Dr Chantal Prévost 
  
Riccardo Chloé 
  
Elin Diego 
  
Nika, Tristan Francesco Laurent 
  
Federica 
  
Mary, Irene Anna Lorenzo 
  
Ale Anna Silvia 
  
Gughi, Silvia, Giulia, Giody, Enrico, Michele, Ilaria, Giovanni Carlotta Lorenzo 
  
Micol, Carlotta Francesca Gloria 
  

Firstly, I am extremely grateful to my PhD advisors at LCQB, Alessandra Carbone and Elodie Laine, for guiding, supporting

Contents Introduction

Proteins execute the majority of the functions in the cell. Some of them have catalytic activity and function as enzymes; others serve as structural elements, signal receptors, or transporters that carry specific substances into or out of cells. Communication, transport, regulation and enzymatic functions are just some examples [START_REF] Nelson | Lehninger Principles of Biochemistry, Fourth Edition[END_REF], Kessel and Ben-Tal, 2018, Alberts et al., 2014, Lodish, 2008].

All the protein functions are based, at least partially, on their capability to bind each other and other molecules. In this thesis, we will consider only complexes formed by the interaction of proteins or proteins with nucleic acids molecules (DNA and RNA). Because of their fundamental role in many biological processes, the impairment of these complexes is associated with many human diseases [Bullock andFersht, 2001, Chen-Plotkin et al., 2010] and they represent increasingly important therapeutic targets. Thus, their detailed structural and functional characterization has become one of the most important challenges in current structural biology.

A protein can have multiple ligands and these can be of different types. Thus, for example, a protein can interact with another protein but also with DNA. The interaction with its different ligands can be achieved through completely distinct surface regions (distinct binding sites), through regions that can overlap to a different extent (partially shared binding sites), or through the same region (shared binding site). As a consequence, there can be simultaneously possible (sometimes cooperative), and mutually exclusive interactions [START_REF] Kim | Relating three-dimensional structures to protein networks provides evolutionary insights[END_REF], Aloy and Russell, 2006, Kiel et al., 2008, Campagna et al., 2008, Teyra and Kim, 2013, Petrey and Honig, 2014, Duran-Frigola et al., 2013].

The binding between a protein and its ligand is established through surface contacts. To be able to interact with different partners at different moments, protein surfaces exhibit different properties in order to discriminate between several possible partners and to regulate interactions. Moreover, protein surface regions that has to interact with nucleic acids [START_REF] Nadassy | Structural features of protein-nucleic acid recognition sites[END_REF] are expected to be different than those interacting with other proteins [START_REF] Jones | Principles of protein-protein interactions[END_REF], due to the different nature and function of these molecules. Indeed, nucleic acids and proteins have very different shapes and surface characteristics and, thus, a protein may exhibit different properties at its surface, depending on whether it interacts with a protein or a nucleic acid molecule.

Ligand binding, especially when the ligand is a nucleic acid [Andrabi et al., v INTRODUCTION 2014, Sunami andKono, 2013], may cause a wide range of conformational changes in the receptor protein [START_REF] Henzler-Wildman | Dynamic personalities of proteins[END_REF], Boehr et al., 2009, Mannige, 2014], from small side-chain rearrangements (few Angstroms) to hinge movement of entire domains (several tens of Angstroms). Also disorder-to-order transitions are frequently observed upon ligand binding [Tompa, 2002, Srivastava et al., 2018]. These protein structural rearrangements can be observed between complexes with different ligands and between the complexed and the free conformations. This phenomenon has been neglected for many years, but in the last years the concepts that proteins not only exhibit dynamics, but also that such dynamics is important for protein function were established and are now commonly accepted. Conformational changes, structural and physico-chemical properties, number and type of ligands, number of interfaces and their shared partners are all aspects that should be accounted for to get a better understanding of the functioning of proteins in the cell.

Determining protein-protein and protein-nucleic acid interactions and the structural and physico-chemical characteristics of the corresponding binding sites is essential if we want to understand how the recognition and the binding of the correct partner is achieved by the protein and the regulation of multiple interactions on the same protein surface. In other words, this is crucial to understand the functioning of proteins themselves and, on a larger scale, of living organisms. Moreover, identifying the location of binding sites on a protein structure could significantly help to perform more focused mutational analysis of amino acids that may more likely lead to the disrupting of the binding, due to the abolition of key atomic interactions and/or structural changes. Identification of binding sites can definitely help also in the more efficient design of functional drugs or repurposing of already known ones. Finally, in the last years it was pointed out how the integration of structural 3D data in protein interaction networks could produce a more complete understanding of the whole-cell framework at atomic-level detail. Namely, it could be possible to distinguish between direct/indirect and simultaneous/mutually exclusive interactions and between transient and obligate complexes. It could also help to infer how and in which order large complexes assemble [START_REF] Kim | Relating three-dimensional structures to protein networks provides evolutionary insights[END_REF], Aloy and Russell, 2006, Kiel et al., 2008, Campagna et al., 2008, Teyra and Kim, 2013, Petrey and Honig, 2014, Duran-Frigola et al., 2013].

Traditionally, the binding sites on proteins can be identified using various experimental techniques. However, these approaches are time and money consuming. Compared to wet lab experiments, computational methods can rapidly and cheaply predict them with a certain level of accuracy. Most of prediction methods are machine learning approaches. These perform very well but they generally do not provide a clear understanding of the molecular determining factors of protein association with other partners.

Conservation and physico-chemical properties of amino acids were demonstrated to be crucial in discriminating protein-protein and protein-nucleic-acid interface residues from non-interface ones [Nadassy et al., 1999, Jones andThornton, 1996]. A method to predict protein-protein interfaces on protein surfaces, named JET, was developed in our group [START_REF] Engelen | Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling[END_REF], with an improved version, JET 2 , implemented few years ago [START_REF] Laine | Local geometry and evolutionary conservation of protein surfaces reveal the multiple recognition patches in protein-protein interactions[END_REF]. This latter employs a straightforward combination of only four simple descriptors: evolutionary conservation of protein sequences, interface propensities of residues (that reflect their physico-chemical properties) and local and global geometry of the protein surface. Contrary to machine learning approaches, employing few properties enables us to decrypt the complexity of protein surfaces, providing a better understanding of key properties detected, and interpret more easily the prediction results. This thesis is mainly focused on protein-DNA and protein-RNA interactions, with few analysis and comparisons on protein-protein ones. My contribution can be divided in three main parts: analysis of (1) protein-DNA and ( 2) protein-RNA interactions, with the two methods developed to predict DNA-and RNA-binding sites on protein structures, and (3) a database of protein multiple interactions. Namely, I will show some analysis on geometrical and physico-chemical properties of protein-DNA and protein-RNA interfaces. These resulted in the implementation of JET 2 DNA and JET 2 RNA methods, adapted from JET 2 and that accurately predict DNA-and RNA-binding sites on protein surfaces, as I will present in the following chapters. Finally, I will describe a database of multiple interactions of proteins, that is still in working progress. We created this database to highlight the role of "plasticity" in protein interactions, becoming ever more apparent as additional crystal structures of protein complexes are solved. With protein "plasticity" we mean the structural adaptibility, the ability of binding multiple partners, possibly of different types (i.e. proteins and nucleic acids), the possibility to have one or several binding sites and the different extent to which they can overlap, and thus shared by different partners, or not.

A more detailed list of the main contribution of this thesis are the following:

• We present a new protein-DNA complex benchmark (HR-PDNA187), composed by 187 X-ray solved structures of very high resolution and manually curated to ensure the good quality of the dataset.

• We conduct a thorough analysis of structural and physico-chemical properties of interfaces detected in our HR-PDNA187 benchmark.

• We describe a new procedure to identify DNA-binding sites on protein surfaces, implemented in the JET 2 DNA algorithm, leading to successful results on the set of interfaces detected in our benchmark. We demonstrate also how properties characterising each DNA-binding site can be roughly extrapolated from the prediction results.
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• We also report successful results on the prediction of RNA-binding sites on protein surfaces, obtained with a minor adjustment of some parameters in the JET 2 DNA algorithm, that we call now JET 2 RNA .

• Also for protein-RNA complexes, we show that our method enables to identify alternative RNA-binding sites, that interact with the RNA only in other 3D structures not comprised in the dataset we evaluated with JET 2 RNA .

• We provide some preliminary results on the construction of a database of multiple interactions of proteins, leading to the identification of all the structurally known partners of a protein chain and a measure of its "plasticity" in terms of structural adaptibility, number and types of partners and characteristics of its binding sites, including the number of ligand shared by each of them.

Chapter 1 provides the basic biological and bioinformatics background necessary for a better understanding and for putting into context the work presented in this thesis.

Chapter 2 is dedicated to protein-DNA interactions, from the point of view of the protein. First, we describe how we generated our protein-DNA complex benchmark. Then, we present structural and physico-chemical properties that we found at interaction regions of proteins with the DNA. We then describe in detail the JET 2 DNA method and we assess its performance on several sets of structures. Lastly, we demonstrate how JET 2 DNA results enabled to correctly identify additional DNA-binding sites revealed in other crystallographic structures, not comprised in our evaluation set, otherwise missing.

Chapter 3 is focused on protein-RNA interactions. It extends the structural and physico-chemical analysis, previously carried out for protein-DNA interfaces, to the characterisation of RNA-binding sites on 126 protein-RNA complexes of different types. We report the performance assessement of the JET 2 RNA method, a minor adaptation of JET 2 DNA , for the prediction of protein-RNA interfaces and some examples of alternative RNA-binding sites, not comprised in the evaluation set but correctly predicted by JET 2 RNA . Chapter 4 introduces a rough first version of a database of multiple interactions of proteins on which we are still working. It gives a general overview on informations that can be extracted from the current version of the database. Then, several examples of database entries are described to highlight the usefulness and the innovation brought from this work, thought to lead to an overall description of the "plasticity" of proteins handled in it. Namely, examples of drastical conformational changes and consequent disruption of the DNA-binding site, direct and indirect protein interactions, shared and distinct binding sites with different functions (leading to simoultaneously possible and mutually exclusive interactions) are reported in detail. Finally, the description of some improvements that are currently being introduced in the database is given. These include an extension of the number and types of complexes processed and a number of new structural and physico-chemical measures and comparisons that we want to add to the database entries, to give a more global and quantitative view of the protein "plasticity".
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Biological and bioinformatics introduction

Introduction

In this chapter, I provide the basic biological and bioinformatics concepts useful for a better understanding of this thesis. It is extremely important to put a bioinformatics study in the appropriate biological context in order to correctly interpret the data and the results. The main references for the biological part are [START_REF] Nelson | Lehninger Principles of Biochemistry, Fourth Edition[END_REF], Kessel and Ben-Tal, 2018, Alberts et al., 2014, Lodish, 2008], while for the evolution/bioinformatics part they are [Mount, 2004, Jones et al., 2004, Tramontano, 2005, Xiong, 2006, Isaev, 2006, Lesk, 2014]. For more advanced or specific concepts, exact references are reported in the text.

Different types of macromolecules

Thousands of molecules make up a cell's intricate internal structures, which make the cell a very crowded environment (Fig. 1.1).

Each one has its characteristic sequence of subunits, its ensemble of possible three-dimensional conformations, and its selection of binding partners in the cell. These binding events or interactions between molecules allow the accomplishment of all the tasks necessary for the proper functioning and the survival of the cell and therefore of the organism. Macromolecules, which include proteins and nucleic acids, are the most abundant carbon-containing molecules in a living cell. These are linear polymers organized in a hierarchical manner and constituted by joining the molecule subunits with covalent links, through a condensation reaction to form long polymeric chains. In this joining process, each subunit loses a molecule of water, hence the name residues for these macromolecule constituents. Although both nucleic acid and protein constituent can be called residues, in the following I will refer only to protein constituent as residues. As a whole, these basic components confer the remarkable properties specific of each polymer.

Nucleotides and nucleic acids: DNA and RNA

Nucleic acids include DNA and RNA molecules, having very different functions. DNA has the sole function of storage and transmission of biological information. A segment of a DNA molecule, that contains the information required for the synthesis of a functional biological product, whether protein or RNA, is referred to as a gene gene.

A cell typically has many thousands of genes, resulting in very large DNA molecules. RNAs have a broader range of functions, and several classes are found in cells.

mRNA, rRNA, tRNA, other ncRNA

Messenger RNAs (mRNAs) are intermediaries, carrying genetic information from one or a few genes to a ribosome, where the corresponding proteins can be synthesized. Ribosomal RNAs (rRNAs) are components of ribosomes, the complexes that carry out the synthesis of proteins. Transfer RNAs (tRNAs) are adapter molecules that faithfully translate the information in mRNA into a specific sequence of amino acids. rRNAs and tRNA belong to the non coding RNAs class, because the information carried in their sequence is not translated into a protein. In addition to rRNA and tRNA, a number of other noncoding RNAs exist: microRNAs (miRNAs), small interfering RNAs (siRNAs), small nucleolar RNAs (snoRNAs), long non coding RNAs (lncRNAs) etc. These molecules assist in many essential functions, as regulatory functions, which are still being enumerated and defined. Nucleic acids are linear macromolecules formed by the polymerization of units called nucleotides. There are four different types of nucleotides. Each of them includes a heterocyclic nitrogenous base, a pentose sugar, and a phosphate (Fig. 1.2a). The first difference between the two nucleic acids molecules is that they have two different kinds of pentoses. The deoxyribonucleotide units of DNA (=deoxyribonucleic acid) contain the 2'-deoxy-D-ribose and the ribonucleotide units of RNA (=ribonucleic acid) contain D-ribose. The nitrogenous bases are derivatives of two parent compounds, pyrimidine and purine. Both DNA and RNA contain two major purine bases, adenine (A) and guanine (G), and two major pyrimidines. In both DNA and RNA one of the pyrimidines is cytosine (C ), but the second major pyrimidine is not the same in both, constituting the second difference between the two molecules: it is thymine (T ) in DNA and uracil (U ) in RNA. Only rarely does thymine occur in RNA or uracil in DNA. The nucleic acids structure is organized in a hierarchical way. DNA and RNA successive nucleotides are covalently linked through a phosphodiester linkage in which the 5'-phosphate group of one nucleotide is joined to the 3'-hydroxyl group of the next nucleotide (Fig. 1.2b), forming a nucleotides sequence or primary structure nucleotides sequence or primary structure. All these linkages have the same orientation along the nucleotides chain, giving each linear nucleic acid strand a specific polarity and distinct 5 ' and 3' ends (Fig. 1.3b and c). By definition, the 5' end lacks a nucleotide at the 5' position and the 3' end lacks a nucleotide at the 3' position. Thus, the covalent backbones of nucleic acids consist of alternating phosphate and pentose residues and the nitrogenous bases may be regarded as side groups joined to the backbone at regular intervals. The sugarphosphate backbones of both DNA and RNA are hydrophilic and negatively charged, while the bases are essentially planar, hydrophobic and weakly basic compounds.

DNA is more stable than RNA

The few differences listed above result in the DNA being a more stable molecule than the RNA. In fact, OH groups are reactive by nature. The sole OH groups DNA possesses are used up in making phosphodiester bonds. On the contrary, RNA has extra OH group, the 2'-Hydroxyl (-OH) group, which makes it chemically promiscuous and thus more susceptible to hydrolysis and easily degradable. Moreover, thymine is more resistant to photomutation than uracil. This makes DNA resistance stronger towards radioactive mutagenic agents.

Furthermore, they show striking differences in terms of their higher level structures, as described below. These structural differences are critical to the different functions of the two types of nucleic acids. 

DNA secondary structure

The DNA secondary structure consists of two DNA associated strands. Every nucleotide of one strand forms a base pair with a complementary nucleotide of the other strand, with the two sugar-phosphate backbones remaining external (Fig. 1.3b). Specifically, A is paired with T through two hydrogen bonds, while G is paired with C through three hydrogen bonds (Watson-Crick base pairs) (Fig. 1.3c). This base-pair complementarity is a consequence of the size, shape, and chemical composition of the bases.

Indeed, going further with the DNA tertiary structure DNA tertiary structure, two associated DNA strands wind together to form a double helix. The orientation of the two strands is antiparallel; that is, their 5' and 3' directions are opposite (Fig. 1.3a). Thus, the coupled base-pairs are those that fit best within this double-helical structure. Of course, some exceptions of other pairings of bases can be found, but these tend to destabilize or introduce distorsions in the double-helical structure. The double helical structure runs along a central axis and the planar base pairs are stacked perpendicular to this axis of the double helix, stabilizing the structure through the hydrogen bonds between each base pair and noncovalent interactions (base stacking interactions) between two adjacent base pairs. Most DNA in cells is a right-handed Functional groups of the DNA base pairs in the major and minor DNA groove. Hydrogen bond donors in blue, acceptors in red and thymine methyl group in green. By default, base pairs show always the same hydrogen bond donor/acceptor patterns in the major and in the minor grooves, except in case of Hoogsteen base pairs. These patterns are source of specificity mostly in the major groove as compared to the minor groove. Indeed, in the minor groove, the hydrogen donor/acceptor patterns do not distinguish A:T from T:A and G:C from C:G and also patterns between purine and pyrimidine bases are very similar. (Source: [START_REF] Harteis | Making the bend: Dna tertiary structure and protein-dna interactions[END_REF]).

helix, with two sequential base pairs 3.4 Å apart, and thus with ∼ 10.5 base pairs per double helix turn. This most common conformation is called the DNA B form. The spaces between the intertwined strands form two helical grooves, the wider and less deep major groove and the narrower and deeper minor groove (Fig. 1.3a). The bases are perpendicular to the helical axis with the consequence that half of their atoms on the ring are accessible through the major groove and the other half through the minor groove. In addition to the major B form, two structural variants that have been well characterized in crystal structures, the A and Z forms. Contrary to the B form, the A form has a deep and narrow major groove, while the minor groove is wide and shallow. Moreover, it is a shorter and more compact helical structure, whose base pairs are not perpendicular to the helix-axis. The Z-form is the most different one, being a left-handed double helix structure with a zig-zag backbone. In this form, the major and minor grooves show little difference in width (Fig. 1

.5).

There are also variants to the classical double helix, namely the triplex and the quadruplex structures. These are variants of the classical secondary and tertiary structures, that are strictly related. In these cases, three or four oligonucleotides wind around and interact with each other, forming a triple or a quadruple helix, respectively. I do not described in more detail these two exceptions because they are special cases with very peculiar characteristics, not analysed in this work.

All the DNA bases exhibit (except if they are Hoogsteen base pairs, very rare) the same half of the ring, that is the same set of atoms, in each of the two grooves. The same happens also for the RNA, when it is folded in a double-stranded structure. Each base pair has thus a specific pattern of hydrogen bond donor and acceptor available in each of the two grooves (Fig. 1.4). However, this is a greater source of specificity mostly in the major groove as compared to the minor groove. Indeed, in the minor groove, the hydrogen donor/acceptor patterns do not distinguish A:T from T:A and G:C from C:G and also patterns between purine and pyrimidine bases are very similar (Fig. 1.4).

Although DNA is a relatively rigid molecule, the double helical structure shows several degrees of freedom, like twisting and bending [Travers, 2012]. The flexibility of a certain DNA segment depends on the nucleotides sequence, due to different base sizes, number of hydrogen bonds in base pairs and strength of base stacking interactions between consecutive bases (base steps). It plays an important role in the interactions with other molecules, as described later in Section 1.3.6.

RNA secondary structure

Unlike DNA, most RNA molecules are single-stranded, with bases from the same strand that pair together or remain unpaired. RNA exhibits a variety of secondary and tertiary structures. In fact, self-complementary sequences in the molecule produce more complex structures. The simplest secondary structures in single-stranded RNAs are hairpins and stem loops (Fig. 1.5). In the former, intramolecular complementary bases of the same strand distant about ∼ 5-10 nucleotides are paired together, while in the latter, the complementary nucleotides to be paired can be hundreds or even thousands of nucleotides apart. In the same way, more complex secondary structures composed by multiple hairpins, loops and base mismatches in double or single stranded RNA can be observed. Association principle for complementary base pairs is the same as for the DNA, except for exchanging T with U. One difference is that base pairing between the purines G and U, unusual in DNA, is fairly common in RNA and it results in a very strong interaction.

RNA tertiary structure

Together with the double helix, RNA can show various tertiary structures, at times very complex or very specific of a RNA class (an example is the very specific shape of the tRNA). RNA three-dimensional structures form by joining together the different secondary structure elements through the formation of long-range tertiary interactions. These simple folds can cooperate to form more complicated tertiary structures, like pseudoknots (Fig. 1.5). While DNA adopts mainly the B-conformation, RNA double helices are found mainly in A-conformation.

DNA and RNA quaternary structures

Nucleic acids quaternary structures refer to interactions between several molecules of nucleic acids or interactions of nucleic acids with other molecules. The most commonly seen form of DNA quaternary structure is the chromatin, which interacts with the small proteins histones to form the nucleosomes. The best known examples of RNA forming quaternary structures with proteins are the ribosome and the spliceosome (Fig. 1.5). See Fig. 1.5 to have an overview of nucleic acids structural hierarchy.

DNA-RNA hybrids

Finally, double-stranded nucleic acids in which one strand is a DNA and the other strand is a complementary RNA can be observed, for example during DNA transcription or repair [START_REF] D'alessandro | A role for rna and dna: Rna hybrids in the modulation of dna repair by homologous recombination[END_REF]. DNA-RNA hybrid duplexes adopt conformations between A-and B-type duplex geometry, with the RNA strand having an overall A-type structure and the DNA strand a structure intermediate between A-and B-type [START_REF] Petersen | The conformations of locked nucleic acids (lna)[END_REF].

Differences in the sizes and conformations of the various types of RNA permit them to carry out a broader range of functions in a cell than the DNA, making the RNA molecule as versatile as proteins. Conformational switching enable RNA molecules to respond to cellular signals and perform enzymatic and regulatory activities. [START_REF] Al-Hashimi | Rna dynamics: it is about time[END_REF], Dethoff et al., 2012, Mercer and Mattick, 2013] 

Amino acids and proteins

Proteins execute the majority of the cell's functions. Some of them have catalytic activity and function as enzymes; others serve as structural elements, signal receptors, or transporters that carry specific substances into or out of cells. Function is not the only aspect that can vary in a protein. They can have different sizes, structures, surface characteristics, functional conformations and interaction partners. All of these differences arise from the subunits sequences that make up and are unique to proteins. The constituent subunits or building blocks of a protein are the amino acids residues (I will use only amino acid or only residue to refer to an amino acid residue). There are twenty different types of amino acids, composed by a central α-carbon bonded to a hydrogen atom, a carboxyl group, an amino group and a side chain (or R group) (Fig. 1.6a). They all share the first four components, named all together the backbone, while the side chain is different for each amino acid and gives it its unique properties. Amino acids are covalently linked to each other through a peptide bond (Fig. 1.6b). The ordered linear arrangement (or sequence) of amino acids constituting a protein is also called its primary structure. These twenty amino acids can be grouped into classes depending on their properties. Different classifications exist, based on different discriminating properties and different levels of subtlety.

Here, I report a classification in five main classes based on similar physico-chemical properties of the amino acid side chains (Fig. 1.7). Polar, Uncharged : The R groups of these amino acids are more hydrophilic, i.e. soluble in water, than those of the nonpolar ones. This is a consequence of their polar functional groups, that can form hydrogen bonds with water. This class of amino acids includes Serine, Threonine, Cysteine, Asparagine, and Glutamine.

Positively Charged (Basic) : The most hydrophilic R groups are those that are either positively or negatively charged. The amino acids with a positively charged side chain are Lysine, Arginine and Histidine, although this latter is less charged than the other two and can be placed at the interface between this group and the simply polar one.

Negatively Charged (Acidic) : The two amino acids having R groups with a net negative charge are Aspartate and Glutamate.

The amino acid sequence of a protein exhibits a directionality because the C atom of an amino acid is always linked to the N atom of the next one. Thus a one end of the sequence has a free (unlinked) amino group (the N-terminus) and the other end has a free carboxyl group (the C-terminus) (Fig. 1.8).

Certain segments within this sequence chain tend to fold into simple shapes, such as helices, loops, etc. These structures are referred to as local structural patterns or secondary structure secondary elements, and collectively constitute the second level of the protein hierarchy, the secondary structure (Fig. 1.8). Secondary elements are stable local arrangements of amino acid residues giving rise to recurring structural patterns. A protein chain may exhibits multiple types of secondary structures depending on its sequence. In the absence of stabilizing noncovalent interactions, a polymer assumes a random-coil structure. However, when stabilizing hydrogen bonds form between certain residues, parts of the backbone fold into one or more well-defined periodic structures. The most common are the α-helix, the β-sheet or a short U-shaped turn.

The overall chain, already partially folded into the various secondary structures, tends to fold further into a global three-dimensional global structure or tertiary structure tertiary structure, which constitutes the third level of the hierarchy (Fig. 1.8). Stabilizing noncovalent interactions hold elements of secondary structureα-helices, β-strands, turns, and random coils -compactly together. Because the stabilizing noncovalent interactions are weak, however, the tertiary structure of a protein is not rigidly fixed but undergoes continual fluctuation, showing a flexible and dynamic behaviour. This variation in structure has important advantages and consequences in the function and regulation of proteins. The extent of these conformational changes can vary between proteins depending on their function, from minimal fluctuations to large three dimensional rearrangements. This phenomenon has been neglected for many years due to the lack of instrumentation fast enough to capture the different steady-state conformations of proteins. However, around the middle of the 20th century, several studies [Mc-Cammon et al., 1977, Ueda et al., 1978, Petsko and Ringe, 1984, Elber and Karplus, 1987, Frauenfelder et al., 1988, Frauenfelder et al., 1991, Kitao et al., 1998, Cui and Karplus, 2008] provided evidence that not only that proteins exhibit dynamics, but also that such dynamics is important for protein function.

What makes the structure of each protein specific is the unique order of the amino acids along the chain (i.e., the amino acid sequence). However, different sequences may adopt similar structures. The exact three-dimensional structure of a protein directly determines its function. Thus, similar protein structures often imply similar functions.

Some proteins exist in their active form only as a complex of more than one chain. In such cases, each chain folds separately into a tertiary structure, and then joins the others to form a biologically active complex. This type of organization constitutes the fourth level of structural hierarchy, and is referred to as quaternary structure quaternary structure (Fig. 1.8). It is important to distinguish between the quaternary structure (or obligate complexes) and transient complexes, that form when cellular proteins interact physically with other members of their biochemical pathways. Such temporary complexes are not considered to be quaternary structures, since the individual proteins composing them are also active when separated. The chains of a quaternary structure are often called subunits.

oligomers or multimers

Proteins assemblies that have a quaternary structure are usually called oligomers or multimers. Specifically, if their quaternary structure is composed by 2, 3, 4, 5 etc. chains, they are called dimers, trimers, tetramers and pentamers, respectively. When these chains are identical, the protein is referred to as a homomers and heteromers homomer, while when they are different it is called a heteromer. Most proteins having quaternary structure are homomers and contain an internal symmetry [START_REF] Goodsell | Structural symmetry and protein function[END_REF]. In fact, it has been estimated that over 50% of all proteins form homomers [START_REF] Venkatakrishnan | Homomeric protein complexes: evolution and assembly[END_REF]. The composition of the subunits of a protein stoichiometry quaternary structure, in terms of number, similarity and relative positions is the protein stoichiometry.

It had long been thought that a fixed three dimensional conformation (tertiary structure) was necessary in order for proteins to accomplish their functions. However, Intrinsically disordered proteins or protein regions evidence from observations in the past few decades demonstrated that a non negligible number of proteins involved in important cellular processes are entirely or partially unstructured (intrinsically disordered proteins or protein regions) in their functional state [Tompa, 2002, Dyson and Wright, 2005, Wright and Dyson, 2015, Tompa, 2012]. These disordered proteins or protein regions can remain unstructured while interacting with their targets to accomplish their functions, or can undergo a so-called disorder-to-order transition, adopting a fixed three dimensional structure upon target binding. This is often the case for proteins interacting with RNA targets [Srivastava et al., 2018, Tompa andCsermely, 2004]. 

Protein interactions with other molecules

We have already talked about how proteins perform the majority of functions in a cell and how many and diverse these can be. Communication, transport, regulative and immune functions are just some examples. All of these functions are based, at least partially, on the capability of each protein to bind a certain ligand or multiple ligands (called also partner(s)). The binding process involves a number of issues of considerable complexity in a crowded environment like the cell. Namely, a protein has to discriminate between partner and non-partner molecules and, in case it has multiple true partners, it has to choose the correct one in every situation. Moreover, it may need to be able to bind different partners with different degrees of specificity and affinity specificity and affinity. The former is a measure of the strength of the attraction between the protein and the ligand, while the latter represents the ability of a protein to bind to one or few specific partner(s) and not binding to other ones. The fewer ligands a protein can bind, the greater its specificity. Finally, it has to address all these issues in a very limited timeframe.

Protein interaction regions or binding sites

The region through which a ligand binds a certain protein is called binding sites or interfaces a binding site. Thus, if the ligand is a DNA, RNA or a protein, the interaction regions are called DNA-binding, RNA-binding and protein-binding sites, respectively. Since through these regions the protein of interest forms an interface with the respective ligand, we can also refer to these sites as protein-DNA/RNA/protein interfaces. A given protein may have distinct binding sites for several different ligands. Some of these can also completely or partially share a certain binding site. For example, a protein may interact with three different ligands through two binding sites, resulting in two ligands sharing the same interaction region, although not at the single residue level.

In structural bioinformatics, there are three main ways to determine which residues are involved in interactions, and thus to determine binding sites, on known protein structures: 1) by distance-based, 2) solvent accessibility-based or 3) Voronoi tessellation-based approaches.

distance-based binding sites determination methods

The concept behind the first one is very simple. Given the atomic coordinates of a protein-ligand complex, any atom of the protein closer than a certain threshold to any atom of the ligand is considered to belong to the binding site, and so the amino acid it belongs to. Thresholds commonly used are in the range of 3.5-6 Å. It is very easy to do a "homemade" program to compute a binding site through a distance-based approach. One just needs to compute all the pairwise spatial distances between protein and ligand atoms, that is every spatial distance of any atom of the protein to any other atom of the ligand. However, when the number of structures is very high it becomes computationally expensive to calculate all the possible pairwise distances. To address this problem, a program was developed in our group, named INTBuilder [START_REF] Dequeker | Interface builder: A fast protein-protein interface reconstruction tool[END_REF], which reduces the space of pairwise distances to compute only the ones that are potentially smaller than the fixed threshold.

The second type of approach is based on solvent accessibility -based binding sites determination methods the atom solvent accessibility. An atom, or group of atoms, is defined as accessible if a solvent molecule of specified size can be brought into van der Waal's contact. The accessible surface area (ASA) or solvent-accessible surface area (SASA) is thus the surface area of a biomolecule that is accessible to the solvent. The absolute or numerical ASA for an atom or an amino acid can be estimated by different computational algorithms using the atomic coordinates of the structure and it is generally measured in Å 2 .. The relative ASA (RSA) is the percentage of the real ASA of an amino acid in the studied structure with respect to ASA of the amino acid in a Ala-X-Ala tripeptide, where "X" refers to the amino acid of interest. Namely, the relative solvent accessibility for the i-th amino acid (RSA i ) is defined as the ratio of the absolute ASA of that residue observed in a given structure, denoted as ASA i , and the maximum attainable value of the solvent-exposed surface area for this residue in the Ala-X-Ala tripeptide, denoted as MSA i . Thus, RSA i can have a value in the range 0-100%, with 0% corresponding to a fully buried and 100% to a fully accessible residue, respectively.

RSA i (%) = 100 • (ASA i /MSA i ) (1.1)
The idea behind this second approach is that if a protein residue interacts with a ligand residue, its surface accessibility will differ when computed in complex with the ligand and when the ligand is removed, passing from more buried when in complex to more solvent accessible when unbound. Interface residues can be defined as those whose difference in their RSA values (∆RASA) (that give a more meaningful measure than the ASA) in the complex and the unbound states is above a certain threshold.

There are many tools that allow to estimate the solvent accessibility of protein residues. I describe the NACCESS program, used in analysis in the following chapters.

NACCESS program

The NACCESS program [START_REF] Hubbard | Naccess version 2.1. 1[END_REF] is an implementation of the Lee and Richards method [START_REF] Lee | The interpretation of protein structures: estimation of static accessibility[END_REF], who first introduced the concept of solvent accessibility of residues. A protein is represented as a 3D van der Waals surface, constituted by the spatial distribution of the van der Waals spheres of all its atoms. The protein surface is then cut in slices and a probe of a given radius is rolled around each slice perimeter to calculate the exposed arc lengths for each atom van der Waals sphere in each slice. The ASA for each atom in the protein is obtained by summing the arc lengths over all the slices to the final area. The ASA of each residue is the sum of the ASA of all its atoms. RSA values are calculated for each amino acid in the protein as a percentage of that observed in a ALA-X-ALA tripeptide. The rolling probe represents a molecule of solvent and its radius is usually fixed to 1.4 Å, that is the van der Waals radius of a water molecule.

Voronoitessellation -based approaches

The Voronoi description of proteins is a useful geometric tool to compute contacts and interfaces between macromolecules. The Voronoi diagram associates to each atom in the protein its Voronoi cell. This is a convex polyhedron that contains all points of space closer to that atom than to any other atom. It can be used to define contacts in macromolecules without applying a distance cutoff: two atoms are in contact if and only if their Voronoi cells have a facet in common. Similarly, Voronoi cells can be drawn around amino acid residues to define residue-residue contacts. Given this definition of a contact, the set of facets shared by atoms of two macromolecules forming a complex represents their interface [START_REF] Cazals | Revisiting the voronoi description of protein-protein interfaces[END_REF].

Noncovalent interactions and shape complementarity in protein binding

The binding site-ligand match requires two main features: geometric and electrostatic complementarity.

The interaction regions of the two molecules have to be three dimensionally complementary in terms of size and shape. All noncovalent interactions mediating the binding need to be optimized by this geometrical complementarity, maximizing favorable and minimizing unfavorable interactions. The match, however, can be imperfect with the unbound conformations of the two binding molecules, and a higher complementarity can be achieved through conformational changes of one of the interacting molecules or both, as decribed in greater detail in the following Section 1.3.3.

The specific binding between two molecules in the cell is caused by the cooperative action of noncovalent interactions: ionic interactions and salt bridges, hydrogen bonds, interactions involving π electrons (π-π, π-cation), van der Waals and hydrophobic interactions. These non covalent interactions define the affinity and specificity The complementary shapes, charges, polarity and hydrophobicity of two protein surfaces permit multiple weak interactions, which combined produce a strong interaction and tight binding. Because deviations from molecular complementarity substantially weaken binding, affecting the binding affinity and/or specificity. On the left, a more stable complex; on the right, a less stable complex. (Source: [Lodish, 2008]) degrees of binding. Aside from this, noncovalent interactions render the binding reversible, which prevents the protein from getting "stuck" with the first ligand it binds. Moreover, these noncovalent interactions can serve as a guidance, pathway, for the ligand to reach possible difficult or buried binding sites. An example can be a ligand that has to reach a buried active site of an enzyme. The distribution of residues along the path, together with the low dielectric in that region, creates an electrostatic gradient that leads the substrate to the bottom of the path, where the catalytic site resides [START_REF] Ripoll | An electrostatic mechanism for substrate guidance down the aromatic gorge of acetylcholinesterase[END_REF], Tan et al., 1993, McCammon, 2009]. This process is termed "electrostatic steering". Furthermore, hydrogen bonds, π-π, πcation and other interactions that involve molecular orbitals have a strong geometric dependence, namely the angle formed by the two interacting atoms.

Thus, we can conclude that both geometric and electrostatic complementarity are key features for a functional binding, especially for specific binding. These are strongly interconnected and cannot be treated separately, since a final pattern of key residues can be achieved using different combinations of geometrical and electrostatical architectures.

A pool of possible conformations

We discussed how biological interactions between molecules are stereospecific: the "fit" in such interactions must be stereochemically correct. Various theories have been proposed over the years to explain the protein-ligand binding process and matching.

