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Abstract 
 

The last years have been very successful in identifying mechanisms, which control apoptosis 

in metazoan. However, the regulation of cell death in specific cell type remains to be 

determined. An excess of neuron apoptosis can lead to neurodegenerative diseases such as 

Huntington, Parkinson or Alzheimer diseases. Neurodegeneration is usually associated to 

Endoplasmic Reticulum stress (ER stress), autophagy or oxidative stress. However, the role of 

these mechanisms in the regulation of neurodegeneration is not clearly established. To test the 

role of ER stress in the regulation of neuronal death, we used several models of 

neurodegeneration in Drosophila and mammals. First, we have shown that the genetic 

induction of ER stress protected photoreceptors of the Drosophila eye from apoptosis. Then, 

we have shown that the protective effect of ER stress is conserved in both Drosophila and 

mouse models of Parkinson disease. In order to characterize the protective effect of ER stress, 

we have studied the activation of protective mechanisms upon ER stress. We have shown that 

in the Drosophila retina, ER stress can induce an anti-oxidative response and autophagy. 

Interestingly, autophagy is only activated in presence of both ER stress and cell death signal. 

We have focused on the role of autophagy in the protective effect of ER stress. We have 

shown that the activation of autophagy was required for the protective effect of ER stress. 

Thus, we have shown that ER stress response is not only involved in the reduction of 

misfolded protein accumulation, but can also protect neurons form cell death by activating 

autophagy.  

 

 

Keyword: Apoptosis, endoplasmic reticulum stress, autophagy, neurodegeneration, Parkinson 

disease, Drosophila, mouse 
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Titre et résumé 
 

Un stress modéré du réticulum endoplasmique protège de la mort 

cellulaire : rôle de l’autophagie 
 

Ces dernières années ont été très fructueuses pour l’identification des mécanismes 

fondamentaux de l’apoptose chez les métazoaires. Cependant, il reste beaucoup à apprendre 

sur la manière dont sont régulés les programmes de mort en fonction du type cellulaire. Un 

excès d’apoptose des neurones peut conduire à différentes pathologies neurodégénératives 

comme les maladies de Huntington, Parkinson ou Alzheimer. La neurodégénérescence est 

souvent associée à un stress du réticulum endoplasmique (RE), à l’autophagie et à un stress 

oxydatif. Cependant le rôle de ces mécanismes dans la régulation de la neurodégénérescence 

n’a pas été clairement établi. Afin de tester l’implication du stress du RE dans la régulation de 

la mort neuronale, nous avons utilisé différents modèles de neurodégénérescence chez la 

Drosophila melanogaster et les mammifères. Nous avons d’abord montré que l’induction 

d’un stress modéré du réticulum protégeait les photorécepteurs de l’œil de drosophile contre 

l’apoptose. Nous avons ensuite montré que l’effet protecteur du stress du RE était conservé 

dans les modèles de maladie de Parkinson chez la drosophile et la souris. Afin de caractériser 

l’effet protecteur du stress du réticulum, nous avons étudié l’activation de mécanismes 

protecteurs lors d’un stress du réticulum. Nous avons montré que dans la rétine de drosophile 

l’activation du stress du RE dans un contexte de mort neuronale induisait une réponse anti-

oxydante et l’autophagie. Nous nous sommes plus particulièrement intéressés au rôle de 

l’autophagie dans le rôle protecteur du stress du RE. Nous avons montré que l’activation de 

l’autophagie était nécessaire à l’effet protecteur du stress du RE contre l’apoptose. Nous 

avons donc pu mettre en évidence que la réponse au stress du RE ne participait pas 

uniquement à réduire l’accumulation de protéines mal-conformées mais permettait aussi de 

protéger les neurones contre la mort cellulaire en activant l’autophagie. 

 

Mots clés : Apoptose, stress du réticulum endoplasmique, autophagie, neurodégénérescence, 

maladie de Parkinson, drosophile, souris 
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Résumé substantiel  
Ces dernières années ont été très fructueuses pour l’identification des mécanismes 

fondamentaux de l’apoptose chez les métazoaires [19, 20]. Cependant, il reste beaucoup à 

apprendre sur la manière dont sont régulés les programmes de mort en fonction du type 

cellulaire. Un excès d’apoptose peut conduire à différentes pathologies neurodégénératives 

comme les maladies de Huntington, Parkinson ou Alzheimer. Le stress du réticulum 

endoplasmique (RE), le stress oxydatif et l’autophagie sont associés à la  

neurodégénérescence [15, 21-24]. Cependant, leur importance dans la progression de ces 

maladies n’a pas encore été déterminée. 

Le RE est un organelle par lequel transitent les protéines sécrétées et les protéines 

transmembranaires. Ces protéines acquièrent leur bonne conformation grâce aux protéines 

chaperonnes résidentes et vont s’associer en complexes. Seules les protéines correctement 

repliées et associées pourront sortir du RE et transiter par les voies de sécrétion. Ce 

mécanisme de contrôle permet de s’assurer de la qualité des protéines sécrétées ou associées à 

la membrane. La présence de protéines anormalement conformées induit une voie de 

signalisation appelée la réponse UPR (pour « Unfolded Protein Response ») [28]. La réponse 

UPR est une réponse adaptative au stress du RE qui est conservée au cours de l’évolution. En 

effet, la plupart des effecteurs de la réponse UPR identifiés chez les vertébrés ont un 

homologue chez la drosophile [35]. La réponse UPR chez les vertébrés est activée par un 

senseur du stress du réticulum : BiP. En absence de stress du RE, BiP est associé à des 

récepteurs transmembranaires du RE: PERK (pour « PKR-like ER kinase »), ATF6 (pour 

« activating transcription factor 6 ») et IRE1 (pour « inositol-requiring enzyme 1 »). Lors d’un 

stress du RE, BiP se dissocie de ces partenaires, il se fixe sur les protéines mal-conformées 

afin de jouer son rôle de chaperonne. Les voies PERK, ATF6 et IRE1 sont alors activées. 

Elles vont induire l’expression de chaperonnes, activer les voies de dégradation des protéines 

et réduire la synthèse protéique. Des études suggèrent qu’une réponse UPR intense et 

prolongée induit l’activation du programme d’apoptose [37]. Cependant, il n’est pas établi si 

la réponse UPR est la cause de la mort neuronale dans les maladies neurodégénératives. La 

conservation des mécanismes de mort cellulaire au cours de l’évolution nous permet d’utiliser 

des modèles génétiques simples, comme la drosophile, pour mieux comprendre la régulation 

de la mort cellulaire chez l’homme. 
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L’œil de Drosophila melanogaster est un excellent modèle pour l’étude in vivo des 

maladies neurodégénératives. En effet, l’expression ectopique de protéines pathologiques 

dans la rétine induit la dégénérescence progressive des cellules photoréceptrices (PR) avec des 

caractéristiques similaires à celles qui sont observées dans les maladies humaines [41]. Nous 

avons établi un modèle de neurodégénérescence chez la drosophile dépendant de la 

surexpression des gènes pro-apoptotiques reaper et Dp53 (homologue drosophile du gène p53 

de mammifère). La surexpression de reaper induit l’apoptose des cellules photoréceptrices de 

l’œil. Un crible génétique nous a permis d’identifier les mutations du gène ninaA (homologue 

de la cyclophiline A humaine) comme suppresseurs de la mort cellulaire. NinaA code une 

chaperonne nécessaire à la maturation de la Rhodopsine-1 dans le réticulum. L’absence de 

NinaA provoque l’accumulation de protéines Rh1 mal conformées induisant un stress du RE 

et une réponse UPR dans les cellules photoréceptrices de l’œil de drosophile. Nous avons 

observé que la réponse UPR, qui est normalement dédiée à éviter l’accumulation des protéines 

mal conformées, générait des signaux anti-apoptotiques.  

Nous avons montré que le stress du RE protège les neurones contre la mort cellulaire dans 

des modèles de maladie de Parkinson. Nous avons utilisé la surexpression de α-synucléine 

dans les neurones dopaminergique ainsi qu’un traitement au paraquat comme modèles de la 

maladie de Parkinson in vivo chez la drosophile. Nous avons montré que l’induction chimique 

du stress du RE avec de la tunicamycine protégeait les neurones contre la mort cellulaire et 

améliorait la motricité des drosophiles. De plus, l’induction d’un stress du RE par la 

tunicamycine protège les neurones dopaminergiques de souris in vivo contre la mort cellulaire 

induite par la 6-hydoxydopamine (6-OHDA). L’injection de 6-OHDA dans le cerveau des 

souris induit un stress oxydatif, la mort des neurones dopaminergiques ainsi que des défauts 

locomoteurs. Le stress du RE, induit par un prétraitement à la tunicamycine, active donc des 

mécanismes qui protègent les neurones contre la mort cellulaire. En particulier la réponse 

UPR active des mécanismes protecteurs tels que la réponse anti-oxydante et l’autophagie qui 

pourraient participer à l’inhibition de l’apoptose des neurones. 

Les cellules exposées à un stress du RE induisent une réponse  anti-oxydante qui pourrait 

les protéger contre la mort cellulaire. La réponse anti-oxydante est activée pour protéger les 

cellules contre l’apoptose induite par la présence de formes réactives de l’oxygène. La 

réponse anti-oxydante fait appel à différentes protéines anti-oxydante comme la Superoxyde 

dismutase, la Catalase, la Glutathion S transférase ou la Ferritine [45, 46]. Nous avons montré 

que la réponse anti-oxydante et en particulier la Ferritine étaient activées lors d’un stress du 
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réticulum. Ces protéines permettent de réduire le stress oxydatif mais leur contribution dans la 

protection contre la mort cellulaire lors d’un stress du RE n’est pas démontrée. 

Les cellules exposées à un stress du RE induisent l’autophagie qui pourrait contribuer à les 

protéger de la mort cellulaire. L’autophagie permet aux cellules de survivre dans des 

conditions de carence alimentaire, de stress ou en présence d’organelles défectueux. Le 

cytoplasme et les organelles sont emprisonnés dans des vacuoles où ils seront dégradés. Il a 

été montré que l’autophagie pouvait être activée lors d’un stress du RE pour limiter 

l’expansion du RE et ainsi permettre la survie des cellules exposées à un fort stress du RE [47, 

48]. Nous avons montré que l'autophagie était activée lors d’un stress du réticulum associé à 

un signal de mort cellulaire dans les photorécepteurs de l’œil de drosophile ainsi que dans les 

neurones dopaminergiques de souris. De plus, nous avons montré que l’activation de 

l’autophagie est requise pour l’effet protecteur du stress du RE contre l’apoptose dans la rétine 

de drosophile. Nous avons donc montré que l’activation de l’autophagie par un stress du RE 

combiné à un signal de mort cellulaire protégeait les cellules contre l’apoptose. L’implication 

de l’autophagie dans l’effet protecteur du stress du réticulum endoplasmique n’exclue pas un 

rôle potentiel de la réponse anti-oxydante qui reste cependant à être démontrée. Le stress 

modéré du RE ainsi que l’autophagie offrent donc des nouvelles perspectives thérapeutiques 

contre les maladies neurodégénératives.  
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1.1. Programmed cell death 
 

1.1.1. Cell death : morphological and biochemical characterization 
 

Development and homeostasis of multicellular organisms depends on the proper balance 

between proliferation, differentiation and cell death. The metazoan development is 

characterized by a fast increase of cell number. Some cells differentiate and others are 

eliminated via cell death to lead to functional adult tissues [4, 49]. Dying cells have been 

observed during embryogenesis and metamorphosis and caught the attention of the biologists 

during the 19th and 20th century. By the mid-20th century, it was clear that cell death was a 

naturally occurring process necessary for development [50]. Developmental cell death is 

essential for the development of most of the pluricellular organism such as insects and 

vertebrates [51]. Cell death has also been observed during C. elegans development, however 

this cell death is not essential for development. This observation considerably helped the 

identification of cell death defective mutant and genes required for death during development 

[52, 53] The specific cell death during C. elegans development suggests that the cell death 

process is tightly controlled at the level of the organism [54]. The term “programmed cell 

death” (PCD) defined cell death not as random or accidental in nature, but as a sequence of 

controlled steps leading to locally and temporally defined self destruction [55]. The term PCD 

was introduced in 1964 during the characterization of inter-segmental muscle degeneration of 

the silkmoth [56]. This term is now used to define temporally and locally regulated cell 

elimination during development or tissue homeostasis.  

 

Different programmed cell death types occur to kill cell during development and tissue 

homeostasis. Three types of programmed cell death have been identified: apoptosis, 

autophagic cell death and necrotic cell death [57]. These three PCD are not equivalent 

regarding the control of cell death during development and tissue homeostasis. Apoptosis is 

the main PCD. It is involved both during development and the life of an organism. During 

development, cell death allows the elimination of transitory organs and tissues. For example 

the tail of the amphibian and the larval tissue of Drosophila are removed by apoptosis [19, 

58]. Cell death is also involved in tissue remodeling and organ shaping such as the digit 

formation during mammals development or the rotation of genitalia in Drosophila 
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development [59, 60]. Almost all developmental programmed cell death requires apoptosis. 

Apoptosis is characterized by apoptotic corpses formation and the activation of specific 

effectors, the caspases. This mechanism was observed in almost all dying tissues during 

development and thus, it has been thus proposed that apoptosis was the only developmental 

PCD. However, rare exceptions have shown that developmental cell death PCD could be 

caspase independent [4, 61]. Two Drosophila tissues, the salivary gland and the mid-gut, are 

eliminated via autophagy, a caspase independent PCD [62, 63]. Autophagic cell death has also 

been observed in Dictyostelium [64]. However, the role of autophagic cell death during 

development was only observed so far in these two tissues in Drosophila and in 

Dictyostelium. Apoptosis is thus the major developmental cell death. In addition to 

development, apoptosis is also involved in tissue homeostasis. The PCD which occurs during 

tissue homeostasis is not only dependent of apoptosis it can also involve autophagic cell death 

and necrotic cell death [65]. Indeed, the inhibition of caspase in Apaf1 mutant mice does not 

suppress interdigital cell death. The interdigital death in absence of apoptosis involves 

necrosis [66]. In addition, necrosis also participates to interdigital cell death in mouse, T-cell 

elimination especially upon Toxoplasma gondii infection or in mouse neurons upon ischemia 

[67, 68]. To conclude, apoptosis can be considered as a developmental programmed cell death 

whereas necrosis and autophagy, few exceptions excluded, are restricted to tissue homeostasis 

control.    

 

1.1.2. Apoptosis 
 

1.1.2.1. Morphological and biochemical characterization 

 

Apoptosis is a cell death mechanism. The term “Apoptosis” has been first used by Hippocrate 

and Galen in the first century BC as a medical term to describe “falling off of the bones” upon 

bone fracture and also “dropping of the scabs” [69, 70]. Then, Kerr, Wylie and Currie used 

the term apoptosis, meaning “falling off” as leaves from trees, to name programmed cell death 

[71]. Apoptosis describes the stereotypical and morphological features culminating in the 

controlled self-destruction of a cell [71-73]. Apoptosis was defined as a basic biological 

process, which allow the turnover of cells in a normal tissue and also the removal of cell in 

diseased tissues [74]. Upon apoptosis, dying cells present several features, which have been 

characterized using electron microscopy. Apoptotic cells arbor chromatin condensation and 
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DNA fragmentation [75, 76]. The nuclear changes of apoptotic cell are associated to 

cytoplasmic changes [58]. As the global cell size diminishes, the organelles concentrate in the 

cytoplasm, however, they are still intact. Moreover, the cytosqueleton of the cell is 

disorganized leading to plasma membrane blebbing [77]. During all this process, the apoptotic 

cells lose adhesion with neighboring cells [73]. Finally, cells break up into apoptotic bodies, 

which are eliminated by surrounding cells via phagocytosis [59, 78]. This phagocytosis is 

induced by changes in the plasma membrane of apoptotic cells, which are identified as a “eat 

me” signal by surrounding healthy cells. Upon all the steps of the apoptotic process, the 

plasma membrane is conserved and there is no leakage of intracellular content [75]. Because 

apoptotic cells are eliminated by phagocytosis before membrane rupture, apoptosis does not 

activate the immune response. 

 

Apoptosis is the main programmed cell death which occurs during development and 

homeostasis of multicellular organism. During development, apoptosis allow the elimination 

of transitory organs and tissues. For example the tail of the amphibian is removed by 

apoptosis [19, 58]. In addition, apoptosis is required during development and all life of an 

organism for cellular homeostasis and the elimination of unwanted or damaged cells [79, 80]. 

Indeed, 107 cells are eliminated daily among the 1014 cells, which composed the human body. 

For example, apoptosis allows the elimination of the unwanted B and T lymphocytes. Indeed, 

newly synthesized lymphocytes carry T-cell receptors which can virtually recognize all kind 

of proteins. In the thymus, T lymphocytes that recognize auto-antigens are eliminated via 

apoptosis [81-83]. This clonal selection occurs in the thymus for the T lymphocytes while it 

takes place in germinal centers of lymphoid organs for B lymphocytes [83, 84]. Therefore 

apoptosis is involved in the maturation of the immune system [85]. Apoptosis is also required 

in other mammalian tissues such as the turnover of epithelial cell in mouse [86]. Moreover, 

specific cell elimination is involved during development in both vertebrates and invertebrates. 

For example, Drosophila leg morphogenesis requires apoptosis of cell localized at the 

presumptive joint. Indeed, in this model, caspases inhibition prevent apoptosis in the leg 

imaginal disc leading to altered leg joints in the fly [80]. Another example of specific cell 

apoptosis is the elimination of neurons during development to form the mature nervous 

system [87-89]. Thus, apoptosis is essential for organism development and also the 

maintenance of tissue function. Any impairment in the control of apoptosis can be deleterious. 

Thus apoptosis needs to be tightly controlled.   
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1.1.2.2. Apoptosis: a programmed cell death 

 

Apoptosis is a genetically controlled cell death process. The discovery of the ced genes in C. 

elegans has been an important step in the identification and characterization of genes 

regulating apoptosis. As the cell lineage of C. elegans has been identified, it is an ideal model 

to follow cells during development and to study developmental apoptosis in a living organism 

[88, 90]. Genetic screens have led to the identification of apoptosis regulators in C. elegans 

named cell death-defective (ced) genes. Ced-3 and Ced-4 have been identified as the main 

executioners of cell death. Indeed ced-3 mutant has up to 20% more neural cells than wild-

type animals [91]. Moreover, ced-4 mutant also presents an excess of cell survival. As the 

combination of ced-3 and ced-4 mutant did not have enhanced effect compared to the single 

mutant, this suggests that these two proteins act sequentially to induce apoptosis [91]. This 

hypothesis has been supported by the overexpression of ced-4 which induced ced-3 activation 

[92].  The apoptotic pathway has been completed in C. elegans with the identification of other 

cell death inducer such as Egl-1 (Egg laying defective-1). Egl-1 mutant arbors excessive cell 

number due to remaining cells, which were programmed to dye [93]. Egl-1 is thus a pro-

apoptotic factor. The pro-apoptotic effect of Egl-1 is linked to Ced-3 and Ced-4 as the 

overexpression of egl-1 induced a Ced-3/Ced-4 dependent cell death [93]. These results show 

for the first time the existence of a molecular cascade, which induces apoptosis. In addition to 

pro-apoptotic genes, the C. elegans screens also led to the identification of anti-apoptotic 

gene. Indeed, the loss of function of ced-9 increased cell death during C. elegans 

development. Respectively, ced-9 overexpression led to supernumerary cells in the adult C. 

elegans [94]. Thus, ced-9 has been identified as pro-survival factor. In addition to ced-3, ced-

4 and ced-9, other ced genes regulate apoptotic process. Ced-1, ced-2, ced-5, ced-6, ced-7, 

ced-8, ced-10 and ced-12 are involved in phagocytosis  of apoptotic cell corpses [95]. These 

proteins are required for the recognition and the degradation of apoptotic corpses by engulfing 

cell. Thus, the genes involved in the regulation of apoptosis in C. elegans share homology 

with genes in Drosophila and mammals. Ced-3 and ced-4 are respectively the homologs of 

the mammalian caspase-9 and apaf-1. Egl-1 is the homolog of BH3-only protein, a pro-

apoptotic member of the Bcl2 family. In addition Ced-9 is the homolog of anti-apoptotic 

members of the Bcl-2 family such as Bcl-2 or Bcl-XL. The ced genes involved in apoptotic 

cell corpse engulfment are conserved in Drosophila and mammals and these ced homologs 

are also involved in phagocytosis [96-98]. These homologies suggest that mechanism, which 

regulate cell death in metazoans, are conserved in evolution (Table 1). 
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1.1.3. Caspases : the actors of apoptosis 
 

1.1.3.1. The identification of caspases  

 

Caspases are proteases conserved throughout evolution, which are involved in apoptosis 

induction and execution. The first caspase, interleukin-1β-converting enzyme (ICE also 

known as Caspase-1), has been identified in humans [99, 100]. However, ICE has not been 

identified for its role in apoptosis but in the immune response, as it is required for the 

processing of the inactive interleukin-1-β into the pro-inflammatory cytokine [101, 102]. The 

role of ICE in apoptosis has been first suggested with the identification of its homolog in C. 

elegans, the pro-apoptotic gene ced-3 [103]. A domain essential for ICE activity presents  

43% of homology with ced-3 [104]. The high homology between ICE and ced-3 suggests that 

ICE could be a pro-apoptotic factor. This hypothesis has been confirmed by the 

overexpression of the rat ICE in cells, which activates cell death [104]. The discovery of Ced-

3/ICE established the role of caspases as cell death effectors in the apoptotic pathway [104, 

105]. Several members of the caspase family have been identified in metazoan. C. elegans 

Gene Family Worm Fly Mouse 

Caspases  ced-3, csp-1, csp-2  dredd, dronc, strica, 
dcp-1, drice, decay, 
damm  

caspases 1-14  

Bcl-2  ced-9, egl-1  debcl-1, buffy  bcl-2, bcl-xl, bcl-w, mcl-1, 
bax, bak, bok, bik, bid, bad, 
bim  

APAF-1  ced-4  dark/dapaf-1/hac-1    apaf1  

IAP  bir-1, bir-2  diap-1, diap-2, dbruce, 
deterin  

xiap, c-iap1, c-ap2, hILP-2, 
mI-iap, niap, survivin, bruce  

RHG domain  ?  rpr, hid, grim, sickle  smac/diablo, omi/htrA2  

Genes involved in the 
engulfment process  

ced-1, -2, -5, -6, -7, 
-10, -12  

draper,  MBC  srec, crk-II, dock180, gulp, 
ABC transporter, rac1, elmo1  

 
Table 1: Apoptotic genes conservation upon evolution (adapted from [4]) 
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genome contains four caspases: ced-3, csp-1 (caspase homolog-1), csp-2 and csp-3 [106]. In 

Drosophila, seven caspases have been identified : Dredd, Dronc, Strica, Drice, Dcp-1, Decay, 

Damm [6]. Fourteen caspases have been characterized in mammals : Caspase-1 to Caspase-10 

and Caspase-14 found in human and Caspase-11 to Caspase-13 found in other mammals 

[107].  Thus the caspases appear as a protein family conserved in evolution. The majority of 

the caspases are involved in apoptosis execution. However, some Caspases have non-

apoptotic function [108]. Indeed, caspases can be implicated in immune response and neuron 

differentiation and development in mammals [108]. Caspases are also implicated in sperm 

differentiation and neuroblast formation in Drosophila [109, 110]. Moreover, DRONC, the 

Drosophila homolog of Caspase-8 is involved in apoptosis induced proliferation [111]. 

 

1.1.3.2. Structure and function of caspases  

 

Caspases are present in the cell as a catalytic inactive zymogen, which is activated by 

cleavage. Caspase zymogens contain three domains: a large subunit (~20 kDa), and a small 

subunit (~10 kDa), which are highly conserved throughout evolution and also a variable N-

terminal domain named the prodomain (Figure 1). The variable N-terminal domain defines 

two types of caspases. The initiator caspases contain a long N-terminal domain, whereas the 

effector caspases contains a short N-terminal domain. The N-terminal domain of initiator 

caspases can be a ‘caspase-recruitment domain’ (CARD), ‘death effector domain’ (DED) or 

‘pyrin domain’ (PYD). Even if caspases have different N-terminal domain, they all carry a 

protease activity. Most, caspases are cysteine proteases that cleave their substrates after an 

aspartate residue. For example, ICE cleaves inactive interleukin-1-β and requires an aspartate 

residue at the cleavage site [99, 101]. This specific cleavage lead to the designation of these 

proteins as caspases : Cysteinyl ASPartate-specific proteASE [112]. However, this protease 

activity is not present in the zymogen. To be activated, effector caspases have to be cleaved. 

The caspase activation requires specific cleavage at select aspartate residues. Activation 

involves proteolytic processing of the pro-enzyme between the large and the small subunit. 

After their cleavage, large and small subunits associate to form a heterodimer [102]. The 

heterodimers associate to form a heterotetramer. The heterotetramer has two protease catalytic 

sites, which can cleave protease targets (Figure 2). 
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Caspase family has been divided into 3 sub-groups. The 3 groups are characterized by both 

the function and the structure of the caspases. The first group contains the caspases, which do 

not have an apoptotic function. These caspases are the mammalian Caspases-1, -4, -5, -11, -12 

and -13, which are involved in inflammation [107]. Indeed, as discuss previously Caspase-1 is 

an interleukin-1β-converting enzyme and is therefore implicated in the immune response. 

Caspases-4, -5, -11 and -13 have been also identified has activators of interleukin. These 

caspases participate to the inflammatory response and could trigger apoptosis specifically in 

response to pathogens. The second group of caspases contains apoptotic caspases. This group 

is sub-divided in two: the initiator caspases and the effector caspases. The initiator caspases 

are the human Caspases-2, -8, -9 and -10, the Drosophila DREDD and DRONC the respective 

homologs of Caspases-8 and -9 and the C. elegans Ced-3. The effector caspases are Caspase-

3, -6 and -7 in human and DRICE, Dcp-1 in Drosophila. The two group of apoptotic caspases 

are defined by their divergence in the N-terminal domain and in their specific function in the 

apoptotic pathway. 

 
Figure 1: The initiator and effector caspases in C. elegans, Drosophila, and mammals. Only 
caspases with potential or demonstrated role in apoptosis are shown. The small and large subunits, 
and the protein and protein interaction motifs (such as CARD and DED) are shown. Note that the 
long pro-domain in STRICA does not contain any protein-protein interaction motif(s). The relative 
lengths of various domains and subunits are not drawn to size and only serve as a guide here to 
demonstrate the various types of apoptotic caspases found in C. elegans, Drosophila and mammals. 
(adapted from [6]) 
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1.1.3.2.1. The initiator caspases 

 

The initiator caspases are upstream caspases. They are characterized by a long N-terminal 

prodomain. This domain is variable between caspases and contains homotypic protein-protein 

motifs. Several N-terminal domains have been identified: “caspase-recruitment domain” 

(CARD), “death effector domain” (DED) or “pyrin domain” (PYD) (Figure 1). It has been 

proposed that these domains control caspase regulation upon apoptosis induction. These 

domains could therefore control the specific activation of certain caspases in presence cell 

death induction signals via either the intrinsic or the extrinsic pathways (these pathways will 

be further described in 1.1.4 Part). However, despite their specific activation, they have 

common downstream targets. The common feature of the initiator caspases is their ability to 

autoactivate and also to activate downstream caspases: the effector caspases. The 

autoactivation of caspases requires the formation oligomers or multimers of pro-initiator 

caspase and not cleavage. The best characterized multimeric complex for initiator caspase 

activation is the apoptosome. In this structure, the mammalian pro-caspase-9 forms aggregates 

in association with Apaf-1 and Cytochrome C [113]. The pro-caspase 9 is activated by the 

proximity with other pro-caspases within the complex. Then, the activated initiator caspases 

cleaves itself and effector caspases. The activation of effector caspases by initiator caspases is 

required for apoptosis induction. 

 

In mammals, Caspases-8, -9 and -10 are the main initiator caspases. The effector caspases are 

activated by both the intrinsic and the extrinsic pathways, which respectively are 

mitochondria dependant and independent. Caspase-9, the Ced-3 homolog, is the only caspase 

 
Figure 2: Processing of caspase precursor to form active enzyme. TheNH2-terminal domain, which 
is highly variable in length (23 to 216 amino acids) and sequence, is involved in regulation of the 
caspases. Caspase zymogens are activated by proteolytic cleavage on two Aspartate. Two processed 
precursors assemble into a heterotetrameric active enzyme with active catalytic site. (adapted from 
[1]) 
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involved in the mitochondria pathway. The activation of Caspase-9 involves the apoptosome. 

The apoptosome is composed of Caspase-9, Apaf-1 and Cytochrome C. In presence of 

apoptotic signal, Cytochrome C is released from the mitochondria and binds to Apaf-1. 

Caspase-9 is recruited in the apoptosome via its CARD domain, which mediates its 

interaction with Apaf-1 [113]. In this complex, Caspase-9 forms homodimers and auto-

activates [114]. Caspase-9 activation is required for apoptosis of several cell types. Caspase-9 

has been first identified as a member of the caspase family involved in cytotoxic T cell-

mediated apoptosis [115]. Then, the analysis of caspase-9 mutant revealed a more general 

role of Caspase-9 in apoptosis regulation during mammal development. Indeed, mouse mutant 

for caspase-9 exhibits developmental defects, which leads to embryo lethality [116]. This 

lethality is associated to cell death deficiency. This blockage of apoptosis in caspase-9 KO 

mice is characterized by the absence of Caspase-3 cleavage and of lack of DNA fragmentation 

in cells intended to die [117]. Thus Caspase-9 appears as an upstream actor of apoptosis, 

which leads to the activation of other caspases. In addition to Caspase-9, effector caspases can 

also be activated by Caspases-8 and -10. Unlike Caspase-9, Caspases-8 and-10 are not 

activated in the apoptosome and their activation does not require mitochondria. They are 

activated in another activation platform, the death-inducing signaling complex (DISC) and are 

involved in the extrinsic pathway. The integration of Caspases-8 and-10 in the DISC complex 

requires their N-terminal DED domain. In this complex Caspases-8 and -10 form homodimers 

and autoactivate [118, 119]. The activated Caspase-8 and -10 leads to effector caspase 

activation such as Caspase-3.  

 

The Drosophila genome contains three initiator caspases: Dronc, Dredd and Strica (Figure 1). 

Dronc, the homolog of Ced-3/Caspase-9, has been identified as an initiator caspase. As its 

mammalian homolog, Dronc activation could involve the formation of the apoptosome as 

suggested by the aggregation of Dronc next to the mitochondria [120]. However, the role of 

apoptosome in the activation of caspases is controversial and will be discuss in the 1.1.4.2.1 

Part. In Drosophila, the regulation of Dronc involves mainly the inhibitor of apoptosis 

proteins (IAPs), which inhibit caspase activity [121] (see 1.1.5 Part). Dronc activity is 

required during Drosophila development in several tissues such as the larval brain and the eye 

imaginal disc [6, 122-124]. Moreover, as dronc mutations are lethal at the pupal stage, it 

suggests that Dronc has also a role in apoptosis induction upon metamorphosis [122, 124]. In 

addition to its role in Drosophila development and metamorphosis, Dronc also initiates cell 

death induced by ectopic factors such as X-ray irradiation and pro-apoptotic genes over-
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expression such as reaper [125]. Thus, Dronc appears as a central actor of apoptosis in 

Drosophila, which is activated by several signals and in different tissues. Cell death 

regulation during Drosophila development appears to be mediated by a temporal and special 

regulation of Dronc [126]. Indeed ectopic expression of dronc leads to excess of cell death 

any modification of dronc expression leads to development defect. Dronc mediated apoptosis 

requires the activation effector caspase such as Drice or Dcp1. These effector caspases can 

also be activated by other initiator caspases such as Dredd and Strica. However, these 

caspases are less efficient for Drice activation compare to Dronc. Indeed, even if Dredd is 

able to activate downstream caspases, Dredd is more involved in immunity than apoptosis 

regulation. Strica is another Drosophila initiator caspase which can trigger apoptosis [127]. 

However, the downstream effectors of Strica have not been identified. In conclusion, Dronc, 

Dredd and Strica are all initiator caspases but Dronc is the main player of apoptosis in 

Drosophila.  

 

1.1.3.2.2. The effector caspases 

 

The effector caspases are the downstream actors of apoptosis. The effector caspases are 

characterized by a small N-terminal domain and as initiator caspases contains a large and a 

small subunit (Figure 1). Their activation requires the cleavage of the large and the small 

subunit. However, unlike initiator caspases, the prodomain of the effector caspases prevents 

their autoactivation. Thus, the effector caspases require other proteases for their activation. 

The main proteases involved in effector caspase activation are the initiator caspases [128]. 

Thus, the two classes of caspases act in the same pathway to trigger apoptosis. Once activated 

the effector caspase cleave cellular substrates for the completion of apoptosis. 

 

In mammals there are three effector caspases: Caspases-3, -6, and -7. Caspase-3 is the 

mammalian homolog of Ced-3. It has therefore been proposed that this protein could 

participate in apoptosis [129]. To test this hypothesis, caspase-3 knockout mice have been 

studied. These mutants exhibit developmental defects and lethality similar to caspase-9 

mutants. Caspase-3 knockout mice harbor tissue hyperplasia and supernumerary cells. Thus 

Caspase-3 is required for developmental apoptosis [130]. The classification of Caspase-3 has 

an effector caspase result from the structure of its prodomain and its incapacity to autoactivate 

[131]. In addition to Caspase-3, Caspases-7 and -6 have also been identified as effector 

caspases as they carry a short pro-domain (Figure 1). It has been shown that in dying cell 



33 
 

Caspases-3, -7 and -6 can be activated and lead to apoptosis [132-134]. The fact that several 

effector caspases are activated upon apoptosis suggests that they could have specific function. 

Particularly, it has been shown that Caspases-3 and -7 had different subcellular localization 

[132, 134]. Indeed, Caspase-3 appeared as a cytoplasmic protein, however Caspase-7 was 

translocated to the endoplasmic reticulum [132]. Therefore, due to their specific localization, 

Caspases-3 and -7 can have different targets which lead to apoptosis. Several cytoplasmic 

targets of the effector caspases have been identified as discuss in 1.1.3.3 Part. However the 

specific targets of Caspases-7 and -6 remain to be further studied.  

 

Drice and Dcp-1 are two effector caspases in Drosophila. Drice and Dcp1 are caspases with a 

short pro-domain which are respectively the homologs of Caspase-7 and Caspase-3. This 

homology suggests that Drice and Dcp1 are effector caspases. It has been shown that Dronc 

physically interacts with and cleaves Drice both in vivo and in vitro [135, 136]. However, in 

addition to Drice, Dronc can activate other effector caspases. Indeed, Dronc mutation is lethal 

at the larval stage whereas Drice mutation induces pupal lethality [122, 137]. This result 

suggests that Dronc activity not only relies on Drice but could involve other effector caspases 

such as Dcp1. Indeed, Dcp1 RNAi suppresses dronc over-expression induced apoptosis 

whereas dronc RNAi does not inhibit dcp1 over-expression induced cell death in the eye 

[138]. This experiment suggests that Dcp1 is a downstream target of Dronc. Thus, Drice and 

Dcp1 are effector caspases which trigger apoptosis. These caspase are involved for 

Drosophila development [139, 140]. Drice or dcp1 mutant can lead to developmental lethality 

[137, 141]. Drice1 mutant is lethal for 80% of pupae whereas dcp1 mutant is lethal for only 

20% of the pupae [137]. In addition, drice mutant adults have defects in formation of eyes, 

arista and wings, which suggests that Drice inhibition alters cell death upon the development 

of these tissues [137]. As the penetrance of drice mutant phenotype is higher in dcp1 mutant, 

Drice appears as the major initiator caspase involves in development. However dcp1-drice 

double mutant enhances drice single mutant lethality, which shows that the two effector 

caspase acts in parallel in apoptosis upon development [137]. Moreover, it has been shown 

that, even if both Drice and Dcp1 are both activated by irradiation, Drice is a more effective 

inducer of irradiation induced cell death than Dcp1 [142]. These results suggest that Dcp1 is 

less efficient for apoptosis. Indeed, Dcp1 is not able to compensate Drice impairment. 

Interestingly, if dcp1 is expressed with drice promoter, Dcp1 activates apoptosis after 

irradiation. Thus the difference between Dcp1 and Drice regarding apoptosis induction is not 

due to their intrinsic activity but to their pattern and level of expression [142]. Thus it seems 
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that in some cases, apoptosis can specifically require Drice and not Dcp1 [141]. For example, 

it has been shown that S2 cell death is only dependent of Drice. But, upon development, both 

Dcp1 and Drice are required. Those results suggest that in Drosophila, apoptosis requires 

either Dcp1 or Drice or both effector caspases.  

 

1.1.3.3. Effector caspases targets 

 

Activated caspases cleave cellular substrates causing morphological changes, and ultimately 

leading to apoptosis. Over 1000 caspase substrates have been identified [143, 144]. There are 

still uncertainties concerning which substrates are functionally required in the apoptotic 

process. Nevertheless, some effector caspase targets can be linked to apoptosis features such 

as DNA fragmentation. The DNA fragmentation can be mediated by DNase activation during 

apoptosis. A DNase, DNA Fragmentation Factor (DFF), has been identified as a target of 

Caspase-3. Caspase-3 mediated cleavage of DFF produces an active DNase and thus leads to 

DNA fragmentation [145]. DNase activation could also be triggered by the inhibition of 

DNase inhibitors. Indeed, caspase-3 cleaves the inhibitor of the caspase-activated DNase 

(ICAD), which leads to the activation of CAD and DNA fragmentation [146, 147]. In addition 

to DNA fragmentation, apoptotic cell shape changes and apoptotic cells finally detach from 

the neighboring cell. Cell shape alteration upon apoptosis involves cytoskeleton 

disorganization [77]. For example, one structural component of the cell, the nuclear Lamin, is 

cleaved by effector caspases, which facilitates the orderly disassembly of the cell [148, 149]. 

Moreover, effector caspases cleave β-catenin both in Drosophila and in mammals, promoting 

the loss of contact of the apoptotic cell with neighboring cells and thought to facilitate cellular 

clearance and engulfment [150, 151]. 

 

In addition to caspases targets, which are involved in apoptosis, other targets have been 

identified. Indeed, even if caspases are predominantly involved in cell death, they also 

function in non-apoptotic processes. A variety of mammalian caspases have been 

demonstrated to have functions in a range of differentiation processes, including muscle 

specification, terminal nucleation of red blood cells, and lens epithelial cell development in 

the eye [152, 153]. For example, myoblast differentiation to form muscle requires the 

activation of caspases. Indeed, caspase inhibition prevents myofiber formation and expression 

of muscle-specific proteins. Interestingly, it has been shown that in the differentiating 

myoblasts as in apoptotic cells, there is a reorganization of the cytosqueleton. Thus both in 
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differentiating and dying cell, caspases could induce actin remodeling [152].  As mammalian 

caspases, the Drosophila caspases are involved in non apoptotic functions. Drosophila 

caspases have been involved in a myriad of cellular processes during development. That 

includes cell border migration, sperm differentiation or Sensory Organ Precursor (SOP) 

specification [137, 154, 155]. For example, caspases are required for spermatid 

individualization upon sperm differentiation. Caspase activation is detected in differentiating 

sperm, however, apoptosis is not activated. The inhibition of caspases prevents spermatid 

individualization defects which leads to male sterility [109]. The targets of caspases 

specifically involved in these mechanisms remain to be characterized.  

 

1.1.4. Extrinsic and intrinsic pathways of apoptosis 
 

Caspase induction is regulated by two different pathways in mammal cells depending of the 

origin of the death signal: the extrinsic and the intrinsic pathways. The extrinsic pathway 

involved cell death receptors of the tumor necrosis factor (TNF) family, which respond to 

extracellular apoptotic signals. The intrinsic pathway involves mitochondria and is activated 

in response to internal signals such as genotoxic damage, oxidative stress, heat shock and 

developmental signals.  

 

1.1.4.1. The extrinsic pathway 

 

The extrinsic pathway is a receptor-mediated pathway, which leads to caspase activation. 

Apoptosis can be activated be extracellular signals. These signals are sensed by receptors 

localized on the plasma membrane called the death receptors, which transduce signals in the 

cytoplasm to induce apoptosis. These receptors are members of the tumor necrosis factor 

(TNF) receptor family. Twenty-nine TNF receptors (TNFRs) have been identified in 

mammals [156]. TNFR family members are involved in different cellular processes such as 

inflammation and apoptosis [157]. Six members of the TNF receptor family are known to be 

involved in apoptosis: Fas, TNFR1, DR3, TNF-related apoptosis-inducing ligand (TRAIL)-

R1 and -R2 and DR6 [158-160]. These receptors are characterized by cysteine-rich domains 

(CRDs). The extracellular domains of the TNFRs allow the specific binding of the ligand. In 

presence of the ligands, the receptors adopt a tertiary structure. When the TNFRs form 

trimers, they activate downstream signals in the cytoplasm [161]. The intracellular part of 
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TNFRs contains a death domain (DD), which functions as a protein-protein binding site. 

Indeed on their DD domain, TNFRs bind to adaptor proteins, which also have a DD. For 

example, Fas-associated death domain (FADD) and the TNF-receptor-associated factor 

(TRAF) are two adaptor proteins, which respectively bind to Fas and TNFR1. The adaptator 

proteins in addition to the DD also have a death effector domain (DED). This DED allows the 

recruitment of caspases in the complex. Indeed, caspase-8 carries a DED, which interacts with 

the DED of the adaptor protein. The protein interactions lead to the formation of a complex, 

which contains TNFR-adaptor proteins-caspases, called death-inducing signaling complex 

(DISC). The DISC is a protein platform where initiator caspases dimerize and autoactivate 

leading to activation of effector caspases such as caspase-3 and to apoptosis (Figure 3). Thus, 

the DISC is an effective caspase activation platform. However, the DISC also contains 

proteins, which prevent caspase activation. For example, cellular-FLICE inhibitory protein (c-

FLIP) can be associated to FADD [162]. c-FLIP contains a DED, which competes with the 

binding site of caspases inhibiting their activation in the DISC complex [163]. In addition to 

c-FLIP, DISC mediated caspase activation can be regulated by cyclic AMP (cAMP). cAMP 

prevent the formation of DISC inhibiting the recruitment of adaptator proteins to TNFR1 

[164]. DISC is a platform where the activation of the initiator Caspase-8 is tightly controlled. 

 

Homologs of the extrinsic pathway have been characterized in Drosophila. Genetic screens 

have identified the first invertebrate TNF superfamily ligand, Eiger, and the TNFR-1 

homolog, Wengen [165-167]. Although both genes are potent inducers of apoptosis, the 

mechanism involved seems to be distinct from the mechanism used by their mammalian 

counterparts. Wengen does not require the caspase-8 homolog Dredd to promote apoptosis 

[168]. Instead, Eiger and Wengen-induced cell death is entirely dependent on the JNK 

pathway [165, 167, 168]. Interestingly, the activation of JNK pathway can lead to rpr 

activation and thus caspase activation [168]. However, it has been shown that caspase 

inhibition by P35 or Dronc-dominant negative only partially suppresses Eiger induced cell 

death [165]. This suggests that caspase activation triggered by Eiger is not essential for cell 

death induction. Thus, Eiger induces mainly cell death via a caspase independent cell death. 

Thus as in mammals, TNF in Drosophila participates in apoptosis regulation. However, the 

Drosophila TNF only has a limited function in apoptosis control via caspase regulation, rather 

it regulates cell death via JNK pathway which induces cell death by caspase independent 

mechanisms which could be necrosis.  
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1.1.4.2. The intrinsic pathway 

 

1.1.4.2.1. Mitochondria and apoptosis  

 

Mammalian mitochondria are pivotal regulators of the intrinsic pathway of apoptosis. 

Mitochondria contain in the intermembrane space apoptogenic factors such as Cytochrome C, 

second mitochondria-derived activator of caspases (Smac)/direct inhibitor of apoptosis (IAP)-

binding protein with low pI (Diablo), high-temperature-requirement protein A2 (Htra2)/Omi 

[169-176]. These factors are released to the cytoplasm upon apoptosis induction, they are. The 

release of these factors in the cytoplasm induces caspases activation and DNA fragmentation. 

The main apoptotic regulation from the mitochondria is mediated by Cytochrome C release 

and apoptosome formation. Apoptotic signals induces the release of Cytochrome C in the 

 
Figure 3: The apoptotic pathways in C. elegans, Drosophila and mammals. Functional homologs across 
species are represented by the same color and shape. Arrows represent relation between apoptotic 
pathway components. The dashed arrows are hypotheses that require further studies.  
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cytoplasm, which trigger the multimerisation of Apaf1 [177]. This complex recruits pro-

caspase-9 forming the apoptosome. In the apoptosome, Caspase-9 is autoactivated, which 

leads to the activation of effector caspases. The caspase activation mediated by mitochondria 

and the apoptosome constitutes the intrinsic pathway of apoptosis (Figure 3). In addition to 

apoptosome formation, mitochondria can trigger apoptosis via other mechanisms. Caspases 

can be activated by Smac/Diablo and HtrA2/Omi. Indeed, they activate caspases via the 

inactivation of the inhibitor apoptosis proteins (IAPs). Their role in caspase regulation will be 

discussed later in the 1.1.5 Part.  

 

Mitochondria outer membrane permeabilization (MOMP) is essential for the release of pro-

apoptotic factors: Cytochrome C, Smac/Diablo, Htra2/Omi. MOMP can be triggered by 

specific pores in the mitochondrial membrane [178]. These pores are formed by proteins of 

the Bcl2 family such as Bax and Bak and are described as the most effective Cytochrome C 

transporter. Bax and Bak are pro-apoptotic members of the Bcl2 family which can form 

dimers. The pore can be either homodimer of Bak and Bax or heterodimer Bax/Bax. These 

different types of dimer are all efficient for the transport of Cytochrome C. It has been shown 

that Bax and Bak have redundant function. Indeed, it has been shown that the mutant mice for 

either Bax or Bak are healthy viable whereas the double mutant mice bax-/- bak-/- have 

developmental defects that can lead to perinatal death [179]. Moreover, it has been shown that 

in bax-/- bak-/- mouse cells, the release of Cytochrome C is inhibited upon apoptosis 

induction. These results indicate that Bax and Bak have redundant function in the released of 

Cytochrome C from mitochondria. The role of Bcl2 family in mitochondria permeabilization 

will be further described in the 1.1.4.2.2 Part. The addition to Bax and Bak pores, other 

transporter localized in the mitochondria membrane have been identified such has Voltage 

Dependent Anion Channel (VDAC) or Permeability transition pore (PTP). These transporters 

have been mostly implicated in the necrosis process via the induction of mitochondria 

swelling and MOM rupture [178, 180, 181]. However, several experiments also shown that 

these transporter can be involved in Cytochrome C, AIF or Smac/Diablo released from the 

mitochondria to the cytoplasm [182-185]. These transporters have therefore been related to 

apoptosis regulation. Via the released of pro-apoptotic compound, mitochondria is essential 

for apoptosis regulation in mammals [186, 187]. 

