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Abstract With the advent of multicore and manycore processors as building
blocks of HPC supercomputers, many applications shift from relying solely on
a distributed programming model (e.g., MPI) to mixing distributed and shared-
memory models (e.g., MPI+OpenMP). This leads to a better exploitation
of shared-memory communications and reduces the overall memory footprint.
However, this evolution has a large impact on the software stack as applications’
developers do typically mix several programming models to scale over a large
number of multicore nodes while coping with their hiearchical depth. One
side effect of this programming approach is runtime stacking: mixing multiple
models involve various runtime libraries to be alive at the same time. Dealing
with different runtime systems may lead to a large number of execution flows
that may not efficiently exploit the underlying resources.

We first present a study of runtime stacking. It introduces stacking config-
urations and categories to describe how stacking can appear in applications.
We explore runtime-stacking configurations (spatial and temporal) focusing
on thread/process placement on hardware resources from different runtime
libraries. We build this taxonomy based on the analysis of state-of-the-art
runtime stacking and programming models.

We then propose algorithms to detect the misuse of compute resources when
running a hybrid parallel application. We have implemented these algorithms
inside a dynamic tool, called the Overseer. This tool monitors applications,
and outputs resource usage to the user with respect to the application timeline,
focusing on overloading and underloading of compute resources.

Finally, we propose a second external tool called Overmind, that moni-
tors the thread/process management and (re)maps them to the underlying
cores taking into account the hardware topology and the application behav-
ior. By capturing a global view of resource usage the Overmind adapts the
process/thread placement, and aims at taking the best decision to enhance
the use of each compute node inside a supercomputer. We demonstrate the
relevance of our approach and show that our low-overhead implementation is
able to achieve good performance even when running with configurations that
would have ended up with bad resource usage.
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Résumé La simulation numérique reproduit les comportements physiques
que l’on peut observer dans la nature. Elle est utilisée pour modéliser des
phénomènes complexes, impossible à prédire ou répliquer. Pour résoudre ces
problèmes dans un temps raisonnable, nous avons recours au calcul haute per-
formance (High Performance Computing ou HPC en anglais). Le HPC regroupe
l’ensemble des techniques utilisées pour concevoir et utiliser les supercalcula-
teurs. Ces énormes machines ont pour objectifs de calculer toujours plus vite,
plus précisément et plus efficacement.
Pour atteindre ces objectifs, les machines sont de plus en plus complexes. La
tendance actuelle est d’augmenter le nombre cœurs de calculs sur les processeurs,
mais aussi d’augmenter le nombre de processeurs dans les machines. Les ma-
chines deviennent de plus en hétérogènes, avec de nombreux éléments différents
à utiliser en même temps pour extraire le maximum de performances. Pour
pallier ces difficultés, les développeurs utilisent des modèles de programmation,
dont le but est de simplifier l’utilisation de toutes ces ressources. Certains
modèles, dits à mémoire distribuée (comme MPI), permettent d’abstraire l’en-
voi de messages entre les différents nœuds de calculs, d’autres dits à mémoire
partagée, permettent de simplifier et d’optimiser l’utilisation de la mémoire
partagée au sein des cœurs de calcul.
Cependant, ces évolutions et cette complexification des supercalculateurs à
un large impact sur la pile logicielle. Il est désormais nécessaire d’utiliser
plusieurs modèles de programmation en même temps dans les applications.
Ceci affecte non seulement le développement des codes de simulations, car
les développeurs doivent manipuler plusieurs modèles en même temps, mais
aussi les exécutions des simulations. Un effet de bord de cette approche de
la programmation est l’empilement de modèles (‘Runtime Stacking’) : mélan-
ger plusieurs modèles implique que plusieurs bibliothèques fonctionnent en
même temps. Gérer plusieurs bibliothèques peut mener à un grand nombre
de fils d’exécution utilisant les ressources sous-jacentes de manière non optimale.

L’objectif de cette thèse est d’étudier l’empilement des modèles de program-
mation et d’optimiser l’utilisation de ressources de calculs par ces modèles au
cours de l’exécution des simulations numériques. Nous avons dans un premier
temps caractérisé les différentes manières de créer des codes de calcul mélan-
geant plusieurs modèles. Nous avons également étudié les différentes interactions
que peuvent avoir ces modèles entre eux lors de l’exécution des simulations.
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De ces observations nous avons conçu des algorithmes permettant de détecter
des utilisations de ressources non optimales. Enfin, nous avons développé un
outil permettant de diriger automatiquement l’utilisation des ressources par les
différents modèles de programmation.

Pour illustrer les différentes techniques permettant de mélanger plusieurs
modèles de programmation dans un code de calcul, ainsi que les interactions
possibles, nous avons introduit des configurations et catégories de mélange.
Cette taxonomie est la base des travaux de cette thèse ainsi que sa première
contribution. Les catégories définissent comment des situations de mélange de
modèles peuvent être créées. Elles illustrent également l’influence que peuvent
avoir les développeurs sur ces modèles à l’exécution. En effet, certaines tech-
niques de programmation laissent les programmeurs décrire tous les appels aux
modèles de programmation. Dans ce cas, c’est aux utilisateurs des applications
de gérer tous les paramètres de ces modèles. Il est possible d’optimiser ces
paramètres en fonction de l’application, de la machine, des besoins etc. Des
erreurs d’optimisation sont aussi possible, car il faut gérer un très grand nombre
de paramètres, et ces paramètres peuvent changer en fonction de l’architecture
de la machine, etc. De l’autre cote du spectres, certains langage de program-
mation font une totale abstraction des modèles et gèrent les ressources sans
que l’utilisateur n’ait a faire quoi que ce soit. Dans ce cas, les possibilités
d’optimisation sont moindres, mais c’est aussi le cas des possibles erreurs. De
ces catégories ressortent plusieurs points importants. Le premier est qu’il existe
un grand nombre de techniques différentes permettant de créer des codes de
calcul utilisant plusieurs modèles de programmation. Chacune a ses avantages
et inconvénients, selon l’application, la machine, les utilisateurs etc. La seconde
est qu’il n’existe pas de solution miracle pour toutes ces plateformes de pro-
grammation, il existe trop de modèles et techniques. De ce fait, nous avons dû
dans la suite de cette thèse, nous raccrocher au bloc de base de ces modèles :
ils utilisent tous des processus et processus légers. C’est le point d’entrée que
nous avons utilise pour étudier et optimiser l’utilisation des ressources par tous
ses différents modèles de programmation.
La seconde partie de la taxonomie définit les possibles interactions entre les mo-
dèles de programmation pendant l’exécution des simulations. Ces interactions
sont découpées en deux configurations : les interactions spatiales et temporelles.
Si deux modèles sont spatialement concurrents par exemple, il est possible qu’ils
se disputent des ressources de calcul. Deux modèles spatialement indépendants
peuvent aussi interagir entre eux, s’ils sont temporellement concurrents et
qu’ils s’envoient des messages par exemple. Les configurations de mélange nous
informent sur les éventuels interactions entre modèles. De plus, connaitre la
configuration des modèles permet aussi de concentrer les efforts d’optimisations
sur les problèmes réellement rencontrés.
Finalement, les différentes parties de la taxonomie nous informent sur les mé-
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thodes de mélange de modèles ainsi que les possibles effets sur les applications.
Grâce aux informations récoltés, nous savons que nous devons nous concentrer
sur les processus et processus légers, mais aussi sur quel type d’erreur nous
focaliser. Suite a la création de cette taxonomie, nous avons également remarque
qu’aucun outil d’aide au développement ne prenait en compte le mélange de
programmation. Commettre une erreur dans les paramètres des modèles ne
soulève aucune erreur ou avertissement à la compilation, et il en est de même
pour une mauvaise utilisation des ressources à l’exécution. De ce fait, nous
avons décidé de nous pencher sur l’utilisation des ressources par les modèles de
programmation.

La seconde contribution de cette thèse est une suite d’algorithmes per-
mettant de détecter les possibles mauvaises utilisation de ressources par les
processus et processus légers. Ces algorithmes restent centrés autours des pro-
blématiques liées aux modèles de programmation. Ils se basent sur des traces
d’exécution, contenant des indices sur le placement des fils d’exécution sur les
ressources. En utilisant ces informations, ils déterminent si certaines ressources
ont pu être surchargées ou non utilisées par exemple. Nous avons implémenté
ces algorithmes dans un outil d’analyse pour aider à l’optimisation des codes
de calcul. La première étape est de récolter les informations sur le placement
des fils d’exécution. Pour ce faire, nous avons développé une bibliothèque dyna-
mique qui récolte toutes les informations nécessaire pendant l’exécution des
applications. Cette bibliothèque apporte un très faible surcout en temps, et
ne nécessite aucun changement dans le code ou la chaine de compilation de
l’application ciblée. Une fois les informations récoltés, nous pouvons utiliser nos
algorithmes. Ceux-ci fournissent un rapport décrivant l’utilisation des ressources
par les fils d’exécution. Ce rapport permet de déterminer si un changement
dans les paramètres des modèles de programmation peut être bénéfique pour
les performances de l’application. Cependant, même si cet outil peut donner
des indices sur les améliorations et optimisations possibles, il reste toujours un
très grand nombre de paramètres à connaitre et modifier pour optimiser une
application.

La troisième contribution de cette thèse est second un outil, aillant pour
objectif de placer dynamique les fils d’exécution sur les ressources de calcul. Il
utilise les développements et informations récoltés par ce premier outil pour
déterminer dynamiquement un placement en fonction des fils d’exécution en
présence ainsi que l’architecture de la machine. Cet outil n’est encore qu’une
preuve de concept, mais il présente des résultats encourageants pour la suite.
Nous avons tout d’abord observé que la grande majorité des codes de simulation
utilisent MPI pour gérer les communications entre les nœuds de calculs. Parfois,
un modèle à base de processus légers est ajouté pour optimiser l’utilisation de
la mémoire partagée sur les nœuds. Dans ce type de configuration, l’optimisa-
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tion la plus utilisée est d’espacer au mieux les taches MPI, et de grouper les
processus légers provenant d’un même modèle. De ce fait, les taches MPI ont
un maximum de ressources pour leurs calculs et les processus légers partageant
de la mémoire sont regroupes sur les mêmes mémoires physiques. Nous avons
utilisé cette heuristique pour développer notre outil. Les tests que nous avons
effectués montrent que cette heuristique produit les meilleurs résultats sur les
applications utilisées de nos jours sur les supercalculateurs. Utiliser notre outil
permet de minimiser les erreurs de placement de modèles de programmation.
Dans le futur, nous souhaitons développer de nouveaux algorithmes pour cet
outil. Ceux-ci apporteraient une plus grande flexibilité et permettraient d’adap-
ter notre outil à des applications présentant des comportement différents de
ceux observes jusqu’à maintenant.

En conclusion, cette thèse apporte un regard sur une problématique impor-
tante du calcul haute performance : l’empilement de modèles de programmation.
Avec l’évolution des architectures des supercalculateurs, cette problématique
risque de devenir de plus en plus importante pour les performances des codes
de calcul. Cette thèse propose une taxonomie permettant de décrire les tech-
niques menant à l’empilement de modèles ainsi que les potentiels problèmes
qui peuvent survenir à l’exécution. Nous avons également développé des algo-
rithmes permettant de détecter les mauvaises utilisations de ressources sur les
supercalculateurs. Ces algorithmes ont été implémentés dans un outil d’aide à
l’optimisation. Nous avons également développé un second outil permettant de
gérer dynamiquement les fils d’exécution et les ressources pendant l’exécution
de codes de calcul. Toutes ces contributions sont centrées sur les modèles de
programmation et prennent en compte des problématiques qui leur sont propres.

Plusieurs pistes d’amélioration sont envisagées pour nos différents outils :
• Les deux outils développés sont toujours au stade de preuve de concept.
Nous souhaitons ajouter des paramètres pour leur donner une vision
plus large des problèmes de gestion de ressources. Nous nous sommes
pour l’instant focalisés sur les processus et processus légers ainsi que les
cœurs de calcul. Il est envisageable d’étudier d’autres ressources comme la
mémoire par exemple. De plus, les futures architecture risquent d’exposer
de plus en plus d’hétérogénéité. Certains cœurs de calculs pourraient par
exemple être spécialisés dans les communications entres nœuds. Dans ce
cas, placer le fils d’exécution effectuant les communications sur le cœur
approprié serait une optimisation intéressante pour les performances. Nos
outils doivent donc évoluer et prendre en compte les problématiques
futures.
• Nous nous sommes aussi focalisés sur un type d’application particulier. Ce

type d’application correspond à la grande majorité des codes de calculs
utilisés sur supercalculateurs mais cela pourrait évoluer. Dans certains cas,
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l’utilisateur peut vouloir utiliser une configuration moins commune. Pour
que nos outils puissent tout de même être utilisés dans ces cas particuliers,
nous avons pour objectif de développer un langage simple permettant à
un utilisateur de décrire ses besoins. Grâce a cette description, nos outils
pourraient prendre les meilleurs décisions pour coller aux besoins des
utilisateurs.

Dans un contexte plus large, cette thèse est centrée sur ce qu’il se passe
quand une application utilise plusieurs modèles de programmation. Cependant,
un supercalculateur fait rarement une seule simulation, plusieurs sont en cours
en même temps. De ce fait, nous pensons qu’élargir les problématiques d’empi-
lement de modèles au gestionnaire de ressource pourrait être bénéfique. Celui-ci
pourrait par exemple utiliser les périodes creuse des applications pour effectuer
des travaux légers. Ceci améliorerait le rendement des supercalculateurs en
augmentant leur taux d’utilisation et en diminuant les pertes d’énergie.

Laboratoires d’accueil :
CEA, DAM, DIF, F-91297 Arpajon, France
Inria Bordeaux Sud-Ouest
LaBRI, Université de Bordeaux
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Chapter 1

Introduction

Numerical simulation is the reproduction of real, physical behavior using
computers and the tremendous computing power assiociated with them. It
is used to model complex phenomena, otherwise impossible to replicate or
predict. It has become an essential tool in the industry as it can reduce the
cost of expensive experiments. Numerical simulation is for example present in
engineering design. Automotive industry relies on simulation to design cars and
perform thousands of crash-test experiments without having to build multiple
expensive prototypes. The same principles apply to wind tunnel experiments
performed by automotive and aerospace industry to optimize aero dynamics of
a car, plane wings, or a space rocket. Oil and gaz companies reduce risks and
costs when drilling for oil. Simulation also helps to predict weather forecast,
for financial simulations, by biosciences, and so on. However, simulation is not
only used to reduce costs in industry. It is also hugely exploited in research.
Recently, reaserchers at Los Alamos Natrional Laboratory simulated an entire
gene of DNA, composed of one billion atoms, that will help better understand
and develolp cures for deseases like cancer [1]. Earlier, in 2012, the DEUS
consortium managed to simulate the structure of the observable universe since
the Big Bang [2]. Scientists from both Research and Industry perform these
simulations using the most powerful computers in the world, called supercom-
puters. These specialised machines are designed to provide as much computing
performances as possible. The science and techniques related to the design and
exploitation of these computing beasts is called High Performance Computing
(HPC).

Supercomputers are more complex to exploit than traditional desktop com-
puters. Two major factors are to take into account. First, supercomputers are
composed of multiple inter-connected machines, and second, they are composed
of high-performance processors. Let us focus on each factor independantly.
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Supercomputers are composed of multiple machines. Each one is com-
puting a part of the simulation. This means that, to deliver maximum perfor-
mance, the codes need to be designed in a way that they can be split into pieces,
performed in parallel. These parts sometimes need to communicate with each
other to update data and move the simulation forward. All these constraints
on code parallelism require new programming methods. Parallel algorithms
first, but also standards to help with communications. The most widespread
standard for parallel programming is called Message Passing Interface [3]
(MPI).

Supercomputers are using high performance processors. This perfor-
mance comes from the large number of compute cores. The Intel KNL is
for example composed of 72 cores accessing some shared-memory. Exploiting
shared-memory also requires dedicated techniques, to avoid non-deterministic
results. Standards exist to help with this side of the programming too. The
most widespread model for shared-memory exploitation in HPC is certainly
OpenMP [4]. Finally, to always provide more compute power, heterogeneous
components are added to already complex architectures. Some are specialised
in certain kind of parallelism, for specific simulations. In the future we will
certainly see heterogeneous processors, with some core specialised in communi-
cations, some in I/O operations, and so on.

Therefore, to exploit supercomputers to their maximum, simulation codes
need to rely on multiple programming models standards and their implemen-
tations, called runtimes. It creates situations where multiple runtimes may
cohabit and share supercomputer resources. We propose to call these situations
Runtime Stacking. One issue is that these models were designed independently
from one another. Thus, at execution time, they could potentially be unaware
of each other, and compete for resources, creating resource misuse and a slow
down of applications. With the complexity and specialisation of compute
resources, the number of runtimes used in simulation codes is increasing, and
with it the probability of resource misuse. Runtime stacking study is therefore
necessary to better seize supercomputer compute power and limit performance
degradations.

In this context, this thesis proposes a study of runtime staking techniques
and effects on application performances. First we focus on the way runtimes
can be mixed at execution time. We define runtime stacking configurations to
describe how compute instructions from different runtimes share resources spa-
tially and temporally. We also identify runtime stacking categories to illustrate
the different situations where mixing multiple parallel programming models
may appear. From these observations we design and implement algorithms to
check the configuration of an HPC application running on a supercomputer.
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These algorithms detect misuse of any resource used by the application. We
then implement these algorithms in a software tool call the Overseer that not
only checks resource usage, but also warns the user in case of misuse. This
tool is used to show how runtime placement and resource usage can impact
the performances of parallel applications. We then present a new approach to
dynamically handle resource assignment in HPC parallel environments. This
approach is implemented in the Overmind, a software that catches the creation
of compute workers and reorganizes their binding to avoid misuse of resources
relying on the previous algorithms.

This document is organized in three parts. The first one is composed of
the Chapter 2 presenting the context of the thesis and Chapter 3 formulating
the problem. The context chapter introduces all the basic knowledge needed
to understand the document. It presents the evolution of parallel computer
architectures as well as techniques to exploit them. The next chapter brings
the focus on our problem with a motivating example. The second part of the
thesis is composed of its contributions. We first define taxonomies of runtime
stacking configurations and categories in Chapter 4. Chapter 5 then describes
our algorithms to detect the current runtime-stacking configuration and check
for resource usage. This chapter also presents and evaluates our implementation
of these algorithms in our first tool, the Overseer. Next, Chapter 6 describes
the design of our second tool, the Overmind. Finally, the last part concludes
the document. We summarize our contribution and discuss future work as well
as mid and long term perspectives in Chapter 7.

Understanding and Guiding the Computing Resource Management in a
Runtime Stacking Context
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Chapter 2

Computer Hardware and Software
Evolution

Since the invention of computers, tremendous changes have happened both
in technology and design. As a comparison, a low-budget laptop bought today
around $300 with any Intel i3 processor would produce around 2 GFLOPS
(i.e., two billion floating-point operations per second). In 1985 the best super-
computer, the Cray-2 peaking at 1.9 GFLOPS, cost more than $10 million.
This massive growth came from advances in technologies used to build com-
puters and from innovations in computer design. This first chapter introduces
basic HPC concepts needed to understand this PhD Thesis. It also presents
the evolutions that took place to reach the current supercomputer performances.

Section 2.1 is an overview of important computer evolutions that led to
supercomputer we use today. The technological and architectural advances are
not necessarily presented chronologically as there is too much overlap and fields
advancing at the same time. They are thus presented in an almost chronological,
convenient order. Section 2.2 presents the architecture of current HPC clusters.
Section 2.3 then presents an overview of the methods used to exploit these
complex architectures.

2.1 Computer architecture: From single-core to
actual multi and many-cores

This section presents the relevant advances related to computer architecture
from the very beginning of computers to current massively parallel supercom-
puters. All the presented advances are related to microprocessors and how to
exploit them. However, showing a clear chronological view of these advents is
not practical. In fact, there are two main possibilities to extract more perfor-
mances from microprocessors: make them work faster, or add units to process

7
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Figure 2.1.1 – Evolution of Uniprocessor Performance since 1978 [5]

more tasks at once. Advances on both front were conducted concurrently,
creating a chaotic timeline to follow. Lastly there was also another solution.
This one is not to extract more from microprocessors, but from the machine
in general: use more processors. This is also a massively used technique,
particularly in HPC machines.

2.1.1 Moore’s Law

The first design of the computer framework dates back to the early/mid
19th century by Charles Babbage. From there, and to even build the first
computer, breakthroughs had to happen. In 1949, the concept of integrated
circuits appeared. However, we had to wait almost 10 more years to see the
first working example of such circuit in September 1958. From there, advances
in technology used to build computers and innovations in computer design
made possible to deliver performance improvement of about 25% per year.