At the end of the 19th century, Emil Fischer proposed the lock and key model [ Fischer, 1894]. It was based on the a priori compatibility of protein binding sites with their biological functions and partners, which were thought to be rigid and pre-adjusted geometrically to the natural ligand. This was the most supported theory until the middle of the 20th century, when Daniel Koshland proposed the induced fit model [Koshland Jr, 1959]. He suggested that in many cases there is not "a priori" perfect matching between binding sites of enzymes and their substrate, and that the binding match need to be tighter, optimizing it with some conformational changes in the enzyme induced by the ligand binding (Fig. 1.11a). Few years after, the Monod-Wyman-Changeux (MWC) model [START_REF] Monod | On the nature of allosteric transitions: a plausible model[END_REF] was proposed, suggesting that proteins are able to shift spontaneously between (at least) two different conformations, even in the absence of a ligand ("conformational selection" model) (Fig. 1.11a). Nowadays, we are aware that proteins shift spontaneously among multiple conformations, called substates and that understanding and generalizing the protein binding process is much more complex than what was initially thought [START_REF] Mccammon | Dynamics of folded proteins[END_REF], Ueda et al., 1978, Petsko and Ringe, 1984, Elber and Karplus, 1987, Frauenfelder et al., 1988, Frauenfelder et al., 1991, Kitao et al., 1998, Cui and Karplus, 2008]. There are multiple possible scenarios that I will try to summarize. A given ligand binds preferentially to one of the conformations sampled spontaneously by the protein and, thus, stabilizing it and turning it in the most favorable one. The functional conformation, with all the possible states that can be visited from this one, in which the protein is at the moment of binding, can be its native state (the conformation in (a) S100 calcium-binding protein with p53 residues 367-388 (1DT7) [START_REF] Rust | Structure of the negative regulatory domain of p53 bound to s100b (ββ)[END_REF], (b) cyclin A2 with p53 residues 378-386 (1H26) [START_REF] Lowe | Specificity determinants of recruitment peptides bound to phospho-cdk2/cyclin a[END_REF], (c) tumor suppressor p53-binding protein 1 with p53 dimethylated lysine residue 382 (3LGL); residues 377-381 and 383-387 did not show clear density [START_REF] Roy | Structural insight into p53 recognition by the 53bp1 tandem tudor domain[END_REF], (d) 14-3-3 protein sigma with p53 residues 385-391, phosphothreonine 387 (3LW1) [START_REF] Schumacher | Structure of the p53 c-terminus bound to 14-3-3: Implications for stabilization of the p53 tetramer[END_REF], (e) NAD-dependent deacetylase Sir2 with p53 residues 378-384 (2H2F) [START_REF] Cosgrove | The structural basis of sirtuin substrate affinity[END_REF], (f) NAD-dependent deacetylase Sir2 with p53 residues 373-385; acetyllysine 382 (2H2D) [START_REF] Cosgrove | The structural basis of sirtuin substrate affinity[END_REF], (g) CREB-binding protein with p53 residues 367-386; acetyllysine 382 (1JSP) [START_REF] Mujtaba | Structural mechanism of the bromodomain of the coactivator cbp in p53 transcriptional activation[END_REF], and (h) histone-lysine N-methyltransferase with p53 residues 369-374; N-methyl-lysine 372 (1XQH) [START_REF] Chuikov | Regulation of p53 activity through lysine methylation[END_REF]. (Source: [START_REF] Schreiber | Protein binding specificity versus promiscuity[END_REF]) which the protein folds after the translation) or a different conformation induced by the binding of the ligand itself or of a previous ligand. In this last case, the protein can bind to the ligand of interest only when the previous ligand (called modulator) is already bound and has induced the correct (functional) conformation (all this process is called allostery). Allosteric regulation can be "positive", when the modulator induces the ligand binding, or "negative", when it inhibits the ligand binding (Fig. 1.11b). However, in both situations the modulator induces some conformational changes. Once bound to the ligand of interest, the protein can undergo additional conformational changes to further stabilize the interaction and/or that are needed to accomplish its function, possibly inducing conformational changes also to the ligand of interest. An example of this last case can be an enzyme that needs to flip out a DNA base by "kicking" it to perform an excision for the replacement with another base. This type of mechanism is referred to as mutually induced fit. Moreover, in a multisubunit protein, a conformational change in one subunit often affects the conformation of other subunits. In every binding process, only one of these mechanisms can be present or several may coexist, depending on circumstances. However, specific conformational changes are frequently essential to a protein's function.

Changes in conformation may vary from minimal to moderate (backbone RMSD ≤ 2.5 Å, see Section 1.3.4), reflecting molecular vibrations and small movements of amino acid residues (Fig. 1.12 and Fig. 1.13), but can also be dramatic, with major readjustments of segments or entire domains of the protein structure of several nanometers (Fig. 1.14).

Comparing different conformations through the Root Mean Square Displacement

A very popular quantity used to measure the extent of 3D structural similarity between different structures is the root-mean-square displacement (RMSD) [START_REF] Rao | Comparison of super-secondary structures in proteins[END_REF]. It represents the average distance between the positions of equivalent atoms (usually the backbone atoms) of two superposed structures.

It is a useful measure to calculate the significance of conformational changes either between two different states of the same protein (or between two close homologs) either between the structures of two different proteins.

First, a sequence or structural alignment has to be performed in order to identify corresponding atoms between the two structures. A sequence alignment can be performed when comparing two homologous proteins and enough sequence similarity can give a reliable match, while a structural alignment is maybe to be preferred when comparing very distant proteins (with very distant sequences) and the correspondence between atoms can be assigned finding similar secondary and tertiary structures.

Next step is to translate and rotate one structure with respect to the other to optimally superimpose the two similar structures in such a way as to minimize the sum of the squared distances between all N atoms assumed to have equivalence. Atoms for which is not possible to find a correspondence between the structures, like insertions or deletions, are not considered in the measure.

Given two sets of N points with coordinates v and w, the RMSD is defined as follows:

RMSD(v, w) = 1 N N i=1 v i -w i 2 (1.2) = 1 N N i=1 ((v ix -w ix ) 2 + (v iy -w iy ) 2 + (v iz -w iz ) 2 (1.3)
An RMSD value is expressed in length units. The most commonly used unit in structural biology is the Angstrom (Å). A value of 0 corresponds to identical structures, and its value increases as the two structures become more different. RMSD values are considered as reliable indicators of variability when applied to very similar proteins, like alternative conformations of the same protein.

In Fig. 1.14 is reported an example where the DNA polymerase of the Y family undergoes great conformational changes between the unbound, DNA-bound and protein-bound states. The superposition of the structures in the three different states is reported in Fig. 1.14a, while the RMSD was computed between the two most different conformations, the DNA-and the protein-bound ones, and structures in Fig. 1.14b are colored accordingly.

Binding promiscuity

As already introduced in Section 1.3.1 and 1.3.3, a protein can participate in specific interactions with just one or a few partners, in promiscuous yet functional interactions with many partners, and/or in non-specific interactions with some of the numerous functionally non-cognate partners, depending on their function or multiple functions [START_REF] Schreiber | Protein binding specificity versus promiscuity[END_REF]. A definition of promiscuity adopted by many researchers is when a protein catalyses some reactions distinct from the one it has evolved to perform, but using the same domain [START_REF] Chakraborty | A measure of the promiscuity of proteins and characteristics of residues in the vicinity of the catalytic site that regulate promiscuity[END_REF], O'Brien and Herschlag, 1999, Hult and Berglund, 2007, Tawfik and S, 2010]. Promiscuity is distinguished from moonlighting functions which are typically catalyzed using a domain of the protein different from the active site scaffold [Copley, 2003, Jeffery, 2009, Chakraborty and Rao, 2012]. Binding of a protein to numerous partners can be promoted through variation in which residues are used for binding, conformational plasticity (Fig. 1.14) and/or post-translational modification (Fig. 1.13), like phosphorylation. Natively unstructured regions represent the extreme case in which structure is obtained only upon binding. Many natively unstructured proteins serve as hubs in protein-protein interaction networks and such promiscuity can be of functional importance in biology [START_REF] Schreiber | Protein binding specificity versus promiscuity[END_REF]. Some of their ligands can also partially or completely share the same binding site on the protein structure. Moreover, the protein can bind each of its ligands with a different affinity and specificity as well as through a different conformation or range of conformations, as just discussed (Fig. 1.12 and Fig. 1.13).

Other levels of complexity can be added to the binding promiscuity of a protein. For example, their different partners can all belong to the same molecule type (all ligands are proteins) or can be different types of ligands (among the ligands we find proteins and DNA or DNA and RNA molecules). Moreover, a protein can use different interaction regions to bind different types of ligands, exploiting different fitting geometry and surface characteristics; alternatively different ligands can interact with the same binding site residues, albeit with different affinity and specificity. In the latter situation, conformational changes can be exploited by the protein to modify the surface properties and the geometry according to the different types of binding needed. All these situations can occur together in cases where the protein has several partners and binding sites.

Protein-DNA and protein-RNA interactions

This work is mainly focused on protein-DNA interactions, with some fewer analysis on protein-RNA interactions and some comparison with results found in other previous studies on protein-protein interactions. Hence, I will briefly describe the mechanism of protein-DNA recognition and the major similarities and differences with protein-RNA and protein-protein interfaces. Protein interactions with DNA strongly depend on the protein ability to dis-criminate between different regions of the DNA molecule. To do it, they exploit the peculiar physico-chemical and geometrical properties of the latter.

base and shape readout There are two ways through which a protein can "read" a DNA sequence and thus recognize different target sequences: the base and the shape readout [START_REF] Rohs | Origins of specificity in protein-dna recognition[END_REF]. We can talk about base readout when the protein makes direct or water mediated contacts with the sequence bases in the major or minor groove. However, the highest selectivity potential for base recognition is through interactions within the major groove, since the functional groups of the four bases are displayed in this one and their hydrogen donor/acceptor patterns are more distinguishable. Indeed, as introducted in Section 1.2.1, the hydrogen donor/acceptor patterns in the minor groove are identical between A:T and T:A and between G:C and C:G and are also very similar between purine and pyrimidine bases (Fig. 1.4). Moreover, bidentate H-bonds convey higher selectivity than single H-bonds. On the other hand, we can talk about shape readout when the protein indirectly recognizes the DNA sequence, testing its intrinsic flexibility. In fact, as already explained in Section 1.2.1, bases have different electronic configurations and the base pairing between A:T and G:C is achieved by a different number of hydrogen bonds, two in A:T and three in G:C (Fig. 1.3). This not only determines the deformability of the nucleic acid molecule, but also the deformation energy necessary to adopt a particular conformation and the electrostatic potential around the molecule. For example, narrow minor grooves locally enhance the negative electrostatic potential of DNA through electrostatic focusing [START_REF] Rohs | Origins of specificity in protein-dna recognition[END_REF]; the energy necessary to separate a base pair is dependent on its number of H-bonds; the sequence influences the stiffness through the base pair rigidity. A/T rich sequences are more bendable than G/C rich sequences. Another factor impacting the molecule's rigidity is the stacking interactions between the aromatic rings of consecutive bases (base steps, where a base step refers to two consecutive bases). A purine-pyrimidine base step is thermodynamically more stable due to the larger stacking area than purine-purine or pyrimidine-pyrimidine base steps, with the pyrimidine-purine being the least stable [START_REF] Harteis | Making the bend: Dna tertiary structure and protein-dna interactions[END_REF]. The shape readout mechanism can be further differentiated as local and global shape readout, depending whether the DNA deviation from B-DNA is local (e.g. variations in minor groove width, DNA kinks, base pair opening or flipping) or more extended, deforming the overall cylindrical shape of the double-helix (bending, unwinding, A-DNA and Z-DNA). However, one has to take into account that variation of shape always influences the base readout: conformational changes alter the geometry and hence accessibility of the bases in the major and minor grooves. DNA binding proteins use multiple readout mechanisms and the binding specificity is ultimately achieved by combinations of these mechanisms that successively fine-tune the selection of binding sites. While all interactions contribute to binding affinity, specificity can be viewed as resulting from a subset of interactions that are sequence-specific. Although not directly, backbone contacts may play a role in specificity through the positioning of protein recognition elements in orientations that allow them to make other, more specific, contacts, such as hydrogen bonds to the bases. Indeed, protein families often contain conserved backbone-contacting residues that preserve the interface orientation for an entire family. In addition, specificity may depend on contacts to the DNA backbone if these contacts can only be made when the DNA assumes a sequence-dependent structure that deviates from ideal B-DNA. An example is the readout of narrow minor groove regions, where the phosphates are located in positions that differ from ideal B-DNA [START_REF] Rohs | Origins of specificity in protein-dna recognition[END_REF]. The recognition mechanism through base and shape readouts is adopted also by RNA-binding proteins [START_REF] Stefl | Rna sequence-and shape-dependent recognition by proteins in the ribonucleoprotein particle[END_REF]. However, in contrast to the regular double helical structure of B-DNA commonly found in protein-DNA complexes, RNAs display a wide variety of complex secondary and tertiary structures, as described in Section 1.2.1. They include elongated single-stranded, looped single-stranded, singlestranded with multiple loops, pseudoknots and A-form double-helix structures. Thus, the picture of shape recognition from RNA-binding proteins is far more complicated than that of protein-DNA complexes.

Both DNA-binding [START_REF] Rohs | Origins of specificity in protein-dna recognition[END_REF] and RNA-binding proteins [START_REF] Lunde | Rna-binding proteins: modular design for efficient function[END_REF] often bind their targets cooperatively. Creating higher-order complexes (homooligomers or hetero-oligomers), they are able to enhance their specificty and better control gene expression.

Also from the physico-chemical perspective, RNA and DNA binding interfaces cannot display too different properties since there is growing evidence that they can share same binding sites [START_REF] Hudson | The structure, function and evolution of proteins that bind dna and rna[END_REF] and that proteins can bind hybrids of DNA/RNA that may play a role in DNA repair [START_REF] D'alessandro | A role for rna and dna: Rna hybrids in the modulation of dna repair by homologous recombination[END_REF]. A very characterising feature common to protein interacting regions with nucleic acid molecules is pronounced polarity. Indeed, both DNA and RNA have negatively charged phosphate backbones. Thus, nucleic acids binding sites on protein structures are characterised by positively charged amino acids that interact with the negative DNA/RNA backbone. However, some RNA binding sites appear to be less polar than the double stranded DNA ones. This can be caused by the many unpaired bases in single strand RNA structures, that are more readily available to make non polar contacts with amino acids residues than those in the tightly paired double helices of dsDNA [START_REF] Lejeune | Protein-nucleic acid recognition: statistical analysis of atomic interactions and influence of dna structure[END_REF], Jones et al., 2001, Jones et al., 1999, Nadassy et al., 1999]. Another cause for the less pronounced polarity can be the use of multiple protein domains for the independent recognition of different sites on the RNA. This binding mechanism was observed for the aminoacyl-tRNA synthetases [START_REF] Cavarelli | Recognition of trnas by aminoacyl-trna synthetases[END_REF]. In addition, it has been observed that the aminoacyl tRNA synthetases possess unexpectedly negatively charged RNA binding regions [START_REF] Tworowski | Electrostatic potential of aminoacyl-trna synthetase navigates trna on its pathway to the binding site[END_REF]. Despite this consideration, protein-nucleic acids interfaces are overall more polar than protein-protein ones, that instead tend to be more hydrophobic [START_REF] Lejeune | Protein-nucleic acid recognition: statistical analysis of atomic interactions and influence of dna structure[END_REF], Jones et al., 2001, Jones et al., 1999, Nadassy et al., 1999]. Among these latter, permanent protein-protein complexes are more hydrophobic than the transient ones [START_REF] Jones | Principles of protein-protein interactions[END_REF].

As described earlier, all molecules involved in these interactions may or may not show conformational changes upon binding. When this is the case, these can be classified as small side chain adjustements, changes in secondary structure, segment or domain movements and disorder-to-order transitions upon binding. Furthermore, intrinsically disordered fragments or entire disordered domains of proteins can participate in the binding interfaces. All these flexible and disordered aminoacids can have profound and essential roles in binding specificity and regulatory process [Dyson andWright, 2005, Tompa, 2002]. On the other hand, these conformational changes can involve at the same time also nucleic acids molecules. Moreover, RNAs can assume low stable structures and have a high degree of disorder due to their abundance in single stranded conformations.

Experimental methods to determine molecular structures

Determining three-dimensional structure of a protein is extremely important to understand its functioning. However, it requires sophisticated physical methods and complex analyses of the experimental data. With the emergence of technological advances in the first half of the 20th century, methods for the structural characterization of small molecules and later macromolecules began to appear. However, the first structures of proteins were determined only in the 1960s. Here, we briefly describe three methods used to experimentally determine three-dimensional structures of proteins.

X-Ray Crystallography

It is considered today the most accurate method for the structural determination of macromolecules. The use of x-ray crystallography to determine the three-dimensional structures of proteins was introduced in the 1950s by Max Perutz and John Kendrew. In this technique, a single crystal composed by millions of protein molecules ordered in a rigid cubic array is exposed to an x-ray beam. The wavelengths of x-rays are about 0.1-0.2 nm, short enough to resolve the atomic positions in the crystal. The X-ray scattering off the periodic arrangement of atoms in the crystal causes a diffraction pattern. By measuring the angles and intensities of these diffracted beams, the threedimensional electron density map of the molecules within the crystal can be reconstructed. From this electron density map, the average positions of the atoms in the crystal can be determined, as well as their chemical bonds, their crystallographic disorder (or uncertainty of the atomic positions, also called B factor), and various other information. Such diffraction patterns are extremely complex -composed of as many as 25,000 diffraction spots for a small protein.

Elaborate calculations and modifications of the protein (such as the binding of heavy metals) must be made to interpret the diffraction pattern and to solve the structure of the protein. The higher the resolution of a x-ray structure, the higher the precision in the determination of atomic positions. This is extremely important for scientists working, e.g., in drug discovery, whose research tends to be highly sensitive to the distance and angles between the interacting atoms. Despite its accuracy, yet the method is associated with several difficulties and problems, which emerge at different stages of the process: the preparation of the protein (crystallization process), the indirect data collection and processing of diffraction patterns and the unnatural conditions under which the protein structure is determined. On this last point, proteins have evolved to function in solution. The crystallization process may change the conformation of the protein to a non-native one and leads to a loss of the dynamic behavior of the protein, highly important for its function [START_REF] Smyth | x ray crystallography[END_REF].

Nuclear Magnetic Resonance (NMR) Spectroscopy This is the unique technique able to determine the atomic structure of macromolecules in solution, with the constraint that concentrated solutions can be obtained. This technique relies on the fact that certain atoms have a 'nuclear spin', which results from the motion of charges in their nucleus. Thus, the NMR studies the behavior of these atoms with magnetic properties, exposed to an externally applied magnetic field. The concentrated protein or nucleic acids solution is placed in a strong external magnetic field, where different radio frequencies raise the atomic nuclei in the sample to an excited state (excitation). Then, the nuclei return to their original states while emitting radio waves (decay or relaxation) that are sensed and amplified by the NMR instrument. Each nucleus has its own unique resonance spectrum, that is the frequency that is required for changing its spin. Therefore, given the strength of the external field, the excitation frequency, and the type of nucleus (e.g., 1H), the signal emitted by a certain isolated nucleus can be identified on the measurement output. However, when the atom containing this nucleus is part of a molecule, i.e., surrounded by other nuclei, the signal it emits is slightly different from the one emitted in the isolated state, with closely spaced atoms being more perturbed than distant ones. This phenomenon, called 'chemical shift', results from the masking of the nucleus by the electron clouds of adjacent atoms. For example, two identical protons will emit signals of different frequencies if one is part of an amide group whereas the other is part of a methyl group. Non-covalent interactions also modulate the chemical shift, although less importantly. Thus, each protein or nucleic acid residue, that is composed by several atoms, has its own 'signature', depending on the residue type and the chemical local environment. By using the known chemical shifts of nuclei in different chemical environments, it is possible to decipher the structure of the protein from its NMR spectrum. The NMR peaks in the spectrum are assigned to the various protein or nucleic acid nuclei on the basis of correlations identified between nuclei (couplings), which indicate their proximity and interaction type to each other. NMR does not provide a single location for each atom, but rather a range of possible locations, that is an ensemble of structures that are consistent with the spatial constraint and that can be a potential source of information regarding the dynamics of the molecule. Although NMR does not require the crystallization of a protein, a definite advantage, this technique has some limits. First, the signal that can be measured is typically quite small, which leads to low sensitivity of the method, that can be improved only Increasing the external magnetic field or the concentration of the sample. Second, the output of NMR measurements in macromolecules contains hundreds, sometimes thousands of resonance peaks, resulting from the numerous nuclei. Indeed, this technique easily provides good structure determination only in small proteins (∼10 kDa), while for larger macromolecules is still possible but far more complicated [Kessel andBen-Tal, 2018, Berg et al., 2002].

Cryoelectron Microscopy (Cryo-EM) While development of the technique began in the first half of the 20th century, only recent advances in detector technology and software algorithms have allowed for the determination of biomolecular structures at near-atomic resolution. This has attracted wide attention to the approach as an alternative to X-ray crystallography or NMR spectroscopy for macromolecular structure determination without the need for crystallization. In fact, although some proteins readily crystallize, obtaining crystals of others -particularly large multisubunit proteins or flexible structures -requires a time-consuming trial-and-error effort to find just the right conditions. The structures of such difficult-to-crystallize proteins and too large for the NMR can be obtained by cryo-EM. Unlike X-ray crystallography and NMR, this method enables to observe the molecules directly as single particles. In this technique, a protein solution is frozen so rapidly that water molecules do not have time to crystallize, forming a thin layer of a noncrystalline form of solid water (called amorphous or vitreous ice) that preserves the sample structure. Then, the sample is examined in the hydrated state using a transmission electron microscope (TEM) in vacuum. A series of two dimensional images of individual assemblies are either recorded on film or, more recently, digitally captured by cameras. In order to reconstruct the 3D structure of the sample molecule, 10 3 to 10 6 images of many macromolecular complexes, or particles, in random orientations have to be recorded and then computationally aligned and merged. This process also performs averaging of the images obtained for different particles. Such averaging decreases the noise and therefore improves the resolution of the final images. Despite the advantages of direct EM measurements over measurements carried out with X-ray crystallography and NMR, until few years ago EM was able to produce only low-resolution structures, which ranged between 4 and 20 Å. This limitation was a combination of several problems: the need to use low-dose beams to minimize radiation damage to the macromolecule and the movement of the sample within the electron beam. In the last years, the development of a new generation of electron detectors and improved image processing procedures have led the cryo-EM to become competitive with X-ray crystallography and NMR. These recent progresses made it possible in the last few years to obtain structures at near-atomic and even atomic resolution (<4 Å) [START_REF] Chen Bai | How cryo-em is revolutionizing structural biology[END_REF], Murata and Wolf, 2018, Cheng, 2015].

Biological databases

Biological databases emerged as a response to the explosion of the amount of data generated in the last years by increasingly cheaper technologies. Thus, they started to play a central role in bioinformatics. Databases offer scientists the opportunity to access, share and manage data for tens of thousands of sequences and structures from a broad range of organisms. Depending on the data they contain, they fulfil different functions. Databases can be divided in primary and secondary databases primary and secondary databases. These two differ in their archive structure. In the first case, experimental results (experimentally derived data), such as nucleotide sequence, protein sequence or macromolecular structure, are directly submitted to the databases and the data are essentially archival in nature. In the second case, the databases comprise data derived from the results of analysis, literature research and interpretation of data in primary and other secondary databases, to derive new knowledge from them. Moreover, they can have both primary and secondary characteristics. Databases can also be classified by the type of biological informations they store. They can be primarily classified as sequence databases, structure databases, chemistry databases, enzyme and pathway databases, family and domain databases, gene expression databases, genome annotation databases, organism specific databases, phylogenomic databases, polymorphism and mutation databases, molecular interaction databases, proteomic databases and other. Some of them are repositories for data of a single type, while other combine many different types of data under a common genomic framework or biological theme. Since the number, types and diversity of biological databases are huge, I will focus only on few databases used in the analysis or comparisons in the rest of the work. Namely, I will describe the nr database [START_REF] Coordinators | Database resources of the national center for biotechnology information[END_REF], through which I compared protein sequences, the Protein Data Bank (PDB) [START_REF] Bernstein | The protein data bank: A computer-based archival file for macromolecular structures[END_REF], Berman et al., 2000] and the Nucleic Acids Database (NDB) [START_REF] Berman | The nucleic acid database. a comprehensive relational database of three-dimensional structures of nucleic acids[END_REF], Coimbatore Narayanan et al., 2013], used to search and download the 3D structures of complexes of interest, and a set of protein interactions and interfaces databases, used to motivate and compare my ongoing work on the creation of a new database on this common biological theme.

The nr database

The protein nr database [START_REF] Coordinators | Database resources of the national center for biotechnology information[END_REF] is a "non-redundant" database of protein sequences maintained by the National Center for Biotechnology Information (NCBI). In this database, two protein sequences are considered "redundant", and thus merged in a unique entry, if they have identical lengths and every residue at every position are the same. The protein nr database is a collection of sequences from several sources including translations from annotated coding regions in GenBank, SWISS-PROT, PIR, PRF, RefSeq and PDB databases. It is used as a target for their BLAST searching service.

• GenBank [START_REF] Benson | Genbank[END_REF] is a comprehensive database that contains publicly available nucleotide sequences and corresponding protein translation of coding regions (GenPept) for almost 260.000 formally described species.

It supports bibliographic and biological annotation. These sequences are obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects.

• SWISS-PROT [START_REF] Boeckmann | The swiss-prot protein knowledgebase and its supplement trembl in 2003[END_REF]] is a protein sequence and knowledge database that is valued for its high quality annotation, the usage of standardized nomenclature, direct links to specialized databases and minimal redundancy. It is the manually annotated and reviewed section of the UniProt Knowledgebase (UniProtKB) [START_REF] Consortium | Uniprot: a hub for protein information[END_REF] and brings together experimental results, computed features and scientific conclusions.

• PIR (Protein Information Resource) [START_REF] Wu | The protein information resource[END_REF]] is an integrated public bioinformatics resource to support genomic, proteomic and systems biology research. PIR maintains the Protein Sequence Database (PSD), a protein sequence database, which currently contains over 283.000 annotated and classified entries, covering the entire taxonomic range. Annotation efforts have focused on familiy and superfamily classification, curation, bibliography mapping and attribution. PIR also maintains NREF, a non-redundant reference database (identical sequences from the same source organism reported in different databases are presented as a single entry), and iProClass, an integrated database of protein family, function, and structure information. PIR-NREF provides a timely and comprehensive collection of protein sequences, currently consisting of more than 1.000.000 entries from PIR-PSD, SWISS-PROT, TrEMBL [START_REF] Consortium | Uniprot: a hub for protein information[END_REF] (reviewed section of the UniProtKB, comprising computationally annotated sequences), RefSeq, GenPept, and PDB.

• PRF (Protein Research Foundation) (https://www.prf.or.jp/aboutdb-e.html) collecting the information related to amino acids, peptides and proteins. It comprises the Literature Database (PRF/LITDB), selecting all scientific articles dealing with peptides, the Peptide/Protein Sequence Database (PRF/SEQDB), consisting of amino acid sequences of peptides and proteins, including sequences predicted from genes, reported in literature, and thus possibly not included in EMBL, GenBank and SWISS-PROT, and the Synthetic Compounds Database (PRF/SYNDB), collecting unnatural amino acids, amino acid derivatives, chemically synthesized peptides and intermediates.

• RefSeq (Reference Sequence) [START_REF] O'leary | Reference sequence (refseq) database at ncbi: current status, taxonomic expansion, and functional annotation[END_REF], Pruitt et al., 2006] collection is a comprehensive, integrated, non-redundant, well-annotated set of reference sequences including genomic, transcripts, and proteins. RefSeq records integrate information from multiple sources, when additional data are available, including coding regions, conserved domains, tRNAs, sequence tagged sites (STS), variation, references, gene and protein product names, and database cross-references. Sequences are reviewed and features are added using a combination of computation, manual curation, and collaboration to produce a stable, non-redundant set of reference sequences for genome annotation, gene identification and characterization, mutation and polymorphism analysis, expression studies, and comparative analyses. The database currently represents sequences from more than 55.000 organisms ranging from a single record to complete genomes.

• PDB (Protein Data Bank) [START_REF] Bernstein | The protein data bank: A computer-based archival file for macromolecular structures[END_REF], Berman et al., 2000] is a database for the three-dimensional structures of large biological molecules.

Since I extensively used it in my thesis to retrieve all the structures of interest, it is described in greater detail in the following section.

The Protein Data Bank (PDB)

The Protein Data Bank (PDB) [START_REF] Bernstein | The protein data bank: A computer-based archival file for macromolecular structures[END_REF], Berman et al., 2000] was established in 1971 at Brookhaven National Laboratory as the unique international repository for three-dimensional structure data of biological macromolecules. Since July 1999, the PDB has been managed by three member institutions of the RSCB: Rutgers, The State University of New Jersey; the San Diego Supercomputer Center at the University of California, San Diego; and the Center for Advanced Research in Biotechnology of the National Institute of Standards and Technology. In 2003, three organizations formed a collaboration to oversee the newly formed worldwide Protein Data Bank (wwPDB) [START_REF] Berman | Announcing the worldwide protein data bank[END_REF], to provide equal access to the database from different regions of the world, recognizing the growing international and interdisciplinary nature of structural biology. Namely, the Research Collaboratory for Structural Bioinformatics (RCSB), the Macromolecular Structure Database (MSD) at the European Bioinformatics Institute (EBI) and the Protein Data Bank Japan (PDBj) at the Institute for Protein Research in Osaka University have the goal of maintaining a single archive of macromolecular structural data that is freely and publicly available to the global community.

The PDB is a primary database for the 3D structures of proteins, nucleic acids, and complex assemblies. The data, obtained by X-ray crystallography, NMR spectroscopy or, increasingly, cryo-electron microscopy, are submitted by biologists and biochemists from around the world. To ensure the consistency of PDB data, all entries are validated and annotated following a common set of criteria. For each biological molecule deposited in the PDB, the primary information consists of a coordinate file listing the 3D location in space of all atoms in the structure. The coordinate file is available in several formats (PDB, mmCIF, XML). A typical PDB formatted file also includes a large "header" section of text that summarizes the molecule (source organism, names of all components, qualitative description etc.), citation information, details of the structure determination, possible missing portions of the molecule (present in the experiment but impossible to locate) and informations about the putative functional biological assembly followed by the sequence and the list of the atoms with their coordinates. NMR structures often include several different models (lists of atomic coordinates) of the molecule.

A distinction must be made between asymmetric and biological unit the asymmetric unit and the biological assembly, or biological unit, that in some structures solved by X-Ray crystallography may not coincide. As explained in Section 1.4, a crystal is 3D array of several repeating units. Each of these repeating units is a complete unit cell. The asymmetric unit is the smallest portion of a crystal structure from which it is possible to generate a complete unit cell (the crystal repeating unit) by applying symmetry operations (like rotations, translations etc.). Application of crystallographic symmetry operations to an asymmetric unit yields one unit cell that when translated in three dimensions makes up the entire crystal (Fig. 1.16).

Thus, the asymmetric unit contains the unique part of a crystal structure and depends on the crystallized molecule's position(s) and its conformations within the unit cell. It can correspond to: The primary coordinate file of a crystal structure typically contains just one crystal asymmetric unit and thus may or may not correspond to the biological assembly. The biological assembly is the macromolecular assembly that has either been shown or is believed to be the functional form of the molecule. For example, the functional form of hemoglobin has four chains. Depending on the particular crystal structure, symmetry operations consisting of rotations, translations or their combinations may need to be performed in order to obtain the complete biological assembly. Alternately, a subset of the deposited coordinates may need to be selected to represent the biological assembly. Thus, a biological assembly may be built from one copy, multiple copies or a portion of the asymmetric unit. In the example in Fig. 1.17, to obtain a complete biological assembly of the hemoglobin molecule the full asymmetric unit has to be selected in Fig 1 .17a, a two-fold axis transformation has to be applied to the asymmetric unit in Fig 1 .17b and half of the asymmetric unit has to be selected in Fig 1 .17c. There are two ways to assign the functional biological assembly of a molecule: making a prediction with specific softwares (as PISA or PQR) of all probable assemblies based on the buried surface area and interaction energies and considering the biological relevance of a certain multimeric state in solution. The predicted assemblies may or may not coincide with what the author considers to be the biologically relevant assembly for the molecule or multiple assemblies can be predicted or considered biologically relevant. As a consequence, one or several putative biological units can be assigned to the asymmetric unit of a PDB entry. Moreover, different biological assemblies can be assigned in different PDB entries due to what the authors think is the functional one(s) or to different molecular interactions resulting from different crystal packing.

• one biological assembly (Fig 1.
There are currently more than 140 thousand entries in the PDB (Fig. 1.18a) and the number is increasing at a rapid pace owing to large-scale structural proteomics projects being carried out. Most of the database entries are structures of proteins alone or in complex, while only around 8% of it comprises structures of proteinnucleic acid complexes or nucleic acids alone (Fig. 1.18c). The vast majority of the structures are determined by x-ray crystallography and a smaller number by NMR and cryo-EM (Fig. 1.18c), although in the last few years the latter improved up to the atomic resolution providing a revolution in the structure determination field, as already introduced in Section 1.4.

Although the total number of entries in PDB is large, most of them are redundant, namely, they are structures of the same protein determined under different conditions, at different resolutions, or associated with different ligands or with single residue mutations. In addition to these entries containing identical or nearly identical chains, many other entries in the PDB comprise similar proteins, in terms of their sequence, structure or both. Thus, one can decide to remove the sequence or structural redundancy between entries, fixing a threshold considered appropriate to the situation.

The Nucleic Acid Database (NDB)

The Nucleic Acid Database (NDB) was founded in 1991 as a central source for nucleic acids structural informations and annotations [START_REF] Berman | The nucleic acid database. a comprehensive relational database of three-dimensional structures of nucleic acids[END_REF]. It contains primary 3D structural informations of nucleic acid and their complexes, that are contained also in the archival Protein Data Bank (PDB) [START_REF] Berman | The protein data bank[END_REF], as well as annotations specific to nucleic acid structure and function, derived geometric data, classifications of structures and motifs and standards for describing nucleic acid features. Moreover, it provides tools that enable users to search, download, analyse and learn more about nucleic acids. Downloadable softwares and links to software packages from other groups are also provided. NDB is thus a value-added database providing services specifically for the nucleic acid community [Coimbatore Narayanan et al., 2013].

Other interesting databases and Web Servers

In the previous sections (1.3.3 and 1.3.5), I talked about how proteins can adopt different conformations between the unbound/bound states or to regulate the binding with different partners. With the increasing amount of structural data, several entries in the PDB represent the solved structure of the same protein under different conditions, in different conformations and bound to different ligands.

Exploiting this structural redundancy in the PDB, the literature, all the other primary databases and the advances in computational biology to infer what is not yet experimentally verified, many databases of protein interactions and protein interfaces have been created in the last years. Rather than storing other types of primary data, they try to interlink and analyse different types of primary data to extract other biologically interesting informations. For example, the PDBsum database [START_REF] Laskowski | Pdbsum: Structural summaries of pdb entries[END_REF] provides structural information on the entries in the PDB. The analyses include protein secondary structure, protein-ligand and protein-DNA interactions, analyses of structural quality, sequence conservation, calculation of cavities, comparison of interactions contacts between PDB entries containing related protein chains and many others.

Some other databases handle structural interactions or interfaces between proteins and only a unique type of ligand, i.e. interactions between proteins and other proteins only or, in a more specific way, between proteins and long non coding RNAs. Some examples of protein-protein interfaces databases are PiSite [START_REF] Higurashi | Pisite: a database of protein interaction sites using multiple binding states in the pdb[END_REF] and PIFACE [START_REF] Cukuroglu | Non-redundant unique interface structures as templates for modeling protein interactions[END_REF], although they are not updated. The first one is a database that provides protein-protein interaction sites at the residue level with consideration of multiple complexes at the same time, by mapping the binding sites of all complexes containing the same protein in the PDB. For each residue, the number of resulting binding partners is given. The latter is a structurally non-redundant protein-protein interfaces database. Concerning the protein-nucleic acids side, we can mention the up to date NPIDB database [START_REF] Kirsanov | Npidb: nucleic acidâĂŤprotein interaction database[END_REF], reporting domain family and structural classifications, hydrophobic clusters on interfaces, potential hydrogen bonds, water bridges and visualization of structures of protein-nucleic acids complexes in the PDB.

There are databases that explore the intrinsic flexibility or the conformational diversity of protein structures, as the CoDNas [START_REF] Monzon | Codnas 2.0: a comprehensive database of protein conformational diversity in the native state[END_REF] and PDBFlex [START_REF] Hrabe | Pdbflex: exploring flexibility in protein structures[END_REF] databases. These analyse structural variations between different depositions and chains in asymmetric units of the same protein in PDB by computing the global or the local RMSD (see Section 1.3.4 for more details on the RMSD measure). Some others provide annotations or predictions of the intrisic structural disorder, as MobiDB [START_REF] Piovesan | Mobidb 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins[END_REF] and DisProt [START_REF] Piovesan | Disprot 7.0: a major update of the database of disordered proteins[END_REF].

Other than classical protein interactions databases, structural protein-protein interactomes web services start to appear. Interactome INSIDER [START_REF] Meyer | Interactome insider: a structural interactome browser for genomic studies[END_REF] links genomic variant information with structural protein-protein interactomes.

In order to study disease on a genomic scale, they have built an interactomewide set of protein interaction interfaces by calculating interfaces in experimental co-crystal structures and homology models when available. For the remaining ∼94% of interactions, they applied a learning algorithm to predict interface residues by applying recent advances in partner-specific interface prediction, such as coevolution-and docking-based feature construction. They predicted protein interaction interfaces in the full human interactome and for 7 highly studied model organisms. Interactome3D [START_REF] Mosca | Interactome3d: adding structural details to protein networks[END_REF] is a web service for the structural annotation of protein-protein interaction networks. Once a list of interactions is submitted, the server finds all the available structural data for both the single interactors and the interactions themselves. However, both these databases take into account only protein-protein interactions, disregarding nucleic acids or peptides.

All these types of databases are very helpful in gaining some important biological informations. However, to my knowledge, a database providing a connection between interaction partners, interfaces and flexibility informations of each PDB chain is still missing. I will describe in the last chapter my advances in creating a database at least partially able to fill this gap.