 

Mitochondria fragmentation could induce apoptosis independently of Cytochrome C. During 

apoptosis, mitochondria undergo various structural changes. These morphological changes are 
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due to fission and fusion processes, which could therefore play a role in apoptosis. Indeed, 

Dynamin-related protein 1 (Drp1) a protein involved in fission of mitochondria is linked to 

apoptosis. Inhibition of Drp1 blocks mitochondria fission and inhibits apoptosis [188]. 

Moreover, Drp1 co-localizes with Bax, a Bcl-2 family member, which suggests that Bax 

could mediate mitochondria fragmentation upon apoptosis. It has been shown in mammals 

and C. elegans that Bax overexpression promoted both mitochondrial fragmentation and 

Cytochrome C released [189, 190]. Interestingly these two mechanisms are independent, as 

Bcl-XL overexpression block Cytochrome C release but not mitochondria fragmentation 

[190]. Mitochondria fragmentation could be involved in the released of mitochondrial 

Smac/Diablo and thus leads to apoptosis.  

 

The role of mitochondria in the regulation of apoptosis in Drosophila is controversial. 

Orthologs of the mitochondrial pro-apoptotic factors have been identified in Drosophila but 

their role in caspase activation remains unclear. The Drosophila genome encodes orthologs of 

Cytochrome C and members of the Bcl-2 family [109, 191-194]. The existence of all these 

components of the intrinsic pathway suggests that it could be involved in caspase regulation 

in Drosophila. The role of mitochondria in cell death induction has been studied. 

Mitochondria from apoptotic cells are capable to induce caspase activation and cleavage of 

Poly-(ADP-ribose) polymerase (PARP), a substrate for active caspases in Drosophila S2 cell 

[195, 196]. This result suggests that mitochondria of dying cells are associated with caspase 

activation. Interestingly, Dronc, a Drosophila effector caspase, has been shown to localize 

near mitochondria, suggesting that an apoptosome may form in contact to mitochondria [136]. 

However, opposite results have been shown in vitro. In this experiment, mitochondria from 

apoptotic S2 cells were incapable to induce caspase activation, suggesting that Drosophila 

mitochondria do not play a role in caspase activation [197]. These contradictory results failed 

to determine the precise role of mitochondria in caspases regulation. To determine a potential 

role of mitochondria in apoptosis induction, the role of Cytochrome C has been studied. First, 

the activity of Drosophila Cytochrome C has been tested.  Purified Drosophila Cytochrome C 

is able to replace human Cytochrome C in activating caspases through Apaf-1, which suggest 

that Cytochrome C function is conserved in evolution [198]. In addition, Cytochrome C can 

activate Drosophila caspases in embryonic lysates [196]. Even if, Cytochrome C is able to 

activate caspases, it has to be released from the mitochondria upon cell death induction to 

activate caspases in the cytoplasm. It has been observed that upon apoptosis induced by reaper 

over-expression, Cytochrome C is released from mitochondria [199]. However, it has also 
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been shown by another group that Cytochrome c is not released from the mitochondria but 

rather its form is altered to expose a new epitope during apoptosis [195]. The exposition of 

Cytochrome C at the surface of the mitochondria could explain the concentration of caspases 

forming an apoptosome like structure next to mitochondria [136]. Moreover, Drosophila 

Apaf-1 related killer (Dark), a component of the apoptosome, carries a WD repeat domain, 

which is a potent interaction domain of Cytochrome C [200]. However, structural data 

suggests that the Drosophila Cytochrome C is not required for apoptosome assembly [201]. In 

addition, no link has been identified between Drosophila Apaf-1 related killer (Dark), and 

Cytochrome C suggesting that the apoptosome formation could be independent of 

Cytochrome C [202]. The role of Cytochrome C is thus a controversial issue for the execution 

of apoptosis in Drosophila [203]. In vitro studies addressing its functional role in the 

execution of apoptosis revealed that Cytochrome C is not involved in caspases activation. 

Initial studies knocking-down Cytochrome C by RNAi technology failed to suppress grim, rpr 

and stress-induced cell death in Drosophila S2 and SL2 cells [204]. Moreover, Cytochrome C 

knocked-down resulted in no effect on Dronc activation or on the execution of apoptosis in 

SL2 and BG2 cells [205]. Moreover, in condition where Cytochrome C released from the 

mitochondria have been observed Cytochrome C is not involved in caspase activation [199]. 

However, in vivo experiments shown that Cytochrome C can be involved in caspase 

activation and apoptosis during development. Genetic evidences in fly testis support a role for 

Cytochrome C in caspase activation, contrary to what was observed in Drosophila cell lines. 

Arama and colleagues have shown that sperm terminal differentiation requires caspase 

activation and that this activation is dependent on the presence of Cytochrome C. Loss of 

Cytochrome C transcript results in male sterility due to defective differentiation, as a 

consequence of loss of caspase activity [109, 206]. Thus Cytochrome C is required for 

caspase activation in an apoptotic-like process necessary for sperm maturation. Moreover, it 

has also been shown that Cytochrome C is required during Drosophila eye development. 

Indeed, supernumerary inter-ommatidial cells are eliminated by apoptosis during development 

[194]. In addition, it has been shown that adult Drosophila mutant for Cytochrome C  have 

extra bristle in the scutellum [194]. These examples show that Cytochrome C is involved in 

apoptosis. The apparent conflicting results found on the role of mitochondria and Cytochrome 

C in apoptosis regulation could be due to the different cell types and different contexts used in 

these studies. The involvement of mitochondria and Cytochrome C in caspases regulation in 

Drosophila could be dependent of the cell type and of the cell death signals. Thus the 

mitochondria pathway is essential for apoptosis in mammals, and is likely involved in 
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Drosophila to regulate apoptosis in a limited cell type number. Cytochrome C is not required 

in the majority cell apoptosis, however, the Drosophila ortholog of the apoptosome 

component Apaf-1 named Dark is involved in apoptosis and in particular in Dronc activation 

[207].  Indeed, dark mutant larvae exhibit reduction of cell death in the brain, the wing disc, 

the eye disc and in the salivary gland [207]. Interestingly, dronc and dark mutants have 

similar phenotype, which support the role of Dark in Dronc activation. However, it has been 

shown that Dark expression is not sufficient to induce Dronc activation [208]. Therefore, it 

has been proposed that Dark requires an addition factor to activate Dronc. Thus as in 

mammals, Drosophila initiator caspase can be activated in an apoptosome like structure. 

However, in Drosophila, the apoptosome like structure is not the main regulator of caspase 

activity. A model involving the inhibitor apoptosis proteins (IAPs) have been proposed for 

caspase activity regulation [209]. In this model, it has been proposed that caspases are 

constitutively activated but their activity is block by IAP. The mechanism of IAPs mediated 

caspase inhibition will be discussed in 1.1.5 part. In presence of apoptotic signal  IAPs could 

be inhibited leading to caspase activation [209]. To conclude, Drosophila homologs of the 

intrinsic pathway can induce caspase activation however, it seems that the fine control of 

caspase activity in response to apoptotic signal is mediated by the IAPs. 

 

1.1.4.2.2. BCL-2 family 

 

The Bcl-2 family members are involved in apoptosis regulation. They are localized in the 

outer membrane of the mitochondria and control the integrity of the mitochondrial membrane 

and the released of the Cytochrome C. The Bcl-2 family members have been identified in C. 

elegans as modifier of developmental apoptosis pattern. The Bcl-2 family members have been 

shown to be either pro- or anti-apoptotic. The anti-apoptotic member of the Bcl-2 family in C. 

elegans is Ced-9 [94]. Ced-9 can prevent the cell death induced by Ced-3, and this anti-

apoptotic activity of Ced-9 requires Ced-4, suggesting that Ced-9 acts at least in part through 

Ced-4 to prevent Ced-3-induced cell death. In contrast, Egl-1 is a pro-apoptotic factor of the 

Bcl-2 family, which is observed only in dying cells [93].  In mammals, several pro and anti-

apoptotic factors Bcl-2 family members have been identified. The anti-apoptotic members are 

Bcl-2, Bcl-XL, Bcl-W, mcl-1 and BFfl-1/A1. Bcl-2 was demonstrated to be a potent 

suppressor of the process of programmed cell death in mammals. Indeed, the expression of 

exogenous Bcl-2 could protect cells from apoptosis induced by several mechanisms such as 

infection or sepsis [210, 211]. In addition to its protective effect against cell death in 
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mammals, Bcl-2 can also block cell death in C. elegans. Indeed, mammalian bcl-2, the ced-9 

homolog, over-expression reduces cell death in C. elegans, which confirms the conservation 

of cell death pathway from mammals to C. elegans [212-214].  Like the anti-apoptotic 

members of the Bcl-2 family, the pro-apoptotic members are conserved throughout evolution. 

The homologs of the pro-apoptotic Egl-1 have been identified in mammals among them Bax, 

Bad and Bid [215]. Indeed, Bax overexpression leads to Cytochrome C release and apoptosis 

[216, 217]. Thus, in mammals as in C. elegans, two classes of Bcl-2 family proteins can be 

distinguished: the pro and anti-apoptotic classes. These classes of Bcl-2 family members are 

classified depending on their function and their structure. The Bcl-2 family members carry 

Bcl-2 homology domains (BH): BH1, BH2, BH3 and BH4. The anti-apoptotic members 

harbor at least three BH domains. Whereas the pro-apoptotic members contain at least the 

BH3 domain [215]. The Bcl-2 family members, which only contain the BH3 domain form a 

sub-family of Bcl-2 proteins: the BH3-only proteins, which play a key role in apoptosis 

induction [218].  

 

The balance between pro- and anti-apoptotic Bcl-2 family members at the mitochondrial 

membrane determines cell fate. The Bcl-2 family members carry BH domains, which are 

protein-protein interaction domains. The BH domains allow dimer formation. Bcl-2 family 

members such as Bcl-2, Bax and Bak can interact and form heterodimers or homodimers. The 

dimers of Bcl-2 family members are involved in the control of apoptosis. Apoptotic signals 

induce Bax and Bak translocation to the mitochondrial membrane and formation of Bax and 

Bak homodimers, which leads to mitochondrial membrane permeabilization and apoptosis 

[216, 219, 220]. Bax homodimers form pore in the mitochondria membrane and allow the 

released of Cytochrome C in the cytoplasm [221]. The formation of Bax homodimer is 

controlled by anti-apoptotic Bcl-2 family members and BH3-domain-only proteins. Bcl-2 and 

Bcl-XL can form heterodimers with Bax. These heterodimers are unable to induced apoptosis. 

BH3-domain-only proteins such as Bid or Bad bind to Bcl-2 preventing its interaction with 

Bax [222] [223]. This titration of Bcl-2 increases the Bax homodimer formation and leads to 

apoptosis [223]. Thus the ratio between Bcl-2 and Bax is important to control the formation of 

hetero and homodimer and thus apoptosis [216]. Indeed, bcl-2 overexpression protects form 

apoptosis and this protective effect is reduced if bax is co-expressed with bcl-2. Apoptosis 

regulation by the Bcl-2 family members is mediated by both the balance between pro and anti 

apoptotic factor and the specific inhibition of anti-apoptotic members by the pro-apoptotic 

factors [224].  
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Bcl-2 family members are regulated by several intracellular mechanisms. The intrinsic 

pathway is activated by intra cellular defects such as DNA damage, oxidative stress, and 

endoplasmic reticulum stress or mitochondria dysfunction. These stresses induce the 

translocation of Bax to the mitochondrial membrane inducing MOMP. In addition, 

mitochondria-mediated cell death can also be activated by the extrinsic pathway. The Bcl-2 

family members are the link between intrinsic and extrinsic pathway. Bid, a BH3-domain only 

protein, is cleaved by Caspase-8 activated in the DISC [225]. The activated Bid goes to the 

mitochondria where it binds to Bcl-2. The binding of Bid to Bcl-2 favors the dimerization of 

Bax and leads to the activation of the intrinsic pathway. Thus upon extracellular apoptotic 

signal, BH3-domain only proteins enhance cell death by activating the mitochondrial 

pathway. 

 

The role of Bcl-2 family members and in the control of apoptosis is not defined in 

Drosophila. The anti-apoptotic function of the Bcl-2 family is conserved throughout 

evolution. Indeed, mammalian Bcl-2 overexpression in Drosophila prevented cell death 

during embryogenesis, and wing and eye development [226]. These results shown that the 

Bcl-2 pathway is functional in Drosophila. In Drosophila, two members of the Bcl-2 family 

have been identified, named Debcl/Drob-1/ dBorg-1/dBok and Buffy/dBorg-2 [191, 192, 

227]. Debcl and Buffy carry the BH1, BH2, BH3, and C-terminal transmembrane domains of 

the Bcl-2 family of proteins [228, 229]. Debcl shares an high homology with the pro-

apoptotic member of the Bcl-2 family in mammals, Bok, which is a protein involved in pore 

formation in the mitochondria membrane [230]. Thus, this homology suggests that Debcl can 

be involved in apoptosis induction in Drosophila [226]. Debcl has been shown to be a killer 

protein in vitro and in vivo. Overexpression of debcl induces cell death both in Drosophila 

and mammalian cells. Ectopically expressed debcl is localized to the mitochondria and 

induces cell death.  A mutant Debcl protein that lacks the C-terminal transmembrane domain 

loses both the mitochondrial localization and cell killing ability, indicating that Debcl triggers 

the cell death pathway at the mitochondrial level [227]. On the contrary, the other member of 

the Bcl-2 family identified in Drosophila, Buffy, is an anti-apoptotic factor [193]. It seems 

that as in mammals, cell death regulation by the Bcl-2 family in Drosophila involves the ratio 

between pro and anti-apoptotic factors. Indeed, it has been shown that Debcl can inhibit the 

anti-apoptotic function of Buffy [231]. Thus, as in mammals, the Bcl-2 family members seem 

to be involved in cell death regulation (Figure 3). However, Debcl induces cell death is not 
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blocked by caspases inhibitors showing that this cell death is caspase independent [191, 192, 

227, 230]. In addition, it has been shown that Debcl is not involved in PCD during Drosophila 

development. Indeed, debcl gene deletion did not alter fly development [231]. However, 

Debcl seems to be required for PCD in the developing central nervous system. Indeed, debcl 

knock out Drosophila specifically present extra cells in Central Nervous System of the 

embryo [232]. These two articles present contradictory results. It has been proposed the debcl 

deletion published by Sevrioukov was only a hypomorphic allele and thus was not possible to 

detect supernumary cells. Although, it appears that contrary to mammals where bak-/- bak-/- 

double mutation is lethal, debcl mutation is not lethal in flies. Thus pathway which involves 

Bcl-2 family is essential for mammal development but not in Drosophila. Thus, it seems that 

Drosophila pro-apoptotic Bcl-2 family members have diverged from their mammalian 

homologs and cannot activates caspase.  

 

 

1.1.5. Inhibitor of Apoptosis Proteins (IAPs) 
 

In healthy cells, caspase are expressed but their activation is prevented by the Inhibitor of 

Apoptosis Proteins (IAPs). In apoptotic cell, several mechanisms have been identified that 

lead to caspase activation while these mechanisms are kept in check by IAPs in living cells. 

The IAPs have been identified in baculovirus. The baculovirus express proteins such and the 

IAPs and P35, which inhibit apoptosis to maintain infected cells alive [233-239].  Viral IAPs 

and P35 protect insect and mammalian cells from virus-induced cell death. Moreover, IAPs 

and P35 overexpression protect cells from apoptosis induced by caspases over-expression 

[240]. These results indicate that caspases inhibitory mechanisms are conserved in evolution 

and IAP or P35 homologs could exist in metazoans. No metazoan homologs of P35 have been 

identified. However, it has been shown that IAPs are conserved throughout evolution. Indeed 

genome analyses, lead to the identification of genes with high homology with the viral IAPs 

[241]. Cellular IAP homologs have been identified in several species. In Drosophila, there are 

two IAPs: DIAP1 and DIAP2 [242]. ITA (inhibitor of T cell apoptosis) is an IAP localized in 

the T lymphocytes in chicken [243, 244]. Several mammalian IAPs have been identified such 

as NAIP, cIAP1, cIAP-2 and XIAP [242]. The mammalian and invertebrates IAPs are as the 

viral IAPs involved in the inhibition of apoptosis. Indeed, mutations in Drosophila IAP1 

(DIAP1) enhanced developmental apoptosis that depends on rpr and hid [245]. Moreover, 
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DIAP2 has been found to bind and inhibit the caspase Drice [246]. In addition, various human 

IAP homologs have been reported to block death induced by serum withdrawal, staurosporine, 

menadione, caspase overexpression and Sindbis virus infection [241]. IAPs are thus able to 

block cellular stresses. In particular, it has been shown that IAP expression is enhanced by 

endoplasmic reticulum (ER) stress. Indeed, chemical induction of ER stress with tunicamycin 

or thapsigargin activates IAP expression, which prevents ER stress inducted apoptosis [247]. 

In addition to stress resistance, endogenous human IAPs are linked with pathologies such as 

degenerative diseases or cancer. Indeed the human Neuronal Apoptosis Inhibitory Protein 

(NAIP) mutation is associated to Spinal Muscular Atrophy [248]. This suggests that 

endogenous IAPs prevent degeneration. Reciprocally, the overexpression of IAPs protects 

neurons against ischemia induced cell death [249]. In addition to degenerative diseases, IAPs 

are also involved in cancer. The expression of IAPs is altered in several cancers such as lung, 

prostate or breast cancers [108, 250, 251]. Furthermore, it has been shown that IAPs 

inhibition either genetically or chemically enhance cancer cell death induced be irradiation 

[250, 252]. 

 

The members of the IAP family inhibit caspase activity via steric and ubiquitin-mediated 

degradation. IAP activity is mediated by 2 characteristic motifs: RING finger and Baculovirus 

IAP repeats (BIR) domain. In Drosophila and in mammals, only the BIR domains of the IAPs 

are required for their anti-apoptotic activity.  The BIR domains mediate the interaction IAP 

interaction with both initiator and effector caspases. Indeed, it has been shown in mammals 

that IAPs interact with Caspases-3, -7 or -9. The BIR domain of IAPs binds to the IAP-

binding motifs (IBMs) present on the caspases [253]. The binding of IAPs to caspases can 

either prevent caspase activation or inhibits caspase activity. On one hand, IAPs can prevent 

zymogen caspase activation by both intrinsic and extrinsic pathway. For example, the human 

IAPs can bind to the zymogen Caspase-9. This binding prevents the activation of Caspase-9 in 

the apoptosome [254]. Thus, IAPs inhibit apoptosome and prevent initiator or effector caspase 

activation [255, 256]. Moreover IAPs can inhibit caspases via the regulation of the extrinsic 

pathway. Via binding to TNFR-associated factor 2 (TRAF2), c-IAP1 and c-IAP2 are recruited 

to TNFR signaling complex. This complex can either activates caspases or NF- B. When 

TNFR complex contains IAP, it induces NF- B preventing caspases activation [257, 258]. 

The IAPs apparently provide a safeguard mechanism against minimal activation of the 

apoptosis program. On the other hand, human IAPs can also bind to activated effector 

caspases such as Caspase-3 or Caspase-7.  The binding of IAPs to activated caspases prevents 
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the cleavage of their downstream targets. As the human IAPs, the Drosophila IAPs interact 

with caspases such as Dronc, Drice and Dcp-1 to block their proapoptotic function [246, 259, 

260]. It has been proposed that DIAP1 functions upstream to block Drice and Dronc 

activation [261].  The binding of IAPs block the interaction of caspases to other proteins and 

thus prevents caspases activation. In addition to this steric inhibition, the IAP binding to 

caspases blocks their activity by ubiquitination and proteasome mediated degradation. Indeed, 

IAPs have a E3 ubiquitin ligase activity [262]. It has been shown that in Drosophila, Diap1 

can promote ubiquitination of the caspase Dronc in a RING-dependent manner [263]. 

Moreover, Dronc accumulates in DIAP1 mutant [264]. These results suggest that 

ubiquitination of caspase by DIAP1 leads to proteasome-mediated degradation of caspases. 

Mammalian IAPs also inhibits the pro-apoptotic function of caspases by ubiquitination.  In 

humans, XIAP and cIAP2 induce effector caspase ubiquitination in vitro [265]. Moreover, it 

has been shown that cIAP1 binding to Caspases-3 and -7 induces their ubiquitination [266]. 

The ubiquitination of caspases leads to their degradation [267]. However it has also been 

shown that IAP mediated ubiquitination of caspase could inhibits caspases independently of 

ubiquitination. Indeed, Bergmann and col. shown that the accumulation of Dronc in DIAP1 

mutant was not due to inhibition of degradation [268]. Indeed, proteasome inhibition did not 

induce ubiquitinated caspase accumulation [269]. Furthermore, they have shown that DIAP1 

controls processing and activation of Dronc [268] [269]. In addition, it has been shown that 

DIAP1 mediated ubiquitination blocks specifically caspase proapoptotic activity but not their 

non-apoptotic function. These results suggest that DIAP1 mediated ubiquitination does not 

induce caspase degradation but rather results in a selective inhibition of caspase activities 

[270]. It has been proposed that caspase ubiquitination could sterically interferes with 

substrate entry and reduces the caspases proteolytic activity [269]. The cellular levels of IAPs 

may determine the difference in sensitivities to apoptosis-inducing stimuli in various cell 

types. For this reason, the regulation of IAPs levels becomes an important issue in apoptosis. 

 

1.1.6. IAP antagonists 
 

1.1.6.1. IAP antagonist characteristics 

 

In Drosophila, the major inducers of apoptosis are inhibitors of IAPs. The inhibitors of IAPs 

are called RHG for Reaper, Hid, Grim, which were the first three members identified in 
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Drosophila. These genes have been identified in a screen looking for a lack of developmental 

apoptosis using genome deficiencies. Embryos homozygous for the deletion H99 showed a 

lack of developmental apoptosis visible in stage 11 embryos [271]. This deletion covers a 

small region, which contains the three genes reaper (rpr), head involution defective (hid) and 

grim. In addition to these three genes, two other members of the RHG family have been 

identified : Sickle and Jafrac2 [272]. All the members of the RHG family are characterized by 

their ability to induce caspase dependent cell death. The over expression of the RHG is 

sufficient to induce apoptosis. Indeed the ectopic expression of rpr or grim induces apoptosis 

either in cell culture or in Drosophila tissue [273, 274]. For example, the ectopic expression 

of rpr or hid early during Drosophila eye development and also in the adult eye leads to 

increased apoptosis [275]. This cell death induction can be totally inhibited by P35, which 

indicate RHG-induced cell death is only caspases dependent. The proapoptotic function of the 

RHG proteins is carried by a common domain of the RHG family members. Rpr, Hid and 

Grim have an N-term conserved sequence of 4 amino-acids named the IAP Binding Motif 

(IBM). The IBM domain is involved in the binding to IAPs. The binding of RHG with IAPs 

could titrate IAP, which cannot bind to caspases leading to caspase activation. The interaction 

of RHG with IAPs is required but not sufficient for IAP inhibition [276]. In addition to IAP 

sequestration, the binding to RHG promotes IAPs auto-ubiquitination via the RING domain. 

The ubiquitination of IAPs targets them to degradation. Indeed, Rpr induces DIAP1 

ubiquitination which finally induces its degradation in the eye disc and adult eye [277]. Rpr 

can trigger DIAP1 ubiquitination via two mechanisms. On one hand, Rpr induces the auto-

ubiquitination of DIAP1. On the other hand, Rpr induces DIAP1 ubiquitination by UBCD1, 

an ubiquitin-conjugating enzyme [277]. In addition, Hid can also stimulate DIAP1  

ubiquitination and degradation in the embryo [278]. In addition to ubiquitin mediated 

degradation, it has been proposed the RHG inhibits DIAP via translation regulation. Indeed, it 

has been shown that Grim and Rpr can promote a general suppression of protein translation in 

the embryo [278-280]. Inhibiting IAPs, RHG proteins suppress IAPs mediated caspase 

inhibition, which induces apoptosis [263]. For example, Hid overexpression induces DCP-1 

activation via DIAP1 inhibition [260]. Thus, Drosophila RHG proteins are major inducers of 

apoptosis by inhibiting IAPs. Moreover, RHG genes can regulate cell death via the 

mitochondria. Indeed the RHG genes possess a Grim Homology 3 domain (GH3 domain), 

which induces their mitochondrial localization. The role of mitochondrial localization in 

apoptosis regulation will be further described in 1.1.6.2 Part. As RHG mitochondrial 

localization could be involved in their pro-apoptotic function, the link between RHG and the 
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Bcl-2 family has been studied. It has been shown that human bcl-2 overexpression suppressed 

rpr-induced cell death [281]. Thus Reaper as the pro-apoptotic members of the Bcl-2 family 

can be inhibited by Bcl-2. Moreover, it has been shown in Drosophila that Reaper induced 

apoptosis by mitochondria fragmentation but not by Cytochrome C release. Thus, as the 

proapoptotic members of the Bcl-2 family, Reaper pro-apoptotic function can involve 

mitochondria modification and be inhibited by Bcl-2. Thus in addition to IAP inhibition 

which is the major effector of reaper induced apoptosis, reaper activity can be dependent of 

the mitochondria. 

 

The RHG genes are involved in developmental apoptosis. The loss of one of these genes 

partially suppresses cell death [282-284]. This indicates that these genes participate in 

developmental cell death but as single mutant does not suppress all cell death, they should 

have at least partially redundant function. One of the RHG can be specifically implicated in 

specific developmental cell death. For example, it has been shown that hid mutation 

suppressed developmental cell death in the drosophila eye. Indeed, hid mutation totally 

suppresses Caspase activation in pupal retina which leads to extra interommatidial cells in the 

adult eye [285]. This result suggests that Hid is the main RHG gene required to control 

apoptosis during eye development [285]. On the other hand, rpr and grim are required for 

neuroblast cell death upon central nervous system (CNS) development [283, 286]. Indeed, 

Rpr and Hid inhibition induces inappropriate survival of both neurons and neuroblasts in the 

larval CNS. Interestingly, it has been shown that Rpr or Hid expression alone is not sufficient 

to induce ectopic cell death in the CNS. Ectopic cell death in the CNS is only observed when 

both Rpr and Hid are expressed [284]. This result shows that in the CNS, Rpr and Hid 

cooperate to induce apoptosis. These coordinated effects of RHG can be due to their different 

binding affinity to IAP BIR domains. Rpr, Hid and Grim are able to bind both BIR-1 and 

BIR-2 of DIAP1 and thus suppress the inhibition of both effector and initiator caspases 

whereas Sickle and Jafrac2 bind preferentially to BIR-2, which leads only to initiator caspases 

activation [287]. Thus all the members of the RHG family are not equivalent but they are all 

able to induce caspase activation. It has been shown that the activation of apoptosis is 

enhanced by the cooperation between RHG proteins. The RHG proteins contain helicase 

domain, which allows the formation of homodimer and heterodimer. The interaction been rpr 

and hid targets rpr to the mitochondria and potentiates rpr-induced apoptosis [288]. Thus, the 

RHG are efficient inducer of apoptosis which can function independently or in cooperation.   
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In mammals, proteins that contain IBM-domain have been identified. Four mammalian 

proteins with an IAP binding activity have been found: Smac/Diablo, Omi/HtrA2, Arts and 

Survivin [172, 175, 289-291]. These four proteins contain an N-terminal IBM domain, which 

allows their interaction with IAPs [276, 292, 293]. Via this interaction, Smac/Diablo, 

Omi/HtrA2 and Arts suppress IAP binding to caspases leading to apoptosis. The pro-apoptotic 

effect of these proteins has been confirmed be overexpression experiment. The overexpression 

of Smac/Diablo in cell culture leads to cell apoptosis. Even if ectopic expression of 

mammalian IBM-domain proteins is able to induce apoptosis, the role of these proteins in vivo 

for apoptosis induction remains unclear. Indeed, mice deficient for either Smac/Diablo or 

Omi/HtrA2 are viable and do not have apoptosis defects. This suggests that those proteins are 

not required in vivo in mice or that they have redundant function [294-296]. Arts is another 

IBM carrying protein that is required both in vivo and in vitro for the regulation of apoptosis. 

Arts can interacts with and inhibits IAPs and thus leads to caspase activation [297]. Arts 

mutant mice present an increased number of hematopoietic stem cells. In addition, Arts 

inhibition also enhances tumor development in mice [298]. Reciprocally, a peptide derived 

from Arts binds to and antagonizes XIAP promoting apoptosis in cancer cell lines [299]. This 

result suggests that IAP inhibitors can be functional in vivo and in vitro.  

 

1.1.6.2. IAP antagonist regulation 

 

RHG family activity is regulated by their intracellular localization, their degradation or at the 

transcriptional level. In mammals, the RHG family members are localized in the 

mitochondria. In presence of apoptotic signals, the MOMP leads to the released of 

Smac/Diablo and Omi/HtrA2 in the cytoplasm of the cell. In the cytoplasm, the RHG family 

members can bind to and inhibit IAPs leading to caspase activation [293]. The mitochondria 

localization is required for the activation several members of the RHG family. Indeed, the IBM motif of Smac/Diablo, Omi/HtrA2 is not located at the N terminus of the precursor forms 

of these proteins, and requires proteolytic processing for N-terminal exposure. At their N 

terminus, Smac/Diablo, Omi/HtrA2 and Jafrac contain a signal sequence, which is cleaved 

after their mitochondrial import. The cleavage of N-terminus signal in the mitochondria forms 

the active protein with an IBM domain at the N-terminus [172, 174, 272, 289]. Thus, the 

mitochondrial localization is essential for Smac/Diablo, Omi/HtrA2 and Jafrac activation. 

Similarly to Smac/Diablo, Omi/HtrA2, the Drosophila Jafrac2 activation requires its 

localization in an organelle. Jafrac2 is a protein localized in the endoplasmic reticulum (ER). 



50 
 

Upon apoptotic signal, its N-terminus ER localization signal is cleaved and Jafrac2 is released 

in the cytoplasm leading to IAP inhibition, and thus Dronc activation [272]. As their 

mammalian homologs, Reaper, Hid, Grim and Sickle can localize to the mitochondria upon 

apoptotic stimuli [199, 300, 301]. The translocation of the RHG seems to be dependent of 

Grim Homology 3 (GH3) domain [302, 303]. However, the role of mitochondrial localization 

of the Drosophila RHG members in their pro-apoptotic function remains controversial. On 

one hand, mitochondria localization seems to be required for Reaper and Grim pro-apoptotic 

function. Indeed, it has been sown that the GH3 domain of Rpr is required for Rpr mediated 

IAP inhibition [301, 303]. It has been shown, in vitro, that rpr over-expression induced 

mitochondria fragmentation which required Rpr GH3 domain. In addition, Grim 

overexpression also induces mitochondria dysfunction and fragmentation leading to apoptosis 

[304]. Those results suggest that RHG mediated induction of apoptosis could required 

mitochondrial localization. On the other hand, several experiments showed that RHG 

mitochondrial localization is not required for its pro-apoptotic activity. Indeed, the inhibition 

of Rpr mitochondrial localization does not suppress rpr activity, it only reduces its efficiency. 

Moreover, Rpr can induce apoptosis independently of the mitochondria via translation 

regulation [280]. Thus, the requirement of Rpr mitochondrial localization in apoptosis 

induction is debated. In Drosophila, RHG activity is dependent of their transcriptional 

activity. Rpr and Hid levels are upregulated by apoptotic signals such as irradiation in 

Drosophila embryos. It has been shown that upon irradiation, Rpr and Hid expression is 

dependent of P53 [305-307]. Indeed, it has been shown that rpr and hid promoters contain a 

p53 responsive element. Thus rpr and Hid expression seems to be dependent of P53. P53 is a 

protein involved in several mechanisms and in particular cell death regulation. P53 is sensible 

to cellular stresses such as DNA damage and in these conditions leads to cell death via Rpr 

and Hid induction. In Drosophila, RHG family members are transcriptionally regulated. 

However, unlike in Drosophila, all known mammalian of Smac/Diablo and Omi/HtrA2 

proteins are ubiquitously expressed and therefore does not appear to be transcriptionally 

regulated [172, 289]. The RHG family member regulatory mechanisms are not conserved in 

evolution. In Drosophila, they are regulated at the transcriptional level. However, in 

mammals, their activation is dependent of their mitochondrial localization.  
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1.1.7. P53 
 

P53 is a tumor suppressor gene which regulates multiple functions such as proliferation, DNA 

repair and apoptosis among others [308]. P53 is a transcription factor, which contains a DNA 

binding domain, a tetramerization domain and a transactivation domain [309, 310]. P53, in 

particular its transcription activation domain, is found to be mutated in 50% of cancers [311, 

312]. Thus P53 has been defined as a tumor suppressor [313-315]. This tumor suppressor 

activity of P53 is associated to the control of DNA integrity, of cell proliferation and of cell 

death. Indeed, it has been shown that P53 can induce cell cycle arrest and cell death in 

response to several stresses such as DNA damage, hypoxia, oxidative stress, or viral 

infections [316]. For example, when DNA damage are detected, P53 induces cell cycle arrest 

to favor DNA repair and thus prevent the accumulation of mutation in the cell [317]. 

However, if the damages are not repaired, P53 activates apoptosis. P53 induces cell death via 

caspase dependant and caspase independent mechanisms. On one hand, P53 activates 

apoptosis. Indeed, P53 induces the expression of pro-apoptotic factors such as Reaper or Hid 

in Drosophila. In addition, P53 can activate apoptosis via its transcriptional activity. P53 can 

also induce apoptosis independently of transcription regulation via the mitochondrial 

pathway. Upon cellular stress, P53 goes to the mitochondria where it interacts with Bcl-2 and 

Bcl-XL, activating the mitochondrial pathway of apoptosis [318-321]. On the other hand, P53 

induces caspase independent cell death. In mammals, it has been shown that P53 could induce 

a necrotic process via mitochondria. Upon oxidative stress, P53 induces the opening to the 

permeability transition pore (PTP) of the mitochondria. PTP opening induces cell death but, 

caspases are not activated and necrosis markers are detected [322]. In addition, to necrosis, 

P53 can induce autophagic cell death [323]. Altogether, the experiments performed on P53 

shown that P53 is a powerful cell death inducer. It can activate different forms cell death via 

apoptosis, necrosis and autophagy. In addition to cell death, P53 is also involved in apoptosis-

induced proliferation. Apoptosis-induced proliferation is a process conserved in metazoan by 

which damaged cells entering apoptosis signal the surrounding unaffected cells to divide so as 

to recoup the tissue loss [324, 325]. For example, Drosophila wing imaginal discs submitted 

to γ-irradiation or genetically induced cell death undergo apoptosis-induced proliferation 

[326]. In this context, P53 inhibition prevents proliferation [327]. Thus in Drosophila, 

apoptosis-induced proliferation required P53. P53 is a complex transcription which control 

several mechanisms from cell proliferation to cell death.   
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P53 function can be regulated by several mechanism involving P53 isoforms and 

phosphorylation. It has been shown the human p53 locus can produce twelve isoforms of P53 

proteins. The twelve isoforms present variability either at the N terminal domain 

(transactivation domain) or at their C terminal domain (oligomerization domain). The P53 

isoforms do not have the same activity and they can regulates each other [308]. Indeed, the 

P53 tetramer, which is required for its transcriptional activity, can contain full length or 

truncated isoforms. Depending of the tetramer composition the affinity of P53 to it binding 

site is modified [328]. Thus P53 isoforms can alter P53 targets expression. In addition to P53 

isoforms, P53 can be regulated by post-translational modification such as phosphorylation or 

ubiquitination [329]. P53 can be phosphorylated by ATM (ataxia-telangiectasia mutated) and 

Chk2 (Checkpoint kinase 2) at distinct sites leading to P53-dependent cell cycle arrest or 

apoptosis [330, 331]. Moreover, P53 activity can be regulated by the ubiquitin ligase mouse 

double minute 2 (Mdm2) [332, 333]. In mouse, Mdm-2 binds to P53 and targets it to 

degradation in the proteasome preventing its activation. In response to cellular stresses such as 

DNA damage, mdm2 is inhibited and dissociates from P53 [334]. In absence of Mdm2 P53 

can tetramerize and bind to the promoter of its targets [335, 336]. 

 

P53 is a cell death inducer in Drosophila. The Drosophila homolog of P53, DmP53, has been 

first identified for its pro-cell death function [306, 337]. In addition to its pro-apoptotic 

function, DmP53 is also involved in cell cycle, cellular differentiation, for apoptosis induced 

proliferation [327, 338]. Apoptosis induced proliferation defines the proliferation of cells 

which are next to dying cell. This process requires DmP53 and the activation of the caspase 

Dronc [327]. In addition to cell proliferation, DmP53 is also implicated in the regulation of 

cell differentiation. For example, DmP53 overexpression during the eye development altered 

cell differentiation [338]. DmP53 regulation is thus essential for the control of all these 

processes. In Drosophila, DmP53 is regulation by the existence of several isoforms and by 

phosphorylation. However, contrary to mammals, DmP53 is independent of Chk2 and Mdm2. 

Indeed, the Drosophila homolog of Chk2 induces cell death independently of DmP53 [339]. 

DmP53 activity in Drosophila can be regulated by P53 isoforms. In Drosophila as in 

mammals, several isoforms have been identified [340]. The first DmP53 protein identified 

corresponds to a truncated P53 and has been named DΔp53. The full length P53 has then been 

identified and named Dp53. It has been shown that these isoforms have different function in 

the control of apoptosis and apoptosis induced proliferation [307]. In particular, P53 isoforms 
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can activate different RHG gens to trigger apoptosis. It has been shown that rpr promoter 

contain a P53 response element which trigger their expression in presence of P53 [341]. 

Moreover, hid expression is also induced by P53. However, it has been shown that rpr and hid 

expression is dependant of P53 isoforms. The overexpression of DP53 preferentially induced 

rpr whereas DΔP53 induced hid [307]. Thus in Drosophila both DP53 and DΔP53 could 

induce apoptosis but via different pathways. 

 

1.1.8. Neurodegenerative diseases 
 

1.1.8.1. Neuronal cell death in neurodegenerative diseases 

 

The deregulation of cell death causes the apparition of several pathologies. An excess of cell 

survival can lead to tumor formation and cancer. On the contrary, an excess of cell death leads 

to degenerative diseases. The cell death deregulation can specifically concern one cell type. 

For example, an excess of neuron death can leads to neurodegenerative diseases such as 

Alzheimer, Parkinson, Huntington diseases, Amyotrophic Lateral Sclerosis (ALS), age-related 

macular degeneration (AMD) or retinis pigmentosa. These neurodegenerative pathologies are 

characterized by the type and the localization of the neurons affected by cell death. Alzheimer 

disease is characterized by the loss of neurons more specifically in hippocampal and 

neocortical areas [342, 343]. AMD or retinis pigmentosa are due to the loss of photoreceptor 

in the eye [344]. Parkinson disease is a neurodegenerative disease characterized by the loss of 

dopaminergic neurons. Parkinson disease is the second most common neurodegenerative 

disease. This disease in characterized by the protein aggregates named the Lewis bodies and 

to oxidative stress in the dopaminergic neurons [345]. These protein aggregates are mostly 

composed of α-Synuclein. The cause of Lewis bodies formation in the neuron is not totally 

elucidated. Sporadic and familial forms of the Parkinson disease have been identified. The 

causes of sporadic form of Parkinson disease, which represent 95% of the cases, are not 

identified. Dominantly inherited Parkinson disease is linked to mutations in the gene encoding 

Parkin, DJ-1, Pink, α-Synuclein or HTRA2 [346, 347]. Neurons loss in neurodegenerative 

disease can be induced by different signal which all lead to neuron programmed cell death.  

 

The elimination of neurons in neurodegenerative disorders is mediated by a mixed cell death 

that involves several death mechanisms, including apoptosis, autophagic cell death and 
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necrosis. In particular, apoptosis has been detected upon neurodegeneration. In patient brain 

with neurodegenerative disease, activated caspases have been detected. The activation of 

apoptosis in dying neurons has been also observed in animal neurodegenerative disease 

models. It has been suggested that the induction of apoptosis could be mediated by 

mitochondria dysfunction. Indeed, mitochondria dysfunction has been detected in 

neurodegenerative diseases such as Alzheimer, Parkinson, Huntington diseases or ALS. 

Mitochondria dysfunction can lead to reactive oxygen species (ROS) production or 

Cytochrome C released and caspases activation [348]. Interestingly, several proteins 

implicated in familial Parkinson disease such as Parkin, DJ-1, Pink, α-Synuclein or HTRA2 

are localized to the mitochondria, which suggest that mitochondria dysfunction are related to 

Parkinson disease. Moreover, it has been shown that the alteration of mitochondria function 

by knock down of the Drosophila mtDNA polymerase γ induces progressive degeneration of 

dopaminergic neurons and locomotor defects [349]. In addition to mitochondrial dysfunction 

and apoptosis, it has been proposed that neuron death could be triggered by autophagy. 

Indeed, autophagy is enhance upon neurodegeneration [350]. The role of autophagy induction 

in neurodegenerative diseases will be further described in 1.2.3 Part. Several markers of 

programmed cell death such as caspases or autophagy are detected upon neurodegeneration 

however, the mechanisms which control neuron death remains to be characterized in neuron 

degenerative diseases. To identify regulator of neuron death upon neurodegenerative disease, 

in vivo and in vitro models are used.  

 

1.1.8.2. Models of neurodegeneration 

 

Neurodegenerative models are used to characterize neuronal death process. The conservation 

of the cell death machinery allows the utilization of animal models to study neurodegenerative 

diseases. Neurodegenerative models are described in primates, rodent Drosophila and C. 

elegans. Mouse model of Parkinson disease have been developed. These models used both 

genetic and chemical induction of neuron death. For example, a modified virus carrying α-

Synuclein can be specifically injected in rat substantia nigra to induce the expression of this 

protein in the dopaminergic neurons. This ectopic expression of α-Synuclein induces 

dopaminergic neuron death [17]. Moreover, chemical oxidative stress inducer such as 6-

hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 

Rotenone can be injected intra-peritonally or specifically in the striatum of the mouse brain to 

induce dopaminergic neuron loss [351, 352]. After peritoneal injection of oxidative stress 
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inducers, the drug can enter in the brain where it will more specifically induce dopaminergic 

neuron loss as they are more sensitive to oxidative stress than other cells [353]. The 

stereotaxic injection of drugs in the brain offers a more specific model for Parkinson disease. 

Indeed, 6-OHDA can be injected in the striatum of the mouse where are localized the 

projection of dopaminergic neurons. The dopaminergic neurons will specifically uptake the 6-

OHDA, which lead to the specific death of dopaminergic neurons [352]. In addition to mouse 

models, Drosophila models of Parkinson diseases have been developed. Drosophila is as a 

powerful model of neurodegenerative disease. Indeed, in Drosophila, overexpression of 

mutated proteins implicated in the human pathology induces neuron cell death and behavior 

dysfunctions. For example in PD, several proteins such as Parkin, DJ-1, Pink, α-Synuclein or 

HTRA2 are involved in the pathology and have a conserved function in Drosophila  The 

specific overexpression of human α-Synuclein in the dopaminergic neurons of Drosophila 

induces a progressive loss of the dopaminergic neurons and locomotor impairment [354]. 

Moreover, pink and parkin mutations also induce neuron death. In addition to genetic models, 

chemical models of Parkinson disease are used in Drosophila. In Parkinson disease, neurons 

harbor an oxidative stress, which have been linked to cell death. Chemical induction of 

oxidative stress has thus been used as models of Parkinson disease. For example, paraquat 

treatment induces oxidative stress, which leads to lethality. This model has been used to study 

transcriptional response to cellular stress and to identify the identified modulators of oxidative 

stress sensitivity [355, 356]. Interestingly, the dopaminergic neurons are highly sensitive to 

oxidative stress, thus a systemic oxidative stress will more particularly induce death of 

dopaminergic neurons. For example, Drosophila feed with either with low dose of paraquat or 

rotenone present progressive loss of neurons and in particular dopaminergic neuron [357]. 

This loss of neuron is associated to locomotor defects. Neurons death regulation in these 

models can be studied using the powerful genetic tools available in Drosophila. These models 

recapitulate Parkinson disease symptoms such as oxidative stress, dopaminergic neuron loss 

and locomotor defect. These models are used to characterize the neuron death process in 

Parkinson disease, but also to identify modulators of neuron death and therefore potential 

therapies for Parkinson disease [351, 352, 355, 356, 358].  
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1.2. AutophagyAutophagy, a degradation process  

1.2.1.1. Autophagy characteristics 

1.2.1.1.1. Autophagy, definition and identification 

 

The autophagic process is an evolutionarily conserved cellular process marked by the 

degradation of cellular components in the lysosomes. Autophagy has been first observed in 

mammals. Vacuolar structures containing mitochondria and other cytoplasmic components 

have been observed in rat liver cells and in rat hepatoma [359, 360]. However, the 

mechanisms and the role of autophagic degradation have been first characterized in yeast 

[361, 362]. Autophagy is activated in yeast upon starvation [363]. It has been shown that this 

process was required for the recycling of cellular components to produce energy for the cell to 

survive despite nutrient deprivation. The degradation process of autophagy has also been 

observed in different organisms such as Dictyostelium, C. elegans, Drosophila and mammals 

[359, 360, 363-367]. In these organisms autophagy is an essential cellular process for 

development, cell death, stress response and immunity. The roles of autophagy will be further 

described in 1.2.1.1.3 part.  

 

1.2.1.1.2. Micro-autophagy, macro-autophagy and chaperone 

mediated autophagy 

 

Three types of autophagy have been described: micro-autophagy, macro-autophagy and 

chaperone mediated autophagy [368, 369]. These three types of autophagy are characterized 

by the entry of cellular components targeted for degradation in the lysosome. Micro-

autophagy is the direct uptake of the cytoplasm in the lysosome. It is characterized by the 

invagination of the membrane of the lysosome, which forms a vacuole containing cytoplasm 

inside the lysosome [370]. As micro-autophagy, macro-autophagy is also responsible for the 

degradation of part of the cytoplasm. However, in macro-autophagy, the cytoplasm is not 

directly engulfed into the lysosomes. Rather, double membrane vesicles called 

autophagosomes form and engulf part of the cytoplasm [362]. The vesicles that contain 

organelles and cytoplasmic proteins fuse with the lysosome and are degraded [371]. In 

addition to micro- and macro-autophagy, which allow the degradation of part of the 

cytoplasm, chaperone-mediated autophagy targets directly and specifically certain proteins to 
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degradation [372]. These proteins contain targeting sequences that mediate their interaction 

with chaperone proteins in the cytoplasm and facilitate the binding to lysosome associated 

membrane protein (Lamp) type 2a [373]. Such interaction allows the direct transport of 

specific proteins across the lysosomal membrane [372].  

