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Résumé

Dans cette thèse, nous développons des détecteurs de caractéristiques de bas niveau
pour les images radar à synthèse d’ouverture (SAR) afin de faciliter l’utilisation conjointe
des données SAR et optiques. Les segments de droite et les bords sont des caractéristiques
de bas niveau importantes dans les images qui peuvent être utilisées pour de nombreuses
applications comme l’analyse ou le stockage d’images, ainsi que la détection d’objets. Alors
qu’il existe de nombreux détecteurs efficaces pour les structures bas-niveau dans les images
optiques, il existe peu de détecteurs de ce type pour les images SAR, principalement en
raison du fort bruit multiplicatif. Dans cette thèse, nous développons un détecteur de
segment de droite générique et un détecteur de bords efficace pour les images SAR.

Le détecteur de segment de droite proposé, nommé LSDSAR, est basé sur un modèle
Markovien a contrario et le principe de Helmholtz, où les segments de droite sont validés en
fonction d’une mesure de significativité. Plus précisément, un segment de droite est validé
si son nombre attendu d’occurrences dans une image aléatoire sous l’hypothèse du modèle
Markovien a contrario est petit. Contrairement aux approches habituelles a contrario, le
modèle Markovien a contrario permet un filtrage fort dans l’étape de calcul du gradient,
car les dépendances entre les orientations locales des pixels voisins sont autorisées grâce à
l’utilisation d’une chaîne de Markov de premier ordre . Le détecteur de segments de droite
basé sur le modèle Markovian a contrario proposé LSDSAR, bénéficie de la précision et
l’efficacité de la nouvelle définition du modèle de fond, car de nombreux segments de droite
vraie dans les images SAR sont détectés avec un contrôle du nombre de faux détections. De
plus, peu de réglages de paramètres sont requis dans les applications pratiques de LSDSAR.

Dans la deuxième partie de cette thèse, nous proposons un détecteur de bords basé
sur l’apprentissage profond pour les images SAR. Les contributions du détecteur de bords
proposé sont doubles : 1) sous l’hypothèse que les images optiques et les images SAR
réelles peuvent être divisées en zones constantes par morceaux, nous proposons de simu-
ler un ensemble de données SAR à l’aide d’un ensemble de données optiques ; 2) Nous
proposons d’appliquer un réseaux de neurones convolutionnel classique, HED, directement
sur les champs de magnitude des images. Ceci permet aux images de test SAR d’avoir
des statistiques semblables aux images optiques en entrée du réseau. Plus précisément, la
distribution du gradient pour toutes les zones homogènes est la même et la distribution du
gradient pour deux zones homogènes à travers les frontières ne dépend que du rapport de
leur intensité moyenne valeurs. Le détecteur de bords proposé, GRHED permet d’améliorer
significativement l’état de l’art, en particulier en présence de fort bruit (images 1-look).

Abstract

In this thesis we develop low level feature detectors for Synthetic Aperture Radar
(SAR) images to facilitate the joint use of SAR and optical data. Line segments and
edges are important low level features in images which can be used for many applications
like image analysis, image registration and object detection. Contrarily to the availability
of many efficient low level feature detectors dedicated to optical images, there are few
efficient line segment detector and edge detector for SAR images mostly because of the
strong multiplicative noise. In this thesis we develop a generic line segment detector and
an efficient edge detector for SAR images.

The proposed line segment detector which is named as LSDSAR, is based on a Mar-
kovian a contrario model and the Helmholtz principle, where line segments are validated
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according to their meaningfulness. More specifically, a line segment is validated if its ex-
pected number of occurences in a random image under the hypothesis of the Markovian a
contrario model is small. Contrarily to the usual a contrario approaches, the Markovian a
contrario model allows strong filtering in the gradient computation step, since dependen-
cies between local orientations of neighbouring pixels are permitted thanks to the use of a
first order Markov chain. The proposed Markovian a contrario model based line segment
detector LSDSAR benefit from the accuracy and efficiency of the new definition of the
background model, indeed, many true line segments in SAR images are detected with a
control of the number of false detections. Moreover, little parameter tuning is required in
the practical applications of LSDSAR.

The second work of this thesis is that we propose a deep learning based edge detector
for SAR images. The contributions of the proposed edge detector are two fold : 1) under
the hypothesis that both optical images and real SAR images can be divided into piecewise
constant areas, we propose to simulate a SAR dataset using optical dataset ; 2) we propose
to train a classical CNN (convolutional neural network) edge detector, HED, directly on
the graident fields of images. This, by using an adequate method to compute the gradient,
enables SAR images at test time to have statistics similar to the training set as inputs to the
network. More precisely, the gradient distribution for all homogeneous areas are the same
and the gradient distribution for two homogeneous areas across boundaries depends only
on the ratio of their mean intensity values. The proposed method, GRHED, significantly
improves the state-of-the-art, especially in noisy cases such as 1-look images.
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Notations

z = |z|ejφ SAR data, a complex backscattered electro-magnetic field with |z|
representing its amplitude and φ representing its phase.

L the number of looks for a SAR image.

〈I〉 the mean intensity value of a homogeneous area.

Γ(·) the Gamma function.

s the speckle noise.

(x, y) pixel location.

ε the threshold for NFA.

I an image.

I0 a pure random image.

Gh(x, y) horizontal components of gradient for pixel located at (x, y).

Gv(x, y) vertical components of gradient for pixel located at (x, y).

G(x, y) gradient magnitude for pixel located at (x, y).

angi the angle of the local orientation for the i-th pixel.

(cx, cy) the center location of the approximated rectangle r.

r the rectangle r, the candidate line segment.

M the matrix used to estimate the angle of the rectangle.

H0 the a contrario model used in LSD.

n(r) the total number of pixels in rectangle r.

k(r) the number of aligned pixels in rectangle r.
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NFA(r) the number of false alarms associated with rectangle r.

NR the total number of possible rectangles.

P(k0(r) ≥ k(r)) the probability of rectangles with n(r) pixels having equal
or greater number of aligned pixels than k(r).

M ×N the size of the image.

τ the angle tolerance.

p the probability of a pixel to be aligned to the rectangle
up to a certain angle tolerance.

κ the number of aligned pixels in rectangles with n pixels.

kn the minimum number of aligned pixels for a rectangle with
n pixels to be ε-meaningful.

mn the number of rectangles with n pixels.

Nmax the maximum possible number of pixels in a rectangle.

ri the i-th rectangle in a random image.

Xri a random variable representing whether rectangle ri is
ε-meaningful.

m(R) the number of ε-meaningful rectangles in a realization.

P the number of directions used to compute the gradient.

Ri(x, y) the ratio of average at pixel located at (x, y) along
the i-th direction.

M i
1(x, y) the arithmatic mean on one side of windows of pixel

located at (x, y), along the i-th direction.
M i

2(x, y) the arithmatic mean on the other side of windows of
pixel located at (x, y), along the i-th direction.

T i(x, y) the normalized ratio along the i-th direction for pixel
located at (x, y).

Groa(x, y) the gradient magnitude computed by ROA in pixel
located at (x, y).

Rh(x, y) the ratio of exponentially weighted average computed
along the horizontal direction for pixel located at (x, y).

Rv(x, y) the ratio of exponentially weighted average computed
along the vertical direction for pixel located at (x, y).

mh
1(x, y) exponentially weighted average on one side of windows

along the horizontal direction.
mh

2(x, y) exponentially weighted average on the other side of
windows along the horizontal direction.

T h(x, y) the normalized ratio of exponentially weighted average
for pixel located at (x, y) along the horizontal direction.
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T v(x, y) the normalized ratio of exponentially weighted average
for pixel located at (x, y) along the vertical direction.

Groewa(x, y) the gradient magnitude computed by ROEWA.

Ggr(x, y) the gradient magnitude computed by GR.

anggr(x, y) the angle of the gradient orientation computed by GR.

α the weighting parameter for the exponential weight
function in ROEWA and GR.

Xt the random variable representing whether the t-th pixel
is aligned.

P(X1 = x1|X0 = x0) the transition probability of the first order Markov chain.

H′
0 the Markovian a contrario model.

NFA′(r) the number of false alarms associated with rectangle r
in a pure random image following H′

0.
PH′

0
(k0(r) ≥ k(r)) the probability of a rectangle with n(r) pixels having equal

or greater number of aligned pixels than k(r).
Yt =

∑n
j=tXj the number of aligned pixels in the tail of the pixel sequence

starting from the t-th pixel.
P(Yt ≥ k) the probability of the tail of the pixel sequence starting from

the t-th pixel having more than k aligned pixels.
P(Yt+1 ≥ k′|Xt = x) the conditional probability of the tail of the sequence starting

from the (t+ 1)-th pixel having more than k′ aligned pixels.
w(r) the width of rectangle r

ℓ(r) the length of rectangle r

u an image in the training dataset.

uj the j-th pixel in image u.

|u| the total number of pixels in image u.

G the edge ground truth associated with u.

Gj the edge ground truth of the j-th pixel in image u.

|G| the total number of pixels in G.

W the collection of parameters in standard network layers
excluding those of side layers.

Wside the collection of parameters in all side layers.

W
m
side the collectioon of parameters in the m-th side layer.
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Lside(W,Wside) the weighted sum of the losses from side outputs.

βm the weights for the loss of the m-th side output.

ℓ
(m)
side(W,W

(m)
side) the loss of the m-th side output.

λ the balance weight between the loss from positive
and negative classes.

|G+| the number of edge pixels in ground truth.

|G−| the number of non-edge pixels in ground truth.

Ĝ
(m)
side the edge prediction map of the m-th

side layer.

â
(m)
j the activation value of the j-th pixel in the output

of the m-th side layer.

Â
(m)
side the activations of the output

in the m-th side layer.
σ(·) the sigmoid function.

Ĝfuse the edge prediction map of the fused output.

hm the fusion weight of the output in the m-th side layer.

Lfuse(W,Wside, h) the loss of the fused output.

Dist(·) the distance between fused output and ground truth.

(W,Wside, h)
⋆ the optimized parameters after training.

ĜHED the final output of HED.

〈Iopt〉 the mean intensity value of the speckled optical dataset.

〈ISAR〉 the mean intensity value of a real SAR image.

û SAR image with normalized mean intensity value.

tmode the mode of a distribution.
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Chapitre 1

Context

1.1 Introduction

Remote sensing is the process of acquiring information about an object, an area or a
phenomenon without any physical contact. Remote sensing has many advantages inclu-
ding the ability to acquire information from inaccessible areas such as oceans and deep
valleys, allowing the coverage of large areas, allowing repetitive coverage, the ability to
provide data in all weather conditions and so on. Due to the valuable properties of remote
sensing, they can be used in many applications such as land use and land cover (classifi-
cation, change detection), agriculture (crop health monitoring, crop acreage estimation),
water resources (distributed hydrological modelling, rainfall monitoring), oceanographic
applications (identification of potential fishing zones, study of the sea surface tempera-
ture). urban and regional applications (urban sprawl analysis), environmental applications
(study of urban heat islands, landfill site identification), disaster management applications
(landslide hazard zonation, flood modelling and inundation studies). Many missions have
been launched recently for various applications, for example, the Aeolus mission launched
by ESA in 2018 to improve the quality of weather forecasts, and to advance our unders-
tanding of atmospheric dynamics and climate processes, the Sentinel-5P mission launched
by ESA in 2017 for atmospheric monitoring, the Sentinel-3 mission launched in 2016 for
marine observation, the Sentinel-2 mission launched by ESA in 2015 for land monitoring,
the Sentinel-1 mission launched by ESA in 2014 for land and oceau monitoring.

The new generation of remote sensing sensors provide data with improved resolution
and with high temporal frequency. One of the main challenges is the joint use and combi-
nation of such data, especially the combination of Synthetic Aperture Radar (SAR) and
optical data. SAR is well known for its all-weather and all-time property since it is able to
penetrate darkness, clouds and rain. It provides valuable information for the applications
like urban monitoring, military surveillance, digital elevation model computation, ground
movement monitoring, etc. In comparison, optical data are available only with good wea-
ther conditions but are easier to understand for human being since they are close to natural
images. These data have nowadays high temporal repetition frequency and mutitemporal
datasets are available. One of the major challenge for data combination is the reliable ex-
traction of common features. Low level features like line segments or edges are specially
difficult to extract from SAR data because of the speckle noise. The aim of this PhD work
is to develop useful methods to extract reliabe features on SAR data.
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1.2 Motivations

Line segments and edges are important low level features in images. Both line segments
and edges can be used as low level features for tasks like object detection/recognition, image
segmentation and image analysis. What is more important, both line segments and edges
can be used for image registration Chen et al. [2014], Zhang et al. [2015], Zhao et al. [2018].
Image registration is a usual preprocessing step for the joint use of information from images
across views, especially for the combination of images from different sensors, like SAR and
optical images. Many researches have been dedicated to SAR and optical image registration
using line segments and edges Sui et al. [2015], Xiong et al. [2016], Shen et al. [2017], Zhang
et al. [2017], while the accuracy of registratioon relies a lot on the robustness and reliability
of the line segment detectors and the edge detectors. Many methods have been proposed
for line segment detection and edge detection in natural images and these methods can
be easily applied to remote sensing optical images due to their similar statistics. However,
line segment detection and edge detection in SAR images remain challenging tasks, mostly
because of the strong multiplicative noise. Those methods developed for optical images
can not be directly applied to SAR images because of the difference in the nature of the
noise. The optical images are usually contaminated by the additive Gaussian noise, while
SAR images are usually contaminated by multiplicative noise. In order to facilitate the
combination of SAR and optical data, a reliable and generic line segment detector as well
as an edge detector will be very helpful.

Challenges

Line segment detectors and edge detectors usually depend on the computation of the
gradient (or some similar operators) in each pixel. Because of the strong multiplicative
noise in SAR images, the gradient magnitudes in homogeneous areas usually have large
variations, even for a method suitable for SAR images. Thus, it is difficult to distinguish
between noise pixels (which are corresponding to pixels in homogeneous areas), and edge
pixels (especially for low-contrasted edges). Important edge pixels could be lost if a high
threshold is used, though a high threshold could be efficient for suppressing the speckle
noise. If the threshold is low, post-processing will be challenging since the number of false
detections is difficult to control. The most challenging problem for developing line segment
detectors and edge detectors is how to ensure reasonable amount of correct detections while
controlling the number of false detections.

1.3 Contributions

The main contributions of this thesis lie in two parts : 1) we propose a generic line
segment detector for SAR images, which is based on a Markovian a contrario model and
the Helmholtz principle Desolneux et al. [2008] ; 2) we propose a CNN-based edge detector
for SAR images leveraging a SAR dataset simulated from an optical dataset. We briefly
describe them in the following.

1.3.1 LSDSAR, a Markovian a contrario model for line segment detection
in SAR images

The first work of the Ph.D is to develop a generic line segment detector for SAR images.
Borrowing the idea from the famous line segment detector (LSD Grompone von Gioi et al.
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[2010]) for natural images, we propose to develop a LSD-like line segment detector for SAR
images.

LSD relies on the grouping of pixels sharing the same local orientations (the local
orientation is the direction perpendicular to the gradient orientation), after which a set of
line support regions are obtained. All line support regions are then approximated using
rectangles. Therefore, all rectangles are candidate line segments. Finally, all candidate line
segments are validated based on the a contrario model Desolneux et al. [2000] and Helm-
holtz principle Desolneux et al. [2008]. Specifically, a candidate line segment is validated
according to its meaningfulness. If a line segment is unlikely to happen in a random image,
then it is considered as a meaningful one and is accepted, otherwise it will be rejected
since it is common in random images. More precisely, according to the definition of mea-
ningfulness in Desolneux et al. [2000], a line segment is considered to be ε-meaningful if
the expected number of its occurences in a random image is less than ε. Thus, for each
candidate line segment, its Number of False Alarms Desolneux et al. [2000], Grompone
von Gioi et al. [2010] is computed under the hypothesis of the a contrario model and
compared with a chosen threshold ε. If its NFA is smaller than ε, then it is accepted as a
meaningful one, and it is rejected otherwise. The advantages of LSD are as follows : first,
the null hypothesis (the a contrario model) against which a line segment is detected does
not depend on the observed image, and thus it is a generic one. Second, ε can be safely set
to 1 which ensures that all detected segments are 1-meaningful. What’s more important,
using ε = 1 ensures that on average, no more than 1 false detection could be done by
chance in a random image.

The advantages of the LSD detector are obvious since it ensures all detected line seg-
ments are meaningful and the number of false detections is controlled. What is more im-
portant, no parameter tuning is required in general applications of LSD, except for some
specific situations where one parameter (among six) may need to be tuned, thanks to the
generic priori null hypothesis as well as the insensitiveness of the NFA associated with a
rectangle to the value of ε. The aim of our work is to develop a similar line segment detector
for SAR images. First, the gradient computation step is replaced with a gradient compu-
tation method suitable for SAR images because the usual gradient computation methods
dedicated to natural images do not have a constant false alarm rate for SAR images Touzi
et al. [1988]. However, a large averaging window (with size 21 × 21 pixels for example,
much larger than the 2× 2 mask used in LSD) is usually necessary to reduce the influence
of speckle noise and helpful for detecting important line segments in SAR images. The
independence hypothesis in the usual a contrario model is not followed. By introducing a
first order Markov chain in the a contrario model to take into account the dependencies
between the local orientations of neighbouring pixels, we propose a Markovian a contrario
model, against which a meaningful line segment is detected. The proposed line segment
detector LSDSAR is a generic line segment detector for SAR images and has the same
advantages as LSD.

1.3.2 GRHED, a CNN based edge detector for SAR images

Edge detection in SAR images remains a challenging task, especially in the most chal-
lenging 1-look situation. A global threshold which is able to give good counterbalance in
preserving important edges and suppressing the influence of speckle noise seems inaccessible
in general case. Therefore, a gradient computation method, which can separate the edge
pixels and noise pixels more efficiently is required. Observing the success of CNN (Convolu-
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tional Neural Network) based edge detectors in natural images, we study the applicability
of these CNN based edge detectors to SAR images. One crucial factor that contributes to
the success of CNNs is a large dataset for training, while there is still no training dataset
for edge detection in SAR images. However, edges correspond to changes in local brightness
or textures in grayscale images and not to the kinds of targets in images. The definition of
edges in optical images should be similar to that in SAR images. Therefore, we propose to
simulate a SAR dataset using an optical dataset BSDS500 Arbelaez et al. [2011] to train
CNNs for edge detection in SAR images. Under the hypothesis that both optical and SAR
images can be divided into piecewise constant areas, the main gap between simulated SAR
images and real SAR images lies in the differences in the possible mean intensity values
of homogeneous areas, where some homogeneous areas with high mean intensity values
(higher than 2552) in real SAR images do not exist in the simulated SAR dataset. In or-
der to cope with the gap, we propose to train CNNs on the gradient magnitude fields of
images and apply the trained models to the gradient magnitude fields of testing images.
By computing the gradient with a ratio based method, the gradient distribution of ho-
mogeneous areas will be the same regardless of their mean intensity values. The gradient
distribution of two homogeneous areas across boundaries depends only on the ratio of their
mean intensity values. Therefore, the differences between the gradient magnitude fields of
speckled optical images and real SAR images are small. The proposed CNN based edge
detector GRHED is more efficient than the traditional methods in highlighting true edge
pixels and suppressing noise pixels. With the gradient computation done by GRHED, a
simple non-maxima suppression and a plain thresholding are enough to obtain reasonable
edge maps, even in the most challenging 1-look situations. What is more important, the
models trained on the gradient magnitude field of speckled optical images can be directly
applied to the gradient magnitude fields of real SAR images while detecting many true
edge pixels with a probability of false alarms control. Furthermore, the performances of
GRHED are insensitive to the choice of the threshold. GRHED with a threshold chosen
from a relatively large range are all able to obtain near-optimal edge maps. The proposed
CNN edge detector GRHED largely outperforms existing edge detectors for SAR images.

1.4 Organization of the thesis

This thesis can be divided into two parts : in part I, we describe the Markovian a
contrario model based line segment detector LSDSAR for SAR images ; in part II, we
provide details about the CNN based edge detector GRHED. Before these two parts, we
first provide the basic principles of SAR, the statistics of SAR images and the details
about the real SAR data that will be used in this thesis in chapter 2. Part I consists of
four chapters. Chapter 3 describes the existing line segment detectors for both optical and
real SAR images, and describe the motivation of adapting LSD to SAR images. Chapter 4
describes the details of LSD detector. In chapter 5, we describe the proposed LSDSAR line
segment detector. A thorough analysis and comparison of existing gradient computation
methods is provided. In addition, the definition of the proposed Markovian a contrario
model is also given in this chapter. In chapter 6, we provide a comprehensive demonstration
of the proposed line segment detector in pure noise images, synthetic edge images and real
SAR images. Some conclusions for the work of line segment detector are given at the end
of this chapter. Part II is also constituted by four chapters. In chapter 7, we introduce
the existing edge detectors for SAR images and propose to develop a CNN based edge
detector for SAR images. Chapter 8 gives a brief description of HED network architecture
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and its formulation. The details about the simulated SAR dataset using optical dataset
are also provided in this chapter. Besides, we give an experimental analysis of what HED
can learn from training and deduce that the convolutional layers in HED mainly learn
to process samples drawn from many distributions. In chapter 9, we first analyze the
differences between speckled optical images and real SAR image. In order to cope with the
gap between training and testing data, we propose to train HED on the gradient magnitude
fields of speckled optical images and apply the trained model to the gradient magnitude
fields of testing images, and give the motivation and benefits to do this. In chapter 10,
the advantages of GRHED are demonstrated in several 1-look synthetic edge images, 200
1-look speckled optical images, one realistically simulated SAR image and two 1-look real
SAR images. The summary of the work GRHED are given at the end of this chapter. We
summarize the thesis and give some perspectives in chapter 11.
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Chapitre 2

SAR basics, statistics of SAR images

and data used in this thesis

2.1 Principles of SAR and its applications

Synthetic Aperture Radar (SAR) is an active sensor providing illumination in the form
of microwaves. It is typically mounted on aircraft or spacecraft and its origins use an ad-
vanced form of side looking airborne radar. SAR sensors send successive pulses of electrom-
ganitic waves and the echoes reflected from the target scene for each pulse are recorded.
Since the location of antenna relative to the objects in the target scene is changing, echoes
from multiple antenna positions can be combined through signal processing techniques. In
this way, a large synthetic antenna aperture can be created and thus images with higher
spatial resolution can be obtained. Pulses of electromagnetic waves are emitted in the di-
rection perpendicular to the flight path. The direction perpendicular to the flight path is
the range direction and the direction parallel to the flight path is the azimuth direction.

