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Abstract

Irrigated agriculture is an important pressure on water resources, consuming more than
70% of the mobilized freshwater resources at global scale. However, the information on
irrigation, which is crucial for the sustainability of water resources in agricultural
regions, is often unavailable. Therefore, monitoring and quantifying the crop water
budget over extended areas is critical.

This PhD thesis aims to integrate optical/thermal remote sensing data into a simplified
crop water balance model for monitoring the water budget of irrigated agricultural areas.
For this purpose, an innovative and stepwise approach is developed to estimate
simultaneously the irrigation, the evapotranspiration (ET) and the root-zone soil
moisture (RZSM) at crop field scale (100 m resolution) on a daily basis.

In a first step, a feasibility study is carried out using in situ optical /thermal measurements
collected over a winter wheat field of the Haouz plain, Morocco. A crop water stress
coefficient (Ks) derived from the land surface temperature (LST) and vegetation index
(NDVI) is first translated into RZSM diagnostic estimates, which is then used to estimate
irrigation amounts and dates along the season. Next, the retrieved irrigations allow
forcing the dual crop coefficient FAO-56 model (FAO- 2Kc) to re-analyze the daily ET and
RZSM. The re-analyzed RZSM is significantly improved with respect to RZSM diagnostic
estimates, reaching the same accuracy as that obtained by using actual irrigations (RMSE
= 0.03 m3m-3 and R2= 0.7). However, the approach needs to be tested using satellite data
in order to demonstrate its real applicability.

The next step consists in adapting the previous approach to spatially integrated but
temporally sparse Landsat NDVI/LST data. For this purpose, a contextual method is first
used to derive Landsat-derived estimates (crop coefficients and RZSM), which are used
to re-initialize a FAO-based model and propagate this information daily throughout the
season. Then, the retrieved pixel-scale irrigations are aggregated to the crop field-scale.
The approach is applied to three agricultural areas (12 km by 12 km) in the semi-arid
region of Haouz Plain, and validated over five winter wheat fields with different irrigation
techniques (drip-, flood- and no-irrigation). The results show that the seasonal irrigation
amounts over all the sites and seasons is accurately estimated (RMSE = 44 mm and R =
0.95), regardless of the irrigation techniques. Acceptable errors (RMSE = 27 mm and R =
0.52) are obtained for irrigations cumulated over 15 days, but poor agreements at daily
to weekly scales are found in terms of irrigation. However, the daily RZSM and ET are
accurately estimated using the retrieved irrigation and are very close to those estimated
using actual irrigations (overall RMSE equal to 0.04 m3m-3 and 0.83 mm.d-! for RZSM and
ET, respectively).



In a final step, an operational LST disaggregation method based on NDVI/LST and
Landsat/MODIS relationships is implemented for enhancing the spatio-temporal
resolution of LST as input to the irrigation retrieval approach. The disaggregation method
is tested over an arid region of Chile and our study area in the Haouz Plain. Combining
both disaggregated LST and Landsat LST data sets, thanks to the increase in the temporal
frequency of LST data, results in a better detection of irrigation events and amounts. The
overall RMSE of cumulated irrigation at different time scales is decreased from 46 to 34
mm, while the R is increased from 0.50 to 0.64. Consistently, the RZSM estimated using
the disaggregated LST in addition to Landsat LST as input is improved by 26% and 14%
in terms of RMSE and R, respectively.

Keywords: remote sensing optical/thermal, irrigation, root-zone soil moisture,
evapotranspiration, water balance model.
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Résumeé

L'agriculture est une pression importante sur les ressources en eau, consommant plus de
70% de I'eau douce mobilisée a 1'échelle mondiale. Cependant, les informations sur
l'irrigation, pourtant cruciales pour assurer une durabilité de la ressource, sont souvent
indisponibles. Par conséquent, il est essentiel d’estimer les différents termes du bilan
d’eau des cultures a grande échelle.

Cette these vise a intégrer les données de télédétection optique/thermique dans un
modele simplifié de bilan d’eau des cultures pour le suivi du bilan d’eau des zones
agricoles irriguées. Une approche innovante est développée pour estimer simultanément
l'irrigation, I'évapotranspiration (ET) et 'humidité en zone racinaire (RZSM) journalieres
al'échelle de parcelle (ou a 100 m de résolution).

Dans une premiére partie, une étude de faisabilité est réalisée a 1'aide de mesures
optiques/thermiques in situ collectées sur une parcelle de blé d'hiver dans la plaine du
Haouz, au Maroc. En pratique, un coefficient de stress hydrique (Ks) dérivé de la
température de surface (LST) et d'un indice de végétation (NDVI) est d’abord traduit en
une premiere approximation de RZSM, qui est utilisée pour estimer les quantités et les
dates d'irrigation au cours de la saison. Les irrigations obtenues permettent ensuite de
forcer le modele FAO-56 a coefficient cultural double (FAO-2Kc) et de fournir des ré-
analyses ET et RZSM journaliéres. La RZSM ré-analysée est significativement améliorée
par rapport aux premieres estimations de RZSM, atteignant la méme précision que celle
obtenue en utilisant les irrigations réelles (RMSE=0,03 m3m-3 et R?=0,7). Toutefois,
I'approche doit encore étre testée avec des données satellitaires afin de démontrer son
applicabilité dans le cas réel.

La deuxieme partie consiste a adapter l'approche précédente aux données
optiques/thermiques Landsat a faible fréquence temporelle. Une méthode contextuelle
est utilisée pour obtenir des estimations dérivées de Landsat (coefficients de culture et
RZSM), qui sont utilisées pour réinitialiser un modele basé sur le FAO-2Kc et propager
ces informations a I’échelle journaliére tout au long de la saison. Ensuite, les irrigations
obtenues al'échelle des pixels sont agrégées a la parcelle pour ré-analyser I'ET et la RZSM
journaliéres. L'approche est appliquée sur trois zones agricoles (12 km x 12 km) de la
région semi-aride de la plaine du Haouz et validée sur cinq parcelles de blé d'hiver avec
différentes techniques d'irrigation (goutte a goutte, gravitaire et sans irrigation). Les
résultats montrent que l'irrigation saisonniere sur I'ensemble des sites et des saisons est
estimée avec une bonne précision (RMSE=44 mm et R=0,95), et ce quelque soit la
technique d'irrigation. Des erreurs acceptables (RMSE=27 mm et R=0,52) sont obtenues
pour des irrigations cumulées sur 15 jours, mais les erreurs sont beaucoup plus
importants a 1'échelle journaliere et hebdomadaire. Cependant, les RZSM et ET
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journaliéres sont estimées avec précision a l'aide de des irrigations inversées et sont
méme trés proches de celles estimées a 1'aide des irrigations réelles (RMSE=0,04 m3m-3
pour RZSM et RSME=0,83 mm.d-! pour ET).

Dans la troisieme partie, une méthode opérationnelle de désagrégation des données de
LST basée sur les relations NDVI/LST et Landsat/MODIS est mise en ceuvre pour
améliorer la résolution spatio-temporelle de la LST utilisée en entrée de l'approche
d’estimation de l'irrigation. La méthode de désagrégation est testée sur une région aride
du Chili et sur notre zone d'étude dans la plaine du Haouz. La combinaison des données
deLST Landsat et des données de LST désagrégées permet, grace au gain en résolution
temporelle, une meilleure détection des événements et des quantités d'irrigation. Le
RMSE global de l'irrigation cumulée a différentes échelles de temps est réduite de 46 a 34
mm, tandis que le R passe de 0,50 a 0,64. La RZSM estimée a partir du jeu de LST
désagrégée en plus des observations Landsat est améliorée de 26% et 14% en termes de
RMSE et de R, respectivement.

Mots-clés : télédétection optique/thermique, irrigation, humidité en zone racinaire,
évapotranspiration, modele de bilan hydrique.
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1.1. General context

1.1. General context

In recent decades, pressure on natural resources has been strongly intensified mainly due
to an exponential growth of population, a growing economy and an increasingly
consumerist society. In particular, agriculture is an important pressure on water
resources where water consumption by crops is by far the largest use of freshwater on
Earth (Anderson et al.,, 2012a) requiring more and more resources to satisfy the growing
demand. In fact, irrigated agriculture consumes more than 70% of the mobilized
freshwater resources at global scale (Foley et al., 2011) and even more than 80-90% in
semi-arid and arid regions (Chehbouni et al., 2008; Garrido et al., 2010; Scanlon et al,,
2012). Therefore, freshwater resources are becoming increasingly limited in many parts
of the world (Anderson et al., 2012a). The water resources availability is particularly
sensitive in Mediterranean regions (illustrated in Fig. 1.1), which are considered one of
the most sensitive areas to climate change due to a large decrease in annual precipitation
with increasing temporal variability and an observed trend to warmer conditions (Giorgi,
2006; IPCC, 2013).

Fig. 1.1. Global distribution of Mediterranean regions.

In this context, increasing the water use efficiency in agriculture has been identified as
one of the key topic related to water scarcity and droughts (Werner et al., 2012), being
essential for the sustainability of water resources. Therefore, optimizing on-farm
irrigation management is becoming a matter of increasing urgency, which can be reached
by adjusting irrigation to the crop water requirements throughout the crop growing
season. In practice, this means that crops be neither over- nor under-irrigated in order to
avoid an unnecessary increase of water consumption or a decrease of crop yields,
respectively. Nevertheless, despite the important pressure of agriculture on water
resources, information on the amount of irrigated water is often unavailable. Therefore,
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monitoring and quantifying water resources over extended areas are critical for an
efficient management of water resources. This can be achieved by means of the synergy
between the modelling, in situ measurements and remote sensing data.

Modelling the water resources over agricultural areas has been extensively used in order
to simulate the different components of the crop water budget. A large variety of
approaches to simulate the crop water requirements has been developed in the last
decades, which are generally focused on simulating the water needs by means of
evapotranspiration (ET). Regarding in situ measurements, a cutting-edge solution is
based on measurements of the root-zone soil moisture (RZSM) to detect the onset of crop
water stress and then to trigger irrigation. However, field measurements are costly, are
not available over extended areas and may not be representative at the field scale. By
contrast, remote sensing is presently the most cost-effective and suited technique for
mapping and monitoring the surface states at both field and regional scales.

In the next sections, we present: i) an overview of existing remote sensing data relevant
for monitoring the crop water budget, ii) the modelling of the main components of water
budget (ET, RZSM and irrigation) from remote sensing data, and iii) the objectives of this
thesis.

1.2. Remote sensing data relevant to crop water
budget monitoring

Remote sensing offers the only possibility for monitoring land surface variables at
different spatial resolutions and temporal frequencies, thus facilitating a systematic and
comprehensive observation over extended areas. Furthermore, remote sensing
observations are especially practical in areas where man-made measurements are
difficult to perform or simply unavailable (Li et al., 2009; Rango, 1995). Remote sensing
has played an important role in the development and application of several models over
extended areas for monitoring water resources, being able to map ET and its associated
variables, such as vegetation cover, land surface temperature and soil moisture (Fig. 1.2).
Remote sensing has the particular interest of being cost effective and operational in its
implementation over extended areas, allowing estimating energy-water balance
components and its associated variables at multiple spatial and temporal scales. This
advantage allows coupling remote sensing data, water and surface energy model in order
to better understand the hydrological processes at different scales. The remote sensing
data especially relevant for the monitoring of water resources are presented in Table 1.1
and detailed below.
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Table 1.1. Main characteristics of remote sensing data relevant to crop water budget

monitoring.
Spec.tral Wavelength Spatlél Tempo.r al Currept §ate111te Applications References
region resolution resolution missions
Vegetation Bannari et al.
. indices (1995)
Visible- Sentinel-2, Vegetation Pinter et al.
Near 15 min - Formosat, parameters (2003)
04-13pum 1m-5km Landsat, ASTER,
Infrared 16 days MODIS. SEVIRI Albedo Quetal. (2015)
(VNIR) SR - Singh and Irmak
VIIRS, Sentinel-3 Crop coefficient (2009)
Soil moisture Wang and Qu
indices (2009)
Land surface Z-Lietal,
Landsat, ASTER, ‘ ¢ (2013); Sobrino
Thermal o ., = 60m-5 15min- MODIS, Sentinel- emperature etal. (2016)
Infrared " km 16 days 3, VIIRS, SEVIR], Emissivit Z.L.Lietal,
GOES 1SSty (2013)
Crop water Kullberg et al.
stress 2016
(
Surface soil Brocca et al.,,
Microwave 10 m - 60 Sentinel-1, SMAP, moisture (2017)
(passive/ 1mm-1m km 1-6days SMOS, ASCAT, Surface Zribi and
active) AMSR-2 Dechambre
roughness (2003)
Thermal Optique microwaves
/)“ - ‘-
* . g
\i 3 h i iﬂj"}»
st s s &
Evaporation \ U

Vegetation
development,+”

Top zone

Root zone

Fig. 1.2. The ability of multi-spectral remote sensing data to characterize the soil and
vegetation states that are useful for monitoring the crop water budget. Source: Amazirh

(2019).
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1.2.1. Visible - Near Infrared data

Visible and near infrared (VNIR) reflectances have the advantages of monitoring
vegetation/crops in terms of phenology, health and vigor among others. This is because
green plant leaves show very low reflectance in visible regions (0.4 - 0.7 um) due to a
strong absorptance by photosynthetic and plant pigments and very high reflectance in
the near infrared regions (0.7 - 1.3 um) due to a low absorptance by subcellular particles
or pigments and as well as a considerable scattering at mesophyll cell wall interfaces
(Gausman, 1977). These characteristics have served as the basis for many applications of
remote sensing to crop management by using mainly vegetation indices (VI) (i.e.
differences, ratios, or linear combinations of reflectances in visible and near infrared
wavebands). VI have shown good correlations with plant growth parameters such as
green biomass (Pinter et al., 2003), leaf area index (Duchemin et al., 2006), and fraction
of absorbed photosynthetically active radiation (Pinter et al., 1994), among others.

In crop water management, VI have been widely used to derive crop coefficients (e.g.
defined as the ratio of ET and a reference ET value in optimal ET conditions) (Bausch and
Neale, 1987; Choudhury et al., 1994; Singh and Irmak, 2009). This is because crop
coefficients primarily depend on the dynamics of canopies (cover fraction, leaf area index,
greenness and phenology). Hence, VI-based crop coefficients have been of great value in
ET and irrigation scheduling algorithms in order to estimate the crop water requirements
(Allen et al.,, 2011; Pereira et al.,, 2015; Singh and Irmak, 2009). Several studies have
proven that local adjustment by phenology and crop coefficient are expected to be more
suitable for estimating ET and crop water needs than the use of tabulated crop coefficient
values (Allen et al., 2011; Bausch, 1995; Pereira et al., 2015). Such local adjustments
usually rely on site-specific measurements or observations of crop growth and,
consequently, VI based approaches are recommended for crop coefficients and irrigation
management.

In addition, VNIR have received an especial interest for energy balance applications,
providing robust estimates of the fraction of net radiation going into soil heat flux by
means of VI (Daughtry et al., 1990) or for estimating surface albedo (Liang, 2001; Qu et
al,, 2015). VI are also essential auxiliary data in the estimation of surface emissivity to
estimate the land surface temperature (LST) from thermal infrared data (Jiménez-Mufioz
et al,, 2006; José A Sobrino et al., 2008). Furthermore, VNIR are needed to detect the full
range of surface conditions in vegetation cover needed in several methods based on the
contextual information in remotely sensed LST and VI data (Merlin, 2013; Merlin et al,,
2014; Moran et al,, 1994).

One of the main advantages of VNIR sensors over other spectral sensors is the high spatial
resolution suitable for crop monitoring. Resolution less than 100 m (e.g. Landsat, ASTER,
Sentinel-2) allows only one to six observations per month in orbital cycle. However, SPOT
series or other commercial satellites (e.g. QuickBird, Worldview, GeoEye) with very high
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(< 10 m) spatial resolution are generally cost prohibitive and hence they are not useful
for operational implementations. The launch of Sentinel-2A/B represents a breakthrough
for freely available VNIR missions, providing VNIR data at ~10 m resolution to
systematically monitor crops at a weekly repeat cycle (from 5 to 12 days).

Despite plant water stress and senescence period can be detected by VI time series
(Adams et al., 1999), water stress-induced impact in these wavelengths is not sufficiently
large over biologically significant changes in plant water content for practical uses in the
monitoring of water stress in the field (Bowman, 1989; Carter, 1991). Unlike VNIR,
thermal infrared data have proven to be very useful in assessing the crop water stress
(Jackson, 1982) as it is presented in the next section.

1.2.2. Thermal infrared data

Land surface temperature (LST) is an essential variable that modulates radiative, latent
and sensible heat fluxes at the soil-plant-atmosphere interface. LST can be obtained
globally and operationally from thermal infrared remote sensing observations. Hence,
LST is a useful variable for monitoring the carbon, water and energy fluxes from field to
regional scales (Anderson et al.,, 2008).

LST data have been a key land surface variable as input for many environmental and
hydro-meteorological applications, including climatological studies (Anderson et al,
2007; Hansen et al, 2010), extreme weather monitoring such drought monitoring
(Anderson et al., 2011; Jiménez-Mufioz et al., 2016; McVicar and Jupp, 1998), soil
moisture estimates (Amazirh et al., 2018; Merlin et al.,, 2012b) and irrigation and water
resource management (Anderson et al., 2012b; Bastiaanssen et al., 2007; Droogers et al.,
2010). LST is particularly useful for the monitoring of crop water management since it is
very sensitive to plant water stress and a strong indicator of changes in root-zone soil
moisture (Anderson et al., 2012a, 1997; Moran et al., 2009). Thus, LST can be related to
the root-zone soil moisture (RZSM) by means of the canopy temperature and its
associated plant transpiration (Boulet et al., 2007; Hain et al., 2009; Moran et al., 1994)
given the coupling between the surface energy and water balance (e.g. Wetzel et al,,
1984).

LST can be derived from satellite thermal sensors at different spatial and temporal scales.
However, the main limitation in the existing thermal missions is the unavailability of high
spatial and temporal resolutions at the same time. For instance, missions offering high
revisit time (e.g. MODIS, AVHRR, MSG/SEVIRI, VIIRS and Sentinel-3) usually provide a
low spatial resolution, and conversely, those offering high spatial resolution (e.g, Landsat
and ASTER) provide a low temporal resolution (Fig. 1.3). Therefore, the ability for
monitoring water resource at crop field scale (~100 m) is limited by the low revisit time
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and even hampered by cloudy conditions, hence preventing the monitoring of rapid
changes of the vegetation water status.

Recent studies have highlighted the importance of thermal observations at high
resolution with a near daily revisit for vegetation water status monitoring (Cao et al,,
2019; Guzinski and Nieto, 2019; Sobrino et al., 2016). Thus, ideally a constellation of polar
orbiting satellites (e.g. Landsat, ASTER) would appear to be the best solution to meet
these requirements, which is potentially achieved by the ECOSTRESS mission (Hulley et
al,, 2017), recently launched in June 2018, or the foreseen TRISHNA mission (Lagouarde
and Bhattacharya, 2018). ECOSTRESS, onboard of International Space Station, will
address critical questions on plant-water dynamics and future ecosystem changes with
climate by means of LST, ET, Water Use Efficiency, and Evaporative Stress Index data
products at ~60 m spatial resolution every few days (<5) at varying times of day.
Consequently, the detection is further enhanced in heterogeneous environments (such as
agricultural areas) by the high spatiotemporal resolution (Hulley et al., 2017). However
the ECOSTRESS overpass time changes and does not offer global coverage, therefore it is
not optimal for monitoring crop management under operational implementations. The
TRISHNA mission will combine a high spatial resolution (50 m) and high revisit time
(about 3 days) in the thermal domain with a global coverage. The two main scientific
objectives driving the mission are the monitoring of energy and water budgets of the
continental biosphere and the monitoring of coastal and continental waters (Lagouarde
and Bhattacharya, 2018).

Spatial
Resolution 1
10 km - f. — e e — . \'I
1 L
GOES i Watershed !
1 1
SEVIRI L ;
1km — MODIS Sentineél-3 "~ ™ Y
VIIRS ' District |
! irrigation |
100m " Crop field LANDSAT
! ECOSTRESS ASTER
e R TR/ISH NA
; -
i Insitu !
10m — I 1
(S ;
\ \ \ \ >
1 hour 1day 1 week 1 month ;ZT::E:?;']

Fig. 1.3. Different spatial and temporal resolution of current and near future thermal
satellite observations related to different target observation scales.
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Before the launch of TRISHNA mission, the disaggregation of existing low resolution LST
data to high spatial resolution with a relatively satisfying accuracy can be performed.
Disaggregation methods focus on decomposing pixel-based temperatures providing a
better dataset of LST with finer temporal and spatial resolutions based on the information
obtained from different sensors. Therefore, disaggregation methods aim to achieve
appropriate LST data for monitoring crop water budget at crop field scale (illustrated in
Fig. 1.3). The basic idea behind these methods is to establish either a statistical
relationship or a physically based model between coarse scale LST and fine scale auxiliary
variables. In these methods, satellite data in the VNIR wavelengths available at a
resolution finer than that of most thermal sensors have been essential to bridge the gap
between the low spatial resolution and the high temporal resolution of available LST
observations (Zhan et al., 2013). Consequently, most common disaggregation LST
methods have been based on a scale invariant relationship between LST and VI, largely
related to the fractional vegetation cover. The VI-based methods are still the most used
operational approaches due to the availability of data at high spatial and temporal
resolutions, such as DisTrad, TsHarp, among other algorithms (Agam et al., 2007a;
Bindhu et al., 2013; Kustas et al., 2003; Mukherjee et al., 2014; Zhan et al., 2013).

In addition to the use of VNIR data, other more complex disaggregation methods have
proposed the use of the LST-VI feature space to derive soil water status indices that could
better represent the variability in LST and hence improving the disaggregation accuracy
over agricultural areas with high moisture content (Chen et al., 2010; Sandholt et al,,
2002; Yang et al,, 2010). This procedure has been further extended by using additional
factors that modulate the LST, reflecting the soil moisture content and vegetation type
(Amazirh et al,, 2019; Merlin et al,, 2012a, 2010; Yang et al., 2011). For instance, Merlin
et al. (2010) distinguished between photosynthetically and non-photosynthetically
active vegetation from time series of optical shortwave data to be included in the
disaggregation procedure. Then soil moisture proxies derived from microwave data can
take into account the soil moisture effects on the disaggregation of LST (Merlin et al,,
2012a; Amazirh etal., 2019). Although these latter methods can provide better accuracies
than using only LST-VI relationships, they require additional parameters, which make
them difficult to be implemented operationally. Therefore, implementing disaggregation
methods on an operational basis with reasonable accuracies implies new challenges in
the methods.

1.2.3. Microwave data

Microwave wavelengths are one of the most sensitive to the variations in soil moisture
given the large contrast of the emission from the earth’s surface between the water and
land. Thus, surface soil moisture (SSM) can be estimated from remote sensing (Entekhabi
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et al., 1994; Kerr et al.,, 2010). However, remote sensing instruments are only able to
collect soil moisture information to an estimated depth of approximately the first 5-10
cm of the surface. Indeed, the microwave emission in this frequency is severely
attenuated in the soil porous medium (Entekhabi et al., 1994; Kerr et al.,, 2010).

According to Schmugge et al. (2002), microwave data are characterized by four unique
advantages over other spectral regions: i) the atmosphere is effectively transparent
providing all weather coverage; ii) vegetation is semi-transparent allowing the
observation of underlying surfaces; iii) the microwave measurement is strongly
dependent on the dielectric properties of the target, which for soil is a function of the
amount of water present; and iv) the microwave measurement is independent of solar
illumination, which allows day or night observation.

There are two microwave remote sensing techniques: the passive and active microwave
sensors. The passive microwave sensors (radiometers) detect the naturally emitted
microwave energy within its field of view using very sensitive detectors. However the
amounts of energy are generally very small due to the wavelengths, which are much
longer compared to optical wavelengths. Thus, the fields of view must be large to detect
enough energy to record a signal. Most passive microwave sensors are therefore
characterized by a low (~30 - 60 km) spatial resolution. Among satellite passive
missions, the SMOS satellite, launched in 2009, has been widely used for SSM retrieval,
with an accuracy requirement of 4%. It is based on an L-band (1.4 GHz) antenna and is
the first space mission dedicated to observe SSM globally (Kerr et al.,, 2010). The AMSR-
E mission, launched in 2002, provides brightness temperature measurements at six
frequencies from 6.9 to 89 GHz in horizontal and vertical polarizations, of which C-band
(6.9 GHz) and X-band (10.7GHz) channels are suitable for retrieving SSM (Njoku et al,,
2003) at spatial resolutions ranging between 25 and 50 km. The SMAP mission, launched
in 2015, combines a radiometer (passive) and a Synthetic Aperture Radar (SAR, active)
instrument within the L-band range (1.20-1.41 GHz) to provide measurements of SSM
moisture with a global coverage in 2-3 days. The ASCAT sensor is a C-band scatterometer
(5.255 GHz, VV polarization) at a spatial resolution of about 50 km, operating on-board
the Meteorological Operational (MetOp) satellite since 2006.

Regarding the active sensors, the most popular is the Sentinel-1 mission, launched in
2014, providing C-band SAR data at 20 m spatial resolution with an unprecedented
repeat cycle of 6 days by combining both ascending and descending overpasses (3 days
by combining the two satellites available since 2015). Although backscatter signals data
have potential to monitor SSM (e.g. Amazirh et al., 2018; Gao et al., 2017; Zribi et al,,
2011), there is currently no global operational SSM product at such fine resolution. This
is notably due to the difficulty to model in time and over extended areas the impact of
vegetation cover/structure and surface roughness on the backscatter signal (Zribi et al.,
2011, 2008).
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1.3. Modelling the crop water budget components
from remote sensing data

Remote sensing data has shown a great value to detect key land surface variables for
monitoring the crop water budget from instantaneous observations at the time of satellite
overpass. However, retrieving the different crop water budget components requires an
appropriate coupling strategy between remote sensing data and the surface modelling.
This involves taking advantage of multispectral and multi-resolution remote sensing data
as well as filling the gap between the remotely sensed observations and water fluxes and
between instantaneous observations and the temporal resolution suitable for crop water
management.

Knowledge of crop water requirements is key for optimizing the crop water use
efficiency. Crop water balance models simulate the relations between soil, plant and
atmosphere by simulating the crop water requirements. In this context, crop water
balance models are efficient tools in the management of water resources. These models
are based mainly on the representation of the variability of soil moisture in the water
storage capacity (AS) by solving a water budget between the water supplies and water
losses. The water balance can be expressed and simplified as:

AS=P+1—-ET-DP—-RO Eq. 1.1

In this water balance, the water supplies are represented by precipitations (P) and
irrigations (I), and water losses are represented mainly by ET and deep percolation (DP).
The runoff (RO), both surface and subsurface, can be also an important source of water
loss in sloped area and under significant water supplies, such as heavy rainfall or flooded
irrigations. However, in agricultural areas with flat surfaces RO can be assumed
negligible. In Eq. 1.1, the diffusion processes in the vertical soil profile, such as capillarity
rise is neglected. In several agricultural areas in semi-arid to arid regions, the capillarity
rise can be neglected due to significant deep water tables, i.e. several meters deeper than
the water storage capacity available for plants.

Several models have been proposed in the literature (e.g. FAO-56, SAFY, STICS,
AquaCrop) for modelling crop water needs by means of ET. These models can provide
quantitative estimates of crop yields under different environmental conditions, as well as
simulation of water balance. For instance, the FAO-56 (Allen et al., 1998) is a simplified
water balance model driven by: 1) meteorological forcing variables to estimate the
atmospheric evaporative demand represented by a reference evapotranspiration (ETo)
and 2) water supplies by precipitation and irrigation. Relying on the Eq. 1.1, the FAO-56
model simulates the soil water availability for ET, which can be extended to a double
source model to simulate the soil water availability in the top surface layer and the root-
zone layer for soil evaporation and plant transpiration, respectively. The SAFY model is a
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daily time step vegetation model to estimate crop yields (Duchemin et al., 2008). It
simulates the time courses of green leaf area index and the dry aboveground biomass
along the growing season. The outputs of SAFY model have been used to control the ET
(orits soil and vegetation components) of a soil-water balance. Thus, this model has been
coupled to FAO-56 model for simulating the crop water needs and crop yields (Battude
etal.,, 2017, 2016; Hadria et al,, 2010). The STICS crop model (Brisson et al., 1998; 2002;
2003) simulates the processes associated with plant growth and senescence. The
validation of STICS for different climates (Bhattarai et al., 2018; Brisson et al., 2002;
Hadria et al., 2007, 2006) has shown that the model simulates accurately the water
balance when the leaf area index is correctly estimated.

The monitoring of the soil water content available for plants is the essential variable for
modelling the water resources, and specifically for estimating the crop water
requirements by means of ET. The monitoring of the soil water content can be
represented by temporal dynamics of the root-zone soil moisture (RZSM), which is
defined as the water content of the soil column that may be extracted by evaporation at
the surface, through root extraction or by capillary rises (Calvet and Noilhan, 2000). For
the monitoring of water resources, the irrigation is one of the main forcing in the
agricultural areas, notably in semi-arid to arid regions. However, irrigation is usually
unavailable over extended areas. In this context, this thesis focuses on the estimation of
these main crop water budget components: ET, RZSM and irrigation. Below is described
the main characteristics of ET, RZSM and irrigation components, the associated
estimation methods and their modelling over extended areas from remote sensing
observations.

1.3.1. Evapotranspiration modelling

Evapotranspiration (ET) is the term used to describe the loss of water from the Earth’s
surface to the atmosphere by the combined processes of evaporation from the soil (as
well as open water bodies and plant surfaces) and transpiration from vegetation. ET is a
key component in the processes that control the energy and mass exchange (water and
carbon) between terrestrial ecosystems and the atmosphere. Hence, ET is responsible of
the coupling between the water balance and the surface energy balance (Fig. 1.4).

During the last decades, several works have documented the essential role of ET in the
water balance for its critical importance on resource availability (Oki and Kanae, 2006),
hydrologic and meteorological forecasts (Findell et al.,, 2011), climate change scenarios
related to drought indexes (Gao et al,, 2011) and agricultural irrigation scheduling (Allen
et al,, 2005; Senay et al,, 2013a). Therefore, knowledge of ET is essential for monitoring
water resources in areas of water scarcity since the actual rate of the water use by
vegetation can differ significantly from potential ET rates (Anderson et al., 2012a).
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Fig. 1.4. Schematic representation of surface energy (A), water (B) and carbon cycle. ET
is represented as latent heat flux in A, as soil evaporation and plant transpiration in B and
is strongly linked to photosynthesis and soil respiration in C. Source: Bonan (2008).

There are different methods that allow quantifying ET by means of direct measurements.
The direct measurements are technically ground-based estimates obtained from
different techniques such as: i) hydrological approaches (e.g. weighing lysimeters), ii)
plant physiological approaches (e.g. sap flow and chamber methods) and iii)
micrometeorological approaches (e.g. Bowen ratio, eddy covariance and scintillometry).
These techniques differ also in the scale of measurements. For instance at local scale, sap
flow sensors allow providing individual plant transpiration while lysimeters allow
providing the ET from a small surface or evaporation when the surface is under bare soil
conditions. On the other side, eddy covariance techniques allow providing ET at field
scale (~100 m), which is more suitable for monitoring crop water needs. Scintillometers
can provide the ET over a larger scale from several hundreds of meters to 10 km. Despite
these techniques can provide long time series at a very high frequency (~10 Hz), these
systems do not provide spatial distributions at regional scale over heterogeneous
surfaces, especially in regions with advective climatic conditions. Remote sensing based
ET models are better suited for estimating the crop water use at regional scale, offering a
cost-effective solution for monitoring extended areas.

Numerous remote sensing-based approaches with varied complexity have been
developed for monitoring the crop water requirements by means of ET estimates. For
instance FAO-56 model has been extensively used at the field scale to estimate the crop
water requirements by means of the simulated ET. As it was mentioned in Section 1.2.1,
crop coefficients have been estimated from satellite based VI to better constrain the
phenological stages, which has been also included in the FAO-56 model (Er-Raki et al.,
2010, 2007; Gonzalez-Dugo and Mateos, 2008; Hunsaker et al., 2005). Thus, the FAO-56
models coupled with VI have shown a significant improvement against the classic FAO-
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2Kc. Given thermal data are more suited to detect water stress than VI, LST has been
assimilated into the FAO-56 method (Er-Raki et al.,, 2008), and more recently, used for
water stress coefficient to better constraint the FAO-56 method (Dejonge et al,, 2015;
IThuoma and Madramootoo, 2017; Kullberg et al., 2016).

The asset of thermal data comes from the advantage of detecting information on the
vegetation water status and the ability to study the variability in water consumption in
individual fields or even within the field (Anderson et al., 2012a). This advantage is given
mainly by the spatial resolution of thermal data of about 100 m. Thus, different methods
have been developed in the last decades to estimate ET by using LST data as main input,
demonstrating its immense value in ET monitoring (Gowda et al.,, 2008; Kalma et al,,
2008; Li et al., 2009). Most of these methods are based on solving the surface energy
balance, from which three broad approaches can be distinguished according to Su (2002):
i) residual approaches, ii) Land Surface Models, and iii) evaporative fraction methods.
The residual methods estimate the sensible heat flux (H) and then obtain the latent heat
flux (i.e. ET expressed as energy) as the residual of the surface energy balance equation.
The second approaches estimate all the energy budget components at the land surface
with continuous Land Surface Models by including Soil-Vegetation-Atmosphere Transfer
(SVAT) models. The third approaches estimate ET as a fraction of either potential ET
(Moran etal., 1994), or available energy (Long and Singh, 2012; Roerink et al.,, 2000). The
evaporative fraction (EF) is defined as the ratio of ET to available energy (net radiation
minus soil heat flux). EF can be estimated from the contextual information of remotely
sensed optical/thermal images, where dry and wet conditions are identified from the LST
- VI (e.g. Long and Singh, 2012; Moran et al., 1994) space, the LST - albedo (e.g. Roerink
et al., 2000) space or by combining both spaces (Merlin, 2013; Merlin et al,, 2014). It is
for this reason that those approaches have been called contextual approaches, which
have received an especial interest in the scientific community for its simplicity and
operational implementation over large areas.

The EF values can define two main ET regimes: a soil moisture-limited and an energy-
limited regime (Seneviratne et al, 2010). The soil moisture-limited ET regime is
characterized by EF values below 1 with soil moisture values below a given critical soil
moisture (SMcrit), thus leading to vegetation stress conditions (Fig. 1.5). Above SMcrit, EF
is independent of soil moisture content (energy-limited ET regime), meaning that
vegetation is unstressed with EF values equal to 1. SMcrit is thus defined between the soil
moisture at field capacity (SMt, above which water cannot be held against gravitational
drainage) and the soil moisture at permanent wilting point (SMwp, below which water is
not accessible to plants). From these definitions, wet (SM>SMcrit, EF equal to 1), dry
(SM<SMuwp, with EF values equal to 0) and transitional (SMwp<SM<SMcrit) regimes can be
defined from thermal-based models by means of contextually-derived EF. These insights
are essential in this thesis because they allow us to relate the contextual information
detected from optical /thermal data to the root-zone soil moisture. More details about soil
moisture are presented below.
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Fig. 1.5. Schematic representation of soil moisture in root zone and the relation with
evaporative fraction and vegetation water stress. Source: based on Allen et al. (1998).

1.3.2. Root-Zone Soil Moisture modelling

Soil moisture (SM) is an important hydrological state variable, being essential in land-
atmosphere interactions through ET and the other energy fluxes. SM also controls the
partition of rainwater between infiltration and runoff as well as latent and sensible heat
fluxes. A better knowledge of SM is therefore of prime interest for monitoring water
resources and consequently for optimizing the irrigation water use.

There are several methods that allow providing SM estimates for its monitoring. First,
direct measurements of SM are only obtained from destructive methods like gravimetric
measurements. This method consists in quantifying in laboratory the water evaporated
from a volume of soil that was previously extracted in order to calculate the mass of water
divided by the mass of dry soil. The gravimetric method is hence impractical for
measurements over extended areas or for monitoring through long SM time series.
Second, indirect measurements provide SM estimates based on measurements of a
physical variable strongly linked to SM (e.g. apparent dielectric of the soil). The sensors
that measure SM thus allow providing long SM time series. However, the measurements
are representative of a specific point, not providing spatial trends or distributions at
regional scale (horizontal) or in the soil profile (vertical).

SM can be also estimated from remote sensing instruments, which can be from the ground
(on towers), airborne or satellite platforms. However, remote sensing instruments are
only able to collect SM information of the shallow near-surface layer so that it is usually
referred to as near-surface soil moisture (SSM). Even though SSM can be estimated by
microwave remote sensing, the variable of interest for applications in short- and
medium-range meteorological modelling, hydrological studies over vegetated areas and
in agriculture is the root-zone soil moisture (RZSM), which controls plant transpiration
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(Albergel et al., 2008). RZSM represents the water content of the soil column that may be
extracted by evaporation at the surface, through root extraction or by capillary rises
(Calvet and Noilhan, 2000). The depth of this reservoir may vary from about 0.1 to few
meters depending on soil type, bioclimatic conditions and the vegetation type (crop types
in agricultural applications).

The SSM is related to the RZSM through dynamical processes of soil water transfer
(Noilhan and Planton, 1989). It is therefore possible to implement retrieval algorithms to
obtain the soil moisture profile and hence the RZSM from observed SSM time series (e.g.
Albergel et al., 2008; Calvet and Noilhan, 2000; Kornelsen and Coulibaly, 2014; Wagner
et al, 1999). In the last two decades, several studies retrieved RZSM or profile soil
moisture either by using in situ (Albergel et al., 2008; Calvet and Noilhan, 2000) or
satellite (Calvet et al., 1998; Ford et al., 2014; Sabater et al.,, 2007) SSM observations.
Among the numerous studies about RZSM retrieval from observed SSM, a large part of
these are based on assimilation algorithms (e.g. Albergel et al., 2008; Calvet and Noilhan,
2000; Dumedah et al,, 2015; Entekhabi et al., 1994; Walker et al., 2001). However, such
approaches for retrieving RZSM suffer from a low spatial resolution given that the
operational SSM products are available at very low (>25 km) spatial resolution only
(Entekhabi et al., 2010; Kerr et al., 2010; Peng et al., 2017). Even though disaggregated
satellite SSM data sets have been assimilated into land surface models for improving both
the RZSM estimation and its spatial resolution (Dumedah et al., 2015; Merlin et al., 2006),
such a coupled approach is still not suitable for routinely monitoring the crop water
demand at the crop field (~100 m) scale.

Alternatively to SSM, LST can be used in the calculation of thermal-based proxy variables
for RZSM through indices by using the canopy temperature, and the associated
transpiration rate (Boulet et al., 2007; Hain et al., 2009; Moran et al., 1994). Hence, one
key step to estimate thermal-derived RZSM is the partitioning of LST into soil and canopy
temperatures (Merlin et al.,, 2014, 2012b; Moran et al,, 1994). In summary, SSM and LST
are both valuable state variables that can help constrain a land surface model to retrieve
the RZSM at the field scale for crop water managements. Therefore a coupling between
remote sensing data and land surface modelling could be developed for that purpose.

1.3.3. Irrigation modelling

Irrigation is one of the most important component in the consumption of water resources,
representing about 70% of the mobilized freshwater at global scale (Foley et al., 2011)
and can be raised to more than 80-90% in semi-arid and arid regions (Chehbouni et al.,
2008; Garrido et al., 2010; Scanlon et al.,, 2012). Thus, increasing the water use efficiency
in agriculture has been identified as one of the key topic related to water scarcity and
droughts (Werner et al., 2012), being essential for the sustainability of water resources.
Despite the important pressure of agriculture on water resources, irrigation information
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is often spatially unavailable, hampering a proper water management. Therefore,
quantifying the amount and timing of irrigation over extended areas is essential for an
efficient water resources management.

Irrigation is referred to the man-made water supplied to the field in order to meet the
crop water requirements. Although irrigation is closely related to the crop water
requirements, the latter may differ considerably from actual irrigation amounts. Despite
the large variety of existing approaches to estimate crop water by means of ET estimates,
irrigation is generally simulated from the modeled water needs (e.g. Allen et al., 1998;
Bastiaanssen et al., 2007; Battude et al., 2017; Corbari et al., 2019; Duchemin et al., 2008).
In the simulation of irrigation based on the modeling of soil moisture dynamics from the
water balance or the energy-water coupled balance, significant uncertainties can be
obtained, especially when no information is available on the actual crop water status over
time.

In an attempt to estimate the irrigation volumes from remote sensing data, some recent
studies have explored the utility of SSM estimates from micro-wave sensors (Brocca et
al,, 2018, 2017; Escorihuela and Quintana-Segui, 2016; Jalilvand et al., 2019; Kumar et al.,
2015; Lawston et al.,, 2017b; Malbéteau et al., 2018; Zhang et al., 2018). In particular,
Brocca et al. (2018) developed an approach to quantify the irrigation amounts by
combining the currently available coarse resolution satellite SSM products (e.g. SMAP,
SMOS, ASCAT, AMSR-2) and a soil water balance. This work was applied over various
semi-arid and semi-humid regions worldwide but could not be quantitatively assessed
due to the unavailability of reliable in situ observations of irrigation over corresponding
irrigated perimeters. However, this approach was quantitatively assessed at ~50 km
resolution over a semi-arid region (Jalilvand et al.,, 2019). Some deficiencies were
obtained over periods with sustained rainfalls and the method was not implemented in
winter (Brocca et al., 2018). This makes the approach unsuitable for winter crops, which
are especially important in the Mediterranean. Nevertheless, the ability to quantify
monthly irrigations was demonstrated under specific conditions: during prolonged
periods of low rainfall and using satellite SSM data with alow uncertainty and a frequency
higher than 3 days.

Alternatively, land surface models (LSMs) have had an increasing interest in the scientific
community in better simulating irrigation processes (Felfelani et al., 2018; Lawston et al.,
2017a; Pokhrel et al., 2016). LSMs have included irrigation modules to be able to
represent irrigations by improving the amount, method, and timing of irrigation (Pokhrel
et al.,, 2012). As in the modelling of crop water requirements above mentioned, these
irrigation modules usually determine the timing and amounts of irrigation based on the
RZSM deficit. Thus, irrigation is triggered when RZSM drops below a specified threshold
and then is calculated as the amount required to bring the RZSM to the target level. Hence,
simulations may differ considerably from actual irrigation. Given the demonstrated
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utility of microwave-derived SSM to detect seasonal timing and spatial signature of
irrigation (Brocca et al,, 2018; Lawston et al., 2017b; Malbéteau et al., 2018). Felfelani et
al. (2018) has recently assimilated SMAP SSM data into a large-scale LSM to better
constrain and improve irrigation simulations and also to enhance SSM simulations.
However, as in the methods based on microwave-derived SSM data, the spatial resolution
is too coarse for monitoring water resources at field scale.

At a spatial scale more suitable for the management of crop water, some recent studies
(e.g. Corbarietal, 2019; Chen et al., 2018) have used optical data for the irrigation timing
and scheduling. Corbari et al. (2019) have coupled remote sensing optical data, soil
water-energy hydrological modeling and meteorological forecasts in order to predict the
water needs for irrigation scheduling for up to 3 days. Here, land surface variables from
optical/thermal data were used to initialize and calibrate the energy-water balance.
Another different approach for detecting the timing of irrigation from optical data
(vegetation index by using reflectance data) was proposed by Chen et al. (2018). The
method was demonstrated to be promising in detecting irrigation events. However, it was
applicable during the first half of the growing season only and it was not able to retrieve
the irrigation amount.

Despite the advances and attempts in the last years to estimate the irrigation, no method
or approach is yet available for estimating the irrigation at crop field scale (~100 m) over
extended areas.

1.4. Objectives

Regarding the state-of-the-art, one of the main limitations in modelling the crop water
budget is the lack of irrigation data over extended areas, of which all water fluxes
essentially depend on the water inputs. However, remote sensing has proven a great
potential in monitoring key land surface variables to solve the coupled water-energy
balance. In particular, instantaneous thermal images are able to detect surface states that
can be integrated in the coupled water-energy balance in order to solve its components.

The general objective of this thesis thus consists to estimate the main water budget
components of agricultural systems, such as the ET, RZSM and irrigation, at crop field
scale (100 m) on a daily basis over extended areas (the irrigated perimeter of some
kilometers of extension). For this purpose, the coupling between remote sensing
optical/thermal data and a FAO-based model is proposed by taking into account the
following key advantages: i) the availability of optical /thermal data at a spatial resolution
suitable for monitoring the crops, ii) the simplicity of contextual methods from
optical/thermal data in the estimation of ET and the monitoring of vegetation water
stress, and iii) the utility of optical/thermal data as proxy of SSM and RZSM.
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This PhD thesis played an important role in the REC project entitled “Root zone soil
moisture Estimates at the daily and agricultural parcel scales for Crop irrigation
management and water use impact - a multi-sensor remote sensing approach,
http://rec.isardsat.com”. This project (March 2015 - March 2019) was supported by the
European Commission Horizon 2020 Program for Research and Innovation (H2020) in
the context of the Marie Sklodowska-Curie Research and Innovation Staff Exchange
(RISE) action. The project has been carried out from 2015 to 2019 by an international
and multi-sectorial collaboration between: CESBIO (Centre d’Etudes Spatiales de la
Biospheére) - Toulouse, Université Cadi Ayyad - Marrakech, isardSAT and LabFerrer -
Catalonia. My Thesis thus directly fed the REC objectives that were: i) to estimate the
RZSM on a daily basis at crop field scale and ii) to quantitatively evaluate the different
components of the water budget at the crop field scale from readily available remote
sensing data.

LMI-TREMA (Laboratoire Mixte International - Télédétection et Ressources en Eau en
Méditerranée semi-Aride) at Marrakech aims to improve the management of irrigation
water by developing tools that can help use water in a rational way. For this purpose,
LMI-TREMA has had several experimental sites since 2002 in the Haouz Plain, Morocco
(Jarlan et al.,, 2015), which have been used to test the approaches proposed in this thesis.
LMI-TREMA works in close collaboration with the regional public agency ORMVAH
(Regional Office for the Agricultural Development of Haouz), which has been responsible
since 1966 for the design and construction of large irrigation schemes and their
management, as well as agricultural developments in a 7000 km? area in the Haouz plain.

Despite the irrigation at field scale being a critical forcing for monitoring the crop water
management in irrigated agricultural areas, it is one of the water balance components
least investigated in terms of estimation at integrated spatial scales. Consequently, one
key step on the development of the approach is the estimation of irrigation since no
method is yet available to retrieve the timing and amounts of irrigation at crop field and
daily scale, and all water fluxes essentially depend on the water inputs. The modelling
approach relies on the synergy between remote sensing optical data, contextual methods
and a water balance model to invert first the irrigation and then the other water budget
components. Two areas are used to validate the modelling approach developed in this
thesis: one semi-arid region in Morocco and one arid region in Chile.

This thesis follows a stepwise approach and is structured in three main and
complementary steps.

In the first step (Chapter 3), a feasibility study is carried out at in situ scale over a winter
wheat field by integrating ground-based optical/thermal data into a FAO-based water
balance model. This approach seeks to retrieve the irrigation at daily scale along the
agricultural season in order to force the crop water balance model and estimate the daily
RZSM and ET throughout the season. Given this approach is implemented with ground-
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based observations on a daily basis, the approach is assessed for different observation
frequencies ranging from 1 to 16 days to mimic the availability of remote sensing
observation.

The application of the previous approach to Landsat data corresponds to the second step
(Chapter 4) of this thesis. In this step, the specific objectives are the same as in the first
step with the difference that the irrigation amounts and timing, ET and RZSM are
estimated over extended areas. For this purpose, some significant changes are adopted
to implement the approach with readily available remote sensing data over three areas
in the semi-arid region in central Morocco. Five experimental sites covered by winter
wheat fields with two different irrigation techniques (drip- and flood-irrigation) and one
no-irrigation field are used to validate the approach. This approach seeks to estimate, for
the first time, the irrigation at crop field scale on a daily basis over extended areas from
readily available remote sensing data for a further operational implementation.

In the third step (Chapter 5), an operational disaggregation method of thermal data is
presented in order to estimate the ET every 8 days. The method is developed and
evaluated in an arid region of Chile over a vineyard and olives orchard field. The
disaggregation is a key input in our proposed approach as well as for many thermal-based
ET methods. Thus, the availability of the thermal data at a suitable spatial and temporal
resolution is of prime interest for the monitoring of the water management at field scale.
In this vein, the last step of this thesis involves the implementation of the irrigation
retrieval approach using disaggregated thermal data as input in order to ensure the
availability of the main input data every 8 days and even every 4 days when combining
Landsat-7, -8 and disaggregated LST data sets.
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1.1. Contexte général

Au cours des dernieres décennies, la pression sur les ressources naturelles s'est
fortement intensifiée, principalement en raison d'une croissance exponentielle de la
population, d'une économie croissante et d'une société de plus en plus consumériste. En
particulier, 1'agriculture est une pression importante sur les ressources en eau ou la
consommation d'eau par les cultures est de loin la plus grande utilisation d'eau douce sur
Terre (Anderson et al., 2012a), ce qui nécessite de plus en plus de ressources pour
satisfaire la demande croissante. Ainsi, I'agriculture irriguée consomme plus de 70% de
I’eau douce mobilisée a 1'échelle mondiale (Foley et al., 2011) et méme plus de 80-90%
dans les régions semi-arides et arides (Chehbouni et al., 2008; Garrido et al., 2010;
Scanlon et al., 2012). Par conséquent, les ressources en eau douce sont de plus en plus
limitées dans de nombreuses régions du monde (Anderson et al., 2012a). La disponibilité
des ressources en eau est particulierement sensible dans les régions méditerranéennes
(Fig. 1.1), qui sont considérées comme l'une des zones les plus sensibles au changement
climatique en raison de la forte diminution des précipitations annuelles avec une
variabilité temporelle croissante et une tendance observée aux conditions plus chaudes
(Giorgi, 2006; IPCC, 2013).

Fig. 1.1. Distribution globale des régions méditerranéennes.

Dans ce contexte, I'amélioration de 1'efficacité de I'utilisation de l'eau dans l'agriculture a
été identifiée comme l'un des thémes clés liés a la rareté de l'eau et a la sécheresse
(Werner et al, 2012), étant essentiel pour la durabilité des ressources en eau. Par
conséquent, I'optimisation de la gestion de l'irrigation a I’échelle de la parcelle devient de
plus en plus urgente, ce qui peut étre atteint en ajustant l'irrigation aux besoins en eau
des cultures tout au long de la saison de croissance des cultures. En pratique, cela signifie
que les cultures ne doivent pas étre sur- ou sous-irriguées afin d'éviter une augmentation
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inutile de la consommation d'eau ou une diminution du rendement des cultures,
respectivement. Malgré la pression importante de 1'agriculture sur les ressources en eau,
les informations sur la quantité d'eau irriguée sont souvent indisponibles. Par
conséquent, la surveillance et la quantification des ressources en eau sur des zones
étendues sont essentielles pour une gestion efficace des ressources en eau. Cet objectif
peut étre atteint grace a la synergie entre la modélisation, les mesures in situ et les
données de télédétection.

La modélisation des ressources en eau dans les zones agricoles a été largement utilisée
afin de simuler les différentes composantes du bilan hydrique des cultures. Une grande
variété d'approches pour simuler les besoins en eau des cultures a été développée au
cours des derniéres décennies, qui sont généralement axées sur la simulation des besoins
en eau au moyen de I'évapotranspiration (ET). En ce qui concerne les mesures in situ, une
solution de pointe est basée sur la mesure de I'humidité du sol dans la zone racinaire
(RZSM) pour détecter l'apparition du stress hydrique des cultures et déclencher ensuite
l'irrigation. Cependant, les mesures sur le terrain sont coliteuses, ne sont pas disponibles
sur de larges zones et peuvent ne pas étre représentatives a 1'échelle du terrain. En
revanche, la télédétection est actuellement la technique la plus rentable et la plus
appropriée pour cartographier et surveiller I'état de surface a I'échelle régionale et sur la
parcelle agricole.

Dans les sections suivantes, il est présenté : i) un apercu des données de télédétection
existantes pertinentes pour le suivi du bilan hydrique des cultures, ii) la modélisation des
principales composantes du bilan hydrique (ET, RZSM et irrigation), et iii) les objectifs de
cette these.

1.2. Données de télédétection pertinentes pour le
suivi du bilan hydrique des cultures

La télédétection offre la seule possibilité de surveiller les variables de surface a
différentes résolutions spatiales et fréquences temporelles, facilitant ainsi une
observation systématique et compléete sur de zones étendues. De plus, les observations
de télédétection sont particulierement pratiques dans les régions ou les mesures in situ
sont difficiles a effectuer ou simplement non disponibles (Li et al., 2009; Rango, 1995). La
télédétection a joué un role important dans I'élaboration et l'application de plusieurs
modeles pour le suivi des ressources en eau sur de zones étendues, permettant de
cartographier 'ET et ses variables associées, comme la couverture végétale, la
température de surface et 'humidité du sol (Fig. 1.2). L'application de la télédétection a
l'intérét particulier d'étre rentable et opérationnelle dans sa mise en ceuvre sur des zones
étendues, ce qui permet d'estimer les composantes du bilan énergie-hydrique et ses
variables associées a des échelles spatiales et temporelles multiples. Cet avantage permet
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de coupler les données de télédétection, I'eau et le modele énergétique de surface afin de
mieux comprendre les processus hydrologiques a différentes échelles. Les données de
télédétection spécifiquement pertinentes pour la surveillance des ressources en eau sont
présentées dans le tableau 1.1 et détaillées ci-dessous.

Tableau 1.1. Principales caractéristiques des données de télédétection pertinentes pour
la surveillance du bilan hydrique des cultures.

- . . . . Missions
Région Résolution Résolution . I ‘e
. satellites en Applications Références
Spectral spatial temporelle
cours
Sentinel-2, Indices de  Bannari et al.
SPOT, Végétation (1995)
Formosat, Parameétres Pinter et al.
Visible- Lansat, de Végétation (2003)
Proche 15 min-16 ASTER, , Qu etal.
Infrarouge ~ O-¥~13wm  1m-5km jours MODIS, Albédo (2015)
(VNIR) AVHRR, Coefficientde  Singh and
MSG/SEVIR], culture Irmak (2009)
VIIRS, Indices
Sentinel-3  d’humidité du Wang and Qu
(2009)
Lansat, sol
ASTER, Z.-.Lietal,
MODIS, . (2013);
inel-3 Température Sobri 1
Infrarouge Sentinel-3, de surface obrino etal.
thermique 15 min-16 AVHRR, Emissivité (2016)
Micro-onde 60 m -5 km oUrS VIIRS, Z.L.Lietal,
(passive / Imm-1m 10m-60km 1 —]6 UL MSG/SEVIRI, (2013)
pac tive) J GOES Stress Kullberg et al.
Sentinel-1, hydrique (2016)
SMAP, SMOS, Humidité du Brocca et al.,,
ASCAT, 1 2017
AMSR-2 50 (2017)
. Humidité du Brocca et al,,
. Sentinel-1,
Microwave sol (2017)
. SMAP, SMOS, g
(passive / Imm-1m 10m-60km 1-6days . Zribi and
active) ASCAT, Rugosité de Dechambre
AMSR-2 surface

(2003)
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Fig. 1.2. Capacité des données de télédétection multispectrales a caractériser I'état du sol
et de la végétation pour le suivi du bilan hydrique des cultures. Source : Amazirh (2019).

