5 on page 16, the complete seismic datasets are sometimes too large to be migrated as they are, especially for a fast-track processing and imaging.

Beam migration consists of three main steps [START_REF] Hu | Compression of local slant stacks by the estimation of multiple local slopes and the matching pursuit decomposition[END_REF]: applying local slant stack to form the beams on the recording surface; ray tracing to compute travel-times and corresponding amplitudes; assigning beam values to spatial grids and applying imaging condition. Calculating and storing the local slant stacks can be very numerically costly, that is why the authors propose a preliminary compression of the local slant stacks using MP. The MP is applied on already stacked data (one seismic trace for each local slope), and the dictionary is composed of Ricker wavelets with different time shifts and dominant frequencies

u(t) = Nmax n=1 a n Ricker(t -t shift n , f dominant n ), (2.62)
where u(t) is a stacked seismic trace, and a n are the amplitudes computed within MP. Thus, seismic data can be represented and stored as a set of parameters defined in (2.62).

The algorithm is applied on one synthetic and one field data set, and does not degrade the beam migration results.

In conclusion, we have seen in this chapter the variety of methods used in seismic signal processing in the seismic exploration industry. In the next chapter, we discuss the mathematical background of the main signal processing methods underlying the algorithm developed in our work.

Chapter 3

Signal decomposition and mathematical background

In this chapter, we describe the mathematical tools and methods that we will use in the following chapters. We start by explaining signal decomposition in Section 3.1. We then present in details the Matching Pursuit method, as well as its modifications (Sections 3.2-3.3).

Signal decomposition

The problem of separating signals originating from two or more different seismic sources can be cast as a problem of signal decomposition, namely, a decomposition into a set of locally coherent events that can be associated with one and only one source in which the goal is to represent the data as accurately as possible with a linear combination of L atoms from a given dictionary D. The rationale behind this idea is that the dictionary is selected to obtain sparse decompositions for which L is much smaller than the data dimension and, in our problem of deblending, separation of the different sources.

Main notation and problem statement

The signal to decompose is some data d(t) ∈ H, where H is a Hilbert space. Its Euclidean norm is defined conventionally:

d = +∞ -∞ |d(t)| 2 dt 1/2 < +∞. (3.1)
The inner product of (d, g) ∈ H is defined by

d, g = +∞ -∞ d(t)g(t) dt, (3.2)
where g(t) denotes the complex conjugate of g(t).

After sampling of the signal d(t) ∈ H with a sampling period ∆ t , we have

d, g = t∈∆t Z d(t)g(t) (3.3) and d 2 = d, d . (3.4)
Since the problem of separating signals originating from two or more different seismic sources can be cast as a problem of signal decomposition, we first define some of the main signal decomposition notions. Definition 1. A dictionary of atoms D is a subset {g γ (t)} γ∈Ω ⊂ H, where Ω ⊂ R ν is some set of indices and the atoms are unit-norm vectors, i.e., ∀γ ∈ Ω, g γ (t) = 1. Definition 2. A dictionary is redundant for a given set X ⊂ H, if for any d ∈ X, d can be represented as the limit of a linear combination of the elements of the dictionary:

d(t) = +∞ n=0 c n g γn (t).
(3.5)

When X = {d} is a singleton, we say that the dictionary is redundant for d ∈ H.

Hence, decomposing signal into a linear combination of L elements of a dictionary, mathematically means, as proposed by [START_REF] Tropp | Greed is good: Algorithmic results for sparse approximation[END_REF], that we are trying to find the index set Γ ⊂ Ω containing L elements and the complex coefficients {c γ } γ∈Γ that lead to the smallest approximation error, i.e., min

{Γ⊂Ω | |Γ|=L} min {cγ } d - γ∈Γ c γ g γ . (3.6)
Another way to see the problem (3.5) is to see it as an inversion problem:

Dc = d, (3.7) 
where c = (c γ ) is the vector of amplitude coefficients in (3.5).

If L and Γ are known a priori, one can solve the minimization problem (3.6) using least-squares fit [START_REF] Press | Numerical recipes. The art of scientific computing[END_REF]. However, for complex dictionaries L and Γ cannot be fixed beforehand, i.e., we do not know a priori the vectors that will be used for decomposition. We first have to find a way of choosing an optimal set of atoms and then find a linear combination that best approximates our signal.

Signal decomposition methods overview

Method of frames

The method of frames (MOF) solves (3.7) in such a way that the 2 norm of the coefficients is minimized [START_REF] Daubechies | Time-frequency localizlocal operators: A geometric phase space approach[END_REF]:

min c 2 subject to Dc = d.
(3.8) [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF] claim that this method is not enough sparsity-preserving and that the resolution is limited. [START_REF] Coifman | Entropy-based algorithms for best-basis selection[END_REF] proposed the Best Orthogonal Basis (BOB) algorithm, designed to choose an optimal subset from among numerous bases, such as wavelet packet and cosine packet dictionaries and to create sparse approximations over the chosen "best basis." The method works well for signals having sparse representations within the chosen basis, but are less efficient for signals having many non-orthogonal components [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF][START_REF] Tropp | Greed is good: Algorithmic results for sparse approximation[END_REF].

Best Orthogonal Basis

Basis Pursuit

Basis Pursuit (BP) is not really an algorithm but rather a principle of a simultaneous global optimization [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF]. It reduces to solving a problem similar to (3.8) min c 1 subject to Dc = d, (3.9) with the only difference of minimizing the 1 norm instead of 2 . The advantage of the norm 1 is that it leads to sparser solutions. However, this minor difference leads to a significant increase in computational complexity, as minimizing the 1 norm implies looking for the solution of a convex, non-quadratic optimization problem.

Matching Pursuit

Matching Pursuit method

Multiple variants of Matching Pursuit exist [START_REF] Lodhi | YAMPA: Yet Another Matching Pursuit Algorithm for compressive sensing[END_REF], but all of them are based on the same principles. Given a signal d and a dictionary of atoms D, the linear expansion of d over the atoms from D are constructed by an iterative algorithm called matching pursuit [START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF]. The algorithm consists in constructing successive approximations of d by making orthogonal projections on elements of D.

For g γ 0 ∈ D, the signal d can be decomposed as

d = d, g γ 0 g γ 0 + Rd, (3.10)
where Rd is the residual vector4 after approximating d in the direction of g γ 0 . Let us prove that the residue Rd is orthogonal to g γ 0 . Consider the inner product of d and g γ 0 d, g γ 0 = d, g γ 0 g γ 0 , g γ 0 + Rd, g γ 0 .

(3.11)

According to (3.1), (3.2) and the condition g γ 0 = 1, it follows from (3.11) that Rd, g γ 0 = 0, (3.12) so Rd is orthogonal to g γ 0 . Hence,

d 2 = | d, g γ 0 | 2 + Rd 2 . (3.13)
It follows from (3.13) that in order to minimize the norm of the residue Rd , one must choose

g γ 0 ∈ D so that | d, g γ 0 | = max γ∈Ω | d, g γ | . (3.14)
Remark 3. In some cases, e.g., when a redundant dictionary cannot be stored, it is not possible to find a vector g γ 0 that is the best approximation, but almost the best in the sense that

| d, g γ 0 | ≥ α sup γ∈Γ | d, g γ | , (3.15)
where α is an optimality factor that satisfies 0 < α ≤ 1, and Γ is a finite subset of Ω. The details of this idea are discussed by [START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF].

The MP algorithm consists in applying this projection step recursively to the residue. We denote R 0 d = d and suppose that the th order residue R d was computed for ≥ 0. The residue R d is then decomposed into (3.16) which defines the residue of the order + 1. Since R +1 d is orthogonal to g γ , we have as in (3.13)

R d = R d, g γ g γ + R +1 d,
R d 2 = R d, g γ 2 + R +1 d 2 .
(3.17)

If we now carry the decomposition up the Lth order, and take into account all the previous decomposition steps, we can write:

d = L-1 =0 R d, g γ g γ + R L d. (3.18)
The relations (3.13) and (3.18) result in an energy conservation equation .19) which proves that the norm of the residue is constantly decreasing.

d 2 = L-1 =0 R d, g γ 2 + R L d 2 , ( 3 
Proposition 1. The energy conservation equation (3.19) is only valid when all g γ satisfy g γ = 1.

Proof. Let us consider that one of the g γ satisfies g γ = 1. Without loosing generality, we can choose that g γ 0 = 1. Then, from (3.10) and (3.11), it follows that

Rd, g γ 0 = d, g γ 0 1 -g γ 0 2 . (3.20)
Hence, the residue is not orthogonal to the last selected atom ( Rd, g γ 0 = 0); (3.13) will thus be transformed into

d 2 = | d, g γ 0 | 2 g γ 0 2 + 2 d, g γ 0 Rd, g γ 0 + Rd 2 , ( 3.21) 
or, inserting (3.20) into (3.21)

d 2 = | d, g γ 0 | 2 g γ 0 2 + 2 | d, g γ 0 | 2 1 -g γ 0 2 + Rd 2 . (3.22)
As 1 -g γ 0 2 can be either positive or negative, the energy is not conserved. Thus, the norm of the residue is not necessarily constantly decreasing in the case when Rd, g γ 0 = 0, or, equivalently, g γ 0 = 1. Hence, all the g γ have to be normalized.

Example 1. Let us now consider an example of non-normalized dictionary (Figure 3.1). Let d = (0, 1) be the signal to decompose. Let the dictionary consist of two non-normalized atoms: g 1 = (0, 1) and g 2 = (10, 10). Even though the vector g 2 does not approximate best the signal d, their scalar product d, g 2 = 10 will be bigger than d, g 1 = 1. Hence, if we decompose d starting with the atom g 2 , we will obtain a residue equal to

R 0 d = d -d, g 2 g 2 = (0, 1) -10(10, 10) = 0. (3.23)
At the same time, the vector g 1 would have approximated the signal perfectly. Thus, we have an example of a wrong atom choice because of using a non-normalized dictionary. Thus, the original vector d is decomposed into a sum of dictionary elements, which are chosen to best approximate d in the sense of the norm of the residue. Although this decomposition is nonlinear, the energy is conserved as in the case of the linear orthogonal decomposition. The energy conservation equation (3.19) implies the following theorem proved by [START_REF] Davis | Adaptive time-frequency decompositions with matching pursuits[END_REF]:

Theorem 1. If the dictionary of atoms is redundant for a signal d ∈ H (Definition 2), then the matching pursuit residue R L d at the Lth step is defined by the induction equation (3.16) and satisfies

lim L→+∞ R L d = 0. (3.24)
Hence,

d = +∞ =0 R d, g γ g γ , (3.25) 
and

d 2 = +∞ =0 R d, g γ 2 . (3.26)
Moreover, when H is of finite dimension, R L d decays exponentially to zero.

Back-projection

Let us now return to (3.18). If we stop the algorithm at this stage, the signal d is modeled as a finite linear combination of dictionary atoms with an error R L d. However, in the general case this model may not be the best approximation using the same dictionary of atoms.

Example 2. Let us demonstrate that the approximation is not the best if the atoms are not orthogonal. Let d = 2g 1 + g 2 be the signal to decompose. Let the dictionary consist of two atoms: g 1 and g 2 , g 1 = g 2 = 1, and suppose that g 1 , g 2 = 0. On the first step of matching pursuit we will select the atom

g 1 because | d, g 1 | > | d, g 2 |.
The scalar product is computed as follows:

d, g 1 = 2 g 1 2 + g 2 , g 1 = 2 + g 2 , g 1 . (3.27)
Thus, we will decompose d so that the residue is equal to

R 1 d = d -d, g 1 g 1 = 2g 1 + g 2 -2g 1 -g 2 , g 1 g 1 = g 2 -g 2 , g 1 g 1 . (3.28)
On the second step we will compute the scalar product of the residue with the atom g 2 :

R 1 d, g 2 = g 2 2 -| g 1 , g 2 | 2 = 1 -| g 1 , g 2 | 2 , (3.29)
and the residue is equal to

R 2 d = R 1 d -R 1 d, g 2 g 2 = g 2 -g 2 , g 1 g 1 -g 2 + | g 1 , g 2 | 2 g 2 = -g 2 , g 1 g 1 + | g 1 , g 2 | 2 g 2 .
(3.30) Hence, the residue R 2 d in (3.30) is generally not equal to zero, even though our dictionary is redundant for the given signal.

Let V L be the linear span of {g γ } 0≤ <L and P V L be the orthogonal projector on V L . For any d ∈ H, P V L d is the closest in V L vector to d, i.e., the closest vector that can be written as linear combination of the L vectors {g γ } 0≤ <L . According to (3.18) the projection of d can be written as follows:

P V L d = L-1 =0 R d, g γ g γ + P V L R L d. (3.31)
If the family of vectors {g γ } 0≤ <L is not orthogonal, which is generally the case, then

P V L R L d = 0 (R L d is only orthogonal to g γ L-1 ,
but not to all of the previous vectors {g γ } 0≤ <L-1 ). In order to compute the projection of d on V L , we should find the decomposition of the projection of the residue R L d with the set of atoms {g γ } 0≤ <L :

P V L R L d = L-1 =0 x g γ . (3.32)
Thus, according to (3.18), (3.31) and (3.32), the best decomposition of d using the same dictionary of atoms can be written as follows:

d = L-1 n=0 R d, g γ + x g γ + P W L R L d, (3.33) 
where W L is the orthogonal complement of V L in H, and P W L the orthogonal projector on W L . This computation is called back-projection. The coefficients x can be determined from a system of linear algebraic equations given in Proposition 2.

Proposition 2. The coefficients x can be determined from a system of linear algebraic equations:

R L d, g γ k = L-1 =0 x g γ , g γ k for 0 ≤ k < L. (3.34)
Proof. It follows from the definition of P V L and P W L , that any vector h ∈ H can be represented as

h = P V L h + P W L h, ( 3.35) 
One can derive from (3.18) and (3.35), that

P V L R L d = R L d -P W L R L d = R L d -P W L d, (3.36) hence, P V L R L d, g γ k = R L d, g γ k -P W L d, g γ k = R L d, g γ k , (3.37) and R L d, g γ k = P V L R L d, g γ k = L-1 =0 x g γ , g γ k . (3.38) One can denote X = {x } 0≤ <L , Y = R L d, g γ k 0≤k<L
and G = { g γ , g γ k } 0≤k<L,0≤ <L . Thus, the linear system (3.34) can be written as Y = GX and solved using any appropriate method available.

DeVore and Temlyakov's example

Even though back-projection, discussed in the previous section, can solve the coefficient correction problem the use of non-orthogonal dictionaries may lead to significant loss in the convergence rate. Moreover, the eventual gain in explained energy cannot be estimated before applying the back-projection, which complicates the definition of a stopping criterion. [START_REF] Devore | Some remarks on greedy algorithms[END_REF] propose an example of such a case.

Example 3.

Let A and n be positive integers. In the adaptation made by [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF], for the discrete time signal d(t) = A -1/2 • 1, with t = 1, . . . , A, having an exact decomposition into A atoms of the dictionary D of atoms g γ given by Kronecker elements g γ = δ γ for 1 ≤ γ ≤ n and

g n+1 (t) == c, 1 ≤ t ≤ A c/(t -A), A < t ≤ n, (3.39)
where c is a scalar chosen in such a way that g n+1 (t) = 1. The norm of the atom is always finite, because t is an integer. Thus, the signal d can theoretically be represented as a linear combination of the first A atoms of the dictionary D. Nevertheless, the classical MP fails to achieve an accurate decomposition within A steps. Curves showing the decreasing residue are presented in Figure 3.2. For this simulation we have taken A = 10, c = 1 and n = 1024. 

Orthogonal Matching Pursuit

Instead of recovering the orthogonal projection P V L d in the end of the matching pursuit and in order to avoid resolving the linear system, one can modify the pursuit algorithm by computing orthogonal projections at each iteration, when selecting a new vector from the dictionary. The aim of the orthogonal matching pursuit is the same as that of the backprojection: to find the best approximation of the signal using the already selected atoms, i.e., at the given step L, to find the projection of d on the span of the selected atoms {g γ } 0≤ ≤L-1 . Note that orthogonal matching pursuit provides optimal decompositions of d at each iteration of the algorithm, which is different from the back-projection technique.

Let us begin as if we were doing the classical matching pursuit: vector d can be decomposed into a sum d = d, g γ 0 g γ 0 + Rd. (3.40) Let us denote R 0 d = d and u 0 = g γ 0 . We now explain by induction, how to obtain the orthogonal residue R +1 d from R d. Let us suppose that we have already selected vectors g γp 0≤p≤ -1 that are linearly independent and that we have computed the corresponding Gram-Schmidt orthogonal basis {u p } 0≤p≤ -1 . Both g γp 0≤p≤ -1 and {u p } 0≤p≤ -1 belong to the V space. Thus,

d = P V d + R d. (3.41)
We choose a vector g γ ∈ D so that

R d, g γ = max γ∈Ω R d, g γ . (3.42)
Remark 4. Following the same logic as in (3.15) and Remark 3, sometimes one can only find a vector that satisfies

R d, g γ ≥ α sup γ∈Γ R d, g γ , ( 3.43) 
where α is an optimality factor that satisfies 0 < α ≤ 1, and Γ is a finite subset of Ω.

If R d, g γ = 0, then either R d = 0, or R d / ∈ span{g γ } γ∈Ω , which means that the residue left is orthogonal to all the atoms of the dictionary, thus, no further decomposition can be performed. If this is not the case, and because R d is orthogonal to V , then vector g γ does not belong to the space V . Thus, the vectors g γp 0≤p≤ are linearly independent. To obtain the next vector u of the orthogonal basis, one performs a Gram-Schmidt orthogonalization step by subtracting from g γ its projection on the space The family of vectors {u p } 0≤p≤ is an orthogonal (but not orthonormal) basis in the space V +1 generated by g γp 0≤p≤ . From (3.41) and (3.44), the signal is thus decomposed into .45) This can also be rewritten as follows 

V u = g γ - -1 p=0 g γ , u p u p 2 u p . ( 3 
d = P V +1 d + R +1 d = p=0 d, u p u p 2 u p + R +1 d. ( 3 
R d = R d, u u 2 u + R +1 d. ( 3 
R d = R d, g γ u 2 u + R +1 d. (3.49)
This equation is similar to the decomposition equation (3.16) of classical matching pursuit, but instead of subtracting a vector in the g γ direction, we now subtract its part which is orthogonal to all the previously subtracted vectors. Since R +1 d and u are orthogonal,

R d 2 = R d, g γ 2 u 2 + R +1 d 2 . ( 3.50) 
An orthogonal matching pursuit guarantees that the selected vectors {g γ } 0≤ ≤L are linearly independent, and thus computes the best possible approximation of d from these vectors at each step. Hence, we do not need any back-projection algorithm to be implemented in the end. Equations (3.49) and (3.50) imply that (3.51) and the energy conservation equation:

d = L-1 =0 R d, g γ u 2 u + R L d,
d 2 = L-1 =0 R d, g γ 2 u 2 + R L d 2 .
(3.52)

The derivations are similar to those in the equations (3.18) and (3.19) for classical matching pursuit and show the energy conservation.

Recall that, our prior objective was not to decompose d into a linear combination of {u } 0≤ ≤L-1 but rather of {g γ } 0≤ ≤L-1 . Thus, we can first decompose u into a linear combination of g γp 0≤p≤ u = p=0 a p g γp , (3.53) where the superscript in a p denotes the th order estimation of the coefficients, or, in other words, their estimation at the th iteration. This is possible because u ∈ V +1 and g γp 0≤p≤ is a basis of V +1 .

The coefficients a p can be calculated while computing the orthogonal matching pursuit. Inserting expression (3.53) into (3.51) yields

d = L-1 =0 R d, g γ u 2 p=0 a p g γp + R L d. (3.54)
On the other hand, as suggested by [START_REF] Pati | Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition[END_REF], one can see the problem differently, directly computing a decomposition of the input signal into a linear combination of atoms of the dictionary. Indeed, one can rewrite (3.51) as

d = L-1 =0 c L g γ + R L d with R L d, g γ = 0, = 0, . . . , L -1.
(3.55)

In (3.55) and further in this section, the superscript L for the c L coefficients, reflects the dependence of these coefficients on the model order, or in other words, on the OMP iteration number. A newly chosen atom g γ L is proposed to be modeled as

g γ L = L-1 =0 b L g γ + u L with u L , g γ = 0, = 0, . . . , L -1. (3.56)
In other words, L-1 =0 b L g γ = P V L g γ L , and u L = P W L g γ L is the only component of g γ L which cannot be represented as a linear combination of g γ 0 , . . . , g γ L-1 .

