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Abstract

The representation of 3D shapes is at the heart of computer graphics applications, notably in the geometry processing eld. However, these representations are usually low-level, due to constraints in older applications, and as such they hinder advanced applications. For instance, using hand-held devices such as RGB-D cameras, one can retrieve point sets that model the scene currently being scanned; while this can be su cient for rendering purposes, it obfuscates the real data being retrieved, and lacks the high-level information that is a semantic classi cation of the objects in the scene. Often, it is not desirable to build or manipulate shapes at the scale of points or polygons; most scenarios require some kind of high-level control on the processed shapes. Numerous representations have been proposed, allowing new uses ranging from shape analysis to synthesis of new 3D objects, among others.

In this work, the applications we focus on are shape analysis and shape synthesis. Notably, we are interested in the problem of nding similar parts of a shape, and the representations used when solving it. We rst present a state of the art of the representations introduced throughout the years, starting with classical low-level ones for completeness, and then quickly focusing on dictionary-based representations. Indeed, the latter naturally appear when searching for the similar parts of a shape, and they allow multiple applications such as shape compression, morphing, or shape synthesis.

With hindsight from the state of the art, we propose a way to represent a shape as a composition of other shapes that are taken from a dictionary of parts. The aim of this method is to enable non-expert users to quickly generate interesting shapes, and we add the constraint that the parts -atoms of the dictionary -are authored by artists. This means that the input object cannot be modi ed, to guarantee the preservation of the work of the artist. Moreover, we want the output shape to be plausible, so we preserve and propagate the large-scale details of the input. We show that not only this method enables quick shape creation, it is fast enough to allow interactive edition sessions. While this method does not solve the problem of nding similar subparts of 3D models, the proposed algorithm allows a highlevel representation of the shape, by converting to the usual low-level mesh. This representation is the set of selected atoms, each one with a set of (potentially user-generated) transformation matrices to specify where to place it.

From the previous method, we observed that noise near the boundaries of the input shapes can result in non-intuitive output surface. Furthermore, the full input is not needed for the completion algorithm to work; hence we propose to simplify the input rst before completing it, as a way to speed up the computation and generate a preview of the result. Large-scale details are the low-frequencies, and we aim to focus on them instead of small features in the simpli cation. However, sharp features are not low-frequencies but instead use the full spectrum, and removing high-frequencies will partly destroy these features; this is an acceptable trade-o since our aim is to generate a preview. While mesh simpli cation is a wellstudied domain, there was no method explicitly preserving the low frequencies and outputting a mesh. Hence, we propose a new mesh simpli cation method that preserves the low frequencies of the input. We show that it outperforms the state of the art mesh simpli cation with Quadric Error Metric; we also compare to other methods that do not retain a mesh. Finally, we show that simplifying the input of the completion algorithm using our method results in better quality output mesh than the QEM simpli cation, while also being potentially faster.

Résumé

La manière de représenter des formes 3D est au coeur des applications d'informatique graphique, notamment dans le domaine du traitement géométrique. Cependant, ces représentations sont généralement bas-niveau, car dépendantes d'anciennes applications et de leurs contraintes, et cela limite la création d'applications avancées. Par exemple, un utilisateur peut facilement numériser une scène 3D sous la forme d'un nuage de points grâce à un scanner portable tel qu'une caméra RGB-D, et bien que ce procédé soit su sant si le but est de faire un rendu 3D, la représentation sous forme de nuage de points cache les données haut-niveau sous-jacentes, comme une classi cation sémantique des objets présents dans la scène. Il est souvent préférable de ne pas construire ou manipuler des objets 3D directement via des points ou des polygones, la plupart des scénarios requérant une forme de contrôle haut-niveau. De nombreuses représentations ont été proposées, permettant des applications allant de l'analyse de forme à la synthèse de nouveaux objets, entre autres.

Dans le présent travail, nous nous intéressons à l'analyse et à la synthèse de formes. Notamment, nous nous intéressons au problème suivant : trouver les parties similaires d'une forme 3D, et aux représentations utilisées pour résoudre ce problème. Nous présentons d'abord un état de l'art des représentations précédemment développées, en commençant par les structures classiques a n de rendre ce manuscrit complet, et nous continuons en nous concentrant sur les représentations utilisant des dictionnaires. En e et, de telles structures émergent naturellement du problème susmentionné, et les représentations utilisées se prêtent bien à d'autres applications comme la compression, l'interpolation ou la synthèse de nouveaux objets.

En se basant sur l'analyse de l'état de l'art, nous proposons une nouvelle représentation utilisant la composition d'autres formes 3D, ces dernières étant tirées d'un dictionnaire de formes. Notre but est de permettre à des utilisateurs profanes de créer rapidement des objets intéressants, et pour cela nous ajoutons la contrainte que les composants, qui sont des atomes du dictionnaire de formes, soient créés par des artistes. Cela implique que nous ne pouvons pas les modi er a n de garantir la préservation du travail de l'artiste. Notre méthode est capable de mélanger les atomes sélectionnés de façon plausible, en gardant et en propageant les détails les plus larges. Nous montrons que cette méthode permet la création rapide de formes 3D, sa vitesse permettant des sessions d'édition interactive. Bien que nous ne résolvions pas le problème de trouver les parties similaires d'objets 3D, notre algorithme permet une représentation haut-niveau de modèles 3D, en e ectuant la conversion vers un maillage (bas-niveau). Cette représentation haut-niveau est constituée d'un ensemble d'atomes, chacun armé d'un ensemble de matrices de transformations (potentiellement déterminées par l'utilisateur) a n de spéci er où placer les atomes.

L'on observe de la méthode proposée ci-dessus que la présence de bruit proche des frontières des données d'entrée perturbe la reconstruction nale de la surface, et ce de manière non-intuitive. De plus, nous n'avons pas besoin de l'ensemble des dé nitions des atomes pour la reconstruction nale. Nous proposons donc de simpli er les données d'entrée avant le mélange des atomes, dans le but de réduire le temps de traitement et d'o rir à l'utilisateur un aperçu du résultat. Les détails larges sont des basses fréquences, que nous voulons donc garder lors de la simpli cation. Les lignes dures (qui sont aussi de larges détails) ne peuvent pas être complètement préservées par la simpli cation, car leur support spectral est très étendu et nécessite des hautes fréquences. Ce compromis est acceptable car nous ne cherchons qu'à générer un aperçu. Bien que la simpli cation de maillages soit un domaine riche de nombreuses contributions, aucune ne permet explicitement de simpli er un maillage tout en conservant autant que possible les basses fréquences et un maillage triangulaire en sortie. Nous proposons une nouvelle méthode qui résout exactement ce problème. Nous observons de meilleurs résultats qu'avec une simpli cation avec des quadriques (Quadric Error Metric, QEM), et nous comparons aussi notre méthode à d'autres méthodes qui n'ont pas la contrainte de garder un maillage en sortie. En n, nous montrons qu'en simpli ant l'entrée de la méthode du chapitre précédent, le résultat nal est de meilleure qualité qu'avec la simpli cation QEM, en étant aussi potentiellement plus rapide.

I Introduction

Context. Shape modeling is an important eld of 3D graphics focusing on the study of the representation of 3D shapes -mathematically and practically on a computer -along with the operators and algorithms necessary to process these 3D shapes, for example to transform [Botsch andKobbelt, 2004, Gao et al., 2016], enhance [START_REF] Kalogerakis | A probabilistic model for component-based shape synthesis[END_REF], Marcias et al., 2015], or simplify them [START_REF] Garland | Surface simpli cation using quadric error metrics[END_REF]. Many of the concepts used in this eld are analogous to signal and image processing, and numerous techniques have been adapted from working on images to working on 3D shapes [START_REF] Digne | Self-similarity for accurate compression of point sampled surfaces[END_REF].

Its applications range from enabling special e ects in movies, creating video games, or designing industrial parts, among others. While only expert users directly used 3D modeling software in the past, the trend is for non-expert users to process and manipulate 3D shapes, for example for 3D printing. As such, there is a need to make design tools easier for these users, which means having more intelligent algorithms that will perform complex tasks that were usually done manually by a trained artist. The way 3D shapes are represented is crucial, as with a good representation such methods can be easier to implement and enable a very high-level manipulation by the user, making the whole process simpler. Indeed, the usual, standard way to represent a 3D shape is by a mesh, which is a lowlevel structure that approximates a surface. This representation is easy to generate, process and render, but by itself it does not contain semantic information or any data allowing high-level uses of it. Moreover, it is not guaranteed to represent a surface (closed or open), as one can use them to represent physically impossible shapes for example. Their susceptibility to numerous quality problems is why there is often a need for a cleaning phase prior to processing them [Bischo andKobbelt, 2005, Attene et al., 2013]. Meshes are not the only common low-level representation, as one can use point clouds when scanning real world objects, voxels -the equivalent of using pixels in 3D -or implicit surfaces. Point clouds can su er from noise, and this is very common when dealing with scanners such as RGB-D cameras (which output a set of points: position + color) [START_REF] Horaud | An Overview of Depth Cameras and Range Scanners Based on Time-of-Flight Technologies[END_REF], Berger et al., 2014, Berger et al., 2017]. Voxels are also not easy to manipulate, but their main disadvantage is the size needed to store them, which grows very fast -proportional to the resolution of the stored volume, i.e., O ( 3 ) if there are voxels per axis. They are usually found when scanning a volume, for example when performing a brain imaging of a patient with a MRI scanner. Implicit surfaces are less common, as it is harder to process or render them e ciently compared to meshes [Hart, 1996]. Still, they can be found in procedural generation methods, for example to model virtual terrains [START_REF] Wyvill | Extending the csg tree. warping, blending and boolean operations in an implicit surface modeling system[END_REF], van Lawick van Pabst and Jense, 1996, Guérin et al., 2016].

Aside from simplifying shape creation, having high-level shape representations is also important for more specialized applications such as shape analysis: the usual representations of 3D models tend to obfuscate the actual shape being processed by focusing too much on low-level elements such as polygons. This can result in lower quality or run-time e ciency. In fact, when dealing with high-level representations, there is no ideal representation that would perfectly t all use cases: the optimal structure depends on the application, and it should ideally be possible to convert from one representation to another.

Objectives. The objective of this thesis is to develop the algorithmic primitives necessary for the manipulation of shapes represented as a composition of multiple components. While this dictionary-based representation does not require atoms to be meshes, without loss of generality we can expect meshes as input (and leave the conversion from other representations to other methods). To interface this shape representation with other applications (such as rendering), we aim to generate rich meshes from the composition operator.

Organization. We organize this dissertation in three main chapters: rst we review the state of the art in shape representations (Chapter II), focusing on dictionary-based representations as these allow to describe a shape as a high-level composition of parts. In particular, we observe that although discrete dictionaries of parts are a powerful high-level representation, no conversion algorithm outputting a smooth enough mesh existed for it. We propose a method that synthetize the missing surface between parts and generates a smooth mesh while preserving the input (Chapter III). This method also focuses on interactive shape editing by non-expert users. Following this aim, we would like to make the completion faster, and for that we try to simplify the input parts for faster stitching, to serve as a preview and still allow interactive editing sessions even with large meshes. In other words, we want to represent a detailed shape by a coarse one, while still keeping important properties that will allow the results of processing the coarse object to be close to the results of processing the ne object. Hence, we introduce a method to simplify a mesh while explicitly focusing on the low-frequencies and removing the high-frequencies, and output a mesh, contrary to the previous work (Chapter IV). Finally, we conclude and present perspectives for future research.

Contributions. Overall, we propose a composition algorithm that stitch multiple meshes in a piecewise smooth fashion, suitable for CAD-like and organic shapes, and a simpli cation algorithm that coarsen a mesh while preserving as much as possible its low-frequencies. The work presented in this thesis has led to the following publications:

• A Survey on Data-driven Dictionary-based Methods for 3D Modeling, Thibault Lescoat, Maks Ovsjanikov, Pooran Memari, Jean-Marc Thiery, Tamy Boubekeur, Computer Graphics Forum (Eurographics 2018 State-of-the-Art),

• Connectivity-preserving Smooth Surface Filling with Sharp Features, Thibault Lescoat, Pooran Memari, Jean-Marc Thiery, Maks Ovsjanikov, Tamy Boubekeur, In proceedings of Paci c Graphics 2019

• Spectrum-preserving Mesh Simpli cation, Thibault Lescoat, Derek Liu, Jean-Marc Thiery, Alec Jacobson, Tamy Boubekeur, Maks Ovsjanikov, Conditionally accepted to Computer Graphics Forum (Eurographics 2020)

II

State of the art

II.1 Introduction

Over the years, numerous representations of 3D models have been developed, with their uses varying in function of the intended application. These representations range from low-level to high-level: low-level representations often are directly usable as is, but are unconvenient for applications such as shape analysis. High-level representations build upon the low-level ones and allow more powerful applications at the cost of added complexity. In particular, often high-level representations are not another way of organizing data in the memory of a computer, but the organization of low-level representations along with an algorithm to convert it to another representation or to extract data; the algorithm, or transformation, is part of the representation.

Here we will review classical low-level object representations that are found in numerous applications such as rendering and geometric modeling between others (Section II.2). We will then focus on more recent high-level representations based on dictionaries (Section II.3).

II.2 Classical representation II.2.1 Point clouds

The simplest way to concretely represent a shape, in any dimension, is to model it by a set of points in R , and use a su cient number of points for the shape to be distinguishable (Figure II.1). These points can optionally be complemented with data such as normal or color information, for a more faithful approximation of the object to represent. The more points in the point set, the better the approximation should be, however please not that nothing in this representation prevent the data from being noisy or from exhibiting other defects (such as missing parts). A common way of retrieving such point clouds is by using 3D scanners (Figure II.2) that will reconstruct them from a set of RGB-D images [START_REF] Newcombe | Kinectfusion: Real-time dense surface mapping and tracking[END_REF], Dai et al., 2017] (see [START_REF] Zollhöfer | State of the art on 3d reconstruction with rgb-d cameras[END_REF] for a survey of such techniques). The results of these methods are often noisy and need to be cleaned, for example by removing outliers and structural noise. Moreover, when multiple point clouds of the same scene are captured, they need to be aligned together in a process called registration, see the recent survey of [START_REF] Berger | A survey of surface reconstruction from point clouds[END_REF]. While point clouds can be kept as-is for further geometric processing or even rendering [START_REF] Rusinkiewicz | Qsplat: A multiresolution point rendering system for large meshes[END_REF], they are often converted to meshes using methods such as Poisson Reconstruction [START_REF] Kazhdan | Screened poisson surface reconstruction[END_REF], before subsequent use. Another common use for point clouds is in the 3D simulation eld, were they are treated as moving particles subject to physical forces. For example, they are widely used for uid simulation [START_REF] Gingold | [END_REF]Monaghan, 1977, Macklin andMüller, 2013] (Figure II.3) and special e ects in video games (Figure II.4).

Overall, the simplicity of this representation allow them to be e ciently usable on various hardware (CPU or GPU), and they can also be used for both surfaces and volumes. However, they su er from a lack of meta-information about where the shape surface really is or what kind of object is represented, making them not really suitable for shape analysis for example. Having an unambiguous point cloud requires su cient sampling, often meaning having hundreds of thousands of points, which takes both signi cant space and time to process.
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Figure II.5 -When the sampling is not dense enough, a point cloud can be ambiguous in that several surfaces are plausible. A way to solve the potential ambiguous nature of point clouds is to complete them with a connectivity, which is a set of polygons de ned on the points, called vertices.

II.2.2 Meshes

The lingua franca of 3D application is triangular meshes, where all polygons are triangles (see Figure II.6), and is usually stored as two arrays: the rst one is the vertices, the second one is a list of triplets referencing the points consituting the triangles of the mesh ("indices").

Figure II.7 -Faces are formed by cycles of halfedges (arrows).

There are actually several ways to store the connectivity of a mesh: not only indices can be ordered di erently, but they can also be replaced by a list of edges or half-edges (Figure II.7, see [Muller andPreparata, 1978, Weiler, 1985]) for example, enabling easier access to the neighbour of a vertex for example. In the most extreme case the mesh can be stored as just a list of points, grouped by (usually 3), and triangles formed out of these -uplets, potentially repeating some points: such a structure is called a polygon soup. This last structure however lacks most of the bene ts of having a connectivity.

While polygons with an arbitrary number of points is a perfectly valid possibility, in computer graphics triangles are always planar, making them easier to reason about, implement, and process. We usually want meshes to more or less represent physical surfaces or interface between volumes, more formally that the neighbourhood of any point of the surface is homeomorphic to either a disk or a semi-disk (in case of an open surface). Such surfaces are called manifold. It is to note that this condition only holds locally: while the neighborhood of a point on a 3D sphere is homeomorphic to the 2D Euclidean plane, this is not true for the whole shape. In particular, for a triangular mesh, this means that all edges are contained in either 1 or 2 triangles, and for any vertex the surface made by its triangles is homeomorphic to a closed or open disk (Figure II.8).

Multiple closed disks

Multiple open disks Edge in 3 triangles Manifolds are not limited to representing surfaces, as they can be de ned in any dimension. But even without the requirement for manifoldness, meshes can represent surface and volume, and in the latter case are usually made of tetrahedrons or hexahedrons (hence "tetrahedral meshes" or "hexahedral meshes"), which are widely used for engineering purposes such as computing vibration modes [START_REF] Brandt | Compressed vibration modes of elastic bodies[END_REF] for example, or running accurate nite element simulations [START_REF] Schneider | A large scale comparison of tetrahedral and hexahedral elements for nite element analysis[END_REF]. Such meshes can be generated from triangular meshes [START_REF] Hu | Tetrahedral meshing in the wild[END_REF], Sokolov et al., 2016].

Manifold surfaces are really useful for numerous applications, in particular it is not possible to bene t from the performance improvements of half-edges if the mesh is not manifold, as manifoldness is required for their construction. However, such a representation still does not incorporate high-level meta-data that could be used for generative models: for example, indentifying parts of a shape with semantic information about their function or physical properties.

II.2.3 Voxels

Drawn as the natural progression from 2D images to 3D, voxels are the 3D equivalent of 2D pixels, and are stored in 3D grids, each cell being a voxel. They can concretely be represented as a boolean for the presence or absence of the object, an integer ID for the speci c type of matter present (very useful for video games and physical simulation for example, see Figure II.9), or a color for example. Such a representation can only realistically be reliable for volumes, as for surfaces it will be prone to the same aliasing issues found when drawing lines in pixel images.

As an advantage, traversing the shape is even easier than with tetrahedral meshes.

Figure II.9 -Minecraft, a famous video game where the world is made of voxel. A voxel represents a material, such as "rock", "tree" or even "air" for when there is no matter.

Voxels can be easily converted to an implicit surface for meshing, which is the common approach, although it is still possible to directly convert from voxels to meshes. The biggest problem with voxels is the size requirement, as they quickly ll a large amount of memory. This makes this representation unsuitable for machine learning purpose for example, although this was already tried [Maturana andScherer, 2015, Wang et al., 2019] as the natural extension of pixel images.

II.2.4 Implicit surfaces

Regarding 3D meshes and voxels, they su er the same problem with regards to the underlying surface than pixel images: they are a discretization of the underlying surface, and therefore can either lack crucial details or require a substantial amount of data to store them. Moreover, they cannot exactly represent fractal shapes, which are often used when modeling terrains [Musgrave, 1993, van Lawick van Pabst and[START_REF] Van Lawick Van Pabst | [END_REF]. Instead, another way of representing a surface or volume is using an implicit formulation: given a function : R ↦ → R, the surface is the isocontour at 0, i.e. the set of points = { ∈ R | ( ) = 0 } (we can use 0 without loss of generality). By convention, negative numbers as associated with the inside of an object and positive number with the outside. These surfaces are manifold by construction, and always watertight. The immediate drawback is the loss of simple traversal algorithms, but this is to put in balance with the ease of manipulation: of all the classical representation, this is the easiest to compose, deform, or use for boolean operations. It can also be the most lightweight representation: for example a sphere of center and radius is represented by:

( ) = --
which means only 4 numbers in 3D for in nite details, to compare to the hundreds of points needed for a point cloud for example (which is still not with in nite details though). In general, either the function is coded in a programming language (such as C++), or determined by composition using a tree structure [START_REF] Wyvill | Extending the csg tree. warping, blending and boolean operations in an implicit surface modeling system[END_REF].

Implicit surfaces can trivially be converted to voxels using a comparison to 0 in each cell, but the conversion to meshes in more complex. The state of the art algorithm for that purpose is the dual contouring algorithm [START_REF] Ju | Dual contouring of hermite data[END_REF], Schaefer and Warren, 2003, Schaefer et al., 2007], which also takes a normal eld (it can be the gradient of the implicit surface) to better adjust the output mesh. It is to note that implicit surfaces can be directly rendered using ray marching [Hart andDeFanti, 1991, Hart, 1996].

This highlights an interesting point about the representation of 3D shape: this representation is concretely a function; on a concrete level, this is both data and code at the same time, and blurs the distinction between algorithm and raw data. Indeed, most high-level representations that follows will be very dependent on an algorithm for them to exist. Implicit surfaces are also the only classical representation that allow similar parts of the shape not to duplicate information: for example, the function to represent a human could rely on a function ( ) for the left arm and ( ) for the right arm, where is a xed transformation matrix: this way, changing the function will change both arms at once. Instead, meshes or point-clouds would explicitely both arms, even if constructed using a similar mechanism: the data structure removes the semantic link. This fact paves the way for dictionary-based representations, detailed next.

II.3 Dictionary-based

The previously shown low-level shape representations act as the basis for most techniques, but are not really compact nor easy to manipulate in a high-level way. Moreover, the volume of available 3D objects has enormously increased in the recent years, in particular due to the rise of 3D printing. To that matter, we focus on representations that exploit the similarities found both in shapes and in shape datasets, using dictionaries. Dictionaries are very useful objects for data analysis, as they enable a compact representation of large sets of objects through the combination of atoms. Dictionary-based techniques have also particularly bene ted from the recent advances in machine learning, which has allowed for data-driven algorithms to take advantage of the redundancy in the input dataset and discover relations between objects without human supervision or hard-coded rules.

The recent availability of large datasets of 3D objects has inspired a new generation of algorithms that leverage the knowledge derived from the whole dataset in order to address fundamental problems, in elds such as correspondence [Huang et al., 2014a], segmentation [START_REF] Xie | 3d shape segmentation and labeling via extreme learning machine[END_REF], Xu et al., 2014], recognition [START_REF] Aubry | Seeing 3d chairs: exemplar part-based 2d-3d alignment using a large dataset of cad models[END_REF], surface reconstruction [START_REF] Xiong | Robust surface reconstruction via dictionary learning[END_REF], Shen et al., 2012], synthesis [START_REF] Kalogerakis | A probabilistic model for component-based shape synthesis[END_REF], modeling [START_REF] Yumer | Co-constrained handles for deformation in shape collections[END_REF], or exploration [START_REF] Ovsjanikov | Exploration of continuous variability in collections of 3d shapes[END_REF]. These methods are able to learn the underlying computational models allowing representing and processing individual shapes or families of shapes, without relying on hard-coded or user-provided rules. However, the size and complexity of the input datasets a ect both the memory and computational costs of algorithms, making the dataset representation and storage a particularly sensitive aspect.

