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Abstract

Inferring is a fundamental task in science and engineering: it gives the opportunity

to compare theory to experimental data. Since measurements are finite by nature

whereas parameters are often functional, it is necessary to offset this loss of in-

formation with external constraints, by regularization. The obtained solution then

realizes a trade-off between proximity to data on one side and regularity on the other.

For more than fifteen years, these methods include a probabilistic thinking, taking

uncertainty into account. Regularization now consists in choosing a prior probability

measure on the parameter space and explicit a link between data and parameters

to deduce an update of the initial belief. This posterior distribution informs on how

likely is a set of parameters, even in infinite dimension.

In this thesis, approximation of such methods is studied. Indeed, infinite dimen-

sional probability measures, while being attractive theoretically, often require a dis-

cretization to actually extract information (estimation, sampling). When they are

Gaussian, the Karhunen-Loève decomposition gives a practical method to do so, and

the main result of this thesis is to provide a generalization to Banach spaces, much

more natural and less restrictive. The other contributions are related to its practical

use with in a real-world example.
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Résumé

L’inférence est une activité fondamentale en sciences et en ingénierie: elle permet de

confronter et d’ajuster des modèles théoriques aux données issues de l’expérience.

Ces mesures étant finies par nature et les paramètres des modèles souvent fonction-

nels, il est nécessaire de compenser cette perte d’information par l’ajout de con-

traintes externes au problème, via les méthodes de régularisation. La solution ainsi

associée satisfait alors un compromis entre d’une part sa proximité aux données, et

d’autre part une forme de régularité.

Depuis une quinzaine d’années, ces méthodes intègrent un formalisme probabiliste,

ce qui permet la prise en compte d’incertitudes. La régularisation consiste alors à

choisir une mesure de probabilité sur les paramètres du modèle, expliciter le lien

entre données et paramètres et déduire une mise-à-jour de la mesure initiale. Cette

probabilité a posteriori, permet alors de déterminer un ensemble de paramètres com-

patibles avec les données tout en précisant leurs vraisemblances respectives, même

en dimension infinie.

Dans le cadre de cette thèse, la question de l’approximation de tels problèmes est

abordée. En effet, l’utilisation de lois infini-dimensionnelles, bien que théoriquement

attrayante, nécessite souvent une discrétisation pour l’extraction d’information (cal-

cul d’estimateurs, échantillonnage). Lorsque la mesure a priori est Gaussienne, la

décomposition de Karhunen-Loève est une réponse à cette question. Le résultat

principal de cette thèse est sa généralisation aux espaces de Banach, beaucoup plus

naturels et moins restrictifs que les espaces de Hilbert. Les autres travaux développés

concernent son utilisation dans des applications avec données réelles.
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Introduction

In experimental sciences and engineering, most of the mathematical models are

designed to represent real-world phenomenon with various levels of fidelity. They

describe how a well-known initial state evolves under the modelled assumptions in a

final outcome. Their quality is then assessed by comparison with a physical experi-

ment for instance. Since this represents a logical link from causes to consequences,

this is called a direct approach and most models are designed to be well-posed in

the sense of [Had02], meaning that for any set of initial conditions, one and only one

solution exists and it is continuous in the causes.

However, the same model can serve different purposes and in particular, it can

be reversed. Indeed, since the model gives a tangible link between causes and con-

sequences, information can go both ways. The reverse approach then consists in

inferring what would have been the causes leading to a particular outcome. Despite

an obvious symmetry of these two concepts, they are very different in nature.

The well-posedness of the direct problem implies the opposite for the inverse ap-

proach, especially in infinite dimensional spaces, where an important loss of infor-

mation (also called smoothing) happens. Stronger it is, hardier the reversion will be.

One common methodology to overcome this difficulty is regularization. In essence,

it consists in looking for less general causes for the observed output, adding new

and model-external constraints. If the parameter is a function, this could be done

by imposing a certain regularity. The notion of solution is thus slightly modified,

including a compromise between actually explaining observations and respecting

these additional constraints. This provides a new problem, which in particular cases

can be well-posed (in the previous sense). The probably most known regularization

method is Tikhonov-Philips [Tik63, Phi62].

In parallel, it is now well established that errors of different natures may appear

in the practical use of mathematical models. For instance, real-world measurements

are always limited to a level of precision, which can sometimes be taken into ac-

count in a probabilistic framework. In the context of inverse problems, it results in

randomness of the associated causes, even with regularization. The study of this
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2 INTRODUCTION

effect is called quantification of uncertainty and it is the objective of Bayesian meth-

ods to intrinsically provide it as well as regularization [Stu10, DS15]. It consists

in choosing an initial probability measure on the causes and use some observations

(even poorly related) of the consequences, and then use Bayes theorem to obtain a

new distribution reflecting how data are informative. Such inverse problem is said

well-posed when the probability a posteriori satisfies Hadamard’s definition.

The motivation in this thesis is to investigate Bayesian inverse problems, with a

particular focus on their discretization [CDS10]. Indeed, when the mathematical

model involves partial derivative equations, the solution is often an infinite dimen-

sional probability distribution. As it is characterized by a density, it is usually

necessary to rely on simulation or variational optimization to extract information.

These two methods need a discretization and this is the subject of interest here.

When the prior distribution is Gaussian [Bog98], such as continuous Gaussian ran-

dom fields [RW04], it is well-known that it can be represented as a random series.

The approximation then consists in keeping a finite number of terms in a truncated

representation. Since it defines a different prior, it results in a distinct posterior

and such discretization is consistent when both tend to be equal when the num-

ber of terms increases [Hos17a]. It appears that this convergence, measured in the

Hellinger metric, can be controlled by the quality of the prior approximation. This

naturally lead to the question of optimal series representation.

The Karhunen-Loève decomposition gives such representation in Hilbert spaces.

However, it has several limitations for a practical use. First, it is the solution of an

eigenvalue problem involving the covariance operator which is rarely known analyti-

cally. This restricts heavily the possible choices for the covariance kernel for instance.

Secondly, it is based on Hilbert geometry, meanwhile the natural framework for in-

verse problems is Banach spaces. Both of these questions will be addressed, through

a direct generalization of this decomposition to Banach spaces [BC17]. Besides the

theoretical result, it appears that this new representation is easy to implement in

the space of continuous functions. The optimality properties are discussed in this

context, even if they are provided only in the special case of the Wiener process over

[0, 1].

The document is written in two distinct parts of respectively two and three chapters.

Chapter 1 presents a short introduction to the theory of Gaussian random elements,

with particular focus on series representation and covariance factorization. In chap-

ter 2, the new decomposition is given, both in general Banach spaces and in the case

of continuous functions over a compact metric set. It also includes both analytical

and numerical examples involving Gaussian random processes. Finally, a particular

analysis is given concerning the Wiener process, where two distinct optimality cri-



INTRODUCTION 3

teria are studied. The second part turns to inverse problems. Specifically, chapter

3 gives a short reminder of Tikhonov-Philips regularization. Chapter 4 provides a

detailed presentation of the Bayesian methodology for inverse problems, as it can be

found in the literature. It includes a unified treatment with the sets of hypotheses

given in [Hos17a], adapted to prior measures with exponential tails. Finally, chapter

5 gives an example how the new Karhunen-Loève decomposition can be used in a

real-world, non-linear inverse problem. In particular, the complete analysis of the

problem is provided, as well as experimental hyper-parameter tuning.
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Part I

Approximation of Gaussian

priors in Banach spaces
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Chapter 1

Introduction to Gaussian

random elements

The objective of this very first chapter is to introduce the theory of Gaussian random

elements in Banach spaces. It is a direct generalization of Gaussian random vectors

to infinite dimensional spaces, which in particular, will be useful as prior distribu-

tions in a Bayesian context. The presentation given here only includes results already

well-known in the literature, and one may find inspiring treatments in [Bog98, Lif12]

for locally convex spaces, [VTC87, Hai09, VV08, Kuo75, QL04, vN07, DZ14] for Ba-

nach spaces and [DZ04a] in Hilbert context.

1.1 Definition

Random elements In finite dimensional spaces, the notion of random variable is

well-known (see textbooks [Str10, Mél10]) and defined as a Borel measurable appli-

cation from any probability space. To extend this notion to (general) Banach spaces,

measurability must be specified for different reasons. First, in infinite dimensional

spaces, cylindrical (smallest such that every bounded linear functional is measur-

able) and Borel (smallest containing all open sets) σ-algebras are distinct and both

leading to different definitions in general. Secondly, a Borel measurable map may not

be approximated by simple functions, making the usual construction of Lebesgue’s

integral intractable. In order to circumvent both these difficulties, we stick to the

notion of strong (or separably-valued) random elements, which offers a sufficiently

general setup while avoiding unnecessary technical complications. From now on, we

will always consider (Ω,F ,P) and (U , Bor(U)) as prototypes of probability space

and measurable Banach space (equipped with its Borel σ-algebra).

Definition 1 (Random element). Let (Ω,F ,P) be a probability space and U a Ba-

nach space, a random element in U is a map X : Ω → U such that

• X is (strongly) measurable: ∀A ∈ Bor(U), X−1(A) ∈ F ,

7



8 CHAPTER 1. INTRO. TO GAUSSIAN RAND. ELEM.

• X is almost-surely separably valued: ∃U0 ⊂ U , a separable Banach space such

that X ∈ U0 almost-surely.

With this definition, it is equivalent to consider the Banach space U separable,

since one could restrict himself to U0. In this case, both cylindrical and Borel σ-

algebras are the same. The space of all (equivalence classes of) random elements

from (Ω,F ,P) to (U , Bor(U)) will be noted L0(U) instead of L0(Ω,F ,P;U , Bor(U))
since we always assume the same probability space and σ-algebra. An alterna-

tive treatment could be made with adequate notions of probability measures, since

random elements as previously defined immediately induce Radon probability mea-

sures. However, the random element point of view is used here, since it appears

more intuitive in applications.

Proposition 1 (Distribution of a random element). Let U be a Banach space,

X ∈ L0(U) a random element, then the map

µX := A ∈ Bor(U) → P(X ∈ A) ∈ [0, 1],

is a Borel probability measure, called the distribution of X and it is Radon.

Proof. Since X is measurable, µX is well-defined as a push-forward measure. The

fact that µX is a Radon is a classical result from measure theory, see proposition I.2

in [QL04] for instance.

Two random elements sharing the same distribution will be called identically

distributed. One particularly important property of such probability measures is

their characterization through all one-dimensional projections.

Definition 2 (Fourier transform). Let U be a Banach space, X ∈ L0(U) a random

element, the associated Fourier transform is defined as

X̂ := l ∈ U∗ → E
[
exp

(
i 〈X, l〉U ,U∗

)]
∈ C.

Proposition 2. Let U be a Banach space, X,Y ∈ L0(U) two random elements, if

X̂ = Ŷ then X and Y are identically distributed.

Proof. This result lies on a fundamental property, two finite dimensional probability

measures with the same Fourier transform are equal. Now, since the set of all

cylinders is a Dynkin system and generates the Cylindrical σ-algebra, which in

separable spaces coincides with Borel σ-algebra, the result is clear.

From now on, the notation 〈u, l〉 will always denote the image of a vector u by

a bounded linear functional l, it is the duality pairing with in U . The dual space

will be noted U∗. When different spaces will be involved, the complete notation

〈u, l〉U ,U∗ will be preferred.
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Gaussian random elements The role of Gaussian distributions is ubiquitous in

probability theory, statistics and most of their applications in science and engineer-

ing. In Euclidean spaces, they are usually defined by a density w.r.t. the funda-

mental Lebesgue’s measure. However, when the dimension is infinite, this cannot

be done since Lebesgue’s measure does not exist any more. However, since all one

dimensional projections of random elements totally characterize their underlying

distribution, the following definition is interesting.

Definition 3 (Gaussian random element). Let U be a Banach space, X ∈ L0(U) a

random element, it is Gaussian if

∀l ∈ U∗, 〈X, l〉 is a Gaussian random variable.

This definition is clearly a generalization of a fundamental fact about Gaussian

vectors. Now, in terms of vocabulary, a random element is said centred when all

one-dimensional projections 〈X, l〉 are, and only this case will be considered here for

simplicity (without further mention). The general theory is obtained through a

translation. In terms of distribution, since all projections are Gaussian it imposes a

distinct form for the Fourier transform.

Proposition 3. Let U be a Banach space, X ∈ L0(U) a random element, it is

Gaussian if and only if

X̂(l) = exp

(
−1

2
ϕX(l, l)

)
,

where:

ϕX : (l1, l2) ∈ U∗ × U∗ → E [〈X, l1〉 〈X, l2〉] ∈ R

is a symmetric, non-negative, bilinear form.

Proof. Let X ∈ L0(U) be a random element. If it is Gaussian, by definition

〈X, l〉 , ∀l ∈ U∗ is a Gaussian random variable and its Fourier transform is:

〈̂X, l〉 : t ∈ R → exp

(
− t

2

2
E
[
〈X, l〉2

])
∈ R.

Now, it is enough to see that ∀l ∈ U∗, X̂(l) = 〈̂X, l〉(1) and take ϕX(l1, l2) :=

E [〈X, l1〉 〈X, l2〉] which is clearly bilinear, non-negative and symmetric. Conversely,

suppose the Fourier transform of X has the previous form, then for all l ∈ U∗, 〈X, l〉
is Gaussian, thus X is a Gaussian random element and the proof is complete.

The bilinear form ϕX in proposition 3 is called the covariance of X and totally

characterizes the distribution of a Gaussian random element (since it describes the

Fourier transform). In some cases, it enjoys definiteness as well, and such covariance

will be said non-degenerated and provides a pre-Hilbert structure to U∗. The finite

dimensional analogue of ϕX is the usual covariance matrix. One easy (and useful)

consequence of proposition 3 is the conservation of Gaussian distributions under

bounded linear transformations.
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Proposition 4. Let U1,U2 be Banach spaces, X ∈ L0(U1) a Gaussian random

element and A ∈ L(U1,U2) a bounded operator, then AX ∈ L0(U2) is a Gaussian

random element.

Proof. A : U1 → U2 is a bounded operator, thus the adjoint A∗ : U∗
2 → U∗

1 exists

and ∀(x, l) ∈ U1 × U∗
2 , 〈Ax, l〉U2,U∗

2
= 〈x,A∗l〉U1,U∗

1
. Now:

∀l ∈ U∗
2 , ÂX(l) = X̂(A∗l) = exp

(
−1

2
ϕX(A∗l, A∗l)

)
,

which is the Fourier transform of a centred Gaussian random element by proposition

3.

Corollary 1. Let U a Banach space, X = (X1, X2) a Gaussian random element in

L0(U × U), then X1 +X2 is a Gaussian random element in U .

Proof. Apply proposition 4 with the bounded operator A := (x, y) → x+ y.

Now that Gaussian random elements are defined, the presentation will now turn

to advanced properties, starting with Bochner integrability.

1.2 Integrability

There are multiple notions of vector-valued integration in Banach spaces (Pettis and

Bochner for instance), referring to the different notions of measurability mentioned

earlier and here, only Bochner’s theory will be used. In this area, Fernique’s theorem

is a very powerful result, stating that all Gaussian random elements have exponential

tails. This will have deep consequences, in particular w.r.t. the covariance form.

Fernique’s theorem only needs a rotation (of angle π
4 ) invariance principle, stated in

the next lemma.

Lemma 1. Let U be a Banach space, X,Y ∈ L0(U) independent and identically

distributed Gaussian random elements with distribution µ, then
√
2
2 (X−Y ),

√
2
2 (X+

Y ) are both Gaussian random elements with distribution µ and are independent.

Proof. Let (l1, l2) ∈ U∗ × U∗ then

E [〈X − Y, l1〉 〈X + Y, l2〉] = ϕX(l1, l2)− ϕY (l1, l2) = 0,

which gives independence and

1

2
E
[
〈X − Y, l1〉2

]
=

1

2
(ϕX(l1, l1) + ϕY (l1, l1)) = ϕX(l1, l1).

The computation is similar for the second random element.

Theorem 1 (Fernique’s). Let U be a Banach space, X ∈ L0(U) a Gaussian random

element, then there exists α > 0 such that:

∀κ ∈ [0, α], E
[
exp

(
κ‖X‖2U

)]
<∞.
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Proof. The proof is based on an estimation of the type:

E
[
exp(κ ‖X‖2U )

]
≤ P (‖X‖U ≤ t0) exp

(
κt20
)

+

∞∑

n=0

P (tn ≤ ‖X‖U ≤ tn+1) exp
(
κt2n+1

)
,

where the sequence (tn)n∈N is chosen diverging and such that previous series con-

verges.

• LetX,Y ∈ L0(U) be independent and identically distributed Gaussian random

elements, (s, t) ∈ R2 such that t ≥ s > 0 then it comes from the previous

lemma:

P (‖X‖U ≤ s)P (‖X‖U > t)

= P
(
‖X + Y ‖U ≤

√
2s
)
P
(
‖X − Y ‖U >

√
2t
)

≤ P
(
| ‖X‖U − ‖Y ‖U | ≤

√
2s, ‖X‖U + ‖Y ‖U >

√
2t
)
.

Clearly,

‖X‖U + ‖Y ‖U − | ‖X‖U − ‖Y ‖U | >
√
2t−

√
2s,

⇔ 2min(‖X‖U , ‖Y ‖U ) >
√
2(t− s),

thus

P (‖X‖U ≤ s)P (‖X‖U > t) ≤ P

(
‖X‖U >

t− s√
2

)2

.

Now, t and get s will be fixed along a specific sequence (tn)n∈N.

• Now, let t0 > 0 such that P(‖X‖U ≤ t0) ≥ 2
3 and define tn+1 = t0+

√
2tn, ∀n ∈

N, then by induction tn = r
√
2
n+1−1√
2−1

and thus tn ≤ t0
√
2
n+4

. Furthermore, let

un := P(‖X‖>tn)
P(‖X‖≤t0)

which leads to un+1 ≤ u2n from the previous equation with

s = t0 and t = tn+1. Finally, un ≤ u2
n

0 ≤ 2−2n and P(‖X‖ ≥ tn) = unP(‖X‖ ≤
t0) ≤ 2−2n .

• Injecting these elements in the initial expression leads to

E
[
exp(κ ‖X‖2U )

]
≤ exp

(
κt20
)
+

∞∑

n=0

2−2n exp
(
κt202

n+5
)
,

≤ exp
(
κt20
)
+

∞∑

n=0

exp
(
−2n

(
log(2)− κt202

5
))

which converges for κ > 0 and sufficiently small.

From this theorem, we know that Gaussian random elements have thin tails,

similarly to the finite dimensional case. In particular, it implies the existence of

moments of (strong) order p, for all p ∈ N.
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Corollary 2. Let U be a Banach space, X ∈ L0(U) a Gaussian random element,

then

∀β ∈ R+, E [exp (β ‖X‖U )] < +∞.

Proof. Let κ from theorem 1, then ∀α ∈ [0, κ]

x ∈ R → exp(βx) exp
(
−αx2

)
∈ R+,

is bounded for all β ∈ R.

Corollary 3. Let U be a Banach space, X ∈ L0(U) a Gaussian random element,

then:

∀p ∈ N, E[‖X‖pU ] < +∞.

Proof. Let κ from theorem 1, then for all α ∈ [0, κ], the function:

x ∈ R+ → xpe−κx2 ∈ R

is bounded for all p ∈ N.

Corollary 4. Let U be a Banach space, X ∈ L0(U) a Gaussian random element,

then the covariance bilinear form ϕX is continuous and satisfies the following esti-

mate:

‖ϕX‖ ≤ E
[
‖X‖2U

]
.

Proof.

∀(l1, l2) ∈ U∗ × U∗, E [〈X, l1〉 〈X, l2〉] ≤ E
[
‖X‖2U

]
‖l1‖U∗ ‖l2‖U∗ ,

taking the supremum on the unit ball of U∗ in both arguments completes the proof.

Next section will continue on properties of the covariance form, using Hilbert

spaces.

1.3 Covariance and Hilbert subspace(s)

In the definition of a Gaussian random element, the covariance is a central notion

and encloses valuable information. In particular, it completely characterizes the

distribution, and as it will be shown, provides a fundamental Hilbert structure.
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Covariance operator In the spirit of finite dimensional spaces, the covariance can

be expressed in operator language instead of bilinear forms (the covariance matrix

may also be seen as a linear map). This will provide an alternative point of view,

particularly adapted to standard functional analysis tools.

Definition 4. Let U be a Banach space, X ∈ L0(U) a Gaussian random element,

then its covariance operator CX is defined as follows:

CX := l ∈ U∗ → E [〈X, l〉X] ∈ U .

The covariance operator is well-defined and bounded as a consequence of corol-

lary 3.

Proposition 5. Let U be a Banach space, X ∈ L0(U) a Gaussian random element

then its covariance operator CX satisfies the following relations:

• ∀(l1, l2) ∈ U∗ × U∗, 〈CX l1, l2〉U ,U∗ = ϕX(l1, l2),

• ‖CX‖L(U∗,U) = ‖ϕX‖

Proof. It is a standard property of Bochner’s integral that ∀(l1, l2) ∈ U∗ × U∗:

〈CX l1, l2〉 = 〈E [〈X, l1〉X] , l2〉 = E [〈X, l1〉 〈X, l2〉] = ϕX(l1, l2).

The equality of the norms is a direct application of the definition and Cauchy-

Schwarz inequality. Start with

∀(l1, l2) ∈ BU∗ × BU∗ , 〈CX l1, l2〉 ≤ ‖ϕX‖,

thus ‖CX‖ ≤ ‖ϕX‖. The other inequality is obtained because

〈CX l1, l2〉 ≤ ‖CX‖ ‖l1‖U∗ ‖l2‖U∗ ,

which gives ‖ϕX‖ ≤ ‖CX‖.

Since the covariance operator and bilinear forms are linked, the notation X ∼
N (0, CX) will be used to define a Gaussian random element in L0(U) together with
its distribution. The covariance operator enjoys more regularity than simply bound-

edness, it is nuclear in the following sense.

Proposition 6. Let U be a Banach space and X ∼ N (0, CX), then CX is a nuclear

operator, that is ∃(un)n∈N ⊂ U such that

∀l ∈ U∗, CX l =
∑

n≥0

〈un, l〉U ,U∗ un,

and (‖un‖U )n∈N ∈ l2(N).

Proof. The proof can be found in [VTC87].
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The particular properties (symmetry and non-negativity) of the covariance op-

erator are almost those of an inner product, however it is not necessarily non degen-

erated. This can be exploited using a quotient space construction.

Lemma 2. Let U be a Banach space, X ∈ L0(U) a Gaussian random element with

covariance operator CX , then there exists a Hilbert space H and a bounded operator

A ∈ L(U∗, H) such that

• CX = A∗A,

• R (A) is dense in H,

• R (A∗) = R (CX),

• ‖A‖L(U∗,H) = ‖CX‖
1

2

L(U∗,U).

Furthermore, the factorization is unique in the sense that if A1 ∈ L(U∗, H1) and

A2 ∈ L(U∗, H2) are two operators such that CX = A∗
1A1 = A∗

2A2 with R (A1),

R (A2) respectively dense in H1, H2 then there exists an isomorphism u : H2 → H1

satisfying A1 = uA2.

Proof. The operator CX is bounded, thus ker(CX) is closed in U∗. Let H0 =

U∗/ ker(CX) be the quotient space equipped with the following bilinear application:

〈[l1] , [l2]〉H0
= 〈CX l1, l2〉 ,

which is well defined. It is symmetric, bilinear and positive-definite. Let H be the

topological completion of H0 and A : U∗ → H the natural embedding operator. It

is clearly linear and has a dense image (again, by construction). To see that A is

bounded, one has:

∀l ∈ U∗, ‖Al‖2H = 〈Al,Al〉H = 〈CX l, l〉U ,U∗ ≤ ‖CX‖ ‖l‖2U∗ ,

thus ‖A‖ ≤ ‖CX‖ 1

2 . Conversely, the Cauchy-Schwarz inequality gives

∀(l, g) ∈ U∗ × U∗, 〈CX l, g〉U ,U∗ = 〈Al,Ag〉H ≤ ‖Al‖H ‖Ag‖H ,

and ‖CX‖L(U∗,U) ≤ ‖A‖2L(U∗,H), thus ‖A‖L(U∗,UX) = ‖CX‖
1

2

L(U∗,U). Now, let (l1, l2) ∈
U∗ × U∗ then

〈CX l1, l2〉 = 〈Al1, Al2〉H = 〈A∗Al1, l2〉 ,
thus A∗A = CX . Now, let A1, H1 and A2, H2 two valid factorizations. Let l ∈ U∗

such that A1l = 0, then CX l = 0 thus A2l = 0 as well. One can then consider the

map

u : A1l ∈ H1 → A2l ∈ H2,

which is linear and isomorphic between R (A1) and R (A2). To see that it is isomor-

phic let l ∈ U∗. Then it comes:

‖A1l‖2H1
= 〈CX l1, l1〉 = ‖A2l‖2H2

and it extends to H1 and H2 by density.
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Even if this result is rather formal (by the use of quotient operations), it has

two concrete instances, namely the Gaussian and Cameron-Martin spaces that are

presented below.

Gaussian space The first method to build the Hilbert subspace (from lemma 2)

is to follow the definition of a Gaussian random element, and associate every linear

functional to a Gaussian random variable by the following application:

l ∈ U∗ → 〈X, l〉U ,U∗ ∈ L2(Ω,F ,P;R).

This is completely equivalent to consider the equivalence classes (equality µX -a.e.)

of all bounded linear functionals:

l ∈ U∗ → l ∈ L2(U , Bor(U), µX ;R).

This last representation will be kept (noted shortly as L2(U ;R), and the Gaussian

space defined as the topological closure of the dual space by this linear map.

Definition 5 (Gaussian space). Let U be a Banach space, X ∈ L0(U) a Gaussian

random element, the associated Gaussian space is

HX = U∗L
2(U ;R)

.

Here, linear functionals are implicitly identified with their equivalence classes

and the notation is unchanged and will always be clear in its context. The denomi-

nation is justified since all elements in this space have indeed, as random variables,

a Gaussian distribution.

Proposition 7. Let U be a Banach space, X ∈ L0(U) a Gaussian random element

and z ∈ HX then z is a Gaussian random variable.

Proof. Let (ln)n∈N ⊂ U∗ such that ln → z in L2(U ;R), then for all t ∈ R it comes

that l̂n(t) → ẑ(t) since

∣∣∣eitln(u) − eitz(u)
∣∣∣ ≤ |t||ln(u)− z(u)|

and ∫

U

∣∣∣eitln(u) − eitz(u)
∣∣∣µX(du) ≤

√∫

U
t2(ln(u)− z(u))2µX(du).

Since ∀n ∈ N, ∀t ∈ R, 〈̂X, ln〉(t) = exp
(
− t2

2 ‖ln‖2L2(U ;R)

)
, one has:

∀t ∈ R, ẑ(t) = exp

(
− t

2

2
‖z‖2L2

)
,

which completes the proof.

This construction does not require any theoretical completion, since the space of

bounded linear functionals is seen as a subset of the larger space L2(U ;R).
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Proposition 8. Let U be a Banach space, X ∈ L0(U) a Gaussian random element

with Gaussian space HX , then the following operator:

iHX
:= l ∈ U∗ → l ∈ HX

is bounded and provides a factorization of the covariance operator CX = i∗HX
iHX

.

Proof. Note iHX
:= l ∈ U∗ → l ∈ HX , then this operator is linear and bounded

because X ∈ L2(U) and

‖l‖2HX
=

∫

U
l(u)2µX(du) ≤

∫

U
‖u‖2U µX(du) ‖l‖2U∗ .

The adjoint operator is well-defined as

i∗HX
:= z ∈ HX →

∫

U
z(u)uµX(du) ∈ U .

It is clear that CX = i∗HX
iHX

.

Proposition 7 is the reason why this particular factorization is said canonical in

[Vak91], as the Hilbert space is made of random variables.

Cameron-Martin space The second possibility is to use the covariance operator

and build a proper subspace of U , the Cameron-Martin space. Indeed, one can define

the following bilinear form on R (CX) taking:

f =
n∑

i=1

αiCX li,

g =
m∑

j=1

βjCXgj ,

〈f, g〉X :=
n∑

i=1

m∑

j=1

αiβj 〈CX li, gj〉U ,U∗ ,

where (l1, ..., ln, g1, ..., gm) ∈ (U∗)n+m, (α1, ..., αn, β1, ..., βm) ⊂ Rn+m. 〈., .〉X is a

well-defined, symmetric positive-definite bilinear form. The associated norm will

be noted ‖.‖X and the Cameron-Martin space will be defined as the topological

completion of R (CX) under this norm in U .

Definition 6 (Cameron-Martin space). Let U be a Banach space, X ∈ L0(U) a

Gaussian random element with covariance operator CX , the associated Cameron-

Martin space is

UX := R̂ (CX)
〈.,.〉X

.

Unlike the previous construction, there is no ambient space for the completion

to take place since it is a theoretical topological operation using Cauchy sequences.

However, it can be identified with a subspace of U .
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Lemma 3. Let U be a Banach space, X ∈ L0(U) a Gaussian random element with

covariance operator CX and 〈., .〉X the inner product on R (CX) defined as previously,

then

‖CX‖
1

2

L(U∗,U) = sup
l∈BU∗

‖CX l‖X .

Proof. Let l ∈ U∗, then

‖CX l‖U = sup
g∈BU∗

〈CX l, g〉U ,U∗ = sup
g∈BU∗

〈CX l, CXg〉X ≤ ‖CX l‖X sup
g∈BU∗

‖CXg‖X ,

and one gets ‖CX‖
1

2

L(U∗,U) ≤ supg∈BU∗ ‖CXg‖X . Furthermore,

‖CX l‖X =
√

〈CX l, CX l〉X =
√

〈CX l, l〉U ,U∗ ≤ ‖CX‖
1

2

L(U∗,U) ‖l‖U∗ ,

which gives the converse inequality and the proof is complete.

Proposition 9. Let U be a Banach space, X ∈ L0(U) a Gaussian random element,

then there is a natural topological injection iUX
: UX → U such that

∀h ∈ R (CX) , iUX
h = h,

and ‖iUX
‖L(UX ,U) = ‖CX‖

1

2

L(U∗,U). Furthermore (reproduction property):

∀h ∈ UX , ∀l ∈ U∗, 〈h, l〉U ,U∗ = 〈h, CX l〉X .

Proof. Let i : h ∈ R (CX) → h ∈ U . By definition of the inner product on UX , one

gets:

∀h ∈ R (CX) , ∀l ∈ U∗, 〈h, l〉U ,U∗ = 〈h, CX l〉X .

To see that i is bounded, it is enough to write:

‖i‖L(R(CX),U) = sup
g∈BU∗

sup
‖CX l‖X≤1

〈CX l, g〉U ,U∗ ,

= sup
g∈BU∗

sup
‖CX l‖X≤1

〈CX l, CXg〉X ,

= sup
g∈BU∗

〈 CXg
‖CXg‖X

, CXg
〉

X

,

= sup
g∈BU∗

‖CXg‖X ,

and by lemma 3:

‖i‖L(R(CX),U) = ‖CX‖
1

2

L(U∗,U) .

Now, R (CX) is dense in UX (by construction) thus i uniquely extends by continuity

to UX , this new map being noted iUX
and ‖iUX

‖L(UX ,U) = ‖CX‖
1

2

L(U∗,U). Let h ∈ UX ,

l ∈ U∗ and (CX ln)n∈N a sequence converging to h in UX , then

lim
n→∞

〈CX ln, CX l〉X = 〈h, CX l〉X
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since strong convergence implies weak convergence. However, iUX
is bounded, thus

iUX
(CX ln) = CX ln → iUX

(h) in U and implies that 〈CX ln, l〉U ,U∗ → 〈h, l〉U ,U∗ . Be-

cause 〈CX ln, CX l〉X = 〈CX ln, l〉U ,U∗ and the uniqueness of limits the reproduction

property is true. It remains to see that iUX
is injective. Let h ∈ UX such that

iUX
h = 0, then by the reproduction property, one has 〈iUX

h, l〉U = 〈h, CX l〉X = 0.

Since R (CX) is dense in UX , it comes that h = 0, thus iUX
is an injection.

From now on, the space UX is identified with a subspace of U . As it was an-

nounced, the Cameron-Martin space and its injection provide a factorization of the

covariance operator.

Corollary 5. Let U be a Banach space, X ∈ L0(U) a Gaussian random element with

covariance operator CX and Cameron-Martin space UX , then one has the following

factorization:

CX = iUX
i∗UX

.

Loève isometry Since both Cameron-Martin and Gaussian spaces provide fac-

torization of the covariance operator, there exists an isometry between them. In

particular, it will be possible to use either point of view to prove results on X.

Proposition 10 (Loève isometry). Let U be a Banach space, X ∈ L0(U) a Gaussian

random element, then

UX
∼= HX .

Proof. Consider the following map:

CX l ∈ R (CX) → l ∈ L2(U ;R).

Since l = 0 µX -a.e. implies that CX l = 0, it is well-defined and injective. Moreover,

for all l ∈ U∗, ‖CX l‖X = ‖l‖L2(U ;R). This isomorphism naturally extends by density,

thus Cameron-Martin and Gaussian spaces are isomorphic.

It states that to every element from the Cameron-Martin space corresponds a

unique element in the Gaussian space and vice-versa.

Corollary 6. Let U be a Banach space, X ∈ L0(U) a Gaussian random element

then the associated Cameron-Martin space UX is separable.

Proof. Since U can be taken separable, L2(U ;R) is separable since Bor(U) is count-
ably generated. By the Loève isometry, it comes that UX is separable.

The following theorem will be critical in the next chapter.

Theorem 2. Let U be a Banach space, X ∼ N (0, CX) then

BUX
= {h ∈ UX , ‖h‖X ≤ 1} ⊂ UX

is compact in U .

Proof. The proof can be found in [Bog98].
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Translation of Gaussian elements So far, the presentation only concerned cen-

tred Gaussian random elements for simplicity. However, all previous notions are

adapted to the case where the mean is non-zero. For any vector u ∈ U and Gaussian

element X, X+u is also Gaussian. However, in terms of distribution, one may ask if

they are related in some sense. The Cameron-Martin theorem states precisely that

both distributions are equivalent for translations in the Cameron-Martin space.

Theorem 3 (Cameron-Martin). Let X be a Gaussian element and h ∈ UX with

corresponding element h∗ ∈ HX then the distributions of X and X+h are equivalent

with Radon-Nikodym density

∂µX+h

∂µX
(u) = exp

(
h∗(u)− ‖h‖2X

2

)
.