1.2.1. Données Visible - Proche infrarouge

Les réflectances visible et proche infrarouge (VNIR) ont l'avantage de surveiller la
végétation/cultures en termes de phénologie, de santé, de vigueur, etc. En effet, les
feuilles de plantes vertes présentent une trées faible réflectance dans les régions visibles
(0,4 - 0,7 um) en raison de leur forte absorption par les pigments photosynthétiques et
végétaux et d'une tres forte réflectance dans le proche infrarouge (0,7 - 1,3 pm) en raison
de leur faible absorption par les particules ou pigments subcellulaires ainsi que d'une
diffusion considérable aux interfaces des parois cellulaires mésophiles (Gausman, 1977).
Ces caractéristiques ont servi de base a de nombreuses applications de la télédétection a
la gestion des cultures en utilisant principalement des indices de végétation (VI) (i.e.
différences, rapports ou combinaisons linéaires de réflectances dans les bandes d'ondes
visible et proche infrarouge). VI ont montré de bonnes corrélations avec des parametres
de croissance des plantes tels que la biomasse verte (Pinter et al.,, 2003), l'indice de
surface foliaire (Duchemin et al, 2006), la fraction du rayonnement
photosynthétiquement actif absorbé (Pinter et al., 1994), entre autres.

Dans la gestion de 1'eau des cultures, les VI ont été largement utilisés pour calculer le
coefficient de culture (défini comme le rapport entre I'ET et une ET de référence) (Bausch
et Neale, 1987; Choudhury et al, 1994; Singh et Irmak, 2009). En effet, les coefficients de
culture dépendent principalement de la dynamique des canopées (fraction de couverture,
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indice de surface foliaire et phénologie). Par conséquent, les coefficients de culture basés
sur les VI ont été d'une grande valeur dans les algorithmes de estimation de I'ET et de
planification de l'irrigation afin d'estimer les besoins en eau des cultures (Allen et al,,
2011; Pereira et al, 2015; Singh et Irmak, 2009). Plusieurs études ont démontré que
I'ajustement local en fonction de la phénologie et du coefficient de culture devrait étre
plus approprié que l'utilisation des valeurs tabulées pour estimer I'ET et les besoins en
eau des cultures (Allen et al., 2011; Bausch, 1995; Pereira et al., 2015). Ces ajustements
locaux reposent généralement sur des mesures ou des observations de la croissance des
cultures spécifiques au site et, par conséquent, des approches basées sur les VI sont
recommandées pour les coefficients de culture et la gestion de l'irrigation.

De plus, le VNIR a regu un intérét particulier pour les applications de bilan d’énergie de
surface, fournissant des estimations robustes de la fraction du rayonnement net entrant
dans le flux thermique du sol au moyen de VI (Daughtry et al., 1990) ou pour estimer
I'albédo en surface (Liang, 2001; Qu et al, 2015). VI sont également des données
auxiliaires essentielles dans l'estimation de l'émissivité de surface pour estimer la
température a la surface du sol (Jiménez-Mufioz et al., 2006; José A. Sobrino et al.,, 2008),
comme celles utilisées dans cette étude. De plus, les VNIR sont nécessaires pour détecter
toute la gamme des conditions de surface du couvert végétal nécessaires dans plusieurs
méthodes basées sur des informations contextuelles sur des données LST et VI obtenues
par télédétection (Merlin, 2013; Merlin et al., 2014; Moran et al., 1994).

L'un des principaux avantages des capteurs VNIR par rapport aux autres capteurs
spectraux est la haute résolution spatiale appropriée au suivi des cultures. La résolution
inférieure a 100 m (p. ex. Landsat, ASTER, SPOT, Sentinel-2) ne permet qu'une a six
observations par mois en cycle orbital. Cependant, les séries chronologiques d'images de
SPOT ou d'autres satellites commerciaux (p. ex. QuickBird, Worldview, GeoEye) a tres
haute résolution (< 10 m) et a résolution temporelle (temps de revisite inférieur a 5 jours)
sont prohibitives et ne sont donc pas utiles pour des applications opérationnelles. Le
lancement de Sentinel-2A/B représente une percée pour les missions VNIR librement
disponibles, fournissant des données VNIR a une résolution de 10 m avec une opportunité
unique de surveiller systématiquement les cultures a un cycle de répétition
hebdomadaire (de 5 a 12 jours).

Malgré le fait que le stress hydrique et la période de sénescence des plantes peuvent étre
détectés par VI (Adams et al., 1999), l'influence du stress hydrique dans ces longueurs
d'onde n'est pas suffisamment importante par rapport aux changements biologiquement
significatifs de la teneur en eau des plantes pour des utilisations pratiques dans le suivi
du stress hydrique sur le terrain (Bowman, 1989; Carter, 1991). Contrairement au VNIR,
les données infrarouges thermiques se sont montrées tres utiles pour évaluer le stress
hydrique des cultures (Jackson, 1982), tel qu'il est présenté dans la section suivante.
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1.2.2. Données thermiques infrarouges

La température de surface (LST) est une variable essentielle qui module les fluxes de
chaleur radiative, latente et sensible a l'interface sol-plante-atmospheére. La LST peut étre
obtenu globalement et opérationnellement a partir d'observations de télédétection
infrarouge thermique. Par conséquent, la LST est une variable utile pour le suivi des flux
de carbone, d'eau et d'énergie des champs aux échelles régionales (Anderson et al., 2008).

La LST a été une variable de surface clé pour de nombreuses applications
environnementales et hydrométéorologiques, y compris les études climatologiques
(Anderson et al, 2007; Hansen et al, 2010), la surveillance des conditions
météorologiques extrémes comme le suivi de la sécheresse (Anderson et al., 2011;
Jiménez-Mufoz et al. 2016; McVicar et Jupp, 1998), des estimations de I'humidité du sol
(Amazirh et al. 2018; Merlin et al. 2012b) et de l'irrigation et la gestion des ressources en
eau (Anderson et al. 2012b; Bastiaanssen et al. 2007; Droogers et al. 2010). La LST est
particulierement utile pour le suivi de la gestion de l'eau des cultures, car il est tres
sensible au stress hydrique des plantes et constitue un bon indicateur des changements
de I'humidité du sol dans la zone racinaire (Anderson et al., 2012a, 1997; Moran et al,,
2009). Ainsi, le LST peut étre relié a 'humidité du sol de la zone racinaire (RZSM) au
moyen de la température de la canopée et de la transpiration de la plante associée (Boulet
et al., 2007; Hain et al., 2009; Moran et al., 1994) étant donné le couplage entre le bilan
d'énergie de surface et le bilan hydrique.

La LST peut étre dérivé de capteurs thermiques satellitaires a différentes échelles
spatiales et temporelles, mais la principale limite des missions thermiques existantes est
I'indisponibilité de hautes résolutions spatiales et temporelles en méme temps. Par
exemple, les missions offrant un temps de revisite haut (e.g. MODIS, MSG/SEVIRI, VIIRS
et Sentinel-3) offrent habituellement une faible résolution spatiale et, inversement, celles
offrant une résolution spatiale élevée (e.g. Landsat et ASTER) offrent une faible résolution
temporelle (Fig. 1.3). Par conséquent, la capacité de surveiller les ressources en eau a
I'échelle de la parcelle agricole (~100 m) est limitée par le peu de temps de revisite et
méme entravée par des conditions nuageuses, ne permettant pas de surveiller les
changements rapides de I'état de la végétation.

Des études récentes ont mis en évidence l'importance des observations thermiques a
haute résolution avec une revisite quasi journaliere de 1'état hydrique de la végétation
(Cao et al., 2019; Guzinski et Nieto, 2019; Sobrino et al., 2016). Ainsi, idéalement, une
constellation de satellites en orbite polaire (e.g. Landsat, ASTER) apparaitrait comme la
meilleure solution pour répondre a ces exigences, qui est potentiellement capable
d'accomplir la mission ECOSTRESS (Hulley et al., 2017), lancée récemment en juin 2018,
ou la future mission TRISHNA (Lagouarde et Bhattacharya, 2018). ECOSTRESS, a bord de
la Station Spatiale Internationale, abordera des questions cruciales sur la dynamique eau-
plante et les changements futurs des écosystéemes en fonction du climat au moyen des
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produits de données de LST, ET, Efficacité de l'utilisation de 1'eau, et Indice de Stress
d’Evaporation a une résolution spatiale de ~60 m tous les 2 - 5 jours a différents temps
de passage. Par conséquent, la détection est encore améliorée dans les environnements
hétérogénes (comme les zones agricoles) par la haute résolution spatio-temporelle
(Hulley et al., 2017). Cependant, le temps de passage de ECOSTRESS change et n'offre pas
une couverture globale, il n'est donc pas optimal pour le suivi de la gestion des cultures
dans le cadre de mises en ceuvre opérationnelles. La mission TRISHNA combinera une
haute résolution spatiale (50m) et un haut temps de revisite (environ 3 jours) dans le
infrarouge thermique avec une couverture globale. Les deux principaux objectifs
scientifiques de la mission sont le suivi des bilans énergétiques et hydriques de la
biosphere continentale et le suivi des eaux coOtiéres et continentales (Lagouarde et
Bhattacharya, 2018).

Spatial
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10 km - 4 —— e \i
|
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: 1
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! irrigation |
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Fig. 1.2. Différentes résolutions spatiales et temporelles des observations actuelles et
futures des satellites thermiques liées aux différentes échelles d'observation ciblées.

Avant le lancement de la mission TRISHNA, il est possible de désagréger les données LST
a basse résolution existantes a haute résolution spatiale avec une précision relativement
satisfaisante. Les méthodes de désagrégation se centrent sur la décomposition des
températures au sein du pixel, ce qui permet d'obtenir un meilleur ensemble de données
LST avec des résolutions temporelles et spatiales plus fines a partir des informations
obtenues par différents capteurs. Par conséquent, les méthodes de désagrégation visent
a obtenir des données LST appropriées pour le suivi du bilan hydrique des cultures a
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'échelle de la parcelle agricole (illustré dans la Fig. 1.3). L'idée de base derriere ces
méthodes est d'établir une corrélation statistique ou un modele physique entre LST a
faible échelle et les variables auxiliaires a échelle fine. Dans ces méthodes, les données
satellitaires dans les longueurs d'onde VNIR disponibles a une résolution plus fine que
celle de la plupart des capteurs thermiques ont été des données auxiliaires essentielles
pour combler l'écart entre une faible résolution spatiale et une haute résolution
temporelle de LST (Zhan et al., 2013). Par conséquent, la plupart des méthodes de
désagrégation ont été basées sur une relation d'invariance d'échelle entre LST et VI, en
grande partie liée a la couverture végétale. Les méthodes basées sur de VI restent les
approches opérationnelles les plus utilisées en raison de la disponibilité de données a
haute résolution spatiale et temporelle, telles que DisTrad, TsHarp, entre autres
algorithmes (Agam et al., 2007a; Bindhu et al, 2013; Kustas et al, 2003; Mukherjee et al,
2014; Zhan et al,, 2013). En plus de 'utilisation des données VNIR, d'autres méthodes de
désagrégation plus complexes ont été proposées: l'utilisation de l'espace a deux
dimensions LST-VI pour dériver des indices d'état hydriques du sol/végétation qui
pourraient mieux représenter la variabilité du LST et ainsi améliorer la précision de la
désagrégation sur des zones agricoles a forte teneur en eau (Chen et al., 2010; Sandholt
et al., 2002; Yang et al., 2010). Cette procédure a été étendue a l'utilisation des facteurs
supplémentaires qui modulent le LST, reflétant la teneur en humidité du sol et le type de
végétation (Amazirh et al, 2019; Merlin et al., 2012a, 2010; Yang et al, 2011). Par
exemple, Merlin et al. (2010) ont établi une distinction entre la végétation
photosynthétiquement active et la végétation non photosynthétiquement active a partir
de séries temporelles de données optiques a ondes courtes a inclure dans la procédure
de désagrégation. Ensuite, les variables substitutives MSS dérivées des données micro-
ondes peuvent prendre en compte les effets de I'humidité du sol sur la désagrégation du
LST (Merlin etal., 2012a; Amazirh et al., 2019). Bien que ces dernieres méthodes puissent
fournir de meilleures précisions que l'utilisation des seules relations LST-VI, elles
nécessitent des parametres supplémentaires qui deviennent difficiles a mettre en ceuvre
sur le plan opérationnel. Par conséquent, la mise en ceuvre de méthodes de désagrégation
sur une base opérationnelle avec une précision raisonnable implique de nouveaux défis
dans les méthodes.

1.2.3. Données micro-ondes

Les longueurs d'ondes micro-ondes sont l'une des plus sensibles aux variations de
I'humidité du sol, étant donné le contraste important des émissions de la surface de la
terre entre 1'eau et la terre. Ainsi, I'humidité du sol en surface (SSM) peut étre estimée a
I'aide de la télédétection (Entekhabi et al, 1994; Kerr et al, 2010). Toutefois, les
instruments de télédétection ne sont capables de capter des informations sur I'humidité
du sol que jusqu'a une profondeur d’environ 5-10 cm de la surface. En effet, 1'émission de
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micro-ondes a cette fréquence est fortement atténuée dans le milieu poreux du sol
(Entekhabi et al., 1994; Kerr et al., 2010).

Selon Schmugge et al (2002), les données micro-ondes présentent quatre avantages
uniques par rapport a d'autres régions spectrales: i) 'atmosphere est effectivement
transparente, ce qui permet de couvrir toutes les conditions météorologiques; ii) la
végétation est semi-transparente et permet I'observation des surfaces sous-jacentes; iii)
la mesure micro-ondes dépend fortement des propriétés diélectriques de la cible, qui
pour le sol dépend de la quantité d'eau présente; iv) la mesure micro-ondes est
indépendante de la lumiéere solaire, permettant une observation jour et nuit.

Il existe deux techniques de télédétection micro-onde: les capteurs micro-onde passifs et
actifs. Les capteurs hyperfréquences passifs (radiometres) détectent 1'énergie micro-
onde émise naturellement dans leur champ de vision a 'aide de détecteurs tres sensibles.
Cependant, les quantités d'énergie sont généralement tres faibles en raison des longueurs
d'onde, qui sont beaucoup plus longues que les longueurs d'onde optiques. Ainsi, les
champs de vision doivent étre grands pour détecter suffisamment d'énergie pour
enregistrer un signal. La plupart des capteurs micro-onde passifs se caractérisent donc
par une faible résolution spatiale (~30 - 60 km). Parmi les missions passives, le satellite
SMOS, lancé en 2009, a été largement utilisé pour 'estimation de SSM, avec une précision
requise de 4 %. Basée sur une antenne en bande L (1,4 GHz), il s'agit de la premieére
mission spatiale dédiée a 1'observation du SSM au niveau mondial (Kerr et al., 2010). La
mission AMSR-E, lancée en 2002, fournit des mesures de température de brillance a six
fréquences de 6,9 a 89 GHz en polarisation horizontale et verticale, dont les canaux en
bande C (6,9 GHz) et en bande X (10,7 GHz) conviennent pour la récupération de SSM
(Njoku et al,, 2003) a des résolutions spatiales comprises entre 25 et 50 km. La mission
SMAP, lancée en 2015, combine un radiometre (passif) et un radar a synthése d'ouverture
(SAR, actif) dans la bande L (1,20-1,41 GHz) pour fournir des mesures de SSM avec une
couverture globale en 2-3 jours. Le capteur ASCAT est un diffusiometre en bande C (5,255
GHz, polarisation VV) a une résolution spatiale d'environ 50 km, qui fonctionne a bord du
satellite MetOp (Meteorological Operational) depuis 2006.

En ce qui concerne les capteurs actifs, le plus populaire est la mission Sentinel-1, lancée
en 2014, qui fournit des données SAR en bande C a une résolution spatiale de 20 m avec
un cycle de répétition sans précédent de 6 jours en combinant les passages ascendants et
descendants (3 jours en combinant les deux satellites disponibles depuis 2015). Bien que
les données de signaux de rétrodiffusion aient le potentiel de surveiller le SSM (e.g.
Amazirh et al.,, 2018; Gao et al,, 2017; Zribi et al., 2011), il n'existe actuellement aucun
produit SSM opérationnel mondial a une résolution aussi fine. Ceci est notamment di a
la difficulté de modéliser dans le temps et sur des zones étendues l'impact du couvert
végétal/structure et de la rugosité de surface sur le signal de rétrodiffusion (Zribi et al.,
2011, 2008).
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1.3. Modélisation des composantes du bilan
hydrique des cultures a laide de Ila
télédétection

Les données de télédétection se sont révélées tres utiles pour détecter les principales
variables de la surface terrestre afin de surveiller le bilan hydrique des cultures a partir
d'observations instantanées au moment du passage du satellite. Cependant, I'estimation
des différentes composantes du bilan hydrique des cultures nécessite une stratégie de
couplage appropriée entre les données de télédétection et la modélisation de la surface.
Cela implique de tirer parti des données de télédétection multispectrales et multi-
résolution et de combler I'écart entre les observations par télédétection et les flux d'eau
et entre les observations instantanées et la résolution temporelle adaptée a la gestion de
l'eau des cultures.

La connaissance des besoins en eau des cultures est essentielle pour optimiser |'efficacité
de l'utilisation de I'eau des cultures. Les modeles de bilan hydrique des cultures simulent
les relations entre le sol, les plantes et I'atmosphere en simulant les besoins en eau des
cultures. Dans ce contexte, les modeles de bilan hydrique des cultures sont des outils
efficaces dans la gestion des ressources en eau. Ces modeles sont basés principalement
sur la représentation de la variabilité de I'humidité du sol dans la capacité de stockage de
I'eau (AS) en résolvant un bilan hydrique entre les apports et les pertes en eau. Le bilan
hydrique peut étre exprimé et simplifié comme suit:

AS=P+1—ET—-DP—-RO Eq. 1.1

Dans ce bilan hydrique, les approvisionnements en eau sont représentés par les
précipitations (P) et les irrigations (I), et les pertes d'eau sont principalement
représentées par I'ET et la percolation profonde (DP). Le ruissellement (RO), tant en
surface que sous la surface, peut également étre une source importante de perte d'eau
dans les zones en pente et sous des apports d'eau importantes, telles que les fortes pluies
ou les irrigations inondées. Toutefois, dans les zones agricoles avec des surfaces planes,
on peut supposer que le RO est négligeable. Dans 1'Eq. 1.1, les processus de diffusion dans
le profil vertical du sol, comme 1'élévation de capillarité, sont négligés. Dans plusieurs
zones agricoles des régions semi-arides a arides, I'augmentation de la capillarité peut étre
négligée en raison de la profondeur importante des nappes phréatiques, plusieurs metres
plus profonde que la capacité de stockage d'eau disponible pour les plantes.

Plusieurs modeéles ont été proposés dans la littérature (FAO-56, SAFY, STICS, AquaCrop)
pour modéliser les besoins en eau des cultures au moyen de I'ET. Ces modeles peuvent
fournir des estimations quantitatives du rendement des cultures dans différentes
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conditions environnementales, ainsi qu'une simulation du bilan hydrique. Par exemple,
le modele FAO-56 (Allen et al., 1998) est un modele simplifié de bilan hydrique piloté par:
1) des variables de forgcage météorologique pour estimer la demande évaporative
atmosphérique représentée par une évapotranspiration de référence (ETO) et 2) les
apports en eau par précipitation et irrigation. En s'appuyant sur I'Eq. 1.1, le modéle FAO-
56 simule la disponibilité de 1'eau du sol pour I'ET, qui peut étre étendue a un modele a
double source pour simuler la disponibilité de I'eau du sol dans la couche superficielle
supérieure et dans la couche de la zone racinaire pour 1'évaporation du sol et la
transpiration des plantes, respectivement. Le modéle SAFY est un modele de végétation
journaliére pour estimer le rendement des cultures (Duchemin et al., 2008). Il simule
I'évolution temporelle de l'indice de surface foliaire verte et de la biomasse aérienne
séche tout aulong de la saison de croissance. Les résultats du modele SAFY ont été utilisés
pour controler I'ET (ou ses composantes sol et végétation) d'un bilan d’eau dans le sol.
Ainsi, ce modele a été couplé au modele FAO-56 pour simuler les besoins en eau et les
rendements des cultures (Battude et al., 2017, 2016; Hadria et al., 2010). Le modele de
culture STICS (Brisson et al., 1998; 2002; 2003) simule les processus associés a la
croissance et a la sénescence des plantes. La validation du STICS pour différents climats
(Bhattarai et al., 2018; Brisson et al., 2002; Hadria et al., 2007, 2006) a montré que le
modele simule précisément le bilan hydrique lorsque l'indice foliaire est correctement
estimé.

Le suivi de la teneur en eau du sol disponible pour les plantes est la variable essentielle
pour la modélisation des ressources en eau, et en particulier pour l'estimation des
besoins en eau des cultures au moyen de I'ET. Le suivi de la teneur en eau du sol peut étre
représenté par la dynamique temporelle de I'humidité du sol dans la zone racinaire
(RZSM), définie comme la teneur en eau de la colonne du sol qui peut étre extraite par
évaporation en surface, par extraction racinaire ou par remontées capillaires (Calvet et
Noilhan, 2000). Pour le suivi des ressources en eau, l'irrigation est l'un des principaux
forcages dans les zones agricoles, notamment dans les régions semi-arides a arides.
Cependant, l'irrigation n'est généralement pas disponible sur de grandes superficies.
Dans ce contexte, cette theése se concentre sur l'estimation de ces principales
composantes du bilan hydrique des cultures: ET, RZSM et irrigation. Les principales
caractéristiques des composantes de I'ET, du RZSM et de l'irrigation, les méthodes
d'estimation associées et leur modélisation sur des zones étendues a partir des
observations de télédétection sont décrites ci-dessous.

1.3.1. Modélisation de I'évapotranspiration

L'évapotranspiration (ET) est le terme utilisé pour décrire la perte d'eau de la surface de
la Terre vers l'atmospheére par les processus combinés d'évaporation du sol (ainsi que
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des plans d'eau libres et des surfaces végétales) et de transpiration de la végétation. L'ET
est un élément clé dans les processus qui contrélent I'échange d'énergie et de masse (eau
et carbone) entre les écosystemes terrestres et I'atmosphere. L'ET est donc responsable
du couplage entre le bilan hydrique et le bilan énergétique superficiel (Fig. 1.4).

Au cours des dernieres décennies, plusieurs travaux ont documenté le role essentiel de
I'ET dans le bilan hydrique pour son importance critique sur la disponibilité des
ressources (Oki et Kanae, 2006), les prévisions hydrologiques et météorologiques
(Findell et al, 2011), les scénarios de changement climatique liés aux indices de
sécheresse (Gao etal,, 2011) et le calendrier d'irrigation agricole (Allen et al., 2005; Senay
et al.,, 2013a). Par conséquent, la connaissance de I'ET est essentielle pour le suivi des
ressources en eau dans les régions ou il y a pénurie d'eau puisque le taux réel d'utilisation
de l'eau par la végétation peut différer considérablement des taux potentiels d’ET
(Anderson et al,, 2012a).
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Fig. 1.3. Schéma représentant les cycles de I'énergie de surface (A), de 1'eau (B) et du
carbone. L'ET est représentée comme un flux de chaleur latente en A, comme
I'évaporation du sol et la transpiration des plantes en B et 'ET est fortement liée a la
photosynthese et a la respiration du sol en C. Source: Bonan (2008).

Il existe différentes méthodes qui permettent de quantifier I'ET au moyen de mesures
directes. Les mesures directes sont des estimations techniques au sol obtenues a partir
de différentes techniques telles que: i) les approches hydrologiques (p. ex. lysimeétres), ii)
les approches physiologiques des plantes (p. ex. débit de séve et méthodes en chambre)
et iii) les approches micro-météorologiques (p. ex. rapport Bowen, eddy covariance et
scintillometre). Ces techniques different également par 1'échelle des mesures. Par
exemple, a 1'échelle locale, les capteurs de flux de seve permettent d'assurer la
transpiration de chaque plante tandis que les lysimetres permettent d'assurer I'ET a
partir d'une petite surface ou l'évaporation lorsque la surface se trouve dans des
conditions de sol nu. D'autre part, les techniques d’Eddy covariance permettent d'obtenir
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une ET a I'échelle de la parcelle (~100 m), ce qui est plus approprié pour le suivi des
besoins en eau des cultures. Les scintillometres peuvent fournir I'ET sur une plus grande
échelle de plusieurs centaines de metres a une dizaine de kilomeétres. Bien que ces
techniques puissent fournir de longues séries temporelles a tres haute fréquence (~10
Hz), ces systemes ne fournissent pas de distributions spatiales a I'échelle régionale sur
des surfaces hétérogenes, en particulier dans les régions aux conditions climatiques
advectives. Les modeéles d'ET al'aide de la télédétection sont mieux adaptés al'estimation
de l'utilisation de l'eau des cultures a l'échelle régionale, offrant une solution rentable
pour le suivi des zones larges.

De nombreuses approches basées sur la télédétection, de complexité variable, ont été
mises au point pour le suivi des besoins en eau des cultures a l'aide d'estimations d’ET.
Par exemple, le modele FAO-56 a été largement utilisé a 1’échelle de la parcelle pour
estimer les besoins en eau des cultures au moyen de I'ET simulée. Comme il a été
mentionné a la section 1.2.1, les coefficients des cultures ont été estimés a partir des VI
issue de la télédétection pour mieux contraindre les stades phénologiques, ce qui a
également été inclus dans le modele FAO-56 (Er-Raki et al., 2010, 2007; Gonzalez-Dugo
et Mateos, 2008; Hunsaker et al.,, 2005). Ainsi, les modeles FAO-56 couplés a VI ont
montré une amélioration significative par rapport au modele classique FAO-2Kc. Etant
donné que les données thermiques sont plus aptes a détecter le stress hydrique que VI,
le LST a été assimilé a la méthode FAO-56 (Er-Raki et al., 2008), et plus récemment, utilisé
pour le coefficient de stress hydrique pour mieux contraindre la méthode FAO-56
(Dejonge et al., 2015; Thuoma et Madramootoo, 2017; Kullberg et al., 2016).

L'atout des données thermiques vient de 1'avantage de détecter l'information sur 1'état
hydrique de la végétation et de la capacité d'étudier la variabilité de la consommation
d'eau dans des parcelles individuelles ou méme pour la variabilité intra-parcellaire
(Anderson et al.,, 2012a). Cet avantage est donné principalement par la résolution spatiale
des données thermiques d'environ 100 m. Ainsi, différentes méthodes ont été
développées au cours des derniéres décennies pour estimer I'ET en utilisant les données
LST comme entrée principale, démontrant son immense valeur dans le suivi de I'ET
(Gowda et al, 2008; Kalma et al, 2008; Li et al., 2009). La plupart de ces méthodes sont
basées sur la résolution du bilan énergétique de surface, dont trois grandes approches
peuvent étre distinguées selon Su (2002): i) les approches résiduelles, ii) les modeles de
surface terrestre et iii) les méthodes de fraction évaporative. Les méthodes résiduelles
estiment le flux de chaleur sensible (H) et obtiennent ensuite le flux de chaleur latente
(i.e. ET exprimé en énergie) comme résiduel de 1'équation du bilan énergétique de
surface. La deuxieme approche consiste a estimer toutes les composantes du bilan
énergétique a la surface du sol a I'aide de modeéles continus de surface du sol en incluant
des modeles SVAT (Sol-Végétation-Atmosphere Transfer). La troisieme approche estime
I'ET comme une fraction de I'ET potentielle (Moran et al., 1994) ou de I'énergie disponible
(Long et Singh, 2012; Roerink et al., 2000). La fraction évaporative (EF) est définie comme
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le rapport entre la ET et I'énergie disponible (rayonnement net moins flux de chaleur du
sol). L'EF peut étre estimée a partir de l'information contextuelle des images
optiques/thermiques issue de la télédétection, ou les conditions seches et humides sont
identifiées a partir de l'espace LST - VI (e.g. Long et Singh, 2012; Moran et al., 1994),
I'espace LST - albedo (e.g. Roerink et al.,, 2000) ou par combinaison des deux espaces
(Merlin, 2013; Merlin et al., 2014). C'est pour cette raison que ces approches ont été
appelées approches contextuelles, qui ont suscité un intérét particulier dans la
communauté scientifique pour leur simplicité et leur mise en ceuvre opérationnelle sur
de larges surfaces.

Les valeurs d’EF peuvent définir deux régimes d’ET principaux: un régime limité par
I'humidité du sol et un régime limité par 1'énergie (Seneviratne et al., 2010). Le régime
d'ET limité en humidité du sol est caractérisé par des valeurs d’EF inférieures a 1 et des
valeurs d'humidité du sol inférieures a une humidité critique du sol (SMrit) donnée, ce
qui entraine des conditions de stress de la végétation (Fig. 1.5). Au-dessus de SMcrit, 'EF
est indépendant de la teneur en humidité du sol (régime d’ET a énergie limitée), ce qui
signifie que la végétation n'est pas dans des conditions de stress avec des valeurs d’EF
égales a 1. SMcrit est donc défini entre I'humidité du sol a capacité au champ (SM¢, au-
dessus de laquelle 1'eau ne peut étre retenue contre le drainage gravitaire) et celle du sol
au point permanent de flétrissement (SMwp, au-dessous duquel 1'eau n'est pas accessible
aux plantes). A partir de ces définitions, des régimes humides (SM > SMerit, EF = 1), secs
(SM < SMwy, EF = 0) et transitoires (SMwp < SM < SMcrit, 0 < EF < 1) peuvent étre définis a
partir de modeles a I'aide de la télédétection thermique au moyen d'EF dérivés de la
information contextuelle. Ces apercus sont essentiels dans cette these parce qu'elles nous
permettent d'établir un lien entre l'information contextuelle détectée a partir des
données optiques et thermiques et 'humidité du sol dans la zone racinaire. Plus de détails
sur I'humidité du sol sont présentés ci-dessous.
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Fig. 1.4. Schéma représentant I'humidité du sol dans la zone racinaire et sa relation avec
la fraction évaporative et le stress hydrique de la végétation. Source: based on Allen et al.
(1998).
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1.3.2. Modélisation de I'humidité en zone racinaire

L'humidité du sol (SM) est une variable hydrologique importante, car elle est essentielle
dans les interactions surface-atmosphere par I'ET et les autres flux énergétiques. SM
controle également la répartition de I'eau de pluie entre l'infiltration et le ruissellement,
ainsi que les flux de chaleur latente et sensible. Une meilleure connaissance de la SM est
donc d'un intérét primordial pour le suivi des ressources en eau et par conséquent pour
optimiser l'utilisation de I'eau destinée a l'irrigation.

Il existe plusieurs méthodes qui permettent de fournir des estimations de la SM pour son
suivi. Premiérement, les mesures directes de la SM ne sont obtenues que par des
méthodes destructives comme les mesures gravimétriques. Cette méthode consiste a
quantifier en laboratoire I'eau évaporée d'un volume de sol préalablement extrait afin de
calculer la masse d'eau divisée par la masse de sol sec. La méthode gravimétrique n'est
donc pas pratique pour les mesures sur des zones larges ou pour le suivi par de longues
séries temporelles de SM. Deuxiémement, les mesures indirectes fournissent des
estimations de la SM basées sur les mesures d'une variable physique fortement liée a la
SM (e.g. le diélectrique apparent du sol). Les capteurs qui mesurent la SM permettent
ainsi de fournir de longues séries temporelles. Cependant, les mesures sont
représentatives d'un point spécifique, ne fournissant pas de tendances ou de
distributions spatiales a 1'échelle régionale (horizontale) ou dans le profil du sol
(verticale).

La SM peut également étre estimée a partir d'instruments de télédétection, qui peuvent
étre au sol (sur des tours), en vol ou sur des plates-formes satellites. Cependant, les
instruments de télédétection ne peuvent observer que de SM de la couche peu profonde
pres de la surface, de sorte qu'on l'appelle habituellement humidité du sol prés de la
surface (SSM). Méme si la SSM peut étre estimée par télédétection micro-onde, la variable
d'intérét pour les applications en modélisation météorologique a court et moyen terme,
en études hydrologiques sur les zones végétalisées et en agriculture est I'humidité du sol
en zone racinaires (RZSM), qui contrdle la transpiration des plantes (Albergel et al,
2008). RZSM représente la teneur en eau de la colonne de sol qui peut étre extraite par
I’évaporation en surface, par extraction racinaire ou par remontées capillaires (Calvet et
Noilhan, 2000). La profondeur de ce réservoir peut varier d'environ 0,1 a quelques
metres selon le type de sol, les conditions bioclimatiques et le type de végétation (types
de cultures en application agricole).

La SSM est relié¢ au RZSM par des processus dynamiques de transfert d'eau du sol
(Noilhan et Planton, 1989). 1l est donc possible de mettre en ceuvre des algorithmes pour
obtenir le profil d'"humidité du sol et donc le RZSM a partir de séries temporelles de SSM
observées (e.g. Albergel et al.,, 2008; Calvet et Noilhan, 2000; Kornelsen et Coulibaly,
2014; Wagner et al., 1999). Au cours des deux dernieres décennies, plusieurs études ont
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permis d'extraire de la RZSM ou du profile de 'humidité du sol soit en utilisant des
observations in situ de SSM (Albergel et al., 2008; Calvet et Noilhan, 2000) ou par satellite
(Calvet et al.,, 1998; Ford et al.,, 2014; Sabater et al.,, 2007). Parmi les nombreuses études
sur la récupération des RZSM a partir de SSM observées, une grande partie d'entre elles
sont fondées sur des algorithmes d'assimilation (e.g. Albergel et al.,, 2008; Calvet et
Noilhan, 2000; Dumedah et al., 2015; Entekhabi et al, 1994; Walker et al., 2001).
Cependant, de telles approches de récupération des RZSM souffrent d'une faible
résolution spatiale étant donné que les produits opérationnels de SSM ne sont
disponibles qu'a trés faible résolution spatiale (>25 km) (Entekhabi et al., 2010; Kerr et
al,, 2010; Pengetal., 2017). Méme si des jeux de données satellitaires désagrégées de SSM
ont été assimilés dans des modeles de surface pour améliorer a la fois I'estimation de
RZSM et sa résolution spatiale (Dumedah et al., 2015; Merlin et al., 2006), une telle
approche couplée ne convient toujours pas pour le suivi régulier de la demande en eau
des cultures a I’échelle de la parcelle (~100 m).

Alternativement a la SSM, la LST peut étre utilisé dans le calcul des variables indirectes a
I'aide du thermique pour la RZSM a travers d’indices en utilisant la température de la
canopée et le taux de transpiration associé (Boulet et al., 2007; Hain et al., 2009; Moran
et al., 1994). Par conséquent, une étape clé pour estimer la RZSM a partir du thermique
est la partition du LST en températures du sol et de la végétation (Merlin et al., 2014,
2012b; Moran et al., 1994). En résumé, la SSM et la LST sont deux variables d'état
précieuses qui peuvent aider a contraindre un modeéle de surface pour estimer la RZSM a
I'échelle de la parcelle pour la gestion de I'eau des cultures. Un couplage entre les données
de télédétection et la modélisation de la surface pourrait donc étre mis au point a cette
fin.

1.3.3. Modélisation de I'irrigation

L'irrigation est l'une des composantes les plus importantes de la consommation des
ressources en eau, représentant environ 70% de l'eau douce mobilisée a 1'échelle
mondiale (Foley et al,, 2011) et peut étre portée a plus de 80-90% dans les régions semi-
arides et arides (Chehbouni et al.,, 2008; Garrido et al., 2010; Scanlon et al., 2012). Ainsi,
I'augmentation de 1'efficacité de 'utilisation de 1'eau dans l'agriculture a été identifiée
comme l'un des sujets clés liés a la pénurie en eau et a la sécheresse (Werner et al.,, 2012),
étant essentiel pour la durabilité de la ressource. Malgré la pression importante de
I'agriculture sur les ressources en eau, les informations sur l'irrigation sont souvent
indisponibles dans l'espace, ce qui entrave une bonne gestion de l'eau. Il est donc
essentiel de quantifier la quantité et le moment de l'irrigation sur des zones larges pour
une gestion efficace des ressources en eau.

L'irrigation se réfere a 1'eau fournie par l'agriculteur a la parcelle afin de répondre aux
besoins en eau des cultures. Bien que l'irrigation soit étroitement liée aux besoins en eau



_ 1.3. Modélisation des composantes du bilan hydrique des cultures a I'aide de la
S8 g1¢détection

des cultures, ces derniers peuvent différer considérablement des quantités réelles
d'irrigation. Malgré la grande variété d'approches existantes pour estimer l'eau des
cultures au moyen d'estimations ET, l'irrigation est généralement simulée a partir des
besoins en eau modélisés (e.g. Allen et al., 1998; Bastiaanssen et al., 2007; Battude et al.,
2017; Corbari et al., 2019; Duchemin et al., 2008). Dans la simulation de l'irrigation basée
sur la modélisation de la dynamique de I'humidité du sol a partir du bilan hydrique ou du
bilan couplé d’énergie-eau, des incertitudes significatives peuvent étre obtenues, surtout
lorsqu'aucune information n'est disponible sur 1'état hydrique réel des cultures dans le
temps.

Pour tenter d'estimer les volumes d'irrigation a partir des données de télédétection, des
études récentes ont exploré l'utilité des estimations de SSM a partir de capteurs micro-
ondes (Brocca et al., 2018, 2017; Escorihuela et Quintana-Segui, 2016; Jalilvand et al,
2019; Kumar et al, 2015; Lawston et al, 2017b; Malbéteau et al, 2018; Zhang et al, 2018).
En particulier, Brocca et al. (2018) ont mis au point une méthode pour quantifier les
quantités d'irrigation en combinant les produits de SSM a partir de satellite actuellement
disponibles aven une résolution grossiere (SMAP, SMOS, ASCAT, AMSR-2) et un bilan
hydrique du sol. Ce travail a été appliqué sur diverses régions semi-arides et semi-
humides dans le monde mais n'a pas pu étre quantitativement évalué en raison de
I'absence d'observations in situ fiables de l'irrigation sur les périmeétres irrigués
correspondants. Cependant, cette approche a été quantitativement évaluée a une
résolution d'environ 50 km sur une région semi-aride (Jalilvand et al., 2019). Certaines
déficiences ont été obtenues sur des périodes de pluies soutenues et la méthode n'a pas
été mise en ceuvre en hiver (Brocca et al., 2018). Cette approche ne convient donc pas aux
cultures d'hiver, qui sont particulierement importantes en Méditerranée. Néanmoins, la
capacité de quantifier les irrigations mensuelles a été démontrée sous certaines conditions:
pendant des périodes prolongées de faibles précipitations et en utilisant des données de
SSM satellitaires avec une faible incertitude et une fréquence supérieure a 3 jours.

Par ailleurs, la communauté scientifique s'intéresse de plus en plus aux modeles de
surface (LSMs) pour mieux simuler les processus d'irrigation (Felfelani et al., 2018;
Lawston et al, 2017a; Pokhrel et al, 2016). Les LSMs ont incorporé des modules
d'irrigation pour pouvoir représenter les irrigations en améliorant la quantité, la
méthode et le moment de l'irrigation (Pokhrel et al., 2012). Comme dans la modélisation
des besoins en eau des cultures mentionnée ci-dessus, ces modules d'irrigation
déterminent généralement le moment et les quantités d'irrigation en fonction du déficit
en RZSM. Ainsi, l'irrigation est déclenchée lorsque le RZSM tombe en dessous d'un seuil
spécifié et est ensuite calculée comme la quantité nécessaire pour amener le RZSM
jusqu’au niveau ciblé. Par conséquent, les simulations peuvent différer considérablement
des irrigations réelles. Etant donné 1'utilité démontrée de la SSM dérivée des micro-ondes
pour détecter le timing tout au long de la saison et la signature spatiale de l'irrigation
(Brocca et al.,, 2018; Lawston et al., 2017b; Malbéteau et al., 2018). Felfelani et al (2018)
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a récemment assimilé les données de SSM issue de SMAP dans une LSM a grande échelle
pour mieux contraindre et améliorer les simulations d'irrigation et également pour
améliorer les simulations de SSM. Cependant, comme dans les méthodes basées sur des
données de SSM issue des capteurs micro-ondes, la résolution spatiale est trop grossiere
pour le suivi des ressources en eau a I'échelle de la parcelle.

A une échelle spatiale plus appropriés a la gestion de 'eau agricole, certaines études
récentes (e.g. Corbari etal,, 2019; Chen et al., 2018) ont utilisé des données optiques pour
déterminer le timing et la planification de l'irrigation. Corbari et al. (2019) ont couplé les
données optiques de télédétection, la modélisation hydrologique de 1'eau et de I'énergie
en surface et les prévisions météorologiques afin de prédire les besoins en eau pour
l'irrigation jusqu’a 3 jours. Ici, les variables de surface issue de données
optiques/thermiques ont été utilisées pour initialiser et calibrer le bilan d’énergie-eau.
Chen et al (2018) ont proposé une autre approche différente pour détecter le moment de
l'irrigation a partir de données optiques (VI issue des données de réflectance). La
méthode s'est montrée prometteuse pour la détection des événements d'irrigation.
Cependant, il n'était applicable que pendant la premiére moitié de la saison de croissance
et il n'a pas été en mesure d’estimer les quantités d'irrigation.

Malgré les progres et les tentatives des dernieres années pour estimer l'irrigation, aucune
méthode ou approche n'est encore disponible pour estimer l'irrigation a I'échelle de la
parcelle agricole (~100 m) sur de larges surfaces.

1.4. Objectifs

En ce qui concerne I'état de I'art, I'une des principales limites de la modélisation du bilan
hydrique des cultures est le manque de données d'irrigation sur des zones larges, dont
tous les flux d'eau dépendent essentiellement des apports en eau. Cependant, la
télédétection s'est avérée tres utile pour le suivi des variables de surface clés afin de
résoudre le bilan couplé d'eau-énergie. En particulier, les images thermiques
instantanées sont capables de détecter les états de surface qui peuvent étre intégrés dans
le bilan couplé d’eau-énergie afin de résoudre ses composants.

L'objectif général de cette these consiste donc a estimer les principales composantes du
bilan hydrique des systemes agricoles, tels que I'ET, le RZSM et l'irrigation, a 1'échelle de
la parcelle (100 m) sur une base journaliére et sur de larges zones (le périmetre irrigué
de quelques kilometres d’extension). A cette fin, le couplage entre les données
optiques/thermiques issue de la télédétection et un modele basé sur la FAO est proposé
en tenant compte des principaux avantages suivants: i) la disponibilité de données
optiques/thermiques a une résolution spatiale appropriée pour le suivi des cultures, ii)
la simplicité des méthodes contextuelles a 'aide des données optiques/thermiques dans
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I'estimation de I'ET et le suivi du stress hydrique végétal, et iii) 1'utilité des données
optiques/thermiques comme approximation de la RZSM et de la SSM.

zn

Cette these de doctorat a joué un réle important dans le projet REC intitulé "Root zone
soil moisture Estimates at the daily and agricultural parcel scales for Crop irrigation
management and water use impact - a multi-sensor remote sensing approach,
http://rec.isardsat.com”. Ce projet (mars 2015 - mars 2019) a été soutenu par le
programme de recherche et d'innovation Horizon 2020 de la Commission européenne
(H2020) dans le cadre de I'action Marie Sklodowska-Curie Research and Innovation Staff
Exchange (RISE). Le projet a été réalisé par une collaboration internationale et
multisectorielle entre: CESBIO (Centre d'Etudes Spatiales de la Biosphere) - Toulouse,
Université Cadi Ayyad - Marrakech, isardSAT et LabFerrer - Catalogne. Ma thése a donc
directement nourri les objectifs du projet REC qui étaient: i) d'estimer la RZSM sur une
base journaliere a 1'échelle de la parcelle agricole et ii) d'évaluer quantitativement les
différentes composantes du bilan hydrique a 1'échelle de la parcelle agricole a 'aide des
données de télédétection facilement disponibles.

LMI-TREMA (Laboratoire Mixte International — Télédétection et Ressources en Eau en
Méditerranée semi-Aride) a Marrakech vise a améliorer la gestion de 1'eau destinée a
l'irrigation en développant des outils permettant une utilisation rationnelle de I'eau. Pour
ce faire, LMI-TREMA dispose depuis 2002 de plusieurs sites expérimentaux dans la plaine
du Haouz, au Maroc (Jarlan et al., 2015), qui ont été utilisés pour tester les approches
proposées dans cette these. LMI-TREMA travaille en étroite collaboration avec l'agence
publique régionale ORMVAH (Office Régional de Développement Agricole du Haouz),
responsable depuis 1966 de la conception et de la construction de grands périmeétres
irrigués et de leur gestion, ainsi que du développement agricole sur une superficie de
7000 km? dans le Haouz.

Bien que l'irrigation a 1'échelle de la parcelle agricole soit un forgage critique pour le suivi
de la gestion de I'eau dans les zones agricoles irriguées, elle est 'une des composantes du
bilan hydrique les moins étudiées en termes d'estimation aux échelles spatiales intégrées.
Par conséquent, une étape clé dans le développement de I'approche est I'estimation de
l'irrigation puisqu'aucune méthode n'est encore disponible pour estimer le timing et les
quantités d'irrigation a I'échelle de la parcelle et a I'échelle journaliére, et que tous les flux
d'eau dépendent essentiellement des apports en eau. L'approche de modélisation repose
sur la synergie entre les données optiques de télédétection, les méthodes contextuelles
et un modele de bilan hydrique pour inverser d'abord l'irrigation, puis les autres
composantes du bilan hydrique. Deux zones sont utilisées pour valider I'approche de
modeélisation développée dans cette thése: une région semi-aride au Maroc et une région
aride au Chili.

Cette these suit une approche par étapes et est structurée en trois étapes principales et
complémentaires.
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Dans un premier temps (Chapitre 3), une étude de faisabilité est réalisée a I'échelle in situ
sur une parcelle de blé d'hiver en intégrant des données optiques/thermiques dans un
modele de bilan hydrique basé sur la FAO-56. Cette approche vise a estimer l'irrigation a
|'échelle journaliere au cours de la saison agricole afin de forcer le modele de bilan
hydrique des cultures et d'estimer la RZSM et I'ET journalieres tout au long de la saison.
Etant donné que cette approche est mise en ceuvre au moyen d'observations in situ sur
une base journaliere, elle est évaluée pour différentes fréquences d'observation allant de
1a 16 jours pour ressembler la disponibilité de I'observation par télédétection.

L'application de lI'approche précédente aux données Landsat correspond a la deuxieme
étape (Chapitre 4) de cette these. Dans cette étape, les objectifs spécifiques sont les
mémes que dans la premiere étape, a la différence que les quantités et le timing
d'irrigation, I'ET et la RZSM sont estimés sur de grandes superficies. A cette fin, des
changements importants sont adoptés pour mettre en ceuvre l'approche avec des
données de télédétection facilement disponibles sur trois zones de la région semi-aride
du centre du Maroc. Cinq sites expérimentaux couverts par des champs de blé d'hiver
avec différentes techniques d'irrigation (goutte a goutte, inondation et sans irrigation)
sont utilisés pour valider I'approche. Cette approche vise a estimer, pour la premiere fois,
l'irrigation a 1'échelle de la parcelle agricole sur une base journaliere sur de larges
superficies a partir de données de télédétection facilement disponibles pour une mise en
ceuvre opérationnelle ultérieure.

Dans la troisieme étape (chapitre 5), une méthode opérationnelle de désagrégation des
données thermiques est présentée afin d'estimer I'ET tous les 8 jours. La méthode est
développée et évaluée dans une région aride du Chili sur de vignes et un verger d'oliviers.
La désagrégation est un élément clé de l'approche que nous proposons ainsi que de
nombreuses méthodes d'ET a I'aide de télédétection thermique. Ainsi, la disponibilité des
données thermiques a une résolution spatiale et temporelle appropriée est d'un intérét
primordial pour le suivi de la gestion de I'eau a I'échelle du terrain. Dans le méme ordre
d'idées, la derniere étape de cette these implique la mise en ceuvre de l'approche
d’estimation des données d'irrigation en utilisant des données thermiques désagrégées
comme données d'entrée afin d'assurer la disponibilité des principales données d'entrée
tous les 8 jours et méme tous les 4 jours en combinant les données Landsat-7, -8 et LST
désagrégées.
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2.1. Introduction

The approaches developed in this thesis have been tested over two regions characterized
by an irrigated agriculture with water scarcity issues and over-exploited water resources:
Haouz Plain in central Morocco and Copiapo Valley in north Chile. Haouz Plain region is
characterized by a semi-arid Mediterranean climate, with an average yearly precipitation
of about 250 mm, while Copiapo Valley is characterized by an arid climate with low
annual precipitation of about 28 mm. Haouz Plain is an extended flat agricultural area
covered mainly by winter wheat and tree crops (e.g. olives, oranges), while the Copiapo
Valley has a narrow flat area surrounding of mountainous desert cultivated mainly by
characteristic tree crops of Mediterranean regions (e.g. olives, vineyards). Therefore,
both regions have experienced an intensive and significant pressure on water resources
by the agriculture. In addition, an important mining activity has been developed in
Copiapo Valley, which has exerted a systematic stress on the water resources, especially
on the aquifer. This critical situation has led to the fact that almost the entire Copiapo
Valley irrigation techniques has been converted to technified irrigation (mainly drip
systems). While Haouz Plain has recently initiated an ongoing conversion to drip
irrigation systems given the Green Morocco Plan (PMV, 2013) to optimize the crop water
use efficiency.

Therefore, the approaches have been implemented over these regions primarily because
of the water scarcity issue in the Mediterranean, which might be more critical according
to predictions of climate change with warming trends and a greater variability in
precipitations (Giorgi, 2006; IPCC, 2013). The critical water scarcity in Copiapo Valley
might be an example of future conditions of Mediterranean regions or under droughts,
such as the southern Mediterranean regions in central Chile that has being afflicted by an
unprecedented ‘mega-drought’ since 2010 (Garreaud et al.,, 2019, 2017).

This chapter aims to present the data used during this thesis (in situ and satellite data)
over the chosen study areas. The chapter is divided into two main sub-sections to present
both study areas, describing the in situ and satellite data are described in each of them.

2.2. Morocco: Haouz Plain

The Haouz plain is situated in central Morocco surrounding Marrakech city and covers
about 6000 km? of almost flat surface. The climate is semi-arid Mediterranean, with an
average annual precipitation of about 250 mm, of which 75% are concentrated during
winter and spring (November-April). The annual evaporative demand exceeds
significantly the annual precipitation with about 1600 mm, according to the reference ET
(Duchemin et al., 2006). In the Haouz plain, the agriculture consumes about 85% of
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available water (Abdelghani Chehbouni et al., 2008) and the flood irrigation technique is
the most widely used method. The main crops in the region consist of winter wheat, olives
and oranges. The aquifers have been heavily over-exploited resulting in a decrease in
water table of over 20 m between 1980 and 2010 and local decrease of over 60 m
(Malbéteau, 2016).

This thesis specifically focuses on three 12 x 12 km agricultural areas mainly covered by
winter wheat crops (Fig. 2.1). Six experimental sites comprising three flood irrigation,
two drip irrigation and one rainfed wheat fields were monitored during five agricultural
seasons. Details about irrigation systems, crop field area and monitoring period per area,
named Chichaoua, R3 and Sidi Rahal are shown in Table 2.1. The differences in irrigations
techniques (mainly water amounts, timing and wetted surface) are useful to assess under
different conditions the approaches proposed in this thesis focused on estimating
irrigations.

The site of Sidi Rahal (Bour) was maintained under bare soil conditions during the 2015-
2016 season due to the dry winter of 2015.

SidiRahal

o2-ha 2016
° 4-ha2016

B

=

(® EC station

D Are

Fig. 2.1. Study areas and field crops where the developed approach is evaluated.

Table 2.1. Experimental sites of winter wheat field by agricultural area.

Monitoring period

Area name Sites name Crop field area  Irrigation type
s (mm/yyyy)
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Chichaoua EC1 - EC2 ~1.5ha-15ha Drip-irrigated 11/2016-05/2018

R3 4ha-2003 4 ha Flood-irrigated 12/2002-05/2003
2hal - 4ha-2016 2ha-4ha Flood-irrigated 12/2015-05/2016

Sidi Rahal Bour ~1ha Rainfed 10/2014 - 05/2018

1. R3-2ha field is actually irrigated by drip system with amounts and quantities according to a flood

irrigation system. Thus, R3-2ha is considered as flood-irrigated site.

2.2.1. Meteorological data

Automatic meteorological stations were installed in the three experimental areas. In
Chichaoua and R3 areas the meteorological station was installed over an alfalfa field
while in Sidi Rahal area it was installed over the monitored rainfed wheat field.
Meteorological data including air temperature, solar radiation, relative humidity, wind
speed and rainfall were collected continuously every 30 minutes at 2 m height during all
the agricultural seasons.

2.2.2. Flux data (Eddy-covariance system)

Six micro-meteorological stations equipped with open-path eddy-covariance systems
were installed in each experimental site. Here, four components of net radiation were
measured by NRO1 (Hukseflux) or CNR (Kipp & Zonen) radiometers, depending on the
station. Soil heat fluxes were estimated from two HFP-01 heat flux plates (Hukseflux) per
site buried at 5 cm. Finally, latent and sensible heat fluxes were acquired with an infrared
gas analyzer (Li7500, Licor) or krypton KH20 hygrometers (Campbell) depending on the
station and CSAT3 3D Sonic Anemometers at a frequency of 10 Hz and averaged over 30
min.

The closure of the energy balance is verified over the six sites and a correlation coefficient
R2 between 0.68 and 0.93 was found (Ait Hssaine et al., 2019; Amazirh et al., 2017; Rafi
et al., 2019). Both sensible and latent heat fluxes were therefore corrected to force the
closure of the energy balance by the Bowen ratio method (Twine et al., 2000). In this
correction, the daily Bowen ratio (computed using 30-minute estimates between 9 am
and 5 pm) and the 30-minute flux estimates are combined to derive the corrected 30-
minute latent and sensible heat fluxes.

2.2.3. Soil Moisture
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Soil water content at different depths were measured from time domain reflectometry
(TDR) probes (CS615 and CS655, Campbell Scientific), which were installed near the
fluxes measurement tower at every experimental site. The TDR probes were buried at
different depths (Table 2.1) in order to monitor the soil water available in the entire soil
profile. However in the rainfed wheat field, the TDR probes were installed only at the soil
surface layer (at 5 and 10 cm). The measurements at different depths were used to
estimate the soil moisture integrated over the root zone (RZSMobs). RZSMobs was
estimated by interpolating the soil moisture observations of the different depths
belonging to the root-zone of wheat as follows:

diSMdi + (di+1 - di)SMdi+1 + .-+ (dn - dn—l)SMdn Eq 2.1

RZSM =
obs di + (digr — dp) + -+ (dy — dp_y)

where SMdi (m3m-3) is the soil moisture measured at depth d; and dn is the deeper depth
where there is a measurement that belongs to the root-zone. In this study, it is assumed
that rooting depth varies linearly according to the vegetation cover between a minimum
value set to 0.1 m (for bare soil) and a maximum value set to 1 m (for fully covering green
vegetation).

Table 2.2. Depths to which the TDR probes were installed at every experimental site.

Area Site names Depths (m)
R3 4ha-2003 0.05-0.10-0.20-0.30-0.50 - 1.00
2ha 0.05-0.15-0.30-0.50-0.80
4ha-2016 0.05-0.15-0.25-0.35-0.50-0.80
Chichaoua EC1 0.05-0.15-0.25-0.35-0.50-0.80
EC2 0.05-0.15-0.30-0.50-0.80
Sidi Rahal Bour 0.05-0.10

2.2.4. Irrigation

The distribution and management of water resources is different in the experimental
sites depending on the location of agricultural areas.

In R3 area, the ORMVAH (Office Régional de Mise en Valeur Agricole du Haouz) has
managed the distribution of water in the irrigated area since 1999. ORMVAH is in charge
of the dam water distribution during the agricultural season starting from December
through May. Flood irrigation system is the most widely used method in this area where
the fields are irrigated by using concrete canals that carry water from the main canal to
the irrigated units. In particular, the 4ha-2003 and 4ha-2016 fields were irrigated by
flooding with 4 and 7 irrigation events regardless of the precipitation and thus of soil
moisture conditions. The 2-ha field was instead irrigated by drip technique but was
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nevertheless considered as flood-irrigated field since the irrigation amounts and timing
were according to a flood irrigation system.