In geometry processing and geometric modeling, data-driven methods have long been restricted to example-based methods, which, given an exemplar and a target object in a dataset, transfer information from the former to the latter. While achieving interesting results, these methods typically do not take advantage of the entire object collection. With the advent of large repositories of 3D shapes, novel methods have been proposed with the primary aim of extracting shapes or sub-shapes from the input and combine or blend them in order to form new models, giving the opportunity to help artists in designing new objects [Chaudhuri andKoltun, 2010, Funkhouser et al., 2004], to enrich an existing set [START_REF] Kalogerakis | A probabilistic model for component-based shape synthesis[END_REF] or to support geometry processing tasks such as shape reconstruction of scanned objects [START_REF] Pauly | Example-based 3d scan completion[END_REF]. In particular, co-analysis of shape families allows for high-level shape understanding by nding correlations between multiple objects, which facilitates generating similar shapes using the learned generative grammar, as demonstrated by [START_REF] Talton | Learning design patterns with bayesian grammar induction[END_REF]. We refer the interested reader to the survey of Xu et al. [Xu et al., 2015a] for further information on data-driven methods in geometry processing.

A key issue for many data-driven techniques is that the size of the data can be computationally prohibitive. For example, ShapeNet [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF] contains more than 60,000 models and requires more than 100 gigabytes of storage. In some scenarios, it is important to use a concise representation of the dataset, and dictionaries make that possible by exploiting the fact that large datasets are made of numerous similar shapes that can be reduced to a limited number of "atoms". The exact de nition of an "atom" highly depends on the type of the dictionary considered. For example, it is possible to segment shapes and use the resulting segments as the atoms of a dictionary. In linear algebra and analysis, combining atoms (or words) of a dictionary is in general not obtained through simple concatenation or placement, but instead by using a (possibly linear) weighting; simple and famous examples are the Fourier series, or the canonical basis ( ì , ì , ì ) of R 3 for 3D shapes. In signal processing, atoms in dictionaries were often restricted to orthogonal bases at rst, for ease of use and signal decomposition, but this orthogonality proved too limiting for expressiveness and overcomplete dictionaries -meaning that some atoms can be expressed as combinations of other atoms -became increasingly popular. We refer to Rubinstein et al. [Rubinstein et al., 2010a] for a survey retracing the history of dictionaries in signal processing. Dictionaries can also be very useful to reduce computations, as one can focus on processing a few atoms instead of operating on the entire input dataset.

While dictionaries are inherently sparse, they are not the only sparse representation one can use in shape processing (other possibilities include implicit surfaces or low-rank matrices, for example). Covering all sparse representations is out of the scope of this section, and we refer to Xu et al. [START_REF] Xu | Survey on sparsity in geometric modeling and processing[END_REF] for a survey on sparsity in geometric modeling.

Scope. In the context of this thesis, we aim to develop the algorithmic primitives necessary for the manipulation of shapes represented as a composition of multiple components, which we can source from a dictionary of shapes. One of the strengths of dictionary-based approaches is that they allow both tting input data to the atoms in the dictionary (e.g., for shape reconstruction) and synthesizing novel shape instances for shape modeling by recombining atoms. Moreover, dictionarybased methods are versatile in the sense that the atoms and the data do not have to be of the same type (triangle meshes vs. point clouds vs. parametric planar patches). These techniques are also often used as sub-parts of other methods, to analyze shape collections for instance. Therefore, it is important to consider dictionaries as objects of study here, as they are very useful when representing a shape as a composition of parts. To this end we present an overview of recent techniques for building and using dictionary-based representations in shape modeling.

We restrict the scope of this section to techniques handling point clouds and meshes, making use of dictionaries whose de nition depends on the input data (data driven dictionaries), and explicitly enabling shape reconstruction or synthesis from the dictionary through the combination of atoms in a new point cloud or new mesh -for the latter either by composing parts, interpolating linearly or stitching atoms together. An important aspect of dictionary-based analysis and modeling is to be able to encode second-order constraints, which characterize how the atoms t together, in addition to what the atoms actually are. We discuss ways of building and analyzing such second-order relations, via statistical models such as Bayesian networks or inferred grammars for example.

II.3.1 Preliminaries

Data-drivenness

Data-driven methods are motivated by the fact that the study of a whole set often brings more understanding than the study of the objects taken independently. The aim is to learn a representation from the dataset enabling complex and precise processing on large sets of shapes. Before the advent of data-driven techniques, such a goal was achieved with knowledge-driven methods, in which patterns are extracted using complex hard-coded rules that cope poorly with the large structural variability of big datasets. Knowledge-driven methods (such as the surface approximation of Xu et al. [START_REF] Xu | Surface approximation via sparse representation and parameterization optimization[END_REF], using a dictionary of userde ned polynomials) are out of the scope of this survey. We refer to Xu et al. [Xu et al., 2015a] for a survey on data-driven methods in modeling geometry in general.

Dictionaries

De nition. The term "dictionary" is very broad and sometimes not precisely de ned. We refer to a dictionary as a set of elements, called atoms, equipped with a combination operator between elements in order to create new elements. The set of elements is usually overcomplete, meaning that there are more atoms than necessary in order to generate a given combination. Formally, we de ne a dictionary as: dictionary = {{atoms...}, combination} combination : coe cients → object

The choice of atoms, coe cients and combination operator depends on the application. For example, in geometric modeling atoms can be meshes in perfect correspondence, with a linear interpolation as combination operator, or entire shapes, with the union as combination operator in order to compose entire scenes, whereas, in some applications of language processing, atoms can be words and the combination be a concatenation operator. Hence we try to characterize what types of atoms and combinations are considered at each stage of this survey. Let us note that this abstract notion of dictionary is similar to the de nition of structure in the survey of Mitra et al. [Mitra et al., 2013a] on structure-aware shape processing.

Our focus is complementary: their structure re ects the relations between distinct parts of shapes while we consider techniques that build and use dictionaries derived from shape collections, and that do not necessarily use (distinct) parts.

From dictionaries to shapes. In most of the approaches covered in this survey, atoms will be shapes or shape parts. However, for a given type of atoms, the combination method can vary greatly. A conceptually simple combination method is a linear interpolation of atoms, as it is often done in 3D morphing, where the vertex positions of di erent poses are interpolated following the (potentially animated) coe cients given by the user, which describe the amount of in uence of each pose in the output. Note that such a combination require perfect correspondence between meshes. Some methods use more advanced interpolations involving the minimization of a stretch energy which takes into account some constraints that a simple linear interpolation method would ignore, like muscle deformations at the elbow when going from a straight arm to a folded arm [START_REF] Gao | Data-driven shape interpolation and morphing editing[END_REF]].

Another combination operator example is concatenation: here, the atoms of the dictionary are thought as di erent components of a shape that are put together when constructing a new element. The coe cients are not just real number in this case, but more complex structure encoding which parts are present, as done by [START_REF] Kalogerakis | A probabilistic model for component-based shape synthesis[END_REF] for example. It is also possible to blend di erent meshes using dictionaries, and in this case the coe cients will be spatial functions that control which region of which mesh to stitch into the nal one.

In this survey, the e ectiveness of dictionary-based modeling relies on the ability to reconstruct shapes from a dictionary and a set of coe cients, which can have various forms, from simple real numbers to user sketches. This excludes methods such as bag-of-words methods (or bag-of-features) from data-driven dictionarybased approaches, notably used in object retrieval from databases (as in Shape Google [START_REF] Bronstein | Shape Google: Geometric words and expressions for invariant shape retrieval[END_REF], or the shape retrieval technique of Lavoué [Lavoué, 2011]). To the best of our knowledge, generative applications using bag-of-words, such as PhotoSketcher [START_REF] Eitz | Photosketcher: interactive sketch-based image synthesis[END_REF], are only present in the image processing eld. Similarly, while one could build a dictionary from the result of segmentation or symmetry detection techniques, such as the partial symmetry detection of [START_REF] Mitra | Partial and approximate symmetry detection for 3d geometry[END_REF], most of these methods do not focus on shape modeling and hence are not included in this survey. We refer the reader to the survey on symmetry of [START_REF]Symmetry in 3d geometry: Extraction and applications[END_REF] for more information.

Dictionary learning

Obtaining a dictionary can be done in several ways: it can be provided explicitly, in which case it is not data-driven (and hence methods using such dictionaries will not be discussed here); it can be the input dataset itself, or it can be learned from the dataset. Atoms as well as the combination operator and coe cients can sometimes be learned. Dictionary-learning is a part of machine-learning and a large body of algorithms and techniques have been developed for this matter.

Before describing the classi cation of the survey, we will introduce some of these algorithms, focusing on the most fundamental ones shared by many techniques presented in this survey.

PCA. The simplest and most commonly-used algorithm is Principal Component Analysis: given a set of vectors as input (all of the same dimension), it outputs an orthogonal basis: the basis vectors (also called components) are the directions of (progressively) least-variance of the data. This algorithm computes both the atoms -the basis vectors -and the coe cients, and is broadly used for dimensionality reduction. Atoms are combined using a linear combination, i.e. by multiplying the basis matrix with a vector of coe cients.

A limitation of PCA is that the coe cients that it produces can involve many basis vectors. In practice one is often interested in learning a sparse representation, that allows to express the data using as few as possible coe cients. In general, nding a dictionary with a sparse representation is a NP-hard problem [Vavasis, 2009, Tillmann, 2015], so algorithms aim at nding a good approximation in an acceptable time. Below we review some commonly used approaches. K-SVD. Introduced by [START_REF] Aharon | K-svd: An algorithm for designing overcomplete dictionaries for sparse representation[END_REF], K-SVD is a generalization of the k-means algorithm. It represents a dictionary of atoms { } in R by a × matrix . With ∈ R a signal, its decomposition is represented as a coe cient vector ∈ R , such that = (or as close as possible). This is achieved by optimizing: where is the matrix of signals { }, the matrix of coe cients (so we have = ), is the Frobenius norm, 0 is a constant and . 0 is the number of non-zero coe cients. The constraint enforces sparsity of the decomposition onto the output dictionary. This optimization is performed in two main steps: rst, is xed and the best (approximate) coe cients are found, using an algorithm like Orthogonal Matching Pursuit (described below); second, is xed, and is updated, one atom at a time in a greedy fashion, the other atoms being xed. This is done by minimizing for every :

- 2 = - ≠ - 2 = - 2
where is the -th row of . This step is commonly solved using Singular Value Decomposition -hence the name of the algorithm -and the solution to this new minimization is the updated column vector. All of this is done iteratively until su cient convergence, i.e., -≤ . Note however, that the global optimum is not guaranteed to be found.

Orthogonal Matching Pursuit (OMP) is an extension of Matching Pursuit, which was introduced by Pati et al. [START_REF] Pati | Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[END_REF]. From an input dictionary and coe cients, it aims at producing better coe cients to favor sparsity, keeping the dictionary constant. The optimization is cast as decreasing iteratively the residual by greedily considering new atoms onto which the signal is decomposed. Given a dictionary ∈ R × a vector ∈ R , and a greediness factor ∈ [0, 1], the initialization is as follows: 0 = already processed atoms 0 = residual of still to be approximated At iteration (starting at 0), the following steps are performed:

1. nd so that ∈ \ and | , | ≥ sup ∈ \ | , |
2. if this product is lower than a given threshold, stop, 3. permute columns + 1 and of the dictionary , 4. compute the set of coe cients { } =1 such that

+1 = =1 + with , = 0, ∀ ∈ [1.. ] 5. with = , +1 -2 , compute { +1 } +1 =1 : ∀ ∈ [1.. ], +1 = - ; +1 +1 =
6. update the model:

+1 = +1 =1 +1 +1 = -+1 +1 = { +1 }
The last coe cients found are the result of the algorithm, decomposing on , with the guarantee that no more than iterations will be needed.

Alternating direction method of multipliers (ADMM) is an optimization algorithm that is widely used in machine learning and was proposed by Glowinski and Marrocco [START_REF] Glowinski | Sur l'approximation, par éléments nis d'ordre un, et la résolution, par penalisationdualité, d'une classe de problèmes de Dirichlet non linéaires[END_REF] and Gabay and Mercier [START_REF] Gabay | A dual algorithm for the solution of nonlinear variational problems via nite element approximation[END_REF]. It regained interest more recently after the related publication of [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF], and is also used to learn dictionaries. Given 2 functions , : R → R, we iteratively solve the following problem: minimize ( ) + ( )

subject to + = 29 
The augmented Lagrangian is de ned as

( , , ) = ( ) + ( ) + ( + -) + 2 + -2 2
and each iteration is composed of three steps:

Minimize : +1 = argmin ( , , )

Minimize :

+1 = argmin ( +1 , , )
Dual update:

+1 = + ( +1 + +1 -)
This method is an extension of the Method of Multipliers, which considers an additional term 2 + -2 2 in order to regularize the dual update. ADMM is guaranteed to converge for xed , assuming that and are closed proper convex functions, though it is not guaranteed to nd the global optimum. This algorithm is widely used in machine learning [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF], and it has been used successfully to learn dictionaries in some methods presented in this survey. In this context, the coe cients and the dictionary are often optimized alternatively, sparse coding being used to learn the coe cients and ADMM being used to learn the dictionary. While these algorithms are commonly used in the literature presented in this survey, they are not speci c to 3d modeling, and are widely used in other such as signal and image processing, with image denoising as a common example. Authors such as Mairal [Mairal, 2010] and Elad [Elad, 2010] have thoroughly detailed dictionary-learning and sparse coding, from the point of view of image processing. We will focus on 3d modeling in the next section.

Classi cation

We group techniques by the application domains in which dictionaries have been exploited the most: surface reconstruction, compression, synthesis and modeling. However, even within the same application domain, related methods can feature a great variability in the way dictionaries are used. We summarize all the methods presented in this survey in Table II.1. The columns represent which elements compose a dictionary, what is learned and how it is learned, what type of shape is obtained by combining atoms, and the method application domain.

Atom type. Most of the methods use shapes or shape parts as atoms. In this column of the table, shape means that the representation of the shape is irrelevant, because it will only be placed in a scene -usually in part-based synthesis techniques [START_REF] Chaudhuri | Probabilistic reasoning for assembly-based 3D modeling[END_REF], Talton et al., 2012]. A certain number of techniques need meshes as atoms as they blend or stitch them, and the algorithm they use is specialized for this representation. Less common, mesh vertices are used for surface reconstruction, and allow considering the reconstructed mesh as the dictionary itself. Combination operator. The second important ingredient in the de nition of a dictionary is the combination operator, which here can be either interpolation, composition, or stitching. An overview of the di erences between these classes of combination operators is shown in Figure II.10. Interpolation refers to linear interpolation, with scalar coe cients that can be de ned per atom [Blanz and Vetter, 1999] or can be spatially-varying [START_REF] Neumann | Sparse localized deformation components[END_REF]. This class of combination operators may impose constraints on the representation of the atoms (e.g., atoms may be meshes constrained to contain the same number of vertices and connectivity). Composition of a set of atoms refers to placing atoms, potentially with rotation and scaling, into the nal object, which can be an artistic creation [START_REF] Chaudhuri | Probabilistic reasoning for assembly-based 3D modeling[END_REF] or even a fully reconstructed scene [START_REF] Li | Databaseassisted object retrieval for real-time 3d reconstruction[END_REF]. It usually only needs 4 × 4 transformation matrices, with the possibility of placing the same atom at several locations; in general, this operator can work with any shape representation. Note that it is possible to have meshes assembled by composition, although in that case, they will simply be composed of several disconnected components. Finally, stitching meshes together refers to taking atoms (or their parts) and gluing the triangles in order to form a watertight mesh, to output a unique mesh [START_REF] Pauly | Example-based 3d scan completion[END_REF] or to support organic shapes [START_REF] Kreavoy | Model composition from interchangeable components[END_REF] for instance. For example, composition and stitching are typically used by part-assembly methods.

Learning. This section of the table describes the elements of the dictionary that are learned: atoms, coe cients, and combination method, when applicable. The learning step is often done by minimizing an energy on the input dataset. Sometimes atoms and coe cients are not su cient for the combination operator to output a shape, and some information may be added -such as the result of another energy minimization depending on the input data for example; in this case we say that the combination operator is learned. Finally this section of the table is completed with a short summary of the learning algorithms that are used, the most frequent ones being explained in the preliminaries (Section II.3.1).

All the methods mentioned in this survey appear in Table II.1 in the order in which they are introduced in the text, and are discussed in the Sections II.3.2,II.3.3,and II.3.4 corresponding to the speci c application that they address in geometry processing and modeling.

II.3.2 Scene reconstruction

The rst application domain that we consider is scene reconstruction, a subset of surface reconstruction: it is possible to reconstruct entire 3D scenes by placing shapes extracted from a dictionary. In this context, dictionaries are often sets of high-quality shapes or point-clouds, whose knowledge helps removing noise, detecting outliers and lling holes in the input.

While the combination is simple (union), the extraction of the coe cients (which are transforms) can be rather complex. SLAM++ [START_REF] Salas-Moreno | Slam++: Simultaneous localisation and mapping at the level of objects[END_REF] and the method of Li et al. [START_REF] Li | Databaseassisted object retrieval for real-time 3d reconstruction[END_REF] are particularly e cient, and allow the user to reconstruct an entire room in real-time using a simple hand-held sensor. All captured frames are processed (not just the last one), meaning that the accuracy of the reconstruction augments progressively.

The SLAM++ method [START_REF] Salas-Moreno | Slam++: Simultaneous localisation and mapping at the level of objects[END_REF] tracks the object's position and camera pose simultaneously. Objects are recognized and their placement determined at the same time, using the method of Drost et al. [START_REF] Drost | Model globally, match locally: E cient and robust 3d object recognition[END_REF], which consists in nding similar point-pairs in the depth image and in the dictionary. First, the point-pairs are generated for each object in the database by randomly sampling points and computing all possible pairings, and these pairs are then put in a dedicated search structure (one per shape). After ltering the input image, point-pairs are generated the same way and these pairs are queried in the structure via a voting scheme, which gives the position of matched shapes. Note that this method is GPU-friendly and therefore allows for a fast scene reconstruction.

The problem with SLAM++ is that these point-pair descriptors are highly discriminative and require almost exact matches, which implies that in practice it works well only for extremely rich dictionaries, and that scanned models should be cleaned before use.

To address this issue, Li et al. [START_REF] Li | Databaseassisted object retrieval for real-time 3d reconstruction[END_REF] instead match key-point descriptors, computed similarly on each shape of the dataset and on the input image, the latter being converted to a signed distance function (SDF) [START_REF] Nießner | Real-time 3d reconstruction at scale using voxel hashing[END_REF], Nießner et al., 2014]. They are obtained by detecting corners and enriching them with descriptors of their geometric neighborhood (such as the local distance eld), so the dictionary atoms of this approach are shapes with their set of key-point descriptors. Large databases are managed by clustering the objects on their descriptors. The object matching the scan (i.e. the one with the closest descriptors) is then added to the scene. Since all necessary comparisons are easily parallelized on the GPU (as with SLAM++ [START_REF] Salas-Moreno | Slam++: Simultaneous localisation and mapping at the level of objects[END_REF]), this technique provides real-time results. Furthermore, the main advantage of this method compared to the previous one is that it is highly robust to missing data, notably because the SDF representation aggregated over several frames is accurate, yields robust normals and is resistant to noise. Van den Hengel et al. [van den Hengel et al., 2015] reconstruct the structure of real-world Lego assemblages from a set of silhouette images and a dictionary of Lego parts (see Figure II.11). By expressing silhouettes as vectors, with one vector for all the input silhouettes and one vector per part (which is the concatenation of this part rendered with the projections of all input images), they solve the structure recovery problem with an energy minimization, the rst term favoring combinations of silhouettes close to the input images, and the second favoring sparse coe cients vectors. For plausible results, they take in account overlapping silhouettes, and they aim for physical plausibility by avoiding atom intersections and oating parts. By using silhouettes, this method is robust to noise. However, it is computationally expensive due to the complexity of the system to solve, and can reconstruct shapes with holes when viewed from angles not corresponding to an input image. Indoor scene reconstruction. Among previous data-driven dictionary-based scene reconstruction methods, some are specialized to indoor scenes, as shown by [START_REF] Nan | A search-classify approach for cluttered indoor scene understanding[END_REF], [START_REF] Shao | An interactive approach to semantic modeling of indoor scenes with an rgbd camera[END_REF], and Kim et al. [START_REF] Kim | Acquiring 3d indoor environments with variability and repetition[END_REF]. For all of these techniques, the atoms of the dictionary are shapes given as input, and they are composed together as the user scans the room.

The main idea of the method of Nan et al. [START_REF] Nan | A search-classify approach for cluttered indoor scene understanding[END_REF] is to alternate between segmentation and classi cation in a feedback loop. Before scanning a scene, shapes (atoms) are preprocessed : they are used to learn a Randomized Decision Forest, which is a robust classi er in presence of incomplete data. In the runtime phase, the input point cloud is oversegmented, and the adjacency of these segments is computed. Each step in the loop works on a candidate patch (aggregation of segments), rst trying to extend it with the neighbor segment with the highest classi cation likelihood. To improve the segments, templates associated with the class of the patch is tted to the patch point-cloud, in order to detect outliers and exclude them.

The approach of [START_REF] Kim | Acquiring 3d indoor environments with variability and repetition[END_REF] requires rst scanning all potential objects individually, before they can be automatically segmented and approximated by simple primitives using RANSAC. During runtime, the user scans an indoor room, and the scan is separated into connected components that are matched against the database of objects. First, dominant planes corresponding to walls, oor, etc, are extracted using RANSAC; then objects are matched iteratively, and once a transformation is found for an object, its corresponding points are removed from the point-cloud. The loop continues until no objects can be matched, and the matching in itself is performed by minimizing the distance between features measured on segments and models to match. A drawback of the technique of [START_REF] Kim | Acquiring 3d indoor environments with variability and repetition[END_REF] is that it requires a signi cant amount of training data as well as careful parameter tuning, compared to previous methods [START_REF] Li | Databaseassisted object retrieval for real-time 3d reconstruction[END_REF], Nan et al., 2012[START_REF] Kim | Acquiring 3d indoor environments with variability and repetition[END_REF]. [START_REF] Shao | An interactive approach to semantic modeling of indoor scenes with an rgbd camera[END_REF] address the segmentation problem with a supervised system: given RGBD images of indoor scenes, each image is segmented on a set of prede ned semantic labels (10 are used in the original article: sofa, table, monitor, wall, chair, oor, bed, cabinet, ceiling and background). These segmentations are achieved through a minimization of a Conditional Random Field energy with two terms, the rst one measuring the likelihood of a speci c label for a speci c pixel, and the second one measuring the labeling consistency between two pixels. The actual minimization is done using graph-cuts [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF], and these segmentations can be re ned by the user if needed. The segmented point clouds are then matched with objects in the database for the nal composition.

Analysis. The use of a dictionary for the reconstruction of scenes allows lower execution times, as the algorithm just has to classify parts of the scene and nd the appropriate placement. Moreover, compared to the space of possible point clouds or voxels, dictionaries allow removing ambiguous and impossible shapes from the search. These methods work best with man-made objects due to the highly repetitive structure, and can reconstruct high quality scenes since the quality of the composition only depends on the quality of the atoms. This enables algorithms such as SLAM++ [START_REF] Salas-Moreno | Slam++: Simultaneous localisation and mapping at the level of objects[END_REF] to run in real-time. The two rst approaches [START_REF] Salas-Moreno | Slam++: Simultaneous localisation and mapping at the level of objects[END_REF][START_REF] Li | Databaseassisted object retrieval for real-time 3d reconstruction[END_REF] are more general than the other presented in this subsection, as they do not include domain-speci c knowledge such as basic room organization [START_REF] Nan | A search-classify approach for cluttered indoor scene understanding[END_REF][START_REF] Kim | Acquiring 3d indoor environments with variability and repetition[END_REF], Shao et al., 2012] or grid structures [van den Hengel et al., 2015] -note that the latter can be applied to general shapes but the quality of the reconstruction is not on par with the reconstruction of shapes with a grid structure. Nonetheless, the drawback of these methods resides in having to ll the dictionary at rst, requiring manual modeling or scanning beforehand, which becomes cumbersome for large number of shapes; this is attenuated for the primitive tting method of van den Hengel [van den Hengel et al., 2015], as it only needs a few atoms. Additionally, with these scene reconstruction methods [START_REF] Salas-Moreno | Slam++: Simultaneous localisation and mapping at the level of objects[END_REF][START_REF] Li | Databaseassisted object retrieval for real-time 3d reconstruction[END_REF], Nan et al., 2012[START_REF] Kim | Acquiring 3d indoor environments with variability and repetition[END_REF], Shao et al., 2012], not reconstructing an object can be due to either the lack of similar shapes in the dictionary, or the lack of scans, and the distinction between these two cases is di cult.

