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Abstract

Little is known about the relationship between the physical properties (materials, geometry, vibrational modes) of
bowed string instruments and their perceptual properties (quality, sound, playability).

Bissinger measured physical properties of several violins, but failed to find any correlations with their supposed
quality ratings, possibly due to overly simplified quality characterizations. Fritz and Saitis investigated how players
subjectively evaluate instruments. They found that musicians provide self-consistent ratings but disagree with other
musicians, not only in terms of subjective preferences, but more surprisingly, in terms of what could be considered
as more objective criteria. The disagreement is hypothesized to be due to differences in playing techniques. That
musicians use control parameters differently from one another, even when playing the same music, has indeed been
demonstrated by Chudy.

Guettler identified meaningful control parameters for attacks and used a listening test to find the duration of
acceptable attacks for the violin. Schelleng looked at the set of steady state gestures which support the string motions
associated with normal cello playing and identified upper and lower force limits for a given note and bow speed.
Woodhouse improved on Schelleng’s estimate of the lower force limit and connected it to the wolf note. He further
proposed the bridge mobility as a physical mechanism which could explain the perception of playability. Zhang tested
this hypothesis in the context of the wolf note and found good correspondence between the bridge mobility and the
perceived severity of the wolf note.

In this thesis we attempt to further validate the link between the bridge mobility and the perception of playability
by observing whether the musician perceives differences in Schelleng’s upper and lower limits for notes other than the
wolf note. We also look for other factors which are relevant to the musician’s perception of playability by studying the
interactions between the player and the instrument during an evaluation and performance task. Unlike previous ap-
proaches, we observe all parts of the playability feedback loop, including the control parameters, some vibro-acoustical
measurements taken with an impact hammer, the response of the instrument to the control parameters, and the musi-
cian’s comments about perceptual properties.

We use a camera-based motion capture system to follow the movements of the cello and bow as a professional
musician evaluates each of two cellos. Piezoelectric sensors in the bridge under each string record the vibrations of
individual strings. The motion capture data along with the string motions and calibration data are used to estimate the
musician’s control parameters: applied bow force, bow speed, bow position, bow angles, and string length. The bridge
mobility is used to estimate bow force limits for comparisons with the observed control parameters. The musician’s
comments about perceptual properties are used to interpret the measurements.

We observed some evidence that the perceived "power" or "loudness" of a string is indeed an intrinsic property
of the cello. We calculated the ratio of the RMS microphone amplitude to the RMS string vibration amplitude for each
note, creating a quantity similar to the more traditional radiation transfer function. The result was greater on one
cello for notes which were perceived to be more powerful on that cello. We further suggest that this intrinsic loudness
property may be estimated by combining the horizontally and vertically excited radiation transfer functions in a way
which takes into account all string polarizations.

We present a new diagram, similar to Schelleng’s, which allows us to combine data from different control param-
eters, notes, strings, and cellos. The new diagram makes it easy to see, in one picture, that the musician maintains a
large margin from Schelleng’s limits. More concretely, for typical bow speeds, Schelleng’s upper limit is usually much
larger than what the bow deformation affords the musician, while Schelleng’s lower limit is much smaller than the
minimum used by the musician, with the exception of wolf notes. We conclude that small variations in these limits are
not likely to be perceived and that the range of forces consistent with Helmholtz motion is not likely to play a role in
the evaluation of cellos.

A preferred strategy for changing the direction of bow movement on the cello is identified. The strategy produces
a distribution of attack times on the cello. While about 50% of attacks had acceptable transient durations by Guettler’s
criterion (with many perfect attacks), the musician did not complain about the quality of any attack specifically, or
of attacks in general, and seemed content with recordings which include transients which never achieved Helmholtz
motion. This emphasizes that the acceptability of an attack transient is not solely dependent on its duration and that
Guettler’s criterion is not an absolute threshold. It is sometimes suggested that a string on which the musician produces
longer transients on average should be perceived negatively. We did not find this to be the case. Instead, we found
that greater bow forces lead to shorter transient durations. In one case, a string was described negatively as [soft] and
the musician used less force, resulting in longer transients. But in another case, a string was described negatively as
having a poor timbre and the musician used more force, resulting in shorter transients.

Geometric features of the cello set-up (in particular, the bridge curvature) may lead the musician to use less force
than usual in order to avoid accidentally touching adjacent strings. This results in longer transients and different tim-
bres, which are perceived in ways that are not related to geometry or control parameters. Sometimes unconscious
adaptations to the geometry affect the sounds produced and the subsequent perception of the instrument. A con-
scious effort is needed to overcome these natural behaviors in order to compensate for set-up geometry and arrive at
a stable evaluation. Thus if any reliable link between perceived properties and physical properties is to be found, we
must ensure that each musician evaluating the instrument has sufficient cause to try to overcome any unsatisfactory
perceptions.
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Résumé

Les relations entre les propriétés physiques (matériaux, géométrie, modes de vibration) des instruments à cordes frot-
tées et leurs propriétés prceptives (qualité, son, jouabilité) sont encore peu connues.

Bissinger a mesuré les propriétés physiques de plusieurs violons, mais n’a pas trouvé de corrélation avec les
évaluations de qualité de ces violons, probablement parce que celles-ci étaient trop simplifiées. Fritz et Saitis ont
enquêté sur la manière dont les violonistes évaluent subjectivement les instruments. Ils ont constaté que les musiciens
fournissent des évaluations cohérentes mais ne sont pas d’accord avec les autres musiciens, non seulement en termes de
préférences subjectives, mais plus surprenant en termes de critères que l’on pourrait considérer comme plus objectifs.
Ce désaccord est certainement dû aux différences dans les techniques de jeu. Ainsi, Chudy a montré que les musiciens
utilisent les paramètres de contrôle différemment les uns des autres, même lorsqu’ils jouent le même extrait musical.

Guettler a identifié des paramètres de contrôle pertinents pour les attaques et, grâce a un test d’écoute, pu déter-
miner la durée des attaques acceptables pour le violon. Schelleng a étudié l’ensemble des paramètres de contrôle en
régime stationnaire qui permettent la vibration des cordes en jeu normal (mouvement dit de Helmholtz) et a identifié
les limites de force supérieure et inférieure pour une note et une vitesse d’archet données. Woodhouse a amélioré
l’estimation de Schelleng concernant la limite de force inférieure et l’a reliée à la note de loup. Il a en outre proposé la
mobilité au chevalet comme mécanisme physique pouvant expliquer la perception de la jouabilité. Zhang a testé cette
hypothèse dans le contexte de la note de loup et a trouvé une bonne correspondance entre la mobilité au chevalet et la
sévérité perçue de la note de loup.

Dans cette thèse, nous essayons d’explorer davantage le lien entre la mobilité au chevalet et la perception de la
jouabilité en observant si le musicien perçoit des différences dans les limites supérieure et inférieure de Schelleng, pour
les notes autres que la note de loup. Nous recherchons également d’autres facteurs pertinents pour la perception de la
jouabilité par le musicien en étudiant les interactions entre le musicien et l’instrument lors d’une tâche d’évaluation et
d’interpr’etation. Contrairement aux approches précédentes, nous observons toutes les parties de la boucle de rétroac-
tion qui pourraient être impliqués dans la jouabilité, à savoir les paramètres de contrôle, les réponses vibratoires et
acoustiques de l’instrument mesurés avec une excitation contrôlée (marteau d’impact), la réponse de l’instrument en
situation de jeu et les commentaires du musicien sur les qualités de cet instrument.

Nous utilisons un système de capture de mouvement basé sur des caméras infrarouges pour suivre les mouve-
ments relatifs du violoncelle et de l’archet, tandis qu’un musicien professionnel évalue deux violoncelles. Des capteurs
piézoélectriques dans le chevalet sous chaque corde enregistrent les vibrations de chaque corde. Les données de cap-
ture de mouvement, ainsi que les mouvements des cordes et les données de calibrage, sont utilisés pour estimer les
paramètres de contrôle du musicien: la force d’archet appliquée, la vitesse de l’archet, la position de l’archet, les angles
de l’archet et la longueur de la corde vibrante. La mobilité du chevalet est utilisée pour estimer les limites de force
d’archet qui sont comparées aux paramètres de contrôle mesurés. Les commentaires de qualité du musicien servent à
interpréter les mesures.

Nos observations semblent montrer que la « puissance » d’une corde est une propriété intrinsèque du violoncelle.
Nous avons calculé le rapport entre l’amplitude RMS du microphone et l’amplitude RMS des vibrations de corde pour
chaque note, créant ainsi une quantité similaire à la fonction de transfert de rayonnement traditionnelle. Cette quantité
était plus grande sur le violoncelle pour lequel les notes étaient perçues comme plus puissantes. Nous suggérons en
outre que cette propriété intrinsèque de puissance pourrait être estimée en combinant les fonctions de transfert de
rayonnement obtenues par excitations horizontale et verticale de manière à prendre en compte toutes les polarisations
possibles de la corde.

Nous présentons un nouveau diagramme, similaire à celui de Schelleng, qui nous permet de combiner les données
de différents paramètres de contrôle, notes, cordes et violoncelles. Le nouveau diagramme permet de voir facilement,
dans une image, que le musicien conserve une marge importante par rapport aux limites de Schelleng. Plus concrète-
ment, pour des vitesses d’archet typiques, la limite supérieure de Schelleng est généralement beaucoup plus grande
que celle offerte au musicien par la déformation de l’archet, tandis que la limite inférieure de Schelleng est bien in-
férieure au minimum utilisé par le musicien, à l’exception des notes de loup. Nous concluons que de petites variations
dans ces limites ne seront probablement pas perçues et que la gamme des forces compatibles avec le mouvement de
Helmholtz n’est pas susceptible de jouer un rôle dans l’évaluation des violoncelles.

Une stratégie préférée pour changer la direction du mouvement de l’archet sur le violoncelle est identifiée ; elle
produit une distribution des temps d’attaque. Bien qu’environ 50% des attaques aient des durées transitoires accept-
ables selon le critère de Guettler (avec de nombreuses attaques parfaites), le musicien ne s’est pas plaint de la qualité
d’une attaque en particulier, ni des attaques en général, et semble se contenter d’enregistrements incluant des transi-
toires qui n’ont jamais atteint le mouvement de Helmholtz. Cela souligne que l’acceptabilité d’un transitoire d’attaque
ne dépend pas uniquement de sa durée et que le critère de Guettler n’est pas un seuil absolu. Il est parfois suggéré
qu’une corde sur laquelle le musicien produit des transitoires plus longs en moyenne devrait être perçue négativement.
Nous n’avons pas observé un tel effet. Au lieu de cela, nous avons constaté que des forces d’archet supérieures en-
traînaient des durées de transitoires plus courtes. Dans un cas, une corde était décrite négativement comme "molle"
et le musicien utilisait moins de force, ce qui entraînait des transitoires plus longs. Mais dans un autre cas, une corde
était décrite négativement comme ayant un timbre médiocre et le musicien utilisait plus de force, ce qui réduisait les
transitoires.

Les caractéristiques géométriques de la structure du violoncelle (en particulier la courbure du chevalet) peuvent
amener le musicien à utiliser moins de force que d’habitude afin d’éviter de toucher accidentellement des cordes ad-
jacentes. Cela entraîne des transitoires plus longs et des timbres différents, qui sont perçus d’une manière non lié à la
géométrie ou aux paramètres de contrôle. Parfois, des adaptations inconscientes de la géométrie affectent les sons pro-
duits et la perception ultérieure de l’instrument. Un effort conscient est nécessaire pour surmonter ces comportements
naturels afin de compenser la géométrie de la configuration et d’arriver à une évaluation stable. Ainsi, si un lien fiable
doit être trouvé entre les propriétés perçues et les propriétés physiques, nous devons nous assurer que chaque musicien
évaluant l’instrument dispose de suffisamment de raisons pour tenter de surmonter les perceptions non satisfaisantes.
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Chapter 1

Introduction

Context. There are very few, if any, studies on the extent to which the perceived
quality of a bowed-string instrument is affected by the choice of interactions used to
evaluate it. Yet it is precisely these interactions which define musical instruments as
tools rather than as simple objects. The quality of a tool lies in its capacity to be manip-
ulated by the user to achieve his purpose for using it. Certainly the physical properties
of an instrument are relevant to evaluating its quality, but the way the instrument is
played as well as the musician’s intended purpose must also be taken into account.

Complication. There has been a lot of research which treats instruments as objects.
Instrument makers and scientists have studied the materials, geometry, construction,
and vibrational behavior of bowed string instruments with the hopes of predicting
their quality as perceived by musicians. The result of this research is that we have very
good models of how the instruments work and are making in-roads on how we can
control their vibrational behavior through modifying materials and geometry. Unfor-
tunately, we still don’t fully understand the relationships between our physical mea-
surements and the reported quality ratings of the instruments.

Observations. Having not found a satisfactory correspondence between physical
measurements and reported quality ratings, researchers questioned the relevance of the
measurements and the accuracy of the quality ratings. While some researchers started
looking for new ways of visualizing and analyzing physical measurements, others be-
gan a series of experiments to better understand how musicians establish quality rat-
ings. These studies have shown that (1) neither age nor monetary value of instruments
are reliable indicators of quality ratings, implying that previous research which as-
sumed quality ratings based on these indicators should be revisited; (2) individual mu-
sicians have consistent perceptions, which validates the assumption that the comments
of musicians give us meaningful information about the instrument; but (3) musicians
do not agree with each other when sorting instruments based on perceptual properties,
which brings into question the existence of universally accepted overall quality ratings.

Hypothesis. While physical properties of the instrument may be inferred from very
different measurement methods, apparently the same cannot be said about perceptual
properties. Each musician has his own unique way of interacting with the instrument.
Thus, they receive different stimuli when playing the same instrument which leads
them to disagree about that instrument’s quality rating. The next step is to investigate
the role that musician-instrument interactions play in rating an instrument’s perceptual
properties, and later, to research the role of various perceptual properties in forming an
overall quality rating. This thesis, focusing on the perceived playability of cellos, is the
first study to take steps along these lines of research.

1
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1.1 Playability

General definition. Playability is a perceptual property that we attribute to the
instrument which is related to the interactions between the musician and the instru-
ment. It encompasses the control parameters (fingering and bowing) applied to the
instrument, the aural and haptic feedback produced by the instrument according to its
physical properties, and the sensation, perception, and interpretation of this feedback
by the musician.

musician
(cognitive processes)

control parameters
(fingering and bowing)

instrument
(physical properties)

feedback
(sound and vibration)

FIGURE 1.1: A complete understanding of playability requires study-
ing each of the four parts of the interaction feedback loop between the

musician and the instrument.

Working definition. The notion of playability as described above is pretty vague,
so researchers have adopted a more quantitative definition in the context of bowed-
string instruments: the ability to reliably and quickly initiate and sustain a desired
string motion. This working definition is clearly relevant to some aspects of playabil-
ity, after all it is motivated by the researchers’ personal experiences as musicians. It
also conveniently suggests several physical and perceptual studies. Researchers have
studied the combinations of control parameters which permit various sustained peri-
odic string motions (Schelleng, 1973). They have studied what happens to sustained
motions when perturbations are introduced (Woodhouse, 1994). They have looked at
the duration of transients for various sets of control parameters (Guettler, 2002). And
they have studied how these transient durations are affected by initial conditions (De-
moucron, 2015).

Musician’s definition. While researchers have adopted the working definition above,
they recognize that it is only one facet of what the musician perceives as playability.
Unfortunately not all facets of playability have been well characterized. To do so, we
would need to listen to how musicians talk about instruments in general and playabil-
ity in particular. We could then identify different facets of playability and the phrases
used to talk about each facet. Finally, we would then hope to align their statements
with physical measurements. The difficulty of this challenge can be seen with an ex-
ample. When the musician says "harder to play," some possible meanings are that the
instrument requires (1) larger physical forces applied to the string to control its vibra-
tions, (2) more physical work done on the instrument to radiate at a sufficiently loud
volume, (3) greater perceived muscular effort due to (a) applying larger forces to the
instrument, (b) doing more work on the instrument, or (c) eccentric activation of oppos-
ing muscles, or (4) greater perceived mental effort due to (a) more sensitive feedback
or (b) unfamiliar feedback. For the simple phrase "harder to play" we have hypoth-
esized seven possible alignments to investigate, none of which have easily accessible
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physical measurements. Clearly completely characterizing the musician’s definition of
playability by aligning their statements with physical measurements is no small task.

1.2 Research questions

• What are typical values and ranges of control parameters on the cello?

• Are musicians sensitive to changes in Schelleng’s upper and lower bow force
limits?

• How often do cellists have perfect or acceptable transients by Guettler’s criterion?

• What strategies do musicians use to perform bow changes?

There is a widespread assumption that musicians are sensitive to the physical prop-
erties of their instruments and adapt their control parameters accordingly.

• How do control parameters vary between cellos?

• How do control parameters vary between strings?

• What links exist between the control parameters, instrument properties, instru-
ment response, and musician’s perceptions?

1.3 Thesis outline

This thesis is conceived in two parts. Chapters 2-4 provide the background knowl-
edge needed to understand the place of the thesis among the existing literature and the
technical details of data acquisition. Chapters 5-9 describe the experiment, analysis of
results, and conclusions. It may be helpful to read the introduction to Chapter 5 to get
an overview of what was done and why before diving into the details in Chapters 2-4.
Section 6.1 gives a step-by-step outline of the calculations developed in Chapters 3-4
for readers who prefer such an organization.

Chapter 2 reviews a small fraction of the literature related to measuring bowed
string instrument control parameters, string vibrations, and instrument properties as
well as some relevant perceptual studies.

Chapter 3 defines control parameters and the models used to extract them from
assumed available measurements. Original contributions in this chapter are explicit
algebraic equations for each of the kinematic bowing parameters and an approach to
bow force estimation which takes into account the compliance of the string.

Chapter 4 describes the equipment used for collecting raw data as well as the pre-
processing necessary to obtain the measurements assumed in Chapter 3. Original con-
tributions include a sensor design which is more robust than previous generations, a
new analysis of the calibration coefficients for the sensor, and discussions about mini-
mizing systematic errors in infrared camera-based motion capture systems.

Chapter 5 describes early field observations and the subsequent development of
the experimental protocol.

Chapter 6 describes the pre-processing pipeline for the data collected during the
experiment, a few strategies for segmenting data, and some initial analysis of the data.
Notably we present statistics for extreme and typical values of control parameters
which are useful for considering the results of simulations found in the literature.
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Chapter 7 describes the results concerning the Schelleng and Guettler diagrams.
Original contributions include a modified Schelleng diagram which allows us to plot
gestures of different pitches, bow speeds, and bridge mobilities in the same figure,
allowing us to answer questions about the role of Schelleng’s limits in the perception
of playability. We also present statistics of transient durations for the cello, similar to
those collected by Guettler for the violin.

Chapter 8 describes the results of comparing the two cellos. In particular we look
at how the musician adapted her gestures to accommodate the individual properties of
each cello, and how the control parameters and instrument behavior are related to the
musician’s perceptions of the instrument. We also present some original contributions
to the discussion of how radiation measurements may be used to compare cellos.

Chapter 9 contains a summary of the experiments, results, and conclusions. I then
discuss the implications of these results and point to possible directions for future re-
search.



Chapter 2

Background material

In Section 2.1, we present some background information about the cello for readers
who are unfamiliar with the instrument, describing its construction, how it is played,
and some typical measurements used to characterize its behavior. In Section 2.3, we
review some basic theory of bowed string motions and ways to measure it. In Sections
2.4 and 2.5, we review some previous studies of bowed strings which have framed the
discussion of playability from a physical point of view. The discussion is rather limited,
focusing on those parts which are of immediate relevance to this thesis. Section 2.6
points at a recent study which attempted to relate physical differences between cellos
to the perceptions of the players. Section 2.7 reviews a study which gives some insight
into the cognitive aspects of how cellists play the instrument. Finally, in Section 2.8
we review many techniques that have been used for measuring the control parameters
applied to bowed string instruments.

2.1 Introduction to the cello

This section is a very brief introduction to the cello highlighting the specific knowl-
edge about its construction, function, and use that I assume the reader is familiar with
in the rest of the thesis. Section 2.1.1 describes the construction, tuning, and principles
of operation of the cello. Section 2.1.2 describes the construction and use of the bow,
listing the bowing parameters that we will measure. Typical maximum forces that the
bow can apply to the string are presented to bridge the gap between the cellist’s qualita-
tive experience and the measurements that are discussed in the literature. Section 2.1.3
addresses some common questions I’ve been asked about how the musician changes
the pitch of the string, including vibrato. For the purposes of this thesis, this section
serves to point out the string length as a control parameter and to define the vocabulary
term "stopping point."

2.1.1 The cello

The cello is a bowed-string instrument with four strings tuned in fifths with a range
from C2 (65.4 Hz) to higher than C6 (1046.5 Hz). Table 2.1 gives the tuning and Figure
2.1 shows the construction of the cello. Missing from the diagram are the strings; they
are attached to the tailpiece and pass over the bridge, above the fingerboard, and over
the nut before wrapping around the tuning pegs in the pegbox. The bridge stands on
the front plate between the f-holes and is held in place by the tension of the strings. The
front plate and back plates are glued to the ribs and a sound-post is friction-fit between
the front and back plates near the treble foot of the bridge.

5
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FIGURE 2.1: An exploded view of the cello construction, from Rossing
et al., 2010.
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String # Solmization Pitch Frequency
I La A3 220 Hz
II Re D3 147 Hz
III Sol G2 98.0 Hz
IV Do C2 65.4 Hz

TABLE 2.1: Reading across the rows gives the correspondence between
the string number, fixed-do solmization, pitch, and nominal fundamen-
tal frequency of each open string in equal temperament tuning using the
A4 440 Hz pitch standard. Note that the actual frequency of each pitch
depends on the pitch standard and the tuning scheme used by the indi-

vidual cellist.

The cellist usually causes the string to vibrate by rubbing it with the rosined hairs of
a bow, but the string may also be struck or plucked. The strings themselves contribute
very little to the amplitude (or volume) of the sound radiated as can be verified by
playing a monochord. The vibrations in the string are carried through the bridge to the
front plate (labeled "table" in the diagram). The vibrations of the front plate are coupled
to the ribs, back plate, and the air within the box formed by the front plate, ribs, and
back plate. It is the vibration of the large surfaces of this box which are responsible for
sound propagating from the cello.

2.1.2 Right hand controls bowing parameters

The principal components of the bow are shown in Figure 2.2. The hair is attached
at the tip and the frog. The end of the stick above the frog is hollow. This allows an
adjustment screw to be inserted from the end. The top of the frog has a nut attached
to it. The stick has a mortise which allows the nut to be inserted into the stick. An
adjustment screw is inserted into the hollow shaft and passes through the nut, securing
the frog in position. Turning the button (the exposed end of the adjustment screw)
causes the frog to move closer or further from the tip, loosening or tightening the hair.

Button Wrapping

Frog TipHair

Stick

FIGURE 2.2: The parts of the bow.

The musician holds the bow with the right hand (Figure 2.3). While violinists place
the little finger on top of the bow, cellists drape all four fingers over the face of the
frog. The index finger presses against the wrapping. The thumb is placed between the
wrapping and the frog or on the end of the frog.
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FIGURE 2.3: Holding the bow

The force of the bow on the string is a reaction to the weight of the bow and the
torque applied by the index and thumb (Figure 2.4). If these forces are not in equilib-
rium, then the bow will either lift or press harder into the string until equilibrium is
achieved. If the torques are not in equilibrium, then the bow will rotate until the player
actively restores equilibrium.

Thumb

Finger
Weight

String

FIGURE 2.4: A free body diagram showing the vertical forces applied to
the bow. The small horizontal forces of the hand and of friction with the

string are not indicated.

As the bow hair is pressed against the string, the frog and tip rotate, the hair at the
contact point is deflected upward, and the middle of the stick is deflected downward.
An upper limit is reached when the force causes the contact point to touch the stick. By
pressing the bow against a load cell (see Section 3.3.2), we observed that forces larger
than 10 N can be applied underneath the wrapping. Typical maximum forces in the
middle of the stick are between 5 N and 10 N depending on the tension of the hair and
the compliance of the stick. It is difficult to apply more than 3 N to 6 N near the tip due
to the mechanical disadvantage.

About 175-200 hairs from the tail of a horse form a ribbon of hair about 610 mm
long, 10 mm wide, and 1 mm thick. As a natural material grown over time, material
properties vary across the width (from hair to hair) and along the length of the hair rib-
bon. Models of the bow hair typically use an average homogeneous model for material
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properties of the hair. Most models use a single hair approximation (e.g. Ablitzer,
2011) though finite-width hair ribbon models exist (Pitteroff and Woodhouse, 1994).
The choice of hair, length of hair, and shape of the hair ribbon are determined by the
bow re-hairer about once or twice a year depending on climate and use. The musi-
cian adjusts the tension of the hair and applies rosin to the hair before playing. No
adjustments are made to the bow while playing.

The stick is almost exclusively made of pernambuco wood, though CITES1 restric-
tions since 2007 limit this material to pre-existing stock. A market for carbon-fiber bows
has grown as bow makers look for suitable alternatives to pernambuco, including other
wood species and synthetic materials. The stick usually has an octagonal, circular, or
elliptic cross-section. The bow is tapered; the thickness of the stick changes along the
length of the stick. It is thickest near the frog and thinnest near the tip. The bow is
cambered; when in a non-tensioned state, the stick is curved toward the hair, and usu-
ally touches the hair at the middle of the stick. The bow maker cambers the stick by
applying heat to a local portion of the stick and bending the heated stick. The bow
maker is able to set the weight, stiffness, and balance of the bow stick, which, along
with the tension set by the player, contribute to its playing properties. Ablitzer (2011)
has modeled the static properties of the bow, developing a method of estimating its
effective material properties. Gough (2012) has modeled the dynamic properties of the
bow, in an attempt to understand how measured dynamic properties may be related
to the playing properties as expressed by the musician. Caussé et al. (2001) have done
a perceptual study to try to relate static and dynamic properties of a bow to perceived
playing properties and bow quality.

For our study, we are interested in measuring the bowing parameters: the orien-
tation, position, and speed of the bow with respect to the cello and the normal force
between the bow hairs and the cello string. Calculating the position and orientation
of the bow only requires the relative position of a single point and the relative orienta-
tion of a reference frame attached to that point. Estimating the bow force will require
knowing at least the position of the bow and a position-dependent compliance model.
If we want to include the effects of bowing angles and finite bow width on the bow
force estimation, then we will also need the orientation and a position-and-orientation-
dependent compliance model.

2.1.3 Left hand controls string length

To change the pitch of the string while playing, the musician uses a finger to deform
the string until it is pinned against the fingerboard at a point called the stopping point.
The musician usually uses the tip of the finger (Figure 2.5a) or the fleshy part of the
finger opposite the nail (Figure 2.5b) . When playing beyond the neck of the cello,
the side of the thumb from the knuckle to around the middle of the nail is often used
(Figure 2.5c) . It is sometimes necessary to use the nail of the index finger when playing
in the thumb positions (Figure 2.5d) .

Vibrato on the cello is initiated in the arm causing the bones of the finger to translate
and rotate over the string. The finger does not slide along the string. The flesh of
the fingertip deforms and rolls along the string. In addition to the amount of arm
movement, the vibrato width is affected by orientation of the finger. By placing the

1The Convention on International Trade in Endangered Species has categorized pernambuco as Cate-
gory II in good faith as a result of conservation efforts made by the bow-making community. This allows
finished bows to be passed across international borders without certificates, though new wood stock may
not be harvested, and the movement of existing stock is restricted.
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(A) Tip (B) Flesh

(C) Side of thumb (D) Nail

FIGURE 2.5: The parts of the finger used to stop the string.

finger at an angle with respect to the string, the effective width of the finger increases,
so the portion of string which is covered and revealed during a vibrato cycle is longer,
leading to more pitch variation. For a few seconds after pressing the string with the
finger, an indentation can be found in the flesh of the finger which clearly indicates the
portion of the finger which was in contact with the string (Figure 2.6).

FIGURE 2.6: The string leaves an impression in the fingertip.

Models of the interaction between the string and the finger have been developed
for the purposes of sound synthesis by Desvages and Bilbao (2016) based on their mea-
surements of the nonlinear and hysteretic deformation of the finger. The distributed
interactions between the string and fingerboard have been modeled by Desvages and
Bilbao (2016) and Issanchou et al. (2017).

One musician indicated that he was sensitive to the minimum force needed to fully
stop the string. While this would be interesting to study, it would require more equip-
ment for measuring the force, additional research to properly define fully stopped, and
even more research to develop a method of distinguishing between a fully stopped
and a partially stopped string. For our study, we will focus only on the stopped string
length which we will be able to estimate from the frequency of the vibrating string.

2.2 Physical characterization of the cello

Several studies have aimed at shedding light on the relationship between the con-
struction of an instrument and its perceived quality. Most of these studies have focused
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on the relationship between the construction of the instrument and its vibrational be-
havior. (Bissinger, 2008) is a typical example of the few studies which have tried to
find a relationship between the vibrational behavior of the instrument and its perceived
quality. Bissinger collected physical measurements–radiativity and modal analysis–of
17 violins having qualities ranging from bad to excellent, but found no convincing cor-
relations between any of the features and the perceived quality. This may have been
because the quality ratings were not reliable: they were based on either the opinion of
a single player (for bad to good violins) or on reputation (for excellent violins). Saitis
et al. (2012) perform a similar study while addressing the concerns about the reliabil-
ity of perceptions. In that study, 13 musicians evaluated 10 instruments and ranked
them according to preference. While the musicians were found to be self-consistent in
their preferences, there was a significant lack of agreement between them. It is not sur-
prising, therefore, that no links between bridge mobility and preference were found.
Nonetheless, Curtin (2018) and other luthiers find radiativity and bridge mobility mea-
surements play a useful role in the instrument making process.

The vibrational behavior of the cello is usually characterized by two sets of mea-
surements: bridge mobility and radiation transfer functions. When a system like the
cello is driven by a sinusoidal force of a certain frequency it will eventually begin to
vibrate and radiate sound at that frequency. For a given amplitude driving force, the
amplitude of the vibrations and radiated sound will depend on the frequency. In gen-
eral, the phase of the vibrations and sound radiation will be shifted with respect to the
phase of the sinusoidal driving force, with the shift also depending on the frequency.
That is, the moment when the driving force reaches a maximum may not be the mo-
ment when the bridge is moving the fastest or when the radiated pressure is greatest.
We can represent the relationship between the amplitudes and phases of the driving
force and the resulting vibrations and sound radiation using complex numbers; the
magnitude of the complex number represents the ratio of the amplitudes and the argu-
ment of the complex number represents the phase shifts.

To measure mobility or radiation transfer functions, we take advantage of the lin-
earity of the system which allows us to simultaneously apply driving forces of every
frequency and measure their separate contributions to the response of the cello. Fre-
quency domain signals have time domain representations which can be found using
Fourier transforms. We would like to use a frequency domain signal in which every
frequency is present at equal levels. The time-domain representation of this signal is a
delta function impulse. We can approximate a delta function impulse by quickly tap-
ping the bridge with a hammer. The hammer is equipped with a sensor giving the
force applied by the hammer as a function of time. An accelerometer or laser vibrom-
eter is used to measure the movement of the bridge in response to the hammer tap.
The bridge mobility is then calculated as the ratio of the Fourier transform of the time-
domain bridge velocity to the Fourier transform of the time-domain applied force. The
radiation transfer functions are calculated similarly, using a microphone to record the
time-domain radiated sound pressure.

Not only do bridge mobility and radiation transfer functions depend on frequency,
but also on the position and orientation of the applied force and of the accelerometer
or microphone. In practice, we usually consider a complete measurement of the bridge
mobility to consist of four measurements: the force is applied horizontally/vertically
at a fixed location and the motion is measured horizontally/vertically at a fixed lo-
cation on the bridge. Likewise we usually consider a complete measurement of the
radiation transfer function to include at least two measurements: the force is applied
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horizontally/vertically at a fixed location while the microphone is held at a fixed loca-
tion. Some researchers prefer to collect many radiation transfer function measurements
by moving the location of the microphone relative to the instrument, often followed by
averaging the measurements to reduce the data to a single function of frequency.

We would like to study how the movement of the bridge in response to string mo-
tions affects those string motions. It would be ideal if we could measure the force and
bridge movement at the point of contact between each of the strings and the bridge,
but the accelerometer did not permit this. Instead, we chose to use an impact hammer
and accelerometer as shown in Figure 2.7. An alternative procedure could have used
the piezoelectric sensors underneath the string (described in Section 4.2) to measure
the applied force following the method described in (Zhang and Woodhouse, 2014b).

FIGURE 2.7: Bridge mobility and radiation transfer function measure-
ments conducted with horizontal forces (left figures) and vertical forces
(right figures). The horizontal acceleration is measured with the ac-
celerometer on the side of the bridge (top figures) while the vertical ac-
celeration is measured with the accelerometer between the legs (bottom

figures). The microphone was located 160 cm in front of the cello.