In Chichaoua area, both EC-1 and EC-2 fields were irrigated by drip system. During 2016-
2017 season, both fields had the same irrigation scheduling programs according to the
crop water needs estimated by the FAO method except that one field was voluntary
stressed during controlled stress periods when irrigation was stopped. The total
irrigation was 374 and 504 mm for the controlled (EC-1) and reference (EC-2) crop field,
respectively. During 2017-2018 season, the irrigation was stopped earlier in the season
(beginning of February for EC-1 and mid-March for EC-2) while in the previous season
the irrigation was stopped mid-April. However, the total irrigation during the agricultural
season was very close to that of the previous season, 327 and 528 mm for the EC-1 and
EC-2 crop field, respectively. The difference lies in the application of water, because the
farmer applied more than double water during the initial stage (December) in the 2017-
2018 season. The mean irrigation amount during both seasons was 15 mm for both crop
fields. The daily irrigation amounts over every site for the different seasons are depicted
in the Fig. 2.2.
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Fig. 2.2. Irrigation events along the agricultural growing for the winter wheat field in R3
and Chichaoua area for the different seasons.

In Sidi Rahal area, the crops are mainly irrigated tree and annual crops but there is also
an important rainfed area devoted mainly to winter wheat crops. The experimental site
Bour consists in a rainfed winter wheat field that although no irrigation are applied, it is
used as benchmark to assess the retrieval irrigation method and the water budget
components during the four agricultural seasons that was monitored (2014 - 2018).

2.2.5. Fractional green vegetation cover
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Given that this thesis involves the development of a novel approach that integrates optical
data into a crop water balance model, this work was first carried out at in situ level by
using ground-based measurements in order to reduce uncertainties in the data with
regard to satellite-derived data. For this purpose, over the 4ha-2003 site in R3 area, the
vegetation was monitored from canopy reflectance in order to obtain a vegetation index
and the fractional vegetation cover. Ground-based surface reflectance data over the field
were collected using a MSR87 multispectral radiometer (Cropscan Inc., USA) every week.
The radiometer was inter-calibrated with an ASD (Analytical Spectral Device) before the
start of the agricultural season of 2002-2003. Fifteen sets of canopy reflectance
measurements were made between January 8 and May 27 2003. Each measurement was
taken with the MSR87 sensor 3 m high in a vertical position (an area of about 2 m2 per
sample) along three transects every 10 m. Reflectance values centered on red (0.63-0.69
um) and near infrared (0.76-0.90 pm) bands are used to obtain NDVI (Normalized
Difference Vegetation Index). The average of NDVI values was computed from all
measurements of the whole field. More details about the NDVI measurement procedure
can be found in Er-Raki et al. (2007).

The fractional green vegetation cover (fvg) is then estimated from a linear relationship
from the NDVI according to Gutman and Ignatov (1998) as follows:

_ NDVI — NDVI, Eq. 2.2
fog = NDVI, — NDVI,

where NDVI is the near-infrared to red reflectance difference divided by their sum. NDVIs
and NDVIy correspond to NDVI for bare soil (fvg = 0) and fully covering green vegetation
(fvg = 1), respectively. The NDVIs was equal to the minimum value measured in the field
(0.14) and NDVIy was defined at 0.93 after looking at maximum values taken on
individual plots over the study area (Duchemin et al., 2006).

In addition, the fractional total vegetation cover (fc) was also measured using a
hemispherical digital camera equipped with a fisheye lens with a field-of-view of 183°
(Nikon Coolpix 950®). fc could be also derived from fvg by assuming that once fvg has
reached its maximum value, it keeps equal to this maximum value until the end of the
agricultural season as is shown in the Fig. 2.3. A comparison of fvg- against photo-derived
fc estimates before the maximum value of fvg revealed a good agreement with a root
mean square error (RMSE) and coefficient of determination (R2) equals to 3.5% and 1.0,
respectively.



2.2.Morocco: Haouz Plain

fc

0 30 60 90 120 150

Das (days after sowing)

Fig. 2.3. Daily NDVI, fraction of green vegetation cover (fvg) and fraction of total
vegetation cover (fc) along the agricultural growing for the winter wheat field in R3 area.

2.2.6. Temperature data

2.2.6.1. Land Surface Temperature

In every experimental site, ground-based LST is derived from thermal infrared radiances
emitted from the surface (Lrad2) and long-wave down-welling radiance from the sky
(Ldown,). The thermal radiances from the surface were measured by a thermal radiometer
(Apogee Sl-series) installed vertically at 2 m height, while the down-welling radiance
from the sky was measured by net radiometer (NRO1 or CNR, depending on the site). The
Apogee thermal radiometers are only sensitive from 8 to 14 pm matching the
atmospheric window to minimize the influence of water vapor and COZ2 on the
measurement. Instead, the down-welling radiance from the sky is measured from about
5to 50 pm so that it is converted to the same spectral range of the thermal radiometer (8
- 14 um). For this purpose, the temperature corresponding to the down-welling radiance
is estimated by using the Stefan-Boltzman constant and the atmospheric emissivity. This
estimated temperature is then used to estimate the down-welling radiance at the
effective wavelength of the thermal radiometer from the Planck’s law. The measurements
were sampled at 1 Hz and averaged over 30 min. The averaged radiance is converted to
LST by inverting the Planck’s law:

Lrad,/l - (1 - g/l)Ldown,/l Eq. 2.3
€1

B(LST) =

where Lrada is the land leaving radiance (W m-2), Ldowna is the long-wave downwelling
irradiance (W m-2) corresponding to the effective wavelength A, €; is the spectral land
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surface emissivity at the effective wavelength A, to which is centered the specific domain
of the Apogee sensor (8 - 14 um), and B(LST) is Planck’s law for the LST (W m-2sr-lum-1).
The €1 was retrieved from the simplified NDVI threshold method (José A Sobrino et al,,
2008) that weights the soil and vegetation emissivity through the fractional green
vegetation cover (fvg). The soil emissivity was measured by Olioso et al.,, (2007) over the
study area and the vegetation emissivity was considered equal to 0.99 (Sobrino et al,,
2008).

2.2.6.2. Vegetation temperature

In the 4ha-2003 field in R3 area, in addition to radiometric temperatures the vegetation
temperature was measured with Type-] thermocouples (seven replications, one sensor
per plant), which were set up in the apex vegetation near the location of the thermal
radiometer. The sensors were changed every week to be set up at the vegetation apex
and to measure the youngest leaves of the plant along the growing season. Thermocouple
measurements will be used to evaluate the vegetation temperature estimates that will be
achieved from the partition method of LST.

2.3. Chile: Copiapo Valley

Copiap6 Valley is situated south of the Atacama Desert, Chile. The whole valley has an
area of about 18,538 km? divided in longitudinal sectors from The Andes Highlands
(sector 1) to the coast (sector 6) (Fig. 2.4). The study of this thesis is focused on the lower
part of the valley in the aquifer Sectors 5 and 6. The study area has a surface of about
1,670 kmZ, and is located in the flat lands around the Copiapo River of Sectors 5 and 6. It
is an agricultural area mainly covered by olives, vineyards, pomegranates and natural
vegetation (Fig. 1). The climate is arid with low mean annual precipitation of 38 mm and
hot and dry summers (December-February) and cold and dry winters (June-August). In
terms of water resources, the Copiap6 Valley is characterized by acute water scarcity
mainly attributed to the low annual precipitation and the systematic stress put onto the
aquifer by water consumers, mainly agriculture and mining (Oyarzin and Oyarun, 2011;
Suarez et al., 2014). This situation has brought about the Copiap6 Valley’s current critical
situation, resulting from the extraction of groundwater in recent decades, which has risen
to rates greater than the natural replenishing of the aquifer (demand equal to 8.2 m3/s
over a replenishing equal to 6.3 m3/s) with a notorious decrease in the water table
(Oyarzun and Oyarun, 2011). The pressure on water resources is thus increasing and
generating a new regional scenario for water use efficiency.

An olive orchard and a vineyard field are monitored from LAB-network (here in-after
LAB-net) (Mattar et al., 2016). The LAB-net station over olives orchards is located in a
plot of land measuring about 17 hectares with a fraction vegetation cover of 25%
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distributed uniformly. Whereas the LAB-net station over vineyards is located in an area
of 28 hectares with a homogeneous fraction vegetation cover.

y
v £y

2 km

o :

' Olives Vineyards B Pomegranates

Fig. 2.4. Copiap6 Valley divided in 6 sectors (red line) over which the study area (blue
line) and the meteorological station over olive and vineyard crops (square and circle,
respectively) are located in the sectors 5 and 6. In the figure the land cover of the main
crops are showed: olives, vineyards and pomegranates.

2.3.1. Meteorological data

Automatic meteorological stations from the GEA (“Grupo de Estudios del Agua”,
www.agro- clima.cl) network, in addition to two meteorological and radiative flux
stations from LAB-net data sets (Mattar et al,, 2016), were used. In the Copiapé Valley,
the GEA network includes twelve meteorological stations, four of which are located in the
study area used in this thesis. These stations were located in vineyards and olives
orchards, and they provide basic meteorological data. Meteorological data GEA network
including air temperature, solar radiation, relative humidity, wind speed and rainfall
were collected between January 2013 and December 2014. In addition to these
meteorological data, LAB-net included infrared thermal, global and net radiation over an
olive orchard and vineyards fields, which were processed between July 2014 and
December 2016.
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2.3.2. Ground-based land surface temperature

Over the vineyard and olive fields in Copiapd valley, the ground-based LST is derived
according to the Eq. 2.3 from thermal radiances from the surface measured by a thermal
radiometer (Apogee SI-111) installed 2 m height above the canopy. Here, the four
components of net radiation were unavailable so that the down-welling radiance from
the sky was estimated using the methodology proposed by Jiménez-Mufioz et al. (2010),
by processing an atmospheric MODO07 product (i.e. temperature and moisture profiles,
and atmospheric water vapor) from MODIS satellite into the MODTRAN radiative transfer
code and convoluting the down-welling radiance spectra by using the Apogee SI-111
relative spectral response. The surface emissivity was acquired from the ASTER Global
Emissivity Data Base (Hulley et al., 2015) and the emissivity was converted from narrow
band to broad band by using the method proposed by Ogawa and Schmugge (2004).

2.4. Remote sensing data

This thesis focused mainly on the use of optical (shortwave and thermal) remote sensing
data for monitoring the water resources over agricultural areas. Remote sensing data are
collected over both sites from the following thermal missions: Landsat, ASTER and
MODIS, which are described below.

2.4.1. Landsat data

Over the agricultural areas in Morocco, Landsat-7 and -8 data were collected between
October 2014 and June 2018, while over Copiapé Valley only Landsat-8 data were used
for the full time series available from April 2013 to December 2016.

2.4.1.1. Surface Reflectance data

Surface reflectance data were collected from the Landsat Collection Level-2
(https://earthexplorer.usgs.gov/). Landsat Level-2 data product provides surface
spectral reflectance atmospherically corrected (i.d. as it would be measured at ground
level in the absence of atmospheric scattering or absorption). Landsat-7 surface
reflectance are atmospherically corrected by using the radiative transfer model 6S
(Second Simulation of a Satellite Signal in the Solar Spectrum, Vermote et al. (1997)) while
Landsat-8 uses the internal algorithm LaSRC (Landsat Surface Reflectance Code, Vermote
et al. (2016)). Surface reflectances are generated at 30-meter spatial resolution. The red
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and near-infrared bands were used only to estimate the NDVI and fractional green
vegetation (fvg) cover over every study area: Haouz Plain and Copiapé Valley. NDVI and
fvg are obtained in the same way from ground-based measurements in the Section 2.2.5.

2.4.1.2. Thermal data

Thermal data from Landsat-7 (band 6) and -8 (band 10) were collected from the Landsat
Collection Level-1 to estimate LST. Landsat-8 provides 2 thermal bands but only one band
was used since the USGS recommends the Single Channel method (based on one thermal
band) avoiding the stray light effect observed in the split-window method (based on two
thermal bands) (Montanaro et al., 2014). Thus, we only use the band 10 without option
to select the split-window method from the two thermal bands. Therefore, the LST is
estimated by using the Single-Channel (SC) algorithm described in Jiménez-muifioz et al.
(2014, 2009) and based on the work proposed by Sobrino et al. (1996) and is represented
as follows:

1 Eq. 2.4
LST =y ;(¢1'Lsen+(ﬂ2)+(p3 +6 a

where ¢ is the spectral land surface emissivity at effective wavelength A of Landsat-7/8
thermal band; y and 6 are two parameters which depend on the Plank’s function and the
at-sensor brightness temperature (for more details see Jiménez-Munoz et al. (2009)); ¢,
¢@zand ¢s3 are atmospheric functions described as:

1 Lyp Eq. 2.5
T

Y1 = ¥z = —Lgown — T ®3 = Laown
where 7 is the atmospheric transmissivity, Liown and Lup are the down-welling and up-
welling (path radiance) atmospheric radiance, respectively. All the parameters involved
in Eq. 2.4 and Eq. 2.5 are wavelength (or band) dependent, but spectral notation will be
omitted for simplicity. The atmospheric functions @i, @2 and ¢3 are estimated as
approximation by using a second-order polynomial fit from the atmospheric water vapor
content (W). The W was derived from the daily MODIS Precipitable Water product
(MODO5). The coefficients of the polynomial fit were obtained by Jiménez-mufioz et al.
(2014, 2009) from radiative transfer simulation using the TOVS Initial Guess Retrieval
(TIGR, Scott and Chedin, 1981) and Global Atmospheric Profiles from Reanalysis
Information (GAPRI, Mattar et al., 2015) databases for Landsat-7 and -8, respectively.

Similarly to ground-based LST estimates in Section 2.2.6.1, the ¢ is estimated using the
simplified NDVI thresholds method (Sobrino et al., 2008), with the difference that the
spectral vegetation emissivity (ev1) is set to 0.99 and the spectral soil emissivity (&s1) is
spatially obtained from the ASTER Global Emissivity Datasets (ASTER GED, Hulley et al,,
2015). ASTER GED provides an average spectral emissivity from ASTER scenes from 2000
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to 2008 at 100 m spatial resolution in the wavelength range between 8 and 12 pm (bands
10 - 14). ASTER GED also provides the mean NDVI for the same period (2000-2008),
which allows deriving the &5 for every ASTER band according to the soil and vegetation
fraction (Sobrino et al., 1990):

East_i — EvasT_if V9asr Eq. 2.6

€s,AST_i =
AT 1— fvgasr

where fvgasris estimated as in Eq. 2.2 from the mean NDVI calculated from visible ASTER
data bands. &s4s7 i is the ASTER soil emissivity. evasti is the ASTER vegetation emissivity
that is set equal to &y for every ASTER band. Given that the €51 is needed for Landsat
thermal bands, €s4sri are adjusted to the Landsat thermal bands using the broadband
regression approach proposed by Ogawa and Schmugge (2004) as was used in Duan et
al. (2018) and Malakar et al. (2018). As is shown in the Fig. 2.5, the band 13 and 14 of
ASTER are used only since they are superposed with the Landsat thermal bands. The
adjustment from ASTER to Landsat bands is made by a linear regression where the
coefficients between the soil emissivity for Landsat and ASTER bands were derived by
convoluting the soil emissivity spectra of all soil types available in the ASTER spectral
library (Baldridge et al., 2009) for all thermal bands, which are 52 in total.

Es Landsat = A€sasT 13 — DEsasT,, + € Eq. 2.7

where &siandsat, €s4sT.13 and &sast 14 are the soil emissivity by convolving the spectral
response function of Landsat thermal band (band 6 for Landsat-7 or band 10 for Landsat-
8), the ASTER band 13 and 14, respectively, with the emissivity spectra. The coefficients
a, b and c are estimated for Landsat-7 and -8 separately. As is shown in Fig. 2.6, high
accuracies are obtained with a R2 of 0.98 and 0.99 for Landsat-7 and -8 thermal band,
respectively, and a RMSE lower than 0.001 for both sensors (by using the ASTER spectral
library dataset).
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Fig. 2.5. Relative spectral responses (RSR) and effective wavelengths (A) for Landsat-7
band 6 (B6_L7), Landsat-8 band 10 (B10_L8) and ASTER bands 13 and 14 (AST_13 and
AST_14) sensors.
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Finally, the reliability of LST estimates was assessed in Amazirh et al. (2019, 2017) over
the sites of the study area in Morocco, finding a relatively good agreement between
satellite and ground-based LST with a RMSE lower than 2.4 K. In the study area in Copiapo
Valley, the RMSE was higher (equal to 3.2 K) over olives and vineyards crops mainly due
to a higher heterogeneity and the complexity of the surface.

Landsat-L7 Landsat-L8
0.985 ‘ : 0.985 ‘ :
R? =0.979 R? = 0.994 L
2 098'| Bias=0.0000 e 2 098'| Bias=-0.0004 e
2 ~ RMSE = 0.0008 ‘!h 2 ~ RMSE = 0.0007 g
2 0.975 ogd < 0.975 o83
£ ° £ g
o o o .,“
3 097 oi!’ S 097 r
7} ® hid -3
s % 3 o
& 0.965, ) & 0.965, /33’
g g 0’/..
& 096 5 096 o @
0.955 : : ; : : 0.955 * : : ; : :
0.955 0.96 0.965 097 0975 0.98 0.985 0.955 0.96 0.965 097 0975 0.98 0.985
Landsat soil emissivity Landsat soil emissivity

Fig. 2.6. Comparison between Landsat soil emissivity against the simulated Landsat soil
emissivity from the linear regression by using ASTER bands 13 and 14 (Eq. 2.7) for the
52 soil types available in the ASTER spectral library (Baldridge et al., 2009). The dotted
line represents the line 1:1.

2.4.2. ASTER Global Emissivity Datasets (ASTER
GED)

Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) is a multi-
spectral imager on NASA's Terra platform with a 16-day revisit cycle. ASTER GED
product provides the average spectral emissivity for its 5 thermal bands (10 to 14) as
well as the mean NDVI calculated from the cloud-free ASTER scenes for the period
between 2000 and 2008. The spectral emissivity and NDVI are provided at 100 m spatial
resolution.

2.4.3. MODIS data

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a sensor on board of
NASA'’s Terra platform. MODIS data over the agricultural areas in Morocco and Copiap6
Valley are collected for the same periods to which Landsat data are collected. Three
different products are used in this thesis, which are described below.
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2.4.3.1. Land Surface Temperature product (MOD11)

MODIS/Terra Land Surface Temperature and Emissivity (MOD11) is used to obtain the
daily (at 10:30 am overpass time) LST at 1 km spatial resolution (MOD11A1) and the
composite 8-day (MOD11A2). MOD11A2 is a simple average of all the
corresponding MOD11A1 LST pixels collected within that 8-day period. The MOD11A1
LST data are retrieved by the generalized split-window algorithm from bands 31 and 32.

2.4.3.2. Vegetation Index product (MOD13)

MODIS/Terra Vegetation Index (MOD13) provides NDVI and Enhanced Vegetation Index
(EVI) at 16-day intervals period and at multiple spatial resolutions. Here, it is used the
NDVI at 250 m from the MOD13Q1 product. NDVI is derived from daily atmospherically-
corrected surface reflectance in the red and near-infrared wavebands, which have been
masked for water, clouds, heavy aerosols, and cloud shadows. The compositing product
is chosen from the two highest NDVI values in the 16-days period and the pixels that are
closest-to-nadir.

2.4.3.3. Atmospheric water vapor product (MODO05)

The MODIS Precipitable Water product (MODO05) consists of column water-vapor
amounts retrieved from Level 2 at 1 km spatial resolution. MODO5 is obtained from a
near-infrared algorithm that is applied over clear land areas of the globe and above clouds
over both land and ocean. The retrieval algorithm relies on observations of water-vapor
attenuation of reflected solar radiation in the near-infrared MODIS channels so that the
product is produced only over areas where there is a reflective surface in the near-
infrared.

2.5. Conclusion

This chapter presents the dataset by study area that have been used to implement the
approaches proposed in this thesis. The agricultural areas in both a semi-arid
Mediterranean region in central Morocco and an arid region in north of Chile have been
used to evaluate the approaches for monitoring the water resources in these areas under
water scarcity issues.

An experimental site fully equipped over a winter wheat field in Haouz Plain (Morocco)
has been used as feasibility study to develop and assess an approach to estimate the
water fluxes (irrigation, RZSM and ET) at in situ level (Chapter Chapter 3). Three areas of
12 by 12 km in Haouz Plain have been used to implement spatially the approach by using
satellite data (Chapter Chapter 4). Here, five experimental sites over winter wheat fields
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2.5. Conclusion

under different irrigation techniques has been used to validate the approach in terms of
irrigation, RZSM and ET. The narrow Copiapo Valley (Chile) has been used to implement
an operational disaggregation LST method, which has been validated over two
experimental fields under vineyards and olive orchards (Chapter Chapter 5).
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3.1. Introduction

The main objective of this thesis is to integrate multi-spectral remote sensing data into a
land surface model in order to estimate the water budget components (ET, RZSM and
irrigation) on a daily basis over extended areas at crop field scale (~100 m). In the last
decades, different methods have been developed for monitoring the crop water
requirements usually by means of ET estimates. Those models are based either on the
water balance, on the surface energy balance or on the coupling between both of them
(energy-water balance). Among the water balance models, FAO-56 model (Allen et al,,
1998) has been extensively used to estimate the crop water needs at crop field scale. This
model require few input data, among phenological, meteorological and irrigation data,
providing quite acceptable ET estimates when is compared to more physically based -but
often over-parameterized- models. FAO-56 model is thus chosen by its simplicity and
operational basis, being attractive for farmers and agricultural applications. However, its
operational application to extended areas still faces the need of in situ data for calibration
on one side, and the unavailability of irrigation data at field scale on the other side. Among
the energy balance models, remotely sensed optical /thermal data have been essential to
develop several methods based on surface variables (vegetation index, surface albedo,
LST) that allow estimating the surface energy fluxes over extended areas at different
spatio-temporal scales. In particular, the so-called contextual approaches (based on the
contextual information on remotely sensed optical/thermal data) have received
considerable interest from the scientific community for its simplicity, operationality and
robustness over large areas by using minimal or no in situ data.

In this chapter, a new retrieval approach of the main water budget components in
arid/semi-arid irrigated agricultural areas (ET, RZSM and irrigation) is developed by
integrating optical/thermal data into the FAO-56 model. The feasibility of this method is
evaluated using ground-based measurements (optical/thermal) over a winter wheat
field. For this purpose, the approach adapts the thermal-based contextual models
implemented with remote sensing data to ground-based measurements in order i) to take
advantage of the simplicity and robustness of these contextual methods and ii) to be
applicable to large areas by using satellite data. This approach allow retrieving the
irrigation volumes and dates from optical/thermal-derived ET and RZSM, and to re-
analyze all water-budget components (including ET and RZSM) from the retrieved
irrigation data. The approach would allow retrieving the irrigation that is the key variable
to force the FAO-56 model over extended areas in order to estimate the water budget
components at daily and parcel scale.
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3.2. FAO-56 dual crop coefficient method

The FAO-2Kc is a water balance model driven by meteorological forcing variables
including 1) air temperature, air humidity, wind speed and solar radiation to calculate
reference evapotranspiration ETo and 2) precipitation and irrigation that jointly
determine the water supply to simulate the soil water availability for soil evaporation
and plant transpiration. In practice, FAO-2Kc estimates ET by multiplying ETo by a two
separate crop coefficients for transpiration and evaporation as:

ET = (Ks-Kcb + Ke)ET, Eq. 3.1

where Kcb is the basal crop transpiration, Ks the stress coefficient (0 - 1) that represents
the vegetation water status and a reduction factor of transpiration (T = Kcb ETo) and Ke
the evaporation coefficient that allows estimating the evaporation (E = Ke ETo). ETo is
calculated according to the FAO Penman-Monteith equation (Allen et al., 1998) at daily
scale, which is described in detail in the Appendix 1. The estimation of every coefficient
is briefly described below.

3.2.1. Basal crop coefficient (Kcb)

The basal crop coefficient (Kcb, unitless) mainly depends on crop types and crop growth
stages, and it is adjusted by the climatic conditions. According to Allen et al. (1998), four
growth stage periods are identified in the full growing season: initial, crop development,
mid-season and late season. The initial and mid-season stages are characterized by a
constant Kcb value while the development and late season stages have increasing and
dropping values proper to the rapid growing and senescent periods of the crops,
respectively. Then, three Kcb values (Kcbini, Kcbmid and Kcbend) and the lengths of the four
growth stages (lini, ldev, Imid and lend) are needed to account with the Kcb curve, as it is
shown in Fig. 3.1.

Allen et al. (1998) proposed Kcb values (denoted with the suffix tab in the Eq. 3.2) and
lengths of the growing stages for different crop types, which correspond to the values for
standard climatic conditions having an average daytime minimum relative humidity
(RHmin) of about 45% and calm to moderate wind speeds of about 2 m s at 2 m height
(uz). For different climatic conditions, Allen et al. (1998) proposes to adjust the Kcbmid
and Kcbend as follows:

m%  Eq.3.2
KCbmid,end = KCbmid,end(tab) + (0-04(u2 - 2) - 0-004(RHmin - 45)) (§>

where Kcbmidend(tab) is the value for Kcbmid or proposed by Allen et al. (1998) and h is the
mean maximum plant height (m) during the midseason period or full cover period, uz and
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RHmin are the average values during the mid-season or late season growth stage. Despite
the adjustment for climatic conditions, these values can differ significantly due to other
factors such as: soil type, the particular crop and its varieties, irrigation method, soil
water, nutrient content and plant phenology (Allen et al., 1998). Consequently, Kcb values
and lengths of the growing stages need specific adjustments, including calibration against
ground-based transpiration or ET estimates (e.g. Er-Raki et al.,, 2007; Poblete-Echeverria
and Ortega-Farias, 2013; Rafi et al., 2019; Zhao et al., 2015).
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Fig. 3.1. Basal crop coefficient curve during for the four stages throughout the growing
season (Allen and Pereira, 2009).

3.2.2. Evaporation reduction coefficient (Ke)

The evaporation coefficient (Ke, unitless) is calculated based on daily computation of the
water balance for the surface soil evaporation layer with depth equal to Ze (in m). Ke
depends on the evaporation reduction coefficient (Kr, unitless) as well as the exposed and
wetted soil fraction (few), which can be expressed as follows:

Ke = Kr(Kcmax — Kcb) < fouw KCmax Eq. 3.3

where Kcmax is the maximum value of Kc following rain or irrigation representing an
upper limit on the E and T from any cropped surface, which is calculated as follows:
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h\°%3 Eq. 3.4
Kcpgy = max {1.2 + (0.04(uy — 2) — 0.004(RH, i, — 45)) (5) ,

Kcb + 0.05}

where h (m) is the mean plant height during the growing stage of calculation (initial,
development, mid-season, or late-season), and the max{ } indicates the selection of the
maximum Kcmax value, ensuring that Kcmax is always greater or equal to Kcb+0.05. Kcmax
can range from about 1.0 to 1.3.

Kr represents the water status of the top surface evaporable layer (Ze) that is estimated
as follows.

k = LEW = Deis Eq.3.5
" TEW — REW

where TEW (mm) is the total evaporable water, REW (mm) is the readily evaporable
water and De,-1 (mm) is the cumulative water depletion from Ze of the previous day. Kr
(0 -1) is maintained constant when De,-1 is smaller than REW, otherwise it is lower than
1. TEW depends on the soil parameters such as the soil moisture at field capacity (SMrc)
and at the wilting point (SMwr) and the depth of Ze, which is set constant equal about 0.10
-0.15m.

TEW = 1000(SMg¢ — 0.55M,,,))Z, Eq. 3.6

Another parameter referred to as the fraction of exposed and wetted soil fraction (few)
is needed for the calculation of Ke. Since the soil is fully wetted following flood irrigation
or rainfall, the parameter few depends only on fraction of vegetation cover (fc), which is
estimated from Kcb according to Allen et al. (1998). SMwp and SMrc the soil moisture at
permanent wilting point (below which water is not accessible to plants) and the soil
moisture at field capacity (above which water cannot be held against gravitational
drainage), respectively. Allen et al. (1998) propose values of the soil parameters (SMwe,
SMrc and REW) for different soil texture classes.

3.2.3. Water stress coefficient (Ks)

Similarly to the Kr estimation, the water stress coefficient (Ks, unitless) is calculated
based on daily computation of the water balance for the root-zone layer Zr (m) as follows:

- TAW —D, _ TAW —D, Eq. 3.7
ST TAW — RAW ~ TAW(1 —p)
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where Dr (mm) is root zone depletion, TAW (mm) is total available soil water in the root
zone, and p is the fraction of TAW that a crop can extract from the root zone without
suffering from water stress. TAW is estimated as the difference between the water
content at field capacity and wilting point:

TAW = 1000(SMg¢ — SM,,,)Z, Eq.3.8

The rooting depth Zr is assumed to vary between a minimum value (maintained during
the initial crop growth stage and equal to Ze) and a maximum value (reached at the
beginning of the mid-season stage).

Water stress occurs when Dr becomes greater than RAW (Ks < 1). In contrast, when Dr is
lower than RAW, Ks is equal to 1. Dr is calculated from the daily water balance as follows:

Dr; = Dr;_, + ET; — P, — I, + DP; — CR; + RO; Eq.3.9

where P is the precipitation, DP the deep percolation, CR the capillarity rise, RO the
surface runoff and I the irrigation. Every term is expressed in mm for the day i (and i-1
for Dr). In agricultural areas with flat surfaces and water table significant deep (several
meters of depth) CR and RO can be assumed negligible.

In Eq. 3.7, p values for several crop types are recommended by Allen et al. (1998) for ET
rates without stress (Ks=1) of 5 mm day-l. These values should be adjusted when ET
differs from this rate and should be limited between 0.1 and 0.8 according to the crop and
climatic demand. For winter wheat, a p value of 0.55 is recommended. In this work, p was
considered constant for simplicity given that the difference between using a p fraction
constant and adjusted by ET rates was negligible. The comparison between ground-based
ET (from eddy covariance) against ET estimates from standard FAO-2Kc by using a p
fraction constant and by using a p fraction adjusted by potential ET obtained almost the
same RMSE and R? (not shown here), with a variation lower than 1%.

3.3. Remote sensing data integrated into FAO-2KCc

One of the main issues of the FAO-2Kc is the need of parameters and coefficients that are
taken from the proposed values by Allen et al. (1998) and should be usually calibrated
against in situ ground-based transpiration or ET estimates. To overcome this issue,
several studies have estimated these coefficients from remote sensing data. One of the
first studies that related the crop development, transpiration and canopy reflectances
was developed in the beginning of 1980s (Jackson et al., 1981). Then, several studies have
used remote sensing data along with FAO-56 in order to estimate crop coefficients from
remotely sensed spectral reflectance or derived vegetation indices (e.g. Bausch, 1995;
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Calera et al,, 2017; Choudhury et al., 1994; Duchemin et al., 2006; Er-Raki et al., 2007).
The coupling between FAO-2Kc and vegetation indices (VI) have shown a significant
improvement against the standard FAO-2Kc. Despite the demonstrated improvements of
the Kcb-based vegetation index in the performance of FAO-2Kc, some of these works have
been used to estimate crop ET under standard conditions such as without undergoing
water stress. In order to address this issue, the LST derived from thermal infrared data
has been used for taking into account the water stress given the strong link between the
land surface/canopy temperature and water status (Jackson et al., 1981; Moran et al.,,
1994). Thus, Er-Raki et al. (2008) assimilated remote sensed LST-derived ET estimates
into the FAO-56 single crop coefficient approach to improve the ET estimates from the
FAO-56 model. They used temporally-sparse available thermal data together with a
surface energy balance to estimate the ET, which was assimilated into the FAO model to
estimate daily ET estimates over an olive orchard in a semi-arid region. The LST-derived
ET allowed detecting water stress periods that the FAO model alone was not able to
identify. In recent works, water stress indices as Ks used in FAO-2Kc was retrieved from
LST data (Dejonge et al., 2015; Thuoma and Madramootoo, 2017; Kullberg et al., 2016).

In such a way, it has been widely demonstrated the potential and utility of the use of
optical/thermal data in the estimation of coefficients of FAO-2Kc, especially for
estimating the Kcb and Ks. However, its operational application to large scales (e.g.
irrigation perimeter) still faces two critical issues: the unavailability (over most irrigated
areas) of real- or near-real time irrigation data at the field scale, and 2) the difficulty in
modeling RZSM from meteorological data alone. These issues are essential to apply the
FAO-2Kc over irrigated areas where the irrigation is the main input of water. Therefore,
the water supply allows forcing the model and determining the root-zone depletion or
RZSM that controls ET. Consequently, knowledge and quantification of irrigation data
spatially distributed over extended areas is still outstanding in order to estimate the
water budget components that allow monitoring the water managements over
agricultural areas.

3.4. Estimating water budget components from
ground-based optical /thermal data

The FAO-2Kc is a water balance model forced by the water supply (i.d. precipitation and
irrigation) that allows simulating the soil water availability for soil evaporation and plant
transpiration. The water balance is expressed by means of the water depletion from the
soil surface layer (De) and the root zone (Dr) and both allow adjusting the evaporation
and transpiration rate, respectively, through the Kr and Ks coefficients. Despite the
irrigation at field scale being a critical input for monitoring the crop water management
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in irrigated agricultural areas, it is one of the water balance components least
investigated in terms of estimation spatially distributed.

In order to address this critical issue, we propose an approach to retrieve/invert the
irrigation from optical/thermal-derived estimates and then re-analyze the water budget
components (ET and RZSM) from the FAO-2Kc forced by the retrieved irrigation. For this
purpose, the approach seeks to take advantage of: i) the simplicity and robustness of the
thermal-based contextual ET models, ii) the utility of LST/VI data for water budget
components (evaporation/transpiration, RZSM) and iii) the availability of LST/VI data at
a spatial resolution suitable for monitoring crops (~100 m).

The method is developed and assessed by using ground-based optical/thermal data,
specifically LST and NDVI. Thus, we avoid uncertainties coming from atmospheric
corrections and other error sources related to instrument and satellite observations.

The basic idea behind the approach is to retrieve irrigation from a water balance model
and a fist-guess RZSM estimated from optical/thermal-derived indices as proxy of the
water status. LST can be related to the RZSM by means of the canopy temperature and its
associated transpiration (Boulet et al., 2007; Hain et al., 2009; Moran et al., 1994) given
the coupling between the surface energy and water balance (e.g. Wetzel et al., 1984).
Hence, one key step to estimate thermal-derived RZSM is the partitioning of LST into soil
and canopy temperatures (Merlin et al.,, 2014, 2012b; Moran et al,, 1994). Here, we adopt
a thermal-based contextual model to partition the LST given its simplicity and robustness
for a further application over extended areas. In the next section the partitioning method
is described as well as how it is implemented.

RZSM

First-guess ..
[LST/NDVI] [WaterStress] [ R7SM J Irrigation

ET

Fig. 3.2. Flowchart of the estimation of the main crop water budget components
(irrigation, RZSM and ET) from the main intermediate variables.

3.4.1. Implementation of a contextual method at in
situ level
The use of contextual information contained in remotely sensed images is a key

advantage of the image-based approach, allowing avoiding some parameterization, in
situ data and high accurate satellite observations required as input for other models. The
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methods are usually based on a polygon defined in the LST-VI feature space, which is able
to detect the full range of surface conditions (in terms of water status and vegetation
cover) within the study domain. The dry to well-wetted and bare soil to full-cover
vegetation conditions are detected by means of four temperature endmembers: the
maximum temperature of a fully dry bare soil (Tsmax), the minimum temperature of a fully
wet bare soil (Tsmin), the maximum vegetation temperature of a fully stressed vegetation
(Tvmax) and the minimum vegetation temperature of a well-watered unstressed
vegetation (Tvmin). Given that this feasibility study is implemented by using in situ
measurements the full range of surface conditions cannot be observed at a given time, the
temperature endmembers in the LST-VI space are simulated from a surface energy
balance as in some studies (e.g. Malbéteau et al., 2017; Moran et al.,, 1994; Stefan et al,,
2015). In this study, Tsmin and Tsmax are simulated by a soil energy balance model as
described in detail in Appendix 2. Tvmin and Tvmax are estimated from the air temperature
and the soil temperature endmembers (Tsmax and Tsmin) since the estimation of canopy
resistance can be complex due to the need of some parameters (as vegetation height)
difficult to obtain from remote sensing. Thus, Tvmin is set to the air temperature and Tvmax
is defined by assuming that the difference between Tsmax and Tsmin is the same that
between Tvmax and Tvmin, as in Stefan et al. (2015). In this last work, these assumptions
resulted in a RMSE equal to 65 Wm-2between in situ ET and ET estimates from the surface
energy balance SEB-1S (Merlin, 2013). Once the polygon is defined in the LST-VI space,
the LST is linearly decomposed into its soil and vegetation components to be consistent
with the contextual approach and as a good approximation of the relationship with fourth
power for temperatures (Anderson et al., 1997; Merlin and Chehbouni, 2004) as follows:

LST = fcTv + Ts(1 — fc) Eq. 3.10

Where fc is the fraction of total vegetation cover, Tv and Ts are the vegetation and soil
temperature, respectively. Tv and Ts are obtained from the polygon constrained by the
temperatures endmembers defined in the LST - fc space, by using a combination between
the ‘hourglass’ approach (Moran et al, 1994) and the procedure to obtain the
Temperature Vegetation Dryness Index (TVDI, Sandholt et al, 2002). Although in
previous works the NDVI, the soil-adjusted vegetation index (SAVI) and fraction of green
vegetation (fvg) have been commonly used in the LST-VI space, in this study we propose
to use the fc. The fc is estimated from fvg as is described in Section 2.2.5. fc is preferred
instead of fvg because during the late stage when vegetation is senescent, in the polygon
the surface represented by the pair (VI,LST) is confused with bare soil, affecting the
partition of LST.

The partitioning procedure is mainly focused on the ‘hourglass’ approach, in which Tv
and Ts are estimated as the most probable vegetation and soil temperatures. Most
probable (vegetation and soil) temperatures are defined as the average between the
minimum and maximum possible (vegetation and soil) temperatures associated to the
temperature endmembers and the linear decomposition of the Eq. 3.10 (Merlin et al,,
2012b; Moran et al,, 1994). Here, in the polygon we can identify four areas distinguished
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in the LST - fc space, which are constrained by the diagonals of the polygon (Fig. 3.3). In
zone A, LST is mainly controlled by soil evaporation being more sensitive to SSM. In zone
D, LST is mainly controlled by vegetation transpiration being more sensitive to RZSM. In
zones B and C, LST is controlled by both soil evaporation and vegetation transpiration
with intermediate sensitivity to SSM and RZSM. Based on this understanding, Tv and Ts
are estimated according to each zone, which are illustrated in the Fig. 3.3 for clarity. In
zone A, this procedure makes Ts constant and equal to the average between Tsmax and
Tsmin, whereas in zone D, Tv is constant and equal to the average between Tvmax and TvVmin.
Therefore, this approach would not allow detecting the temporal dynamics of the water
status during the periods when the (fc, LST) pair belongs to the zone A or D. To overcome
this issue, Tv and Ts are estimated according to the TVDI method in the zone A and D,
respectively, as shown in Fig. 3.3. The TVDI method allows obtaining linearly the
evaporative fraction (EF) as has been estimated in several contextual method from
isopleths that can be drawn in the polygon (Jiang and Islam, 2003; Long and Singh, 2012;
Merlin et al., 2014; Sandholt et al., 2002). Then, the TVDI allows obtaining Ts and Tv
directly from the isopleths of trapezoid approach as illustrated in the right plots of Fig.
3.3. The isopleths are estimated as the ratio of the distance separating the point (fc, LST)
from the dry edge to the distance separating the dry and wet edges.

The partitioning method is applied every day along the agricultural season by using the
ground-based LST averaged between 10 am and 2 pm, which are consistent with the
overpass times of current thermal satellite missions. Therefore, the temperatures
endmembers are also simulated every day from the soil surface energy balance and the
meteorological data for the same period.
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Fig. 3.3. Polygon defined in the LST-fc space where four distinct zones A, B, C, and D are
constrained. Tv and Ts are estimated from the hourglass approach (left plots) as in Merlin
et al, (2012) except in zones A and D, where Tv and Ts are estimated respectively from
TVDI method to avoid constant values (right plots). In the hourglass approach, the
interception of the grey dotted lines in the bare soil (fc=0) and in the full-cover vegetation
(fc=1) edges represent the maximum and minimum soil and vegetation temperatures,
which are averaged to estimate the most probable Ts and Tv, respectively.

3.4.2. Root-zone and soil surface water status from
optical/thermal data: Ks and Kr estimation

The partitioning method described above is a key procedure to differentiate the relation
between the LST and the soil and crop water status by means of the SSM and RZSM and
the associated Ts-evaporation and the Tv-transpiration relationships. Like EF has been
estimated from contextual method as a ratio of ET to available energy or to potential ET,
aratio can be estimated for the evaporation and transpiration separately from Ts and Tv,
respectively. The ratio for the evaporation and transpiration reflects the surface and root-
zone layer, respectively, namely the Kr and Ks used in the FAO-2Kc model. As the EF is
estimated as the ratio of the maximum to actual LST difference to the maximum to
minimum LST difference, Ks and Kr are estimated from the vegetation and soil
temperatures, respectively, as follows:

TSpmax —Ts Eqg. 3.11
K =
TLsT Tsmax - TSmin
Tv, —Tv
KSLST _ max Eq 3.12

Tvmax - Tvmin

where Ts and Tv correspond to the temperature of the soil and vegetation component
derived from the partitioning method presented above, and the rest of terms are the
temperature endmembers simulated from the soil energy balance and meteorological
data.

3.4.3. First-guess water budget components
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3.4.3.1. Evapotranspiration and its partition

In FAO-2Kc model, the water balance is represented by the estimation of the daily
depletion De and Dr for the top soil surface and root-zone layer, respectively. Given that
daily values of Kr and Ks are estimated from optical /thermal data, the computation of the
soil water balance from FAO-2Kc model is avoided. Thus, the evaporation and
transpiration coefficients can be adjusted by thermal-derived coefficients without the
need for the water supply from precipitation and irrigation data and the use of
parameters such as SMrc, SMwe, Ze and Zr. Then, a thermal-derived ET (ETwist) is
calculated from the FAO-2Kc formulation (Eq. 3.1) by using the standard values of Kcb
proposed by Allen et al. (1998) and the Krist and Ksist estimated from Eq. 3.11 and Eq.
3.12, respectively. It should be noted that the Kcb was previously evaluated and
calibrated with in situ data over this experimental site in Er-Raki et al. (2007). However,
this study is only focused on the feasibility and potential of thermal-derived coefficients
for computing the water budget components, regardless of water supply to force the
water balance modeling. Therefore, the thermal-based FAO-2Kc was evaluated by using
the default Kcb values proposed by Allen et al. (1998). Er-Raki et al. (2007) calculated the
Kcb from three methods: i) following the Kcb values proposed by the standard FAO-2Kc
procedure (No-Calibration FAO-2Kc), ii) calibrating the Kcb from field measurements
(Local-Calibration FAO-2Kc), and iii) calibrating the Kcb from ground-based NDVI (NDVI-
Calibration FAO-2Kc). They demonstrated on one side the need of local calibration to
accurately estimate the ET by means of standard FAO-2Kc, and on the other side, the
utility and potential of ground-based vegetation indices to calibrate the Kcb and improve
the ET estimates. For instance, they found an important difference (of 18%) between the
locally calibrated and non-calibrated Kcb and hence in ET estimates, indicating that the
wheat field was not growing in optimal conditions. Therefore, the proposed approach in
this study (thermal-based FAO-2Kc) is compared against the standard FAO-2Kc and also
with the method calibrated by Er-Raki et al. (2007) in order to assess the performance of
the proposed method.

In the Fig. 3.4, the comparison between the temporal series of ET and its partition into
evaporation and transpiration from the different FAO-2Kc methods is depicted along the
agricultural season. Both locally calibrated methods (NDVI- and Local-Calibration
methods) and the thermal-based FAO-2Kc show ET estimates more accurate than that of
the standard FAO-2Kc. Although the locally calibrated methods obtain the best
agreements and most accurate estimations (in terms of R2 and RMSE), the proposed
thermal-based FAO-2Kc obtains a performance very similar (R? equal to 0.75 and RMSE
equal to 0.65 mm d-1), with a bias and slope even lower and closer to 1, respectively.
Nonetheless, the use of EC measurements for calibration (as was used in the Local-
calibration method) is a strong limitation for application of the FAO-2Kc method to large
areas. It should be noted that in the late season, the ET from standard, NDVI-calibration
and Local-calibration methods obtain an underestimation with respect to the in situ ET
and that from the thermal-based method. It might be explained by the fact that the three
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first methods does not take into account the capillarity rise in the water balance model
while the thermal-based method estimate the stress coefficient by the canopy
temperature without regarding the water balance. The effect is more significant in late
season when plants undergo water stress because capillarity rises are more important
under stress conditions. Therefore, specific conditions (e.g. water stress, crop phenology)
can be detected by the proposed approach avoiding both the use of parameters (e.g. SMrc,
SMwe, Ze, Zr) and the local calibration of Kcb that requires field-specific measurements.
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Fig. 3.4. Comparison of evapotranspiration (ET), transpiration (T) and evaporation (E)
temporal series over the R3-4ha site (winter wheat field) for the 2002-2003 season
estimated from the a) standard, b) NDVI-calibration, c) Local-calibration and d) thermal-
based FAO-2Kc. The ground-based ET (ETobs) and ETo are depicted for reference. The
validation of ET from every method against ETobs is shown by means of bias, RMSE, R2
and slope of the linear regression.
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3.4.3.2. Root-zone soil moisture

The root-zone depletion (Dr) together with some soil parameters used to estimate the
total available water (TAW) can be translated to RZSM as follows:

Eq.3.13

Dy

TAW

Since the Ks reflects the root-zone water status and is estimated from Dr and TAW
(according to Eq. 3.7), the Eq. 3.7 can be inserted into the Eq. 3.13 in order to express the
RZSM as a function of Ks during stressed periods (Ks<1, Dr<RAW), as follows:

RZSM = SMyp + Ks;gr(1 — p) (SMpc — SMy,p) Eq.3.14

Note that the equation above is only valid for stressed periods given that if a Ks equal to
1 for unstressed periods is used, RZSM would be equal to the critical RZSM from which
the stressed conditions end (SMrthreshold). According to the values of SMwe, SMrc and p used
in this study (0.17, 0.37 and 0.55, respectively), the SMrhreshoid is equal to 0.26. Therefore,
the thermal-derived Ks is not able to estimate the RZSM for the range from SMThreshold to
SMrc. During unstressed periods, RZSM from Eq. 3.14 is thus corrected dynamically for
both cumulated precipitation and cumulated ETwist during this period through a daily
water balance. If the RZSM reaches a maximum value set to SMrc then the RZSM is reset
to the SMrhreshold to carry on the correction in the remaining unstressed period.

The first-guess RZSM for the winter wheat field during the growing season 2002-2003 is
shown in the Fig. 3.5. Four periods with steady increase in RZSM are detected, showing
significant water supplies.

3.4.4. Re-analysis of water budget components

3.4.4.1. Irrigation retrieval

Once the daily first-guess (thermal-derived) RZSM is estimated throughout the complete
growing season (as is shown in the Fig. 3.5), the water inputs can be detected from the
RZSM dynamics. When significant increases in first-guess RZSM cannot be attributed to
precipitation, they are attributed to water supply by means of irrigations. In such a way,
irrigation is detected based on significant increase, which is considered with a RZSM
change larger than a threshold value set to 0.02 m3m-3, representing a water supply
greater than 10 mm for a 0.5 m root-zone depth. The amount of retrieved/inverted
irrigation (Iinv) is constrained through the computation of a water budget for the periods
with steady increase in RZSM. The water budget is computed from the amounts of
precipitation as inflow and the LST-derived ET as outflow, as well as the drainage if it is
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produced by precipitation. Note that the irrigation excess that triggers deep percolation
is not possible to be detected by this approach. Therefore, the retrieved irrigation is an
effective irrigation: irrigation minus drainage. If an irrigation of a minimum threshold of
10 mm is detected for the period with steady increase in RZSM, the estimated date of
irrigation is set as the last date of this period, in order to make the maximum thermal-
based RZSM consistent with the maximum RZSM simulated from FAO-2Kc.
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Fig. 3.5. First-guess (thermal-derived) RZSM (RZSMList) over the winter wheat field R3-
4ha for the season 2002-2003. RZSMuist during unstressed periods when Ks=1 is
corrected through a water budget (RZSMust,cor). The periods of significant increase in
RZSMLst,cor are marked in the x axis (cyan) where the water budget is computed in order
to invert the irrigation. In this case, three irrigation events are detected of the four periods
where a water balance was applied (blue bars). The grey bars show the precipitations.

In the Fig. 3.5, although four periods are detected with significant increase in RZSM, only
three irrigation events were detected from the inversion of the water budget though. The
period when no irrigation is detected is due to precipitations that significantly increased
RZSM according to the computation of the water budget.

3.4.4.2. FAO-2Kc forced by retrieved irrigation

The irrigation retrieved from first-guess RZSM and thermal-derived ET is finally used as
forcing to the FAO-2Kc, from which ET (partitioned into evaporation and transpiration)
and RZSM can be estimated at daily and crop field scales. The standard FAO-2Kc is
implemented by using the default (non-calibrated) parameters given by Allen et al.
(1998), but with the difference that the retrieved irrigation (amounts and dates) is
introduced as forcing. Thus, ET is estimated according to the Section 3.2 and specifically
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from the Eq. 3.1, while RZSM is estimated directly from Eq. 3.13. Here, Dr is controlled by
the retrieved irrigation through the water balance implemented in the Section 3.2 for its
full range from Dr equal to 0 (RZSM = SMkc) to Dr equal to TAW (RZSM = SMwe).

The Fig. 3.6 shows the validation of RZSM from FAO-2Kc forced by the retrieved irrigation
(RZSMFao+Lst). The validation of the first-guess RZSM is also shown in order to notice the
significant improvement obtained in RZSMrao-Lst. Although the first-guess RZSM shows
a poor accuracy with a RMSE of 0.061 m3m-3 and a R2 of 0.42, it is shown an acceptable
representativeness of the temporal variability of RZSM that can be seen in the ability to
detect the irrigation dates and amounts. Regarding to the first-guess RZSM, RZSMrao-+Lst
is significantly improved with a RMSE of 0.034 m3m-3, R2 of 0.67 and the bias is completely
removed. In addition, the results are very close to those when the actual irrigation is used
as forcing in the FAO-2Kc (RMSE equal to 0.032 m3m-3 and R? equal to 0.73).
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Fig. 3.6. LST-derived RZSM (RZSMList) and FAO-simulated RZSM by forcing the FAO-2Kc
model using retrieved irrigation (RZSMrao+Lst) versus ground-based RZSM.

3.5. Summary and conclusions

A new approach in the calculation of water budget components, including for the first
time the estimation of irrigation amounts and timing, is developed by integrating LST
data into the FAO-2Kc model. The approach involves: 1) the estimation of first-guess
RZSM from thermal-derived Ks during stressed periods (Ks < 1) and its correction
through a water budget during unstressed periods (Ks = 1); 2) the estimation of irrigation
amounts and dates along the season from (first-guess) LST-derived RZSM and ET
estimates; and 3) the use of retrieved irrigations to force FAO-2Kc to simulate RZSM and
ET on a daily basis. The methodology is tested by using ground-based LST and NDVI over
an irrigated winter wheat field in the semi-arid region Haouz plain in central Morocco
during the 2002-2003 growing season. RZSM and ET are daily estimated along the
growing season and they are compared against in situ measurements.
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the FAO-56 dual crop coefficient with surface temperature and vegetation index data

Statistical results indicate that thermal-derived ET (ETwLst) is more accurate than the ET
from the standard version of FAO-2Kc. The RMSE and slope of the linear regression
between estimated and observed ET is decreased from 0.84 to 0.68 mm day-! and from
1.21 to 1.07, respectively. Regarding RZSM, results indicate that first-guess RZSM is
significantly improved when FAO-2Kc is implemented by using retrieved irrigation. The
R? and slope of the linear regression between simulated and observed RZSM is increased
from 0.42 to 0.67 and from 0.46 to 0.78, respectively, while the RMSE is decreased from
0.06 to 0.03 m3m-3 and the bias of -0.04 m3m-3 is removed. Results thus show that the
proposed approach combining FAO-2Kc and LST/VI data is able 1) to accurately estimate
the crop ET using the default (non-calibrated) parameters given by Allen et al. (1998), 2)
to estimate the irrigation amounts and dates and 3) to accurately simulate RZSM.

This new methodology demonstrates the feasibility of retrieving the irrigation and then
the related water budget components from optical/thermal data. However, this study is
implemented by using remote sensing ground-based LST and NDVI at in situ level.
Therefore, the approach need to be implemented by using satellite data in order to
demonstrate its real applicability. The use of satellite data raises new challenges that
need to take into account the nature of these data, in terms of spatial resolution,
estimation methods, and notably a weaker and more variable temporal frequency.
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ARTICLE INFO ABSTRACT

Keywords: The FAO-56 dual crop coefficient (FAO-2Kc) model has been extensively used at the field scale to estimate the
Evapotranspiration crop water requirements by means of the simulated evapotranspiration (ET) and its two components evaporation
Root-zone soil moisture (E) and transpiration (T). Given that the main limitation of FAO-2Kc for operational irrigation management over
;‘T‘S;a;';" large areas is the unavailability (over most irrigated areas) of irrigation data, this study investigates the feasi-

bility 1) to constrain the FAO-2Kc ET from LST and VI data, 2) to retrieve irrigation amounts and dates from LST
and VI data and 3) to estimate the root-zone soil moisture (RZSM) at the daily scale. In practice, the vegetation
and soil temperatures retrieved from LST/VI data are used to estimate the FAO-2Kc vegetation stress coefficient
(Ks) and soil evaporation reduction coefficient (Kr), respectively. The modeling and remote sensing combined
approach is tested over a wheat crop field in central Morocco, and results are evaluated in terms of ET, irrigation
and RZSM estimates. ET is estimated with a RMSE of 0.68 mm day-1 compared to 0.84 mm day-1 for the
standard (without using LST data) FAO-2Kc based on tabulated values for the parameters. The total irrigation
depth (67 mm) is correctly estimated and is very close to the actual effective irrigation (69.8 mm) applied by the
farmer. Daily RZSM is estimated with an R2 value of 0.68 (0.42) and a RMSE value of 0.034 (0.061) m3 m-3 by
forcing FAO-2Kc using the retrieved irrigation (from LST-derived estimates and precipitation only). Since
spaceborne LST data are currently not available at both high-spatial and high-temporal resolution, a sensitivity
analysis is finally undertaken to assess the potential and applicability of the proposed methodology to tempo-
rally-sparse thermal data.

Surface temperature

1. Introduction root-zone, respectively. This model is often chosen for its simplicity and

operational basis as it requires few input data comprised of phenolo-

Agriculture is an important pressure on water resources, especially
in arid and semi-arid regions where irrigation can consume more than
80% of the available water (Chehbouni et al., 2008; Jarlan et al., 2015).
Accurate estimation of evapotranspiration (ET), which critically de-
pends upon the root-zone soil moisture (RZSM), is hence paramount to
determine the crop water requirements and consequently to optimize
the on-farm irrigation management.