The ground resolution is defined as the minimum distance between two object points
on the ground that can be distinguished in an image. In the range direction, the range
resolution depends on the frequency bandwidth of the pulse and the incidence angle of
the beam (usually defined as the angle between the midpoint of the swath and nadir).
Therefore, better range resolution can be achieved by increasing the frequency bandwidth.
In the azimuth direction, the azimuth resolution depends on the aperture length. Because
of the motion of the radar antenna, a longer aperture can be synthesized using the Doppler
spread of the echo signal. Therefore, the azimuth resolution of SAR can be much better
than a conventional one.

Since illumination is provided by the emitting antenna, SAR is independent of day
time. It has day and night imaging capability. In addition, pulse frequencies can be se-
lected so that SAR is independent of weather. Therefore, SAR is widely used in remote
sensing applications such as terrain discrimination, subsurface imaging, volcano and earth-
quake monitoring. Besides, SAR is also a very useful tool for applications like environment
monitoring, urban growth and military surveillance.

2.2 Statistics of SAR images

In a SAR image, each pixel (a single resolution cell) corresponds to an area on the
ground with a certain size, while many different scatterers may exist in this area. Com-
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pared to the size of the area, the wavelength of the electromagnetic wave is very small
and thus it allows the electromagnetic wave to interact with each individual scatterer. The
echoes are reflected by those scatterers and they interfere each other either constructi-
vely or destructively. Constructive interferences produce a bright pixel in the image while
destructive interferences produce a dark pixel.

Each pixel in a SAR image can be represented as a complex value. Due to the coherent
imaging system, SAR data presents the well known speckle phenomenon. In the case of
rough surfaces (roughness being defined compared to the wavelength) Goodman has de-
veloped a model of backscattering Goodman [1975]. The real and imaginary components
can both be modeled as independently and identically Gaussian distributed variables as a
consequence of central limit theorem, under the assumption in each resolution cell that :
1) no dominant scatterer exist ; 2) the scatterers are statistically identical and independent
and there are a large number of scatterers ; 3) the phases of echoes are uniformly distri-
buted. For each pixel value z, the probability can thus be modeled as a 2-dimensional
multivariate normal distribution. Another way to describe the complex value for each pixel
is z = |z|ejφ (j2 = −1), with |z| representing the amplitude, |z|2 representing the intensity.
and φ representing the phase. In the case of fully developed speckle model of Goodman, φ
is uniformly distributed. Therefore, when dealing with a single image, the phase does not
carry information and only amplitude or intensity information is exploited.

Original SAR images are 1-look images, but a pre-processing of multi-looking can be
applied to reduce the signal fluctuations. This multi-looking operator is given by :

y =
1

L

L
∑

i=1

|zi|
2, (2.1)

L being the number of looks and zi reprensenting the pixel in the i-th 1-look image. It
corresponds to an incoherent averaging of the backscattered values in the power domain
to reduce the noise.

Following the model of Goodman [1975] of fully developped speckle previously mentio-
ned, it can be shown that the amplitude of the backscattered electro-magnetic field of a
homogeneous area with mean intensity 〈I〉 follows a Nakagami distribution :

f(t|〈I〉) =
2

Γ(L)

(

L

〈I〉

)L

t2L−1e−(Lt2/〈I〉), (2.2)

L being a sensor or data parmeter and Γ : x 7→
∫ +∞
0 tx−1e−tdt is the Gamma function.

For images with the best resolution, L = 1 and amplitude of a homogeneous area follows
a Rayleigh distribution. Another way of modeling the 1-look data is the multiplicative
model : t =

√

〈I〉s, s representing the speckle noise and following the Rayleigh distribution
given in eq. (2.2) with 〈I〉 = 1 and L = 1. This model is not exactly verified by real SAR
data since the pixels are usually spatially correlated (due to over-sampling and spectrum
apodization for lobe reduction).

The intensity of the backscattered electromagnetic field of a homogeneous area with
mean intensity 〈I〉 follows a Gamma distribution :

f(y|〈I〉) =
1

Γ(L)

(

〈I〉

L

)−L

yL−1e
−yL

〈I〉 . (2.3)

In this thesis, unless explicitly mentioned, we will work on amplitude SAR images. We
will show by experiments that the usual gradient computation methods for SAR images



21

keep its valuable CFAR property (constant false alarm rate) in both amplitude and inten-
sity SAR images, without influencing their accuracy.

2.3 Data used in this thesis

In order to test the performances of the developed low level feature detectors, several
kinds of images are used to give a comprehensive analysis of the proposed algorithms.
Details about the synthetic SAR images (simulated data) will be described when they are
used.

In this section, we give details about the real SAR images as shown in table 2.1. We
have used a middle resolution image acquired by Sentinel-1 (ESA, European Space Agency)
on the Netherlands (Lelystad city). This image is on a rather flat area with many fields,
roads and channels and some small urban areas as can be seen Figure 2.1. The other image
is a very high resolution image acquired by TerraSAR-X on San-Francisco (USA) it is a
very dense urban areas with a harbor where boats can be seen (figure 2.2.

Table 2.1 – real SAR images.

Satellite Sentinel 1 TerraSAR-X

Place
Lelystad San Francisco

(Netherlands) (United States)
Date 06/10/2015 02/10/2011

Image mode Stripmap -
Image size (pixels) 1024× 3072 2048× 2048

pixel-spacing (azimuth) 4m 1m
pixel-spacing (range) 14m 1m

Sentinel-1 image (Leystad)

Figure 2.1 – The Sentinel-1 image (Leystad) used in this thesis. The size of the image are
1024× 3072 pixels.
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TerraSAR-X image (San Francisco)

Figure 2.2 – The TerraSAR-X image (San Francisco) used in this thesis. The size of the
image are 2048× 2048 pixels.
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PART I

Line segment detection in SAR

images
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Chapitre 3

Introduction

Two kinds of linear structures can be distinguished in Synthetic Aperture Radar (SAR)
images : narrow bands of pixels having a given width, usually simply called linear fea-
tures, and straight subparts of edges, that we will call line segments. The detection of
linear features (narrow bands of pixels having a given width Hellwich and Mayer [1996])
in SAR images has received a lot of attention, typically in view of the detection of road
networks Tupin et al. [1998], Chanussot et al. [1999], Medeiros et al. [2003]. In contrast,
reliably detecting line segments (straight subpart of edges) is still an open problem. Ne-
vertheless, line segments are important features in SAR images, mostly because many
man-made objects like buildings, farmlands or airports can be described by line segments.
Besides, most geometric structures can be approximated by line segments. In addition,
line segments can be extracted as low level features and then be used for tasks such as
image registration and target recognition. Since the aim of the thesis is to develop useful
tools for the joint use of SAR and optical data, and line segments are important low level
features which can be useful for the combination of them, we first address the problem of
line segment detection in SAR images.

3.1 Line segment detectors for SAR images

Due to the strong speckle noise, methods that are effective for optical images cannot
be straightforwardly applied to SAR images. First, the usual assumption that noise is
additive and Gaussian is wrong. Second, and more importantly, the strong level of noise
encountered in SAR images makes most optical approaches inefficient. Taking the logarithm
of the amplitude or intensity of SAR images can change multiplicative noise to additive
noise but this does not allow the plain application of optical methods, as we will see in the
experimental section in the case of the LSD detector Grompone von Gioi et al. [2010] and
with a recent line segment detector AFM Xue et al. [2019] which is based on deep learning.

The usual way to detect line segments in SAR images is global and relies on the Hough
transform Xu and Jin [2007], Sui et al. [2015], Wei and Feng [2016], Wei et al. [2017]. First,
a constant false alarm rate edge detector, such as that described in Touzi et al. [1988], is
applied to the image, followed by a Hough transform Duda and Hart [1972], Illingworth
and Kittler [1987] to detect lines. Then, post processing steps are applied to localize Hough
lines into line segments. Many methods of this kind have been proposed for SAR images
following the early work Skingley and Rye [1987], in the context of different applications.
In Xu and Jin [2007], line segments are extracted by the Hough transform and then used to
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reconstruct buildings from meter-resolution multi-aspect SAR images. An optical-to-SAR
image registration method is proposed in Sui et al. [2015], relying on line segments that
are detected using a ratio-based gradient and the Hough transform. The same idea was
previously explored in Palmann et al. [2008]. In Arnold-Bos et al. [2006], edge detection
using phase symmetry Kovesi et al. [1997] and wavelet correlations are followed by a Hough
transform in order to detect ship wakes.

A common limitation of these approaches is that the performance of the Hough trans-
form critically relies on both a preliminary edge detection and on the selection of para-
meters. The input of the Hough transform is usually a binary edge map. Many dedicated
methods have been proposed for SAR images Touzi et al. [1988], Fjørtoft et al. [1998], Del-
linger et al. [2015], but extracting a binary edge map necessitates a difficult compromise
between suppressing false alarms due to speckle and preserving edges of low contrast. Be-
sides, the corresponding threshold choices are image-dependent. An interesting approach,
which was recently proposed in Wei and Feng [2016], Wei et al. [2017], detects lines from
the magnitude field instead of a binary edge map, but the subsequent detection tasks still
require non-trivial parameter tunings.

In order to develop an efficient and reliable line segment detector for SAR images, we
first give a brief description of existing line segment detectors for optical images in the
next section and then propose to adapt one of those methods to SAR images.

3.2 Line segment detectors for optical images

The LSD Grompone von Gioi et al. [2010] detector, which is based the a contrario
model Desolneux et al. [2000] and the Helmholtz principle Desolneux et al. [2008], is one of
the most used line segment detector in the field of computer vision. Line segment candidates
are obtained through a first grouping of pixels sharing the same local orientations and then
the approximation with a rectangle for regions constituted by those pixels. Candidate line
segments are finally verified according to the Helmholtz principle, that no meaningful
structure should be detected by chance in a random image. A line segment is validated
as ε-meaningful if the expected number of its occurences in a random image following
the a contrario model is less than ε. All ε-meaningful line segments are accepted as true
line segments. Even though LSD is famous for its ability to control the number of false
detections while requiring little parameter setting, and the performances of LSD is good in
most situations, it fails to obtain satisfying results in some challenging cases. Motivated by
this observation, several line segment detectors are proposed afterwards in order to achieve
higher accuracy and location precision.

A Markov Chain Marginal Line Segment Detector (MCMLSD) Almazan et al. [2017]
was proposed combining the advantages of both perceptual grouping and global Hough
analysis. More specifically, perceptual grouping based methods are based on the geometric
grouping of local cues, therefore, local decisions of line segments are made without taking
global information into account. The Hough approaches are able to integrate information
globally, while identifying the endpoints of line segments is not straightforward. The pro-
posed MCMLSD approach aims at combining the advantages of both approaches. In the
first step, a probabilistic Hough transform method is used to identify the lines in images.
In the second step, by limiting the search for line segments from image space to lines,
the problem of identifying maximum probability line segments is modeled as a hidden
states labelling, where the hidden states represent the existence of line segments in each
pixel and they follow a first order Markov Chain. Thanks to the assumption of Markov
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chain, the hidden states labelling process can be computed in linear time using a dynamic
programming algorithm.

A novel linelet-based line segment detector Cho et al. [2018] was addressed recently
which exploits the intrinsic properties of the line segment. Specifically, line segments are
assumed to be constituted by linelets where linelets are defined to be a set of horizontally or
vertically connected pixels, which is caused by the digitization of lines in real images. During
the detection process, linelets are first detected from the horizontally or vertically non-
maxima suppressed gradient magnitude (in the horizontal direction, horizontally connected
pixels are considered as linelets and for vertical direction, linelets are vertically connected
pixels ). Candidated lines are obtained through the grouping of neighbouring linelets which
share the same intrinsic properties. For each candidate line segment, its angle is estimated
through the use of an undirected graphical model for lines. The line segments are then
validated by a probabilistic model using the cues from the gradient magnitude and gradient
orientation. Finally, an aggregation step is used to connect disjoint line segments if they
are likely from the same line.

A deep learning based line segment detector AFM Xue et al. [2019] is proposed leve-
raging the accuracy, robustness and efficiency of deep convolutional neural networks. The
attraction field representation of line segments reformulates the line segment detection pro-
blem as region coloring problem. Each pixel in an image is assigned to one and only one
line segment and thus the image is divided into many regions with each region correspon-
ding to a line segment. Each pixel in the attraction field maps is defined as the attraction
vector between the pixel and projected pixel in the corresponding line segment. The deep
convolutional neural networks are trained to predict the attraction field maps for testing
images. After obtaining the attraction field map for a testing image, a squeeze module is
used to recover the original line segments. The detected line segment are then verified by
an aspect ratio check to preserve only ’thin’ line segment.

3.3 Adapting LSD to SAR images

Compared to line segment detection in optical images, line segment detection in SAR
images remains challenging due to the strong multiplicative noise. In this work, we aims
at developing a LSD-like line segment detector for SAR images, motivated by its ability
to strictly control the number of false detections while requiring little parameter tuning.
However, special care should be taken to do this. Before describing how to develop a LSD-
like line segment detector for SAR images, we first describe the details about LSD in the
next chapter and then describe the way to adapt it to SAR images.
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Chapitre 4

LSD, a line segment detector with

false detection control

The LSD detector, which is based on the a contrario model Desolneux et al. [2000]
and the Helmholtz principle Desolneux et al. [2008] , is a widely used state-of-the-art
line segment detector. The LSD detector find candidate line segments through a local
grouping of pixels which share the same local orientation (the direction perpendicular to
that of the gradient orientation), and then validate each candidate line segment according
to its meaningfulness. The decision of the meaningfulness for a line segment is based on the
Helmholtz principle which claims that no meaningful structure should be observed by chance
in a random image. Therefore, if a candidate line segment is unlikely to be observed in a
random image, then it should be a meaningful one. According to Desolneux et al. [2000], a
line segment is accepted as ε-meaningful if the expectation of the number of its occurences
in a random image is smaller than ǫ. The validation step is done by comparing the Number
of False Alarms Desolneux et al. [2000], Grompone von Gioi et al. [2010] corresponding to
the candidate line segment with a chosen ε value. This validation step ensures that the
expected number of false detections done by LSD is smaller than ε while ensuring that all
detected line segments are ε-meaningful segments, that is to say, all detected line segments
are not common in a random image.

The LSD detector relies on three steps : the region growing step, the rectangular ap-
proximation step and the line segment validation step. We detail each of these steps in the
following.

4.1 Region growing

The first step of LSD is region growing. The aim of the region growing step is to
group pixels sharing the same local orientation (the local orientation is perpendicular to
the gradient orientation). Therefore, the image gradient should be computed at each pixel.
For a pixel located at (x, y) in an image I, the horizontal and vertical components of the
gradient are computed using a 2× 2 mask as :

Gh(x, y) =
I(x, y + 1)− I(x, y) + I(x+ 1, y + 1)− I(x+ 1, y)

2
(4.1)

Gv(x, y) =
I(x+ 1, y)− I(x, y) + I(x+ 1, y + 1)− I(x, y + 1)

2
(4.2)
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The gradient magnitude is then computed as

G(x, y) =
√

Gh(x, y)2 +Gv(x, y)2 (4.3)

The local orientation of the pixel located at (x, y) is defined to be perpendicular to the
gradient orientation and computed as

atan2
(

Gv(x, y),−Gh(x, y)
)

(4.4)

Since pixels with higher gradient magnitude are usually corresponding to more contras-
ted edges, the region growing step starts with pixels having higher gradient magnitude.
In order to obtain a fast line segment detector, all pixels are sorted in descending order
according to their gradient magnitude using a pseudo-ordering algorithm. Pixels are clas-
sified into 1024 bins of equal size between zero and the largest gradient magnitude. The
region growing step starts from one seed pixel as a region, and initialize the region angle
to be the local orientation of the seed pixel. Then the 8-connected neighbouring pixels of
the region are tested. All tested pixels having the same orientation as the region up to a
certain angle tolerance τ will be added to the region. Each time a pixel is added to the
region, the region angle will be updated by :

atan2

(

∑

i

sin(angi),
∑

i

cos(angi)

)

, (4.5)

where the index i goes through all pixels in the region and angi represents the angle of
the local orientation of the ith pixel. A line support region is obtained until no more pixels
can be added into the region. Then the region growing step starts from another seed pixel
searching for line support regions. The seed pixels are first chosen from the bin with the
largest magnitude, and then from the second bin and so on until all the pixels have been
visited. Notice that a pixel will be labeled as USED if it belongs to a line support region
and will not be visited any more during the region growing step.

4.2 Rectangular approximation

After region growing, we are given a set of candidate regions. The next step is to
approximate each region with a rectangle. Four parameters are used to describe the rec-
tangles : center, angle, length and width. The center of the rectangle is defined as the center
of mass (the mass being the gradient magnitude) of the region. Given a line support region,
noting (x(i), y(i)) the location of the ith pixel and G(x(i), y(i)) its gradient magnitude, the
center location (cx, cy) of the approximated rectangle r is computed as

cx =

∑

i∈regionG(x(i), y(i)) · x(i)
∑

i∈regionG(x(i), y(i))
(4.6)

cy =

∑

i∈regionG(x(i), y(i)) · y(i)
∑

i∈regionG(x(i), y(i))
(4.7)

The angle of the rectangle is defined as the angle between the horizontal axis and the first
inertia axis of the region. Specifically, the angle of the rectangle r can be computed as the
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angle of the eigenvector corresponding to the smallest eigenvalue of the matrix

M =

(

M
xx

M
xy

M
xy

M
yy

)

, (4.8)

where

M
xx =

∑

i∈regionG(x(i), y(i)) · (x(i)− cx)
2

∑

i∈regionG(x(i), y(i))
(4.9)

M
yy =

∑

i∈regionG(x(i), y(i)) · (y(i)− cy)
2

∑

i∈regionG(x(i), y(i))
(4.10)

M
xy =

∑

i∈regionG(x(i), y(i)) · (x(i)− cx) · (y(i)− cy)
∑

i∈regionG(x(i), y(i))
(4.11)

The length and width of the rectangle are then defined as the smallest values allowing
a complete covering of the pixels of the considered region.

4.3 Line segment validation

All approximated rectangles are candidate line segments and the last step of LSD is
to decide whether a candidate rectangle is a true line segment or not according to its
meaningfulness. The meaningfulness of the rectangle is checked through the use of an a
contrario method Desolneux et al. [2000] which evaluates how unlikely a similar structure
is to happen by chance in a random image consisting of white noise, that from now on we
will simply call a noise image. According to the Helmholtz principle, very few meaningful
structures should be observed by chance in a noise image. Therefore, the more unlikely
the rectangle is to be observed in a noise image, the more meaningful it is. Based on the
definition in Desolneux et al. [2000], a rectangle is considered to be ε-meaningful if the
expected number of its occurence in a noise image is smaller than ε. What is considered
as a noise image is more formally defined in a H0 model, which describes a kind of data
where no detection should occur. In the case of LSD, an image I0 follows the H0 model if
it satisfies the following requirements :

a. The local orientations of the pixels in I0 are independent random variables.

b. Each random variable follows a uniform distribution over [0, 2π].

Given the definition of the background model H0, and for a given rectangle with a cer-
tain pixel configuration, it is possible to compute the expected number of similar rectangles
that would appear in a noise image. In the following, we say that a pixel of a rectangle is
aligned if it has the same local orientation as the rectangle, up to a given angle tolerance.
For a given rectangle r in the observed image I, we write n(r) for its total number of
pixels and k(r) for its number of aligned pixels. We consider a rectangle with size n(r) in
a random image and write k0(r) for the number of aligned points in this rectangle. The
Number of False Alarms (NFA) Desolneux et al. [2000], Grompone von Gioi et al. [2010]
associated to r is computed as

NFA(r) = NR · P(k0(r) ≥ k(r)) , (4.12)
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where NR is the total number of possible rectangles, which is approximated by the value
11 · (MN)5/2 for an image containing M × N pixels in Grompone von Gioi et al. [2010].
Following Desolneux et al. [2000], a rectangle r is said ε-meaningful if NFA(r) ≤ ε.

The interest of such an approach is that the NFA defined in (4.12) satisfies the so-
called NFA-property Desolneux et al. [2000], Grompone von Gioi et al. [2010], which can
be written as

∀ε > 0, EH0 [# {r, NFA(r) ≤ ε}] ≤ ε , (4.13)

where # stands for the cardinality of a set. This property means that using the threshold
NFA(r) ≤ ε, on average no more than ε rectangles will be detected in a random image I0
following H0. In general, ε can be set to 1, which guarantees that, on average at most one
false detection should be done.

In order to get an explicit detection rule, it remains to compute PH0(k0(r) ≥ k(r)).
According to the second assumption b) of H0 (uniform distribution), the probability that
a pixel is aligned is

p =
τ

π
, (4.14)

where τ is the angle tolerance. Moreover, because of the independence assumption a) of
H0, the number of aligned pixels in r follows a Binomial distribution. Thus, we have

PH0(k0(r) ≥ k(r)) = B(n(r), k(r), p), (4.15)

where B denotes the tail of the Binomial distribution,

B(n, k, p) =
n
∑

i=k

(

n

i

)

pi(1− p)n−i.

Therefore, the NFA in (4.12) can be explicitly computed using

NFA(r) = NR · B(n(r), k(r), p) . (4.16)

Proof of the NFA-property(Eq. (4.13)) :

Consider a rectangle r with n pixels in a random image I0 following H0, noting k0(r) its
number of aligned pixels. This rectangle r is ε-meaningful if it contains at least kn pixels,
with

kn = min {κ ∈ N, NR · P(k0(r) ≥ κ) ≤ ε} (4.17)

This is equivalent to say that a rectangle r with n pixels is ε-meaningful if its number
of aligned pixels satisfies k0(r) ≥ kn.