In 1965 G. E. Moore predicted an increase in the number of transistors
on integrated circuit doubling every year. In 1975, he revised the forecast to
doubling every two years. This prediction proved accurate for several decades.
Figure 2.1.1 presents the actual growth in processor performance since 1978.
Performances of processors are relative to the VAX 11/780, a minicomputer
introduced in October 1977, the first to implement the VAX architecture and
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measured by the SPEC benchmark. We can observe the rapid growth in
performances of processors from their creation to the beginning of the third
millennium. Then the growth slows a bit each year. We will present the major
innovations which made this rapid growth possible, and the limits we reached
in the past decades.

When creating the first processors, electronic components could not fit on
only one integrated circuit. Thus, multiple circuits had to be connected. The
invention of the microprocessor greatly reduced the cost of processing power as
well as speed up computations thanks to reduced distances between components.
The first iteration of commercialized microprocessor happened in 1971 by Intel
with the Intel 4004. This processor was composed of 2300 transistors. From
there, the number of transistors on a microprocessor has been constantly rising
based on the decreasing size of transistors. Today’s processors incorporate up
to 20 millions transistors. In fact, following Moore’s law was possible just by
decreasing semiconductor feature size. All these factors also led to a higher
rate of performance improvement with an average of around 35% per year.
This growth rate as well as mass-produced microprocessors led to important
changes: no need for assembly language any more, and vendor independent
standardized operating systems like UNIX and later Linux. This in turn made
the development of a new set of architectures, with simpler instruction sets pos-
sible. The RISC architecture (Reduced Instruction Set Computer), developed
in the early 80s, focused on the exploitation of instruction parallelism (initially
pipeline) and the use of caches (initially simple then sophistically organised
and optimized). This led to 17 years of sustained growth in performances
at an annual rate of over 50% as we can see on Figure 2.1.1. This period
unfortunately had to end due to multiple factors. Most importantly, process
technology (the semiconductor manufacturing process) is at its limits. Indeed,
diminishing semiconductor size, the backbone of performance improvement is
not as easy any more, if actually possible.

Since 2003 single processor performance improvement has dropped to less
than 22% per year due to the twin hurdles of maximum power dissipation of
air-cooled chips and the lack of more instruction-level parallelism to exploit
efficiently

2.1.2 Clock speed

Concurrently and linked to processor density evolution, another factor in
performance growth is the clock rate increase in processors. In their basic oper-
ational principles, processors use transistors. These transistors put together
form logical gates that can perform operations. The speed at which these
operations can be done represent the clock speed of a processor. If we can give

Understanding and Guiding the Computing Resource Management in a
Runtime Stacking Context
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Figure 2.1.2 – Evolution of microprocessor clock rate between 1978 and 2010 [5]
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our processor 1 input signal and get 1 result (error free) per second, then our
processor’s clock rate is 1Hz. For a while, clock speed was the main concern of
manufacturers. It’s easy to understand why. By doubling the clock speed of a
processor, codes ran two times faster. And this only by changing architecture,
nothing had to be done with the code itself.

Now how can clock speed increase? Getting transistors to perform faster
has a limit. This limit is the frequency at which the transistors can switch
from on to off and off to on. However, a solution to this physical limit is to
add more transistors, adding a new physical limit in the equation: space. We
can see how Moore’s law comes into account with this first solution: decreasing
component size, adding more components, and in the process improving pro-
cessor performances. However, since CPUs stay roughly the same size, adding
more and more transistors is not possible eternally. In fact, feature size of
processors is getting to its physical limit.

Moreover, energy consumption is becoming a limiting factor too. In fact
power is today the biggest challenge. Two factors enter into account: getting
enough power for the components and heat dissipation. If we look back at
the first microprocessors, we can see that they were using less than a watt of
energy. Today’s desktop 3.6Gz 8 core Intel i7 is consuming 130 Watts. On the
HPC side, the ARM Cavium ThunderX2, a 32 core chip running at 2.5Gz tops
out at 200 Watts. Intel’s Xeon Skylake line that goes up to 3.8Gz and 28 cores
are consuming just over 200 Watts. This is also creating a new problem. A
microprocessor is basically a 1.5 cm wide chip. This chip is heating from all
the energy used. Another physical limit to take into account is the cooling that
can be achieved by air. Actually this limit as long been reached. Today’s HPC
clusters are cooled with water. However, this technology also is reaching its
limits. This led to a clock frequency evolution slow down in 2003 as we can’t
reduce voltage or increase power per chip. Figure 2.1.2 shows the evolution of
clock since 1978 and illustrates the clock rate wall reached in 2003.

Moreover, while the microprocessor performances were improving at an al-
most 55% rate, the memory access time was only getting 10% better every year.
Figure 2.1.3 shows this disparity. The performance gap grows exponentially,
and microprocessor are becoming too powerful compared to memory. This
means that the rate at which data is supplied to microprocessors is too slow.
Computation is done before new data arrives, and thus precious cycles are lost
waiting.

Clock rate is no longer the focal point for hardware improvements, both
because of the clock rate wall and the memory performance gap. In 2004
Intel cancelled its high-performance uni-processor projects and joined others in

Understanding and Guiding the Computing Resource Management in a
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2.1. Computer architecture: From single-core to actual multi and many-cores

declaring that the road to higher performances would be via multiple processors
per chip rather than faster uni-processors. This was the milestone signalling a
historic switch from relying solely on instruction-level parallelism, to data-level
parallelism and thread-level parallelism.

2.1.3 Parallelism Advent

As we have seen with Intel’s statement, parallelism is the driving force of
computer design with energy and cost being the primary constraints. The
more recent Intel’s Xeon processors are using up to 28 cores and 56 hardware
threads. Other constructors are also following this trend. The ARM Cavium
ThunderX2 for example is build with up to 32 cores and 128 hardware threads.
There are two kinds of parallelism that can be exploited in applications. The
fist one is data-level parallelism. Data parallelism arises when there are many
data items that can be operated on at the same time. The second one is
task-level parallelism Task level parallelism arises because work instances that
can operate independently and in parallel are created.

Computer hardware can exploit these two kinds of application parallelism
in 4 major ways. Instruction level parallelism uses ideas like pipelining and
speculative execution to exploit data-level parallelism to different degrees.
A second way to exploit data level parallelism is with Vector architectures
and Graphic Processor Units (GPUs) as they apply a single instruction to a
collection of data in parallel. Thread level parallelism exploits either data level
parallelism or task level parallelism in a tightly coupled hardware model that
allows for interaction among parallel threads. Lastly, request level parallelism
exploits parallelism among largely decoupled tasks specified by the programmer
or the operating system.

These four ways for hardware to support the data level and task level
parallelism go back to the 60s. In 1966, Michael Flynn proposed a classification,
presented in Figure 2.1.4, by comparing the number of instructions and data
items that are manipulated simultaneously [8]. The sequence of instruction
read from memory constitutes an instruction stream. The operation performed
on data in the processor constitute a data stream. This classification is still
used today.

Here is a definition of each category:
• Single Instruction stream, Single Data stream (SISD): This corresponds

to the uniprocessor. This category looks to be aimed at sequential com-
puters, but they can still exploit instruction-level parallelism (pipelining,
superscalar execution, speculative execution).
• Single Instruction stream, Multiple Data streams (SIMD): The same

instruction is executed on multiple different data streams. Computers in
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Figure 2.1.4 – Flynn’s Classification of computers [7]
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this category exploit data-level parallelism (vector architecture, GPUs)
• Multiple Instruction stream, Single Data stream (MISD): No commercial

computer of this type exists, but this category rounds up the classification.
• Multiple Instruction stream, Multiple Data stream (MIMD): Each pro-

cessor fetches its own instruction and operates on its own data. It targets
task-level parallelism. This is more flexible than SIMD, thus more ap-
plicable, but also more expensive. These computers exploit thread-level
parallelism where multiple cooperating threads operate in parallel. MIMD
architectures are largely used in HPC clusters, and exploit request-level
parallelism where many independent tasks can proceed in parallel. This
category often involves little to no need for synchronization.

This taxonomy is a coarse model as many processors are hybrid of these
four categories. Still, it is useful to create a loose classification and describe
processors, architectures and computers. The following subsections present
techniques used to implement these concepts.

2.1.4 Instruction-Level Parallelism

Instruction-Level Parallelism (ILP) is a form of parallelism which aims
at executing multiple instructions simultaneously. It can be implemented in
multitude ways and as been present for almost as long as processor exists. It
has been implemented in superscalar processors. The Cray CDC 6600 which
dates back to 1966 is often mentioned as the first superscalar design. Pipelining
for example is used in all processors since about 1985. Other techniques extend
basic pipelining concepts by increasing the amount of parallelism exploited

Understanding and Guiding the Computing Resource Management in a
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among instructions. There are two approaches to Instruction Level Parallelism,
one that relies on hardware to exploit parallelism dynamically, and one that
relies on software to find parallelism statically at compile time. Let us first
look at pipelining.

2.1.4.1 Pipelining

To access the computer’s computing resources, human beings need to write
computer programs. These programs are transformed into instructions that
a processor can execute. An instruction is divided into multiple actions. A
simplified example would be adding two numbers together. First we need to
pull the two numbers from memory and place them in the processor, then
perform the addition, and finally push the results back to memory. There were
three steps here: getting from memory, the actual addition instruction, and
the save into memory. Each of these steps are done by different parts of the
processor, thus could be done at the same time. Of course, it is not possible to
store the result of the addition before its completion, so it is not possible to
do everything at the same time. However, if multiple operations are queued,
all the steps can work at the same time on different instructions, as machine
working on an assembly line. This is what pipelining is, breaking instructions
into smaller parts to create an assembly line and work on multiple instructions
in parallel. If the step times are perfectly balanced, the time per instruction
on a pipelined processor is equal to ‘time per instrucion / number of stages’.
In practice, steps are not balanced, and the stage time is equal to the longest
step. This means that pipelining involves some overhead. In fact, the time to
complete an instruction on a pipelined processor is not its minimum possible,
but if multiple instructions are queued, the overall time will be lowered. The
pipeline increases the instruction throughput making programs run faster even
though no single instruction runs faster. Pipelining exploits parallelism among
instructions in a sequential stream. This has the large advantage to be invisible
to the programmer, as well as to be largely applicable.

To illustrate pipelining, we present the classic five-stage RISC pipeline
displayed in Figure 2.1.5. First we need to look at the RISC instruction set.
The basic operations are: ALU instructions, Load and Store, Branch and
Jumps. Each instruction in this RISC instruction set can be implemented in
at most 5 clock cycles. The 5 clock cycles presented in Figure 2.1.5 are as
follows: Instruction Fetch, Instruction Decode, EXecution, MEMory access,
Write-Back. Note that branch instructions require 2 cycles, store instruction 4,
and all other instructions 5. Although each instruction takes 5 clock cycles to
complete, the hardware will be executing some part of the different instructions
each cycle, resulting in the execution of an instruction per cycle. From the
figure, we see at the first time step the instruction A entering the pipeline:
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Figure 2.1.5 – Basic RISC five-stage pipeline [5]
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the instruction is fetched from memory. At the second step, instruction A is
decoded while instruction B enters the pipeline and gets fetched. By adding
more instructions in the pipeline every time step, we can hope to completely
fill the pipeline. Unfortunately, blindly pipelining instructions is not always
the best thing to do. Pipelining hazards can happen. Those are data hazards
and control hazards. They can sometimes stall the pipeline, these situations
are called pipeline ‘bubbles’. To solve these problems other instruction level
parallelism mechanisms can be used.

2.1.4.2 Hazards in pipelines

Let us look at some usual hazards in pipeline and ways to solve them.

Data Hazards happen when an instruction in the pipeline is dependent on
the result of another instruction in the pipeline. Consider two instructions: an
addition followed by a subtraction. We represent this sequence as follows:

ADD R1, R2, R3;
SUB R4, R1, R5;

ADD R1, R2, R3; is the addition operation, where the data in register R2
and R3 are summed and the result is stored in R1. In the same way, SUB R4,
R1, R5; is the subtraction operation, subtracting the data in register R1 to
data in the register R5 and storing the result in R4. The subtraction is using
the result of the addition (the R1 register). If we look back at the pipeline
from figure 2.1.5 we can see that to perform the ID stage, the SUB needs to
wait for the WB stage of the ADD operation. This creates a ‘bubble’ in the
pipeline i.e., a time loss for all instructions. Figure 2.1.6 shows the creation of
a bubble at the ‘decode’ phase. This simple stall can be avoided by using a
hardware technique called forwarding (also called bypassing). Indeed, the result
of the ADD operation is not really needed until it is actually produced. It
can be directly used for the next instruction (the SUB) without going through
the MEM and WB phases. Thus, in the end of the EX phase, a copy of
the result is made and fed to the ALU for the next instruction in case of a
dependence between two instructions. Note that the MEM and WB phase are
still completed after the EX phase as usual.

Unfortunately, bypassing cannot solve all the data hazards. Consider the
following sequence:

LD R1, R2;
ADD R3, R1, R4;
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The LD instruction loads data from memory to processor registers. This in-
struction cannot forward the data until the MEM phase. Thus, it would be
too late to avoid a stall. A solution to this problem would be to insert another
independent instruction between the Load and the Add, thus filling the pipeline.
Of course this instruction should not create a stall for it to be a good candidate.
This technique is called out-of-order execution or dynamic scheduling. It avoids
delays that occur when the data needed to perform an operation are unavailable.

Control Hazards , also called branching hazards, occur when a branch can
be taken in a program, for example after an ‘if’ statement. When there are
two possibilities, the processor will not know the outcome of the branch before
it is computed, and thus will not be able to insert new instructions in the
pipeline. There are many methods for dealing with pipeline stalls caused by
branch delays. There are for example multiple prediction schemes [9] which
look at the most likely way the branch should go and fill the pipeline with these
instructions. For example, in a while loop, a scheme could say ‘always assume
the while will continue for another iteration’. This will, most of the time, work
better than a random scheme as we can assume that if the programmer used a
‘while’ loop, the following instructions should (hopefully for the pipeline) be
performed more than one time.

A ‘recent’ technologies called SMT can also help reduce hazards in pipelines.
It was first researched by IBM in 1968. However, the first commercial modern
desktop processor to implement SMT was the Intel Pentium 4 released in 2002.
It is now included in most of the Intel processor line. This technology is better
known under its Intel denomination of ‘Hyperthreading’. Other constructors
will follow with sometimes new denomination. IBM releases the POWER5
in 2004 which includes a two-thread SMT engine, Sun Microsystems release
the UltraSPARC T1 ‘Rock’ in late 2005 which uses its own ‘CMT’ approach,
and so on. The principle is simple: a hyperthreaded core will be executing
two (or more) material threads at the same time. However, these threads will
be sharing the core’s ALU components. On the physical core, only data and
control registers are duplicated. Thus, two hyperthreads also share caches and
pipeline. In the end, hyperthreads are helping ILP by filling pipeline hazards.
However, two hyperthreads does not mean twice the performances as ALU is
not duplicated. At the Pentium 4 release, Intel claimed that the hyperthreaded
version added up to a 30% speed improvement.

2.1.4.3 Conclusion on Instruction Level Parallelism

At the beginning of the third millennium, research showed that Instruction-
Level Parallelism was at its limit. Indeed, processor were beginning to get
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inefficient in terms of performance per watt. Moreover, the complexity of
the processors was getting to high, increasing the issue rate. By 2005 the
focus shifted to multicore processors. Thread level parallelism would increase
performance, and Instruction Level Parallelism would not be the main focus
any more. During the same period, SIMD and data-level parallelism saw
developments. The next sections introduce Thread-level parallelism as well as
Data-level parallelism.

2.1.5 Thread level parallelism

To exploit thread-level parallelism, the MIMD model is often used. It is the
architecture of choice for general-purpose (multi-)processors. Indeed, MIMD
offers flexibility as it can be used for a single core processor, an application
using multiple threads running on a multicore processor as well as for multiple
tasks from multiple applications running at the same time. Moreover, MIMD
multi-processors can be build efficiently by replicating single processors.

2.1.5.1 Multicore Architectures

As we’ve seen, the improvement of computer performances happened
through shrinking integrated circuits. Starting in the 1990s, technology allowed
processor designers to place multiple microprocessors on a chip. Each processor
is then called a core. Initially called on-chip multiprocessor or single-chip
multiprocessor, processor including multiple ‘cores’ are now called multicore.
Today they are used in almost all personal computers as well as HPC clusters
and in other application domains like embedded, network and so on.

As the clock rate limit was getting closer, increased use of parallelism and
thus multicore has been the main research interest to improve overall processing
performances. Cores on these processors usually share some resources like
second- or third-level caches, or I/O buses for example. These processors are
built to exploit the MIMD class of computer parallelism. Each core is executing
its own instruction stream. These could be used in general purpose computer
to run multiple applications at the same time with more fluidity than with
only one core scheduling multiple applications. They can also be used to run
multiple threads of the same program as we will see later. Actually, multicore
can also be used to exploit data-level parallelism. However, they would cer-
tainly be slower than dedicated SIMD machine optimized for these operations.
As we will see in a future section, SIMD exploitation requires some prerequi-
sites to be optimal. However, taking advantage of a multicore with n cores
is usually done with n threads executing the same instructions at the same time.

Possible gains are limited by the parallelism that a software can generate
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as described by Amdahl’s law presented at the AFIPS Spring Joint Computer
Conference in 1967 [10]. These performance gains are called speedup. Amdahl’s
law gives the theoretical speedup of a fixed workload that can be expected
when system’s resources are improved. It is often used in parallel computing to
predict speedup when using more compute nodes or cores for an application,
and to determine efficiency of adding more compute resources. Here is the
theoretical speedup formula:

1/(1-p)

where p is the part of the workload that can be parallelised. Basically a
workload’s speedup is limited by its non-parallel part. By adding an infinite
number of resources to a perfectly parallel workload we could reach almost
instant computation. However, if the non parallelised part is one hour long,
then the resulting execution will be one hour long. Figure 2.1.7 shows the
evolution of the theoretical speedup in function of the number of processors.
Using the efficiency formula: E = S/p where E is efficiency, S is the speedup
gained by a hardware upgrade, and p the parallelism of the target workload,
we can determine if making a hardware upgrade is efficient enough or not. For
example, it is possible to study the efficiency of making an upgrade compared
to its cost.

However, the number of cores is not the only factor to take into account.
The raw material for a processor to work is data. This data is stored in memory
and needs to find its way to the processor’s registers.

2.1.5.2 Memory Hierarchy

Data are stored in memory. Obviously the best possible memory would be
unlimited and fast. The first factor’s limitation is obvious: memory takes space
on chips, thus it is not possible to fit unlimited memory there. It is possible to
get a very large amount of memory a little further away from the processor,
but then we affect the second factor as we get higher latency than close on-chip
memory. A clever solution to these two factors is memory hierarchy.

The locality of reference or principle of locality tells us that an application
as the tendency to access the same set of memory locations repetitively over a
short period of time. This is due to the way codes are written, using loops and
arrays and updating the same set of data over and over. In fact, widely held
rule of thumb is that a program spends 90% of its time in 10% of the code.
This 10% are loops, accessing the same data multiple time or contiguous data
objects that can be fetched by batch. Then we can differentiate between two
types of reference locality. Temporal locality, the first one, refers to the use
of the same data within a small duration time. The second, spacial locality,
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Figure 2.1.7 – Amdahl’s law: evolution of the theoretical speedup [10]
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refers to the use of data elements close to one another. There is also a special
case of spacial locality called sequential locality where arranged data elements
are accessed linearly, such as going through an array. This principle of locality
(as well as the cost of large and fast memory) led to hierarchies of memory of
different sizes and speeds.

Memory is organized into a hierarchy of several levels where each level is
smaller, faster, and more costly per bit than the previous one. The objective is
to provide a memory system with speed almost as fast as the last level, but
with cost and size of the first. Here are the main levels present in almost every
memory hierarchy.
• Registers: The smallest memory on the processor. Registers may hold an

instruction, a storage address, or any kind of data. Usually one word or
a couple words of data in vectorial processors. The processor units (the
ALU) directly use data contained in registers to perform computations.
This is the fastest memory, directly accessed by the processor, present in
very limited amount.
• Caches: This memory is really close to the cores. It is actually embedded
in microprocessors and thus is extremely quick to access. However, as
space is limited on the chip, cache memory is really small. They range
from tens of KB to a hundred MB of data.
• Main memory: Main memory provides data to caches and serves as I/O
interface. It is also called RAM (Random Access Memory). Modern
compute node typically have around 256 GB of memory per node.
• Disks: really large storage devices. They are used to store the machine’s

file system. Depending on usage, these disks can be as fast as SSD and as
slow as LTO (Linear Tape-Open). As multiple disk can be used, capacity
is almost unlimited.