Lets us rewrite (3.55) adding and subtracting

c L+1 L g γ L d = L-1 =0 c L g γ + R L d + c L+1 L g γ L -c L+1 L g γ L .
(3.57) Inserting (3.56) into (3.57), we get

d = L-1 =0 c L g γ -c L+1 L L-1 =0 b L g γ -c L+1 L u L + R L d + c L+1 L g γ L (3.58) = L-1 =0 g γ (c L -c L+1 L b L ) + c L+1 L g γ L + R L d -c L+1 L u L . (3.59) Now substituting c L+1 = c L -c L+1 L b L , = 0, . . . , L -1, and R L+1 d = R L d -c L+1 L u L , we obtain d = L-1 =0 c L+1 g γ + c L+1 L g γ L + R L+1 d. (3.60) Let us now find such c L+1 L , that R L+1 d ⊥ g γ L : R L+1 d, g γ L = 0 (3.61) R L d -c L+1 L u L , g γ L = 0 (3.62) R L d, g γ L -c L+1 L u L , g γ L = 0 (3.63) c L+1 L = R L d, g γ L u L , g γ L .
(3.64)

Now we only have to compute the coefficients b L . In order to do this, we can rewrite the equations (3.56) as a system of linear equations (3.65) where

v L = A L b L ,
v L = g γ L , g γ 0 , g γ L , g γ 1 , . . . , g γ L , g γ L-1 T , (3.66) b L = b L 0 , b L 1 , . . . , b L L-1 T , ( 3 
.67)

A L =       g γ 0 , g γ 0 g γ 1 , g γ 0 . . . g γ L-1 , g γ 0 g γ 0 , g γ 1 g γ 1 , g γ 1 . . . g γ L-1 , g γ 1 . . . . . . . . . . . . g γ 0 , g γ L-1 g γ 1 , g γ L-1 . . . g γ L-1 , g γ L-1       . (3.68)
Thus, b L can be extracted from (3.65), provided that A L is a nonsingular matrix. Additional precisions on the above mentioned matrices computation are given in Section 5.4.4.

Constrained OMP

In some cases, one would like to put specific constraints on the OMP decomposition result, such as a sign pattern, constrained maximal absolute value or frequency content. An approach to doing this is proposed by [START_REF] Adler | A Constrained Matching Pursuit Approach to Audio Declipping[END_REF], in which authors propose integrating prior information into the problem. Both classical and orthogonal matching pursuits can be viewed as a method of seeking for the sparsest possible representation of a signal, using a specific dictionary: ĉ = arg min (3.70)

The main difficulty related to all the variants of the OMP method is the search of an atom that maximizes its inner product with the residue (search of a solution to (3.42) on page 44). Because the atoms depend continuously on the parameters, this search needs utilization of optimization methods. Moreover, optimization methods usually need quite a precise preliminary estimation of the parameters to be used as the initial conditions, which allows convergence to an optimal solution. We have implemented an algorithm which progressively constructs the initial guess of the parameters and then converges to an optimal set of parameters. The different methods that enabled us to achieve relevant initial conditions for optimization methods are presented in Appendix A.

Chapter 4

Mathematical modeling of Matrioshka OMP

In this chapter we present the mathematical modeling performed for our proposed source separation method. We start with the physics-driven model in Section 4.1, which we compare to classical seismic waves propagation models in the subsection 4.1.2. We then discuss survey field conditions and visualization of simultaneous-source data in Section 4.2. In Section 4.3, we present our data-driven model of a seismic event, which we divide into two "submodels": traveltime curve model (subsection 4.3.2) and wavelet model (subsection 4.3.3). In Section 4.4, we present the fundamentals of our method and its application to the separation of signals originating from different seismic sources. Our method, which we call Matrioshka Orthogonal Matching Pursuit, relies on fine optimization of the parameters of the model. In order to obtain suitable parameters, we use iterative optimizations, which require a sufficiently accurate knowledge of the parameters, i.e., a satisfactory initial conditions set. The computation of the initial conditions is described in Section 4.5. Sections 4.6 and 4.7 provide an overview of the different parts of the algorithm. In this chapter we also explicitly introduce all the hypotheses on which our model and method are based.

Physics-driven model

Earth's transfer function

We denote by d(t) the signal measured by one sensor localized in a fixed position D during the entire acquisition. We consider the Earth's space-time referential, where each point is defined by variables (x, t). Here x = (x, y, z) T are the spatial coordinates and t is the continuous time.

Hypothesis 

: (E ) K → D (s 1 , . . . , s K ) → d,
where D is the space of distributions and E is the space of distributions with a compact support. We suppose that this transformation is linear, stationary (i.e., time shift invariant) and continuous.

Under this hypothesis, the Filter Theorem5 [START_REF] Roubine | Distributions Signal: Les cours de l'Ecole Supérieure d'Electricité[END_REF] shows that there exists a distribution R = (r 1 , . . . , r K ) ∈ (D ) K such that for any limited support excitations, the signal recorded at D is given by

d(t) = R S(t), (4.1)
where S(t) = (s 1 (t), . . . , s k (t)) T is a vector of finite dimension whose components correspond to the signals emitted by all the sources and denotes the convolution

R S(t) = +∞ -∞ R(u)S(t -u) du. (4.2)
Relation (4.1) can be rewritten with the components as

d(t) = K k=1 +∞ -∞ r k (u)s k (t -u) du = K k=1 (r k s k )(t). (4.3)
From Hypothesis 1, reflectivity r k , which should stand for the Green function, or impulse response, depends a priori on the positions of the K shot points (S k ) 1≤k≤K and the detector D. If all the excitations are canceled, except for the kth one, the signal at D given in (4.3) becomes

d(t) = (r k s k )(t), (4.4) 
and if we consider a sequence of signals (s kn ) n that converges in E to the Dirac distribution δ, then the signal at D tends to r k (t) when n tends to the infinity. Therefore, r k only depends on the positions S k and D for a given propagation medium.

Remark 5. The assumption that all excitations are null, except for the kth one, implies that at one time instant only one signal is emitted, which can be realized in conventional single-source seismic acquisition, while is doubtful and even false for simultaneous-source surveys. Moreover, an excitation at point S k induces perturbation signals in the other source positions. We remove this ambiguity by defining the excitation s(t) at a shot point as a signal added to the pressure produced by all the other excitations (known and unknown). Since Hypothesis 1 allows signals superposition [START_REF] Telford | Applied Geophysics[END_REF], we can thus state that the reflectivity r k only depends on the positions of the source S k and of the detector D (it does not depend on the positions of other sources).

Moreover, because of the reality of seismic acquisition, our model includes noise b(t) and (4.3) becomes

d(x D , t) = K k=1 (r k (x S k , x D ) s k )(t) + b(t), (4.5)
where x S k is the position (x, y, z) of S k and x D is the position of D in the same coordinates.

Let us now consider multiple transportable sources firing at different times and locations. We denote N i the number of shots effectuated by the ith source and x i n the position of the ith source at the moment T i n of its nth shot. We consider that the source does not move while emitting a non null signal (it can move between two shots when the source's signal is null), and we introduce the next hypothesis.

Physics-driven model

Hypothesis 2. For each of its shots, the ith source emits the limited support signal s i .

Therefore, it results from Hypotheses 1 and 2 that we can distinguish signals coming from different sources, at least mathematically. Denoting K = N 1 + N 2 and considering that we do not lose generality by formulating the following equation for two sources (the same relations can easily be generalized for any number of sources) we rewrite (4.5) as follows

d(x D , t) = N 1 n=1 (r(x 1 n , x D ) s 1 )(t -T 1 n ) + N 2 m=1 (r(x 2 m , x D ) s 2 )(t -T 2 m ) + b(t). (4.6)

Comparison to classical seismic waves propagation models

Our model is inspired by the convolutional seismic trace model [START_REF] Hatton | Seismic Data Processing. Theory and Practice[END_REF] widely used in seismic exploration. The 1D convolutional model suggests that a seismic trace d(t) is the convolution product of the source wavelet s(t) with the subsurface reflectivity r: d(t) = (r s) (t). It is appropriate to use this model after processing and summation (or migration), when each trace is considered to be issued from a zero-offset experiment.

If we consider that each trace is obtained from a receiver placed exactly at the same place as the source, a 1D model is applicable and can be used for direct seismic impedance deduction [START_REF] Cooke | Generalized linear inversion of reflection seismic data[END_REF][START_REF] Oldenburg | Recovery of the acoustic impedance from reflection seismograms[END_REF][START_REF] Zhang | Seismic sparse-layer reflectivity inversion using basis pursuit decomposition[END_REF].

Our research is related to a seismic data analysis stage that is placed earlier in a common seismic processing sequence (e.g., given in Section 2.5 on page 16): we study seismic traces issued from all offsets. Consequently, we cannot say that the reflectivity r k (x S k , x D ) from (4.5) corresponds to a true reflectivity series at some fixed point between x S k and x D , neither can we affirm that these are the true reflectivity coefficients in the subsurface directly under x S k or x D . On the contrary, r k (x S k , x D ) in (4.5) acts as a transfer function between the source and the receiver and accumulates the entire Earth's response due to the concrete signal.

A similar approach was proposed by [START_REF] Berkhout | Seismic Migration, imaging of acoustic energy by wave field extrapolation[END_REF], however, our model has significant differences. First, Berkhout proposes working in the Fourier domain. It is common practice for several reasons, cited by [START_REF] Brekhovskikh | Waves in Layered Media[END_REF], including the possibility of representing any seismic signal as a superposition of monochromatic waves, the relative simplicity of data manipulation and analysis in the Fourier domain, and the high proximity of real waves to monochromatic ones. Second, Berkhout decomposes the propagation impact on the recorded signal into the downwards propagation W(z 0 , z m ), reflection R(z m , z m ) and upwards propagation W(z m , z 0 ), where z 0 is the Earth's surface and z m are depths of all reflectors. Thus, each monochromatic component P(z 0 , z 0 ) of a detector signal at x D is represented in the space-frequency domain as

P(z 0 , z 0 ) = D(z 0 ) M m=1 [W(z 0 , z m )R(z m , z m )W(z m , z 0 )] S(z 0 ). (4.7)
Here S(z 0 ) is the source matrix, containing the source wavefield at the surface, it can be used for simultaneous sources representation; D(z 0 ) is the detector matrix, it can be used for groups of detectors. However, we can bring two restrictions to the formalism proposed by [START_REF] Berkhout | Seismic Migration, imaging of acoustic energy by wave field extrapolation[END_REF]: first, there is implicitly a 1D reference related to the special importance given to the vertical direction; second, there is an implicit linearization of the response, even if the W terms contain complex upward and downward propagation schemes.

We chose not to use space-frequency domain for our reasoning (we will further explain how we take into account different frequency components). In addition, representations (4.5) and (4.7) differ in several points: the propagation in (4.7) is decomposed into three terms, as mentioned above; moreover, the equation is resolved for all the depth layers; furthermore, in our model (4.5) we omit the detector term considering only one detector at a time. Nevertheless, representations (4.5) and (4.7) have a similar structure and do not contradict each other. Remark 6. Conventional seismic processing methods do not deal with data taking the form (4.6). Indeed, on one hand, the sources usually move and shoot along straight lines, which enables us to visualize (and interpret) them sorted to the common receiver point (see Section 2.3 on page 12) and, on the other hand, in order to decompose the signal d into a sum of terms of (4.6), one has to be able to distinguish the shots of the same source one from another (see Section 2.4 on page 13).

Simultaneous sources for classical seismic survey

design: shooting along straight lines

Experimental conditions for simultaneous-source surveys

In this work, we consider continuous recordings. This means that a receiver is never turned off during the acquisition and records all the seismic signals that are produced during this time. Consequently, it is crucial to maintain well synchronized the clocks of all the pieces of equipment used in a given survey. The time is denoted by t ∈ [0, T glob ], where T glob is the global time spent to acquire d(t). Note that we omit the variable x D as argument of d, since the position of the detector is constant. The N i shots along one shooting line on the surface are performed by one seismic source i at some moment in time T i n (see Figure 4.1). The data recorded in a continuous manner is a column matrix d(k) = d(k∆ t ), where ∆ t is the time sampling period.

Source 2 Source 1 x 1 1 , T 1 1 x 1 N 1 , T 1 N 1 x 2 1 , T 2 1 x 2 N 2 , T 2 N 2
shot points receiver point Figure 4.1: Ocean Bottom Node (OBN) acquisition design scheme for two seismic sources. The parameter x i n denotes the nth shot of the ith source coordinate on the axis of the ith source shooting line and T i n is the time instant of this shot; N i is the number of shots made by the ith source. Note that the x axis of the sources can be different. This kind of recording is a specific feature of simultaneous-source surveys. In classical surveys, with separated sources, data are recorded in a (t, x) plane representation (referred to as seismic traces) and the shot times (or shooting times) T n are automatically taken into account as the beginnings of the traces.

In order to introduce our data-driven model in the next section, we need the following hypotheses.

4.2. Simultaneous sources for classical seismic survey design: shooting along straight lines Hypothesis 3. The sources are firing along straight shooting lines, and, for different sources, these lines may be different. According to this choice, the moveout of each seismic event appears locally linear with respect to the source location along its shooting line.

Consequently, the x axis in the (t, x) domain (see next subsection) is specific to each of the sources. Hypothesis 4. For each source, there exist pauses between consecutive shots during which the signal emitted by the source is null.

Hypothesis 5. Shooting times of different sources are not synchronous and, for each source, shooting intervals are random.

Hypotheses 4 and 5 are illustrated by Figure 4.2. Indeed, in this figure, each shot of the same source can be distinguished from the others following the time axis. On the other hand, the shots of different sources can be separated by rearranging the data in such a way that the signals of one of the sources are aligned, and the signals of the other one (others, if there are more than two sources) resemble to random noise. 

T 1 1 T 1 N 1 T 2 1 T 2 N 2

Simultaneous-source (t, x) data visualization, or pseudodeblending

A specific operation must be applied to align the receiver signal according to the source i to form the traces (Figure 4.3). This operation, that we will denote A i , is applied to continuous time signals as well as to their sampled versions. Note that there are as many representations of the data, as there are sources considered. Moreover, as mentioned above, the x axis in the seismic traces domain (t, x) is specific to each of the sources. For a continuous time signal d(t) from (4.6), this operation is written as follows

A i : L 2 (R) → L 2 ([0, max n (T i n+1 -T i n )] × [x i min , x i max ]) d(t) → D i (t , x); (4.8) A i [d(t)] = D i (t , x) = d(t + T i n ), if x = x i n -x i 0 and t ∈ 0 ; T i n+1 -T i n 0, otherwise. (4.9)
The transformation A i is linear.

In conventional single-source seismic, the operation A i is done implicitly: the data are simply cut into traces according to the shooting times T i n . The seismic processor does not pay attention to the shooting times themselves as the true shooting times don't play any role in the further processing. On the contrary, for simultaneous sources data processing, it is crucial to preserve the true shooting times, as they are the only hint we have in the data that can help us separate the signals coming from different sources.

d(t) D 1 (t , x) D 2 (t , x) T 1 n : 0 5 10 15 20 
T 2 n : 1 6 12 16 19 
T 3 n : -1 3 8 14 18 D 3 (t , x) D 1 (t , x) D 2 (t , x) D 3 (t , x)
T glob = 21 n for the first source and irregular ones T 2 n and T 3 n for the second and the third sources, respectively. Zero padding (the white squares correspond to zeros) is applied in order to keep the matrices rectangular. The A i (4.8) has been applied to the data to obtain D i (on the left), and the A i transformation (4.10) to obtain D i (on the right). T glob is the global acquisition time, T l is the listening time.

T l = 10
A possible variation of A i is transformation A i , which is interesting in application to data issued from seismic surveys, where a source is firing with small time delays with respect to its own previous shots, i.e., when the listening time T l (ideally, the maximal time at which a signal can still be identified) is more important than the consequent shooting times difference (T i n+1 -T i n ):

A i : L 2 (R) → L 2 ([0, T l ] × [x i min , x i max ]) d(t) → D i (t , x);
(4.10)

A i [d(t)] = D i (t , x) = d(t + T i n ), if x = x i n -x i 0 and t ∈ 0 ; T l 0, otherwise. (4.11)
This idea is illustrated in Figure 4.3 for three seismic sources with different shooting times.

Here, the A i (i = 1, 2, 3) transformation (4.8) has been applied to the data to obtain D i (on the left), and the A i transformation (4.10) to obtain D i (on the right). Note that the different transformations A i and A i allow one to observe continuous records in two different ways: in the seismic traces domain (t , x), where t ∈ [0, max(T i n+1 -T i n )]; in the domain (t , x), where t ∈ [0, T l ]. In the second case, a part of the data is replicated to allow a more complete visualization (Figure 4.3).

We introduce these notions in order to clarify the concept of a seismic event, which we will use for our data-driven model and which is related to the notion of traveltime curves. A traveltime curve is a graph of the time that it takes for a seismic wave to travel from the shot point to the receiver position. Hypothesis 6. Traveltime curves of coherent seismic waves (e.g., direct waves, surface waves, reflected waves etc.) are identifiable in one (and only one) seismic traces domain.

One can note that these traveltime curves usually take forms close to straight lines, parabolas or hyperbolas in synthetic (Figures 4.4a and 4.5) and real seismic data (Figure 4.4b). This observation and Hypothesis 6 lead to the decomposition of d(t) into a sum of a finite number of coherent features, which we will introduce in the next section, and allow one to implement a reasonably simple model of a coherent seismic event.

Data-driven seismic event model 4.3.1 Decomposition into a sum of seismic events

Real seismic data usually have significant size, even one seismic gather can contain hundreds of traces acquired with offsets up to 3 km or more. In complex geological environments, with presence of lateral velocity and density variability, it is very difficult to establish a data-driven seismic model that would be applicable to the whole gather directly. Therefore, we have chosen to restrict our area of search to N seismic traces (in (t, x) seismic traces domain), with N significantly small, usually 10-30 traces, depending on the data complexity.

Hypothesis 7. The wavelet w(t) found in the data does not vary significantly from one seismic trace to another within some constrained spatial window of N seismic traces.

This hypothesis is illustrated in the zoom window in Figure 4.5. Dealing with multiple sources recorded by the same receiver, which means having multiple (t, x) domains to consider, one has to adopt a strategy of decomposition. There may be several relevant strategies, e.g., fully explain all coherent features in the first source before passing on the second one. We propose to work simultaneously in all of the (t, x) planes in order to first identify the globally most energetic features and then continue with the less energetic ones. To do so, we first have to find in the column-matrix d(k∆t) the N -trace part of the signal corresponding to each of the sources (this problem will be addressed further in Chapter 5). The decomposition is subsequently simultaneously led for all the sources' (t, x) planes.

A seismic event is a coherent feature in the seismic data. Following Hypothesis 6, we propose to represent the data d(t) as a sum of a finite number L of seismic events h w (t):

d(t) = L =1 h w (t) + R L d(t).
(4.12)

Our model of a seismic event is based on the features observed in seismic data and consists of two major parts. The first part, that we call modulated traveltime part h(t) (for "hodograph" denoting a traveltime curve in Russian), contains all the parameters related to the wave propagation time (medium characteristics), distance between the sources and the receiver, the time-break delays of different sources, and the linear amplitude variation from one trace to another. The second part, that we call signature or wavelet w(t), can be associated with the excitations emitted by the sources (see Hypothesis 2) and distorted by propagation and reflection. Note that even if (4.12) takes the same form as (4.5), there is a significant difference between the reflectivity r k (t), which is a transfer function between the source location S k and the detector location D, and the modulated traveltime function h (t), which indicates the position of a seismic event in the seismic traces domain and is data driven. Note that the residue R L d(t) is generally not the same as the noise b(t) in (4.5) either.

For our deblending problem, for two simultaneous sources, we would like to rewrite (4.12) as

d(t) = K 1 =1 h (1) w (1) (t) + K 2 =1 h (2) w (2) (t) + R L d(t), (4.13)
with K 1 + K 2 = L and where the first sum (respectively, the second) corresponds to the seismic events identifiable in the (t, x) plane of the first (respectively, the second) source. With this decomposition, a perfect deblending would consist in reducing the residue R L d(t) to the ambient noise, as in this case, each sum will correspond to the isolated signal of the corresponding source. Before developing this point in Section 4.4 on page 61, we clarify the concepts of a modulated traveltime curve and wavelet model in the next subsections.