Noting mn for the total number of rectangles with n pixels and Nmax the maximal
possible number of pixels for a rectangle in the image I0, we have

Nmax
∑

n=0

mn = NR. (4.18)

Consider all possible rectangles ri ∈ R (1 ≤ i ≤ NR) in a random image I0 following
the H0 model. Let the random variable Xri be equal to 1 if rectangle ri is a ε-meaningful
rectangle during a realization, and 0 otherwise. Then m(R) =

∑

ri∈R
Xri represents the
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number of ε-meaningful rectangles in a realization. The expected number of ε-meaningful
rectangles in a random image I0 following H0 models is

E(m(R)) = E(
∑

ri∈R
Xri)

=

Nmax
∑

n=0

mn · PH0(k0(r) ≥ kn)

≤

Nmax
∑

n=0

mn ·
ε

NR

= NR ·
ε

NR
= ε,

(4.19)

which implies that on average at most one false detection could be detected by chance in
the entire image.
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Chapitre 5

LSDSAR, a generic line segment

detector for SAR images

The aim of this work is to develop an LSD-like line segment detector for SAR images.
In order to do this, two aspects of the original algorithm have to be modified. First, LSD
relies on the grouping of pixels sharing the same local orientation, therefore, the gradient
computation step has to be replaced with a gradient computation method suitable for SAR
images. Second, the meaningfulness of a candidate rectangle is verified in an a contrario
model which is based on two hypothesis : 1) the local orientations of pixels are independent
random variables ; 2) each random variable follows a uniform distribution over [0, 2π]. In
what follows, we will see that these hypotheses are not satisfied for SAR images, so that
the a contrario model has to be strongly modified.

5.1 Gradient computation in SAR images

Due to the multiplicative nature of speckle noise in SAR images, the usual gradient
computation methods which are based on pixel value differences tend to produce more false
edges in homogeneous areas with high mean intensity values than those with low mean
intensity values Touzi et al. [1988]. Contrarily to those gradient computation methods, it
has been proven that the ratio based method is more suitable for SAR images because
it yields a constant false alarm rate. More precisely, the probability of false alarms do
not depend on the underlying mean intensity values of the homogeneous areas. In Touzi
et al. [1988], the Ratio of Average (ROA) operator is introduced to compute the gradient
(notice that in Touzi et al. [1988] and Fjørtoft et al. [1998], the authors only named the
operators as ratio detector but we assume they are both ratio-based gradient detector, so
we will mention them as gradient computation methods in this thesis). For a given pixel
located at position (x, y) in the image I, the ratio of averages R(x, y) is computed along P
(P = 4, 8, 16, ...) directions. For each direction, the ratio of average is defined as the ratio
of the arithmetic mean of pixel values in the opposite side windows. In the i-th direction,
where 1 ≤ i ≤ P , the ratio is computed as

Ri(x, y) =
M i

1(x, y)

M i
2(x, y)

, (5.1)

where M i
1(x, y) and M i

2(x, y) denote the arithmetic means of the image computed over two
opposite side windows, separated by an axis with direction i. This ratio is then used to
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compute

T i(x, y) = max

(

Ri(x, y),
1

Ri(x, y)

)

. (5.2)

The magnitude Groa(x, y) of the gradient at position (x, y) is then defined as

Groa(x, y) = max
1≤i≤P

T i(x, y) , (5.3)

and its direction is defined as the direction having the highest value of ratio. Once the
gradient is computed, a threshold corresponding to a given probability of false alarm rate
can be used for the purpose of edge extraction.

ROA works well on isolated step edges, when there is no other edge in the window used
for the computation. However, due to the strong multiplicative noise in real SAR images,
large averaging windows are usually needed to reduce the influence of noise, in which
case some edges could exist in the averaging windows. The problem for the existence of
multiple edges was addressed in Fjørtoft et al. [1998] under the hypothesis of a stochastic
multiedge model, where the exponentially weighted average was proven to be optimal for
estimating the local mean intensity values in the sense of minimum mean square error
(MMSE) when the averaging windows cover edges with random intervals. The horizontal
and vertical components of the gradient computed by ROEWA Fjørtoft et al. [1998] were
defined as the ratios of exponentially weighted average in the opposite side windows along
the horizontal and vertical directions. In the horizontal direction, the ratio Rh(x, y) and
its normalization T h(x, y) are computed as

Rh(x, y) =
mh

1(x, y)

mh
2(x, y)

,

T h(x, y) = max

(

Rh(x, y),
1

Rh(x, y)

)

,

where

mh
1(x, y) =

W
∑

x′=−W

W
∑

y′=1

I(x+ x′, y + y′)× e−
|x′|+|y′|

α ,

mh
2(x, y) =

W
∑

x′=−W

−1
∑

y′=−W

I(x+ x′, y + y′)× e−
|x′|+|y′|

α ,

and where W is the upper integer part of log(10) × α. The ratio along the vertical
direction Rv(x, y) and its normalization T v(x, y) are computed in the same way. The
normalized ratios T h(x, y) and T v(x, y) being considered as the horizontal and vertical
components of the ROEWA gradient, its magnitude is simply given by

Groewa(x, y) =
√

T h(x, y)2 + T v(x, y)2 . (5.4)

Although ROEWA gives an efficient and accurate way to compute the magnitude in each
pixel, this method does not give a precise measure of the edge orientations. Increasing the
number of directions, as in ROA, yields what we refer to as the multi-direction ratio-based
methods, which are however quite time consuming.
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In Dellinger et al. [2015], a new gradient named Gradient by Ratio (GR) was proposed.
Different from ROEWA, the horizontal and vertical gradient components are defined as

Gh(x, y) = log(Rh(x, y)),

Gv(x, y) = log(Rv(x, y)).

The magnitude Ggr(x, y) and orientation anggr(x, y) of GR at position (x, y) are defined
by

Ggr(x, y) =
√

Gh(x, y)2 +Gv(x, y)2,

anggr(x, y) = atan2(Gh(x, y), Gv(x, y)).

5.2 The choice of the gradient computation methods

In order to choose the most suitable gradient computation method that can be used
in LSD, we give a thorough analysis and comparison of different gradient computation
methods in SAR images. Furthermore, we describe the criterion and reason for the choice
of the method.

5.2.1 The property of constant false alarm rate (CFAR)

An important advantage of the ratio based edge detectors is that they have a constant
false alarm rate for SAR images. Specifically, for an image of homogeneous areas with a cer-
tain number of looks, the gradient magnitude fields computed by the ratio based methods
follow exactly the same distribution (for a given size of averaging windows), regardless of
the mean intensity values of the homogeneous areas. In addition, the probability density
functions (pdf) of two homogeneous areas across boundaries depend only on the contrast of
the edge, and do not depend on the mean intensity values on the two sides. The complete
theoretical analysis of the CFAR property is done in Touzi et al. [1988] for the intensity
format of SAR images. We analyze here the CFAR property for both amplitude and in-
tensity SAR images and illustrate that the ratio based gradient computation methods also
have CFAR in amplitude SAR images. We study the influence of the mean intensity va-
lues on the pdf of the gradient magnitude fields computed in both pure noise images and
synthetic edge images, while ensuring that all the images have the same number of looks.
In addition, the size of the windows as well as the weight function should be the same for
all experiments.

5.2.1.1 Check the CFAR property in pure noise images

In order to compare the distribution of the gradient magnitude fields computed by the
ratio based methods in homogeneous areas, we simulate eight 1-look pure noise images of
size 4096×4096 pixels. The mean intensity values of these homogeneous areas are 602, 902,
1202, 1502, 1802, 2102, 2402 and 2702, respectively. The gradient computation methods we
use here are ROEWA and GR, both with the weighting parameter α = 4. The gradient
computation is done in both amplitude and intensity format of these pure noise images.
The histograms (normalized pdf) of the gradient magnitude fields of homogeneous areas
computed by ROEWA and GR can be found in figure 5.1. From figure 5.1 we can see that
the distribution of the gradient magnitude fields computed by both ROEWA and GR does
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not depend on the mean intensity values of the homogeneous areas in both amplitude and
intensity format of SAR images : their histograms overlap very well. It implies that for
a given probability of false alarms, the choice of threshold does not depend on the mean
intensity values of the homogeneous areas.
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(a) ROEWA, amplitude image (b) ROEWA, intensity image
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(c) GR, amplitude image (d) GR, intensity image

Figure 5.1 – The histograms (normalized pdf) of gradient magnitude fields computed
by ROEWA and GR in eight 1-look pure noise images of size 4096 × 4096 pixels. The
mean intensity of the homogeneous areas are 602, 902, 1202, 1502, 1802, 2102, 2402 and
2702, respectively. The gradient computation is done in both amplitude and intensity SAR
images. The weighting parameter α in both ROEWA and GR is 4. The size of the bin is
0.005.
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5.2.1.2 Check the CFAR property in images of two homogeneous areas across

boundaries

In this part, we compare the distribution of gradient magnitude fields computed by
ROEWA and GR in two homogeneous areas across boundaries. We simulate two kinds
of synthetic edge images : one with amplitude ratio contrast 1.5 and one with amplitude
ratio contrast 3.0. For each kind of synthetic edge image, there are 8 realizations and the
homogeneous areas for one side of the edge are with mean intensity values : 202, 502, 702,
902, 1202, 1502, 1802, 2002, respectively. The mean intensity values for the homogeneous
areas in the other side of the edges can be computed as follows : for example, if the mean
intensity value for the homogeneous area in one side of the edges is 902, and the amplitude
ratio contrast of the edge is 3.0, then the mean intensity value for the homogeneous area
in the other side of the edges is (90× 3.0)2. The size of the edge images are all 1024× 1024
pixels. One synthetic edge image with its associated edge ground truth can be found in
figure 5.2.

(a) amplitude ratio contrast 1.5 (b) grount truth

Figure 5.2 – A 1-look synthetic edge image with amplitude ratio contrast 1.5 and its
associated edge ground truth. The size of images are 1024× 1024 pixels.

The histograms (normalized pdf) of the gradient magnitude fields computed by ROEWA
and GR can be found in figure 5.3 and figure 5.4. From figure 5.3 and figure 5.4 we can see
that the mean intensity values of the homogeneous areas on both sides of the edges do not
influence the distribution of the gradient magnitude fields, which implies that the gradient
distribution for two homogeneous areas across boundaries depends only on the ratio of the
mean intensity values.
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Figure 5.3 – The histograms (normalized pdf) of the gradient magnitude fields computed
by ROEWA and GR in eight 1-look synthetic edge images with amplitude ratio contrast
1.5. The size of the images are 1024 × 1024 pixels. The value of the weighting parameter
α is 4. The size of the bin is 0.005.
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Figure 5.4 – The histograms (normalized pdf) of the gradient magnitude fields computed
by ROEWA and GR in eight 1-look synthetic edge images with amplitude ratio contrast
3. The size of the images are 1024× 1024 pixels. The value of the weighting parameter α
is 4. The size of the bin is 0.005.

5.2.1.3 Conclusion on the CFAR property

With the observation in figure 5.1, figure 5.3 and figure 5.4, we assume that the mean
intensity values do not influence the pdf of the gradient magnitude fields computed by
both ROEWA and GR. In addition, ROEWA and GR has a constant false alarm rate in
both amplitude and intensity SAR images.

5.2.2 Detection capability of the gradient magnitude : a comparison of
existing gradient computation methods

In order to choose the best gradient computation method for SAR images, we compare
the existing approaches in terms of two criterions : 1) we compare the ability of existing
approaches to highlight true edge pixels using ROC curves Dougherty et al. [1998], Bowyer
et al. [1999] ; 2) we compare the accuracy of gradient orientation computed by existing
approaches and check whether those methods satisfy the hypothesis in the a contrario
model that each local orientation follows a uniform distribution over [0, 2π]. In this section,
we first analyze the ability of existing approaches to distinguish between edge pixels and
noise pixels.
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5.2.2.1 The influence of the format of SAR images : amplitude or intensity

It has been studied in section 5.2.1 that ROEWA and GR have a constant false alarm
rate for both amplitude and intensity format of SAR images. What should also be studied
is the influence of the format of SAR images on the ability of the gradient computation
method to highlight the edge pixels. Notice that in Fjørtoft et al. [1998], the exponential
weight function is proved to be optimal when applied to the intensity SAR images. We
will show in the following that the format of SAR images has minor influences on the
performances of ROEWA and GR. We simulate eight 1-look synthetic edge images and eight
3-look synthetic edge images with size 1024 × 1024 pixels. The amplitude ratio contrast
of the edge varies from 1.2 to 1.9 with step 0.1. The edge image with amplitude ratio
contrast 1.5 and the associated ground truth (GT) can be found in figure 5.2. The gradient
computation method we are using is GR with weighting parameter α = 4.

ROC curves of the gradient magnitude fields computed by GR in eight 1-look synthetic
edge images and eight 3-look synthetic edge images are shown in figure 5.5 and figure 5.6.
From these figures we can see that the format of SAR images has little influence on the
performances of GR. In addition, considering that GR has CFAR for both amplitude and
intensity SAR images, in all the following experiments, we provide experiments using only
amplitude SAR images.
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Figure 5.5 – An example edge image with contrast 1.5 and ROC curves of gradient
magnitude fields computed by GR in eight 1-look synthetic edge images with amplitude
ratio contrast of the edge varying from 1.2 to 1.9 with step 0.1. The size of images are
1024× 1024 pixels.
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Figure 5.6 – An example image with contrast 1.5 and ROC curves of gradient magnitude
fields computed by GR in eight 3-look synthetic edge images with amplitude ratio contrast
of the edge varying from 1.2 to 1.9 with step 0.1. The size of images are 1024×1024 pixels.

5.2.2.2 Choice of the weighting function for 2-direction methods

What we refer to as the 2-direction methods are those who compute the horizontal and
vertical components of the gradient, as done by ROEWA and GR. We add one 2-direction
method which is named as ROA-2, though it has been studied in Fjørtoft et al. [1998] that
it gives worse performances than ROEWA under the hypothesis of a multi-edge model. For
ROA-2, we use the same size of windows as ROEWA and GR to compute the gradient (the
size of averaging windows in ROEWA and GR is decided by the weighting parameter α).
The difference between ROA-2 and ROEWA is that ROA-2 is defined as the ratio of the
arithmetic mean. For ROEWA and GR, the weighting parameter α is set to 4. We simulate
eight 1-look and eight 3-look synthetic edge images with the amplitude ratio contrast of
the edge ranging from 1.2 to 1.9 with step 0.1. The size of the synthetic edge images are
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all 1024 × 1024 pixels. A synthetic edge image with ratio contrast 1.5 and its associated
ground truth can be found in figure 5.2.
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Figure 5.7 – An example of 1-look edge image and ROC curves of gradient magnitude
fields computed by ROA-2, ROEWA and GR in eight 1-look synthetic edge images with
amplitude ratio contrast of the edge varying from 1.2 to 1.9 with step 0.1. The size of
images are 1024× 1024 pixels.
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Figure 5.8 – An example of 3-look edge image and ROC curves of gradient magnitude
fields computed by ROA-2, ROEWA and GR in eight 3-look synthetic edge images with
amplitude ratio contrast of the edge varying from 1.2 to 1.9 with step 0.1. The size of
images are 1024× 1024 pixels.

The ROC curves computed by ROA-2, ROEWA and GR in eight 1-look synthetic edge
images and eight 3-look synthetic edge images can be found in figure 5.7 and figure 5.8.
From these figures we can see that in 1-look and low contrast situation, ROA-2 are more
powerful in emphasizing edge pixels because its ROC curves are above those of ROEWA
and GR, while in less challenging cases (like 1-look high contrast situation, multi-look
situation), ROEWA and GR show slightly superior performances than ROA-2. What can
be assumed from figure 5.7 and figure 5.8 is that for isolated step edges, the choice of the
weighting function has little influence on the results.

However, it is quite common in practical case that there exists several edges in the
averaging windows, so that the hypothesis of isolated step edges does not hold in the
general case. We simulate eight 1-look edge images of such kind with amplitude ratio
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(a) image with contrast 1.5 (b) GT

Figure 5.9 – images with very close edges to demonstrate the efficiency of exponential
weighting function compared to the arithmatic mean.

contrast varying from 1.2 to 1.9 with step 0.1 (an example with amplitude ratio contrast
1.5 can be found in figure 5.9). The ROC curves of the gradient magnitude field computed
by ROA-2, ROEWA, and GR can be found in figure 5.10. From these ROC curves we can
see that under the hypothesis of a multiedge model, the performances of ROEWA and GR
are much better than those of ROA-2, which follows the analysis in Fjørtoft et al. [1998].
In addition, it must be noted that in all cases the performances of ROEWA and GR are
comparable.

5.2.2.3 The comparison of 2-direction and multi-direction methods

Following the analysis in section 5.2.2.2, we decide to use the exponential weight func-
tion in the following. There are two usual ways to compute the gradient in SAR images :
1) compute the ratio along multiple directions, the maximal normalized ratio being then
defined as the gradient magnitude, as discussed in Touzi et al. [1988] ; 2) compute the ratio
along the horizontal and vertical directions to obtain the horizontal and vertical gradient
components, as those in Fjørtoft et al. [1998] and Dellinger et al. [2015]. In this section,
we compare the detection capability of the gradient magnitude obtained by the two me-
thods. The 2-direction method we choose is GR, and for multi-direction method, we use 8
directions, 16 directions and 32 directions. For all of them, we use the exponential weight
function with weighting parameter α = 4. For the multi-direction method, we use the
circle-shaped windows to reduce the influence of rotation and ensure that the number of
pixels in the window is approximately the same as that of GR. The comparison is done on
eight 1-look synthetic edge images of size 1024× 1024 pixels with amplitude ratio contrast
from 1.2 to 1.9. One example of the synthetic edge images can be found in figure 5.2. ROC
curves computed by GR and the multi-direction method can be found in figure 5.11. It
can be seen from figure 5.11 that the multi-direction methods gives slightly better perfor-
mances than GR because their ROC curves remain on the top-left side of those of GR.
In addition, the number of directions seems to have minor influences on the performances
for the multi-direction methods. Even though the multi-direction methods show higher
detection capability in terms of the gradient magnitude, we should also check the accuracy
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Figure 5.10 – An example image and ROC curves of gradient magnitude fields computed
by ROA-2, ROEWA and GR in eight 1-look synthetic edge images with amplitude ratio
contrast of the edge varying from 1.2 to 1.9 with step 0.1. The size of images are 512× 512
pixels.
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of the graident orientation for both of these two kinds of method. What’s more important,
we need to check whether the local orientation computed by them satisfies the hypothesis
in the a contrario model. In the next section, we are going to check these points.
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Figure 5.11 – An example 1-look image and ROC curves of gradient magnitude fields
computed by GR, 8-direction, 16-direction and 32-direction method in eight 1-look syn-
thetic edge images with amplitude ratio contrast of the edge varying from 1.2 to 1.9 with
step 0.1. The size of images are 1024× 1024 pixels.

5.2.3 Accuracy and distribution of the local orientation

In order to choose the most suitable gradient computation method to be used in the
region growing step of LSD, it is also of vital importance to check the accuracy of the com-
puted local orientations. More importantly, we need to check whether the local orientation
of each pixel follows a uniform distribution over [0, 2π]. We address these two points in the
following.
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5.2.3.1 Comparison in the accuracy of local orientation

(a) image (b) GT

Figure 5.12 – The image with horizontal edges used to compare the accuracy of the local
orientation computed by GR, 8-direction method, 16-direction method and 32-direction
method. The size of the image are 50× 1024 pixels.

(a) image (b) GT

Figure 5.13 – The image with diagonal edges used to compare the accuracy of the local
orientation computed by GR, 8-direction method, 16-direction method and 32-direction
method. The size of the image are 512× 512 pixels.

It has been studied in section 5.2.2.3 that the detection capability of the gradient
magnitude computed by the multi-direction methods is slightly better than that of GR.
In this part, we compare the accuracy of the local orientation. The comparison is done in
two kinds of 1-look images : one contains a horizontal edge as shown in figure 5.12, the size
of the image are 50 × 1024 pixels ; one contains a diagonal edge as shown in figure 5.13,
the size of the image are 512× 512 pixels. For both kinds of images, eight contrast values
varying from 1.2 to 1.9 are evaluated. For each contrast value, there are 10 realizations for
each kind of image. The angle of a pixel along the edge is considered to be accurate if this
angle is equal to the real one up to an angle tolerance τ = π

8 . The probability to obtain
the accurate orientation of a pixel for each method can be estimated as the ratio between
the number of pixels having the correct angles and the total number of pixels along the
edges. The probability of accuracy in the local orientation computed by GR, 8-direction,
16-direction and 32-direction method can be found in figure 5.14-(a) and figure 5.14-(b).
The observations from figure 5.14 can be summarized as follows :

— with the increase of contrast, the accuracy probabilities of the local orientation
computed by all methods are increasing ;

— the local orientations computed along the horizontal edges are more accurate than
those along the diagonal ones ;

— with the increase in the number of directions for multi-direction methods, the ac-
curacy of the local orientations is improved ;
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— the accuracy of local orientations computed by GR is better than 8-direction and
16-direction methods, and slightly worse than the 32-direction method.
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Figure 5.14 – The accuracy probability curves computed by GR, 8-direction, 16-direction
and 32-direction methods computed in 1-look images with ratio contrast varying from 1.2
to 1.9 with step 0.1. For images with each contrast of edge, there are 10 random realizations.

