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Abstract

Anticancer drug resistance is a major issue in the management of cancer disease. Efflux
transporters contribute to the multidrug resistance by altering the intracellular
disposition of cytotoxic drugs. In the past, the inhibition of P-gp efflux transporter
essentially failed because of the lack of adequate methods to identify their mechanisms of
action. Recently, new inhibitors of BCRP, one of the latest efflux transporter that have
been discovered, have been developed that allow re-testing the multidrug resistance
inhibition through efflux inhibition. Nevertheless, to avoid the same issues of
development as for P-gp inhibitors, new methods have to be used.
This PhD work aims to demonstrate the benefits of mechanistic models to support the
development of efflux transporter inhibitors and more generally of oncology compounds
through two axes:

- The development of mechanistic models of the interaction between cytotoxic

and efflux transporter inhibitors

- The development of quantitative tumour growth inhibition models to early
evaluate oncology compounds and optimize patients’ response
The results obtained with this approach allow the identification of key mechanisms of
efflux transporter inhibitors and demonstrate the power of modelling and simulation to

support oncology drug development.



Résumé

La résistance aux chimiothérapies anticancéreuses constitue un probléme majeur dans la
prise en charge du cancer. Les transporteurs d’efflux contribuent a ce phénomene de
résistance en altérant I'accumulation intracellulaire des cytotoxiques. Dans le passé,
I'inhibition du transporteur d’efflux P-gp n’a pas permis de surmonter ce phénomene
notamment a cause du manque de méthodes adéquates pour identifier et quantifier la
pharmacologie des inhibiteurs d’efflux. Récemment de nouveaux inhibiteurs de BCRP,
I'un des derniers transporteurs d’efflux découverts, ont été synthétisés permettant de re-
tester I'intérét de I'inhibition de ces transporteurs dans la prise en charge de la résistance
aux anticancéreux. Néanmoins, afin d’éviter les mémes écueils que lors du développement
des inhibiteurs de P-gp, il est nécessaire d’utiliser d’autres approches telles que la
modélisation mathématique des le début du développement préclinique de ces
inhibiteurs. Cette these a pour but de montrer les bénéfices de la modélisation et de la
simulation dans le développement préclinique des inhibiteurs de transporteurs d’efflux
et plus largement dans le développement des molécules anticancéreuses. L'exemple
utilisé au travers de ce travail concerne I'’étude de l'interaction entre l'irinotecan, un
cytotoxique largement utilisé dans le traitement du cancer colorectal, et le MBLI87, un
nouvel inhibiteur de BCRP.

Deux principaux axes ont été abordés dans ce travail :

- Le développement de modeéles (semi-) mécanistiques a effets mixtes pour
identifier et quantifier les facteurs impactant lefficacité de la combinaison
irinotecan-MBLI87

- Le développement de modeles d’inhibition de la croissance tumorale a effets
mixtes pour évaluer précocement ce type d’interaction de traitements et pour
optimiser la réponse tumorale

Les résultats obtenus avec I'approche de modélisation ont permis d’identifier certains des
mécanismes tumoraux impactant I'efficacité des inhibiteurs de transporteur d’efflux. De
plus cette approche s’est révélée supérieure aux approches classiques dans I’évaluation
de ces molécules et dans I'optimisation de la réponse tumorale démontrant la puissance
de la modélisation et de la simulation comme outil de développement des molécules

anticancéreuses.
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Introduction

Anticancer drug resistance is one of the main reason of treatment failures in cancer
patients. In the past, the discovery of the function of efflux transporter in tumour
resistance led to the development of various compounds that inhibit active cytotoxic
efflux from tumour cells. Unfortunately, the development of P-gp inhibitors, the most
widely studied efflux transporter, failed to inhibit multidrug resistance in patients despite
promising results in animals. The question of overcoming multidrug resistance through
the inhibition of others efflux transporters has rarely been addressed. Recently new BCRP
inhibitors, one of the latest efflux transporters that have been discovered, have been
synthesized. To avoid the same development issues as for P-gp inhibitors, it is necessary
to use new methodologies from the beginning of their development.

The purpose of this PhD work was to use mechanistic models to support the development
of new efflux inhibitors and more generally to show the benefits of the model-based
development for oncology drugs.

After a presentation of the context of this work, three different parts are presented that
all contain publications associated to this thesis. The first part deals with the mechanistic
modelling of the interaction between cytotoxic and efflux transporter inhibitors in vitro
and in vivo. In the second part, a tumour growth inhibition model of this interaction is
presented and the last part shows the benefits of tumour growth inhibition models to
optimize patients’ response.

All the studies presented in the two first parts result from the collaboration between six
different research teams. MBLI87 has been synthesized and formulated at the department
of medicinal chemistry from the Joseph Fourier University in Grenoble (Pr. Ahcéne

Boumendjel, Dr. Annabelle Geze). Cell cultures, in vitro tests and tumour growth
23



Introduction

experiments have been carried out at the institute of biology and chemistry of proteins in
Lyon (Dr. Attilio Di Pietro, Dr. Pierre Falson, Dr. Léa Payen). Dosages of MBLI87 and
irinotecan have been performed at the biochemistry department of Lyon-Sud in Lyon (Pr.
Jéréme Guitton, Dr. Léa Payen). Our team, EMR3738 Chemotherapy Targeting in Oncology
(Pr. Gilles Freyer, Pr. Michel Tod) intervenes to model all the data generated from all the

others teams.
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Context of the research
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1. Cancer

1.1. Cancer origins and development

Cancer is a generic appellation for a large group of diseases that can affect any parts of the
body. According to the World Health Organization (WHO), cancer can be described as the
rapid creation of abnormal cells that can invade adjoining parts of the body and spread to
others organs (1).
Cancer cells become autocrine and lose their own specificity; they can thus grow beyond
their usual boundaries. Modifications of normal cells into tumour cells result from the
interaction between genetic factors and external agents, carcinogens (physical, chemical
and biological carcinogens). Establishment of cancer disease follows three main phases:
- Initiation: occurrence of punctual DNA mutations resulting from the
interaction between genetic factors and external carcinogens.
- Promotion: stimulation of mutated cells by external carcinogens
- Proliferation: escape of mutated cells from regulation system and beginning of
proliferation without differentiation
Through the deregulation of genes regulating extracellular functions, tumour cells
become able to evade form their primary site to join others organs. This process, called

metastasis is an aggravating factor of the disease.

1.2. Cancer epidemiology

Cancer disease is a major public health issue. According to the World Health Organization,
cancer causes 7.6 million of deaths worldwide in 2006. Global incidence of
cancer disease increased around 60% between 1980 and 2000. Cancer deaths are

projected to continue rising with a 13.1 million of deaths expected in 2030 (1).
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Chapter I: Context of the research - Cancer

The most common types of cancer are lung, stomach, liver, colon and breast cancers that
together cause the most number of cancer deaths. Prostate and breast cancers are the
most frequent cancers in male and female respectively.

The WHO defined five aggravating behavioural factors that explain around 30% of cancer
diagnosis: high body mass index, low vegetable intake, lack of physical activity, use of

alcohol and tobacco (1).

1.3. Cancer treatments

The choice for the most appropriate treatment depends on the tumour type, localization,

development and also on the patient status.
1.3.1. Surgery

Historically, cancer treatment consisted in tumour excision through surgery. Nowadays,
this invasive technique is mainly used at early stage of the disease and is always
associated to others treatments such as radiotherapy or chemotherapy.

1.3.2. Radiotherapy

Radiotherapy consists in irradiating tissue to prevent cell division by altering their DNA.
This loco-regional method targets cells that divide rapidly, such as tumour cells and is
often associated to others treatments.

1.3.3. Chemotherapy

1.3.3.1.  Principle
Chemotherapy is based on the administration of cytotoxic drugs that preferentially target
cells that divide rapidly. Chemotherapeutic agents induce cell damage during cell division
leading to the inhibition of cell growth and death. Chemotherapy is often envisaged in four

therapeutic purposes:
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Chapter I: Context of the research - Cancer

- Curative chemotherapy
- Neo-adjuvant chemotherapy to reduce tumour burden before surgery or
chemotherapy

- Adjuvant chemotherapy to prevent metastasis formation after surgery

- Palliative chemotherapy for cancer symptom relief
Solid tumours are rarely treatable with chemotherapy alone, but adjuvant chemotherapy
is used to reduce relapse and death risks (2-5).
Chemotherapeutic agents affect non-specifically both tumour and normal cells that can
lead to toxicities. Dose intensity of cytotoxic agents is thus often limited because of
hematotoxicity, whereas the number of cycles is often limited because of cumulative
toxicity such as cardiotoxicity following anthracyclines administration.

1.3.3.2.  Main classes of chemotherapy

Chemotherapeutic drugs can be classified according to their mechanisms of action (Table

1).
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Chapter I: Context of the research - Cancer

Mechanisms of action Chemotherapeutic agents

Alkylating agents (chlomethine)

Intercalating agents (daunorubicine, antibiotics)

DNA alteration
Topoisomerase [ and Il inhibitors (irinotecan, etoposide)
Electrophilic intermediates (platinum derivatives)
Antifolates (methotrexate)
Anti-metabolic Analogues of purine base (6-mercaptopurine)
Analogues of pyrimidine base (5-FU, gemcitabine)
Thymidylate synthetase inhibitor (raltitrexed)
Enzymatic inhibitors Ribonucleid diphosphatase reductase inhibitor (hydroxyurea)
Dihydrofolate reductase inhibitor (methotrexate)
Cytokines Interferon o
Anti-mitotic Vinbastine, Taxanes (paclitaxel)
Tyrosine Kinase inhibitors Imatinib, Gefitinib

Table 1: Main classes of chemotherapeutic agents

All the studies included in this thesis are focused on the chemotherapeutic agents,

irinotecan, CPT11 and capecitabine, the oral pro-drug of 5-FU.

1.3.4. Irinotecan

Irinotecan (CPT11) is a semi-synthetic derivative of the alkaloid plant camptothecine

(CPT, Camptotheca acuminata) (Figure 1) (7).

Figure 1: Camptotheca acuminata
CPT11 is converted by carboxylesterases into 7-ethyl-10-hydroxycamptothecine (SN38),
its active metabolite. SN38 is conjugated to an inactive glucuronide (SN38G) by uridine
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Chapter I: Context of the research - Cancer

diphosphatase glucuronosyltransferase (6, 7). CPT11 presents also two inactive
metabolites in plasma: 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino]-
carboxylcamptothecin (APC), 7-ethyl-10-[4-amino-1-piperidino]-carboxylcamptothecin
(NPC) resulting from the oxidation of the terminal piperidine ring of CPT11 by CYP450

3A4 (7, 8).
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Figure 2: Irinotecan and its metabolites

1.3.4.1. Mechanism of action
CPT11 activity relies on the inhibition of the topoisomerase 1 enzyme. This enzyme plays
a crucial role in DNA replication, transcription and repair. Topoisomerase 1 establishes a
covalent bound with DNA to separate both DNA strands in order to ease the insertion of

the RNA polymerase for DNA transcription.
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Camptothecin-derivatives were the first compounds described to be able to stabilize this
complex (9). The stabilization of the complex avoids the relegation of DNA strands after

their opening resulting in cell death.

Camnptothecine

"
ol L

i' 3‘—5'
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Figure 3: Mechanism of action of camptothecine

Topoisomerase 1 cleavage conversion into DNA damage by displacement of the cleaved strand 5’-OH
extremity in DNA transcription (9)

1.3.4.2. Development
Camptothecin (CPT) was clinically tested during the 70s but first clinical trials did not
conclude to a positive effect of CPT. The use of CPT was also associated to intolerable
toxicities (hemorrhagic cystitis) that led to an immediate arrest of CPT clinical
development.
In 1985, the topoisomerase 1 was identified as the target of CPT leading to a regain of
interest for this drug. However, the natural CPT exhibits many formulation issues (CPT is
bound more than 95% to serum albumin). Numerous studies were thus performed in
order to improve CPT solubility and bioavailability. These studies showed that the
incorporation of a lipophilic group at the 11t position decreases CPT affinity for serum
albumin without reducing CPT cytotoxicity. This compound was thus called CPT11,
irinotecan.

1.3.4.3. Pharmacokinetic properties

1.3.4.3.1. Animals

After intra-venous (IV) administration in mice, CPT11 shows a biphasic disposition in

plasma with a terminal half-life ranging between 1.1 and 3h. CPT11 disposition is linear
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at low doses but at high doses, over 40mg.kg-1, its clearance decreases and AUC increases
non-linearly with doses (10). Pharmacokinetic parameters of CPT11 and SN38 in plasma
are similar after IV and intra-peritoneal (IP) administration (11).

1.3.4.3.2. Humans
After IV administration of 145mg.kg1, CPT11 disposition in plasma is biphasic with a
terminal half-life of 8.8h. Its volume of distribution is estimated at 246L attesting its high
tissue distribution. SN38 peaked between 1.5 and 3.6h from the infusion onset while
SN38G Tmax ranged between 1.7 and 6h. Metabolites concentration declines parallel to
CP11.SN38G AUC is higher than SN38 AUC with a maximum ratio of 13. CPT11 and SN38
are found under two chemical forms: lactone and carboxylate that have different
pharmacokinetic properties, e.g. higher clearance for the lactone form.
Secondary peaks of CPT11 and SN38 are observed suggesting entero-hepatic recycling.
CPT11, SN38 and SN38G elimination is mainly non-renal since urinary recovery
represents only 14% and 0.2% of the administered dose for CPT11 and SN38 respectively.
No difference in CPT11 disposition in plasma was reported based on sex and race (12).
Xie et al. developed a population pharmacokinetic model of CPT11 and all of its
metabolites that include both lactone and carboxylate forms (13). Authors showed that
CPT11 hydrolysis was five times faster than the lactonization attesting that CPT11-
carboxylate is the major form at equilibrium. The contrary was reported for SN38 with
SN38-lactone dominating at equilibrium. For both CPT11 and SN38, clearance was higher
for the lactone form (74.4L.h-1 compared to 12.4L.h-1 for CPT11-lactone and carboxylate
respectively). SN38 and NPC are preferentially formed from CPT11-lactone, whereas APC
is preferentially formed from CPT11-carboxylate.

1.3.4.4. Pharmacodynamic properties
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CPT11 is well established as the first line therapy for the treatment of metastatic and
advanced colorectal cancer (CRC) combined with 5-FU or alone after 5-FU failure (14).
First clinical trials in Japan attested the efficacy of CPT11 administered every third week
in advanced CRC (15). The first phase 2 trials indicated 22% of tumour response in
patients refractory to standard 5-FU (16), results confirmed in several others studies .

The main dose-limiting toxicities of CPT11 include severe myelosuppression with an
incidence of about 15-20% and delayed severe diarrhea that is observed in 20-25% of
patients around five days after treatment onset (17). Severe diarrhea is impacted by the

systemic and intestinal exposure of SN38 that accumulates into intestines.

The last study included in this thesis is focused on capecitabine, the oral pro-drug of 5-FU.

1.3.5. Capecitabine

Capecitabine is an orally administered tumour selective prodrug of 5-Fluorouracil (5-FU)
that is approved in the management of colorectal and breast cancers.
After oral administration, capecitabine is well-absorbed and sequentially metabolized to
5-FU following three steps (Figure 4) (18):
- Capecitabine is converted to 5’-deoxy-5-fluorocytidine (5-DFCR) by
carboxylesterases
- 5-DFCR is converted to 5’-doxy-5-fluoroudine (5’-DFUR) by cytidine
deaminase
- 5-DFURis converted to 5-FU by thymidine phosphorylase (ThdPase)
Then, the active compound, 5-FU is first converted to dihydroxyfluorouracil (FUH2) by
dihydropyrimidine dehydrogenase (DPD). This step is followed by conversion to 5-fluoro-

ureido-prorionic acid (FUPA) by dihydropyrimidine (DHP). The final step of 5-FU
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metabolism consists in the conversion of FUPA to FBAL by the enzyme [-ureido-

propionase (BUP) (19).

Gl tract

Tumour

Capecitabine

Liver

Figure 4: Metabolic pathway of capecitabine (18)

The biotransformation of capecitabine to 5’-DFCR occurs mainly in the liver to minimize
the accumulation of 5-FU in plasma and healthy tissues. Conversion of 5’-DFCR to 5’-DFUR
occurs via dThdPase which is more highly expressed in tumour tissues than in healthy
tissues. Capecitabine is therefore expected to allow preferential exposure to 5-FU in
tumour while limiting levels of circulating 5-FU (20).

Capecitabine development was subject to intensive modeling work so that it is an
excellent candidate to evaluate new tools to optimize its current dosing schedule as it has

been done in the following.
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2. Anticancer drugs resistance

Chemotherapy is widely used for treating numerous cancer types. However, clinical
resistance to cytotoxic chemotherapy is recognized as a major problem Tumour
resistance is defined as the tumour cells cross-resistance to various compounds that are
not structurally linked (21). Chemoresistance can result from different mechanisms that
arise from three main types of events: alteration of drug uptake, efflux and
biotransformation (22).

Chemoresistance can be classified into two types of mechanisms:

- Mechanisms related to tumour physiology

- Mechanisms related to tumour cells

2.1. Mechanisms related to tumour physiology

Teicher et al. were the first to describe the effect of tumour environment on tumour
resistance (23). They exposed tumour cells to cytotoxic drugs in vitro and in vivo. While
tumour cells in vivo exhibit resistance after weeks of treatment, the same cells do not
present any resistance in vitro. The authors concluded that factors external to tumour
cells were thus implied in the resistance development.
Brown et al. identified the two main external factors responsible for tumour resistance:

- Tumour vasculature

- Tumour oxygenation

2.1.1. Tumour vasculature

To ensure its development, tumour cells continuously produce pro-angiogenic factors to
develop their own vascular network. The difference between the physiology of normal
and tumour tissues stems from the tumour vasculature. Two types of vessels compose

tumour tissues: existing blood vessels in normal tissue that the tumour has invaded and
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tumour micro-vessels arising from neovascularization. Both types of vessels are highly
irregular, give artery-venous shunts and have incomplete endothelial linings and
basement membrane. Tumour blood flow is thus much more irregular than in normal
tissue (24). Some zones of the tumour receive enough oxygen and nutriments to maintain
their development whereas some others do not receive anything. This disparity on blood
flow affects drug penetration into tumour (25).

Tumour vasculature became a new target in anticancer drug research with the
development of anti-angiogenic drugs which tend to normalize the vascular network in

order to ensure a well-balanced penetration of cytotoxic into tumour.
2.1.2. Tumour oxygenation

The unbalanced tumour vasculature also leads to the formation of hypoxic zones within
the tumour tissue. Hypoxia has been recognized as a negative prognostic factor in cancer
treatment. Given its central role in tumour progression and resistance to therapy, tumour
hypoxia is now considered as a validated target in cancer treatment (26). Moreover,
hypoxic cells grow slower than others cells (27), they are also more resistant to

chemotherapeutic agents (28).

2.2. Mechanisms related to tumour cells

Healthy cells use various mechanisms to protect against toxins and xenobiotic. These
mechanisms are also found in tumour cells and lead to drug resistance. Tumour resistance
can appear at the beginning of the therapy (primary resistance) or after a period of
response (secondary resistance).

In primary resistance, others oncoproteins that are not inhibited by the anticancer agents

are implicated. To overcome this resistance, a new drug with a different mechanism of
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action has to be used. Moreover, molecular diagnosis can avoid this type of resistance by
identifying the correct target (29).

Two main steps lead to secondary resistance. The first step consists in the selection of
resistant clones that have a state of dormancy; they are quiescent tumour cells with halted
cell growth (30). In time, the resistance mechanisms can become more efficient and non-
resistant clones can become resistant. In a second step, clonal evolution driven by
genomic instability allows the appearance of resistant clones together with the

development of drug- and target-independent resistance.
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Figure 5: Resistance in cancer therapy (31)

In secondary resistance, resistant cell clones appear after a durable response to the treatment (A).
It occurs in 2 steps. First, some clones can develop a tolerance to the drug (B). Tolerant clones have
a halted growth. It can be caused by a suboptimal intracellular level of the therapeutic agent(s),
mutations in the target protein or desensitization of apoptosis signalling. Secondly, new clones with
increased growth appear. They have new genetic modifications and show resistance mechanisms
which can be independent of the drug and its target(s) (C). Therefore, at the beginning of treatment,
itis advisable to deliver the therapeutic agents inside the cancer cells as much as possible to impede
clonal evolution and genetic instability

Rochat classified acquired cellular resistance in three categories: drug-dependent
mechanisms, target-dependent mechanisms and drug- and target-independent

mechanisms (31).
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Category 1: Drug-dependent mechanisms due to the modification of drug disposition
e Decrease of drug influx inside the cancer cell by lower expression of SLC isozymes
e Modifications of drug biotransformation in the cans cells by XME isozymes
e Increase od drug efflux out of the cancer cell by ABC isozymes

e Decrease of drug disposition in the cancer cell by modulation of drug bioavailability in the systemic circulation

Category 2: Target-dependent mechanisms due to the desensitization of drug-target complex signalling
e Mutations of the target protein
e Amplification of the target protein

e  Alteration of drug-target complex signalling through coregulator proteins

Category 3: Drug- and target-independent mechanisms due to the complete escape of the drug-target complex
signalling

e (lonal evolution with new genetic aberrations

e Increase of apoptotic signals

e Decrease of survival signals

Table 2: Categories and main mechanisms of anticancer drug resistance in cancer cells (31)

2.2.1. Drug-dependent mechanisms

These mechanisms of resistance rely on the modification of intracellular drug disposition.
Three main systems are involved in drug disposition in tumour cells: drug influx system
by the Solute Carrier family (SLC), drug efflux system by the ATP-Binding Cassette family

(ABC) and the xenobiotics metabolizing enzymes (XME) (Figure 5)
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Figure 6: Drug dependent mechanisms of resistance (31)
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The uptake of anticancer drugs involves three main families of SLC transporters: SLC21
(SLCO), the organic anion transporter family with 20 proteins (OATP); SLC22, the organic
cation/anion/zwitterion transporter family with 18 proteins (OAT); SLC15, the proton
oligopeptide co-transporter with 4 proteins (PEPT). Down-regulation of SLC transporters
has been associated to the decrease uptake of platine derivatives (32). Effect of SLC
transporters has been well characterized in vitro (33-36). However, their clinical
implications in drug resistance have been clearly established for only a few compounds.
As an example, patients treated with imatinib and having a poor expression of SLC22A1
have a significantly worse prognostic of overall survival (37).

Drug efflux system involve ATP-Binding Cassette (ABC) transporters. Three of these
transporters have predominantly been linked to a potential role in drug resistance
(ABCB1/P-gp, ABCG2/BCRP, ABCC1/MRP1). Overexpression of these transporters has
been associated to negative chemo-sensitization of several anticancer agents (38). In
renal carcinoma patients, high expression of P-gp is associated to a poor prognostic (39).
However, several clinical studies have reported the failure of ABC transporters inhibitors
in the management of drug resistance (12, 40-43). A more detailed review of the structure
and role of ABC transporter is presented in the following.

Intracellular drug biotransformation mediated by XME enzymes is also involved in
cellular drug resistance. The main XME enzymes involved in biotransformation of
anticancer agents are CYP450 isoforms, UDP-glucuronosyl-transferases and glutathione
S transferase (44-46). In vitro, CYP activity was found to decrease chemo-sensitivity of
more than 50 compounds (47) highlighting its role in the modulation of anticancer drugs
activity. As an example, CYP3A4 intracellular expression was found to be four times lower
in patients responder to docetaxel compared to non-responders (48). Many examples

establish the association between the XME expression and patients’ survival (49-51) but
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it is not completely established if XME activity responsible of these correlations is
localized in tumour cells.

Coordinated regulations of SLC, XME and ABC enzymes have been described (52, 53).
Their expression is regulated by similar nuclear receptors such as the constitutive
androstane receptor (CAR). In addition, various data have identified overlapping
substrates specificity for P-gp and CYP3A4 attesting that the drug metabolites are more
expulsed out of the cells by ABC transporters. A good example is that hydroxyl groups

included in SN38 structure helps its interaction with ABCG2 (54).
2.2.2. Target-dependent mechanisms

In case of target mutation, the drug cannot properly recognize the target that leads to a
decrease of anticancer drug efficacy. The most well-known example concerns imatinib
and its target Bcr-Abl protein kinase. Studies have detected mutations of Bcr-Abl in about
50% of patients with acquired resistance to imatinib (55-58). However, the Bcr-Abl
mutation is not the only resistance mechanism to imatinib since the mutation only
partially contributes to drug resistance because cancer cells carrying the mutant protein
kinase are not invariably insensitive to imatinib (59).

In case of target amplification, drug amount is not sufficient to completely inhibit the
target. An example is the overexpression of thymidylate synthetase promoter in
homozygous patients that did not respond to 5-FU therapy (60).

2.2.3. Drug- and target- independent mechanisms

These mechanisms are neither related to the drug nor to the drug target. They concern

the mutation and deregulation of oncogenes and the decrease of tumour cells apoptosis.
2.2.3.1. DNArepair

There are five recognized DNA repair pathways that protect cellular DNA from injury:

nucleotide excision repair, mismatch repair, double-strand break repair, base excision
42



Chapter I: Context of the research - Anticancer drugs resistance

repair and direct repair. Alteration in the structure of the DNA molecule leads to cellular
DNA damages recognition and repair which can result in the continued viability of cells
resulting in resistance to drugs targeting DNA such as platinum-derivatives (61). Cancer
cells DNA repair mechanisms are more efficient and faster than in normal cells (62).
Nucleotide excision repair is a key pathway in cisplatine resistance. In vitro studies, using
testicular carcinoma cell lines showed a deficiency in nucleotide excision repair and
exhibit an important sensitivity to cisplatine (63). This finding has also been shown in
multiple studies with human ovarian cell lines (64).
2.2.3.2.  Decrease of apoptotic signals

The first association of the bcl2 gene with human cancer was observed in human follicular
lymphoma (65). Bcl2 belongs to a distinct class of cancer related genes because it is
neither an oncogene nor a tumour suppressor gene such as Myc or p53. It is defined as an
apoptosis protection gene (66). Bcl2 interacts directly with oncoproteins regulating the
mitogenic cell signalling. It is thus involved in the regulation of the cell cycle by inhibiting
apoptotic factors that delay the apoptosis and cause resistance (67, 68).

P53 protein is another important regulator of the cell cycle. It is activated after DNA
damages. Tumour suppressive function of p53 prevents the propagation of abnormal
cells. Its role in the prevention of cancer has been demonstrated because p53 is mutated
in 50% of human cancers (69, 70). Tumour cells exhibiting mutated p53 gene do not enter

in apoptosis and become resistant.
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3. ABC transporters

The ATP-Binding Cassette (ABC) superfamily of transporters is one of the largest protein
families in biology (71). These transporters use the binding and hydrolysis of ATP to
power the translocation across cell membrane of diverse substrates ranging from ions to
macromolecules. Members of the ABC family are present in prokaryotes and eukaryotes
(72). ABC exporters are present in both prokaryotes and eukaryotes; importers are
exclusively present in prokaryotes. In E. coli, ABC transporters represent 5% of the
genome (73). The human genome encodes 48 ABC transporters (74, 75) classified into

seven families : ABCA, ABCB, ABCC, ABCD, ABCE, ABCF, ABCG.

3.1. Structure

ABC transporters have a characteristic architecture, which consists of four domains: two
transmembrane domains (TMD) located in the membrane and two nucleotide binding
domains (NBD) located in the cytoplasm (76). All the proteins that belong to the ABC
family have the same structure (73, 77). This basic structure is duplicated in full
transporter such as ABCB1 (P-gp) whereas half-transporters such as ABCG2 only have

one NBD and one TMD.

TMD TMD
Membrane

NBD NBD

Figure 7: ABC transporters typical structure
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3.1.1. Transmembrane domains

Transmembrane domains (TMD) are hydrophobic domains that are located in cell
membrane. Each TMD is usually composed of six transmembrane helices (78). However,
the transmembrane subunit can exhibit several variations with 5 to 11 transmembrane
helices (79). TMD forms the permeation pathway for transport of substrates, even if the
exact localization of the fixation site is not identified yet. Sequences of TMD are not well
conserved throughout species because these domains are implied in substrate

recognition.
3.1.2. Nucleotide binding domains

Nucleotide binding domains (NBD) are located in the cytoplasm where they hydrolyze
ATP to power substrates transport.

NBD can be subdivided into two constituent domains: a catalytic core that contains the
conserved P loop, Walker B motif, ¢p loop and switch region and an a-helical domain that
contains the ABC signature motif (80).

The catalytic core is highly conserved in ABC transporters. P loop allows fixing ATP
through binding of $ and y ATP phosphates. ® loop located between P-loop and Walker B
motif allows the binding between NBD and TMD. ABC signature doses not interact directly
with nucleotide but its mutation prevents ATP hydrolysis (81). Switch region is located at
the C-terminal extremity of NBD and participate to the modification of the conformation
following ATP hydrolysis. This region binds the ATP-y phosphate allowing to transfer ATP

energy to TMD (82).
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Motif Functions
P-loop ATP binding
Q-loop NBD-TMD binding
ABC signature ATP binding
Walker B Mg?* binding during ATP binding
Switch region B, Yy phosphates ATP binding

Table 3 : NBD motifs and functions

3.2. Mechanisms

ABC drug transport involves two interconnected cycles (83). A catalytic cycle of ATP
hydrolysis that drives transport first occurs. Secondly, there is a substrate transport
where substrates are moved from the cytoplasm to the extracellular side of the cell
membrane.

Details of the catalytic and transport cycles, and how they are coupled, remain enigmatic.
In many studies, P-gp appeared to behave as a symmetrical transporter with two
equivalent NBDs and it is likely that the BCRP homodimer also functions symmetrically.
However, there are many evidences that NBDs are not functionally equivalent (84).

The catalytic cycle involves binding of ATP to both NBDs, which induces formation of
nucleotide dimer. One molecule of ATP become tightly bound (85) and is hydrolysed into
ADP+Pi. ATP hydrolysis is the rate-limiting process for ATP transporter. After ATP
hydrolysis, ADP and Pi are released from the NBD (82). The second round of ATP
hydrolysis takes place on the other NBD.

Drug transport starts with the entry of substrates into the binding pocket on the
cytoplasm side followed by the change in transporter conformation due to ATP
hydrolysis. Substrates are finally released into the extracellular side of the cell membrane.

Substrates initially interact with high affinity binding sites and moved then to low-affinity
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site for release. The link between ATP hydrolysis and drug transport requires the

communication between NBD and TMD that are linked by the conformational changes.

Figure 8: ABC transporters mechanism (86)
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3.3. Human ABC transporters
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Human genome encodes 48 ABC transporters. As shown in Table 4, these proteins are

widely expressed.

Symbol Expression Symbol Expression
ABCA1 Ubiquitous ABCC2 Ubiquitous
ABCA2 Brain ABCC3 Lung, intestine, liver
ABCA3 Lung ABCC4 Prostate
ABCA4 Rod photoreceptors ABCCS5 Ubiquitous
ABCAS Muscle, heart, testis ABCC6 Kidney, liver
ABCA6 Liver CFTR Exocrine tissues
ABCA7 Spleen, thymus ABCC8 Pancreas
ABCA8 Ovary ABCC9 Heart, muscle
ABCA9 Heart ABCC10 Ubiquitous
ABCA10 Muscle, heart ABCC11 Ubiquitous
ABCA12 Stomach ABCC12 Ubiquitous
ABCA13 Ubiquitous ABCD1 Peroxisomes
ABCB1 Adrenal, kidney, brain ABCD2 Peroxisomes
ABCB2 Ubiquitous ABCD3 Peroxisomes
ABCB3 Ubiquitous ABCD4 Peroxisomes
ABCB4 Liver ABCE1 Ovary, testis, spleen
ABCB5 Ubiquitous ABCF1 Ubiquitous
ABCB6 Mitochondria ABCF2 Ubiquitous
ABCB7 Mitochondria ABCF3 Ubiquitous
ABCB8 Mitochondria ABCG1 Ubiquitous
ABCB9 Heart, brain ABCG2 Placenta, intestine
ABCB10 Mitochondria ABCG4 Liver
ABCB11 Liver ABCG5 Liver, intestine
ABCC1 Ubiquitous ABCG8 Liver, intestine

Table 4: Symbol and site of expression of human ABC transporters (74)

ABC transporters are classified into seven families (ABCA-ABCG) that are all involved in

the transport of toxins and xenobiotic. ABC transporters are thus preferentially expressed

in natural barrier (blood brain barrier, placenta, gut) (Figure 8). Some of them are

particularly of interest because of their implications in human diseases.
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Figure 8: Localization of human ABC transporters (87)
3.3.1. ABC transporters in human diseases
ABC transporters can be involved in human diseases either because of their inactivation

where they are associated to genetic diseases, or because of their overexpression; where
they are associated to drug resistance
Ten ABC transporters have been identified in genetic disorders because of their

inactivation (Table 5) (88)

The most famous example of diseases related to ABC inactivation is the ABCC7
inactivation in cystic fibrosis. Cystic fibrosis is an autosomal disease recessive genetic

disorder affecting most critically lungs, pancreas, liver and intestine. It is characterized by

abnormal transport of chloride and sodium across epithelium leading to viscous
49
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conductance regulator (CFTR/ABCC7) that encodes a chloride ion channel important in

creating swear, digestive juices and mucus.

ABC transporter Disease

ABCA1 Tangier disease

ABCA4 Stargardt disease

ABCB4 Progressive familial cholestasis 3
ABCB7 Anemia with ataxia
ABCB11 Progressive familial cholestasis 2
ABCC2 Dubin-Johnson syndrome
ABCC6 Pseudo-xanthoma elasticum
ABCC7 Cystic fibrosis

ABCD1 Adrenoleukodystrophy
ABCG5 Sitosterolemia

ABCG8 Sitosterolemia

Table 5: Human diseases associated to the inactivation of ABC transporters (88)
Overexpression of ABC transporters is associated to acquired drug resistance due to their
abilities to extrude several classes of anticancer drugs from cell. This phenomenon was
firstly described in cancer disease (89). Three main transporters have been clinically
identified for their implications in anticancer drugs resistance: ABCB1 (P-gp-, ABCG2
(BCRP) and ABCC1 (MRP1) (90). The role of ABC proteins in resistance to anticancer
drugs have been known for over 30 years (91).