Traveltime curve model

A traveltime curve is a graph of arrival time depending on the absolute or the relative coordinate of the detector. One can easily demonstrate (e.g., [START_REF] Sheriff | Exploration Seismology[END_REF] that for the simplest case of a single horizontal reflector with a constant velocity above it, the traveltime curve is a hyperbola. Furthermore, with a certain confidence one can model the arrival times function of a coherent seismic wave as a straight or slightly curved line in the (t, x) domain within some lateral processing window (the closer the shot is to the receiver, the more curvature is observed in the data). This is true if one considers that the acoustic and elastic properties of the subsurface do not change brusquely in the horizontal direction, at least within the chosen lateral processing window.

Moreover, we also add the linear amplitude variation parameters to the "hodograph" part h(t) of a seismic event h w(t) -note that we omit the index present in (4.12) to alleviate notations. The "pure" traveltime part h(t) of the seismic event takes the form

h(i) (t) = N n=1 δ   t -τ -p(x i n -x i 0 ) -q x i n -x i 0 x i max -x i min 2 -T i n   . (4.14)
Here i : is the index of the source associated to the event; N : is the number of seismic traces taken into account to construct the event; x i min : is the "left" (minimal) edge on the processing window; x i max : is the "right" (maximal) edge on the processing window; δ(t) : is the Dirac distribution; τ : is the seismic event reference time; p : is the seismic event dip angle (or apparent slowness); q : is the seismic event curvature coefficient;

x i 0 : is the reference shot coordinate (so called "turning trace") of the ith source; x i n : is the nth shot coordinate of the ith source; T i n : is the time of the nth shot of the ith source. As mentioned above, we also add the linear amplitude variation parameter α to this representation in order to obtain

h (i) (t) = N n=1 1 + α(x i n -x i 0 ) δ   t -τ -p(x i n -x i 0 ) -q x i n -x i 0 x i max -x i min 2 -T i n   . (4.15)
Actually, equation (4.15) corresponds to an amplitude-variation-preserving traveltime curve, but, in order to alleviate our presentation, we will stick to traveltime curve in the following.

As we work with continuous records, without cutting them into separate traces, time break references are added to the event position definition. Shot coordinates are taken into account in distance measurement units along the straight shooting line of the corresponding source, which facilitates the handling of irregular shot sampling.

Remark 7. If two different sources illuminate the same area in the subsurface, for instance, the same interface between two geological layers approximately at the same location, this corresponds to the same physical event (e.g., geological layer). However, with our model (4.13), we obtain two different seismic events. Moreover, we shall see in subsection 4.3.3 that, generally, one physical event gives several seismic events associated with the same source.

Remark 8. Equation (4.15) supposes that the factor [1 + α(x i n -x i 0 )] cannot become zero when x i n = x i 0 . We will see in the following chapter how one can treat such a case. See also Section 4.5 on page 63 and the criterion (4.27).

Wavelet model

Wavelet estimation has been an issue in seismic prospecting for a long time. Different methods of wavelet estimation have been suggested in the literature.

We will concentrate on methods based on coherency, in other words, from Hypothesis 7, we will suppose that for the same seismic event, the wavelet does not brutally change from trace to trace. This hypothesis can be justified intuitively by Hypothesis 2 (the signals of the same source do not vary significantly) and the fact that the Earth's response to excitations varies slowly with respect to the source displacement.

Nevertheless, we take into account the eventual presence of low and high energy noise, which means that the wavelet issued from a single trace may be perturbed. For this reason, we will average the wavelet encountered in neighboring traces after getting rid of eventual outliers.

Since the sources' signals are distorted during propagation and reflection, w(t) differs from s(t), and we suppose that the wavelet is different for each seismic event, even if it comes from the same seismic source.

As already mentioned above, some of the physical events may be captured by a sum of several seismic events described in this work. We do not consider this phenomenon a problem, and we look for a new seismic event within a limited time interval that we denote [-M ∆ t , M ∆ t ]. We will call this interval "corridor" in the following. This corridor is defined along a traveltime curve of the form (4.15), and is supposed to be known.

In reality, the traveltime curve h (i) is not perfectly known, we will address this point in Sections 4.5 and 4.7, describing the algorithm of Matrioshka OMP and its initial conditions. At this stage, before having estimated a wavelet, we only have a first estimation of h (i) . After a first estimation ŵ(i) of the wavelet w (i) , we will be able to refine the estimation of h (i) and, in the end, we also refine our estimation of w (i) . These refinements correspond to the optimization stages.

In order to reduce the complexity of the optimization problem (the number of variables), we have chosen to decompose the estimated wavelet into a linear combination of a small number of wavelet atoms. Moreover, we have chosen wavelet atoms that can be represented analytically, e.g., Ricker and Ormsby wavelets, which are elementary wavelets widely used is seismic exploration [START_REF] Ryan | Butterworth -A choice of wavelets[END_REF], and for which we can explicitly compute derivatives. Additional details on the wavelets are given in Appendix B. This has allowed us to reduce the computational complexity of the optimization stages of our algorithm.

To decompose the estimated wavelet into a linear combination of a small number of wavelet atoms, we have chosen to use the OMP algorithm. Thus, we have to choose an adapted dictionary. We will see in the following chapter, how we construct a finite number S (of several units) of classical wavelets shapes from a preliminary spectral analysis of the data. One shape s corresponds to a Ricker wavelet of a given dominant frequency, or to an Ormbsy wavelet with a given set of cut-off frequencies. The index s denotes the shape of the wavelet w s (t), and the dictionary consists of atoms (before normalization) {w s (t -τ ) : 1 ≤ s ≤ S, τ ∈ [0, T ]} (with T > 0 being a meta-parameter to precise). Therefore, we obtain the following parametric wavelet estimation 6 and4.7 show a modeled marine seismic source's signature and its power spectral density. The signal in Figure 4.6 is obtained using a specific sofware used in seismic data acquisition called Gundalf [START_REF] Laws | Computer modelling of clustured airguns[END_REF]. According to curves in Figure 4.7, the parametric model of the form (4.16) allows a sufficient reconstruction in the useful part of the spectrum both with Ricker (with K = 178 for this example) and Ormsby (with K = 212) wavelets. Note that these figures are significantly larger than those we use in our deblending algorithm, because here the whole length of the source signal was taken into account (0.5 seconds), moreover, a very dense sampling is used (0.0005 seconds = 0.5 milliseconds). For the further simulations we will prefer narrower corridors for wavelet estimation, typically 0.1 second. 

ŵ(i) (t) = K k=1 a k w s k (t -τ k ) + R K ŵ(i) (t) w (i) (t) = K k=1 a k w s k (t -τ k ).

Deblending using data-driven model and OMP

The data-driven seismic event model introduced in the previous section, in particular by (4.13), makes one think of a deblending which would be based on a signal decomposition. There exist algorithms performing decomposition of a signal into a linear combination of a small number of atoms of a dictionary. We note that if these methods allow one to perform a decomposition as in (4.13), then they also allow one to achieve a deblending (at least, partial) of the blended data. Moreover, if in this iterative decomposition the first terms correspond to the most energetic seismic events, then only the lowest energy cross-talks will be left in the residue R L d(t). Hence, they would be easily addressed by conventional seismic processing techniques that follow deblending in the processing sequence.

These considerations make one think of greedy signal decomposition methods, in particular, Orthogonal Matching Pursuit (OMP) introduced in Section 3.3 on page 43, with a dictionary consisting of atoms of type h (i) w (i) (t) , where h (i) are the traveltime curves introduced by relation (4.15), and w (i) (t) are the wavelets that we formulate by (4.16).

So, in order to proceed with the deblending, we look for a decomposition (4.13) of the data, in which the deblended signal associated to the ith source is essentially found in the sum (4.17) in other words, its most energetic features are found in this sum. At the same time, the most energetic cross-talks originating from the other sources are captured in the other sums

K i =1 h (i) w (i) ,
K j =1 h (j) w (j)
with j = i. (4.18)

In this case, a classical processing applied to the deblended data

K i =1 h (i) w (i) + R L d(t) (4.19)
would correspond to a processing which would have been applied to these data if there were no other sources firing at the same time.

In order to make this approach work for deblending, it is crucial that in the sum (4.17) there are no coherent seismic events originating from a source j = i and that the most energetic features of the deblended signal associated to the source i are present in the sum (4.17). Hypotheses 3 to 5 on page 53 justify the fact that we can expect to capture in the sum (4.17) the seismic events originating from the source i (according to Hypotheses 3 and 4), and only to the source i (according to Hypothesis 5).

Moreover, if the algorithm performing the decomposition (4.13) captures the most energetic features in the first iterations, as OMP does, then the most energetic cross-talks originating from other sources should be captured in other sums (4.18), and thus, should not pollute the residue R L d(t) in (4.19) any more.

Remark 9. It is important to note that, when L tends to infinity, the residue R L d in (4.13) is not necessarily white noise or any other general type of noise. In fact, as mentioned on page 44, this is the last non-explained residue (part of the signal), orthogonal to the dictionary one is using for decomposition: lim L→∞ R L d(t) ∈ [span{g γ , γ ∈ Ω}] ⊥ , where g γ are atoms of a predefined dictionary for signal decomposition. Nevertheless, a "good" decomposition would leave the noise in the residue. Moreover, one could imagine to process the residue, e.g., apply another OMP pass using a different dictionary, in order to better explain the useful signal.

We can see here the importance of capturing iteratively the coherent seismic events starting with the most energetic ones and progressively going to the least energetic ones. That is how proceed matching pursuits, and OMP in particular, assuming that we dispose a well adapted dictionary D = {g γ : γ ∈ Ω} of unit-norm vectors ( g γ = 1) and that the solution to (3.42) on page 44 can be found. We remind (3.42) here with modifications due to the index starting from 1

R -1 d, g γ = max γ∈Ω R -1 d, g γ .
(4.20)

Now, if the atoms can be expressed, before normalization, as G γ = h (i) w (i) with h (i) and w (i) given respectively by (4.15) and (4.16), i.e., (4.21) where γ = {i, τ, p, q, α, K, {s k , a k , τ k } 1≤k≤K } is the complete set of parameters for one seismic event construction and g γ = Gγ Gγ , then we can construct a decomposition (4.13) that fulfills the aforementioned conditions required for deblending.

G γ (t) = h (i) w (i) (t) = N n=1 1 + α(x i n -x i 0 ) × × K k=1 a k w s k   t -τ -p(x i n -x i 0 ) -q x i n -x i 0 x i max -x i min 2 -T i n -τ k   ,
In order to simplify the computation of vector norms G γ (see Appendix C), we make the following hypothesis.

Hypothesis 8. For each source, the waiting time between two consecutive shots is sufficiently large that there is no interference between shots of the same source.

However, Hypothesis 8 does not forbid cross-talks between consecutive shots of the same source, i.e., the delay between consecutive shots can be smaller that the listening time T l , providing the possibility of auto-pollution, or self-simultaneous sourcing. Note that here we understand by interference the physical interference phenomenon and not the seismic interference, which is a term widely used to denote polluting cross-talks originating from a neighboring acquisition campaign.

The problem that must then be solved is to find the solution (or an approximate solution) of (4.20). To this end, we have to overcome several difficulties:

1. the objective function to be maximized is not concave; and 2. the number of parameters describing an atom is too large for sampling the dictionary into a finite subset of atoms Γ ⊂ Ω (|Γ| < ∞) such that the problem stated in (4.20) must be replaced by the statement

R -1 d, g γ ≥ α sup γ∈Γ R -1 d, g γ (4.22)
with 0 < α ≤ 1, as indicated in Remark 3 on page 39.

To overcome the first difficulty, we will use iterative optimization algorithms that converge to a local maximum whose position depends on the initial conditions. It will 4.5. Initial conditions of the OMP optimization step therefore be crucial to choose the initial conditions in such a way that the maximum value reached is close to the solution given by (4.20). To overcome the second difficulty, we will gradually build the atoms of the dictionary close to the desired maximum.

In the next section we present our approach to finding the initial conditions γ = {i, τ, p, q, α, K, {s k , a k , τ k } 1≤k≤K } of an iterative optimization algorithm that converges towards an approximate solution of (4.20).

Initial conditions of the OMP optimization step

In order to construct an atom G γ (before normalization) given by (4.21), which will serve as initial conditions for the iterative optimization converging to an approximate solution of (4.20), we start by constructing the traveltime curve h (i) given by (4.15) by looking first for parameters i, τ, p, and q such that the following objective function is maximized:

C(i, τ, p, q) = N n=1 R -1 d   τ + p(x i n -x i 0 ) + q x i n -x i 0 x i max -x i min 2 + T i n   . (4.23)
In other words, noting that

C(i, τ, p, q) = h(i) R -1 d(0) , (4.24)
for h(i) introduced in (4.14), and

R -1 d(t) = R -1 d(-t), (4.25)
we are looking for a traveltime curve h(i) that maximizes the magnitude of its correlation at time t = 0 with the residue R -1 d(t) at the th OMP iteration.

Here too, the objective function is not concave. As mentioned above, in order to obtain the parameters i, τ, p, and q maximizing this function, we have to apply an iterative optimization algorithm converging to a local maximum starting from initial conditions. To do so, we introduce the following hypothesis.

Hypothesis 9. When using an objective function of the form (4.23), a good enough first guess of the traveltime curve parameters i, τ and p maximizing its correlation with the residue (when q = 0) are the values of these parameters which maximize the magnitude of the slant stack of the residue. This means one can pick the absolute maximum in the τ -p domain, and this maximum is related to a real seismic event.

Once we have identified a traveltime curve h(i) that maximizes its correlation with the residue, we compute the coefficients α and β of the linear regression between

  R -1 d   τ + p(x i n -x i 0 ) + q x i n -x i 0 x i max -x i min 2 + T i n     1≤n≤N and x i n -x i 0 1≤n≤N , (4.26) which minimizes C(α , β ) = N n=1   R -1 d   τ + p(x i n -x i 0 ) + q x i n -x i 0 x i max -x i min 2 + T i n   -β + α (x i n -x i 0 )   2
(4.27) in order to obtain a first estimation of the complete traveltime curve h (i) (4.15). In addition, when |β | > ε (in our implementation we took ε = 10 -7 ), we set 6 α = α /β . Remark 10. We shall see in the following chapter that the criterion (4.23) does not give the best initial conditions for the OMP optimization step, when the factor [β + α (x i n -x i 0 )] changes its sign between the extreme values of x i n . We shall also see in the following chapter how to modify (4.23) in order to obtain better initial conditions.

We then define a "corridor" in the (t, x) representation associated to the ith source. This corridor has the width of (2M + 1)∆ t , where ∆ t is the time sampling interval and M is an integer meta-parameter. The corridor is centered around the maximal values of h(i) and passes through the N considered traces.

Then we obtain a non-parametric estimation ŵ(i) of the wavelet w (i) , associated with the atom G γ introduced in the beginning of this section by (4.21). The estimation is locally made from the current residue, within the corridor and after making the following hypothesis.

Hypothesis 10. A wavelet estimation should be derived statistically from the N traces by means of stacking along the curves parallel to the traveltime curve maxima weighted by the attenuation factors.

This non-parametric wavelet estimation is subsequently windowed using a Tukey window in order to avoid discontinuities at the corridor edges. Finally, by applying the OMP algorithm to the windowed non-parametric wavelet estimation, we obtain a parametric estimation w (i) of the wavelet having the form (4.16).

Hence, the non-normalized atom G γ , which will serve as initial conditions for the final iterative optimization allowing to find an approximate solution to (4.20), is equal to h (i) w (i) .

We can summarize the computation of the initial conditions G γ into the following stages 7 : 1. find the values i, τ and p which maximize the magnitude of the slant stack of the residue R -1 d;

2. from the initial conditions obtained at the previous stage and q = 0, find a traveltime curve h(i) which maximizes the magnitude of its correlation with the residue R -1 d within the N considered seismic traces at time t = 0;

3. find the coefficients α and β of the linear regression (4.27) in order to obtain the amplitude-variation-preserving traveltime curve h (i) (t), with α = α /β ; 4. identify a (2M + 1)∆ t -seconds high corridor in the (t, x) representation associated to the source i (the corridor has to be centered around the maxima of the traveltime curve found at the previous stage); then make a non-parametric wavelet estimation using weighted (according to the attenuation factors) stacking along the curves parallel to the h(i) maxima within the corridor;

5. apply OMP algorithm to the non-parametric wavelet estimation obtained at the previous stage and windowed in order to get a parametric estimation w (i) given by (4.16); and 6. find the initial conditions atom which, before normalization, equals to G γ = h (i) w (i) .

7 We shall see in the following chapter that the stages 2 and 3 can be iterated modifying the criterion (4.23) when the factor β + α (x i n -x i 0 ) changes its sign between the extreme values of x i n . However, in order to simplify the understanding, we shall not present this procedure here.

Inner OMP overview

In the way we propose to perform deblending by means of OMP, we use the OMP algorithm twice. In order to distinguish them, we denote by outer OMP the one which has a dictionary of atoms of the form (4.21) before normalization, and by inner OMP the one performing the parametric wavelet estimation (point 5 above).

In the following section, we present the inner OMP algorithm, which gives the parametric wavelet estimation w (i) .

Inner OMP overview

Wavelet dictionary

As mentioned above, before starting iterations of the outer OMP, we initially choose a finite number S of classical wavelet shapes from a preliminary spectral analysis of the data. The index s of a shape (1 ≤ s ≤ S) corresponds in our tests to either a Ricker wavelet with a given dominant frequency or an Ormsby wavelet with a given set of cut-off frequencies. If we need Ricker wavelets of different dominant frequencies, we use as many Ricker shapes as we need dominant frequencies and likewise for Ormsby wavelets: if we need Ormsby wavelets with different cut-off frequencies, we introduce as many Ormsby shapes as we need. Of course, it would be possible to extend the predefined shapes to any other kind of wavelets.

The dictionary associated to the inner OMP is composed of time-shifted unit-norm elementary wavelets having predefined shapes. An atom w γ (t) is represented as

w γ (t) = w s (t -τ ) w s (t) , (4.28)
where the index s ∈ [[1, S]] specifies the shape and τ corresponds to the time shift with respect to the center of the wavelet. Since the estimated wavelet must be inside the corridor introduced in the previous section, we limit the time shifts and we rewrite (4.28):

w γ (t) = w s (t -ν∆ τ -τ ) w s (t) , (4.29) where ν ∈ [[-µM, µM ]] is an integer and τ ∈] -∆ τ 2 , ∆ τ 2 [ with ∆ τ = ∆t µ and 1 µ ∈ N divides M .
Therefore, the dictionary of the inner OMP is

D = {w γ } γ∈Ω with Ω = (s, ν, τ ) s ∈ [[1, S]], ν ∈ [[-µM, µM ]] and τ ∈ - ∆ τ 2 , ∆ τ 2 . (4.30)
We also use a discrete version of the dictionary, with a vanishing τ :

{w γ } γ∈Γ with Γ = (s, ν, 0) s ∈ [[1, S]] and ν ∈ [[-µM, µM ]] . (4.31)
Remark 11. As mentioned in Chapter 1, typical seismic sources emit a band-limited signal with a range of 5 -150 Hz. Therefore, one, two or three wavelets w s are usually enough to cover all the useful seismic frequency band.

Inner OMP

To compute the initial conditions G γ of the optimization stage of the outer OMP after the step 4 on page 64, we obtain a non-parametric wavelet estimation, with support [-M ∆ t , M ∆ t ], which we multiply by a Tukey window (more details on the windowing are given in the following chapter) to obtain an estimation of the wavelet, which we denote by w(t), within [-M ∆ t , M ∆ t ] and sampled in time with a period of ∆ t . In order to alleviate notations, we will omit the superscript (i) for an estimated wavelet w (i) associated to G γ . Moreover, in this section we present the inner OMP by modeling the wavelets using continuous-time signals. We will see in the following chapter, how the inner OMP is implemented for sampled signals.