Proof. Let h ∈ UX , there is a corresponding element h∗ in L2(U ;R) (Loève isometry),

which is a Gaussian random variable with variance ‖h‖2X . It follows that exp(h∗) is

L1(U ,R) (as a log-normal random variate) and fh : u ∈ U → exp(h∗(u) − 1
2‖h‖2X)

is a strictly positive (Radon-Nikodym) density (it integrates to one). Consider the

following application for a fixed l ∈ U∗

φ := t ∈ R → exp

(
−1

2
‖h‖2X

)∫

U
exp

(
i 〈u, l〉U ,U∗ + ith∗(u)

)
µX(du) ∈ C.

As we have l + th∗ Gaussian (it is an element from HX), the previous expression

becomes

φ(t) = exp

(
−1

2

(
ϕX(l, l) + 2t 〈h, l〉U ,U∗ + (1 + t2)‖h‖2X

))

using the reproducing property. Now, φ can be extended to the complex plane and

in particular Lebesgue’s dominated convergence theorem gives

lim
z→−i

φ(z) = exp

(
i 〈h, l〉U ,U∗ − 1

2
ϕX(l, l)

)
.

The direct Fourier transform of µX+h is obtained directly as follows:

∀l ∈ U∗, X̂ + h(l) = E
[
exp

(
i 〈X + h, l〉U ,U∗

)]

= exp

(
i 〈h, l〉U ,U∗ − 1

2
ϕX(l, l)

)
.

Since both Fourier transforms are the same, the underlying distributions are equal.

In the literature, the Cameron-Martin theorem states as well that if h 6∈ UX , the

distributions are mutually singular. This result is omitted here since it will not be

used. One interesting consequence of the Cameron-Martin theorem is the possibility

to quantify the so-called small-ball probability.
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Theorem 4 (Onsager-Machlup functional). Let U be a Banach space and X ∈
L0(U) a Gaussian random element then ∀(h1, h2) ∈ U2

X , it comes:

lim
r→0

µX (BU (h1, r])
µX (BU (h2, r])

= exp

(
1

2
‖h2‖2X − 1

2
‖h1‖2X

)
.

Proof. The proof may be found in [Bog98] (Corollary 4.7.8).

1.4 Series representation

Admissible sequences The concept of series representation for a Gaussian ran-

dom element X consists in finding particular sequences of vectors (un)n∈N ⊂ U such

that the random series ∑

n≥0

ξnun,

with (ξn)n∈N independent N (0, 1) random variables converges almost-surely in U
with distribution µX (the law of X). Every such family is called an admissible

sequence for X.

Definition 7 (Admissible sequence). Let U be a Banach space, X ∈ L0(U) a Gaus-

sian random element, (ξn)n∈N a family of independent standard Gaussian random

variables, then a sequence (un)n∈N is admissible for X if

∑

n≥0

ξnun converges almost-surely in U ,

and its distribution is µX .

The existence of such admissible sequence has been first shown in [Tsi81] and

later studied in [Bog98, VTC87, Vak91, LP09, Lif12] for instance. Whenever the

series representation is actually a finite sum, the random element is said of finite

rank (equal to the number of terms). It is essentially the same problem as finding

(tensor) representations of the covariance operator.

Lemma 4 (Lemma 1 in [LP09]). Let U be a Banach space, X ∈ L0(U) a Gaussian

random element, CX its covariance operator and (un)n∈N ⊂ U then the following

assertions are equivalent:

1. (un)n∈N is admissible for X,

2. ∀l ∈ U∗,
(
〈un, l〉U ,U∗

)
n∈N

is admissible for 〈X, l〉U ,U∗,

3. ∀l ∈ U∗, CX l =
∑

n≥0 〈un, l〉U ,U∗ un, where the convergence is in U ,

4. ∀r > 0, ∀l, g ∈ BU∗(0, r]

〈CX l, g〉U ,U∗ =
∑

n≥0

〈un, l〉U ,U∗ 〈un, g〉U ,U∗ ,

where the convergence is uniform.
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Proof. 1 ⇒ 2 is direct while 2 ⇒ 1 is a consequence of the Itô-Nisio theorem [IN68].

Now let (ξn)n∈N be a sequence of independent Gaussian standard random variables

and note Xn =
∑n

k=0 ξkuk. 1 ⇒ 4 By hypothesis, Xn → Y almost-surely with Y

a Gaussian random element identically distributed with X, thus Xn → Y in L2(U)
and one has for all r > 0
∣∣∣∣∣

n∑

k=0

〈uk, l〉U ,U∗ 〈uk, g〉U ,U∗ − 〈CX l, g〉U ,U∗

∣∣∣∣∣ =
∣∣∣E
[
〈Xn − Y, l〉U ,U∗ 〈Xn − Y, g〉U ,U∗

]∣∣∣ ,

≤ r2E
[
‖Xn − Y ‖2U

]
,

with (l, g) ∈ BU∗(0, r]2. 4 ⇒ 3 is direct. 3 ⇒ 2 Finally,

∀l ∈ U∗, E
[
exp

(
i 〈Xn, l〉U ,U∗

)]
= exp

(
−1

2

n∑

k=0

〈un, l〉2U ,U∗

)

thus X̂n(l) → X̂(l).

As pointed out in [LP09], the last item in lemma 4 is a general version of Mercer’s

theorem [Mer09] and all convergences are unconditional. It appears that admissible

sequences are completely characterized using covariance factorizations from lemma

2 [LP09].

Theorem 5. Let U be a Banach space, X ∈ L0(U) a Gaussian random element

and H a separable Hilbert space with (en)n∈N a basis. A sequence (un)n∈N ⊂ U is

admissible for X if and only if there is an operator S ∈ L(H,U) such that CX = SS∗

and ∀n ∈ N, Sen = un.

Proof. Let H be a separable Hilbert space, S ∈ L(H,U) such that CX = SS∗ and

(en)n∈N ⊂ H a Hilbert basis. It comes that

∀l ∈ U∗, S∗l =
∑

n≥0

〈S∗l, en〉H en =
∑

n≥0

〈Sen, l〉U ,U∗ en,

and applying S, it comes ∀l ∈ U∗, CX l = SS∗l =
∑

n≥0 〈Sen, l〉U ,U∗ Sen. Using

lemma 4, (Sen)n∈N is admissible. Conversely, let (un)n∈N ⊂ U be an admissible

sequence for X then ∀(cn)n∈N ∈ l2(N), one has

∥∥∥∥∥
m∑

k=n

ckuk

∥∥∥∥∥

2

U
≤ sup

l∈BU∗

〈
m∑

k=n

ckuk, l

〉2

U ,U∗

,

≤
m∑

k=n

c2k sup
l∈BU∗

∑

i≥0

〈ui, l〉2U ,U∗ ,

≤
m∑

k=n

c2k sup
l∈BU∗

〈CX l, l〉U ,U∗ ,

≤ ‖CX‖L(U∗,U)

m∑

k=n

c2k,
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using lemma 4, thus the sequence is Cauchy in U and converges. Since (en)n∈N ⊂ H
is a Hilbert basis, Parseval equality gives

∀h ∈ H, (〈h, en〉H)n∈N ∈ l2(N),

and
∑

n≥0 〈h, en〉H un ∈ U . Define S as the following operator:

S := h ∈ H →
∑

n≥0

〈h, en〉H un,

which is linear. To see that it is bounded, write

‖Sh‖2U = sup
l∈BU∗

〈Sh, l〉2U ,U∗ ,

≤ sup
l∈BU∗


∑

n≥0

〈Sh, en〉H 〈un, l〉U ,U∗




2

,

≤ ‖CX‖L(U∗,U) ‖h‖2H ,

and now ∀n ∈ N, Sen = un. The proof is complete.

In practice, one finds admissible sequences using covariance factorization and

pre-existing Hilbert bases. In [LP09], the authors emphasize a more general notion

of Parseval frames instead of Hilbert bases, allowing redundancy and the possibility

to work with wavelets for instance.

Corollary 7. Let U be a Banach space, X ∈ L0(U) a Gaussian random element

with Cameron-Martin space UX , then all Hilbert bases (hn)n∈N ⊂ UX are admissible

for X.

Proof. Since the injection iUX
: UX → U provides a valid factorization, it is a

consequence of theorem 5.

Among all possible bases in the Cameron-Martin space, there are some satisfying

a strong summability condition, linked with the nuclearity of the covariance operator.

Proposition 11. Let U be a Banach space, X ∈ L0(U) a Gaussian random element,

then there exists an admissible sequence (un)n∈N ⊂ U such that

∑

n≥0

‖un‖2U < +∞.

Proof. The proof can be found in [Bog98].

An admissible sequence with this last property will be called a nuclear represen-

tation of X. The general concept of admissible sequences only provides a Gaussian

random element with distribution target distribution µX . However, it is possible to

find particular sequences such that they lie in the range of CX (as it is dense in UX).

In that case, the approximation is much stronger, since it holds almost-surely.
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Proposition 12. Let U be a Banach space, X ∼ N (0, CX), (ln)n∈N ⊂ U∗ such that

(CX ln)n∈N is admissible for X, then

X =
∑

n≥0

〈X, ln〉U ,U∗ CX ln, a.s.

Proof. For all n ∈ N, let Xn =
∑n

k=0 〈X, lk〉U ,U∗ CX lk, then for every l ∈ U∗,(
〈Xn, l〉U ,U∗

)
n∈N

converges to 〈X, l〉U ,U∗ in L2(Ω;R) by lemma 4, thus in proba-

bility and Itô-Nisio theorem gives the conclusion.

This (stronger) type of representations is known as stochastic bases in [Her81,

Oka86].

Definition 8. Let U be a Banach space, X ∈ L0(U) a Gaussian random element,

(un)n∈N ⊂ U and (u∗n)n∈N ⊂ U∗ then the system (un, u
∗
n)n∈N is a stochastic basis if

• ∀(n,m) ∈ N2, 〈un, u∗m〉U ,U∗ = δnm,

• X =
∑

n≥0 〈X,u∗n〉U ,U∗ un, a.s.

Optimality of representations Since there are multiple admissible sequences

(and stochastic bases) to represent a Gaussian random element, it is natural to

study the speed of convergence of such representations, in particular in applied

contexts. Indeed, the practitioner will be often interested in finite approximations

using an admissible sequence (un)n∈N of the following form:

∀n ∈ N∗, Xn =
n∑

k=0

ξkuk.

It is then of interest to look for optimal representations, provided a measure of con-

vergence speed. The usual notions of distances (Hellinger, total-variation) between

distributions µX and µXn are not adapted (in fact not defined), since both measures

are mutually singular. However, a first criterion could be a uniform approximation

of the type (see [KL02] for a precise discussion):

∀n ∈ N∗, E



∥∥∥∥∥∥
∑

k≥n−1

ξkuk

∥∥∥∥∥∥

2

U




1

2

.

This leads to the important notion of l-numbers for a Gaussian random element.

Definition 9. Let U be a Banach space, X ∈ L0(U) a Gaussian random element,

then its sequence of l-numbers is defined as ∀n ∈ N∗:

ln(X) = inf




E



∥∥∥∥∥∥
∑

k≥n−1

ξkuk

∥∥∥∥∥∥

2

U




1

2

, (un)n∈N is admissible for X




.
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In particular, these l-numbers where shown closely related to the metric entropy

of the underlying probability measure [LLW99]. In fact, this notion can be linked

to the covariance operator using factorizations.

Proposition 13. Let U be a Banach space, X ∈ L0(U) a Gaussian random element

with covariance operator CX , H a separable Hilbert space and A ∈ L(H,U) such that

CX = AA∗ then ∀n ∈ N∗:

ln(X) = inf




E



∥∥∥∥∥∥
∑

k≥n−1

ξkAek

∥∥∥∥∥∥

2

U




1

2

, (en)n∈N Hilbert basis in H




,

where (ξn)n∈N is a sequence of i.i.d. N (0, 1) random variables.

However, it is not clear that there exists an admissible sequence (un)n∈N such

that

∀n ∈ N∗, ln(X) = E



∥∥∥∥∥∥
∑

k≥n−1

ξkuk

∥∥∥∥∥∥

2

U




1

2

.

In other words, the infimum may not be a minimum in the definition of l-numbers.

Nevertheless, if one can at least estimate the sequence of l-numbers, there exists at

least one admissible sequence achieving this speed of approximation.

Proposition 14. Let U be a Banach space, X ∈ L0(U) a Gaussian random element

with covariance operator CX , H a Hilbert space, A ∈ L(H,U) such that CX = AA∗,

α > 0 and β ∈ R then the following assertions are equivalent:

1. ∃c1 > 0, ∀n ∈ N∗, ln(X) ≤ c (1+log(n))β

nα ,

2. there exists (un)n∈N ⊂ U an admissible sequence for X and c2 > 0 such that

∀n ∈ N∗, E



∥∥∥∥∥∥
∑

k≥n−1

ξkuk

∥∥∥∥∥∥

2

U




1

2

≤ c2
(1 + log(n))β

nα
.

3. there exists a sequence independent Gaussian random elements (Xk)k∈N ⊂
L0(U), c3 > 0 such that

X =
∑

k≥0

Xk,

∀k ∈ N, rank (Xk) < 2k,

∀k ∈ N, E
[
‖Xk‖2U

] 1

2 ≤ c3k
β2−αk.

Proof. The proof can be found in [Pis89].
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In view of proposition 14, we see that if one estimates the l-numbers for a particu-

lar factorization of the covariance operator, then there exists an admissible sequence

with the same approximation error estimate. However, in some cases, it is also

possible to bound the l-numbers below and when both estimates are similar, the

decomposition is said asymptotically optimal.

Definition 10. Let U be a Banach space, X ∈ L0(U) a Gaussian random element

then an admissible sequence (un)n∈N ⊂ U is asymptotically optimal for X if ∃c1, c2 >
0, ∀n ∈ N∗,

c1ln(X) ≤ E



∥∥∥∥∥∥
∑

k≥n−1

ξkuk

∥∥∥∥∥∥

2

U




1

2

≤ c2ln(X).

The second notion of approximation of Gaussian random element is a worst-case

type. It is based on the approximation of the covariance operator by finite dimen-

sional operators and it leads to the notion of approximation numbers for Gaussian

random elements.

Definition 11. Let U be a Banach space, X ∈ L0(U) a Gaussian random element

with covariance operator CX , the sequence of approximation numbers is defined as:

∀n ∈ N∗, an(X) = inf
{
‖CX − S‖L(U∗,U) , S ∈ L(U∗,U), rank (S) < n

}
.

A first practical interest of these numbers is in particular their interpretation of

linear reconstruction of Gaussian random elements.

Proposition 15 (Proposition 6.2 in [KL02]). Let U be a Banach space, X ∈ L0(U)
a Gaussian random element, n ∈ N∗ and ǫ > 0 then an(X) < ǫ if and only if there

exist (l0, ..., ln−1) ∈ (U∗)n and (α0, ..., αn−1) ∈ Rn such that

∀l ∈ U∗, E



(
〈X, l〉U ,U∗ −

n−1∑

k=0

αk 〈X, lk〉U ,U∗

)2

 ≤ ǫ ‖l‖U∗ .

Proof. The proof is in [KL02].

The second interest in approximation numbers is the possibility to provide a

lower bound to l-numbers.

Proposition 16. Let H be a Hilbert space, U a Banach space and A ∈ L(H,U),
then there exists c > 0,

∀m,n ≥ 1,
√
log(m)an+m−1(A) ≤ cln(A).
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1.5 Additional results in the Hilbert case

In this section, some important results are provided concerning the very specific

case where U is a Hilbert space. Indeed, there are some important strengthenings of

previous general concepts in this very special type of Banach spaces. Here, the dual

space U∗ will be identified with U using Riesz representation theorem. In particular,

it implies that the covariance operator is an endomorphism and can be diagonalized

by the spectral theorem (since it is compact and self-adjoint). Moreover, it is non-

negative thus all the eigenvalues (λn)n∈N ⊂ R+ and the nuclearity translates into

(λn)n∈N ⊂ l1(N).

Characterization of Gaussian covariance operators In the section 1.3, the

covariance operator has been defined using Bochner’s integral and shown to be non-

negative, symmetric and nuclear. In Hilbert spaces, the converse is also true, that

is every operator sharing these properties is the covariance of a Gaussian random

element.

Theorem 6 (Prohorov). Let U be a separable Hilbert space and C ∈ L(U ,U), it is
the covariance of a Gaussian random element in U if and only if it is symmetric,

non-negative and nuclear.

Proof. Let U be a separable Hilbert space and X ∼ N (0, CX) a Gaussian random

element. It has been already shown that its covariance operator is self-adjoint and

non-negative. The nuclearity can be directly shown here. Indeed, let (un)n∈N ⊂ U
be a Hilbert basis, then

∫

U
‖u‖2U µX(du) =

∫

U

∑

n≥0

〈u, un〉2U µX(du)

=
∑

n≥0

∫

U
〈u, un〉2U µX(du)

=
∑

n≥0

〈CXun, un〉U

from Lebesgue’s dominated convergence theorem, which implies a finite trace, thus

CX is nuclear. Now, let CX ∈ L(U ,U) be a symmetric, non-negative and nuclear

operator, the spectral theorem implies the existence of a Hilbert basis (un)n∈N ⊂ U
and a sequence (λn)n∈N ⊂ R+ (by non-negativity) such that

∀u ∈ U , CXu =
∑

n≥0

λn 〈u, un〉U un,

and (λn)n∈N ∈ l1(N) (by nuclearity). Now, let (ξn)n∈N be a sequence of i.i.d. N (0, 1)

random variables (on the same probability space) and consider the following quan-

tity:

X̃ =
∑

n≥0

√
λnξnun.
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It comes that

E

[∥∥∥X̃
∥∥∥
2

U

]
= E


∑

n≥0

λnξ
2
n


 =

∑

n≥0

λn < +∞,

using Lebesgue’s dominated convergence theorem and thus X̃ ∈ L2(U). Now it

remains to see that it is a Gaussian random element with covariance CX . Again,

Lebesgue’s dominated convergence theorem gives

∀u ∈ U , E
[
ei〈X̃,u〉

U

]
=
∏

n≥0

E
[
ei
√
λn〈u,un〉Uξn

]
= E

[
−1

2
〈CXu, u〉U

]
.

In conclusion, µX̃ = µX by proposition 2.

In general Banach spaces, the characterization of Gaussian covariance operators

is still an open problem (except in lp spaces, see [KT14] and the reference therein).

Karhunen-Loève representation In separable Hilbert spaces, the covariance

operator admits a spectral representation. This eigendecomposition naturally leads

to a Hilbert basis, which will be used to give an important admissible sequence,

namely the Karhunen-Loève decomposition.

Proposition 17. Let U be a separable Hilbert space, X ∈ L2(U) a Gaussian ran-

dom element with covariance operator CX which eigendecomposition is (λn)n∈N ⊂
R+, (un)n∈N ⊂ U then

1. UX = R

(
C

1

2

X

)U
,

2. (
√
λnun)n∈N is a Hilbert basis in UX ,

3. ∀(h1, h2) ∈ UX , 〈h1, h2〉X =
∑

n≥0 λ
−1
n 〈h1, un〉U 〈h2, un〉U .

Proof. Let u ∈ U and note h = CXu, then

‖h‖2X = 〈h, h〉X = 〈CXu, u〉U =

∥∥∥∥C
1

2

Xu

∥∥∥∥
2

U

using the reproduction property. This isometry extends by density, giving item 1.

Similarly, let (un)n∈N be a spectral basis of CX , u ∈ U and h = CXu, then

∀n ∈ N, 〈h, un〉X = 〈u, un〉U .

This implies that if 〈h, un〉X = 0 for all n ∈ N, h = 0 thus (un)n∈N is dense in UX .

Finally, ∥∥∥
√
λnun

∥∥∥
2

X
= 〈λnun, un〉X = 〈un, un〉U = 1,

and similarly for λn > 0,
〈√

λnun,
√
λpup

〉
X

=

√
λp√
λn

〈un, up〉U = δnp. The specific

form of the inner product is deduced directly.
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Theorem 7. Let U be a separable Hilbert space, X a Gaussian random element in U
with covariance operator CX , then using previous notations, the sequence (

√
λnun)n∈N

is a Hilbert basis of UX and one has

X =
∑

n≥0

〈X,un〉U un a.s.

Proof. Since (un)n∈N ⊂ U is a Hilbert basis, the result is clear.

Besides of having independent Gaussian components, this decomposition enjoys

two fundamental properties: a precise quantification of errors under truncation (low-

rank approximation) and optimality in both trace and operator norms.

Theorem 8. Let U be a Hilbert space, X ∈ L0(U) a Gaussian random element with

covariance operator CX ∈ L(U ,U). Let (λn)n∈N ⊂ R and (un)n∈N ⊂ U respectively

its eigenvalues (in decreasing order) and eigenvectors, then ∀n ∈ N∗:

• ln(X) =
(∑

k≥n λk

) 1

2

,

• an(X) = λ
1

2

n−1.

In other words, the problem of approximation of Gaussian random elements in

Hilbert spaces is solved, the optimal basis being essentially unique and given by the

(rescaled) eigenvectors. In finite dimensional spaces, this is also known as Eckart-

Young-Mirksy theorem for low-rank approximation.

Feldman-Hajek theorem The second important result is that equivalence and

singularity properties from Cameron-Martin theorem may be extended to measures

with different covariance operators.

Theorem 9 (Feldman-Hajek). Let U a Hilbert space, Xi ∼ N (mi, Ci), i ∈ {1, 2}
two Gaussian random elements, then:

1. The distributions µX1
and µX2

are equivalent if and only if:

(a) UX1
= UX2

(b) m1 −m2 ∈ UX1

(c)

∥∥∥∥
(
C− 1

2

1 C
1

2

2

)(
C− 1

2

1 C
1

2

2

)∗
− I

∥∥∥∥
HS

<∞

2. They are mutually singular otherwise.

Proof. The proof is given in [DZ14], theorem 2.25.

Here, the Hilbert-Schmidt norm of an operator A ∈ L(U ,U) is:

‖A‖HS =


∑

n≥0

‖Aen‖2U




1

2

,

where (en)n∈N ⊂ U is a Hilbert basis (this quantity is invariant under change of

bases).
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Examples

Example 1 (Gaussian vectors). This first example shows how the previous general

theory applies in an Euclidean space U = Rn with n ∈ N∗. Let X ∈ L0(U) be a

Gaussian random element. In the canonical basis (ei)i∈[1,n], the covariance operator

is the usual matrix

∀(i, j) ∈ [1, n]2, (ΣX)i,j = E
[
〈X, ei〉U 〈X, ej〉U

]
.

Because this matrix is symmetric, one can find an eigendecomposition and represent

it as a diagonal matrix with eigenvalues (λ1, ..., λn) ∈ [0,+∞[n. The Cameron-

Martin space is then equal to the span of eigenvectors with strictly positive eigenval-

ues, while the inner product is defined ∀(Σx,Σy) ∈ Σ(Rn), 〈Σy,Σx〉X = 〈Σy, x〉U .
In this very special case, the classical terminology is Gaussian random vectors.

Example 2 (Inverse Laplace covariance.). Let Ω =]0, 1[, f ∈ L2(Ω;R) and consider

the following equation:

−∆u = f on Ω,

u = 0 on ∂Ω.

Using standard variational analysis (Lax-Milgram theorem), one shows that a (unique)

weak solution u exists in the Sobolev space H1
0 (Ω), defining a solution map C := f ∈

L2(Ω;R) → u ∈ H1
0 (Ω;R). This map is linear and bounded. Furthermore, since Ω

is bounded itself, the Sobolev embedding H1
0 (Ω) in L2(Ω) is compact and C is thus

a compact operator. To see that it is self-adjoint, let (f, g) ∈ L2(Ω)2 and u = Cf ,

v = Cg. It is clear that

〈Cf, g〉L2 =
〈
u′, v′

〉
L2 = 〈f, Cg〉L2 ,

and C is self-adjoint in L2. By the spectral theorem, it admits a spectral represen-

tation and in this particular case, it is given ∀n ∈ N:

Cfn = λnfn,

λn =
1

(n+ 1)2π2
,

fn : = x ∈]0, 1[→
√
2 sin((n+ 1)πx) ∈ R.

It is thus clearly trace-class, and the following random series

X =
∑

n≥0

√
λnξnfn,

with (ξn)n∈N a sequence of independent standard normal variates defines a Gaussian

random element in U = L2(Ω,R) with covariance operator C (known as the Brownian

bridge). The Cameron-Martin space can be identified with the subspace H1
0 (Ω), ∀f ∈

L2(Ω), note u = Cf , then

‖u‖2X = 〈u, u〉X = 〈u, f〉L2 =
〈
u′, u′

〉
L2 = ‖u‖2H1

0
.
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1.6 Gaussian random elements in C (K,R)

In this section, the presentation focuses on the particular case of continuous func-

tions over a compact metric set, that is U = C (K,R) from now on. First of all,

it is a Banach space when the supremum norm is considered and it is separable

(as a consequence of Stone-Weierstrass theorem). Moreover, the dual space U∗ is

identified with the space of finite, signed measures on K equipped with the Borel

σ-algebra (Riesz-Markov theorem, see [Rud09]). In this context, the theory of con-

tinuous Gaussian random fields will provide an alternative viewpoint on the previous

material. Indeed, they can be seen as Gaussian random elements of L0(U).

Continuous Gaussian random fields The theory of random fields is a practical

tool to define probability measures over function spaces [AT07]. Indeed, let K be a

set and (Ω,F ,P) a probability space, then a family {Xs}s∈K of real random variables,

all defined on the same probability space, maps Ω to RK (the set of all maps from

K to R).

Definition 12 (Random field). Let (Ω,F ,P) a probability space, K a set, then a

random field on K is a family of real random variables (Xs)s∈K defined on the same

probability space.

This formally defines a measurable mapping X between (Ω,F) and RK equipped

with the cylindrical σ-algebra Cyl(K) (smallest such that all point-wise evaluations

are measurable). Let ω ∈ Ω such that the previous map is well-defined, thenX(ω) :=

(Xs(ω))s∈K is called a sample function. From now on, we will always suppose that

a unique probability space is given, and will not mention it any more. Now, given

a random field on (K, d), one can consider an associated probability measure, its

distribution.

Definition 13 (Distribution of a random field). Let K a set and X = (Xs)s∈K a

random field, its distribution is defined as:

µX := A ∈ Cyl(K) → P
(
X−1(A)

)
∈ [0, 1].

The particular nature of the Cylindrical σ-algebra gives the possibility to consider

the previous distribution on cylinders, providing a family of finite distributions.

Definition 14 (Finite distribution). Let K a set and X = (Xs)s∈K a random field,

then for all n ∈ N and all (s0, ..., sn) ∈ Kn+1, the following map is a probability

measure on (Rn+1, Bor(Rn+1)):

µ
(s0,...,sn)
X := A ∈ Bor(Rn+1) → P ((Xs0 , ..., Xsn) ∈ A) ∈ [0, 1].

Obviously, the distribution of a random field uniquely defines a family of finite

distributions. However, it is possible to build a distribution on Cyl(K) by specifying

a family of finite distributions, provided they are consistent (Kolmogorov extension

theorem). Now, since a random field is a family of random variables, one can consider

important mappings, generalizing the usual notion of moments.
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Definition 15. Let K a set and X = (Xs)s∈K a random field on K:

• if ∀s ∈ K, Xs ∈ L1(R), then the map

mX := s ∈ K → E [Xs] ∈ R

is the mean function of X,

• if ∀s ∈ K, Xs ∈ L2(R), then the map

kX := (s, t) ∈ K2 → E [(Xs − E [Xs])(Xt − E [Xt])] ∈ R

is the covariance kernel of X.

A random field with a mean function is said to be integrable, and if additionally

it has a covariance kernel, it is square integrable. A random field with trivial mean

function will be called centred, and again, only this case will be considered here such

that

∀(s, t) ∈ K2, kX(s, t) = E [XsXt] .

An important consequence of the definition is that a covariance kernel is symmetric

and semi-positive definite.

Proposition 18. Let K a set and X = (Xs)s∈K a square integrable random field on

K, then its covariance kernel kX has the following properties:

• Symmetry: ∀(s, t) ∈ K2, kX(s, t) = kX(t, s),

• Semi-positive definiteness:

∀n ∈ N, ∀(s1, ...sn) ∈ Kn, ∀(α1, ..., αn) ∈ Rn,
n∑

i=1

n∑

j=1

αiαjkX(si, sj) ≥ 0.

The terminology of semi-positive definite kernel is usual in the literature of co-

variance kernels, while non-negativity is used in functional analysis for operators.

Now, the definition of Gaussian random field is based on all its finite distributions,

as follows.

Definition 16 (Gaussian random field). Let K be a set and (Xs)s∈K a random field

on K, it is Gaussian if ∀n ∈ N, ∀(s0, ..., sn) ∈ Kn+1, (Xs0 , ..., Xsn) is a Gaussian

vector on (Rn+1, Bor(Rn+1)).

One particularity of such field is that they are square integrable, thus the mean

function and covariance kernel are well-defined. As a consequence, all finite distri-

butions can be expressed using these two notions. Indeed, let n ∈ N, s = (s0, ..., sn)

then

(Xs0 , ..., Xsn) ∼ N (0, kX(s, s))

where kX(s, s) is a square matrix of dimension n + 1, such that (kX(s, s))(i,j) =

kX(si, sj). Since all finite distributions are parametrized by the covariance kernel
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(the mean function being taken null) and as it bears the necessary consistency, it

provides a characterization of the random fields’ law. It is also important to mention

that given a symmetric, semi-positive definite kernel, one can build a Gaussian

process from which it is the covariance.

Example 3. Let K ⊂ Rn, n ≥ 1, then the following applications are valid covariance

kernels:

• Squared-exponential kernel:

∀(s, t) ∈ K2, k(s, t) = exp
(
−d(s, t)2

)
,

• Exponential kernel:

∀(s, t) ∈ K2, k(s, t) = exp (−d(s, t)) ,

• Matérn kernel:

∀(s, t) ∈ K2, k(s, t) =
21−ν

Γ(ν)

(√
2νd(s, t)

)ν
Kν

(√
2νd(s, t)

)
,

where Γ, Kν are respectively the gamma and modified Bessel functions and

ν > 0.

There exists a large family of well-known kernels in the literature, one could

consult [RW04, BTA04] for instance. In the special case where the compact set K
is a Cartesian product, it is possible to define covariance kernels by tensorization.

Proposition 19. Let K1, K2 be two sets, K = K1 ×K2, k1 and k2 two symmetric,

semi-positive definite kernels on K1, K2 respectively, then

∀(s, t) ∈ K2, k(s, t) = k1(s1, t1)k2(s2, t2)

is a symmetric, semi-positive definite kernel on K.

Example 4. Let K = [0, 1] and consider the Wiener process kernel ∀(s, t) ∈ [0, 1]2, kW (s, t) =

min(s, t), then the Brownian sheet is defined as the centred Gaussian process with

the following covariance kernel

∀(s1, t1, s2, t2) ∈ [0, 1]4, k ((s1, t1), (s2, t2)) = kW (s1, t1)kW (s2, t2).

Now, concerning the associated sample functions, their continuity (as well as

other types of regularity) has been widely studied in the literature and [AT07] pro-

vides a detailed introduction. The analysis of general necessary conditions ensuring

this continuity is beyond the scope of this work, but there is a practical criterion

when K is a subset of the Euclidean space.
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Theorem 10 (Kolmogorov continuity test). Let n ∈ N∗, K ⊂ Rn, X = (Xs)s∈K a

random field on K, if

∀(s, t) ∈ K2, E [|Xs −Xt|p] ≤ C ‖s− t‖pα+n
Rn

where p > 1, α > 0 are constants, then there exists a version X̃ of X with almost-

surely β-Hölder continuous sample functions, for all 0 < β < α.

Example 5. Let K = [0, 1] and consider W = (Wt)t∈[0,1] the standard Wiener

process, that is W0 = 0 almost-surely and kW (s, t) = min(s, t). One important

property is that increments are normally distributed with a proportional variance

∀(s, t) ∈ [0, 1]2, E
[
(Wt −Ws)

2
]
= |t− s|, thus

∀(s, t) ∈ [0, 1], s 6= t, E



(
Ws −Wt√

|s− t|

)4

 = 3,

and one can apply theorem 10 with C = 3, p = 4 and α = 1
4 . In other words,

there exists a modification of the standard Wiener process with β-Hölder continuous

sample functions, provided 0 < β < 1
4 .

It appears that continuous Gaussian random fields have necessarily a continuous

covariance kernel, but the converse needs not be true.

Proposition 20. Let (K, d) be a compact metric space and X = (Xs)s∈K a Gaussian

random field with almost-surely continuous sample functions, then kX is continuous.

General Gaussian random fields on a set K are initially defined as measurable

mappings from (Ω,F) to (RK, Cyl(K)). In the case of almost-sure continuity of

sample functions, the random field takes its values in C (K,R), where both Borel

and Cylindrical σ-algebras are equal when (K, d) is a compact metric set. In this

case, the random field may then be viewed as a measurable map from (Ω,F ,P) to

(U , Bor(U)), and one can show that it is a Gaussian random element (in the sense

of definition 3). Consequently, both concepts of covariance kernel and operator are

linked in the following sense.

Proposition 21. Let (K, d) be a compact metric space, X = (Xs)s∈K a continuous

Gaussian random field on K with covariance kernel kX , then it is a Gaussian random

element U = C (K,R) with covariance operator:

CX : µ ∈ U∗ →
(
s ∈ K →

∫

K
kX(s, t)µ(dt)

)
∈ U .

Conversely, a Gaussian random element X ∈ L0(U) has a covariance kernel defined

as follows:

∀(s, t) ∈ K2, kX(s, t) = 〈CXδs, δt〉U ,U∗ .
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Proof. Using the definition, one has ∀(µ, ν) ∈ U∗ × U∗:

〈CXµ, ν〉U ,U∗ = E

[∫

K
Xtµ(dt)

∫

K
Xsν(ds)

]
,

= E

[∫

K

∫

K
XsXtµ(dt)ν(ds)

]
,

=

∫

K

∫

K
E [XsXt]µ(dt)ν(ds),

=

∫

K

∫

K
kX(s, t)µ(dt)ν(ds),

from which the covariance operator is identified. Conversely, one has

∀(s, t) ∈ K2, kX(s, t) = E [XsXt] = 〈CXδs, δt〉U ,U∗ .

Reproducing Kernel Hilbert Space (RKHS) Given a symmetric, semi-definite

kernel (or equivalently a covariance kernel), one can build an important Hilbert sub-

space of RK, construction similar in many senses with the Cameron-Martin space of

Gaussian random elements (see [Aro50, BTA04, VV08]).

Proposition 22. Let K a set and k a symmetric, semi-positive definite kernel and

the following vector space

H0 := span {k(s, .), s ∈ K} .