II.3.3 Synthesis and modeling via mesh morphing

We have seen in the previous section methods that build a shape and a dictionary at the same time, we will now focus on the inverse, that is generating a shape from a dictionary. Dictionaries can be very useful for synthesis, for example one can use them as a high-level control in order to create shape variations by changing atoms or editing their weights [START_REF] Guérin | Sparse representation of terrains for procedural modeling[END_REF]. In particular, the use of such a work ow allows reducing drastically the time needed to design interesting shapes and explore the resulting shape space. We will emphasize this aspect when describing related techniques in this section. The counterpart to mesh morphing, which uses (linear) interpolation of vertex positions, is part assembly, described in the next section, and which allow to create new shapes from existing parts.

Unlike reconstruction or compression, where the goal is to encode a single object or scene, shape morphing consists in nding an interpolation between multiple shapes. In its its simplest form it consists in linearly interpolating vertex positions, if the meshes share their connectivity (e.g., a mesh animation). This, however, can lead to unrealistic shapes with signi cant distortion, which has also motivated the use of dictionaries in this setting. The simplest approaches often use PCA-based dictionaries to interpolate the coe cients, but have also used widely varying artistic controls, ranging from word attributes (as in Body Talk [START_REF] Streuber | Body talk: Crowdshaping realistic 3d avatars with words[END_REF]) to handles for inverse-kinematics (the method of Wampler [Wampler, 2016] for example) or even full example shapes as guides [START_REF] Gao | Data-driven shape interpolation and morphing editing[END_REF].

Terrain ampli cation

Guérin et al. [START_REF] Guérin | Sparse representation of terrains for procedural modeling[END_REF] propose to compress terrains using the self similarity of such data. The input terrain is de ned by an elevation function ℎ : Ω → R, where Ω ⊂ R 2 . This elevation map is decomposed as a set of patches, which are called primitives:

ℎ( ) = -1 =0 ( )ℎ ( ) -1 =0 ( ) ; ( ) = 1 - - 2 2 3 +
where is a spatial weight function localizing the in uence of primitive ℎ . The whole domain must be covered by these primitives, potentially with overlaps. These primitives are decomposed into dictionary height map atoms { } -1 =0 as

ℎ ( ) = + -1 =0 ( -)
where is a primitive-representative elevation, is its center and the { } are the coe cients allowing expressing a primitive ℎ in terms of atoms { }. The atoms can be analytic (i.e., de ned at every continuous location, for example represented as variations of Perlin noise) or sampled (e.g., represented as elevation grids). In either case, these atoms are geometrically embedded in R , and since there are atoms and coe cients, the dictionary can be represented by a matrix ∈ R × stacking all atoms, and coe cients as ∈ R × . For the application of terrain compression, the dictionary atoms { } as well as the coe cients { } are learned using K-SVD, and base altitudes are = ℎ( ).

Ampli cation. While the Sparse Terrains method [START_REF] Guérin | Sparse representation of terrains for procedural modeling[END_REF] achieves high compression ratios, its generic and hierarchical representation allows for additional interesting applications. In particular, terrain modeling can be achieved through the change of the atoms while preserving the coe cients, and resolution ampli cation, which boils down to replacing low-resolution atoms with higherresolution counterparts. In these applications, it is important to obtain a naturally-looking set of atoms, and the learning of the dictionary is slightly changed to account for this constraint. Speci cally, their learning algorithm is a variant of K-SVD, in which they force dictionary atoms { } to match input primitives {ℎ } that are either extracted from a realistic terrain database or extracted from a high-resolution model directly as patches, while accounting for the sparsity of the solution. Their optimization can be written as:

min , - 2 s.t. ∀ ∈ [1.. ], 0 ≤ ∀ ∈ [1.. ], ∃ ∈ [1.. ], =
In the case of terrain ampli cation, the system is given a high-resolution exemplar, which is decomposed on a set of derived atoms { }, and a low-resolution terrain (e.g., resulting from a rough sketch). The atoms { } are down-sampled and lowresolution counterparts { ¯ } are created. The low-resolution terrain is decomposed into { ¯ }, and an ampli cation can be trivially obtained (see Figure II.12). Note that this process can be performed in a multiresolution fashion to increase robustness.

Here, Guérin et al. [START_REF] Guérin | Sparse representation of terrains for procedural modeling[END_REF] show that dictionaries can be used for both compression and synthesis, by changing the atoms to increase or decrease the level of detail on the terrain, with limitation that synthesized terrain will follow the logic learned in the dictionary and not geological laws.

Words-to-shape models

A good use of dictionaries with a simple morphing as combination operator is described by Blanz and Vetter [Blanz and Vetter, 1999], in which a dictionary for human faces is developed. The input is a set of scanned faces, in the form of meshes put in correspondence with each other, and whose vertices are equipped with two attributes: their position and their color (encoded in a texture). Constructing a new face boils down to interpolating these attributes with coe cients ( ) =1 for the positions and ( ) =1 for the colors. In this work, both sets of coe cients must sum up to 1 and are therefore barycentric weights. The shape dictionary is computed using a PCA on the delta shapes Δ = -, denoting the shape average; a similar technique is used to obtain the texture dictionary. In Body Talk [START_REF] Streuber | Body talk: Crowdshaping realistic 3d avatars with words[END_REF], input shapes (entire human bodies, all in the same pose) are expressed over a derived dictionary, and is very similar to the previous method in spirit, with the notable di erence that no texture dictionary is output. Note that the latter chose to separate female and male bodies, and also keep the rst 8 vectors of the PCA only, thus emphasizing the low-dimensional nature of the human shape dataset that they process.

Figure II.13 -Results of Body Talk [START_REF] Streuber | Body talk: Crowdshaping realistic 3d avatars with words[END_REF], which learns a model linking 3D shapes and linguistic descriptions using crowd-rated 3D models. Each shape shown here is the most likely one, given the descriptive word below them.

These dictionaries, learned via PCA on the input dataset, are not easy to manipulate for a human, and a set of user-friendly attributes are developed to allow for highlevel control in each of these two works. Both methods ask users to rate a model according to prede ned attributes such as "masculine", "feminine", "smiling", "skinny", "muscular", etc. For each attribute , the input of the user is a factor for shape describing the rating of shape over the attribute . For both methods, these user-provided ratings are the key to map natural language tags to the dictionary atoms (see Figure II.13). However, both methods di er in their model reconstruction methodology.

The approach of Blanz and Vetter [Blanz and Vetter, 1999] suggests matching a change Δ of attribute (corresponding to, e.g., a desired increase of "smiling", etc...) to a change Δ of an input shape computed as Δ = =1 Δ . An input shape with texture is therefore updated as

← + =1 Δ =1 Δ ; ← + =1 Δ =1 Δ
The user is therefore given the ability to edit an input shape using, e.g., a simple set of sliders { }, which are mapped to changes of attributes {Δ } . Although this interface is quite straightforward, it has proven useful and powerful for high-level editing. Additionally, Blanz and Vetter [Blanz and Vetter, 1999] show how to edit an input photograph of a face (it can even be a painting, as demonstrated on the Mona Lisa painting in the original article) using their framework. They start by matching a 3D morphed face to the input image, and render the model atop the image (see Figure II.14). This matching is made possible by the use of a dictionary and of a simple lighting model (Phong). The problem then becomes a search for the optimal coe cients minimizing the distance between the source image and a rendered image, which is achieved using a gradient-descent. By later editing the morphed face, applications such as relighting, shape enriching and expression or pose editing are o ered to the user. In contrast, in the work of Streuber et al. [START_REF] Streuber | Body talk: Crowdshaping realistic 3d avatars with words[END_REF], the coe cients are averaged from the crowd's ratings. This results in a vector of ratings of the form = ( 1 , 2 , ..., ) for shape , with attributes (in their experiments = 30). By assembling those vectors in a matrix (each row de ned as (1,

)), the input data is decomposed into the dictionary atoms as

= + (II.1)
where each row of is the matrix of all bodies (one per row) expressed in its low 8-dimensional PCA space. Assuming therefore an a ne linear relationship between ratings and body geometry in the PCA space, the regression coe cients are found in the least-squares sense. This gives e ectively the words-to-shape model, and given a new rating (which is a row vector), the corresponding shape geometry (in the PCA space) can be obtained by ( ) =

. Figure II.13 shows a set of shapes associated with a few descriptive words. Note that a shape-to-words model can be derived by simply inverting the model described by Equation II.1.

Analysis. While these methods are very similar, the technique of Blanz and

Vetter [Blanz and Vetter, 1999] does not model correlations between attributes, a problem tackled in Body Talk [START_REF] Streuber | Body talk: Crowdshaping realistic 3d avatars with words[END_REF], allowing accurate reconstruction of shapes from words alone. Still, Body Talk does not account for the non-linear relationship between user ratings and shape coe cients for some attributes such as "skinny". While both methods are simple, considering they provide a powerful modeling system suitable for experts as well as novice users, the use of the rst components of the PCA limits the space of possible shapes, excluding uncommon variations. Note that Streuber et al. [START_REF] Streuber | Body talk: Crowdshaping realistic 3d avatars with words[END_REF] provide an interactive web tool that allows to visualize a human shape by playing with the attributes.

Localized decomposition for shape deformation

In contrast to the methods presented in the previous section [Blanz andVetter, 1999, Streuber et al., 2016] for which the PCA results in components whose support is global, methods such as SPLOCS [START_REF] Neumann | Sparse localized deformation components[END_REF] and the work of Huang et al. [START_REF] Huang | Sparse localized decomposition of deformation gradients[END_REF] optimize for the components' sparsity by penalizing the size of their support, which results in better artistic control. All of these methods use meshes with exact one-to-one correspondences, and most examples are frames of a mesh animation. SPLOCS [START_REF] Neumann | Sparse localized deformation components[END_REF] starts by encoding all meshes as di erences with a base mesh (e.g., rst mesh or average of meshes), and for meshes with vertices, the whole input data can be stored as a ∈ R ×3 matrix. The aim is to nd the dictionary ∈ R ×3 and the coe cients ∈ R × such that: = Directly performing a PCA to obtain and would yield global components, which has unwanted practical consequences. For instance, on the facial animation in Figure II.15, moving the bottom of the lips would also deform the eyebrows. SPLOCS [START_REF] Neumann | Sparse localized deformation components[END_REF] models the sparsity of the decomposition as

E ( ) = =1 =1
2 where is the vertex displacement in component , and weights of the displacement depend on the geodesic distance to the component center (the center being the location with the largest displacement). Fitting the input data as closely as possible while enforcing sparsity amounts to minimizing the following energy:

E = - 2 + E ( )
which is a non-convex problem addressed with ADMM. Analysis. While the components extracted using SPLOCS [START_REF] Neumann | Sparse localized deformation components[END_REF] enable better artistic control than, e.g., a simple PCA, as illustrated in Figure II.15, it is not suitable for input mesh sequences featuring large rotations for example, and hence has been improved [START_REF] Huang | Sparse localized decomposition of deformation gradients[END_REF], Wang et al., 2016]. Huang et al. [START_REF] Huang | Sparse localized decomposition of deformation gradients[END_REF] use deformation gradients to represent a shape with respect to a rest shape, in order to handle large rotations. Still, this encoding is too limited for sequences featuring large global rotations (e.g., a horse running in circle) as the deformation gradients are not intrinsic geometry quantities and also are not local regarding rotation deformation. These issues are addressed by Wang et al. [START_REF] Wang | Articulatedmotion-aware sparse localized decomposition[END_REF], who also localize decomposition, but use edge lengths and dihedral angles to represent a given shape (this representation encodes the rst and the second fundamental forms of a discrete shape, and has been used successfully in a body of work dealing with shape interpolation [START_REF] Winkler | Multi-scale geometry interpolation[END_REF]). Reconstruction from such a representation is possible with a linear solve, as shown in this method [START_REF] Wang | Articulatedmotion-aware sparse localized decomposition[END_REF]. All these methods have a runtime on the order of minutes, with the last being the fastest.

Example-based mesh inverse kinematics

While the methods described in the previous section obtain results that outperform non-data-driven approaches, they rely on a simple combination operator that is not learned from the input examples. Using the dataset to alter the way atoms are combined, although more complex than a simple linear interpolation, enables rich and example-inspired morphing [START_REF] Sumner | Mesh-based inverse kinematics[END_REF], Gao et al., 2016, Wampler, 2016]. These methods take as input a dataset of meshes with shared connectivity. The latter equips an object with a set of handles, which are points associated with a subset of the vertices, in order to deform the shape via inverse kinematics (IK). Sumner et al. [START_REF] Sumner | Mesh-based inverse kinematics[END_REF] were the rst to introduce an example-based mesh IK method using blending of feature vectors at its core. Speci cally, given poses of a shape with vertices, a feature vector (1 ≤ ≤ ) is associated with pose ∈ R 3 . The example manifold M is then described as some form of combination of these feature vectors de ned by coe cients = { ∈ R} denoting the amount of in uence of pose in the output, this example manifold being simply given by the vector space spanned by = { } in the simple, linear case.

The key idea of Sumner et al. [START_REF] Sumner | Mesh-based inverse kinematics[END_REF] is to nd, given a set of constrained handles, the shape geometry that is closest to the example manifold M, which amounts to optimizing for the coe cients while the dictionary atoms { } are kept untouched.

In the seminal article of Sumner et al. [START_REF] Sumner | Mesh-based inverse kinematics[END_REF], the feature vectors are the deformation gradients of the triangles, which can be computed using the gradient matrix as =

. By splitting the vertex positions into two separate vectors and , denoting the handle positions and the free vertices respectively, the vertex positions resulting from the handle positions are therefore obtained as the result of the following minimization problem:

( * , * ) = argmin ( , ) + - ( , )
which in the case of a linear blending de ning M (i.e., ( , ) = { }) requires a single linear solve.

As simple linear blending of deformation gradients is too limited for a natural deformation behavior, non-linear blending is required in practice, and Sumner et al. [START_REF] Sumner | Mesh-based inverse kinematics[END_REF] adjusts ( , ) by expressing the deformation gradient of triangle as

( , ) = exp( log( )) ; =
with being the polar decomposition of the deformation gradient of triangle in pose . This decomposition is commonly used for gradient-based shape morphing [START_REF] Xu | Poisson shape interpolation[END_REF] and allows obtaining much better results than simple linear blending. However, interpolating the gradients (even in a sophisticated way) results in artifacts mentioned in Section II.3.3, as shortest path interpolation or blending of local rotations is not adapted in 3D where shape interpolation typically requires complex interpolation paths of the rotations, which cannot be deduced from a local analysis only.

This problem is addressed by Fröhlich and Botsch [START_REF] Fröhlich | Example-driven deformations based on discrete shells[END_REF], who use edge lengths and dihedral angles as features, resulting in full rotation invariance. As previously written, these quantities are natural features to interpolate for shape morphing [START_REF] Winkler | Multi-scale geometry interpolation[END_REF]. They are also natural variables for computing and minimizing discrete shell energies [START_REF] Grinspun | Discrete shells[END_REF], which are e cient geometric energies penalizing stretching and bending in a richer way than rigid energies can achieve. Note that the Riemannian geometry of the space of shells has been studied by [START_REF] Heeren | Exploring the geometry of the space of shells[END_REF], allowing them to extend concepts such as geodesics and parallel transport to the space of deformations governed by these energies.

More recently, the approach of Wampler [Wampler, 2016] shows another problem, independent of the actual feature representation of the example manifold, and which relates instead to the under-constrained nature of this space. More precisely, if several linear combinations provide the same positions for the handles -such as illustrated in Figure II.16 where the handles of the green pose can be obtained as a linear combination of the handle positions of the blue and red poses -the result from the latter optimization is under-constrained, and some poses may eventually be ignored as a result (see To enforce pose awareness, one of the contributions of Wampler [Wampler, 2016] is to add an energy interpolation term, interpolating energies from individual pose:

E I ( , , ) = ( , )
where denotes the ℎ pose, denotes the output interpolated geometry, and ( , ) denotes an elastic energy describing the amount of "stretch" for deforming into . This kind of energy interpolation method is highly popular for shape interpolation [START_REF] Chao | A simple geometric model for elastic deformations[END_REF], Von-Tycowicz et al., 2015], when the weights are provided by the user and the technique outputs barycentric weighting of the poses { }. As optimizing for E I alone favors the nearest pose in the shape space, so local con gurations matching locally the input poses are preferred. This can be observed in Figure II.16b, where the green pose is no longer ignored in the output.

Analysis. To summarize, the key motivation behind the use of dictionaries for shape manipulation is that some deformation behaviors (localization of articulations, muscle bulge, rigidity of limbs vs elasticity of jaws and fat) cannot be easily captured by geometric elastic energies only, whatever their degree of complexity, but are captured trivially when learning on poses that are representative of the degrees of freedom desired by the user. In our opinion, the recent technique of Wampler [Wampler, 2016] constitutes a breakthrough for mesh IK and is successfully demonstrated on challenging inputs such as highly stretched and exaggerated cartoon animations, but we suspect that there is room for improvement, especially in the mathematical formulation of the nal energy, as non-smooth transitions near input poses in the output can be observed in Figure II.16b. Further investigation is required to tell if these e ects are negligible or not in practice. Among interesting future work directions mentioned by the author, we note with a particular interest the learning of animations instead of simple poses or the possible inclusion of kinetics in order to include some notion of time in the output animation.

Example-guided shape interpolation paths

The simpler method of Gao et al. [START_REF] Gao | Data-driven shape interpolation and morphing editing[END_REF] uses the knowledge of a shape dataset in order to nd good interpolation paths between a source and a target shape. Note that the source and target shapes are considered to be inside the dataset (the dataset can eventually be completed with those two shapes, as no heavy preprocessing is required by the technique). Objects in the dataset are represented with respect to a base model using patch-based Linear Rotation Invariant (LRI) coordinates. The LRI representation of meshes was introduced by Lipman et al. [START_REF] Lipman | Linear rotation-invariant coordinates for meshes[END_REF], and is composed of a rst order di erential representation of the directed edges, which are expressed with respect to local frames attached to the vertices, and of a second order di erential representation expressing change of local frames across an outgoing directed edge in the vertex' local frame. Such a representation is invariant to local rotations of the geometry, necessitates two linear solves to recover the geometric embedding from a set of LRI coordinates, and have been used successfully for mesh interpolation.

With the input source and target meshes in hand, an initial interpolation path is found using Dijkstra's algorithm over the k-nearest neighbors graph in the shape space (each shape in the input data set being a point with LRI coordinates as geometric embedding). This initial path is not smooth however, and it is further re ned to obtain a pleasing morphing model. Given the interpolated path after iterations, its ℎ sample, and { , } =1 the nearest models of in the shape space ( = 6 in their examples), the cost to deviate from a smooth interpolating path is de ned by Gao et al. [START_REF] Gao | Data-driven shape interpolation and morphing editing[END_REF] as

E = , -, 2 + +1 - 2 + 2 + --1 2
where , = (--1 -, / ), , , and are weights controlling which terms to prioritize, and is a tridiagonal Laplacian matrix, whose entries are

             ( , ) = 1 ( , -1) = - -1 --1 -1 -1 --1 -1 + -1 +1 --1 ( , + 1) = - -1 +1 --1 -1 --1 -1 + -1 +1 --1 .
The rst term of E makes the path adhere more to shapes of the dataset and can be seen as a smooth projection operator over the shape space manifold, in the spirit of MLS schemes [START_REF] Alexa | Point set surfaces[END_REF]. The second term favors shorter paths, the third term favors smoother paths and the fourth term prevents large updates between successive iterations for numerical stability. This energy functional is quadratic and can be minimized e ciently by solving a linear system. Lastly, after each iteration, the path is resampled with an even spacing between samples.

To recover the shape on the path at an arbitrary position , one can interpolate the LRI representations of the closest samples, and reconstruct the corresponding shape. Results of this method are shown in Figure II.17.

Analysis. Overall, the two methods of Wampler [Wampler, 2016] and Gao et al. [START_REF] Gao | Data-driven shape interpolation and morphing editing[END_REF] are able to learn the morphing pattern from a dataset, and interpolate between atoms of the dictionary using a high-level interface which hides the underlying complexity from the user in favor of an intuitive artistic control. It is worth mentioning that the technique of Gao et al. [START_REF] Gao | Data-driven shape interpolation and morphing editing[END_REF] does not create new shapes by just interpolating the atoms, but is also able to extrapolate new shapes from the dictionary. This indirect use of a dictionary is extremely interesting and novel, and could inspire further research in areas where dictionaries have not been used successfully so far because of a lack of exibility. Performance-wise, both methods are suitable for fast editing; although the pre-computation phase of Wampler [Wampler, 2016] is signi cantly slower than the one of Gao et al. [START_REF] Gao | Data-driven shape interpolation and morphing editing[END_REF], its runtime phase is faster and allows real-time morphing, compared to interactive rates for the other.

II.3.4 Synthesis and modeling via part assembly

All the methods previously described in this section take as input meshes with one-to-one vertex correspondence and use blending (or morphing) as combination operator. Another possibility is to consider meshes made of distinct parts, and use composition to combine these atoms together. This trend was motivated by frameworks presented in the early 2000s such as Modeling by Example [START_REF] Funkhouser | Modeling by example[END_REF], which made the observation that modeling from scratch requires expert knowledge whereas reusing existing models could inspire and help beginners in the design of complex shapes. In this framework, a user could search for existing models, select part of them, and combine these parts to create a new model.

Recent approaches [START_REF] Kreavoy | Model composition from interchangeable components[END_REF], Xie et al., 2013, Kalogerakis et al., 2012, Talton et al., 2012] consider a prede ned (co-)segmentation of shapes in the input dataset -thus e ectively using dictionaries of shape parts derived from the input at their core, in order to amplify the input dataset by synthesizing meshes or accelerating the design process for users.

Design accelerator

These part-dictionaries enable easy work ow for non-expert users and allow them to quickly create interesting models, with methods such as Shu er [START_REF] Kreavoy | Model composition from interchangeable components[END_REF] or Sketch-to-Design [START_REF] Xie | Sketch-to-design: Context-based part assembly[END_REF].

For both methods, the work ow is to iteratively select a part of the shape to edit, choose between the candidates from a search by similarity in the database, merge the chosen part with the currently edited model, and repeat until the user achieves the desired goal. The Shu er system [START_REF] Kreavoy | Model composition from interchangeable components[END_REF] addresses the problem of modeling shapes through swapping of interchangeable components. It is worth noting that the authors of this article introduced a co-segmentation preprocessing step that was later reused in numerous part-based composition articles. In fact, this segmentation phase is often external now, and the input dataset is directly segmented and labeled.

