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Abstract	

Dilated	 cardiomyopathy	 is	 characterized	 by	 enlargement	 of	 the	 left	

ventricular	 chamber,	 compromising	 cardiac	 contractility	 and	 ultimately	

resulting	in	poor	left	ventricular	function.	Mutations	in	LMNA	gene,	encoding	

nuclear	 A-type	 lamins,	 have	 been	 identified	 in	 patients	 presenting	 dilated	

cardiomyopathy.	This	pathology,	 referred	 to	 as	LMNA-cardiomyopathy,	 is	 an	

anatomic	 and	 pathologic	 condition	 associated	 with	 muscular	 and	 electrical	

dysfunction	 of	 the	 heart,	 often	 leading	 to	 heart	 failure-related	 disability.	

Although	early	initiation	of	treatments	may	delay	progression	and	prolong	the	

pre-transplantation	phase	of	the	disease,	more	definitive	therapies	for	LMNA-

cardiomyopathy	 await	 better	 mechanistic	 understanding	 of	 the	 molecular	

basis	 to	 develop	 specific	 treatments.	 The	 main	 aim	 of	 my	 thesis	 was	 to	

decipher	molecular	 pathways	 implicated	 in	 the	 development	 of	 the	 disease,	

specially	focusing	on	calcium	homeostasis	and	oxidative	stress.			

	

To	have	a	better	understanding	of	 the	LMNA-cardiomyopathy,	 I	used	the	

LmnaH222P/H222P	 mouse	 model.	 In	 the	 first	 part	 of	 this	 thesis	 I	 showed	 an	

increased	 oxidative	 stress	 levels	 in	 the	 hearts	 of	 LmnaH222P/H222P	 mice,	

associated	 with	 a	 decrease	 of	 the	 key	 cellular	 antioxidant	 glutathione.	 Oral	

administration	 of	 N-acetyl	 cysteine	 (NAC),	 a	 glutathione	 precursor,	 led	 to	 a	

marked	 improvement	 of	 glutathione	 content,	 a	 decrease	 in	 oxidative	 stress	

markers	 including	protein	 carbonyls	 and	 an	 improvement	 of	 left	 ventricular	

structure	and	function	in	a	model	of	LMNA-cardiomyopathy.	

	The	second	part	of	 this	thesis	aims	to	 investigate	the	abnormal	elevated	

cardiac	 expression	 level	 of	 sarcolipin	 (SLN),	 which	 is	 an	 inhibitor	 of	 the	

sarco/endoplasmic	 reticulum	 (SR)	 Ca2+	 ATPase	 (SERCA)	 in	 the	 hearts	 of	

LmnaH222P/H222P	 mice.	 I	 studied	 its	 implication	 in	 the	 development	 of	 the	
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LMNA-cardiomyopathy	inducing	an	overexpression	in	cardiac	cell	lines	as	well	

as	 in	 wild	 type	 mice.	 Simultaneously,	 hypothesizing	 a	 pathological	 effect	 of	

SLN	overexpression,	 I	used	RNA	 interference	 to	 inhibit	 its	expression.	These	

findings	 suggest	 that	 sarcolipin	 is	 a	 critical	 regulator	 of	 SERCA	 in	 LMNA-

cardiomyopathy.		

Collectively,	 these	 results	 provide	 molecular	 insights	 into	 LMNA-

cardiomyopathy	 and	 open	 novel	 therapeutic	 avenue	 for	 this	 debilitating	

cardiac	disease.	
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Résumé	

Les	 cardiomyopathies	 dilatées	 sont	 caractérisées	 par	 un	 affaiblissement	

du	 muscle	 ventriculaire	 cardiaque	 gauche	 (et	 droit	 dans	 les	 cas	 les	 plus	

sévères)	 induisant	une	diminution	de	 la	 force	de	 contraction.	Des	mutations	

du	gène	LMNA	 codant	pour	 les	 lamines	de	 type	A	ont	 été	 identifiées	 comme	

responsables	 d’une	 forme	 de	 cardiomyopathie	 dilatée,	 i.e.	 cardiomyopathie-

LMNA.	Elle	est	caractérisée	par	des	modifications	anatomiques	associées	à	une	

dysfonction	 musculaire	 mais	 aussi	 électrique	 du	 cœur,	 menant	 à	 une	

incapacité	liée	à	l’insuffisance	cardiaque.	

Même	 si	 une	prise	 en	 charge	précoce	peut	 retarder	 la	progression	de	 la	

maladie,	 aucun	 traitement	 curatif	 n’est	 disponible	 pour	 ces	 patients.	 Il	

apparaît	 donc	 indispensable	 d’avoir	 une	 meilleure	 compréhension	

mécanistique	 des	 bases	 moléculaires	 de	 la	 maladie	 afin	 de	 développer	 des	

traitements	plus	spécifiques.		

Le	 but	 de	 mon	 travail	 a	 été	 de	 déchiffrer	 les	 mécanismes	 moléculaires	

impliqués	dans	la	mise	en	place	de	la	maladie,	en	se	concentrant	sur	le	stress	

oxydatif	et	l'homéostasie	calcique.		

Afin	 d’avoir	 une	 meilleure	 compréhension	 de	 la	 cardiomyopathie	 liée	 à	

LMNA,	 nous	 avons	 utilisé	 le	 modèle	 murin	 LmnaH222P/H222P.	 D’un	 côté	 nous	

nous	 sommes	 intéressés	 au	 stress	 oxydant,	 nous	 avons	 montré	 une	

augmentation	 des	 niveaux	 de	 stress	 oxydatif	 dans	 le	 cœur	 des	 souris	

porteuses	 de	 la	 mutation	 LMNA,	 associée	 à	 une	 diminution	 du	 glutathion	

antioxydant	 cellulaire	 clé.	 L'administration	orale	de	N-acétyl	 cystéine	 (NAC),	

précurseur	du	glutathion,	a	entraîné	une	augmentation	du	taux	de	glutathion,	

une	 diminution	 des	 marqueurs	 de	 stress	 oxydatif	 incluant	 les	 protéines	

carbonyles	et	 les	peroxydes	 lipidiques	et	une	amélioration	de	 la	 structure	et	

de	 la	 fonction	 ventriculaire	 gauche	 dans	 un	 modèle	 de	 cardiomyopathie-
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LMNA.	

D’un	 autre	 coté	 nous	 avons	 observé	 un	 niveau	 anormalement	 élevé	 de	

l'expression	 de	 la	 sarcolipine	 (SLN)	 cardiaque,	 qui	 est	 un	 inhibiteur	 de	 la	

pompe	 Ca2+	 ATPase	 du	 réticulum	 sarcoplasmique	 (SERCA).	 J’ai	 donc	 étudié	

son	implication	dans	l'instauration	de	la	cardiomyopathie-LMNA	en	induisant	

sa	surexpression	in	vitro	et	in	vivo.	Simultanément,	dans	l'hypothèse	d'un	rôle	

délétère	 de	 la	 surexpression	 de	 SLN,	 nous	 avons	 inhibé	 l’expression	 de	 la	

protéine	en	utilisant	un	ARN	d’interférence	délivré	par	AAV9.	De	plus,	afin	de	

disposer	d’un	modèle	 in	vitro,	nous	avons	développé	deux	 lignées	cellulaires	

cardiaques	sur-exprimant	la	SLN.	Nos	résultats	suggèrent	que	la	SLN	pourrait	

être	un	régulateur	essentiel	de	la	pompe	SERCA	dans	le	muscle	cardiaque	dans	

le	cadre	de	la	cardiomyopathie-LMNA.	

	Collectivement,	 nos	 résultats	 fournissent	 des	 possibles	 pistes	

thérapeutiques	pour	la	cardiomyopathie-LMNA.	



	

	 5	
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Preamble	

Dilated	 cardiomyopathy	 caused	 by	 LMNA	 mutations	 is	 an	 aggressive	

disease	of	 the	heart,	with	no	curative	treatment	to	date.	The	two	aims	of	my	

thesis	were	1)	to	assess	the	oxidative	stress	and	2)	to	understand	the	impact	of	

calcium	 regulators	 imbalance	 in	 dilated	 cardiomyopathy	 caused	 by	 LMNA	

mutations.		

	This	doctoral	thesis	is	divided	into	three	parts:		

§ A	 general	 introduction	 to	 the	 scientific	 topics	 addressed	 in	 the	

dissertation,	

	

§ Two	peer-reviewed	articles,	which	document	and	discuss	my	scientific	

work.	One	of	the	peer-reviewed	article	focuses	on	the	role	of	oxidative	

stress	 and	 the	 second	 one	 focus	 on	 the	 role	 of	 sarcolipin	 (SERCA	

inhibitor)	overexpression	in	the	pathology.	

	

§ A	concluding	chapter	summarizing	the	principal	outcomes	of	my	work.		
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Chapter	1:	Introduction	

1. Cardiac	muscle			

1.1 The	heart	and	its	functions	

The	heart	is	the	first	organ	to	form	during	development.	It	is	responsible	

for	 pumping	 the	 blood	 and	 therefore,	 transporting	 nutrients,	 oxygen	 and	

hormones	 to	 the	 body.	 The	 heart	 is	 divided	 into	 four	 chambers:	 two	 atria	

(upper	chambers)	and	two	ventricles	(lower	chambers)	that	ensure	the	blood	

pumping	 (Figure	 1A-C).	 To	 assure	 normal	 circulation,	 the	 heart	 presents	

different	 valves	 in	 each	 chamber,	 which	 prevent	 the	 backward	 blood	 flow.	

These	valves	act	as	one-way	inlets	of	blood	on	one	side	of	a	ventricle	and	one-

way	outlets	of	blood	on	the	other	side	of	a	ventricle.	Each	valve	has	three	flaps	

(i.e.,	tricuspide),	except	the	mitral	valve,	which	has	two	flaps.	The	four	valves	

are:	 1)	 pulmonary	 valve	 located	 between	 the	 right	 ventricle	 and	 the	

pulmonary	 artery	 and	 allows	 the	 blood	 flow	 from	 the	 heart	 to	 the	 lungs,	2)	

tricuspid	valve	between	 the	 right	 chambers,	3)	mitral	valve	between	 the	 left	

chambers,	and	4)	aortic	valve	between	the	left	ventricle	and	the	aorta,	which	

carry	blood	from	the	heart	to	the	body	(Figure	1A-C).	

1.1.1 Cardiac	contraction	

The	cardiac	contraction	can	be	separated	in	systole	and	diastole.	Systole	is	

the	period	when	ventricles	contract,	allowing	pressure	to	rise.	It	begins	when	

ventricles	 contract	 and	 ends	 when	 ejection	 stops.	 Diastole	 begins	 when	

ejection	 ceases	 as	 ventricles	 relax.	Ventricular	 contraction	 causes	 ejection	of	

blood	through	the	pulmonary	valve,	 into	the	pulmonary	arteries.	This	allows	

blood	to	get	oxygenated	and	to	come	back	to	the	left	atrium	via	the	pulmonary	

veins.	During	systole,	arterial	blood	reaches	its	peak	(systolic	blood	pressure)	
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normally	 between	 90	 to	 120	 mmHg.	 Then	 the	 atrium	 contracts	 and	 blood	

enters	the	left	ventricle	through	the	mitral	valve.	When	left	ventricle	is	loaded	

with	blood,	the	mitral	valve	closes	and	the	contraction	of	the	ventricle	allows	

the	blood	flow	through	the	aortic	valve	to	the	aorta.	Blood	comes	back	to	the	

heart	through	the	superior	and	inferior	vena	cava	into	the	right	atrium.	When	

the	 right	 atrium	contracts,	 the	blood	passes	 thought	 the	 tricuspid	 valve	 into	

the	relaxed	right	ventricle	(Figure	1D)(Phibbs,	2007).		

1.1.2 Conduction	system	of	the	heart	

Effective	 functioning	 of	 the	 heart	 requires	 that	 all	 parts	 of	 the	 separate	

chambers	contract	in	a	synchronic	movement.	This	is	achieved	by	an	efficient	

conduction	 system	 (Figure	 1E)	 composed	 of:	 1)	 sinoatrial	 node	 (SA	 node)	

located	in	the	right	atrium	at	the	entry	point	of	the	superior	vena	cava.	Being	

the	 natural	 pacemaker	 of	 the	 heart,	 the	 SA	 node	 initiates	 heartbeats	 and	

determines	 heart	 rate.	 Electrical	 impulses	 from	 the	 SA	 node	 spread	

throughout	both	atria	and	stimulate	them	to	contract;	2)	atrioventricular	node	

(AV	node)	located	at	the	opposite	side	of	the	right	atrium	compared	to	the	SA	

node	 (near	 the	 AV	 valve).	 It	 serves	 as	 an	 electrical	 gate	 to	 the	 ventricles.	 It	

delays	 the	 passage	 of	 the	 electrical	 impulses	 to	 the	 ventricles.	 This	 delay	

allows	the	total	ejection	of	the	blood	from	the	atria	into	the	ventricles	before	

they	contract.	The	AV	node	receives	signals	from	the	SA	node	and	sends	them	

to	 the	 bundle	 of	 His;	3)	 bundle	 of	 His	 located	 in	 the	 septum	 is	 divided	 into	

right	 and	 left	 branches,	 which	 conduct	 the	 impulses	 through	 the	 apex.	 The	

electrical	 impulse	 is	 then	 passed	 into	 Purkinje	 fibres	 turning	 upwards	 and	

spreading	the	signal	through	the	ventricular	myocardium.	
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Figure	1:	Heart	anatomy	and	physiology	A.	Cardiac	chambers.	B.	Cardiac	anatomy.	C.	Cardiac	valves.	
D.	Cardiac	circulation.	E.	Conduction	system	F.	Electrogrardiogram.		
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Electrocardiography	 allows	 recording	 cardiac	 electrical	 activity	 using	

electrodes	placed	on	the	skin.	It	comprises	several	waves	and	intervals:	1)	the	

P	 wave	 corresponds	 to	 atrial	 depolarization;	 2)	 the	 PR	 interval	 is	 the	 time	

between	the	 first	deflection	of	 the	P	wave	and	the	 first	deflection	of	 the	QRS	

complex;	 3)	 the	 QRS	 wave	 complex	 is	 composed	 of:	 the	 Q	 wave	 that	

corresponds	to	depolarization	of	the	inter-ventricular	septum,	the	R	wave	that	

reflects	the	depolarization	of	the	main	mass	of	the	ventricles	and	the	S	wave	

that	signs	the	final	depolarization	of	the	ventricles	at	the	base	of	the	heart;	4)	

the	ST	segment	is	the	time	between	the	end	of	the	QRS	complex	and	the	start	

of	 the	 T	 wave.	 It	 reflects	 the	 period	 of	 zero	 potential	 between	 ventricular	

depolarization	 and	 repolarization;	 5)	 the	 T	 wave	 represents	 ventricular	

repolarization	and	6)	the	U	wave	is	only	visible	when	the	heart	rate	falls	below	

65	bpm.	The	source	of	 it	 is	unknown,	 three	theories	regarding	 its	origin	are:	

delayed	 repolarisation	 of	 Punkinje	 fibres,	 prolonged	 repolarisation	 of	 mid-

myocardial	 and	 after-potentials	 resulting	 from	 mechanical	 forces	 in	 the	

ventricular	 wall	 (Figure	 1F)(Ashley	 and	 Niebauer,	 2004;	 U	 Wave	 basic	

patterns	-	LITFL	ECG	Library	).	

	

1.2 	The	cardiac	muscle	cell	

The	mammalian	heart	 is	composed	of	several	cell	types:	cardiomyocytes,	

fibroblasts,	 endothelial	 cells	 and	 perivascular	 cells	 (Zhou	 and	 Pu,	 2016).	

Contracting	 more	 than	 3	 billions	 times	 during	 average	 lifespan	 in	 human,	

cardiomyocytes	 are	 the	 most	 physically	 energetic	 cells	 in	 the	 body,	 and	

therefore	contain	an	important	number	of	mitochondria.	Cardiomyocytes	are	

highly	 specialised	 cells	 to	 assure	 their	 functions:	 1)	 the	 plasma	 membrane	

(known	 as	 sarcolemma)	 has	 invaginations	 called	 T-tubules	 for	 the	 fast	

propagation	 of	 action	 potential;	 2)	 the	 cytoplasm	 (known	 as	 sarcoplasm)	
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contains	 a	 high	 number	 of	 mitochondria;	 3)	 a	 specialised	 endoplasmic	

reticulum	 (known	 as	 sarcoplasmic	 reticulum)	 that	 contains	 a	 high	

concentration	 of	 calcium;	 4)	 and	 the	 contractile	 apparatus	 composed	 of	

myofibers	consisting	of	sarcomeres	(Figure	2A).		

1.2.1 General	overview	of	cardiomyocytes	components		

A. Sarcolemma	

Going	 from	 the	 outside	 to	 the	 inside	 of	 the	 cell,	 the	 first	 specialised	

structure	is	the	plasma	membrane:	the	sarcolemma.	It	serves	as	a	barrier	for	

diffusion	 and	 contains	 membrane	 proteins,	 including	 receptors	 and	 ion	

channels	 (Figure	 2B).	 The	 sarcolemma	 forms	 two	 specialised	 regions:	 the	

intercalated	 disks	 and	 the	 transverse	 tubules.	 The	 intercalated	 disks	 are	

structures	 that	 allow	 communication	 and	 anchoring	 between	 adjacent	

cardiomyocytes.	Intercalated	disks	are	composed	of	several	types	of	junctions:	

gap	junctions,	adherence	junctions	and	desmosomes.	Transverse	tubules	(also	

called	 T-tubules)	 are	 invaginations	 of	 the	 sarcolemma	 that	 allow	 the	

propagation	 of	 a	 fast	 action	 potential	 through	 the	membrane	 deep	 into	 the	

cytoplasm	 and	 contain	 high	 density	 of	 L-type	 channels.	 These	 invaginations	

allow	the	rapprochement	of	L-type	channels	and	the	sarcoplasmic	reticulum,	

more	 especially	 to	 the	 Ryanodine	 receptors	 (RyR).	 Other	 calcium	 channels	

implicated	 in	 the	 excitation	 contraction	 coupling	 (E-C	 coupling)	 are	 also	

located	 in	 this	 membrane	 as	 the	 sodium-calcium	 exchanger	 (NCX)	 (Walker	

and	Spinale,	1999).		
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Calcium	channels	located	in	the	sarcolemma:		

§ L-type	 channels:	also	known	as	dihydropyridine	receptors,	are	voltage	

dependent	calcium	(Ca2+)	channels	composed	of	different	subunits.	They	

are	 heterotetrameric	 polypeptides	 complexes	 containing	 α1,	 α2/δ,	 β	

subunits.	 α1,	 is	 the	 main	 functional	 component,	 which	 contains	 the	

voltage	sensor	and	two	of	its	transmembrane	segments	form	the	pore	of	

the	 canal.	 α2/δ,	 β	 are	 auxiliary	 subunits	 implicated	 in	 modifying	 the	

gating	properties	of	the	channel,	as	well	as	the	channel	expression	level.	

The	 combination	 of	 all	 subunits	 allows	 the	 depolarization-induced	

calcium	influx	into	the	cytosol,	which	is	essential	for	the	calcium-induce-

calcium	release	 (CICR)	process.	The	 close	proximity	of	L-type	 channels	

and	 RyR2	 allows	 the	 calcium	 influx	 across	 the	 plasma	 membrane	 to	

trigger	the	massive	release	of	calcium	from	the	SR	stores	through	RyR2	

opening.	L-type	channels	are	manly	localised	in	the	T-tubules	facing	the	

SR	assuring	the	fast	passage	of	the	Ca2+	to	the	cytosol	(Bodi	et	al.,	2005;	

Kamp	and	Hell,	2000).		

§ NCX:	 Sodium-calcium	 exchanger	 channel	 is	 a	 key	 actor	 of	 cardiac	

relaxation,	 located	 at	 the	 sarcolemma,	 including	 at	 the	 T-tubules.	 It	 is	

responsible	of	the	extrusion	of	the	cytosolic	Ca2+	via	a	transport	of	three	

sodium	 ions	 (Na+)	 in	 exchange	 for	 one	 Ca2+.	 Under	 physiological	

conditions,	NCX	removes	the	same	amount	of	Ca2+	 that	entered	the	cell	

through	L-type	channels	in	order	to	maintain	cellular	Ca2+	balance.	In	the	

heart,	the	isoform	1	is	mostly	expressed.	NCX	activity	can	be	regulated	by	

Na+,	 Ca2+,	 protons,	 phosphatidyl-inositol	 4,5	 biphosphate	 (PIP2)	 in	 the	

membrane,	protein	kinase	A	(PKA)	and	exogenous	agents.	(Ottolia	et	al.,	

2013;	Schulze	et	al.,	2003).	
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B. 	Sarcoplasmic	reticulum	

The	 sarcoplasmic	 reticulum	 (SR)	 is	 a	 specialised	 endoplasmic	 reticulum	

that	 serves	 as	 a	 source	 and	 internal	 storage	 of	 cytosolic	 Ca2+	 required	 for	

excitation-contraction	 coupling.	 SR	 contains	 proteins	 that	 are	 essential	 for	

calcium	 homeostasis	 as	 the	 ryanodine	 receptor	 (RyR),	 the	 sarcoplasmic	

reticulum	 calcium	 ATPase	 (SERCA)	 and	 his	 two	 regulators	 phospholamban	

(PLN)	and	sarcolipin	(SLN).		

§ RyR:	 Ryanodine	 receptor	 mediates	 intracellular	 Ca2+	 release	 during	

contraction,	being	a	key	actor	of	calcium	induce-calcium	release	(CICR).	

In	 the	 heart,	 the	most	 expressed	 isoforms	 is	 RyR2,	 but	 other	 isoforms	

have	been	detected.	It	is	a	homotetramer	regulated	directly	or	indirectly	

by	 L-type	 channels,	 Ca2+,	 magnesium	 (Mg2+),	 protein	 kinase	 A	 (PKA),	

FK506	 binding	 proteins	 (FKBP12	 and	 12.6),	 calmodulin	 (CaM),	

Ca2+/calmodulin-dependent	 protein	 kinase	 II	 (CaMKII),	 calsequestrin	

(CSQ),	triadin	and	junctin	(Lanner	et	al.,	2010).	

§ SERCA:	 Sarco-endoplasmic	 calcium	 ATPase	 is	 responsible	 for	 muscle	

relaxation	due	to	Ca2+	re-uptake.	In	heart,	the	most	expressed	isoform	is	

the	SERCA2a.	 Its	ATPase	activity	assures	the	transport	of	 two	Ca2+	 ions	

per	ATP	molecule.	It	is	composed	by	a	catalytic	subunit	with	usually	ten	

transmembrane	spans	and	four	intracellular	loops	in	which	is	located	the	

ATP	 and	 the	 phosphorylation	 sites	 (Sweadner	 and	Donnet,	 2001).	 The	

activity	of	this	pomp	is	regulated	by	two	small	proteins:	phospholamban	

(PLN)	 and	 sarcolipin	 (SLN)	 (Periasamy	 and	 Kalyanasundaram,	 2007).	

PLN	 and	 SLN	 have	 a	 similar	 structure	 and	 roles	 but	 their	 inhibitory	

procedures	are	different.		

◊ PLN:	 Phospholamban	 is	 a	 52-amino-acids	 protein	 (6	 KDa)	 that	

associates	 into	pentamers	 to	 interact	and	 inhibit	SERCA	by	 lowering	
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its	Ca2+	affinity.	It	can	exclusively	bind	to	SERCA	when	there	is	a	low	

Ca2+	concentration.	Its	activity	is	controlled	by	the	phosphorylation	of	

its	Serine16	residue	via	PKA	or	its	Threonine17	residue	via	CaMKII	and	

calcium	 concentration.	 (Asahi	 et	 al.,	 2003a).	 Upon	 phorphorylation,	

PLN	is	released	from	SERCA,	allowing	calcium	to	be	pumped	back	into	

the	SR	thus	leading	to	a	decrease	in	cytoplamic	calcium.	

◊ SLN:	Sarcolipin	is	a	31-amino-acids	protein	that	interacts	and	inhibits	

SERCA	by	 lowering	 its	 Vmax.	 SLN	 can	 bind	 to	 SERCA	 at	 any	 cytosol	

calcium	concentration.	It	has	been	shown	to	be	an	important	mediator	

of	 muscle	 thermogenesis	 due	 to	 its	 interaction	 with	 the	 SR	 ATPase	

pump	allowing	the	ATP	hydrolysis	but	decreasing	the	Ca2+	 transport	

(Bal	et	al.,	2012;	Pant	et	al.,	2016).		

	

C. Contractile	apparatus	

The	 contractile	 apparatus	 formed	 by	 sarcomeres	 is	 a	 highly	 organised	

array	of	myofilament	proteins	composed	primarily	of	thick	myosin,	thin	actin	

filaments	 and	 tropomyosin-troponin	 complex.	 The	 overlapping	 of	 these	

proteins	 gives	 to	 the	 cardiac	 muscle	 its	 striated	 appearance.	 Sarcomeric	

myosins	 convert	 the	 chemical	 energy	 of	 ATP	 into	 mechanical	 energy	 upon	

binding	 to	 actin	 thing	 filaments	 and	 promote	 sarcomere	 shortening	 (Figure	

2D).	
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1.2.2 Cardiomyocyte	contraction	

The	 contractility	 of	 cardiomyocyte	 is	 under	 the	 control	 of	 a	 spatially	

defined	meshwork	of	ion	channels	and	exchangers	that	control	Ca2+	entry.	The	

cardiac	contraction	is	initiated	by	electrical	impulse	known	as	action	potential	

(AP)	coming	 from	the	SA	node	 inducing	a	depolarization	of	 the	sarcolemma.	

The	AP	can	be	separated	in	five	different	phases:	1)	phase	0	depolarization;	2)	

phase	 1	 early	 repolarization;	 3)	 phase	 2	 plateau	 phase;	 4)	 phase	 3	

repolarization;	 and	 5)	 phase	 4	 resting	 phase,	 described	 in	 Figure	 2C.	 The	

depolarization	 propagates	 throughout	 the	 cardiomyocyte	 reaching	 the	 T-

tubules,	inducing	the	opening	of	the	L-type	channel	and	calcium	conductance.	

The	 influx	 of	 calcium	 passing	 through	 L-type	 channels	 that	 reaches	 the	

sarcoplasm	 activates	 the	 Ryanodine	 channels.	 The	 activation	 results	 in	 an	

immediate	 release	 of	 large	 amounts	 of	 Ca2+	 from	 the	 sarcoplasm	 (Fabiato,	

1983).	The	increase	of	cytosolic	Ca2+	concentration	allows	the	binding	of	Ca2+	

to	troponin	C,	resulting	in	a	shift	of	troponin	I	affinity	from	the	actin	filament	

to	troponin	C.	This	induces	a	shift	of	the	troponin-tropomyosin	complex	away	

from	the	actin-myosin	binding	site.	The	shift	allows	myosin	to	swing	towards	

the	 thin	 filament	 (consuming	 ATP).	 This	 conformational	 change	 generates	 a	

force	moving	 the	 thin	 filament	 relative	 to	 the	 thick	 filament.	 This	 cycle	will	

continue	 until	 the	 Ca2+	 is	 removed	 from	 the	 cytoplasm	 by	 active,	 energy-

dependent	means	(by	SERCA	activity)	or	by	exhaustion	of	ATP	stores	(Walker	

and	Spinale,	1999).		
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Figure	2:	Cardiac	cellular	structure	and	components.	A	Cardiac	muscle	fiber.	B.	Schematic	
representation	of	a	cardiomyocyte,	and	its	calcium	channels.	C.	Action	potential.	D.	Sarcomere	
composition		
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2. Cardiomyopathies		

2.1 Definition	

Cardiomyopathies	 are	 a	 group	 of	 cardiac	 disorders	 characterized	 by	 a	

cardiomyocytes	dysfunction	and	 tissue-wide	 remodelling	of	 the	myocardium	

leading	 to	 functional	 decline.	 The	 prevalence	 arises	with	 the	 age	 due	 to	 the	

age-related	changes	that	can	induce	pressure	overload.	Distinct	techniques	as	

echocardiography1 ,	 electrocardiography2	 and	 cardiac	 magnetic	 resonance	

imaging3	 allow	 the	 characterisation	 of	 these	 pathologies.	 Features	 like	

severity,	distribution,	extent	of	myocardial	hypertrophy,	thickening	of	valves,	

ventricular	 dilatation,	myocardial	 fibrosis	 and	 detection	 of	 infiltrates	 can	 be	

determined	using	 these	 techniques	and	are	essential	 for	diagnosis	 (Elliott	 et	

al.,	2008;	McKenna	et	al.,	2017).	