Protein evolution

Molecular evolution is the process of sequence composition of cellular molecules such as DNA, RNA, and proteins changing over time. Although evolution acts also on nucleic acids, in this section I focus only on proteins, since I applied the following concepts and methods only on this class of macromolecules.

Evolutionary basis

During time, molecular sequences undergo random mutations, some of which are advantageous or neutral while others are deleterious and disease-associated.

sequence conservation Amino acids that perform key functional and structural roles tend to be preserved by natural selection and thus conserved during evolution. Other residues that may be less crucial for structure and function tend instead to mutate more frequently. Patterns of conservation and variation (in the form of substitutions, insertions, and deletions) can be identified by aligning and comparing sequences, that diverged over time. Sequence alignments can be used as basis to identify key amino acids that perform key functional and structural roles and thus show a high degree of conservation in the alignment.

There are many ways to measure sequence conservation. A first way is aligning sequences and just look at single columns in alignments to quantify the amount of variation. Looking at one position, this way does not take into account any evolutionary relationship between sequences or for the whole sequence context. Another way is to quantify the global similarities between sequences, this time taking into account for the whole sequence context, to infer evolutionary relationships between them, represented by a tree. The topology of the tree is then used to determine whether a particular position is conserved or not. This last way is the one we will use in the following chapters to compute the evolutionary conservation of sequences. Thus, global similarities between sequences is usually used if one is interested in tracing the evolution of the protein family, while local similarities are used if one is interested in identifying functional/structural regions/motifs.

Sequence homology, identity and similarity

An important concept in sequence analysis is sequence homology sequence homology. When two sequences are descended from a common evolutionary origin, they are said to have a homologous relationship or share homology. Homology between sequences can be inferred relying on their sequence identity and similarity.

sequence identity and similarity

Sequence identity refers to the percentage of matches of the same amino acid residues between aligned sequences. Sequence similarity is the percentage of aligned residues that are similar in physico-chemical properties such as size, charge, and hydrophobicity and can be more readily substituted for each other. In fact, we can assume that two amino acids between two sequences can be either identical or different to make a comparison, but this assumption is clearly a simplification. Pairs of amino acids can have more or less similar physico-chemical properties. In two homologous proteins, a positively charged amino acid is more likely to be replaced by another positively charged amino acid than by a large hydrophobic residue, and this circumstance should be taken into account when one evaluates the probability that a sequence alignment corresponds to a true evolutionary relationship. To be clear, sequence homology is an inference or a conclusion about a common ancestral relationship drawn from sequence similarity/identity comparison when the two sequences share a high enough degree of similarity/identity. On the other hand, similarity/identity is a direct result of observation from the sequence alignment. Sequence similarity/identity can be quantified using percentages; homology is a qualitative statement. Generally, if the sequence similarity/identity level is high enough, a common evolutionary relationship can be inferred. Thresholds of percentage of similarity/identity used to classify homologous sequences can widely vary, depending on the system studied, the type of analysis and the sequence length. The shorter the sequence, the higher the chance that some alignment is attributable to random chance. The longer the sequence, the less likely the matching at the same level of similarity is attributable to random chance. This suggests that shorter sequences require higher cutoffs for inferring homologous relationships than longer sequences. However, commonly used thresholds are 90%-95% to define identical protein sequences, between 25% and 90%-95% for homologous sequences, and <25% for evolutionary distantly related sequences. Below this threshold, it is unlikely that two sequences can have a homologous relationship. However, this is not a precise rule and cases of remote homologous proteins sharing a sequence identity below 25% often convey the most intriguing biological messages. A statistically more rigorous approach to determine homologous relationships is introduced in the following.

Sequence alignment

Sequence alignments can be divided into global and local alignment

global and local alignments. A global alignment tries to align the complete sequences, end to end, and it produces more accurate results for similar sequences of roughly same lengths. A local alignment tries to match portions of sequences, searching for the most similar sequences patterns (motifs), and it is better at identifying similar regions within dissimilar sequences not related over their entire length or sequences of different lengths.

pairwise and multiple sequence alignment

Pairwise sequence alignment methods are used to find the best alignment between two sequences and are usually employed for searching a database for sequences with high similarity to a query, mapping regions of a query sequence to a similar one and finding mutations. By contrast, multiple sequence alignment (MSA) is the alignment of all the sequences (more than two) in a given query set at once. MSA is often used for finding conserved regions across a group of sequences (Fig. 1.19).

Some examples of widely used pairwise sequence alignment tools are EMBOSS [START_REF] Rice | Emboss: the european molecular biology open software suite[END_REF] and LALIGN [START_REF] Huang | A time-efficient, linearspace local similarity algorithm[END_REF], while for multiple sequence alignments we can mention T-Coffee [START_REF] Notredame | T-coffee: a novel method for fast and accurate multiple sequence alignment1[END_REF], MAFFT [START_REF] Katoh | Mafft multiple sequence alignment software version 7: improvements in performance and usability[END_REF], MUSCLE [Edgar, 2004] and ClustalW [Larkin et al., 2007, Thompson In the following section, a brief more detailed description on how ClustalW works is given, since we used this tool, already integrate in the prediction algorithms described in the next two chapters, to perfom the analysis. Actually, T-Coffee, MUSCLE and MAFFT are more accurate and faster than ClustalW, and in the current version of the algorithm to predict protein-protein interfaces described in the next chapter ClustalW was replaced by MUSCLE.

ClustalW

ClustalW [START_REF] Larkin | Clustal w and clustal x version 2.0[END_REF], Thompson et al., 1994] is a progressive global-multiple alignment program. ClustalW is a more recent version of Clustal with the W standing for "weighting" represent the ability of the program to provide weights to the sequence and program parameters. These changes provide more realistic alignments that should reflect the evolutionary changes in the aligned sequences and the more appropriate distribution of gaps between conserved domains.

Given a list of sequences, ClustalW performs pairwise alignments of all possible pairs. Then, it uses the alignment scores to produce a phylogenetic tree by the neighbor-joining method, described in more detail below, that is used as a template tree to guide the multiple alignment. Following the phylogenetic relationships indicated by the guide tree, the program aligns first the sequences with the best alignment score and continues with the progressive alignment of more distant groups of sequences to produce a MSA showing in each column the sequence variations among the sequences.

I already introduced that ClustalW applies a weighting scheme to increase the reliability of aligning divergent sequences (sequences with less than 25% identity). This is done by down-weighting redundant and closely related groups of sequences in the alignment and up-weighting the most divergent ones by a certain factor. This scheme is useful in preventing similar sequences from dominating the alignment. The weight factor for each sequence is determined by its branch length, which represent the distance of each sequence from the root, on the guide tree.

A substitution (or scoring) matrix

Substitution or scoring matrix

is used to assign a score to each pairwise alignment. A substitution matrix is a collection of scores that represent the relative ease with which one amino acid may mutate into or substitute for another, and they are used to measure similarity in sequence alignments [Altschul, 2001]. BLOcks SUbstitution Matrix (BLOSUM) BLOSUM matrix series of matrices [START_REF] Henikoff | Amino acid substitution matrices from protein blocks[END_REF] are usually used for protein sequence comparison. Scores for amino acid substitutions over different evolutionary distances have been derived by aligning block of sequences sharing different percentage of sequence identity. For example, BLOSUM62 scoring matrix was derived from multiple sequence alignments of proteins with a 62% of sequence identity, while proteins sharing the 50% of sequence identity were aligned to retrieve the BLOSUM50 matrix. Using these sets of multiple sequence alignments between proteins with a similar sequence identity, the scores were obtained by calculating the substitution frequencies for all pairs of amino acids.

In ClustalW amino acid substitution matrices are varied at different alignment stages according to the divergence of the sequences to be aligned. For closely related sequences that are aligned in the initial steps, it automatically uses the BLOSUM62 matrix. When more divergent sequences are aligned in later steps of the progressive alignment, the BLOSUM45 matrix may be used instead.

The scoring of gaps in a MSA has to be performed in a different manner from scoring gaps in a pairwise alignment. As more sequences are added to a profile of an existing MSA, gaps accumulate and influence the alignment of further sequences. ClustalW calculates gaps in a novel way designed to place them between conserved domains. It uses adjustable gap penalties that allow more insertions and deletions in regions that are outside the conserved domains, but fewer in conserved regions. Moreover, a gap near a series of hydrophobic residues carries more penalties than the one next to a series of hydrophilic or glycine residues, which are common in loop regions. In addition, gaps that are too close to one another can be penalized more than gaps occurring in isolated loci.

Phylogenetic reconstruction and the neighbor-joining algorithm

Molecular phylogenetics is the study of evolutionary relationships between entities, like protein sequences. Analysing the sequence similarity and mutations at various positions, evolutionary relationships between these sequences can often be inferred. Evolutionary relationships and pathways inferred by phylogenetic analyses are commonly represented in the form of phylogenetic trees.

A phylogenetic tree is a branching diagram, with branches joined by nodes and leading to terminals at the tips of the tree, called leaves. At leaves are sequences used to construct the tree, known as taxa (the singular form is taxon) or operational taxonomic units (OTUs). Each node represents an inferred ancestor of extant taxa. Trees can be rooted or unrooted. A rooted phylogenetic tree is a directed tree with a unique node, the root at the very bottom of the tree and with no parent node, corresponding to the inferred common ancestor of all the entities at the leaves of the tree. The branching pattern in a tree is called tree topology.

The process of building phylogenetic trees (phylogenetic reconstruction) involves the following steps:

• Choosing a set of homologous sequences as taxa. One must ensure that there is a sufficiently strong "phylogenetic signal" in this set. If the sequences are extremely divergent (weak signal), existing phylogenetic methods will still produce some tree, but it probably will not be very informative;

• Performing multiple sequence alignment;

• Determining a tree building method;

• Assessing tree reliability;

The methods to reconstruct a phylogenetic tree can be classified into three groups:

• Parsimony methods;

• Distance methods;

• Probabilistic methods arising from the maximum likelihood approach.

For the purpose of this thesis, I describe in detail only the the neighbor-joining algorithm, belonging to distance methods. Distance-matrix methods rely on a measure of "genetic distance" between the sequences being classified, and therefore a MSA is required as input. Distance is often defined as the fraction of mismatched positions in the alignment or the number of sequence positions that must be changed to generate the other sequence. Gaps can either be ignored or counted as mismatches. Distance methods attempt to construct an all-to-all matrix from the sequence query set describing the distance between every sequence pair. From this, a phylogenetic tree is constructed, which places closely related sequences together under the same interior node and whose branch lengths closely reproduce the observed distances between sequences. Starting with a starlike tree (A), the pair of distinct leaves with the lowest value in the distance matrix, in this case f and g are joined to a new node, u, which is in turn connected to the central one, as shown in (B). The part of the tree shown as solid lines is now fixed and will not be changed in subsequent joining steps. This process is then repeated, using a matrix of just the distances between the nodes, a,b,c,d,e, and u. In this case u and e are joined to the newly created v, as shown in (C). Two more iterations lead first to (D), and then to (E), at which point the algorithm is done, as the tree is fully resolved. (Source: Tomfy [CC BY-SA 3.0], via Wikimedia Commons).

The Neighbor-Joining algorithm (NJ)

The Neighbor-Joining (NJ) algorithm [START_REF] Saitou | The neighbor-joining method: a new method for reconstructing phylogenetic trees[END_REF] uses genetic distance as a clustering metric. Taking as input a distance matrix, specifying the distance between each pair of taxa (sequences in our case), it constructs unrooted trees. The algorithm begins with a completely unresolved tree, whose topology corresponds to that of a starlike tree with a central node and all the sequences as leaves. The pair of distinct leaves (still sequences at this step) with the lowest value in the distance matrix ("neighbors") are joined to a new node, which is in turn connected to the central one, and will form a cluster. Then, it computes the distance from each of the sequence in the pair to this newly created node, to determine the branch length between each sequence and the node. The distance between these two sequences equals the sum of the branch lengths connecting them to the node. It, now, calculates the distance from the newly created node to each of the remaining sequences out of this pair. All the pairwise distances between the sequences in the newly formed cluster and all the remaining sequences are replaced in the distance matrix by the distances between the new node and all the remaining sequences. Thus, the newly created cluster reduces the matrix by one taxon. To join the next most closely related leaves, the process is repeated starting with the resulting star tree with the new node as the new leave. The cycle is repeated until all internal nodes are resolved. This process is called star decomposition.

Sequence Similarity Searching

Sequence Similarity Searching is a method for identifying homologs in sequence databases by using alignment to a query sequence. By statistically assessing how well database and query sequences match, one can infer homology and transfer information to the query sequence.

The most widely used similarity searching programs are BLAST [START_REF] Altschul | Basic local alignment search tool[END_REF], PSI-BLAST [START_REF] Altschul | Gapped blast and psi-blast: a new generation of protein database search programs[END_REF], Schäffer et al., 2001], FASTA [START_REF] Pearson | Searching protein sequence libraries: comparison of the sensitivity and selectivity of the smith-waterman and fasta algorithms[END_REF] and HMMER [START_REF] Finn | Hmmer web server: interactive sequence similarity searching[END_REF]. We will give a brief description of the first two methods that are used in the next two chapters to run our prediction tools.

BLAST (Basic Local Alignment Search Tool)

BLAST (Basic Local Alignment Search Tool) [START_REF] Altschul | Basic local alignment search tool[END_REF], developed by Stephen Altschul of NCBI in 1990, is one of the most widely used algorithms for database searching. It is a heuristic word method that enables to compare a query sequence with every other sequence in a library or database, and identify those that have a similarity score above a certain threshold with respect to the query sequence.

It performs pairwise local sequence alignments to find short strings of amino acids (or nucleotides) letters, also called words (typically of length three for proteins), identical or similar in two sequences. A length for the word to search is fixed and a window of the fixed length run along the sequence to search. Once a word matched with a score above the fixed threshold is found between two sequences (high-scoring segment pair or HSP), a longer alignment can be obtained by extending similarity regions from the words. All adjacent HSP regions can thus be joined into a full pairwise alignment. A similarity (scoring) matrix is employed to assign similarity scores to aligned segments. A scoring matrix contains similarity scores for all possible pairs of residues. Identities and conservative replacements have positive scores, while unlikely replacements have negative scores. There are several similarity matrices to detect sequences with differing levels of divergence, thus allowing BLAST to restrict searches to more closely related matches or expand to detect more divergent sequences. One commonly used scoring matrix for BLAST searches is BLOSUM62 [START_REF] Henikoff | Amino acid substitution matrices from protein blocks[END_REF], used to score alignments between evolutionarily divergent protein sequences. The similarity score for two aligned segments of the same length is the sum of the similarity values for each pair of aligned residues. Some parameters can be changed from the default ones, like the gap penalty, that account for the introduction of a gap (insertion or deletion mutation) in the extension step, coverage of the query sequence, word size, substitution matrix etc.

BLAST output provides a list of pairwise sequence matches (hits) ranked by their E-value (Expectation-value), which represents the significance measure in a database search. Given a pairwise alignment, the E-value is a parameter that describes the number of sequences showing a similar score one can "expect" to see by random chance when searching a database of a particular size. The lower the E-value, the less likely the database match is a result of random chance and therefore the more significant the match is. A commonly used threshold when searching for protein sequences in the BLAST database is 10 -3 .

PSI-BLAST (Position-Specific Iterated BLAST)

PSI-BLAST [START_REF] Altschul | Gapped blast and psi-blast: a new generation of protein database search programs[END_REF], Schäffer et al., 2001] is based on the BLAST method described above. There are three main characteristics that are unique to a PSIBLAST search: the use of position-specific scoring matrices (PSSMs) instead of pre-defined scoring matrices, iterative searching and composition-based statitics. Moreover, one can specify any number of protein databases to be searched by PSI-BLAST.

It first uses a single query protein sequence to perform a normal BLAST search to generate initial similarity hits. The high-scoring hits are used to build a multiple sequence alignment. Given a multiple-sequence alignment, the frequency of every residue determined at every position is computed and combined and compared with the frequency at which any residue can be expected in a random sequence. In this way, the probability that each given amino acid is found in one of the aligned positions can be computed. These values are combined also with the prior knowledge of amino acid substitutability derived from a standard scoring matrix, such as BLOSUM62. A position-specific scoring matrix (PSSM) is defined as a table that contains probability information of residues at each position of a multiple sequence alignment. The matrix resembles the scoring matrices discussed above for BLAST, but is more complex in that it contains positional information of the alignment. The obtained PSSM is then used as input query to search the database anew. New sequence hits identified in this second round are combined with the previous multiple alignment to generate a new PSSM to refine the alignment, which is in turn used in subsequent cycles of database searching. The process may be iterated many times, as new significant similarities are found until no new sequences are found or the user specified maximum number of iterations is reached. Typically, three to five iterations of PSI-BLAST are sufficient to find most distant homologs at the sequence level. PSI-BLAST computes the statistical significance (E-value) of a match by taking into account the composition of the query and database sequences.

The iterative PSSM-based method implemented in PSI-BLAST is able to find distantly related sequences that are missed in a BLAST search. 

Introduction

In this chapter, I present JET 2 DNA , a new tool combining sequence conservation, interface residue propensities and geometry of the protein surface to predict DNAbinding patches. Predictions based on patches are justified by the fact that residues being conserved or displaying specific physico-chemical properties at protein-DNA interfaces tend to cluster together [START_REF] Ahmad | Protein-dna interactions: structural, thermodynamic and clustering patterns of conserved residues in dna-binding proteins[END_REF], Dey et al., 2012, Jones et al., 2003]. JET 2 DNA is adapted from JET 2 [Laine and Carbone, 2015], predicting protein-protein interfaces. Although using the same residue descriptors as JET 2 , I implemented three new scoring strategies to predict DNA-binding residues. These new scoring schemes allow to better detect protein-DNA binding sites characteristics. They were designed to identify different types of DNA binding sites, namely general ones (characterised by significant conservation and physico-chemical properties), very concave and lowly conserved ones. Compared to JET 2 , I also implemented new strategies in JET 2 DNA to (i) avoid small ligand binding pockets, (ii) better filter out putative false positive clusters of residues predicted by the tool, (iii) set the thresholds used to decide when a residue should be clustered and (iiii) when the clustering procedure should be stopped before the standard procedure. Beyond DNA-binding site prediction and property characterization overall, these different scoring strategies enable to delineate distinct subregions of a single binding site, thus deconstructing it in term of its local properties and at times being complementary in their predictions. I will also show how JET 2 DNA enables discovering alternative functional DNA-binding sites on the same protein surface, sometimes thanks to prediction of multiple patches of residues located in distinct surface regions. These patches are recognised by different scoring schemes that enable to capture different surface properties relevant for DNA binding.

To develop JET 2 DNA , I needed to create a robust dataset of protein-DNA complexes, whose structure is known in the Protein Data Bank [START_REF] Berman | The protein data bank[END_REF] and to analyse the characteristics of DNA-binding sites found in these structures. I show how the properties encoded in the residue descriptors that we used are organised differently with respect to protein-protein interfaces, due to the very specific shape and physico-chemical properties of the DNA. Protein-DNA interfaces also display a different organisation of residues in terms of their surface accessibility with respect to protein-protein interfaces. Namely, I noted how the concentric order of very buried-intermediate-exposed residues proposed by the Levy's model [Levy, 2010] for protein-protein interfaces seems to be converted to an intermediate-very buriedexposed residue distribution (starting from the most central part of an interface patch to the most peripheral) for some protein-DNA interfaces. This also seems to be related to the specific DNA shape, with the most central part of the interface that has to stack into the DNA groove (and thus cannot be very buried in the protein structure) and more decentralised very buried residues that geometrically accomodate the DNA backbones.

State-of-the-art of DNA-binding sites predictor

Over the last years, many computational methods have been developed to predict DNA-binding residues on proteins. Most of them generally employ machine-learning algorithms [START_REF] Ahmad | Pssm-based prediction of dna binding sites in proteins[END_REF], Ahmad et al., 2004, Tjong and Zhou, 2007, Wang and Brown, 2006, Wang et al., 2010, Li et al., 2013a, Hwang et al., 2007, Wang et al., 2009, Wu et al., 2008, Nimrod et al., 2010, Segura et al., 2012, Miao and Westhof, 2015, Zhou et al., 2016, Yan and Kurgan, 2017], such as a neural network, support vector machine, random forest, Naive Bayes classifiers and two-layered architecture, with few exceptions [START_REF] Tsuchiya | Preds: a server for predicting dsdna-binding site on protein molecular surfaces[END_REF], Chen et al., 2012, Gao and Skolnick, 2008, Ozbek et al., 2010] that are knowledge based algorithms or are based on fluctuations of residues in high frequency modes. The machine-learning based approaches usually combine many features, up to hundreds sometimes, making the understanding of the results difficult.

Information from protein sequence and/or structure analysis may be used. Sequence-based methods [START_REF] Wang | Bindn: a web-based tool for efficient prediction of dna and rna binding sites in amino acid sequences[END_REF], Wang et al., 2010, Wang et al., 2009, Wu et al., 2008, Hwang et al., 2007, Ahmad et al., 2004, Ahmad and Sarai, 2005] usually employ sequence conservation, amino acid composition, physico-chemical properties, side chain pKa value, hydrophobicity index and molecular mass of residues, predicted secondary structure and predicted solvent accessibility. Among these properties, amino acid composition is one of the most powerful feature for predicting protein-DNA interfaces [START_REF] Jones | Using electrostatic potentials to predict dna-binding sites on dna-binding proteins[END_REF]. Indeed, positively charged and polar amino acids are largely over-represented in DNA-binding sites, in order to counterbalance the excess of negative charge coming from the DNA phosphate groups [START_REF] Wodak | Structural basis of macromolecular recognition[END_REF]. Structure-based methods [START_REF] Tsuchiya | Preds: a server for predicting dsdna-binding site on protein molecular surfaces[END_REF], Li et al., 2013a, Gao and Skolnick, 2008, Nimrod et al., 2010, Ozbek et al., 2010, Chen et al., 2012] use properties such as electrostatic potential, protein surface shape and curvature, structural alignment, dipole moment, observed secondary structure, amino acid microenvironment, relative solvent accessible surface area, hydrogen-bonding potential and structural motifs. Employing structural features in addition to sequence ones as well as replacing predicted solvent accessibility and secondary structure with the observed ones generally improves DNA-binding sites predictions [START_REF] Ahmad | Analysis and prediction of dna-binding proteins and their binding residues based on composition, sequence and structural information[END_REF], Chen et al., 2012, Zhou et al., 2016].

Datasets

I generated a robust dataset of 187 high resolution complexes, non redundant at 25% of sequence identity and among which it was possible to retrieve 82 crystallographic structures of the proteins in the unbound conformations. I decided to create this new benchmark since the available ones were not very recent, and thus comprised structures of lower resolution. Furthermore, most of these less recent datasets did not collect the corresponding available unbound conformations.

I analysed the 187 complexes to extract the general features characterising DNA-binding sites on proteins. The results guided me in developing the JET 2 DNA scoring strategies and the procedures to avoid the small ligand binding pockets and to improve the clustering phase of the algorithm. Although these analysis conceptually inspired the detection strategies implemented in JET 2 DNA , it should be stressed that the method was not trained on the 187 complexes and no JET 2 DNA parameter was set based on the analysis. Hence, this dataset could be fairly used for assessing JET 2 DNA predictive power.

I then assessed the JET 2 DNA performance on the 187 protein-DNA complexes and the 82 unbound forms. Then, I divided the 82 protein-DNA complexes, for which we have the corresponding unbound protein, in two sets. The first one comprised 74 complexes showing the same stoichiometry in the bound and unbound structures, the other one comprised the remaining 8 complexes that in the unbound form are in a oligomeric state with a lower number of chains with respect to their oligomeric state when complexes with the DNA (for example, a monomer in the unbound form that is found as dimer when binding the DNA).

Generation of datasets 2.3.1.1 High resolution protein-DNA complexes benchmark (HR-PDNA187)

The complete list of 1257 protein-double stranded DNA (dsDNA) complexes determined by X-ray crystallography with a resolution better than 2.5Å was downloaded from the Nucleic Acid Database (NDB) [START_REF] Berman | The nucleic acid database. a comprehensive relational database of three-dimensional structures of nucleic acids[END_REF] (February 2016 release http://ndbserver.rutgers.edu/). This list was filtered using PISCES sequence culling server [START_REF] Wang | Pisces: a protein sequence culling server[END_REF] to define a set of 222 protein-DNA complexes non-redundant at 25% sequence identity, with an R-factor lower than 0.3 and with at least one of the protein chains longer than 40 amino acids. The complexes' 3D structures were downloaded from the PDB [START_REF] Berman | The protein data bank[END_REF] (http://www.rcsb.org/). Subsequently, the 222 complexes were manually curated to ensure the good quality of the dataset. We removed entries where: (1) the asymmetric unit did not contain at least one biological unit or (2) the DNA molecule was single-stranded or contained less than 5 base pairs or (3) only Cα atoms were present. For each remaining complex, only chains having more than one contact with the DNA were retained. Furthermore, if a biological unit comprised multiple protein subunits (monomers or multimers), all interacting with DNA but non interacting between each others, showing a percentage of sequence identity above 95% and interacting with the DNA through the same protein surface region, only a single non redundant copy of the DNA-binding monomer/multimer was kept. We defined non interacting subunits as those having less than three residues showing changes in relative accessible surface area upon binding.

Another structure was excluded (4hc9) because it displays different DNA-binding sites in the asymmetric unit and in the biological unit. Finally, the complex 4aik was substituted with the 100% homolog 4aij, where the DNA-binding site was twice as big. Finally, we removed the only antibody present in the dataset (3vw3), since it is well known that this class of proteins should be treated separately, having very peculiar characteristics and recognizing its partners in a completely different way with respect to the other classes. In total, we retained 187 complexes.

Holo-Apo pairs dataset (HOLO-APO82)

We collected all available X-ray structures of the APO forms of the proteins from HR-PDNA187. We used the blastp program from the BLAST+ package [START_REF] Camacho | Blast+: architecture and applications[END_REF] from NCBI (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/) with a threshold of 95% for sequence identity, of 10 -3 for the E-value, a percentage of coverage ≥ 70% and a percentage of gaps ≤ 10% with respect to the query protein chain. Among the structures matching these criteria, only the ones having the same UniProt code [START_REF] Consortium | Uniprot: the universal protein knowledgebase[END_REF] or belonging to the same organism as the query sequence were retained. If several structures passed all filters, only the best one in percentage of sequence identity, or in resolution in case of same sequence identity, was chosen. We found two unbound forms in a different oligomeric state, a dimer and a monomer, for the complex 2isz. We retained both APO forms as they are reported in literature as both present in equilibrium [START_REF] Chou | Functional studies of the mycobacterium tuberculosis iron-dependent regulator[END_REF]. The resulting list comprises a total of 82 HOLO(bound)-APO(unbound) pairs. Within each pair, the APO form may be in the same oligomeric state as the HOLO form or may have fewer chains, due to the oligomerization process associated to DNA binding.

The list of the 187 complexes and of the 82 HOLO-APO pairs, together with the considered chains, is provided in Table A.1.

Classification of the complexes

HR-PDNA187 covers all major groups of DNA-protein interactions according to Luscombe et al. classification [Luscombe et al., 2000]: helix-turn-helix (HTH), zinc-coordinating, zipper type, other α-helical, β-sheet, β-hairpin/ribbon, other. Moreover, it spans a wide range of different functional classes: it comprises 100 enzymes, 78 regulatory proteins, 7 structural proteins, 1 protein with other function and 1 unclassified protein. This information along with the oligomeric state of bound and unbound forms are reported in detail in Table A.1.

Comparison with other benchmarks

We compared our benchmark with the most popular ones: PDNA62 [START_REF] Selvaraj | Specificity of protein-dna recognition revealed by structure-based potentials: symmetric/asymmetric and cognate/non-cognate binding[END_REF], Ahmad et al., 2004], DBP374 [START_REF] Wu | Prediction of dna-binding residues in proteins from amino acid sequences using a random forest model with a hybrid feature[END_REF], MetaDBsite316 [START_REF] Si | Metadbsite: a meta approach to improve protein dna-binding sites prediction[END_REF], Displar264 [START_REF] Tjong | Displar: an accurate method for predicting dna-binding sites on protein surfaces[END_REF], PDDB1.2 [ Van Dijk and Bonvin, 2008], DBP206 [START_REF] Xiong | An accurate featurebased method for identifying dna-binding residues on protein surfaces[END_REF], PDNA224 [Li et al., 2013a] and DNABINDPROT54 [START_REF] Ozbek | Dnabindprot: fluctuation-based predictor of dna-binding residues within a network of interacting residues[END_REF]. Contrary to our datasets, most of them comprise only non-redundant single chains from the complexes, even if the functional biological unit of the protein in complex with DNA is annotated as a multimer. In addition, they are all based on more relaxed criteria and very few of them provide the APO forms of the proteins. When applying to them the same PISCES criteria as those used to construct HR-PDNA187, the number of resulting complexes was systematically smaller than 187 (Table 2.1). 

Calculation of residue accessibility and surface residues

For each residue, the relative solvent accessibility is defined as the ratio of its solvent accessible surface area (SASA) to the nominal maximum area of its residue type in a tri-peptide state Ala-X-Ala. Accessibility of residues in presence and in absence of DNA was calculated using NACCESS 2.1.1 [START_REF] Hubbard | Naccess version 2.1. 1[END_REF] with a probe size of 1.4 Å. See Section 1.3.1 for a more detailed description of the surface accessibility calculation. Surface residues are defined as those having at least 5% of relative accessible surface area [START_REF] Miller | Interior and surface of monomeric proteins[END_REF] (Table 2.2).

Definition of interface residues based on Levy's model

For each bound form, we calculated the relative accessible surface area of residues in presence (rasa DN A ) and absence (rasa f ree ) of DNA. Interface residues were defined as those showing any change in their relative accessible surface area upon binding (∆rasa > 0). We describe experimental protein interfaces by using Levy's model [Levy, 2010], which classifies interface residues depending on their surface accessibility in three structural components: support, core and rim experimental layers the support, the core and the rim (in yellow, brown and green on Fig. 2.8a). Given the structure of a protein-DNA complex, support residues are buried in presence (rasa withDN A < 0.25) and in absence of DNA (rasa withoutRN A < 0.25); core residues are exposed in absence of DNA (rasa withoutDN A ≥ 0.25) and become buried upon binding (rasa withDN A < 0.25); rim residues are exposed in presence (rasa withDN A ≥ 0.25) and in absence (rasa withoutDN A ≥ 0.25) of DNA (Table 2.2 and Fig. 2.1). 

Expected size of the interface

We determined the expected size of a protein-DNA interface based on our benchmark HR-PDNA187. For each complex, we plotted the percentage of interface residues versus the total number of surface residues (Fig. approximates our data is f DN A intf rac (x) = (2.66/ √ x) + 0.03 (Fig. 2.2), solid line), where x is the number of protein surface residues and f DN A intf rac (x) represents the expected size of a protein-DNA interface. Compared to protein-protein interfaces [START_REF] Laine | Local geometry and evolutionary conservation of protein surfaces reveal the multiple recognition patches in protein-protein interactions[END_REF], DNA-binding sites cover a larger portion of the protein surface (Fig. 2.2), compare dotted and solid lines). f DN A intf rac (x) is used in JET 2 DNA clustering procedure to define two thresholds, the residue threshold and the cluster threshold. The former is used to select highly scored residues for constructing the clusters and the second one is used to decide when to terminate the cluster seed construction and extension steps, as described below.

The JET 2

DNA algorithm I already introduced that JET 2 DNA is an adaptation and an improvement of the JET 2 algorithm [START_REF] Laine | Local geometry and evolutionary conservation of protein surfaces reveal the multiple recognition patches in protein-protein interactions[END_REF], which in turn was an improvement of the JET method [START_REF] Engelen | Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling[END_REF]. All the three versions do not require information on potential interaction partners, are designed to ensure a prediction even with weak signals and do not require a training set, since they are not based on a machine-learning algorithm.

Previous versions of the algorithm

The Joint Evolutionary Trees (JET) method [START_REF] Engelen | Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling[END_REF] was originally inspired by the Evolutionary Trace approach (ET) [START_REF] Lichtarge | An evolutionary trace method defines binding surfaces common to protein families[END_REF] The dotted line corresponds to the function that best approximates percentage of interface residues versus the total number of surface residues for protein-protein interfaces [START_REF] Engelen | Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling[END_REF] based on a dataset of 1256 protein chains [START_REF] Chen | Prediction of interface residues in protein-protein complexes by a consensus neural network method: test against nmr data[END_REF].

and Sowa, 2002], a method to extract the level of evolutionary conservation of residues. It revisited the ET approach, introducing a novel way to extract evolutionary information. Firstly, a Gibbs-like sampling of distance trees was introduced in JET method to reduce effects of erroneous multiple alignment and impacts of weakly homologous sequences on distance tree construction. Indeed, large-scale predictions of interaction sites based on evolutionary signals are highly sensitive to the degree of variability within the available sequences. The sampling method makes sequence analysis more sensitive to functional and structural importance of individual residues, by avoiding effects of the overrepresentation of highly homologous sequences, and improves computational efficiency [START_REF] Engelen | Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling[END_REF]. Secondly, JET redefines the trace notion based on tree topology. It was introduced in ET as a measure that quantifies the conservation of a residue position within a distance tree of sequences similar to a query sequence [START_REF] Engelen | Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling[END_REF].

JET was developed to predict residues on protein surfaces of known threedimensional structures involved in interactions with other proteins. It relies on two hypotheses: i) protein interaction sites on a protein surface are composed of an internal core, which is conserved, and an external region of concentric layers of residues around the core, which are progressively less conserved; ii) conservation is coupled with specific physico-chemical properties of patches. Thus, it combines the level of conservation of protein residues from evolutionary information with their 2.7. THE JET 2 DNA ALGORITHM 55 propensity to be located at the interface to detect putative protein-binding residues. Then, it clusters them together to create surface patches of residues distant by less than 5 Å and retains only significantly large ones.

In the JET 2 version, protein-protein interfaces are now divided in three structural regions, contrary to JET that divided them in two, the core and the external regions. The three regions in JET 2 differ in surface accessibility, as defined in the Levy's model [Levy, 2010]: 1) residues already buried in the absence of the protein ligand (support); 2) residues that become buried upon binding (core); 3) residues that are exposed in the absence and in the presence of the protein ligand, but that still participate in the interface (rim) (Fig. As a consequence, in JET 2 the implemented clustering procedure is composed by three steps (seed, extension and outer layer), that are designed to approximate the three layers of the Levy's model (Fig. 2.1, bottom). Moreover, in addition to evolutionary conservation and interface propensities of residues, a third and a fourth residue descriptors are introduced in JET 2 : the local and global circular variance, that represent the local and global residue burial degree, respectively [Ceres et al., 2012, Laine andCarbone, 2015]. Finally, three new scoring strategies were implemented compared to JET. Each of them employs a different combination of the four descriptors and it was designed to predict a specific type of protein-protein interfaces.

Residue descriptors

JET 2 DNA uses the four residue descriptors, which were shown to be relevant for protein-protein interactions [START_REF] Laine | Local geometry and evolutionary conservation of protein surfaces reveal the multiple recognition patches in protein-protein interactions[END_REF], to predict DNA-binding sites on protein surfaces. Let give a more detailed description of how these features are computed.

Evolutionary Trace

As already introduced, the method to extract the evolutionary conservation signal of residues carefully analyses the evolutionary distances between a query sequence and its homologous.

PSI-BLAST search

It takes as input a reference sequence S coming from a PDB structure of a protein. Then, it performs a PSI-BLAST search [START_REF] Altschul | Gapped blast and psi-blast: a new generation of protein database search programs[END_REF] to recover a set of protein sequences homologous to S, with at least 20 amino acids, having a sequence identity in the range of 98-20% and a coverage of 80% with respect to the reference sequence and a number of inserted gaps less than 10% of the size of the alignment. At this step, an E-value ≤ 10 -5 is set to select homologous sequences. See Section 1.6.5.2 and 1.6.2 for more details about a PSI-BLAST search and sequence homology.

If the PSI-BLAST search results in less than 100 retrieved sequences, then the coverage cut-off is automatically decreased by 10% of the length of S progressively until reaching 51% of the length of the reference sequence (this condition ensures that all selected sequences will overlap with each other). If the number of sequences 56CHAPTER 2. ANALYSIS AND PREDICTION OF PROTEIN-DNA INTERFACES is still insufficient, the coverage cutoff is reset to 80% of the length of the reference sequence S and the algorithm restarts the analysis with an E-value ≤ 10 -4 . We repeatedly increase the E-value and decrease the coverage thresholds, as described above, by filtering sequences progressively with E-values 10 -3 , 10 -2 , 10 -1 , 1, 10, 100, until a sufficient number of sequences is retrieved.

At the end of the retrieval step we obtain a set S of selected sequences.

Gibbs-like sampling of sequences chosen with PSI-BLAST Now, we want to address the issue of accurately quantifying the strength of residue conservation in a set of sequences whose similarity to the reference sequence has been automatically evaluated by PSI-BLAST. To this end, the algorithm perfoms a random sampling of small subsets of sequences in S a sufficient number of times to ensure statistical overlap of the sampled sets. Small sets of S T sequences in S are aligned approximately N T times, with each set S T containing the reference sequence. In order to use most of the information contained in S and to ensure overlapping sequences among constructed trees, we fix S T = N T = |S|, whenever |S| > 100, and S T = N T = 10 otherwise. To construct the S T sets, sequences in the total ensemble S are divided in four classes characterized by 20-39% (including 20 and 39), 40-59%, 60-79%, and 80-98% of sequence identity with respect to the reference sequence. S T /4 distinct sequences are then randomly selected from each class. This ensures a comparable set of representative sequences for different groups of identity within each set of aligned sequences.