Many drugs commonly used in in clinical therapy are transport substrates for P-gp, BCRP
or MRP1. The ABC transporters play thus an important role in drug absorption,
distribution and elimination in vivo since they can limit the uptake of many drugs. The
presence of ABC transporters is a serious problem in drug discovery; many candidates
may not be able to cross natural barriers in vivo, making them clinically useless. The
presence of efflux pumps in the endothelial cells of the brain capillaries has an impact on
pharmacotherapy of drugs that target the brain including cancer, AIDS, Parkinson’s

disease, epilepsy and schizophrenia (92). The presence of ABC transporters in the luminal
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membrane of endothelial cells, where they immediately pump drugs back to the blood,

thus reduces drugs accumulation into the brain.

3.4. P-glycoprotein

P-glycoprotein (ABCB1, P-gp) was originally discovered in colchicine selected Chinese
hamster ovary (CHO) cells resistant to multiple natural drugs. P-gp was the first
transporter discovered implied in drug resistance.

ABCB1 is a 170kDa single polypeptide that arises from an internal duplication and

comprises two TMD and two NBD.

Figure X: ABCB1- P-gp structure (93)

It is preferentially located in the apical membrane of epithelial cells in wide types of
tissues and preferentially at natural barriers. There is no doubt that ABCB1 is a key player
in the defense of the body against xenobiotic and toxins (94). The most recent
experiments on the defense role of P-gp are focused on three main barriers: the gut

mucosa, the blood-brain barrier and the maternal foetal barrier.
3.4.1. Physiological roles

3.4.1.1. Gutmucosa
P-gp was known to be expressed in mucosal cells form its discovery. However, its function
remains unclear, the transporter was deemed to interfere with the uptake of amphipathic
drugs from the gut (95, 96).
P-gp can affect the oral bioavailability of its substrates. A good example is paclitaxel that

is a very good P-gp substrate. Paclitaxel has to be administrated because intravenously of
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its extremely poor oral availability that is related to P-gp function in gut (97). As a
demonstration, paclitaxel oral bioavailability moved from 11% in wild-type mice to 35%
in double knocked-out mice (Mdrla~/-).

3.4.1.2. Blood-brain barrier
Blood-brain barrier is composed of endothelial cells of brain capillaries linked together
by tight junctions. Drugs getting into the brain have to cross endothelial cells and get by
P-gp that is expressed at high levels in the apical membrane of these cells (94). The
accumulation into the brain of a wide range of drugs (anticancer drugs, cardiac drugs,
antidiarrheal drugs, immunosuppressant) is thus strongly decreased by P-gp action. Any
P-gp substrates is affected unless compound diffuses rapidly through capillaries
membrane like dexamethasone which is highly extruded at low concentrations but less
affected at high concentrations (98).

3.4.1.3. Maternal-foetal barrier
Lankas et al. (99) found P-gp present in the foetus-derived epithelial cells. The transporter
is expressed at the apical membrane of these cells facing maternal circulation in order to

protect foetus against incoming toxins.
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3.4.2. P-gp substrates

P-gp, as others ABC transporters, is able to transport a wide range of substrates that are

structurally different and that include many therapeutic compounds (Table 6).

Anticancer drugs
Vinca alkaloids (vinblastine, vincristine)
Anthracyclines (doxrubicine, daunorubicine)
Taxanes (paclitaxel, docetaxel)
Epipodophylltoxins (epotoside, teniposide)
Camptothecins (topotecan)
Anthracenes (mitoxantrone, bisantrene)
HIV protease inhibitors

Ritovanir

Saquinavir

Nelfinavir

Analgesics
Morphine
Antihistamines
Terfenadine
Fexofenadine
Calcium-channel blockers
Verapamil
Nifedipine
Azidopine
Diltiazem
Natural products

Curcumoids

Colchicine

H2-receptor antagonists
Cimetidine
Immunosuppressant
Cyclosporine A
Tacrolimus
Antiarrhythmic
Quinidine
Amiodarone
Propafenone
Antiepileptic
Felbamate
Topiramate
Fluorescent compounds
Calcein-AM
Hoechst 33342
Calmodulin antagonists
Triluoperazine
Chlorpromazine
Trans-flupentixol
Pesticides
Methylparathion
Endosulfan

Cypermethrin

HMG-CoA reductase inhibitors
Lovastine
Simvastatin
Antiemetics
Ondansetron
Tyrosine kinase inhibitors
Imatinib
Gefitinib
Cardiac glycosides
Digoxin
Antihelminthics
Ivermectin
Antibiotics
Erythromycin
Gramicidin A
Antihypertensives
Reserpine
Propanolol
Steroids
Corticosterone
Dexamethasone
Aldosterone
Antialcoholism drug

Disurfiram

Table 6: Clinically relevant drugs and others compounds that interact with P-gp (93)

The substrate specificity of drug transporting P-gp is wide and not completely defined. P-

interaction with P-gp (100).

gp prefers large amphipathic molecules that are neutral or weakly basic but it can also
inefficiently transports anionic highly charged molecules such as methotrexate.

Hydrophobicity, planar aromatic rings and the presence of amino groups favor the

The ability of P-gp to extrude so many different substrates lies within its flexible central

cavity that contains negatively charged residue in a hydrophobic environment. The cavity
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allows multiple Van der Walls interactions and binding does not required precise
positioning of the ligand (101).
3.4.3. Role in anticancer drug resistance

The Mdr1 gene that encoded P-gp is overexpressed in many human tumour from various
histological origins. High expression of the transporter was observed prior to cytotoxic
chemotherapy in many different tumour types including kidney, colon, liver, breast and
ovarian cancers (102). In haematological malignancies, initial levels of P-gp expression
increase after treatment onset. For Acute Myeloid Leukemia (AML), several studies have
demonstrated a correlation between P-gp expression and poor prognostic or relapse
(103). P-gp has been widely studied as a target to overcome multidrug resistance in
cancer therapy. Despite intensive studies, efforts to overcome clinical resistance
essentially failed. Initial attempts at P-gp reversal were based on experimental data
showing that many compounds can inhibit P-gp in vitro. Laboratory observations were
directly moved to the clinic and tested in small efficacy phase 2 trials with the hope that
the same effects could have been met in patients. In the development of the three
generations of P-gp inhibitors (Table 7), no emphasis was placed on the role of the
transporter in tumour and the pharmacology of tested inhibitors was not considered

(104).

54



Chapter I: Context of the research - ABC transporters

1st generation of P-gp inhibitor

Verapamil
Cyclosporin A

Tamoxifen

2nd geperation of P-gp inhibitors

PSC833 (valspodar)
VX-710 (biricodar)

3rd generation of P-gp inhibitors

LY335979 (zosuquidar)
XR9576 (tariquidar)
GF120918 (elacridar)
0C144-093

Table 7: Clinically relevant modulators that interact with P-gp (93)

There is thus still no good agreement on the usefulness of P-gp inhibitors in the treatment
of human tumours overexpressing P-gp. Four factors may explain the development
failures of P-gp inhibitors:

- Expression of P-gp in cancer cells was not correctly determined. It would have
been necessary to focus trials with reversed agents on tumours in which P-gp
is a real contributor of the tumour resistance. This problem was highlighted by
Faneyte etal (105). They showed by immunohistochemistry that P-gp in breast
cancers is only present on the infiltrating macrophages and T cells and not in
tumour cells.

- Early clinical trials with P-gp inhibitors were done with drugs and/or dosing
regimens that not sufficiently inhibit the transporter. This makes these trials
negative and not interpretable. Even the recent P-gp inhibitors valspodar used
in many clinical trials did not completely inhibit P-gp (106).

- P-gp inhibitors also affect systemic drug disposition by decreasing P-gp
mediated elimination or by interfering with drug metabolism through CYP450.
If effective P-gp blockers are combined with drugs like doxorubicine or

paclitaxel, patients are thus more exposed to the anticancer agents that can
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lead to increased toxicity risk. The anticancer drug dose has to be decreased as
it has been done in some clinical trials (107, 108).

- Tumours use any resistance mechanisms available. It is thus unknown how
much P-gp contributes to the global observed resistance, since P-gp is certainly
not the unique resistance mechanisms in tumour.

The potential contribution of P-gp to clinical drug resistance in cancer patients cannot be
correctly assessed yet. However, it is quite unlikely that tumours would not use such a

resistance mechanism (109, 110).

3.5. Breast Cancer Resistance Protein

Another phenotype similar but distinct from that found in cells overexpressing P-gp was
reported in cells selected with mitoxantrone suggesting the presence of another efflux
transporter. This transporter was first identified by Doyle et al. as the breast cancer
resistance protein (BCRP), an half-size ABC transporter overexpressed in MCF7 breast
cancer cells, and by Allikmets et al. as ABCP a transporter highly expressed in human
placenta (111, 112). A third name, MXR (mitoxantrone resistance protein), was adopted
by Miyake et al. (113). The BCRP/ABCP/MXR transporter belongs to the G subfamily of
ABC transporters and was renamed ABCG2.

ABCG2 (BCRP) is a 72kDa protein composed of 655 amino-acids. It has N-terminal NMD
and C-terminal TMD, a structure half the size and in inverse configuration to most of the
ABC transporters. Because of it is a half transporter, it is believed to homodimerize or

oligomerize in order to function.
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HzM COOH
ATP

Figure 8: ABCG2 structure (93)

3.5.1. Physiological roles

ABCG2Z mRNA is detectable in many tissues, with the highest levels in the placenta (112).
The transporter was found in the apical membrane of placental syncytiotrophoblasts,
hepatocytes, epithelial lining of small intestine and colon and in the ducts and lobules of
the mammary gland (114). However, ABCG2 is absent in the heart, lung, muscles, kidney,
pancreas, and peripheral blood leukocytes (115).
The localization of the transporter suggests that it could have an important defense
function by limiting the uptake of drugs from the gut and preventing entry of drugs into
the fetus.

3.5.1.1. Placenta
ABCG2 is highly expressed in the syncitiotrophoblasts of the chorionic villus where it
protects the fetus from toxins through the extrusion of toxins from the foetal space (116-
118). Experiments with pregnant mice receiving topotecan combined with the ABCG2
inhibitor GF120918 showed that the foetal plasma levels of topotecan were two-fold
higher compared to those measured in maternal plasma supporting the theory that
ABCG?2 protects the developing fetus from toxins.

3.5.1.2. Blood Brain Barrier
Cooray et al. reported the localization of ABCG2 in microvessels endothelium of the brain
on the luminal side suggesting the brain to blood ABCG2 transport and its role in brain

protection (119). A three-fold higher levels of ABCG2Z mRNA was found in the brain
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capillaries of P-gp knock-out mice (Abcb1-/) indicating that ABCG2 compensate the lack
of P-gp at the BBB (120). Both ABCG2 and P-gp contribute to the BBB. Deletion or
inhibition of one of them will thus have a reduced effect.
Inhibition of both BCRP and P-gp results in a higher penetration of drugs in brain (121).
As an example, brain penetration of topotecan was 3.7 fold higher in Abcb1/Abcg2-/- mice
compared to wild type mice (122).

3.5.1.3.  Gastrointestinal tract
ABCG?2 expression is not well balanced along the GI tract with highest expression in the
duodenum and the lowest in the sigmoid colon (123). Oral administration of topotecan to
Abcb1-/- mice in the presence of ABCG2 inibitor resulted in a six-fold increase in
topotecan plasma concentration compared to the concentration in absence of inhibitor
(124). Impact of ABCG2 on the bioavailability of drugs is greater for oral formulation but
this not always the case. As an example, a report examining PK of oral and IV
administration of imatinib, a good ABCG2 substrate, showed no increase in the CNS
uptake in Abcg2-/- mice following oral dose of imatinib (125). The authors suggested that
at high concentration imatinib inhibits ABCG2 whereas at low concentration, imatinib is
a substrate of the transporter.

3.5.1.4. Mammary gland
Contrary to the proposed protective role of ABCG2 in several organs, several studies
showed that ABCG2 in the mammary gland served to concentrate toxins into breast milk.
Jonker et al. reported an upregulation of ABCG2 in the lactating mammary glands of mice

compared to Abcg2 knock-out mice (126).
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3.5.2. Substrates

Due to initial discovery in drug-resistant cells, a number of chemotherapeutic agents were
first described to be transported by the protein. Resistance to mitoxantrone is the
hallmark of ABCG2 expressing cells. However, BCRP can transport a wide range of
substrates ranging from chemotherapeutic agents to organic anion conjugates (Table 8)
(127). ABCG2 overexpressing cells have shown cross resistance to camptothecin
derivatives (topotecan, irinotecan and SN38) (128, 129). Topotecan and CPT11 levels are
markedly decreased in T8 resistant ovarian cancer overexpressing BCRP cells whereas
these cells do not present any resistance to paclitaxel or CPT. Maliepaard et al. showed
that the degree of resistance of T8 cells depends on level of BCRP expression (130).
Experimental data suggest that the accumulation of camptothecin analogs in BCRP
expressing cells is related to the polarity of the molecule. Nucleophilic groups at the 11th
and 9th position of the camptothecin A ring ease the interaction with the transporter. As a
demonstration, BCRP confers resistance to 9-aminocamptothecin but not to 9-
nitrocamptothecin (131). The differences in structure of topoisomerase 1 inhibitor
determine the specificity of BCRP substrates. To date, there is no clear structure-function
relationship identified for ABCG2 substrates. However, ABCG2 displays a broad range of

substrates that is partially overlapping with that of P-gp and MRP1.
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Anticancer drugs
Mitoxantrone
Bisantrene
Epipodophyllotoxins(etoposide,
teniposide)
Camptothecins (topotecan, irinotecan)
Flavopiridol
Anthracyclines (doxorubicin)
Antifolates
Methotrexate
Porphyrins
Pheophorbide A
Protoporphyrin IX
Hematoporphrin
Tyrosine kinase inhibitors
Imatinib

Gefitinib

Flavonoids
Genestein
Quercetin

Carcinogens
Aflatoxin B
PhiP
Fungal toxins
Fumitremorgin C
Ko143
Drug and metabolite conjugates
Acetominaphen sulphate
Estrone-3 sulfate
Estradiol-17-B-d-glucuronide
Dinitrophenyl-S-glutathione
Antiobiotics
Ciprofloxacin

Norfloxacin

HMG CoA reductase inhibitors
Rosuvastatin
Pravastatin
Cerivastatin
Antihypertensive
Reserpine
Fluorescent compounds
Hoechst 33342
BODIPY-prazosin
Rhodamin3 123
Antiviral drugs
Zidovudine
Lamivudine
Natural products

Curcuminoids

Table 8: Clinically relevant drugs and others compounds that interact with BCRP (93)

3.5.3. Inhibitors

Even if substrate profiles of P-gp and BCRP overlap, BCRP is not inhibited by most of the
P-gp inhibitors (132, 133). Fumitremorgin C (FTC) was the first BCRP inhibitor described
even before that Abcg2 gene had been cloned (134). GF120918, an acridone derivative
from the 2nd generation P-gp inhibitor is also able to inhibit BCRP (135). Acridone-
deriatives have been studied as P-gp inhibitor and in a lesser extent as BCRP and MRP
inhibitors. In that purpose, Boumendjel et al. has targeted new acridone-derivatives as
inhibitors of ABCG2 (136). One acridone-derivative, MBLI87, was found to be as potent as
GF120918 in vitro against mitoxantrone ABCG2-mediated efflux. A Proof-of-Concept
(PoC) study has also been carried in mice xenografted with cells overexpressing the
transporter and showed that MBLI87 is able to reverse CPT11 ABCGZ2-mediated
resistance in vivo (137). Studies included in this thesis are focused on the mathematical

modelling of the interaction between this new BCRP inhibitor and CPT11.

60



Chapter I: Context of the research - ABC transporters

Compounds identified as BCRP inhibitors can also act as P-gp inhibitors, the possibility of
using dual P-gp/BCRP inhibitors clinically appears thus to be a realistic goal. However,
from all the ABCG2Z modulators described in the literature (Table 9), none of them has

been yet evaluated in patients.

P-gp inhibitors
GF120918 (elacridar)
XR9576 (tariquidar)

VX-710 (biricodar)

Tyrosine kinase inhibitors

Imatinib

Gefitinib

Acridone-derivatives

MBLI87

Others
Ko143

Pantoprazole

Table 9 : Clinically relevant modulators that interact with BCRP adapted from (93)

3.5.4. Role in anticancer drug resistance

Since its discovery in 1998, high levels of ABCG2 expression were found in a variety of
drug-resistance cell lines that do not express P-gp nor MRP1. One of the first studies
reporting the role of BCRP in tumour resistance was performed in leukemic cell lines. The
role of BCRP in haematological tumour is controversial. Some studies reported a strong
correlation between BCRP expression and poor prognosis or relapse whereas some
others did not find any correlation (138, 139). The situation is clearer for solid tumours.
Diestra et al. reported frequent ABCG2 expression in tumours of the digestive tract,
endometrium, lung and skin (140). Breast cancer has been for instance the most studied

with many reports that surprisingly conclude to poor BCRP expression in this cancer

(135).
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Larger studies are thus needed to determine the real contribution of BCRP to clinical drug

resistance in order to avoid issues encountered with P-gp.

3.6. Multidrug Resistance Proteins

The last type of efflux described in drug resistance is the family of Multidrug Resistance
Protein (MRP) and especially MRP1 and MRP2.

Compounds that enter into the body are often modified by oxidation (phase 1
metabolism) and/or become more water-soluble by conjugation to glutathione (GSH),
sulfate or glucuronate (phase 2 metabolism). Resulting conjugates are too hydrophilic to
diffuse out of the cell membrane and require specific transporters to support their efflux.
Ishikawa et al. were the first to point the presence of a transporter different from P-gp to
do this task (141). The first GS-X (glutathione-X conjugate) pump identified was the
Multidrug Resistance Protein 1 (142). MRP family contains eight members (MRP1-8) that
are all organic anion transporter that differ by their substrates specifity. Two structure
types are found in this family, one with 17 TMD (MRP1, 2, 3, 6) and the other with 12 TMD
(MRP4, 5, 7, 8). Contrary to P-gp and BCRP, the NBD is not essential for their catalytic

function (143).

Figure 9: MRP1 and MRP2 structure (93)

In the following, we only present substrates specificity, physiological function and the role

in anticancer drug resistance of the two main MRPs: MRP1 and MRP2.
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3.6.1. Physiological roles

Contrary to P-gp and BCRP, MRP1 is expressed at the basolateral membrane of polarized
epithelial cells, where it protects tissues such as the bone marrow, kidney collecting
tubules and intestinal mucosa from toxins. MRP1 is also involved in drug clearance from
the cerebrospinal fluid (144). MRP1 is the major high-affinity transporter of LTC4. Mrp1
knock-out mice exhibit more resistance to bacterial infection than wild type because of
the inability of macrophages mast cells and granulocytes to secrete Lymphocytes TC4
cells and they also are deficient in the mobilization of dendritic cells (145).

The tissue distribution of MRP2 is more restricted than that of MRP1 and MRP2 is located
at the apical cell membrane. This transporter has an important function in the biliary
excretion of endogenous metabolites (146). MRP2 is mainly expressed in liver, kidney and
intestine (147). Intestinal MRP2 excretes organic anions into the gut and reduces
bioavailability of carcinogens (148). Mutations of the Mrp2 gene cause the Dubin-Johnson
syndrome (inherited conjugated hyperbilirubemia). In these patients, bilirubin can enter
into the hepatocytes but is not secreted into the bile.

3.6.2. Substrates

Initially, the substrate specificity of MRP1 seemed to be similar to that of P-gp. MRP1 can
transport organic anions, such as glutathione conjugates without the help of free GSH,
even though recent experiments depict a more complex picture (149). MRP2 has the same
substrate specificity as MRP1 (150).

MRP1-2 can bind a large number of compounds (Table 10), their binding pockets are
extremely flexible and numerous competition/cooperation between substrates and

transporter can be envisaged (151, 152).
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Anticancer drugs Pesticides Glucuronide conjugates
Vinca alkaloids (vinblastine, vincristine) Fenitrothion Glucuronosylbilirubin
Anthracyclines (doxorubicin) Methoxychlor Estradiol-17-B-D-glucuronide
Epipodophylltoxins (etoposide, Glutathione conjugates Etoposide-glucuronide
teniposide) Leukotrienes C4, D4 and E4 NS-38-glucuronide
Campothecins (topotecan, irinotecan) Prostaglandin A2-SG Tyrosine kinase inhibitors
Methotrexate Hydroxynonenal-SG Imatinib
Metalloids Aflatoxin B1-epoxide-SG Gefitinib
Sodium arenate Melphalan-SG Fluorescent compounds
Sodium arsenite Cyclophosphamide-SG Calcein
Potassium antimonite Doxorubicin-SG Fluo-3
Peptides Toxins BCECF
Glutathione (GSH) Aflatoxin B1 Antibiotics
Sulfate conjugates HIV protease inhibitors Difloxacin
Etrone-3-sulfate Ritonavir Grepafloxicin
Dehydroepiandrosterone-3-sulfate Saquinavir Folates
Sulfatolithocholyl taurine Natural products Folic acid
Curcuminoids L-leucovorin

Table 10 : Clinically relevant drugs and other compounds that interact with MRP1-2 (93)

Contrary to P-gp and BCRP, only a few inhibitors have been described for MRP1-2

including VX710 (biricodar), flavonoids and glutathione derivatives (153).
3.6.3. Role in anticancer drug resistance

Because MRP1 is ubiquitous in human tissues, it can be present in most of the tumour
types to play a role in resistance. MRP1 expression was detected in almost every tumour
types but there is no strong correlation reported between MRP1 expression levels and
clinical resistance (154). In the absence of specific MRP1 inhibitors, it is difficult to
evaluate the contribution of this transporter to clinical resistance.

No association between MRP2 expression and drug resistance was found in cell lines
selected for multidrug resistance. However, MRP2 is found in 95% of renal clear-cell

carcinomas and also detected in lung, gastric, colorectal and hepatocellular carcinomas

(150).

64



Chapter I: Context of the research - ABC transporters

Nevertheless, because of their ability to handle compounds associated with GSH, MRP1-2
can cause resistance to small molecules that form GSH complexes such as cisplatine. The

importance of MRPs transporters in anticancer treatment is thus potentially high.

65



4. Pharmacometrics

4.1. Definitions

Pharmacometrics is a recent scientific discipline that has considerably been enriched
since L.B. Sheiner introduced it 40 years ago. Pharmacometric research was firstly defined
as “research focusing on non-linear mixed effects models, which describe response-time
profiles observed in clinical trials with a focus on determining sources of variability
within a studied population” (155). A broader definition of this field has recently been
suggested which defined pharmacometrics as “the branch of science concerned with
mathematical models of biology, pharmacology and diseases used to describe and
quantify interactions between xenobiotic and patients including beneficial effects and
side effects resultant from such interface” (156). Pharmacometrics thus integrates
numerous quantitative disciplines with the main focus on developing predictive models
of drug actions and diseases. Usually, pharmacometric models are used to quantitatively
describe the time-profile of pharmacological responses, i.e. the interaction that occurs
between a drug and an organism. It implies two main areas of interest: pharmacokinetics
and pharmacodynamics. Pharmacokinetics (49) establishes the relationship between
doses administered and resulting concentration in the organism following all the
transformations of the drug. The main aim of PK is the characterization of drug
absorption, distribution, metabolism and elimination. Pharmacodynamics (PD)
establishes the relationship between drug concentrations and drug effects either
beneficial or deleterious.

The final objective of pharmacometric models is the identification and quantification of
the PKPD relationship, i.e. the identification of the causal chain:

Dose = Concentration - Effect

66



Chapter I: Context of the research - Pharmacometrics

Data issued from PK and PD studies can be analysed using different types of
pharmacometric models that can either be empirical or mechanistic in nature depending

on the modeling question and information available.

4.2. Non-Linear Mixed Effects modeling (NLME)

4.2.1. Definitions

Mathematical models are a set of mathematical equations that describe the studied
system. They establish the relationship between a variable of interest, dependent
variable, and a set of known covariates, independent variables. In PK/PD modelling, the
dependent variable can be the change over time of drug concentration in PK or tumour
size evolution in PD. Independent variables in such models is often the time.
Population pharmacometric models, so called Non-Linear Mixed Effects models, focus on
the population modelling in which data issued from all the individuals are simultaneously
analysed (157). NLME accounts for the different sources of variability in the studied
population and describes pharmacological responses in term of two parts: fixed and
random. Fixed effects refer to the mean response within the population described by
typical parameters, i.e. parameters describing the mean individual. Random effects refer
to the variability around fixed effects. Usually three different levels of variability are
included in pharmacometric models:
- Inter-Individual Variability (IIV) that quantifies the difference between the
typical individual and the ith individual in the population (158)
- Inter-Occasion Variability (IOV) that quantifies the difference in individual
parameters between different occasions (159)
- Residual Variability (160) that quantifies the difference between the observed

values and the individual predicted values.
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The usual mathematical formulation of NLME models is the following:

vij = f(0,.Xi;) + 9(Pi. Xij) X &; (Equation 1)
Where yij is the jth observation of the ith individual in the population, f(...) is the individual
model prediction described by Xij variables and Pi the individual model parameters,
g(Pi, X; ]-) X g&;j is the residual error where ¢ is assumed to be normally distributed with a

0 mean and o2 variance.
Any parameter included in the model is thus defined with a typical value (107) and with
a random effect corresponding to the variability (IIV, IOV). In pharmacology, parameters
are usually positive and a log-normal distribution is usually assumed to describe the
variability:

P, =0 xel (Equation 2)
Where Pi is the individual parameter value, 0 is the typical parameter value and niis a
random variable describing the variability thatis assumed to be normally distributed with
a 0 mean and w? variance.

4.2.2. Parameters estimations

Estimation methods used for fitting population models to data are generally based on the
maximum likelihood principle. The individual likelihood in a mixed-effects model can be
expressed as a function of marginal individual density:

Ly, V) = [ P(yilnu¥) x P(ny, W)dn; (Equation 3)
Where P (y;|n;,¥) is the conditional density of observation given the individual random

effects and P(n;, ¥) is the population parameter density of the individuals random effects.
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The product of the N individual likelihoods determines the likelihood of a population
including N individuals:

Ly, ¥) =TIV Ly ) (Equation 4)
Because of the random effects entering non-linearly in the model, there is no closed
solution of Equation 3. Several algorithms are implemented in various software to
estimate model parameters. The historical, and by far the most used, software for NLME
models in PKPD is NONMEM which was developed originally by L.B. Sheiner and S. Beal
whom first version has been released in 1979.
The projects included in this thesis used two main likelihood approximations methods
that are implemented in NONMEM:

- Firstorder method (FO) that consists in the linearization of the likelihood using
1st order Taylor expansion around 0, the mean of random effects. FO
approximation can lead to biased estimation if [IV is important or model highly
non-linear (158).

- First order conditional estimates method (FOCE) that consists in the
linearization of the likelihood using a 15t Taylor expansion around the Bayesian
estimates of random effects (161)

Recently, a new software was released, Monolix (162). Monolix does not use likelihood
approximation as NONMEM but computes exactly the model likelihood using the SAEM
algorithm coupled to MCMC. EM algorithm is more robust to handle missing data and is
less sensitive to initial parameter estimates. It is important to note that the last release of
NONMEM (NONMEM 7) contains also new estimation methods based on the EM

algorithm.
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4.2.3. Model evaluation

Once the model final structure is obtained and parameters are estimated, it is necessary
to evaluate model performances (163). The gold standard is to externally evaluate the
model using data issued from another study or in splitting the original dataset into one
learning part and one confirming part. However, it is rare to get enough materials to
perform such an evaluation and usually the models are internally evaluated, i.e. the same
dataset is used for model building and evaluation.
In the following, three main types of model diagnostics that have been used throughout
this thesis are presented:

- Goodness of Fit plots (164)

- Visual Predictive Check (VPC)

- Normalized Prediction Distribution Error (NPDE)

4.2.3.1. Goodness of fit plots

This evaluation tool graphically compared model predictions (population, individual) to
the observations. Usually several diagnostic plots are generated (165):

- Individual and population model predictions versus observations

- Residuals plots over model predictions and independent variable (Hooker AC,

CWRES)

- Observations, predictions over independent variable
GoF plots can be not sufficient to properly evaluate the model because they are highly
impacted by the nature of the data (166). Simulation-based diagnostics are not impacted
by the nature of the data and allow revealing some model misspecifications that are not

easily diagnosed with classical GoF plots.
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4.2.3.2.  Visual Predictive Check
Visual Predictive Check consists in simulating the dependent variable based on model
structure and parameter estimates (167). N simulations of the original dataset are
performed by sampling in the distributions of the random effects. Simulations allow
defining a confidence interval of model predictions that is then compared to observations.
The model is considered as invalid when the confidence interval does not bracket the
observations.

4.2.3.3. Normalized Prediction Distribution Error
Prediction errors are the quantile of each observation within its predictive distribution
(168). NPDEs are obtained after decorrelation and normalization of predictions errors
with respect to the empirical mean and variance obtained in simulations. The model is
considered as invalid when NPDEs are not normally distributed with a 0 mean and a

variance of 1.
4.2.4. PK data analysis

4.2.4.1. Non-compartmental analysis
This approach is not model-based but allows estimating some parameters related to the
drug pharmacokinetics such as the Area Under the Curve (AUC), a metric of drug
exposure, the maximal concentration (Cmax) and its time of occurrence (Tmax). Based on
these parameters that are directly m from the observations, it is however possible to
compute several others parameters such as the drug clearance (Cl=Dose/AUC), the
volume of distribution, or the absorbed fraction which is the ratio of AUCs following IV
administration and oral administration. This type of analysis remains quite basic and does

not allow neither extrapolating results nor quantifying the variability between patients.

4.2.4.2. Compartmental analysis
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This model-based approach assumes that drug is distributed in the organism within
compartments. Drug concentration in each of the compartments is assumed to be
homogeneous at any time and compartments do not have any physiological meanings.
Drug kinetics, i.e. the rate of drug passage between one compartment to another, is
governed by either a rate constant times the drug amount in the compartment (1st order
kinetics) or constant independent of drug amount (0 order kinetics) or non-linear in case

of saturable transport.

4.2.5. PD data analysis

4.2.5.1. Direct models
These models assume a direct relationship between the drug concentration and the effect,
i.e. E=f(C(t)). This model implies that Tmax fits with the maximal effect. Direct models are
rarely used to describe PD of anticancer drugs because of the delay usual reported
between drug administration and drug effect.
The drug effect can be proportional to the drug concentration in a limited range but in
most of the cases it shows saturation for the highest concentrations that can be modelled

using an Emax model (Equation 5).

_ EmaxXC(t) :
E(t) =E, + (1 + —EC50+C(t)) (Equation 5)

Where Eo is the effect at baseline, i.e. without the drug, Emax is the maximal effect and ECso
is the drug concentration that produces half of the maximal effect.

4.2.5.2. Indirect models
As previously mentioned, most of anticancer agents show a delay between their
administration and their effect on tumour size. It means that the drug does not act on the
tumour size itself but on the effect kinetics, i.e. the tumour growth. Such features can be

modelled using indirect response models (169). In their original forms, these models
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assume that the response results from a zero order production and is “eliminated” with a

first order elimination (Equation 6).

% = Kin — Koue X R (Equation 6)
Kin
Ro =

Where R is the response, Kin is the production rate and Kout is the elimination rate
constant.

Tumour growth is often modelled using such indirect models. In this particular case, Kin
is the tumour growth rate and Kout is the tumour death rate constant (170).

Jusko et al. identified four main indirect effect models that are supposed to reflect all the
possible drug effects (Figure 10): synthesis stimulation, synthesis inhibition, elimination

stimulation and elimination inhibition.

Dose ——| Qlt) —> K, Dose = Q(t) —> K,
— —
+ +
I{"m —> R(t:l — Kuul Kin —> R{t] —> Kw'.

Synthesls stimulation Degradation stimulation
Dose —3 Qt) > K, Dose —> Qt) > K.
Kin R{t] Kw.‘ Ki|| __} R(t:l _’ Kuul
Synthesis inhibition Degradation inhibition

Figure 10: Indirect response models (169)

For chemotherapeutic drugs, the effect is often assumed to either stimulate the tumour
degradation or inhibit the tumour growth according to their mechanisms of action. As an
example, CPT11 is a topoisomerase 1 inhibitor that enhances tumour cells apoptosis and
its action is more appropriately described using an enhancement of tumour degradation.

4.2.5.3. Effect compartment models
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In some cases, the delay PK and PD kinetic profiles may be explained by the drug
distribution into its site of action (Figure 11). Sheiner et al. proposed to introduce an effect
compartment to differentiate plasma kinetics from site of action kinetics (171). Drug

concentration in the effect compartment (also called biophase) is then linked to the effect.

Dose — 2| Qft) > K

7’ Qbmp ha;e{t} K

—— -

> Effet(t)=fQygpnaset)

Figure 11: Effect compartment model

4.2.5.4. K-PD models

A K-PD model is a PKPD model in which drug concentrations are not measured and the
PK model is thus reduced to its simplest form: a single compartment accounting for the
kinetics in the biophase (172). Because no blood samples are required, K-PD models are
very useful in preclinical studies by reducing the number of measurements to be
performed.

K-PD models assume drug accumulation in one virtual compartment and mono-
exponential elimination from this compartment (173). The PK model is thus reduced to
its simplest form: bolus doses are directly input into the compartment and only a pseudo-

elimination constant rate is estimated (Equation 7).

dat

0u(6) = D (Equation 7)
o(t) = Dose

{“‘Q—(” = —K, X Q(t)
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Where Ke is the pseudo-elimination rate constant and Q(t) is the drug amount in the K-PD
compartment at time t. The product K, X Q(t) is analogous to an infusion rate and is
called dose rate (DR).

Plasma PK of drugs does not need to follow a one-compartment model to be modeled
using K-PD approach. Ke parameter is a composite parameter that reflects the elimination
rate constant from the biophase and it accounts for the equilibrium between drug
administration profile and drug amount profile in the biophase. Q(t) can thus be
approximated by a one-compartment model in the biophase even if the concentration
profile in plasma is multiphasic (174).

Then the K-PD compartment can be linked to response model (Figure 12).