 

1.2.1.1.3. Roles of autophagy 

 

Autophagy has been detected during the developmental stages of several organisms such as 

Dictyostelium, C. elegans, Drosophila, and mouse. Dictyostelium is a soil amoeba that feeds 

on bacteria. Upon starvation, this organism enters a complex developmental cycle to produce 

a multicellular organism. This specific developmental step requires the induction of 

autophagy. Indeed autophagy inhibition induces developmental defects such as the absence of 

fruiting bodies. Therefore, Dictyostelium mutants for autophagy are more sensitive to 

starvation conditions [367]. Autophagy is also required for the development of multicellular 

organisms [374]. For example, upon starvation or temperature fluctuation, C. elegans, enters a 

unique developmental stage named the Dauer stage [375, 376]. Mutant worms with impaired 

autophagy cannot enter in the Dauer stage and have reduced life span. Thus autophagy is 

essential for to stress adaptation in multicellular organisms. Autophagy is also required for 

normal Drosophila and mouse development. For example, autophagy in activated in the larval 

salivary gland, in the fat body of Drosophila during pupariation. Mutations blocking 

autophagic process are lethal during Drosophila metamorphosis [377]. Moreover during 

mouse embryonic development impairment of autophagy gene function results in early 

lethality embryo [378, 379].  

 

Autophagy is also implicated in cellular response to pathogens. Autophagy is activated after 

cellular infection with viruses or bacteria. For example, Herpes Simplex virus infections 

increase autophagy and viral particles are found inside the autophagic vacuoles [380]. 

Bacterial infections by Streptococcus pyogenes or Coxiella burnetii also induce autophagy in 

infected cells [381, 382]. Thus both virus and bacteria activate autophagy. Interestingly, it has 

been shown that a pathogen receptor localized at the surface of the cell can trigger autophagy. 

Indeed, pathogen receptor CD46, which can recognize both virus and bacteria, can induce 

autophagy in presence of pathogen [5, 383]. Via the activation of cellular receptor, pathogen 

could thus activate autophagy. he role of autophagy in the infection process is complex [8]. 

On one hand, autophagy limits pathogen infection via direct degradation or by activating the 
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adaptative immune response. During the direct degradation process, viruses and bacteria can 

be engulfed in autophagic vacuoles which are degraded after fusion with the lysosomes [384]. 

Hence infection is limited. Indeed, it has been shown that upon pathogen infection such as 

Sindbis virus or Streptococcus pyogenes, autophagy activation reduces pathogen amount 

[381]. Autophagy is also linked to the activation of the adaptive immune response. For 

example, autophagy promotes the localization of the pathogen proteins on the MCH-II 

complex at the surface of infected cells, allowing their recognition by T lymphocyte [8, 385, 

386]. However, the activation of autophagy can also favor pathogen proliferation because 

pathogens have developed strategies to adapt to autophagy induction. It has been shown that 

several pathogens can inhibit autophagic vacuole degradation. For example, the bacteria 

Coxiella burnetii multiplies in acidic vacuoles with autophagic vacuole characteristics [387]. 

This adaptation to autophagy induction enhances pathogen infection. Moreover, it has been 

shown that the autophagy machinery can be specifically used to enhance viral replication. For 

example, autophagy inhibition reduced replication of viruses such as influenza A virus, 

encephalomyocarditis virus, Hepatitis C virus and Human immunodeficiency virus-1 [388-

390]. Thus, autophagy has a dual role in viral infection control. The regulation of the 

autophagic process is thus essential for the response to pathogen infections.  

 

1.2.1.1.4. The autophagy machinery : Atg genes 

 

Autophagy is a genetically controlled process. The genes involved in the autophagic pathway 

have been first identified in yeast via genetic screens. The first screens identified several types 

of autophagy-defective mutants, some of which block autophagy during starvation, some are 

defective in the degradation of the cytosol with or without starvation [361] [391]. Further 

screens have been performed to identify other genes involved in autophagy regulation [392]. 

Finally, it has been found that 65 yeast genes are involved in autophagy [393]. The genes 

involved in autophagy in yeast are conserved from yeast to mammals [394]. As genes 

involved in autophagy have been characterized independently, they had several names. In 

2003, Klionsky published a review to unify the nomenclature of autophagic genes which are 

now called atg (for AuTophaGy) [393].  

Autophagic genes homologs have been identified in Drosophila. Several paradigms of 

autophagy, such as in the salivary gland and the gut, have been described in Drosophila 

development [62, 63, 395]. In 2004, Scott et al. identified 11 genes which share significant 

sequence identity with the yeast atg genes [44]. To confirm the involvement of these genes in 
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the induction of autophagy, the effect of their mutation has been studied upon autophagy. 

Mutants for the atg1, atg12 and atg18 and expression of the RNAi for atg5, atg7 and atg12 

homologs reduce the induction of autophagy by starvation in the Drosophila larval fat bodies 

[44].  Moreover, the role of Drosophila atg8a and atg8b (the homologues of the yeast atg8) in 

autophagic vacuole formation has been studied [44]. It has been shown that Atg8a and Atg8b 

are evenly dispersed in fed animals; upon starvation, they adopt a punctuate pattern of dots 

and ring-shaped structures. This experiment confirms that the Drosophila Atg8 is involved in 

autophagy. Altogether, these results have shown that seven Drosophila homologues of atg 

genes are involved in starvation-induced autophagy [44]. In addition to the atg genes, other 

homologs in the autophagic pathway have been identified. For example, blue cheese (bchs), 

the homolog of autophagy-linked FYVE protein (ALFY), is a protein involved in the specific 

degradation of ubiquitinated proteins [396]. Mutation of bchs induces the accumulation of 

ubiquitin conjugated protein aggregates throughout the adult central nervous system. This 

observation suggests that Bchs, as its mammalian ortholog ALFY, is essential for the 

autophagic clearance of protein aggregates. The over-expression of Bchs in the Drosophila 

retina induces a rough eye phenotype, which has been used as a read-out for a screen to 

identify regulators of degradation pathway [397]. This screen identified Atg1, Atg6 and Atg18 

as enhancer of the eye phenotype. In addition to eye and fat body, the salivary gland has been 

used as a developmental model to identify the role of the autophagic genes homolog of the in 

Drosophila.  Autophagy has been detected in the dying cells of the salivary gland during 

Drosophila development. Indeed, during Drosophila metamorphosis, an ecdysone peak 

induces the destruction of the salivary gland by autophagy activation [395]. Gorski et al. 

performed serial analysis of gene expression (SAGE) on salivary glands undergoing 

autophagic cell death [398]. They showed that ten homologues of the autophagic genes are 

up-regulated. The role of atg genes in autophagy induction in salivary gland has been 

strengthen by the study of atg mutants. It has been shown that salivary gland destruction is 

suppressed in atg8 or atg18 mutants, or in Drosophila expressing an atg1 kinase dead mutant. 

Thus, Atg8, Atg18 and Atg1 are required for autophagy activation. Finally, the autophagic 

gene induction has been further characterized using several autophagy models in Drosophila 

such as irradiation and cellular stresses. Lee et al. found that several Drosophila atg genes 

such as atg2, atg4, atg5, and atg7 that are transcriptionally up-regulated in autophagic cells 

[399].  Moreover, it has been shown that Atg1, Atg3, Atg4 and Atg7 were required for the 

autophagic process in Drosophila [44, 400, 401]. 
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Figure 4: Schematic of the autophagy pathway. The process of autophagy begins with the nucleation of 
an autophagic isolation membrane that eventually encloses the cytoplasmic and/or microbial cargo 
destined for lysosomal degradation. The mammalian target of rapamycin (mTOR) kinase plays a major 
role in suppressing autophagy induction by binding to ULK1-Atg13-FIP200 complexes and hyper-
phosphorylating ULK1 and Atg13. Vesicle nucleation is also promoted through the activation of the 
class III phosphatidylinositol 3-phosphate (PIP3) kinase Vps34, which contains the essential mammalian 
autophagy proteins Beclin 1 and Atg14. The second major step of autophagy involves the elongation of 
the isolation membrane to form an autophagosome which has two phospholipid bilayer membranes with 
the selected cargo sequestered within the inner membrane. Two ubiquitin-like conjugation systems 
mediate this step by modifying two ubiquitin-like molecules, Atg5 and LC3, so that they can associate 
with the isolation membrane and promote its curvature and expansion. The last step of autophagy is the 
maturation of the autophagosome. This step involves the docking of completed autophagosomes with 
lysosomes and the lysosomal enzyme-mediated breakdown and degradation of the inner membrane of 
the autophagosome and its constituents (adapted from [8]). 
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1.2.1.2. The control of autophagy by the autophagic genes 

 

Autophagy is characterized by the formation of autophagic vacuoles. The vacuole formation 

requires different steps: the initiation phase, the elongation phase and finally the maturation 

phase (Figure 4). These three steps are controlled by the atg genes. 

 

1.2.1.2.1. Initiation phase 

 

The initiation phase consists in the recruitment of sequestrating membrane, which will form 

the autophagic membrane (Figure 4). This sequestrating membrane, also named phagophore, 

is the first step of vacuole formation. Its origin has not been clearly identified. Some evidence 

suggests that it is formed from the Golgi apparatus as the membrane contains Golgi-specific 

proteins [402-404]. In contrast, ER proteins but not Golgi markers have been detected at the 

surface of autophagic vacuoles in starved rat liver cell [405]. Moreover, in NIH 3T3 and rat 

kidney cells, electron microscopy images show that membranes of the ER and of the 

autophagic vacuole are interconnected [29, 406]. Therefore, the sequestrating membrane 

could originate from the endoplasmic reticulum (ER) [407]. However, other experiments have 

shown that the membrane forming autophagic vacuoles do not carry specific proteins of the 

ER [408]. Finally, it has also been proposed that newly formed autophagosomes emerged 

from mitochondria or plasma membrane [409, 410]. Thus, the origin of the sequestrating 

membrane could be heterogeneous and is still controversial [411, 412]. One hypothesis is that 

depending of the cell type, autophagic vacuoles are formed from different structure. Another 

hypothesis is that autophagic vacuoles can be formed from several structures. The recruitment 

of sequestrating membrane is dependent on the upstream autophagy activation signals. These 

signals will be described below. 

 

1.2.1.2.2. Elongation phase 

 

The elongation phase is characterized by the elongation of the sequestrating membrane to 

form the autophagic vacuole. The elongation process is dependent on the Atg proteins, which 

are involved in two ubiquitin-like conjugation systems (Figure 4) [413]. The first ubiquitin-

like conjugation system involves Atg8-phosphatidylethanolamine (PE). The second ubiquitin-

like conjugation system involves the complex Atg5-Atg12 Atg16 [414]. These two 

complexes allow the elongation of the sequestrating membrane, which could be mediated by 
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the tethering and hemifusion of liposomes [415]. The extremities of the sequestrating 

membrane fuse to form the autophagic vacuole named the autophagosome. 

 

1.2.1.2.2.1. Atg8-phosphatidylethanolamine (PE) is required for the 

elongation phase 

 

Atg8 (Apg8/aut7/LC3) is the most conserved Atg protein. In yeast, there is only one atg8 

gene; in higher eukaryotes, atg8 is a multigene family. The first member of the Atg8 family 

has been identified in rat as a light chain of the microtubule-associated protein 1 (MAP1-LC3) 

[416]. However, its function was first described in microtubule dynamics. Atg8, the yeast 

homolog of LC3, has been identified as a protein associated to the autophagic vacuole and is 

required for vacuole formation [417-419]. The mammalian LC3 is a cytoplasmic protein, 

which becomes associated with the autophagic vacuole membrane upon autophagy induction 

[420]. Moreover, other orthologs of yeast Atg8 have been identified in mammals such as 

GATE16, GABA(A) receptor-associated protein, and Atg8L, all are associated to autophagy 

vacuoles [420-422]. Thus, the autophagic function is conserved upon the Atg8 family. In 

Drosophila, two atg8 genes have been found: atg8a and atg8b; both are involved in 

autophagy. They localize to autophagosomes [423, 424]. However, even if Atg8 is a major 

protein in the autophagic pathway, adult flies mutant for atg8a are viable whereas other 

mutant of atg genes as lethal [397]. These data suggest that Atg8a and Atg8b have redundant 

functions in Drosophila. To confirmed this hypothesis, the phenotype of the double mutant 

atg8a;atg8b should be tested.  

 

The recruitment of Atg8/LC3 to the surface of autophagic vacuole requires Atg8 maturation. 

Atg8 maturation is mediated by protein cleavage, and the lipid phosphatidylethanolamine 

(PE) [425]. After its synthesis, Atg8/LC3 is processed at its carboxy-terminal region and is 

cleaved by the cysteine protease Atg4 (Figure 4). The cleavage of Atg8/LC3 C-terminal by 

Atg4 is the first step of Atg8/LC3 maturation, which is required for Atg8/LC3 lipidation 

[426]. Interestingly, the cleavage of Atg8/LC3 by Atg4 is conserved in evolution. The yeast 

Atg4 has homologs in mammals (HsAtg4A/HsApg4A/autophagin-2, 

HsAtg4B/HsApg4B/autophagin-1, HsAutl1/autophagin-3, and autophagin-4) and in 

Drosophila (Atg4) [427, 428]. All Atg4 homologs are cysteine proteases which are required 

for the cleavage of the C-terminal of Atg8 family members. The conservation of Atg4 

cleavage activity confirmed the key role of this protein in Atg8 regulation. The cleavage of 
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Atg8 leads to the pre-activation of Atg8/LC3. For the mammalian LC3, this pre-active form is 

called LC3I [420]. LC3I can be activated by autophagic signal. The activation of Atg8/LC3 is 

a ubiquitin like system which involves Atg8 as a ubiquitin like protein [425] [413] (Figure 4). 

LC3 binds to Atg7, an E1-like enzyme, via thioester bond [426]. Then, Atg3, an E2-like 

enzyme, binds to the Atg7-LC3 complex. In this complex, LC3 is transferred from Atg7 to 

Atg3. The binding of LC3 to Atg3 catalyzes the conjugation of LC3 with the lipid 

phosphatidylethanolamine (PE). The lipidated form of Atg8/LC3 is named LC3II or Atg8-PE. 

The detection of Atg8-PE is classically used as a marker of autophagy induction, as it will be 

discussed latter in 1.2.1.4 Part. Atg8-PE can bind to the sequestrating membrane both on the 

internal and external side [420]. The binding of Atg8-PE on the sequestrating membrane is 

essential for the elongation phase and thus the formation of the autophagosome. Autophagic 

membranes without Atg8 can elongate but their extremities cannot fuse and thus autophagic 

vacuoles cannot be formed. Atg8-PE can be found on the inner and outer membrane of the 

autophagic vacuole. The internal Atg8-PE is sequestered in the autophagic vacuole and is 

degraded after the fusion with the lysosome. The external Atg8-PE is removed from the 

membrane and recycled to regenerate Atg8. The removal of Atg8-PE from the outer 

membrane of the autophagic vacuole is essential to for the maturation phase [429].  

 

1.2.1.2.2.2. Atg5-Atg12-Atg16 complex is required for the 

elongation phase 

 

Atg12-Atg5-Atg16 is the other ubiquitin-like conjugation system involved in the elongation 

of the autophagic vacuole (Figure 4). This ubiquitin-like conjugation system utilizes Atg7 as 

an E1-like enzyme [430]. Atg12 binds Atg7 to via its c-terminal glycine residue. Atg12 is 

then transferred to another E1-like enzyme, Atg10 [431]. The binding of Atg12 to Atg10 

facilitates the formation of the Atg5-Atg12 complex. Atg12 is covalently attached to Atg5 

through its COOH-terminal glycine and an internal lysine residue of Atg5. This interaction 

between Atg12 and Atg5 is conserved in yeast and mammals [414]. Besides Atg5 and Atg12, 

a third protein, Atg 16, is recruited in the complex [432, 433]. Atg16 can form homo-

oligomers linking several atg5-Atg12 complexes.   

The Atg12-Atg5-Atg16 complex is bound to the sequestrating membrane; the complex is 

required for membrane biogenesis and in particular for the autophagic membrane elongation 

[432, 434]. In addition, it has been proposed that this complex acts as a membrane coat, which 

assists the membrane curve during autophagosome formation. In addition to membrane 
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remodeling, Atg12-Atg5-Atg16 complex is required for to activation of Atg8/LC3. As 

discussed previously, Atg8/LC3 binding to the forming vacuole requires Atg8/LC3 lipidation. 

However, the Atg8/LC3 lipidation is not sufficient to target Atg8/LC3 to the autophagic 

membrane. Without the Atg12–Atg5-Atg16 protein complex, Atg8/LC3 does not localize to 

the autophagic membrane. Indeed, in atg5 mutants, Atg8/LC3 is lipidated but is not localized 

on autophagic membrane [435]. It has therefore been proposed that the Atg12-Atg5-Atg16 is 

required for Atg8/LC3recruitment to the autophagic membrane.  

The elongation of the sequestrating membrane leads to the fusion of the two extremity of 

autophagosome membrane. This process results in the formation of the autophagic vacuole 

that contains part of the cytoplasm including mitochondria, endoplasmic reticulum or proteins 

(Figure 5). 

 

 
 

1.2.1.2.3. Maturation phase 

 

The maturation of autophagosome is characterized by the fusion of the autophagic vacuole 

with the lysosome. To complete the autophagic process, the autophagic vacuoles have to be 

degraded. The degradation process is a rapid event as the autophagosomes is short-lived (t1/2 

about 8 min) [436, 437]. The degradation process is mediated by the fusion of the autophagic 

vacuoles with lysosomes. The lysosome is a degradative organelle which is characterized by 

an acidic environment containing hydrolytic enzymes. Autophagic vacuoles are shown to bear 

 
Figure 5  : Autophagic vacuoles in Drosophila photoreceptor observed by electron microscopy. 
The autophagic vacuoles are surrounded by a double membrane. The white arrow indicates an 
empty autophagic vacuole. The black arrow indicates a vacuole whose content has not been 
degraded. 
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lysosomal markers, indicating that the autophagic vacuoles fuse with the lysosome [40, 394, 

438]. The fusion of the autophagic vacuole with lysosome leads the acidification of the 

autophagic vacuole and enables the entrance of hydrolases in the vacuole to degrade its 

contents. Thus, the mature autophagic vacuole is the autophagolysosome. The environment of 

the autophagolysosome leads to the degradation of the autophagic vacuole content.  

 

The fusion of the autophagic vacuoles to the lysosome involves Atg proteins and the 

cytoskeleton. Autophagic vacuoles are associated to the microtubules. As described 

previously, Atg8/LC3, a protein localized on the surface of autophagic vacuole, can bind to 

microtubules [416, 439]. This binding to microtubule is essential for vacuole maturation. 

Indeed, microtubule disruption with vinblastin or nocodazole delayed the fusion of autophagic 

vacuoles with the lysosomes [440-442]. Conversely, microtubule stabilization by taxol 

enhances the fusion between autophagic vacuoles and lysosomes [443]. Thus the association 

of autophagic vacuoles to the microtubule is essential for the maturation process of 

autophagosome. Moreover, it has been shown that the movement of autophagic vacuoles 

along the microtubules is also essential for the fusion with lysosomes. The movement of the 

autophagic along the microtubule is mediated by dynein. Dynein inhibition in mouse cell 

prevented the degradation process due to the absence of fusion between the autophagic 

vacuole and the lysosome [444].  It has been proposed and the newly formed autophagic 

vacuole migrates along the microtubule intracellularly in a dynein- dependant, manner to get 

closer to the lysosomes [444]. When the autophagic vacuole and the lysosome are in contact, 

their membranes fuse. The membrane fusion is controlled by proteins localized either on the 

autophagic vacuoles or on the lysosome. LC3/Atg8, which is localized on the surface of the 

autophagic vacuoles, inhibits the fusion process. Therefore, Atg8 undergoes the second 

cleavage by Atg4 to be removed from the outer membrane of autophagosome prior to 

membrane fusion [415, 427]. The inhibition of Atg4 mediated Atg8 cleavage prevents Atg8 

release form autophagic vacuoles, which results in a partial defect in autophagic degradation 

[368]. Thus Atg8 removal from the autophagic vacuole is essential for fusion with the 

lysosome. In addition to Atg8 removal, the localization of Rab family members to the 

autophagic membrane is also required for the fusion process. The Rab proteins are small 

GTPases involved in the transport of the endocytic and exocytic vesicles. Interestingly, Rab7 

is found on the membrane autophagic vacuole. Rab7 inhibition prevents the fusion of the 

autophagic vacuoles to the lysosome. Thus, Rab7 is required for the lysosomal fusion. In 

addition to Rab7, other proteins, such as SKD1 and Cathepsin, are also localized in the 
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autophagic vacuole and are also required of the fusion with the lysosome [445].  Lysosomal 

proteins are also involved for the fusion process. For example, Lamp-2 is a lysosomal protein 

required for the fusion of lysosomes with autophagic vacuoles [446]. In lamp-2 deficient 

mice, autophagic vacuoles abnormally accumulated in several tissues such as muscle, liver, 

pancreas or spleen due to the absence of fusion between the lysosome and autophagic vacuole 

[447, 448]. Thus the lysosomal Lamp-2 is essential for the maturation process.  

 

1.2.1.3. Autophagy : a random and a specific degradation process 

 

Autophagy is both a random and a specific degradation process. Autophagy was first been 

described as a random form of cell degradation. It was proposed that autophagic vacuoles 

engulfed randomly the cytoplasm localized next to the sequestrating membrane. However, it 

has been shown that in addition to random degradation, cellular components can be 

specifically targeted to autophagic vacuoles [449, 450]. For example, damaged organelles 

such as mitochondria or ER are specifically degraded via autophagy [451, 452]. In addition, 

autophagy specifically induces the degradation of long-lived proteins. This specific 

degradation is mediated by autophagic receptors and autophagic adaptors. The receptor 

protein interacts with proteins of the autophagic vacuole membrane such as LC3/Atg8 and 

with the autophagic targets such as ubiquitinated proteins. These receptor proteins are 

conserved in evolution. One of the best characterized autophagic receptors is P62 [453]. P62 

has an interaction domain for ubiquitin and an Atg8 binding domain. It targets ubiquitinated 

proteins to the autophagic vacuoles for degradation; it also targets some organelles such as 

mitochondria for degradation [454]. Indeed, P62 can target mitochondria to autophagic 

vacuoles upon ischemia preconditioning in mouse cardiomyocytes in vitro. Ischemia 

preconditioning activates mitophagy. However, P62 depletion (siRNA) attenuates 

mitochondria loss. This suggests that P62 is involved in mitophagy [455]. In addition to 

receptor proteins, the adaptor proteins are also involved in the targeting to autophagic 

vacuoles. The only adaptor protein in mammals is the ortholog of autophagy-linked FYVE 

protein, ALFY. ALFY is involved in the degradation of ubiquitinated proteins and potentiates 

P62 function [456]. These adaptor proteins can interact with proteins of the autophagic 

vacuole membrane, the targets of autophagic vacuoles and the autophagic receptors. The 

adaptor proteins are not well characterized but they seem to enhance the targeting to 

autophagic vacuoles. Thus via the receptor and the adaptor proteins, autophagy can 

specifically degrade some cellular components such as organelles or protein aggregates.  
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Through specific degradation, autophagy controls several cellular processes and is implicated 

in several diseases. For example,  the autophagic receptor P62 regulates the activity of several  

pathways such as NF- B, anti-oxidative response or apoptotic pathways [453, 457]. P62 can 

enhance the NF- B pathway activation via TRAF6 degradation. Indeed, P62 physically 

interacts with TRAF6 (tumor necrosis factor receptor-associated factor 6) and induces its 

degradation in autophagic vacuoles. The inhibition of TRAF6 mediated by P62 induces the 

activation of the NF- B pathway and enhances cell survival [458, 459]. On the other hand, 

P62 can control cell death via Caspase-8 regulation. P62 have a Caspase-8 interacting domain. 

Interestingly, the interaction between P62 and caspase 8 leads to the formation of Caspase-8 

dimers and thus Caspase-8 activation [460-462]. On the contrary, P62 interaction with 

Caspase-8 could target this protease to degradation in the autophagy activation and thus 

inhibits apoptosis. In addition to regulation of apoptosis, P62 can control the anti-oxidative 

response by interacting with Keap1, degrading Keap1 and thus preventing Keap1 binding to 

Nrf2 [463-465]. The inhibition of Keap1 leads to the activation of Nrf2 and downstream 

targets which are involved in the antioxidant response [466]. As autophagy specifically 

regulates several cellular pathways, it is an important process in several pathologies such as 

cancers or neurodegenerative diseases. By controlling of NF- B and apoptotic pathway, P62 

is essential for the control of cell proliferation of cancer cells [467]. In addition to cancer, the 

specific degradation mediated by autophagy is involved in neurodegenerative diseases. For 

example, it has been shown that P62 participates in the degradation of ubiquitinated 

mitochondria mediated by PINK1–Parkin, whose mutations are responsible for autosomal 

recessive Parkinsonism [468, 469]. Autophagy could limit oxidative stress in Parkinson 

disease through the degradation of damaged mitochondria. In addition, autophagy specific 

degradation is involved in Huntington disease via the degradation of protein aggregates. It has 

been shown that P62 facilitates the degradation of protein aggregates in cells which over-

express mutated Huntingtin (Htt). The inhibition of P62 induces the accumulation of Htt 

aggregates which enhance cellular toxicity [470]. Moreover, the activation of P62 enhances 

Htt degradation [454]. Thus autophagy mediated specific degradation is involved in several 

cellular processes and is essential to maintain cellular homeostasis.  
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1.2.1.4. Autophagy detection 

 

Autophagic vacuoles are detected via different methods such as electron microscopy, 

immunostaining or luminescent markers (Table 2, [471-473]). Autophagic vacuoles have 

been first observed by Electron microscopy (EM), which revealed their double membrane 

structure (Figure 5, [26, 29]). Because autophagy is a degradative process, the content of the 

vacuoles often appears partially or totally degraded on electron microscopy (EM) 

photographs. In addition to EM images, other tools have been developed to visualize 

autophagic vacuoles. For example, autophagic vacuoles can be visualized by the detection of 

proteins associated to the membrane of autophagic vacuoles, such as Atg8 or Atg5. The most 

widely-used molecular marker for  detecting autophagic vacuoles is the autophagy membrane 

protein LC3/Atg8 Antibodies against LC3/Atg8 or fluorescently tagged LC3/Atg8 have been 

Autophagic Markers Models References 

Electron Microscopy  In vitro in cell culture, tobacco 

hawkmoth, Manduca sexta, rat 

cervical ganglion cells , rat 

sympathetic neurons, Animal Cell 

Cultures, in situ mammals  

Joubert 2009, Schwartz 1992, 

Xue 1999, Eskelinen 2008, 

Ylä-Anttila 2009, Liang 1999  

Measurement of degradation of  

long-lived proteins  

human MCF7 breast carcinoma 

cells  

Liang 1999  

LC3 western  Blot  Mammalian cells: MEF, HEK293, 

HeLa, SH-SY5Y  

 Mizushima 2007, Fouillet 

2012 

GFP-LC3 cell  line  Mammalian cells: Hela, MEF 

Drosophila Cells : S2, l(2)mbn  

Joubert 2009, Bampton 2005  

mRFP-GFP-LC3 cell line  Hela  Joubert 2009, Kimura 2007  

GFP-LC3 in vivo in model

organisms  

Mouse,  Drosophila, C. elegans  Joubert 2009, Kimura 2007, 

Fouillet 2012  

LysoTracker  CHO cells, Drosophila  Munafó 2001, Scott 2004  

 
Table 2: Autophagic markers 

References : Joubert 2009 [5], Schwartz 1992 [12], Xue 1999 [16], Eskelinen 2008 [26], Ylä-Anttila 
2009 [29], Liang 1999 [30], Mizushima 2007 [34], Fouillet 2012 [39], Bampton 2005 [40], Kimura 
2007 [42], Munafó 2001 [43], Scott 2004 [44] 
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used to detect LC3/Atg8 in cell culture yeast, Caenorhabditis elegans, Dictyostelium 

discoideum, Drosophila melanogaster and mice [366, 375, 381, 420, 423, 424, 474]. 

LC3/ATG8 is a cytoplasmic protein that normally appears diffused in healthy wild type cells. 

Upon autophagy activation, LC3/Atg8 is translocated to the autophagic vacuole membrane 

and assumes punctuate structures. As the translocation of LC3/atg8 is primed by the lipidation 

of this protein, the lipidation status of LC3/Atg8 can be detected by western blot at 18KDa. 

The lipidated LC3/Atg8 (ATG8-PE or LC3II) migrates farther than the native LC3/Atg8 due 

to the hydrophobic nature of PE. LC3II migrates as a 16KDa protein [34, 475]. In addition to 

LC3/Atg8, Atg5 is another protein associated to autophagic vacuole membrane [424]. In 

addition to autophagic proteins, specific dyes such as monodansylcadaverine, LysoSensor and 

LysoTracker label autophagic vacuoles [423, 476]. For example, LysoTracker is a dye that is 

retained in the acidic compartment of the cell, such as the autophagolysosomes [423]. 

Together, these markers are used to monitor the amount of autophagic vacuoles in cell. 

However, it is worth emphasizing that an accumulation of autophagic vacuoles could imply 

either an increase of autophagy or a blockade of degradation. For example, in Drosophila, 

atrophin mutants present an accumulation of autophagic vacuoles, which is not due to 

autophagy induction but to an inhibition of the fusion between autophagic vacuoles and 

lysosomes [477]. Thus, it appears that autophagic vacuole accumulation can be either due to 

autophagy induction or to degradation inhibition. To test if the autophagic flux is functional, 

several techniques are used to detect the fusion between autophagic vacuole and lysosomes. 

The fusion between the autophagic vacuoles and the lysosomes can be detected by co-

localization with markers of both autophagic vacuoles such as LC3/Atg8 and lysosomes such 

as Lamp1 [40]. Another tool to evaluate autophagy flux is LC3/Atg8 fused with both RFP and 

GFP. In newly formed autophagic vacuoles, both GFP and RFP are fluorescent; whereas in an 

acidic environment, GFP fluorescence is inhibited. After fusion with the lysosomes, 

LC3/Atg8-GFP-RFP is trapped in an acidic compartment and hence only RFP labeling 

remains [42]. In addition to the detection of autophagolysosome, the autophagic flux is 

evaluated looking at protein degradation in the autophagic vacuoles. The degradation 

efficiency can be evaluated by monitoring LC3/Atg8 fused with GFP with Western blot. As 

GFP is more resistant to lysosomal degradation than LC3/Atg8, if LC3/Atg8-GFP is degraded 

in the autophagolysosome, a band corresponding to GFP alone is detected [424]. Moreover, 

the autophagic flux can be studied by looking at the amount of proteins targeted to 

degradation in the autophagolysosomes such as long-lived proteins or P62. The degradation of 

long life proteins by autophagy can be monitored in vitro by radioactivity [478]. The amount 
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of P62 and its Drosophila homolog Ref(2)P can be detected both in vitro and in vivo with 

specific antibodies or via the detection of GFP-P62 protein fusion [470, 479]. The presence of 

significant amount of P62 indicates a blockage of autophagic flux. 

 

1.2.1. Autophagy regulation pathways  
 

1.2.1.1. Atg1 controls the autophagic process 

 

Atg1 was first identified in yeast as an autophagy inducer. The atg1 null mutant yeast has a 

defect in the autophagic process [480]. Atg1 is conserved in evolution from yeast to 

mammals. In mammals, Atg1 has been identified as Unc-51-like kinases 1 (ULK1) and Unc-

51-like kinases 2 (ULK2). The Atg1 homologs have a conserved function in autophagy 

activation. Moreover, in Drosophila, atg1 overexpression induces autophagy [401]. In 

particular, Atg1 controls the elongation and the maturation steps of autophagy. The activation 

of Agt1 plays a structural role for efficient recruitment of Atg proteins to the sequestrating 

membrane. For example, in absence of Atg1, Atg8 is not recruited to the sequestrating 

membrane [481]. As Atg1 is required for the binding of Atg8 on sequestrating membrane, 

Atg1 is required for the elongation steps [482, 483]. In addition to the elongation phase, Atg1 

is also involved in the maturation step. It has been shown that the recruitment of Atg1 on the 

autophagic vacuole, via its interaction with Atg8, is required for vacuole fusion with the 

lysosome. Indeed, mutations in the Atg1 cause a significant defect in autophagy mediated 

degradation [483]. Thus, Atg1 is involved at different steps of the autophagic process. Indeed, 

Atg1 controls both autophagic vacuole formation and maturation. 

 

Atg1 activity is regulated by a multi-protein complex called the Atg1 complex. In yeast, the 

Atg1 complex contains Atg1, Atg17, Vac8, and Cvt9 [484]. The interaction between Atg1, 

Atg13 and Atg17 controls Atg1-mediated autophagic regulation. In nutrient-rich condition, 

Atg13 is hyperphosphorylated and cannot interact with Atg1 for its activation. In contrast, in 

autophagic condition such as starvation or rapamycin treatment, Atg13 is dephosphorylated, 

which leads to Atg1-Atg13 interaction. Atg13 thus mediates Atg1 homodimerization, induces 

its activation and the subsequent generation of autophagosomes [485]. Atg1-Atg13 complex 

formation is controlled by Atg17. Atg17 interacts with Atg13 and is required for Atg13 

mediated activation of Atg1 [486]. In mammal, a complex similar to Atg1-Atg13-Atg17 has 
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been identified. ULK1, the homolog of Atg1, is a component of a complex consisting of 

Atg13, FIP200 (focal adhesion kinase (FAK) family interacting protein of 200 kea), and 

Atg101 [484]. It has been shown that in mammals Atg13 also induces atg1 self-interaction for 

activation. It has been proposed that FIP200 is the functional homolog of Atg17 [484, 487, 

488]. Activation of ULK1 in this complex induces autophagic vacuole formation. Thus, both 

in yeast in mammals, atg1 activation requires the formation of a multi-protein complex.  

 

1.2.1.2. TOR is a key regulator of autophagy 

 

Target of rapamycin (TOR) is a highly conserved phosphatidylinositol (PtdIns) kinase related 

serine-threonine protein kinase. It regulates several cellular functions [489]. In yeast, two 

genes encode the proteins TOR1 and TOR 2 [490]. TOR1 and TOR2 are members of distinct 

complexes which are involved in cell growth, translation and transcription control, stress 

response and autophagy. In Drosophila, only one TOR protein has been identified: dTOR. 

Like its yeast homologue, dTOR has conserved function in regulating mRNA translation, 

autophagy, transcription, metabolism, cell survival, proliferation and growth [491]. Like in 

Drosophila, only one protein, mTOR, has been identified in mammals. However, it has been 

shown that mTOR can be recruited in two distinct cellular complexes: TORC1 and TORC2. 

TORC2 regulates the oncogene Akt and also actin polymerization. TORC1 is involved in the 

control of translation via the regulation of EiF4F (elongation initiation factor 4F) and p70 

ribosomal S6 kinase [492, 493]. In addition, TORC1 is an inhibitor of autophagy [494].  

 

The TOR kinase pathway is a key nutrient-sensing signal pathway that controls autophagy. 

The TOR kinase pathway provides the major inhibitory signal to dampen autophagy when 

nutrients are abundant. The key component of this pathway, Tor, inhibits autophagy. In 

normal condition, active Tor prevents autophagy activation. Upon starvation or after treatment 

with rapamycin, Tor is inhibited, leading to autophagy induction [423, 495]. Thus Tor is able 

to sense nutrient levels and controls autophagy activation. Tor has several downstream targets 

such as Atg13, which controls vacuole formation. Tor induces the phosphorylation of Atg13, 

thus preventing Atg1 interaction and activation, which in turn suppresses autophagy. In 

addition to its role in regulating Atg13 and Atg1 activity, Tor controls the expression of other 

proteins involved in the autophagic process. For example, Tor can inhibit transcription factors 

such as TFEB and thus prevent the expression of autophagic and lysosomal genes such as 

Atg9 and Lamp1 [496].   
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Tor activity is controlled by several signals. First, TOR can be regulated by amino acid 

amount and by the insulin pathway. Amino acids mediate TOR-dependent signaling by 

activating the Class III PI3K: Vps34 [497-499]. In addition to amino acid, TOR is regulated 

by the insulin pathway. Insulin activates TOR via the insulin receptor, the insulin receptor 

substrates (IRS 1 and 2), class I PI3K and Akt/protein kinase B (PKB). In the presence of 

insulin, Class I PI3K is activated by IRS thereby providing a link between PI3K-I activation 

and nutrient availability [500]. Activation of class I PI3K leads to the phosphorylation of 

plasma membrane lipids that recruit and activate Akt/ PKB, a downstream negative regulator 

of autophagy. Activation of Akt/PKB is also regulated by the tumor suppressor phosphatase 

and tensin homologue PTEN, which prevents the accumulation of phosphates on lipids and 

positively regulates autophagy. Activated Akt/PKB represses the positive regulators of 

autophagy, the tuberous sclerosis complex 1 (TSC1) and TSC2 [501]. TSC1 and TSC2 

repress the small G protein Rheb and induce TOR [502, 503].  

 

1.2.1.3. PI3K/beclin complex induces autophagy 

 

Autophagy is regulated by the PI3K/beclin complex. In yeast, Drosophila, and mammalian 

cells, following autophagy induction by the Atg1 complex, a PI3P-enriched structure appears 

at the site of autophagosome formation [504, 505]. It has thus been proposed that PI3P is 

important for the formation of autophagic vacuole.  One hypothesis is that (PIP3) recruits 

additional factors. This hypothesis has been confirmed by the observation that several yeast 

Atg proteins bind to PIP3 and localize to the autophagosome in a phosphatidylinositol 3-

kinase (PI3K)-dependent manner [506]. As a result, it was proposed that PI3P kinase is 

involved in the activation of autophagy. The single yeast PI3K, Vps34, is required for a 

variety of membrane trafficking events, including autophagy. It has been shown that Vsp34 

can interact with autophagic proteins Atg14 and Atg6, and this interaction leads to the 

formation of a protein complex that contains Vps34, Vps15, Atg6, and Atg14.  Interestingly, 

the members of this complex are conserved in both Drosophila and mammals [507]. For 

example, Beclin-1, the mammalian homolog of Atg6, was originally isolated as a Bcl-2-

interacting protein that inhibits Bcl-2. It was the first reported autophagy-related tumor 

suppressor gene reported [30, 508]. Like the yeast Atg6, Beclin 1 forms a complex with the 

class III PI3-kinase Vps34 [509, 510]. The PI3-K/Atg6 is thus an evolutionarily conserved 

complex and is essential for autophagy regulation. In particular Vps34 function is needed for 
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autophagosome formation. Indeed, a PI3-K inhibitor, 3-methyladenine (3-MA), is a classical 

inhibitor of autophagic vacuole formation [511]. Moreover, PI3-K mutation in Drosophila 

prevents autophagy induction [512]. Reciprocally, increasing the level of the class III PI3-K 

stimulates macroautophagy in human colon cancer cells [513]. Thus PI3-K is an important 

inducer of autophagy. However, the mechanisms which mediate autophagy induction by PI3-

K/Atg6 complex are still unknown. It has only been shown in Drosophila that PI3-K 

alteration fails to modify TOR signaling, suggesting that PI3-K/Atg6 and Tor are two 

independent regulators of autophagy.  

 

1.2.2. Autophagy, dual roles in cell survival and cell death  
 

The role of autophagy in controlling cell death is controversial [514-517]. The study of 

autophagy in yeast upon starvation leads to the hypothesis that autophagy is a protective 

mechanism. In contrast, the observation of autophagy in the pluricellular organism dying cells 

leads to the hypothesis that autophagy is an alternative cell death mechanism both in vivo and 

in vitro. More recent results questioned the role of autophagy in cell death in particular in 

neurodegenerative diseases in which autophagy function appears as a critical survival 

mechanism.  

 

1.2.2.1. Autophagic cell death 

 

Autophagic cell death is one of the three types of programmed cell death. The major type of 

programmed cell death is apoptosis. Necrosis and autophagy are the other two known types of 

cell death. The autophagic cell death has been defined in 1990 as a cell death process 

characterized by the presence of autophagic vacuoles in the dying cells [518, 519]. 

Autophagic features have been observed in dying cells during the development of several 

organisms such as midge, Drosophila, Dictyostelium, silkworm, frog, mouse and chicken 

[518]. During Drosophila development, autophagy has been detected in dying cells in salivary 

gland and also in midgut [62, 395, 520]. Autophagy is also activated in the dying cells in 

Dictyostelium. Moreover, during vertebrate development, autophagy has been detected in 

dying cells such as in frog tails, in the palatal epithelium during closure in mouse embryos or 

in feather melanocytes in chickens. In addition to its role in development, autophagy is also 

implicated in pathological cell death such as in neurodegenerative diseases. Autophagy 
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features have also been detected in neurons in Parkinson, Alzheimer or Huntington disease 

patient brain [521-523]. The observation of autophagic features in the dying cells leads to the 

hypothesis that autophagy is a cell death mechanism. To test if autophagy is a cell death 

process, experiments have been performed both in vitro and in vivo. It has been shown that 

autophagy is required for cell death in several in vitro models. Indeed, the pharmacologic 

inhibitor of autophagy 3-methyladenine (3-MA), a nucleotide derivative that blocks 

autophagy can reduce cell death in vitro [511, 513, 524]. For examples, it has been shown that 

3-MA treatment delays or partially inhibits death in starved hepatocytes from carcinogen-

treated rats [525], in anti-estrogen–treated human mammary carcinoma cells [526], in 

chloroquine-treated cortical neurons [527], in nerve growth factor–deprived sympathetic 

neurons [16], in serum- and potassium-deprived cerebellar granule cells [528], in serum-

deprived PC12 cells [529], in TNF-treated human T lymphoblastic leukemia cells [530] and in 

carcinoma cell death [531]. In addition, autophagy acting as a cell death mechanism has also 

been shown in vitro in several diseases model such as cancer and neurodegenerative diseases.  

It has been shown that ectopic autophagy activation induces cancer cell death [532, 533]. In 

addition, anti-cancer therapies such as irradiation, Atg4c, Baxinteracting factor-1 (Bif-1), 

BH3-only proteins or DAPkinase overexpression induce autophagy [534-536].  Autophagy is 

thus a cell death inducer in cancer cells and can act potentially as a target for cancer therapy 

[537, 538]. Autophagy has also been implicated in neurodegenerative disease models. In vitro, 

overexpression of LRRK2 or MPP (1-methyl-4-phenylpyridine) treatment, which are cellular 

models for Parkinson disease, induce autophagy [539]. The RNAi mediated inhibition of 

autophagy reduces LRKK2 induced cell death [539]. The role of autophagy in cell death has 

also been studied in in vivo autophagic models in Drosophila and Dyctyostelium. During 

Drosophila development, autophagic vacuoles have been observed in salivary gland and 

midgut dying cells [62, 63, 395]. Mutations or RNAi for atg genes inhibit autophagy and 

prevent salivary gland and midgut cell death [63, 540-542].  These results show that 

autophagic cell death is required in vivo for cell elimination in Drosophila salivary gland and 

midgut during development. Conversely, induction of autophagy induction enhances cell 

death in the salivary gland and fat bodies [401, 541]. In Dyctyostelium, it has been shown that 

cell death is independent of caspases and instead requires the autophagic machinery [543]. 

However, the existence of autophagic cell death has not been characterized in vivo during 

vertebrate development.  
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1.2.2.2. Autophagy, a survival mechanism 

 

Autophagy is activated upon cellular stresses and confers cellular protection. It has first been 

shown in yeast that autophagy is activated upon nutrient deprivation. The inhibition of 

autophagy by atg gene mutations or chemical agent increased starvation toxicity [363]. This 

result shows that autophagy is essential for survival upon starvation [544]. In this context, 

autophagy facilitates the recycling of cellular components to produce energy. Moreover it has 

been shown that in vitro, nutrient deprivation induces the formation of autophagic vacuoles in 

the insect and mammalian cells [43, 545]. In vivo, autophagy has been detected after 

starvation in several Drosophila tissues such as in the ovary and fat bodies [44, 546]. In situ 

stainings also show that the liver tissue of a starved mouse presented autophagic activation 

[545]. Based on these observations, autophagy seems to be activated to recycle cell energy 

and thus favors survival upon starvation. Activation of autophagy not only maintains energy 

level during starvation, but also removes the toxic components of the cell such as damaged 

mitochondria and other organelles, intracellular pathogens, and protein aggregates. The 

specific degradation of mitochondria by autophagy, named mitophagy, is important for cell 

survival [547]. Mitochondria are an important cell death inducer through the release of 

Cytochrome C. It has been shown that the amount of cytoplasmic Cytochrome C released via 

rotenone-induced apoptosis is reduced by rapamycin treatment [548]. Therefore, the 

degradation of damage mitochondria via autophagy could reduce apoptosis induction. 

Moreover, mitochondria can also produce ROS to induce an oxidative stress which is toxic for 

cell. It has been shown that the release of ROS induces autophagy, particularly mitophagy 

[549]. Thus the specific degradation of mitochondria which releases ROS via the autophagy 

prevents oxidative stress and protects against cell death [550, 551]. In addition to 

mitochondria, autophagy can degrade other organelles with impaired function to maintain cell 

homeostasis. For example, several cellular homeostasis alterations such as aging or infection 

can cause endoplasmic reticulum malfunction, which leads to the accumulation of misfolded 

proteins in the ER that induces ER stress and ultimately cell death. In these contexts, 

autophagy can specifically degrade the malfunctioning ER to reduce the ER stress and prevent 

the induction of cell death [452, 552]. Thus, via its role in the control of cellular homeostasis 

and in the regulation of stress, autophagy is an essential mechanism for cell survival upon 

aging. 
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Autophagy can reduce neurodegeneration that is usually marked by protein aggregates and 

organelles degradation. Protein aggregates are found in neurodegenerative diseases such as 

Huntington or Alzheimer diseases. Defects in protein ubiquitination and in protein folding 

lead to the formation of protein aggregates. Nascent proteins are folded in the cytoplasm. 

However, if these proteins are mutated or if the cells are submitted to stresses such as 

oxidative stress, the proper folding is disrupted. The misfolded proteins in the cytoplasm can 

form aggregates which are toxic for the cells. It has been shown that autophagic vacuoles 

accumulate in neurons of neurodegenerative diseases [350]. Autophagy has been detected the 

brain of patient with Huntington, Alzheimer and Parkinson diseases [521, 553, 554]. 