Let (f, g) ∈ H2
0, such that

f =

n∑

i=0

αikX(., si),

g =

m∑

j=0

βjkX(., tj),

with n,m ∈ N, (α0, ..., αn, β0, ..., βm) ∈ Rm+n+2 and (s0, ..., sn, t0, ..., tm) ∈ Kn+m+2,

then the following map:

(f, g) ∈ H2
0 → 〈f, g〉k =

n∑

i=0

m∑

j=0

αiβjkX(si, tj) ∈ R,

is well-defined and an inner product. Moreover, it satisfies the reproduction property:

∀f ∈ H0, ∀s ∈ K, f(s) = 〈f, k(., t)〉k .

Proof. Let f ∈ H0 and s ∈ K, then:

〈f, k(., s)〉k =
n∑

i=0

αik(si, s) = f(s),
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thus the application is well-defined (it does not depend on the particular represen-

tation of vectors), bilinear, symmetric and non-negative. To see that it is definite,

it remains to use Cauchy-Schwarz inequality:

∀s ∈ K, |f(s)| = | 〈f, k(., s)〉k | ≤ ‖f‖k
√
k(s, s),

thus ‖f‖k = 0 ⇒ f = 0.

Proposition 23 (Reproducing Kernel Hilbert Space). Let K a set and k a sym-

metric and semi-positive definite kernel, then the space H0 = span {k(., s), s ∈ K}
is continuously embedded in RK. The associated Reproducing Kernel Hilbert Space

is its topological completion in RK:

Hk = Ĥ0
〈.,.〉k ⊂ RK.

Moreover, it satisfies the reproduction property:

∀f ∈ Hk, ∀s ∈ K, 〈f, k(s, .)〉k = f(s).

The notion of Gaussian space may be defined as well, using the embedding

s ∈ K → Xs ∈ L2(Ω;R) and it is isometric (Loève isometry) with the Reproducing

Kernel Hilbert space. When the kernel is continuous, the embedding will be in

C (K,R).

Proposition 24. Let (K, d) be a compact metric space, k a symmetric, positive-

definite and continuous kernel, then Hk ⊂ C (K,R).

Proof. Let f ∈ Hk, then for all (s, t) ∈ K2, it comes:

(f(s)− f(t))2 = 〈f, k(s, .)− k(t, .)〉2k ≤ ‖f‖2k ‖k(s, .)− k(t, .)‖2k .

Now, ‖k(s, .)− k(t, .)‖2k = k(s, s) + k(t, t) − 2k(s, t) and since k is continuous,

lims→t ‖k(s, .)− k(t, .)‖2k = 0.

Corollary 8. Let (K, d) be a compact metric space, k a symmetric, semi-positive

definite and continuous kernel, then Hk is separable.

Concerning continuous Gaussian random fields on a compact metric space, both

definitions of RKHS and Cameron-Martin space are well-defined and lead to the

very same notion (Theorem 2.1 in [VV08]), but it needs not be true in general.

Series representation of continuous Gaussian random fields The previ-

ous Reproducing Kernel Hilbert space is useful in the analysis of Gaussian random

fields. In particular, when it is separable, one can use Hilbert bases to give series

representations of the underlying random field.
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Proposition 25. Let (K, d) be a compact metric space, X = (Xs)s∈K a Gaussian

random field with continuous covariance kernel kX and (hn)n∈N ∈ Hk a Hilbert basis,

then

∀s ∈ K, Xs =
∑

n≥0

ξnhn(s), a.s.

with (ξn)n∈N a sequence of independent standard Gaussian random variables and the

convergence is in L2(Ω,F ,P;R).

Proof. Since kX is continuous, one has HkX separable and since it is isometric to

the Gaussian space, the latter is separable as well. Let s ∈ K and (h∗n)n∈N a Hilbert

basis in the Gaussian space, then

Xs =
∑

n≥0

E [Xsh
∗
n]h

∗
n,

and using the Loève isometry E [X(s)h∗n] = 〈kX(s, .), hn〉kX = hn(s), thus the result

follows.

However, the very nature of continuous Gaussian random fields can be use to

significantly increase the convergence, passing from L2(Ω,R) to C (K,R).

Theorem 11. Let (K, d) be a compact metric space, X = (Xs)s∈K a continuous

Gaussian random field with covariance kernel kX and (hn)n∈N ⊂ Hk a Hilbert basis,

then

∀s ∈ K, Xs =
∑

n≥0

ξnhn(s), a.s.

with (ξn)n∈N a sequence of i.i.d N (0, 1) random variables, the convergence being in

C (K,R).

Proof. Let s ∈ K and (hn)n∈N ⊂ Hk a Hilbert basis, then one has

kX(s, .) =
∑

n≥0

〈kX(s, .), hn〉kX hn =
∑

n≥0

hn(s)hn,

by the reproduction property and it implies

∀(s, t) ∈ K2, kX(s, t) =
∑

n≥0

hn(s)hn(t).

In particular, taking t = s gives

∀s ∈ K, kX(s, s) =
∑

n≥0

hn(s)
2,

the convergence being point-wise and monotonous, Dini’s theorem establishes the

uniform convergence. Consider X as a Gaussian random element and note Xn =
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∑n−1
k=0 ξkhk.

∀µ ∈ U∗, E [| 〈Xn, µ〉 − 〈X,µ〉 |] = E

[∣∣∣∣
∫
Xn(s)−X(s)µ(ds)

∣∣∣∣
]
,

≤ E

[∫
|Xn(s)−X(s)| |µ|(ds)

]
,

≤
∫

E [|Xn(s)−X(s)|] |µ|(ds),

≤
∫

E
[
(Xn(s)−X(s))2

] 1

2 |µ|(ds),

≤
∫ 
∑

k≥n

hk(s)
2




1

2

|µ|(ds).

Since it is the rest of a uniformly convergent series, the limit of the right hand side

in last inequality tends to 0. This implies that 〈Xn, µ〉 → 〈X,µ〉 in L1(Ω,F ,P;R)
thus in probability. Applying Itô-Nisio theorem, it follows that Xn → X almost-

surely.

Similarly to Gaussian random elements and their covariance factorization, Hilbert

bases in the Cameron-Martin space can be identified by decomposing the covariance

kernel.

Proposition 26. Let (K, d) be a compact metric space, k a continuous, symmetric,

positive-definite kernel, (λn) ⊂ R+ and (fn)n∈N ⊂ C (K,R) such that

∀(s, t) ∈ K2, k(s, t) =
∑

n≥0

λnfn(s)fn(t),

where the convergence is uniform then (
√
λnfn)n∈N is a Hilbert basis in Hk.

However, it is a notoriously difficult problem to find such decompositions in

general and the following section provides a canonical example of such method. Note

that there are numerous recent contributions in this field (see [Git12, Zha17, BCM18]

for instance).

Karhunen-Loève decomposition in L2(K, µ) The Karhunen-Loève decompo-

sition is a very important result in the theory and applications of random fields,

since it gives a practical method to obtain bases in the Reproducing Kernel Hilbert

space. It is based on a spectral representation of the covariance operator with sample

functions in L2(K, µ;R) where µ is a finite Borel measure on K.

Proposition 27. Let (K, d) be a compact metric space, k a continuous, symmetric

and semi-positive definite kernel and µ a finite, Borel measure on K then

Ck : f ∈ L2(K, µ;R) →
∫

K
k(., t)f(t)µ(dt) ∈ L2(K, µ;R),

is well-defined, self-adjoint and compact.
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Proof. Let f ∈ L2(K, µ;R), then

‖Ckf‖2L2 =

∫

K

(∫

K
k(s, t)f(t)µ(dt)

)2

µ(ds) ≤
∫

K

∫

K
k(s, t)2|µ|(ds)|µ|(dt) ‖f‖2L2 .

Since k is continuous and K compact, it is clear that
∫

K

∫

K
k(s, t)2|µ|(ds)|µ|(dt) < +∞,

thus Ckf ∈ L2 and the operator Ck is well-defined. The linearity follows from the

linearity property of Lebesgue’s integral. The operator is self-adjoint because:

∀(f, g) ∈ L2(K, µ;R)2, 〈Ckf, g〉L2 =

∫

K

∫

K
k(s, t)f(t)µ(dt)g(s)µ(ds),

=

∫

K

∫

K
k(s, t)g(s)µ(ds)f(t)µ(dt),

= 〈f, Ckg〉L2

the exchange of integral being possible thanks to Fubini’s theorem. Now, let f ∈
L2(µ), then

|Ckf(s)− Ckf(t)| =
∣∣∣∣
∫

K
(k(s, v)− k(t, v))f(v)µ(dv)

∣∣∣∣ ,

≤
∫

K
|(k(s, v)− k(t, v))f(v)| |µ|(dv),

≤ ‖f‖L2 ‖k(s, .)− k(t, .)‖L2 .

Since k is continuous, lims→t ‖k(s, .)− k(t, .)‖L2 = 0 and Ckf is continuous as well.

Moreover,

∀s ∈ K, |Ckf(s)| ≤ sup
t∈K

|k(s, t)| ‖f‖L2

thus taking the supremum, we have Ck(BL2(µ)) bounded. It remains to see that

Ck(BL2(µ)) is equicontinuous and conclude. Since K is compact and k continuous,

it is uniformly continuous, thus ∀ǫ > 0, ∃δ > 0, ∀(s1, s2, t1, t2) ∈ K4, d(s1, s2) +

d(t1, t2) ≤ δ ⇒ |k(s1, t1)− k(s2, t2)| ≤ ǫ. Let ǫ > 0 and take d(s, t) ≤ δ then

|Ckf(s)− Ckf(t)| ≤
∫

K
ǫ|f(v)||µ|(dv) ≤ ǫ ‖f‖L2 ≤ ǫ.

Now, since Ck(BL2) is bounded and equicontinuous, it is relatively compact by

Arzela-Ascoli theorem and the proof is complete.

Now, the Karhunen-Loève decomposition uses the spectral theory in Hilbert

spaces, as it was presented in section 1.5.

Theorem 12 (Mercer’s). Let (K, d) be a compact metric space, k a continuous,

symmetric and semi-positive definite kernel and µ a finite, Borel measure on K,

(λn, fn)n∈N the spectral decomposition of Ck, then:

• λn ≥ 0, ∀n ∈ N,
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• fn ∈ C (K,R) , ∀n ∈ N,

• k admits the following expansion:

∀(s, t) ∈ K2, k(s, t) =
∑

n≥0

λnfn(s)fn(t),

where the convergence is absolute and uniform on K ×K.

In other words, the problem of finding series representation of Gaussian random

fields with values in L2(K, µ;R) is instantiated in an eigendecomposition problem.

The above examples are taken directly from [Wan08] in the case where K = [0, 1].

Example 6 (Wiener process). Let K = [0, 1] and consider the standard Wiener

process W = (Ws)s∈[0,1] with covariance kernel ∀(s, t), kW (s, t) = min(s, t) and

W0 = 0 almost-surely. Since it is a continuous Gaussian random field on a compact

metric space, the sample functions are square integrable w.r.t. Lebesgue’s measure.

The eigendecomposition of the following covariance operator:

CW := f ∈ L2([0, 1]) →
∫ 1

0
kW (s, t)f(t)dt ∈ L2([0, 1]).

is given by ∀n ∈ N solving an ordinary differential equation:

λn =
1

(
n+ 1

2

)2
π2
,

∀s ∈ [0, 1], fn(s) =
√
2 sin

((
n+

1

2

)
πs

)
.

Example 7 (Brownian bridge). Let K = [0, 1] and consider the previous Wiener

process W = (Ws)s∈[0,1], the Brownian bridge is defined as the Gaussian process

B = (Bs)s∈[0,1] = (Ws − W1s)s∈[0,1]. This process corresponds to the conditional

Wiener process given W1 = 0. The spectral decomposition of the covariance operator

gives the following elements:

λn =
1

(n+ 1)2 π2
,

∀s ∈ [0, 1], fn(s) =
√
2 sin ((n+ 1)πs) .

Example 8 (Ornstein-Uhlenbeck process). Consider now the Ornstein-Uhlenbeck

process Z = (Zs)s∈[0,1] on the time interval [0, 1] defined as the stationary solution

of the following stochastic differential equation:

dZt = −βZtdt+ σdWt, β > 0, σ > 0. (1.1)

One can show that the solution is a centred, continuous Gaussian random field with

covariance kernel

K(t, s) = Cov(Zt, Zs) =
σ2

2β
e−β|t−s|.
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This kernel is also known as the exponential covariance kernel or Matérn covariance

kernel of order ν = 1
2 . The associated eigendecomposition is given as ∀n ∈ N,

λn =
2β

w2
n + β2

,

∀s ∈ [0, 1], fn(s) =

√
2w2

n

2β + w2
n + β2

cos (wns) +

√
2β2

2β + w2
n + β2

sin (wns) ,

where ∀n ∈ N, wn is a solution to the following equation:

(
w2 − β2

)
sin(w) = 2βw cos(w).

Remark from section 1.5, that this decomposition is optimal in L2(K, µ;R). How-
ever, it also provides a series representation in C (K,R) when the random field is

continuous.

Optimality in C (K,R) The search for optimal series representation of continuous

Gaussian random fields over K = [0, 1] is a very active field of research, in particular

for the fractional Brownian motion [AT03, DZ04b, DvZ05, Igl05, Nda16]. The results

presented here are directly taken from [KL02, LP09] an give practical methods to

estimate the l-numbers associated to a continuous Gaussian random field using both

covariance kernel and operator. The first result provides an upper bound for l-

numbers for continuous Gaussian random fields in K = [0, 1], using the Faber-

Schauder basis.

Proposition 28 (Proposition 7.1 in [KL02]). Let X = (Xs)s∈[0,1] be a Gaussian

random field, if there exist c1 > 0, γ > 0, β ∈ R such that

E
[
(2Xs −Xs+t −Xs−t)

2
]
≤ c1t

2γ log

(
1

t

)2β

,

for all 0 ≤ s− t < s < s+ t ≤ 1 then ∃c2 > 0 such that,

∀n ∈ N, ln(X) ≤ c2
(1 + log(n))β+

1

2

nγ
.

This is the case when ∃c3 > 0 such that,

∀(s, t) ∈ [0, 1]2, s 6= t, E
[
(Xs −Xt)

2
]
≤ c3|s− t|2γ log

(
1

|s− t|

)2β

.

Example 9. Let K = [0, 1],W = (Ws)s∈[0,1] be the standard Wiener process (W0 = 0

a.s.) then

E
[
(Xs −Xt)

2
]
= s+ t− 2min(s, t) = |s− t|.

Using proposition 28 with γ = 1
2 , c1 = 1 and β = 0 gives

∀n ∈ N∗, ln(W ) ≤ c

(
1 + log(n)

n

) 1

2

.



1.6. GAUSSIAN RANDOM ELEMENTS IN C (K,R) 41

In order to get a lower bound, which will be used to obtain asymptotically optimal

representations, the space C (K,R) is embedded in L2(K, µ;R), using a finite and

Borel measure on K with full topological support (supp(µ) = K). Indeed, consider

the following operator:

iµ : f ∈ C (K,R) → f ∈ L2(K, µ;R),

it is linear, bounded and injective. This implies that if one has an operator S :

L2(K, µ;R) → C (K,R), then iµ◦S is an endomorphism in L2(K, µ;R). In particular,

the approximation numbers of such operators are equal with eigenvalues. This gives

an interesting lower bound for the l-numbers, expressed in terms of eigenvalues of

iµ ◦ S.

Proposition 29 (Proposition 4 in [LP09]). Let d ∈ N∗, K = [0, 1]d, X = (Xs)s∈K
a continuous Gaussian random field with covariance kernel kX and note CX the

associated integral operator:

CX : L2(K, ds) → L2(K, ds)

suppose that (fn)n∈N ⊂ C (K,R) is admissible for X, then if

1. the sequence (λn)n∈N of eigenvalues of CX satisfy

∀n ∈ N, λn ≥ c1
log(n+ 2)2γ

(n+ 1)2ν

with ν > 1
2 , γ ≥ 0 and c1 > 0,

2. ∀n ∈ N, ‖fn‖C(K,R) ≤ c2
log(n+2)γ

(n+1)ν with c2 > 0,

3. (fn)n∈N is β-Hölder continuous with ∀n ∈ N, ‖fn‖β ≤ c3(n + 1)b with b ∈ R,

β ∈]0, 1] and c3 > 0,

then

ln(X) ≈ log(n)γ+
1

2

nν−
1

2

and (fn)n∈N is asymptotically optimal for X.

Example 10 (Wiener process). LetW = (Ws)s∈[0,1] be the standard Wiener process,

that is W0 = 0 almost-surely and ∀(s, t) ∈ K2, kW (s, t) = min(s, t), then the l-

numbers are such that

ln(W ) ≈
√
log(n)

n
.

Indeed, from example 6, the eigendecomposition of the associated covariance operator

(seen as an endomorphism in L2([0, 1], ds;R)) is ∀n ∈ N:

λn =
1

(n+ 1
2)

2π2
,

fn(s) =
√
2 sin

((
n+

1

2

)
πx

)
.
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It is clear that the sequence of eigenvalues satisfies item 1 in proposition 29 with

c1 =
1
π2 , ν = 1 and γ = 0. Here, the admissible sequence is

(√
λnfn

)
n∈N, thus:

∀n ∈ N,
∥∥∥
√
λnfn

∥∥∥
C([0,1],R)

=

√
2

π
(
n+ 1

2

) ≤ 2
√
2

π(n+ 1)
,

and item 2 in proposition 29 is satisfied for γ = 0, c2 =
2
√
2

π
and ν = 1. Finally, the

β-Hölder norms with β ∈]0, 1] of
(√
λnfn

)
n∈N are:

∀n ∈ N,
∥∥∥
√
λnfn

∥∥∥
β
=
√
λn sup

s 6=t

|fn(s)− fn(t)|
|s− t|β =

2
√
2

π
(
n+ 1

2

)2 ≤ 8
√
2

π (n+ 1)2
,

and satisfies item 3 with c3 = 8
√
2

π
and b = −2. Other asymptotically optimal bases

can be found in [LP09] and next chapter.

1.7 Conclusion

In this introductory chapter on Gaussian random elements, the necessary material

has been given for the rest of this first part. In particular, the possibility to represent

Gaussian random element as series has been studied, with particular focus on the

links with the covariance operator and Cameron-Martin space. In particular, co-

variance factorizations are key in the practical construction of admissible sequences.

However, except in the Hilbert case, this factorization is non-constructive. This will

be the objective of next chapter, as first contribution in this thesis, to derive such

construction. A second difficulty can arise, concerning continuous Gaussian random

fields. The Karhunen-Loève representation lies on an eigendecomposition problem,

that can be difficult to solve in practice. In this case, the decomposition proposed

in next chapter gives a practical optimization problem, easier to solve numerically.



Chapter 2

Karhunen-Loève decomposition

in Banach spaces

Previous chapter was dedicated to a short introduction of Gaussian random elements

theory in general Banach spaces and in C (K,R) with K a compact metric space.

In particular, it has been shown that these elements can be represented as random

series, leading to the notion of admissible sequences. Finding such families is usually

done by factorization of the covariance operator, using a pre-existing Hilbert basis

in the intermediate space. However, this method is not always applicable and it is of

interest to find constructive solutions for this problem. It is already done in Hilbert

spaces under the name of Karhunen-Loève decomposition, since eigendecomposition

of the covariance operator provides such factorization. Again, these problems does

not have explicit solutions in all cases. In this second chapter, a constructive ap-

proach is given to build stochastic bases of any Gaussian random element, extending

the Karhunen-Loève decomposition to general Banach spaces. Besides a theoretical

interest, it provides a new methodology to decompose Gaussian random fields.

2.1 Extending the Karhunen-Loève decomposition

In chapter 1, it has been showed that if U is a Banach space, every Gaussian random

element X ∈ L0(U) can be represented as a random series, using a factorization of its

covariance operator. In Hilbert spaces, the spectral representation of the covariance

operator provides such decomposition, in a canonical fashion. In particular, the

eigenvectors are obtained sequentially, as unit vectors of maximum variance. This

principle will be extended to the Banach setup, using adequate notions of Rayleigh

quotients in this context. The role of the eigenvector will be played by a pair

(u, l) ∈ U × U∗ of respective unit norms, such that CX l = λu. In particular, this

generalization recovers the usual spectral representation of the covariance operator

when U is Hilbert.

43
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Spectral decomposition in Hilbert spaces Before actually going to the Banach

setup, the spectral decomposition of non-negative, self-adjoint and compact opera-

tors in Hilbert spaces is revisited, emphasizing the point of view that will be fruitful

later on. Indeed, let U be a separable Hilbert space and X ∈ L0(U) a Gaussian

random element with covariance operator CX . Since it is a non-negative, self-adjoint

and nuclear operator (see theorem 6), one has the following characterization of its

highest eigenvalue.

Proposition 30. Let U be a separable Hilbert space and A ∈ L(U ,U) a non-negative,

self-adjoint and compact operator, then:

‖A‖L(U ,U) = sup
u∈BU

〈Au, u〉U = 〈Au0, u0〉U = λ0,

where λ0 is the highest eigenvalue of A and u0 one associated eigenvector of unit

norm: Au0 = λ0u0.

Proof. First,

∀(u, v) ∈ B2
U , 〈Au, v〉U ≤ ‖Au‖U ‖v‖U ≤ ‖A‖L(U ,U) ‖u‖U ‖v‖U ,

thus supu∈BU
〈Au, u〉U ≤ ‖A‖L(U ,U). Conversely, Cauchy-Schwarz inequality gives

| 〈Au, v〉U | ≤
√
〈Au, u〉U

√
〈Av, v〉U ,

thus ‖A‖L(U ,U) ≤ supu∈BU
〈Au, u〉U . Since 〈Au0, u0〉U = λ0, λ0 ≤ ‖A‖L(U ,U). Finally,

if (λn, un)n∈N is the spectral representation of A,

∀u ∈ U , 〈Au, u〉U =
∑

n≥0

λn 〈u, un〉2U ≤ λ0 ‖u‖2U ,

thus ‖A‖L(U ,U) ≤ λ0. The proof is complete.

Thus, the first element u0 in the spectral basis is a unit vector of maximum

variance:

‖CX‖L(U ,U) = max
u∈BU

〈CXu, u〉U = max
u∈BU

V [〈X,u〉U ] = ‖CXu0‖2X = λ0.

Since u0 ∈ U is a vector of unit norm, the Gaussian random element can be split

using the associated orthogonal projector of unit rank:

X = Y + Z,

Y = 〈X,u0〉U u0,
Z = X − Y.

Then Y, Z ∈ L0(U) are independent Gaussian random elements. The covariance

operator is decomposed as well:

CX = CY + CZ ,
CY = λ0 〈., u0〉U u0,
CZ = CX − CY .
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Here, Z is identically distributed with the conditional Gaussian random element

X| 〈X,u0〉U = 0. The second component is chosen similarly, under the additional

constraint to be independent (orthogonality in the Cameron-Martin space) with the

first one. It is the exact same thing than looking for the unit vector of maximum

variance w.r.t. Z and it appears that:

‖CZ‖L(U∗,U) = max
u∈BU

〈CZu, u〉U = max
u∈BU

〈u,u0〉U=0

〈CXu, u〉U = ‖CZu1‖2X = λ1.

This scheme will be repeated to obtain every eigenvector and this is what will be

done in the Banach setup. However, the optimality (see chapter 1) of the spectral

basis lies on the following observation (Courant-Fisher min-max theorem):

∀n ∈ N, λn = min

{
max

‖u‖U=1
〈CXu, u〉U , u ∈ V⊥, dim(V) = n

}
,

= max

{
min

‖u‖U=1
〈CXu, u〉U , u ∈ V, dim(V) = n

}
.

It implies that sequentially taking the maximum of variance in the orthogonal sub-

space of previous vectors leads to the best solution. However, in the Banach setting,

this principle needs not be true.

Splitting the space Now, let U be a general Banach space and X ∈ L0(U) a

Gaussian random element. The first step is to be able to split the space in such

a way that the underlying Gaussian random element is decomposed as the sum of

two independent components (one being of unit rank). Indeed, one could always

consider a non-trivial linear functional and the associated hyperplane which is of

codimension 1:

∀l ∈ U∗ \ {0}, U = ker l + span {u} ,

where u ∈ U \ ker l. However, nothing imposes that the resulting decomposition of

the Gaussian random element:

X = Y + Z,

Y = 〈X, l〉u,
Z = X − 〈X, l〉u,

provides two independent elements. Nevertheless, the next lemma shows that it is

possible to impose this independence, choosing an adequate vector u ∈ U , which
will result in an orthogonal direct sum of the two resulting Cameron-Martin spaces.

Moreover, both spaces inherit the inner product from UX .

Lemma 5. Let U be a Banach space, X ∈ L0(U) a Gaussian random element

with non-trivial covariance operator CX , l ∈ U∗ \ ker(CX), h = ‖CX l‖−1
X CX l and

h∗ = ‖CX l‖−1
X l then

X = Y + Z,
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where:

Y = 〈X,h∗〉U ,U∗ h,

and Z = X − Y are two independent Gaussian random elements with respectively

CY := g ∈ U∗ → 〈h, g〉U ,U∗ h ∈ U ,

and CZ = CX − CY as covariance operators. Concerning the respective Cameron-

Martin spaces, it comes that UY is isometric to span {h} ⊂ UX and UZ to span {h}⊥ ⊂
UX , leading to

UX = UY ⊕ UZ .

Moreover V [〈X,h∗〉] = ‖h‖2X = 1.

Proof. Since Y and Z are both images of X under bounded operators, they are

Gaussian random elements themselves (proposition 4). Concerning Y , the covariance

operator may be deduced directly from its Fourier transform:

∀g ∈ U∗, Ŷ (g) = E
[
exp

(
i 〈X,h∗〉U ,U∗ 〈h, g〉U ,U∗

)]
= exp

(
−1

2
〈h, g〉2U ,U∗

)
,

from which CY is easily identified. For the independence property, let (l0, l1) ∈
U∗ × U∗, then

E [〈Y, l0〉 〈Z, l1〉] = E [〈Y, l0〉 〈X − Y, l1〉] ,
= E [〈Y, l0〉 〈X, l1〉]− E [〈Y, l0〉 〈Y, l1〉] ,
= E [〈X,h∗〉 〈h, l0〉 〈X, l1〉]− E [〈X,h∗〉 〈h, l0〉 〈X,h∗〉 〈h, l1〉] ,
= 〈h, l0〉 〈CXh∗, l1〉 − 〈h, l0〉 〈h, l1〉 〈CXh∗, h∗〉 ,
= 0,

since CXh∗ = h, which is sufficient. Now, because X = Y +Z and Y, Z are indepen-

dent,

∀l0, l1 ∈ U∗, 〈CX l0, l1〉 = E [〈X, l0〉 〈X, l1〉] ,
= E [〈Y + Z, l0〉 〈Y + Z, l1〉] ,
= E [〈Y, l0〉 〈Y, l1〉] + E [〈Z, l0〉 〈Z, l1〉] ,
= 〈CY l0, l1〉+ 〈CZ l0, l1〉 ,

and CX = CY + CZ . Let P be the orthogonal projector from UX to span {h}, as
‖h‖X = 1 then one has ∀g ∈ U∗,

CY g = 〈h, g〉U ,U∗ h = 〈CXg, h〉X h,

so CY g = P (CXg) and similarly CZg = (I − P )(CXg) thus

∀g ∈ U∗, 〈CZg, CY g〉X = 0.
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It remains to see that on R (CY ) and R (CZ), both respective Cameron-Martin norms

are inherited from UX . Let g ∈ U∗, then ∀i ∈ {1, 2} one has:

‖CXi
g‖2Xi

= 〈CXi
g, CXi

g〉Xi
,

= 〈CXi
g, g〉U ,U∗ ,

= 〈CXi
g, CXg〉X ,

= 〈CXi
g, CXi

g〉X = ‖CXi
g‖2X .

Now, clearly UY = R (CY ) = span {h} and UZ = R (CZ)
‖.‖X = span {h}⊥. Finally,

V [〈X,h∗〉] = 〈CXh∗, h∗〉 =
〈CX l, l〉U ,U∗

〈CX l, CX l〉X
=

‖CX l‖2X
‖CX l‖2X

= 1.

One very important interpretation in previous lemma is that Z has the same

distribution as X| 〈X, l〉 = 0 and it will be called the residual Gaussian random

element. If Z has a non-trivial covariance operator, it can be used to iterate and

obtain the following result.

Proposition 31. Let U be a Banach space, X ∈ L0(U) a Gaussian random ele-

ment with covariance operator CX and Cameron-Martin space UX . If UX is infinite

dimensional, there exists (hn)n∈N ⊂ UX orthonormal and (h∗n)n∈N ⊂ U∗ such that

X =
∑

n≥0

Yn +X∞,

with ∀n ∈ N, Yn = 〈X,h∗n〉hn and X∞ mutually independent Gaussian random

elements in L0(U). For all n ∈ N, V [〈X,h∗n〉] = ‖hn‖X = 1, UYn = span {hn} (with

〈., .〉Yn
= 〈., .〉X). Furthermore,

UX = span {hn, n ∈ N}X ⊕ UX∞ ,

where UX∞ = span {hn, n ∈ N}⊥ and 〈., .〉X∞
= 〈., .〉X .

Proof. The proof is done by induction and the initialization (n = 0) is the result of

lemma 5 applied to X, with notations l = l0, h0 = ‖CX l0‖−1
X CX l0, h∗0 = ‖CX l0‖−1

X l0

and:

X = Y0 +X1,

where Y0 = 〈X,h∗0〉U ,U∗ h0 and X1 = X − Y0 are independent Gaussian random

element in L0(U) with orthogonal Cameron-Martin spaces UY0
= span {h0} and

UX1
= U⊥

Y0
. The associated covariance operators are:

CY = 〈., h0〉U ,U∗ h0,

CX1
= CX − CY .
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For the induction step, let n ∈ N and suppose the proposition true at this stage,

meaning that

X =
n∑

k=0

Yk +Xn+1,

with ∀k ∈ [0, n], Yk = 〈X,h∗k〉hk and Xn+1, (n + 1) mutually independent Gaus-

sian random elements in L0(U) with respective Cameron-Martin spaces UYk
=

span {hk} , ∀k ∈ [0, n] and UXn+1
= span {hk, k ∈ [0, n]}⊥. Since UX is infinite

dimensional, there exists ln+1 ∈ span {hk, k ∈ [0, n]}⊥ \ {0} and:

hn+1 =
∥∥CXn+1

ln+1

∥∥−1

X
CXn+1

ln+1,

is well-defined. Now it comes:

Xn+1 =

〈
Xn,

ln+1∥∥CXn+1
ln+1

∥∥
X

〉
hn+1 +Xn+2,

=

〈
X −

n∑

k=0

〈X,h∗k〉hk,
ln+1∥∥CXn+1
ln+1

∥∥
X

〉
hn+1 +Xn+2,

=

〈
X,

ln+1 −
∑n

k=0 〈hk, ln+1〉h∗k∥∥CXn+1
ln+1

∥∥
X

〉
hn+1 +Xn+2,

=
〈
X,h∗n+1

〉
hn+1 +Xn+2,

with obvious notations. Since hn+1 ∈ UXn+1
= span {h0, ..., hn}⊥ and has unit norm,

the family (h0, ..., hn+1) ⊂ UX is orthonormal and one has UXn+2
= span {h0, ..., hn+1}⊥.The

independence property is obtained directly and the proposition is true at step (n+1).

Using the induction principle, the proof is complete.

In the degenerated case where the covariance operator has finite rank, which

is equivalent with UX of finite dimension, it is clear that previous proposition is

enough to provide an orthonormal basis of the Cameron-Martin space. However,

the case where UX is infinite dimensional requires to choose the linear functionals

more specifically at each step.

Maximum variance functionals Here, it is shown that one can choose l ∈ BU∗

maximizing the one-dimensional projected variance. This principle is directly moti-

vated by analogy with the Hilbert case where eigenvectors (seen as linear functionals)

are maximizing the Rayleigh quotient.

Lemma 6. Let U be a Banach space, X ∈ L0(U) a Gaussian random element with

covariance operator CX , then

∃l ∈ BU∗ , 〈CX l, l〉U ,U∗ = max
g∈BU∗

〈CXg, g〉U ,U∗ .

Moreover, it can be chosen with unit norm and satisfies the following relation:

‖CX l‖X = sup
g∈BU∗

sup
h∈BUX

〈h, g〉U ,U∗ = ‖CX‖
1

2

L(U∗,U) = ‖CX l‖
1

2

U .



2.1. EXTENDING THE KARHUNEN-LOÈVE DECOMPOSITION 49

Note λ = 〈CX l, l〉U ,U∗ = V
[
〈X, l〉U ,U∗

]
, h = ‖CX l‖−1

X CX l and u = ‖CX l‖−1
U CX l then

one has the following properties:

1. CX l = λu =
√
λh,

2. ‖h‖X = 1, ‖h‖U =
√
λ,

3. ‖u‖X = 1√
λ
, ‖u‖U = 1,

4. 〈u, l〉U ,U∗ = 1.

Proof. Let (ln)n∈N ⊂ BU∗ be such that 〈CX ln, ln〉U ,U∗ → supl∈BU∗ 〈CX l, l〉U ,U∗ (a

maximizing sequence). Because BU∗ is compact in the σ(U∗,U)-topology (Banach-

Alaoglu theorem), there exists l ∈ BU∗ such that ln ⇀ l in the σ(U∗,U) topology.

Now,

X̂(ln) = E
[
exp

(
i 〈X, ln〉U ,U∗

)]
→ E

[
exp

(
i 〈X, l〉U ,U∗

)]
= X̂(l),

by Lebesgue’s dominated convergence theorem. Using proposition 3 it implies that

〈CX ln, ln〉U ,U∗ → 〈CX l, l〉U ,U∗ ∈ R. If CX is trivial, then one can take whatever

element in BU∗ . If CX 6= 0, then l must be of unit norm. Indeed, suppose ‖l‖U∗ <

1, then g = ‖l‖−1
U∗ l would contradict the maximality. Now, let h ∈ BUX

, then

the reproducing property gives ∀g ∈ U∗, 〈h, g〉U ,U∗ = 〈h, CXg〉X and taking the

supremum in h over the unit ball BUX
leads to

sup
h∈BUX

〈h, g〉U ,U∗ = ‖CXg‖X = 〈CXg, g〉U ,U∗ ,

which leads to the announced equality. Now, from the definition, it is clear that

‖h‖X = ‖u‖U = 1,

and 〈u, l〉U ,U∗ = 〈CX l, u〉X =
〈√

λh, h√
λ

〉
X

= 〈h, h〉X = 1. Finally,

‖CX l‖X =
√

〈CX l, CX l〉X =
√

〈CX l, l〉U ,U∗ ≤ ‖CX l‖
1

2

U ‖l‖
1

2

U∗ ≤ ‖CX‖
1

2

L(U∗,U) ,

and conversely

〈CX l, g〉U ,U∗ = 〈CX l, CXg〉X ≤ ‖CX l‖X ‖CXg‖X ,

thus ‖CX‖L(U∗,U) ≤ ‖CX l‖2X and both are equal.