Dose — > Qft) —> K

== DR(t)=K,*Q(t)

K, —> R(t) —> K

out

Figure 12: K-PD model linked to indirect response model

K-PD model only involves one parameter characterizing the drug kinetics, Ke. This
approach must be used with caution. Since the PK information is missing it has to be
compensated by the richness of the PD information with multiple times and/or doses

observations to carry the information about the missing kinetic process.
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4.2.6. Scaling

4.2.6.1. Interspecies scaling

Allometric scaling of animal data is the most widely used tool (although not necessarily
the best) for the prediction of human pharmacokinetic parameters during drug
development. The relationship between physiological parameters and body size or body
weight has long been studied. In 1838 Sarrus and Rameaux postulated that in order to
maintain constant internal temperature, mammals must produce energy as a constant
rate proportional to their body surface area (BSA) (175). They demonstrated that the BSA
is proportional to two thirds the power of the body mass and many physiological
parameters can be related to the body weight according to Equation 8:

Y=ax WP (Equation 8)
Where a and b are the allometric coefficient and exponent respectively and W is the body
weight.
The allometric scaling of PK parameters is based on Equation 8 assuming that there are
anatomical, physiological and biochemical similarities among animals (176).
Clearance and physiological flow rates tend to have an allometric exponent of 0.75
indicating that they increase as species get larger but not as rapidly as body weight.
However, allometric exponents are not constant around 0.75 but tend to vary from 0.349
and 1.196 and simple allometry was shown to be inadequate to accurately predict human
parameters from animal studies (177). Moreover, it is difficult to justify that a single
allometric relationship may exist between body weight and all the PK parameters. If good
correlations are reported for some compounds, there are also poor correlations for others

that highlight the need of other approaches (178).
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4.2.6.2. PBPK/PD models
Physiologically based pharmacokinetic models (PBPK) aim to describe the PK of drugs
within the body in relation to the blood flows, tissue volume, routes of administration,
biotransformation pathways and interaction with the tissues or organs (179). This type
of models is derived from the anatomical and physiological structure of the organisms. In
whole-body PBPK models, the drug enters the tissue compartment in the arterial blood
and returns to the heart in the venous blood (Figure 13). PBPK models are mathematical
models able to conduct extrapolations for dose-response and exposure assessments and
to generate simulations of PK profiles under various physiological conditions (including

different types of animals).
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Figure 13: PBPK model structure

As opposed to empirical scaling, PBPK/PD models have richer information content and
can integrate information from various sources including drug-dependent and
physiological-dependent parameters as they vary between species. They can thus be used

to accurately predict human PK before the first-in-human study.
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In the particular case of oncology drugs, interspecies scaling is well established for PK
parameters using PBPK models (180, 181). However it remains to scale PD models (182).
This constitutes a largely unknown area. Even if some approaches have been proposed,
there remain no generally accepted methodologies for extrapolating the anti-tumour
effect measured in animal models to humans. Rocchetti et al. pointed that the lack of
adequate metrics for drug efficacy may explain this deficiency. The evaluation of drugs in
animals rely on the achievement of a certain tumour shrinkage relative to untreated
animals (%T/C) that highly depends on dose, schedule, time and is thus irrelevant for
scaling purposes. The authors suggested instead the use of parameters directly derived
from tumour growth inhibition models that are drug-specific, i.e. drug potency and drug
concentration at steady-state concentration, to scale between rodents and humans (183).
Nevertheless, the assumption that drug-response in targeted tissues are analogous in

animals and humans should be carefully examined with data from the relevant species.
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5. Tumour growth modeling

Tumour growth modelling is an important task to support anti-cancer drug development.
In 1999, Byrne et al. asserts that “in order to develop effective treatments, it is important
to identify the mechanisms controlling cancer growth, how they interact and how they
can easily be manipulated to control the disease. In order to gain such insights, it is usually
necessary to perform large numbers of time-consuming and intricate experiments - but
not always. Through the development of mathematical models that describe different
aspects of tumour growth applied mathematics has the potential to prevent excessive
experimentation and also to provide biologists and clinicians with complementary and
valuable insights into the mechanisms that control the disease.”(184)

Mathematical modelling is thus a powerful tool to develop and test hypotheses. It
provides quantitative measure of the biological processes implied in the disease or drug

mechanisms that can be used for predictions or diagnostics.

5.1. History

Mathematical models were first used to conceptualize the simple exponential growth of
solid tumours, which shows constant accumulation over the time (185). Mayneord et al.
were the first to point the reduced growth of solid tumours during the latest phases of
growth. They conducted an experiment on the effect of X-rays on the growth of rat
sarcomas and noticed a linear growth for the latest stages of the experiment. After
histological examinations, which revealed that the active growth was restricted to a thin
shell at the periphery of the tumour, Mayneord et al developed a mathematical model that
investigated the effect of different distribution of dividing tissues. This model illustrated

the rapid initial growth that gradually decreases as the region of active
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growth progressively restricts to an outer shell of tissue. Observations conducted by the
authors lead to the introduction of logistic tumour growth models that allow reduced
growth in the later stages.

Mathematical models became more and more complex thanks to the experimental work
on cellular kinetics in which growth fraction as well as cell cycle kinetics were analysed.
After the initial work form Steel et al. (186) that revealed the differences between time
scales involved in cellular and tumour Kkinetics, models started to account for
physiologically relevant parameters such as the volume doubling times or the cell loss and
growth fraction kinetics.

Recently, with the explosion of data issued from cellular and molecular biology, tumour
growth models tend to integrate more complexity levels. Basically, models using this type
of data can be classified in two categories:

- Static models that provide a framework for describing the expression of
various cell cycle regulatory proteins. This type of models is useful because
they allow understanding mechanisms at the molecular and cellular levels
(187). In computational biology, such models are commonly used to analyse
interaction networks and to simulate cellular components kinetics.

- Dynamic models that describe the functional properties of the biological
system. Tumours are unstable systems and it is necessary to characterize and
predict their changes in architecture, physiology and responses. This type of
model supports the understanding of complex mechanisms such as
carcinogenesis.

Carcinogenesis, i.e. the ability of a single cell to become a lethal lesion, was nicely modeled

by Tan et al. with a k-stage Markov model (Figure 14).
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Figure 14: Schematic representation of a k-stage multilevel Markov model of carcinogenesis.

N = normal stem cell; I; = the it stage initiated cell; i = 1, 2,....,.k ; M = proliferating cancer tumour cell; T =
malignant tumour (188)

However, these complex models failed to extrapolate their results to patients and are
unable to assess treatment outcomes. This is mainly due to the difficulty to parameterize
these models using clinically relevant parameters and to estimate their parameters
because most of them are not identifiable. These models derived from the system biology
do not address one of the primary interests in oncology research: the prediction of
treatment outcome.

A major challenge in oncology PK/PD modelling is the complexity of the system and the
need for models to find a suitable balance between complexity and clinical relevance.
Moreover, contrary to others therapeutic areas, the strict application of PK principles to
target blood or plasma concentrations are not appropriate for anticancer drugs. Twenty
years of PK studies have failed to improve cancer treatment for epirubicin attesting the
limited utility of PK models alone as a surrogate of treatment efficacy. In oncology, much

more than in others therapeutic areas, it is necessary to focus on the PD aspects.
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5.2. Tumour growth models in preclinical drug development

Both in vitro and in vivo evaluations of anti-tumour drug effects are fundamental steps in
the preclinical development of drugs in oncology.

In vitro models are used in order to characterize cellular effects of drugs. These models
are often based on in vitro cellular growth experiments where cells are exposed to various
concentrations of drugs in order to determine the drug potency, usually the ICs0 value the
drug concentration providing 50% of the drug effect. The range of complexity of in vitro
models is large with the most basic ones only graphically estimating [Cso value and the
most advanced ones accounting for the kinetics of drugs effect on cellular components.
However, none of the models available in the literature account for the variability
inherent to these experiments with a mixed effects approach so that their parameters only
reflect the typical value.

The development of in vivo tumour growth models arose with the development of
adequate animals’ models such as syngeneic mouse and human xenografts that allow
monitoring the entire growth time-course through the measurement of tumour size. The
response to treatment can be easily evaluated in animals by directly comparing the
tumour growth in treated animals and control animals. As it has been previously
mentioned, those direct metrics depend on doses and study designs. Moreover, their
biological interpretation is limited making difficult to predict quantitatively the activity
of anticancer drugs in others conditions than those explored experimentally (different
species, different dosing regimens).

In order to fully exploit the animal models, mathematical tumour growth models have
been developed. Empirical models used well-known mathematical equations: logistic,
Verhulst, Gompertz, von Bertalanffy without in-depth mechanistic description of the

underlying physiological processes (189). Drug effects can thus be only evaluated in
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terms of changes in the parameter values that describe the tumour growth. Such changes
depend on the dose level and schedule so that these models can only be used
retrospectively. The importance to differentiate system and drug-specific parameters has
been illustrated by Levasseur et al. (190). They applied an exponential kill model to
predict the shape of the dose-response curve based on the cell-cycle drug specificity, the
cell cycle time and the duration of drug exposure at the site of action. Even if their model
did not provide any insights on how drug and tumour characteristics can affect the dose-
response curve, it highlights the importance for models to capture the time dependency,
in separating drug and disease specific parameters, of the dose-response curve in vivo.
More complex models based on mechanistic descriptions of biological processes
underlying tumour growth were recently proposed (191, 192). These models are built by
making assumptions about tumour growth involving cell cycle kinetics and biochemical
processes such as those related to angiogenesis or immunological responses. Because of
their complexity their development is time-consuming and they involved more
parameters than empirical models.

To date, the most widely used semi-mechanistic tumour growth models in preclinical
drug development has been proposed by Simeoni et al. (191). This model links the drug
plasma concentration to the effect on tumour growth in xenografted mice. It assumes that
unperturbed tumour growth can be modelled with two phases: exponential followed by
linear without reaching a plateau. It thus exists a threshold tumour mass at which tumour

growth switches from exponential to linear (Equation 9):

2 = do xw(t) w(t) < wy
d‘Zit) = A w(t) > wy, (Equation 9)

w(0) = wy
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Where w(t) is the tumour mass at time t; wt is the tumour mass threshold, Ao is the
exponential tumour growth rate and A1 is the linear growth rate.

To simplify model computations, it has been re-parameterized as follows (Equation 10):

aw(t) Aoxw(t)
at

» 1

2

<1+<j—‘1’><w(t)> ) (Equation 10)
k w(0) = wy,

For high values of {5, Equation 10 is a good approximation of the original switching
system.

When a drug is introduced into the system, it perturbs the natural tumour growth. At the
beginning all the cells are assumed to proliferate according to Equation 9 and the drug
affects a percentage of the original pool bringing them to death. Because of the delay
usually observed between anticancer drugs administration and effects observed on the
tumour, Simeoni et al. introduced a transit compartment model to mimic the progressive

degree of cell damages leading to cell death (Equation 11, Figure 15).

T

k, -c(t) ki k
2 1
cycling cells damaged damaged
cells cells

Exponential growth
followed by a linear phase

Figure 15: Scheme of the perturbed tumour growth model from Simeoni et al.(191)

ki is the first order rate constant of transit; k2 is a measure of drug potency and c(t) is the plasma
concentration of the anticancer agent.
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( dxy(t) _ AgXxx1 ()
dt

1

) ™
<1+<ﬁ><x1(t)> )

dxdzt(t) =k, X c(t) X x1(t) — ky X x5(t)

< dxdgt(t) — k1 X (xz (t) - X3 (t)) (Equation 11)
axy
xdt(t) =k; X (x3(t) — x4(t))

w(t) = x1(0) + x2(t) + x3(2) + x4(8)

\ x1(0) = wp; x,(0) = x3(0) = x4(0) =0

Where xi1(t) is the fraction of proliferative cells at time t; x2(t), x3(t) and x4(t) are the
fraction of cells affected by the drug; kz is the drug potency and ki is first order rate
constant of transit.

This model was successfully applied to different drugs included new compounds. It thus
successfully described the inhibition of tumour observed at different dose levels and
schedules independently of the mechanism of drug action. Based on this model and single
experiment in animals, it is possible to derive quantitative meaningful PD parameters that
are drug specific: ki1 related to how rapidly the tumour cells are killed and k2 related to
the drug potency.

Some extensions of this model have been proposed. In particular, Rocchetti et al. extended
the model for drug combinations. Even if the tumour growth model remains the same,
they modified the drug potency parameter to account for the drug combinations (Figure

16).
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Figure 15: Scheme of the extended Simeoni’s model for drug combinations (193)

In order to remove the discontinuity present in the model, Koch et al. rewrote the

unperturbed tumour growth model as follows (194):

dw(t) _ 2Xw(t)xXAgxXA4
At A +2xAexw(t)

(Equation 12)

Model parameters keep the same signification as in Simeoni’s model and it is also possible
to extend this model for drug combinations.

Hahnfeldt et al. has proposed another important tumour growth model in preclinical drug
development (192). Their model focuses on the relationship between tumour growth and
development of tumour vasculature. It accounts for the time-dependent carrying tumour
capacity under angiogenic control.

The authors modified the usual Gompertz model in replacing the maximal capacity by a
variable carrying capacity that whose rate of change depends on the tumour volume
(Equation 13).

v _ —A XV x log (g) JK'=f(K,V,t) (Equation 13)

dt
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Where V is the tumour volume; A1 is the tumour growth rate and K is tumour carrying
capacity that is a function of time and tumour volume.

The carrying capacity is now defined as the effective vascular support provided to the
tumour as reflected by the tumour size. It comes that if K>V, the tumour vasculature
supports tumour growth whereas if K<V it supports tumour shrinkage. The form of f(V,
K, t) is based on the biological processes that control the size of the effective vascular
network. Drug effect modifies the carrying tumour capacity function depending on the
drug target. Hahnfeldt et al successfully applied this model to data issued from
experiments evaluated anti-angiogenic drugs.

This model has also been used as a basis for some others works such as the model
proposed by Ribba et al. that accounts for the tumour composition on top of the varying
tumour capacity (195)(Figure 16). Even if the model did not include any drug effect yet,
authors used it to simulate effects of the accumulation of cytotoxic combined to anti-

angiogenic compounds in order to optimize their times of delivery.

Proliferative tissue Hypoxic tissue Necrotic tissue

P*=P+Q+N > K

Tumor spheroid Vascular supply

Figure 16: Scheme of Ribba’s model

A limitation of the above models could be that, apart from Ribba’s model, none of them
include mixed-effects so that the variability observed between animals is never quantified

reducing their extrapolation abilities.
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However, it has been shown many times that the exploitation of this type of preclinical
PKPD models reduced the risk of development failures in the later clinical phases with an

important impact on the costs of late failure (196).

5.3. Tumour growth models in clinical drug development

Contrary to preclinical tumour growth inhibition models, it exists a lack of mechanistic
tumour growth models in patients mainly explained by the difficulty to monitor as many
variables as in animals. Moreover, the lack of mechanistic model in clinic creates a gap
between what is learned during preclinical development and clinical outcomes. One
example of translational model is the model developed by Tham et al. for NSCLC patients
treated with gemcitabine and carboplatin (197). This model directly links drug plasma
AUC to the tumour time course using an effect compartment that accounts for the drug

distribution to the biophase (Figure 17).
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Figure 17: Scheme of the Tham’s model

. ) . . ! .
ki is a first order constant for effect equilibration (k; = tn(z) ), k2 is the second order rate constant for
1
?eq

tumour loss (k, = ! ); Amtso is gemcitabine dose required to produce 50% of the maximum inhibition

Tturnover
in tumour growth and Emax is the maximal effect

Instead of using traditional clinical endpoints, the authors used a continuous scale to
describe the time course of the tumour response relatively to the drug exposure. This AUC

driven model thus predict changes in tumour size during and after multiple cycles of
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chemotherapy. However, it does not fill the gap between anti-tumour activity and the
main clinical endpoint in oncology, the overall survival.

From a drug development perspective, the ability to link anti-tumour activity in early
phases of development to overall survival is critical for the progression of a molecule. As
stated by the FDA in 2007 the only acceptable endpoint in oncology is the improvement
of overall survival. Even with the discovery of new targets, the identification of relevant
measure of drug efficacy other than overall survival remains a sensitive point.

The definition of a surrogate endpoint in oncology trials is not an easy task because a
positive result in an early indication is not necessarily correlated to the final endpoint.
Many examples show a correlation between progression free survival (PFS), antitumour
efficacy and overall survival. However, this strong correlation between PFS and OS is not
universal across tumour types (198).

In that sense, tumour growth models combined to survival analysis can be extremely
powerful in order to predict overall survival at early stages of the study.

Recently, two publications showed how to predict patients’ survival based on tumour
growth models using modeled tumour size as a surrogate endpoint of patients’ survival.
The most cited and used is the tumour growth inhibition (TGI) model from Claret et al.
(170). This model was built on colorectal cancer patients treated with capecitabine. Based

on capecitabine phase 2 data, they developed the following model:

di;(:) = K; x y(t) — Kp(t) X y(t) X Exposure(t)
Kp(t) = Kpo X oAt (Equation 14)
y(t =0) =y,

Where y(t) is the sum of the longest tumour diameter at time t, i.e. the tumour size; yo is
tumour size at baseline; Kv is the tumour growth rate; Kp(t) is the drug-constant cell kill

rate that decreases exponentially with time from an initial value Kp,0 to account for the
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development of drug resistance; Exposure(t) is the drug exposure at time t. Because no
PK data were available, the daily dose was used as a metric for exposure to drive drug
effect.

The model incorporates drug-specific (Kp,, A) and disease-specific (yo, KL) parameters. A
survival model was then developed to describe the survival time distribution as a function
of covariates derived from the model. The survival time described with a log-normal
distribution (Log(T)~logN(a,02)) was found to be adequately predicted, using the relative
change in tumour size observed at the first follow-up visit, around 7 weeks after the
treatment onset. The survival model is thus drug-independent and relates a biomarker,
the relative change in tumour size, to the clinical endpoint.

Claret et al. then used this modeling framework to predict patients’ survival to be
observed in a capecitabine phase 3 study. After realization of the study, the predicted and
observed survivals were compared. As shown in Figure 17, the TGI model combined to
the survival model adequately predicted the survival time in this study attesting the utility

of this approach to early predict clinical endpoint.
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Figure 17: Prediction of patients’ survival in capecitabine phase 3 study based on the modeling framework
form Claret et al.

The light blue area represents the 90% prediction interval of the survival curve and the blue line represents

the observed survival curve.
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Because of its predictive capabilities and its flexibility this model was used in the
following to optimize dose and dose schedule of capecitabine.
Pursuing the same objective, Wang et al. developed a TGl model for NSCLC patients
treated with various therapy (199). Their model also describes the sum of the longest
tumour diameters with a model combining mixed exponential decay and linear growth
(Equation 15).
y(t) = yo(t) x e SB*t + PR x t (Equation 15)

Where SR is the tumour exponential shrinkage rate constant; PR is the linear tumour
progression rate constant.
The tumour shrinkage characterizes the treatment effect on tumour growth and the linear
growth is an approximation of the tumour growth under a specific treatment. Since data
from different experiments were pooled to build this model, no drug PK was accounted
for in the model.
The authors linked the TGI model to a survival model, three covariates were found to
predict patients’ overall survival: the baseline tumour size, the relative change in tumour
size at week 8 (PTRws) and the ECOG score that is specific of NSCLC (Equation 16).

log(T) = ay + a; X ECOG + a, X Baseline + a3 X PTRys  (Equation 16)
The authors used the survival model in order to predict the overall survival in patients

from different studies. Model predictions were in accordance with the observations.

These models directly link the early change in tumour size to patient’s overall survival.
However, one can argues that it would be preferable to use biomarkers more easily
measurable to predict clinical endpoints. In that purpose, You et al. proposed to use
kinetic models of serum biomarkers that are over-produced during cancer (e.g. PSA for

prostate cancers or CA125 for ovarian cancers). This type of approach can be extended
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either to give more mechanistic insights through the modelling of biomarkers production
or to link their kinetics to tumour growth (200, 201).

Another important part that is not detailed in this thesis concerns all the models for
anticancer drugs side effects. Because of their narrow therapeutic window, old and new
anticancer compounds display high toxicities that are necessary to model in order to limit
their incidence and severity. The most common dose-limiting toxicity associated to
chemotherapy drugs is febrile neutropenia that is thus the most studied toxicity. The
reference model for neutropenia was proposed by Friberg et al. (202). This model can be
used to identify patients with higher risk of toxicity which is particularly important in

elderly and paediatric patients (Sostelly A, ]GO, 2012).
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6. Tumour response optimization

As it has been mentioned in the previous section, tumour growth models are very useful
to predict clinical outcomes and to reduce drug development failures. One step ahead
could be to optimize the design of upcoming oncology clinical trials based on tumour

growth models in order to optimize the patients’ response.

6.1. Population optimal design

A design may be optimized in many respects. Here, we consider how to optimize the
design in order to reduce the expected uncertainty about the parameter of the model. In
this kind of problem, optimal design methodology is typically based on the Cramer-Rao
inequality that states that the inverse of the Fisher Information Matrix (FIM) is a lower
bound of the variance-covariance matrix of any unbiased estimators of model
parameters:

FIM~%(q,0) < COV(6) (Equation 17)
Where q is the vector of design parameters and © is the vector of model parameters.
The FIM is defined as the expectation of the second derivatives of the partial log-likelihood
with respect to the model parameters (Equation 18):

52

FIM(q,0) = —E (W Log L) (Equation 18)
Based on the Cramer-Rao inequality, the information in an experiment depends on the
design. The design that maximizes the determinant of the FIM (i.e. maximizing the
information) will give the most precise parameter estimates.
For NLME models, the FIM has to be approximated because there is no closed form for the
marginal likelihood (see 4.2.2). Population optimal design was firstly introduced by
Mentré et al. (203). They proposed to linearize the model to a linear mixed effects model

to find a closed form for the FIM assuming normal distributions for the random effects.
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This first attempt showed some limitations regarding the shape of the parameters
distribution. Further extensions to this original approximated FIM were then proposed in
order to refine the approximation (204).

Optimizing the upcoming experiment aims to maximize the information gained by the
experiment. In order to use usual maximization methods, it is necessary to define a scalar
function of the FIM. The most often used criteria assume that model parameters are
known point values (local optimization). It means that unknown parameters are known
without error to calculate the FIM. Two commonly used criteria are D-optimality that
maximizes the determinant of the FIM, and A-optimality that maximizes the trace of the
FIM.

To avoid issues inherent to local optimization, it is possible to use global criteria where
parameter distribution is assumed. These criteria have been proven to get more robust
optimal design. The most commonly used global optimal criteria are: ED-optimality that
maximizes the average of the determinant of the FIM over the parameter distribution and
EID-optimality that maximizes the determinant of the inverse of the FIM over the
parameter distribution (205).

There are numerous of examples of applied optimal design. The main application of this
mathematical theory is the optimization of the sample times in clinical trial with the
objective to reduce the study costs. This has been demonstrated for ivabradine where
sparse designs were shown to bring the same levels of information than the original
design (206). However, any design parameters can be optimized and more clinically
relevant designs have also been proposed in order to optimize trial duration or doses

(207, 208).
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6.2. Optimal control

Optimal control (OC) aims at optimizing a clinical criterion (target concentration,
percentage of responders, tumour size reduction, ...) within clinical constraints. Principles
of OC are based on the optimization of a loss function that is defined based on the target
to reach for the clinical criterion and clinical constraints. Any design variables can be
optimized using OC but this approach is more often applied to optimize dose or dosing
interval (209).
As an example, Gaillot et al. defined the following loss function to optimize the dosing
schedule of lithium in order to reach a certain target concentration at steady state (210):
r(C) =0 for 0.8mmol.L™! < C < 2mmol.L™! (Equation 19)
Where r(C) is the loss function for the lithium concentration C.
The thresholds were defined and related to the toxicity and efficacy. They choose the
function so that it increases as a function of the square if the deviation between the
unwanted concentration and the transgressed threshold.
r(C) =100 X (0.8 — €)% for C < 0.8mmol.L™* ______ (Equation 20)
r(C) =100 X (C — 2)? for C = 2mmol. L1 (Equation 21)
The choice of the normalization coefficient is arbitrary.
The loss function assigns to each value taken by the criterion an assumed loss. To globally

characterize its loss, the mean value of the loss function over the time is usually computed.
R,(p) = % X forr(criterion, p;dt (Equation 22)

Where Rq(pi) is the risk function for the q design and for individual parameters pi.

For a particular design, Equation 22 defines the total risk corresponding to the subject

whose parameters are pi.

The optimality criterion is the expected value of the total risk:
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0C = Ep[Ry] (Equation 23)
The optimality criterion is a function only of the design parameter q. The design
parameter obtained by minimization of the optimality criterion fulfils the optimality
requirements because the risk is related to the clinical constraint to maintain the clinical
criterion within the clinical constraints and the optimality criterion is computed over the
whole population.
Contrary to population optimal design, the information content is not maximized with

optimal control, only the clinical criterion is accounted for here.

6.3. Clinical trial simulation versus optimisation

A recent review highlighted the benefits of model-based clinical trial simulation (CTS) to
optimize the efficiency of drug development process (211). The question of the benefits
of population optimal design theory arises when experiments can be optimized using only
simulations.

In CTS, data are simulated using a known model under a certain design and model
parameters are then re-estimated with another design so that the performances of each
design in terms of power or biased can be easily evaluated. CTS is a powerful tool because
different types of data can simultaneously be handled and different models can be
simultaneously used. However, it can become extremely computer-intensive because
usually more than 1000 datasets have to be simulated and re-estimated to obtain relevant
results. This is clearly a drawback when multiple design settings have to be optimized.
Therefore, only a limited number of design candidates can be explored.

OD is thus preferable because it allows optimizing multiple design variables in one step
in a shorter time (208). Moreover, the development of new optimal design methods such

as adaptive optimal design will allow to better account for clinical constraints.
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7. Mechanistic model-based drug development

7.1. Drug development process

Drug development process follows several steps form the target identification on cell
cultures to the pharmacovigilance studies performed after drug approval. This process is
largely recognized as inefficient, long and costly: from a set of compounds identified on
cell cultures only one will eventually reach the market and the risk of development failure
increases at late stage of development when clinical studies are the most long and costly
(212). Historically, drug development is based on trial-and-error approaches, the
information gained in the previous steps of development is never properly handled. With
this approach each new step of development is a new beginning and the information
issued from previous experiments is more or less omitted. In the critical path initiative to
new medical products, the Food and Drug administration pointed the necessity of new
methodologies to improve drug development (213). Among all the methodologies listed
by the FDA, modelling and simulation has been recognized as a powerful tool to support
decision making in drug development.

Modelling and simulation can be used at each step of the drug development process. In
1997, L.B. Sheiner suggested that drug development can be viewed as a succession of
learning and confirming phases (“learn/confirm paradigm”). Learning from data results
from preclinical and clinical studies with the development of models. These models allow
defining new hypotheses that have to confirmed in future experiments (214). Model
building consists in the structuration of all the information already available whereas

simulation consists in projecting this information.
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Pharmacometrics does not pursue the same objectives at the different steps of drug
development but can always support the decision making in drug development (Figure

18).
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Figure 18: Potential applications of PK/PD modeling during drug development (215)

Modelling and simulation can thus accelerate the drug development process by
anticipating all the upcoming steps and by early detecting the best candidates. It thus
decreases the risk of development failure in phase 3 studies that are the longest and the
most expensive ones since most of the development efforts can be moved to early phases
for the most promising candidate. For all of these reasons, pharmacometrics is more and
more integrated in pharmaceutical industry as a tool to support the decision-making at

each step.

7.2. Current issues in oncology drug development

Drug development in oncology presents specific issues that are inherent to the complexity

of the disease. Even if new compounds continuously reach the market, the drug
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development in oncology can be considered as the most inefficient one compared to
others therapeutic areas. Only 5% of oncology compounds show a successful
development and more than 60% of compounds in phase 3 will never reach the market
(196). Moreover, therapies currently available have a limited efficacy in the most common
types of cancers and display significant toxicities (216).

Each step of oncology drug development displays some issues that require the
development of innovative methodologies to improve it. In the following, only issues
related to preclinical development and to phase 2 evaluation are presented since they
constitute the core of this thesis.

The main reason of the inefficiency in oncology drug development lies in the lack of
detailed knowledge in tumour cell biology even with the explosion of molecular biology,
inadequate preclinical models to identify and test compounds and inappropriate analysis
of results issued from preclinical and clinical studies.

Tumour cell lines used in in vitro models to screen anticancer agents are often selected on
their ability to rapidly grow and do not reflect the genetic diversity of tumour cells in vivo.
Moreover, data issued from in vitro experiments are rarely properly handled (see 5.2) and
quantitative drug effects are thus usually known only approximately.

The ability of animal models to reflect the tumour growth in patients can also be
questioned (217). If animal models can easily lead to discard an inactive compound, the
predictive power of positive results in animals is less reliable. This is mainly due to the
lack of adapted transition models between animals and humans. One consequence is the
sub-optimality of phase I trials designed using traditional methods to extrapolate

maximal tolerated dose from rodents to patients.
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This inadequate preclinical development results in overall inefficient clinical
development as it has been demonstrated with P-gp inhibitors: the strong efficacy of these
compounds in vitro and in animals was never retrieved in patients.

Another critical point in oncology drug development concerns the evaluation of phase 2
trial. Typically, the decision to move a compound to the phase 3 is based on the
achievement of a predefined objective response rate (ORR) calculated using RECIST
criteria (Response Evaluation Criteria In Solid Tumours) at a certain time point (218). The
problem of using ORR to evaluate compounds is that their estimation in small selected
populations, such as these used in phase 2 study, is rather imprecise. In that sense, ORR
cannot correctly inform the design of the upcoming phase 3 study. Moreover, RECIST
criteria are computed at a certain time point and omit the entire tumour growth

dynamics, they are thus unable to evaluate targeted therapies.

7.3. Benefits of mechanistic model-based drug development
in oncology

As it has been previously mentioned, one of the main reasons for the lack of impact of
models in preclinical development of anticancer compounds is the absence of appropriate
mechanistic PKPD models in animals. However, this type of models can certainly fill the
gap existing between animals and patients. Key issues that can be covered by mechanistic
PKPD models are the following:

- Characterization of the entire time course of the disease progression in order
to properly understand the drug mechanisms. This can be addressed with
models separating drug and disease-specific parameters.

- Characterization of the intracellular and tumour drug PK and its relationship
to plasma drug PK in order to obtain an indirect measure of drug

concentrations at the site of action.
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- Integration of information issued from in vitro and in vivo models through the
development of mechanistic models in order to ease the translation between
animals and patients.

Regarding the design and evaluation of phase 2 studies, modeling and simulation can be
used to predict a clinical endpoint based on predictors issued from the model.
Quantitative criterion derived from the model can also be used to optimize phase 2 design
to improve patients response in terms of efficacy and safety.

Some anticancer drugs have already benefited of such approaches in their development.
For example model-based CTS was performed for docetaxel in order to support the
decision making (219) or a PBPK/PD model was developed for capecitabine based on
preclinical data in order to predict the tissue exposure in patients (220).

In the particular case of efflux transporter inhibitors, mechanistic PKPD models have
never been used during their preclinical and clinical development. To date, one
mechanistic model, built a posteriori, that study the impact of tumour biology on P-gp
inhibitors efficacy bas been reported (221). A model-based development would have
increased the likelihood of a successful development, or helped to explain the reasons for

a failure.
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Objectives of the thesis

If the inhibition of P-gp failed to improve the management of drug resistance in cancer
patients, the inhibition of others efflux transporters such as BCRP has rarely been
addressed in preclinical and clinical studies. A new BCRP inhibitor, MBLI87 showed
promising properties in vitro and in vivo and would allow retesting the benefit of efflux
transporters inhibition in the management of anticancer drug resistance. To avoid the
issues already encountered in the development of P-gp inhibitor, it was deemed necessary

to develop mechanistic PK/PD models from the early development of this new molecule.

The overall objective of this thesis is to show the benefits of mechanistic model-based
drug development applied to efflux transporter inhibitors for understanding their action

(or lack of action).

Three specific objectives were thus identified:
- To show the benefits of non-linear mixed effects PK/PD models in the early
preclinical development of efflux transporter inhibitors
- To develop template semi-mechanistic models to support the preclinical
development of MBLI87 and future BCRP inhibitors.
- To show the benefits of non-linear mixed effects tumour growth model to
optimize dose schedule in order to maximize tumour response in patients

displaying drug resistance
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Chapter 11

Mechanistic model-based development

applied to efflux transporter inhibitors
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As it has been suggested in the introduction, the development of relevant mechanistic
models to support preclinical drug development is important to ensure the future
development of the compound.

This chapter deals with the development of mechanistic models of the interaction
between efflux transporter inhibitors and cytotoxic drugs both in vitro and in vivo.

The first axis developed here concerns the construction of a NLME mechanistic model to
study the cellular disposition of cytotoxic drugs in presence of efflux transporter
inhibitors in vitro (Publication 1). The second axis re-uses the in vitro model in a multi-
scale semi-mechanistic PKPD model where both the cellular dispositions of cytotoxic as
well as the tumour composition are accounted for (Publication 2).

Throughout this chapter, the benefits of the NLME approach to analyze preclinical data

will also be shown.

1. Modeling the interaction between cytotoxic and
efflux transporter inhibitors in vitro

1.1. Introduction

Usually efflux transporters inhibitors are tested in vitro using competition experiments
with cell transfected with the gene coding for the studied transporter. Data issued from in
vitro experiments are analyzed with classical biochemistry methods in order to determine
the interaction mechanism between the inhibitor and the substrate. This type of approach
does not account for the competing processes such as passive diffusion and does not
discriminate intra from inter experiment variability that result in biased parameter

estimations. Mixed-effects approach combined to mechanistic model
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accounting for all the processes occurring in the experimental system allow overcoming
these previous issues.

In this study, we propose such a model to study the effect of MBLI87 on the cellular
disposition of different BCRP substrates. The model was formulated as a function of
meaningful parameters and in a fairly way to allow its use as a template for studying

others efflux transporter inhibitors.

1.2. Methods

Human Embryonic Kidney 293 (HEK293) cell line transfected with either ABCG2 or
empty vector was used to study the interaction between MBLI87 and well-established
BCRP substrates (CPT11, SN38 and Mitoxantrone). The competition experiment was
carried out by exposing cells for 30 minutes to fixed concentrations of substrates and
various concentrations of inhibitors. Intracellular concentrations of substrates were
monitored using HPLC-MSMS for CPT11 and SN38 and using flow cytometry for Mtx.
Data displays high inter-experiment variability and the expected transport saturation was
not observed with the range of inhibitor concentrations used.

To model these data, a NLME transport inhibition model was developed. In this model,
drugs cross cell membrane by passive diffusion; the active efflux is assumed to be only
ABCGZ2Z mediated and the interaction between substrates and inhibitor occurs within the
transporter. In order to fit the data, several assumptions were included in the model to
simplify its formulation. Substrates concentrations were measured up to a correction
factor, which depends on experimental conditions such as extraction yielding or
intracellular proteins binding which can vary between experiments. In order to model the
“true” free intracellular substrate concentration, the correction factor was estimated for

all the substrates.
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Model parameters were estimated using NLME approach using the NONMEM software

version 7.2.

1.3. Results

The final model expresses the intracellular substrates concentration as a function of
extracellular concentration of substrates and inhibitor, ratio between intrinsic transport
clearance and diffusion clearance, inhibitory constant and correction factor.