Moreover, the model animals of these diseases also present induction of autophagy. For 

example, Human Huntingtin (Htt) overexpression induces autophagy in mouse striatal cells 

[555, 556]. As discussed previously, the activation of autophagy in neurodegenerative 

diseases was first proposed to be deleterious. However, several experiments showed that 

autophagy could in fact protect from neurodegeneration. Indeed, it has been shown that atg5-

/- or atg7-/- knockout mice present an excess of neuron death [557, 558]. These results show 

that basal autophagy is required for neuron survival. It has been proposed that autophagy 

could prevent neurodegenerative disease. Indeed, it has been shown that autophagic flux was 

blocked in Alzheimer disease models, which has been associated to neuron death [559]. 

Indeed, the inhibition of autophagic flux leads to the accumulation of autophagic vacuoles and 

protein aggregates which are toxic for the cell. It has thus been proposed that the reactivation 

of the autophagic flux could reduce neuron death [559]. Moreover, the protective role of 

autophagy has further been shown in several neurodegenerative disease models [560, 561]. 

For example, autophagy activation mediated by Tor inhibition enhances cell survival in 

Huntington disease model [562]. Moreover, autophagy is also protective in Parkinson disease 

model both in vitro and in vivo. In vitro, rotenone treatment induced neuron death, which was 

inhibited by rapamycin treatment [548]. In mouse Parkinson model, knocking out Atg5 or 

Beclin 1 genes aggravates motor deficits and the animals display abnormal reflexes. 

Ubiquitin-positive inclusion bodies accumulate in the neurons in the CNS of these mice. 

Autophagy induction is also protective in the Alzheimer disease models. For example, in 

cultured rat cells expressing human APP (amyloid beta (A4) precursor protein), genetic 

reduction of expression of Beclin 1, an inducer of autophagy, promotes intraneuronal Aβ 

accumulation, extracellular Aβ deposition and cell death. The protective effect of autophagy 

in neurodegenerative disease has been associated to protein aggregate degradation. In 

neurodegeneration related to protein aggregates such as Huntington, Alzheimer and Parkinson 
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diseases, the autophagic vacuoles co-localize with protein aggregates. Furthermore, 

overexpressed Huntingtin localized to autophagic vacuoles [555]. This observation supports 

the hypothesis that autophagy is activated to degrade protein aggregates [560, 563-565]. It has 

been shown that polyQ proteins aggregates are degraded in autophagic vacuoles [566]. In 

addition, α-Synuclein aggregates which induce Parkinson disease is also degraded in 

autophagic vacuoles [567]. By eliminating protein aggregates, autophagy is proposed to be 

protective [560, 561]. Indeed autophagy activation mediated by Tor inhibition enhances cell 

survival in Huntington disease model [562]. In summary, in neurodegenerative disease, the 

elimination of protein aggregates and damaged organelles via autophagy could promote 

cellular survival during neurodegenerative processes. Thus autophagy appears as a protective 

mechanism upon cellular stress. Moreover, it at been shown that basal autophagy is also 

protective in neurons. The implication of autophagy in neuron survival suggests that 

autophagy activation could be an interesting target for neurodegenerative diseases therapies 

[561, 568]. 

  
Autophagy has a dual role in cell death regulation. It has been shown that autophagy 

activation could act in either a pro-survival or a pro-apoptotic pathway. Basal autophagy 

could enable the degradation of potentially toxic cellular components and thus maintain 

cellular homeostasis promotes cell survival [557, 569]. Autophagy induction reduces cell 

death in vitro. For example, autophagy induction via rapamycin treatment enhances CHO cell 

survival [570]. On the other hand, autophagy can also participate to cell death both in vivo and 

in vitro [519]. It has been proposed that this opposite effects of autophagy could depend of the 

level of autophagy activation. When autophagy exceeds a threshold, autophagy could switch 

to cell death. However the existence of such threshold remains to be elucidated.  
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1.3. Endoplasmic Reticulum 
1.3.1. Identification of the ER 

 

The endoplasmic reticulum (ER) has been identified as a basophilic multivesicular 

compartment in the cytoplasm. A basophilic compartment has been first observed in the 

cytoplasm of cell from mammalian salivary gland and pancreas by Garnier et al. in 1897 

[571]. However, the existence of this basophilic compartment was controversial at the time 

and thought to be an artifact. In 1950s, the presence of the basophilic filamentous structure 

was supported by electron microscopy techniques [571-573]. Particularly in 1945, Porter et al. 

described in vitro a "lace-like reticulum" in the cytoplasm of cultured avian cells [572]. The 

electron microscopy observations led to the identification of two characteristic features of this 

structure: its reticular disposition and its vesicular character [574]. These vesicular elements 

of the reticulum are localized in the endoplasm, which is the inner part of the cytoplasm. The 

shape and the position of this organelle gave its name to this structure: the endoplasmic 

reticulum (ER) [575].  

 

The ER is a structure conserved in evolution in eukaryotic cell. The ER has been observed by 

electron microscopy in vitro and in situ in more than 40 different mammalian and avian cell 

types [574-576]. Moreover, the development of fluorescent markers allowed the identification 

of ER in different species like yeast, Drosophila or sea urchin [577-579]. Interestingly, the ER 

is absent of the red blood cell [580], which suggests that the ER is present only in nucleated 

cells. Therefore, the ER is an ubiquitous organelle of the nucleated cells [581]. This suggests 

that the ER is part of the fundamental organization of the cell and involved in essential 

cellular functions. 

 

1.3.2. The structure of the ER 
1.3.2.1. The vesicular / tubular organization 

 

Over the years, the structure of the ER has been studied using light microscopy, fluorescent 

and also electron microscopy. The electron microscopy images showed that the ER was 

composed of vesicles called cisternae. The vesicles are delimited by a simple membrane and 

contain the ER lumen [582]. Structure of the ER in three dimensions has been characterized 
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by the several visualization techniques. Dyes which label membranes have been used to stain 

the ER in vitro and in vivo. The fluorescent dicarbocyanine DiICtg(3) (DiI) labels the 

membrane of the ER in cell culture. This dye has allowed the visualization of the three 

dimensional organization of the ER in living cells for example in sea urchin eggs [583]. The 

ER appeared as interconnected sheets of membrane arranged in apparently random 

orientations. In addition, the dye was able to diffuse in all the ER, which suggests that all the 

vesicles of this organelle are interconnected [579]. The ER can also been visualized looking at 

proteins localized in the ER membrane or in the lumen. These proteins can be directly 

detected using antibodies. For example, in Drosophila, antibodies can be used to detect 

endogenous ER resident proteins like Boca, Septin, Calreticulin or Protein disulfide isomerase 

(PDI) [584, 585]. Moreover, by using the ER resident proteins, other markers of the ER have 

been created to detect the ER in vivo. The ER resident proteins have been used as tagged 

proteins to visualize the ER. In yeast, Sec63p is a protein of the ER membrane. The Sec63p 

tagged with GFP labeled the ER and confirmed that the ER in yeast, as in mammals cells, has 

a tubular structure [577]. Moreover, GFP-tagged proteins have also been used in Drosophila 

to study ER structure. PDI which is a protein localized on the ER membrane has been fused to 

GFP. The PDI-GFP allows to visualize ER shape upon spermatogenesis in Drosophila. It 

shows that in non dividing cells, the ER is localized in all the cytoplasm [586]. However, the 

GFP signal is stronger at the periphery of the nucleus, which suggests that the ER is more 

concentrated around the nucleus [586]. In addition to ER resident proteins tagged with GFP, 

protein fusions between an ER localization signal (KDEL) and fluorescent markers can also 

be used to visualize the ER. KDEL is a peptide sequence required and sufficient to address 

proteins to the ER. Thus, KDEL can be used as a tag to target proteins to the ER. The GFP-

KDEL and RFP-KDEL fusions target GFP and RFP to the ER and label this organelle [587, 

588]. All these tools allow the visualization of the ER and are used to study ER reorganization 

upon cellular processes such as cell division or cell differentiation [589-591].  Moreover, they 

are used to test the localization of a protein in the ER, but also evaluated their accumulation in 

this organelle upon cellular stresses [592, 593].  

 

1.3.2.2. ER and other organelles 

 

The ER is interconnected with other cellular organelles such as the nucleus, the Golgi and the 

mitochondria. In particular the structural relationship between the ER and the nucleus has 

been widely studied. On electron microscopy images, it has been observed that the ER 
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membrane was continuous with the nuclear envelope [594]. In addition, the dyes which stain 

the ER like DiI also stain the nuclear envelope, which suggests that the ER and the nuclear 

envelope are formed by the same membrane [579]. It has been shown that the proteins of the 

nuclear envelope are produced by the ER. It has therefore been proposed that the nuclear 

envelope is a subdivision of the ER. Moreover, experiments have shown that the nucleus and 

the ER undergo coordinated movement in yeast [581]. This confirmed that the ER and the 

nucleus are structurally coupled. However, it has been shown that the composition of the ER 

membrane and the nuclear envelope are different which shows that these to membrane are 

functionally different. In particular only the nuclear envelope can interact with the chromatin 

[595, 596]. Therefore, even if the ER and the nucleus are delimited by a continuous 

membrane, the ER membrane and the nuclear envelope composition are not identical. Thus, 

the ER and the nucleus are structurally linked but they are functionally independent. 

 

The ER is also linked with other organelles such as mitochondria and Golgi [597]. The link 

between mitochondria and ER has caught the attention of the researchers since the 

observation of mitochondria in the ER cellular fraction [598, 599]. Indeed, after cellular 

fragmentation, the ER fraction can contain mitochondria which suggests that these organelles 

have a close relationship [600]. The relationship between ER and mitochondria has been 

further studied by electron microscopy. On rat liver section, cluster of ER and mitochondria 

have been observed [601]. Moreover, it has been shown that the ER and mitochondria outer 

membranes were in close association [602]. This interaction between ER and mitochondria 

has been observed both in yeast and mammals. In yeast, the interaction domain between ER 

and mitochondria has been named ER-mitochondria encounter structure (ERES) [603]. In 

mammals, this domain is the mitochondria-associated membranes (MAMs) [604]. The MAMs 

define the interface between the ER and the mitochondria and therefore are involved in 

crosstalk between the ER and the mitochondria functions. MAMs contain multiple 

phospholipid- and glycosphingolipidsynthesizing enzymes, including long-chain fatty acid-

CoA ligase type 4 (FACL4) and phosphatidylserine synthase-1 (PSS-1), but also chaperones 

such as PACS-2 (phosphofurin acidic cluster sorting protein 2), Grp75 (glucose-regulated 

protein 75) and Sig-1R (Sigma-1 receptor) [605]. MAMs are involved in Ca2+ flux between 

the ER and the mitochondria [606-609]. Indeed, a higher concentration of Ca2+ has been 

found in the mitochondria next to ER association domain [610]. Moreover, proteome analyses 

have shown that Ca2+ transporters such as inositol-1,4,5-trisphosphate receptors (IP3R) and 

voltage dependent anion channel (VDAC) were localized in MAMs [598, 605, 607]. This 
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confirms that MAMs are an active Ca2+ transport platform. In addition to Ca2+ flux regulation, 

MAMs are also involved in lipid metabolism [598, 611]. Therefore, MAMs dysfunction has 

been associated to diabetes [611]. Thus, ER-mitochondria interaction is essential for cell 

metabolism. In addition to mitochondria, the ER is also associated to the Golgi apparatus. 

Vesicular structures have been detected between the ER and the Golgi [612]. These vesicles 

are formed by the ER membrane budding and then fuse to the Golgi [613, 614]. These 

vesicles represent the ER-Golgi intermediate compartment (ERGIC) [615-617]. The ERGIC 

is composed of non-clathrin coats named COPII [617-619]. COPII vesicles are in charge of 

protein transfer between the ER and the Golgi. They contain proteins from the ER which are 

addressed to the Golgi and then secreted. Indeed, radioactive pulse to label newly synthesized 

proteins have shown that proteins are first produced in the ER and then transit in the Golgi 

apparatus before their secretion [620]. Thus the ER and the Golgi interaction via ERGIC is 

essential for the secretory pathway [619, 620]. 

 

The subcompartments of the ER can be identified depending of their shape and their link with 

other organelles. The ER can be divided in four regions:  the nuclear envelope, the rough ER, 

the smooth ER and the transitional ER [621, 622] (Figure 6). The four compartments of the 

ER have a radial organization from the nucleus to the cellular periphery. As discussed 

previously, the ER and the nucleus are structurally linked therefore the nuclear envelope has 

been defined as one subcompartment of the ER [581, 594, 623]. Associated to the nuclear 

envelope, the ER forms interconnected tubular structures. The membranes of the tubular 

structure are associated with ribosomes [624]. As the ribosomes have been visualized as dark 

granules on electron microscopy images the tubular ER appeared rough. Therefore, the 

tubular ER associated with ribosome was named the rough ER. Another part of the ER is 

composed of interconnected vesicles, which are not linked with ribosomes [597]. In 

opposition to the rough ER, this compartment is named the smooth ER. The smooth and 

rough ER have some lumen contents specificity but the main difference between these two 

compartments is the binding of ribosome. The last compartment of the ER is the transitional 

ER. It is formed of independent vesicles, which are localized next to the Golgi [597]. The 

transitional ER makes the link between the ER and the Golgi [625].   
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1.3.2.3. Rough and Smooth Endoplasmic reticulum : ribosome binding 

 

Ribosomes are specifically localized at the surface of the rough endoplasmic reticulum. 

Ribosomes were first identified as macromolecules that localized in the microsomal fraction 

of cell lysate which contained the ER fragment [582, 626, 627]. This result suggests that 

ribosomes could be in association with the ER. In Palade’s work (1954), electron microscopy 

shown that the ribosomes are localized either free in the cytoplasm or in contact with the ER 

[627, 628]. Interestingly, electron microscopy experiments showed that the distribution of the 

granules is not homogenous through the ER. Indeed, the granules are in contact with the ER 

with tubular feature, however the vesicular structures of the ER do not have ribosomes at their 

surface [573, 580, 624]. Judging from the ribosome localization observed on electron 

microscopy images, the ER has been subdivided in two parts: the rough ER which shows 

 
Figure 6: Different subcompartments of the endoplasmic reticulum. The ER is composed of 
continuous but distinct subdomains. a The nuclear envelope (NE) is shown with nuclear pores and 
ribosomal particles attached to the outer membrane. b The rough ER (rER) is continuous with the 
NE and consists of stacked flattened saccules, whose limiting membranes have numerous attached 
ribosomal particles. c Transitional ER (tER) is composed of a rER subdomain continuous with the 
rER and a smooth ER (sER) subdomain consisting of buds and tubules devoid of associated 
ribosomes (arrowhead points to a coated bud). d In some cells (e.g., steroid secreting cells and 
hepatocytes) the sER is composed of a large network of interconnecting tubules showing tripartite 
junctions (arrows). (from [9]) 
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ribosomes at its surface and the smooth ER which has no ribosome (Figure 6).  The fact that 

ribosomes are bound specifically on the rough ER and not on the smooth ER suggests that 

these two compartments could have different functions. Due to its association with the 

ribosomes, it has been proposed that the rough ER could be involved in protein translation. 

On the contrary smooth ER could have a function independent of ribosomes activity such as 

synthesis of lipids and steroids, metabolism of carbohydrates, regulation of calcium 

concentration and export of proteins to the Golgi.  

 

1.3.3. Function of the ER 
 

1.3.3.1. Protein maturation, folding and export 

 

1.3.3.1.1. Secreted and membrane proteins are matured in the ER 

 

Secreted and transmembrane proteins are folded in the ER. The proteins synthesized by the 

ribosomes at the surface of the rough ER enter in the ER and are addressed to the Golgi 

apparatus to be secreted or targeted to membranes [629-632]. However, the newly synthesized 

proteins of the ER are not addressed directly to the Golgi. Before their entrance in the Golgi, 

proteins have to be maturated to become functional in the ER. The proteins stay in the ER 

until they are maturated and folded. The maturation process of the protein takes place during 

and after translation in the ER [633]. The maturation process in the ER involved several 

protein modifications such as signal sequence cleavage, N-linked glycosylation, disulphide-

bond formation and reshuffling, addition of glycosylphosphatidylinositol anchors and 

insertion of membrane proteins in the lipid bilayer [634]. The formation of disulfide bound is 

the main protein maturation process, which occurs in the ER. The disulfide bound formation 

is dependent on the oxidative environment of the ER. Indeed, disulfide bound formation can 

be inhibited by dithiothreitol (DTT) a reducing agent, which blocks protein maturation and 

thus leads to the accumulation of misfolded protein in the ER [635]. These results show that 

the oxidative environment of the ER is essential for protein maturation. However, the 

oxidative environment is not the only parameter which favors disulfide bond formation in the 

ER. The disulfide bond formation also requires the action of enzymes of endoplasmic 

reticulum such as oxidoreductin 1 (Ero1) in yeast or Ero1a and Ero1b in mammalian cells 

[636, 637].  In addition to disulfide bond formation, resident proteins of the ER can be 
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involved in other maturation processes such as glycosylation [638]. Glycosilation process 

involves several proteins which have been identified via mutant studies [639]. The mutant 

studies identified enzymes such as Oligosaccharyl transferase and chaperone proteins such as 

lectin as component of the glycosylation process [638, 640]. Thus the maturation steps of the 

protein require resident proteins of the ER such as chaperone proteins and enzymes. The 

chaperone proteins bind to the newly synthesized protein and favor their maturation and 

proper folding and are considered as the ER quality control (ERQC).   

 

1.3.3.1.2. Quality control system 

 

The maturation and folding of the newly synthesized proteins are controlled in the ER. The 

ER quality control (ERQC) is responsible of the folding and the maturation of newly 

synthesized protein in the ER. The newly synthesized proteins do not have their 3 dimensional 

organization and therefore arbor hydrophobic domains. These domains can interact with each 

other and form protein aggregates in the ER that cannot be exported and can be toxic for the 

cell. Accordingly, the newly synthesized proteins have to be rapidly recognized and folded 

after their synthesis in the ER. Newly synthesized proteins are recognized and folded by the 

ERQC actors. Nevertheless, unfolded protein can accumulate in the ER. In the presence of 

unfolded protein, the ERQC will activate the degradation of the proteins. Therefore, two 

distinct roles of the ERQC have been proposed: (1) the maturation of the proteins to allow 

their exportation, (2) the degradation of unfolded proteins. 

 

1.3.3.1.2.1. Folding machinery: chaperone proteins  

 

The chaperone proteins are required of the proper folding and assembly of proteins. They are 

essential for the control of protein maturation. The chaperone proteins bind to unfolded 

proteins and control their folding [641]. Thus, these proteins are required in cell compartment 

in which proteins are synthesized like the cytoplasm, mitochondria and ER [642]. The ER is a 

key organelle for protein folding. Indeed the secreted proteins which represent 30% of the 

proteins produced in the cell are folded in the ER [643]. Thus, the ER, as the cytoplasm, 

contains resident chaperones, which are required for the folding of newly synthesized 

proteins. The chaperone proteins bind to the nascent peptides. The chaperones interaction with 

the peptides controls their folding and prevents accumulation of misfolded proteins [644, 

645]. As chaperone proteins are in charge of protein folding control, they are more 
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specifically required upon cellular stresses, which alter protein folding. Thus, upon these 

stresses, more chaperone proteins are required to improve the folding capacity and quality 

control. Interestingly, it has been shown that upon heat shock stress, some proteins are 

upregulated: the heat shock proteins (Hsps). Moreover, hsp mutant yeasts are more sensitive 

to high temperature than the wild-type and cannot grow at 37°C. Thus Hsps are chaperone 

proteins, which appear as essential for cell resistance to stresses [646, 647]. The chaperones 

from the Hsps family have been found in the cytoplasm and in the ER where they control 

protein folding. The main family of cytoplasmic chaperones, which is conserved in evolution 

form bacteria to mammals, is the Hsp70 family [648]. Hsp70s are composed of an N-terminal 

ATPase domain and a C-terminal substrate-binding domain. Via their substrate-binding 

domain, Hsp70s bind to hydrophobic residues such as leucine flanked by positively charged 

residues of their substrate [649]. This interaction between Hsp70s and their substrates prevent 

protein aggregation. Moreover, it has been shown that Hsp70s can also disrupt already formed 

aggregates. In addition to protein aggregates elimination, Hsp70 can prevent cell death 

directly inhibiting the apoptotic pathway. Indeed, it has been shown that upon cellular stress, 

Hsp70 interacts with Apaf-1 prevent apoptosome formation and thus caspase activation [650]. 

Hsp70 is thus essential to maintain cell survival upon cellular stresses such as heat shock. 

Moreover, Hsp70 is implicated in diseases associated to protein aggregates such as 

Parkinson’s disease or Tauopathies. Indeed, it has been shown in a Drosophila Parkinson 

model that human hsp70 overexpression reduced α-Synuclein toxicity. Reciprocally, 

Drosophila Hsp70 protein, Hsc4, inhibition enhanced α-Synuclein toxicity [651]. Thus, 

cytoplasmic chaperone machinery in Drosophila helps to protect neurons against degeneration 

[652]. Moreover, it has been shown that Hsp70 prevented Tau aggregation in vitro [653]. 

Thus via its chaperone activity, Hsp70 could prevent neurodegenerative diseases. Hsp70s 

appear as essential cytoplasmic chaperones which allow cell survival in divers condition. In 

addition to Hsp70s, other Hsps have been identified for their chaperone activity such as 

Hsp90s. As Hsp70, Hsp90 prevents protein aggregates accumulation [654]. The function of 

Hsps chaperone can require complex formation with co-chaperones such as Hsp100 and 

Hsp40. In these complexes, Hsps cooperate to bind to protein aggregates. Indeed, Hsp100 

recruitment in protein aggregates requires Hsp70 in yeast and in bacteria [655]. Thus cytosolic 

chaperones are proteins conserved in evolution, which cooperate to fold cytoplasmic proteins. 
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The ER contains resident proteins, like chaperones which are essential for ERQC. The ER 

chaperones have an ER localization signal to maintain these proteins in the ER. An ER 

localization domain have been detected on ER chaperones and enzymes like BiP, Calnexin 

(CNX), Calreticulin (CRT), GRP94, protein disulfide isomerase (PDI), ERp57, and ERp72. 

The two major ER localization signals are HDEL and KDEL. In Yeast, the ER localization 

signal has been identified as a His-Asp-Glu-Leu sequence named HDEL [656]. In mammals, 

the ER localization signal is KDEL (Lys-Asp-Glu-Leu). The HDEL and KDEL signals induce 

the targeting of protein to the ER. However, it has also been shown that the KDEL signal does 

not prevent proteins from importation in the Golgi but, it retrieves the proteins from the post-

ER compartment to the ER [657]. Therefore, it suggests that HDEL can be specifically 

recognized to re-addressed proteins in the ER. The HDEL signal can be recognized by 

specific proteins such as ERD2, which actively maintains the ER proteins in the ER [658-

660]. The ER retrieval sequences are essential for protein localization in the ER and in 

particular for chaperone localization.  

 

The 4 major chaperones of the ER are BiP, calreticulin, protein disulfide isomerase (PDI), and 

endoplasmin [644]. All these chaperones have specific features and roles in protein folding. 

 

BiP is a conserved heat shock protein 70 (Hsp70) family member localized in the ER [661]. 

The Hsp70 family member localized in the ER is a 78 kDa glucose regulated protein named  

BiP/GRP78 [662]. BiP/GRP78 is conserved throughout evolution from yeast to mammals 

[663, 664]. Depending of the species, BiP/GRP78 have different names, for example, in 

Drosophila, BiP/GRP78 is also named Heat shock protein cognate 3 (Hsc3). In C. elegans, 

there are 2 homologues of BiP: Hsp-3 and Hsp-4. The BIP/GRP78 homologues have 

conserved domains, characteristics and functions. BiP/GRP78 has an ER localization signal, 

HDEL in mammals or KDEL in yeast, which retrieves BiP from the Golgi to the ER [656, 

663]. BiP/GRP78 has a peptide-binding site, which is dependant of ATP [665]. BiP/GRP78 

also has a N-terminal ATPase domain and a C-terminal substrate-binding domain. 

BiP binds to unfolded peptides. BiP binds to unfolded protein via its peptide binding site. As 

for other members of the Hsp70 family, BiP binding to its targets depends of ATP [643]. BiP 

binds tightly to ATP and its target proteins. However, when ATP is hydrolysed, BiP releases 

its target proteins [666]. BiP has several target proteins like influenza virus hemagglutinin 

precursor [667], E1 protein of the Sindbis virus [668], H chain and the L chain of 

immunoglobulin complex [669]. BiP targets are various but their common characteristic is the 
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presence of hydrophobic amino acids which allow BiP binding [670]. The best described 

motif of BiP binding site is Hy(W/X)HyXHyXMy, where Hy is a bulky aromatic or 

hydrophobic residue (most frequently tryptophan, phenylalanine or leucine, but also 

methionine and isoleucine), W is tryptophan, and X is any amino acid [671]. This sequence is 

characterized by the presence of hydrophobic amino acids. The interaction between 

hydrophobic amino acid of different proteins can lead to aggregates formation. Therefore, BiP 

binding blocks hydrophobic sites, preventing protein aggregation [670]. Moreover, it has been 

shown that BiP could also dissociate already formed protein aggregates and favors their 

proper folding. By preventing the inhibition of protein aggregation, BiP favors the quality of 

protein folding [672]. Indeed, it has been shown that in cell infected by influenza, that BiP 

interacts more with misfolded influenza virus hemagglutinin precursor HA0 than with the 

correctly folded HA0 [635]. This result shows that BiP binds preferentially unfolded proteins 

and detaches from correctly folded proteins, which suggests that BiP binds to the unfolded 

proteins until they are maturated. Moreover, BiP binding on unfolded protein acts as an ER 

retention signal. Indeed, the overexpression of BiP in CHO cell reduces the secretion of 

specific BiP-binding proteins such as factor VIII [673]. It has also been shown that BiP can 

sequester a component of a heterodimer if the other component is not folded properly. For 

example, two membrane glycoproteins, E1 and PE2, of Sindbis virus assemble into 

heterodimers within the endoplasmic reticulum. If E1 is mutated and cannot be folded, PE2 is 

maintained in the ER via an increase of BiP binding [668]. These results show that BiP 

influences protein retention or secretion from the ER. In conclusion, BiP is an ER resident 

protein involved in proteins folding and proteins export [674]. Via its role in the control of 

misfolded protein secretion, BiP has a role in the unfolded protein response. The role of BiP 

in the unfolded protein response will be further described in 1.3.4.2 Part.  

 

Endoplasmin is a chaperone localized in the ER. Interestingly, it has been shown that 

endoplasmin is one of the most abundant proteins in mammalian cells [675]. It is a glucose 

regulated protein of 94kDa and has therefore been also named Grp94. Endoplasmin and BiP 

are glucose-regulated protein (GRP) that share common features. Indeed, as for BiP, 

Endoplasmin binding to unfolded proteins and chaperone activity requires ATP [676].  The 

chaperone activity of endoplasmin is required in the immune response as it can fold Toll Like 

Receptor and integrins in  β cells [677, 678]. In addition to its own chaperone activity, 

endoplasmin acts also in association with BiP. Indeed, endoplasmin can associate with BiP to 

fold the H chain and the L chain of immunoglobulin [669]. Moreover, BiP and endoplasmin 
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binds to rotavirus proteins which transit in the ER for their maturation [679].  Thus, via this 

folding activity endoplasmin is involved cellular functions such as the immune response. 

 

Calnexin (CNX) and Calreticulin (CRT) are two lectin chaperones localized in the ER. 

Calnexin is a type-I integral membrane protein and calreticulin is the soluble homolog of 

Calnexin in the ER lumen. CNX and CRT share sequence homology and have common 

domains. Calnexin and Calreticulin have an unusual three-dimensional structure with a 

globular domain and a proline-rich arm called the P domain, and a short cytosolic tail [643, 

680]. CNX and CRT have a N terminal domain which has structure plasticity and allows the 

interaction with several targeted proteins like the Class 1 Major Histocompatibility Complex 

protein [681]. The globular domain is thought to bind a single Ca2+ ion and is also involved in 

glucose binding (lectin domain) [680]. The C-terminal domain of calreticulin displays low-

affinity and high-capacity Ca2+ binding and is thought to buffer luminal Ca2+ [682, 683].  

CNX and CRT are chaperones with specificity for glycoproteins maturation [684]. 

Glycoproteins are formed via glycosylation which consists in the co-translationally transfer of 

a preassembled oligosaccharide to nascent polypeptides. Glycoproteins represent 80% of 

proteins in the secretory pathway. Thus, the glycosylation is an essential protein maturation 

step which occurs in the ER [643]. This glycosylation process is mediated by chaperone in the 

ER. CNX is a chaperone involved in glycoprotein maturation. For example, CNX binds to G 

glycoproteins of the vesicular stomatitis virus. This binding of CNX is required for the proper 

maturation of the G glycoprotein. Indeed, if G glycoproteins do not bind to calnexin, G 

glycoproteins are not functional [685, 686]. Moreover, it has been shown that the inhibition of 

glycosylation by tunicamycin or castanospermine suppresses CNX binding to its targets such 

as G glycoproteins and influenza virus hemagglutinin (HA) [687]. Thus, mammalian CNX 

appears as an essential chaperone for glycoproteins maturation. The CNX Drosophila 

homologue is also involved in protein maturation [683]. Indeed the Drosophila CNX is 

required for the folding of Rhodopsin 1 (Rh1) a light sensitive protein. CNX mutations lead to 

a reduced level of Rh1 in the photoreceptor cells of the Drosophila eye. In addition to the 

protein folding, CNX is also involved in protein export control. In absence of CNX binding, 

non-functional G glycoproteins are exported to cell membrane, suggesting that calnexin has a 

role in protein retention in the ER [685]. However, even if CNX has been identified as a 

chaperone specific for glycoprotein, it seems that CNX could be involved in the maturation of 

unglycosylated protein. Indeed, CNX/CRT are involved in the immune response as they fold 
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Class 1 Major Histocompatibility Complex  protein in vivo [643, 681]. Therefore, CNX and 

CRT appear as major chaperones of the ER. 

 

Protein disulfide isomerase (PDI) is a chaperone protein of the ER. PDI is a member of the 

PDI family which contains 20 members in human among which ERp57 and ERp72. The PDI 

family members are characterized by thiol–disulfide oxidoreductases activity [688, 689]. PDI 

can catalyze the disulphide bound formation, which occurs upon protein maturation in the ER 

[690]. As a lot of protein maturation required disulphide bound formation, PDI is a key 

chaperone of the ER. PDI is required for the folding of proteins involved in different cellular 

functions such as ER-associated degradation (ERAD), trafficking, calcium homeostasis, 

antigen presentation and virus entry. Moreover, it has been shown that PDI is also involved in 

secreted protein maturation. PDI enhances by 3,000 to 6,000 the rate of folding of bovine 

pancreatic trypsin inhibitor [691]. Thus, PDI, probably due to it catalyzing activity, permits 

the massive secretion of digestive enzymes by the pancreatic cells. PDI is an ER chaperone 

protein which enhances protein folding and also prevents protein aggregation [692]. 

 

In addition to chaperones that can fold a large number of proteins, other chaperones are 

involved in the folding of specific proteins or in specific tissue. On one hand, specific 

chaperones can be only expressed in one tissue to fold one protein. For example, the NinaA 

chaperone in Drosophila is specifically expressed in the photoreceptor cells (PRCs) and folds 

only the Rhodopsin1 protein [7, 693]. On the other hand, other specific chaperones can be 

expressed ubiquitously but only regulate the folding of one specific protein. For example, 

Hsp47, which belongs to the serine protease inhibitor superfamily, specifically binds to 

collagen and is involved in its maturation [694, 695]. Moreover, receptor associated protein 

(RAP) is a chaperone dedicated to lipoprotein receptor-related protein (LRP) maturation in the 

ER [696]. LRP influences the export of LRP to the cytoplasmic membrane and regulates the 

binding of LRP ligand. Thus, the ER contains many chaperones which could either fold a 

large proportion of the ER proteins or have more specific targets.   

 

Chaperones collaborate to fold proteins. It has been shown that the same peptide can bind 

several chaperones. However, two chaperones cannot bind simultaneously to the same 

peptide. Thus, depending of the peptide sequence one chaperone will preferentially binds to 

the peptide. For example, the position of the putative glycosylation sites induces the binding 

of either BiP or calnexin/calreticulin. The glycosylation sites localized at the N-terminus such 
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as on P62, a structural protein of the semliki forest virus, induces the binding of 

calnexin/calreticulin rather than BiP. On the contrary, the glycosylation localized on the C-

terminus of the protein, such as the E1 protein of the Semliki forest virus,  leads to the binding 

of BiP [697]. Interestingly, there is a competition between the chaperone proteins and the first 

proteins which bind to the peptide inhibits the binding of other chaperones [697]. However, 

the maturation of newly synthesized peptide can required several chaperone proteins. Thus, 

even if two chaperones cannot bind to the same peptide simultaneously, chaperones can bind 

sequentially to the same peptide. For example, BiP and CNX cannot interact at the same time 

with proteins such as glycoprotein G of vesicular stomatitis virus (VSV) or thyroglobulin1, 

there is a sequential binding of BiP and CNX. The order of chaperone binding depends of the 

proteins. For example, the maturation of glycoprotein G of vesicular stomatitis virus (VSV), 

and the E1 of the semliki forest virus (SFV) requires first the bind of BiP/GRP78 and then 

CNX [685, 697]. In contrast, thyroglobulin1 maturation requires first the interaction of CNX 

followed by BiP [698]. Protein maturation in the ER is a complex mechanism which can 

require the action of several chaperones to produce functional proteins. 

 

1.3.3.1.2.2. ERAD 

 

The ER associated degradation (ERAD) is in charge of the specific degradation of unfolded 

proteins of the ER in the proteasome [699]. If the misfolded proteins are not exported to the 

Golgi, they accumulate in the ER, which can be toxic. Thus, to prevent this toxicity, proteins 

that cannot be refolded by the chaperones are targeted to degradation in the proteasome. This 

specific degradation of misfolded protein in the ER is named ERAD. The ERAD process 

requires the ER localization of the misfolded proteins. Indeed, the misfolded proteins such as 

misfolded G glycoproteins of vesicular stomatitis virus that can enter in the Golgi have to be 

re-addressed to the ER to be degraded [686]. It has therefore been proposed that the ER 

localization of the misfolded protein is important of their degradation. ERAD requires ER 

resident proteins such as the ER chaperones, and lectin-like ERAD factor [700, 701]. BiP and 

CNX chaperones recognize misfolded proteins and bind to them. In addition to chaperone, 

misfolded proteins can be recognized by other ER resident protein. In particular, misfolded 

glycoprotein are recognized by lectin-like ERAD factor such as Yos9p in yeast [701, 702]. 

The recognition of the misfolded proteins by BiP, Calnexin or Yos9p targets misfolded 

proteins to the retrotranslocon. The retrotranslocon is an ER transporter which is dedicated to 

the misfolded protein exit from the ER. The exit of protein for degradation is required for 
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protein degradation. It has been shown in yeast that the degradation of misfolded protein 

required cytosolic component [700]. The cytosolic degradative component involved in ERAD 

is the proteasome. The targeting of misfolded proteins to the proteasome requires their 

ubiquitination. The cytoplasmic part of the misfolded proteins is ubiquitinated during their 

export via the retrotranslocon. The ubiquitination involves enzymes from the cytosol: an E1 

ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzymes and E3 ubiquitin ligases. This 

ubiquitination targets the ER misfolded proteins to the proteasome where they are degraded.  

 

1.3.3.2. Calcium  

 

Calcium homeostasis is essential for cell and ER functions. Intracellular calcium levels 

control several cellular functions such as adhesion, cell motility, gene expression and 

proliferation. Variation of Ca2+ levels modifies transcription factors activity and thus controls 

cellular activity [703, 704]. Moreover, the calcium level is important for cellular organelle 

functions. Calcium level controls mitochondrial functions and alteration of Ca2+ level can lead 

to mitochondria-induced apoptosis [705]. Ca2+ has also a specific role on ER function. Indeed, 

alteration of calcium flux can either induce accumulation of misfolded proteins in the ER or 

enhance protein export to the Golgi. For example, the reduction of calcium level in the ER by 

thapsigargin treatment, which inhibits the calcium transporter Sarco/Endoplasmic Reticulum 

Calcium ATPase (SERCA), induces the accumulation of misfolded proteins in the ER [706]. 

On the contrary, the increase of Ca2+ level in the ER, by treatment with a Ca2+ ionophore 

which allows transport ions across the lipid bilayer, reduces the export of protein from the ER 

to the Golgi in human hepatoma HepG2 [707]. In this situation, the retention of protein in the 

ER could be due to defect in protein folding [708]. These results suggest that Ca2+ 

homeostasis in the ER controls proteins folding and chaperone activity of the ER. It has been 

shown that Ca2+ level can modify chaperone function. Indeed, several chaperone proteins of 

the ER have calcium binding site as calreticulin, PDI and BiP [709, 710]. Ca2+ level can alter 

calreticulin function by altering its conformation [711]. Thus Ca2+ levels control ER protein 

folding by regulating chaperone activity. Ca2+ regulation is thus essential for both ER protein 

folding and export. 

 

Intracellular Ca2+ levels are controlled by active transport and storage in cell compartment. 

The cytoplasmic Ca2+ level is controlled by both the import of extracellular Ca2+ and the Ca2+ 

flux between the cytoplasm and the Ca2+ storage organelles such as the ER. On one hand the 
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Ca2+ levels are regulated via plasma membrane Ca2+ channels that regulate Ca2+ exchanges 

between the cytoplasm and extracellular compartment: store-operated calcium (SOC). The 

entry of extracellular Ca2+ is induced by the reduction of intracellular Ca2+ level. In human 

cells, when the Ca2+ diminishes in the ER, the Ca2+ sensor, stromal interacting molecule 1 

(Stim1) forms oligomers [712]. These oligomers are translocated to the plasma membrane and 

interact with Orai1 a component of calcium-release activated calcium (CARC), a plasma 

membrane Ca2+ channel [710, 713-715]. The association of Stim1 and Orai1 leads to the 

opening of the channel and therefore the entrance of extracellular Ca2+ in the cytoplasm. On 

the other hand, there is an intracellular regulation of Ca2+ levels involving exchange between 

organelles and cytosol. The main organelle which controls Ca2+ homeostasis is the ER. The 

ER is the main calcium storage organelle. This organelle can capture or release Ca2+ in the 

cytoplasm. The Ca2+ gradient between the ER and the cytoplasm is controlled by Ca2+ binding 

proteins, Ca2+ transporters and channels [716]. Sarco/Endoplasmic Reticulum Calcium 

ATPase (SERCA) is a calcium pump localized in the ER. SERCA is present in almost all the 

eukaryote suggesting an important role of these pump in cell function [717]. When high levels 

of Ca2+ are reached in the cytoplasm, SERCA is activated; Ca2+ enters in the ER and the 

cytoplasmic Ca2+ level decreases. The Ca2+ entering in the ER is sequestered by Ca2+ binding 

proteins such as Calsequestrin. Calsequestrin has been first identified in the muscular cells 

where it localizes in the interior membrane of the sarcoplasmic reticulum, which is the smooth 

ER found in smooth and striated muscle. Calsequestrin has an high affinity for Ca2+ and is 

able to sequester calcium in the sarcoplasmic reticulum [718]. Other Ca2+ binding proteins 

have been identified in the ER. The main Ca2+ buffering protein in the ER is Calreticulin. 

These Ca2+ binding proteins participate in the maintenance of the Ca2+ pool by sequestering 

Ca2+ in the ER. Indeed, the overexpression of Calreticulin in the ER leads to the accumulation 

of Ca2+ in the ER [719]. Ca2+ binding proteins are thus required to sequester Ca2+ in the ER if 

the cytoplasmic Ca2+ concentration is too high. In addition to Ca2+ uptake and storage, ER can 

also release Ca2+. If Ca2+ levels are too low in the cytoplasm, Ca2+ is released from the ER. 

The export of Ca2+ from the ER involves the cytoplasmic inositol-1,4,5-trisphosphate (IP3) 

[720]. IP3-receptor (IP3-R) is localized on the ER membrane. When calcium level is low in 

the cytoplasm, IP3 binds to IP3-R. IP3-R is calcium channel and the binding of IP3 in its 

receptor leads to the opening of the channel. Ca2+ channel opening induces Ca2+ exit from the 

ER and leads to cytoplasmic Ca2+ level increased. Thus the ER Ca2+ homeostasis is controlled 

by two Ca2+ transporters SERCA and IP3R which have opposite effect on Ca2+ flux.  The 

functional homologues of the Ca2+ trafficking regulators have been identified in C. elegans, 
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Drosophila and humans [714, 715, 717, 721, 722]. These Ca2+ trafficking regulators are all 

involved in the control of intracellular Ca2+ homeostasis. Control of intracellular Ca2+ 

homeostasis is thus a highly conserved mechanism in evolution which confirms the essential 

role of Ca2+ for cellular functions.  

 

1.3.4. ER stress and the unfolded protein response 
 

1.3.4.1. ER stress 

 

The ER stress is caused by the accumulation of unfolded proteins in the ER. The 

accumulation of unfolded proteins can be due to the expression of high amount of newly 

synthesized proteins or to defects in the folding machinery. For example, ER stress has been 

detected in vivo in specialized cells, which produce high level of secreted or transmembrane 

proteins such as pancreatic, salivary gland or photoreceptor cells [723]. For example, 

pancreatic cells in mammals produce large amount of insulin, B-lymphocytes secret 

antibodies and photoreceptor cells produce opsin [38, 724-727]. These cells produce large 

amount of proteins, which transit in the ER. Thus proteins accumulating in the ER generate an 

ER stress. In addition, the accumulation of unfolded protein can be caused by a reduction of 

the folding efficiency. Folding efficiency can be altered by ER environment changes or 

modifications of the amino acid sequence of folded proteins. The ER environment is very 

important for protein folding. Modification of the temperature, Ca2+ levels or reducing 

condition can induce the accumulation of misfolded proteins. For example, ER stress can be 

induced by oxidative stress. Indeed, H2O2 treatment on PC12 cell induced ER stress [728]. 

Another oxidative stress inducer, the paraquat, activates, the UPR in vitro in rat dopaminergic 

neurons [729]. Moreover, ER stress can be induced by drugs, which directly modify the ER 

environment or functions. For example, the dithiothreitol (DTT) is a reducing agent which 

alter the oxidative environment of the ER, thapsigargin alters Ca2+  homeostasis in the ER, 

and Tunicamycin inhibits glycosylations [635, 706, 730]. All these drugs alter protein folding 

in the ER and therefore lead to ER stress [35, 731]. In addition to ER environment condition, 

ER stress can be induced by mutations in the amino acid sequence of both the chaperones and 

the folded protein.  For example, ER stress has been detected in the pancreas of Akita mouse, 

which carries a conformation-altering missense mutation in Insulin 2 [732]. ER stress is also 

detected in vitro in cell expressing mutated P23H Rhodopsin, which accumulates in the ER 
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[733]. Rhodopsin mutations also induce ER stress in vivo in rat model for autosomal 

dominant retinitis pigmentosa (ADRP) [38, 727]. In all these models, protein mutations 

prevent their folding, therefore proteins accumulates in the ER inducing ER stresses. The 

accumulation of misfolded proteins can be induced by the mutation of the chaperone. For 

example, mutation in the chaperone Neither inactivation nor afterpotential A (NinaA) prevent 

Rhodopsin1 (Rh1) folding in the Drosophila photoreceptors [693]. Thus ninaA mutation leads 

to Rh1 accumulation, ER expansion and ER stress (Figure 7). Misfolded protein 

accumulation in the ER has also been associated to several human pathologies. Indeed, ER 

stress has been detected in patients with neurodegenerative diseases such as Amyotrophic 

Lateral Sclerosis (ALS), retinitis pigmentosa (RP), Parkinson or Huntington diseases [27, 32, 

734, 735]. The cause of ER stress induction in these diseases is not clearly identified. As 

oxidative stress has also been detected in these diseases, it has been suggested that this 

oxidative stress could be the cause of misfolded protein accumulation and ER stress. The role 

of ER stress in cell death observed in these diseases in not clearly identified. The role of ER 

stress in cell death regulation and in particular in neurodegenerative disease will be discuss in 

1.3.5 and 1.3.6 Parts. It has been shown that the accumulation of the misfolded protein in the 

ER can be deleterious for cell [686, 734-736]. However, even if some cells contain a lot of 

unfolded protein in the ER, like secreting cells, they survive to this stress. To cope with the 

accumulation of misfolded protein in the ER, the cells have an adaptive response named the 

unfolded protein response (UPR).  

 

 

 
Figure 7: Mutation in NinaA leads to an accumulation of ER. (A) Photoreceptor cells from flies 
with functional ninaA display normal ER morphology (bar = 0.5 μm).  (B) Photoreceptor cells from 
flies that carry mutant ninaA (ninaAP269) display accumulations of ER cisternae (bar = 0.25 μm).  
(adapted from [7]) 
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1.3.4.2. The UPR  

 

The unfolded protein response (UPR) is activated upon ER stress. The UPR involves resident 

proteins of the ER, which directly or indirectly sense the presence of unfolded proteins. In 

mammals, the UPR is mediated by three transmembrane proteins: inositol-requiring enzyme 

1 (IRE1), PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6). Upon ER 

stress IRE1, PERK and ATF6 are activated. In normal conditions, the chaperone BiP/GRP78 

binds to and inhibits IRE1, PERK and ATF6. When misfolded proteins accumulate in the ER, 

the chaperone BiP binds to them [635], and therefore released its inhibition on IRE1, PERK 

and ATF6. In this situation, IRE1, PERK and ATF6 activate their downstream targets (Figure 

8). Upon ER stress, these three proteins induce three pathways, which are called the UPR. The 

aim of the UPR is to reduce the unfolded protein load in the ER [737-739]. To achieve this 

goal, the UPR acts on different levels: (1) the increase of protein degradation via ERAD, (2) 

the increase of  expression of chaperones such as BiP/GRP78 for protein folding [740] and (3) 

the attenuation of translation to reduce the amount of proteins which enter in the ER. The 

three branches of the UPR act differently on these three mechanisms.  

 

The UPR is a conserved mechanism in evolution, however, depending of the organism, the 

UPR effectors are different. In mammals, the UPR is complex and involves three different 

pathways mediated by IRE1, PERK and ATF6. However, all these branches are not conserved 

in evolution (Figure 8). IRE1 is the only branch of the UPR conserved from yeast to 

mammals [737]. In yeast, IRE1 pathway is the only branch of the UPR as there is not 

homologue of PERK or ATF6. As in yeast, Drosophila UPR involves the IRE1 pathway. In 

addition, as in mammal, it also involves PERK pathway. The role of the third branch of the 

UPR, ATF6, has not been characterized in Drosophila. Indeed, even if a Drosophila 

homologue of ATF6 has been identified, its role in UPR is not elucidated. IRE1 is thus the 

more conserved branch of the UPR and the other branches, PERK and ATF6, appeared later 

in evolution.  