The FAO-56 dual crop coefficient (FAO-2Ke, Allen et al., 1998)
model has been extensively used at the field scale to estimate the crop
water requirements by means of the simulated ET. In FAO-2Kc, the total
ET is partitioned between the soil evaporation (E) and the plant tran-
spiration (T) by using a daily water balance for the topsoil layer and the
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gical, standard meteorological and irrigation data. In addition, FAO-2Kc
provides quite acceptable ET estimates when compared to more phy-
sically based -but often over-parameterized models (Allen, 2000; Er-
Raki et al., 2008; Kite and Droogers, 2000). To better constrain the
phenological stages in the FAO model, the basal crop coefficient (Kcb)
has been related to satellite based vegetation index (VI) (Er-Raki et al.,
2010, 2007; Gonzalez-Dugo and Mateos, 2008; Hunsaker et al., 2005),
showing a significant improvement. However, its operational applica-
tion to large scales (e.g. irrigation perimeter) still faces two critical is-
sues: 1) the unavailability (over most irrigated areas) of real- or near-
real time irrigation data at the field scale, and 2) the difficulty in
modeling RZSM from meteorological data alone.
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In other hand, land surface temperature (LST) derived in the
thermal infrared has been widely used for estimating ET and water
stress indices (e.g. Kalma et al., 2008; Li et al., 2009). LST has been also
assimilated into the FAQO method (Er-Raki et al., 2008), and more re-
cently, used in FAO-2Kc to retrieve the water stress coefficient (Ks)
(Dejonge et al., 2015; Thuoma and Madramootoo, 2017; Kullberg et al.,
2016). Among the variety of available approaches, the so-called con-
textual approach is quite attractive for operational applications, as it
requires few input data. Contextual ET models estimate the ratio of
actual ET to either potential ET (Moran et al., 1994) or available energy
by using the remotely sensed LST — VI (Long and Singh, 2012) and/or
LST - albedo space (Merlin, 2013; Roerink et al., 2000). In addition to
the demonstrated utility of LST for estimating ET, its use has been ex-
tended to the retrieval of other components of the water budget, in-
cluding RZSM (Calvet et al., 1998; Crow et al., 2008).

The relationship between RZSM and LST is explained by the link of
the canopy temperature to the T rate under water-stress conditions, that
is when RZSM is not sufficient to maintain a potential T rate (Boulet
et al., 2007 Hain et al., 2009; Moran et al., 1994). Several studies have
hence derived RZSM through the assimilation of LST or thermal-based
proxy variables into land surface models (Calvet et al., 1998; Crow
et al., 2008; Hain et al., 2012; Li et al., 2010). Moreover, with Landsat
and ASTER thermal data, the spatial resolution that is potentially
achievable for RZSM retrievals is 100 m. Note however that one key
step in the estimation of thermal-based RZSM estimates over partially
vegetated surfaces is the partitioning of the observed LST into soil and
canopy temperatures (Merlin et al., 2014, 2012; Moran et al., 1994).
Moran et al. (1994) proposed the water deficit index (WDI) to estimate
a most probable range of crop water stress over partially vegetated
pixels, which is obtained from the aforementioned LST — VI space
(contextual method). This crop water stress index is equivalent to the
RZSM normalized by the soil moisture at field capacity and by the soil
moisture at wilting point (Bastiaanssen et al., 2000). In the FAO
formalism, the same thresholds are set for Ks equal to 1 (soil moisture at
field capacity) and for a Ks equal to 0 (soil moisture at wilting point).

In order to take advantage of: i) the simplicity and robustness of the
thermal-based contextual ET models, ii) the utility of LST/VI data for
water budget components (E/T, RZSM) and iii) the availability of LST/
VI data at a spatial resolution suitable for monitoring crops; this study
proposes an original approach to better constrain the water budget
components of FAO-2Kc from LST and VI data. In practice, the ap-
proach seeks to retrieve the irrigation volumes and dates from first-
guess (LST-derived) ET and RZSM, and to re-analyze all water-budget
components (including ET and RZSM) from the retrieved irrigation
data. In this study, the new methodology is tested by using ground-
based observations of LST/VI, evaluated against ET, RZSM and irriga-
tion observations. A sensitivity analysis is carried out in order to assess
the applicability of the approach to remote sensing data.

2. Data sets

The experimental site (31°409.46”N, 7°35'45.64”0, 575m above
mean sea level) is located over an irrigated area in the semi-arid Haouz
plain in the centre of Morocco (Fig. 1). The study focuses on a winter
wheat crop, which is an irrigated unit that includes six fields of 4 ha
each, from January to May 2003. More details about the experimental
site can be found in Duchemin et al. (2008, 2006); Er-Raki et al. (2007)
and Toumi et al. (2016). Variables of the surface energy and water
balance as well as soil and vegetation characteristics were monitored
during the entire growing cycle. The data set is described below.

2.1. Meteorological and flux data
Meteorological data including air temperature, solar radiation, re-

lative humidity and wind speed were monitored throughout the agri-
cultural season at a semi-hourly time step from January 14 until May
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27, 2003. The four components of net radiation were measured by using
a CNR1 radiometer (Kipp and Zonen). An eddy covariance (EC) system
was installed over a winter wheat field to measure the latent and sen-
sible heat fluxes. The data were recorded from high frequency (10 Hz)
measurements of turbulent structures: a 3D sonic anemometer (CSAT3,
Campbell Scientific), which measured the fluctuations in the wind ve-
locity components and temperature; and an open-path infrared gas
analyzer (Li7500, Licor), which measured concentration of water vapor
and carbon dioxide.

2.2, Soil moisture data

Six time domain reflectometry (TDR) probes (CS615, Campbell
Scientific) were installed in a soil pit near the fluxes measurement
tower to measure soil water content at different depths (5, 10, 20, 30,
50 and 100cm) every 30min. The average ground-based RZSM
(RZSM,;,s) was estimated by interpolating the soil moisture observa-
tions of the different depths belonging to the root-zone of wheat as
follows:

_ dESMd‘ + (dr'+1_di)SMdH1+---+(dn_dn71)SMdn
dy + (dig—d)+..+(d—d, 1)

RZSM s

m
where SMy (m®m™3) is the soil moisture measured at depth d;
(5-100 cm) and d,, is the deeper depth where there is a measurement
that belongs to the root-zone. In this study, it is assumed that rooting
depth varies according to the crop growth stages, so that different
measurements are considered in the Eq. (1). The variation and values of
rooting depth is detailed in the Section 3.1.2.

2.3. Irrigation data

Four irrigation events were applied in the field along the growing
season by flooding with about 24 mm of water regardless of the pre-
cipitation and thus of soil moisture conditions. The sowing and the ir-
rigation dates are listed in Table 1.

2.4. Fractional green and total vegetation cover

Given that green vegetation cover is commonly estimated from re-
mote sensing data using empirical relations with vegetation indices, in
this study the fractional green vegetation cover (fvg) is estimated from a
linear relationship with NDVI (Normalized Difference Vegetation
Index) as in Gutman and Ignatov, 1998:

_ NDVI-NDVI,

Joe = NDVI,—NDVI,

2)
where NDVI is the near-infrared to red reflectance difference divided by
their sum and NDVI; and NDVI, correspond to NDVI for bare soil
(fvg = 0) and fully covering green vegetation (fvg = 1), respectively.
The NDVI, was equal to the minimum value measured in the field (0.14)
and NDVI, was defined at 0.93 after looking at maximum values taken
on individual plots over the study area (Duchemin et al., 2006).
Ground-based surface reflectance data over the field were collected
using a MSR87 multispectral radiometer (Cropscan Inc., USA) every
week. Fifteen sets of canopy reflectance measurements were made be-
tween January 8 and May 27, 2003. More details about the NDVI
measurement procedure can be found in Er-Raki et al. (2007). The
fractional total vegetation cover (fc) is derived from fvg by assuming
that once fvg has reached its maximum value, it keeps equal to this
maximum value until the end of the study period. fc was also measured
using a hemispherical digital camera equipped with a fisheye lens with
a field-of-view of 183°. Comparing the fvg- and photo-derived fc esti-
mates before the maximum value of fvg revealed a good agreement
(data not shown here). The values of root mean square error (RMSE)
and coefficient of determination (R?) were equal to 3.5% and 1.0, re-
spectively.



Chapter 3. Retrieving irrigation and water budget components: a feasibility study [ILS

L. Olivera-Guerra et al.

D Wheat field (® EC station [®] Meteorological station

Agricultural Water Management 208 (2018) 120-131

3 kma

-

Fig. 1. Study area.

Table 1
Sowing and irrigation dates.

Sowing and irrigation event Date Days after sowing (DAS)
Sowing date 14 January 0

First irrigation 4 February 22

Second irrigation 20 March 66

Third irrigation 13 April 2

Fourth irrigation 21 April 98

2.5. Land surface temperature

In situ LST was derived from tower-based measurements of thermal
radiances emitted from the surface, which were sampled at 1Hz and
averaged over 30 min. The averaged radiance was converted to LST by
inverting Planck’s law:

Lrad — (1 — ¢)Ldown
£

B(LST) = @

where Lrad is the land leaving radiance (W m~?2) measured by a
thermal radiometer (SI-111, Apogee), ¢ is the land surface emissivity,
Ldown is the long-wave downwelling irradiance (W m™ <) and B(LST) is
Planck’s law for the LST (W m~2sr~ 'um~'). Ldown was retrieved from
the incoming longwave radiation measurement from the net radiometer
(CNR1, Kipp & Zonen). The ¢ was retrieved from the simplified NDVI
threshold method (Sobrino et al., 2008) that weights the soil and ve-
getation emissivity through the fractional green vegetation cover (fvg).
The soil emissivity was measured by Olioso et al. (2007) over the study
area and the vegetation emissivity was considered equal to 0.99
(Amazirh et al., 2017; Sobrino et al., 2008). Only the 30-min LST data
collected between 10 a.m. and 2pm are used in this study, consistent
with the overpass times of current thermal satellite missions (e.g.
ASTER, Landsat, MODIS). In addition to the radiometric LST, the ve-
getation temperature was measured with Type-J thermocouples (seven
replications, one sensor per plant), which were clumped on the vege-
tation apex near the location of the thermal radiometer. The sensors
were changed every week to be set up at the vegetation apex and to
measure the youngest leaves of the plant along the growing season.
Thermocouple measurements will be used to evaluate the vegetation
temperature estimates from the partition method of LST.
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3. Methodology
3.1. Overview of FAO-56 dual crop coefficient method

The FAO-2Kc is a water balance model driven by 1) meteorological
forcing variables to calculate reference evapotranspiration ETp and 2)
precipitation and irrigation that jointly determine the water supply to
simulate the soil water availability for soil evaporation and plant
transpiration. In practice, FAO-2Kc estimates ET by multiplying ET, by
a two separate crop coefficients:

ET = (KsKcb + Ke)ET, 4)
where Kcb is the basal crop transpiration, Ks the stress coefficient (0-1)
that represents the vegetation water status and a reduction factor of T
(Kecb ETg) and Ke the evaporation coefficient. ET, is calculated ac-
cording to the FAO Penman-Monteith equation (Allen et al., 1998) at
daily scale. The values used for Kcb (Kcbyy,;, Keb,yiq and Kebe,g) at the
three crop growth stages (initial, mid-season and maturity respectively)
were taken from Allen et al. (1998). Ks (unitless) is calculated based on
daily computation of the water balance for the root-zone layer Zr (m) as
follows:
TAW-D,

_ TAW-D,
" TAW—RAW ~ TAW (1-p)

K
(5)

where Dr (mm) is root zone depletion, TAW (mm) is total available soil
water in the root zone, and p is the fraction of TAW that a crop can
extract from the root zone without suffering from water stress. Water
stress occurs when Dr becomes greater than RAW (Ks < 1). In contrast,
when Dr = RAW, Ks = 1 (see Fig. 3). Dr is calculated from the daily
water balance. TAW is estimated as the difference between the water
content at field capacity (SMgc) and wilting point (SMyp) by the daily
crop rooting depth (TAW = 1000 (SMgc — SMyp) Zr). The rooting depth
Zr is assumed to vary between a minimum value (maintained during the
initial crop growth stage at 0.1 m) and a maximum value (reached at
the beginning of the mid-season stage). The maximum value was
measured in the field and was equal to 0.52m according to Er-Raki
et al. (2007). The soil parameters SMgc and SMyp were considered
equal to an average value of 0.37 and 0.17 m®m~° respectively, in
accordance with the values recommended by Allen et al. (1998) and
with the minimum and maximum SM observed in the root-zone for the
agricultural season.
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Fig. 2. Schematic diagram presenting an overview of the main inputs, models
and outputs of the LST-integrated FAO-2Kc approach.

3.2. LST-integrated FAO-2Kc: new approach in the calculation of water
budget components

Given that the main limitation of FAO-2Kc for operational irrigation
management over large areas is the unavailability (over most irrigated
areas) of irrigation data at the field scale, a new approach (named LST-
integrated FAO-2Kc) is proposed to derive the water budget compo-
nents from LST and VI data. An overview of the methodology is re-
presented in Fig. 2 and is explained below.

Basically, LST is integrated in the standard FAO-2Kc at two levels:
the ET and SM modeling components. LST is first partitioned into its
soil and vegetation components to force E and T separately via thermal-
derived estimates of Ks and Kr, respectively (ET modeling component).
Note that the thermal-derived Ks is also used to derive a first-guess
(LST-derived) RZSM estimate, based on the FAO-2Kc relationship be-
tween TAW and Ks (SM modeling component). The dynamic of first-
guess RZSM is then analyzed to retrieve the irrigation amounts and
dates. The FAO-2Kc is next forced by the previously retrieved irrigation
and re-analyzed estimates of RZSM (RZSMgpo +1s1) and ET (ETrao +151)
are finally provided. The different components of LST-integrated FAO-
2Kc (namely LST partitioning, thermal-derived Ks and Kr, first-guess ET
and RZSM, irrigation retrieval, and re-analyzed ET and RZSM) are de-
scribed in the following sections.

3.2.1. Partitioning LST

The method used for partitioning LST into vegetation and soil
components relies on the combination between the hourglass approach
(Moran et al.,, 1994) and the procedure to obtain the Temperature
Vegetation Dryness Index (Sandholt et al., 2002). These two methods
are based on the polygon defined in the LST — VI space. Tsy.y is the
temperature of a fully dry bare soil. Tsy,, is the temperature of a fully
wet bare soil. TVpay is the maximum vegetation temperature corre-
sponding to fully stressed (non-transpiring) vegetation. Tvp,, is the
minimum vegetation temperature corresponding to well-watered un-
stressed vegetation (transpiring at potential rate). Since this study tests
the feasibility of the proposed methodology from in situ measurements,
the image-based polygon cannot be plotted to constrain the tempera-
ture endmembers (TSmax, TSminy TVmaxs ©TVmin). Therefore, these tem-
peratures are simulated by using the energy balance model proposed by
Stefan et al. (2015). TSpin and Tspax are simulated by a soil energy
balance model, while Tvpy, is set to the air temperature and Tvpay is
defined according to the assumptions that the difference between Tspax
and Tsuin is the same that between Tvi.x and Tvmi, (Stefan et al,
2015). Once the temperature endmembers have been defined, Tv is
obtained by using the hourglass approach or TVDI method according to
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the position of the (fc, LST) point in the polygon. In practice, the di-
agonals are plotted in the polygon LST - fc space by distinguishing four
areas (evaporation- and transpiration-controlled, unstressed and
stressed mixed surface), as they were defined in Merlin et al. (2012). If
the (fc, LST) point belongs to the unstressed mixed or stressed mixed
zone, Tv is calculated according to Merlin et al. (2012). If the (fc, LST)
point belongs to the evaporation-controlled or transpiration-controlled
zone, Tv is calculated by using the TVDI method, by interpolating the
temperature between the Tvy,a, and Tvy,.

Derivation of Ts is based on a linear decomposition of the LST into
its soil and vegetation components as a good approximation of the re-
lationship with fourth power for temperatures (and consistent with the
contextual approach) as follows:

_ LST—feTv

Ts = ————
1-fc

(6)

3.2.2. Retrieving stress coefficient (Ks) and evaporation reduction
coefficient (Kr) from thermal data

LST data are used to reflect the soil and crop water status by cal-
culating stress indices for the surface and root-zone layer, respectively,
namely the E reduction coefficient (Kr), and the stress coefficient (Ks).
The Ks (Kr) was estimated by relating the vegetation (soil) temperature
to cold and hot extreme temperatures of vegetation (soil) that represent
wet and dry vegetation (soil) as follows:

TSpax—TS
Kiysp = —"——
Ts, max™ Tsmm (7)
TVpax— T
Kspop = —max— 7V
TVmax=TVimin (8

where Ts and Tv correspond to the temperature of the soil and vege-
tation component derived from the partitioning method presented
above.

Given that we have daily LST observation, Ks;sy may show sig-
nificant day-to-day variability associated with uncertainties in the LST
partitioning method, the LST-derived Ks was smoothed to reduce
random uncertainties. A weighting function is applied to the Ksysr va-
lues estimated during a 3-day sliding period:

i+1
KSJ_ST.('ur,x = Z

wiKspsr;i error

Swo ' )

where Ksigrcori is the smoothed Ksigr, w; (0-1) is the weight corre-
sponding to the Ks;sy of day i and the subscript ‘-1’ and ‘i+ 1’ is re-
ferred to the day before and after, respectively. The error is the un-
certainty considered for the LST partitioning method (i.e. uncertainty in
Tv estimates). We define the weight w; such as: i) the higher the (TVax
— TVmmia) difference, the higher the weight w;, and ii) w; is set to 0 for
(TViax — TVmin) < error. The smoothing procedure become necessary
since RZSM is derived from thermal-derived Ks and to obtain a tem-
poral dynamic more consistent with RZSM observations.

Tomas,i—TVmin i

3.2.3. First-guess ET

A thermal-based ET (ET.sy) is calculated by using the FAO-2Kc
formulation (Eq. (4)) and the coefficients Krysy and Ksisr (Egs. (7) and
9.

3.2.4. First guess RZSM

The procedure to estimate first-guess (LST-derived) RZSM is de-
scribed below. RZSM can be derived from the root-zone depletion (D,)
and the soil parameter used in the FAO-56 formalism (SMwp, SMgc,
TAW) as follows:

Dy
TAW

RZSM = SMyp + (l— )(SM;-,C—SMWP)

(10)
By inserting the Eq. (5) into the Eq. (10), RZSM is expressed as a
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function of Ks during stressed periods (Ks < 1, Dr < RAW):

RZSM = SMyyp + Ks.sp (1—p)(SMyc—SMyyp) (11)

Note that for unstressed periods (Ks = 1), RZSM from Eq. (11) would be
equal to the threshold from which the stressed conditions end
(SMrhreshold). According to the values of SMyp, SMyc and p used in this
study (0.17, 0.37 and 0.55, respectively), the SMryreshola i equal to
0.26. During unstressed periods, RZSM from Eq. (11) is thus corrected
dynamically for both cumulated precipitation and cumulated ET;gr
during this period through a daily water balance (shaded area in plot of
Fig. 3). The RZSM is limited to a maximum of SMyc. If this maximum is
reached then the RZSM is reset to the SMyy eshoig and next the above
correction is applied. For instance, in the Fig. 3, RZSMygr cor Would
reach SMyc if the unstressed period were longer and then it would be
reset to the SMryreshola t0 carry on the correction in the unstressed
period remaining.

3.2.5. Irrigation retrieval

Irrigation events are detected based on a significant increase in first-
guess (LST-derived) RZSM, which cannot be attributed to precipitation.
Only significant increases are considered with a RZSM change larger
than a threshold value equal to 0.02 m®m 3, which represents a water
supply greater than 10 mm for a 0.5 m root-zone depth. Note that such a
threshold considers that ET and drainage are both negligible compared
to the irrigation depth (during the irrigation event), and that the irri-
gation depth is larger than 10 mm. For the periods with steady increase
in RZSM, the amount of retrieved/inverted irrigation (I;,,) is con-
strained through a water budget between the amounts of precipitation
as inflow and the LST-derived ET as outflow, as well as the drainage if it
is produced by precipitation.

The periods when a significant man-made water supply is observed
are considered as probable dates for the retrieved irrigation events. If an
irrigation is effectively detected for this period (with a minimum
threshold of 10 mm), then the estimated date of irrigation is set as the
last date of the period, in order to agree the maximum LST-based RZSM
and the maximum RZSM simulated from FAO-56.

3.2.6. Re-analyzed RZSM and ET

Once irrigation has been retrieved from first-guess (LST-derived)
RZSM, first-guess ET and observed precipitations, the standard FAO-
2Kc is implemented by using the default (non-calibrated) parameters
given by Allen et al. (1998), but with the difference that the retrieved
irrigation (amounts and dates) is introduced as forcing. From the FAO-
2Kc we obtained ET, E, T as well as Dr and TAW that allow us to cal-
culate RZSM by using the Eq. (10) throughout the growing season. Note
that Eq. (10) is valid to obtain the RZSM for both stressed and non-
stresses periods, because Dr is calculated from the daily water balance
implemented in FAO-2Kc for its full range (0 < Dr < TAW). To dis-
tinguish the simulated ET and RZSM from their first-guess (LST-de-
rived) values, the former are referred to as re-analyzed RZSM and ET,

~ -
T > RZSMig7cor

Unstressed

DAS
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Fig. 3. Schematic representation of RZSM retrieval for
stressed (Ks < 1) and unstressed (Ks = 1) periods. The
left box represents the variation of RZSM according to
the depletion (Dr) in the rootzone, Following the FAO-
2Kc formulations, RZSM ranges between SMyp and
b SMgc, which constrain the total available water (TAW)
and readily available water (RAW = p TAW). The right
plot represents the temporal variability of LST-derived
RZSM, where is showed an unstressed period (shaded
area) for which RZSM;sr (equal to SMypreshold) iS cor-
rected for both LST-derived ET and precipitation
through a daily water budget.

'
b
(e-Wew) NSZY

respectively.

3.3. Validation strategy of irrigation, ET and RZSM estimates

In this study, the validation is carried out in terms of ET, RZSM and
irrigation estimates by comparing them against ground-based ET, RZSM
and actual irrigation on a daily basis. Two evaluations are performed
for ET and RZSM estimates: 1) LST-derived (or first-guess) estimates
and 2) derived from standard FAO-2Kc forced by retrieved irrigation.
The irrigation is assessed in terms of dates and amounts. Regarding
dates, the irrigation is compared in terms of 1) the numbers of retrieved
irrigation events and 2) the agreement between probable dates on
which the irrigation is detected and the actual date of the events.
Regarding amounts, two scales are considered for the cumulated irri-
gation: the daily and seasonal time scales. However, taking into account
that irrigation is estimated by assuming a negligible drainage (during
irrigation periods), the retrieved irrigation is compared to the observed
irrigation after subtracting the drainage. Since no measurement was
available during the field experiment, drainage was estimated from the
standard FAO-2Kc using observed irrigation as forcing.

4. Results
4.1. LST partitioning

In Fig. 4 is shown the series of soil (Ts, TSy, and Tsy,,) and ve-
getation (Tv, TV, and Tvp,,,) temperatures. According to the partition
method, Ts and Tv are estimated within its corresponding endmembers
and the ground-based LST (LST,,s in Fig. 4) is observed within the
minimum and maximum temperatures (Tvy, and Tsyay, respectively)
for practically the whole season. Thus temperature endmembers are
suitably simulated, fully consistent with LST observations.

In order to validate quantitatively the partition of LST into its ve-
getation (Tv) and soil (Ts) components, Tv is compared against the
mean vegetation temperature from the seven thermocouples set up in
the vegetation apex. The RMSE and R? are equal to 3.27 °C and 0.92,
respectively. Note that if the validation daytime period is restricted
between 10 a.m. and 1 pm only (still consistent with the overpass time
of thermal missions such as ASTER, Landsat and MODIS), the errors are
improved reaching a RMSE of 2.98 °C. These results are similar to the
errors obtained by Stefan et al. (2015) for the simulation of the soil
temperature endmembers (TSpax, TSmin) Over the same study area. It
can be observed in Fig. 5 that Tv is overestimated for values larger than
30 °C, corresponding to the late season (after DAS 120). This is due to
location (in the apex) of the Tv measurements. Indeed, the youngest
leaves of the plant are expected to be colder (with a higher transpira-
tion rate) than the adult and senescing leaves, whose temperature has
not been measured. Another reason can be probably explained for the
impact of water stress on surface roughness (vegetation height), which
was neglected in the estimation of Tvp., and Tvy,. The four
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Fig. 4. Time series of (a) Ts;in, TSmax and Ts estimates and (b) TV yin, TVipay and
Tv estimates. Ground-based LST (LST,ps) is also shown on both plots for com-
parison.

temperature endmembers and the decomposed temperatures (Tv, Ts)
are then used in Egs. (8)-(10) to estimate the E and T reduction factors
(Krpst and Ks; g1, respectively).

4.2. LST-derived ET estimates

Two versions of the FAO-2Kc method are compared: the standard
version by using the parameters given in Allen et al. (1998) forced by
the observed irrigation, and the version proposed in this study by using
the Krisr (Eq. (7)) and Ks, g1 (Eq. (8)) coefficients derived from LST/VI
data. Comparison between the time series of vegetation stress coeffi-
cient from standard FAO-2Kc (Kspao) and from LST/VI (Ksysr) is pre-
sented in Fig. 6. Overall, Ks; g7 detects stress periods and responds well
to the water inputs (see the significant increase just after irrigation
events), even though its estimation is fully independent of the daily
water balance. However, it shows day-to-day variability that could be
associated with uncertainties in the LST partitioning method (errors in
Tv estimates). For this reason, the LST-derived Ks is smoothed to reduce
random uncertainties, by using the Ks;sr values estimated on the day
before and the day after (Eq. (9)). It can be observed that LST-derived
Ks simulates stress conditions in a more pronounced way than the
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standard FAO-2Kc, except for the late season. Such information can
next be used to simulate the required water supply (see Section 4.3).
The evolution of ET during the growing season is simulated by both
FAO-2Kc versions (Fig. 7). Results show that the performance of the
FAO-2Kc by using coefficients based on LST/VI is superior to that of the
standard version. The ET is estimated with an RMSE equal to 0.84 and
0.68 mm.day ! by using the standard FAO-2Kc and the proposed
method, respectively. The main discrepancies between both methods
can be observed during the development (between DAS 40 and 70) and
late (after DAS 110) stages due to great differences in Ks estimates and
thus in T. Late in the season (after DAS 110) a difference in E estimates
is also observed, according to daily water balance used in FAO-2Kc the
water in surface evaporable layer is fully depleted (Kipao = 0, E = 0),
whereas the LST-derived E increases to about 1 mm day ! because Ts is
estimated between TSy, and Tsp;, from the partition of LST and thus
Krp st is larger than 0. The increase in E can be explained by an increase
of i) the sun-exposed soil due to the reduction of vegetation and ii) the
capillary rise from the root zone, which can be detected from the LST-
derived E estimates although the fc was assumed constant after the fc
peak. A recent study about the E/T partitioning of winter wheat (Rafi
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etal., 2018) noted an underestimation of E by FAO-56 especially during
the senescence period, consistent with the thermal-derived E estimates
of this study. In the same way, others differences in E is found in the
initial stage (before DAS 20) that could not be evaluated due to the lack
of in situ measurements. Discrepancies are also observed when com-
paring each method individually against the observed ET. During the
first period (DAS 40-70), ET is overestimated with the standard FAO-
2Kc while it is underestimated with FAO-2Kc constrained by LST/VI
data, whereas the opposite situation is encountered during late season,
although the errors for the modified FAO-2Kc are lower.

Note that the ET and T estimated by using the LST-derived Ks or the
smoothed LST-derived one are almost the same (Fig. 7b). Also, the
RMSE and slope for ET are slightly improved by using the smoothed
LST-derived Ks from 0.70 to 0.68 mm day’1 and from 1.10 to 1.07,
respectively. Nonetheless, it is worth noting that the smoothing is more
useful in the estimation of RZSM from Eq. (11) by reducing the noisy
temporal variability from thermal data (Ks;sy) and by obtaining a
temporal variability more consistent with the temporal dynamic of the
observed RZSM.

4.3. Irrigation estimates

The calculation of RZSM from Ks;gr (Eq. (11)) and its variations
allowed the detection of the irrigation time. In Fig. 8 it can be observed
that four probable irrigation events were identified, corresponding to
significant increases in LST-derived RZSM. Note that the probable days
for an irrigation supply are marked in cyan in Fig. 8. Every identified
event is in good agreement with the observed irrigation. However, only
three irrigation events were detected from the inversion of the water
budget whereas four probable events were obtained from significant
increases in RZSM;st. The probable event detected on DAS 86-90 does
not correspond to a retrieved irrigation event. This is due to the rainfall
events on DAS 86-87, which resulted in relatively high RZSM values, so
that the LST-derived RZSM was not sensitive enough to an additional
(man-made) water supply on DAS 91. Given that the last two actual
irrigation events were applied 8 days apart and because three rainfalls
occurred between both events, it was difficult to differentiate both ir-
rigation supplies. This may be the reason for the overestimation of the
irrigation amount of the last event (irrigation is estimated as 39.6 mm
compared to 24 mm for the assumed true value).

The total irrigation depth for the growing season was equal to
67 mm, that represents a relative error of 30.2% compared to the total
irrigation applied by the farmer. Note that the retrieved irrigation
amounts are only estimated considering the water required to produce
the increase in LST-derived RZSM and thus the drainage from irrigation
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Fig. 8. Time series of LST-derived RZSM for stressed periods when Ks < 1
(RZSM_g1), corrected LST-derived RZSM (RZSMsr o) through a water budget
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input. The periods of significant increase in RZSMj gt cor are marked in the x axis
(cyan). Observed precipitation, irrigation and RZSM are also shown for com-
parison. The observed cumulated precipitation (P,ps), irrigation (Iops) and re-
trieved irrigation (I;,,) are shown.

is not taken into account. The total drainage of the irrigation periods
simulated along the season by standard FAO-2Kc with observed irri-
gation as forcing is equal to 26.2 mm. If we subtract this quantity to the
observed total irrigation water supply (24 mm x 4 irrigations = 96 mm)
the effective irrigation would be equal to 69.8 mm, which is very close
to the cumulated retrieved irrigation estimated as 67.0 mm.

4.4. RZSM estimates

The time series for daily first-guess (LST-derived) RZSM and re-
analyzed RZSM (RZSM simulated by the FAO-2Kc forced by retrieved
irrigation) are shown in Fig. 8, namely RZSM;gr and RZSMpaq -+ 1sT-
Also, the time series of the observed RZSM is shown for comparison.
The validation for each RZSM product is presented in Fig. 9. It can be
observed in both Figs. 8 and 9 that the first-guess RZSM is system-
atically underestimated with an averaged bias equal to —0.044 m®m 2,
Although the first-guess RZSM shows a poor accuracy with a RMSE of
0.061 m®>m %, it is shown an acceptable representativeness of the
temporal variability of RZSM that can be seen in the ability to detect the
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irrigation dates and amounts, just as in previous section, and an ac-
ceptable R? equal to 0.42. RZSMpao41sr is significantly improved
(RMSE of 0.034 m®m 3 and R? of 0.68) and the results are very close if
the actual irrigation is used as forcing in the FAO-2Kc (RMSE equal to
0.032 m®m 2 and R? equal to 0.73). Overall, standard FAO-2Kc is able
to estimate the RZSM (RZSMgap-1s1) through the Eq. (10), except
during rainfall periods (without irrigation) when an overestimation can
be observed (Figs. 8 and 9). Hence, the standard FAO-2Kc does not
represent sufficiently well the response of RZSM to the precipitation.
This could be an effect of the rain gauges, which generally provide a
larger measurement than the effective precipitation due to canopy in-
terception. It can also be assumed that the FAO-2Ke model responds
differently to natural and man-made water supplies due to differences
in water supply intensities.

Regarding the overestimation during the late season of first-guess
RZSM from Eq. (11), and given the overestimation during the same
period of LST-derived ET, which are both dependent on LST-derived Ks,
we can affirm that the LST-derived Ks during this period is over-
estimated. This may be due to an overestimation of Tvy,.y (see Fig. 5)
during this period with full-cover senescent vegetation. In fact, it is
suspected that the assumption TViax = TVimin = TSmax — TSmin does not
apply during senescence period.

5. Discussion

5.1. Utility of thermal data to help constrain the water budget and retrieving
root zone soil moisture

Given the results of Ks sy estimates in Fig. 6 it can be observed that
Ksysr responds well to water inputs and its dynamic is fully consistent
with the water balance estimates (Kspao). Moreover, the ET estimated
from LST-derived coefficients (ET;sr) is more accurate in Fig. 7 than
that of the standard FAO-2Kc (ETgpo). The good performance of ETysp
can be explained by 1) the strong relationship between the LST and the
coupled energy-water balance as recently reported in Diarra et al.,
(2017) when the TSEB model was used over the wheat field in the same
area, 2) and the robustness of contextual models, which do not require
accurate LST estimates to obtain satisfying results in ET retrievals
(Kalma et al., 2008). In contrast with contextual methods, the standard
FAO-2Kc requires local calibration to accurately estimate ET. This was
notably demonstrated by Er-Raki et al. (2007) with the same wheat
field. For instance, they found a significant difference between the lo-
cally calibrated and non-calibrated Kcb and then ET estimates,
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indicating that wheat was not growing in optimal conditions. Such
conditions can be detected by the proposed approach based on LST-
derived coefficients (Ks st and Krygr), thus avoiding both the use of
parameters (e.g. SMgc, SMwp, Ze, Zr) and the local calibration of Keb.
However, if locally derived Kcb by Er-Raki et al. (2007) is used in the
standard FAO-2Kc, better estimates of ET are obtained with a RMSE and
R? equal to 0.65 mm day ~* and 0.81, respectively. Nonetheless, the use
of EC measurements for calibration is a strong limitation for application
of the methods to large areas. It should be noted that the performance
of ETy g is even better than the re-analyzed ET (ETgap+1s7) Since it is
simulated from FAO-2Kc by using the retrieved irrigation and non-ca-
librated Kcb. In order to improve these estimates, the Kcb could be 1)
forced by NDVI and 2) calibrated from ET; st estimates since ETpao 4157
does not take into account the stress detected from LST-estimates (not
only the water stress). In this sense the vegetation conditions can be
included in the re-analyzed ET through the Kcb calibrated from LST/VI
data accounting the ET gy improvement.

LST-derived RZSM (RZSM, s1) responds well to stressed periods and
water inputs, consistent with the control of RZSM on the vegetation
stress detected from canopy temperature (Tv). Even though a sig-
nificant bias is observed in the validation of RZSM;sr, its range of
variability is enough to detect significant increases, which is the basis of
the irrigation retrieval procedure. Finally, FAO-2Kc is implemented by
using the retrieved irrigation and a re-analyzed RZSM is retrieved with
a noticeable improvement. Such results confirm the utility of LST to
help constrain the water budget components, and can be used in an
irrigation scheduling program for deciding when and how much to ir-
rigate.

5.2. Applicability to temporally sparse thermal data

As mentioned in Section 2, this study was undertaken by using
ground-based radiometric LST. Therefore, the uncertainty and temporal
sampling of remotely sensed LST are not taken into account. Regarding
the uncertainty, many studies have demonstrated that contextual
models, such as the LST/VI-based method used herein to partition LST,
allow us to avoid accurate estimates of surface variables, since the ex-
treme water conditions (stressed — well-watered) used as boundaries to
estimate thermal-based evaporative indices are estimated from the
variability captured within thermal imagery (Kalma et al., 2008; Li
et al., 2009). With regard to temporal sampling, this issue becomes a
key limitation of spaceborne thermal sensors due to the restriction of
surface retrievals to sufficiently cloud-free days (Crow et al., 2008). In
addition to the thermal data currently available at high spatial (100 m)
resolution have a repeat cycle of 16 days only, and up to 8 days by
combining Landsat-7 and -8. To assess the impact of the observation
frequency on the proposed approach, a sensitivity analysis is carried out
by decreasing the LST observation frequency. It should be noted that
the smoothing of Ks;sr (Eq. (9)) to reduce the day-to-day variability is
only applied for a daily revisit of LST observations. For a frequency
between 2 and 16 days the Ks;gr from Eq. (8) is directly used without
smoothing to LST-derived estimates. The assessment is undertaken in
terms of RZSM, ET and total irrigation water supply simulated by FAO-
2Ke.

Increasing the duration between LST observations, naturally leads
to a decreasing the number of thermal-derived ET and RZSM retrievals
(from Egs. (4) and (11), respectively) available to constrain the irri-
gation from FAO-2Kc. However, given that irrigation can be estimated,
it allows us to run FAO-2Kc for estimating RZSM and ET every day
along the season. Fig. 10 shows the impact of the observation frequency
every 2, 4, 8 and 16 days on estimating RZSM. One can observe the
decreasing number of LST-derived RZSM estimates (RZSM; sr), its errors
and the significant improvement after running FAO-2Kc model by using
the retrieved irrigation. Such approach allows estimating the RZSM for
all days during the growing season (RZSMgao +1sT) irrespective of the
observation frequency used.
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Fig. 10. Validation of the RZSM simulated by FAO-2Kc approach (RZSMgap +1s1) by using observed precipitation and the irrigation retrieved from thermal ob-
servations available at a decreasing frequency (1 every 2, 4, 8 and 16 days). The statistical parameters of the LST-derived RZSM (RZSMs1) are shown as a reference of

the improvement of in RZSMgag + LsT-

Fig. 11 shows the impact on RZSM and ET estimates of the avail-
ability of LST observations according to the time revisit frequency
ranging from 1 to 16 days. Although even the errors are gradually in-
creasing, the results demonstrate a relatively good performance and
acceptable errors by increasing the revisit period. Fig. 12 shows the
impact of the availability of LST observations on the retrieved total
irrigation water amount and number of irrigation events. Acceptable
errors in the total water supply are observed. The number of simulated
irrigation events decreases as the time revisit frequency decreases,
falling below 3 events with a revisit longer than 8 days. Overall, it
might be noted that up to a 10-day revisit of LST observations, a good
agreement is obtained with R? higher than 0.5 and 0.6 for RZSM and ET
respectively, and a mean absolute error (MAE) of total irrigation water
supply lower than 15mm (corresponding to a relative MAE of 21%).
According to these results, it could be considered the use of LST pro-
ducts with time revisit of 8 days such as i) the combination of Landsat-7
and -8 LST on cloud-free days and/or ii) the 1 km resolution MODIS LST
product downscaled to 100 m resolution by using the Landsat LST (e.g.
Anderson et al., 2012; Cammalleri et al., 2014; Olivera-Guerra et al.,
2017; Weng et al., 2014).

The results show clearly the applicability to remote sensing data and
the utility to the irrigation scheduling at regional scale. Given that Ks; st
and irrigation volumes and dates can be fully obtained from remotely
sensed LST/VI data, this methodology could be implemented in an
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irrigation index to characterize the irrigation distribution, such as the
irrigation index priority proposed by Belagziz et al. (2013). This index
takes into account the Ks and the irrigation volumes and dates and by
using remote sensed-derived Ks and irrigation would allow evaluate the

irrigation scheduling over broad irrigated agricultural areas poorly
monitored.

6. Conclusions

A new approach in the calculation of water budget components and
for irrigation scheduling (when and how much to irrigate) is developed
by integrating LST data into the FAO-2Kc model. It relies on: 1) the
estimation of first-guess (LST-derived) RZSM from Ks;sr (Kspsp < 1)
during stressed periods and its correction for both cumulated pre-
cipitation and cumulated ET during unstressed periods (Ks; st = 1); 2)
the estimation of irrigation amounts and dates along the season from
(first-guess) LST-derived RZSM and ET estimates; and 3) the use of
retrieved irrigations to force FAO-2Kc to simulate RZSM and ET on a
daily basis. Statistical results indicate that first-guess (LST-derived) ET
(ETys7) is more accurate than the ET simulated by the standard version
of FAO-2Kc while the first-guess RZSM is significantly improved when
FAO-2Kc is implemented by using retrieved irrigation. Results show
that the new methodology combining FAO-2Kc and LST/VI data is able
to 1) accurately estimate the crop ET using the default (non-calibrated)
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Fig. 12. Sensitivity of total irrigation water supply constrained from LST-derived ET and RZSM to different frequency of thermal data observations. (a) Average mean
absolute error (MAE) of total irrigation water supply and (b) number of retrieved irrigation events are presented for each temporal frequency where the model is run
n times by changing the start day from 1 to n. The shaded area represents its standard deviation. The observed total irrigation water supply is equal to 96 mm
(69.8 mm without drainage) distributed in 4 events during the wheat growing season.
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parameters given by Allen et al. (1998), 2) to estimate the irrigation
amounts and dates and 3) to accurately simulate RZSM.

The impact of temporal sampling in LST observation is assessed by
carrying out by decreasing the LST observation frequency from 1 to 16
days. It is demonstrated that the irrigation amounts and dates can be
estimated, allowing us to run FAO-2Kc for estimating RZSM and ET
along the season on a daily basis. Although errors are gradually in-
creasing with the observation period, results demonstrate a relatively
good performance and acceptable errors for an observation frequency
of 1 per 8 days so it is recommended to use LST observations at a
temporal resolution finer than 10 days. In order to take advantage of
the high temporal resolution of MODIS LST and the high spatial re-
solution of Landsat LST, downscaling method could be included in the
future for monitoring the RZSM at the field and daily scale. However,
further research will be required to assess the impact of downscaling
uncertainties in the proposed methodology.
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4.1. Introduction

The quantification of irrigation amounts and timing spatially distributed is one of the
main issues to be overcome by the water balance model for the monitoring of the water
budget components (ET, RZSM) over large areas. Irrigation is the main water supply in
semi-arid to arid regions to force the FAO-2Kc model. Therefore, an operational
implementation of the FAO-2Kc relies on the availability of irrigation amount and timing
at field scale over the irrigated perimeter. This information is rarely available and at the
same time it is critical for an efficient management of water resources.

Despite numerous methods that have been developed for estimating the crop water
requirements and few others that have focused on the irrigation during the last years, no
method is yet available to estimate irrigation at field scale. Some recent studies have
demonstrated the potential of SSM estimates derived from remote sensing micro-wave
data to quantify irrigation (Brocca et al., 2018, 2017; Escorihuela and Quintana-Segui,
2016; Jalilvand et al., 2019; Kumar et al., 2015; Lawston et al., 2017b; Malbéteau et al,,
2018; Zhang et al., 2018). However, the micro-wave-based methods to estimate SSM face
two main issues: i) the very coarse (~40 km) spatial resolution of readily available
satellite SSM data is unsuitable for monitoring crop fields, and ii) the sensing depth by
micro-wave observations is too shallow (few centimeters) to be representative of the
root-zone water storage and to reasonably solve the crop water balance.

This chapter presents an approach that aims to retrieve the irrigation at field scale over
extended areas from readily available remote sensing optical/thermal data. This
approach allows retrieving the irrigation amounts and timing along the agricultural
season in order to estimate the daily RZSM and ET. For this purposes, the method
presented in the previous chapter is adapted to be implemented with sparsely remote
sensing optical/thermal data. Both Landsat-7 and -8 are combined to provide a revisit
frequency of Landsat data up to 8 days when there are clear-sky conditions. The approach
is implemented over three agricultural areas of 12 by 12 km in the semi-arid region of
central Morocco. The approach is evaluated over five experimental sites covered by
winter wheat during four growing seasons and under different irrigation systems (drip,
flood and no-irrigation). One of the sites is not irrigated and is used as benchmark during
four seasons. The validation is carried out in terms of irrigation amounts and dates as
well as in terms of daily ET and RZSM. The proposed algorithm is also benchmarked with
the standard non-stressed FAO-2Kc as well as the FAO-2Kc forced by actual irrigations
(measured using flow meters).
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4.2. Issues for implementing the crop water
balance modelling over large areas

Given that the approach presented in the previous chapter was implemented with
ground-based observations, three major issues must be addressed in order to apply the
algorithm to remote sensing data from readily available LST observations. First, a
contextual approach should be implemented from Landsat data to partition the LST into
soil and canopy temperatures in order to detect the soil and crop water status,
respectively. Results of the contextual method allow estimating a Landsat-derived crop
stress coefficient (Ks) over large scales. Second, the estimation of daily RZSM from
sparsely available Landsat data is not straightforward as it involves a greater complexity.
That implies that the Landsat-derived Ks should be integrated into a crop water balance
model in a pixel-by-pixel scheme in order to provide the RZSM temporal dynamics along
the season. Third, the pixel-scale irrigation estimates can be aggregated to the crop field
scale since irrigation is usually applied within a single day over the entire crop field.

In addition to the spatially distributed irrigation, the implementation of the FAO-2Kc at
regional scale faces the issue that calibration is required in order to obtain accurate
estimations. For instance, the use of EC measurements for calibration of crop-basal
coefficient (Kcb) is a strong limitation for application of FAO-2Kc model to large areas.

In order to overcome the main issues exposed above for the implementation at large
scales, the next sections present: i) crop water status from a contextual method, ii) the
integration of Landsat-derived estimates into a crop water balance model, iii) the
aggregation of pixel-scale irrigation to the crop field-scale, and iv) crop coefficients
derived from a contextual method.

4.3. Contextual methods for detecting soil and
crop water status

In the previous chapter, the conditions for applying a contextual method with ground-
based data was to simulate temperature endmembers every day by a surface energy
balance. From Landsat-7/8 data, a contextual method can be applied directly from every
Landsat overpass in order to partition the LST and to derive the Ks and Kr following the
Eq. 3.11 and Eq. 3.12, respectively.

The LST partitioning method is based on the LST-fv feature space as in several works (e.g.
Long and Singh, 2012; Merlin et al., 2014; Sandholt et al., 2002), with the difference that
the assumptions of the Two-source Surface Energy Balance (TSEB) formalisms (Norman
et al., 1995) are adopted. The TSEB model assumes that the soil surface layer is fully
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depleted before the vegetation stress begins; meaning that the water availability in the
root zone decreases below SMcrit once the SSM reaches its minimal value (half the SMwp
according to the FAO-2Kc).

The main steps to partition the LST from the contextual method are described below.
First, the LST-fv feature space is used to estimate the temperature endmembers (Tvmin,
TVmax, TSmin and Tvmax) from the polygon constrained by a “wet edge” (defined as the line
between Tsmin and Tvmin) and a “dry edge” (defined as the line between TSmax and Tvmax).
The “wet edge” and “dry edge” are determined from the linear regressions of the minimal
and maximal LST, respectively, which are selected by fv classes with an interval of 0.01
(see Fig. 4.1.a). In such a way, the temperature endmembers can be determined only from
the contextual information of LST-fv space. Second, the TSEB assumption solves the
vegetation and soil fluxes components using an iterative procedure, where LST is
partitioned into Ts and Tv by decomposing linearly the LST (Eq. 3.10). The procedure is
initialized with a transpiration rate to its maximum value (potential transpiration),
meaning that Tv is equal to Tvmin. The TSEB assumes that both flux components are
positives, hence if soil evaporation is negative, the soil is likely dry so evaporation is set
to zero (Ts=Tsmax) and a new transpiration value is calculated together with a new Tv
from the Eq. 3.10 (Tv>TVmin). Therefore, the TSEB assumption in the LST-fv feature space
(see Fig. 4.1.b) makes Tv equal to Tvmin for every Ts below Tsmax, while Ts remains equal
to Tsmax Wwhen Tv is larger than Tvmin. Consequently, two zones can be distinguished in the
LST-fv space divided by the diagonal Tsmax-Tvmin of the polygon as is depicted in the Fig.
4.1.b. Below the diagonal corresponds to a well-watered/unstressed vegetation zone
with maximum transpiration rate (Tv=Tvmin), while above the diagonal corresponds to a
stressed vegetation and a fully dried surface top layer (Ts=Tsmax).

n
3
)
x

<

g

5

g Tv
g max
g 310

2

o Smin Tv,
o

@

©

5

(9]

Wet edge

0.2 0.4 0.6 0.8 1
Fractional green vegetation cover Fractional green vegetation cover

Fig. 4.1. In the right plot, an example of LST-fv feature space constrained by the polygon
TSmin-TVmin-TVmax-TSmax from the linear regression of the minimum (blue circles) and
maximum (red circles) LST by fv classes. A conceptual diagram (left plot) of the LST-fv
polygon to partition LST for two pixels (fv,LST) (yellow points) showing its
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corresponding Ts (red points, right plot) and Tv (green points, right plot) values
following the TSEB assumptions.

Once the LST is partitioned into Tv and Ts, a Landsat-derived Ks and Kr can be estimated
from the Eq. 3.11 and Eq. 3.12, as is proposed in the previous chapter. Ks corresponds
basically to the normalization of Tv using minimum (Tvmin) and maximum (TvVmax) Tv
values, while Kr is the normalization of Ts with regard to Tsmin and Tsmax. Finally, a
Landsat-derived RZSM can be estimated from the Ks according to Eq. 3.14. Note that in
the article in Section 4.9, Eq. 3.14 is expressed in terms of SMcrit, which is estimated from
the fraction p (crop tolerance to the stress), and the soil parameters SMwp and SMx.

4.4. Landsat-derived estimates integrated into a
crop water balance model for irrigation
retrieval

The approach to determine the irrigation consists basically in detecting the irrigation
events and then estimating the amounts by the difference of RZSM. Therefore the RZSM
dynamics is needed for all the agricultural season. As it was shown in the previous
section, the FAO-2Kc model is used to translate thermal observations into RZSM
diagnostic estimates and to propagate the RZSM information along the season. Unlike in
Chapter 3 where ground-based optical/thermal data are available every day, in this
chapter, the implementation of a crop water balance model basically based on FAO-2Kc
is adapted to the temporal resolution of Landsat (8 to 16 days). For this purpose, the FAO-
based model is initialized by Landsat-derived RZSM diagnostic estimates and then is run
in recursive and/or forward mode between Landsat overpass dates, as is described
below. That is carried out in order to estimate the RZSM dynamics used to detect
irrigation date. Then the (daily) irrigation amount is estimated as a difference between
the RZSM estimated on the irrigation date and the RZSM estimated on the day before as
follows:

I; = 1000(RZSM; — RZSM;_,) Zr; Eq. 4.1

where liis the irrigation amount (mm) on the irrigation date 7, RZSM (m3/m3) is estimated
on the irrigation day i (RZSMi) and on the day before i-1 (RZSMi-1) and Zri is the effective
root zone depth (m), which is used in the factor 1000Zri to convert the RZSM unit (m3/m3)
to irrigation depth (mm).

In the Eq. 4.1, RZSMi; is estimated from a daily crop water balance in a recursive mode
(hereby referred to as RWB) by initializing it at date j (j > i) from a Landsat-derived RZSM
(RZSMiandsatj). In RWB, the water balance is applied backward at daily scale for every
period between two (clear sky) successive Landsat overpass dates (j and j-Pj, with Pj
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being the number of days between both successive Landsat dates) by starting from the
last Landsat overpass date of the season to its previous date. Overall, an irrigation event
is detected when the simulated RZSMrws, (for t=j-1,...,j-Pj) reaches SMt. However, four
different cases need to be considered depending on the value of Landsat-derived Ks (and
consequently RZSMiandsatj) at date j-Pj. In addition, it may be needed the daily crop water
balance in a forward mode (hereby referred to as FWB) by initializing it at date j-Pj (j < i)
from RZSMiandsatj-pi. For clarity, each case is illustrated in Fig. 4.2 showing the water
balance run in forward or recursive method. Here, the RZSM is estimated from the RWB
(right dotted arrow) or the FBW (left dotted arrow) initialized by the RZSMvandsat at date
j and j-Pj, respectively. An irrigation event is detected when RZSMrws reaches SMrc and its
amount is estimated by the difference between the RZSM retrieved at date i and i-1.

During unstressed periods (Ks=1) the thermal data are not able to detect the variation of
soil moisture between SMcit and SMf, meaning that RZSMLandsatj-pj is kept constant to
SMcrit when Ksrandsatj-pj is equal to 1. In this case, RZSMLandsat;-pj is updated by RZSMgrws,;-pj
when it is larger than SMrit, as illustrated in Fig. 4.2 c¢) and d). The updated RZSM at j-Pj
is then used to reinitialize the previous period (from date j-Pj to its previous Landsat
overpass date). It should be noted that in cases c) and d) illustrated in Fig. 4.2, more than
one irrigation event can be detected between two successive Landsat overpasses when
RZSMRrws reaches SMs. more than once in this period. In the computation of crop water
balance based on FAO-2Kc, the capillarity rise and runoff are neglected due to flat
surfaces and a water table significantly deep (>30 m) in the study area (Duchemin et al,
2006). The main components of the water balance actually are the ET and
irrigation/precipitations. Precipitation is provided by meteorological stations while ET is
estimated from the FAO-2Kc formalism. The basal crop coefficient (Kcb) and evaporation
coefficient (Ke) are estimated from a generic expression from the daily fv interpolated
from Landsat data. The generic expression for Kcb and Ke are analytically derived from
contextual method as described in Section 4.6. While the Ks and Kr are computed from
the crop water balance according to FAO-2Kc, initialized from the Landsat-derived
estimates.
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Fig. 4.2. Schematic representation of pixel-scale irrigation retrieval between two
successive Landsat overpass dates in four different cases: stressed-stressed (a), stressed-
unstressed (b), unstressed-stressed (c) and unstressed-unstressed (d).

4.5. From pixel-scale to field-scale irrigation

The irrigation retrieval at pixel-scale from the RZSM derived pixel-by-pixel is
implemented regardless of its neighboring pixels. Consequently, the irrigation at pixel-
scale within a given field crop might differ in its predicted dates and volumes. Given that
irrigation is usually applied on the same day over the entire field crop we propose a
procedure of aggregation to provide irrigation (dates and amounts) at crop field scale
from the statistical distribution of pixel-scale irrigations within the given field crop.

The aggregation procedure involves three steps as illustrated in Fig. 4.3 for clarity. First,
for each period Pj between two successive satellite overpasses, the number of irrigations
within a given crop field (Nifield,pj) is estimated as the total number of irrigations at pixel-
scale divided by the number of pixels contained in the crop field (Npixel). Then, the daily
amounts of irrigation at pixel-scale are averaged within the crop field (/). The daily
fraction of irrigated pixels (fi) is also estimated as the number of pixels where irrigation
is detected divided by Npixel. Finally, the irrigation volume applied over the crop field
(Ifield) is estimated by integrating the amounts of irrigation in the Nifielq,pj sub-periods of
period Pj, as well as the most probable date (Dateisield) of the irrigation event within each
sub-period is estimated as:
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d
. _fi:: Lf.d; Eq. 4.2
field — ™ end . ,
fini fidi
end . £ A. Eq. 4.3
Datelf- ld = —fini lllfldl 1
teld —  .end
fini Iifidi

where [i is the averaged irrigation within the crop field on the day i and fi is its frequency
(number of pixels where an irrigation is detected divided the total pixels of the field crop).
The limits of integration ini and end are set to the first day before and the last day after
the peak with fi is equal to zero, respectively, when irrigation is not detected in any pixel
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Fig. 4.3. Schematic diagram presenting the plot-scale irrigation retrieval from pixel-scale
irrigation for an example of a 30-pixel field crop.

In the Fig. 4.3, the daily pixel-scale irrigation within the crop field (left) is represented
along the season for every pixel (middle plots).The daily irrigation of all pixels within the
field crop are daily averaged (blue bar in top right plot) and its fraction of irrigated pixels
is also estimated (red line in top right plot). The daily mean irrigations are integrated
according to its fractional irrigated pixels to obtain the plot-scale irrigation (red bar in
bottom right plot) with its standard deviation for amounts (black error bar) and days (red
error bar). In this example, the actual irrigation (green bar) is showed as reference as
well as the Landsat overpass dates available (vertical dotted line). Note that in the
schematic diagram is represented the case when two irrigation events at pixel scale are
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detected between two successive Landsat overpasses (around DAS 100), which can be
detected by the case c) and d) in Fig. 4.2. These two irrigation events are then aggregated
at crop field scale by taking into account the two sub-periods of integration around the
two picks in fi for the corresponding period P;.