	

2.2 	Classification	

The	classification	of	cardiomyopathies	has	always	been	a	source	of	debate.	

The	 first	 classification	 based	 on	 structural	 and	 functional	 changes	 was	

proposed	 by	 Goodwin	 in	 1961,	 including	 congestive	 cardiomyopathy,	

hypertrophic	 cardiomyopathy	 and	 constrictive	 cardiomyopathy	 (Goodwin	 et	

al.,	 1961).	 Since	 then,	 worldwide	 cardiac	 societies	 propose	 regularly	

classifications	 for	 these	 pathologies.	 Currently	 four	 subgroups	 of	

cardiomyopathies	 are	 defined:	 1)	 hypertrophic	 cardiomyopathy	 (HCM),	 2)	

																																																								
1	Echocardiography:	non-invasive	ultrasound	technique	allowing	the	visualisation	of	
the	pumping	function,	the	chamber	size	and	the	velocity	of	blood	flow	of	the	heart.	
	
2	Electrocardiography:	non-invasive	technique	recording	the	electrical	activity	of	the	
heart	by	electrodes	attached	to	the	surface	of	the	skin.	
	
3	 Magnetic	 resonance	 imaging:	 non-invasive	 medical	 imaging	 technology	 for	
assessment	of	the	function	and	structure	of	the	cardiovascular	system.	
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restrictive	 cardiomyopathy	 (RCM),	 3)	 arrhythmogenic	 right	 ventricular	

cardiomyopathy	 (ARVC)	 and	 4)	 dilated	 cardiomyopathy	 (DCM).	 Each	

phenotype	is	subclassified	depending	on	the	causes	of	the	pathology	(Figure	

3)	(Charron	et	al.).	

	

	

	

Figure	 3:	 Cardiomyopathies:	 actual	 classification	 and	 prevalence.	 A.	 Cardiomyopathies	
classification	 adapted	 from	 Elliot	 et	 al	 2008.	 B.	 Representation	 of	 the	 European	
cardiomyopathy	prevalence	in	2018	(3208	patients	from	EURObvational	research	program).	

	
	
	
	

A.

B.
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2.2.1 Hypertrophic	cardiomyopathy		

Hypertrophic	cardiomyopathy	(HCM)	is	characterized	by	an	increased	left	

ventricular	 (LV)	 wall	 thickness	 that	 is	 not	 solely	 explained	 by	 abnormal	

loading	conditions.	The	LV	wall	thickness	is	≥13mm	and	presents	a	normal	or	

increased	 ejection	 fraction.	 The	 cardiomyocytes	 are	 hypertrophied,	

disorganised	and	separated	by	areas	of	interstitial	fibrosis.	HCM	is	a	pathology	

affecting	both	children	and	adults	and	 is	 the	major	cause	of	sudden	death	 in	

teenagers	 and	 elite	 athletes.	 HCM	 is	 the	most	 common	 cardiomyopathy	 and	

can	 be	 inherited	 or	 acquired.	 It	 is	 commonly	 acquired	 in	 an	 autosomal	

dominant	pattern	of	inheritance	but	other	patterns	have	been	described.	The	

mutations	of	different	genes	 lead	 to	HCM	but	genes	encoding	 for	proteins	of	

the	 sarcomere	 as	 myosin-binding	 protein	 C,	 myosin	 heavy	 chain,	 cardiac	

troponin	 I,	 α-tropomyosin,	 cardiac	 α-actin,	myosin	 light	 chains	 2	 and	 3	 and	

cysteine	 and	 glycine-rich	 protein	 3	 are	 responsible	 of	 most	 reported	 cases	

(Marian	and	Braunwald,	2017;	2014).	

	

2.2.2 	Restrictive	cardiomyopathy		

Restrictive	 cardiomyopathy	 (RCM)	 is	 characterized	 by	 an	 increased	

myocardial	 stiffness	 that	 leads	 to	 impaired	 ventricular	 filling.	 RCM	 affects	

either	one	or	both	ventricles	but	 their	size	 is	not	affected	until	 late	stages	of	

the	 pathology.	 It	 is	 frequently	 accompanied	 of	 arrhythmias	 and	 conductions	

disturbances.	 RCM	 is	 the	 least	 common	 cardiomyopathy	 and	 it	 can	 be	

inherited	 in	an	autosomal	dominant	manner	or	acquired.	Most	cases	of	RCM	

are	 acquired,	 however	 some	 mutations	 are	 recurrent	 affecting	 the	 genes	

encoding	for	Troponin	T	and	I,	α-actin	and	β-myosin	heavy	chain	(Muchtar	et	

al.,	2017).	

	



	

	 28	

2.2.3 	Arrhythmogenic	right	ventricular	cardiomyopathy		

Arrhythmogenic	 right	 ventricular	 cardiomyopathy	 (ARVC)	 is	

characterized	by	fibro-fatty	replacement	of	the	right	ventricular	myocardium	

leading	to	paroxysmal	ventricular	arrhythmias	and	a	predisposition	to	sudden	

cardiac	death	(SCD)(2nd	most	common	cause	of	SCD	in	children,	young	adults	

and	 athletes).	 ARVC	 manifests	 with	 electrocardiographic	 abnormalities	 as	

syncope	or	ventricular	arrhythmias.	Sustained	ventricular	tachycardia	and/or	

ventricular	 arrhythmia	 lead	 to	 SCD.	 In	 a	 cellular	 level	 cardiomyocytes	 are	

progressively	 necrotic	 and	 frequently	 accompanied	 by	 inflammation,	 fatty	

infiltration	and	replacement	of	cardiomyocytes.	ARVC	it	 is	typically	 inherited	

in	an	autosomal	dominant	manner,	with	variable	penetrance	and	expression.	

Most	 cases	 of	 ARVC	 are	 due	 to	 mutations	 on	 the	 genes	 encoding	 for	 the	

proteins	 located	 in	 the	 desmosome	 (junction	 plakoglobin,	 desmoplakin,	

phakophilin-2,	 desmoglein-2,	 desmocollin-2).	 However	 mutations	 in	 non-

desmosomal	genes	such	as	genes	encoding	 for	cardiac	ryanodine	receptor	2,	

transforming	 growth	 factor	 β-3,	 the	 nuclear	 transmembrane	 protein	 43	 and	

desmin	had	also	be	reported	 to	 induce	ARVC.	 (Basso	et	al.,	2018;	Corrado	et	

al.,	2017;	Mestroni	and	Sbaizero,	2018;	Priori	et	al.,	2015)	

	

2.2.4 	Dilated	cardiomyopathy	

Dilated	cardiomyopathy	(DCM)	is	characterized	by	an	enlargement	and	an	

impaired	 systolic	 function	 of	 left	 or	 both	 ventricles.	 DCM	 can	 include	 atrial	

and/or	 ventricular	 arrhythmias	 and	 conduction	 defects.	 	 It	 is	 a	 major	 risk	

factor	 for	 developing	 heart	 failure	 (HF)	 and	 sudden	 death	 can	 occur	 at	 any	

stage	 of	 the	 disease.	 DCM	 is	 the	 second	 most	 common	 cardiomyopathy	

(Figure	3B).	DCM	can	be	attributed	to	genetic	alterations,	main	genetic	causes	

responsible	of	 the	pathology	are	summarised	 in	table	 1.	The	majority	of	 the	
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inherited	 DCM	 is	 autosomal	 dominant.	 Inherited	 DCM	 is	 genetically	

heterogeneous	 due	 to	 mutations	 of	 proteins	 forming	 the	 sarcomeres,	 the	 Z	

disc,	 the	 dystrophin	 complex,	 the	 cytoskeleton,	 the	 desmosomes,	 the	

sarcoplasmic	reticulum	and	cytoplasm,	the	ion	channels,	the	mitochondria,	the	

extracellular	 matrix,	 the	 lysosomes,	 the	 nucleus	 and	 the	 nuclear	 envelope.	

Within	 all	 familial	 forms	 of	 DCM,	LMNA-cardiomyopathy	 is	 the	 second	most	

common	 pathology	 (Hershberger	 et	 al.,	 2010)	 and	 is	 the	 focus	 of	my	work.	

Patients	 with	 LMNA-cardiomyopathy	 have	 been	 reported	 to	 have	 a	 worse	

clinical	 prognosis	 than	 DCM	 patients	 carrying	 different	 pathologic	 DCM-

associated	 gene	mutations	 (McNally	 and	Mestroni,	 2017;	 Pinto	 et	 al.,	 2016;	

Wang	et	al.,	2017).		

	

	

	

	

	
Medical	terms	

Ejection	fraction	 Percentage	of	blood	ejected	out	from	the	heart	chamber	with	
each	beat.		

Bradyarrhythmia	 Reduced	heart	rate:	Sinus	rhythm	with	a	resting	heart	rate	of	
60	beats	per	minute	or	less.	

Atrioventricular	block	
Interruption	or	delay	of	electrical	conduction	from	the	atria	to	
the	ventricles	due	 to	 conduction	 system	abnormalities	 in	 the	
AV	node	or	the	His-Purkinje	system.	

Atrial	arrhythmia	 Abnormal	 heart	 rate	 (60-100	 bpm):	 being	 too	 fast	
(tachyarrhythmia)	or	too	slow	(bradyarrhythmia).		

Atrial	fibrillation	
Irregular	and	uncoordinated	contraction.	Absence	of	P	waves	
with	an	atrial	rate	of	350-600	beats/min,	irregular	ventricular	
rhythm,	ventricular	rate	100-180	beats/min		

Conduction	system	
disease	

Disruption	of	the	electrical	impulses	of	the	heart.	It	can	be	due	
to	a	defect	in	the	sinoatrial	node,	intermodal	tract,	
atrioventricular	node	right	or	left	bundle	branches	or	the	
bachman’s	bundle.		The	three	main	types	of	conduction	
system	disease	are	the	heart	block,	long	QT	syndrome	and	the	
bundle	branch	block.	
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Genetic	dilated	cardiomyopathies	
Affected	organ(s)	 Disease/affected	gene	

Predominant	cardiac	
phenotype	

familial	DCM	%	
- Titin	(TTN)																																																																~	20-25	%	
- Lamin	A/C	(LMNA)																																																										~	6	%	
- Myosin	heavy	chain	(MYH7)																																									~	4	%	
- Troponin	T	(TNNT2)																																																							~	2	%	
- Myosin-binding	protein	C	(MyBPC3)																										~	2	%	
- RNA-binding	modif-20	(RBM20)																																	~	2	%	
- Myopalladin	(MYPN)																																																							~	2	%	
- Sodium	channel	alpha	unit	(SCN5A)																										~	2	%	
- BaCl2-associated	athanogene	3	(BAG3)																			~	2	%	
- Phospholamban	(PLN)																																																			~	1	%	

Neuromuscular	disorders	
- Duchenne	muscular	dystrophy	(DMD)	
- Becker	muscular	dystrophy	(DMD)	
- Myotonic	dystrophy	or	Steinert	myopathy	(DMPK)	

Syndromic	diseases	
- Mitochondrial	diseases	(mtDNA	or	nuclear	genes)	
- Tafazin	(TAZ)	

Acquired	dilated	cardiomyopathies	
Group	 Causing	agent	

Drugs	
- Antineoplastic	drugs	
- Psychiatric	drugs	
- Other	drugs	

Toxic	and	overload	

- Ethanol	
- Cocaine,	amphetamines,	ecstasy	
- Other	overload	
- Iron	overload	

Nutritional	deficiency	

- Selenium	deficiency	
- Thiamine	deficiency	
- Zinc	and	copper	deficiency	
- Carnitine	deficiency	

Electrolyte	disturbance	 - Hypokalaemia,	hypophosphatemia	

Endocrinology	

- Hypo-	and	hyper-thyroidism	
- Cushing/Addison	disease	
- Phaecromocytoma	
- Acromegaly	
- Diabetes	mellitus	

Infection	

- Viral	
- Bacterial	
- Mycobacterial	
- Fungal	
- Parasitic	

Auto-immune	diseases	

Organ	specific	
- Giant-cell	myocarditis		
- Inflammatory	DCM	(non-infectious	myocarditis)	

Not	organ	specific	
- Polymyositis/dermatomyositis	

Peripartum	 	

Table	1:	Aetiology	of	dilated	cardiomyopathies	(adapted	from	Pinto	et	al	2016).	



	

	 31	

3. LMNA	pathologies	

3.1 LMNA-cardiomyopathy	

LMNA-cardiomyopathy	 is	 characterized	 by	 a	 left	 ventricular	 dilatation	

and/or	reduced	systolic	function	(left	ventricular	ejection	fraction	<50%).	It	is	

frequently	 accompanied	 by	 significant	 conduction	 system	 disease	 and	

arrhythmias.	 The	 conduction	 system	 disease	 commonly	 precedes	

development	 of	 DCM.	 It	 is	 characterized	 by:	 1)	 sinus	 bradycardias,	 2)	 sinus	

node	arrests	with	 junctional	rhythms,	3)	a	high	frequency	of	atrioventricular	

blocks,	 4)	 atrial	 fibrillation	 and	 5)	 ventricular	 arrhythmias.	 Sudden	 cardiac	

death	(SCD)	due	to	the	ventricular	arrhythmias	occurs	frequently,	often	before	

the	 development	 of	 DCM	 (30%	 of	 the	 cases).	 First	 signs	 of	 LMNA-

cardiomyopathy	usually	appear	at	mid-age	(20’s	30’s)	usually	with	conduction	

system	 disease	 or	 atrial	 arrhythmia	 but	 some	 patients	 are	 asymptomatic.	 A	

gradual	worsening	of	the	pathology	occurs	leading	to	a	full	penetrance	at	the	

age	of	60-70	years	 (Hasselberg	et	al.,	2018;	Hershberger	and	Morales,	2016;	

Hershberger	et	al.,	2010;	Wang	et	al.,	2017).		

No	curative	treatment	is	currently	available	for	LMNA-cardiomyopathy	

patients,	 but	 research	 on	 mouse	 models	 have	 identified	 different	 potential	

therapeutic	 targets	 (Worman,	 2018),	 some	 being	 currently	 tested	 in	 clinics	

(NCT02057341).	 Current	 clinical	 management	 strategies	 for	 LMNA-

cardiomyopathy	 patients	 are	 the	 ones	 used	 for	 patients	 with	 other	

cardiomyopathies.	 Individual	 symptoms	 of	 the	 pathology	 are	 treated	 to	

maintain	the	cardiac	function	compiled	in	table	2.	The	management	of	LMNA-

cardiomyopathy	 is	 focused	 on	 treatment	 of	 conduction	 system	 disease,	

arrhythmias,	 and	 DCM	 (Hershberger	 and	 Morales,	 2016),	 the	 patients	

commonly	require	 implantable	cardiac	defibrillators	 in	order	to	prevent	SCD	

(Meune	et	al.,	2006).	
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Therapies		
Manifestation	 Treatment	

Conduction	system	disease	and	arrhythmia	

Chronic	atrial	fibrillation	 Anticoagulants	combined	with	agents	for	
ventricular	rate	control.		

Supraventricular	arrhythmia	 Pharmacological	agents	and	sometimes	
atrial	or	atrioventricular	node	ablations.	

Symptomatic	bradycardias	or	
asymptomatic	but	with	heart	blocks	

Implantable	electronic	pacemaker	or	
implantable	cardiac	defibrillator	(more	
suitable	for	LMNA	mutation	carrier	
patients	due	to	the	high	risk	of	SCD).		

Symptomatic	ventricular	arrhythmias,	
ventricular	tachycardia,	ventricular	
fibrillation,	and	resuscitated	sudden	

cardiac	death	

Implantable	cardiac	defibrillator	
accompanied	of	pharmacological	
treatment.		

Dilated	cardiomyopathy	

Symptomatic	dilatation	 Pharmacological	agents	(ACE	inhibitors,	
beta	blockers,	diuretics…).	

Dilatation	with	deterioration	of	LV	
function	(EF	<30%)	

Pharmacological	agents	+	anticoagulation	
to	prevent	the	development	of	left	
ventricular	mural	thrombus	and	embolic	
events	including	stroke.	

Progressive	DCM,	advancing	heart	
failure	 Heart	transplantation.		

Table	2:	Current	treatments	for	LMNA-cardiomyopathy.	

	

In	 addition	 to	 LMNA-cardiomyopathy,	 LMNA	 mutations	 have	 been	

described	 in	 patients	with	 severe	 forms	 of	 arrhythmogenic	 right	 ventricular	

cardiomyopathy	(Quarta	et	al.,	2012),	restrictive	cardiomyopathy	(Paller	et	al.,	

2018)	and	in	patients	with	an	increased	risk	of	thromboembolic	complications	

(van	Rijsingen	et	al.,	2013).		

LMNA	 mutations	 are	 not	 only	 responsible	 for	 cardiac	 diseases	 but	 also	

lead	 to	 a	 broad	 spectrum	 of	 pathologies	 called	 laminopathies	 (described	 in	

3.2.).	 It	 is	 important	to	note	that	the	cardiac	involvement	in	laminopathies	is	

not	 exclusive	 to	 LMNA-cardiomyopathy.	 It	 is	 also	 present	 in	 patients	 with	

Emery-Dreifuss	 muscular	 dystrophy,	 Limb	 girdle	 muscular	 dystrophy,	
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Progeria	 syndromes	 and	 lipodystrophies.	 The	 main	 characteristics	 of	 the	

cardiac	involvement	in	these	pathologies	are	summarised	in	table	3.		

	

Laminopathies	with	heart	involvement	
Pathology	 Cardiac	phenotype	 Ref	

Dilated	cardiomyopathy	
with	conduction	defects		

Left	 ventricle	 dilatation,	 systolic	
dysfunction,	 atrioventricular	 conduction	
block,	arrhythmia,	congestive	heart	failure		

(Taylor	et	
al.,	2003)	

Emery	Dreifuss	muscular	
dystrophy		

Atrioventricular	conduction	block,	
arrhythmia,	systolic	dysfunction,	

congestive	heart	failure		

(Zhang	et	al.,	
2015)	

Limb	girdle	muscular	
dystrophy		

Atrioventricular	block,	progressive	left	
ventricle	dysfunction,	arrhythmia		

(Chang	et	
al.,	2010)	

Variant	progeroid	syndrome	
with	right	ventricular	
cardiomyopathy		

Right	atrium	and	ventricle	dilatation,	
tricuspid	valve	dilatation		

(Alastalo	et	
al.,	2015)	

Atypical	progeroid	
syndrome	with	
cardiomyopathy		

Right	ventricle	dilatation,	arrhythmia,	
tricuspid	valve	regurgitation		

(Guo	et	al.,	
2016)	

Familial	partial	
lipodystrophy	of	Dunningan	

type	2		

Left	ventricle	dilatation,	systolic	
dysfunction,	atrioventricular	block,	
complete	left	bundle	branch	block		

(Andre	et	al.,	
2015)	

Lipodystrophy	with	
hypertrophic	

cardiomyopathy		

Left	ventricle	hypertrophy,	aortic	valve	
calcification,	stenosis	and	regurgitation		

(Duparc	et	
al.,	2009)	

Charcot-Marie-Tooth	type	2	
axonal	neuropathy		

Left	ventricle	dilatation,	systolic	
dysfunction,		

(Duparc	et	
al.,	2009)	

Severe	metabolic	syndrome	
caused	by	a	ZMPSTE24	

mutation	

Left	ventricle	dilatation,	systolic	16	
dysfunction,	ventricular	extra	systole		

(Galant	et	
al.,	2016)	

Table	3:	Cardiac	involvement	in	laminopathies.		
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3.2 Laminopathies	

Laminopathies	are	a	wide	spectrum	of	pathologies	caused	by	mutations	in	

genes	 encoding	 for	 nuclear	 lamins	 and	 associated	 proteins.	 They	 are	

commonly	divided	 in	4	 groups	depending	on	 the	affected	 tissue:	 	1)	striated	

muscle,	 2)	 adipose	 tissue,	 3)	 nervous	 system	 and	 4)	 accelerated	 aging	

syndromes.		

During	 the	 90’s	 the	 first	 mutations	 of	 the	 genes	 responsible	 of	

laminopathies	 were	 identified.	 In	 1994	 Bione	 et	 al.	 reported	 a	 mutation	 in	

EMD	 gene	 leading	 to	 X-linked	 Emery–Dreifuss	muscular	 dystrophy	 (EDMD),	

not	 long	 after	 Bonne	 et	 al.	 reported	 the	 first	 LMNA	 mutation	 leading	 to	

autosomal	dominant	 forms	of	EDMD	(Bione	et	al.,	1994;	Bonne	et	al.,	1999).	

Since	 then,	 more	 than	 460	 mutations	 in	 LMNA	 gene	 have	 been	 reported	

(http://www.umd.be/LMNA/).	 Mutations	 on	 the	 genes	 encoding	 for	 other	

nuclear	 proteins	 as	 emerin,	 nesprins,…	 lead	 to	 similar	 alterations.	 The	main	

mutations	and	the	general	characteristics	of	these	pathologies	are	summarised	

in	Figure	 4.	 For	 this	work,	 a	 special	 focus	 on	LMNA	 gene	mutations	will	 be	

done.		

The	 large	 spectrum	 of	 LMNA-laminopathies	 can	 be	 classified	 into	 four	

groups	 with	 some	 phenotypic	 overlapping	 1)	 striated	 muscles	 diseases	

including	 LMNA-DCM-CD,	 EDMD,	 LMNA-related	 congenital	 muscular	

dystrophy	(L-CMD)	and	limb-girdle	muscular	dystrophy	type	1B	(LGMD1B),	2)	

diseases	 affecting	 adipose	 tissue	 including	 familial	 partial	 lipodystrophy	 of	

Dunnigan	 type	 (FPLD),	 3)	 peripheral	 neuropathy	 associated	 with	

demyelination	 of	 motor	 neurons	 such	 as	 axonal	 neuropathy	 Charcot-Marie-

Tooth	type	2B1	(CMT2B1),	and	4)	premature	aging	syndromes	which	include	

Hutchinson-Gilford	progeria	syndrome	(HGPS)	and	atypical	Werner	syndrome	

(aWRN)	(Bonne	et	al.,	1999;	Fatkin	et	al.,	1999;	Muchir	et	al.,	2000;	Shackleton	

et	al.,	2000;	Sandre-Giovannoli	et	al.,	2002;	Chen	et	al.,	2003;	Eriksson	et	al.,	
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2003).	 Among	 all	LMNA-laminopathies	 approximately	 60%	of	 the	mutations	

involve	striated	muscle	phenotype	(Bertrand	et	al.,	2011).	

3.2.1 Striated	muscle	laminopathies		

Emery-Dreifuss	 muscular	 dystrophy	 (EDMD)	 is	 a	 genetically	

heterogeneous	 disorder	 with	 X-linked,	 autosomal	 dominant	 and	 autosomal	

recessive	 forms.	 It	 is	 characterized	 by	 1)	 early	 contractures	 of	 the	 Achilles	

tendons,	 elbows	 and	 post-cervical	 muscles,	 2)	 slow	 progressive	 muscle	

wasting	and	weakness	and	3)	a	cardiomyopathy	usually	presenting	as	cardiac	

conduction	defects	(Bonne	et	al.,	1999)	(Vigouroux	and	Bonne,	2013).	

	

Limb-Girdle	 Muscular	 Dystrophy	 (LGMD)	 is	 a	 heterogeneous	 group	 of	

disorders	 that	 can	 be	 acquired	 in	 a	 dominant	 or	 recessive	 manner.	 It	 can	

present	 or	 not	 a	 cardiac	 alteration.	 In	 particular,	 LGMD	 associated	 with	

atrioventricular	 conduction	 disturbances	 (LGMD1B)	 is	 characterized	 by	

symmetrical	 weakness	 starting	 in	 the	 proximal	 lower	 limb	 muscles,	 and	

gradually	 proximal	 upper	 limb	 muscles	 also	 become	 affected.	 Mostly	 all	

patients	present	dysrhythmias	and	atrioventricular	conductions	defects.	(van	

der	Kooi	et	al.,	1997;	Muchir	et	al.,	2000).	

	

LMNA-associated	 congenital	muscular	dystrophy	 (L-CMD)	 is	 a	myopathy	

due	to	de	novo	mutations.	It	appears	in	first	year	of	life	and	can	have	different	

severity	 degrees.	 The	 main	 characteristics	 of	 this	 pathology	 are	 a	 selective	

axial	 weakness	 and	 wasting	 of	 the	 cervico-axial	 muscles,	 a	 limb	 muscle	

involvement	 and	 ventilator	 difficulties	 (needing	 a	 ventilator	 support)	

(Quijano-Roy	Susana	et	al.,	2008).	Cardiac	involvement	was	reported	in	some	

cases	 (i.e.	 severe	 ventricular	 arrhythmias	 associated	 with	 sudden	 cardiac	

death).	
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Figure	 4: Summary	 of	 all	

known	human	diseases	caused	

by	 mutations	 in	 genes	 coding	

for	 nuclear	 envelope	

components.	 The	 diversity	 of	

phenotypes	 induced	 by	

mutations	 in	 genes	 encoding	

nuclear	envelope	components,	as	

well	 as	 the	 tissues	 affected	 by	

these,	is	illustrated	and	organized	

according	 to	 the	 localization	 of	

the	 mutated	 protein:	 (a)	 inner	

nuclear	 membrane,	 (b)	 nuclear	

lamina,	 and	 (c)	 outer	 nuclear	

membrane	 components.	 EDMD:	

Emery-Dreifuss	 Muscular	

Dystrophy,	 HGPS:	 Hutchinson-

Gilford	Progeria	Syndrome,	CMT:	

Charcot-Marie-Tooth	 Disease,	

ADLD:	 Autosomal	 Dominant	

Leukodystrophy.		

Extracted from:  Nuclear 

envelopathies: a complex LINC 

between nuclear envelope and 

pathology (Janin et al., 2017)	
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3.3 Lamins	

Lamins	are	the	major	components	of	the	nuclear	lamina	(NL).	The	NL	is	a	

protein	meshwork	underlying	the	inner	aspect	of	the	inner	nuclear	membrane	

known	 to	 serve	 as	 major	 structural	 component	 of	 the	 nucleus	 (Figure	 5).	

Lamins	provide	a	platform	for	the	binding	proteins	and	chromatin.	They	have	

varied	roles	 in	 the	cell,	 implicated	 in	nuclear	mechanical	stability,	 chromatin	

organisation,	 DNA	 repair/replication,	 transcription,	 mediating	 cellular	

signalling	and	cytoskeletal	interactions.		

	

	

	

Figure	5:	Schematic	diagram	of	the	nuclear	envelope	(NE)	organization.	NE	is	composed	
by	an	outer	nuclear	membrane	(ONM)	and	an	 inner	nuclear	membrane	(INM)	 joining	at	 the	
nuclear	 pore	 complexes.	 Inserted	 into	 the	NE,	 integral	 proteins	MAN-1,	 SUNs,	 Emerin,	 LBR,	
LAP2,	 Nesprins	 display	 various	 interactions	 connecting	 the	 nucleoskeleton	 to	 the	
cytoskeleton.	



	

	 38	

3.3.1 Structure	and	genetics	determinants	of	lamin	proteins	

Lamins	are	the	only	intermediated	filaments	located	in	the	nucleus.	As	all	

intermediate	 filaments	 proteins,	 they	 possess	 an	 α-helical	 coiled-coil	 central	

rod	 domain,	 composed	 of	 heptad	 repeats	 of	 amino	 acids,	 bordered	 by	 a	

globular	amino-terminal	“head”	domain	and	a	carboxyl-terminal	“tail”	domain.	

This	latter	comprises	an	(Ig)-like	domain	and	a	nuclear	localization	sequence	

(Dhe-Paganon	et	al.,	2002;	Frangioni	and	Neel,	1993;	Krimm	et	al.,	2002;	Parry	

et	al.,	1986).		

After	being	processed,	lamins	form	coiled-coil	dimers	(Aebi	et	al.,	1986)	

that	interact	longitudinally	thought	head-tail	association	to	form	a	long	polar	

polymer	 that	 can	 further	 assemble	 laterally	 forming	 10nm	 intermediate	

filament	 proteins	 (Fisher	 et	 al.,	 1986;	 McKeon	 et	 al.,	 1986;	 Goldman	 et	 al.,	

1986).	Recent	studies	are	however	challenging	this	view	and	described	lamins	

as	 being	 3.5nm	 filaments	 (Harapin	 et	 al.,	 2015;	 Turgay	 et	 al.,	 2017).	 This	

controversy	would	need	further	clarification.	