Multiple Sequence Alignments

Sequences in each set S T are aligned using CLUSTALW [START_REF] Larkin | Clustal w and clustal x version 2.0[END_REF], Thompson et al., 1994]. The most appropriate substitution matrix between Blosum62 [START_REF] Henikoff | Amino acid substitution matrices from protein blocks[END_REF], Gonnet [START_REF] Gonnet | Exhaustive matching of the entire protein sequence database[END_REF] and HSDM [START_REF] Prlić | Structurederived substitution matrices for alignment of distantly related sequences[END_REF] matrices is automatically chosen depending on similarity between sequences in the set. For each alignment, distances between sequences are scored using the Score Distance method [START_REF] Sonnhammer | Scoredist: a simple and robust protein sequence distance estimator[END_REF]; no contribution is made for gaps in the sequence nor by the ends. Namely, the effective score between two sequences i and j of the alignment is computed as follow [START_REF] Engelen | Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling[END_REF]:

S ef f (i, j) = S(i, j) -S min (i, j) S max (i, j) -S min (i, j) (2.1)
where S(i, j) is the score produced by the alignment using a substitution matrix,

S max (i, j) = S(i,i)+S(j,j) 2 , S min (i, j) = E • N , E
is the E-value of the used matrix, and N is the number of pairs of aligned residues ij. The distance between the two sequences is then computed as

d ef f (i, j) = -log(S ef f (i, j)), with S ef f (i, j) > 0.
Trees Construction For each multiple alignment, a distance tree is constructed based on the Neighbor Joining algorithm (NJ) [START_REF] Saitou | The neighbor-joining method: a new method for reconstructing phylogenetic trees[END_REF]. Since this method produces an unrooted tree, the midpoint rooting method is used to find the point that is equidistant from the two farthest points of the tree, and to root the tree there.
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For more details on multiple sequence alignment and Neighbor Joining algorithm for constructing phylogenetic trees see Section 1.6.

Tree Traces Now that N T phylogenetic trees are constructed from the alignment of sets of S T sequences, each tree has to be analysed to extract the residue conservation level.

rank of nodes

Let define the rank of nodes, excluding the leaves, of a tree T composed by S T sequences. The root of T has rank 1. The first bifurcation occurring along the two branches after the root corresponds to a node of rank 2. Running down along the tree branches, every time a bifurcation occurs along any tree branch the rank of the corresponding node increases by 1 (Fig. 2.3, top). To generalise, we can define the distance between a node and the root as the sum of the length of the branches connecting them. Given two nodes x and y, that are not leaves, x has a rank lower than the y one, if the distance between x and the root is smaller than the one between y and the root. In the same way, two nodes have the same rank if their distance with the root is the same. The maximum rank definable on a tree T is S T , that is the number of sequences in T .

Let S be the reference sequence and S x be the sequence associated with the leaf x in T .

consensus sequence

A consensus sequence associated to a leaf x of T is a sequence (of the same length as S) where position i is occupied by the residue in S x aligned to the i-th residue of S. If no residue in S x is aligned to the i-th position of S then a gap will appear in the consensus sequence. A consensus sequence of a node x of rank n is a sequence (of the same length as S) that in the positions that are not gaps stores residues in common to the consensus sequences associated with the children of x, that is all the residues that remained conserved from the level n to the leaves of the tree (Fig. 2.3, top).

back-trace sequence

A back-trace sequence of a node x of rank n is a sequence (of the same length as S) which records all residues in the consensus sequence associated to x that do not already belong to the back-trace of the father of x [START_REF] Engelen | Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling[END_REF]. It could be viewed as the difference between the consensus sequence of x and the one of its father (Fig. 2.3, bottom). The back-trace sequence of the root is the consensus sequence of the root.

tree trace

A tree trace of level n is a residue which is not a tree trace of level ≤ n -1, being conserved only from the level n onwards, and whose position is occupied by conserved residues, not necessarily the same of it, in backtraces of at least 2 subtrees of level n in T (Fig. 2.3,bottom,and Fig. 2.4). A residue in the backtrace sequence of the root of T is conserved in all sequences and it is called a tree trace of level 1 [START_REF] Engelen | Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling[END_REF].

This definition differs from the one given in the original Evolutionary Trace approach (ET) [START_REF] Lichtarge | An evolutionary trace method defines binding surfaces common to protein families[END_REF]Sowa, 2002], where a residue is a trace of level n only when the residue is conserved in all subtrees of level n in T .

Relative Trace Significance Now, we need to determine the relative trace significant is the actual value used in JET 2 DNA for the evolutionary trace relative trace significance for each residue in the query protein, by taking into account the trace results extracted from of all the N T trees. Let t=1 . . . N T be the generated trees, and j = 1 Top: tree with nodes labeled with consensus sequences: conserved residues are traced from the leaves back to the root. Ranks of nodes are labeled in red and the total number of ranks is 7 for this tree. Subtrees of nodes of rank 2 and 3 are contoured with colored boxes. Bottom: tree with nodes labeled with back-trace sequences: back-traces are traced from the root back to the leaves. 3 subtrees corresponding to level 2 (blue, green and rose boxes) and 4 to level 3 (turquoise, orange, green and rose boxes). On the bottom left, schema of the computation of tree traces of level 2 and 3 based on 3 and 4 subtrees. Tree traces of level 2 (3) occupies the second (fifth) position in the sequence and it is denoted by X. [START_REF] Engelen | Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling[END_REF] . . . |S| the index of the residue positions in S. The degree of significance of the trace of residue r j at position j in S is computed as follow [START_REF] Engelen | Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling[END_REF]:

d j = 1 M j M j t=1 L t -l t j L t (2.2)
where l t j is the tree trace level of residue r j in tree t, L t is the maximum level of t and M j is the number of trees where the residue appears as a trace, that is having a 2.7. THE JET 2 DNA ALGORITHM 59 , and this sets i as a tree trace of level 3. Right: residue I and D are conserved in two subtrees detectable at levels 3 and 9 respectively, and this sets i as a tree trace of level 9. [START_REF] Engelen | Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling[END_REF] non-zero trace. Values d j vary in the interval [0,1], and represent an average over all trees of the residue importance. This is the actual value used in JET 2 DNA when we refer to the trace of a residue, and we wil refer to it as T JET .

Physico-chemical properties

Statistical analysis of physico-chemical properties reveals a biased amino-acid content in protein interfaces. This bias depends on the partner molecule, being a protein or DNA for example.

The interface propensity value represents the probability specific of every amino acid to be located at the interface with a certain ligand. Propensity values for amino acids at protein-DNA interfaces (PC DNA ) were taken from [START_REF] Park | Dbbp: database of binding pairs in protein-nucleic acid interactions[END_REF].

Let P (+) be the probability that an amino acid belongs to a binding site (Eq. 2.3), then the conditional probability P (A|+) is the probability that the binding amino acid is A (Eq. 2.4) [START_REF] Park | Dbbp: database of binding pairs in protein-nucleic acid interactions[END_REF] and represents the propensity score for the specific amino acid A.

P (+) =

# DNA-binding amino acids # amino acids in protein-DNA complexes (2.3)

P (A|+) = P (A ∩ +) P (+) (2.4)
In the algorithm, the original values taken from [START_REF] Park | Dbbp: database of binding pairs in protein-nucleic acid interactions[END_REF], and in the range between 0 and 2.534, are scaled between 0 and 1 for the calculation of residue scores.
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We will see in Section 2.8 (Fig 2.6) how propensity values for protein-DNA interfaces (PC DNA ) are extremely different from the ones for protein-protein interfaces (PC prot ).

Circular Variance

Circular variance (CV) is a geometrical measure of the vectorial distribution of a set of neighboring points around a fixed point in 3D space [Ceres et al., 2012, Laine andCarbone, 2015]. The CV value of an atom i is computed as:

CV (i) = 1 - 1 n i j =i,r i ≤rc r ij || r ij || (2.5)
where n i is the number of atoms distant by less than r c Å from atom i. The CV value of a residue is then computed as the average of the atomic CVs, over all its atoms. Given a residue, a low CV value, which reflects the protein density around it, indicates that it is located in a protruding region of the protein surface, while a high value indicates that it is located in a buried one. CV values vary from 0 to 1.

Furthermore, varying the cutoff distance parameter r c enables to adapt the resolution of the protein surface. In the prediction of protein-DNA interfaces, we are interested in being able to detect large concave regions, and locally protruding residues or groups of residues. CV enables to describe both the global and the local geometry of the surface, by setting two different r c radius. We set r c = 100 Å for measuring the global shape of protein surfaces (CV glob ) and r c = 12 Å for measuring the local geometry of the surface (CV loc ).

JET 2

DNA pipeline

The JET 2 DNA method requires as input a protein query sequence for which threedimensional (3D) structural coordinates are available in the Protein Data Bank (PDB) [START_REF] Berman | The protein data bank[END_REF].

For each residue on the protein surface, it computes T JET , PC DNA , CV global and CV local values, as described above. At this stage, the clustering procedure begins. It consists of three steps during which residues are progressively clustered. Let us recall that the three steps of the clustering procedure (seed, extension and outer layer) are designed to approximate the support, core and rim regions of the Levy's model (Fig. 2.8, a). During each step, T JET , PC DNA , CV global and CV local values of every surface residue are combined, in a way that is specific of the step itself, to assign a score to it. This score is then averaged over the ones of the immediate neighbors of the residue, to account for its local 3D environment (as in [START_REF] Engelen | Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling[END_REF] for the computation of the average trace value). The final average score value of an amino acid a j at position j is expressed as follows:

average score(j) = w I * 1 |I| h∈I score h + w j * score j w I + w j (2.6) 2.7. THE JET 2 DNA ALGORITHM 61 
where I is the set of residue positions which are neighbors of a j (i.e. with at least one atom distant by less than 5 Å to at least one atom of a j ) and score j is the score of a j . The weights were fixed by default at w I = 3 and w j = 4, favoring the residue r j compared to its neighbors [START_REF] Engelen | Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling[END_REF]. Average score values are scaled between 0 and 1. The average score is then used to rank surface residues and cluster together the highly scored ones at the end of each of the three clustering steps (in the first one new clusters are formed by highly scored residues, while in the other two they are added to already existing clusters).

During the three steps of the clustering procedure, I implemented some procedures to avoid small ligand binding pockets, to better filter out putative false positive clusters of residues predicted by the tool, to set the thresholds used to decide when a residue should be clustered and when the clustering procedure should be stopped before the standard procedure. I extensively describe them in the following sections.

Furthermore, I implemented three different scoring schemes (described in greater details in Section 2.8.3) that define in which way the T JET , PC DNA , CV global and CV local values are combined during each of the three steps of the clustering procedure, to assign a score to each residues. These different scoring schemes are designed to detect different types of protein-DNA interfaces. Moreover, they can be used in combination to complement the predictions of each other, identifying distinct patches of residues characterised by different local properties that all together better identify the entire interface (Fig. 2.9, bottom, Section 2.8). In Section 2.8, I will describe in greater details the characteristics of these scoring schemes and I will show some prediction examples.

Let me briefly describe the three steps of the clustering procedure.

Step 1: seeds detection Residues with a high average score (above the score seed res threshold) are selected. Starting from the top scored one, they are progressively clustered based on 3D proximity (< 5 Å) to form cluster seeds, until these reach a mean score too low to continue the clustering (equal to the score seed clus threshold) [Engelen et al., 2009, Laine andCarbone, 2015] (Fig. 2.1, red).

The percentage of residues that have a very high local burial degree (CV local > 0.9) in the detected seeds is evaluated before continuing the clustering procedure, to avoid to get caught into small ligand binding pockets. If this percentage is consistent (above the threshold buriedres ), the clustering procedure is restarted taking into account only more locally exposed residues (with a CV local ≤ 0.9). This constraint imposed on the average value of CV local displayed by the ensemble of seed residues is an improvement of JET 2 DNA and was not present in JET 2 .

Step 2: seeds extension A series of iterations are performed to extend detected seeds. At each iteration n of the extension step, the algorithm computes the neighboring residues (<5 Å) of every seed that display a high score (above the score ext res ) but lower than the maximum score computed among the extension residues that were merged in the previous iteration n -1 (this will be the max(score seed res ) in the first iteration) [START_REF] Laine | Local geometry and evolutionary conservation of protein surfaces reveal the multiple recognition patches in protein-protein interactions[END_REF]. For each seed, the ensemble of selected neighbors is merged into the seed if its addition leads to an average score of the total cluster high enough (≥ score ext clus ). The iterative loop stops when all the clusters show an average score too low to proceed with the clustering (<score ext clus ) (Fig. 2.1, orange). At this point, the size of the total clusters predicted is checked. If in this second stage the percentage of the clustered residues is already close to the expected size of the interface (> 70%, that is ∼2/3), and thus most of the expected interface is already been predicted, clusters are iteratively filtered by size, from the smallest to the biggest one, until their total size is ≤ 70% of the expected size of the interface (see Section 2.6 and Fig. 2.2 for more details on the expected size of the interface). Also this part is a new implementation of JET 2

DNA . A second check on the average value of CV local of predicted clusters is performed again under the same constraints of step 1, to avoid buried pockets. Predicted clusters that neighbor each other (<5 Å) are merged [START_REF] Laine | Local geometry and evolutionary conservation of protein surfaces reveal the multiple recognition patches in protein-protein interactions[END_REF].

Step 3: addition of an outer layer to the extensions In this final step, neighboring residues of predicted clusters (<5 Å) that display a score high enough (above the score out res ) are selected. Evaluating them one by one, each selected residue is added to the neighbor cluster if its inclusion leads to a mean cluster score as high as or greater than before the inclusion [START_REF] Laine | Local geometry and evolutionary conservation of protein surfaces reveal the multiple recognition patches in protein-protein interactions[END_REF]. Final clusters are not merged anymore at this stage (Fig. 2.1, cyan).

A check on the percentage of residues predicted is then performed. If at this final stage the percentage of the clustered residues is not sufficiently close to the expected size of the interface (<70%, that is ∼2/3), the score layer res and score layer clus thresholds to select high scored residues are relaxed and the clustering procedure is restarted from the first step to detect a higher number of residues, closer to the expected size of the interface. This final checked was newly implemented in JET 2 DNA .

The score layer res and score layer clus thresholds depend on f DN A intf rac (x) and the confindence levels with which they are determined, in the stricter and in the relaxed cases, are reported in Table 2.3.

An overview of the JET 2 DNA pipeline schema is presented in Fig. 2.5 and the pseudocode is reported in Table 2.4.

Avoiding small-ligand binding pockets

Like protein-protein interactions, protein-DNA interactions are often mediated or regulated by small ligands. As a result, a significant number of protein-protein and protein-DNA interfaces are close to or overlapping small ligand-binding pockets. These pockets are generally very conserved (e.g. active sites of enzymes) [START_REF] Laine | Local geometry and evolutionary conservation of protein surfaces reveal the multiple recognition patches in protein-protein interactions[END_REF], which makes the specific detection of conserved protein-protein and protein-DNA interfaces a difficult task. In JET 2 , the issue was resolved by designing a specific scoring scheme exploiting the fact that small ligand-binding pockets are 2.7. THE JET 2 DNA ALGORITHM 63 more deeply buried than protein-protein interfaces (see SC2 in Fig. 2 from [START_REF] Laine | Local geometry and evolutionary conservation of protein surfaces reveal the multiple recognition patches in protein-protein interactions[END_REF]). The specific detection of protein-DNA interfaces is more difficult, as these interfaces are more concave than protein-protein interfaces (compare 1-CV boxplots in Fig. 2.7). To tackle the problem, I implemented a procedure in JET 2 DNA that redefines very buried seeds by eliminating highly buried residues. Specifically, the degree of burial of each predicted seed is evaluated using CV local . We empirically fix a threshold of CV local = 0.9 to define very buried residues. This threshold is reasonable since the CV local can vary from 0 (very exposed residues) to 1 (completely buried residues). However, one can further systematically tests possible more optimal CV local threshold values. If the seed comprises a significant proportion, between 20%-30%, depending on the scoring scheme used (the scoring schemes are described in Section 2.8.3), of highly buried residues (CV local >0.9), then the clustering procedure restarts by considering only more exposed residues with CV local ≤0.9 (Fig. 2.5, blue). The procedure does not apply to D-SC3 as this scoring scheme specifically selects protruding/exposed residues (see Section 2.8 for the properties used by each score).

Fixing the thresholds

During the detection of every layer, namely the seed (step 1), the extension (step 2) or the outer layer (step 3), JET 2 DNA considers only residues displaying a sufficient high score (>score layer res threshold), specific to each layer. Starting from the top scored one, residues are progressively picked to create a new cluster or to grow an existing cluster until the average cluster score is too low to proceed with the clustering (<score layer clus threshold), also specific to each layer. Contrary to JET 2 algorithm, where score layer res and score layer clus thresholds were fixed at the beginning of the clustering procedure and could not be changed, in JET 2 DNA I decided to initially fix them more stringently and relax them in a second stage, if the prediction is still too small in the final stage of the clustering procedure (<70% of the expected size of the interface) (Fig. 2.5, red). Threshold values were fixed empirically. The idea that motivated this procedure was that a dynamic set up of the thresholds could limit false positives in cases where surface regions located outside the interface yet display a detectable signal. Indeed, this dynamic set up enhancement yielded more accurate predictions. It should be noted that thresholds in JET 2 DNA , even relaxed, remain stricter than the ones in JET 2 . Further systematical tests could be performed to evaluate the existence of more optimal threshold values. Details about thresholds are given in Table 2.3.

Filtering out putative false positive clusters

In JET 2 , small patches were filtered out based on the comparison between their size and the size distribution of randomly generated patches [START_REF] Engelen | Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling[END_REF] after the seed or extension steps, depending on the scoring scheme used. In JET 2 DNA , I noted that even small clusters composed of highly scored residues could be true positives. This could be due to the fact that the thresholds are more stringent than in JET 2 . To deal with this issue, I decided to reverse the filtering procedure. We first detect all possible seeds and extend them. Then, if the total size of the extended DN A intf rac (x), that represents the expected size of a protein-DNA interface for a protein with x surface residues. Dashes mean that the threshold cannot be relaxed.

Layer

First stage (not relaxed) Second stage (relaxed)

score res seed f DN A intf rac (x) 2f DN A intf rac (x) extension 2f DN A intf rac (x) - outer layer 2f DN A intf rac (x) - score clus seed f DN A intf rac (x)/6 f DN A intf rac (x)/4 extension f DN A intf rac (x)/4 f DN A intf rac (x)/3 outer layer f DN A intf rac (x)/4 f DN A intf rac (x)/3
seeds already represents more than ∼2/3 of the expected size of the interface at this intermediate stage, we iteratively filter them starting from the smallest one, until reaching down the 70% threshold (∼2/3) (Fig. 2.5, green). To eliminate aberrant predictions, clusters composed of 1 or 2 residues are still systematically filtered out.

Automated clustering procedure

The implemented algorithm is described in Fig. 2.8 and Table 2.5. By default, JET 2 DNA first detects seeds using D-SC1 (T JET + PC DNA ). If these display a very low conservation signal (average T JET < 0.3) then the strategy is to exploit the other two descriptors and look for sites comprised of locally protruding residues that satisfy expected physico-chemical properties (D-SC3). Otherwise, the algorithm analyses the physico-chemical and the geometrical properties of the detected seeds. If this analysis shows that the seeds are located in a concave region of the protein surface (CV global > 0.6) and do not display highly favorable physico-chemical properties (PC DNA < 0.9), the algorithm switches from D-SC1 to D-SC2, where CV global is employed instead of PC DNA to detect an "enveloping" (concave) interface, typical of many DNA-binding sites. Otherwise, physico-chemical properties are considered the driving force for an accurate prediction of the binding interface.

Complete JET 2

DNA procedure

A complete procedure is available for both manual and automated clustering procedure and is described in Fig. 2.8 and Table 2.4 (see Fig. 2.5, yellow). If the user decides to run it, the main clusters predicted in the first round by the automatically or manually chosen scoring scheme will be completed by complementary clusters of residues. D-SC3 will be used in the second round if D-SC1 or D-SC2 were chosen as main scoring schemes. D-SC1 will be the complementary one when D-SC3 is used in the first round. If new predicted patches are located sufficiently close (less than 5Å) to the first predicted site, then they will be merged together with it [START_REF] Laine | Local geometry and evolutionary conservation of protein surfaces reveal the multiple recognition patches in protein-protein interactions[END_REF]. If there is a significant proportion of highly buried residues, restart the clustering considering only residues with CVlocal>0.9

If the prediction coverage > 70% of the expected size of the interface, filter predicted clusters starting from the smallest ones until coverage <= 70% If the complete procedure was chosen, a different D-SC is selected to complete the prediction of the main one

During each of the 3 steps of the clustering procedure, evaluate correspondent residues' scores depending on the properties used in the manually or automatically chosen D-SC.

1 st step: seed Check percentage of highly buried seed residues; 2 nd step: extension Check percentage of highly buried extension residues; Check the prediction coverage with respect to the expected size of the interface;

3 rd step: outer layer Check the prediction coverage with respect to the expected size of the interface;

If the prediction coverage < 70% of the expected size of the interface, relax scoreres and scoreclus thresholds and restart the clustering DNA pipeline, whatever the scoring scheme chosen. In black, the mandatory steps. In blue, procedure to avoid buried small ligand binding pockets. In red, filtering of the putative false positive clusters. In green, relaxing of the thresholds for too small predicted clusters, which do not respect the expecting size of the interface. In yellow, the possibility to complete the main prediction with a second one obtained by a different scoring scheme.

Iterative mode

For a given protein, the computation of the evolutionary signal in different independent runs of JET 2 DNA can lead to slightly different values of T JET , due to the algorithm employed to compute the trace of each residue [START_REF] Engelen | Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling[END_REF]. To get more robust predictions, JET 2 DNA can be run in an iterative mode of the program, which we call iJET 2 DNA . In this way, we can compute the number of times a given residue is detected in a cluster divided by the number of total runs. The result will be a number comprised between 0 and 1 and it reflects the probability of the given residue to be at an interface. 

i ∈ C/r i ∈ surf ace < 0.7f DN A intf rac (x) do iteratively filter c k ∈ C, where size(c k ) < size(c k+1 ) end if r i ∈ C, CV local (r i ) > 0.9/r i ∈ C > threshold buried then remove all residues r i , CV local (r i ) > 0.9 from R
for c k ∈ C do for r j ∈ {neighbors of c k } do if µ(c k )×|c k |+score(r) |c k |+1 ≥ µ(c k ) then add r j to outLayer; end end add outLayer to c k ; end if r i ∈ C/r i ∈ surf ace < 0.7f

Results

Support-Core-Rim vs Core-Support-Rim model for protein-DNA interactions

To identify characteristic features of protein-DNA interfaces, we analysed 187 highresolution crystallographic structures representative of all protein-DNA complex structures available in the PDB. This dataset, called HR-PDNA187, is non-redundant at 25% sequence identity, covers all major types of DNA-interactions and spans a wide range of protein functions (see Section 2.3). Interface residues were detected and classified in three structural components based on their solvent accessibility (Fig. 2.8a). The support (in yellow) comprises residues buried in presence and absence of DNA, the core (in brown) comprises residues exposed in absence of DNA and becoming buried upon binding, and the rim (in green) comprises residues exposed in presence and absence of DNA (see Section 2.5). This classification was proposed for protein-protein interfaces in [Levy, 2010]. In the latter, the three components are spatially organized in concentric layers, with the support at the center, the core in an intermediate position and the rim on the external border (see Fig. 2 in [START_REF] Laine | Local geometry and evolutionary conservation of protein surfaces reveal the multiple recognition patches in protein-protein interactions[END_REF]). In protein-DNA interfaces, although the same spatial organization is observed in many cases (Fig. 2.8a, top left), a different organization also exists where the support and the core switch positions (Fig. 2.8a, top right).

Both organizations are produced by the characteristic shape of the DNA and reflect the different ways the protein may bind to it. What these two different residues dispositions seem to have in common is that support and core keep the same role in the interaction with the DNA, whatever the organization. Namely, buried support residues tend to accomodate the DNA backbones while the more exposed core ones tend to stack into the DNA grooves.

Characteristics of protein-DNA interfaces

We estimated the degree of evolutionary conservation (T JET ), of DNA-binding residues propensities (PC DNA ) and of local and global burial (CV local and CV global , see Section 2.7.2 for precise definitions of the four features) in the support, core and rim, with respect to the rest of the protein (Fig. 2.7a-b). To do this, we computed the percentage of interacting residues having values, related to the four features, above the median computed over the whole protein surface. With the aim of discriminating protein-DNA interfaces from protein-protein interfaces, we compared the obtained properties distributions with those obtained for 176 protein-protein complexes from the Protein-Protein Docking Benchmark version 4 [START_REF] Hwang | Proteinprotein docking benchmark version 4.0[END_REF] (Fig. 2.7c), as detailed below.

T JET distribution shows that protein-DNA interfaces are significantly more conserved than the rest of the protein (Fig. 2.7a), as previously observed [START_REF] Biswas | Dissection, residue conservation, and structural classification of protein-dna interfaces[END_REF], Ahmad et al., 2008, Luscombe and Thornton, 2002]. The conservation signal is particularly strong in the support and the core (Fig. 2.7a). We can also observe that protein-DNA interfaces tend to be more conserved than protein-protein inter-faces (compare Fig. 2.7a and c), in agreement with previous studies [START_REF] Biswas | Dissection, residue conservation, and structural classification of protein-dna interfaces[END_REF], Ahmad et al., 2008, Luscombe and Thornton, 2002], in all the three regions.

Residues with high PC DNA values tend to be located in the core and rim of protein-DNA interfaces (Fig. 2.7a). By contrast, residues displaying physico-chemical properties favourable to protein-protein binding (high PC prot values) are mainly found in the support, and to a lesser extent in the core, of protein-protein interfaces (Fig. 2.7c). These different geometrical distributions reflect differences between the two PC scales (Fig. 2.6). Protein-DNA interfaces are enriched in positively charged and polar residues (in red) [START_REF] Park | Dbbp: database of binding pairs in protein-nucleic acid interactions[END_REF], which tend to prefer regions exposed to the solvent. Moreover, these residues play a crucial role in binding the negative DNA backbone which is usually in contact with the most external parts of the interface. By contrast, protein-protein interfaces are enriched in hydrophobic residues (in orange) [START_REF] Negi | Statistical analysis of physical-chemical properties and prediction of protein-protein interfaces[END_REF], which tend to hide from the solvent and thus prefer to be located towards the interior of the interface.

Residues protruding to the solvent, i.e. displaying high (1-CV local ) values, are located in the core and rim of protein-DNA interfaces (Fig. 2.7a), as observed for protein-protein interfaces (Fig. 2.7c). To characterize the geometry of protein-DNA interfaces, we also considered CV global , defined using a larger distance cutoff than that used for CV local and thus reflecting the status of each residue with respect to the global shape of the protein, instead of its local environment. We found that the enzymes, and in particular the polymerases and some nucleases, display a very specific profile for (1-CV global ) values (compare Fig. 2.7a and 2.7b). All three interface components tend to be more concave than the rest of the protein, the concave character of the support and the rim being particularly strong (2.7b). This concave character of the binding site may be functional to the accommodation of the active site of the enzyme. This result reveals that polymerases bind to DNA by "enveloping" it.

All the other DNA-binding protein classes displayed a similar distribution of properties (Fig. A.2). Moreover, overall similar profiles of circular variance are observed when comparing the distribution of properties on the bound and the unbound conformations, despite the conformational changes of some proteins when passing from the unbound to the bound state (Fig. A.1).

Overall, this analysis showed that protein-DNA interfaces encode signals that can be described by a few residue-based features, namely evolutionary conservation, physico-chemical properties and geometry. It revealed that the partition of the interface in three structural layers of residues differing in surface accessibility proposed by Levy's model for protein-protein interfaces is also pertinent to describe protein-DNA interfaces. However, in these latter we observed the co-existence of two different main spatial organizations of the three structural layers, where the support and the core can alternate in the most central part of an interface patch. Nevertheless, it highlighted that the characteristics of protein-DNA interfaces are significantly different from those of protein-protein ones, and are different between different types of protein-DNA interfaces. Hence, the correct detection of these interfaces requires the development of adapted scoring strategies. 

Three strategies to detect protein-DNA interfaces

To predict DNA-binding sites at the surface of proteins, we use a predictive model comprised of three layers (Fig. 2.8a, bottom), namely the seed (in red), the extension (in orange) and the outer layer (in cyan), that approximate the three experimentally defined layers of interface residues in both spatial organizations, the support-core-rim and the core-support-rim (Fig. 2.8a, top). JET 2 DNA 's clustering algorithm selects highly scored residues to create seeds, and then progressively extends them by adding highly scored residues that are close in 3D space (see Section 2.7.3). To capture the different characteristics of the different protein-DNA interaction classes, we devised three different scoring schemes (see D-SC1-3, Fig. 2.8b). Each D-SC combines in a different way evolutionary information from the sequence (T JET ), amino-acid interface propensities (PC DNA ) and the geometry of the surface (CV local or CV global ). Because the support and the core may exchange their 3D position in the experimental interfaces (Fig. 2.8a, top, compare left and right panels), properties used to detect the seed can be specific of both and the same combination is used for seed detection and extension in all D-SC (Fig. 2.8b, same color for the two first layers). Each D-SC aims at detecting a certain type of DNA-binding site. Specifically:

• D-SC1 aims at detecting generic DNA-binding sites. It first detects highly conserved residues displaying good physico-chemical properties (T JET + PC DNA ) and completes the prediction with conserved locally protruding residues (T JET + (1 -CV local )).

• D-SC2 is designed to specifically detect very concave DNA-binding sites, characteristic of the "enveloping" binding mode displayed by polymerases.

It clusters together conserved residues with a high global burial degree that progressively become more exposed (T JET + CV global ); then, the prediction is completed by adding an outer layer of conserved residues displaying good physico-chemical properties (T JET + PC DNA ).

• D-SC3 is intended to deal with cases where no evolutionary information is available or the whole protein displays a homogeneous weak or very weak conservation signal. It leaves out evolutionary information for exclusively clustering together locally protruding residues displaying good physico-chemical properties (PC DNA + (1 -CV local )).

D-SC1 is the best predicting score for interfaces containing highly conserved residues with good physico-chemical properties in their core (Fig. 2.9, first panel, and Table . 2.6). These binding modes are often adopted by transcription factors, regulatory proteins and some glycosilases. D-SC2 fits best cases in which the interface is an extended concave region ("enveloping mode"), a geometrical condition met by many polymerases and nucleases (Fig. 2.9, second panel, and Table . 2.6). D-SC3 is suited for cases where physico-chemical and geometrical properties have a better discriminative power than conservation (Fig. 2.9, third panel, and Table . 2.6). 

Predicting multi-patch interaction sites and their properties with the complete clustering procedure

A single DNA-binding site may be comprised of multiple recognition patches. These binding site subregions can display different properties and thus may be predicted by different scoring schemes. An example is given in Fig. 2.9 (bottom panel, complete procedure). Here, the experimental interface displays a heterogeneous distribution of the conservation signal (bottom panel, central column), where the outermost parts are less conserved than the interface core. The complete procedure (see Section 2.7.8) enables to detect this latter using D-SC2 in the first round of prediction and then detecting two other patches, corresponding to less conserved interface subregions, by JET 2 also allows the user to manually choose a particular scoring scheme. In report JET 2 performance on a number of different interfaces.

Detecting lowly conserved interface residues based on th surface local geometry

To describe the local geometry of the protein surface, we use the measure of (CV) that evaluates the density of protein around an atom. This simple geo captures the structural properties of interacting residues. To properly assess of CV, we compared JET 2 and its iterative version iJET 2 (see Materials and iJET, which use only sequence information. We applied both methods to tw namely PPDBv4 and the Huang dataset of 62 protein complexes [20] (S1 Ta notice that PPDBv4 was also used for the analysis of the signals encoded in faces (see above). Although this analysis conceptually inspired the detection mented in JET 2 , the method was not trained on PPDBv4 and no JET 2 param on PPDBv4 analysis. Hence, PPDBv4 could be used for assessing JET 2 pred Lowly conserved interacting residues are found in the antigen-binding si bodies from PPDBv4 (Fig 1C). JET 2 /iJET 2 dramatically improves the detect In second and third columns, the experimental and predicted DNA-binding sites are displayed as opaque surfaces, respectively. The experimental interface residues are colored according to conservation levels (T JET values) computed by iJET 2 DNA . iJET 2 DNA predictions were obtained from a consensus of 2 runs out of 10. They are colored according to the scoring scheme from which they were obtained: D-SC1 in orange, D-SC2 in dark green and D-SC3 in blue. The scoring schemes are indicated for each protein. In the last row, an example of prediction obtained by the complete procedure is reported, where D-SC2 prediction was completed by the D-SC3 one. See Section 2.8.5 for the definition of the statistical indicators sens, PPV and F1, and Table . 2.6 for all the statistical values of the illustrated predictions.

completing the prediction in a second round employing D-SC3. This suggests that the complete procedure enables to detect interface patches, initially not recognized by the main scoring scheme used, by completing the prediction by a second scoring scheme, that employs different features for the recognition of the interface. Moreover, it may help in deducing the specific properties of these multiple interface patches, unraveling the heterogeneity of signals (see also Section 2.8.7).

Overall assessment of JET 2 DNA performance

To assess the performance of the tool, we used five standard measures of performance: sensitivity (Sens), positive predictive value (PPV ), specificity (Spe), accuracy (Acc) and F1. These measures are defined as in the following equations:

Sens = T P T P + F N ; P P V = T P T P + F P Spe = T N T N + F P ; Acc = T P + T N T P + F N + T N + F P F 1 = 2 • Sens • P P V Sens + P P V
where TP (true positives) are the number of residues correctly predicted as interacting, TN (true negatives) are the number of residues correctly predicted as non-interacting, FP (false positives) are the number of non-interacting residues incorrectly predicted as interacting and FN (false negatives) are the number of interacting residues incorrectly predicted as non-interacting.

A large scale assessment of the predictive power of JET 2 DNA was realized on HR-PDNA187 and the associated dataset of HOLO-APO pairs, HOLO-APO82 (see Section 2.3). HR-PDNA187 was used for the analysis of the properties encoded in experimental interfaces (see above). Although this analysis conceptually inspired the detection strategies implemented in JET 2 DNA , it should be stressed that the method was not trained on HR-PDNA187 and no JET 2 DNA parameter was set based on HR-PDNA187 analysis. Hence, this dataset could be fairly used for assessing JET 2 DNA predictive power. We evaluated JET 2 DNA in its iterative mode (iJET 2 DNA , see Section 2.7.9), varying the consensus between 2, 5 and 8 runs out of 10 to consider a residue as predicted. For each experimental site, the best patch of best combination of patches among all D-SC was retained. We relied mainly on the F1-score, which reflects the balance between sensitivity and precision (see Section 2.8.5).

iJET 2 DNA predictions match very well the experimental sites from both datasets, reaching an average F1-score of 61% on HR-PDNA187 and of 58% on both bound and unbound forms from HOLO-APO82 (Table 2.7 and Fig. 2.10, top). This demonstrates the robustness of the tool to protein conformational changes associated with DNAbinding. Varying the consensus threshold from 2 to 8 iterations out of 10 does not have any impact on the F1-score nor on the accuracy of the predictions (Table 2.7 and Fig. 2.10, top). Nevertheless, it enables shifting the balance between sensitivity (Sens) and precision (or predictive positive value, PPV), such that more extended predictions are obtained with the lower threshold (2/10) and more precise ones are obtained with the higher threshold (8/10).

We analysed the contribution of each of the three layers in the predictions by evaluating the performance after the first (seed), the second (seed + extension) and the third (seed + extension + outer layer) steps of the clustering procedure. The seeds are comprised of very few false positives (PPV≥60% and Spe≥96%, see Table . A.2) but cover only a small portion of the experimental binding sites (Sens≤33%). The precision and specificity decrease when extending the predictions through the extension and the outer layer, but the final predicted patches result in much higher sensitivity and F1 values (Table . A.2).

We investigated whether changes in the stoichiometry between the bound and the unbound forms may influence JET 2 DNA performance. For this, we split the HOLO-APO82 dataset in two subsets comprising proteins showing a different stoichiometry in the bound and unbound forms and proteins having the same one, respectively. We obtained comparable results on the two classes of proteins (Table . A.2), which indicates that JET 2 DNA is stable upon stoichiometry changes between different protein states.

Performance is lower when we use JET 2 DNA in complete and/or automated mode(s) (Table . A.2). This may be due to the automatic choice of the scoring scheme or to the detection of additional patches by the complete procedure that are not present in the testing sets, i.e. patches involved in interactions with other partners (see Fig 2.11 and Table. 2.8 for such cases). In this latter case, sensitivity increases over 70% on all datasets, but PPV decreases below 50%.