Figure 2.8 shows the amplitude of the radiativity measurements and Figures 2.9 and
2.10 show the amplitude of the mobility measurements for our two cellos as measured
in the space where the experiment of this thesis was performed. The axes are logarith-
mic which closely corresponds to how we perceive loudness and pitch. The frequencies
are indicated above the figures and the corresponding pitches are indicated below. The
horizontal lines have 2 dB spacing, corresponding to typical just noticeable differences
in sound amplitudes. The vertical lines mark off typical vibrato widths of 28 cents cen-
tered on each chromatic note. Thick colored vertical lines indicate the nominal pitch
of the open strings of the cello. The colored dots indicate the harmonics of those open
strings. The cello repertoire does not often require notes above C6 (1047 Hz), which is
marked with a line.

There is a reciprocity argument that states that when the motion is measured at
the point where the force is applied, then the component of the mobility measurement
corresponding to a horizontal force and a vertical motion should equal the component
corresponding to a vertical force and a horizontal motion. That is, the yellow line
should be the same as the green line in Figure 2.9 as well as in Figure 2.10. If the
bridge were constrained to move only by translations, then our measurements would
show this reciprocity, but this is not the case. The bridge rotates as each of its feet
is raised and lowered by different amounts. The center of rotation depends on the
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driving frequency as studied in (Zhang, Woodhouse, and Stoppani, 2016). Whenever
the accelerometer is close to the center of rotation, it will record a smaller acceleration;
farther from the center of rotation, a larger acceleration is measured.

Later on, we will follow common practice and use these measurements to approx-
imate the mobilities at each of the string notches. The results will be used to estimate
a theoretical lower bow force limit which we compare with observed bow forces. We
do not expect that the errors in these estimated limits will be large enough to affect the
conclusions that we draw.

2.3 Helmholtz motion

The string motion associated with the normal sound of a violin was first reported
by Helmholtz in 1877 (Helmholtz, 1954). Helmholtz used a vibration microscope to
observe the displacement of a point on the string as it was bowed. His observations
were consistent with a model of alternating phases of sticking and slipping between
the string and bow hair.

Ideal motions. In idealized Helmholtz motion, the velocity of the string switches
instantaneously between two constant values (Figure 2.12). The transverse displace-
ment of a string element then takes on an asymmetric triangle waveform. The asym-
metry depends on the longitudinal position of the element along the string. By com-
paring the displacement waveforms at several points along the string, and applying
his knowledge of solutions to the equations of motion of an ideal string, Helmholtz
was able to infer that the string itself takes the form of two straight lines joined by a
corner (the Helmholtz corner), and that the corner travels from bridge to nut and back
with a constant longitudinal speed while tracing out a parabolic envelope (Figure 2.11).
At any given moment, the transverse force applied to the bridge is equal to the trans-
verse component of the tension vector of the string element at the bridge. For the ideal
Helmholtz motion, the force is described by a sawtooth waveform (Figure 2.12).

Bridge Nut

FIGURE 2.11: The state of the string shortly after the sticking phase be-
gins. The contact point (red) is sticking to the hair and traveling at the
speed of the bow. The string forms two straight line segments (orange)
joined by the Helmholtz corner (black). The Helmholtz corner is prop-
agating toward the nut at the wave speed of the string. The Helmholtz
corner traces out a parabolic envelope as it moves from bridge to nut

and back.



14 Chapter 2. Background material

C2 C♯2 D2 E♭2 E2 F2 F♯2 G2 G♯2 A2 B♭2 B2 C3 C♯3 D3 E♭3 E3 F3 F♯3 G3 G♯3 A3 B♭3 B3 C4 C♯4 D4 E♭4

0.005

0.010

0.050

0.100

0.500

1

65 69 73 78 82 87 92 98 104 110 117 123 131 139 147 156 165 175 185 196 208 220 233 247 262 277 294 311

C4 C♯4 D4 E♭4 E4 F4 F♯4 G4 G♯4 A4 B♭4 B4 C5 C♯5 D5 E♭5 E5 F5 F♯5 G5 G♯5 A5 B♭5 B5 C6 C♯6 D6 E♭6

0.005

0.010

0.050

0.100

0.500

1

262 277 294 311 330 349 370 392 415 440 466 494 523 554 587 622 659 698 740 784 831 880 932 988 1047 1109 1175 1245

C6 C♯6 D6 E♭6 E6 F6 F♯6 G6 G♯6 A6 B♭6 B6 C7 C♯7 D7 E♭7 E7 F7 F♯7 G7 G♯7 A7 B♭7 B7 C8 C♯8 D8 E♭8

0.005

0.010

0.050

0.100

0.500

1

1047 1109 1175 1245 1319 1397 1480 1568 1661 1760 1865 1976 2093 2217 2349 2489 2637 2794 2960 3136 3322 3520 3729 3951 4186 4435 4699 4978

FIGURE 2.8: Radiativity measurements (in Pa
N ) of the two cellos used in

this thesis measured at 160 cm in front of the cello. Cello A, horizontal
(yellow) and vertical force (red); Cello B, horizontal (blue) and vertical

force (green).
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FIGURE 2.9: Mobility measurements (in m/s
N ) of Cello A. Horizontal

force, horizontal motion (blue), horizontal force, vertical motion (yel-
low); vertical force, horizontal motion (green); vertical force, vertical

motion (red).
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FIGURE 2.10: Mobility measurements (in m/s
N ) of Cello B. Horizontal

force, horizontal motion (blue), horizontal force, vertical motion (yel-
low); vertical force, horizontal motion (green); vertical force, vertical

motion (red).
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Interactions. The observed motions are explained by alternating phases of sticking
due to static friction and slipping due to restoring forces and inertia. During the longer
sticking phase, the Helmholtz corner travels from the bow to the nut and back. As the
Helmholtz corner passes underneath the bow hair, the transverse force on the corner
due to tension overcomes the static friction between the string and hair, causing the
string to begin slipping. During the short slipping phase, the corner continues moving
toward the bridge and back to the bow again. When the corner arrives at the bow this
time, the transverse force due to tension causes the contact point to accelerate back to
the bow speed and static friction causes the string to stick to the bow hair again.
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FIGURE 2.12: Ideal Helmholtz Model (Top) The velocity of the string at
the bow contact point (solid), at an observation point closer to the bridge
(dotted), and at an observation point further from the bridge (dashed).
The sticking and slipping phases are highlighted in red and green re-
spectively. (Middle) The displacement of the string at the bow contact
point and two observation points. (Bottom) The transverse force at the

bridge due to the tension of the vibrating string.
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Measurement techniques. To observe the string motion, we can use an electromag-
netic pickup (Schelleng, 1973) to measure the velocity of a string segment. We initially
considered electromagnetic pickups since they are extremely common in electric gui-
tars, and since Schelleng was able to do useful research with them. We can use an
optical fork (Le Carrou et al., 2014) to measure the displacement of a string segment.
The optical forks require some support for mounting them on the cello, may have is-
sues with ambient lighting, and will prevent the player from bowing near the bridge.
We can use piezoelectric elements (Zhang, 2015) to measure the force at the bridge. We
chose to mount piezoelectric elements in the bridge because they give us information
about the interactions at the interface between the two major components of a cello
model: the string and body.

Real string motions. When observing real bowed string motions, we will see var-
ious departures from the ideal waveforms shown in Figure 2.12. We almost always
observe small ripples during the sticking phase. These are caused by secondary cor-
ners being generated as the principal Helmholtz corner is partially reflected each time
it encounters the bow. The stiffness of the string prevents a perfectly sharp Helmholtz
corner and causes dispersion. Bridge mobility and damping at the finger affect the
waves traveling on the string. It is possible to observe coupling between the two po-
larizations of transverse vibrations as well as torsional modes. And most evidently, we
will see transient effects as the contact point, bow force, and bow speed change.

2.4 Schelleng’s diagram

The diagram. Schelleng’s diagram (Figure 2.13) indicates the kinds of sustained
string motions associated with different regions of the steady-state control parameter
space. Usually the diagram is presented with bow force on the vertical axis and dis-
tance from the bridge on the horizontal axis, both in logarithmic scales, assuming a
fixed bow speed and a fixed vibration frequency. Of particular interest is the region
associated with Helmholtz motion and its theoretical boundaries: the upper and lower
bow force limits.
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FIGURE 2.13: A typical Schelleng diagram for a cello A string bowed
at 20 cm/sec. Helmholtz motion may be sustained in the region be-
tween the maximum and minimum bow force limits. The string motion
may vary slightly within the Helmholtz region to produce different tim-
bres. Gestures outside of these limits constitute special techniques, and
produce aperiodic motions (raucous sound) or multiple slips (higher

modes). The figure is taken from Schelleng, 1973.

Upper limit. The upper bow force limit is represented by a line with a slope of −1
on Schelleng’s diagram due to an inverse linear dependence on the distance between
the bridge and the bow. The vertical position of this line depends on the bow speed,
the mass, tension, and length of the string, as well as the kind of rosin used, its temper-
ature, and its distribution on the string and hair. Schelleng (1973) proposes a stick-slip
friction interaction between the string and hair with a constant friction force during the
slipping phase, leading to the equation for the upper bow force limit:

Fmax =
2Z0vbow
β(µs − µd)

(2.1)

where vbow is the bow speed, β is the distance between the bridge and the bow as a frac-
tion of the string length, Z0 is the string admittance, and µs and µd are the static and
dynamic coefficients of friction between the string and the hair. While different models
of sliding friction may produce slightly different dependencies on bow speed, exper-
imental measurements (Schoonderwaldt, Guettler, and Askenfelt, 2008) are generally
well described using the simple model shown here.

Our interest. Musicians sometimes make comments indicating that the instrument
doesn’t support playing with excessive bow force, that the musician cannot "dig in,"
as evidenced by a short raucous sound ("crack") associated with exceeding the upper
limit. These comments may suggest that the upper limit may depend on something
which is not predicted by the current models. Since our cellos have the same make and
model of strings with approximately the same amount of use, and since the musician
uses the same bow and rosin, we can reasonably assume that the two cellos will have
the same upper bow force limit function. Thus, we don’t expect the musician to feel
a difference in the upper bow force limit between the cellos, but we will listen for
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comments which indicate perception of the upper bow force limit to see if it plays a
role in the cello evaluation. Our interest in the upper bow force limit is whether, how
often, and under what circumstances the musician exceeds the upper bow force limit.

Lower limit. The theoretical lower bow force limit is a line with a slope of −2 on
Schelleng’s diagram due to an inverse square dependence on the distance between the
bridge and the bow as observed by Raman (1918) using a mechanical bowing machine.
In addition to the factors which affect the upper bow force limit, the lower bow force
limit also depends on the bridge mobility. Schelleng (1973) modeled the bridge as a
dashpot resistance which predicts a lower bow force limit, showing that the bridge
mobility is a key ingredient of the model leading to predictions of a lower bow force
limit. Woodhouse (1993) models the bridge as a system of damped harmonic oscilla-
tors and implements the model in terms of frequency dependent reflection functions.
Mansour, Woodhouse, and Scavone (2017) modified the condition leading to the mini-
mum bow force –he uses a perfect stick-slip at the bow rather than a perfect sawtooth
at the bridge– to give the latest expression for the lower bow force limit as

Fmin =
2vbowZ

2
0

π2β2(µs − µd)
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max
t
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(−1)n+1
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where

ζ =
sin(kβL)

sin(kβL)− iZ0Y cos(kβL)
,

k =
ω

c
, and ω = 2πf.

where k is the wavenumber, c is the wavespeed, ω is the wave frequency, ω0 is the wave
frequency of the fundamental, Y is the bridge mobility, and < indicates taking the real
part of the complex number.

Our interest. Since the mobility is frequency-dependent, the lower limit differs
between notes. And since the mobility of each cello has its own frequency-dependence,
the lower limit differs between cellos. It has already been shown (Zhang, 2015) that
excessively high lower limits are associated with problematic notes ("wolf notes") on
the cello and that the musician can perceive changes in the lower limit for these notes.
On the other hand, cellists may not mention a wolf note if it exists and may even accept
a cello with a prominent wolf note, so its importance in the evaluation of cellos is up
for debate. We are interested in whether, how often, and under what circumstances
the musician drops below the lower bow force limit, whether the musician perceives
differences in this limit and how these perceived differences affect her evaluation of the
instrument.

Limit intersection. The upper bow force limit as a function of distance from the
bridge has a slope of -1 on logarithmic axes, while the lower bow force limit has a slope
of -2. The two limits must intersect at some point near the bridge (Figure 2.14). It is
not possible to sustain Helmholtz motion while playing closer to the bridge than this
intersection point. If we compare two cellos which have different lower bow force lim-
its, we may find that we can play a certain note quite close to the bridge on one cello,
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but that we are obliged to play further from the bridge on the other.2 We are inter-
ested in whether, how often, and under what circumstances the musician plays near
the intersection point, and whether the musician perceives differences in its position.

FIGURE 2.14: Comparison of Schelleng diagrams of two hypothetical
cellos. A larger bridge mobility raises the lower bow force limit, moving
its intersection with the upper force limit further from the bridge. (a)
A portion of the string is no longer available to be played on. (b) The
maximum force is reduced. (c) The range of forces available at any given

point is reduced.

Range of forces. Raising the lower bow force limit has two effects on the range of
forces permitting Helmholtz motion. The first effect is to move the intersection point
further from the bridge, reducing the maximum force at the intersection point. The
second effect is to move the lower limit up at every position along the string, reduc-
ing the range of forces available from the fixed upper limit to the greater lower limit.
We are interested in whether the musician perceives differences in the range of forces
available.

2.5 Guettler diagram

A Guettler diagram such as Figure 2.15 indicates the time required to achieve a
sustained string motion from an initial transient. The evolution of the control param-
eters over time are defined by functions which include two parameters. Varying the
two parameters generates a plane with each point corresponding to a slightly different
gesture. At each point, the corresponding gesture is applied to the string and the time
to achieve a periodic motion is measured. The point is then colored according to the
observed duration.

Guettler (2002) studied different classes of attacks, from which the diagram gets
its name. Galluzzo (2004) used different friction models in computer simulations and
compared with experimental results produced with a robot and a perspex bow. It is

2This is a hypothesis which follows logically from the diagram; not an affirmation based on experience.
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reassuring that the physical experiments with the robot were in agreement with the
simulations.

FIGURE 2.15: Guettler diagram for a certain family of initial tran-
sient gestures. The string is initially at rest. A perspex rod (the bow)
applies a constant force to the string and uniformly accelerates from
rest. Shades of gray indicate the number of period durations before
Helmholtz motion was achieved. White pixels indicate Helmholtz mo-
tion was achieved immediately, black pixels required at least twenty pe-
riod durations to achieve Helmholtz motion. The pixels marked with ×
indicate failed measurements. The figure is taken from Galluzzo, 2004.

Observations. In Figure 2.15, we can see that certain combinations of force and
acceleration are guaranteed to give long initial transients, as shown by large regions of
black pixels in the upper left and lower right. What may be surprising is that the region
in the middle is speckled with black pixels found among white pixels rather than hav-
ing smoothly varying shades of gray. Furthermore, the details of these speckles change
each time the experiment is repeated. Apparently the exact results of this experiment
are sensitive to unintended variations in the initial conditions and gesture parameters.
Since the friction forces between bow hair and the string are non-linear, these kinds of
chaotic results are to be expected.

If we interpret each pixel of the Guettler diagram as a single measurement of a
stochastic process, then we can imagine that the black pixels next to white pixels are
not truly black. Demoucron (2015) performed a series of simulations, varying the de-
celeration before and the acceleration after a bow change. Each run of the simulation
started the bow change at a different phase of string oscillation, and the results were
averaged over the phases. The result is given in Figure 2.16 in which the color of the
pixel indicates the probability of achieving an acceptable attack. This diagram smooths
over the speckled nature of the usual Guettler diagram, but it does not change the fact
that the outcome of any given bow change could be perfect or terrible depending on
initial conditions or uncontrollable tiny differences in the control parameters used to
execute the bow change.
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FIGURE 2.16: The probability of achieving Helmholtz motion on a vio-
lin within 7 periods or less, from Demoucron, 2015. White pixels have
very high probabilities; black pixels, very low. The top panel shows the
number (black, 6 or more; white, 0) of periods elapsed before regular

triggering for simple attacks from rest.

Problem. This diagram and the way it varies upon repeating the experiment indi-
cate that gestures must be very precisely controlled if you wish to reliably have very
short transients. Since these results were produced by a robot with better repeatability
than a musician, we must conclude that it is nearly impossible for a musician to reli-
ably produce very short transients. And yet that is not our impression of professional
performances.

Hypotheses. We propose two hypotheses for explaining the discrepancy between
the implications of the experiment and our impressions of real performances. First, the
experiment may be flawed. Musicians probably don’t hold the force constant or use
constant accelerations. On the other hand, the durations of transients are short, which
doesn’t give much time for significant departures from these approximations. In any
case, the friction interactions between the bow and the string describe a non-linear
dynamical system which implies that we shouldn’t be surprised to see such chaotic
behavior, whatever the true control parameters might be. Second, our impressions may
be flawed. When we listen to music, we usually aren’t measuring the duration of every
attack, though we might notice a particularly long attack duration which doesn’t fit the
musical context. It may be that the sound of a certain long attack is not disagreeable.
Guettler and Askenfelt (1997) found that raucous transients shorter than 50 ms are
acceptable, but that multiple slip-type transients as long as 90 ms are acceptable.

Our experiment will not provide the kind of systematic variation of control param-
eters necessary to produce a Guettler diagram. But we will be able to look at the control
parameters that are actually used by the musician. This will allow us to judge whether
the control parameters assumed in the previous studies are sufficiently close to real-
ity. It will also help us understand to what extent the musician actively controls the
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sound of the cello during an attack. We will also want to look at the distribution of at-
tack transient durations during performances to see whether cellists outperform robots
and simulations, and to see how Guettler’s results on violin transients translate to cello
transients.

2.6 Playability of bowed string instruments

Zhang and Woodhouse (2014a) study the perception of wolf notes and relates the
perception to bridge mobility. They placed an adjustable mass on the bridge to make
controlled changes to the bridge mobility. Players then stated to what degree the wolf
note is worse or better, or gave a rating of the severity of the wolf note. They found a
clear relationship between the perceived severity of the wolf-note and the amplitude
of the bridge mobility at the frequency of the wolf-note. Among the participants in
this experiment were musicians and instrument makers. They found that the experi-
enced musicians were more likely than the makers to be distracted by other perceived
properties which were apparently more relevant to them at the time.

2.7 Mental maps between music descriptors and control pa-
rameters

Context If we look at the fingerboard of a cello, the most striking feature is the ab-
sence of visual cues indicating the precise positions where the cellist must place her
fingers to play notes in tune. Furthermore, cellists play while looking at sheet music,
the conductor, the audience, or even with their eyes closed. Clearly they do not rely
on visual cues to play their instruments. While listening to professional musicians, we
don’t notice out of tune notes or obvious corrections. It seems like cellists can accu-
rately place their fingers at the precise position required for each note. This is most
striking when the cellist moves her entire hand (shifts) to reach the next note. Not only
must the musician have an excellent mental model of the positions of notes along the
string, but they must have some way of accurately measuring the distances traveled
by their fingers while playing. This suggests that they have an ability to play based on
proprioceptive or tactile cues.

Pitch accuracy hypothesis Chen et al., 2008 presents a series of experiments to test
this hypothesis. They had cellists play alternating notes requiring a shift between them
under different conditions. They observed the amount of trial-to-trial and within-trial
variation of the fundamental frequency of each note. The first observation was that
the difference between the nominal frequency of a note and the mean frequency of
repetitions of the note within a trial was often statistically and perceptibly different.
This deviation between the preferred frequency and the nominal frequency changed
over time from one trial to the other. This indicates that cellists do not have a fixed
mental model of pitch. This suggests to me that our impressions of cellists’ playing
accuracy may be based more on belief than fact.

Role of feedback hypothesis When the musicians did not bow the cello, but plucked
it instead, they did not receive continuous aural feedback during the movement. In this
case the mean frequency was further displaced from the nominal value and the within-
trial variability was greater. The paper (Chen et al., 2008) mentions that for one player
the distance along the string between the two notes increased by nearly 6 cm from the
beginning of the trial to the end as the low note drifted increasingly flat and the high
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note drifted increasingly sharp with each repetition. Proprioceptive and tactile cues are
clearly insufficient for measuring distances traveled by the fingers. This suggests to me
that proprioceptive, tactile, and visual cues may help the cellist estimate the position
of notes, but that each of these models must be continuously updated using aural feed-
back. While Chen et al., 2008 works with the map between left-hand finger positions
and pitch, I suspect that the hypothesis applies equally to the map between right-hand
control parameters and timbre and volume.

Other maps Pitch, tempo, and volume stand out among other music descriptors be-
cause they are indicated in the music notation, they have widely accepted definitions in
terms of physical quantities, and reproducible references can be used to train ourselves
to maintain fixed mental models. Tempo and volume are often indicated vaguely: fast,
slow, loud, quiet. I know of no attempts to train playing at precise volume levels. Most
rhythmic training focuses on rhythms rather than tempo, with certain tempos being
trained as a side effect of practicing rhythms at those tempos. Pitch on the other hand
is indicated absolutely (within the interpreted intonation scheme) and many exercises
aim at developing the ability to name the note associated with a frequency (absolute
pitch) and the interval between notes (relative pitch). Yet Chen et al., 2008 indicates that
not even in this case do musicians maintain fixed mental models. We should be careful
when interpreting comments on even more obscure music descriptors (i.e. timbre) if
we suspect that a mental model has had time to change.

2.8 Measuring control parameters

The first calibrated measurements of the control parameters of bowed string instru-
ments were performed by Askenfelt (1983; 1986; 1988). Before that time, studies of the
control parameters involved imposing known control parameters to the instrument via
various mechanical bowing machines (Raman 1918; 1920). Much of the work in sens-
ing control parameters has been done by the music community in attempts to either
use the familiar bowing gestures with new instruments (Trueman and Cook, 2000) or
to augment the instrument with electronic or digital effects (Overholt, 2011). Early re-
views of the available technologies were given by MIT’s Media Lab (Machover, 1992;
Paradiso and Gershenfeld, 1997; Paradiso, 1997). The last twenty years have shown
improvements in the implementations of those technologies as well as the introduc-
tion of two- and three-axis accelerometers, gyroscopes, and inertial measurement units
(Young, 2007), 6-DOF electromagnetic pulse sensors (Goudeseune, 2001; Guaus et al.,
2007), and infrared video motion capture (Schoonderwaldt and Demoucron, 2009). In
addition to sensing technologies, wireless communication technology on small inte-
grated circuits has reduced the need for cables for gathering sensor data(Young, 2002;
“The Augmented Violin Project” 2002). While musicians require indicators of control
parameters to be playable (i.e. responsive to gesture adaptations), they don’t neces-
sarily need them to be calibrated measurements. In this section we review some of
the technologies that have been used to indicate control parameters and discuss the
possibility of using them for calibrated measurements of control parameters.

2.8.1 Bow kinematics

Wheatstone bridges. The first calibrated measurements of bow position and speed
during performance were made by Askenfelt (1983; 1986; 1988). The bow position is
measured by laying a thin metal wire among the hairs of the bow forming one leg of
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a Wheatstone bridge fed by a DC-supply. This bow hair wire is divided by the metal
violin string. At the same time, the metal string forms one leg of a second Wheat-
stone bridge fed by an AC-supply and is divided by the bow hair wire. The output
signal of each Wheatstone bridge indicates the ratio of its divided wire lengths. By
multiplying the total length of the wire or string by its division ratio, we recover the
frog-to-string distance or bridge-to-hair distance respectively. While Askenfelt’s im-
plementation tethered the bow and violin with power supply and data cables, a cur-
rent implementation could power, sense, and wirelessly transmit the data using batter-
ies and integrated circuits mounted to the bow or wrist strap. Ultimately we did not
choose this technique because the build-up of rosin on the strings leads to intermittent
electrical contact and noisy signals.

RF field sensing. As part of the Hypercello project, the MIT Media Lab (Machover,
1992; Paradiso and Gershenfeld, 1997; Paradiso, 1997) tracked indicators of the frog-
to-string and bridge-to-hair distances by sensing changes in the capacitance between
the bow and the bridge (Gershenfeld, 1993). A resistive material served as a receiving
antenna embedded in the bow stick which was driven by a radio frequency (RF) trans-
mitting antenna mounted behind the bridge of a cello. The capacitive coupling varied
with bridge-to-hair distance while the real impedance varied with frog-to-string dis-
tance. Later Young (2002) developed the technology further as the Hyperbow for use
with the violin, switching the roles of the two antennas, and replacing the power cable
for the driving antenna by a battery mounted to the bow. This allowed the bow to be
free of tethers to the computer.

McMillen (2008) incorporated the capacitive sensing technology into the K-Bow
which was commercially available for a short time. In this implementation, the bridge
antenna was relocated to a circuit board underneath the fingerboard and two loop an-
tennas in the bow stick replaced the resistive strip. As the bow is tilted, the capacitive
coupling with one loop antenna increases while the coupling with other decreases.
Thus the configuration gives an indication of the tilt angle.

While the implementations discussed only measured one or two dimensions of po-
sition, three-dimensional position sensing is possible with more antennas (Paradiso
and Gershenfeld, 1997; Smith, 1995; Smith, 1996). The system as implemented by Par-
adiso and Gershenfeld (1997) is reported to respond linearly to changes in position
parallel to the front plate of the instrument and to be insensitive to rotations. The
signals from these electric field sensors can be calibrated to measure positions with a
reported resolution of 1 mm displacement over the bow length (Paradiso and Gershen-
feld, 1997), though care must be taken to avoid electromagnetic interference coming
from lighting and other electronics in the environment. However, “The Augmented
Violin Project” reports that IRCAM’s implementation of the system (the Augmented
Violin) yielded inaccurate measurements because the bow presents a reduced surface
area to the antenna when played near the tip or frog, because the capacitance is mod-
ified by the presence of the performers hand, and because the coupling between the
antennas varies with large bow angles. concludes that the distance measurement was
only useful for qualitative measurement, but problematic for accurate position mea-
surement.

IR field sensing. McMillen (2008) removed the resistive strip which enabled the
frog-to-string distance measurement from the K-Bow in favor of a second loop an-
tenna, which means the RF system could only indicate the bridge-to-hair distance. An
infrared light emitting diode located at the end of the fingerboard created a conical field
of infrared light which was sensed by a detector in the bow frog. The brightness of the
light received by the sensor varied with distance from the emitter so that this signal
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indicated the frog-to-string distance. This indicated frog-to-string distance is sensitive
to stray reflections and may be affected by other sources of infrared light.

Pérez Carrillo, 2006 uses an infrared range finder to measure the distance from the
bridge to the bow. The sensor emits a pulsed infrared beam which reflects off of the
target and enters the sensor lens. The location on a CCD array indicates the angle that
the light entered the sensor which implies a certain isosceles triangle. The base of the
triangle is the distance between the beam emitter and the sensor lens. The height of
the triangle is the distance to the target. This system has a few problems: (1) the beam
may not hit the bow due to the narrowness of the beam and the narrowness of the bow,
(2) the skewed bow may indicate an inaccurate distance because the beam reflects off
a portion of the bow which is not directly over the string, and (3) the signal measures
the distance to the stick, not the point of contact between the hair and string, so bow
tilt leads to inaccurate measurements.

Inertial measurements. Accelerometers, gyroscopes, and magnetometers, are com-
monplace components of consumer devices used for detecting movement, rotations,
and orientation using a variety of microelectromechanical systems (MEMS) techniques.
They are often bundled together as Inertial Measurement Units which are smaller and
have less alignment error than building the equivalent sensor from separate products.

Accelerometers are generally some variation of a mass connected by a damped
spring to a base and enclosing structure. When the system is accelerated, the inertia
of the mass will cause the spring to deflect, bringing the mass closer to one of the walls
of the enclosure, changing the capacitance between the mass and the wall, or com-
pressing a piezoelectric element between the mass and the wall. Thus an accelerometer
can only indicate the acceleration of its enclosure, not its velocity or position. If we
know the initial position and velocity, then we can integrate the acceleration from a
3-axis accelerometer to find the current position and velocity of the accelerometer. The
gravitational field also acts on the mass causing the spring to deflect in the direction
of gravity, so that the accelerometer signal is a sum of the gravitational field and the
acceleration of the object. To separate the effect of gravity from the acceleration of the
object, it is necessary to measure the orientation of the accelerometer.

Gyroscopes are generally some variation of a pair of masses which oscillate with
opposing motion within a plane within a casing. When the system is rotated, the iner-
tia of the masses (i.e. the Coriolis effect) will cause one mass to rise above the plane,
changing the capacitance between it and the casing ceiling. The other mass will dip
below the plane, changing the capacitance between it and the casing floor. The deflec-
tion amount depends on the velocity of the masses, the rate of rotation of the casing,
and the angle between the plane of rotation and the plane of oscillation. Accelerations
which do not include rotation cause both masses to deflect to the same side of the plane,
yielding no net signal. Thus a gyroscope can only indicate the angular velocity (rate
and plane of rotation) of its casing. If we know the initial orientation, we can integrate
the angular velocity (being careful to take into account that rotations do not commute),
to find the final orientation. Depending on the specifications of the gyroscope, large
accelerations (such as what may be seen in violin bow changes) might cause one of the
masses to reach its maximum allowed displacement from the plane, thus leading to
errors which accumulate (Bancroft and Lachapelle, 2012).

Magnetometers are generally some variation of an electric current passing through
a wire and a means of measuring its deflection or resonant frequency. When the elec-
tric current is placed in a magnetic field, the electrons are deflected to one side or the
other due to the Lorentz force, leading to a deflection of the wire itself and a change in
the resonant frequency of its mechanical vibrations. These sensors are used to establish
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an absolute orientation with respect to the earth’s magnetic field, but may be influ-
enced by the magnetic fields of nearby equipment. These sensors are also sensitive to
temperature variations as the Young’s modulus of the wire changes with temperature.

In theory the signals from an Inertial Measurement Unit may be integrated to per-
form dead reckoning of the position and orientation of the unit. The use of a magne-
tometer and a gyroscope gives two signals for estimating the orientation of the unit.
The magnetometer could be used to keep the drift from the gyroscope in check, while
the gyroscope could be used to help identify and correct for temperature effects in the
magnetometer. With the orientation known, the gravitational field can be subtracted
from the acceleration, and the acceleration can be integrated to find velocity and po-
sition. However numerical integration leads to drift. The error in the orientation and
velocity estimate will increase linearly with time (due to one integration procedure),
while the position estimate will increase quadratically (due to a second integration).
There will be additional errors in the velocity and position estimates due to propaga-
tion of the error from the orientation estimate. Because of these errors, the system must
be returned to a known configuration to reset the system, or an independent measure-
ment system is needed to keep drift errors bounded.

Schoonderwaldt, Rasamimanana, and Bevilacqua (2006) combined accelerometer
signals with a simple video with a 25 Hz frame rate using a Sony Digital Handycam
(DCR-TRV245E). The video is used to identify the moment when the bow speed is zero
during bow changes. The accelerometer signal is integrated between bow changes and
reset each time the video indicates zero bow speed. The reconstructed motion of the
bow is validated against measurements from a camera based motion capture system
(Vicon) with a frame rate of 150 Hz. Since orientation data is not available from the
Handycam video, the accelerometer signals are not corrected for orientation, leading
to errors in addition to the drift from numerical integration. The effects of latency and
jitter from the Handycam were simulated, indicating that measurements of short rapid
bow changes (spiccato) are most affected, particularly by latency. They conclude that
the system may be useful in cases in which the expensive Vicon system is not available.

Trueman and Cook (2000) used a dual axis accelerometer mounted at the frog to
gather signals related to inclination and tilt and acceleration. In this case, these sig-
nals became the de facto control parameters because the bow was used as a controller
for an electronic instrument. Rasamimanana (2004) used a dual axis and a single axis
accelerometer to gather the same signals, but for the purposes of distinguishing and
identifying bowing gestures on a violin. Young (2007) used 3-axis accelerometers and
3-axis gyroscopes (ie. 6DOF IMU) on both the bow and the violin. The aim was to esti-
mate the relative position, orientation, and motion of the bow with respect to the violin.
Young describes a procedure for calibrating the IMUs through a sequence of static mea-
surements in different orientations. The drift errors are kept in check through the use
of a Kalman filter and the independent position data from the capacitive measurement
of position, which was calibrated by comparison with a camera based motion capture
system. Schoonderwaldt and Demoucron (2009) use a 3-axis accelerometer to comple-
ment a camera based motion capture system for gathering acceleration data.

While acceleration data is of some use in describing the bow kinematics of a ges-
ture, it is not actually one of the direct control parameters. Integrating acceleration
data to get the bow speed and bridge-to-bow distance control parameters requires an
independent means of measuring them in order to minimize the drift errors. Field
sensing technologies add weight to the bow and have unreliable performance as cal-
ibrated measurements of bow position, though the signals they provide are playable.
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A dedicated motion capture system seems to be required to get true measurements (as
opposed to indicators) from the inertial measurement sensors.

Motion capture. There are several methods of tracking rigid bodies in addition
to the inertial measurements and capacitive sensing already discussed. In this section
we will review those techniques which we considered using or had been used to track
bow movements. Baillot, Davis, and Rolland (2001) give a survey of variations on these
techniques and some others that we did not consider using.

Nichols (2002) uses a system of mechanical linkages and goniometers to measure
the inclination angle and 3-D position of a rod relative to the chassis of his vBow virtual
instrument controller. This kind of mechanical motion capture can give accurate and
precise results. Sources of error include flexible linkage arms and inaccurate measure-
ments of the distance between joint axes of rotation. Fitting the musician or instrument
with an exoskeleton will certainly be invasive and it will be difficult to argue that the
musician’s performance is not affected.