An inter-experiment variability was allowed for the correction factor and the clearance
ratio and was found higher for CPT11 and SN38 than for Mtx. Model evaluation did not
reveal any misspecifications.

The MBLI87 inhibitory constant (Ki) was estimated at 141nM for Mit, 289nM for CPT11
and 1160nM for SN38. The ratio of intrinsic transport clearance divided by diffusion

clearance was estimated at 1.5 for Mit, 0.1 for CPT11 and 4.4 for SN38.
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1.4. Discussion

Because of the assumptions included in the final model, it was not possible to distinguish
between non-competitive and competitive interaction. However, it is possible to
determine the nature of the interaction of CPT11 and SN38 with MBLI87 by considering
their structure. As shown in Figure 2 both compounds get a close chemical structure
meaning that they should bind to the same site on the transporter with thus a close
MBLI87 Ki value. The model predicted different Ki values for CPT11 and SN38 attesting
that inhibitors and substrates do not bind the same site on the transporter, which is in
favour of a non-competitive interaction. This result is in accordance with the recent
findings on ABCG2 structure that demonstrate that the transporter displays several
binding sites (222).

The control experiment with non-transfected cells revealed that CPT11 and Mit were not
transported in the absence of ABCG2. By contrast, an increased intracellular SN38
concentration was observed by increasing MBLI87 concentrations. This unexpected
result indicated the presence of another transport mechanism occurring in these cells
affecting only SN38 and being inhibited by MBLI87. This putative transporter can be
ABCC2 (MRP2, cMOAT), which is known to specifically transport SN38 but not CPT11 and
Mit (223). This result also raises the question of the relative expression of each efflux
transporters in vivo and the necessity to use inhibitors targeting several transporters or
a combination of several inhibitors as discussed in the first part.

Moreover, the clearance ratio indicates that active efflux is not equally important for all
the substrates. This ratio can also be interpreted as the maximal intracellular
concentration that is possible to achieve if the transporter is completely inhibited. This
result indicates the importance of competing processes in the efficacy of efflux

transporter inhibitors as it has been already suggested for P-gp inhibitors.
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On top of the pharmacological results about ABCG2 inhibition and MBLI87 that will have
future impact in animal studies, this work demonstrates the benefits of NLME approach
to analyze in vitro data, an approach often dedicated to PK/PD data. Here each experiment
was considered as an independent “individual” and each substrates concentration was
considered as a repeated measurement of the same phenomenon. Making this allows the
quantification of inter- and intra- variability, which is more important in experiments
displaying large variability. Moreover, the model accounts for both passive and active
transports in a mechanistic description allowing the quantification of both transport
mechanisms. In case of non-competitive interaction ICso value is equal to the Kj, but this
is only true if there is no diffusion in the system. Traditional approaches to analyze in vitro
competition experiments would have thus estimated a biased inhibitory constant. This
biased estimate could have had significant repercussions on the next step of development.
The combination of a mixed effects approach to a mechanistic model circumvents
previous issues and allows estimating the “true” parameter values. In that sense this

model can have a significant impact for the study of in vitro data.
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Introduction

Several mechanisms contribute to cell resistance to anticancer drugs. One of these
involves the alteration in cellular drug accumulation resulting in lower efficiency of drug-
induced cell death.

ABC multidrug efflux pumps family is widely involved in the intracellular decrease of drug
accumulation and thus in anticancer drug resistance. During the last decade, efforts were
mainly focused on reversing the activity of ABCB1 transporter, so called P-glycoprotein
(P-gp) (224-226). However, inhibition of P-gp essentially failed to improve clinical
efficacy either because the transporter was not as prevalent as it was expected, or because
the inhibition of P-gp was not complete. Only a few studies have addressed the question
of the inhibition of others ABC transporters.

ABCG2, so called “Breast Cancer Resistance Protein” (BCRP), is a half-transporter that
plays a tumour-protective role through its ability to pump out of the cells several
anticancer drugs such as mitoxantrone, methotrexate, imatinib, topotecan, irinotecan and
SN38 (111, 113, 227). Moreover, its substrate profile overlaps that of P-gp. Development
of ABCG2 inhibitors may improve the efficacy of cytotoxic drugs on resistant tumours
expressing BCRP.

Recently, new ABCG2 inhibitors have been developed, based on flavone and acridone
derivatives that are non-toxic and specific (136). MBLI87, an acridone derivative, has
shown favourable properties, both in-vitro and in-vivo as an ABCG2 inhibitor (137).
Hence, MBLI87 is under further development.

In the context of preclinical drug development, these new inhibitors are often tested
through competition experiments with cells transfected with the gene coding for one of

these transporters. Data issued from these experiments are analysed with classical
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biochemistry tools, in order to determine the interaction mechanism between inhibitor
and drug. However, this approach does not account for competing processes; e.g. the
passive diffusion of these compounds through cell membrane, and do not discriminate
intra from inter-experiment variability, resulting in biased parameter estimations.
Development of mechanistic models taking into account all the processes occurring in the
experimental system, together with the use of Non-Linear Mixed-Effects (NLME)
technique may be a powerful approach for overcoming these issues.

In this study, we build such a model for studying the effect of a new ABCG2 inhibitor on
the cellular accumulation of irinotecan, SN38 and mitoxantrone. This mathematical model
describes two transport mechanisms involved in the system studied. It determines the
nature and strength of the interaction between the inhibitor and cytotoxic drugs and
quantifies parameters useful for characterizing the ABC pump inhibition. Moreover, the
model was formulated as a function of biologically meaningful parameters and in a fairly

general way in order to allow its use as a template.
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Materials and Methods

Cell Culture

The Human Embryonic Kidney 293 (HEK293) cell line ABCG2-tranfected and the empty
vector-transfected HEK293 (pcDNA KEH293 cells) were obtained as previously described
(137). Cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM high
glucose), supplemented with 10% foetal bovine serum (FBS), 1%
penicillin/streptomycin, and 1 mg.mL-1 G418.

Quantification of in-vitro accumulation of irinotecan and SN38

Cells were first plated at 750,000 cells per well in 6-well plates. They were loaded with
respectively 2uM irinotecan or SN-38 in DMEM medium without FBS in absence or
presence of various concentrations of MBLI87, varying between 0.05 pM to 20 uM. After
three washings with ice-cold PBS (to inhibit active efflux), cells were collected in 0.5 mL
of ice-cold PBS, submitted to centrifugation (5 min at 1,500 x g) and lysed by 0.5 mL of
pure methanol. Finally, intracellular concentrations of irinotecan and SN-38 were
quantified by HPLC-MSMS according to the analytical procedure described (137). Specific
transitions for metabolites APC and SN-38G were also monitored to assess potential
metabolism of irinotecan in the cells. Results (expressed in ng of irinotecan or SN-38 / mg

protein) were normalized to cellular protein content estimated by Bradford assay.
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Quantification of in-vitro accumulation of Mitoxantrone

Cells were seeded at a 1.105 cells/well density into 24-well plates. After 48 hours, cells
were exposed to 5 pM mitoxantrone (Mit) for 30 min at 37°C in the absence or presence
of various concentrations of MBLI-87, varying between 0.1 to 10 pM. After medium
removal and PBS washing, intracellular drug fluorescence was monitored with a FACS
Calibur cytometer (Becton Dickinson) by collecting at least 10000 events. Control was

done with 5 pM of GF120918 which fully inhibits ABCG2Z drug-mediated efflux.

Modelling Technique

Mixed-effects modelling

The formulated model belongs to the family of non-linear mixed-effects models (NLME).
NLME, so called population models, use information from all the experiments to estimate
model parameters (228). The term “mixed-effects” is used because fixed and random
effects are simultaneously estimated in the model. Fixed effects refer to the typical value
(mean) of parameter estimates. Random effects are estimated on two levels: variability
between experiments and variability within experiments. In their general form, such
models are formulated as follows:

Vij = f(XL-j,Pl-) + g(Xl-j,PL-) X & (Equation 1)
Where yij is the jth observation for the ith experiment, f(...) is the individual prediction
described by the individual variables Xjj and Pi the set of individual parameter.

The residual error g(Xl- PL-) X g;j describes difference between individual predictions

j»
and the corresponding observed values. E;;s are supposed to be normally distributed
PL') =

with a 0 mean and o2 variance. We used the proportional error model, g(Xij,

f(Xi, P)
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Individual parameters, Pi, are expressed as a function of the typical value 6 (which here
represents the median) and deviation from this typical value:

P, = 0 xeM (Equation 2)
7; is a random parameter that describes the difference between the population and the
individual i. ; values are expected to be normally distributed with 0 mean and w?

variance.

Parameters estimation was performed with NONMEM software, version 7.1.2 (229).
NONMEM uses a parameter maximum likelihood method: the probability of the data
under the model is maximized by minimizing the extended least squares objective
function. Due to the random effects entering non-linearly in the model, the likelihood
function cannot be calculated exactly. Several approximations are available in this
software and we choose the First Order Conditional Estimates method with Interaction
(FOCEI). This method linearizes the likelihood function with a 1st Taylor expansion

around the Bayesian estimates of the random effects (161).

Model development

To model intracellular drug accumulation, we developed a non-linear mixed effects
transport inhibition model. The model is composed of two ordinary differential equations
(219) and the derivatives of our variables are expressed as balances between drug influx
and efflux. The variables refer to extracellular and intracellular drug concentrations. The
basic assumption underlying the model structure is the following: drugs, i.e. CPT11, SN38
and Mit, cross cell membrane in each direction by passive diffusion characterized by a
diffusion clearance, Cldifr. Active efflux is assumed to be mediated by a single transporter
(say ABCG2) and, due to the nature of the transporter, a Michaelis-Menten behavior has

been chosen to model its action. Interaction between drugs and MBLI87 occurs on ABCG2
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and can either be competitive, non-competitive or uncompetitive. Both interaction type
and active efflux are taken into account in the transport clearance parameter, Cleran.

General scheme of the model is presented in Figure 1.

Clyiss Clyis
[Act], ———>—— > [Act], > > [Act],
\\s aA
Cldiff P Cl‘l:rc«zn _-~~\V
[MBLI-87], —> ————> [MBLI-87], =——> _I) [MBLI-87].
Clgie

—> Passive transport (Clgs)
===> Active transport(Cl,.,)
’ BCRP

[Act]. Extracellular concentration irinotecan, SN-38, mitoxantrone
[Act], Intracellular concentration irinotecan, SN-38, mitoxantrone
[MBLI-87]. Extracellular concentration MBLI-87

[MBLI-87]; Intracellular concentration MBLI-87

Figure 1: General Scheme of the model

Drugs can also be degraded through intracellular metabolism. Nevertheless, under our
experimental conditions, the total drug amount remained constant during the time of
experiment allowing us to neglect intracellular metabolism.
Preliminary analyses have shown that a kinetic equilibrium was achieved after 30
minutes of drug exposition. The ODE system can thus be considered at the equilibrium
(Equation 3).

Clairf X [Act], = (Clmm + Cldiff) X [Act]; (Equation 3)
where Claiff is the diffusion clearance, Cluan is the transport clearance, [Act]e is the
extracellular concentration of CPT11, SN38 and Mit and [Act]i is the intracellular

concentration of either CPT11, SN38 or Mit.
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After development and simplification of Equation 3, intracellular concentrations can be
expressed as a function of extracellular concentration of drugs and MBLI87, and model
parameters:

e In case of competitive interaction:

[Act]l'z + [ACt]l X (ClV_m+ Km + Km X WBII;—I?’”e— [ACt]e) — Km X (1 _ [MBII;I.87]3) =0
dif f i !

(Equation 4)
¢ In case of non-competitive interaction

Vm

Clg; K. K
Act];? + [Act]; x 'l + o — |Act — [Act], X —2—=<=0
[ ]l [ ]l <(1+[MBIL(1‘87]9) <1+[MBL187]e) [ ]e [ ]e (1+[MBL187]e)

Kj Kj

1

(Equation 5)

e In case of uncompetitive interaction

Vm
2 Clairr K K _
[ACt]i + [ACt]i X <<1+[MBL1i87]e) + <1+[ML;:1L(IiS7]e) - [ACt]e> - [ACt]e X (1+[MB1rl,I:Ii87]e) =0
(Equation 6)

Equations 4-6 are in the shape of AX2+BX+C=0 and their roots are easily found in the usual
way.

We then assumed that the ABCG2-Michaelis constant (Km) was much greater than the
intracellular concentration, allowing to neglect this concentration in the expression of
transport clearance. Model equations are considerably reduced since the relationship
between intra- and extra-cellular concentrations becomes linear. Nevertheless, under this
assumption, it was not possible to separately estimate Vmax, Claiff and Km. Equations were
thus rearranged to instead estimate the ratio between intrinsic transport clearance (Cli =

Vmax/Km) and diffusion clearance. Final equations of the linear model are the following:

e In case of competitive and non-competitive interaction
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[,

[Act]; = | ——— | X [Act], (Equation 7)

[MBLIS7]g

Ki

1+

e In case of uncompetitive interaction

[Act]; = (%) x [Act], (Equation 8)
— 1l 41

Cldiff

Equation 3 can be extended to multiple transporters inhibited by MBLI87:
Claiss X [Act], = ( S8 Cliran, + czdiff) x [Act]; (Equation 9)
After simplification and reduction of Equation 9, we obtained:

e In case of non-competitive and competitive interaction

()

1

[Act], = o X [Act]; (Equation 10)

j=n <Cldiff> i

+Y i MBLIs7]e

vl
e In case of uncompetitive interaction
1 .
e i

[Act], = X [Act] (Equation 11)

22 w7
Model assuming competitive and non-competitive interaction resulted in the same final
expression. Model assuming uncompetitive interaction was independent of inhibitor
concentration and, therefore was not further considered.

The model involves the free intracellular drug concentration, but this concentration is
measured up to a factor o, which depends on experimental conditions, such as binding to

intracellular components, extraction yield and dilutions which can vary between
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experiments. The relationship between the true concentrations [Act]i and the apparent
(experimentally measured) concentration X; is:

[Act]; or F; = a X X; (Equation 12)
Where [Act]i is the intracellular concentration of either CPT11 or SN-38, F; is the mean
fluorescence intensity of mitoxantrone, and a is to be estimated.
The complete demonstration of model’s equations is available in Appendix 1.
This approach was applied to data issued form the ABCG2-transfected and empty vector-

transfected HEK293 cells.

Model building and diagnosis

Selection between models was based on the Objective Function Value, which is -
2*log(likelihood) and Akaike Information Criterion (173), as well as goodness of fit,
residual plots and precision of parameter estimates.

Simulation-based diagnostics could reveal model misspecifications that are not easily
diagnosed with classical goodness-of-fit plots. Two methods were used: the Normalized
Prediction Distribution Errors (NPDE) and the Visual Predictive Check (VPC).

Prediction errors were the quantile of each observation within its predictive distribution.
NPDEs are obtained after decorrelation and normalization with respect to the empirical
mean and variance obtained in simulations. The model was considered as invalid when
NPDEs were not normally distributed with a 0 mean and a variance of 1 (230).

The VPC consisted of simulating intracellular drugs concentration based on model
structure and parameter estimates (167). We simulated 1000 replications of the
experimental datasets for each drug. The 90% non-parametric confidence interval of the
simulated medians was then compared to the observed ones. The model was considered

as invalid when the CI did not bracket the observed medians.
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Model evaluation was performed with the R-based XPOSE4 program (231). PsN toolkit

was used for executions of simulations and calculations for the VPC (232)

Comparison with standard approaches

A comparison of the model to standard approaches was performed in order to point the
benefits of the NLME approach.

We compared our approach with two standard approaches. The first approach consists in
naively pooling data and graphically estimating ICso value, i.e. in this case the inhibitor
concentration resulting in half-maximum substrate intracellular concentration.

The second approach consists also in naively pooling data and fitting the following model

(Equation 13) to the data.

[Act]; 1 _ ImaxXI _

[Act]c;pip=0 =1 [I+IC50_] (Equation 13)

Where [ActgA;th is the efflux ratio of the probe substrate in the presence of inhibitor
Cinhib=0

relative to the control in absence of inhibitor; Imax is the maximal inhibitory effect.

During the uptake period, CPT11 could have been metabolized but we were unable to
detect SN38, and its metabolites SN38G and APC under our experimental conditions.

Figure 2.1 to 2.3 shows the change in intracellular Mit (N=5), CPT11 (N=8) and SN38
(N=12) concentrations as a function of MBLI87 concentrations in ABCG2-transfected
cells. Figure 2.4 shows the change in intracellular SN38 (N=4) concentrations as a function

of MBLI87 concentrations in pcDNA cells.
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Figure 2: Intracellular drug concentrations versus MBLI87 concentrations
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Figure 2 shows the changes in intracellular concentrations for Mit, CPT11, SN38 in ABCG2-transfected cells
and SN38 in pcDNA cells. Each point represents one experiment and red line representes the median trend.
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A maximal inhibition of drug transport was observed at high MBLI87 concentrations and
the inter-experiment variability appeared to be either moderate for Mit or large for CPT11
and SN38.

A series of experiments with empty vector-transfected HEK293 (pcDNA HEK293) cells
showed no increase in CPT11 and Mit intracellular concentrations with increasing
MBLI87 concentrations. Surprisingly, SN38 intracellular concentrations increased with
increasing MBLI87 concentrations in pcDNA cells. This result attests the presence of
another transport mechanism affecting only SN38 and inhibited by MBLI87.

To account for these two mechanisms, the analysis was carried out in two steps. First, the
data obtained with pcDNA cells were analyzed to estimate the parameters of the non-
ABCG?2 transport mechanism(s), using Equation 10. Then, the data obtained with ABCG2-
transfected cells were analyzed using Equation 10, with the model parameters for the
non-ABCG2 transport fixed to the values obtained in step 1. This analysis allowed us to

estimate parameters related specifically to ABCG2.

Model evaluation

Basic diagnostic plots that evaluated model quality showed that the model could indeed
adequately describe the data. The goodness-of-fit plots showed that model predictions
(PRED, IPRED) were able to describe the observed concentrations (DV) for each drug
(Figure 3, upper panel). At the individual level, model predictions were able to well
describe the data for each experiment (not shown). NPDEs were normally distributed

with a 0 mean and 1 variance, without a trend (Figure 3, lower panel).
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Upper panel: Individual Model Predictions versus Observations
Basic goodness of fits compare the individual model predictions to the observations (blue points) for Mit,
CPT11 and SN38 in ABCG2-transfected cells. The black line is the identity line and the red line is a trend

line.

Lower panel: Normalized Prediction Distribution Error (NPDE)
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CPT11 and SN38 in ABCG2-transfected cells. NPDEs follow a normal centered reduced distribution (heavy
red line represents the 0 mean).

VPC revealed no invalidation of the mixed-effects model (Figure 4). The 90% non-

parametric confidence intervals (CI) of the simulated medians were plotted over the

observed intracellular median concentrations. The observed medians were enclosed

within this CI, as required for model validation. Thus, a single model structure was able

to adequately describe data from all the studies.
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Figure 4: Visual Predictive Check (VPC)
Visual Predictive Check (VPC) plots compare the observed median intracellular drug concentrations (heavy
black lines) over MBLI87 concentrations to the 90% non-parametric confidence interval (pink area)
obtained after simulations. Observed medians and the 90% non-parametric interval are shown for Mit,
CPT11 and SN38 in ABCG2-transfected cells.

Parameter estimates

Parameter estimates are presented in Table 1.
The final model for all drugs and both cellular types was the reduced model

parameterized with Cli/Claiff incorporating either non-competitive or competitive
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interaction (Equation 7). Full models incorporating non-competitive (Equation 5),
competitive (Equation 4) and uncompetitive (Equation 6) interaction resulted in high
parameter estimates uncertainty. Model incorporating uncompetitive interaction
(Equation 8) reduced the quality of the model fit. Inter-experiment variability was added
on o and Cli/Clair. All model parameters were estimated quite precisely since standard
error was low. Intrinsic transport clearance to diffusion clearance ratio was estimated at
1, 5.4 and 2.5 for CPT11, SN38, and Mit in ABCG2-transfected cells respectively, and 5.8
for SN38 in pcDNA cells. Values of MBLI87 ABCG2-inhibitroy constants were largely
different between drugs: 289 nM, 1,160 nM and 141 nM for CPT11, SN38 and Mit in
ABCG2-transfected cells respectively, and 7260 nM for SN38 in pcDNA cells. For SN38,
MBLI87 Ki was found to be 6 fold lower for ABCG2 than for the other transporter. The
parameters o and Cli/Clasif were allowed to vary between experiments, and their

coefficient of variation was estimated around 30% for Mit and 60% for CPT11 and SN38.
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Typical Value Inter-Experiment Variability
(%RSE) (%CV)
a 2460 o
(L/mg protein) (21%) 53%
1.01
Cli/Claife (4%) 69%
Irinotecan
Ki 289 )
(nM) (53%)
Residual Variability o
(%CV) 46,2% -
a
. 13200 -
(L/mg protein) (134%)
/Clas 58 0
Cli/Claifr (175%) 47%
SN38
(Non-transfected cells) K, 7260 )
(nM) (56%)
Residual Variability o
(%CV) 57.6% -
a 14600 )
(L/mg protein) (13%)
Py 5.4 o
Cli/Claifr (36%) 72%
SN38
(Transfected cells) K 1160 )
(nM) (20%)
Residual Variability o
(%CV) 57.6% -
a 124 .
(L/mg protein) (18%) 36%
e 2.5 o
Cli/Claise (17%) 29%
Mitoxantrone
Ki 141 )
(nM) (30%)
Residual Variability o
(%CV) 34.2% -

Table 1: Parameter estimates
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Comparison with standard approaches

A comparison with standard approaches has been performed. The graphical analysis to
estimate the MBLI87 ICso value was only possible for Mit since it is the only case where
the transport saturation was observed. The MBLI87 ICso value was estimated at 500nM.
A model allowing the estimation of ICso was also fitted to the data. Once again, the ICso
estimation was only possible for Mit (ICs0=35.1nM). For CPT11 and SN38, the confidence
interval was very large precluding the use of this value.

Moreover, model evaluation (not shown) revealed a clear misspecification of this model.

Discussion

This study presents the construction of a template model for studying the intracellular
disposition of drugs in presence of a new ABCG2 inhibitor, MBLI87. Data issued from in-
vitro experiments were used to build this model.

This kind of data is rarely analyzed with a Non-Linear Mixed-Effects (NLME) approach.
Here, we coupled the NLME approach to a mechanistic model that accounts for several
mechanisms occurring in intracellular drug disposition. Moreover, experimental
variability is here quantified and properly accounted for, avoiding the bias encountered
with standard approaches. The developed model is formulated with generic equations
and parameters that allow its use with different experimental conditions and different
drugs. As a demonstration, we successfully applied this model for three different drugs
under two experimental conditions. The model can thus be used as a template for
studying the effects of efflux transporters inhibitors on the intracellular drug
accumulation.

Our model did not account for cell death as due to drug cytotoxicity. Jang et al. have
developed a model for studying the kinetics of P-glycoprotein efflux (233). In their
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experiments, cells were exposed to various concentrations of drugs with different
exposition times varying from 0 to 24 hours. The number of cells was thus affected by
drug cytotoxicity and the cell count had to be introduced in their equation to correctly fit
their data. In our experiments, cells were exposed to drugs for only 30 minutes, resulting
in negligible drug cytotoxicity. Accounting for the variation of cell count was therefore not
necessary.

ABCG2-transfected HEK293 cells have been used in this study. The use of transfected cells
ensures that all the effects observed are related to ABCG2 and results can easily be
translated to others biological system. However, since this type of cellular system does
not represent the complex modifications of cell biology encountered in cancer, the efficacy
of MBLI87 will have to be confirmed with selected tumour cells.

The same experiments have been carried out with empty vector-transfected HEK293 cells
(pcDNA cells) and revealed that CPT11 and Mit intracellular concentration were
independent of MBLI87 extracellular concentrations. By contrast, we observed an
increase in SN38 intracellular concentration with increased MBLI87 concentrations. This
unexpected result revealed the presence of another transport mechanism occurring in
these cells affecting only SN38 and being inhibited by MBLI87. This putative transporter
may be the ABCC2 efflux transporter (MRP2, cMOAT) that is known to specifically
transport SN38 but not CPT11 and Mit (223).

To describe all the transport mechanisms occurring in our cellular system, it was
necessary to account for both efflux transporters. Because pcDNA cells and ABCG2-
transfected cells only differed in the expression of ABCG2, we first analyzed data issued
from pcDNA cells to estimate parameters related to the efflux transporter in these cells.
Then under the assumption that action of both transporters was additive, we fixed

parameters related to the pcDNA cells transporter and only estimated parameters related
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to ABCG2 using data issued from ABCG2-transfected cells. This analysis allowed us to
quantify specifically ABCG2 transport.

Concerning the MBLI87 inhibitory effect on both transporters, we found that MBLI87 Ki
value was 6 fold lower for ABCG2 attesting its better affinity for this transporter as
expected. The clearance ratio was found to be equivalent between both cellular types
attesting an equal contribution of both transporters in SN38 transport.

We introduced a correction factor in model equations that accounts for differences in
binding to intracellular components, extraction yield and dilutions and allow us to model
the “true” intracellular drug concentration. This factor was necessary to model data
issued from different experimental conditions. It was thus not surprising to find different
value of a for CPT11, SN38 and Mit. Although CPT11 and SN38 intracellular
concentrations were measured with the same analytical method their intracellular
protein binding may be different, as shown for their plasma protein binding (10).

In our analysis, the best model for Mit, CPT11 and SN38 was the model assuming
intracellular concentrations negligible compared to drugs Michaelis constant (Km). This
assumption considerably simplified model’s equations. According to the likelihood ratio
test, the full model (Equations 4-6) was not significantly better than the reduced model
that we retained and resulted in larger parameter confidence intervals. Data do not
contain information about the transport saturation and only the lower part of the
concentration-effect curve is observed. Our assumption was thus valid under our
experimental conditions. However, it also indicates that parameter estimates are only
valid when transport is far from saturation. Moreover, under this assumption, it was not
possible to determine the nature of the interaction between drugs and MBLI87 since non-
competitive and competitive interaction leads to the same model formulation.

Nevertheless, the nature of interaction could be resolved here thanks to data from CPT11
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and SN38 experiments. Because CPT11 and SN38 share similar chemical structures (SN38
is a direct metabolite of CPT11), both compounds should bind to the same site on ABCG2,
resulting, in case of competitive interaction, in a similar value of Ki value for MBLI87.
Analysis of the data from these experiments revealed different values of Ki (289 nM for
CPT11 and 1,970 nM for SN38) attesting that MBLI87 did not bind to the drug site within
the transporter. These arguments are thus in favor of a non-competitive interaction
between CPT11, SN38 and MBLI87.

In case of non-competitive interaction, ICso value is equal to Ki value in absence if diffusion
(19). ICso can be easily deduced from graphical analysis. In our case, this method can only
be applied to Mit where the maximal inhibition was observed; the ICso estimated with this
method was around 500nM whereas our model predicted a Ki value of 140nM.

Another method to determine the ICso consists in naively pooling data and fitting a non-
linear regression. With this usual method, we also found an ICso value largely different
from the ones estimated in our model.

An explanation of such a difference is that graphical analysis and standard regression
does not account for passive drug diffusion, and the estimated ICso value is thus only an
apparent value. Thanks to the mechanistic description of both transport mechanisms
through cell membrane, our model allows estimating the true value of model parameters.
Disposition of MBLI87 in plasma has been assessed in mice after single drug
administration of 0.12 umoles by intraperitoneal route (137). We compared the mean
free concentration in plasma over 24h (Cfree, plasma [0-24hj= 2.97 nM) to the estimated Ki
values. Concentration in plasma was at least ten-fold lower than the Ki, meaning that
ABCG2 was poorly inhibited in-vivo. Nevertheless, an in-vivo study revealed that addition
of MBLI87 to CPT11 treatment slowed down the growth of tumour overexpressing

ABCG2, demonstrating the activity of MBLI87 (137). Two hypotheses can thus be
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formulated on MBLI87 mechanism of action which can either be transformed in-vivo into
an active metabolite or accumulate after repeated administrations.

Another parameter of interest in our model is the ratio between intrinsic transport
clearance (Cli = Vmax/Km) and the diffusion clearance (Cldiff). For all drugs analyzed in this
study, we found that active transport was the major efflux mechanism. Ratio value was
quite different between drugs (1.01, 5.4 and 2.5 for CPT11, SN38 and Mit in ABCG2-
transfected cells respectively, and 5.8 for SN38 in pcDNA cells) resulting not only from
their different affinity for the transporter, but also from their physico-chemical
properties. All three drugs have similar molecular weight but their octanol to water
distribution coefficient at pH 7 are log(D) = 2.29, 2.53, -2.68 for CPT11, SN38 and Mit
respectively (234). Hence, passive diffusion is expected to be more important for CPT11
and SN38 than for Mit. CPT11 and SN38 are equally transported by passive diffusion but
the difference in their clearance ratio may be explained by a greater affinity of ABCG2 for
SN38 than for CPT11. This clearance ratio plus one is equal to the maximum increase in
the intracellular concentration that is possible to achieve if the transporter is fully
inhibited. Perego et al. have conducted a study in which they looked at the accumulation
of topotecan (a drug akin to irinotecan) in cells overexpressing ABCG2 (235). They found
that topotecan accumulation was was 2.25 lower in ABCGZ2 overexpressing cells (4 ng/107
cells in HT29/MIT cells versus 9 ng/107 cells in HT29 cells). This result is comparable
with our Cli/Claiff parameter.

To conclude, a template model accounting for variability between experiments, has been
derived and could be used for different drugs and experimental conditions. This approach
provided some insights on the efficacy of MBLI87 and its mechanism of action, and

identified critical points to be investigated in the future regarding the pharmacokinetics.
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Appendix 1: Demonstration of model equations

Notations:

e ACTe: extracellular quantity of Mtx, CPT11 or SN38

e ACTi: intracellular quantity of Mtx, CPT11 or SN38

e [ACT]e: extracellular concentration of Mtx, CPT11 or SN38
e  [ACT]:i: intracellular concentration of Mtx, CPT11 or SN38
e  [MBLI87]e: extracellular concentration of MBLI87

o Ve extracellular volume

e Vi intracellular volume

e Claifr: diffusion clearance

e  Cliran: transport clearance

e  Cli intrinsic transport clearance

e  Ki: ABCG2 inhibitory constant

e  Km: ABCG2 Michaelis constant

ODE system:
—Cly: Clg;
WCTe — YT 5 ACT, + S4r9n 5 ACT; + —24L x ACT,
dt Ve Vi Vi
dACTe _  dACT; .
o, _ e (Equation 11)
dACT,

dt = _Cldlff X [ACT]L + Clt‘ran X [ACT]l + Cldlff X [ACT]L

At the Kinetic equilibrium,

dACT,
=0 Clagy X [ACT], = Cliran X [ACT]; + Clas X [ACT];
& [ACT], = 2% x [ACT]; + [ACT); (Equation 12)
diff

In case if non-competitive interaction:

Vm
() (Equation 13)

[ACT]e = [ACT]; lCIdiffX([ACT]i+Km)

Vm

Lgj
— K .
[ACT], = [ACT]; x| b=+ 1 (Equation 14)
By developing and reducing Equation 14, we obtained:
& [ACT) 2 % (1 + [MEIL('BHE) +[ACT], (a"” + Ko+ Ky x 22 paer) — acT), x @) ~ [ACT], X Ky, = [ACT], X Ky, x "2 =
i diff i i

(Equation 15)

Let’s denote: [ACT]; = a X X; with X; in AU and « in nmol.L-1.AU"! or in nmLL1.mg proteins-1

Vi [MBLI8T,]

MBLIST
+ [ 1.

MBLIST],
K; K

YK, + K, % — [AcT], — [AcT], x -

2
S (@ x X)) x (1
Claigy i i

) — K, x ([Acr]e +[ACT], x M) -0

i

)+ (axx)x (
(Equation 16)

Equation 16 is in the shape of AX2+BX+C=0

Under the assumption of Km>>[ACT]::
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Vim
X[ACT];
<1+[MBL187]5) [ACT];

Cliyan = LS = fmxlACTl: (Equation 17)

. MBLI87
Km+[ACT); Kmx(l+%)

By replacing Equation 17 in Equation 12, we obtained

VinX[ACT];

[ACT], = P PP + [ACT]; (Equation 18)

diff

By developing Equation 18, we obtained

[ACT]; X ( b4 q +[Mgf<ﬂ) [ACT], % (1 +M) =0 (Equation 19)
Let’s denote: [ACT]; = a X X; with X; in AU and « in nmol.L-1.AU"! or in nmLL-1.mg proteins-1

(a><X)><< LR S

[MBLI87],
Claisf K;

) [4cCT], x (1 +M2e) = o (Equation 20)

Ki

Equation 20 is in the shape of AX+B = 0 and its solution is presented in Equation 8.

In case of competitive interaction:

_ Vin ;
[ACT], = [ACT]; x (Kmx(u[’”’*f(’f” ) + 1) (Equation 21)

€)X Claipp+[ACT]xClaiff

[ACT], = [ACT]; X <¢ + 1) (Equation 22)

Kmx(1+—[MB,L(’is7]e)+[Acr]i
By reducing and developing Equation 22, we obtained:

[ACT];? + [ACT]; x <—+K + K,y x MELSle

[ACT], ) Ky X [ACT], x (1 + HEL27ke)

=0 (Equation 23)

Let’s denote: [ACT]; = a X X; with X; in AU and « in nmol.L-1.AU"! or in nml.L-1.mg proteins-!

(@ x X)?+ (a x X;) % ( [BLETe] [Acte]) — Ky X [ACT], x (1 +P20e) = o (Equation 24)
Equation 24 is in the shape of AX2+BX+C=0
Under the assumption of Km >> [Act];
_ VinX[ACT]; ~ VinX[ACT]; :
Cliran = Kmx(1+[MBIL(I.87]e)+[ACT]i = Kmx(1+[MBIl;I.87]E) (EQuatlon 25)

By replacing Equation 25 in Equation 12, we obtained:
[ACT]E = [ACTL X (W + 1) (Equation 26)

By developing and reducing Equation 26, we obtained:

=0 (Equation 27)

R

Lets denote: [ACT]; = a X X; with X; in AU and a in nmol.L-.AU-! or in nml.L-1.mg proteins-!
(ax X)) x ( l”‘” +1 +[MB%) [4CT], x (1 + M) = o (Equation 28)

Equation 28 is in the shape of AX+B = 0 and its solution is presented in Equation 9.