 

1.3.4.2.1. IRE1/Xbp1  

 

The inositol-requiring enzyme 1 (IRE1) is a transmembrane protein of the ER which has a 

kinase and endoribonuclase activity conserved in evolution. IRE1 is localized on the ER 
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membrane of all eukaryotic cells [741] (Figure 8). IRE1 has been first identified in yeast then 

in C. elegans, Drosophila and mammals [742, 743]. Mice and human homologues of IRE1 

have been identified by sequence homology compare to the yeast sequences [744, 745]. 

Mammals have two IRE1 genes: IRE1α is essential for viability and is broadly expressed, and 

IRE1β is expressed only in the gastrointestinal mucosa which is a tissue often exposed to ER 

stress. IRE1 is characterized as a type 1 transmembrane protein containing a cytoplasmic 

domain, which contains a Ser/Thr protein kinase domain and a domain homologous to RNase 

L [745].  

 

IRE1 activation is a major branch of the UPR. IRE1 is essential to protect cell from ER stress. 

Indeed, the studies of IRE1 mutants showed that IRE1 was required for cell survival in 

particular upon ER stress.  Mutant mice for IRE1β are more sensitive to dextran, an ER stress 

inducer, than control mice. This shows that IRE1 is essential for ER stress protection [746]. 

IRE1 protective effect is mediated by the activation of major player of the UPR. For example, 

IRE1 inhibition in C. elegans blocks Hsp4 (BiP homologue). This result shows that IRE1 

pathway induces the expression if the Hsp4. Thus, via the activation of the chaperone 

proteins, IRE1 pathway can enhance folding capacity of the ER, which participates in the 

UPR. Upon ER stress, IRE1 activity is regulated by the formation of IRE1 dimers and 

oligomers on the membrane of the ER [747, 748]. Indeed, it has been shown that quercetin, a 

drug which induces IRE dimerization, activates the IRE1 branch of the UPR even in absence 

of ER stress [749]. Thus the regulation of IRE1 dimerization appears essential for the 

regulation of IRE1. Dimerization if IRE1 involves the N-terminal luminal domain (NLD). 

NLD is conserved in evolution as the yeast sequence can be replaced by the human sequence 

without any change in IRE1 activity [750]. This domain is characterized by its capacities to 

bind with other NLD to form dimers [751]. The NLD mediated formation of IRE1 oligomers 

can be controlled by BiP or misfolded proteins binding on IRE1 [752]. Indeed, it has been 

shown that IRE1 NLD can interact with BiP/GRP78 [751]. The interaction of BiP on NLD 

prevents IRE1 dimerization leading to IRE1 inhibition. Upon ER stress, BiP/GRP78 

preferentially binds to misfolded protein and detaches from IRE1. This allows the 

dimerization of IRE1 and the activation of IRE1 [753, 754]. However, in yeast, it has been 

shown that BiP is not required for IRE1 regulation. Indeed, in BiP mutant, IRE1 was almost 

normally regulated in an ER-stress dependent manner [755]. This IRE1 regulation 

independent of BiP is controlled by the direct binding of misfolded proteins to IRE1 in yeast 

[755]. It has been proposed that upon ER stress unfolded protein interacts with IRE1 
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enhancing the formation of oligomers. As IRE1 has a Ser/Thr protein kinase activity, the 

oligomerization of IRE1 by either BiP or misfolded proteins induces its trans-

autophosphorylation. Autophosphorylation of IRE1 controls its activity. Indeed, the inhibition 

of IRE1 phosphorylation leads to the over-activation of IRE1 which could be deleterious for 

the cell [756]. 

 

IRE1 has also an endoribonuclease activity which promotes unconventional splicing of 

XBP1/Hac1, a transcription factor (Figure 8). The splicing of factor X box-binding protein 1 

(XBP1) mRNA consists in the elimination of an intron of 26 nucleotides in mouse and 21 

nucleotides in Drosophila [35, 757]. The elimination of the intron by IRE1 induces a shift in 

the coding sequence of XBP1, which leads to the production of a protein named XBP1 spliced 

(XBP1s)  which is shorter than the one translated from the unspliced mRNA [757]. XBP1s is 

a transcriptionally active XBP1 which stimulates the transcription of its target genes. In 

Saccharomyces cerevisiae, IRE1 splices the mRNA encoding the transcription factor Hac1, 

the homolog of XBP1. The splicing of Hac1 mRNA by IRE1 allows the translation of a 

functional transcription factor. The functional Hac1 induces the expression of all the proteins 

involved in the UPR like chaperones, ERAD associated proteins or Hac1 itself [758, 759]. 

Thus, in yeast and in metazoans, IRE1 controls the expression of all the UPR effectors via the 

splicing of hac1 mRNA and xbp1 mRNA respectively [731, 757, 760]. The splicing of xbp1 

mRNA by IRE1 is a conserved mechanism activated upon ER stress. For example, in the 

Drosophila eye, the splicing of xbp1 mRNA can be detected upon ER stress induced by 

accumulation of mutated of Rhodopsin1 in the ER [761]. Importantly, misfolded protein need 

to accumulate in the ER to induce IRE. For example, in some neurodegenerative disease 

model, cytoplasmic protein aggregation did not activates the UPR. Huntingtin-Q128 (Htt-

Q128) or Tau R406W, which are classical models of cytoplasmic aggregates, have been 

overexpressed in the Drosophila eye disc. In these models, misfolded protein accumulation in 

the cytoplasm do no induces the splicing of xbp1 mRNA [761]. These results show that in 

Drosophila as in mammals, the alternative splicing of xbp1 mRNA by IRE1 is specifically 

induced by misfolded protein accumulation on the ER. Xbp1 mRNA splicing leads to the 

production of a functional transcription factor XBP1s which induces the expression of 

different targets. The XBP1 targets are characterized by the presence of XBP1s binding sites 

in their promoter. XBP1s can bind to different binding sites such as the unfolded protein 

response element (ERSE I and II) and also UPRE A or UPRE B [762, 763]. Among the genes 

which contain XBP1 biding sites, there are luminal ER chaperones and proteins involved in 
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ERAD. For example, in C. elegans, XBP1s induces the expression of major proteins of the 

UPR such as BiP/GRP78 [757]. In mammals, targets of XBP1s are also involved in the ER 

quality control. Thus, via the activation of XBP1, IRE1 improves ER folding capacities and 

activates the ERAD. Moreover, XBP1s induces the expression of itself and also of PERK and 

ATF4 component of another branch of the UPR. This result suggests that XBP1s induces an 

amplification loop of the UPR [762].  

 

XBP1 function has evolved in evolution. In yeast, IRE1-HAC1 pathway is the only 

component of the UPR and therefore is in charge of the transcription regulation of all UPR 

associated genes such as ER chaperones or ERAD associated factors (Figure 8). However, in 

mammals, only some of the UPR associated factors are controlled by XBP1. For example, it 

has been shown that XBP1 did not induce CHOP expression which is a key downstream 

target of the UPR [757, 763]. Moreover, it has been shown that XBP1 mutation in MEF only 

partially inhibited BiP expression [763]. These results indicate that, in mammals contrary to 

yeast, UPR mediated transcription activation is not only controlled by IRE1-XBP1 pathway. 

The other branches of the UPR, ATF6 and PERK, are also involved in the transcriptional 

regulation of UPR associated genes (Figure 8). The role of ATF6 and PERK pathway in 

transcription activation will be respectively described below. 

 

IRE1 reduces general protein expression via mRNA decay. IRE1 has an endoribonuclease 

activity which can cleave xbp1 mRNA but also other mRNA. IRE1 activation leads to the 

degradation of specific mRNA [764, 765]. The mRNA degraded by IRE1 contains specific 

sequence which contain hydrophobic residue. The degradation of these mRNA by IRE1 is 

called the regulated IRE1-dependant decay (RIDD), which is conserved from Drosophila to 

mammals [766-768]. In Drosophila, 120 mRNAs degraded by IRE1 have been identified such 

as Laminin B1 subunit 1, Neural cell adhesion molecule 1, Scavenger receptor class A, 

member 3 (Scara3) or Mannose receptor C type 2 [767]. Moreover, ER chaperone such as BiP 

has been identified as a target of RIDD [768]. Thus via RIDD, IRE1 can regulate different 

cellular function but also regulates ER chaperone expression. Interestingly, the 28S ribosomal 

mRNA is another target of RIDD. Via the degradation of 28S ribosomal mRNA, RIDD 

reduces ribosome activity and thus leads to a global decrease of translation [769]. Therefore, 

via RIDD, IRE1 could reduce amount of newly synthesized proteins in the ER and thus limits 

ER stress. On the contrary, as bip mRNA is a target of RIDD, this mRNA decay can reduce 

the folding capacity of the ER enhancing ER stress. Interestingly, RIDD activation correlates 
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with apoptotic cell which confirm the deleterious effect of RIDD. Moreover, the 

endoribonuclase activity of IRE1 cleaves ire1 mRNA itself [770]. This suggests the existence 

of a negative feedback loop in IRE1 activation that requires RIDD. 

 

IRE1 activates the c-Jun NH2-terminal kinase (JNK) pathway via the interaction with JNK 

regulators. JNK pathway is activated upon ER stress. Indeed, P54, a c-Jun NH2-terminal 

kinase (JNK), is activated in human cell treated with the ER stress inducers tunicamycin and 

thapsigargin [771-773]. The induction of JNK upon ER stress is dependent of the UPR and in 

particular of the IRE pathway. Indeed, in rat cells, IRE1 over-expression induces JNK 

activation [774]. The cytoplasmic part of IRE1 can interact with TRAF2 and JIK (human 

STE20-related serine/threonine Kinase), which mediates JNK pathway regulation. In normal 

cell, IRE1 interacts with JIK. Upon ER stress, TRAF2 binds to IRE1/JIK, which induced the 

recruitment apoptosis-signaling regulating kinase 1 (ASK1) in the complex [775, 776]. ASK1 

recruitment in the complex leads to JNK pathway [774]. Interestingly, the inhibition of either 

JIK or TRAF2 suppresses the induction of JNK pathway upon ER stress [775]. Thus, UPR via 

IRE1/JIK/TRAF2/ASK1 complex activates JNK pathway [773, 774]. It has been proposed 

that in mammalian cells JNK activation in response to ER stress may be an important to 

determine cell to live or die [772].  The role of JNK in cell fate determination upon ER stress 

will be described in 1.3.5.2 Part. 

 

1.3.4.2.2. ATF6  

 

Activating transcription factor 6 (ATF6) is a transcription factor conserved in evolution in all 

metazoan. There is one ATF6 gene is C. elegans and Drosophila and two ATF6 genes in 

mammals: ATF6α and ATF6β [777, 778]. ATF6 is important for UPR in mammals. Indeed, 

MEF mutant for ATF6α have an increased sensitivity to ER stress [779]. The role of Atf6 in 

conserved in C. elegans. Even if C. elegans treated with Atf6 or Ire1 RNAi are viable, the 

combination of ATF6 and IRE1inhibition induced larval lethality [777]. This result suggests 

that ATF6 and IRE1 have redundant effect. Moreover, it has been shown that XBP1 and 

ATF6 have common targets [777]. Altogether, these results show that, ATF6 function in the 

UPR is partially redundant with IRE1 in C. elegans. ATF6 function is thus conserved in C. 

elegans and in mammals. However, the involvement of ATF6 in Drosophila UPR has not 

been characterized yet. 



101 
 

 

 
Figure 8: UPR pathways in yeast, Drosophila and mammals 
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ATF6 is a transcription factor localized on the ER membrane. ATF6 contains as 

transmembrane domain, which anchor ATF6 in the ER membrane. The cytoplasmic domain 

of AFT6 contains bZIP domain and the luminal domain contains CD1 and CD2 domains 

which sense ER stress and are required for ATF6 activation [780]. Upon ER stress condition, 

ATF6 is activated and is translocated in the Golgi [780] (Figure 8). In this organelle, ATF6 is 

then cleaved by proteases of the Golgi: the site-1 proteases in its ER luminal domain and by 

site-2 proteases in its transmembrane domain [781]. The cleavage of ATF6 produces a 56kDa 

protein which contrary to full length ATF6 is not associated to the membrane but exported to 

the nucleus [782]. The cytoplasmic domain of ATF6 enters in the nucleus and acts as a 

transcription factor [780].  

 

ATF6 is a bZIP transcription factor involved in the UPR. ATF6α, as XBP1, binds on ERSE 

sequence and leads to the expression of chaperone proteins and ERAD associated protein 

[763]. Indeed, ATF6α or ATF6β inhibition in MEFs dramatically reduces the expression of 

ERAD components, ER chaperones [779]. In addition to genes with ERSE sequence, ATF6 

have other targets involved in the UPR. In contrast to XBP1, ATF6 induces the expression of 

CHOP [783]. Moreover, ATF6 induces the expression of XBP1 [763, 784, 785]. Thus the 

ATF6 pathway enhances XBP1 function by increasing its expression. Furthermore, ATF6 also 

enhances XBP1 activity by forming heterodimers with XBP1. These heterodimers have a 

higher transcriptional activity then the homodimers. These results indicate that ATF6 

enhances XBP1 activity and thus the IRE1 pathway. In mammals, ATF6 is a key component 

of UPR via the transcription regulation and the enhancement of other branch of the UPR.  

 

1.3.4.2.3. PERK 

 

PKR-like ER kinase (PERK) is an ER transmembrane kinase involved in the UPR (Figure 8). 

PERK has an ER luminal domain similar to IRE1 [786]. Indeed the IRE luminal domain can 

be replaced by PERK luminal domain without affecting IRE1 function [750]. This experiment 

shows that PERK luminal domain, as IRE1 luminal domain, is able to sense ER stress. PERK 

can sense ER stress via its interaction with BiP. Upon ER stress, BiP is detached from PERK, 

which forms dimers via the interaction of luminal domain [787]. PERK dimers formation 

leads to its autophosphorylated on both serine and threonine residues via kinase activity [788]. 

Thus, the activation of PERK and IRE1 upon ER stress is very similar, with dimerization and 

autophosphorylation. However, these pathways diverge on the kinetic of their activation and 
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their downstream effects in the UPR. PERK is the first pathway activated upon ER stress. 

PERK downstream effectors are thus the first effectors of the UPR. Upon ER stress, PERK 

induces eIF-2 phosphorylation which leads to translation attenuation [789]. 

 

PERK induces a general attenuation of protein translation via the phosphorylation of eIF-2α 

upon ER stress that will reduce the load of newly synthesized proteins in the ER. Activated 

PERK specifically phosphorylates eIF-2α on serine-51 [788] (Figure 8). Indeed, the 

cytoplasmic domain of PERK contains a protein-kinase domain similar to interferon-inducible 

RNA-dependent protein kinase (PKR) and haem-regulated eIF-2α kinase (HRI), which are 

known kinase for eIF-2α. In response to ER stress, PERK could therefore phosphorylate and 

activate eIF-2α. eIF-2α interferes with the translation of mRNA into proteins. The activation 

of eIF-2α induces a general reduction of protein synthesis upon ER stress. Indeed, eIF2 

mutant MEFs cannot reduce protein translation [790].  This result confirmed that translation 

inhibition is mediated by eIF-2α upon ER stress. The inhibition of protein synthesis is 

required for ER stress protection. Indeed, PERK mutant cells are more sensitive to ER stress 

induced by tunicamycin. However, a treatment with cycloheximide, an inhibitor of protein 

synthesis, protects PERK mutants from ER stress [789]. So, the reduction of protein synthesis 

via the PERK branch of the UPR improves cell survival upon ER stress. However, 

cycloheximide does not rescue totally PERK mutant hypersensitivity to ER stress suggesting 

that PERK has other downstream effectors.  

 

Despite its role in translation attenuation, PERK can induce a specific transcription increase 

via eIF-2α phosphorylation. Upon PERK activation, phosphorylated eIF-2α specifically 

induces the specific stress-related mRNA such as the activating transcription factor 4 (ATF4) 

and GADD34 [791]. ATF4 targets can control pro-survival genes that are related to redox 

balance, amino acid metabolism, protein folding and autophagy [792, 793]. Thus, PERK can 

control cell death or survival via eIF2 mediated translation activation [794]. For example, the 

transcription factor Nrf2, which control the anti-oxidative response, is a target of the PERK 

branch [795]. When PERK is activated, the Nrf2-Keap1 complex dissociates and Nrf2 induces 

the expression of anti-oxidant proteins which enhance cell survival [796]. However, PERK 

can also activates toxic protein expression like C/EBP homologous transcription factor 

(CHOP) also referred as growth arrest and DNA damage gene 153 (Gadd153), which is an 

apoptosis inducer activated by ER stress [797]. Gadd34, another target of PERK, induces a 

negative feedback on eIF-2α inducing its dephosphorylation and thus regulates the PERK 
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branch of the UPR [798]. The inhibition of eIF2α by Gadd34 reactivates protein translation 

and could therefore enhance the expression of UPR proteins. Thus, PERK branch of the UPR 

induces both a general reduction of protein synthesis and a specific induction of transcription 

which can control cell death or survival 

 

1.3.5. UPR and cell death 
 

Upon ER stress, two types of UPR can be distinguished depending on the stress level and on 

the downstream effectors of the UPR. After ER stress, mammalian cells first activate IRE1, 

PERK and ATF6 to reduce ER stress. However, if the ER stress is severe or prolonged, the 

UPR cannot control anymore the stress and the three branches of the UPR switch to cell death 

induction [737, 799].   

 

1.3.5.1. UPR : an adaptive response 

 

UPR activation allows the cell to cope with ER stress. The 3 branches of the UPR: IRE1, 

ATF6 and PERK reduce the ER stress via transcription and translation regulation. IRE1 and 

ATF6 are dedicated for transcription induction of chaperones and ERAD associated proteins. 

PERK inhibits translation and also induces specific transcription. These pathways are 

essential for cell survival upon ER stress. Indeed, mutants for these pathways present 

enhanced cell sensitivity to ER stress. For example, the inhibition of eIF-2α phosphorylation 

leads to pancreatic β cell death [790]. Moreover, XBP1 over-expression protects neurons from 

axon injury induced cell death [15]. On the contrary, the chemical induction of XBP1 with 

quercetin protects against ER stress caused by calcium dynamics deregulation in intestinal 

epithelial cells [800]. In addition, extinction of a single UPR branch in Multiple Myeloma 

cells promotes a caspase-independent programmed cell death [801]. The activation of UPR 

upon ER stress is thus essential for cell survival.  However, even if all the UPR branches seem 

to be required for cell survival upon ER stress, they are not identical and do not respond the 

same way to ER stress.  

The three branches of the UPR are differentially activated depending of the ER stress inducer.  

IRE1, PERK and ATF6 do not have the same sensitivity to ER stresses. This different 

sensitivity allows the adaptation of UPR to stress exposition. Depending of the ER stress 

inducers, the UPR pathways are differentially activated [802]. IRE1 phosphorylation occurs 
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rapidly after different ER stresses: glycosylation inhibition with tunicamycin, Ca2+ alteration 

with thapsigargin or disulfide bond disruption with DTT. On the contrary, ATF6 and PERK 

respond more specifically to certain stresses. ATF6 is more efficiently activated by disulfide 

bond disruption and PERK responds better to changes in Ca2+ release [802]. Therefore, IRE1 

branch of the UPR seems to be a general response to ER stress whereas ATF6 and PERK 

seem to be more specific of some ER stress inducers.  

In addition to the specific sensitivity to ER stress inducers, there is a time dependent 

activation of the UPR. Indeed, each branch of the UPR has different effects. These effects 

have to be coordinated to allow the activation of an effective UPR. For example, it has been 

shown that upon ER stress, eIF-2α phosphorylation inhibits protein translation to reduce 

protein accumulation in the ER whereas, the other branches of the UPR, IRE1 and ATF6, 

requires the activation of translation to produce chaperone and ERAD associated proteins. 

Thus, eIF-2α mediated translation inhibition has to be downregulated to allow the activation 

of an effective UPR. Activation of eIF-2α induces its own inhibitor GADD34. GADD34 acts 

as negative feedback loop on eIF-2α, which reactivates protein translation. Another feedback 

loop, which involves IRE1, ATF6 and BiP/Grp78, controls the UPR. Indeed IRE1 and ATF6 

pathways induce the expression of BiP/Grp78. As discussed previously, BiP/GRP78 can bind 

to and inhibits IRE1 and ATF6. Thus IRE1 and ATF6 induce their own inhibitor which 

prevents over-activation of the UPR.  UPR is thus a reversible mechanism and when the ER 

stress diminishes, the URP is blocked. The inhibition of UPR branches after the coming back 

to normal situation is key for cell survival.   

 

ER stress could activate a hormesis process which enhances cell tolerance to cellular stresses. 

Hormesis is a cellular protective signal induced by exposure to a low dose of stress-inducing 

agent that allows the cell to better respond to a second insult [803, 804]. The hormesis process 

is also termed pre-conditioning. The hormesis consists in the pre-activation of protective 

cellular response. The hormesis process can be induced by several mild stresses such as 

irradiation, antibiotics, alcohols or metals treatment [805-810]. Hormesis has medical 

perspective. Indeed, it has been shown that ischemia pre-conditioning can reduce infarct size 

[811]. The protective effect of hormesis has been associated to the activation of protective 

mechanisms by intracellular organelles such as ER or mitochondria. The first organelle linked 

hormesis is mitochondria. Stimulation of ROS production by the mitochondria at a sub-lethal 

level enhances organism survival. This mitochondria mediated hormesis is named 

mitohormesis [812]. In addition to mitochondria, it has been shown that the ER stimulation 
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can also activates a hormesis process. Indeed, ER pre-conditioning effect has been observed 

in different cell injury contexts. For example, ER stress can protect from retinal endothelial 

inflammation [813]. ER stress also enhances oxidative stress tolerance [814, 815]. The 

induction of mild ER stress is thus a preconditioning mechanism called ER-hormesis, which 

enhances resistance to cellular insults.  

 

1.3.5.2. UPR activation can lead to cell death  

 

ER stress and UPR can lead to cell death. The UPR helps the cell to cope with the ER stress, 

but if ER stress is prolonged and cannot be reduced by the UPR, the URP induces cell death 

mechanisms. Indeed high doses of chemical ER stress inducers leads to cell death. For 

example, thapsigargin induced apoptosis of jurkat T cell [772]. Tunicamycin treatment on 

human neuroblostoma SK-N-SH cells induced classical feature of apoptotic cell death. 

Moreover, the reduction of ER stress can increase cell survival upon stress condition. The 

inhibition of ER stress with VPA, a histone deacetylase (HDAC) inhibitor, protects neurons 

from apoptosis following ischemia reperfusion [816]. In addition, ER stress contributes to 

CRH-induced hippocampal neuron apoptosis [817]. ER stress can lead to cell death and 

several components of apoptosis induction have been detected upon ER stress [737, 818].  

 

Caspases are involved in ER stress-induced cell death. The Caspases-12, -4 and -2 are 

localized in the ER [37, 819, 820]. They could be involved in ER stress-induced apoptosis 

[739]. The first caspase identified associated to ER stress was Caspase-12. It has been shown 

that upon ER stress, the pro-caspase-12 is cleaved and forms dimers. The activation of the 

initiator Caspase-12 involves either IRE1 or Ca2+ levels. Caspase-12 is activated by IRE1 

pathway and in particular by the IRE1 interacting protein TRAF2 [775]. In basal condition, 

the Caspase-12 interacts with TRAF2. Upon ER stress, TRAF2 favors Caspase-12 

phosphorylation and dimerization [775]. Caspase- 12 activation is also Ca2+ dependent. Upon 

ER stress, the increase level of Ca2+ in the cytoplasm triggers Calpain activation, a calcium-

activated neutral cysteine endopeptidases, which activates Caspase-12 [37]. Upon ER stress 

Caspase-12 interacts with Caspase-9 and triggers Caspase-3 activation and apoptosis [821]. 

Caspase-12 activates caspases like Caspases-9 and -3 independently of APAF-1 and 

Cytochrome C [822, 823]. Thus ER stress induces cell death independently of the 

mitochondria via Caspase-12. Caspase-12 is a functional gene in mouse, however, the 

caspase-12gene in human produces a non functional protein [824]. This observation suggests 
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that other caspases could be involved in ER stress induced apoptosis. In human, Caspase-4 is 

an ER localized caspase. This caspase is activated upon ER stress and like Caspase-12 forms 

dimers. The reduction of caspase-4 expression by small interfering RNA decreases ER stress-

induced apoptosis [819]. It has thus been proposed that Caspase-4 is the human counterpart of 

Caspase-12 and induce apoptosis upon ER stress. Interestingly, Caspase-4 is upregulated in 

the brain of patient with infantile neuronal ceroid lipofuscinosis (INCL), which is a 

neurodegenerative disease associated to ER stress. In vitro experiment shown that Caspase-4 

inhibition is cytoprotective in INCL cells [825]. These results show that Caspase-4 is required 

for ER stress mediated apoptosis. Even if Caspases-4 and -12 seem to be involved in ER 

stress induced apoptosis, cells which do not express these caspases are steel sensitive to ER 

stress which suggests the activation of other cell death inducers upon ER stress [826]. In 

mammals, ER stress-induced cell death also involves Caspase-2 [827]. Indeed Caspase-2 

inhibition rescues from ER stress inducted cell death [828]. Cell death induced by Caspase-2 

has been further characterized. It has been shown that Caspase-2 induced cell death via the 

mitochondria and is dependant of the BH3-only protein BID [828]. Thus in mouse, ER stress 

mediated apoptosis involves, Caspases-2, -4 and -12 whereas in human, ER stress mediated 

apoptosis caspases 2 and 4 but not caspase 12.  

 

The UPR pathways induce apoptosis by regulating Bcl-2 family. CHOP, a target of PERK 

and ATF6, can regulate Bcl-2 family gene expression such as Bcl-2, BIM or MCL-1 [829]. 

CHOP inhibits the expression of the Bcl-2, an anti apoptotic factor and up regulates pro-

apoptotic factors like BH3 only protein BIM or MCL-1 [739]. Indeed, it has been shown that 

upon ER stress induced by several drug such as thapsigargin, the pro-apoptotic member of 

bcl2 family BIM is overexpressed. BIM overexpression is mediated by CHOP [830]. In 

addition to proapoptotic Bcl-2 family members activation, CHOP inhibits prosurvival 

members of the Bcl-2 family. CHOP overexpression enhances MEF sensitivity to ER stress 

inducer such as thapsigargin. This enhanced sensitivity is associated to Bcl2 downregulation 

[831]. Thus, CHOP is a key inducer of the ER stress mediated apoptosis via the mitochondrial 

pathway and the regulation of Bcl-2 family member expression [739, 830]. The Bcl-2  family 

members can also be regulated by the IRE1 pathway. IRE1 physically bind to Bax and Bak, 

which are pro-apoptotic members of the Bcl-2  family [832]. The interaction between Bax, 

Bak and IRE1 regulates IRE1 activity. Indeed, bak-/- bax-/- double mutant prevent IRE1 

mediated activation of JNK [833]. Moreover, Bax and Bak are required for ER stress induced 

cell death as the double mutant cells for Bak and Bax are resistant to ER stress cell death 
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[834]. It has thus been proposed that Bak and Bax induced ER stress mediated cell death via 

the JNK pathway. The regulation of the Bcl-2 family mediates the ER stress induced cell 

death.  

 

In addition to Bcl-2 family regulation, CHOP induces cell death enhancing misfolded protein 

accumulation in the ER. Indeed, CHOP enhances ER stress blocking the UPR and favoring 

protein aggregation formation. CHOP activates Gadd34, an inhibitor of, eIF-2α. Gadd34 

mediates dephosphorylation of eIF-2α, which reactivates protein translation leading to the 

increase of unfolded protein accumulation in the ER. Therefore CHOP, via Gadd34 and eIF2 

inhibition, enhances ER stress [835]. Moreover, CHOP enhances ER stress via the induction 

of protein aggregation. CHOP induces the overexpression of Ero1, mammalian homolog of a 

yeast ER oxidase. Ero1 enhances disulfide bound formation and increase protein aggregate 

formation which is toxic for cells. On the contrary Ero1 mutant cells are protected against ER 

stress [835]. Thus by overexpressing Ero1, CHOP increases protein aggregation in the ER and 

thus enhances ER stress. 

 

JNK pathway is involved in ER stress induced cell death. IRE1 is associated with regulators 

of the JNK pathway such as TRAF2 and c-Jun NH2-terminal inhibitory kinase (JIK) and also 

Cdk5 and Mekk1. Upon ER stress, IRE1 binds to TRAF2 and JIK inducing JNK pathway. In 

addition, cdk5 or mekk1 mutations prevent ER stress mediated JNK activation in the 

Drosophila eye. JNK pathway has been involved in cell death regulation and could lead to 

cell death. Upon ER stress, the inhibition of JNK by dominant negative MKK4/7 and JNK1/2 

suppresses cell death [773]. Moreover the thapsigargin induced cell death requires the 

activation of JNK in Jurkat cells [772]. These results show that JNK activation via the IRE1 

pathway leads to cell death. Moreover, the connection between IRE1 and JNK pathway in the 

induction of cell death has been highlighted in vivo in rat ischemia [836]. Indeed, upon 

ischemia reperfusion, UPR and JNK activation markers are detected in rat brains. 

Interestingly IRE1 and JNK activation correlates with the activation of caspase-12. The 

inhibition of JNK prevent the Caspase-12 inhibition [836]. Thus, it has thus been proposed 

that upon ischemia reperfusion, IRE1 mediated JNK activation induces apoptosis. 
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1.3.5.3. Switch from adaptive response to apoptosis 

 

Upon ER stress the UPR activates different mechanisms, which could be either protective or 

deleterious for cells. An important question is how cells switch from an adaptive response to 

cell death. Several studies showed that there was a time regulation of the UPR branches, 

which can control cell fate. After ER stress induction, IRE1, ATF6 and PERK are activated. 

But, when the UPR is prolonged and toxic, IRE1 and ATF6 branches of the UPR are switch 

off and only the PERK pathway remains activated [733, 837]. Thus IRE1 (and ATF6) may be 

the protective pathways of the UPR. The protective role of IRE1 has been supported by the 

artificial induction of IRE1 upon sustained ER stress, which improved cell survival [733]. On 

the contrary, PERK specific activation leads to cell death via CHOP activation [837].  It has 

therefore been proposed that IRE1 pathway controls survival while PERK is associated with 

cell death. 

 

IRE1 activity is timely controlled upon ER stress. Upon prolonged ER stress, the IRE1 branch 

of the UPR is downregulated. Therefore, modulators of IRE1 activation should exist to 

control IRE1 activity. Heat shock protein 90 (Hsp90) is a modulator of IRE1. Hsp90 is a 

cytoplasmic protein which binds to kinases and promotes their stabilization. Hsp90 interacts 

with the cytoplasmic domain of IRE1.  Hsp90 stabilizes IRE1 and thus could enhance IRE1 

activity. Indeed, inhibition of Hsp90 leads to the enhanced degradation of IRE1 [838]. 

Another regulator of IRE1 function is Bax inhibitor 1 (BI-1). BI-1 has been identified as a 

suppressor of Bax induced cell death [839]. In addition to its role in the regulation of 

apoptosis, BI-1 has been associated to UPR. Indeed, BI-1 is a transmembrane protein of the 

ER, which is involved in the regulation of the IRE1. Indeed, it has been shown that BI-1 

interacts with and inhibits IRE1 [840]. The inhibition of BI-1 in MEF cell leads to the 

activation of IRE1 [840, 841]. On the contrary, over-expression of BI-1 suppresses IRE1 

activity [840]. Moreover, BI-1 inhibits IRE1 mediated activation of autophagy [842]. Thus 

BI-1 regulation could therefore be involved in the control of IRE1 activity. BI-1 is regulated 

by bifunctional apoptosis regulator (Bar). Bar is an ER-associated RING-type E3 ligase. Bar 

interacts with BI-1, promotes BI-1 ubiquitination and leads to BI-1 degradation in the 

proteasome [843]. Interestingly, Bar level is reduced upon a prolonged ER stress. These 

results suggests that upon moderates ER stress, BI-1 could be degraded via its interaction with 

Bar which could allow the activation of IRE1. However, upon prolonged UPR, Bar levels is 
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reduced leading to the increase of BI-1 level and the inhibition of IRE1. IRE1 switch off upon 

prolonged ER stress could therefore depend of the degradation of BI-1 via Bar.  

 

The regulation of IRE1 downstream effectors is a key factor for cell fate upon ER stress. The 

IRE1 pathway has been defined more as a protective pathway as its activation is reduced upon 

toxic ER stress. However, IRE1 can induce both a protective pathway via XBP and a 

deleterious pathway via JNK and RIDD. It has been shown that IRE1 can either induce XBP1 

or JNK depending of experimental conditions. IRE1 can specifically induce XBP1 splicing. 

Indeed, ectopic IRE1 expression upon ER stress induces only XBP1s and not JNK activation 

[733]. Moreover, a fragment of the kinase domain of IRE1 (F6) has been identified as a 

specific regulator of XBP1 splicing by IRE1 [844]. F6 enhances IRE1 oligomerization and 

XBP1 splicing. However, neither JNK nor RIDD are activated by F6. Interestingly, the 

specific activation of XBP1 without JNK by F6 enhances cell resistance to ER stress which 

confirms that XBP1 is protective whereas JNK is deleterious [844]. IRE1 and ATF6 

overexpression showed that IRE1 is able to induce specifically XBP1 without JNK. Thus, 

IRE1 cofactors could exist in vivo to regulate IRE1 specific downstream activity. Hsp72 has 

been identified as a regulator of IRE1. Indeed, the specific induction of XBP1s by IRE1 can 

be induced by Hsp72 overexpression. Hsp72 also blocks JNK activation and protects from 

cellular stresses [845]. On the contrary, JNK can be specifically induced by IRE1. Indeed, the 

overexpression of Bax in the ER which interacts with IRE1, leads to the induction of JNK. In 

this context of Bax overexpression, JNK is activated but not XBP1 and this leads to cell death 

[846]. Thus, Hsp72 seems to favor XBP1 inductor whereas BAX favors JNK activation. In 

addition to IRE1 cofactors, the specific induction of XBP1 or JNK could also be controlled by 

the phosphorylation or the oligomerization of IRE1. The overexpression of a fragment of 

IRE1 kinase domain which does not enhance IRE kinase activity but favors oligomerization 

of IRE1, enhances XBP1 splicing and inhibits JNK [844]. Moreover, mutations in IRE1 

kinase domain abolish its kinase activity but do not alter its RNase activity [756]. It suggests 

that IRE1 phosphorylation is not required for XBP1 splicing but could be required for 

apoptotic signal induction [768]. These experiments suggest that oligomerization of IRE1 

favors XBP1 splicing whereas, IRE1 phosphorylation favors JNK pathway induction. IRE1 

can more specifically induce either XBP1 or JNK and thus switches from survival to apoptotic 

signal.  
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1.3.6. ER stress is detected in neurodegenerative diseases 

 

ER stress is associated to neurodegenerative diseases. ER stress has been detected upon 

neurodegeneration in situ, in vivo, and in vitro (Table 3, [847, 848]). UPR markers have been 

detected in tissues of neurodegenerative diseases patients. For example, ATF4 induction and 

XBP1 splicing have been detected in spinal cord tissue of ALS patients [32]. UPR activation 

has also been detected in post-mortem brain of patient with Parkinson, Alzheimer or 

Huntington diseases. Indeed, PERK and eIF2 phosphorylation are detected in dopaminergic 

neurons in the substantia nigra of Parkinson disease cases [849, 850]. Moreover, 

phosphorylated PERK, IRE1, and eIF2 and detected in hippocampus of the Alzheimer disease 

Diseases URP detection Articles 

ALS  Induction of elf2a, ATF4, Gadd45 in motorneurons in FALS mice model  Saxena 2009 

Induction of XBP1 and CHOP in cell over-expressing mutant FUS  Farg 2012  

Parkinson  Increased levels of GRP78, GRP94, and PDI, activation of xbp1  in  α-
synucleinopathy mouse model  

Colla 2012  

Induction of PERK and ATF6 in rat model of Parkinson  Gorbatyuk 2012  

CHOP, IRE1, PERK, BiP increased after 6-OHDA treatment on cell  Ryu 2002  

Alzheimer  XBP1 activation in Drosophila tauopathy model  Loewen 2010 

Huntington  Enhancement of XBP1 splicing in mHtt  mouse model  Vidal 2012  

optic nerve crush 
injury  

increased CHOP, Gadd45, BiP levels and splicing of xbp1 in mouse  Hu 2012  

Ischemia 
reperfusion  

Variation of XBP1 after ischemia reperfusion in rat  Lehotsky 2009  

Retinis pigmentosa  eIF2a, ATF4, ATF6 and XBP1 genes were upregulated in Rat RP model  Shinde 2012  

spinal cord injury  induction of XBP1s, BiP, and CHOP after  spinal cord injury in mouse  Valenzuela 2012  

 

Table 3: Unfolded protein response detection in animal models of neurodegenerative diseases 

Reference : Saxena 2009 [2], Farg 2012 [10], Colla 2012 [13], Gorbatyuk 2012 [17], Ryu 2002 [18], 
Loewen 2010[11], Vidal 2012[27], Hu 2012 [15], Lehotsky 2009 [36], Shinde 2012 [38], Valenzuela 2012 
[25] 
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patients [851]. Xbp1 mRNA splicing is detected in brain of Huntington disease patient [27].  

The induction of ER stress and the activation of UPR upon neurodegeneration have been 

further studied in animal models of neurodegenerative diseases. It has been shown that these 

models recapitulate the UPR activation observed in patients (Table 3). Indeed, the activation 

of the Perk pathway has been observed in mice model of ALS [2]. Moreover, in vitro model 

of ALS also shown that the Xbp1 splicing was activated [10]. It has also been shown both in 

vitro and in vivo in Parkinson disease model that the three branches of the UPR are activated 

[13, 17, 18]. The IRE1 pathway is also activated in Drosophila model of Alzheimer disease 

and in mice model of Huntington disease. Altogether, these results suggest that the activation 

of UPR pathways and thus ER stress is associated to neurodegeneration. However, the role of 

UPR activation in neurodegenerative disease progression remains to be characterized.  
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2.1. Article 1 : ER stress protects from retinal 

degeneration 
 

The study of the cell death regulator pathway is essential to understand pathologies such as 

neurodegenerative disease. Cell death allows the proper function of an organism. Any 

deregulation of cell death process can induce pathologies such as cancer or degenerative 

diseases. To characterized and find therapies for these diseases, it is essential to characterize 

the regulation of cell death process. The last years have been very successful in identifying 

mechanisms, which control apoptosis in metazoan. However, the regulation of cell death in 

specific cell type remains to be determined. An excess of neuron apoptosis can lead to 

neurodegenerative diseases such as Huntington, Parkinson or Alzheimer diseases. 

Neurodegeneration is usually associated to Endoplasmic Reticulum stress (ER stress), 

autophagy or oxidative stress [21-24]. However, the role of these mechanisms in the 

regulation of neurodegeneration is not clearly established. The objective of this article was to 

characterize to role of ER stress in the control of neuron apoptosis.  

 

The ER is an organelle where secreted and transmembrane proteins are folded. These proteins 

acquire their proper conformation via their interaction with resident ER chaperones. Only 

properly folded proteins can be exported from the ER to be secreted or addressed to 

membrane. The accumulation of misfolded or unfolded proteins induces an ER stress can be 

deleterious for the cell. Thus, the folding process has to be tightly control by the ER quality 

control system. In presence of misfolded protein, the ER quality control system induces the 

unfolded protein response (UPR). The UPR is an adaptive response to the ER stress, which is 

conserved in evolution. Indeed, most the effectors of the UPR identified in mammals are 

conserved in Drosophila [35]. In mammals, the UPR is activated by BiP, a sensor of the ER 

stress. In basal condition, BiP is associated the transmembrane proteins of the ER: PERK, 

ATF6 and IRE1. Upon ER stress, BiP binds to the misfolded protein and thus released its 

inhibition on IRE1, PERK and ATF6. These proteins activate three pathways which induce 

chaperone expression, the activation of the ER associated degradation and the reduction of 

protein synthesis. These processes allow the cell to cope with ER stress. However, several 

studies have shown that an intense and prolonged ER stress can lead to the activation of cell 

death [37]. The UPR can thus be toxic for the cell. However, this toxic effect of ER stress and 
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UPR activation in neurodegenerative diseases has not been established. The conservation of 

the cell death regulatory pathways and of the UPR leads us to use simple genetic model such 

as Drosophila, to study the role of the ER stress and UPR is the regulation of neuronal death.  

 

The Drosophila eye is an excellent model to study in vivo neurodegenerative diseases. 

Indeed, the ectopic expression of proteins, associated to  neurodegenerative diseases, in the 

Drosophila retina induces the progressive loss of photoreceptor cells (PRCs) [41]. For 

example, the overexpression of protein with polyglutamine repeats induced a small eye 

phenotype due to an excess of cell death [852]. We have established a new model of 

neurodegeneration in the Drosophila eye via the overexpression of pro-apoptotic genes such 

as reaper or P53 in the differentiated PRCs. The over-expression of reaper induces a 

progressive apoptosis of the PRCs in the Drosophila eye.  

 

We identified ER stress as a protective process from neurodegeneration. We used the over-

expression of Reaper or P53 in the Drosophila retina as a model of neurodegeneration to 

identified new regulators of neuronal cell death. We identified mutations in ninaA as 

suppressor of neuron apoptosis. NinaA is a chaperone protein required for the folding of 

Rhodopsin-1 (Rh1) in the reticulum. The inhibition of NinaA induces the accumulation of 

misfolded Rh1 leading to ER stress and UPR activation. We have shown that the protective 

effect of ninaA mutation was due to the activation of ER stress. We have thus shown that ER 

stress activation in the Drosophila eye can lead protects neurons from apoptosis. Moreover, 

we have shown in vitro that UPR mediates the protective effect of ER stress. The chemical 

induction of ER stress with tunicamycin or thapsigargin protected S2 cells from cell death 

induced by cycloheximide, H2O2 or ultra-violet exposition. However, the RNAi mediated 

inhibition of xbp1 suppressed the protective effect of tunicamycin.  

 

The cell exposed to ER stress induced an anti-oxidative response, which could protect from 

cell death. The anti-oxidative is activated to protect cells from apoptosis induced by reactive 

oxygen species (ROS). ROS can be released from the mitochondria or the ER. The oxidative 

stress can also be induced by iron. Indeed, free iron can produce free radical via the Fenton 

reaction. Thus to limit ROS production, the anti-oxidant response involves ferritin, a multi-

protein complex which sequester iron. In addition, the anti-oxidant response mainly activates 

enzymes that directly act on the ROS synthesis pathway such as superoxide dismutase (SOD), 

catalase and Glutathion S transferase [45]. We have shown that anti-oxidant response and in 
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particular ferritin are activated upon ER stress. A ferritin transcriptional activity reporter is 

activated in ninaA mutant Drosophila PRCs. Moreover, a target of the anti-oxidative stress 

d4-EBP is induced in ninaA mutant retina. Thus, we have shown that the anti-oxidant 

response is activated upon ER stress. However, the contribution of anti-oxidant response in 

the protective effect of ER stress remains to be elucidated.    
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The unfolded protein response (UPR) is a specific cellular

process that allows the cell to cope with the overload of

unfolded/misfolded proteins in the endoplasmic reticulum

(ER). ER stress is commonly associated with degenerative

pathologies, but its role in disease progression is still a

matter for debate. Here, we found that mutations in the ER-

resident chaperone, Neither inactivation nor afterpotential

A (NinaA), lead to mild ER stress, protecting photorecep-

tor neurons from various death stimuli in adult

Drosophila. In addition, Drosophila S2 cultured cells,

when pre-exposed to mild ER stress, are protected from

H2O2, cycloheximide- or ultraviolet-induced cell death. We

show that a specific ER-mediated signal promotes antiox-

idant defences and inhibits caspase-dependent cell death.

We propose that an immediate consequence of the UPR not

only limits the accumulation of misfolded proteins but also

protects tissues from harmful exogenous stresses.

The EMBO Journal (2009) 0, 000–000

doi:10.1038/emboj.2009.76
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Introduction

The unfolded protein response (UPR) is an evolutionary

conserved adaptive response to perturbations of normal

endoplasmic reticulum (ER) physiology. Strikingly, the UPR

is implicated in several human pathologies, such as neuro-

degeneration, diabetes and cancer (Marciniak and Ron, 2006;

Lin et al, 2008). The UPR engages several responses, includ-

ing transcriptional upregulation of ER-resident chaperones,

selective inhibition of translation and activation of ER-asso-

ciated degradation (ERAD) (reviewed in Ron and Walter,

2007). Despite a large body of work in this field, little is

known about the cellular consequences of the UPR upon

physiological levels of ER stress in vivo.

Genetic and cell culture studies have unveiled the core of

the UPR pathway, linking the detection of ER stress to the

effector responses. In unstressed cells, the ER stress sensor

and chaperone, Bip/Hsc3, binds and restricts the molecular

components of the UPR. In stressed cells, Bip/Hsc3 is titrated

away by unfolded proteins, relieving its inhibition on the

UPR. This leads to trans-autophosphorilation of the pancrea-

tic ER kinase-like ER kinase (Perk) (Harding et al, 1999).

Active Perk phosphorylates eIF2a, inhibiting protein synth-

esis and limiting the flux of misfolded proteins to the ER. In

addition, the UPR promotes the phosphorylation of Inositol-

requiring enzyme 1 (Ire1). Activated Ire1 splices an intron

from the mRNA of x-box binding protein-1 (xbp1), creating a

translational frameshift (Yoshida et al, 2001; Calfon et al,

2002). The spliced form of xbp1 acts as a transcriptional

activator, resulting in the expression of ER-stress target genes,

including protein chaperones and components of the ERAD

pathway (Travers et al, 2000). In parallel, the membrane-

bound protein Atf6 translocates to the golgi, where it is

cleaved by SP1 and SP2. The cleaved peptide translocates

to the nucleus, where it acts as a transcription factor (Ye et al,

2000).

If UPR activation cannot overcome ER stress, then its target

pathways induce the activation of the apoptotic program

(reviewed by Szegezdi et al, 2006). Apoptosis is executed

by specific caspases and regulated both by pro- and anti-

apoptotic Bcl-2 proteins. However, the UPR has also been

shown to induce an antioxidant response, limiting the dele-

terious effect of prolonged ER stress (Cullinan and Diehl,

2004). How the UPR switches between inducing two such

opposite programs is not clear.