4.6. Crop coefficients Kcb and Ke derived from
contextual methods

The contextual model has been extensively implemented with one-source surface energy
balance models, meaning that the ET is estimated as a whole without distinguishing
between soil evaporation and plant transpiration. Instead, the FAO-2Kc works like a two-
source model that estimates separately the soil evaporation and plant transpiration. In
order to take advantage of satellite data for generic implementations, we link the FAO-
2Kc formalism with a contextual model to derive the main coefficients for transpiration
(Kcb) and evaporation (Ke). In practice, we use the Operational Simplified Surface Energy
Balance formalism (SSEBop, Senay et al., 2013) as contextual model given that it presents
some points of comparison with the FAO-56 model: the actual ET is based on reference
evapotranspiration (ETo) scaled by a coefficient to represent the maximum ET reached
by a certain crop (Kcmax). The ET formalism is expressed as follows:

ET = EF - Ky - ET, Eq. 4.4

Here, Kcmax is modulated by the evaporative fraction EF as a single crop coefficient
containing the transpiration and evaporation coefficients. EF is estimated as follows:

LSTpqx — LST Eq. 4.5

EF =
LSTax — LSThin

where LSTmin and LSTmax are the minimum and maximum LST representing the
wet/unstressed and dry/stressed conditions (see Fig. 4.1), respectively. It should be
noted that EF in the original SSEBop is estimated pixel-by-pixel, meaning that the
boundary conditions of LSTmin and LSTmax are not estimated from the contextual
information contained in remote sensed optical/thermal data. However, the expression
in Eq. 4.5 is the same as that used in several contextual methods where EF is retrieved
from the LST - fvand/or LST - albedo spaces (e.g. Roerink et al., 2000; Merlin et al., 2013;
Merlin et al.,, 2014). Therefore, we considered the EF obtained from contextual method in
SSEBop model, to be made equal to FAO-2Kc as:

(Ks - Kcb + Ke)ETy = ET = EF - Kcpgy - ET, Eq. 4.6

In the FAO-2Kc model (on the left-hand side of the equation), the transpiration
component (Kcb ETo) is controlled by the Ks and the evaporation (Ke ETo) is controlled
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by the Kr. While in SSEBop (on the right-hand side of the equation), the ET is controlled
by the Kcmax and EF as a single crop coefficient containing the transpiration and
evaporation coefficients. By simplifying the Eq. 4.6 by ETo, the crop coefficient can be
expressed as:

(Ks-Kcb + Ke) = EF - Kcipgy Eq. 4.7

As EF is obtained from Eq. 4.5, in this thesis Kr (contained in Ke) and Ks are estimated
from thermal and fv once LST has been partitioned according to Eq. 3.11 and Eq. 3.12,
respectively. Thus, every term used in Eq. 4.5 is partitioned into its vegetation and soil
components in such a way that Ke and Kcb formulations can be analytically derived from
the equality in Eq. 4.7. LSTmin and LSTmax are linearly partitioned as:

LSThax = fvTvpmax + (1 — fU)TSpax Eq. 4.8
LSTmin = fUTvmin + (1 — fv)Tsmin Eq 4.9
Then by inserting the equations above in Eq. 4.5, EF can be expressed as:

[fvTvmer + (1 — fU)TSpax] — [fvTv + (1 — fv)Ts] Eq.

EF = [fvTVmax + (1 — fU)TSpmax] — [fVTVmin + (1 = fU)TSpnl 4.10

And by re-arranging the equation:

EF = fU(Tvmax - TU) + (1 - fv)(TSmax - TS) Eq.
fv(Tvmax - Tvmin) + (1 - fv) (Tsmax - TSmin) 4.11

The differences (Tvmax — Tv) and (Tsmax - Ts) can be expressed as function of the thermal-
derived Ks and Kr, respectively, and the Eq. 4.11 can be rewritten as:

_ fv(Tvmax — TVmin)Ks + (1 = fv)(TSpmax — TSmin) KT Eq.

EF
fU(TUmax - Tvmin) + (1 - fv) (Tsmax - Tsmin) 4.12

For clarity we set ATV = TVmax — Tvmin and ATs = Tsmax — Tsmin in Eq. 4.12. By inserting Eq.
4.12 into the right-side of Eq. 4.7, we obtain:

EFK B fv(ATv)Ks + (1 — fv)(ATs)Kr _ Eq. 4.13
Cmax = ", (ATv) + (1 — fv)(ATs) Cmax

Then by re-arranging the equation, two terms related to the vegetation and soil
components are highlighted, as it is shown on the left-side of Eq. 4.7:
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(Ks-Kcb + Ke) Eq. 4.14
fv(ATv)Ks
= [Foatv) + (1 = fo)@ars) K omex
(1 - fv)(ATs)Kr
Fu(ATY) + (1 — fv)(ATs) ™

where the first term in parentheses can be considered as the transpiration coefficient (Ks
Kcb) and the second as Ke, as they are depicted in the FAO-2Kc formalism (Eqg. 4.6). To
simplify Kcb and Ke formulations, ATv is assumed close to ATs in A.8 as was used in
previous chapter as well as in Stefan et al. (2015). Hence the following simple expressions
are derived, which can be implemented from remote sensing data only:

Kcb = fvKcpay Eq.4.15
Ke = (1 — fv)KrKcpax Eq.4.16

where Kcb depends on fv while Ke depends on the soil fraction (1 - fv) weighted by Kr
and Kcmax. These expressions are consistent with the FAO-2Kc calibrated with vegetation
index proposed in the literature (e.g. Er-Raki et al, 2010; Kullberg et al, 2016;
Simonneaux et al., 2008). In this study, Kcmax is set to 1.2 as a typical recommended value
(Allen et al., 2011; Senay et al., 2013; Senay et al., 2016).

The generic coefficients Kcb and Ke were evaluated over the winter wheat field R3-4ha
during the 2002-2003 growing season and compared against the Kcb formulations from
in-situ calibration that were used as comparison in the previous chapter. The Fig. 4.4
shows the validation of the FAO-2Kc applied with the generic Kcb and Ke, which obtains
a good performance very close to that obtained by the FAO-2Kc locally calibrated. The
RMSE is equal to 0.63 mm/d, the R? is equal to 0.81 and the slope of the linear regression
is equal to 1.01. With regard to the other FAO-2Kc versions, only the bias is slightly
worsened (equal to -0.31 mm/d) while the other statistical parameters are very close or
even improved.

The validation demonstrates the applicability of the generic Kcb and Ke with remote
sensing data over extended areas, although it is only validated over winter wheat. A
comprehensive validation over other crop types should be carried out in order to
demonstrate the reliability of these derived coefficients. However, the generic Kcb and
Ke were derived analytically from the link with the SSEBop formalism, which has been
validated over several land covers in addition to crops (Chen et al.,, 2016; Senay et al,,
2016, 2014, 2013b; Singh et al., 2014; Velpuri et al., 2013). That might mean that the
generic coefficients Kcb and Ke are suitable for the land cover where the SSEBop has
obtained good performances. Although generic Kcb and Ke are not calibrated, only one
parameter (Kcmax) should be calibrated over other crop types if the generic coefficients
do not obtain good performances. Moreover, the calibration should be reduced only to
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one parameter (Kcmax) and no longer to a value of Kcb for every stage of the growing

season as well as the length of the every stage.
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Fig. 4.4. Comparison of evapotranspiration (ET), transpiration (T) and evaporation (E)
temporal series over the R3-4ha site (winter wheat field) for the 2002-2003 season
estimated from the a) standard, b) NDVI-calibration, c) Local-calibration and d) generic
Kcb and Ke FAO-2Kc. The ground-based ET (ETobs) and ETo are depicted for reference.
The validation of ET from every method against ETobs is shown by means of bias, RMSE,
R? and slope of the linear regression.

4.7. Main results of the spatial application to
Haouz Plain

The approach for irrigation retrieval is implemented over three agricultural areas of 12
by 12 km in the Haouz Plain in central Morocco. The forcing meteorological variables for
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the approach are provided by the automated stations installed in each area. The approach
is validated over: two drip-irrigated fields in Chichaoua area, two (1 flood- and 1 drip-
irrigated) fields in R3 area and one rainfed field in Sidi-Rahal area.

In this section is presented the main results of the work available in the article in Section
4.9 as well as detailed and complementary results over the R3 area where drip- and flood-
irrigated winter wheat fields are available. Before implementing the approach, a land use
map is used to extract wheat fields and bare soil. The bare soil is also used as benchmark,
as was validated in the Bour site during the 2015-2016 season in Sidi Rahal area. The Fig.
4.5 shows the spatial distribution of daily ET on five selected dates every 30 days. The
five images depict the temporal dynamics during the different growing stages. The image
on January 10 during the initial stage shows low ET rates proper of colder days in winter
when most of the fields are under bare soil conditions or low fractional vegetation cover.
The image on February 9 during the development stage illustrates that the ET increases
over some parcels where an effective full cover is reached, while ET is kept low over non-
cultivated parcels or where the sowing date was later. The images on March 10 and April
9 during the beginning and ending of the mid-season, respectively, show higher ET rates
mainly due to the atmospheric demand. The image on May 9 during the late stage shows
that ET rates decrease with the beginning of the senescence period.

January 10 February 9 March 10 April 9 May 9

'l~
S
<

ET [mm/d]

Fig. 4.5. Spatial distribution of daily ET showing the temporal dynamics on five selected
dates along the 2016 growing season over R3 area.

The Fig. 4.6 shows the temporal series of ET, the partition into plant transpiration and
soil evaporation compared against ground-based ET (ETobs) over the R3-4ha (flood-
irrigated) and R3-2ha (drip-irrigated) sites. The validation shows that the ET is estimated
with a RMSE of 0.88 (RRMSE of 26.9%) and 0.78 (RRMSE of 31.5%) mm/d and a
correlation coefficient of 0.88 and 0.72 for the R3-4ha and R3-2ha sites, respectively. The
comparison against the ET estimated from the FAO-2Kc forced by actual irrigations (FAO-
2Kciobs) shows that the accuracy is close to that estimated by using retrieved irrigations.
While the relative RMSE (RRMSE) in the ET from FAO-2Kciobs is almost equal in both sites
(RRMSE~26%), some differences are depicted in the errors from FAO-2KcLandsat in the
sites. While in R3-4ha the errors from FAO-2KcLandsat are kept almost constants with
regard to FAO-2Kciobs in terms of RMSE and R?, in R3-2ha the errors are slightly worsened
with a RRMSE increasing from 25.6% to 31.5% and a R2 dropping from 0.85 to 0.72. These
differences can be partially explained by the irrigation techniques, obtaining better
performance over the flood irrigated field (R3-4ha).
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In the R3-4ha field, the ET from either FAO-2Kciobs or FAO-2KCcLandsat is underestimated
with a bias of -0.61 mm/d and -0.55 mm/d, respectively. This underestimation might
come from an overestimation in ETobs when the Bowen correction is applied since the
ratio between ETobs and ETo would suppose a Kc above 1.3, which is too high for the study
area (Duchemin et al., 2006; Er-Raki et al, 2007; Le Page et al., 2014). Instead, the
validation against the ETobs without applying the Bowen correction (Fig. 4.7) would lead
to a bias equal to 0.05 and 0.11 mm/d from FAO-2Kciobs and FAO-2KcLandsat, respectively,
while the accuracy would be increased with a RMSE equal to 0.58 and 0.55 mm/d keeping
the R2 almost constant for both FAO-2Kciobs and FAO-2KcLandsat, respectively.
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Fig. 4.6. Temporal series of ET and its partition into transpiration (T) and evaporation (E)
forced by the actual irrigations (FAO-2Kciobs in top plots) and retrieved irrigations (FAO-
2KcLandsat in bottom plots) over the R3-4ha (left plots) and R3-2ha winter wheat field
(right plots) along the 2016 growing season. Observed ET (ETobs) and ETo are shown as
reference.



Chapter 4. Real-life application of the irrigation retrieval approach

a) R3-4ha (FAO-2Kc,.p.) b) R3-4ha (FAO-2Kc . 4eur)

T
ET, ET, E,

-

FAQ+LST TFAO*I.S'!'

FAO+HLST FAQ+LST|

8l
Bias =0.11 mmd”'
RMSE = 0.55 mm d”' (20.7 %)
R2=0.88

Slope = 0.91

Bias = 0.05 mmd”’

RMSE = 0.58 mm d' (21.7 %)
R2=0.87
Slope = 0.95

o @
T T

r-Y
-
ET/T/E[mmd™

ET/T/E[mmd™]

w
T

T I L |

A
0 A Al . I
0 20 40 60 80 100 120 140 160 180 200 60 80 100 120 140 160 180 200
DAS (Day after sowing) DAS (Day after sowing)

Fig. 4.7. Comparison of ET forced by the actual irrigations (FAO-2Kciobs) and retrieved
irrigations (FAO-2KcLandsat) against the observed ET without applying the Bowen
correction (ETobs) over the R3-4ha site along the 2016 growing season.

The Fig. 4.8 shows the cumulated monthly ET throughout the growing season. The
minimum ET rates are cumulated during the initial stages when most of the fields have
low vegetation cover, while maximum ET rates are cumulated during the mid-season
when the crops are completely developed.
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Fig. 4.8. Spatial distribution of monthly ET from January to May 2016 along the growing
season over R3 area.

The Fig. 4.9 shows the spatial distribution of daily RZSM on the same five selected dates
as in Fig. 4.5. The five images depict the temporal dynamics during the different growing
stages. The image on January 10 shows that RZSM is close to the SM¢c over all the area
because the day before there was an important precipitation of 10 mm sufficient to fulfill
the water storage capacity of the initial stage. It should be noted that during the initial
stage the root-zone is set to a minimum value equal to 10 cm, meaning that the water
storage capacity is fully filled up with 15 mm considering a SMwp and SMtc equal to 0.17
and 0.32 m3/ m3, respectively. The images on the other dates show the spatial variability
in RZSM without significant precipitation during the previous days.
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Fig. 4.9. Spatial distribution of daily RZSM showing the temporal dynamics on five
selected dates along the 2016 growing season over R3 area.

From the daily and spatially distributed RZSM, as is shown in the Fig. 4.9 for five selected
dates, the daily irrigation is retrieved at pixel-scale over the agricultural area. To evaluate
the performance of the irrigation retrieval method over a range of time periods, the daily
estimated and observed irrigations are cumulated from 1 to 90 days, whose results are
shown in the article of the Section 4.9. The Fig. 4.10 shows the spatial distribution of the
irrigation cumulated over 15 days. The images on the first 15-day periods (January 1 and
16) show low irrigation amounts estimated during initial stages mainly due to the fact
that the root-zone is too small and this approach estimates the effective irrigation without
taking into account the water lost by deep percolation. The periods beginning on March
31 and April 15 show the highest irrigation amounts, corresponding to the maximum
water requirements of crops typical of mid-season stages. Finally in the senescent
periods the water requirements are diminished and the irrigation amounts are minimal
as is shown on the image of May 15. That can be also observed in the cumulated monthly
irrigation in the Fig. 4.11.
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Fig. 4.10. Spatial distribution of cumulated irrigation over 15 days along the 2016
growing season over R3 area. The dates indicate the first day of the 15-days period.
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Fig. 4.11. Spatial distribution of monthly irrigation from January to May 2016 along the
growing season over R3 area.

Finally, the total (seasonal) irrigation amount spatilly distributed is depicted in the Fig.
4.12. It is observed that the irrigation is estimated between 200 and 300 mm over most
of the winter wheat fields. It can be also observed that low irrigation amounts have been
estimated over several non-cultivated fields (lower than 100 mm). The irrigations
detected over non-cultivated fields are part of the errors of the approach, but at least are
not confused with the cultivaded and irrigated fields.
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Fig. 4.12. Spatial distribution of the total irrigation depth for the 2016 growing season
over R3 area.

4.8. Summary and conclusions

The implementation of crop water balance modelling over irrigated areas faces the main
issue that the quantification of irrigation spatially distributed is often unknown. In
particular, the application of FAO-2Kc model over extended areas (like irrigated districts)
would need calibration and irrigation at field scale to be forced. In order to overcome
these issues, we proposed a novel approach to estimate the irrigation amounts and timing
by integrating remotely sensed optical /thermal data into a crop water balance model that
is basically based on the FAO-2Kc formalism. The main idea behind the algorithm is
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retrieving the RZSM dynamics in order to detect the irrigation date first and then the
irrigation amount as the difference between the RZSM on the irrigation date and that on
the day before. Like an assimilation procedure, the remote sensing information is
integrated as a crop water status (Ks) into the crop water balance model, by initializing
the model at every satellite overpass date. Landsat-7 and -8 data were used to apply the
approach, which four general procedures to be implemented in order to retrieve the
irrigation at field scale: i) partitioning the Landsat LST to derive the crop water stress
coefficient Ks, ii) estimating the daily RZSM from the integration of Landsat-derived Ks
into a crop water balance mode], iii) retrieving irrigation at Landsat pixel scale and iv)
aggregating pixel-scale irrigation estimates at the crop field scale.

The approach is implemented over three agricultural areas of 12 by 12 km in Haouz Plain
in central Morocco during four seasons and validated over five winter wheat fields under
different irrigation techniques (drip, flood and no-irrigation). The approach is validated
in terms of irrigation estimates as well as daily RZSM and ET as intermediate variables
linked to the crop water balance model. The results show that the total (seasonal)
irrigation amounts over all the sites and seasons is accurately estimated (RMSE=44 mm
and R=0.95), regardless of the irrigation techniques. Irrigation is also validated over
different accumulation periods, in which acceptable errors (R = 0.52 and RMSE = 27 mm)
are obtained for irrigations cumulated over 15 days and the performance gradually
improves by increasing the accumulation period. As it is presented in the article (Section
4.9), these results are however strongly related to the frequency of Landsat overpasses
(one image every 8 or 16 days or more in cloudy conditions). Poor agreements at daily to
weekly scales are found in terms of irrigation, however the daily RZSM and ET simulated
from the retrieved irrigations are estimated accurately and are very close to those
estimated from actual irrigations.

Therefore, the approach obtains acceptable errors in irrigation amount and timing in
order to simulate the dynamics of water budget components (ET and RZSM) along the
season at daily and field crop scale. Regarding the accuracy of ET estimates over the sites,
it is demonstrated that the formulation of generic coefficients Kcb and Ke allows generic
implementations by using satellite data, avoiding calibration with in situ data that are
usually unavailable over extended areas. Finally, this study demonstrates the utility of
high spatial resolution optical/thermal data for estimating irrigation and consequently
for better closing the water budget over agricultural areas.

4.9. ARTICLE: Irrigation retrieval from Landsat
optical/thermal data integrated into a crop
water balance model: A case study over winter
wheat fields in a semi-arid region
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ARTICLE INFO ABSTRACT

Edited by Jing M. Chen Monitoring irrigation is essential for an efficient management of water resources in arid and semi-arid regions.

Keywords: We propose to estimate the timing and the amount of irrigation throughout the agricultural season using optical
Irrigation and thermal Landsat-7/8 data. The approach is implemented in four steps: i) partitioning the Landsat land
Land surface temperature surface temperature (LST) to derive the crop water stress coefficient (Ks), ii) estimating the daily root zone soil
FAO-56 model moisture (RZSM) from the integration of Landsat-derived Ks into a crop water balance model, iii) retrieving
Landsat

irrigation at the Landsat pixel scale and iv) aggregating pixel-scale irrigation estimates at the crop field scale. The
new irrigation retrieval method is tested over three agricultural areas during four seasons and is evaluated over
five winter wheat fields under different irrigation techniques (drip, flood and no-irrigation). The model is very
accurate for the seasonal accumulated amounts (R ~ 0.95 and RMSE ~ 44 mm). However, lower agreements
with observed irrigations are obtained at the daily scale. To assess the performance of the irrigation retrieval
method over a range of time periods, the daily predicted and observed irrigations are cumulated from 1 to
90 days. Generally, acceptable errors (R = 0.52 and RMSE = 27 mm) are obtained for irrigations cumulated
over 15 days and the performance gradually improves by increasing the accumulation period, depicting a strong
link to the frequency of Landsat overpasses (16 days or 8 days by combining Landsat-7 and -8). Despite the
uncertainties in retrieved irrigations at daily to weekly scales, the daily RZSM and evapotranspiration simulated
from the retrieved daily irrigations are estimated accurately and are very close to those estimated from actual
irrigations. This research demonstrates the utility of high spatial resolution optical and thermal data for esti-
mating irrigation and consequently for better closing the water budget over agricultural areas. We also show that
significant improvements can be expected at daily to weekly time scales by reducing the revisit time of high-
spatial resolution thermal data, as included in the TRISHNA future mission requirements.

Root-zone soil moisture
Evapotranspiration

1. Introduction agriculture on water resources, information on the amount of irrigated
water is often unavailable. Therefore, monitoring and quantifying ir-
rigation over extended areas is critical for an efficient management of

water resources.

Irrigated agriculture consumes > 70% of freshwater at global scale
(Foley et al., 2011) and >80% in semi-arid and arid regions

(Chehbouni et al., 2008; Garrido et al., 2010). The water scarcity issue
is particularly acute in the Mediterranean, which is and will continue to
be a hot spot of climate change with an observed trend towards warmer
conditions and a greater irregularity in seasonal and annual precipita-
tions (Giorgi, 2006; IPCC, 2013). Increasing the water use efficiency in
agriculture is essential for the sustainability of water resources and
hence has been identified as one key topic related to water scarcity and
droughts (Werner et al, 2012). Despite the important pressure of

*Corresponding author.
E-mail address: olivera-guerrale@cesbio.cnes.fr (L. Olivera-Guerra).
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In an attempt to estimate the irrigation volumes from remote sen-
sing data, some recent studies have explored the utility of surface soil
moisture estimates from micro-wave sensors (Brocca et al., 2018, 2017;
Escorihuela and Quintana-Segui, 2016; Jalilvand et al., 2019; Kumar
et al., 2015; Lawston et al., 2017; Malbéteau et al., 2018; Zhang et al.,
2018). In particular, Brocca et al. (2018) developed an approach to
quantify the irrigation amounts by combining the currently available
coarse resolution satellite soil moisture products (e.g. SMAP, SMOS,

Received 19 June 2019; Received in revised form 25 November 2019; Accepted 21 December 2019

Available online 10 January 2020
0034-4257/ © 2020 Elsevier Inc. All rights reserved.



4.9. ARTICLE: Irrigation retrieval from Landsat optical/thermal data integrated into a
crop water balance model: A case study over winter wheat fields in a semi-arid region

L. Olivera-Guerra, et al

ASCAT, AMSR-2) and a soil water balance. This work was applied over
various semi-arid and semi-humid regions worldwide but could not be
quantitatively assessed due to the unavailability of reliable in situ ob-
servations of irrigation over corresponding irrigated perimeters. How-
ever, this approach was quantitatively assessed at ~50 km resolution
over a semi-arid region (Jalilvand et al., 2019). Some deficiencies were
obtained over periods with sustained rainfalls and the method was not
implemented in winter because the method fails in correctly separating
irrigation from precipitation (Brocca et al., 2018). This makes the ap-
proach unsuitable for winter crops, which are especially important in
the Mediterranean. Nevertheless, the ability to quantify monthly irri-
gations was demonstrated under specific conditions: during prolonged
periods of low rainfall and using satellite soil moisture data with a low
uncertainty and a frequency higher than 3 days.

There are two main issues with the use of microwave-based soil
moisture for retrieving irrigation. The first limitation is the very coarse
resolution (~40 km) of readily available satellite soil moisture data
sets. The spatial resolution can be improved to 1 km resolution using
disaggregation methods (e.g. Molero et al., 2016; Peng et al., 2017), but
this enhanced resolution is still unsuitable for monitoring the water
management at the crop field scale, i.e. about 100 m or 1 ha (Anderson
et al., 2012). Furthermore, recent methods to obtain soil moisture data
at suitable resolution (~100 m) have not reached an operational ma-
turity yet (e.g. Amazirh et al., 2018; Merlin et al., 2013; Peng et al.,
2017). The second limitation is related to the sensing depth (several cm
or so) of microwave observations. The dynamics of the top soil moisture
is likely to be used to detect irrigation events. However the volume
sensed is much smaller than the root zone water storage, which
weakens the capability of microwave-based approaches to solve the
crop water budget.

Alternatively to microwave-based approaches, optical/thermal data
have demonstrated to be valuable for monitoring the crop water re-
quirements by means of evapotranspiration (ET) estimates (Gowda
et al., 2008; Kalma et al., 2008; Li et al., 2009). Thermal data have the
advantage over microwave data of providing information on the ve-
getation water status, even within individual fields, in order to improve
the water use efficiency (Anderson et al., 2012). In this vein, different
methods have been developed in the last decades to estimate ET from
LST data (Gowda et al., 2008; Kalma et al., 2008; Li et al., 2009). De-
spite the large variety of existing approaches to estimate crop water
requirements by means of ET estimates, irrigation is generally simu-
lated from the modeled water needs (e.g. Allen et al, 1998;
Bastiaanssen et al., 2007; Battude et al., 2017; Corbari et al., 2019;
Duchemin et al., 2008). Those models are based either on the water
balance or on the coupled energy-water balance, but in both cases, the
simulated irrigation may differ considerably from actual irrigation
amounts. The reason is that the modeling of soil moisture dynamics and
its interaction with the crop consumption through ET is prone to sig-
nificant uncertainties, especially when no information is available on
the actual crop water status over time. Other approaches based on ET
estimates from remote sensing surface energy balance (SEB) models
(e.g. SEBS, SEBAL, METRIC) have the advantage of estimating the crop
water requirement without the calculation of the water balance. This is
feasible using daily optical/thermal data. The point is that the remotely
sensed variables for operating SEB models at daily scale generally have
a spatial resolution of 1 km or more (e.g. Romaguera et al., 2014; van
Eekelen et al., 2015), which is unsuitable at crop field scale. When
using high-spatial resolution optical/thermal data, the low temporal
resolution has to be taken into account. In Droogers et al. (2010), a
water balance model was calibrated to minimize the difference between
simulated and remotely sensing Landsat-derived ET over an irrigated
cotton crop field. The calibration involved adjusting the irrigation
amount and a stress threshold below which irrigation is triggered. The
stress threshold f; was defined as the actual to potential transpiration
and ranged from 0.95 to 0.98 in that study. However, due to compen-
sation effects between irrigation amounts and dates, the authors had to
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further constrain the inverse problem by fixing the irrigation dates
during the first half of the season (from March to end of June) and to
assume that there is no stress during the second half of the season (from
July). Therefore, during the first stage, irrigation events are supposed to
be known, while during the second stage, the approach in Droogers
et al. (2010) is very similar to the application of the classical FAO-56
model (Allen et al., 1998) that triggers irrigation as soon as the root
zone soil moisture gets below 0.95-0.98 times the critical soil moisture
below which the crop stress starts. The retrieved irrigation amounts
were assessed at the seasonal time scale but, due to the lack of vali-
dation data, they were not compared to actual irrigations at shorter
time scales. Recently, Corbari et al. (2019) developed a system to
predict the water needs (irrigation) from the coupling of remote sensing
data, soil water-energy hydrological modeling and meteorological
forecasts. Landsat-derived vegetation and albedo parameters, as well as
land surface temperature (LST) data were used to initialize and cali-
brate the energy-water balance. However, this approach required ob-
served data of the previous days (especially soil moisture) to simulate
the soil moisture and irrigation water needs for up to 3 days, which is
not currently possible over large scales because there is no method that
allows obtaining operationally soil moisture data at suitable resolution
(~100 m). Another approach was proposed by Chen et al. (2018) to
detect the timing of irrigation from a vegetation index by using Landsat
and MODIS reflectance data. The method was demonstrated to be
promising in detecting irrigation events during the first half of the
growing season only. Actually, vegetation index presents great fluc-
tuation and is insensitive to water supplement during the second half of
the growing season. In addition, the method does not allow retrieving
irrigation amounts.

Among the thermal-based ET models, the contextual approaches
have had an especial interest in the scientific community for its sim-
plicity and operationality over large areas, by estimating ET as a frac-
tion of either potential ET (Moran et al., 1994), or available energy
(Long and Singh, 2012; Roerink et al., 2000). The evaporative fraction
(EF, defined as the ratio of ET to available energy, i.e., the difference
between net radiation and soil heat flux) can be estimated from the
contextual information of remotely sensed optical and thermal images,
where dry and wet conditions are identified from the LST - fv (e.g. Long
and Singh, 2012; Moran et al., 1994) space, the LST - albedo (e.g.
Roerink et al., 2000) space or even from their combination (Merlin,
2013; Merlin et al,, 2014). According to a number of thermal-based
methods, LST can be related to the root-zone soil moisture (RZSM) by
means of the canopy temperature and its associated transpiration
(Boulet et al., 2007; Hain et al., 2009; Moran et al., 1994). Hence, one
key step to estimate thermal-derived RZSM is the partitioning of LST
into soil and canopy temperatures (Merlin et al., 2014, 2012; Moran
et al., 1994). In dry and wet regimes where a thermal-based EF (or
canopy temperature-based water stress index) is 0 and 1, respectively,
LST is no more sensitive to RZSM. LST is hence useful only in a tran-
sitional regime where RZSM is strongly related to LST. In the transi-
tional regime, the soil moisture ranges between a given critical soil
moisture (SMc:it, below which vegetation is under stress condition) and
the soil moisture at permanent wilting point (SM,,,, below which water
is not accessible to plants). SM,,, is thus defined between SM,,;, and the
soil moisture at field capacity (SM., above which water cannot be held
against gravitational drainage). Therefore, the nonlinear response of
LST for different RZSM levels/regimes is a big issue when trying to
develop a RZSM retrieval approach from LST data. Olivera-Guerra et al.
(2018) developed an approach to derive a first guess RZSM from a LST-
derived water stress coefficient, while under unstressed conditions (i.e.
when LST is no more sensitive to RZSM) the RZSM was estimated from
a crop water balance model. The temporal dynamics of RZSM were
hence obtained along the season under stressed and unstressed condi-
tion, by making an optimal use of both the water budget model and
sequential LST observations. However, the method in Olivera-Guerra
et al. (2018) was not applied to remote sensing data and its application
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to readily available LST observations requires to account for three
major issues that are addressed in the present work. First, a contextual
approach should be implemented from Landsat data to partition the LST
into canopy and soil temperatures by detecting the wet and dry con-
ditions from the LST - fv space. This would allow for estimating a
Landsat-derived crop stress coefficient (Ks) over large scales. Second, a
serious complexity is introduced when trying to estimate the daily
RZSM from sparsely available Landsat data. Especially the Landsat-
derived Ks should be integrated into a crop water balance model in both
recursive and forward modes, in order to provide the temporal dy-
namics of RZSM along the season at pixel scale over large areas. Third,
given that irrigation is usually applied within a single day over the
entire crop field, the pixel-scale irrigation estimates can be aggregated
(following a strategy to be defined) to provide the irrigation dates and
amounts at the crop field scale.

Therefore, this study aims, for the first time, to develop an original
approach to retrieve the crop field scale irrigation timing and amounts
on a daily basis all along the agricultural season from readily available
remote sensing data. For this purpose, a key and novel step in the ap-
proach is to estimate the daily RZSM by combining a forward and re-
cursive crop water balance initialized by temporally-sparse Landsat
data. To our knowledge it is the first remote sensing-based approach to
estimate irrigation at such high spatio-temporal resolution from readily
available optical/thermal data and without relying on ad hoc assump-
tions on irrigation regimes (e.g. no stress) and/or dates. The approach is
implemented with Landsat-7 and -8 data over three 12 km by 12 km
areas in central Morocco and is validated over five sites with different
irrigation techniques (drip, flood and no-irrigation) during four agri-
cultural seasons. The paper is presented as follows. Data sets are first
described (Section 2). Next, the irrigation retrieval method is presented:
i) partitioning the Landsat LST to derive the crop water stress coeffi-
cient Ks, ii) estimating the daily RZSM from the integration of Landsat-
derived Ks into a crop water balance model, iii) retrieving irrigation at
the Landsat pixel scale and iv) aggregating pixel-scale irrigation esti-
mates at the crop field scale (Section 3). Then, the approach is tested
over three agricultural areas and validated against in situ measure-
ments in terms of irrigation as well as daily RZSM and ET (Section 4).
Finally, the conclusions and perspectives are presented (Section 5).

2. Data collection and pre-processing

The study focuses on three 12 km by 12 km agricultural areas lo-
cated in the semi-arid Haouz plain in central Morocco (Fig. 1). Each
agricultural area is mainly covered by winter wheat crops. Five ex-
perimental sites comprising two drip irrigation, two flood irrigation and
one rainfed wheat fields were monitored during four agricultural sea-
sons. Details about irrigation systems, crop field area and monitoring
period per area, named Chichaoua, R3 and Sidi Rahal are showed in
Table 1. The soil texture are predominantly clay loam, clay and silt
loam for Chichaoua, R3 and Sidi Rahal areas, respectively. The site of
Sidi Rahal (Bour) was maintained under bare soil conditions during the
2015-2016 season due to the dry winter of 2015. However, the four
seasons between 2015 and 2018 are used as benchmark. More details
about the field campaigns can be found in Ait Hssaine et al. (2018),
Amazirh et al. (2018, 2017), Merlin et al. (2018) and Rafi et al. (2019).

2.1. Ground-based data

2.1.1. Irrigation data

In the Chichaoua area, flowmeters were used to monitor the irri-
gation of the two drip-irrigated fields. Irrigation was applied every
3-4 days during the 2016-2017 season until mid-April. Nevertheless,
one field (EC1) was voluntarily stressed during specific periods along
the season (controlled stress). Irrigations were stopped at mid-March
and at the beginning of February of the 2017-2018 season over the
reference (EC2) and controlled stress (EC1) field, respectively. The
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mean irrigation was 13 mm over 2 h.

In the R3 area, the flood-irrigated fields were irrigated every 1 to
3 weeks from January to April. Irrigation of the 2 ha field was precisely
measured with a mean irrigation of 33 mm distributed in 8 events,
while the 4 ha field was irrigated 7 times with an estimated volume of
64 mm each. No irrigation was applied to the Sidi Rahal rainfed (Bour)
wheat field.

2.1.2. Meteorological and flux stations

Automatic meteorological stations were installed in each experi-
mental area: two over alfalfa fields close to the monitored wheat fields
in the Chichaoua and R3 areas and one over the monitored rainfed
wheat field in Sidi Rahal. Meteorological data including air tempera-
ture, solar radiation, relative humidity and wind speed were collected
continuously every 30 min. Likewise, five micro-meteorological sta-
tions equipped with eddy-covariance systems were installed in each
site. Here, net radiation was measured by NRO1 (Hukseflux) or CNR
(Kipp & Zonen) radiometers, depending on the station. Soil heat fluxes
were estimated from two HFP-01 heat flux plates (Hukseflux) per site
buried at 5 cm. Finally, latent and sensible heat fluxes were acquired
with krypton KH20 hygrometers (Campbell) and CSAT3 3D Sonic
Anemometers at a frequency of 10 Hz and averaged over 30 min. The
reliability and quality of the eddy covariance measurements over each
field have been assessed through the energy balance closure (Ait
Hssaine et al., 2018; Amazirh et al., 2017; Rafi et al., 2019).

2.1.3. Soil moisture data

Time Domain Reflectometry (TDR) probes (CS615 and CS655) were
installed near the flux stations in each site to measure the soil moisture
at different depths. The TDR probes were installed at 5, 15, 25, 35, 50,
80 cm in the stress controlled drip-irrigated (Chichaoua) and in the 4 ha
flood-irrigated field (R3). Meanwhile, the TDR probes were installed at
5, 15, 30, 50, 80 c¢m in the reference drip-irrigated field and in the 2 ha
R3 flood-irrigated field. In the rainfed wheat field, the TDR probes were
installed only at the soil surface layer (at 5 and 10 cm). The measure-
ments at different depths were used to estimate the soil moisture in-
tegrated over the root zone by means of linear interpolations. In situ
RZSM estimates were then normalized by using the soil moisture values
at wilting point (SM,,;,) and at field capacity (SMy) estimated from
pedo-transfer functions (Wosten et al., 1999).

2.2. Remote sensing data

Landsat-7 and -8 data collected for the agricultural seasons from
2014 to 2018 are used. Images with < 30% of cloud cover are con-
sidered for the analysis, giving an average of 20 images per agricultural
season. We combine Landsat-7 and 8 to increase the frequency of the
thermal data since it is one main critical issue for monitoring crop water
use together with its high spatial resolution. We estimate LST and fv
using both optical and thermal data (see below). We maintain the 30 m
spatial resolution for all data, even when the thermal bands are re-
sampled from their original 60 m and 100 m resolution for Landsat-7
and -8, respectively.

2.2.1. Land surface temperature

LST is estimated using the single-channel algorithm described in
Jiménez-Munoz et al. (2009); Jiménez-Munoz et al. (2014), which uses
as input the thermal band of Landsat, the atmospheric water vapor
content, and the spectral surface emissivity. The thermal data are ac-
quired from bands 6 and 10 of Landsat-7 and -8 Level-1, respectively,
while the atmospheric water vapor content is obtained from the daily
MODIS MODO05 v6.0 product. The spectral surface emissivity is esti-
mated using the simplified NDVI thresholds method proposed by
Sobrino et al. (2008), which weights the spectral soil and vegetation
emissivity (here set to 0.985) through the fv. Similarly, the spectral soil
emissivity is obtained from the ASTER GED product by using bands 13
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Fig. 1. Study areas and field crops where the developed approach is evaluated.

and 14 with the above-mentioned simplified NDVI method. Then, the
ASTER spectral soil emissivities are adjusted to the Landsat thermal
bands using the broadband regression approach (Ogawa and Schmugge,
2004) as in Malakar et al. (2018) and Duan et al. (2018). The regression
coefficients between the emissivities for Landsat and ASTER bands were
derived by convoluting the soil emissivity spectra of all soil types
available in the ASTER spectral library for every thermal band
(Baldridge et al., 2009). Accuracies resulted in root mean square error
(RMSE) of 0.0007 and 0.0005, and R” of 0.96 and 0.99 for Landsat-7
and -8 thermal band, respectively. The reliability of LST estimates was
assessed in Amazirh et al. (2019, 2017), which found a relatively good
agreement between satellite and ground-based LST over the sites of the

Table 1
Main characteristics of experimental winter wheat fields by agricultural area.

study area with a RMSE lower than 2.4 K.

2.2.2. Fractional green vegetation cover

The fractional green vegetation cover fv is estimated linearly be-
tween a minimum and maximum of the Normalized Difference
Vegetation Index (NDVI), which often represent bare soil (NDVIs) and
fully vegetated surface (NDVIv) values, respectively (Gutman and
Ignatov, 1998). NDVIs and NDVIv are set to 0.14 and 0.93 (Duchemin
etal., 2006). NDVI values are estimated using the red and near-infrared

bands of Level-2 Landsat products.

Area Site name  Crop field area  Soil texture Irrigation system Monitoring period (mm/ Total Irrigation # events Mean irrigation
(%clay, %sand yyvy) applied (mm)
Chichaoua ECI ~1.5ha Clay loam (32.5%, Drip-irrigated 11/2016-5/2017 374 25 15.0 ( + 5.6)
37.5%) 11/2017-5/2018 327 26 126 (+11.2)
EC2 ~1.5 ha 11/2016-5/2017 504 37 13.6 (£ 57)
11/2017-5/2018 528 38 13.9(+114)
R3 4ha 4 ha Clay (47%, 18%) Flood-irrigated 12/2015-5/2016 448 7 64.0 (=)
2ha’ 2 ha Drip-irrigated 12/2015-5/2016 268 8 29.3(+76)
Sidi Rahal Bour ~1ha Loam (18%, 41%) Rainfed 10/2014-5/2015 0 0 0
10/2015-5/2016 0 0 0
10/2016-5/2017 0 0 0
10/2017-5/2018 0 0 0

% R3-2ha field is actually irrigated by drip system with amounts and quantities according to a flood irrigation system. Thus, R3-2ha is considered as flood-irrigated

site.



Chapter 4. Real-life application of the irrigation retrieval approach

L. Olivera-Guerra, et al

3. Method

The method to retrieve irrigation dates and volumes from Landsat
LST/NDVI time series is described below. The basic idea behind the
retrieval approach is first to determine the irrigation date and then to
estimate the (daily) irrigation amount as the difference between the
RZSM estimated on the irrigation date and that estimated on the day
before. As in Olivera-Guerra et al. (2018), thermal-derived crop stress
coefficient (Ks) is translated into RZSM diagnostic by means of the dual
crop coefficient FAO (FAO-2Kc) formalism. In this former work, irri-
gation was estimated from the variability in daily first guess RZSM by
using optical/thermal in situ observations. Given that the method
proposed herein uses temporally sparse Landsat data, the Landsat-de-
rived RZSM diagnostic is propagated in a recursive and forward water
balance mode to estimate the daily RZSM along the season. Therefore,
this method significantly differs from the study in Olivera-Guerra et al.
(2018) in several major aspects. For clarity, the main assumptions are
listed (Section 3.1) and each original component is described sepa-
rately: the irrigation retrieval at the pixel scale using Landsat-derived
Ks (Section 3.2), the use of a contextual method to derive RZSM from
Landsat data (Section 3.3), the implementation of a crop water balance
model (WB) in recursive and forward modes to estimate the daily RZSM
between two successive Landsat overpass dates (separated by 8 to
16 days in clear sky conditions) (Section 3.4), the aggregation of pixel-
scale irrigation estimates at the crop field scale (Section 3.5), and the
definition of a validation strategy of the field-scale retrieved irrigation
dates/volumes (Section 3.6).

3.1. Model assumptions

The approach is based on several assumptions, some of which relate
to the FAO-2Kc modeling approach, while others are specific to the
proposed irrigation retrieval method. The assumptions deriving from
the FAO-2Kc model are:

- The daily RZSM varies within a range defined by a minimum value
set to the soil moisture at wilting point (SM,,;) and by a maximum
value set to the soil moisture at field capacity (SMg). Both extreme
soil moisture values are estimated using pedo-transfer functions
(Wosten et al.,, 1999). SM,,, and SM;. were equal to 0.17 and
0.32m*m?, respectively. Uniform soil parameters were used to test
the genericity of the irrigation retrieval approach.
When RZSM reaches SM,, any additional water supply is considered
as water excess and is therefore drained from the soil bucket by deep
percolation (occurring simultaneously to the water excess supply).
- The RZSM is linearly related to Ks between SM,,, and the critical
RZSM (SMerir = 0.24 m® m ™), which is estimated as a fraction of
the total available water (i.d. difference between SMg and SM,,,)
according to the water stress tolerance of crops (Allen et al., 1998).
- The rooting depth is estimated from the vegetation cover and varies
linearly between a minimum value (set to 0.1 m) and a maximum
value depending on the crop type.

The assumptions specific to the irrigation retrieval approach are:

- The retrieved irrigation is the effective irrigation (irrigation minus
drainage), meaning that the irrigation excess which triggers deep
percolation is not taken into account.

- An irrigation event is detected on the day when the RZSM estimated
recursively from the FAO-2Kc water budget reaches SMy, and it is
not due to rainfall.

- The field-scale retrieved irrigation occurs on the same day over the

entire field crop.

Due to the saturation of Landsat-derived Ks (equal to 1) for soil

moisture values between SM;, and SMy,, the Landsat-derived RZSM

ranges between SM,,, and SMerit.
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- If two successive Landsat overpass dates both indicate unstressed
conditions (Ks = 1), it is assumed that the crop does not undergo
water stress during that period. It is also assumed that Ks = 1 be-
tween a Landsat date indicating unstressed conditions and an irri-
gation event detected before the next Landsat overpass date.

- In our study, the capillarity rise and runoff are neglected due to flat
surfaces and a water table significant deep (> 30 m) in the study
area (Duchemin et al., 2006).

3.2. Pixel-scale irrigation retrieval

Irrigation is first estimated at the Landsat pixel scale as:
I, = 1000(RZSM; — RZSM,_1)Zn 1)

where [ is the irrigation amount (mm) on the irrigation date i and
RZSM; and RZSM; ; (m*/m®) the RZSM estimated on the irrigation day
and on the day before, respectively. The RZSM unit (m®/m?) is con-
verted to irrigation depth (mm) by the factor 1000Zr;, with Zr; being the
effective root zone depth (m) at the irrigation date. Zr; is estimated
according to the Appendix A.2

To estimate RZSM; in Eq. (1), the WB is applied in the recursive
mode (here-after referred to as RWB) at daily scale for every period
between two consecutive clear sky Landsat overpass dates (j and j-Pj,
with Pj being the number of days between both successive Landsat
dates). The RWB is applied from the last Landsat overpass date of the
season to its previous dates. Therefore, the RWB is initialized at date j
(i > 1) from a Landsat-derived RZSM (RZSM_ yndsar), and an irrigation
event is detected at date i when the simulated RZSMgyg, (for t = j-1,
...,1) reaches SMy.. However, four different cases need to be considered
depending on the value (equal or smaller than 1) of Landsat-derived Ks
at dates j-Pj and j. For clarity, each case is illustrated in Fig. 2.

Case 1. stressed-stressed (Fig. 2.a). The crop is under stress (Ks < 1)
on both Landsat overpass dates j and j-Pj. Hence both RZSM| yydsarj and
RZSMLandsatj-pj are smaller than SMer,. In this case, if an irrigation event
at date i > j-Pj (i.e. RZSMpyp, = SMy) is detected, the WB model is
used in the forward mode (referred to as FWB) to estimate the RZSM at
day i-1 from an initial value set to RZSMjndsarjpj- The irrigation
amount at date i is estimated as:

I, = 1000(SMrc — RZSMrwp i=i-1)Zn (2)

Case 2. stressed-unstressed (Fig. 2.b). The crop is under stress (Ks < 1)
on Landsat overpass date j-Pj and is unstressed (Ks = 1) on Landsat
overpass date j. In this case, the RWB is initialized to SMey, at Landsat
overpass date j and if RZSMgyp—; reaches SMg for i > j-P;, then
RZSM, - is estimated from the FWB initialized by RZSMjandsarjpj at
Landsat overpass date j-Pj. The irrigation amount is then estimated as in

Eq. (2).

For cases 1 and 2, two other specific conditions need to be con-
sidered:

i) RZSMgyp, might reach its minimum value (SM,,;) before the de-
tected irrigation event from RZSMgws,=i. In that situation, another
irrigation event is triggered in such a way that the simulated
RZSMgyp is set to SMy, and the FWB is used to propagate RZSM until
i-1 in the Eq. (2).

ii) RZSMgws, does not reach SMg for t > j-Pj. In that case, an irri-
gation is detected at date j-Pj + 1 provided that the difference be-
tween RZSMgywp jpj + 1 and RZSM | andsa jpj IS positive and significant
(larger than a given threshold to be set). In this case, the irrigation
amount is calculated as:

Ji=j-pj+1 = 1000(RZSMrws.; — RZSMianasatj-p; ) Z1 3)

Note that the threshold is determined as the uncertainty associated
to RZSMiandsarjpj €Stimate by using the propagation of uncertainty
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Fig. 2. Schematic representation of pixel-scale irrigation retrieval between two successive Landsat overpass dates in four different cases: stressed-stressed (a),
stressed-unstressed (b), unstressed-stressed (e) and unstressed-unstressed (f). The specific conditions ¢) and d) can be found in the stressed-(un)stressed cases (a,b).
The RZSM is estimated from the FWB (right dotted arrow) or the RBW (left dotted arrow) initialized by the RZSM| ;45 at date j and j-Pj, respectively. An irrigation
event is detected when RZSMgyp reaches SM;, and its amount is estimated by the difference between the RZSM retrieved at date i and i-1.

method from the partial derivatives of every independent variable (see
Appendix A.3).

Case 3. unstressed-stressed (Fig. 2.c). The crop is unstressed (Ks = 1)
on Landsat overpass date j-Pj and is under stress (Ks < 1) on Landsat
overpass date j. In this case, if an irrigation event at date i > j-Pj (i.e.
RZSMgpyg, = SMy.) is detected, then RZSM, _; ; is set to SM,,; at date i-
1. The irrigation amount at date i is thus determined as follows:

I = 1000(SM;, — SMen)Zn @

Case 4. unstressed-unstressed (Fig. 2.d). The crop is unstressed
(Ks = 1) on both Landsat overpass dates j-Pj and j. In this case, an
irrigation is detected (date) and estimated (amount) as in the Case 3.

For cases 3 and 4, RZSMyndsarjpj is updated by RZSMgyg j.pj. The
updated RZSM at j-Pj is then used to reinitialize the previous period
(from date j-Pj to its previous Landsat overpass date).

3.3. Landsat-derived RZSM

The Landsat-derived RZSM (RZSMaydsar) is estimated as:
RZSMandsalJ = SMc*p + KSLandsalJ (SMMI = Swa) (5)

where Ksyngsaj is the Landsat-derived Ks, estimated from a normal-
ization of the Landsat-derived vegetation temperature (Tv), using
minimum (Tv,,;,) and maximum (Tv,,,,) Tv values. Hence, Ks values
range between 0 and 1, where 1 corresponds to well-watered/un-
stressed vegetation (Tv = Tv,,;,,) and O to non-transpiring or senescent
vegetation (Tv = TV,,,). Landsat-derived Tv is obtained from a parti-
tioning method of LST:

_LST-(1-)Ts

T
' 3 ®)

with Ts being the soil temperature and fv the fractional vegetation
cover. This partitioning method is based on the LST-fv feature space
(e.g. Jiang and Islam, 2003; Long and Singh, 2012; Merlin et al., 2014;
Sandholt et al., 2002), by incorporating the assumptions of the two-
source surface energy balance (TSEB) formalisms (Norman et al., 1995).
First, the LST-fv feature space is used to estimate the temperature
endmembers (TViyin, TViax, TSmin and Tvp,,) from a polygon con-
strained by a “dry edge” (defined as the line between Ts,;,, and Tv,,y,)
and a “wet edge” (defined as the line between Ts,,,, and TV,,,y). The
“wet edge” and “dry edge” are determined from the linear regressions
of the minimal and maximal LST, respectively, which are selected by fv
classes with an interval of 0.01 (see Fig. 3.a). Second, the TSEB as-
sumption for solving the vegetation and soil fluxes components and
their corresponding Tv and Ts is only used for the partitioning of LST by
applying Eq. (6). The procedure is initialized with Tv being equal to
TVmin and the corresponding initial Ts by decomposing linearly the LST
from Eq. (6). This is consistent with the TSEB approach when the
transpiration rate is initialized to its potential rate (corresponding to
TV = TVin). If Ts is above the Tsy,y, Ts is then set to Ts,,,, and a new
Tv is calculated from Eq. (6). In that case, the vegetation undergoes
water stress (Tv > Tv,y,). Therefore, the TSEB assumption in the LST-
fv feature space (see Fig. 3.b) makes Tv equal to Tv,,, for every Ts
below Ts,,.y, while Ts remains equal to Ts,,,, when Tv is larger than
Tvmin-

3.4. Water balance-derived RZSM

The daily RZSM between Landsat overpass dates is estimated by
solving the crop WB in forward and recursive modes, named FWB and
RWB respectively. According to the FAO-2Kc formalism, the general
expression of the crop WB model is:

Dr =Dr_, + ET, — B — I, + DR — CR, + RO, @



Chapter 4. Real-life application of the irrigation retrieval approach

L. Olivera-Guerra, et al

Tsmax

Fractional green vegetation cover

Remote Sensing of Environment 239 (2020) 111627

Ny edge

Wet edge

0.2 0.4 0.6 0.8 1
Fractional green vegetation cover

Fig. 3. In a), example of LST-fv feature space constrained by the polygon TSmin-TVmin-TVmax-TSmax from the linear regression of the minimum and maximum LST by fv
classes. In b), a conceptual diagram of the LST-fv polygon for partitioning LST for two pixels (f,LST) (yellow points) showing its Ts (red points) and Tv (green points)
values corresponding to the TSEB assumptions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)
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Fig. 4. Schematic diagram presenting the crop field scale irrigation retrieval from pixel-scale irrigation estimates for an example of a 30-pixel crop field. The daily
pixel-scale irrigation is represented for every pixel (middle plots), from which are estimated the daily averaged irrigation (blue bar in top right plot) and the fraction
of irrigated pixels (red line). Between two successive Landsat overpass dates in top right plot, the daily mean irrigation is integrated in the periods (shaded areas)
according to its fractional irrigated pixels. The crop field scale irrigation (red bar in bottom right plot) is obtained by deriving the most probable irrigation date and is
provided with its standard deviation for amount (black error bar) and date (red error bar). (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

where Dr. is the root zone depletion, ET the evapotranspiration, P the
precipitation, DP the deep percolation, CR the capillarity rise, RO the
surface runoff and I the irrigation. Every term is expressed in mm for
the day t (and t-1 for Dr). According to the assumptions used in this
study, CR and RO are neglected while I is the variable to be estimated.
Therefore, the FWB and RWB models can be expressed in Egs. (8) and

(9), respectively as:
(8)

9)

Dy =Dr,+ ET, - R
Dy_,=Drp—ET + R

Note that in the above equations, the DP resulting from heavy
rainfall is not computed since Dr; or Dr.; are set to 0 when P, > Dr.
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1 + ET,or P, > Dr,-ET, for FWB and RWB, respectively. For both RWB
and FWB models, the Landsat-derived RZSM (either RZSMj jdsatj.pj OF
RZSMiandsar,j) is used to initialize the root zone depletion.

Dr; = 1000(SMj. — RZSM,) Zn; 10)

In Egs. (8) and (9), ET, is estimated from the FAO-2Kc formalism,
where its basal crop coefficient (Kcb) and evaporation coefficient (Ke)
are estimated from a generic expression from the daily fv interpolated
from Landsat data. More details about the generic expressions to esti-
mate Kcb and Ke are described in Appendix A.3. Kcb and Ke are first
adjusted using Ks and an evaporation reduction coefficient (Kr), which
are initialized from their Landsat-derived estimates (at date j-Pj or j for
forward or recursive mode, respectively). Then Ks and Kr are computed
from the crop WB according to FAO-2Kc. Similarly to Ks, Kr is estimated
as the normalization of Ts between Ts,,;, and TSy, Finally, RZSM in
forward (RZSMgwg,) and recursive (RZSMgwgs,) modes are obtained
from the root zone depletion by inverting Eq. (10).

3.5. Crop field scale irrigation retrieval

The irrigation was previously retrieved from the RZSM derived at
the pixel level regardless of its neighboring context. Hence the within-
field variability in terms of predicted irrigation dates and amounts can
be further constrained. Given that irrigations usually occur on the same
day over the entire crop field, we propose a procedure of aggregation to
provide the irrigation dates and amounts at the crop field scale. The
three-step procedure is described below.

First, for each period P; between two successive satellite overpasses,
the number of irrigations within a given crop field (Nygeiqp;) is esti-
mated as the total number of irrigations at pixel-scale divided by the
number of pixels contained in the crop field (Npixe1). Then, the daily
amounts of irrigation at pixel-scale are averaged within the crop field
(I). The daily fraction of irrigated pixels (f}) is also estimated as the
number of pixels where irrigation is detected divided by N (Fig. 4).
Finally, the irrigation volume applied over the crop field (Igaq) is es-
timated by integrating the amounts of irrigation in the Nigeap; sub-
periods of period P;j (Eq. (11)). The most probable date (Datejgeq) of the
irrigation event within each sub-period is estimated similarly according
to Eq. (12).

nd
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with I; and f; being the areal averaged irrigation and the fraction of
irrigated pixels within the field crop on day i, respectively. d, is the time
differential in the integral equations. The limits of integration ini and
end are set according to f; and Nygeigpj in period Pj. Nygeiq pj is equal to
the number of local maxima (peaks) of f; detected for each sub-period.
The limits ini and end are set to the first day before and the last day after
the peak with f; is equal to zero (i.e. the days when irrigation is not
detected in any pixel of the field), respectively. For clarity, different
integration periods are illustrated in Fig. 4.

3.6. Validation strategy

3.6.1. Irrigation

The performance of the irrigation retrieval method is evaluated at
various time scales. In order to do that, the irrigation amounts are ac-
cumulated in overlapping windows throughout the seasons by in-
creasing sequentially the windows from 1 day to 3 months (90 days).
This strategy is implemented for every site. It allows the performance of
the approach to be assessed for different accumulation periods, to be
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compared with the temporal resolution of Landsat data. The total irri-
gation applied during the entire season is also evaluated for all the sites.