In case of uncompetitive interaction

Vm
[MBLIB7]e)
(1B e

ACT], = [ACT]; X L +1
[ le =1 li Cldl-ffx[ACT]ii»CldiffXW
Ki

(Equation 29)
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v
[ Claiff

( +[MBLIB7]9)
[ACT], = [ACT]; X |——"—+1
[ACT]i+(1—+[m]e—)
K;

(Equation 30)

By reducing and developing Equation 30, we obtained:

Vm

Km

1a; m .
[ACT]iZ + [ACT]; x <(1+;4‘:3£1{37]e) + (H[Msusv]e) - [ACT]e> — [ACT], % m =0 (Equatlon 31)

K Ky K

Let's denote: [ACT]; = a X X; with X; in AU and « in nmol.L-1.AU-? or in nml.L-1.mg proteins-!

Vm

Clgi Km Km ]
(ax X)? + (a x X;) x ( = [Mi[fm) + () [ACT]e> - [AcT], x i 0 (Equation 32)

K

Ki

Equation 26 is in the shape of AX2+BX+C=0
Under the assumption of Km >>[ACT];

Vm
—Vm___acT);
1+[MBllé’B7]g i

— K =ImyracTy, (Equation 33)

Cl = =
tran Km
—[MBL,B7]E+[ACT]1 Km
R

By replacing Equation 33 in Equation 12, we obtained:

cly

s < [ACT]; + [ACT]; — [ACT]. = 0 (Equation 34)

Lets denote: [ACT]; = a X X; with X; in AU and a in nmol.L-.AU-! or in nml.L-1.mg proteins-!

2 a X X +X ax X; — [ACT], = 0 (Equation 35)
diff

Equation 35 is in the shape of AX+B=0 and its solution is presented in Equation 10.

138



139



2. Modeling the interaction between cytotoxic and
efflux transporter inhibitors in vivo

2.1. Introduction

The former model constitutes a first step to understand the cellular disposition of
cytotoxic in presence of efflux transporters. By the quantification of physiologically
relevant parameters, it shows the importance of competing mechanisms in the efficacy of
efflux transporter inhibitors. However, these conclusions are based on in vitro
experiments and one can argue that because of the complexity of tumour biology, the
situation can be different in vivo. The following part deals with the construction of a semi-
mechanistic PKPD model of the interaction between these compounds in vivo based on
the in vitro mechanistic model. This model establishes the relationship between cytotoxic
dosing regimens and tumour growth inhibition. It was applied to two animal studies
testing the reversal effect of MBLI87 on CPT11 ABCG2-mediated resistance. Throughout
this study, the benefits of the NLME approach in the construction of this type of model are

also presented.

2.2. Methods

2.2.1. Experimental methods

Three different studies were used to build this model. The first one was the in vitro
experiment studying the intracellular disposition of cytotoxic following different doses of
MBLI87 that was presented in the previous section. The second study was a PK
experiment carried out in tumour-free mice. CPT11 disposition was evaluated after single
dose administration with either MBLI87 or alone to evaluate the potential PK interactions
between these compounds. MBLI87 disposition was evaluated after multiple doses to

assess the potential accumulation of the drug in vivo. CPT11, SN38 and
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MBLI87 plasma concentrations were monitored during 24h using 5 animals per sample
time. The last study was a PD experiment that aimed at evaluating the reversal effect of
MBLI87 on CPT11 resistance. Mice xenografted with HEK293 cells overexpressing BCRP
were treated with CPT11 alone or combined to MBLI87 and the tumour size was
repetitively measured throughout the duration of the experiment. Two sets of
experimental conditions were defined. In the first study (study 1, S1), 30 animals were
randomized into the 3 treatment groups (control N=18, irinotecan N=6,
irinotecan+MBLI87 N=3). In this study, irinotecan was administered IP at 30mg.kg! 3
days per week for 2 consecutive weeks, followed by a 2-week rest period and then 2 more
weeks of treatment for a total of 6 weeks of treatment. MBLI87 was administered IP at
2.4mg.kg1 5 days per week with the same dose schedule. A 2-day delay between tumour
cells implantation and first drug administration was applied.

In the second study (study 2, S2), 15 animals were randomized into the 3 treatment
groups (control N=5, irinotecan N=5, irinotecan+MBLI87 N=5). Irinotecan was
administered IP at 20mg.kg1 3 days per week for 4 weeks of treatment without any
interruption. MBLI87 was administered IP at 2.4mg.kg-1 5 days per week throughout the
4 weeks of treatment. A 7-day delay between tumour cells implantation and first drug
administration was applied. Treatment intensity (total amount/treatment duration) was
greater in S2 compared to S1 and treatment delay between cells inoculation and

treatment onset was greater in S2.
2.2.2. Model development

The model includes four sub-models:
- The pharmacokinetic model describing the relationship between administered

doses and drug concentration in plasma.
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- The tumour accumulation model describing the relationship between drug
concentration in plasma and in tumour cells. MBLI87 action is considered in
this model because it increases the cellular concentration of cytotoxic.

- The tumour growth model incorporating three cell types and describing the
natural evolution of the disease.

- The cytotoxic action model linking cytotoxic tumour concentration with
inhibition of tumour growth

Plasma PK was modelled using compartmental analysis (see 4.2.4.2). The mechanistic in
vitro model was used to model the tumour disposition of CPT11 and SN38 in presence of
MBLI87. In order to ruse the former model which assumes a kinetic equilibrium in vitro,
the tumour compartment was modelled as a receptor compartment (see 4.2.5.3) that
allows writing the change in tumour concentration as a function of active efflux and

passive transport (Equation 19):

dCtymour __ Kact XCtumour .
dt = Kirans X (Cplasma - Ctumour) - 1+CMBL187,plasma (Equatlon 19)
K

i

Where Ctumour and Cplasma are the tumour and plasma drug concentration, Kirans is the rate
constant governing the passive transport (from tumour to plasma), Kact is rate constant
governing the active efflux and Ki is the MBLI87 inhibitory constant.

Contrary to the in vitro model, parameters of Equation 19 are expressed using rate
constants, alleviating the need to estimate the volume of the tumour compartment.
Tumour growth was modelled using a model similar to the one proposed by Ribba et al.
Three different cell types composed the tumour spheroid: proliferative, hypoxic and
necrotic. Cells moved from one type to another according to some rate constants.

The final sub-model is the cytotoxic action model. This model links the tumour

concentration of CPT11 and SN38 to the effect on tumour growth. Because of their
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mechanisms of action, CPT11 and SN38 were assumed to only affect proliferative cells
and their effect was modelled as a decrease of the tumour growth rate.

The model was sequentially built: the PK parameters were first estimated from data
issued from PK experiments and their typical values were fixed in the subsequent steps.
Then parameters governing the natural tumour growth were estimated on data issued
from control group in S1 and S2 and their typical values were fixed thereafter. MBLI87
inhibitory constant was fixed to the value estimated in the in vitro model and corrected to
account for plasma protein binding. Finally the 4 sub-models were linked and the
remaining parameters were estimated from data issued from treatment groups in S1 and
S2.

Model parameters were estimated using NLME approach with the NONMEM software

version 7.2.
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2.2.3. Simulation study

Based on the final model structure and parameter estimates, a simulation study was
performed to evaluate the impact of different properties of the system and MBLI87 on the
tumour accumulation of CPT11 and SN38 and treatment outcomes. Three different axes

were explored: the MBLI87 reversal effect, the tumour cell line and the tumour biology.

2.3. Results

Model evaluation did not reveal any misspecifications; the final model was able to
correctly predict the effect of MBLI87 combined to CPT11 in mice xenografted with
HEK293 cells overexpressing ABCG2. PK analysis did not reveal any interaction between
CPT11, SN38 and MBLI8 based on plasma concentrations AUCcpr11+MBLI87=30.9+4umol.L-
Lh1, AUCcpr11-MBLI87=34.3+22umol.L-L.h-1; AUCsn3g+mBLI87=9.5+2umol.L-1.h-1, AUCsn3s-
MBLI87=8.3+2pumol.L-L.h-1). There was also no evidence for MBLI87 accumulation in vivo
and MBLI87 half-life was estimated at 0.43d. Parameters governing the natural tumour
growth were comparable between both studies attesting the reproducibility of the
experiment. Even if the tumour growth was comparable, the tumour size at day 40 was 8
times greater in S2 despite a greater treatment intensity indicating thus a difference of
treatment efficacy. Because of the small number of animals used, some parameters are
associated to a high uncertainty because of the too small number of animals used. It was
thus not possible to compare parameters between both studies. Nevertheless, the
comparison of parameters point estimates indicates some differences. Parameter
governing the cytotoxic passive diffusion in tumour was lower in S2 (Ktrans=0.099d-1 in S1
and 0.048d! in S2 for CPT11) and the active efflux rate was greater in S2 (Kact=0.0578d-1
in S1 versus 0.98d1 in S2 for CPT11). It suggests a different tumour biology between both

studies leading to a decreased accumulation of cytotoxic in S2. In addition the proportion
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of drug sensitive cells was lower at treatment onset in S2 (68% and 85% of proliferative

cells in S1 and S2 respectively at treatment onset).

2.4. Discussion

This model includes a mechanistic description of the cellular interaction between efflux
inhibitor and cytotoxic as well as a semi-mechanistic model tumour growth model that
accounts for the repartition of tumour cells into proliferative, hypoxic and necrotic cells.
To date this is the first model that establishes the relationship between the intracellular
disposition of cytotoxic in presence of an efflux inhibitor to tumour growth.

The methodology developed in this section combined the NLME approach and a semi-
mechanistic model. Building such an advanced model using data issued from studies
containing minimum information, large variability and unbalanced design was a
modelling challenge. Thanks to the sequential building, it has been possible to combine
all the studies together even it has led to several assumptions in the complete model such
as the dose independency of PK parameters. The NLME approach allows using all the
information available to fully quantify all the model parameters. Nevertheless, due to the
complexity of the model and the paucity of the data, some of the parameters were
estimated with a high imprecision making impossible to compare them between both
studies. The model was applied to study the reversal properties of MBLI87 on CPT11
ABCG2-mediated resistance. The tumour growth experiment contains two sets of
experimental conditions. Even if in S2, mice received a treatment more intense and the
delay of treatment onset was longer. Based only on the amount of drugs received, the
tumour size should has been more important in this study, whereas the tumour size was
8 times greater at day 40 in S2. Thanks to our model, it was possible to identify and
quantify parameters explaining this unexpected difference. Since the PK was the same for

all the animals and the natural tumour growth comparable between both studies, the
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observed difference is necessarily associated to a different tumour biology. Indeed, the
equilibration between plasma and tumour due to passive diffusion was faster in S1. This
parameter reflects the tumour environment and vasculature and was found to impact the
treatment outcomes. Another factor contributing to the difference is the active efflux rate
representing the transporter activity and found higher in S2. There is thus a lower
accumulation of cytotoxic in the tumour compartment that is associated to a lower drug
effect (Figure 19). In addition, the proportion of drug sensitive cells was also lower at
treatment onset in S2 (68% and 85% of proliferative cells at treatment onset in S1 and S2
respectively).

Regarding MBLI87 efficacy, the model predicts a relatively small benefit of the inhibitor
to reverse CPT11 ABCG2-mediated resistance (Figure 19). Interestingly, this finding is
contradictory to the observations made in vitro where MBLI87 was shown to efficiently

inhibit CPT11 and SN38 efflux.
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Figure 19: CPT11/SN38 tumour concentration prediction
CPT11 (upper panel), SN38 (center panel) tumour accumulation and tumour growth (lower panel) in Study
1 and Study 2 in presence and absence of MBLI87 (green: +MBLI87 Study 1, black: -MBLI87 Study 1, red:
+MBLI87 Study 2, blue: -MBLI87 Study 2) predicted from the final model.

This poor effect arose from the low inhibition of ABCGZ in vivo by MBLI87

(Cmoy,plasma(MBL187) _ -2 Cmoy,plasma(MBL187)
K;(MBLI87|CPT11) ! Ki{(MBLI87|SN38)

= 1073). Moreover, MBLI87 clearance is too

high to ensure an accumulation of MBLI87 in vivo and a prolonged inhibition of the
transporter.
In the simulation study, we demonstrated that a 1000 times increase of MBLI87 dose

using the same dose schedule as in S2 allows increasing its reversal effect

(Tumour size (day 4O)+MBL187=1.18, Figure 20)

Tumour size (day 40)_ymBLIg7
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Figure 20: CPT11/SN38 tumour concentration prediction with 1000 times MBLI87 dose and dose
schedule from S2
CPT11 (upper panel), SN38 (center panel) tumour accumulation and tumour growth (lower panel) in Study
2 in presence and absence of MBLI87 (red: +MBLI87 Study 2, blue: -MBLI87 Study 2)

Using a continuous infusion of MBLI87, a 100 times increase of MBLI87 dose was

Tumour size (day 40)4+MBLIS7

necessary to increase MBLI87 reversal effect ( =1.12, Figure 21).

Tumour size (day 40)_pBLIg7

It means that if the transporter is constantly inhibited, a better effect can reached.
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Figure 21: CPT11/SN38 tumour concentration prediction with 100 times MBLI87 dose and continuous
infusion

CPT11 (upper panel), SN38 (center panel) tumour accumulation and tumour growth (lower panel) in Study
2 in presence and absence of MBLI87 (red: +MBLI87 Study 2, blue: -MBLI87 Study 2)

Even if a greater effect of MBLI87 was observed when its dose was increased, the effect
on the tumour size remained relatively small. It thus indicates that its poor effect was due
either to its inhibitory constant or to its too short half-life. In that sense, we simulated a

moy,plasma(MBLI87)
K;(MBLIS7)

c
scenario where MBLI87 Ki was decreased in order to obtain a ratio

100. In that case, the ratio of the tumour size at day 40 was predicted at 1.54
demonstrating the significant impact of this parameter in MBLI87 efficacy, as expected

(Figure 22).
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Figure 22: CPT11/SN38 tumour concentration prediction with MBLI87 Ki
(Ki(MBLI87|CPT11)=0.0005784uM, Ki(MBLI87|SN38)=0.000394uM) decreased and dose schedule from
S2
CPT11 (upper panel), SN38 (center panel) tumour accumulation and tumour growth (lower panel) in
Study 2 in presence and absence of MBLI87 (red: +MBLI87 Study 2, blue: -MBLI87 Study 2)

In the same way, an increase of MBLI87 half-life (t1/2(MBLI87)=4.8d) allows a significant
gain of MBLI87 effect due to the prolonged inhibition of the transporter Indeed, if both
MBLI87 Ki and clearance are decreased simultaneously, the reversal effect of MBLI87 is
maximized with a tumour size ratio predicted equal to 4.2 (Figure 23). This result
corroborates the result obtained with P-gp inhibitor where the question of the adequate

inhibition of the transporter appeared crucial to ensure an effect of the inhibitor.
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Figure 23: CPT11/SN38 tumour concentration prediction with a decrease MBLI87 Ki
(Ki(MBLI87|CPT11)=0.0005784uM, Ki(MBLI87|SN38)=0.000394uM) and a decrease MBLI87 clearance
(CI(MBLIB7)=0.162) using dose schedule from S2
CPT11 (upper panel), SN38 (center panel) tumour accumulation and tumour growth (lower panel) in Study

2 in presence and absence of MBLI87 (red: +MBLI87 Study 2, blue: -MBLI87 Study 2)

We also investigated the impact of the system parameters on the treatment outcomes. We
showed that if the active transport rate constant was increased, the difference observed
between animals receiving the inhibitor and those that do not received the inhibitor was
potentiated (Figure 24). However, if the active efflux becomes more important, the
cytotoxic tumour concentration decreases leading to a lower effect of cytotoxic on the
tumour growth. It also demonstrated the need to choose a cell line where the transporter

is well expressed in order to see the impact of its inhibition. Even if HEK293 cells were
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interesting because of their simplicity, we showed in the 1st part that the maximum
increase in cytotoxic intracellular concentration was moderate in this cell line. Better
results of ABCG2 inhibition by MBLI87 could thus have been observed with a different cell

line.
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Figure 24: CPT11/SN38 tumour concentration prediction with a decrease MBLI87 Ki
(Ki(MBLI87|CPT11)=0.0005784uM, Ki(MBLI87|SN38)=0.000394uM) and an increase of active transport
rate constant (Kact(CPT11)=9.8d"1, Kact(SN38)=10.3d"!) using dose schedule from S2
CPT11 (upper panel), SN38 (center panel) tumour accumulation and tumour growth (lower panel) in
Study 2 in presence and absence of MBLI87 (red: +MBLI87 Study 2, blue: -MBLI87 Study 2)

The last axis investigated in the simulation study concerns the tumour biology where both
the proportion of drug sensitive cells at treatment onset and the cytotoxic diffusion were
studied. As expected, if less drug sensitive cells composed the tumour tissue at treatment

onset, a lower effect of cytotoxic was observed. However, this result largely depends on
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the nature of the tumour growth model. Different behaviours could have been simulated
if the model incorporated a growth of hypoxic cells for example. More interestingly, we
demonstrated the importance of cytotoxic diffusion in the tumour on the treatment
outcomes. This has already been demonstrated by Patel et al. for doxorubicin and P-gp
inhibitors. (236). Here, the tumour size was minimized when MBLI87 Ki and clearance
where decreased as previously and also when the passive diffusion constant rate was
increased by 10. In that case, the tumour size at day 40 was predicted at 320.5mm?3 for
animals receiving the combination CPT11-MBLI87 and at 470.3mm? for animals receiving
CPT11 alone (Figure 25). It also raised the question of combining an antiangiogenic agent
in order to normalize the tumour vasculature at treatment onset to ensure a sufficient

diffusion of the cytotoxic drug (237).

153



Chapter II: Mechanistic model-based development applied to efflux transporter inhibitors - In vivo data
modeling

[CPT11]y (LMol LY

Time (d}

[SN38]ym (Lmol.L 1)

Time (d})

Tumour volume {mm?)

Time (d)

Figure 25: CPT11/SN38 tumour concentration prediction with a decrease MBLI87 Ki
(Ki(MBLI87|CPT11)=0.0005784uM, Ki(MBLI87|SN38)=0.000394uM) and an increase of passive diffusion
rate constant (Keans(CPT11)=0.48d1, Kirans(SN38)=11d-1) using dose schedule from S2
CPT11 (upper panel), SN38 (center panel) tumour accumulation and tumour growth (lower panel) in Study

2 in presence and absence of MBLI87 (red: +MBLI87 Study 2, blue: -MBLI87 Study 2)

This last scenario does not allow maximizing MBLI87 effect since the tumour sizes ratio
was predicted at 1.47, whereas it was predicted at 4.24 when only its Ki and its clearance
were decreased. Our results indicate that it is thus not possible to simultaneously
maximize the inhibitor effect and minimize the tumour size. Since the final aim of this type
of study is to minimize the tumour size, it can explain why the addition of an efflux

inhibitor never led to a significant amelioration of patients response (237).

154



155



Publication 2

Characterization of the interaction
between cytotoxic and efflux transporter
inhibitors with a multiscale semi-
mechanistic PKPD model

Alexandre SOSTELLY, Léa PAYEN, Jérome GUITTON, Attilio DI PIETRO,

Pierre FALSON, Mylene HONORAT, Annabelle GEZE, Ahcene BOUMEND]JEL,

Gilles FREYER, Michel TOD

In manuscript

156



157



Chapter II: Mechanistic model-based development applied to efflux transporter inhibitors - Publication 2

Introduction

Effective systemic treatment of solid tumours requires that tumour cells are exposed to
sufficient concentrations of drugs to cause cytotoxicity. The ability of anticancer drugs to
reach tumour cells depends on efficient delivery of drugs through the vascular system and
penetration into tumours (238). One of the mechanisms of anticancer drug resistance
relies on the decrease of intracellular drug concentration mediated by efflux pumps from
the ATP Binding Cassette family (ABC). ABC transporters are known to play an important
role in drug absorption, distribution and elimination (88). Many anticancer drugs are
high-affinity substrates of these transporters that are thus involved in the resistance of
tumours (239). In the past, many attempts were made to overcome the anticancer drug
resistance by inhibiting ABCB1, P-gp, so far the best characterized efflux transporters
(240). Three generations of P-gp inhibitors have been developed to inhibit the
chemoresistance in patients. Despite, promising results obtained in animals, none of the
clinical trials that evaluated P-gp inhibitors concluded to their positive effect in patients
(42, 43, 241-244). Several points have to be made regarding the methodology used in
these trials so that their ability to adequately address the question of overcoming drug
resistance through efflux inhibition can be questioned. None of the trials assessed P-gp
expression in tumours and there was no selection of patients based on the transporter
expression. Moreover, enrolled patients had already received several lines of
chemotherapy and the drug resistance was certainly multifactorial. Others factors were
advocated to explain the clinical failure of P-gp inhibitors such as the insufficient
penetration of cytotoxic drugs in the tumour (236), the prevalence of the target in vivo
(245), the occurrence or development of others resistance mechanisms (246), or the

insufficient inhibition of the transporter in vivo (247).
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Because of the clinical failure of P-gp inhibitors, the question of overcoming drug
resistance by inhibiting others efflux transporters are rarely been addressed in preclinical
and clinical trials (247). ABCG2, Breast Cancer Resistance Protein (BCRP), is one of the
latest ABC transporter discovered (111). This efflux transporter plays a tumour-
protective role by decreasing the tumour accumulation of several anticancer drugs such
as topotecan, mitoxantrone, irinotecan and its active metabolite, SN38 (135). Moreover,
ABCG2 substrates’ profile overlaps that of P-gp. This transporter is thus a promising
target for re-testing the benefits of the efflux inhibition in the management of anticancer
drug resistance. New ABCG2 inhibitors non-toxic have been recently developed (136).
One acridone derivative, MBLI87, was able to inhibit mitoxantrone ABCG2-mediated
efflux in vitro. In vivo, this compound was able to reverse irinotecan (CPT11) ABCG2-
mediated resistance in mice (137).

To overcome issues already encountered in the development of P-gp inhibitors it is
necessary to identify and quantify the key steps of efflux inhibitors action from the
beginning of their development. Mechanistic drug disease models may be an efficient tool
to disentangle the influence of several pharmacokinetic and pharmacodynamic factors on
the efficacy of these compounds. In a drug development perspective, in silico modelling
and simulation can help to optimize recommendations about the formulation or dosing
schedule of the developed compound. This approach has already been successfully
applied to cytotoxic and anti-angiogenic compounds (191) (192) but such models have
never been applied to efflux transporter inhibitors.

In this work, we developed a model for studying MBLI87 reversal effect on CPT11 ABCG2-
mediated resistance in vivo. This mathematical model establishes the relationship
between the efflux transporter activity, the cytotoxic accumulation into tumour and the

tumour growth.
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Experimental methods

Cell Culture

The Human Embryonic Kidney 293 (HEK293) cell line ABCG2-transfected were obtained
as described in (137). Cells were maintained in Dulbecco’s modified Eagle’s medium
(DMEM high glucose) supplemented with 10% foetal bovine serum (FBS), 1%
penicillin/streptomycin, and 1mg.mL-1 G418.

Animals

Female Severe Combined Immuno-Deficient (SCID) mice, 8-week old, were obtained from
the Charles River Company. Animals were handled in accordance with the Guide for the
Care and Use of Laboratory Animals and all procedures followed protocols approved by

the Animal Facility veterinarian board.
Pharmacokinetic studies

Drug disposition was evaluated in tumour-free mice. Irinotecan (CPT11) was provided by
the MAP company (France). CPT11 pharmacokinetics was evaluated after single dose
(20mg.kg1) administered intra-peritoneally (IP) either alone or with MBLI87 to evaluate
potential pharmacokinetic interactions. Concentrations of CPT11 and its active
metabolite in plasma, SN38, were monitored during 24h using 5 mice per sampling times.
MBLI87 pharmacokinetics was evaluated after multiple doses (3.45mg.kg-1) administered
[P. To evaluate the potential accumulation of MBLI87 in animals, three groups of animals
were used: Group 1 received a single dose of MBLI87 at t=0 and concentrations were
measured at t=1, 2, 4 and 6h; Group 2 received 2 doses of MBLI87 at t=0, 4h and
concentrations were measured at t=5 and 8h; Group 3 received 3 doses of MBLI87 at t=0,

4, 8h and concentrations were measured at t=9 and 12h.
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Tumour growth studies

SCID mice were subcutaneously inoculated with the HEK293 cells overexpressing ABCG2
cells (8.2.106¢ cells in 100puL PBS/inoculation) on the right and left flanks. Time 0 was the
time of cells inoculation. Mice were randomized into treatment groups the day following
cells implantation. Three groups of treatment were defined:

- 1 control group

- 1 group receiving irinotecan alone

- 1 group receiving irinotecan combined to MBLI87
Two studies with 2 sets of experimental conditions were defined.
In the first study (study 1, S1), 30 animals were randomized into the 3 treatment groups
(control N=18, irinotecan N=6, irinotecan+MBLI87 N=3). In this study, irinotecan was
administered IP at 30mg.kg-1 3 days per week for 2 consecutive weeks, followed by a 2-
week rest period and then 2 more weeks of treatment for a total of 6 weeks of treatment.
MBLI87 was administered IP at 2.4mg.kg1 5 days per week with the same dose schedule.
A 2-day delay between tumour cells implantation and first drug administration was
applied.
In the second study (study 2, S2), 15 animals were randomized into the 3 treatment
groups (control N=5, irinotecan N=5, irinotecan+MBLI87 N=5). Irinotecan was
administered IP at 20mg.kg1 3 days per week for 4 weeks of treatment without any
interruption. MBLI87 was administered IP at 2.4mg.kg-1 5 days per week throughout the
4 weeks of treatment. A 7-day delay between tumour cells implantation and first drug
administration was applied.
Main designs set-ups are summarized in Table 1. Treatment intensity (total
amount/treatment duration) was greater in S2 than in S1 and treatment delay between

cells inoculation and treatment onset was greater in S2.
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Study 1 Study 2

Total amount - irinotecan

(umol) 11.25 10.91
Total amount - MBLI87 216 284
(umol)
Treatment intensity - irinotecan 024 028
(umol.d1)
Treatment intensity - MBLI87 0.05 007
(umol.d?)
Treatment delay

2 7
(d)
Wash-out period Yes No

Table 1: Tumour growth experiments design settings

Mice were clinically evaluated daily. Tumour dimensions (length, width) were measured
with a calliper 3 times per week from day 5 and mice were euthanized when the tumour
volume exceeded 1,800mm3.

Four measurements per animals were available (tumour length and width on each flank)
at each measuring time point. The mean tumour volume over the 2 flanks was defined as

a metric of tumour size.

Model development

Model structure

Complete model includes four sub-models (Figure 1):
- The pharmacokinetic model describing the relationship between administered
doses and drug concentration in plasma.
- The tumour accumulation model describing the relationship between drug
concentration in plasma and in tumour cells, and the action of MBLI87 leading

to increase the cellular concentration of the cytotoxic
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The tumour growth model incorporating three cell types and describing the

natural evolution of the disease.
The cytotoxic action model linking cytotoxic tumour concentration with

inhibition of tumour growth
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Figure 1: Figure 1: Scheme of the final model structure
Schematic representation of the multiscale semi-mechanistic PKPD model
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Pharmacokinetic models

For practical reasons, animals were euthanized after blood sampling and no repeated
measurement of drug concentration was available. PK data was thus pooled together and
analysed using compartmental models.

Concentrations of CPT11 and SN38 in plasma were simultaneously analysed since CPT11
is metabolized in SN38 in vivo (248). CPT11 disposition was best described using a 2-
compartment linear model, CPT11 metabolization occurring from the central
compartment. SN38 disposition was best described with a 1-compartment linear model.

MBLI87 disposition in plasma was best described with a 1-compartment model with first-

order absorption and elimination rates.
Tumour accumulation model

To account for the accumulation kinetics of CPT11 and SN38 in tumours and ABCG2
inhibition by MBLI87, a previously developed model was used (SOSTELLY, 2012 #323).
The assumption underlying this model was the following: CPT11 and SN38 cross the cell
membrane in each direction by passive diffusion, characterized by a diffusion clearance
(Claifr). Active efflux is assumed to be ABCG2-mediated and due to the nature of the
transporter, a Michaelis-Menten behaviour has been chosen to model its action.
Interaction between cytotoxic and efflux inhibitor occurs within the transporter and is
non-competitive. Both interaction and active efflux are accounted for in the transport
clearance parameter (Cltran). At equilibrium, the following equation holds:

Clairs X [Drugle = (Claiss + Cliran) X [Drugl; (Equation 1)

Where [Drug]i and [Drugle are respectively the intracellular and extracellular

concentrations of CPT11 and SN38.
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To be able to use this model developed on in vitro data, the tumour compartment was
assimilated to a receptor compartment at the kinetic equilibrium at any times. This
assumption allows re-using Equation 1 in vivo and lead to the following equation which

governed the CPT11/SN38 kinetic accumulation in the tumour cells.

dCtumour __ KaceXCrumour .
dt = Kirans X (Cplasma - Ctumour) - +CMBL187,plasma (Equatlon 2)

K;

Where Ctumour is the tumour concentration of CPT11/SN38; Cplasma is the concentration of
CPT11/SN38 in plasma; Kirans is the rate constant governing the accumulation of
CPT11/SN38in the tumour due to passive diffusion relatively to the tumour compartment
volume; Kact is the rate constant governing the active efflux of CPT11/SN38 relatively to
the plasma compartment volume; CmBLI87,plasma iS the concentrations of MBLI87 in plasma.
This model assumed a linear interaction between cytotoxic and efflux inhibitor, i.e. the
Michaelis constant is assumed to be greater compared to the intracellular concentration

of cytotoxic.
Tumour growth model

The tumour growth model includes 3 cell compartments: proliferative cells (P), hypoxic
cells (Q) and necrotic cells (N). The sum of the volumes of the 3 compartments was
directly fitted to the observed tumour volume (195). The tumour growth model assumes
an exponential growth of proliferative cells. A part of proliferative cells becomes hypoxic
(Q) and hypoxic degrade into necrotic cells (N). Hypoxic and necrotic cells do not divide.
Passage from one stage to another is governed by transfer rate constants as described in

Equation 3:
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4 (Equation 3)
P(t=0) =P,
Q(t=0)=0
N(it=0)=0

Where P is the volume of proliferative cells; Ap is the exponential growth rate; kpq is the
transfer rate between proliferative and hypoxic cells; Q is the volume of hypoxic cells; kqn

is the transfer rate between hypoxic and necrotic cells; N is the volume of necrotic cells.
Cytotoxic action model

CPT11 and SN38 enhance tumour cells apoptosis by inhibiting the topoisomerase 1 (249).
Because cytotoxic agents preferentially target tumour cells that grow rapidly, their effect
was modelled as a decrease of the exponential growth rate (249). Because the parent and
the metabolite are both active, an additive interaction of both compounds was considered
to account for their cooperation. In order to reduce the number of parameters to be
estimated in the model, the ratio of their cytotoxic potencies was fixed to 11 because SN38
is expected to be 11 times more potent in vivo than CPT11 after accounting for plasma
protein binding (249, 250). Finally, their effect was directly proportional to their
concentration in the tumour compartment normalized by their relative cytotoxic
potencies (Kp, Equation 4)

ap

a c T, .
- = Ap X <1 . X (Ctumour,Can + tum+51\'38)> — kpo X P (Equation 4)

Where « is the cooperative coefficient, Ctumour, cpr11 is the CPT11 tumour concentration;

Ctumour, sn38 is the SN38 tumour concentration; Kp is the cytotoxic potency.

Population modelling
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Data were all analysed using non-linear mixed effects (NLME) approach that enables the
simultaneous estimation of fixed and random effects in the model (228). Fixed effects
refer to the typical value (median) of parameters (P) in the population. Random effects
are estimated on 2 levels: variability between individuals (Inter-Individual Variability,
[IV) and within an individual (Residual Variability, RV). Each observation of an individual
in the population can be described as follows:

Vij = f(Xl-j,Pl-) + g(Xl-j,Pl-) X & (Equation 5)

Where yj is the jth observation for the ith individual, f(...) is the individual model prediction
described by Xjj variables and P; the individual parameter, g(Xl-j, PL-) X g;j is the residual
error describing the difference between the individual model prediction and the
corresponding observed value. Residual error is assumed to be normally distributed with
0 mean and g(...) standard deviation. In the following, we will only consider the so-called
combined error model, g(XL-j, PL-) = f(Xij, Pl-) + k where k is a constant.

The individual parameter, Pi, is expressed as a function of the typical value for the
population and the deviation from this typical value:

P, =6 x e (Equation 6)

Where Pi is the individual parameter value for the ith individual; 6 is the parameter typical
value (the median); ni is a random parameter that described the difference between the
median and the parameter value in individual i; nis values are assumed to be normally

distributed with 0 mean and w? variance. In such a model the parameters to be estimated

are the fixed effects (0s), the random effects (w?) and the variances of the residual error.

Model evaluation

167



Chapter II: Mechanistic model-based development applied to efflux transporter inhibitors - Publication 2

Parameter estimation was performed by likelihood maximization using NONMEM
software, version 7.2 (229).

Selection between models was based on the Objective Function Value (-2log(likelihood)),
which is the criterion minimized by NONMEM, and Akaike Information Criterion (173),
as well as goodness of fit, residual plots, simulation-based diagnostics and precision of
parameter estimates.

Simulation-based diagnostics were performed to reveal model misspecifications that are
not easily diagnosed with classical goodness-of-fit plots. Two methods were used here:
the Normalized Prediction Distribution Errors (NPDE) and the Visual Predictive Check
(VPC).

Prediction errors were the quantile of each observation within its predictive distribution.
NPDEs are obtained after decorrelation and normalization of prediction error with
respect to the empirical mean and variance obtained in simulations (251). The model was
considered as invalid when NPDEs were not normally distributed with a 0 mean and a
variance of 1 (230).

Visual Predictive Check consists of simulating dependant variable based on model
structure and parameter estimates (167). 1000 simulations of the original datasets were
simulated and the 90% non-parametric confidence interval of the simulated medians was
then compared to the observed ones. The model was considered as invalid when the
confidence interval did not bracket the observed medians.

Model evaluation was performed with the R-based XPOSE4 program (231). PsN toolkit

was used for simulations and calculations for the VPC (232).
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Model building

Model was sequentially built. First, typical parameters of the PK models were estimated
using data from the PK experiment and were then fixed in the final model. Second, tumour
growth parameters were estimated on data issued from control group in S1 and S2 and
their typical value was then fixed in the final model. MBLI87 inhibitory constant value (Ki)
was fixed based on the value estimated in (252) and then corrected to account for the
plasma protein binding in vivo (fu(MBLI87)=5%).