The similarity with the Hilbert case is emphasized here, where l ∈ U∗ and u ∈ U
will play the role of eigenvectors associated to λ, since CX l = λu. Remark that

uniqueness of the maximizing linear functional in previous lemma need not be true

in general, the set of solutions even being possibly infinite. However, one can always

choose this element among the extremal points of the unit ball of U∗, and this will

be particularly important in practice.
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Proposition 32. Let U be a Banach space, X ∈ L0(U) a Gaussian random element

with covariance operator CX , then there exists an extremal point δ of BU∗ such that

〈CXδ, δ〉U ,U∗ = supl∈BU∗ 〈CX l, l〉U ,U∗.

Proof. Since the functional l ∈ U∗ → 〈CX l, l〉U ,U∗ is quadratic, this is a general result

from convex optimization theory.

Splitting the space using maximum variance functionals It has been proved

previously that whenever the Cameron-Martin space is finite dimensional, one can

build a basis only using linear functionals of strictly positive residual variance at

each stage (proposition 31). Now, if one chooses these functionals such that they

maximize the residual variance at each step, the family (hn)n∈N will be a Hilbert

basis in UX . The first step is to give an analogue of proposition 31, taking into

account that linear functionals are maximizing the variance.

Lemma 7. Let U be a Banach space, X ∈ L0(U) a Gaussian random element with

covariance operator CX and suppose UX infinite dimensional. Note X0 := X and

define by induction on n ∈ N:

ln = argmaxl∈BU∗ 〈CXn l, l〉,
λn = 〈CXn ln, ln〉U ,U∗ ,

hn = λ
− 1

2
n CXn ln,

un = λ−1
n CXn ln,

Xn+1 = Xn − 〈Xn, ln〉U ,U∗ un,

then one has the following properties:

• ∀n ∈ N, CXn ln =
√
λnhn = λnun,

• ∀n ∈ N, ‖hn‖X = ‖un‖U = 〈un, ln〉U ,U∗ = 1,

• ∀(n,m) ∈ N2, 〈hn, hm〉X = δnm.

Furthermore, (λn)n∈N ⊂ R+ is non-increasing and limn→∞ λn = 0.

Proof. Since UX is infinite dimensional, the construction from proposition 31 is licit.

From lemma 6, linear functionals of maximum residual variance (a fortiori strictly

positive) exist and the sequences (un)n∈N, (ln)n∈N, (λn)n∈N are well-defined. Now,

∀n ∈ N, Xn = 〈Xn, ln〉U ,U∗ un +Xn+1,

where 〈Xn, ln〉U ,U∗ un and Xn+1 are independent Gaussian random elements, it fol-

lows that:

∀n ∈ N, ∀l ∈ U∗, 〈CXn l, l〉U ,U∗ ≥
〈
CXn+1

l, l
〉
U ,U∗ ,

and taking the supremum in the above relation on the unit ball of U∗ shows that

(λn)n∈N is non-increasing. Moreover, (hn)n∈N is an orthonormal system in UX , hence

∀l ∈ U∗, 〈hn, l〉U ,U∗ = 〈hn, CX l〉X → 0,
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as a consequence of Bessel’s inequality. In other words, hn ⇀ 0 in the weak topology

σ(U ,U∗). Now, since the unit ball of UX is precompact in U , there exists a convergent
subsequence (hnk

)k∈N such that hnk
→k h∞ in the strong topology of U . Using the

uniqueness of limits in U equipped with the weak topology σ(U ,U∗), it comes that

h∞ = 0 and therefore, ‖hnk
‖U =

√
λnk

→ 0, which implies that (λn)n∈N → 0. The

relations are obtained directly using the reproducing property at each stage similarly

to lemma 6.

Now, it remains to prove that the orthonormal sequence (hn)n∈N ⊂ UX from

lemma 7 is actually a Hilbert basis.

Theorem 13. Let U be a Banach space, X ∈ L0(U) a Gaussian random element

with covariance operator CX . Consider the orthogonal family (hn)n∈N ⊂ UX as built

in lemma 7, then it is a Hilbert basis in UX .

Proof. The family (hn)n∈N is orthonormal by lemma 7, it remains to see that

span {hn, n ∈ N} is dense in UX to conclude. Let h ∈ UX such that ∀n ∈ N, 〈h, hn〉X =

0, then clearly, h ∈ UXn+1
, ∀n ∈ N. Using the reproducing property in UXn+1

, it

comes ∀n ∈ N, ∀l ∈ BU∗ :

〈h, l〉U ,U∗ =
〈
h, CXn+1

l
〉
Xn+1

,

≤ ‖h‖Xn+1

√〈
CXn+1

l, CXn+1
l
〉
Xn+1

,

≤ ‖h‖X
√
λn+1.

This implies that ∀l ∈ BU∗ , 〈h, l〉U ,U∗ = 0, therefore h = 0 and span {hn, n ∈ N} is

dense in UX .

Consequences The previous construction leads to a Hilbert basis of UX in R (CX)

using a constructive approach. In fact, the system (un, h
∗
n)n∈N ⊂ U × U∗ is a

stochastic basis.

Corollary 9. Let U be a Banach space, X ∈ L0(U) a Gaussian random element

with covariance operator CX and consider notations from lemma 7, then

• X =
∑

n≥0 〈X,h∗n〉U ,U∗ hn a.s.,

• ∀l ∈ U∗, CX l =
∑

n≥0 〈hn, l〉hn,

moreover one has ‖CX‖L(U∗,U) = λ0 and:

∀n ∈ N,

∥∥∥∥∥CX −
n∑

k=0

〈hk, .〉hk
∥∥∥∥∥
L(U∗,U)

= λn+1.

Proof. The sequence (hn)n∈N is a Hilbert basis in UX , thus admissible for X and

the two representations are consequences of lemma 4 and corollary 7. Now, the

truncation error norm is∥∥∥∥∥CX −
n∑

k=0

〈hk, .〉U ,U∗ hk

∥∥∥∥∥
L(U∗,U)

=
〈
CXn+1

ln+1, ln+1

〉
U ,U∗ = λn+1.
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However, since it is possible to find non-unique maximizing linear functionals at

each steps, the error λn+1 may be dependent on these choices. It implies that it is

not necessarily minimal, thus the obtained basis may not be optimal in the sense

∀n ∈ N, an(X) =
√
λn+1. For instance, one could start with linear functionals

having strictly positive residual variance on a finite number of steps, and then apply

the proposed decomposition. However, it is still of important practical interest for

the following reason.

Corollary 10. Let U be a Banach space, X ∈ L0(U) a Gaussian random element,

then with the notations from lemma 7,

sup
l∈BU∗

E



〈
X −

n∑

k=0

〈X,h∗k〉U ,U∗ hk, l

〉2

U ,U∗




1

2

=
√
λn+1.

Proof. By construction, ∀n ∈ N,

∀l ∈ U∗, E



〈
X −

n∑

k=0

〈X,h∗k〉U ,U∗ hk, l

〉2

U ,U∗


 =

〈
CXn+1

l, l
〉
U ,U∗ ,

thus the result is immediate.

In particular, this gives an estimation of the approximation numbers of the Gaus-

sian random element X:

∀n ∈ N, an(X) ≤
√
λn+1.

The question whether one has

an(X) ≈
√
λn,

in general is still open, but it will be positively answered in the particular study of

the Wiener process for instance (see section 2.4 below).

Non-Gaussian case It will now be showed that the Gaussian hypothesis in pre-

vious construction is not necessary. Indeed, all the above theory can be applied to

a wider class, namely the random elements X ∈ L2(U) of strong order 2. First, no-

tions of covariance operator and Cameron-Martin spaces are well-defined and share

similar properties.

Proposition 33. Let U be a Banach space, X ∈ L2(U) a random element of strong

order 2, then there exists a unique covariance operator CX : U∗ → U such that:

∀l, g ∈ U∗, 〈CX l, g〉U ,U∗ = E
[
〈X, l〉U ,U∗ 〈X, g〉U ,U∗

]
.

This operator is linear, non-negative, symmetric and nuclear.
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Proof. Since X ∈ L2(U), the covariance operator is directly defined using Bochner’s

integral:

CX := l ∈ U∗ → E
[
〈X, l〉U ,U∗ X

]
∈ U .

The above relations is a property of this integral, thus symmetry, non-negativity and

linearity are immediate. The nuclearity is proved in [VTC87] (chapter 3, theorem

2.3).

In particular, the factorization lemma and the construction of the Cameron-

Martin space are still valid.

Proposition 34. Let U be a Banach space, X ∈ L2(U) a random element of strong

order 2 with covariance operator CX , then the associated Cameron-Martin space UX

is well-defined. It is separable and injects compactly in U .

Proof. The proof is similar with the Gaussian case, the separability being given

in [VTC87] (chapter 3, corollary 1). The compacity comes from the nuclearity of

CX .

Now that the essential ingredients are similar, it remains to see that the maximiz-

ing linear functionals are still well-defined, which is the object of next proposition.

Proposition 35. Let U be a Banach space, X ∈ L2(U) a random element of strong

order 2 with covariance operator CX , then it comes that

ln ⇀ l ⇒ 〈CX ln, ln〉U ,U∗ → 〈CX l, l〉U ,U∗ .

As a consequence, ∃l ∈ BU∗ such that 〈CX l, l〉U ,U∗ = supg∈BU∗ 〈CXg, g〉U ,U∗ .

Proof. Let (ln)n∈N ⊂ U∗, l ∈ U∗ such that ln ⇀ l in σ(U∗,U). In particular, this

implies that 〈X, ln〉2U ,U∗ → 〈X, l〉2U ,U∗ . Moreover, one has

〈X, ln〉2U ,U∗ ≤ ‖X‖2U ‖ln‖2U∗ ,

and since (‖ln‖U∗) is bounded, Lebesgue’s dominated convergence theorem gives:

〈CX ln, ln〉U ,U∗ = E
[
〈X, ln〉2U ,U∗

]
→ E

[
〈X, l〉2U ,U∗

]
= 〈CX l, l〉U ,U∗ .

Now, the rest of the proof is similar with the Gaussian case.

With these 3 propositions at hand, the previous decomposition can be derived,

in the exact same manner. It leads to the following result:

X =
∑

n≥0

〈X,h∗n〉U ,U∗ hn,

with
(
〈X,h∗n〉U ,U∗

)
n∈N

a sequence of square integrable random variables with unit

variance and (hn)n∈N a basis in the Cameron-Martin space. The main difference

with the Gaussian case are:

1. ∀n ∈ N, 〈X,h∗n〉U ,U∗ need not be Gaussian,

2.
(
〈X,h∗n〉U ,U∗

)
are mutually non-correlated but possibly dependent variables.



54 CHAPTER 2. K.-L. DECOMPOSITION IN BANACH SPACES

2.2 The special case of C (K,R)

In this section, the previous theory is applied to the Banach space U = C (K,R),
where (K, d) is a compact metric space. First, the decomposition is directly given by

application of previous general theorems. In a second time, a direct proof is given,

using standard analysis in Reproducing Kernel Hilbert spaces.

Application of previous theory As stated in chapter 1, any Gaussian random

field on K may be considered as a random element, the covariance operator being

obtained as follows (see chapter 1):

CX : µ ∈ U∗ →
∫

K
kX(., t)µ(dt).

One particularly useful result from previous section is the possibility to choose among

extremal points of the unit ball in U∗ at each stage. In this context, these points

are (signed) Dirac delta measures and lead to a classical optimization problem.

Proposition 36. Let (K, d) be a compact metric space, X a continuous Gaussian

random field on K, kX and CX its respective covariance kernel and operator, then

sup
µ∈BU∗

〈CXµ, µ〉U ,U∗ = sup
µ∈BU∗

∫

K

∫

K
kX(s, t)µ(dt)µ(ds) = sup

s∈K
kX(s, s).

Proof. The functional µ ∈ U∗ → 〈CXµ, µ〉U ,U∗ is quadratic. From proposition 32,

there exists an extremal point δ ∈ BU∗ such that 〈CXδ, δ〉U ,U∗ = supµ∈BU∗ 〈CXµ, µ〉U ,U∗ .

Now, extremal points of the unit ball in U∗ are Dirac delta measures, thus δ = δs∗

or δ = −δs∗ with s∗ ∈ K. In this case, it is clear that
∫

K

∫

K
kX(s, t)δs∗(dt)δs∗(ds) = kX(s∗, s∗),

and the result follows.

This principle, jointly with previous decomposition, gives the following result.

Corollary 11. Let (K, d) be a compact metric space, X = (Xs)s∈K a continuous

Gaussian random field with covariance kernel kX . Take k0 := k and define by

induction:

sn = argmaxs∈Kkn(s, s),

λn = kn(sn, sn),

hn(s) :=
kn(s, sn)√
kn(sn, sn)

,

kn+1(s, t) := kn(s, t)− hn(s)hn(t).

The sequence (hn)n∈N ⊂ Hk ⊂ C (K,R) is admissible for X.

Furthermore, the precised quantification of uncertainty from corollary 10 is trans-

lated as follows.
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Corollary 12. Let (K, d) be a compact metric space, X = (Xs)s∈K a continuous

Gaussian random field with covariance kernel kX . With the notations from corollary

11, note ∀n ∈ N, Xn the continuous Gaussian process with kernel kn then:

sup
µ∈U∗

V

[∫

K
Xn

s µ(ds)

]
= sup

s∈K
V [Xn

s ] = λn.

A direct proof for covariance kernels As it was showed in chapter 1, the

series representation of a continuous Gaussian process is the same problem as find-

ing tensor representations of its covariance kernel. The extended Karhunen-Loève

decomposition (described for general Banach spaces) is given here directly in the

language of Reproducing Kernel Hilbert spaces, the probabilistic aspect being al-

ready investigated. It is always assumed that the covariance kernel k is associated

to a continuous Gaussian random field X = (Xs)s∈K with (K, d) a compact metric

set.

Lemma 8. Let k a continuous, symmetric, semi-positive definite kernel and s̃ ∈ K
such that k(s̃, s̃) > 0 then

k = k1 + k2,

where ∀(s, t) ∈ K2,

k1(s, t) =
k(s, s̃)k(t, s̃)

k(s̃, s̃)
,

k2(s, t) = k(s, t)− k1(s, t),

are continuous, symmetric, semi-positive definite kernels such that

Hk = Hk1 ⊕Hk2 ,

and ∀i ∈ {1, 2}, ‖.‖ki = ‖.‖k on Hki.

Proof. Let s̃ such that k(s̃, s̃) > 0, then ∀s ∈ K:

Xs = X1
s +X2

s ,

X1
s = Xs̃

k(., s)

k(s̃, s̃)
,

X2
s = Xs −X1

s .

Y 1, Y 2 are two independent Gaussian random fields, the rest of the proof is similar

with lemma 5.

Proposition 37. Let k a continuous, symmetric, semi-positive definite kernel and

s = argmaxt∈Kk(t, t) then

sup
h∈BHk

‖h‖C(K,R) =
√
k(s, s).
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Proof. Using the reproducing property, it comes:

sup
h∈BHk

‖h‖C(K,R) = sup
h∈BHk

sup
t∈K

|h(t)| = sup
h∈BHk

sup
t∈K

| 〈h, k(t, .)〉k |.

Now, Cauchy-Schwarz inequality implies

| 〈h, k(t, .)〉k | ≤ ‖h‖k
√
k(t, t),

thus suph∈BHk
‖h‖C(K,R) ≤ supt∈K

√
k(t, t). However, f = k(s,.)√

k(s,s)
is of unit norm in

Hk and f(s) =
√
k(s, s) thus ‖f‖C(K,R) ≥

√
k(s, s) and the proof is complete.

Lemma 9. Let k a symmetric, semi-positive definite and continuous kernel, if

(hn)n∈N is orthonormal in Hk then ‖hn‖C(K,R) → 0.

Proof. The unit ball BHk
is compact, thus ∃h∞ ∈ Hk and (hnk

)k∈N such that

limk→∞ hnk
= h∞ in C (K,R). Moreover, ∀s ∈ K, hn(s) → 0 since (Bessel’s in-

equality): ∑

n≥0

hn(s)
2 =

∑

n≥0

〈hn, k(., s)〉2k ≤ ‖k(., s)‖2k ,

(hn(s))n∈N ∈ l2(N). It follows that hnk
→ 0 and ‖hn‖C(K,R) tends to 0.

Theorem 14. Let k a symmetric, semi-positive definite and continuous kernel such

that Hk is infinite dimensional. Let k0 := k and define by induction ∀n ∈ N:

sn = argmaxs∈Kkn(s, s),

λn = kn(sn, sn),

hn(s) :=
kn(sn, s)√

λn
,

kn+1(s, t) := kn(s, t)− hn(s)hn(t),

then the family (hn)n∈N is a Hilbert basis in Hk.

Proof. Since Hk is infinite dimensional, k = k0 is non-trivial and one has k0(s0, s0) >

0 thus k1 is well-defined. From lemma 8, both k1 and h0 ⊗ h0 are symmetric,

continuous, semi-positive definite kernels and

Hk = H0 ⊕Hk1

with Hk1 infinite dimensional. Now, let n ∈ N and suppose that kn is a well-defined,

symmetric, semi-positive definite and continuous kernel with Hkn an infinite dimen-

sional RKHS. Again, the application of lemma 8 establishes the same properties

for kn+1. By induction, it is true ∀n ∈ N. Now, by construction the family is

orthonormal in Hk, it remains to see that it is a basis. Let h ∈ Hk such that

∀n ∈ N, 〈h, hn〉k = 0, it comes that h ∈ Hkn , ∀n ∈ N, thus:

∀n ∈ N, ∀s ∈ K, |h(s)| = | 〈h, kn(., s)〉k | ≤ ‖h‖k
√
kn(s, s) ≤ ‖h‖k ‖hn‖C(K,R) .

From lemma 9, ‖hn‖C(K,R) → 0, thus h = 0 and the proof is complete.
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This strategy is distinct from [Git12], as the sequence of points (sn)n∈N is not

necessary dense, nor given a priori. However, the process of building orthogonal

functions is similar to the Gram-Schmidt orthogonalisation.

2.3 Examples in C(K,R)

In this section, different examples of continuous Gaussian random fields are given.

In a first part, they are provided analytically and later on by a numerical algorithm.

As a reminder of notations, the decomposition is as follows:

∀s ∈ K, Xs =
∑

n≥0

√
λnξnun(s) =

∑

n≥0

ξnhn(s),

with ∀n ∈ N, ‖hn‖k = ‖un‖C(K,R) = 1. Bases functions will refer to the sequence

(hn)n∈N while their normalized version is (un)n∈N.

Analytical examples in C ([0, 1],R) It appears that the same examples of ana-

lytical Karhunen-Loève decomposition in L2([0, 1], ds;R) are available here.

Example 11 (Wiener process). Consider again the standard Wiener process W =

(Ws)s∈K on K = [0, 1]. Note k0 := k, the first step in the decomposition is to find

s0 ∈ [0, 1] such that

s0 = argmaxs∈[0,1]k0(s, s).

Here, ∀s ∈ [0, 1], k0(s, s) = s, thus the maximum is obtained at s0 = 1, λ0 =

k0(s0, s0) = 1 and h0(s) = s. Now, the residual process corresponds to the Brownian

bridge (Bs)s∈[0,1] = (Ws −W1s)s∈[0,1] with covariance kernel

k1 : (t, s) ∈ [0, 1]2 → E [BtBs] = min(s, t)− ts.

In this case, the maximum of variance is obtained at s1 =
1
2 since k1(s, s) = s(1− s)

and it comes λ1 =
1
4 and h1(s) =

1
2

(
min(s, 12)− s

2

)
. The residual process is given by

the conditional Wiener process W |W 1

2

= W1 = 0. Since it is Markovian, the study

of the process can be considered independently on [0, 12 ] and [12 , 1]. On both parts, it

is a Brownian bridge. By induction, one has directly the following:

∀n ∈ N, λn =
1

2p+2
for n = 2p + k, k = 0, ..., 2p − 1 and p ≥ 0.

Furthermore, the Hilbert basis (hn)n∈N ⊂ Hk is given by h0(t) = t and hn(t) =∫ t

0 h
′
n(s)ds, n ≥ 0, where

h′n(s) =





√
2p for 2k

2p+1 ≤ s ≤ 2k+1
2p+1

−
√
2p for 2k+1

2p+1 < s ≤ 2k+2
2p+1

0 otherwise

,

if n = 2p + k, k = 0, ..., 2p − 1 and p ≥ 0. The family (h′n)n∈N is the usual Haar

basis of L2([0, 1],R). The normalized functions un = hn√
λn

are Schauder’s functions

un(s) =
√
2p+2hn(s)
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corresponding to hat functions of height 1 and lying above the intervals
[
k
2p ,

k+1
2p

]
(n =

2p + k). The resulting decomposition
∑

n≥0 ξn(ω)hn is the famous Lévy-Ciesielski

construction of Wiener process on the interval [0, 1] (see [JK69]). Remark that

∑

n≥0

‖hn‖2U =
∑

n≥0

λn = 1 +
1

4
+ 2× 1

8
+ 4× 1

16
+ ... = +∞,

due to the ”multiplicity” and this representation is not nuclear.

The decomposition of the Brownian bridge is obtained in example 11 since it

appears as the residual process after the first iteration.

Example 12 (Ornstein-Uhlenbeck process). We already know that the Ornstein-

Uhlenbeck process is Gaussian with covariance kernel given as:

k(s, t) =
σ

2β
e−β|t−s|,

and σ will be supposed equal to 2β without loss of generality. Here, the process is

stationary and any value s ∈ [0, 1] is maximum and valid for the first iteration.

However, we choose s0 = 0 as it provides an initial condition of equation 1.1. It

immediately follows that the conditional process has the following covariance kernel:

k1 : (t, s) ∈ [0, 1]2 → e−β|t−s| − e−βte−βs.

The maximum of t→ k1(t, t) is obtained with s1 = 1 and it comes

λ1 = 1− e−2β ,

u1(t) =
1

λ1

(
e−β(1−t) − e−βe−βt

)
.

The next iteration will be the last needed to obtain the full decomposition of the

process. The conditional Gaussian process has covariance kernel

k2(t, s) = k1(t, s)− λ−1
1 k1(t, s1)k1(s, s1).

A straightforward computation shows that the variance function t→ k2(t, t) is max-

imum at s2 =
1
2 that leads to

λ2 = 1− 2
e−β

1 + e−β
,

u2(t) =
1

λ2

(
e−β(t− 1

2
) − e−

β
2
e−βt + e−β(1−t)

1 + e−β

)
.

From this and since the Ornstein-Ulhenbeck process is Markovian, we deduce the

shape of all other functions. Indeed, all further steps will be given on dyadic intervals

of the form [k−1
2p ,

k
2p ] with k ∈ [1, ..., 2p], the process being independent on these

intervals. Here is the general form of the basis for n = 2p + k with p ≥ 0 and

k ∈ [1, ..., 2p]:

λn = 1− 2
e−

β
2p

1 + e−
β
2p

,

un(t) =
1

λn

[
e
−β

(

t− k− 1
2

2p

)

− e−
β

2p+1
e−β(t− k−1

2p ) + e−β( k
2p

−t)

1 + e−
β
2p

]
.
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Remark that these analytical examples rely heavily on the Markovian nature of

the considered processes, as it provides a sort of self-similarity argument.

Numerical examples Since all one dimensional continuous Gaussian random

fields are not Markovian, the generalized Karhunen-Loève decomposition is not

always available analytically. However, the particular nature of the decomposi-

tion provides a practical method to numerically build it. Indeed, the search for

maximum variance functionals translates into maximizing a continuous function

on a compact space. Algorithm 1 provides a näıve method to build such basis.

All the following numerical examples are obtained on a regular desktop machine

(late 2015), using Python. The chosen optimization library is Pyswarm (https:

//pythonhosted.org/pyswarm/), as swarm-type algorithms provide robustness to

local maximums.

Data: A compact metric set (K, d);
a continuous, symmetric, semi-positive definite kernel k;

an integer n ∈ N.

Result: A vector of points (s0, ..., sn−1);

a vector of maximal residual variances (λ0, ..., λn−1);

a list of basis functions (h0, ..., hn−1).

Set k0 = k and i = 0;

while i < n do

find si := argmaxt∈Kki(t, t);

put λi := ki(si, si);

put hi :=
ki(.,si)√
ki(si,si)

;

if λi > 0 then

Set ki+1 := (s, t) ∈ K2 → ki(s, t)− hi(s)hi(t);

set i := i+ 1;

else

stop;

end

end
Algorithm 1: Build the n first basis functions.

Example 13 (Squared exponential kernel). Let X1 = (X1
s )s∈[0,1] be the Gaussian

process with squared exponential kernel:

kX1
(s, t) = exp

(
−(t− s)2

)
.

A basis is built considering s0 = 0 and using algorithm 1. The 8 first normalized basis

functions (u0, ..., u7) are presented in figure 2.1 as well as their respective variances

(λ0, ..., λ7) in figure 2.2. It appears that most of the variability of the process is
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captured with 8 basis functions. Indeed, the maximum of residual variance is less

than 10−8 of the initial variance.

Example 14 (Matérn ν = 3
2 kernel). Let X2 = (X2

s )s∈[0,1] be the Gaussian process

with Matérn 3
2 kernel:

kX2
(s, t) =

(
1 +

√
3|s− t|

)
exp

(
−
√
3|s− t|

)
.

A basis is built considering s0 = 0 and using algorithm 1. The normalized functions

are presented in figure 2.3 as well as the associated variances in figure 2.4.

Example 15 (Fractional Brownian motion H = 1
4). Let X3 = (X3

s )s∈[0,1] be the

Gaussian process with fractional Brownian motion kernel:

kX3
(s, t) =

1

2

(
|s|2H + |t|2H − |s− t|2H

)
.

where H is the index. A basis is built using algorithm 1 for both H = 1
4 and

H = 3
4 . The normalized functions are presented in figures 2.5 and 2.7 as well as the

associated variances in figures 2.6 and 2.8.

2.4 A study of the standard Wiener process

This last section will be dedicated to a comparison of different admissible sequences

for the standard Wiener process in C ([0, 1],R). In particular, if (hn)n∈N is an

admissible sequence, then

∀s ∈ [0, 1], Ws =
∑

n≥0

ξnhn(s), a.s.

with a uniform convergence. Two distinct measures will be considered for every

admissible sequence (hn)n∈N, namely:

1. l-error:

∀n ∈ N, ln((hn)n∈N) = E




 sup

s∈[0,1]

∑

k≥n

ξkhk(s)




2


1

2

,

2. a-error:

∀n ∈ N, an((hn)n∈N) =


 sup

s∈[0,1]

∑

k≥n

hk(s)
2




1

2

.

In this special case, both ln(W ) and an(W ) convergence rates are known asymp-

totically and will be compared with ln((hn)n∈N) and an((hn)n∈N).
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Figure 2.1: 8 first normalized basis functions (u0, ..., u7) (squared exponential ker-

nel). The dots represent positions (s0, ..., s7) of associated Dirac functionals of max-

imum variance.
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Figure 2.2: Evolution of 8 first basis functions variances (λ0, ..., λ7) (squared expo-

nential kernel).
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Figure 2.3: 8 first normalized basis functions (u0, ..., u7) (Matérn ν = 3
2 kernel).

The dots represent positions (s0, ..., s7) of associated Dirac functionals of maximum

variance.
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kernel).
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Figure 2.5: 8 first normalized basis functions (u0, ..., u7) (Fbm H = 1
4 kernel).

The dots represent positions (s0, ..., s7) of associated Dirac functionals of maximum

variance.
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Figure 2.6: Evolution of 8 first basis functions variances (Fbm H = 1
4 kernel).
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Figure 2.7: 8 first normalized basis functions (u0, ..., u7) (Fbm H = 3
4 kernel).

The dots represent positions (s0, ..., s7) of associated Dirac functionals of maximum

variance.
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Figure 2.8: Evolution of 8 first basis functions variances (Fbm H = 3
4 kernel).
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A few admissible sequences In this thesis, all admissible sequences presented

can be derived using the following covariance factorization.

Proposition 38. Let K = [0, 1] and consider the standard Wiener process with

covariance kernel kW and operator CW , then the following operator:

AW : f ∈ L2([0, 1], ds) →
(
s→

∫ s

0
f(t)dt

)
∈ U = C ([0, 1],R) ,

provides a factorization of CW in H = L2([0, 1], ds;R).

Proof. First, the Cauchy-Schwarz inequality gives

∀f ∈ L2([0, 1], ds), ∀(s, t) ∈ [0, 1]2, |AW f(s)−AW f(t) ≤
√
|s− t| ‖f‖L2

thus functions AW f are continuous, the operator is thus well-defined and linear.

Furthermore, it is clearly bounded since f ∈ L2([0, 1], ds;R) and it has an adjoint.

It appears that ∀(µ, f) ∈ U∗ × L2([0, 1], ds;R):

〈AW f, µ〉U ,U∗ =

∫ 1

0
AW f(s)µ(ds),

=

∫ 1

0

∫ 1

0
χ[0,s](t)f(t)dtµ(ds),

=

∫ 1

0

∫ 1

0
χ[0,s](t)µ(ds)f(t)dt,

=

∫ 1

0
µ([t, 1])f(t)dt,

= 〈A∗
Wµ, f〉L2([0,1],ds) ,

from which A∗
W := µ→ (s→ µ([s, 1])) is identified. Finally, one has:

∀s ∈ [0, 1], AWA
∗
Wµ(s) =

∫ s

0
µ([t, 1])dt,

=

∫ 1

0

∫ 1

0
χ[0,s](t)χ[t,1](z)µ(dz)dt,

=

∫ 1

0

∫ 1

0
χ[0,s](t)χ[t,1](z)dtµ(dz),

=

∫ 1

0
kW (s, z)µ(dz),

= CWµ(s).

Using theorem 5, the image through AW of any basis from L2([0, 1], ds;R) pro-

vides an admissible sequence for W . This is what will be done in the next examples.

Example 16 (Karhunen-Loève in L2). Consider the following Hilbert basis in L2([0, 1], ds;R):

∀n ∈ N, en(s) =
√
2 cos

(
π

(
n+

1

2

)
s

)
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then the associated admissible sequence using AW is the usual L2([0, 1], ds;R) Karhunen-

Loève basis:

∀n ∈ N, AW en(s) =

√
2

π(n+ 1
2)

sin

(
π

(
n+

1

2

)
s

)
.

Example 17 (Lévy-Cielsieski). Consider the following (Haar) Hilbert basis in L2([0, 1], ds;R):

∀n ∈ N, n = 2p + k, k ∈ [0, 2p − 1], p ≥ 0, en(s) =





√
2p for 2k

2p+1 ≤ s ≤ 2k+1
2p+1 ,

−
√
2p for 2k+1

2p+1 < s ≤ 2k+2
2p+1 ,

0 otherwise,

then the admissible sequence obtained using AW is the generalized Karhunen-Loève

basis in C ([0, 1],R) (Lévy-Cielsieski).

Example 18 (Paley-Wiener basis). Consider the following (Fourier) Hilbert basis

in L2([0, 1], ds;R):

e0(s) = 1,

∀n ∈ N, e2n+1(s) =
√
2 cos (2π(n+ 1)s) ,

∀n ∈ N, e2n+2(s) =
√
2 sin (2π(n+ 1)s) ,

then the admissible sequence obtained using AW is the Paley-Wiener basis:

AW e0(s) = s,

AW e2n+1(s) =
1√

2π(n+ 1)
(1− cos (2π(n+ 1)s)) ,

AW e2n+2(s) =
1√

2π(n+ 1)
sin (2π(n+ 1)s) .

Example 19 (Sinus). Consider the following Hilbert basis in L2([0, 1], ds;R):

∀n ∈ N, en(s) =
√
2 sin (π (n+ 1) s)

then the admissible sequence obtained using AW is the following basis:

∀n ∈ N, AW en(s) =

√
2

π(n+ 1)
(1− cos (π (n+ 1) s)) .

The previous factorization can be used to construct other admissible sequences,

using the more general notion of Hilbert frames in L2([0, 1], ds;R) instead of Hilbert

basis [LP09] (Wavelets for instance). It is also possible to build bases by specifying

a dense sequence (tn)n∈N in [0, 1], along with a Gram-Schmidt construction [Git12].

The last admissible sequence that will be given here for the standard Wiener process

is a transformation of the C ([0, 1],R) Karhunen-Loève basis (Lévy-Ciesielski).

Example 20 (Rotated Lévy-Ciesielski). Let K = [0, 1] and W = (Wt)t∈[0,1] the

standard Wiener process and the admissible sequence (hn)n∈N given in example 11
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(Lévy-Ciesielski basis). The specific structure of this basis will now be exploited to

define a new basis. Note h̃0 = h0, h̃1 = h1 and consider h̃2, h̃3, then

h̃2 =
1√
2
(h2 + h3) ,

h̃3 =
1√
2
(h2 − h3) ,

are both orthogonal with unit norm in UX and span {h2, h3} = span
{
h̃2, h̃3

}
. Re-

peating a similar transformation at for (h4, ..., h7), (h8, ...., h15) and so on and so

forth gives a new basis, called rotated Lévy-Ciesielski.

l-optimality The comparison starts with the question of asymptotic optimality

(related to l-numbers). It has been shown in the literature that the optimal rate is

the following for the Wiener standard process:

ln(W ) ≈
√

log(n)

n
.

Using proposition 29 which gives a sufficient set of conditions, it is immediate to show

that the following bases are indeed asymptotically optimal and figure 2.9 provides a

Monte-Carlo illustration for the previous admissible sequences (104 simulations on

a fine grid for each n between 0 and 31).

Proposition 39. Let K = [0, 1], W = (Ws)s∈[0,1] be the standard Wiener process,

then the following admissible sequences:

• Karhunen-Loève in L2([0, 1], ds;R),

• Paley-Wiener,

• Sinus,

• Lévy-Ciesielski (Karhunen-Loève in C ([0, 1],R)),

• Rotated Lévy-Ciesielski,

are all asymptotically optimal for W .

Proof. The proof relies on an application of proposition 29 to the different admissible

sequences. First, note that the eigenvalues of the covariance operator CW (as an

endomorphism in L2([0, 1], ds;R)) are known:

∀n ∈ N, λn =
1

π2(n+ 1
2)

2
,

thus item 1 in proposition 29 is satisfied for ν = 1. It remains to check item 2 and

3 relative to infinite and β-Hölder norms.

• Karhunen-Loève in L2([0, 1], ds;R). It has already be done in example 10.
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• Paley-Wiener. The basis functions are built upon cosines and sinuses, it is

clear that

‖h0‖U = 1,

∀n ∈ N, ‖h2n+1‖U =

√
2

π(n+ 1)
,

∀n ∈ N, ‖h2n+2‖U =
1√

2π(n+ 1)
,

thus ‖hn‖U ≤ C(n + 1)−1 with C sufficiently big. Concerning the β-Hölder

norms, one has:

‖h0‖β = 1,

∀n ∈ N, ‖h2n+1‖β = 2β+1(n+ 1)β ,

∀n ∈ N, ‖h2n+2‖β = 2β+1(n+ 1)β ,

and the proposition applies.