At modeling time, the interface suggests to the user a currently edited model as well as other models that serve as source of components to be taken from (see Figure II.18). Similar to SnapPaste [Sharf et al., 2006a], the edited model and the candidate part are stitched together: boundaries are extended to overlap, then are snapped using soft ICP before generating the connectivity. This modeling interface is relatively powerful, but starts being impractical when the dataset grows and it becomes unfeasible for the user to search through the entire database. By reversing the way parts are chosen (artists sketch what they want instead of being presented all possibilities), the Sketch-to-design method [START_REF] Xie | Sketch-to-design: Context-based part assembly[END_REF] solves this problem. In this approach, queries are sketches drawn on top of the currently-edited model and automatically matched to parts in the dictionary to be assembled into the nal object (see Figure II.19).

Based on the sketch-based retrieval method by Eitz et al. [START_REF] Eitz | Sketch-based shape retrieval[END_REF], the matching between user sketches and dictionary parts is built upon contour descriptors, which requires the dataset to be rst preprocessed. This preprocessing phase consists in rendering the suggestive contours of each part for 169 di erent camera positions. In this phase, spatial relations between parts and symmetries are also learned (per part and per model), hence enriching the dictionary with relations between atoms. In the runtime phase, the user can change an object by sketching parts (for example sketching a new back for a chair), and the algorithm will return a ranked list of matched parts. The score of a part depends not only on its similarity with the user sketch, but also on its consistency with the rest of the model being edited.

As searching and computing scores on the whole set each time the user draws a sketch would be very expensive performance-wise, the score evaluation is limited to a subset of the dictionary To achieve that, Xie et al. [START_REF] Xie | Sketch-to-design: Context-based part assembly[END_REF] use an auxiliary dictionary, whose atoms (forming a "visual vocabulary") are line features of contours. Given a sketch query, its representation on this auxiliary dictionary is computed and used to con ne the search. Finally, match results are placed with respect to how parts of the same category are placed in the object, then snapped and deformed for their contact points (recorded during the preprocessing) to match, using the method of Müller et al. [START_REF] Müller | Meshless deformations based on shape matching[END_REF].

As shown in the two previous methods, improving the productivity of the user often requires e ciently searching huge datasets, a problem more visible now because of the availability of large object databases. Given a dataset, early methods only searched for the closest matching object (or ranked list of closest objects) based on the user query, without combining objects. For example, the method of Ovsjanikov et al. [START_REF] Ovsjanikov | Exploration of continuous variability in collections of 3d shapes[END_REF], in which the user modi es a template shape (a set of boxes) which is then transformed into shape descriptors used for the actual search, or the fuzzy exploration of Kim et al. [Kim et al., 2012a], in which a user query is a part of an object. In short, these methods explore a dataset that is given as input.

On the contrary, the ShapeSynth system [START_REF] Averkiou | Shapesynth: Parameterizing model collections for coupled shape exploration and synthesis[END_REF] allows the user to explore a dataset represented by a dictionary of parts, combined using part assembly. This means that the full dataset is the set of all possible combinations of the atoms in the dictionary. Here parts are stored as labeled segments from a set of compatibly labeled and segmented shapes. After a preprocessing phase on the input dataset, the user is presented with a 2D point cloud, where each point corresponds to an object of the dataset. By clicking in the blank space between the points, the system will generate a new object by combining parts from di erent shapes of the dataset.

In the preprocessing phase, a box template consisting in boxes encompassing the possible parts of the objects, is extracted [START_REF] Kim | Learning part-based templates from large collections of 3D shapes[END_REF]. Then, a descriptor vector of dimension 6 -where is the number of boxes in the general template -is attached to each object; these descriptors represent the position and size of each box in the template. These descriptors are then projected in R 2 by using Multi-Dimensional Scaling (MDS). Note that for performance reasons this is not done for all objects; instead a set of landmark models is selected to be projected using MDS, while the other models are de ned by their barycentric coordinates with regards to the landmark models. Finally, points are clustered using mean shift clustering, and for each mode, the corresponding object can be re-projected; this process is repeated in a supervised manner, with the user clicking on the mode to reprocess. The resulting hierarchy is used to organize the data and help the synthesis.

In the runtime phase of ShapeSynth [START_REF] Averkiou | Shapesynth: Parameterizing model collections for coupled shape exploration and synthesis[END_REF], when the user clicks between 2D points in the exploration view, the system displays the corresponding template (descriptor in R 6 , shown as a set of boxes), which can be locked when the user is satis ed with it for the boxes to be lled by parts that are to be least deformed when t to their corresponding box. Thus the shown object might not be present in the initial dataset, but instead be the result of a combination of parts derived from the dataset. An overview of the user interface is shown in Analysis. As seen in Section II.3.2, the absence of atoms in the dictionary directly translates into reduced quality of the results (including lack of artistic control). However, as illustrated for the last three methods [START_REF] Kreavoy | Model composition from interchangeable components[END_REF], Xie et al., 2013, Averkiou et al., 2014], di culties may also arise when the dictionary contains lots of redundant atoms. While this might not be detrimental for purely automatic methods (apart from performance reasons), it may hinder the design process for users by providing them with too many similar choices. This motivates the development of techniques allowing for the intuitive exploration of large dictionaries, in order to present only the relevant variabilities to the user. Shu er [START_REF] Kreavoy | Model composition from interchangeable components[END_REF] and Sketch-to-design [START_REF] Xie | Sketch-to-design: Context-based part assembly[END_REF] are more closely related than ShapeSynth [START_REF] Averkiou | Shapesynth: Parameterizing model collections for coupled shape exploration and synthesis[END_REF], in the sense that the main di erence lies in the retrieval criterion (geometric similarity vs sketches), whereas ShapeSynth also adds a more high-level view of the space of possible shapes. This exploration problem is less present in methods that automatically create models following the overall style of an input dataset, as will be shown in the next section.

Graph-based statistical set representation

A di erent class of methods uses graph-based representations that facilitate encoding the shape structure and the possible inter-dependence between di erent elements. In this context, prominent methods include the approaches of Chaudhuri et al. [START_REF] Chaudhuri | Probabilistic reasoning for assembly-based 3D modeling[END_REF] and [START_REF] Kalogerakis | A probabilistic model for component-based shape synthesis[END_REF]] that both take as input compatibly-segmented shapes into labeled parts (e.g., for human shapes: arm, leg, torso, ...), and operate in 2 major phases: a preprocessing phase during which a probabilistic model of the input data is derived and a runtime phase during which synthesis and modeling of new shapes is performed. In the context of this survey, the dictionary is the set of all parts, and the combination method is a composition under the constraint that the result ts the derived probabilistic model. The nature of these probabilistic models di ers a lot between the two frameworks, which we explain in detail in the next paragraphs.

Learning Bayesian networks. Chaudhuri et al. [START_REF] Chaudhuri | Probabilistic reasoning for assembly-based 3D modeling[END_REF] start by clustering the segments within each label category, based on descriptors such as the Shape Diameter Function [START_REF] Gal | Pose-oblivious shape signature[END_REF], curvature, or Shape Context [START_REF] Belongie | Matching with shape contexts[END_REF], and the di erent clusters give rise to the di erent so-called geometric styles of the components available in the label category.

The probabilistic model used by [START_REF] Chaudhuri | Probabilistic reasoning for assembly-based 3D modeling[END_REF] is a Bayesian network [Pearl, 1988, Koller and[START_REF] Koller | [END_REF], which is a graph whose nodes are the observed variables (existence of label in a shape, cardinality of label in the shape, existence of adjacency of labels and , style , describing whether a component of label exists with geometric style , and symmetry , describing whether a component of label has a symmetric counterpart of label ) and whose directed edges represent the conditional dependency between them. Unconnected nodes represent conditionally independent variables. Each node also stores the probability of its variable taking a speci c value given the values of its parents, and a shape can be viewed as an outcome of a joint probability distribution of all these variables. An overview of the method is shown in Figure II.21.

The model is then learned by maximizing the Bayesian Information Criterion [Schwarz, 1978] score on the observed variables:

log ( | ) ≈ log ( | , ) - 1 2 log( )
where is the set of observed variables (described before, such as the existence of a label, its cardinality, etc...), the model to evaluate, the parameters of the model, the number of free parameters for model and the number of shapes in the dataset. The model structure is found by exploring possible structures by adding and/or deleting edges (note that nodes are determined by the observed variables introduced previously).

At runtime, the user creates a shape progressively by selecting components and joining them together. Each time the user adds or removes a component, the model is used to sort components by likelihood, i.e. probability of it to be found in the the input dataset knowing the current partial shape, permitting the system to make suggestions for the user and enabling fast modeling. It is also possible to use this model to automatically generate new shapes, as done by Kalogerakis et al. [START_REF] Kalogerakis | A probabilistic model for component-based shape synthesis[END_REF] for results comparison.

This model is at by nature, with no implicit nor explicit hierarchy, and this hinders its ability to generate plausible shapes automatically, as it only keeps track of direct dependencies between variables and not indirect ones, thus not tracking latent causes of structural variability. This observation is the main motivation for the technique introduced by Kalogerakis et al. [START_REF] Kalogerakis | A probabilistic model for component-based shape synthesis[END_REF], which we now detail. et al., 2012] learned on a small dataset of tables (left). is the shape style, and for a category , is the number of components, is the style of the components, is the continuous geometric descriptor and the discrete geometric descriptor. Here there are only 2 categories: ∈ { , }. Note that observed variables are in blue while inferred latent variables are in white.

The model of [START_REF] Kalogerakis | A probabilistic model for component-based shape synthesis[END_REF] is represented as a tree-like graph, whose nodes are random variables, and where latent unobserved variables (shape style, component style) are parent nodes of observed variables (number of components of a given category, continuous geometric descriptor and discrete geometric descriptor), as shown in Figure II.22. It is possible to have lateral edges between observed variables, representing conditional dependencies. The core of this method is to learn latent sources of structural di erences and relate these to the probabilistic relationships between components. This gives the model a higher-level understanding of the models, to better adapt compatible segments based on the shape and component styles. This model is learned by rst computing the observable variables for each component, resulting in a feature-vector (see Figure II.22). The output probabilistic model is the one with the highest probability given , which, as given by the Bayes rule, equals

( | ) = ( | ) ( ) ( ) (II.2)
Since ( ) does not change for di erent probabilistic models and ( ) is assumed uniform over all possible structures, nding = argmax( ( | )) boils down to maximizing the marginal likelihood ( | ). This is done by rst determining the hierarchy (trying to add potential shape and component styles until the probability stops increasing), then nding lateral edges (adding or removing edges until the probability stops increasing).

By exploring the set of possible shapes of the probabilistic model, a collection of shapes can also be derived automatically to enrich the input dataset. For example, Kalogerakis et al. [START_REF] Kalogerakis | A probabilistic model for component-based shape synthesis[END_REF] used this strategy to synthesize 1267 new planes inspired by a training dataset composed of 100 airplanes only. Note that it is not speci c to man-made objects, as demonstrated by the synthesis of animal shapes. It is possible to constrain the generation process, such as constraining possible shape or component styles, limiting the available component categories and/or explicitly specifying the set of acceptable components, in order to give the user a ne-grained control over the results of the generation.

Analysis. For both approaches [START_REF] Chaudhuri | Probabilistic reasoning for assembly-based 3D modeling[END_REF], Kalogerakis et al., 2012] the dictionary atoms are parts and the combination method is a simple composition, however their use of second-order relations on the atoms is instrumental as it provides a simple, high-level representation of shapes that allows them to analyze the underlying structure of large sets of shapes, which is key to deriving a statistical model representing these datasets. The fact that the models are graphs helps to e ciently represent the joint probability distribution modeling the input dataset and also allow to extrapolate plausible new shapes. Results from both methods were compared in a user-study, con rming that the technique of Kalogerakis et al.

[ [START_REF] Kalogerakis | A probabilistic model for component-based shape synthesis[END_REF] yields more plausible shapes. Both methods can be used in supervised mode, which make them closer to Shu er [START_REF] Kreavoy | Model composition from interchangeable components[END_REF] than ShapeSynth [START_REF] Averkiou | Shapesynth: Parameterizing model collections for coupled shape exploration and synthesis[END_REF] in terms of user experience, as they lack a high-level overview of the possible shapes space. However, compared to the grammar-based representation that we will review next, these methods remains limited regarding folding power i.e., "loops" (self-repeating motifs) are hard to reproduce.

Part grammars

Akin to graph-based representations, part grammars allow the user to create large variations of shapes. One of the earliest frameworks of this kind is the L-systems [START_REF] Prusinkiewicz | The Algorithmic Beauty of Plants[END_REF] (introduced in 1968 by Lindenmayer), which aimed originally at describing plants in an algorithmic manner. More recently, the data-driven method of Talton et al. [START_REF] Talton | Learning design patterns with bayesian grammar induction[END_REF] allows retrieving from the input dictionary of parts a grammar able to generate objects exhibiting a structure similar to the input training set of shapes (decomposed as labeled trees relating parts to each other). Starting with a dictionary of labeled parts and a set of exemplars created using these parts, the algorithm rst nd a grammar that can only produce the exemplars, before generalizing it using a Markov Chain Monte Carlo optimization. The resulting grammar is able to produce objects similar to the input exemplars.

The grammars they consider are rigorously de ned by a tuple =< , , , , >, where is the set of non-terminal symbols, is the set of terminal symbols, ∈ ( ∪ ) + is the axiom, ⊂ ( → ( ∪ ) + ) is the set of production rules, and : → [0, 1] is the probability of the rules. The generation is done by iteratively replacing the current symbols by compatible productions, starting from the axiom. This algorithm stops when there are no non-terminals in current symbols (which imply that no production rule is compatible). In the approach of Talton et al. [START_REF] Talton | Learning design patterns with bayesian grammar induction[END_REF], production rules include geometric placement of introduced elements with respect to the replaced element. An example of such a grammar is visible in Figure II.24.

Figure II.24 -An example of a grammar for shape generation. Starting with 0 as initial word, successive replacements are made following the grammar rules (right), until no more non-terminals remain, resulting in the nal shape (left)

The rst step of the pipeline proposed by Talton et al. [START_REF] Talton | Learning design patterns with bayesian grammar induction[END_REF] consists in generating a least-general conforming grammar, by processing all example trees iteratively: leaf nodes are represented by terminal symbols, and intermediate nodes are represented by non-terminal symbols; a production rule is added for these nodes, transforming the node symbol into its children symbols.

In a second step, this grammar is simpli ed using Bayesian inference in a way that is similar to what is done by [START_REF] Kalogerakis | A probabilistic model for component-based shape synthesis[END_REF], which results in a more general grammar (see Equation II.2). Here denotes the set of example designs. However, ( ) is not assumed to be uniform, and simpler grammars are given a higher probability than complex ones (a grammar complexity being estimated by the length of its description). This maximization is done using the Markov Chain Monte Carlo algorithm.

Once the grammar is computed, it is used to generate large datasets, which exhibit similarities with the training set (see Figure II.25). Note that this approach is not limited to 3D objects, and the authors also applied their algorithm to web page generation by learning the Document Object Model (DOM, the tree de ning the document structure) of 30 web pages.

Analysis. What motivated the use of a concise dictionary of parts by Talton et al. [START_REF] Talton | Learning design patterns with bayesian grammar induction[END_REF] is that working on a few atoms allows keeping the complexity of the search over the possible assemblies reasonable, and results in a set of shapes exhibiting large variations while preserving the overall coherence of the set. As with previous methods [START_REF] Chaudhuri | Probabilistic reasoning for assembly-based 3D modeling[END_REF], Kalogerakis et al., 2012], this requires having a model describing second-order constraints on the atoms (such as a Bayesian network or a grammar). This is interesting for performance reasons (by eliminating irrelevant possibilities) and also for perceptual reasons (coherent shapes with regards to the style of the examples). However, interactive control methods over these generation tools could be improved, so that desired shapes could be favored when sampling the possible realizations of the model. For instance, providing explicit means for the user to model second order constraints interactively could greatly improve the style control during modeling. 

Set evolution

An interesting step further into the assistance in designing shapes and collections of shapes is the "Fit and Diverse" system [START_REF] Xu | Fit and diverse: Set evolution for inspiring 3d shape galleries[END_REF]. This technique introduces a genetic algorithm that allows evolving entire datasets, guided by user preferences. It relies on a crossover operator, allowing combining shapes that were pre-segmented into compatible parts stored in a part-dictionary. Contrary to the techniques previously described in this section, Xu et al. [START_REF] Xu | Fit and diverse: Set evolution for inspiring 3d shape galleries[END_REF] voluntarily compromise on the tness of the evolved dataset, in order to preserve set diversity and o er shapes that are often surprising and inspiring to the user while preserving their overall geometric structure, thus encouraging user creativity. [START_REF] Xu | Fit and diverse: Set evolution for inspiring 3d shape galleries[END_REF] uses a genetic algorithm to generate new objects similar to the input but also incorporating signi cant variations, with the aim of inspiring users.

Synthesis analysis Overall, the task of synthesizing new shapes with the help of dictionaries can be done in widely di erent ways, which could be distinguished between continuous and discrete methods. Continuous ones work with meshes with identical vertex set (including connectivity), which usually are the atoms of the dictionary. The combinations range from simple linear interpolation (with powerful artistic controls) [Blanz andVetter, 1999, Streuber et al., 2016] to localized blending (controls can be coe cients [START_REF] Neumann | Sparse localized deformation components[END_REF][START_REF] Huang | Sparse localized decomposition of deformation gradients[END_REF], Wang et al., 2016] or even inverse kinematics [START_REF] Sumner | Mesh-based inverse kinematics[END_REF], Fröhlich and Botsch, 2011, Wampler, 2016]). It is even possible to have coherent extrapolation with regards to the input set of shapes, following an interpolation path speci ed by a few shapes [START_REF] Gao | Data-driven shape interpolation and morphing editing[END_REF]. Discrete methods instead work with dictionaries of parts, which are composed together (sometimes even stitched as in the Shu er system [START_REF] Kreavoy | Model composition from interchangeable components[END_REF]). The key point then is to learn the second-order constraints between atoms; models used to represent these constraints di er widely, from custom descriptors (as in Sketch-to-Design [START_REF] Xie | Sketch-to-design: Context-based part assembly[END_REF]) to Bayesian networks [START_REF] Chaudhuri | Probabilistic reasoning for assembly-based 3D modeling[END_REF] or even grammars [START_REF] Talton | Learning design patterns with bayesian grammar induction[END_REF]. This enable these techniques to synthesize shapes coherent with the style of the input examples, while allowing the generation algorithm to prune irrelevant realizations early for better performance.

II.3.5 Discussion

In this section, we give a summary of the presented approaches, focusing on the pervasiveness and applicability of dictionary-based approaches in di erent domains of geometric modeling. We also discuss the main concerns that could a ect the use of dictionary-based methods, such as scalability to data size, generalization and the challenges induced by more sophisticated dictionary learning techniques. Finally, we describe the relation of dictionary-based approaches covered in this survey to methods based on deep learning and discuss the main open problems and possible future directions.

Application domain. In the context of shape recognition and retrieval, although some techniques use the classical bag-of-words representation, e.g., Shape Google [START_REF] Bronstein | Shape Google: Geometric words and expressions for invariant shape retrieval[END_REF], they typically do not allow recovering the geometry from the dictionary representation. When representing a set of shapes, the main purpose of a dictionary is to express its elements using a small base set that is usually over-complete, with the ability to go from coe cients to shapes, the latter property being crucial to representing the set of shapes in itself. Still, even without the reconstruction property, dictionaries can be used for classi cation, for example by doing PCA on a set of descriptors derived from the input objects. Dictionaries are not a silver bullet adapted to every possible use, and are sometimes less e cient than concurrent approaches making better use of the speci cities of the problem; for example, while segmentation can be thought of as nding a dictionary of segments to cover a mesh, it is typically not performed this way in practice and recent more successful techniques mainly approach the problem using neural networks that are trained on the whole input dataset [START_REF] Xie | 3d shape segmentation and labeling via extreme learning machine[END_REF], Guo et al., 2015].

In shape reconstruction, several methods consider di erent dictionaries, even when they have the same input: from a point cloud, the approach of Xiong et al. [START_REF] Xiong | Robust surface reconstruction via dictionary learning[END_REF] expresses the points with a dictionary, while other methods match shapes from an input collection with the point cloud in order, e.g., to complete scans [START_REF] Pauly | Example-based 3d scan completion[END_REF] or to retrieve the object's structure [START_REF] Shen | Structure recovery by part assembly[END_REF].

In shape compression, dictionaries are often used for compactly representing point clouds, as shown by Digne et al. [START_REF] Digne | Self-similarity for accurate compression of point sampled surfaces[END_REF] for instance. This is inspired by what is done in the image processing eld, where approaches such as non-local means [START_REF] Buades | A non-local algorithm for image denoising[END_REF] exploit the idea of using similar pixels for denoising, regardless of their position in the image. In general, mesh compression methods are not dictionary-based [START_REF] Maglo | 3d mesh compression: Survey, comparisons, and emerging trends[END_REF], except for mesh sequences compression [Alexa andMüller, 2000, Váša and[START_REF] Váša | [END_REF].

In shape synthesis and geometric modeling, there are two major types of approaches: the rst one, continuous in its nature, uses entire meshes as atoms and performs interpolation between them, which can either be linear as in Body Talk [START_REF] Streuber | Body talk: Crowdshaping realistic 3d avatars with words[END_REF] or more advanced as demonstrated by [START_REF] Gao | Data-driven shape interpolation and morphing editing[END_REF]. The second class of approaches, which are discrete in their nature, uses a dictionary of parts, obtained by segmenting and labeling the input dataset, and then combines them, using statistical models [START_REF] Kalogerakis | A probabilistic model for component-based shape synthesis[END_REF] or grammars [START_REF] Talton | Learning design patterns with bayesian grammar induction[END_REF] for example. Both kinds of approaches are often split into a preprocessing (or learning) phase and a runtime phase in which the learned model is used to synthesize new shapes. For the moment, methods in the rst class require input meshes to be in perfect correspondence, i.e., to have the same number and ordering of vertices and the same connectivity. This requirement can be quite cumbersome as it is not veri ed by most datasets, with the exception of poses in an animation of the same initial mesh [START_REF] Sattler | Simple and efcient compression of animation sequences[END_REF], Luo et al., 2013], and meshes registered to a template such as body capture [Blanz andVetter, 1999, Streuber et al., 2016]. We name these methods continuous since interpolated shapes do not have subparts that can appear or disappear in a discrete fashion. Conversely, algorithms within the second category lack the continuous interpolation properties, and instead do not have speci c requirements, apart from having segmented and potentially consistently labeled shapes. They are often also more expressive, since for example using a grammar [START_REF] Talton | Learning design patterns with bayesian grammar induction[END_REF] allows for complex shapes that would not be easy to construct using simple interpolation.

Scalability. This is one of the main advantages presented by dictionary-based methods. For most presented methods, the runtime phase can approach realtime performance. For example, morphing bodies following a set of descriptors as shown in Body Talk [START_REF] Streuber | Body talk: Crowdshaping realistic 3d avatars with words[END_REF] can be rendered in 3D in a web browser without framerate drops. One reason for this is the drastic reduction of the size of the problem, i.e. doing the computationally demanding work only on a set of atoms instead of the whole dataset, i.e. on a signi cantly smaller set; this ability is perfectly demonstrated in the application of terrain ampli cation of Guérin et al. [START_REF] Guérin | Sparse representation of terrains for procedural modeling[END_REF]. For speci c man-made objects, it is possible to have small dictionaries for large datasets due to the similarity between objects, which improves the performance compared to doing the processing independently on each object. Using a dictionary also means drastically reducing the space of possible objects by removing ambiguous or impossible shapes. Not only this enable faster algorithms due to the limited set, but it also enable methods to do a second-order analysis on the atoms [van den Hengel et al., 2015, Kalogerakis et al., 2012, Talton et al., 2012] for a better understanding of the whole set, which can be used to further reduce computations [START_REF] Shen | Structure recovery by part assembly[END_REF] or generate plausible shapes [START_REF] Kalogerakis | A probabilistic model for component-based shape synthesis[END_REF].