5.2.3.2 Check the distribution of local orientations in noise

We have compared the accuracy of local orientations computed by GR and the multi-
direction methods in section 5.2.3.1, but one important point we have to study is whether
the local orientation computed by them follows a uniform distribution over [0, 2π]. Indeed,
this is one of the two crucial hypothesis in the a contrario model. We analyze the distribu-
tion of the local orientation in 1-look images of constant areas. Since all pixels in the image
are drawn from a Rayleigh distribution with the same underlying mean intensity value,
the local orientations of all pixels can be considered as random realizations of the same
random variable. We compute the local orientation using GR, 8-direction, 16-direction and
32-direction methods in a 1-look pure noise image of size 8192×8192 pixels. The weighting
parameter α is set to 4. The histograms of local orientations computed by these methods
can be found in figure 5.15. From this figure we can see that, among the compared methods,
only GR roughly yields a uniform distribution over [0, 2π]. In the case of multi-direction
methods, only a limited number of angles is accessible, and with the increase number of
directions used to compute the gradient, the distribution deviates further from a uniform
distribution. Combining the distribution property with the detection capability of gradient
magnitude described in section 5.2.2.3 and the accuracy of the local orientation described
in section 5.2.3.1, we decide to replace the gradient computation step in LSD with the GR
method.
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Figure 5.15 – The histograms of local orientations computed by GR, 8-direction, 16-
direction and 32-direction methods in a 1-look pure noise image of size 8192× 8192 pixels.
The exponential weighting parameter α is set to 4.

5.3 A Markovian a contrario model

Following to the analysis in section 5.2, we have decided to use GR to compute the
gradient. It has been checked that the local orientation computed by GR satisfies a uniform
distribution over [0, 2π]. The next question is whether the local orientations are independent
random variables. In the paper Desolneux et al. [2000], in order to ensure the independence
of local orientations, only pixels at a distance larger than 2 are taken into account along a
line when the size of windows used to compute the gradient are 2× 2 pixels. In the case of
gradient computation for SAR images, much larger averaging windows (with size 21× 21
pixels for example) are required to reduce the influence of strong multiplicative noise and
to detect edges between homogeneous areas with close mean intensity values Touzi et al.
[1988].

Consequently, the usual a contrario framework badly fails to control the number of false
detections due to the dependencies introduced between local orientations of neighbouring
pixels when computing the local orientation with a method suited to SAR, as we will show
in our experiments. In order to account for the strong dependencies between nearby pixels
introduced by filtering, we draw from the ideas in Myaskouvskey et al. [2013], generalizing
the a contrario methodology to the grouping of events that are not mutually independent.
Specifically, the distribution of local orientations at nearby pixels will be modeled by a
first order Markov chain, which appears as a good compromise between accuracy and
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tractability. Notice that, contrarily to the application cases in Myaskouvskey et al. [2013],
the necessity to take dependency into account in our case is a consequence of the way the
gradient is computed (using large averaging windows) and not of the structure of the noise.

We consider a rectangle r in the observed image I, containing n(r) pixels. We assume
that pixels within the rectangle are ordered so that two consecutive pixels are neighbors.
For t = 1, . . . , n(r), let the variable Xt be equal to 1 if the t-th pixel is aligned, and 0

otherwise. Then k(r) =
∑n(r)

t=1 Xt represents the number of aligned pixels within rectangle
r.

Instead of assuming that X1, X2, . . ., Xn(r) are mutually independent, we assume that
they follow a Markov chain of order one, i.e., we assume that, for all 1 < t ≤ n(r),

P(Xt = xt|Xt−1 = xt−1, . . . , X1 = x1) = P(Xt = xt|Xt−1 = xt−1). (5.5)

Therefore, the distribution of aligned pixels is characterized by the four transition proba-
bilities

P(X1 = x1|X0 = x0) , for (x0, x1) ∈ {0, 1}
2 .

For brevity, they may be written as P(1|1), P(1|0), P(0|1), and P(0|0) in the following. In
practice, those transition probabilities will be estimated by computing the local orientation
using GR on a pure speckle noise image.

The modified background model, that we denote by H′
0 is defined as follows.

Definition 1 (H′
0 model). We say that an image I0 follows the H′

0 model when its local
orientations computed using GR satisfy the following properties :

a. The local orientations follow a Markov chain of order one.

b. Each local orientation follows a uniform distribution over [0, 2π].

The new definition of the NFA follows from this modified model. As before we consider
a rectangle r containing n(r) pixels and k(r) aligned pixels in the observed image I. We
write k0(r) for the number of aligned points within r in a random image I0 following model
H′

0. The initial NFA formula (4.12) of LSD is naturally changed into

NFA′(r) = NR · PH′
0
(k0(r) ≥ k(r)), (5.6)

which also satisfies the NFA-property (4.13) Grosjean and Moisan [2009].
The next question would be how to compute (5.6). Because of the Markov chain as-

sumption H′
0-b, the probability of having k0(r) ≥ k(r) involved in (5.6) is given by

PH′
0
(k0(r) ≥ k(r)) =

∑

x1+...+xn(r)≥k(r)

P(X1 = x1) ·

n(r)
∏

t=2

P(Xt = xt|Xt−1 = xt−1) . (5.7)

The probabilities PH′
0
(k0(r) ≥ k(r)), for all possible values of k(r) and n(r), are heavy

to compute using a straightforward implementation of (5.7). In order to overcome this
limitation, we proceed as in Myaskouvskey et al. [2013] and compute PH′

0
(k0(r) ≥ k(r))

using a dynamic programming algorithm and a descending induction. Indeed, writing n =
n(r) and k = k(r), letting Yt =

∑n
j=tXj , one observes that, for t ≤ n− 1, we have

P(Yt ≥ k) = P(Yt+1 ≥ k|Xt = 0) · P(Xt = 0)

+ P(Yt+1 ≥ k − 1|Xt = 1) · P(Xt = 1) . (5.8)
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Besides, one has, for x ∈ {0, 1} and k′ ≥ 1,

P(Yt+1 ≥ k′|Xt = x)

=
∑

y∈{0,1}

P(Yt+2 ≥ k′ − y,Xt+1 = y|Xt = x)

= P(Yt+2 ≥ k′|Xt+1 = 0) · P(Xt+1 = 0|Xt = x)

+ P(Yt+2 ≥ k′ − 1|Xt+1 = 1) · P(Xt+1 = 1|Xt = x) , (5.9)

and P(Yn ≥ k′|Xn−1 = x) is simply given by

P(Yn ≥ k′|Xn−1 = x) =







1 if k′ = 0 ,
P(1|x) if k′ = 1 ,

0 otherwise .
(5.10)

It follows that (5.8) can be computed in polynomial time Myaskouvskey et al. [2013], and
so does the probability PH′

0
(k0(r) ≥ k(r)) needed in (5.6).

In practice, we can precompute the values of PH′
0
(k0(r) ≥ k(r)) for all (n0(r), k(r)) ∈

{1, . . . , Nmax}
2, with Nmax a large enough value. In our implementation we used Nmax =

5000. In the case the computation of PH′
0
(k0(r) ≥ k(r)) is needed for n(r) greater than

Nmax, though theoretically it can still be done using (5.8), (5.9) and (5.10), we accept
the rectangles directly to save memory space and computation time. The reason is that
a rectangle with large enough number of pixels should be a meaningful structure in the
random image under the hypothesis of the background model.

The next question is how to estimate the transition probabilities involved in (5.9)
and (5.10). Since the dependencies are introduced by the strong filtering during the gradient
computation, the dependencies between local orientations should be estimated in a pure
random image (a structureless image). In addition, the dependencies introduced between
local orientations are determined by the size of averaging windows used to compute the
gradient, while the size of averaging windows is decided by the value of the weighting
parameter α in GR. Therefore, the transition probabilities should be estimated according
to a value of α. The larger the value of α is, the more the dependencies are introduced.

The influence of α values on the amount of dependencies introduced bet-
ween neighbouring pixels

The fact that computing GR with large α values will introduce dependencies between
local orientations of neighbouring pixels can be easily verified by computing the gradient
in a pure speckle noise image, as can be seen from figure 5.16. This figure shows the local
orientation field computed by GR with α = 4 in a 1-look pure noise image of size 30× 30
pixels. What can be observed from figure 5.16 is that strong dependencies are introduced
between local orientations of neighbouring pixels, so that neighbouring pixels tend to have
the same local orientation.



55

Figure 5.16 – The local orientation field computed by GR with α = 4 in a 1-look pure
noise image of size 30× 30 pixels.

Table 5.1 – Comparison of transition probabilities estimated along horizontal and diagonal
lines in the local orientation fields computed by GR with α = 4 in eight 1-look pure noise
images of size 4096× 4096 pixels.

horizontal diagonal

P(1|1)
0.586310± 0.395011±
0.000060 0.000084

P(1|0)
0.059153± 0.086333±
0.000011 0.000018

Since GR computes the gradient in the discrete spatial coordinates of images, the
averaging windows of neighbouring pixels overlap the most along the horizontal and ver-
tical directions. Therefore, it can be deduced that GR introduces the most dependencies
along the horizontal and vertical directions. In order to demonstrate this, we compare the
transition probabilities estimated from horizontal and diagonal lines. For each line, we
consider the empirical frequency of Xt and Xt−1 over all pixel pairs to estimate P(x1|x0)
for x0, x1 = 0, 1. In practice, we only need to estimate P(x1|x0) for x0 6= x1, since we have
P(1|1) = 1 − P(0|1) and P(0|0) = 1 − P(1|0). The transition probabilities estimated from
the local orientation fields computed by GR with α = 4 in eight 1-look Nakagami noise
images of size 4096× 4096 pixels can be found in table 5.1, where the angle tolerance was
set to 22.5 degrees, as in the original LSD algorithm. From table 5.1 we can see that much
more dependencies are introduced between pixel pairs along horizontal lines compared to
those pixel pairs along the diagonal lines. Consequently, in the definition of our Markovian
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a contrario model, the transition probabilities will be estimated from the local orientations
of pixel pairs along the horizontal and vertical lines.

The transition probabilities estimated from the local orientation fields computed by GR
with different values of α in eight 1-look pure Nakagami noise images of size 4096× 4096
pixels can be found in table 5.2, where all pixel pairs along the horizontal and vertical lines
are considered to estimate the transition probabilities. One can see that, as α increases,
more dependencies are introduced between adjacent pixels. It should be noticed that the
dependencies introduced between local orientations are consequences of strong filtering,
the transition probabilities do not rely on the number of looks of the images, as can bee
seen from those transition probabilities estimated from eight 3-look pure Nakagami noise
images of size 4096× 4096 pixels shown in table 5.3, where the transition probabilities for
all α values approximately remain the same as those estimated in 1-look pure Nakagami
noise images. Therefore, for the Markovian a contrario model defined with a certain value
of α, it is applicable to images of any number of looks.

Table 5.2 – Estimated transition probabilities of the first order Markov chain for τ = 22.5◦

and different values of α in the local orientation fields of eight 1-look pure noise images of
size 4096× 4096 pixels.

α = 1 α = 2 α = 3 α = 4 α = 5

P(1|1)
0.245866± 0.406489± 0.512974± 0.586310± 0.634831±
0.000052 0.000060 0.000061 0.000060 0.000059

P(1|0)
0.109585± 0.085222± 0.069719± 0.059153± 0.052201±
0.000014 0.000013 0.000012 0.000011 0.000010

Table 5.3 – Estimated transition probabilities of the first order Markov chain for τ = 22.5◦

and different values of α in the local orientation fields of eight 3-look pure noise images of
size 4096× 4096 pixels.

α = 1 α = 2 α = 3 α = 4 α = 5

P(1|1)
0.243331± 0.406063± 0.513112± 0.586526± 0.635020±
0.000052 0.000060 0.000061 0.000060 0.000059

P(1|0)
0.108522± 0.084959± 0.069600± 0.059092± 0.052151±
0.000014 0.000013 0.000012 0.000011 0.000010

5.4 The complete LSDSAR algorithm

The proposed LSDSAR algorithm relies on three main steps, namely region growing,
rectangular approximation and line segment validation, on which we perform several mo-
difications.

(i) Region growing : in this step we replace the finite-differences based gradient of LSD
by GR, as described in Section 5.1 ;
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(ii) Rectangular approximation : this step is identical to that of the original LSD algo-
rithm ;

(iii) Line segment validation : in this step, we use the Markovian a contrario model as
the background model to validate the candidate line segments.

Algorithm 1: LSDSAR

Inputs : a SAR (amplitude) image I with size M ×N , the NFA threshold ε, the
regularization parameter α, the angle tolerance τ , the density threshold D and
the estimated transition probabilities for the first order Markov chain with
different α values.

Output : the list L containing the detected line segments.

Initialization :

1) Apply GR with parameter α on the input image.

2) Compute OrderedList, the sorting in descending order
of the pixels of I according to their gradient magnitudes

3) Precompute all values of PH′
0
(k(r0) ≥ k) (for (n(r0), k) ∈ {0, . . . , Nmax}

2), needed
in (5.6).

4) Define NFA′ as in (5.6), using NR = 3 · (MN)5/2.

for P ∈ OrderedList do

region ← RegionGrow(P, τ)
r ← Rectangle(region)

while AlignedPixelDensity(r,τ)<D do

region ← CutRegion(region)
r ← Rectangle(region)

nfa← NFA′(r)
if nfa ≤ ε then L← L ∪ {r}
else

r ← ImproveRectangle(r)
nfa← NFA′(r)
if nfa ≤ ε then L← L ∪ {r}

return L

The reason of the setting NR = 3 · (MN)5/2 (instead of NR = 11 · (MN)5/2 in LSD) is that
the total number of segments is potentially multiplied by three (instead of 11 in LSD) because
each rectangle may be modified only two times (instead of 10 in LSD) during the refinement step
(routine ImproveRectangle). Note that, in step 3), one precomputation is needed per considered
value of the angle tolerance (τ , τ/2 and τ/4).

A pseudocode description of LSDSAR is proposed in Algorithm 1. In this pseudocode
description, the routines RegionGrow and Rectangle correspond to the Region growing and
Rectangular approximation steps mentioned above. Up to the modification we gave in (i)
for gradient computation, those routines are the same as those used in LSD, which are
carefully described in Grompone von Gioi et al. [2012]. The routine AlignedP ixelDensity,
also explicitly defined in Grompone von Gioi et al. [2012], is used to compute the density
of aligned pixels in the rectangle. When the density of aligned pixels in the rectangle is
smaller than the threshold D, the routine CutRegion is used to refine the rectangle. In the
original LSD, this CutRegion routine involves the use of a modified angle tolerance, which is
computed adaptively to the orientations of pixels in the rectangle. In our implementation of
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the CutRegion procedure, we decided to set this modified tolerance parameter always equal
to τ/2, in order to be able to use some pre-tabulated values of the transition probabilities
of the Markov chain for that particular setting of τ . Last, the ImprovedRectangle routine
defined in LSD, which also involves several refinements of the angle tolerance is again
adapted in order to make the modified angle tolerance always equal to τ/2 (step 1 of the
ImprovedRectangle routine) and τ/4 (step 5 of the ImprovedRectangle routine).

Last, it should be noticed that, contrarily to the original LSD algorithm, we do not need
to pre-filter the image (rescaling, Gaussian filtering) and we do not need the threshold for
the gradient magnitude because SAR images are mostly free of aliasing and quantization
effects.

5.5 Parameter settings

Algorithm 1 relies on four parameters, ε, α, τ and D. As usual with the a contrario
algorithms, the NFA-property (4.13) provides a handy meaning for the NFA threshold
parameter ε, even for non-expert users. This threshold ε represents an upper-bound on
the average number of detections that we allow in pure noise input data. As mentioned
before, a common setting for this parameter is ε = 1. Besides, from our simulations, we
found appropriate the setting τ = 22.5◦ proposed in the original LSD algorithm. In this
section we propose to discuss the influence of the two remaining parameters α and D on
the detection results, and we propose a default setting for them.

(a) amplitude ratio contrast 1.5 (b) grount truth

Figure 5.17 – A 1-look synthetic edge image with amplitude ratio contrast 1.5 and its
associated edge ground truth. The size of images are 1024× 1024 pixels.

First, we focus on the setting of α, the regularization parameter used in the GR com-
putation. Increasing the value of α helps to suppress the speckle, but in turn introduces
more dependencies between adjacent pixels. Choosing a proper value for α should rely
on a reasonable trade-off between these two effects. We will evaluate the influence of α
under two aspects : on the one hand, α must be set in such a way that GR efficiently
highlights the edges of the input image. On the other hand, the amount of dependencies
between local orientations must be correctly taken into account using our Markov Chain
approach, which can be implicitly checked by looking whether or not, our modified NFA′
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formula (5.6) provides an effective control of the number of false detections.

In order to study the influences of α values on the performances of GR, we use ROC
curves to evaluate the detection capability of gradient magnitude computed by GR in
simulated edge images of size 1024 × 1024 pixels. Since 1-look SAR images are with the
best resolution, we evaluate the detection capability of GR in 1-look images. The ratio
contrasts of the edges in the simulated images vary from 1.2 to 1.9 with step 0.1. One
example of the simulated edge images with contrast 1.5 and its associated ground truth
can be found in figure 5.17.
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Figure 5.18 – A 1-look example image and ROC curves of gradient magnitude fields
computed by GR with different values of α in eight 1-look synthetic edge images with
amplitude ratio contrast of the edge varying from 1.2 to 1.9 with step 0.1. The size of
images are 1024× 1024 pixels.

The ROC curves computed using GR with different α values (the values of α vary
from 1 to 5 with step 1) can be found in figure 5.18. From figure 5.18 we can see that
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with the increase of α values, the detection capability of the magnitude field computed
by GR becomes higher. Besides, the differences between GR with different α values in the
detection capability of the magnitude field becomes smaller when the ratio contrasts of the
edge become large. From figure 5.18 we can assume that it is better to choose a large α
value.

As mentioned before, the choice of α values should be a trade-off between the detection
capability of the gradient magnitude and the efficiency of the first order Markov chain to
take into account of dependencies. The efficiency of the first order Markov chain can be
checked through the number of false detections by LSDSAR in pure noise images. Table 5.4
gives the average number of false detections obtained by applying Algorithm 1 on eight
1-look pure Nakagami noise of size 4096×4096 pixels with ε = 1 and for different values of
α. We can see in Table 5.4 that the proposed Markov chain model succeeds in controlling
the number of false detections in the case α = 1 and α = 2, but as α becomes larger,
the number of false detections may be significantly above ε, especially when α = 5. In the
case α = 4, the number of false detections remains reasonable, and considering that the
performances of GR with α = 4 and α = 5 seem comparable and both are better than
those with smaller α values, we suggest to use α = 4 as a default setting. However, one
must be aware that, with the setting α = 4, LSDSAR may not be able to distinguish line
segments that are very close to each other, as illustrated in figure 5.19. In situations where
the accurate detection of close line segments is required, a smaller value, such as α = 2,
can be used.

Table 5.4 – Influence of the setting of α on the number of (Average number of false)
detections obtained using LSDSAR on eight 1-look pure Nakagami noise images of size
4096× 4096 pixels.

Parameter α = 1 α = 2 α = 3 α = 4 α = 5

Number of detections
0± 0.63± 7.38± 50.88± 129.63±
0 0.26 0.94 2.33 2.89

(a) α = 4 (b) α = 2

Figure 5.19 – Line segment detection on 20-look synthetic image of size 32 × 128 pixels
containing horizontal edges with 2-pixel width and amplitude contrast of 1.8.

It remains to choose a proper value of D, the threshold for the density of aligned pixels
involved in LSDSAR. The density of aligned pixels within rectangle r is defined as the ratio
k(r)/(w(r) ·ℓ(r)), noting w(r) and ℓ(r) the width and length of r. In Algorithm 1, after the
region growing step, the rectangles are refined until their density of aligned pixels becomes
larger than D. As explained in Grompone von Gioi et al. [2010], this threshold aims to
avoid situations where two straight edges are present in the region with an angle between
them smaller than the tolerance τ , leading to inconsistent detections. Again, a tradeoff
must be found, since low values of D lead to inconsistent detections, while too large values
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[H]

(a) D = 0 (b) D = 0.4 (c) D = 0.5

Figure 5.20 – Line segment detection on 3-look synthetic edge image (contrast 1.6) for
different value of the density threshold.

of D will have the effect of over-cutting the line segments into small subsegments. This
phenomenon is illustrated in figure 5.20, where we can see that one spurious line segment
appears when D = 0, line segments are fragmented when D = 0.5, while a better satisfying
detection is obtained with D = 0.4, that we recommend as default setting. Although we
observed that the setting D = 0.4 is generally safe, larger values may sometimes be needed,
as illustrated in figure 5.21 which shows that a larger density threshold may be necessary
when we need to distinguish two line segments with an angle difference significantly smaller
than the angle tolerance τ .

(a) D = 0.4 (b) D = 0.6

Figure 5.21 – Line segment detection results on 3-look synthetic edge images (contrast
1.4) for two different values of D. The angle differences of the problematic line segments
are smaller than the angle tolerance is 22.5 degrees.
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Chapitre 6

Experiments

6.1 Ability to control NFA

6.1.1 The number of false detections in pure noise images

One of the requirements of the proposed LSDSAR algorithm is its ability to control the
number of false detections, more precisely, the ability of the new Markovian a contrario
model to control the number of false detections in random images. To demonstrate this,
we compare LSDSAR with what we refer to as the LSD+GR algorithm, which roughly
corresponds to the trivial adaptation of LSD where the finite-difference based gradient
suited to optical images is replaced by GR. More precisely, our LSD+GR implementation
is a variant of Algorithm 1 where we avoid the use of Markov chains, and use the usual
NFA formula (4.12) instead of NFA′ as defined in formula (5.6).

As discussed before, the filtering provided by GR introduces important dependencies
between local orientations, so that the LSD+GR approach does not fulfill the independence
assumption required by the original LSD algorithm. This phenomenon is clearly demons-
trated in Table 6.1 (column 2), where we indicate, for several values of α, the number of
false detections obtained using LSD+GR over a pure speckle image of size 4096 × 4096
pixels. On the contrary, we see in Table 6.1 (column 3) that, thanks to the Markov chain
modeling of dependencies between local orientations, the number of false detections obtai-
ned with LSDSAR is better controlled and remains comparable to ε, even for large values
of α.

Table 6.1 – number of false detections obtained using LSD+GR (second column) and
LSDSAR (third column) with the setting ε = 1 in a pure speckle noise image with size
4096× 4096 pixels.