Based	on	their	sequences	and	structural	properties	nuclear	lamins	can	be	

separated	 in	 two	 types:	 A-type	 and	 B-type	 lamins	 (Gerace,	 L,	 1978),	 which	

form	two	separated	filaments	networks.	A-type	lamins	are	expressed	in	most	

differentiated	 somatic	 cells	 (Dechat	 et	 al.,	 2010)	 while	 B-type	 lamins	 are	

constitutively	 expressed.	 In	mammals	 three	 genes	 encode	 for	 lamins:	LMNA,	

LMNB1	 and	LMNB2.	LMNA	 is	 located	 to	 chromosome	1q21.2	 (Wydner	 et	 al.,	

1996),	 it	encodes	for	A-type	lamins,	which	major	isoforms	are	lamin	A	and	C	

(Lin	and	Worman,	1993).	These	proteins	are	identical	for	their	first	566	amino	

acids	 and	 vary	 in	 their	 carboxyl	 terminal	 tails	 due	 to	 alternative	 splicing.	

Lamins	are	synthesized	as	precursors	that	are	post-translationally	processed	

(Beck	et	al.,	1990;	Dhe-Paganon	et	al.,	2002;	Farnsworth	et	al.,	1989;	Maske	et	

al.,	2003;	Nigg	et	al.,	1992;	Varela	et	al.,	2005).	Minor	A-type	lamins	isoforms	

have	 been	 described	 such	 as	 lamin	 C2	 and	 lamin	 AΔ10	 (Nakajima	 and	 Abe,	
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1995).	 The	most	 abundant	 B-type	 lamins	 are	 lamin	 B1	 and	 B2	 respectively	

encoded	by	LMNB1	 and	LMNB2,	 both	being	constitutively	expressed.	LMNB2	

encodes	also	lamin	B3	by	alternative	splicing,	which	is	restricted	to	the	male	

germ	line	(Burke	and	Stewart,	2013;	Gruenbaum	et	al.,	2005).		

	

3.3.2 Functional	roles	of	lamin	proteins	

A. Nuclear	envelope	support	

The	 nuclear	 envelope	 (NE)	 is	 a	 porous	 interface	 that	 separates	 the	

nucleus	 and	 the	 cytoplasm	 in	 eukaryotic	 cells	 (Aaronson	 and	 Blobel,	 1975;	

Watson,	 1955).	 Structurally	 this	 lipid	 bilayer	 consist	 in	 an	 outer	 nuclear	

membrane	(ONM)	and	an	 inner	nuclear	membrane	(INM)	both	enclosing	the	

perinuclear	 space	 but	 joining	 at	 sites	 occupied	 by	 nuclear	 pore	 complexes	

(NPCs).	 NPCs	 are	 protein-based	 channels	 controlling	 the	 movement	 of	

molecules	 form	 the	 nucleus	 to	 the	 cytoplasm	 and	 vice	 versa.	 INM	 and	ONM	

despite	 having	 continuous	 border	 they	 present	 several	 structural	 and	

functional	differences.		

The	ONM	is	continuous	with	the	endoplasmic	reticulum	membrane	and	

shares	 some	 functions	 and	 structural	 features	 (Hetzer,	 2010).	 Despite	 the	

continuity	 between	 this	 two	 membranes	 ONM	 contains	 several	 specific	

nuclear	envelope	transmembrane	proteins	(NETs)	essential	for	the	interaction	

with	 the	 cytoskeleton	 (Crisp	 et	 al.,	 2006;	 Starr	 and	 Fridolfsson,	 2010;	 Gant	

Luxton	 and	 Starr,	 2014).	 The	 INM	 interacts	 with	 the	 nucleoplasm	 through	

more	 than	 100	 NETs.	 Among	 all	 these	 proteins	 some	 are	 implicated	 in	 the	

assembling	of	nuclear	factors	that	regulate	transcription,	cell	division	and	DNA	

repair	 (Starr,	2011).	 In	 a	 general	point	of	 view	 INM	and	 its	 associated	NETs	

have	two	main	roles,	the	interaction	NE-chromatin	and	the	interaction	NE-NL	

(Czapiewski	et	al.,	2016)	(Figure	5).	The	interaction	between	the	NE	and	the	
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NL	 started	 to	 be	 studied	 for	 their	 roles	 during	 mitosis	 (Moir	 et	 al.,	 2000;	

Panorchan	et	 al.,	 2004)	but	have	been	demonstrated	 to	be	 implicated	 in	 the	

maintaining	 of	 normal	 nuclear	morphology	 and	 its	 composition	 (Gundersen	

and	Worman,	2013).	As	structural	components	of	the	NL,	A-type	lamins	confer	

viscosity	 and	 stiffness,	 while	 B-type	 lamins	 confer	 elasticity	 to	 the	 nucleus	

(Lammerding	et	al.,	2006;	Pajerowski	et	al.,	2007).	In	addition	to	that,	different	

mutations	 of	 lamins	 induce	 misshapen	 nuclei,	 nuclear	 pore	 clustering,	

mislocalisation	 of	 NETs	 and	 aberrant	 intranuclear	 foci,	 demonstrating	 the	

important	 role	played	by	 lamins	 in	 structural	 the	 structural	nuclear	 support	

(Broers	et	al.,	2004;	Lammerding	et	al.,	2004;	Sullivan	et	al.,	1999).		

	

B. Lamin	and	chromatin	

NL	participates	in	chromatin	organization,	DNA	repair	and	transcriptional	

regulation.	

	

Chromatin	organization	

Lamins	can	organize	and	regulate	chromatin	position	within	the	NE.	They	

can	 interact	 in	a	direct	or	 indirect	manner	 (via	 lamin-binding	proteins)	with	

the	 chromatin	 (Camozzi	 et	 al.,	 2014;	 Gruenbaum	 and	 Foisner,	 2015;	

Perovanovic	 et	 al.,	 2016).	 These	 dynamic	 interactions	 are	 essential	 to	 guide	

the	spatial	folding	of	the	chromosomes	(depending	on	the	cell	cycle	state)	and	

do	not	occur	 in	all	 cell	 types	 identically	 (Guelen	et	al.,	2008;	Therizols	et	al.,	

2014).	 The	 direct	 interaction	 between	 lamins	 and	 chromatin	 occurs	 via	

specific	genomic	regions	called	lamina-associated	domains	(LADs).	Contrarily	

indirect	 interactions	 can	 take	 place	 thanks	 to	 two	 families	 of	 INM	 integral	

proteins:	LEM	domain	proteins	 family	and	Lamin	B	receptor	proteins	 family.	

LEM	 domain	 proteins	 family	 is	 composed	 by:	 LAP2,	 emerin	 and	 MAN	 1	
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domain,	characterized	by	a	40	residues	segment	that	interacts	the	Barrier-to-

Autointegration	 Factor	 proteins	 (BAF).	 BAF	 proteins	 bind	 to	 double	 strand	

DNA	 and	 histones	 (Zheng	 et	 al.,	 2000).	 Through	 interactions	 with	 BAF	

proteins,	 LEM	 proteins	 contribute	 to	 the	 tethering	 of	 genomic	 regions	 to	

nuclear	periphery,	connecting	interphase	chromosomes	to	the	nuclear	lamina,	

thereby	intervening	in	global	nuclear	organization.	It	is	interesting	to	note	that	

there	 is	 a	 90%	 overlap	 between	 the	 LEM	 associated	 regions	 and	 LADs,	

suggesting	 that	 LEM	 proteins	 may	 contribute	 to	 LAD	 establishment	 or	

maintenance	 (Barton	 et	 al.,	 2014,	 2015).The	 function	 of	 LEM	 proteins	 and	

their	 interactions	 with	 BAF	 and	 lamins	 are	 highly	 conserved	 through	

evolution,	suggesting	their	essential	role	in	scaffolding	the	NE.		

Lamin	 B	 receptor	 proteins	 (LBR)	 are	 another	 family	 of	 INM	 integral	

proteins	 that	 contribute	 to	 the	 interactions	 of	 the	 nuclear	 lamina	 with	 the	

chromatin.	 These	 proteins	 bind	 to	 lamin	 B	 and	 chromatin	 during	 some	 cell	

phases	(Olins	et	al.,	2010).	Their	terminal	domains	give	them	their	two	main	

functions.	The	N-terminal	domain	tethers	chromatin	to	the	nuclear	periphery,	

thus	 contributing	 to	 the	 shape	 of	 interphase	 nuclear	 architecture,	while	 the	

transmembrane	 domains	 exhibit	 sterol	 reductase	 activity	 (Nikolakaki	 et	 al.,	

2017).	

	

DNA	repair	

A-type	lamins	are	implicated	in:	1)	the	recruitment	of	the	cell	repair	factor	

p53-binding	protein	(Liu	et	al.,	2005;	Varela	et	al.,	2005),	2)	in	the	protection	

against	DNA	damaging	agents	inducing	single	or	double-stranded	breaks	(Liu	

et	al.,	2005;	Masi	et	al.,	2008;	Richards	et	al.,	2011),	 	3)	 in	the	control	of	ROS	

production	and	the	sensitivity	to	oxidative	stress	(Richards	et	al.,	2011)	4)	 in	

the	regulation	of	Sirtuin	6	(SIRT6)	activities	(Ghosh	et	al.,	2015)	and	5)	in	the	

regulation	of	DNA	repair	foci	positional	stability	(Mahen	et	al.,	2013).	
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Mutations	 on	 A-type	 lamins	 have	 been	 associated	 with	 defective	 DNA	

repair.	 The	 progeria	 Zmpste24−/−	 mouse	 model	 presents	 increased	 DNA	

damage,	 chromosome	 aberrations	 and	 higher	 sensitivity	 to	 DNA-damaging	

agents.	 In	 addition	 to	 that,	 the	 recruitment	 of	 some	 implicated-DNA-repair-

proteins	 as	 Rad51	 or	 53p	 binding	 protein	 1(53BP1)	 is	 impaired	 due	 to	 the	

mutation	 (Liu	et	al.,	2005).	Not	only	 the	 recruitment	of	 the	53BP1	 is	altered	

but	all	the	stress	signalling	pathway	marked	by	an	upregulation	of	p53	target	

genes	 inducing	 a	 delayed	 checkpoint	 response	 and	 defective	 DNA	 repair	

(Varela	et	al.,	2005;	Masi	et	al.,	2008).	Contrarily	the	absence	of	lamin	leads	to	

53BP1	 degradation	 by	 the	 proteasome,	 showing	 its	 important	 role	 in	 the	

repair	 control	 (Gonzalez-Suarez	 et	 al.,	 2009).	 The	 absence	 of	 lamin	 induces	

slowed	double	strands	breaks,	with	non-homologous	end	joining	(Redwood	et	

al.,	2011).			

The	defects	of	DNA	repair	 can	also	be	highlighted	 in	Zmpste24−/−	mouse	

model	by	an	 increased	 sensitivity	 to	γ-irradiation	 (80%	of	 the	KO	mice	died	

compared	to	the	20%	of	the	WT)(Liu	et	al.,	2005).	In	fibroblasts	caring	the	A-

type	lamin-R527H	mutation,	the	impairment	of	DNA	repair	was	evidenced	by	

an	 increased	 chromosome	 damage	 and	 the	 higher	 percentage	 of	 residual	 g-

H2AX	 foci	 (corresponding	 to	 unrepaired	 DNA-damage	 sites)	 (Masi	 et	 al.,	

2008).	 The	 fibroblast	 studies	 also	 showed	 an	 aberrant	 accumulation	 of	

Xeroderma	Pigmentosum	group	A	(XPA),	a	unique	nucleotide	excision	repair	

protein	 (Liu	 et	 al.,	 2008)	 being	 partially	 responsible	 of	 the	 DNA	 repair	

deficiencies.	

	

	

Transcription	regulation	

Nuclear	 lamins	 can	modulate	 gene	 expression	by	direct	 interaction	with	

chromatin	 or	 by	 sequestrating	 transcriptional	 regulators	 at	 the	 nuclear	

periphery	 (Andrés	 and	 González,	 2009;	 Reddy	 et	 al.,	 2008).	 During	 cells	
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differentiation,	several	genes	located	in	LADs	move	away	the	NL	and	become	

activated	 or	 towards	 the	 NL	 being	 repressed	 (Therizols	 et	 al.,	 2014).	

Nevertheless	different	studies	showed	that	the	NL	is	not	essential	for	this	gene	

repression	but	rather	increases	the	robustness	of	the	repression	(Yáñez-Cuna	

and	 van	 Steensel,	 2017).	 In	 addition	 to	 that	 nuclear	 lamin	 can	 inhibit	 RNA	

polymerase	II	activity,	(Spann	et	al.,	2002).		

Lamins	also	 interact	with	some	 transcriptional	 regulators.	A-type	 lamins	

have	been	 shown	 to	 interact	with	Rb,	Gcl,	Mok2,	 cFos,	 and	 Srebp1,	 affecting	

gene	expression	either	by	a	sequestration	of	these	factors	or	by	influencing	the	

assembly	of	core	transcriptional	complexes	(González	et	al.,	2008;	Kumaran	et	

al.,	2002;	Malhas	et	al.,	2009).		
	

C. Mediating	nucleo-cytoskeletal	connections	

Interactions	with	 the	 cytoskeleton	 are	 essential	 for	 some	 of	 the	 nuclear	

lamin	 functions:	 nuclear	 positioning,	 nuclear	 shape	 and	 mechanosensing	

(Chang	 et	 al.,	 2015).	 These	 interactions	 involve	 proteins	 located	 in	 the	 INM	

and	 in	 the	ONM	among	which	KASH	 (Klarsicht,	 ANC-1,	 and	 Syne	 homology)	

and	SUN	(Sad1	and	UNC-84)	proteins,	which	form	the	linker	of	nucleoskeleton	

and	 cytoskeleton	 termed	 the	 LINC	 complex	 (Crisp	 et	 al.,	 2006;	 Gant	 Luxton	

and	Starr,	2014;	Starr	and	Fridolfsson,	2010).		

Carboxyl	 terminus	 of	 A-type	 lamins	 interact	 with	 the	 LINC	 complex	 via	

SUN	proteins	in	the	nucleoplasm	(Crisp	et	al.,	2006;	Haque	et	al.,	2006).	SUN-

proteins	are	located	in	the	INM	and	are	encoded	by	SUN1	to	SUN5,	being	SUN1	

and	SUN2	the	main	isoforms.	SUN-proteins	bind	through	the	perinuclear	space	

to	 KASH	 proteins	 interacting	 with	 cytoskeleton.	 The	 mammalian	 KASH	

proteins	also	called	nesprins	are	located	in	the	ONM,	they	are	encoded	by	four	

different	 genes:	 SYNE1,	 SYNE2,	 SYNE3	 and	 SYNE4.	 Among	 all	 the	 isoforms	
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obtained	 by	 alternative	 splicing	 nesprin	 1α	 and	 nesprin	 2β	 interact	 with	

lamins	(and	emerin).		

In	 mutant	 cells	 lacking	 lamin	 A,	 the	 mobility	 of	 the	 SUN	 proteins	 is	

increased,	proving	that	lamin	A	plays	a	role	in	anchoring	SUN	proteins	to	INM	

(Östlund	et	al.,	2009).	 In	addition	 to	 that,	during	development	B-type	 lamins	

play	 a	 role	 in	 SUN	 proteins	 anchoring	 (Chang	 et	 al.,	 2015).	 Other	 groups	

confirmed	 this	 anchoring	 function,	 reporting	 instability	 of	 TAN	 lines	 in	 cells	

lacking	lamin	A	and	nuclear	migrations	defects	in	cells	with	a	weakened	SUN-

lamin	 interaction	 (Bone	 et	 al.,	 2014;	 Folker	 et	 al.,	 2011).	 Other	 factors	 also	

contribute	 to	 the	 SUN	 proteins	 anchoring	 because	 some	 cellular	 models	

lacking	lamin	present	a	normal	SUN	protein	localization	(Chang	et	al.,	2015).		

	

D. Mediating	cellular	signaling	pathways	

For	almost	20	years	now,	it	is	known	that	proteins	of	the	NL	can	modulate	

different	 signalling	 pathways	 due	 to	 their	 interactions	 with	 chromatin,	

cytoskeleton,	 LINC	 complex...	 These	 pathways	 have	 shown	 to	 be	 defective	

(altered/increased/decreased)	 in	 different	 laminopathies,	 explaining	 the	

important	 role	 of	 lamins.	 A-type	 lamins	 are	 involved	 in	 signalling	 pathways	

affecting	 cell	 growth,	 survival,	 migration	 and	 differentiation,	 including	

mitogen-activated	protein	kinase	(MAPK)	and	mammalian	target	of	rapamycin	

(mTOR)	pathways	(Andrés	and	González,	2009;	Bakay	et	al.,	2006;	Muchir	et	

al.,	2007a,	2007b).		

More	 detailed	 signalling	 pathways	 implicated	 in	 LMNA-cardiomyopathy	

are	described	in	4.1.		
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The	 use	 of	 animal	 models	 has	 allowed	 a	 better	 understanding	 of	 these	

signalling	 pathways	 and	 has	 opened	 perspectives	 for	 new	 therapeutic	

approaches.		

	

3.4 	Animal	models		

To	gain	 insight	 in	 the	striated	muscle	 laminopathies,	different	knock-out	

(KO),	knock-in	(KI)	and	transgenic	mouse	models	have	been	developed.		

While	 the	 use	 of	 KO	 mouse	 models	 are	 essential	 for	 the	 functional	

understanding	 of	 lamins,	 KI	 and	 transgenic	 mouse	 models	 allowed	 to	

understand	the	pathology	and	tissue	specificity.	All	the	actual	striated	muscle	

mouse	models	 are	presented	 in	 table	 4	 and	only	 the	 striated	muscle	Lmna-

models	are	described	below.	

	

3.4.1 KO	mouse	model	

The	first	animal	model	created	was	the	Lmna	KO	mouse	(Lmna-/-).	Even	if	

there	are	no	reported	cases	of	human	lacking	lamin	A/C	(except	an	individual	

with	 haploinsuficiency	 of	 LMNA	 and	 foetus	 that	 died	 in	 gestation	 with	 an	

homozygous	 premature-stop-codon),	 this	 mouse	 model	 has	 been	 pivotal	 to	

determine	 the	 A-type	 lamins	 roles	 (Bonne	 et	 al.,	 1999;	 van	 Engelen	 et	 al.,	

2005;	 Muchir	 et	 al.,	 2003).	 This	 model	 has	 been	 one	 of	 the	 most	 used	 to	

understand	 the	 mechanics	 of	 lamins.	 Lmna-/-	 mice	 present	 a	 dilated	

cardiomyopathy	 with	 conductions	 defects	 and	 skeletal	 myopathy	 similar	 to	

the	 one	 observed	 in	 patients	 with	 Emery-Dreifuss	 Muscular	 Dystrophy	

(Sullivan	et	al.,	1999).	 	Lmna-/-	mice	at	only	2	weeks	of	age	present	 important	

growth	defects	 and	a	 reduced	 lifespan	dying	between	6	and	8	weeks	of	 age.	

The	heterozygous	mice	do	not	present	any	symptoms	at	early	age	but	develop	
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atrio-ventricular	 conduction	 defects	 with	 atrial	 and	 ventricular	 arrhythmias	

(Wolf	et	al.,	2008).	However,	 even	 if	 this	model	was	considered	as	 “null”	 for	

many	 years,	 it	 was	 shown	 that	 the	mice	 express	 a	 truncated	 form	 of	 Lmna	

(deletion	 of	 exons	 8	 to	 11).	 The	 protein	 was	 detected	 at	 really	 low	 levels	

(mRNA	and	protein)	but	could	act	as	a	toxic	molecule	(gain-of-function)	or	as	

an	hypoactive	protein	(loss-of-function)	explaining	the	phenotype	observed	in	

this	mice	(Jahn	et	al.,	2012).	Three	KO	mice	were	latter	developed:	the	LmnaGT-

/-	mice	(Kubben	et	al.,	2011)	the	Lmna	Δ/Δ	(Kim	and	Zheng,	2013)	and	the	Zp3-

Lmna	 (Solovei	et	al.,	2013).	The	mice	present	severe	growth	retardation	and	

cardiac	developmental	defects,	myocytes	hypertrophy	and	have	a	reduced	life	

expectancy.	They	highlighted	the	implication	of	lamins	in	muscle	development	

after	 birth	 (Kubben	 et	 al.,	 2011;	Kim	 and	 Zheng,	 2013;	 Solovei	 et	 al.,	 2013).	

While	 the	 use	 of	 KO	 mouse	 models	 are	 essential	 for	 the	 functional	

understanding	 of	 lamins,	 the	 KI	 and	 transgenic	 mouse	 model	 allowed	 to	

understand	the	instauration	of	the	pathology	and	its	tissue	specificity.		

	

3.4.2 KI	and	transgenic	mouse	model	

The	KI	 and	 transgenic	mouse	were	developed	 	 from	mutations	 found	 in	

patients	 with	 different	 Emery-Dreifuss	 Muscular	 Dystrophy.	 Two	 KI	 mouse	

models	were	 developed	 almost	 simultaneously.	 Arimura	 et	al	 developed	 the	

LmnaH222P/H222P,	created	from	a	mutation	found	in	patients	with	classical	forms	

of	 EDMD.	 This	 model	 is	 characterized	 by	 a	 dilated	 cardiomyopathy	 with	

conductions	 defects	 and	 a	 progressive	 skeletal	 impairment	 leading	 to	 a	

premature	death	between	6	to	9	months	for	male	and	7	to	13	for	females.	The	

cardiomyopathy	 is	 characterized	 by	 a	 left	 ventricular	 enlargement	 with	 a	

reduced	 fractional	 shortening	 and	 conductions	 defects	 with	 frequent	

sinoatrial	 blocks	 and	 ventricular	 extrasystoles	 (Arimura	 et	 al.,	 2005).	 The	

LmnaH222P/H222P	 mouse	 model	 has	 been	 really	 useful	 to	 study	 the	 altered	
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signalling	pathways	(presented	below).	The	skeletal	phenotype	had	been	less	

explored	in	those	mice	but	similar	signalling	pathways	are	altered.	Mounkes	et	

al	 developed	 the	 LmnaN195K/N195K	 mouse	 model,	 created	 from	 a	 missense	

mutation	 found	 in	patients	with	dilated	cardiomyopathy.	The	mice	present	a	

cardiac	 phenotype	 but	 no	 signs	 of	 skeletal	 muscle	 impairment.	 The	

cardiomyopathy	 is	 more	 severe	 than	 the	 one	 observed	 in	 LmnaH222P/H222P	

mouse,	and	its	accompanied	by	arrhythmias	responsible	of	a	premature	death	

at	3	months	of	age	(Mounkes	et	al.,	2005).	Wang	et	al	developed	the	LmnaM371K	

transgenic	mouse	model.	This	mutated	lamin	alters	development	that	explains	

the	increased	prenatal	loss	and	induces	a	severe	cardiac	phenotype	that	leads	

to	a	premature	death	at	2	to	7	weeks	(Wang	et	al.,	2006).		

Bertrand	 et	 al	 developed	 a	 KI	 mouse	 model	 harbouring	 a	 LMNA-CMD;	

LmnaΔK32/ΔK32.	 This	 model	 exhibits	 altered	 striated	 muscle	 maturation	 and	

severe	 metabolic	 defects	 leading	 to	 a	 premature	 death	 at	 2	 weeks	 of	 age.	

Lamin	 proteins	 expression	 is	 reduced	 and	 delocalized,	 showing	 that	 the	

localization	 of	 lamins	 could	 be	 important	 for	 tissue	maturation	 (Bertrand	 et	

al.,	 2012).	 The	 heterozygous	 LmnaΔK32/+	 mice	 do	 not	 present	 any	 initial	

phenotype	with	metabolic	defects	and	die	between	10	and	20	months	of	age.	

Nevertheless	 these	mice	presented	a	 cardiac	phenotype	caused	by	 the	 lamin	

A/C	haploinsufficiency	(Cattin	et	al.,	2013).	

The	B-type	mouse	models	develop	different	laminopathies	such	as	Pelger-

Huët	anomaly,	HEM-Greenberg	skeletal	dysplasia	and	ichthyosis	reflecting	the	

important	 role	of	 lamin	B	 in	development.	However	 these	models	no	do	not	

present	 a	pathological	muscular	phenotype	 (Cohen	et	 al.,	 2008;	 Shultz	 et	 al.,	

2003).		
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Model	 Features	 Reference	
Lmna	models	 	

KO	 Lmna	-/-	 EDMD	and	DCM-CD	 (Sullivan	et	

al.,	1999)	

C.KO	 LmnaGT-/-	 Cardiomyocyte	hypertrophy,	skeletal	muscle	
hypotrophy	and	metabolic	defects.	

(Kubben	et	

al.,	2011)	

C.KO	 LmnaΔ/Δ	 Cardiomyocyte	hypertrophy,	skeletal	muscle	
hypotrophy	and	metabolic	defects.	

(Kim	and	

Zheng,	

2013)	C.KO	 Zp3-Lmna	 Cardiomyocyte	hypertrophy,	skeletal	muscle	
hypotrophy	and	metabolic	defects.	

(Solovei	et	

al.,	2013)	

KI	 LmnaH222P/H222P	 AD-EDMD	and	DCM-CD		 (Arimura	et	

al.,	2005)	
KI	 LmnapN195K/pN19

5K	

DCM-1A	-CD		 (Mounkes	

et	al.,	2005)	
Tr	 Lmnap.M371K/p.M37

1K	

EDMD	and	DCM	 (Wang	et	al.,	

2006)	KI	 LmnaΔK32/ΔK32	 L-CMD,	defective	skeletal	and	cardiac	muscles	
maturation	and	metabolic	defects.		

(Bertrand	et	

al.,	2011)	

KI	 LmnaΔK32/+	 DCM	 (Cattin	et	

al.,	2013)	
KI	 LmnaL530P/L530P	 Progeroid	syndrome	with	growth	retardation	

and	heart	underdevelopment	and	degeneration.		
(Mounkes	

et	al.,	2003)	

Emd	models	

KO	 Emd	-/-	 Muscle	regeneration	defects	 (Melcon	et	

al.,	2006)	KO	 Emd	-/-	 Motor	coordination	abnormalities,	atrio-
ventricular	conduction	defects	

m	

(Ozawa	et	

al.,	2006)	

KASH	models	

KO	 Δ/Δ	KASH	 DCM-CD	 (Puckelwa
rtz	et	al.,	
2010)	

	

Table	4:	Mouse	models	for	laminopathies.	
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4. Cellular	and	molecular	alterations	of	cardiomyopathies:	

special	focus	on	LMNA-cardiomyopathy.	

4.1 	Altered	signalling	pathways	in	LmnaH222P/H222P	and	therapeutic	

approaches	

The	 use	 of	mouse	models	with	 cardiac	 defects	 due	 to	LMNA	mutations	

allows	 a	 better	 understanding	 of	 the	 pathology	 and	 improves	 the	 future	

treatments	 perspectives.	 The	 cardiac	 genome-wide	 RNA	 expression	 analysis	

performed	by	Muchir	et	al,	on	LmnaH222P/H222P	mouse	revealed	an	alteration	in	

several	signalling	pathways	(Muchir	et	al,	2007).	

	

4.1.1 MAP	Kinase	signalling	

Mitogen	activated	protein	kinase	(MAPK)	are	a	highly	conserved	family	of	

serine/threonine	 protein	 kinases	 and	 are	 ubiquitously	 expressed	 signalling	

cascades,	 which	 transduce	 signal	 such	 as	 extracellular	 mitogens,	 growth	

factors	and	cytokines	from	the	cell	surface	to	the	nucleus.	MAPKs	are	involved	

in	 a	 variety	 of	 fundamental	 cellular	 processes	 such	 as	 proliferation,	

differentiation,	motility,	stress	response	and	survival.	Most	common	members	

of	 MAPKs	 family	 include	 the	 extracellular	 signal-regulated	 kinase	 1	 and	 2	

(Erk1/2	 or	 p44/42),	 the	 c-Jun	 N-terminal	 kinases	 1-3	 (JNK1-3)/	 stress	

activated	protein	kinases	(SAPK1A,	1B,	1C),	the	p38	isoforms	(p38α,	β,	γ,	and	

δ),	and	Erk5.		