Most CPUs have multiple caches. First, a hierarchy of instruction caches.
These caches contain the instructions to be executed by the processor. Then
a second hierarchy, this time containing data. We often talk of cache levels
(L1, L2, L3 and so on). Usually with multicore processors, each core has access
to its own L1 and L2 caches. The first level is often split for instruction (L1i)
and data (L1d). The L2 cache is only used for data. Then the L3 cache is
shared between all cores. L4 and higher cache level are highly uncommon.
Usually, L1 cache is only a couple dozen of KB per core. L2 is a bit larger
with a few hundreds KB per core. L3 would be between a hundred MB and
a GB per chip. As caches are tiny, programs are loaded into main memory
to be executed. Main memory is significantly larger than caches with up to
hundreds of GB (and reaching the TB). However, it is also significantly slower.
The order of magnitude to read data is 1 cycle to read a register, less than 5
to read in L1 cache, 10 to 15 to read in L2 and less than 100 to read in L3.
Reading data from main memory is around 200 to 400 cycles. Lastly, at the
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Figure 2.1.8 – Diagram of a basic four node NUMA system
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end of the hierarchy we can find disks. These are really slow, even compared
to RAM memory. Access to data in disks could cost a dozen ms (where RAM
access is around 100ns and L1 cache less than 1ns). However, they are really
cheap compared to the other memories and thus offer almost unlimited storage.
Actually, tape data storage is used to store large amounts of data that don’t
need to be read often. This technology is useful for its cheap price, and low
power consumption as tapes don’t need to be powered. Accessing data stored
on disks takes a few seconds to minutes depending on the technology used.

2.1.5.3 Non Uniform Memory Access (NUMA)

An additional factor to take into account when looking at memory access
time is distance from each core to the memory. Indeed, two memories from the
same hierarchy level can have different access times. This is the case on NUMA
systems which are often used in HPC clusters. Under the NUMA memory
design, a processor can access its own local memory faster than non-local
memory. The non-local memory could be memory local to another processor
or memory shared between processors. Figure 2.1.8 is the representation of
a simple 4 processors NUMA node. Multiple cost-effective nodes on different
sockets are connected by a high-performance connection. Each node contains
processors and memory. However, a node is allowed to use memory from
all other nodes thanks to a memory controller that keeps memory coherency.
Access time to remote memory will obviously be slower than local memory. This
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is called the NUMA effect. This means that using memory efficiently takes some
thinking but the upside is in limiting the number of message exchange. Indeed,
NUMA effect between two cores on the same NUMA system will certainly be
less time-consuming than the cost of messages sent on the network.

2.1.6 Data level parallelism in vector and manycores

There are two main variations around SIMD: vector architectures (actually
designed in the 70s), and graphics processing units (GPUs). As SIMD will not
be a focal point of this thesis, this section only highlights the main principles
of these SIMD variations.

2.1.6.1 Vector Architecture

Vector processors (also called array processors) are designed to operate on
multiple data at the time. Vectors are one-dimensional arrays of data. With a
single instruction, the processor will operate on all the data contained in the
vector. Data are then put back into memory. The issue is to get data from
memory to the processor. Indeed, filling the vector requires a large amount
of data. To reduce the time consumed by load and stores, these steps are
deeply pipelined. In the end, working on a lot of data at the same time with
one instruction (i.e., using large vectors) helps hiding the memory latency.
However, large vector means specific set of data, with no data dependencies or
hazards. This also means that when parallelism is not optimized for vectors
(i.e., when using instruction on small vectors), this kind of processors becomes
less efficient.

2.1.6.2 Manycore architectures

Manycore processors are architectures using a lot more cores than traditional
multicore processors. They are composed of simpler cores, worst at single thread
performances but optimized for higher throughput and/or lower consumption.
They benefit from high degrees of parallelism. In fact, using these architectures
for MIMD would be highly inefficient. Moreover, to limit energy consumption
and provide more space for cores, these chips usually do not include out-of-
order execution technology, deep pipelines, and large caches. There exists many
specific manycore architectures. During this thesis, I used the Intel Xeon Phi,
which has MIC (Many Integrated Cores) architecture. The first commercialized
in 2013, called Intel Knights Corner (KNC), was a coprocessor using 57 to
61 cores. Each core was using 4 hyperthreads. The version I used during
this PhD is the Intel Knights Landing (KNL), commercialized in 2016. This
one is composed of 64 to 72 cores, with still 4 hyperthreads per core. On the
other hand, another kind of manycore are GPUs (Graphic Processing Unit).
These can be described as manycore vector processors. Originally designed to
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rapidly manipulate and alter memory to create images intended for output to
a display, they have been redesigned to be used in HPC clusters. Thus, all
the cores can only execute simple instructions. Moreover, at each clock tick,
every core is executing the same instruction (on different data). This highly
parallel structure makes them really efficient for algorithms that process large
block of data in parallel. In HPC, this is particularly interesting for matrix
computations used in simulations.

2.1.7 Conclusion on evolutions

Evolutions presented are not the only ones that permitted computer perfor-
mance growth rate. Other evolutions in memory, cache, software also helped.
These evolutions are not presented here as they don’t add that much to the
point we are trying to make: architectures are becoming complex, with a lot
of processors, cores, hardware threads, deep memory hierarchies and so on.
This complexity brought better possible performances, but also more complex
programs and optimizations. The next sections present the actual look of HPC
clusters architecture as well as techniques used to harness their compute power.

2.2 Supercomputer Architecture

Simulations are often iterative calculations, each step refining the solution.
The closer the computed solution is to the measured value, the more accurate
the solution is. The objectives of current supercomputer is to compute fast and
accurate simulations. The next global goal is to reach the Exascale milestone.
To do so, they use all the resources at their disposal. As we have seen,
architectures are always evolving and supercomputers use the best innovations
among them. Today in HPC, supercomputers are massively parallel systems.
Figure 2.2.1 shows how supercomputers can be assembled. They are composed
of a large quantity of nodes linked together. A node is itself composed of
multiple multicore processors, and sometimes also connected to accelerators
like GPUs. Each node uses its own operating system. In the end, programming
applications for these architectures is a complex task. Programmers need
to create highly parallel code taking clusters’ topology into account. This
means code capable of using a large quantity of nodes and cores, accessing
memory efficiently, not wasting time in communication and so on. Moreover,
each generation of supercomputer adds a layer of complexity and the exascale
machine will, without a doubt, provide even larger problems to the code
developers [12].
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Figure 2.2.1 – Architecture of the Blue Gene/L Supercomputer [11]

2.2.1 Supercomputers Tops

Before we can look at how to use these complex architecture, let us look at
the current most powerful computer systems in the world. A couple of tops
exist to determine which computer is the ‘best’. In HPC the Top500 [13] is the
most used one. Twice a year, machines are compared on a specific benchmark
and the best 500 are ranked. This benchmark is the Linpack benchmark [14].
It computes the solution of a dense linear system with n equations and n
unknown. In the end, it determines the Flops of the computer (i.e., the number
of floating-point operation it can compute per second).

Table 2.2.1 shows the last Top500 highest ranked computers (results from
the June 2019 Top500 ranking). We can see that the United States dominates
the ranking with the top two places, as well as 5 computers in the top 10. China
is not far behind with two computers at the third and fourth places. France’s
first computer to appear in the Top500 is PANGEA III, an industrial machine
from the Total firm. It is also the most powerful industrial computer of the
Top500. The first research computer from France, Tera-1000-2 from the CEA
places as sixteenth. However, the Flops metric does not entirely reflect HPC
applications. While it is true that some codes do a lot of matrix computations
that are highly parallel, some don’t.
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Rank Previous Rank Name Country Total Cores Accelerator/Co-Processor Rmax [TFlop/s]

1 1 Summit United States 2414592 2211840 148600
2 2 Sierra United States 1572480 1382400 94640
3 3 Sunway TaihuLight China 10649600 93014.59388
4 4 Tianhe-2A China 4981760 4554752 61444.5
5 Frontera United States 448448 23516.4
6 5 Piz Daint Switzerland 387872 319424 21230
7 6 Trinity United States 979072 20158.7
8 7 ABCI Japan 391680 348160 19880
9 8 SuperMUC-NG Germany 305856 19476.6
10 11 Lassen United States 288288 253440 18200
11 PANGEA III France 291024 270720 17860
18 16 Tera-1000-2 France 561408 11965.5

Table 2.2.1 – Top 10 best ranked computer in the Top500 plus the fist two
French ones

Thus, other benchmarks and tests are proposed. In particular, the High
Performance Conjugate Gradient (HPCG) benchmark, which uses the Conju-
gate Gradient algorithm, is intended to complement the Linpack benchmark.
Table 2.2.2 shows the top computers ranked with this benchmark (results
from June 2019). The United States are also well represented in this top
with the top two places and 4 computers in the top 10. We can also see that
Summit and Sierra are the top two computers of the two rankings. The third
computer in this top is the K computer from Japan which was 20th in the
Top500. This shows that the two rankings and benchmarks look at different
optimizations made in computers architectures. Tera-1000-2, the French su-
percomputer from CEA, is just outside the top 10 with the 11th place. But
performance is not the only issue any more, energy consumption is also a limit-
ing factor for supercomputers. It is now at the core of architectures innovations.

To reflect this focus, another ranking can be used. It is called the Green500,
and ranks computers from the Top500 depending on their energy consumption
(or GFlops/watt). Table 2.2.3 shows the results of the last Green500 ranking
(results from June 2019). This time Japan and the United States are dominating
the top 10 with 3 computers each and the four top places. We can see that a
couple of top 10 computers from the Top500 are still well places here. Summit
and Sierra, the first two computers of the Top500 (and HPCG) from the United
States as well as ABCI the 7th from Japan. The fact that Sierra and Summit
appear in the top 10 of these three rankings shows that the new supercomputers
look for low energy consumption to reach higher performances.

2.3 Parallel programming models

We have seen that HPC architectures are becoming more and more complex.
To exhibit more parallelism, more cores are added, but memory per core is
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Rank Top500 Rank Name Country HPCG [PFlop/s]

1 1 Summit United States 2.926
2 2 Sierra United States 1.796
3 20 K computer Japan 0.603
4 7 Trinity United States 0.546
5 8 ABCI Japan 0.509
6 6 Piz Daint Switzerland 0.497
7 3 Sunway TaihuLight China 0.481
8 15 Nurion Korea 0.391
9 16 Oakforest-PACS Japan 0.385
10 14 Cori United States 0.355
11 18 Tera-1000-2 France 0.334

Table 2.2.2 – Top 10 best ranked computer with HPCG Benchmark plus the
first French one

Rank Top500 Rank Name Country Total Cores Rmax [TFlop/s] Power (kW) Power Efficiency
[GFlops/Watts]

1 472 Shoubu system B Japan 953280 1063.305 60.4 17.604
2 470 DGX SaturnV Volta United States 22440 1070 97 15.113
3 1 Summit United States 2414592 148600 10096 14.719
4 8 ABCI Japan 391680 19880 1649.25 14.423
5 394 MareNostrum P9 CTE Spain 18360 1145 81.03 14.131
6 25 TSUBAME3.0 Japan 135828 8125 792.08 13.704
7 11 PANGEA III France 291024 17850 1367 13.065
8 2 Sierra United States 1572480 94640 7438.28 12.723
9 43 Advanced Computing System (PreE) China 163840 4325 380 11.382
10 23 Taiwania 2 Taiwan 170352 9000 797.54 11.285
33 47 JOLIOT-CURIE SKL France 79488 4065.55 917 4.434

Table 2.2.3 – Top 10 best ranked computer in the Green500 plus CEA’s best
one
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getting smaller. To limit energy consumption, co-processors are added to
the already complex multiprocessors nodes. In the end, machines are made
of nodes with dedicated memories linked together by a network. Each node
is then composed of multicore processors with their own memory but also
sharing collective memory with each other. Co-processor and accelerators like
GPUs can also be added to the mix. To exploit all these resources, application
developers need to create highly parallel codes, by taking complex architectures
into account. To minimize the complexity of programming on these clusters,
programming models have emerged. They are an abstraction of the parallel
computer architecture used to express parallel algorithms. They are evaluated
on there generality (how many problems they can express and how many
architectures can use them), and performances. This section presents the main
ones and their basic mechanisms. Programming models are separated into two
big groups: shared-memory models to help manage memory shared by multiple
cores of the same node, and distributed memory models that are used to send
messages between cores or nodes all over the machine.

2.3.1 Shared-memory models

Processors are now composed of multiple cores. All the cores of a processor
have access to its memory. Moreover, cluster nodes are often composed of
multiple processors creating NUMA nodes. These nodes also have memory
shared by all the processors. Using a shared memory programming model on
these kinds of architectures allows multiple threads or processes running on
the same processor or node to share data and communicate. Threads read
and write asynchronously in shared memory. Asynchronous access to memory
can lead to race conditions when multiple threads read and write in the same
location. Specific techniques are used to avoid these hazardous behaviours.
Programmers can implement locks, mutex, semaphores and in a larger extent
critical sections to protect data from race conditions. All these mechanisms can
be used to ‘protect’ variable from concurrent accesses and thus certify memory
coherence. If a multi-threaded code only manipulates shared data structures
so that all threads can’t have unintended interactions it is said thread safe.
We then present the two most commonly used shared programming models in
HPC, POSIX threads and OpenMP.

2.3.1.1 POSIX Threads

POSIX Threads, usually referenced to as pthreads, is part of the POSIX
(Portable Operating System Interface) standard. This standard specified by the
IEEE Computer Society is used to maintain compatibility between operating
systems. The POSIX Thread part defines an API to create, control multiple
flows of work that overlap in time. These flows are called threads. To understand
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what a thread is, we first need to define the process. A process is an instance
of a running program. It is created by the operating system and stores all the
resources the program needs like memory, registers, program counter, as well as
identification (program, user, . . . ), and so on. Figure 2.3.1 is a simplified view
of a process memory layout. The first part (bottom part) contains the program
code, static and global variables and dynamic variables. Then the heap contains
all the memory allocated at runtime by the malloc family functions. On the
other side the stack contains function parameters and return adresses, as well
as non-static local variables. Between the heap and the stack lies free memory
that can be used by the program at runtime. This memory is used by growing
either the heap (towards the stack) or the stack (towards the heap). In a
multithreaded process, threads share all this memory. When a thread is created,
a new stack is created in the process memory. This memory contains the thread
program counter, registers, state and his own stack. As threads share resources
with the process, their creation is often faster than the creation of a process.
Similarly, switching between threads is faster for the operating system than
switching between processes. These advantages make threads attractive for
performance, even more so when a multithreaded process can use multiple cores
from a process or a node. However, using POSIX threads requires attention as
sharing data may lead to non thread safe programs. POSIX threads are still
used in many (if not all) libraries using threads (like OpenMP), as they are
compatible with all POSIX systems.
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Figure 2.3.1 – Process memory mapping
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Figure 2.3.2 – Representation of the fork-join model [15]
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#pragma omp p a r a l l e l for
for ( i = 0 ; i < 10 ; i++) {

c [ i ] = a [ i ] + b [ i ] ;
}

Listing 2.1 – A loop parallelised with OpenMP

OpenMP (Open Multi-Processing) is an application programming interface
(API) dedicated to parallel computing. Its utilisation is simpler than the POSIX
threads as the API consists of a set of compiler directives and a library that
influence runtime behaviour. OpenMP is build around the fork-join model of
parallelism presented in Figure 2.3.2. This model works as follows: a master
thread is created at the start of the application. Then, when needed, new
threads are created to accomplish various tasks. With OpenMP for example, it
is straightforward to add parallelism to a loop. This is illustrated by the code
snippet in Figure 2.1. Note that the only difference between the sequential
and the parallelised version of this loop is the pragma directive on the first line.
Actually, if OpenMP is not supported at compile time, the OpenMP pragma
will be ignored and the code will still compile without error, and execute
sequentially. With the parallel version, OpenMP threads will be assigned an
independent set of iterations. These threads will work in parallel to perform
the actions in the loop.

OpenMP is widely used in HPC applications for its ease of use and compat-
ibility with simulation codes that rely on loops to iterate along the simulation.
OpenMP also allows other types of parallelism, still based on threads, like task
parallelism (introduced in May 2008, in the OpenMP 3.0 specifications). Tasks
are used when an algorithm is creating different work tasks to execute. Some
tasks are dependent on the other’s results, thus they cannot be executed in
any order. A scheduling algorithm is used to certify task order and results
coherency.

2.3.1.3 Shared-memory models conclusion

Shared memory models are extremely important to harness multicore pro-
cessors and multiprocessor nodes. However, for larger scale machines, only
using shared memory is not sufficient. Indeed, when using multiple nodes for a
simulation, we need to be able to exchange information between nodes. To ac-
complish these data exchange, we need another model: the distributed-memory
model.
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2.3.2 Distributed-memory models

With distributed memory, each processor has its own private memory. Tasks
running on a processor or node can only operate on data from this processor
or node. If data from another processor or node are required, tasks must
communicate with each other. Usual distributed memory systems are composed
of nodes with their own memory and an interconnection mechanism that allows
data exchanges between the nodes. Each system builds the interconnection
system as it wishes. There are multiple common ways, like Ethernet for example.
The key with distributed memory is to determine the best way to divide the
application into small parts that can work on different data items. There exist
libraries and standards created to abstract data exchanges and their complexity
to the programmer. The most common and widely used in HPC is MPI, the
Message Passing Interface [16].

2.3.2.1 Message Passing Interface (MPI)

MPI is a portable message-passing standard designed to operate on a wide
variety of parallel computing architectures. The standard only defines the
syntax and semantics of functions useful for application developers writing
message-passing programs in C/C++ and Fortran. Thus, their exists mul-
tiple implementations of the standard in libraries, some open software like
OpenMPI [17], MPICH [18] for the most known or proprietary like Intel-MPI
(derived from MPICH). The core of MPI is a number of functions used to send
messages between processes (called MPI tasks, or workers).

A program using MPI will launch multiple workers on a machine. Any
number can be launched anywhere on the machine. For example, it is possible
to launch multiple workers on only one processor. However, for larger simu-
lations, multiple nodes can be used. Each worker possesses its own memory,
and messages can be sent between workers with MPI-defined functions using
what MPI calls communicators. Communicators are a set of workers that can
send or receive messages from each other. Workers can be in any number
of communicators. At the start of the application, MPI creates the World
communicator containing all the workers, but the user can create its own as he
sees fit.

The benefits of MPI are mainly that it is possible to create as many workers
as one wishes, thus making possible for simulations to use a very large number
of workers on huge machines. Moreover, MPI is not architecture dependent. If
a machine is built with an interconnect between processors and nodes, MPI can
be used and applications can be ported to it. On the other hand, MPI workers
are usually processes. Creating multiple processes on the same processor is not
optimal as it wastes memory [19]. Moreover, sending messages between workers
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that share memory with each other is inefficient. Indeed, why go through
a message sending protocol and waste time when shared memory could be
accessed all participants?

To remedy to this problem, some MPI implementations are starting to use
threads. Other models where created from the start to implement workers as
threads (MPC [20]).

2.3.2.2 Distributed-memory model conclusion

Distributed memory models are important in HPC as they allow user to
launch large simulations on clusters of multiple nodes and processors. However,
they can be less efficient at using shared memory than dedicated shared-memory
models. Fortunately the two models are not exclusive. Simulation codes can
use both distributed and shared memory models to design powerful application
that can run on large clusters.

2.3.2.3 Hybrid programming

To combine the best of both shared and distributed memory, simulation
codes are starting to use both models at the same time. Hybrid programs
creation seems natural when looking at clusters architectures. For example, a
distributed-memory model could be used to create one process per node, and
manage communications between nodes, and a shared-memory model would
populate nodes with threads to benefit from the shared memory of nodes. Mul-
tiple runtimes implementing these models exist. And these implementations
can be largely different.

Let us take OpenMP classic usage and OpenMP tasks (both seek to exploit
shared memory). However, their usage is very different. While the first is based
on the fork-join model, the second creates tasks scheduled independently. The
example of OpenMP shows multiple approaches in the same runtime, but to a
certain extent each runtime has its own specificities. Some runtimes are even
specifically created for certain architecture. We can think of Cuda for NVIDIA
GPU usage for example. Using multiple runtimes in a code increases its com-
plexity for the development phase and later optimizations. When creating an
application, user should choose which runtimes to use carefully.