• The analysis is the same as Karhunen-Loève L2([0, 1], ds;R).

• Rotated Lévy-Ciesielski. The transformation used reduces the infinite norm

as follows: ∥∥∥h̃2
∥∥∥
U
=

∥∥∥∥
h2 + h3√

2

∥∥∥∥
U
=

1√
2
‖h2‖U =

√
λ2
2
,

since h2 and h3 have distinct supports. The result is similar at each step, thus

∀n ≥ 1, n = 2p + k, k ∈ [0, 2p − 1], p ≥ 1:

∥∥∥h̃n
∥∥∥
U
=

1√
2p

‖hn‖U .

In other words, (h̃n)n∈N satisfies:

∀n ∈ N, n = 2p + k, k ∈ [0, 2p − 1], p ≥ 0,
∥∥∥h̃n

∥∥∥
U
=

1

2p+1
.

This implies that:

∀n ∈ N∗,
∥∥∥h̃n

∥∥∥
U
≤ 1

n+ 1
,

thus (h̃n)n∈N satisfies item 2 in proposition 29. Concerning the β-Hölder

norms, it comes

∥∥∥h̃n
∥∥∥
β
= sup

s 6=t

|h̃n(t)− h̃n(s)|
|t− s|β =

2√
2p+1

1
2pβ

= 2p(β−
1

2
)+ 1

2 = 2(p+1)(β− 1

2
)−1,

and taking either n = 2p or n = 2p+1 − 1 gives a valid rate for item 3.

• Lévy-Cielsieski. The necessary conditions from proposition 29 are not satisfied

in this case. Indeed, one only has

‖hn‖U ≤ C√
n+ 1

, C > 0.
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However, since the rotated Lévy-Ciesielski admissible sequence is optimal, and

by construction one has

2p+1∑

k=2p

ξkhk =Law
2p+1∑

k=2p

ξkh̃k

with (ξn)n∈N a sequence of i.i.d. N (0, 1), it comes:

∀n ∈ N, E



∥∥∥∥∥

2n∑

k=0

ξkhk

∥∥∥∥∥

2

U


 = E



∥∥∥∥∥

2n∑

k=0

ξkh̃k

∥∥∥∥∥

2

U


 ,

from which optimality is deduced.

a-optimality The second feature that is interesting to observe is the evolution of

a-errors, as they measure the linear reconstruction rate. These numbers have been

shown to asymptotically satisfy (corollary 7.6 in [KL02]):

an(W ) ≈ 1√
n
.

It appears that all previous admissible sequences achieve this convergence rate.

Proposition 40. Let K = [0, 1], W = (Ws)s∈[0,1] be the standard Wiener process

on [0, 1] with covariance kernel ∀(s, t) ∈ [0, 1]2, kW (s, t) = min(s, t) and W0 = 0

almost-surely. Note (hn)n∈N the admissible sequence obtained by Karhunen-Loève

decomposition in C ([0, 1],R):

an((hn)n∈N) =
√
λn ≈ an(W ).

Proof. In this construction, one has:

λn =
1

2p+2
, n = 2p + k, k ∈ [0, 2p − 1], p ≥ 0,

and it comes that

∀n ∈ N∗,
1

4n
≤ λn ≤ 1

2(n+ 1)
≤ 1

2n
,

thus the proof is complete.

Proposition 41. Let K = [0, 1], W = (Ws)s∈[0,1] be the standard Wiener process

on [0, 1]. Note (hn)n∈N the admissible sequence obtained by Karhunen-Loève decom-

position in L2([0, 1], ds;R) then

an((hn)n∈N) =
√∑

k≥n

λn.
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Proof. Clearly, one has

∀n ∈ N, ∀s ∈ [0, 1], hn(s)
2 ≤ λn,

thus sups∈[0,1]
∑

k≥n hk(s)
2 ≤∑k≥n λk. Conversely,

∀n ∈ N, hn(1)
2 = λn,

thus sups∈[0,1]
∑

k≥n hn(s)
2 ≥∑k≥n λk.

Figure 2.10 represents the maximum of residual kernels at each steps for the

different admissible sequences at each step.

2.5 Conclusion

In this chapter, the important concept of Karhunen-Loève decomposition has been

generalized from Hilbert to Banach spaces. It mimics the Hilbert case, where each

eigenvector is maximizing the associated Rayleigh quotient. In particular, it provides

a precise quantification of uncertainty, since the variance of all linear functionals of

the residual Gaussian random elements are dominated. In the case of continuous

Gaussian random fields, this decomposition translates in a recursive optimization

algorithm, easy to implement. However, it is not clear yet if this new construction

leads to l and a optimal admissible sequences. After a short analysis of the standard

Wiener process, it appears it is interesting lead. Here are some open questions:

1. Does the Karhunen-Loève decomposition of a Gaussian random element X

always lead to rate a-optimal and/or l-optimal bases ?

2. Does the rotation provided for the Lévy-Ciesielski basis for the standardWiener

process generalizes to other Gaussian random elements ?

3. In view of Courant-Fisher minimax principle in Hilbert spaces, is there a dual

construction of the presented decomposition ?

4. In the literature of optimal design of experiments, the concept of sequential

search for maximum variance points is generalized in Stepwise Uncertainty

Reduction [BBG16]. Is this possible to adapt alternative criterion (trace, etc.)

to derive new admissible sequences for continuous Gaussian random fields ?
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Part II

Applications to Bayesian inverse

problems
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Chapter 3

Introduction to inverse

problems

This introductory chapter on inverse problems presents important concepts relative

to this area. It starts with notions of forward, inverse and well-posed problems

(section 3.1), which are illustrated both on linear and non-linear examples (section

3.2). Then, the well-known Tikhonov-Philips regularization is introduced in the

context of reflexive Banach spaces with general convex penalty functionals (section

3.3).

3.1 Forward, inverse and ill-posed problems

Well-posed problem In a large number of fields ranging from engineering to fun-

damental sciences, mathematics have been applied to represent various phenomena.

These models are designed by the formulation of hypotheses ensuring the desired

behaviour for their solution. One well accepted set of properties that a model (or

problem) should have, has been stated by J. Hadamard [Had02] in his definition of

well-posed problems.

Definition 17 (Well-posed problem in the sense of Hadamard [Had02]). A problem

is well-posed if solutions:

1. exist,

2. are identical,

3. vary continuously with data.

Let us emphasize the three statements in this definition. Although the absence

of solution is an interesting mathematical result on itself, one may generally ex-

pect solutions for further analysis, especially in applied contexts. Thus, if condition

1 in the previous definition is not satisfied, the whole model needs adjustments.

The second assertion about multiplicity is also important, especially if solutions are

75
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particularly different. Indeed, one needs either to treat them all (which may be

impossible) or to choose and more importantly justify his choice. Finally, continuity

is also mandatory for theoretical and practical reasons. For instance, any approxi-

mate treatment of the problem (numerical discretization, measurement errors, etc.)

would have important and undesired consequences. It may be necessary to consider

different topologies (weak topology in Banach spaces for instance) to get continuity.

Naturally, a none well-posed problem will be called ill-posed.

Forward and inverse problems Once a model has been carefully designed and

is shown to be well-posed, a typical use (for instance in Physics or Engineering) is

to determine the consequences implied by known causes through the model, which is

called the forward or direct approach. Since the model is a tangible link between the

two, one may want to determine the causes leading to known consequences, which is

the inverse problem. Both approaches are illustrated in figure 3.1.

Causes Model Consequences

Forward
Inverse

Figure 3.1: Forward and inverse problems.

From a mathematical standpoint, this terminology is conventional as both prob-

lems can be considered the inverse of each other. In practice however, forward

models are usually studied first to check well-posedness and then their inverse coun-

terparts are considered. Even though they represent the two faces of the same coin,

both problems may have very different properties. As previously stated, forward ap-

proaches are well-posed almost by definition, while inverses are often ill-posed (see

the linear example of compact operators in section 3.2 for instance). This is often

due to a smoothing effect, meaning that two different causes could lead to similar

consequences, or in some sense that the forward model looses information. This

phenomenon is particularly clear in the context of linear operators (see section 3.2).

Mathematical formulation In this work, we will use the following mathematical

notations. Let U and Y be Banach spaces and

G : D (G) ⊂ U → G(D (G)) ⊂ Y

a map. A direct problem will be formally defined as:

for u ∈ U , find y ∈ Y such that y = G(u), (3.1)

whereas its inverse:

for y ∈ Y, find u ∈ U such that y = G(u). (3.2)
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In this setting, the well-posedness of the forward problem 3.1 is equivalent to U =

D (G) and G continuous. Indeed, in that case G(u) is defined for all u ∈ U and

continuous in u. Conversely, the problem 3.2 is well-posed if G(D (G)) = Y, G−1

exists and is continuous. These particular statements will be detailed in case of a

linear map in the next section.

3.2 Examples

Following the previous discussion, examples of forward and inverse problems are

provided in this section. The two first examples are given with a linear map G,
as it illustrates fundamental phenomena, while the last is taken from a real-world

non-linear example from computational Biology.

Closed range operators Let G ∈ L(U ,Y) be a bounded operator such that R (G)
is closed. If U = D (G), the forward model is well-posed. Conversely, if Y = R (G)
there may be multiple solutions, in which case the inverse problem is ill-posed.

Indeed, any particular solution u ∈ U leads to the full set of solutions u + ker(G).
However, if G is injective as well, its co-restriction to R (G) is invertible, and is

automatically continuous (Open mapping theorem).

Example 21. Let U = l2(N), 0 < m ≤ M < ∞ (λn)n∈N ⊂ R such that λ0 = 0,

∀n ∈ N∗, 0 < m ≤ λn ≤M < +∞ and

G : (un)n∈N ∈ U → (λnun)n∈N ∈ U .

This operator is non-injective as ker(G) = span {e0} where e0 = (1, 0, ...). Further-

more, let f : (un)n∈N ∈ U → u0 ∈ R, then R (G) = ker(f) is closed. Indeed:

• ∀u ∈ U , f(Gu) = (Gu)0 = λ0u0 = 0, thus R (G) ⊂ ker(f),

• ∀u ∈ ker(f), let v :=
(
0, u1

λ1
, u2

λ2
, ...
)
then v ∈ U since ‖v‖U ≤ ‖u‖U

m
and u = Gv

thus ker(f) ⊂ R (G).

The forward problem is well-posed and its inverse ill-posed because of the multiplicity

of solutions. However, this ill-posedness is solved by restriction of G to ker(G)⊥ for

instance.

In other words, for closed ranged operators between Banach spaces, the ill-

posedness is essentially due to possible multiplicity of solutions. This is the main

idea behind the following alternative definition of a well-posed problem.

Definition 18 (Well-posed problem in the sense of Nashed [Nas81]). The inverse

problem 3.2 is well-posed if and only if R (G) is closed.

A very important case in practice is given by finite rank operators, because finite

dimensional spaces are always topologically closed. In particular, this means that

ill-posedness is essentially an infinite dimensional phenomenon [EHN96].
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Example 22 (Interpolation of continuous functions). Let U = C([0, 1],R) equipped

with the supremum norm, (x1, ..., xn) ∈ [0, 1]n and

G : u ∈ U → (u(x1), ..., u(xn)) ∈ Rn,

which is well-defined linear with finite rank. The forward problem of computing G(u)
given u ∈ U is well-posed. The inverse problem of finding u given y ∈ Rn is ill-posed

in the sense of Hadamard (but well-posed in the sense of Nashed).

Compact operators Suppose now that U and Y are infinite dimensional Banach

spaces and G ∈ K(U ,Y) a compact operator, then it is well known that G can’t be

homeomorphic.

Proposition 42. Let U , Y two infinite dimensional Banach spaces and G ∈ K(U ,Y)

be an injective compact operator, then G−1 : R (G) → U is not bounded.

Proof. Let G ∈ K(U ,Y) injective and G−1 ∈ L(R (G) ,U) then G−1G = I is compact,

which provides a contradiction with Riesz theorem.

Example 23 (Poisson’s equation). Let Ω be a smooth domain and consider the

following equation:

−∆u = f on Ω,

u = 0 on ∂Ω.

The associated weak formulation is

∀v ∈ H1
0 (Ω),

∫

Ω
∇u.∇vdx =

∫

Ω
fvdx,

which, according to Lax-Milgram theorem, has a unique solution u ∈ H1
0 (Ω) for

every f ∈ H−1(Ω). The solution map is linear and compact (H1
0 (Ω) is compactly

embedded in L2(Ω)), thus the forward problem of computing u from f is well-posed.

However, the inverse problem is ill-posed according to proposition 42.

Non-linear forward map Here, the following linear evolution equation is con-

sidered

∂y

∂t
(x, t) + λy(x, t)−D∆y(x, t) = f(x, t), ∀(x, t) ∈]0, L[×]0, T ]

y(x, 0) = 0, ∀x ∈]0, L[
y(0, t) = 0, ∀t ∈]0, T ],
y(L, t) = 0, ∀t ∈]0, T ].

(3.3)

In other words, the quantity of interest y(x, t) evolves from a null initial state under

3 mechanisms. First, a direct variation, resulting from f(x, t) which depends on

time and space. Furthermore, y diffuses at a rate D (strictly positive) and decays
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at a rate λ (positive) both being constant in time and space. The direct problem

is to compute the solution y(x, t) at all time and space given the model parameters

u = (λ,D, f). When the source f is the only parameter, this problem is linear and

the equation 3.3 is called a linear evolution equation. Here, parameters from the

differential operator are considered as well, thus the solution map is non-linear. The

inverse problem consists in finding u = (λ,D, f) from partial information on y. This

example is further studied in chapter 5.

Other well-known examples Different examples might be found in the litera-

ture, based on the theory of partial differential equations for instance. These mod-

els are usually taken from physics or engineering and tomography, gravitometry or

imaging are important examples [Isa17].

3.3 Tikhonov-Philips regularization for operators

A regularization method is now presented, which consists in defining alternative

notions of solutions to the inverse problem 3.2. These elements will be such that

their existence and continuity is proved. It is presented in the case of bounded

operators between reflexive Banach spaces, following the lines of [SKHK12], but this

approach extends to much more general settings.

Regularized solution Consider a penalty functional

Ω : D (Ω) ⊂ U → R+

which quantifies a certain property of elements u ∈ U . A typical example would be

a norm which measures the size of all elements in U , but functionals Ω(u) := ‖Au‖X
with A : U → X are also classical (A being a differential operator in a function space

for instance). Using this new functional, one can define a new notion of solution to

problem 3.2.

Definition 19 (Ω-minimizing solution [SKHK12]). An element u† ∈ U is an Ω-

minimizing solution to problem 3.2 if

u† = argminu∈G−1(y)∩D(Ω)Ω(u)

In other words, we choose among the set of solutions of problem 3.2 those who

minimize the penalty functional Ω. The existence and uniqueness of such elements

will strongly depends on properties of both spaces U , Y and the map Ω. Usually, a

penalty functional is chosen such that it is:

1. Proper: D (Ω) 6= ∅, thus Ω may be used to distinguish some elements in U ,

2. Convex: ∀c ∈ R, the shape of the level set {Ω(u) ≤ c} is convex,
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3. Lower semi-continuous: ∀c ∈ R, the level set {Ω(u) ≤ c} is closed in the strong

topology,

4. Stabilizing: ∀c ∈ R, {Ω(u) ≤ c} is weakly sequentially pre-compact.

These particular hypotheses are exactly what is needed to show the existence of

minimizers. Indeed, the combination of items 2 and 3 gives the following general

result.

Proposition 43. Let U be a Banach space, A ⊂ U a convex and (strongly) closed

subset, then it is weakly closed as well.

Proof. See [Bre11], chapter 3.

Finally, item 4 gives the compacity and the existence of a limit for any min-

imizing sequence. For instance, the norm of U is a penalty functional satisfying

these hypotheses and this particular choice leads to the concept of minimal-norm

solutions. Other penalties may be defined, the following power-type family has been

particularly studied (Chapter 5 in [SKHK12] for instance) with q ∈]1,+∞[

Ω(u) =

{
1
q
‖u‖qX , if u ∈ X
+∞, otherwise,

and X a continuously embedded Banach subspace of U .

Example 24 (Penalty from Reproducing Kernel Hilbert Spaces (RKHS)). For every

compact topological space K, the set of real continuous functions on K, equipped

with the supremum norm is a Banach space. Choosing a continuous kernel k, the

associated (RKHS) injects continuously (see chapter 1 for a proof).

Now, using the previous properties of penalty functionals and in the context of

reflexive Banach spaces, we can show the existence of Ω-minimizing solutions to

problem 3.2.

Proposition 44. Let U be a reflexive Banach space, Y be a Banach space and

G ∈ L(U ,Y) a bounded operator, then the set of Ω-minimizing solutions of problem

3.2 is non-empty whenever y ∈ R (G) and D (Ω) ∩ G−1(y) 6= ∅.

Proof. Since y ∈ R (G) and the set G−1(y) ∩D (Ω) is non-empty, it contains a min-

imizing sequence (un)n∈N such that Ω(un) → inf{Ω(u), u ∈ G−1(y)} ≥ 0. Because

every convergent sequence is bounded, there is k ∈ R such that (Ω(un))n∈N ∈ {u ∈
U , Ω(u) ≤ k}. This set being convex and closed, it is weakly closed and even weakly

sequentially compact, thus we can extract a subsequence (unk
)k∈N which is weakly

converging to ũ ∈ U . Finally, the lower semi-continuity of Ω imposes that ũ is an

Ω-minimizing solution.

The unicity is more involved, and can be established using geometrical argu-

ments, such as uniform convexity for instance.
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Proposition 45. Let Ω(u) := 1
q
‖u‖qU with q ∈ [1,+∞[ and U uniformly convex,

then there exists a unique Ω-minimizing solution to problem 3.2.

Proof. Suppose q = 1 without loss of generality. From the Millman-Pettis theorem,

U is reflexive. Moreover, the norm is proper, convex, continuous (thus lower semi-

continuous) and stabilizing as any closed ball is weakly compact in a reflexive Banach

space, thus from proposition 44 the set of Ω-minimizing solutions is non-empty. Let

u†1, u
†
2 distinct Ω-minimizing solutions (supposed to be of unit norm without loss

of generality). Since the set Ω-minimizing solutions is convex, it contains ũ :=
u
†
1
+u

†
2

2 as well. However, the uniform convexity implies Ω(ũ) < Ω(u†1) which is a

contradiction.

However, even if the Ω-minimizing solution is a singleton, nor the linearity or

continuity of the resulting map is given in proposition 44. In other words, looking

directly for Ω-minimizing solutions may be an ill-posed problem. The Tikhonov-

Philips regularization method will instead look for approximations of Ω-minimizing

solutions.

Remark 1. If U and Y are Hilbert spaces and Ω the norm from U , the map G† :

y ∈ R(G) → u† ∈ U is known as the Moore-Penrose inverse [EHN96]. Its domain

of definition is R (G) +R (G)⊥. In particular, if R (G) is closed, D
(
G†) = Y.

Regularized problem The concept of Ω-minimizing solutions is appealing for its

clarity but doesn’t provide for well-posed inverse problems. Moreover, the data y

may not be available, and one can sometimes work with noise δ ∈ Y, thus consider

yδ = y + δ instead of y. The regularized problem will give a answer to these 2

problems, considering the following Tikhonov-Philips functional ∀u ∈ U :

T δ
α(u) := u ∈ D (Ω) ∩D (G) ⊂ U → 1

p

∥∥∥Gu− yδ
∥∥∥
p

Y
+ αΩ(u)

where p ∈]1,+∞[, α > 0. This quantity is composed of two different terms, balanc-

ing between proximity to data and penalty as α varies. Taking these 2 constraints

in account, a Tikhonov-Philips solution to problem 3.2 can be defined.

Definition 20 (Tikhonov-Philips solution). An element uδα ∈ U is a Tikhonov-

Philips solution to problem 3.2 if

T δ
α(u

δ
α) = inf{T δ

α(u), u ∈ U}.

Remark that uδα may not be an element from G−1(y).

Theorem 15. Let U , Y be reflexive Banach spaces, G ∈ L(U ,Y) a bounded operator,

y ∈ R (G) and yδ ∈ Y then

1. (Existence of solutions, proposition 4.1 in [SKHK12]): ∀α > 0, ∀yδ ∈ Y, the

set of Tikhonov-Philips solutions is non-empty.
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2. (Stability of solutions, proposition 4.2 in [SKHK12]): ∀α > 0, if yδn → yδ

then any sequence (uδnα )n∈N of Tikhonov-Philips solutions has a subsequence(
u
δnk
α

)
k∈N

such that u
δnk
α ⇀ uδα and uδα is a Tikhonov-Philips solution.

3. (Convergence of solutions, theorem 4.3 in [SKHK12]): Let (yδn)n∈N a sequence

in Y such that yδn → y and ‖δn‖Y converges monotonically to 0, (αn)n∈N ∈
]0,+∞[ and

(
uδnαn

)
n∈N of Tikhonov-Philips solutions. If

• lim supn→∞Ω
(
uδnαn

)
≤ Ω(u), ∀u ∈ G−1(y),

•
∥∥Guδnαn

− yδn
∥∥
Y → 0,

then
(
uδnαn

)
n∈N has a weakly convergent subsequence which limit is an element

u†. If the set of Ω-minimizing solution is a singleton, then uδnαn
⇀ u†.

Proof. 1. Let α > 0, since Ω is proper, it comes that D (Ω) 6= ∅ and it contains

a sequence (un)n∈N such that T δ
α(un) → a := inf{T δ

α(u), u ∈ D (Ω)}. In

particular, the sequence
(
T δ
α(un)

)
n∈N and a fortiori (Ω(un))n∈N are bounded

in R. Since the sets {u ∈ U , Ω(u) ≤ k} are weakly sequentially pre-compact,

a subsequence (unk
)k∈N converges weakly to ũ ∈ U , and because D (Ω) is

weakly closed (convex and strongly closed), we have ũ ∈ D (Ω). As a bounded

operator for the strong topologies is also weak-to-weak continuous, it comes

Gun ⇀ Gũ. Since the norm and Ω are both w.l.s.c., T δ
α is itself w.l.s.c. and

thus:

∀n ∈ N, T δ
α(ũ) ≤ T δ

α(un),

which concludes the proof as ũ is Tikhonov-Philips solution to the problem

3.2.

2. Let α > 0, we will first show that the sequence
(
Ω
(
uδnα
))

n∈N is bounded above.

By definition of uδnα , it comes that T δn
α (uδnα ) ≤ T δn

α (u), ∀u ∈ U , ∀n ∈ N. Using

the triangle inequality, monotonicity and convexity it comes:

∥∥∥Guδnα − yδ
∥∥∥
p

Y
≤ 2p−1

(∥∥∥Guδnα − yδn
∥∥∥
p

Y
+
∥∥∥yδ − yδn

∥∥∥
p

Y

)
.

Then

αΩ(uδnα ) ≤ T δ
α(u

δn
α ),

≤ 2p−1T δn
α (uδnα ) +

2p−1

p

∥∥∥yδ − yδn
∥∥∥
Y
,

≤ 2p−1T δn
α (u) +

2p−1

p

∥∥∥yδ − yδn
∥∥∥
Y
,

≤ 2p−1T δ
α(u) +

2p−1

p

∥∥∥Gu− yδ
∥∥∥
Y
+

4p−1

p

∥∥∥yδ − yδn
∥∥∥
Y
.

Since
∥∥yδ − yδn

∥∥
Y → 0, it is bounded and Ω(uδnα ) is then bounded above from

previous equation. Because Ω is stabilizing, there exists a weakly convergent
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subsequence
(
u
δnk
α

)
k∈N

which limit is ũ ∈ D (Ω) (as it is weakly closed).

Moreover, yδn → yδ and G is weak-to-weak continuous so Guδnα −yδn ⇀ Gũ−yδ.
From the w.l.s.c. of the norm and Ω it comes:

∥∥∥Gũ− yδ
∥∥∥
p

Y
≤ lim inf

k→∞

∥∥∥Guδnk
α − yδ

∥∥∥
p

Y
,

Ω(ũ) ≤ lim inf
k→∞

Ω
(
u
δnk
α

)
.

Finally, we have ∀u ∈ D (Ω):

T δ
α(ũ) ≤ lim inf

k→∞
T δk
α

(
u
δnk
α

)
,

≤ lim
k→∞

T
δnk
α (u),

and since ∀u ∈ D (Ω) , limk→∞ T
δnk
α (u) = T δ

α(u) then ũ is a Tikhonov-Philips

solution of problem 3.2.

3. Let u† be an Ω-minimizing solution, then hypothesis XX gives:

lim sup
n→∞

Ω(uδnα ) ≤ Ω(u†)

In particular, the sequence
(
Ω(uδnα )

)
n∈N is bounded above, and because Ω is

stabilizing, there exists a weakly convergent subsequence
(
Ω
(
u
δnk
α

))
k∈N

with

limit ũ ∈ D (Ω) (as it is weakly closed). Then

∥∥∥Guδnk
α − y

∥∥∥
Y
≤
∥∥∥Guδnk

α − yδn
∥∥∥
Y
+
∥∥∥y − yδn

∥∥∥
Y
.

The weak-to-weak continuity of G and the w.l.s.c. of the norm gives Gũ = y.

Moreover, we have ∀u ∈ D (Ω):

Ω(ũ) ≤ Ω(u†) ≤ Ω(u).

In particular, Ω(ũ) = Ω(u†) = limk→∞Ω
(
u
δnk
α

)
which concludes the proof.

The convergence of solutions is conditional to two particular hypotheses, which

may be attained with specific choices of sequences (αn)n∈N. We won’t go into details

about a priori and a posteriori choices here, but it is fully presented in [SKHK12].

Moreover, in particular cases such as power-type penalty functional, strong conver-

gence may be proven using error analysis.

Example 25. Consider again the problem of interpolation in U = C([0, 1],R).

Choosing the following penalty functional:

Ω(u) =

{
1
2‖u‖2K , if u ∈ K

+∞, otherwise.



84 CHAPTER 3. INTRO. TO INVERSE PROBLEMS

where K is the RKHS with continuous kernel k embedded in U . The solution to this

minimization problem is unique:

uα = k(x,X)k(X,X)−1X,

due to the Representer theorem. The regularized solution uα inherits properties

from k (as a linear combination). For instance, it is well-known that a Gaussian

kernel provides infinitely differentiable solutions whereas for a Brownian one, they

are piecewise linear.

Remark 2. In the Hilbert case, taking p = q = 2 in a power-type functional is

particularly interesting. Indeed, we have Tα twice differentiable with:

Tα(u) =
1

2
‖Gu− y‖2Y +

α

2
‖u‖2U ,

∇Tα(u) = G∗Gu− G∗y + αu,

∇2Tα(u) = G∗G + αI.

The Hessian bilinear form being positive definite for all α > 0, the associated op-

erator is invertible and we have the normal equations for the regularized solution

uα:

(G∗G + αI)uα = G∗y,

thus uα = (G∗G + αI)−1 G∗y. In particular, if U , Y are separable and G is diagonal

G : (un)n∈N → (λnun)n∈N (such as a spectral representation of a compact operator),

then:

(G∗G + αI)−1 G∗ : (un)n∈N ∈ l2(N) →
(

λn
λ2n + α

un

)

n∈N
∈ l2(N) (3.4)

and this operator is bounded since
(

λn

λ2
n+α

)
n∈N

is bounded.

3.4 Other regularizations methods

The previous Tikhonov-Philips regularization is among the most well-known meth-

ods. However, the field of inverse problems is still under active research, see [BB18],

[SKHK12] and the references therein for recent and detailed presentations.

Extension of Tikhonov In section 3.3, the Tikhonov-Philips theory has been

presented with particular assumptions such as linearity of G, reflexivity of U and

convexity of Ω. All of these may be circumvented, see [SKHK12].

Iterative methods Iterative methods aim at minimizing the discrepancy
∥∥Gu− yδ

∥∥
Y

directly. The regularization consists in choosing a stopping rule N(δ, yδ) and choose

uN(δ,yδ) as solution to the inverse problem 3.2. This class of methods have the

advantage of requiring much less computations than Tikhonov-Philips counterparts.
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Bayesian methods One of the most important drawback of deterministic reg-

ularization methods, is that they don’t provide for uncertainty quantification. In

particular, problems involving measured data are ubiquitous and it is often possible

to estimate the uncertainty on these. It is then natural to ask a methodology to take

into account this additional information. In the two last decades, this necessity led

researchers to consider Bayesian techniques in inverse problems [Stu10, Tar05, CS07]

and this methodology will be fully detailed in the next chapter.
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Chapter 4

Theory of Bayesian

regularization in Banach spaces

This second chapter on regularization methods presents the Bayesian theory for in-

verse problems as initially developed in [Stu10]. This approach consists in choosing

an initial Borel probability measure, which will be updated in a posterior distribution

using a likelihood and some available data. This last probability measure will be the

solution of the inverse problem and naturally includes a quantification of uncertainty.

Hadamard’s definition of well-posedness will then refer to existence, uniqueness and

continuity of this solution relative to the data in an appropriate distance. Further-

more, a clear link has been established between previous Tikhonov-Philips solutions

and posterior modes, providing a useful variational principle. After a short intro-

duction on Kriging, which is a fundamental example of Bayesian regularization, the

theory is stated for possibly infinite dimensional Banach spaces. It also includes

important aspects regarding Markov chain Monte-Carlo algorithms and consistency

of approximation.

4.1 Kriging: a motivation for Bayesian inversion

Before introducing the general Bayesian methodology for inverse problems, we start

here with the well-known case of continuous functions interpolation, using both

deterministic and stochastic viewpoints for regularization.

Problem statement. Consider a compact metric set (K, d), an element x =

(x1, ..., xn) ∈ Kn representing distinct inputs and y = (y1, ..., yn) ∈ Rn, the cor-

responding image by a continuous function. The interpolation problem consists in

finding a continuous function (an element u in the Banach space C (K,R)), such that

∀i ∈ [1, n], u(xi) = yi (or simply u(x) = y in vector notations). According to previ-

ous chapter, interpolation is an ill-posed inverse problem in the sense of Hadamard

(but not in the sense of Nashed). Two distinct regularizations methods will be pre-

sented, an application of previous Tikhonov-Philips theory (see chapter 3), the other

87
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on stochastic modelling with Gaussian random fields (the Kriging approach).

Tikhonov-Philips regularization using RKHS. The first approach to solve

the interpolation problem will be of Tikhonov-Philips type, choosing a penalty func-

tional based on the norm of a continuously (and compactly, see chapter 1) embedded

subspace of C (K,R), a Reproducing Kernel Hilbert space Hk (RKHS, see [DM05])

associated to a continuous symmetric, semi-positive kernel k. Here, the considered

penalty functional will be:

Ω : u ∈ C (K,R) →
{

1
2‖u‖2k, if u ∈ Hk,

+∞, otherwise,
(4.1)

as it satisfies the properties presented in previous chapter.

Proposition 46. Let (K, d) a compact metric space, k a non-trivial, continuous,

symmetric, semi-positive definite kernel and Hk the associated RKHS, then the

penalty functional Ω defined in equation 4.1 is convex, lower semi-continuous, proper

and stabilizing.

Proof. Ω is a convex function since ∀(u1, u2) ∈ H2
k , ∀λ ∈ [0, 1]:

Ω(λu1 + (1− λ)u2) =
1

2
‖λu1 + (1− λ)u2‖2k ,

≤ 1

2
(λ ‖u1‖k + (1− λ) ‖u2‖k)2 ,

≤ λ

2
‖u1‖2k +

1− λ

2
‖u2‖2k = λΩ(u1) + (1− λ)Ω(u2).

If u1 6∈ Hk or u2 6∈ Hk, the inequality is still correct, thus Ω is convex. Now, let m ∈
R+ and (un)n∈N ⊂ {u ∈ C (K,R) , Ω(u) ≤ m} such that un → u in C (K,R). Be-

cause (un)n∈N is bounded in Hk (by hypothesis), it exists v ∈ Hk and (unk
)k∈N ⊂ Hk

such that unk
⇀ v in the weak topology of Hk (balls are weakly compact in Hilbert

spaces). Now, the reproducing property gives ∀x ∈ K, unk
(x) = 〈unk

, k(., x)〉k →
〈v, k(., x)〉k = v(x) which implies that v = u since unk

→ u in C (K,R). It

remains to see that u ∈ {Ω(u) ≤ m, u ∈ C (K,R)}, which is a consequence of

‖u‖2Hk
≤ lim inf ‖un‖2Hk

≤ m, thus level sets associated to Ω are closed in C (K,R).
It is proper because k 6= 0 and stabilizing because balls in Hk are compact.

Following the discussion in chapter 3, this provides both existence and uniqueness

of Ω-minimizing and Tikhonov-Philips solutions to the interpolation problem.

Proposition 47. Let (K, d) be a compact metric space, k a continuous, symmetric,

semi-positive definite kernel and Ω the penalty function defined in equation 4.1,

x ∈ Kn such that k(x,x) is invertible, then the interpolation problem

1. has a unique Ω-minimizing solution u†,

u† : z ∈ K → k(z,x)k(x,x)−1y ∈ R
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2. ∀α > 0, has a unique Tikhonov-Philips solution for the following Tikhonov-

Philips functional:

Tα(u) =
1

2
‖Gu− y‖2Rn + αΩ(u),

given by uα : z ∈ K → k(z,x) (k(x,x) + αI)−1 y ∈ R.

with the notations k(x,x)i,j = k(xi, xj) and k(z,x) = (k(z, x1), ..., k(z, xn)). More-

over, both applications y → uα and y → u† are continuous.

Proof. Let α > 0 and Tα the following Tikhonov-Philips functional:

Tα := u ∈ C (K,R) → 1

2
‖y − Gu‖2Rn +

α

2
‖u‖2k ∈ R+.

Clearly, D (Ω) = D (Tα) = Hk, thus solutions are in Hk.

• Let F = span {k(., xi), i ∈ [1, n]} which is closed in Hk, then Hk = F ⊕ F⊥

and note PF the associated (bounded) orthogonal projector. Remark that

∀u ∈ Hk, PF (u) = uF :

Ω(u) =
1

2

(
‖uF ‖2Hk

+ ‖u− uF ‖2Hk

)
≥ Ω(uF ),

and by the reproducing property

∀i ∈ [1, n], (u− uF )(xi) = 〈u− uF , k(., xi)〉k = 0,

thus u(x) = uF (x). In other words, both objectives are simultaneously reduced

by projecting on F and both type of solutions must be in F , that is ∀z ∈
K, u(z) = k(z,x)β with β ∈ Rn.