Parameter α LSD+GR LSDSAR

α = 1 2 0

α = 2 2710 2

α = 3 16602 10

α = 4 29771 51

α = 5 35916 97
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6.1.2 The influence of image size on the Number of False Alarms (NFA)

Though theoretically on average, at most one false detection is allowed in a random
image, regardless of the size of images. However, we observe that the size of images in-
fluences the number of false detections. LSDSAR with different α values is applied to
pure noise images of different size and the average number of false detections is compu-
ted for each size of images. Specifically, we simulate eight 1-look pure noise images of size
8192×8192 pixels, eight 1-look pure noise images of size 4096×4096 pixels, 128 1-look pure
noise images of size 1024× 1024 pixels and 512 1-look pure noise images of size 512× 512
pixels. The average number of false detections computed for each size of images, and each
value of α can be found in table 6.2. From table 6.2 we can conclude that when α = 1 and
α = 2, the Markovian a contrario model is efficient enough to model the dependencies
between local orientations, the number of false detections detected by LSDSAR is strictly
controlled regardless of the size of images. When α values become larger, since the hypothe-
sis of the first order Markov chain is not strictly accurate, the number of false detections of
LSDSAR is not strictly controlled and the number of false detections becomes larger when
the size of images becomes larger. What can also be observed is that with the increase of
α values, more dependencies are introduced and the LSDSAR method is less efficient to
control the number of false detections.

Table 6.2 – The average number of false detections by applying LSDSAR with different
values of α to images of different sizes.

Parameter α = 1 α = 2 α = 3 α = 4 α = 5

NFA (8192× 8192)
0± 1.25± 11.13± 90.13± 277.38±
0 0.45 1.04 3.12 5.62

NFA (4096× 4096)
0± 0.63± 7.38± 50.88± 129.63±
0 0.26 0.94 2.33 2.89

NFA (1024× 1024)
0± 0.54± 4.15± 14.23± 29.20±
0 0.06 0.19 0.34 0.47

NFA (512× 512)
0± 0.48± 2.72± 7.67± 14.10±
0 0.03 0.07 0.12 0.16

6.1.3 The influence of the ε value on the ability of LSDSAR to control
the Number of False Alarms (NFA)

In order to study the influence of the NFA threshold ε values on the performances of
LSDSAR, we apply LSDSAR with different ε values on 128 1-look pure noise images of
size 1024×1024 pixels and the average number of false detections is computed as shown in
table 6.3. What can be concluded is that when ε values are smaller than 100, the number
of false detections for LSDSAR with α = 1 and α = 2 are strictly controlled. For LSDSAR
with larger α values, though the number of false detections is not strictly controlled, the
number of false detections remains in the reasonable scope. When ε is set to 100, there are
too many false detections for LSDSAR with all α values.
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Table 6.3 – Average number of (false) detections obtained using LSDSAR over 128 single
look images with size 1024× 1024, for different values of α and different values of the NFA
threshold ε.

NFA threshold ε 0.01 0.1 1 10 100 1000

NFA (α = 1)
0± 0± 0± 0± 242.43± 349.91±
0 0 0 0 1.37 1.73

NFA (α = 2)
0.11± 0.23± 0.54± 1.20± 775.01± 1077.02±
0.03 0.04 0.06 0.09 2.38 2.89

NFA (α = 3)
1.05± 2.11± 4.15± 7.83± 1015.69± 1493.55±
0.10 0.12 0.19 0.27 2.72 3.25

NFA (α = 4)
5.20± 8.62± 14.23± 23.66± 1062.63± 1375.73±
0.20 0.28 0.34 0.43 2.93 3.20

NFA (α = 5)
12.70± 19.59± 29.20± 45.03± 975.86± 1259.23±
0.31 0.38 0.47 0.62 2.42 2.86

6.2 Comparison in synthetic edge images

In this section, we study the performances of the proposed LSDSAR algorithm over
synthetic edge images, and compare this algorithm with the following concurrent methods :

a. the original LSD algorithm applied to the logarithm of the amplitude of the SAR
image ;

b. what we refer to as the LSD+GR algorithm, as mentioned above ;

c. a recent line segment detector, called AFM, introduced in Xue et al. [2019], which
is based on deep learning. We use the pretrained model provided by the author, and
apply it to the logarithm of the amplitude of the SAR images ;

d. a state-of-the-art Hough-transform based method, named IEFA, proposed in Wei
and Feng [2016]. IEFA relies on a ratio-based gradient Shui and Cheng [2012] and a
threshold to suppress the pixels with small gradient magnitude. Then, non-maximum
suppression Canny [1986], Jiang et al. [2009] is used to extract the local maxima of
the magnitude field. Instead of using a binary edge map as the input of the Hough
transform, the gradient magnitude field is selected as the input. The accumulation
weight in the Hough transform is the gradient magnitude weighted by the gradient
orientation with a Gaussian function, as described in Wei and Feng [2016], O’Gorman
and Clowes [1976], Bonci et al. [2005]. We use our own implementation since the code
by the authors is not available online.
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(a) clean image (b) edge ground truth

Figure 6.1 – (a) synthetic image with a contrast amplitude of 1.5, (b) the corresponding
edge ground truth.

(a) 1-look images (b) 3-look images

Figure 6.2 – Performances evaluations in terms of F1-score for different algorithms, using
1-look (a) and 3-look (b) synthetic edge images with contrast values ranging from 1.2 to
1.9.

Unless explicitly mentioned, we will use the default setting ε = 1, α = 4, τ = 22.5◦, and
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D = 0.4 in our LSDSAR algorithm. In particular, we will show that LSDSAR performances
are robust with respect to the parameter settings, and that the proposed default parameters
yields essentially near optimal performances in most situations. In the LSD+GR variant,
we set α = 4 and keep the other parts of the LSD algorithm unchanged. We also keep the
default setting of the original LSD Grompone von Gioi et al. [2012] algorithm unchanged.
In the case of IEFA, which relies on many parameters, we will use a specific parameter
tuning procedure in our numerical experiments. This procedure will be detailed below.

In order to provide a quantitative comparison of the considered algorithms, we propose
to use the F1-score computed in the binary line maps (in the line map, pixel value is set
to 1 if the pixel belongs to a line segment, and 0 otherwise). The comparisons will be
performed over some noisy single look or multi-look observation of synthetic images for
which a ground-truth is available (see Fig. 6.1).

We computed the performances in terms of F1-score for LSDSAR, IEFA, LSD+GR,
LSD and AFM, over 1-look and 3-look synthetic edge images with different contrast values.
In the case of IEFA, the algorithm was tested with a large range of parameters. More
precisely, the threshold that we used for the gradient magnitude ranges from 0.1 to 0.40
with step 0.05. The number of peaks in the Hough transform was set to 5000 so that
all the line segments on the image could be detected. The smallest value of a bin which
can be considered as a peak was set to 3. The minimum gap between two line segments
extracted from the same bin ranges from 3 to 15 with step 2. The minimum length of a
line segment was set to 13. In figure 6.2, the red plain curve (referred to as IEFA (tuned)
in the legend) represents the best F1-score value obtained among all tested parameters for
each contrast value. Therefore, this curve represents the best F1-score performance that
can be achieved by IEFA. However, the parameters leading to this optimal performances
are different from one contrast value to the other. This observation is confirmed by the red
dashed curves of figure 6.2, where we used the optimal parameter setting found for contrast
1.2 and 1.9 to process the images with other contrast values (see the curves referred to
as IEFA (tuned for contrast 1.2) ans IEFA (tuned for contrast 1.9 )). One can see that
the performances of IEFA can be very different from the optimal performances when the
input parameters are fixed (and even optimized for a given contrast value). In the case
of LSDSAR, except for the default parameter settings, we also tuned the parameters to
demonstrate that the F1-score obtained by LSDSAR can be improved. The value of ε
ranges over 1, 102, 104 and 106. The value of α ranges from 4 to 7 with step 1. The
value of τ can be 22◦ or 33.75◦. We keep the parameter D = 0.4 unchanged. LSDSAR
with tuned parameter values leads to the blue plain curve, referred as LSDSAR (tuned) in
the legend of figure 6.2. This optimal F1-score can be compared to the F1-score obtained
using the default setting of LSDSAR (blue dashed curve) that we recommend in (ε = 1,
α = 4, τ = 22◦ and D = 0.4). We can see that the default recommended setting for
LSDSAR leads to F1-score performances that are similar to that obtained when tuning
the parameters of LSDSAR, which demonstrates the robustness of the algorithm with
respects to the setting of its parameters. Besides, we can see that, in most situations, the
F1-score achieved by LSDSAR with default parameter setting is comparable or better than
the F1-score achieved by IEFA with tuned parameters, and also significantly better than
the F1-score obtained using LSD+GR, the original LSD and AFM. Indeed, in the 3-look
experiments displayed in figure 6.2 (b), the performance of LSDSAR is clearly above that
of IEFA. Some of the images corresponding to this experiments are displayed in figure 6.3.
In the 1-look experiment displayed in figure 6.2 (b), IEFA with tuned parameters may lead
to slightly better results than LSDSAR in low contrast situations (in fact, this is only clear
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for contrast 1.3), but it should be noted that, in this particular case, the IEFA algorithm’s
performance is very dependent on the parameter setting and may collapse if the parameters
are changed. Last, it must be noted that, in the case of IEFA, multiple responses may be
obtained for the same line segment, which may be an issue for practical applications, while
it is not the case for the LSDSAR algorithm. Concerning the failure of LSD and AFM,
the main reason is that taking logarithm of the images will flatten the edges, while the
additive noise changed from multiplicative noise is relatively strong. Therefore, both LSD
and AFM obtain very bad results. For AFM, another reason is that it is pretrained from an
optical dataset, and it is trained to process approximately clean images. If AFM is trained
using a dataset which holds similar statistics to SAR images, the performances of AFM
could be imroved significantly. However, the lack of training dataset is a crucial difficulty,
but it could be an interesting point which can be investigated in the future work.
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Figure 6.3 – Detection results obtained using LSDSAR (with default parameters) and
IEFA (tuned for contrast 1.2 or 1.9) over 3-look synthetic images with contrast values
equal to 1.2 (first row) or 1.9 (second row). We can see that, in both situations, LSDSAR
with defaults parameters yields better performances in terms of F1-score than IEFA (even
with tuned parameters).

The influence of α value and ε value on the performances of LSDSAR in syn-

thetic data

To test the influence of α value on the performances, we test LSDSAR with different
α values in both 1-look and 3-look synthetic edge images and display the corresponding
F1-score in figure 6.4. It can be seen that in low contrast and very noisy situation, LSDSAR
with larger α values is prefered, while for high contrast and less noisy cases, LSDSAR with
smaller α values would be a better choice. LSDSAR with different ε settings is applied to
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both 1-look and 3-look synthetic images. The F1-score curves can be found in figure 6.5.
We can see that the performances of LSDSAR is not sensitive to ε values.
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Figure 6.4 – F1-score curves obtained by applying LSDSAR with different α values to
1-look and 3-look synthetic images.
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Figure 6.5 – F1-score curves obtained by applying LSDSAR with different ε values to
1-look and 3-look synthetic images.

Line segment detection results by LSDSAR with default parameter settings in

1-look and 3-look synthetic edge images

In order to further analyze the performances of LSDSAR with default parameter set-
tings, we display the line segment detection results by LSDSAR in those 1-look and 3-look
synthetic edge images in figure 6.6 and figure 6.7. The line segment detection results are
corresponding to the F1-score curves of LSDSAR with default settings in figure 6.2. From
figure 6.6 (b)-(c) we can see that the performances of LSDSAR in 1-look and low contrast
situations are bad, since most true line segments are not detected though the number of
false detections is controlled. The performances of LSDSAR could be improved by increa-
sing the values of α and ε, but the performances of LSDSAR remain bad as can be seen
from the F1-score curves of LSDSAR (tuned) in figure 6.2. The main reason for the poor
performances of LSDSAR in these situations is that the gradient computation method
GR is not efficient enough to highlight true edge pixels and suppress noise pixels in such
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noisy and such low contrast situation. It can also be seen from figure 6.6 that in 1-look
situations, the performances of LSDSAR are improved with the increase of contrast values.
In 3-look situations as shown in figure 6.7, the performances of LSDSAR in low contrast
situation (figure 6.7 (b)-(c)) seem reasonable, which is probably because the images are less
noisy. For 3-look and high contrast situations, LSDSAR detects almost all line segments.
Furthermore, in all experiments, the number of false detections is controlled and only a
few false line segments are detected. However, LSDSAR is not able to detect close line
segments (in the corner of the images) because of the large α values. If the images are less
noisy and close line segments are required to be detected, LSDSAR with smaller α values
could be tested.

(a) clean image (b) contrast 1.2 (c) contrast 1.3

(d) contrast 1.4 (e) contrast 1.5 (f) contrast 1.6

(g) contrast 1.7 (h) contrast 1.8 (i) contrast 1.9

Figure 6.6 – An example of clean image and line segment detection results by LSDSAR
with default parameter settings in eight 1-look synthetic edge images of size 512 × 512
pixels. The amplitude ratio contrasts of the images vary from 1.2 to 1.9.
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(a) clean image (b) contrast 1.2 (c) contrast 1.3

(d) contrast 1.4 (e) contrast 1.5 (f) contrast 1.6

(g) contrast 1.7 (h) contrast 1.8 (i) contrast 1.9

Figure 6.7 – An example clean image and line segment detection results by LSDSAR with
default parameter settings in eight 3-look synthetic edge images of size 512 × 512 pixels.
The amplitude ratio contrasts of the images vary from 1.2 to 1.9.

6.3 Comparison between LSDSAR and IEFA on real SAR

images

In this section, we focus on the performances of IEFA and LSDSAR on real SAR images.
Details about the SAR images that we used are provided in section 2.3. We observed that,
for IEFA, the parameters yielding the best F1-scores in the 1-look synthetic experiment
were not appropriate to process real 1-look SAR images, as we show in figure 6.8. Again,
this illustrates the difficulty of using IEFA in practical applications. In our experiments on
real data, we manually tuned the IEFA parameters on each considered image, by means
of a visual inspection of the detection result. The parameters of the IEFA algorithm were
explored as follows : the threshold of the gradient magnitude was set equal to 0.25 (the
gradient magnitude of our SAR images varies from 0 to 0.93), the number of peaks extracted
in the Hough transform was set equal to 5000, the smallest value of a bin that can be
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considered as a peak was set equal to 3, the minimum gap between two line segments
extracted from the same bin was set equal to 7 and the smallest length of a line segment
was set equal to 13. In figure 6.9 and figure 6.10, we display the line segment detection
results obtained using LSDSAR and IEFA over two different single-look SAR images.

(a) IEFA (tuned for contrast 1.2)

(b) IEFA (tuned for contrast 1.9)

Figure 6.8 – Line segment detection obtained using IEFA (tuned for contrast 1.2) and
IEFA (tuned for contrast 1.9) over a 1-look real SAR image.
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(a) LSDSAR

(b) IEFA

close-up view of (a)

close-up view of (b)

Figure 6.9 – Line segment detection using LSDSAR (a) and IEFA (b) over a 1-look
Sentinel 1 SAR image (Lelystad).

From the images displayed in figure 6.9 and figure 6.10, we can see that LSDSAR de-
tects more correct line segments than IEFA while the number of false detections is better
controlled. There are nevertheless some line segments detected by IEFA that are not de-
tected by LSDSAR. Better performances could be obtained with LSDSAR by increasing
either α or ε, at the cost of increasing the number of false detections. We also performed
experiments on real SAR images with better signal-to-noise ratio, by running the two algo-
rithms on the temporal averaging of 3 registered Sentinel images. We can see in figure 6.11
that LSDSAR detects much more correct line segments in the multi-look situations while
the number of false detections is well controlled. Again, we must underline that the para-
meter setting of IEFA is very dependent on the image content and all those experiments
involved a careful tuning of its parameters by means of a visual inspection, while LSDSAR
always provided satisfying results using its default parameter setting.
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(a) LSDSAR (b) IEFA

close-up view of (a) close-up view of (b)

Figure 6.10 – Line segment detection using LSDSAR (a) and IEFA (b) over a 1-look
TerraSAR-X SAR image (San Francisco).
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(a) LSDSAR

(b) IEFA

close-up view of (a)

close-up view of (b)

Figure 6.11 – Line segment detection using LSDSAR (a) and IEFA (b) over a 3-look
Sentinel 1 SAR image (Lelystad).

6.4 Summary of LSDSAR

In this part, we proposed a line segment detector for SAR images, inspired from the LSD
detector for optical images. Our experiments on synthetic and real SAR images showed the
ability of LSDSAR to detect correct line segments even in 1-look situations while offering
a valuable control of the number of false detections. This LSDSAR algorithm only relies
on four parameters which are easy to set. We proposed a default setting that achieved
satisfying results in all our experiments. We also demonstrated that a first order Markov
chain can be efficiently used to handle the dependencies between the local orientations
computed by GR, yielding a reasonably accurate control of the number of false detections
for LSDSAR. An interesting perspective for this work would be to consider higher order
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Markov chains, or two dimensional Markov models, in order to even better take into account
all the dependencies and achieve a strict control of the NFA, but in this case the complexity
of the algorithm may increase rapidly. More generally, we believe that the use of the first
order Markov chains is a simple and effective way to take into account of the dependencies
in the a contrario framework, and that it is interesting to study how such an approach
can be further used to extend the a contrario methodology to practical situations where
dependencies are difficult to handle.

6.5 Inefficiency of LSDSAR in 1-look and low-contrasted si-

tuations

Except for the imperfectness of the Markovian a contrario model, the main reason for
the failure of LSDSAR to detect many true line segments in some situations is that the
gradient computation methods are not efficient enough to highlight true edge pixels and
suppress noise pixels, thus the local orientations will not be accurate enough. The gradient
magnitude fields computed by GR with α = 4 in four 1-look synthetic edge images with
contrasts varying from 1.2 to 1.5 with step 0.1 can be found in figure 6.12 (corresponding
to line segment detection results in figure 6.6 (b)-(e)). From the gradient magnitude fields
computed by GR with α = 4 shown in figure 6.12 we can deduced that the accuracy
of local orientations (the angle of the direction along the edges) is pretty low for 1-look
and low contrast situations, especially for contrast 1.2 (figure 6.12-(a)) and contrast 1.3
(figure 6.12-(b)), which gives an explanation for the poor performances of LSDSAR in
those images as can be seen in figure 6.6-(b) and figure 6.6-(c). A quantitative proof of
the poor performances of LSDSAR in those images can also be seen in figure 6.2. What
can also be observed from figure 6.12 is that with the increase of edge contrasts, the edge
pixels are better highlighted (figure 6.12) and thus the line segment detection results by
LSDSAR are improved (figure 6.6). The gradient magnitude fields computed by GR in
3-look realizations of those edge images with contrast varying from 1.2 to 1.5 with step 0.1
can be found in figure 6.13 (corresponding to line segment detection results in figure 6.7
(b)-(e)). From figure 6.13 we can see that GR is more efficient in less noisy situations.
In 3-look images, GR is able to highlight true edge pixels even in low contrast situations
(figure 6.13 (a)-(b)), the corresponding line segment detection results by LSDSAR has
improved a lot (figure 6.7) compared to those in 1-look images (figure 6.6).

(a) contrast 1.2 (b) contrast 1.3 (c) contrast 1.4 (d) contrast 1.5

Figure 6.12 – The gradient magnitude fields computed by GR with α = 4 in four 1-look
synthetic edge images (corresponding to line segment detection results in figure 6.6 (b)-(e)).

In order to propose a more efficient gradient computation method, which is able to
distinguish between true edge pixels and noise pixels even in 1-look and low contrast
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(a) contrast 1.2 (b) contrast 1.3 (c) contrast 1.4 (d) contrast 1.5

Figure 6.13 – The gradient magnitude fields computed by GR with α = 4 in four 3-look
synthetic edge images (corresponding to line segment detection results in figure 6.7 (b)-(e)).

situations, we propose to use Convolutional Neural Networks (CNNs) since it has shown
its efficiency to highlight edge pixels and suppress noise pixels in natural images Xie and
Tu [2015, 2017], Yang et al. [2016], Xu et al. [2017], Liu et al. [2017b, 2019], as what we will
describe in the next part. Due to the efficiency of the CNN based gradient computation
method, a simple non-maxima suppression and a plain thresholding are enough to obtain
reasonable edge maps even in 1-look and low contrast situations, as we will also see in
the next part. Furthermore, it will be shown that the CNN-based gradient computation
method may help to improve the line segment detection results.



78 6. Experiments



79

PART II

Edge detection in SAR images using

CNNs





81

Chapitre 7

Introduction

Edges are important features in Synthetic Aperture Radar (SAR) images. The edge
features can be used as low level features for many applications like line segment detec-
tion Wei and Feng [2016], Wei et al. [2017], SAR image segmentation Yu et al. [2012], Song
et al. [2013], coastline detection Lee and Jurkevich [1990], Liu et al. [2017a], image regis-
tration Chen et al. [2014], Zhang et al. [2015] and SAR image despeckling Dai et al. [2004].
What is more important, due to the strong differences between images of different modali-
ties, like SAR and optical data, detecting low level features is usually a preprocessing step
for subsequent applications like image registration. As one of the most important low level
features, edges will be helpful for the joint use of SAR and optical images. In this second
part of the thesis, we develop a CNN based edge detector for SAR images, which adresses
the most challenging cases for edge detection task, namely the edge detection in 1-look
SAR images. In addition, we will show that the gradient magnitude fields computed by
the proposed CNN based methods outperform the existing gradient computation methods
and can be used to improve the line segment detection results.