With the increasing complexity of architectures, using multiple runtimes at
the same time is becoming mandatory to exploit the maximum performance.
This leads to situation where multiple runtimes are running concurrently during
execution. We call these situations runtime stacking.
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2.4 Conclusion
As we saw in this chapter computer architecture has greatly evolved in

the past years. Hardware improvements are somewhat at a standstill but
improvement are still made. Breakthrough both in hardware and software are
being or will be made to reach the exascale milestone.

On the hardware side, one of the major trend of the past decade was
the increase of the number of cores inside processors, either regular CPUs or
dedicated resource units. This leads to the rise of multicore technology with
irregular accesses (NUMA nodes, cache rings or meshes. . . ) and the advent
of manycore architectures like NVIDIA GPGPUs and Intel Xeon Phi. Even if
other innovations are currently on tracks for hardware development, providing
an increasing number of compute units per chip is still a major evolution axis
for next generations of HPC (High-Performance Computing) supercomputers.

On the software side, and more precisely regarding the parallel programming
models available to exploit those compute units, MPI is widely used by most of
parallel applications. However, recent studies show that scalability issues will
show up at a large scale [19]. Since manycore processors exhibit shared-memory
properties among numerous cores, a natural idea to exploit these hierarchical
architectures is to use threads to match the memory-sharing capabilities of the
hardware. Therefore, one typical direction is to mix MPI with a thread-based
model exploiting the shared-memory system leading to MPI+X programming.
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Chapter 3

Problem

With the advent of multicore and manycore processors in HPC clusters,
many applications are mixing distributed and shared-memory models. Mixing
models involves various runtime libraries to be alive at the same time and to
share the underlying computing resources. As clusters architectures become
more and more complex, more heterogeneous with specialized components, the
number of threads and runtime is also likely to grow. Thread placement has
become an important optimization focus. Threads engaged in a lot of inter-
node communications will need to be placed near the network card, threads
in charge of I/O will need to be placed near the memory and so on. All these
threads and runtime sharing resources also means that efficient resource uti-
lization will become critical. An ineffective resource usage could overload some
resources while keeping others idle thus impairing performance to a large degree.

However, little research has been conducted on runtime stacking. The major
issue is that resource usage is not noticeable at execution time. The operating
system is not easily relinquishing information about what is happening to users.
A basic user won’t even imagine that threads could misbehave. And he would
be going out of its way by parsing kernel information to determine thread
placement and resource usage.

In the end, there is no easy way to look at resource usage. No tool to observe
how resources are used. No error at execution time when misuse happen or at
compilation if misuse could happen. Nothing to help optimize placement and
resource usage.

Moreover, while mixing two models together may improve the application
performance, it adds a new level of complexity for the code development. In-
deed, runtime libraries implementing those models are not usually designed
to be inter-operable with each other. It would be illusory to imagine all run-
times taking each other into account. Thus, most of the time, they ignore

35



3.1. Motivating Example

each other and it is the user’s duty to ensure that everything works together.
Threads/processes created by different libraries are scheduled onto hardware
resources by the system scheduler, most of the time without any knowledge
about other existing execution flows, leading to potential cache interference,
synchronization overhead or unnecessary time loss in communications. Further-
more, HPC applications like simulation codes often rely on calls to optimized
libraries or different solvers to reach high performance. But each library may
be parallelized with different models. For example, an MPI application could
deploy a solver based on OpenMP (controlling the mix of two runtime libraries:
MPI and OpenMP) and then call a second solver parallelized with Intel TBB
within the same time step. This would lead to deal with 3 models at the same
time.

On the user’s side, they can mostly only interact during the allocation phase.
They can have an influence on the batch manager and ask for the right number
of nodes and tasks, sometime the number of threads for certain runtimes. Then
the runtimes are running amok on compute resources. Thread based models in
particular can create any number of threads, not knowing if other models are
concurrently accessing the resources.

Then what are the options left to the user? Use default parameters and
hope for the best or try to optimize parameters, but then there is no easy
way to observe what is going on. Only application’s performances will tell if
some parameters are better or worse than others, but it will not determine if a
set of parameter used resources efficiently. The next best thing is to look at
algorithms and do scalability studies on the codes. And when all of this is done,
and the code is ported to a new cluster, optimization might not be portable.

This thesis is an effort to study runtime stacking and develop a shared
interface to manage resources when multiple runtimes are sharing resources.

3.1 Motivating Example

Porting an application to various hardware/software environments can be
challenging: the same execution configurations can provide different perfor-
mance results. To illustrate the necessity to focus on runtime interactions et
resource usage we present the following motivating example. We tested the
execution of the CORAL Benchmark Lulesh [21][22] on two Intel processors:
a Xeon Haswell (16 cores) and a Xeon Phi Knight’s Landing (KNL with 64
cores). Both architectures support hyperthreading (Intel SMT): 2 hyperthreads
per core on Haswell and 4 on KNL.
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Figure 3.1.1 – Execution time running Lulesh benchmark on multiple configu-
rations.

Figure 3.1.1 depicts the execution time running Lulesh with various con-
figurations. The first set of bars represents the elapsed time of 3 runs on 1
Haswell node with 1 MPI process and 16 OpenMP threads on 8 cores. This
configurations is exploiting one socket and all its hardware threads. The second
set represents the elapsed time of 3 runs on 1 Haswell node with 8 MPI ranks
and 4 OpenMP threads per process. This time, each process is using two cores,
thus exploiting the entire node. The last set is for 3 runs on 1 KNL node also
with 8 MPI ranks on 8 cores and 8 OpenMP threads per process. The black
bar is used for the scatter placement policy of OpenMP threads, the dark grey
for the compact,0 policy and the light grey for the compact,1 one.

For the first configurations, 16 threads are spanned across 8 cores, exploiting
2 hyperthreads per core. The compact,0 policy is the best because it gathers the
threads close to each other, considering hyperthreads. For example, OpenMP
threads with rank 0 and 1 will be on 2 hyperthreads of the same core. The
compact,1 gathers the threads close to each other but considering cores, not
hyperthreads. For example, OpenMP threads with rank 0 and 1 will be on 2
different cores. Once the cores are populated, we start binding the threads to
the other hyperthread following the same logic. If the data locality is better
than the scatter policy, it is still a bit worse than compact,0. However, as all
the threads and data are on the same socket, the performance difference is
small, but noticeable.
The second configuration using 8 processes still exploits all hyperthreads of the
Haswell node but now also all the cores of both sockets. The multiple MPI
processes reduce the overall execution time. They also limit the impact of data
locality as less thread per process are created. Hence, the performance are
almost identical for the 3 thread placement policies.
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However, the last configuration on a KNL node shows different results. Here,
the compact,0 policy provides the worst performance, contrary to the previous
two examples. With this configuration, threads are gathered on the hyper-
threads of the first cores of the KNL. Hence, instead of using 64 cores, the
64 threads are folded on 16 cores. All the hardware threads of these 16 cores
are exploited while the 48 remaining cores stay idle. In this case, using the
hyperthreads reduces performance compared to both scatter and compact,1
policies which spanned the 64 OpenMP threads on 64 different cores.

3.2 Contributions
This simple example shows that the same configuration is not portable

across platforms. It also shows the impact of thread placement when mixing
worker threads from multiple libraries. However worker threads are not always
the only ones exploiting computing resources. The system has threads running
to perform various tasks for example. Some runtimes can also use helper
threads. The use of progress threads to perform non-blocking communications
in MPI [23] is an example. Studies showed that their use and placement can
have a big impact on communication performances [24]. To provide the best
configuration, a lot of parameters should be taken into account. To tackle this
issue, this thesis makes the following contributions:
• Chapter 4, introduces runtime stacking configurations and categories.
The categories are a classification of the methods used to mix multiple
runtime in a code, while the configurations explore what this mixing
translates to at execution time.
• Then Chapter 5 presents algorithms designed to check for resource usage
issues. It also presents a tool implemented during the thesis called
the Overseer. This tool produces logs of resource usage by runtimes at
execution time. The logs are then studied with the helps of the algorithms,
to determine if any resource misuse happened during the execution of the
application.
• Finally, Chapter 6 presents a second tool called the Overmind. It catches
every worker creation and, with the help of the algorithms, dispatches
them on available computing resources to avoid their misuse.
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Chapter 4

Taxonomy

4.1 Taxonomy: introduction

On the hardware side, one of the major trend of the past decade was
the increase of the number of cores inside processors, either regular CPUs or
dedicated resource units. This leads to the rise of multicore technology with
irregular accesses (NUMA nodes, cache rings or meshes. . . ) and the advent
of manycore architectures like NVIDIA GPGPUs and Intel Xeon Phi. Even if
other innovations are currently on tracks for hardware development, providing
an increasing number of compute units per chip is still a major evolution axis
for next generations of HPC supercomputers.

On the software side, and more precisely regarding the parallel program-
ming models available to exploit those compute units, MPI is widely used by
most of parallel applications. However, recent studies show that scalability
issues will show up at a large scale [19]. Since manycore processors exhibit
shared-memory properties among numerous cores, a natural idea to exploit
these hierarchical architectures is to use threads to match the memory-sharing
capabilities of the hardware. Therefore, one typical direction is to mix MPI
with a thread-based model exploiting the shared-memory system leading to
MPI+X programming. While mixing two models together may improve the
application performance, it adds a new level of complexity for the code devel-
opment. Indeed, runtime libraries implementing those models are not usually
designed to be inter-operable with each other. Threads/processes created by
different libraries are scheduled onto hardware resources by the system sched-
uler, most of the time without any knowledge about other existing execution
flows, leading to potential cache interference, synchronization overhead or un-
necessary time loss in communications. Furthermore, HPC applications like
simulation codes often rely on calls to optimized libraries or different solvers to
reach high performance. But each library may be parallelized with different
models. For example, an MPI application could deploy a solver based on
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OpenMP (controlling the mix of two runtime libraries: MPI and OpenMP)
and then call a second solver parallelized with Intel TBB within the same
timestep. This would lead to deal with 3 models at the same time. Even if each
parallel programming model may be relevant for some pieces of code, mixing
them creates a runtime-stacking context that may lead to large overhead if
the configuration of each library and the global environment are not properly set.

This chapter presents a study of runtime stacking. It introduces stacking con-
figurations and categories to describe how stacking can appear in applications.
More specifically, we will first present an identification of runtime-stacking
categories to illustrate the different situations where mixing multiple parallel
programming models may appear (explicitly managed by the end-user or not).
In a second part, we will explore runtime-stacking configurations (spatial and
temporal) focusing on thread/process placement on hardware resources from
different runtime libraries. The focus is on resource usage, and more specifically
core usage. This work could be extended to any resource shared by runtimes.
Memory is the first shared element that comes to mind, but with the rise of
more specialized, heterogeneous architecture, we can imagine having to share
I/O devices, co-processors and accelerators and so on.

This work as been published in 2017 in the 29th International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD) [25].

4.2 Stacking Configurations

This section presents the study of different runtime-stacking configurations
that may appear when a hybrid application (with multiple programming mod-
els) runs on a cluster. Indeed, at execution time, the different threads / pro-
cesses are scheduled on computational resources and the runtime libraries
(corresponding to programming models) are scattered and executed across the
machine. Depending on many parameters (including the machine configuration,
scheduler policy, runtime implementation, resource reservation method, hints,
environment variables. . . ), the eventual placement of threads from the whole
application may vary. Based on this placement and resource usage, we define
the notion of runtime-stacking configurations to represent how execution flows
(threads and processes) are scheduled on a target machine. The main goal of
these configurations is to define and understand how the underlying runtime
libraries interact with each other in the application. We can then investigate
on the effects these interactions can have on performances.
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CoreCoreCoreCore

Figure 4.2.1 – Runtime Stacking Configuration: Spatial Independent. The
black and grey runtimes are using different cores.

CoreCoreCoreCore

Figure 4.2.2 – Runtime Stacking Configuration: Spatial Concurrent. The black
and grey runtimes are both deployed on all the cores.

4.2.1 Spatial analysis

When looking at interactions that could happen between two runtimes,
we can first look at which resources these runtimes are running on. More
specifically, we want to determine if they are sharing resources or not. We call
this observation Spatial Configuration of runtimes.

Runtimes sharing hardware resources may involve compute cycle stealing
and therefore performance loss. Moreover, switching from a thread to another
or worse from a process to another is also time-consuming. When switching
threads, only processor state (program counter and registers content) has to
change. The virtual memory space remains the same. However, the harmful
effect is more felt in the caches. If threads are not working on the same data,
chances are that accesses will produce cache misses, wasting cpu cycles. These
effects may deteriorate performances of the applications. Thread switching
should be avoided if possible, but is all in all generally efficient. Context
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switching between processes on the other hand is a different kettle of fish.
Process context switching involves switching the memory address space. This
includes memory addresses, mappings, page tables, and kernel resources. On
some architectures, it even means flushing various processor caches that aren’t
shareable across address spaces, this can go from the TLB to entire L1 cache.

Two runtime libraries can be spatially independent if they deploy execution
flows on disjoint resources. More specifically, each flow is scheduled on separate
resources and each compute unit is busy with one execution flow. In this case,
there is basically no interaction between the two available runtime libraries at
the hardware level because the set of resources is disjoint. Moreover, as there is
only one flow to execute per compute unit, there is less risk of context switching
between processes or threads, thus keeping good performances with caches and
other shared hardware resources. Figure 4.2.1 illustrates this configuration.
Two runtimes, one black using one thread and the second grey using three
threads are running on a four core node. Each thread is using its own core,
they are all using independent sets of resources. This configuration is often the
first target configuration when developing and optimizing a hybrid application
exhibiting runtime stacking.

On the other hand, if some execution flow competes for the same resource,
we enter the configuration called spatially concurrent. This configuration may
involve compute-cycle stealing, cache thrashing and other effects harmful for
applications’ performances. Figure 4.2.2 illustrates this configuration. This
time the black and the grey runtime both create four threads on the four core
node. Each runtime places its threads on a different core. In the end each core
is used by one thread of each runtime, and both runtimes are using concurrent
sets of resources.

In this context, one key parameter can be the wait policy which drives the
way each programming model will put the corresponding thread asleep when
not active. For example, in OpenMP, it is possible to choose between active
and passive mode [26]. With active mode, each thread waiting for work will
consume CPU cycles. In other words, they still monopolize resources for some
amount of time when they are in a waiting state. It results in better reactivity
when starting a new parallel region as the same thread can be used again
without context switches. On the other side it may reduce the performance
of the other model performing computation on the same cores at the same
time, as they need to wait longer to acquire resources. On the other hand,
passive mode allows better interoperability but may lead to poor performance
because threads may take more time to wake up for the next parallel region.
Experimentations on micro-benchmarks showed what the overhead of entering
and exiting parallel regions could be up to 10 times larger in passive mode [27].
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There are different situations where this configuration may appear. First, users
may ask as many threads as the number of available cores on the target compute
nodes (with environment variables like OMP_NUM_THREADS or some parameters
of job manager). Another scenario is a bad resource allocation for the different
runtime libraries. Indeed, if all programming models are not aware from each
other, they may want to deploy their execution flow on the whole node.

This spatial analysis is important as many optimizations possibilities can
arise from it. Let’s take the example of an iterative simulation. For each
time slice, two solvers from different libraries are called. These two solvers are
working on different set of data and synchronising at the end of each iteration.
The target architecture is composed of multithreaded cores. For the sake of
simplicity, in this example we will assume users want to use all the available
resources (all hardware threads), and divide them equally for each runtime. As
solvers and runtimes are not aware of each other, the most likely scenario is
that when reading programs arguments each runtime will create a number of
threads equal to the number of available core and place one thread per core.
In the end, each core will run one thread of each runtime. As each solver
is working on his own data set, this will lead to cache thrashing situation
described above. Another solution would have been to place all threads from
the first solver on the first half of the node using all hardware threads of cores,
and the threads from the second solver on the other half. This way the chances
of cache thrashing are less likely. Moreover, if the node was a NUMA node,
this configuration would decrease or negate NUMA effects [28].

In the end, being aware of runtimes placement and optimizing resource
usage is important. But there is another factor to take into account: thread
scheduling and runtimes’ lifespan. Next section describe our temporal analysis
of runtime behaviour.

4.2.2 Temporal analysis

When looking at interactions that could happen between two runtimes, we
also need to look at runtimes’ lifespan. We call this observation Temporal
Configuration of runtimes.

We define two programming models as temporally independent if there is
no overlap in their creation-destruction time frame. Figure 4.2.3 illustrates this
principle. We represent two runtime lifespan on a timeline, the first runtime in
black, the second in grey. On the figure, there is no overlap on the lifespan of
the runtimes, they are temporally independent. If two models are temporally
independent (they are never alive at the same time) whatever the resources
they are on, they will never be spatially concurrent. Moreover, as they are not
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Figure 4.2.3 – Runtime Stacking Configuration: Temporal Independent. The
black and grey runtimes are never running at the same time.

Figure 4.2.4 – Runtime Stacking Configuration: Temporal Concurrent. The
black and grey are both running at the same time during a time period.

alive at the same time, there is no message transiting from one to another, so
no possible NUMA effect or waiting for messages/answer.

This situation arises for example when a code performs multiple repetitive
calls to an optimized parallel library. Each call will spawn and deploy library-
related threads, but each instance of these runtimes will be independent of
each other. Conversely, two runtimes are said to be temporally concurrent
if they can be scheduled in the same time frame. This is the case when an
MPI+OpenMP hybrid code makes MPI calls from within OpenMP parallel
sections for example. Figure 4.2.4 illustrates this principle. Here the black and
grey runtimes are alive concurrently during a certain period of time.

While temporal independent runtimes don’t cause any performance issue,
temporal concurrent ones can. First, if two runtimes are temporal and spatial
concurrent the probability of issues described in the precedent section arising
is very high. But even if runtimes are not spatial concurrent, there is still
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space for performance degradation and optimization opportunities. Indeed, two
runtimes communicating with each other on the same node can be susceptible
to NUMA effect. Thus placing runtimes communicating with each other the
closest possible can be an effective strategy.

Runtime threads placement is unfortunately not easy to optimize. First there
are a lot of factors to take into account: architecture used, its number of cores,
socket configuration, memory placement, but also the number of runtimes, their
time frame, communication intra runtimes but also communication between
runtimes and so on. The next section discuss some of these concerns.

4.2.3 Discussion

The definition of runtime stacking configuration is a first step to describe
what could happen when mixing runtimes. It also pinpoints possible runtimes
interactions at execution time. However, these clean configurations are almost
always not applicable to whole applications. During the entire execution of an
application, multiple runtime stacking configurations may alternate. In
fact, these configurations may also vary from execution to execution depending
on multiple factors, with some of them, like scheduling, not being entirely
predictable.

By looking at how execution flows were scheduled, we could determine
if there is a contention issue with parallel models, or if every instance was
scheduled on its own set of resources without interference. Knowing which
configuration appears is also valuable information when developing and opti-
mizing a code, as spatially independent runtimes is often what programmers
are looking for.

Another information to take into account when trying to understand how
runtimes can interact together is the way they are used by application developers.
The next section describes what we call runtime stacking categories which
describe and sort techniques used to mix parallel runtimes in codes. These
stacking categories coupled with the stacking configurations describe how
runtime stacking is created and what happens at execution. All the information
gathered are the basis to understand how to optimize runtime placement.

4.3 Stacking Categories

As mentioned previously in Section 2.3, relying exclusively on MPI pro-
gramming model may lead to scalability issues, which explains why MPI is
increasingly mixed with thread-based models to improve overall performance.

Understanding and Guiding the Computing Resource Management in a
Runtime Stacking Context

47



4.3. Stacking Categories

But this is only one example where model mixing appears. Indeed, calling
external libraries or relying on other models (more abstracted) may involve
runtime stacking situations. In addition to multiple runtimes being mixed,
one runtime can create multiple instances or worker groups that could inter-
fere with each other. This is the case with nested OpenMP parallel section
for example. Some runtime can also make use of helper threads, created at
execution time without the intervention of the user. This can be the case
when using progression threads with non-blocking collectives communications
in MPI [23]. To explore those situations, we introduce Runtime Stacking
Categories. We’ve described how runtimes can interact with each other at exe-
cution time. This section now describes how these interactions were created in
the first place and defines how to mix runtimes together in an application’s code.

4.3.1 Explicit addition of runtimes

The most logical thing to do when we want to add threads or process to a
code is to make function call that create threads or processes. MPI, OpenMP or
Pthread are examples that use functions calls to create and manipulate threads
and processes. When using multiples of these runtimes in a code, their stacking
is explicitly exposed. This is the most common way to lead to runtime-stacking
context in a code. We call this approach the explicit approach. It means that
application developer might be aware of this stacking situation and can take
actions to change the configuration and improve performance.