Ultrasound emitters and receivers may be used to triangulate the position of the
target based on time of flight. The system may be configured with the emitters located
at stationary reference points and receivers attached to the targets, or vice-versa. An
IR or RF signal is emitted to establish the initial time and to trigger a sound pulse
from each of the emitters. The time of flight between when the pulse is emitted to
when it is received, multiplied by the speed of sound, gives the distance between each
pair of emitters and receivers. With as few as three references (emitters or receivers),
the location of the target is fixed relative to the positions of the references. Machover
(1992) considered this approach, but concluded that the system would be bulky and
difficult to do without coupling some energy into the audible range. Medina, Segura,
and Torre (2013) reports an accuracy barely below 10 mm, which is not sufficient for
our purposes.

Maestre et al. (2007) use a system based on measuring the magnetic flux emitted
from an antenna through three orthogonal sensing coils. The total flux indicates the
distance from the field emitter and the ratios of the flux through each coil indicates
the orientation of the sensor. The emitted fields induce eddy currents in nearby metal,
which may be found in the walls, floor, or ceiling as well as objects in the room or the
tracking target itself. These eddy currents cause distortions in the field which lead to
inaccurate position and orientation measurements. The system may be implemented
with DC pulses or AC pulses. The DC pulse systems take measurements just before the
next pulse is emitted to allow the effects of induced eddy currents in the environment
to decay, leading to potentially better accuracy. While the weight and size of the sen-
sors themselves can be insignificant, the data collection wires connected to them are a
distracting tether.

Schoonderwaldt and Demoucron (2009) uses a system based on images taken from
several reference cameras. The images from these cameras, along with knowledge of
the position and orientation of each camera, indicate the position of the target through
multiscopy (i.e. stereoscopy or parallax) triangulation. The system works by recogniz-
ing and identifying features of the image. These features are usually graphic or physical
boundaries, such as spots of paint, object corners, or reflective spheres attached to the
object being studied. Image-based motion tracking comes in three variations: active
markers, passive markers, and marker-less. Active markers broadcast their identities
to the cameras, for example by flashing light with specific timings, which makes them
easy to recognize and identify. Passive markers reflect light to the cameras, making
them easy to recognize. The image processing software then uses rigid body models of
the positions of these passive markers to identify each marker. Marker-less systems try
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to find recognizable features of an image, such as lines, circles, and points of intersec-
tion. Then it tries to identify the correspondences between the features recognized in
successive images. Active marker systems generally have larger and heavier markers
than passive systems. Passive systems may have trouble when the studied object is not
rigid. Marker-less systems are still under development. Currently maker-less systems
are useful for animations, gaming, and gross locomotion studies, but they do not seem
to have the accuracy required for our study.3 We give more details about the use of
passive systems in Section 4.3.

2.8.2 Bow force

Strain gauges at ends of hair. In (Askenfelt 1983; 1986; 1988) the bow force is
estimated by measuring the deflection of the bow hair at the frog and tip of the bow
using strain gauges. The bow hair is attached to thin metal strips fixed at the frog and
tip of the bow. A pair of strain gauges are glued to each strip and all are connected
in a Wheatstone bridge. The deflection of the bow hair bends the metal strips and the
output of the Wheatstone bridge gives an indication of the bow force. This signal is
calibrated by pressing the bow hair against a calibrated scale. In the end, the signal
had a poor signal-to-noise ratio and deviations from a desired linear relationship with
the force.

Demoucron, Askenfelt, and Causse (2009) made improvements to Askenfelt’s sys-
tem by attaching the strain gauges to removable mounts, treating the strain gauges at
the tip separately from those at the frog, and making a detailed analysis of how the
position of contact of the string on the hair and the bow force affect the deflection of
the hair at the strain gauges.

Guaus et al. (2007) made a variation in which thin plastic strips each with a single
strain gauge were used instead of the metal strips with paired strain gauges. This
results in some loss of sensitivity as well as the inability to cancel thermal effects in
the leadwires. To approximately compensate for thermal effects, the system must be
frequently calibrated. Guaus et al. (2009) describes the calibration method. In lieu of
a force estimation model based on physical parameters, a Support Vector Regression
model interpolates the calibration data.

Capacitor under index finger. The MIT Media Lab’s HyperCello project (Machover,
1992) placed copper tape on the stick near the frog and covered it with a urethane foam.
Changes in capacitance are measured as the index finger compresses the urethane, giv-
ing an indication of the force. This force may be manipulated independently of the
force exerted on the string by simply squeezing the stick without applying additional
net torque. While suitable as a controllable parameter in an interface with computers,
it is not suitable for our project.

FSR under index finger. IRCAM’s Augmented Violin project (Rasamimanana, 2004)
used a force sensitive resistor on the stick near the frog to sense the force applied by
the index finger. Machover had previously considered their use but concluded that the
relation between conductivity and pressure is both noisy and hysteretic. Since the force
of the finger on the stick can be manipulated independently of the force on the string,
we reject this option as well.

Strain gauge on stick. Young (2001; 2002; 2003; 2007) permanently fixed strain
gauges on the bow stick and connected them in a Wheatstone bridge configuration.
Wires connect the terminals of the Wheatstone bridge to the power supply located at

3Reports of accuracy commonly quote 1o of uncertainty in the joint angles of human limbs. This corre-
sponds to about 8 mm of uncertainty in the position of the far end of a 50 cm limb.
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the frog. The relationship between the measured vertical and lateral strains of the stick
and the force of the string on the hair depends on the frog-to-string distance in a way
that is determined empirically by applying known forces at known locations along the
hair. Placing the strain gauges accurately is difficult since the stick is round while the
strain gauges are designed to be fixed to flat surfaces. Slight errors in the alignment
of the strain gauges are evident and must be accounted for in the empirical model.
The strain gauges are temperature sensitive due to the thermal expansion of the alloy
within them, requiring occasional recalibration, though incorporating them in a full
Wheatstone bridge configuration minimizes the problem.

FSR between stick and hair. Trueman and Cook (2000) placed force sensitive resis-
tors with light, soft sponges between the stick and the hair. The FSRs are most sensitive
at low forces, which is appropriate for this application as they are measuring the force
required to compress the sponges, not the force applied to the string by the hair. The
compression of the sponges is effectively a measurement of the displacement of the
bow hair, and thus an indication of bow force. Trueman does not report any calibration
procedures or measures of accuracy, but does report that the signal is responsive and
playable.

Geometric method. Maestre et al. (2007) noticed that when the hair presses on the
string, the line connecting the endpoints of the hair lies at some depth beneath the
line connecting the endpoints of the string. The minimum distance between the two
lines increases as the force applied increases. The relationship between this minimum
distance and the bow force is not linear and depends on the position and orientation
of the bow relative to the string. Marchini et al. (2011) uses geometric arguments to
model the effects of bow tilt and stick deformation, including taking into account cer-
tain systematic calibration errors. Marchini concludes that remaining errors come from
inadequate modeling of the stick deformation, neglecting string deformation, and pos-
sibly measurement errors from the electromagnetic field-based motion capture system
(Polhemus). In an attempt to overcome these errors, Baez (2013) replaced the geometry-
based model with a Support Vector Regression model and began using an infrared
multiscopy system (Qualisys). Llimona (2014) continued this work, being more careful
about identifying appropriate datasets for training, validation, and testing of the Sup-
port Vector Regression model to avoid over-fitting, and attempting to take into account
the deformation of the string as a constant systematic error.

The studies discussed in the previous paragraph introduced a number of features
that may be extracted from motion capture data to estimate the bow force. They include
the frog-to-string distance, the minimum distance between the string and the central
hair (Maestre et al., 2007), the minimum distances between the string and the left and
right edges of the hair ribbon (Marchini et al., 2011), the rotation of the tip relative
to the frog Baez (2013), and the tilt angle. The displacement of the central hair is not
independent from those of the left and right edge hairs. The relative displacements of
the left and right edge hairs are not independent of the tilt angle. The rotation of the
tip relative to the frog is not independent of any of the displacements as they are all
functions of the force. Information-based models (such as Support Vector Regression)
will arbitrarily distribute the influence of a physical effect among the coefficients of
correlated features. This means that each time the calibration is performed, the relative
influence of each feature may change drastically. This makes it difficult to identify
which features are the most important and to assign physical meaning to the values of
the coefficients.

Optical reflectance. To measure the bow force, Pardue and McPherson (2013; 2015)
used near-field optical reflectance sensors consisting of an IR emitting LED and an IR
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sensitive phototransistor in close proximity to each other. These sensors were placed at
four points between the stick and the hair. The light emitted by the LED reflects off the
hair and is sensed by the phototransistor according to the distance and reflection angle
of the portion of the hair ribbon illumintated by the LED. These local measurements
of stick-to-hair distance are enough to estimate the shape of the triangle formed by the
deformed hair ribbon and the line connecting the endpoints of the hair ribbon, and thus
indicates the position and magnitude of the force between the hair and the string. The
relationship between the sensor signals and the force depends on the hair tension and
the deformation properties of the bow stick which should be modeled empirically. The
empirical model should be capable of taking into account the non-linear operational
characteristics of the sensor. Since the sensor response is not monotonic with distance,
there is a concern that large deformations may be aliased as small deformations. To
reduce the risk of this happening, care must be taken when choosing the positions of
the sensors; they should be placed neither too close to the middle of the bow where
there is little clearance, nor too close to the ends of the hair where there is little change
in stick-to-hair distance. As the sensors function by measuring the amount of infrared
light received, the ambient lighting conditions may need to be controlled.

Optical fiber. In (Sarlo, Ehrlich, and Tarazaga, 2016), an optical fiber is bonded to
the stick or strung among the bow hairs between supports at the frog and tip. The
optical fiber is attached to an ODiSI measurement system (ODiSI) which interprets
the Rayleigh backscattering of light resulting from strains distributed along the optical
fiber. While the system provides strain information along the entire length of the bow,
the useful information can be obtained from the strain measurement of just one point.
The response is roughly linear in the magnitude and in the distance from the frog of the
applied force. A separate means of measuring the frog-to-string distance is necessary
for interpreting the force from the strain measurements. The system is sensitive enough
to be detect the deformation of the bow under its own weight as the inclination angle
changes.

2.8.3 String length

The string length is the control parameter used to control the fundamental fre-
quency of the string vibrations. It is also useful for estimating the compliance of the
string, determining the displacement of the string under the applied force of the bow.
The string length can be determined from the fundamental frequency of the string
vibrations, or it can be determined directly by detecting where the string is stopped
against the fingerboard.

There are many algorithms for estimating the fundamental frequency of the string
vibrations. These include spectral methods, temporal methods, and combinations. A
review of methods is given by (Cheveigné and Kawahara, 2001). Two notable pitch
tracking algorithms are given in (De Cheveigné and Kawahara, 2002) and (Monti and
Sandler, 2002). Pitch tracking algorithms generally divide the signal into analysis win-
dows, with longer windows being required to detect longer frequencies. Longer win-
dows also give more precision in the estimated pitch at the expense of temporal resolu-
tion. Algorithms which only try to detect the fundamental pitch occasionally run into
octave errors when the octave harmonic has a significant amount of energy compared
to the fundamental. Algorithms which assume a harmonic spectrum can sometimes
identify a missing fundamental based on the energy distribution in its harmonics. Pitch
tracking algorithms generally have problems with polyphonic signals, which happens
when two strings are played at the same time.
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To detect the position where the string is stopped against the fingerboard in a rough
sense, one could place frets (like on a guitar) on the fingerboard as in (Paradiso and
Gershenfeld, 1997) or (Kapur et al., 2004). The frets are a resistive material connected
in series. When the string touches a fret, making electrical contact, the resistance is di-
vided and the note is identified. Freed (2009) reviews the use of force sensitive resistors
to identify the position, including an example of a stringless cello. Grosshauser, Feese,
and Tröster (2013) presents a capacitive sensor placed between the strings for detecting
the position of the finger.

Pardue, Harte, and McPherson (2015) applies a resistive strip (a single thin layer
of velostat; carbon-infused polymer) to the fingerboard. When the metallic cello string
contacts the strip, it forms a voltage divider. Comparing the voltage with the string
stopped to the voltage with the string open gives an estimate of the stopped length
which gives an estimate of the pitch. The position accuracy of this system is reported to
be around 6 mm, partially due to noise introduced by the hand. The estimated pitch is
then refined using a pitch tracking algorithm on an audio signal. This strategy reduces
the latency in real-time systems because (1) shorter analysis windows for finding the
frequency of a harmonic may be used rather than the longer analysis window necessary
for finding the fundamental frequency, and (2) the range of frequencies that must be
checked against is reduced to only those around the expected pitch.

2.8.4 Other measurements

Other measurements are occasionally collected for analyzing the musician’s ges-
tures or as control parameters for an instrument connected to a computer. Paradiso
and Gershenfeld (1997) measure the wrist flexion/extension angle of the cellist as a
controller using a special wrist brace equipped with magnets and Hall-effects. Don-
narumma, Caramiaux, Tanaka, et al. (2013) measure muscular activity via electromyo-
gram (EMG) and mechanomyogram (MMG) signals for use as controllers in a musical
context. Hsu et al. (2014) placed EMG sensors on eight muscles of the chest, shoulder,
and arm to investigate how a violinist uses the muscles to execute bowing motions.
Großhauser, Großekathöfer, and Hermann (2010) measures the clamping force of the
left and right hands by placing force sensitive resistors under the chin rest and on the
neck of the violin, and on the bow under the thumb, forefinger, two middle fingers,
and small finger.
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Musician’s control parameters

The control parameters describe those parts of the musician’s gestures which vary
dynamically while playing and are relevant to the friction interactions between the
bow hair and the string. These include the effective length of the vibrating string (Sec-
tion 3.1), the orientation, position, and speed of the bow relative to the cello (Section
3.2), and the normal force of the bow hair against the string (Section 3.3). Other fac-
tors which affect the hair-string interactions, such as the choice of rosin, hair tension,
string properties such as material, construction, and diameter, and open string tension
adjusted for tuning are made before the performance and are not part of the musician’s
gesture.

3.1 Effective string length

This section describes the string and how the fingers are used to pin it against the
fingerboard to define the vibrating length and frequency. Section 3.1.1 describes a setup
for measuring string properties and reports a table of measured cello string properties.
Section 3.1.2 describes the geometry of the stopped string. Section 3.1.3 describes how
the vibrating frequency measured during the musician’s performance may be used to
estimate the location where the string is stopped against the fingerboard and to esti-
mate the accompanying small increase in string tension.

3.1.1 String model

Our cellos are equipped with medium tension strings. The two highest strings are
Larsen Soloist, which have a solid steel core wound with rolled stainless steel flat wire.
The two lowest strings are Thomastik Spirocore, which have a steel rope wound with
tungsten. We assume the strings have the same behavior as solid strings as modeled
by the constitutive equations for longitudinal and bending deformations:

T = KLε (3.1)

M = KBκ (3.2)

where T and M are the tension and bending torque applied to the string, ε is the di-
mensionless longitudinal strain, κ is the bending curvature with dimensions length−1,
and KL and KB are longitudinal and bending stiffness coefficients respectively. In the
case of solid strings, we can relate the stiffness coefficients to the Young’s modulus E
and to the the cross-section’s area A and second moment of area I assuming a uniform
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circular cross section of diameter d.

KL,solid = EA, Adisk =
1

4
πd2 (3.3)

KB,solid = EI, Idisk =
1

64
πd4 (3.4)

Rather than trying to calculate these coefficients from material and geometric proper-
ties of the string, we use measured values for the coefficients since our strings are not
solid.

To measure string properties, we used the device shown in Figure 3.1. The posi-
tion of the bolts representing the nut and bridge were adjusted to match the distance
between the nut and bridge of our cellos. The string was attached to the tuning mech-
anism and the load cell. The string passed over the nut and bridge with very little
tension and nearly zero break angles. We marked the position of the nut and bridge on
the string with a black pen to define the length of a segment without tension. Large in-
creases in tension were applied to the string by moving the mass further from the pivot.
The tuning mechanism was then used to approximately maintain the longitudinal po-
sition of the string and to make fine adjustments of the tension. After the string was
initially brought to approximate playing tension, the string was left to set for about ten
minutes. This should have given the strings enough time to fully stretch under the load
provided the strings are sufficiently similar to the metallic core (Supersensitive and Jar-
gar) violin strings reported in (Pickering, 1986). No time was given for the strings to
stretch after the small incremental changes in tension as the effect of creep in this case
should be well below our measurement precision (a few tenths of a millimeter). Using
our thumbs to stop the string at the edges of the nut and bridge, we then pluck the
string and use an electronic tuner to measure the frequency of vibration. The stretched
distance between the marks on the string were recorded along with the frequency of
vibration and tension of the string.

Tuner Nut Bridge Load cell

Mass

Pivot

Pulley

Cable

Rod

String

FIGURE 3.1: Aluminum extrusions were used to construct a frame. Two
bolts serve as the nut and bridge. The cello string is attached to a tun-
ing mechanism and a load cell. The load cell attaches to a steelyard and
allows us to measure the tension in the string. By moving the relatively
small mass further from the pivot point, the tension in the string can be
increased. The tuning mechanism allows us to maintain the string in
approximately the same longitudinal position and to make fine adjust-

ments to the tension.
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The longitudinal stiffness (Equation 3.1) was estimated from the data. Using the
diameter of the string, an effective Young’s modulus was calculated using Equation
3.3 and an upper limit for the bending stiffness was calculated assuming a solid string
model (Equation 3.4). Since this upper limit was negligible in our application (see
Section 3.1.3), we did not bother to measure the true bending stiffness. If we had found
the contrary, we would have used an electromagnetic pickup or optical forks to record
the free vibrations of the plucked string and analyzed the inharmonicity of its spectrum
to estimate the effective bending stiffness.

Table 3.1 shows the results of our measurements. The tension measurements are
within about 1% (5% for String II) of those collected from manufacturers at (Aitchi-
son, 2016) after compensating for the difference in string length and converting from
pounds-force to newtons. The stiffness coefficients may be comparable to the elasticity
coefficients of violin strings reported by Pickering (1986). No references were found for
comparing the string densities.

Lref [mm] fref [Hz] Tref [N] KL[N] µ0[10
−6kg/mm]

I (A3) 690 220 174 23500 1.90
II (D3) 690 147 135 17300 3.31
III (G2) 690 98.0 133 7960 7.42
IV (C2) 690 65.4 130 9550 16.1

TABLE 3.1: String properties measured using the device in Figure 3.1 as
described in the text. The vibrating length of string was set to Lref by
adjusting the distance between the nut and bridge bolts. The vibration
frequency of each string was set to its nominal frequency fref by ad-
justing the tension Tref . The longitudinal stiffness KL was estimated by
fitting the data to Equation 3.6. The linear mass density was estimated

by fitting the data to Equation 3.5 using Equation 3.7.

3.1.2 Finger model

Since we are only concerned with capturing control parameters, we reduce the fin-
ger to a constraint force at a point. The force is orthogonal to the open string, and
follows the material point until it is pinned against the fingerboard at the stopping
point (see Figure 3.2).

3.1.3 Stopped string length estimation

The deformation implies a slight stretching of the string accompanied by a corre-
sponding decrease in the linear mass density according to the conservation of mass

µ =
µ0L0

L
(3.5)

where µ0 and L0 are the mass density and length of the string at zero tension.
The slight stretching of the string implies a slight increase in the tension T of the

string according to the linear constitutive relation Equation 3.1, repeated here for con-
venience.

T = KLε = KL
L− L0

L0
(3.6)
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dγ
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Lγ

Lstopped
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FIGURE 3.2: The string is called "open" when no fingers touch it. The
length of the open string is the distance from the bridge to the nut. The
string is called "stopped" when a finger has pinned the string against the
fingerboard. The point of contact between the string and the fingerboard
is called the "stopping point." The effective length of the stopped string

is the distance from the bridge to the stopping point.

Using the length, tension, and linear mass density of the string, we can determine
the fundamental frequency of its vibrations according to a stiff-string model. In prac-
tice, the term including the bending stiffness is on the order of 10−4 and can be ignored.

f =
1

2L

√
T

µ

(
1− π2

L2

KB

T

)1/2

≈ 1

2L

√
T

µ
(3.7)

The major effect of stopping the string is to limit vibrations to a shorter portion of
the string giving a higher fundamental frequency.

To calculate the effective string length, tension, and linear mass density of the
stopped string, we compare four states of the string. We consider a segment of string
with an unstretched length of L0 and mass density µ0. That segment is stretched until
it spans the distance between the bridge and nut, representing the open string. The
segment is stretched even further until it reaches the tension of the stopped string. Fi-
nally, we isolate a portion of the segment representing the effective string length of the
stopped string. The four states, their lengths, tensions, mass densities, and vibrating
frequencies are summarized in Table 3.2.

state length tension density frequency
unstretched L0 0 µ0 n/a
open Lopen Topen µopen fopen
tensioned Ltensioned Tstopped µstopped ftensioned
stopped Lstopped Tstopped µstopped fstopped

TABLE 3.2: Hypothetical string states are used to relate measurements
and string properties for estimating the length of the stopped string.

Before mounting the string on the cello, we can measure its mass density µ0, and its
longitudinal stiffness coefficientKL (see Section 3.1.1). Once mounted, we can measure
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the length Lopen and frequency fopen of the open string. After stopping the string,
we can measure its frequency fstopped. All other variables in the table above may be
calculated through appropriate applications of the conservation of mass (Equation 3.5),
constitutive relation (Equation 3.6), and string frequency (Equation 3.7) equations.

Having calculated the effective length of the stopped string Lstopped, we can use the
measured geometry of the fingerboard to estimate the stopping point. This is the point
on the fingerboard which is located at a radial distance Lstopped from the bridge. For
now, we express this point as a pair of coordinates: the distance Lγ from the bridge
along the axis of the undisplaced string ŷS and the transverse displacement dγ toward
the fingerboard along the vertical axis ẑS (see Figure 3.2). Once the position and ori-
entation of the cello are known, the position of the string’s bridge endpoint ~rbridge is
known and the position of the stopping point ~rstop can be calculated by

~rstop = ~rbridge + Lγ ŷS − dγ ẑS . (3.8)

3.1.4 Discussion of string modeling

While this section is supposed to be about calculating the effective length control
parameter from the measured vibrating frequency of the string, it is actually more
about making corrections to the position and orientation of the line segment which
represents the bowed string (Equation 3.8), estimating the tension of the string, and
collecting string properties needed for the bow force model described in 3.3.

The calculation took into account the change in mass density of the string and the
longitudinal stiffness of the string without consideration of whether these complica-
tions were necessary. The difference in mass density between the reference measure-
ments and the experimental condition are negligible since the string tension has not
changed much. We can then estimate the tension of the open string during the exper-
iment using the following simplified relationship which yields an error of less than
0.01%.

Texp =

(
fexp
fref

)2

Tref (3.9)

In fact if you simply assumed the open string tension was equal to the reference
tension, ignoring differences due to a slightly different tuning, then you would only
incur up to 0.6% error.

Stopping the string has three effects on the bow force model: it shortens the string,
it rotates the bowed string line segment toward the fingerboard, and it increases the
tension of the string. Ignoring the change in mass density for a string stopped at the
octave harmonic results in 0.6% error in the estimated tension. This is significant to
the musician. If the musician plays the harmonic, and then stops the string at that
point, she will find the stopped string is slightly sharp compared to the harmonic. The
musician must use a slightly longer effective string length for the note to remain in
tune. On the other hand, the slight increase in tension and the slight difference in
stopping point it implies are almost certainly negligible effects when estimating the
bow force due to the motion capture measurement error.1

1So why did we go through all this effort? I developed these calculations early on during the thesis
when I had no equipment, no measurements, and no idea about the size of the effects. Having already
programmed the calculations into the pipeline I simply couldn’t be bothered to change it.
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3.2 Bow kinematics

This section defines the scalar bowing parameters (bow angles, bridge-to-hair dis-
tance, frog-to-string distance, and speed) in terms of the positions and orientations of
rigid body frames which may be measured using a motion capture system. The defini-
tions provided here are similar to those of Schoonderwaldt and Demoucron, 2009 and
Maestre et al., 2007 adapted for the cello, but here we use a string-centric basis rather
than an instrument-centric basis for defining the bowing angles. The definitions of the
frog-to-string distance, bridge-to-hair distance, and total depth come from Maestre et
al., 2007. Maestre describes the calculation through a minimization process and calcu-
lating Euclidean distances, though he doesn’t offer an explicit implementation of the
algorithm. In Section 3.2.2 I present explicit solutions for each of these distances based
on skew projection which avoids using any minimization algorithms or Euclidean dis-
tance calculations.

3.2.1 Orientation of the bow

The orientation of the bow is described by three rotations which are meaningful
to musicians (see Figure 3.3). We begin with the longitudinal axis of the bow hair
running parallel to the top plate of the cello and orthogonal to the string with the hair
lying flat against the string. First, we rotate the bow through the inclination angle about
the longitudinal axis of the string so the bow is no longer parallel to the top plate of
the cello. Second, we rotate the bow through the skew angle about the vertical axis of
the bow, so the bow is no longer orthogonal to the string. Finally, we rotate the bow
through the tilt angle about the longitudinal axis of the bow, so the hair no longer lies
flat against the string.
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FIGURE 3.3: Bow angles, rotation axes, and sign conventions. The se-

quence of reference frames is S θI−→̂
yS

1
θS−→
ẑHS

2
θT−→

−x̂H

H . Note that according

to our sign conventions, the inclination and skew angles are positive and
the tilt angle is negative in this figure.

In this section we will provide equations for extracting these angles from the final
reference frames of the bow and string. But first we should review the definitions of
these reference frames. In the following, "the string" refers to whichever string is being
considered at the moment; usually the string in contact with the bow. The four strings
are not quite parallel to the top plate. Nor are they parallel to the plane dividing the
bass and treble sides. The approximate descriptions below for the reference frame unit
vectors are made exact by taking ŷS and x̂H as exact, and using the right-handed and
orthogonal properties of the reference frame.

• x̂S , the string horizontal direction, parallel to top plate, from bass to treble.

• ŷS , the string longitudinal direction, from bridge to stopping point.

• ẑS , the string vertical direction, from top plate to string.

• x̂H , the bow longitudinal direction, from frog to tip.

• ŷH , the bow horizontal direction, spans the width of the hair.

• ẑH , the bow vertical direction, from hair to stick.
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From these reference frames, we can immediately identify the first rotation axis as
ŷS and the last rotation axis as−x̂H . The second rotation axis is orthogonal to the other
two, which we calculate as ẑHS = x̂H×ŷS

‖x̂H×ŷS‖ . The rotation angles themselves are then
calculated as follows, taking into account our sign conventions described in Figure 3.3.

inclination θI =
π
2 − arccos(x̂S · ẑHS)

skew θS = π
2 − arccos(x̂H · ŷS)

tilt θT = −π
2 + arccos(ŷH · ẑHS)

(3.10)

The expressions for the skew angle and tilt angle can be used for the cello, bass,
viola, and violin. The inclination angle changes sign for the violin and viola because the
bow frog is held on the treble side of the violin and viola, but the bass side of the cello
and bass. Schoonderwaldt uses slightly different definitions, choosing to reference the
violin body rather than the string. Simply replacing the violin reference frame with the
string reference frame in his expressions gives my skew and tilt angle. His inclination
angle remains slightly different from mine as he uses ẑS rather than ẑHS .

3.2.2 Position and speed of the bow

We define the hair line as the line which connects the endpoints of the middle of the
hair ribbon at the frog and tip. Likewise, the string line connects the endpoints of the
string at the nut and bridge. These two lines usually do not intersect, but we can always
find the point on each line which is closest to the other line. Having identified the
positions of these two points of closest approach as well as the position of the endpoints
of the string and hair, we can now describe the position of the bow relative to the cello
using three distances which are meaningful to musicians.

The first distance (fig. 3.4, a) describes the location of the string between the hair
endpoints. It is calculated as the distance along the hair line from the frog to the point of
closest approach on the hair line. The second distance (fig. 3.4, b) describes the position
of the bow between the string endpoints. It is calculated as the distance along the string
line from the bridge to the point of closest approach on the string. The final distance
(fig. 3.4, c) is the height of the bow hair above the string, or equivalently the total depth
of the hair line below the string line. It is calculated as the distance between the points
of closest approach on the hair and string. While the total depth is not meaningful to
musicians, it will be useful to us as an indicator of the bow force.
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FIGURE 3.4: The position of the bow relative to the cello is described
by the string-frog distance (a), the hair-bridge distance (b), and the total

depth (c).

The calculations described in the paragraph above are easily realized by noting
that the axis along the hair line x̂H , the axis along the string line ŷS , and their cross
product form a skewed basis upon which we can project the displacement vector from
the position of the string’s bridge endpoint ~rSb

to the hair’s frog endpoint ~rHf
.

frog-to-string distance a = −
(
~rHf
− ~rSb

)
· x̂H−(x̂H ·ŷS)ŷS

1−(x̂H ·ŷS)2

bridge-to-hair distance b = +
(
~rHf
− ~rSb

)
· ŷS−(x̂H ·ŷS)x̂H

1−(x̂H ·ŷS)2

total depth c = −
(
~rHf
− ~rSb

)
· x̂H×ŷS
‖x̂H×ŷS‖

bow height h = −c

(3.11)

The bow speed is an indicator of the length of hair which passes over the string
per unit time, which we calculate as the rate of change of the string-frog distance. We
are particularly interested in the part of the bow movement which causes transverse
displacement of the string. For this reason, we take only the bow speed component
which is orthogonal to the string by multiplying by the cosine of the skew angle.

bow speed vbow = da
dt cos θS (3.12)

3.3 Bow force

The bow applies a reaction force normal to the contact surface and a friction force
tangent to the contact surface. The friction force varies over each stick-slip cycle of the
string vibration. Coupling between polarizations of the string vibrations imply that
the normal force will also vary over each stick-slip cycle. Vibrations in the bow stick
and hair ribbon further modulate the normal force. The player does not have control
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over these variations in the normal bow force. The normal force that the player does
have control over is an average over the duration of a stick-slip cycle. It is this average
normal force that we are identifying as the bow force control parameter.

The most significant changes in bow force occur during bow changes and string
crossings. Changes in bowing direction do not often occur at frequencies above 12 Hz
(semiquavers/16th notes at 180 bpm) due to physical limitations. This allows us to
estimate the minimum duration of a bow change at about 0.1 seconds. The motion
capture data is sampled at 120 Hz which should give us enough data points during the
bow change to allow us to follow the variation in bow force.

In the sections that follow, we will develop a model for estimating the bow force
from motion capture data. The model is based on an analysis of the string in static
equilibrium, and slowly changing deformations of the bow. Applying these models
to our experimental measurements depends on the validity of the inherent quasi-static
approximation. The quasi-static approximation is valid when we can ignore inertial
effects. We suspect that such an approximation is valid most of the time, as we have
observed the bounce frequency of the bow around 15 Hz which is typical (Askenfelt
and Guettler, 1998). The only concern is at moments when the bow undergoes sudden
rotations or high accelerations in the normal direction, such as when bouncing the bow
on the string during spiccato.

The method of estimating the bow force presented here was originally suggested
by Maestre et al. (2007). My original contribution to this method is to take into account
the compliance of the string and the observation that the bow force is approximately
quadratic in the hair depth.

3.3.1 String compliance

The string compliance relates the transverse displacement of the string to the ap-
plied static bow force which causes it. It depends on the tension of the string, its resis-
tance to stretching, the length of the string, and the position of the applied force. The
goal of this section is to find the relationship between the transverse force F applied at
a given point and the resulting displacement cs (which we call the string depth) of that
point.
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FIGURE 3.5: The string compliance model assumes a static force is ap-
plied in a transverse direction, the string forms two straight line seg-
ments, and that we can measure the final position of the corner where
the force is applied. The string is stretched to a length L and tension T
before applying the force. After deformation, the string is divided into

two segments, having tensions TM and TP and lengths LM and LP .

When the force is applied, the string is displaced forming two sides of a triangle.
In fact, the bending stiffness of the string rounds over the sharp corner, reducing d by
less than 2% for typical forces and string properties, which we ignore. From Figure 3.5
we can apply the Pythagorean theorem to find the lengths LP and LM of the two string
segments.

LP = (c2s + ((1− β)L)2)1/2
LM = (c2s + ((β)L)2)1/2

(3.13)

where cs is the string depth and 0 ≤ β < 1 is the final horizontal position of the applied
force, measured along the line from the bridge to the stopping point and expressed as
a fraction of the distance L from the bridge to the stopping point. β = 0 corresponds to
the bridge and β = 0.5 corresponds to the midpoint of the string.

We assume that there is no longitudinal component to the applied force. This as-
sumption is satisfied when either the agent applying the force follows the material
point of the string (as is the case for stopping with a finger), or if the string slips under-
neath the agent (as is the case during the slip phase of stick-slip interactions). Balancing
the horizontal and vertical forces relates the force F and string depth cs to the tensions
TP and TM in each of the segments.