Drosophila melanogaster has recently emerged as a useful

in vivo model system to study the UPR pathway (Pomar et al,

2003; Hollien and Weissman, 2006; Ryoo and Steller, 2007;

Souid et al, 2007). Most UPR components found in yeast and

mammalian cells, such as Atf4 (Crc), Perk and eIF2a, have
Drosophila homologs (Pomar et al, 2003 and reviewed in

Ryoo and Steller, 2007). In the Drosophilamodel of autosomal

dominant retinitis pigmentosa (ADRP), the misfolding rho-

dopsin-1 (Rh1) mutation (ninaEG69D, termed rh1G69D for

clarity) induces UPR activation by increasing xbp1 splicing

and Ire1-dependent expression of the heat shock cognate

protein 3 (Hsc3, the Drosophila Bip homolog; Ryoo et al,

2007). The reduction of xbp1 expression leads to increased

retinal degeneration, indicating that xbp1 and its transcrip-

tional targets are required to reduce the accumulation of

misfolded Rh1 in the ER. Although the UPR pathway is

conserved in Drosophila, the relationship between ER stress

and apoptosis remains to be explored.

Searching for genes that protect adult photoreceptor cells

(PRCs) against apoptosis, we identified mutations that dis-

rupt the maturation and folding of the Rh1 protein as strong

suppressors of neurodegeneration. These mutations lead to

the activation of the UPR, which promotes neuroprotection
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against cellular insults by inducing an antioxidant response

while inhibiting caspase activation. These results are not

restricted to photoreceptor neurons, as cultured S2 cells

become more resistant to cell death stimuli if pre-treated

with ER stress-inducing chemical agents.

Results

PRCs exposed to ER stress exhibit death resistance

In a dominant modifier screen to identify cell death regulators

in differentiated Drosophila PRCs (CSM, HS and BM, unpub-

lished data), we have found that mutations in the Drosophila

cyclophilin B homolog ninaA suppress dp53-induced cell

death in PRCs (Figure 1; Table I). NinaA is a membrane-

bound chaperone localized in the ER devoted exclusively to

the biogenesis of the light sensing Rh1 protein. It has been

shown that the peptidyl-prolyl cis-trans isomerase activity of

NinaA allows proper Rh1 folding. In addition, NinaA func-

tions as a chaperone, escorting Rh1 through the secretory

pathway from the ER to the rhabdomeres (microvillar mem-

brane in which rhodopsins accumulate) of outer PRCs (the

rods-like PRCs of Drosophila) (Colley et al, 1991; Baker et al,

1994). NinaA amorphs lead to the accumulation of misfolded

Rh1 protein in the ER, likely resulting in ER stress (Colley

et al, 1991).

We analysed the protective effect induced by the loss of

ninaA against several apoptotic stimuli. The expression of

the pro-apoptotic gene reaper (rpr) induces cell death by a

caspase-dependent mechanism through the inactivation of

the Drosophila inhibitor of apoptosis (Diap1) (Hay et al, 1995;

Goyal et al, 2000). The ectopic expression of rpr, under the

control of the rh1 promoter, induces a progressive loss of

outer PRCs that can be visualized in tangential plastic retina

sections of 2-day-old flies (Figure 1D). Loss of one genomic

copy of the ninaA gene, using the amorphic allele ninaAE110V,

protects the outer PRCs from rpr-induced apoptosis (Figure

1D and E). This anti-apoptotic effect is dose dependent, as

complete loss of ninaA lead to further protection (Figure 1D–

F, K; Supplementary Table 1). To determine whether resis-

tance to PRC death observed in ninaA mutants is specific to

rpr-induced cell death, ninaA mutant retinas were submitted

to the ectopic expression of Drosophila p53 (dp53) or death

caspase-1 (dcp-1, a Drosophila homolog of caspase-3)

(Brodsky et al, 2000; Laundrie et al, 2003). Similarly to rpr,

Figure 1 Loss of ninaA function protects PRCs from cell death. PRC integrity is visualized in outer PRCs submitted to the ectopic expression of
rpr, dp53 and dcp-1, in a wild-type or ninaAmutant background. (A–J) PRC rhabdomeres are visualized in semi-thin tangential retinal sections.
Scale bar, 10 mm. Outer PRC rhabdomeres of a representative ommatidium are circled in yellow. (A–C) PRC rhabdomeres are organized in a
trapezoidal pattern in control retinas (5-day-old flies). (A) Wild type. (B) ninaAE110V/þ . (C) ninaAE110V. (D–F) Loss of ninaA protects from
rpr-induced cell death (1-day-old flies) (D) Ectopic expression of rpr in outer PRCs with rh1-Gal4;uas-rpr (rh14rpr) induces a massive loss of
PRC integrity. (E) Reduced PRC killing in rh14rpr;ninaAE110V/þ . (F) Reduced PRC killing in rh14rpr;ninaAE110V. (G, H) Loss of ninaA protects
from dp53-induced cell death (8-day-old flies). (G) Ectopic expression of dp53 in outer PRCs with rh1-Gal4;uas-dp53 (rh14dp53) induces a
massive PRC killing. (H) Reduced PRC killing in rh14dp53/ninaAE110V/þ . (I, J) Loss of ninaA protects from dcp-1-induced cell death (1-day-
old flies). (I) Loss of PRCs in rh1-Gal4;;uas-dcp-1 (rh14dcp-1) (J) Reduced killing in rh1-Gal4; ninaAE110V/þ ;uas-dcp-1 (K) Quantitative
analysis of photoreceptor survival seen in (A, D–J). The results are expressed as mean percentage of wild-type control±s.e.m. of three animals
(*Po0.05 in Student’s t-test).
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retinas mutant for ninaAwere resistant to cell death induced

by the ectopic expression of dp53 as well as dcp-1 (Figure 1,

G–J, K; Supplementary Table 1). Similar protective effects

were also observed with several ninaA alleles, with the

strongest effects associated with strong loss-of-function al-

leles (ninaAE110V, ninaAQ137L in Table I and Supplementary

Figure 1). These results support the hypothesis that PRCs

with reduced levels of ninaA are protected from apoptosis,

either downstream or in parallel to caspase activation.

We next tested whether the resistance to PRC death,

induced by loss of ninaA, is due to the accumulation of

misfolded Rh1 in the ER. If true, reducing the amount of Rh1

in ninaA mutant retinas should reduce resistance to PRC

death. Using a rh1 null allele (ninaEI17, here termed rh1I17),

we found that double heterozygous mutants for ninaA and

rh1 exhibited similar death sensitivity as wild-type PRCs

(Figure 2B–E and G). In addition, PRCs carrying a hetero-

zygous rh1 null mutation in an otherwise wild-type back-

ground were not protected from cell death (Figure 2D). This

indicates that it is the accumulation of unfolded Rh1 in the

ninaA mutant retina responsible for the death resistance of

PRCs and not the loss of Rh1 function. We then tested

whether cells exposed to unfolded Rh1 in the ER could

phenocopy the protective effect seen in ninaAmutant retinas.

There are several dominant rh1 mutations leading to Rh1

misfolding and accumulation in the ER (Colley et al, 1995).

PRCs maintain their integrity for up to 45 days under normal

light and temperature conditions, but dominant rh1 muta-

tions cause a slow age-dependent retinal degeneration when

exposed to constant light. (Kurada and O’Tousa, 1995, and

data not shown). We examined PRC death sensitivity in

rh1G69D retina in 2-day-old adults submitted to dp53 or rpr

expression. As in ninaA mutant retina, PRCs exhibited strong

resistance to dp53 (Figure 2F and G) and rpr expression (data

not shown).

To circumvent possible issues relating to the ectopic

expression of apoptotic genes under the control of the UAS/

GAL4 system, we tested whether ninaA mutations could

inhibit cell death in another PRC degeneration paradigm.

Loss of apc1 triggers ectopic armadillo expression and

PRC degeneration (Ahmed et al, 1998). We found that while

apc1Q8 adult retina exhibited complete PRC loss (Figure 2H),

heterozygous or homozygous ninaA mutations were suffi-

cient to induce a partial rescue of PRCs (Figure 2I and J).

Taken together, these results favour a model in which

accumulation of unfolded Rh1 in the ER is responsible for

the increased resistance to death in PRCs.

Misfolded Rh1 induces an UPR

We next investigated whether the accumulation of misfolded

Rh1 in the ER causes UPR activation in Drosophila. During

UPR, Ire1 catalyses the unconventional splicing of a small

intron from the mRNA of xbp1 (Yoshida et al, 2001). This

splicing creates a frameshift in the xbp1 mRNA, creating an

active transcription factor. A stress indicator was engineered

by fusing Drosophila Xbp1 with GFP. Upon ER stress, the

spliced mRNA is translated into a Xbp1:GFP fusion that can

be detected by fluorescence or with antibodies against GFP

(Ryoo et al, 2007). To detect the UPR in ninaA and rh1

mutants, we first used the Xbp1:GFP sensor as readout for

UPR activation. xbp1 splicing was detected by the presence of

GFP, revealed using an antibody against GFP in horizontal

cryosections (Figure 3; Supplementary Figure 2). Expression

of the Xbp1:GFP sensor in a wild-type background showed a

low level of GFP immunoreactivity (Figure 3A), suggesting

that PRCs are exposed to basal UPR activation due to the high

levels of rhabdomere-targeted Rh1 proteins that transit

through the ER. We observed high levels of Xbp1:GFP in

rh1G69D mutant retina (Figure 3C; Ryoo et al, 2007).

Strikingly, the loss of one genomic copy of ninaA was

sufficient to cause UPR activation, as indicated by the sig-

nificant increase of GFP immunoreactivity (Figure 3E;

Supplementary Figure 2). This is in accordance with the

fact that reducing the dose of ninaA by 50% is sufficient to

cause the accumulation of misfolded Rh1 in the ER (Baker

et al, 1994). Complete inactivation of ninaA exhibited wide-

spread GFP staining (Figure 3G). These results indicate that

Ire1-dependent xbp1 splicing is activated in response to the

accumulation of misfolded Rh1 in the ER of ninaA and

rh1G69D mutant PRCs.

To further characterize the extent of UPR activation, we

evaluated the levels of Hsc3 expression in ninaA and rh1

mutant retinas (Figure 3). Similarly to Xbp1:GFP, rh1G69D

mutant retinas show a robust increase of Hsc3 expression as

seen in horizontal cryosections and western blots (Figure 3,

D, I, J; Ryoo et al, 2007). The loss of ninaA also led to an

increase in the levels of Hsc3 (Figure 3F and H). Interestingly,

western blot quantification shows that the increase in Hsc3

protein is dependent on the dosage of ninaA gene expression,

as flies heterozygous for ninaA exhibit less of an increase

Table I ninaA mutant alleles protect from dp53-induced cell death

Genotype NinaA levelsa [null (K) to WT
(KKKKK)]

Amount of outer
PRC/ommatidium±s.e.m.

Wild type KKKKK 6.0±0
rh1-Gal4;uas-dp53 KKKKK 2.18±0.41�

rh1-Gal4;uas-dp53/ninaAE110V K 3.99±0.30*
rh1-Gal4;uas-dp53/ninaAQ137L K 3.56±0.16*
rh1-Gal4;uas-dp53/ninaAG98D KK 3.29±0.21*
rh1-Gal4;uas-dp53/ninaAW208@ KKK 3.44±0.17*
rh1-Gal4;uas-dp53/ninaAR120K KKKKK 2.44±0.33**

PRC death was induced by dp53 ectopic expression under the control of rh1 promoter (rh14dp53). Viable PRCs expressing GFP (rh1-GFP) were
visualized by the immersion technique (Pichaud and Desplan, 2001) in wild-type or ninaA mutant retinas.
aNinaA protein levels obtained from western blot analysis (from Ondek et al, 1992). ninaAE110V/+, ninaAQ137L/+, ninaAG98D/+ and
ninaAW208@/+ mutant retinas are protected from dp53-induced PRC death. The results are expressed as amount of outer PRC/ommatidium
±s.e.m. of three animals (*Po0.05 in Student’s t-test compared with rh1-Gal4;uas-dp53 in a wild-type background; **nonsignificant).
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when compared with ninaA amorphs (Figure 3I and J). This

is supported by the fact that the amount of unfolded Rh1 is

dependent on the genomic dosage of ninaA (Baker et al,

1994). For the rest of the study, we will consider that

heterozygous ninaA mutants induce moderate ER stress,

while homozygous ninaA or rh1G69D mutants trigger strong

ER stress. Taken together, the intensity of UPR activation,

visualized by xbp1 splicing and Hsc3 expression, depends on

the amount of misfolded Rh1 proteins that accumulate

in the ER.

Prolonged and moderate ER stress does not lead to

neurodegeneration

Accumulation of misfolded proteins and UPR activation

protect PRCs from death in young adult retina (Figures 1

and 2). We next asked whether prolonged ER stress and long-

term UPR activation under normal physiological conditions

can affect long-term PRC survival. PRC integrity was deter-

mined in aged flies (60 days old) carrying ninaAE110V or

rh1G69D mutations, reared under normal temperature (251C)
and light:dark cycle (12:12 h) conditions. In 60-day-old

adults, we found that both homozygous ninaAE110V and

rh1G69D mutant retinas (strong ER stress) display defects in

the ommatidia trapezoidal arrangement and occasional PRC

loss (Figure 4C and D, and data not shown). These results

correspond with an earlier study showing that long-term PRC

degeneration occurs in homozygous ninaA mutant retinas

(Rosenbaum et al, 2006). Conversely, heterozygous

ninaAE110V retinas (moderate ER stress) remained intact,

showing normal morphology (Figure 4B) despite displaying

hallmarks of ER stress and UPR activation (Figure 3E and F,

and data not shown). This result indicates that a prolonged

moderate ER stress does not cause PRC death.

An ER-mediated signal inhibits caspase activation

Mutations leading to the accumulation of unfolded Rh1 and

activation of the UPR can protect PRCs from cell death

induced by dp53, rpr or the caspase dcp-1 (Figures 1–3).

We first tested whether the UPR activation could lead to a

reduction of the rh1-GAL4/UAS system and a subsequent

decrease of the ectopic expression of the apoptotic proteins.

To address this question, we compared GFP expression levels

(ectopically expressed using GAL4/UAS system), in ninaA,

rh1 mutant and wild-type retinas (Figure 5). Although GFP

levels were decreased in homozygous ninaAE110V or rh1G69D

mutant retinas (strong ER stress), no reduction of GFP was

observed in heterozygous ninaAE110V mutants (moderate ER

stress) compared with the b-tubulin loading control (Figure

5A and B). These results suggest that while attenuation of the

rh1-GAL/UAS system can contribute to cell death inhibition

under strong ER stress conditions, it does not play a role in

moderate ER stress situations. In addition, we tested whether

Figure 2 The protective effect induced by the loss of ninaA is dependent on Rh1 levels. (A–F) Semi-thin tangential retina sections of 2-day-old
flies. Scale bar, 10 mm. Outer PRC rhabdomeres of representative ommatidium are surrounded by a yellow circle. (A) Wild type. (B) Ectopic
expression of dp53 in outer PRCs (rh14dp53) induces PRC killing. (C) PRC killing is reduced in rh14dp53; ninaAE110V/þ . (D) Reduced rh1
dosage does not protect from dp53-induced PRC killing (rh14dp53; rh1I17/þ ). (E) Reduced rh1 dosage suppresses ninaAE110V/þ protective
effect in PRCs submitted to dp53-induced killing (rh14dp53; ninaAE110V/þ ; rh1I17/þ ). (F) A missense mutation in rh1 protects from dp53-
induced PRC killing (rh14dp53; rh1G69D/þ ). (G) Quantitative analysis of photoreceptor survival seen in (A–F). Results are expressed as mean
percentage of survival ±s.e.m. of three animals (*Po0.05; ***Po0.001 in Student’s t-test). (H–J) Loss of ninaA protects from apcQ8-induced
cell death (1-day-old flies). Scale bar, 10 mm. (H) apcQ8 flies display no PRC. (I, J) Loss of ninaA reduces cell death induced by apcQ8 seen by the
presence of rhabdomeres (yellow circles). (I) apcQ8; ninaAE110V/þ . (J) apcQ8; ninaAE110V. Representative images of three animals.
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the UPR could regulate rh1 promoter activity. We measured

rh1 promoter activity (using a rh1-LacZ transgenic line) by

quantifying X-Gal staining of retinal sections and measuring

b-galactosidase activity with an ONPG assay in ninaAE110V

and rh1G69D mutants (Supplementary Figure 3). No difference

was observed between the different genotypes, indicating

Figure 3 xbp1 splicing and Hsc3 expression are increased in ninaA
mutant retinas. Horizontal retina cryosections are stained with an
antibody raised against GFP (A, C, E, G) or against Hsc3 (B, D, F, H)
in 7-day-old flies. xbp1:GFP is expressed in PRCs under the control
of rh1 promoter (rh14xbp1:GFP). Scale bar, 100mm. (A) Wild-type
PRCs expressing xbp1:GFP show weak GFP staining. (C) rh1G69D/þ ,
(E) ninaAE110V/þor (G) ninaAE110V retina expressing xbp1:GFP dis-
play an increased GFP staining in PRC nuclei (yellow arrowheads).
(B) Wild-type retinas do not exhibit Hsc3 staining. (D) rh1G69D/þ
retinas show a marked Hsc3 staining. (F) ninaAE110V/þ and (H)
ninaAE110V retinas show weak Hsc3 staining. (I) Western blot
analysis performed on fly eye tissue. ninaAE110V/þ or ninaA1/þ
exhibit a clear Hsc3 increase compared with wild-type retina. Hsc3
protein level is further increased in ninaA1 compared with ninaA1/
þ . The Hsc3 level in rh1G69D/þ is increased to a level similar to that
in ninaA amorphs. Representative blot of four independent experi-
ments. (J) Quantification of Hsc3 immunoreactivity. The results are
expressed as mean percentage of wild-type control ±s.e.m. of four
independent experiments (*Po0.05; **Po0.01; ***Po0.001 in
Student’s t-test).

Figure 4 Mild and long-term accumulation of unfolded Rh1 protein
does not promote age-related retinal degeneration. (A–D) Semi-thin
tangential retina sections in 60-day-old flies raised at 251C in a 12:12
light–dark cycle. Outer PRC rhabdomeres of representative ommati-
dium are circled in yellow. Scale bar, 10mm. (A) Wild type and
(B) ninaAE110V/þ retinas exhibit a preserved retina structure with
intact PRC rhabdomeres (100% ±0.0 PRC survival). (C) ninaAE110V

(98.37% ±0.74 PRC survival) and (D) rh1G69D/þ (95.94% ±1.88
PRC survival) retinas show occasional signs of degeneration.

Figure 5 Effect of ER stress on the GAL4/UAS ectopic expression
system. (A) Western blot analysis against GFP on head extracts
expressing GFP under the control of the rh1-Gal4 driver in wild-
type, ninaAE110V/þ , ninaAE110V or rh1G69D/þ backgrounds.
Representative blot from eight independent experiments.
(B) Quantification of the amount of GFP detected in (A), normalized
to the loading control and to the amount of GFP expressed in a wild-
type background. There is no reduction of GFP protein levels in
ninaAE110V/þ compared with wild type. ninaAE110V or rh1G69D/þ
exhibit reproducible reductions in GFP levels compared with wild-
type tissues. Reprobing with b-tubulin antibody serves as a loading
control. The results are expressed as a mean percentage of wild-type
control ±s.e.m. of eight independent experiments (**Po0.01;
***Po0.001 in Student’s t-test).
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that rh1 promoter activity functions normally in PRCs under

ER stress. This result corroborates an earlier study showing

that rh1 transcription is unaffected in ninaA mutants (Zuker

et al, 1988). Although we cannot exclude that subtle transla-

tion attenuation can push the balance in favour of anti-

apoptotic genes in ninaAE110V heterozygous retina, it suggests

that another ER-mediated mechanism inhibits

cell death.

Next, we examined whether ER stress inhibits caspase

activation. If ninaA mutants block primarily caspases

sensitive to the baculovirus caspase inhibitor p35,

then ninaA mutations should not show an additive

effect on PRC protection mediated by p35 expression. We

took advantage that p35 only partially suppresses dp53-

induced death (Hsu et al, 2002; Figure 6 and data not

shown). We found that dp53-induced PRC death was

equally inhibited by the expression of p35 or by ninaA

mutation. Moreover, p35-mediated caspase inhibition

was not enhanced by ninaA mutations (Figure 6A–E).

These results suggest that ninaA mutation blocks primarily

p35-inhibitable caspases in PRCs submitted to dp53-mediated

PRC death.

Figure 6 Caspase activation is inhibited in the ninaA mutant retina. (A–D) Semi-thin tangential retinal sections of 13-day-old flies expressing
dp53 in outer photoreceptors cells. Outer PRC rhabdomeres of representative ommatidium are circled in yellow. Scale bar, 10 mm. (A) Ectopic
expression of dp53 (rh14dp53) induces PRC death, but not inner PRCs that do not express dp53 (orange arrowhead). (B) dp53-induced PRC
death is reduced by p35 concomitant expression (rh14dp53; gmr-p35). (C) dp53-induced PRC death is reduced in ninaA mutants (rh14dp53;
ninaAE110V/þ ). (D) dp53-induced PRC death is reduced by p35 expression in the ninaA mutant (rh14dp53; ninaAE110V/þ ; gmr-p35).
(E) Quantitative analysis of photoreceptor survival seen in (A–D). The results are expressed as mean percentage of survival ±s.e.m. of three
animals. (F) Caspase activity measured by the appearance of a cleaved PARP (cPARP) epitope by western blot using an anti-cPARP antibody.
cPARP is present in tissue expressing dp53 in wild type but strongly reduced in ninaAE110V/þ background. Reprobing with b-tubulin antibody
serves as loading control. Representative blot of three independent experiments. (G) Quantification of cPARP immunoreactivity. The results are
expressed as mean percentage of total ±s.e.m. of three independent experiments. (H) Caspase activity measured by luminescence activity.
The results are expressed as luminescence signal relative to the amount of protein±s.e.m. of three independent experiments (**Po0.01;
***Po0.001 in Student’s t-test).
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We then examined the effector caspase activation levels in

PRCs submitted to ER stress by measuring PARP cleavage and

using a DEVD-based caspase activity assay. We first assayed

cleavage of the genetically encoded caspase probe

CD8:PARP:Venus as a read-out for effector caspase activation

(Williams et al, 2006). We found that loss of ninaA strongly

suppressed the dp53-induced cleavage of CD8:PARP:Venus in

PRCs as visualized by western blot analysis (Figure 6F

and G). Next, we measured effector caspase activity in retina

extracts using a caspase activity assay (Caspase Glos). DEVD

cleavage is strongly impaired in heterozygous ninaAE110V

mutants compared with wild-type retinas (Figure 6H), sug-

gesting an inhibition of Drosophila interleukin-1 converting

enzyme (Drice) activity (Fraser et al, 1997). Together with the

observation that ninaA mutants inhibit dcp-1-induced

apoptosis (Figure 1I and J), our results indicate that an

ER-mediated protective signal inhibits the activation of effec-

tor caspases.

An antioxidant response is induced upon ER stress

We found that a moderate ER stress protects PRC from

apoptosis (Figures 1, 3 and 6). It has been proposed that

the UPR contributes to redox homeostasis after ER stress in

mouse fibroblasts (Cullinan and Diehl, 2004). We asked

whether an antioxidant response is induced in Drosophila

PRCs under ER stress. We have observed that the antioxidant

genes ferritins (fer) protect PRCs from death induced by

ectopic expression of apoptotic genes or by light-mediated

photo-oxidation (AG, CSM, HS and BM, unpublished). Fer are

iron storage proteins found in all animal species, and thought

to sequester ferric iron (Fe3þ ) in a nonreactive form that

cannot promote redox reactions (Harrison and Arosio, 1996).

We thus evaluated expression of the antioxidant fer in

ER-stressed retinas. The Drosophila multimeric ferritin com-

plex is composed of fer light chain (fer2lch) and fer heavy

chain (fer1hch). As a means to assess transcription activation

of fer genes, we used an enhancer trap transposable

P-element, carrying b-galactosidase inserted in fer1hch or

fer2lch gene locus. We found increased fer2lch expression in

nuclei of PRCs mutant for ninaAE110V or rh1G69D (Figure 7A–

D; Supplementary Figure 4A). However, no Fer2lch protein

variation was detected by western blots analysis of

dissected ninaAE110Vor rh1G69D retinas compared with control

retinas (data not shown). This could be due to strong fer2lch

levels in the optic lobe, masking any increase of levels

in the PRCs due to ER stress (Figure 7A–D). In contrast to

fer2lch, fer1hch remained constant (data not shown). The

increase of fer2lch transcripts suggests that an antioxidant

response could contribute to the protective effect in

ER-stressed retina.

The Drosophila eIF4E binding protein (d4E-BP) is induced

in response to oxidative stress (Tettweiler et al, 2005).

Although d4E-BP is not an antioxidant protein per se, it

downregulates translation of cap-dependent mRNA and med-

iates survival in animals exposed to oxidative stress. Whether

ER stress is capable of inducing d4E-BP expression is not

known. We examined d4E-BP levels in retinas submitted to

ER stress. We found that PRCs under ER stress exhibit an

increase of d4E-BP transcriptional activity and protein ex-

pression compared with wild-type conditions (Figure 7E–I;

Supplementary Figure 4B). We used the enhancer trap line Pz

[d4E-BP06270] to evaluate d4E-BP transcriptional activity in

ninaA and rh1 mutant retinas. We observed that the rh1G69D

mutant exhibited a marked increase in b-galactosidase activ-

ity staining compared with the wild-type retina (Figure 7H).

Increased staining in ninaAE110V and ninaA1 heterozygotes

was modest, which is consistent with the fact that ninaA

heterozygous mutants exhibit a weaker UPR than in rh1G69D

retinas (Figure 3J). We next tested whether the upregulation

of d4E-BP transcriptional activity is associated with an

increase of d4E-BP protein expression in western blots of

ninaA or rh1 mutant retinas (Figure 7I). Retinas submitted to

ER stress (ninaA1, ninaAE110V and rh1G69D alleles) exhibited

an increase of d4E-BP protein compared with wild type

(Figure 7I, and data not shown). This result shows that

PRCs under ER stress trigger a stress response marked by

the induction of ferritin and d4E-BP genes.

To evaluate redox status in PRCs submitted to ER stress, we

measured oxidative stress levels by immunodetection of

carbonyl groups in oxidized proteins (Levine et al, 1994).

We found an overall reduction of carbonylated proteins in

ER-stressed mutant retina, which is most evident in

homozygous ninaA retina (ninaA1 and ninaAE110V)

(Supplementary Figure 5). This suggests that retinas sub-

mitted to ER stress exhibit reduced oxidative stress levels.

We then explored whether an ER-mediated stress response

is capable of protecting from reactive oxygen species

(ROS)-induced cell death. We used an in vitro approach in

which pharmacologically induced ER stress protects cultured

cells from apoptosis. Drosophila S2 cells can activate an

UPR when submitted to tunicamycin (Tm, a glycosylation

inhibitor) or thapsigargin treatment (Tg, an ER calcium

storage inhibitor) (Plongthongkum et al, 2007; Ryoo et al,

2007). When pre-treated with a sub-lethal dose of Tm or Tg,

S2 cells exhibit oxidative stress resistance to H2O2

(Figure 8A, and data not shown). This result suggests

that moderate ER stress can protect cells from oxidative

stress. We did not observe an increase in ferritin expression

in S2 cells, suggesting that these cells may induce the

expression of other antioxidant genes to promote an antiox-

idant response. In contrast, we found that Tm or Tg treat-

ments induced a dose dependent increase of d4E-BP proteins

(Figure 8B). This result is consistent with the fact that PRCs

submitted to ER stress exhibit an increase of d4E-BP protein

expression.

Next, we tested whether moderate ER stress could also

protect from other apoptotic stimuli, such as cycloheximide

(CHX) and ultraviolet (UV). We found that Tm and Tg also

protected S2 cells from apoptosis induced by CHX and UV. As

moderate ER stress is capable of inhibiting caspase activation

in the fly retina (Figure 6), we tested whether Tm can limit

caspase activation induced by CHX in S2 cells. We found that

a pre-treatment with Tm mitigates caspase activation

(Figure 8C).

To test whether Tm-mediated protection requires the UPR,

we inactivated xbp1 gene using RNAi. Double-stranded RNA

(dsRNA) against xbp1 was efficient as it totally abrogated

xbp1 and strongly reduced hsc3 transcript expressions

(Figure 8D). Tm-mediated protection is xbp1 dependent as

dsRNA against xbp1 restored UV-induced cell death

(Figure 8E). This suggests that the UPR mediates the Tm

survival response in S2 cells. All together, these results argue

that moderate ER stress protects from both ROS- and caspase-

dependent cell death in vitro and in vivo.
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Discussion

In pathological conditions such as diabetes and neurodegen-

erative diseases, a massive accumulation of misfolded pro-

teins in the ER induces a UPR, which in turn triggers

apoptosis (Marciniak and Ron, 2006). Here we show that a

more moderate activation of the UPR (ninaA and rh1 mu-

tants) can mediate a survival response. The UPR protects

PRCs from apoptosis induced by the expression of pro-

apoptotic genes, rpr, dp53 and dcp-1, as well as the degenera-

tion observed in apc mutants (Figure 1). We found that

the ER inhibits caspase activation and triggers an antioxidant

response (Figures 6 and 7). In addition, we showed

that a pharmacological pre-treatment with sub-lethal dose

of the ER inducers (Tm or Tg) protects S2 cells from H2O2,

CHX or UV exposure (Figure 8, and data not shown).

Our results indicate that moderate ER stress mediates a

cellular response that inhibits additional external insults

and allows the cells to have a survival response to the initial

ER stress.

The ER stress-mediated protective effect can be assimilated

as pre-conditioning or an adaptative stress response, also

termed hormesis. Hormesis is a cellular protective signal

induced by exposure to a low dose (or mild) stress-inducing

agent that allows the cell to better respond to a second insult

(for review Mattson, 2007). Our work is an example of ER-

mediated hormesis (or ER-hormesis), because low levels of

ER stress cause the UPR to protect the cells against cell death,

whereas high levels of ER stress cause the UPR to trigger the

apoptosis pathway.

Figure 7 ER stress triggers upregulation of the fer2lch and d4E-BP genes. (A–H) Horizontal retinal cryosections stained for nuclear
b-galactosidase activity from flies carrying the transposable P-element line inserted in fer2lch (Pz[ry, lacZ]fer2lch035) (A–D) or d4E-BP
(Pz[ry, lacZ ]thorl(2)06270) (E–H). Arrows point to nuclear b-galactosidase activity staining in PRC nuclei (B–H). (A) Wild-type retinas exhibit
a fer2lch basal background staining in the optic lobe but no apparent staining in the retina. (B) ninaAE110V/þ , (C) ninaAE110V and
(D) rh1G69D/þ retinas exhibit increased b-galactosidase activity staining at the level of outer PRC nuclei. (E) Wild-type retina exhibit some
d4E-BP staining in nuclei. d4E-BP expression is merely increased in ninaA1/þ (F) and ninaAE110V/þ (G) mutant retinas, but a marked increase
is observed in rh1G69D/þ (H). Scale bar, 100 mm. (I) Western blot analysis of d4E-BP protein levels in rh1G69D/þ and ninaA1 compared with
wild-type fly eye tissues. Representative blot of three independent experiments.
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What makes ER stress lethal?

The current view is that prolonged intense ER stress

promotes apoptosis. UPR-regulating proteins have been im-

plicated in the activation of death factors that trigger caspase

activation (Nakagawa et al, 2000; Hetz et al, 2006;

Puthalakath et al, 2007). Here, we have shown that prolonged

but mild ER stress can promote a long-term survival

response, allowing the cells to cope with additional oxidative

or apoptotic insults. So what is the cellular switch that pushes

the cell from survival to death? Our data suggest that both

intensity and duration of the ER stress play a part in this

decision. We show that a strong ER has short-term protective

effects but leads to PRC degeneration in the long term

(homozygous ninaA mutants and rh1G69D, Figures 1, 2 and

4). In contrast, more moderate ER stress is protective in the

short term and remains harmless even if it is maintained the

entire life of the animal (heterozygous ninaA mutant tested

in 60-day-old animals, Figure 4).

Using an ADRP rat model, Peter Walter and colleagues

have recently brought some insight to a molecular switch that

pushes PRCs towards death pathway (Lin et al, 2007). They

have shown that rat PRCs carrying the misfolding mutation

rh1 (rh1P23H) degenerate at early post-natal stages. In contrast

with ninaA mutant flies, ‘low level’ ER stress leads to rat PRC

demise within a few weeks (Transgenic rat TgP23H3). This

may be due to the fact that the transgenic expression of

misfolded Rh1 still generates too much ER stress.

Nevertheless, the same group has shown that sustained Ire1

does not promote death, whereas sustained Perk mediates

cell death (Lin et al, 2007, 2009). Our results support the

Figure 8 Mild ER stress protects S2 cells from oxidative and apoptotic insults. (A) Percentage of cell death was evaluated by trypan blue uptake
in untreated (control, gray columns) and pre-treated S2 cells with 1 mg/ml of Tm (black columns), which were then submitted to H2O2

(500nM), CHX (1 mM) or UVC exposure (300mJ/cm2). The results are expressed as mean percentage of cell death ±s.e.m. of three
independent experiments. (B) Tm or Tg treatment increased d4E-BP expression in a dose-dependent manner. d4E-BP expression is visualized
by western blot analysis on S2 cells treated with Tm or Tg for 6 h. (C) Tm pre-treatment reduces caspase activity induced by CHX treatment.
Cells were either untreated (control, gray columns) or pre-treated with 1mg/ml of Tm (black columns) then submitted to CHX (1 and 10mM).
The results are expressed as RLU (relative luminescent unit) ±s.e.m. of one experiment (triplicates) representative of three independent
experiments. (D) xbp1 knock down by dsRNA strongly reduced the amount of xbp1 and hsc3 transcripts. The expression of the ribosomal rp49
gene was used as internal control for RNA extraction and RT–PCR efficiency. Its expression is constant in control and treated cells. (E) Knock
down of xbp1 reverts the protective effect of Tm. The results are expressed as mean percentage of cell death ±s.e.m. of three independent
experiments. (in A, B, C and E, *Po0.05; **Po0.01; ***Po0.001 in Student’s t-test).
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hypothesis that Ire1 has a protective effect, as inactivation of

xbp1 is sufficient to abolish the Tm protective effect in S2

cells (Figure 8E).

Is a moderate activation of the Ire1 pathway mandatory

for long-term Drosophila PRC survival? Upon ER stress, we

have shown that Ire1-mediated xbp1 splicing is induced in

PRCs, as demonstrated by the appearance of spliced xbp1

mRNA and Hsc3/Bip protein (Figure 3). A moderate increase

of Hsc3 expression is associated with long-term resistance to

cell death in heterozygous ninaA mutants. In contrast, a

more robust Hsc3 expression is associated with short-term

protection and long-term neurodegeneration in homozygous

ninaA mutants (Figures 3 and 4). Thus, a moderate activa-

tion of the Ire1 pathway is correlated with a long-term PRC

survival.

Although all UPR branches are activated upon ER stress,

the immediate response is Perk/eIF2a-mediated translation

attenuation (Wu and Kaufman, 2006). We found that when

the ER stress is intense (homozygous ninaA or rh1G69D

mutant retinas), the reduction of protein synthesis limits

the expression of proteins in PRCs through the UAS/GAL4

system, hence contributing to attenuated PRC death

(Figure 5). In contrast, when ER stress is moderate (hetero-

zygous ninaA mutant retina), there is no apparent reduction

of protein synthesis and no long-term deleterious effects. This

suggests that Perk/eIF2a is not activated or does not mediate

the translation attenuation in heterozygous ninaA mutant

retinas. One possible explanation is that limited activation of

the Perk/eIF2a pathway favours survival. In support of this

hypothesis, attenuation of Perk-mediated eIF2a phosphoryla-

tion by the compound salubrinal protects cells from the

deleterious consequences of prolonged ER stress (Boyce

et al, 2005). In addition, the genetic reduction of eIF2a
protects from oxidative stress (Tan et al, 2001). Thus, low

level of Perk/eIF2a pathway activation is correlated with

enhanced cell survival.

What are the signals that inhibit PRC death in

ER-stressed retinas?

We found that ER stress mediates caspase inhibition and

apoptosis resistance in PRCs (Figure 6). In addition, ER stress

induces an antioxidant response as shown by the increase of

fer2lch and d4E-BP expression (Figures 7 and 8B). This

antioxidant response is associated with a reduction of basal

oxidative stress levels as visualized by the detection of

protein oxidation in the retina (Supplementary Figure 5).

We propose that the inhibition of basal levels of oxidative

stress limits caspase activation and contributes to the protec-

tion of PRC submitted to ER stress.

In support of an ER-mediated antioxidant response, we

show S2 cells, pre-treated with Tm or Tg, are resistant to ROS

exposure (H2O2) (Figure 8A, and data not shown). Similarly,

it has been shown that UPR activation counteracts ROS

accumulation and cell death induced by tumour necrosis

factor alpha in mouse embryonic fibroblasts (Xue et al,

2005). Together, these data argue that the UPR can

limit ROS accumulation, inhibiting apoptosis in a conserved

process.

Activation of the UPR, as well as the increase of d4E-BP

upon ER stress, suggests that selective changes in protein

levels regulate cell death. In support of this hypothesis, it was

proposed that 4E-BP favours the translation of proteins

through their internal ribosome-entry site (IRES), contribut-

ing to survival (for review Holcik and Sonenberg, 2005). The

translation of genes, such as Bip, that contain IRES in their

mRNAs can limit the UPR and protect the cell from excessive

ER stress.

Although it has been shown that ER stress can

induce the IRES-dependent translation of the human

inhibitory of apoptosis protein 2 and reduce cell death

(Warnakulasuriyarachchi et al, 2004), we failed to detect an

increase of the Drosophila inhibitory of apoptosis protein 1

(DIAP1), measured by western blot or immunofluorescence

of Drosophila retinas exposed to ER stress (data not shown).

It is possible that other IRES-dependent proteins contribute to

an increased antioxidant response and the inhibition of

caspase activation in PRCs. It has been shown that an

antioxidant treatment can prevent JNK-mediated caspase

activation in NF-kB deficient mouse fibroblasts (Kamata

et al, 2005). Whether an ER-mediated signal can inhibit

JNK-induced cell death remains to be demonstrated.

Relevance to pathology

Increasing evidence has linked ER stress and the UPR to

pathologies such as neurodegenerative diseases, cancer and

diabetes (Marciniak and Ron, 2006). ER stress markers have

been observed in degenerating tissues, and it has been

proposed that an overloaded ER promotes cell death. Our

data tackle a new and important issue, in that moderate ER

stress is not only protective against unfolded protein accumu-

lation but also against external apoptotic insults. We also

show that moderate and protective ER stress remains harm-

less in the long term. Whether moderate ER stress in a healthy

mammalian brain could protect against or delay the onset of

neurodegenerative diseases remains to be demonstrated.

Materials and methods

Fly stocks

The following genotypes were used: Canton S (CS) and cnbr as
wild-type strains. The ninaA1 (ninaAW208@), pzfer1hch0451,
pzfer2lch035, pzthorl(2)06270 alleles were obtained from the Bloo-
mington Stock Center. The ninaA alleles ninaAE110V, ninaAQ137L and
ninaAG98D were a gift from Charles Zuker (Ondek et al, 1992). The
apcQ8 allele was a gift of Yashi Ahmed. The rh1 alleles, ninaEI17 and
ninaEG69D (termed rh1I17 and rh1G69D, respectively in the text) were
a gift from Joseph O’Tousa (Kurada and O’Tousa, 1995). The rh1-
Gal4 driver, a gift from Jessica Treisman, was used for ectopic
expression in the outer PRCs (Mollereau et al, 2000). The uas-
CD8:PARP:venus stock was a gift from Darren Williams (Williams
et al, 2006). The following genetic combinations were used to
express transgenes in adult outer PRCs: (1) rh1-Gal4; uas-rpr, (2)
rh1-Gal4; uas-dp53, (3) rh1-Gal4; uas-dcp-1, (4) rh1-Gal4; uas-
xbp1:GFP, (5) rh1-Gal4; GMR-p35, (6) rh1-Gal4; uas-GFP and (7) rh1-
Gal4; uas-CD8:PARP:venus. Flies were maintained at 251C and a
12:12 h light cycle.

Caspase assay
S2 cells were seeded in 96-well culture plates at 15�103 cells per
wells. After a 4-h Tm treatment, cells were submitted to CHX for 5 h
and 30min. Caspase-Glos 3/7 reagent (Promega, France) was
added (V/V) to wells and incubated for 1 h 30min. Luminescence
was measured by a luminometer (VeritasTM microplate lumin-
ometer).

RT–PCR
The effect of xbp1 knock down on S2 cells was monitored by RT–
PCR. mRNA was extracted from treated S2 cells using RNeasy Mini
Kit (Qiagen). cDNA was produced using the Enhanced Avian RT
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First Strand Synthesis Kit (Sigma). xbp1 mRNA expression was
visualized after 22 cycles and melting temperature of 581C.

A more detailed Material and methods section can be found in
Supplementary data.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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2.2. Article 2 : ER stress inhibits neuronal death by 

promoting autophagy 
2.2.1. ER stress is protective in neurodegenerative disease 

 

The ER stress and the UPR are associated to neurodegenerative disease. UPR activation has 

been detected in brain patient with neurodegenerative diseases such as Alzheimer, Parkinson 

or Huntington diseases. However, the role of ER stress upon neurodegeneration is still under 

debate. Indeed inhibition of the IRE1 or PERK pathways in neurodegenerative disease models 

can either prevent or enhance neuron death. We have previously shown that the ER 

preconditioning protects neurons in Drosophila from apoptosis. We used models of Parkinson 

disease in Drosophila and mouse to test the role of ER preconditioning on neuron cell death.  

 

Drosophila and mouse are used as model for Parkinson disease. Several models of Parkinson 

disease mimic this pathology in Drosophila and in mouse. We used the over-expression of 

human α-Synuclein specifically in the dopaminergic neurons as Drosophila Parkinson model. 

The overexpression of human α-syn induces the progressive lost of dopaminergic neurons in 

the Drosophila brain. In mouse, the loss of dopaminergic neuron can by induced by 

stereotaxic injection of 6-hydroxidopamin in the striatum. We used these models to study the 

role of ER stress in Parkinson disease progression.  

 

Pre-treatment with tunicamycin induces a protective ER stress in Parkinson disease models. 

ER stress can be induced in Drosophila by tunicamycin feeding. In addition, intraperitoneal 

injection of tunicamycin activates the unfolded protein response in the mouse brain. We have 

shown that these treatments are toxic neither in Drosophila nor in mouse and considered these 

treatments as induction of mild ER stress. We have shown that tunicamycin pre-treatment 

protected dopaminergic neuron from cell death in Parkinson disease models. The neurons 

rescued by tunicamycin treatment are functional. Indeed, in Drosophila, tunicamycin 

treatment maintains dopaminergic neuron function as suggest by the expression of pale and 

vmat, which are involved in the synthesis and transport of dopamine. In addition, in mouse, 

tunicamycin maintain locomotor activity despite the injection of 6-OHDA. We thus have 
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shown that mild ER stress protects neurons in neurodegenerative disease model. We next 

studied the protective mechanism activated by ER stress.  

 

2.2.2. Autophagy mediates the protective effect of ER stress 
 

Autophagy is a degradative process conserved in evolution which is implicated in the 

regulation of cell death. Autophagy is activated upon starvation or cellular stress.  The 

autophagic vacuoles are formed to sequester part of the cytoplasm. These vacuoles fuse with 

lysosomes leading to the degradation of the vacuole content. This degradative process is 

involved in cell survival. Indeed, autophagy degrades cellular component to produce energy 

required for cell survival. Moreover, autophagy allows the elimination of damaged 

mitochondria that released Cytochrome C or reactive oxygen species, which are toxic for cells 

[853]. Autophagy could thus inhibit apoptosis. On the contrary, several studied shown that 

autophagy can induce cell death. For example, it has been shown that autophagy induced the 

elimination of cells during Drosophila development [541]. Autophagy is thus a mechanism 

implicated in the regulation of cell death. 

 

Autophagy is associated to neurodegenerative diseases. Autophagy has been detected in brain 

patient with neurodegenerative diseases such as Alzheimer or Parkinson diseases [847, 854]. 

These diseases are characterized by presence of protein aggregates, which are toxic for cells 

[855]. The elimination of protein aggregates could allow cell survival. However, the role of 

autophagy in the progression of neurodegenerative disease is not yet elucidated.  

 

Autophagy is activated upon ER stress associated to cell death signal. We have studied 

autophagy induction in our models of ER stress and cell death. Interestingly, we have shown 

that mild ER stress alone is not sufficient to induce autophagy neither in Drosophila nor 

mouse. Interestingly, we have shown that autophagy in activated when mild ER stress is 

associated in cell death induction. Indeed, we have shown that autophagy is activated in the 

Drosophila PRC mutated for ninaA which expressed rpr. Autophagy is also activated in 

dopaminergic neurons of mice treated with both tunicamycin and 6-OHDA. Mild ER stress 

and cell death signals combination is thus required for the autophagy induction both in 

Drosophila retina apoptosis and Parkinson mice brain.  
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Finally, we have shown that autophagy is required for mild ER stress protective effect in the 

Drosophila retina. The inhibition of autophagy with atg gene mutants or RNAi prevents the 

protective effective of ninaA mutation upon reaper overexpression in the Drosophila retina.  

Moreover, the direct induction of autophagy via Atg1 over-expression protected Drosophila 

photoreceptors from apoptosis. Our experiments show that the mild ER stress protects from 

neurons apoptosis in vivo in the Drosophila eye via the induction of autophagy. The 

protective effect of autophagy in ER stressed dopaminergic neuron in mice remains to be 

identified. 
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ER stress inhibits neuronal death
by promoting autophagy
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Endoplasmic reticulum (ER) stress has been implicated in neurodegenerative diseases but its relationship and role in
disease progression remain unclear. Using genetic and pharmacological approaches, we showed that mild ER stress
(“preconditioning”) is neuroprotective in Drosophila and mouse models of Parkinson disease. In addition, we found that
the combination of mild ER stress and apoptotic signals triggers an autophagic response both in vivo and in vitro. We
showed that when autophagy is impaired, ER-mediated protection is lost. We further demonstrated that autophagy
inhibits caspase activation and apoptosis. Based on our findings, we conclude that autophagy is required for the
neuroprotection mediated by mild ER stress, and therefore ER preconditioning has potential therapeutic value for the
treatment of neurodegenerative diseases.