The retrieved irrigation is also compared against the classical ap-
proach, which assumes no stress, meaning that irrigation is triggered
when the RZSM reaches SM,,;, in order to maintain Ks at 1. For this
purpose, FAO-2Kc is run to simulate irrigation events along the season
in order to maintain the crop under unstressed conditions (here-after
referred to as FAO-2Kcks=1). Note that the coefficients used in the FAO-
2Kc (Keb and Ke) are also averaged within the crop field, consistent
with the irrigation retrieval method. The deep percolation resulting
from the actual irrigation (I,) is removed from the comparison be-
cause our approach and FAO-2Kcy,—, both estimate the effective irri-
gation only (i.e. without deep percolation resulting from irrigation). For
this purpose, the deep percolation is estimated according to the FAO-
2Kc forced by actual irrigation (here-after referred to as FAO-2Kcygps)-

3.6.2. RZSM and ET

The irrigation retrieval method is also assessed in terms of RZSM
and ET estimates. Indeed, RZSM is an intermediate variable from which
irrigation is retrieved, and ET is indirectly related to the irrigation
through the RWB and the FWB. For this purpose, the retrieved irriga-
tion is used to force FAO-2Kc to simulate RZSM and ET on a daily basis,
and the RZSM and ET estimates are compared with in situ observations.
The results are notably compared with those obtained for the FAO-
2Kcyops (in situ irrigation) and FAO-2Kcg,—, (no stress) approaches. In
summary, the validation strategy implies running the FAO-2Kc by using
the water balance driven by i) the actual irrigation, ii) the irrigation
simulated without stress (Ks = 1) and iii) the retrieved irrigation from
our approach.

4. Results and discussions

The irrigation retrieval is applied to the four irrigated sites and to
the rainfed site. Results are assessed in terms of the retrieved irrigation
amount and timing, and in terms of the intermediate variables (RZSM
and ET) needed in the irrigation retrieval algorithm.

4.1. Irrigation

Fig. 5 shows the comparison between the irrigation retrieved by the
proposed methodology (Irao.2ke tandsa), the irrigation simulated by
FAO-2Kc by avoiding stress (Ipao-2xcks=1) and the actual irrigation
(Iops)- The comparison is carried out for each site and season separately.
Over flood-irrigated wheat fields in R3 area, six and five irrigation
events are correctly estimated in the R3-4ha and R3-2ha field, respec-
tively, against the seven and eight irrigations that were actually applied
by the farmer. Note that the irrigation applied at the end of the de-
velopment stage (equal to 64 and 36 mm in R3-4ha and -2ha, respec-
tively) is missing over both sites. It could not be detected by the re-
trieval approach due to a virtual increase in the WB model of the root
zone storage associated with the root growth. Thus, according to the
WB model, no irrigation is needed in this period to supply the crop
water needs. In R3-2ha field, three irrigation events are retrieved
during the mid-season stage instead of the five irrigations applied by
the farmer in the same period. That is because of i) the cloud-free
Landsat data are widely separated (by 16 and 24 days) during this
period and ii) the approach assumes a maximum irrigation amount by
fully filling up the water storage capacity while the actual irrigations
possibly do not reach this threshold and hence the number of retrieved
irrigation events is generally reduced. The latter also explains the
overestimation of irrigation amounts by event during the mid-season
stage over both R3-4ha and R3-2ha fields. Indeed, in both sites, the
irrigation amount estimated in the initial stage (i.e. beginning of the
growing season) was much underestimated compared to the irrigation
really applied by farmers. Regarding the irrigation dates in R3-4ha
field, three first irrigation events are accurately detected with a time



Chapter 4. Real-life application of the irrigation retrieval approach

L. Olivera-Guerra, et al

2014-2015

2015-2016
Irrigation [mm]

150

Irrigation [mm]

2016-2017

”1

120 140

160

180

2017-2018
Irrigation [mm)

o :
DAS (Day after sowing)

ujﬂbL

DAS (Day after sowing)

Remote Sensing of Environment 239 (2020) 111627

L1
bt
Bour
11N TN

DAS (Day after sowing)

Fig. 5. Comparison between volumes and timing of the observed irrigation (black), irrigation triggered by avoiding stress (blue) and irrigation retrieved from the
proposed approach (red) along the season for each site. The horizontal and vertical error bars represent the standard deviation of the retrieved irrigation dates and
amounts, respectively. The green bar indicates the precipitation and the vertical dotted lines indicate the Landsat overpass dates. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

difference about the actual events shorter than 3 days, while the last
three irrigation events are poorly estimated with a time difference of
about one week. The precision in the timing of retrieved irrigations is
also closely linked to the frequency of cloud-free Landsat data over the
crop field since the first irrigations are detected with an availability of
Landsat data every 8 days, while the last irrigations are detected by
using cloud-free images separated by 40 and 24 days. The difference
between observed and retrieved irrigation (date and amount) may be
also related to the inadequate amount and planning of irrigation by the
farmer. In fact, irrigation amounts and timing are planned only by the
understanding and perception of the farmer without using any guide-
line for scheduling the amount and timing of irrigation water applica-
tions. Consequently, some irrigations are missing and some are un-
necessary.

Similarly, in Chichaoua area over both sites (EC-1 and EC-2) and
seasons (2016-2018), the irrigations in the initial stage are under-
estimated while in the mid-season stage the amount by irrigation event
is much overestimated. As it was mentioned for R3 fields, the fact that
the FAO-based approach simulates water supplies by filling up the
water storage capacity makes the amounts be modulated by the water

storage capacity, which depends on the rooting depth Zr and the
parameterization for soil properties and vegetation type (i.d. SM,,
SMy. and SM,;,). Consequently, during the initial stage when Zr is equal
or close to its minimum value (set to 0.1 m) the water supplies to fill up
the root zone are smaller while they are larger during the mid-season
stage when Zr is close to 1 m. Moreover, as it is observed in all irrigated
fields, applying large amounts of water supplies during initial stages isa
common irrigation practice applied by the farmers, on the one hand, in
order to store water in layers deeper than the actual root zone at the
initial stage and, on the other hand, to avoid the appearance of soil
crusting thus facilitating the plant emergence (Le Page et al., 2014).
This is not taken into account in the proposed approach. Specifically
over the drip-irrigated fields, the overestimation in irrigation amounts
is partially explained by i) the irrigation frequency operated by the
farmer (1-3 days), which is much higher than the Landsat temporal
resolution (> 8 days) and ii) the small amounts applied without com-
pletely fill up the reservoir storage capacity (i.e. the RZSM does not
necessarily reach the SMy. after each irrigation). Regarding the stressed
periods in EC1 site during the growing season 2016-2017, no irrigation
was applied during the periods from DAS 68 to 97 and from DAS 101 to
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114. In coherence, no irrigation is detected by our approach during the
period DAS 68 to 97. However, an irrigation event of 49 mm is detected
on DAS 106, which might represent two irrigations of 43 mm applied by
the farmer one week before. Conversely in the EC2 field during the
growing season 2016-2017, the farmer applied 8 irrigation events with
amounts smaller than 10 mm every 2 days during two periods from DAS
77 to 81 and from DAS 87 to 95. During these two periods, our ap-
proach was able to detect one irrigation per period with amounts of 33
and 38 mm, respectively. These amounts are much larger than those
applied by the farmer but they are together very close to the irrigation
accumulated during both periods (68 mm).

In Sidi Rahal area, the rainfed wheat field is used as benchmark to
evaluate where no irrigation should be retrieved. Only three significant
irrigation events are detected in the 2014-2015 and 2017-2018 seasons
while in the other seasons some irrigation events are estimated but with
very small amounts lower than 15 mm. In the mid-season stage of the
2014-2015 season, two important irrigation events (31 and 38 mm) are
retrieved from a significant difference between RZSMgws.pj+1 and
RZSMndsarjpj at date j-Pj + 1 (situation (ii) of case 1 or 2). In this
period between Landsat overpass dates, the water depleted from the
crop consumption through ET minus the precipitation (according to the
WB) is much larger than the difference of RZSM| 45, between dates j
and j-Pj, which is thus translated in the retrieved irrigation amounts.
That is partially explained by uncertainties in the estimation of ET, the
water storage capacity (from SM,,,, SMg and Zr) or capillarity rises
from deeper layers that are neglected in the approach.

Despite the differences between daily retrieved and actual irriga-
tion, the proposed approach is able to accurately estimate the total ir-
rigation amount applied at the seasonal time scale (see Fig. 6) with a
correlation coefficient (R) equal to 0.95, a RMSE of 44 mm and a bias
lower than 15 mm. Fig. 6 shows also the comparison with the classical
approach FAO-2Kcgs—1, which provides poor estimates of irrigations
due to a large overestimation (bias = 252 mm). Such an overestimation
is explained by that fact that the FAO-2Kcg,—, approach avoids the
water stress, regardless of the crop water status. Following FAO-
2Kcys -1, the winter wheat fields would need between 300 and 400 mm
by season, while both the irrigation applied by farmers and the re-
trieved irrigation were very different by field and by season. It should
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Fig. 6. Total irrigation depth applied by the farmer in the season is plotted
versus the irrigation simulated by the FAO-2ke in order to avoid the water stress
(blue, Tgrp oke ks =1) and the irrigation retrieved by the proposed approach (red,
IiA0-2Ke Lanasat)- The correlation coefficient (R), bias and root mean square error
(RMSE) are shown for Igao.2xc ks =1 and Igao-2Kc Landsar. (FOr interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)
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be noted that in bare soil conditions (Bour 2015-2016), FAO-2Kcy,— ¢
estimates several irrigation events of small amounts. This is due to the
top surface soil layer (set to 10 cm) that is quickly depleted by eva-
poration and needs to be re-filled frequently to maintain the Ks equal to
1. Note that the FAO-based approach assumes a minimum rooting depth
(Zryim set to 10 cm) even if there is no vegetation along the season. The
root zone depletion and Ks are thus estimated in such conditions. As
result, the total irrigation depth for Bour 2015-2016 season simulated
by FAO-2Kck,—; is almost twice the wheat water requirements. The
large simulated irrigation is also partly due to the low rainfall during
this season and, consequently, the water balance requires larger water
supply to maintain the Ks equal to 1. Over EC1 and EC2 fields in the
2016-2017 season, FAO-2Kcks =1 obtained a total irrigation very close
to that applied by the farmer because these sites were maintained un-
stressed during almost all the season.

A more comprehensive comparison at different time scales between
the irrigation estimates from the classical approach FAO-2Kcg,—; and
the proposed approach FAO-2KcLandsar is shown in Fig. 7. The irrigation
amounts throughout the seasons are cumulated in overlapping windows
of 1 day to 3 months (90 days). Overall, the proposed approach obtains
a better performance than that of FAO-2Kcg,— with higher accuracies
in term of R, bias and relative RMSE (RRMSE). With exception of two
fields in Chichaoua area for 2017-2018 season, good agreements are
reached over 15 days (R = 0.52 and RMSE = 27 mm) and then the
agreements are further improved by increasing the accumulation
period. Results for the fields in Chichaoua area for 2017-2018 season
are relatively poor. This is mainly due to the stopping of irrigations
early in the season (beginning of February for EC1 and mid-March for
EC2) so that the water requirements were fulfilled mainly from the
water stored in the soil or capillarity rise while the approach estimates
significant irrigation amounts during that period. This problem can be
partially explained by uncertainties and biases in the parameter values
used to estimate the water storage capacity (SM,,p, SMy. and Zr) and the
capillarity rises from deeper layers that are neglected in the approach.
Nevertheless, in spite of difficulties with monitoring drip irrigation, our
approach has a better performance than the classical approach at every
time scale, especially in terms of bias and RRMSE.

The results at different time scales indicate that the Landsat-based
retrieval approach is robust for time intervals equal of longer than
2 weeks, which is the time period of Landsat acquisitions (~16 days).
On the contrary, the approach generally fails in retrieving reliable cu-
mulated irrigation for time periods shorter than 10 days by using the
Landsat frequency. Therefore, we can expect significant improvements
in the irrigation estimates at daily to weekly time scale by increasing
the revisit frequency of LST data. Such high spatio-temporal resolution
will be achieved by future thermal missions like TRISHNA (Lagouarde
and Bhattacharya, 2018).

4.2. Daily RZSM and ET

Fig. 8 and Table 2 report the results of the irrigation retrieval ap-
proach in terms of daily RZSM in comparison with the classical ap-
proach FAO-2Kcg,—; and the FAO-2Kc forced by actual irrigations
(FAO-2Kcyqps). The daily RZSM simulated from FAO-2Kcy,,s obtains an
overall R equal to 0.75 and a RMSE equal to 0.04 m*/m®, while the
proposed approach obtains an R slightly lower (0.66) and the same
RMSE value. FAO-2Kcg,—; obtains a low R equal to 0.25 and a RMSE of
0.07 m®/m® meaning a deterioration of about 65% with regard FAO-
2Kcjops. The similar performance between the proposed approach and
FAO-2Kcy s demonstrates that the retrieved irrigation is correctly es-
timated in order to simulate the RZSM temporal dynamics similar to
that retrieved from the FAO-2Kc forced by actual irrigations.

Similarly, Fig. 9 and Table 3 show the comparison between the
proposed approach, FAO-2Kc¢y,p,s and FAO-2Kcg, - in terms of daily ET.
Overall, the proposed approach provides better performance than FAO-
2Kcgs—1 and is very close to the FAO-2Kciohs. However, particular
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Fig. 7. Bias (a), correlation coefficient (R, b) and relative root mean square error (RRMSE, ¢) between observed and retrieved irrigation cumulated from 1 to 90 days
through a moving window for site and season. The irrigation is retrieved by the proposed approach (FAO-2Kc¢/,,455¢) and is also simulated by the FAO-2Kc in order to

avoid water stress (FAO-2Kcgs.. 1).

results were obtained in the Chichaoua fields (EC1 and EC2). For
2016-2017 season, the FAO-2Kcg,—, obtains better results than the
proposed approach due to the Ks simulated from actual irrigations is
equal to 1 during almost all the season while the Landsat-derived Ks
detects stressed conditions (Ksy yngsae < 1) during a large period in mid-
season. In the 2017-2018 season, the proposed approach provides the
best performance while results from FAO-2Kcy,ps are worse than the
others. Since the three FAO-based models differ only in the irrigation to
force the WB by using the same parameterization, the fact that FAO-
2Kcgons Obtains worse results confirms that over both sites the estima-
tion of the water storage capacity and the capillarity rise is wrongly
considered. This is also revealed during the mid-season stage when
actual irrigation was stopped. Hence the irrigation retrieved by the
proposed approach and by FAO-2Kck,—; during the mid-season stage
compensates a too large water storage capacity or the (neglected) input
of water from capillarity rise.

Note that FAO-2Kcg,— tends to overestimate the low ET rates ty-
pical of initial stages when the low vegetation cover makes the surface
layer be quickly depleted by evaporation. In this stage, the top surface
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soil layer (set to 10 c¢m) is equal or very close to the root zone. The
water storage after being depleted by evaporation, needs to be fre-
quently re-filled to maintain the RZSM above the SM,;, (Ks = 1) by
triggering irrigations and the evaporation is thus maintained at max-
imum rate. This can be clearly observed in Bour site, with longer initial
stages and particularly throughout the 2015-2016 season, when soil
remained bare all the season.

Finally, the high accuracy in ET estimates from the proposed ap-
proach and from FAO-2Kcy,,s demonstrate the reliability of generic
coefficients Keb and Ke to be implemented with satellite data to esti-
mate accurately ET at field scale over extended areas. The formulation
of generic coefficients derived analytically (see Appendix A.3) from the
link between the FAO-2Kc and a one source image-based model
(SSEBop) allows avoiding calibration from in situ data that are rarely
available over extended areas. Those generic coefficients would allow
this implementation over different crop types although an extensive
evaluation would be recommended.
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Fig. 8. Ground-based RZSM is plotted versus the RZSM simulated by the FAO-2Kc forced by observed irrigation (black), irrigation triggered by avoiding stress (blue)
and irrigation retrieved from the proposed methodology (red). The correlation coefficient (R), bias and root mean square error (RMSE) are shown for RZSM from
FAO-based models forced by the three different irrigation data sets. (For interpretation of the references to colour in this figure legend, the reader is referred to the
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Table 2
Correlation coefficient (R) and root mean square error (RMSE) between observed and simulated RZSM from FAO-2Kc forced by observed irrigation (FAO-2Kcjobs),
irrigation triggered avoiding stress (FAO-2Kcks.1) and irrigation retrieved from the proposed methodology (FAO-2Kc¢yandsar)-

Area Site-season R(-) RMSE (m’/m?)
FAO-2KCiohs FAO-2Kcys oy FAO-2KCpandsat FAO-2Kcgons FAO-2Kee =1 FAO-2KCy anear
R3 R3-4ha-2016 0.95 0.26 073 0.02 0.06 0.04
R3-2ha-2016 0.90 0.54 0.68 0.03 0.06 0.05
Chichaoua EC1-2017 0.91 0.19 0.59 0.06 0.08 0.06
EC2-2017 0.39 0.09 0.25 0.08 0.06 0.06
EC1-2018 0.87 0.29 0.84 0.03 0.06 0.03
EC2-2018 0.58 0.25 0.52 0.04 0.03 0.03
Sidi Rahal Bour-2015 0.64 0.16 0.70 0.05 0.08 0.06
Bour-2016 0.77 0.22 072 0.03 0.09 0.03
Bour-2017 0.72 0.18 072 0.03 0.07 0.03
Bour-2018 0.76 0.28 0.81 0.03 0.07 0.03
All 0.75 0.25 0.66 0.04 0.07 0.04
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Fig. 9. Ground-based ET is plotted versus the ET simulated by from FAO-2Kc forced by observed irrigation (black, ETrao-2xc 1obs), irrigation triggered by avoiding
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reader is referred to the web version of this article.)

Table 3

Correlation coefficient (R) and root mean square error (RMSE) between observed and simulated ET from FAO-2Kc forced by observed irrigation (FAO-2Kcjobs),

irrigation triggered avoiding stress (FAO-2Kcgs.1) and irrigation retrieved from the proposed methodology (FAO-2Kc¢yandsar)-

Area Site-season R(-) RMSE (mm/d)
FAO-2KCions FAO-2Kcys 1 FAO-2KCp andsar FAO-2KCiohs FAO-2Kcgem 1 FAO-2KCy andsar
R3 R3-4ha-2016 0.95 0.90 0.94 0.87 0.98 0.88
R3-2ha-2016 0.92 077 0.85 0.68 0.97 0.78
Chichaoua EC1-2017 0.87 0.79 0.75 0.89 0.88 0.94
EC2-2017 0.91 0.90 0.89 0.85 1.00 1.06
EC1-2018 0.64 0.83 074 1.37 0.76 1.22
EC2-2018 0.73 087 091 1.12 0.77 0.65
Sidi Rahal Bour-2015 0.81 041 0.84 0.63 1.50 0.75
Bour-2016 0.69 0.25 0.60 0.66 3.03 0.71
Bour-2017 0.74 0.12 074 0.53 1.50 0.53
Bour-2018 0.86 0.05 0.80 0.61 210 0.80
All 0.81 0.59 0.81 0.82 1.35 0.83
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Fig. 10. Sensitivity analysis results for the soil
parameters SMy. and SM,,,, by setting Zry,,, set
to 1.0 m. The irrigations are estimated by using
SM, ranging between 0.28 and 0.40 m® m™®~
and SM,, ranging between 0.10 and
0.24 m® m™ . The statistical parameter R (top)
and RMSE (bottom) for actual irrigation accu-
mulated over 15 days are estimated by using
FAO-2Kcgs~1 (left) and FAO-2Kcpangsar (right)
models. The red square indicates the SM. and
SMy, used in the approach. (For interpretation
of the references to colour in this figure legend,
the reader is referred to the web version of this
article.)
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4.3. Sensitivity analysis for soil parameters

The three main soil parameters (SMg, SM,,,, Zr) directly affect the
water storage capacity and hence the estimation of the irrigation
amount and timing. Note that SM,,;, also affects the detection of irri-
gations and their amount particularly during unstressed periods (see
Fig. 2). However, SMci is estimated from SMy and SM,, and thus its
impact is indirectly taken into account with SM. and SM,,,. SM;, also
depends on the crop tolerance to stress (fraction p) but as in Olivera-
Guerra et al. (2018), the fraction p was considered constant for sim-
plicity and because there is no significant difference for when using a
constant or variable p (the variation in the overall RMSE and R* of
simulated versus observed ET was found to be lower than 1%). Con-
sequently, the sensitivity analysis is conducted for SMg., SM,,, and Zr
only to assess the impact of uncertainties in soil parameters.

Fig. 10 depicts the sensitivity analysis for SMg and SM., in terms of
retrieved irrigation by using the FAO-2Kcy,—; and FAO-2Kcp,ndsac
models over the site R3-4ha. The irrigation at daily scale are cumulated
over 15 days and compared against camulated actual irrigations. When
looking at the variability of R and RMSE for irrigations from FAO-
2Kcgs=1 and FAO-2KCpandsat, the later model is less sensitive to the soil
parameters. The plots indicate that several optimal values can be found.
This is due to the difference between SMy. and SM,,, rather than the
absolute value of each. Thus, the approach is sensitive to the water
storage capacity defined by the difference between SMg. and SM,,,,
weighted by the root zone depth or in other words to the total available
water (TAW = Zr(SMg - SM,,)). The higher R values of irrigation
retrieved from FAO-2Kc¢ a5 SUggest that the optimal difference (SMg,
- SM,,,) is between 0.17 and 0.19 m® m™", consistent with the values
proposed by Allen et al. (1998) for clayey soils. However in this study,
SM¢. and SMy,;, are set to 0.32 and 0.17 m® m™~ respectively. There-
fore, the approach can obtain a better performance by using optimal
SMy. and SM,,, values.

The root zone depth, which is estimated following the Appendix
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A.2, is also an important parameter in the water storage capacity. In the
Eq. (A.1), the main parameter to be calibrated is Zrmay. Therefore, the
same sensitivity analysis as for SM;. and SM,,, was performed by using
a Zr .y ranging from 0.5 to 1.5 m. These Zr,,,, values are typical for
wheat fields, keeping in mind that 0.52 m was measured over a winter
wheat field in the study area during the growing season 2002-2003 (Er-
Raki et al., 2007), while Allen et al. (1998) propose values between 1
and 1.8 m for wheat fields. For Zr,,,, set to 0.5 m, optimal results in
terms of irrigation accuracy are obtained for a difference (SMg. — SM,,)
ranging from 0.25 to 0.27 m® m~3, while by setting Zr,,,, to 1.5 m,
optimal results are obtained for a difference (SMg. — SM,,,) ranging from
0.12t0 0.13 m® m >, It is found that the optimal SMyc and SM, values
for Zr,,, equal to 0.5 m and 1.5 m are not realistic for soils present in
the study area. Indeed the difference 0.25-0.27 m® m™?
(Zrpmax = 0.5 m) is much larger than that for clayey soils, and the dif-
ference of 0.12-0.13 m® m ™2 (Zrmax = 1.5 m) is typical for sandy soils.
Therefore, the sensitivity analysis shows that 1 m is a deemed accep-
table value for Zr,,,, that allows obtaining both optimal and realistic
SM;. and SM,,, values for the main soils present in the study area.

Although good accuracies were found using uniform parameters,
Fig. 10 indicates that the performance can still be improved if optimal
values are used by properly adjusting them to the actual soil texture of
the crop field.

5. Conclusion

A new approach to estimate the field-scale irrigation amounts and
timing along the agricultural season is developed by integrating the
Landsat optical and thermal data into a crop water balance (FAO-based)
model. The main idea behind the approach is first to determine the
irrigation date and then to estimate the irrigation amount as the dif-
ference between the RZSM estimated on the irrigation date and that
estimated on the day before. In order to integrate the Landsat data into
a crop water balance model and then to retrieve the irrigation at field
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scale, four general procedures are implemented: i) partitioning the
Landsat LST to derive the crop water stress coefficient Ks, ii) estimating
the daily RZSM from the integration of Landsat-derived Ks into a crop
water balance model, iii) retrieving irrigation at the Landsat pixel scale
and iv) aggregating pixel-scale irrigation estimates at the crop field
scale. The approach is assessed over three agricultural areas during four
seasons and validated specifically on five winter wheat fields under
different irrigation techniques (drip, flood and no-irrigation). The ap-
proach is validated in terms of irrigation estimates as well as daily
RZSM and ET as intermediate variables linked to the crop water balance
model. The approach is compared against the classical approach FAO-
2Kc that simulates irrigations to avoid stressed conditions (FAO-
2Kcks=1) and the FAO-2Kc forced by actual irrigations (FAO-2Kciobs).

The results depict that the proposed approach estimates accurately
the total irrigation amounts over all the fields and seasons with a RMSE
equal to 44 mm and an R of 0.95. To assess the performance of the
irrigation retrieval method at different time scales along the seasons,
the daily irrigations are cumulated over overlapping periods of 1 to
90 days (3 months). This analysis shows that acceptable errors are
obtained for irrigations cumulated over 15 days and the performance is
gradually improved by increasing the accumulation period. This period
is closely linked to the revisit time of Landsat data that is 16 days or
8 day when combining Landsat-7 and Landsat-8 data, and often longer
in cloudy conditions.

Although the approach does not allow obtaining good performances
at daily to weekly scale in terms of irrigation amounts and timing, the
daily RZSM and ET simulated from the retrieved irrigations are esti-
mated accurately and are very close to those estimated from actual ir-
rigations (FAO-2Kc,p). Based on these results, we can conclude that:

i) The approach obtains acceptable errors in irrigation amount and
timing in order to simulate the dynamic of water budget compo-
nents along the season at daily and crop field scale.

ii) The formulation of generic coefficients Kcb and Ke, which are de-
rived analytically from the link between the FAO-2Kc and the
image-based model (SSEBop) formalisms allows its implementation
to estimate ET accurately at field scale over extended areas by using
satellite data. Hence, the Kcb and Ke allow generic implementations
avoiding calibration, which usually needs in situ data that are rarely
available over extended areas.

This new approach demonstrates the utility of optical and thermal
data for estimating the irrigation and then for retrieving the water
budget components of crops. However, significant improvements can be
expected if the revisit time is reduced with a similar or even improved
spatial resolution. In this vein, the advent of the TRISHNA mission at

Appendix A

A.1. Rooting depth Zr
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high spatio-temporal resolution in the thermal infrared (Lagouarde and
Bhattacharya, 2018), will lead to substantial improvements in the es-
timation of irrigation at daily to weekly scale. Such an improvement
will come not only from a shorter revisit cycles (~3 days), but also from
a higher spatial resolution (—50 m), being more suitable for monitoring
water consumption at crop field scale. Additionally, some improve-
ments are foreseen to better estimate irrigation timing and the soil
coefficients. Better constraining the topsoil layer (soil moisture) would
improve the estimation of Kr and Ke coefficients. This issue will be
addressed in future studies by integrating the surface soil moisture
through a soil evaporative efficiency model (Merlin et al., 2016), which
can be derived from active C-band Sentinel-1 data (Amazirh et al.,
2018).
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Zr varies according to the vegetation cover between a minimum value (Zruin set to 0.1 m) and a maximum value (Zrmax setto 1 m at fv = 1) and

is expressed as:
Zn = Zhyn + ﬁ)r(Z';mlx = Zhinin)

(A1)

where fv, is the daily fvinterpolated from the Landsat fv estimates. Note that once Zr, reaches its maximum value at the maximum fv, it is maintained

constant until the end of the season.

A.2. Uncertainty in Landsat-derived RZSM

The Landsat-derived RZSMy,dsar,j at date j in the Eq. (5) can be expressed as:

RZSMl‘mdsar,j =, Swa + Ksbmdml,j a- P)(S]wji - SM\'p)

(A.2)

with p being the tolerance of crop to water stress as a fraction of the total available water. The uncertainty in RZSMjaydsarj is estimated from the
propagation of uncertainty method, which takes into account a relative error of every independent variable in the Eq. (A.2) through its partial
derivatives. We consider an error of 10% (¢ = 0.1) for every variable and therefore the uncertainty in RZSMyandsatj can be analytically written as:
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€RZSMyandsar) = {Slwwp + KSLandwt.j(z = 3P)(SMfC = Swa)}E (A.3)

A.3. Landsat-derived Kcb and Ke

In order to take advantage of satellite data for generic implementations, we link the FAO-2Kc formalism with a contextual model to estimate the
main parameters Kcb and Ke. As it is expressed in Eq. (A.4), the dual crop coefficient FAO-2Kc ET is made equal to the single source Operational
Simplified Surface Energy Balance (SSEBop, Senay et al., 2013) formalism in order to derive the coefficients required in FAO-2Kc.

(Ks+Kcb + Ke)ETy = ET = EF+Kepax*ETy (A.4)

where ETO0 is the reference evapotranspiration, EF the evaporative fraction (defined as the ratio of ET to available energy) and Kc,,,, the coefficient to
scale the ET, down to the maximum ET reached by a crop. On the left-hand side of the equation, FAO-2Kc model estimates the ET from a crop basal
coefficient (Kcb) and an evaporation coefficient (Ke), respectively, weighted by ET,,. The transpiration component (Kcb ETy) is controlled by the crop
stress coefficient (Ks) and the evaporation (Ke ETj) is controlled by the evaporation reduction coefficient (Kr). On the right-hand side of the equation,
SSEBop uses Kcmax modulated by EF as a single crop coefficient containing the transpiration and evaporation coefficients. EF can be estimated as:

EF = ST — LST
LSTox — LT (A.5)

where LSTuin and LSTmay are the minimum and maximum LST representing the wet/unstressed and dry/stressed conditions (see Fig. 3), respectively,
as has been used in several contextual methods (e.g. Roerink et al., 2000; Merlin et al., 2013; Merlin et al., 2014). Given that Kr, Ks and EF are
estimated from thermal and fv data in our study, every term used in (A.5) is partitioned into its vegetation and soil components in such a way that Ke
and Kcb formulations can be analytically derived from the equality in Eq. (A.4), as it is described below.

By partitioning every term in A.5, EF can be expressed as:

i lfvTvmax + (1 _fv)TsmaxJ = I_ﬁ)TV h (1 _ﬁ’)TSJ
B lﬁ)TVmax & (1 _ﬁ’)TSmuxJ = 'fvwmin o (1 _ﬁ))TsmmJ (A.6)

By introducing the Landsat-derived Ks and Kr into A.6, SSEBop ET in Eq. (A.4) can be rewritten as:

S0 (Tmax = Tomin) Ks + (1 — f)(TSmax — TSmin)Kr
o (TWpmax = Topun) + 1 = fO)(TSmax — TSpin)

EF

ET= Kcmax] *ETy

(A7)

For clarity we set ATV = TVmax — TVmin and ATS = Tsmax — TSmin in A.7. By re-arranging, two terms related to the vegetation and soil components

are highlighted:
" [ fo(ATv)Ks X A -f@ATK ] ET,
@A) + 1 = p)(@ATs) ™" f(ATY) + A — fo)(ATs) (A.8)

where the first term in parentheses can be considered as the transpiration coefficient (Ks Kcb) and the second as Ke, as they are depicted in the FAO-
2Kc formalism (Eq. (A.4)). To simplify Kcb and Ke formulations, ATv is assumed close to ATs in A.8 as in previous works (Olivera-Guerra et al., 2018;
Stefan et al., 2015). Hence the following simple expressions are derived:

Kcb = foKe oy (A.9)
Ke = (1 — fo)KrKcmax (A.10)

where Kcb depends on fv while Ke depends on the soil fraction (I - fv) weighted by Kr and Kc;,,,. These expressions are consistent with the FAO-2ke
calibrated with vegetation index proposed in the literature (e.g. Er-Raki et al., 2010; Kullberg et al., 2016; Simonneaux et al., 2008). In this study,
KCmay is set to 1.2 as a typical recommended value (Allen et al., 2011; Senay et al., 2013; Senay et al., 2016).
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5.1. Introduction

The approach developed in this thesis relies on thermal-derived RZSM that is assimilated
into a water balance to estimate the temporal dynamic of RZSM and then the irrigation.
In the previous chapter, it has been showed how the results are sensitive to the time
revisit of LST data, worsened by cloudy days. Thus, the quantification of irrigation
spatially distributed can be retrieved from remote sensed LST during the agricultural
season. In fact, the LST is highly variable over a range of spatial and temporal scales due
to different factors such as climatic conditions, soil properties, vegetation cover and soil
moisture from surface to deeper layer. LST from thermal data has proven to be a valuable
diagnostic for detecting information on the vegetation water status, serving to study the
variability in water consumption in individual fields or even within the field (Anderson
et al., 2012a). Consequently, several approaches based on thermal data have been
developed for monitoring the crop water requirements by means of ET estimates (Gowda
et al,, 2008; Kalma et al., 2008; Li et al., 2009).

Several satellite sensors provide thermal data, however, at present the Landsat satellites
are the only satellites that provide routine and global thermal imagery at scales that
resolve water use patterns over heterogeneous agricultural areas - at about 100 m
resolution. Nevertheless, the overpass frequency of Landsat (16 days for a single system
or 8 days by combining Landsat-7 and -8 under clear sky conditions but more in cloudy
conditions) is not optimal for ET monitoring given the soil surface drying time and the
quick hydric status change, especially over irrigated areas. On other side, coarser-scale
thermal sensor, such as the 1-km resolution MODIS can provide LST data for ET mapping
on a near-daily basis. However, these data are too coarse to resolve water use at the scale
of individual users in most irrigation districts (Anderson et al.,, 2012b). Therefore, the
disaggregation methods to enhance at high temporal resolution the low spatial resolution
LST data present a solution to overcome the issue of availability of LST data at a suitable
resolution for the monitoring of crops.

This chapter aims to present an operational method for disaggregating LST data by using
the fusion between Landsat and MODIS data in order to take advantage of the high spatial
and temporal resolution from both sensors, respectively. This approach allows providing
the main and key input data for thermal-based methods to estimate the water budget
components. First, a brief state-of-the-art of disaggregation methods of LST data is
presented. We focus mainly on methods based on the relationship between LST and
vegetation indices relationship with potential to operational application compared to
other methods that include additional land surface variables to better constrain the
subpixel variation in coarser LST, but they are more difficult to implement. Second, we
present the implementation of an approach over Copiapo valley in an arid region of Chile
for estimating operationally the ET from the simplified surface energy balance model
SSEBop. Finally, we present the implementation of the irrigation retrieval approach by
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using disaggregated thermal data provided by the operational approach presented in this
chapter. This procedure is carried out to enhance and ensure the availability of the main
input data every 8 days, evaluating if disaggregated LST data can help better estimate the
water budget components. The approach is implemented over R3 area in Haouz Plain,
Morocco, where the irrigation retrieval method was implemented and presented in the
previous chapter by using LST from the combined Landsat-7/-8 data.

5.2. Disaggregation of LST data

The disaggregation of LST data focuses on decomposing pixel-based temperatures
providing a better dataset of LST with finer temporal and spatial resolutions. Given that
satellite data in the VNIR wavelengths, used for computing vegetation indices, are
provided at higher resolution than the thermal, resolution information on vegetation
cover conditions are available at resolutions an order of magnitude smaller than LST.
Consequently, most common methods to disaggregate remotely sensed LST have been
based on a scale invariant relationship between LST and vegetation indices (VI), largely
related to fractional vegetation cover. The VI-based methods are still the most used
operational approaches due to the availability of data at high spatial and temporal
resolution, such as DisTrad, TsHarp, among other algorithms (Agam et al., 2007a; Bindhu
et al.,, 2013; Kustas et al,, 2003; Mukherjee et al., 2014; Zhan et al., 2013).

In addition to use the LST-NDVI relation only, other studies have proposed to use the LST-
NDVI feature space to derive soil water status indices that could improve the
disaggregation accuracy over agricultural areas with high moisture content (Chen et al,,
2010; Sandholt et al,, 2002; Yang et al., 2010). This procedure has been further extended
by using additional factors that modulate the LST, reflecting the soil moisture content and
vegetation type (Amazirh et al., 2019; Merlin et al., 2012a, 2010; Yang et al,, 2011). For
instance, Merlin et al. (2010) distinguished between photosynthetically and non-
photosynthetically active vegetation from time series of optical shortwave data to be
included in the disaggregation procedure. Then, Merlin et al. (2012a) and Amazirh et al,,
(2019) included microwave data to better take into account the soil moisture effects on
the disaggregation of LST. Although these latter methods can provide better accuracies
than using only the LST-NDVI relationship, they require additional parameters such as
soil moisture, albedo, soil and vegetation temperatures, among others, which make it
difficult to implement in an operational structure.
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5.2.1. Operational method for disaggregating LST
data

An operational disaggregation method is developed and presented in this section in order
to ensure the availability of LST data at high spatial resolution every 8 days to be used in
the monitoring of crop water requirements by means of ET estimates. In the Section 5.6,
the article presents in details the method and its implementation over the Copiapo Valley,
Chile. This approach is developed by using time series of MODIS LST from the MOD11A2
product and Landsat-8 LST. MOD11A2 product provides routinely LST at coarse spatial
resolution (1 km) per-pixel averaged over 8 days from daily LST.

The disaggregation method is mainly based on the LST-NDVI relationship by taking into
account three essential points: i) the spatial relationship between LST and NDVI at high
spatial resolution (Landsat-8), ii) the spatial relationship between Landsat-8 and MODIS
LST across scales and iii) the temporal variations along the year of both relationships
aforementioned. The main steps to merge these relationships and then to obtain the
disaggregated LST at Landsat spatial resolution and at higher temporal resolution
representative of the 8-day compositing period are described below.

5.2.1.1. Relationship between LST and NDVI

The first step involves representing the strong seasonality of LST and NDVI, through the
variability of the relationship between LST and NDVI along the year by using the seasonal
behavior of the linear regression parameters derived from Landsat 8 imagery. The
seasonality of LST-NDVI is given by its individual temporal variability in terms of the
annual temperature cycle approximated by a sinusoidal function (Bechtel, 2012) and
phenological cycles of different ecosystems (Cheema and Bastiaanssen, 2010; Duchemin
etal, 1999; Lietal, 2010; Liu etal.,, 2017). This seasonality is taken into account by using
the seasonal behavior of the linear regression parameters (slope and offset) derived from
Landsat-8 imagery at 100 m resolution. The regression parameters could be fitted to a
sinusoidal function due mainly to the annual temperature cycle and phenological
changes. For this purpose, the clear-sky Landsat images available along two years were
used as calibration period. The intercept and slope (a, b respectively) of the linear
relationship between NDVI and LST for every Landsat image are estimated and then
adjusted to a sinusoidal model in function of the day of year in order to estimate a and b
every 8 days (asday and bsday, respectively) along the year. The linear coefficients are
modelled every 8 days to be applied to the composite 16-day MODIS NDVI product
(NDVImob,250m_16day) in order to obtain a disaggregated LST averaged every 8 days at 250
m as follows:
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LST350m_sday = %saay + bsaay NDVIMODZSOm_16day + (errorloom_Sday>250m Eq.5.1

where the subscripts 250m and 8day denote the spatial and temporal resolution,
respectively; and errorioom_sday is an error pixel-by-pixel modeled every 8 days between
Landsat-8 LST and LST modeled from the linear relationship by using asday and bsday. This
error is obtained every 8 days from a second order fit applied on a pixel-by-pixel by using
the Landsat-8 images available in the calibration period. It should be noted that the Eq.
5.1 accounts for the seasonal vegetation behavior by using the invariant spatial scale
between 100 m and 250 m mentioned previously.

The Fig. 5.1 shows an example of the LST-NDVI relation over Copiapo Valley for a selected
date in winter (9th August 2013) and summer (29t November 2013). It also shows how
the intercepts and slopes are adjusted to a sinusoidal fit. The intercepts and slopes are
well adjusted with a RMSE of 2.63 and 1.39 K, respectively, and a R? equal to 0.93 and
0.90, respectively. The adjustment of the linear regression parameters as a function of
day of year allows retrieving a representation of the LST-NDVI relationships along the
year with an acceptable accuracy.
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Fig. 5.1. In the top plots, linear relationship between LST and NDVI from Landsat-8 image
for a selected date on winter (Plot A) and summer (Plot B). In the bottom plots, sinusoidal
functions (dashed line) are adjusted to intercepts and slopes of the linear relationship
LST-NDVI from the Landsat images for the years 2013 and 2014 according to the day of
year. The intercept and slope for Plot A and B are highlighted in red and green,
respectively. The statistical parameters of the sinusoidal fit for intercept and slope are
shown in the box of every plot.
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5.2.1.2. Relationship between MODIS and Landsat-8 LST

The second step involves representing the relationship between LST observed by Landsat
and MODIS at finer and coarser resolution, respectively. For this purpose, the ratio
between MODIS LST at 1 km resolution and Landsat-8 LST at 100 m resolution is
calculated for every available Landsat image. This ratio is estimated pixel-by-pixel for
every Landsat image during 2013 and 2014 in order to detect the seasonal pattern at 100
m Landsat-pixel resolution. This ratio, hereby referred to as w, varies according to
differences of the annual temperature cycle at coarse and fine scale, which is modulated
by the specific LST temporal dynamics at both scales. These differences can be mainly
due to the different land cover at Landsat spatial-resolution (100 m) and a coarser
spatial-resolution (1 km). For instance, for heterogeneous land cover such as agricultural
areas, several phenological stages will be evidenced and therefore, a high impact on the
proportion of vegetation cover can be observed in MODIS or Landsat-8 pixel.
Consequently, w estimated along the year demonstrates a crop seasonal behavior that
modulates the LST differences between Landsat-8 and MODIS (see Fig. 5.2 for an example
over the pixel corresponding to the monitored vineyard in Copiapo Valley). It should be
noted that w is calculated by assuming a constant proportion of land cover types
contained in a given pixel (finer or coarser). Once the factor w is estimated for the whole
calibration period, it can be interpolated as function of the day of year every 8 days
(wsday_100m) in order to obtain LST at Landsat-pixel resolution from MODIS at 1 km
resolution as follows:

LSTSday_lOOm = w8day_100m ’ <LSTMOD_8day_1km)100m Eq- 5.2
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Fig. 5.2. Landsat-8 LST (blue circle), 8-day composite MODIS LST (red circle) over a
vineyard pixel and the ratio between Landsat-8 and MODIS LST (w1o00m, triangle) for all
Landsat image dates during 2013 and 2014. The sinusoidal functions of w1oom according
to the day of the year (wsday_100m, dashed line).

5.2.1.3. Combining the LST-NDVI and Landsat-MODIS
relationships

Finally, both relationships found in the previous sections to estimate two ‘first-guess’
disaggregated LST are combined in order to estimate the final disaggregated LST product
at 100 m resolution every 8 days. A combination of LST at 250 m and 100 m resolution
from the LST-NDVI and Landsat-MODIS relationships, respectively, is adopted to
generate a final and robust disaggregated LST product (DLSTsday_100m) as follow:

DLSTgqay 100m Eq.5.3

= LSTSday_lOOm
+ ({LST250m saay — {LSTgaay 100m)250m)100m

With (LSTg44y 100m)250m being the average of LSTsday 100m within each 250 m pixel
resolution and ( )40, being the resampling from 250 m to 100 m resolution by using
nearest neighbors in order to correct the product LSTsday 100m by the difference between
LSTsday_250m and(LSTgqqy 100m)250m-

The final DLST8day_100m retrieval can be implemented operationally from a time series of
Landsat and MODIS data, extending the usefulness of thermal data in applications for
monitoring the water resources in agricultural areas.

5.3. Application in Copiapo River Basin - Chile:
main results

The approach for disaggregating LST is implemented over the agricultural area of the
Copiap6 Valley located in south of Atacama Desert, Chile. The approach is validated over
two drip-irrigated vineyard and olive orchards of about 28 and 17 hectares, respectively.
The disaggregated LST (DLST) is produced as an average over 8 days at 100 m resolution.
Then, DLST is used to estimate the cumulated ET every 8 days at 100 m of spatial
resolution. For this purpose, it is used the simplified operational surface energy balance
model (SSEBop: Senay et al., 2013a) that uses LST as main input to estimate the ET from
a thermal-derived evaporative fraction, ETo and a crop coefficient. Before implementing
the approach, a land use map is used to extract the agricultural area and mask the
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surrounding desert. This approach is validated in terms of LST and ET, whose main
results are presented in this section below. More details are presented in the article
available in Section 5.6.

5.3.1. Disaggregated LST product

Fig. 5.5 shows a comparison of spatial distribution between LST at coarse resolution from
MODIS (LST_1km), the intermediate disaggregated LST from the NDVI-LST relationship
(LST_250m), the intermediate disaggregated LST from the MODIS-Landsat LST
relationship (LST_100m) and the final disaggregated LST product (DLST_100m). These
figures are representative of a compositing 8-day period, showing the averaged LST at
the MODIS day-time overpass over 8 days, such as the 8-day MODIS LST product
(MOD11A2). In the figure, LSTs are shown for an 8-day period during summer (January)
and winter (July). The LST_250m product is able to distinguish the main crops such as
vineyards and olives orchards in terms of low magnitudes of LST. This is given by large
fields presented in the area, which may cover even more than 10 ha. Additionally in
January, the LST depicts the impact of bare soils from the surrounding desert. However,
when using the DLST_100m based on both MODIS and Landsat data, the border reveals a
high LST difference in comparison to the crops and orchards (about 20 and 10 K for
summer and winter, respectively). These differences can be observed also during winter,
with olive orchards temperatures noticeably lower than on the boundary. The use of both
disaggregated LST from LST-NDVI and Landsat-MODIS relationships, resulted in a good
characterization of olive orchards, vineyards and crops, which are distinguished from the
rest of surfaces. Furthermore, the maximum LST values in the boundary of the area
detected in the LST_100m and LST_250m products are smoothed in the DLST_100m
product marking out the crop areas along the valley.

The approach is validated in terms of averaged LST at MODIS overpass time over the
vineyards and olive fields. In Fig. 5.3 is shown the validation of DLST that is estimated
with a RMSE and R2 of 3.55 K and 0.72 for both fields, respectively, which are very close
to the errors obtained in Landsat-8 LST with a RMSE of 3.16 K (Fig. 5.4). The DLST during
summer is overestimated for about 4 and 6 K in olives and vineyards, respectively. This
overestimation could be attributed to the high complexity of surface temperature over
the study area where more dense measurements would be required with detailed spatial
sampling. In addition, differences in temperature during summer might be attributed to
misleading in surface emissivity values that can cause errors of up to 4 K over arid and
sparsely vegetated areas (Guillevic et al.,, 2014). It should be noted that the surface
emissivity over this area was estimated according to the simplified NDVI thresholds
method proposed by Sobrino et al. (2008) using a fixed soil emissivity calculated from
the ASTER spectral library (Baldridge et al., 2009) according to soil types presented in
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the area. Such a emissivity classification method may lead to uncertainties of more than
4 K under dry and warm conditions because the surface has a much larger contribution
to the observed radiance than the atmosphere, hence increasing the sensitivity to
emissivity error (Malakar et al., 2018). Despite the differences observed between DLST

and ground-based LST, a consistent agreement with Landsat-8 LST is observed, being
also overestimated during the season.
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Fig. 5.3. Scatterplot between disaggregated LST at 100 m (DLST) from Eq. 5.3 and the

averaged in situ LST over 8 days at MODIS overpass time over the olive and vineyard
stations.
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Fig. 5.5. Comparison between the composite 8-day MODIS LST (LST_1km), the
disaggregated LST at 250 m from MODIS NDVI (LST_250m) using Eq. 5.1, the
disaggregated LST at 100 m from MODIS LST (LST_100m) using Eq. 5.2 and the final
disaggregated LST at 100 m (DLST_100m) from Eq. 5.3.

5.3.2. Operational estimation of ET every 8 days

Fig. 5.6 shows a comparison of the 8-day ET estimated from the SSEBop model by using
LST at coarse resolution from MODIS (ET_1km) and the final disaggregated LST product
(ET_100m) for the same 8-day periods as in Fig. 5.5. Large differences in the spatial
variability can be observed between ET at coarse and high resolution. ET differences can
exceed 10 mm/8 days over crop fields in summer, especially over vineyards. Although
the differences in ET between spatial resolutions are lower over olive orchards, these are
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constantly observed along the year regardless of the season. Instead, the vineyards show
a seasonal pattern in terms of differences between ET_1km and ET_100m, which is
strongly related to phenological changes.

During summer and winter, the ET estimated by using MODIS LST 1 km is quite
homogeneous. Otherwise, the ET estimated by using DLST_100m targeted the maximum
values in summer and the minimum in winter, showing heterogeneous ET maps that can
be used to characterize areas with different crop water status, which is useful for crop
water management.

Given that ground-based ET were not available over the study area, the FAO-56 model is
implemented at field scale to estimate ET, which is used as comparison as partial
assessment. The ET obtained from SSEBop by using DLST_100m and Landsat LST are
compared against the ET at field scale. A good agreement is obtained for ET by using
DLST_100m with an overall RMSE equal to 0.61 mm/day, while the ET by using Landsat
LST obtained a RMSE equal to 0.75 mm/day. The ET from Landsat LST is slightly
underestimated with a bias of -0.15 mm/day in average for both crops. These results
demonstrate the utility of the operational method for estimating reliable ET estimates
over an arid region with a complex heterogeneity. The SSEBop method is based on the
differences between the dry and hot surface and air temperatures and in this context, the
proposed DLST method is a valuable approach to characterize the LST spatial variability
over arid regions. This approach provides routinely LST useful to retrieve reliable ETa
maps, being of great value for the optimization of irrigation scheduling and water use
efficiency.
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Fig. 5.6. Comparison between the cumulated ET over 8 days from the MODIS LST at 1km
(left figures) and from the disaggregated LST at 100 m (right figures) for two selected

dates in summer (2014001) and winter (2015209).

5.4. Application over a winter-wheat field (R3) in

Haouz Plain - Morocco

The disaggregation approach presented in Section 5.2.1 is implemented over the R3 area
in Haouz Plain in order to improve the revisit time of LST data to be integrated into the
irrigation retrieval method. In the previous Section 5.3, the approach is applied to obtain
averaged LST over 8-day periods at 100 m in order to retrieve cumulated ET over same
periods by using the SSEBop model. Unlike the application over Copiapo Valley in Chile
(Section 5.3), in this section the method is applied to obtain daily LST data every 8 days
at high spatial resolution by using the combination of Landsat-7 and -8 together with
daily MODIS LST at 1 km (MOD11A1). Thus, the objective of this section is to implement
the retrieval irrigation approach presented in Chapter 4 by using disaggregated LST data
from MODIS LST at the same Landsat-pixel resolution with an enhanced temporal

resolution.

It should be noted that the disaggregation method is only based on optical Landsat and
MODIS data, meaning that the disaggregation method is not able to provide LST data

during Landsat overpasses dates under cloudy conditions. Keeping in mind that an
availability of LST data every 8 days can be achieved by combining Landsat-7 and -8
under clear-sky conditions, the disaggregation approach is implemented every 8 days
twice separately: i) coinciding with the Landsat overpass dates in order to assess the
disaggregated LST against Landsat LST and ii) with an interface of 4 days with respect to
Landsat overpass dates in order to complement the availability of Landsat-7 and -8 LST.
Therefore, the first implementation will not be able to complement the Landsat-7 and -8
LST because of cloudy conditions. Otherwise, the second implementation allows

complement the Landsat-7 and -8 LST, achieving an availability up to 4 days when

successive Landsat-7, disaggregated and Landsat-8 LST are under clear-sky conditions.
Consequently, the combined LST dataset between Landsat-7/-8 and disaggregated LST is

used for applying the irrigation retrieval approach.

In the following sections, the results are presented in terms of disaggregated LST as well

as daily water budget components (irrigation, RZSM and ET) retrieved spatially over the

R3 area from the irrigation retrieval approach. In addition, it is presented a comparison

between disaggregated LST and Landsat LST as well as the water budget components

retrieved by using Landsat LST only and including disaggregated LST data.
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5.4.1. Disaggregated LST

Fig. 5.7 presents the scatterplots of Landsat LST versus disaggregated LST over the R3
area for five selected dates (one per month) along the growing season from January to
May 2016 corresponding to winter wheat crops. It is depicted that the scatter in
disaggregated data is smaller during winter as shown in the first 3 scatterplots from
January to March. This can be explained by more homogeneous surfaces in the area
during winter, especially in terms of water status conditions. For instance, the lowest
scatter is observed in January 6 when most of the fields are under bare soil conditions or
low fractional vegetation cover, while larger scatters are observed in April and May when
the full the range of vegetation cover and water status conditions can be found in the area.
That is demonstrated in the quantitative results presented in Table 5.1.

Table 5.1 presents quantitative results in terms of bias, RMSE and correlation coefficient
between disaggregated LST and Landsat LST. The disaggregation approach obtains good
performance with regard to Landsat LST, with an overall bias equal to 1.01 K (ranging
between -0.9 and 3.6 K), RMSE of 2.6 K (ranging between 0.55 and 4.6 K) and R of 0.87
(ranging between 0.72 and 0.96). With regard to both Landsat-7 and -8, no difference in
DLST is found in the comparison between both sensors, with a mean RMSE equal to 2.8
and 2.5 K and R equal to 0.89 and 0.85 for Landsat-7 and -8, respectively.
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Fig. 5.7. Comparison between disaggregated LST (DLST) against Landsat LST for five
selected dates along the growing season over R3 area.
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Table 5.1. Statistical parameters between disaggregated LST against Landsat LST for all
the dates available during the growing season 2016 over R3.
Landsat- Date Bias (K) RMSE (K) R(-)

8 Jan 6 0.17 0.55 0.88
7 Jan 14 -0.89 1.27 0.95
8 Jan 22 1.29 1.53 0.95
7 Jan 30 -1.13 1.45 0.96
8 Feb 7 0.59 1.42 0.92
7 Mar 2 0.78 231 0.88
8 Mar 10 1.81 2.75 0.89
7 Mar 18 2.50 3.48 0.91
7 Apr3 3.59 4.59 0.86
8 Apr 27 1.54 3.55 0.82
8 May 13 0.60 3.27 0.72
7 May 21 -1.09 3.57 0.80
8 May 29 3.39 4.23 0.80

All 1.01 2.61 0.87

The highest accuracies in terms of bias and RMSE are obtained on January 6 with values
lower than 1 K. Overall, higher accuracies are found during January and February with
RMSE lower than 1.5 K and R above 0.88, while the lowest accuracies are found during
April and May with RMSE between 3.2 and 4.6 K. In spite of high errors obtained during
April and May, the performance of the approach is quite acceptable and very close to the
performance obtained by other more complex algorithms, such as that proposed by
Amazirh etal. (2019). Amazirh etal. (2019) included SAR data from Sentinel-1 in addition
to LST and fv data to disaggregate MODIS LST data in the same R3 area and growing
season, obtaining an overall RMSE equal to 3.35 Kand R equal to 0.75 by using six Landsat
LST images for comparison. However, we used Landsat and MODIS data for the
calibration during the same period of comparison, whereas Amazirh et al. (2019) used
only SAR and MODIS data to disaggregate and compare against Landsat LST.
Consequently, a better performance can be obtained by a simpler and operational
method.

5.4.2. Irrigationretrieval by using disaggregated LST

The LST data are first estimated at Landsat-pixel resolution every 8 days (under clear-
sky conditions) from the disaggregation approach and then combined with Landsat-7 and
-8 LST. Here, it is reminded that the disaggregation approach is implemented with an
interface of 4 days with respect to Landsat overpass dates. The irrigation retrieval
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approach is applied by using this combined LST dataset with an enhanced temporal
resolution over R3 area. Fig. 5.8 shows the comparison of irrigation estimated by using
only Landsat LST data against those estimated by using the combined Landsat and
disaggregated LST over both R3-4ha and R3-2ha sites. In the plots of Fig. 5.8, vertical
dashed lines depict LST data that are actually available over every site, showing how the
disaggregated LST data complement the Landsat LST. Both combined LST products
achieve an availability of LST data up to 4 days as observed at the beginning of both
development and late seasons.

w sy 00
R3-4hai{ ¢ 1 1 R3-Zha |
- 80 i b Po 80~ i i
Qg i
- Ee0- i ol ! . 60 1 il
& |l | i 1 EEEN
SEw MERERE
S5 T BEEE
| HE I | [
2001 2001 d
0:‘.11’ L Pl | : D'E:I‘: I B | :
0 50 100 150 0 50 100 150
= 1000 100
G R3-ha
Q 8 o 80+
+E‘ T
= Ee0 i i 60
95
-6540— 40
RN
c 20 | 20
o Pl
-l
0 HE AN 14 HE N | B HE | I 0 H H H I I | A I H
0 50 100 150 0 50 100 150

DAS (Day after sowing) DAS (Day after sowing)

Fig. 5.8. Comparison between irrigation applied by the farmer (green) and retrieved
irrigation (red) by using only Landsat LST (top plots) and the combined Landsat and
disaggregated LST data (bottom plots) along the season 2016 for both monitored sites in
R3 area. The horizontal and vertical error bars represent the standard deviation of the
retrieved irrigation in dates and amounts, respectively. The dashed lines represent the
availability of LST data.