Comparison of JET 2

DNA performance with other tools

The choice of the comparison methods has been made after an accurate search for the most used DNA-binding site predictors. We found that the corresponding web server references reported on papers of several methods are no longer available or seem not working, namely BindN [START_REF] Wang | Bindn: a web-based tool for efficient prediction of dna and rna binding sites in amino acid sequences[END_REF], BindN+ [START_REF] Wang | Bindn+ for accurate prediction of dna and rna-binding residues from protein sequence features[END_REF], BindN-RF [START_REF] Wang | Prediction of dna-binding residues from protein sequence information using random forests[END_REF], MetaDBsite [START_REF] Si | Metadbsite: a meta approach to improve protein dna-binding sites prediction[END_REF], PreDs [START_REF] Tsuchiya | Preds: a server for predicting dsdna-binding site on protein molecular surfaces[END_REF], DBindR [START_REF] Wu | Prediction of dna-binding residues in proteins from amino acid sequences using a random forest model with a hybrid feature[END_REF], PreDNA [Li et al., 2013a], DBD-Hunter [START_REF] Gao | Dbd-hunter: a knowledgebased method for the prediction of dna-protein interactions[END_REF]. Some others tools, like iDBPs [START_REF] Nimrod | idbps: a web server for the identification of dna binding proteins[END_REF], DNABINDPROT [START_REF] Ozbek | Dnabindprot: fluctuation-based predictor of dna-binding residues within a network of interacting residues[END_REF] and DR_Bind [START_REF] Chen | Dr_bind: a web server for predicting dna-binding residues from the protein structure based on electrostatics, evolution and geometry[END_REF], allow to analyse only single chains. Among the remaining methods, we decided to compare JET 2 DNA with DISPLAR [START_REF] Tjong | Displar: an accurate method for predicting dna-binding sites on protein surfaces[END_REF], which seems working better than DP-Bind [START_REF] Hwang | Dp-bind: a web server for sequence-based prediction of dna-binding residues in dna-binding proteins[END_REF], according to the results in the papers, more recent than DBS-Pred [START_REF] Ahmad | Analysis and prediction of dna-binding proteins and their binding residues based on composition, sequence and structural information[END_REF] and DBS-PSSM [START_REF] Ahmad | Pssm-based prediction of dna binding sites in proteins[END_REF] and the only method giving the possibility to submit multiple jobs from the command line instead of manually on the webserver. Althought multiVORFFIP [START_REF] Segura | A holistic in silico approach to predict functional sites in protein structures[END_REF]] is also a webserver on which it is possible to submit only one job at a time, we decided to compare it with our tool, since we compared it also against JET 2 [Laine and Carbone, 2015] on protein-protein interfaces prediction. We ran both Average sensitivity (Sens), positive predictive value (PPV), specificity (Spe) and accuracy (Acc) are plotted for (top left) all proteins of HR-PDNA187 dataset, (top right) all proteins of APO82 dataset, (bottom left) HR-PDNA187*, 106 proteins of HR-PDNA187 dataset that have < 95% of seq. id with respect to DISPLAR training set, (bottom right) HR-PDNA187**, 87 proteins of HR-PDNA187 dataset that have < 95% of seq. id with respect to multiVORFFIP training set. For iJET 2 DNA , consensus predictions were obtained from 2 (in light green) and 8 (in dark green) runs out of 10. The clustering procedure was run using all three scoring schemes for each protein and the best patch or best combination of patches was retained for performance assessment. For DISPLAR, predicted patches were defined as formed by residues indicated as predicted (in lightblue). For multiVORFFIP, predicted patches were defined as formed by residues with a probability > 0.5 (in beige).

comparison tools with the default parameters. Predictions were defined as formed by residues indicated as predicted, for DISPLAR, and by residues with a normalized score (or probability) greater than 0.5, for multiVORFFIP.

DISPLAR is a neural network analysing the enrichment of positively charged residues, sequence conservation and solvent accessibility of the protein surface [START_REF] Tjong | Displar: an accurate method for predicting dna-binding sites on protein surfaces[END_REF]. We compared iJET 2 DNA against DISPLAR on the APO82 dataset and on the HR-PDNA187 dataset, after having removed the proteins used for training DISPLAR and their close homologs (≥95% of sequence identity). This resulted in 106 proteins out of 187 (HR-PDNA187*). iJET 2 DNA outperforms DISPLAR on Statistical performance values are given in percentages. HR-PDNA187*: 106 proteins of HR-PDNA187 dataset that have < 95% of seq. id with respect to DISPLAR training set. HR-PDNA187**: 87 proteins of HR-PDNA187 dataset that have < 95% of seq. id with respect to multiVORFFIP training set. iJET 2 DNA predictions were obtained from a consensus of 2 or 8 runs out of 10. The three scoring schemes were systematically used and the best patch or best combination of patches was retained. For DISPLAR, predicted patches were defined as formed by residue indicated ar predicted in the results. For multiVORFFIP, predicted patches were defined as formed by residues with probability > 0.5. both bound and unbound forms. Our method achieves ∼20% higher sensitivity and ∼10-15% higher F1-score, with similar PPV and accuracy (Table 2.7 and Fig. 2.10, top right and bottom left).

multiVORFFIP is a Random Forest ensemble classifier, integrating a wide range of structural, evolutionary, energy-based and experimental data (i.e. crystallographic B factors) [START_REF] Segura | A holistic in silico approach to predict functional sites in protein structures[END_REF]. Also in this case, we removed the proteins used for training multiVORFFIP and their close homologs (≥95% of sequence identity), which resulted in 87 proteins out of 187 sequences (HR-PDNA187**). multiVORFFIP predictions were defined from residues having a normalized score (or probability) greater than 0.5, as suggested by the authors to yield the best balance between sensitivity and precision. iJET 2 DNA achieves ∼20% higher sensitivity and ∼10% higher F1-score, with similar accuracy but ∼5-10% lower PPV on both bound and unbound forms (Table 2.7 and Fig. 2.10, top right and bottom right).

Overall, the analysis showed that iJET 2 DNA outperforms two state-of-the-art DNAbinding site prediction methods based on sophisticated machine learning algorithms and including a much larger number of features. Specifically, iJET 2 DNA is able to detect more interface residues than these methods, with similar precision. This observation holds on the interfaces from HR-PDNA187 and also on some of the alternative binding sites (see Table . 2.8 and the following paragraph).

JET 2

DNA detects alternative DNA-binding sites A protein may harbour multiple DNA-binding sites on its surface, sometimes located far away from each other. DNA binding to these sites may take place sequentially [Cheetham et al., 1999, Yin andSteitz, 2002] or cooperatively [START_REF] Li | Cyclic gmp-amp synthase is activated by double-stranded dna-induced oligomerization[END_REF] and is sometimes associated to significative conformational changes [Cheetham et al., 1999, Yin andSteitz, 2002]. Moreover, each of these binding sites may have a different role with a different level of importance in the accomplishment of the protein function [START_REF] Mierzejewska | Structural basis of the methylation specificity of r. dpni[END_REF][START_REF] Li | Cyclic gmp-amp synthase is activated by double-stranded dna-induced oligomerization[END_REF] and they may display different properties.

A crystallized complex may reveal only one of the multiple binding sites of a given protein. Consequently, considering only one structure to assess predictions on a given protein may lead to over-estimation of the number of false positives. We selected four proteins in our benchmark presenting multiple DNA-binding sites on their surface. The associated crystallographic structures from HR-PDNA187 display only one binding site occupied by the DNA. For each of these proteins, we searched for an alternative crystallographic structure displaying the second binding site or both binding sites occupied and re-evaluated the predictions. When applied to the original structures, JET 2 DNA correctly predicted the corresponding experimental interfaces and also the four alternative DNA-binding sites, revealed only in the alternative experimental structures collected afterward (Fig. 2.11, left panels, and Table . 2.8). When applied to the corresponding four alternative structures, JET 2 DNA was still able to correctly predict all the DNA-binding sites (Fig. 2.11, right panels, and Table . 2.8) despite the extensive conformational changes between the original and the alternative structures of some of the studied proteins. Thus, JET 2 DNA enabled revealing alternative binding sites unknown from our dataset. Moreover, thanks to its multiple scoring strategies and the different features they employ for the prediction, JET 2 DNA is able to detect multiple DNA interaction sites although the signal of one of them may be covered by the much stronger conservation signal of another one (Fig. 2.11a-b). For the same reason, as already discussed above (see Section 2.8.4), it also helps in understanding the different properties of: i) each of these multiple DNA-binding sites located on distinct protein surface regions (Fig. 2.11a-b); ii) patches of residues corresponding to different subregions of the same binding site (Fig. 2.11f). Interestingly, DISPLAR and multiVORFFIP miss some of these multiple DNA-binding sites completely or almost completely, especially when retested on conformations that were used for the training and where the DNA was bound to only one of these multiple binding sites (Table . 2.8 and Fig. 2.12-2.13). In the following we will briefly discuss each case.

1. RNA polymerase from bacteriophage T7 (T7RNAP). This protein initially binds the DNA promoter through its recognition site [START_REF] Cheetham | Structural basis for initiation of transcription from an rna polymerase-promoter complex[END_REF], Durniak et al., 2008] (site 1, Fig. 2.11a, left, PDB: 1CEZ) and after extensive conformational changes, it starts the transcription through its catalytic active site [START_REF] Yin | Structural basis for the transition from initiation to elongation transcription in t7 rna polymerase[END_REF] (site 2, Fig. 2.11b, left, PDB: 1MSW). Despite the large conformational changes between the two structures, D-SC1 (and D-SC2 with comparable values) correctly detected the catalytic active site (Fig. 2.11a and b, right, orange, and Table . 2.8) while D-SC3 predicted the recognition site and some regions binding the upstream and downstream parts of the DNA outside the internal active site (Fig. 2.11a and b, right, blue, and Table . 2.8), in both structures. Combining the predictions obtained by the two D-SC on both binding sites, we reached F1-scores of 48% and 49% on the original and alternative structures, respectively. The fact that the two binding sites were predicted by different D-SC suggests that they are characterized by different properties. These properties correlate with the binding sites' respective roles: the active site is highly conserved and concave, while the recognition site is much less conserved, because specific of this protein family [START_REF] Cheetham | Structural basis for initiation of transcription from an rna polymerase-promoter complex[END_REF], and much more exposed and displaying good physico-chemical properties (Fig. 2.11a and b, left, experimental sites colored by conservation levels). Although the conservation signal of the active site masked the recognition site one, D-SC3 still enabled the detection of this latter by exploiting different features from the other scoring schemes, specifically disregarding information coming from conservation. This brings out the relevance of having predictions perfomed by multiple scoring schemes.

2. N-terminal domain of the adeno-associated virus (AAV) replication protein (Rep). This protein contains three distinct DNA-binding sites: a stem loop sequence specific binding site [START_REF] Hickman | The nuclease domain of adeno-associated virus rep coordinates replication initiation using two distinct dna recognition interfaces[END_REF] (site 1, Fig. 2.11c, left, PDB: 1UUT), a tetranucleotide repeat recognition site [START_REF] Hickman | The nuclease domain of adeno-associated virus rep coordinates replication initiation using two distinct dna recognition interfaces[END_REF] (site 2, Fig. 2.11d, left, PDB: 1RZ9), and the Tyr153 active site [START_REF] Hickman | The nuclease domain of adeno-associated virus rep coordinates replication initiation using two distinct dna recognition interfaces[END_REF]. No PDB structures are available for the latter, which was thus not analysed. Both D-SC1 and D-SC3 lead to an accurate prediction of both the remaining binding sites (F1=73% and F1=58%) (Fig. 2.11c and d,and Table. 2.8), that display rather low conservation signals, good physico-chemical properties and are mostly protruding/exposed. 3. R.DpnI, a modification-dependent restriction endonuclease. In the structure comprised in our benchmark, the DNA is bound only to the winged-helix domain binding site [START_REF] Siwek | Crystal structure and mechanism of action of the n6methyladenine-dependent type iim restriction endonuclease r. dpni[END_REF] (site 1, Fig. 2.11e, left), leaving its catalytic domain (site 2 ) in a substrate-free form and partially disordered. In the alternative structure, both DNA-binding sites are occupied (site 1 and site 2, Fig. 2.11f, left), and the active site is ordered [START_REF] Mierzejewska | Structural basis of the methylation specificity of r. dpni[END_REF]. The relative domain orientations differ drastically between the two structures. Despite these conformational changes, both binding sites are accurately identified in both structures. Combining D-SC1 with D-SC3 leads to the most accurate prediction in both cases (F1=68% and F1=67%, respectively) (Fig. 2.11e and f, right, in orange and in blue; Table . 2.8). The fact that both D-SC are required to better detect each binding site reflects the heterogeneity of the conservation signal within each site (Fig. 2.11e and f, left, colored by conservation level). In each site, the D-SC3 prediction (in blue) completes the D-SC1 one (in orange) by detecting the lowly conserved subregions that D-SC1 was not able to detect, highlighting once again the relevance of multiple scoring schemes.
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4. Cyclic GMP-AMP synthase (cGAS). This cytosolic DNA sensor mediates innate antimicrobial immunity, catalyzing the synthesis of a noncanonical cyclic dinucleotide from ATP and GTP. While in the 4K98 structure [START_REF] Gao | Cyclic [g (2âĂš, 5âĂš) pa (3âĂš, 5âĂš) p] is the metazoan second messenger produced by dna-activated cyclic gmp-amp synthase[END_REF] cGAS is monomeric and binds only one molecule of dsDNA via the site we will call site 1 (Fig. 2.11g, left), the more recent structure 4LEY [START_REF] Li | Cyclic gmp-amp synthase is activated by double-stranded dna-induced oligomerization[END_REF] revealed that two dsDNA molecules asymmetrically crosslink a cGAS dimer, forming a 2:2 complex, through two DNA-binding sites (site 1+ site 2 on each protein chain, A and B, Fig. 2.11h, left). Since the small ligand-binding active site is much more conserved than the two DNA-binding sites, this case is particularly difficult. In the monomeric form, only D-SC3 is able to identify the two DNA-binding sites (Fig. 2.11g, right, in blue) (F1=37%, Table . 2.8). Upon dimerization, the interface geometry changes such that the two sites become completely concave (Fig. 2.11h, left). They are well detected by D-SC2, and completing the prediction with D-SC3 enables achieving an F1-score of 45% (Fig. 2.11h,right,in dark green and in blue,and Table. 2.8).

To sum up, by combining the different D-SC implemented in JET 2 DNA , we are able to detect several DNA-binding sites, associated with different functions, at the surface of the same protein, understand their different origins and identify subregions within them displaying different properties. JET 2 DNA predictions were found to be robust to conformational and stoichiometry changes on these examples, as shown above at large scale, reaching F1 values > 20% in all cases. By comparison, DISPLAR and multiVORFFIP predictions miss some of these multiple binding sites completely (F1=0%) or almost completely (F1< 10%) (Table . 2.8 and Fig. 2.12-2.13). Moreover, no understanding about different properties of the binding sites can be reached with these tools. JET 2 also allows the user to manually choose a particular scoring scheme. In the following we DNA predictions were obtained from a consensus of 2 or 5 runs out of 10, depending on the analysed protein. The three scoring schemes were systematically used and performances for each of them as well as for the best patch or best combination of patches (B.C.P.) are given. For this latter case, the scoring schemes giving the best combination of patches are reported in square brackets. The performance values obtained when running the complete clustering procedure of the program are also given in round brackets, if the corresponding F1 value is higher than the default clustering procedure. For each case studied, the first row corresponds to the occupied DNA-binding site revealed in the structure comprised in our HR-PDNA187 dataset, the second row corresponds to the occupied DNA-binding site/s revealed in the alternative structure and the third row corresponds to the union of all the DNA-binding residues revealed in the two structures. Statistical values computed on the experimental interface revealed in the structure reported in the same column are reported in white lines. Statistical values computed on the experimental interface mapped from the other structure (column beside) and on the union of all DNA-binding residues from the two structures are reported in grey lines. For DISPLAR and multiVORFFIP (MV), values in red mean that the tool was trained on that complex. Bold values are the best ones excluding the red ones. 
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Conclusions

In this chapter, we have conducted a thorough analysis of protein-DNA interfaces and proposed a new method to predict them. We have collected and carefully curated 187 high resolution protein-DNA complexes representative of all known types of protein-DNA interactions. This new dataset, supplemented by the 82 available protein unbound conformations, could serve as a reference benchmark for the community. We have analyzed the sequence-and structure-based properties of the protein-DNA interfaces comprised in this dataset and compared them with respect to non-interacting protein regions and to protein-protein interfaces. We have shown that the support-core-rim model that we used [START_REF] Laine | Local geometry and evolutionary conservation of protein surfaces reveal the multiple recognition patches in protein-protein interactions[END_REF] for describing protein-protein interfaces should be complemented by the core-support-rim one and that both are useful to describe the properties of protein-DNA interfaces. We found that protein-DNA interfaces are more conserved than non-interacting regions and also than protein-protein interfaces. Positively charged and polar residues are overrepresented in the former, especially in the more exposed parts of the interface, the core and the rim, while hydrophobic residues are over-represented in the latter and usually located in the support. Regarding the geometry, protein-DNA interfaces may display very characteristic shapes not common in protein-protein interactions, like the "enveloping" motif or more general concave interfaces that we found especially for polymerases and some nucleases.

In contrast to machine-learning methods, our new method JET 2 DNA does not require training data and allows an easier and better interpretation of the predictions. It straightforwardly combines only three sequence-and structure-based descriptors, namely evolutionary conservation, amino acid physico-chemical properties and geometry of the protein surface. It implements three different scoring strategies. In the two first strategies, D-SC1 and D-SC2, conservation plays an important role, and the main difference between the two is that D-SC2 explicitly targets concave binding sites. The third strategy, D-SC3, disregards conservations to enable the detection of missing positives in D-SC1 and D-SC2 predictions, of alternative DNA-binding sites whose lower conservation signal is hidden by a more conserved site, and of generic DNA-binding sites in absence of evolutionary information. We assessed the performance of JET 2 DNA on our dataset and showed that the predictions match well known experimental binding sites. Moreover, we have demonstrated that JET 2 DNA is robust to conformational and stoichiometry changes, and that it outperforms established prediction tools relying on more sophisticated machine learning algorithms, namely DISPLAR and multiVORFFIP.

Beyond predicting DNA-binding sites, JET 2 DNA provides a unique way to understand the origins and properties of these sites and interpret those in light of their functions. Transcription factors typically display single-or double-headed binding modes [START_REF] Jones | Protein-dna interactions: A structural analysis1[END_REF], with one or two highly conserved binding sites, which are well detected by D-SC1. Enzymes usually have larger interfaces to accommodate an exposed recognition site, detected by D-SC3, and a highly conserved active site, detected by D-SC1, or highly segmented protein-DNA interfaces, where the protein interacts with the DNA through multidomain units in addition to their active site [START_REF] Nadassy | Structural features of protein-nucleic acid recognition sites[END_REF], Jones et al., 1999, Wodak and Janin, 2002].

Moreover, JET 2 DNA is useful to unravel the heterogeneity of signals comprised within a given binding site and to partition them in subregions displaying coherent properties. The predictions can help designing or repurposing small molecules to target protein-DNA interfaces in an intelligent way, e.g. specifically targeting the non-conserved subregions to avoid side effects.

We discussed several cases in the PDB where the same complex was solved in different conditions or the same protein binding different partners. These cases show a significant variability between one structure to another, in terms of conformational states and of binding sites. In particular, a crystallized structure may reveal only one of the multiple DNA-binding sites of a given protein, occupied by the partner, or may comprise a truncated or misplaced DNA, resulting in a "partial" associated binding site. In this context, we showed that JET 2 DNA is instrumental in discovering these alternative DNA-binding sites not known from the crystallographic structure and in deciphering their properties. Thus, it opens up new perspectives for the discovery of DNA-binding sites not yet experimentally determined and for the design of biomolecular interfaces. There are still a relatively small number of protein-DNA complexes in the PDB and and even smaller number of cases where the protein binds to DNA through several sites that display different properties. As more structures are coming out, we shall become more aware of the complexity of the usage of the protein surface by DNA. This questions the pertinence of using only one structure to assess DNA-binding sites predictions, and also the pertinence of developing machine learning methods that are trained on these "partial" complexes. This issue was adressed in a paper that we discovered only recently [START_REF] Yan | Drnapred, fast sequencebased method that accurately predicts and discriminates dna-and rna-binding residues[END_REF]. For every complex, they take as interface residues the union of all residues detected at the interface in all the homologous structures stored in the PDB, to tackle the problem of considering only "partial" interfaces. This was sort of what we did for the evaluation of the four cases for which we discovered the alternative DNA-binding sites, although we considered only the union of these two distinct interfaces instead of also all the other slightly different ones.

Future perspectives

Concerning a possible upgrade of JET 2 DNA , it would be interesting to analyse if the inclusion of the electrostatic potential in addition or replacing the residue propensities could lead to a non-negligible improvement of the performance. In fact, it was observed that the DNA-binding sites were, in general, amongst the top 10% of patches with the largest positive electrostatic scores, which makes the electrostatic potential a very discriminating feature [START_REF] Jones | Using electrostatic potentials to predict dna-binding sites on dna-binding proteins[END_REF]. In Fig. 2.14 is reported an example of a homing endonuclease of LHE subfamily in complex with its DNA target (PDB 2BGG) [START_REF] Takeuchi | Tapping natural reservoirs of homing endonucleases for targeted gene modification[END_REF]. The coupling of the evolutionary conservation (Fig. 2.14a) and the interface propensities signals (Fig. 2.14b) of its DNA-binding site was not enough, resulting in a partial lack of prediction by JET 2 DNA (Fig. 2.14c, circled in green). However, results obtained with CHARMM PBEQ solver [START_REF]Pbeq-solver for online visualization of electrostatic potential of biomolecules[END_REF], Jo et al., 2008a, Im et al., 1998], using default parameters except the dielectric constant for the protein interior that was fixed to 4.0, highlights a very positive electrostatic potential for regions not detected by JET 2 DNA (Fig. 2.14d, circled in green). This suggests that the integrating the signal coming from the electrostatic potential, by promoting positively charged regions, in addition to or replacing the interface propensity values could lead to a more accurate prediction of the real interface by integrating residues that are currently not detected. Finally, it could be very valuable to develop a method that can discriminate between protein regions conserved overall the phylogenetic trees, regions conserved only in a subfamily or a subtree and regions not conserved in either of these two cases. For example in two structures, the RNA polymerase from bacteriophage T7 (T7RNAP) in Fig. 2.11a-b and the homing endonuclease of LHE subfamily in Fig. 2.14a, the active sites are very conserved while the interface regions designed for sequence-specific recognition are low conserved and less well detected by JET 2 DNA . However, these recognition regions could be conserved if we looked only at the specific subfamily or at a more restricted subtree. Being able to detect a conservation signal of this type and to discriminate it from the conservation over the whole trees can improve the binding sites prediction. This could be extremely useful in cases where a first binding site covers the conservation signal of a second one or where a single binding site is composed of heterogeneous regions. Moreover, these kind 88CHAPTER 2. ANALYSIS AND PREDICTION OF PROTEIN-DNA INTERFACES of results could also bring out very interesting insights about the function of the single residue or a more extended surface region and can be very helpful also for mutational analysis. 

Introduction

The work presented in this chapter was mostly done in collaboration with an undergraduate student from Stanford University, whom I supervised during his summer two-months intership in our group.

In the following, I present some analysis to compare the evolutionary conservation, physico-chemical and geometrical properties of protein-RNA and protein-DNA interfaces.

Then, I show how using the same pipeline, described in the previous chapter to predict protein-DNA interfaces, and by changing only the interface propensity values, it is possible to correctly predict also RNA-binding sites on protein structures. I refer to the pipeline with the propensity values adapted to the RNA-binding sites as to JET 2 RNA . Finally, I also present a couple of cases where apparently "false positive" predicted residues actually correspond to known RNA-binding sites, that are revealed in different crystallographic structures of the same protein, as demonstrated also for protein-DNA interface predictions. This highlights the importance to consider proteins as dynamic entities, with an ensemble of possible conformations and partners, and to take into account, in the future, the ensemble of interface residues revealed by all the crystallographic structures of a certain protein-partner complex.

Protein-RNA Docking Benchmark 2.0

I used the Protein-RNA Docking Benchmark version 2.0 (PRDB2) [START_REF] Nithin | A nonredundant protein-rna docking benchmark version 2.0[END_REF] to analyse the properties at protein-RNA interfaces and compare them with the ones computed for our dataset of protein-DNA complexes. I decided to use this benchmark instead of creating a new one because it is already very recent (2017), updated from a previous version compiled in 2012 [START_REF] Barik | A protein-rna docking benchmark (i): Nonredundant cases[END_REF], and it was designed for structural analysis.

The PRDB2 consists of X-ray and NMR structures. For selected X-ray structures the resolution is better than 3.0 Å and for NMR ones the average structure of the ensembles of each entry was retained. Entries with protein chains of <30 amino acids or RNA chains of <5 nucleotides were discarded. Redundancy was removed at the level of 35% sequence identity for both protein and RNA. In case of multiple PDB IDs satisfying this criteria, the complexes with the best resolution and minimum number of missing residues were retained. All the retained structures were checked for their biological assembly using the informations in the PDB file or in the PDBj database [START_REF] Kinjo | Protein data bank japan (pdbj): updated user interfaces, resource description framework, analysis tools for large structures[END_REF], Kinjo et al., 2018], and the correctness of the stoichiometry was verified with PISA [START_REF] Krissinel | Protein interfaces, surfaces and assemblies service pisa at european bioinformatics institute[END_REF]. Multi-subunit assemblies like ribosomes and viral capsids were not considered [Nithin et al., 2017, Barik andBahadur, 2012].

The PRDB2 was divided by classes of several types: (i) by the available unbound forms of the structures, if both protein and RNA were available in the unbound forms or only one of them; (ii) by the extent of conformational change upon complex formation (rigid, semi-flexible and fully flexible); (iii) by the RNA type, namely t-RNA, ribosomal RNA, duplex RNA and single-stranded RNA. In the following, all the analysis reported were done considering the benchmark as a whole or according to the classification by the RNA type. Specifically, the PRDB2 comprises 126 protein-RNA complexes, divided in 52 protein-duplex RNA, 41 protein-single strand RNA (ssRNA), 28 protein-tRNA and 5 protein-ribosomal RNA (rRNA) complexes [START_REF] Nithin | A nonredundant protein-rna docking benchmark version 2.0[END_REF]. We performed the analysis on 125 out of the 126 complexes, since one was too large to run the JET 2 RNA algorithm, being composed of 10 protein chains (PDB 2GIC).

Definition of interface residues

As in Section 2.4, accessibility of residues in presence and in absence of RNA was calculated using NACCESS 2.1.1 [START_REF] Hubbard | Naccess version 2.1. 1[END_REF] with a probe size of 1.4 Å. See Section 1.3.1 for a more detailed description of the surface accessibility calculation.

Interface residues were defined as those showing any change in their relative accessible surface area upon binding (∆rasa > 0), and surface residues were defined as those having at least 5% of relative accessible surface area [START_REF] Miller | Interior and surface of monomeric proteins[END_REF], as for protein-DNA interfaces in Section 2.5.

We describe experimental protein interfaces by using Levy's model [Levy, 2010], used already to classify protein-DNA interfaces in Section 2.5. Let us recall that this model classifies interface residues depending on their surface accessibility in three structural components: support, core and rim experimental layers the support, the core and the rim. For simplicity, I reformulate here the definition of the support, core and rim for RNA-binding residues. Given the structure of a protein-RNA complex, support residues are buried in presence (rasa withRN A < 0.25) and in absence of RNA (rasa withoutRN A < 0.25); core residues are exposed in absence of RNA (rasa withoutRN A ≥ 0.25) and become buried upon binding (rasa withRN A < 0.25); rim residues are exposed in presence (rasa withRN A ≥ 0.25) and in absence (rasa withoutRN A ≥ 0.25) of RNA. See Table 2.2, Fig. 2.1 and Fig. 2.8a) for a schema and examples of support, core and rim residues (in yellow, brown and green, respectively) in protein-DNA interfaces.

In the following, some of the analysis were performed taking into account the total ensemble of residues comprised in the full biological units of the complexes, while others were performed taking into account only non-redundant chains of every PDB. In this latter case, for each complex we computed the ensemble of non-redundant interface residues keeping the union of all the residues at the interface with the RNA in at least one of the homologous chains in the complex. In the same way, we computed the ensemble of non redundant non-interface residues of each complex as the union of all the residues that are not at the interface in any of the homologous protein chains in the PDB. 

Results

Protein-RNA interface propensity values

To figure out whether we could use the JET 2 DNA pipeline to predict RNA-binding sites on protein structures, we analysed the properties of the 125 protein-RNA complexes in the PRDB2.

First of all, we computed the interface propensity values for the amino acids. In this analysis, we perfomed the analysis by taking into account the non-redundant set of interface and non-interface residues over the 125 protein-RNA complexes, selected as described above. The propensity of an amino acid to be located at a protein-RNA interface (PC RNA ) was calculated by using the following equation:

PC RNA = n inter i i n inter i n not inter i i n not inter i (3.1)
where n inter i , with i=1, 2 . . . 20, is the number of residue of type i at the interface, i n inter i is the total number of residues at the interface, n not inter i is the number of residue of type i outside the interface and i n not inter i is the total number of residues outside the interface. Interface propesisty greater than 1 indicates that the residue is more frequent at the protein-RNA interface than outside.

To assess the statistical significance of the propensity values obtained, we computed the errors associated to them performing a bootstrap procedure, that relies on random sampling with replacement to obtain random samples of the same dimension n of the original dataset. The number of random sampling repetitions was fixed to 1000 and the confidence interval to 95%.

In the same way, we calculated propensity values for protein-DNA interfaces on the non-redundant ensemble of residues in our HR-PDNA187 dataset, instead of using propensity values taken from [START_REF] Park | Dbbp: database of binding pairs in protein-nucleic acid interactions[END_REF], as in the previous chapter. In this way, we were able to compute also the errors associated to the values and we exploited these calculations to verify if our results were in agreement with the protein-DNA propensities found in [START_REF] Park | Dbbp: database of binding pairs in protein-nucleic acid interactions[END_REF], as described in the following.

In Fig. 3.1a are reported the interface propensity values for the 125 protein-RNA (in blue) and the 187 protein-DNA interfaces (in orange), with the associated errors with a confidence level of 95%.

First, the propensity values computed on our HR-PDNA187 dataset (Fig. 3.1a) and the ones computed in [START_REF] Park | Dbbp: database of binding pairs in protein-nucleic acid interactions[END_REF], reported in the previous chapter (Fig. 2.6 of Section 2.7.2.2), show similar trends, with positively charged amino acids have the highest propensities, followed by polar ones, and hydrophobic and negatively charged residues show lower values. However, the values in the two plots are not exactly the same, observing a less sharp discrepancy between values related to amino acids with different physico-chemical properties (for example, between positives/polar and hydrophobic ones, but also between Arg and Lys). This could be due to two main reasons: i) in [START_REF] Park | Dbbp: database of binding pairs in protein-nucleic acid interactions[END_REF], they considered all the complexes in the PDB with a resolution of 3.0 Å or better, without filtering them by sequence In blue, absolute values of interface propensities for 125 non-redundant protein-RNA interfaces in the PRDB2 benchmark. In orange, absolute values of interface propensities for the 187 non-redundant protein-DNA interfaces in our HR-PDNA187 dataset. Amino acids are ordered from the most to the less hydrophobic one, based on the Kyte and Doolittle hydrophobicity scale [START_REF] Kyte | A simple method for displaying the hydropathic character of a protein[END_REF].

redundancy, resulting in 2,068 protein-DNA complexes, contrary to 187 structures non-redundant at 25% of sequence identity in the HR-PDNA187 dataset; ii) they used the inference of hydrogen bonds between protein and DNA atoms to define interface residues, that is a much stricter constraint with respect to the change in the residue solvent accessibility that we used to define interfaces.

Comparing protein-DNA and protein-RNA interface propensities, although there is a very slight difference for some of the amino acids, both residue sets show a very similar trend, contrary to what we found in the comparison between protein-protein and protein-DNA interface propensities in Fig. 2.6 of Section 2.7.2.2. Thus, starting from the amino acids showing the highest propensities we find positively charged residues, followed by polar ones, and hydrophobic with negatively charged residues showing the lowest values. As for protein-DNA interfaces, this trend can be explained by the fact an excess of positively charged and polar residues at a RNA-binding site serves to counterbalance the negative charge of the RNA phosphate backbone. The minimal differences for some of the amino acids could be due to the fact that a great proportion of RNA molecules are single stranded, contrary to DNA, and thus tend to form more amino acid-base interactions and less amino acid-backbone ones than the DNA-binding proteins [START_REF] Lejeune | Protein-nucleic acid recognition: statistical analysis of atomic interactions and influence of dna structure[END_REF]. However, a bias due to the choice of the dataset cannot be excluded. The similar trend found for protein-DNA and protein-RNA interface propensities is in agreement to the similar trends found in [START_REF] Park | Dbbp: database of binding pairs in protein-nucleic acid interactions[END_REF], Lejeune et al., 2005] when comparing these two types of interfaces. Slight different absolute values can be observed for some amino acids between our results and the ones reported in the other two papers, that could be due to the choice of a different dataset or a different definition of interface residues.

With respect to previous studies on RNA-binding proteins [START_REF] Park | Dbbp: database of binding pairs in protein-nucleic acid interactions[END_REF], Lejeune et al., 2005], we exploit the classification of protein-RNA complexes in the PRDB2, based on the RNA type, to further analyse the interface propensities of three of the four classes separately, to figure out whether possibly different trends between classes may be helpful in discriminating different types of RNA-binding sites. The ribosomal RNA-binding proteins class was not analysed, since it consists only of 5 structures and the values would not have been meaningful. However, all the three classes analysed (duplexRNA, ssRNA and tRNA) show very similar propensity values between them (Fig. 3.1b).

We can thus conclude that propensities at protein-RNA interfaces are similar to those of protein-DNA ones and do not depend on the type of RNA.

Evolutionary conservation, physico-chemical and geometrical properties distribution at protein-RNA interfaces

As for protein-DNA interfaces, we estimated the degree of evolutionary conservation (T JET ), RNA-binding residues propensities (PC RNA ) and local and global burial degree (CV local and CV global , see Section 2.7.2 for precise definitions of the four features) in the support, core and rim regions with respect to the rest of the protein surface (Fig. 3.3). To do this, we computed the percentage of interacting residues having values, related to the four features, above the median computed over the whole protein surface. We performed the same computations for the 125 structures in the whole PRDB2 bechmark (Fig. 3.3a) and for each of the four RNA classes separately (Fig. 3.3b-e).

T JET distribution shows that protein-RNA interfaces are significantly more conserved than the rest of the protein (Fig. 3.3, first column), with a conservation signal particularly strong in the support and the core. Concerning the interface propensities, residues with high PC RNA values tend to be located in more exposed regions of protein-RNA interfaces, namely in the core and the rim (Fig. 3.3, second column). Finally, values of (1-CV local ) and (1-CV global ) increase when passing from the support, through the core, to the rim of protein-RNA interfaces (Fig. 3.3, third column). To easily compare DNA-, polymerase-, RNA-and protein-protein interface properties distributions, we summarise in Fig. 3.2 the overall findings for the four types of interfaces.

Overall, the trends displayed for evolutionary conservation, physico-chemical and geometrical properties in the support, core and rim are very similar in all the four RNA classes (Fig. 3.3b-e). Moreover, they are also very similar to the trends observed for protein-DNA interfaces in Fig. 3.2b. As a consequence, it results that, as for DNA-binding sites (Fig. 3.2b), protein-RNA interfaces (Fig. 3.2a) tend to be more conserved than protein-protein ones (Fig. 3.2d) in all the three regions. By contrast, residues displaying physico-chemical properties favourable to protein-protein binding (high PC prot values) are mainly found in the support, and to a lesser extent in the core, of protein-protein interfaces (Fig. 3.2d), while residues with high PC RNA values tend to be located in the core and rim of protein-RNA interfaces (Fig. 3.2b). As discussed in the previous chapter, this reflects the fact that different amino acid types are preferred to be located at a protein-nucleic acid or a protein-protein interface, the former preferring charged and polar residues that tend to be exposed to the solvent, while the latter are enriched in hydrophobic ones, which prefer to be located towards the interior of the interface.

We did not find any particular distribution specific of one of the classes in which the PRDB2 is divided of any of the four properties (T JET , PC RNA , CV local and CV global ), contrary to what we found for the polymerase class in the previous chapter, characterised by very low (1-CV global ) values coming from the very specific concave shape of the polymerase-DNA interfaces (Fig. 3.2c). However, the classification of the proteins in the PRDB2 is based on the type of RNA, while in the case of protein-DNA complexes the classification was based on the type of protein. Thus, we cannot exclude that is possible to find a distribution of properties that is specific to a particular protein-RNA interface class, if we classify the PRDB2 benchmark following the same criteria we used for the HR-PDNA187 dataset, based on the type of protein instead of the type of RNA.

Average JET 2

RNA performance on the PRDB2 benchmark

Although globally similar, we replaced in JET 2 DNA the propensity values used to predict protein-DNA interfaces with the ones computed for RNA-binding sites, showed in Fig. 3.1a and we will refer to it as JET 2 RNA . Since the properties distribution on RNA-binding sites is very similar to the DNA-binding ones and, as explained above, we cannot exclude a concave class of protein-RNA interfaces, we used the same three scoring schemes, described in Section 2.8.3, used to predict DNA-binding sites on protein surfaces.