7.1 Existing approaches

Due to the strong multiplicative speckle noise in SAR images, methods developed for
optical images, which are usually based on pixel value differences, produce more false edges
in brighter areas and thus are not suitable for SAR images. Many researches have been
dedicated to edge detection in SAR images in the past years. In Touzi et al. [1988], the
Ratio of Average (ROA) was proved to have a constant false alarm rate for SAR images
(CFAR property). The ratio operator is applied along four directions and the minimum
normalized ratio is used to compute the edge maps. The direction corresponding to the
minimum normalized ratio is regarded as the edge orientation. A threshold determined by
a given probability of false alarms and a morphological operator are then applied to obtain
a binary thin edge map. However, ROA is optimal only for isolated step edges. An effi-
cient multiedge detector, ROEWA, was proposed afterwards in Fjørtoft et al. [1998]. The
Ratio of Exponentially Weighted Average was shown to be optimal in terms of minimum
mean square error (MMSE) under the hypothesis of a stochastic multi-edge model. The
method is based on ROA, but averages are weighted by a decreasing exponential func-
tion, allowing a better detection of multiple edges close to each other. Besides, instead of
computing the ratio along four directions, the ratio is computed along the horizontal and
vertical directions and the normalized ratios are considered as the horizontal and vertical
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components of the gradient magnitude. A modified watershed algorithm is then used to
threshold the Edge Strength Map and a region merging algorithm is used to eliminate the
false edge pixels. Edge detectors using different shape of window functions were introdu-
ced later in Shui and Cheng [2012] and Wei et al. [2016]. Non-maxima suppression Canny
[1986] and hysteresis thresholding are applied to obtain the binary thin edge map. An edge
compensation strategy was also introduced in Wei et al. [2016] to extract weak edge pixels.
To reduce the influence of isolated strong bright points in real SAR images, an Anisotropic
Morphological Directional Ratio (AMDR) Shui and Fan [2018] was proposed by replacing
the weighted average filter with the weighted median filter. The edge localization accuracy
in the Edge Strength Map (ESM) and the Edge Direction Map (EDM) was then improved
by a multiplicative spatial and directional matching filter. By introducing the improved
ESM and EDM into the routine of Canny edge detector Canny [1986], the resulting edge
detector is able to obtain a binary thin edge map. The connectivity of edges is finally
improved by an edge remedy strategy.

7.2 Training CNNs for edge detection in SAR images

The performances of the edge detectors developed for SAR images are still not fully
satisfying, especially in the challenging 1-look situation. On the other hand, convolutional
neural networks (CNNs) have proven to be succesful for edge detection in natural images,
with approaches such as Deepedge Bertasius et al. [2015], DeepContour Shen et al. [2015],
HED Xie and Tu [2015, 2017], CEDN Yang et al. [2016], AMH-Net Xu et al. [2017] or
RCF Liu et al. [2017b, 2019], which have permitted to improve significantly traditional
edge detectors like Sobel Kittler [1983], Canny Canny [1986], Statistical Edge Konishi et al.
[2003], Pb Martin et al. [2004], gPb Arbelaez et al. [2011] and Structured Edge Dollar and
Zitnick [2015], at least on databases similar to the training sets. Motivated by this fact, we
study the possibility to apply CNN-based methods to SAR images. We will pay a special
attention on developing methods that are as CFAR as possible.

One crucial factor that contributes to the success of CNNs is the availability of training
datasets with ground truth. A first difficulty for the present work is that, to the best of our
knowledge, there is still no available training dataset for edge detection in SAR images.
Considering that edges mostly correspond to changes in local brightness and textures (and
color for color images), we assume that the problem of edge detection should not rely much
on the specific content of the image. In this case, datasets of natural images used to train
CNN could be used to train a SAR edge detector, provided images are modified using a
reasonable noise model. On this basis, we propose to simulate a SAR-like training set by
multiplying by speckle noise datasets of natural images. The natural images multiplied by
speckle are called speckled optical images in the following.

Another difficulty in applying CNN-based method to SAR images is their specific dy-
namic ranges. The range of values is indeed much higher for SAR images than for natural
images. To cope with this problem and ease the training of the network, we propose in
this work to apply a pre-processing step to the SAR images by applying a first low-level
edge detection step. This step is done using the Gradient by Ratio (GR) proposed in Del-
linger et al. [2015]. These pre-processed features are then given as input to the network
to be trained (HED Xie and Tu [2015, 2017]). This strategy will be called GRHED in the
following. In the next chapter, we will give the details about HED and the details about
the simulated speckled optical dataset. The details about GRHED and its benefits will be
discussed in subsequent chapters.
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Chapitre 8

Presentation of the HED method

and of the training dataset

8.1 Details of the HED method

8.1.1 Network architecture

The HED method, introduced in Xie and Tu [2015, 2017], relies on a fully convolu-
tional network Long et al. [2015], Shelhamer et al. [2017], which is trained end-to-end to
perform image-to-image prediction. The network architecture of HED is shown in table 8.1.
The HED network is trimmed from the VGG-16 Simonyan and Zisserman [2015] net by
discarding the last max-pooling layer and the 3 fully connected layers. Motivated by the
deeply-supervised nets Lee et al. [2015], five side outputs are added to the convolutional
layers just before the five max-pooling layers in the original VGG-16 net. The loss function
of the HED network is composed of the loss function from the side layers and the loss
function from the fused output. The final output of HED is an average of the side outputs
and the fused output. In-network bilinear interpolation Long et al. [2015], Shelhamer et al.
[2017] is used to upsample the side outputs so that they all have the same size as the edge
ground truth. Notice that in table 8.1, all convolutional layers are constituted by convo-
lutional filters with each filter being followed by a ReLU activation function (the ReLU
function is the function f(x) = max(0, x)) Krizhevsky et al. [2012]. The receptive field
size of all convolutional filters are 3× 3 pixels and the role of ReLU activation function is
to introduce non-linearity. The max-pooling layer applies a 2 × 2 max filter with stride 2
over the input. Each pixel in the output of a max-pooling layer is the maximum value of
a region with size 2× 2 pixels in the input.

8.1.2 Training and testing phases

Training Given an image u in the training dataset, noting G for its associated edge
ground truth, where u = {uj , j = 1, · · · , |u|} denotes the input image and G = {Gj , j =
1, · · · , |G|} denotes the edge ground truth. The goal of training HED is to produce an
output approaching the edge ground truth for each input image. Noting W for the collection
of parameters in all network layers (excluding those corresponding to side output layers),

and noting Wside = (W
(1)
side,W

(2)
side, · · · ,W

(5)
side) for the collection of parameters in those side
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output layers, the objective function for the side output layers is defined as :

Lside(W,Wside) =
5
∑

m=1

βmℓ
(m)
side(W,W

(m)
side), (8.1)

where ℓside denotes the loss corresponding to the side outputs. In HED, all loss functions
are computed over all pixels in a training image and its associated ground truth.

Table 8.1 – The network architecture of HED. The convolutional layers are denoted as
"conv(receptive field size)-(number of channels)". For brevity, we do not show the ReLU
activation function following the convolutional filters in each convolutional layer.

conv3-64
conv3-64 → side output 1

MAX-POOLING

conv3-128
conv3-128 → side output 2

MAX-POOLING

conv3-256
conv3-256
conv3-256 → side output 3

MAX-POOLING

conv3-512
conv3-512
conv3-512 → side output 4

MAX-POOLING

conv3-512
conv3-512
conv3-512 → side output 5

In order to balance the loss between positive/negative classes, a class-balanced cross-
entropy loss function is used in formula (8.1) :

ℓ
(m)
side(W,W

(m)
side) = −λ

∑

j∈G+

logP(Gj = 1|u : W,W
(m)
side)

−(1− λ)
∑

j∈G−

logP(Gj = 0|u : W,W
(m)
side), (8.2)

where λ = |G−|
|G| , and 1 − λ = |G+|

|G| , |G−| and |G+| represent the non-edge and edge label

sets. P(Gj = 1|u : W,Wm
side) = σ(a

(m)
j ) ∈ [0, 1] with σ(·) representing the sigmoid function

and a
(m)
j representing the activation value at pixel j. The edge probability map produced

by each side layer is thus defined as :

Ĝ
(m)
side = σ(Âm

side), (8.3)
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where Â
(m)
side ≡ {a

(m)
j , j = 1, 2, · · · , |G|} represents the activations of the output of the side

layer.
The final fused output is a weighted fusion of those side outputs :

Ĝfuse ≡ σ(
5
∑

m=1

hmÂ
(m)
side), (8.4)

and the corresponding loss function for the fused output Lfuse is defined as :

Lfuse(W,Wside, h) = Dist(G, Ĝfuse), (8.5)

where h denotes the fusion weights which are learned during training. Dist(·, ·) represents
the distance between the fused output and the edge ground truth, which is measured by
the cross entropy loss.

The objective function that needs to be minimized during training using stochastic
gradient descent is thus defined as :

(W,Wside, h)
⋆ = argmin(Lside(W,Wside) + Lfuse(W,Wside, h)). (8.6)

Testing phase Given a testing image u, six edge probability maps (five side outputs and
one fused output) are obtained from HED :

(Ĝfuse, Ĝ
(1)
side, · · · , Ĝ

(5)
side) = CNN(u, (W,Wside, h)

⋆). (8.7)

The final output is computed as the average of all the outputs :

ĜHED = Average(Ĝfuse, Ĝ
(1)
side, · · · , Ĝ

(5)
side). (8.8)

8.2 Speckled optical dataset

Since the aim of this work is to train CNNs for edge detection in SAR images, the
training dataset is of crucial importance for the performances of the edge detector. Instead
of doing the tedious job of edge labeling, we leverage the available optical dataset for
edge detection in natural images. This is motivated by the fact that the edges are mainly
corresponding to the changes in brightness and textures so that the task of edge detection
should not be influenced a lot by the image contents.

In order to simulate a SAR dataset, we should take into account the statistics of SAR
images. Recall from section 2.2 that the amplitude of the backscattered electro-magnetic
field of a homogeneous area with mean intensity 〈I〉 follows a Nakagami distribution :

f(t|〈I〉) =
2

Γ(L)

(

L

〈I〉

)L

t2L−1e−(Lt2/〈I〉), (8.9)

L being the number of looks of the image. For 1-look images, L = 1 and the amplitude of
a physically homogeneous area follows a Rayleigh distribution. Another way of modeling
1-look data is the multiplicative model : t =

√

〈I〉s, s representing the speckle noise and
following the Rayleigh distribution given in eq. (8.9) with 〈I〉 = 1 and L = 1.

Using the multiplicative noise model it is therefore easy to generate speckled data by
multiplying an image by s. Although not truly verified (for real data the speckle is spatially
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correlated and the fully developed model of Goodman is verified only for rough surfaces
Goodman [1975]), this model is widely used to generate simulated data.

In this work, we use the BSDS500 Arbelaez et al. [2011] dataset with the same data
augmentation as in HED Xie and Tu [2017] for training and validation, to simulate a SAR
dataset. Specifically, each image in the training and validation set is rotated by 16 angles,
flipped horizontally, and rescaled to the 50%, 100%, 150% of its original size. There is no
data augmentation for the testing images. The resulting speckled optical dataset, which we
will call BSDS500-speckled in the following, is formed by multiplying the grayscale intensity
channel of each color image with 1-look speckle noise. It contains 300× 16× 2× 3 = 28800
images for training (80%) and validation (20%) and 200 images for testing. After creating
a simulated dataset for training, the next question is how to train HED using this dataset,
especially how to enable the trained model to work well in real SAR images. In order to
fulfill this aim, we will first analyze what HED has learned during training, and then adress
the way to tackle the gap between speckled optical images and real SAR images.

8.3 What HED has learned through training

It is usually difficult to rigorously explain what CNNs have learned during training.
In this section, we try to understand what HED has learned through training using the
simulated SAR dataset. We try to demonstrate experimentally our assumption that HED is
learning to process samples drawn from many different distributions : it learns to suppress
all pixels located in homogeneous areas and it learns to emphasize pixels located on the
boundaries between two homogeneous areas. In addition, we try to show that HED directly
trained on the images (or logarithm of images) does not have CFAR since the distribution
of the output produced by HED in homogeneous areas depends on their mean intensity
values.

Under the hypothesis that both speckled optical images and real SAR images can be
divided into homogeneous areas with many different mean intensity values, HED mainly
learns to do two jobs from the speckled optical dataset : first, HED learns to ensure that
there is no detection of edges in homogeneous areas ; second, HED learns to detect the
boundaries between any two different homogeneous areas. According to formula (8.9), the
amplitude pdf of an homogeneous area in real SAR images follows a Rayleigh distribution
in 1-look situations, therefore, HED learns to process samples drawn from many different
distributions. In the case of real SAR images, taking the logarithm of SAR images is a
usual preprocessing step because it can change multiplicative noise into additive noise. We
will use two ways of training using the speckled optical dataset : 1) training HED on the
images directly, that we will notate as HED (the output of HED is notated as ĜHED) ; 2)
training HED on the logarithm of images in the dataset, which we will notate as HED-log
(the output of HED-log will be notated as ĜHED−log). Global mean substraction is the
preprocessing step that we use before feeding the data into convolutional layers, for both
HED and HED-log. In order to test HED and HED-log which are trained using the dataset,
we evaluate their behaviours on two kinds of images : pure noise images with homogeneous
areas of different mean intensity values, and synthetic edge images.

8.3.1 Testing HED and HED-log in pure noise images

The first kind of cases that HED and HED-log have to learn to process are homogeneous
areas, where no edge should be detected. In order to analyze the way of HED and HED-log
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to process homogeneous areas, we simulate eight kinds of 1-look pure noise images of size
1024× 1024 pixels. For each kind of pure noise image, the underlying mean intensity value
of the homogeneous area is one of these eigtht possibilities : 502, 802, 1202, 1502, 1802,
2002, 2302, and 2502 For pure noise images with each mean intensity value, there are 20
random realizations.

Figure 8.1 gives the histograms of the original pure noise images and the histograms of
the gradient magnitude fields produced by HED. Figure 8.2 gives the histograms for the
logarithm of pure noise images and the histograms of the corresponding output produced
by HED-log. From figure 8.1 and figure 8.2 we can see that only if the input data of HED
layers follows the same distribution (with the same mean intensity values for pure noise
images), the output of HED layers follows the same distribution. If the input data of HED
layers follows different distributions, it is likely that the output of HED layers follows
different distributions. In addition, the edge probabilities for almost all pixels in the pure
noise images are small (smaller than 0.5 for example), for both HED and HED-log, which
means that both HED and HED-log ensures almost no detection in pure noise images.



88 8. Presentation of the HED method and of the training dataset

0 50 100 150 200 250

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.05 0.1 0.15 0.2 0.25 0.3 0.35

0

5

10

15

20

25

30

35

(a) pure noise images (〈I〉 = 502) (b) ĜHED
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Figure 8.1 – The histograms of the original pure noise images with different mean intensity
values and the histograms for the corresponding output of HED. (a) histograms of twenty
1-look pure noise images with the underlying mean intensity value 502 ; (b) histograms of
the gradient magnitude field produced by HED in the twenty images of (a) ; (c) histograms
of twenty 1-look pure noise images with the underlying mean intensity value 2502 ; (d)
histograms of the gradient magnitude field produced by HED in the twenty images of
(c) ; (e) histograms of 160 1-look pure noise images with eight possible underlying mean
intensity values, for each mean intensity value, there are 20 random realizations ; (f) the
histograms of the gradient magnitude field produced by HED in the 160 images of (e). The
size of images are 1024× 1024 pixels.
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Figure 8.2 – The histograms for the logarithm of original pure noise images with different
mean intensity values and histograms for the corresponding output of HED-log. (a) his-
tograms for the logarithm of twenty 1-look pure noise images with the underlying mean
intensity value 502 ; (b) the histograms of the gradient magnitude field produced by HED-
log in the twenty images of (a) ; (c) histograms for the logarithm of twenty 1-look pure noise
images with the underlying mean intensity value 2502 ; (d) the histograms of the gradient
magnitude field produced by HED-log in the twenty images of (c) ; (e) histograms for the
logarithm of 160 1-look pure noise images with eight possible underlying mean intensity
values, for each mean intensity value, there are 20 random realizations ; (f) histograms of
the gradient magnitude field produced by HED-log in the 160 images of (e). The size of
images are 1024× 1024 pixels.
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8.3.2 Testing HED and HED-log in synthetic edge images

The other situation we have to analyze is the way of HED and HED-log to process
areas with edges. In order to do this, we simulate many 1-look synthetic edge images
having only one kind of contrast. One example of the synthetic edge images with amplitude
ratio contrast 1.5 can be found in figure 8.3. The size of the synthetic edge images are
512 × 512 pixels. We address two cases : 1) for images with edges of different contrasts ;
2) for images with edges of the same contrast but with different mean intensity values for
the homogeneous areas on both sides of the edges.

(a) 1-look image (b) GT

Figure 8.3 – A 1-look edge image with ratio contrast 1.5 and the associated ground truth.
The size of the image are 512× 512 pixels.
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8.3.2.1 Synthetic edge images with different amplitude ratio contrasts

0 100 200 300 400 500

0

1

2

3

4

5

6

7

8

9
×10

-3

0 0.2 0.4 0.6 0.8

0

1

2

3

4

5

6

7

8

9

10

(a) contrast 1.2 (b) ĜHED computed in (a)
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Figure 8.4 – The histograms of the 1-look synthetic edge images and the histograms of
the output of HED. (a) the histograms for twenty random realizations of 1-look synthetic
edge images with contrast 1.2 ; (b) histograms for the output of HED in the twenty images
of (a) ; (c) the histograms for twenty random realizations of 1-look synthetic edge images
with contrast 1.9 ; (d) the histograms for the output of HED in the twenty images of (c) ;
(e) histograms for 160 1-look synthetic edge images with contrasts varying from 1.2 to 1.9
with step 0.1, for each contrast, there are 20 random realizations ; (f) histograms for the
output of HED in the 160 images of (e). The size of the images are 512× 512 pixels.
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(c) contrast 1.9 (d) ĜHED−log computed in (c)

0 1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

12

14

(e) all contrasts (f) ĜHED−log computed in (e)

Figure 8.5 – The histograms for the logarithm of 1-look synthetic edge images and the
histograms for the output of HED-log. (a) histograms for the logarithm of twenty random
realizations of 1-look synthetic edge images with contrast 1.2 ; (b) the histograms for the
output of HED-log in the twenty images of (a) ; (c) histograms for the logarithm of twenty
random realizations of 1-look synthetic edge images with contrast 1.9 ; (d) histograms for
the output of HED-log in the twenty images of (c) ; (e) the histograms for the logarithm of
160 1-look synthetic edge images with contrasts varying from 1.2 to 1.9 with step 0.1, for
each contrast, there are 20 random realizations ; (f) histograms for the output of HED-log
in the 160 images of (e). The size of the images are 512× 512 pixels.

We first test HED and HED-log in synthetic edge images with different amplitude ratio
contrasts. The contrasts of the edges vary from 1.2 to 1.9 with step 0.1. The mean intensity
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value of one homogeneous areas is fixed to be 1002, and the mean intensity value of the
other homogeneous areas is decided according to the amplitude contrasts, for example
for contrast 1.6, the mean intensity value of the homogeneous area in the other side is
(100× 1.6)2. For edge images with each contrast, there are 20 random realizations.

(a) contrast 1.2 (b) contrast 1.3 (c) contrast 1.4 (d) contrast=1.5

(e) contrast 1.6 (f) contrast 1.7 (g) contrast 1.8 (h) contrast=1.9

Figure 8.6 – The gradient magnitude field computed by HED in eight 1-look synthetic
edge images with amplitude ratio contrasts of the edge varying from 1.2 to 1.9 with step
0.1. The size of the images is 512× 512 pixels.

(a) contrast 1.2 (b) contrast 1.3 (c) contrast 1.4 (d) contrast=1.5

(e) contrast 1.6 (f) contrast 1.7 (g) contrast 1.8 (h) contrast=1.9

Figure 8.7 – The gradient magnitude field computed by HED-log in the logarithm of eight
1-look synthetic edge images with amplitude ratio contrasts of the edge varying from 1.2
to 1.9 with step 0.1. The size of the images is 512× 512 pixels.

The histograms of the synthetic edge images and the histograms for the output of HED
can be found in figure 8.4. The histograms for the logarithm of synthetic edge images and
the histograms for the output of HED-log can be found in figure 8.5. From both figure 8.4
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and figure 8.5 we can assume that for samples drawn from the same underlying distribution
(the mean intensity values of both homogeneous areas remain unchanged), the output of
HED and HED-log follows the same distribution, while when samples drawn from different
distributions are fed into CNN layers, the distribution of the output are not guaranteed to
be the same.

The gradient magnitude field produced by HED and HED-log in eight 1-look synthetic
edge images with contrasts varying from 1.2 to 1.9 can be found in figure 8.6 and figure 8.7.
It can be seen from these figures that both HED and HED-log learn to emphasize the
edge pixels from the images and learn to suppress the noise pixels. In addition, when the
contrasts of the edges become higher, it is easier for both HED and HED-log to distinguish
between edge pixels and noise pixels.

8.3.2.2 Synthetic edge images with the same amplitude ratio contrast but

with different mean intensity values.

In this part, we try to explore one more situation that HED and HED-log have to
learn to process during training, namely images with edges of the same contrast, but with
homogeneous areas having different underlying mean intensity values on both sides of the
edges. We will see that in this case, both HED and HED-log fail to produce the same
output for different mean intensity. This may be explained by the fact that the diversity of
distributions is important for the networks to correctly learn what to output. We simulate
edge images with contrast 1.4 and six mean intensity values. For each mean intensity value,
there are 20 random realizations. One example of the synthetic edge images can be found
in figure 8.3. We fix the mean intensity value of one homogeneous area in each image to
be one of the six values : 202, 502, 802, 1002, 1202 and 1502. The mean intensity value of
the other homogeneous areas can be computed according to the contrast of the edges. For
example, for edges of contrast 1.4, and the mean intensity value of one homogeneous area
is 802, the mean intensity value of the other homogeneous area is (80× 1.4)2. For images
with a certain contrast and certain mean intensity values, there are 20 random realizations.
Therefore, for images with a certain contrast, the total number of images is 120.

The histograms for the 120 1-look synthetic edge images with contrast 1.4 and the
histograms for the gradient magnitude field computed by HED can be found in figure 8.8.
The histograms for the logarithm of those edge images and the histograms for the gradient
magnitude field computed by HED-log in the logarithm of images can be found in figure 8.9.
It can be seen from these two figures that even for images with edges of the same contrast,
there are many different distributions that HED and HED-log have to learn to process,
while the distributions of the output are likely to be different when the input data follows
different distributions.