Horiztontal equilibrium: TP
(1−β)L
LP

− TM (β)L
LM

= 0

Vertical equilibrium: TP
cs
LP

+ TM
cs
LM
− F = 0

(3.14)

Before the force is applied, the portion of the string between the bridge and the
stopping point has tension T and length L. If the tension were removed, this segment
would contract to its original length L0 according to its longitudinal stiffness KL (see
Equation 3.1). We can write similar constitutive relations for the two segments of length
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LP and LM in terms of an unknown fraction α analogous to β. The fraction α varies
according to the angle and magnitude of the applied force.

T = KL
(L−L0)
L0

TP = KL
(LP−(1−α)L0)

(1−α)L0

TM = KL
(LM−(α)L0)

(α)L0

(3.15)

Assuming known values for T , L, KL, β, and cs, we are left with seven equations
and seven unknowns (LP , LM , L0, TP , TM , α, and F ). The geometry equations (3.13)
give LP and LM directly. The first constitutive equation (3.15) can be rearranged to
solve for L0. The other two constitutive relations can be used to eliminate TP and
TM from the horizontal equilibrium equation (3.14) and solve for α. With α known, the
constitutive equations then give us TP and TM directly. Finally, the vertical equilibrium
equation can be used to find the force as a function of the string depth cs and the bridge-
to-bow distance b = (β)L.

F = F (b, cs) (3.16)

Solving these equations analytically may not be possible without making further
simplifying assumptions and approximations. Numerical solutions, however, are found
easily enough so we did not bother to investigate any errors that would have been in-
troduced if we had used a simpler model.

3.3.2 Hair compliance

The hair compliance describes the transverse displacement of the hair caused by
an applied force. It depends on the tension of the hair, its resistance to stretching,
the length of the hair, the distribution of force across the width of the hair ribbon, the
stiffness of the bow stick, and the position of the applied force. The goal of this section
is to find the relationship between the transverse force F applied at a given point and
the resulting displacement ch which we call the hair depth.

It is tempting to look for an analytic model as we did for the string, but the bending
of the stick depends on its material properties, cross-sectional area, and curvature, all
of which vary along the length of the stick. While we could measure the taper and
camber of the stick, the material properties cannot be measured directly. In any case,
the equations involved are not likely to have solutions in terms of known analytic func-
tions.

Ablitzer, 2011 created a numerical finite element model of a bow subjected to static
forces and moments and taking into account the large deformations of the stick. The
model includes the measured geometry, assumed elastic constitutive relations, and
force and moment balances. By applying external forces and moments and measur-
ing the resulting deformations of the stick, it is possible to estimate effective material
properties which lead to the observed behavior. The estimated material properties and
measured deformations can then be used with the finite element model to estimate the
necessary forces and torques. The advantages of the finite element model are (1) that
its parameters are the material properties (which may be interesting in their own right),
and (2) that it can be used to both interpolate between and extrapolate beyond the data
used to calibrate the model. The disadvantages of the finite element model are that (1)
it requires a specific set of calibration data which may take longer to collect and (2) it
will be inaccurate if the underlying assumptions of the model are violated.
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Another approach is to develop an empirical model with arbitrary parameters which
doesn’t require any prior knowledge about how available measurements are related to
the bow force. As in the case of the finite element model, the parameters of the em-
pirical model are estimated through a process of applying external forces and observ-
ing the resulting deformations. The empirical model with its estimated parameters can
then be applied to measured deformations to estimate the necessary forces and torques.
Advantages of the empirical model are that (1) almost any quickly collected data is suit-
able for calibration, and (2) the model can be improved by adding knowledge about the
physics of the bow. The trade-off is that the empirical model does not tell us about the
material properties and may or may not be able to extrapolate beyond the calibration
data.

Since we are not interested in the material properties of the bow, and we need a fast
calibration procedure during the experimental context, we decided to use an empirical
model approach.

After the musician brings the bow hair to playing tension, data for building a hair
compliance model is collected by pressing the bow hair against a force transducer (Fig-
ure 3.6) at various fixed positions along the bow hair. The force transducer is mounted
with an aluminum blade which acts as a perfectly rigid string with its string axis ŷS
pointing along the edge. One endpoint of the edge may be taken as the location of the
bridge

The force transducer and bow each have a set of markers which allow us to measure
their positions and orientations using a motion capture system as described in Section
4.3. Taking one endpoint of the edge to represent the location of the bridge, we can use
the motion capture data to calculate the frog-to-"string" distance and the hair depth as
in Section 3.2.2. The total depth when applied to the rigid force transducer gives just
the hair depth since the string depth is zero.

FIGURE 3.6: An HBM U1A force transducer with an aluminum blade
measures bow forces up to 10 N for calibrating the hair compliance

model.

Figure 3.7 shows typical data from a calibration procedure. The force is increased
for about two seconds (red highlight) until either the capacity of the force transducer
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is reached or the bow stick almost touches the force transducer. The force is decreased
for about two seconds (blue highlight) until the bow hair is lifted off the force trans-
ducer. The bow is moved about 1 cm (green highlight) to repeat the press and release
procedure at a new position along the bow hair.
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FIGURE 3.7: Force and frog-to-string distance as functions of time while
collecting data for the hair compliance model.

The tip rotation is a noisy indicator of bow force which may be useful in the upper
half of the bow where an applied bow force is accompanied by significant stick defor-
mation. The sensitivity of the tip rotation to the force increases as the force is applied
closer to the tip, suggesting that the precision increases. Unfortunately, the sensitivity
near the tip is so great that the accuracy of the model is sensitive to errors in calibration
data. The errors in the calibration data for tip rotation come mostly from the small size
of the rigid bodies associated with the tip and frog. For this reason, we do not use the
tip rotation in our bow force estimation model.

Our main predictor of bow force is the deformation of the bow as measured by the
hair depth (Equation 3.11). If the bow stick were perfectly rigid, then we could apply
the compliance model developed for the string. However, the stick bends quite easily,
so we look for an empirical relationship. Figure 3.8 shows that a simple quadratic
relationship gives a reasonable model. The coefficients of the fit shown in Figure 3.8
reflect the compliance of the hair at a single position on the bow. At other positions
along the bow hair, we find that a quadratic model still fits the data well, but that
different coefficients are needed.
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FIGURE 3.8: Data taken while pressing and releasing the bow at a single
frog-to-string distance. A quadratic model constrained to pass through

the origin fits the force versus hair depth data well.

Modelling the quadratic coefficients as a function of the frog-to-string distance com-
pletes the bow force model as a function of frog-to-string distance a and hair depth ch.

F = F (a, ch) (3.17)

We originally attempted to model the force as a function of the hair depth using
Support Vector Regression and various sets of features. We initially tried naïvely "play-
ing" the force transducer as if it were a string in an attempt to capture the dynamics of
the bow in real playing situations as suggested in (Baez, 2013). We did some feature
engineering (for example, using the cosine of the tilt angle instead of the raw tilt angle)
and used various Elastic Nets (combinations of ridge regularization and lasso feature
selection) to create information-based models. We quickly realized that Support Vector
Regression is just an interpolation scheme, and is incapable of predicting values more
extreme than those observed in the training data. We eventually realized the problems
associated with using correlated features, and began to reduce the feature set.

We identified the inclination angle as a source of noise. The hair is deformed by
the total force applied, but the force transducer only measures the force along its axis.
We correct for this difference by dividing the measured force by the cosine of the incli-
nation angle (Equation 3.18). In practice this is a small correction because we attempt
to maintain the force parallel to the transducer axis during the calibration procedure.
Having included the expected effect of the inclination angle, we can now eliminate it
from the list of features used for predicting the bow force.2

F =
Fmeasured
cos θI

(3.18)

We identified the "bridge-to-bow" distance as noise. The force transducer is rigid, so
there shouldn’t be any effect. Any effect the model attributes to this distance is merely

2One might question whether the bow’s weight significantly deforms the stick and whether such a
deformation significantly affects the predicted forces. This would require incorporating measurements of
the bow orientation relative to the gravitational field, and cannot be simply estimated from the inclination
angle alone.
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coincidental. This had little effect on our models as the lasso feature selection had
already identified it as a feature to be effectively ignored. The lasso feature selection
also identified the skew angle as having little influence within the model. Thus the set
of features used to estimate the bow force were the frog-to-string distance, the cosine
of the tilt angle, and either the hair depth or the rotation of the tip relative to the frog
in the x̂H ẑH -plane.

During this time we were still hunting down the sources of errors. We came to
realize that the bow was bouncing on the load cell as we tried to bow in a way that
gave a similar sensation as the stick-slip interactions with a real string. We suspect
that this bouncing and/or the torque applied by the bow lead to additional noise in
the force ground truth measurements. We then started using the press-and-release
procedure indicated in Figure 3.7 which greatly reduced the noise. At this time, the
effect of tilt was still noisy, and we still didn’t understand where the noise was coming
from. We decided to reduce the number of features to just the hair depth and frog-
to-string distance and to use a simple polynomial model, rather than a Support Vector
Regression model. Having done that, we were able to identify systematic errors coming
from the estimation of the positions of landmarks (see Section 4.3.4). Unfortunately,
the time for developing the bow model had been exhausted and we were not able
to develop the model further. We would have liked to develop a more sophisticated
model which includes a physically motivated dependence on frog-to-string distance,
incorporating the tilt angle, and possibly switching between using the total depth and
using the rotation of the tip relative to the frog as its primary indicator of force.

The model for the bow force in terms of the frog-to-string distance and the hair
depth is

F = k1(a)(ch − c0) + k2(a)
1

2
(ch − c0)2 (3.19)

where c0 allows us to estimate any remaining systematic error in the estimation of the
ends of the hair ribbon. The hair stiffness functions are arbitrarily modeled as fourth
order polynomials.

k1(a) = k1,0 + k1,1a+ k1,2a
2 + k1,3a

3 + k1,4a
4

k2(a) = k2,0 + k2,1a+ k2,2a
2 + k2,3a

3 + k2,4a
4

We use a least total squared residuals algorithm to estimate the coefficients ki,j . Figure
3.9 shows the best fit model based on calibration data taken during the experiment.
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FIGURE 3.9: The best-fit model of Equation 3.19 after compensating for
systematic error (c0). Contours are plotted every 0.5 N up to 10 N. Note
that not all regions of this diagram are accessible as the hair will touch
the stick before reaching 10 N in the middle of the stick and mechanical
disadvantage makes it impractical to apply more than a few Newtons of

force near the tip.

To estimate the accuracy of the model, we divide the bow into twenty sections and
calculate the expected absolute residual error and standard deviation in each section.
Figure 3.10 shows that the errors near the frog and tip are quite large (large mean value)
and that the calibration is not very stable (large standard deviations). From about 180
mm from the frog to about 540 mm from the frog, the errors are small and we feel
comfortable quoting a thumb rule of about 0.3 N as the error.
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FIGURE 3.10: An estimate of the accuracy of the hair model.

3.3.3 Bow force model

We now have two models to estimate the force; one depends on the deformation of
the string as measured by the string depth cs, the other depends on the deformation
of the hair as measured by the hair depth ch. Unfortunately, neither of these measure-
ments are available individually; it is only possible to measure their sum (see Figure
3.11).

The total depth c is the sum of the string depth cs and the hair depth ch. Its divi-
sion into string depth and hair depth depends on the relative compliance of the string
and hair. The compliance of the string depends on the bridge-to-hair distance (Sec-
tion 3.3.1). The compliance of the hair depends on the frog-to-string distance (Section
3.3.2). The total depth c, frog-to-string distance a, and bridge-to-hair distance b can be
calculated from the positions of the bridge ~rSb

, stop (or nut) ~rSn , frog ~rHf
, and tip ~rHt

(Equation 3.11).

cs

bridge-to-hair

ch

frog-to-string

c

frogtip

bridge stop

FIGURE 3.11: The total depth c is the sum of the string depth cs and the
hair depth ch.
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The problem is to find a model of the force which depends on the measurable total
depth. Such a model is trivially found by realizing that the definition of string, hair, and
total depth along with the two previous force models make a system of three equations
with three unknowns (cs, ch, F ).

force from string deformation F = F (b, cs)
force from hair deformation F = F (a, ch)
total depth relation c = ch + cs

(3.20)

Finding the solution numerically is easy if we constrain the search to the domain
cs > 0, ch > 0, F > 0. The result is a complete model giving us the bow force in terms
of the observable frog-to-string distance a, bridge-to-hair distance b, and total depth c.

F = F (a, b, c) (3.21)

It can take a few hours for my computer to calculate the bow force for all the data
from the experiment, taking into account the deformation of the string, and one might
ask whether it is necessary. The string depth accounts for about 10-20% of the total
depth, which leads to a systematic overestimation of 10-40% in the bow force if the total
depth is used instead of the hair depth in the model of the previous section (Equation
3.19).





Chapter 4

Experimental equipment

We want to relate the musician’s perception of the cello to the response of the cello
and the control parameters which generated the response. The cello responses which
are most likely to influence the musician’s perception of playability are the radiated
sound (which the musician hears) and the string vibrations (which affects the bow-
string interactions). Section 4.1 briefly describes the microphone and its placement,
while Section 4.2 describes a modified bridge with embedded piezoelectric sensors al-
lowing us to measure the string vibrations.

We previously reviewed technologies for measuring control parameters in Section
2.8, and in Chapter 3 we defined the control parameters in terms of position and ori-
entation data. Section 4.3 of this chapter describes the motion capture system used to
measure the position and orientation data.

4.1 Microphone

In order to record the audio from the cello, we use a free-field 1/2" microphone
(Brüel & Kjaer 4391) placed directly in front the cello about 1.6 meters away and 1
meter off the ground. The microphone can be seen in Figure 4.9 directly above the
video camera which is behind the music stand.

4.2 Bridge sensor

The sounds recorded by the microphone include information not only about the
vibration of the cello, but also about the acoustics of the room in which the cello was
played.

Since we are interested in the physical behavior of the cello itself, we want a signal
that does not include the effects of the room. A few options for such a signal are using
accelerometers or contact microphones attached to the front plate of the cello, placed
underneath the feet of the bridge, or clipped onto the bridge. All of these options tell us
about the motion where the sensor is attached, thus mixing the signals from each string
and capturing only a portion of all the vibrations of the cello body. This is problematic
because it is possible that the results of our study could be sensitive to the placement
of the sensor.

In any case, we are interested in the interactions between the string and bow which
we think are related to playability. Since contact microphones give only limited infor-
mation about these interactions, we looked for more direct means of measuring the
string vibrations. After considering magnetic pickups and optical forks, we decided
to use piezoelectric sensors embedded in the bridge underneath each string following

55



56 Chapter 4. Experimental equipment

the design by Jim Woodhouse as seen in (Zhang, 2015) which is reportedly based on a
design by Reinicke (1973).

In Section 4.2.1 we describe our implementation of the bridge sensor including di-
mensions, cautionary notes, and some improvements that we made to make the sensor
less fragile. Section 4.2.2 describes the measurement procedure and calculations for
calibrating the sensor, and a new analysis for interpreting the calibration coefficients.

4.2.1 Design

The sensor design is shown in Figure 4.1. The dimensions are based on the thickness
of the thickest string, the distance between strings, and the area needed on the upper
support to make the electrical connections. Other designs were considered to reduce
the size and mass of the sensor, but this sensor is easier to build and robust against
clumsy handling. Our luthier chose and carved the bridges keeping in mind the effects
of replacing parts of the wood under each string with sensors. He also cut the right-
angled notches underneath each string at the proper angle and depth, and provided an
initial fitting of the sensors.

The sensor design begins with a lower and an upper plastic support. The lower
support forms a right angle and includes some material in the corner. The upper sup-
port forms a right triangle with the right angle being shaved off. The long surfaces of
each support are lined with copper tape. Piezoelectric elements are placed between the
pieces of copper tape, making electrical contact. The long surfaces of the lower sup-
port hold the piezoelectric elements at right angles to one another, while the material
in the corner of the lower support prevents them from touching each other. The up-
per support transfers the force from the vibrating string to the piezoelectric elements.
Shaving off the right angled corner of the upper support prevents the two supports
from touching each other and ensures that the string is completely supported by the
piezoelectric elements. The copper tape wraps onto the front surface of the sensor for
attaching wires.

Following the suggestion by Jim Woodhouse, thin plastic plates are glued to the
front and back of the bridge, preventing the sensor from tearing itself apart by sliding
forward (while bringing the string up to tension) or backward (while sitting under
string tension). Take care that the plates do not pinch the upper support or become
glued to it. While the angled profile of the bridge causes the plates to trap the upper
support in the sensor, the upper support should be more or less free to move up and
down a few tenths of a millimeter before applying string tension. If your signal is weak
or has an unexpected form, this is likely the source of the problem.

Woodhouse reported problems with failed electrical connections at the solder points.
To address this problem we drilled holes through the sensor, passed the wires from the
back of the sensor, and soldered the wires to the copper tape on the front of the sen-
sor. Passing the wires through the sensor gives them some structural support. When
the wires move, stress is applied where the wire enters the back of the sensor rather
than at the solder points. This reduces the amount of movement near the solder points,
helping to maintain good electrical connections.
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FIGURE 4.1: The bridge sensor design including explicit dimensions,
based on the sensor shown in Zhang, 2015.

The piezoelectric elements are made of a transversely isotropic ceramic, with the
axis of symmetry (the piezoelectric axis) spanning the thickness of the element. The
element produces an electric potential difference across its thickness in response to
strains along the piezoelectric axis. These strains are produced by forces applied or-
thogonally to the surface (ie. along the piezoelectric axis). The potential difference is
proportional to the normal force supported by the element.

When connecting the wires to the sensor, one side of the piezo is assigned the sig-
nal; the other side, the reference (ground, zero potential). The choice is established
through an arbitrary convention; we choose to have a positive signal when the piezo
is compressed. This is easily checked by bowing across the string and comparing the
shapes of the periodic waveforms (see figure 4.2). When bowing down-bow, the string
is pulled toward the bass piezo and away from the treble piezo before slipping. During
down-bows, the bass piezo waveform is a sawtooth which climbs up gradually and
then jumps down suddenly when the Helmholtz corner arrives at the bridge. Mean-
while, the treble piezo waveform slides down gradually and then jumps up suddenly
at the arrival of the Helmholtz corner at the bridge.



58 Chapter 4. Experimental equipment

time

fo
rc
e

Treble piezo, Down-bow

Bass piezo, Up-bow

time

fo
rc
e

Bass piezo, Down-bow

Treble piezo, Up-bow

FIGURE 4.2: These are the expected waveforms for the treble and bass
piezos during up-bows and down-bows according to the sign conven-

tion of positive signals under compression.

The sixteen wires from the bridge (four strings, two piezos per string, two wires
per piezo) are collected into a 16-pin connector1 (Figure 4.3). This allows us to quickly
disconnect one cello from the computer and connect the other without fear of mixing
up signals. A common 16-pin cable is used to connect the cello to a circuit containing
a charge amplifier for each of the eight piezos. We made a cable which connects the
16-pin output of the charge amplifier circuit to the eight BNC interfaces at the data
acquisition board2. The circuit design is given in Appendix A.

FIGURE 4.3: The piezo signals run through a charge amplifier before
being recorded by the computer.

1Actually, only nine pins are used: eight signals and one common ground.
2These homemade BNC cables were often the source of bad signals. It is recommended to spend some

time making the connector mechanically robust to avoid electrical shorts after repeated connections and
disconnections
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4.2.2 Calibration

With the raw signals (potential differences) from the bridge piezos we can compare
the relative amplitudes of a single piezo at different times and we can analyze the tem-
poral and harmonic content. Calibrating the signals to give us forces will allow us to
study the polarization of the transverse vibrations by comparing the two piezos un-
derneath a string. It also allows us to compare results between strings, cellos, or other
experiments. A calibrated force signal also allows us to estimate the amplitude of the
string vibrations. It may be interesting to compare the amplitude of string vibrations
with the amplitude of the radiated sound on different cellos. The calibrated force sig-
nal may even be used with the bridge mobility to study the motion of the bridge. It
might be used along with radiation transfer functions to synthesize sounds of model
instruments.

Measurement procedure

To calibrate the bridge sensors, we use the wire-break method described in (Zhang,
2015). The cello is held vertically between two heavy supports (see figure 4.4). A small
table with a guide post is placed in front of the cello. A thin copper wire is looped
around the string, passes tangent to the guide post, and is attached to a force transducer
resting on the table. A protractor (figure 4.5) is placed against the bridge and the table is
positioned so that the copper wire runs along the desired direction. Once the protractor
is removed, the guide post serves as a reference to ensure the direction of the wire
remains the same. Finally, the force transducer is pulled away from the cello along the
table until the copper wire breaks. The signals from the force transducer and the two
piezos underneath the string are recorded and the peak (or valley) corresponding to
the wire-break in each measurement is kept (figure 4.6).

FIGURE 4.4: A HBM U1A force transducer is used to measure the mag-
nitude force applied to the string when the wire breaks. Sliding the force
transducer along the surface of the table ensures the force is applied
within the bridge plane. A guide post is used as a reference to set the

angle of the applied force.
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FIGURE 4.5: A protractor along with a guide post is used to set the angle
of the applied force relative to a global reference frame. The protractor
registers against the strings and curve of the bridge. The gridded pa-
per indicates the two reference axes in the plane of the bridge. Several
positions are marked along the edge of the protractor. Four angles are
marked at each position corresponding to the angles of the lines connect-

ing the point to each of the four strings.
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FIGURE 4.6: The signals from the force transducer and bridge piezos
during a wire-break measurement. The peak force is taken as the mag-
nitude of the applied force. The height of the first peak (or valley) is

taken as the response amplitude of each piezo.

Parameter estimation

The data from the wire-break measurements consists of the magnitude and angle of
the applied force (Fi, θi) and the potential differences across the treble and bass piezos
(V T
i , V

B
i ) for each measurement i = 1...n. After measuring a few wire-breaks at each

measurement angle, we collect the data from the n measurements into an overdeter-
mined set of linear equations.

F = VC (4.1)

where F is the set of force measurements projected along the horizontal x and vertical
z axes

F =


F x1
F z1
...
F xn
F zn

 =


F1 cos (θ1)
F1 sin (θ1)

...
Fn cos (θn)
Fn sin (θn)

 , (4.2)

V is the set of potential differences measured across the treble T and bass B piezos

V =


V T
1 V B

1 0 0
0 0 V T

1 V B
1

...
V T
n V B

n 0 0
0 0 V T

n V B
n

 , (4.3)
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and C is the set of unknown calibration coefficients we are trying to estimate

C =


CxT
CxB
CzT
CzB

 . (4.4)

We then find the values of the calibration coefficients which minimize the total squared
differences

J = (F−VC)ᵀ(F−VC)

Finding the ordinary least squares estimators of linear parameters in an overdeter-
mined system of equations is a common problem with a well-known solution (see for
example, Draper and Smith, 2014). Formally, the solution is given by

C = (VᵀV)−1VᵀF.

Calculating the pseudo-inverse A = (VᵀV)−1Vᵀ by composing matrix transposes,
multiplications, and inverses can be susceptible to numerical problems when the VᵀV
matrix is ill-conditioned. In that case, it is preferable to calculate the pseudo-inverse di-
rectly using other algorithms such as those implemented as built-in functions in mod-
ern scientific computing languages:

Wolfram Mathematica: C = LeastSquares[V,F];
MathWorks MATLAB: C = V\F;

Python: C = numpy.linalg.lstsq(V,F)[0];

Interpretation of calibration coefficients

To establish the relationship between the calibration coefficients and the gains and
orientations of the piezos, we present the following analysis, which differs from the
one shown in (Zhang, 2015), arriving at a different result.

I believe there are two mistakes in Zhang’s presentation. The first is a sign error
and angle swap when she converts from one set of basis vectors to the other near the
end of the presentation. The second mistake is the assumption that the potential differ-
ence across a piezo is proportional to the orthogonal projection of the force onto the piezo
surface normal. This is fine when there is only one piezo or when the two piezos are
orthogonal. However, the piezos are not assumed to be orthogonal, so skew projection
should have been used consistently to avoid the double counting that happens when
orthogonal projection is used inappropriately.

The force of the string can be decomposed into a component which is orthogonal to
the treble piezo and a component which is parallel to the treble piezo (see red arrows
in Figure 4.7). The treble piezo can clearly support the component which is orthogonal
to it (the labeled red arrow), but the parallel component must be supported by the
bass piezo. If the two piezos are orthogonal to each other, then the force component
which is parallel to the treble piezo will be orthogonal to the bass piezo and will be
completely supported by the bass piezo. In that case, we can stop the analysis here.
But if the two piezos are not orthogonal, then the force component which is parallel to
the treble piezo (the unlabeled red arrow) can be decomposed into a component which
is orthogonal to the bass piezo and a component which is parallel to the bass piezo (the
blue arrows). The bass piezo supports the orthogonal part (the labeled blue arrow) and
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leaves the parallel part for the treble piezo. The analysis continues ad infinitum until the
entire force of the string is supported by the two piezos.

eB

eT

F


FBeB

FT eT

F1
T eT

F1
BeB

FIGURE 4.7: The normal force supported by each piezo can be visual-
ized as an infinite sum through orthogonal decomposition of successive
remainders (red and blue arrows). Skew projection provides the result

directly (thin black arrows).

Equation 4.5 gives the magnitude of the net normal forces F T and FB applied to
the treble and bass piezos in terms of the total force ~F and the unit normal vectors ~eT
and ~eB . Appendix B derives the equation as an application of skew projection.

F T =
(
(~F · ~eT )− (~F · ~eB)(~eT · ~eB)

)
/
(
1− (~eT · ~eB)2

)
FB =

(
(~F · ~eB)− (~F · ~eT )(~eT · ~eB)

)
/
(
1− (~eT · ~eB)2

) (4.5)

The electric potential V T measured by the treble piezo is proportional to the normal
force F T that it supports. The proportionality constant is its gain gT . Likewise for the
bass piezo.

V T = gTF
T

V B = gBF
B (4.6)

The force supported by each piezo points along the normal to its surface, i.e. paral-
lel to the unit vectors ~eT and ~eB (see figure 4.8). Their vector sum is equal to the total
applied force.

~F = F T~eT + FB~eB (4.7)

To find the horizontal and vertical components of the total force, we project it onto
the orthonormal basis ~ex and ~ez .

F x = ~F · ~ex = F T~eT · ~ex + FB~eB · ~ex
F z = ~F · ~ez = F T~eT · ~ez + FB~eB · ~ez

(4.8)

Representing the forces in terms of potentials with equation 4.6 and reading the
dot products from figure 4.8, the expression for the force components (equation 4.8)
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becomes
F x = cos θT

gT
V T + cos θB

gB
V B

F z = sin θT
gT

V T + sin θB
gB

V B (4.9)

from which we can read the calibration coefficients in terms of the piezo gains and
angles.

CxT = cos θT
gT

CxB = cos θB
gB

CzT = sin θT
gT

CzB = sin θB
gB

(4.10)

Inverting these relations, we can estimate gains and angles from the estimated cali-
bration coefficients.

θT = arctan
Cz

T
Cx

T
gT =

Cx
T

cos θT
=

Cz
T

sin θT

θB = arctan
Cz

B
Cx

B
gB =

Cx
B

cos θB
=

Cz
B

sin θB

(4.11)

Values of calibration coefficients for our two cellos are found in Appendix C.
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FIGURE 4.8: This diagram shows the orientation of the piezo surface nor-
mals relative to the global horizontal and vertical axes. Note the normals
are not assumed to be orthogonal to each other. With the orientation of
the normals chosen in this figure, the piezo gains are negative so that the
piezos have positive potentials under compression. This can be achieved
by exchanging the signal and reference leads attached to the piezo, or by

turning over the piezo.

4.3 Motion capture

Chapter 3 defined the bow force model and kinematic control parameters in terms
of the positions and orientations of the bow and cello within a three-dimensional space.
In this section, we describe cameras and markers used to measure the musician’s con-
trol parameters. We give the algorithm for pre-processing marker position data to
estimate the positions of landmarks from previously constructed rigid body models
(reference frames and estimated landmark positions). We then describe how each of
the rigid body models are constructed, including methods for defining the positions of
landmarks and discussing systematic errors. In particular, we describe the placement
of markers and how the markers are used to estimate the positions of points of interest
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on the force transducer (used to calibrate the bow force model, see Section 3.3.2), cello,
and bow.

We use a commercial motion capture system (OptiTrack) based on tracking several
passive markers using ten infrared cameras (1280 × 1024 resolution, 56o field of view,
120 fps frame rate). The cameras are placed about 2m from the cello and are oriented so
that most of the markers on the cello as well as both ends of the bow are always within
the frame (Figure 4.9). One camera was mounted near the ceiling, slightly behind and
to the left of the cellist giving a good view of the scroll. A second camera was placed on
a convenient support near the ceiling in front and to the right of the cello. Two cameras
were placed near the floor on either side and slightly in front of the cello. The other
six cameras were distributed at various heights between one and two meters along
an arc in front of the cello. After calibration, the system reports a spatial precision of
about 0.3 mm, which is consistent with the variations seen during measurements of the
stationary cello, and is limited by the camera resolution.
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FIGURE 4.9: Here we can see the positions of eight of the ten motion
capture cameras. The two cameras mounted near the ceiling are out of

frame.

The motion capture software (Motive:Tracker) collects images from each of the cam-
eras in which markers and stray reflections form white blobs against a black back-
ground (see Figure 4.10). Circles are fit to the blobs with the center of each circle cor-
responding to a ray extending from the camera. If rays from multiple cameras nearly
intersect at a point, then the reconstructed position is recorded as an observed marker.
Previously defined rigid body models are then compared with the observed markers.
If a set of observed markers corresponds well with a rigid body, then they are labeled.
The positions of the labeled markers are then broadcast to the synchronization software
(The MotionMonitor). The synchronization software records the data streams from the
motion capture system, the microphone, and the bridge sensors. After the experiment
is over, we export the data from the synchronization software for pre-treatment and
analysis in Mathematica, Matlab, or Python.
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FIGURE 4.10: A conceptual schematic of the motion capture system. The
two cylinders represent cameras. The data collected by the camera is
projected onto the imaging planes. Rays extending from the cameras
through the blobs in the images nearly intersect. The position of the
object is reconstructed by finding the point which best describes the ap-

proximate intersection of all involved rays.

The MotionMonitor software collects the broadcast motion capture signals from
Motive:Tracker and samples the data acquisition card for the signals from the bridge
sensor or force transducer. Nothing else is running on the computer, so presumably
the operating system is not inserting interrupts in queue which would affect synchro-
nization. Beyond that we are only looking for synchronization accuracy at 120 Hz (the
rate of motion capture). The shape of the load cell signal follows the shape of the hair
depth measurement (Figure 4.11), and the piezos and motion capture signals agree on
the moment when the bow changes direction (Figure 4.12).
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FIGURE 4.11: The force signal measured by the force transducer follows
the hair depth signal from motion capture measurements. The vertical
grid lines indicate when motion capture measurements were taken. The
15 Hz variation in the force is due to the bow bouncing when placed on

the load cell.
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FIGURE 4.12: The force signal measured by the piezos during a bow
change. The vertical grid lines indicate when motion capture measure-
ments were taken. The origin of time is defined as the moment when
a linear interpolation of the bow speed crosses zero. The piezo signal
shows the final slip before the bow change, a period of constant sticking
as the bow pulls the string first in one direction and then in another, fol-
lowed by the first slip after the bow change. That the piezo signal goes
through its minimum at t = 0 is an indication of good synchronization

between the signals.

4.3.1 Using rigid body models to find landmarks

When we described the extraction of bowing parameters from motion capture data
in Section 3.2, we assumed that we knew the positions of certain landmarks; namely,
the endpoints of the hair ribbon and the endpoints of the string. Unfortunately, we
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cannot place markers directly at these landmarks because they might bother the musi-
cian. In this section, we discuss how we create rigid bodies before the experiment and
how we use them to estimate the positions of landmarks during pre-processing after
the experiment.

Before the experiment, markers are placed in convenient locations on the force
transducer, cello, and bow as described in the sections that follow. The markers are la-
beled in the motion capture software, and a recording of their static positions is made.
We then use various strategies (described in the sections that follow) to define the po-
sitions of interesting landmarks with respect to the positions of the markers. The set of
marker and landmark positions constitutes a rigid body model.

During the experiment, the marker positions are tracked. The motion tracking data
has three problems: (1) positions of landmarks are unknown, (2) sometimes a marker
is occluded giving no position information, and (3) often the rigid body constraints
are not respected exactly. All three of these problems are solved by finding an opti-
mum translation and rotation which maps the rigid body model as closely as possible
to the observed markers (Figure 4.13). The optimization minimizes the total squared
distances between the rigid body markers and the corresponding observed markers.

rigid body model

in reference pose

1 2

3
4landmark Euclidean tranformation

2

3
4

observed markers

transformed rigid body model

1 (occluded)

landmark

FIGURE 4.13: A rigid body model includes the relative positions of its
markers and landmarks. The set of observed markers (red) are missing
landmarks and occluded markers. An optimal Euclidean transforma-
tion maps the rigid body model from its reference position (black) to
a position and orientation (blue) close to the corresponding set of ob-
served markers, reducing measurement error by enforcing rigid body
constraints. The positions of landmarks and occluded markers are re-

constructed from the transformed rigid body model.