Thus, in the complete model, only parameters Ktrans, Kact, ®/Kp and tumour growth

parameters variability were estimated in S1 and S2.
Simulation study

Based on the final model structure and parameter estimates, a simulation study was
performed in order to explore different properties of MBLI87 and of the system on the
efficacy of the CPT11-MBLI87 outcomes. Three axes were investigated: the reversal effect
of MBLI87, the tumour cell line and the tumour biology. Five hundred Monte Carlo
simulations were performed for each of the simulated scenario. The mean tumour
concentration of CPT11 and SN38 as well as the tumour size at day 40 were computed to

evaluate the performances of each scenario.
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Results

Data

Data obtained in S1 and S2 are presented in the supplementary file 1. In both S1 and S2,
the addition of CPT11 slows significantly the tumour growth and the effect of MBLI87 is
low. The tumour growth was more significantly more rapid in S2 than in S1 with a tumour
size 8 times greater for animals receiving both CPT11 and MBLI87 at the day 40

(113.2mm3 versus 1448.3mm?3 in S1 and S2 respectively).

Model evaluation

Model evaluation was performed separately for PK, tumour growth and complete models.
VPCs (Figure 2) compared the 90% non-parametric confidence interval of the predicted
medians to the observed ones. For all the sub-models as well as for the complete models,
the observed medians lie within the confidence interval as required for model validation.
NPDEs were normally distributed with a 0 mean and 1 variance without any trends (not

shown). There was thus no misspecification of the final mixed effects model.

A

Irinotecan SN38 MBLI87

log([irinotecan])
log([SN38])
[MBLI87](nmol.mL)
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Figure 2: Visual Predictive Check

A. Visual Predictive Check (VPC) plot of the PK models compare the 90% non-parametric confidence
interval of median (pink area) of plasmatic concentrations for CPT11 and SN38 on the log-scale

(left and center panel) and for MBLI87 (right panel) obtained after simulations to the observed
ones.

B. Visual Predictive Check (VPC) plot of the complete model compare the 90% non-parametric
confidence interval of median (pink area) of tumour volume obtained after simulations to the
observed ones.

Left panel: Study 1
Control: Control group; CPT11: Animals receiving CPT11 alone, CPT11+MBLI87: Animals
receiving CPT11 combined to MBLI87

Right panel: Study 2
Control: Control group; CPT11: Animals receiving CPT11 alone, CPT11+MBLI87: Animals
receiving CPT11 combined to MBLI87

PK model

No repeated measurement of the drug concentration in plasma was available and only the
typical value of parameters was estimated. Parameter estimates of CPT11 and SN38
disposition plasma are presented in Table 2. Volumes of CPT11 peripheral compartment
and SN38 central compartment were not identifiable and were fixed to 1mL.

Parameter estimates of MBLI87 pharmacokinetic model are presented in Table 2. MBLI87

absorption rate was estimates at 900d! attesting the rapid absorption of the drug.
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MBLI87 clearance was estimated at 900L.d-! attesting also of the quite rapid
disappearance of the drug from the system.

Effect of MBLI87 on plasmatic disposition of CPT11 and SN38 in plasma was assessed by
comparing CPT11 and SN38 AUCs in presence and absence of MBLI87. The medians AUCs
were similar for the different conditions (AUCcpr11+MBLIS7=30.9+4umol.L-L.h-1, AUCcpr11-
MBLI87=34.3+22umol.L-1.h-1; AUCsn38+MBLI87=9.5+2umol.L-1.h-1, AUCsn3s-
MBLI87=8.3+2pumol.L-1.h-1). Consequently, MBLI87 had no effect on CPT11 and SN38
disposition in plasma.

Tumour growth model

The tumour growth parameters (Table 2) were separately estimated on data issued from
control group in S1 and S2. Exponential tumour growth rate was estimated at
0.187mm?3.d-1in S1 and to 0.179mm?3.d-1 in S2. The transfer rate between proliferative and
hypoxic cells was associated to a high relative standard error; it was thus not possible to
conclude about its difference between both studies. Apart for this parameter, all the
tumour growth parameters were comparable attesting the reproducibility of the
experiment. At t=0, tumour was assumed to be only constituted of proliferative cells
because cells were inoculated just after reaching confluence. Initial volume of

proliferative cells was estimated at 16.3mm3 in S1 and 15.4 mm3 in S2.

Complete model

Parameter estimated separately on S1 and S2 treatment groups’ (Ktrans, Kact, a/Ki) are
presented in Table 2. Rate constant governing the accumulation of CPT11 and SN38 in
tumour due to passive diffusion (Ktrans) was estimated at 0.099d-1 in S1, 0.048d1 in S2 for
CPT11 and at 1.3d1 in S1, 1.12d'! in S2 for SN38. Rate constant governing active efflux
(Kact) was estimated at 0.89d-1in S1, 0.98d-1 in S2 for CPT11 and 0.058d-1in S1, 1.03d1 in

S2 for SN38. CPT11 and SN38 cytotoxic potency was less important in S2 than in S1
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(0.19umol.d1 versus 0.15pumol.d1 in S1 and S2 respectively) that is in accordance with
the difference observed in tumour growth (tumour size was 8 times greater in S2 than in
S1 atday 40). Because of the small number of animals used in S1 and S2, some parameters
are associated to high relative standard errors. It was thus not possible to conclude about
the difference between parameter estimates between both studies. However, the
comparison of parameter point estimates suggest a different accumulation of cytotoxic in
the tumour compartment (passive diffusion rate constant lower in S2 and active efflux
rate constant higher in S2) that is associated to a lower effect on the tumour growth
(Figure 3A)

The ratio of the mean MBLI87 concentration in plasma by its inhibitory constant was
estimated at 10-2 for CPT11 and 10-3 for SN38 indicating the low inhibition of the ABCG2

by MBLI87. This is corroborated by the low effect of the inhibitor on the tumour growth

Tumour Size (day 40)+MBLIg7

in both studies ( = 0.98 in S2, Figure 3A).

Tumour size (day 40)_ymBLIg7
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PK CPT11/SN38
Typical value
(%RSE)
. 1.01
Clearance CPT11 (L.d1) (24.6%)
21.7
K. CPT11 (d1) (14.7%)
Kcpri1-snzs (d-1) (Zgoég/o)
Keentraperpheral CPT11 (1) (53005;] |
erripheral-centra] CPT11 (d'l) (4112%/0)
Veentrat CPT11 (L) (;)5020;0)
Clearance SN38 (L.d1) (%'22/?)
PK MBLI87
Typical value
(%RSE)
1.62
Clearance MBLI87 (L.d1) (90%)
K. MBLI87 (d1) (42%%/0)
Vcentra] MBLI87 (L) (3(;2%/0)
Tumour growth parameters
Study 1 Study 2
Typical Value o Typical Value o
(%RSE) 1V (%CV) (%RSE) 1V (%CV)
A (mm3.d) (2'6102) 27% (06'01/3 26%
0.05 0.001
keq (d1) (128%) 12% (90%) 80%
0.09 0.09
ko (d1) 2%) 33% (14%) 25%
16.2 15.4
Po (mm3) (19%) 41% (26%) 63%
Qo, No (mm?3) 0" - 0"
Complete model parameters
Study 1 Study 2
Typical Value o Typical Value o
(%RSE) IV (%CV) (%RSE) IV (%CV)
0.099 0.048
Kirans CPT11 (d1) (70.5%) 33% (63.1%) 38%
Kirans SN38 (d! L4 609 11 349
frans (d) (33.8%) % (36.1%) %
0.89 0.98
Kace CPT11 (d1) (35%) 35% (24.9%)
Kae: SN38 (d) gfé’; 599% (313'2‘% " 19%
0.19 0.15
a/Kp (pmol.d-1) (19.8%) 32% (17.3%) 25%

Table 2: Parameters estimates
Ka: absorption constant rate; Kmetabolism: metabolization rate constant CPT11-SN38; Kecentral-peripheral: transfer
constant rate central compartment - peripheral compartment; Kperipheral-central: transfer constant rate
peripheral compartment-central compartment; Veentral: central compartment distribution volume; Vperipheral:
peripheral compartment distribution volume
Ap: Exponential tumour growth rate; kpq: Transfer constant rate proliferative tissue - hypoxic tissue; kon:
Transfer constant rate hypoxic tissue - necrotic tissue; Po: Initial volume of proliferative tissue; Qo: Initial
volume of hypoxic tissue; No: Initial volume of necrotic tissue
Ktrans: Cytotoxic accumulation rate into tumour compartment; Kact: Cytotoxic active efflux rate from tumour
compartment;
o/Kp: Cytotoxic potency of CPT11 and SN38
*: Fixed value; %RSE: Relative Standard Error of parameter estimates; I[IV(%CV): Coefficient of variation of
the Inter-Individual Variability
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Simulation study

A simulation study was carried out to determine the impact of several factors on MBLI87
reversal effect and treatment outcomes. Seven different scenarios were simulated and
compared based on the tumour size at day 40 and the mean CPT11 and SN38 tumour
concentration to evaluate their performances. Simulations have only been performed for
S2 where the maximum increase in treatment efficacy can be achieved. Performances of

the different scenarios are presented in Table 3.
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Tumour size

Scenario (day 40) Ration tumour size Cm°y’t“m(cpzll) C'""y"“'"(S]\? 8)
(mm?) (umol.L1) (umol.L1)
Normal 1564.8 0.98 0.0114 0.118
1585.6 0.0108 0.115
Po=Qo=No
+ MBL87 1678.5 1.01
-MBLI87 1700.4
1000 times dose MBLI87
(S2 dosing regimen) 118
+ MBL87 1349.2 ’ 0.0156 0.131
-MBLI87 1700.4 0.0108 0.115
100 times dose MBLI87
(Continuous infusion) 112
+ MBL87 1415.5 : 0.0227 0.131
-MBLI87 1585.6 0.0108 0.115
MBLI87 Ki decreased
+ MBL87 1031.6 1.54 0.0192 0.157
-MBLI87 1585.6 0.0108 0.115
MBLI87 K decreased
+ MBLI87 clearance decreased 424
+ MBL87 374.1 ’ 0.122 0.224
-MBLI87 1585.6 0.0108 0.115
MBLI87 Ki decreased
+ Kact increased 236
+ MBL87 2343.4 ’ 0.00578 0.0882
-MBLI87 5532.05 0.000986 0.0203
MBLI87 Ki decreased
+ Kirans increased 119
+ MBL87 394.2 ’ 0.115 0.211
-MBLI87 470.3 0.0793 0.198
MBLI87 K decreased
+ MBLI87 clearance decreased
+ Kirans increased 1.47
+ MBL87 320.5 0.231 0.218
-MBLI87 470.3 0.0793 0.198

Table 3: Performances of the different scenarios simulated

Normal: Normal conditions using parameter estimates and dosing schedule from S2

Po=Qo=No: modification of the tumour initial composition to obtain as many proliferative, hypoxic and
necrotic cells proportions

1000 times dose MBLI7 using parameter estimates from S2 (S2 dosing regimen): Increase of MBLI87
doses 1000 times using parameter estimates and dosing schedule from S2

100 times dose MBLI87 (Continuous infusion): Increase of MBLI87 100 times with a continuous infusion
of MBLI87 (constant concentration) using parameter estimates from S2

MBLI87 Ki decreased: Decrease of MBLI87 Ki for CPT11 and SN38 active transport
(Ki(MBLI87|CPT11)=0.000578 uM, Ki(MBLI87|SN38)=0.000394uM) using dosing schedule and parameter
estimates from S2

MBLI87 Ki decreased + MBLI87 clearance decreased: Decrease of MBLI87 Ki as previously and decrease
MBLI87 clearance by 10 (CI(MBLI87)=0.162L.d1) using dosing schedule and parameter estimates from S2
MBLI87 Ki decreased + Kact increased: Decrease of MBLIB7 Ki as previously and increase active efflux
constant rate by 10 (Ktrans CPT11=9.8d1; Ktrans SN38=10.3d1) using the dosing schedule and parameter
estimates from S2

MBLI87 Ki decreased + Ktrans increased: Decrease of MBLI87 K; as previously and increase passive
diffusion constant rate by 10 (Kerans CPT11=0.48d-1, Ktrans SN38=11d-1) using dosing schedule and parameter
estimates from S2

MBLI87 Ki decreased + MBLI87 clearance decreased + Kuwans increased: Decrease of MBLI87 Ki,
clearance and increase of passive diffusion constant rate as previously

MBLI87 was maximized when its inhibitory constant was decreased to obtain a ratio
between its mean plasma concentration and its inhibitory constant equal at 100

(Ki(MBLI87sn38)=0.000578uM, Ki(MBLI87cpr11)=0.000394uM) and when its clearance
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was decreased by 10 leading to an half life at 4.3d. This scenario leads to a ratio of tumour
concentration with and without MBLI87 predicted at 11 for CPT11 and 2 for SN38 (Table
3, Figure 3B). Surprisingly, the scenario that minimizes the tumour size at day 40 was not
the same. In this case, MBLI87 clearance and inhibitory constant have also to be decreased
as previously but the diffusion rate constant (Ktrans) of cytotoxic drugs in the tumour
compartment has to be increased. This scenario leads to a tumour size at day 40 predicted

at 320.5mm3 with MBLI87 and 470.3mm3 without MBLI87 (Table 3, Figure 3C).
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Figure 3: Performances of the simulated scenarios
The mean tumour concentration of CPT11 (left) and SN38 (center) over the time and the tumour growth
(right) are presented in presence (red curve) or absence (blue curve) of MBLI87
A. Normal conditions: Normal conditions using parameter estimates and dosing schedule from S2
B. MBLI87 Ki decreased + MBLI87 clearance decreased: Decreased of MBLI87 Ki for CPT11 and
SN38 active transport (Ki(MBLI87|CPT11)=0.000578 uM, Ki(MBLI87|SN38)=0.000394uM) and
decreased MBLI87 clearance by 10 (CI(MBLI87)=0.162L.d 1) using dosing schedule and parameter
estimates from S2
C. MBLI87 Ki decreased + MBLI87 clearance decreased + Kirans increased: Decreased of MBLI87
Ki for CPT11 and SN38 active transport (Ki(MBLI87|CPT11)=0.000578 uM,
Ki(MBLI87|SN38)=0.000394uM), decreased MBLI87 clearance by 10 (CI(MBLI87)=0.162L.d"1) and
increased passive diffusion constant rate by 10 (Ktrans CPT11=0.48d"1, Kirans SN38=11d1) using
dosing schedule and parameter estimates from S2
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Discussion

This study presented the construction and use of a semi-mechanistic PKPD model of the
interaction between efflux transporter inhibitors and cytotoxic drugs. The model includes
a mechanistic description of the cellular interaction between both compounds as well as
a semi-mechanistic tumour growth model that accounts for the proliferative, hypoxic and
necrotic cells proportions. To our knowledge, this is the first model that establishes the
relationship between the cellular effects of efflux inhibitors to the tumour growth. We
applied this model to a new ABCG2 inhibitor, MBLI87, co-administered with the cytotoxic
agent irinotecan, CPT11.

In order to combine all the information available about MBLI87, the model was
sequentially built. PK studies were performed independently of tumour growth studies,
the same PK profile was thus assumed for S1 and S2. Moreover, doses of CPT11 and
MBLI87 used in PK experiments were different from the ones used in S1 and S2 and PK
parameters were assumed to be dose-independent.

The cytotoxic accumulation kinetics in the tumour cells was based on a previously
developed model (252). This model assumed that Michaelis constant of cytotoxic was
greater than their intracellular concentration leading to a linear interaction between
compounds. The model is thus unable to predict the saturation of the active transport
expected for high doses. Sigmoid interaction models could have been used but would have
required to test several doses of cytotoxic and inhibitors.

The tumour growth model includes three types of cells. Contrary to the model from Ribba
et al. (195), only the proliferative cells grow in our model according to an exponential
growth rate. A generalized logistic tumour growth model as used by Ribba et al. has been

tested but failed to converge because our data did not contain enough information about
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the maximum tumour capacity. Under this formulation, the model is not able to predict a
decrease of the tumour size because tumour cells do not eliminate but accumulate into
the necrotic compartment. The addition of such a constant reduced the quality of the
model fit. Moreover, in xenografted animals necrotic cells accumulate in the tumour
central core that is consistent with our assumption (195).

The last assumption included in the complete model concerns the cytotoxic action model
where a linear effect of CPT11 and SN38 was used. Here again, the model is not able to
predict the saturation of cytotoxic effect expected for high doses of CPT11.

Despite all these assumptions, the complete model was successfully applied to both
tumour growth experiments. However, because of the small number of animals used,
some of the model parameters are associated to a high uncertainty. It was not possible to
conclude about the significance of their differences between both studies. Nevertheless,
the comparison of parameters point estimates indicates some differences between both
studies. Kuans represents the kinetics of drug accumulation into tumour cells due to
passive diffusion; through this parameter it is the tumour environment and vasculature
that are accounted for. Kirans was found lower in S2 than in S1 suggesting a lower cytotoxic
accumulation in tumour cells. In addition, the active efflux rate representing the
transporter activity (Kact) was found greater in S2. In addition the delay between tumour
cells implantation and treatment onset was longer in S2 so that the proportion of drug
sensitive cells was lower in S2 at treatment onset (68% in S2 versus 85% in S1 at
respective treatment onset). All these results suggest a different tumour biology between
both studies mainly due to a different tumour development status at treatment onset.

In both studies, MBLI87 effect was low. One of the reason of this low effect can be

attributed to the lower inhibition of active transport for SN38 compared to that of CPT11

( Cmoy(MBLIS7) —2  CmoywmBLI87)

= , =1073). SN38 being around 11 times more
K; (MBLI87|CPT11) K; (MBLI87|SN38)

180



Chapter II: Mechanistic model-based development applied to efflux transporter inhibitors - Publication 2

potent than CPT11 in vivo, a better inhibition of its active transport would allow a better

effect on the tumour growth. In a general way, ABCG2 inhibition by MBLI87 is too weak

. . Tumour Size (day 40)
to ensure a sufficient effect on the tumour growth ( , Y 4 MBLIST
Tumour size (day 40)_pmBLIg7

0.98 in S2). This can due to the chemical properties of MBLI87 such as its short half-life
or its weak inhibitory constant. In the simulation study, MBLI87 properties were
artificially modified to find some recommendations to enhance its efficacy. Using the same
dosing regimen as in S2,a 1000 times increase of MBLI87 dose was necessary to increase

the mean tumour concentration of CPT11 by 1.4 and by 1.1 for SN38. However, effects on

Tumour Sizegqy 40,+MBLI87
Tumour Sizeday 40,—~MBLI87

the tumour growth were still low ( = 1.2). Better results were

achieved by using a continuous infusion with a 100 times increase of MBLI87 dose that
leads to a constant inhibition of the transporter. In that case, the increase of CPT11 and
SN38 mean tumour concentration was slightly better but still associated to a low effect
on the tumour growth (Table 3). These first results indicate that MBLI87 Ki and clearance
are too high to ensure a sufficient inhibition of the transporter. As a demonstration,
MBLI87 reversal effect was maximized when its Ki value was decreased to obtain a ratio
between MBLI87 mean plasma concentration and Ki equal to 100 and when its clearance
was 10 times decreased (Figure 3B).

The active efflux rate (Kact) is a characteristic of tumour cells. We modified its value to
evaluate its impact on the inhibitor efficacy (while decreasing MBLI87 Ki to ensure a
sufficient inhibition of the transporter). In that case, MBLI87 was potentiated
demonstrating the necessity to choose a cell line where the transporter is enough
expressed to prove the benefits of active efflux inhibition. In a previous work, we
established that the maximum increase of CPT11 and SN38 intracellular concentration

was moderate in HEK293 cells even when ABCG2 was fully inhibited (252). Better results
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could thus have been observed with a cell line overexpressing more the transporter. The
last axis explored in the simulation study concerns the tumour biology. As already found
for S1 and S2, the percentage of drug sensitive cells impacts treatment outcomes. Here
the initial tumour volume was changed to get the same initial volume of proliferative,
necrotic and hypoxic cells. As expected, treatment efficacy was lower with larger tumour
volumes observed at day 40 in that case (Table 3). These results need to be interpreted
with caution since they depend on the tumour growth model, different finding could have
been obtained with a different model. The last point investigated concerns the diffusion
of cytotoxic in the tumour. This system-dependent parameter was found crucial for the
drug efficacy. Indeed, the smallest tumour size at day 40 was obtained with increased
cytotoxic diffusion. Surprisingly, the scenario maximizing the treatment outcomes was
different of the one maximizing MBLI87 effect. If a better inhibition of ABCG2 is necessary
by decreasing both MBLI87 Ki and clearance, it appeared also necessary to ensure a good
diffusion of cytotoxic in the tumour to minimize the tumour size as already shown by Patel
and Tanock (236). This last result raises the question of combining an anti-angiogenic at
treatment onset to normalize the tumour vasculature and ensure a better drug diffusion
(253).

It is thus not possible to simultaneously maximize the inhibitor reversal effect and
minimizes the tumour size. In one case, it is important to use a system where the efflux
transporter is well expressed that is necessarily associated to a lower effect on the tumour
growth and to ensure a sufficient inhibition of the transporter, whereas it is preferable to

focus on the cytotoxic penetration into the tumour to minimize the tumour size
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Chapter IlI: Quantitative evaluation of the interaction between cytotoxic and efflux transporter inhibitors: a
tool to support early preclinical drug development

1. Introduction

If mechanistic models are the “gold standard” approach to identify the key drug
mechanism, they require a lot of data that are not always available at early stages of
preclinical drug development. First studies in animals are relatively poorly designed since
their aim is just to demonstrate the relevance of the target. Usually, only one dose level is
tested using small number of animals so that their results are difficult to extrapolate.
Moreover, usual methods to analyse these so-called Proof-of-Concept (PoC) studies can
lead to biased interpretation of the results.

In this chapter, we propose to illustrate the benefits of the NLME approach and
quantitative longitudinal modelling to support the early development of the efflux
transporter inhibitors - cytotoxic combination.

In this study, a minimal tumour growth inhibition model of the interaction between efflux
transporter inhibitor and cytotoxic is presented based on data issued from a preclinical
PoC study, in which no PK data were collected. Our aim was to develop a suitable
modelling approach to characterize tumour growth inhibition under various treatments,
in spite of the lack of PK data. The model was applied to the MBLI87 - CPT11 combination

in order to evaluate the reversal effect of MBLI87 on CPT11 BCRP-mediated resistance.

2. Materials and Methods

Twenty mice xenografted with HEK293 cells overexpressing BCRP were randomized into
four treatment groups: Control, MBLI87, CPT11 and MBLI87+CPT11. CPT11 was IP
administered at 20mg.kg-! 3 days per week for 4 consecutive weeks and MBLI87 was IP
administered at 2.4mg.kg1 5 days per week for 4 consecutive weeks. Tumour size was

repetitively measured throughout the length of the experiment. Four measures per
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animals were available (tumour length and width on each flank) and the geometric mean
of these four measures relative to the baseline tumour size was used as the dependent
variable in the model. No PK data were available.

Three tumour growth models with increasing shape complexity were tested to model the
unperturbed tumour growth (exponential, Gompertz, Simeoni). Since no PK data were
available, a K-PD approach was used to account for the drug kinetics in the biophase.

In the case of single drug administration, i.e. CPT11 and MBLI87 groups, the drug effect
was assumed to be directly proportional to the accumulated amount of drug accumulated
in the K-PD compartment.

The interaction between CPT11 and MBLI87 was considered at the tumour growth level.
In the interaction model, it was assumed that the efflux transporter inhibitor was not
cytotoxic and only increased CPT11 cytotoxicity relatively to the accumulated amount of
inhibitor in the K-PD compartment. MBLI87 was thus excluded from the interaction
model. However, this parameter was still estimated for animals receiving MBLI87 alone
to check the assumption made in the interaction model.

Model parameters have been estimated by NLME approach using the NONMEM software
version 7.1.2. To maximize the advantages of the NLME approach, all the treatment
groups are simultaneously analysed. Drug potencies were estimated for each drug and
the interaction parameter for the co-administration group. Individual tumour growth

rates were assumed to arise from a single distribution.

3. Results

Among the three tumour growth models tested, the most appropriate one was the
Simeoni’s model that assumes two growth phases (exponential followed by linear, see

5.2). Model evaluation did not reveal any misspecifications and all the parameters were
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estimated with an adequate precision. The model thus correctly described and predicted
the tumour growth dynamics in all the treatment groups.

Elimination half-life from the biophase was estimated at 8.5h and at 491d for CPT11 and
MBLI87 repsectively. The latter value indicates that the MBLI87-induced inhibition is
nearly constant during the time of the experiment. MBLI87 cytotoxic potency was
estimated at 1.4.10-°umol-1.d-1, a value 3500 times lower than that of CPT11 confirming

its lack of-cytotoxicity. The PD interaction parameter was estimated at 10-2pmol-2.d.

4. Discussion

A Kinetic-Pharmacodynamic tumour growth inhibition model that includes a
pharmacodynamic drug-drug interaction was presented in this study. The model was
applied to the CPT11-MBLI87 combination and was able to correctly describe and predict
the effects of the drug combination on the tumour growth.

Contrary to the models presented in Part 2, this model includes several simplifications
while retaining enough complexity to simultaneously quantify the tumour growth and the
effect of a new drug combination.

The major assumption includes in the model is the absence of cytotoxicity of the efflux
inhibitor. The analysis of the tumour growth in animals treated by MBLI87 alone give
substantiation to this assumption since MBLI87 potency was found to be 3500 times
lower than that of CPT11. This drug only act by increasing CPT11 potency, which is
consistent with its mechanism of action as demonstrated in Part 2. MBLI87 was found to
increase CPT11 potency of 0.01pmol! per pmol of MBLI87, so its effect is potentially
strong.

Another simplification in the model concerns the linear interaction between compounds,

the model is thus unable to predict the expected saturation of MBLI87 effect at high doses.
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Drug effect was modelled using a direct model (see 4.2.5.1) so that the delay between drug
administration and observed effects usually reported for anticancer drugs was not
accounted for here.

Because of the absence of PK data, a K-PD approach was used to model the kinetics of the
effect. Even if the K-PD approach shows large benefits to analyse this type of study by
reducing the study costs and length, it also shows some limitations. As an example, CPT11
PK in mice is known to be non-linear with a saturable elimination (Chatelut), that cannot
be accounted for with the K-PD model. The linearity assumption included in the K-PD
model also reduces the extrapolation properties of the model because the assumption is
violated for higher doses.

Traditionally, animals PoC studies are analysed using simple statistical tests that compare
the outcome in the treatment and control groups. These tests can lead to biased results is
the study is unbalanced because the power to detect a drug effect is decreased. Moreover,
to account for all the tumour growth, it is necessary to include some corrections of the
tests significance to account for the multiple testing and for the correlation between two
successive tumour size measurements. The approach developed here circumvents all
these issues. The time dependent-nature of the data is accounted for through the
longitudinal model allowing the analysis of sparse data and the inter- and intra-individual
variability is quantified. Moreover, the NLME approach enables to combine all the
information available to fully quantify model parameters in a single step. Finally the
model separates both drug and disease specific parameters in order to properly quantify
the drug effects as suggested previously.

This model thus constitutes an alternative to usual analysis methods for PoC studies.
Moreover, its equations are drug-independent allowing its use as a template for early

evaluation of efflux transporter inhibitors in vivo.
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Introduction

Several multidrug efflux pumps that belong to the ATP Binding Cassette (ABC) are known
to play a crucial role in drug absorption, distribution and elimination. Under normal
conditions, one primary function of these pumps is to protect healthy tissues against
xenobiotics by decreasing the intracellular retention of endogenous and exogenous
molecules and by altering the cellular response to drugs. Tumour cells that overexpress
these pumps act in the same way and thus exhibit a resistance to anticancer agents.

In the last few years, efforts have been mainly focused on reversing the activity of ABCB1,
or P-glycoprotein (P-gp) (224-226). P-gp inhibition has essentially failed either because
the transporter was not as prevalent as expected or because P-gp inhibition was
insufficient. Clinical and preclinical studies are rarely addressed the inhibition of others
ABC transporters to overcome drug resistance (254).

The present work focused on one of the latest ABC efflux transporter discovered ABCG2,
so called Breast Cancer Resistance, BCRP. This transporter plays a tumour-protective role
against several anticancer drugs including mitoxantrone, irinotecan and SN38, the active
metabolite of irinotecan (111, 113, 227). Moreover, its substrate profile partially overlaps
that of P-gp. Development of ABCG2 inhibitors may thus improve the efficiency of
cytotoxic drugs on tumour overexpressing this efflux transporter.

Various ABCG2 inhibitors were already described in the literature, including imatinib and
gefitinib (125, 255). These drugs are efficient tyrosine kinase inhibitors but not ABCG2
specific. Inhibition of ABCG2 with these drugs would require very high doses associated
to intolerable toxicities which preclude their clinical use for this purpose (256). Recently,
new ABCG2 inhibitors that are non-toxic and transporter specific have been synthetized

(136). One acridone derivative, MBLI87, has shown favourable properties against
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mitoxantrone-ABCG2 mediated efflux in-vitro. A proof-of-concept (PoC) study has also
been successfully carried out in-vivo and MBLI87 is undergoing further preclinical
development (137).

The objective of preclinical drug development is to investigate drug efficiency and safety
as earlier as possible. When development is based on trial-and-error approaches, it is
quite inefficient, costly and results in high attrition rates (212, 213). Model-based drug
development has been advocated to overcome previous issues but, surprisingly, there is
still a paucity of studies using models for preclinical drug evaluation (191, 193, 194, 257).
Moreover, information derived from preclinical studies can be largely increased with this
approach. New hypotheses about the drug mechanism can also be generated (214). We
decided to apply this approach to MBLI87 preclinical development.

Based on preliminary data from PoC study, we developed a minimal tumour growth
inhibition template model of the efflux transporter inhibitors effect on cytotoxic potency.
Using this model, we quantified the reverting effect of MBLI87 on irinotecan ABCG2-

mediated resistance in vivo.
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Materials and Methods

Experimental method

Proof-Of-Concept animal study

The Human Embryonic Kidney 293 (HEK293) cell line ABCG2-transfected were cultured
as described in (137). Cells were maintained in Dulbecco’s modified Eagle’s medium
(DMEM high glucose), supplemented with 10% foetal bovine serum (FBS), 1%
penicillin/streptomycin, and 1mg.mL-1 G418.

8-week old Severe Combined Immuno-Deficient (SCID) female mice (Charles River
laboratories) were subcutaneously inoculated with these ABCG2-overexpressing cells
(8.6.10¢ cells in 100uL PBS/inoculation). Each mouse was implanted on the right and left
flanks with the same tumour cell type.

Time 0 was the time of cell inoculation. Twenty mice were randomized the day after cell
implantation into 4 treatment groups (control N=5, irinotecan N=5, MBLI87 N=5,
irinotecan+MBLI87 N=5).

All the procedures were approved by the Animal Facility veterinarian board.
Drug treatment

Irinotecan was provided by MAP-France company. It was injected intra-peritoneally (IP)
at 20 mg.kg! 3 days per week. MBLI87, which was not soluble in either water or saline
vehicle, was formulated in enzymatically modified-cyclodextrin-based colloidal
suspension obtained by solvent displacement method as described in (137). MBLI87-
loaded nanoparticles size, estimated by quasi-elastic light scattering, was around 185-
195nm. The final suspension loaded at 0.16mg.mL-1 of MBLI87 was IP administered at
2.4mg.kg1 5 days per week. The treatment began 7 days after cells implantation and was
pursued during 4 weeks.
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In-vivo tumour growth experiments

Mice were clinically evaluated daily. Tumour dimensions (length, width) were measured
with a caliper 3 times per week starting on day 5. Mice were sacrificed when the tumour
volume exceeded 1800 mmb3.

Four measurements per mouse (tumour length and width on each flank) were available
at each observation time point. The geometric mean of the 4 measures, normalized to

baseline tumour size, was the dependent variable of the regression model.

Model development

Non-Linear mixed-effects modelling

The data was analysed using Non-Linear Mixed Effects (NLME) approach which enables
simultaneous estimation of fixed and random effects in the model. Fixed effects refer to
the typical value (mean) of a parameter (P) in the population. Random effects are
estimated on two levels: variability between individuals (Inter-Individual Variability, I1V),
and variability within an individual (Residual Variability, RV). Each observation of an
individual can be described as follows (228):

Yij = f(Xij'Pi) + g(Xij;Pi) X &j (Equation 1)
Where yij is the jth observation for the ith individual, f(...) is the individual prediction
described by Xjj the individual variables and Pi the individual parameter, g(Xij, Pi) X g;jis
the residual error that describes the difference between the individual model prediction
and the corresponding observed value. The residual error is supposed to be
independently and identically normally distributed with 0 mean and 6?2 variance. In the
following, we will consider a proportional error model, g(Xl-j, Pl-) = f(Xij, Pi).

The individual parameter, Pi, is expressed as a function of the typical value for the

population (8) and the deviation from this typical value:
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P, = 0 xel (Equation 2)
ni is a random value that describes the difference between the population and the
individual i. ni values are assumed to be independently and identically normally
distributed with 0 mean and w? variance.

Unperturbed tumour growth modelling

To describe the tumour growth in animals in the absence of drug effect, we tested three
different tumour growth models (exponential, Gompertz and Simeoni unperturbed
(191)) of increasing shape complexity:

e Exponential model
de;(t .
% = A; X ¢;(t) (Equation 3)

e Gompertz model

dq:-t(t) = 2 X ¢;(£) X <1 _ (M)) (Equation 4)

Kiim;
e Simeoni unperturbed model
déi(t) _ Ag,ix¢i(t)
dt
A ; ¥
<1+(ﬁx¢i(t)) )

Where the subscript i designate the it individual, ®i(t) is the mean tumour diameter at

(Equation 5)

€[

time t relative to baseline (®i(t=0)=1), Aiis the tumour growth rate, Kiim, is the maximum
tumour capacity, Ao,i and A1,i are the exponential and linear growth rate and ¢ is the
switching parameter allowing the transition between both growth phases.

The number of parameters estimated in each of these models was the following: one (Ap)
for the exponential model, two (A, Kiim) for the Gompertz model and two (Ao, A1) for the
Simeoni’s unperturbed model,  being fixed to a high value allowing the rapid switch

between both growth phases.
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Drug action modelling

No pharmacokinetic (49) information was available in this study. It was thus impossible
to build a usual PK-PD model. To overcome this difficulty, we used a Kinetic-
Pharmacodynamic (K-PD) approach (173). This approach assumed drug accumulation in
one virtual compartment and mono-exponential elimination from this compartment. The
PK model is thus reduced to its simplest form: bolus doses are directly input into the

compartment and only a pseudo-elimination rate constant is estimated (Equation 6).

dAZ_ti(t) = —Ky; X Ay (t) (Equation 6)

Where Kx, is the pseudo-elimination constant for drug X and in the it individual, Ax,i(t) is
the drug amount for drug X at time t. The product Kx,i by Axi(t) is the dose rate.