The irrigation applied at the end of the development stage is missing over both sites and
by using both LST dataset. It could not be detected by the retrieval approach due to: i) a
virtual increase in the WB model of the root zone storage associated with the root growth
and ii) cloudy condition near the day after sowing (DAS) 50 that does not allow providing
a frequency revisit of LST data higher than 16 days. In R3-4ha site, the number of
irrigation events does not change by using either Landsat only or Landsat and
disaggregated LST data. However, the amounts and dates change from the mid-season
stage. The last three irrigation events over R3-4ha are no longer overestimated by using
the combined Landsat and disaggregated LST data. While the effective actual irrigation
(i.e. water applied by the farmer minus the deep percolation) during the period of the last




5.4. Application over a winter-wheat field (R3) in Haouz Plain - Morocco

three events is equal to 140 mm, the retrieved irrigation is 209 and 127 mm by using
Landsat only and combined with disaggregated LST, respectively. Similarly over R3-2ha,
the last irrigations events are overestimated by using Landsat LST only, and also three
irrigation events are detected instead of the five applied by the farmer. Otherwise using
the combined Landsat and disaggregated LST, the five irrigation events are detected and
their amounts are closer to those of the actual irrigations.

As a more comprehensive comparison at different time scales, the performance of the
irrigation retrieval method is evaluated at various time scales. As in the article presented
in the previous Chapter (Section 4.9), the irrigation amounts are accumulated in
overlapping windows throughout the seasons by increasing sequentially the windows
from 1 day to 3 months (90 days). This strategy is implemented for every site by assessing
the performance of the approach for different accumulation periods. Fig. 5.9 shows this
assessment by comparing the irrigation estimates from the proposed approach by using
Landsat LST only against those by using both Landsat LST and disaggregated LST data.
Fig. 5.9 depicts the improvement achieved over both sites by using an enhanced LST
dataset at every accumulation period, with higher accuracies in terms of R, RMSE and
bias. The overall accuracy of cumulated irrigations at different time scales (between 1 to
90 days) is better with respect to those retrieved using only Landsat LST. In terms of
correlation coefficient, it is improved by 47% (from 0.46 to 0.67) and 12% (from 0.53 to
0.60) over R3-4ha and R3-Zha, respectively, while the RMSE is improved by 35% (from
52 to 34 mm) and 13% (from 40 to 35 mm) over the same sites.
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Fig. 5.9. Comparison of statistical parameters R (solid line), RMSE (dashed line) and bias

(dotted line) between observed and retrieved irrigation by using Landsat LST only (blue
lines) and both Landsat and disaggregated LST data (red lines) cumulated from 1 to 90
days through a moving window over both R3-4ha and R3-2ha sites during 2016 season.

Even though the performance of the approach is improved by using an enhanced LST
dataset in terms of frequency revisit of LST data, the approach with both LST datasets is
found to be reliable for time intervals equal or longer than 2 weeks. On the contrary, the
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approach generally fails in retrieving reliable cumulated irrigation for time periods
shorter than 10 days either by using Landsat only or the enhanced with disaggregated
LST data. Despite the revisit time shorter than 16 days (up to 4 days) no significant
improvement is achieved at daily to weekly time scale. This might be explained by the
errors associated with the disaggregation method. Therefore, a sensitivity analysis of
errors associated to LST data should be carried out in order to differentiate the errors
coming only from the revisit time. That would allow discerning the expected
improvements in the irrigation estimates (at daily to weekly time scale) by using LST data
at enhanced spatio-temporal resolution directly achieved by future thermal missions like
TRISHNA (Lagouarde and Bhattacharya, 2018).

5.4.3. Daily RZSM and ET

The irrigation retrieval method by using the combined Landsat-7/8 and disaggregated
LST is also assessed in terms of RZSM and ET estimates. For this purpose, the retrieved
irrigation in the previous section is used to force FAO-2Kc to simulate RZSM (RZSMrao-
2ke.pLsT) and ET (ETrao-2kc_pLst) on a daily basis at Landsat-pixel resolution, which are
compared with in situ observations along the 2016 growing season. RZSMFrao-2kc_pLst and
ETrao0-2xkcpLsT estimates are notably compared with those obtained from the FAO-2Kc
model forced by: i) the actual irrigation (ETrao-2kc_iobs and RZSMFrao-2kc_iobs) and ii) the
irrigation retrieved from our approach by using Landsat-7/8 LST only (ETrao0-2Kkc_Landsat
and RZSMFao-2kc_Landsat), as are estimated in the Chapter 4.

Fig. 5.10 shows the validation of daily RZSM estimates over both R3-4ha and R3-2ha sites
compared against in situ observations as well as the comparison between RZSMFao-2kc_iobs,
RZSMFa0-2Kc Landsat and RZSMrao-2xc st estimates. Fig. 5.10 depicts the improvement
achieved by including disaggregated LST data for enhancing the temporal resolution of
LST. Over both sites, the accuracy of RZSMrao-2kc_pLsT estimates is significantly improved
with respect to that of RZSMFao-2kc_Landsat. In terms of correlation coefficient, it is improved
by 12% (from 0.73 to 0.82) and 17% (from 0.68 to 0.79) over R3-4ha and R3-Zha,
respectively, while the RMSE is improved by 29% (from 0.04 to 0.03 m3m-3) and 23%
(from 0.05 to 0.04 m3m-3) over the same sites.

As in Fig. 5.10, Fig. 5.11 presents the validation of daily ET estimates over both R3-4ha
and R3-2ha sites compared against in situ observations as well as the comparison
between ETrao-2kciobs, ETFa0-2Kc Landsat and ETrao-2xkc pLst estimates. Unlike the RZSM
estimates, combining the disaggregated LST with Landsat LST data does not achieve an
improvement. On the contrary, the RMSE obtained in ETrao-2kc_pLsT estimates is worsened
by 27% with respect to ETrao-2kc_Landsat OVer the R3-4ha site, while over the R3-2ha site,
the accuracy keeps almost constant. The fact that ET estimates are not improved like
RZSM, might be because the errors in disaggregated LST are translated into errors in the
stress coefficient that is directly used to estimate ET. In the case of RZSM estimates, it is
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reminded that the stress coefficient is used as an indicator of the RZSM dynamics and
hence of the irrigation events. Consequently, RZSM is less sensitive to absolute values of
stress coefficient than ET.
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together with disaggregated LST (red). The correlation coefficient (R) and root mean
square error (RMSE) are shown for RZSM from FAO-based models forced by the three
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5.5. Summary and conclusions

LST is an important variable in surface energy and water balance and is an invaluable
asset to better detect the crop water status at high (~100 m) spatial resolution. This
information has served to monitor crop water needs in individual fields as well as the
variability within larger fields. However, the main issue of LST derived from readily
available satellite thermal data is the temporal resolution (~16-day revisit interval) for
monitoring the rapid changes of soil water status. In order to address this issue, we
proposed an operational method for disaggregating the LST by combining MODIS data at
high-temporal resolution with Landsat data at high-spatial resolution. The method
combines the LST-NDVI relationship at fine resolution from Landsat with the Landsat-
MODIS LST relationship. This method is implemented over the narrow Copiapo Valley,
Chile, covered mainly by tree crops as well as over the R3 area in Haouz Plain, Morocco,
covered mainly by winter wheat crops.

In Copiapo Valley, the disaggregation method is applied by using MOD11A2 LST product
to provide LST data at Landsat spatial resolution and every 8 days representative of the
8-day compositing period. The disaggregated LST is integrated into the operational
surface energy balance method (SSEBop) for estimating cumulated ET over 8 days at high
spatial resolution. The approach is evaluated over a vineyard fields and olive orchards,
where the disaggregated LST is estimated with a RMSE of 3.55 K for both fields. This
result is very close to the accuracy obtained for Landsat-8 LST data (RMSE=3.16 K) over
both fields. ET estimates are estimated with a RMSE equal to 0.70 and 0.50 mm/day over
vineyards and olive orchard, respectively.

In R3 area, the disaggregation method is applied by using MOD11A1 LST product to
provide LST data at Landsat spatial resolution and every 8 days. The disaggregated LST
is estimated with an overall RMSE of 2.6 K with regard Landsat LST. The disaggregated
LST is combined with Landsat-7/8 LST data to achieve an availability of LST up to 4 days
under clear-sky conditions. The combined LST dataset is integrated into the FAO-based
water balance model for applying the irrigation retrieval approach as proposed in
Chapter 4. Then, the irrigation amounts and timing as well as daily RZSM and ET are
estimated over R3 area at field scale on a daily basis. These water budget components are
evaluated against in situ measurements over two winter wheat fields during the 2016
growing season (R3-4ha and R3-2ha). They are also compared against those estimated
by using Landsat LST only. Enhancing the revisit time of LST by including disaggregated
LST data improves the performance of the irrigation retrieval approach. Irrigations are
also cumulated to carry out an assessment by comparing the irrigation estimates from
the proposed approach by using Landsat LST only against those by using both Landsat
LST and disaggregated LST data. The results depict an improvement in the accuracies
achieved by using the enhanced LST dataset at every accumulation period. The overall
RMSE of cumulated irrigation at different time scales is decreased from 46 to 34 mm




144

5.6. ARTICLE: An operational method for the disaggregation of land surface
temperature to estimate actual evapotranspiration in the arid region of Chile

(meaning an improvement of 25%), while the correlation is increased from 0.50 to 0.64
(meaning an improvement of 29%)).

However, this improvement is not enough to provide reliable irrigation estimates at time
scale shorter than 2 weeks. That might be explained by the errors associated to the
disaggregated LST data. Nevertheless, the improvement in irrigation amount and timing
is useful to better estimate the daily RZSM, whose RMSE is decreased from 0.04 to 0.03
m3m3 and from 0.05 to 0.04 m3m3 in R3-4ha and R3-2ha, respectively.

In spite of the differences between the areas (i.e. narrow Copiapo valley covered by tree
crops under arid climate versus the extended agricultural R3 area covered mainly by
winter wheat crops), the use of disaggregated LST from the proposed method was
relevant to better constrain the water budget components. That was demonstrated by
implementing different approaches: the SSEBop for estimating ET over Copiapo Valley
and the proposed irrigation retrieval method for irrigation, RZSM and ET. Consequently,
the proposed approaches have potential to contribute to the agricultural water
management in semi-arid to arid regions affected by scarcity of water resources,
providing reliable maps of water budget components for optimizing irrigation scheduling
and water use efficiency.

5.6. ARTICLE: An operational method for the
disaggregation of land surface temperature to
estimate actual evapotranspiration in the arid
region of Chile



Chapter 5. Disaggregation of thermal data for improving the water budget components
estimation

ISPRS Journal of Photogrammetry and Remote Sensing 128 (2017) 170-181

Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier.com/locate/isprsjprs

An operational method for the disaggregation of land surface
temperature to estimate actual evapotranspiration in the arid region of
Chile

L. Olivera-Guerra®"*, C. Mattar?, O. Merlin”, C. Duran-Alarcén *¢, A. Santamaria-Artigas *, R. Fuster ©

@lesMaﬂ

? Laboratory for Analysis of the Biosphere (LAB), University of Chile, Santiago, Chile

b Centre d’Etudes Spatiales de la Biosphére (CESBIO), Toulouse, France

Institut des Géosciences de I'Environnement (IGE), CNRS, Université Grenoble Alpes, 38400 Saint-Martin-d'Héres, France
4 Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA

© Dept. Environmental Sciences, School of Agronomic Sciences, University of Chile, Santiago, Chile

ARTICLE INFO ABSTRACT

Article history:

Received 24 September 2016

Received in revised form 15 March 2017
Accepted 27 March 2017

Monitoring evapotranspiration in arid and semi-arid environments plays a key role in water irrigation
scheduling for water use efficiency. This work presents an operational method for evapotranspiration
retrievals based on disaggregated Land Surface Temperature (LST). The retrieved LSTs from Landsat-8
and MODIS data were merged in order to provide an 8-day composite LST product at 100 x 100 m reso-
lution. The method was tested in the arid region of Copiap6, Chile using data from years 2013-2014 and
validated using data from years 2015-2016. In-situ measurements from agrometeorological stations such
as air temperature and potential evapotranspiration (ET0) estimated at the location were used in the ET
estimation method. The disaggregation method was developed by taking into account (1) the spatial rela-
tionship between Landsat-8 and MODIS LST, (2) the spatial relationship between LST and the Normalized
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Arid region Difference Vegetation Index (NDVI) at high spatial resolution (Landsat-8), and (3) the temporal variations
Landsat-8 along the year of both relationships aforementioned. The comparison between disaggregated LST at
MODIS 100 m resolution and in situ LST measurements presents a coefficient of determination (r?), in average,

equal to 0.70 and a RMSE equal to 3.6 K. The disaggregated LST was used in an operational model to esti-
mate the actual evapotranspiration (ETa). The ETa shows good results in terms of seasonal variations and
in comparison to the evapotranspiration estimated by using crop coefficients (kc). The comparison
between remotely sensed and in situ ETa presents an overall r? close to 0.67 and a RMSE equal to
0.6 mm day ! for both crops. These results are important for further improvements in water use sustain-
ability in the Copiapé valley, which is currently affected by high water demand.
© 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier
B.V. All rights reserved.

1. Introduction

Evapotranspiration (ET) is one of the most important parame-
ters of the hydrological cycle affecting water availability on the
Earth’s surface. During the last decades, several works have been
documented the critical importance of ET for agricultural irrigation
scheduling (Porter et al., 2012; Senay et al., 2013), water resource
availability (Oki and Kanae, 2006), hydrologic and meteorological
forecasts (Findell et al., 2011) and climate change scenarios related

* Corresponding author at: Laboratory for Analysis of the Biosphere (LAB),
University of Chile, Santiago, Chile.
E-mail address: olivera-guerrale@cesbio.cnes.fr (L. Olivera-Guerra).

http://dx.doi.org/10.1016/j.isprsjprs.2017.03.014

to drought indexes (Gao et al., 2011). ET estimations are also cru-
cial for management of water resource in areas of water scarcity
since the actual rate of water use by vegetation can deviate signif-
icantly from potential ET rates (as regulated by atmospheric
demand for water vapor) (Anderson et al., 2012). Thus, detailed
spatial and temporal maps of ET provide power tools for decision
makers and enable managers to more judiciously allocate available
water for agricultural, urban, and environmental uses.

To estimate and quantify ET, it is necessary to account for
diverse meteorological observations and land surface parameters
such as the land surface temperature (LST). LST modulates the sur-
face energy fluxes and it is key to estimating ET for monitoring
crop water demand (Kalma et al, 2008; Li et al., 2009; Zhan

0924-2716/© 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
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et al., 2013; Cammalleri et al., 2014). In agricultural and heteroge-
neous natural systems, high variability of ET and LST can occur at
scales of hundreds of meters or less. Thus, moderate-resolution
satellite Thermal Infra Red (TIR) imagery is therefore required
and essential to identify and fully understand water use and water
availability at the field scale associated with specific crop types
(Anderson et al.,, 2012; Senay et al., 2016).

The combination of LST and vegetation indexes at several time
and spatial scales has been proven as a potential technique to dis-
aggregate LST (DLST) to determine crop ET. Several DLST methods
have been proposed in recent decades using various information
sources available at low, medium or high spatial resolution, which
are widely detailed in Zhan et al. (2013). Nevertheless, the Normal-
ized Difference Vegetation Index (NDVI) based methods are still
the most used operational approaches due to the availability of
data at high spatio-temporal resolution. For instance, ALEXI, DisA-
LEXI, DisTrad, TsHarp, among other algorithms (Kustas et al., 2003;
Anderson et al., 2004; Agam et al., 2007; Bindhu et al,, 2013;
Cammalleri et al., 2014; Mukherjee et al., 2014).

Some variations of the NDVI based methods including phenol-
ogy such as the robust disaggregation procedure proposed by
Merlin et al. (2010, 2012) which account for the senescent vegeta-
tion fraction and soil moisture in addition to NDVI. These methods
require additional parameters such as soil moisture, albedo, soil
and vegetation temperatures, among others, which might be diffi-
cult to implement in an operational structure. There are other sim-
ple methods based on a subtraction approach that merge the
spatial detail of higher-resolution imagery with the temporal
change observed in coarser or moderate-resolution imagery
(Hong et al., 2011; Kim and Hogue, 2012). The methods mentioned
above can be applied to ET or soil moisture retrievals in order to
estimate the surface energy balance (SEB) at better spatial resolu-
tions, as well as to crop water management (Sobrino et al., 2012;
Mattar et al., 2014). However, DLST method must be adapted over
arid zones where high seasonal phenology in addition to thermal
amplitude is evidenced in large areas.

Remote Sensing monitoring of semi-arid or arid regions target
cultivated areas surrounded by barren conditions (e.g. deserts)
which can impact on DLST and therefore in ET quantification. The
proportion of bare soil observed in a given pixel during a year
can affect the crop vegetated fraction increasing the LST and affect-
ing ET and water requirements. Hence, DLST approaches concern-
ing the spatial resolution over arid or semi-arid regions by using
operational methods should be capable to monitor crop water con-
sumption and usage accounting the seasonal variations. Despite
the fact that there are some works on complex heterogeneous
and semi-arid regions (Zhu et al., 2010; Weng et al., 2014), these
methods are not simple in their application and present shortcom-
ings in the operational mode such as the use of search windows to
select similar pixels and to perform a sensitivity analysis before
modeling (Weng et al., 2014).

In Chile, a persistent rainfall deficit has prevailed in the central
zone since 2010 leading with a decline in water reservoirs generat-
ing a megadrought without precedents (Boisier et al., 2016). In the
arid region of Chile, such as the Copiap6 valley, the water resources
availability has declined in addition to the water demand owing to
agricultural and mining activities. The arid region of Copiapd is one
of the most important agricultural areas of Chile and demands
large amounts of water (4856 L/s equal to 59% of the total demand
in the Copiapd; Bravo, 2013). Thus, it is of crucial importance that
the water demand be determined and monitored and the water use
efficiency be improved in this zone. Therefore, the main objective
of this work is to present an operational DLST approach for estimat-
ing the actual evapotranspiration (ETa) over an arid or semi-arid
region in Chile. This manuscript is structured as follows: Section 2

presents the study area and data. Section 3 describes the method
proposed in this work. Section 4 presents the results and analysis
and finally, Sections 5 and 6 provide the discussion and conclu-
sions, respectively.

2. Study area and data sets
2.1. Study area

The study area belongs to the Copiapé Valley located in the arid
region of Atacama, Chile. The whole valley has an area of about
18538 km? divided in longitudinal sectors from the Los Andes
Highlands (sector 1) to the coast (sector 6) (Fig. 1). The study area
has a surface of about 1670 km?, and is located in the flat lands of
sectors 5 and 6. It is an agricultural area mainly covered by olives,
vineyards, pomegranates and natural vegetation (Fig. 1). The cli-
mate is semi-arid to arid with low mean annual precipitation
(28 mm) and hot and dry summers (December, January and Febru-
ary), which coincide with the vineyard's growing season, and cold
and dry winters (June, July and August). Despite the Copiapé Val-
ley’s proximity to the Atacama Desert, the zone located in sector
5 and 6 is highly covered with clouds for several days per year,
which might affect the ETa measurements and the availability of
optical remote sensing imagery. In terms of water resources, the
Copiap6 Valley is characterized by acute water scarcity mainly
attributed to the low annual precipitation and the systematic
stress put onto the aquifer by water consumers, mainly agriculture
and mining (Oyarzin and Oyarzan, 2011; Valdés-Pineda et al.,
2014; Suarez et al., 2014). This situation has brought about the
Copiap6 Valley's current critical situation, resulting from the
extraction of water in recent decades, which has risen to rates
greater than the natural replenishing of the aquifer (demand equal
to 8222 L/s over a replenishing equal to 6347 L/fs; Bravo, 2013),
thus increasing the pressure for water resources and generating a
new regional scenario for water use efficiency.

2.2. In situ data

In this work, in situ data derived from meteorological stations
generated by the “Grupo de Estudios del Agua (GEA)" (www.agro-
clima.cl), in addition to LAB-network (here in-after LAB-net)
(Mattar et al., 2016) data sets, were used. The GEA meteorological
data sets were provided by 12 meteorological stations in the
Copiap6 Valley, four of which are located in the study area of this
work. These stations were located in vineyards and olives orchards,
and they provide basic meteorological parameters. The reference
evapotranspiration (ET0) from ASCE standardized of a short crop
and air temperature (Ta) between January 2013 and December
2014 were processed from the GEA network and used in this work.

In addition, in order to complement the GEA meteorological sta-
tions, data from two meteorological and radiative flux stations
from LAB-net were also used. To this end, ETO, Ta, infrared thermal,
global and net radiation (Rg, Rn) provided at olive orchards and
vineyards crops were processed between July 2014 to December
2014, totaling 6 stations in the study area. These stations were
used to generate the calibration and the partial evaluation of the
ETaretrieval approach. On the other hand, LAB-net data from years
of 2015 and 2016 was used to validate the DLST and ETa. The LAB-
net station over olives orchards is located in a plot of land measur-
ing about 17 hectares with a fraction vegetation cover of 25% dis-
tributed uniformly. Whereas the LAB-net station over vineyards
is located in an area of 28 hectares with a homogeneous fraction
vegetation cover.
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Olives Vineyards

B Pomegranates

2km

Fig. 1. Copiap6 Valley divided in 6 sectors (red line) over which the study area (blue line) and the meteorological station over olive and vineyard crops (square and circle,
respectively) are located in the sectors 5 and 6. In the figure the land cover of the main crops are shown: olives, vineyards and pomegranates. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

2.3. Remote sensing data

To generate an operational approach, Landsat-8 and MODIS
data products were used. In the case of Landsat-8, 25 clear sky
images for Path 1 and Row 79 acquired for years 2013 (11 images)
and 2014 (14 images) were used to develop and calibrate the pro-
posed methodology. In addition, 21 clear sky images for years 2015
(9) and 2016 (12) for validation of Landsat-8 LST and for compar-
ison of the DLST estimates. For the case of MODIS, water vapor con-
tent from the MODO5 and MODO7 product V5.0 was used in the
estimation of the LST from Landsat-8. Moreover, the MODIS/Terra
composite 8-day LST product (MOD11A2 V5.0) at 1 km spatial res-
olution and the MODIS/Terra composite 16-day normalized differ-
ence vegetation index NDVI (MOD13Q1 V5.0) at 250 m spatial
resolution were also used in the DLST approach for the calibration
(2013-2014) and validation (2015-2016) of DLST and ETa
estimates.

3. Methodology
3.1. Disaggregation LST (DLST)

First of all, the LST from Landsat-8 was estimated by using the
band 10 through the Single-channel (SC) algorithm described in
Jiménez-Munoz et al. (2014) and based on the work proposed by

Sobrino et al. (1996) and is represented as follows:

1 "
’ST:)’E(V’l'Lsen+(P2)+‘P3 +0 (1)

where ¢ is the surface emissivity, (¢, J) are two parameters
which depend of the at-sensor brightness temperature and the
thermal band, and ¢;, ¢2 and ¢3 are approximation of the atmo-
spheric functions versus the atmospheric water vapor content W
from a second-order polynomial fit, whose coefficients are
obtained from radiative transfer simulation using the GAPRI data-
base (Mattar et al,, 2015) and the W was derived from the daily
MODO5 product. The emissivity ¢ was estimated according to the
simplified NDVI thresholds method proposed by Sobrino et al.
(2008), which requires NDVI and knowledge of the soil-emissivity
spectrum corresponding to the soils of the study area. The soil
emissivity was calculated by using the soil types from the ASTER
spectral library (Baldridge et al., 2009), which belong to aridisol
and entisol and were convoluted by using the relative spectral
response for the Landsat-8 thermal band 10 using the RSR calcula-
tor (Duran-Alarcon et al., 2014). Finally, the NDVI threshold was
0.15 and 0.80 for the minimum and maximum, respectively. Both
MODIS and Landsat-8 LST data were filtered by cloud mask using
the Quality Control (QC) of both MODIS and Landsat-8. Both
Landsat-8 and MODIS were spatially matched in order to extract
the study area from both images and for the study period between
2013 and 2014.

The disaggregation method was developed by taking into
account (1) the spatial relationship between LST and the Normal-
ized Difference Vegetation Index (NDVI) at high spatial resolution
(Landsat-8), (2) the spatial relationship between Landsat-8 and
MODIS LST, and (3) the temporal variations along the year of both
relationships aforementioned. The following sections describe
these relationships and the methodology to merge them to obtain
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the disaggregation LST product at Landsat spatial resolution and at
higher temporal frequency of MODIS.

3.2. Relationship between LST and NDVI

The temporal variability of LST shows a strong seasonality
(Weng et al., 2008) which its seasonal change can be modeled
using the annual temperature cycle approximated by a sinusoidal
function (Bechtel, 2012). In a similar way, the vegetation indices
as NDVI present a strong seasonality which have been widely used
to describe the phenological cycles of different ecosystems at dif-
ferent spatial resolution (Cheema and Bastiaanssen, 2010;
Duchemin et al., 1999; Li et al., 2010; Liu et al., 2017). The annual
variability of both NDVI and LST can be evidenced at both field and
watershed scale and can be monitored at the high spatial resolu-
tion of Landsat. Based on the strong seasonality of LST and NDVI,
the variability of the relationship between LST and NDVI through-
out the year was considered by using the seasonal behavior of
the linear regression parameters derived from Landsat 8 imagery.
The intercept and the slope of the LST-NDVI relationship are con-
trolled by a wide range of factors, such as the fractional vegetation
cover, surface soil moisture variability and meteorological factors
(Nemani et al., 1993). The regression parameters could be fitted
to a sinusoidal function due mainly to the annual temperature
cycle and the seasonal changes of differences of temperature
between soil and vegetation. The cloud-free images available to
two years (2013-2014) were used in order to provide information
of a complete annual cycle and taking into account the low tempo-
ral frequency of sensors as Landsat-8. The Landsat-8 NDVI was
resampled to the same spatial resolution of Landast-8 LST.

Because an ordinary least square regression algorithm lacks
robustness and is sensitive to outliers (Rousseeuw, 1984), some
authors have proposed overcoming this problem by using sub-
pixel variability based sampling (co-efficient of variation <25%)
(Agam et al., 2007; Kustas et al., 2003) or using least median square
(LMS) regression and Projection Adjustment by Contribution Esti-
mation (PACE) regression for more heterogeneous landscapes
because these methods are less sensitive to outliers (Mukherjee
et al., 2014). In this work, we propose a new method to describe
the linear regression between LST and NDVI. This was carried out
using the mean LST values derived from NDVI classes separated
by 0.01 step forward. This technique was used to overcome the
sensitive to extreme value or outliers in a robust and efficient
way and in order to obtain a seasonal behavior of regression
parameter, which would be not possible observe by using all the
scatter data in the feature space plot. The latter is due to the influ-
ence of different factors (mentioned above) that often results in a
wide range of LST for a given value of NDVI, thus leading to an
imprecise quantification of the slope of the NDVI-LST relationship
(Bindhu et al., 2013).

The intercept and the slope (a, b respectively) obtained for the
calibration period (2013-2014) were adjusted by using a sinu-
soidal function to estimate a and b every 8 days (asday and bsday,
respectively) throughout the year. An invariant spatial scale
between 100 m and 250 m was assumed for modeling the linear
coefficients in order to obtain a disaggregated LST every 8 days at
250 m from the composite 16-day MODIS NDVI product, account-
ing for the seasonal vegetation behavior described as follows:

LST 350m _8day = Gsday + bSdny ¥ NDV’MUDM,,,_,M, =+ eITor pom_sday (2)

where the subscripts 250 m and 8 day denotes the spatial and tem-
poral resolution, respectively; agq4qy and bgqq, are the coefficients of
the linear regression interpolated each 8 days for the whole image.
NDVI 16-day composite was used for two corresponding 8-day per-
iod. To estimate LST using the LST — NDVI relationship the error

pixel-by-pixel between the LST observed by Landsat 8 and the LST
modeled were linear fitted. This error was obtained for each Landsat
8 image and then a second order polynomial fit was applied on a
pixel-by-pixel basis to estimate an error each 8 days (error;oom_sday)-

3.3. Relationship between MODIS and Landsat-8 LST

On the other hand, the MODIS LST was resampled from 1 km to
100 m resolution by using nearest neighbors in order to estimate a
seasonal factor which considers the relationship pixel by pixel
between MODIS resampled image and Landsat-8 (4). This factor
has a seasonal pattern and can be used as a partial disaggregation
between Landsat-8 and MODIS following the size of the most rep-
resentative crops in the study area.

LSTis_100m(X. Y, t)

Wgday_100m (X, Y, ) = m 3)

The seasonal factor ggay_100m(X.y.t) varies according to differ-
ences of annual temperature cycle at coarse and fine scale, which
is modulated by the specific LST temporal profiles at both scales.
These differences can be mainly due to the different land cover
at Landsat spatial-resolution (~100 m) and a coarser spatial-
resolution (~1 km). For instance, homogeneous land covers, such
as bare soil, will show low temporal differences at MODIS or
Landsat-8 spatial resolution since the land cover is the same during
the whole year, and the seasonal pattern will show a slow tempo-
ral variation. However, for heterogeneous land cover such as crops,
several phenology stages will be evidenced and therefore, a high
impact on the proportion of vegetation cover can be observed in
MODIS or Landsat-8 pixel. In this case, mggay_jo0m(X.y.t) demon-
strates a crop seasonal behavior which modulates the LST between
Landsat-8 and MODIS. The tgday_100m(X. y. t) was calculated assum-
ing a constant proportion of the land cover types contained in a
given pixel. Once the factor msggqy 100m(X.y.t) was estimated for
the whole calibration period, it was interpolated every 8 days for
the whole year in order to process the LST from MODIS at 1 km res-
olution to Landsat-8 for 8 days (4).

LSTgday_100m = ®sday_100m - LSTvop_sday_1km (4)

Once the relationship between LST - NDVI and Landsat-8 -
MODIS was determined to estimate a product of LST at 250 m
and 100 m each 8 days (LSTgday_100m and LSTgday 250m respectively),
a combination of them were applied to generate a final and robust
disaggregated LST at 100 m and 8 days (DLSTgjqy_100m) as follow:

DlSTSday_IOOm = Lsrsduy_l()()m & (lSTZSOrn_Bday
— (LST 8day_100m>250m>100m (5)

with (LSTggay_100m }250m Deing the average of LSTgqqy_j00m Within each
250 m pixel resolution and ( ),,,,, being the resampling from 250 m
to 100 m resolution by using nearest neighbors in order to correct
the product LSTg4qy j00m by the difference between LSTggyy 250m
and (LSTsgay_100m)250m- The final DLSTg4ay 100m retrieval can be per-
formed operationally that can be very useful as application to sur-
face energy budget. In this work, the DLSTggay_j0om Was used in an
operational surface energy balance method to estimate the ETa,
which is described below.

3.4. Estimation of actual evapotranspiration

The ETa was estimated by using the Operational Simplified Sur-
face Energy Balance (SSEBop) developed by Senay et al. (2013) and
evaluated in this study area by Olivera-Guerra et al. (2014). The
SSEBop approach estimates the pixel-by-pixel evaporative fraction
(EF) by using “hot/dry” and *“cold/wet” reference values. To
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estimate ETa routinely, the only data needed for this method are
LST, daily maximum air temperature (Ta), and ETO.

This model relies on the simplification of the surface energy bal-
ance process which is mainly driven by the available net radiation
(Rn). Since thermal remote sensing is conducted under clear-sky
conditions, the SSEBop method assumes a location- and date-
specific constant temperature difference (dT) between the hot/
dry and cold/wet boundary reference points. ETa can be estimated
using Eq. (6) as a fraction of the ETO as follows:

ET, = EF - k- ETO (6)

where ETO is the green grass reference for the location; k is a
coefficient that scales the ETO into the level of a maximum ET
experienced by an aerodynamically rougher crop and EF is the
evaporative fraction. Although a value of k between 1.0 - 1.25
is recommended (Allen et al, 2011; Senay et al., 2013; Senay
et al,, 2016), a value equal to 0.65 was used in this study, which
was determined by Olivera-Guerra et al. (2014) to this domain
area. This value is due to cover type mainly corresponding to
vineyards and olive orchards, which often have a low fractional
cover vegetation and whose maximum values of crop coefficient
(kc) are equal to 0.70 and 0.65, respectively (Allen et al., 1998).
The EF was estimated pixel-by-pixel according to the following
equation:

Tip—T _Ty=B
Tu—Tc df

where Ts is the LST downscaled at 100 m spatial resolution every
8 days. Ty is the estimated Ts at the idealized reference hot/dry con-
dition of the pixel for the same time period, Tc is the estimated Ts at
the idealized cold/wet reference point and the dT is the difference
between Th and Tc. The cold boundary condition is derived as a cor-
rection of the Ta, whose correction coefficient was determined as a
seasonal average between Ts and Ta on all pixels where NDVI is
greater or equal to 0.75. A correction factor of 0.993 was established
by using all Landsat imagery.

The predefined dT is solved from the Rn equation for a bare, dry
soil where ETa is assumed 0 and sensible heat is assumed maxi-
mum (Bastiaanssen et al., 1998). It is calculated by using Eq. (8)
and the assumptions of Senay et al., (2013).

EF = @)

dr = Ralan )
pa CP

where Rn is clear-sky net radiation (W m~2); ran is the aerodynamic
resistance to heat from a hypothetical bare and dry surface (sm™');
pa is the density of air (kg m—3), estimated as a function of air pres-
sure and temperature (Allen et al., 1998); Cp is the specific heat of
air at constant pressure (1.013 k] kg~'K~"). The r,;, was theoretically
estimated through an iterative computation by implementing an
energy budget for bare soil for the whole year according to
Bastiaanssen (1995). According to this procedure, the average rg
was equal to 113 sm~', which is very close to the value of
110sm™~' determined by Senay et al. (2013).

3.5. Validation of LST and ETa

The validation of remotely sensed LST was carried out by com-
paring the DLST every 8 days and the LST measured in situ at LAB-
net stations. In order to compare the in-situ and the DLST at the
100 m scale, the thermal infrared sensor (Apogee SI-111%) was
located at a height of 5 m and inclined to measure an area with
the same fraction vegetation cover as the plot of land where the
station is localized. To estimate the in situ LST, the radiometric
temperature measured, by a step of 5 min, was converted to LST
by using the following equation:

Lrad — (1 — &)Ldown

B(LST) = -

(9)
where Lrad is the land leaving radiance (W m~2) measured by a
thermal radiometer, € is the land surface emissivity, Ldown is the
long-wave downwelling irradiance (W m~2) and B(LST) is Planck’s
law for the LST (W m~2sr'um™"). The Ldown was estimated using
the methodology proposed by Jiménez-Mufioz et al. (2010), by pro-
cessing a MODO7 profile into MODTRAN radiative transfer code and
convoluting the downwelling irradiance spectra by using the Apo-
gee SI-111% relative spectral response. The surface emissivity was
acquired from the ASTER Global Emissivity Data Base (Hulley and
Hook 2013) and the emissivity was converted from narrow band
to a broad band by using the method proposed by Ogawa et al.
(2003). Finally, the LST (K) was estimated by inverting Planck’s law.

For the validation of ETa, the in situ ETO measured at the station
located over the olive orchard and vineyard by a step of one hour
were used. These ETO values were estimated at daily level and
weighted by the kc estimated by the Direccion General de Aguas
(2007) and Martinez and Tapia (2002) based on the FAO crop coef-
ficient. The values of kc were estimated for the arid region of Ata-
cama, changing during the seasons of the year. The mean kc values
are presented in Table 1 for olives and vineyards and are crop site
dependent which cannot be directly assimilated for the same crops
in other regions of Chile. Finally, for the case of olives, the kc was
weighted for fraction vegetation cover, which is equivalent to
25% during the whole year and the kc values were estimated to a
vegetation cover equal to 50%.

To estimate the accuracy of the proposed DLST method and its
application to ETa retrieval, the bias, standard deviation, RMSE
and determination coefficient (r?) were calculated for each station
(olive and vineyards) between January 2015 and December 2016.
This period was defined following the overflooding that occurred
on 27th March 2015, which caused some damage to the irrigation
system of the vineyards, as can be consequently seen in the crop
growth after September 2015.

4. Results
4.1. Statistical relationship for LST - NDVI and Landsat-8 — MODIS

The NDVI and LST relationship was estimated to the 24 scenes
available to the calibration period between 2013 and 2014. Fig. 2
represents the variability of scatterplot during a Landsat scene dur-
ing winter and summer of 2013. In terms of seasonal variation,
during winter the amplitude of LST is between 285 and 305K,
whereas in summer it varies between 290 K and 330 K. Meanwhile,
the NDVI values mainly fall between 0.1-0.6 and 0.1-0.8 during
winter and summer respectively. In summer, steeper slopes can
be observed due to the greater temperature differences between
soil and vegetation surface, as it is showed in Figs. 3 and 4.

The slope and intercept parameters were statistically adjusted
for a sinusoidal shape (r? equal to 0.904 and 0.931, RMSE equal
to 1.39 K and 2.63 K for slope and intercept, respectively). The esti-
mated linear regression by the observed Landsat 8 and the simu-
lated regression by the sinusoidal fit of slope and intercept
match in terms of each statistical coefficient for each scene. This
sinusoidal shape can be interpolated in order to obtain the param-
eters regression for the sinusoidal function to represent the whole
year of NDVI and LST relationship for a Landsat scene. Indeed, Fig. 3
shows the scatter plots for the linear correlation between NDVI and
LST.

In terms of the Landsat-8 and MODIS LST relationship, the frac-
tion & between both sensors can be fitted by a sinusoidal equation
(Fig. 2), thus this parameter can be modeled for each day of the
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Table 1
Vineyards and olives kc values.
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Vineyards 0.70 0.65 0.60 0.50 0.40 0.40 0.40 040 0.40 0.60 0.65 0.70
Olives 0.65 0.65 0.65 0.65 0.6 05 0.5 0.5 0.6 0.6 0.65 0.65
a) 2013221 b) 2013333
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Fig. 2. Linear relationship between LST and NDVI by Landsat-8 image acquisition to winter (a) and summer (b). The equations are included for the linear regression from the
observed Landsat-8 data (LST: solid line) and for the linear regression from the slope and intercept fitted to a sinusoidal function (LSTsin: dashed line).
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Fig. 3. Slope and intercept of the linear relationship between LST and NDVI from all Landsat image acquisition dates between 2013 and 2014 and its sinusoidal functions

according to the day of year (dashed line).

year and the « values for any obtained DLST. The « can be
obtained for each pixel according to the land cover type and the
fraction of vegetation cover given in the Landsat-8 pixel at 100 m
and in MODIS at 1 km spatial resolution. The difference of the frac-
tion of vegetation cover between Landsat-8 and MODIS affects the
annual amplitude of the , generating low amplitude for similar
vegetation cover and high amplitude for a high difference of the
vegetation cover between both Landsat-8 and MODIS pixels as pre-
sented in the case of olives and vineyards, respectively. This annual
effect on @ can be also related to the land cover types variability
within a MODIS pixel and its different phenological stages since

the relationship between a fine and coarse resolution was revealed
in terms of LST through the factor . The w values can be closer to
1 in the case of olives and lower than 1 for vineyards because of
during summer, during the maximum crop growth rate, the vege-
tation cover presents the highest values at Landsat-8 spatial
resolution.

4.2. Disaggregation of LST (DLST)

Fig. 5 shows the disaggregated LST retrievals for a day on Jan-
uary (summer) and July (winter) used to obtain the ETa by using
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Fig. 4. LST from Landsat-8 overpass (blue circle), 8-day composite MODIS LST (red circle) and the ratio between Landsat-8 and MODIS LST (: triangle) for all Landsat image
dates between 2013 and 2014. The sinusoidal functions of the ratio according to the day of the year (mguy_soom: dashed line). The graphs are shown for the pixel
corresponding to the station located in olives (a) and vineyards (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

MODIS and Landsat-8. The coarse (1 km) resolution MODIS LST can
be used for a general characterization of the study area, where the
most common feature is the bare soil surrounding the naturally
vegetated and agricultural areas. For the case of LST retrieved at
250 m, the main vegetation orchards such as olives and vineyards
can be distinguished in terms of low magnitudes of LST. Addition-
ally, for January, the LST highlights the impact of the bare soil
located on the boundary of the study area. However, when using
the direct 1km resolution DLST based on both MODIS and
Landsat-8, the border reveals a high LST difference in comparison
to the crops and orchards (+20 K and +10 K for summer and winter,
respectively). This can be also noticed for winter, where the vege-
tation of olive orchards located in the middle of the study area
showed a LST noticeably lower than on the boundary. The use of
both disaggregated LST from NDVI and by using the « factor,
resulted in a good characterization of olives orchards, vineyards
and crops as they can be distinguished as the lower values. It is
important to note that the riverbed of the Copiap6 River can be also
distinguished during winter since it gives the lowest LST values.
Furthermore, the boundary’s maximum LST values shown in the
NDVI-LST relationship or by using the « factor are smoothed in
terms of the combination of both methodologies marking out the
crop areas along the study area.

4.3. Evapotranspiration retrievals

The ETa estimated at 1 km and 100 m resolution for January and
July is presented in Fig. 6. Over vineyards, a difference of about
10 mm 8 day~' between the coarse and the fine pixel can be
obtained during summer when using the DLST proposed method
in comparison to MODIS. Other differences, though somewhat
lower, are also obtained for Olives (+5mm 8day~') that are
located in the central and western part of the study area. On the
other hand, during July, the minimum threshold of ETa is evi-
denced over the riverbed, representing the lowest values of ETa
in the whole study area (i.e. <2 mm 8 day™'). The maximum values
of ETa correspond to the vegetation orchards with partial vegeta-
tion cover such as olives or pomegranates. Vineyards did not show
the maximum ETa, which seems to be consistent with the pheno-
logical stage of this crop. The ETa retrieved by MODIS is partially

homogeneous during summer and winter, although the ETa
retrieved by the DLST targeted the maximum values in summer
and the minimum in winter, generating a heterogeneous ETa
map which can be used to characterize the areas which need to
be irrigated and useful for water requirements. However, for vine-
yards, there are significant differences when comparing seasonal
periods such as summer and winter. For instance, during summer,
a big difference in ETa can be seen by the influences of spatial res-
olution. These differences are close to 10 mm 8 day~' when using
MODIS or ETa from the DLST algorithm, although these differences
are non-significative during winter.

As a partial evaluation with in situ measurements, Fig. 7 shows
the times series for the ETa derived from DLST and 8-day composite
MODIS LST over vineyards and olive orchards pixel at 100 m and
1 km resolution, respectively, and the ETO obtained from in situ
measurements in the whole study area. It is important to note that
maximum values are explained by the ETO, which seems to be
lower when applying a kc in order to obtain ETa. For Olives, the
vegetation cover fraction in addition to the proportions of land
cover type at both 100 m pixel of DLST and 1 km pixel of MODIS
are very close, thus the bare soil proportion is constant during all
years and the vegetation fraction in both 100 m and 1 km pixel
are very close. So, in the case of olives, when comparing the
1 km or 100 m resolution ETa with in situ measurements, there is
no statistically significant differences (p < 0.05). The ETa from DLST
and Landsat-8 overpass were compared show a good agreement in
both olives and vineyards (r> equal to 0.67 in average for both
crops), where the DLST is slightly underestimated in relation to
Landsat-8 (bias equal to -0.05mmday' and RMSE of
03 mmday ' in average for both crops). It is important to note
that ETa from DLST represent the average over 8 days whereas
ETa from Landsat-8 overpass represent a clear-sky day, at least at
the Landsat overpass. Therefore, this underestimation can be
expected due to ETa from DLST can be represent the average over
cloudy and clear-sky days.

4.4. Evaluation of LST and ETa

LST and ETa at 100 m and 8-days spatio-temporal resolution
were simulated to the time series of 2015 and 2016 from the
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Fig. 5. Comparison between the composite 8-day MODIS LST (LST _1 km), the first product of disaggregated LST at 250 m from MODIS NDVI (LST_250 m), the second product
of LST at 100 m from MODIS LST (LST_100m) and the final disaggregated LST at 100 m (DLST_100 m).

Egs. (2), (3) and (5) by using the NDVI and LST MODIS composited
product at 250 m and 1km resolution, respectively. Note that
Landsat imagery were used in the calibration period (2013-2014)
and the evaluation period for 2015-2016. The time series of LST
and ETa simulated from the operational approach and the in situ
retrievals are presented in Fig. 8. The RMSE for ETa was estimated
in 0.5 and 0.7 mmday~' for olives and vineyards, respectively
(Table 2). Meanwhile, the RMSE for LST was estimated lower than
3.6 K for both vineyards and olives. The LST during summer is over-
estimated closed to 4 and 6 K in olives and vineyards, respectively.
The overestimation of LST could be attributed to the fraction veg-
etation cover which could generate rapidly changes in space as
well as in time (Prata et al., 1995; Vauclin et al., 1982). This effect
is related to the high complexity of surface temperature over the
study area where more dense measurements are required with
detailed spatial sampling (Li et al., 2013). On the other hand, high
differences in LST over vineyards were observed during the sum-
mer 2015-2016 (December and January) corresponding to the
maximum plant development to the vineyards. This was mainly
attributed to the impact of irrigation on the crop since the drip sys-
tem was damaged by the floods and it decreased the amount of

water for the same period in the last years (2013 and 2014), which
also explains the significant increase of LST in the plant develop-
ment stage (September-November). The effect of the change in
the irrigation can be evidenced by observing the NDVI that reached
a value of 0.5 in summer 2015-2016 meanwhile the last years it
was greater 0.7 for the same period. The differences in temperature
retrieved during the summer season over vineyards might be
attributed to misleading in surface emissivity values that can pro-
voke errors of up to 4 K over arid and sparsely vegetated areas as
described in Guillevic et al. (2014). Over olive orchards the fraction
of vegetation cover is almost the same during the whole year,
impacting on the amplitude of the LST between summer and win-
ter and also in the comparison between in situ and DLST. Mean-
while in summer LST is overestimated, in winter is
underestimated.

In spite of the differences observed between DLST and ground-
based LST, a consistent agreement with Landsat-8 LST is observed,
being also overestimated in summer season. Moreover, the statis-
tics errors from DLST and Landsat-8 are very close for both olives
and vineyards.
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Fig. 7. ETa estimated over olive and vineyard station from different LST products. Subscript MODIS is for ETa from 8-day composite MODIS LST at 1 km, subscript DLST is for
ETa from DLST proposed at 8-day and 100 m and L8 is for ETa from Landsat-8 LST overpass at 100 m. ETa from DLST and MODIS are represented as the daily average over

8 days.

In terms of ETa, an important overestimation is evidenced dur-
ing summer for vineyards showing the highest differences of the
validation period reaching up to 1.4 mmday~'. This difference
could be attributed to the use of a kc for in situ ETa estimates under
crop optimal conditions instead of the current crop which show
some problems of water management (system irrigation) impact-
ing the growing season and therefore lower NDVI values than the
previous years. Therefore, it is possible that the kc-based ETa can
be overestimated in vineyards for the summer periods after
2015. Another important result is the comparison between ET0
and ETa, there is a high difference when comparing to ET in the arid

zone, which shows an average difference greater than 1 mm day ™"
during summer season accumulating 10 mm after 8 days. This is a
key factor because in the study area, water irrigation scheduling
programs are based on the ETO, which might overestimate the
amount of water and therefore cause inefficiency in water usage.

5. Discussion

The sinusoidal annual relationship for DLST presented in this
work performs well in terms of operational modes and applications
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Table 2
Coefficient of determination (r*), mean bias error (Bias), standard deviation (Sigma) and roo

for olives orchards and vineyards (bottom).

t mean square error (RMSE) for DLST proposed and ETa from DLST and SSEBop method

over olives orchards and vineyards. The values correspond to mean every 8 days at 100 m for the period 2015 to 2016. The same statistical parameters of LST and ETa from

Landsat-8 are shown for comparison in the same period.

Bias Sigma RMSE &
DLST [K] Olives -0.30 3.56 3.57 0.87
Vineyards 1.46 324 3.55 0.62
Overall 0.59 3.50 3.55 0.72
LST Landsat-8 K Olives -0.37 3.29 331 0.95
Vineyards 1.66 261 3.09 0.90
Overall 0.72 3.08 3.16 0.87
ETa (DLST) [mm/day] Olives 041 0.29 0.50 0.63
Vineyards -0.37 0.60 0.70 0.80
Overall 0.02 0.61 0.61 0.67
ETa (landsat-8) [mm/day| Olives 0.27 0.41 049 0.44
Vineyards —0.52 0.77 093 063
Overall -0.15 0.74 0.75 049

to surface energy balance. These results are related to previous
works which also demonstrate that the sinusoidal model can be
used to obtain daily LST maps at medium spatial resolution
(Weng et al,, 2014). Moreover, based on the linear relationship
derived from the interpolated sinusoidal regression coefficients,
the LST can be obtained based on the NDVI, thus resulting in good
seasonal performance over the arid area used here.

The ETa method for arid regions seems to be consistent with the
results in terms of the operational algorithm and its retrievals. The
SSEBop method is based on the differences between the dry and hot

surface and air temperatures and in this context, the DLST method
proposed here will be an excellent approach in terms of a good
characterization of the LST over arid regions. This good characteri-
zation based on the combined « fraction and NDVI-LST relation-
ship represents the maximum and minimum of temperature
used in the dT equation, a parameter which highly affects ETa
retrievals during summer.

The ETa retrieved by the DLST obtained from the proposed
method is consistent with the results when showing lower ETa
than ETO values and is also influenced by the vegetation cover.
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The phenology is a key parameter for a reliable DLST method and
therefore the operation in terms of ETa maps. The validation was
partially applied since the flooding that occurred in this area
deserved more analysis to validate the DLST and ETa approach after
September 2015, when the vineyards started the growing season.
Nevertheless, the partial validation presented in this work demon-
strates solid performance of the operational method in terms of LST
and ETa.

Finally, several agricultural practices consider the ETO in this
region in order to develop accurate water irrigation scheduling,
which has overestimated the crop water requirements. Further
efforts need to be applied to improve water use efficiency in the
Copiapé Valley and should be accompanied by better knowledge
of the crop spatial heterogeneity and a suitable strategy for an
in situ monitoring network.

6. Conclusions

This work presents an operational method for disaggregating
LST over an arid to semi-arid region that take into account (1)
the spatial relationship between Landsat-8 and MODIS LST, (2)
the spatial relationship between LST and the Normalized Difference
Vegetation Index (NDVI) at high resolution (Landsat-8), and (3) the
combination of both relationships. The disaggregated LST is inte-
grated into an operational surface energy balance method (SSEBop)
in order to estimate ETa at high temporal and spatial resolution.
Results show that the developed approach gives an RMSE in LST,
in average, lower than 3.6 K and an mean 8-day ETa lower than
0.7 mm/day. This approach is useful for generating better knowl-
edge of water requirements in arid region which could be espe-
cially important in Chile where irrigation scheduling needs to be
improved based on the current water usage and scarcity scenarios.
Moreover, the proposed method modulates the contribution of
vegetation by using two disaggregation methods based on temper-
ature and NDVI. The simple use of NDVI and meteorologically-
based equation could provide biased results since the values of
NDVI need to be adapted to the high surface temperature derived
from the soil/vegetation proportion. So, the use of integrated and
operational method to extract surface information of surface and
air temperature in addition to vegetation index could improve
the surface energy balance in the arid region of Copiap6é. Finally,
this work contributes to determine and optimize the water
demand in arid regions affected by the current drought in Chile,
providing reliable ETa maps for irrigation scheduling and water
use efficiency.
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6.1. Summary of results

This PhD thesis entitled “Monitoring the water budget of irrigated crops from multi-
spectral optical/thermal remote sensing data” is focused on monitoring the main
water budget components (such as the ET, RZSM and irrigation) of agricultural areas at
crop field scale (100 m resolution) on a daily basis over extended areas (e.g. irrigation
districts of few kilometers of extension). For this purpose, novel approaches are proposed
based on the coupling between readily available remote sensing optical /thermal data and
a FAO-based model. An important part of this work has been devoted to develop an
innovative strategy to take advantage of: i) the availability of optical/thermal data at a
suited spatial resolution for monitoring crops, ii) the simplicity of contextual methods
from optical/thermal data in the estimation of soil /vegetation water status, iii) the utility
of optical/thermal data as proxy of soil moisture and RZSM, and iv) enhancing the
temporal resolution of high-spatial resolution thermal data to better constrain the
dynamics of water budget components.

6.1. Summary of results

Despite irrigation being the main water supply in semi-arid to arid regions, information
on spatially distributed irrigation is rarely available. This lack of knowledge is therefore
one of the main issues to be overcome by water balance models that need water inputs
as an essential forcing. The first part of this thesis is devoted to developing and evaluating
a novel retrieval approach of irrigation and the associated variables (ET and RZSM) from
the integration of optical/thermal data into the FAO-based water balance model. The
estimation of irrigation is a key step on the development of the approach since no method
is yet available to retrieve the timing and amounts of irrigation at both crop field and daily
scales.

A feasibility study of the proposed approach is carried out using ground-based
optical/thermal measurements over a winter wheat field in the R3 area of the Haouz
Plain, Morocco. The approach adapts the thermal-based contextual models implemented
with remote sensing data to ground-based measurements by simulating from a surface
energy balance the extreme conditions in terms of both soil /vegetation cover and water
status. This procedure is adopted with a twofold purpose: i) taking advantage of the
simplicity and robustness of contextual methods and ii) being applicable to large areas
by using satellite data. The approach allowed retrieving the irrigation volumes and dates
from optical/thermal-derived ET and RZSM as first-guess estimates. In practice, the
approach relies on: i) partitioning the Landsat LST to derive the crop water stress
coefficient Ks; ii) retrieving RZSM diagnostic estimates from thermal-derived Ks by using
the FAO-2Kc formalism; iii) estimating irrigation amounts and dates along the season
from differences of (first-guess) LST-derived RZSM; and iv) forcing the FAO-2Kc model
by the retrieved irrigations to re-analyze the RZSM and ET on a daily basis. Consequently,



Chapter 6. Conclusions and Perspectives

daily irrigation, daily RZSM and daily ET estimates are retrieved at crop field scale along
the growing season by using daily ground-based optical/thermal measurements.
Statistical results indicate that thermal-derived ET is more accurate than the ET
simulated by the standard version of FAO-2Kc. The RMSE and slope of the linear
regression between estimated and observed ET is decreased from 0.84 to 0.68 mm day-!
and closer to 1 from 1.21 to 1.07, respectively. First-guess RZSM is significantly improved
when FAO-2Kc is implemented by using retrieved irrigation. The R2 and slope of the
linear regression between simulated and observed RZSM is increased from 0.42 to 0.67
and from 0.46 to 0.78, respectively, while the RMSE is decreased from 0.06 to 0.03 m3m-
3 and the bias (-0.04 m3m-3) is removed. Since this feasibility study was carried out with
an availability of optical /thermal every day, a sensitivity analysis to the frequency revisit
time of the data was adopted in order to assess the applicability to satellite
optical/thermal data.