Figure 8.10 and figure 8.11 gives the gradient magnitude field computed by HED and
HED-log in six edge images with contrast 1.4 and with different mean intensity values.
According to these two figures and the histograms shown in figure 8.8 and figure 8.9, it can
be deduced that the performances of HED and HED-log depends on the mean intensity
values of the two homogeneous areas on the opposite side of the edges, even when the ratio
of the mean intensity values remains unchanged.
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Figure 8.8 – The histograms for the 1-look synthetic edge images with amplitude ratio
contrast 1.4 and the histograms for the gradient magnitude field computed by HED in
those images.
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Figure 8.9 – The histograms for the logarithm of 1-look synthetic edge images with
amplitude ratio contrast 1.4 and the histograms for the gradient magnitude field computed
by HED-log in those images.
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(a) contrast 20×1.4
20 (b) contrast 50×1.4

50 (c) contrast 80×1.4
80

(d) contrast 100×1.4
100 (e) contrast 120×1.4

120 (f) contrast 150×1.4
150

Figure 8.10 – The gradient magnitude field computed by HED in six 1-look synthetic
edge images with amplitude ratio contrasts of the edge 1.4. The mean intensity values of
two homogeneous areas in each image vary from image to image.

(a) contrast 20×1.4
20 (b) contrast 50×1.4

50 (c) contrast 80×1.4
80

(d) contrast 100×1.4
100 (e) contrast 120×1.4

120 (f) contrast 150×1.4
150

Figure 8.11 – The gradient magnitude field computed by HED-log in the logarithm of
six 1-look synthetic edge images with amplitude ratio contrasts of the edge 1.4. The mean
intensity values of two homogeneous areas in each image vary from image to image.
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8.3.2.3 Conclusion

According to the observations in section 8.3.1, section 8.3.2.1 and section 8.3.2.2, What
HED (or HED-log) have learned during training can be summarized as follows :

— HED and HED-log learn to ensure that there is no detection of edges in homogeneous
areas, the underlying mean intensity values of which are within [0, 2552] because the
maximum pixel value in natural images is 255 ;

— HED and HED-log learn to detect the edges between any two kinds of homoge-
neous areas, the mean intensity values of them being different, but all belonging to
[0, 2552].

— HED and HED-log do not have a constant false alarm rate for SAR images since they
produce different distributions in homogeneous areas with different mean intensity
values. Observing that they produce the same distribution when the input data
follows the same distribution, we can deduce that the only way to develop a CFAR
edge detector is to feed CFAR features into the convolutional layers of HED.

Knowing what HED (or HED-log) has learned from the training dataset, the question is
how to enable the models trained using the speckled optical dataset to work well in real
SAR images. In order to do this, we need to know the differences between speckled optical
images and real SAR images. In the next chapter, we will analyze the difference between
speckled optical images and real SAR images, and try to propose a solution to overcome
it.
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Chapitre 9

GRHED, introducing a hand-crafted

layer before the usual CNNs

One crucial hypothesis in this work is that both optical and real SAR images are com-
posed of many homogeneous areas. Under this hypothesis, the main possible gap between
speckled optical images and real SAR images lie in the differences in the mean intensity
values of homogeneous areas. In this chapter, we will show that some bright homogeneous
areas (with mean intensity values larger than 2552) in real SAR images may not exist in
speckled optical dataset (in the following, those bright areas will be called as bright areas
or homogeneous areas with high mean intensity values). In order to cope with the gap, we
propose a strategy to train the network so that the trained models are robust to the mean
intensity values of homogeneous areas.

9.1 The differences between speckled optical images and real

SAR images

In order to compare the differences between speckled optical images and real SAR
images, we plot the histograms for both of them. We display the histograms of five speckled
optical images which are randomly selected from the training dataset in figure 9.1-(a)
and the histogram of the entire training dataset in figure 9.1-(b) and compare them with
the histograms of two 1-look real SAR images (Lelystad and San Francisco) as shown in
figure 9.2. From figure 9.1 and figure 9.2 we can see that the main differences between
histograms of speckled optical images and those of real SAR images are the range of pixel
values. Though most of pixels in speckled optical and real SAR images lie in a similar
range, some pixel values in real SAR images are much larger than those of speckled optical
images.

Formula (8.9) is the most usual way to describe the statistics of real SAR images, which
gives the way of modelling the homogeneous areas in real SAR images. In addition, most
existing gradient computation methods, such as ROA Touzi et al. [1988], ROEWA Fjørtoft
et al. [1998] and GR Dellinger et al. [2015], are justified under the hypothesis that real
SAR images are composed of piecewise constant areas and that edges exist between two
homogeneous areas with different mean intensity values. In this work, we proceed in the
same way and assume that both speckled optical images and real SAR images are mixtures
of homogeneous areas with many different mean intensity values. The edges are defined as
boundaries between any two homogeneous areas.
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Figure 9.1 – (a) histograms of five speckled optical images which are randomly chosen
from the training dataset ; (b) the histogram of the entire training dataset. The size of the
bin is 1.0.

0 2000 4000 6000 8000 10000 12000

0

1

2

3

4

5

6

7

8

9
×10

-3

0 200 400 600 800 1000 1200

0

1

2

3

4

5

6

7

8

9
×10

-3

(a) real image 1 (Lelystad) (b) truncated histogram of (a)

0 0.5 1 1.5 2 2.5 3 3.5

×10
4

0

0.002

0.004

0.006

0.008

0.01

0.012

0 200 400 600 800 1000 1200

0

0.002

0.004

0.006

0.008

0.01

0.012

(c) real image 2 (San Francisco) (d) truncated histogram of (c)

Figure 9.2 – Histograms of two 1-look real SAR images and the truncated histogram for
each image. The size of the bin is 1.0.

Under the hypothesis that both speckled optical images and real SAR images are com-
posed of piecewise constant areas, we try to evaluate the possible underlying mean intensity
values for both speckled optical images and real SAR images We use windows of size 20×20
pixels and windows of size 50× 50 pixels to estimate the underlying mean intensity values
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for areas whose size is equal to the size of the windows, in both speckled optical images and
real SAR images. The curves of the square root of the mean intensity values (in ascending
order) estimated from two randomly selected speckled optical images and two 1-look real
SAR images can be found in figure 9.3 (the size of windows are 20×20 pixels) and figure 9.4
(the size of windows are 50× 50 pixels). For the estimation in speckled optical images, we
use the maximum likelihood estimator to estimate the square root of the mean intensity
values, while for real SAR images, we use the mode to estimate the mean intensity values
in order to reduce the influence of strong bright points in real SAR images (It should be
pointed out that both maximum likelihood estimator and mode estimator are under the
hypothesis that samples in the windows follow a Rayleigh distribution). More details about
the mode estimator can be found in section 10.1.
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Figure 9.3 – The curves for square root of mean intensity values estimated from two
speckled optical images and two real SAR images, using windows of size 20 × 20 pixels.
(a) speckled optical image 1 ; (b) speckled optical image 2 ; (c) real image 1 (Leystad) ; (d)
real image 2 (San Francisco).

From both figure 9.3 and figure 9.4 we can see that the underlying mean intensity values
in homogeneous ares of real SAR images can be much larger than those in speckled optical
images (it should be noted that the underlying mean intensity values for all homogeneous
areas in the training dataset will not be larger than 2552 because the maximum possible
value in natural images before multiplying the speckle noise is 255). Therefore, the main
differences between speckled optical and real SAR images are that some areas with high
mean intensity values exist in real SAR images but not in speckled optical images. What
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can also be assumed from figure 9.3 and figure 9.4 is that those areas occupy only a small
part of the image.
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Figure 9.4 – The curves for square root of mean intensity values estimated from two
speckled optical images and two real SAR images, using windows of size 50 × 50 pixels.
(a) speckled optical image 1 ; (b) speckled optical image 2 ; (c) real image 1 (Leystad) ; (d)
real image 2 (San Francisco).

Furthermore, since the maximum possible pixel values in homogeneous areas with hi-
gher mean intensity values are larger than those in homogeneous areas with lower mean
intensity values, we deduce that those high pixel values in real SAR images are samples in
bright homogeneous areas. The main gap between speckled optical images and real SAR
images is that there exists some bright areas in real SAR images which do not exist in the
training dataset.

9.2 GRHED, training HED on the gradient magnitude field

computed by GR

In order to deal with the differences in the range of pixel values between speckled
optical images and real SAR images, but also to ease the training of the network, we
propose to train HED on the gradient magnitude fields of the training images and to apply
the trained network to the gradient magnitude fields of images at test time. The main
reason for computing the gradient is that the gradient distribution of speckled optical
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images and SAR images are similar for the usual ratio based methods Touzi et al. [1988],
Fjørtoft et al. [1998], Dellinger et al. [2015]. The interest of this strategy will be discussed
in the following and be demonstrated in the experimental part, chapter 10.

The gradient computation is achieved by the Gradient by Ratio method Dellinger et al.
[2015] and the HED network is trained on the gradient magnitude fields computed by GR.
We therefore call GRHED the resulting architecture. In the following we will describe the
details about the GR and the benefits of computing GR.

9.2.1 Gradient by Ratio (GR)

For a given pixel located at position (x, y) in the image u, the horizontal and vertical
gradient components (GR) are defined as

Gh(x, y) = log(Rh(x, y)),

Gv(x, y) = log(Rv(x, y)).

where Rh(x, y) and Rv(x, y) is the ratio of exponentially weighted average in the opposite
side windows of pixel located at (x, y), along the horizontal and vertical directions. In the
horizontal direction, Rh(x, y) can be computed as

Rh(x, y) =
mh

1(x, y)

mh
2(x, y)

,

where

mh
1(x, y) =

W
∑

x′=−W

W
∑

y′=1

u(x+ x′, y + y′)× e−
|x′|+|y′|

α ,

mh
2(x, y) =

W
∑

x′=−W

−1
∑

y′=−W

u(x+ x′, y + y′)× e−
|x′|+|y′|

α ,

and where W is the upper integer part of log(10)× α. Rv(x, y) can be computed in a
similar way.

The magnitude Ggr(x, y) and orientation anggr(x, y) of GR at position (x, y) are defined
by

Ggr(x, y) =
√

Gh(x, y)2 +Gv(x, y)2,

anggr(x, y) = atan2(Gv(x, y), Gh(x, y)).

9.2.2 Interest of using GR to feed the network

Under the hypothesis that both optical and SAR images are composed of piecewise
constant areas, they can be divided into two parts : homogeneous areas and boundaries
(boundaries exist between two homogeneous areas). As discussed in section 8.3, another
hypothesis in this work is that HED is trained to process samples drawn from many different
distributions and the way of HED to process those samples depends on their corresponding
distributions. In 1-look SAR images, the amplitude of all homogeneous areas follows a
Rayleigh distribution depending on their mean intensity values. For two homogeneous
areas across boundaries, the total distribution of them depends on the mean intensity
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values of both two homogeneous areas. Computing the ratio based gradient thus ease
the training process, reducing the number of situations to learn, since for all homogeneous
areas, their gradient magnitude fields follow the same distribution, regardless of their mean
intensity values, and the gradient distribution computed over two homogeneous areas across
boundaries depends only on the ratio of the mean intensity values. What’s more important,
the main gap between speckled optical images and real SAR images is that SAR images may
contain homogeneous areas with high mean intensity values. Since the gradient distribution
will not be influenced by the mean intensity values of any homogeneous areas, feeding the
gradient features enables the network trained on speckled optical dataset to work well in
real SAR images. Besides, it ensures a CFAR property for the network result since only
CFAR features are given as input.

In order to give a better explanation on the benefits of computing GR, we compare the
distribution of the data before and after computing the gradient for both homogeneous
areas and two homogeneous areas across boundaries. We simulate eight 1-look pure noise
images of size 4096× 4096 pixels and eight 1-look synthetic images of size 512× 512 pixels
with amplitude ratio contrast 1.5. The square root of the mean intensity values of the
homogeneous images (proportional to an amplitude value) are 60, 90, 120, 150, 180, 210,
240 and 270. For two homogeneous areas across boundaries, the amplitude ratio is chosen as
1.5 for mean values (for the smallest value along the edge) of 20, 50, 70, 90, 110, 130, 150, 200.
One example of the synthetic edge image can be found in figure 8.3-(a).

The histograms of the eight 1-look pure noise images and the histograms of their gra-
dient magnitude fields computed by GR with weighting parameter α = 4 can be found in
figure 9.5. The histograms of eight 1-look synthetic edge images as well as the histograms
of their gradient magnitude fields can be found in figure 9.6. From figure 9.5 and figure 9.6
we can deduce that the number of distributions that has to be learned by HED when
trained on the gradient magnitude fields is much smaller than that of a direct training on
the images. Since the amount of data is unchanged, the amount of training data for each
distribution is therefore increased.
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Figure 9.5 – Histograms of the eight 1-look pure noise images and histograms of their
gradient magnitude fields computed by GR with α = 4.
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Figure 9.6 – Histograms of the eight 1-look synthetic edge images and histograms of their
gradient magnitude fields computed by GR with α = 4.

A further illustration of the interest to compute GR can be done by comparing the his-
tograms of GR fields in both speckled optical images and real SAR images. The histograms
of the gradient magnitude fields computed by GR in 5 randomly selected speckled optical
images and the histograms of the GR field computed in the entire training dataset can be
found in figure 9.7. The histograms of the gradient magnitude fields computed by GR in
two 1-look real SAR images can be found in figure 9.8. The weighting parameter α is set to
4.0. The size of the bin is 0.01. From figure 9.7 and figure 9.8 we can see that even though
the range of pixel values in the GR fields of those two 1-look real SAR images may be
larger than that of some speckled optical images, nearly all pixel values in the GR fields of
real SAR images are within the range of GR field computed in the entire training dataset
(The maximum value in the GR field of the TerraSAR-X image (San Francisco) is 3.7, the
maximum pixel value in the GR field of the Sentinel-1 image (Leystad) is 5.66, and the
maximum pixel value in the GR field of the entire training dataset is 5.36). Compared to
the huge differences in the range of pixel values of images shown in figure 9.1 and figure 9.2,
this observation illustrates the benefits of computing GR.
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Figure 9.7 – (a) histograms of the gradient magnitude fields computed by GR in five
speckled optical images which are randomly chosen from the training dataset ; (b) the
histogram of the gradient magnitude field computed by GR in the entire training dataset.
The weighting parameter α is set to 4.0. The size of the bin is 0.01. The maximum pixel
value in the GR field of the entire training dataset is 5.36. The tail of the histogram in (b)
goes up to 7.0 because we set the maximum value to be 7.0 when we plot the histogram.

0 1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

(a) GR field (Lelystad) (b) GR field (San Francisco)

Figure 9.8 – Histograms of the gradient magnitude fields computed by GR in two 1-look
real SAR images. The weighting parameter α is set to 4.0. The size of the bin is 0.01. The
maximum pixel value in the GR field of the Sentinel-1 image (Lelystad) is 5.66 and the
maximum pixel value in the GR field of the TerraSAR-X image (San Francisco) is 3.7.

9.2.3 Benefits of GRHED

Since the gradient distribution of GR is the same for homogeneous areas with all
possible mean intensity values, and the gradient distribution in two homogeneous areas
across boundaries is influenced by the ratio and not by their mean intensity values, we
assume that the possible distributions in the gradient feature space of real SAR images
are included in those of the training dataset. Therefore, we propose to train HED on the
gradient magnitude field of GR. This can be seen as the addition of a hand-crafted layer
before the usual HED layers. The resulting GRHED has the following advantages :

— the distribution of feature map values obtained by GR depends only on the ratio
of the mean intensity values on the opposite side windows of each pixel (ratio
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being 1 for pixels located in homogeneous areas), therefore, homogeneous areas with
high mean intensity values in real SAR images will not impair the performances of
GRHED ;

— constant false alarm rate (CFAR) is ensured for SAR images because of the ratio
operation ;

— by using multiple weighting parameter α values in GR Dellinger et al. [2015] we can
combine diverse informations from the image by concatenating together gradient
magnitude fields produced by GR with different α values (the input of HED will have
multiple channels with each channel being the gradient magnitude field computed
by GR with a certain value of α). It has been studied in Liu et al. [2020] that GR
with different α values can capture complementary informations.
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Chapitre 10

Experiments

In this chapter we study the performances of the method we propose, GRHED, using se-
veral 1-look synthetic edge images, two hundred 1-look speckled optical images in BSDS500-
speckled, one 1-look realistically simulated SAR image and two 1-look real SAR images.
In order to show the efficiency of GRHED, we compare it with the original HED algo-
rithm and to the result of training HED on the logarithm of images, as defined below, an
algorithm that we will call HED-log. Observe that for GRHED, HED and HED-log, the
convolutional layers that need to be trained are the same, the difference between these
method being the input of the network : gradient magnitude fields of images for GRHED,
plain images for HED and logarithm of images for HED-log. To take into account the
distribution of the training set, the SAR data are first normalized to have a similar distri-
bution as explained in section 10.1. The training strategy for those convolutional layers is
as follows : we use Adam optimizer to train the nework from scratch on the speckled optical
dataset BSDS500-speckled. The number of iterations for training is 10000 and the learning
rate is 0.001. The size of the batch is 10. The preprocessing step before feeding the data
into the learnable layers is global mean substraction, as done in VGG. Since the outputs
of all methods are probability edge maps, they should be processed further to obtain the
binary edge maps. In order to obtain the binary edge map, we use the same Non-maxima
Suppression procedure as the one in Structured Edge Dollar and Zitnick [2015] and use a
threshold to discard pixels with low values in the probability edge map.

The following methods will be used in the comparison of the next sections :

— GR with α = 4 (this choice of α = 4 being adapted to GR in 1-look situations,
as discussed in Liu et al. [2020]). For the GR magnitude field, we use the same
postprocessing steps as for the magnitude field produced by HED, HED-log and
GRHED ;

— HED : HED is trained on the original speckled images and tested on normalized
images (see 10.1) ;

— HED-log : HED is trained on the logarithm of the images in BSDS500-speckled,
and is applied to the logarithm of testing images after normalization (see 10.1) ;

— GRHED with multiple α values, α = 2, 3, 4, 5 : HED is trained on the gradient
feature maps which are obtained by concatenating the gradient magnitude fields
produced by GR with different α values.
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10.1 Normalization of the SAR data

As already mentioned, speckled optical data have a much narrower dynamic range
than real SAR images. This is a problem at test time if we want the method to be efficient
on real SAR images. We therefore need to define a strategy to normalize images at test
time, ensuring a relatively stable dynamic range. In order to do so, a given a test image
(potentially a real SAR image), we divide its amplitude values by the square root of their
mean intensity value, before multiplying them by the square root of the mean intensity
value of the optical (training) dataset. Let 〈Iopt〉 be the mean intensity of the global training
set and 〈ISAR〉 the mean intensity value of the SAR data, the normalization formula of the
SAR amplitude value u is the following :

û =
u.
√

〈Iopt〉
√

〈ISAR〉
(10.1)

It is easy to check that the the mean value of û in intensity is equal to 〈Iopt〉 and thus
corresponds to the training distribution.

We use the maximum likelihood estimator to estimate 〈Iopt〉. To avoid being too much
influenced by the strong backscattered values in real SAR images (especially for urban
areas), we propose to use a robust estimate of 〈ISAR〉, supposing a global Rayleigh distri-
bution of the scene. Under this hypothesis it can easily be shown that the link between
the mode of the distribution tmode and the mean intensity is the following :

〈ISAR〉 = 2t2mode.

In the following, for each test image, tmode is computed to estimate 〈ISAR〉 and the data
are normalized using equation (10.1).

10.2 Comparison in 1-look synthetic edge images

In order to give a fair comparison of different methods, we compare GR with α = 4,
HED, HED-log and GRHED with multiple α values (α = 2, 3, 4, 5), in terms of ROC curves
and F1-score curves in 1-look synthetic edge images with different ratio contrasts (for GR
we use the same postprocessing steps as the magnitude field produced by HED, HED-log
and GRHED).
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Figure 10.1 – ROC curves computed in the magnitude field produced by GR, HED, HED-
log and GRHED in 1-look simulated images with contrast 1.2, 1.3, 1.4 and 1.5. The size of
the images are 512× 512 pixels.
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Figure 10.2 – F1-score curves obtained by GR, HED, HED-log and GRHED in synthetic
edge images with ratio contrast 1.2, 1.3, 1.4 and 1.5. The F1-score curves are obtained by
varying the threshold from 0.0 to 0.9 with step 0.01.

One example of the simulated 1-look edge images with contrast 1.5 and the correspon-
ding ground truth can be found in figure 8.3. The ROC curves computed in the magnitude
fields produced by GR, HED, HED-log and GRHED in 1-look simulated images with ratio
contrast 1.2, 1.3, 1.4 and 1.5 can be found in figure 10.1. It can be seen from figure 10.1
that GRHED shows the best performances in all situations, especially in 1-look and low
contrast situation. The performances of GR and HED appears comparable in terms of
ROC curves, and both are better than HED-log.

In order to give a more clear comparison of different methods, we apply the same Non-
maxima suppression step for all methods and vary the threshold from 0.0 to 0.9 with step
0.01 for each method. The F1-score is computed for each threshold and the corresponding
F1-score curves for each method in the 4 simulated edge images can be found in figure 10.2.
From figure 10.2 we can see that the F1-score curves of GRHED are above the F1-score
curves of all the other methods. In addition, the large flat areas of F1-score curves of
GRHED show that the performances of GRHED are insensitive to the chosen threshold.
In addition, it should also be pointed out that although the best F1-scores that can be
obtained by GR and HED seem comparable, the performances of HED are less sensitive
to the choice of threshold.

The optimal edge maps obtained by GR, HED, HED-log and GRHED in those simu-
lated edges with contrast 1.2 and 1.4 using the threshold which gives the best F1-score
can be found in figure 10.3 and figure 10.4. From figure 10.3 and figure 10.4 we can see
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that the ability of GRHED to preserve true edge pixels and suppress noise pixels are much
more powerful than all the other methods. GRHED detects the most true edge pixels while
detecting the least number of false detections. It should be noted that although these edge
maps are obtained using the optimal threshold, the edge maps obtained by HED and
GRHED will remain comparable to their optimal ones with the threshold in a relatively
large range as can be deduced from figure 10.2, especially for GRHED.