In the case of single drug treatment, drug effect was assumed to be directly proportional
to the drug amount in an individual at time t, the rate of tumour shrinkage due to the drug

action was described as follows:

Drug action = Py X Ay;(t) (Equation 7)
Emax
With Py = —=2x
EDsoy

Where Px is the potency of drug X in umol-1.d-! that is the ratio between maximal drug X
effect (Emaxx) divided by the amount of drug amount resulting in half the maximal effect
(EDsox); Axi(t) is the drug amount of drug X at time t.

For those groups, Equation 7 is directly subtracted from tumour growth equation
(Equation 3-5).

The interaction between drugs was considered at the level of tumour growth. We
assumed that efflux transporter inhibitor was not cytotoxic and increased directly

irinotecan cytotoxicity as described in Equation 8.

PX = Pcytotoxic + :chtotoxicunhibitor X Ainhibitor,i(t) (Equation 8)
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Where Pcytotoxic is the cytotoxic potency of irinotecan, [cytotoxiclinhibitor 1S the
pharmacodynamic interaction parameter between irinotecan and MBLI87, and
Ainhibitori(t) is the amount of MBLI87 in individual i at time t. According to Equation 8,
strength of the interaction increased with Bcytotoxiclinhibitor and also with amount of
inhibitors.

MBLI87 potency was not included in the interaction model. However, this parameter was
still estimated for animals receiving MBLI87 alone in order to check the non-cytotoxicity
assumption of this compound.

All treatment groups were analysed simultaneously. Drug potencies were estimated for
each drug and interaction parameter for irinotecan and MBLI87 combination. Individual

tumour growth rates were assumed to arise from a single distribution.
Parameter estimation and model diagnosis

Parameters estimation was performed with NONMEM software, version 7.1.2 (229).
NONMEM uses a parametric maximum likelihood method: the probability of the data
under the model is maximized by minimizing the extended least squares objective
function.

Selection between tumour growth models was based on the likelihood ratio test and
Akaike Information Criteria (173) as well as on goodness-of-fits plots and simulation-
based diagnostics.

To evaluate the model fit, we used classical goodness-of-fits plots, based on the model
predictions and observations, and simulation-based diagnostics. The latter could reveal
model misspecifications that were not easily diagnosed with classical goodness-of-fit
plots and allowed to test the model’s predictive performances. Two of these methods
were used here: the Normalized Prediction Distribution Errors (NPDE) and the Visual

Predictive Check (VPC).
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NPDEs should follow a standard normal distribution (230, 251). The model was
considered as invalid when NPDEs are not normally distributed with a 0 mean and 1
variance.

The VPC consists of simulating tumour growth profiles of each treatment groups based
on model structure and parameter estimates (167). We simulated 1000 replications of
the experimental data set. The 90% non-parametric confidence interval (CI) of the
simulated medians was computed and then compared to the observed medians. The
model was considered as invalid when the CI did not bracket the observed medians.

The model evaluation was performed with the R-based XPOSE4 program (231) and the

PsN toolkit for the VPC calculations (232).
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Results

The geometric mean of tumour diameters correlated best with tumour volumes and was

thus chosen as the dependent variable.

Tumour size

Dose
schedule

T T T T

20 25 30 s

.Time (d]

Figure 1: Data representation
Median tumour size is represented for each treatment groups (black: control group; red: MBLI87 group;
green: irinotecan group; blue: irinotecan+MBLI87 group). Dose schedule is also represented in segment
(purple: MBLI87 dose schedule; grey: irinotecan dose schedule).

Among the three tumour growth models, the most appropriate was the Simeoni’s

unperturbed model. The Gompertz model failed to converge and the exponential model

resulted in an increase of 85 points in the AIC value (Table 1, Figure 2).

Exponential model

Gompertz model

Simeoni model

AIC

-193.6

Goodness-of-Fit plots

Does not capture the

biphasic tumour growth

Does not follow a normal

NPDE
reduced distribution
Simulations are not in
agreement with the
VPC

tendency observed in

data

Failed to converge

-278.6

Capture the biphasic

tumour growth

Follows a normal

reduced distribution

Simulations are in
agreement with the
observed tendency in

data

Table 1: Model selection procedure
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Figure 2: Model Structure
Schematic representation of the model structure

Basic diagnostic plots of the model revealed no model misspecification. The model

predictions (PRED, IPRED) were able to capture the observed tumour growth

distributions (DV) (Figure 3).

Observations
Observations

Population predictions Individual predictions

Figure 3: Basic goodness of fit plots
Basic goodness of fit plots compares the population predictions (left) and individual predictions (right) to
the observations. The red line indicates the trend in the distributions and the black line is the identity line.

The NPDEs were normally distributed with 0 mean and 1 variance without a trend (Figure

4 and 5).
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Figure 4: Normalized Prediction Distribution Error (NPDE) over population predictions
The normalized prediction distribution error (NPDE) versus population model predictions (PRED) is
shown. NPDEs follow a normal centred reduced distribution (heavy line represents the 0 mean).

NPDE

40 %0 )

Time (d)

Figure 5: Normalized Prediction Distribution Error (NPDE) over time
The normalized prediction distribution error (NPDE) versus population model predictions (PRED) is
shown. NPDEs follow a normal centred reduced distribution (heavy line represents the 0 mean).

The VPC results showed the predictive abilities of the model (Figure 6). The observed
tumour growth medians for each treatment group were enclosed within the 90% CI of the
simulated medians as required for model validation. The model structure was thus able

to adequately describe the data and had adequate predictive performances.
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Figure 6: Visual Predictive Check (VPC)
Visual Predictive Check (VPC) plot compare the observed median tumour size (mm, heavy lines) over time
(d) to the 90% non-parametric confidence interval of the median (dashed lines) obtained after simulations.
Observed median and 90% non-parametric confidence interval are shown in each treatment group.

Parameter estimates are presented in Table 1. Inter-Individual Variability (IIV) was
estimated on four parameters: Kirinotecan, Ao, A1 and baseline. Inter-Individual Variability
was estimated with a shrinkage not greater than 30% and residual variability with a 4%
shrinkage.

The exponential growth rate (Ao) was estimated at 0.06d-1 and the linear growth rate (A1)
at 0.069d-1 with an IIV at 49% corresponding to an exponential tumour doubling time
estimated at 11.5d. Pseudo-elimination constants (K) were estimated at 1.9d-1 with an IIV
coefficient of variation at 25% for CPT11 and 0.00141d-! with IV coefficient of variation
at 31% for MBLI87 that correspond to elimination half-life from the biophase at 8.5h and
491d for CPT11 and MBLI87 respectively. The latter value indicates that in our conditions,
the MBLI87-induced inhibition was nearly constant during the course of the
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study.MBLI87 potency was estimated at 1.4.10-¢umol-1.d-1, a value 3500 times lower than
irinotecan potency. It confirmed the assumption of absence of MBLI87 cytotoxicity made
in the pharmacodynamic interaction model. This result was in accordance with the
absence of measurable difference in tumour growth between control and MBLI87 groups.
Absence of difference was assessed in simultaneously fitting both groups to the
unperturbed tumour growth model to test the group effect; the increase of Ao and A1 under
MBLI87 treatment compared to control was 0.1% and 0.001% respectively. The
interaction parameter, 3, was estimated at 10-2 pmol-2.d-1.

Precision in parameter estimates, expressed as 95% confidence interval, was obtained

after 50 bootstraps. All the model parameters were estimated with an adequate precision.

Typical Value

Parameters [95% confidence interval] 1V (%CV)
Kirinotecan 198
(dy [1.55; 2.41] 25.2
KmBLig7 1.41.103
(dn [1.55.10%; 2.66.103] i
Ao 6.06.10-2 03
(d1) [3.57.10-% 8.55.10-2] ’
A 6.87.10-2
@ [5.98.10%; 7.56.102] 48.3
Pirinotecan 4.95.102
(umol-1.d1) [1.67.102; 8.21.102] i
PwmBLI87 1.41.10¢
(umol-1.d1) [1.10-8; 2.4.10-6] i
Birinotecan|MBLI87 1.102
(pmol-2.d1) [1.26.10-3; 1.87.10-2] i
Baseline of tumour size 1* -
Variance of residual error 0.235 -

Table 1: Model parameters estimates
*: Fixed value
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Discussion

This study presented the construction of a Kinetic-Pharmacodynamic Tumour Growth
Inhibition model including a pharmacodynamic drug-drug interaction. The model
describes and predicts the effects of a new ABCG2 inhibitor, MBLI87, co-administered
with irinotecan on tumour growth in xenografted animals.

Proof-of-Concept studies are designed to give preliminary evidences of treatment efficacy
and thus contain minimum information. Classical methods to analyze such studies are
usually based on simple statistical tests that compare the outcome in control and
treatment arms. Despite their attractive simplicity, these tests can lead to biased results
if study design is unbalanced, as it is the case here, since the power to detect drug effect
decreases.

Moreover, to account for all the tumour growth, it is necessary to include some correction
of the tests significance to account for the multiple testing and for the correlation between
two successive tumour size measurements. The Non-Linear Mixed Effects (NLME)
approach circumvents all these issues. The time-dependent nature of the data and the
variability between and within individuals are accounted for, allowing the analysis of
sparse data. The whole tumour growth dynamics is described that allows to properly
estimating the drug effect. Moreover, since the different sources of variability are taken
into account, the drug effect is estimated with less bias.

The major assumption in our model was that ABCG2 inhibitor was not cytotoxic. No
previous study has demonstrated the absence of MBLI87 cytotoxicity in vivo, it was thus
necessary to quantify its potency to give substantiation for the assumption made in the

interaction model. Analysis of the tumour growth in animals receiving MBLI87 alone
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supported this assumption. In this group of treatment, MBLI87 potency was estimated at
1.4.10-°umol-1, a value 3500 times lower than that of irinotecan.

This drug only acts in modifying irinotecan cytotoxic potency, which is consistent with
the mechanism of action of this drug. MBLI87 competes with irinotecan within the
transporter leading to an increase of irinotecan intracellular concentration and,
enhancing its cytotoxicity. Our pharmacodynamic interaction model describes MBLI87
action on irinotecan potency but does not account for the expected saturation of MBLI87
effect at high doses. A sigmoidal interaction model was also tested but failed to converge,
while no model misspecification was found with the linear interaction model.
Interaction between irinotecan and MBLI87 was characterized by a 3 value of 10-2umol-
2.d1;i.e.a 0.01 umol-1.d-1increase of irinotecan potency per pmol of MBLI87.

The cytotoxic potency of irinotecan (Pirinotecan) Was estimated at 0.025 pmol-! and the
impact of MBLI87 is thus potentially strong. However, this impact depends on the active
drug efflux rate, and thus on the cell line used in xenografted tumours.

The cytotoxic effect was described using a direct effect model assuming an absence of
delay between cytotoxic administration and effects on the tumour growth. Usually,
cytotoxic effects are described with indirect effect models to account for this delay, which
depends on both the tumour type and the drug at hand. However, our data did not support
the estimation of such a model.

Previous studies showed that irinotecan triggers the up-regulation of the efflux
transporter leading to a possible decrease of irinotecan effect with time (12). It could have
been interesting to incorporate such a phenomenon in the model structure. However,
since the model relies on a small number of animals (5 per group), the data cannot support

the estimation of one more parameter with reasonable precision.
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Tumour growth in our data followed two phases; Simeoni’s unperturbed tumour growth
model was thus the most appropriate. Due to the absence of observable plateau, the
maximal tumour capacity (Kim) cannot be estimated, explaining why the Gompertz-like
model failed to converge. The exponential model was not able to capture both growth
phases and thus resulted in an increase of the AIC value. Simeoni’s unperturbed model
was thus the most appropriate model, with minimal complexity.

Due to the absence of drug concentration measurement, a K-PD approach was used: the
drug kinetics was governed by a rate constant whose estimation was derived from
observations of tumour growth dynamics. Using K-PD approach to analyze such studies
reduce costs and length of study since no independent PK study has to be performed. The
K-PD approach is a compromise between the classical “intent-to-treat” analysis where the
PK in not accounted for and the full “pharmacokinetic” approach where individual PK
profiles are assessed. The pseudo-elimination (K) cannot be interpreted as a pure
pharmacokinetic parameter derived from real concentration measurements. This
parameter has to be interpreted as the rate constant that governed the kinetics of active
drugs in the biophase (i.e, the effect site) (174). The possible impact of MBLI87
formulation was thus accounted for since the pseudo-elimination constant describes the
elimination of MBLI87-loaded nanoparticles from the biophase.

This rate constant can be transformed into an half-life (t1/2=In(2)/K). For irinotecan, its
half-life in the biophase was estimated at 8.4 hours, a value longer than its half-life
observed in mouse plasma (0.8-1.1 hour). However, irinotecan pharmacokinetic in mice
is non-linear with a saturable elimination (11), this feature cannot be represented with
the K-PD approach and can limit the extrapolation of our results with various dosing
regimens. Assumptions of linearity included in both K-PD and interaction models thus

reduce the extrapolation properties of the model since these assumptions would be
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violated for high doses of irinotecan or MBLI87. However, the model can be used to
simulate the effects associated with lower doses or with different dosing schedules
assuming the same total dose amount. Figure 7 shows that if irinotecan and MBLI87 doses
are equally distributed within the cycle, there is a trend for an increased drug effect.
Moreover, in the context of early preclinical development, this model can be used to

choose the most potent inhibitor based only on a single tumour growth study.

Tumour size

0 L] 10 35 ) 3 a0

Time (d)

Figure 7: Tumour growth simulation under equally distributed irinotecan and MBLI87 dose schedule
obtained after 1000 simulations from the model.

Tumour growth simulations are presented for current and modified dose schedule, e.g. doses equally
distributed throughout the treatment period (0.31umol of irinotecan and 0.0807umol of MBLI87 given
every day).
Black line represents the median tumour growth profile under current irinotecan dose schedule; red line
represents the median tumour growth profile under irinotecan updated dose schedule, green line
represents the median tumour growth profile under irinotecan+MBLI87 current dose schedule and blue
line represents the median tumour growth profile under irinotecan+MBLI87 updated dose schedule.

This model includes several assumptions and simplification while retaining enough
complexity to quantify simultaneously tumour growth and action of an efflux transporter
inhibitor combined to cytotoxic. Moreover, NLME approach enables to combine all the
available information in a single step. Model equations are drug-independent, allowing

their use as a template for early evaluation of efflux transporter inhibitors in-vivo. In a
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drug development context, it is also possible to reduce experimental effort based on

experimental design optimisation derived from this model.
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Benefits of tumour growth inhibition models
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1. Introduction

The two previous parts dealt with the benefits of the NLME approach and tumour growth
models to evaluate oncology drugs during preclinical development. In patients, the
model-based approach is much more established but it remains some challenges to meet.
As mentioned in the first chapter, one critical point concerns the design and evaluation of
phase 2 studies. These studies are usually evaluated using Objective Response Rates
(ORRs) that omit the whole tumour growth dynamics. ORRs are unable to establish the
link between patients’ response and their survival, the ultimate clinical endpoint in
oncology.

However, the change in tumour size has been characterized as a predictor of patients’
overall survival (198, 258). Moreover, the relationship between tumour response and
patients’ overall survival has already been characterized and the benefits of the tumour
size modelling have thus been already demonstrated.

Although the use of these tumour growth inhibition models is well established to evaluate
oncology drugs, there is still a lack of attempts to design oncology trials based on tumour
growth inhibition models.

This is the purpose of this chapter, to optimize dose schedule of an oncology phase 2 trial
based on TGI model to maximize the patients’ response. In addition, the effects of both the
dose-effect relationship and the tumour resistance on the optimization outputs were

investigated.
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2. Methods

The context of f this study was a theoretical phase 2 study of the oral prodrug of 5-FU,
capecitabine (see 1.3.5.). Capecitabine was subject to intensive modelling during its
development. One of the models developed establishes the link between modelled tumour
response and patients’ overall survival (170). Claret’s model accounts for both the natural
disease progression and the drug effects and shows adequate predictive performances as
well as flexibility so that it fits the purposes for this optimal design problem.

The same study design as the ones used in capecitabine phase 2 study were used here. A
user-defined penalty function was implemented to optimize both dose and dose schedule
on the individual tumour growth. The different optimal criteria consist all in maximizing
the change in tumour size from baseline. To account for the natural variability existing
between patients, the criterion was computed using individual parameter values sampled
from their distribution and the mean of the individualcriteria was maximized to obtain
the optimal design. Optimizations were performed within a set of clinical constraints to
obtain the most clinically relevant dose schedule and to limit the risk of toxicity.

Then the impact of both dose-effect relationship and tumour resistance development rate
was investigated on the optimization outputs. The impact of the dose-effect relationship
was assessed by modifying the drug exposure function in the model. Both Emax and linear
dose-effect relationship were investigated. The impact of the tumour resistance
development rate was assessed by modifying the value of the resistance parameter in the
TGI model. Optimal dose schedules were compared using the mean dose time (MDT) that

reflects the dose intensity within the cycle.

3. Results

The optimal criterion selected was the following:
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1 i=n |1 (977, &=0t; .
Xoptimal = Argmax 3 ET]’ v |&i=1 v (6770%) (Equation 20)
AU gl=0,t;=0

Where i refers to the ith individual parameter values in the population including N

individual values, yi refers to the tumour size (yi(ti=0)=71mm) X refers to the vector of

design parameters, 6 refers to the vector of parameters typical values, 7] refers to the
vector of parameters inter-individual variability and € refers to the vector of the residual
variability.

The criterion shows good stability when computed with 500 Latin Hypercube Samples
samples taken in the parameter distribution. Since the survival model from Claret et al.
identified the tumour size at week 6 as a predictor of the overall survival, the optimal
criterion was computed using the modelled tumour size at this time point and the
modelled tumour size at baseline.

In case of a linear dose-effect relationship, the optimal dose schedule frontloads all the
doses in the first week of the cycle independently of the value of the tumour resistance
development rate. When the tumour resistance increase, the optimal criterion value
decreased attesting the decrease of the drug effect. The situation is more complex in case
of Emax type dose-effect relationship; the optimal dose schedule depends on both the EDso
and tumour resistance development rate values. For high values of ED50, the optimal dose
schedule equally distributes the doses in the cycle for medium and low values of tumour
resistance development rate. For low EDso values, the optimal dose schedule frontloads
doses within the first week of the cycle for any degrees of tumour resistance development
rate.

In all the cases, the optimal dose schedule performs better than the current dose schedule

in terms of tumour response.

4. Discussion
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This study aimed at developing a population OD methodology to optimize tumour
response and by extension anticancer drug efficacy. In that purpose, a clinically relevant
optimal design criterion was defined based on the change in tumour size allowing the
optimization of anticancer drug dose and dose schedule. The optimal criterion used the
modelled tumour size derived from TGI model from Claret et al., which was linked to the
changes in tumour size to overall survival in patients treated with capecitabine.

A user-defined clinically relevant optimality criterion was used to ensure the clinical
relevance of the optimization outputs, optimizations were conducted within a set of
clinical constraints. Moreover, the optimal criterion used the same variables as those used
in the survival model of Claret et al, so by extension the design should also maximize
patient’s overall survival.

All the optimized dose schedules performed better than the current dose schedule
indicating that the tumour response could be improved. However, these results have to
be nuanced because optimizations do not account for drug toxicity, even if the same
boundaries as those used in clinical practice were used.

In the context of oncology phase 2 studies, the choice of the most relevant dose schedule
remains a critical point. The use of ORRs has already shown its limits and new approaches
are necessary to better design these studies in order to reduce the risk of development
failure. This study demonstrated that the use of quantitative TGI models allows the
optimization of the expected patients’ response. However, this work will require
additional features such as the consideration of the drug toxicity to ensure the feasibility

of the optimal dose schedule.
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Introduction

The drug development process in oncology suffers from inefficiency with more than 60%
of anticancer drugs that reach phase 3 failing (196, 216). This clearly implies that
improvement of current methodologies to evaluate oncology compounds can result in
substantial benefits.

Typically, in oncology, the decision to move compounds to phase 3 is based on the
achievement of a predefined Objective Response Rate (ORR) calculated using the
Response Criteria In Solid Tumours (RECIST) criteria. One of the issues in using ORRs to
evaluate a phase 2 study are that their estimations are relatively imprecise and they
cannot be used to predict the most informative design for phase 3 studies (164, 259).
Moreover, RECIST criteria do not account for tumour growth dynamics and are thus
unable to evaluate targeted therapies (260).

The use of tumour response to evaluate oncology compounds has been proposed (261,
262). Tumour response has been characterized as a surrogate of patients’ survival which
is the main endpoint in oncology studies (258). Recently, three publications
demonstrated that it was possible to predict patients’ survival from tumour response
(170, 197, 199). These publications were focused on the development of quantitative
tumour growth inhibition models linked to survival models. Results from these
publications showed that the tumour growth dynamics models were much more
informative than observing ORR and highly predictive of patients’ survival. The papers
also showed that building quantitative models for tumour size allows for more
informative designs in the next phase of drug development. Tumour growth inhibition
models establish the relationship between the natural evolution of the disease and the

drug effect. In the phase 2 context, they enable a quantitative comparison of different
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therapeutic regimens in order to obtain a stronger rational to design the phase 3 study. It
is thus reasonable to use these quantitative models not only to evaluate different
regimens but also to optimize regimens.

Optimal experimental design theory using non-linear mixed effects models (NLMEM) was
first introduced by Mentré et al. (263, 264). The primary aim is to maximize the
information content of an upcoming experiment. Often, this is accomplished by changing
sample times (design parameters) to achieve the highest possible precision in model
parameter estimates (measured using the Fisher Information Matrix, FIM) when fitting a
model to study data. However, the methodology is not limited to these types of
optimizations. Specifically, any design variables of interest can be optimized (trial
treatment length, dose and dose schedule for example) (265) and the optimization
criterion must not be based on the FIM.

The aim of this work was to illustrate how a population optimal design framework can be
used to optimize the dose schedule of anticancer drugs for maximal tumour response.
Different dose-effect relationships and different tumour resistance development rates

were explored to illustrate how these phenomena impact dose scheduling.

Methods

We used the example of capecitabine (Xeloda®, Hoffman La Roche) applied to a theoretical
phase 2 study. Capecitabine is an oral pro-drug of 5-Fluorouracile (5-FU) that is clinically
established in the management of metastatic and advanced breast and colorectal cancers

(266).

Tumour growth inhibition model

The tumour growth inhibition (TGI) model from Claret et al. was used as a basis to develop
our optimal design approach (170). This model, built on capecitabine data phase 2 data,
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accounts for tumour dynamics, anti-tumour effect and resistance to the drug effect. It
describes the tumour size (i.e. the sum of the longest tumour diameters according to the
RECIST criteria) as a function of time and drug exposure. The natural tumour growth is
described using a first order growth rate. A resistance process has also been introduced
to describe the decrease of the drug effect with time. The model is described with the

following differential equation:

ayi(t) _

= Ki, - yi(t) = Kp,(t) - yi(t;) - Exposure(t;)

yi(t =0) =y, (Equation 1)
Kp(ti) = Kp, - e~ Mti

Where subscript i refers to the it individual, yi(t) is the tumour size at time t, y,,is the
baseline tumour size, K, is the 15t order tumour growth rate, K, (t;) is the drug-constant
cell kill rate that decreases exponentially with time from an initial value Kj, o, to account
for the progressive development of resistance; Ai is the tumour resistance development
rate; Exposure(t) is the drug exposure at time t. This model incorporates both drug-
specific (Kp,o, A) and disease-specific parameters (KL, yo). Since no pharmacokinetic data
was available, the daily dose (dose-response) was driving the drug effect as in Claret et al.
instead of concentrations (concentration-response). Inter-individual variability (IIV) has
been introduced in model parameters (K, Kp,, A) and the parameters were assumed to
be log-normally distributed. Residual error was described using an additive residual error
model.

The relative change in tumour size from baseline after 2 treatment cycles, i.e. change in
tumour size from baseline to 7 weeks has been identified as predictor of patients’ survival
(Equation 3):

Yi(t=0)-y;(t=7)

yi(t=0) (Equation 3)
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Claret et al. used both the TGI and a survival model to predict the outcomes of a
capecitabine phase 3 study. Simulations confirmed that the modelling framework, TGI
and survival models, was able to predict patients’ survival in the phase 3 based on phase
2 data. In the present work, optimizations of the dose schedule were performed using this
TGI model and parameter estimates derived from the capecitabine phase 2 study

(parameter estimates are presented in Table 1).

Parameter Estimate
Tumour growth rate, Ky (week™) 0.021
Cell kill rate, Kp (g".week™) 0.025
Resistance appearance, A (week™") 0.053
Inter-Individual Variability
o> Kt 0.499
% kPO 0.388
o>* 1.26
Residual error
6 (mm) 11.83

Table 1: Parameter estimates of Claret et al.’s model

“Standard” phase 2 study design

The current regimen of capecitabine consists of 1250g.m*2 twice daily for 14 days
followed by a 7-day rest period (3-week treatment period). This regimen has been
established based on a phase 2 study comparing different dosing regimens and its efficacy
in terms of tumour response was confirmed in a phase 3 study (267, 268). In this work,
the same design as the one used in the phase 2 study was used with one group of 34
patients. Tumour size was measured at treatment initiation (basal value) and every 6
weeks for a total of 42 weeks. In addition, since capecitabine dose is adjusted to body
surface area (BSA) we assumed a normal distribution of BSA with a mean and variance of

1.9m? and 0.2 respectively in our design calculations.

Optimal design approach

Optimal design methodology is typically based on the minimization of model parameter
uncertainty (269). However, in the context of optimizing dose and dose schedule in a

phase 2 study, parameter precision if not the main criterion of interest. At this stage of
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development, efforts should be made to optimize drug effects and alternatives to FIM-
based criteria can be used.

For this reason, a user-defined criterion function was implemented to optimize dose
schedule on the individual tumour growth profile. For cytotoxic drugs such as
capecitabine, a natural criterion to judge the drug efficacy is tumour shrinkage. All the
investigated criteria thus consist of minimizing tumour size at the end of the second cycle
to remain related to the survival predictors used in the survival model from Claret et al.
Minimizing the tumour size can also be viewed as maximizing the change in tumour size

from baseline, as defined, for example, in criterion 1 (Equation 4).

i (64) o,
Criterion, = Argmax ; lEﬁ <% lZi;’l\'l - (57',_3_51 o 0”)] (Equation 4)
LAV T gi=0,t;

Where i refers to the ith individual parameter values in the population including N

individual values, ¥ refers to the vector of design parameters, 0 refers to the vector of
parameters typical values, 7j refers to the vector of parameters inter-individual variability
and ¢ refers to the vector of the residual variability.

To account for the natural variability in tumour response, this criteria is computed using
individual parameter values (7p,) sampled from individual parameter distributions
(Mx,~N (O, a),%i)), thus the expected value of the sum of the relative change in tumour size
is calculated. The ratio of the tumour sizes in criterion 1 can vary from 0 for patients that
have infinite tumour size at the end of the second cycle to infinity for patients in which
the tumour is completely eradicated. However, the objective is to maximize (Argmax) this
criterion by changing the design parameters X and good responders can thus be overly
influential in the optimizations, which will cause the design to focus almost entirely on

these good responders. We thus defined another criterion (criterion 2, Equation 5).
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Criterion, = Argmax ; [Eﬁ (ﬁ[ =N L/i ) A0 ”)l (Equation 5)
HILT Ter=0,t;=0

The ratio of the tumour sizes included in criterion 2 varies between minus (-) infinity for
patients that do not respond to the drug and 0 for a good responder.

For both criteria an expectation calculation was needed and was computed using Monte-
Carlo (sampling) based techniques. Latin Hypercube samples (LHS) were used to increase
the stability of the calculation and to ensure sampling over the entire multi-dimensional
parameter distribution. A stability analysis was performed for both criteria to determine
the number of samples needed to accurately compute the expectations; 50 evaluations of
both criteria were performed with different numbers of samples (100-1000) from the
individual parameter distributions were taken. The mean and the variance of the 50

criteria were then computed to select the most stable criterion.

Clinical constraints

Optimizations of the dose schedule were performed within a set of clinical constraints to
obtain the most clinically relevant dose schedules; the cumulative capecitabine dose
within a treatment cycle (3 weeks) was fixed to 35g.m2 corresponding to the cumulative
dose used in clinical practice (267); daily doses were not allowed to exceed 5g.m2. To
reduce the optimization search space, daily doses ranged between 0 and 5g.m-2 with a
0.5g.m-2 dose step size.

Capecitabine is orally administered and in order to limit the number of doses; the dose
interval was fixed to 1 day for all optimizations. This implies that during one cycle,
patients can take at most 21 doses and at least 1 dose. Since patients take medications at
home, dose variations during the cycle have to be reduced and doses were constrained to
be the same within each week of the cycle. The two cycles were also assumed to have the

same design pattern. All these constraints not only allow finding a clinically relevant dose
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schedule but also reduce the complexity of the optimal design problem since only 3
discrete doses have to be optimized (the dose to be given each week of a three week cycle

of treatment).

Impact of dose-effect relationship

The shape of the dose-effect relation, linear or non-linear, is of interest when optimizing
the dose schedule. To evaluate the impact of the dose-effect relationship on dose schedule
optimizations the dose-effect relation in the tumour growth inhibition model has been
modified. Both linear and non-linear (Emax) dose-effect relationships have been evaluated.
In case of linear dose-effect relationship, the daily dose was taken as a metric of drug
exposure to drive the drug effect according to Equation 6.

Exposure(t;) = Dose(t;) - BSA; (Equation 6)
In case of an Emax type dose-effect relationship, the drug exposure parameter was
modified according to Equation 7. Fifteen EDso values (0.0125-1000g) reflecting different
levels of drug exposure were tested to investigate the impact of the tumour response and

dose schedule optimizations.

Kp,o;-Dose(t;)-BSA;
Dsg,;+Dose(t;) BSA;

Exposure(t;) = (Equation 7)

Impact of tumour resistance development rate

Another important parameter in the anticancer therapy outcome is the development of
tumour resistance. Tumour resistance can develop in many different ways but always
results in a decrease of the drug effect. To evaluate the impact of tumour resistance
development rate, the value of the tumour resistance appearance (A) was modified. Seven
degrees of tumour resistance development rates were tested (0.001-100 times the value

estimated in Claret et al. model). Dose schedule optimizations were performed for both
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linear and Emax dose-effect relationships and for each value of tumour resistance

development rates.

Design comparison

In addition to the optimization criteria (tumour size at week 7), other metrics were
employed to compare the “standard” and optimized dose schedules. The mean dose time

(MDT) was computed according to Equation 8.

MDT = mz;:%l Dose; - Day; (Equation 8)
Where Total Dose refers to the maximal dose tolerated in the cycle (35g.m2), Dose;j refers
to the jth dose on the cycle and Dayj refers to the jth day of the cycle. MDT reflects the timing
of doses in the treatment cycle. For instance, if the optimal schedule gives all the doses
within the 1stweek of the cycle, the MDT value will be low and if the optimal dose schedule
gives all the doses during the last week of the cycle, the MDT value will be high. Dose
schedules were also compared by plotting the typical tumour response over time given

various dose schedules. Finally, schedules were compared by calculating the typical area

under the tumour growth curve given the different dose schedules.

Algorithms settings

The tumour growth model was implemented in Matlab version R2009b and all the
optimizations were performed in the optimal experimental design software PopED
version 2.11, implementing the optimization criterion using the “user defined criterion”
functionality (270-272). Discrete optimizations of doses were performed using the
Random Search algorithms with 2000 iterations (RS) followed by Line Search (LS)
algorithm. For more details regarding the description of the optimization algorithms,
please refer to (272).

Results
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Stability of the criterion

Stability analyses of both optimality criteria were performed to identify the most stable
one. As shown in Figure 1, criterion 1 (Equation 4) shows an unstable mean and variance
compared to criterion 2 (Equation 5). Criterion 2, on the other hand, becomes more stable
when the number of samples increases. 500 samples appear to be good compromise
between computational costs and criterion stability, therefore, criterion 2 computed

using 500 LHS samples was selected as the optimal criterion for use in the rest of the

following work.Sa
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Figure 1: Stability of the optimal criteria

Linear dose-effect relationship
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In case of linear dose-effect relationship, the optimal schedule frontloads doses within the
1st week of the treatment cycle (Table 2). The MDT associated with all designs is equal to
4d, implying that to maximize the tumour response; patients have to take 5g.m=2 of
capecitabine for 7 days followed by a 14-day rest period. The value of the optimality
criterion (OC) decreases when the tumour resistance development rate increases (OC = -
0.685 with A = 0.00053w1 and OC = -1.06 with A = 5.3w1). The drug effect thus decreases
when the tumour resistance appears more rapidly. However, the same optimal dose
schedule is found for all the tumour resistance development rates. Figure 2 shows the
typical values of the tumour response rate over time for the optimized and standard
regimens for various resistance development rates. The curves themselves as well as the
computed AUC under these curves show that the “standard” regimen is always worse than

the optimized regimen in terms of tumour shrinkage.
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ocC -0.685
Dose schedule (g.m2)
1st week 5
0.00053 2nd week 0
3rd week 0
MDT (d) 4
ocC -0.713
Dose schedule (g.m2)
1st week 5
0.0053 2nd week 0
3rd week 0
MDT (d) 4
ocC -0.731
Dose schedule (g.m=2)
1st week 5
0.053 2nd week 0
3rd week 0
MDT (d) 4
ocC -0.830
Dose schedule (g.m2)
A 1st week 5
(week?) 0.265 2nd week 0
3rd week 0
MDT (d) 4
ocC -0.891
Dose schedule (g.m2)
1st week 5
0.53 2nd week 0
3rd week 0
MDT (d) 4
ocC -1.02
Dose schedule (g.m2)
1st week 5
2.65 2nd week 0
3rd week 0
MDT (d) 4
ocC -1.06
Dose schedule (g.m2)
53 1st week 5
' 2nd week 0
3rd week 0
MDT (d) 4

Table 2: Optimal schedule for linear dose-effect relationship
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Figure 2: Typical value plot
These figures represent the median tumour growth profile (y axis) over the time (x axis) incase of linear
dose-effect relationship. Tumour growth profiles were represented for 3 different values of A (0.00053,
0.053 and 0.53 week!) for the current dose schedule (i.e. 2.5g.m2 for 14 days followed by a 7-day rest
period, solid line) and for the optimized regiment (dashed line).