Generalization di culty. One limitation of dictionary-based methods is that they work best when staying inside the given learned model, and generalizing learned structures and relations to a broader set of shapes is typically not reliable. For a given dictionary, it could be di cult to construct a speci c object which is not similar to the ones in the initial set. However, having a set of atoms can still be useful: for example, Sketch-to-Design [START_REF] Xie | Sketch-to-design: Context-based part assembly[END_REF] uses multiple dictionaries, one of object parts and one of object descriptors allowing faster search in the rst dictionary. In other words, dictionaries are good for summarizing a dataset, while making it more sparse, but their extrapolation power is limited.

More advanced dictionary learning. PCA and K-SVD are not the only dictionary learning algorithms. The dictionary representation itself can be di erent, as with translation-invariant dictionaries [START_REF] Engan | Family of iterative ls-based dictionary learning algorithms, ils-dla, for sparse signal representation[END_REF], multiscale dictionaries [START_REF] Mairal | Learning multiscale sparse representations for image and video restoration[END_REF] or sparse dictionaries [START_REF] Rubinstein | Double sparsity: Learning sparse dictionaries for sparse signal approximation[END_REF] (where atoms are assumed to have a sparse representation over a second dictionary, so 1 = 2

). Furthermore, most methods covered above use two passes, the rst in which the dictionary is learned and the second pass where it is used. This is called o ine learning, and assumes the data is entirely available and ts in memory. There are situations where such assumptions do not hold, for example when the data is received as a stream, in which case one can use online dictionary learning [START_REF] Mairal | Online learning for matrix factorization and sparse coding[END_REF]. Dictionary learning is actively developed in signal and image processing, for denoising, deblurring, compression, separation, inpainting or computer vision [Elad, 2010, Mairal, 2010], which may inspire geometric counterparts. Similarly, in addition to classical methods such as The Method of Optimal Direction (MOD) [START_REF] Engan | Method of optimal directions for frame design[END_REF], and the K-SVD algorithm [START_REF] Aharon | K-svd: An algorithm for designing overcomplete dictionaries for sparse representation[END_REF], sparse decomposition methods [START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF] are widely applied to image denoising or enhancement. They rely on the assumption that each patch of an image can be decomposed as a sum of a small number of atoms from a dictionary. Such a framework is also well suited to texture modeling [Peyré, 2009] where new texture patches can be created from a learned dictionary, simply by imposing a sparsity constraint on the use of the dictionary atoms. In a more recent work [START_REF] Tartavel | Variational Texture Synthesis with Sparsity and Spectrum Constraints[END_REF], a variational approach for texture synthesis is proposed which uses a sparse, patch-based dictionary and allows the reconstruction of geometric textures e ciently, thanks to constraints on the spectrum of images.

Relations to deep learning. Dictionary learning and deep learning are two avors of machine learning, which appear as complementary when it comes to representation learning. Both methodologies can be used to automatically discover and exploit characteristic features of a speci c class of raw input objects, to give rise to higher level parametric models of the class. Doing so, they make possible to generate new instances of the class by interpolating or even extrapolating from the learned subspace. Deep neural network architectures are numerous, with in particular convolutional neural networks (CNNs) which have been successfully used for large scale visual recognition [Krizhevsky et al., 2012, Simonyan andZisserman, 2014]. They are typically built by stacking 1D or 2D layers of neurons, with a spatial resolution that progressively diminishes and local convolutions to connect neurons from one layer to the next [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]]. At training phase, input samples (e.g., images) are propagated through the network, a loss function is computed on the output w.r.t. ground truth data and the resulting error is propagated backward in the network, optimizing for the network weights using variants of the gradient descent method. Several deep learning architectures based on CNNs have been used for 3D geometric modeling. In particular, Autoencoders (AEs) [Bengio, 2009] have recently become popular to reveal a latent space characterizing a set of objects. The are composed of two sub-networks: (i) the encoder which takes the form of a CNN mapping the input data to a layer of neurons of reduced size, producing a sparse code at the center of the AE and (ii) the decoder which symmetrically ampli es sparse codes to progressively higher resolution layers. The center layer ensuring the transition between encoding and decoding is usually referred as the space of codes. Learning with such architectures is performed by minimizing the deviation between input data and encoded-then-decoded data. New data may then be synthesized by sampling the space of codes and decoding. The properties of the resulting data interpolation/extrapolation are still intensively studied in many visual computing scenarios.

Thus, AEs and dictionary learning share similar purposes [Olshausen andField, 1996, Rangamani et al., 2017] but AEs have typically more parameters (sizes of the hidden layers) which are often hard to tune, resulting in a tedious try-and-test process on a per-problem (or per-dataset) basis. Although they use simpler operators (e.g., convolutions, maxout, dropout) which maps well to parallel processors such as GPUs, the space of code may be quite unintuitive and hard to navigate which, compared to shape atoms, is a weakness when it comes to 3D modeling. Instead of nding a sparse representation of the input signal, variational autoencoders (VAE) [START_REF] Kingma | Auto-encoding variational bayes[END_REF] learn the probability distribution of the input, which eases the generation of new plausible data. Generative Adversarial Networks (GAN) [START_REF] Goodfellow | Generative adversarial networks[END_REF] are composed of two networks, a generator aiming to create plausible data and a discriminator aiming to distinguish between real and generated data; they are more precise than VAEs but also more nicky to train. These two methods can also be made complementary, by sharing the VAE decoder with the GAN generator [START_REF] Larsen | Autoencoding beyond pixels using a learned similarity metric[END_REF]. Furthermore, these methods make possible to address data classi cation and synthesis at the same time. One promising research direction aims at combining deep learning and dictionary learning to exploit their complementary, using for instance multiple layers dictionaries [START_REF] Tariyal | Deep dictionary learning[END_REF] or dictionary learning to train hidden layers [START_REF] Singhal | How to train your deep neural network with dictionary learning[END_REF].

Most applications of neural networks to geometric modeling are naturally derived from image scenarios, which naturally t GPU computing. One key challenge in deep learning for 3D shapes is therefore to nd a way to vectorize 3D data in order to set them as input/output to neural networks. ShapeNets [START_REF] Wu | 3d shapenets: A deep representation for volumetric shapes[END_REF] chooses to cast 3D shapes as voxel grids and uses a convolutional deep belief network [START_REF] Lee | Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations[END_REF] to either recognize a shape, complete a shape or indicate the most disambiguating camera placement for recognition. [START_REF] Wu | Learning a probabilistic latent space of object shapes via 3d generativeadversarial modeling[END_REF] and Jiang et al. [START_REF] Jiang | Hierarchical detail enhancing mesh-based shape generation with 3d generative adversarial network[END_REF] instead used a GAN (or a VAE-GAN as a variant) to perform better shape recognition and generation. With GRASS [START_REF] Li | Grass: Generative recursive autoencoders for shape structures[END_REF], Li et al. are able to handle structure (parts modeled as a set of boxes), with recursive VAE-GANs; the geometry of the parts is synthesized as a voxel grid obtained with another neural network. Unfortunately, the curse of dimension can already be observed in 3D, with dense voxel grids representations being too heavy and ine cient to train/infer from when it comes to higher resolution objects. As one can notice that most of the relevant information about a 3D shape is encapsulated by its surface boundary, vectorizing the surface only to feed deep learning architectures appears as a natural alternative. In particular, Sinha et al. [START_REF] Sinha | Surfnet: Generating 3d shape surfaces using deep residual networks[END_REF] use geometry images [START_REF] Gu | Geometry images[END_REF] to better scale, although their method is limited to genus-0 surfaces. Following Sketch-to-Design [START_REF] Xie | Sketch-to-design: Context-based part assembly[END_REF] (previously discussed), Lun et al. [START_REF] Lun | 3d shape reconstruction from sketches via multi-view convolutional networks[END_REF] completely reconstruct a shape from sketches, without parts dictionary, by training AEs on a set of prede ned views. The vectorized shape model (network inputs and output) takes the form of depth and normal (2D) maps from which one can recover a point cloud. Some methods directly use point clouds for 3D point cloud reconstruction from a single image [START_REF] Fan | A point set generation network for 3d object reconstruction from a single image[END_REF], classi cation [START_REF] Qi | Pointnet: Deep learning on point sets for 3d classi cation and segmentation[END_REF] and exploration and synthesis [START_REF] Nash | The shape variational autoencoder: A deep generative model of part-segmented 3d objects[END_REF]. The two formers de ne their custom learning architecture while the latter uses an AE. For an overview of the numerous recent approaches to 3D deep learning, we refer the reader to the recent work conducted by [START_REF] Wang | O-cnn: Octree-based convolutional neural networks for 3d shape analysis[END_REF].

Open problems. The rst challenge related to meshes that we identify is to be able to store meshes of di erent connectivities and di erent number of vertices in a dictionary. At the moment, existing methods [START_REF] Streuber | Body talk: Crowdshaping realistic 3d avatars with words[END_REF], Wampler, 2016, Sattler et al., 2005] require perfect vertex correspondence in order for the interpolation to remain simple, which limits their usability. Such a problem is fundamentally related to abstracting the inner representation, to have a dictionary of shapes, which can accommodate objects regardless of their underlying representation e.g., parametric or implicit. One possible direction is to reformulate the notion of shape atoms through basic geometric operators only (e.g., intersection test, distance estimation, etc.), hiding completely the way surfaces are stored.

The limited extrapolation power of dictionaries, which we mentioned earlier, makes necessary the rapid updates of the dictionary atoms, given some user inputs, which would require on-line learning strategies. Complementary to editing e ciently the atoms during the optimization of the dictionary, we suspect that spatiallyvarying combination operators would be needed to be able to take into account user inputs, speci cally in regions of the constructed space where input shapes are under-represented. Such exibility would allow for larger extrapolation while providing user-friendly modeling interfaces. In order to investigate regions, which might require user inputs, e cient visualization of the dictionary and its relation to the input dataset might be useful.

Another largely unexplored direction lies in combining dictionary-based techniques with more advanced learning methods, including those based on deep learning, which has recently shown a remarkable success in shape analysis [START_REF] Bronstein | Deep learning for shape analysis[END_REF]. One advantage of dictionary-based approaches is that they result in atoms, which can often be interpreted and explicitly re-combined into new shapes, unlike deep learning-based methods, which are more di cult to interpret (deep learning interpretability is a current research subject [START_REF] Bau | Network dissection: Quantifying interpretability of deep visual representations[END_REF]). Some very recent work in point cloud processing [START_REF] Qi | Pointnet: Deep learning on point sets for 3d classi cation and segmentation[END_REF] has proposed constructing and learning so-called symmetry functions that capture structural shape properties. Such functions, which are learned using a neural network architecture can, at an abstract level, be considered as atoms and it would be interesting to explore this connection more fully.

While representing a shape via a set of atoms is a very powerful way to manipulate 3D shapes, as shown in this survey, we observe that most methods here either assemble atoms as disjoint components, possibly self-intersecting [START_REF] Kalogerakis | A probabilistic model for component-based shape synthesis[END_REF], Talton et al., 2012], or they require the atoms to be overlapping or very close [START_REF] Kreavoy | Model composition from interchangeable components[END_REF]. Indeed, no methods is able to generate a smooth uni ed shape when the atoms are far from each other, and we believe such composition operator could enable more powerful uses of dictionaries, for example by opening the possibility of richer relationships between atoms (as now the gap surface is a part of the relation), or enabling easier modeling for non-expert users.

III

Smooth assembled meshes

We observed in the state of the art that no method is able to output a smooth mesh from a composition of non-overlapping atoms while preserving the input connectivity and geometric features. Current stitching methods also tend to modify the input and (partially) destroy rich information associated with the input parts (for example, anchor positions, UV coordinates, ...). Following this observation, we propose a method to represent a shape as a combination of already existing artist-authored parts, by constructing a surface mesh lling gaps between the boundaries of multiple disconnected input components. Unlike previous techniques, our method pays special attention to preserving both the connectivity and the large-scale geometric features of the input shapes, while maintaining e - Detected feature-lines are propagated and the surface between them is adjusted to minimize the variation of curvature. This makes our method suitable for both organic and man-made shapes.

ciency and scalability w.r.t. to mesh complexity. Starting from an implicit surface reconstruction matching the boundaries of the components, we rst introduce a modi ed dual contouring algorithm which stitches a meshed contour to the input components while preserving their connectivity. We then show how to deform the reconstructed mesh to respect the boundary geometry and preserve sharp feature lines, smoothly blending them when necessary. As a result, our reconstructed surface is smooth and respects the features exhibited near the boundaries of the input. We demonstrate on a wide variety of input shapes that our method is scalable to large input complexity and results in superior mesh quality compared to existing techniques.

III.1 Introduction

High quality 3D content is central to a wide range of applications in both computer graphics and other related areas, including virtual reality, special e ects and gaming to name a few. However, while consumption of 3D content is enabled by more powerful hardware and processing techniques, 3D content creation remains di cult, and is typically reserved to highly trained professionals with specialized domain knowledge. In recent years, several novel modeling paradigms have been introduced, which have signi cantly expanded the range of possibilities for content creation, both by automatically synthesizing novel 3D shapes using e.g. parametric models, and modeling by example, introduced in the pioneering work of Funkhouser and colleagues [START_REF] Funkhouser | Modeling by example[END_REF]. This latter approach is especially appealing since it allows to combine pieces of 3D shapes, found in rich content repositories in order to quickly create diverse and novel content.

Motivation. Regarding the representation of a shape as a composition of parts, numerous methods over the past decade introduced more advanced methods for retrieving and suggesting appropriate geometric parts, and employing more complex synthesis techniques. A core challenge in all of such techniques is stitching multiple geometric parts into a single coherent object: the composition operator.

Unfortunately, this step typically involves remeshing a signi cant part of the input (for example when using standard reconstruction techniques) and often distorts the input geometry in order to maintain robustness and nd the "smoothest" possible solution. This severely hinders the utility and quality of such mesh combination techniques, since input shapes are often carefully modeled and thus their connectivity and characteristic feature properties must, ideally, be respected during stitching. Although a large number of techniques have been introduced for mesh repair, as we show below, most of them typically do not respect the connectivity or feature properties of the shapes, and can introduce signi cant artifacts and/or low-pass e ects in the stitched region.

Regarding the input connectivity, each vertex can have multiple texture coordinates, and hair/fur is often modeled as particles emitted from a subset of faces Once the input meshes are stitched, the geometry of the newly created surface needs to be adjusted, and we can make a distinction between low-frequency and high-frequency geometric signals. While the shape itself (optionally smoothed) composes the low-frequency geometric signals, high-frequencies can be represented both by the embedding of the shape, and by its material, with techniques such as normal maps or texture-guided tessellation. We focus only on manipulating the positions of the created surface, so we do not propagate high-frequency details and leave that task for more speci c methods.

Contributions. In this chapter, we introduce a novel technique for lling gaps between the boundaries of several non-overlapping input meshes. Our approach is inspired by implicit function-based surface reconstruction techniques -notably, we leverage Screened Poisson Reconstruction [START_REF] Kazhdan | Screened poisson surface reconstruction[END_REF] -while introducing several crucial modi cations that signi cantly improve the resulting mesh quality. Namely,

• a mesh-aware dual contouring algorithm, that can stitch an implicit surface contour to existing mesh components while preserving their connectivity,

• a feature-sensitive mesh deformation mechanism to comply with the boundary geometry and preserve sharp feature lines, smoothly blending them when necessary.

While previously the representation of a shape by composition of parts was only practical for overlapping or near-overlapping parts, these contributions remove this restriction. Furthermore, the preservation of the input allow to compose existing shapes without destroying the user's work.

III.2 Related work

Mesh repair. Fusing meshes relates to mesh repairing techniques, sharing objectives such as lling holes [Liepa, 2003], non-manifoldness or self intersections. Several methods tackle these problem: for instance [START_REF] Kanai | Interactive mesh fusion based on local 3d metamorphosis[END_REF] fuse meshes together by morphing similar shape boundaries using Bézier interpolation while Bischo et al. [START_REF] Bischo | Structure preserving cad model repair[END_REF] clip the mesh around the zones containing defects before remeshing them. For a general review of mesh repair methods, we refer the reader to the work of Attene et al. [START_REF] Attene | Polygon mesh repairing: An application perspective[END_REF] and to the recent survey on hole lling in 3D surface reconstruction [START_REF] Guo | A survey on algorithms of hole lling in 3d surface reconstruction[END_REF].

Mesh fusion. Closer to artistic creation SnapPaste [Sharf et al., 2006b] consists in series of global-to-local transformations for positioning overlapping objects using Soft-ICP. Very e ective for some con gurations, the requirement for overlaps still restricts strongly the space of possible input components arrangements, forbidding long range connections between them for instance.

Schmidt and Brochu [START_REF] Schmidt | Adaptive mesh booleans[END_REF] provide a robust algorithm to fuse meshes with boolean operations, which is used in the commercial tool MeshMixer [START_REF] Schmidt | Meshmixer: An interface for rapid mesh composition[END_REF]. It does not, however, ll gaps between open boundaries, and does not preserve connectivity. One could make some input meshes watertight and project the remaining boundaries on them for stitching, before readjusting the geometry, but such a task is ill-posed since such projections are not injective, and complex -notably rotations must be handled, see for example the L-cube in Figure III.4.

Another way of fusing meshes is shown by [START_REF] Yu | Mesh editing with poisson-based gradient eld manipulation[END_REF] the examples illustrating this paper. Furthermore, remeshing and optimizing the surface geometry is still mandatory after triangulation. Instead, recent surfacing methods [START_REF] Pan | Flow aligned surfacing of curve networks[END_REF], Stanko et al., 2016] adjust the surface using a metric similar to ours, but require the input curve network to be closed and connected; moreover, the input connectivity is lost on the way.

One possible way of solving our problem would be to rst rigidly transform mesh parts and align them, following the method of Huang et al. [START_REF] Huang | Field-guided registration for feature-conforming shape composition[END_REF], and then reposition these parts at their input location and adjust the stitching surface (by optimizing for its geometry and connectivity). However, the featurelines found by such a method would disregard the input placement and likely not respect the user wish; moreover under certain rotations these feature lines could intersect the surface, similarly to what is exposed in Figure III.11 (middle).

Stitching via parameterization Dual Domain Extrapolation [Lévy, 2003] can be used to stitch component boundaries, by rst parameterizing the input parts into the same parameter, then completing the parts in this space, before updating the 3D geometry. However, stitching multiple topological disks into a single genus-0 surface cannot be achieved without extra seams in parameter space, inducing tedious user intervention. Instead, although interactive control is permitted, our method does not need user intervention during the lling process.

Details propagation. While this is not in the scope of our method, geometry details can be propagated once the multiple components have been stitched using image-based in-painting techniques, such as non-local means. For instance, Perez et al. [START_REF] Perez | Dictionary learning-based inpainting on triangular meshes[END_REF] proposed an in-painting method on surfaces which learns a dictionary through the subdivision of the mesh into patches and rebuilds the mesh via a globally consistent reconstruction method.

Input connectivity preservation

The input mesh connectivity is altered by most existing methods in order to guarantee the smoothness of the nal surface.

In particular, surface reconstruction techniques [START_REF] Berger | State of the art in surface reconstruction from point clouds[END_REF], Kazhdan and Hoppe, 2013, Süßmuth et al., 2010, Lin et al., 2008] naturally produce watertight llings, and can therefore be thought as stitching candidate, but output an implicit surface blind to the input connectivity.

On the other hand, the few existing methods which do not change input connectivities, such as classical reconstruction from cross-sections methods, may result in non smooth surfaces. [START_REF] Wuttke | Quality preserving fusion of 3d triangle meshes[END_REF] tackles instead the question of merging 2D-manifold meshes without adding any new vertices, while allowing the removal of possible redundancies. However, if between the two input meshes, triangle size di ers signi cantly, this approach create bad quality triangles.

Our approach ful lls both of the input connectivity preservation and smoothness constraints. ). We then determine salient points and candidates feature lines, selecting only those that minimize a tri-harmonic power cost (Section III.5.1). Last, we stretch the surface between the feature lines (Section III.5.2).

III.3 Overview

Our method composes and stitches non-overlapping triangular meshes M 1 ...M , completing the gaps between their boundaries, without modifying the connectivities and geometry embeddings. In the following, the input mesh is M = ∪ =1 M i.e., meshes to compose are the disconnected components of M. We also require the boundaries to be 1-manifold, although we do not require the rest of the mesh to be 2-manifold. Our method outputs a triangular mesh and can be decomposed into three main stages (see Figure III.4):

1. components are stitched by reconstructing a surface between the boundaries while preserving the input connectivity (Section III.4), 2. feature lines are determined using spatial reasoning to associate detected salient points (Section III.5.1), 3. the created surface is smoothly optimized in-between the feature lines (Section III.5.2).

III.4 Surface completion

The role of this stage is to reconstruct a mesh M = M ∪ Z, such that Z is manifold and covers the gaps between the boundaries of the input mesh M. At this stage, the embedding of Z is not critical and will be optimized later. We start by resampling M for a faithful Screened Poisson Reconstruction [START_REF] Kazhdan | Screened poisson surface reconstruction[END_REF], which yields an implicit surface S and an octree. Then, re-using this octree, we mesh only the relevant zones of the implicit surface, simultaneously stitching it to M. Last, we clean Z.

III.4.1 Sampling and implicit shape completion

Our method exploits the implicit surface S, structured in an octree, generated by Screened Poisson Reconstruction [START_REF] Kazhdan | Poisson surface reconstruction[END_REF][START_REF] Kazhdan | [END_REF] to sustain the smooth completion of disjoint components. It is crucial that this implicit surface S is close to the input in order to have a correct meshing. 

III.4.2 Connectivity-preserving dual-contouring

Equipped with S, we mesh only the portion lling the gaps using a new variant of the Dual Contouring algorithm [START_REF] Ju | Dual contouring of hermite data[END_REF] that we designed speci cally to preserve the original connectivity of M, and which also reuses the octree generated by the Poisson reconstruction. Dual Contouring [START_REF] Ju | Dual contouring of hermite data[END_REF] associates one vertex per octree leaf (at most), created on-the-y. Furthermore, only minimal edges of the octree with a sign change of S should generate a polygon: these are node edges that do not contain any other smaller edge of the octree, and are shared between either 3 or 4 nodes. One can nd these edges using a top-down traversal.

Our mesh-aware dual contouring (see Algorithm 1) enriches the original algorithm with two preprocessing stages to form a connectivity-preserving lling. We detail them in the following.

Extending the boundaries of M. Here we link the boundaries of M to the vertices of the octree leaves. Note that the vertex associated to a node is denoted where , ℎ ∈ R 3 and represent the minimum and maximum coordinates of the cube of . So far, some degenerate triangles may arise near the input boundaries, but the connectivity is valid and the input has been preserved. Second, for each new vertex included in exactly 2 triangles 1 , 2 (in nodes 1 , 2 ), with the second vertex of 1 and the third vertex of 2 , we add the triangle (vertex( 1 ), vertex( 2 ), ), as shown in boundary edges crossing the interface between octree nodes. All triangles added so far are correctly oriented, and the new boundary can then be stitched using standard dual contouring.

Pruning minimal edges. A straightforward dual contour would contain redundant elements near the input and non-manifold vertices at the new boundary. Instead, we exclude nodes that intersect M but not its boundary edges, as well as nodes with an excluded ancestor (depicted in red in Figure III.8), detected in a top-down manner. No minimal edge contained in these nodes will be considered for meshing the implicit surface. 