• Concerning Ω-minimizing solutions, they must satisfy u(x) = y, which if u† ∈
F imposes β = k(x,x)−1y and the solution is unique.

• About Tikhonov-Philips solutions, it is enough to minimize Tα on F , which

directly gives β = (k(x,x) + αI)−1y and again it is unique.

• Let (y1,y2) ∈ R2n and define u†i (z) := k(z,x)k(x,x)−1yi, i ∈ {1, 2}. Then it

comes:

∀z ∈ K, |u†1(z)− u†2(z)| ≤ ‖k(z,x)‖Rn

∥∥k(x,x)−1
∥∥
L(Rn,Rn)

‖y1 − y2‖Rn ,

and because K is compact and z → ‖k(z,x)‖Rn continuous,
∥∥∥u†1 − u†2

∥∥∥
∞

≤
C ‖y1 − y2‖Rn . The proof is similar for uα.

In conclusion, the Tikhonov-Philips method based on a (compactly embedded)

RKHS norm provides a regularized inverse problem. Both u† and uα are continuous

w.r.t. y, which is a consequence of the well-posedness in the sense of Nashed. As
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an illustration, figure 4.1 provides an example of solutions with K = [0, 1], an k a

Matérn 3
2 covariance kernel:

k(x, y) =
(
1 +

√
3|x− y|

)
exp

(
−
√
3|x− y|

)
.

However, in both cases, the solution is always a single function and no quantification

of uncertainty is given.
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RKHS based regularization

u†

α = 10−3

α = 10−2

α = 10−1

Figure 4.1: Ω-minimizing u† and Tikhonov-Philips solutions uα in C ([0, 1],R) for

α ∈ {10−3, 10−2, 10−1} and k the Matern 3
2 covariance kernel.

Kriging. Kriging has been widely studied to solve the interpolation problem, es-

pecially in the field of geosciences [Kri51, Mat62, RW04]. Suppose now that the

solution is a sample function from a continuous Gaussian random field with co-

variance kernel k. Then, for any x∗ = (z,x) ∈ Kn+1, the random vector u(x∗) is

Gaussian with zero mean and covariance matrix (in block notations):

k(x∗, x∗) :=

(
k(z, z) k(z,x)

k(x, z) k(x,x)

)
.

Using conditioning formulas of Gaussian vectors, it comes that ∀z ∈ K:

u(z)|u(x) = y ∼ N (my(z), vy(z)),

my(z) = k(z,x)k(x,x)−1y,

vy(z) = k(z, z)− k(z,x)k(x,x)−1k(x, z).
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In other words, the information that u(x) = y leads to a new continuous Gaussian

random field u|u(x) = y with known mean and covariance (the latter being only

dependent on x not y). From this, one can then compute the mean function or

sample trajectories, both methods leading to interpolating functions (see figure 4.2).

This analysis may also be done under additive Gaussian noise, where the data doesn’t

directly inform on u(x) but

y = u(x) + η,

where η ∼ N (0, σ2I). This leads to a different continuous Gaussian random field

with parameters:

u(z)|u(x) + η = y ∼ N (my

σ(z), v
y

σ (z)),

my

σ(z) = k(z,x)
(
k(x,x) + σ2I

)−1
y,

vyσ (z) = k(z, z)− k(z,x)
(
k(x,x) + σ2I

)−1
k(x, z).

Again, it is still possible to extract information from this Gaussian random field by

simulation or mean value.
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Figure 4.2: Mean function m with 95% confidence interval and 10 sample functions

from u|u(x) = y with Matérn 3
2 covariance kernel.

Discussion This simple example shows that, given a continuous, symmetric, semi-

positive definite kernel, both Tikhonov-Philips and Kriging approaches lead to simi-

lar solutions (if one considers the posterior mean). However, the latter provides also
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a probability distribution, thus also quantifies uncertainty. Now, the Kriging ap-

proach can be seen through a measure theoretic viewpoint. Indeed, considering the

unknown as a sample function from a continuous Gaussian random field is equivalent

to choose a prior Borel probability measure on C (K,R). The conditional random

field is also equivalent to a posterior measure, given the data y. The Bayesian the-

ory for inverse problems will generalize this example, involving different priors and

likelihoods.

4.2 Bayesian regularization

Bayesian inversion Keeping the previous example of Kriging in mind, the gen-

eral theory of Bayesian inversion will now be presented. First, remind the definition

of an inverse problem, where one wants to determine the causes leading to known

consequences. The Bayesian approach consists in specifying an a priori on the na-

ture of causes (physical information, constraints, regularity, etc.), choosing a model

that links causes and consequences (the likelihood) and deducing a posteriori in-

formation on the causes given known consequences (figure 4.3). In practice, the a

Prior Likelihood Observations

Posterior

Figure 4.3: Bayesian inverse problem.

priori information is given under the form of a probability distribution µ0 on the

space of causes and the likelihood as a function of both the causes and observations.

It generally includes the model but also errors and deduction is then given by the

celebrated Bayes theorem. This idea of using a probabilistic framework in inverse

problems is far from new and has been widely used in finite dimensional contexts

[KS05]. However, the theory that will be presented here is infinite dimensional and

has been originally developed in the seminal paper [Stu10] (and later as lecture notes

[DS15, GHO17]). In a more mathematical formulation, instead of looking for a gen-

eralized solution to the inverse problem (Ω-minimizing solutions, etc...), it will taken

as a (posterior) probability distribution µy on the space of parameters. Similarly

to its deterministic counterpart, Bayesian inverse problems may be difficult to solve

and Hadamard notion of well-posedness is adapted.

Definition 21 (Well-posed Bayesian inverse problem). The Bayesian inverse prob-

lem is well-posed if the posterior distribution µy:
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1. exists,

2. is unique,

3. is continuous w.r.t. data y.

Now, the set of conditions under which a Bayesian inverse problem is well-posed

involves both the prior measure µ0 and the likelihood function, the research of an

appropriate setup is still under active development. Indeed, the initial work was done

under Gaussian priors [Stu10], later extended to Besov priors [DHS12] and recently

to priors with exponential tails [HN17], infinitely-divisible and heavy-Tailed priors

[Hos17b] or heavy-tailed stable priors in quasi-Banach spaces [Sul17]. Here, the

conditions given in [HN17] are presented as they offer a sufficient level of generality

in this thesis.

Mathematical formulation Consider again the notations adopted in chapter 3,

that is U , Y are real Banach spaces, G : D (G) ⊂ U → Y a (possibly non-linear) map

and data will be an element y ∈ Y. The prior µ0 is a Borel probability distribution on

U and always supposed Radon (which is automatically the case when U is separable).

The likelihood will be given as a positive function, in the form

L : (u, y) ∈ U × Y → exp(−Φ(u; y)) ∈ R+,

and represents how plausible the data y is when the unknown is u (higher values

indicate more favourable cases). The function Φ will be called the negative log-

likelihood and is chosen according to the problem at hand, for instance an additive

model of the form

y = G(u) + η

where η ∼ Q0, a Radon probability measure on Y. In the case where the translated

probability distribution Qu = Q0(. − G(u)) is absolutely continuous w.r.t. Q0, µ0-

almost surely, the likelihood is a Radon-Nikodym density

dQu

dQ0
(y) = exp (−Φ(u; y)) ,

the evidence, its integral w.r.t. µ0 such that the posterior is defined by

dµy

dµ0
(u) =

L(u, y)∫
U L(u, y)µ0(du)

=
exp (−Φ(u; y))∫

U exp (−Φ(u; y))µ0(du)
,

whenever this equation is licit. At this level of generality, the difficulty is to give

a set of conditions on both µ0 and Φ that provides a unique well-defined posterior

measure µy continuous in the data and this is the objective of next paragraph.
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Existence and uniqueness In order to prove the existence and uniqueness of a

posterior distribution µy, it will be directly defined by the negative log-likelihood

Φ such that exp(−Φ) is a Radon-Nikodym density w.r.t. µ0 (up to a constant). In

other words, it must be measurable in u (so the Lebesgue integral makes sense),

integrable and have a strictly positive integral (the evidence doesn’t vanish). Thus,

the following set of conditions on the negative log-likelihood is a first step in this

direction.

Assumptions 1. The negative log-likelihood Φ has the following properties:

1. Measurability in u: ∀y ∈ Y, u→ Φ(u; y) is measurable,

2. Lower bound in u, locally in y: ∃α1 ≥ 0, ∀r > 0, ∃M(α1, r) ∈ R, ∀u ∈ U ,
∀y ∈ BY(0, r],

Φ(u; y) ≥M(α1, r)− α1 ‖u‖U .

3. Boundedness above: ∀r > 0, ∃K(r) > 0, ∀u ∈ BU (0, r], ∀y ∈ BY(0, r],

Φ(u; y) ≤ K(r).

The particular form of the lower bound in u will be justified by an additional

integrability condition on µ0 (assumption 2), but other alternatives are possible.

The measurability condition in u is very often a consequence of continuity.

Assumptions 2 (Prior with exponential tails). µ0 is a Borel probability measure

on U such that

1. it is Radon,

2. ∃κ > 0, ∫

U
exp(κ ‖u‖U )µ0(du) <∞.

For instance, convex probability measures automatically satisfy assumption 2

[HN17]. This is in particular the case of Radon Gaussian measures (see theorem

1). Now, under assumptions 1 and 2, the existence and uniqueness of a posterior

distribution are established.

Theorem 16 (Theorem 2.1 in [HN17]). Let U and Y be Banach spaces, y ∈ Y, Φ

a negative log-likelihood and µ0 a prior measure respectively satisfying assumption 1

and 2, if α1 ≤ κ then µy exists, is unique and Radon, characterized by the following

Radon-Nikodym density w.r.t. µ0:

∀u ∈ U , ∂µ
y

∂µ0
(u) =

1

Z(y)
exp (−Φ(u; y)) ,

with ∀y ∈ Y, Z(y) =
∫
U exp (−Φ(u; y))µ0(du) ∈ R+ \ {0}.
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Proof. Let y ∈ Y and consider the evidence Z(y), then

∀y ∈ Y, Z(y) =

∫

U
exp (−Φ(u; y))µ0(du),

≤
∫

U
exp (α1 ‖u‖U −M(α1, r))µ0(du),

for all r ≥ ‖y‖Y , which is finite if α1 ≤ κ. Now, ∀y ∈ Y, ∀r ≥ ‖y‖Y ,

Z(y) ≥
∫

BU (0,r]
exp(−K(r))µ0(du) = µ0 (BU (0, r]) exp(−K(r)).

In particular, this gives constants c(r), C(r) > 0 such that ∀y ∈ BY(0, r], 0 < c(r) ≤
Z(y) ≤ C(r). It remains to see that µ0 gives a strictly positive measure to BU (0, r],

which is a consequence of µ0 being Radon. Since µy << µ0 then µy is Radon

itself.

In the case where κ < α1, it is always possible to modify µ0 using a homoth-

etic transformation (push-forward measure). There are alternative ways to ensure

the existence of a posterior distribution, using a Bayes theorem (3.4 in [DS15] for

instance) or a different set of conditions on Φ and µ0. However, assumptions 1

and 2 will show to be general enough and particularly tractable in the rest of this

work. The continuity however, requires an adapted notion of distance and additional

assumptions on Φ.

Hellinger metric There exists different notions of distance between probability

distributions but one shows to be particularly interesting in the context of inverse

problems.

Definition 22 (Hellinger distance). Let (Ω,F , ν) be a probability space, µ1 and µ2

two probability measures such that µi << ν with i ∈ {1, 2}. The Hellinger distance

is defined as

dHell(µ1, µ2) =


1

2

∫

Ω

(√
dµ1
dν

−
√
dµ2
dν

)2

dν




1

2

.

Note that it is always possible to find ν satisfying µ1 << ν and µ2 << ν, and the

value is independent of this choice. One strong motivation for this distance in inverse

problems is that it controls the Bochner integral of square integrable functions w.r.t.

different measures.

Lemma 10 (7.14 in [DS15]). Let (Ω,F , ν) be a probability space and U a Banach

space, µ1 and µ2 two probability measures both absolutely continuous w.r.t. ν, then

∀f ∈ L2(Ω,F , µ1;U , Bor(U)) ∩ L2(Ω,F , µ2;U , Bor(U)), it comes

‖Eµ1 [f(u)]− Eµ2 [f(u)]‖U ≤ 2

√
Eµ1 ‖f(u)‖2U + Eµ2 ‖f(u)‖2UdHell(µ1, µ2).
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Proof. Let f ∈ L2(Ω,F , µ1;U , Bor(U)) ∩ L2(Ω,F , µ2;U , Bor(U)) we have

‖Eµ1 [f ]− Eµ2 [f ]‖U
=

∥∥∥∥
∫

Ω
f(ω)

(
dµ1
dν

− dµ2
dν

)
dν

∥∥∥∥
U

≤
∫

Ω
‖f‖U

∣∣∣∣
dµ1
dν

− dµ2
dν

∣∣∣∣ dν,

=

∫

Ω
‖f‖U

∣∣∣∣
√

dµ1

dν
−
√

dµ2

dν

∣∣∣∣
√
2

√
2

∣∣∣∣∣

√
dµ1
dν

+

√
dµ2
dν

∣∣∣∣∣ dν,

≤

√√√√1

2

∫

Ω

(√
dµ1
dν

−
√
dµ2
dν

)2

dν

√√√√2

∫

Ω
‖f‖2U

(√
dµ1
dν

+

√
dµ2
dν

)2

dν,

≤ dHell(µ1, µ2)

√
4

∫

Ω
‖f‖2U

(
dµ1
dν

+
dµ2
dν

)
dν,

which concludes the proof.

This distance will be used to link how variation in data impacts the associated

posterior measures.

Hellinger continuity Now that the existence and uniqueness of the posterior dis-

tribution has been established for all y ∈ Y, a sufficient condition for the continuity

of µy w.r.t. y in the Hellinger distance will be given here.

Assumptions 3. The negative log-likelihood is locally Lipschitz in y with µ0-integrable

constant: ∃α2 ≥ 0, ∀r > 0, ∃C(α2, r) ≥ 0, ∀u ∈ U :

∀y1, y2 ∈ BY(0, r], |Φ(u; y1)− Φ(u; y2)| ≤ exp (α2 ‖u‖U + C(α2, r)) ‖y1 − y2‖U .

Now, if we combine assumptions 1, 2 and 3, the Bayesian inverse problem is

well-posed.

Theorem 17 (Theorem 2.3 in [HN17]). Let U ,Y be Banach spaces, µ0 a prior distri-

bution satisfying assumption 2 and Φ a negative log-likelihood such that assumptions

1 and 3 are verified. If α1 + 2α2 ≤ κ, the Bayesian inverse problem is well-posed.

Proof. Let y1, y2 ∈ Y, then ∀r ≥ max
(
‖y1‖Y , ‖y2‖Y

)
, ∃c(r), C(r) > 0, c(r) <

Z(yi) < C(r), ∀i ∈ {1, 2} (theorem 16). Consider first the following inequality for

a1, a2 > 0 and (b1, b2) ∈ R2:

∣∣∣∣
e−b1

a1
− e−b2

a2

∣∣∣∣ =
∣∣∣∣
e−b1

a1
− e−b2

a1
+
e−b2

a1
− e−b2

a2

∣∣∣∣ ,

=

∣∣∣∣
e−b1 − e−b2

a1
+ e−b2

(
1

a1
− 1

a2

)∣∣∣∣ .
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Taking the square of previous equality and using (a+ b)2 ≤ 2(a2 + b2) gives:

(
e−b1

a1
− e−b2

a2

)2

≤ 2

(
e−b1 − e−b2

a1

)2

+ 2e−2b2

(
1

a1
− 1

a2

)2

.

This will now be applied to the Hellinger distance of both posteriors. Let r > 0

(y1, y2) ∈ BY(0, r] and apply previous inequality with b1 = Φ(u;y1)
2 , b2 = Φ(u;y2)

2 ,

a1 =
√
Z(y1) and a2 =

√
Z(y2) then

dHell(µ
y1 , µy2)2 ≤ 2(I1 + I2),

with

I1 =
1

Z(y1)

∫

U

(
exp

(
−Φ(u; y1)

2

)
− exp

(
−Φ(u; y2)

2

))2

µ0(du),

I2 =

∣∣∣∣∣
1√
Z(y1)

− 1√
Z(y2)

∣∣∣∣∣

2

Z(y2).

It remains to show that Ii ≤ Ci ‖y1 − y2‖2Y , ∀i ∈ {1, 2} to complete the proof.

Using the lower bound of Φ, its continuity in y and the mean-value theorem on the

exponential, it comes ∀(y1, y2) ∈ BY(0, r]2,

I1 =
1

Z(y1)

∫

U

(
exp

(
−Φ(u; y1)

2

)
− exp

(
−Φ(u; y2)

2

))2

µ0(du),

≤ 1

Z(y1)

∫

U
exp (α1 ‖u‖U −M(α1, r)) (Φ(u; y1)− Φ(u; y2))

2 µ0(du),

≤ 1

Z(y1)

∫

U
exp ((α1 + 2α2) ‖u‖U −M(α1, r) + 2C(α2, r))µ0(du) ‖y1 − y2‖2U ,

≤ K1 ‖y1 − y2‖2U ,

with 0 ≤ K1 <∞ if κ ≥ α1 + 2α2. Concerning the second term, it comes similarly:

|Z(y1)− Z(y2)|

≤
∫

U
exp (α1 ‖u‖U −M(α1, r)) |Φ(u; y1)− Φ(u; y2)|µ0(du),

≤
∫

U
exp [(α1 + α2) ‖u‖U −M(α1, r) + C(α2, r)]µ0(du) ‖y1 − y2‖Y ,

≤ K2 ‖y1 − y2‖Y ,

with 0 ≤ K2 <∞ if α1 + α2 ≤ κ. Finally,

I2 ≤
∣∣∣∣∣

1√
Z(y1)

− 1√
Z(y2)

∣∣∣∣∣

2

Z(y2),

≤ K3 (Φ(u; y1)− Φ(u; y2))
2 ,

≤ K2K3 ‖y1 − y2‖2Y ,

with K3 ∈ R+ by the mean-value theorem and the proof is complete.
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For two distinct data y1, y2 ∈ Y, both posterior distributions are absolutely

continuous w.r.t. µ0 and have strong moments of order 2 (as a consequence of

assumption 2). Using lemma 10, one can show continuity of posteriors expectations

for instance.

Corollary 13. Let U ,Y be Banach spaces, µ0 a prior distribution satisfying assump-

tion 2 and Φ a negative log-likelihood such that assumptions 1 and 3 are verified and

the associated Bayesian inverse problem well-posed, then

∀r > 0, ∀y1, y2 ∈ BY(0, r],
∥∥Eµy1

[u]− Eµy2
[u]
∥∥
U ≤ C(r) ‖y1 − y2‖Y

Proof. Since I is square integrable w.r.t. µ0 it is integrable w.r.t. µy, ∀y ∈ Y. Now,

from lemma 10, it comes ∀y1, y2 ∈ BY(0, r]:

∥∥Eµy1
[u]− Eµy2

[u]
∥∥
U ≤

√
Eµy1 [‖u‖U ]2 + Eµy2 [‖u‖U ]2dHell(µ

y1 , µy2).

However, the constant can be bounded, indeed

Eµy

[‖u‖2U ] =
∫

U
‖u‖2U µy(du),

=

∫

U
‖u‖2U

dµy

dµ0
(u)µ0(du),

≤
∫

U
‖u‖2U

1

c(r)
exp (α1 ‖u‖U −M(α1, r))µ0(du),

≤ C(r),

thus the proof is complete.

Gaussian likelihood with finite dimensional data As an example, the special

case of Gaussian likelihood with finite dimensional data is studied here. This will

be often encountered in practice, when the quantity of interest is measured and

corresponds to the following measurement model:

y = G(u) + η,

where η ∼ N (0, σ2In).

Proposition 48. Let U be a Banach space, Y = Rn with n ∈ N∗ and suppose that

data is given by previous additive model, then the associated negative log-likelihood

can be taken as:

Φ(u; y) =
1

2σ2η
‖y − G(u)‖2Y ,

whenever u ∈ D (G) ⊂ U .

Proof. Since u ∈ D (G), one has G(u) ∈ Y and because the covariance of Q0 =

N (0, σ2In) is of full rank, Y is the Cameron-Martin space associated to η and then
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Qu and Q0 are equivalent, the associated Radon-Nikodym density (Cameron-Martin

theorem) being:

dQu

dQ0
(u) = exp

(
1

σ2η
〈Gu, y〉Y − 1

2σ2η
‖Gu‖2Y

)
.

It remains to see that one can add any constant to the negative log-likelihood without

changing the posterior, since it automatically scales the evidence. Here the constant

is − 1
2σ2

η
‖y‖2Y and the proof is complete.

Furthermore, when the forward map is a bounded operator in L(U ,Y), the Gaus-

sian negative log-likelihood automatically satisfies assumption 1 and 3, thus the

Bayesian inverse problem is well-posed if and only if µ0 has exponential tails.

Proposition 49. Let U , Y be Banach spaces, G ∈ L(U ,Y) a bounded operator, µ0

a probability measure satisfying assumption 2 and

Φ(u; y) =
1

2σ2η
‖y − Gu‖2Rn ,

then the associated Bayesian inverse problem is well-posed.

Proof. Φ has the following properties:

1. (Lower bound in u). ∀y ∈ Y, Φ(u; y) is positive µ0-a.e. thus one can take

α1 = 0 and in particular, κ ≥ α1.

2. (Boundedness above). For all (u, y) ∈ U × Y:

Φ(u; y) ≤ 1

2σ2η

(
‖y‖Y + ‖Gu‖Y

)2
,

≤ 1

σ2η

(
‖y‖2Y + ‖Gu‖2Y

)
,

≤ 1

σ2η

(
‖y‖2Y + ‖G‖2L(U ,Y) ‖u‖2U

)
,

and in the case where max{‖u‖U , ‖y‖Y} ≤ r one has:

K(r) =
r2
(
1 + ‖G‖2L(U ,Y)

)

σ2η
.

3. (Local Lipschitz continuity in y). For all y1, y2 ∈ BY(0, r]:

|Φ(u; y1)− Φ(u; y2)|
=

1

2σ2η

∣∣(‖y1‖Y − ‖y2‖Y
) (

‖y1‖Y + ‖y2‖Y
)
− 2 〈y1 − y2,Gu〉Y

∣∣ ,

≤ 1

σ2η

(
r + ‖G‖L(U ,Y) ‖u‖Y

)
‖y1 − y2‖Y ,

≤ exp (α2 ‖u‖U + C(α2, r)) ‖y1 − y2‖Y ,

with α2 > 0.
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Finally, if the prior measure is Gaussian, the forward map linear, the posterior

distribution is Gaussian itself with known mean and covariance operator.

Proposition 50. Let U be a Hilbert space, Y = Rn with n ∈ N∗, G ∈ L(U ,Y),

µ0 = N (0, C0) and
Φ(u; y) =

1

2σ2η
‖y − Gu‖2Y ,

then µy = N (my, Cy) with:

my = C0G∗ (GC0G∗ + σ2ηI
)−1

y,

Cy = C0 − C0G∗ (GC0G∗ + σ2ηI
)−1 GC0.

4.3 Maximum a posteriori

Once one has proven the Bayesian inverse problem to be well-posed, it is of great

interest for the practitioner (and the academician) to extract information from the

posterior distribution µy. This is usually done by selecting elements from U , in

particular these 2 alternatives:

1. The conditional mean (CM). This element is defined as the Bochner integral

of the posterior distribution Eµy
[u]. Its existence is established since the prior

is supposed with exponential tails and µy << µ0 when the inverse problem is

well-posed. In particular, it is continuous in the data.

2. The maximum a posteriori (MAP). This element is defined as a mode of the

posterior distribution µy, which requires a specific treatment at this level of

generality. Indeed, the absence of Lebesgue measure will lead to a definition

based on the concept of measure differentiation and small balls approach.

The concepts developed here are fully taken from [DHS12, HB15, ABDH17]. The

major idea is that MAP estimators are sometimes characterized by a variational

problem, linking to the Tikhonov-Philips regularization.

Modes of Radon probability measures In finite dimensional spaces, modes of a

probability distribution (having a density w.r.t. Lebesgue’s measure), are defined as

the maximizers of the probability density function. However, in infinite dimensional

spaces, this definition can’t be applied and one turns to differentiation of measures

(see [Rud09] for instance), or small-ball probabilities.

Definition 23 (Definition 3 in [HB15]). Let U a Banach space, µ be a Radon

probability measure on U such that supp(µ) 6= ∅, then an element u is a mode for µ

if

lim
ǫ→0

µ (BU (u, ǫ])
supv∈U µ (BU (v, ǫ])

= 1.



4.3. MAXIMUM A POSTERIORI 101

The fact that supp(µ) 6= ∅ is essential in previous definition since in the support of

a Radon measure, every neighbourhood of x ∈ supp(µ) has strictly positive measure,

hence the denominator is non-zero. In the Gaussian case, the small ball probability is

known analytically and thus modes are completely characterized by the minimizers

of the Onsager-Machlup functional.

Theorem 18 (Mode of Radon Gaussian measures). Let U be a Banach space, µ

be a Radon Gaussian measure on U with Cameron-Martin space Uµ and such that

µ(U) = 1, then

lim
ǫ→0

µ (BU (u, ǫ])
µ (BU (v, ǫ])

= exp

(
‖v‖2µ − ‖u‖2µ

2

)
.

However, the small ball ratio is unknown most of the time in non-Gaussian cases,

thus researchers turn to weak modes, see [HB15, ABDH17].

Maximum a posteriori and Tikhonov-Philips regularization When the

measure of interest is the posterior measure given in an inverse problem, modes

are called Maximum a posterior estimators. The main idea is that if one knows

small ball probabilities for the prior distribution, it translates to the posterior using

the likelihood function. The Gaussian case is a good illustration.

Theorem 19. Let U , Y be Banach spaces, y ∈ Y, µ0 a Radon Gaussian measure on

U with Cameron-Martin space Uµ0
, Φ a negative log-likelihood satisfying assumption

1 and: ∀y ∈ Y, ∀r > 0, ∃L(r) > 0,

∀(u, v) ∈ BU (0, r]
2, |Φ(u; y)− Φ(v; y)| ≤ L(r) ‖u− v‖U ,

then the inverse problem is well-posed and the following relation holds:

∀(u, v) ∈ U2
µ0
, lim
ǫ→0

µy (BU (u, ǫ])
µy (BU (v, ǫ])

= exp (I(v)− I(u)) ,

where

I(u) =

{
Φ(u; y) +

‖u‖2µ0
2 , if u ∈ Uµ0

,

+∞, otherwise.

Proof. Let (u, v) ∈ U2
µ0
, then

µy (BU (u, ǫ])
µy (BU (v, ǫ])

=

∫
BU (u,ǫ] exp (−Φ(z; y))µ0(dz)∫
BU (v,ǫ] exp (−Φ(z; y))µ0(dz)

,

=

∫
BU (u,ǫ] exp (−Φ(z; y) + Φ(u; y)− Φ(u; y))µ0(dz)∫
BU (v,ǫ] exp (−Φ(z; y) + Φ(v; y)− Φ(v; y))µ0(dz)

.

Now, take L1 = L(‖u‖U + ǫ) and L2 = L(‖v‖U + ǫ), then

µy (BU (u, ǫ])
µy (BU (v, ǫ])

≤ exp (ǫ(L1 + L2))

∫
BU (u,ǫ] exp (−Φ(u; y))µ0(dz)∫
BU (v,ǫ] exp (−Φ(v; y))µ0(dz)

,

≤ exp (ǫ(L1 + L2) + I(v)− I(u)) .
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This clearly provides

lim sup
ǫ→0

µy (BU (u, ǫ])
µy (BU (v, ǫ])

≤ exp (I(v)− I(u)) .

The very same analysis provides the following relation:

lim inf
ǫ→0

µy (BU (u, ǫ])
µy (BU (v, ǫ])

≥ exp (I(v)− I(u)) ,

thus the announced equality follows.

A similar result has been obtained for Besov priors [HB15] and later generalized

to a wider class of prior measures [ABDH17].

4.4 Markov chain Monte-Carlo method

Motivation The solution of a well-posed Bayesian inverse problem is a Radon

probability measure µy, known only through a Radon-Nikodym density w.r.t. the

prior distribution. Except in very particular cases, it is difficult to directly extract

valuable information just looking at this density. It is often analysed through quan-

tities of interest having the form of integrals w.r.t. µy. In a large number of cases,

there are no analytical solution and one must consider simulation methods for their

approximation. The Monte-Carlo approach is a standard tool, based on relations

analogue to the law of large numbers:

∫

U
f(u)µy(du) = lim

n→∞
1

n

n∑

i=1

f(ui), (4.2)

where f is such that both quantities make sense and (ui)i∈N are states drawn from a

random process. Markov chain Monte-Carlo methods, and especially the Metropolis-

Hastings algorithm, are particularly well-suited for this task and will be presented in

this section. After a short presentation of general concepts, the Metropolis-Hastings

algorithm is detailed and applied to sample posterior distributions µy.

Markov kernels The theory of Markov chains has been developed in general state

spaces [RR04] but the presentation is intentionally restricted to Banach spaces, since

it is the natural framework for Bayesian inverse problems. Intuitively, a Markov

chain is a sequence of random elements, where the conditional distribution of a

state only depends on the previous one. In particular, this law is modelled by a

Markov kernel.

Definition 24 (Markov kernel). Let U1,U2 two Banach spaces, a Markov kernel P

from U1 to U2 is a map:

P : U1 ×Bor(U2) → [0, 1],

such that:
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• ∀u1 ∈ U1, P (u1, .) is a Borel probability measure on U2,

• ∀A ∈ Bor(U2), u→ P (u,A) is measurable.

Example 26 (Gaussian random walk). Let U = Rn, n ∈ N∗ and Σ a positive

definite matrix of dimension n, then P (x, dv) = N (x,Σ) is a Markov kernel from

Rn to itself. Indeed:

• ∀x ∈ Rn, N (x,Σ) is a probability measure on Bor(Rn),

• ∀A ∈ Bor(Rn),

x ∈ Rn →
∫

A

1

(2π)
n
2 |Σ| 12

exp

(
−1

2
(y − x)TΣ−1(y − x)

)
dy

is continuous from Lebesgue’s dominated convergence theorem, thus measur-

able.

Considering an initial distribution µ, the modification after a unit of time is

obtained in the following manner, defining the Markov operator associated to a

kernel.

Definition 25 (Markov operator). Let U1, U2 two Banach spaces, P a Markov

kernel from U1 to U2, then the associated Markov kernel is:

P := µ ∈ M (Bor(U1)) →
∫

U1

P (u, .)µ(du) ∈ M (Bor(U2)) .

If there are distributions unchanged under a Markov operator, these are said

invariant.

Definition 26 (Invariance). Let U a Banach space, P a Markov kernel from U to

itself, then P is invariant w.r.t. µ ∈ M (Bor(U)) if P(µ) = µ.

In practice, invariance is often obtained as consequence of a stronger property,

the reversibility.

Definition 27 (Reversibility). Let U be a Banach space, P a Markov kernel from

U to itself and µ ∈ M (Bor(U)) a probability measure, then P is reversible w.r.t. µ

if

∀(A,B) ∈ Bor(U)2,
∫

A

P (u,B)µ(du) =

∫

B

P (v,A)µ(dv).

Lemma 11. Let U be a Banach space, µ ∈ M (Bor(U)) a Borel probability measure

and P a Markov kernel from U to itself and reversible w.r.t. µ then P is also

invariant w.r.t µ.

Proof. Let P a Markov kernel reversible w.r.t. µ, then:

∀A ∈ F , Pµ(A) =
∫

U
P (u,A)µ(du) =

∫

A

P (u,U)µ(du) = µ(A).
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Now that basic concepts have been introduced, the Metropolis-Hastings algo-

rithm will be presented, given a clear methodology on how to build a Markov kernel

invariant for a predefined probability measure. In particular, it will be used to build

Markov kernel invariant w.r.t. µy.

Metropolis-Hastings algorithm The Metropolis-Hastings algorithm [Has70] is

a practical way to design Markov kernels with predefined invariant measures in

general state spaces [Tie98]. It consists in choosing a proposal Markov kernel Q and

an acceptance/rejection step to get a resulting Markov kernel P reversible w.r.t. µy.

The precise procedure is given in algorithm 2.

u = u0;

n = 0;

while n < N do

v ∼ Q(u, dv);

U ∼ U([0, 1]);
if U ≤ α(un, v) then

un+1 = v;

else

un+1 = un;

end

n = n+ 1;

end
Algorithm 2: Pseudo-code for the Metropolis-Hastings algorithm.

The resulting Metropolis-Hastings kernel P is given by

P (u, dv) = Q(u, dv)α(u, v) + δu(dv)

∫

U
(1− α(u, z))Q(u, dz). (4.3)

The reversibility of the Markov kernel in equation 4.3 will be obtained by specific

choices for Q and α, given the target distribution µy. In particular, it is the case

when α and Q satisfy the following condition.

Proposition 51. Let U be a Banach space, Q a Markov kernel from U to itself and

P be the associated Metropolis-Hastings kernel with acceptance probability α, then

P is invariant w.r.t. µy if and only if

ν(du, dv)α(u, v) = νT (du, dv)α(v, u),

where ν(du, dv) = µy(du)Q(u, dv) and νT (du, dv) = ν(dv, du) are product measures

on Bor(U)⊗Bor(U).
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Proof. Let (A,B) ∈ Bor(U)2, then
∫

A

∫

B

∫

U
(1− α(u, z))Q(u, dz)δu(dv)µ(du)

=

∫

A∩B

∫

U
(1− α(u, z))Q(u, dz)µ(du),

is symmetric in A and B, thus the equivalence holds.

This (extended) balance condition translates in conditions on the acceptance

probability α, inherited by the target measure µ and the proposal kernel Q. The

fundamental idea in the Metropolis-Hastings algorithm is to consider α and Q such

that ν and νT are equivalent (at least on a sufficient subset of the space) and use the

relative Radon-Nikodym density. The existence of such set is given in the following

proposition.

Proposition 52 (Proposition 1 in [Tie98]). Let U be a Banach space, ν and νT

product measures on Bor(U) ⊗ Bor(U), then there exists a unique, up to null sets

under ν and νT , symmetric set R in the product σ-algebra such that ν and νT are

mutually absolutely continuous on R and singular on R∁. Moreover, there exists a

version r of the density of ν w.r.t. νT (restricted on R) such that ∀(u, v) ∈ U2,

0 < r(u, v) <∞ and r(u, v) = r(v, u)−1.