Finding the least squares rigid body transformation between two corresponding
sets of points is a well-known problem. It is usually described as finding an ideal ro-
tation and translation. Finding the best translation is trivial: just map the centroid of
one set of points onto the centroid of the other set. Finding an arbitrary matrix which
minimizes the total squared distances is also relatively easy when posed as an ordi-
nary least squares linear parameter estimation problem (section 4.2.2). The problem
lies in restricting ourselves to orthogonal matrices (i.e. rotations) while performing the
minimization. This problem is known as the Orthogonal Procrustes Problem and was
solved in (Schönemann, 1966) based on the singular value decomposition of the covari-
ance matrix between the reference and rotated data sets. Explicitly applying Schöne-
mann’s solution to the rigid body transformation problem was shown in (Arun, Huang,
and Blostein, 1987). Arun’s algorithm is presented below for convenience.
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Begin with the two ordered sets of points {model: ~xi = x1i~e1 + x2i~e2 + x3i~e3} and
{measurements: ~yi = y1i ~e1+ y

2
i ~e2+ y

3
i ~e3} for i = 1, . . . , n in which points with the same

indices correspond to each other.

1. Calculate the centroids of each set of points.

~x0 =
1

n

n∑
i=1

~xi = x10~e1 + x20~e2 + x30~e3 ~y0 =
1

n

n∑
i=1

~yi = y10~e1 + y20~e2 + y30~e3

2. Calculate the deviations of each point from its centroid.

~Xi = ~xi − ~x0 = X1
i ~e1 +X2

i ~e2 +X3
i ~e3

~Yi = ~yi − ~y0 = Y 1
i ~e1 + Y 2

i ~e2 + Y 3
i ~e3

3. Calculate the 3× 3 cross-correlation matrix of the deviations.

C =

(
n∑
i=1

Xr
i Y

c
i

)
[r∈{1,2,3}, c∈{1,2,3}]

4. Calculate the singular value decomposition (SVD) of the cross-correlation matrix.

UΛVᵀ = C

5. Calculate the rotation matrix

R = V

 1 0 0
0 1 0
0 0 det (VUᵀ)

Uᵀ

where the determinant det (VUᵀ) = ±1 ensures that R is a rotation matrix rather
than a reflection matrix.

6. Calculate the translation vector

~t = ~y0 −R(~x0)

7. Calculate the corrected positions

~y ′i = ~t+ R(~xi)

4.3.2 Force transducer markers and reference frame

The force transducer is used for building a model of the effective hair compliance
(see section 3.3.2). The force transducer consists of an aluminum wedge mounted on a
sensor which is held in position by a wooden support (see figure 3.6). Markers placed
on the force transducer allow us to track its pose with the motion capture system while
the sensor itself measures the force applied by the bow on the wedge. From the mark-
ers we need to establish the position of at least one of the corners of the aluminum
wedge’s upper edge, the orientation of that edge, and the orientation of the sensor’s
measurement axis.
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Six markers are attached to the force transducer: one on each corner of the upper
edge defining the edge line, two on the base forming a line which is approximately
orthogonal to the edge line, and two more on the wedge for redundancy (see figure 3.6).
We decided to identify landmarks directly by placing markers exactly at the positions
of the landmarks. This was possible because the markers will not interfere with the
bow during the hair compliance measurements.

Placing a marker at a landmark is the easiest method of defining a landmark po-
sition. However, systematic errors may occur due to human error when placing the
marker. There is always a slight offset between the geometric center of a marker and
the surface it is mounted on. This presents a problem because a landmark is repre-
sented by the geometric center of the marker, but we usually want the landmarks to lie
on the surface. We minimize this kind of error by using small markers (3 mm hemi-
spheres) whenever necessary. In the case of the load cell, we need two markers to
define the edge line representing a perfectly rigid string. Rather than mounting these
markers on top of the edge surface (see the red marker in Figure 4.14), we place them
on the ends of the edge line so that the centers of the markers are aligned with the
upper edge (see the blue marker in Figure 4.14). This should eliminate the systematic
error coming from marker geometry, leaving only human placement error.

FIGURE 4.14: Schematic of the force transducer. The red and blue mark-
ers in this figure are intended to define the edge line which is orthogonal
to the vertical axis of the force sensor. The centroid of the red marker is
well above the edge line, giving a systematic error. The blue marker is
placed well. The green and yellow markers define a second direction

orthogonal to the load cell axis.

While the markers on the ends of the edge line must be placed accurately, the mark-
ers on the base can be placed somewhat arbitrarily. This is because the edge line and
the support base are both orthogonal to the axis of the force sensor. As long as the
markers on the base do not form a line parallel with the edge line, then we will be able
to construct an orthonormal set of basis vectors indicating the direction of the edge line
ŷ, the direction along the force sensor axis ẑ, and the approximate direction of bow
movement from frog to tip x̂. The calculations are as follows:

The markers lying on the edge line represent the position of the string endpoint at
the bridge (~rB) and nut (~rN ). These markers define the direction of the edge line unit
vector ŷ. We just need to find their difference vector and normalize it to get the unit
vector pointing from bridge to nut.

ŷ =
~rN − ~rB
|~rN − ~rB|

(4.12)
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The markers lying on the support base represent the positions of the treble (~rL) and
bass (~rR) corners of the cello’s front plate. They define a direction which is orthogonal
to the force sensor axis, and they approximate the expected direction of bow movement
from frog to tip. To define x̂, we use the standard Gram-Schmidt orthonormalization
procedure. We find the orthogonal projection of the difference vector onto ŷ (the part
parallel to ŷ) and subtract it from the complete difference vector. This leaves us with a
vector which is orthogonal to ŷ. The final step is to normalize this orthogonal vector.

x̂ =
(~rL − ~rR)− ((~rL − ~rR) · ŷ)ŷ
|(~rL − ~rR)− ((~rL − ~rR) · ŷ)ŷ|

(4.13)

The axis of the force sensor is assumed to be orthogonal to both ŷ and x̂ due to
the construction of the wedge and support base. The three-dimensional vector cross-
product of ŷ and x̂ gives a vector which is orthogonal to both of them, proportional to
both of their lengths and the sine of the angle between them, and is oriented according
to the "right hand rule." Since ŷ and x̂ are orthonormal, their cross-product will already
be normalized.

ẑ = x̂× ŷ (4.14)

4.3.3 Cello markers and reference frames

The cello is used as a reference for describing the relative motion of the bow (see
sections 3.2.1 and 3.2.2). From the cello markers, we need to identify the positions
where each string meets the bridge and nut, and the orientation of each string (figure
4.15).

We cannot place markers directly at the points of interest on the cello as we did with
the force transducer. We can only place the marker on top of the string, rather than in
line with its axis as we did on the force transducer. Additionally, the cellist may touch
the marker at the nut with their finger or the marker at the bridge with the bow, thus
disturbing the experiment when the marker moves or falls off completely. We could
just ask the musician to be careful with the markers, but that raises their awareness of
the experimental condition, possibly leading to unnatural behaviors. Fortunately, there
are a few methods for tracking landmarks without needing markers at those locations
during the experiment.

We first tried a method using a stylus to indicate the landmark positions relative
to more conveniently placed markers. The stylus was a piece of plastic having three
markers arranged in a triangle and a corner designated as the tip. The stylus was
calibrated by measuring the positions of the stylus markers as it is pivoted on its tip
about a fixed point. Sphere-fitting algorithms are then used to define the position of
the stylus tip with respect to its own markers. We then temporarily place the tip of the
stylus at the desired landmark and measure the position of the tip (as calculated from
the stylus markers) with respect to the positions of the cello markers. This sounds great
in theory, but in practice, the stylus should be quite large with many markers forming
a 3-dimensional branching tree. At the time, we only had a few markers to use as a
stylus and the stylus suggested to us was rather small. Beyond issues of stylus design,
there is the fundamental problem of estimating the position of its tip via sphere-fitting.
Sphere-fitting algorithms tend to predict smaller radii and require data points over
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large angles. It turns out that "large angles" seems to mean about 270o around a great
circle.

Cb
Gb
Db
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Gn
Dn
An
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zS

FIGURE 4.15: Landmarks are placed at the intersections of each string
with the bridge and nut.

Better methods for defining landmark positions include using two sets of markers:
one temporary and one permanent. The temporary markers are used to define land-
marks at the nut and bridge with respect to the positions of the permanent markers.
The permanent markers are placed at convenient locations which will not disturb the
player and the temporary markers will be removed during the experiment; thus the
markers will not present any problems to the musician.

We tried to place temporary markers as close to the desired landmarks as possible.
In our case, this meant finding the smallest markers that can be tracked by our system
(3 mm diameter hemispheres) and placing them directly on top of the strings. This
gives some systematic error as discussed in section 4.3.2, but it is much less than the
errors we got using a stylus.

The best method we came up with was to place several temporary markers along
the length of the string. The markers were not all placed on top of the string, but also
on the sides of the string, so that a projection of the markers along the string axis would
form a circular arc. We aimed to occupy about 270o of arc with markers. It is important
to make sure that the centers of the markers are well aligned with the radii of the string
and that you use an adhesive with a very thin, uniform thickness, such as double-
sided tape. We then calculated the First Principal Component of the temporary marker
positions to find the orientation of the string axis. The temporary marker positions are
then projected onto a plane orthogonal to the string axis. Next, we use a circle-fitting
algorithm (hyperSVD) having no intrinsic bias from (Al-Sharadqah, Chernov, et al.,
2009) to locate the position of the string axis.

Having found an infinitely long line which represents the string, we need to identify
the endpoints which represent the nut and bridge. To define the nut endpoint, we
placed a temporary marker on the nut between strings I and II and another between
strings III and IV. These two markers define the "nut line" which passes close to the
desired endpoint. We then found the point on the string axis which is closest to the
nut line. To define the bridge endpoint, we placed three markers on the top edge of the
bridge (one between each pair of strings). These temporary markers define the "bridge
plane" which is approximately orthogonal to the string axis. The intersection of the
string axis with the bridge plane defines the bridge endpoint of the string.
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FIGURE 4.16: Here we see four markers on the front, three markers on
the side, three markers on the scroll, two temporary markers on the nut,

and three temporary markers on the bridge.

Now we need to decide where to place permanent markers on the cello (Figure
4.16). The markers have to be visible to the cameras, but cannot disturb the musician.
These markers will define the orientation of the cello axes, so we might as well choose
the marker positions so that defining these axes is easy. For this reason, we place one
marker in each of the lower bout corners. These markers define a direction x̂ which is
parallel to the bridge plane.

We need at least three markers in the form of an asymmetric triangle to define a
rigid body. To have better estimates of the landmarks, they should lie within the region
bounded by the permanent markers if possible (i.e we want to interpolate, rather than
extrapolate positions). For these reasons, the next marker we place is on the scroll. This
allows us to interpolate the positions of the landmarks in the plane of the top plate. We
will still have to extrapolate the height of the landmarks, but there is no getting around
that since the landmarks are elevated above the front plate.

The more spread out the markers are, the better we can estimate the orientation of
the cello. The problem is that having markers spread out makes it difficult to make
sure that they are all within the camera frame at the same time, particularly with one
marker next the cellist’s head. So we add some redundant markers and create separate
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rigid body models which can be combined in pre-processing. That way if the scroll is
completely hidden from view, we can still use the visible markers on the front plate to
estimate the position and orientation of the cello. Since the markers on the scroll are far
from the markers on the front plate, we placed a few redundant markers on the scroll
to reduce the influence of errors in any one of them. This may also reduce the chances
of having all of them occluded by the cellists head.

Finally, the position and orientation of the cameras tends to favor certain measure-
ment planes over others. In particular, if our cameras were placed in a plane, then we
would have good measurements parallel to that plane, but we would not have good
depth measurements orthogonal to that plane. We have already taken steps to reduce
this problem by arranging the cameras on a spherical shell, creating several preferred
planes. We can further reduce the problem if the rigid body has multiple planes to
present to the cameras. For this reason we added another three markers on the ribs of
the treble side. One was placed on the upper bout near the front plate corner, the other
two were placed near the front and back plates of the lower bout where it is widest.

With these markers placed and the landmarks defined, we can then define the refer-
ence frames attached to each string. Each string has an origin where it meets the bridge
which is one of our landmarks. Each string has an axis ŷS from the bridge (~rB) to the
nut (~rN ).

ŷS =
~rN − ~rB
|~rN − ~rB|

(4.15)

The markers located at the bass (~rR) and treble (~rL) corners of the front plate define
a line that is parallel to the bridge plane. This line defines horizontal in the global
reference frame of the bridge, which we can take advantage of for easily applying string
vibration polarizations to the bridge mobility measurements to get an idea of how the
bridge moves while playing. Instead of taking the direction of this line as it is, we will
use only the part which is orthogonal to the string axis because we want to build an
orthonormal reference frame for the string.

x̂S =
(~rL − ~rR)− ((~rL − ~rR) · ŷS)ŷS
|(~rL − ~rR)− ((~rL − ~rR) · ŷS)ŷS |

(4.16)

The third direction ẑS of the string’s reference frame is orthogonal to the other two
and is oriented from the plate to the strings. We take advantage of the vector cross-
product to create an orthogonal vector with the correct orientation. Since x̂S and ŷS are
orthonormal, their cross-product is already normalized.

ẑS = x̂S × ŷ (4.17)

4.3.4 Bow markers and reference frames

The bow has been modeled by other groups as a single rigid body for the purposes
of motion tracking (Marchini et al., 2011). A 6-degree-of-freedom sensor was placed
at the frog and a bow force model based on the frog-to-string distance and hair depth
were created using methods similar to what we described in Section 3.3.2. Marchini
et al. report problems with the performance of their bow force model near the tip, and
suggests the problem lies in the model failing to completely account for the deforma-
tion of the bow. However, a more important problem, as I see it, is that the bow is
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quite long, and small errors in the measured orientation of the rigid body at the frog
cause large errors in estimating the bow depth of a rigid bow near the tip. A typical
orientation error of 0.5o gives 1 mm errors in bow depth at distances from the frog of
just 1/5 of the 600 mm hair length. Whenever possible we should interpolate positions
between markers, rather than extrapolating positions beyond a set of markers. By plac-
ing a second rigid body at the tip, we can minimize the orientation error of the hair and
achieve better estimates of the bow depth.

While the presence of a second rigid body allows us to measure the rotation of
the tip with respect to the frog (another measure of bow deformation), this extra mea-
surement is a monotonic function of the previously known bow depth, and thus its
inclusion does not necessarily introduce extra information or produce a better model.
Including the tip rotation might improve the model in cases where the tip rotation is
more accurately measured than the hair depth, i.e. near the tip. Unfortunately, such
a model becomes very sensitive to errors in the calibration measurements near the tip.
Using the tip rotation instead of the bow depth only presents a possible improvement
in the region between 4/6 and 5/6 of the bow length from the frog. I believe the im-
proved performance of the model presented in (Llimona, 2014) over that presented in
(Marchini et al., 2011) may be attributed to the increased accuracy of measuring bow
depth.

For the purposes of motion tracking (i.e. improved estimates of bow depth), we
model the bow as two rigid bodies: one at the tip and one at the frog (Figure 4.17).
Each of these rigid bodies has its own reference frame and its own origin. The origin
of the frog rigid body is located in the middle of the hair where it meets the ferrule
HF . The origin of the tip rigid body is located in the middle of the hair where it meets
the tip plate HT . The frog and tip reference frames are initially aligned with the hair
reference frame (see section 3.2.1), but rotate when the stick bends.

xH,F,T

zH,F,T

yH,F,T

HF HTH3...Hn

F1

F2

F3F4

F5

T1

T2

T3
T4

T5

FIGURE 4.17: The bow is modeled as two rigid bodies. Styrofoam anten-
nas are placed near the frog and tip. Spherical passive reflective markers
with 6.4 mm diameters are used to track the position of the two rigid
bodies. Hemispherical markers with 3 mm diameters are temporarily
placed on the hair ribbon to define the positions of the endpoints rela-
tive to the larger markers. The smaller markers are removed before the
experiment. We are interested in the positions of the points HF and HT

and the orientations of the three reference frames (Hair, Frog, and Tip).
Markers are shown three times larger for clarity.

The position and orientation of a rigid body can be determined by as few as three
markers arranged in an asymmetric triangle. To have reliable orientations, the base
and height should be as large as possible. While the bow stick offers plenty of length
for a large base, it does not have much vertical height. An obvious solution is to place
markers underneath the tip T5 and the frog F5. We do this, but it is not ideal because
those markers are often occluded by the player’s hand or by the bow itself. To make
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sure that a planar set of markers is always visible, we attach small styrofoam antennas
to the bow using an easily removable sticky putty (Pat-a-Fix). Special care should be
taken in orienting the antennas to avoid the base of the frog antenna from touching
strings and to avoid the top of the tip antenna from touching the upper corner of the
cello’s c-bout when the musician tilts the bow toward the thumb.

Markers are attached to the bow using sticky putty at the locations shown in figure
4.17 for the duration of the experiment. The markers F1...F5 are used to estimate the
position of the end of the hair ribbon at HF . The markers T1...T5 are used to estimate
the position of the end of the hair ribbon at HT . Note, although markers F5 and T5
protrude only slightly below the hair ribbon, they cannot be brought closer to HF and
HT because they may get caught on the adjacent strings while playing, and thus disturb
the player.

Most of the bending occurs in the middle of the stick. The tip rigid body markers do
maintain their rigid body relations. But the markers F1...F4 are a bit further from the
frog than the ideal. The bending of the stick causes these markers to move closer to the
line defined by F5 andHF . This means that the rigid body relation used to estimate the
position of HF relative to F1...F5 introduces some systematic error depending on the
amount of stick bending. This shouldn’t be a problem though because the empirical
model for the hair compliance (section 3.3.2) should automatically take this error into
account.

We originally tried to estimate the positions of HF and HT using a stylus as de-
scribed in Section 4.3.3, but had large systematic errors as explained in that section.
We then tried using markers placed with putty, but found unacceptable errors due to
the marker centroids not lying on the surface of the hair. Additionally, the inconsistent
thickness of the putty lead to a systematic error which varied linearly from frog to tip.
We finally used a procedure using many markers temporarily placed on the bow hair,
similar to the procedure used for estimating the endpoints of the string in Section 4.3.3.
It is quite easy to miss the centerline when placing a marker on the hair ribbon. Fitting
a line to these misplaced markers would give errors in the plane of the hair ribbon as
well as the unavoidable errors in the direction orthogonal to the ribbon. For this reason
we decided to fit the markers to a plane and then identify a line within the plane. This
should concentrate all the within-plane errors into the placement of the HF and HT

markers, which is minimized by placing them with care.
To define the position of the hair ribbon endpoints relative to the rigid body mark-

ers, we use double sided tape3 to temporarily add small markers at HF , HT and at
several staggered positions spanning the width and length of the hair ribbon on both
its top and bottom surfaces. We find the plane which best fits these markers by mini-
mizing the total squared distances between the markers and the plane. Then we find
the points in this hair ribbon plane which are closest to the markers that we placed at
HT and HF .4 Finally, we calculate the position of HF relative to the frog rigid body
markers, and the position of HT relative to the tip rigid body markers.

The axes of the hair are based on the position of the tip HT and frog HF and the
orientation of the stick as indicated by one of the frog markers F1. The axes are con-
structed using the previously described Gram-Schmidt orthonormalization procedure.

3It was not fun removing the tape from the bow hair. The temporary markers were attached using
double sided tape because it is thin and has a constant thickness.

4We tried to identify these endpoints using a stylus and we also tried using a marker attached with
putty, but the method described in the text gives the smallest systematic error. The error is reduced
because measurement errors are averaged out over the many markers attached to the hair ribbon.
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The ~xH axis points from frog to tip.

~xH =
~rHT
− ~rHF

‖~rHT
− ~rHF

‖

The ~zH axis points from hair to stick.

~zH =
~rF1 − ~rHF

− ((~rF1 − ~rHF
) · ~xH)~xH

‖~rF1 − ~rHF
− ((~rF1 − ~rHF

) · ~xH)~xH‖

The ~yH axis points from fingers to thumb.

~yH = ~zH × ~xH

4.4 Discussion of errors

In the previous three sections, we presented a number of techniques for estimating
the positions of landmarks from the measured positions of markers. The two methods
which seemed to minimize systematic errors were placing small markers directly on
the landmark (at least temporarily), or using temporary markers to define a plane (in
the case of the hair ribbon) or a cylinder (in the case of the string). After the experiment
was completed, we tried to estimate the endpoints of a cello string using both of these
methods. Temporary markers were placed along the string, including one at the nut
and one at the bridge. Then ten seconds of data were recorded while the cello sat mo-
tionless. The temporary markers were removed. We attempted to replace the markers
at the nut and bridge at their original positions. The other markers along the string
were placed without reference to their previous positions, and an other recording was
taken. The process was repeated for a total of five recordings.

Calculating the variability in the position of the fixed markers between recordings
gives a measurement precision between 0.2 mm and 0.3 mm. The same analysis on
the temporary markers at the nut and bridge gives a standard deviation of 0.9 mm,
an indication of human error in placing markers. We then apply the cylinder-fitting
algorithm to the temporary markers on the string to estimate the landmarks at the
nut and bridge. The variability of those estimates was 2.0 mm. One of the estimates
failed to fit a cylinder with a reasonable radius. After discarding that measurement, the
variability was reduced to 1.3 mm. I could not believe such a terrible result, after all, the
method seemed to give good results before. So I made a simulation of the procedure
(placing markers, cylinder-fitting, repeat for 1000 measurements) and found that the
errors followed a Maxwell-like distribution with a heavier tail. The most-probable error
was around 0.6 mm, only slightly better than our observed human error, but errors
around 1.3 mm were still quite probable. The error seems to come from slight errors in
the estimated orientation of the axis and over-estimation of the circle radius, leading to
significant errors in the estimated positions of the endpoints.

Given that the cylinder- and plane-fitting algorithms involve so much extra effort
and time while not even guaranteeing more than a slight improvement, I suggest that
we simply place temporary markers on top of the landmarks and develop a robust
procedure for correcting the placement error. I think the first step toward reducing the
placement error is to make an object which registers against the nut/bridge and the
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strings which acts as a physical stop. When placing the markers on the landmarks, you
will know they are in the correct place because they are touching the physical stop.





Chapter 5

Experiment

Before a musician will buy an instrument, they will borrow it for an extended pe-
riod of time (several days to several weeks) and play it in various venues with other
musicians. They will compare it with other instruments and ask the opinions of other
musicians. It may take more than a year to become fully aware of what can be done
with the instrument. But before they borrow the instrument, they first perform a short
evaluation of the instrument at the seller’s studio to determine whether the instrument
has any potential. It is this initial encounter with the instrument that we wish to study.
What do musicians do during the initial evaluation? What qualities must the instru-
ment have to pass to the next phase of the purchasing decision? How do the actions
of the musician affect her perception of the qualities of the instrument? This thesis
is an exploratory observation of initial evaluations. As such, we don’t expect to an-
swer these questions, but to generate a few hypotheses for further research. In any
case, this context defines some parameters of our experiment: we will need at least one
professional musician with experience evaluating instruments, at least two cellos, and
plausible contexts for performing on, evaluating, and comparing these instruments.

Suppose the musician were to describe a difference between the sounds of two in-
struments. We could examine the recordings of these sounds and study the differences
of sound attributes, but we would not be able to say whether the difference is because
the instruments are different or because the musician played the instruments differ-
ently. For this reason, not only do we need a microphone to record the sounds pro-
duced by the instrument, but also a system for measuring the control parameters used
to generate those sounds. Our system includes an optical motion capture system and a
bow force model based on the motion capture data.

We are particularly interested in the perception of playability because the litera-
ture has proposed a hypothesis about it. Namely the mobility of the bridge affects
the motion of the string, and the player perceives this effect as she tries to control the
string’s vibrations. If the player is more able to reliably and quickly initiate and sus-
tain a desired string motion (usually Helmholtz motion), then the instrument is more
playable. This hypothesis guides our interpretations of the results of simulations and
the design of future experiments. But the hypothesis itself has not yet been tested, and
questions remain about how to interpret the existing results outside of the experimen-
tal context which produced them. For example, the Schelleng diagram is defined in
terms of steady-state gestures, but we would like to use it to frame our discussions of
non-steady gestures. Also, the Guettler diagram –based on a small set of possible con-
trol parameter gestures– leads to predictions which contradict our impressions of real
playing. So in addition to recording the radiated sound and the applied control param-
eters, we will also need to measure the bridge mobility and record the string motions to
test the playability hypothesis. We use a common procedure for measuring the bridge
mobility using an accelerometer and an impact hammer. We use piezoelectric sensors
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embedded in the bridge underneath each string to measure the string motions (see
Section 4.2).

5.1 Prior observations

We developed our protocol based on our observations of how cellos are evaluated
and compared. Violoncelle En Seine was a competition in Paris, 2014 for cello makers
where we observed four professional cellists evaluating forty cellos. They were asked
to identify the four best cellos and rank them, ultimately choosing a favorite. Although
a questionnaire was provided to give structure to their evaluations, none of the cel-
lists respected it, finding it confusing, tedious, or unnecessary. They made only brief
comments in certain fields of the questionnaire or assigned only an overall pass/fail
judgement.

After evaluating about six cellos, all cellists began using initial evaluations of 1-2
minutes to reject cellos which were worse than at least four of the previously evaluated
cellos. Further rounds of rejections were performed until about eight cellos remained.
Then the musicians compared cellos, usually in pairs but sometimes taking up to four
at a time. During this phase, the cellos were played about 30 seconds to 2 minutes
each before switching to another cello, with the number of swaps depending on the
decisiveness of the cellist. Once the top four cellos were identified, rankings four and
three were quickly assigned, with ranking two and the favorite taking longer.1 One
cellist evaluated all the cellos in a hallway, another performed the first round of elim-
inations in practice rooms and finished the evaluations in a large classroom, the other
two cellists evaluated the cellos in a large classroom. Each cellist used his own bow.

We noticed that only one cellist used scales and sounds outside of a concrete musi-
cal context, and that all cellists primarily used a few excerpts from their solo repertoire
to form their opinions. Each excerpt was used to evaluate multiple aspects of the cello,
such as its response in quick passages, its expressiveness in slower passages, its power
in the lower register, its projection in the upper register, or its homogeneity across reg-
isters. Among the commonly used excerpts were various movements from the Bach
suites, the introduction to the Brahms’ Sonata No. 1, and the beginnings of several
concertos (Saint-Säens, Elgar, Dvořàk,. . . ).

5.2 The musicians

We report on the observations of a single cellist playing two of our cellos using
our bow. She has fifteen years of professional experience participating in soloist com-
petitions, chamber music groups, and orchestras. She regularly uses two cellos, corre-
sponding to the two cities in which she divides her time. She often tries other cellos out
of curiosity and is constantly keeping an eye out for another instrument for personal
use. Two other professional cellists, two amateur cellists and myself were observed
playing these two cellos during the development of the equipment and experimental
protocol. While quantitative measurements are not available for these players, I will
refer to their comments as appropriate.

1It is interesting to note that there was considerable overlap in the top four instruments of each cellist.
However, these shared instruments were ranked differently by each cellist.
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5.3 The two cellos

In the beginning, we thought it would be useful to cello makers if we could con-
nect any perceived differences directly to known changes in setup. For this reason, we
commissioned two identical cellos and a bow of corresponding quality. The construc-
tion of the instruments was completed about a year and half before the experiment at
a european workshop and were setup and adjusted by our luthier. Initially, the cellos
were perceived as being effectively identical; bridge mobility measurements were very
similar and amateur and professional players could not reliably distinguish between
them while playing. We then modified the bridges by embedding sensors under each
string as described in section 4.2. After several evaluations of the cellos by amateur
cellists, the luthier determined that one cello (Cello A) could be made more "souple"
[flexible] and the other (Cello B) more "rigide" [rigid] by replacing the sound-posts. A
small mass was also added to the underside of the "rigide" cello’s tailpiece near the fine
tuner of string IV. The cellos are consistently rated as good quality student cellos.

The goal of the sound-post adjustments was to make the instruments distinguish-
able. We wanted each cello to correspond to the playability preferences of different hy-
pothetical musicians. We didn’t want to introduce obvious playability problems though.
The musicians would be asked to evaluate each instrument for half an hour to an hour,
which is something they would not normally do for instruments that have problems.
The amateur and professional cellists were capable of distinguishing the two after their
evaluations.

5.4 The bow

The cellists at Violoncelle En Seine each used their own bow. They admitted that
they could assess cellos using another bow, just as they can perform on cellos which
are not their own when necessary. However, they did insist that they would prefer to
use their own bow and doubted whether their assessments of the cellos would be as
accurate using another. This motivated us to find ways of tracking the bowing param-
eters using only temporary modifications to bows, which could possibly be applied to
the musician’s bow if permitted. The modifications should not noticeably change the
playing characteristics of the bow or disturb the player’s use of the bow. We decided
to use optical motion tracking using markers placed on the bow (Section 4.3.4) to track
the bowing parameters (Section 3.2 and to estimate the bow force (Section 3.3).

Our luthier provided us with a bow of a quality commensurate with the quality
of the cellos. We attached markers to the bow using a sticky putty which does not
damage the bow. During early evaluations, a professional cellist and three amateurs
accepted the bow as the tool for doing the assessment and made no complaints about
not using their own bow. Moreover, even though the musicians were assured that their
bows would be safe, they were still reluctant to allow mounting the markers to their
own bows. For this reason we decided that we would impose our bow on the musician
during the experiment. We gave the bow to the musician the day before the experiment
with the agreement that she would practice at least an hour with the bow to become
familiar with it.
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5.5 Repertoire selection

The repertoire was chosen based on our observations at Violoncelle En Seine and
comments made by cellists who evaluated our cellos while we were developing the
hardware and experimental protocol. We restricted ourselves to music that is likely to
be familiar to the musician, would be easy enough to adequately prepare before the
experiment with little notice, and which would be useful for evaluating instrument.
We deemed a set of excerpts to be potentially useful if it represented notes on all four
strings, played at different dynamic levels, with different articulations, and different
tempos.
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FIGURE 5.1: Excerpt from Gabriel Fauré’s Opus 24, Élégie. The upper
lines indicate the fingers and bowing directions used by the musician
during the experiment. The lower lines indicate the string played and

the location of the note on the string.

Earlier studies on the playability of cellos focused on the perception of the wolf
note. So we decided to use an excerpt which includes notes in the region where wolf
notes are usually found on cellos (around F3 played on string III). This consideration
lead us to the beginning of Fauré’s Élégie (Figure 5.1) which includes notes in this
region. This is a slow piece which is suitable for evaluating the expressiveness of the
cello. It begins with a phrase played loudly with marked bow changes to evoke feelings
of anger and sadness at the loss of a loved one. The phrase is then repeated but this
time it is played quietly with less marked bow changes, demonstrating the repetition
of thoughts and the changing emotions associated with grieving. The cellist further
differentiates the repetitions by changing the string on which she plays the first few
notes of the phrase. This repeated phrase contains three notes in the region associated
with wolf notes: E[3, F3, and G3 played on string III. If the cello has a playability
problem due to the presence of a wolf note, this excerpt is likely to demonstrate it
when the cellist attempts to play softly during the second repetition. Unfortunately,
our cellos do not have a prominent wolf note, so we were not able to observe its effect
on the evaluations. Nevertheless, this excerpt is still useful for evaluating expressive
passages on the upper two strings.
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Johannes Brahms - Sonate
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FIGURE 5.2: Excerpt from Johannes Brahms’ Opus 38, Sonata No. 1 in E
minor. The upper line indicates the fingers and bowing directions used
by the musician during the experiment. The lower line indicates the

string played and the location of the note on the string.

After modifying the cellos, one of the amateur cellists commented that the "sou-
ple" cello was slightly more powerful in the lower register but had a different tone as
predicted by our luthier. Having identified this difference, we decided to include an
excerpt which highlights it. We chose the opening phrase of Brahms’ Sonata No.1 in E
minor (Figure 5.2) because it was used by nearly every cellist we observed evaluating
cellos. Played on the two lowest strings, it is especially useful for evaluating the power
and tone of the lower register. The beginning of the phrase is played strongly while the
end of the phrase ends in a decrescendo which allows the cellist to explore the range of
timbres available in the lower register.

While Fauré covers the mid-high register and Brahms covers the low register, we
still needed a piece which allows us to compare the two registers. The musicians
at Violoncelle En Seine favored the Bach suites for this purpose which narrows our
search. Since both Fauré and Brahms are both slower and more expressive pieces, we
felt that we should balance the evaluation by including a faster movement which in-
cludes many bow changes and string crossings to test the response of the instrument.
While many movements from the Bach suites feel fast and have many string crossings,
most of them tend to connect notes without changing the bow direction. The Prelude to
the Fourth Suite (Figure 5.3) however is exactly what we need. Additionally it features
jumps from string IV to string I which juxtaposes the two registers that had the most
differences between cellos according to the amateur musicians. We hoped that this jux-
taposition might augment the perceived differences between the two cellos, leading to
more easily understood comments during the experiment.
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FIGURE 5.3: Excerpt from Johann Sebastian Bach’s the Prelude to Cello
Suite No. 4 in E[ major, BWV 1010. The upper line indicates the bowing
directions used by the musician during the experiment. The lower line

indicates the string played and the location of the note on the string.