4.3.1.1 Intra-application

Inside this explicit large category, we define two sub-categories 4.3.1. The
first one, intra-application stacking groups the applications that explicitly call
different runtime libraries, for example in a hybrid MPI+OpenMP code. Thus
stacking is directly exposed by the programmer through MPI function calls and
OpenMP directives. It is actually the solution that offers the best flexibility in
thread creation, number, behaviour and so on. Yet, even if relying on various
optimized parallel runtime libraries would seem natural, most applications
only use one or two of them at a time. Indeed, mixing more than a couple of
runtimes takes a lot of knowledge. First the application’s code. This includes
the algorithms used but also all the runtimes used. In particular how and
when they are alive, what kind of interaction they can share and so on. Then
knowledge of the architecture can be extremely useful to optimize resource
management, number of threads, or the algorithms themselves. Finally, other
considerations can be explored like scheduling algorithms, runtime parameters,
and so on. Even though this method has the potential for the best optimiza-
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Figure 4.3.1 – Runtime Stacking Categories: Explicit
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tions, it is also error prone. First because of the large number of parameters
to fine tune. But also because models were not designed to run concurrently
on the same resources. This problem is known as the composability problem [29].

There exist initiatives that help users writing optimized hybrid code. For
example, MPC [20], [30] is a framework that provides a unified parallel runtime
designed to improve the scalability and performance of applications running
on HPC clusters. It allows mixed-mode programming models and efficient
interaction with the software stack by providing its own MPI, OpenMP and
Pthread implementations, based on an optimized user-level scheduler. However,
it does not give the user any feedback about resource usage. With the same
objective of composing models, Intel has been using a shared runtime system
basis and scheduler [31], [32], to limit the interference between their runtimes. If
used in the same application, Intel TBB and Intel Cilk can run concurrently by
sharing the underlying task scheduler, and thus avoid thread over-subscription.
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4.3.1.2 Inter-application

The second sub-category in the explicit group is inter-application stacking.
This category encapsulated techniques that exhibit stacking through calls to
external libraries. For example, writing an MPI code and calling libraries
based on OpenMP (e.g., BLAS MKL) or Intel TBB is fairly common. In
this case stacking is indirect, as calls to different parallel models are made
in external libraries. Here the programmer still gets to manage algorithms,
and messages between nodes but some runtime intricacies are delegated to
libraries. The need to understand the runtime used in the libraries is less
important than with intra-application stacking. In fact, knowing how, when,
or why the second runtime is used might not be necessary at all to create a
sound, working application. However, by knowing the library implementation
(or at least the parallel programming model they rely on), stacking can still be
explicitly observed and be influenced.

In the end, even though the sources of the libraries are most likely not
accessible to the user, use of runtimes is still explicit. All calls to them are made
by the user (even indirectly by using a library). Optimization in algorithm,
runtime calls, thread number and behaviour still might be controllable although
to a lesser extent as with intra-application techniques.

Note that libraries creating and managing processes and/or threads often
try to improve performance by bypassing the system scheduler through direct
allocation and binding of execution flows. As each library may be unaware
of other resource utilization, the target code will potentially exhibit poor
performance due to those libraries interferences. Moreover, influencing these
libraries’ threads behaviour might be limited to features brought up by libraries.

4.3.2 Implicit use of runtimes

The explicit category encapsulates every runtime stacking technique that
make application developers explicitly manipulate runtimes. The explicit
call of functions and libraries make the use of specific runtime more or less
obvious. The next section presents techniques that make the use of runtimes
transparent to user. This category is called implicit runtime stacking. It
represents approaches where end-users might not know which runtimes will be
used at execution time. In this case optimization possibilities might be limited.

4.3.2.1 Direct addition

This category is also subdivided in two sub-categories 4.3.2. The first
one is called implicit direct. It represents cases where programmers rely on
unified or abstracted platforms designed to help them compose pieces of codes.
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Figure 4.3.2 – Runtime Stacking Categories: Implicit
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The Common Component Architecture (CCA) [33] is an example of implicit
direct stacking. Components are black boxes used to build an application.
Each component can be parallelized directly with regular models (e.g., MPI,
OpenMP or NIVIDA CUDA) but when using them, we may or may not know
how they were optimized and which runtimes were used. StarPU is another
example of platform that helps users stack models [34]. The runtime-system
goal is to manage parallel tasks over heterogeneous hardware. StarPU relies on
a hypervisor to dynamically chose which implementation of a kernel will be
more suitable for the target hardware resources. Moreover, it uses a dynamic
resource allocation with scheduling contexts [35]. The use of a global hypervisor
may mitigate scheduling problems, however tasks are still coded with classic
runtimes, thus creating situations where runtime stacking issues may appear.

With this category, knowledge of runtimes by programmer is here not
needed at all. The underlying platform will take responsibility for scheduling,
creation and behaviour of runtimes. However, the more common runtimes (MPI,
OpenMP, TBB, Cuda, . . . ) are still used, and a lot of parameters are to take
into account. Familiar issues like allocation sizes might still arise. Optimization
opportunities are still present when dealing with runtime parameters. So, even
though knowledge of the runtimes is not mandatory, a basic (or advanced)
knowledge of runtimes, architectures, and more, is still a huge advantage when
optimizing applications.

This category gets its ‘direct’ qualifier from the fact that runtimes used in
the code are still the common ones. They are still used in a ‘direct’ manner as
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they would in codes from the explicit category. This means that the person
programming a part of the code using runtimes is aware of there presence.
However, at execution time, the model will chose which part of the code to
execute and when, thus the stacking remains implicit. This is in contrast to
the next sub-category where code introduces new indirect techniques to use
programming models.

4.3.2.2 Indirect addition

The last sub-category called implicit indirect stacking represents approaches
where end-users may have difficulties knowing what happens at execution time.
In particular, if multiple parallel programming models are actually used at the
same time. This category includes PGAS languages that abstract the way to
communicate and share memory, relying on different models to improve per-
formance. For example, a PGAS library implementation may rely on MPI for
inter-node communication and regular threads for intra-node synchronizations.
On the other hand, the library could also implement its own methods to use
and share intra-node memory and send messages between nodes. It could just
as well use all of these methods depending on the situation. In these situations,
the implementation is in charge of selecting the best combination and helps
the application end-user to configure the resource usage on supercomputers.
This category also includes new approaches like PaRSEC [36], an event-driven
runtime that handles task scheduling and data exchanges which are not explic-
itly coded by the developers.

Here the end user only needs to know how to use the specific language.
Knowledge of runtimes used is not necessary. Often, knowledge of underlying
architecture is not either. Runtime optimizations outside built in language
functionalities are usually not possible. With a deep knowledge of the specific
library and inner functioning optimizations should be feasible but it does not
seem reasonable as it is not the focus of these implementations.

4.3.3 Discussion

The categories highlight the fact that there are many situations that may
exhibit runtime stacking. Each of the approaches described in this section is
relevant and has its own advantages/drawbacks depending on the target hard-
ware resources and the current state of the parallel application. The common
aspect is that eventually, multiple model implementations may coexist during
the execution of the application leading to poor resource usage if parameters
are not correctly set. Unfortunately the multitude of models and techniques to
implement them make easy cross platform optimization solution impossible.
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One solution would be to have every runtime aware of each other. This way,
they could share resources without interfering with each other unnecessarily.
They could even ‘discuss’ and exchange resources when needed. However, this
solution seems utopian as there are already a lot of existing models. And a
lot a more models will certainly be implemented in the future. Implementing
knowledge of multiple other existing and yet to exist models is not feasible.
On the other hand, this is a huge stepping stone for future improvements.
Indeed, revise all existing runtimes is not achievable, making a couple of the
most common ones run together is feasible. Besides, as we have seen earlier in
4.3.1.1 initiatives that couple runtimes already exist (MPC and Intel’s shared
scheduler).

However, if we look at all these runtimes we can see a common attribute.
Indeed, the only way to create parallelism on a computer is by the use of
processes and threads. These processes and threads are the one exploiting the
computer resources in the end. This is the entry point that could help optimize
resource usage regardless of the runtime, model, or architecture, or any other
parameter used.

This thesis is a look at what it is possible to achieve when manipulating
threads, with the knowledge of runtimes and stacking issues. By working at
the thread level, we could get information about the models and implement
additions usable by all categories. However, as explicit stacking is the most
represented category in HPC at the moment, we focused on applications using
these techniques. Moreover, usual runtimes like MPI or OpenMP are more
widely known and accepted than domain specific languages. They are widely
used and easier to study and get information about. Our work is still generic
though. We could get the same information from any runtime.

4.4 Taxonomy conclusion

Figure 4.4.1 – Runtime Stacking Configurations
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Figure 4.4.2 – Runtime Stacking Categories
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The two principles presented in this taxonomy describe runtime stacking.
The configurations 4.4.1 illustrate how runtime share resources at execution
time. If runtimes are temporally concurrent, they can interact with each
other whether it is by sharing resources (in which case they would also be
spatial concurrent) or by sharing data via messages or shared memory. Cate-
gories 4.4.2, on the other hand, describe how runtime stacking code are written.
More especially the techniques that create codes using multiple parallel libraries.

However, explaining these principles is not enough to solve the issues caused
by runtime stacking. Indeed, there is no convenient technique that would point
runtime stacking issues to a user.

Mixing multiple runtimes adds a layer of complexity to already error prone
parallel codes. However, there is no mechanism to help debug, or even point
to the problematic code segment. There won’t be any warning at compilation
time, neither error message at execution time. Everything will work fine, if
we pass over the bad performances. And even if we detect less than optimal
performances, we don’t have any clue about the cause of the problem. Is it an
algorithm problem? Is it from resource usage? Is it from resource allocation?
Is it something else?

Using the principles from the taxonomy, the next chapter presents the
algorithms designed to detect resource misuse at execution time.
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Chapter 5

Algorithms and Tools

The last chapter introduced runtimes stacking categories and
configurations. It also pointed out the lack of tools to observe the
state of runtimes’ resource usage. The motivating example in Chapter 3
also pointed out the tremendous effect that bad runtime parameters could
have on application performances. It also showed less dramatic experiments
where a small mistake would also lead to resource misuse and lost performances.

The main problem with these resource missuses are hard to detect. The only
possibility would be to notice an unusually long execution time. However, where
a huge overhead can maybe be detected, a smaller one will most likely not be. In
both cases nothing except execution duration observation and scalability studies
would give hints that a problem is present. Then finding the error’s cause could
take a long time. First the problem would have to be narrowed down to resource
usage which is not an easy task. Multiple others issues could cause the same
performance degradation. Is it a problem in the algorithm? In its implemen-
tation? Somewhere else? And finally, when the resource usage issue is found,
there are still many factors to take into account. Resource allocation, number
of processes and threads, processes and threads placement, scheduling and so on.

This section proposes algorithms to check for all resource usage issues. The
idea is to compare resources available to threads and processes using them.
This way, we know at every step of the execution which number of resources
are used, and we can check if it is what we actually planned to use. We also
can see all processes and threads using them and determine if resources are
used according to our plans. In the end, if a misuse is exposed, optimising or
debugging is easier. We already know if the problem came from the resource
allocation, and which runtime created what number of threads and on which
resources.
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5.1 Bibliography
Numerous tools exist for debugging and optimization, but none of them

consider runtime stacking issues. Indeed, our goal is to determine if threads
spawned by different runtimes (or by different instances of the same runtime)
are competing for resources. Therefore it is necessary to track thread/process
placement looking for their spawn site and determine if there is a race for
common resources.

In this context, debuggers like GDB [37], its parallel counterpart DDT [38],
and others like Totalview can track each thread position, sometimes along with
which runtime spawned them and if they were busy or not. However, users
need to manually track each thread, to retrieve significant information, and to
perform the analyses by hand to look for resource conflicts. Moreover using a
debugger can alter the dynamic behavior of threads and may actually prevent
the detection of such problems. Furthermore debuggers working on runtime
error detection, like Marmot [39] or MUST [40], will no help either. Runtime
stacking only influence the application performance without raising any error,
and will by transparent to such tools. In the end, using a debugger to detect
stacking issues may not be the right tool.

Since runtime stacking has an impact on performance, performance anal-
ysis and profiling tools such as Scalasca [41], TAU [42], HPCToolkit [43] or
SCORE-P [44] may detect the issues. These tools can pinpoint the scalabil-
ity bottlenecks as communications and synchronizations. However the only
resource related analysis is per-rank load balancing. Visualization tools like
VAMPIR [45] or Paraver [46] may be able to expose thread placement and
usage but once again stacking is not taken into account.

Multiple tools can be combined to effectively detect problems due to runtime
stacking. But this effort can be large because of code modifications (for specific
instrumentation) or high dynamic overhead. This modification of behavior
may change the dynamic stacking. Therefore, there is a need for light-weight
tools which would help the end-user to monitor the application execution and
extract the resource usage, this information then being used to determine
stacking-related errors or misuses.

5.2 Algorithms detecting resource usage
To obtain the big picture of what happened at execution time, and help

optimising flow placement as well as resource usage, we present algorithms
which take as input execution information of an application (through traces or
online events) and determine the corresponding resource usage. They detect
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warnings if the load of the machine is detected as non-optimal (overloaded
resources or idle resources).

We present two main algorithms. First, we detect wrong usage of resources
through execution flows, and then we focus on each resource to check if each of
them is busy or not. In this thesis, we focused on threads (flows) and cores
(resources) but note that these algorithms could be used to detect misuses
of other hardware resources (compute units, memory, IO components) from
different flows (instructions, data, messages).

Algorithm 1: Flow-Centric Algorithm
Data: Flow = F0, ..., Fn, Resource = R0, ..., Rn

S ← ∅
foreach F ∈ Flow do

S ← S ∪RF

end
if (

∑n
i=0 |Fi|) 6= |S| then

produce warning
end

Algorithm 1 focuses on execution flows (i.e., groups of instructions executing
on target resources). Flows require resources to progress. However, all resources
may not be accessible (depending on the parameters set by the user and the
global system environment). For this purpose, we define RF as the entire set
of hardware resources that the flow F can access during execution. Taking
as input these flows and the corresponding available resources, the algorithm
iterates on each flow and creates a set containing all resources accessible by all
flows. Then, if the cardinality of this resulting set S (i.e., number of available
resources for the application) is different from the sum of all flows cardinality,
the resource reservation may be suboptimal.

For example, we may execute a 2-process code with four cores per process on
an eight-core node. If both processes spawn more than four threads, resources
will be overloaded. In this case Algorithm 1 would produce a warning inform-
ing the user that processes created too many threads according to available
resources. Similarly, if processes created less than four threads, Algorithm 1
would produce a warning about idle resources.

The previous algorithm alone is not enough to detect all situations where
different resource usage may appear. Thus, Algorithm 2 focuses on resources. It
traverses through each resource R and checks, for each flow F , if R is included in
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Algorithm 2: Resource-Centric Algorithm
Data: Flow = F0, ..., Fn, Resource = R0, ..., Rn

foreach R ∈ Resource do
S ← ∅
foreach F ∈ Flow do

if R ∈ RF then
S ← S ∪ F

end
end
if |S| 6= 1 then

produce warning
end

end

the set of resources RF that F can access. If more than one flow can access one
specific resource, or if a resource can’t be accessed, then the main repartition
may be suboptimal.

For example if we launch a 2-process code with four cores per process on
an 8-core node and disabled process binding, the job manager may allocate
the same cores for both processes. It would lead to an execution scheduling
eight threads on four cores, keeping four cores idle. In this situation, Algo-
rithm 2 detects that four cores are used by two different processes and produces
2 warnings: one about overloaded resources and another one regarding idle cores.

We might note that depending on what flows are given when running algo-
rithm 2, results may vary. Let us look at a simple examples to understand the
subtle but important difference. The example is a multi-threaded application
using only one process. Depending on the runtimes arguments, all the threads
created could access all the resources available to the process. In this case, it
would be the scheduler’s duty to manage threads and resources efficiently. Now,
when inputting threads as flows, algorithm 2 would detect that each resource is
accessible by all the threads and would generate a warning. On the other hand
if the process is inputted as a flow the algorithm would look at the number
of threads created and the number of cores available. If the number of thread
is equal to the number of cores, the algorithm would not detect a misuse and
thus not generate any warning. In practice, this algorithm can thus be used on
different granularities, when applicable The results from these granularities can
also be combined. It could be of importance to know that the right number
of threads has been created in the multi-threaded process, but that threads
could be migrating and causing performance issues. Moreover, if information is
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not available at one level or another, only applying the algorithm once will still
provide valuable information. On the previous example, with only the process
level granularity we know if the number of thread created was adapted to the
available resources. If on the other hand we receive a warning telling that all
the threads can access all the resources, we might investigate further. In this
case we could, for example, determine that we want to pin each thread to a core.

For example by launching a multi-threaded process, each thread created
might be able to access all resources allocated to the process. Thus, by inputting
threads as flows, algorithm 2 would detect that each resource is accessible by
multiple threads and would generate a warning. On the other hand if the
multi-threaded process is inputted as a flow the algorithm would look at the
number of threads created and if it is equal to the number of cores available,
there are no warning to be printed. Thus, in practice this algorithm might be
used on different granularities when applicable and results combined. Moreover,
if information is not available at thread level, only applying the algorithm to
the whole process will still provide valuable information.

These algorithms used together detect misuses coming both from resource
allocation and flow repartition giving an accurate identification of the source of
potential resource misuse.

According to configurations introduced in chapter taxonomy, Algorithms 1
and 2 mainly focus on spatial stacking. Indeed, when receiving a warning
the user will have information on both the resource usage (idle or overloaded
resources) and the spatial configuration (concurrent accesses). Even if such
warnings are very valuable, the user will not be able to know when and where
(inside the source code) the problem occurred. Adding some temporal analysis
will produce far better reports, giving an idea where the application is com-
peting for resources while removing false-positive outputs that a spatial-only
analysis would produce. To apply temporal analysis, no new algorithm is
required. It is actually done by decomposing the execution of an application in
chunks where runtime stacking is consistent. We define a consistent stacking
timeslice to be a runtime execution chunk where cpusets of all Flows remain un-
changed. Each chunk or timeslice is then analysed by the spatial algorithms.

Algorithm 3 presents the full analysis process of our algorithms. We first
determine all timeslices Tapp of an execution, having a timeslice ends and a
new one begins at each change in cpuset of any Flow. Then for each slice Tn

we apply algorithms 1 and 2. We obtain a spatial analysis of each timeslice
separately and thus a temporal and spatial analysis of our application.
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Algorithm 3: Full analysis process
Data: Tapp = T0, ..., Tn, Flow = F0, ..., Fn, Resource = R0, ..., Rn

foreach T ∈ Tapp do
Algorithm1 (Flow, Resource)
Algorithm2 (Flow, Resource)

end

5.3 Tool producing logs

The algorithms presented in Section 5.2 take subsets of resource allocation
as input. However, we needed to get the data from applications’ executions to
apply the algorithms. To produce and process these input data, we designed a
dynamic tool which oversees the execution of an application and produces logs
containing information about threads and runtime libraries. We called this tool
the Overseer.

The goal of the Overseer is to gather relevant input data that will be used
by our algorithms. It collects information on threads/processes from their
creation to their destruction. We implemented it as a library which is preloaded
at execution time through the LD_PRELOAD mechanism. Each process created
during the execution of the target application loads its own instance of the
library, so that the tool gets access to information about all processes.

We want first to retrieve information about thread placement. To perform
this, the library wraps the pthread_create function to track all created threads
and their parameters (pid, tid, name of the module calling pthread_create,
cpuset the processes threads are allowed to run onto. . . ). Now that the Over-
seer has access to information from all processes and threads, it can create
log files. We create a file per process, each of them beginning with all infor-
mation gathered on the process at startup. We chose this solution to limit
contention on files and limit the overhead of the Overseer. This technique
might not scale with a large number of processes but solution as aggregators
like PADAWAN [47]. Then each pthread_create function call adds a line in
the file with information on the new thread. In order to keep track of the cores
a process has access to, the Overseer also wraps the set_affinity function
calls adding a line in the log file. In addition, each line in the output trace file
is written with a time stamp to provide a temporal view of the execution.