After	 the	 extracellular	 stimuli	 (mitogens,	 cytokines,	 growth	 factors,	 or	

environmental	stressors)	 there	 is	an	activation	of	at	 least	one	of	 the	MAPKK	

kinases	 (MAPKKKs)	 via	 receptor-dependent/independent	mechanisms.	 Then	

MAPKKK	phosphorylates	and	activates	a	downstream	MAPK	kinase	(MAPKK),	

which	in	turn	phosphorylates	and	activates	MAPKs.	Activation	of	MAPKs	lead	
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to	 the	 phosphorylation	 and	 activation	 of	 specific	 MAPK-activated	 protein	

kinases	(MAPKAPKs)	that	amplifies	the	signal	and	mediates	the	broad	range	of	

biological	processes	regulated	by	the	different	MAPKs.	(Kim	and	Choi,	2010).	

Alterations	 on	 the	 MAPKs	 pathway	 lead	 to	 severe	 cellular	 problems.	

Muchir	 et	 al,	 reported	 an	 hyperactivation	 of	 MAPK	 signalling	 pathway,	

opening	a	new	 field	of	 therapeutic	possibilities	 for	 laminopathies	 (Muchir	et	

al.,	 2007b).	 Since	 this	discovery,	 a	 deeper	understanding	of	 the	 alteration	of	

this	 signalling	 pathway	 was	 done	 revealing	 an	 abnormal	 p38α	 signalling	

(Muchir	et	al.,	2012)	an	the	direct	effect	of	ERK	½	on	CTGF/CNN2	expression	

(Chatzifrangkeskou	 et	 al.,	 2016)	 helping	 to	 understand	 the	 molecular	

signalling	alterations	of	the	LMNA-cardiomyopathy.	

Nowadays	different	pharmacological	 inhibitors	of	 the	different	actors	of	

this	 pathway	 have	 been	 used	 as	 therapeutic	 approaches	 to	 alleviate	 the	

cardiac	 symptoms	 in	 LMNA-cardiomyopathy.	 Firstly	 a	 MEK	 ½	 selective	

inhibitor,	then	a	JNK	inhibitor	and	the	combination	of	both	in	LmnaH222P/H222P
	

mice,	 was	 shown	 to	 prevent	 left	 ventricular	 dilation	 and	 deterioration	 in	

cardiac	 contractility,	 to	 decrease	 the	 cardiac	 fibrosis	 and	 to	 prolong	 the	

lifespan(Muchir	et	al.,	2012)	(Muchir	et	al.,	2009,	2010;	Wu	et	al.,	2011).	The	

pharmacological	 inhibition	 of	 the	 p38α	 has	 shown	 beneficial	 effects	 on	 the	

cardiac	function	allowing	the	first	clinical	trial	in	the	disease,	despite	no	major	

effects	 on	 cardiac	 fibrosis.	 These	 studies	 suggest	 that	 MAPKs	 pathways	

inhibition	 might	 constitute	 future	 therapeutic	 targets	 for	 the	 treatment	 of	

muscle-affected	laminopathies.		
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4.1.2 TGF-	β	signalling		

Transforming	 growth	 factor-β	 (TGF-β)	 superfamily	 signalling	 is	 one	 of	

the	 main	 regulators	 of	 cell	 growth,	 differentiation,	 and	 development.	 The	

signalling	 pathways	 are	 initiated	 by	 ligand-induced	 oligomerization	 of	

serine/threonine	 receptor	 kinases	 and	 a	 phosphorylation	 of	 the	 Smad2	 and	

Smad3	 (cytoplasmic	 signalling	 molecules),	 which	 could	 induce	 activation	 of	

two	 different	 pathways,	 the	 TGF-β/activin	 pathway,	 or	 Smad1/5/9	 for	 the	

bone	 morphogenetic	 protein	 (BMP)	 pathway.	 The	 phosphorylation	 of	 the	

Smads	 leads	 to	 a	 partnering	with	 the	 common	 signalling	 transducer	 Smad4,	

and	 translocation	 to	 the	 nucleus.	 The	 regulation	 of	 the	 different	 biological	

processes	 is	 done	 by	 the	 activated	 Smads	 via	 interactions	 with	 different	

transcription	factors.		

In	the	LmnaH222P/H222P	mouse,	the	presence	of	fibrosis	and	an	increase	of	

TGF-β	signalling	were	reported	(Arimura	et	al.,	2005).	This	signalling	pathway	

has	 been	 also	 reported	 to	 be	 altered	 in	 lipodystrophies	 caused	 by	 LMNA	

mutations	 (Le	 Dour	 et	 al.,	 2017a).	 Pharmacological	 inhibition	 of	 the	 TGF-β	

type	I	receptor	kinase	in	the	LmnaH222P/H222P	mouse	model	reduced	myocardial	

fibrosis,	 reduced	 left	 ventricular	 diameters	 and	 increased	 left	 ventricular	

fractional	shortening	(Chatzifrangkeskou	et	al.,	2016).		

	

4.1.3 Wnt-	β	catenin	signalling	

Wnt	signalling	encompasses	multiple	and	complex	signalling	cascades	and	

is	 involved	 in	many	 developmental	 processes	 such	 as	 tissue	 patterning,	 cell	

fate	specification,	and	control	of	cell	division.	(Logan	and	Nusse,	2004).	When	

Wnt	 is	 absent	 the	 β-Catenin	 suffers	 different	 posttranslational	modifications	

that	 induce	 its	 degradation	 in	 the	 proteasome.	 When	 Wnt	 is	 present,	 the	

interactions	with	different	proteins	allow	the	accumulation	of	β-Catenin	in	the	
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cytoplasm	 and	 its	 translocation	 to	 the	 nucleus.	 Β-catenin	 nuclear	 import	

induces	the	activation	of	Wnt	target	genes	(MacDonald	et	al.,	2009).	

Wnt	 signaling	 has	 been	 reported	 to	 be	 altered	 in	 mouse	 models	

presenting	 skeletal	 and	 cardiac	 muscle	 alterations	 as	 progeroid	 syndromes	

but	 also	 in	 patients	with	LMNA-cardiomyopathy	 (Hernandez	 et	 al.,	 2010;	 Le	

Dour	et	al.,	2017b).		

	

4.1.4 AKT/mTOR	signalling		

mTOR	 (target	 of	 rapamycin	 (Laplante	 and	 Sabatini,	 2012))	 is	 a	

serine/threonine	protein	kinase	that	belongs	to	the	phosphoinositide	3-kinase	

(PI3K)-related	 kinase	 family	 and	 interacts	 with	 several	 proteins.	 The	

AKT/mTOR	 pathway	 responds	 to	 diverse	 environmental	 stimuli	 (growth	

factors,	 aminoacids,	 oxygen,	 stress…)	 and	 is	 acutely	 sensitive	 to	 rapamycin.	

AKT/mTOR	 pathway	 controls	 many	 processes	 that	 generate	 or	 use	 large	

amounts	 of	 energy	 and	 nutrients.	 Its	 main	 roles	 are	 the	 regulation	 of	 cell	

growth	 and	 proliferation.	 The	 AKT/mTOR	 signalling	 pathway	 has	 also	 been	

identified	as	 implicated	 in	the	development	of	LMNA	cardiomyopathy.	 It	was	

reported	 to	 be	 hyperactivated	 in	 two	 different	 mouse	 models	 (in	

LmnaH222P/H222P	and	Lmna-/-	mice)	with	alteration	of	the	autophagic	response.	

The	inhibition	of	the	AKT/mTOR	signalling	via	rapamycin	enhances	the	heart	

function	of	the	LMNA	mutants	and	blocks	molecular	cardiac	remodelling	(Choi	

et	 al.,	 2012;	 Ramos	 et	 al.,	 2012).	 However,	 ATK	 being	 part	 of	 the	 equation,	

other	treatments	inhibiting	both	ERK1/2	and	AKT	pathways	were	performed	

in	 these	studies	but	did	not	 improve	cardiac	 function	(Choi	et	al.	2012).	The	

exact	mechanism	by	which	defects	 in	A-type	 lamins	 lead	 to	dysregulation	of	

ERK1/2	and	AKT	pathways,	remain	unknown.		
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Figure	6:	 Altered	signalling	pathways	in	skeletal	muscle	laminopathies.		Recapitulation	
of	 currently	 described	 signalling	 pathways	 implicated	 in	 the	 skeletal	 muscle	 laminopathies	
and	(under	grey	shadow)	recapitulation	of	other	possible	proteins	implicated	in	this	signalling	
pathways	that	has	already	been	described	in	other	pathologies.	

	

4.2 Other	therapeutical	approaches			

4.2.1 Oxidative	stress		

Reactive	oxygen	species	(ROS)	are	produced	as	a	result	of	normal	cellular	

metabolism	mediating	various	 cellular	 responses	 including	cell	proliferation,	

differentiation,	 gene	 expression	 and	 migration.	 However,	 at	 high	

concentrations,	 ROS	 produce	 adverse	 modifications	 to	 proteins,	 lipids	 and	

DNA.	 In	normal	conditions,	 the	cell	 can	control	 this	over-production	with	an	

antioxidant	 protection	 system	 composed	 by	 enzymes	 as	 catalase	 (CAT),	

superoxide	 dismutase	 (SOD),	 glutathione	 peroxidase	 (GPX)	 and	 non-
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enzymatic	systems	as	glutathione	(GSH)	and	vitamins.	Oxidative	stress	reflects	

an	 imbalance	 between	 systemic	 manifestation	 of	 ROS	 and	 the	 ability	 of	 a	

biological	system	to	readily	detoxify	the	reactive	intermediates	or	to	repair	the	

resulting	 damage.	 The	 3	 majors	 ROS	 are	 superoxide	 anion	 (O2−),	 hydroxyl	

radical	(OH),	and	hydrogen	peroxide	(H2O2)	(Birben	et	al.,	2012).	They	can	be	

produced	by	different	enzymes	such	as	the	NADPH	oxidase	 family	expressed	

in	 most	 mammalian	 cells.	 ROS	 generated	 by	 NADPH	 oxidases	 have	 crucial	

roles	 in	 various	 physiological	 processes,	 including	 innate	 immunity,	

modulation	 of	 redox-dependent	 signalling	 cascades,	 and	 as	 cofactors	 in	 the	

production	of	 hormones	 (Drummond	et	 al.,	 2011).	The	 accumulation	of	ROS	

induces	different	modifications	of	DNA	as	degradation	of	 single	bases,	 single	

or	 double-stranded	 DNA	 breaks,	 mutations	 and	 can	 alter	 gene	 expression	

through	 epigenetic	 (via	 DNA-methylation)	 or	 genetic	 mechanisms	 (via	 the	

activation	 of	 redox	 sensitive	 factors	 as	 Rb,	 p53,	 FoxO	 and	NFκB)	 (Allen	 and	

Tresini,	2000).	

Oxidative	 stress	 is	 highly	 relevant	 in	 many	 pathological	 conditions	

including	 cancer,	 neurological	 disorders,	 cardiomyopathies,	 laminopathies…	

(Birben	 et	 al.,	 2012;	 Sieprath	 et	 al.,	 2012,	 2015).	 Excessive	 accumulation	 of	

ROS	 has	 been	 reported	 in	 pathologies	 induced	 by	 LMNA	 mutations	 as	

lipodystrophies	 (Caron	 et	 al.,	 2007a;	 Verstraeten	 et	 al.,	 2009),	 amyotrophic	

quadricital	 syndrome	 (Charniot	 et	 al.,	 2007),	HGPS	 	 (Viteri	 et	 al.,	 2010)	 and	

AD-EDMD	 (Pekovic	 et	 al.,	 2011).	 ROS	 accumulation	 can	 be	 explained	 by	 an	

altered	DNA	repair	due	to	mutated	lamins	or	an	altered	signalling	mechanism	

having	 a	 secondary	 effect	 on	 the	 over-production	 of	 ROS.	 Reducing	 the	

excessive	 accumulation	 of	 ROS	 has	 been	 successfully	 used	 as	 treatment	 in	

progeria	(Richards	et	al.,	2011).	Same	type	of	treatment	has	also	been	used	in	

inherited	cardiomyopathies	(Dludla	et	al.,	2017;	Wilder	et	al.,	2015).	

	

	



	

	 55	

Targets	of	redox	signaling	in	the	heart		
Target Mecanism Reference 

Ca2+/Calmodulin
-Dependent	
Kinase	II	 

Intersubunit	autophosphorylation	at	Thr-287	within	the	
autoinhibitory	domain,	preventing	its	reassociation	with	
the	catalytic	domain	and	sustaining	kinase	activity	even	
when	Ca2+	levels	decline		

(Hudmon	and	
Schulman,	
2002)	

cAMP-
Dependent	
Protein	Kinase	A	
(PKA) 

Regulated	through	the	formation	of	2	interprotein	
disulfides	in	the	regulatory	R1α	subunits 

(Brennan	et	
al.,	2006)	

cGMP-
Dependent	
Protein	Kinase	G	
(PKG)	 

Allosteric	binding	of	cGMP	activates	the	kinase.	PKG1α	
can	be	oxidized	to	form	an	intermolecular	disulfide	
between	its	2	Cys42	residues	within	the	dimerization	
domain,	activating	the	enzyme	independently	of	the	NO-
cGMP	pathway	

(Burgoyne	et	
al.,	2007)	

RyR2 Normally	phosphoregulated	by	PKA	and	CaMKII.		
It	can	be	subject	to	cysteine	thiol	oxidation	

(Xu	et	al.,	
1998)	

SERCA2a 

Normally	regulated	by	phospholamban	can	be	
phosphorylated	by	PKA	or	CaMKII.		
Complex	regulation:	low	oxidative	stress	induces	the	
activation	of	SERCA,	however	high	concentration	of	
oxidative	stress	inhibits	SERCA.		Other	post-translational	
modifications	can	also	be	regulated	by	ROS	like	S-
gluthathionylation	or	sulfination	regulating	its	activity.		

(Zima	and	
Blatter,	2006)	

NCX	 
Normally	phosphoregulated	by	PKA	and	PKC	but	is	also	
redox	modulated	via	direct	oxidation	of	sensitive	
cysteines.	 

(White	et	al.,	
2009)	

Histones	
deacetylases 

Histone	acetylation	promotes	and	deacetylation	inhibits	
gene	expression,	these	processes	being	regulated	by	
histone	acetyltransferases	and	histone	deacetylases	
(HDACs),	respectively. 

(Ago	et	al.,	
2008)	

Glyceraldehyde	
3-phosphate	
dehydrogenase	
(GAPDH) 

Catalytic	thiol	is	subject	to	reversible	and	irreversible	
forms	of	inhibitory	oxidation.	The	protein	can	be	S-
nitrosylated	to	trigger	nuclear	translocation	and	
apoptosis	

(Eaton	et	al.,	
2002)	

Table	5:	Recapitulation	of	the	main	cardiac	targets	of	redox	signalling.		

	

4.2.2 Calcium	imbalance	

Calcium	homeostasis	 is	essential	 for	 cardiac	 function	and	main	calcium	

regulators	are	summarised	in	table	6	Different	alterations	on	the	expression	

of	calcium	channels	and	their	regulators	have	been	reported	to	be	involved	in	

the	development	of	dilated	cardiomyopathies.	Mutations	on	phospholamban,	

the	 main	 ventricular	 regulator	 of	 the	 SERCA2a	 pump,	 are	 one	 of	 the	 main	
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causes	 of	 familial	 dilated	 cardiomyopathy	 (Mestroni	 et	 al.,	 2014).	 In	 what	

LMNA-cardiomyopathy	 is	 concerned,	 no	 calcium	 alterations	 have	 been	

reported	to	the	date.	Nevertheless,	a	genome-wide	RNA	Array	study	reported	

an	 important	 alteration	 of	 the	 genes	 encoding	 for	 sarcolipin	 and	 L-type	

channels,	suggesting	a	possible	dysregulation	of	 the	calcium	balance	(Muchir	

et	 al.,	 2007b).	 In	 addition,	 Arimura	 et	 al	 used	 Ca2+	 sensitizers	 to	 treat	 the	

LmnaH222P/H222P	 mouse	 model,	 reporting	 an	 improved	 systolic	 dysfunction,	

prolonged	life	expectancy	and	decreased	cardiac	interstitial	fibrosis	(Arimura	

et	al.,	2010).	Calcium	sensitizers	are	molecules	 that	modulate	 the	contractile	

force	without	inducing	any	change	in	the	calcium	transient.		

Although	 the	 underlying	 mechanism	 remains	 unknown,	 the	 beneficial	

effects	of	the	treatment	suggest	that	the	Ca2+	sensitizers	could	be	an	option	for	

preventing	the	progression	of	LMNA	cardiomyopathy	and	the	putative	roles	of	

calcium	in	the	development	of	the	pathology	need	further	investigation.	

	 Function	 Gene	 Regulated	by	 Location	 Size	

L-type	
channel	

Allows	the	entrance	of	
Ca2+	from	the	extracellular	

medium	to	the	
intracellular	medium	
(initiates	E-C	coupling	
inducing	the	CICR)	

CACNA1,	
CACNB2,	
CACNA2D	

Membrane	
depolarisation	
and	Calmodulin	

(CaM)	

Sarcolemma	
(specially	in	T-

tubules)	

430	
KDa	

NCX1	

Allows	the	extrusion	of	
the	cytosolic	Ca2+	helping	
in	the	relaxation	(ending	

the	E-C	coupling)	

SLC8A1	
Na+,	Ca2+,	protons,	

PIP2	,	PKA,	
exogenous	agents	

Sarcolemma	 110	
KDa	

RyR2	 Responsable	of	
intracellular	Ca2+	release	 RYR2	

L-type	channels,	
Ca2+,	Mg2+,PKA,		
FKBP12	and	12.6,		
CaM,	CaMKII,	CSQ,	

triadin	and	
junctin	

SR	membrane	

>2	MDa	
(each	
subunit	
is	>550	
kDa	)	

SERCA2a	

Responsable	of	
translocation	of	Ca2+		from	
the	cytosol	into	the	SR	

lumen	

ATP2A2	 phospholamban	
and	sarcolipin	 SR	membrane	 115	

KDa	

Table	6:	Main	calcium	cardiac	channels.	
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4.3 Sarco(endo)plasmic	 reticulum	 calcium	 ATPase	 and	 its	

inhibitors		

The	 sarco(endo)plasmic	 reticulum	 Ca2+-ATPase	 (SERCA)	 	 is	 an	 essential	

Ca2+handling	 protein	 implicated	 in	 the	 relaxation	 of	 the	 muscle	 via	 the	

recapture	of	the	cytosolic	Ca2+(Møller	et	al.,	2010).	In	cardiomyocytes,	SERCA2	

is	responsible	for	the	removal	of	70-90%	of	Ca2+	from	the	cytosol,	depending	

of	the	species	(Milani-Nejad	and	Janssen,	2014).	This	process,	coupled	to	other	

Ca2+	 transport	 mechanisms,	 allows	 for	 cardiac	 muscle	 relaxation	

(diastole)(Bers,	 2002).	 The	 mutations	 of	 the	 genes	 encoding	 the	 different	

SERCA	isoforms	lead	to	a	variety	of	pathologies	(Hovnanian,	2007;	Lipskaia	et	

al.,	2014)	highlighting	their	 important	role	 in	normal	cardiac	 function.	 In	the	

heart,	 the	 major	 isoform	 is	 the	 SERCA2a	 and	 its	 dysregulation	 has	 been	

described	as	a	major	 contributing	 factor	 for	 the	progression	of	heart	 failure.	

SERCA2a	constitutes	a	therapeutic	target	of	interest	and	clinical	trials	aiming	

at	promoting	its	activity	have	been	performed	for	more	than	a	decade	(Kho	et	

al.,	2011;	Park	and	Oh,	2013;	Shareef	et	al.,	2014).		

SERCA2a	 is	 a	 993	 amino	 acid	 protein	 composed	 by	 a	 transmembrane	

domain	 and	 a	 large	 cytoplasmic	 head.	 The	 transmembrane	 domain	 contains	

the	high	affinity	sites	where	the	Ca2+	 ions	bind	for	the	transport	towards	the	

SR.	This	 transmembrane	domain	 is	 composed	of	 several	α-helices	connected	

with	 three	 cytosolic	 domains.	 These	 three	 domains	 are:	 the	 ATP	 binding	N-

domain,	 the	 P-domain	 that	 gets	 phosphorylated	 by	 the	 γ-phosphate	 of	 ATP,	

and	the	A-domain	that	coordinates	the	de-phosphorylation	(Toyoshima	et	al.,	

2000).	 SERCA2a	 transports	 two	 Ca2+	 ions	 across	 SR	 membrane	 by	

interconverting	between	high	(E1)	and	low	(E2)	ion-affinity	states.	During	E1	

state	 two	 ions	bind	to	 the	high	affinity	sites	(I	and	 II)	 that	open	towards	 the	

cytosol.	Then,	movements	of	the	cytosolic	domains	driven	by	ATP	hydrolysis,	

phosphorylation	and	dephosphorylation	change	the	affinity	of	the	Ca2+	binding	
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sites	 for	 directional	 transfer	 of	 Ca2+	 into	 the	 SR	 lumen	 and	 lead	 to	 the	

formation	 of	 the	 Ca2+-free	 state	 (E2).	 The	 kinetics	 cycle	 of	 SERCA	 are	

represented	in	Figure	6.B,	(extracted	from	Shaikh	et	al.	2016).	SERCA2a	can	be	

regulated	 by	 post-translational	 modification	 (summarised	 in	 table	 7),	

hormones	 like	 thyroid	 hormones	 (Trivieri	 et	 al.,	 2006)	 or	 adiponectin	

(Altamirano	et	al.,	2015),	miRNAsm	like	miR-22	(Gurha	et	al.,	2012)	or	miR-25	

(Wahlquist	et	al.,	2014)	and	by	different	proteins	presented	below.		

Post-translational	modification	of	SERCA	
Modification	 Effect	 Ref	

Glutathiolation	
	

It	 leads	 to	 an	 enhanced	 SERCA	 activity,	 which	
augments	the	Ca2+	influx.	

(Adachi	et	al.,	2004;	Tong	
et	al.,	2008;	Lancel	et	al.,	
2009)	

Oxidative	 stress	 can	 inhibit	 permanently	 this	
post-translational	modification.	

(Jardim-Messeder	et	al.,	
2012)	

Nitration	

Its	 role	 is	 not	 well	 elucidated.	 The	 nitration	 of	
the	 SERCA	 pump	 has	 been	 observed	 in	 failing	
hearts,	 hypothesizing	 a	 possible	 pathological	
role	of	it.	

(Ide	et	al.,	1999;	Viner	et	
al.,	1999;	Nakamura	et	
al.,	2002;	Lokuta	et	al.,	
2005;	Tang	et	al.,	2010)	

SUMOylation	

It	 promotes	 contractile	 properties	 and	 reduces	
pressure	overload	in	failing	hearts.	SUMOylation	
has	 been	 hypothesized	 as	 a	 cardioprotective	
post-translation	modification.	

(Kho	et	al.,	2011,	2015)	

Acetylation	

It	leads	to	an	alter	Ca2+	influx.	The	acetylation	of	
the	 SERCA	 pump	 has	 been	 prominently	
observed	 in	 failing	 hearts,	 hypothesizing	 a	
possible	pathological	role	of	it.		

(Foster	et	al.,	2013)	

This	post-translation	modification	is	reversed	by	
(SIRT1)	deacetylase	

(Kho	et	al.,	2011)	

Glycosylation	

It	 reduces	 the	 activity	 of	 SERCA2a	 and	 Ca2+	
efflux.	 This	 post-translational	 modification	
susceptible	 to	 occur	 at	 elevated	 glucose	 levels	
possibly	 being	 implicated	 in	 the	 relationship	
between	diabetes	and	heart	failure.	

(Clark	et	al.,	2003;	
Bidasee	et	al.,	2004;	
Ballal	et	al.,	2010)	

O-GlcNAcylation	 is	 the	 most	 studied	 SERCA	
glycosylation	 due	 to	 its	 link	 to	 different	
pathologies	 such	 as	 aging,	 ischemia	 and	 heart	
failure.	 This	 regulation	 can	 be	 done	 directly	 or	
indirectly,	altering	PLN	phosphorylation.		

(Hu	et	al.,	2005;	Zachara	
and	Hart,	2006;	Young	et	
al.,	2007;	Fülöp	et	al.,	
2008;	Champattanachai	
et	al.,	2008;	Watson	et	al.,	
2010;	Bennett	et	al.,	
2013)	

Table	7:	SERCA	post-translation	modifications.	
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Sarcolipin	(SLN)	and	phospholamban	(PLN)	are	the	two	major	inhibitors	

of	 SERCA2a.	 They	 present	 similar	 structures	 and	 the	 same	 function.	

Nevertheless,	their	expression	pattern	and	their	mode	of	inhibition	are	not	the	

same.	 In	 the	heart,	 in	normal	 conditions,	 SLN	 is	 expressed	predominantly	 in	

the	atria	contrarily	to	PLN	mostly	expressed	in	the	ventricles.	In	pathological	

conditions	this	expression	pattern	can	be	altered.	

4.3.1 Phospholamban	

A. Structure	

Phospholamban	 (PLN)	 is	 a	 52-aminoacid	 protein	 organised	 in	 three	

domains:	 two	 cytosolic	 domains	 Ia	 and	 Ib	 and	 one	 transmembrane	 domain	

(Figure	7A).	Two	phosphorylation	sites	are	located	in	the	Ia	domain	(residues	

1-20)	in	control	of	PLN	activity:	Serine16	(Ser16),	phosphorylated	by	PKA	and	

Threonine17	(Thr17)	phosphorylated	by	Ca2+/CaM	kinase	(Simmerman	et	al.,	

1986).	 The	 cytosolic	 domain	 Ib	 is	 rich	 in	 amidated	 amino	 acids	 and	 is	

responsible	of	the	interaction	with	SERCA	(Asahi	et	al.,	2001).	The	domain	II	

(residues	 31-52)	 is	 composed	 of	 nonpolar	 and	 hydrophobic	 amino	 acids,	

forming	a	transmembrane	helix	(Jones	et	al.,	1985).		

Five	 PLN	 can	 assemble	 by	 parallel	 packing	 into	 pentamers,	 either	

monomers	or	pentamers	can	interact	via	the	transmembrane	domain	with	the	

SERCA	pump	(Oxenoid	and	Chou,	2005).		

B. 	SERCA	inhibition	

PLN	 inhibits	 SERCA	 activity	 by	 decreasing	 Ca2+	 affinity	 at	 its	 two	 Ca2+	

binding	sites	(I	and	II)	located	in	the	transmembrane	domain.	Phosphorylation	

of	PLN	at	Ser16	and	Thr17	partially	reverses	PLN	induced	alterations	in	Ca2+	

affinity,	increasing	contractility	(Akin	et	al.,	2013).	PLN	can	exclusively	link	to	

SERCA	and	decrease	the	Ca2+	affinity	through	direct	effects	on	the	Ca2+	binding	
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sites	(Jones	et	al.,	2002).		

C. Pathological	implication	

Alterations	 on	 PLN	 protein	 can	 lead	 to	 dilated	 and	 hypertrophic	

cardiomyopathies.	 The	 dilated	 cardiomyopathies	 due	 to	 PLN	 mutations	 are	

characterized	 by	 an	 early	 onset	 of	 the	 pathology	 with	 increased	 chamber	

dimensions,	 decreased	 contractile	 function	 at	 age	 20	 to	 30	 years,	 and	

progression	 to	 heart	 failure	within	 5	 to	 10	 years	 after	 symptom	 onset.	 The	

congestive	heart	failure	can	be	severe	needing	a	cardiac	transplantation.	The	

hypertrophic	cardiomyopathy	is	rarer	than	the	dilated	cardiomyopathy	and	its	

exclusively	due	to	mutations	in	the	promotor	of	the	PLN	(Haghighi	et	al.,	2003,	

2006,	2008;	Medin	et	al.,	2007;	Minamisawa	et	al.,	2003;	Schmitt	et	al.,	2003;	

Chiu	 et	 al.,	 2007).	 Different	 therapeutic	 strategies	 are	 being	 developed	 to	

regulate	 the	 activity	 of	 the	 protein,	 e.g.	 protein	 interacting	 RNAs	 and	 XNAs	

(oligonucleotide	analog)	(Soller	et	al.,	2016).		

	

4.3.2 Sarcolipin:	

A. Structure	

Sarcolipin	is	a	type	I	integral	protein	composed	by	31	amino-acids.	These	

31	residues	 form	three	different	domains:	a	hydrophobic	N-terminal	domain	

located	 in	 the	 cytoplasm	 (residues	 from	 1	 to	 7),	 a	 single	 transmembrane	

domain	 (residues	 from	 8	 to	 26)	 and	 a	 luminal	 C-terminal	 domain	 (residues	

from	27	to	31)(Figure	7A)	(Wawrzynow	et	al.,	1992;	Odermatt	et	al.,	1997).	