The Fauré and Brahms excerpts are familiar and easy enough to prepare in a short
time. The Bach excerpt is well known, but it is more difficult than the other excerpts.
The amateur cellists struggled with this excerpt, though the professional cellists did
not. We wanted the musician to feel at ease during the experiment. We also wanted
any noticed difficulties to be due to the limitations of the cello and not due to a lack of
preparation of the cellist. For these reasons, we decided to provide the excerpts to the
musicians before the experiment. The selected excerpts by Fauré, Brahms, and Bach as
provided to the musician are in Appendix E. The excerpts were given to the musician
the day before the experiment with the agreement that she would prepare them on her
own instrument (and with our bow). While the excerpts have some suggested finger-
ings and bowings, the musician was given the freedom to choose her own fingerings
and bowings.
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5.6 Framing the experiment

We did not want the musician thinking that she was the object of our study because
we did not want her to adopt unnatural behaviors. For example, (1) she could try to
describe what she thinks most other cellists would have perceived, (2) she might play
scales or other exercises that she believes should be done during a proper evaluation,
but which she normally wouldn’t do, or (3) she might act as if she were being judged
personally. To elicit a natural performance from the musician in our laboratory setting,
we needed to define an authentic task with a plausible context, explain the presence of
our equipment, and reassure the musician that she was not the object of study.

We framed the experiment as an authentic evaluation task which explains the pres-
ence of the bridge sensors. The text given to the musician can be found in Appendix E.
The musician was told that a composer at a music school had asked us to equip a pair
of cellos with sensors that allow his students to interact with a computer during their
final year exam. Before we can deliver the cellos, we need a few professional players
to evaluate the cellos and record a few excerpts so that we can decide whether any ad-
justments are needed. The musician is asked to evaluate the two cellos, discussing any
merits or faults that they may have, and to record a few excerpts.

The scenario doesn’t explain the presence of the motion capture setup or why the
evaluation had to be done in our studio. To explain this, we simply acknowledged that
we are researchers, and that we are taking advantage of the opportunity to study how
the instrument behaves in real playing situations. The motion capture system allows us
to record real bow movements that could potentially be used as inputs in simulations of
different cellos. We further explain that analyzing the data is difficult and that we rely
on her expert comments to help us interpret the data. The effect is to present ourselves
as incapable of judging the musician, thus assuring her that we are using her to study
data; not using data to judge her.

5.7 Eliciting comments

From our observations at Violoncelle En Seine, we identified three distinct tasks that
musicians do during their first encounter with cellos: perform on each cello, evaluate
each cello, and compare pairs of cellos. We designed our experiment to include these
three tasks.

The musician begins with at least ten minutes of free evaluation. She is free to tell
us what she perceives during the free evaluation, but we pose no questions and we
make it clear that we do not expect her to tell us anything. We do this because we don’t
want to influence how she evaluates the cellos with our comments/questions. We also
don’t want to distract her from the task by asking her to stop and find a way to express
her perceptions using words. By being a non-participant observer, we hope to allow
the musician to evaluate the cello as she would do naturally.

After ten minutes of free evaluation, if the musician is not ready to perform for the
recordings, we encourage her to prepare the excerpts. Once the musician is ready to
record her performance, we remind her of the goal of the task: to produce a recording
which she is comfortable sharing with others and which gives an example of what is
possible to do with the instrument. We permit as many recordings as she wishes and
will only send the recording that she is comfortable sending. Specifically we are not
asking her to perform her best (because we are not judging her), to make a recording
she is happy with (because it may not be possible), or indicating any expectation of how
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the music should be interpreted (because musicians are not told how to play the music
used to evaluate an instrument). Thus, she is free to interpret the music according to
her tastes and to the particularities of the cello without worrying that she will be judged
by her performance.

After each recording of each excerpt we ask the musician two questions (Table 5.1).
We ask whether the musician is satisfied, meaning that she is comfortable sending the
recording to the school. If the musician is not satisfied, then we ask what she would
like to change. The indicated changes help us to identify meaningful differences in the
control parameters and instrument response between recordings. These differences tell
us that properties should be less like what is shown in the first recording and more like
what is shown in the final recording. If the musician is satisfied with the recording, then
we ask what properties of the instrument are highlighted by the excerpt. This question
gives the musician an opportunity to discuss observations (like positive impressions)
which were not elicited by the previous question.

• Are you satisfied with this recording?

• If not, what would you like to change?

• If so, what properties (merits or faults) of the instrument are demonstrated by
this extract?

TABLE 5.1: Questions asked after each recording of each excerpt.

Once the musician has finished recording all the excerpts, we then ask the musician
to tell us about the evaluation. We did not want to ask these questions before the
recordings because the musician may not have finished forming her impressions. As
the musician performs the excerpts and works out the changes in control parameters
necessary to get a recording she is satisfied with, her impressions of the instrument
may change. If we had asked her to give us her impression before the recordings and
she had declared that the instrument has some particular property, she may be resistant
to allowing herself to change her impression and she may change the way she plays to
reinforce her statements.

While we are interested in the concept of playability, musicians do not usually use
that term specifically. Furthermore, playability may not be the most relevant feature for
the musician. We use open-ended questions which encourage different kinds of state-
ments, but we do not try to direct the musician into talking about any particular aspect
of the cello or suggest any vocabulary that she hasn’t already used. While specifically
asking about certain properties heightens the musician’s awareness of those properties
and may enable her to distinguish small differences, it may also lead to imagining non-
existent differences or overemphasizing the unimportant properties. We use the first
two questions in Table 5.2 to get descriptions of the instrument’s properties and the
musician’s value judgements applied to those properties. The third question encour-
ages positive statements and comparisons with other cellos. The final question allows
the musician to talk about the negative aspects of the cello in a constructive way. This
question was particularly delicate: we didn’t want the musician to feel she had just
played an instrument with problems, leaving her with a negative impression of her
experience. We don’t ask what is wrong with the instrument. Instead, we ask in what
ways she would like the instrument to be changed. Since the musician believes that we
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will try to make these changes, hopefully she will leave the experience feeling helpful,
which we reinforce by telling her so and thanking her.

• Please describe this cello. (descriptions)

• What do you think about this cello? (value judgements)

• What did you appreciate particularly? (Encourage positive statements)

• If the luthier could change the instrument, what outcome would you ask him to
achieve? (Talk about negative features in a constructive way.)

TABLE 5.2: Questions asked after finishing evaluating and performing
on each instrument.

Once the musician has finished evaluating both cellos, we then ask her to compare
the two cellos. Formally speaking, the comparison is outside of the frame of the ex-
periment (evaluating the instruments individually), but it falls naturally in our request
for comments which helps us interpret data as explained earlier. Additionally, musi-
cians usually compare cellos during their evaluations and the musician is likely to have
already made comparative comments when describing the second cello during this ex-
periment, so asking for a comparison just formalizes what the musician would have
done naturally. The questions posed in Table 5.3 are designed to identify perceptual
differences, suggest moments in our recordings to look at more closely, suggest partic-
ular features in our control parameter to pay attention to at those moments, and get
feedback which we can use to modify the experiment.

• What differences did you notice?

• Which of these differences were demonstrated in the extracts?

• How did these differences affect your way of playing the extracts?

• Could you propose another excerpt which would demonstrate the differences
between these instruments?

TABLE 5.3: Questions asked after comparing the two cellos.

5.8 Discussion

The approximate duration of the experiment was three hours, slightly longer than
expected due to some technical difficulties. The musician seemed to be content with
her participation in the experiment, and did not express feeling tired, though I would
not ask for a longer duration. The musician understood that we were recording and
would later analyze her gestures, using her comments to help interpret the data. She
understood that we were trying to understand the relationships between the control
parameters applied to the instrument and the behavior of the instrument. The musician
was not aware that our study focused on issues of playability during the experiment
(by design), and I did not tell her afterwards, though I do not object to doing so.
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There is an ethical concern associated with framing the experiment as we did. The
frame is fabricated, there is no third party composer. Framing the experiment in this
way was necessary to ensure a natural performance. The musician’s contentment with
the experiment seemed to be based on knowing that her comments would be helpful,
not only to us as we tried to understand the data we collected, but also to the imagined
composer in the context of the frame. I was concerned that the musician’s primary
motivation was tied to the frame of the experiment, so I did not inform her that the
composer didn’t exist. In future experiments we should reconsider how we we can
make our research the primary motivation of the musician without compromising the
naturalness of the performance.
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Data processing and exploration

In Section 6.1, we describe the raw dataset and review the processing necessary to
extract the playing parameters. In Section 6.2 we discuss how the data was segmented
by string, bowing direction, and pitch using the available score. Section 6.3 demon-
strate typical values of the bowing parameters in a real playing situation and looks at
the distribution of single-note averages across cellos and strings.

6.1 Data pre-processing

Here we review the data processing pipeline to give us, in one place, a list of all the
measurements, explaining how each contributes to the complete set of data, and thus
justifying why each measurement was necessary.

The recorded data includes an audio recording from the microphone, 8 audio-like
recordings from the bridge sensors, and position data for several labeled markers. The
motion capture data was recorded at a frame rate of 120 frames per second and the mi-
crophones and piezos were sampled at a sampling rate of 30720 samples per second1.
The data is synchronized and partitioned into frames of data. Each frame contains
one measurement of motion capture data and 256 audio samples from each piezo and
the microphone. To interpret this data, we also have measurements for defining rigid
bodies, calibrating the bridge sensors, and calibrating the bow force model, as well as
measurements of the bridge admittance and string properties.

6.1.1 Fundamental frequencies.

The first step in the pre-processing pipeline is to estimate the fundamental fre-
quency of the note played in each frame of data using an algorithm (Monti and Sandler,
2002). In particular we estimate the fundamental frequency of the plucked open strings
after tuning the instrument and of the bowed strings during the performance. We use
a window size of 256 samples so the algorithm returns one pitch per frame of data. At
this stage of processing, we have not yet identified which string is played, so we run the
fundamental frequency estimation algorithm on all piezo signals and the microphone
signal. We then convert the fundamental frequencies to pitches (i.e. 440Hz → A4)
which will be useful for segmenting and labeling the data later.

1For reasons unknown, The MotionMonitor sampled at 30729 samples per second, so we had to slightly
down-sample to 30720 samples per second to get the desired 28 samples per frame for passing to the pitch-
estimation algorithm.

91
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6.1.2 Open string tension

Using the string properties (KL and µ0) measured in Section 3.1.1, the distance be-
tween the nut and bridge on our cello Lopen (686 mm), and the estimated frequencies
fopen of the plucked open strings, we use Equations 3.5, 3.6, and 3.7 to solve for the
unstretched length L0, the open string mass density µopen and most importantly, the
tension Topen which is necessary for incorporating the string compliance into the bow
force model.

6.1.3 Stopped string length, stopping point, and stopped string tension.

Using the open string properties (length, tension, frequency) and the geometry of
the fingerboard (i.e. the height of the open string at various positions along the finger-
board), we can use the frequency of the stopped string to estimate the length Lstopped
and tension Tstopped of the stopped string (again, using Equations 3.5, 3.6, and 3.7) as
well as the stopping point coordinates (Lγ , dγ) of Figure 3.2. The stopped string length
is necessary for calculating the bridge-to-bow distance as a fraction of the effective
string length (i.e. the horizontal axis of the Schelleng diagram). The stopped string
length and tension are both necessary for incorporating the string compliance into the
bow force model. The stopping point coordinates give us corrections to our estimated
string axis using Equation 3.8 to prevent a systematic over-estimation of the bow force.

6.1.4 Rigid body models.

The next step in the data pipeline is to define the rigid body models for the force
transducer, bow, and each cello. These models are defined from static measurements
of the temporary and permanent markers on each object, made before the experiment.
Defining the landmarks on the force transducer and bow are described in Sections 4.3.2
and 4.3.4 respectively. To define the rigid body model of the cello we made four mea-
surements: one for each string as we moved a set of temporary markers from one string
to another. We then combined the four measurements by finding optimal transforma-
tions as described in Section 4.3.1 to carry three of the datasets onto the fourth. We then
estimated the endpoints of each string as described in Section 4.3.3.

6.1.5 Landmark estimation.

For each frame of motion capture data, we find optimal transformations to carry
the rigid body models onto the measured positions of markers within the recording
studio. In particular, the transformation maps the positions of the landmarks within
the rigid body onto their estimated positions within the recording studio. We thus
have the positions within the recording studio of the endpoints of the bow hair and
the endpoints of the string (during performance) or force transducer (during bow force
calibrations) as well as all markers.

6.1.6 Orientation of reference frames.

Using the positions of the markers and landmarks, we can now calculate the ori-
entation of the reference frames for the force transducer, open strings, and hair ribbon
as described in Sections 4.3.2, 4.3.3, and 4.3.4 respectively. After calculating the open
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string reference frame, we can apply the stopping point correction to estimate the stop-
ping point (see Equation 3.8 and Figure 3.2). The stopped string reference frame is then
calculated as we did for the open string but using the stopping point instead of the nut.

6.1.7 Kinematic control parameters.

Once we have the positions and reference frames of the hair ribbon and force trans-
ducer during bow calibration, we can calculate the inclination angle, frog-to-string dis-
tance, and hair depth (Equations 3.10 and 3.11). The equation for total depth when
applied to the rigid force transducer gives the hair depth since the string depth is zero.

Using the positions and reference frames of the hair ribbon and the stopped strings
during performance, we can calculate the bowing angles (inclination, skew, and tilt),
the frog-to-string distance, the bridge-to-hair distance, and the total depth (see Equa-
tions 3.10 and 3.11 again). Once the frog-to-string distance and skew angle are calcu-
lated for each frame, we can calculate the bow speed (Equation 3.12), which we im-
plement using a three-point Lagrange interpolation of the previous, current, and next
frame of data. We revert to forward difference, central difference, or backward differ-
ence estimations whenever the previous, current, or next data point is missing data
respectively.

6.1.8 Bow force model.

We now turn our attention to estimating the bow force which is done in three steps.
First, we build the hair compliance based force model (Section 3.3.2) by processing

the calibration data. The calibration data consists of the force measurements and mo-
tion capture data taken during the calibration procedure. We have already processed
the motion capture data to get the kinematic control parameters (frog-to-string dis-
tance a, hair depth ch, inclination angle θI ) of the bow. The force transducer measures
the force along the sensor axis, but the deformation of the bow is due to the entire
force. We correct for this difference by dividing the measured force by the cosine of
the inclination angle (Equation 3.18). With the pre-processing done, we then fit the
hair compliance based force model (Equation 3.19) using a least total squared residuals
algorithm.

Second, using the string properties (KL from Table 3.1, tension Tstopped, length
Lstopped), and bridge-to-bow distance b (Equation 3.11), we create the bow force model
based on string compliance (Equation 3.16).

Finally, the system of equations relating the bow force, hair depth, string depth, and
total depth (Equation 3.20) is solved for each frame of performance data to give us the
estimated bow force.

6.1.9 Piezo calibration.

Before we look at the control parameters in the next chapter, there are still two more
pre-processing calculations we can do to help us interpret the results. The first is to cal-
ibrate the piezo signals by calculating the calibration coefficients for the piezos (Section
4.2.2.2) using the data from wire-break measurements (Section 4.2.2.1), and then ap-
plying the calibration coefficients to the piezo signals to transform the signals from
uncalibrated treble/bass pairs to calibrated horizontal/vertical pairs. We calibrate the
piezos for three reasons:

• to compare signals between strings on the same cello or different cellos
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• to compare the amplitude of the string vibrations to the amplitude of the radiated
sound

• to observe whether the polarization of the vibrations shows anything interesting

6.1.10 Schelleng’s Limits.

Finally, we calculate Schelleng’s predicted maximum and minimum bow force lim-
its for each frame of performance data using Equations 2.1 and 2.2. In addition to the
string properties, bow speed, and bow position, these calculations require an estimate
of the coefficients of friction and measurements of the bridge mobility.

We use the values µs = 0.643 and µd = 0.346 from (Mores, 2016). We do not assume
that these numbers are correct for our combination of bow hair, cello strings, rosin, and
temperature, but we do assume that their difference µs−µd = 0.297 is within a factor of
about 3 of the value which best represents our setup. We note that Demoucron (2015)
uses µs − µd = 0.5 in his simulations, similar to the value we have selected.

We use an impact hammer and an accelerometer as in (Zhang, 2015) to measure
the four bridge mobility transfer functions (horizontal / vertical force with horizontal
/ vertical velocity) as functions of frequency f . We then calculate the mobility Y of
the bridge as a function of frequency f for forces and velocities tangent to the bow-
ing direction given by the bow inclination angle θI , corresponding to the transverse
polarization considered by Schelleng.

Y (θI , f) = cos(θI) cos(θI)YHH(f)

+ cos(θI) sin(θI)(YHV (f) + YV H(f))

+ sin(θI) sin(θI)YV V (f)

(6.1)

6.2 Data segmentation

During the pre-processing phase, before we have identified the string being played,
we blindly process the data on each string as if it were played. This costs some extra
processing time and computer storage, but it greatly simplifies the calculations since no
logic for recognizing segmentation boundaries needs to be programmed. Once these
preliminary calculations are done, we can use them to find informed criteria for defin-
ing segmentation boundaries.

We would like to have a semi-automated way of segmenting the data by note,
string, and bow-direction using the available data. The dataset for a performance in-
cludes time, pitch, bow force, bow speed, frog-to-string distance, bridge-to-hair dis-
tance, inclination angle, skew angle, and tilt angle. We can also revisit the raw data,
such as the microphone and calibrated piezo signals, as well as intermediate calcula-
tions such as stopped string length. string depth, hair depth, and total depth. In this
section we will explore various strategies for using some of this data to segment a per-
formance.

6.2.1 Segmentation based on the inclination angle

To identify the string being played, Schoonderwaldt and Demoucron (2009) and
Maestre et al. (2007) used their versions of the inclination angle, so we will begin with
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that strategy. The largest difference between the values of the inclination angle calcu-
lated using each string is less than 0.7o, so for the purposes of string classification, it
doesn’t matter which string is used to calculate the inclination angle.

Each string can only be played within a certain range of inclination angles. The
ranges for adjacent strings overlap slightly since they may be played at the same time.
The exact placement of the boundaries depends on the geometry of the deformed
strings and bow. To calculate the boundaries, we have to take into account the stopping
point, the bridge-to-bow distance, the skew angle, and the bow force.

Figure 6.1 shows the inclination angle as a function of time for a recording of the
Bach excerpt. We can see that the player quickly passes from one string to the other
and settles at inclination angles far from the boundaries. If the music does not include
playing two strings simultaneously, then nominal inclination angles used for playing
each string may be determined from an excerpt, and an arbitrary boundary may be
drawn to separate them.

If a previous recording is not available, or if you want to have an idea of when
an adjacent string might be accidentally touched, then the segmentation boundaries
may be estimated based on geometry. In Figure 6.1, the segmentation boundaries are
calculated using open strings, a range of typical bridge-to-bow distances, a large range
of skew angles, and zero bow force. This is the best a priori approximation of the
classification boundaries that can be made without knowing the playing parameters.2
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FIGURE 6.1: Inclination angle versus time for a recording of the Bach
excerpt. The background colors indicate the string classification bound-

aries based on zero-force, open-string geometry.

2It is sometimes possible to play three strings at the same time. An example is when playing over
the fingerboard with a sufficiently large force. Thus the playing parameters can greatly change the string
classification boundaries.
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Bach - Suite IV, Prelude
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FIGURE 6.2: Figures 6.3 through 6.6 show data for the underlined notes.

6.2.2 Segmentation based on the piezo amplitudes

A second method of identifying the string played is to to look at the vibrations
of each string. Figure 6.3 shows a typical plot of the calibrated piezo signals with an
initial segmentation based on a set of arbitrary inclination angles. This particular plot
corresponds to the notes indicated in Figure 6.2. There are several interesting features
in this plot. Just before the first string crossing, the vertically polarized signals of String
III and String IV are excited. This is due to the player "hammering down" on the strings
to establish the string lengths in preparation for the upcoming string crossings. Second,
just after each string crossing, the previous note continues to ring. We see the amplitude
of the vibrations decay as the energy is radiated away. Third, we see the DC offset of the
vibrations vary when the bow force is applied to the string, and again when the bow
force is removed from the string. This is in part due to the varying bow force, and in
part due to the relaxation time of the piezos and the piezo circuit. Finally, near the end,
we see significant vibrations on String III and String IV. These are due to the movement
of the bridge underneath the strings driven by the vibrations of String II. Based on
these observations, the piezo signals by themselves can only give rough indications of
the moments of string crossings. These may be used for initial estimates which may be
refined using other control parameters.
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FIGURE 6.3: The calibrated piezo signals for each string during a portion
of the Bach excerpt. The blue signals are horizontal polarizations, the
yellow signals are vertical. The black line indicates the inclination angle.
The notes played are G3, B[2, E[2, light touches on strings III and II as
part of the chosen string crossing technique, E[4, B[3, G3, and, B[3. The
background colors indicate the string classification boundaries based on

zero-force, open-string geometry.
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6.2.3 Segmentation based on the bow force or total depth

Next we look at the bow force (or total depth) as a function of time (Figure 6.4).
At nearly every instant, the total depths calculated for multiple strings are positive.
This is because the deflection of the hair and the string allows the line connecting the
endpoints of the bow to pass underneath adjacent strings while the hair itself clears
them.

If a string were played, then not only would it have a positive total depth, but it
would also vibrate. By looking at the calibrated piezo signals of each string (Figure
6.3), we could try to filter out strings with small vibrations, but how exactly do we
define a small vibration? The two light touches on strings II and III are arguably small,
yet they are really played. The two sympathetic vibrations3 are the same size as the
light touches, but they are not played. And just after a string crossing, the initial string
has large vibrations, but the bow is no longer actively playing the string.

While vibration amplitudes might not help, the frequency of the vibrations are of
some use. If the frequency is too low to be played on a string, then we can conclude it
is the result of the bridge moving underneath it as a lower string is driven by the bow4

In this way we can sometimes eliminate higher strings from the list of played strings.
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FIGURE 6.4: The bow force versus time for a portion of the Bach excerpt.
The dotted lines show when the bow force indicates touching, but the
piezo signal does not indicate a pitch that can be played on the string.

3When one string is driven, it causes vibrations in the bridge and top plate which causes the bridge
to move underneath the other strings, driving their vibrations. The other strings all start to vibrate at
the frequency of the driven string, but the vibration amplitudes will typically remain negligibly small.
However, if one of the other strings shares a harmonic frequency with the driven string, then that string
will vibrate with a noticeably large amplitude. When this happens, the two strings are said to vibrate
sympathetically.

4While non-sympathetic vibrations typically have negligible amplitudes, they can usually be detected.
Furthermore, if the bridge has large amplitude movements (due to playing loudly or due to the mobility
of the bridge) then the measured signal can be quite large.
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Note that the pitch tracking algorithm does not require a large amplitude to find
the frequency. It is likely that lower strings will have small vibrations with a detectable
pitch when playing on higher strings. However, if we are certain that only one string is
being played, then we can simply take the string with the greatest force. This allows us
to estimate string crossings with nearly the same result as using the inclination angle
as shown in Figure 6.5.
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FIGURE 6.5: String selection and estimated string crossings based on the
inclination angle (black) and bow force (red).

6.2.4 Segmentation using the score, pitch, and control parameters

If we look at the pitch as a function of time (Figure 6.6), we may see coupling be-
tween the strings via the bridge as overlapping curves (G3 just after 11.5 seconds on
strings II, III, and IV), vibrations from left hand finger movements (E[2 at 10.1 seconds),
and ringing of recently played strings (B[2 at 10.4 seconds), though they are difficult to
identify without extra information from the control parameters. We saw these features
when looking at the piezo signal amplitudes. Additionally, we see confirmation of an
accidental touch of String II due to pressing String III too hard at 10.4 seconds and vice
versa at 11.6 seconds. These touches are suggested by the estimated bow forces, but
are not expected based on the inclination angle, and are not evident from just looking
at the piezo signal amplitudes.
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FIGURE 6.6: A segmentation of the bow performance.

Accurately estimating which string is touched by the bow requires knowledge of
the control parameters and how they affect the geometry of the deformed string and
bow hair. This is important if the dataset has double stops or when we are interested in
the occurrences of accidental touches. However, in our dataset there are no intentional
double stops, and for the purposes of segmentation, we are not interested in accidental
touches. Under these conditions, using either the inclination angle with zero-force,
open-string geometry or the string with the greatest force leads to acceptable estimates
of string crossings. Since we have the score available, we use the following algorithm
for segmenting the dataset.

Whenever multiple strings are vibrating with a defined pitch and have a non-zero
reported force, we select only the string with the greatest force. We use the score to
identify the expected string and note. Then we look for the first moment when the
expected string has the greatest force and is playing the note. This moment marks a
segmentation boundary. Once the beginning of one note is found, we start looking for
the beginning of the next note until the entire performance is segmented. The result is
shown in Figure 6.6.

6.3 Statistics of control parameters

Now that the control parameters are calculated and the dataset is segmented into
individual notes, we can begin asking questions about extreme values, typical val-
ues, and variability. We will address these questions using the data available from
all recordings of Fauré, Brahms, and Bach on both instruments. There are 1297 notes
taken from one repetition of Fauré, four repetitions of Brahms, and four repetitions of
Bach on Cello A ("souple"), and two repetitions of Fauré, two repetitions of Brahms
and three repetitions of Bach on the Cello B ("rigide").

6.3.1 Extreme values

It is important to be aware of extreme values when designing methods of measuring
the control parameters. Extreme values occur for only an instant and are typically far in
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the tails of the distributions, but they may be meaningful when describing a particular
gesture. It is important that the chosen method of measuring the control parameters
is capable of measuring these extreme values. The extreme values observed in our
dataset are presented in Table 6.1. In the table, the negative bow speed is an up-bow;
the positive, down-bow. The extreme values of the frog-to-string distance indicate that
the player used neither the 3 cm of the hair at the frog nor at the tip. It is tempting
to suggest that measurement devices may be placed in these regions, but even a small
marker on the ferrule of the frog disturbs the player as it clips adjacent strings. The
sensor we used to calibrate the bow force model has a maximum limit of 10 N. It is
possible to apply much more than 10 N of bow force, but this cannot be sustained.
We were not certain about our accuracy when extrapolating beyond 10 N, so it is a
welcome observation that the maximum bow force was only 9.6 N.

min max
force 0 N 9.6 N
speed -1575 mm/s 1258 mm/s
bridge-to-bow distance 18.8 mm 102 mm
frog-to-string distance 30 mm 574 mm
inclination angle −40o 40o

skew angle −12o 15o

tilt angle −2o 69o

TABLE 6.1: Extreme values of control parameters.

6.3.2 Typical values

Simulation studies usually include gestures which go beyond the range of control
parameters that are actually used by musicians. This is computationally expensive
and the extra information can be distracting. To help identify the regions of control
parameters which are the most relevant, we describe probable typical values which
complements the possible extreme values already discussed.

When we are not interested in extreme values of control parameters, we are usually
interested in typical values or averages. Sometimes we are interested in other statistics
which describe the range of values a control parameter covers during a note, such as
the standard deviation or maximum and minimum. By calculating the statistic of a
control parameter for each note and then averaging the statistic over all notes, we get
a typical value for the statistic. In addition to the typical value of the statistic, we often
want to know how much that typical value can change from one note to another. This
is calculated as the standard deviation of the statistic over all notes.

Table 6.2 gives the range of typical values for the mean, standard deviation, mini-
mum, and maximum of each control parameter. Since the Bach excerpt is longer, has
more notes, and was repeated more times, the values given here are skewed toward
the averages of the Bach excerpt. The first line of the table may be read as follows: The
mean force during a note is typically around 1.0 to 2.4 N. The force typically varies 0.2
to 0.6 N about the mean during a note. The minimum and maximum forces during a
note are typically around 0.4 to 1.4 N and 1.6 to 3.4 N respectively.
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mean std min max
force (N) 1.7± 0.7 0.4± 0.2 0.9± 0.5 2.5± 0.9
speed (mm/s ) 339± 111 141± 74 61± 62 581± 221
bridge-to-bow distance (mm) 70± 8.8 2.2± 2.3 66± 10 74± 8.4
frog-to-string distance (mm) 239± 65 44± 25 173± 70 310± 83
tilt angle (o) 34.8± 7.2 4.0± 1.8 27.8± 7.6 41.9± 6.0
skew angle (o) 0.8± 2.9 1.6± 1.1 −1.8± 3.6 3.4± 2.7
String I inclination angle (o) 29.7± 3.8 3.6± 1.7 20.5± 6.2 33.1± 3.6
String II inclination angle (o) 11.6± 2.1 2.6± 1.7 5.5± 6.2 14.8± 3.2
String III inclination angle (o) −5.7± 1.9 2.6± 2.1 −10.9± 6.6 −1.0± 5.0
String IV inclination angle (o) −27.1± 2.6 3.7± 3.3 −30.7± 2.9 −15.5± 13.2

TABLE 6.2: Typical values of control parameter statistics.

While Table 6.2 is supposed to indicate typical values, it must be pointed out that
there are different schools of thought on the role of tilt and how much the bow should
be tilted toward the fingerboard. Some of the supposed roles of tilt include: 1) Tilt may
be coordinated with bow force, especially when playing with low force. 2) Tilt may be
used to decouple the bouncing of the hair from the bouncing of the stick. 3) Tilt may
be used to change the color of the sound. 4) Tilt may be used to relieve strain on the
wrist. Personally, I have had teachers advocating three tilt strategies: 1) Use a very
tilted bow to avoid wrist flexion and to approach an ideal point excitation. 2) Use a flat
bow so that the flexed wrist allows supination and pronation to reduce ulnar and radial
deviation. 3) Vary the tilt according to the desired color while continuously monitoring
and occasionally releasing the tension in the wrist, generally resulting in more tilt on
shorter and higher strings; less tilt on longer and lower strings. The tilt angles in Table
6.2 correspond to a player who uses a very tilted bow as part of her playing strategy.

Table 6.2 gives statistics for the inclination angle on each string separately. The
mean values indicate the nominal angles for each string on our cellos and describe the
perceived geometry of the strings. The average minimum and maximum values are
limited by the adjacent strings and the edges of the top plate, but do not necessarily
indicate the string-crossing boundaries. The average standard deviations indicate the
amount of freedom taken by the player. The inner strings have a smaller standard
deviation of the mean (2.1o and 1.9o compared to 3.8o and 2.6o), indicating that the
same angle was returned to more consistently and the nominal angle is more precisely
defined. The inner strings have a smaller average standard deviation about the mean
(2.6o and 2.6o compared to 3.6o and 3.7o), indicating that the player held the bow angle
more constant during each note. The player may feel slightly more constrained by the
adjacent strings. I suspect that making the bouts wider or the bridge shorter will cause
the standard deviations on the outer strings to be smaller while making the bridge
more curved will make the standard deviations on the inner strings to be higher. Such
changes might lead to a more homogeneous playing experience, though I refrain from
any predictions about whether it is preferable.





Chapter 7

General results

In Chapter 6 we presented some initial exploration of the statistics of each control
parameter over the entire set of 1297 recorded notes. In this chapter we look closer at
the coordination of the control parameters.

7.1 On the perception of Schelleng’s bow force limits

In section 2.4, we presented the Schelleng diagram and various features we would
like to study: the upper and lower bow force limits, their intersection point, and the
range of forces between them (see Figure 7.1). The first set of objectives was to deter-
mine whether, how often, and under what circumstances the musician plays in each
region of the Schelleng diagram. Our original idea was to plot the trajectory of con-
trol parameters on the Schelleng diagram, but we soon realized that there is no single
Schelleng diagram; every bow speed and every frequency has its own diagram. To
visualize all the data on the same figure we changed the references of the logarithmic
axes.

7.1.1 The normalized Schelleng diagram

FIGURE 7.1: The standard representation of Schelleng’s diagram shows
the upper and lower bow force limits on logarithmic force and position
axes. The reference for the force is some arbitrary constant force. The
reference for the bridge-to-bow distance is the length of the string. The
diagram is valid only for a certain bow speed and note frequency as

changing either will change the plotted limits.

103
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Force normalization.

In the usual Schelleng diagram, the force axis uses an arbitrary constant as its ref-
erence. The line representing the upper bow force limit has slope −1 and is translated
upward as the bow speed increases. In the normalized Schelleng diagram (Figure 7.2),
we normalize the force to the upper bow force limit, which depends on the bridge-to-
bow distance. In this way the diagram is transformed so that the upper bow force limit
will always be represented by a horizontal line at log(F/Fmax) = 0. This gives us a
way of comparing bow force and bridge-to-bow distance data measured at different
bow speeds.

Bridge-to-bow distance normalization.

In the usual Schelleng diagram, the bridge-to-bow distance axis is normalized to
the string length. This allows us to compare strings of different lengths on the same
diagram with the naïve assumption that it allows us to compare notes of different
pitches (since pitch is usually adjusted by changing the string length). The problem
is that the lower bow force limit depends on the frequency-dependent bridge mobil-
ity. Even though we are able to compare notes played on strings of different lengths,
those strings would likely have different lower bow force limits due to different string
admittances or bridge mobilities. In the normalized Schelleng diagram, we normalize
the bridge-to-bow distance to the distance between the bridge and the point where the
upper and lower bow force limits intersect. Thus we are allowing the dynamics of the
system –rather than the geometry– to determine the relevant length scales. With this
normalization, the limit intersection point is always found at log(β/β0) = 0, indepen-
dent of the string length, tension, mass, and frequency.