The second part of this thesis is devoted to implementing the proposed approach over
extended areas by using readily available satellite optical/thermal data. Here, the main
aim is facing two major issues in the implementation at large scales of crop water balance
models like FAO-2Kc: the availability of (daily) irrigation spatially distributed and the
need of calibration to obtain accurate estimations. For this purpose, the approach
proposed in the first part is adapted to be implemented with temporally sparsely
Landsat-7/-8 optical/thermal data over three agricultural areas of 12 by 12 km in the
semi-arid region of Haouz Plain, in central Morocco. In these areas, the approach is
evaluated over five experimental sites covered by winter wheat during four growing
seasons with different irrigation techniques (drip, flood and no-irrigation). On the one
side, the approach demonstrates its ability for retrieving irrigation at daily and field scale
from high spatial resolution optical /thermal data. Total irrigation amounts are accurately
estimated over all the fields and seasons with a RMSE equal to 44 mm and an R of 0.95.
On the other side, an assessment of irrigation estimates is carried out at different time
scales by accumulating the irrigation amounts from 1 to 90 days. This analysis depicts
that acceptable errors are obtained for irrigations cumulated over 15 days (RMSE = 27
mm and R = 0.52) and the performance is gradually improved by increasing the
accumulation period, reaching a very accurate estimation at seasonal scale. However,
poor agreements at daily to weekly scales are found in terms of irrigation. Nevertheless,
the irrigation estimates are still acceptable in order to accurately simulate the dynamics
of ET and RZSM at daily and field crop scales throughout the season. Overall RMSE is
equal to 0.04 m3m-3 and 0.83 mm.d-! for RZSM and ET, respectively, which are very close
to those estimated from FAO-2Kc forced by actual irrigations (RMSE equal to 0.04 m3m-3
and 0.82 mm.d-1). Moreover, the accuracy retrieved in ET estimates demonstrates that
the formulation of generic coefficients Kcb and Ke allows FAO-2Kc to be implemented by
using satellite data, hence avoiding calibration with in situ data, which are usually
unavailable over extended areas. The 15-days period over which acceptable errors are
obtained (for irrigations) is closely related to the revisit time of Landsat data, which can
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be 16 days or even more in cloudy conditions. Therefore, the revisit time of current
optical/thermal satellite data is a critical point in the proposed approach.

The third and last part of this thesis is devoted to implementing an operational
disaggregation method for enhancing the spatial and temporal resolution of thermal data.
Although Landsat data provide optical/thermal data at a spatial resolution suitable for
monitoring crops, its temporal resolution is not optimal. The method is based on the
combination of NDVI-LST and Landsat/MODIS relationship to provide LST at Landsat-
pixel resolution every 8 days. This method is implemented over two different areas in
terms of extension, crop cover and climate conditions: Copiapo Valley and Haouz Plain.
The approach is applied in a slightly different way in each area in order to obtain different
disaggregated LST data as main input for different approaches. In Copiapo Valley, the
method is implemented to provide LST data representative of 8-day compositing periods,
which are subsequently integrated into the SSEBop model for estimating cumulated ET
over 8 days. In Haouz Plain, the method is implemented to provide LST data every 8 days,
which is combined with Landsat-7/8 LST to be integrated into the FAO-based water
balance model for applying the irrigation retrieval approach as it is proposed in the
second part of this thesis. Combining both disaggregated LST and Landsat LST data sets,
thanks to the increase in the temporal frequency of LST data, results in a better detection
of irrigation events and amounts. The overall RMSE of cumulated irrigation at different
time scales is decreased from 46 to 34 mm (meaning an improvement of 25%), while the
Risincreased from 0.50 to 0.64 (improvement of 29%). Consistently, the RZSM estimated
using the disaggregated LST in addition to Landsat LST as input is improved by 26% and
14% in terms of RMSE and R, respectively. Despite the differences in both cases in terms
of crops (tree versus winter wheat crops), extension areas (very narrow versus and
extended agricultural area), climate (arid and semi-arid) and approach used (SSEBop and
irrigation retrieval approach), the disaggregation procedure allowed to enhancing and
ensuring the availability of LST data every 8 days, helping better estimate the water
budget components.

In brief, this thesis demonstrates the utility of high spatial resolution optical/thermal
data for estimating, for the first time, irrigation at field scale on a daily basis and for better
closing the water budget over agricultural areas.

6.2. Identifying the main limitations of the
methods

Despite the great value of the approaches developed in this thesis to better estimate and
monitor the water use in agricultural areas, there are some limitations related to the
assumptions, area of applicability and data used. It is therefore worth identifying the
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limitations in order to provide insights on how to improve the methodology and to extend
its applicability in future works. Given that the first part of this thesis is a feasibility study
at in situ level and then it is adapted for the implementation over extended areas, as
presented in the second part, only the limitations of this latter approach and the
disaggregation methods are presented below.

6.2.1. Irrigation retrieval approach

The irrigation retrieval method is based on the RZSM simulated basically from a simple
water balance model for which some assumptions are made. Some of the assumptions
are common to the FAO-Kc model, while others are specific to the irrigation retrieval
method. The assumptions deriving from the FAO-2Kc model and its related limitations
are:

- The daily RZSM varies within a range defined by a minimum value set to the SM at
wilting point (SMwp) and by a maximum value set to the SM at field capacity (SMx).
This assumption poses to a twofold challenge. On one side, an adequate knowledge
of SMwp and SMx. is only possible in very controlled situations. These parameters
are usually estimated using pedo-transfer functions from soil properties (texture)
that are not exempt from errors. Moreover, knowledge of soil properties is
required over the area (district irrigation), whose accuracy is limited by its great
spatial variability. On the other side, setting the RZSM between SMwp and SMr,
implies that once RZSM reaches SMr, any additional water supply is considered as
water excess and is therefore drained from the soil bucket by deep percolation
(occurring simultaneously to the water excess supply). Moreover, observations
show that RZSM can be even less than SMwp due to diffusion processes between
surface and deeper soil layers and associated evaporation losses, among other
factors (e.g. vegetation type).

- The RZSM is linearly related to Ks between SMwp and the critical RZSM (SMcrit),
which is estimated as a fraction of the total available water according to the water
stress tolerance of crops (Allen et al., 1998). In the irrigation retrieval approach,
this point is related to the saturation of Landsat-derived Ks (equal to 1) for SM
values between SMcrit and SMr, where Landsat-derived Ks is not able to detect any
RZSM change.

The assumptions specific to the irrigation retrieval approach together with its limitations
are:

- The retrieved irrigation is the effective irrigation (irrigation minus drainage),
meaning that the irrigation excess which triggers deep percolation is not taken
into account. Despite optical/thermal data are used to derive a proxy for the RZSM
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by means of vegetation temperatures, this kind of data is not able to get
information on the deeper water flows.

- Anirrigation event is detected on the day when the water balance-derived RZSM
reaches SMr.. This assumption limits the detection of irrigation event especially in
drip-irrigated field where the water is supplied not necessarily to reach the SMrx..
Hence the number of irrigation events is reduced by missing events and the
amount of water is thus overestimated for each detected event by compensation
effect.

- The LST partitioning method assumes that LST is decomposed linearly into soil
and vegetation components by means of fvg and the LST-fvg feature space. For
simplicity, the soil and vegetation emissivities are not considered, even though
they can be retrieved from ASTER GED data adjusted to Landsat thermal bands as
detailed in the Section 2.4.1.2. Furthermore, the contextual nature of LST-fvg
feature space implies a greater uncertainty in Ts when fvg is large, and conversely,
a greater uncertainty in Tv when fvg is small. These uncertainties are transferable
to the soil (Kr) and crop (Ks) water status and then to the initialization of the water
balance to estimate RZSM dynamics.

- If two successive Landsat overpass dates both indicate unstressed conditions
(Ks=1), it is assumed that the crop does not undergo water stress during that
period. It is also assumed that Ks=1 between a Landsat date indicating unstressed
conditions and an irrigation event detected before the next Landsat overpass date.
When stressed conditions actually occur during this period, the irrigation retrieval
method leads to the overestimation of irrigation amounts in order to maintain the
unstressed conditions observed by sparsely Landsat data. The longer the revisit
period of Landsat data by cloudy conditions, the more likely this problem is.

- In several agricultural areas of semi-arid to arid regions, the capillarity rise and
runoff are neglected due to flat surfaces and water tables significantly deep.
However, the runoff may be a source of error especially under flood irrigation
techniques, where an important amount of water applied might be lost by runoff
to nearby fields. Regarding the capillarity rise, deeper and wetter layers might
provide water to the root zone layer by diffusion processes, which have not been
taken into account in the approach.

6.2.2. LST disaggregation method

The approach is based on the combination of LST-NDVI and Landsat-MODIS LST
relationships. Although the approach is within the state-of-the-art, only LST and NDVI
variables have been considered for the purpose of an operational implementation by
using readily available satellite data. The limitations deriving from the disaggregation
approach are detailed below.
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Since this approach is based on LST-NDVI relationships, all variations in LST coming from
factors other than NDVI over agricultural areas cannot be explained. For instance, the use
of only NDVI presents some shortcomings over areas with high spatial variability in SM,
as warned by some authors (e.g. Agam et al., 2007b; Merlin et al., 2010). For this reason,
some works have added other information that influence the LST in order to reflect
changes in LST coming from SM or senescent vegetation (Amazirh et al., 2019; Merlin et
al,, 2012a, 2010).

The Landsat-MODIS LST relationship is based on the ratio between both sensors at
different spatial resolutions by assuming that land cover types do not change along the
study period. Consequently, the approach might be limited when changing the land cover
with regard to the calibration period.

There is no doubt that the approach lacks the information on SM, but the use of only LST-
NDVI information was prioritized in order to reach an operational implementation of the
approach. An important result however is that despite the simplicity of the approach, an
improvement in the water resources estimates was reached.

6.3. Perspectives

6.3.1. Towards the improvement in spatial and
temporal resolution

One of the main constraints in the proposed approach is the availability of thermal data
at both high spatial and temporal resolutions. The operational disaggregation method in
the Chapter 5 demonstrated an improvement in the estimation of water budget
components by enhancing the revisit time of LST data. However, this has not been enough
to provide accurate irrigation estimates at time scale shorter than 2 weeks, which might
be explained by the errors associated with the disaggregated LST data set. Such a result
anticipates the expected improvements in the irrigation estimates by using LST data at
an enhanced spatio-temporal resolution that will be directly achieved by future thermal
missions like TRISHNA (Lagouarde and Bhattacharya, 2018). Regarding the uncertainty
associated to the disaggregation method, the advent of the TRISHNA mission will lead to
substantial improvements in the estimation of irrigation at daily to weekly scales due to
three main improvements in the thermal infrared observation: i) a shorter revisit cycles
(~3 days), ii) a higher spatial resolution (~50 m), iii) direct thermal observations much
more accurate than disaggregated LST data. Here, in order to better foresee errors in
irrigation estimates that might be achieved at time scales shorter than 2 weeks, a
sensitivity analysis of errors associated to LST data should be carried out. That would
allow differentiating the errors coming from both the revisit time and the uncertainty in
thermal observation. It should be noted that such improvements are in accordance with




6.3. Perspectives

the two main objectives driving the TRISHNA mission: the monitoring of energy and
water budgets of the continental biosphere and the monitoring of coastal and continental
areas (Lagouarde and Bhattacharya, 2018).

Alternatively, disaggregation methods can be improved in order to enhance the spatial
and temporal resolution of availability of data without losing accuracy in the LST
estimates. For this purpose, future studies could make use of additional data to take into
account soil moisture or fraction of senescent vegetation, as in Amazirh et al., (2019) or
Merlin et al. (2012a, 2010). However, there is still significant work to do in order to reach
an operational maturity. In this vein, the approach proposed in this thesis could be
implemented by including albedo from optical data and radar data from the Sentinel-1
mission. Both optical and radar data as additional constraints on disaggregation method
might consider additional factors that modulate the LST and, consequently, reducing the
uncertainty in LST retrievals at fine scale.

6.3.2. Towards the use of radar data for a better
representation of hydrological processes

The radar signal derived from active C-band Sentinel-1 data is highly sensitive to the SSM.
Hence the use of radar data will not only serve as additional variable for the
disaggregation LST method, but also to improve the representation of hydrological
processes. The radar data can be introduced in the irrigation retrieval approach for,
specifically, two objectives. First, it can be introduced to better constrain the surface soil
water status that controls the soil evaporation and, second, to better constrain the timing
(and hence the amount) of the retrieved irrigation.

Regarding the first objective, some improvements are foreseen to better represent the
soil surface layer by means of Kr that modules the evaporation coefficient in the ET
estimates. In practice, better constraining the topsoil layer could improve the estimation
of Kr by integrating the SSM through a soil evaporative efficiency model as proposed by
Merlin et al. (2018, 2016, 2011) and used in Amazirh et al. (2018). This latter study
combined a radar-based SSM proxy with a thermal-based SM proxy (that corresponds to
Kr used in this thesis) for retrieving SSM at high spatio-temporal resolution over bare
soils. The implementation over bare soils (i.e. there is no influence of vegetation cover on
thermal and radar observation) proved the synergy between optical /radar data for SSM
estimates, raising the possibility of application over surface partially covered by
vegetation canopy. Therefore, the synergy by means of optical/radar-based SSM proxies
can be implemented for Kr estimates in order to improve the evaporation estimates.
These improvements would represent an important step forward over semi-arid to arid
regions since soil evaporation represents an important component in the water budget.
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Regarding the second objective, the radar-derived SSM or alternatively a SSM proxy can
be of great value to better estimate both amount and timing of irrigation. In the proposed
approach of this thesis, the irrigation retrieval is based on RZSM dynamics, which is
estimated from a water balance initialized by (first-guess) thermal-derived RZSM. Here,
radar-derived SSM at high spatial and temporal resolution is a useful and complementary
constraint for the crop water balance, allowing representing the temporal dynamics of
the SSM.

Recent studies have attempted to estimate SSM at high (~100 m) spatial resolution from
either Sentinel-1 radar data (Amazirh et al., 2018; Gao et al., 2017; Hajj et al., 2017) or by
disaggregating passive microwave-derive SSM at coarse resolution (Eweys et al.,, 2017;
Ojha et al., 2019). On one side for instance, the works of Amazirh et al. (2018) and Gao et
al. (2017) proposed promising methods for operational implementation based on the
contextual information observed in radar data. Amazirh et al. (2018) used the LST-
backscattered signals feature space to estimate a SSM proxy, while Gao et al. (2017) used
the difference between backscattered Sentinel-1 radar signals observed on two
consecutive overpasses, expressed as a function of NDVI to retrieve SSM estimates. On
the other side, Ojha et al. (2019) recently proposed a new disaggregation scheme for
SMOS and SMAP derived SSM by using Landsat data through a sequential disaggregation
approach based on the physical and theoretical scale change algorithm DisPATCH (Merlin
et al, 2013, 2012b; Molero et al, 2016). DisPATCH was previously proposed to
disaggregate the SSM to 1 km spatial resolution by using MODIS data. The advantage of
this method is that parameters are calibrated using remote sensing data with no in situ
data needed. The issue is that SSM at 100 m from DisPATCH data is available only under
clear-sky days during Landsat overpasses, meaning that the revisit time is considerably
reduced.

Notwithstanding, such SSM estimates or SSM proxy at high spatial resolution together
with thermal-derived RZSM could be integrated into the crop water balance in order to
better retrieve the temporal dynamics of RZSM, and consequently the irrigation
estimates. In terms of timing of irrigation, the higher revisit time of Sentinel-1 (~5 days)
with respect to current thermal mission like Landsat-7/8 (~8 days) is an additional asset
in the crop water modelling in order to better determine the irrigation events. In terms
of irrigation amounts, the inclusion of SSM into the water balance as a variable directly
linked to water fluxes might allow to avoid the use of some soil parameters such as
maximum and minimum SM values set to SMt and SMuwp, respectively. Instead, the
temporal dynamics in SSM might allow determining the minimum values from drying
periods as well as the SM values reached by water supplies. Consequently, such additional
information is foreseen to improve the accuracy in irrigation amounts.

6.3.3. Partitioning soil/vegetation components
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In the approaches proposed in this thesis, the partitioning of LST is the essential
foundation for the partitioning of the soil and vegetation components, in terms of soil (Kr)
and crop (Ks) water status, soil evaporation and plant transpiration, and hence key in the
thermal-derived RZSM estimates. For simplicity in an operational implementation, the
adopted LST partitioning method is based on contextual information observed only in the
LST-fvg feature space. This method implies uncertainties in Ts and Tv for large and small
fvg values, respectively, which may be transferable to the evaporation, transpiration and
RZSM estimates. Therefore, a robust partitioning method, but at the same time that can
be operationally implemented, is necessary in order to provide reliable Tv and Ts
estimates. Such a method will require improving the algorithm of LST partitioning in
addition to having appropriate in situ measurements to effectively assess the algorithm.

6.3.3.1. From remote sensing data

Improving the disaggregation algorithm could be addressed by means of a synergistic
approach between optical-radar data by taking into account additional land surface
variables that allows better differentiating the soil and vegetation components. For
instance, surface albedo from visible/shortwave data allows differentiating soil types
(clayey and sandy soils) and vegetation types (green and senescent vegetation) (Merlin
etal,, 2014). Surface emissivity from thermal data allows differentiating several soil types
(Sobrino et al., 2009), whose low values are not confused with the larger values of green
vegetation. Backscattered radar signals in VV polarization have demonstrated higher
sensitivity to SSM than VH polarization (Amazirh et al, 2018), which allows
distinguishing different soil water status (Amazirh et al., 2019). Most of these works have
been validated over bare soil conditions. Given the higher sensitivity of VH polarization
to vegetation effects, it might help differentiate surface types and extend the SAR-derived
SSM to soils partially to fully covered by vegetation canopy (Amazirh et al.,, 2018).
Therefore, the integration of these additional information from readily available data is a
useful and practical tool to better represent the soil and vegetation components in order
to partition the LST and its associated fluxes.

6.3.3.2. From EC-based measurements to validate remote
sensing applications

This proposed approach based on FAO-2Kc allows retrieving the partitioning of ET into
its soil evaporation and plant transpiration components. Partitioning ET is important for
agricultural purposes such as assessing the impacts of management practices on the
water use efficiency. However, these components are difficult to validate due to the
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general unavailability of ground-based monitoring of evaporation and transpiration
separately.

Commonly, the methods for monitoring evaporation and trasnpiration are based on
infrequent or sparse measurements, such as sap flow, microlysimeters and chambers.
The mismatch in footprints between the localized fluxes obtained by these instruments
and the field scale from micrometeorological methods (EC) can lead to significant scaling
issues. Therefore, a flux partitioning method only based on EC measurements is a useful
tool for practical validation purposes. It is more meaningful in a context where CO2 and
H20 fluxes are currently available through networks of EC stations across many
ecosystems types around the world. In this vein, Scanlon and Sahu (2008) proposed a
partitioning method based on the flux-variance similarity and correlation analyses of
high-frequency eddy covariance data, which estimates transpiration/photosynthesis and
evaporation/respiration using only high frequency EC measurements. The method has
been applied over different ecosystems types, including different crops (Anderson et al,,
2017; Perez-Priego et al,, 2018; Rana et al., 2018; Scanlon and Kustas, 2012, 2010; Wang
et al,, 2016). This method has a great potential for calibration/validation purposes, such
as the assessment of coefficients of FAO-2Kc as in Anderson et al. (2017). Furthermore, a
validation against independent evaporation and transpiration measurements over the
study area (Rafi et al, 2019) will be needed in order to use long series of EC
measurements to validate the evaporation/transpiration derived from remote sensing
data as those obtained in this thesis from the proposed irrigation retrieval approach.
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6.1. Résumé des résultats

Cette these de doctorat intitulée "Suivi des ressources en eau des cultures irriguées
par télédétection multi-spectrales optique/thermique” est centrée sur le suivi des
principales composantes du bilan hydrique (telles que I'ET, le RZSM et l'irrigation) des
zones agricoles a I'échelle de la parcelle (résolution de 100 m) sur une base journaliére
et sur de surfaces larges (e.g. les districts d'irrigation a quelques kilometres d’extension).
A cette fin, de nouvelles approches sont proposées, basées sur le couplage entre des
données optiques/thermiques de télédétection facilement disponibles et un modeéle basé
sur la FAO. Une partie importante de ce travail a été consacrée a 1'élaboration d'une
stratégie novatrice visant a tirer parti: i) de la disponibilit¢é de données
optiques/thermiques a une résolution spatiale appropriée pour le suivi des cultures, ii)
de la simplicité des méthodes contextuelles a partir de données optiques/thermiques
dans I'estimation de I'état hydrique de sol et de la végétation, iii) de 1'utilité des données
optiques/thermiques comme approximation de I'humidité de sol et de RZSM, et iv)
améliorer la résolution temporelle des données thermiques a haute résolution spatiale
pour mieux contraindre la dynamique des composantes du bilan hydrique.

6.1. Résumé des résultats

Bien que l'irrigation soit la principale source d'apport en eau dans les régions semi-arides
a arides, on dispose rarement d'informations sur la distribution spatiale de l'irrigation.
Ce manque d’information est donc l'un des principaux problémes a surmonter par les
modeles de bilan hydrique qui ont besoin d'apports d'eau comme forgage essentiel. La
premiere partie de cette these est consacrée au développement et a 1'évaluation d'une
nouvelle approche d’estimation de l'irrigation et des variables associées (ET et RZSM) a
partir de l'intégration des données optiques/thermiques dans le modele FAO de bilan
hydrique. L'estimation de l'irrigation est une étape clé dans le développement de
I'approche puisqu'aucune méthode n'est encore disponible pour récupérer le timing et la
quantité d'irrigation a la fois a 1'échelle de la parcelle et a I'échelle journaliere.

Une étude de faisabilité de l'approche proposée est réalisée a l'aide de mesures
optiques/thermiques in situ sur une parcelle de blé d'hiver dans la zone R3 de la plaine
du Haouz, au Maroc. L'approche adapte les modeéles contextuels mis en ceuvre avec les
données de télédétection optique/thermique aux mesures in situ en simulant a partir
d'un bilan énergétique de surface les conditions extrémes en termes de couverture de
sol/végétation et d'état hydriques. Cette procédure est adoptée avec un double objectif:
i) tirer parti de la simplicité et de la robustesse des méthodes contextuelles et ii) étre
applicable a de larges zones en utilisant des données satellitaires. L'approche a permis
d’estimer les volumes d'irrigation et les dates a partir d'ET et de RZSM dérivés du
optique/thermique comme estimations de premiere approximation. En pratique,
I'approche repose sur: i) la partition de la LST issue de Landsat pour dériver le coefficient
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de stress hydrique Ks; ii) I'estimation de RZSM de premiere approximation a partir des
Ks dérivés du thermique et du formalisme FAO-2Kc; iii) I'estimation des quantités et des
dates de l'irrigation au cours de la saison a partir des différences du RZSM dérivé de la
LST (premiere approximation); et iv) le forcage du modele FAO-2Kc a partir des
estimations d’irrigation pour ré-analyser les RZSM et ET journaliéres. Par conséquent, les
estimations de l'irrigation journaliere, la RZSM journaliere et I'ET journaliére sont
obtenues a l'échelle de la parcelle tout au long de la saison agricole en utilisant des
mesures in situ optiques/thermiques journalieres. Les résultats statistiques indiquent
que I'ET issue du thermique est plus précis que I'ET simulé par la version standard du
modele FAO-2Kc. La RMSE et la pente de la régression linéaire entre I'ET estimée et
observée est diminuée de 0,84 a 0,68 mm jour! et plus pres de 1 (de 1,21 a 1,07),
respectivement. La RZSM de premiere approximation est considérablement améliorée
lorsque FAO-2Kc est mis en ceuvre en utilisant l'irrigation estimée. Le R? et la pente de la
régression linéaire entre la RZSM simulée et la RZSM observée passent respectivement
de 0,42 a 0,67 et de 0,46 a 0,78, tandis que le RMSE passe de 0,06 a 0,03 m3m-3 et le biais
(-0,04 m3m-3) est supprimé. Etant donné que cette étude de faisabilité a été réalisée avec
une disponibilité journaliere de données optiques/thermiques, une analyse de sensibilité
au temps de revisite des données a été adoptée afin d'évaluer 'applicabilité aux données
optiques/thermiques satellitaires.

La deuxieme partie de cette these est consacrée a la mise en ceuvre de l'approche
proposée sur des zones larges en utilisant des données optiques/thermiques satellitaires
facilement disponibles. Ici, I'objectif principal est de faire face a deux problemes majeurs
dans la mise en ceuvre a grande échelle de modeles de bilan hydrique des cultures comme
FAO-2Kc: la disponibilité de l'irrigation (journaliere) distribuée spatialement et la
nécessité d'une calibration pour obtenir des estimations précises. A cette fin, 'approche
proposée dans la premiere partie est adaptée pour étre mise en ceuvre avec des données
optiques/thermiques issue de Landsat-7/-8 a faible densité temporelle sur trois zones
agricoles de 12 km par 12 km dans la région semi-aride de la plaine du Haouz, au centre
du Maroc. Dans ces zones, I'approche est évaluée sur cinq sites expérimentaux couverts
de blé d'hiver pendant quatre saisons de croissance avec différentes techniques
d'irrigation (goutte a goutte, inondation et sans irrigation). D'une part, l'approche
démontre sa capacité a obtenir l'irrigation a I'échelle journaliere et sur la parcelle a partir
de données optiques/thermiques a haute résolution spatiale. Les quantités totales
d'irrigation sont estimées avec précision pour toutes les parcelles et toutes les saisons
avec une RMSE égale a 44 mm et un R de 0,95. D'autre part, une évaluation des
estimations d'irrigation est effectuée a différentes échelles de temps en accumulant les
quantités d'irrigation de 1 a 90 jours. Cette analyse montre que des erreurs acceptables
sont obtenues pour des irrigations cumulées sur 15 jours (RMSE = 27 mm et R = 0,52) et
que la performance est progressivement améliorée en augmentant la période
d'accumulation, atteignant une estimation tres précise a l'échelle saisonniere. Cependant,
on constate de mauvais accords a l'échelle journaliere ou hebdomadaire en termes
d'irrigation. Néanmoins, les estimations de l'irrigation sont toujours acceptables afin de
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simuler avec précision la dynamique de I'ET et du RZSM a I'échelle journaliére et a
I'échelle de la parcelle agricole tout au long de la saison. La RMSE totale est égale a 0,04
m3m-3 et 0,83 mm.d-! pour les RZSM et ET, respectivement, ce qui est tres proche de ceux
estimés par la FAO-2Kc forcée par des irrigations réelles (RMSE égale a 0,04 m3m-3 et 0,82
mm.d-1). De plus, la précision retrouvée dans les estimations d’ET démontre que la
formulation des coefficients génériques Kcb et Ke permet de mettre en ceuvre la modele
FAO-2Kc en utilisant des données satellitaires, évitant ainsi la calibration avec des
données in situ, qui ne sont généralement pas disponibles sur des zones larges. La période
de 15 jours pendant laquelle des erreurs acceptables sont obtenues (pour les irrigations)
est étroitement liée au temps de revisite des données Landsat, qui peut étre de 16 jours
ou plus dans des conditions nuageuses. Par conséquent, le temps de revisite des données
optiques/thermiques issue de satellites actuels est un point critique de l'approche
proposée.

La troisieme et derniere partie de cette thése est consacrée a la mise en ceuvre d'une
méthode opérationnelle de désagrégation pour améliorer la résolution spatiale et
temporelle des données thermiques. Bien que les données Landsat fournissent des
données optiques/thermiques a une résolution spatiale appropriée pour le suivi des
cultures, leur résolution temporelle n'est pas optimale. La méthode est basée sur la
combinaison des relations NDVI/LST et Landsat/MODIS pour fournir un LST a résolution
des pixels Landsat tous les 8 jours. Cette méthode est mise en ceuvre dans deux zones
différentes en termes d'extension, de couverture végétale et de conditions climatiques:
Vallée de Copiapo et plaine du Haouz. L'approche est appliquée d'une maniere
légérement différente dans chaque zone afin d'obtenir différentes données désagrégées
de LST en tant qu'entrée principale pour différentes approches. Dans la vallée de Copiapo,
la méthode est mise en ceuvre pour fournir des données LST représentatives de périodes
de 8 jours, qui sont ensuite intégrées dans le modele SSEBop pour estimer I'ET cumulée
sur 8 jours. Dans la plaine du Haouz, la méthode est mise en ceuvre pour fournir des
données LST tous les 8 jours, qui sont combinées avec de LST issue de Landsat-7/8 pour
étre intégrées dans le modele de bilan hydrique basé sur la FAO-2Kc pour appliquer
I'approche d’estimation d'irrigation comme il est proposé dans la deuxieme partie de
cette thése. La combinaison des ensembles de données de LST désagrégées et LST de
Landsat, grace a l'augmentation de la fréquence temporelle des données LST, permet une
meilleure détection des événements et des quantités d'irrigation. La RMSE globale de
l'irrigation cumulée a différentes échelles de temps est diminuée de 46 a 34 mm (soit une
amélioration de 25 %), tandis que la corrélation passe de 0,50 a 0,64 (soit une
amélioration de 29 %). De facon cohérente, la RZSM estimée en utilisant la LST
désagrégée en plus de la LST de Landsat comme entrée est amélioré de 26 % et 14 % en
termes de RMSE et de R, respectivement. Malgré les différences dans les deux cas en
termes de cultures (d’arbres et blé d'hiver), de zones d'extension (zones tres étroites et
zones agricoles larges), de climat (arides et semi-arides) et d'approche utilisée (SSEBop
et approche d’estimation de l'irrigation), la procédure de désagrégation a permis de
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renforcer et de garantir la disponibilité des données LST tous les 8 jours, permettant de
mieux estimer les composants du bilan hydrique.

En résumé, cette thése démontre l'utilité des données optiques/thermiques a haute
résolution spatiale pour estimer, pour la premiere fois, l'irrigation a 1'échelle de la
parcelle sur une base journaliere et pour mieux contraindre le bilan hydrique des zones
agricoles.

6.2. Principales limites des méthodes

Malgré la grande valeur des approches développées dans cette thése pour mieux estimer
et surveiller l'utilisation de I'eau dans des zones agricoles, il y a certaines limites liées aux
hypothéses, au domaine d'application et aux données utilisées. 1l est donc utile
d'identifier les limites afin de fournir des perspectives sur la maniere d'améliorer la
méthodologie et d'étendre son applicabilité dans les travaux futurs. Etant donné que la
premiere partie de cette thése est une étude de faisabilité au niveau in situ et qu'elle est
ensuite adaptée pour la mise en ceuvre sur des zones larges, comme présenté dans la
deuxiéme partie, seules les limites de cette derniére approche et les méthodes de
désagrégation sont présentées ci-dessous.

6.2.1. Approche d’estimation d'irrigation

La méthode de récupération de l'eau d'irrigation est basée sur le RZSM simulé a partir
d'un modele simple de bilan hydrique pour lequel certaines hypothéses sont faites.
Certaines des hypothéses sont communes au modele FAO-Kc, tandis que d'autres sont
spécifiques a la méthode d'extraction par irrigation. Les hypothéses découlant du modele
FAO-2Kc et ses limites sont les suivantes:

- La RZSM journaliére varie dans la limite d'une plage définie par une valeur
minimale fixée a la SM au point de flétrissement (SMwp) et par une valeur
maximale fixée a la SM a la capacité du champ (SMx). Cette hypothese pose un
double défi. D'une part, une connaissance adéquate du SMwp et du SM¢ n'est
possible que dans des situations trés controlées. Ces parametres sont
généralement estimés a l'aide de fonctions pédo-transfert a partir de propriétés
du sol (texture) qui ne sont pas exemptes d'erreurs. De plus, la connaissance des
propriétés du sol est nécessaire sur la zone (périmetre d’irrigation), dont la
précision est limitée par sa grande variabilité spatiale. D'un autre c6té, le réglage
de la RZSM entre SMwp et SM¢, implique qu'une fois que la RZSM atteint SM¢, tout
apport d'eau supplémentaire est considéré comme un exces d'eau et est donc
drainé du réservoir de stockage par percolation profonde (se produisant
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simultanément a l'excédent d'eau). De plus, les observations montrent que la
RZSM peut étre encore plus faible que la SMwp en raison des processus de diffusion
entre les couches superficielles et profondes du sol et des pertes par évaporation
associées, entre autres facteurs (e.g. le type de végétation).

- La RZSM est linéairement liée au Ks entre le SMwp et le RZSM critique (SMcrit), qui
est estimé comme une fraction de l'eau totale disponible selon la tolérance au
stress hydrique des cultures (Allen et al., 1998). Dans l'approche d’estimation de
l'irrigation, ce point est lié a la saturation des Ks dérivés de Landsat (égale a 1)
pour les valeurs SM entre SMcrit et SMt., ou les Ks dérivés de Landsat ne peuvent
détecter aucun changement de RZSM.

Les hypotheses spécifiques a l'approche d’estimation d'irrigation ainsi que ses limites
sont les suivantes:

- L'irrigation estimée est l'irrigation effective (irrigation moins drainage), ce qui
signifie que 1'excés d'irrigation qui déclenche une percolation profonde n'est pas
pris en compte. Malgré l'utilisation de données optiques/thermiques pour dériver
une approximation de la RZSM au moyen de la température de la végétation, ce
type de données n'est pas capable d'obtenir des informations sur les fluxes d’eau
profonde.

- Unévénementd'irrigation est détecté le jour ou la RZSM dérivée du bilan hydrique
atteint la SMr. Cette hypothese limite la détection de 1'événement d'irrigation, en
particulier dans les parcelles irriguées par goutte a goutte ou l'eau n'est pas
nécessairement fournie pour atteindre la SM¢t. Ainsi, le nombre d'événements
d'irrigation est réduit par des événements manquants et la quantité d'eau est donc
surestimée pour chaque événement détecté par effet de compensation.

- La méthode de partition de LST suppose que la LST est décomposée linéairement
en composantes du sol et de la végétation au moyen de fvg et de l'espace
caractéristique LST-fvg. Pour des raisons de simplicité, les émissivités du sol et de
la végétation ne sont pas prises en compte, méme si elles peuvent étre extraites
des données ASTER GED ajustées aux bandes thermiques de Landsat comme
indiqué a la section 2.4.1.2. De plus, la nature contextuelle de l'espace LST-fvg
implique une plus grande incertitude dans Ts lorsque fvg est grand, et
inversement, une plus grande incertitude dans Tv lorsque fvg est petit. Ces
incertitudes sont transférables a I'état hydrique du sol (Kr) et de la culture (Ks)
puis a l'initialisation du bilan hydrique pour estimer la dynamique de la RZSM.

- Si deux dates successives de passages de Landsat indiquent des conditions non
stressées (Ks=1), on suppose que la culture ne subit pas de stress hydrique
pendant cette période. On suppose également que Ks=1 entre une date Landsat
indiquant des conditions non stressées et un événement d'irrigation détecté avant
la date du prochain passage de Landsat. Lorsque des conditions de stress
surviennent durant cette période, la méthode d’estimation de l'irrigation conduit
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a surestimer les quantités d'irrigation afin de maintenir les conditions non
stressées observées par les données Landsat éparses. Plus la période de revisite
des données Landsat par temps nuageux est longue, plus ce probleme est
probable.

- Dans plusieurs zones agricoles en régions semi-arides a arides, l'augmentation de
la capillarité et le ruissellement sont négligés en raison de surfaces planes et de
nappes phréatiques tres profondes. Cependant, le ruissellement peut étre une
source d'erreur, en particulier dans les techniques d'irrigation par inondation, ou
une quantité importante d'eau appliquée peut étre perdue par ruissellement dans
les parcelles voisines. En ce qui concerne 'augmentation de la capillarité, des
couches plus profondes et plus humides pourraient fournir de 1'eau a la couche de
la zone racinaire par des processus de diffusion, qui n'ont pas été pris en compte
dans l'approche.

6.2.2. Meéthode de désagrégation LST

L'approche est basée sur la combinaison des relations LST-NDVI et LST Landsat-MODIS.
Bien que I'approche soit dans 1'état de I'art, seules les variables LST et NDVI ont été prises
en compte aux fins d'une mise en ceuvre opérationnelle en utilisant des données
satellitaires facilement accessibles. Les limites dérivées de 1'approche de désagrégation
sont détaillées ci-dessous.

Etant donné que cette approche est basée sur les relations LST-NDVI, toutes les variations
de LST provenant de facteurs autres que NDVI sur les zones agricoles ne peuvent étre
expliquées. Par exemple, l'utilisation de I'NDVI seulement présente certaines lacunes
dans les régions ou la variabilité spatiale de la SM est élevée, comme I'ont signalé certains
auteurs (e.g. Agam et al., 2007b; Merlin et al., 2010). Pour cette raison, certains travaux
ont ajouté d'autres informations qui influencent la LST afin de refléter les changements
de la LST provenant de la SM ou de la végétation sénescente (Amazirh et al, 2019; Merlin
etal, 2012a, 2010).

La relation LST entre Landsat-MODIS est basée sur le rapport entre les deux capteurs a
différentes résolutions spatiales en supposant que les types de couverture ne changent
pas au cours de la période étudiée. Par conséquent, I'approche pourrait étre limitée lors
d'un changement de I'occupation du sol par rapport a la période de calibration.

Il ne fait aucun doute que l'approche manque d'informations sur la SM, mais I'utilisation
des seules informations LST-NDVI a été priorisée afin de parvenir a une mise en ceuvre
opérationnelle de I'approche. Un résultat important est toutefois que, malgré la simplicité
de I'approche, une amélioration des estimations des ressources en eau a été obtenue.
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6.3.1. VersIl'amélioration de la résolution spatiale et
temporelle

L'une des principales contraintes de I'approche proposée est la disponibilité de données
thermiques a des résolutions spatiales et temporelles élevées. La méthode de
désagrégation opérationnelle du Chapitre 5 a démontré une amélioration dans
'estimation des composantes du bilan hydrique en augmentant le temps de revisite des
données de LST. Cependant, cela n'a pas été suffisant pour fournir des estimations
précises de l'irrigation a une échelle de temps inférieure a deux semaines, ce qui pourrait
s'expliquer par les erreurs associées a I'ensemble de données désagrégées de LST. Un tel
résultat anticipe les améliorations attendues dans les estimations de l'irrigation en
utilisant les données de LST a une résolution spatio-temporelle améliorée qui sera
directement obtenue par de futures missions thermiques comme TRISHNA (Lagouarde
et Bhattacharya, 2018). En ce qui concerne l'incertitude associée a la méthode de
désagrégation, l'arrivée de la mission TRISHNA entralnera des améliorations
substantielles dans 1'estimation de l'irrigation a 1'échelle journaliere ou hebdomadaire
grace a trois améliorations principales dans l'observation infrarouge thermique: i) des
cycles de revisite plus courts (~3 jours), ii) une résolution spatiale supérieure (~50 m),
iii) des observations thermiques directes beaucoup plus précises que des données de LST
désagrégées. Ici, afin de mieux prévoir les erreurs dans les estimations de l'irrigation qui
pourraient étre obtenues a des échelles de temps inférieures a 2 semaines, une analyse
de sensibilité des erreurs associées aux données de LST devrait étre effectuée. Cela
permettrait de différencier les erreurs provenant a la fois du temps de revisite et de
l'incertitude de l'observation thermique. Il est a noter que ces améliorations sont en
accord avec les deux objectifs principaux de la mission TRISHNA: le suivi des bilans
énergétiques et hydriques de la biosphere continentale et le suivi des zones cotiéres et
continentales (Lagouarde et Bhattacharya, 2018).

Par ailleurs, les méthodes de désagrégation peuvent étre améliorées afin d'améliorer la
résolution spatiale et temporelle de la disponibilité des données sans perdre la précision
des estimations de LST. A cette fin, des études futures pourraient utiliser des données
supplémentaires pour tenir compte de I'humidité du sol ou de la fraction de végétation
sénescente, comme dans Amazirh et al (2019) ou Merlin et al (2012a, 2010). Toutefois, il
reste encore beaucoup a faire pour atteindre une maturité opérationnelle. Dans cet esprit,
I'approche proposée dans cette thése pourrait étre mise en ceuvre en incluant l'albédo
des données optiques et radar de la mission Sentinel-1. Les données optiques et radar, en
tant que contraintes supplémentaires a la méthode de désagrégation, pourraient tenir
compte d'autres facteurs qui modulent le LST et, par conséquent, réduisent l'incertitude
dans les estimations de la LST a une échelle fine.
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6.3.2. Vers l'utilisation des données radar pour une
meilleure représentation des processus
hydrologiques

Le signal radar dérivé des données Sentinel-1 en bande C active est tres sensible au SSM.
Par conséquent, l'utilisation des données radar servira non seulement de variable
supplémentaire pour la méthode de désagrégation de LST, mais aussi pour améliorer la
représentation des processus hydrologiques. Les données radar peuvent étre introduites
dans l'approche d’estimation de l'irrigation pour, spécifiquement, deux objectifs.
Premierement, il peut étre introduit pour mieux contraindre 1'état hydrique de surface
du sol qui contréle 1'évaporation du sol et, deuxiemement, pour mieux contraindre le
timing (et donc la quantité) de l'irrigation estimée.

En ce qui concerne le premier objectif, certaines améliorations sont prévues pour mieux
représenter la couche superficielle du sol au moyen du Kr qui module le coefficient
d'évaporation dans les estimations de I'ET. En pratique, une meilleure contrainte de la
couche superficielle pourrait améliorer l'estimation du Kr en intégrant la SSM a un
modele d'efficacité d'évaporation du sol proposé par Merlin et al. (2018, 2016, 2011) et
utilisé dans Amazirh et al. (2018). Cette derniere étude a combiné un proxy SSM radar
avec un proxy SM thermique (qui correspond au Kr utilisé dans cette these) pour
récupérer la SSM a haute résolution spatio-temporelle sur des sols nus. La mise en ceuvre
sur des sols nus (i.e. qu'il n'y a pas d'influence du couvert végétal sur l'observation
thermique et radar) a prouvé la synergie entre les données optiques/radar pour les
estimations de SSM, soulevant la possibilité d'application sur une surface partiellement
couverte par la canopée végétale. Par conséquent, la synergie au moyen
d'approximations de SSM issue de I'optique/radar peut étre mise en ceuvre pour les
estimations du Kr afin d'améliorer les estimations de 1'évaporation. Ces améliorations
représenteraient une avancée importante par rapport aux régions semi-arides a arides,
car 1'évaporation du sol représente un élément important du bilan hydrique.

En ce qui concerne le deuxieme objectif, la SSM dérivée du radar ou une SSM proxy peut
étre tres utile pour mieux estimer a la fois la quantité et le timing de l'irrigation. Dans
I'approche proposée dans cette these, I'estimation de l'irrigation est basée sur la
dynamique de la RZSM, qui est estimée a partir d'un bilan hydrique initialisé par de RZSM
dérivée du thermique (premieres approximations). Ici, la SSM dérivée par radar a haute
résolution spatiale et temporelle est une contrainte utile et complémentaire pour le bilan
hydrique des cultures, permettant de représenter la dynamique temporelle de la SSM.

Des études récentes ont tenté d'estimer la SSM a une haute résolution spatiale (~100 m)
a partir de données radar Sentinel-1 (Amazirh et al., 2018; Gao et al., 2017; Hajj et al,,
2017) ou en désagrégeant la SSM passive obtenue par micro-ondes a résolution grossiere
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(Eweys etal,, 2017; Ojha et al., 2019). D'un coté par exemple, les travaux d'Amazirh et al
(2018) et de Gao et al (2017) proposent des méthodes prometteuses de mise en ceuvre
opérationnelle basées sur les informations contextuelles observées dans les données
radar. Amazirh et al. (2018) ont utilisé 1'espace entre des signaux rétrodiffusés et LST
pour estimer une approximation de SSM, tandis que Gao et al. (2017) ont utilisé la
différence entre les signaux radar Sentinel-1 rétrodiffusés observés sur deux passages
consécutifs, exprimée en fonction de NDVI pour obtenir des estimations de SSM. D'autre
part, Ojha et al (2019) ont récemment proposé un nouveau schéma de désagrégation
pour SSM dérivé de SMOS et de SMAP en utilisant les données Landsat par une approche
séquentielle de désagrégation basée sur l'algorithme DisPATCH (Merlin et al, 2013,
2012b; Molero et al., 2016). DisPATCH a déja été proposé pour désagréger la SSM a une
résolution spatiale de 1 km en utilisant les données MODIS. L'avantage de cette méthode
est que les parametres sont calibrés a 1'aide de données de télédétection sans qu'aucune
donnée in situ ne soit nécessaire. Le probleme est que les données de SSM a 100 m issue
de DisPATCH ne sont disponibles que par conditions de ciel dégagé pendant les passages
de Landsat, ce qui signifie que le temps d’observation est considérablement réduit.

Néanmoins, de telles estimations de SSM ou de telles approximations de SSM a haute
résolution spatiale ainsi que les RZSM issue du thermique pourraient étre intégrées dans
le bilan hydrique des cultures afin de mieux estimer la dynamique temporelle des RZSM
et, par conséquent, les estimations d'irrigation. En ce qui concerne le moment de
l'irrigation, le temps de revisite plus élevé de Sentinel-1 (~5 jours) par rapport a de
mission thermique actuelle comme Landsat-7/8 (~8 jours) est un atout supplémentaire
dans la modélisation de 1'eau des cultures afin de mieux déterminer les événements de
l'irrigation. En termes de quantités d'irrigation, I'inclusion du SSM dans le bilan hydrique
en tant que variable directement liée aux flux d'eau pourrait permettre d'éviter
|'utilisation de certains parametres du sol tels que les valeurs maximales et minimales de
SSM fixées respectivement a SMtc et SMwyp. Au lieu de cela, la dynamique temporelle dans
la SSM pourrait permettre de déterminer les valeurs minimales a partir des périodes de
séchage ainsi que les valeurs de SM atteintes par les apports en eau. Par conséquent, ces
informations supplémentaires sont prévues pour améliorer l'exactitude des quantités
d'eau d'irrigation.

6.3.3. Partition entre les composants de sol et de
végétation

Dans les approches proposées dans cette thése, la partition de la LST est le fondement
indispensable de la partition des composantes du sol et de la végétation, en termes d'état
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hydrique du sol (Kr) et des cultures (Ks), d'évaporation du sol et de transpiration des
plantes, et donc la clé des estimations de RZSM dérivées du thermique. Pour plus de
simplicité dans une implémentation opérationnelle, la méthode de partition de la LST
adoptée est basée sur des informations contextuelles observées uniquement dans
I'espace a deux dimensions LST-fvg. Cette méthode implique des incertitudes dans les
estimations de Ts et de Tv pour les grandes et petites valeurs de fvg, respectivement, qui
peuvent étre transférables aux estimations de I'évaporation, de la transpiration et de la
RZSM. Par conséquent, une méthode de partition robuste, mais en méme temps qui peut
étre mise en ceuvre sur le plan opérationnel, est nécessaire afin de fournir des estimations
fiables de Tv et de la Ts a l'aide de la télédétection. Une telle méthode nécessitera
I'amélioration de 1'algorithme de partition de la LST en plus d'avoir des mesures in situ
appropriées pour évaluer efficacement I'algorithme.

6.3.3.1. Al'aide de la télédétection

L'amélioration de l'algorithme de désagrégation pourrait étre abordée au moyen d'une
approche synergique entre les données optiques-radar en tenant compte de variables de
surface supplémentaires qui permettent de mieux différencier les composantes de sol et
de la végétation. Par exemple, 1'albédo de surface a partir de données sur les ondes
visibles et les courtes longueurs d’ondes permet de différencier les types de sols (sols
argileux et sableux) et les types de végétation (végétation verte et sénescente) (Merlin et
al, 2014). L'émissivité de surface des données thermiques permet de différencier
plusieurs types de sols (Sobrino et al, 2009), dont les faibles valeurs ne sont pas
confondues avec les grandes valeurs de la végétation verte. Les signaux radar
rétrodiffusés en polarisation VV ont démontré une plus grande sensibilité a la SSM que la
polarisation VH (Amazirh et al., 2018), ce qui permet de distinguer différents états
hydriques des surfaces (Amazirh et al.,, 2019). La plupart de ces travaux ont été validés
sur des sols nues. Etant donné la plus grande sensibilité de la polarisation VH aux effets
de la végétation, elle pourrait aider a différencier les types de surface et a étendre la SSM
dérivée des données de SAR aux sols partiellement ou entierement couverts par le
couvert végétal (Amazirh et al,, 2018). Par conséquent, I'intégration de ces informations
supplémentaires a partir de données facilement disponibles est un outil utile et pratique
pour mieux représenter les composantes du sol et de la végétation afin d’estimer la
partition de la LST et ses flux associés.
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6.3.3.2. Des mesures basées sur I'Eddy Covariance a la
validation des applications de télédétection

Cette approche proposée basée sur la modele FAO-2Kc permet d’estimer la partition de
I'ET dans ses composantes d'évaporation du sol et de transpiration des plantes. La
partition de la ET est important a des fins agricoles, par exemple pour évaluer les impacts
des pratiques de gestion sur l'efficacité de l'utilisation de l'eau. Cependant, ces
composantes sont difficiles a valider en raison de l'indisponibilité générale du suivi in situ
de I'évaporation et de la transpiration séparément.

Généralement, les méthodes de suivi de I'évaporation et de la trasnpiration sont basées
sur des mesures peu fréquentes ou rares, telles que le flux de seve, les micro-lysimeétres
et les chambres. L'inadéquation des empreintes entre les flux localisés obtenus par ces
instruments et 1'échelle de la parcelle des méthodes micro-météorologiques (EC) peut
entrainer d'importants probléemes d'échelle. Par conséquent, une méthode de partition
des flux basée uniquement sur des mesures EC est un outil utile a des fins de validation
pratique. Elle est plus significative dans un contexte ou les flux de CO2 et d'H20 sont
actuellement disponibles par de réseaux de stations EC dans de nombreux types
d'écosystémes a travers le monde. Dans cet ordre d'idées, Scanlon et Sahu (2008) ont
proposé une méthode de partitionnement basée sur la similarité flux-variance et
d’analyses de corrélation de données d’eddy covariance a haute fréquence, qui estime la
transpiration/photosynthese et 1'évaporation/respiration en utilisant uniquement des
mesures EC a haute fréquence. La méthode a été appliquée a différents types
d'écosystemes, y compris différentes cultures (Anderson et al., 2017; Perez-Priego et al,,
2018; Rana et al., 2018; Scanlon et Kustas, 2012, 2010; Wang et al., 2016). Cette méthode
a un grand potentiel de calibration/validation, comme I'évaluation des coefficients
utilisés dans le modele FAO-2Kc comme dans Anderson et al (2017). De plus, une
validation par rapport a des mesures indépendantes d'évaporation et de transpiration
sur la zone d'étude (Rafi et al.,, 2019) sera nécessaire afin d'utiliser de longues séries
temporelles de mesures EC pour valider 1'évaporation/transpiration dérivée des données
de télédétection comme celles obtenues dans cette these avec I'approche proposée pour
'estimation de l'irrigation.
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Appendix 1. Reference evapotranspiration (ETO0)

Appendices

Appendix 1. Reference evapotranspiration (ETy)

Reference evapotranspiration (ETo) is estimated according to ASCE standardized for a
short crop based on Penman-Monteith method as follows:
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A+ y* (14034 % uy)

ETO =

17.27 * Ta Eq A2
,_ 4098+ 06108 x exp (F&574)
(Ta + 273.3)2

¥ = 0.665.1073 x Pq Eq.A13

RH RHp; Eq. A1 4

~ e%(Tamin) T e®(Tamay) o5 q
e, =
2
17.27 Ta Eq A15
°(Ta) = 0.61 [—

¢'(Ta) = 06108~ exp |7 733

4.87 Eq.A16
uZ = uZ

In(67.8*z—5.42)
Pa =101.3 (293 — 0.0065 = 2)5'26 Eq.A.17
e 293
24 % 60
Ra = T * Gge . dy [ws . 5in(68) . sin(p) + cos(@) . cos(F) . sin(ws)] Eq.A18
21

d, =1+ 0.033 * cos (% ]) Eq.A19
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21

6=0.4O9*sin(365*]—139) Eq.A.110
wg = acos[—tan(e) tan(d)] Eq.A111
Rns=(1—- a)* Rg Eq.A.112

Tk + Eq.A.113
Rnl= o l maxk "”"Kl (0.34 — 0.14,/e,) (1 35 —g— 035) 1
Rso = (0.75 + 2 10752) * Ra Eq.A114
Rn = Rns — Rnl Eq.A.115

where ETo :reference evapotranspiration (mm day-1)
Rg :incident solar radiation at short wavelengths (M] day-1)
Rn :netradiation (M] day1)
Rns :netshortwave radiation (M] day-1)
Rnl :netlongwave radiation (M] day1)
Rso :solar radiation in clear sky condition (M] day-1)
G : soil heat flux (M] m-2day-1)
Ta :daily mean air temperature at 2 m height (°C)
RH :relative humidity (%)
Pa :atmospheric pressure at elevation z (kPa)
z : elevation (m)

uz :wind speed at 2 m height (m s1)

ea  :actual vapour pressure (kPa)
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e’  :saturation vapour pressure function (kPa)
Gsc  :solar constant (equal to 0.0820 M] m2 min-1)
dr  :inverse relative distance Earth-Sun (-)
] : day of the year (-)
a : albedo ()
A : slope vapour pressure curve (kPa °C1)
y : psychrometric constant (kPa °C-1)
ws :sunset hour angle (rad)
¢ :latitude (rad)

o : Stefan-Boltzmann constant (4.903*10-° M] K-*m-2day-1)
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Appendix 2.  Energy balance model for bare soil

The soil surface energy balance can expressed as:

Rng — Gy = Hg + LEg Eq.A21

With Rns being the net radiation, Go the soil heat flux, Hs sensible heat flux and LEs the
latent heat flux for soil surface.

The Rns is estimated as follows:

Rng = (1 —ay)Rg + &;(Ra — oTS) Eq.A22

where as (-) is the soil albedo, Rg (Wm-—2) the incident solar radiation at short
wavelengths, & (-) the soil emissivity, Ra (W m=2) the incident radiation at long
wavelengths, ¢ (Wm-2K-4) the Stefan-Boltzmann constant and Ts (K) the soil
temperature. For the feasibility study in R3 area (Section 3.4), &s was obtained from
measurements made by Olioso et al. (2007) over the area. Note that for the spatial
application with remote sensing data over the area, €s was obtained according to the
method presented in Section 2.4.1.2.

The Go was approximated as a fraction of the Rns according to Kustas and Daughtry
(1990):

G, = 0.32Rng Eq.A23

The Hs is computed as:

C,(T. — T
H:pp(s )

S

Eq.A2 4
Tan

where p (Kg m3) is the air density, Cp (J] Kg-1K-1) the specific heat of air at constant
pressure and rah the aerodynamic resistance. The LEsis estimated as:

C,(e(T,) —e
LE, _7 ”( (Z) “) Eq.A25
y ra+ rSS

with y being the psychrometric constant (Pa), e(Ts) the saturated vapor pressure at soil
temperature (Pa), es the vapor pressure in the canopy air space (Pa), and rss the soil
surface resistance (s m'1). rss is considered as a function of surface soil moisture (Sellers
etal,, 1992):
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SM
Tss = exp lA - B l

SM;. Eq.A.26
where the two best fit parameters A (unitless) and B (unitless) are considered as 8 and 5
re- spectively (Kustas et al,, 1993; Crow et al., 2008). By prescribing a soil evaporation
resistance rss equal to zero and infinity (in practice a very large number), the minimum
and maximum soil temperatures (Tsmax and Tsmin) can be estimated for a given
atmospheric forcing.

The ran is estimated as:

1 Z, —d
T, = T [ln( o ) — zph] Eq.A27
with k being the von Karman constant (k = 0.4), ux (ms1) the friction velocity, z- (m) the
height of reference data, d the zero plane displacement (0 for bare soil), zom (m) the soil
surface roughness length for momentum transport, ¥ the stability correction for heat
transfer which is estimated as function of Monin-Obukhov length (Lmo). The ran is
estimated by implementing an iterative computation to estimate the Ts at equilibrium by
using the formalism based on the Monin-Obukhov similarity theory, taking into account

the Lmo:
pC,pTau?
Lyo = — Eq.A.2 8
kg(H + 0.61C,T,LE;)
with u* (ms-1) being the friction velocity and expressed as:
uk
u, =
* zy —d\ Eq.A29
ln( Zom ) Ym

with ym being the stability correction for momentum transfer and is estimated as:

1+x
Y = % + ZInT — 2arctan(x) + 0.5 Eq.A210

The n is given by:
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1+ x?

Eq.A211
> q

lph = 2in

with x being function of the Lmo and of the reference height for wind speed observations

(Zr) :

x=(1-16-2 )0'25 Eq.A.2 12

Lmo
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