The initialization of the inner OMP is done with the windowed non-parametric estimation R 0 w(t) = w(t). (4.32)

Let us denote by R k-1 w the residue after the iteration (k -1) of the inner OMP. At the iteration k, we start by looking for γk = (s k , ν k , 0) ∈ Γ, a solution to (4.33) which gives us the initial conditions for the iterative optimization algorithm converging to a local maximum, approximate solution to

R k-1 w, w γk = max γ∈Γ R k-1 w, w γ ,
R k-1 w, w γ k = max γ∈Ω R k-1 w, w γ . (4.34)
Thus, we obtain w γ k -the atom of the inner OMP chosen at the iteration k. At the following step, we update the coefficients of the orthogonal projection of w on the vector subspace of the first k atoms obtained via the inner OMP. After K iterations, we obtain the decomposition (4.35) which gives the parametric estimation of the step 5 on page 64:

w(t) = K k=1 a k w s k (t -ν k ∆ τ -τ k ) + R K w(t),
w (i) = K k=1 a k w s k (t -ν k ∆ τ -τ k ). (4.36)
We close this chapter with a complete view of the deblending algorithm that we call Matrioshka OMP.

Matrioshka OMP overview

Matrioshka OMP [START_REF] Shipilova | Matrioshka orthogonal matching pursuit for blended seismic source separation[END_REF] stands for two Orthogonal Matching Pursuit algorithms embedded into one another. The algorithm is illustrated in Figure 4.8, where the outer OMP consists of the whole algorithmic loop with the inner OMP embedded into it and highlighted in orange. We now describe each step individually.

The initialization of the outer OMP is done from the input data d(t) windowed by a rectangular time window strictly included in the time interval [0, T glob ] and corresponding to N considered seismic traces. In this chapter, in order to simplify the algorithm presentation, we suppose that the number N of the processed traces does not depend on the representation (t, x), in other words, on the considered source. We will see in the Let us denote by R -1 d the residue after ( -1) iterations of the outer OMP. At the th iteration, we have seen in the two previous sections how to obtain the initial conditions (4.21) before normalization, that allow an iterative optimization algorithm to converge to a local maximum, approximate solution of (4.20).

Keeping in mind that for the optimization problem (4.20) of OMP the atoms have to be normalized, we present in Appendix C the relations allowing a fast computation of the norm of seismic events of the form (4.21) under the Hypothesis 8 on page 62.

In order to separate travel-path-related parameters from the ones defining the wavelet, so that they do not inter-compensate each other, we first optimize τ, p, q, and α parameters, and then (a k , τ k ) 1≤k≤K parameters. We obtain after these optimization stages the atom g γ , approximate solution of (4.20), with γ = i , τ , p , q , α , K , (s p, , a p, , ν p, , τ p, ) 1≤p≤K .

(4.37)

We then update the coefficients (c ( ) p ) 1≤p≤ of the orthogonal projection of d on the vector subspace of the first atoms obtained via the outer OMP. Moreover, for each source, we update the weighted sum which is associated with it:

S (i) (t) = p=1 δ(i -i p )c ( ) p g γp (for the source i), (4.38)
where δ is the Kronecker symbol. Supposing that we have N s sources, after L iterations we obtain the decomposition (4.40) and the deblended signal associated with the ith source is equal to S (i)

d(t) = L =1 c g γ (t) + R L d(t) (4.39) d(t) = Ns i=1 S (i) L (t) + R L d(t),
L (t) + R L d(t).
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Introduction

Before starting the iterations of Matrioshka OMP, a spectral analysis of the data is performed in order to determine the necessary shapes of the wavelets to use for the decomposition. Wavelets of different frequency contents are chosen, they may appertain to the same wavelet family or to different ones (Ricker, Ormsby, etc.).

The second stage of the processing of continuously recorded blended data is splitting it into temporal frames suitable for deblending. Indeed, Matrioshka OMP relies on a seismic event model which is only valid for restricted spatial frames. The algorithm for one spatial window is briefly illustrated in Figure 4.8.

As introduced in the previous chapter, the aim of our Matrioshka OMP is to decompose blended seismic data into a weighted sum of seismic events in such a way that each event is attributed to its source of origin. We remind the formulation of this problem (4.13), given in Chapter 4 for two simultaneous sources (the formula (5.1) can easily be extended to any number N s of sources)

d(t) = K 1 =1 h (1) w (1) (t) + K 2 =1 h (2) w (2) (t) + R L d(t), (5.1)
with K 1 + K 2 = L for L seismic events found in the data. Each of the sums denotes a superposition of all the seismic events identifiable in the (t, x) plane of the corresponding source.

We use Orthogonal Matching Pursuit to solve (5.1), which requires a specific dictionary of atoms, that we remind further in this chapter. Solving (5.1) also requires fine param-eters optimization for a complicated, non-convex objective function. For this reason, a very precise initial guess is needed for a correct solution to be found.

Computation of the initial conditions for optimization at iteration includes 1. computing slant stacks of the signal with respect to the time breaks of the sources (as many slant stacks as there are sources in the field);

2. finding the maximal absolute values s i max in each ith slant stack, i = 1, . . . , N s ; the largest of the N s values found gives the index i of the source and corresponds to a first estimation of the reference time τ and the angle p of the atom to select at the current iteration;

3. applying the first optimization, because slant stack is computed with some sampling step on τ and on p, and thus, the parameters τ and p issued directly from the slant stack have to be refined; a new parameter q (curvature coefficient) is also added at this step;

4. finding the coefficients α and β of the linear regression between the data and the offsets, which give linear amplitude variation along the shooting line, putting α = α /β ; 5. computing non-parametric wavelet estimation ŵ(t) within the current processing window by median-stack-like algorithms (see Appendix A.2) in the close neighborhood, that we call "corridor", of the curve which is defined by the τ , p , q , and α parameters found at the previous steps;

6. windowing of the wavelet in order to overcome eventual edge effects;

7. computing parametric estimation of the wavelet through the inner OMP for continuous wavelet knowledge; and 8. combining all the obtained parameters before the final optimization.

The final optimization follows; we separate the travel-path-related parameters from the ones defining the wavelet, so that they do not inter-compensate each other. Hence, we first optimize {τ, p, q, α} parameters, and then {a k , τ k } parameters. The parameters i (the source of origin), K (the number of wavelet atoms used in the inner OMP for decomposition) and s k (the wavelet shapes) stay unchanged.

After this step, we have a final set of parameters, which are used to construct the atom to subtract from the data. This last atom is then added to the family of the previously selected atoms in order to recompute the coefficients for their linear combination.

Then, the residue is obtained by subtracting the reconstructed signal S = n=1 c n •g γn from the input data.

Remark 12. We shall see in Section 5.4.2 on page 75 that the stages 3 and 4 can be iterated modifying the criterion (4.23) when the factor [β + α (x i n -x i 0 )] changes its sign between the extreme values of x i n . Remark 13. It is important to notice that the second optimization step of the algorithm is limited to the parameters of the current atom; the atoms issued from previous iterations are not modified. Only the coefficients of their linear combination are adjusted. In doing so we respect the conditions that assure the OMP convergence.

Data spectral analysis for wavelets' shapes determination

The process goes on until some stopping criterion is achieved, e.g., maximal number of iterations, small enough signal-to-noise ratio or the rate of decay of the residual energy. One should choose an appropriate stopping criterion to prevent the algorithm from trying to explain random noise not having any coherent features that can be explained with our dictionary left in it.

In the end, the separately processed temporal windows are merged in order to obtain the final deblended data.

Data spectral analysis for wavelets' shapes determination

The first step before decomposing a signal into a linear combination of dictionary elements is to define this dictionary. We have already presented the seismic event dictionary we will be using for the outer OMP. We have also mentioned that the dictionary for the inner OMP consists of elementary wavelets, known analytically and defined in advance.

For the major part of our study we stick to Ricker wavelets, which are fully defined by one dominant frequency. In order to pick the corresponding dominant frequencies, we conduct a spectral analysis of the data. For example, for a data set of the form given in Figure 5.2, we compute the power spectral density (PSD) and pick the maximum of the PSD and frequency values 3 dB and 6 dB lower, as shown in Figure 5.1. This gives a set of 5 frequencies to take into account in the further decomposition. 

Data splitting into temporal frames of N traces

Splitting the data into temporal frames is an important point for seismic data applications, taking into account that seismic data represent significant volumes. Our algorithm works in the common receiver gathers, receiver by receiver, which already corresponds to a step by step approach. Nevertheless, even when divided into receiver gathers, data is still significantly big: one receiver gather can include up to several hundreds of traces, up to 12 seconds long each. With a regular time sampling period of 2 ms, that can give some 6000×1000 sample matrices. While increasing the vertical dimension is generally not a problem for our seismic event models (in any case, most of useful seismic events are localized in time), the horizontal dimension cannot be increased infinitely.

Let us take a look at a 500 traces synthetic seismic gather issued from a complex subsurface medium plotted in Figure 5.2. It can easily be seen that our model of slightly curved constant wavelet seismic events is no longer applicable on the whole width of the gather. However, locally, in 10-30 trace windows the events can be followed from the left to the right edge of the window without significant difficulty. The width of the processing window is chosen on a case-by-case basis, however, this choice is guided by several constrains. On one hand, a seismic event should be explicable by a small number of atoms, ideally by one atom. However, we know that the cinematic law is generally hyperbolic, but can be approximated by a parabolic model near the apex, and by a linear model for far offsets. On the other hand, a seismic event should be detectable by slant stack, which requires a significant number of traces to focus at a (τ, p) point. [START_REF] Versteeg | The Marmousi experience: Velocity model determination on a synthetic complex data set[END_REF][START_REF] Martin | Marmousi2: An elastic upgrade for Marmousi[END_REF].

For this reason, when working with large realistic datasets, one first has to cut them into considerably small lateral windows. The windows width should be chosen with respect to several criteria in order to provide a better representation and avoid aliasing:

• subsurface complexity and natural dips

• the global data frequency content 5.3. Data splitting into temporal frames of N traces

• signal-to-noise ratio • proximity to the sources (curvature), and others.

In conventional seismic data processing, all lateral windowing definition is made in terms of seismic traces. However, as mentioned in Section 4.2.2 on page 53, when working with simultaneous-source data, one is necessarily dealing with continuous recording, where the notion of one seismic trace is not strictly defined. Indeed, let us try to define a seismic trace as it is defined conventionally. Definition 3. A seismic trace is a part of a seismic signal starting at the time moment of the source shot and ending at the end of a predefined listening time.

For single-source operations, Definition 3 is applicable for any geometries. One is not interested in the amount of time passed between the end of the trace n and the beginning of the trace n + 1, as a hypothesis stronger than Hypothesis 8 on page 62 is applied: the listening time in conventional seismic operations is selected to be long enough to consider that the signal from the shot n would have faded away before the beginning of the shot n + 1.

During simultaneous-source operations, data are recorded continuously, regardless of the sources' time breaks. In this case the definition of a seismic trace becomes more complicated. More precisely, for each single source Definition 3 is still applicable, but the first sample of the trace n + 1 corresponds necessarily to the time moment directly following the end of the trace n (Figure 5.3). for the first source and irregular ones T 2 n and T 3 n for the second and the third sources, respectively. Zero padding (the white squares correspond to zeros) is applied in order to keep the matrices rectangular. The A i (4.8) has been applied to the data to obtain D i (top); the same data are cut into lateral windows (bottom). T glob is the global acquisition time. Now if we want to cut the signal d into processing windows, which source do we take as reference to define windows in? Indeed, the definition of windows width using number of traces is no longer compatible with the data specifics. Figure 5.3 shows that selecting a whole number of traces in one source (in the first source in this example), leads to cutting traces of other sources somewhere in the middle. The big issue here is not to lose information from these trace "halves".

d(t) D 1 (t , x) D 2 (t , x)
One should note that for OMP processing it is not necessary that the signal starts at a time break, however, we must have access to the time break preceding the beginning of the signal, otherwise we will lose the information coming before the first time break recorded.

Consequently, in order to overcome these ambiguities, we chose to define window width not in terms of number of traces, but in terms of time, as it is shown on the left-hand side of Figure 5.3.

When a window break occurs between shooting times of a source, the knowledge of the previous shooting time is necessary. Indeed, let T ξ be the window break time and

T i n-1 < T ξ < T i n ,
where T i n denotes the time of the nth shot of the ith source. In this case, while constructing a seismic event (4.21) to subtract, one should use T i n-1 as the first time break, even if the data between the times T i n-1 and T ξ only contains zeros. Remark 14. Note that the number of traces (full traces or parts of the traces) is not necessarily the same for the different sources that are being processed. Indeed, depending on the displacement speed of the corresponding source, within the same time frame it could have acquired more or less shots. For this reason, in the following, we will denote by N i the number of traces (or, more precisely, shots) acquired by the source i.

After taking into account all the necessary information, the windowed data is processed as described further.

Outer OMP implementation

We will show, how proceeds the outer OMP on a toy synthetic data example with perfectly known parameters (Figure 5.4). 

Seismic events dictionary and optimization problem to solve

As introduced in Chapter 4, in order to be able to perform the decomposition (5.1), we propose a model of a seismic event (4.21), which we remind here

G γ (t) = h (i) w (i) (t) = N n=1 1 + α(x i n -x i 0 ) × × K k=1 a k w s k   t -τ -p(x i n -x i 0 ) -q x i n -x i 0 x i max -x i min 2 -T i n -τ k   , ( 5.2) 
where γ = {i, τ, p, q, α, K, {s k , a k , τ k } 1≤k≤K } is the set of parameters allowing to fully define a seismic event.

Furthermore, as the atoms of an OMP dictionary have to be normalized (see Proposition 1 on page 40), the unit-norm atom is found as

g γ = G γ G γ . ( 5.3) 
A redundant dictionary of atoms of this form is far too large to be stored beforehand. For this reason, an optimization problem stated by (4.20), which we remind here

R -1 d, g γ = max γ∈Ω R -1 d, g γ , ( 5.4) 
is solved using an appropriate optimization method.

As mentioned on page 62, the objective function we are dealing with is not concave, so we use iterative optimization methods that converge to a local maximum. Its position highly depends on the initial conditions. It will therefore be very important to choose the initial conditions in such a way that the maximum value reached is close to the solution given by (5.4).

Computation of the initial conditions G γ

Slant Stack

We have chosen to initialize the outer OMP iteration with a slant stack (or linear Radon transform) of the residue R -1 d. Note that Hypothesis 9 on page 63 does not allow conveniently taking into account curvature or amplitude variation, but remains a reasonable first approximation choice (Shipilova et al., 2017a).

The description of the linear Radon transform (LRT) method is given in Appendix A.2.1. However, for continuous records used in blended acquisitions, one has to take shooting times T i n into account. Thus, (A.18) on page 132 is rewritten for the ith source at the th iteration as

s i (k, l) = N i n=1 R -1 d(k∆ τ + l∆ p (x i n -x i 0 ) + T i n ), (5.5) 
From (5.5), we find k and l , such that and τ = k ∆ τ and p = l ∆ p . We will consider (τ , p ) the first guess of the parameters τ and p of the event to subtract. The picking results for our toy-example are given in Figure 5.5.

s i (k , l ) = max (k,l) |s i (k, l)|, ( 5.6) 
Denoting N τ × N p the dimensions of the matrix s i (k, l), the slant stack stage of the algorithm has a complexity of O(N τ N p N ) operations and requires O(N τ N p ) of memory per source, which is O(N τ N p N N s ) operations and O(N τ N p N s ) bytes of memory for all the N s studied simultaneous sources. In general, in our simulations,

N τ = T l ∆τ = T l 2∆t = T ξ
2N ∆t , and for an average listening time T l = 5 seconds, N τ ≈ 5•10 3 4 = 1125. The sampling step ∆ p depends on the maximal frequency present in the data and on the maximal offset between the traces analyzed simultaneously. Thus, the number of slopes N p taken into account depends on the nature of the data (slopes present within the data set) and usually N p ≈ 80.

Parameters optimization 1

Slant stack is computed with some sampling step on τ and on p, thus, the parameters τ and p issued directly from the slant stack have to be refined through a first optimization, which consists in optimizing the slant stack choice of τ and p, and adding a possible curvature q. Thus, the objective function at this stage represents the correlation between the traveltime curve and the data. Its formulation is given by (4.23), we remind it here, omitting the parameter i, so that C(i, τ, p, q) becomes C(τ, p, q), because the source of origin of the seismic event optimized is already chosen at this stage, and adding a minus before the modulus, so that the function C(τ, p, q) is to be minimized

C(τ, p, q) = - N i n=1 R -1 d   τ + p(x i n -x i 0 ) + q x i n -x i 0 x i max -x i min 2 + T i n   .
(5.7)

For real-life noisy signals it can be beneficial to take a small corridor in the data domain instead of a single line. We call this small corridor the optimization base. Thus, (5.7) becomes

C(τ, p, q) = - M m=-M N i n=1 R -1 d   m∆ τ + τ + p x i n -x i 0 + q x i n -x i 0 x i max -x i min 2 + T i n   2 ,
(5.8) where m stands for a time sample and 2 M + 1 is the optimization base width. As at this stage we do not have a wavelet model yet, the derivatives of the function C(τ, p, q) in (5.8) cannot be defined analytically. If using gradient-based optimization techniques, we would thus be obliged to use numerical derivative calculation in order to achieve the minimum of the objective function. Numerical derivation being less accurate and more time-consuming than the analytical one, we chose to solve this problem using a method which is not gradient-based.

We perform this first optimization using the downhill simplex method by [START_REF] Nelder | A simplex method for function minimization[END_REF], a method which is neither based on gradients (first-order derivatives), nor on quadratic forms (second-order derivatives) (see Appendix A.1.2 on page 129).

Figures 5.6-5.8 show the slices of the cost function C(τ, p, q) for each parameter separately. The other parameters are fixed to their true values. These figures show a sufficient 

Cost function of optimization 1a for q

True q = 0.01 Best q = 0.0089489

Figure 5.8: Objective function C(q).

convexity of the function, except for the τ parameter, where it is crucial to have initial conditions as close as possible to the true τ value.

The second part of the first optimization consists in estimating the amplitude variation coefficients α and β , which constitute the coefficient α = α /β present in the seismic event model (5.2). These can be computed from a linear regression between the data and the offsets at different shot locations. The linear regression equation is given by (4.27) which we remind here

C(α , β ) = N i n=1   R -1 d   τ + p(x i n -x i 0 ) + q x i n -x i 0 x i max -x i min 2 + T i n   -β + α (x i n -x i 0 )   2 .
(5.9) The coefficients α and β can be computed from (5.9) as follows

α = dx -dx x 2 -(x) 2 and β = d -α x,
(5.10) where

x = 1 N i N i n=1 x n , d = 1 N i N i n=1 d n , x 2 = 1 N i N i n=1 x 2 n and dx = 1 N i N i n=1 d n x n (5.11) with d n = R -1 d   τ + p(x i n -x i 0 ) + q x i n -x i 0 x i max -x i min 2 + T i n   and x n = x i n -x i 0 for 1 ≤ n ≤ N i .
(5.12)

The computation of C(τ, p, q) requires O( M N ) operations, and thus, the optimization 1 phase requires O(N it M N ) operations, where N it denotes the number of iterations performed by the optimization function. In our simulations, M and N it are rather small ( M = 0 or 1, and N it ≤ 10). The computation of α and β requires O(N ) operations and O(1) memory size. Figure 5.9 shows the linear regression results for the selected toy-example. The colored crosses correspond to the data values encountered at the intersection of the estimated traveltime curve and the given seismic trace. The slope of the line gives the parameter α , and its vertical position gives the parameter β . We call true regression here the regression computed using the correct values of the traveltime curve parameters τ, p and q. The optimal regression corresponds to the regression computed from the parameters estimated at the previous step.

The described approach works perfectly for seismic events which have the same polarity all along the processing window. However, in real seismic data it is not uncommon to encounter events which have their maxima having different signs on the left and on the right edge of the processing window.

Case of an event with phase rotation phenomenon

As mentioned above, in some cases, the amplitude variation can be significant enough to produce a "phase rotation" phenomenon, when the maximal amplitudes along one seismic event have different signs at different edges of the same processing window.

A toy-example of such situation is illustrated in Figure 5.10. On the left-hand side of the figure one can see a seismic event whose maximal amplitudes are negative at the left edge of the window and positive at its right edge. Remark 15. Note that the slant stack picking is still successful, as the turning point is not located exactly in the center of the window. If this was the case, one would have issues with slant stack picking, but these issues are resolved, when working with multiple sliding windows (see Sections 5.3 on page 71 and 5.7 on page 94). Let us pay attention to the Figures 5.11 and 5.12, more precisely, the red curves plotted in these figures. Indeed, while trying to optimize the criterion given by (5.8), which we remind here denoting

x n = x i n -x i 0 and x 2 n = x i n -x i 0 xmax-x min 2 , 1 ≤ n ≤ N i , in order to alleviate notations C(τ, p, q) = - M m=-M N i n=1 R -1 d m∆ τ + τ + px n + qx 2 n + T i n 2 ,
(5.13) the algorithm inevitably tries to maximize the absolute value of the sum and tends to privilege amplitudes of the same sign. This can be observed in Figure 5.11, where the red line passes through the positive amplitudes on the right-hand side, but also tends to smaller positive amplitudes on the left-hand side, rather than find the bigger amplitudes in terms of magnitude, but having different sign. Note that to achieve this result, the algorithm tends to introduce a much more important curvature than it should be. Similarly, in Figure 5.12 one can notice that the red straight line tends to avoid negative values.