III.4.3 Reaching manifoldness

For the cover mesh Z to be manifold, three conditions must be met: (i) S should be smooth enough so that there are no nodes with several possible meshing; this is generally the case since we re-use the octree of the Poisson reconstruction;

(ii) there should be at most one boundary edge crossing any face of a leaf node, so that cross-nodes edges from the boundary extension (Figure III.6,purple) are present in 1 face before the usual dual-contouring; this is mostly the case as we are dealing with artist-authored meshes with relatively clean boundaries. (iii), nodes intersecting M should also intersects S, so that the dual-contouring connect Z to M. This condition is rarely veri ed near sharp edges, thus we enforce it by simplifying the octree before pruning minimal edges (see Algorithm 1), in a bottom-up fashion: if one of the children of violates this condition, we remove them and collapse their vertices into vertex( ) (Figure III.9). Note that we do not simplify past a minimum depth or if the topology of the intersection between the nodes and the border would change. Finally, the non-manifold vertices, edges and holes are xed by rst repeatedly removing non-manifold edges and vertices from Z, then lling the resulting holes using triangle fans around the barycenter of each hole. For all models in our test database, we did not observe any non-manifold mesh after this last step.

III.4.4 Smooth remeshing

At this point, although manifold, Z typically includes numerous slivers, which would incur numerical instabilities in the remaining stages of our method. Thus, we remesh it via the iterative remeshing scheme proposed by Botsch and Kobbelt [START_REF] Botsch | A remeshing approach to multiresolution modeling[END_REF], using the average edge length of the boundaries of M as the target length. As a result, Z exhibits a regular connectivity while smoothly connecting the components of M. Note that only the new vertices of Z can move in this stage, which removes all degenerate triangles introduced during the boundary extension.

III.5 Piecewise smooth surface

To reach a natural aesthetic completion, we propose to minimize the curvature variation of Z by minimizing the surface tri-laplacian. To prevent smoothing out the strong features present at the input mesh boundaries, we propose to propagate the dominant feature lines of M onto Z. To do so, we detect and process feature lines di erently from the rest of reconstructed surface and perform the geometric regularization in a piecewise fashion.

III.5.1 Candidate feature lines

Feature points. We rst detect feature points on M: these are the boundary vertices where the surface forms a sharp edge. More precisely, for each successive boundary vertices ( , , ), where boundary edges ( , ) and ( , ) are contained in triangles 1 and 2 with normals 1 and 2 , we compute the following quantities (normalized vectors are noted = /

):

• = acos( 1 • 2 )
, the angle between the triangles at ,

• , the direction of the sharp edge: Associations. We can now make candidate associations for these feature points, which will form the endpoints of candidate feature lines to reconstruct. In particular, we de ne:

= sign(( 1 × ( -)) • ) where = 1 × 2 if | 1 • 2 | < 1 1 × ( -+ -) otherwise • = -1 + 2 ,
• partial associations → ∅, where the resulting feature line would go from the feature point to the closest point on another connected component of the input mesh,

• full associations → , with ≠

As we want to avoid feature lines going through the reconstructed volume, we impose that the endpoints are not inverted i.e., • > 0 or

• > 0 (Figure III.11).
Chains. Feature lines are de ned by the list of adjacent vertices ("chain") composing it. For each candidate association, we e ectively compute these chains using the Dijkstra's algorithm over Z. For partial associations, the path nding metric is simply the distance between the start and end points, or +∞ if both are on the same component, to avoid trivial degenerated solutions.

Costs. We adjust all chains following a tri-harmonic reconstruction of their geometry, using the position and sharp edge direction of their endpoints as boundary conditions. The cost of a chain is the sum of the squared tri-laplacian at each of its vertices.

Selection. Armed with a set of candidate chains, each with its associated cost, we want to select a subset based on three criteria:

• no chain intersections i.e., no shared vertex,

• maximize the number of feature points delimiting a chain,

• minimize the sum of the cost of the chains.

These criteria help reducing ambiguity in the chains selection process while conforming as much as possible to the smoothness that will be imposed on the rest of Z. No matter the cost, covering more feature points is more important than having a lower cost.

Let us consider the graph where nodes represent candidate chains and edges represent the absence of intersection i.e., an edge means that the candidates chains associated to its nodes do not intersect. It follows that the desired subset of chains is the maximal clique which covers the most feature points with the lowest cost possible. We use the Bron-Kerbosch algorithm [START_REF] Bron | Algorithm 457: Finding all cliques of an undirected graph[END_REF] to nd the cliques, in parallel on all components of Z.

III.5.2 Smooth surface

The nal geometric embedding of Z is obtained by iteratively remeshing (2 iterations are usually su cient) and adjusting the vertex positions using a tri-harmonic reconstruction. The anchors for this step are the vertices of M (up to a certain topological distance from Z) and the anchors used for the chain costs. This nal surface stretching can be summarized as a series of iterations:

• Remesh Z (except anchors) using iterative remeshing [START_REF] Botsch | A remeshing approach to multiresolution modeling[END_REF] • Adjust positions by solving = 0 under the constraint that the position of the anchors do not change, with the positions of the vertices of Z.

The operator allows to reconstruct both the feature lines and the surface at the same time. and is de ned as = (

) 3 + ( -) 3

• , , = 1 only if = and vertex is not on a chain,

• , uniform discretization of the 1D laplacian on chains,

• , cotangent discretization of the 2D laplacian on the surface, Note that multiplying by before the exponentiation prevents the variation of curvature to be minimized across features lines, e ectively making this minimization piecewise.

III.6 Results

Our method is suitable for both organic and CAD-like shapes, and can handle complex arrangements of holes and disjoint components, thanks to the use of a volumetric reconstruction method, the minimization of the curvature variation and the propagation of hard edges. We report experiments in Figures III. Table III.1 -Completion timings in seconds, with sub-totals for each part of the method (corresponding to a section). The octree depth is user-controlled, and greatly e ects the speed of both the Poisson reconstruction and the connectivity-preserving dual-contouring.

memory. We also evaluate our method in comparison with state-of-the-art mesh completion technique [START_REF] Centin | Advancing mesh completion for digital modeling and manufacturing[END_REF], see Figures III.12 & III.13.

III.6.1 Performance

Table III.1 reports the performance evaluation of our completion operator, with timing decomposed between the di erent stages of computation for the models illustrating this paper. We can observe that in general the computation workload is dominated by the initial lling step, especially by the Poisson reconstruction, while the feature line reconstruction and nal surface generation represent only a small fraction of the total timing. The determination of feature lines can take a signi cant portion of the run-time when many salient points are detected (typical in man-made shapes); moreover, the geometry adjustment of the cover surface Z is close to linear in the number of added vertices, which tends to increase when the gap to complete is large.

The method of Lin et al. [START_REF] Lin | Mesh composition on models with arbitrary boundary topology[END_REF] performs the completion (notably, marching cubes) on a grid, and not an octree. This quickly degrades in performance and memory when the resolution is increased to cope with ner details.

Although we do not have precise timings on our examples for the method of Centin and Signoroni [START_REF] Centin | Advancing mesh completion for digital modeling and manufacturing[END_REF], they show that their runtime is dominated by the Poisson reconstruction in presence of simple boundaries, and by the mesher (a variant of marching triangles) when boundaries are complex, because of the interferences check.

Input [START_REF] Centin | Advancing mesh completion for digital modeling and manufacturing[END_REF]] Ours

Figure III.12 -Comparing our method to [START_REF] Centin | Advancing mesh completion for digital modeling and manufacturing[END_REF] for simple shapes. The input connectivity is modi ed for the latter; furthermore, the lack of resampling and the high depth used can result in disconnected components.

Since we use Poisson only for lling the gaps, we can use it at coarse scale as long as it is su cient to correctly capture and ll the nest gaps. As a result, shapes with coarse boundary geometry are fast to complete.

III.6.2 User control

The user interacts mainly with our composition operator by positioning in 3D space the di erent components, and while our method treats them as a unique mesh with separate connected components, their actual placement can be easily done with any 3D modeler. Both compared method treat the input similarly, although [START_REF] Lin | Mesh composition on models with arbitrary boundary topology[END_REF]] also introduced a mechanism to place meshes on guiding primitives (such as spheres, cones...), for a faster modeling process.

In our framework, the user can optionally guide on the way the components get connected, by introducing additional point samples in the Poisson reconstruction input (Section III.4). Indeed, by adding oriented points near a hole with normals directed outward of the hole, one can force it not to connect to the rest of the shape, and distant components can be connected by adding oriented points coarsely following the desired surface (see Figure III.14). The exact same control is compatible with the method of Centin et Signoroni [START_REF] Centin | Advancing mesh completion for digital modeling and manufacturing[END_REF] as well as with the naïve method consisting in using Poisson reconstruction only, while Lin et al. [START_REF] Lin | Mesh composition on models with arbitrary boundary topology[END_REF] propose a sketch-based control mechanism. Unless explicitly speci ed, all our gures are made without these additional control points.

Our framework also makes possible to control the reconstructed feature lines, letting the user selecting the feature lines to reconstruct among the candidate pool or even drawing them; The user can also enforce full or partial associations using a multiplicative factor on the cost of the partial associations (see Figure III.15).

Input [START_REF] Centin | Advancing mesh completion for digital modeling and manufacturing[END_REF]] Ours 

III.6.3 Preservation of connectivity

When fusing shapes, naïvely meshing the implicit surface from the Poisson reconstruction will remesh the input, while our method and the one of Lin et al. [START_REF] Lin | Mesh composition on models with arbitrary boundary topology[END_REF] preserve the input mesh. For input meshes with su cient vertex density, the method of Centin and Signoroni [START_REF] Centin | Advancing mesh completion for digital modeling and manufacturing[END_REF]] also preserves the connectivity (they target dense mesh processing). Otherwise, they modify it mainly near the boundaries in a pre-processing step (Figure III.13). Their normal eld of the implicit surface and generating irregular triangles in this case.

It is to note that the propagation of sharp lines is an ill-posed problem, since for the same input there exist multiple solutions, depending on the user's objective: for example, considering a cube cut in the middle, one could reconnect the sharp edges, or choose to smoothly blend them into the surface, near corners (Figure III.15). We handle these issues by speci cally propagating the sharp edges after the meshing phase, and our solution avoids coupling the feature lines selection from their geometric reconstruction, allowing for a precise user control.

III.7 Discussion

Limitations and future work. First, our operator cannot reconstruct more than one feature line starting at any given point. As shown in Figure III.18, the Poisson implicit surface can also sometimes exhibit tunnels near multiple close sharp edges. Moreover, our method does not handle quad meshes. On complex shapes with a very high density of vertices, the tri-laplacian operator can be numerically instable, and fail to converge. Also, the mid-frequency content located at the immediate vicinity of the boundary can sometimes deform the surface in a counter-intuitive way (Figure III.18). Regarding performances, our algorithm could be localized, notably to avoid computing the whole Poisson implicit surface if only a small part of the input needs to be completed. Another future work would be to in-paint the high-frequency details, regardless of their type (geometry, UV coordinates, hair/fur particles, etc.).

Summary. We have proposed a novel approach for constructing a single mesh from several parts while exactly preserving the geometry and connectivity of the input as well as propagating feature curves when they are present. Our method is composed of three main steps that decorrelate the generation of the lling con-Figure III.18 -Composition of complex shapes: pump on top, mech on bottom; the input meshes were obtained from Aim@Shape and Thingi10K [START_REF] Zhou | Thingi10k: A dataset of 10,000 3d-printing models[END_REF]. The bump on pump is because of the very high curvature in the input mesh near the junction. The hole on mech comes from the Poisson implicit surface (and thus is also present with the Advancing Fronts method [START_REF] Centin | Advancing mesh completion for digital modeling and manufacturing[END_REF]).

nectivity from its actual geometry embedding. Our feature curve reconstruction strategy produces high quality results, in challenging scenarios such as the ones involving CAD-like parts. Importantly, the input mesh structure is entirely preserved, together with any attributes it may carry e.g., existing UV parameterization, which o ers a exible work ow when modeling by composition.

We found that for large meshes, the performance was not interactive enough, and the main cause is not the completion phase (as the speed of the Screened Poisson reconstruction is proportional to the area, which does not changed under simplication or subdivision) but the laplacian geometry adjustment and remeshing. Such e ect is observable in the timings listed in Table III.1. Indeed, this require to solve systems with large matrices hence the performance cost. A possible solution to retain the interactive edition sessions would be to use coarse versions of the input parts, and to use the ne versions at the end, when the user is satis ed with the result. This leads to the problem of retrieving a coarse version of the input parts.

IV

Spectral mesh simplification

The speed of the laplacian geometry adjustment of our composition operator (introduced in the previous chapter) depends on the number of new vertices, which means it can be slow for large meshes. In particular, the user might want to have a preview of the completion of several heavy meshes, without waiting for the full algorithm to run; while parts of this method can be disabled to allow a more interactive edition session, a full pass must still happen here. Note that simplifying the input does not make the gap-lling phase faster, as not only the screened Poisson reconstruction has a complexity depending on the area of the input [START_REF] Kazhdan | Poisson surface reconstruction[END_REF][START_REF] Kazhdan | [END_REF], but also our dualcontouring depends on the size of the octree, itself depending on the area. However, it signi cantly speeds up the geometry adjustment step.

The selected simpli cation method has an important e ect on the end result. We rst tried to simplify the input using the state-of-the-art mesh simpli cation via the Quadric Error Metric [START_REF] Garland | Surface simpli cation using quadric error metrics[END_REF]. This technique focuses on the preservation of appearance and usually produces slivers which, while faithful to the initial appearance, lead to numerical instabilities. Moreover, holes in a planar regions are partially lled, as the QEM of a vertex in a planar region is 0 and edges are collapsed by lowest cost rst. As a variant, explicitly preserving the boundary greatly reduce the aforementioned problems, at the cost of preventing the performance improvements we seek for our composition operator (see Figure IV.1).

Since the parts are preserved when smoothly completing them, we can simplify each one separately, and then re-use the results when completing. Hence, we do not focus on the simpli cation time as it is a one-time operation prior to the edition session. We also want to avoid amplifying the noise in the vicinity of the boundaries, or else the coarse completion would not be faithful to the detailed completion. For these reasons, we focus on a simpli cation that removes the high-frequencies of the laplacian operator.

The spectrum of the Laplace-Beltrami operator is instrumental for a number of geometric modeling applications, from processing to analysis. Recently, multiple methods were developed to retrieve an approximation of a shape that preserves its eigenvectors as much as possible, but these techniques output a point cloud with no connectivity, which limits their potential applications. Furthermore, the obtained Laplacian results from an optimization procedure, implying its storage alongside the output point cloud: focusing on keeping a mesh instead of an operator would allow to retrieve the latter using the standard cotangent formulation, enabling easier processing afterwards. Instead, we propose to simplify the input mesh using a spectrum-preserving mesh decimation scheme, so that the Laplacian computed on the simpli ed mesh is spectrally close to the input mesh one. We show in Section IV.6 that our method allows fast and faithful previsualizations of the results of our composition operator (introduced in Chapter III). We also illustrate the bene t of our approach for quickly approximating spectral distances and functional maps on low resolution proxies of potentially high resolution input meshes, in Section IV.5.

IV.1 Introduction

Triangle meshes remain a predominate representation of 3D surface geometry.

When the complexity of a given mesh exceeds computational resources or demands, we rely on mesh simpli cation methods to remove vertices, edges, and faces. In rendering, e cient simpli cation methods can dramatically reduce the complexity of a mesh without a ecting its appearance. It is tempting to repurpose appearancepreserving simpli cation methods for other geometry processing tasks.

Unfortunately, appearance-based methods do not preserve the spectral properties of the important di erential operators upon which much of modern geometry processing is built (see Figure IV.2). As a result, solutions computed on such a coarse mesh can be incorrect or misleading. Alternatively, previous coarsening methods that do preserve spectral properties work purely algebraically on the operator matrices and do not produce a geometric mesh (see Figure IV.3). The lack of a mesh limits the use of coarsening in many downstream geometry processing tasks.

We present the rst mesh simpli cation method intentionally designed to preserve spectral properties. We propose adapting the standard greedy edge-collapse mesh-simpli cation algorithm with a novel cost function that measures spectral preservation of a given operator (e.g., the cotangent Laplacian). Unlike algebraic methods that directly output a reduced operator (i.e., matrix), our method outputs a manifold triangle mesh with 3D vertex positions. Reconstructing the operator on the output mesh will preserve both the eigenvalues and eigenvectors of the operator on the input mesh. We propose to simplify a mesh using edge collapses while aiming to preserve the input eigenvectors and eigenvalues as much as possible. While di erent strategies exist to reduce a mesh (here, from 25,727 vertices to 771 vertices, or 3% of its initial size), such as enforcing uniform edge lengths or using the Quadric Error Metric [START_REF] Garland | Surface simpli cation using quadric error metrics[END_REF], they do not focus on keeping the spectral properties of the mesh. Reducing a mesh can be spectrally described using functional maps [START_REF] Ovsjanikov | Functional maps: A exible representation of maps between shapes[END_REF], shown here with the output meshes, and which should ideally be diagonal. We also evaluate functional maps using two norms, the laplacian commutativity • and the orthogonality • . [START_REF] Nasikun | Fast approximation of laplace--beltrami eigenproblems[END_REF] de ne the reduced Laplacian on vertices from a Poisson-disk sampling, with weights not limited to the 1-rings. [START_REF] Liu | Spectral coarsening of geometric operators[END_REF] optimize both the sampling step and the operator, the latter de ned on the samples' 3-rings. In contrast, by outputting a mesh, further processing can use a standard cotangent weighting scheme without knowledge of the reduction step.

Through a series of experiments, we con rm that our method preserves spectral properties nearly as well as purely algebraic methods, while still outputting an embedded mesh like standard simpli cation algorithms. We demonstrate the e ectiveness of our approach for geodesic distance approximation and functional maps correspondence.

IV.2 Background

Our method builds on the long history of research in mesh simpli cation and recent developments in spectral coarsening for di erential operators. We focus the attention of this related work section on methods directly related in methodology or intention.

Classic methods for mesh simpli cation are based on preserving the rendered appearance of the geometric surface [START_REF] Schroeder | Decimation of triangle meshes[END_REF], Popović and Hoppe, 1997, Garland and Heckbert, 1997, Hoppe et al., 1993, Cohen-Steiner et al., 2004]. These methods were extended to account for other signals stored on the mesh beyond geometry including texture coordinates and colors [START_REF] Cohen | Simplifying polygonal models using successive mappings[END_REF], Garland and Heckbert, 1998, Hoppe, 1999, Liu et al., 2017]. Similar to many of these methods, we adapt the per-edge cost function of the basic greedy edgecollapse approach introduced by Garland & Heckbert [START_REF] Garland | Surface simpli cation using quadric error metrics[END_REF]. Instead of optimizing perceptual metrics, we optimize a spectral metric. Spectral preservation relies on maintaining intrinsic properties of the surface (the metric). Previous methods have focused on maintaining extrinsic properties, such as keeping the coarse mesh within a small envelope around the input [Cohen et al., 1996, Zelinka andGarland, 2002] or strictly containing the input [START_REF] Sander | Silhouette clipping[END_REF], Sacht et al., 2015]. In a rare previous example of spectral mesh simpli cation, Li et al. [Li et al., 2015a] append modal displacement vectors for sound simulation as extra dimensions during greedy edge-collapse. However, this method preserves only the speci c modes chosen and would not scale beyond a small number of frequencies. Our e cient method preserves a large span of low frequency eigen modes and corresponding values.

Mesh simpli cation is closely related to graph reduction. In this more general and less constrained context, recent works have investigated spectral preservation with theoretical guarantees [START_REF] Kyng | Approximate gaussian elimination for laplacians-fast, sparse, and simple[END_REF], Loukas, 2018, Loukas and Vandergheynst, 2018]. [START_REF] Liu | Spectral coarsening of geometric operators[END_REF] recently demonstrated superiority over [START_REF] Kyng | Approximate gaussian elimination for laplacians-fast, sparse, and simple[END_REF] when applied to mesh Laplacians from geometry processing. Similarly, coreset selection algorithms aim to preserve statistics or properties of a larger point set or distribution [Huggins et al., 2016, Claici and[START_REF] Claici | [END_REF]].

An alternative approach to preserving properties of the operators built from the input and simpli ed meshes is to directly simplify the operator as a matrix. Recently, Liu et al. [START_REF] Liu | Spectral coarsening of geometric operators[END_REF] present a state-of-the-art method for spectral preservation during algebraic coarsening of common operators used in geometry processing. We refer the reader to this recent work for a comprehensive review of previous algebraic and numerical coarsening methods (notably [START_REF] Nasikun | Fast approximation of laplace--beltrami eigenproblems[END_REF]). Contemporary developments (e.g., [START_REF] Chen | Material-adapted re nable basis functions for elasticity simulation[END_REF]Scovel, 2019]) share the main limitation of Liu et al. compared to our method: they all do not produce a mesh.

We build upon the functional maps [START_REF] Ovsjanikov | Functional maps: A exible representation of maps between shapes[END_REF] machinery used by Liu et al. to evaluate how well a coarsening preserves spectral properties. Unlike their computationally expensive algebraic optimization, our e cient edge-collapse algorithm maintains a manifold triangle mesh.

IV.3 Method

Our spectrum-preserving simpli cation method is made of two main building blocks: a simpli cation algorithm based on edge-collapses and a simpli cation metric wihch drives the algorithm. The metric associate a cost to any given edge-collapse, ordering them dynamically during the simpli cation.

IV.3.1 Input / output

Our method takes as input a manifold triangle mesh M = (V, F ), which can optionally contain boundaries, and produces a simpli ed mesh M = ( V, F ), with an as-close-as possible spectrum to M when evaluating it using the standard laplacian operator. Optionally, we can produce a coarse-to-ne restriction matrix that can be used when computing e.g., functional maps. We also take a unique parameter in the form of the number of eigenvectors to preserve.

IV.3.2 Simpli cation algorithm

Given a cost for each edge of M, our simpli cation algorithm (see Algorithm 2) follows the seminal idea of [START_REF] Garland | Surface simpli cation using quadric error metrics[END_REF]: each input edge is pushed to a priority-queue, where the priority is dictated by our speci c cost metric. At all time, the edge located at the head of the queue is the next best edge to collapse i.e., with minimum cost. Once popped from the queue, the edge is collapsed, e ectively removing one vertex from the mesh and resulting in a merged vertex positionned to optimize the metric. Last, the cost of the incident edges are updated, reordering the queue to respect the priority measure. This atomic mesh reduction step is iterated until reaching the desired output resolution for M, removing one vertex at a time.

Optionally, we can augment this reduction algorithm to generate a restriction matrix to be used for the computation of functional maps for instance. More precisely, when collapsing the edge ( , ), we generate the restriction matrix such that = . Note that all its coe cients are positive, and its rows sum to 1. Then, with the restriction matrix of the -th operation, the global restriction matrix is formed as follow: = -1 ... 2 1 .

Algorithm 2: Edge-collapse progressive simpli cation.

Input: mesh M = (V, F ), target size , metric : 

V × V ↦ → R Output: simpli ed mesh M = ( V, F ) V ← V ; F ← F ; =

IV.3.3 Metric

While the Quadric Error Metric is introduced in the original work of [START_REF] Garland | Surface simpli cation using quadric error metrics[END_REF], to maintain the visual appearance of the original mesh as much as possible, we propose a new alternative metric focused on spectral preservation.