We evaluated JET 2 RNA on the 125 complexes of the PRDB2 benchmark, varying the consensus threshold between 2, 5 and 8 out of 10 runs to define a residue as predicted. Statistical values used to assess the performance are the same five used to evaluate JET 2 DNA (see Section 2.8.5). JET 2 RNA sensitivity, PPV and F1 values on the PRDB2 benchmark result ∼10% lower than the ones of JET 2 DNA when evaluated on the HR-PDNA187 dataset. Specificity and Accuracy are, by contrast, slightly better than the JET 2 DNA ones. Overall, we can conclude that replacing the appropriate interface propensity values and employing the same scoring schemes developed to recognise protein-DNA interfaces, JET 2 RNA is able to correctly detect RNA-binding sites of various types on protein surfaces. Performance on the PRDB2 benchmark are reported in Table 3.1.

We can, thus, conclude that the scoring schemes developed to predict DNA-binding sites are directly transferable to the prediction of RNA-binding ones. Moreover, the PRDB2 benchmark constitutes a nice test set, since the scoring schemes were absolutely not designed based on it.

False positives explained by alternative RNA conformations and partners

We demonstrated how some additional patches of residues predicted by JET 2 in [START_REF] Laine | Local geometry and evolutionary conservation of protein surfaces reveal the multiple recognition patches in protein-protein interactions[END_REF] and JET 2 DNA in Section 2.8.7 turned out to correspond to validated protein-and DNA-binding sites, respectively, revealed in other experimental structures not comprised in the initial datasets. Therefore, we wanted to verify if this was true also for some additional patches of residues predicted by JET 2 RNA on some structures of the PRDB2. In the following, we analyse the human tryptophanyl-tRNA synthetase and the Aquifex aeolicus KsgA methyltransferase.

The human tryptophanyl-tRNA synthetase catalyzes aminoacylations of tRNAs, first step of protein synthesis. This enzyme is reported to interact directly with elongation factor 1α, which carries charged tRNA to the ribosome. The human tryptophanyl-tRNA synthetase was crystallised in the pdb 2AZX with a 50/50% mixture of charged and uncharged tRNA [START_REF] Yang | Two conformations of a crystalline human trna synthetase-trna complex: implications for protein synthesis[END_REF]. These crystals captured two conformations of the complex, which are nearly identical with respect to the protein conformation but sharply differ by the way charged and uncharged tRNAs are bound. In one biological unit, two uncharged tRNA molecules bind both their anticodons and acceptor stems symmetrically across the surface of the biological dimer. In this conformation, each tRNA has its anticodon loop and acceptor stem interacting with different subunits. In the other biological unit, a charged tRNA molecule is bound only by the anticodon, the acceptor stem being dissociated from the synthetase and having space to interact precisely with EF-1α, suggesting that Union of all interface residues JET 2 RNA prediction on 3FTE the product of aminoacylation can be directly handed off to EF-1alpha for the next step of protein synthesis. The two conformations were named "association complex" and "dissociation complex", respectively. The dissociation complex was crystallized in the same conformation also in pdb 2AKE [START_REF] Shen | Structure of human tryptophanyl-trna synthetase in complex with trnatrp reveals the molecular basis of trna recognition and specificity[END_REF].

In the PRDB2, they retained the biological unit of the association complex, with both anticodon and acceptor stem of each RNA bound to the protein, probably because is s a manually curated dataset and thus the conformation with the most exhaustive representation of the complete interface was retained. However, we wanted to highlight how important is to take into account that different PDB structures or biological units of the same structure can reveal different slightly or drastically different interaction sites on a protein surface with the same partner. This information could be difficult and tricky to consider when analysing large datasets not manually curated but an effort has to be made in this direction since the final information on the interaction surface and thus the associated properties and validations of tool can sharply differ, as we show in this example. In fact, the computed interface residues in association complex are roughly the double of the ones computed for the dissociation complex. Moreover, the conservation level of the interaction patch with the anticodon is slightly lower than the conservation of the acceptor stem interaction region (Fig. 3.4a-b), that could results in an incorrect information about the properties of the RNA-binding site when considering only the dissociation complex.

JET 2 RNA correctly predicted both the anticodon and the acceptor stem interaction patches on the 2AZX pdb. However, the former was detected by D-SC3 while the latter by D-SC1 (Fig. 3.4c), accordingly to the lower and the higher conservation signal of the two regions, respectively (Fig. 3.4a-b). Once again, providing the tool by multiple scoring schemes able to detect different surface properties helps in infer the main characteristics of distinct binding regions. Concerning the importance of considering the ensemble of conformations of a certain complex instead of a single PDB structure or biological assembly, statistical values of JET 2 RNA performance when evaluated on the dissociation (biological unit 2) and association complex (biological unit 1) are reported in Table 3.2. In the former, where only the anticodon binding region can be take into account as interface with the RNA, Sensitivity, PPV and F1 values are largely lower than in association conformation including the acceptor stem region as RNA-binding site.

Aquifex aeolicus KsgA (aa-KsgA) is an adenosine methyltransferase. Structures of aa-KsgA in complex with a fragment of rRNA containing the target adenosine bases to methylate (pdb 3FTE, KsgA-RNA) and in complex with both rRNA and S-adenosylhomocysteine (SAH, reaction product of cofactor S-adenosylmethionine) (pdb 3FTF, KsgA-RNA-SAH) were crystallized by [START_REF] Tu | Structural basis for binding of rna and cofactor by a ksga methyltransferase[END_REF], revealing conformational changes of RNA with respect to the protein between the binary and ternary complexes. The structures of the bound RNA in the two complexes are similar. However, the binding of the SAH cofactor results in a change of the relative positioning between the protein and the RNA and with associated enhancement of the interaction surface. A third structure of aa-KsgA was crystallized in complex with rRNA and Era, a GTPase required for the maturation of 16S rRNA and assembly 102CHAPTER 3. ANALYSIS AND PREDICTION OF PROTEIN-RNA INTERFACES RNA performance for proteins revealing different interfaces with the RNA partner in different the crystallographic structures. On the left, the performance with respect to the experimental interface detected in the PDB structure comprised in the PRDB2 benchmark. On the right, the performance with respect to the union of all interface residues detected in different PDB structures of the same protein in complex with a RNA molecule. Statistical values are given in percentages. iJET 2 RNA predictions were obtained with a consensus of 5 runs out of 10. The three scoring schemes were systematically used and the best patch or best combination of patches was retained. The scoring schemes giving the best patch or combination of patches are reported in square brackets.

complex in PRDB2

union of complexes of the 30S ribosomal subunit (pdb 3R9X) [START_REF] Tu | The era gtpase recognizes the gaucaccucc sequence and binds helix 45 near the 3âĂš end of 16s rrna[END_REF]. In this structure, the RNA is bound to KsgA in a completely different conformation with respect to the previous two structures, being essentially orthogonal to the other two RNA molecules in 3FTE and 3FTF. In this conformation, the active site of KsgA is distant from the RNA methylation targets. Therefore, the mode of protein-RNA interaction is not consistent with the methyltransferase activity of KsgA. Rather, the interaction mimics previously predicted KsgA-rRNA interactions [START_REF] O'farrell | Sequence and structural evolution of the ksga/dim1 methyltransferase family[END_REF]]. Also in this example, we can notice how sharply differ the proportion and the location of interface residues when considering only one or the ensemble of complexes of KsgA with rRNA. When evaluating the JET 2 RNA prediction with respect to interface residues calculated only on the KsgA-RNA binary complex (Fig. 3.5a) and on the union of all interface residues computed on the KsgA-RNA binary, KsgA-RNA-SAH ternary and KsgA-RNA-Era complexes (Fig. 3.5a-d), the PPV and F1 values dramatically increase (Table 3.2).

Conclusions

In this chapter, we have conducted a thorough analysis of protein-RNA interfaces and verified if the method presented in the previous chapter was able to correctly predict also this other type of binding sites. To do it, we chose to use the Protein-RNA Docking Benchmark 2.0 (PRDB2) [START_REF] Nithin | A nonredundant protein-rna docking benchmark version 2.0[END_REF], developed and curated to perform structural analysis of protein-RNA interactions and recently updated with new complexes. Complexes in this dataset were accurately divided by the authors in several types of classes and we chose to exploit the classification based on the type of RNA bound to the protein to perfom more specific analysis in addition to the ones performed on the entire benchmark as a whole.

We first computed interface propensities for the entire PRDB2 benchmark and for the three classes of proteins binding duplex RNA, single strand RNA and tRNA. The analysis on the whole PRDB2 and on the three separate classes of RNA-binding proteins display almost identical trends of interface propensities, with positively charged amino acids have the highest propensities, followed by polar ones, and hydrophobic and negatively charged residues show lower values. This demonstrate that interface propensities do not depend particularly on the type of RNA bound to the protein. Moreover, a very similar distribution of propensity values was found for protein-DNA interfaces of our HR-PDNA187 benchmark, described in the previous chapter, in agreement to findings in [START_REF] Park | Dbbp: database of binding pairs in protein-nucleic acid interactions[END_REF], Lejeune et al., 2005] showing very similar values of interface propensities for DNA-and RNA-binding sites on proteins. This can be explained by the fact that for both types of interfaces an excess of positively charged and polar residues on the protein side serves to counterbalance the negative charge of the DNA and RNA phosphate backbones.

We then analysed the sequence-and structure-based properties of the protein-RNA interfaces and compared them with respect to non-interacting protein regions. Moreover, we compared the results to the findings of the previous chapter for protein-DNA and protein-protein interfaces. The distributions of evolutionary conservation, interface propensities and global and local circular variance at protein-RNA interfaces show a very similar trend among the different RNA classes and also with respect to what we found for protein-DNA complexes in the previous chapter. Namely, all protein-RNA interfaces of the PRDB2 benchamark are overall more conserved than non-interacting regions and also than protein-protein interfaces. Amino acids with the highest propensity values, namely positively charged and polar ones, are over-represented in the former, especially in the more exposed parts of the interface, the core and the rim, contrary to protein-protein interfaces where hydrophobic residues, the most likely to be found at the interface, are usually located in the support. Based on the classification of the PRDB2 dataset we used, we did not find any characteristic distribution of CV global values indicating a particular shape of some classes of RNA-binding proteins, as we found for polymerases binding the DNA inthe enveloping mode. However, the classification we used for RNA-binding proteins was based on the type of RNA instead of the type of protein as for DNA-binding proteins. Thus, we cannot exclude that is possible to find a distribution of properties or a particular shape that is specific to a particular protein-RNA interface class, changing the type of classification of the PRDB2 benchmark.

We also demonstrated that replacing the appropriate interface propensity values and employing the same scoring schemes developed for recognising protein-DNA interfaces, JET 2 RNA is able to correctly detect RNA-binding sites of various types on protein surfaces. Moreover, the good performance of JET 2 RNA on the PRDB2 benchmark constituted a nice test for the algorithm, since the scoring schemes were not designed based on it.

Finally, as in previous chapter, we demonstrated how some additional patches of residues predicted by JET 2 RNA turned out to correspond to experimentally validated RNA-binding residues, revealed in other experimental structures not comprised in 104CHAPTER 3. ANALYSIS AND PREDICTION OF PROTEIN-RNA INTERFACES the PRDB2 dataset upon RNA conformational changes or displacement with respect to the binding site known from the PRDB2.

Once again, our method has proved to be useful to unravel the heterogeneity of signals comprised within a given binding sites and to partition them in subregions displaying coherent properties (see the example of the human tryptophanyl-tRNA synthetase). Thus, the predictions can help in discovering new alternative RNA-binding sites or to discover the real borders that can be larger on the ones experimentally known. This is extremely helpful to design or repurpos small molecules to target protein-RNA interfaces.

Moreover, it is becoming increasingly evident how important is to consider all the ensemble of available structures of a complex or a protein of interest instead of a single one, to study in a more realistic and accurate way interactions between molecule, taking into account possible conformational changes or relative shifts of positions between different experimental structures.

Future perspectives

In order to improve predictions on RNA-binding sites, some additional analysis could be done to figure out which of the scoring schemes used perform better and in which cases or if some of them are unnecessary or can be replaced by more appropriate ones. Moreover, the PRDB2 benchmark could be divided in classes based on the protein type, instead of the RNA one, some of which could come up with peculiar distribution of physico-chemical or geometrical properties specific to their class.

Concerning a possible upgrade of JET 2 RNA , it would be interesting to verify if the inclusion of a more effective geometrical descriptor than the circular variance could lead to more accurate predictions or to a possible discrimination between DNA-and RNA-binding sites, although it is demonstrated that many times proteins can bind DNA and RNA through the same site [START_REF] Hudson | The structure, function and evolution of proteins that bind dna and rna[END_REF] or hybrids of DNA/RNA [START_REF] D'alessandro | A role for rna and dna: Rna hybrids in the modulation of dna repair by homologous recombination[END_REF]. An example of a new descriptor would be the differential geometric approach developed in [START_REF] Shazman | From face to interface recognition: a differential geometric approach to distinguish dna from rna binding surfaces[END_REF] and already used to discriminate between DNA-and RNA-binding sites on proteins.

Then, as for JET 2 DNA , it would be very interesting develop a method to discriminate protein regions conserved overall the phylogentic trees, regions showing evolutionary conservation only when analyzing a subfamily, a subtree or a subset of more similar sequences to the query protein, and regions not conserved in both cases. This would be extremely useful to improve the predictions detecting residues that result conserved only when analysed in a more limited context, e. g. because important for the interaction only in a particular subfamily, and that are not conserved over the whole tree, and thus possibly not detected. Furthermore, the development of such a method would be extremely useful also for a functional understanding and dissection of the binding regions.

As for JET 2 DNA , it would be interesting to verify if the inclusion of the electrostatic potential in addition or replacing the residue propensities could lead to an overall improvement of the predictions. In fact, it was already demonstrated that using only properties derived from electrostatic patches performs already very well to predict manually choose a particular scoring scheme. In the following we n a number of different interfaces. [START_REF] Parker | Structural insights into mrna recognition from a piwi domain-sirna guide complex[END_REF] for a the trajectory of a full-length (19-nucleotide) guide-target duplex bound to AfPiwi. The modelled RNA region is coloured darker for both strands (G10 to G19 and T10 to T19).

RNA-binding sites [START_REF] Shazman | Classifying rna-binding proteins based on electrostatic properties[END_REF]. In Fig. 3.6 is reported an example of a Piwi protein from Archaeoglobus fulgidus (AfPiwi) in complex with a small interfering RNA (siRNA)-like duplex, which mimics the 5' end of a guide RNA strand bound to an overhanging target messenger RNA (pdb 2BGG) [Parker 106CHAPTER 3. ANALYSIS AND PREDICTION OF PROTEIN-RNA INTERFACES et al., 2005]. For this protein, JET 2 RNA was not able to compute the evolutionary trace due to to few sequences retrieved by PSI-BLAST (Fig. 3.6a) and also the PC RNA values are low in some regions of the interface, especially in the left part. Zero trace values and low interface propensities resulted in the inability of JET 2 RNA to detect a consistent part of the RNA-binding site (Fig. 3.6c, circled in green). However, results obtained with CHARMM PBEQ solver [START_REF]Pbeq-solver for online visualization of electrostatic potential of biomolecules[END_REF], Jo et al., 2008a, Im et al., 1998], using default parameters except the dielectric constant for the protein interior that was fixed to 4.0, highlights a very positive electrostatic potential for the region not predicted by JET 2 RNA (Fig. 3.6g, circled in green). Thus, the inclusion of the electrostatic potential, that could promote positively charged regions, as a new descriptor or replacing the PC RNA values could lead to a more complete prediction of the real interface by integrating residues that are currently not detected. Moreover, both the positive electrostatic potential (Fig. 3.6g, circled in yellow) and the full predictions by all the three scoring schemes (Fig. 3.6e-f, circled in yellow) suggest a prolongation of the RNA-binding site, that is consistent with the model proposed in [START_REF] Parker | Structural insights into mrna recognition from a piwi domain-sirna guide complex[END_REF] for a the trajectory of a full-length (19-nucleotide) guide-target duplex bound to AfPiwi (Fig. 3.6h, circled in yellow). Interstingly, a structure of the same protein binding a duplex DNA at the same site of the RNA one is also found in the Protein Data Bank (PDB 2W42). This highlights how difficult can be to discriminate DNA-and RNA-binding sites, since often they can bind interchangeably to the same one, sharing the same physico-chemical properties.

Introduction

In this last chapter, I present a work, still in progress, inspired by the increasing evidence that proteins can bind multiple partners in the cell, sharing completely or partially the same interface or revealing totally distinct ones for different ligands. This involved the construction of a database of protein interactions with DNA and other proteins, the Protein-(Protein)-DNA database (P(P)DNAdb), available at http://www.lcqb.upmc.fr/PPDdb/.

We noticed that creating a database that i) analyses both protein-protein and protein-nucleic acids complexes and ii) compares them on several aspects, like structural, evolutionary and physico-chemical properties, total number of partners per protein and number of shared partners for each interface, could be a very innovative work. Indeed, most of the times protein-protein and protein-nucleic acid complexes as well as different types of properties of these complexes, like structural and physico-chemical ones, are stored, treated and compared separately in databases. Moreover, often one just has a structural description of each interaction, considered independently, neglecting a global view on the way the protein interacts with its partners. This is reasonable when one wants to study specific characteristics and behaviours of one type of complexes, that may not be meaningful for the other types, or when several details of the same aspect are to be addressed. However, if we want to gain a more complete understanding about all the interactions a protein can have in the cell, their molecular details and how these are achievable in a perfect balance, we need to combine several type of informations. These can nowadays be extracted from the Protein Data Bank as well as the hundreds of other online databases, thanks to the increasing amount of structures and other types of data available.

Our main goal is to provide a meaningful and global overview of the "plasticity" of a protein, in terms of its dynamics and structural conformational changes, number and types of partners, number of partners shared by each interface, number of known direct and indirect interactions and the role of each residue in the different interactions. Comparing the different complexes, the different interfaces, mapping them and summarizing the role of each residue, it is also possible to deduce which interactions are simultaneously possible and which instead mutually exclusive, to help in the distinction between transient and obligate complexes and how a large complexes can assemble.

We started from our HR-PDNA187 benchmark, composed by 187 protein-DNA complexes, together with the available structures of protein unbound forms. We then collected from the Protein Data Bank all the available structures of complexes where the proteins in the HR-PDNA187 dataset, or closed homologs, were in contact with other proteins. We then mapped the experimental protein-DNA interfaces detected on proteins in the HR-PDNA187 benchmark to the corresponding unbound forms and the other structures comprising the alternative protein partners. In this way, we were able to show the degree of "plasticity" of the DNA-binding sites, and DNA-binding proteins in general, on two levels: 1) in terms of number of interfaces and partners per protein and number of partners shared by each of these interfaces, by displaying the relative orientation of the DNA-binding sites with respect to the interfaces formed with the other ligands, found in the alternative structures; 2) in terms of structural "plasticity", by showing a possible disruption of the DNA-binding sites upon conformational changes in the unbound forms or in complex with other proteins.

In the database, we also provide the analyses of the evolutionary conservation, interface propensities and burial degree of protein residues computed with JET 2 DNA for the HR-PDNA187 dataset.

All the collected structures of unbound forms and other protein partners together with the mapping of DNA-binding residues, the evolutionary conservation, physicochemical and geometrical analysis provided in the database make P(P)Ddb very useful for comparison and development of protein-DNA binding site prediction methods and protein-DNA docking methods.

I will also introduce some enhancements on which we are working. We are extending the database in terms of number and type of complexes analysed. Moreover, we are investigating which additional properties, measures and types of comparisons performed between different complexes formed by the same protein could be enlightening to capture its overall "plasticity". Dynamics and conformational changes are notably important in the molecular recognition process. There are several measures that estimate conformational deviation but no measure is able to capture and summarize all the main changements a protein undergoes during its lifetime to bind its different partners.

Furthermore, in the last years, several studies reported how useful would be to integrate protein-protein interaction networks with 3D structural informations. Indeed, networks represent proteins as dots and interactions between them as lines connecting the corresponding dots. However, this type of representation, very powerful in order to explore global properties of network topologies, neglects important biophysical properties of proteins. Gaining an atomistic description of protein interactions revealed in the interactome can only be achieved by integrating structural data, and it will certainly produce a more complete understanding of the whole-cell framework. In this way, it would be possible to distinguish between direct and indirect interactions, that is between proteins physically in contact during the interactions or whether the interaction is mediated by a third protein, between simultaneously possible and mutually exclusive interactions, between proteins interacting through single or multiple interfaces, and between transient and obligate complexes. Moreover, details on how these molecules interact, like geometrical complementarity, exact residues present at one or multiple interfaces, physical forces and types of chemical bonds involved, will be revealed. Also the temporal order of interactions and assembling of larger complexes could be inferred. Finally, having a more comprehensive overview of number and type of interactions of a protein, together with their atomistic description, may help in designing more efficient drugs against some of its ligands and avoiding side effects with respect to its other interactions that are not to be affected [START_REF] Kim | Relating three-dimensional structures to protein networks provides evolutionary insights[END_REF], Aloy and Russell, 2006, Kiel et al., 2008, Campagna et al., 2008, Teyra and Kim, 2013, Petrey and Honig, 2014, Duran-Frigola et al., 2013]. Some efforts have already been made to integrate informations from existing 3D protein structures and to develop methods to model missing ones using homologous protein templates [START_REF] Aloy | Interrogating protein interaction networks through structural biology[END_REF], Mosca et al., 2013, Meyer et al., 2018, Szklarczyk et al., 2014]. However, they adress only protein-protein interactomes. Moreover, as introduced in Section 1.5.4, also most of the databases of interfaces handle only protein complexes with few ones treating separately protein-nucleic-acids binding sites. An exception is the PDBsum database [START_REF] Laskowski | Pdbsum: Structural summaries of pdb entries[END_REF], that analyses several characteristics and every interface in a complex. However, each complex is treated separately and no comparisons between the different interfaces in a complex are made.

Thus, a database like the P(P)DNAdb with the improvements on which we are working, including both protein-protein and protein-nucleic acids complexes, storing all available ligands for each protein chain, and comparing the corresponding interfaces onseveral aspects, would be extremely valuable to explore the "plasticity" and, indirectly, the dynamics of the interactions, which are known to take an essential part in biological reality. The P(P)Ddb is an online database representing the non-redundant set of protein-DNA complexes (HR-PDNA187) described in detail in Section 2.3.1.1. Let us recall its main characteristics. The HR-PDNA187 is composed by 187 protein-DNA complexes deposited in the Protein Data Bank at 25% of sequence identity, with a resolution equal or better of 2.5 Å, protein sequences longer than 40 amino acids and double-stranded DNA with at least 5 base pairs. The benchmark was further manually curated to exclude complexes whose asymmetric unit does not contain at least one biological unit and to ensure that the remaining ones were meaningful. The HR-PDNA187 comprises structures of 100 enzymes, 78 regulatory proteins, 7 structural proteins, 1 protein with other functions and 1 non classified protein (NDB classification), and covers all major groups of protein-DNA interactions according to the classification of [START_REF] Luscombe | An overview of the structures of protein-dna complexes[END_REF].

Free proteins

For each protein-DNA complex in the database, the structure of the unbound proteins in the same stoichiometry as in complex with the DNA and/or in a stoichiometry with a lower number of chains are provided, when available. As an example, we can take the wild typer gene-regulating protein Arc in complex with DNA (PDB code 1BDT), that is a tetramer in complex with the DNA and for which two unbound conformations, one as a tetramer and the other as a dimer, are available. To retrieve unbound forms, we performed a blast search [START_REF] Altschul | Basic local alignment search tool[END_REF] with a percentage sequence identity > 95%, a percentage of coverage > 80% with respect to the query sequence and a percentage of gaps < 10%. Among all the structures retrieved for a certain protein, the best one in terms of sequence identity with respect to the query, or resolution when having same sequence identities, is choosen to represent the unbound form of the complex, when available. The same procedure is followed to retrieved other available unbound forms in a oligomeric state with a lower number of protein chains with respect to the complex. See the 3PVI entry of the database for an example of a dimer in complex with the DNA and whose unbound forms as a dimer and as a monomer are both available in the PDB.

A pairwise sequence alignment was performed between the sequence of the entry structure and the unbound form sequence. DNA-binding residues were then mapped on the unbound structure accordingly to the correspondence found in the alignment.

Other protein partners

Importantly, the database provides also structures of complexes formed between the proteins in the dataset (or closed homologs) and other protein partners, comprising structures where the protein oligomerizes with itself and where the DNA may or may not be present. To retrieve the alternative partners, we performed a blast search choosing structures with a percentage sequence identity between 95% and 70%, with a percentage of coverage > 80% with respect to the query sequence and a percentage of gaps < 10%. These structures make P(P)Ddb very useful for comparison and development of protein-DNA binding site prediction methods and protein-DNA docking methods.

The same procedure described to map DNA-binding residues from the entry on the unbound structures was followed to map them also on these other structures.

Extraction of residue properties

Extraction of evolutionary conservation, interface propensities and burial degree of residues

Evolutionary conservation, protein-DNA interface propensities and burial degree of the protein residues are also computed for the 187 database entries. Namely, the sequence evolutionary conservation was computed using the Joint Evolutionary Trees method [START_REF] Engelen | Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling[END_REF] described in detail in Section 2.7.2.1, the protein-DNA interface propensities were taken from [START_REF] Park | Dbbp: database of binding pairs in protein-nucleic acid interactions[END_REF] (see Section 2.7.2.2), and the burial degree of residues was computed using the circular variance measure [Ceres et al., 2012, Laine andCarbone, 2015] fixing a radius of 100 Å(see Section 2.7.2.3).

Definition of interface residues

As in Section 2.5, we used changes in the surface accessibility to define DNA-binding residues. Accessibility of residues in presence and in absence of DNA was calculated using NACCESS 2.1.1 [START_REF] Hubbard | Naccess version 2.1. 1[END_REF] with a probe size of 1.4 Å. See Section 1.3.1 for a more detailed description of the surface accessibility calculation.

Interface residues were defined as those showing any change in their relative accessible surface area upon binding (∆rasa > 0). We describe experimental protein interfaces by using Levy's model [Levy, 2010], used already to classify protein-DNA interfaces in Section 2.5. Let us recall that this model classifies interface residues depending on their surface accessibility in three structural components: the support, composed by residues buried also in the absence of DNA, the core, composed by residue exposed in absence of DNA and becoming buried upon binding, and the rim, composed by residues exposed also in presence of DNA.

Description of functionalities of the database

In this section, the "services" that the database provides to give access to the data and to manipulate them are described.

The database allows to get access to and visualize the interactions between the proteins in the dataset and their protein partners, when they exist and are known. In P(P)Ddb, we provide this information and enable to visualize it interactively and in a very convenient way. For each entry of the database, the information contained in the webpage is organised as described below. The webpage of the Y-family DNA polymerase entry (PDB 1JX4) is reported as example in Fig. 4.1. Another example of all the structures stored in the database for the Y-family DNA polymerase entry (PDB 1JX4) and the properties computed for its residues is reported in Fig. 4.2c-e. This protein is a great example on how significative conformational changes a protein can undergo to when unbound, bound to the DNA and to a protein. Protein-DNA complex The protein-DNA complex is shown in the "Bound form" panel on the left of the webpage (Fig. 4.1). Protein chains are rendered as grayscaled cartoons and DNA-binding residues are represented as balls, in contrast to those outside the interface. Four color schemes are provided for protein residues (Fig. 4.1, #1): the support-core-rim schema (Fig. 4.2c, left), classifying residues according to their changes in the solvent exposure upon binding and coloring residues in yellow, brown and green, for the support, core and rim respectively, and the color schemas based on sequence conservation levels (Fig. 4.2d, left), protein-DNA interface propensities (Fig. 4.2d, center) and residue burial degree (Fig. 4.2d, right), for which a blue (0) to red (1) scale of colors is possible for each residue, depending on the value, in the range between 0 and 1, assumed by each of the three descriptors.

Unbound forms Two panels are used to display the unbound forms of the protein (Fig. 4.1). In the first one in the center of the webpage ("Unbound form"), the unbound form of the protein in the stoichiometry as in complex with the DNA is shown, when available. In the second one on the right ("Unbound of subset of chains"), the available unbound forms of the protein found in a stoichiometry with a lower number of chains, with respect to when complexes with the DNA, are listed and a pop up window is opened by clicking on the PDB code (Fig. 4.1, #5). For each of these unbound forms, the interface residues mapped from the protein-DNA complex structure are shown as balls and colored accordingly to the support-core-rim color scheme (Fig. 4.2c, center).

Structures with other protein partners At the bottom of the webpage, the user has access to the list of structures, in separate windows (Fig. 4.1), where the query protein (or a close homolog) interacts with other proteins (DNA may ro may not be present), comprising interactions caused by a oligomerization process with itself. As for the unbound forms, interface residues mapped from the protein-DNA complex structure on each of the identical or homolog chains of these alternative structures are shown as balls and colored accordingly to racting residues are found in the antigen-binding sites of the 25 anti-ig 1C). JET 2 /iJET 2 dramatically improves the detection of these inter-JET (Table 1 andFig the support-core-rim color schema (Fig. 4.2d, right). This allows the user to see whether the DNA-and the other protein-binding sites overlap and to what extent, and appreciate the conformational changes between the different complexes in which the protein is involved.

Visualised and downloadable data

The list of residues divided by support, core, rim and non-interface ones can be visualized for all the structures in a webpage (Fig. 4.1, #4). Moreover, the residue evolutionary conservation, protein-DNA interface propensities and circular variance values for the residues in protein-DNA complex are also reported in the same table (Fig. 4.2e). The user has also the possibility to download different types of informations: a list of the PDB identifiers, a zip file with the PDB files of the complexes of the full database and a zip file containing all the informations concerning each structure are available for downloading. Specifically, the latter will contain the PDB files and the txt files storing the interface informations, the evolutionary conservation, protein-DNA interface propensities and circular variance values of protein-DNA complexes, unbound forms (when available) and structures with other protein partners (when available), divided into directories by the PDB code of the protein-DNA complex. In addition, a list of all the structures contained in the database is provided, allowing the user to directly download all the files related to a specific structure by clicking on its PDB identifier.

External links Links to other databases (CATH, NDB, PDBsum, PDBe, NPIDB, DNAproDB) are given on the "External Links" dropdown menu to facilitate the search of additional information associated to each complex, including information specifically relevant to the DNA (Fig. 4.1, #2). Furthermore, the user can access directly to the PDB webpage of the structure by clicking on the PDB identifier above its window (Fig. 4.1, #3).

Disruption of DNA-binding sites upon conformational changes between bound and unbound forms

The main goal of this database is to represent the "plasticity" of the protein interacting with the DNA, when passing from the bound to the unbound conformation or to a conformation in complex with one or several other proteins. The DNA can or cannot be present in the complexes with the other proteins. This allows to study indirectly also the dynamics of the interactions of a protein.

Dynamics and conformational changes are notably important in the molecular recognition process. Often, DNA-binding proteins undergo significant conformational changes between their free states and their bound conformations [Andrabi et al., 2014, Sunami andKono, 2013]. These structural rearrangements of different extent can be necessary to recognize the correct DNA sequence. Indeed, the protein can deformate the DNA structure and enhance the "base" or "shape readouts" for better recognising the specific sequence and shape of the DNA or specific electrostatic potentials and pattern of contacts [Rohs et al., 2010, Harteis andSchneider, 2014] (see Section 1.3.6 for more details). Moreover, they contribute significantly to both the stability of the complex and the specificity of targets recognized by them [START_REF] Andrabi | Conformational changes in dna-binding proteins: Relationships with precomplex features and contributions to specificity and stability[END_REF] In this section, we describe structural rearrangements of different extent when passing from the unbound to the bound conformations. These can involve minor secondary structure changements and local rearrangements of few residues or can result in the complete disruptions of the DNA-binding sites. We will also discuss how these rearrangements could affect the accuracy of prediction and docking methods and some implications on a possible targeting of these sites by small molecules and drugs.

We already showed how the Y-family polymerase undergoes great conformational changes in the three structures reported in the P(P)DNAdb, namely the complex with the DNA (Fig. 4.2c, left), the unbound conformation (Fig. 4.2c, center) and when in complex with another protein (Fig. 4.2c, right).

In Fig. 4.3, we report some other examples of proteins in the database undergoing onformational changes of different types and extent. As for the Y-family polymerase in Fig. 4.2c, in all the examples reported, protein movements are carried out with the aim of enveloping the double stranded DNA, passing from more open conformations in the unbound forms (Fig. 4.3, right) to closer ones when bound to the DNA (Fig. 4.3, left).

The DNA repair enzyme Endonuclease VIII of Escherichia coli (Fig. 4.3a) and the PvuII restriction endonuclease (Fig. 4.3b) show a more symmetrical rearrangement, where both domains, for the former, and both homodimer chains, for the latter, move together to clamp the DNA. In both the unbound forms are present some cavities, looking like small pockets (Fig. 4.3a-b, right, blue arrows), that could be potential target sites for inhibitors by preventing the clamping motion necessary to bind the DNA. These pockets are not accessible in the bound forms left). As a consequence, the information about the existence of cavitites can be lost if only the complexed conformation of these proteins are analysed, information that could be crucial for efficient drug design. Moreover, for the Endonuclease VIII about ten residues undergo to a order-to-disorder transition when passing from the unbound to the bound form (Fig. 4.3a, right, circled in red). We define ordered and disordered amino acids as residues to which 3D coordinates can or cannot be assigned, respectively. This is thought to be uncommon since usually disorder-to-order transitions are observed upon DNA binding.

Contrary to the two previous structures, the DNA polymerase beta and the R.HinP1I restriction endonuclease show more asymmetrical conformational changes upon DNA binding, with a major domain movement through a hinge for the former (Fig. 4.3c) and the rearrangement of only a subset of residues for the latter (Fig. 4.3d, circled in orange). For the second protein, the residue rearrangement results also in a change of the secondary structure, passing from a β-strand belonging to a β-sheet when unbound to an α-helix conformation when bound to the DNA (Fig. 4.3d, circled in orange). These conformational changes of different extent that are frequently observed upon DNA-binding [Andrabi et al., 2014, Sunami andKono, 2013] and that contribute significantly to both the stability of the complex and the specificity of targets recognized by them [START_REF] Andrabi | Conformational changes in dna-binding proteins: Relationships with precomplex features and contributions to specificity and stability[END_REF], if completely neglected could dramatically affect the results of predictions and docking methods. Indeed, in some cases the interface geometry known from the protein-DNA complex can undergo too drastical changes or even be completely disrupted and, thus, much more difficult to be identified by these methods. Moreover, we showed how some of these rearrangements can result in small pockets formation and covering, with potential important implication for the understanding of the protein functioning and an efficient drug design.

DNA-binding sites can be totally, partially or not at all shared by other protein partners

A broader concept of protein "plasticity" and dynamical protein interactions could be used to distinguish proteins binding to different partners through distinct interfaces or shared ones. In this latter case, a further distinction can be made between interfaces that are entirely shared by several partners of the same protein, sharing the total ensemble of interface residues, and the ones that share only a portion of residues through a partial overlap. Moreover, the biological and functional reasons for which these interaction sites can be shared, entirely or partially, or not can be different, as we will see in the rest of this chapter. Namely, some residues can be shared by multiple partners for the cooperative binding to a third one, partial or total sharing of interfaces can also be used by inhibitors to prevent the binding of the other partner. Furthermore, a protein with an appropriate binding site can be used as a template to create slightly different inhibitor proteins that through the same interface bind other partners. In Fig. 4.4, three proteins that partially shares the DNA-binding residues with other protein partners are represented. However, the interface sharing in these structures has a different final purpose. In the first example, the residues of the Excisionase (Xis) protein that result at the interface with the DNA alone (Fig. 4.4a, left, circled in black), are also necessary to the cooperative binding of several Xis proteins (Fig. 4.4a, right, circled in black) [START_REF] Abbani | Structure of the cooperative xisdna complex reveals a micronucleoprotein filament that regulates phage lambda intasome assembly[END_REF], Sam et al., 2004], that bound together to the DNA are able to accomplish their function. In the second example, the nuclease domain of Colicin E7 (ColE7) partially share some residues of the DNA-binding interface (Fig. 4.4b, left, circled in black) with the interaction site targeted by the immunity protein Im7 (Fig. 4.4b, right, circled in black). By partially occupying the DNA-binding site, Im7 inhibits bactericidal activity of ColE7 blocking the substrate binding site but not the nuclease active site [START_REF] Hsia | Dna binding and degradation by the hnh protein cole7[END_REF]]. In the third example, some residues at the interface between the well known TATA-box binding protein and the DNA (Fig. 4.4c, left, circled in black) are found in other structures to play a role in the recruitment of other two transcription factors, the TFIIB (Fig. 4.4c, top right, circled in black) [START_REF] Nikolov | Crystal structure of a tfiib-tbp-tata-element ternary complex[END_REF] and TFIIA (Fig. 4.4c, bottom right, circled in black) [START_REF] Bleichenbacher | Novel interactions between the components of human and yeast tfiia/tbp/dna complexes[END_REF]. Once bound to the TATA-box binding protein/DNA binary complex, these proteins enhance complex stability and affinity and will in turn recruit other transcriptional activators and coactivators [START_REF] Nikolov | Crystal structure of a tfiib-tbp-tata-element ternary complex[END_REF], Bleichenbacher et al., 2003]. Thus, we showed how in different proteins the same mechanism of partially sharing their DNA-binding sites with other protein partners results in different functional activities. In particular, in these three examples we showed how shared interface residues can play a role in the oligomerization process of identical protein chains, in the inhibitor activity and in the recruitment of other non-homologous protein chains. Then, we can conclude that the partial sharing of a protein interface can lead to both mutually exclusive and simultaneously possible interactions.