In order to solve this problem, we have started by replacing the term of residue values

R -1 d (m∆ τ + τ + px n + qx 2 n + T i n
) by its absolute value in the criterion (5.13). However, this approach did not prove to be efficient: indeed, it degrades the cost function resolution by increasing the number of local minima. Hence, we have modified the criterion (5.13) to transform it into

C(τ, p, q) = - M m=-M N i n=1 R -1 d m∆ τ + τ + px n + qx 2 n + T i n × sgn[β + αx n ] 2 , (5.14)
which does not have these disadvantage. The criterion (5.14) has proven to be efficient (see Figures 5.11 and 5.12). Let us note that the criterion (5.13) coincides with the criterion (5.14) when α = 0 and β = 1, and that we can thus consider that we only have one criterion to minimize, the criterion (5.14). Then, to minimize it, we proceed by iterating the two stages from the initialization α = 0 and β = 1:

1. compute τ, p, q that minimize (5.14), and 2. compute α , β that minimize C(α , β ) given by (5.9).

In practice, we have observed that one single iteration is sufficient if the sign of [β + α x n ] does not change between the extreme values of x n , and that otherwise, two iterations are sufficient.

Indeed, for the event with phase rotation, after the first optimization step, α and β coefficients are computed. As can be seen in Figure 5.12, even with the wrong optimization, the leftmost values on the red line are negative, whereas the corresponding values on the right-hand side are positive.

As shown by the orange line in Figure 5.12 and the orange dashed line in Figure 5.11, after the second step of optimization, the estimated curves coincide with the true ones and the parameters found are very close to the reality.

The parameters found after both optimization steps allow the construction of a seismic event plotted in Figure 5.13. The relative residue energy after the subtraction of this event from the input data is around 0.01%.

Non-parametric wavelet estimation

Wavelet estimation has been an issue in seismic prospecting for a long time. Different ways of wavelet estimation have been suggested [START_REF] Walden | Seismic wavelet estimation: A frequency domain solution to a geophysical noisy input-output problem[END_REF][START_REF] Dey | An analysis of seismic wavelet estimation[END_REF][START_REF] Edgar | How reliable is statistical wavelet estimation?[END_REF][START_REF] Yi | Comparison of wavelet estimation methods[END_REF]. true curve: q = 0, = 0.01 opt 1 curve: q = -0.0159, = 0.0052 opt 2 curve: q = -5.926e-09, = 0.01

Figure 5.11:

Zoom on the input data with traveltime curves plotted in the same axis. Note that the curve optimized in two steps (orange dashed curve) coincides almost perfectly with the true curve used to create these data (blue curve). Here, as above, q denotes curvature coefficient, and α -linear amplitude variation coefficient. 

Corridor definition and linear interpolation

We will concentrate on methods based on coherency, in other words, we will suppose that for the same seismic event, the wavelet doesn't change brutally from trace to trace (Hypothesis 7 on page 55). Nevertheless, we take into account the eventual presence of low and high energy noise, which means that the wavelet issued from a single trace risks to be perturbed. For this reason, we consider that a wavelet should be derived statistically from several neighboring traces by means of stacking.

In order to test the Hypothesis 10 on page 64 and select an appropriate stacking method, we studied several stacking techniques, an extensive list of which is provided by [START_REF] Rückemann | Comparison of stacking methods regarding processing and computing of geoscientific depth data[END_REF]. We will be looking for seismic events within a limited corridor of 2M + 1 time samples that we denote [-M ∆ t , M ∆ t ]. Remark 16. The meta-parameter M is chosen on a case-dependent basis: according to the frequency content of the data and on the user's observations and testing. Remark 17. Note that the corridor width parameter M here is generally not the same as the first optimization base M in (5.8). It is usually significantly larger.

Hence, 2M + 1 values are taken in each trace, centered around the traveltime curve h (i) (t) from (4.15) on page 58. The values taken for non-parametric wavelet estimation are computed as follows

v(n, m) def = 1 1 + α (x i n -x i 0 ) d   τ + p (x i n -x i 0 ) + q x i n -x i 0 x i max -x i min 2 + T i n + m∆ t   ,
(5.15) or, taking into account linear interpolation and denoting

t n = τ + p (x i n -x i 0 ) + q x i n -x i 0 x i max -x i min 2 + T i n , (5.16) v(n, m) = 1 -ε n 1 + α (x i n -x i 0 ) d t n ∆ t • ∆ t + m∆ t + ε n 1 + α (x i n -x i 0 ) d t n ∆ t • ∆ t + (m + 1)∆ t ,
(5.17)

where (5.19) where N is the number of traces, where the seismic event is present, one can see that N ≤ N i and

ε n = t n ∆ t - t n ∆ t . ( 5 
J(τ , p ) = n ∈ [1, N i ] : t n ± M ∆ t ∈ [0, T ξ ] , N = |J(τ , p )| .
(5.20)

The computation of the non-parametric wavelet estimation requires computing the elements of v(n, m), which corresponds to O(M N ) operations and O(M N ) bytes of memory.

Methods implementation and comparison

All of the methods cited in Appendix A.2 on page 132 were implemented and tested with respect to the simultaneous seismic sources' signals separation. First, a very simple synthetic data set (Figure 5.14a) was taken for methods benchmark. The advantage of this simplicity is that we know the right answer by construction, so we are able to asses the algorithms performances in an objective manner.

Example 5. We applied the cited above methods to estimate the weak flat event (the event in the red box in Figure 5.14a), highly polluted in its middle by the slanted strong event.

Straight mean stack obviously fails to estimate the true wavelet (Figure 5.14b). Other stacking methods, tailored to get rid of outliers, succeed more or less accurately. Median stack result is shown in Figure 5.14c; ATM stack result in Figure 5.14d; diversity stack result in Figure 5.14e; and RanSaC stack result Figure 5.14f. The last four figures are very similar, each of the algorithms should be tested before choosing the appropriate one for the given data.

Parametric wavelet estimation

After the previous step, the wavelet is known in a finite number of points and may be quite a complicated and underivable function. To know it in a continuous manner, we approximate it with a sum of several elementary wavelets w s (t), 1 ≤ s ≤ S, where S is the number of different wavelets shapes s. This step is useful for further optimizations, which require analytical knowledge of the atom. Parametric wavelet estimation is performed within the inner OMP discussed in Section 5.5 on page 91. Figure 5.15 shows the nonparametric and the parametric estimations of the wavelet of our toy-example. Note that the parametric estimation follows the non-parametric one very closely, but is smoother. Remark 18. We also note that using a constant corridor of 2M +1 samples for wavelet can sometimes cause edge effects consisting in apparition of high frequency components that are not present in the data. In order to avoid brusquely cutting the estimated wavelets, we apply a Tukey window ϕ(t) with cosine edges to the ŵ(t) wavelet, so the w(t) in Figure 4.8 is defined as

w(t) = ŵ(t)ϕ(u), with u = t + M ∆ t 2M ∆ t , (5.21)
where is a Tukey window [START_REF] Tukey | An introduction to the calculations of numerical spectrum analysis[END_REF] with r denoting ratio of cosine-tapered section length to the entire window length (0 ≤ r ≤ 1).

ϕ(t) =        1 2 1 + cos 2π r [t -r/2] , 0 ≤ t < r 2 1, r 2 ≤ t < 1 -r 2 1 2 1 + cos 2π r [t -1 + r/2] , 1 -r 2 ≤ t ≤ 1 (5.22)

Parameters optimization 2

The objective functions for the optimization steps 2a and 2b mentioned in Figure 4.8 are known analytically, as well as their derivatives. Moreover, the problem can be formulated as In order to minimize (5.23), a large-scale trust-region reflective least-squares method is used (see Appendix A.1.3).

We have seen in Chapter 3, when we have introduced the Matching Pursuit and the Orthogonal Matching Pursuit, that at the iteration , the normalized atom g γ chosen by the algorithm is a solution of equation

R -1 d, g γ = max γ∈Ω R -1 d, g γ (5.24)
with the notations of Chapter 4. Let us note that if the dictionary D verifies ∀g ∈ H, (g ∈ D ⇒ -g ∈ D), (5.25) then the opposite -g γ of the solution g γ of (5.24) is also a solution of (5.24) and the dictionary of the outer OMP verifies this condition. Moreover, when the data d and the dictionary atoms are real, we have (5.26) for any normalized vector g γ and any residue R -1 d. Thus, the solution g γ of (5.24), that verifies R -1 d, g γ > 0, is a solution of

R -1 d -g γ 2 = R -1 d 2 + 1 -2 R -1 d, g γ ,
γ = arg γ min γ∈Ω R -1 d -g γ 2 .
(5.27)

Hence, the optimization problem (5.24) at the iteration of the outer OMP is equivalent to that of finding a parameter set γ that minimizes the objective function, defined on Ω as

C(γ) = F (γ) 2 with F (γ) = R -1 d -g γ .
(5.28)

For a fixed γ ∈ Ω, F (γ) ∈ H is a function of time t and, after time sampling, the objective function C defined by (5.28) is written as

C(γ) = k∈Z f 2 k (γ) with f k (γ) = F (γ)(k∆ t ) = R -1 d(k∆ t ) -g γ (k∆ t ).
(5.29)

In practice, the infinite sum (5.29) is reduced to a finite sum (5.30) where N t is the number of samples present in the recorded signal.

C(γ) = Nt k=1 f 2 k (γ),
In order to keep the computational complexity of this stage reasonable, we limit the terms f 2 k (γ) in (5.30) to the samples of g γ (k∆ t ), which are a priori non zero. Indeed, knowing the corridor associated to γ, and also knowing that g γ (t) is zero outside of the corridor, the number N t of terms taken into account is reduced to (2M + 1)N .

However, not all of the parameters in γ = τ, p, q, α, K, {s k , a k , ν k , τ k } 1≤k≤K need to be refined: integer parameters K, {s k , ν k } 1≤k≤K are issued from the inner OMP (Section 5.5 on page 91) and are considered to be accurate enough at this stage.

The chosen optimization method requires first order derivatives of the objective function. In order to get a more accurate result in shorter time, we provide a gradient of the objective function, which for our case is written as follows 1. simultaneous optimization of all the 2K + 4 parameters; 2. only τ, p, q and α optimization; 3. only a k and τ k optimization; and 4. successive optimization: τ, p, q and α optimization first, then a k and τ k optimization.

J =                ∂f 1 ∂τ ∂f 1 ∂p ∂f 1 ∂q ∂f 1 ∂α ∂f 1 ∂a 1 . . . ∂f 1 ∂a K ∂f 1 ∂τ 1 . . .
For various reasons we opt for the fourth combination. First of all, the smaller number of parameters are adjusted simultaneously, which facilitates and speeds up the optimization.

Apart from that, we find it more physical to distinguish the traveltime curve parameters from the signature parameters by adjusting them separately.

The number of elements in the matrix J is of order of (2K +4)(2M +1)N = O(KM N ), and the calculations presented in the Appendix C show that the computation of an element of the matrix J requires O(K 2 ) operations and O(K 2 ) bytes of memory. Altogether, the optimization stages 2a and 2b require O(N it K 3 M N ) operations and O(K 2 +KM N ) bytes.

For the synthetic example we have been following in this subsection, the estimated atom is given in Figure 5.16. 

Atoms management and orthogonalization

As the last step of the th outer OMP iteration, we update the coefficients (c ( ) p ) 1≤p≤ of the linear decomposition (5.1). These are indeed the coefficients of the orthogonal projection of the data d on the vector subspace of the first atoms obtained via the outer OMP.

Furthermore, for the purpose of signals separation, a new atom selected within the outer OMP has to be correctly added to reconstruction subsets. Note that there are as many reconstructed signals as there are sources and that the current selected atom at iteration and for the source number i = i , must be added to the reconstructed signal S (i) associated with the corresponding source (4.38), which we remind here

S (i) (t) = p=1 δ(i -i p )c ( )
p g γp (for the source i), (5.32) where δ is the Kronecker symbol.

Finally, supposing that we have N s sources, after L iterations we obtain the decomposition (4.40)

d(t) = Ns i=1 S (i) L (t) + R L d(t).
(5.33)

In order not to allow any signal leakage into the residue, we will present the deblended signal associated to the ith source

S (i) deblended = S (i) L (t) + R L d(t).
(5.34)

A crucial step of our algorithm is the orthogonalization of atoms at each iteration of the Matrioshka OMP. In this case, there is no difference between atoms corresponding to different seismic sources subsets, all the selected g γ are taken into account together. In order to obtain the best representation of the signal with the chosen atoms, it is proposed [START_REF] Pati | Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition[END_REF] to apply Gram-Schmidt orthogonalization (5.35) where

v = A b ,
v = g γ +1 , g γ 1 , g γ +1 , g γ 2 , . . . , g γ +1 , g γ T , (5.36) b = b 1 , b 2 , . . . , b T ,
(5.37)

A =       g γ 1 , g γ 1 g γ 2 , g γ 1 . . . g γ , g γ 1 g γ 1 , g γ 2 g γ 2 , g γ 2 . . . g γ , g γ 2 . . . . . . . . . . . . g γ 1 , g γ g γ 2 , g γ . . . g γ , g γ      
.

(5.38)

Before the orthogonalization step, one has to verify that the inner product between the newly selected atom of the dictionary is non-zero: if R d, g γ < δ with δ > 0 being a threshold, then one cannot proceed with further decomposition. This step assures of the non-singularity of the matrix A , so it is possible to find b such that b = A -1 v .

(5.39)

As suggested by [START_REF] Pati | Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition[END_REF], A +1 may be written as (5.40) and thus the inverse can be constructed recursively as .41) where

A +1 = A v v T 1 ,
A -1 +1 = A -1 + βb b T -βb -βb T β , ( 5 
β = 1/(1 -v T b ).
The computation of v requires O( N t ) operations, where N t appearing in (5.30) can be reduced to O(M N ) if taking into account the a priori null values of g γ (k∆ t ). Hence, the orthogonalization stage requires O( M N + 2 ) operations and O( 2 ) bytes for storage.

Stopping criteria

Due to the significant complexity of seismic data with respect to our dictionary, it is very difficult to define a single stopping criterion applicable everywhere. For this reason, we propose setting multiple stopping criteria for each simulation to achieve more accurate results and, at the same time, avoid wasting machine time on unnecessary precision seeking.

Norm of the residue

The OMP stopping criterion proposed by [START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF] is the achievement of a null, or at least of a sufficiently small 2 -norm of the residue R L d : R L d < N R . This approach is intuitive, but not easy to implement, as different seismic datasets do not have the same amplification, nor do they have the same level of ambient noise or other noises which we would not want to reconstruct. In other words, the meta-parameter N R is difficult to choose as it is highly data dependent. Consequently, one should think of a relative value rather than of an absolute one.

Relative residual energy

One relative value related to the residue energy is the relative residual energy

R L d 2 2 d 2 2 < E R .
(5.42)

The meta-parameter E R can easily be set to some very small value (of the order of computation error) in absence of noise, or can be derived from the pre-estimated signalto-noise ratio in case of noisy data.

Number of iterations

In some cases the parameters N R and even E R are difficult to define. If in addition, the user can be contented by a low reconstruction precision (only wants to reconstruct and separate the most energetic events), it could be helpful to set the L max -the maximal number of iterations to perform -to a low value.

Orthogonalization matrix reciprocal condition number

The reciprocal condition number is used to measure whether a matrix is well or badly conditioned. If the reciprocal condition number for a matrix is small, it is badly conditioned. The condition number of a matrix affects the solutions of similar linear systems of equations: if the values of the matrix are slightly perturbed, this leads to big differences in the solution (the solution is not stable).

Spectral analysis

A more sophisticated stopping criterion is based on the spectral analysis of the data. Before the first iteration, one performs a spectral analysis in order to derive the corresponding wavelets frequencies. The same analysis plots could be used to identify the energy level and frequencies content of the noise to be abandoned in the residue.

Machine learning overfitting approach

The problem of overfitting is posed for any approximation process. If one needs to approximate a cloud of points with a curve, the correct answer will not necessarily fit exactly at each point but will rather have small errors at points, but represent an overall more realistic image. So, where should one stop when trying to approximate data with a model? The solution used in machine learning is to reserve a part of the data, for our study, say 30% of the seismic traces taken into account for one temporal frame, so that the input 5.5. Inner OMP implementation data for the approximating algorithm would be d tr (t), corresponding to 70% of the input data d(t) traces. The omitted data can be distributed randomly or regularly. The model estimation is thus performed on the learning data set d tr (t), but the obtained seismic atoms are subtracted from the whole data d(t). The energy of the residue decreases for both data sets at the beginning of the decomposition, however, when the overfitting starts to occur for the learning data set, the residue for the test data begins to increase. The point at which the residue curve derivative changes its sign is an appropriate point to stop decomposition. Indeed, if coherent signal is present in both the learning and the test data, it will be subtracted correctly and the residue will decrease for both data sets. However, if the coherent signal found in the learning data set is actually due to a pseudo-organized noise, it would not be present in the test data set, and subtracting it would increase the residue.

Inner OMP implementation

The dictionary parameters γ k = {s k , ν k , τ k } 1≤k≤K , as well as the number K of atoms for decomposition, are to be chosen during the estimation process.

The entire wavelet at the seismic event level can thus be represented as a linear combination of w γ (t) with corresponding amplitude coefficients a k :

w(t) = K k=1 a k w s k (t -ν k ∆ τ -τ k ) + R K w(t).
(5.43) Equation ( 5.43) can be interpreted as a decomposition of w(t) into a sum of K atoms of the wavelets dictionary with some error R K w(t). We chose to solve this problem with an OMP embedded into the global one. As we have seen in Section 3.1 on page 37, matching pursuits are well suited for these types of problems, because no preliminary knowledge of the exact decomposing functions, nor of there quantity, is needed. A simple stopping criterion on the relative energy of the residue, computed as E R = R K w(t) 2 / w(t) 2 is sufficient for acceptable atom choice and amplitudes attribution. However, other stopping criteria can be introduced, such as the insufficient residue energy decreasing or maximal number of iterations.

As mentioned in Section 4.7 on page 66, at this step we have created the wavelet dictionary atom vectors, of the shapes derived from a spectral analysis of the data and peak locations at all time points within the "corridor" [-M ∆ t , M ∆ t ] with a sampling period of ∆ τ . A sample inner OMP dictionary is given in Figure 5.17. Proceeding this way, we have the possibility to compute inner products of the data with the atoms of the dictionary and find the maximal one, as required by (5.4) on page 75. After this step, we fix the chosen wavelet shape s k and the integer ν k , while the τ k can be refined at the end of each step of the inner OMP in order to allow continuous time shifts. Adjusting the true position of τ k is done using the Newton's algorithm, as proposed by [START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF].