Let , ∈ R | V |× | V | be the Laplacian and the diagonal mass matrix of M respectively. Similarly, , ∈ R | V |× | V | denote the Laplacian and the diagonal mass matrix of M. We note ∈ R | V |× | V | the ne-to-coarse restriction matrix and N ( ) the i-ring of vertex . We also use the following weighted norm:

2 = tr( ) (IV.1)
We formulate the preservation of the eigenvectors of the laplacian by the commutativity of the laplacian and the reduction. More generally, for a signal ∈ R | V | , we aim for -1 = -1

. Thus, given signals to preserve, represented as a matrix ∈ R | V |× , the reduction metric is:

= -1 --1 2 (IV.2)
is computed only once, at the beginning of the process, together with .

-

1 -------→ •   • -------→ -1
Since is a diagonal matrix, the weighted norm of Equation IV.1 can be decomposed as follow: , are very important when determining which frequencies to keep during the decimation process. Consequently, we use the rst eigenvectors of , to focus only on the low-frequencies of interest. Finally, once the edge is collapsed, with the restriction matrix associated with this operation, we update , , and as follow: ← , ← , ← .

IV.3.4 Merged vertex optimization

When collapsing an edge, we need to reposition the resulting merged vertex. Ideally, this position should optimize for our metric. Unfortunately, this metric is composed of highly non-linear terms: the mass matrix for example is not linear regardless of whether we use the cotangent or uniform formulation of the laplacian. However, we observed experimentally that for the vast majority of edges, the collapse cost is an hyperbole. Therefore, we restrict the merged vertex to live on the collapsed edge, and approximate the cost along this edge using a quadratic polynomial.

More precisely, let = ( , ) be the edge to collapse, the resulting position is denoted ( ) = (1 -) + , where ∈ [0, 1], with cost( , ) the collapse cost. We construct the quadratic polynomial such that ( ) = cost( , ) for ∈ {0, 0.5, 1}, and optimize ∈ [0, 1] to minimize , yielding the optimal merged position (Figure IV.6). Note that the restriction matrix associated with the collapse is then ∈ R -1× where is the number of vertices prior to the collapse. This matrix is nearly the identity, the exception being that = 1 -and = .

IV.4 Evaluation

We evaluated the performance of our simpli cation method for a variety of criteria. We implemented our technique in C++ with the help of Spectra, and tested it on a workstation with an Intel Xeon 3.0 GHz CPU, 32 GB of RAM. We used the same dataset as Liu et al. [START_REF] Liu | Spectral coarsening of geometric operators[END_REF].

IV.4.1 Functional maps

First, several quantities used in this evaluation are from the functional maps eld; let us brie y introduce the concept of functional maps [START_REF] Ovsjanikov | Functional maps: A exible representation of maps between shapes[END_REF] here. These are maps between two shapes, but instead of having a point-to-point map, we use a linear mapping function spaces. Given a base of functions on each shape Φ , Φ , we can map one base function (say, Φ ) on the base functions of the other shape (here, Φ ). This allow to map any function that we can decompose on these bases from one shape to the other. The functional map can be represented by the matrix = ( ).

Here we consider the functional map between the input and output shapes, with ∈ R × , so we don't take high frequencies into account. Noting Φ the matrix whose columns are the rst eigenvectors of and Φ the matrix whose columns are the rst eigenvectors of , this matrix can be de ned as:

= Φ Φ and given a function on M ( = Φ ), its corresponding function on M is ( = Φ ). To enable fair comparison with other methods, we normalize all eigenvectors: ∀ , Φ = 1 and ∀ , Φ = 1. We also scale the meshes to have a unit area, which means that = = 1.

IV.4.2 Norms

Ideally, the functional map between input and output should be as close as possible to the identity. In order not to rely only on visual inspection, we use two norms on the functional maps to quantify the result of the simpli cation:

Laplacian commutativity: 2 = Λ -Λ 2 2 (IV.3) Orthonormality: 2 = - 2 (IV.4)
where Λ and Λ are the diagonal matrices of the eigenvalues of the laplacian operator on the input and output mesh, respectively. Note while the ideal functional map matrix is usually the identity, this is not always the case due to the multiplicity of eigenvalues, which arise in shapes like spheres or the bumpy cube (Figure IV.7). Both these norms are valid in these cases. Our goal here is to show that is orthonormal and commutes with the Laplacians in the reduced basis if and only if it preserves the corresponding eigenfunctions and eigenvalues exactly. Below, we don't assume any constraints on , such as being associated with a pointwise map.

Theorem 1. For a square functional map, the following statements are equivalent:

( 3)) above implies that (resp. ) preserves the given set of eigenpairs of the Laplacian. Then, the theorem can also be stated simply as follows: is both orthonormal and commutes with the diagonal matrices of eigenvalues, if and only if it preserves the eigenfunctions and their corresponding eigenvalues of the Laplacians.

Proof. We will prove the equivalence between (1) and (2). The equivalence between (1) and ( 3) is proved identically. Suppose (2) holds. To show that (1) must hold, rst note that from orthonormality of on M by de nition we get = Id, i.e.

Φ Φ = Id, and since Φ is orthonormal on M this implies = Id. Moreover, by assumption = Λ, and Λ = Λ. Thus, Φ = Φ Λ. Since by de nition Φ = Φ Λ we get Φ Λ = Φ Λ which implies Λ = Λ.

Conversely, suppose that (1) holds. If = Φ , then = Id implies: = Φ Φ = Id, since Φ is orthonormal with respect to . Now, = Φ = Φ Λ . Since Λ = Λ by assumption, we get = Φ Λ = Λ. Therefore, solves the eigenvalue problem of ( , ) with the eigenvalues Λ. It remains to prove that Λ = Λ. For this, note that Λ = Λ implies 2 ( -) 2 = 0 ∀ , , where is the th eigenvalue of (idem for ). Using this and = Id implies that must be block orthonormal with blocks corresponding to the equal eigenvalues (to see this, note that for each there must be an equal otherwise a row or column of would have to be zero). Moreover the blocks must be square by orthonormality of , so that Λ = Λ.

IV.4.3 Analysis

Type of operator. The kind of laplacian operator on the output shape di er between the compared methods. The operator retrieved by the method of Nasikun et al. [START_REF] Nasikun | Fast approximation of laplace--beltrami eigenproblems[END_REF] is not de ned on the 1-ring of vertices but instead use geodesic distances to determine the contribution of a vertex in the laplacian, and thus the laplacian of a vertex can take contributions from a lot more than its 1-ring. The method of Liu et al. [START_REF] Liu | Spectral coarsening of geometric operators[END_REF] use the 3-ring of vertices for the laplacian. For both methods, the operator is optimized for and need to be stored aside the resulting point cloud.

On the contrary, our method and the method of Garland & Heckbert [START_REF] Garland | Surface simpli cation using quadric error metrics[END_REF] output a mesh from which we can compute the laplacian operator using standard formulations on the 1-ring; we use the usual cotangent laplacian for the evaluations. However, this formulation is more constrained, and while usually the laplacian operator is easily derived from the input mesh, our problem is an inverse problem: nding the best reduced mesh that respect a speci c laplacian operator (given by its eigenpairs).

Norms. As shown before, the ideal case is when both the laplacian commutativity and the orthogonality are zero, as it means the spectrum is exactly preserved. We observed that in general, the method of Nasikun et al. [START_REF] Nasikun | Fast approximation of laplace--beltrami eigenproblems[END_REF] and of Liu et al. [START_REF] Liu | Spectral coarsening of geometric operators[END_REF] outperform our method for small ratios of output size on input size, and the method of Nasikun et al. is still at least on par when increasing the ratio. The operator coarsening of Liu et al., however, becomes less accurate as the ratio increase, notably because more vertices means more coe cients in the operator to optimize, making the optimization more di cult. The method of Garland & Heckbert [START_REF] Garland | Surface simpli cation using quadric error metrics[END_REF] is usually worse than our method for both metrics, and often create slivers in the output shape that will heavily impact the laplacian operator. Figure IV.9 -One can see from these plots, • and • over the output size relative to the input size, that most methods have the similar behaviors, apart for the method of Liu et al. [START_REF] Liu | Spectral coarsening of geometric operators[END_REF] for which the optimization becomes harder with more output vertices. The simpli cation of [START_REF] Garland | Surface simpli cation using quadric error metrics[END_REF] distort the spectrum and thus exhibit higher norms.

Determinism. Previous methods from Nasikun et al. [START_REF] Nasikun | Fast approximation of laplace--beltrami eigenproblems[END_REF] and [START_REF] Liu | Spectral coarsening of geometric operators[END_REF] have a vertex selection step, following some regularity metric. For both of these methods, this step is initialized with a random selection, making these methods not deterministic (Figure IV.10). This alters not only the nal result, but also the time needed to compute the output. As for the method of Garland & Heckbert [START_REF] Garland | Surface simpli cation using quadric error metrics[END_REF], our method is deterministic as it only depends on the input. Here, the method of Liu et al. [START_REF] Liu | Spectral coarsening of geometric operators[END_REF] was run using MATLAB, and the method of Nasikun et al. [START_REF] Nasikun | Fast approximation of laplace--beltrami eigenproblems[END_REF] ran out of memory past 21% of input size.

Timings. The reduction time is linear in the number of removed vertices, as can be seen in Figure IV.11. This behavior is similar for the method of Garland & Heckbert [START_REF] Garland | Surface simpli cation using quadric error metrics[END_REF], although the latter is much faster as not only the metric is de ned per vertex instead of per edge, but also the there is no initial eigenvectors computation. As the operator coarsening method [START_REF] Liu | Spectral coarsening of geometric operators[END_REF] optimizes for a laplacian operator whose size depends on the output size, it can be quite fast for extreme reductions but timings quickly increase following the number of vertices. Similarly, the method of Nasikun et al. [START_REF] Nasikun | Fast approximation of laplace--beltrami eigenproblems[END_REF] can be really fast for small output sizes, notably due to GPU usage, and is slower when reducing less, while consuming much more memory. Although Figure IV.11 show the timings for the deer head, these behavior are typical across all of our test dataset.

Number of eigenvectors.

Increasing the number of eigenvectors in the metric of Equation IV.2 lead to a better preservation of high frequencies, up to a certain point. We observed from our test dataset that the output size should be at least 3x the number of eigenvectors to preserve (Figure IV.12), for a correct spectral preservation of the laplacian. From Figure IV.12, we also observe that the laplacian commutativity has less variability than the orthogonality for high ratios. 

IV.5 Applications

Our simpli cation method was created to perform computationally expensive shape analysis tasks faster, by replacing dense input meshes with coarser substitutes, yet optimized to carry on as much as possible the original spectral properties onto which these task build upon. We illustrate this behavior for two applications: spectral distance computation and functional map generation.

IV.5.1 Spectral distances

We now show the preservation of spectral distances between vertices, and evaluated several di erent distances. Noting the -th eigenvector of the laplacian 99 operator on the mesh and its associated eigenvalue, these distances are detailed in the following:

di usion ( , , ) = ( ( ) -( )) 2 -2 biharmonic ( , ) = ( ( ) -( )) 2 / 2 WKS ( , ) = ∫ WKS( , ) -WKS( , ) WKS( , ) + WKS( , ) commute ( , ) = ( ( ) -( )) 2 /
where WKS is the wave kernel signature [START_REF] Aubry | The wave kernel signature: A quantum mechanical approach to shape analysis[END_REF]; we also evaluated the heat kernel signature (HKS) [START_REF] Sun | A concise and provably informative multi-scale signature based on heat di usion[END_REF]:

WKS( , ) = 2 ( ) -( -log ) 2 2 2 / - ( -log ) 2 2 2 heat_kernel( , , ) = ( ) ( ) - HKS( , ) = heat_kernel( , , ) = 2 ( ) -
While heavily reducing the input mesh will decrease the quality of these distances and signatures, our method preserves them better than the method of Garland & Heckbert [START_REF] Garland | Surface simpli cation using quadric error metrics[END_REF]. In particular, distances on meshes reduced using their method exhibit a lot more spurious local optimums than on meshes reduced with our method (see Figure IV.13). The Heat Kernel Signature tends to be more resistant at small values of , but is less conserved at large values of (see Figure Figure IV.14 -Despite the high reduction, the heat kernel signature is still similar between coarse and ne mesh when using our method.

IV.5.2 Faster functional maps

As brie y shown before, functional maps are a powerful tool for nding correspondences between shapes, and are complemented with approaches to retrieve a point-to-point mapping. One can perform shape matching using Product Manifold Filter (PMF) [START_REF] Vestner | E cient deformable shape correspondence via kernel matching[END_REF] or Bijective and Continuous ICP (BCICP) [START_REF] Ren | Continuous and orientation-preserving correspondences via functional maps[END_REF], with excellent results. Both methods are iterative: PMF solves a linear assignment problem at each iteration to determine a bijection between shapes, which is has a high algorithmic complexity and also needs the shapes to have the same number of vertices. BCICP instead does not need the shapes to have an equal number of vertices, and re nes both the functional map and the point-to-point maps at each iteration. However these methods do not scale performance-wise when the number of vertices increase. This performance problem can be circumvented by simplifying the meshes prior to the matching, usually using the method of Garland & Heckbert [START_REF] Litany | Deep functional maps: Structured prediction for dense shape correspondence[END_REF], yielding a hierarchical scheme (see Figure IV.15). This simpli cation is unaware of the spectrum to preserve and can distort it, limiting the accuracy of the match.

We show that we can use our method to enable robust matching, while still being faster than without the reduction. This hierarchical scheme can be written in matrix form:

X, Y = Y, Y X,Y = X, Y X, X where X,Y is the functional map from shape X to shape Y. We retrieve X, X and Y, Y from our mesh simpli cation method, and X, Y from either PMF [START_REF] Vestner | E cient deformable shape correspondence via kernel matching[END_REF] or BCICP [START_REF] Ren | Continuous and orientation-preserving correspondences via functional maps[END_REF]. Then, X,Y can be computed by solving a least squares system. While the method of Liu et al. [START_REF] Liu | Spectral coarsening of geometric operators[END_REF] is also suitable for PMF but not for BCICP since the latter require a connectivity, we can use our method with both PMF and BCICP. We evaluated using BCICP in the hierarchical functional maps, and compare the results to a reduction with the method of [START_REF] Garland | Surface simpli cation using quadric error metrics[END_REF]. As can be observed in Figure IV.16, our method enable better matching, and is signi cantly faster than running BCICP on the ne shape. Indeed, while running BCICP on meshes with 600 vertices to 1 minute per shape pair, BCICP on meshes with 1000 vertices took on average 2 minutes, and ran out of memory for mesh around 30K vertices. Figure IV.16 -Reducing meshes from the TOSCA dataset from around 30K vertices to 600 vertices allowed to use BCICP [START_REF] Ren | Continuous and orientation-preserving correspondences via functional maps[END_REF] as it would run out of memory on the ne meshes, and our method provides better correspondences than the simpli cation of [START_REF] Garland | Surface simpli cation using quadric error metrics[END_REF]. On the reduced meshes, the BCICP computation took on average 67s, from 16s to 142s (variance: 802).

IV.6 Smoothly completing simpli ed meshes

As stated previously, by simplifying individual parts before completing them with the completion method (Chapter III), we expect the process to be faster, especially for the piecewise smooth surface. The overall motivation for such a simpli cation would be to show a preview of a completion to the user, with a minimal cost, for example when stitching shape parts that are heavy in term of number of vertices or faces. By simplifying components independently, we can re-use the simpli cation for any composition of them, so this simpli cation becomes a dataset preprocess.

We do not expect the Screened Poisson Reconstruction to be faster on simpli ed meshes, as its complexity is driven by the area of the shape and the depth at which to reconstruct. However, the Laplacian piecewise smooth surface is expected to be faster, since its speed depends on the number of created vertices. This scenario is also interesting for user interaction, since we can setup the Poisson reconstruction to run only once (guiding which components to connect), and then adjust the surface to follow the evolution of the placement of components by the user.

We compare our spectral simpli cation to the state of the art metric Quadric Error Metric [START_REF] Garland | Surface simpli cation using quadric error metrics[END_REF]]. As-is, this metric destroys boundaries, especially in planar regions. Indeed, when the neighbourhood of a vertex is planar, the quadric associated with it correspond to a plane. This means that when computing the cost of an edge collapse in a planar region, the system to resolve the collapse position will be underconstrained, and this position will fallback on the middle of the edge. Furthermore, the cost of the collapse is the evaluation of the QEM at the collapse position, and since it is on the plane represented by the quadric associated with the collapse, the resulting cost will be 0. Table IV.1 -Size and timings of smoothly completing simpli ed meshes. All metrics are given also in percentage of the reference model, without simpli cation. We can observe that most of the timing improvements are for the surface adjustment phase, and not the lling phase, which is expected since this phase mainly depends on the depth and area of the shape. Keeping the borders drastically reduce the improvements; furthermore, the meshes from the QEM have lower quality triangles, despite being globally closer appearance-wise to the reference. Edge ips. The cost of an edge collapse and the preservation metric are de ned in such a way that we can easily extend it to edge ips, keeping only edge ips with a negative cost in order to avoid cycles (Figure IV.18). We tried this during the reduction process, but this always over tted and generated poor results (Figure IV.19). Doing a post-process optimization using edge ips does indeed lead to a result of better quality, but this is quanti ably marginal and is often not worth the time and complexity.

IV.7 Discussion

Limitations. There are at least two main areas where our approach can further be developed, both related to time performance. First, the eigenvectors need to be computed at the begining of the algorithm, while one may seek computing them at query time, when needed. Second, our cost evaluation involves fairly large matrices, at each evaluation which could be optimized using an approximation scheme.

Overall, we have introduced a new mesh simpli cation algorithm which is designed to preserve, as much as possible, the spectral properties of the input surface. Our method is built on a standard graph reduction algorithm for which we introduced a custom metric driving a cost designed speci cally to preserve the spectrum, together with a repositioning strategy for merged vertices. We illustrated the superior behavior of our decimation scheme compared to appearance preserving methods, for spectral distance computation and functional map generation. Yet, we believe more spectrum-dependent applications may nd immediate bene t from our approach.

V Conclusion

V.1 Summary

In this thesis, we studied high-level 3D shape representations for geometry processing and developed the algorithm primitives necessary to manipulate shapes represented as a composition of several parts. This is motivated by the fact that the standard representations are very low-level, focusing on collections of primitives such as points or polygons, which lack semantic information that could prove very useful for shape analysis or shape synthesis. High-level representations usually do not focus on the data structure (leaving it to the low-level representation) but more on the meta-data on top of it (such as segmentation of material information). They are often deeply linked to a speci c application (or family of applications).

We rst reviewed existing representations, starting with the usual low-level ones for this work to be self-contained. We then expand on a high-level family of shape representations, based on dictionaries. We add the constraint that shapes can directly be retrieved from the dictionaries. Numerous methods and representations use dictionaries, from scene reconstruction [START_REF] Salas-Moreno | Slam++: Simultaneous localisation and mapping at the level of objects[END_REF][START_REF] Li | Databaseassisted object retrieval for real-time 3d reconstruction[END_REF] to morphing [START_REF] Streuber | Body talk: Crowdshaping realistic 3d avatars with words[END_REF], Gao et al., 2016] and shape synthesis [START_REF] Chaudhuri | Probabilistic reasoning for assembly-based 3D modeling[END_REF], Talton et al., 2012]. Notably, we focus on representing shapes via a discrete composition of atoms from a dictionary of parts; we observe that such a representation is useful in both unsupervised scenarios (generating new shape following what is present in a shape dataset [START_REF] Kalogerakis | A probabilistic model for component-based shape synthesis[END_REF]) and supervised scenarios (providing powerful editing tools to a user [START_REF] Xie | Sketch-to-design: Context-based part assembly[END_REF]).

Focusing on the discrete combination of shape parts from the state of the art, we observed that there was no method to smoothly blend non-overlapping atoms while still looking plausible. Indeed, most methods either performed some form of boolean operations and required overlapping parts [Kreavoy et al., 2007, Schmidt and[START_REF] Schmidt | [END_REF], or result in reconstructed parts which do not follow the largescale details of the stitched parts [START_REF] Centin | Advancing mesh completion for digital modeling and manufacturing[END_REF]. Moreover, very few methods guaranteed the exact preservation of the input, which is very important when dealing with artist-authored meshes to avoid destroying the artist's work.

To address this challenge, we propose a method to blend multiple shape parts that is guaranteed to exactly keep the input. Determining which parts to link is an ill-posed problem, and we leverage the Screened Poisson Reconstruction [START_REF] Kazhdan | Screened poisson surface reconstruction[END_REF] to solve this problem. We then stitch the new surface to the input via our new Dual-Contouring, providing an intuitive and controllable gap-lling framework. We adjust the geometry by minimizing the variation of curvature in a piecewise fashion, to allow for both organic and CAD-like shape. Converting from a high-level representation to a mesh here leads to a method that is user-controllable and allow interactive edition sessions.

Our composition operator can be slow when used with large meshes, so to improve the speed and allow interactive edition, we propose to simplify the input parts prior to completing them. This enables the user to focus on the arrangement of the parts without waiting too long for a previsualization. We tried to simplify the input meshes using the usual edge collapses with the Quadric Error Metric (QEM) [START_REF] Garland | Surface simpli cation using quadric error metrics[END_REF], which led to a faster composition operator but poor results, because of the presence of numerous slivers in the result causing numerical instabilities, and also because of badly preserved boundaries. Explicitly keeping the input boundaries provides only a marginal performance gain.

Instead, we propose to remove the small details (high-frequencies) in the simplication, to allow the reduced mesh to have a better quality. Thus, we introduce a method to simplify a ne mesh to a coarse one by explicitly preserving the low-frequencies of its Laplacian operator. While more constrained than related approaches that do not produce a mesh [START_REF] Nasikun | Fast approximation of laplace--beltrami eigenproblems[END_REF], Liu et al., 2019], our method still yields faithful outputs, as measured using two metrics related to the functional map between the input and the output. When used prior to completing meshes, this results in high quality approximations of the completion of the detailed surface, with the same speed improvements as with the QEM [START_REF] Garland | Surface simpli cation using quadric error metrics[END_REF].

Overall, we made advances in high-level shape representation, in particular dictionarybased representations using separate shapes as building blocks. Our composition operator allow interactive edition (Chapter III) in most cases, and we provide a way to previsualize the completion of large meshes via spectrum-preserving simpli cation (Chapter IV). Furthermore, our mesh simpli cation technique is suitable for other applications such as shape matching or computing spectral distances.

V.2 Future work

First, an important challenge when blending meshes for interpolation, as shown in the state of the art chapter, is the ability to interpolate meshes with varying connectivities. Even advanced methods such as data-driven interpolation [START_REF] Gao | Data-driven shape interpolation and morphing editing[END_REF] avoid interpolating the connectivities. This could be achieved by introducing a more abstract, high-level representation of the shape, either to guide a position interpolation coupled with a connectivity interpolation, or even to perform the whole interpolation on this abstract representation (implicit surfaces [Turk and O'Brien, 1999] for example) and converting to meshes when needed. This problem is also ill-posed, as having multiple connectivities also implies that a matching must be done, and it has to be controllable but not cumbersome for pratical use.

One limitation of our composition operator is processing the whole input while we could improve performance by localizing the processing near the gaps. Regarding our spectral simpli cation, it has the drawback of requiring the computation of the eigenvectors of the input for the evaluation of the cost of edge collapses. Using numerous eigenvectors not only makes this computation slow, but also results in big matrices which are costly to manipulate, a fact exacerbated by the great number of evaluations needed to determine the cost of all potential edge collapses.