Proof. Consider the measure κ = µ+ µT which is symmetric and dominates both ν

and νT . Let h be a Radon-Nikodym density of ν w.r.t. κ then

νT (du, dv) = ν(dv, du) = h(v, u)κ(dv, du) = h(v, u)κ(du, dv),

thus h(v, u) is a Radon-Nikodym density of νT w.r.t. κ. Now, let

R = {(u, v) ∈ U2, (h(u, v), h(v, u)) ∈ (R+)2},

then it is symmetric, and ν and νT are mutually absolutely continuous. Indeed, one

has

∀(u, v) ∈ R, ν(du, dv) = h(u, v)κ(du, dv) =
h(u, v)

h(v, u)
νT (du, dv).

Conversely, on R∁ the measures ν and νT are mutually singular, since it is not

possible that h(u, v) and h(v, u) are both strictly positive on the same set. Let

r(u, v) = h(u, v)h(v, u)−1 defined on R, and keep the same notation for its extension

by 1 on U2. Suppose now R̃ a second set such that all previous properties are true,

then the measures ν and νT must be absolutely continuous and mutually singular

on R ⊂ R̃ and R̃ ⊂ R, which means that R̃ is negligible.

Now, the extended detailed balance condition can be restated using α and the

partition R,R∁.

Theorem 20 (Theorem 2 in [Tie98]). Let P a Metropolis-Hastings kernel as in

equation 4.3, ν(du, dv) = µ(du)Q(u, dv) and νT its symmetric, R the set of mutual

absolute continuity between ν and νT , then P is reversible w.r.t. µ if and only if:
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1. α = 0 on R∁, ν-a.e.,

2. α(u, v)dν
T

dν
(u, v) = α(v, u) on R, ν-a.e.

Proof. Let η(du, dv) = α(u, v)ν(du, dv) and ηT (du, dv) = α(v, u)νT (du, dv). Sup-

pose that α = 0, ν-a.e. on R∁ then η(R∁) = 0 and since it is a symmetric set,

ηT (R∁) = 0 which means detailed balance condition on R∁. Now suppose that

α(u, v)dν
T

dν
(u, v) = α(v, u) on R, ν-a.e. then on R:

α(v, u)νT (du, dv) = α(u, v)
dν

dνT
(u, v)νT (du, dv) = α(u, v)ν(du, dv),

and finally detailed balance condition holds everywhere. Conversely, if detailed

balance condition holds, measures ν and νT being singular on R∁ implies that α = 0

ν-a.e. on R∁. On R, the measures are equivalent, and detailed balance conditions

implies

α(u, v)
dνT

dν
(u, v) = α(v, u).

The Metropolis-Hastings choice of α is:

αMH(u, v) = min

(
1,
dνT

dν
(u, v)

)
, (4.4)

and it ensures the reversibility w.r.t. µy.

Proposition 53. Let α the Metropolis-Hastings acceptance probability then P is

reversible w.r.t. µ.

Proof. By proposition 52, there exists a set R such that ν and νT are mutually

absolutely continuous and one can take a version of there density such that it vanishes

on R∁, thus aMH = 0 on R∁. Now, on R, a version of the Radon-Nikodym density

can be taken such that

αMH(u, v)
dνT

dν
(u, v) = min

(
dνT

dν
(u, v),

dνT

dν
(u, v)

dν

dνT
(u, v)

)
,

= min

(
dνT

dν
(u, v), 1

)
,

= αMH(v, u)

and theorem 20 applies.

In order to use a specific Markov kernel to estimate integrals w.r.t. µy as in

equation 4.2, it is necessary to choose an initial state u0 ∈ U . The convergence then
happens under ergodicity conditions, dependent on the Markov kernel at hand. It

will be discussed in simple cases later on.
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Application to Bayesian inverse problems As previously stated, the target

measure in a well-posed Bayesian inverse problem is the posterior distribution µy,

defined by the following Radon-Nikodym density w.r.t. µ0:

dµy

dµ0
(u) =

1

Z(y)
exp (−Φ(u; y)) .

Using the Metropolis-Hastings algorithm, the proposal Markov kernel must be cho-

sen such that

ν(du, dv) = Q(u, dv)µy(du)

and νT (du, dv) = ν(dv, du) are both mutually absolutely continuous such that the

Metropolis-Hastings acceptance ratio is well-defined:

α(u, v)MH = min

(
1,
dνT

dν
(u, v)

)
.

Proposition 54. Let U , Y be Banach spaces, y ∈ Y, µ0 a prior probability distribu-

tion and Φ a negative log-likelihood such that the inverse problem is well-posed and

the following map:
dµy

dµ0
(u) =

1

Z(y)
exp (−Φ(u; y)) ,

defines a Radon-Nikodym density w.r.t. µ0. Let Q be a Markov kernel on U such that

ν0(du, dv) = Q(u, dv)µ0(du) and νT0 (du, dv) = Q(v, du)µ0(dv) are mutually abso-

lutely continuous, then ν(du, dv) = Q(u, dv)µ0(du) and ν
T (du, dv) = Q(v, du)µ0(dv)

are absolutely continuous and

dνT

dν
(u, v) =

dνT0
dν0

(u, v) exp (Φ(v; y)− Φ(u; y)) .

Proof. Given the previous notations, it comes:

νT (du, dv) = Q(v, du)µy(dv),

=
dµy

dµ0
(v)νT0 (du, dv),

=

dµy

dµ0
(v)

dµy

dµ0
(u)

dµy

dµ0
(u)

dνT0
dν0

(u, v)ν0(du, dv),

= exp (Φ(v; y)− Φ(u; y))
dνT0
dν0

(u, v)ν(du, dv),

and the proof is complete.

Corollary 14. Let U , Y be Banach spaces, y ∈ Y, µ0 a prior probability distribution

and Φ a negative log-likelihood such that the inverse problem is well-posed and the

following map:
dµy

dµ0
(u) =

1

Z(y)
exp (−Φ(u; y)) ,

defines a Radon-Nikodym density w.r.t. µ0. Let Q be a Markov kernel from U to

itself, reversible w.r.t. µ0, then

∀(u, v) ∈ U2, αMH(u, v) = min (1, exp (Φ(v; y)− Φ(u; y))) .
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The two following examples are fundamental and represent the benchmark in

this literature.

Example 27 (Independence sampler). Let U and Y be Banach spaces, y ∈ Y, µ0

a Radon probability measure on U , Φ a likelihood such that the Bayesian inverse

problem is well-posed and µy is well-defined. Consider Q(u, dv) = µ0(dv), which is

reversible w.r.t. µ0, then the associated Metropolis-Hastings Markov kernel with

∀(u, v) ∈ U2, αMH(u, v) = min (1, exp (Φ(v; y)− Φ(u; y))) ,

is reversible w.r.t. µy.

Example 28 (preconditioned Crank-Nicholson). Let U and Y be Hilbert spaces,

y ∈ Y, µ0 a Gaussian probability measure on U with covariance operator C, Φ a

likelihood such that the Bayesian inverse problem is well-posed and µy is well-defined.

Let ρ ∈ [0, 1[ then Q(u, dv) = N (ρu, (1 − ρ2)C) is reversible w.r.t. µ0. Indeed, it

comes that

ν0(du, dv) = N (0, C)⊗N (ρu, (1− ρ2)C),

= N
((

0

0

)
,

(
C ρC
ρC C

))
,

= N (ρv, (1− ρ2)C)⊗N (0, C),
= νT0 (du, dv),

and Q is reversible w.r.t. µ0. The associated Metropolis-Hastings Markov kernel

with

αMH(u, v) = min (1, exp (Φ(v; y)− Φ(u; y))) ,

is reversible w.r.t. µy.

In the context of Gaussian prior measures on Hilbert spaces, a variety of propos-

als have been developed using infinite dimensional Langevin equations [CRSW13,

HSV14, RS18, BS09, Law14]. The case of non-Gaussian priors is less developed, but

[Vol13] and [CDPS18] are providing interesting solutions. The necessary ergodicity

conditions are given in [HSV14, RS18] using L2 spectral gaps for pCN and gpCN

(generalized pCN)for instance.

4.5 Approximation

General principle The previous theory of Bayesian inversion leads to a posterior

measure on possibly infinite dimensional Banach space. All the valuable information

is then encoded in the Radon-Nikodym density, a positive functional possibly diffi-

cult to interpret directly. It is then natural to turn to simulation methods and/or

variational characterization of point-wise estimators. However, even if these two

important steps are well-defined in an infinite dimensional space, their practical
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computation requires to cast the Bayesian inverse problem into a finite dimensional

setting through discretization. One essential property is consistency, meaning that

precision increases with the size of the discretization. In order to introduce the

main concepts here, a general framework is considered, using the previously defined

mathematical objects:

• U , Y are (real) Banach spaces,

• y ∈ Y is the data,

• µ0 is the prior, a Radon probability measure on U satisfying assumption 2,

• Φ : U × Y → R is a negative log-likelihood satisfying assumptions 1 and 3,

• µy is the posterior, a Radon probability measure defined through its Radon-

Nikodym density w.r.t. µ0:

dµy

dµ0
(u) =

1

Z(y)
exp(−Φ(u; y))

where Z(y) =
∫
U exp(−Φ(u; y))µ0(du). Its existence, uniqueness and continu-

ity are established in theorem 17.

In this context, approximation will always refer to the likelihood (through Φ), mean-

ing that one has access to a sequence (Φn)n∈N. If, in particular, ∀n ∈ N, Φn satisfies

assumption 1 and 3, a sequence of approximate posterior measures (µyn)n∈N is well-

defined:

∀n ∈ N, ∀(u, y) ∈ U × Y, dµ
y
n

dµ0
(u) =

1

Zn(y)
exp(−Φn(u; y)),

with ∀n ∈ N, ∀y ∈ Y, Zn(y) =
∫
U exp(−Φn(u; y))µ0(du). This sequence is said

consistent if it tends to µy asymptotically in the Hellinger metric.

Definition 28. Let U ,Y be (real) Banach spaces, y ∈ Y the data, µ0 a prior on U
and Φ a negative log-likelihood satisfying respectively assumptions 2, 1 and 3 such

that µy is well-defined, unique and continuous. If (Φn)n∈N is a family of negative

log-likelihood such that:

• ∀n ∈ N, Φn : U × Y → R satisfies assumption 1 and 3,

• limn→∞ dHell(µ
y
n, µy) = 0,

then the sequence (µyn)n∈N is a consistent approximation of µy.

Since (µyn)n∈N is defined by a family of negative log-likelihoods, consistence bears

a strong similarity with the analysis of continuity in the data. Indeed, it consists in

controlling the Hellinger distance and this remark leads to an analogue of assumption

3.
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Assumptions 4. The sequence of negative log-likelihood is such that ∀(u, y) ∈ U×Y,

there exist α4 ≥ 0 and C(y) ≥ 0 such that

∀n ∈ N, |Φ(u; y)− Φn(u; y)| ≤ exp (α4 ‖u‖U + C(y))ψ(n)

where ψ(n) is positive and limn→∞ ψ(n) = 0. Moreover, there exists a lower bound

in u (uniformly in n):

∀n ∈ N, Φn(u; y) ≥ α5 ‖u‖U − C(α5),

∀u ∈ BU (0, r], ∀y ∈ BY(0, r], ∀n ∈ N, Φn(u; y) ≤ K(r).

Now, it is natural to replicate the methodology from previous chapter to this

case.

Theorem 21 (Theorem 2.4 in [CDS10]). Let U ,Y be (real) Banach spaces, y ∈ Y the

data, µ0 a prior probability measure on U satisfying assumption 2, Φ and (Φn)n∈N
all satisfying assumption 1 such that posteriors µy and (µyn)n∈N exist. If assumption

4 holds then:

∀n ∈ N, dHell(µ
y, µyn) ≤ ψ(n),

and the approximation is consistent.

Proof. By the set of hypotheses on Φ and (Φn)n∈N, it comes that 0 < c(r) ≤ Z(y) ≤
C(r) and ∀n ∈ N, 0 < c′(r) ≤ Zn(y) ≤ C ′(r). Let n ∈ N, then similarly to theorem

17, it comes:

dHell(µ
y, µyn)

2 ≤ 2(I1 + I2),

with

I1 =
1

Z(y)

∫

U
exp (−Φ(u; y)) (Φ(u; y)− Φn(u; y))

2 µ0(du),

I2 =

∣∣∣∣∣
1√
Z(y)

− 1√
Zn(y)

∣∣∣∣∣

2 ∫

U
exp (−Φn(u; y))µ0(du),

It remains to show that Ii ≤ Ciψ(n), ∀i ∈ {1, 2} to complete the proof.

I1 ≤ 1

Z(y)

∫

U
exp [(α1 + 2α4) ‖u‖U −M(α1, r) + 2C(α4)]µ0(du)ψ(n)

2,

≤ K1ψ(n)
2.

Concerning the second term, it comes

|Z(y)− Zn(y)| ≤
∫

U
exp (−Φ(u; y)) |Φ(u; y)− Φn(u; y)|µ0(du),

≤
∫

U
exp [(α1 + 2α4) ‖u‖U −M(α1, r) + 2C(α4)]µ0(du)ψ(n),

≤ K2ψ(n).
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Finally,

I2 ≤
∣∣∣∣∣

1√
Z(y)

− 1√
Zn(y)

∣∣∣∣∣

2 ∫

U
exp (α5 ‖u‖U − C(α5))µ0(du),

≤ K3ψ(n)
2,

and the proof is complete.

An example will be given in chapter 5 using a Schauder basis in the space of

parameters as it is done in [Hos17a].

A word on different types of approximations A large number of approaches

exists for the approximation of Bayesian inverse problems (Sparse polynomial ex-

pansions, [SS12, CS15, Sch13, SS14, SS16], Spectral expansions, [NS16, SSC+15],

Goal-oriented [LGW18, SCW+17], Data-driven [CMW14]).

• Likelihood informed subspace. This approach is a projection based ap-

proximation, developed in the particular case of U Hilbert and µ0 Gaussian.

The space is decomposed in two distinct parts, one where the posterior differs

strongly from the prior (the likelihood-informed subspace) and its comple-

ment. In the linear case, this decomposition is done by an analysis of the

update between the prior and posterior covariances. Since it is often of finite

rank, one can. It has been shown to be optimal for different metrics. In case

of non-linear forward model, this approach has been extended by the search

of a global likelihood-informed subspace, averaging the previous construction

by the posterior measure. Complete developments are available in the series

of paper [CMW16, CMM+14, SSC+15].

• Random surrogates Random surrogates consist in an approximation of Φ

by replacing the forward operator G by a stochastic approximation G̃. In par-

ticular, the error is of random nature, which gives an interesting quantification

of uncertainty. In the context of infinite dimensional inverse problems, it has

been studied in [LST18, ST16].

4.6 Conclusion

This chapter introduced a general framework to solve Bayesian inverse problems in

Banach spaces. In particular, it provides sufficient conditions on the prior distribu-

tion µ0 and the negative log-likelihood for the existence, uniqueness and continuity

of the posterior µy. The question of approximation is treated in a general case, but

next chapter will provide the necessary arguments to use admissible sequences in

this purpose.
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Chapter 5

Karhunen-Loève approximation

of Bayesian inverse problems

This last chapter provides an important application of all the material presented so

far in this thesis. It is based on an interesting example of Bayesian inverse problem,

where the forward map is non-linear and obtained from a parabolic partial derivative

equation. The objective is to recover jointly a positive source term and constant

rates of decay and diffusion, from noisy and partial observations of its solution. It is

motivated by a real-world Biological problem, which is the subject of [CDA18]. The

context will not be detailed here as the presentation focuses on mathematical aspects

including: existence and uniqueness of the posterior distribution, its continuity w.r.t.

data in Hellinger metric, a variational characterization of the associated posterior

modes and finally a consistent approximation by projection. This last item will

be based on the extended Karhunen-Loève decomposition from chapter 2, and the

speed of convergence is shown to be at least equal to the prior series approximation

in Bochner norm (linked to l-numbers). Finally, the problem is illustrated on a real

dataset using a numerical solver in Python.

5.1 Approximation using projections

In this chapter, the approximation of Bayesian inverse problems will be specified,

using parameters projection on vector bases. This methodology was limited to

Banach spaces with pre-existing Schauder bases and linear forward maps in [HN17].

However, it will be shown that when the prior is a Radon Gaussian measure, this

restriction is irrelevant.

Schauder bases and projections In vector spaces, finite dimensional projections

represent natural approximations. For instance, Hilbert geometry allows to use any

basis (un)n∈N to define a sequence of bounded orthogonal projectors with finite rank:

∀n ∈ N, Pn := u ∈ U →
n∑

k=0

〈u, un〉U un,

113
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such that ∀u ∈ U , limn→∞ Pnu = u. Another important property is that these

orthogonal projectors are uniformly bounded (with norm lower than one), which

can be seen as a consequence of Bessel’s inequality:

∀n ∈ N, ∀u ∈ U , ‖Pnu‖U ≤ ‖u‖U .

A similar analysis can be given in Banach settings, using the more general notion of

Schauder bases.

Definition 29. Let U be a Banach space, a sequence (un)n∈N ⊂ U is a Schauder

basis if

∀u ∈ U , ∃!(αn)n∈N ⊂ R, u =
∑

n≥0

αnun.

Moreover, ∀n ∈ N, u∗n := u ∈ U → αn ∈ R is bounded and linear (coordinate

functional).

In particular, existence of a Schauder basis implies separability of the Banach

space. However, the converse needs not be true in general [Enf73]. Similarly, a

sequence of projectors (Pn)n∈N ⊂ L(U ,U) is defined by:

Pn := u ∈ U →
n∑

k=0

〈u, u∗k〉U ,U∗ uk,

and again, ∀u ∈ U , limn→∞ Pnu = u. Moreover, these operators are uniformly

bounded (uniform boundedness principle):

∃K > 0, ∀n ∈ N, ∀u ∈ U , ‖Pnu‖U ≤ K ‖u‖U .

Likelihood approximation In the context of Bayesian inverse problems, Schauder

bases can be used to define a sequence of approximate negative log-likelihoods by

projecting the input as follows:

∀n ∈ N, ∀(u, y) ∈ U × Y, Φn(u; y) := Φ(Pnu; y).

The question of the resulting consistency then depends on additional properties of

Φ, see for instance [HN17] in case of prior measures with exponential tails or next

section for an interesting example.

Links with Karhunen-Loève decomposition As previously announced, exis-

tence of Schauder bases in general Banach spaces is a delicate matter. The previous

analysis is thus restricted to very few cases, including separable Hilbert spaces.

However, when the prior measure is Gaussian, it will be shown that it is applica-

ble to every Banach space, since a natural subspace with a Schauder basis can be

constructed.
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Theorem 22. Let U be a Banach space, µ0 a Radon Gaussian measure on U and

(hn, h
∗
n)n∈N a stochastic basis for µ0, that is

u =
∑

n≥0

〈u, u∗n〉U ,U∗ un, µ0 − a.s.,

then there exists a Banach subspace U0 ⊂ U such that µ0(U0) = 1 and (hn, h
∗
n)n∈N

is a Schauder basis in U0, that is:

∀u ∈ U0, u =
∑

n≥0

〈u, u∗n〉U ,U∗ un.

The proof of this theorem is the object of [Oka86, Her81]. It is then sufficient to

work in U0 directly, instead of the original Banach space U . In particular, Fernique’s

theorem remains valid in U0, since µ0(U0) = 1.

5.2 Application to advection diffusion model

The problem of diffusion, which is ubiquitous in physics, engineering and biology, is

usually represented by the following partial differential equation (without transport):

∂z

∂t
(x, t) + λ(x, t)z(x, t)−D(x, t)∆z(x, t) = f(x, t), ∀(x, t) ∈ Ω×]0, T ],

z(x, t) = 0, ∀(x, t) ∈ Ω× {t = 0},
z(x, t) = 0, ∀(x, t) ∈ ∂Ω×]0, T ].

(5.1)

where the spatial domain is Ω ⊂ Rn (n ≤ 3) and the final time is T ∈ R+. In

real world applications, the quantity of interest z (hereafter called the solution of

equation 5.1) is often the concentration of some chemical and evolves here from a

null initial state under 3 distinct mechanisms: a) direct variation in concentration,

given by the source f , b) diffusion at a positive rate D, c) production or depletion

at a rate λ. Different hypotheses on these parameters leads to well-posedness of this

equation, here we will suppose λ,D as positive constants in time and space and f

as continuous, non-negative function. Besides the traditional computation of the

solution from the parameters, one can use this model for the determination of an

optimal control (e.g. source leading to the optimization of a particular functional) or

the identification of parameters from partial knowledge of the solution in an inverse

setting. This is the problem that will be of interest in this chapter. The motivation

comes from a challenging identification problem in Biology, where the objective is to

recover both decay and diffusion positive constant rates as well as a positive source,

from finite and noisy observations of the solution z.

Step 1: Forward model analysis Before the application of Bayesian regulariza-

tion, it is necessary to detail the regularity of z as a map. Using common variational

techniques from PDE theory (see [Eva10] or [Bre11] for detailed introductions),
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one can show that this equation has a unique weak solution (proposition 55) given

u = (λ,D, f) in a set U that will be specified later on. Moreover, this solution

evolves smoothly in its parameters.

Proposition 55. Let P = [0, λM ] × [Dm, DM ] × L2([0, T ], L2([0, L])) with λM ≥ 0

and 0 < Dm ≤ DM , then for all u ∈ P, the evolution problem 5.1 has a unique weak

solution, such that ∀u ∈ P:

1. z(u) ∈ L∞([0, T ], H1
0 [0, L]) ∩ L2([0, T ], H2[0, L]),

2. z(u)′ ∈ L2([0, T ], L2[0, L]).

Moreover, u ∈ P → z(u) satisfies the following properties:

1. it is linear in f ,

2. it satisfies the following energy estimate:

∀u ∈ P, ‖z(u)‖L2([0,T ],H2) + ‖z(u)′‖L2([0,T ],L2[0,L]) ≤ C‖f‖L2([0,T ],L2[0,L])

with C ≥ 0 a constant independent from u,

3. it is locally Lipschitz, ∀u ∈ P, ∀r > 0 such that B(u, r) ⊂ P, ∃L(r, u) > 0 such

that ∀u1, u2 ∈ B(u, r)× B(u, r):

‖z(u1)−z(u2)‖L2([0,T ],H2)+‖z(u1)′−z(u2)′‖L2([0,T ],L2[0,L]) ≤ L(r, u)‖u1−u2‖P

4. z := u ∈ P → z(u) ∈ L2([0, T ], H2[0, L]) is twice Fréchet differentiable on P.

In particular, the solution is continuous in both time and space, with the following

estimate:

∀u ∈ P, ‖z(u)‖∞ ≤ C ‖f‖L2([0,T ],L2[0,L]) .

Proof. Let P = R×]0,∞[×L2([0, T ], L2[0, L]) and note H = L2(0, L), V = H1
0 (0, L)

and V ∗ = H−1(0, L).

• Existence and uniqueness of the weak solution for equation 5.2 is established

whenever D > 0 and f ∈ L2([0, T ], V ∗) (see theorems 3 and 4, chapter 7 in

[Eva10] for a detailed proof using Galerkin approximations), in the sense that:

〈
z′(t), v(t)

〉
V,V ∗ + λ 〈z(t), v(t)〉H +D 〈z(t), v(t)〉V = 〈f(t), v(t)〉H ,

for all v ∈ L2([0, T ], V ), for almost-every t in [0, T ] and where z(u) ∈
L2([0, T ], V ), z(u)′ ∈ L2([0, T ], V ∗) for all u ∈ P. The problem is linear in

f (null boundary and initial conditions), thus the solution map is.

• Furthermore, the source being more regular (here f ∈ L2([0, T ], H)), the solu-

tion z satisfies for all u ∈ P the following improved regularity :
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– z(u) ∈ L2([0, T ], H2[0, L]) ∩ L∞([0, T ], V ),

– z(u)′ ∈ L2([0, T ], H).

Now, since in P both λ, D are bounded above and D ≥ Dm > 0, the following

estimate is verified (Theorem 5, chapter 7 in [Eva10]):

∀u ∈ P, ‖z(u)‖L2([0,T ],H2[0,L]) + ‖z(u)′‖L2([0,T ],V ) ≤ C‖f‖L2([0,T ],H)

where C ≥ 0 and is independent of u.

• Consider the reduced weak form of equation 5.1, that is

〈F (z, u), v〉 = 0, ∀v ∈ L2([0, T ], V ),

with

〈F (z, u), v〉 =
∫ T

0
〈z′(t)− f(t), v(t)〉V ∗,V + λ〈z(t), v(t)〉H +D〈z(t), v(t)〉V dt.

Let u = (λ,D, f) ∈ P, hu = (hλ, hD, hf ) ∈ P such that u + hu ∈ P, and

hz ∈ L2([0, T ], H2([0, L])) with (hz)′ ∈ L2([0, T ], H) then ∀v ∈ L2([0, T ], V ):

〈F (z + hz, u+ hu)− F (z, u), v〉 = 〈Fz,u(z, u)[h
z, hu], v〉+ c(hu, hz),

with

|c(hu, hz)| =
∣∣∣∣hλ
∫ T

0
〈hz, v〉Hdt+ hD

∫ T

0
〈hz, v〉V dt

∣∣∣∣

≤ C‖v‖L2([0,T ],V )

∥∥∥(hλ, hD, hf )
∥∥∥
P
‖hz‖L2([0,T ],V ) ,

with C an other constant independent from u, and where:

〈Fz,u(z, u)[h
z, hu], v〉 =

∫ T

0
〈(hz)′, v〉V ∗,V dt+ hλ

∫ T

0
〈y, v〉Hdt

+ hD
∫ T

0
〈z, v〉V dt+ λ

∫ T

0
〈hz, v〉Hdt

+D

∫ T

0
〈hz, v〉V dt−

∫ T

0
〈f, v〉V ∗,V dt.

Moreover:

|〈Fz,u(z, u)[h
z, hu], v〉| ≤ ‖(hu, hz)‖‖v‖

thus Fz,u is bounded, which shows that F is Fréchet-differentiable. Consider

Fz the partial derivative of F w.r.t. its first variable:

〈Fz(z, u)h
z, v〉 =

∫ T

0

〈
(hz)′, v

〉
V,V ∗ + λ〈hz, v〉H +D〈hz, v〉V dt,

which defines a unique weak solution h whenever D > 0 (using same argu-

ments than previously) and F−1
z is bounded. Because F is differentiable and

F−1
z exists and is bounded, the implicit function theorem applies and z is dif-

ferentiable on P. The second order differentiability uses the same arguments.
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• Concerning the local Lipschitz continuity, let u ∈ P, r > 0 such that BP(u, r) ⊂
P, (u1, u2) ∈ BP(u, r) × BP(u, r) and z1 = z(u1), z2 = z(u2) the associated

weak solutions, then ∀i ∈ {1, 2}, one has:

〈z′i(t), v(t)〉V ∗,V + λi 〈zi(t), v(t)〉H +Di 〈zi(t), v(t)〉V = 〈fi(t), v(t)〉V ∗,V ,

for almost-every t in [0, T ]. By subtraction, it comes:

〈z′1(t)− z′2(t), v(t)〉V ∗,V + λ1 〈z1(t)− z2(t), v(t)〉H +D1 〈z1(t)− z2(t), v(t)〉V
= 〈f1(t)− f2(t), v(t)〉V ∗,V + (λ2 − λ1) 〈z2(t), v(t)〉H + (D2 −D1) 〈z2(t), v(t)〉V .

From previous estimates, z2 is bounded by ‖f2‖L2([0,T ],H). The very same

analysis than previously leads to the following estimate:

‖z(u1)−z(u2)‖L2([0,T ],H2)+‖z(u1)′−z(u2)′‖L2([0,T ],L2[0,L]) ≤ L(r, u)‖u1−u2‖P ,

where L(u, r) ≥ 0.

• It is a known result (Theorem 4, section 5.9 in [Eva10]) that

max
t∈[0,T ]

‖z(t)‖H1[0,L] ≤ C
(
‖z‖L2([0,T ],H2) + ‖z′‖L2([0,T ],L2[0,L])

)
, (5.2)

for every z such that z ∈ L2([0, T ], H2) and z′ ∈ L2([0, T ], H). Since in

one dimensional spaces V injects continuously in C([0, L],R), the ∞-norm is

controlled.

The proof is complete.

Let’s emphasize why the properties given in proposition 55 are important for the

Bayesian inversion:

1. The energy estimate will be critical to establish the continuity of the posterior

w.r.t. data as well as approximation, because it gives sufficient integrability

conditions on z w.r.t. u,

2. Continuity (implied by Fréchet differentiability or local Lipschitz behaviour)

implies that the solution map is measurable w.r.t. the Borel σ-algebra,

3. Second order Fréchet differentiability will be necessary for geometric methods

in optimization (research of modes) and Markov-chain Monte-Carlo sampling

(McMC),

4. The local Lipschitz behaviour gives a variational characterization of posterior

modes (Maximum a Posteriori).

In the rest of this section, with the notations Uλ = [0, λM ], UD = [Dm, DM ] and

Uf = C ([0, L]× [0, T ],R), the parameters will be restricted to the subset

U := Uλ × UD × Uf ,
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which is implicitly equipped with the norm

‖u‖U = |λ|+ |D|+ ‖f‖Uf .

Since U ⊂ P (with continuous injection), the solution map is well defined on this

subset and keeps all its properties. Moreover, one can show that a weak solution of

equation 5.1 for u ∈ U is also a strong solution [Bre11, Eva10], but these regularity

results are not needed here. The only, but important result is that all solutions are

continuous in both time and space, so point-wise measurements are possible.

Step 2: Choice of prior distribution The second step is to choose a prior

probability distribution on U , encoding all knowledge on the physics at hand, while

being simple enough to keep analysis tractable. Here are the constraints given by

the biological application:

• λ must be non-negative (decay),

• D must be positive (diffusion),

• f must be non-negative and continuous (it is a concentration).

Starting with the decay and diffusion parameters (λ,D), Borel prior distributions

µλ0 and µD0 are chosen with densities w.r.t. Lebesgue’s measure on Uλ and UD

respectively. Now, since f must be positive, the problem is re-parametrized with

the new source term:

f∗ = exp(f), (5.3)

where f ∈ Uf . By selecting a Radon probability measure µf0 on the Banach space Uf ,

both continuity and positivity of the source will be ensured almost-surely. Here, µf0
will be taken as the distribution of a continuous Gaussian random field with covari-

ance operator C. Finally, independence between the three components is imposed,

leading to the following product prior distribution:

µ0(du) := µλ0(dλ)⊗ µD0 (dD)⊗ µf0(df). (5.4)

These choices clearly ensure the required constraints on u and µ0(U) = 1. The

exponential map in equation 5.3 can be replaced with any sufficiently differentiable

function from R to R+ (to keep the second order Fréchet differentiability of the

solution map). Alternative distributions are possible for f (Besov measure from

[DLSV13] or more general convex measures from [HN17]) for the regularization.

In practice however, this choice is also motivated by the fact that one can find a

Gaussian reference measure µref in the form

µref = µλref ⊗ µDref ⊗ µfref = N (λref , σ
2
λ)⊗N (Dref , σ

2
D)⊗N (0, C) = N (uref , Cref )

where uref = (λref , Dref , 0) ∈ U and

Cref : (λ,D, µ) ∈ R2 ×
(
Uf
)∗

→ (σ2λλ, σ
2
DD, Cµ) ∈ R2 × Uf ,



120 CHAPTER 5. K.-L. APPROX. OF BAYESIAN INV. PROBLEMS

such that µ0 << µref . Indeed, choose (λref , Dref ) ∈ R2 and σ2λ, σ
2
D > 0 then

µ0 << µref with

dµ0
dµref

(u) =
dµλ0
dµλref

(λ)
dµD0
dµDref

(D).

This reference will be critical for modes analysis and McMC sampling.

Step 3: Well-posedness The third step in Bayesian inversion is to show that

previous choices (forward model and prior distribution) lead to a well defined pos-

terior measure. This is the purpose of proposition 56 which is very similar with

the theory from chapter 4. Consider a dataset y = (yi)i∈[1,n] which corresponds

to observations at different times and locations (ti, xi)i∈[1,n] and assume they are

produced from the following model (in vector notation):

y = G(u) + η, (5.5)

where η ∼ N (0, σ2ηIn) (In being identity matrix of dimension n) and G : U → Rn

is the observation operator, mapping directly the PDE parameter u to the value of

the associated solution z at measurement locations (composition of solution map z

with Dirac measures):

∀u ∈ U , G(u) = (z(u)[xi, ti])i∈[1,n] .

Here is a simple lemma giving an energy estimate for the observation operator.

Lemma 12. Let G be the observation operator from equation 5.5 then

∀u ∈ U , ‖G(u)‖Rn ≤ C exp (‖f‖Uf ) ,

where C ≥ 0 is constant in u.

Proof. By definition of the observation operator and since there is a Sobolev em-

bedding, it comes

‖G(u)‖Rn ≤ n ‖z(u)‖C([0,L]×[0,T ],R) ≤ C ‖z(u)‖W ([0,T ],L2,H1
0
) .

Now, the energy estimate from proposition 55 jointly with previous equation gives:

‖G(u)‖Rn ≤ C exp (‖f‖Uf ) ,

with C ≥ 0 independent of u and the proof is complete.

The following proposition establishes the existence of a posterior probability

measure µy, expressing how observations y changed prior beliefs on the parameter

u.

Proposition 56. Let G be the observation operator defined in equation 5.5 and µ0

the Radon probability measure defined in equation 5.4, then there exists a unique
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posterior measure µy, characterized by the following Radon-Nikodym density w.r.t.

µ0:

∀y ∈ Y, ∀u ∈ U , dµ
y

dµ0
(u) =

1

Z(y)
exp (−Φ(u; y)) ,

with

∀y ∈ Y, ∀u ∈ U , Φ(u; y) = 1

2σ2η
‖y − G(u)‖2,

and

∀y ∈ Y, Z(y) =
∫

U
exp(−Φ(u; y)µ0(du).

Proof. Let µ0 be the Radon probability measure defined in equation 5.4 and consider

the following Gaussian negative log-likelihood:

Φ(u; z) =
1

2σ2η
‖y − G(u)‖2Y .

Since z is continuous in u (proposition 55), Φ is measurable w.r.t. µ0 for all y ∈ Y.

Now, Φ is non-negative, thus

∀y ∈ Y, Z(y) =
∫

U
exp (−Φ(u; y))µ0(du) ≤ 1.