To reduce the overhead to a bare minimum we can focus on the information
we want to collect and especially when we want to collect them. As the only
information needed to create our execution chunks are beginnings and ends of
parallel section of codes it is possible to wrap all functions, pragmas, and so on
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creating parallel section (#pragma parallel, #pragma parallel for for OpenMP,
MPI_Init(...), MPI_Finalize(...) for MPI, ...). Although this solution is not
intrusive for the user, it is difficult to implement as it needs to be exhaustive.
This solution requires a lot of work which was not necessary for this thesis. It is
however an interesting future work in the context of a future industrialization.
An easier solution is to make specific calls to functions in the user code and
wrap these calls with the Overseer. We can imagine that the user can perform
the calls himself. To be less intrusive, these calls could be added by a source-
to-source analysis of the code, or at compile time by the compiler, or even by
binary instrumentation. In a desire for simplicity, we used the first solution:
adding calls directly in the source code. This is the less elegant solution, but
also the easiest to implement to perform proof of concept and tests. To apply
our algorithms on consistent stacking timeslices, each time we encountered the
end of a parallel region, we arbitrarily consider that the cpusets of this parallel
region thread are emptied. This way, even if those threads are just asleep and
not destroyed, we still consider that the runtime attached to this parallel region
is not active, and should not issue a warning if its resources are used by other
threads.

Note that it is possible to give the user a great deal of information on his
application and runtime stacking with this information only. We can determine
which runtimes are alive at each instant, determine which interactions are
actually possible between runtime and discard those which are not, determine
which runtimes are problematic and where these parallel sections are situated
in the code. With all this information, debugging and optimising runtime
stacking becomes possible, when it was previously almost impossible.

Information provided by these logs is not exhaustive, however it allows the
analysis of interactions of runtime libraries with our algorithms presented in
Section 5. Moreover, the small amount of data collected leads to a lightweight
tool that generates small traces and therefore a small overhead.

5.3.1 Other trace possibilities

Even though we judged the information provided by the Overseer sufficient
for further analysis, it would also be possible to get perfect placement and
scheduling information. Indeed, it is theoretically possible to monitor every
scheduling event during an application’s execution. This information is found
at kernel level, in the scheduler. Every time a thread is scheduled on a core,
a function could be called, or a callback produced to launch our monitoring
function. However, the number of scheduled events could be too big to be
practical. By interfacing with the scheduler, we would intercept each and every
thread movement. Every time a thread from the system is scheduled we would
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produce logs. All these manipulations would interfere with the application. In
the end the application behaviour could be changed and not represent a run of
the application without the instrumentation. Last but not least, getting this
information would mean modifying the kernel. The problem is that this action
is not without consequences. Especially on a cluster used by multiple users.
It is not possible for every user to modify the kernel as he wishes. Thus, we
would have needed to launch applications in virtual machines, implementing
our custom kernel. This would also change the behaviour of applications. And
in the end, pushing or approach into a cluster would be impossible. No cluster
administrator would consent (and would be rightly to oppose) to use a custom,
non monitored and updated kernel modification.

An other strategy could be to use sampling techniques to monitor the
threads. For example, by looking at /proc/[pid]/task/[tid]/status file (on a
Linux system) of each thread involved in the computation we can determine
their states. We can find which ones are running, blocked, waiting of terminated,
and also the number of context switches, the number of blocked signals and
so on. By looking at these files at regular intervals, we can get an accurate
overview of how threads are behaving. This solution can be implemented and
set up without perturbing the development and compilation chains of the target
application. However, this technique has two major problems. The first one is
that it is intrusive. The more precise we want the data, the more often we need
to look at the files. This would utilize compute resources and more importantly
change the behaviour of the application. Indeed, by slowing the execution, or
by interfering with the threads in any way, we may change the behaviour of
the application. This would result in observations diverging from non sampled
runs. The second problem is that sampling does not give perfect information.
We could miss important information as we only get scattered data points and
not a constant view of the thread’s behaviour.

We tested this sampling technique in the beginning stages of the PhD.
Unfortunately, we found out that the overhead induced was too high. Getting
one sample point every second could add as much as a 30% overhead on small
benchmarks. Note that getting this little number of data point would not be
precise enough for our purpose. Moreover, the overhead is almost already to
high for the technique to be by simulation codes or benchmark tests.

5.4 Putting it all together: analysing logs and
producing warnings

Now that we have logs of runtimes lifespan, threads creations and resource
usage in general we can apply the algorithms. We designed a second tool that
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takes the logs produced by the Overseer, parse them and produces an analysis
As noted in the previous section, the logs are not exhaustive. By looking at
processes’ allocated resources we can only speculate on the real resource usage.
However, if a process created ten threads on one core, we know for sure that
it was overloaded. An uncertain example would be two runtimes both using
the same whole four-core node, and each creating two threads. They could use
disjoint resources, or use the same. This is where the scheduler’s job comes
into play.

Moreover, some detected misuse could be a feature of the code. For example
some simulation need a lot of memory per thread. More memory than available
to one core. It is then possible to allocate more than one core per thread. The
thread will ‘waste’ one core’s compute resources but will have access to enough
memory to perform its tasks. With this kind of configurations, our analysis
would detect a lot of unused cores. But it is the way the simulation was meant
to use the available resources. Thus, our analysis products can only be warnings
and not hard errors. Note that the analysis still gives important insight for
these configuration cases. Indeed, when using these allocation schemes, the
algorithms will confirm or not, that the desired behaviour was achieved.

By parsing the output traces, the post-mortem tool retrieves all the relevant
information about processes and threads. Algorithms 1 and 2 are then applied.
Resources are assimilated to cores and flows to processes and their threads.
As presented in Section 5, we run algorithm 2 twice, once at the process
granularity and once at the thread granularity. With all information gathered
from traces and algorithm result, an output is generated, giving a summary of
process cpusets and thread placement (spatial stacking configurations) as well
as information about resource usages and runtime libraries through warnings.
With this information and hints, user can determine if a better resource usage
is possible and how to achieve it. Listing 5.1, shows a simple output when using
only one process on a four core node. In this case we get a warning telling that
some resources are not used. The solution could be to use more processes on
the node, or create threads in the process.
Listing 5.2 shows the results the first modification. This time four processes are
creating, one on each core of the node. We don’t get any waning. Listing 5.3
shows what happens with the second modification. We used created three more
threads in the process. We receive a warning informing us that threads might
be migrating from core to core. However, if we use launch the analysis at the
thread granularity (and imagine that we pinned the threads) we get the results
presented in Listing 5.4. This time we see that each thread can only use one
core and which results in no warning from the algorithms.
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Listing 5.1 – Algorithm output: 1 single-threaded Process on a 4-core node
+ Node 0 : 4 co r e s ava i l ab l e , 1 p roce s s c r ea ted .

Process 0 c r ea ted 1 thread on cpu ( s ) [ 0 ]
## WARNING ## Cores [ 1 − 3 ] may stay i d l e during execut ion ( underloaded

r e s ou r c e s )
Ana lys i s c onc lu s i on : 1 warning ( s )

Listing 5.2 – Algorithm output: 4 Processes on a 4-core node
+ Node 0 : 4 co r e s ava i l ab l e , 4 p roce s s c r ea ted .

Process 0 c r ea ted 1 thread on cpu ( s ) [ 0 ]
Process 1 c r ea ted 1 thread on cpu ( s ) [ 1 ]
Process 2 c r ea ted 1 thread on cpu ( s ) [ 2 ]
Process 3 c r ea ted 1 thread on cpu ( s ) [ 3 ]

Ana lys i s c onc lu s i on : 0 warning ( s )

Listing 5.3 – Algorithm output (Process granularity): 1 Process with 4 threads
on a 4-core node
+ Node 0 : 4 co r e s ava i l ab l e , 1 p roce s s c r ea ted .

Process 0 c r ea ted 4 thread on cpu ( s ) [0−3]
## WARNING ## Cores [ 0 − 3 ] may be used mul t ip l e thread at the same time (

over loaded r e s ou r c e s )
Ana lys i s c onc lu s i on : 1 warning ( s )

Listing 5.4 – Algorithm output (Thread granularity): 1 Process with 4 threads
on a 4-core node
+ Node 0 : 4 co r e s ava i l ab l e , 1 p roce s s c r ea ted .

Process 0 c r ea ted 4 thread on cpu ( s ) [0−3]
Thread 0 crea ted on cpu ( s ) [ 0 ]
Thread 1 crea ted on cpu ( s ) [ 1 ]
Thread 2 crea ted on cpu ( s ) [ 2 ]
Thread 3 crea ted on cpu ( s ) [ 3 ]

Ana lys i s c onc lu s i on : 0 warning ( s )

5.5 Experimental Results

5.5.1 Test bed description

The test bed used during this Thesis is composed of a cluster of Intel Sandy
Bridge, Intel Haswell and Intel KNL nodes. Sandy Bridge are 2-socketed nodes,
with 8 non-hyperthreaded cores per socket for a total of 16 cores. Haswell nodes
are also 2-socketed but possess twice the number of cores, that is 16 cores per
socket and a total of 32. These cores are also using the hyperthread technology.
Each core is composed of two hyperthreads. Last but not least, the KNL are
composed of 68 cores. Among those cores, 4 are reserved for the OS, leaving
64 compute physical for the applications. Each of these core is hyperthreaded
with 4 hardware threads for a total of 256 hyperthreads for the application.
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2 Haswell nodes 32 Haswell nodes 1 KNL nodes 8 KNL nodes
64 MPI tasks 64 MPI tasks 64 MPI tasks 64 MPI tasks

2 OpenMP threads per task 32 OpenMP threads per task 4 OpenMP threads per task 32 OpenMP threads per task

Lu
le

sh with Overseer 46.945 2672.100 398.580 213.760
without Overseer 46.790 2668.745 398.135 213.695

overhead (%) 0.33 0.125 0.11 0.03

m
in

iF
E with Overseer 18.805 303.733 68.350 102.331

without Overseer 17.789 303.325 66.728 102.272
overhead (%) 5.71 0.13 2.43 0.06

A
M

G with Overseer 34.532 65.553
without Overseer 33.476 64.939

overhead (%) 3.15 0.95

N
ek

bo
ne with Overseer 29.219 13.217 98.629 41.174

without Overseer 28.255 12.623 98.159 40.920
overhead (%) 3.05 4.5 0.48 0.62

Table 5.5.1 – Evaluation of the Overseer overhead on various architectures

5.5.2 Tool overhead

Table 5.5.1 presents the overhead of the Overseer when running along
with CORAL benchmarks on different hardware configurations. The first two
columns show the results on Haswell nodes, and the following two present
results using Intel KNL nodes. The first column presents the results on two
Haswell nodes, using sixty-four MPI tasks (thirty-two per node), and two
OpenMP threads per task (two per hyperthreaded core). The second presents
the results of runs using thirty-two Haswell nodes, using sixty-four MPI tasks
(two per node, one per socket), and thirty-two OpenMP threads per task (using
all hyperthreads of a socket per task). The third column shows results using
one KNL node, sixty-four MPI tasks and four OpenMP threads per task. The
last column presents results using eight KNL nodes, sixty-four MPI tasks and
thirty-two OpenMP threads per task.

This table shows a low overhead when using our Overseer. In fact, the tool
only instruments a couple of functions. These functions are related to thread
creations, destructions, and cpuset modifications. As most of the time in HPC
applications, cpusets of processes are set once and for all at their creation
and threads are used by multiple libraries without them being destroyed and
re-created, the overhead of the Overseer stays low. Thus, the interference of our
tool can almost only be seen at startup. We can observe this in the table: the
longer the execution the smaller the overhead percentage is. For a 20 seconds
execution, the 6% overhead seems high, but for a more representative time
(several minutes), the overhead drops and becomes negligible.

5.5.3 Benchmark Evaluation

In order to show how resource allocation and resource placement have an
impact on the performances of applications, we ran four CORAL benchmarks
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Figure 5.5.1 – Execution time of miniFE with different number of MPI tasks

with different allocation and placement methods on our test bed. Figure 5.5.1
presents the total execution time of the miniFE application on a Sandybridge
node (16 cores without hyperthreading) when the number of MPI tasks grows
and the problem size remains the same. We can see that from 1 to 15 cores
while the node is underloaded, the execution time of the simulation decreases.
It reaches its best time when the node is full, at 16 MPI tasks, and then
execution time starts to increase when we overload the node with more MPI
processes than available core (from 17 to 32 ranks). We can conclude that
better performances are obtained when using the right number of cores which
is obvious. However, finding the best configuration is not always easy, and it
is often hard to identify the source of a lack of performances when the error
comes from allocation and placement of tasks and threads. Indeed, neither
error nor warning are produced by the compiler or at execution.

This experiment shows that the resource allocation has an impact on the
performances of a simulation. Our algorithms presented in Section 5.2 can help
find a resource allocation configuration using the maximum of resources. For
example, using our tools with each configuration from Figure 5.5.1 produces
warnings except when using 16 tasks, which is the configuration using the
architecture at its fullest without overloading the node. With an underloaded
node, e.g., with only one MPI task, the analysis produces the following warnings:

+ Node 0 : 16 co r e s ava i l ab l e , 1 p roce s s c r ea ted .
Process 0 c r ea ted 1 thread on cpu ( s ) [ 0 ]

## WARNING ## Cores [ 1 − 15 ] may stay i d l e during execut ion ( underloaded
r e s ou r c e s )

Ana lys i s c onc lu s i on : 1 warning ( s )

In the same manner, an execution overloading nodes with 32 MPI tasks
outputs the following warnings:
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Figure 5.5.2 – Execution time of CORAL Benchmarks on Haswell nodes

+ Node 0 : 16 co r e s ava i l ab l e , 32 proce s s c r ea ted .
Process 0 c r ea ted 1 thread on cpu ( s ) [ 0 ]
Process 1 c r ea ted 1 thread on cpu ( s ) [ 1 ]
[ . . . ]
Process 16 c rea ted 1 thread on cpu ( s ) [ 0 ]
Process 17 c rea ted 1 thread on cpu ( s ) [ 1 ]
[ . . . ]

## WARNING ## Cores [ 0 − 15 ] may be used by more than one proce s s / thread (
over loaded r e s ou r c e s ) ( s pa t i a l−concurrent c on f i g u r a t i on )

Ana lys i s c onc lu s i on : 1 warning ( s )

Figures 5.5.2, 5.5.3 and 5.5.4 present the impact of tasks and threads
placement on application performances. For these experiments we used three
CORAL benchmarks: Lulesh, minFE and AMG2013, and three target archi-
tectures: Haswell nodes with hyperthreaded cores, Sandybridge nodes without
hyperthreading, and one KNL node with four hyperthreads per core. For each
application, we varied the runtimes options. The ‘scatter’, ‘compact,0’ and
‘compact,1’ correspond to Intel OpenMP ‘KMP_AFFINITY’ options. The
‘scatter’ option means that all OpenMP threads are spaced as much as possible
on cores (to maximize cache size and memory bandwidth), the ‘compact,0’
places one thread per logical core (including hyperthreads), and the ‘compact,1’
option fills physical core first. The ‘no-bind’ option indicates that process bind-
ing was disabled in the job manager. In our case, it means that all processes
are given the same cpuset, resulting in overloaded resources and idle ones.
Figure 5.5.2 shows the results of each benchmark using two Haswell nodes,
eight MPI processes (two per node) and sixteen OpenMP threads per process
effectively using all cores and all hyperthreads of both nodes. Figure 5.5.3
exposes the results of the same benchmarks on two Sandybridge nodes, eight
MPI processes (two per node) and eight OpenMP threads per process effec-
tively using all cores of both nodes as hyperthreads are not activated. Finally,
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Figure 5.5.3 – Execution time of CORAL Benchmarks on Sandybridge nodes
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Figure 5.5.4 presents the results of the benchmarks on one Intel KNL node
with eight MPI processes and eight OpenMP threads per task using all cores
but half of the hyperthreads of the node.

These graphs exhibit two behaviours. First when the process binding is
disabled, execution time increases on all architectures. This was expected
as we use fewer cores for the same computations and the same number of
processes/threads. By disabling the binding the number of threads per core
highly increases seriously impeding performances. This is especially strong
on KNL nodes which use a lot of hyperthreads. Note that in these cases, our
analysis produces the warnings to the user about a clumsy use of resources:

+ Node 0 : 32 co r e s ava i l ab l e , 4 p roce s s c r ea ted .
Process 1 c r ea ted 8 thread on cpu ( s ) [0−8]
Process 2 c r ea ted 8 thread on cpu ( s ) [0−8]
Process 3 c r ea ted 8 thread on cpu ( s ) [0−8]
Process 4 c r ea ted 8 thread on cpu ( s ) [0−8]

## WARNING ## Cores [ 0 − 8 ] may be used by more than one proce s s / thread (
over loaded r e s ou r c e s ) ( s pa t i a l−concurrent c on f i g u r a t i on )

## WARNING ## Cores [ 9 − 31 ] may stay i d l e during execut ion ( underloaded
r e s ou r c e s )

Ana lys i s c onc lu s i on : 2 warning ( s )

Furthermore, we can see that the OpenMP environment may have an im-
pact on performances. For example, on Haswell nodes (figure 5.5.2), using the
‘compact,1’ option with the AMG2013 benchmarks adds a 6% overhead to the
execution time compared to the same execution with the ‘compact,0’ option.
On the other hand, running the Lulesh benchmark using the ‘compact,0’ option
on KNL nodes (figure 5.5.4) more than doubles the execution time compared
to the same execution with the ‘scatter’ option. These results are explained by
the fact that these options change the placement and binding of threads. As
all cores and hyperthreads are used with the AMG2013 benchmark on Haswell
nodes, the overhead observed is probably a consequence of a different data
placement intensifying the NUMA effects when using the ‘compact,1’ option.
Note that in this case, our analysis do not produce warnings as resources
are busy with one execution flow. Moreover, this placement will not always
influence performances in the same manner on all architectures. For example
the same benchmark on Sandybridge nodes (figure 5.5.3) exposes the best
performances with the ‘compact,1’ option. By looking at the analysis output,
users could see that the cpusets of processes are spread on multiple processors
but the conclusion regarding performances would come from knowledge of both
architecture and application’s data usage. However, when using these OpenMP
options with a partially full node, the analysis detects what may be wrong
use of resources and produces warnings. For example using the ‘compact,0’
option on a KNL node more than doubles the execution time of the Lulesh
benchmark (figure 5.5.4). In this case the tool would detect that only half the
cores of the node are used and inform user that half the resources may stay
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idle during execution. Note that with the ‘scatter’ or ‘compact,1’ options the
analysis would also produce warnings this time informing that all cores are
used but with only half the hyperthreads.

These experimental results show that allocation and placement of tasks and
threads have an impact on application performances. This impact may vary
depending on architectures and applications. Our Overseer and the analysis it
enables can give user a view of resource usage and thread placement, as well
as it produces warning when a potential misuse of resources is detected. This
kind of analysis is important as allocation and placement are not checked by
application or system, even when obvious misuses occur, which may lead to
bad performances.

5.5.4 Improving analysis with temporal information

The analysis previously presented only takes spatial configuration into ac-
count. That is to say, each time a thread is created in the application, it is
considered alive for the whole remaining execution. If this kind of analysis can
already greatly help users to optimise their code, it can also create inaccurate or
plain wrong reports. Adding a temporal view of the application may help users
better understand codes and runtime stacking as well as eliminate analysis
errors. Indeed, in some cases, a spatial-only analysis may create false-positive
warnings that a temporal analysis could avoid. To take temporality into ac-
count, we split executions into timeslices, each timeslice defined by a portion
of code where cpusets stay unchanged.

int main ( int argc , char ∗∗ argv ) {
MPI_Init(&argc , &argv ) ;

i n i t i a l i z e _ v a r i a b l e s ( ) ;

omp_solver ( ) ;
tbb_solver ( ) ;

MPI_Finalize ( ) ;
return 0 ;

}

Listing 5.5 – Hybrid MPI-OpenMP-TBB code

Let’s consider the code in Listing 5.5. To get a simplified view, this code
only makes one call to an OpenMP optimised function and then one call to
a TBB optimised one. On an 8-core node, the spatial-only analysis with our
tools would produce the following report:
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+ Node 0 : 8 co r e s ava i l ab l e , 1 p roce s s c r ea ted .
Process 0 c r ea ted 16 threads on cpu ( s ) [0−7]

## WARNING ## Cores [ 0 − 7 ] may be used by more than one proce s s / thread
( over loaded r e s ou r c e s )
( s pa t i a l−concurrent c on f i g u r a t i on )

Ana lys i s c onc lu s i on : 1 warning ( s )

We get a warning because the number of threads created is twice the number
of available cores. However, by dividing our execution into timeslices where
runtime stacking is consistent we would get the following report:

+ Node 0 : 8 co r e s ava i l ab l e , 1 p roce s s c r ea ted .
Process 0 c r ea ted 16 thread on cpu ( s ) [0−7]

− Chunk 1 : 8 threads c rea ted on cpu ( s ) [0−7]
− Chunk 2 : 8 threads c rea ted on cpu ( s ) [0−7]

Ana lys i s c onc lu s i on : 0 warning ( s )

This report informs that indeed there were more threads created than avail-
able cores, yet the resources never got overloaded as runtimes were not running
concurrently. To highlight the significance of a temporal analysis for our tools,
we implemented micro-benchmarks. These codes extract the minimal configu-
ration needed to investigate temporal interactions using our analysis algorithms.