The Laplacian operator used to reconstruct the geometry of a shape in the smooth completion method is prone to numerical instabilities, leading to visible artifacts in some cases. Our spectral simpli cation allows to avoid this problem, as we observed when combining the methods of chapters III and IV, by removing high-frequency details. An interesting representation would be to model a shape as a progressive mesh [Hoppe, 1996] that shows as many details as needed, starting from the low-frequencies toward the high-frequencies, following the sequence of collapses generated via our simpli cation. Although several multi-resolution representations were proposed [START_REF] Lounsbery | Multiresolution analysis for surfaces of arbitrary topological type[END_REF], Karni and Gotsman, 2000, Sorkine et al., 2005], they assume xed connectivity or xed connectivity patterns, and hence are not self-contained. Moreover, these multi-resolution representations are lossy in general, since they cannot yield exactly the original shape at the most detailed scale.

Our composition operator is able to generate a mesh from a set of positioned atoms. As a natural complement, we could bene t from solving the inverse problem. Given a shape, nd the set of atoms to use and where to place them for the result of our composition operator to be as close as possible to the input shape. This means revisiting the methods for dictionary-learning, potentially leveraging the spectrumpreserving simpli cation to speed-up the computations. Similar simpli cation can already be used to learn dictionaries faster [START_REF] Teixeira | Compressed dictionary learning[END_REF].

Titre: Opérateurs géométriques pour la modélisation 3D via des représentations de formes basées dictionnaire Mots clés: informatique graphique, modélisation 3D, analyse de formes Résumé: Dans cette thèse, nous étudions les représentations haut-niveau de formes 3D et nous développons les primitives algorithmiques nécessaires à la manipulation d'objets représentés par composition d'éléments. Nous commençons par une revue de l'état de l'art, des représentations basniveau usuelles jusqu'à celles haut-niveau, utilisant des dictionnaires. En particulier, nous nous intéressons à la représentation de formes via la composition discrète d'atomes tirés d'un dictionnaire de formes. Nous observons qu'il n'existe aucune méthode permettant de fusionner des atomes (placés sans intersection) de manière plausible ; en e et, la plupart des méthodes requiert des intersections ou alors ne préservent pas les détails grossiers. De plus, très peu de techniques garantissent la préservation de l'entrée, une propriété importante lors du traitement de formes créées par des artistes. Nous proposons donc un opérateur de composition qui propage les détails grossiers tout en conservant l'entrée dans le résultat. Dans le but de permettre une édition interactive, nous cherchons à prévisualiser la composition d'objets lourds. Pour cela, nous proposons de simpli er les atomes avant de les composer. Nous introduisons donc une méthode de simpli cation de maillage qui préserve les détails grossiers. Bien que notre méthode soit plus contrainte que les approches précédentes qui ne produisent pas de maillage, elle résulte en des formes simpli ées dèles aux formes détaillées. Title: Geometric operators for 3D modeling using dictionary-based shape representations Keywords: computer graphics, shape modeling, shape analysis Abstract: In this thesis, we study high-level 3D shape representations and developed the algorithm primitives necessary to manipulate shapes represented as a composition of several parts. We rst review existing representations, starting with the usual low-level ones and then expanding on a highlevel family of shape representations, based on dictionaries. Notably, we focus on representing shapes via a discrete composition of atoms from a dictionary of parts. We observe that there was no method to smoothly blend non-overlapping atoms while still looking plausible. Indeed, most methods either required overlapping parts or do not preserve large-scale details. Moreover, very few methods guaranteed the exact preservation of the input, which is very im-portant when dealing with artist-authored meshes to avoid destroying the artist's work. We address this challenge by proposing a composition operator that is guaranteed to exactly keep the input while also propagating large-scale details. To improve the speed of our composition operator and allow interactive edition, we propose to simplify the input parts prior to completing them. This allows us to interactively previsualize the composition of large meshes. For this, we introduce a method to simplify a detailed mesh to a coarse one by preserving the large details. While more constrained than related approaches that do not produce a mesh, our method still yields faithful outputs.
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Figure

  Figure II.1 -A shape represented as a point cloud.

Figure II. 2 -

 2 Figure II.2 -Kinect, Microsoft's 3D scanner, uses multiple images combining color and depth to reconstruct the 3D scene.

Figure II. 3 -

 3 Figure II.3 -Fluid simulation using Smoothed Particle Hydrodynamics.

Figure II. 4 -

 4 Figure II.4 -Explosion e ect using particles.

Figure

  Figure II.6 -A shape represented as a mesh -you can see the wireframe delimiting the triangles.

Figure II. 8 -

 8 Figure II.8 -Several cases of non-manifoldness, for vertices (where the neighborhood is not homeomorph to an open or closed disk) and edges (contained in more than 2 triangles). Non-manifold entities are shown in red.

  Figure II.10 -Various combination operators. (a) example atoms used in the following: a cube and a sphere with the same connectivity. (b) interpolating atoms by interpolating vertex attributes, here position and color (coe cients are not always scalars). (c) compositing (placing) shapes together, using transformation matrices. (d) stitching objects together, resulting in a watertight output mesh. and depict the regions of interest for each atom.

Figure

  FigureII.11 -Extracting Lego structures [van den Hengel et al., 2015]. From left to right: an input image is transformed into a silhouette image, used to retrieve the object 3D structure. Finally, a possible application is the automatic generation of assembly instructions.

Figure II. 12 -

 12 Figure II.12 -Sparse terrain ampli cation as an application of Sparse Terrains[START_REF] Guérin | Sparse representation of terrains for procedural modeling[END_REF]. This example use the elevation map of Australia, rst with a resolution of 1 km (left), 125 m (middle) and 4 m (right), generated by successive ampli cations. Texturing and vegetation were applied as a postprocess to outline the variations of the landscape created by the ampli cations.

Figure II. 14 -

 14 Figure II.14 -The method of Blanz and Vetter[Blanz and Vetter, 1999] allows editing a painting -here the Mona Lisa (top left) -by extracting the face (top center and right) and then modifying the illumination (bottom left and center) or the orientation (among others).

  Figure II.15 -Comparison of decompositions on the same set of captured faces, between PCA (a) and SPLOCS [Neumann et al., 2013] (b). The intensity of the blue shows the magnitude of vertex displacements.

  Figure II.16d, for an illustration of such behavior).

  Figure II.16 -Comparative results of Wampler[Wampler, 2016]. (a) The pose dataset, where the red cube should pu outwards when stretched (green) and then thin inward if further stretched (blue). The 3 handles of this dataset are the black dots. The rightmost handle is dragged to stretch then unstretch in the following sub gures, with blending weights over time shown at the left. (b) Method of Wampler[Wampler, 2016]. (c) Energy interpolation of Chao et al.[START_REF] Chao | A simple geometric model for elastic deformations[END_REF]. (d) Linear shape space.
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  Figure II.17 -Data-driven morphing as de ned by Gao et al. [Gao et al., 2016]. Top: input shapes, with the source, intermediate and target model from left to right. Bottom: the morphing result.

Figure

  Figure II.18 -The Shu er[START_REF] Kreavoy | Model composition from interchangeable components[END_REF] system. The edited model is in the center, and is the result of the stitching of several parts, obtained by selecting them in the source models shown at the side. The segmentation for the user selection of parts is colored.
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  Figure II.19 -Overview of the work ow induced by Sketch-to-Design [Xie et al., 2013]. The user begins with an arbitrary shape (in gray) and can sketch (in red) the parts he wants to put in the nal model. Parts found in the database are in blue, and symmetries are taken into account (e.g. the arms of the chair). It is possible to change the view for a better sketching experience.

  Figure II.20.
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  Figure II.20 -Interface of the ShapeSynth system [Averkiou et al., 2014]. The icon view shows the representatives for each style, obtained via the hierarchical clustering; the exploration view presents the embedding of the shapes, and the model view displays the synthesized model.

Figure II. 21 -

 21 Figure II.21 -From a dataset of segmented and labeled shapes (top left), the method of Chaudhuri et al.[START_REF] Chaudhuri | Probabilistic reasoning for assembly-based 3D modeling[END_REF] starts by clustering segments inside label categories by geometric style (top right). Then a probabilistic model is learned (representative subset in bottom), encoding the dependencies between labels, geometric styles, part adjacencies, symmetries, and cardinality of each category.

Figure

  Figure II.22 -The probabilistic model (right) of Kalogerakis et al. [Kalogerakiset al., 2012] learned on a small dataset of tables (left). is the shape style, and for a category , is the number of components, is the style of the components, is the continuous geometric descriptor and the discrete geometric descriptor. Here there are only 2 categories: ∈ { , }. Note that observed variables are in blue while inferred latent variables are in white.

  Figure II.23 -Overview of the method of Talton et al.[START_REF] Talton | Learning design patterns with bayesian grammar induction[END_REF]. Starting with a dictionary of labeled parts and a set of exemplars created using these parts, the algorithm rst nd a grammar that can only produce the exemplars, before generalizing it using a Markov Chain Monte Carlo optimization. The resulting grammar is able to produce objects similar to the input exemplars.

Figure II. 25 -

 25 Figure II.25 -Results obtained using the grammar learning of Talton et al.[START_REF] Talton | Learning design patterns with bayesian grammar induction[END_REF]. The inputs are the atoms of the dictionary (top left), and example compositions of these atoms (top right). After learning a grammar on these examples, it is possible to generate objects similar to examples (bottom).

  A rapid comparison of the results of this technique presented in Figure II.26 with the results of Talton et al. [Talton et al., 2012] presented in Figure II.25 illustrates this di erence through more artistic applications.

Figure II. 26 -

 26 Figure II.26 -Based on an initial set of object (left), the "Fit and Diverse" system[START_REF] Xu | Fit and diverse: Set evolution for inspiring 3d shape galleries[END_REF] uses a genetic algorithm to generate new objects similar to the input but also incorporating signi cant variations, with the aim of inspiring users.

  Figure III.1 -Starting with an arrangement of mesh parts (in blue)with open boundaries, we stitch them together, with the constraint that input meshes are contained in the result, i.e., we only add new triangles (in gray). Detected feature-lines are propagated and the surface between them is adjusted to minimize the variation of curvature. This makes our method suitable for both organic and man-made shapes.

Figure III. 2 -

 2 Figure III.2 -Automatic completion of the vase-lion and an elephant trunk (generated surface in pink). These shapes vary widely in connectivity patterns, they also require multiple UV coordinates per vertex, and materials are assigned per face.

Figure

  Figure III.4 -Overview.Starting from a triangular mesh (here, L-cube) made of several disjoint components to complete, we rst sample it to help the initial surface reconstruction; the resulting Poisson implicit surface is then meshed with our speci c variant of the Dual Contouring algorithm, designed to preserve the existing connectivity, and remeshed to prevent numerical instabilities in the laplacian reconstruction (Section III.4). We then determine salient points and candidates feature lines, selecting only those that minimize a tri-harmonic power cost (Section III.5.1). Last, we stretch the surface between the feature lines (Section III.5.2).

Figure III. 5 -

 5 Figure III.5 -(left) input with varying vertex density, (middle & right) surface from Poisson reconstruction, with samples in purple.

Figure III. 6 -

 6 Figure III.6 -For two neighboring nodes (with associated vertices 1 and 2 ), the input boundary (gray) is extended into the octree in 2 steps: (a) in each node, edges are connected to the node's vertex (blue), introducing new vertices (in red) if necessary; (b) a triangle (violet) is added for each edge intersecting two nodes, between the intersection vertex (red) and the nodes' vertices (blue).

  Figure III.7 -Input boundary edges crossing multiple nodes (left) are "virtually subdivided" by adding fans (right), yielding 0-area triangles, but with valid connectivity and without modifying the input.

Figure III. 8 -

 8 Figure III.8 -Nodes in red are excluded from the connectivity-preserving dualcontouring, in order to avoid duplicate surface.

Figure III. 9 -

 9 Figure III.9 -Octree nodes intersecting a boundary loop, before (left) and after (right) the simpli cation detailed in section III.4.3. Nodes in red do not intersect S while those in green do.

Figure

  Figure III.10 -For each boundary vertex, we compute a "sharp" direction with a fallback in case there is no sharp edge (arrows). The colors of the arrows re ect the angle between the boundary triangles, for which the salient points are clearly distinguishable.

  Figure III.11 -Allowing endpoints inversions can lead to self-intersections.

Figure III. 13 -FigureFigure

 13 Figure III.13 -Comparing our method to[START_REF] Centin | Advancing mesh completion for digital modeling and manufacturing[END_REF] for complex shapes.

Figure

  Figure III.17 -Composition of simple shapes. We show the feature lines on bi-holes. Notice how they smoothly blend into the surface for cube-sphere.
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 1 Figure IV.1 -Smooth completions of simpli ed meshes (input on top). Due to the bad quality connectivity on the mesh simpli ed using the QEM, the Laplacian reconstruction could not converge thus the wrong surface. The time to adjust the geometry also signi cantly vary: 73% for the original, 55% for QEM + boundaries, and 18% for our simpli cation.

  Figure IV.2 -We propose to simplify a mesh using edge collapses while aiming to preserve the input eigenvectors and eigenvalues as much as possible. While di erent strategies exist to reduce a mesh (here, from 25,727 vertices to 771 vertices, or 3% of its initial size), such as enforcing uniform edge lengths or using the Quadric Error Metric[START_REF] Garland | Surface simpli cation using quadric error metrics[END_REF], they do not focus on keeping the spectral properties of the mesh. Reducing a mesh can be spectrally described using functional maps[START_REF] Ovsjanikov | Functional maps: A exible representation of maps between shapes[END_REF], shown here with the output meshes, and which should ideally be diagonal. We also evaluate functional maps using two norms, the laplacian commutativity • and the orthogonality • .

Figure

  Figure IV.3 -Reducing this mesh from 56,112 to 1,122 vertices (2% of its initial size), can be achieved with methods tailored to spectrally preserve the laplacian. Nasikun et al.[START_REF] Nasikun | Fast approximation of laplace--beltrami eigenproblems[END_REF] de ne the reduced Laplacian on vertices from a Poisson-disk sampling, with weights not limited to the 1-rings. Liu et al.[START_REF] Liu | Spectral coarsening of geometric operators[END_REF] optimize both the sampling step and the operator, the latter de ned on the samples' 3-rings. In contrast, by outputting a mesh, further processing can use a standard cotangent weighting scheme without knowledge of the reduction step.

  Figure IV.4 -While the very rst eigenvectors from both our method (middle row) and QSlim [Garland and Heckbert, 1997] (bottom row) are very close to those of the input (top row), following eigenvectors are more sensitive; badly preserved eigenvectors exhibit patterns dissimilar to their input counterpart.

2=

  = tr( ) = diag( ) diag( )Hence we can de ne the metric from Equation IV.2 for each vertex . Noting the new mass of and row ( ) the -th row of , it follows:We can observe that only the 1-ring of matters, as the cost will not change for vertices further away from this region (Figure IV.5). More precisely, noting H = { , } ∪ N 1 ( , ) when collapsing edge = ( , ), the value of the metric only changes for vertices of H . Therefore, we only need the 2-ring of { , } to compute the cost of a given edge collapse. This cost is de ned as: , we only need to compute for ∈ H , allowing to track the global cost by only computing what's necessary. Note that the signals to preserve,

Figure IV. 5 -

 5 Figure IV.5 -When collapsing (blue), only the 1-ring entries of (black) will change.

  Figure IV.6 -Our vertex optimization scheme nds * ∈ [0, 1] which minimizes the cost to determine the merged position (green).

Figure IV. 7 -

 7 Figure IV.7 -The functional map from the reduction should be block-diagonal following the multiplicity of the eigenvalues.

  1) = Id and Λ = Λ (2) the set of functions = Φ is orthonormal on M and solves the eigenvalue problem = Λ and moreover Λ = Λ (3) the set of functions = Φ is orthonormal on M and satis es = Λ and moreover Λ = Λ Intuitively condition (2) (resp. (

  Figure IV.8 -To spectrally preserve the Laplacian, both coarse eigenvectors and eigenvalues should be close to their ne equivalent.

  We show typical examples of the preservation of eigenvectors in Figure IV.4, of eigenvalues in Figure IV.8, and of the norms in Figure IV.9.

FigureFigure

  Figure IV.10 -Both[START_REF] Liu | Spectral coarsening of geometric operators[END_REF] and[START_REF] Nasikun | Fast approximation of laplace--beltrami eigenproblems[END_REF] are not deterministic methods. Although the average of the commutativity and the diagonality out of ten runs are small, they still have high variance.

Figure

  Figure IV.12 -By looking at the norms in function of number of eigenvectors relative to the output size (i.e., in function of /| |), we can see that the output size should be 3 times the number of eigenvectors for a correct spectral preservation of the laplacian.

Figure

  Figure IV.13 -Spectral distance comparison: the source point is depicted in blue and the iso-lines in black, with set to 0.01 for the di usion distance. With 25x less vertices in these reduced meshes, computing spectral distances is on average 18x faster.

Figure IV. 15 -

 15 Figure IV.15 -One can accelerate the computation of functional maps between detailed meshes by performing shape matching on simpli ed shapes before upscaling the resulting functional maps.

Figure IV. 18 -

 18 Figure IV.18 -An edge ip will not change the corresponding to the 1-ring vertices (black) and beyond.

Figure

  Figure IV.19 -Allowing edge ips often results in whole parts missing.

  

  

  

  

  

  

Table II

 II 

	.1 -Summary of presented methods. Legend: A = atoms, C = coe cients,
	O = combination operator /	learned,	not learned.
	"Not learned" means raw input for atoms, and independent from data for combinations
	and coe cients. A scene is a set of disjoint shapes, or more precisely {( , ) | =
	shape , = transformation }.		

  First, for each leaf node and for each boundary edge whose intersection with is a segment ( 1 , 2 ), with 1 ≠ 2 and the same orientation as , we create the triangle (vertex( ), 2 , 1 ) (see Figure III.6, blue triangles). Instead of subdividing the corresponding boundary edge, we create new vertices and connect them to the edge extremities using a triangle fan (see Figure III.7). To avoid ambiguities, we impose that at least one point of the intersection ( 1 , 2 ) lies in [ , ℎ [

	Algorithm 1: Connectivity-preserving Dual Contouring
	Input: mesh M, octree O, implicit surface S
	Output: mesh M = M ∪ Z
	Extend boundaries of M into O ;
	(optional) Simplify O to improve quality ;
	Prune minimal edges of O, generating Z ;
	Dual-contouring on O ;
	Clean resulting mesh ;
	vertex( ).

  9%) 3.091 (81%) 0.721 (13%) 3.812 (41%) QEM + borders 6000 (10%) 10581 (8%) 3.065 (80%) 4.525 (83%) 7.590 (82%) Ours 6000 (10%) 11362 (9%) 2.941 (77%) 0.684 (13%) 3.625 (39%) QEM 8000 (13%) 15466 (12%) 3.134 (82%) 1.003 (18%) 4.137 (45%) QEM + borders 8000 (13%) 14581 (12%) 3.096 (81%) 4.372 (81%) 7.469 (81%) Ours 8000 (13%) 15313 (12%) 3.032 (79%) 0.787 (15%) 3.819 (41%)

	Reduction	Input Vertices	Triangles	Timings (in seconds) Filling Surface	Total
	Reference	63142		124865	3.823	5.428	9.252
	QEM	6000 (10%)	11502 (		
						Planar regions

Remerciements

List of Tables

Point-cloud in-painting Surface self-similarity helps lling holes: for instance, Sharf et al. [START_REF] Sharf | Context-based surface completion[END_REF] completes holes in a point cloud with parts of the same input point cloud in a multiresolution manner. Using an octree, an empty node fetches the content of another node so that the resulting local surface matches the neighboring nodes. By enforcing spatial-coherency [START_REF] Harary | Context-based coherent surface completion[END_REF], lled holes mimic regions of the shape and fade-in seamlessly. However, these methods manipulate point clouds and neither preserve connectivity nor reconstruct long sharp features missing in the input.

Stitching with implicit surfaces Implicit surfaces, based on Radial Basis Functions [START_REF] Jin | Mesh fusion using functional blending on topologically incompatible sections[END_REF], Lin et al., 2008] or Screened Poisson Reconstruction [START_REF] Centin | Poissondriven seamless completion of triangular meshes[END_REF]Signoroni, 2018], have been used to stitch shape parts. Such methods are oblivious to the topology of the gaps to ll and mesh the relevant portions of the implicit surfaces using o -the-shelve Marching Cubes, or Marching Triangles [START_REF] Hilton | Marching triangles: range image fusion for complex object modelling[END_REF]. In contrast, we introduce a mesh-aware Dual Contouring [START_REF] Ju | Dual contouring of hermite data[END_REF], Schaefer and Warren, 2003, Schaefer et al., 2007]. See the survey on implicit surface polygonization [De Araújo et al., 2015] for a complete overview.

Curve networks Our method preserves and propagates the input sharp lines in the lled region. Methods exist to triangulate patches delimited by curves [START_REF] Zou | An algorithm for triangulating multiple 3d polygons[END_REF], Pan et al., 2015, Stanko et al., 2016]. However, the speed of triangulating multiple complex polygons depends on the holes topology, which strongly restricts the complexity of the mesh compositions. For instance, our experiment with the method by Zou et al. [START_REF] Zou | An algorithm for triangulating multiple 3d polygons[END_REF] failed on several of In contrast, we guarantee that the input connectivity and geometry is preserved. The e ects of the sampling step is illustrated in Figure III.5.

III.6.4 Smoothness and sharp edges

In order to o er high quality output mesh, we designed our method to produce piecewise smooth surfaces, where each smooth regions is delimited by smooth and curved features lines. All methods compared in this section [Lin et al., 2008, Centin andSignoroni, 2018] generate a smooth surface, as they are all based on smooth implicit surfaces with some regularity constraints. The overall shape from Poisson reconstruction depends on the space between components, and can exhibit an important curvature variation, notably the surface tends to shrink between distant components. The RBFs used by Lin et al. [START_REF] Lin | Mesh composition on models with arbitrary boundary topology[END_REF]] also exhibit such a problem, and often need silhouette constraints to obtain a more faithful surface. We bypass this issue by explicitly minimizing the variation of curvature after the meshing phase.

The aforementioned implicit surfaces do not model sharp features, precisely because of the regularity constraints. Also, even if they are computed with sharp edges, Marching Cubes and Marching Triangles tend to erase sharp edges: for Marching Cubes, this is a known limitation that was addressed in Dual Contouring [START_REF] Ju | Dual contouring of hermite data[END_REF]. Despite the robustness of the variant of Marching Triangles proposed by [START_REF] Centin | Advancing mesh completion for digital modeling and manufacturing[END_REF], the constraint on triangle regularity means that feature lines are not preserved, although this could be handled in their circular-arc bisection, by detecting discontinuities of the IV.1), but it is much more robust, both numerically and with regards to the ressemblance of the result with the completion on the dense mesh.

will always be decimated rst, and will not respect boundaries. To alleviate this problem we propose to also compare to a variant of the QEM where we force the boundary to be exactly preserved.

It is to note that, regardless of the algorithm used, we do not simplify a component past a user threshold (here 900 vertices), to avoid the simpli cation being too destructive.

We observe that without preserving the border, using the QEM often result in impossible compositions, due to the wrong borders. Even when the completion algorithm outputs a shape, the result is not what would have been expected following the full resolution model. While when using the QEM with border preservation the results are a lot better, they su er from two main problems: rst, due to keeping the exact full-resolution border, the stitching surface is very dense and slow to compute (the time gains are marginal), and second, preserving the border forces the simpli ed mesh to have numerous slivers near the boundaries, resulting in numerical instabilities in the Laplacian geometry adjustment (leading to visible artifacts). On the contrary, our simpli cation tend to remove the highfrequencies, which lower the noise near borders. We refer to Table IV.1 for the data on the wheel model, that we show in Figure IV.17.