According to the matching pursuit algorithm, the objective function to maximize is the absolute inner product of the residue with the atoms of the dictionary:

C(s, ν, τ ) = R K w, w γ .
(5.44)

The variable w in (5.44) refers to the sampled wavelet after non-parametric estimation and Tukey windowing, which means that w belongs to the space of functions known in a set of points; whereas the atom of the wavelet dictionary w γ is a continuous function. In order to compute the inner product of these two function, one has to transfer the continuous function w γ into the space of functions known in some points. The function R K w(m) is known in some points m∆ t , m = -M, ..., M , the function w γ (t) can be computed in the same points m∆ t , m = -M, ..., M . Then the inner product of the two functions is just the sum of the products of their coordinates:

C(τ ) = C(s, ν, τ ) = M m=-M R K w(m∆ t )w γ (m∆ t -ν∆ τ -τ ) .
(5.45)

In order to make the objective function derivable in all the points, let us rewrite (5.45) as

C(τ ) = C(s, ν, τ ) =   M m=-M R K w(m∆ t )w γ (m∆ t -ν∆ τ -τ )   2 .
(5.46)

In order to apply the Newton's algorithm for τ optimization, we have to compute the 92 5.6. Matrioshka OMP algorithm complexity first and the second derivative of the function C(τ ) from (5.46). Thus,

C (τ ) = -2   M m=-M R K w(m∆ t )w γ (m∆ t -ν∆ τ -τ )     M m=-M R K w(m∆ t )w γ (m∆ t -ν∆ τ -τ )   = -2 M m=-M M n=-M R K w(m∆ t )R K w(n∆ t )w γ (m∆ t -ν∆ τ -τ )w γ (n∆ t -ν∆ τ -τ );
(5.47)

C (τ ) = 2 M m=-M M n=-M R K w(m∆ t )R K w(n∆ t )× × w γ (m∆ t -ν∆ τ -τ )w γ (n∆ t -ν∆ τ -τ ) + w γ (m∆ t -ν∆ τ -τ )w γ (n∆ t -ν∆ τ -τ ) .
(5.48)

Consequently, the first and the second derivatives w γ and w γ of the inner OMP atoms have to be computed. In this work we use dictionaries containing elementary wavelets; two different families of atoms are considered: Ricker and Ormsby wavelets; derivatives computation for these wavelets is detailed in Appendix B. An orthogonalization step follows the optimization, as it is required by the OMP algorithm. The orthogonalization within the inner OMP is exactly the same as for the outer OMP explained by equations (5.35)-(5.41), replacing g γ i by w γ i , and the inner product by M m=-M w γ i (m∆ t )w γ j (m∆ t ). In our simulations, we use two possible stopping criteria: the energy of the residue (which does not have to be very small for the inner OMP) and the number of iterations. Usually, we keep the number of iterations of the inner OMP inferior to 30.

The inner OMP requires memory necessary for storage of the discrete dictionary {w γ } γ∈Γ with |Γ| = S(2M + 1), where S is the number of chosen wavelet shapes. The computation of C(s, ν, τ ) requires [2M + 1] operations, thus, the computations performed for all the elements γ ∈ Γ require O(SM 2 ) operations. In addition to that, the computation of τ using Newton method requires O(N it M 2 ) operations for N it iterations. The orthogonalization within the inner OMP requires O K k=1 (kM + k 2 ) = O(K 3 + K 2 M ) operations, hence, the inner OMP as a whole requires O(K 3 + K 2 M + KM 2 ) operations and O(M + K 2 ) bytes of memory.

Test results

Figure 5.18 shows an example of decomposition of a sample wavelet into a linear combination of Ricker wavelets with dominant frequencies of 4, 8, 25, 40 and 50 Hz. Here, both of the possible stopping criteria are demonstrated. Indeed, in order to obtain the red-line approximation, one could have used as a stopping criterion the number of iterations of the inner OMP (5 in this case), or the energy of the residue (6% in this case). Same is applicable to the orange-line approximation: here, the criterion of 20 iterations is equivalent to the energy of the residue equal or inferior to 0.2%.

Matrioshka OMP algorithm complexity

We have seen that, for the iteration , the outer OMP requires rarely exceeds 2000 in our simulations. In addition, the size of the required memory is

O(N τ N p N N s )+O(K 3 M N )+ O( M N )+O( 2 )+O(K 3 +K 2 M +KM 2 )
O(N τ N p N s ) + O(M N ) + O(K 2 + KM N ) + O( 2 ) + O(M + K 2 ) bytes, the dominant terms being O(N τ N p N s ) + O(K 2 + KM N ) + O( 2 ).

Post-processing: merging single-window data

After processing in each temporal window, the deblended data have to be merged. Usually, overlapping windows are used in order to increase the deblending quality and get rid of high frequency residual noise. The merging of overlapping data is done applying weights to seismic traces occurring in the intersection. Indeed, it is intuitive to assume that the further we move from the current lateral window, the less it's result is accurate. One can apply different types of weighting; the simplest one is linear (weights change linearly with distance).

Let (

x i n ) n for n ∈ [[n 1 + 1, n 1 + K]]
be the positions of the source i within the K overlapping traces between two consecutive temporal windows where Matrioshka OMP is applied. Let D j i (t, x n ) and D j+1 i (t, x n ) be the ith source (t, x) representations of the deblended signal S (i) L (t) + R L d(t) (see (4.40) on page 67) , i.e., the outputs of the Matrioshka OMP applied on the temporal windows j and j + 1, respectively.

The merged data set D i (t, x n ) is obtained as spatial window is too large for a single-window processing. The data was thus divided into two overlapping 20-trace windows, which were processed independently. In the end, deblended data was found for the left and for the right window (Figures 5.20c and 5.20d). Simple superposition of the deblended windows shows good match in the overlapping part (Figure 5.20e), however, for a smoother result, weighted merging is done in Figure 5.20f. Chapter 6

D i (t, x n ) = β n D j i (t, x n ) + (1 -β n )D j+1 i (t, x n ), for n ∈ [[n 1 + 1, n 1 + K]] (5.49) with β n = x n 1 +K+1 -x n x n 1 +K+1 -x n 1 or β n = 1 2 cos π x n -x n 1 x n 1 +K+1 -x n 1 + 1 2 , ( 5 

Algorithm application results

We synthesize in this chapter different application results of the Matrioshka OMP algorithm. In Section 6.1, we present some simple synthetic data examples in order to demonstrate the performance of our algorithm in "laboratory" conditions. We begin with a detailed iteration-by-iteration explanation of deblending applied to a simplistic seismic data set consisting of contributions of two sources possessing two seismic events each (Subsection 6.1.1), followed by a study of resistance to noise (Subsection 6.1.2). Section 6.2 is dedicated to a complex synthetic data set issued from the Marmousi geological model [START_REF] Versteeg | The Marmousi experience: Velocity model determination on a synthetic complex data set[END_REF][START_REF] Martin | Marmousi2: An elastic upgrade for Marmousi[END_REF]. Test of one and multiple sliding spatial windows is shown in this section, as well as a case study using the synthetic Marmousi data with real seismic noise superimposed on it. Finally, in Section 6.3 we show real-data application of our algorithm on Ocean Bottom Node (OBN) seismic data acquired in Torpille (Offshore Gabon).

Synthetic data examples

Example with two simultaneous sources, possessing two seismic events each

In this section, we present in details how the Matrioshka OMP is proceeding to separate simultaneous sources signals.

For this purpose, we have created a simplistic seismic data set, assuming that a single receiver has recorded data originating from two simultaneous sources with offsets varying from 0 to 500 m for both sources, a shot spacing of 25 m, and a time sampling period of 2 ms. Each source has performed 21 shots, which resulted in 21 seismic traces of length of 0.5 seconds, acquiring two seismic events with parameters that are perfectly known to us. The single-source data (before blending) are shown in Figure 6.1. Note that different types of parameters are being tested, such as curved events and events with the amplitude varying significantly with offset, but also crossing events and events which are close to each other in the seismic traces (t, x) domain.

The artificially blended data from Figure 6.1 are presented in Figure 6.2. Shooting intervals of the first source were taken to be regular, every 500 ms; the second source fired randomly with a shooting interval of 500 ± 200 ms. Figure 6.1 shows highly polluted data with multiple cross-talks at the seismic events level.

As presented in the previous chapter, the initial event picking is done in the (τ, p) domain. Two linear Radon transforms are computed taking into account the different sources' shooting times. Figure 6.3 shows the two slant stacks, as well as the picking After 30 iterations, the residue shown in Figure 6.9 becomes negligibly small and homogeneously distributed, so not inducing any impact on the interpretation. The reconstructed signals for the two sources are shown in Figure 6.10. We have perfectly reconstructed the four seismic events from the input and correctly separated them according to their source of origin. Note that even though the events were not perfectly explained and separated after four iterations, we consider that it is acceptable that some seismic events are not perfectly explained by one atom of our dictionary but rather need a superposition of several atoms. This is related to the high complexity of seismic events themselves, but also to the sampling issues, making the wavelet slightly different from one trace to another, even though they were supposed to be identical by construction. and presents a pertinent performance criterion. In both, logarithmic and linear-scale plots, one can notice an inflection point at the fourth iteration, witnessing that after four iterations the essential part of the signal has been explained and subtracted. 

Resistance to noise

When proposing a signal processing method, it is always interesting to show its resistance to noise. In this case we take the toy example presented in the previous chapter (Figure 6.12a). The Figure 6.12b shows the same signal superimposed with white noise of a significant level. The slant stack proves to be a powerful tool versus noise, as it encounters no problem to pick an almost correct starting point for further τ and p optimization (Figure 6.12c). The wavelet estimation presented on the right-hand side of the same figure shows that some noise is reconstructed as if being a part of the signal near the edges of the temporal wavelet estimation window. However, the sharp noise edges are smoothed by applying a Tukey window, and the finally obtained optimized wavelet is close to the real one.

The linear regression plot in Figure 6.13 shows the difficulty of working with so much noise present: the data points are distributed all over the plot. However, the linear regression of these points is very close to the correct one. Figures 6.12e and 6.12f show the finally reconstructed atom and the residue after its subtraction. The atom has parameters close to the correct ones. Some unnecessary side lobes can be seen around the main wavelet, but they remain rather weak and do not corrupt the final result. The residue remains random. 

Complex synthetics -realistic case study

Once the behavior of the algorithm has been tested and well understood for the simple synthetic data, where we perfectly knew the correct solution, the method was also tested on a more realistic data set. Ocean Bottom Cable (OBC) simulation on the Marmousi geological model was chosen for the tests. The chosen data set was generated by the Allied Geophysical Laboratories of the University of Houston [START_REF] Martin | Marmousi2: An elastic upgrade for Marmousi[END_REF]. A highly precise elastic modeling was performed in order to provide as many of the seismic features usually present in real seismic data as possible. Namely, the data contain primary and multiple reflections, but also diffractions, head waves, surface waves, scattering effects and other realistic particularities. The actual simulation consists of a towed-streamer acquisition, an ocean bottom cable (OBC) acquisition, and a vertical seismic profiling (VSP) acquisition. For our tests, we have chosen the OBC configuration. The acquisition geometry adopted for this simulation resumes to a source-vessel towing an airgun source at the depth of 10 m and performing a shot every 25 m. The source signature is a zero-phase 5-10-60-80 Hz Ormsby wavelet with frequencies up to 80 Hz. The OBC cable is situated at the water bottom at the depth of 450 m, the receiver spacing is of 12.32 m.

The artificial blending of the data was performed by attributing to one of the seismic vessels regular shooting intervals of the length of the traces in the input synthetic seismic set, equal to 5 seconds. The shooting times attributed to the other source(s) are irregular and vary around 7 ± 2 seconds.

The first test, illustrated by Figures 6.14 -6.17, shows a patch of 20 traces for each of the two simultaneous sources, which corresponds to a 500-meters-wide lateral window. Figures 6.14 and 6.15 show some decomposition and deblending results for the upper part of the section (1.5 -2.5 seconds) for the first source. The signal in this part of the section is quite strong, taking into account that it contains direct arrival and surface waves. Figures 6.14c and 6.14d show the decomposition result after only 5 iterations of the outer OMP: several of the most energetic seismic events have already been reconstructed, and the residue energy has significantly decreased. After 59 iterations of the outer OMP (Figures 6.14e and 6.14f), the useful signal present in the section is almost perfectly explained.

However, due to presence of significantly weaker signals in other parts of the studied sections, the decomposition was held up to 1750 iterations of the outer OMP. Figure 6.15a shows the explained events for the same part of the signal. Colored lines show events that were identified as having signals of different signs for the extreme traces within the processing window. We have discussed this phenomenon above, in Section 5.4.2 on page 79. The residue before amplification (Figure 6.15b) is roughly null, and appears quite random when being multiplied by 40 (Figure 6.15c). The deblended seismic shown in Figure 6.15d, is a sum of the explained events (Figure 6.15a) and the residue (Figure 6.15b). The energy of the residue decreases logarithmically, as demonstrated in Figure 6.15e. Figure 6.15f shows the increasing signal-to-noise ratio computed as follows S/N = 10 log 10 d s

2 d s -d d 2 , (6.1)
where d s corresponds to the initial single-source data, and d d -to the deblended data for the same source. Figures 6.16 and 6.17 show results of the same exercise, but for a different part of the signal: this is the signal aligned according to the second source's shooting times, and the zoom is taken on a deeper part of the section (3.4 -4.4 seconds). The energy of the signal here is much weaker than in the upper part of the section, so all the signals in Figures 6.16 and 6.17 are amplified with respect to those shown in Figures 6.14 and 6.15, more precisely, they are multiplied by 2.5.

As the signal here is weaker, the coherency is more difficult to follow (Figure 6.16a). Moreover, the polluting cross-talks from the other source can be much more energetic than the coherent signal itself, as demonstrated in Figure 6.16b. For this reason, after 59 iterations (at the point where the majority of the coherent signal has already been explained for the upper part of the section, as shown in Figure 6.14e), no coherent event has been identified for the lower part of section yet: Figure 6.16c is empty. However, it is interesting to note that the residue at this iteration has been significantly ameliorated (Figure 6.16d), thanks to the explained and subtracted energetic signals from the first source. After 1000 iterations of the outer OMP, the majority of the coherent events has been explained, and only minor reverberations are left in the residue (Figures 6.16e and 6.16f).

After 1750 iterations, the residue is virtually null at the scale of the signal (Figure 6.17b), and its amplification shows adequate randomness (Figure 6.17c). The deblended data (Figure 6.17d) show no perceptible difference with the input non-blended data (Figure 6.16a).

Figure 6.17e shows the magnitude of the coefficients found during the decomposition. Note the rapid decrease in the coefficients values in the beginning of the curve: the rate of the decreasing is an indicator of the sparsity of the chosen transform. The signal-to-noise ratio computed using equation (6.1) for the second source is given in Figure 6.17f.

For the next test, we have taken the same synthetic data and added seismic noise issued from real seismic data sets. Figures 6.18 -6.20 show the obtained results. Figure 6.18a shows the upper part (1.8 -2.8 seconds) of the input non-blended no-noise synthetic data attributed to the second source. Figure 6.18b shows the same part of the data after blending and with the real seismic noise added. Reconstruction and deblending results are shown in Figures 6.18c -6.18f.

Figure 6.19 is dedicated to the reconstruction and deblending results for the lower part (3 -4 seconds) of the first source. A significant ambient noise and blending noise level can be observed in Figure 6.19b. The signal being less energetic for this part of the signal, and the coherencies being more difficult to find, after 152 iterations of the outer OMP one can notice an acceptable reconstruction of the events positioned at about 3 -3.15 seconds, however, the events below 3.7 seconds are not reconstructed properly due Note that even though nothing has yet been reconstructed for this part of the signal (c), the residue (d) shows significant amelioration (compare to (b)) thanks to the energetic cross-talk from the first source that has been explained and subtracted (see Figure 6.14e). Reconstruction results after 1000 iterations (e) and (f). All the amplitudes here are amplified (multiplied by 2.5) with respect to those in Figures 6.14 and 6.15. The energy of the residue decreases almost linearly in logarithmic scale, as shown in Figure 6.20a. Figure 6.20b demonstrates the coefficients computed for all of the atoms chosen for decomposition. Figures 6.20c and 6.20d show the signal-to-noise ratio increasing with iterations of the outer OMP for both seismic sources.

As we have seen above, the inflection point is observed at around 150 iterations and corresponds to a signal-to-noise amelioration of 6 to 7 dB. However, the less energetic seismic events may be miss-interpreted at this stage. The precision level of reconstruction or separation is completely dependent on the further use of the separated or explained signals.

Figures 6.21 -6.24 show tests on the same data, but with the entire shot lines processed. The deblending was held using sliding windows as described in Sections 5. 3 and 5.7. Figures 6.21 and 6.22 demonstrate a deblending tests for clean synthetic signals, while Figures 6.23 and 6.24 show results in presence of real seismic noise. For the last test, it is important to note that the majority of the noise is left in the residue, but can be added back to the explained coherent events in order to avoid any signal leakage. 

Real seismic data example

Finally, a test on real seismic data was performed using the Matrioshka OMP method. The data taken for the test was extracted from the 3D OBN seismic survey acquired in Torpille (Offshore Gabon). The data was acquired using a conventional airgun seismic source towed at the 7 m depth with shot point interval of 50 m. The receivers were placed at the sea bottom with an interval of 25 m. Processing sampling rate was of 3 ms and the listening time for each shot was of 5.4 s. The input data is given in Figures 6.25 (for the first source) and 6.30 (for the second source). The data was acquired in a conventional single-source mode, so the blending (as for the Marmousi tests presented above) was done in the office. Note that the shooting line corresponding to the first source is significantly closer to the receiver, than that corresponding to the second source. This not only affects the first arrival times (the useful signal in Figure 6.30 is located deeper, or later in time, than that in Figure 6.25), but also the energy of the signal recorded. Obviously, the further away is the source from the receiver, the weaker is its recorded signal. For this reason, the blending appears more aggressive for the second source (Figure 6.31), than for the first source (Figure 6.26). Note that the signal-to-noise ratio for the second source after blending is negative (S/N = -0.364 dB). The first source, however, is also significantly contaminated, especially in the part were useful signals, in particular, the primary reflections, are present (below 2 s).

The decomposition allows reconstructing the main most energetic seismic events, such as the direct arrivals, the surface waves and the guided waves. A significant part of the reflections is also reconstructed, which is especially well seen between 1.5 s and 3.5 s in Figure 6.27 and between 2 and 4 seconds in Figure 6.32. Some of the coherent signals are, however, left in the residue (see Figures 6.28 and 6.33). Nevertheless, in order to avoid leakage, the residue can be added back to the reconstructed events for each source, as it has been done in Figures 6.29 and 6.34.

The reader might have noticed that the decomposition and deblending results for the real seismic data have inferior quality comparing to the synthetic data, even with real noise added. There are several reasons to that. First of all, the Torpille data is particularly noisy, in other words, it contains a significant part of incoherent noise, which our algorithm should not attempt explaining. Moreover, in this case we have put ourselves in the least favorable situation, than it would have been if a true simultaneous-source acquisition had been made: indeed, when blending the data in the office, we sum up the ambient noise recorded at different times. In a real simultaneous-source data set we would only have one set of the ambient noise, as the two (or more) shooting lines would have been acquired during the same period of time. Lastly, the big difference in the energy of the two sources considered for this exercise is also difficult to handle, as sometimes the energetic noise tends to be reconstructed as coherent signal.

Nevertheless, we were able to achieve a significant amelioration of the signal-to-noise ratio for the deblending results shown in Figures 6.29 and 6.34: around 16 dB for both sources. Taking into account, that the deblending is held in the very beginning of the processing sequence, the residual blending noise is likely to be handled by further conventional denoising or other processing. 

Conclusion and perspectives

Conclusion

In this work, we have proposed a mathematical model of a signal issued from a single receiver having recorded multiple blended shots. The advantages of this model include its relative simplicity and flexibility. Indeed, based on the definition of a seismic event as a feature in the data which is characterized by spacial coherency, amplitude standout, specific signature, dip moveout and normal moveout, we introduced our data driven seismic event model. According to this model, a seismic event is a straight or slightly curved feature in the data with a specific wavelet sufficiently stable within a local spatial window.

We have presented a new simultaneous-source signals separation method, that we call Matrioshka Orthogonal Matching Pursuit, which consists of two nested OMPs. Specific dictionaries adapted to seismic data and applicable to deblending, have been proposed, as well as the algorithm for their use. For this, we have efficiently solved a non-convex optimization problem thanks to the gradual construction of the initial conditions close to the globally optimal solution. Our method results in a sparse representation of seismic data with a given precision, which is beneficial for diverse seismic data processing problems.

The synthetic data examples presented in this work show excellent deblending results: almost 100% of the coherent seismic events present in the data can be explained. The real data example was more difficult to process, however, the final results are acceptable in terms of further processing.

Deblending as a part of the processing workflow

As it has already been mentioned in Chapter 2, whether deblending is necessary or not remains an open question: indeed, at least theoretically, most of the problems related to simultaneous shooting can be resolved by a sophisticated imaging or inversion. However, up to now, it is considered in the industry, that the deblending step is a necessary part of a simultaneous-source data processing.

Different researchers propose different processing sequences for a better deblending. Two contradictory considerations have to be taken into account: on one hand, blended acquisition acts as a form of data compression -more information is gathered in a smaller amount of data; on the other hand, the modern seismic processing techniques are not adapted to work with blended data and thus, their performance may be degraded if applied directly without deblending.