Thus, the temporal analysis here allows determining more precisely what
happens at execution time while also removing false-positive warnings. Likewise,
on Listing 5.5 code, exploiting only half the available cores per runtime would
lead to the following reports:

Report without temporal a n a l y s i s :
+ Node 0 : 8 co r e s ava i l ab l e , 1 p roce s s c r ea ted .

Process 0 c r ea ted 8 thread on cpu ( s ) [0−7]
[ . . . ]

Ana lys i s c onc lu s i on : 0 warning ( s )

Report with temporal a n a l y s i s :
+ Node 0 : 8 co r e s ava i l ab l e , 1 p roce s s c r ea ted .

Process 0 c r ea ted 8 thread on cpu ( s ) [0−8]
− Chunk 1 : 1 threads c rea ted on cpu ( s ) [0−7] (mpi )

## WARNING ## Cores [ 0 − 7 ] may stay i d l e
( underloaded r e s ou r c e s )

− Chunk 2 : 4 threads c rea ted on cpu ( s ) [0−3] (OpenMP)
## WARNING ## Cores [ 4 − 7 ] may stay i d l e

( underloaded r e s ou r c e s )
− Chunk 3 : 4 threads c rea ted on cpu ( s ) [4−7] (TBB)

## WARNING ## Cores [ 0 − 3 ] may stay i d l e
( underloaded r e s ou r c e s )

Ana lys i s c onc lu s i on : 3 warning ( s )

Without using temporal analysis, the tools would not always detect misuse
of resources. Indeed, it would detect that the number of threads created is the
same as the number of cores available which is seemingly a good behaviour.
Depending on the cpusets used by the OpenMP and TBB runtimes, the analysis
could detect a spatial concurrency. On the other hand, by adding the temporal
analysis we see that at most only half the cores are used during the execution
regardless of thread placement. Temporal analysis can thus also detect resource
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misuse that could not be seen previously. In our example, it is clear that
resources are not used at their maximum efficiency. A user could with a glance
at the analysis’ report determine if resources are used as he intended to, and
then determine if he wants to add threads in parts of the code. We can note
that we also get a warning when the application is setting up and only the MPI
runtime is alive. As the creation of TBB threads is not done instantly after the
end of the OpenMP section, we detect that MPI is alone here as well and the
analysis should produce a warning. We still need to determine if we want to
overload the logs with all these warnings. On the one hand this creates longer
analysis files and hinders comprehension. On the other hand this information
is useful in the case of threads regularly getting created and destroyed which
could be optimised by recycling threads.

int main ( int argc , char ∗∗ argv ){
MPI_Init(&argc , &argv ) ;
i n i t i a l i z e _ v a r i a b l e s ( ) ;

while ( v a r i a b l e ){
omp_solver ( ) ;
tbb_solver ( ) ;

}

MPI_Finalize ( ) ;
return 0 ;

}

Listing 5.6 – Hybrid MPI-OpenMP-TBB code

The next example, presented in the Listing 5.6, shows what happens when
more parallel sections are launched by the code. Usually the OpenMP and TBB
runtimes recycle their threads, i.e., threads of the OpenMP and TBB runtimes
will be spawned only once and not at each loop iteration. When temporal
analysis is turned off, we get the exact same report as with the Listing 5.5 code,
as we only see one spawn phase for OpenMP and one for TBB. By turning the
temporal analysis on, we see the alternating runtimes, and we do not detect
concurrency between runtimes.

To sum up, temporal analysis helps determine if runtimes are actually
concurrent. This improvement detects more resource misuses, and discards
some false positives warnings. Indeed, two spatially concurrent runtimes
can be temporally independent which will not cause resource misuses but
would generate a false positive warning with the basic analysis. Spatially and
temporally independent runtimes may not generate warning with the basic
analysis but leave idle resources.
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5.6 Conclusion and Discussion

This chapter presented algorithms that analyse resource usage of an applica-
tion. We developed a post-mortem tool that implements these algorithms and
provides the analysis as well as warnings to the user. In the meantime, we had
to develop another tool, the Overseer, used in parallel to application’s execution.
It collects all the information needed for the analysis. As we explained, our
choices led to a lightweight tool, that can be used anytime without changing
the development process of an application (source modification, or compilation
chain additions). Moreover, the hints and warnings produced give information
about potential misuse of resources. This kind of analysis was not possible
before.

Our analysis could still be greatly improved on. We have some future work
planned. First, we only looked at basic configurations involving threads and
cores. A huge improvement would be to include more resources into the analysis.
Indeed, the algorithms can be applied to any kind of resources like memory,
I/O buses, network cards and so on. With current architecture, applying the
algorithms to memory and data seems to be the most beneficial upgrade. Look-
ing at data placement would decrease NUMA effects present on NUMA nodes
used on most current supercomputers. By all means placing data near the
threads using them is bound to reduce data transfer time and latency. Looking
at thread placement in regard to I/O buses and network cards should become
more and more important. Indeed, as explain in Chapter chap:context future
architectures will certainly be so heterogeneous that some cores could be closer
to these resources than others. Having a specific thread making communication
with other nodes, and placing it near the network card would reduce communi-
cation time.

Second, we plan to improve our analysis tool to provide optimal resource
reservation arguments depending on runtime stacking categories and desired
configurations. User usually know what they want to do: it could be using
all the cores with one thread per core, use one process per socket, use all
memory from a node with only one thread and so on. Now the difficulty is in
conveying this information to the machine, using allocation options and run-
times arguments. We plan to design an abstraction for the user to describe the
configuration he wants his application to run. Then our tool would determine
the command line arguments to reserve resources, as well as the arguments and
options to give to each runtime.

Lastly, we believe that this analysis could be coupled to already existing
profiling tools. We already discussed in Subsection 5.5.3 that sometimes using
all the resources without overloading them is not enough. Sometimes, a subop-
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timal will amplify NUMA effects for example. A profiling tool like PAPI [48]
that looks at the performance hardware counters would detect cache misses and
other detrimental behaviour. Coupled with our analysis, it would determine
which configuration to apply to remove these behaviours or limit their effects.
Performance analysis tools such as Scalasca [41] or TAU [42] for example,
could provide data or information to our analysis. These tools are designed
to pinpoint the scalability bottlenecks like communications and synchroniza-
tions. Knowing which thread created a bottleneck could help improve thread
placement. This would request more research and analysis of the causes and
consequences of these negative effects regarding the runtimes and resource usage.

Using the results from this tool, the next chapter presents a dynamic
hypervisor that we developed to manage threads and resources at execu-
tion time. This program uses the information dynamically gathered from
the Overseer, and applies the algorithms to determine and manage thread
placement.
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Chapter 6

Hypervising Resource Usage

The previous chapter illustrated the impact of resource usage on application
performance. Multiple factors are to take into account: resource allocation, and
flow placement. Allocating too little resources will lead to over subscription and
resource sharing which will, in turn, create cache thrashing and other hardware
issues. Allocating too many resources in the other hand will ‘waste’ them, as
more flows may have been used on these resources, or as another application
could have used them. Flow placement, the second factor, is also important.
Even if the allocation was just perfect, flow placement can ruin performances.
Once again it is possible to oversubscribe or undersubscribe resources which
would lead to decreased performances. An other factor to take into account
is communications between flows. Placing flows using shared memory on the
same NUMA node will generate less latency for example. Usually threads from
the same runtime will most likely share information. Threads created from the
same OpenMP call for example are very likely to use the same data, or very
close data objects.

It is then necessary to consider all the components involved in such resource
usage: the job/resource manager, the target compute-node configuration and
the runtime implementations of parallel programming models. Thus, capturing a
global view of resource usage is required to adapt the process/thread placement.
That is why our approach called Overmind aims at providing algorithms
overseeing resource requests to automatically take the best decision and enhance
the use of each compute node inside a supercomputer. It uses the algorithms
as well as implementation made in the Overseer presented in Chapter 5.

6.1 Bibliography
With the increasing complexity of HPC clusters, managing resources and

threads is an important challenge [49]. Hybrid programming [50] as well as
topology awareness [51] can have a significant impact on performances. Different
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approaches exist to manage the execution flows and optimize their placement.

First of all, some programming languages and specifications have been cre-
ated to exploit the benefits of both distributed and shared memory. For example,
the Partitioned Global Address Space (PGAS) approach (UPC/UPC++ [52],
OpenSHM [53], . . . ) enables a fine mixing between communication and concur-
rency. In such case, the underlying runtime has a global view and can manage
process/thread placement as needed. Other initiatives like PaRSEC [54],
StarSS [55], OMPSS [56] or StarPU [57] manage the scheduling of tasks over
heterogeneous architectures. Once again, the global view of the tasks, workers
and hardware topology helps improving process/thread placement and enhances
resource usage. In such cases, our approach may not be helpful if the overall
execution flows are taken into account. But if another model is added or if the
runtime implementation relies on different independent libraries, our hypervisor
may help optimizing the overall resource usage.

Other approaches deal with an integration of various programming models.
For example, the Common Component Architecture [58] hides the software
complexity with the help of components. However, if such components are
relying on different parallel programming models and external runtime systems,
management of execution flows can be complex. In such cases our approach can
help optimizing the resource usage across components. Going further into model
integration with regular standards is the unification of models. Some work
propose ideas to improve the deployment of application layouts on compute
nodes [59]. On the other hand, frameworks like MPC [20] provide a unified
MPI/OpenMP layer designed to improve the scalability of HPC applications.
MPC internally deals with the thread/process placement based on its global
view. But this is limited to the MPI and OpenMP models. Adding another
language to the parallel application will not benefit from this placement op-
timization while our hypervisor will take this new model into account and
include the additional execution flows for resource-usage enhancement.

Finally, research is conducted to optimise thread placement and resource
usage as a whole [60]. An interesting research axis is the study of memory
locality [61]. Mapping algorithms like mpibind [62] are even designed to map
applications based on the memory components and not the processors and
cores like usual approaches. Following the memory architecture improves
overall performances by providing as much cache and memory as possible
to each application worker while also taking thread locality into account.
The problematic of thread placement is well studied [63][64][65]. Placement
algorithms and politics are numerous and vary depending on the goal to
achieve. Some try to optimise application performances while other may want
to lower energy consumption or limit overhead brought by communications and
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synchronisations.

6.2 Overmind’s Design
Our approach consists on a tool hypervising resource usage. It constrains

the worker scheduling on a subset of available resources by capturing each active
thread/process during the application execution. Thus, it is mandatory to have
a perfect knowledge of all resources and their topology. Furthermore, since
the number of workers can vary during the execution, the optimal layout may
change for different phases. Therefore, our approach considers both the spatial
(set of cores and their topology) and the temporal (application parallelism over
time) aspects of resource usage.

To detail the need of such spatial and temporal approach, let us consider
a target architecture containing N physical cores. If an application exploits
N/2 threads during 90% of the execution time and N/2 additional threads
for the remaining 10%, counting only the total number of execution flows is
not enough. Indeed, there were a total of N threads for N available cores, but
during the major part of the application execution, half of the resources were
idle. Our approach would spread the N/2 threads on the available cores and
eventually pack them together when the remaining N/2 additional threads are
created. This method is even more useful when dealing with target architectures
including SMT (i.e., logical cores). Indeed, exploiting physical cores might
be the priority to avoid scheduling threads on logical cores. Hence, we must
consider temporal blocks, like in Chapter 5 to better observe resource usage and
to provide finer grain reorganization of workers. The worker behaviour shapes
those blocks: when the number of active workers changes (e.g., workers being
created, awaken, destroyed or going to sleep), a new block is created leading to
a new placement.

Listing 6.1 – MPI/OpenMP Example Illustrating Temporal Blocks
1 in t main ( )
2 {
3 MPI_Init ( ) ;
4 . . .

5 #pragma omp p a r a l l e l f o r
6 f o r ( )
7 {
8 . . .
9 }

10 . . .

11 #pragma omp p a r a l l e l num_threads (x )
12 {
13 . . .
14 }

15 . . .
16 MPI_Finalize ( ) ;
17 return 0 ;
18 }
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Listing 6.1 depicts an MPI/OpenMP pseudo-code illustrating such temporal
block sequence. When execution starts, multiple workers are created (i.e., MPI
processes) with at least one per compute node. These workers start the first
block (lines 1 to 4) leading to a placement decision. Then, an OpenMP parallel
region is opened creating additional workers (i.e., OpenMP threads), which
may modify the resource usage. Thus, a new block is created (lines 5 to 9),
generating a new global placement. When this region is closed, its associated
workers become inactive, which changes the resource usage again. Therefore, a
new block is created with the same number of workers than in block 1 (line
10). However, since the active workers may have been redistributed on the
compute units, the new layout may differ from the one at the beginning of the
application. Then, a new OpenMP parallel region is created with a different
number of threads (num_threads clause), leading to a new block (lines 11 to
14). At the end of this region, the associated threads become inactive. We
return to the previous number of workers, creating a final block (lines 15 to
18).

Because the number of execution flows (or workers) may vary from one
block to another, it might be necessary to update the resource usage and worker
placement in each block. Considering again Listing 6.1, we can imagine that
the first OpenMP parallel region spawns as many threads as the number of
cores. In such case, the workers will be spread on the available physical cores.
Thus, OpenMP rank 0 will be on core 0, while rank 1 will be on core 1, sharing
cache levels. If the second OpenMP region ask for more threads, the optimal
placement will start using hyperthreads: rank 0 will be on the first hyperthread
of core 0, and rank 1 will be moved to be located on the second hyperthread of
the same core. Moreover, if another thread-based model, like Intel Threading
Building Blocks (TBB), is spawned during the lifetime of the first OpenMP
parallel region, one can imagine that the OpenMP threads will first spread
on all available cores, and then be redistributed in a compact way to gather
on all hyperthreads of adjacent cores to leave some available resources for the
newly-created TBB threads. This would create a new temporal block to enable
this resource-usage update.

In the end, the more information that can be gathered, the better the
decisions. This information can come from the runtimes, the users, the resource
allocator, or even from previous runs. However, it is also of paramount impor-
tance to be able to take good decisions with no a priori knowledge to handle
any scenario of resource misuse. In this light, the first algorithm we propose for
the Overmind does not take any prior information, and define the new worker
placement only thanks to data it has collected during the current run. Further
algorithms could take more information into account to better user resources
and manage runtimes.
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6.3 Thread management Algorithm

According to the main design described in the previous section, our approach
is driven by the notion of temporal blocks and the resource-usage modifications
across blocks. Thus, the resulting algorithms are divided into two categories:
(i) the block detection and (ii) the intra-block resource usage.

First, let us look at block detection. Before anything else, it is necessary
to consider the behaviour of a parallel execution as a set of temporal blocks
managing different execution flows and, therefore, requesting various resource
usage. To determine those blocks inside an application, our approach catches
various operations regarding parallel programming. We linked the block cre-
ations and destructions to runtime libraries’ functions. For example, with
the MPI model, catching the initialization (MPI_Init function) enables the
creation of the first block. The finalize function (MPI_Finalize) tells us when
to close the block. Other blocks can be deduced from the thread behaviour
coming from shared-memory models. For the OpenMP runtime for example,
we need to detect the use of preprocessor pragma directives. As discussed
before, one solution is to look through the OpenMP implementation to find
which functions are called at the creation and end of parallel sections. Another
solution is to instrument the code at compile time. The easiest solution to im-
plement is to write an API and call it every time a parallel section starts or ends.

After determining the different blocks, the second point to take into account
is the intra-block resource usage. Indeed, each time a block start or end, it is
necessary to re-evaluate the resource usage. To design this second algorithm, we
first studied worker placement with multiple MPI and OpenMP configurations
with the help of our tool [25], described in Chapter 5. This tool, the Overseer,
is checking if resources were misused. We found out that, most of the times, the
desired configuration is as follows: MPI processes scattered as much as possible,
preferably one per NUMA node, to enable better locality and larger memory
bandwidth; workers spawned from the same shared-memory runtime as close
as possible, to benefit from shared caches and common memory channels.

Algorithm 4 details the steps to compute cpusets of each process according
to various parameters: the total number of processes located on the same
compute nodes and the underlying hardware topology.

With this algorithm we get the workers of the same MPI process as close
together as possible to benefit from data locality since these workers will use
the MPI process data. Also, in one MPI process, we wish the workers from the
same runtime to be together. They will most likely use the same set of data, so
once again we want to benefit from data locality. Furthermore, since they are
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Algorithm 4: Splitting available cores across processes
Input: process_number (value)
Input: node_number (value)
Input: process_id (value)
Output: new_process_cpuset = (set of values)
core_per_node ← get_core_number_per_node()
pu_per_core ← get_pu_number_per_core()
process_per_node ← process_number / node_number
local_process_id ← process_id % node_number
core_per_process ← core_per_node / process_per_node
first_process_core ← core_per_process × local_process_id
for core ← first_process to (first_process + core_per_process-1) do

new_process_cpuset ← new_process_cpuset ∪ {core}
end

using the same runtime, they will have the same resource usage and waiting
policies. They should not interfere with each other, which is more likely with
workers from different runtimes. If two workers from different runtimes are
located on the hyperthreads of the same core, the waiting policy of the first
one may hinder the performance of the other one. Moreover, since it is easier
for the application developer, the code design may use different data sets for
each runtime. The data of each worker will reduce the caching possibility of
the other one, and even the meta-data from the runtime may hinder even more
the data locality.

In addition to having the workers from a runtime close to each other, one
may want them to be in order (e.g., OpenMP ranks 0, 1, 2 and 3 on cores 0, 1,
2 and 3 if no hyperthreads is necessary). Here again, this placement is based on
the data locality. One example is the regular OpenMP parallel for construct:
the for loop is cut into chunks handled by the threads. Most scheduling vari-
ants allocate chunks to each thread in a round-robin fashion. Hence, the first
chunk containing the first iterations will be consumed by OpenMP rank 0, while
the second one will be consumed by OpenMP rank 1, and so on. If memory
accesses are quite regular, the contiguous OpenMP ranks will access contiguous
data. It is then better to have them close to each other in order to benefit from
data locality. Thus, Algorithm 4 is enhanced with a specific shrunk cpuset
for threads located in each process according to the mechanism described earlier.

Finally, to handle unbalanced applications, this algorithm is extended to
look at the notion of thread load and figure out if reducing the cpuset at the
profit of another one may be beneficial to keep a good resource usage. This can
be done at some specific points of the program performing sort of collective
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operations to synchronize processes located on the same node.

6.4 Overmind’s Implementation

We implemented the previous algorithms into our Overmind that can be
used by any parallel application without source-code recompilation. Thus, it is
available through a dynamic library that can be preloaded with the code binary
and launched through any job manager (e.g., SLURM). Our implementation is
decomposed into two distinct phases: (i) information collection and (ii) worker
placement.

6.4.1 Information Gathering

The first part of our tool is called the collecting phase and is based on the
Hwloc library [66] to gather the target architecture topology. To capture each
thread information, we implemented wrapper functions for thread creations
and destruction. By positioning the library just after the thread creation, we
can gather all the required information. First, the Overmind’s wrappers gather
the target architecture layout and the topology information through the Hwloc
library. It also gathers workers information such as cpusets, IDs and so on.

Now we still miss some important information: which library created which
thread and resource allocation information that the user could have given to the
resource manager. First, the resource reservation information can be extracted
from the command line arguments. This information is on the node launching
the job, which means we need a way to communicate this information back to
the Overmind’s instance running on compute nodes. Multiple options are at our
disposition. One would be to implement plugins into the job manager to send
messages to our Overmind. This solution could be the best one as we could get
much more than this feature from plugins. For example if another job is running
on the node our application is using, we could implement a plugins sending
messages to the Overmind when this job ends. Then the Overmind could decide
to use this free resources for the application still running. Obviously this option
is the most costly to implement. Other options include creating temporary
files to keep the information needed. This file would be in shared space for the
launching node and the compute nodes. Lastly, the simpler option is to put
this information into the application.

We implemented an API to get access to this information easily. Using a
function from this API in the application call will trigger the wrapper which
will collect all the information for our Overmind. This solution is maybe the
one that is the closest to a ‘quick and dirty’ implementation, but it has the
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merit of getting the information easily without failure. We judged that this
solution was the best fitted to produce a proof of concept. Future work include
replacing the API with an automated method that does not require user input.