Introduction

The unfolded protein response (UPR) is an evolutionarily
conserved adaptive response to perturbations of normal endo-
plasmic reticulum (ER) physiology,1-3 and is characteristic of
several neurodegenerative diseases. Whether ER stress plays a
causative role in certain disease conditions is still being debated.4,5

To cope with the aberrant accumulation of unfolded proteins,
cells trigger the UPR causing the activation of the ERN1/IRE1,
ATF6 and EIF2AK3/PERK pathways.6 Depending on the level
of UPR activation and which components of the pathway are
activated, ER stress can lead to either cellular death or survival.
Specifically, sustained and full-fledged UPR that involves
GADD153/CHOP and CASP12/caspase 12 activations is detri-
mental to the cell.7,8 By contrast, mild ER stress (ER
preconditioning) induces selective activation of X box binding
protein (XBP1) accompanied by cellular protection.9,10 ER
preconditioning induces a cytoprotective response, named
ER-hormesis, that protects the cell against a stronger insult.10,11

ER preconditioning has been shown to induce cytoprotection in
ischemia/hypoxia models.12 However, in other models of
neurodegenerative diseases, the cellular mechanism that elicits
ER-mediated cytoprotection remains to be explored. A candidate
mechanism for the ER-mediated protection is autophagy. It has
been proposed in yeast that UPR activation stimulates autophagy,
which in turn acts as a protective mechanism limiting ER
expansion.13 Mutations in Drosophila or mouse atg genes lead to

spontaneous neurodegeneration, suggesting that basal autophagy
is neuroprotective.14-16 In addition, defective autophagic responses
are observed in several neurodegenerative diseases including both
Alzheimer and Parkinson diseases.17,18

Because the UPR and autophagic responses are evolutionarily
conserved,2,3,19,20 we studied the protective mechanisms mediated
by mild ER stress in Drosophila and mouse model of Parkinson
disease (PD). First, we found that mild ER stress is protective in
Drosophila and mouse models of Parkinson disease. In addition,
we show that combination of mild ER stress and apoptotic signal
induces autophagy, which in turn mediates neuroprotection. We
discuss the implications of our findings in the light of the
antagonistic relationship between autophagy and apoptosis, as
well as the physiological relevance of ER stress and autophagy in
neurodegenerative diseases.

Results

Mild ER stress is neuroprotective in Drosophila and mouse
models of PD. We have previously shown that mild ER stress
inhibits cell death both in vitro and in vivo in Drosophila.
Drosophila S2 cells pretreated with a mild dose of tunicamycin
(Tm), a chemical inducer of the UPR, exhibited increased
resistance to cell death. Similar resistance to cell death was
observed in adult Drosophila photoreceptor neurons (PRN)
where the UPR was genetically induced by mutations in neither
inactivation nor afterpotential A (ninaA), a gene encoding a
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chaperone specific for the folding of Rhodopsin-1 (Rh1).10 In
these experimental conditions, the activation of the Ire1-Xbp1
pathway is well tolerated, does not induce cell lethality but instead
increases resistance to exogenous apoptotic insults.

To determine if mild ER stress-mediated protection is effective
in Drosophila PD model, we first confirmed that Tm feeding
could activate UPR in the Drosophila brain tissues. hsc3/bip
expression, a hallmark of UPR activation, was detected by RT-
PCR in the heads of flies fed on two doses of Tm (1 mg/ml and
10 mg/ml) (Fig. S1A and S1B). Furthermore, we observed an
increase of spliced and unspliced forms of xbp1 (Fig. S1C). In our
assays, we chose the weakest dose of Tm (1 mg/ml) to induce a
mild ER stress in Drosophila.

To establish a previously reported Drosophila PD model, we
expressed the gene encoding SNCA/human a-synuclein (hu-a-
syn) in all neurons with elav-gal4 or selectively in dopaminergic
(DA) neurons with th-gal4.21,22 Next, we examined if Tm feeding
could improve locomotor functions and dopaminergic neurons
viability in hu-a-syn expressing flies. Flies expressing hu-a-syn
using the pan-neuronal driver elav exhibited progressive decrease
of motility compared with control (Fig. 1A). However, Tm
feeding clearly improved climbing ability in 21, 28 and 35 d old
flies (Fig. 1B).

To assess the toxicity of hu-a-syn expression on DA neurons,
we measured DA neurons viability and the transcriptional activity
of pale, a gene responsible for dopamine metabolism and vesicular
monoamine transporter (vmat), a gene specific for dopamine
transport.23-25 After 42 d of hu-a-syn expression in DA neurons,
we observed 30% loss of DA neurons in the protocerebral
posterior medial clusters (PPM1/2) compared with control flies
(Fig. 1C). We then detected by RT-qPCR a decrease of pale and
vmat expression in th . hu-a-syn flies starting from 20 d onward
(Fig. 1D and E). In hu-a-syn expressing flies that were regularly
fed on Tm diet, we observed a rescue of DA neuron number in
the PPM1/2 cluster (Fig. 1C). Similarly, the expression of pale
and vmat was restored following Tm treatment (Fig. 1D and E).
Together these results show that Tm feeding induces the UPR in
Drosophila brain and is neuroprotective in the hu-a-syn model of
Parkinson disease.

To validate these findings in a mammalian PD model, we
tested whether mild ER-stress can induce neuroprotection in the
6-OHDA mouse model and in the human SH-SY5Y neuro-
blastoma cells.26-28 The 6-OHDA mouse model recapitulates the
common features of PD, including the loss of dopaminergic (DA)
neurons and gradual onset of locomotor dysfunction.29,30 We first
assessed if Tm activates the UPR in the mouse brain. We
monitored UPR activation by visualizing spliced xbp1 (xbp1s)
and bip mRNA (Fig. S1D and S1E) after intraperitoneal (I/P)
injection of Tm. Increases in xbp1s and bip mRNA were detected
at a low dose of Tm (0.1 mg/kg) in the substantia nigra (SN),
where DA neurons of the nigra-striatal pathway are located
(Fig. S1D and S1E). No toxic effect or locomotor deficit was
observed following chronic injection of Tm (0.1 mg/kg) into mice
(Fig. S1H–J). Moreover, following Tm injection at 0.1 mg/kg,
the expression of chop, a transcription factor inducing cell death,31

was not increased in the SN of mice (Fig. S1F and S1G). The

chop level was only elevated at high doses of Tm (4.5 mg/kg,
ED50) whereas xbp1s remained at the basal level at this dose
(Fig. S1G and data not shown). These findings show that low
doses of Tm activate a nontoxic, mild UPR in the SN.

Stereotaxic injection of 6-OHDA into the mouse left striatum
induces an asymmetrical loss of DA in the nigra-striatal circuit
(Fig. 2A, B, E and ref. 32). To determine if mild ER stress is
protective against the 6-OHDA-induced DA loss, we counted
TH-positive DA neurons in the bilateral SN (Fig. 2A–E). After
6-OHDA injection, 20% more DA neurons remained in
Tm-treated (0.1 mg/kg) than nontreated mice (Fig. 2E).
Similarly in the human SH-SY5Y neuroblastoma cell line, we
observed that Tm treatment reduced cell death induced by
6-OHDA (Fig. 2G). In addition, in both SN extracts and in
SH-SY5Y cells, caspase activation induced by 6-OHDA was
significantly inhibited by Tm treatment (Fig. S2A and S2B).
These results indicate that Tm treatment-induced ER stress
mediates neuron survival by blocking apoptosis both in vitro and
in vivo.

Next, we studied the effects of Tm treatment on the rotational
behavior in the 6-OHDA mouse model (Fig. 2F). The 6-OHDA
lesion triggered a progressive increase of unilateral rotational
behavior induced by apomorphine treatment. Tm pretreatment
markedly reduced the number of turns, indicating that Tm
antagonizes 6-OHDA-induced rotational behavior. In summary,
our results indicate that Tm treatment protects against the toxic
effects of 6-OHDA both in the mouse model and in human
neuroblastoma cell line (Fig. 2). These findings are pertinent to
Parkinson disease progression and treatment.

Autophagy activation is required for the ER-mediated
protection. Autophagy and cell death are highly conserved
cellular processes during evolution.19,20,33-35 We therefore chose
to study the contribution of autophagy in the ER-mediated
protection against neuronal cell death in Drosophila. To achieve
this goal, we examined autophagy activation in Drosophila retina
submitted to genetically-induced ER stress (ninaA mutant) and
apoptotic signal (reaper overexpression). In ninaA mutant PRN
where apoptosis was induced by the expression of reaper (rpr)
under the control of rh1 promoter,10 we coexpressed the GFP-
LC3/Atg8 reporter fusion protein construct (referred to as GFP-
LC3) and sought GFP-LC3 puncta in dissected whole-mount
retina36 (Fig. 3A–D and A'–D'). We found that PRNs subjected
to mild ER stress and apoptosis exhibited a marked increase of
GFP-LC3 puncta (Fig. 3D, D' and E). In contrast, diffuse GFP-
LC3 staining similar to that in wild-type controls was
observed in ninaA mutant PRN and in PRN expressing rpr alone
(Fig. 3A–C and 3A'–C'). LC3-I was converted into the active
form of LC3 (LC3-II) only in ninaA mutant PRN subjected to
rpr expression (Fig. 3F). On the western blot, we could also detect
in this latter condition the appearance of free GFP, which is more
resistant to lysosomal degradation than LC3 (Fig. S3A). This
result suggests that autophagosomes have fused with lysosomes
and that autophagic flux is functional. Next, we examined the
expression of Ref(2)P/p62, as an indirect mean to evaluate the
flux of autophagy in vivo. Ref(2)P/p62 is a multifunctional
scaffold protein that is retained in autophagic vacuoles when the
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Figure 1. Tm is protective in the a-syn Drosophila Parkinson disease model. Flies expressing hu-a-syn in all neurons (A and B) with elav-gal4 driver, or in
the dopaminergic neurons (C–E) with the tyrosine hydroxylase driver (th-gal4). (A) Climbing ability of aged matched flies expressing hu-a-syn and control
flies expressing GFP in all neurons (n = 100–120 flies). (B) Climbing ability of flies expressing hu-a-syn with or without Tm treatment
(n = 100–120 flies). (C) Number of DA neurons in the PPM1/2 brain cluster in hu-a-syn or GFP expressing flies with or without Tm treatment.
(D and E) Expression of pale or vmat mRNA normalized to rp49 in flies expressing hu-a-syn with or without Tm (n = 15 flies). *p # 0.05, **p # 0.01,
***p # 0.001 in Student’s t-test.
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Figure 2. Tm is protective in the 6-OHDA mouse Parkinson disease model. (A–D) Sections of the substantia nigra (SN) obtained 4 d after 6-OHDA
treatment with or without Tm pre-treatment (0.1 mg/kg). DA neurons are visualized by immunostaining for tyrosine hydroxylase (TH). (E) Quantification
of DA neuron loss after 6-OHDA injection normalized to the contralateral side. (F) Rotational behavior of mice after 6-OHDA injection. The graph shows
the number of unilateral turns made by mice on days 3, 4 and 7 after the 6-OHDA injection with or without Tm (n = 6–7). (G) In vitro experiments
on SH-SY5Y to assess the cell viability after Tm and 6-OHDA treatments. Cell viability was evaluated using trypan blue after Tm and 6-OHDA treatments.
Quantification of cell death is normalized to Tm treatment. *p # 0.05, ***p , 0.001 in Student’s t-test. Scale bar: 200 mm.
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process of autophagy is compromised. Ref(2)P accumulation was
observed in atg8a mutant as previously described,37 but not in
ninaA mutant retina expressing rpr (Fig. S3B). These results show
that the autophagy flux is functional in ninaA mutant PRN
expressing rpr and indicate that mild ER stress activates
autophagy, when combined with an apoptotic signal.

In the light of our findings in the Drosophila PRN, we
examined autophagy activation of DA neurons in the SN of
mice subjected to Tm and 6-OHDA treatments (Fig. 3G–K).
Basal LC3 levels were observed in DA neurons in both control
mice and mice treated with Tm or 6-OHDA alone (Fig. 3G'–
I'). By contrast, punctate LC3 staining was higher in DA
neurons in animals subjected to both Tm and 6OHDA
treatments (Fig. 3J' and K). We also examined autophagy
activation in SH-SY5Y cells submitted to Tm and 6-OHDA
treatments. 6-OHDA induced an increased of LC3II form
compared with untreated cells. Moreover, we detected a 2-fold
increase in LC3II form by combined treatment with Tm and 6-
OHDA compared with 6-OHDA alone (Fig. 3L). The increase
of LC3II form was only observed in the presence of bafilomycin
A1 that alters the lysosomal pH and prevents lysosomal
degradation (Figs. 3L and S3C). This result indicates that the
autophagic flux is functional in SH-SY5Y cells submitted to Tm
and 6-OHDA treatments. Thus, autophagy is specifically
increased in DA and SH-SY5Y neurons in response to a
combination of Tm and 6-OHDA and may therefore be
responsible for the neuroprotection.

We then investigated whether autophagy activation is required
for the ER-mediated protection in Drosophila PRN and in
human SH-SY5Y cell line. We first inactivated autophagy in
Drosophila PRN with mutations and RNAi knockdown of
components of the autophagy pathway. We used the cornea
neutralization technique to evaluate PRN viability in living
flies.38,39 We found that in the presence of ectopic rpr expression,
PRN loss was greater in double-mutant ninaAE110V/atg1D3D flies
than in flies carrying only ninaAE110V mutation (Fig. 4A–F).
Similarly, expression of a transgenic atg6-IR abolished ninaA
mutant-mediated protection in Drosophila PRN (Fig. S3D). We
then examined the role of Drosophila Ref(2)P/p62, a protein
required for the formation of protein aggregates that are
eliminated by autophagy in Drosophila brain.37 We found that
the expression of transgenic ref(2)P-IR suppressed PRN protection
in ninaA mutant (Fig. 4G–L). These results indicate that
autophagic clearance contributes to the ER-mediated protection.
Next, we examined if Tm-mediated protection required auto-
phagy in SH-SY5Y cell line. To achieve this goal, we performed a
siRNA treatment against atg8/LC3, which knocked down LC3
expression on a western blot (Fig. 4M). We found that LC3
knockdown abolished Tm-mediated protection in SH-SY5Y cell
submitted to 6-OHDA (Fig. 4N). In addition, we used 3MA
which inhibited autophagy induced by starvation or 6-OHDA/
Tm treatments (Fig. S3E and S3F). We observed that the 3MA
treatment also suppressed Tm-mediated protection in SH-SY5Y
cell submitted to 6-OHDA (Fig. 4O). Altogether these results
demonstrate that autophagy is required for ER-mediated
protection.

Last, we investigated the controversial issue of whether
autophagy inhibits apoptosis.16,40 We found that ectopic atg1
expression rescued the viability of Drosophila PRN from rpr-
induced apoptosis (Fig. 5A–D). In addition, rapamycin, an
activator of autophagy,41 inhibited Drosophila S2 cell death
induced by cycloheximide (CHX) or UVC and suppressed caspase
activation (Fig. 5E and F). These results demonstrate that
autophagy inhibits apoptosis.

Discussion

Our study provides new insight that mild ER stress promotes
neuroprotection via the activation of autophagy. We have defined
in vitro and in vivo experimental conditions in which the
activation of UPR does not induce cell or organism lethality but
rather promotes an adaptive response that protects from apoptotic
stimuli. We show that a mild dose of tunicamycin (Tm) activates
Ire1-Xbp1 and promotes protective autophagy in response to
apoptotic stimuli. We have previously proposed that a preferential
activation of Ire1-Xbp1 is responsible for protection in Drosophila
S2 cells.10 This hypothesis is supported by our new results in
which we show that mild dose of Tm induces the Ire1-Xbp1
pathway but not chop expression in mouse brains (Fig. S1). It is
also possible that upon mild ER stress, chop is induced with a
different kinetic than Ire1-Xbp1 and leads to a partial activation of
its transcriptional targets as previously proposed.42 Thus, an
adaptive response to mild ER stress may alter chop expression or
Ddits/Chop activity and promotes survival. In a recent study, it
was shown that adaptive suppression of the Atf4/Chop branch by
toll-like receptor engagement, promotes survival in response to
prolonged ER stress.43,44 It remains to be demonstrated whether
selective activation of Ire1-Xbp1 or suppression of Atf4/Chop
promotes neuroprotection in Drosophila and mouse Parkinson
disease models.

Several previous studies investigated the link between the UPR
and autophagy but a lot remains to be understood on how the
UPR activates autophagy and promotes neuroprotection. Yeast
cells subjected to severe ER stress manifest an autophagic
response, which counterbalances ER expansion.13 In this model,
severe ER stress alone induces autophagy, which in turn limits ER
expansion. In a recent study, it was shown that mild ER stress
promotes cardioprotection against an ischemic/reperfusion
injury.45 In this model, autophagy activation could reduce
subsequent lethal ischemic reperfusion injury. Another study
reports that xbp1 deficiency induces autophagy in a mouse model
of the amyotrophic lateral sclerosis.46 The xbp1 deficiency leads to
an unexpected rescue of sod1 mutant motor neurons. Although
several interpretations have been suggested to explain this result, it
is possible that xbp1 deficiency induces an increase in basal ER
stress leading to autophagy. From our results, we propose a model
in which mild ER stress primes the cells to trigger neuroprotective
autophagy upon an apoptotic stimulus. Our results also indicate
that autophagy is neuroprotective, and we further delineate a
distinct mechanism by which UPR regulates autophagy. The
understanding of the complex relationship between UPR,
autophagy and apoptosis probably resides in the identification
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and characterization of key factors that integrate these stress
responses. In a recent study, it was shown that these responses
are controlled by Bax inhibitor-1 (BI-1). BI-1 is a factor that
inhibits IRE1-a, controls autophagy and apoptosis.47 In cells
lacking BI-1, IRE1-a is activated and induces autophagy,
promoting cell survival. A role of BI-1 remains to be investigated
in the control of autophagy in cells submitted to mild ER stress
and apoptotic signal.

Previous work has identified a link between apoptosis and
autophagy.48 The authors have shown that stimulating cell death
with TNFa in the presence of caspase inhibitors induced
autophagy in L929 fibroblastic mouse cells.48 Based on their
hypothesis, TNFa stimulates an alternative autophagic death
program when caspases are inhibited. In our hands, we found that
inhibition of caspases with p35 did not induce autophagy in PRN
submitted to apoptosis by rpr expression (data not shown). We
favor a model in which combined signals of the UPR and
apoptosis induce autophagy. In addition, our results differ from
the one presented by Lenardo and col.,48 as we demonstrated in
several in vivo and in vitro models that autophagy is protective in
cells submitted to mild ER stress. As discussed elsewhere, the
opposite functions of autophagy on survival and death may
depend on cell type and the level of autophagy activation.49

Autophagy has been proposed to inhibit cell death, however its
role in the inhibition of apoptosis is a controversial subject.16,40 We
have shown that autophagy inhibits caspase activation and apoptosis
in several in vitro and in vivo paradigms (Figs. 4 and 5). We have
observed a concomitant increase of autophagic markers and decrease
of caspase activation in cell submitted to both mild ER stress and
apoptosis (Figs. 2, 3 and S2). Our findings suggest that cells switch
from an apoptotic to an autophagic response when submitted to
both mild ER stress and apoptotic signal. However, how autophagy
inhibits apoptosis remains to be uncovered. Autophagosomes could
engulf and degrade impaired mitochondria (mitophagy) to prevent
the subsequent activation of apoptotic pathway.50 Another
hypothesis is that autophagy could directly sequester pro-apoptotic
factors, such as caspases, and promote their degradation as
previously proposed in a mouse model of Alzheimer disease.51

Further work is required to elucidate this mechanism.
Relevance to pathology. We found that mild ER stress is

protective in the Parkinson 6-OHDA mouse model, showing that
maintaining UPR at a moderate level could protect against
Parkinson disease. After injection in the striatum, 6-OHDA is
selectively taken in DA by retrograde transport.52 6-OHDA
induces an oxidative burst and caspase activation, which leads to
DA death.28 We show that Tm treatment activates mild UPR

responses, correlates to reduced DA death and improved
locomotor function in mice bearing 6-OHDA lesions.
Moreover, mild ER stress protects DA neurons of the SN from
6-OHDA-induced death by limiting caspase activation (Fig. S2)
as previously observed in human neuroblastoma cell lines.28 As in
the fly paradigm, the increased autophagy in DA submitted to Tm
and 6-OHDA suggests that autophagy is an active player of
neuroprotection in mice. Our results incite new investigations
into therapeutic possibilities to trigger and maintain ER stress at a
moderate level, so that the stress response protects against or delay
the onset of neurodegeneration, or retard the disease progress.

Materials and Methods

Drosophila genetics. Flies were maintained at 25°C in a 12:12 h
light cycle. The wild-type flies used for this study were CantonS

strain. The ninaAE110V fly stock is a kind gift from Charles
Zuker.53 The rh1-gal4 fly stock is a generous gift from Jessica
Treisman.38 UAS-reaper (rpr), UAS-lacZ and atg8KQ70569, elav-gal4
and th-gal4 were obtained from Bloomington stock. UAS-atg1
and atg1D3D stocks were a kind gift from Thomas Neufeld,54

UAS-GFP-LC3 was a kindly provided by Harald Stenmark,36

UAS-atg6-IR were kindly obtained from Udai Bhan Pandey and
UAS-hu-a-syn was kindly given by Mel Feany. The following
genetic combinations were used to express transgenes in adult
outer PRN: (1) rh1-gal4; UAS-GFP; UAS-rpr, (2) rh1-gal4; UAS-
GFP, (3) rh1-gal4; UAS-GFP-LC3, (4) rh1-gal4; UAS-GFP-LC3;
UAS-rpr, (5) rh1-gal4; UAS-atg1, (6) rh1-gal4; ninaAE110V/UAS-
GFP-LC3, (7) rh1-gal4; ninaAE110V/UAS-GFP-LC3; UAS-rpr,
(8) rh1-gal4; UAS-rpr, (9) rh1-gal4; ninaAE110V/+; UAS-rpr,
(10) rh1-gal4;ninaAE110V; UAS-rpr, (11) rh1-gal4; ninaAE110V/
UAS-GFP; UAS-rpr, (12) rh1-gal4; ninaAE110V/UAS-GFP; UAS-
rpr/atg1D3D, (13) rh1-gal4; UAS-GFP/ UAS-lacZ; UAS-atg1,
(14) rh1-gal4; UAS-GFP; UAS-atg1/ UAS-rpr. (15) elav-gal4;
UAS-hu-a-syn; (16) elav-gal4; UAS-GFP; (17) UAS-hu-a-syn; th-
gal4 (18) UAS-lacZ; th-gal4.

Drosophila pharmacological treatments. ER stress was
pharmacologically induced using tunicamycin (Tm; Covalab,
11089-65-9), an inhibitor of protein glycosylation. Twenty males
and 20 females aged for 24 h were collected and starved for 5 h on
0.8% agarose, 1X PBS medium. Flies were then transferred in vial
containing food (0.8% agarose, 10% sucrose, 1X PBS medium)
supplemented with Tm (1mg/ml; 10mg/ml) or vehicle solution
(Dimethyl sufoxide, 2% Sigma Aldrich, D8418) for 4 h.

Immunostaining on eye whole mount. GFP-LC3 labeling was
performed on Drosophila whole-mount retina as previously

Figure 3 (See opposite page). Activation of autophagy by combined ER stress and cell death signals. (A–D’) Whole-mount adult retina from flies
expressing GFP-LC3 in PRN. GFP-LC3 is in green and phalloidin labels PRN rhabdomeres in red. (A’–D’) Higher magnification view of GFP staining
in the area surrounded by a white rectangle in (A–D). Scale bar: 10 mm. (E) Quantification of the number of GFP-LC3 dots per PRN. (F) western blot
with anti-GFP antibody showing the conversion of GFP-LC3-I to GFP-LC3-II in Drosophila retina. The western blots shown are representative
of three independent experiments. (G–J’’) Substantia nigra sections after Tm and 6-OHDA injections in mice. (G–J) Anti-TH in red. (G’–J’) Anti-LC3 in green.
(G’’–J’’) The merge shows TH, LC3 and DAPI (blue) for nuclei. (K) The graph shows the percentage of TH positive cells with LC3 punctates. Between 220
and 250 neurons from each of three different mice were assessed. Scale bar: 20 mm. (L) western blot and quantification showing the conversion of LC3-I
to LC3-II in SH-SY5Y cells treated or not treated with Tm and 6-OHDA in the presence of bafilomycin A1. Cells under starvation are used as a positive
control. The western blots shown are representative of three independent experiments. *p # 0,05, **p # 0.01 in Student’s t-test.
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Figure 4. For figure legend, see page 923.
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Figure 5. Autophagy inhibits cell death. (A–C) Visualization of PRN viability in 16 h-old living flies expressing GFP. PRN express rpr (rh1 . rpr) and atg1
(rh1 . atg1). (D) Quantification of PRN loss in (B and C) relative to rpr (n = 6–7). (E) In vitro experiments on S2 cells to assess the cell viability after
rapamycin and cycloheximide (CHX) treatments and UVC irradiation. Cell death was monitored by FACS analysis after incorporation of propidium iodide.
(F) Caspase activity in S2 cells subjected rapamycin and cycloheximide (CHX) treatment and UVC irradiation. Results are expressed as ratio of caspase
activity relative to control values (n = 3). Scale bar: 10 mm. ***p , 0.001 in Student’s t-test. The abbreviations used: rh1-gal4;UAS-rpr (rh1 . rpr), rh1-gal4;
UAS-atg1 (rh1 . atg1).

Figure 4 (See opposite page). Autophagy is required for ER-mediated neuroprotection. (A–E and G–K) Visualization of PRN viability in 16 h-old living flies
expressing rh1 . GFP. (A–E) Visualization of PRN in retina overexpressing rpr (rh1 . rpr) and mutant for ninaAE110V/+ and atg1D3D. (F) Quantification
of PRN loss in the various mutants (B–E) relative to rh1 . rpr (n = 10). (G–K) Visualization of PRN in retina overexpressing rpr (rh1 . rpr), ref(2)P-IR and
mutant for ninaAE110V/+. (L) Quantification of PRN loss in the various mutants (H–K) relative to rh1. rpr (n = 10). (M) western blotting showing LC3I/II levels
after siRNA against LC3 in SH-SY5Y cell compared with control (siRNA luciferase). (N) SH-SY5Y cell viability was assessed by trypan blue exclusion after
treatments with Tm, 6-OHDA and siRNA against LC3 or luciferase as control (n = 3). (O) SH-SY5Y cell viability was assessed by trypan blue exclusion after
Tm and 6-OHDA treatments. 3-MA treatment is used to block autophagy. *p # 0.05, **p , 0.01, ***p , 0.001 in Student’s t-test. Scale bar: 10 mm.
The abbreviations used: rh1-gal4; UAS-GFP (rh1 . GFP), rh1-gal4;UAS-rpr (rh1 . rpr).
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described.55 Briefly, Drosophila heads were bisected in the middle
with a scalpel. Brain tissue was removed to expose retina
underneath. The retinae were fixed in 4% PFA for 15min.
GFP-LC3 was revealed by immunostaining using a rabbit anti-
GFP antibody (1/200, Invitrogen, A-6455) followed by an
anti-rabbit secondary antibody (Alexa 488 1/400, Invitrogen,
A-21206). Photoreceptor rhabdomeres were visualized using
Actin coupled with phalloidin staining (1/400, Sigma Aldrich,
77418-1EA). Retinae were mounted in DAPI mounting media
(Vectashield, AbCys, H1500). Fluorescent images were obtained
using a Leica SP5 confocal microscope.

Mouse protocol. All animal protocols were approved by the
regional ethics committee for animal experiments, Rhônes Alpes
(authorization n°153). C57Bl6/J female mice (10 weeks old) were
used for this study. Tm (Covalab, 11089-65-9) was administered
by intraperitoneal (I/P) injection (0.01 mg/kg, 0.1mg/kg or
4.5 mg/kg). Eighteen hours after Tm treatment, 8 mg of
6-hydroxydopamine (6-OHDA, 4 mg/ml, Tocris, 2547) in
0.02% ascorbic acid was injected stereotaxically into the left
striatum of the mouse brain to induce Parkinson disease-like
injury.56 Rotational behavior tests were performed on 6-OHDA-
treated mice to evaluate alterations of the nigra-striatal pathway.
Rotational asymmetry was induced by I/P injection of apomor-
phine at 0.6 mg/kg (Sigma Aldrich, A4393) on days 3, 4 and 7 as
described.30 Motor behavior was tested to assess motricity
following Tm injection. Walking distance (cm) was measured
over a period of 2 min three times for Tm-treated (n = 7) and
control mice (n = 8).

Immunostaining on mice brain sections. Visualization of
dopaminergic neurons was performed in mice substantia nigra
sections. Mice were sacrificed by lethal I/P injection of
pentobarbital, then perfused intracardiacaly with saline solution
and 4% PFA for fixation. Brains were extracted, further post-fixed
in 4% PFA for 2h, transferred to 30% sucrose solution at 4°C,
and serially freezed-sectioned. Fourteen mm-thick floating brain
sections were transferred into blocking solution (PBS-triton 0.1%,
4% BSA, 10% normal goat serum) for 1h at RT. DA neurons
were visualized using an anti-Tyrosine Hydroxylase antibody
(a-TH, 1:2000, Millipore, Ab152) and anti-LC3 antibody
(1:800, Cell Signaling, 2775S). Specifically, brain sections were
incubated with the primary antibodies at 4°C overnight and with
secondary antibodies Alexa 555 (1: 500, Invitrogen, A21424) and
Alexa 488 (1: 500, Invitrogen, A-21206) at RT for 2h in the dark.
Fluorescent images were taken using an ApoTome Imager M2
with an AxioCam MRm (Zeiss). The loss of DA neurons after
6-OHDA treatment was defined as the percent of TH positive
cells in the 6-OHDA injured side compared with the contralateral
side. Autophagy level in DA neuron was defined as the percent of
TH positive cells with LC3 punctates.

Cell culture. Drosophila S2 cells were cultured in Drosophila
Schneider medium (Invitrogen, 21720024) supplemented with
10% fetal bovine serum. Cells were pre-incubated with 0.4 mg/ml
of rapamycin for 40 h, then subjected to treatment with 10 mM

cycloheximide (Sigma-Aldrich, C1988) or 300 mJ/cm2 UV C
(UVC) with a UV irradiator (Vilber Lourmat 254 nm, LBX).
After 8 h, the cells were stained with 50mg/ml propidium iodide
and analyzed by flow cytometry (FACSCalibur4C) to measure cell
death.

SH-SY5Y neuroblastoma cell line were cultured in DMEM:
HamF12 (1:1) supplemented with L-Glu plus nonessential amino
acid (1%) and 10% FCS (Invitrogen, 10270106). Cells were pre-
incubated with 0.5 mg/ml of Tm for 4 h, then subjected to
treatment with 50 mM 6-OHDA (Tocris, 2547). After 16 h the
cells were stained with 50 mg/ml propidium iodide and analyzed
by flow cytometry (FACSCalibur4C) to measure cell death. For
starvation, SH-SY5Y were maintained for 24 h in DMEM:
HamF12 (1:1) supplemented with L-Glu plus nonessential amino
acid (1%) without FCS.

Inhibition of autophagy in SH-SY5Y. Inhibition of autophagy
was performed via RNAi as previously described.57 Briefly, 40 nM
of small interfering RNA (siRNA) sequences targeting LC3
(5'-GAAGGCGCUUACAGCUCAA-3') or siRNA targeting
luciferase, used as negative control (5'-CGUACGCGGAAU
ACUUCGA-3'), were introduced in 0,1% lipofectamine 2000
(Invitrogen, 11668019) at day 1. siRNA experiment was repeated
48 h following the first siRNA. Inhibition of autophagy was
assessed by western blotting experiment using LC3 antibody (Cell
Signaling, 2775S). Autophagy was also inhibited by 3-methyl-
adenine (3-MA; Sigma Aldrich, M9281). Cells were incubated
with Tm (0.5 mg/ml) for 4 h, then subjected to 3-MA treatment
at 10 mM and 6-OHDA at 50 mM (Tocris, 2547) for 16 h. Cell
viability was assessed by trypan blue staining (Sigma Aldrich,
T8154). In Figure 3L, autophagy flux was inhibited by adding
bafilomycin A1 to the cells at 10 nM for 12 h.

Statistical analysis. Data from mRNA expression, photo-
receptor cell survival, autophagy activation, 6-OHDA cytototoxi-
city, rotatory and motricity behavior assays were analyzed using
Student’s t-test (2-group comparison). Level of significance was
set at p # 0.05.
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3.1. ER stress in diseases  
3.1.1. ER stress and UPR activation in neurodegenerative diseases 

 

The ER stress is detected in several models of neurodegeneration such as Alzheimer, 

Parkinson and Huntington diseases and Amyotrophic Lateral sclerosis (ALS) [847, 848]. ER 

stress and the UPR have been detected both in patient tissues and in animal models of these 

diseases. Indeed, XBP1 splicing, IRE1 and PERK phosphorylation has been detected in brain 

of Alzheimer or Parkinson disease patient [850, 851]. Moreover, both IRE1 and PERK 

pathways are activated in Drosophila and mouse models of neurodegenerative diseases [2, 10, 

13, 17, 18]. However, the mechanisms of ER stress induction in neurodegenerative disease are 

not yet fully elucidated. For example it is not clear whether cytoplasmic protein aggregates 

that are often present in neurodegenerative diseases induce ER stress [761]. Two hypotheses 

have been proposed to explain the activation of ER stress in neurodegenerative disease model. 

The first hypothesis is that in neurodegenerative disease models, some protein aggregates also 

accumulate in the ER. For example, it has been shown that α-Syn, a cytoplasmic protein, 

accumulated in the ER, binds to ER chaperones, and α-Syn overexpression sensitizes neuronal 

cells to ER Stress-induced toxicity [13]. The second hypothesis is that cytoplasmic protein 

aggregates could indirectly trigger ER stress. Indeed, both protein aggregates and misfolded 

proteins are targeted to proteasome degradation. Thus, ER stress could therefore be triggered 

by a saturation of the proteasome induced by the cytoplasmic aggregates [856]. ER stress and 

the UPR are thus activated upon neurodegeneration. However the role of the ER stress and 

UPR in the neurodegenerative diseases progression remains to be elucidated. 

 

3.1.1.1.  ER stress and the regulation of neurodegeneration 

 

The activation of mild ER stress is protective against neurodegeneration whereas a strong ER 

stress is deleterious. The effect of ectopic modulation of the UPR via and ER stress induction 

has been studied in several models of neurodegeneration (Table 4). ER stress can be induced 

in several manners by several mechanisms either chemical or genetic. We will distinguish 

models in which a potent ER signals induce cell death and models in which a sub-lethal 

activation promotes protection. Several examples have shown that ER stress and activation of 

the UPR can lead to cell death. The induction ER stress by treatment with tunicamycin or 
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thapsigargin induced cortical neurons apoptosis in mice [857]. In addition, the deleterious 

effect of ER stress has also been observed in neurodegenerative disease models. For example, 

IRE1 overexpression enhanced Huntingtin aggregation and cell death [33]. Interestingly, in 

these contexts, ER stress leaded to CHOP and the proapototic Bcl-2 family members 

activation [857]. These two factors are known actors of ER induced cell death. For example, 

chop knock-out increased neuron survival after optic nerve injury [15]. As in these models, 

UPR activation induces pro-apoptotic factors and leads to cell death, we considered this stress 

as a strong ER stress. It has thus been proposed that strong ER stress could favor 

neurodegenerative disease progression. In contrast to the pro-apoptotic role of a strong ER 

stress, the induction of a sub-lethal ER stress leads to neuroprotection. Indeed, UPR can be 

activated without leading to cell death. Upon sub-lethal ER stress, CHOP is not activated and 

the cells can handle the ER stress [733]. This sub-lethal ER stress is considered as a mild ER 

stress.  We have shown that a genetic induction of mild ER stress by the ninaA mutation 

protected neurons from apoptosis. NinaA is a chaperone localized in the ER, which is 

dedicated to the folding of Rh1. NinaA mutation blocks its folding capacity and leads to Rh1 

accumulation and ER stress. This accumulation of misfolded rh1 induced a mild ER stress, 

which protects from ectopic apoptosis in vivo in the Drosophila eye. Moreover, we have 

shown that mild ER stress in also protective in Drosophila and mouse Parkinson models in 

vivo. Our results suggest the activation and the maintaining of ER stress at a sub-lethal level 

could offer therapeutic perspectives to prevent or delayed neurons death in neurodegenerative 

diseases. In our models, neuron death is inhibited by a mild ER stress that precedes a second 

stress or injury. Thus this protective effect of mild ER stress can be considered as a 

preconditioning also termed ER-hormesis. The ER preconditioning effect has been observed 

in different cell injury contexts. For example, ER preconditioning can protect from retinal 

endothelial [858]. ER preconditioning also enhance oxidative stress tolerance [859]. Our 

results showed for the first time ER-hormesis in a neurodegenerative context. The induction 

of mild ER stress is thus an ER-hormesis process, which enhances resistance to cellular 

insults.   
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Hormesis is a protective mechanism, which allows cellular tolerance to several stresses. ER 

hormesis and mito-hormesis are two type of preconditioning. Interestingly, the ER and the 

mitochondria are two linked organelles. In addition, it has been shown that mild ER stress 

could protect cells against oxidative stress [859]. Thus the induction of mild ER stress could 

lead to mitochondria dysfunction and activation of mito-hormesis. The role of mito-hormesis 

upon mild ER stress remains to be tested.   

ER stress pathway Protective effect upon neurodegeneration Deleterious effect upon neurodegeneration 

IRE1/XBP1 Xbp1 inhibition suppresses the protective 
effect of chemical induced ER stress in 
Drosophila cell culture (Mendes 2009) 

Xbp1 inhibition is protective in ALS (Hetz 2009 
) 

XBP1 inhibition enhances cell death 
induced by tau over-expression (Loewen 
2010 ) 

IRE increases aggregation of mtHTT in cell 
culture (Lee 2012 ) 

XBP1s induction locally into the striatum 
reduces mutant Huntingtin aggregation in a 
mouse model (Zuleta 2012 ) 

Xbp1 deficiency protects neurons in mouse Htt 
model (Vidal  2012 ) 

XBP1 overexpression enhances survival 
after nerve injury in mice  (Hu 2012) 

 

XBP1 deficiency attenuates locomotor 
recovery after spinal cord injury in mice 
(Valenzuela 2012) 

 

PERK/EiF2 and 
ATF4 

Perk inhibition increased sensitivity to 6-
OHDA (Ryu 2002 ) 

Salubrinal augments disease manifestation of 
FALS mice (Saxena 2009 ) 

ATF4 deficiency attenuates locomotor 
recovery after SCI (Valenzuela  2012 ) 

Salubrinal, extends lifespan of α-Syn in A53TaS 
Tg mouse (Colla 2012 ) 

BIP BiP reduces apoptosis caused by 
overexpression of human wt α-syn 
(Gorbatyuk 2012 ) 

 

sigma-1 receptor Sig inhibition increases Dopamine induced 
death (Mori 2012 ) 

 

Table 4: UPR activation has both protective and deleterious effect upon neurodegeneration 

References : Mendes 2009 [3], Loewen 2010 [11], Zuleta 2012 [14], Hu 2012 [15], Valenzuela 2012 [25], Ryu 

2002 [18], Gorbatyuk 2012 [17], Mori 2012 [31] , Hetz 2009 [32], Lee 2012 [33], Vidal  2012[27], Saxena 2009 

[2], Colla 2012 [13]. 
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3.1.1.2. UPR branches control ER stress effect in neurodegeneration 

 

The specific activation of UPR branches can control cell fate upon ER stress. Upon ER stress, 

the three branches of the UPR, IRE1, PERK and ATF6 are activated. All these branches are 

not equivalent regarding cell survival regulation. Each branch of the UPR can induce both 

pro-survival and pro-apoptotic pathways. However, it has been proposed that upon ER stress, 

IRE1/XBP1 was more a prosurvival branch, whereas PERK/ATF4 was deleterious. The 

respective role of UPR branches has been tested in the protection meditated by a mild ER 

stress upon neurodegeneration. 

 

The specific activation of UPR branches controls neuron fate upon ER stress in 

neurodegenerative disease. IRE1 and PERK pathways can protect from neurodegeneration. 

We have shown that xbp1 is required for the protective effect of tunicamycin against 

apoptotic insult in S2 cells. Moreover, the protective role of IRE/XBP1 pathway has been 

highlight in several neurodegenerative models. It has been shown that XBP1 inhibition 

enhances cell death induced by tau over-expression [11]. Moreover, it has been shown Xbp1 

activation locally into the striatum reduced mutant Huntingtin aggregation in a mouse model 

[14].  A protective effect of XBP1 have been also detected upon nerve injury in mice [15]. In 

this model, xbp1 overexpression enhances survival of in axotomized retinal ganglion cells. In 

addition to IRE1pathway, PERK pathway can protect from neuron death. Indeed, perk 

inhibition enhances sensitivity to 6-OHDA [18]. Similarly, eIF2 phosphorylation induced by 

salubrinal extended life span of α-Syn expressing mouse [13]. On the contrary, it has been 

shown that UPR branches can be deleterious upon neurodegeneration. IRE1 pathway can be 

deleterious as suggested by the increase aggregation of Huntingtin in neuronal cells 

overexpressing IRE1 [33]. XBP1, a downstream effector of IRE1, can also be deleterious in 

vivo in ALS and Huntington disease models [27, 32]. Indeed, xbp1 deficiency decreases 

Huntingtin level and reduces apoptosis in mouse model of Huntington disease [27]. In 

addition, xbp1 deficient also prevent SOD1 aggregation in ALS model, which enhances cell 

survival [32]. The PERK pathway can also be deleterious upon neurodegeneration. Indeed, 

eIF2 phosphorylation induced by salubrinal enhanced symptoms of the disease, such as 

locomotor defect, of FALS mice [2]. Moreover, atf4 deficiency attenuates locomotor recovery 

after Spinal Cord Injury [25]. Furthermore, the inhibition of the pro-apoptotic factor CHOP, 

which is a downstream target of the PERK and ATF6 pathways, rescues degeneration. Indeed, 
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chop deletion attenuated neurotoxin-induced Parkinson’s disease [860]. Thus each branches of 

the UPR can be either deleterious or protective upon ER stress. The dual role of IRE1 

pathway in neurodegeneration control, it could be mediated by the two major downstream 

targets XBP1 and JNK. The relative levels of XBP1 and JNK activation could control the pro-

survival or pro-death effect of IRE1 upon neurodegeneration. One hypothesis is that when 

XBP1 is predominantly activated, the IRE1 pathway is protective while if XBP1 is inhibited 

and JNK activation persists, IRE1 pathway enhances neurodegeneration. The dual effect of 

PERK pathway could also depend of the activation of its downstream targets. It seems that 

PERK mediated eIF2 activation is protective via protein synthesis inhibition whereas ATF4, 

via CHOP activation is more deleterious. For example, in the immune response, the activation 

of Toll-like receptors (TLRs) prevent CHOP activation by the PERK pathway to maintain cell 

survival despite the activation of the UPR [861, 862]. Thus, modulation of the UPR pathways, 

could favors cell survival of cell death. Altogether, these results could be summarized in a 

model where the specific activation of the UPR branches control the neurodegeneration 

process (Figure 9). IRE1 and PERK can enhance degeneration via the induction of JNK and 

ATF4-CHOP. However, the activation of XBP1 and eIF2 via IRE1 and PERK respectively is 

neuroprotective.  

 

Our model (Figure 9) implies that mild ER stress is neuroprotective via the activation of 

autophagy and that XBP1 contributes its activation. However, two studies show that XBP1 

depletion promotes protective autophagy in ALS and Huntington disease models of 

degeneration [27, 32]. This suggests that XBP1 directly antagonizes protective autophagy 

which does not support our model. We rather favor alternative hypotheses in which XBP1 

depletion induces autophagy via indirect compensatory mechanisms. The lack of XBP1 could 

lead to the accumulation of misfolded proteins in the ER and activate alternative UPR 

pathways. For example, XBP1 deficiency could trigger PERK activation, and in turn activate 

autophagy. This is supported by results showing that PERK/eIF2 induces the expression of 

atg12 and autophagy [863]. Alternatively, XBP1 deficiency could favors IRE1 mediated JNK 

activation which lead to autophagy induction. Thus in these models XBP1 would not 

antagonize autophagy but its absence would stimulate ER stress associated protective 

pathways.  
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3.1.1.3.  Relevance to pathology 

 

ER stress could be involved in the control of neurodegenerative disease progression. ER stress 

is detected in several models of neurodegenerative disease. However, the role of this ER stress 

as protective or deleterious is debated. We have shown that moderate ER stress is protective 

in animal models of Parkinson disease. Therefore, our results suggest that ER stress which 

occurs in neurodegenerative diseases could activate protective mechanism which protects the 

cell from neuron death. However, if ER stress is prolonged, it could switch the UPR functions 

from pro-survival to pro-apoptotic. Thus, two phases could be distinguished in 

neurodegenerative diseases: in the first phase UPR would allow the cell to cope with the 

 
Figure 9: Model describing the role of UPR pathways in neurodegeneration. (A) Upon mild ER stress, the 
three UPR branches IRE1, ATF6 and PERK are activated and could predominantly activates protective 
effectors. Upon mild ER stress, XBP1 splicing and eIF2 phosphorylation could be respectively induced by 
IRE1 and PERK to enhance neurons survival. (B) Upon strong ER stress, the UPR could switch from a 
protective to a toxic response which leads to neuron death. Upon strong ER stress, IRE-1 and PERK could 
predominantly activate JNK and ATF4 which enhance neurons death. 
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accumulation of pathological proteins, in the second phase, the overloaded ER would 

ultimately lead to cell death. The switch from a protective UPR to a pro-apoptotic signal has 

been observed in vitro in HEK293 cells over-expressing mutant Rhodopsin or treated with 

tunicamycin to induce ER stress. In these models, it has been shown that ER stress first 

induces the three branches of the UPR, which protects the cells from ER stress [733]. 

However, if the ER stress is prolonged the IRE1 and ATF6 pathways are turn-off and only 

PERK pathway remains activated. Thus partial activation of the UPR is deleterious of the 

cells [733]. These results shown that in neurodegenerative disease model, UPR activation can 

be first protective and become deleterious if its activation is prolonged. This hypothesis on the 

role of ER stress in neurodegenerative disease could explain the late apparition of the 

symptoms. In this scenario, the moderate ER stress would allow the organism to delay the 

onset of the pathology to old ages.  Our results incite new investigations into therapeutic 

possibilities to trigger and maintain ER stress at a moderate level, so that the stress response 

protects against or delay the onset of neurodegeneration, or retard the progression of the 

disease. Hence neurodegeneration could be delayed by the specific stimulation of the 

protective branches of the UPR such as XBP1.  