Let u0 = (λ0, D0, f0) ∈ U and r > 0 such that BU (u0, r] ⊂ U . Then ∀u ∈ BU (u0, r]

and y ∈ BY(0, r], lemma 12 gives:

‖G(u)‖Y ≤ C exp (‖f0‖Uf + r) ,

and consequently:

Φ(u; y)

=
1

2σ2η
‖y − G(u)‖2Y ,

=
1

2σ2η

(
‖y‖2Y + ‖G(u)‖2Y − 2 〈y,G(u)〉Y

)
,

≤ 1

2σ2η

(
‖y‖2Y + ‖G(u)‖2Y + 2 ‖y‖Y ‖G(u)‖Y

)
,

≤ 1

2σ2η

(
r2 + C2 exp (2 ‖f0‖Uf + 2r) + 2rC exp (‖f0‖Uf + r)

)
= g1(r, u0),

with C ≥ 0 independent of u and y. It follows that Φ is locally bounded above and

∀y ∈ Y, Z(y) ≥
∫

BU (u0,r]
exp (−Φ(u; y))µ0(du),

≥ exp (−g1(r, u0))µ0(BU (u0, r]),

≥ c(u0, r) > 0.

Finally, ∀y ∈ Y, the following application is a Radon-Nikodym density w.r.t. µ0:

dµy

dµ0
(u) =

1

Z(y)
exp(−Φ(u; y)).
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For the well-posedness, it remains to see that this posterior measure is continuous

in y, which is the object of next proposition.

Proposition 57. Let µy the posterior distribution defined by the Radon-Nikodym

density from proposition 56, then it is continuous in y w.r.t. Hellinger distance.

Proof. Using a similar factorization than in the proof of theorem 17, it comes:

∀y1, y2 ∈ Y, dHell(µ
y1 , µy2)2 ≤ I1 + I2,

with

I1 =
1

Z(y1)

∫

U

(
exp

(
−1

2
Φ(u; y1)

)
− exp

(
−1

2
Φ(u; y2)

))2

µ0(du),

I2 =

∣∣∣∣∣
1√
Z(y1)

− 1√
Z(y2)

∣∣∣∣∣

2

Z(y2).

From proposition 56, it is clear that ∀r > 0,

∀y ∈ BY(0, r], Z(y) ≥ c(u0, r) > 0.

Now, since Φ is non-negative, it comes that:

∀(y1, y2) ∈ Y2, |Z(y1)− Z(y2)|

=

∣∣∣∣
∫

U
exp (−Φ(u; y1))− exp (−Φ(u; y2))µ0(du)

∣∣∣∣

≤
∫

U
|Φ(u; y1)− Φ(u; y2)|µ0(du),

by application of the mean-value theorem to the exponential function. Similarly:

I1 =
1

Z(y1)

∫

U

(
exp

(
−1

2
Φ(u; y1)

)
− exp

(
−1

2
Φ(u; y2)

))2

µ0(du)

≤ 1

Z(y1)

∫

U

1

2
|Φ(u; y1)− Φ(u; y2)|2 µ0(du).

Now, ∀r > 0 and ∀y1, y2 ∈ BY(0, r]

|Φ(u; y1)− Φ(u; y2)|

=
1

2σ2ǫ

∣∣∣‖y1‖2Y − ‖y2‖2Y + 2 〈y2 − y1,G(u)〉Y
∣∣∣

=
1

2σ2ǫ

∣∣(‖y1‖Y − ‖y2‖Y)(‖y1‖Y + ‖y2‖Y) + 2 〈y2 − y1,G(u)〉Y
∣∣

≤ 1

σ2η
(r + ‖G(u)‖Y) ‖y1 − y2‖Y ,

≤ 1

σ2η
(r + C exp (‖f‖Uf )) ‖y1 − y2‖Y ,

≤ g2(u, r) ‖y1 − y2‖Y ,

by lemma 12 with g2(u, r) =
1
σ2
η
(r + C exp (‖f‖Uf )) and C independent of u and r.

The hypothesis are precisely given such that g2 ∈ L2(µ0), thus I1 ≤ C(r) ‖y1 − y2‖2Y .
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Moreover, ∀r > 0, ∀y ∈ BY(0, r], Z(y) ≥ c(u, r) > 0 thus by the mean-value

theorem

I2 ≤ K |Z(y1)− Z(y2)|2 ≤ K ′ ‖y1 − y2‖2Y ,

the proof is complete.

Step 4: Maximum a posteriori In the previous section, the well-posedness of

the Bayesian inverse problem has been proved. However, the posterior distribution

is only known up to a multiplicative constant, through its density w.r.t. µ0. In

this application, the posterior measure µy will be summarized by a posterior mode

(MAP estimator), using next proposition.

Proposition 58. Let µ0 be the prior probability measure defined in equation 5.4 and

µref the Gaussian reference measure from equation 5.2. Suppose additionally that

ln

(
dµ0
dµref

(u)

)

is locally Lipschitz, then the modes of µz are exactly the minimizers of the following

Onsager-Machlup functional:

I(u) := Φ(u; y) +
1

2
‖u− uref‖2µref

− ln

(
dµ0
dµref

(u)

)
,

where ‖.‖µref
and uref are respectively the norm of the Cameron-Martin space and

the mean of µref . A minimizer will be noted uMAP = (λMAP , DMAP , fMAP ).

Proof. The posterior measure µy is absolutely continuous w.r.t. µref with the fol-

lowing Radon-Nikodym density:

dµy

dµref
(u) =

dµy

dµ0
(u)

dµ0
dµref

(u) =
1

Z(y)
exp(−Φ̃(u; y)).

where Φ̃(u; y) = Φ(u; y)− ln
(

dµ0

dµref
(u)
)
. Let us now show that Φ is locally Lipschitz

in its first argument:

‖Φ(u1; y)− Φ(u2; y)‖Y =
1

2σ2η

∣∣∣‖y − G(u1)‖2Y − ‖y − G(u2)‖2Y
∣∣∣ ,

=
1

2σ2η

∣∣∣‖G(u1)‖2Y − ‖G(u2)‖2Y + 2 〈y,G(u2)− G(u1)〉Y
∣∣∣ ,

≤ ‖G(u1)‖Y + ‖G(u2)‖Y + 2 ‖y‖Y
2σ2η

‖G(u1)− G(u2)‖Y ,

and since ‖G(u1)− G(u2)‖Y ≤ C
(
‖z(u1)− z(u2)‖L2([0,T ],H2[0,L]) + ‖z(u1)′ − z(u2)

′‖L2([0,T ],V )

)
,

we conclude that Φ and thus Φ̃ are locally Lipschitz. Now:

Jr(u1)

Jr(u2)
=

∫
BU (u1,r]

exp(−Φ̃(u; y))µref (du)∫
BU (u2,r]

exp(−Φ̃(v; y))µref (dv)

=

∫
BU (u1,r]

exp(−Φ̃(u; y) + Φ̃(u1; y)) exp(−Φ̃(u1; y))µref (du)∫
BU (u2,r]

exp(−Φ̃(v; y) + Φ̃(u2; y)) exp(−Φ̃(u2; y))µref (dv)
.
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Now,

Jr(u1)

Jr(u2)
≤ exp

(
rC − Φ̃(u1, y) + Φ̃(u2; y)

) ∫BU (u1,r]
µref (du)∫

BU (u2,r]
µref (dv)

and finally

lim sup
r→0

Jr(u1)

Jr(u2)
≤ exp (−I(u1) + I(u2)) .

A similar argument leads to

lim inf
r→0

Jr(u1)

Jr(u2)
≥ exp (−I(u1) + I(u2)) .

In conclusion limr→0
Jr(u1)
Jr(u2)

= exp (−I(u1) + I(u2)). For a fixed value u2, this quan-

tity is maximized when u1 is a minimizer of I, the proof is then complete.

Step 5: Karhunen-Loève approximation In this paragraph, the approxima-

tion of the previous Bayesian inverse problem is considered. Since µf0 is a Gaus-

sian measure, the Karhunen-Loève decomposition from chapter 2 can be used in a

projection-based approximation. Indeed, the stochastic basis (h∗n, hn)n∈N ⊂ U∗
f ×Uf

built from the Karhunen-Loève decomposition, is a Schauder basis of a Banach sub-

space U0 ⊂ Uf . As a consequence, the following sequence of projectors:

Pn : f ∈ U0 →
n∑

k=0

〈f, h∗k〉Uf ,U∗
f
hk ∈ U0,

are uniformly bounded with a constant K (∀n ∈ N, ‖Pn‖L(Uf
0
,Uf

0
)
≤ K). Further-

more, the extended projectors are defined as follows to take into account the other

parameters:

∀n ∈ N, ∀u ∈ U , Qnu = (λ,D, Pnf).

The notation U0 = Uλ ×UD ×Uf
0 will also be used to restrict the source space from

Uf to Uf
0 . In this work, the considered approximations are of projection-type as

follows:

∀n ∈ N, ∀(u, y) ∈ U × Y, Φn(u; y) := Φ(Qnu, y).

The study of consistency starts with the following lemma, giving useful energy

type inequalities.

Lemma 13. Let µ0 be the prior measure defined in equation 5.4, G the observation

operator from equation 5.5 and (Qn)n∈N the sequence of operators defined previously,

then it comes ∀n ∈ N, ∀u = (λ,D, f) ∈ U0:

‖G(u)− G(Qnu)‖Y ≤ C1 exp
(
α1 ‖f‖Uf

0

)
‖f − Pnf‖Uf ,

‖G(Qnu)‖Y ≤ C2 exp
(
α2 ‖f‖Uf

0

)
,

with C1, C2, α1, α2 ≥ 0 positive constants independent of u = (λ,D, f).
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Proof. Let n ∈ N and u ∈ U0, then using the Sobolev embedding ofW ([0, T ], L2, H1
0 )

in Uf = C ([0, L]× [0, T ],R), the energy estimate from proposition 55 and the em-

bedding of Uf
0 in Uf , it comes:

‖G(Qnu)‖Y ≤ C
(
‖z(Qnu)‖L2([0,T ],H2[0,L]) +

∥∥z(Qnu)
′∥∥

L2([0,T ],H)

)

≤ C ′ exp (‖Pnf‖Uf )

≤ C ′ exp
(
c ‖Pnf‖Uf

0

)

≤ C ′ exp
(
cK ‖f‖Uf

0

)
.

with C,C ′ ≥ 0 constants in u. Concerning the second inequality, using the linearity

of the solution map z in f , one has:

‖G(u)− G(Qnu)‖Y = ‖G(λ,D, f − Pnf)‖Y ,

then using again the energy estimate from proposition 55 and the mean-value theo-

rem applied to the exponential map, it comes:

‖G(u)− G(Qnu)‖Y ≤ C ‖exp(f)− exp (Pnf)‖Uf

≤ C exp (‖f‖Uf + ‖Pnf‖Uf ) ‖f − Pnf‖Uf

≤ C exp
(
c ‖f‖Uf

0

+ c ‖Pnf‖Uf
0

)
‖f − Pnf‖Uf

≤ C exp
(
c(1 +K) ‖f‖Uf

0

)
‖f − Pnf‖Uf ,

and the proof is complete.

The result of previous lemma can directly be adapted to the Gaussian negative

log-likelihood.

Lemma 14. Consider the negative log-likelihood from proposition 56 and the se-

quence of approximations (Φn)n∈N, then ∀n ∈ N:

∀(u, y) ∈ U0 × Y, |Φ(u; y)− Φn(u; y)| ≤ C1 exp
(
α1 ‖f‖Uf

0

)
‖f − Pnf‖Uf

∀(u, y) ∈ U0 × Y, |Φn(u; y)| ≤ C2 exp
(
α2 ‖f‖Uf

0

)
,

with C1, C2, α1, α2 ≥ 0 positive constants independent from both u and n.

Proof. Let y ∈ Y, n ∈ N and u ∈ U0, then:

|Φ(u; y)− Φn(u; y)| =
1

2σ2η

∣∣∣‖G(u)‖2Y − ‖G(Qnu)‖2Y + 2 〈y,G(Qnu)− G(u)〉Y
∣∣∣

≤ 1

2σ2η

(
2 ‖y‖Y + ‖G(Qnu)‖Y + ‖G(u)‖Y

)
‖G(Qnu)− G(u)‖Y .

Thus, using lemma 13, it comes:

|Φ(u; y)− Φn(u; y)| ≤ C exp
(
α ‖f‖Uf

0

)
‖f − Pnf‖Uf

.
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with C,α ≥ 0 and independent from u and n. Similarly, one has:

Φn(u; y) =
1

2σ2η
‖y − G(Qnu)‖2Y

≤ 1

σ2η

(
‖y‖2Y + ‖G(Qnu)‖2Y

)

≤ C ′ exp
(
α′ ‖f‖Uf

0

)
,

with C ′, α′ ≥ 0 independent from u and n and the proof is complete.

With these two lemmas at hand, it will now be easy to show the well-posedness

of the approximated posteriors, their consistency and give a speed of convergence.

Proposition 59. Let (Φn)n∈N the sequence of approximated negative log-likelihoods,

y ∈ Y a data, then there exists a sequence of posterior measures (µyn)n∈N, defined by

the following Radon-Nikodym densities ∀n ∈ N:

∀u ∈ U0,
dµyn
dµ0

(u) =
1

Zn(y)
exp (−Φn(u; y)) ,

with Zn(y) =
∫
U′
exp (−Φn(u; y))µ0(du).

Proof. Let n ∈ N and y ∈ Y, then by composition of continuous maps, Φn is

measurable in u and

Zn(y) =

∫

U′

exp (−Φn(u; y))µ0(du) ≤ 1,

since Φn(u; y) ≥ 0. Moreover, using lemma 14 and corollary 4, u ∈ U0 and r > 0

such that BU0
(u, r] ⊂ U0:

∀u′ ∈ BU0
(u, r], Φn(u

′; y) ≤ C exp
(
α(‖f‖U0

+ r)
)
≤ C ′ exp

(
α ‖f‖U0

)
,

which implies that

Zn(y) ≥ µ0 (BU0
(u, r]) exp

(
−C ′ exp

(
α ‖f‖U0

))
> 0,

as µ0(U0) = 1. Consequently, the following family of applications

u ∈ U0 →
1

Zn(y)
exp (−Φn(u; y)) ∈ R+,

are Radon-Nikodym densities w.r.t. µ0 and defines a sequence of posterior measures

(µyn)n∈N.

Corollary 15. Let (µyn)n∈N the sequence of approximated posterior measures from

proposition 59, then ∀n ∈ N, µyn is continuous in y.

It remains to see that this sequence of approximated posterior measures (µyn)n∈N
is consistent and give an estimation of the convergence speed.
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Proposition 60. Let y ∈ Y, µy the posterior measure defined in proposition 56,

(µyn)n∈N the sequence of approximated posterior measures from 59 then

dHell(µ
y, µyn) ≤ CEµ

f
0

[
‖f − Pnf‖2Uf

] 1

2

,

and (µyn)n∈N of approximate posterior measures is consistent.

Proof. Let n ∈ N and y ∈ Y, then the Hellinger distance can be controlled as follows,

using the very same method than theorem 21 in chapter 4:

dHell(µ
y, µyn)

2 ≤ 2(I1 + I2),

with:

I1 =
1

Z(y)

∫

U0

(
exp

(
−Φ(u; y)

2

)
− exp

(
−Φn(u; y)

2

))2

µ0(du),

I2 =

(
1√
Z(y)

− 1√
Zn(y)

)2

Zn(y).

Using the mean-value theorem (exponential function) with Φ(u; y) ≥ 0 and lemma

14, it comes:

I1 ≤
1

Z(y)

∫

U0

(Φ(u; y)− Φn(u; y))
2 µ0(du),

≤ 1

Z(y)

∫

U0

C1 exp
(
2α1 ‖f‖Uf

0

)
‖f − Pnf‖2Uf

µ0(du)

≤ C

Z(y)

∫

Uf
0

exp
(
2α1 ‖f‖Uf

0

)
‖f − Pnf‖2Uf

µf0(df)

≤ C ′

Z(y)
E
[
‖Pnf − f‖4Uf

] 1

2

Using the Kahane-Kintchine inequality, it follows that

I1 ≤ CE
[
‖f − Pnf‖2Uf

]
,

with C ≥ 0 independent from n. Concerning I2, since ∀n ∈ N, min(Zn(y), Z(y)) ≥
c > 0 and Zn(y) ≤ 1 (proposition 59), a new application of the mean-value theorem

(on the inverse square-root) gives:

I2 ≤ C ′|Z(y)− Zn(y)|2.

Again, a new application of the mean-value theorem to the exponential gives:

|Z(y)− Zn(y)| =
∣∣∣∣
∫

U0

exp (−Φ(u; y))− exp (−Φn(u; y))µ0(du)

∣∣∣∣

≤
∫

U0

|Φ(u; y)− Φn(u; y)|µ0(du)

≤
∫

U0

C1 exp
(
α1 ‖f‖Uf

0

)
‖f − Pnf‖Uf

µ0(du)

≤ C ′′E
[
‖f − Pnf‖2Uf

] 1

2
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using lemma 14 and Cauchy-Schwarz inequality. It is now clear that

dHell(µ
y, µyn) ≤ CE

[
‖f − Pnf‖2Uf

] 1

2

.

The speed of convergence of the approximate posterior is given by the quality

of the series representation of the source. Using the material developed in the first

part of this thesis (chapter 1 and 2), it is encouraged to use asymptotically optimal

decompositions.

5.3 Numerical results

This section is dedicated to the practical implementation of the previous Bayesian

inverse problem. First, the prior distribution and the Onsager-Machlup functional

are specified, respecting all previous assumptions. Then, quantitative results on a

real-world dataset taken from [BBCCS+13] are given. It consists in n = 508 different

measures which are non-uniformly spread in time and space (precise repartition can

be seen as dots in figure 5.4, right side).

Choice of measures Here is a simple choice of prior achieving all previous re-

quirements.

• Decay and diffusion. Here µD0 = U([Dm, DM ]) with 0 < Dm ≤ DM and

µλ0 = U([0, λM ]) with λM ≥ 0 will be chosen. The relative upper bounds λM

and DM are tuned to 2 to be sufficiently large and respect previous estimations

from [BBCCS+13]. The lower bound Dm is arbitrarily fixed at 10−8.

• Source. As previously stated, the prior measure on the source term µf0 will

be chosen as a Radon Gaussian measure on Uf = C ([0, L]× [0, L],R). More

specifically it is a continuous Gaussian random field with covariance kernel

(tensor Brownian bridge):

k
(
[x, t] ,

[
x′, t′

])
= σ2

16

TL

(
min(x, x′)− xx′

L

)(
min(t, t′)− tt′

T

)
.

It is chosen because it is almost-surely null on all the boundaries of [0, T ] ×
[0, L]. The constants are used to rescale the variance globally, such that it has

maximum value σ2 (at the centre).

• Under both these choices, the Radon-Nikodym density of the prior distribution

w.r.t. the Gaussian reference measure is

dµ0
dµref

(u)

=
2πσλσD

λM (DM −Dm)
exp

(
(λ− λref )

2

2σ2λ
+

(D −Dref )
2

2σ2D

)
χ[0,λM ](λ)χ[Dm,DM ](D).
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The parameters of µref are tuned choosing:

λref =
λM
2
,

σ2λ =
λ2M
12

,

Dref =
DM −Dm

2
,

σ2D =
(DM −Dm)2

12
,

which corresponds to a moment matching strategy (or a minimization of the Kullback-

Leibler divergence). Finally, the associated Onsager-Machlup functional is obtained

using proposition 58:

I(u) =
1

2σ2η
‖y − G(u)‖2 + 1

2
‖f‖2

µ
f
0

.

Remark that the regularization only acts on f , while the influence of λ and D only

appears in the least-square term. This functional will be used for posterior modes

computation as well as hyper-parameter tuning.

Numerical solver In this work, the solution map is approximated using finite

elements in space (FEniCS library in Python, see [ABH+15] and [LL17]) and finite

differences in time (implicit Euler scheme). A hundred P1 finite elements are used

along thirty time steps on a desktop computer (Intel i7-3770 with 8Gb of RAM

memory, late 2015). The domain parameters are L = 100 and T = 100 (percentages).

All quantities related to negative log-likelihood derivatives (Gradient and Gauss-

Newton Hessian matrix) are computed using discrete adjoint methods (see [HPUU09]

or [Hei08]) to keep scalability.

Karhunen-Loève basis Concerning the prior measure, the discretization only

concerns the source term f since λ and D are taken as scalars. Here, a truncated

basis is used:

f̃ =
∑

1≤i1,i2≤N

√
λi1,i2ξi1,i2ϕi1,i2 ,

where (ξi1,i2)N≥i1,i2≥0 are i.i.d. N (0, 1) random variables. Both the functions ϕi1,i2

and scalars λi1,i2 are obtained from a tensor product of the one dimensional Schauder

basis on dyadic intervals(given in chapter 2 as the Lévy-Ciesielski basis). In this

work, K = 20 (400 basis functions) thus ũ = (λ,D, ξ1, ..., ξN2) is of dimension 402.

Alternative bases for this process can be used in a similar way. In particular, it is

emphasized that any Gaussian process with two dimensional covariance kernel can

be used thanks to chapter 2.
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Computation of Maximum a posteriori estimator The variational charac-

terization of the MAP estimators as minimizers of the Onsager-Machlup functional is

very useful in practice. Indeed, the MAP can be computed by a direct optimization

of the following discretized functional:

Ĩ(ũ) =
1

2σ2η
‖y − G(ũ)‖2Y +

1

2

N2∑

i=1

ξ2i

Practical optimization is done using L-BFGS-B algorithm from the Scipy library

[BLNZ95] with explicit gradient:

∇Ĩ(ũ) = 1

σ2
(y − G(ũ))T ∇G(ũ) + ξ,

the quantity ∇G being obtained by discrete adjoint method, which only cost an

additional PDE solve (adjoint model).

Tuning of hyper-parameters In common Bayesian methods, such as Gaussian

process regression for instance, hyper-parameters are usually calibrated using max-

imum likelihood estimation (since there is a closed formulae), moment matching or

leave-one-out methods. Here however, to the best of the author knowledge, none of

these approaches seem to be directly applicable because of either the computational

burden or the absence of closed-forms. Instead, the following simple heuristic using

the Onsager-Machlup functional will be used.

• The noise variance parameter σ2η is estimated using algorithm 3 with N = 20

iterations. This parameter has an important impact on the quality of the

MAP estimator. Indeed, a low value results in important instabilities, since the

Onsager-Machlup functional is focusing on least-square error. On the contrary,

a significant value results in an over-smoothing of the parameter, leading to

important differences with the dataset. This delicate problem is also known

in deterministic methods, where the regularization parameter must be tuned

[SKHK12].

Data: y ∈ Y
Result: σ̂η

Initialize σ̂1η = 1;

for i in [1,K] do

Compute uiMAP using σ̂iη;

Set σ̂i+1
η = 1√

n−1

∥∥y − G(uiMAP )
∥∥
Rn

end

Return
(
σ̂N+1
η

)2
.

Algorithm 3: Calibration of noise variance σ2η.
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• The variance σ has a similar influence on the MAP solution, since it tends to

increase or decrease the regularization term influence. However, it is possible to

give an interesting value with the following remark. Since the MAP estimator

is maximizing the likelihood, it encloses information about the right level of

variance. Indeed, consider the discretized MAP estimate:

ũMAP = (λMAP , DMAP , ξ
MAP
1 , ..., ξMAP

N2 ).

A Maximum Likelihood estimator can be used here, since the vector

(ξMAP
1 , ..., ξMAP

N2 ) can be considered as N2 realization of a N (0, σ2) random

variable. The parameter σ2 can thus be tuned by

σ̂2 =
1

N2 − 1

N2∑

i=1

(ξiMAP )
2.

Both of these 2 methods are totally empirical but appear to give interesting

values, at least in this application.

Robust MCMC algorithm In this application, it has been showed that there

is a Gaussian reference measure µref such that µ0 << µref . This will give the op-

portunity to use already existing robust MCMC algorithms. Indeed, the reference

measure is Gaussian, allowing for a vast catalogue of proposal Markov kernels have

been developed [CLM16, BS09, CRSW13, BGL+17, Vol13, RS18]. In particular,

these sampling methods are well-defined in infinite dimensional spaces, thus are ro-

bust to discretization size [CRSW13]. A simplified version of the infinite dimensional

manifold Modified Adjusted Langevin Algorithm (inf-mMALA) from [BGL+17] is

used here. Indeed, the original algorithm requires an update of the local precondi-

tioner (Gauss-Newton Hessian) at each iteration, which can be very computationally

expensive. However, this quantity can be computed once at the MAP estimate (ob-

tained previously from variational technique). This provides an interesting trade-off

between computational time and sampling quality. Indeed, the proposal covariance

is scaled in the vicinity of the MAP estimator once and for all, while the gradient is

computed at each iteration (its cost is negligible in front of the Gauss-Newton Hes-

sian matrix). The algorithm is initiated at the MAP location and ran for n = 21 000

iterations.

Results The result of the Markov chain are displayed in figure 5.1, showing the

evolution of (λ,D, ξ0, ξ1, ξ2) during the sampling (n = 21 000 iterations with an

overall acceptance probability of 60% for h = 0.3). From this figure, the decision has

been made to discard the first 6 000 as burning sample. On the remaining samples,

the autocorrelation gives a self-correlation as shown in figure 5.2. It appears that

taking a sample out of two hundreds is reasonable, which leads to a total of 76

posterior samples. From this, the MAP estimate is taken as the minimizer of the
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Onsager-Machlup functional among the posterior sample. Precise values of decay,

diffusion, negative log-likelihood and Onsager-Machlup functional are given in table

5.2 for the MAP (obtained through variational deterministic optimization and its

analogue from McMC sampling) as well as the conditional mean. Additionally to the

estimated values, one can also look at the marginal distribution of (λ,D) on figure

5.3. Concerning the MAP estimator (figure 5.4), both pikes in solution z described

in [Bec12] and [BBCCS+13] are recovered. The first happens on the anterior part

of the embryo in early experiment (x = 35, t = 35). The second is much more

intense and happens in the posterior part during the second half of the experiment.

The estimated source f explains these with an intense and localized increase in

concentration. Finally, the quantification of uncertainty (through the point-wise

variance) indicates that the dataset informs well the source close to the dataset,

leaving a huge unknown before the first measurements (see figure 5.5).

5.4 Conclusion

In this final chapter, a practical inverse problem has been solved, using the devel-

oped Bayesian methodology from chapter 4. In particular, the delicate question of

discretization has been solved using a Karhunen-Loève basis from chapter 2. The

consistency has been shown theoretically and the rate of convergence estimated to

at least the speed of prior approximation. This clearly encourages the search of

optimal representation of prior measures. This is what has been done by choosing a

tensor basis, constructed on Schauder hat functions. This result has an important

practical consequence, since it largely extends the choice of available Gaussian pri-

ors. Indeed, the series representation with independent coefficients is useful, both in

the variational search of MAP estimators and Monte-Carlo sampling. Moreover, a

new method of hyper-parameters tuning has been proposed, addressing empirically

a delicate question often discarded in the literature.
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Parameters Estimated values

σ2η 19.76

σ2 0.52

Table 5.1: Estimated values of σ2η and σ2.
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Figure 5.1: Trace plots of Φ(u; y), λ, D, ξ0, ξ1 and ξ2 (the first 6 000 iterations are

burned).

Estimators λ D Φ(u; y) I(u)

MAP (from variational optimization) 0.43 0.34 366.82 566.32

MAP (from McMC sampling) 0.42 0.30 331.26 723.27

Conditional mean (from McMC sampling) 0.45 0.46 303.76 553.40

Table 5.2: Values of decay, diffusion, negative log-likelihood and Onsager-Machlup

functional for different estimators.
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Conclusion and future works

The Bayesian methodology for inverse problems is a very active field of research,

generalizing some already well-known and widely-used methods such as Kriging (or

Gaussian process regression) to much larger settings. In particular, it is very attrac-

tive since it provides simultaneously regularization and quantification of uncertainty.

However, it is still in its infancy and a large number of questions, from the measure

theoretical foundations to practical implementation, remain open. Hopefully, a large

community of researchers have already given satisfying answers, but some can be

further studied.

In this thesis, the question that has been investigated is approximation, focusing

on a new prior measure discretization method. This is a largely studied aspect with

a first theoretical treatment in [CDRS09] and later in [CDS10, Stu10]. The most

natural method, at least when the prior is a Gaussian measure, is to use a random

series decomposition with independent coordinates. Indeed, it gives a useful rep-

resentation of the parameters, particularly well-suited to McMC sampling or MAP

computation. It is traditionally given by the Karhunen-Loève decomposition when

the ambient space has a Hilbert geometry. However, it is limited in practice to a

small number of prior distributions, since the useful functions are solutions to possi-

bly difficult eigenproblems. Moreover, when the problem involves functions through

(for instance) partial derivative equations, the most natural framework is not nec-

essarily Hilbert.

The generalization of the Karhunen-Loève decomposition to Banach spaces, given in

chapter 2 and accepted for publication in [BC17], gives an interesting answer to those

limits. Indeed, since it is established in general Banach spaces, it potentially applies

to very different settings. However, it also conveys its own difficulties. For instance,

instead of looking for eigenvectors associated to a self-adjoint and trace-class opera-

tor as it is the case in Hilbert spaces, one must find linear functionals maximizing the

projected variance. This is particularly difficult when the dual space has no partic-

ular representation. Nevertheless, the space of continuous functions over a compact

metric set seems to be exempt and offers a very intuitive interpretation instead. In

fact, the previous linear functionals can be limited to Dirac measures in this case.

It results in a sequential search for maximum variance locations, a particularly well-
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suited problem for numerical optimization (in low dimensional spaces). Moreover,

it is possibly applicable to domains where the input set is not a hyper-rectangle,

while also preserving the possibility to extend one dimensional decompositions by

tensorization. In this way, the series representation of new continuous Gaussian

random fields can be considered. Furthermore, this specific setup is particularly

interesting, since one can even have both traditional (using a Lebesgue measure for

instance) and new Karhunen-Loève decompositions. The main limit remains that

optimality of truncated sums, in the Banach norm (the supremum for continuous

functions over compact metric sets), has not been established yet and could be pos-

sibly wrong. This very interesting question has been answered positively for the

standard Wiener process, but needs further research in more general cases.

The second contribution of this thesis is of a practical nature. Indeed, the the-

ory of Bayesian inverse problem may be extensively detailed in the literature, its

practical implementation still requires a different type of expertise. The most obvi-

ous hole in the methodology would be hyper-parameters tuning. This is a deep and

intrinsic problem in Bayesian methodologies. However, when it comes to inverse

problems with possibly complex dynamical systems, there are no general method

such as leave-one-out or Maximum Likelihood (they are possibly intractable). This

is far from being a side dish, since both regularization and quantification of uncer-

tainty are heavily impacted. Concerning posterior modes, it directly influences the

trade-off between proximity to data and regularity. In the case of McMC algorithms,

it gives the amplitude of proposal jumps, which is critical for a correct exploration

of the space. In chapter 5, an attempt for the calibration of the measurement noise

and the overall prior variance is given. It is heuristic, but further research could

be made to give a theoretical background in this direction. A good start would

certainly be an application of these principle in a Kriging context, where one can

also use Maximum-Likelihood estimators or Leave-One-Out methods.



Glossary of mathematical

notations

H1
0 (Ω) Sobolev vector space of weakly differentiable

functions on the set Ω with null boundary val-

ues.

L0(U) L0(Ω,F ,P;U , Bor(U)) with U a Banach

space.

Lk(Ω,F , µ;A,A) Vector space of k times integrable equivalence

classes of applications from (Ω,F) to (A,A)

w.r.t. the measure µ.

Φ Negative log-likelihood function.

BU (u, r] Closed ball with center u and radius r in the

normed space U .
BU (u, r) Open ball with center u and radius r in the

normed space U .
BU Unit ball in the normed space U .
L(U ,Y) Space of bounded linear operators from U to

Y.

Bor(U) Borel σ-algebra in the Banach space U .
Û‖.‖Y Topological completion of the set U w.r.t. to

the norm ‖.‖Y .
C (A,B) Vector space of continuous functions from A

to B.

CX Covariance operator of the random element

X.

Cyl(U) Cylindrical σ-algebra in the Banach space U .
δs Dirac delta measure at element s.

D (A) Domain of the operator A.

〈u, l〉U ,U∗ Dual pairing between u ∈ U and l ∈ U∗.

U∗ Topological dual space of U .
X̂ Fourier transform of the random element X ∈

L0(U).
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140 Glossary of mathematical notations

HX Gaussian space of random element X ∈
L0(U).

I Identity operator.

〈u, v〉U Inner product of (u, v) ∈ U in the Hilbert

space U .
K(U ,Y) Space of compact linear operators from U to

Y.

A∗ Adjoint operator of A.

U A (real) Banach space with norm ‖.‖U .
UX Cameron-Martin space of random element

X ∈ L0(U).
µy Posterior probability measure associated to

data y.

µ0 Prior probability measure.

µ1 << µ2 absolute continuity of the measure µ1 w.r.t.

the measure µ2.

µX Distribution of random element X ∈ L0(U).
‖u‖U Norm of vector u in the Banach space U .
M (F) Vector space of measures on the σ-algebra F .

R (A) Range of the operator A.

rank (A) Rank of operator A.

σ(U∗,U) Weak-star topology on U∗.

σ(U ,U∗) Weak topology on the Banach space U .
ϕX Covariance bilinear form of the random ele-

ment X.

f ≈ g equivalence between functions f and g in the

sense that ∃c, C > 0, ∀n ∈ N, cg(n) ≤
f(n) ≤ Cg(n).

CM Conditional mean.

MAP Maximum a Posteriori.
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Résumé

L’inférence est une activité fondamentale en sciences et en ingénierie: elle permet de

confronter et d’ajuster des modèles théoriques aux données issues de l’expérience.

Ces mesures étant finies par nature et les paramètres des modèles souvent fonction-

nels, il est nécessaire de compenser cette perte d’information par l’ajout de con-

traintes externes au problème, via les méthodes de régularisation. La solution ainsi

associée satisfait alors un compromis entre d’une part sa proximité aux données, et

d’autre part une forme de régularité.

Depuis une quinzaine d’années, ces méthodes intègrent un formalisme probabiliste,

ce qui permet la prise en compte d’incertitudes. La régularisation consiste alors à

choisir une mesure de probabilité sur les paramètres du modèle, expliciter le lien

entre données et paramètres et déduire une mise-à-jour de la mesure initiale. Cette

probabilité a posteriori, permet alors de déterminer un ensemble de paramètres com-

patibles avec les données tout en précisant leurs vraisemblances respectives, même

en dimension infinie.

Dans le cadre de cette thèse, la question de l’approximation de tels problèmes est

abordée. En effet, l’utilisation de lois infini-dimensionnelles, bien que théoriquement

attrayante, nécessite souvent une discrétisation pour l’extraction d’information (cal-

cul d’estimateurs, échantillonnage). Lorsque la mesure a priori est Gaussienne, la

décomposition de Karhunen-Loève est une réponse à cette question. Le résultat

principal de cette thèse est sa généralisation aux espaces de Banach, beaucoup plus

naturels et moins restrictifs que les espaces de Hilbert. Les autres travaux développés

concernent son utilisation dans des applications avec données réelles.
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