We also used API wrapping functions to capture which thread was created
with what library. For example, by putting an API function at the beginning
of an OpenMP section will make every thread involved in this section call the
function. By wrapping it, we can mark all the OpenMP threads from this
parallel section. An other option to get this information would be to look at the
callstack of the thread, the address of the thread creation function in the binary
file, and look what library was loaded around this address. This technique was
implemented in a test tool in the first year of the PhD. However, as we already
used an API wrapped to get other information we did not implement this
technique in the Overseer yet. Moreover, wrapping a function at each beginning
of parallel section gave us extra information: the beginning of temporal blocks.
By adding a last API wrapped function at the end of parallel sections, we have
all the information we need to construct temporal blocks, and to know when
to call algorithms to analyse and potentially change the placement of runtime
and threads.

6.4.2 Worker Placement.

With the information gathered, we can now look at resource usage and
determine if misuse are happening or if improvement can be made. This
phase is also decomposed in two sub-phases. The first sub-phase finds a bet-
ter worker placement while the second handles the actual changes in the cpusets.

For the first phase, the Overmind looks at each beginning and end of
temporal blocks. And each time, it re-evaluates resource usage. It uses the
algorithms described in Section 5.2. If no misuse is found, then there is nothing
to do until the end of the block, or the beginning of a new one. On the other
hand, if the algorithms detect a misuse, we go into the second phase and use
the Overmind’s Algorithm 4 to reorganise the processes’ cpusets. To realize
these changes, the Overmind relies once again on Hwloc, since it provides
functionalities to change cpusets from processes as well as threads.

6.5 Experimental Results

We evaluated our approach to determine its overhead and to check if the
performance are close to the best configuration of the application execution.
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Figure 6.5.1 – Overmind overhead on one OpenMP region
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Figure 6.5.2 – Overmind overhead with increasing number of OpenMP regions

6.5.1 Overmind Overhead

To evaluate the overhead induced by the use of the Overmind, we performed
two tests. Figure 6.5.1 illustrates the time of a simple OpenMP parallel region
(1 and 256 threads) with and without the Overmind. The second test measures
the mean time per parallel region when increasing the number of parallel
constructs (Figure 6.5.2). For each parallel region, the Overmind applies the
algorithm to find a good placement and redefine the cpusets. Since the number
of threads remains the same, the threads are actually not moved. Hence, we
measure the raw overhead of the Overmind. From these two experiments, we
deduce that our Overmind has an overhead of 5 to 10us on the first OpenMP
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parallel region (e.g., the first block to redistribute the threads), regardless of
the number of threads. However, increasing the number of OpenMP regions
does not linearly increase the overhead. In fact, the internal bookkeeping is
done at the first block. Then, the only performed operations are computing the
new placement and redefining the cpusets. With no thread movement, these
operations are negligible, and the only visible overhead appears on the first
block.

6.5.2 Benchmark Evaluation

We evaluated our approach with several CORAL Benchmarks (Lulesh,
miniFE and AMG) on a small SLURM-based cluster with eight 68-core Intel
KNLs. Among those 68 cores, 4 are reserved for the OS, leaving 64 compute
physical cores for the application leading to 256 hyperthreads.
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Figure 6.5.3 – Lulesh execution time with multiple configurations on 1 KNL
node

The first experiment is on a single KNL node with 1, 2 or 4 threads per
core. For each number of threads, we try three different placement policies:
scatter, compact,0 and compact,1. For each configuration (number of threads
and placement policy), we evaluate the performances with and without our
Overmind (Figure 6.5.3): white bars without the Overmind and plain bars
with the Overmind. When there are enough threads to cover all available
hyperthreads on the node (left cluster of bars in Figure 6.5.3), all configurations
provide the same result. This is what we expected, since all compute units
are used, without any oversubscribing, for the whole computation. However,
when there are not enough threads to cover all available hyperthreads, the
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placement policy compact,0 is slower than the others. This one gathers the
threads on hardware threads of the first cores of each MPI process, leaving
half the cores unused, where the other policies place one thread per core. As
explained in Chapter 2, hardware threads are not the same as plain cores. This
policy makes use of less compute resources and may introduce cache thrashing
issues. When enabling the Overmind on this placement policy, the misuse of
resources is detected and the algorithm evenly distributes the OpenMP threads
on all the cores. The measured performance are equivalent to the two other
placements, removing the overhead due to the overloading of some cores.
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Figure 6.5.4 – Results of miniFE executions with multiple configurations on 1
KNL node

We realized the same kind of tests on miniFE with another configuration:
16 MPI processes, and either 4, 8 and 16 OpenMP threads per process. To
check the behaviour of the Overmind when also MPI processes are not on a
performing placement, we added the –cpu-bind=none parameter. This option
removes the binding of processes by SLURM, and all the running processes
are collapsed on the same core, with the same cpuset. In this specific case,
MPI processes share the same computing resources and, since they will have
the same behaviour for their OpenMP threads, these threads will also share
the same computing resources. These results are displayed in Figure 6.5.4,
with additional black bars for the configurations with –cpu-bind=none option,
and the striped bars for the same configurations using the Overmind. When
–cpu-bind=none is not used, we observe similar behaviour as Lulesh. When
this option is set, every configuration behaves poorly, with the compact,0 policy
still being the worst. However, when our Overmind is enabled, all performances
are improved. In each case, the Overmind evenly distributes the MPI processes
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with a specific cpuset for each, then their OpenMP threads thanks to their
own cpuset. The Overmind placement retrieves the best performance for each
configuration.
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Figure 6.5.5 – Results of lulesh, miniFE and AMG executions with multiple
configurations on 8 KNL nodes

Lastly, we executed the three CORAL benchmarks on 8 KNL nodes with
multiple configurations. Except for one specific test on which the use of the
Overmind slows down all configurations when a total of 256 threads per node
are used and speeds up all configurations when a total of 64 threads per node
are used, in most cases, the results are similar to the performances observed
on 1 node. Some of these results are shown in Figure 6.5.5 for Lulesh, miniFE
and AMG. We chose to display different number of MPI processes per tests to
show that the performance of the Overmind does not depend on the number of
processes and number of threads per processes. On all these configurations, we
observe once again that the placement policy compact,0 is the one providing
the worst performance without the Overmind. Thus, the Overmind succeeds in
correcting the problem and allows providing the same level of performance for
each configuration.

6.6 Conclusion and Discussion

6.6.1 Conclusion

The approach presented showed that Runtime Stacking and resource usage
can have a great impact on application’s performances. As HPC architectures
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and clusters evolve, getting more complex and more heterogeneous, we will see
more and more runtimes alive at the same time and working with each other.
Runtime interactions and Runtime Stacking issues in general need to be studied.

We re-used code, observations and experiences from the Overseer develop-
ment to create the Overmind. This hypervising tool uses previous algorithms
as well as new ones to manage flows and resources dynamically at execution
time. It considers all threads/processes and map them efficiently onto the
architecture topology. Available through a dynamic library, experiments show
that the overhead of this method is quite low and it is able to dynamically
adapt the execution-flow placement to reach better performance on different
benchmarks (CORAL) and various architectures (from multicore to manycore).

The observation and hypervisor concept (Overseer and Overmind) presented
can be the base for future research. The first part, the Overseer is the first step.
Looking at what is happening is crucial to understand runtime interaction and
get the opportunity to optimize applications. The second part, the Overmind
is a proof of concept of what can be done. By using simple algorithms, it
is possible to avoid catastrophic configurations where resources are badly
misuse. However, this hypervisor can be greatly improved upon. New resource
placement and reservation algorithms, new information gathered to get more
insight on resource usage. Enhancements of temporal block detection to enable
more flexibility when dealing with non-balanced workloads and more parallel
programming models. Moreover, all the study we conducted were looking at
specific resources: compute resources, core and hardware threads. It could
be extended to other resources: GPU, Accelerators in general, but also I/O
resources and so on. With architectures becoming more and more specific, we
could have threads closer to the network card than other, thus placing threads
communicating with other node near the cards would be a great choice.

6.6.2 Discussion

The approach presented works as ‘stand alone’ products. However, the
more elements of the HPC chain are involved, the more precise and efficient
the optimization. We already discussed this issue before when we could have
modified the kernel to gather scheduling information. This information would
be of great help to determine which runtimes are running at what time, when
threads are in waiting state and so on. On the hypervising phase, we could
imagine all the links in the chain of the resource reservation and exploitation
working together.

Application currently designed are creating more threads, from multiple run-
times, with specialised use. This creates applications with dynamic workloads.
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Listing 6.2 – Example of an Emerging Application using Runtime Stacking
1 START Appl i cat ion
2 Worker s e t A
3 Worker s e t B
4 A Complete
5 Worker s e t C
6 C complete
7 B Complete
8 END Appl i cat ion

The code presented in Listing 6.2 is a representation of such applications.
From the start of the application to the end, we see multiple worker set

being created and destroyed. They are not created and destroyed linearly.
Worker set A is the first created and destroyed. Worker set B is created while
the A is alive but is destroyed way after A finished. The C worker set is created
and destroyed while the B one is alive. If we look at resource usage during
all of that, depending on the number of worker in each set, we could have
period of time with a lot of threads alive, and some other with a minimal number.

If the resource manager and the hypervisor could communicate, the resource
manager could allocate more resource to certain worker sets, or could use the
resources for other applications. If in addition the user could give hints in his
code, he could for example tell the hypervisor ‘this worker set needs at least x
threads but no more than y’. And if this information is carried back to the
resource manager, then it could use resources more efficiently.
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Chapter 7

Conclusion

Numerical simulation is a major asset both for research and industry. It
is a catalyst for innovation. However, computing representations of physical
phenomenon requires specific techniques and powerful machines. High Perfor-
mance Computing (HPC) provides specialised solutions to run fast and reliable
simulations. Unfortunately, this compute power comes at a cost: architectures
are more and more complex and specialised.

Since the creation of computers, the goal as been to improve their capabili-
ties and performances. At first, making processors run faster was the focal point.
Then, when limits were reached, the addition of cores on processors became
the trend. Now the focus is made on specialised highly parallel hardware. All
these evolutions led to complex but powerful heterogeneous machines.

To help harness supercomputers’ potential, simulations make use of parallel
programming models, each embedding its own runtime. To extract a maximum
of performances from the machines, multiple runtimes are often used in the
same code, creating runtime stacking situations. However, little research has
been conducted on this new problematic. Using and mixing multiple runtimes
requires specific techniques and expertise. These techniques, designed to im-
prove applications’ performances can lead to situation that are detrimental to
them. Runtime stacking is necessary to exploit clusters’ architectures to their
maximum, but interferences that come from it can hinder global performances.
In this context, this thesis proposes a study of runtime stacking techniques and
their effects on applications’ performances. This study led to the development
of tools to assist application developers in detecting resource misuse as well as
in optimising runtime behaviours.
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7.1 Contributions Summary

Runtime Stacking Taxonomy As runtime stacking emerged as the solution
to leverage today supercomputers full performance, we explored how such
stacking can happen and behave. Stacking provides a frame to optimise
codes, increase the scalability of existing applications and extract the most
out of complex architectures. However, it also requires more complex resource
management. Based on the bibliography, we define a state-of-the-art taxonomy
for runtime stacking in two parts. First, the runtime stacking configurations
illustrate how runtime share resources at execution time. Then, runtime
stacking categories describe how runtime stacking codes are written. We use
both these classifications to determine what kind of optimisations are available
for each category of code and to characterise missuses that can happen at
execution time.

Algorithms and Tools We then present algorithms that analyse resource
usage of an application. These algorithms can be used to determine if any
resource has been overloaded or underused at any given time during an ap-
plication’s execution. We design a tool, called the Overseer, that collects
information relevant for the algorithms’ analysis. It then produces warnings
and hints in regard to the resource usage using the algorithms. As we explained,
our choices led to a lightweight tool, that can be used anytime without changing
the development process of an application (source modification, or compilation
chain additions).

Dynamic Resource Management Finally, we presented a second tool,
named the Overmind, that dynamically adapts the execution flow placement
to optimise applications’ performances. Our approach uses code, observations
and experiences from the Overseer to consider all threads/processes alive at
the same time, and map them efficiently onto the architecture topology. Once
again, we designed a lightweight tool that can be used with any application
without modification. Experiments show that the overhead of this method is
quite low and it is able to dynamically adapt the execution-flow placement
to reach better performance on different benchmarks (CORAL) and various
architectures (from multicore to manycore).

7.2 Contributions’ Perspectives

Larger vision for Overseer and Overmind In the near future, both the
Overseer and the Overmind could be improved on. First, they are for the
moment focused on compute cores and hyperthreads as resources. Their vision
could be broadened by taking more resources into account. Memory and data
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placement seems the most beneficial upgrade in the short term. However, in the
future, architecture might propose specialised cores, designed to perform some
operations better than others. If this is the case, determining which thread
is in charge of performing these operations and placing it on these dedicated
cores will be the next step.

Analysis and Profiling Tools On another note, we think that continuing
development on this tool is important as runtime stacking can have a great
impact on applications’ performances. We described in each chapter some
improvements and future work for both these tools, but the most important
one is certainly their integration into larger projects. The Overseer’s insight
could be coupled to already existing profiling tools. We think that adding
an architecture and runtime analysis to this tool would improve the scope
of profiling tools. Indeed, runtimes’ threads placement on resources could
be crucial as workers from a group have a tendency to share memory and
communicate with each other. Tools, are designed to pinpoint the scalability
bottlenecks like communications and synchronizations, would benefit from the
knowledge of which thread belongs to which runtime, or worker set. And
conversely, knowing which part of the code was the bottleneck could improve
the hints and warnings provided by the Overseer. Indeed, maybe workers from
a set were placed on different sockets or NUMA nodes, but didn’t need to
communicate (or communications were not the bottleneck). In this case, solving
the placement ‘misuse’ would not be critical or needed at all. The analysis
could be focused on the bottlenecks and give a certain degree in the warnings
with how much the issue slowed the execution.

Dynamic Resource Management Tool Concerning the Overmind, the
hypervising tool, we still have a lot of improvements to do. The tool’s state pre-
sented is still just a proof of concept. We demonstrated that runtime placement
and resource usage can be improved on by this type of hypervising software.
However, we only implemented one algorithm. This algorithm works with the
current architectures and with the group of codes we tested it on. However, we
can still need to study code behaviour. We assumed that most current codes
would need workers from the same set as close a possible to each other, while
in the meantime not overloading resources. This assumption could be false or
slightly incorrect for other codes. In this case we would need to change the
analysis and placement algorithms to provide more flexibility. For example,
some runtimes make use of threads specialised in performing communication
operations. Other use helper threads to perform certain operations. The
placement of these threads can change application performance. They can be
spawned on cores close to the rank performing the calling the communication
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or help function. They can also be placed on two hardware threads of the same
core. They could even be placed on cores dedicated to helper threads on the
node. Other threads could use dedicated cores like the ones spawned by the
Operating System for example.

Make Use of External Information Lastly, we thought of an improvement
that could be implemented in both the Overmind and the Overseer. We assume
that the user can have an idea of the runtime stacking he is using. This
information can be used to determine what kind of leverage he can have on
his runtimes behaviour. Coupled with the knowledge of which runtime is used
and the architecture’s topology, we could give basic command line arguments
to launch the application and allocate resources. With the information of
which runtime is used, the arguments would be more precise, with specific
runtime options. Lastly, we assume that the user also knows how he wants his
runtime to behave if he is aiming for a non-standard configuration (for example
allocating processors for their memory but not using computing resources). We
plan on developing a simple language for the user to describe the configuration
he wants to achieve. Passing this configuration to our tool would either give
him the command line arguments to use in the case of the Overseer, or give
more information for the Overmind to find the best configuration. Getting
this external type of information could also come from previous executions.
Assuming the behaviour will be the same on two consecutive runs, our tools
could look at previous logs to optimise resource usage by already knowing
which runtimes will be spawned, when, as well as how many workers they will
use. This would reduce thread movement as they would be placed on the right
cores from the start when possible.

7.3 General Perspectives

One of the goals of this thesis was to point out problems that can arise
when mixing multiple parallel programming models. Runtime stacking and
resources usage have a great impact on HPC simulations’ performances. This
impact will likely increase with future HPC machines and codes. Thus, if
programming techniques continue to revolve around runtimes and their mixing,
runtime stacking needs to be one of the principal focus in HPC performance
optimisation. With the increasing complexity of machines’ architecture, and
the multiplication of runtimes, code development is meant to also become
more complex. However, it is not possible for experts in mathematics, physics,
biology or any other science to also be computer science and HPC experts. It is
necessary to improve development and optimisation techniques to be accessible.
Dynamic management of runtimes and resources with third party software is a
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Listing 7.1 – Example of an Emerging Application using Runtime Stacking
1 START Appl i cat ion
2 Worker s e t A
3 Worker s e t B
4 A Complete
5 Worker s e t C
6 C complete
7 B Complete
8 END Appl i cat ion

first step. But other solutions needs to be considered.

Let us first look back at the predicted emerging application’s design in
Listing 7.1. Worker sets lifespan interweave and the number of worker is varying
during the application’s execution. This new kind of application bring new
problematics. How to allocate resources at application startup? Should we
allocate as many resources as possible to optimise the times the maximum of
worker are present? In this case, some resources would be idle for an amount of
time, wasting compute power and energy. Or should we allocate less resources,
and overload them if the number of worker is too large? This solution would
have a negative impact on application’s performances. To better exploit clus-
ter’s resources, a dynamic management of runtimes is necessary. Here are leads
that can be explored.

Central Runtime Management One solution could be for runtimes to be
managed by themselves instead of needing the addition of another layer of
software. A prerequisite would be runtimes discussing, negotiating, sharing
and exchanging resources. All runtimes would need to implement a common
API to share topologies for example, or to ask for certain number and types
of resources. If we want to keep a third party, we could imagine a hub for
runtimes to update their current status. Are they doing computations, waiting
for resources, waiting for communications, how many and which resources are
they using, for how long and so on. New runtimes could then know which
resources to use in priority, or start negotiating for resources. These ideas
require a different runtime management. Indeed, runtime would need to be
able to change parallel sections size dynamically, re-arrange worker groups, or
even share workers with each other. The scheduler and OS would also certainly
be involved to change cpusets, and allow runtimes more or less resources.
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Finer Runtime and Resource Management opportunities In parallel
to a central runtime management, new management opportunities can be given
to code developers. Indeed, some code parts and algorithms can require a finer
management than others. Giving more information to runtimes to manage
these parts more precisely could lead to better resource usage. Code developers
would however have to adapt to new coding techniques and paradigms. For
example, giving a range of needed resources for each parallel section would
permit a finer resource management. Instead of creating and needing a fixed
number of workers, the parallel section could use between a variable number of
threads depending on the other runtimes, and available resources. This solution
could be considered for code sections limited in scalability, which would not be
efficient with infinite amount of resources. We can also imagine codes using
worker threads and also helper threads. This code could ask for one helper
thread every x worker thread. The number of worker and helper threads would
be determined at execution time depending on available resources.

Using Clusters to their Maximum Potential Usually clusters are not
used at 100% of their capabilities. During the execution of a simulation, some
resources are idle while other are working. An already existing idea is to imple-
ment the same algorithm multiple times, optimised for specific hardware. One
copy would be optimised for accelerator type hardware like GPUs, the other
for CPUs, another for KNL and so on. Depending on cluster’s architecture and
other runtimes’ needs, the most efficient solution would be determined. With
the increasing complexity of architecture and their tendency to evolve towards
heterogeneous designs, this type of solution will certainly gain popularity.

Almighty Resource Manager Previous solutions are about adding a layer
managing runtimes and resources. An other solution is for actors already
present to evolve and ally. We can for example imagine involving the resource
manager. Instead of adding a software layer with a hub to share resources, the
resource manager could do this work. It is already in charge of configuring
and allocating resources for each job running on clusters. An API could be
developed for runtimes and resource manager to communicate. Runtimes could
make calls to request more resources, or to relinquish them. The resource
manager could then, knowing the state of the machine, remap runtimes on
resources. This solution has the drawback of needing extensive developments
in resource managers, runtimes, and in a shared API. However, its huge benefit
is in the centralisation of the solutions.

Optimise Resource Usage with Lightweight Workloads Finally, we
spoke a lot of large, time-consuming and resource hungry simulations. However,
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HPC clusters are not only used by thousand-cores simulations, they are also
exploited by more modest simulations or jobs. Some jobs only need a couple
of nodes, or sometimes less than a node to compute. Some executions are
only a couple minutes long. Exploiting a cluster’s resources to their maximum
could also come through optimising small job placement. This would be more
efficient as more jobs could run at the same time. It would also be more energy
efficient as fewer processors and cores’ resources would be wasted. This still
comes back to emerging applications using varying numbers of workers and
worker set during their execution. Free resources, in low worker count steps
could be exploited by small or short jobs waiting for allocation.
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