 

3.2.  Protective mechanisms activated by ER stress 
 

3.2.1. Anti-oxidant response  
 

3.2.1.1.  The relationship between the anti-oxidant response and ER stress  

 

ER stress induces oxidative stress and an anti-oxidant response. In ER stress conditions, 

oxidative stress has been detected. In several models, the induction of ER stress is associated 

with ROS accumulation in the cells. For example, both ROS and ER stress are detected after 

viral infection such as Hepatitis C virus [864]. Moreover, ROS and UPR activation have also 

been associated in neurodegenerative diseases [865]. In addition to oxidative stress induction, 

ER stress can also trigger an anti-oxidant response. We have shown the presence of an anti-

oxidant response upon ER stress in the Drosophila retina. Indeed the ninaA mutant retina, 

which presents a mild ER stress, has less carbonylated proteins suggesting that upon ER 

stress, an anti-oxidative response is activated. Moreover, the anti-oxidative protein Ferritin is 



156 
 

up-regulated in ninaA mutant retina [3]. Furthermore, we have shown that ER preconditioning 

is able to suppress both H2O2 and 6-OHDA-induced cell death [3].  The role of ER 

preconditioning in the inhibition of oxidative stress has been observed by other groups. Hung 

et al showed that Tunicamycin treatment inhibited oxidative stress induced cell death in vitro 

[859]. Moreover, it has been shown that the induction of ER stress proteins (Chaperones 

Grp78 and Calreticulin) prevents disturbances of intracellular Ca2+ homeostasis, and thus 

oxidative stress reduction [866]. Altogether, these results indicate that ER stress can trigger an 

anti-oxidant response, which protects from cells death. The anti-oxidant response induced by 

ER stress could be induced by a direct transcriptional activation of anti-oxidant genes via the 

UPR. Indeed, it has been shown that PERK induces the expression of Nrf2 [867]. Nrf2 is a 

transcription factor, which binds on ARE element located on several promoter such as Nrf2 

binds on ARE element which are located on several promoter such as glutathione-S-

transferase (GST), superoxide dismutase (SOD), catalase (CAT) and heme oxygenase-1 

(HMOX-1) [466, 795, 868]. Therefore, the UPR pathways can lead to the activation of anti-

oxidative genes. 

 

In addition to the direct induction of the anti-oxidant genes, the anti-oxidant response could be 

indirectly mediated by the induction of oxidative stress by ER stress. It has been proposed that 

ER stress induces an oxidative stress, which in turn promotes an anti-oxidant response [869, 

870]. Indeed, the ER can produce reactive oxygen species (ROS), which will trigger the 

oxidative stress. Indeed, the folding of oxidative protein in the ER can produce ROS. For 

example, disulfide bond formation by PDI and ERO1 during oxidative protein folding in the 

ER produces hydrogen peroxide and generates oxidative stress [871]. Thus ER activation can 

produce oxidative stress. In addition to the direct production of ROS by the ER, ROS can be 

produced via the mitochondria. The ER and mitochondria communicate via MAMs (see Part 

1.3.2.2). Thus, alteration of the ER leads to the modification of mitochondrial function. For 

example, it has been shown that ER stress in diabetes is associated to mitochondria mediated 

oxidative stress [611]. Mitochondria dysfunction could be due to a defect in the Ca2+ flux 

between the ER and the mitochondria [598]. Upon ER stress, the ER calcium level is 

increased. The high level of Ca2+ in the ER leads to the transfer of Ca2+ to the mitochondria. 

Thus, Ca2+ level increases in the mitochondria altering organelle homeostasis. In this stress 

condition, mitochondria produce ROS leading to oxidative stress and the activation of the 

anti-oxidant response.  
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3.2.1.2. Anti-oxidant response and neurodegeneration  

 

Neurodegenerative diseases are associated to oxidative stress. ROS have been detected in the 

brain patient with ALS, Alzheimer, Huntington or Parkinson diseases. This observation has 

been made in animal models of Alzheimer, ALS and Parkinson diseases [872, 873]. 

Interestingly, the induction of oxidative stress by the administration of 6-OHDA or paraquat 

is used as Parkinson disease model. It has thus been proposed that oxidative stress plays a 

crucial role in neuronal death and in the pathogenesis of the neurodegenerative diseases. For 

example, it has been shown that in a Drosophila Alzheimer disease model, the oxidative stress 

contributes to neuron death [874]. Moreover, the over-expression of anti-oxidant enzymes, 

such as heme oxygenase-1 (HO-1) and superoxide dismutase (SOD)-1/-2 can prevent 

neuronal death in neurodegenerative diseases models. For example, overexpression of SOD2 

reduces hippocampal superoxide and prevents memory deficits in mouse model of Alzheimer 

disease [875].  Reciprocally, blocking the anti-oxidant response enhances neurons death. In SOD2+/− mice the onset of hAPP/Aβ-dependent behavioral abnormalities is accelerated and it worsened a range of AD-related molecular and pathological alterations [876]. 
Thus anti-oxidant response can be a protective mechanism upon neurodegeneration. 

Interestingly, we have shown that protective ER stress can trigger anti-oxidant response. 

Indeed, we have shown that transcriptional level of the anti-oxidant gene, ferritin, is induced 

upon ER stress induction on ninaAE110V mutant retina [3]. Furthermore, we have shown that 

antioxidant response element was activated in ninaAE110V mutant retina (unpublished results). 

These results show that mild ER stress induces the anti-oxidant response in Drosophila retina. 

However, the inhibition of ferritin did not suppress the protective effect in ninaAE110V mutant 

retina (unpublished results). Thus, Ferritin does not seem to be required for the protective 

effect of mild ER stress. However, other anti-oxidant proteins remain to be tested for their 

role in the protective effect of mild ER stress. Thus, the protective effect of mild ER stress 

could be mediated in part by the activation of an anti-oxidant response.   

 

 

3.2.2. 4EBP 
 

4E-BP is an important regulator of overall translation levels in cells upon cellular stresses. 4E-

BP binds to translation regulator eIF4E (Eukaryotic translation initiation factor 4E) that is 
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involved in the regulation of cap dependent translation. The binding of 4E-BP to eIF4E 

prevents the recruitment of the ribosomal subunit on mRNA. Thus, 4E-BP inhibits translation 

[877]. Inhibition of cap-dependent translation by 4E-BP is essential for survival under stress 

conditions. 4E-BP has been shown to be important for survival under a wide variety of 

stresses, including starvation, oxidative stress, unfolded protein stress and immune challenge. 

Many cellular stressors result in the rapid cessation of cap-dependent translation, which is 

accompanied by the concomitant promotion of cap-independent translation of essential pro-

survival factors [878, 879]. The cap-independent translation induces by cellular stress 

involves internal ribosome entry site (IRES) located on mRNA such as XIAP, BIP or Apaf1 

[880]. It has been shown that 4E-BP is also involved in oxidative stress regulation. Indeed, the 

Drosophila 4E-BP (d4E-BP) is induced in response to oxidative stress [881]. Although d4E-

BP is not an anti-oxidant protein per se, it downregulated translation of cap-dependent mRNA 

and mediates survival in animals exposed to oxidative stress. In addition to oxidative stress, 

4E-BP is also activated upon ER stress. We have shown that d4E-BP is activated both in 

Drosophila retina and in S2 cells exposed to ER stress [3]. As 4E-BP is activated upon ER 

stress, this suggests that 4E-BP could be regulated by the UPR. The link between 4E-BP and 

UPR pathway has been characterized in mammals. It has been shown that 4E-BP is activated 

via ATF4 upon ER stress, which enhances cell survival [882]. Indeed, it has been shown that 

4E-BP favors internal ribosome-entry site (IRES) dependant translation [883]. In particular, 

BiP contains an IRES in its mRNAs. Thus 4E-BP could favor BiP activation limiting ER 

stress. In addition, IAP also contains an IRES. Thus via the activation of IRES, AE-BP could 

inhibit apoptosis. Thus 4E-BP targets participate to UPR and also can directly control 

apoptosis. 4E-BP could thus mediate the protective effects of mild ER stress. We have to test 

the effect of 4E-BP inhibition on ER stress protective effect.  

 

4E-BP activation can protect neurons in Parkinson models. The study of Drosophila 

Parkinson disease models highlights the role of 4E-BP in neuron survival. The over-

expression of the human leucine-rich repeat kinase 2 (LRRK2), a protein frequently mutated 

in Parkinson disease, induces dopaminergic neuron loss. It has been shown that human 

LRRK2 and the Drosophila ortholog of LRRK2 phosphorylate 4E-BP. The phosphorylation 

of 4E-BP induces its binding to EiF4 leading to induction of protein synthesis [884]. Thus it 

suggests that chronic inactivation of 4E-BP by LRRK2 with pathogenic mutations deregulates 

protein translation, eventually resulting in age-dependent loss of DA neurons. Thus 4E-BP 

appears as a pro-survival factor in neurons. The pro-survival role of 4E-BP has been 
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confirmed in the Drosophila Parkinson model, Pink and Park [885]. In these models, 4E-BP 

overexpression suppresses Park and Pink1 mutant phenotypes. Thus 4E-BP protects neurons 

from cell death. This protective effect can be mediated by the translation regulation by 4E-BP. 

Interestingly, we have found that 4E-BP is activated by protective ER stress in Drosophila 

neurons. Thus mild ER stress could protect from cell death in LRRK2 Drosophila model via 

the activation of 4E-BP. This hypothesis remains to be tested in the LRRK2 Drosophila 

model [886]. 

  
3.2.3.  Autophagy 

 

3.2.3.1.  Autophagy and ER stress  

 

Autophagy activation upon ER stress can control cell fate. The ER stress is characterized by 

an overload of the ER by unfolded or misfolded proteins. To reduce the ER stress, misfolded 

proteins have to be degraded. Several degradative processes can be activated upon ER stress: 

the ER associated degradation (ERAD) and autophagy [887, 888]. ERAD consists in the 

degradation of ER ubiquitinated proteins in the proteasome.  In addition to ERAD, autophagy 

is also activated to reduce ER stress via the degradation of entire part of the ER [47].  This 

specific degradation of the ER in autophagic vacuoles is named the ER-phagy [452]. We can 

distinguish models in which the activation of autophagy upon ER stress is protective and 

other models in which autophagy is deleterious. The protective effect of autophagy has been 

detected in several neurodegenerative disease models. We have shown that the ER stress 

mediated activation of autophagy protected photoreceptor cell from apoptosis in Drosophila 

[3]. In addition, ER stress induced autophagy is also protective in neurodegenerative disease 

model in mice cells in vitro. Indeed, expanded polyglutamine 72 repeat (polyQ72) aggregates 

induces ER stress mediated cell death in vitro. In this model, autophagy is activated to 

reduced ER stress mediated cell death [863]. Thus ER stress mediated autophagy has a 

beneficial role in neurodegenerative disease but detrimental in cancer cells. However, the 

activation of a protective induction of autophagy is deleterious for cancer cells. The protective 

effect of autophagy upon ER stress has been shown in cancer cells [48, 889-892]. Indeed, 

proteasome inhibition induces ER stress and autophagy, which blocks cell death in colon 

cancer cell line HCT116 [893]. In addition, ceramides induce a protective autophagy via 

PERK activation in MEF cells [891, 892]. Altogether, these experiments showed that ER 
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stress and UPR can activate autophagy to protect from cell death, which could prevent 

neurodegeneration or enhance cancer cell survival. In contrast to the prosurvival effect of ER 

stress induced autophagy, the activation of autophagy can enhance cell death upon ER stress 

in several models such as glioma cells exposed to Cannabinoid, CCD-18Co, MEFS, HCT116 

or HEK293T cells [889, 894, 895]. For example, Cannabinoid treatment induces glioma cell 

death via ER stress mediated autophagy activation [894]. In addition, tunicamycin treatment 

induces ER stress mediated cell death via the activation of autophagy [895]. Therefore, ER 

stress induced autophagy can be either cytotoxic or cytoprotective [896]. The mechanism, 

which controls the decision between an adaptive role and a cell death induction via 

autophagy, is not understood. It has been suggested that autophagy effect can be dependant of 

the cellular context or of the autophagy induction pathway.  

 

ER stress regulates autophagy via distinct pathways. Upon ER stress, the UPR is activated, 

and in some situation it can lead to autophagy induction. The IRE1 branch of the UPR can 

induce autophagy [48]. The activation of autophagy by IRE1 can be mediated by JNK 

activation. It has been proposed that via the phosphorylation of Bcl-2, JNK activates beclin 

leading to autophagy induction [897-899]. IRE1 mediated JNK activation could therefore lead 

to autophagy activation upon ER stress. IRE1 activation is induced by ER stress but can also 

be regulated by Bax inhibitor 1 (BI-1). BI-1 is a factor that inhibits IRE1- , controls 

autophagy and apoptosis. In cells lacking BI-1, IRE1-  is activated and induces autophagy. 

This result confirms that IRE pathway can induce autophagy. In addition to IRE1, PERK, 

another branch of the UPR control autophagy. It has been shown that eIF2, a downstream 

effector of PERK is required for autophagy induction by PolyQ proteins and viral infection 

[863, 900]. This result suggests that PERK can induce autophagy. In addition, ER stress can 

induce autophagy independently of the UPR. ER stress can induce cellular homeostasis 

alteration. Indeed, it has been shown that ER stress induces calcium export form the ER to the 

cytoplasm. The increase of Ca2+ level in the cytoplasm can trigger apoptosis. Several proteins 

such as death associated protein kinase 1 (DAPK) and AMPK have been involved in the 

induction of autophagy by Ca2+ [552, 901]. In addition to Ca2+, autophagy can be activated by 

the alteration of proteasome function. The proteasome degrades misfolded proteins of the ER. 

Indeed, upon ER stress, the ER associated degradation (ERAD) is activated, which induces 

the export of misfolded proteins from the ER to the cytosol where they are degraded via the 

proteasome. However, the proteasome overload by misfolded protein upon ER stress induces 

autophagy activation as an alternative degradative process [893]. Moreover, it has been shown 
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that proteasome inhibition triggers autophagy activation [902]. Thus ER stress can induce 

autophagy by several pathways: UPR, Ca2+ or proteasome overload. Interestingly, several 

pathways involved in ER stress mediated autophagy activation, such as JNK or Bcl2, are also 

involved in cell death regulation. The implication of those pathways in autophagy regulation 

upon ER stress could therefore be related to the decision between cell survival and cell death 

in autophagic contexts.   

 

3.2.3.2. Selective autophagy degradation 

 

The selective degradation by autophagy may be required for protective ER stress. We have 

shown that the activation of autophagy protects photoreceptor cell from apoptosis. However, 

how autophagy inhibits apoptosis remains to be determined. On one hand, autophagy could be 

required to limit ER stress and maintain the protective effect of ER stress. Indeed, it has 

previously been shown that autophagy can specifically trigger ER degradation [452]. This 

specific degradation of the ER allows the reduction of ER stress. Thus autophagy activated 

upon protective ER stress could be required to maintain the ER stress at a low level 

preventing ER stress-induced cell death. On the other hand, autophagy could directly control 

apoptosis via specific degradation of toxic components such as damage organelles or pro-

apoptotic proteins. For example, a selective autophagy termed mitophagy can degrade 

specifically mitochondria [547, 903]. Mitochondria are a key inducer of apoptosis and 

oxidative stress. Thus, the degradation of mitochondria in the autophagic vacuoles can prevent 

cell death induction. In addition to mitochondria degradation, autophagy can specifically 

degrade ubiquitinated proteins. The specific addressing of ubiquitinated proteins to the 

autophagic vacuoles is mediated by P62. Interestingly, in our model of autophagy-mediated 

neuroprotection, we have found that P62 is required for the apoptosis inhibition [39]. Thus, 

p62 could mediate the degradation of pro-apoptotic proteins in autophagic vacuoles. Several 

actors of the apoptotic pathway such as caspases are ubiquitinated. Thus, these proteins could 

be targeted to autophagic vacuole via P62. In particular, caspases have been detected in 

autophagic vacuole in brain tissues of Alzheimer disease deceased patients [904]. Thus, 

caspases degradation in autophagic vacuole could be responsible of apoptosis inhibition by 

autophagy.  To test this hypothesis, we want to test if caspases are localized in the autophagic 

vacuoles in ER stress and apoptotic context.  
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3.2.3.3.  How ER stress combined with an apoptotic signal can induces 

autophagy? 

 

Autophagy can be specifically activated when both ER stress and cell death signals are 

activated. We have shown both in drosophila retina and in mouse model of Parkinson disease 

that a combination of ER stress and cell death signal leads to the activation of autophagy [39]. 

In these models, ER stress or apoptosis induction alone are not sufficient to induce autophagy. 

One hypothesis is that in our model ER stress and apoptosis are not able to activate sufficient 

level of a downstream target to induce autophagy. However, when combined, ER stress and 

apoptosis downstream signals have additive effects, which lead to autophagy induction. This 

theoretical model explains how autophagy could be activated, however, the understanding of 

the complex relationship between UPR, autophagy and apoptosis resides in the identification 

and characterization of key factors that integrate these stress responses. Several proteins 

involved the activation of ER stress in the control of autophagy are also involved in the 

regulation of apoptosis such as JNK and beclin. Therefore these proteins could be involved in 

autophagy activation by both ER stress and apoptotic signal. In particular, JNK pathway is an 

interesting candidate for autophagy regulation by ER stress and apoptosis. Indeed, JNK is a 

pathway known to induce the activation of autophagy [905]. Moreover, it has been shown that 

JNK activation is triggered by both ER stress and apoptotic signals. On one hand, JNK 

pathway can be activated by apoptotic signals. Indeed, the overexpression of the pro-apoptotic 

Figure 10: Model describing the induction of autophagy by apoptotic signal and ER stress via JNK 
regulation.  (A)Upon mild ER stress IRE1 activates mainly XBP1. The week activation of JNK by 
IRE1 could not sufficient to activate autophagy. (B) Mild ER stress and apoptotic signal activate 
JNK independently. Upon mild ER stress combine with apoptotic signal, JNK could be highly 
activated upon a threshold, which could lead to autophagy activation 
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gene reaper induced the activation of JNK pathway [906]. On the other hand, UPR and in 

particular IRE1 pathway can activate JNK [773, 774]. Indeed, it has been shown that IRE1 

overexpression induces JNK activation and reciprocally, IRE1 inhibition prevents ER stress 

mediated JNK activation [774]. Thus, via the induction of JNK, IRE1 could trigger 

autophagy. Contrary to the activation of JNK, IRE can prevent autophagy via XBP1. Indeed, 

Xbp1 deficiency induces autophagy in vitro in ALS model [32, 907]. Thus a model involving 

IRE1, XBP1 and JNK in the regulation of apoptosis can be proposed. Upon mild ER stress, 

UPR activation is not sufficient to induce autophagy because IRE1 only induces a mild JNK 

activation. In the presence of apoptotic signal, JNK is further activated and combined with 

XBP1 activation leads to autophagy [906]. Thus, mild ER stress and apoptotic signal could 

synergize to induce JNK activation and autophagy (Figure 10). In addition to JNK pathway, 

autophagy activation in presence of ER stress and cell death signals could involve Bax-

inhibitor 1 (BI-1). BI-1 is a factor that inhibits IRE1- , controls autophagy and apoptosis. In 

cells lacking BI-1, IRE1-  is activated and induces autophagy, promoting cell survival. Thus 

the inhibition BI-1 could be involved in our model of ER stress mediated neuroprotection. 

However, the regulation of BI-1 by ER stress and apoptosis remains to be investigated.  
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Drosophila p53 isoforms differentially regulate
apoptosis and apoptosis-induced proliferation

M-L Dichtel-Danjoy1,5, D Ma1,5, P Dourlen1, G Chatelain1, F Napoletano1, M Robin1, M Corbet1, C Levet1, H Hafsi2, P Hainaut2,
HD Ryoo3, J-C Bourdon4 and B Mollereau*,1

Irradiated or injured cells enter apoptosis, and in turn, promote proliferation of surrounding unaffected cells. In Drosophila,
apoptotic cells have an active role in proliferation, where the caspase Dronc and p53 induce mitogen expression and growth in
the surrounding tissues. The Drosophila p53 gene structure is conserved and encodes at least two protein isoforms: a full-length
isoform (Dp53) and an N-terminally truncated isoform (DDNp53). Historically, DDNp53 was the first p53 isoform identified and
was thought to be responsible for all p53 biological activities. It was shown that DDNp53 induces apoptosis by inducing the
expression of IAP antagonists, such as Reaper. Here we investigated the roles of Dp53 and DDNp53 in apoptosis and apoptosis-
induced proliferation. We found that both isoforms were capable of activating apoptosis, but that they each induced distinct IAP
antagonists. Expression of DDNp53 induced Wingless (Wg) expression and enhanced proliferation in both ‘undead cells’ and in
‘genuine’ apoptotic cells. In contrast to DDNp53, Dp53 did not induce Wg expression in the absence of the endogenous p53 gene.
Thus, we propose that DDNp53 is the main isoform that regulates apoptosis-induced proliferation. Understanding the roles of
Drosophila p53 isoforms in apoptosis and in apoptosis-induced proliferation may shed new light on the roles of p53 isoforms in
humans, with important implications in cancer biology.
Cell Death and Differentiation advance online publication, 17 August 2012; doi:10.1038/cdd.2012.100

Epithelial tissues have the intrinsic capability to repair and
regenerate, following irradiation or genetically induced cell
death. However, how epithelial cells respond to injury and
recover is not well understood. In the past few years, studies
from metazoan models, such as Drosophila, forged the
concept of apoptosis-induced proliferation, a process by
which damaged cells entering apoptosis signal the surround-
ing unaffected cells to divide so as to recoup the tissue
loss.1,2,3 Using Drosophila developing imaginal discs as a
model, several groups have demonstrated that fly wing
imaginal discs submitted to g-irradiation or genetically induced
cell death undergo apoptosis-induced proliferation.4,5 Apop-
tosis-induced proliferation requires Drosophila p53 and the
caspase Dronc, and involves the release of mitogens such
as Wingless (Wg) and Decapentaplegic (Dpp) that induce
the growth of the surrounding tissues.6–8 Apoptosis-induced
proliferation has also been observed in hydra, where dying
cells express Wnt that is required for cell division.9 A recent
study showed that when injected into mice, irradiated mouse
embryonic fibroblasts can induce sustained growth of feeder
tumour cells.10 Specifically, this study shows that caspase 3,
the executioner of apoptosis, stimulates prostaglandin E2
expression and growth of surviving tumour cells. Other
studies also demonstrate that mice deficient for the p53
inhibitor, MDM2, develop intestinal hyperplasia due to the

activation of the canonical Wnt and EGFR pathways.11

Together, these results suggest that apoptosis-induced
proliferation is a fundamental and conserved process by
which epithelial tissues recover and regenerate after injury,
and that p53 has an active role in both apoptosis and
compensatory growth in mice and in Drosophila.
The p53 protein is the product of a well-known tumour

suppressor gene, TP53. It is mutated in more than 50% of
human cancers. Initial studies of p53 functions have high-
lighted its key role as a stress-induced factor, particularly in
response to DNA damage. The results from decades of
studies coined p53 as the ‘guardian of the genome’, as it
induces DNA repair, cell cycle arrest or apoptosis after
exposure to genotoxic stress,12,13 thus preventing the
sequential accumulation of genetic alterations that underpins
progression towards neoplasia. However, p53 is present in
many lower eukaryotes, includingDrosophila, where cancer is
not a prevalent biological phenomenon. This paradox leads
many to postulate that the tumour suppression function of p53
in vertebrates has probably evolved for some hitherto
unappreciated primordial regulatory functions.14–16 However,
the exact nature of such primordial functions has remained
elusive.
Until recently, TP53 was thought to be expressed as a

single major transcript. This view was radically transformed in
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the last 15 years by the discovery of two verterbrate p53
paralogs, TP63 and TP73. These two genes encode several
protein isoforms with diverse functions in neuronal develop-
ment, morphogenesis, immune response and responses to
specific stress.17 Subsequent to the discovery of the DN
isoforms of p63 and p73, studies have revealed that p53
express up to 12 protein isoforms generated by alternative
splicing sites, codon initiation sites and internal promoter.18,19

In invertebrate animals, only one gene represents the
TP53 gene family. It resembles TP53 more than it resembles
TP63 and TP73. In Drosophila, the p53 gene structure is
highly conserved compared to its mammalian homologue.
Drosophila p53 (Dp53) gene structure was recently reviewed;
it contains two alternative promoters and encodes three
possible protein isoforms, Dp53, DDNp53 and Dp53DC.19

Experimental evidence only confirms the presence of the full-
length Dp53 and DDNp53. Therefore, in this study, we focused
on Dp53 full-length isoform corresponding to the human full-
length (TA) p53 that includes a full transactivation domain and
DDNp53, a general counterpart of the N-terminal truncated
human p53 forms. DDNp53 is encoded by an mRNA
transcribed from an internal promoter like the N-terminally
truncated human D133p53, but unlike D133p53, it contains a
truncated trans-activation domain followed by a complete DNA-
binding domain and an oligomerization domain such as that
found in the human D40Np53.18 These findings raise the
possibility that Dp53 and DDNp53 are the respective functional
homologues of the human TAp53 and D40/D133p53.
DDNp53 was the first p53 isoform identified in Drosophila

and was thought to be the only p53 isoform for several
years; it was therefore initially named Dp53 or Dmp53 in
earlier publications.20–22 The subsequent identification of a
form of Drosophila p53 matching the mammalian full-length
(TA) p53 protein has led to a reassessment of this
nomenclature, with the name Dp53 to designate the full-
length protein isoform and DDNp53 for the N-terminal
truncated form. Studies on fly primordial germ cells, imaginal
discs and adult photoreceptor cells have highlighted the role
of DDNp53 in regulating apoptosis.21,23–26 DDNp53 induces
apoptosis through the Reaper-Hid-Grim (RHG) cascade. It
was proposed that DDNp53 directly activates the expression
of reaper (rpr), whose protein product activates caspases by
inhibiting DIAP1 (Drosophila inhibitor of apoptosis pro-
tein).21,22 In addition to its apoptotic function, the Dp53 locus
(Dp53 and/or DDNp53) regulates several biological functions,
such as cell cycle, DNA repair, aging and apoptosis-induced
proliferation.3,27–30

Here we have investigated the role of Dp53 and DDNp53
in apoptosis and apoptosis-induced proliferation. We found that
both isoforms were capable of activating apoptosis,
but that each induced distinct RHG family members to inhibit
DIAP1. Strikingly, we observed that DDNp53 induced wg
expression and enhanced proliferation in the wing imaginal disc,
suggesting that DDNp53 promotes apoptosis-induced prolifera-
tion. In contrast to DDNp53, Dp53 did not induce wg expression
in the absence of the endogenous p53 gene. Thus, we propose
that DDNp53 is the main p53 isoform that regulates apoptosis-
induced proliferation. The physiological consequences of these
dual functions of p53 isoforms on apoptosis and apoptosis-
induced proliferation are discussed.

Results

Dp53 and DDNp53 activate distinct RHG genes to induce
apoptosis. To study the respective functions of Dp53 and
DDNp53, we undertook a gain-of-function approach. We
generated UAS-Dp53 and UAS-DDNp53 Drosophila trans-
genic lines for tissue-specific expression using the UAS/
GAL4 system. To eliminate expression level variations due to
position effects,31 we targeted individual UAS-Dp53 and
UAS-DDNp53 insertions to the same chosen genomic region
using the site-specific fC31 integrase system. Dp53 and
DDNp53 cDNAs were expressed in the wing imaginal disc
using the MS1096 driver that is specific to the wing pouch
and hinge areas (Figure 1 and Supplementary Figure 1).32

We observed robust production of Dp53 in wing imaginal
discs using an anti-Dp53 antibody that recognizes the DNA-
binding domain common to the Dp53 and DDNp53 isoforms
(Figures 1a–c). Similar levels of Dp53 and DDNp53 isoforms
were detected by western blot analysis (Figure 1g). We found
that both isoforms induced caspase activation in wing
imaginal discs, indicating that their expression leads to
apoptosis (Figures 1d–f and Supplementary Figure S2).
To investigate the mechanisms by which Dp53 and

DDNp53 overexpression lead to apoptosis, we examined rpr
and hid expression (Figure 2). We used a rprXRE-lacZ (rprZ)
reporter, which carries a 2.2-kb genomic region necessary
for rpr induction in response to irradiation.25 Although Dp53
induced robust rprZ activation, DDNp53 led to only a weak
rprZ response in the wing imaginal discs (Figures 2b, c and g).
To confirm this result, we tested how both Dp53 isoforms can
activate p53RE-GFPnls, another rpr activity reporter, which
contains a 150-bp rpr enhancer sequence embedding a
consensus p53-binding site.15 We found Dp53 induced
greater levels of GFP than DDNp53 (Figures 2e and f).
Furthermore, we found that Dp53 production (en4Dp53) led
to the formation of blisters in the adult wings (Supplementary
Figure S3). Although we currently do not know what p53-
related biological process is responsible for the blister
formation, we found that the incidence of wing blisters was
significantly reduced in an rpr mutant (Supplementary Figure
S3 and Table S1a). Because of the pupal lethality induced by
the expression of DDNp53 (en4DDNp53), we could not test
whether rpr mutant reduces wing blisters in this condition.
Instead, we showed that rprmutant partially suppressed pupal
lethality induced by DDNp53 (en4DDNp53), suggesting
that the DDNp53-mediated phenotype involves rpr (Supple-
mentary Table S1b). Next, we examined hid induction by
Dp53 and DDNp53 using an anti-Hid antibody.4 However, as
both Dp53 isoforms lead to rapid elimination of apoptotic cells
(data not shown), Hid expression was hard to detect. To
overcome this difficulty, we examined the induction of Hid
expression by Dp53 isoforms with the engrailed driver in
dronc-null wing discs, where the cells were kept ‘undead’
(Figures 2h–j). The engrailed driver is expressed in the
posterior part of the wing imaginal disc in a clearly delineated
domain (Supplementary Figure S1a). We observed much
stronger Hid staining in the engrailed domain where DDNp53
was overexpressed compared with Dp53. Together, these
experiments support that rpr is a primary target during Dp53-
mediated apoptosis and suggest that Dp53 is responsible for
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damage-induced transcription of rpr. In contrast, DDNp53 is a
poor activator of rpr and favors hid-mediated apoptosis.

Dp53 and DDNp53 differentially regulate apoptosis-
induced proliferation. Johnston and colleagues7 have
proposed that Dp53 gene promotes the expression of
mitogens, such as Wg, which is required for apoptosis-
induced proliferation. However, the specific roles of the Dp53
and DDNp53 isoforms in activating Wg have not been
defined. To study the roles of Dp53 and DDNp53 in
apoptosis-induced proliferation, we examined wg expression
and cell proliferation after Dp53 or DDNp53 proteins were
produced in the developing wing tissues (Figures 3 and 4).
We first used the ‘undead cell’ model in which apoptosis is
initiated by the expression of Dp53 isoforms but its execution

is inhibited by expressing the inhibitor of caspase p35
(Figure 3). We found that DDNp53 induced strong and
widespread wg expression associated with hyperproliferative
tissue in a deformed wing disc (Figure 3d). In this context, we
determined whether wg expression was induced in neigh-
bouring unaffected cells, namely, in a cell-non-automous
manner. We observed that DDNp53 induced wg expression
both inside and outside of the engrailed domain of expres-
sion labelled with RFP (Figures 3d, d0 and d00). This result
indicates that DDNp53 induces wg expression both in a cell-
autonomous and non-autonomous manner. In contrast to
DDNp53, when ectopically expressed, Dp53 was only able to
induce a moderate increase of wg that mainly resulted in a
thickening of the Wg endogenous pattern of expression
within the engrailed domain (Figure 3c). Moreover, Wg

Figure 1 Dp53 or DDNp53 expression induces caspase activation in wing imaginal discs. (a–f) Ectopic production of Dp53 or DDNp53 using the MS1096 driver. (a–c)
Dp53 and DDNp53 protein isoforms are detected by immunostaining with an anti-p53 antibody (25F4) directed against the common C terminus domain. (a) MS10964GFP is
used as a negative control. Dp53 (b) and DDNp53 (c) are detected in the MS1096 domain of expression. (d–f) Wing imaginal discs were stained using an anti-cleaved
caspase 3 antibody (Cas 3*). Elevated levels of Dp53 (MS10964Dp53 in e) or DDNp53 (MS10964DDNp53 in f) induce strong caspase 3 staining in the MS1096 domain.
Caspase activation is not detected in control wing discs (MS10964LacZ in d). (g) Western blot analysis of Dp53 and DDNp53 in the wing imaginal discs using an anti-p53
antibody (C11) against the common C terminus domain. MS10964Dp53 and MS10964DDNp53 show a band around 60 kDa and 50 kDa, respectively. The endogenous
level of DDNp53 is detected in the wild-type control (MS10964GFP). Tubulin is used as loading control. Scale bars are 100mm
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Figure 2 Dp53 and DDNp53 use distinct RHG for apoptosis. (a–c) Wing imaginal discs carrying a rprXRE-lacZ (rprZ) was stained for b-galactosidase activity. A strong
induction of rprZ is observed upon overproduction of Dp53 (MS10964Dp53 in b; arrows). In contrast, weak rprZ induction is observed upon overproduction of DDNp53
(MS10964DDNp53 in c; arrows). No rprZ induction is observed in the control disc (MS10964GFP; a). White stars mark LacZ-positive phagocytes. (d–f) GFP fluorescence is
observed in wing imaginal discs carrying p53R-GFPnls (p53 RE). Stronger GFP labelling is observed in Dp53 expression discs (e) compared with DDNp53 expression discs
(f), or in control wing discs (d). (g) Quantification of the rprZ staining area relative to the total wing area. (h and i) Hid protein was visualized by immunostaining in ‘undead cells’
with an anti-Hid antibody in wing imaginal discs. Dp53 overproduction induces a mild hid expression (en4Dp53; droncI29� /� in h). DDNp53 induces a strong hid expression
in the engrailed domain of expression (en4DDNp53; droncI29� /� in i). Scale bars are 100mm. (j) Quantification of Hid-positive cells per wing in h and i. *Pr0.05,
**Pr0.01, in Student’s t-test
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expression pattern was completely normal in p53-null wing
disc, indicating that endogenous p53 gene does not regulate
wg expression (Figures 3a and b). Next, we examined
whether the induction of wg by Dp53 isoforms required
dronc. We found that in dronc mutant wing discs, DDNp53
also induced stronger wg expression than Dp53 (Figures 3e
and f). From these results, we conclude that the regulation of
wg expression by Dp53 isoforms is dronc independent.
Next, we asked if the regulation ofwg by Dp53 isoforms can

be detected in ‘genuine’ apoptotic cells. To achieve this goal,
we used the strong MS1096 wing imaginal disc driver
(Figure 4). As in the ‘undead’ cell model, we observed that
DDNp53 induced strong wg expression in ‘genuine’ apoptotic
cells (Figure 4c). The increased level of wg expression was
clearly detected in the dorsal part of the wing pouch region
where the MS1096 is the strongest (Supplementary Figure
S1b). The increased wg expression was associated with
tissue accumulation and folding, suggesting hyperprolifera-
tion (Figures 4c and f). In contrast to DDNp53, Dp53
expression did not alter the overall pattern of wg expression,
but resulted in a thickening of the endogenous wg expression
pattern (Figure 4b).
Next, we used a PCNA-EmGFP reporter that monitors E2f1

activity and EdU staining for cell proliferation.33 We observed
enhanced PCNA-EmGFP labelling in the presence of
DDNp53, indicating increase cell proliferation (Figure 4i). In
contrast, PCNA-EmGFP was only weakly induced by Dp53,
suggesting that Dp53 induces little proliferation compared
with DDNp53 (Figures 4h and i). We also evaluated prolifera-
tion by EdU, a thymidine analogue that stains cells that have

transited to S phase (Figure 4j). Consistent with the PCNA-
EmGFP assay result, the EdU staining revealed that DDNp53
induces more proliferation than Dp53.
Drosophila p53 gene is proposed to act in a feedback loop

to self-amplify and promote apoptosis-induced prolifera-
tion.7,34 Therefore, we wanted to examine how the endogen-
ous p53 gene contributes to the observed overexpression
phenotype. We produced DDNp53 or Dp53 in p53-null flies.35

First, we found that elevated levels of Dp53 or DDNp53 led to
robust caspase activation, indicating that each isoform can
induce apoptosis in the absence of the endogenous p53 gene
(Figures 5a and b). Next, we observed that DDNp53 retained
the ability to increase wg expression in the p53-null flies
(Figures 5d and d0). This suggests that DDNp53 overexpres-
sion alone is sufficient to induce wg expression. In contrast, in
p53-null wing discs, we observed that Dp53 expression no
longer induced any thickening of wg endogenous expression
pattern. Rather, we observed a reduction of wg expression,
which could be attributed to apoptosis of Wg-positive cells in
this area (Figure 5c0). Together, these results show that
DDNp53, but not Dp53, is the positive regulator of wg
expression.

Discussion

The discovery of multiple p53 isoforms raises the question of
their functional specificity in the spectrum of p53-mediated
biological responses. In Drosophila, as the first and only p53
isoform identified in almost a decade, the truncated DDNp53
isoformwas initialy presumed responsible for all p53 activities.

Figure 3 DDNp53 induced wg expression in undead cells. (a–f) Wg protein was stained with an anti-Wg antibody (green). (a, b) The wg expression in wild-type (a) and in
p53-null wing discs (b). (c and d) Double staining Wg (green) and RFP (red). Overproduction of Dp53 or DDNp53 in wing imaginal discs expressing p35 and RFP
(en4p354RFP). The engrailed domain expression is visualized by RFP. Wg (c0 and d0) and RFP (c00 and d00) single fluorescent channels are shown. (c, c0 and c00) A mild
induction of Wg is induced by Dp53 overproduction (en4Dp53) resulting in broadening of the endogenous Wg expression pattern in the engrailed domain. (d, d0 and d00) The
overproduction of DDNp53 (en4DDNp53) induces a strong and widespread induction of Wg inside and outside the engrailed domain of expression (arrow). (e and f)
Overproduction of Dp53 or DDNp53 in wing imaginal discs mutant for droncI29. (e) A mild induction of Wg is induced by Dp53 overproduction (en4Dp53; droncI29� /� )
resulting in broadening of the endogenous Wg expression pattern in the engrailed domain. (f) The overproduction of DDNp53 (en4DDNp53; droncI29� /� ) induces a strong
and widespread induction of Wg. Scale bars are 100mm
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The identification of the full-length Dp53 isoform that contains
a full N-terminal transactivation domain challenged this
presumption. Here, using gain-of-function studies, we
examined the role of these two isoforms in apoptosis and
apoptosis-induced proliferation. We found that both Dp53

isoforms activate apoptosis but preferentially activate differ-
ent DIAP antagonists (Rpr or Hid) for caspase activation
(Figures 1, 2 and Supplementary Figure S2). We showed that
DDNp53 promotes wg expression and cell proliferation,
independently of endogenous p53, whereas Dp53 is unable

Figure 4 DDNp53 induced wg expression and enhanced proliferation in wing imaginal discs. (a, d and g) Control wing imaginal discs (MS10964LacZ). (b, e and h) Wing
imaginal discs overproducing Dp53 (MS10964Dp53). (c, f and i) Wing imaginal discs overproducing DDNp53 (MS10964DDNp53). (a–c) Wg protein was stained with an
anti-Wg antibody. (d–f) Actin was stained with phalloidin coupled with TRITC. (g–i) GFP fluorescence in wing imaginal discs carrying PCNA-EmGFP. (c) The overproduction of
DDNp53 leads to a strong increase of wg expression in the MS1096 domain. Increased wg expression by DDNp53 is associated with tissue folding as visualized with actin
staining (f) and with enhanced proliferation visualized with the PCNA-EmGFP reporter (i). Dp53 overproduction does not alter the overall Wg pattern but leads to an apparent
thickening of the endogenous Wg domain (b). Dp53 overproduction does not induce tissue folding (e) and only induces some PCNA-EmGFP expression (h). Scale bars are
100mm. (j) Quantification of EdU staining between the anterior and posterior compartments in control (en4p35) and wing discs overproducing Dp53 (en4Dp53) or DDNp53
(en4DDNp53). **Pr0.01, in Student’s t-test
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to do so (Figures 3–5). We also found Dp53 to be primarily
responsible for damage-induced transcriptional activation of
rpr, whereas DDNp53 is the p53 isoform dedicated to
promoting apoptosis-induced proliferation.
The landmark study of Abrams and colleagues21 showed

that DDNp53 binds a DNA damage response element in the
rpr regulatory region, which is responsible for the induction of
apoptosis in response to irradiation. Here we showed that in
wing imaginal discs, Dp53 is a stronger inducer of rpr
expression than DDNp53 (Figure 2). Moreover, we showed
that DDNp53 strongly induced hid expression, whereas Dp53
was only a weak inducer. Together, these observations
suggest that the transcriptional competence of DDNp53
differs from that of Dp53, and is consistent with a previous

study showing that hid is transcriptionally induced by DDNp53
in eye and wing imaginal discs.25,28,34 These results also
suggest that some intrinsic ability to distinguish its activity for
rpr and hid expressions is embedded in the N-terminus of
the full length Dp53. Therefore, we propose that Dp53 is
responsible for the damage-mediated activation of rpr for
apoptosis, whereas DDNp53 promotes apoptosis by inducing
expression of hid. The physiological consequences of this
functional segregation in apoptosis regulation by p53 isoforms
remain to be determined.
Previous works have shown that apoptotic cells secrete

morphogens that induce proliferation of surrounding
cells.4,36,37 Although more clearly detected in ‘undead cells’,
mitogen gene expression and extra proliferation have also

Figure 5 Dp53 and DDNp53 differentially regulated wg expression. (a–d) Overexpression of Dp53 or DDNp53 in p53 mutant flies. Dp53 (a and c) (MS10964Dp53;
p53� /� ) and DDNp53 (b and d) (MS10964DDNp53; p53� /� ) are expressed in p53 mutant wing imaginal discs. (a and b) Overproduction of Dp53 or DDNp53 leads to
strong active caspase 3 staining (green). (c and c0) The overproduction of Dp53 inhibits wg expression at the dorso-ventral boundary (arrow). (d and d0) The overproduction of
DDNp53 induces wg expression (arrow). c0 and d0 are magnified views of the rectangles shown in c and d, respectively. Scale bars are 100mm
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been detected in genuine apoptotic cells.4,36,38 It was
proposed that the initiator caspase Dronc leads to Dp53
expression, which in turn activates mitogen gene expres-
sion,7,34 but the specific roles of Dp53 and DDNp53 remain to
be established. Here we showed that DDNp53 is a potent
inducer ofwg expression both in the ‘undead cell’ and genuine
apoptotic cell models (Figures 3–5). Specifically, we showed
that DDNp53 induced wg expression independently of dronc
(Figure 3f). This indicates that DDNp53 acts downstream of
the apoptotic pathway to induce proliferation via the expres-
sion of wg. Thus, like JNK,39 DDNp53 promotes proliferation
independently of the apoptotic cascade. Further analysis will
be required to determine the relationship between JNK and
p53 isoforms in the induction of proliferation.
Wells et al.7 proposed that in the apoptosis-

induced proliferation process, there is a feedback loop that
activates wg expression in ‘undead cells’ via Dronc and
Dp53. Our results are consistent with such a feedback
mechanism in which Dp53 and DDNp53 induce apoptosis
via rpr and hid, which in turn amplifies DDNp53 via Dronc
to promote wg expression. Our results also suggest
that the feedback loop not only functions in ‘undead cells’
but also in genuine apoptotic cells. Together, we propose that
p53 isoforms act both upstream and downstream of
the apoptotic pathway to promote wg expression and
proliferation.
Our results show that DDNp53 is a potent inducer of wg

expression in both wild-type and p53-null wing discs. In
contrast, Dp53 only weakly increased wg expression in wild-
type but not in p53-null flies (Figures 3–5). Therefore, the
weak induction of wg expression by Dp53 in wild-type disc is
likely dependent on the endogenous p53 gene. Further
investigations will be required to determine if DDNp53 is the
only p53 isoform regulating wg expression or if another
isoform such as Dp53DC or the one encoded by the recently
annotated p53-RD transcript (Flybase) contribute as well to
the regulation of wg expression.
One of the most intensely debated questions regarding

Drosophila DNp53 isoforms is whether they have their own
biological activity or exert a dominant negative activity on
p53.40–42 The fact that DDNp53 induced Wg expression
independently of endogenous p53 gene indicates that
DDNp53 does not require p53 for this function. In vertebrate
studies, zebrafish D113p53 and human D133p53 do not act
exclusively in a dominant-negative manner toward p53 but
differentially regulate p53 target gene expression to modulate
p53 function.41,42 Similarly, our results show that Drosophila
p53 isoforms have the capacity to use distinct targets to
orchestrate their biological functions; we have shown that
Dp53 promotes rpr expression, whereas DDNp53 activates
Hid and Wg expression in wing epithelium (Figures 2–5).
Overall, we propose that balancing apoptosis and apoptosis-
induced proliferation may represent one primordial function of
the TP53 gene family, and that this function requires the
expression of Dp53 and DDNp53 isoforms in a tightly
controlled manner. In vertebrate, this primordial functional
capacity may be differently exploited by TP53, TP63 and
TP73 to regulate specific aspects of death/proliferation in the
equilibrium, depending upon tissues and physiological
contexts.

Material and Methods
UAS-Dp53 and UAS-DDNp53 transgenic lines. Dp53 and DDNp53
cDNAs were cloned (Kpn1/Xba1) into a pUAST-wþ -attB transgenic fly vector.
Best Gene, Inc. (Chino Hills, CA, USA) generated transgenic lines using fC31
integrase-mediated transgenesis. Vector DNA was injected in embryos carrying
attP docking sites (strain 9736 at 53B2 and strain 9750 at 65B2). Wþ embryos
were selected and for establishing stable transgenic fly stocks.

Fly stocks. The following transgenic and mutant fly stocks were used:
MS1096-Gal4, en-Gal4, uas-lacZ and uas-RFP (Bloomington stock); uas-GFP,43

rprXRE-lacZ (rprZ) and droncI29 (kind gifts from A Bergmann25); p53R-GFPnls (p53
RE; a generous gift from J Abrams15), rpr87,44 deficiency (3L)H99 (Df(3L)H99,
referred to as H9945), PCNA-EmGFP33 and p53-null (p53 [5A-1-4]).35 The
following genetic combinations were used to express transgenes in wing imaginal
discs: (1) MS1096-Gal4,uas-GFP (MS10964GFP), (2) MS1096-Gal4;uas-Dp53
(MS10964Dp53), (3) MS1096-Gal4;uas-DDNp53 (MS10964 DDNp53), (4) en-
Gal4/uas-Dp53 (en4Dp53), and (5) en-Gal4/uas-DDNp53 (en4DDNp53). Flies
were raised under standard conditions at 25 1C.
Additional information can be found in the supplemental information.
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