The	N-terminal	domain	contains	 two	possible	phosphorylation	sites:	 serine4	

(Ser4)(in	 mice)	 and	 threonine5	 (Thr5)(in	 all	 mammals),	 (Bhupathy	 et	 al.,	

2009;	Shanmugam	et	al.,	2015);	the	transmembrane	domain	contains	residues	

involved	 in	 inhibitory	 function	 (Odermatt	 et	 al.,	 1998)	 and	 the	 C-terminal	

domain	 is	 essential	 for	 its	 retention	 in	 the	 SR	 and	 assures	 SERCA	 inhibition	
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(Gramolini	 et	 al.,	 2004;	 Hughes	 et	 al.,	 2007;	 Gorski	 et	 al.,	 2013)	 RSYQY	

residues	 are	 conserved	 in	 all	 species	 located	 in	 the	 C-terminal	 domain	

assuring	 the	 regulating	 role	 of	 sarcolipin	 (Gorski	 et	 al.,	 2013).	 The	

transmembrane	 domain	 presents	 84%	 homology	 with	 the	 PLN	 sequence	

suggesting	similar	linking	to	the	SERCA	pump.	

As	PLN,	SLN	can	be	found	as	a	monomer	or	as	a	pentamer.	SLN	monomers	

link	 to	 SERCA	 but	 can	 also	 self-associate	 into	 dimers	 and	 higher	 order	

oligomer	in	the	absence	of	SERCA	(Autry	et	al.,	2011;	Cao	et	al.,	2016).	

B. SERCA	inhibition	

Different	studies	showed	that	SLN	inhibits	SERCA	by	lowering	Ca2+	affinity	

and	 decreasing	 its	 maximal	 activity	 (Vmax).	 The	 inhibition	 is	 done	 via	 an	

interaction	with	SERCA	 in	 the	E1	and	E2	 states,	 indicating	 that	 contrarily	 to	

PLN	its	inhibition	is	not	reversed	at	high	calcium	concentrations	(Figure	7B)	

(Tupling	et	al.,	2002;	Babu	et	al.,	2006;	Hughes	et	al.,	2007;	Sahoo	et	al.,	2013;	

Shaikh	 et	 al.,	 2016;	 Sahoo	 et	 al.,	 2015).	 The	 regulatory	 effect	 of	 SLN	 can	 be	

reversed	by	β-adrenergic	 response	 (Babu	et	al.,	2006;	Bhupathy	et	al.,	2007,	

2009).		

PLN	and	SLN	can	occupy	the	same	 interaction	site	with	SERCA	(Asahi	et	

al.,	 2003b),	 nevertheless	 there	 is	 no	 competition	 between	 the	 two	 proteins.	

SLN	can	bind	directly	 to	PLN	preventing	 its	polymerization	 inducing	a	super	

inhibitory	effect	of	PLN	to	SERCA	(Asahi	et	al.,	2002;	Vangheluwe	et	al.,	2005).		

C. Sarcolipin	a	thermogenic	regulator	

SLN	 plays	 an	 important	 role	 in	 muscle	 thermogenesis	 and	 metabolism.	

SLN	 inhibition	 induces	ATP	hydrolysis	and	decreases	Ca2+	 transport	 into	 the	

SR	is	due	to	‘slippage’	of	Ca2+	back	to	the	cytosol.	In	the	presence	of	SLN,	more	

ATP	needs	to	be	hydrolysed	by	SERCA	to	transport	the	released	Ca2+	than	in	

the	absence	of	 it.	Although	 in	vitro	 the	presence	of	SLN	leads	to	an	increased	
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heat	 level	 consistent	with	 the	ATP	hydrolysis	 its	 specific	 role	 is	 still	 unclear	

(Smith	 et	 al.,	 2002;	 Mall	 et	 al.,	 2006;	 Sahoo	 et	 al.,	 2013).	 In	 vivo	 Bal	 et	 al	

reported	 that	 SLN	 is	 necessary	 for	 muscle-based	 thermogenesis	 due	 to	 the	

incapacity	of	Sln-/-	mice	to	maintain	their	body	temperature	when	challenged	

to	acute	cold,	suggesting	a	role	of	SLN	in	the	non-shivering	thermogenesis	(Bal	

et	al.,	2012).		

SLN	 is	 also	 implicated	 in	 the	 regulation	 of	 whole-body	metabolism	 and	

weight	gain	in	mice	(Bal	et	al.,	2012;	Sahoo	et	al.,	2013;	Maurya	et	al.,	2015).	

The	 regulation	of	muscle	metabolism	and	energy	expenditure	 is	done	via	 its	

cytosolic	 domain	 providing	 resistance	 against	 diet-induced	 obesity	 and	

extreme	cold	(Autry	et	al.,	2016).	Nevertheless	the	mechanism	is	still	unclear	

and	further	work	is	necessary	to	understand	the	detailed	mechanism	by	which	

SLN	regulates	energy	expenditure	in	muscle.		

D. Pathological	implication	

Up-to-date	 no	 SLN	 mutation	 has	 been	 described	 as	 responsible	 of	 any	

human	pathology.	However	its	expression	is	altered	in	different	pathologies	as	

dysferlinopathy,	 atrial	 fibrillation,	 obesity	 and	 EDMD	 (Shanmugam	 et	 al.,	

2011;	 Vittorini	 et	 al.,	 2007;	 Voit	 et	 al.,	 2017).	 The	 studies	 in	 animal	models	

showed	that	mutations	or	dysregulation	of	SLN	can	contribute	to	contractility	

defects.	 The	 overexpression	 of	 SLN	 leads	 to	 a	 decreased	 cardiomyocyte	

contractility	 and	decreased	 calcium	 transient	 (Asahi	 et	 al.,	 2004;	Babu	et	 al.,	

2005).			
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Figure	 7:	 Localisation,	 composition	 and	 function	 of	 SERCA,	 phospholamban	 and	
sarcolipin.	A.	Schematic	localisation	on	the	proteins	in	the	sarcoplasmic	reticulum	and	amino	
acid	 sequence	 representation.	 B.	 Illustration	 of	 Ca2+	 transport	 recycling	 in	 cardiac	 muscle.	
Interaction	 of	 SERCA,	 phospholamban	 and	 sarcolipin.	 E1	 and	 E2	 are	 the	 two	 possible	
configurations	of	SERCA.	E1	has	a	high	Ca2+	affinity,	while	E2	has	a	low	affinity.		
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Chapter	2:	Results		

This	chapter	is	composed	by	two	peer-reviewed	articles.	

N-acetyl	 cysteine	 alleviates	 oxidative	 stress	 and	 protects	 mice	 from	 dilated	

cardiomyopathy	caused	by	mutations	in	nuclear	A-type	lamins	gene	.	

Blanca	 Morales	 Rodríguez#,	 Lara	 Khouzami#,	 Valérie	 Decostre,	 Shaida	 Varnous,	 Vanja	

Pekovic-Vaughan,	Christopher	J.	Hutchison,	Françoise	Pecker,	Gisèle	Bonne,	Antoine	Muchir	

	
This	 first	 article	 focuses	 on	 the	 role	 played	 by	 oxidative	 stress	 in	

development	of	LMNA	 cardiomyopathy	and	the	possible	 therapeutic	strategy	

based	 in	 the	 reestablishment	 of	 normal	 glutathione	 levels	 by	 a	 N-acetyl	

cysteine	treatment.		

	

Activation	 of	 sarcolipin	 expression	 links	 mutations	 in	 A-type	 lamins	 genes	 to	

cardiomyopathy	

Blanca	Morales	Rodríguez,	Aurore	Besse,	Nathalie	Mougenot,	Florence	Lefebvre,	Jean-Pierre	

Benitah,	 Ana-María	 Gómez,	 Véronique	 Briand,	 Philippe	 Beauverger,	 Gisèle	 Bonne,	 Antoine	

Muchir	

	
This	 second	 article	 focuses	 on	 the	 role	 played	 by	 sarcolipin,	 in	

development	 of	 LMNA	 cardiomyopathy	 and	 the	 consequences	 of	 its	 over-

expression	in	intracellular	calcium	homeostasis.	
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N-acetyl	cysteine	alleviates	oxidative	stress	and	protects	mice	from	

dilated	cardiomyopathy	caused	by	mutations	in	nuclear	A-type	

lamins	gene		

(Published	in	Human	Molecular	Genetics,	June	2018)	

		

Introduction	

LMNA	cardiomyopathy	is	characterized	by	left	ventricular	dysfunction	and	

dilatation,	 conduction	 defects,	 arrhythmias,	 often	 leading	 to	 heart	 failure-

related	disability.	There	 is	currently	no	 treatment	 for	LMNA	cardiomyopathy	

and	heart	transplantation	is	often	the	last	therapeutic	option.	Oxidative	stress	

has	 been	 described	 in	 different	 cardiac	 pathologies	 as	 an	 important	

contributor	of	 the	disease	progression.	However,	whether	oxidative	 stress	 is	

altered	 in	 dilated	 cardiomyopathy	 caused	 by	 mutations	 in	 nuclear	 A-type	

lamins	gene	remains	unknown.	

	

Objectives	of	the	study	

The	 aim	 of	 this	 study	 was	 to	 determine	 the	 possible	 implication	 of	

oxidative	stress	in	the	progression	of	LMNA	cardiomyopathy.	

	

Materials	and	methods	

To	 determine	 the	 implication	 of	 oxidative	 stress	 in	 the	 LMNA	

cardiomyopathy	progression,	we	have	used	the	LmnaH222P/H222P	mouse	model.	

We	 have	 analyzed	 several	 oxidative	 stress	 markers	 (protein	 carbonylation,	

NADPH	 oxidases,	 antioxidant	 proteins)	 in	 hearts	 from	 LmnaH222P/H222P	mice.	

To	 test	 a	 new	 therapeutic	 approach,	 we	 have	 studied	 the	 effect	 of	 N-acetyl	

cysteine	 (glutathione	 precursor)	 on	 left-ventricular	 function	 and	 fibrosis	 of	

LmnaH222P/H222P	mice.		
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Results	

We	 showed	 that	 LMNA	 cardiomyopathy	 was	 associated	 with	 altered	

oxidative	 stress	 characterized	 by	 an	 imbalance	 between	 the	 ROS	 producers	

and	the	antioxidant	systems.	Particularly,	we	observed	a	decreased	expression	

of	 the	 key	 cellular	 antioxidant:	 the	 glutathione.	 We	 next	 treated	

LmnaH222P/H222P	 mice	 with	 N-acetyl	 cysteine,	 a	 glutathione	 precursor,	

administered	 orally	 for	 one	month.	 Decreasing	 cardiac	 oxidative	 stress,	 this	

treatment	led	to	an	improvement	of	left	ventricular	structure	and	function,			

	

Impact	

In	 conclusion,	 our	 experiments	 demonstrate	 a	 novel	 contributory	

mechanism	 for	 LMNA	 cardiomyopathy	 triggered	 by	 oxidative	 stress	 and	

impaired	 antioxidant	 protection.	 Because	 N-acetyl	 cysteine	

pharmacodynamics	 and	 absence	 of	 toxicity	 are	 well	 established,	 our	 work	

supports	 further	 studies	 on	 humans	 to	 begin	 to	 evaluate	 the	 therapeutic	

benefits	of	lowering	oxidative	stress	and	assessing	the	benefit	of	such	therapy	

in	 cardiomyopathy.	 Overall,	 our	 work	 points	 toward	 clinically	 relevant	 N-

acetyl	cysteine	as	a	possible	 future	treatment	option	for	patients	with	LMNA	

cardiomyopathy	in	addition	to	standard	therapy.	
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ABSTRACT 

Cardiomyopathy caused by lamin A/C gene (LMNA) mutations (hereafter referred as 

LMNA cardiomyopathy) is an anatomic and pathologic condition associated with muscular 

and electrical dysfunction of the heart, often leading to heart failure-related disability. 

There is currently no specific therapy available for patients that target the molecular 

pathophysiology of LMNA cardiomyopathy. We showed here an increase in oxidative 

stress levels in the hearts of mice carrying LMNA mutation, associated with a decrease of 

the key cellular antioxidant glutathione. Oral administration of N-acetyl cysteine (NAC), a 

glutathione precursor, led to a marked improvement of glutathione content, a decrease in 

oxidative stress markers including protein carbonyls and an improvement of left 

ventricular structure and function in a model of LMNA cardiomyopathy. Collectively, our 

novel results provide therapeutic insights into LMNA cardiomyopathy. 

 

Keywords  

LMNA, A-type lamins, cardiomyopathy, oxidative stress, glutathione, N-acetyl cysteine 
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INTRODUCTION  

Dominant mutations in the gene encoding nuclear A-type lamins (LMNA) cause 

dilated cardiomyopathy with conduction system disease (LMNA cardiomyopathy) (1,2). 

LMNA cardiomyopathy is characterized by conduction defects, arrhythmias, left 

ventricular dysfunction and dilation, often leading to heart failure-related disability (3-5). 

LMNA cardiomyopathy can be associated with muscular dystrophy (Emery-Dreifuss 

muscular dystrophy (EDMD) and the limb-girdle muscular dystrophy type 1B 

(LGMD1B)) (5). The management of the cardiac disease consists in controlling arrhythmia 

and conduction defects by implantation of a defibrillator as patients are at high risk of 

sudden cardiac death (3). This limits the progression of heart failure, but eventually 

patients require heart transplantation. There are currently no effective approaches to treat 

LMNA cardiomyopathy in the clinic. Thus, it is of great importance to clarify its molecular 

mechanisms and to search for potential compound to provide protection against LMNA 

cardiomyopathy.  

In order to study the pathophysiology of LMNA cardiomyopathy and to test possible 

therapeutics, we have developed a mouse model carrying a missense LMNA mutation, 

leading to the substitution of the histidine 222 by a proline (H222P), identified in a family 

with LMNA cardiomyopathy (6). Homozygous mutant (LmnaH222P/H222P) mice develop 

cardiac left ventricular dilation and systolic dysfunction and have a reduced life 

expectancy. We previously identified and studied multiple mechanisms that contribute, in 

part, to the pathophysiology of LMNA cardiomyopathy. These include abnormal regulation 

of the mitogen-activated protein kinase (MAPK) signaling cascade (7,8), altered Wnt/b-

catenin signaling (9), fibrosis (10), AKT/mTOR signaling (11) and calcium handling (12). 

All these signaling mechanisms have been targeted with small-molecule inhibitors in 
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LmnaH222P/H222P mice and all of these interventions have had some beneficial impact. 

However, targeting signaling of each of these pathways alone is not curative (13).  

Searching for alternative ways to slow down the cardiac disease progression, we here 

examined the involvement of oxidative stress in the progression of the cardiac disease in 

LmnaH222P/H222P mice. Recent data point to a relationship between lamin mutations and 

altered reactive oxygen species (ROS) metabolism (14). ROS are small, short lived 

signaling molecules that mediate various cellular responses (15). Excessive accumulation 

of ROS can lead to DNA damage and the build-up of oxidized proteins and lipids. The 

major intracellular sources of ROS are the mitochondria and the NADPH oxidases (NOX). 

To counter the potential damaging effects of ROS, cells have evolved several antioxidant 

systems, including ROS alleviating enzymes like catalase and glutathione peroxidase 

(GPX), as well and non-enzymatic systems comprising glutathione (GSH).  

Herein, we show that the cardiomyopathy in LmnaH222P/H222P mice is associated with 

altered oxidative stress levels and glutathione deficiency. Accordingly, glutathione 

replenishment with N-acetyl cysteine (NAC) treatment reduces cardiac oxidative stress 

injury, and ameliorates contractile dysfunction in LmnaH222P/H222P mice. 

 

RESULTS  

LmnaH222P/H222P mice with cardiac dilatation display increased oxidative stress 

markers 

To explore the role of oxidative stress pathway in the development of dilated 

cardiomyopathy, we studied a mouse model that present a Lmna mutation substituting the 

histidine in position 222 into a proline (6). The male mice develop a progressive contractile 

dysfunction, cardiac remodeling and die by 32-34 weeks of age. Similar features were 
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observed in female LmnaH222P/H222P mice but with a later-onset (6). Lmna p.H222P 

corresponds to a human disease-causing mutation associated with dilated cardiomyopathy 

(16). Given that a consequence of altered ROS metabolism would lead to an aberrant 

cardiac oxidative stress (Figure 1A), we first assessed the steady-state cardiac protein 

carbonylation level in LmnaH222P/H222P mice. We showed that the protein carbonylation 

content was increased in hearts from LmnaH222P/H222P mice compared to wild type mice, 

when the left ventricular function was altered at 6 months of age (symptomatic) (Figure 

1B).  

Since oxidative stress can be triggered by activation of NAPDH oxidases (NOXs), we 

examined NOX2 expression in the hearts of 6-months old LmnaH222P/H222P mice. We 

observed an increased NOX2 protein and mRNA expressions in hearts from 

LmnaH222P/H222P mice compared to wild type mice (Figure 1C, 1D). We also examined 

expression of the antioxidant glutathione peroxidase enzyme 1 (GPX1) involved in the 

detoxification of hydrogen peroxide and lipid peroxide. We showed that GPX1 expression 

was decreased in hearts from LmnaH222P/H222P mice compared to wild type mice (Figure 1C). 

Taken together these results showed that oxidative stress was increased in LMNA 

cardiomyopathy, which is associated with reduced antioxidant protection. 

 

N-acetyl cysteine (NAC) improves cardiac redox homeostasis in LmnaH222P/H222P mice  

Given that antioxidant defense was reduced in the heart from LmnaH222P/H222P mice, we 

tested whether the antioxidant N-acetyl cysteine (NAC), a glutathione precursor, could 

delay the development of left ventricular dysfunction. LmnaH222P/H222P mice were treated 

with NAC (140 mg/kg/day), starting at 6 months of age for 4 weeks duration (Figure 2A). 

We observed that the increased protein carbonylation content was decreased in hearts from 
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NAC-treated LmnaH222P/H222P mice compared to vehicle-treated mice (Figure 2B). Next, we 

showed that the level of key antioxidant glutathione was lowered in LmnaH222P/H222P mice 

compared to wild type mice, which became increased after NAC treatment, both in serum 

(Figure 2C) and the hearts (Figure 2D). We also studied the expression of two mRNAs 

encoding enzymes controlling glutathione metabolism. Gclc mRNA, encoding glutamate-

L-cysteine ligase, a rate-limiting enzyme in glutathione synthesis, and GsR mRNA, 

encoding glutathione reductase, important for maintaining glutathione in a reduced state, 

were both up-regulated by 2- and 13.7-fold, respectively, in the hearts of LmnaH222P/H222P 

mice (Figure 2E). This suggests an increased expression of glutathione genes as an 

adaptive response to counteract an increased oxidative stress in the hearts of 

LmnaH222P/H222P mice. However, we cannot rule out that other mechanisms are acting in the 

pathogenesis of LMNA cardiomyopathy, including a larger alteration of the anti-oxydant 

signaling. Moreover, NAC treatment decreased significantly the expression of both Glclc 

and GsR mRNAs in the hearts of LmnaH222P/H222P mice. These results show that NAC 

treatment is able to restore altered redox homeostasis in LMNA cardiomyopathy. 

 

NAC improves cardiac structure and function and ameliorates fibrosis in 

LmnaH222P/H222P mice  

Cardiac structure and function were then assessed by echocardiography before and 

after 1 month of NAC treatment in different groups of mice. After the treatment, heart size 

and left-ventricular dilatation were reduced in NAC-treated LmnaH222P/H222P mice compared 

with vehicle-treated LmnaH222P/H222P mice (Figure 3A). Compared with the vehicle-treated 

LmnaH222P/H222P mice, the NAC-treated LmnaH222P/H222P mice had significantly decreased of 

left ventricular mass and left-ventricular end systolic diameter (Table 1). NAC treatment 
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showed a beneficial effect on fractional shortening (FS), in LmnaH222P/H222P mice compared 

to vehicle-treated LmnaH222P/H222P mice (Table 1). In addition, we observed a significant 

benefit of the delta FS changes from baseline (ΔFS) in NAC-treated LmnaH222P/H222P mice 

compared to vehicle-treated LmnaH222P/H222P mice (Figure 3B). Hence, treatment with NAC 

for 1 month delayed the development of left-ventricular dilatation and cardiac contractile 

dysfunction in LmnaH222P/H222P mice. It would be of interest to assess the role of NAC 

treatment over a longer period of time on the cardiac function, as well as on the survival of 

LmnaH222P/H222P mice. 

We next hypothesized that reducing oxidative stress in the hearts of LmnaH222P/H222P 

mice would reduce myocardial fibrosis. Indeed, there was a significant reduction of 

myocardial fibrosis in the hearts from LmnaH222P/H222P mice treated with NAC relative to 

vehicle-treated LmnaH222P/H222P mice (Figure 4A, 4B), as evidenced by Sirius Red staining 

of heart sections. All together, these results show that NAC treatment ameliorates cardiac 

structural and functional defects in LMNA cardiomyopathy, which is concomitant with 

restoring cardiac redox balance and antioxidant regulation. 

 

DISCUSSION 

Our current findings indicate that LMNA cardiomyopathy is associated with increased 

oxidative stress and antioxidant glutathione depletion. One-month oral NAC treatment, a 

glutathione precursor, normalized these attributes of the cardiac disease and ameliorated 

the worsening of cardiac dilation and contractile dysfunction in symptomatic 

LmnaH222P/H222P mice. Based on our findings in heart, we need to further assess if abnormal 

oxidative stress is similarly involved in the pathogenesis of skeletal muscular dystrophy in 

the LmnaH222P/H222P mouse model of Emery-Dreifuss muscular dystrophy, and if NAC 
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treatment would be beneficial for the skeletal muscle structure and function.  

There is growing evidence that oxidative stress is linked to LMNA mutations (17,18). 

The precise development of oxidative stress ensuing from LMNA mutations still remains 

unknown. It has been well established that an accumulation of ROS is a direct cause of 

oxidative stress producing lipid peroxidation, DNA and protein oxidative damage, and the 

loss of cells in cardiac diseases (18-20). The implications of oxidative damage and 

antioxidant therapy in cardiac diseases were previously studied (21-24), but this is the first 

demonstration of an antioxidant therapy directed towards LMNA cardiomyopathy.  

How oxidative stress results in cardiac tissue injury in LMNA cardiomyopathy is yet 

to be fully elucidated, but inference can be made from a number of related experimental 

studies. Evidence has linked lamins dysfunction with increased generation of ROS and 

reduced levels of antioxidant enzymes (25). Persistent ROS can oxidize selective 

cysteine residues in lamins, causing alterations in the structure of the nuclear lamina 

(26). The accumulation of ROS could play a role in the increased levels of DNA damage 

and the genomic instability observed in diseases related to mutation in LMNA. This 

notion is supported by the fact that treatment of cells expressing mutated lamins with 

NAC reduces the amount of un-repairable DNA damage (25). In the context of diseases 

caused by LMNA mutations, ROS have been linked with DNA damage (25,26). DNA 

double-strand breaks, induced by ROS, appear not to be repaired properly in cells 

expressing mutated lamins (27). Recent studies have shown that Lmna null cells exhibit 

signs of genomic instability and unrepaired DNA (27). These data indicate that A-type 

lamins deficiency affects the ability of cells to properly repair DNA damage and 

maintain genome integrity. Thus, compounds that reduce the levels of ROS in the cell 

could represent another strategy to reduce genomic instability in lamin-related diseases. 
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In conclusion, our experiments demonstrate a novel contributory mechanism for 

LMNA cardiomyopathy triggered by oxidative stress and impaired antioxidant protection. 

Moreover, we have shown that NAC treatment restores glutathione levels and reduces 

oxidative stress damage in the hearts of LmnaH222P/H222P mice. Because NAC 

pharmacodynamics and absence of toxicity are well established (28), our work supports 

further studies on humans to begin to evaluate the therapeutic benefits of lowering 

oxidative stress and assessing the benefit of such therapy in cardiomyopathy. Overall, our 

work points toward clinically relevant NAC as a possible future treatment option for 

patients with LMNA cardiomyopathy in addition to standard therapy. 

 

MATERIAL AND METHODS 

Animals and experimental design 

Experimental procedures were performed in accordance with European legislation on 

animal experimentation (L358-86/609/EEC). Homozygous knock-in mice carrying the 

Lmna p.H222P mutation (LmnaH222P/H222P) were described previously (6). Six-month-old 

female LmnaH222P/H222P mice were given 1-month oral N-acetyl cysteine (NAC) (Merck; 

140 mg/kg/day) in drinking water and compared to sex- and age-matched vehicle-treated 

LmnaH222P/H222P and wild type (WT) mice. Animals were euthanized at 7 months of age to 

harvest samples. 

 

Echocardiography 

Transthoracic echocardiography was performed by an investigator unaware of the mouse 

genotype or treatment, with an Acuson 128XP/10 ultrasound system and a 10 MHz 

Acuson linear probe (Mountain View). Slight anaesthesia of the mouse at room 
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temperature with 0.5-1% isoflurane in O2 (Abbott Inc) was continuously adjusted to 

maintain heart rate.  

 

Biochemical analyses 

Detection of carbonylated proteins was performed from heart homogenates using Oxyblot 

protein oxidation detection kit (Chemicon International) based on immunochemical 

detection of protein carbonyl groups derivatized with 2,4-dinitrophenyl hydrazine (DNPH). 

Glutathione was measured in heart homogenates and serum, according to a modification of 

Tietze method (29) as previously described (30,31).  

 

RNA isolation and Real-Time PCR analyses  

Total RNA was extracted from frozen hearts using RNeasy Fibrous Tissue kit (QIAGEN). 

Concentration of total RNA was calculated using a NanoDrop ND-1000 spectrophotometer 

(Labtech) and RNA quality was assessed by electrophoresis. cDNA was synthesized using 

SuperScript III First-Strand Synthesis System for RT-PCR (Invitrogen). Mouse primer 

sequences used for transcriptional analyses were as follows: mGclC 5’-

ATCCTCCAGTTCCTGCACAT-3’, 5’-TGTGAATCCAGGGCCTA-3’; mGsR 5’-

ACCACGAGGAAGACGAAATG-3’, 5’-GGTGACCAGCTCCTCTGAAG-3’; mNox2 5’-

GGCTGGGATGAATCTAGGCCAA-3’, 5’-ACTGGTTTCCTGGTGAAAGAGCGG-3’. 

Real-time PCR was carried out on a Light Cycler (Roche Diagnostics), using the 

Quantitest SYBR green kit (QIAGEN) with sense and anti-sense oligonucleotides primers 

for the different genes. Relative levels of mRNA expression were calculated according to 

the ΔCT method (32).  
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Immunoblotting 

Total proteins were isolated from mouse heart tissue in extraction buffer (Cell Signaling) 

with the addition of protease inhibitors (25 mg/ml aprotinin, 10 mg/ml leupeptin, 1 mM 4-

[2-aminoethyl]-benzene sulfonylfluoride hydrochloride and 2 mM Na3VO4). The lysates 

were sonicated (3 pulses of 10s at 30% amplitude) to allow dissociation of protein from 

chromatin and solubilization. Extracts were analyzed by SDS-PAGE using a 10% gel and 

transferred onto nitrocellulose membranes (Invitrogen). Subsequent to washes with Tris-

buffered saline containing 1% Tween 20 (TBS-T), the membranes were blocked in 5% 

bovine serum albumin (BSA) in TBS-T for 1 h at room temperature, then incubated with 

the appropriate antibody overnight at 4°C. The membranes were incubated with 

horseradish peroxidase-conjugated anti-rabbit or anti-mouse antibodies for 1h at room 

temperature. After washing with TBS-T, the signal was revealed using Immobilon Western 

Chemiluminescent HorseRadish Peroxidase (HRP) Substrate (Millipore) on a G-Box 

system with GeneSnap software (Ozyme). Primary antibodies used were rabbit polyclonal 

antibodies that recognize NOX2 (Abcam), GPX1 (Cell Signaling) and GAPDH (Santa 

Cruz).  

 

Histology 

Hearts from mice were fixed in 4% formaldehyde for 48 h, embedded in paraffin, 

sectioned at 5 mm and stained with Sirius Red trichrome. Representative stained sections 

were photographed using a Microphot SA (Nikon) light microscope attached to a Spot RT 

Slide camera (Diagnostic Instruments). Images were processed using Adobe Photoshop CS 

(Adobe Systems).  