Many industrial applications of deblending are performed after the most energetic noise, namely coming from direct arrivals and surface waves, has been suppressed. Indeed, it is common practice to suppress this noise statistically: seismic traces are sorted randomly and, on a three-trace basis, all outlier amplitudes are rejected. This procedure is not compromised even if the data come from simultaneous-source acquisition, because the outlier amplitudes to get rid of are much higher than the useful amplitudes of the polluting shots. However, we believe that application of a greedy method, such as OMP, can resolve the problem of high amplitudes at the separation stage. Indeed, the OMP attempts to first explain and separate the most energetic events, so can be applied before high-amplitude noise suppression. This could induce a better separation quality.

It might be beneficial to apply the Matrioshka OMP deblending after deconvolution. This procedure has the goal of retrieving the data with a wavelet close to the source impulse. This is never achieved perfectly, nevertheless, the signal becomes easier to explain, namely, our seismic event model described in Chapter 4 can be applied with less complexity.

Hence, the perfect order of the processing sequence cannot be determined once for all applications and, probably, should be decided on a case-by-case basis with preliminary feasibility studies and testing. In any case, the Matrioshka OMP deblending is suitable to be applied at the first processing stage, as well as after some processing steps. One can also imagine multiple recurring deblending steps using the OMP algorithm, as it is often done in the industry with existing techniques.

Other applications of the data driven seismic event model and Matrioshka OMP

As one might have noticed, the data driven seismic event model presented in Chapter 4 is not exclusively applicable to simultaneous-source data. Indeed, the seismic events can also be identified in single-source data sets. Discrimination of some of the parameters obtained through the Matrioshka OMP can help in any seismic data processing procedures which need wavefields separation. For example, surface waves may be eliminated by putting a threshold on the events slope, as they are usually much slower than the useful P and S waves, which makes their slopes mush steeper.

This method can also be used for intelligent picking of specific waves in raw or processed seismic gathers. This could help denoising and isolation of the primary reflections crucial for correct imaging.

Another application, closely related to simultaneous-source acquisition, is debleding for self-simultaneous shooting, i.e., when the same source makes small pauses between its emissions, so that the signals are superimposed of the seismic record.

3D processing of 3D data and other types of sources

It is now of common practice to deblend 3D seismic data by treating them as multiple 2D lines. This approach is easily applicable to conventional land and marine acquisitions, where shooting lines are usually straight, but is more difficult when trying to deal with novel acquisition strategies. For example, for novel small seismic sources, which one would like to keep in place and make emit signals for a long time in order to assure sufficient penetration, a 3D model has to be introduced. It should not be difficult to extend our data driven model to a 3D one, following the same logic as the 3D Radon transform.

4. adjust ∆.

These four steps are repeated until convergence.

For nonlinear least-squares problems their structure is used in order to enhance efficiency. We will see further (in (5.23) on page 86) that the objective function needed for optimization in this work takes the form:

C(γ) = F(γ) 2 2 = i f 2 i (γ), (A.9)
where γ ∈ Ω ⊂ R n is a set of n parameters of the objective function.

For this type of objective function, an approximate Gauss-Newton direction, i.e., a solution s to min Js + F 2 2 , (A.10) (where J is the Jacobian of F(γ)) is used to define the 2D subspace S. Second derivatives of the components f i (γ) of the function F(γ) are not used.

At each iteration the method of preconditioned conjugate gradient is used to approximately solve the normal equation, i.e., J T Js = -J T F, (A.11) although the normal equations are not explicitly formed (The MathWorks, Inc., 2008). Further, line search procedures are used in conjunction with a quasi-Newton method as part of the nonlinear least-squares optimization.

Moreover, one can also take into account that often the problem is actually even more narrow: one would want to fit some model trajectory y(γ, t) to a real data trajectory ϕ(t) (continuous or sampled). Thus, it is crucial to note that not only the problem is formulated as in (A.9), but also the component function f i (and the vector F) has a particular structure

F(γ) =     
ϕ(t 1 ) -y(γ, t 1 ) ϕ(t 2 ) -y(γ, t 2 ) . . . ϕ(t m ) -y(γ, t m ) .12) where ϕ and y include weights of the quadrature scheme (The MathWorks, Inc., 2008). Thus, the minimization problem is even more precisely reformulated as follows In problems like (A.13) the residue F(γ) is likely to be small at the optimum, as the trajectory ϕ can be physically explained and parameterized, at least up to a point. Certain characteristics of the problem can often be exploited to improve the iterative efficiency of the solution procedure. Namely, the gradient and the Hessian matrix have a particular structure. Denoting the m-by-n Jacobian matrix of F(γ) as J(γ), the gradient vector of C(γ) as G(γ), the Hessian matrix of C(γ) as H(γ), and the Hessian matrix of each f i (γ) as H i (γ), we have G(γ) = 2J(γ) T F(γ), (A.14) and H(γ) = 2J(γ) T J(γ) + 2Q(γ), (A.15) Let us now compute partial derivatives of such normalized atom. Let z be any real parameters of G γ , in other words, any component of γ. We have 

     =      f 1 (γ) f 2 (γ) . . . f m (γ)      , ( A 
∂ ∂z G γ (t) G γ = 1 G γ ∂G γ (t) ∂z + G γ (t) • ∂ ∂z 1 G γ = 1 G γ ∂G γ (t) ∂z - G γ (t) G γ 2 ∂ G γ ∂z (C.16) = 1 G γ ∂G γ (t) ∂z - G γ (t) G γ 2 ∂ G γ 2 ∂z = 1 G γ ∂G γ (t) ∂z - G γ (t) 2 G γ 3 ∂ G γ 2 ∂z (C.17) = 1 G γ ∂G γ (t) ∂z - G γ (t) 2 G γ 2 ∂ G γ 2 ∂z , (C.18) 1 G γ 2 ∂ G γ 2 ∂α = A (α) A(α) = 2 A(α) N n=1 (1 + αx n )x n , (C.19) 1 G γ 2 ∂ G γ 2 ∂a = 2Γ ( 

Computation of w k w (u) for Ricker wavelets

Let us introduce a Ricker wavelet of dominant frequancy f :

w(f, t) = (1 -2π 2 f 2 t 2 )e -π 2 f 2 t 2 = 1 - t 2 σ 2 exp -t 2 2σ 2 with σ = 1 √ 2πf . (C.25)
The convolution product of w(f 1 , •) w(f 2 , •) is computed as follows:

w(f 1 , •) w(f 2 , •)(u) = +∞ -∞ 1 - t 2 σ 2 1 1 - (u -t) 2 σ 2 2 exp -1 2 t 2 σ 2 1 + (u -t) 2 σ 2 2 dt.
(C.26) which implies

w(f 1 , •) w(f 2 , •)(u) = √ 2π σ 3 1 σ 3 2 (σ 2 1 + σ 2 2 ) 5/2 3 - 6u 2 σ 2 1 + σ 2 2 + u 4 (σ 2 1 + σ 2 2 ) 2 exp -u 2 2(σ 2 1 + σ 2 2 )
.

(C.40) Finally, denoting the respective dominant frequencies f k and f of the Ricker wavelets

w k et w , σ k = 1 √ 2πf k et σ = 1 √ 2πf , we obtain γ w k, (u) = √ 2π σ 3 k σ 3 (σ 2 k + σ 2 ) 5/2 3 - 6u 2 σ 2 k + σ 2 + u 4 (σ 2 k + σ 2 ) 2 exp -u 2 2(σ 2 k + σ 2 ) (C.41) γ w k, (u) = - √ 2π σ 3 k σ 3 u (σ 2 k + σ 2 ) 7/2 15 - 10u 2 σ 2 k + σ 2 + u 4 (σ 2 k + σ 2 ) 2 exp -u 2 2(σ 2 k + σ 2 )
. (C.42)

Computation of the norm of a Ricker wavelet

In the definition of a Ricker wavelet (C.25), let us make a variable change π 2 f 2 = k. The Ricker wavelet is thus represented as

f (t) = (1 -2kt 2 )e -kt 2 . (C.43)
In order to find the norm of (C.43), we have to compute the integral I = +∞ -∞ f 2 (t) dt. Let us represent the function f (t) as f 2 (t) = (1 -4kt 2 + 4k 2 t 2 )e -2kt 2 = e -2kt 2 -4kt 2 e -2kt 2 + 4k 2 t 2 e -2kt 2 .

(C.44)

The Rieman integral being linear, Let us now compute these separately. 

I
I 1 = +∞ -∞ e -2kt 2 dt = +∞ -∞ exp      - t 2 2 1 2 √ k 2      dt = √ 2π 1 2 √ k = π 2k , (C.48) I 2 = -4k +∞ -∞ t 2 exp      - t 2 2 1 2 √ k 2      dt = -4k √ 2π 1 2 √ k 3 = - π 2k , (C.49) I 3 = -4k 2 +∞ -∞ t 4 exp      - t 2 2 1 2 √ k 2      dt = 4k 2 3 √ 2π 1 2 √ k 5 = 3 
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 23 Figure 2: Exemple de l'utilisation de l'OMP interne: l'ondelette à décomposer (fenêtrée par une fenêtre de Tukey) avec une décomposition en 5 ondelettes élémentaires (E R = 6%), et en 20 ondelettes élémentaires (E R = 0.2%) (a); les 20 ondelettes élémentaires utilisées pour la décomposition (b).
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 4 Figure 4: Résultats de deblending pour une collection de traces d'un récepteur commun pour les données synthétiques issues du modèle Marmousi (Martin et al., 2006) avec l'addition d'un bruit sismique réel. Collection avant (gauche) et après deblending (droite).
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 5 Figure 5: Résultats de deblending pour une collection de traces d'un récepteur commun pour les données sismiques réelles issues de l'acquisition OBN Torpille au Gabon. Collection avant deblending (gauche) et après deblending (droite). La figure suivante montre les parties à l'intérieur des carrés rouges agrandies.
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 6 Figure 6: Résultats de deblending pour une partie de la collection de traces présentée dans la Figure 5. Collection avant deblending (gauche) et après deblending (droite).
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 8 Figure 8: Example of the use of the inner OMP: the wavelet to decompose (windowed by a Tukey window) with its decomposition into 5 elementary wavelets (E R = 6%), and into 20 elementary wavelets (E R = 0.2%) (a); the 20 elementary wavelets used for the decomposition (b).
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 9 Figure 9: Examples of atoms G γ (t) of the seismic events dictionary.
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 1011 Figure 10: Deblending results for a common receiver gather from synthetic seismic data issued from the Marmousi model[START_REF] Martin | Marmousi2: An elastic upgrade for Marmousi[END_REF] with addition of real seismic noise. Gather before deblending (left) and after deblending (right).

Figure 12 :

 12 Figure 12: Deblending results for the parts highlighted by the red rectangles in Figure 11. Gather before deblending (left) and after deblending (right).

Figure 1 . 1 :

 11 Figure 1.1: Sketch of the simplest seismic acquisition. Geological medium is characterized by the main parameters influencing the seismic wavefield propagation, velocity v and density ρ. Reflected and refracted waves are shown in black, direct wave -in red, and multiple reflections -in blue.
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 12 Figure 1.2: Various land seismic sources: dynamite (a); hammer (b) [photograph taken during Lomonosov Moscow State University seismic training field trip in Aleksandrovka (Kaluga region, Russia) in 2010]; vibratory source (c) [photograph taken during seismic acquisition in Pau (France) in 2016].

Figure 1 . 3 :

 13 Figure 1.3: Marine seismic source: two related airguns (a); shot (b) [photographs taken during Total training field trip in Abu Dhabi (Schlumberger training center) in 2017].

  a) Common shot point. b) Common receiver point. c) Common offset. d) Common midpoint.

Figure 2 . 1 :

 21 Figure 2.1: Different ways of sorting the seismic data (modified from Hatton et al. (1989)); * -source, • -receiver. Note that in each representation the sources and the receivers locations are aligned.

Figure 2 . 2 :

 22 Figure 2.2: Example of a seismic traces collection (a part of a seismic gather) as a wiggle plot (a) and as a gray-scale plot (b).

Figure 2 . 4 :

 24 Figure 2.4: Illustration of separation by shot-time randomization. Data aligned according to the shooting times of the first (left) and the second (right) source. Blue wiggles correspond to the signal emitted by the first source, red wiggles correspond to the signal emitted by the second source.

  Figure 2.5: Schematical representation of factors affecting seismic signature (modified from[START_REF] Sheriff | Factors affecting seismic amplitudes[END_REF]).

  Figure 2.6: Modeled marine seismic source signature (left) and its amplitude spectrum (right). These figures are issued from a specific software used in seismic data acquisition called Gundalf. We thank Alexandre Krajnc-Giroud for this modeling example.

Figure 2 . 7 :

 27 Figure 2.7: Real marine seismic shot gather at different denoising stages: before any noise attenuation (a), after direct arrival removal (b), after swell noise attenuation and demultiple (c), after residual linear noise attenuation (d) (modified from Brunellière et al. (2017)).

Figure 2 . 8 :Figure 2 . 9 :

 2829 Figure 2.8: Sketch showing different types of multiple reflections: water-bottom multiple in blue, water layer multiple (peg-leg) in green, surface-related multiple in black, interbed multiple in red, and intrabed multiple in yellow.

Figure 2 . 10 :

 210 Figure 2.10: Simple example of APM application. Plot (a) shows the two "sources" to separate colored in blue and red, and the resulting "blended" vector -in green. The separation results are shown in plots (b) and (c), the estimated "sources" are colored in teal and orange. After 1 APM iteration (b) the estimation is rather poor, whereas after 15 APM iterations (c) the sources are estimated almost perfectly.

  [START_REF] Chen | Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization[END_REF] investigate the deblending as an inverse problem and propose a specific regularization term. To begin with, they represent the blended data d asd = d 1 + Td 2 , (2.35) where d 1 and d 2 correspond to the desired separated signals of the two blended sources, whereas T denotes the dithering operator -the randomized time delays for the shooting times of the second source. The authors propose to add to (2.35) its equivalent with the inverse of T T -1 d = T -1 d 1 + d 2 .

Input:

  Original seismic data d Output: New interpolated data d new = Lm 1 d resi = d; /* initialize the residual data as the input data */ 2 m = zeros; /* initialize the model with zeros */ 3 while stopping criterion is not fulfilled do 4 m i = L d resi ; /* compute the adjoint solution */ /* L -forward Radon transform, m i -the adjoint solution */ 5 choose a model subspace S i based on amplitude threshold of the adjoint solution m i ; 6 minimize J(m i ) = d resi -Lm i 2 using conjugate gradient algorithm; /* m i -solution at ith iteration within the subspace S i , L -the inverse Radon transform within the subspace S i , which contains a lot fewer model elements than a conventional Radon operator */ 7 m = m + m i ; /* update the model */ 8 d resi = d resi -Lm i ; /* update the data residual */ 9 end Algorithm 2: Greedy Radon transform (modified from Wang et al. (2010)).

  . The AGCM examples are shown in Figure 2.11, their mathematical formulation is the following

Figure 2 . 11 :

 211 Figure 2.11:Asymmetric Gaussian chirplet model with p = (0.01, 0.5, 0, 0.5, 0, 0) (top); p = (0.01, 0.7, 0, 0.1, 0.02, π) (middle); p = (0.01, -0.7, 10, 0.5, 0.04, π) (bottom).

d = g 1 g 2 Figure 3 . 1 :

 231 Figure 3.1: Geometrical representation of atom selection; d denotes the signal, g 1 and g 2 denote dictionary atoms (red arrows); d = g 1 .

Figure 3 . 2 :

 32 Figure 3.2: Convergence comparison for a complete dictionary of dimension A (blue)and the DeVore and Temlyakov's dictionary (red) in bi-logarithmic scale.

Figure 3 . 3 :

 33 Figure 3.3: Geometrical representation of the space V and the vectors g γ and u .

c c 0

 0 , subject to d -Dc 2 2 ≤ ε.(3.69)[START_REF] Adler | A Constrained Matching Pursuit Approach to Audio Declipping[END_REF] propose adding a constraint on the sign of the result, but any other additional constraint can be applied:

Figure 4 . 2 :

 42 Figure 4.2: Illustration of separation by shot times randomization. Data aligned according to the shooting times of the first (left) and the second (right) source. Blue wiggles correspond to the signal emitted by the first source, red wiggles correspond to the signal emitted by the second source. Repeated Figure 2.4.

Figure 4 . 3 :

 43 Figure 4.3: Example of a continuous signal cut into traces with regular shooting times T 1n for the first source and irregular ones T 2 n and T 3 n for the second and the third sources, respectively. Zero padding (the white squares correspond to zeros) is applied in order to keep the matrices rectangular. The A i (4.8) has been applied to the data to obtain D i (on the left), and the A i transformation (4.10) to obtain D i (on the right). T glob is the global acquisition time, T l is the listening time.
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 45 Figure 4.5: Complex synthetic seismic data and zoom on neighboring wavelets.

4. 7 .

 7 Matrioshka OMP overview following chapter how to define this time interval. Let us denote by d(t) the windowed receiver signal d(t). The initialization of the outer OMP is done by taking this input signal as the first residue: R 0 d = d.
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 48 Figure 4.8: Matrioshka OMP algorithm for simultaneous sources data separation. Legend: inputs ; optimization steps ; intermediate parameters sets ; final parameters set .
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 51 Figure 5.1: Power spectral density of the signal in Figure 5.2.
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 52 Figure 5.2: Complex synthetic seismic data issued from the Marmousi geological model[START_REF] Versteeg | The Marmousi experience: Velocity model determination on a synthetic complex data set[END_REF][START_REF] Martin | Marmousi2: An elastic upgrade for Marmousi[END_REF].
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 53 Figure 5.3: Example of a continuous signal cut into traces with regular time breaks T 1 n
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 54 Figure 5.4: Test synthetic data, single-source input.
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 55 Figure 5.5: Test synthetic data, slant stack.
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 56 Figure 5.6: Objective function C(τ ).
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 57 Figure 5.7: Objective function C(p).
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 59 Figure 5.9: Linear regression for the straight event introduced in Figure 5.4 on page 74.
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 510 Figure 5.10: Input single-source data containing an event with phase rotation (left), and its slant stack (right).
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 512513 Figure 5.12: Linear regression for linear amplitude variation estimation. Crosses correspond to the signal values at the intersection of the travertime curve with the seismic trace.

  .18) Thus, for each time sample m ∈ [[-M, M ]] and for a data vector d: d(m) = (v(1, m), ..., v(N, m)) T ,

Figure 5 . 14 :

 514 Figure 5.14: Example 5 illustration. Simple synthetic data for benchmark (a); true wavelet compared to its straight-stack (b), median-stack (c), ATM-stack (d), diversitystack (e), and RanSaC-stack (f) estimation.

Figure

  Figure 5.15: Wavelet estimation.

Figure 5 . 16 :

 516 Figure 5.16: Test data: estimated atom.

Figure 5 . 17 :

 517 Figure 5.17: Sample inner OMP dictionary consisting of Ricker wavelets with dominant frequencies of 20 Hz (left), 55 Hz (middle) and 105 Hz (right). Sampling period is of 2 ms, M = 25, which gives 51 sample for a 0.1 second-long signal. The presented dictionary contains 153 atoms.
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 518 Figure 5.18: Wavelet OMP decomposition example: wavelet to decompose (windowed by a Tukey window) with the decomposition using 5 sample wavelets (E R = 6%), and 20 wavelets (E R = 0.2%) (a); and the 20 elementary wavelets used for decomposition (b).
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 519 Figure 5.19: Linear weight function (a); sinus arch function used for weights calculation (b) for β in (5.50).

Figure 5 . 20 :

 520 Figure 5.20: Window merging example.
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 6162 Figure 6.1: Input clean single-source seismic data for the first (left) and the second (right) source.

Figure 6 . 3 :

 63 Figure 6.3: Slant stacks at the first iteration of the outer OMP for the first (left) and the second (right) source. The maximal amplitude of the two plots is highlighted by a red circle; the τ and p coordinates of the circle center are given in the box above.
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 656667 Figure 6.5: Estimated wavelet and the atom subtracted at iteration 1.

Figure 6 . 8 :Figure 6 . 9 :

 6869 Figure 6.8: Residue after the fourth outer OMP iteration cut into traces according to the first (left) and the second (right) source shooting times. The relative energy of the residue is equal to 1%.

Figure 6 .

 6 Figure 6.11 shows the decay of the relative residue energy throughout the decomposition. It is computed as R L d 2 2 / d 2 2
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 610611 Figure 6.10: Reconstructed signals for the first (left) and the second (right) source after 30 iterations of the outer OMP.