In Fig. 4.5, we can distinguish an example of a single-interface protein, entirely sharing its unique interface between all its partners, and an example of a multiinterface protein, showing distinct interfaces interacting with different partners. The first example reports the human uracil-DNA glycosylase entirely sharing its unique structurally known interaction site between its target DNA (Fig. 4.5a, left), its inhibitor, SAUGI protein (Fig. 4.5a, center), and the HIV-1 retroviral accessory protein Vpr, belonging to the quaternary DDB1-DCAF1-Vpr-uracil-DNA glycosylase (UNG2) complex (Fig. 4.5a, right) and required for efficient viral infection of macrophages and promotion of viral replication in T cells. For this last case, it is worth noting that Vpr acts as a molecular bridge using nonoverlapping surfaces to link DCAF1, which in turn bind DDB1, and UNG2 [Wu et al., 2016] (Fig. 4.5a, right). Thus, in some protein-protein interaction networks could result that the UNG2 interacts with Vpr, DCAF1 and DDB1 without being able to distinguish that only UNG2-Vpr interact directly, while UNG2-DCAF1 and UNG2-DDB1 interactions are indirect and mediated by Vpr. This is an example of how valuable would be to introduce structural informations in protein interaction networks to discriminate between direct and indirect interactions and give some hints on how large protein complexes are assembled, as discussed in the introduction. By contrast, the DNA-binding factor CSL (gene name RBPJ) show one DNA-binding site (Fig. 4.5b, left, Mus musculus CSL) and four distinct protein-binding sites (Fig. 4.5b, center, human CSL, and right, Drosophila melanogaster CSL ortholog). One of the protein binding site is hidden behind the structure of CSL in Fig. 4.5b, central complex. Also this case, integrating structural data in protein interaction networks would add the important information that CSL proteins have multiple interfaces covering the majority of its surface and that all the protein and DNA subunits are in direct interaction, contrary to what we observed for the DDB1-DCAF1-Vpr-uracil-DNA glycosylase (UNG2) complex (Fig. 4.5a, right).

Finally, in the top panel of Fig. 4.6 is reported the Sac7d , sequence-general DNAbinding protein from the hyperthermophilic archaeabacteria Sulfolobus solfataricus in complex with DNA. In [START_REF] Correa | Potent and specific inhibition of glycosidases by small artificial binding proteins (affitins)[END_REF], they exploited the plasticity and stability of artificial 7 kDa affinity proteins (Affitins) derived from the extremophilic protein Sac7d to develop, by surface randomization and loop 2 extension, three would be easy to verify if targeting a certain protein site with these inhibitors would affect the interaction with some other protein partners, being all stored in the target protein webpage.

Towards a systematical characterization of all

experimentally known complexes

Extending the number and types of complexes in the database

Since we already obtained very interesting results by handling a list of only 187 entries of a specific type of interactions (protein-DNA complexes), some efforts are going to be put to extend the size of the database, in terms of number and types of complexes processed. All the nucleic acid-, peptide-and protein-protein complexes in the Protein Data Bank will be systematically analysed and grouped together in clusters of redundant complexes. A representative one will be chosen for each cluster and informations from the other complexes of the cluster will be merged and mapped on the representative one. For example, the union of interface residues detected in all the complexes in the cluster will be mapped on the representative structure in order to take into account a possible interface variability that could depend on different crystallographic conditions. Then, the representative complex will be integrated as an entry of the database.

In the currect version of P(P)DNAdb, complexes between the same partners are automatically treated as the same entity, without a check on the interfaces that are formed between the chains. This could result in losing the information about possible different interfaces formed between identical interacting molecules or a possible interface variability (difference of few residues between the interfaces) that could depend on different crystallographic conditions or on the protein functioning and dynamics, information, this latter, that is crucial to be retained.

Definition of redundant complexes

Two complexes are considered as redundant if they contain the same chains and if these chains interact through a similar interface.

To determine if the chains are identical, a sequence identity threshold of 90% is used for protein and peptide chains, while every nucleic acid chain is considered as the same. Thus, if in two complexes a certain protein interacts with nucleic acid molecules through similar interfaces, these complexes are considered as redundant. We decided to treat all nucleic acid molecules as a unique entity for two reasons. First, given two DNA (or RNA) sequences, we did not find any defined threshold in literature to classify them as a same sequence or as two different sequences. Moreover, in some complexes the protein interacts with a hybrid nucleic acid molecule, that is a molecule formed by the pairing of a DNA strand with a RNA one. In these cases, it would not be possible to classify the molecule as DNA or RNA.

To determine if two interacting interfaces between the same chains in two different complexes are similar, pairwise alignements between the representative and the redundant receptor chains and between the two ligand chains of the representative and the redundant complexes (in case of protein or peptide ligands) are performed. The interface residues of the receptor classified as redundant are mapped on the representative one to compute the extent of the overlapping between the two interfaces on the receptor surfaces. If the ligands are protein or peptide chains, the same procedure is repeated to check that also the ligands interact through the same regions in the two complexes. If the overlapping between the interacting regions on the two receptors is above a certain threshold (50% at the moment, but further tests has to be perfomed), the interfaces are considered as similar. In case of protein or peptide chains, the overlapping between their interacting regions is also checked to define if they display or not similar interfaces. If all the interfaces are similar, the complexes, that already resulted to have the same chains, are considered as redundant. An example of multiple conformations of the same complex that result in different interfaces is reported in Fig. 4.7. Here are presented three structures found in the PDB where the bacteriophage T7 RNA polymerase binds its DNA substrate in three different conformations. These three states are all functional and represent three different moments during the accomplishment of the protein function: the promoter recognition (Fig. 4.7, top left) [START_REF] Cheetham | Structural basis for initiation of transcription from an rna polymerase-promoter complex[END_REF], the intermediate state (Fig. 4.7, top center) [START_REF] Durniak | The structure of a transcribing t7 rna polymerase in transition from initiation to elongation[END_REF] and the elongation complex (Fig. 4.7, top right) [START_REF] Yin | Structural basis for the transition from initiation to elongation transcription in t7 rna polymerase[END_REF]. When passing from one state to another, the protein undergoes drastical conformational changes, as can be seen from the extent of the RMSD computed between two consecutive states, with also some observed disorder-to-order transitions observed (black residue segments and black circles in Fig. 4.7). Associated to these major structural rearrangements, there is also the gradual disruption of the interface from one state to the subsequent one, with the consequent changement of interface residues between different states. Thus, treating these three complexes as the same one, would result in a dramatic loss of crucial informations concerning the dynamics associated to the interaction with the DNA and the correct functioning of the protein. The structure of the bacteriophage T7 RNA polymerase is found also in complex with its T7-lysozyme inhibitor, that binds its target through a distinct interaction site with respect to the DNA one. Some smaller conformational changes are observed also between this complex and the promoter recognition one, with an extended loop becoming disordered when the polymerase is in complex with the inhibitor.

A possible further check on the RMSD of similar interfaces could be introduced, to verify if they are in significative different conformations, despite composed by similar residues.

Mapping the union of interface residues on the representative chain

For each redundant protein chain in a cluster, a pairwise alignement between the representative protein chain of that cluster and the redundant one is performed.

Residues at the interface between the redundant protein chain and the partner, not detected in the representative complex, are mapped on this latter accordingly to the pairwise alignement. The process is repeated for all the redundant protein chains in the cluster.

Modifying the interface definition

Introducing a much larger number of entries, as all the complexes stored in the Protein Data Bank, will require a fast method for the computation of all the interfaces. Computing the interface using NACCESS2.1, as done for the current version of the database, would require an unfeasible amount of time. Thus, we decided to switch to INTBuilder [START_REF] Dequeker | Interface builder: A fast protein-protein interface reconstruction tool[END_REF], a very fast algorithm developed in our group for the efficient calculation of interfaces. It relies on distances between atoms, but instead of computing all the possible pairwise atomic distances, it reduces this ensemble to the ones that are potentially smaller than the fixed threshold.

Changing the method used for the interface computation, it will not be possible to associate interface residues to support-core-rim regions, based on the notion of surface accessibility. However, interface residues could be classified in two classes, based on the number of contacts with atoms of the partner.

Adding new measures and comparisons

In the first half of the chapter, we have seen how the same protein can binds all its partners through the same interface or show distinct ones for different partners. We have also seen how frequently conformational changes are observed in the database for a protein, between bound and unbound forms (Fig. 4.3) or in different complexes representing different moments of the accomplishment of the protein function with the same partner (Fig. 4.7). Although not reported here, conformational changes can be observed also when a protein binds to different partners. These structural rearrangements can cause the formation/disruption of the interface from a conformation to another, leading to an active/inactive protein or revealing new interfaces. As a consequence, also the global and local physico-chemical environment is affected.

To better capture these structural and physico-chemical changes and also informations on the number and type of binding sites and partners, new quantitative measures could be added to the database. These measures are supposed to be calculated on every entry of the database and on its other complexes. When taken together and compared between different structures of the same protein, these values can give an overview of the protein "plasticity". Properties and measures in which we are interested and to compute between the different complexes are listed below.

• Global and local RMSD;

• Secondary structure;

• Disordered residues, disorder-to-order and order-to-disorder transitions;

• Binary value to associate to a residue whether it is at the interface or not;

• Number of atomic contacts per residue;

• Number of different residues of the partner a residue is in contact with;

• Percentage of partner's residues of a certain type (hydrophobic, polar, positive and negative) a residue is in contact with;

• Residue's local environment, that is percentage of residues of a certain type (hydrophobic, polar, positive and negative) in the range of a fixed radius (for example 5 Å);

Conclusions

Motivated by the increasing evidence that proteins can bind multiple partners in the cell, we constructed the Protein-(Protein)-DNA database (P(P)DNAdb) starting from the 187 protein-DNA complexes in HR-PDNA187 benchmark, described above. We then collected all the available unbound forms and the other structures of complexes where the proteins, or closed homologs, were in contact with other proteins.

In the database, we provide the mapping of the DNA-binding residues on the unbound structures and on the complexes with the other protein partners. In this way, it is easy to compare the location of DNA-binding sites with respect to the other partners and to notice a possible disruption of this interface upon conformational changes. Indeed, we reported several cases where there are structural rearrangements of different extent between the conformation of the protein when bound to the DNA and in its free state.

We showed also how the DNA-binding sites can be entirely or partially shared with other protein partners, or how proteins can exhibit completely distinct binding sites for different partners. These type of informations could be very useful when one wants to distinguish between simultaneously possible and mutually exclusive interactions. We described how the sharing of a binding sites by several partners can serve to different functionalities. Depending also to the extent of the sharing, it can be used to cooperative binding or by inhibitors to prevent the binding of the partner. Furthermore, the sharing of the binding site in different experimental complexes can be observed because an interface can be used as a template to create slightly modified ones that bind other molecules.

Finally, we described how structural informations of complexes can help in discriminating direct interactions between molecules physically in contact and indirect interactions mediated by other molecules.

We think that the structures comprised in the P(P)Ddb and the information that can be extracted make this database very useful for comparison and development of protein-DNA binding site prediction methods and protein-DNA docking methods and to better understand what makes the specificity in the interactions of several protein families with DNA or with other proteins. It was already discussed in the last years how meaningful would be integrate 3D structural informations in protein interaction networks just about to include a crucial atomistic description, otherwise neglected, in order to distinguish between distinct/shared interfaces, simultaneaously possible/mutually exclusive and direct/indirect interactions. Researchers in the field of drug design and repurposing could further find this kind of database valuable if they want to design an inhibitor already demonstrated to be functional in targeting a known binding site stored in the database or in order to prevent side effects by molecules targeting proteins known to have multiple binding sites, to share the target binding site with multiple partners or that display a binding site similar to the ones of other proteins.

Future perspectives

One of the main goal of this last work was to give a more global and quantitative overview of the "plasticity" of a protein, in terms of number and types of interactions, how the binding sites are distributed and shared on its surface, structural and physico-chemical variability upon conformational changes and the role that each of its residues plays in the different interactions.

To do it, the variability of the new features described in Section 4.3.5 could be measured among all the different complexes formed by the same protein. They could be put into two "fingerprint" vectors, one comprising values associated to structural features and the other to the physico-chemical ones. Then, looking at the variability of the structural and the physico-chemical "fingerprints" along all the complexes in which a certain protein is involved, it should be possible to derive some measures of "plasticity" of this protein in terms of structural and physico-chemical properties, but also to the number of partners and to the interface characteristics (single/multiple/shared/not-shared interfaces). It would be also extremely valuable finding a way to unify these two different "plasticity" measures into a global one.

Conclusions

This thesis fits within the field of structural bioinformatics and adresses the issue of the characterization and prediction of protein interactions and binding sites. It mainly focuses on protein-DNA and protein-RNA interactions, from the perspective of proteins, with few analysis and comparisons on protein-protein ones.

We have compiled and manually curated a non-redundant set of 187 high resolution protein-DNA complexes (HR-PDNA187) representative of all known types of protein-DNA interactions. We then collected also the 82 available protein unbound conformations (APO82). This new dataset, composed by 187 protein-DNA complexes and 82 protein unbound forms of good quality, could serve as a more recent reference benchmark for the community.

Then, we conducted a comprehensive analysis of sequence-and structure-based properties of protein-DNA interfaces detected in our HR-PDNA187 benchmark and we compared them with respect to non-interacting protein regions and to protein-protein interfaces. We have shown that the support-core-rim model that we used [START_REF] Laine | Local geometry and evolutionary conservation of protein surfaces reveal the multiple recognition patches in protein-protein interactions[END_REF] for describing protein-protein interfaces should be complemented by the core-support-rim one and that both are useful to describe the properties of protein-DNA interfaces. DNA-binding sites result to be more conserved and polar than protein-protein interfaces, with a strong preference for positively charged and polar amino acids in the more exposed parts of the interface rather than hydrophobic ones that are overrepresented in the most buried part of the latter. Moreover, protein-DNA interfaces may display very characteristic shapes not common in protein-protein interactions, like the "enveloping" motif or more general concave interfaces that we found especially for polymerases and some nucleases.

Based on these findings, we developed JET 2 DNA , a new method for predicting DNA-binding sites on protein surfaces. It was adapted from JET 2 [START_REF] Laine | Local geometry and evolutionary conservation of protein surfaces reveal the multiple recognition patches in protein-protein interactions[END_REF] developed to predict protein-protein interfaces. It straightforwardly combines only four sequence-and structure-based descriptors, namely evolutionary conservation, protein-DNA interface propesities and local and global geometry of the protein surface. Based only on these simple descriptors, prediction results are easier to interpret than the ones coming from machine-learning methods, giving a better understanding of key properties of predicted DNA-binding sites. JET 2 DNA implements three different scoring strategies employing different combinations of descriptors, to target a wide range of DNA-binding proteins displaying different characteristics. Additional information about a given complex can be gained by checking which scoring strategy works best, which allows to infer the properties that have driven its prediction and, thus, improve the characterisation of the interaction site. Moroever, a combination of strategies can be used to have a more complete prediction. Depending on which residues are predicted by each strategy, we can unravel the heterogeneity of signals comprised within a given binding site and partition them in subregions displaying coherent properties. We showed that JET 2 DNA not only provides accurate predictions of DNA-binding sites on the bound form conformations of proteins, but it also demonstrates to be robust to conformational changes revealed in their unbound conformations. Moreover, it outperforms established prediction tools relying on more sophisticated machine learning algorithms, such as DISPLAR and multiVORFFIP.

A crystallized structure may reveal only one of the multiple DNA-binding sites of a given protein, occupied by the partner, or may comprise a truncated or misplaced DNA, resulting in a "partial" associated binding site. We discussed four cases where JET 2 DNA was instrumental in discovering alternative DNA-binding sites not known from the crystallographic structure comprised in the evaluation set and in deciphering their properties.

We then extended the analysis of sequence-and structure-based properties, computed for DNA-binding sites, to protein-RNA interfaces. To this end, we used the Protein-RNA Docking Benchmark 2.0 (PRDB2) [START_REF] Nithin | A nonredundant protein-rna docking benchmark version 2.0[END_REF]. The 126 protein-RNA complexes in this dataset were accurately divided by the authors in four classes based on the type of RNA bound to the protein, namely duplex RNA, single stranded RNA, tRNA and ribosomal RNA (rRNA).

We first computed interface propensities for the entire PRDB2 benchmark and for the three classes of proteins binding duplex RNA, single stranded RNA and tRNA (rRNA were not considered because the number of complexes (5) was too small). The analyses on the whole PRDB2 and on the three separate classes of RNA-binding proteins display almost identical trends of interface propensities, with positively charged amino acids having the highest propensities, followed by polar ones. This demonstrates that interface propensities do not depend particularly on the type of RNA bound to the protein. Moreover, this distribution resulted to be very similar to the one found for protein-DNA interface propensities. This can be explained by the fact that, for both types of interfaces, an excess of positively charged and polar residues on the protein side serves to counterbalance the negative charge of the DNA and RNA phosphate backbones.

We then analysed the distribution of evolutionary conservation, interface propensities and global and local circular variance in the support, core and rim of protein-RNA interfaces and compared them with respect to non-interacting protein regions, protein-DNA and protein-protein interfaces. The results show a very similar trend among the four RNA classes and also with respect to what we found for protein-DNA complexes. We can thus conclude that also RNA-binding sites: i) are overall more conserved than non-interacting regions and also than protein-protein interfaces; ii) prefer positively charged and polar ones to be located at the interface, especially in the more exposed parts of the interface, contrary to protein-protein interfaces where hydrophobic residues are over-represented, especially in the most buried parts. Based on the classification of the PRDB2 dataset, we did not find any characteristic distribution of CV global values indicating a particular shape of some classes of RNAbinding proteins, as we found for polymerases binding the DNA in the "enveloping" mode. However, the classification we used for RNA-binding proteins was based on the type of RNA instead of the type of protein as for DNA-binding proteins. We thus cannot exclude the existence of a distribution of properties or a particular shape that is specific to a particular protein-RNA interface class, changing the type of classification of the PRDB2 benchmark.

We replaced in JET 2 DNA the propensity values for protein-RNA interfaces, and we refer to it as JET 2 RNA . Since protein-RNA and protein-DNA interfaces showed a very similar distribution of properties, we employed the same scoring schemes developed for recognising DNA-binding sites to predict the interaction regions with the RNA of the 126 proteins in the PRDB2, obtaining successful results. Moreover, the good performance of JET 2 RNA on the PRDB2 benchmark constituted a nice test for the algorithm, since the design of the scoring schemes was not based on it.

As for protein-DNA complexes, we demonstrated how some additional patches of residues predicted by JET 2 RNA turned out to correspond to experimentally validated RNA-binding residues, revealed in other complexes not comprised in the PRDB2 dataset used for the evaluation.

We discussed several cases in the PDB where the same protein solved in different structures complexed with its DNA or RNA partner showed a variability in its interface. We also discussed cases where the same protein was discovered to bind different partners. These cases show significant variations between structures, in terms of conformational states and binding sites. This opens new perspectives for the discovery of nucleic acid-binding sites not yet experimentally determined and for the design of biomolecular interfaces. As of today, there is a relatively small number of protein-nucleic acid complexes in the PDB and an even smaller number of cases where the protein binds to a nucleic acid molecule through several sites that display different properties. As more structures are released, we will become more aware of the complexity of the usage of the protein surface by these molecules. This questions the pertinence of using only one structure to assess binding sites predictions, and also the pertinence of developing machine learning methods that are trained on these "partial" complexes. Moreover, it is becoming increasingly evident how important is to consider all the ensemble of available structures of a complex or a protein of interest, instead of a single one, to study in a more realistic and accurate way interactions between molecules, taking into account possible conformational changes or shifts of relative positions of molecules between different experimental structures. We can conclude that predictions obtained with JET 2 DNA and JET 2 RNA can help designing or repurposing small molecules to target protein-DNA/RNA interfaces in an smart way, e.g. specifically targeting the non-conserved subregions or regions that are thought to interact with some other molecule to avoid side effects.

Motivated by the increasing evidence that proteins can bind multiple partners in the cell, we constructed the Protein-(Protein)-DNA database (P(P)DNAdb) starting from the 187 protein-DNA complexes in HR-PDNA187 benchmark, described above.

We then collected all the available unbound forms and the other structures of complexes where the proteins, or closed homologs, were in contact with other proteins.

In the database, we provide the mapping of the DNA-binding residues on the unbound structures and on the complexes with the other protein partners. This way, it is easy to compare the location of DNA-binding sites with respect to the other partners and notice a possible disruption of this interface upon conformational changes. Indeed, we reported several cases where there are structural rearrangements of different extent between the conformation of the protein when bound to the DNA and in its free state.

We also showed how the DNA-binding sites can be entirely or partially shared with other protein partners, or how proteins can exhibit completely distinct binding sites for different partners. This type of information could be very useful to distinguish between simultaneously possible and mutually exclusive interactions. We described how the sharing of a binding sites by several partners can serve different functionalities. Depending also to the extent of the sharing, it can be used to cooperative binding or by inhibitors to prevent the binding of the other partner. Furthermore, an interface on a protein surface can be used as a template to create slightly modified inhibitors that will use a similar interface to bind other molecules, resulting in the sharing of the binding site.

We think that the structures comprised in the P(P)Ddb and the information that can be extracted from it make this database very useful for comparison and development of protein-DNA binding site prediction methods and protein-DNA docking methods. Moreover, it may help understand better the specificity in the interactions of several protein families with DNA or with other proteins. It was already discussed in the last years [START_REF] Kim | Relating three-dimensional structures to protein networks provides evolutionary insights[END_REF], Aloy and Russell, 2006, Kiel et al., 2008, Campagna et al., 2008, Teyra and Kim, 2013, Petrey and Honig, 2014, Duran-Frigola et al., 2013] how meaningful it would be to integrate 3D structural informations in protein interaction networks. This would add a crucial atomistic description, otherwise neglected. These additional molecular details could be used in order to distinguish between distinct/shared interfaces, simultaneaously possible/mutually exclusive and direct/indirect interactions. Researchers in the field of drug design and repurposing could further find this kind of database very valuable. One application would be the design of inhibitors already demonstrated to be functional in targeting known binding sites stored in the database. Another one would be the prevention of side effects when targeting proteins known to have multiple binding sites, to share the target binding site with multiple partners, or that display binding sites similar to those of other proteins.

Future perspectives

It was already demonstrated that the electrostatic potential plays a fundamental role in the binding of nucleic acid molecules and shows a very discriminative power with respect to non-binding or protein-binding resgions. It would be interesting to evaluate if the use of the electrostatic potential could lead to a non-negligible improvement of the performance of JET 2 DNA and JET 2 RNA . Concerning protein-RNA interfaces, it could be also investigated if properties specific to certain classes of complexes are revealed with a different type of classification than the one used in this work. As a consequence, other types of scoring strategies could be evaluated as well and implemented in JET 2 RNA . Finally, it could be very valuable to develop a method that can automatically discriminate between protein regions conserved over all the phylogenetic trees, regions conserved only in a subfamily or a subtree, and regions not conserved in either of these two cases. This would improve not only prediction accuracy, but also our understanding of protein functioning and specificity.

Regarding the database, there is already work in progress on a large scale extension of the P(P)DNAdb and on the inclusion of new features. Both these improvements will lead to new functionalities of the database. Namely, it is planned to systematically analyse all the experimentally known protein-protein, proteinnucleic acid and protein-peptide complexes in the Protein Data Bank. Moreover, innovative measures that are not yet taken into account in other databases, like the residue's local environment and the number of partners for protein and for each interface of the protein, will be investigated. The aim is to find features that, when computed on all known conformations and complexes formed by a protein, can give a meaningful and quantitative view of the protein "plasticity".
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Table A.1: List of the 187 complexes comprised in HR-PDNA187 dataset and the 82 HOLO-APO pairs available. The entries in the columns are respectively: 1) the Protein Data Bank (PDB) [START_REF] Berman | The protein data bank[END_REF] identifier of the HR-PDNA187 complex; 2) the protein chains considered in the complex; 3) the subset of protein chains reported in column 2 non redundant at 95% sequence identity; 4) the DNA chains considered in the complex; 5) the PDB identifier and the considered chains of the HOLO form in the HOLO-APO82 dataset; 6) the PDB identifier and the considered chains of the APO form in the HOLO-APO82 dataset; 7) the class and 8) the subclass to which the protein belongs as derived from the Nucleic Acid Database [START_REF] Berman | The nucleic acid database. a comprehensive relational database of three-dimensional structures of nucleic acids[END_REF] (TF = transcription factor). Concerning the protein stoichiometry, the HR-PDNA187 comprises: 109 monomers, 64 homo-2-mers, 3 hetero-2-mers, 3 homo-3-mers, 1 hetero-3-mer, 5 homo-4-mers, 1 hetero-5-mer (composed of 4 couples of homo-2-mers) and 1 homo-6-mer. The APO forms in the HOLO-APO82 dataset are divided in: 52 monomers, 28 homo-2-mers, 1 homo-3-mer and 1 hetero-3-mer. Specifically, we observed a change in the stoichiometry in 4 HOLO-APO pairs: 3 homo-4-mers, 1 homo-4-mer, 1 homo-3-mer, 1 homo-2-mer in the bound form are respectively 3 homo-2-mers and 3 monomers in the unbound form. DNA predictions were obtained from a consensus of 2, 5 or 8 runs out of 10. The three scoring schemes were systematically used and the best patch or best combination of patches was retained. The performance values obtained when running the automated, the complete and the automated+complete clustering procedure of the program (iJET 2 DNAAuto , iJET 2 DNAComplete and iJET 2 DNAAutoComplete , respectively) are also given. For the main datasets, prediction for different numbers of layers are reported (1=seed;2=seed+extension;3(default)=seed+extension+outer layer). HOLO82 + and APO82 + : 74 structures having the same stoichiometry in the HOLO and APO forms. HOLO82 ++ and APO82 ++ : 8 structures having a different stoichiometry in the HOLO and APO forms. HR-PDNA187*: 106 proteins of HR-PDNA187 dataset that have < 95% of seq. id with respect to DISPLAR training set. HR-PDNA187**: 87 proteins of HR-PDNA187 dataset that have < 95% of seq. id with respect to multiVORFFIP training set. For DISPLAR, predicted patches were defined as formed by residue indicated as predicted in the results. For multiVORFFIP, predicted patches were defined as formed by residues with probability > 0.5.
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Figure 1

 1 Figure 1.1: E. Coli cell. Cross-section of a small portion of an Escherichia coli cell. The cell wall, with two concentric membranes studded with transmembrane proteins, is shown in green. A large flagellar motor crosses the entire wall, turning the flagellum that extends upwards from the surface. The cytoplasmic area is colored blue and purple. The large purple molecules are ribosomes and the small, L-shaped maroon molecules are tRNA, and the white strands are mRNA. Enzymes are shown in blue. The nucleoid region is shown in yellow and orange, with the long DNA circle shown in yellow, wrapped around HU protein (bacterial nucleosomes). In the center of the nucleoid region shown here, you might find a replication fork, with DNA polymerase (in red-orange) replicating new DNA. (Source: David S. Goodsell, the Scripps Research Institute, 1999 [http://mgl.scripps.edu/people/goodsell/illustration/public]).
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 12 Figure 1.2: Nucleotide structure and phosphodiester bond. (a) Nucleotide structure (adapted from: OpenStax [CC BY 4.0]); (b) Phosphodiester bonds form between the phosphate group attached to the 5' carbon of one nucleotide and the hydroxyl group of the 3' carbon in the next nucleotide, bringing about polymerization of nucleotides in to nucleic acid strands. Note the 5' and 3' ends of this nucleic acid strand. (Source: OpenStax [CC BY 4.0]).

Figure 1 . 3 :

 13 Figure 1.3: Watson and Crick DNA double helix. (a) The sugar-phosphate backbones are on the outside of the double helix and purines and pyrimidines form the "steps" of the DNA helix staircase. (b) The two DNA strands are antiparallel to each other and complementary bases are paired. (c) The direction of each strand is identified by numbering the carbons (1 through 5) in each sugar molecule. The 5' end is the one where carbon # 5 is not bound to another nucleotide; the 3' end is the one where carbon # 3 is not bound to another nucleotide.(Source: OpenStax [CC BY 4.0]).
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 14 Figure 1.4: Major and minor grooves bases patterns. Functional groups of the DNA base pairs in the major and minor DNA groove. Hydrogen bond donors in blue, acceptors in red and thymine methyl group in green. By default, base pairs show always the same hydrogen bonddonor/acceptor patterns in the major and in the minor grooves, except in case of Hoogsteen base pairs. These patterns are source of specificity mostly in the major groove as compared to the minor groove. Indeed, in the minor groove, the hydrogen donor/acceptor patterns do not distinguish A:T from T:A and G:C from C:G and also patterns between purine and pyrimidine bases are very similar. (Source:[START_REF] Harteis | Making the bend: Dna tertiary structure and protein-dna interactions[END_REF]).
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 15 Figure 1.5: Nucleic acids structure hierarchy. Summary of the four levels of nucleic acids structure (primary, secondary, tertiary and quaternary), using DNA helices and examples from the VS ribozyme and telomerase and nucleosome (PDB: ADNA, 1BNA, 4OCB, 4R4V, 1YMO, 1EQZ). (Source: Thomas Shafee [CC BY 4.0], via Wikimedia Commons).
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 16 Figure 1.6: Amino acid structure and peptide bond. (a) Amino acid structure (adapted from: YassineMrabet [Public domain] via Wikimedia Commons); (b) Peptide bond formation via dehydration reaction (Source: YassineMrabet [Public domain] via Wikimedia Commons).
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 17 Figure 1.7: Amino acids classification. Amino acids classification in five main classes based on similar physico-chemical properties of the amino acid side chains. (Source: OpenStax Biology [CC BY 4.0]).
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 18 Figure 1.8: Protein structure hierarchy. Summary of the four levels of protein structure (primary, secondary, tertiary, and quaternary), using PCNA as an example (PDB: 1AXC). (Source: Thomas Shafee [CC BY 4.0], via Wikimedia Commons).
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 19 Figure1.9: Illustration of the solvent accessible surface. Illustration of the solvent accessible surface in comparison to the van der Waals surface. The 2D section ("slice") of the van der Waals surface as given by the atomic van der Waals radii is shown in red. The accessible surface is drawn with dashed lines and is created by tracing the center of the probe sphere (in blue) as it rolls along the van der Waals surface. For each atom, the exposed arc length is summed over all the slices containing it to compute the total solvent accessible surface area. Note that the probe radius depicted here is of smaller scale than the typical 1.4 Å.(Source: Keith Callenberg [CC BY-SA 3.0], via Wikimedia Commons).
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 1 Figure1.10: Molecular complementarity. The complementary shapes, charges, polarity and hydrophobicity of two protein surfaces permit multiple weak interactions, which combined produce a strong interaction and tight binding. Because deviations from molecular complementarity substantially weaken binding, affecting the binding affinity and/or specificity. On the left, a more stable complex; on the right, a less stable complex. (Source:[Lodish, 2008]) 
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 111 Figure 1.11: Induced fit, conformational selection and allostery. (a) Representation of conformational selection (pre-equilibrium existence of multiple conformations) and induced fit processes.In conformational selection, the binding competent conformation (red, P2) is pre-existing in solution before the addition of ligand (L). In induced fit, the switch to the correct conformation is induced by the ligand binding. The kinetic and thermodynamic rate constants can determine whether conformational selection or induced fit is more likely (Source:[START_REF] Boehr | The role of dynamic conformational ensembles in biomolecular recognition[END_REF]). (b): 1. In this process, the substrate (C) binds to the enzyme (E) at the active site (A). This enzyme is functioning normally, and is not inhibited; 2. In this process, an inhibitor (D) binds to the allosteric site (B) on the enzyme (E), causing a change in the shape of the enzyme. The substrate (C) can no longer bind to the active site (A) of the enzyme. (Source: Isaac Webb [CC BY-SA 3.0], via Wikimedia Commons).
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 112 Figure1.12: Ubiquitin conformational changes and binding promiscuity. The NMRderived conformational ensemble of ubiquitin indicates that all "bound" conformations exist in the absence of protein binding partners[START_REF] Clore | Elucidating transient macromolecular interactions using paramagnetic relaxation enhancement[END_REF] (left). Although the conformational ensemble encompasses all 46 of the known crystal structures of ubiquitin, only 5 are shown here for clarity (PDB 1F9J, 1S1Q, 1XD3, 2D36 and 2G45). The free energy landscapes are hypothetical considering that the relative population of each conformation in the ensemble and the energy barriers separating the conformations are not known. (Source:[START_REF] Boehr | The role of dynamic conformational ensembles in biomolecular recognition[END_REF] 
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 1 Figure1.13: p53 conformational changes and binding promiscuity. Interactions formed by p53 residues 367-391. In each panel, the p53 fragment is in cyan. The p53 sequence is 367-SHLKSKKGQSTSRHKKLMFKTEGPD-391, and in each structure the bold lysine residues are shown in stick representation, if unmodified. Post-translationally modified residues are shown using spheres. (a) S100 calcium-binding protein with p53 residues 367-388 (1DT7)[START_REF] Rust | Structure of the negative regulatory domain of p53 bound to s100b (ββ)[END_REF], (b) cyclin A2 with p53 residues 378-386 (1H26)[START_REF] Lowe | Specificity determinants of recruitment peptides bound to phospho-cdk2/cyclin a[END_REF], (c) tumor suppressor p53-binding protein 1 with p53 dimethylated lysine residue 382 (3LGL); residues 377-381 and 383-387 did not show clear density[START_REF] Roy | Structural insight into p53 recognition by the 53bp1 tandem tudor domain[END_REF], (d) 14-3-3 protein sigma with p53 residues 385-391, phosphothreonine 387 (3LW1)[START_REF] Schumacher | Structure of the p53 c-terminus bound to 14-3-3: Implications for stabilization of the p53 tetramer[END_REF], (e) NAD-dependent deacetylase Sir2 with p53 residues 378-384 (2H2F)[START_REF] Cosgrove | The structural basis of sirtuin substrate affinity[END_REF], (f) NAD-dependent deacetylase Sir2 with p53 residues 373-385; acetyllysine 382 (2H2D)[START_REF] Cosgrove | The structural basis of sirtuin substrate affinity[END_REF], (g) CREB-binding protein with p53 residues 367-386; acetyllysine 382 (1JSP)[START_REF] Mujtaba | Structural mechanism of the bromodomain of the coactivator cbp in p53 transcriptional activation[END_REF], and (h) histone-lysine N-methyltransferase with p53 residues 369-374; N-methyl-lysine 372 (1XQH)[START_REF] Chuikov | Regulation of p53 activity through lysine methylation[END_REF]. (Source:[START_REF] Schreiber | Protein binding specificity versus promiscuity[END_REF] 
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 1 Figure 1.14: Y family DNA polymerase conformational changes and binding promiscuity. (a) Superposition of the unbound (PDB code 2RDI), DNA-bound (PDB code 1JX4) and protein-bound (PDB code 3FDS) strcutures. (b) The RMSD was calculated between the DNAbound and the protein-bound conformations of the protein. Residues are colored accordingly to their RMSD values.
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 1 Figure 1.15: DNA shape readout: DNA bending and unwinding upon protein binding. (a) In the IHF-DNA complex (PDB code 1IHF) the DNA is roughly bent. No direct or indirect contacts of IHF with the DNA major groove can be observed; (b) DNA shape recognition of the TATA box by the TBP binding (extracted from PDB code 5FYW). TBP interacts with the minor groove heavily unwinding it (105 • ), resulting in a compressed major groove.
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 1 Figure 1.16: Asymmetric unit of a crystal. The asymmetric unit (green upward arrow) is rotated 180 degrees about a two-fold crystallographic symmetry axis (black oval) to produce a second copy (purple downward arrow). Together the two arrows comprise the unit cell. The unit cell is then translationally repeated in three directions to make a 3-dimensional crystal. (Source: RCSB PDB (http://www.rcsb.org/) from "Introduction to Biological Assemblies and the PDB Archive").