	

	 82	

Statistical analyses 

For echocardiographic parameters, results were expressed as median [Q1;Q3]. The 

statistical analyses were performed by comparing the wild type animals and LmnaH222P/H222P 

mice at baseline (6 months) and by comparing the WT mice to the vehicle-treated 

LmnaH222P/H222P mice post-treatment (7 months) and to evaluate the NAC treatment effect 

by comparing the vehicle-treated LmnaH222P/H222P mice and the NAC-treated LmnaH222P/H222P 

mice at 7 months. For each analysis a normality test was performed, followed by a Student 

t-test (for normally distributed data) or Wilcoxon test (for not normally distributed data).  

For echography parameters Student t-test was performed for the heart rate and LVFS 

parameters and a Wilcoxon test was performed for the other parameters. In order to have a 

better understanding of the LVFS% progression for each mice, we analyzed the ΔFS 

(ΔFS=7 months LVFS – 6 months LVFS), a Student test was performed. 

For mRNA expression, statistical analysis was performed in ΔCt and the mRNA 

expression values normalized to the reference gene was graphically represented. The 

results are presented as mean±SEM. The glutathione concentration (serum and heart) and 

fibrosis parameter, results were expressed as median [Q1;Q3]. The statistical analyses were 

performed by comparing the wild type animals and the vehicle-treated LmnaH222P/H222P mice 

and to evaluate the NAC treatment effect by comparing the vehicle-treated LmnaH222P/H222P 

mice and the NAC-treated LmnaH222P/H222P mice. For both analyses, a Student t-test was 

performed for the mRNA expression and glutathione concentration (heart) parameters and 

a Wilcoxon test was performed for glutathione concentration (serum) and fibrosis 

parameter.  

The significance level is taken to 5%. Statistical analyses were conducted using SAS 9.2 

(SAS Institute Inc., USA). 
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TABLES 
 
 
Table 1| Echocardiographic parameters for LmnaH222P/H222P mice treated with NAC. 
 
Genotype WT H222P WT H222P H222P 

Age 6 6 7 7 7 

Treatment none none none vehicle-treated NAC 

n 12 39 12 19 20 

Heart rate (bpm) 523.3 
[509,9;536,9] 

521.7  
[497.9;553,0] 

529.5  
[499,0;579,8]  

535.7  
[517.2;573.4]  

539.0  
[517.2;556,9]  

BW (g) 23  
[22;24,5] 

22  
[21;26] 

24.5  
[24;25,3] 

24  
[22;25] 

23  
[20.8;26] 

IVS (mm) 0.4  
[0.4;0.5] 

0.4  
[0.4;0.5] 

0.4  
[0.4;0.4] 

0.5  
[0.4;0.5]* 

0.4 
[0.4;0.5] 

PW (mm) 0.4  
[0.3;0.4] 

0.4  
[0.4;0.4] 

0.5  
[0.4;0.5] 

0.4  
[0.4;0.5] 

0.4 
[0.4;0.45] 

LVEDD (mm) 3.4  
[2.9;3.5]  

3.7  
[3.45;3.8] ## 

3.2  
[3.1;3.4] 

3.6  
[3.4;3.95]*** 

3.4  
[3.18;3.73] 

LVESD (mm) 2.0  
[1.7;2.2] 

2.6  
[2.3;2.9] ### 

1.9  
[1.9;2] 

2.7 
[2.4;3.1]*** 

2.3 
[2.1;2.7]† 

LVM (mg) 32.09 
[26.63;43.75] 

44.80  
[40.45;49.25] ## 

39.20  
[31.22;42.49] 

46.95 
[44.72;54.12]** 

40.45 
[37.78;45.33]†† 

LVFS (%) 41.311 
[38,49;42.94] 

28.855  
[24.32;33.77] ### 

40.901 
[38.71;43.17]  

25.714 
[20.55;29.18]*** 

32.258 
[26.68;33.33] † 

 
BW, body weight; IVS, inter ventricular septum; PW, left ventricular posterior wall; 
LVEDD, left ventricular end diastolic diameter; LVESD, left ventricular end systolic 
diameter; LVM, left ventricular mass LVFS, left ventricular fractional shortening; Values 
are median [Q1;Q3].  
#p≤0.05, ##p≤0.01 and ###p≤0.001: p-value obtained between wild type (WT) and 
LmnaH222P/H222P (H222P) mice at 6 months of age using a two-sided Student t-test for heart 
rate and LVFS parameters and a two-sided Wilcoxon test for the others parameters. 
*p≤0.05, **p≤0.01 and ***p≤0.001: p-value obtained between wild type (WT) and 
LmnaH222P/H222P (H222P vehicle-treated) mice at 7 months of age using a two-sided Student 
t-test for heart rate parameter and a two-sided Wilcoxon test for the others parameters. 
† p≤0.05, †† p≤0.01, ††† p≤0.001: p-value obtained between NAC-treated and 
LmnaH222P/H222P (H222P vehicle-treated) mice at 7 months of age using a two-sided Student 
t-test for heart rate parameter and a two-sided Wilcoxon test for the others parameters. 
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FIGURES 
Four figures. 
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Figure 1| ROS pathway is altered in LMNA cardiomyopathy. (A) Schematic 

representation of the ROS pathway and consequences. (B) Immunoblots showing total 

carbonylated protein level expression (Oxyblot) in hearts from 6-months old wild type 

(WT) (n = 3) and from 6-months old LmnaH222P/H222P (H222P) (n = 3) mice. (C) 
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Immunoblots showing NOX2, and GPX1 protein level in hearts from 6-months old wild 

type (WT)  (n = 5) and LmnaH222P/H222P (H222P)  (n = 5) mice. Gapdh and Ponceau Red are 

shown as loading controls. (D) Expression of Nox2 mRNA in the hearts from 6 month-old 

LmnaH222P/H222P mice (H222P) (n = 5) and wild type (WT) (n = 6). Data are normally 

distributed and represented as means ± SEM (*p≤0.05, **p≤0.01 and ***p≤0.001: p-value 

obtained using a two-sided Student t-test on delta Ct values.). 



	

	 91	

 

 

 



	

	 92	

Figure 2| N-acetyl cysteine (NAC) decreases oxidative stress in LMNA 

cardiomyopathy. (A) Schematic representation of the treatment protocol of 

LmnaH222P/H222P (H222P) mice with N-acetyl cysteine. (B) Immunoblots showing total 

carbonylated protein level expression (Oxyblot) in hearts from 7-months old wild type 

(WT) (n = 2) and from 7-months-old LmnaH222P/H222P (H222P) mice treated with NAC-

treated (n = 2) or vehicle-treated (n = 2). Graph showing total glutathione level in sera (C) 

and heart (D) from 7-months-old LmnaH222P/H222P (H222P) mice treated with NAC-treated 

(n = 8 in sera and n=6 in heart) or vehicle-treated (n=6 in sera and n=4 in heart). Wild type 

(WT) mice (n = 4 in sera and n=4 in heart) are shown as control. Data are represented as 

median [Q1; Q3] for figure C and as means ± SEM for D E F. Total gluthatione level in 

serum was not normally distributed, then a Wilcoxon test was performed for this 

parameter, all other parameters were normally distributed, then a Student t-test was 

performed for these parameters. (¤p≤0.05, ¤¤p≤0.01 and ¤¤¤p≤0.001: p-value obtained using 

a two-sided Wilcoxon test. *p≤0.05, **p≤0.01 and ***p≤0.001: p-value obtained using a 

Student t-test).   Quantitative real time PCR analysis of Glclc (E) and GsR mRNA 

expression, in 7-months-old wild type mice (WT) (n = 6), LmnaH222P/H222P (H222P) mice 

treated with NAC-treated (n = 6) or vehicle-treated (n = 7). Data are represented as means 

± SEM (* p≤0.05, **p≤0.01 and ***p≤0.001: p-value obtained using a Student t-test on 

delta Ct values). 
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 Figure 3| N-acetyl cysteine improves cardiac structure and function in LMNA 
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cardiomyopathy. (A) M-mode echocardiography recording at 7 months of age in wild 

type (WT), vehicle-treated LmnaH222P/H222P (H222P) and NAC-treated LmnaH222P/H222P mice. 

(B) Fractional shortening evolution from 6 months to 7 months from wild type (WT) 

(n=12), vehicle-treated LmnaH222P/H222P (H222P) (n= 19) and NAC-treated LmnaH222P/H222P 

mice (n=20). ΔLVFS changes from baseline is calculated as [FS at 7 months – FS at 6 

months] for each mice. Data are normally distributed and are represented as median 

[Q1;Q3]. (*p≤0.05, **p≤0.01 and ***p≤0.001: p-value obtained using a two-sided Student t- 

test). 
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Figure 4| N-acetyl cysteine improves myocardial fibrosis in LMNA cardiomyopathy. 

(A) Sirius Red staining of cross sections of the hearts from wild type (WT), vehicle-treated 

LmnaH222P/H222P (H222P) and NAC-treated LmnaH222P/H222P mice. Scale bar: 50 µm. (B) 

Heart fibrosis quantification from wild type (WT) (n=5), vehicle-treated LmnaH222P/H222P 

(H222P) (n=5) and NAC-treated LmnaH222P/H222P mice (n=5). For each mice 5 cross-section 

were quantified and the mean of the 5 cross-section were represented and analyzed. Data 

are represented as Median [Q1; Q3] (¤ p≤0.05, ¤¤p≤0.01 and ¤¤¤p≤0.001: p-value obtained 

using a Wilcoxon test on mean value of the 5 cross-sections.		
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Activation	of	sarcolipin	expression	links	mutations	in	A-type	

lamins	genes	to	cardiomyopathy	

Manuscript	in	preparation	

Introduction	

Mutations	in	LMNA	encoding	nuclear	A-type	lamins,	have	been	associated	
with	 dilated	 cardiomyopathy	 (e.g.,	 LMNA	 cardiomyopathy).	 LMNA	
cardiomyopathy	is	characterized	by	left	ventricular	dysfunction	and	dilatation	
often	 leading	 to	 heart	 failure.	 Different	 mechanisms	 contributing	 to	 the	
pathology	 had	 been	 identified,	 though	 no	 curative	 treatment	 has	 been	 yet	
found.	Thus,	it	is	essential	to	increase	our	current	knowledge	of	the	molecular	
mechanisms	 implicated	 in	 the	 development	 of	 LMNA	 cardiomyopathy	 to	
further	 identify	 potential	 therapeutic	 interventions.	 Altered	 calcium	 (Ca2+)	
handling	 has	 been	 shown	 as	 playing	 an	 important	 role	 in	 initiation	 and	
progression	 of	 cardiomyopathies	 of	 several	 etiologies.	 Notwithstanding,	 we	
are	lacking	insight	on	the	role	of	calcium	handling	in	LMNA	cardiomyopathy.		

	

Objectives	of	the	study	

Sln	 gene,	 encoding	 sarcolipin,	 was	 hyperactivated	 in	 heart	 tissues	 from	

LmnaH222P/H222P	 mice	 (Muchir	 et	 al.,	 2007b).	 Sarcolipin	 is	 an	 inhibitor	 of	 the	

sarco/endoplasmic	 reticulum	 (SR)	 Ca2+	ATPase	 (SERCA)	 and	 therefore	may	

play	 a	 role	 in	 cardiac	 calcium	 handling.	 	 We	 decided	 to	 study	 the	 role	 of	

sarcolipin	on	calcium	homeostasis	 in	LMNA	 cardiomyopathy.	The	aim	of	 this	

study	was	to	determine	the	involvement	sarcolipin	in	the	progression	of	LMNA	

cardiomyopathy	and	to	determine	its	function	in	intracellular	Ca2+	handling.			

	

Materials	and	methods	

We	 analyzed	 the	 expression,	 localization	 and	 function	 of	 the	 major	

calcium	regulators	in	the	heart	tissue	of	LmnaH222P/H222P	mice	along	the	course	
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of	the	cardiac	disease.	We	also	studied	the	role	played	by	sarcolipin	on	calcium	

regulators	using	in-house	novel	cellular	models.				

	

Results	

We	have	reported	an	overexpression	of	sarcolipin	that	appears	from	early	

stages	 of	 the	 cardiomyopathy	 and	 maintained	 along	 disease	 progression	 in	

LmnaH222P/H222P	mice.	 We	 have	 also	 shown	 that	 expression	 of	 other	 calcium	

handling	proteins	(e.g.	phospholamban	and	NCX1)	were	altered	 in	 the	hearts	

from	 LmnaH222P/H222P	mice.	 We	 next	 showed	 that	 sarcolipin	 over-expression	

was	implicated	in	the	altered	expression	and	localization	of	calcium	handling	

proteins.	

	

Impact	

We	 provided	 molecular	 insights	 of	 altered	 calcium	 handling	 in	 LMNA	

cardiomyopathy,	encouraging	further	studies	to	mechanistically	asses	the	role	

played	by	sarcolipin	on	cardiac	calcium	handling.	

	

	

	

	

	

	

	

	



	

	 99	

Activation of sarcolipin expression links mutations in A-type lamin gene to 

cardiomyopathy 

 

Blanca Morales Rodríguez1,2, Aurore Besse1, Nathalie Mougenot3, Florence Lefebvre4, 

Jean-Pierre Benitah4, Ana-María Gómez4, Véronique Briand2, Philippe Beauverger2, 

Gisèle Bonne1, Antoine Muchir1* 

 
1 Sorbonne Université, INSERM UMRS974, Center of Research in Myology, Institut de 

Myologie, Paris, France 
2 Sanofi R&D, Chilly-Mazarin, France 
3 Sorbonne Université, INSERM, UMS28 Phénotypage du petit animal, Paris F-75013, 

France 
4 Inserm, U769, Univ. Paris-Sud 11, IFR141, Labex Lermit, Châtenay-Malabry, France 

 

 
*Correspondence:  

Antoine Muchir, PhD  

Center of Research in Myology, Sorbonne Université, Inserm UMRS 974, Institut de 

Myologie 

G.H. Pitié-Salpêtrière, 47, boulevard de l'Hôpital, F-75 651 Paris Cedex 13 - France 

Tel: +33 1 42 16 57 05, e-mail: a.muchir@institut-myologie.org 

 
  



	

	 100	

ABSTRACT 

Cardiomyopathy caused by lamin A/C gene (LMNA) mutations (hereafter referred as 

LMNA cardiomyopathy) is an anatomic and pathologic condition associated with muscle 

and electrical dysfunction of the heart, often leading to heart failure-related disability. 

There is currently no specific therapy available for patients that target the molecular 

pathophysiology of LMNA cardiomyopathy. Searching for alternative ways to slow down 

the cardiac disease progression, we here examined the involvement of calcium homeostasis 

in the progression of the cardiac disease in a mouse model of Lmna cardiomyopathy. We 
show here that sarcolipin was abnormally elevated in the heart of the mutated mice 
compared with wild type mice, leading to an alteration of calcium handling. These results 
suggest a novel role for sarcolipin on calcium homeostasis in cardiac muscle and provide a 
rationale for future therapeutic interventions to LMNA cardiomyopathy. 

  

Keywords: sarcolipin, calcium handling, nuclear envelope, lamin, dilated cardiomyopathy 
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INTRODUCTION 

Dominant mutations in the gene encoding nuclear A-type lamins (LMNA) cause 

dilated cardiomyopathy with conduction system disease (LMNA cardiomyopathy) (1, 2). 

LMNA cardiomyopathy is characterized by conduction defects, arrhythmias, left 

ventricular dysfunction and dilation, often leading to heart failure-related disability (3). 

The management of LMNA cardiomyopathy consists in controlling arrhythmia and 

conduction defects by implantation of a defibrillator as patients are at high risk of sudden 

cardiac death (4). This limits the progression of heart failure, but eventually patients 

require heart transplantation. There are currently no effective approaches to treat LMNA 

cardiomyopathy in the clinic. Thus, it is of great importance to clarify its molecular 

mechanisms and to search for potential compound to provide protection against LMNA 

cardiomyopathy.  

In order to study the pathophysiology of LMNA cardiomyopathy and to test possible 

therapeutics, we have developed a mouse model carrying a missense Lmna mutation, 

leading to the substitution of the histidine 222 by a proline (H222P), identified in a family 

with LMNA cardiomyopathy (5). Homozygous mutant (LmnaH222P/H222P) mice develop 

cardiac left ventricular dilation and systolic dysfunction and have a reduced lifespan. We 

previously identified and studied multiple mechanisms that contribute, in part, to the 

pathophysiology of Lmna cardiomyopathy (6–10). All these signaling mechanisms have 

been targeted with small-molecules in LmnaH222P/H222P mice and all of these interventions 

have had some beneficial impact. However, targeting each of these pathways alone is not 

curative. Searching for alternative ways to slow down the cardiac disease progression, we 

here examined the involvement of calcium homeostasis in the progression of the cardiac 

disease in LmnaH222P/H222P mice. The pathophysiology of cardiomyopathy convincingly 

converges to the conclusion that unhinged calcium (Ca2+) handling in the cardiomyocytes 

plays a central role in initiation and progression of the disease (11). The delicate and 

precise regulation of Ca2+ cycling is finely tuned by numerous macromolecular proteins 

and regulatory processes, and is severely deranged in cardiomyopathy. Therefore, the 

mediator and/or regulatory components of the Ca2+ cycling apparatus have been the focus 

of extensive research involving targeted pharmacologic and gene interventions aiming to a 

restoration of Ca2+ cycling processes, thus improving cardiac function. 
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RESULTS 

Activation of cardiac sarcolipin expression in LmnaH222P/H222P mice| To explore the role 

of calcium signaling in the development of dilated cardiomyopathy, we studied 

LmnaH222P/H222P mice, which develop dilated a progressive contractile dysfunction that 

recapitulates human LMNA cardiomyopathy (5). Lmna p.H222P corresponds to a human 

disease-causing mutation associated with dilated cardiomyopathy (12). We previously 

examined differential expression of mRNAs isolated from hearts of 10 week old wild type 

and LmnaH222P/H222P male mice (6). This analysis revealed activation of the expression of 

Sln gene, encoding sarcolipin, in hearts of the LmnaH222P/H222P mice compared with wild 

type mice (6) (Figure 1A). The up-regulation of sarcolipin was observed at 24 weeks of 

age at both mRNA and protein levels (Figure 1B, 1C, 1D). We next evaluated the cardiac 

localization of sarcolipin in ventricular isolated cardiomyocytes. The cardiac localization 

of sarcolipin was not different in LmnaH222P/H222P cells compared with wild type cells 

(Figure 1E). However, we note an increased staining of sarcolipin in mutated cells 

compared with wild type cells (Figure 1E). 

 

Altered calcium homeostasis in LmnaH222P/H222P mice caused by sarcolipin up-

regulation| Given that sarcolipin is a regulator of cardiac calcium handling through its 

inhibitory role on sarcoplasmic/endoplasmic reticulum Ca2+ transport ATPase (Serca2a), 

we next hypothesized that the altered expression of sarcolipin could alter cardiac calcium 

homeostasis. Ca2+ images in LmnaH222P/H222P ventricular myocytes showed decreased 

calcium transient decay (Tau) compared with wild-type cells (Figure 2A), while no 

significant difference was observed for calcium transient amplitude (F/F0) (Figure 2B). 

Because several proteins tightly regulate defective [Ca2+]intracellular cycling, we investigated 

whether the expression of calcium handling proteins was altered in Lmna cardiomyopathy. 

We found that expression of both Serca2a and Ncx1, the two major players of 

[Ca2+]intracellular removal from cardiac cells, was unaffected in hearts of the 

LmnaH222P/H222P  mice, at 12 weeks of age when no cardiac symptoms were detectable 

(Figure 2C-D). However, we observed an altered localization of Serca2a, but not Ncx1, in 

LmnaH222P/H222P cardiac cells compared with wild type cells (Figure 2E). We next studied 

the expression of calcium handling proteins at a later stage of the disease, when left-
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ventricular function was altered (Supplemental Figure 1). The expression of NCX1 but 

not Serca2a was increased in hearts of 24 weeks old LmnaH222P/H222P mice compared with 

wild type mice (Figure 3A-B). The expression of phospholamban, another regulator of 

Serca2a, was decreased in the hearts of the LmnaH222P/H222P mice (Figure 3C-D). This 

reduction is ensuing a decreased phosphorylation of phospholamban on residues Ser16 and 

Thr17 in the hearts from LmnaH222P/H222P mice (Figure 3B).  

To dissect the molecular mechanism(s) responsible for sarcolipin activation and 

altered calcium homeostasis, we used cell culture models. We used lentiviral transduction 

to generate cardiac cells (HL-1 and H9C2) stably expressing FLAG epitope-tagged 

sarcolipin (Figure 4A, 4B). We confirmed that expression of Serca2a was not changed in 

HL-1 and H9C2 cells expressing FLAG epitope-tagged sarcolipin, compared to 

untransduced cells (Figure 5A, 5B). Ncx1 expression was activated only in H9C2 stably 

expressing FLAG epitope-tagged sarcolipin (Figure 5A, 5B). The expression of total 

phospholamban as well as its phosphorylation on Ser16 was decreased in HL-1 but not 

H9C2 cells expressing FLAG epitope-tagged sarcolipin (Figure 5A, 5B). The localization 

of phospholamban was altered in HL-1 and H9C2 cells expressing FLAG epitope-tagged 

compared untransduced cells (Figure 6A, 6B). All together, these results suggest that 

abnormal calcium homeostasis caused by sarcolipin overexpression may be a contributor 

of the development of LMNA cardiomyopathy.  

 

Reducing sarcolipin expression does not mitigate cardiac dysfunction in LMNA 

cardiomyopathy| We next tested the hypothesis that the down-regulation of sarcolipin 
could influence left ventricular function in vivo. We injected adeno-associated virus 
(AAV) vectors expressing either a short hairpin RNA against sarcolipin tagged-GFP 

(shSln) or empty AAV (null) into 6 weeks old LmnaH222P/H222P mice. The shSln treatment 
for 18 weeks significantly reduced sarcolipin expression (Figure 7A-B) (p<0.05) in 
cardiac muscle of the shSln treated mice compared to the null treated mice. Expression of 
total phospholamban was unchanged by downregulating sarcolipin (Figure 7A-B). To 
determine the cardiac transduction level of shSln we performed immunostaining against 
the GFP-tag. 20% of the cardiac cells were transduced (Figure 7C). We next evaluated the 
effect of the reduction of sarcolipin on the cardiac function. No significant effects of the 
reduction of sarcolipin expression were observed on cardiac chambers dimensions nor left 
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ventricular function (Figure 7C). All together, these results suggest that a partial reduction 

of sarcolipin has no therapeutic effect on Lmna cardiomyopathy.  

 

DISCUSSION 

In this study, we have shown that sarcolipin expression is up regulated early along the 

progression of cardiomyopathy in heart from LmnaH222P/H222P mice. The increased 

expression of sarcolipin is accompanied by alteration of calcium handling proteins (e.g. 

phospholamban and Ncx1). These results suggest a novel model for A-type lamins in the 

regulation of calcium homeostasis and pathophysiology. In this model, activation of 

sarcolipin inhibits Serca2a and blunt [Ca2+]intracellular removal from the cytosol to the 

sarcoplasmic reticulum. Therefore, our work encourages further approaches to 

mechanistically assess the role played by sarcolipin on calcium handling.  

Ca2+ is a mediator of excitation contraction coupling, and compounds that target 

calcium handling may lead to improved striated muscle function. Overexpression of 

SERCA improves the outcome in muscular dystrophy (13), and increasing Ca2+ influx into 

muscle is sufficient to produce muscular dystrophy (14). These findings suggest that drugs 

that could correct impaired calcium handling could ameliorate left ventricular dysfunction 

in LMNA cardiomyopathy. Similar pathogenic mechanism of sarcolipin mediated 

modulation of calcium handling may play a role in left ventricular dysfunction in other 

forms of cardiomyopathy, in which there appears to be abnormal inhibition of SERCA2a 

activity (15–18). The overexpression of sarcolipin has been detected in humans with 

different cardiac pathologies contributing to the contractile dysfunction (19, 20). 

Therefore, we could speculate that the regulation of sarcolipin may not be specific to 

LMNA cardiomyopathy but occurs in several cardiomyopathies. 

Scant studies focused on aberrant regulation of intracellular calcium in Lmna 

cardiomyopathy. Arimura and colleagues showed that the use of pyridazinone derivative 

calcium (Ca2+) sensitizing agent SCH00013 was beneficial on cardiac function in 

LmnaH222P/H222P mice, inducing an increased life expectancy and a decreased fibrosis (21). 

In this study, we have reported for the first time a delay on calcium recapture by the 

sarcoplasmic reticulum in cardiomyocytes from LmnaH222P/H222P mice. This delay can be 

explained either by an altered Serca2a activity or a Ncx1 dysfunction (22, 23). As observed 

in sarcolipin overexpression rodent models (24, 25), the cardiomyocytes contractility was 
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impaired and the relaxation was delayed. Then, the regulation of SERCA2a by targeting 

sarcolipin expression in LMNA cardiomyopathy could be an interesting approach to re-

establish normal Ca2+ homeostasis. Recent studies on Duchene muscular dystrophy, in 

which cardiac phenotype is similar to the one observed in LMNA cardiomyopathy (26), 

reported a cardiac sarcolipin overexpression in mdx:utr−/− mice (27).  

In conclusion, we showed for the first time calcium-handling disturbance in Lmna 

cardiomyopathy. We also showed that sarcolipin activation and Serca2a inactivation could 

be participating to the pathogenesis of Lmna cardiomyopathy. The study has several 

shortcomings. Whereas sarcolipin expression was decreased in shSln-injected 

LmnaH222P/H222P mice, cardiac function, as assessed by echocardiography, was not 

improved. Voit et al performed an AAV-mediated therapy against sarcolipin and observed 

an amelioration of the cardiac phenotype and an increase of the lifespan of mdx:utr−/− mice 

(27). However, our findings suggest that a 40% reduction of sarcolipin expression is not 

enough to ameliorate cardiac function. Therefore, we could speculate that the low 

transduction level was not enough to impact the Serca2a function. Thus it will be of great 

interest to increase the efficiency of the treatment and to analyse its effect on the Serca2a 

pump in order to determine the therapeutic potential of this inhibition. In addition to heart 

failure, cardiac conduction defects are also important causes of death in LMNA 

cardiomyopathy patients. Telemetric cardiac rhythm monitoring and electrophysiological 

studies were not performed in shSln-injected LmnaH222P/H222P mice, partly because of the 

small group size of treated mice, to determine contributions of cardiac conduction defects 

to premature death and improved survival in the experimental groups.  

In conclusion, these findings implicate Lmna in the regulation of calcium handling. 

Dysregulations of sarcolipin and Serca2a function collectively, are in part responsible for 

induction of cardiac phenotype in the disease. The findings identify sarcolipin as potential 

target to prevent or attenuate cardiac phenotype in LMNA cardiomyopathy.  
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MATERIAL AND METHODS 

 

Mice| All animal experiments were performed in accordance with guidelines from 

directive 2010/63/EU of the European Parliament on the protection of animals used for 

scientific purposes. Wild type and LmnaH222P/H222P mice were fed ad libitum housed in a 

disease-free barrier facility with 12h/12h light/dark cycles.  

 

 

Isolation of mouse cardiomyocytes| Mice were anesthetized with 2-3% isoflurane and 

placed in 37ºC heating pad. The heart was removed and the aorta cannulated. After 

washing buffer was perfused for three minutes, 1mg/ml Liberase (Liberase Research 

Grade, Roche) solution was perfused through the coronary arteries for 6min with 2,3-

Butanedione monoxime (BDM) 10mM and [Ca2+] = 0.1mM. Ventricular tissue was teased 

apart and pipetted to release individual cells. After enzymatic dispersion, Ca2+ 

concentration in the buffer containing 2.7mg/ml bovine serum albumin was elevated in 

three steps up to 1.8mM.  

 

Cell culture and reagents| H9C2 (gift from Katarzyna Piekarowicz) and HL-1 (Merck 

Millipore) were maintained at 37 °C with 5% CO2 and subcultured at 80–90% confluency. 