Figure 6 . 12 :

 612 Figure 6.12: Input clean single-source data (a), and its noisy version (b). Slant stack of data from Figure 6.12a (c), and the wavelet estimation (d). Estimated atom (e), and the residue (f).

Figure 6 . 13 :

 613 Figure 6.13: Linear regression for linear amplitude variation estimation.

Figure 6 . 15 :

 615 Figure 6.15: Results after 1750 iterations. Reconstructed events for the first source (a), events with turning phase highlighted by colored lines; residue after deblending (b); same residue amplified (multiplied by 40) (c); deblended data (d) (reconstructed events (a) with residue (b) added); residue energy decreasing (e); signal-to-noise ratio increasing for the first source (f).

Figure 6 . 16 :

 616 Figure 6.16: Input nonblended data for the second source (a), and the same data after blending (b). Reconstruction results after 59 iterations of the outer OMP (c) and (d).Note that even though nothing has yet been reconstructed for this part of the signal (c), the residue (d) shows significant amelioration (compare to (b)) thanks to the energetic cross-talk from the first source that has been explained and subtracted (see Figure6.14e). Reconstruction results after 1000 iterations (e) and (f). All the amplitudes here are amplified (multiplied by 2.5) with respect to those in Figures 6.14 and 6.15. 

Figure 6 . 19 :

 619 Figure 6.19: Synthetic signal with added real seismic noise example. Input synthetic single-source data for the first source (a); the same data with real seismic noise added and after blending (b); deblending results after 152 iterations of the outer OMP for the lower part of the section (3 -4 seconds) for the first source: reconstructed signal (c), and residue after 152 iterations (d); deblending results after 2000 iterations of the outer OMP for the lower part of the section (3 -4 seconds) for the first source: reconstructed signal (c), and residue after 2000 iterations (d). All the amplitudes here are amplified (multiplied by 2.5) with respect to those in Figure 6.18. 112

Figure 6 . 20 :

 620 Figure 6.20: Post-processing results for the deblending test on synthetic data with real seismic noise added. Residue energy decreasing in bilogarithmic scale (a); coefficients diagram (b); signal-to-noise ratio increasing with the outer OMP iterations for the first (c) and the second (d) source.

Figure 6 . 21 :

 621 Figure 6.21: Full gather tests for the synthetic Marmousi data, the first source. Input non-blended signal (a); same data after blending (b); residue after decomposition (c); and the data after deblending (explained signal with the residue added).

Figure 6 . 22 :

 622 Figure 6.22: Full gather tests for the synthetic Marmousi data, the second source. Input non-blended signal (a); same data after blending (b); residue after decomposition (c); and the data after deblending (explained signal with the residue added).

Figure 6 . 23 :Figure 6 . 24 :

 623624 Figure 6.23: Full gather tests for the synthetic Marmousi data with added real seismic noise, the first source. Input non-blended signal (a); same data after blending (b); residue after decomposition (c); and the data after deblending (explained signal with the residue added). 116
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 625626627628629630631632633634 Figure 6.25: Real seismic data example: Torpille data. Input signal for the first source: the source-line situated close to the receiver.

  t i ) -y(γ, t i )) 2 . (A.13) 

  w, τ )a a T Γ(w, τ )a , (C.20)where ∂ Gγ 2 ∂a stands for the gradient G γ 2 with respect to a: τ ), which is a square matrix of order K. The element situated at the intersection of the row i and the column j is equal to∂γw i,j (τ j -τ i ) ∂τ k. As the matrix Γ(w, τ ) is symmetric, we have∂γ w i,j (τ j -τ i ) ∂τ k = ∂γ w j,i (τ i -τ j ) k,j (τ j -τ k ) if i = k and j = k γ w i,k (τ k -τ i ) if i = k and j = k 0 otherwise. (C.24) 

  2 e -2kt 2 dt (C.46) = I 1 + I 2 + I 3 .(C.47)

  whole integral I = I 1 + I 2 + I 3 is thus computed as

  

  

  

  

  

  

  

  

  

  

  .46) Since R d is orthogonal to the vectors g γp 0≤p≤ -1 and {u p } 0≤p≤ -1 , (3.44) implies (3.47):

	R d, g γ = R d, u +	-1 p=0	g γ , u p u p 2	R d, u p ,	(3.47)
	and thus				
	R d, g γ = R d, u .		(3.48)
	Hence, from (3.46)				
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(f) Figure 6.14: Input nonblended data for the first source (a), and the same data after blending (b). Reconstruction results after 5 iterations of the outer OMP (c) and (d), and after 59 iterations (e) and (f).
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	Figure 6.18: Synthetic signal with added real seismic noise example. Deblending results Figure 6.17: Results after 1750 iterations. Reconstructed events for the second source after 2000 iterations for the upper part of the section (1.8 -2.8 seconds) for the second

(a)

; residue after deblending (b); same residue amplified (multiplied by 20) (c); deblended data (d) (reconstructed events (a) with residue (b) added); coefficients decreasing (e); signal-to-noise ratio increasing for the second source (f). All the amplitudes here are amplified (multiplied by 2.5) with respect to those in Figures 6.

14 

and 6.15. source. Input synthetic single-source data for the second source (a); the same data with real seismic noise added and after blending (b); reconstructed signal (c); residue after 2000 iterations (d); same residue amplified (multiplied by 10) (e); deblended data: explained signals with the residue added (f).

L'écriture R L d(t) définissant le résidu après la décomposition du signal d(t) en une somme pondérée de L éléments du dictionnaire a été proposée par[START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF] et correspond à un seul terme et non pas à une multiplication.

The notation Rd defines the residue after the decomposition of the signal d(t) into a weighted sum of a finite number of elements of the dictionary. This notation has been proposed by[START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF] and does not correspond to a multiplication, but to a single term.

ISS ® is a registered trade mark of BP p.l.c.

+ ε AR 2 2 ,(2.45)

The notation Rd defines the residue after the decomposition of the signal d(t) into a weighted sum of a finite number of elements of the dictionary. This notation has been proposed by[START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF] and does not correspond to a multiplication, but to a single term.

This theorem states that any transformation L : E → D , which is linear, stationary and continuous, is the convolution: L(T ) = L(δ) T , where δ is the Dirac distribution.

The case |β | ≤ ε will be discussed in the following chapter.

 [START_REF] Sheriff | Exploration Seismology[END_REF]).

Chapter 5

Matrioshka OMP implementation

In this chapter, we present the details of the implementation of the Matrioshka Orthogonal Matching Pursuit. We start by an introduction (Section 5.1), where we remind the goal of this work and the main algorithmic stages serving to achieve it. We then follow the algorithm explaining each stage separately. We begin with spectral analysis of the data (Section 5.2), which automatically provides the user with appropriate wavelets to use in the decomposition. After that, we speak about splitting the data into temporal (or spatial) frames in order to make sure that our seismic event models are applicable (Section 5.3). This part is quite sensible for continuous records used in simultaneous-source seismic surveys. After that we pass to processing within one temporal frame by means of OMP (Sections 5.4 and 5.5). We finish this chapter by presenting in Section 5.7 the postprocessing of the separately processed temporal frames.

After the slant stack picking, the first optimization of the parameters τ, p and q of the curve is performed, as well as a linear regression for the linear amplitude variation estimation. Figure 6.4 shows the results of the linear amplitude variation estimation. Here, we denote by "true regression" the regression computed using the exact values for τ, p and q known from construction. The "optimal regression" corresponds to the regression obtained using the τ, p and q from the previous optimization step. For this first iteration, the straight lines are almost identical. Once the curve is defined, we proceed with the wavelet estimation. As described in the previous chapter, we perform this estimation in two steps: a non-parametric estimation is followed by a parametric estimation through the inner OMP. The estimation results are shown in the left plot of Figure 6.5. For this iteration, the non-parametric and the parametric wavelets are almost identical to the parametric wavelet after the last optimization. The right-hand plot of Figure 6.5 shows the atom subtracted at this first iteration, using the optimized parameters issued from the Optimization 2.

Figure 6.6 shows the residue after having subtracted the atom shown in Figure 6.5. Note that this coherent event was successfully subtracted from the first source, where it originated from, but this subtraction has also reduced the pollution level in the second source plot, where this event used to appear as random noise.

The slant stacks after the first event has been subtracted also appear somewhat cleaner (Figure 6.7). Here, the second source plot has also been impacted. Indeed, here one finds less intercrossing straight lines originated by the polluting energetic event from the first source.

We omit the further iterations' details and pass directly to the residues after four iterations of the Matrioshka OMP. Figure 6.8 shows significant reduction of amplitudes in the residue, the relative energy of the residue is equal to 1%. The separation result is not perfect at this stage, but acceptable, taking into account the events complexity and the amount of pollutions.

to the high noise level (Figure 6.19c). Nevertheless, after 2000 iterations, the deblending gives acceptable results, even if some of the noise is reconstructed as well (Figure 6.19e). Still, a significant part of the noise is left in the residue, as shown in Figure 6.19f.

Appendices Appendix A

Optimization and averaging methods

A.1 Optimization (function minimization) techniques

In this section, we present several optimization methods that we have applied at different optimization stages of our algorithm.

A.1.1 Newton-Raphson method

Newton's (or Newton-Raphson) (Newton, 1671[START_REF] Raphson | Analysis aequationum universalis[END_REF] method is simple and efficient for finding zeros of function if one is able to provide analytical derivatives of the function in question. It is based on the Taylor series expansion of a function in the neighborhood of a point

For very small values of δ, and for sufficiently smooth functions, the terms beyond linear are negligible [START_REF] Press | Numerical recipes. The art of scientific computing[END_REF]. For this reason, for f

In order to make Newton-Raphson method minimize a function, one has to provide the second derivative of the function to minimize. Indeed, the minima of the continuously derivable function f are to be looked for among the zeros of its derivative. The problem is thus written as f (x + δ) = 0 and

with the Hessian matrix H(x) and the gradient ∇f (x).

A.1.2 Downhill simplex method

Downhill simplex method by [START_REF] Nelder | A simplex method for function minimization[END_REF] is a method that is neither based on gradients (first-order derivatives), nor on quadratic forms (second-order derivatives).

Instead, in the beginning of the minimization, a set of (n + 1) points P 0 , P 1 , . . . , P n are chosen for a function f of n variables in order to form a simplex. Further, the points in the simplex are sorted according to their function value, from P l for f (P l ) = min j (f (P j )) to P h for f (P h ) = max j (f (P j )). At each iteration, one of P l or P h is replaced by a new point, three operations are applied on the simplex to achieve this: reflection, contraction and expansion. During the iterative process the simplex changes its shape, size and position, so that in the end all the points of the simplex are close to each other and correspond to the maximum of the function.

A.1.3 Large-scale trust-region reflective least-squares method

The basic idea of the trust-region approach is to approximate the function C to minimize with a simpler function y, reasonably reflecting the behavior of C within some neighborhood N around the starting parameter point γ 0 . This neighborhood is called a trust region. At the first stage a so called trust-region sub-problem is stated: a trial step s has to be computed by minimizing (or approximately minimizing) over N:

, the current point γ 1 is updated to be γ 0 + s; otherwise, the current point remains unchanged and the trust region N is shrunk and the step s is recomputed. In the standard trust-region method described in [START_REF] Moré | Computing a trust region step[END_REF], a quadratic approximation is taken as the y function, i.e., the first two terms of the Taylor approximation to C at γ 0 are taken; the neighborhood N is usually spherical or ellipsoidal in shape (The MathWorks, Inc., 2008). Mathematically, the trust region sub-problem is stated as follows min 1 2 s T Hs + s T g such that Ds ≤ ∆ , (A.6)

where g is the gradient of C at the current point γ 0 , H is the Hessian matrix, D is a diagonal scaling matrix, ∆ is a positive scalar, and • is the Euclidean norm. Straightforward algorithms attempt solving (A.6) using a full eigensystem computation and a Newton process. These methods require a time proportional to several factorizations of the Hessian, thus, they are not applicable to large-scale problems.

The approximation approach used for the Matlab (MATLAB, 2017) built-in function lsqnonlin is to restrict the trust-region sub-problem to a two-dimensional subspace S. The two-dimensional subspace S is defined as the linear space spanned by s 1 and s 2 , s 1 being the direction of the gradient g, and s 2 -either an approximate Newton direction, i.e., a solution to Hs 2 = -g, (A.7) or a direction of negative curvature,

Thus, a general trust-region minimization is conducted as follows:

1. formulate the 2D trust-region sub-problem;

2. solve (A.6) to determine the trial step;

where

It is important to note that when the residue F(γ) tends to zero, i.e., when we are close to the true solution, the matrix Q(γ) also tends to zero. In this case, it is efficient to use the Gauss-Newton direction as a basis for an optimization procedure. Though, the Gauss-Newton method encounters certain problems when the Q(γ) term is significant and cannot be ignored.

A.2 Stacking (averaging) methods

In this section, we present different methods that we have implemented and used to find relevant initial conditions at different optimization stages of our algorithm. Dealing with simultaneous-source data, it is crucial to find a method having high tolerance to spiky noise, which originates from cross-talk between different sources and can have significant amplitude stand-out. The methods presented in this section, act in 2D (t, x) representations of seismic data (see Section 2.3 on page 12).

A.2.1 Slant Stack (or Linear Radon Transform) and its modifications

Slant Stack (or Linear Radon Transform) is widely used in seismic processing for various purposes, such as plane-wave decomposition, linear noise attenuation, velocity analysis, interpolation, etc. It consists in focusing the information coming from a straight line in the time-space (t, x) domain into a point in the time-dip (τ, p) domain.

Denoting the domain of the data D and that of the models U , both subsets of R 2 , then D ⊂ L 2 (D) and U ⊂ L 2 (U ) and the Linear Radon Transform (LRT) can be defined as follows [START_REF] Hugonnet | La transformée de Radon généralisée et ses applications à la sismique[END_REF]:

(A.17)

Slant stack, or τ -p transformation, is the discrete approximation of the LRT [START_REF] Gu | Radon transform methods and their applications in mapping mantle reflectivity structure[END_REF]:

where ∆ τ : is the sampling interval for τ ; ∆ p : is the sampling interval for the dipping angle parameter p; s(k, l) : is the model on a sampled grid in the (τ, p) domain. Slant stack, is an integral transform, meaning that no weighting or averaging is added in the stacking process. However, it can be useful to implement an additional processing step in order to make the result more representative of the phenomenon we are interested in.

For instance, the classical slant stack can be in some cases replaced by a slant stack of absolute values of the signal

A.2. Stacking (averaging) methods or a weighted slant stack

where the offset is taken into account.

The stacking methods described in the following sections, will be applied to a data set v issued from some seismic data d by taking several time samples m from each of the N traces

where ∆ t is the time t sampling interval.

A.2.2 Straight stack (mean stack)

The simplest way to estimate the wavelet would have been to make a so called mean stack [START_REF] Mayne | Common reflection point horizontal data stacking techniques[END_REF]: take the mean values along the seismic event in order to obtain some average wavelet:

The big disadvantage of such an approach is the great instability with respect to punctual high amplitude noise. This point is crucial for the simultaneous sources case, because once the data is aligned according to one of the sources, the second source's response appears as punctual noise and may have significant amplitudes.

A.2.3 Median stack (MS), Alpha-Trimmed Mean stack (ATMS)

Median stack, first proposed by [START_REF] Claerbout | Robust modeling with erratic data[END_REF], is not a result of summed up values: for each m only the median values of all traces are taken into account. The median stack is a popular denoising tool thanks to its ability to exclude punctual noise and because it is little influenced by coherent noise masking the primary signal on less than half of the input traces. The main disadvantage of MS is its dependence on a single value, which compromises the discrimination against random noise provided by the averaging. Moreover, because no additional smoothing is applied, the MS can result in abrupt amplitudes change of neighboring samples, both in time and space domains [START_REF] Rashed | Fifty years of stacking[END_REF], which can appear like adding high-frequency noise. This can be reduced by summing up more than one amplitude around the median value.

ATMS, proposed by [START_REF] Watt | Role of the alpha-trimmed mean in combining and analysing seismic common-depth point gathers[END_REF], is an MS modification, which allows customizing the number of "median" values L = αN to take into account:

Here v(m, n), n = 1, 2, . . . , N are sorted so that v(m, n) ≤ v(m, n + 1) ∀n. The so called trimming parameter α (0 ≤ α < 0.5) is chosen manually. Note that when α = 0, the ATMS result coincides with the mean stack; and when α → 0.5 -it tends to the median stack.

A.2.4 Diversity stack

A stack, in which amplitudes that exceed some threshold are excluded, was proposed by [START_REF] Embree | Diversity seismic record stacking method and system[END_REF]. First, one has to divide data into windows, which is already done in our case, and compute weights for each of the n = 1, . . . , N traces:

(A.24) [START_REF] Gimlin | A comparison of seismic trace summing techniques[END_REF] then propose to apply these weights as follows in order to obtain the signal estimation:

A.2.5 Random Sample Consensus (RanSaC) stack

RanSaC [START_REF] Fischler | Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[END_REF] stack is similar to diversity stack, but is computed point by point and consists in finding an optimal model to explain the data and eliminate the points of the data that do not fit into the model (outliers). It has not been applied to seismic data yet. Let us consider a matrix

where θ is the threshold value to determine whether or not a point is compatible with the model. In other words, this matrix is a measure of similarity between the points inside the vector d(m) d(m) = (v(m, 1), . . . , v(m, N )) T .

(A.27)

The estimated wavelet ŵ(m) will further be found as the average of inlier d(m) components (i.e., the components that are not too far from v(m, k 0 )):

where p k (m) is the kth column of P(m), index k 0 gives the maximal number of terms in the average,

Wavelets used in seismic data processing

B.1 Ricker wavelet

Ricker wavelets (Figure B.1) have one peak and two smaller side lobes. A Ricker wavelet can be defined by a single parameter -dominant frequency f : Ricker wavelet's first and second derivatives are computed as follows

B.2 Ormsby wavelet

Ormsby wavelet (Figure B.2) is specified by an array of four frequencies defining the low and the high cuts and the low and the high passes. It would have been more appropriate to call these wavelets Ormsby-filtered wavelets, because Ormsby actually defined a trapezoidal filter. If applied to a unit impulse function, this filter creates the Ormsby wavelet.

Unlike Ricker wavelets, Ormsby wavelets have numerous side lobes, the number of which depends on the slope of the side of the trapezoidal filter.

Frequency (Hz) The Ormsby wavelet's derivatives are computed as follows

Norm computation for atoms of the dictionary of the outer OMP Introduction With usual notations for continuous time modeling, one atom of the outer OMP dictionary is written as

where x n = x S i n -x S i 0 , w k belongs to a finite and fixed a priori set of wavelets, τ k are small (|τ k | ≤ ∆ τ /2). In order to alleviate notations, let us denote K = 2M + 1,

and N i = N . Hence, for γ = τ, p, q, (a k , τ k ) 1≤k≤K , α the atom G γ before normalization is written as:

As required by the OMP algorithm, we would like to compute the norm of G γ in L 2 (R).

Computation of the norm L 2 (R) of an atom

The norm L 2 (R) is defined as

We have

In order to simplify the computations, we rely on Hypothesis 8 on page 62, which is satisfied in practice: thanks to sufficient waiting time between two consecutive shots, there is no interference between shots of the same source.

It results from the Hypothesis 8 that if the indices n and m do not correspond to the same shot, then when w k (t -T i n -τ -px n -qx 2 n -τ k ) takes non-negligible values, the other term of the product w (t -T i m -τ -px m -qx 2 m -τ ) takes negligible values. In other words, ∀n, m,

(C.6) Considering the approximation (C.6) as an equality (which is verified in practice), (C.5) is simplified as

where the last equality results from a variable change u = t -T i n -τ -px n -qx 2 n -τ k and w is obtained from the wavelet w by inverting the time direction: w (t) = w (-t).

(C.11)

We recognize in (C.10) the convolution product of w k and w . Let us denote

thus, we have

and Γ(w, τ ) is a symmetric square matrix of order K. The element situated at the intersection of the kth row and the th column of Γ is equal to

Let us develop the expression between braces, which we denote

Let us now factorize this relation in a way that the integral in (C.26) is equal to the product of exp -u 2 2(σ 2 1 + σ 2 2 )

and

In order to compute the integral (C.29), let us denote

and make a variable change

in a polynomial form of v where only even degrees coefficients need to be calculated 8 :

and recognizing the moment of a random Gaussian variable

we obtain

(C.39)

8 Indeed, the integral for v) of any odd power of v weighted by exp[ -1 2 ( 1

] is null (it is an absolutely converging integral on R of an odd function).