GR, contrast 1.2 HED, contrast 1.2 HED-log, contrast 1.2 GRHED, contrast 1.2

Figure 10.3 – Optimal edge maps obtained by GR, HED, HED-log and GRHED in 1-look
simulated edge images with contrast 1.2. For each method, the chosen threshold gives the
best F1-score in this image. The size of the images are 512× 512 pixels.

GR, contrast 1.4 HED, contrast 1.4 HED-log, contrast 1.4 GRHED, contrast 1.4

Figure 10.4 – Optimal edge maps obtained by GR, HED, HED-log and GRHED in 1-look
simulated edge images with contrast 1.4. For each method, the chosen threshold gives the
best F1-score in this image. The size of the images are 512× 512 pixels.

10.3 Comparison of different algorithms on the speckled op-

tical images in BSDS500-speckled

In order to give a more comprehensive comparison in more general situations between
different methods, we compare GR, HED, HED-log and GRHED in the two hundred 1-look
speckled optical images in BSDS500-speckled. For GR, we use α = 2 and α = 4 to show its
performance. For GRHED, GRHED with a single α value and GRHED combining multiple
α values are all provided to give a clearer demonstration of the efficiency for choosing the
combination of α values. Three criterions are used to compare different algorithms : ODS
F1 (fixed contour threshold for 200 images), OIS F1 (best threshold for each image), and
average precision (AP). The quantitative comparison can be found in table 10.1. From
table 10.1 we can see that compared to GR, the CNN-based methods give much higher
values in all three criterions. In addition, GRHED gives at least comparable or even better
performances than HED and HED-log in the 200 1-look images, especially in the case
of combining multiple α values of GR. It should also be noted that, GRHED combining
multiple α values give better performances than GRHED using a single α value, which is
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probably due to the richer information which is provided to HED convolutional layers.

Table 10.1 – The performances of different methods in the 200 speckled optical images in
BSDS500-speckled.

methods ODS (F1) OIS (F1) AP

GR (α = 2) 0.5658 0.5852 0.5094

GR (α = 4) 0.5894 0.6151 0.5286

HED 0.6461 0.6671 0.6981

HED-log 0.6258 0.6466 0.6838

GRHED (α = 1) 0.6427 0.6523 0.6949

GRHED (α = 2) 0.6603 0.6762 0.7208

GRHED (α = 3) 0.6570 0.6783 0.7018

GRHED (α = 4) 0.6552 0.6729 0.7050

GRHED (α = 5) 0.6492 0.6687 0.6897

GRHED (α = 6) 0.6463 0.6660 0.6893

GRHED (α = 2, 3, 4, 5) 0.6643 0.6826 0.7109

GRHED (α = 1, 2, 3, 4, 5, 6) 0.6643 0.6832 0.7070

(a) speckled image (b) GT (c) HED (d) HED-log

(e) GRHED (α = 2) (f) GRHED (α = 2, 3, 4, 5) (g) GR (α = 2) (h) GR (α = 4)

Figure 10.5 – Comparison of different edge detectors on a 1-look speckled optical images.

The edge maps obtained by GR (α = 2), GR (α = 4), HED, HED-log, GRHED (α = 2)
and GRHED (α = 2, 3, 4, 5) on one speckled optical image can be found in figure 10.5. For
each method, the threshold is chosen to be the one corresponding to the ODS F1, which
gives the best results in the 200 images. Specifically, the threshold used for each method
can be found in table 10.2. It should be noted that using the threshold corresponding to the
ODS F1, GRHED (α = 2, 3, 4, 5) will obtain near-optimal edge maps in the simulated edge
images as shown in figure 10.2. The ground truth of this images is the one provided by 1
labeler (there are usually five labelers for each image in BSDS500). From figure 10.5 we can
see that GRHED detects a bit more true edge pixels than HED, and both of them preserve
more true edge pixels while detecting less false detections. What can also be observed from
the figure is that a direct processing of the GR magnitude field can not obtain satisfying
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results. Using HED as a postprocessing of GR field, the GRHED is able to strengthen the
true edge pixels and suppress the false detections.

Table 10.2 – The threshold corresponding to the ODS F1-score for each method.

methods HED HED-log
GRHED GRHED GR GR
(α = 2) (α = 2, 3, 4, 5) (α = 2) (α = 4)

threshold
0.5666 0.5306 0.5686 0.5516 0.3137 0.2745

(ODS F1)

10.4 Comparison of different methods in 1-look SAR images

Though the efficiency of GRHED has been demonstrated in both simulated edge images
and speckled optical images, demonstrating its ability to detect edges in SAR images is
the most important point in practice.

10.4.1 Setting thresholds according to a given probability of false alarms

For the gradient computation method dedicated to SAR images, it is possible to set
the threshold according to a chosen probability of false alarms (pfa) only if the method has
a constant false alarm Rate (CFAR). Therefore, it is important to study whether HED,
HED-log and GRHED have CFAR for SAR images. The CFAR property of these methods
can be checked experimentally by ploting the histograms of their gradient magnitude fields
computed in pure noise images (hommogeneous areas with different mean intensity values).
A method is considered to have CFAR if the histograms of its gradient magnitude fields
computed in all images overlap well. We plot the histograms of the magnitude fields produ-
ced by GR, HED, HED-log and GRHED in 160 1-look pure noise images of size 1024×1024
pixels in figure 10.6. The mean intensity values of these pure noise images have eight pos-
sibilities, 502, 802, 1202, 1502, 1802, 2002, 2302 and 2502. For pure noise images with a
certain mean intensity value, there are 20 random realizations. From figure 10.6 we can see
that GR and GRHED both hold CFAR, but HED and HED-log do not.

Table 10.3 – The threshold corresponding to a given pfa for each method.

pfa 10−2 10−3 10−4 10−5 10−6

threshold (GR) 0.18 0.22 0.26 0.29 0.31

threshold (HED) 0.3 0.38 0.48 0.57 0.63

threshold (HED-log) 0.23 0.27 0.3 0.34 0.39

threshold (GRHED) 0.17 0.26 0.37 0.45 0.52

Even though HED and HED-log do not have CFAR for SAR images, we still assume
they have CFAR since we desire to set the threshold from a given pfa. The threshold
corresponding to a given probability of false alarms for GR, HED, HED-log and GRHED
is estimated from 160 pure noise images as shown in table 10.3. Notice that for different
methods, we will use the testing threshold corresponding to the pfa (10−5, fifth column in
table 10.3).
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Figure 10.6 – The histograms of the gradient magnitude fields produced by GR, HED,
HED-log and GRHED in 160 1-look pure noise images of size 1024×1024 pixels. There are
8 possibilities for the mean intensity values of these images, namely, 502, 802, 1202, 1502,
1802, 2002, 2302 and 2502. For noise images with each mean intensity value, there are 20
random realizations.

10.4.2 Comparison of different algorithms in realistic SAR images

It is usually difficult to annotate the edges in real SAR images due to strong multi-
plicative noise. In order to give a quantitative evaluation on the performances of HED,
HED-log, GRHED, and GR in images with targets similar to those in real SAR images,
we obtain a ’ground truth’ by applying HED-clean (HED trained on the grayscale images
converted from clean natural images in BSDS500) to a SAR image almost without speckle
noise. This SAR image with reduced speckle is obtained by averaging a large amount of well
registered Sentinel-1 images (equivalent to temporal multi-looking). Although not justified
in changing areas, this temporal multi-looking allows a strong reduction of the speckle in
stable ones like roads, urban areas, etc. To overcome the varying residual noise, a final
despeckling step is applied Deledalle et al. [2017]. The image is then converted to an 8-bits
image using a clipping between [0, 255] with a threshold given by the mean value of the
image plus three times of its standard deviation. This image is similar to a natural image
and an "edge ground truth" is obtained by using HED-clean on it. The multi-temporal
despeckled SAR image and its associated ground truth can be found in figure 10.7.
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(a) clean image

(b) GT

Figure 10.7 – The denoised multi-look image (Lelystad, Sentinel 1) and its ground truth.
The size of the image are 1024× 3072 pixels.
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Figure 10.8 – F1-score curves computed for GR, HED, HED-log and GRHED in a 1-look
synthetic SAR image of size 1024×3072 pixels. The 1-look synthetic SAR image is obtained
by multiplying the clean SAR image in figure 10.7 with 1-look speckle noise.

F1-score curves computed for GR, HED, HED-log and GRHED in the synthetic 1-look
SAR image can be found in figure 10.8, where 1-look SAR image is obtained by multiplying
the clean SAR image with 1-look speckle noise. What can be seen from figure 10.8 is that
the F1-score curve of GRHED is above the F1-score curves of all the other methods and
the performances of GRHED is not sensitive to the choice of threshold. In addition, both
HED and HED-log are shown to be more efficient than GR to detect edges in complex
situations.
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(a) 1-look image

(b) HED (F1-score 0.34)

(c) HED-log (F1-score 0.28)

(d) GRHED (F1-score 0.38)

(e) GR (F1-score 0.28)

Figure 10.9 – edge maps computed with a threshold corresponding to pfa (10−5) in a
synthetic 1-look image (Lelystad, Sentinel 1) for different methods. For GR, we use the
threshold corresponding to pfa (10−3), which is very close to the threshold corresponding
to the best F1-score.

The edge maps obtained with the threshold corresponding to pfa (10−5) for different
methods (for GR, the threshold is corresponding to pfa 10−3 in order to preserve more
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true edges) can be found in figure 10.9. From figure 10.9 we can see that GRHED detects
more true edge pixels than the other methods and the F1-scores of GRHED is higher than
all the other methods. In addition, HED also provides competitive edge detection results.
GR detects more false detections probably because of the threshold chosen from a higher
pfa, but it should be noted that the F1-score of GR is close to its optimal one according
to figure 10.8. There are too many false detections for HED-log, this could probably be
because HED-log is too far from CFAR, the strategy to choose threshold is not suitable for
it. Due to the poor performances of HED-log, we do not compare with it in the following.

10.4.3 Comparison of different algorithms in two 1-look real SAR images

In this part, we test the efficiency of GRHED in two 1-look real SAR images : a 1-look
Sentinel-1 image (Lelystad) of size 1024 × 3072 pixels and a 1-look TerraSAR-X image
(San Francisco) of size 2048 × 2048 pixels. Details about these two 1-look images can
be found in section 2.3. We first test the performances of the state-of-art edge detectors
AMDR Shui and Fan [2018] and find that AMDR detects too many false detections and
thus is not usable in such noisy situations (1-look). We do not provide experiments with it.
We compare HED and GRHED with GR in a 1-look real SAR image (Lelystad, Sentinel 1)
of size 1024×3072 pixels as shown in figure 10.10. From figure 10.10 we can see that though
GR is able to detect many true edges, it is not able to provide a good separation between
true edge pixels and noise pixels. Therefore, there are also many false detections in the
edge maps produced using GR. In comparison, both HED and GRHED detect many true
edge pixels while the number of false detections smaller. However, HED produces spurious
detections in some bright areas, this could be probably because the distributions of these
areas are not included in those of the training dataset, HED does not learn the way to
process them. Compared to HED, GRHED does not suffer from a similar problem. The
detections of GRHED in all areas seem reasonable, since the number of false detections is
small, and it detects many true edges. In addition, the connectivity of edges detected by
GRHED is better than that of HED.

We compare GR, HED, and GRHED in another 1-look real SAR image (San Francisco,
TerraSAR-X) of size 2048 × 2048 pixels. The edge maps obtained by these methods can
be found in figure 10.11. Again, the weakness of GR is that it is not able to separate the
true edge pixels and noise pixels efficiently. For HED, since many homogeneous areas with
high mean intensity values exist in the image, and these kinds of areas do not exist in
the training images, it is difficult for HED to perform effective edge detection on them.
Therefore, the edge map outputed by HED has spurious detections in many bright areas.
In comparison, those bright areas do not cause troubles to GRHED because the gradient
distribution computed by GR in homogeneous areas will not be influenced by their mean
intensity values. What is more important, GRHED is able to separate true edge pixels and
false edge pixels efficiently.
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(a) 1-look image

(b) GR

(c) HED

(d) GRHED (α = 2, 3, 4, 5)

Figure 10.10 – Comparison of different methods in a 1-look real SAR image (Lelystad,
Sentinel 1). The size of the image are 1024× 3072 pixels.
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(a) 1-look image (b) GR

(c) HED (d) GRHED (α = 2, 3, 4, 5)

Figure 10.11 – Comparison of different methods in a 1-look real SAR image (San Fran-
cisco, TerraSAR-X). The size of the image are 2048× 2048 pixels.
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10.5 Summary of GRHED

In this part we addressed the challenging task of edge detection in 1-look real SAR
images. Leveraging the available optical dataset, we proposed to develop a CNN-based
edge detector for SAR images by training the CNN models on the gradient magnitude
fields of speckled optical images. By introducing a fixed hand-crafted layer (GR) instead of
a learnable one, the proposed CNN edge detector GRHED is much less influenced by the
differences in the range of pixel values between speckled optical and real SAR images. GR
ensures more similarity between the distribution of real SAR images and spcekled optical
ones, but it should be pointed out that there may be some gradient distributions that do
not exist in those of the training dataset. For example, when some edges with extremely
high contrast appear in real SAR images, the ratio between the mean intensity values of the
homogeneous areas on the opposite side of the edges is too high. From all the experiments
we can see that GRHED is able to obtain stable and reliable detection results. This is
especially interesting in the case of one-look images.

10.6 Improving line segment detection results with GRHED

As described in chapter 6.4, the main reason for the failure of LSDSAR to detect line
segments in 1-look and low contrast situations (with contrast 1.2 and 1.3 for example)
is caused by the inefficiency of the gradient computation method GR. It has been de-
monstrated that GRHED is much more efficient than GR to distinguish edge pixels and
noise pixels, as can be seen from the gradient magnitude fields computed by both GR and
GRHED in 1-look synthetic edge images with contrast 1.2 to 1.5 with step 0.1. The size of
images is 512× 512 pixels. For GR, the weighting parameter α is set to 4, as in LSDSAR.
For GRHED, multiple α values are combined, specifically, α = 2, 3, 4, 5. The gradient ma-
gnitude fields computed by GR and GRHED in those 1-look edge images can be found in
figure 10.12. It can be easily seen from figure 10.12 that GRHED is much more powerful
than GR in both highlighting true edge pixels and suppressing noise pixels.

With the gradient magnitude field computed by GRHED (α = 2, 3, 4, 5), we apply the
Non-maxima suppression and use the threshold 0.45 (corresponding to pfa 10−5), we can
obtain the binary edge map as shown in figure 10.13. The edge maps of figure 10.13 are
then used as the input of Hough transform to detect lines in the images. Post-processing
steps are then applied to localize lines into line segments. The parameter settings during
these steps are as follows : the number of peaks in the Hough transform was set to 5000 so
that all the line segments on the image could be detected. The smallest value of a bin which
can be considered as a peak was set to 7. The minimum gap between two line segments
extracted from the same bin is set to 3. The minimum length of a line segment was set
to 7. The comparison between LSDSAR and the method combining Hough transform and
GRHED can be found in figure 10.14. What can be seen from this figure is that with the
help of GRHED to obtain reasonable edge maps, much more line segments are detected
by GRHED plus Hough transform than with LSDSAR. In addition, the number of false
detections is also small for GRHED plus Hough thanks to the powerful ability of GRHED
to distinguish between edge and non-edge pixels. However, It should be noted that due
to the weakness of the Hough transform, there are multiple responses for the same line
segments.
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(a) contrast 1.2 (b) GR (c) GRHED

(d) contrast 1.3 (e) GR (f) GRHED

(g) contrast 1.4 (h) GR (i) GRHED

(j) contrast 1.5 (k) GR (l) GRHED

Figure 10.12 – The gradient magnitude field computed by GR (α = 4) and GRHED
(α = 2, 3, 4, 5) in 1-look synthetic edge images with amplitude ratio contrasts varying from
1.2 to 1.5 with step 0.1. The size of the images are 512× 512 pixels.
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(a) contrast 1.2 (b) constrast 1.3

(c) contrast 1.4 (d) contrast 1.5

Figure 10.13 – Edge maps obtained by applying Non-maxima suppression and threshol-
ding on the gradient magnitude field computed by GRHED (α = 2, 3, 4, 5) in four 1-look
synthetic edge images with edge contrasts varying from 1.2 to 1.5 with step 0.1. The thre-
shold for all results is the same and set to 0.45. It corresponds to the probability false
alarm rate 10−5.
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(a) LSDSAR, contrast 1.2 (b) GRHED + Hough, contrast 1.2

(c) LSDSAR, contrast 1.3 (d) GRHED + Hough, contrast 1.3

(a) LSDSAR, contrast 1.4 (b) GRHED + Hough, contrast 1.4

(c) LSDSAR, contrast 1.5 (d) GRHED + Hough, contrast 1.5

Figure 10.14 – Comparison of LSDSAR and GRHED + Hough transform in four 1-look
synthetic edge images with edge contrasts varying from 1.2 to 1.5 with step 0.1. The size
of the images are 512× 512 pixels.
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Chapitre 11

Summary of the thesis

11.1 Conclusion

The aim of the thesis is to design low level feature detectors to facilitate the joint use
of SAR and optical data. Due to the significant differences between the sources of data,
detecting low level features is usually an important preprocessing step for the combination
of them. In this thesis, we propose a generic line segment detector and a deep learning based
edge detector for SAR images. Indeed, it is still challenging to detect line segments and
edges in SAR images, mostly because of the strong multiplicative noise. The line segment
detector is based on a Markovian a contrario model and the Helmholtz principle. The
main advantages of the proposed method is that it is able to detect reasonable amount of
line segments and control the number of false detections while requiring little parameter
tuning. The number of false detections is controlled through a null hypothesis against which
meaningful line segments are detected. The deep learning based edge detector is composed
of a hand-crafted layer and learnable convolutional layers. The hand-crafted layer ensures
that the feature maps computed by it in real SAR images have minor differences from
those of speckled optical images and thus it enables the models trained on the speckled
optical images to work well in real SAR images.

A Markovian a contrario based line segment detector. We propose a new definition
of the background model against which meaningful line segments are detected. The new
background model that we call as the Markovian a contrario model, assumes that local
orientations of pixels follow a first order Markov chain, supposing dependencies between
local orientations of neighbouring pixels. It differs a lot from most existing a contrario ba-
sed methods since they are usually based on the independence hypothesis. The Markovian
a contrario model allows strong filtering during gradient computation, which is necessary
to obtain accurate gradient magnitude and local orientation when images are noisy. The
proposed Markovian a contrario based line segment detector LSDSAR is one of the main
contributions of the Ph.D and has been published in Liu et al. [2020].

GRHED, a CNN based edge detector for SAR images. Training dataset with
labeled ground truth is of crucial importance for supervised learning based methods. The
lack of training dataset for edge detection in SAR images makes it difficult to develop a
CNN based edge detector while edge labeling is tedious and time consuming. Under the
hypothesis that both SAR and optical images can be divided into piecewise constant areas,
we propose to simulate a SAR dataset using optical dataset. Leveraging the valuable CFAR
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property of the ratio based gradient computation methods for SAR images, which ensures
that the gradient distribution for all homogeneous areas is the same, and the gradient
distribution for two homogeneous areas across boundaries depends only on the ratio of
their mean intensity values, we propose to train CNNs on the gradient magnitude fields
of speckled optical images and apply the trained models to the gradient magnitude fields
of real SAR images. The proposed training strategy enables the models trained on the
speckled optical dataset to work well in real SAR images. The proposed CNN based edge
detector GRHED is the second main contribution of the Ph.D and has been submitted to
IEEE Transactions on Geoscience and Remote Sensing.

11.2 Perspectives

Line segment detection in SAR images. Even though the performances of LSDSAR
are generally reasonable, many true line segments are missing, especially in 1-look SAR
images. The main reason is that the gradient magnitude and gradient orientation are not
accurate enough for the traditional gradient computation methods. We have shown the
powerful ability of CNN based methods to distinguish between true edge pixels and noise
pixels in 1-look images. The next step is to develop a line segment detector which is able
to detect much more true line segments in 1-look real SAR images leveraging CNNs. It
has been studied in section 10.6 that with a post-processing of the edge maps produced
by GRHED using Hough transform, much more true line segments are detected in 1-look
images with low contrasted edges, even though the performances are not fully satisfying
because of the multiple responses for the same line segment caused by the weakness of the
Hough transform based method. A better grouping and validation step can be developed
to obtain a much better line segment detector for SAR images. Another strategy could be
developing a CNN based line segment detector directly without the step of edge detection,
as the deep learning based line segment detector described in Huang et al. [2018], Xue et al.
[2019]. Under the hypothesis that both optical images and SAR images can be divided into
piecewise constant areas, the dataset for line segment detection in optical images should
be applicable to SAR images, with the first layer of CNNs being a ratio based gradient
computation method, such as GR Dellinger et al. [2015].

Taking spatial correlations of noise into account, and developing exclusive struc-

ture detector for SAR images. the spatial correlation of the noise on real images has not
been addressed and probably leads to a decrease of the CNN performances. The method of
Lapini et al. [2014] could be an interesting approach to take it into account. Secondly, the
specific features of SAR images like bright points and lines due to strong backscatterings
of diedral or triedral structures do not exactly correspond to edges. Therefore dedicated
detectors should be developed for these specific structures to be combined with edge de-
tectors.

Image segmentation. Under the hypothesis that both optical images and real SAR
images are composed of piecewise constant areas, developing a CNN based image segmen-
tation method leveraging the optical dataset should also be possible.

Image registration. For the joint use of SAR and optical data, a preliminary registration
is usually required. With robust line segment detector and edge detector for both optial
and real SAR images, it is possible to develop reliable feature based image registration
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method. A preliminary idea is to first detect line segments and edges from both optical
and SAR images and find the correspondence between the low level features, such as those
described in Zhang et al. [2015]. However, special care should be taken because there
exists geometric distortions in SAR images, especially for the urban areas. In addition,
the resolution of SAR images and optical images may be different, this should also be
taken into account during the matching of low level features. After the registratioon of
optical and SAR images, the information from both of them can be combined for many
applications such as change detection.
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