FIGURE 7.2: This normalized representation of Schelleng’s diagram
shows force and position on logarithmic axes, but with different refer-
ences. The force is referenced to the upper bow force limit as a function
of position. The position along the string is referenced to the point of
intersection of the upper and lower limits. The diagram does not change
with bow speed, frequency, or any other control parameter, string prop-

erty, or bridge mobility.
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Interpreting the diagram.

Interpreting the relationship between two nearby points on the normalized Schel-
leng diagram must be done with care due to the ambiguity introduced by the non-
constant references. Moving up on the diagram could be due to a larger applied bow
force or a smaller upper bow force limit. A lower bow speed, a larger distance from the
bridge, or playing on a string with a smaller admittance all cause upward movement
on the normalized Schelleng diagram. Similarly playing closer to the bridge, or any-
thing which increases minimum bow force will show itself as movement toward the
left on the normalized Schelleng diagram. If we look at increasing the bow speed, we
find that it raises both the upper and lower limits, which is visualized as movement
downward and to the left on the normalized Schelleng diagram, clearly increasing the
margin from the upper limit and approaching the lower limit.

7.1.2 Results.

For each frame of motion capture data in the database, we calculated the upper and
lower bow force limits given the bridge-to-bow distance, bow speed, bridge mobility,
vibration frequency and string properties. This allows us to then calculate log(F/Fmax)
and log(β/β0) at each moment and plot the data on the normalized Schelleng diagram
(Figure 7.3). That is, each point on the diagram represents 1/120th of a second worth
of data. It is immediately obvious that the player nearly always plays with healthy
margins from both the upper and lower limits as expected. She never plays near the
intersection point and the regions near the upper and lower limits have very few points.
In fact, the points in the figure form a semi-transparent point cloud rather than a proper
density plot, so the points near the upper and lower limits are over-represented by
several orders of magnitude compared to the mass of points in the center. I chose this
visualization to emphasize that the musician does play in these regions, if only very
rarely.

FIGURE 7.3: Data from 1297 notes is plotted on the normalized Schelleng
diagram. Each point represents 1/120th of a second. The points are
semi-transparent which helps us see overlapping points. The density of
points is overrepresented by several orders of magnitude near the limits

due to saturation of the semi-transparency in the central region.
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FIGURE 7.4: A typical plot of bow force over time. The plots are high-
lighted based on the string numbers indicated in the score. Top: the
score of an excerpt from Bach, Suite IV, Prelude. Middle: Bow force on
a linear scale as a function of time. Bottom: Bow force on a log scale
using the upper bow force limit as a reference as a function of time. In
each plot the upper curve (black) is the upper bow force limit, the mid-
dle curve (red) is the applied bow force, and the lower curve (brown) is

the lower bow force limit.

Having answered whether and how often the player plays near the bow force lim-
its, we now examine the circumstances under which she does so. If we plot the applied
force and the upper and lower limits on log axes with the upper limit as the reference,
we get plots like the one shown at the bottom of Figure 7.4. This diagram clearly indi-
cates that the player may go under the lower limit at the very end of a note, and that
she may go over the upper limit during bow changes.

Since the normalization of the force axis creates an ambiguity between changing
forces and changing limits, we turn to the plot in the middle of Figure 7.4 in which
we plot the force on a linear scale. We can see from this figure that the player does
not go over the upper limit by increasing the applied bow force, rather it is the upper
limit which falls below the applied force. The reason the upper limit falls is because
the bow changes direction at these moments. Whenever the bow speed approaches
zero, the upper bow force limit approaches zero, so any applied force at this moment
will correspond to a point in the raucous region of the Helmholtz diagram. The figure
also confirms that the player went underneath the lower limit at the end of the note by
lowering the applied force below the limit as she lifted the bow off the string.

7.1.3 Interpretation.

Finding the majority of points well within the Helmholtz region was as expected.
However, we did expect to see at least some notes played near the limit intersection
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point, but the database contains no data points in this region at all. That may be because
the recorded data corresponded to musical extracts which apparently did not indicate
playing so close to the bridge. But a quick calculation places the intersection point
within a few millimeters of the bridge, and a review of the video during the free evalu-
ation phase shows that the player never played very close to the bridge. In fact, during
my observations at Violoncelle En Seine and of the other amateur and professional cel-
lists before the experiment, I only observed two cellists playing near the bridge during
an evaluation. One had been specifically asked to explore the region near the bridge.
The other had generally behaved differently from the other cellists by playing scales
and long notes outside of a musical context.1 It seems that while the region very near
the bridge may be worth exploring to a few cellists for their own reasons, the region
near the intersection of the upper and lower bow force limits is probably not relevant
to classical cellists outside of specialized techniques.

We had imagined that the player would push the limits of the cello, exploring the
parameter space near each border and occasionally going outside of the Helmholtz
region. That would have been strong evidence to support the hypothesis that the mu-
sician perceives these limits. Instead, we see that the areas near the borders are nearly
empty. The few data points that we did see in these regions do not correspond to in-
tentionally trying to play near the limits, but to unavoidable technicalities; Lifting the
bow off the string cannot be done without reducing the applied force to zero; Changing
the bow direction cannot be done without bringing the bow speed to zero. At typical
bow speeds and bridge-to-bow distances, the upper limit has values on the order of
tens of Newtons, whereas the maximum force that can be applied by the bow is only
about 10 Newtons2 due to the deformation of the hair and stick. Likewise, at typical
bow speeds and bridge-to-bow distances, with the exception of wolf notes, the lower
bow force limit is 0.2 Newtons or usually less. To apply such a little force to the string,
the player would have to support almost all of the weight of the bow.

7.2 On the interpretation of Guettler diagrams

In Section 2.5, we presented a Guettler diagram (Figure 2.15) showing the duration
of initial transients for strings initially at rest with the bow accelerating uniformly from
rest with a constant bow force, for various values of the acceleration and force. Its
speckled appearance implies that musicians should not be able to reliably achieve short
transient durations, which is contrary to our impressions of professional performances.
We made two hypotheses to explain this discrepancy. First, our impressions may not
be correct since we listen to music rather than trying to count disturbances in the string
vibration during initial attacks. Second, the experiment uses a gesture which might not
be representative of what the musician actually does.

Available data.

The gesture used to produce the Guettler diagram in Figure 2.15 models an attack
in which the bow is pressed against a resting string and then accelerated from rest.
There are not many such attacks in our data set because the strings are often vibrating

1I often wonder whether he was demonstrating what he thought we wanted to see or what he thought
musicians should do rather than what he would do if nobody were watching him.

2It is easy to apply forces of up to 15 or 20 Newtons near the frog, but these forces cannot be maintained
beyond the initial transient of a bow stroke.
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or the bow is moving. However the six repetitions of the Brahms excerpt provide 66
examples of bow changes without string crossings and the seven repetitions of Bach
provide another 413 examples. During these bow changes the sawtooth waveform of
the first note must change sign to become the sawtooth waveform of the second note,
making this gesture arguably more difficult than an initial attack on a string at rest.
Figure 7.5 shows the waveform of the string vibrations during a bow change.

FIGURE 7.5: A typical bridge force signal of a bow change. The upper
waveform shows the vibrations in the polarization with maximal ampli-
tude (shifted up by 3 Newtons). The lower waveform is the orthogonal
polarization (shifted down by 3 Newtons). The gray highlight shows the
73 millisecond window containing 7 periods of vibrations before a regu-
lar string motion is achieved. The synchronization of the motion capture

data with the piezo signals is demonstrated here.

Distribution of durations.

Guettler and Askenfelt (1997) found that transient durations shorter than 50 to 90
milliseconds are acceptable in a neutral context (scales). This corresponds to about 6-9
periods in the lower register of the cello. Figure 7.6 shows the distribution of transient
durations for 479 bow changes. The durations were determined by manually inspect-
ing each of the waveforms, identifying the first slip after the bow change and the last
slip before Helmholtz motion was achieved, and counting the number of periods be-
tween them (see for example, Figure, 7.5). We see that about 58% of the bow changes
have acceptable durations with about 15% being perfect and about a 15% having very
long transient durations (more than 16 periods). About 6% of the bow changes never
achieved Helmholtz motion. These figures, played on the cello, are consistent with the
distributions of violin transient durations described in (Guettler and Askenfelt, 1997).
When comparing the 6 repetitions of each bow change in Brahms and the 7 repetitions
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of each bow change in Bach, we find that every bow change had repetitions with ac-
ceptably short transients, and most had repetitions with perfect bow changes as well
as very long transients.
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FIGURE 7.6: Histogram of bow change transient durations. An accept-
able attack duration is shorter than about 7 periods.

FIGURE 7.7: The speed (blue) and force (red) recordings for 66 bow
changes without string crossings from 6 recordings of the Brahms ex-
cerpt performed on two cellos by one musician. Changes from down-
bow to up-bow and vice versa are both represented. The curves were
scaled so that each maximum reached 100%. The average was then cal-

culated and rescaled so that its maximum reached 100%.
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Bow change strategy.

One objection to the studies which produced the Guettler diagrams is that the con-
trol parameters might not be what musicians actually use. Our data gives us an oppor-
tunity to observe actual gestures and possibly revisit those studies. While looking at
bow changes on one string, we noted a counterintuitive feature in the control parame-
ter signals. We can reasonably expect the bow speed to slow to a rest before accelerating
in the opposite direction during a bow change. However, we noticed that during the
tenth of a second before the bow speed changes sign, the cellist increases the bow speed
by a factor of 1.3 to 2.0, reaching a maximum about a twentieth of a second before the
bow speed changes sign (Figure 7.7). While variations in the details were observed, this
general strategy was present for each bow change during the recordings of the Brahms
excerpt.

How does it work?

This increase in bow speed causes the amplitude of the string vibrations to increase.
We need to reduce the amplitude of the down-bow waveform to zero before initiating
the up-bow waveform, so it seems like a bad idea to increase the amplitude of string
vibrations just before a bow change. Demoucron (2015) investigated the effects of dif-
ferent deceleration and acceleration rates using many different initial conditions (start-
ing at different moments within the stick-slip cycle). Demoucron explains that waves
from the first note remain in the string, but are not large enough to trigger slipping
on their own, but help initiate the regular slipping once the bow has reached a certain
minimum speed. To minimize the time during which these remaining waves could
trigger unwanted slips, the deceleration and acceleration should be sufficiently large.
However, the acceleration after the bow change should not be too large, as we would
rather convert an existing corner into the Helmholtz corner rather than introducing an
additional one.

Why this strategy?

By watching the video of the experiment, we can watch the players movements and
see how she uses the kinematic chain from her shoulder, through her elbow, wrist, and
fingers to manipulate the bow. What we see is that she leads the bow with her wrist,
dragging her hand, fingers, and bow behind it. During the bow change, the wrist
quickly straightens as the shoulder and elbow begin to lead the wrist in the opposite
direction. I suggest that this straightening of the wrist accounts for the increase in bow
speed in the instant before the bow changes direction.

This technique allows the wrist rather than the elbow to make the quick movement
necessary for a clean bow change. It requires the wrist to be relaxed so it can whip
forward during the bow change. It also reduces the tension in the elbow as well since
the elbow is not trying to execute this movement. Among all the strategies which
produce acceptable attacks, this one also helps cellists play longer without fatigue or
sports injuries (like carpal tunnel or tennis elbow). 3 Obviously, if it were not possible to
have acceptable attacks using this technique, other strategies would be taught instead.

3Other strategies for changing the bowing direction in different contexts are also taught. See for exam-
ple, (Guettler, 2010).
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Comparison between cellos

In this chapter we take another look at the statistics of the control parameters, their
coordination, and the resulting transient durations, focusing this time on the differ-
ences between cellos and strings. We then let the musician’s comments guide us to
look more closely at some interesting features of the dataset.

8.1 Signs of adaptation

We suspect that cellists might adapt their control parameters in response to per-
ceived differences between instruments, strings on an instrument, or even notes on a
string. Furthermore, we suspect that the musician may not always be aware of these
adaptations if they are the result of applying the same control method to different in-
struments. Since musicians may not be able to tell us whether and how adaptations
were made, we are interested in trying to identify adaptations without relying on their
comments. To this end, we designed the experimental tasks so that the datasets from
each cello may be aligned and compared. We shouldn’t expect that two repetitions
of an excerpt are exactly the same, even if the musician intended to produce identi-
cal performances. We are thus presented with the problem of identifying meaningful
differences among natural variations. Of course, once we have identified a suspected
adaptation, we can review the musician’s comments to see if a consistent narrative
emerges.

Our strategy is to perform a two-way univariate analysis of variance (ANOVA) on
the influence of cello and string on the mean values of each control parameter during
a note. The main effects will tell us if the two cellos were played differently overall
and if, for example, lower strings are played differently than higher strings, while the
interaction effect will tell us whether a string on one cello is played differently (relative
to the other strings on the cello) than the corresponding string on the other cello.

8.1.1 Influence of cello and string on force

Tables 8.1 and 8.2 give the data and results of the two-way ANOVA on the influence
of cello and string on the mean force during a note. The main effect of cello on force
was not significant, [F (1, 1289) = 0.26, p = 0.6]. The mean forces on the two cellos
(1.8 N and 1.7 N) are not significantly different. The main effect of string on force was
significant, [F (3, 1289) = 11.6, p < 0.001]. The lower strings were played with larger
mean forces (1.9 N and 1.8 N) than the higher strings (1.6 N and 1.7 N). However there
is also a significant cello-string interaction effect on force, [F (3, 1289) = 23, p < 0.001],
suggesting that these main effects may be misleading. Strings I and III had essentially
the same mean forces on either cello, while String II was played with less force on Cello
A and string IV was played with more force on Cello A.
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I II III IV Total
count 101 257 200 168 726

A mean (N) 1.6 1.5 1.9 2.0 1.8
st.d. (N) 0.4 0.6 0.5 0.7 0.6

count 82 214 170 105 571
B mean (N) 1.6 1.8 1.8 1.5 1.7

st.d. (N) 0.5 0.7 0.7 0.9 0.7

count 183 471 370 273 1297
Total mean (N) 1.6 1.7 1.9 1.8 1.7

st.d. (N) 0.4 0.7 0.6 0.8 0.7

TABLE 8.1: Summary of mean force data gathered by cello and string.

DF SumOfSq MeanSq FRatio PValue
Cello 1 0.11 0.11 0.26 0.6
String 3 14.37 4.79 11.6 < 2e-7

Interaction 3 29.01 9.67 23.5 < 9e-15
Error 1289 530.38 0.41
Total 1296 573.82

TABLE 8.2: Summary of two-way ANOVA results describing the influ-
ence of cello and string on the mean values of force during a note.

The musician complained that String II on Cello A was "molle" [soft/slack] com-
pared to the other strings on the cello. A natural reaction to such a feeling would be
to reduce the amount of force used on this string to avoid accidentally touching the
adjacent strings. This is evident in the results of this section. I am not certain why
the musician felt that this string felt slack because the two cellos used strings of the
same model, with the same nut-to-bridge length, and nearly the same tension (tuned
to nearly the same frequency). My best guess is that the musician is responding to
slight differences in the bridge curvature.

The results of this section also show that String IV on Cello A was played with
a larger force on average. By applying a greater bow force, the Helmholtz corner is
sharpened, resulting in a greater contribution of higher harmonics, which is perceived
as a richer timbre. Indeed, the musician complained that String IV on Cello A had
a poor timbre. The greater average bow force on this string is likely a result of her
attempts to find an acceptable timbre.

8.1.2 Influence of cello and string on absolute bow speed

Tables 8.3 and 8.4 give the data and results of the two-way ANOVA on the influence
of cello and string on the mean absolute bow speed during a note. The main effect of
cello on speed was significant, [F (1, 1289) = 7.5, p = 0.006]. Cello A was played with
slightly faster bow speeds (345.7 mm/s) than Cello B (331.0 mm/s). The main effect
of string on speed was significant, [F (3, 1289) = 143, p < 0.001]. A higher bow speed
(451.6 mm/s) was used String I than on string II (359.4 mm/s) which was higher than
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the bow speeds on strings III and IV (298.4 mm/s and 284.4 mm/s). There was not a
significant cello-string interaction effect on speed, [F (3, 1289) = 3.6, p = 0.014].

I am not certain why Cello A was played with a slightly faster bow speed. Faster
bow speeds give larger amplitude string vibrations and louder sounds, but Cello A
was not mentioned to be inherently quieter than Cello B.

We would like to believe that differences between strings are due to the difference
in mass, tension, or position of the strings. However, they are likely to be highly depen-
dent on the musical excerpts. For example, slower speeds are associated with quieter
notes and very long notes, which may appear more frequently on one string than an-
other.

I II III IV Total
count 101 257 200 168 726

A mean (mm/s) 460.5 375.1 305.7 279.3 345.7
st.d. (mm/s) 119.1 92.8 76.4 98.2 111.5

count 82 214 170 105 571
B mean (mm/s) 440.6 340.6 289.7 292.6 331.0

st.d. (mm/s) 113.6 95.0 92.2 100.0 110.0

count 183 471 370 273 1297
Total mean (mm/s) 451.6 359.4 298.4 284.4 339.2

st.d. (mm/s) 116.8 95.3 84.3 98.9 111.0

TABLE 8.3: Summary of mean absolute speed data gathered by cello and
string.

DF SumOfSq MeanSq FRatio PValue
Cello 1 6.9e5 6.9e5 7.5 0.006
String 3 3.9e6 1.3e6 143 < 2e-80

Interaction 3 9.8e4 3.3e4 3.6 0.014
Error 1289 1.2e7 9.2e3
Total 1296 1.6e7

TABLE 8.4: Summary of two-way ANOVA results describing the influ-
ence of cello and string on the mean values of absolute speed during a

note.

8.1.3 Influence of cello and string on bridge-to-bow distance

Tables 8.5 and 8.6 give the data and results of the two-way ANOVA on the influence
of cello and string on the mean bridge-to-bow distance during a note. The main effect
of cello on bridge-to-bow distance was significant, [F (1, 1289) = 25, p < 0.001]. Cello
A was played at 71.0 mm which is about a quarter bow-width further from the bridge
than cello B (68.7 mm). The main effect of string on bridge-to-bow distance was signif-
icant, [F (3, 1289) = 51, p < 0.001]. Strings I and II (70.5 mm and 69.3 mm) were played
about a quarter to a third bow-width further from the bridge than string III (66.9 mm)
but about a half bow-width closer than string IV (75.0 mm). However there is also a
significant cello-string interaction effect on bridge-to-bow distance, [F (3, 1289) = 4.7,
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p = 0.003], suggesting that the main effect of cello may be misleading. Cello A is played
further from the bridge than Cello B except on string IV.

While the differences between cellos and between strings are statistically signifi-
cant, I am not certain they are meaningful since they are less than a bow width. The
cellist may have been gradually moving toward the bridge in response to the flatter
bridge curvature found on Cellos A and B compared to the cellist’s personal cello. That
Cello B is played closer to the bridge may just be due to having played Cello B second.

I II III IV Total
count 101 257 200 168 726

A mean (mm) 72.6 70.4 67.9 74.7 71.0
st.d. (mm) 7.7 7.4 8.3 7.2 8.0

count 82 214 170 105 571
B mean (mm) 67.8 68.0 65.8 75.5 68.7

st.d. (mm) 8.5 8.3 10.7 7.6 9.6

count 183 471 370 273 1297
Total mean (mm) 70.5 69.3 66.9 75.0 70.0

st.d. (mm) 8.4 7.9 9.6 7.3 8.8

TABLE 8.5: Summary of mean bridge-to-bow distance data gathered by
cello and string.

DF SumOfSq MeanSq FRatio PValue
Cello 1 1.7e3 1.7e3 25. < 7e-7
String 3 1.0e4 3.5e3 51. < 5e-30

Interaction 3 9.6e2 3.2e2 4.7 0.003
Error 1289 8.8e4 69.
Total 1296 1.0e5

TABLE 8.6: Summary of two-way ANOVA results describing the influ-
ence of cello and string on the mean values of bridge-to-bow distance

during a note.

8.1.4 Influence of cello and string on tilt

Tables 8.7 and 8.8 give the data and results of the two-way ANOVA on the influ-
ence of cello and string on the mean tilt during a note. The main effect of cello on
tilt was not significant, [F (1, 1289) = 1.8, p = 0.17]. The mean tilt angles on cello A
(34.5o) and cello B (35.0o) are similar. The main effect of string on tilt was significant,
[F (3, 1289) = 182, p < 0.001]. The cello is played with increasingly tilted bow from
string IV (29.9o) to string I (40.6o). The cello-string interaction effect on tilt was not
significant, [F (3, 1289) = 1.6, p = 0.18].

The increasing tilt angle from low strings to high strings was commonly seen in
our informal observations and is sometimes taught as part of bowing technique. The
more massive lower strings are sometimes thought to require more contact with the
hair to pull them properly while the timbre of the upper strings is favored by using
less hair. The tilt angle is generally controlled by rolling the bow between the fingers
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and thumb, but it also depends on the angles of the wrist, elbow, and shoulder. The
difference in the tilt angle from String IV to String I may also be due to constraints in
the coordination of these joint angles.

I II III IV Total
count 101 257 200 168 726

A mean (o) 40.8 37.5 32.8 28.5 34.6
st.d. (o) 5.5 6.2 6.1 6.5 7.4

count 82 214 170 105 571
B mean (o) 40.5 37.1 32.8 29.9 35.0

st.d. (o) 5.8 5.8 5.7 6.3 6.8

count 183 471 370 273 1297
Total mean (o) 40.6 37.3 32.8 29.0 34.8

st.d. (o) 5.6 6.0 5.9 6.5 7.2

TABLE 8.7: Summary of mean tilt data gathered by cello and string.

DF SumOfSq MeanSq FRatio PValue
Cello 1 65.7 65.7 1.8 0.179
String 3 1.99e4 6.60e3 182 < 5e-98

Interaction 3 177 59.1 1.63 0.181
Error 1289 4.68e4 36.3
Total 1296 6.67e4

TABLE 8.8: Summary of two-way ANOVA results describing the influ-
ence of cello and string on the mean values of tilt during a note.

8.1.5 Influence of cello and string on absolute skew

Tables 8.9 and 8.10 give the data and results of the two-way ANOVA on the influ-
ence of cello and string on the mean absolute skew during a note. The main effect of
cello on skew was not significant, [F (1, 1289) = 0.2, p = 0.6]. The mean skew angles
on cello A (2.8o) and cello B (2.9o) are similar. The main effect of string on skew was
significant, [F (3, 1289) = 4.5, p = 0.004]. Only the difference in skew angle between
the strings with the least and most amount of skew is statistically significant, though
at a difference of only 0.4o compared to the range of ±12o, it is probably not meaning-
ful. The cello-string interaction effect on skew was not significant, [F (3, 1289) = 1.2,
p = 0.3].
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I II III IV Total
count 101 257 200 168 726

A mean (o) 2.7 2.7 2.9 2.9 2.8
st.d. (o) 1.7 1.6 1.5 1.4 1.5

count 82 214 170 105 571
B mean (o) 2.5 2.8 3.2 2.7 2.9

st.d. (o) 1.4 1.7 1.7 1.6 1.7

count 183 471 370 273 1297
Total mean (o) 2.6 2.7 3.1 2.8 2.8

st.d. (o) 1.6 1.7 1.6 1.5 1.6

TABLE 8.9: Summary of mean absolute skew data gathered by cello and
string.

DF SumOfSq MeanSq FRatio PValue
Cello 1 0.62 0.62 0.24 0.6
String 3 34.9 11.6 4.5 0.004

Interaction 3 9.08 3.03 1.2 0.3
Error 1289 3.31e3 2.57
Total 1296 3.35e3

TABLE 8.10: Summary of two-way ANOVA results describing the influ-
ence of cello and string on the mean values of absolute skew during a

note.

8.2 Normalized Schelleng diagrams for both cellos

In Section 8.1, we examined the global differences between the control parameters
used on each cello and found that they were similar, but with statistically significant
differences. We plot the data from each cello on separate normalized Schelleng dia-
grams (Figure 8.1) to see if this representation can help us interpret the data and the
musician’s comments. We have already seen in Section 7.1 that the musician neither
approached the apex of the Schelleng diagram nor spent a significant time near Schel-
leng’s maximum and minimum limits on either cello. Figure 8.1 shows that the musi-
cian did play closer to the apex on Cello B than on Cello A for at least some notes. Due
to the ambiguity of the normalized Schelleng diagram, however, we do not immedi-
ately know whether this is because of differences in the musician’s control parameters
or differences in the properties of the instrument.

To get a better idea of what is pictured in Figure 8.1, we separated each pitch onto its
own diagram, some of which are shown in Figure 8.2. The repetitions of each pitch give
data points that are clustered around the same region of the Schelleng diagram. While
this is expected for repetitions of the same note, we wouldn’t necessarily expect this for
different notes of the same pitch in different positions within the excerpt or in different
excerpts. That the repetitions of different notes of the same pitch all collect in the same
region indicates that either the control parameters are not very different, or that the
normalized Schelleng diagram is not very sensitive to these kinds of differences.
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FIGURE 8.1: Normalized Schelleng diagrams for Cello A (top) and B
(bottom).
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FIGURE 8.2: Normalized Schelleng diagrams for different pitches on
Cello A (yellow) and Cello B (blue).

If we compare the cluster of data points for a note on Cello A with that of Cello
B, we see that the two clusters have very similar shapes. This is because the datasets
represent the same music, played with roughly the same sets of gestures. In some cases,
such as with F3 and C4, the two clusters overlap. In other cases, such as F]3, G3 and
D4, the Cello B data is shifted to the left of the Cello A data. For a few notes, like D]3,
Cello B is shifted to the right of Cello A. The differences in the gestures for these notes
is comparable to those found on other notes, so it is a bit surprising to find such a large
shift in the figures. The shift is easily explained by looking at the bridge mobility. For
notes with nearly equal bridge mobilities, the clusters overlap. For notes with large
differences in mobility, we see the large shifts shown here. The cello with the higher
bridge mobility (Cello B: F]3, G3 and D4; Cello A: D]3) has a higher Schelleng’s lower
limit, so its cluster appears shifted to the left.

8.3 Transients

It is logical to assume that a cello which more consistently gives acceptable tran-
sients would be preferable. In Section 7.2, we saw the overall distribution of transient
durations found by manually inspecting each bow change. In this section we will com-
pare transient duration statistics between cellos and strings. We would like to know
if it was clearly easier to produce acceptable attacks on one cello than on the other.
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We will also see if any strings stand out as being much more or less likely to produce
acceptable attacks than another.

Figure 8.3 compares the distributions of transient durations between the two cel-
los. While both cellos have nearly the same percentage of acceptable attacks (A:58%,
B:55%), Cello B is both much more likely to have a nearly perfect attack (A:14%, B:26%)
and much more likely to have an attack that fails to achieve Helmholtz motion (A:6%,
B:16%). The musician commented that Cello B was much easier to play.
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FIGURE 8.3: Comparison of distributions of transient durations for each
cello.

Figure 8.4 compares the distributions of transient durations on each string of each
cello1. The white lines indicate the median, the boxes represent the interquartile range,
and the whiskers show the minimum and maximum, all of which are calculated after
removing the outliers shown as dots. String I on both instruments has many perfect
transients but a relatively wide range. It seems that String I is easier to get a perfect
transient, but that there is a greater risk of having a longer transient. Meanwhile String
IV on Cello A has a slightly narrower interquartile range centered well within the ac-
ceptable duration. It seems that it is quite difficult to have a perfect transient on the
heavier string, but an acceptable outcome is more likely. String II on Cello A stands out
as having one of the highest medians, and the widest interquartile range. It certainly
looks like the musician had difficulty playing it.

Referring back to Section 8.1.1, we see that String II on Cello A was played with less
force than than the corresponding string on Cello B. I suspect that not using sufficient
bow force on this string is what lead to having longer transient durations. Similarly,
Section 8.1.1 shows String IV on Cello A was played with more force than the corre-
sponding string on Cello B, explaining the shorter transient durations.

We might have hoped that we could predict something about the perception of
strings based on their transient durations; if a string has longer transient durations,
it should be perceived poorly. However, Strings II and IV on Cello A were both per-
ceived negatively even though String II had long transient durations and String IV had
short transient durations. It seems transient durations have more to do with the con-
trol parameters that the musician chooses to apply to the string than the musician’s
perceptions of the string independent of the control parameters applied to it.

1See Table 2.1 for alternative names, pitches, and fundamental frequencies of each string.
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FIGURE 8.4: Comparison of distributions of transient durations (in peri-
ods) for each string (I, II, III, IV) of each cello (A, B).

8.4 Perception of bridge curvature

The musician complained of not being able to change the color of the sound and
not being able to get the sound that she wanted in the last few measures of the Brahms
excerpt while playing cello A. In particular, she struggled with the G3 in the next-to-
last measure, played by stopping string III at the midpoint with a contact point as far
from the bridge as possible.

At first, she only identified the sound as being a problem and she associated it with
a limitation of the instrument. She began to modify her control parameters accord-
ingly (Figure 8.5). She associated the sound she wanted with playing high over the
fingerboard, so her next few attempts showed increasing bridge-to-bow distances and
higher bow speeds. As she played further from the bridge, she lowered the bow force
to prevent touching the adjacent strings. Then she wanted to use more force, which
helped her realize that the problem was not the inherent sound of the instrument, but
the height of the strings (which could be adjusted).

Stopping the string lowers the portion of the string between the bridge and the
stopping point with respect to the adjacent strings. This effect is greater when the
bridge has a larger radius of curvature (i.e. flatter) and as the stopping point moves
closer to the bridge, and its impact on playing is greater when the bow is placed further
from the bridge. In particular when stopping an inner string near the midpoint and
playing with the bow over the fingerboard, it may become difficult to play the string
without touching one of the adjacent strings. We verified after the experiment that the
musician’s personal cello has a bridge with a much smaller radius of curvature than
the bridges on our cellos.

Once the problem was properly diagnosed, the musician made a final recording in
which she played initially closer to the bridge with a larger force, giving her a larger
variation in the bowing parameters during the note as she transitioned into the final
portion of the note.
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FIGURE 8.5: Control parameters for five attempts at playing the G3 in
the Brahms excerpt satisfactorily.

8.5 Richness comment

The musician thought there was a loss of richness between the first two notes of the
Bach excerpt while playing Cello A. This is a two-octave leap from E[2 on string IV
to E[4 on string I. Figure 8.6 shows how the musician changed her control parameters
over several repetitions. The bow was brought about 8 mm closer to the bridge for
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both notes, the bow speed was reduced for the second note, and the force was held the
same.

The harmonic spectral centroid (µ), harmonic spectral deviation (σ), and the tris-
timulus ratios (Tlow, Tmid, Thigh) were calculated for each note by Equation 8.1 where
fn is the frequency and wn is the amplitude of the nth harmonic.

µ =

∑20
n=1 fnwn

f1
∑20

n=1wn
Tlow =

w1∑20
n=1wn

σ =

√√√√√∑20
n=1

(
fn
f1
− µ

)2
wn∑20

n=1wn
Tmid =

∑5
n=2wn∑20
n=1wn

Thigh =

∑20
n=6wn∑20
n=1wn

(8.1)

The harmonic spectral centroid for E[4 starts lower than that of E[2 in the first rep-
etition, indicating a loss of richness (Table 8.11). The tristimulus ratios indicate that the
energy of the E[4 is overly concentrated in the fundamental compared to the distribu-
tion of energy inE[2. For the third repetition, the bow is placed closer to the bridge and
a larger force is used for the first note, raising the harmonic centroid. The second note
continues closer to the bridge with a larger force, but the speed is reduced relative to
the previous repetitions. The net effect is that while the centroid of E[4 was increased,
it was not sufficient to match the increased centroid of the E[2. The last repetition re-
duces the force during the first note to lower the centroid of the E[4 while maintaining
the greater force during the second note, with the result that the centroids are matched
with energy being redistributed from the fundamental into the upper partials.

µ σ Tlow Tmid Thigh

1
E[2
E[4

2.83
2.42

2.99
2.56

0.44
0.52

0.45
0.39

0.11
0.09

2
E[2
E[4

2.97
2.37

3.21
2.61

0.45
0.55

0.42
0.37

0.13
0.08

3
E[2
E[4

3.40
2.69

3.62
3.07

0.40
0.52

0.42
0.38

0.18
0.11

4
E[2
E[4

3.09
3.05

3.29
3.31

0.42
0.46

0.44
0.40

0.14
0.14

TABLE 8.11: Comparison of timbre indicators for the first two notes of
the Bach excerpt on Cello A across four repetitions.
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FIGURE 8.6: The evolution of control parameters as the musician seeks
a gesture which does not give the perception of a loss of richness from

the first note (left) to the second (right).

8.6 Piezo to microphone ratio and radiation

The musician2 commented that String IV on Cello B "manque de puissance" [lacks
power] and is "un peu plus sourd" [a little more muted] than String IV on Cello A. It is
important to note that in each case, the comment was about the cello and not the sound.
Whatever the musician is perceiving is attributed to an inherent property of the cello,
not the result of applying particular control parameters to the instrument. For this
reason we chose to look at ratio of the root mean square amplitude of the microphone

2Several of the musician’s who evaluated the cellos made similar comments.
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over the duration of a note to that of the string vibrations. Figure 8.7 shows that some
notes are systematically louder on one cello than on the other for the same amplitude
string motion.
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FIGURE 8.7: The ratio of the rms microphone amplitude to the rms piezo
amplitude for each note in the Brahms excerpt for Cello A (red) and Cello

B (blue).