Unmodified and stable H9C2 cells were cultured in Dulbecco’s Modified Eagle Medium 

(DMEM) supplemented with 10% fetal bovine serum (FBS) (Invitrogen) and 1% 

penicillin/streptomycin (Invitrogen). Unmodified and stable HL-1 cells were culture in 

Claycomb Medium (Sigma-Aldrich) supplemented with 10% FBS (Invitrogen), 1% 

penicillin/streptomycin (Invitrogen), norepinephrine 0.1mM (Sigma-Aldrich) in 30mM 

ascorbic acid (Sigma-Aldrich) and L-glutamine 2mM with the required gelatin/fibronectin 

coating. H9C2 and HL-1 expressing FLAG epitope-tagged sarcolipin were created using 

lentiviral vector EF1.GOI (Sarcolipin Tag Flag).WPRE (Vectalys). MOI: 100, cells were 

incubated with the lentiviral vector for 24h followed by a 2-day incubation with normal 

medium and a 3-5 days puromicin selection. After selection H9C2 and HL-1 expressing 

FLAG epitope-tagged sarcolipin were maintained in their normal culture conditions.  
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RNA isolation and real-time PCR| Total RNA was extracted from nitrogen-frozen heart 

using RNAeasy Fibrous Tissue kit (QIAGEN).  600ng of total RNA measured using a 

NanoDrop ND-1000 spectrometer (Labtech) was subjected to cDNA synthesis using the 

SuperScript III First-Strand Synthesis for RT-PCR (Invitrogen). Mouse primer sequences 

used for transcriptional analyses were as follows: mSln 5’-gtccttggtagcctgagtgt-3’, 5’-

acggtgatgaggacaactgt-3’; mRplp0 3’-atagccttgcgcatcatggt-5’, 3’-ctccaagcagatgcagcaga-5’. 

Real-time PCR was performed on Light Cycler 480 (Roche Diagnostics), using SYBR 

green PCR Master Mix (Applied Biosystems). PCR products were subjected to melting 

curve analysis to exclude the synthesis of non-specific products. Cycle threshold (Ct) 

values were quantified using a standard curve for the specific gene and relatively 

quantified using RplR0 as an internal reference control. The Ct values were then 

normalized to the average expression levels of samples, calculated according to the △Ct 

method (28) and are presented as fold change over wild type controls. All experiments 

were performed in triplicates. 

 

Protein extraction and western blot analysis| Total proteins were isolated from heart 

tissue or cultured cell in extraction buffer (Cell Signaling). The heart samples were 

extracted with Lysis-D tube using Fast-Prep (3 pulses of 45 s), the cells samples were 

sonicated (5 pulses of 10s at 30% amplitude) to allow dissociation of protein from 

chromatin and solubilization. Sample protein content was determined by the BiCinchoninic 

Acid Assay protein assay (Thermo	Fisher	 Scientific). Extracts were analysed by SDS-

PAGE using either 4-12% or 4-20% (for sarcolipin, phospholamban and FLAG) Tris-

glycine gels (Life Technologies) and transferred onto nitrocellulose 0.2µm membrane 

(novex, Life Technologies). Membranes were blocked one hour with 5% bovine serum 

albumin (BSA) in phosphate buffer saline containing 1% Tween 20 (PBS-T). Subsequently 

to blocking, the membranes were incubated with primary antibodies overnight at 4ºC. 

After TBS-T washes membranes were incubated with anti-chicken, anti-mouse or anti-

rabbit antibodies for 1h at room temperature and washed again with TBS-T. The signal 

was then revealed using Immobilon Western Chemiluminescent HorseRadish Peroxidase 

(HRP) Substrate (Millipore) on a G-Box system with GeneSnap software (Ozyme).  
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Antibodies| Primary antibodies used were: sarcolipin for western blot (Merck Millipore, 

#ABT13) and for immunofluorescence (Proteintech, #18395-1-AP), NCX1 (Abcam, 

#ab2869), SERCA2a (Abcam, #ab2861), phospholamban (Cell Signaling, #14562), 

phospho- phospholamban(Ser16) (Santa Cruz, SC-12963-R), phospho- 

phospholamban(Thr17)  (SC-17024-R Santa Cruz), FLAG (F3165 Sigma), GFP (A10262 

Invitrogen), α-actinin (A7732 Sigma), GAPDH (sc-47724 Santa Cruz). Secondary 

antibodies for immunoblotting were HRP-conjugated donkey anti-chicken (Invitrogen), 

rabbit anti-mouse or goat anti-rabbit IgG (Jackson ImmunoResearch). Secondary 

antibodies for immunofluorescence were Alexa Fluor 488 conjugated goat anti-rabbit IgG, 

Alexa Fluor 568-conjugated goat anti-mouse IgG, Alexa Fluor 488-conjugated goat anti-

chicken IgG (Life Technologies).  

 

Immunofluorescence microscopy| For immunofluorescence microscopy, isopentane-

frozen hearts were cut into 8 µm-thick sections. Cryosections were fixed (15min, 4% 

paraformaldehyde in PBS at room temperature), permeabilized (10min, 0,5% Triton X-100 

in PBS), blocked (1h30, in PBS with 0,3% triton X-100 and 5% BSA) and incubated with 

primary antibodies (overnight at 4ªC, in PBS with 1% triton X-100 and 1% BSA). The 

section were then washed in PBS (3 times 5 min) and incubated with secondary antibodies 

(1h at RT, in PBS with 1% triton X-100 and 1% BSA) and washed (3 times 5 min).  

Hl-1, HL-1 expressing FLAG epitope-tagged sarcolipin were grown in coated 

(gelatin/fibronectin) coverslips and H9C2, H9C2 expressing FLAG epitope-tagged 

sarcolipin in normal coverslips. Cells were fixed (10 min, 4% paraformaldehyde in PBS at 

room temperature), permeabilized (8 min, 0,5% Triton X-100 in PBS), blocked (1h, in 

PBS with 0,3% triton X-100 and 5% BSA) and incubated with primary antibodies (1h30 at 

RT, in PBS with 1% triton X-100 and 1% BSA). The section were then washed in PBS (3 

times 5 min) and incubated with secondary antibodies (1h at RT, in PBS with 1% triton X-

100 and 1% BSA) and washed (3 times 5 min). 

 

Echocardiography| Mice were lightly anesthetized with 0,5-1% isoflurane and placed in a 

heating pad. Transthoracic echocardiography was performed using an ACUSON 128XP/10 

ultrasound with an 11 MHz transducer. All parameters were measured by a “blinded 
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echocardiographer” unaware of the genotype or treatment of the mice, performed in 2D 

mode and M-mode in triplicate.  

 

Construction of plasmids encoding FLAG epitope-tagged Sarcolipin WT | 

Sarcolipin plasmid (MC204674 OriGene Technologies) was used as a template. FLAG 

epitope was added to the sarcolipin sequence by PCR using the following primers (Flag: F-

5’cgaagcttgcccaccatggattacaaggacgacgatgacaagatggag 3’, R-5’-cccagcggccgcccctcagtatt-

3’). Then the the sarcolipin sequence was cloned in a pGG2 vector (gift from Fredérique 

Rau) using (Hind III and Not I). The final plasmid was transformed in XL-10 (Agilent).  

 

Construction of lentivirus enconding for FLAG epitope-tagged Sarcolipin| FLAG 

epitope-tagged Sarcolipin cassette was cloned into the lentiviral expression plasmid 

pLV.EF1.IRES2.Puromycine using HindIII and NcoI restriction enzymes by Vectalys 

company. 

 

Construction and injection of AAV  

AAV9-GFP-U6-mSln-shRNA and AAV-U6-null (VectorBiolabs) Recombinant AAV 

viruses are produced through co-transfecting HEK293 cells with AAV plasmid with sh-

Sln, plus other needed helper-plasmid DNAs. In the AAV plasmid, the REP and CAP 

genes of wild type AAV were deleted, so there were only 2 copies of ITRs (~145 bp/each) 

left.  2 days after transfections, cell pellets were harvested, and viruses were released 

through 3x cycles of freeze/thaw. Viruses were purified through CsCl-gradient ultra-

centrifugation, followed by desalting. Viral titer (GC/ml - genome copies/ml) was 

determined through real-time PCR. AAV9-GFP-U6-mSln-shRNA and AAV9-U6-null 

were injected at 5 × 1013 vg/kg at 6 weeks of age by retro-orbital injection. 

 

Statistics| Statistical analyses were performed using GraphPad Prism software.  

For echocardiographic parameters, results were expressed as median [Q1;Q3]. The 

statistical analyses were performed by comparing the wild type (WT) animals and 

LmnaH222P/H222P mice at 12 and 24 weeks or by comparing LmnaH222P/H222P treated with an 
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AAV9-null and LmnaH222P/H222P treated with an AAV9-shSln -GFP. For each analysis 

(LVFS%, LVEDS, LVEDD parameters) a Wilcoxon test was performed for. 

For mRNA expression, statistical analysis was performed in ∆Ct and the mRNA 

expression values normalized to the reference gene (Rplp0) was graphically represented. 

The results are presented as median [Q1;Q3], , a Wilcoxon test was performed.  
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FIGURES 

Seven figures. 
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Figure 1. Activation of sarcolipin in LMNA cardiomyopathy| (A) Graph showing 

expression profile of Sln mRNA from Affymetrix GeneChip data between wild type (WT) 

(n = 8) and LmnaH222P/H222Pmice (n = 6). (B) Representative immunoblot showing sarcolipin 

expression in hearts from 24 weeks old male LmnaH222P/H222P and wild type (WT) mice. 

Gapdh was shown as loading control. (C) Immunoblot quantification of sarcolipin 

expression in wild type (WT) (n = 11) and LmnaH222P/H222Pmice (n=11), normalized to 
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Gapdh. **p≤0.01 : p-value obtained using a student test. (D) Expression of Sln mRNA in 

hearts from 24 weeks old wild type (WT) (n = 12) and LmnaH222P/H222Pmice (n = 12). Data 

are represented as median [Q1; Q3] **p≤0.01: p-value obtained using a Wilcoxon test on 

delta Ct values). (E) Micrographs showing sarcolipin labeling in isolated cardiomyocytes 

from 12 weeks old wild type (WT) and LmnaH222P/H222P mice. Nuclei are counter-stained 

with 4’,6-diamidino-2-phenylindole (dapi). 
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Figure 2. Calcium handling proteins in Lmna cardiomyopathy when no cardiac 

dysfunction was observed| (A) Graph showing relaxation time constant (Tau) from 

isolated cardiomyocytes from 12 weeks old wild type (WT) and LmnaH222P/H222P mice. Data 

are represented as means ± standard errors of means. **P<0.001. (B) Graph showing 

calcium transient amplitude (F/F0) from isolated cardiomyocytes from 12 weeks old wild 

type (WT) and LmnaH222P/H222P mice. Data are represented as means ± standard errors of 

means. (C) Representative immunoblots showing Serca2a and Ncx1 expression in hearts 

from 12 weeks old male LmnaH222P/H222P and wild type (WT) mice. Gapdh was shown as 
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loading control. (D) Immunoblot quantification of Ncx1 and Serca2a expression in wild 

type (WT) (n = 6) and LmnaH222P/H222Pmice (n=6), normalized to Gapdh. (E) Micrographs 

showing Serca2a and Ncx1 labeling in isolated cardiomyocytes from wild type (WT) and 

LmnaH222P/H222P mice. Nuclei are counter-stained with 4’,6-diamidino-2-phenylindole 

(dapi). 
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Figure 3. Calcium handling proteins in Lmna cardiomyopathy at symptomatic stage| 

(A) Representative immunoblots showing Serca2a and Ncx1 expression in hearts from 24 

weeks old male LmnaH222P/H222P and wild type (WT) mice. Gapdh was shown as loading 

control. (B) Immunoblot quantification of Serca2a and Ncx1 expression in wild type (WT) 

(n = 6) and LmnaH222P/H222Pmice (n=6), normalized to Gapdh. (C) Representative 

immunoblots showing total, Thr17 and Ser16 phospholamban expression in hearts from 24 

weeks old male LmnaH222P/H222P and wild type (WT) mice. Gapdh was shown as loading 

control. (D) Immunoblot quantification of total, Thr17 and Ser16 phospholamban 
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expression in hearts from 24 weeks old male LmnaH222P/H222P and wild type (WT) mice 

expression in wild type (WT) (n = 6) and LmnaH222P/H222Pmice (n=6), normalized to Gapdh. 

*p≤0.05 : p-value obtained using a Wilcoxon test. 

 
 

Figure 4. Cardiac cell lines stably expressing sarcolipin| (A) Representative 

immunoblots showing FLAG expression in HL-1 cells (empty) and HL-1 cells stably 

expressing FLAG epitope-tagged sarcolipin (flag-Sln) (B) Representative immunoblots 

showing FLAG expression in H9C2 cells (empty) and H9C2 cells stably expressing FLAG 

epitope-tagged sarcolipin (flag-Sln). (C) Immunoblot quantification of FLAG expression 

in HL-1 cells, H9C2 (empty) and HL-1 and H9C2 cells stably expressing FLAG epitope-

tagged sarcolipin (flag-Sln) (n=5 in all groups), normalized to Gapdh. Data are represented 

as median [Q1; Q3] **p≤0.01 : p-value obtained using a Wilcoxon test. 
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Figure 5. Alteration of calcium handling regulators in cardiac cell lines stably 

expressing sarcolipin| (A) Representative immunoblots showing Serca2a Ncx1, total 

phospholamban and phosphorylated phospholamban (Ser16) expressions in HL-1 cells 

(empty) and HL-1 cells stably expressing FLAG epitope-tagged sarcolipin (flag-Sln) (B) 

Representative immunoblots showing Serca2a Ncx1, total phospholamban and 

phosphorylated phospholamban(Ser16) expressions in H9C2 cells (empty) and H9C2 cells 

stably expressing FLAG epitope-tagged sarcolipin (flag-Sln). 
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Figure 6. Localization of phospholamban in cardiac cell lines stably expressing 

sarcolipin| (A) Micrographs showing phospholamban (Pln) labeling in HL-1 cells (empty) 

and HL-1 cells stably expressing FLAG epitope-tagged sarcolipin (flag-Sln). Nuclei are 

counter-stained with 4’,6-diamidino-2-phenylindole (dapi). (B) Micrographs showing 

phospholamban (Pln) labeling in H9C2 cells (empty) and H9C2 cells stably expressing 

FLAG epitope-tagged sarcolipin (flag-Sln). Nuclei are counter-stained with 4’,6-

diamidino-2-phenylindole (dapi). 
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Figure 7. AAV9-shSln-GFP treatment |(A) Representative immunoblots showing Sln, 

Gfp and total phospholamban expressions in hearts from 24 weeks old male 

LmnaH222P/H222P treated with an AAV9-null (null) and LmnaH222P/H222P treated with an 

AAV9-shSln-GFP (shSln). Gapdh was shown as loading control. (B) Immunoblot 

quantification of sarcolipin, Gfp and phospholamban expression in wild type (WT) (n = 6) 

and LmnaH222P/H222Pmice (n=6), normalized to Gapdh (C) Micrographs showing α-actinin 

and GFP labeling in hearts from 24 weeks old LmnaH222P/H222P treated with an AAV9-null 

(LmnaH222P/H222P null) and LmnaH222P/H222P treated with an AAV9-shSln-GFP (LmnaH222P/H222P 

shSln). Nuclei are counter-stained with 4’,6-diamidino-2-phenylindole (dapi). (D) Left 

ventricular progression after AAV9 treatments. Fractional shortening evolution (LVFS 

%), end-diastole dimension (LVEDD), end-systole dimension (LVESD) from 12 to 24 

weeks in male wild type (WT) (n=3), LmnaH222P/H222P treated with an AAV9-null 

(LmnaH222P/H222P null) (n=5) and LmnaH222P/H222P treated with an AAV9-shSln-GFP 

(LmnaH222P/H222P shSln) (n=4). Data are represented as median [Q1; Q3] *p≤0.05 : p-value 

obtained using a Wilcoxon test. 

 

 

  



	

	 125	

 

 
Supplemental Figure 1. Left ventricular fractional shortening progression | Fractional 

shortening evolution (LVFS %) from 12 to 24 weeks in male LmnaH222P/H222P  (n=6) and 

wild type (WT) (n=6) mice. Data are represented as median [Q1; Q3] **p≤0.01 : p-value 

obtained using a Wilcoxon test.  
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Chapter	3:	Discussion,	conclusions	and	

recommendations		

The	 investigation	 in	 this	 thesis	 aimed	 to	 dissect	 the	 pathomechanisms	

implicated	 in	 LMNA	 cardiomyopathy.	 A	 better	 understanding	 of	 these	

mechanisms	 is	 of	 paramount	 to	 identify	 new	 therapeutic	 targets	 for	 future	

treatments.		

The	 present	 work	 brings	 new	 insights	 in	 the	 role	 played	 by	 oxidative	

stress	 in	 the	 progression	 of	 LMNA	 cardiomyopathy	 and	 highlights	 a	 novel	

approach	 to	 ameliorate	 the	 left	 ventricular	 function.	 The	 second	part	 of	 this	

work	sheds	light	on	the	importance	of	calcium	regulation	and	the	role	played	

by	 sarcolipin	 in	 the	 pathophysiological	 mechanisms	 driving	 the	 impaired	

cardiac	function	in	LMNA	cardiomyopathy.		

1. Oxidative	stress	and	lamins:	new	therapeutic	avenues?	

Due	to	the	pathological	effect	of	oxidative	stress	in	different	laminopathies	

(Caron	et	al.,	2007b;	Malhas	and	Vaux,	2011;	Barascu	et	al.,	2012;	Lattanzi	et	

al.,	 2012)	 as	 well	 as	 in	 cardiomyopathies	 (Dhalla	 et	 al.,	 2000;	 Maack	 et	 al.,	

2003;	Sawyer,	2011;	Münzel	et	al.,	2017),	 it	was	hypothesized	that	increased	

oxidative	stress	could	participate	in	the	progression	of	LMNA	cardiomyopathy	

and	thus	its	reduction	could	have	beneficial	effects.	

The	main	 findings	of	 the	 first	part	of	 this	 investigation	demonstrate	 that	

the	redox	imbalance	is	implicated	in	the	worsening	of	the	cardiac	function.	It	

was	 observed	 a	 decreased	 in	 glutathione	 content	 and	 in	 the	 expression	 of	

components	 of	 the	 antioxidant	 system	 -	 such	 as	 glutathione	 peroxidase	 1	

(GPX1)-	 in	parallel	to	an	increase	in	the	expression	of	NADPH	oxidase	(NOX)	

and	carbonylation	profiles	were	observed	in	the	LmnaH222P/H222P	mouse	model	

hearts.	These	findings	are	similar	to	the	ones	observed	in	other	laminopathies	
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such	as	partial	lipodystrophies	(Caron	et	al.,	2007b;	Verstraeten	et	al.,	2009),	

amyotrophic	quadricipital	syndrome	with	cardiac	involvement	(Charniot	et	al.,	

2007),	EDMD	(Pekovic	et	al.,	2011;	Niebroj-Dobosz	et	al.,	2017),	HGPS	(Viteri	

et	 al.,	 2010)	 and	 restrictive	 dermopathy	 (Viteri	 et	 al.,	 2010).	 It	 is	 then	 clear	

that	 defective	 lamins	 induce	 an	 increased	 ROS	 production,	 but	 the	 link	

between	 altered	 lamins	 and	 oxidative	 stress	 remains	 to	 be	 fully	 elucidated.	

Notwithstanding	 the	 different	 hypothesis,	 not	mutually	 exclusive,	 have	 been	

proposed	 to	 explain	 the	 implication	 of	 lamins	 in	 the	 redox	 imbalance	 (this	

implication	is	further	discussed	in	section	3).		

There	are	several	potential	explanations	for	the	implications	of	excessive	

oxidative	stress	 in	 the	progression	of	LMNA	cardiomyopathy.	ROS	have	been	

described	as	important	mediators	of	cellular	functions	(Schieber	and	Chandel,	

2014),	 such	 as	 proliferation,	 inflammation,	 senescence	 and	 protein	

degradation	via	the	regulation	of	different	proteins	or	protein	complexes:	p53,	

pRB,	 Sirtuine	 1,	 mTORC	 or	 NFκβ,	 all	 of	 them	 being	 altered	 in	 different	

cardiomyopathies	(Münzel	et	al.,	2017).	With	regards	to	lamins,	ROS	regulate	

their	 expression,	 polymerization	 and	 stability	 (Shimi	 and	 Goldman,	 2014;	

Torvaldson	 et	 al.,	 2015).	 The	 increased	 oxidative	 stress	 alters	 all	 these	

functions,	mainly	by	altering	the	post-translational	modifications	summarized	

in	 Figure	 8	 (Kosako	 et	 al.,	 2009;	 Ragnauth	 et	 al.,	 2010;	 Vos	 et	 al.,	 2011;	

Pekovic	 et	 al.,	 2011;	 Torvaldson	 et	 al.,	 2015).	 However,	 not	 only	 lamin	

functions	 can	 be	 altered	 by	 acute	 oxidative	 stress	 but	 also	 cardiac	 function.	

Physiological	 oxidative	 stress	 in	 the	 heart	 is	 implicated	 in	 cardiomyocytes	

differentiation	and	proliferation,	excitation	contraction	coupling,	regulation	of	

blood	 flow	 and	 adaptation	 to	 exercise.	 Furthermore,	 pathological	 oxidative	

stress	 leads	 to	 reduced	 cardiac	 contractility,	 arrhythmias	 and	 cell	 death	 via	

different	 mechanisms	 summarized	 in	 Figure	 9	 (Burgoyne	 et	 al.,	 2012;	

Rababa’h	et	al.,	2018).	
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Figure	 8.	 Schematic	 representation	 of	 post-translational	 modifications	 of	 lamins	
controlled	by	oxidative	stress.	Oxidation:	different	residues	in	the	C-terminal	tail	of	lamin-
A	have	an	essential	role	in	cellular	fitness.	Their	excessive	oxidation	alters	lamin	sensitivity	to	
ROS	 and	 is	 involved	 in	 cellular	 senescence.	 Phosphorylation:	 lamins	 are	 hyper-
phosphorylated	 during	 mitosis	 and	 phosphorylated	 during	 interphase	 assuring	 their	
functions.	Excessive	oxidative	stress	or	lamin	mutations	alter	the	phosphorylation	leading	to	
defective	assembly/disassembly	mechanisms.	Farnesylation:	 lamin	 fanesylation	 is	 essential	
for	 maturation.	 Excessive	 oxidative	 stress	 can	 alter	 this	 maturation	 process	 by	 reducing	
Zmpste24	activity.			
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Figure	9.	 Schematic	 representation	of	 cardiac	oxidative	 stress	mediated	modulations.	
Oxidative	 stress	 induces	 the	 over	production	of	ROS	 via	NADPH	oxidases	 or	mitochondrion	
activity.	The	produced	ROS	regulate	the	activity	of	different	proteins	as:		ion	channels,	protein	
tyrosine	 phosphatases	 (PTPs),	 protein	 kinases	 B	 (PKB)	 and	 C	 (PKC)	 and	 protein	 tyrosine	
kinases	(PTKs).		

	

Regardless	 of	 the	 initial	 causal	 agent	 (LMNA	 mutations	 cause	 excessive	

oxidative	 stress,	 or	 excessive	 oxidative	 stress	 induces	 lamin	 defects),	 the	

excessive	oxidative	 stress	 should	be	 treated	 to	palliate	 its	pathologic	 effects.	

Even	if	glutathione	is	critical	to	fight	oxidative	stress,	it	is	an	extremely	limited	

resource	 due	 to	 its	 scarce	 bioavailability.	 The	 administration	 of	 NAC	 –	

glutathione’s	 precursor-	 was	 therefore	 proposed	 as	 a	 therapeutic	 option,	

(Schmitt	et	al.,	2015).	The	current	study	demonstrates	that	a	one-month-long	

N-acetyl	cysteine	(NAC)	treatment	was	beneficial	against	cardiac	dysfunction	

progression	 in	 LmnaH222P/H222P	 mice.	 This	 is	 in	 line	 with	 the	 use	 of	 NAC	

treatments	 in	other	cardiomyopathies,	such	as	hypertrophic	cardiomyopathy	

(HCM)	 (Marian	 et	 al.,	 2006;	 Reyes	 et	 al.,	 2017),	 heart	 failure	 (Giam	 et	 al.,	
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2016),	post	myocardial	 infarction	(Adamy	et	al.,	2007)	and	vascular	diseases	

derivate	from	diabetes	(Dludla	et	al.,	2018).	Several	parameters	implicated	in	

the	 cardiac	 pathology	 such	 as	 the	 amount	 of	 carbonylated	 proteins	 or	 the	

fibrosis	were	also	 reduced	with	NAC	 treatment,	which	could	be	explained	 in	

part	by	the	restoration	of	physiological	glutathione	levels.	Myocardial	fibrosis	

in	patients	with	similar	muscular	dystrophies	is	as	a	significant	contributor	to	

the	development	of	cardiac	function	defects,	which	remains	the	main	cause	of	

death	for	most	of	them	(Frankel	and	Rosser,	1976;	Verhaert	et	al.,	2011).	The	

current	 study	 highlighted	 the	 beneficial	 effect	 of	 NAC	 treatment	 towards	 a	

significant	 fibrosis	 reduction.	 So,	 ameliorating	 this	 parameter	 is	 crucial	 to	

present	 NAC	 as	 a	 potential	 therapeutic	 strategy.	 These	 beneficial	 effects	 of	

NAC	 treatment	 are	 in	 accordance	 with	 the	 ones	 reported	 in	 other	 models	

(Marian	 et	 al.,	 2006;	Giam	 et	 al.,	 2016).	Hence,	 due	 to	 the	 pharmacokinetics	

and	 the	 absence	 of	 toxicity,	 NAC	 should	 be	 taken	 in	 consideration	 for	 the	

treatment	of	LMNA	cardiomyopathy.		

Thus,	 in	 order	 to	 translocate	 the	 best	 therapeutic	 strategy	 to	 patients,	

some	aspects	of	this	treatment	required	further	discussion/investigation.	This	

study	 has	 defined	 NAC	 as	 a	 protecting	 agent	 against	 cardiomyopathy	

progression,	however	it	does	not	present	a	100%	curative	effect.	In	fact,	even	

after	the	restoration	of	physiologic	glutathione	levels,	no	fractional	shortening	

restoration	 was	 observed	 in	 the	 treated	 LmnaH222P/H222P	 mice.	 It	 can	 be	

hypothesized	that	NAC	treatment	prior	to	the	onset	of	the	cardiac	dysfunction	

could	 protect	 the	 heart	 from	 degeneration.	 However,	 when	 NAC	 was	 given	

after	LV	dilatation	and	decreased	cardiac	ejection	fraction,	it	is	not	beneficial.	

The	 results	 from	 a	 clinical	 trial	 on	 cardiac	 injury	 after	 abdominal	 aortic	

aneurysm	 repair	 support	 this	 hypothesis.	Where	 the	 administration	 of	 NAC	

prior	 to	surgery	protected	 the	patients	 from	oxidative	stress	 (Mahmoud	and	

Ammar,	2011).	It	would	be	of	great	interest	to	define	if	treating	these	mice	at	a	

pre-symptomatic	stage	inhibits	or	delays	the	outbreak	of	the	pathology.		
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Another	 interesting	 point	would	 be	 to	 assess	 the	 redox	 state	 of	 skeletal	

muscle	 before	 and	 after	 the	 treatment,	 in	 order	 to	 determine	 whether	 the	

beneficial	 effects	 are	 organ-specific	 or	 not.	 If	 there	 is	 an	 amelioration	 of	

skeletal	 muscle	 redox	 state,	 this	 treatment	 would	 become	 even	 more	

interesting	for	the	treatment	of	LMNA	cardiomyopathy	but	also	for	a	broader	

range	of	muscular	dystrophies	with	or	without	cardiac	impairment.		

Nevertheless,	since	NAC	is	not	specific	to	muscular	tissue,	other	therapies	

should	 also	be	 taken	 into	 consideration.	Nowadays	most	 attempts	 to	 reduce	

oxidative	 stress	 have	 been	 futile.	 This	 can	 be	 explained	 by	 an	 insufficient	

reduction	 in	 the	 required	 cellular	 type	 or	 by	 subcellular	 compartment	 or	 it	

might	 be	 due	 to	 a	 non-selective	 ROS	 modulation.	 ROS	 are	 essential	 for	

different	 signaling	 pathways,	 so	 a	 non-selective	 modulation	 could	 interfere	

with	 physiological	 ROS-dependent	 signaling	 pathways	 (Dao	 et	 al.,	 2015).	

However	 a	 large	 number	 of	 innovative	 options	 should	 be	 taken	 in	

consideration	 rather	 than	 classical	 antioxidant	 supplementations.	 As	 an	

example,	 it	would	 be	 interesting	 to	 identify	 the	 proteins	 responsible	 for	 the	

carbonylation	to	define	targeted	therapies.	Similar	approaches	modulating	the	

expression	of	antioxidant	 systems	 led	 to	encouraging	results	 in	amyotrophic	

lateral	sclerosis	(Nanou	et	al.,	2013).	Other	possibility	would	be	to	specifically	

target	NOX2	and	NOX4	as	previously	described	in	other	systems	(Stielow	et	al.,	

2006;	Jucaite	et	al.,	2015).			