  17a) • a portion of a biological assembly (Fig 1.17b)• multiple biological assemblies(Fig 1.17c) 
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 117 Figure 1.17: Example of mismatch between asymmetric unit and biological assembly in a PDB file. The example reports different X-Ray experiments, corresponding to different PDB entries, providing different asymmetric units of the hemoglobin structure. The hemoglobin is a molecule with four protein chains (two alpha-beta dimers). (a) Example of PDB file with one hemoglobin molecule (4 chains) in the asymmetric unit (PDB entry: 2hhb). (b) Example of PDB file with half hemoglobin molecule (2 chains) in the asymmetric unit (PDB entry: 1out). The full biological assembly of the hemoglobin molecule can be obtained by generating the other 2 chains applying a two-fold axis transformation. (c) Example of PDB file with two hemoglobin molecule (8 chains) in the asymmetric unit (PDB entry: 1hv4). (Source: RCSB PDB (http://www.rcsb.org/) from "Introduction to Biological Assemblies and the PDB Archive")
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 1 Figure 1.18: PDB statistics. (a) Growth of released structures per year; (b) PDB data distribution by resolution; (c) PDB data distribution by molecule type and experimental method. (Source: RCSB PDB (http://www.rcsb.org/) from "PDB Statistics")
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 1 Figure 1.19: Multiple sequence alignment and conservation. First 90 positions of a protein multiple sequence alignment of instances of the acidic ribosomal protein P0 (L10E) from several organisms. The colours represent the amino acid conservation according to the properties and distribution of amino acid frequencies in each column. Note the two completely conserved residues arginine (R) and lysine (K) marked with an asterisk at the top of the alignment. Generated with ClustalW (see Section 1.6.3.1). (Source: Miguel Andrade [CC BY-SA 3.0], via Wikimedia Commons).
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 1 Figure 1.20: Neighbor Joining algorithm schema. A diagram showing an example of the neighbor-joining algorithm applied to 7 taxa. The beginning (completely unresolved), and the ending (completely resolved) trees are shown, and all 3 intermediate steps.Starting with a starlike tree (A), the pair of distinct leaves with the lowest value in the distance matrix, in this case f and g are joined to a new node, u, which is in turn connected to the central one, as shown in (B). The part of the tree shown as solid lines is now fixed and will not be changed in subsequent joining steps. This process is then repeated, using a matrix of just the distances between the nodes, a,b,c,d,e, and u. In this case u and e are joined to the newly created v, as shown in (C). Two more iterations lead first to (D), and then to (E), at which point the algorithm is done, as the tree is fully resolved. (Source: Tomfy [CC BY-SA 3.0], via Wikimedia Commons).

  ) #(shared cplx) #(shared APO) #(flawed cplx)* #removed from HR-PDNA187 because the asymmetric unit does not contain at least one biological unit. **: number of non redundant chains.
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 21 Figure 2.1: Experimental interface definition by the Levy's model. Top, sections of two experimental interfaces (on the left, PDB code: 1JE8; on the right, PDB code: 1D02). Bottom, the corresponding JET 2DNA prediction that approximates the three layers of the experimental model (support, core and rim) with a clustering procedure unfolding in three steps (seed, extension and outer layer steps) (see Section 2.7.3). The experimental and predicted interface residues are displayed in opaque surfaces: support, core and rim are in yellow, brown and green, respectively; cluster seed, extension and outer layer are in red, orange and cyan, respectively.
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 22 Figure 2.2: Expected size of the interface. Plot of the f intf rac function relating surface size and fraction of the surface covered by the interface. Each circle is the percentage of interface residues versus the total number of surface residues for a given protein comprised in the HR-PDNA187 dataset. The solid line corresponds to the function that best approximates the circles distribution.The dotted line corresponds to the function that best approximates percentage of interface residues versus the total number of surface residues for protein-protein interfaces[START_REF] Engelen | Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling[END_REF] based on a dataset of 1256 protein chains[START_REF] Chen | Prediction of interface residues in protein-protein complexes by a consensus neural network method: test against nmr data[END_REF].
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 23 Figure 2.3: Schema of the trace computation. Top: tree with nodes labeled with consensus sequences: conserved residues are traced from the leaves back to the root. Ranks of nodes are labeled in red and the total number of ranks is 7 for this tree. Subtrees of nodes of rank 2 and 3 are contoured with colored boxes. Bottom: tree with nodes labeled with back-trace sequences: back-traces are traced from the root back to the leaves. 3 subtrees corresponding to level 2 (blue, green and rose boxes) and 4 to level 3 (turquoise, orange, green and rose boxes). On the bottom left, schema of the computation of tree traces of level 2 and 3 based on 3 and 4 subtrees. Tree traces of level 2 (3) occupies the second (fifth) position in the sequence and it is denoted by X.[START_REF] Engelen | Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling[END_REF] 
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 24 Figure 2.4: Examples of tree trace levels. Left: residues I and D at position i in the alignment are conserved in two subtrees (dotted box), and this sets i as a tree trace of level 3. Right: residue I and D are conserved in two subtrees detectable at levels 3 and 9 respectively, and this sets i as a tree trace of level 9.[START_REF] Engelen | Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling[END_REF] 

Figure 2 .

 2 Figure 2.5: JET 2DNA pipeline. General JET 2 DNA pipeline, whatever the scoring scheme chosen. In black, the mandatory steps. In blue, procedure to avoid buried small ligand binding pockets. In red, filtering of the putative false positive clusters. In green, relaxing of the thresholds for too small predicted clusters, which do not respect the expecting size of the interface. In yellow, the possibility to complete the main prediction with a second one obtained by a different scoring scheme.

  and restart clustering; end merge clusters < 5Åaway from each other; Extension of a cluster c k score(r i ), score of the residue r i µ(c k ), mean score computed over a cluster c k score ext res , threshold score for residues during extension step score ext clus , threshold score for clusters during extension step {neighbors of c k }, ensemble of residues < 5Å away from c k f DN A intf rac (x), expected size of the interface given x surface residues outLayer ← {};
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 2627 Figure 2.6: Interface propensities. Absolute values of interface propensities for protein-protein interfaces, taken from[START_REF] Negi | Statistical analysis of physical-chemical properties and prediction of protein-protein interfaces[END_REF] and used in protein-binding site predictions in JET 2[START_REF] Laine | Local geometry and evolutionary conservation of protein surfaces reveal the multiple recognition patches in protein-protein interactions[END_REF] (in orange) are compared to the ones computed for protein-DNA interfaces in[START_REF] Park | Dbbp: database of binding pairs in protein-nucleic acid interactions[END_REF] and used for protein-DNA predictions in this study (in red). Amino acids are ordered from the most to the less hydrophobic one, based on the Kyte and Doolittle hydrophobicity scale[START_REF] Kyte | A simple method for displaying the hydropathic character of a protein[END_REF].
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 28 Figure 2.8: Experimental interface definition, JET 2 DNA scoring schemes (D-SC) and complete automated clustering procedure. (a) Top, sections of two experimental interfaces (on the left, PDB code: 1JE8; on the right, PDB code: 1D02). Bottom, the corresponding JET 2 DNA prediction using the scoring scheme D-SC2. The experimental and predicted interface residues are displayed in opaque surfaces: support, core and rim are in yellow, brown and green, respectively; cluster seed, extension and outer layer are in red, orange and cyan, respectively; (b) Schematic representation of the three scoring schemes (D-SC) provided in JET 2 DNA . T JET : conservation level, PC DNA : protein-DNA interface propensities, CV local and CV global : local and global circular variance computed with a radius of 12 Å and 100 Å , respectively. Different colors correspond to different combinations of properties used to predict interface residues in the three steps of the clustering procedure. (c) Schematic representation of the complete automated JET 2 DNA clustering procedure.
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 329 Fig 3. Examples of interaction sites predicted by the three scoring schemes. The experimental complexes formed between the p grey) and their partners (dark grey) are represented as cartoons. The experimental and predicted binding sites are displayed as opaqu experimental interface residues are colored according to T JET values computed by iJET 2 . iJET 2 predictions were obtained from a conse 10. They are colored according to the scoring scheme from which they were obtained: SC1 in orange, SC2 in purple and SC3 in cyan. T are indicated for each protein. They were automatically chosen by iJET 2 clustering algorithm (first round). VORFFIP predictions are co doi:10.1371/journal.pcbi.1004580.g003
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 2210 Figure 2.10: Summary of iJET 2DNA , DISPLAR and multiVORFFIP performance. Average sensitivity (Sens), positive predictive value (PPV), specificity (Spe) and accuracy (Acc) are plotted for (top left) all proteins of HR-PDNA187 dataset, (top right) all proteins of APO82 dataset, (bottom left) HR-PDNA187*, 106 proteins of HR-PDNA187 dataset that have < 95% of seq. id with respect to DISPLAR training set, (bottom right) HR-PDNA187**, 87 proteins of HR-PDNA187 dataset that have < 95% of seq. id with respect to multiVORFFIP training set. For iJET2 DNA , consensus predictions were obtained from 2 (in light green) and 8 (in dark green) runs out of 10. The clustering procedure was run using all three scoring schemes for each protein and the best patch or best combination of patches was retained for performance assessment. For DISPLAR, predicted patches were defined as formed by residues indicated as predicted (in lightblue). For multiVORFFIP, predicted patches were defined as formed by residues with a probability > 0.5 (in beige).
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 2 Fig 3. Examples of interaction sites predicted by the three scoring schemes. The experimental complexes formed between the proteins of interest (light grey) and their partners (dark grey) are represented as cartoons. The experimental and predicted binding sites are displayed as opaque surfaces. The experimental interface residues are colored according to T JET values computed by iJET 2 . iJET 2 predictions were obtained from a consensus of 2 runs out of 10. They are colored according to the scoring scheme from which they were obtained: SC1 in orange, SC2 in purple and SC3 in cyan. The scoring schemes are indicated for each protein. They were automatically chosen by iJET 2 clustering algorithm (first round). VORFFIP predictions are colored in dark green.
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 32 Fig 3. Examples of interaction sites predicted by the three scoring schemes. The experimental complexes formed between the proteins of interest (light grey) and their partners (dark grey) are represented as cartoons. The experimental and predicted binding sites are displayed as opaque surfaces. The experimental interface residues are colored according to T JET values computed by iJET 2 . iJET 2 predictions were obtained from a consensus of 2 runs out of 10. They are colored according to the scoring scheme from which they were obtained: SC1 in orange, SC2 in purple and SC3 in cyan. The scoring schemes are indicated for each protein. They were automatically chosen by iJET 2 clustering algorithm (first round). VORFFIP predictions are colored in dark green. doi:10.1371/journal.pcbi.1004580.g003
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 3 ANALYSIS AND PREDICTION OF PROTEIN-RNA INTERFACES

Figure 3 . 1 :

 31 Figure 3.1: Comparison of interface propensity values for protein-RNA and protein-DNA complexes.In blue, absolute values of interface propensities for 125 non-redundant protein-RNA interfaces in the PRDB2 benchmark. In orange, absolute values of interface propensities for the 187 non-redundant protein-DNA interfaces in our HR-PDNA187 dataset. Amino acids are ordered from the most to the less hydrophobic one, based on the Kyte and Doolittle hydrophobicity scale[START_REF] Kyte | A simple method for displaying the hydropathic character of a protein[END_REF].

Figure 3 . 2 :Figure 3 . 3 :

 3233 Figure 3.2: Comparison of signals detected in experimental RNA-, DNA-, polymeraseand protein-protein interfaces. The boxplots represent the distributions of the proportions of interacting residues having values above the median value computed over the entire protein surface. T JET : conservation level, PC RNA : protein-RNA interface propensities, PC DNA : protein-DNA interface propensities, pcprot: protein-protein interface propensities, CV local and CV global : local and global circular variances computed with a radius of 12 Å and 100 Å, respectively. Distributions are computed on: (a) all the 125 protein-RNA complexes from the PRDB2 benchamrk, (b) 187 protein-DNA complexes from HR-PDNA187 dataset, (c) polymerase-DNA complexes from HR-PDNA187 dataset, and (d) protein-protein complexes used in [Laine and Carbone, 2015]. The support, core and rim are in yellow, brown and green, respectively.

Figure 3 . 4 :

 34 Figure 3.4: Double conformation of human tryptophanyl-tRNA synthetase. (a) Dissociation complex with uncharged tRNA (biological unit 2 of pdb 2AZX). (b) Association complex with charged tRNA (biological unit 1 of pdb 2AZX). (c) Best combination of predicted patches by JET 2 RNA when considering the ensemble of all interface residues with tRNAs in both biological units of 2AZX. Computed interface residues in (a) and (b) are colored by conservation levels. Predicted residues in (c) are colored in blue if detected by D-SC3 and orange if detected by D-SC1.

  particular scoring scheme. In the following we s. The experimental complexes formed between the proteins of interest (light tal and predicted binding sites are displayed as opaque surfaces. The by iJET 2 . iJET 2 predictions were obtained from a consensus of 2 runs out of ained: SC1 in orange, SC2 in purple and SC3 in cyan. The scoring schemes ng algorithm (first round). VORFFIP predictions are colored in dark green.Local Geometry and Conservation in Protein-Protein Interfaces
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 35 Figure 3.5: Three different conformations of RNA bound to KsgA methyltransferase. (a) KsgA-RNA binary complex (pdb 3FTE). (b) KsgA-RNA-SAH ternary complex (pdb 3FTF). (c) KsgA-RNA-Era ternary complex (pdb 3R9X). (d) Union of all interface residues computed in (a-c). (e) Best combination of predicted patches by JET 2 RNA when considering the ensemble of interface residues reported in (d). Computed interface residues in (a-d) are colored by conservation levels. Predicted residues in (e) are colored in orange for D-SC1, dark green for D-SC2 and blue for D-SC3.

  es. The experimental complexes formed between the proteins of interest (light ntal and predicted binding sites are displayed as opaque surfaces. The by iJET 2 . iJET 2 predictions were obtained from a consensus of 2 runs out of tained: SC1 in orange, SC2 in purple and SC3 in cyan. The scoring schemes ring algorithm (first round). VORFFIP predictions are colored in dark green. Local Geometry and Conservation in Protein-Protein Interfaces 6: Improving JET 2 RNA predictions using electrostatic potential. Piwi protein from Archaeoglobus fulgidus (AfPiwi) in complex with a small interfering RNA (siRNA)-like duplex (PDB 2BGG). (a) Experimental interface colored by conservation level; (b) Experimental interface colored by PC RNA level; (c) Best predicted patches by JET 2 RNA overlapping the experimental interface; All residues predicted by (d) D-SC1, (e) D-SC2 and (f) D-SC3; (g) Electrostatic potential computed with CHARMM PBEQ solver using default parameters except the dielectric constant for the protein interior that was fixed to 4.0; (h) Model proposed in
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 41 Figure 4.1: Screenshot of the webpage of the Y-family DNA polymerase database entry. The functionalities and the "services" provided for each entry of the database are indicated with numbers circled in red and described to the bottom right of the figure.

  Fig. 4.2a-b are simply a recall of Fig. 1.14.

r

  to manually choose a particular scoring scheme. In the following we e on a number of different interfaces. nserved interface residues based on the protein etry metry of the protein surface, we use the measure of circular variance density of protein around an atom. This simple geometric descriptor roperties of interacting residues. To properly assess the predictive role 2 and its iterative version iJET 2 (see Materials and Methods) to JET/ uence information. We applied both methods to two testing sets, Huang dataset of 62 protein complexes [20] (S1 Table). One should also used for the analysis of the signals encoded in experimental inter-gh this analysis conceptually inspired the detection strategies imple-hod was not trained on PPDBv4 and no JET 2 parameter was set based nce, PPDBv4 could be used for assessing JET 2 predictive power.

  4A). The scoring scheme SC3 enables to increase and precision by more than 30 for this group of proteins. The cases of nti-VEGF antibody (1BJ1:R) and the shark new antigen receptor te the power of SC3 in predicting with high precision (PPV = 72% and tes while iJET failed to correctly detect them (Fig 5). emes. The experimental complexes formed between the proteins of interest (light imental and predicted binding sites are displayed as opaque surfaces. The ted by iJET 2 . iJET 2 predictions were obtained from a consensus of 2 runs out of obtained: SC1 in orange, SC2 in purple and SC3 in cyan. The scoring schemes stering algorithm (first round). VORFFIP predictions are colored in dark green. Local Geometry and Conservation in Protein-Protein Interfaces ber

Figure 4 . 2 :

 42 Figure 4.2: Example of the Y-family DNA polymerase database entry. (a) Superposition of the unbound (PDB code 2RDI), DNA-bound (PDB code 1JX4) and protein-bound (PDB code 3FDS) strcutures. (b) The RMSD was calculated between the DNA-bound and the proteinbound conformations of the protein. Residues are colored accordingly to their RMSD values. (c) DNA-binding (left), unbound (center) and protein-binding (right) structures reported in the PP(DNA)db. DNA-binding residues are shown as balls and colored accordingly to the support-corerim representation (d) Protein-DNA complex in the PP(DNA)db (PDB 1JX4) colored accordigly to sequence conservation level (left), protein-DNA interface propensitiy values (center) and circular variance values (right), after a rotation fo 180Âř with respect to the vertical axis. A blue (0) to red (1) scale of colors is possible for each residue, depending on the value, in the range between 0 and 1, assumed by each of the three descriptors. (e) Extract of the table reporting the list of residues with the class to which they belong (s=support, c=core, r=rim, NA=non-interface residue) with associated evolutionary conservation, protein-DNA interface propensitiy and circular variance values.

Figure 4 . 3 :

 43 Figure 4.3: Examples of protein conformational changes between bound and unbound forms. (a) DNA repair enzyme Endonuclease VIII of Escherichia coli , (b) PvuII restriction endonuclease, (c) DNA polymerase beta and (d) R.HinP1I restriction endonuclease proteins. DNA-binding residues are shown as balls and colored accordingly to the support-core-rim schema, yellow,brown and green, respectively. Blue arrows in (a) and (b) indicate potential small pocket targets. Red circle in (a), on the right, indicates ordered residues that become disordered in structure on the left. Orange circles in (d) represent residues that undergo changes in the secondary structure in the two conformations.

Figure 4 . 7 :

 47 Figure 4.7: Example of conformational changes needed to accomplish the protein function during the binding to the same partner.Top, bacteriophage T7 RNA polymerase in complex with DNA: promoter recognition complex (left), intermediate state (center) and elongetion complex (right). Bottom, bacteriophage T7 RNA polymerase in complex with its T7-lysozyme inhibitor. The RMSD was calculated between the C-α atoms of each two consecutive protein conformations in the top panel, and between the promoter recognition and the T7 RNA polymerase bound to the lysozyme inhibitor. Residues are colored accordingly to their RMSD values. Residues segments colored in black or regions enclosedin black circles in protein structures represent fragments that are disordered in the other structure with respect to which the RMSD is calculated, and for which no RMSD values can be computed.

Figure A. 2 :

 2 Figure A.2: Signals detected at interface of different DNA-binding proteins classes. The boxplots represent the distributions of the proportions of interacting residues having values above the median value computed over the entire protein surface. T JET : conservation level, PC: protein-DNA interface propensities, CV local and CV: local and global circular variances computed with a radius of 12 Å and 100 Å, respectively. Distributions are computed on: (a) 100 enzyme-DNA (HR-PDNA187 benchmark), (b) 78 regulatory protein-DNA (HR-PDNA187 benchmark), (c) 7 structural protein-DNA interfaces (HR-PDNA187 benchmark), (d) 51 enzyme-DNA (APO82 benchmark, unbound forms), (e) 28 regulatory protein-DNA (APO82 benchmark, unbound forms), (f) 2 structural protein-DNA interfaces (APO82 benchmark, unbound forms), (g) polymerase-DNA (HR-PDNA187 benchmark), (h) nuclease-DNA (HR-PDNA187 benchmark), (i) transcription factor-DNA interfaces (HR-PDNA187 benchmark), (j) 7 polymerase-DNA (APO82 benchmark, unbound forms), (k) 15 nuclease-DNA (APO82 benchmark, unbound forms) and (l) 11 transcription factor-DNA interfaces (APO82 benchmark, unbound forms). The support, core and rim are in yellow, brown and green, respectively.
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Table 2 .1: Comparison of HR-PDNA187 and HOLO-APO82 with the most used datasets in previous studies.

 2 

Table 2 .2: Interface and surface residue definition.

 2 

		Absence of DNA	Presence of DNA
	Support	rasa withoutDN A < 0.25 rasa withDN A < 0.25
	Core	rasa withoutDN A ≥ 0.25 rasa withDN A < 0.25
	Rim	rasa withoutDN A ≥ 0.25 rasa withDN A ≥ 0.25
	Interface residues	∆RASA > 0
	Surface residues	RASA > 5%

  2.1, top).

	seed,
	extension and
	outer layer
	approximate
	the support,
	core and rim
	experimental
	model

Table 2 . 3 :

 23 Confidence levels with which score res and score clus are determined. The thresholds are in terms of f

Table 2 .

 2 ∈ C, CV local (r i ) > 0.9/r i ∈ C > threshold buried then remove all residues r i , CV local (r i ) > 0.9 from R and restart clustering; end merge clusters < 5Å away from each other; ), score of the residue r i µ(newClus + r j ), mean score computed over the ensemble of residues of cluster newClus and r j ∈ C, CV local (r i ) > 0.9|/|r i ∈ C, percentage of residues in detected clusters with CV local > 0.9 threshold buried , maximum percentage of residues with CV local > 0.9 admitted for c

	4: JET 2 DNA algorithm

k ∈ C do scoreM ax ← maxr i ∈c k (score(r i )); end while µ(c k ) > score ext clus do newLayer extension ← {}; for r j ∈ {neighbors of c k } do if score ext res < score(r j ) < scoreM ax then add r j to newLayer extension ; end end add newLayer extension to c k ; scoreM ax ← max r i ∈newLayer extension (score(r i )); end while r

Table 2

 2 Test whether seeds are located in a concave region of the protein surface and they do not have a very high average PC DN A value:

	Addition of an outer layer to a cluster c k
	{neighbors of c k }, ensemble of residues < 5Å away from
	c k
	DN A intf rac (x) then
	relax score seed res , score seed clus , and score ext clus ;
	restart clustering;
	end

round to detect additional clusters using a complementary D-SC
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	Merge main clusters with additional clusters
	< 5Å away

Table 2 .6: iJET 2 DNA performance on the examples reported in Fig 2.9.

 2 Statistical performance values (in percentages) and the associated scoring schemes used are reported. iJET 2 DNA predictions were obtained with a consensus of 2 runs out of 10. For each complex, the PDB code and the corresponding protein chains of interest are also given.

	Complex	score	Sens PPV Spe Acc F1
	1J3E:A	D-SC1	87	83	96	94	85
	2GB7:A,B	D-SC2	67	95	99	95	78
	1TC3:C	D-SC3	64	88	93	80	74
	2DP6:A	complete procedure (D-SC2 + D-SC3)	86	41	82	82	55

Table 2

 2 

	.7: Comparison of iJET 2 DNA , multiVORFFIP and DISPLAR performances.
		Sens PPV Spe Acc F1
	HR-PDNA187					
	iJET 2 DNA (2/10)	69	57	86	84	61
	iJET 2 DNA (8/10)	63	62	90	85	61
	HOLO82					
	iJET 2 DNA (2/10)	67	54	89	86	58
	iJET 2 DNA (8/10)	61	60	92	87	58
	APO82					
	iJET 2 DNA (2/10)	69	52	88	86	58
	iJET 2 DNA (8/10)	62	58	92	88	58
	DISPLAR	41	54	94	87	43
	multiVORFFIP(p > 0.5)	45	64	95	87	50
	HR-PDNA187*					
	iJET 2 DNA (2/10)	70	57	85	83	61
	iJET 2 DNA (8/10)	63	62	89	85	61
	DISPLAR	47	62	94	86	50
	HR-PDNA187**					
	iJET 2 DNA (2/10)	70	54	84	82	60
	iJET 2 DNA (8/10)	63	59	87	84	59
	multiVORFFIP(p > 0.5)	45	65	93	84	51

Table 2 .8: F1 values of iJET 2 DNA , multiVORFFIP (MV) and DISPLAR for proteins presenting multiple DNA-binding sites. F1

 2 values are given in percentage. iJET 2

Table 3 .

 3 1: iJET 2 RNA performance on the PRDB2 benchmark. Statistical performance values are given in percentages. iJET2 RNA predictions were obtained from a consensus of 2, 5 or 8 runs out of 10. The three scoring schemes were systematically used and the best patch or best combination of patches was retained.

	consensus Sens PPV Spe Acc F1
	2	62	48	90	87	52
	5	58	51	92	88	53
	8	56	52	93	88	52

Table 3 .

 3 2: iJET 2

Table A .1 -continued from previous page PDB ID prot chains prot nr chains DNA chains HOLO ID:c APO ID:c Class Subclass

 A 

	1jx4	A	A	PT	1jx4:A	2rdi:A	enzyme	polymerase
	1k3x	A	A	BC	1k3x:A	1q39:A	enzyme	nuclease
	1k4t	A	A	BCD			enzyme	isomerase
	1ku7	A	A	BC	1ku7:A	1ku3:A	regulatory	TF
	1kx5 ABCDEFGH B	IJ			structural	histone
			D					
		prot chains prot A	DNA chains HOLO ID:c APO ID:c	Class	Subclass
	ID		nr chains C					
	1a3q 1l3l	AB BD	A B	CD EG			regulatory regulatory	TF TF
	1a73 1lmb	AB 34	A 3	CDEF 12	1a73:BA	1evx:AB	enzyme regulatory	nuclease other
	1b3t 1lq1	AB CD	A C	CD EF	1b3t:BA	1vhi:AB	regulatory regulatory	other TF
	1bdt 1mjo	ABCD ABCD	A A	EF FG	1bdt:CD 1mjo:AB	1myk:AB 1mjl:AB	regulatory regulatory	gene TF
	1bl0 1mnn	A A	A A	BC BC	1mnn:A	1mn4:A	regulatory regulatory	TF TF
	1cez 1nkp	A AB	A B	NT FG			enzyme regulatory	polymerase TF
	1d02	AB	A A	CD			enzyme	nuclease
	1dc1 1oe4	AB AB	A A	CW EF			enzyme enzyme	nuclease glycosylase
	1dfm 1orn	AB A	A A	CD BC			enzyme enzyme	nuclease nuclease
	1egw 1oup	AB B	A B	EF CD	1oup:B	1ouo:A	regulatory enzyme	TF nuclease
	1emh 1owf	A AB	A A	BC CDE	1emh:A	3fci:A	enzyme regulatory	glycosylase TF
	1esg	AB	A B	CD			enzyme	nuclease
	1f4k 1ozj	AB A	A A	DE CD	1f4k:BA	2dqr:AB	regulatory regulatory	replication TF
	1fiu 1pp7	ABCD U	A U	EFGHIJKL EF			enzyme regulatory	nuclease TF
	1gu4 1pt3	AB A	A A	CD CDEFGH	1pt3:A	3zfk:A	regulatory enzyme	TF nuclease
	1gxp 1qna	AB A	A A	CD CD	1gxp:B 1qna:A	1gxq:A 1vok:A	regulatory regulatory	other TF
	1h6f 1r71	AB AB	A A	CD EFIJ			regulatory regulatory	TF TF
	1hlv 1rh6	A B	A B	BC CD			structural regulatory recombination centromere
	1i3j 1rxw	A A	A A	BC BC			enzyme enzyme	nuclease nuclease
	1iaw 1sa3	AB A	A A	CDEF CD	1iaw:BA	1ev7:AB	enzyme enzyme	hydrolase nuclease
	1j3e 1skn	A P	A P	BC AB			regulatory regulatory	replication TF
	1je8 1sx5	AB AB	A A	CD CDEF	1je8:B 1sx5:AB	1a04:A 1az3:AB	regulatory enzyme	TF nuclease
	1jko 1sxq	C A	C A	AB CE	1sxq:A	1jg7:A	enzyme enzyme	recombinase transferase
	1t7p	A	A	PT			Continued on next page enzyme polymerase
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	1t9i	AB	A	CD	1t9i:AB	2o7m:AB	enzyme	nuclease
	1tc3	C	C	AB			enzyme	other
	1tez	A	A	IJK	1tez:A	1owl:A	enzyme	lyase
	1u8b	A	A	BCDE			regulatory	other
	1uut	A	A	C	1uut:A	1m55:A	enzyme	nuclease
	1wb9	AB	A	EF			regulatory	repair
	1xyi	A	A	BC			structural	chromosomal
	1yf3	A	A	CD	1yf3:A	1q0s:A	enzyme	methyl
	1yo5	C	C	AB			regulatory	TF
	1zme	CD	C	AB			regulatory	TF
	1zrf	AB	A	WXYZ	1zrf:AB	4r8h:AB	regulatory	other
	2aor	A	A	CD			enzyme	methyl
	2aq4	A	A	PT			enzyme	transferase
	2bnw	ABCD	A	EFGH	2bnw:CD	1irq:AB	regulatory	other
	2dp6	A	A	CD	2dp6:A	2d3y:A	enzyme	glycosylase
	2e52	AB	A	EG			enzyme	nuclease
	2ex5	AB	A	XY			enzyme	nuclease
	2fkc	A	A	CD	2fkc:A	1ynm:A	enzyme	nuclease
	2g1p	A	A	FG	2g1p:A	4gom:D	enzyme	methyl
	2gb7	AB	A	EF			enzyme	nuclease
	2h27	A	A	BC			enzyme	transferase
	2h7g	X	X	YZ			enzyme	isomerase
	2i06	A	A	BC			regulatory	replication
	2ih2	A	A	BC	2ih2:A	1aqj:B	enzyme	methyl
	2ihm	A	A	DPT			enzyme	polymerase
	2is6	A	A	CD	2is6:A	3lfu:A	enzyme	helicase
	2isz	AB	A	EF	2isz:BA	2isy:AB	regulatory	TF
					2isz:B	1b1b:A		
	2noh	A	A	BC	2noh:A	5an4:A	enzyme	glycosylase
	2nq9	A	A	BCD	2nq9:A	1qtw:A	enzyme	nuclease
	2o4a	A	A	BC			regulatory	TF
	2ofi	A	A	BC	2ofi:A	2ofk:A	enzyme	glycosylase
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	2pi0	B	B	EF	2pi0:B	3qu6:A	regulatory	other
	2pyj	A	A	XY	2pyj:A	1xhx:A	enzyme	polymerase
	2qhb	B	B	CD	2qhb:B	2ckx:A	structural	telomere
	2qoj	Z	Z	XY			enzyme	nuclease
	2r1j	LR	L	AB			regulatory	TF
	2r9l	A	A	CD	2r9l:A	2iru:A	enzyme	polymerase
	2rbf	AB	A	CD	2rbf:BA	2gpe:AB	regulatory	other
	2ve9	ABC	A	IJ	2ve9:A	2ve8:A	structural	other
	2vla	A	A	LM			enzyme	nuclease
	2vs7	A	A	BC	2vs7:A	1b24:A	enzyme	nuclease
	2w42	A	A	PQ	2w42:A	1w9h:A	regulatory	other
	2w7n	AB	A	EFGH	2w7n:BA	5ckt:AD	regulatory	gene
	2xm3	CD	C	KLMN			enzyme	transposase
	2xrz	A	A	CD	2xrz:A	2xry:A	enzyme	lyase
	2xzf	A	A	BC			enzyme	glycosylase
	2yvh	AB	A	EFGH	2yvh:AB	2yve:AB	regulatory	TF
	3aaf	A	A	CD			enzyme	other
	3bep	AB	A	CD	3bep:BA	4k3l:AB	enzyme	polymerase
	3bm3	AB	A	CD			enzyme	nuclease
	3bs1	A	A	BC	3bs1:A	4g4k:A	regulatory	gene
	3c0w	A	A	BCD			enzyme	nuclease
	3c25	AB	A	CD	3c25:AB	3bvq:AB	enzyme	nuclease
	3coq	AB	A	DE			regulatory	TF
	3cw7	ABCD	A	EFGH	3cw7:B	1mpg:A	enzyme	glycosylase
	3dsd	AB	A	C	3dsd:BA	1ii7:AB	regulatory	repair
	3dvo	AB	A	EF			enzyme	nuclease
	3eeo	A	A	CD	3eeo:A	1hmy:A	enzyme	methyl
	3f2b	A	A	PT			enzyme	polymerase
	3fde	A	A	DE	3fde:A	2zkg:A	enzyme	ligase
	3fdq	AB	A	CD			regulatory	other
	3g00	A	A	HI	3g00:A	3g8v:A	enzyme	nuclease
	3g0q	A	A	BC			enzyme	hydrolase
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	3g9m	AB	A	CD			regulatory	TF
	3gox	AB	A	CD			enzyme	nuclease
	3gxq	AB	A	CD			regulatory	other
	3h0d	AB	A	CD			regulatory	TF
	3i0w	A	A	BC	3i0w:A	3f10:A	enzyme	glycosylase
	3iag	C	C	AB			regulatory	TF
	3iay	A	A	PT			enzyme	polymerase
	3igm	AB	A	CDWX			regulatory	TF
	3ikt	AB	A	CD	3ikt:AB	3ikv:AB	regulatory	other
	3jso	AB	A	CD	3jso:AB	1jhf:AB	regulatory	other
	3jxy	A	A	BC	3jxy:A	3bvs:A	enzyme	glycosylase
	3k59	A	A	PT	3k59:A	3k5o:A	enzyme	polymerase
	3kde	C	C	AB			enzyme	other
	3kxt	A	A	BC			structural	other
	3l2c	A	A	BC			regulatory	TF
	3lap	ABCDEF	A	GHIJKL			regulatory	other
	3m4a	A	A	DE	3m4a:A	2f4q:A	enzyme	isomerase
	3mfi	A	A	PT	3mfi:A	1jih:A	enzyme	polymerase
	3mln	AB	A	CD			regulatory	TF
	3mva	O	O	DE			regulatory	TF
	3mx4	AH	A	KL			enzyme	nuclease
	3o1t	A	A	BC	3o1t:A	4jht:A	enzyme	other
	3o9x	AB	A	EF	3o9x:AB	3gn5:AB	regulatory	gene
	3od8	A	A	IJ			enzyme	other
	3pov	A	A	CD	3pov:A	3fhd:A	enzyme	other
	3pvi	AB	A	CD	3pvi:AB	1k0z:AB	enzyme	nuclease
	3pvv	A	A	CD			regulatory	replication
	3qex	A	A	PT	3qex:A	3cfo:A	enzyme	polymerase
	3qmd	A	A	BC			regulatory	other
	3qqy	A	A	BC			enzyme	nuclease
	3qws	AB	A	CN	3qws:AB	2hin:AB	regulatory	other
	3rkq	A	A	CD			regulatory	TF
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	3rmp	AC	A	EFGH			enzyme	other
	3s57	A	A	BC			enzyme	other
	3s8q	AB	A	CD	3s8q:BA	4i6r:AB	regulatory	other
	3sjm	A	A	CD			structural	telomere
	3sm4	ABC	A	DE	3sm4:CAB	1avq:ABC	enzyme	nuclease
	3spd	A	A	EF	3spd:A	3sp4:A	enzyme	hydrolase
	3ssc	A	A	CD			enzyme	nuclease
	3tan	A	A	BC			enzyme	polymerase
	3tq6	A	A	CD			regulatory	TF
	3u2b	C	C	AB			regulatory	TF
	3vk8	A	A	CD	3vk8:A	3a42:A	enzyme	glycosylase
	3vxv	A	A	BC			enzyme	hydrolase
	3zvk	FG	E	XY			regulatory	other
	3zvn	A	A	EFGHI	3zvn:A	3zvl:A	enzyme	hydrolase
	4aij	AB	A	CD	4aij:BA	4aih:AB	regulatory	TF
	4dih	H	H	D	4dih:H	3nxp:A	enzyme	thrombin
	4e9f	A	A	CD	4e9f:A	4e9e:A	enzyme	glycosylase
	4ecq	A	A	PT			enzyme	polymerase
	4esj	A	A	CD			enzyme	nuclease
	4fzx	C	C	AB			enzyme	nuclease
	4g92	ABC	B	DE	4g92:ABC	4g91:ABC	regulatory	TF
			C					
			A					
	4gck	AB	A	WZ	4gck:AB	4gfl:AB	other	other
	4gjr	AB	A	GHIJ			regulatory	TF
	4glx	A	A	BCD	4glx:A	5tt5:A	enzyme	ligase
	4gzn	C	C	AB			regulatory	TF
	4h0e	B	B	TU			regulatory	TF
	4h10	AB	B	CD			regulatory	TF
			A					
	4hf1	AB	A	CD	4hf1:AB	4hf0:AB	regulatory	TF
	4hqe	AB	A	CD	4hqe:BA	4hqm:AB	regulatory	TF
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 A2 Comparison of iJET2 DNA , multiVORFFIP and DISPLAR performances. Statistical performance values are given in percentages. iJET 2
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specific and potent inhibitors (H3, H4 and E12) binding two evolutionary distant endo-glycosidases, CelD and HEWL, with at least two modes of binding. Namely, in the bottom panel of Fig. 4.6 are reported the CelD-E12 (left), CelD-H3 (center) and HEWL-H4 (right) complexes. We can notice how, upon few variations of the protein sequence, the three inhibitors present two different and indipendent mode of binding: through a protruding convex region that penetrates the catalytic cleft of CelD for E12 and H3 (Fig. 4.6, bottom left and center), and through a β-sheet for H4 (Fig. 4.6, bottom right) [START_REF] Correa | Potent and specific inhibition of glycosidases by small artificial binding proteins (affitins)[END_REF]. Moreover, E12 and H3 interact with the target glycosidades through the same regions employed by Sac7d to bind the DNA (Fig. 4.6, bottom left and center), while H4 only partially share the residues corresponding to the Sac7d DNA-binding site (Fig. 4.6, bottom right). Thus, the availability of a database like P(P)DNAdb could also be relevant in order to provide useful hints for further inhibitor improvements. These could be obtained with minimal development effort, once for a certain protein scaffold all the known complexes of inhibitors, derived from this protein, with their targets are stored together with the scaffold template protein, that in this case is a database entry. It would be a matter of revisiting some structures that already demonstrated to be functional. Moreover, it 

List of Figures