To investigate this figure futher, we collected all instances of each pitch on each
cello, calculated the microphone-to-piezo ratios and overlayed the results on the ra-
diativity measurements (Figure 8.8). The dots show the ratios of the rms microphone
amplitude to the rms piezo amplitude for Cello A (yellow dots) and Cello B (blue dots).
It is difficult to explain why sometimes blue dots are higher than yellow dots (or vice
versa) when we look at the radiativity measurements for these cellos (Figure 2.8). But
if we recognize that the radiativity measurements were made with the force applied
along specific directions (horizontal and vertical), and if we realize that the bow is
pulled across the string along the direction indicated by the inclination angle, then we
conclude that the relevant radiativity is a linear combination of the horizontal and ver-
tical radiativities. If we vary the inclination angle, then the radiativity creates a band
rather than a line as seen in Figure 8.8.
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FIGURE 8.8: The ratio of the rms microphone amplitude to the rms piezo
amplitude for each note played on Cello A (yellow dots) and Cello B
(blue dots). Compare with the range of radiativities for Cello A (red)

and Cello B (green).

A reasonable, yet naïve, approach to using the figure above is to use the inclination
angle of the bow to determine the direction of the applied force. What we really need
is the polarization of the vibrating string; after all, it is the string that is applying the
force to the bridge. Figure 8.9 shows the relationship between inclination angle and
string polarization. There are four clusters corresponding to the four strings of the
cello, indicating that there is a range of preferred inclination angles for each string.
It shows that the polarization angle is generally not equal to the inclination angle for
any given bow stroke. We find that the entire range of radiativities is covered by the
observed range of polarization angles. This is convenient because it means we do not
need to measure the range of polarization angles for each string; we can just find the
polarization angles for each frequency which maximizes or minimizes the magnitude
of the radiativity.
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FIGURE 8.9: The mean polarization angle of piezo force signals as a func-
tion of the mean bow inclination angle for each note. Colors indicate

pitch.

Returning to the musician’s comment and Figure 8.8, let’s look at the notes of the
String IV. For the notes from 65 Hz to 82 Hz, the ranges of the fundamental are about
equal, but their second harmonic (from 130 Hz to 164 Hz) show Cello A (red band)
to have a higher radiativity at least some of the time. For the note at 87 Hz, both the
fundamental and the second harmonic are greater. In each of these cases, the ratios
of microphone to piezo for cello A (yellow dots) is greater than that of Cello B (blue
dots). At just above 92 Hz, the radiativities at the fundamental are again equal, but
the radiativity at the second harmonic of Cello B is greater than that of Cello A. Corre-
spondingly we see that the ratios of microphone to piezo for Cello B are now slightly
above those of Cello A. Thus by extending the traditional horizontal / vertical radia-
tivity measurements to maximum / minimum radiativity measurements and looking
at weighted sums of harmonic contributions, we may be able to explain the trends in
the perceived difference in loudness between two cellos.



Chapter 9

Conclusion

This thesis concerns the relationship between the physical properties of an instru-
ment and its perceived properties as a musical instrument. In particular, we focus on
the relationship between the physical properties of a cello and its perceived playability.

Previous research has focused on the role of bridge mobility and has produced the
Schelleng and Guettler diagrams. Discussions of playability using these diagrams de-
pend on two assumptions which, before this thesis, had not yet been validated: that the
musician perceives differences in the diagrams, and that the differences are relevant to
the musician’s perception of playability.

Our first goal was to validate whether these assumptions are true. Our second goal
was to try to identify other physical measures that affect the perception of playability.
Finally, we tried to find out how a particular change in cello set-up affects the percep-
tion of playability. To accomplish these goals, we bought two nearly identical cellos,
and changed the soundposts so that one would be more tightly fit than the other. Ad-
ditionally, we placed sensors in the bridge to measure the string vibrations, as well as
passive markers on the cellos and bow to capture their motions. We hired a profes-
sional musician to evaluate and compare the two instruments. We used the musician’s
comments to help us interpret the physical measurements recorded during the experi-
ment.

Section 9.1 describes our main contributions in the experiment design. Section 9.2
summarizes the data that we contribute to the discussion about the relationship be-
tween the physical properties of a cello and its perceived playability. Sections 9.3 and
9.4 discuss some of the implications of our data. Finally, Section 9.5 discusses the limi-
tations of our work and suggests future lines of research.

9.1 Contributions in experiment design

We built a system for measuring control parameters and string vibrations which
will be useful for future studies. The system consists of a commercial motion capture
system, a cello bridge equipped with piezo sensors, commercial software for synchro-
nizing signals, a bow force estimation model, a force transducer for calibrating the
bridge sensor and the bow force estimation model, and a pipeline for extracting useful
information (control parameters, pitch tracking, and string vibrations along different
polarization axes) from the raw data.

In Section 4.3 we provided a thorough review of the principles of camera-based
motion capture technique. In particular, we explored different methods of minimiz-
ing systematic errors when locating landmarks from the positions of passive markers.
These methods include choosing appropriate camera and marker positions, enforcing
rigid body constraints, using temporary markers, and using optimization procedures
(plane fitting, cylinder fitting) to average out random position measurement errors.
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In Section 4.2, we described our modification of an existing sensor design to im-
prove its mechanical robustness. A pair of piezoelectric elements are placed under-
neath each string, held in place by plastic supports. The wires connecting the piezo-
electric elements to the circuit pass through the bridge which minimizes the stresses
on the electrical connections at the ends of the wires. This prevents the electrical con-
nections from breaking due to movements of the wires during handling of the cello. In
addition, we interpret the calibration coefficients of the bridge sensor in terms of the
gains of the piezos and their orientations (Equation 4.11). Having piezos under each
string reveals events on individual strings which cannot be separated using a single
contact microphone (Figure 6.3). Using two piezos under each string enables us to sep-
arate the horizontal and vertical polarizations of the string vibrations, which is useful
for, among other things, distinguishing hammer-downs of a left-hand finger from bow
strokes.

In Section 3.3, we extended an existing method of estimating the bow force from
motion capture data so that it takes into account the compliance of the string. We
established that the limiting factor in the accuracy of this technique is the spatial reso-
lution of the motion capture system, which cannot be overcome through processing of
the noisy data.

In Section 6.1, we provided a complete list of steps in the pipeline for pre-processing
data from our system. The pipeline includes steps for calibrations, error corrections, es-
timation of the control parameters (bow force, bow speed, bow position, bow angles,
and string length), pitch tracking, and calculating Schelleng’s maximum and minimum
bow force limits. Since many calculations depend on other calculations and measure-
ments, it is helpful to have them all listed in an order which ensures that the necessary
dependencies are available.

In Section 5.5, we suggested three excerpts which are useful for evaluating cellos
based on prior observations of cellists evaluating instruments at Violoncelle En Seine
(Paris, 2014). We also discussed framing the experiment and constructing questions to
elicit a natural performance and honest responses, potentially leading to unexpected
insights into how cellos are evaluated.

9.2 Summary of results

In Section 7.1, we normalized the Schelleng diagram, so that we can compare notes
with different bow speeds and frequencies. We found that the gestures used by the
musician to play our excerpts leave a healthy margin from Schelleng’s maximum and
minimum bow force limits. Therefore, slight changes in these limits are not likely to
affect the cellist’s evaluation of the instrument.

In Section 8.2, we found that the Schelleng diagram is not appropriate for compar-
ing similar gestures because the log scales minimize the visual impact of differences
which are smaller than an order of magnitude. We also found that visual differences in
the normalized Schelleng diagram are dominated by differences in the bridge mobility.

In Section 7.2, we presented data which confirms that transient durations by a hu-
man professional cello player follow a distribution similar to what was seen in previ-
ous studies of the violin. In particular, while many bow changes are considered perfect
and roughly half of the bow changes are considered acceptable, the other half would
be considered unacceptable, and many bow changes didn’t even achieve Helmholtz
motion within the observation window. However, the musician didn’t complain about
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the overly-long transients suggesting that there may be more important considerations
than transient length when evaluating the quality of bow changes.

A bow change strategy was presented in Section 7.2 which is useful for simulation
studies. In Section 6.3, we provide typical and extreme values of each control parameter
for cellists. These measurements will be useful when designing systems to measure
control parameters, when deciding the ranges of values to use in simulation studies,
and when considering the implications of the results of simulation studies.

In Section 8.1, an ANOVA analysis of the control parameters was performed which
indicates adaptation of the musician to the properties of individual strings on each
cello. In particular, the musician said that the D string felt "molle" [soft/slack] on a cello
set-up to be "souple" [flexible]. She ended up using less bow force on the string which
lead to longer transients during bow changes, as seen in Section 8.3. The perception
that the string feels slack is likely a comment on the perceived compliance of the string.
Since the string make and model, length, and tension are all the same as on the other
cello, we suspect that the difference in perception is due to slight differences in the
geometry of the bridge.

Whereas we would like to think that perceived differences in sound are due to
differences in vibrational behavior of the instrument, we have seen further evidence
that such perceptions might sometimes actually be due to differences in geometry, e.g.,
bridge curvature. Section 8.4 describes the evolution of gestures based on unsatisfac-
tory responses of the cello. Once the musician realized that the cause of the problem
was the relative heights of the adjacent strings near the bowing point, she was able to
immediately adapt her gestures to achieve a satisfactory sound.

In Section 8.5, we presented evidence that the perceived richness may be related to
the harmonic spectral centroid and tristimulus ratios. We also demonstrate how the
control parameters may be changed in order to balance the richness of two notes.

In Section 8.6, we explored measuring the radiativity of the cello using a micro-
phone and the string vibrations of real playing. We found that when interpreting the
radiativity measured with an impulse hammer and a microphone at a point, we should
look at the range (or possibly just the maximum) of radiativities over all force polariza-
tion angles. Then we should include not just the fundamental but also the contributions
from higher harmonics. This study was motivated by the musician’s perception that
the C string on one cello was louder than the other. We conclude that the comment
is not necessarily based on the absolute loudness of the notes played (which depend
on the control parameters used), but on the inherent properties of the instrument as
measured by the radiativity.

9.3 Schelleng’s limits

The common strategy in classical cello playing is to use typical range of bow forces
in the range of 1-2.5 Newtons and bow speeds of 200-500 millimeters per second at
bridge-to-bow distances between 0.09 and 0.12 times the string length. Bow speed
and bow position work together to determine the amplitude of the sound (within the
Helmholtz region) while the force is varied to change the timbre of the sound. These
three main control parameters are coordinated: as the musician plays closer to the
bridge, she tends to use more force and less bow speed. If the musician would like to
maintain large margins from the upper and lower limits, she is well served by adopting
the common strategy.
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If the musician ever deviates far from the common strategy, she will encounter odd
sounds and perceive the upper and lower limits. Moving the bow toward the bridge
while increasing the bow speed raises the lower bow force limit allowing the musician
to play in the multiple-slip region of Schelleng’s diagram. Likewise, moving the bow
away from the bridge while lowering the bow speed lowers the upper bow force limit
allowing the musician to play in the raucous region of Schelleng’s diagram.

The range of expression available using the common strategy is sufficient for clas-
sical music so classical cellists rarely encounter these limits while evaluating a cello.
Therefore any variations in the upper and lower limits between notes or between cel-
los are not likely to be a factor in the evaluation of a cello.

Wolf note An exception to the previous paragraph are wolf notes, which occur
when the lower bow force limit is sufficiently large. While our cellos did not have
severe wolf notes, we noticed that cellists don’t always comment on the wolf note and
may not even notice it. Our hypothesis is that the players have sufficient experience
to work around the wolf note. Luthiers may try to shift a wolf note to a frequency
between the notes of the chromatic scale. Some have suggested that the player might
deal with a wolf note by playing slightly out of tune, the musician’s equivalent to the
luthier’s actions. Wolf notes are usually found when playing softly quite far from the
bridge where the string is more compliant. In this case, a large bow force is likely to
cause the string to displace enough for the bow to accidentally stroke adjacent strings.
To prevent this from happening the player reduces the bow force and inadvertently
approaches the lower bow force limit. If the player moves closer to the bridge and
uses a slower bow speed, the string will not be displaced as much and the player will
be encouraged to apply a force greater than the lower bow force limit. Professional
cellists are probably accustomed to playing closer to the bridge with more force and
thus avoid wolf notes entirely, explaining the lack of comments.

An informal experiment. The Schelleng diagram indicates a monotonically increas-
ing range of log-forces as the musician plays further from the bridge (Figure 9.1). If
musicians perceive bow force on a logarithmic scale, they should perceive an increas-
ing range of forces as they move away from the bridge.

The range of forces (on a linear scale) will reach a maximum at twice the distance
from the bridge as the point where the upper and lower limits are equal (Figure 9.2).
This point is still very close to the bridge, so the region of interest (where musicians
usually play) shows a monotonically decreasing range of forces as the musician plays
further from the bridge. If musicians perceive bow force on a linear scale, they should
perceive a decreasing range of forces as they move away from the bridge.

I asked a violinist and a cellist who were unfamiliar with the Schelleng diagram to
describe their perceptions of the range of forces available at each position, indicating
where the range of forces is largest and where it is smallest. The experiment failed
because the musicians would change bow speed along with the bow position and force.
They recognized the need for greater forces near the bridge, but they were incapable of
comparing the range of large forces near the bridge to the range of smaller forces over
the fingerboard. I rephrased the question in terms of timbre, but they were unsure of
how to quantify differences in timbre.

I now suspect that by changing the bow speed at nearly any distance from the
bridge, they are able to increase the upper bow force limit above the limit imposed
by the deformation of the bow and to decrease the lower limit below the threshold for
perceiving differences in the force.
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FIGURE 9.1: If bow forces are perceived logarithmically, then the
perceived range between Schelleng’s minimum and maximum forces
should increase as the musician plays further from the bridge. The gray

region is where a musician is likely to play.
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FIGURE 9.2: If bow forces are perceived linearly, then the perceived
range between Schelleng’s minimum and maximum forces should de-
crease as the musician plays further from the bridge. The gray region is

where a musician is likely to play.
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9.4 Guettler’s diagram

Research strategy. Transient duration times are sensitive to initial conditions and
slight variations in gestures. Rather than using a single initial condition and simulat-
ing its deterministic outcome for various gestures, it may be more useful to simulate
each gesture starting from several initial conditions and interpret the results proba-
bilistically as in Demoucron, 2015. Using this approach, useful predictions about the
physical behavior of bowed strings can be generated even when using simplified mod-
els. However, we must be careful when using these results to infer conclusions about
the player’s perception of transients.

Measuring transients. Often, transient durations are measured by examining the
time-domain waveform of the string vibrations. The perception of the transient not
only depends on its nature (prolonged sticking vs multiple slipping) as discussed by
Guettler and Askenfelt (1997), but also on growth rates (rise times), and the timbre of
the subsequent steady-state motion. While we have been using a thumb-rule of 70 ms
or 7 periods to threshold the acceptability of a transient, we should remind ourselves
often that this threshold comes from a particular musical context (neutral scales) and
that the acceptable durations of transients are dependent on the musical context. First
steps in studying this effect would be to characterize the effect of rise times and post-
transient timbres using listening tests.

Acceptability definition. It is an open question whether the acceptability thresh-
olds for cello and bass attacks are the same as for violin. In particular, should we be
concerned with the absolute duration (milliseconds) or the relative duration (vibration
periods). We observed transient duration distributions on the cello which are similar
to those on the violin. But a larger sample including a wider range of musical contexts
and a dedicated perceptual study is still needed for the larger instruments. Note, our
musician did not complain about the longer transients, and in fact seemed quite happy
with the longest ones given the musical context.

Player strategies. It has been suggested that musicians have heightened senses,
fine motor control, and reaction times and that these above-average capabilities allow
the musician to control their instrument. However, the best human reaction times are
roughly twice the duration of acceptable transients. The musician simply does not have
time to sense the instrument response, understand it, devise an appropriate reaction,
and execute it in time to ensure an acceptable transient. Any successful strategy must
be one that is determined before the gesture is executed. In Section 7.2 we described
one such gesture observed on the cello.

9.5 Limitations and Perspectives

While the experiment has produced interesting results, some of our conclusions are
necessarily qualified by the limitations of the experiment.

We were only able to get a somewhat complete set of data from one professional
musician. The data from the experiment represents her perceptions and her techniques.
We feel that it is safe to generalize our rather tame conclusions to other musicians based
on informal observations, but a formal study to validate the generalization would be
welcome.

Having only one musician also limits the amount of data available to analyze,
especially comments. An easy solution to this problem is to repeat the experiment
with other musicians. Another approach to eliciting more comments would be to give
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the cellists more to comment on. While the sound-post adjustments were apparently
enough to make the instruments distinguishable, I think that we could have made the
instruments even more different. Our luthier gave us two variations on what his cus-
tomers tend to like. A second luthier may have made a very different adjustment cor-
responding to the preferences of her customers. I think that having larger differences
might have lead to a larger number of useful comments during the experiment.

Due to time constraints during recording, we were only able to examine three short
musical excerpts. While we tried to cover ranges of dynamics, tempo, and expressivity
versus technique, the chosen excerpts still represent a rather limited range of bowing
techniques and musical styles. Knowing that the musician would have only a short
time to familiarize herself with the bow, we avoided bowing techniques which strongly
depend on the physical characteristics of the bow (e.g., sautillé, spiccato). The excerpts
also didn’t call for any specialized techniques (pizzicato, col legno, etc.), some of which
would have changed the range of bridge-to-bow distances (sul tasto, ponticello) or the
importance of the accuracy of estimating string crossing boundaries (double-stops).

Time constraints also prevented us from making many recordings of the same ges-
tures. We compared average values of control parameters over several notes to find
signs of adaptation. If we had more repetitions of each note, then we could begin to
look at the variations in the time-series of the control parameters during the note. The
goal would be to identify specific changes in the gestures (such as the attacks) which re-
sult in desired changes in the sound, both during the evolution of the note and between
repetitions of the note. One strategy for increasing the number of repetitions is to use
series exercises in which a pattern of intervals is played starting on different pitches.
We could argue that notes in the same position of the pattern are equivalent except in as
much as the particular pitch affects the result. An analysis of variance would indicate
whether the pitch of a note in the pattern requires adaptation by the musician.

One of the reasons we only had data for one musician is due to problems with the
piezo sensor/circuit. The discharge rate of the capacitors in the circuit was too slow
for the application. The circuit needed to be reset occasionally to prevent the circuit
from becoming saturated. Even after realizing the need to reset the circuit, the signals
were sometimes noisier than we would have liked. This problem was made worse
by the data acquisition card imposed upon us by the synchronization system which
appeared to leak signals, contaminating the microphone signal with the noise of the
piezos. Given that the synchronization software was not particularly convenient, I
would recommend developing another system using multiple data acquisition devices
and a common synchronization signal.

We claim that Schelleng’s minimum bow force limit is probably not relevant to the
evaluation of the cello based on the observation that there weren’t data approaching
that limit except when lifting the bow off the string. Part of this is because the lower
limit is extremely small at many frequencies. But even when the lower limit is reason-
ably high, it is usually smaller than the estimated accuracy of our bow force estimation.
This means that if the bow force were very near the limit, then it would not be signifi-
cantly different from zero given the measurement accuracy. Measurement error is then
more likely to falsely indicate zero force and discard the data. To further validate the
claim that Schelleng’s minimum bow force limit is probably not relevant to the evalua-
tion of the cello, a force estimation system with better accuracy should be used.

Several musicians stated that they would require their own bow to give an accurate
evaluation of a cello. Nonetheless, none of the three professional musicians who eval-
uated our instruments complained about using our bow. The musician studied in this
thesis even praised the performance of our bow. Given the comments, I suggest that
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we continue to look for non-invasive ways to accurately measure control parameters
using the musician’s personal bow, but I also wouldn’t discredit any research based on
the use of a common bow if the musicians do not complain about it.

Beyond shoring up the results of this thesis, I think that further progress in relat-
ing physical properties of instruments to their perceived quality may be found through
listening tests in which musicians are asked to describe subtle variations in Helmholtz
motion to better understand how a group of musicians describes various sounds. Sim-
ulation studies could then relate the combinations of control parameters which lead to
these different named timbres. Musicians could also be asked to describe variations in
attack transients with the same goals: find the vocabulary used to talk about transients
and identify meaningful attributes of transients beyond their durations. In particular I
would look at the effect of rise times and post-transient timbres.
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Appendix B

Skew Projection

We have used skew projection to approach two problems in this thesis: when cal-
culating the bow position control parameters (Section 3.2.2), and when calculating the
piezo calibration coefficients (Section 4.2.2). In this appendix we’ll explain how skew
projection is performed and how it is related to the more commonly known orthogonal
projection.

Given an n-dimensional vector space, we can choose any n linearly independent
vectors as a basis. We often work with vector spaces which have an inner product
which allows us to talk about the angle between two vectors. In this case we usually
choose an orthonormal basis. The inner products between horizontal H and vertical V
basis vectors of the piezo calibration problem satisfy the orthogonal and normalization
conditions.

~eH · ~eV =
orthogonal

0

~eH · ~eH =
normalized

1

~eV · ~eV =
normalized

1

(B.1)

While orthonormal bases make certain calculations easy, they are not always the
most convenient or natural bases to work with. In Section 4.2.2 the orientations of the
piezos in the bridge sensor provided natural directions. While we aimed to have the
piezos orthogonal to each other, this was not guaranteed. Choosing to keep the basis
vectors to be normalized while allowing them to be skewed gives us the following
relations between the inner products. The treble T and bass B basis vectors of the piezo
calibration problem demonstrate the general case.

~eT · ~eB = mTB = (mTTmBB)
1/2 cos(θTB) 6=

skew
0

~eT · ~eT = mTT =
normalized

1

~eB · ~eB = mBB =
normalized

1

(B.2)

Any vector within a vector space can be written as a linear combination of basis
vectors. The force vector from the piezo calibration problem can be written as a linear
combination of either the HV-basis or the TB-basis.

~F = FH~eH + F V ~eV
~F = F T~eT + FB~eB

(B.3)
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The only difficulty is in determining the coefficients. In an orthonormal basis, we
can use the familiar orthonormal projection relations shown here with proofs.

FH = ~F · ~eH

~F · ~eH = (FH~eH + F V ~eV ) · ~eH
= FH~eH · ~eH + F V ~eV · ~eH
= FH(1) + F V (0)
= FH

F V = ~F · ~eV

~F · ~eV = (FH~eH + F V ~eV ) · ~eV
= FH~eH · ~eV + F V ~eV · ~eV
= FH(0) + F V (1)
= F V

(B.4)

However these relations do not hold if the basis vectors are not normalized or are
not orthogonal.

F T 6= ~F · ~eT

~F · ~eT = (F T~eT + FB~eB) · ~eT
= F T~eT · ~eT + FB~eB · ~eT
= F T (mTT ) + FB(mTB)
6= F T

FB 6= ~F · ~eB

~F · ~eB = (F T~eT + FB~eB) · ~eB
= F T~eT · ~eB + FB~eB · ~eB
= F T (mTB) + FB(mBB)
6= FB

(B.5)

The previous calculation shows us that orthonormal projection is a special case of
the more general skew projection. It was very convenient to have the inner products
reduce to zeros and ones in the orthonormal calculation. To get a similar convenience
in the general case we introduce the dual bases for each of our bases. The dual basis
(~eH , ~eV ) is dual to the direct basis (~eH , ~eV ). The dual basis (~eT , ~eB) is dual to the direct
basis (~eT , ~eB). The inner products between the direct and dual basis vectors satisfy the
duality relations, which look a lot like the orthonormal conditions that we found so
convenient before.

~eH · ~eV = 0
~eV · ~eH = 0
~eH · ~eH = 1
~eV · ~eV = 1

~eT · ~eB = 0
~eB · ~eT = 0
~eT · ~eT = 1
~eB · ~eB = 1

(B.6)

We can write the dual basis vectors as linear combinations of the direct basis vectors
by using the duality relations which define them. The resulting expressions can be
verified to satisfy the duality relations and to be linearly independent of each other.

~eH = ~eH

~eV = ~eV

~eT = (~eB ·~eB) ~eT−(~eB ·~eT ) ~eB
(~eB ·~eB)( ~eT · ~eT )−(~eB ·~eT )(~eB ·~eT )

~eB = (~eT ·~eT ) ~eB−(~eB ·~eT ) ~eT
( ~eT · ~eT )(~eB ·~eB)−(~eB ·~eT )(~eB ·~eT )

(B.7)

The inner product of a vector ~F with the dual basis vectors (~eT , ~eB) gives us the
coefficients (F T , FB) of that vector with respect to the direct basis vectors (~eT , ~eB). By



Appendix B. Skew Projection 139

using the dual basis to calculate the projection coefficients, we can treat both orthonor-
mal and skewed projections in exactly the same way.

FH = ~F · ~eH

~F · ~eH = (FH~eH + F V ~eV ) · ~eH
= FH~eH · ~eH + F V ~eV · ~eH
= FH(1) + F V (0)
= FH

F V = ~F · ~eV

~F · ~eV = (FH~eH + F V ~eV ) · ~eV
= FH~eH · ~eV + F V ~eV · ~eV
= FH(0) + F V (1)
= F V

F T = ~F · ~eT

~F · ~eT = (F T~eT + FB~eB) · ~eT
= F T~eT · ~eT + FB~eB · ~eT
= F T (1) + FB(0)
= F T

FB = ~F · ~eB

~F · ~eB = (F T~eT + FB~eB) · ~eB
= F T~eT · ~eB + FB~eB · ~eB
= F T (0) + FB(1)
= FB

(B.8)

We are now in position to derive Equation 4.5 in which ~eT and ~eB are normalized
but not necessarily orthogonal.

F T = ~F · ~eT

= ~F · (~eB ·~eB) ~eT−(~eB ·~eT ) ~eB
(~eB ·~eB)( ~eT · ~eT )−(~eB ·~eT )(~eB ·~eT )

= (~eB ·~eB)(~F · ~eT )−(~eB ·~eT )(~F · ~eB)
(~eB ·~eB)( ~eT · ~eT )−(~eB ·~eT )(~eB ·~eT )

= (1)(~F · ~eT )−(~eT ·~eB)(~F · ~eB)
(1)(1)−(~eT ·~eB)(~eT ·~eB)

FB = ~F · ~eB

= ~F · (~eT ·~eT ) ~eB−(~eB ·~eT ) ~eT
( ~eT · ~eT )(~eB ·~eB)−(~eB ·~eT )(~eB ·~eT )

= (~eT ·~eT )(~F · ~eB)−(~eB ·~eT )(~F · ~eT )
( ~eT · ~eT )(~eB ·~eB)−(~eB ·~eT )(~eB ·~eT )

= (1)(~F · ~eB)−(~eT ·~eB)(~F · ~eT )
(1)(1)−(~eT ·~eB)(~eT ·~eB)

(B.9)

In Section 3.2.2 we used skew projection in three-dimensions. The direct basis was
(x̂H , ŷS , ẑHS = x̂H×ŷS

‖x̂H×ŷS‖) with the following inner products.

x̂H · x̂H = 1
ŷS · ŷS = 1
ẑHS · ẑHS = 1

x̂H · ŷS = sin(θS)
ŷS · ẑHS = 0
x̂H · ẑHS = 0

(B.10)

The corresponding dual basis is given by

~xH = (ŷS ·ŷS)x̂H−(x̂H ·ŷS)ŷS
(ŷS ·ŷS)(x̂H ·x̂H)−(x̂H ·ŷS)(ŷS ·xH)

= (1)x̂H−(x̂H ·ŷS)ŷS
(1)(1)−(x̂H ·ŷS)2

~yS = (x̂H ·x̂H)ŷS−(x̂H ·ŷS)x̂H
(ŷS ·ŷS)(x̂H ·x̂H)−(x̂H ·ŷS)(ŷS ·xH)

= (1)ŷS−(x̂H ·ŷS)x̂H
(1)(1)−(x̂H ·ŷS)2

ẑHS = ẑHS = x̂H×ŷS
‖x̂H×ŷS‖

(B.11)





Appendix C

Bridge Sensor Calibration
Coefficients

The piezo calibration coefficients allow us to calculate the horizontal F x and vertical
F z force components of the string against the bridge given the measured potentials
from the treble V T and bass V B piezos according to the matrix equation(

F x

F z

)
=

(
CxT CxB
CzT CzB

)(
V T

V B

)
.

The calibration coefficients were measured and calculated as described in Section
4.2.2. The values are reported in the table below.

Cello A Cello B

String I (A3, La)
(

1.22192 −3.84013
4.51239 1.96915

) (
0.763116 −3.22863
3.27689 1.78093

)

String II (D3, Re)
(

1.61237 −2.29604
2.38739 2.27941

) (
1.48214 −2.6127
2.45718 2.61037

)

String III (G2, Sol)
(

3.12035 −1.68679
2.07961 3.68318

) (
2.51916 −1.76809
2.0122 3.2196

)

String IV (C2, Do)
(

2.75696 −0.248084
0.331221 3.65458

) (
3.51625 −0.31179
1.14915 3.36772

)
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Appendix D

Recording session outline

1. Musician is given the bow, excerpts, and instructions at least one day before the
experiment.

2. Before the musician arrives on the day of the experiment

(a) Microphone, load cell, and piezo signals are connected to DAQ board.

(b) Motion capture cameras are calibrated

(c) Marker placements on the cello are verified.

(d) Rigid bodies are defined for the cellos and load cell.

(e) Cellos are tuned

3. Once the musician arrives

(a) Musician warms up on her own cello.

(b) Musician completes demographic questionnaire

(c) Frog and Tip rigid bodies are defined

(d) Setup data logging program

4. (a) Musician tunes and freely evaluates the first cello.

(b) Musician performs the requested excerpts.

(c) Musician describes the cello.

5. Calibrate bow while musician takes a break.

6. (a) Musician tunes and freely evaluates the second cello.

(b) Musician performs the requested excerpts.

(c) Musician describes the cello.

7. Musician records an excerpt for a repeatability analysis.

8. Musician compares the two cellos.

9. Calibrate bow again.
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Texts, questions, and sheet music
presented to the musician
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Lutheries – Acoustique Musique 

Institut Jean le Rond d’Alembert 

Université Pierre et Marie Curie 

Paris, France 

 

 

Merci d’accepter de participer à notre étude.  Un compositeur en résidence dans un conservatoire 

régional nous a demandé d’équiper une paire de violoncelles avec des capteurs qui permettent au 

violoncelliste d’interagir en temps réel avec un ordinateur durant l’interprétation de sa pièce. Ces 

violoncelles vont être utilisés par un groupe d’étudiants pour leur examen de fin d’année. Nous  

aimerions que quelques musiciens professionnels évaluent ces deux instruments et enregistrent 

quelques extraits courts (que nous pourrons leur transmettre), afin que nous puissions décider avec 

eux si des ajustements par un luthier sont nécessaires avant que nous leur envoyons les violoncelles. 

Nous vous demandons donc aujourd’hui d’évaluer ces deux violoncelles, de discuter leurs qualités et 

défauts, et d’enregistrer quelques extraits. 

Nous profitons de cette opportunité pour étudier le comportement d’un violoncelle en situation 

réelle de jeu. En plus d’enregistrer le mouvement des cordes grâce aux capteurs mentionnés ci-

dessus, nous allons enregistrer les mouvements relatifs de l’archet et du violoncelle grâce à un 

système de capture du mouvement (consistant en 10 caméras infrarouges) et filmer avec un 

caméscope.  Nous vous poserons donc aussi quelques questions qui nous permettront d’interpréter 

les données enregistrées. 

Nous estimons la durée de votre participation à environ 2h30.  

 

 Timothy Wofford (wofford.timothy@gmail.com) et Claudia Fritz (claudia.fritz@upmc.fr) 

 

 

Formulaire de consentement 

J’ai été informé du but de l’étude et des méthodes et outils utilisés dans ce projet, et je les accepte. 

Je suis conscient que ma participation est volontaire et que j’ai le droit de me retirer de l’étude à tout 

moment, sans donner de raison et sans encourir aucune responsabilité. J’ai également été informé 

que les réponses aux questions ont un caractère facultatif et le défaut de réponse n’aura aucune 

conséquence pour moi, et que les informations me concernant seront conservées et traitées de 

manière anonyme et confidentielle. 

 

Date ______________              Nom ____________________________           Signature 
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After each repetition

• Etes-vous satisfait de cet enregistrement ?

• Que voudriez-vous améliorer ?

After each excerpt

• Quelles propriétés (qualités et défauts) de l’instrument ont pu être montrées dans
cet enregistrement ?

After all excerpts on each cello

• Pourriez-vous décrire ce violoncelle ?

• Que pensez-vous de ce violoncelle ?

• Qu’est-ce que vous appréciez particulièrement ?

• Pensez-vous que ce violoncelle aurait besoin d’être modifié ; en particulier, à sup-
poser qu’un luthier puisse ajuster le violoncelle si vous lui expliquez ce que vous
aimeriez, que lui demanderiez-vous ?

During the comparison

• Qu’avez-vous perçu comme différences ?

• Parmi elles, quelles sont celles qui vous semblent être mises en lumière de manière
évidente dans quels extraits (parmi les 3) que vous avez enregistrés ?

• Comment ces différences ont-elles affecté votre manière de jouer les extraits cor-
respondants ?

• Pourriez-vous proposer d’autres extraits qui mettent davantage en valeur les dif-
férences entre les 2 instruments ?
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