In	summary,	the	results	obtained	in	of	LmnaH222P/H222P	mouse	presented	in	

this	 first	 part	 showed	 that	 increased	 oxidative	 stress	 is	 implicated	 in	 the	

cardiac	phenotype	progression	of	LMNA	cardiomyopathy	and	endorse	NAC	as	

a	possible	therapeutic	option	for	patients.		
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2. Sarcolipin:	key	regulator	of	pathological	Ca2+	homeostasis	in	

LMNA	cardiomyopathy?	

Given	 the	 importance	 of	 intracellular	 calcium	 regulation	 in	 cardiac	

function	 and	 the	 implication	 of	 calcium	 imbalance	 in	 cardiomyopathies	

(Kranias	 and	 Bers,	 2007),	 the	 second	 part	 of	 this	 thesis	 focused	 in	 the	

regulation	 of	 calcium	 homeostasis	 in	 LMNA	 cardiomyopathy.	 Pulling	 this	

thread,	 the	 expression	 levels	 of	 different	 calcium	 regulators	 were	 analyzed	

from	 the	 results	 of	 a	 previously	 performed	microarray	DNA	 analysis	 on	 the	

LmnaH222P/H222P	mice	(Muchir	et	al.,	2007b).	 Interestingly,	Sln	was	among	the	

ten	 most	 affected	 genes,	 encoding	 for	 sarcolipin,	 a	 main	 regulator	 of	 the	

SERCA	 pump.	 The	 early	 over-expression	 of	 Sln	 give	 rise	 to	 the	 hypothesis	

which	considers	 that	Ca2+	homeostasis	could	be	altered	and	Sln	 could	be	 the	

driving	force	of	this	imbalance.		

The	main	findings	from	the	second	part	of	this	investigation	demonstrate	

that	 sarcolipin	 was	 up	 regulated	 along	 with	 the	 progression	 of	

cardiomyopathy	 in	 hearts	 from	LmnaH222P/H222P	mice,	 leading	 to	 a	 prolonged	

Ca2+	 recapture	 time	 due	 to	 an	 alteration	 of	 SERCA2a	 and/or	NCX1	 function.	

SERCA’s	 impaired	 function	 was	 described	 in	 cardiac	 sarcolipin	 over-

expression	models	(Asahi	et	al.,	2004;	Babu	et	al.,	2005,	2006),	confirming	the	

implication	of	sarcolipin	in	delayed	calcium	recapture.	In	accordance	to	these	

studies	and	despite	of	the	reduction	of	Serca2a	activity,	its	expression	was	not	

altered.	This	confirms	the	fact	that	the	impaired	Ca2+	recapture	was	not	due	to	

a	defective	expression	of	SERCA2a	but	rather	of	modulation	of	 its	activity	by	

sarcolipin.	Though	an	altered	expression	of	other	calcium	regulators	such	as	

NCX1	 or	 phospholamban	was	 observed	 in	 hearts	 from	LmnaH222P/H222P	mice,	

modifications	 have	 never	 been	 reported	 so	 far.	 These	 alterations	 were	

observed	both	in	vivo,	in	the	ventricles	of	LmnaH222P/H222P	mice,	and	in	vitro	in	

the	 sarcolipin-over	 expression	 cardiac	 cellular	 models	 (H9C2	 and	 HL-1	
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expressing	 FLAG	 epitope-tagged	 sarcolipin).	 Concerning	 NCX1	

overexpression,	 it	 is	 complicated	 to	 determine	 if	 this	 is	 common	 to	 all	

sarcolipin	over-expression	models	because	previous	studies	have	not	reported	

its	 expression	 levels.	 It	 can	 be	 speculated	 that	 NCX1	 expression	 can	 be	

increased	to	attenuate	the	intracellular	calcium	overload,	as	reported	in	other	

cardiomyopathies	(Wang	et	al.,	2009;	Lu	et	al.,	2011).		

Regarding	 the	 phospholamban	 reduced	 expression,	 not	 all	 the	 studies	

reported	 the	 same	 results.	 A	 theory	 of	 a	 compensatory	 mechanism	 was	

proposed	 by	Gramolini	 et	al,	 suggesting	 that	 to	 compensate	 sarcolipin	 over-

expression,	 mechanisms	 leading	 to	 a	 regulation	 of	 sarcolipin	 or	

phospholamban	 activities	 could	 occur	 (Gramolini	 et	 al.,	 2006).	 Most	 of	 the	

studies	 with	 sarcolipin	 alterations	 reveal	 an	 unaltered	 phospholamban	

expression	 level	not	only	 in	cardiac	muscle	(atrial	or	ventricular)	but	also	 in	

skeletal	muscle	(Asahi	et	al.,	2004;	Babu	et	al.,	2005,	2006,	2007a;	Ottenheijm	

et	 al.,	 2008;	 Xie	 et	 al.,	 2012;	 Shanmugam	 et	 al.,	 2015;	 Voit	 et	 al.,	 2017),	

rejecting	 the	 hypothesis	 of	 a	 compensatory	 regulation.	 Conversely,	 different	

studies	lean	towards	a	compensatory	regulation	between	phospholamban	and	

sarcolipin	 expression	 (Babu	 et	 al.,	 2007b;	 Shanmugam	 et	 al.,	 2015).	 This	

hypothesis	is	more	in	accordance	with	the	results	obtain	during	my	thesis.		

However	 a	 third	 possibility	 could	 globally	 explain	 the	 results	

(summarized	 in	 figure	 10).	 It	 can	 be	 speculated	 that	 the	 compensatory	

mechanisms	exist	but	 in	a	 two	steps	dependent	mechanism.	 In	 the	 first	 step	

the	 regulation	 of	 sarcolipin/phospholamban	 activity	 depends	 on	 the	

phosphorylation	 control.	 If	 sarcolipin	 is	 overexpressed,	 an	 increased	

phosphorylated	phospholamban	would	be	observed.	This	can	be	endorsed	by	

the	 increased	 phospho-phospholamban	 observed	 in	 the	 hearts	 of	 sarcolipin	

over-expression	 mouse	 model	 (Shanmugam	 et	 al.,	 2015),	 as	 well	 as	 by	 the	

results	 obtained	 during	 my	 thesis.	 Then,	 if	 the	 activation/inactivation	 of	

phospholamban	 is	 not	 enough	 to	 re-establish	 normal	 SERCA2a	 function,	 the	
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expression	of	sarcolipin	or	phospholamban	could	be	altered.	If	these	two	steps	

regulation	 takes	 place,	 it	 is	 then	 essential	 to	 know	 how	 sarcolipin	 can	 be	

activated/deactivated.	 Due	 to	 the	 structural	 and	 functional	 similarities	 of	

sarcolipin	 and	 phospholamban,	 different	 studies	 have	 analyzed	 the	 post-

translational	 modifications	 of	 sarcolipin.	 Recent	 studies	 have	 shown	 that	

phosphorylation	 of	 threonine	 5	 (conserved	 residue	 among	 mammalians)	

could	 be	 in	 charge	 of	 its	 function	 (Bhupathy	 et	 al.,	 2009;	 Shanmugam	 et	 al.,	

2015).	

	

	

Figure	 10.	 Schematic	 representation	 of	 the	 hypothesis	 of	 the	 2-step-regulation	
compensation	 mechanism.	 	 A.	 Normal	 condition:	 sarcolipin	 is	 expressed	 on	 atria	 and	
phospholamban	 in	 ventricles.	 B.	 Lmna	 cardiomyopathy:	 phospholamban	 is	 expressed	 on	
ventricles	 whether	 sarcolipin	 is	 expressed	 in	 both	 atria	 and	 ventricles.	 C.	 First	 step	 of	 the	
compensatory	mechanism:	regulation	of	phospholamban	by	phosphorylation.	D.	Second	step	
of	the	compensatory	mechanism:	inhibition	of	phospholamban	expression.	

	

All	the	results	mentioned	above	have	led	us	to	the	following	investigation:		

AAV-mediated	down-regulation	of	 sarcolipin	could	 lead	 to	a	 reduced	cardiac	

progression	of	LMNA	pathology.		

Contrarily	 to	what	was	 hypothesized,	 the	 treatment	with	 shRNA-Sln	 did	

not	 mitigate	 the	 cardiac	 progression	 in	 LmnaH222P/H222P	 mice.	 However,	 the	

expected	 beneficial	 effect	 of	 this	 AAV-mediated	 therapy	 was	 observed	 in	
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recent	 studies	 performed	 on	 mdx	 mouse	 (Voit	 et	 al.,	 2017).	 Taking	 into	

account	the	available	evidence,	it	can	be	proposed	that	a	possible	reason	that	

an	improvement	in	cardiac	function	was	not	detected	in	our	current	study,	due	

to	the	 low	transduction	 level	(20%).	The	transduction	efficiency	was	enough	

to	reduce	sarcolipin	over-expression	up	to	40%,	but	it	may	not	be	sufficient	to	

ameliorate	 the	 cardiac	 phenotype.	 Increasing	 the	 efficiency	 of	 the	 treatment	

could	lead	to	the	expected	beneficial	effect.	Additionally	the	sequence	targeted	

in	this	study	is	different	to	the	one	targeted	by	Voit	et	al.	(Voit	et	al.,	2017),	and	

that	fact	could	also	explain	the	different	results.	It	would	be	of	great	interest	to	

target	 the	 same	 sequence	 as	 Voit	 et	 al.	 to	 determine	 the	 implication	 of	

sarcolipin	in	LMNA	cardiomyopathy.	

Sarcolipin	alterations	have	been	observed	in	a	 large	panel	of	myopathies	

such	 as:	 amyotrophic	 lateral	 sclerosis	 (Calvo	 et	 al.,	 2012),	 distal	 myopathy	

(Ottenheijm	 et	 al.,	 2008),	 Duchene	 muscular	 dystrophy	 (Schneider	 et	 al.,	

2013),	myotonic	 dystrophy	 (Osborne	 et	 al.,	 2009),	 centro-nuclear	myopathy	

(Nakagawa	 et	 al.,	 2005;	 Fajardo	 et	 al.,	 2017),	 dynamin-2	 dependent	 centro-

nuclear	 myopathy	 (Liu	 et	 al.,	 2011),	 dysferlinopathies	 (Campanaro	 et	 al.,	

2002)	 and	 so,	 in	 corticosteroide-induced	myopathies	 (Gayan-Ramirez	 et	 al.,	

2000).	 Thus,	 a	 further	 possibility	 to	 explain	 the	 absence	 of	 cardiac	

improvement	 due	 to	 sarcolipin	 regulation	 could	 be	 that	 sarcolipin	 is	 not	

directly	linked	to	the	LMNA	pathology	progression	but	it	is	rather	a	marker	of	

a	defective	striated	muscle.		

In	 summary,	 the	 data	 presented	 in	 the	 second	 part	 of	 our	 investigation	

confirm	 that	 sarcolipin	 overexpression	 is	 sufficient	 to	 create	 a	 calcium	

homeostasis	 imbalance.	 Additionally	 it	 suggests	 a	 novel	 model	 for	 A-type	

lamins	 in	 the	 regulation	 of	 calcium	 homeostasis.	 Further	 investigation	 is	

required	to	determine	the	exact	role	of	sarcolipin	in	the	progression	of	LMNA	

cardiomyopathy	and	to	determine	if	sarcolipin	could	be	a	novel	and	universal	

muscle	therapeutic	target.		
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3. Cross-	link	between	defective	lamins,	increased	oxidative	

stress	and	calcium	imbalance.			

This	original	work	has	shown	that	defective	regulation	of	oxidative	stress	

and	 altered	 calcium	homeostasis	 are	 implicated	 in	 the	 progression	 of	LMNA	

cardiomyopathy.	 It	 is	 now	 clear	 that	 the	 reduction	 of	 oxidative	 stress	 is	 a	

potential	therapeutic	option	for	the	disease.	On	the	other	hand,	the	implication	

of	sarcolipin	in	the	pathomechanisms	requires	further	investigation.	However	

it	has	become	clear	that	sarcolipin	plays	a	critical	role	in	the	impaired	cardiac	

calcium	recapture	and	the	altered	expression	of	different	calcium	regulators.		

It	 is	 currently	 known	 that	 there	 is	 a	 close	 regulation	 between	 lamins	

functions,	 production	 of	 ROS	 and	 calcium	 homeostasis.	 Moreover	 it	 is	 clear	

that	these	close	interactions	can	be	altered	in	pathological	situations,	inducing	

a	pathological	regulation	loop	of	the	other	components.		

The	 different	 roles	 and	 effects	 induced	 by	 alterations	 in	 one	 of	 the	

components	 of	 the	 system	 are	 summarized	 in	 figure	 11.	 The	 possible	

interplays	between	these	three	systems	in	the	case	of	laminopathies	would	be	

discussed	in	the	next	sections.		
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Figure	 11.	 Schematic	 summery	 of	 the	 different	 interactions	 between	 lamins,	 calcium	
homeostasis	and	oxidative	stress	in	normal	and	pathological	conditions.		
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3.1 Dysfunctional	lamin	lead	to	oxidative	stress		

Although	 it	 is	 clear	 that	 LMNA	 mutations	 lead	 to	 increased	 oxidative	

stress,	 the	 exact	mechanism	 of	 it	 remains	 unclear.	 Different	 hypotheses	 not	

mutually	exclusive	have	been	proposed	to	explain	 this	 interplay.	1)	Vos	et	al	

proffered	showed	 that	 intermittent	 ruptures	of	 the	nuclear	envelope	(due	 to	

A-type	 lamin	 mutations)	 lead	 to	 loss	 of	 cellular	 compartmentalization	

inducing	 a	mis-localization	 of	 transcription	 factors	 altering	 the	 regulation	 of	

different	 genes,	 among	which	 Oct-1	 (Vos	 et	 al.,	 2011)	 defined	 as	 one	 of	 the	

main	actors	of	lamin-induced	oxidative	stress	(Malhas	et	al.,	2009).	The	loss	of	

cellular	 compartmentalization	 could	 also	 explain	 the	 localization	 of	

mitochondria	inside	of	the	nucleus,	observed	in	some	laminopathies	patients,	

increasing	 by	 rapprochement	 the	 risk	 of	 oxidative	 damage	 (Sylvius	 et	 al.,	

2005;	 Vos	 et	 al.,	 2011).	 2)	 A	 second	 hypothesis	 was	 proposed,	 based	 on	

defective	 lamin-chromatin	 interaction	due	 to	LMNA	mutations	 inducing	ATR	

mislocalization	 (Manju	 et	 al.,	 2006).	 The	 ATR	 mislocalization	 could	 be	

responsible	of	the	DNA	double	breaks	accumulation,	that	has	been	described	

as	 implicated	 in	 ROS	 production	 (Kang	 et	 al.,	 2012).	 3)	 A	 third	 hypothesis,	

based	on	the	presence	of	a	nuclear	shield	of	antioxidant	enzymes	(Fabrini	et	

al.,	 2010)	anchored	 to	 the	nucleus	by	 the	LINC	complex,	propose	 that	LMNA	

mutations	 alter	A-type	 lamins	 scaffolding	 role	 of	 the	 LINC-complex	 inducing	

nesprins	mislocalization	 leading	to	a	 local	decline	of	antioxidants	around	the	

nucleus,	which	could	in	turn	elicit	a	higher	susceptibility	to	oxidative	stress.	4)	

A	 fourth	 hypothesis	 was	 also	 proposed	 focusing	 on	 the	 role	 of	 lamins	 as	

signaling	pathways	regulators.	Lamins	play	an	important	role	in	the	regulation	

of	signaling	pathways	mediated	by	SIRT1	(Liu	et	al.,	2012),	NF-κB	(Osorio	et	

al.,	2012)	and	mTORC1	(Ramos	et	al.,	2012).	These	pathways	are	known	to	be	

involved	 in	 regulating	 oxygen	 metabolism	 and	 oxidative	 stress.	 Though	 in	

many	 cases,	 direct	 biochemical	 evidence	 has	 yet	 to	 be	 provided,	 however	
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these	 studies	 imply	 that	 A-type	 lamins	 may	 regulate	 a	 cellular	 response	 to	

oxidative	stress	through	these	pathways.		

Even	 if	 the	 A-type	 lamin	 mutations	 are	 initially	 responsible	 for	 the	

increased	oxidative	stress,	there	is	a	positive	retro-control	loop	inducing	ROS	

production	 that	 plays	 an	 important	 role	 in	 the	 observed	 phenotypes.	 The	

recapitulations	 of	 the	 different	 hypothesis	 of	 the	 contribution	 of	 lamin	

mutations	to	the	oxidative	stress	are	summarized	in	figure	12.		

	

	
	

	
	

Figure	 12.	 Recapitulation	 of	 different	 hypothesis	 Figure	 extracted	 from:	 Sieprath	 et	 al.	
2012	 –	 “Lamins	as	mediators	 of	 oxidative	 stress”.	 Original	 legend:	 Framework	 for	 reciprocal	
interactions	between	lamins	and	oxidative	stress.	Genetic	(innate)	or	non-genetic	(acquired)	
mechanisms	cause	lamina	dysfunction,	which	leads	to	an	altered	affinity	(docking)	for	redox-
responsive	 transcription	 factors	 and/or	 ROS	 defusing	 enzymes,	 reduced	
compartmentalization	potential	(ruptures)	or	mitochondrial	dysfunction.	This	causes	changes	
in	 stress-responsive	 gene	 expression	 and/or	 spatial	 redistribution	 of	 pro-	 (mitochondria,	
NOX)	and	anti-oxidants	(CAT,	SOD.	 .	 .),	 inducing	a	state	of	oxidative	stress.	Chronic	oxidative	
stress	induces	telomere	shortening,	protein	oxidation	and	persistent	DNA	damage,	eventually	
heralding	cellular	senescence.		
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3.2 Dysfunctional	lamins	lead	to	an	altered	calcium	homeostasis		

The	link	between	lamins	and	altered	calcium	homeostasis	is	harder	to	be	

proved.	The	present	study	can	suggest	that	a	mutation	of	lamin	A/C	would	be	

directly	 responsible	of	a	 sarcolipin	over-expression	 implicated	 in	 the	altered	

calcium	homeostasis.	However	this	theory	requires	further	investigation.	

Besides	 this	hypothetical	 role,	 the	 implication	of	 calcium	as	 a	 secondary	

messenger	 regulating	 a	 wide	 range	 of	 cellular	 activities	 has	 been	 described	

long	 ago	 (Rasmussen	 et	 al.,	 1976).	 The	 effect	 of	 the	 accumulation	 of	 this	

secondary	messenger	in	the	nucleus	has	also	prompted	great	interest,	and	its	

roles	in	the	nucleus	have	been	thoroughly	reviewed	(Gomes	et	al.,	2006).		

Echevarría	et	al.	proposed	the	existence	of	a	nucleoplasmic	reticulum,	that	

has	 been	 confirmed	 by	 other	 groups	 (Echevarría	 et	 al.,	 2003;	 Malhas	 et	 al.,	

2011).	 It	 can	 be	 speculated	 that	 lamins	 are	 implicated	 in	 the	 regulation	 of	

these	 nucleoplasmic	 reticulum.	 Then,	 a	 disruption	 in	 the	 nuclear	 envelope	

would	 lead	 to	 increased	 calcium	 in	 the	 nucleus	 and	 defective	 signalling	

pathways.	 This	 hypothesis	 can	 be	 sustained	 by	 the	 results	 obtained	 by	

microscopy	 analysis	 showing	 that	 lamin	 is	 implicated	 in	 the	 formation	 of	

nucleoplasmic	 reticulum	 (Drozdz	 et	 al.,	 2017).	 Therefore	 a	 defect	 in	 lamins	

would	trigger	a	domino	effect	 that	would	 induce	an	alteration	of	 the	nuclear	

calcium	and	subsequently	an	alteration	of	the	cytoplasmic	calcium.	

In	addition	to	all	the	possibilities	mentioned	above,	the	role	of	lamins	as	a	

signalling	regulator	cannot	be	neglected.	A-type	 lamins	are	 implicated	 in	 the	

regulation	 of	 different	 pathways	 that	 could	 be	 responsible	 of	 the	 altered	

calcium	homeostasis.	This	option	appeal	to	be	the	most	realistic	to	explain	the	

implication	in	lamins	in	calcium	imbalance.		
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3.2 Increased	oxidative	stress	lead	to	dysfunctional	lamins	and	
calcium	imbalance	

The	 implication	 of	 oxidative	 stress	 in	 the	 regulation	 of	 lamins	 is	

recapitulated	in	figures	8	and	12.	As	mentioned	before	the	increase	oxidative	

stress	 is	 a	 mayor	 actor	 of	 the	 physiopathology	 of	 laminopathies.	 Redox	

signaling	 is	 implicated	 in	 the	development	of	many	pathological	components	

of	the	heart	phenotype,	such	as	contractile	dysfunction,	calcium	dysregulation,	

cardiomyocyte	 hypertrophy,	 cell	 death,	 arrhythmia,	 fibrosis,	 and	 chamber	

dilation(Burgoyne	 et	 al.,	 2012).	 It	 is	 interesting	 to	 note	 that	 important	

amounts	 of	 ROS	 can	 trigger	 the	 activation	 of	 different	 signaling	 cascades	

among	 which	 are	 MAPKs,	 leading	 to	 induced	 dilated	 cardiomyopathies	

(Cardinale	et	al.,	2006;	Zeglinski	et	al.,	2011).	For	LMNA	cardiomyopathy	it	can	

be	 speculated	 that	 the	 dual	 regulating	 role	 of	 oxidative	 stress	 (regulation	 of	

lamins	 functions	 and	 regulation	 of	 calcium	 balance)	 is	 in	 charge	 of	 the	

progression	 of	 the	 pathology.	 Thus,	 previous	 studies,	 revealed	 that	 MAPKs	

pathway	was	one	of	the	most	altered	in	LmnaH222P/H222P	mouse	(Muchir	et	al.,	

2007b,	2012)	so	it	can	be	speculated	that	the	increased	oxidative	stress	can	be	

in	part	responsible	of	this	signaling	pathway	alteration.		

As	far	as	oxidative	stress	implication	for	the	direct	regulation	of	calcium	

balance	 is	 concerned,	 it	 has	 been	 shown	 that	 elevated	 ROS	 levels	 can	 alter	

calcium	 homeostasis	 through	 plasma	membrane	 proteins,	mitochondria	 and	

intracellular	calcium	channels	 (Duchen	et	al.,	2008).	The	redox	signaling	can	

target	 different	 calcium	 regulators	 summarized	 in	 table	 5	 (cf.	 introduction	

section).	 A	 summary	 of	 all	 the	 possible	 alterations	 of	 the	 different	 calcium	

regulators	is	presented	in	figure	13.	

Due	 to	 the	 results	 obtain	 during	 my	 thesis,	 we	 can	 speculate	 that	 the	

altered	 functions	 of	 SERCA2a	 and	 NCX1	 in	 LmnaH222P/H222P	mouse	 can	 be	 in	

part	explained	by	an	increase	oxidative	stress.	Since	SERCA2a	activity	can	be	

regulated	by	oxidative	stress	(high	concentrations	of	oxidative	stress	induces	
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an	 inhibition),	 it	will	 be	 interesting	 to	 determine	 the	 SERCA2a	 activity	 after	

the	NAC	treatment.		

Thus,	the	activity	of	the	RyR	channel	has	not	been	investigated,	however	

it	would	be	of	great	interest	to	further	investigate	its	possible	contribution	to	

the	pathology.		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	 13.	 Modulation	 of	 excitation	 contraction	 coupling	 proteins	 and	 its	 regulators	
Figure	 adapted	 from:	 Burgoyne	 et	 al.	 2012	 –	 “Redox	 Signaling	 in	 Cardiac	 Physiology	 and	
Pathology”.	

Oxidation	 of	 the	 Na+/K+	 ATPase	 β1	
subunit	 decreases	 pump	 activity,	
which	 can	 be	 reversed	 by	 β3	
adrenoceptor	stimulation.	

Ryanodine	receptor	(RyR)	2	oxidation	
to	the	S-nitrosylated	or	glutathiolated	
state	 enhances	 channel	 open	
probability.	

Glutathiolation	 of	 Cys674	 on	 SR	 Ca-
ATPase	(SERCA)	augments	its	activity	
but	 is	 prevented	 by	 the	
hyperoxidation	 of	 this	 residue	 under	
pathological	conditions.	ROS	indicates	
reactive	 oxygen	 species;	 ONOO,	
peroxynitrite;	 PLM,	 phospholamban;	
SNO,	S-nitrosothiol.		

Oxidation	 of	 methionine	 residues	 in	
the	 Ca/calmodulin-dependent	 kinase	
II	 (CaMKII)	 regulatory	 domain	
prevents	 reassociation	 of	 the	
autoinhibitory	complex	and	generates	
increased	 catalytic	 activity	
independent	of	Ca/CaM.		

Oxidation	 of	 the	 type	 1	 regulatory	
subunit	 dimer	 of	 protein	 kinase	 A	
(PKA)	 forms	 2	 intermolecular	
disulfides	that	enhance	kinase	binding	
affinity	 for	 A-kinase	 anchoring	
proteins	 (AKAPs),	 bringing	 it	 into	
close	proximity	with	its	substrates.		

Protein	 kinase	 G	 (PKG)	 1α	 oxidation	
leads	 to	 intermolecular	 disulfides	 de	
formation	 that	 increases	 kinase	
affinity	 for	 substrate,	 leading	 to	
translocation	 to	 the	 membrane	 and	
myofilaments,	 as	 well	 as	 augmented	
target	phosphorylation.	SNO	indicates	
S-nitrosothiol.		
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3.4 Altered	calcium	homeostasis	alters	lamin	functions	and	
induces	oxidative	stress		

Calcium	 has	 been	 described	 as	 a	main	 contributor	 to	 cardiomyopathies	

and	 muscular	 dystrophies	 due	 to	 its	 key	 role	 in	 muscle	 contraction	 as	 its	

function	as	a	second	messenger	(Kranias	and	Bers,	2007;	Burr	and	Molkentin,	

2015).	 With	 respect	 to	 lamins,	 calcium	 has	 been	 shown	 to	 promote	

farnesylation,	essential	for	the	maturation	of	lamins	(Kalinowski	et	al.,	2013).	

No	 further	 direct	 relationships	 between	 calcium	 and	 lamins	 have	 been	

described.		

Per	contra	 its	 involvement	of	calcium	in	response	to	oxidative	stress	has	

been	extensively	investigated	(Ermak	and	Davies,	2002;	Görlach	et	al.,	2015).	

The	 increase	 in	 cytoplasmic	 calcium	 is	 known	 to	 regulate	 ROS	 primarily	

through	 disrupting	 mitochondrial	 function	 in	 a	 phospholipase	 dependent	

manner	 (Nethery	et	al.,	2000;	Gong	et	al.,	2006).	 In	physiological	 conditions,	

calcium	 regulates	 balance	 between	 ATP	 production	 and	 ATP-demand.	

However,	 in	 pathological	 conditions,	 the	 intracellular	 calcium	 overload	

induces	 mitochondrial	 permeability	 transition	 pores.	 This	 phenomenon	 is	

responsible	for	an	increased	production	of	ROS,	which	aggravates	the	opening	

of	 the	 non-specific	 pores	 in	 the	 mitochondria,	 finally	 leading	 to	 a	

mitochondrial	dysfunction	or	destruction	responsible	of	cellular	death.		

All	 together,	 we	 can	 conclude	 that	 it	 is	 impossible	 to	 blame	 calcium	 or	

oxidative	stress	as	the	main	cause	of	the	disease	since	both	are	self-regulating.	

We	 can	 therefore	 say	 that	 oxidative	 stress	 and	 the	 alteration	 of	 calcium	

contribute	to	the	progression	of	the	pathology	and	should	be	finely	regulated	

to	prevent	the	onset	of	the	symptoms.	

Further	 studies	 are	 required	 to	 determine	 if	 the	 restoration	 of	 normal	

oxidative	stress	levels	by	NAC	treatment	(or	other	treatments)	have	an	effect	

in	the	regulation	of	calcium	homeostasis.	In	the	same	line,	studying	the	redox	
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state	 after	 controlling	 calcium	 homeostasis	 by	 restoring	 normal	 sarcolipin	

levels	(or	by	other	methods)	would	be	of	great	interest.		

Nevertheless	 we	 will	 still	 be	 missing	 the	 direct	 link	 between	 LMNA	

mutations	and	the	excessive	oxidative	stress,	as	well	as	the	direct	link	between	

LMNA	mutations	 and	 the	 over-expression	 of	 sarcolipin	 leading	 to	 an	 altered	

calcium	homeostasis.	It	is	now	a	challenge	to	the	field	to	determine	those	links.		
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