Emax type dose-effect relationship

Results of the dose schedule optimization in case of Emax type dose-effect relationship is
presented in Table 3 and summarized in Figure 3. The situation is more complex than the
linear case since optimizations outputs are affected by both EDso and A values. For low

and intermediate values of EDso, i.e. maximal effect, the optimal dose schedule equally
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distributes doses within the cycle for low rates of tumour resistance development leading
to a MDT equal to 10.3d. For high rates of tumour resistance development, the MDT
decreases to 4.7d meaning that the optimal dose schedule frontloads doses at the
beginning of the cycle. Thus for low rates of resistance development, patients take 21
doses during the cycle and for high rates of resistance development, patients take most of
the doses during the 1st week of the cycle. For high values of EDso, the relationship is
essentially linear and the resulting dose schedules are the same, i.e. MDT equal to 4d.
Figure 4 shows the typical values of the tumour response rate over time for the optimized
and standard regimens for various resistance development rates and various EDso values.
The curves themselves as well as the computed AUC under these curves show that the
“standard” regimen is always worse than the optimized regimen in terms of tumour

shrinkage.

0.00053
0.0053
0.053

0.265

0.53 A (w)

40

265

100 83

1000

Figure 3: Optimization outputs for Emax dose-effect relationship
This figure illustrates Table 4. The MDT (z axis) is represented as a function of A (x axis) and ED50 (y axis).
The colours are scaled to represent the MDT value, from light (high MDT) to dark (low MDT) colour.

233



vee

drysuonea. 109}J9-9S0p *ewy 10§ 9[NPayds asop [ewndQ :€ 9[qeL

wnoo

SLUT-

woo

LT11

wnoo

SErl-

wnwoo

Sert-

wnwoo

601°1

wnwoo

LEOT

wnwoo

$80°1-

wnoo

LEO'T

wnwoo

16670~

wnwoo

19670~

09171~

e ——

1L1°1-

L11-

o ——

LLTT

(P) LAW

oM €

oM T

M T
(;-wS) anpayos aso(q

20

wnoo

0911

woo

-

wnoo

LOL'T-

wnwoo

Sirr-

woo

9L0'T-

wnwoo

S00°1-

woo

LEO'T-

wnwoo

S00°1-

¥'s

658°0-

06L°0-

68

68

68

8

o ——

6511

(P) LAW

Foom €
HoaM 1T
oM 1
(;.wr'3) anpayds aso(]
20

oo

191°1-

no o

69071~

=Y

01~

=3

=Y

L'y

nn
<+

1€6°0-

Ly

]

St

08870~

¥'s

S'L

et
-

78570~

68

It

$T

18470~

€01

(p) LaW

oo €
oM T
M T
(;.wS) anpayps aso(q
20

€50

co

8911~

=Y

=Y

S0
St

$600°1-

(p) LaW

oM €
oM T
oM i
(;-wS) anpayos asoq
20

S9T°0

oo

SoI'1-

SL

(p) LaW

YoM €
oM T
Yoom |
AN‘E@ ANPayds aso(]
20

€50°0

wnoo

811

() LAW

FooM €

(;.wr'3) anpayds aso(]
20

€500°0

wnoo

PS11-

06870~

8150~

181°0-

1560°0-

0071~

61071~

() LAW

JOOM €
oM 1, T
M |
(;.wS) anpayos aso(q
20

£5000°0

:v_wuf

0001

08

$T

S20°0

STI00

(3)osad

¥ uonnaljgnd — suawiibaa bnip 4a3un2i3up 3ziwiido 01 sjapow uoIqIyul Yimolb Jnowny fo syfauag A 191doy)




s€c

‘(aury paysep) yuswidal pazrundo ayj 10j pue (aul|
p1os ‘poriad 31sa1 Aep-/ & £q pamo[[oj SAep T 10J ;-Ww'3G Z *9'1) 9[NPaYds aSOp JU.LIND 3y} 10J (;-}99M £G°0 PUB £50°0 ‘€5000°0) Y JO Son[ea JUaIJIp € 10j pajuasatdal
aJom safjod yamoad anown ], ‘drysuore[a. 309}ja-asop adA) xewy jo ased ul (SIXe X) awil ay3 1240 (Sixe £) a[yoad yamo.ad 1nowny uerpawt ayj yuasardal saangdyy asay,

j01d anpea [eo1d4 ], ;% 91031

t MES 0=\
MWW GEpT =" remeEoy y LA T R PRt & LA T E R Rty
M WWE GEpT="" 3=y | LMW grg= e Tt LA WLUE Q=R By
MESD0=Y
MWL BTTT= R Py T e L | S WG =R Ry
MW TRy T W g =" B Ry L I WLQ gE=" R F Ty
MESO000=Y

W T Py [# AT TE = Py [# WG =P R
S W G TT="5 3=y y [ I WWE T == 3=y ba I WWE Gg="R 222y
do01="03 85 7="q3 3t°0=""a3

 uon2IIgNd — suawibaJl bnip 13oup2IIUD 3ZjWiIdo 03 S|aPoW UoIIGIYUl YImoab inown) fo syfauag Al 431dby)



Chapter IV: Benefits of tumour growth inhibition models to optimize anticancer drug regimens —
Publication 4

Discussion

The aim of this work was to develop a population optimal design methodology to allow
more informed dose schedule selection. For that purpose, a clinically relevant optimal
criterion was defined based on the change in tumour size allowing the optimization of
dose schedules. The tumour growth inhibition (TGI) model from Claret et al. was used and
applied to a theoretical phase 2 study of capecitabine. The tumour growth inhibition
model was developed on data from a capecitabine phase 2 study. It accounts for both the
natural evolution of the disease and the drug effect. This model was shown to correctly
predict treatment outcome of the phase 3 study only based in data coming from the phase
2 study. Because of its predictive capabilities and its flexibility, this model fitted the
purposes for this optimal design problem. To our knowledge, there is no previous work
aimed at optimizing dose schedules for maximal tumour response using TGI models. In
the context of oncology phase 2 trials, the choice of the most relevant dose schedule
remains a critical point. Usually this choice is based on the achievement of a predefined
ORR. It has already been demonstrated that ORR cannot easily be used for an optimization
of a phase 3 study because no quantitative measurements are considered. Instead, the use
of TGl models combined with a population criterion to optimize dose schedule allows for
a quantitative way to maximize the drug effect.

Optimizations of doses have already been attempted in oncology using clinical trial
simulations (273), an approach that may be used to investigate relatively few possible
scenarios using model-based simulations and re-estimations (211). However, if several
variables are to be optimized, the number of design scenarios will grow and therefore the
clinical trial simulation methodology will become extremely computer-intensive. Optimal
design methodology, on the other hand, is generally faster than clinical trial simulations

and allows for investigation of a far larger design space. Thus, a reasonable approach
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seems to be optimizations of designs with optimal design methodology and then
exploration of these optimized designs with clinical trial simulations. To obtain clinically
relevant dose schedules, optimizations were performed within a set of clinical
constraints. Capecitabine toxicity is related to the accumulated amount of drug.
Therefore, to reduce the risk of developing high toxicity, the total amount of drug within
the cycle was fixed to the same amount as currently used in clinical practice. This optimal
design problem thus aims at optimizing the dose partitioning within the cycle with a fixed
total dose. Previous studies have shown that a 100% increase of the capecitabine dose
currently used was tolerable for patients’ in terms of toxicity (273). Therefore, in this
study, the maximal daily dose was fixed to 5g.m2, two times larger than the current daily
dose used in clinical practice. In addition, the dose interval was fixed to 1 day and the daily
doses were constrained to be the same for each week of the treatment cycle. This last
constraint greatly reduced the number of possible doses combinations since only 3 dose
levels have to be optimized.

One of the most important points in optimizing dose schedule is the dose-effect
relationship. The impact of the dose-effect relationship was thus investigated by
modifying the exposure parameter in the TGI model. Contrary to the linear dose-effect
relationship, the non-linear (Emax) dose-effect relationship leads to different optimum
according to the value of the EDso. In case of large EDso values, the optimal schedule
frontloads doses within the 15t week of the cycle whereas it tends to equally distribute the
doses within the cycle when EDso value is low. In case of linear dose-effect relationship,
all the dose schedule optimizations conclude that a loading dose is necessary to optimize
the tumour response. Another critical point when developing a cytotoxic therapy
concerns the development of tumour resistance. For many cytotoxic compounds, tumour

resistance development is associated with a decreasing drug effect over time and is
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responsible of patients’ relapse. Here, the impact of tumour resistance development was
investigated by modifying the value of the resistance development parameter (A). As
expected, when tumour resistance development is faster, the optimality criterion value
decreases indicating that the therapy becomes less efficient. Regarding the optimal dose
schedule, the tumour resistance does not change the scheduling of the regimen if the dose-
effect relationship is linear. However, in case of non-linear dose-effect relationships,
tumour resistance development has an impact on optimized regimens; for high rates of
resistance development and low to intermediate EDso values the optimized designs tend
to frontload doses at the beginning of the cycle whereas it tends to equally distribute
doses within the cycle for low rates of resistance. This means that in the case of rapid
tumour resistance development rate, a loading dose is needed to ensure a tumour
response whereas in case of slow tumour resistance development rate, it seems better to
maintain drug exposure throughout the cycle. This study shows how both the dose-effect
relationship and tumour resistance development rate interplay and impact the tumour
response. Optimizations appear to be mostly driven by the dose-effect relationship.
However, the tumour resistance development rate has a greater impact in case of low to
intermediate EDso values. The characterization of both parameters is thus needed to
optimize dose schedule. In this work the first two cycles were optimized. The main
motivation to base the optimal criterion on only the first two cycles was that the tumour
size after two treatment cycles was a predictor of patients’ survival in Claret et al. This
time point also corresponds to the 1st follow-up visit after treatment initiation; it thus
gives the opportunity to adapt the dose schedule in case of toxicity appearance or disease
progression. Moreover, in the optimal design perspective, using the tumour size after two

cycles enables the opportunity for the use of adaptive optimal design. In that case, data
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collected at this time point can be used to inform the model and the design in order to
adapt doses (274, 275).

One limitation of this study is directly related to the optimal design methodology. To
optimize design parameters, it is necessary to trust the model structure and parameter
estimates derived from the model. Here, this assumption implied that no pharmacokinetic
(49) parameters were incorporated in the optimizations because the model stated that
the daily dose drove the drug effect. However, it would have been relevant to introduce
some PK into the optimizations in order to account for the delay between drug
administration and effects on the tumour or to account for drug accumulation.
Moreover, in the context if early preclinical development, the assumption of certain model
parameter values may be questioned since models are built on small cohorts and
parameter estimates may be relatively imprecise. One option to account for parameter
imprecision can be to use a global design approach, such as ED-optimality (205). Global
optimal design techniques assume that the parameters come from distributions instead
of unique point vales and hence allows for incorporation of uncertainty in parameter
estimates. This method is considered more robust than local optimal design methods
since it tries to make designs that are optimal for a whole range of parameter values. The
method was not used here because of the increased computing power needed in the
computations decreases the ability to investigate many scenarios. Another limitation of
this work is that the optimal design criterion was only defined in terms of drug efficacy.
Some clinical constraints were used to reduce the risk for a patient to develop high
toxicities. Nevertheless, if no clinical constraints were defined, the favoured dose schedule
in order to maximize the tumour response is to repeatedly take doses of infinite amount.
On the other hand, if the optimal criterion was only based on toxicity, optimal results

would have stated that, to avoid toxicity, patients should receive no dose. For drugs with
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a narrow therapeutic window such as cytotoxics, it is necessary to account for both drug
efficacy and toxicity in order to obtain the relevant dose schedule. This can be done
simultaneously by combining both criteria in a utility function. Unfortunately, to our

knowledge there is no such example in oncology.

Conclusions

This is the first study presenting the use of optimal design methodology to tumour growth
inhibition models to date. The method presented allows optimization of dose schedules
of anticancer drugs using a clinically relevant optimality criterion. It was demonstrated
that the current dose schedule of capecitabine was predicted to be sub-optimal in terms
of tumour shrinkage. The shape of the dose-effect relationship and the tumour resistance

development rate were both found to impact the optimal dose scheduling.

240



241



Chapter 5:

General discussion

242



243
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Throughout all the studies included in this thesis, the benefits of the (mechanistic) model-
based approach applied to evaluate oncology compounds in early preclinical
development and to optimize dose regimens in patients were demonstrated.

Since the recommendations edited by the Food and Drug Administration in 2004 that
recognized the usefulness of this approach to support the drug development,
pharmacometrics is more and more integrated in pharmaceutical companies to support
the decision making and drug development programs. Mechanistic model-based drug
development might be even more powerful to support the development of compounds in
complex diseases such as cancer. Current anticancer drugs development is quite
inefficient and regarding the progression of the disease incidence, there are urgent needs
to improve the methodology used in the drug development in oncology.

The example used throughout this thesis concerns the preclinical development of a new
efflux transporter inhibitor. The history of the development of this type of molecules
illustrates some of the drawbacks associated to the usual development of oncology
compounds. When the role of P-gp in tumour cells, so far the most intensively studied
efflux transporter, has been discovered and the first inhibitors described, the concept of
the reversion of multidrug resistance using P-gp inhibitors was directly moved from
animals to patients with the hope of finding the same benefits in both species. The clinical
failure of these inhibitors was primarily explained by their toxicity and their low affinity
for P-gp. The second and third generation of P-gp inhibitors were more specific and had
greater affinity and lower toxicity. However, they still failed to improve cancer treatment.
This in part because all the information obtained with the development failure of the first
generation was not analysed in depth, due to the lack of suitable tools to disentangle the
influence of factors pertaining to PK, PD and tumour biology. The first explanation of the

discrepancy between animal results and human results came after the development
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arrest of P-gp inhibitor. This type of trial-and-error development has thus shown its
limits.

In order to overcome issues already encountered for P-gp inhibitors, a model-based
approach was used to evaluate the effect of the inhibition of BCRP inhibition on multidrug

resistance using the new BCRP inhibitor, MBLI87.

1. MBLI87, a good BCRP inhibitor ?

One of the main conclusions of this thesis regards the compound MBLI87. If preliminary
results, before the modelling work, indicated the good performances of the compound,
our conclusions are more nuanced.

[t is undeniable that MBLI87 inhibits the active efflux of various BCRP substrates such as
CPT11, SN38 and Mit in vitro. However, the MBLI87 inhibitory constant (Ki) varies from
141nM for Mit to 1160nM for SN38 so the efflux inhibition is not as potent for all the
substrates. In addition, the in vitro model demonstrated the importance of competing
processes such as passive diffusion. If in this cellular system, the active efflux is greater
than passive diffusion (Cli/Claife>1), the ratio between both varies from 1.01 for CPT11 to
5.4 for SN38. This indicates that the maximal increase in intracellular substrates
concentration is not the same across substrates (1% for CPT11 and 440% for SN38).
These results may of course vary depending on the cell line. One question at this stage
concerns the choice of the cellular system to demonstrate MBLI87 properties. HEK293
cells are at first sight interesting for studying the efflux inhibition because no metabolism
occurs in these cells. However, regarding these first results, it would be necessary to

investigate a range of cell lines to potentiate substrates efflux and thus MBLI87 effect.
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The situation is more complex in vivo. The predicted tumour concentration of
CPT11/SN38 in presence or absence of MBLI87 did not allow concluding about MBLI87
reversal effect. The discrepancy observed between in vitro and in vivo results can be
explained by several points identified by the model. Thanks to the contradictory results
obtained in both tumour growth experiments, some processes appeared to play a major
role in the efficacy of MBLI87/CPT11 combination. Equilibration between plasma and
tumour due to passive diffusion is lower in the second study. Results obtained by
simulation attested that this parameter was crucial to minimize the tumour growth.
Several works were conducted to study doxorubicin distribution and penetration in
tumour spheroids in presence of P-gp inhibitors (236, 276). As an example, Patel et al.
concluded to a paradoxical effect of P-gp inhibitors that lead to an increased uptake of
doxorubicin in cells close to blood vessels but that have no effect on cells at high distance
from blood vessels (236). Therefore, it exists a trade-off between uptake into proximal
cells and penetration to distal cells, the effect of efflux inhibitors can be limited. It is thus
important to consider factors that affect drug distribution into solid tumour to ensure a
sufficient effect of efflux inhibitors. This can be addressed by modelling the tumour
growth in 3D using spatial model and partial derivatives equations. These findings with
doxorubicin and P-gp inhibitors corroborate our conclusions regarding MBLI87
differential effect between S1 and S2. In this purpose, it would be of great interest to use
the normalization of tumour vasculature observed at the beginning of treatment by
antiangiogenic drugs in combination to efflux inhibitors and cytotoxic to validate the role
of drug diffusion (24, 253). Another difference found between both tumour growth
experiments was the differential active efflux rate attributed to a different transporter
activity. This factor is directly linked to the cell line used. As already found in vitro, the

active efflux in HEK293 cells was not sufficient to observe a significant effect of ABCG2
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inhibition. This has been corroborated in the simulation study where an increase of this
parameter potentiated the reversal effect of MBLI87. The direct consequence of these two
factors is a different cytotoxic tumour concentration between both studies resulting in a
different efficacy on tumour growth. In addition, the tumour composition was shown to
also impact cytotoxic efficacy since the percentage of drug sensitive cells at treatment
onset was found significantly different between S1 and S2.

The nuanced results obtained for MBLI87 in this cellular system and under these
experimental conditions could however be increased as shown in the simulation study
since a higher dose of MBLI87 allows increasing its effect. Some further work has to be
done regarding MBLI87 formulation. MBLI87 is encapsulated into nanoparticles because
it is not soluble in water or saline vehicle; there are thus still some questions to be
addressed by chemists and pharmacists in order to increase the drug content in the
vehicle. The modest effect of the inhibitor in vivo is also attributable to the different
inhibition of CPT11 and SN38 efflux. In vivo, SN38 is around 10 times more potent than
CPT11, so if the SN38 BCRP-mediated efflux could be better inhibited, it will lead to an
increase effect on the tumour growth. As shown in simulations, MBLI87 reversal effect
was maximized if both MBLI87 Ki and clearance were decreased attesting the necessity of
a sufficient inhibition of the transporter to ensure an effect on the tumour growth as
already shown for P-gp inhibitor (247). These results indicate that further improvement
of MBLI87 chemical structure and formulation have to be done.

However, even if a low effect of MBLI87 was found through the semi-mechanistic model,
the K-PD model predicts that the inhibitor potentiated CPT11 potency by 20% per pmol.
The K-PD model predicts a long half-life of the compound in the biophase whereas there
was no evidence of an accumulation of MBLI87 in the plasma. Since the semi-mechanistic

model does not indicate an accumulation of MBLI87, this finding may be interpreted as a
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delayed and prolonged antitumoral effect due to the mechanism of action of CP11 and
SN38. To address this question, it would be worth to investigate the tumour concentration
of MBLI87 and CPT11. Such additional data would allow enriching the semi-mechanistic
model.

Another point to discuss here concerns the relevance of BCRP inhibition. As it has been
pointed in the first part of this document, BCRP is less widely expressed than P-gp but still
expressed at important natural barriers where it plays its protective role. As for P-gp, its
inhibition could be associated to high toxicity that could preclude the use of BCRP
inhibitors in clinical practice. An answer to this would be the development of formulation
that preferentially target the tumour tissues through the development of pegylated
liposomal formulations as for doxorubicin.

In addition, the determination of the part of drug resistance due to BCRP has to be clearly
determined in order to know is it is preferable to develop specific inhibitors such as
MBLI87 or if itis preferable to develop inhibitors that target several transporters. Finally,
in order to obtain, a real improvement of the management of clinical multidrug resistance,
it is necessary to adopt adaptive strategies because multidrug resistance is multifactorial.
As an example, it has been demonstrated that if one efflux transporter is inhibited, tumour

cells will overexpress others efflux transporters in order to escape from the treatment.

2.Benefits of the mechanistic model-based drug
development in the development of efflux
transporter inhibitors

The second axis developed throughout this thesis concerns the use of NLME PK/PD
models to evaluate preclinical oncology studies and to design oncology clinical studies.
The development of a new drug relies heavily on in vitro and animals studies that provide

a framework for clinical trials. In some cases, such as for P-gp inhibitors, a drug can be
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highly effective in animals and inefficient in humans. This issue can arise if the translation
between both species is not correctly handled. The development of PK/PD models to
ensure an appropriate translation between preclinical and clinical studies was shown to
overcome this type of issue especially in the case of antibiotics. Here, in addition to PK/PD
model, the benefits of the NLME approach coupled to these models was demonstrated.
Regarding the in vitro study of MBLI87, the NLME mechanistic model accounting for both
passive and active cytotoxic transport was shown to be superior to the usual analysis tool
to analyse competition in vitro data.

A great advantage of the model-based development is that information gained in an
experiment can be used to analyse another experiment. As an example, the former model
and some of these parameters were re-used in a semi-mechanistic PK/PD model of the
interaction between CPT11 and MBLI87. This second model combines all the information
available at this stage of development about this drug combination. One of the challenges
with the model was to develop an advanced model based on sparse data gained in an
experiment not originally designed for modelling purposes. Thanks to the sequential
building and the use of NLME approach, it was possible to combine all the studies together
and to quantify all the model parameters; although the precision of some of them was
limited. This model constitutes an important step in MBLI87 development because it
allows the identification of the limiting features of MBI87. In addition, it can generate
some target values to be reached regarding the future development of similar compound
in terms of inhibitory constant, protein binding, tota clearance, drug content in the
vehicle, ect... If more data are coming, a natural extension of this semi-mechanistic model
would be the development of a PBPK/PD model to translate the results observed in
animals to patients. I[f CPT11 and MBLI87 pKa, log(P) and unbound fraction are known, a

PBPK model can be easily developed (277). Regarding the tumour growth parameters,
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West et al. demonstrated that the same scaling law as for PK parameter can be applied

(278, 279). Parameters of the semi-mechanistic model can thus be scaled as follows:

Volumeyyman (L) = Volumepima X (%) (Equation 21)
Concentrationyman(Wmol.L™Y), = Concentration ,ima (Equation 22)
Knuman (™) = Kanimar X (%) ! (Equation 23)
1
thuman (™) = tanimar X (W)4 (Equation 24)
human
3
_ Myni .
Clhuman (L-d 1) = Clanimal X (#;:Zz)4 (Equatlon 25)

Where mhuman and manimal are the typical animal and human mass respectively (e.g. 30 g
for a mouse and 70 kg for a human).

All the model parameters getting the same units as parameters defined in Equation 21-25
are scaled using the same law. It is also important to mention that the dose interval (in
day) has also to be scaled between species, according to equation 24.

However, the development of such advanced model is not always possible when only data
issued from PoC studies are available. In these cases, it is still possible to use the
advantage of the model-based development as it has been shown with the minimal TGI
model. This model was used in order to structure the information derived from animal
PoC study. Here, the use of the NLME approach was shown to be even more important to
quantify model parameters. Of course this type of models cannot pretend to pursue the
same objectives as the mechanistic models but we showed that the model is useful to early
identify the most promising candidates or to decrease the experimental effort.

Optimally design experiment is also a benefit of the model-based approach. In the last
study included in this thesis, the clinical TGI model was used to optimize the tumour

response in patients. The design of oncology phase 2 study remains a critical point of
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oncology drug development because historical approaches showed recently their limits

to evaluate new targeted therapies.

Even if cancer research had undergone some radical changes in the last decade, there is
thus still some challenges to meet. Exploring the tumour dynamics and disease processes
using quantitative models at clinical levels is becoming routine. However, this approach
has to be more applied to preclinical study to ensure the translation between animals and
human. The use of mathematical models is now essential to integrate the huge amount of
data produced and to quantitatively assess the properties of new compound in vitro and
in vivo. There is thus a great opportunity to integrate knowledge to address clinical

questions and to improve the decision making in oncology drug development.
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Overall conclusion

The question of the management of anticancer drug resistance is primordial because most
of the treatment failures in cancer patients are associated to the development of this
phenomenon.

In this thesis, the management of anticancer drug resistance was addressed through the
study of a new BCRP inhibitor, MBLI87. To overcome issues already encountered in the
development of P-gp inhibitor, a mechanistic model-based approach was used to support
its preclinical development. The power of this approach was demonstrated in all the
studies included in this work not only to evaluate preclinical studies but also to optimize
patients’ response in clinical trials. Since the current paradigm of oncology drug
development is quite inefficient, this type of approach can thus be applied from the early
beginning of anticancer drug development to avoid the risk and costs of development

failure.
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La résistance aux chimiothérapies anticancéreuses constitue I'une des raisons principales
de I'’échec des traitements anti-tumoraux. Ce phénomene multifactoriel peut étre associé
a la physiologie tumorale ou aux cellules tumorales elles-mémes (31). L'un des
mécanismes de résistance les plus étudié consiste en I'efflux actif des médicaments des
cellules cancéreuses résultant en l'altération de la concentration intracellulaire des
médicaments (31). Les transporteurs de la famille ABC (ATP Binding Cassette). sont les
effecteurs de ce mécanisme de résistance (74). Parmi les 48 transporteurs ABC contenus
dans le génome humain, trois sont principalement associé a la manifestation clinique du
phénomene de résistance aux anticancéreux: ABCB1/P-gp, ABCGZ/BCRP et
ABCC1/MRP1 (239). P-gp a été le transporteur d’efflux le plus étudié dans le passé de par
son expression ubiquitaire et sa capacité a transporter de nombreuses molécules
différentes (280). L’inhibition de P-gp dans la problématique de la résistance aux
anticancéreux a toujours échoué en clinique malgré des résultats prometteurs in vitro et
chez I'animal (247). Plusieurs critiques peuvent étre faites a 'égard de la méthodologie
employée lors du développement des inhibiteurs de P-gp, notamment I'absence de
modeles quantitatifs permettant la translation des résultats précliniques a 'homme.
L’échec des inhibiteurs de P-gp a mené a I'arrét du développement de ces molécules,
cependant la question du bénéfice de l'inhibition d’autres transporteurs d’efflux,
notamment de BCRP, n’a que trés rarement été testée (135). Comme P-gp, BCRP joue un
réle important dans la résistance aux traitements anticancéreux par sa capacité a effluer
de nombreuses molécules anticancéreux dont une partie des substrats de P-gp tout en
présentant I'avantage de ne pas étre inhibé par les principaux inhibiteurs de P-gp. BCRP
constitue donc une cible intéressante pour tester ’hypothese du bénéfice de I'inhibition

d’autres transporteurs d’efflux dans la résistance aux traitements anticancéreux. De

257



Resumé substantiel en frangais

nouveaux inhibiteurs de BCRP ont récemment été synthétisés (136). Un dérivé
d’acridone, MBLI87, a montré des propriétés intéressantes contre I'efflux d’irinotecan,
CPT11, in vitro et in vivo. Cette nouvelle molécule étant en phase de développement
préclinique, il apparait nécessaire d’utiliser de nouvelles approches afin d’éviter les
écueils rencontrés pour les inhibiteurs de P-gp.

L’objectif de cette these est de montrer les bénéfices de la modélisation appliquée au
développement préclinique des inhibiteurs de transporteur d’efflux. Les objectifs
spécifiques sont les suivants :

- Montrer les bénéfices des modeles a effets mixtes d’inhibition de la croissance
tumorale dans le développement préclinique des inhibiteurs de transporteur
d’efflux.

- Développer des modeles semi-mécanistiques de linteraction entre
cytotoxiques et inhibiteurs de transporteur d’efflux.

- Montrer les bénéfices des modeles a effets mixtes d’inhibition de la croissance
tumorale pour optimiser la réponse tumorale chez les patients montrant une

résistance.

Chacune des parties incluses dans ce document présente les publications associées aux
travaux présentés.

La premieére partie de cette thése présente le développement et I'utilisation de modeéles
semi-mécanistiques de 'interaction entre cytotoxiques et inhibiteurs d’efflux. Le premier
axe développé concerne l'utilisation de ces modeles couplés a I'approche non-linéaire a
effets mixtes (NLME) pour analyser les données issues d’expériences de compétition in
vitro. Ce type de données est habituellement analysé avec des méthodes graphiques ou de
régression simple qui ne prennent pas en compte les différents mécanismes intervenant

dans le systéme étudié. De plus ces méthodes ne permettent pas de distinguer la
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variabilité inter- et intra- expérience. Les modeles NLME mécanistiques permettent de
répondre aux manquements des approches usuelles. Ici, un modele NLME d’inhibition du
transport a été construit et appliqué au MBLI87 permettant de quantifier son effet sur
I'accumulation intracellulaire de différents cytotoxiques. Ce modele permet également de
quantifier d’autres parametres pharmacologiques importants de l'interaction entre ces
molécules. Ce modele a été appliqué avec succes a trois différents cytotoxiques et deux
types de données différents démontrant sa capacité a étre appliqué pour étudier
différentes combinaisons de traitements. En prenant en compte les différents
mécanismes en présence ainsi que les différentes sources de variabilité, ce modele permet
d’estimer la vraie valeur des parametres et non une valeur apparente comme c’est le cas
avec les méthodes habituelles.

Le second axe abordé dans cette partie concerne le développement d'un modele PKPD
semi-mécanistique de l'interaction entre inhibiteurs d’efflux et cytotoxiques. En effet les
lecons tirées du développement des inhibiteurs de P-gp ont montré la nécessité de
comprendre les mécanismes de ces molécules mis en jeu in vivo afin d’assurer une
translation efficace des résultats précliniques a ’homme. Le modele développé ici établit
la relation entre 'accumulation intracellulaire des cytotoxiques en présence d’inhibiteurs
de transporteur d’efflux et la croissance tumorale. Dans ce cas, 'approche NLME
combinée au modele semi-mécanistique permet de tirer un maximum partie des données
disponibles. Ce modele a été appliqué a deux études de preuve du concept chez I'animal
présentant des designs différents en termes d’intensité et de délai de traitement.
Plusieurs facteurs impactant l'efficacité de cette combinaison de traitement ont pu étre
identifiés. En effet, la cinétique d’accumulation tumorale due a la diffusion passive de
cytotoxiques dans la tumeur ainsi que la cinétique d’efflux actif apparaissent comme deux

éléments importants de l'efficacité de cette combinaison. De plus le pourcentage de
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cellules sensibles a l'agent anticancéreux impacte également I'efficacité de la
combinaison. Ce dernier facteur met en avant le rdle possible de '’hypoxie comme facteur
de résistance secondaire rappelle que la résistance aux traitements anticancéreux est
multifactorielle et qu’il peut s’avérer nécessaire de combiner plusieurs stratégies pour la
surmonter. De plus, cette étude a permis de mettre en avant via une étude par simulation
plusieurs facteurs permettant d’optimiser 'effet révertant du MBLI87.

Ce type d’approche semi-mécanistique n’est cependant pas toujours envisageable aux
stades précoces de développement précliniques ou trés peu de données sont disponibles.
Les études de premiére administration chez I'animal sont généralement pauvres car elles
ne servent uniquement a démontrer la pertinence de la cible et de son inhibiteur. Un seul
niveau de dose est en général testé sur un faible nombre d’animaux rendant difficile
I'extrapolation des résultats obtenus dans ces études. Les méthodes classiques d’analyse
de ces études sont basées sur de simples tests statistiques comparant les effets de la
molécule étudiée par rapport a une référence. La seconde partie de ce travail se propose
d’illustrer les bénéfices des modeles NLME pour aider le développement préclinique des
inhibiteurs de transporteurs d’efflux. Le modele développé dans cette partie est un
modele minimal d’inhibition de la croissance tumorale de I'interaction entre cytotoxiques
et inhibiteurs d’efflux. Il appartient aux modeles K-PD et ne prend pas en compte la
pharmacocinétique du cytotoxique et de l'inhibiteur. De ce fait, l'interaction est
considérée au niveau de la croissance tumorale ou l'inhibiteur d’efflux augmente la
cytotoxicité de I'anticancéreux. Le modele final comporte plusieurs simplifications tout
en retenant suffisamment de complexité pour caractériser simultanément la croissance
tumorale et I'interaction entre ces molécules. Il a été appliqué avec succes a une étude de
premiére administration chez I'animal du MBLI87 combiné a l'irinotecan. L’approche

NLME a permis ici d'utiliser toute l'information disponible dans cette étude afin de
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quantifier les parameétres du modele. De plus I'analyse longitudinale des données a permis
de séparer les parametres relatifs au systeme et aux molécules, ce qui n’est pas
envisageable avec les approches classiques.

Ces deux premieres parties ont permis d’illustrer les bénéfices de I'approche NLME et des
modeles d’inhibition de la croissance tumorale dans I’évaluation de préclinique des
inhibiteurs de transporteurs d’efflux combinés aux cytotoxiques dans la problématique
de la résistance aux chimiothérapies anticancéreuses. Si ce type d’approche n’est pas
encore completement établi en développement préclinique, il I'est davantage pour
évaluer les essais cliniques en oncologie. Cependant, les modeles NLME d’inhibition de la
croissance tumorale ne sont que tres peu utilisés pour optimiser la réponse des patients
aux traitements. La derniere partie de ce travail propose une approche de design optimal
utilisant les modeles d’inhibition de la croissance tumorale pour optimiser les régimes de
doses des cytotoxiques afin de maximiser la réponse tumorale. La question du choix du
régime de dose optimal pour les études de phase 3 en oncologie demeure un point critique
du développement clinique des anticancéreux. Les outils couramment utilisés ne
prennent pas en compte la dynamique tumorale et ménent souvent a des erreurs de
développement comme en témoignent le taux d’échec des molécules anticancéreuses en
phase 3. Cette étude montre que l'utilisation des modéles quantitatifs permet d’optimiser
de fagon rationnelle les régimes de doses pour les études de phase 3. Néanmoins, ce
travail reste théorique puisqu'’il ne se préoccupe que de l'efficacité des traitements en
oubliant les aspects liés a leur toxicité.

Au travers de cette théese, la prise en charge de la résistance aux traitements anticancéreux
a été étudiée par I'étude d’un nouvel inhibiteur de transporteur d’efflux, MBLI87. Le
développement passé de ce type de molécules a présenté plusieurs lacunes qui peuvent

étre en partie compensées par le développement de modeles quantitatifs de I'interaction
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entre les cytotoxiques et les inhibiteurs de transporteurs d’efflux et ce depuis le début de
leur développement préclinique. L’utilité de la modélisation et notamment des modeles a
effets mixtes d’inhibition de la croissance tumorale a été montrée dans toutes les études
incluses dans ce travail non seulement pour évaluer ce type d’interaction de fagon précoce
mais aussi pour optimiser la réponse tumorale dans les essais cliniques. Les méthodes
usuelles d’évaluation des médicaments en oncologie font du développement de ces
molécules I'un des plus inefficaces. Les approches présentées dans cette these peuvent
donc permettre d’améliorer le développement des médicaments en oncologie et diminuer

les risques d’échec de développement ainsi que les cofits qui y sont associés.
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