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“6accdæ13eff7i3l9n4o4qrr4s8t12ux 1 ”

Letter from Newton to Leibniz, 1677

1. The anagram expresses, in Newton’s terminology, the fundamental theorem of the calculus. The solution of
this anagram is probably the following "Data aequatione quotcunque fluentes quantitates involvente, fluxiones
invenire; et vice versa"
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Abstract
Speciality: Mechanics and Engineering

Accounting for capillary effects in level-set based Finite Elements modelling

of impregnation in fibrous media

by Loïc CHEVALIER

Keywords: Capillarity, stabilised FE, bi-fluid flow, level-set, discontinuities capturing, surface

tension, fibrous composites, numerical permeability, capillary pressure

Accounting for surface tension effects is of major interest in many fields in engineering. More

specifically, in the field of LCM composite processing, surface tension driven phenomena con-

trol the impregnation of liquid resin into fibrous preforms. In the work described here, a nu-

merical method able to deal with a general bi-fluid model integrating capillary actions is de-

veloped and implemented. Firstly, the method relies on a precise computation of the surface

tension force. Considering a mathematical transformation of the surface tension virtual work,

the regularity required for the solution on the evolving curved interface is weakened, and the

mechanical equilibrium of the triple line can be enforced as a natural condition. Consequently,

contact angles of the liquid over the solid phase result from this equilibrium. Secondly, for an

exhaustive capillary action representation, pressure and pressure gradient jumps across the in-

terface must be accounted for. A pressure enrichment strategy is used to properly compute

the discontinuities in both pressure and gradient fields. On top of that, a strong coupling strat-

egy is shown to yield physically sound solutions even for complex solid surfaces. The resulting

method is shown to predict accurately static contact angles for several test cases and is evalu-

ated in complex 3D cases. Owing to this methodology, capillary pressure and permeability can

be extracted, upscaled from flows computed in both model and more realistic microstructures.
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Introduction

As a part of an industrial chair between the company Hexcel Reinforcements and Mines

Saint-Etienne, composite manufacturing through Liquid Composite Molding (LCM) processes

are studied and numerically simulated. LCM processes are investigated to produce thin parts

for aeronautics, when seeking a cost effective alternative to autoclave processing. Indeed, in

most cases, no conditioned storage and no heavily expensive facilities are required. Addition-

ally, a fewer number of steps are needed for producing a part. All these factors reduce the global

cost.

In this general introduction, the constituents of the studied composite materials are presented.

Then, the motivation of using infusion based processes (namely Liquid Resin Infusion (LRI)

[75]) over injection based processes (namely Resin Transfer Molding (RTM) [108]) is explained

by the targeted application range. Numerical process simulation is elaborated to minimise the

apparition of defects, such as porosities, in the composite materials during the infusion. Ad-

ditionally, numerical models give an insight into local phenomena which control the overall

response but are difficult to assess experimentally. Three scales may be chosen to look at the

resin impregnation. The lower scale contains precise and local information, it is the scale cho-

sen in this work.

Composite materials constituents

Composite materials such as considered here are heterogeneous fibrous materials made of

at least two immiscible components: a reinforcement and a matrix.

Matrix

The main role of the matrix is to ensure the cohesion of the material. Also, it is used to pre-

vent the composite material from being damaged by external aggressions [33, 53]. The type of

matrix is determined by the intended application. Organic matrix composites have an operat-

ing range of up to 250°C. Among the organic matrices, two subcategories may be dissociated:
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thermoplastic and thermosetting resins.

— Thermoplastic resins have long molecular chains forming a semi-crystalline structure

when cooling down. Then, weak bonds such as Van der Waals interaction or hydrogen

bonds are created between the molecules. These bonds can be broken up when temper-

ature increases allowing relative motion between particles which translates into a flow at

the upper scale. Therefore, thermoplastic resins may be recycled by applying a thermal

cycle. Due to the long molecule chain, the viscosity is above 1 Pa · s. This high viscosity

tends to slow down the flow during infusion/injection, making the reinforcements im-

pregnation a sensitive step.

— Due to short polymer chain, thermosetting resins have a lower viscosity. An exothermic

chemical reaction [22, 126, 128] is thermo-activated, leading to irreversibly change from

a liquid phase to a solid phase. During the cross-link step, covalent bonds are created

between molecules. When the resin has entirely polymerised, the complex geometrical

structure formed may be destroyed by an important thermal loading, making the com-

posite hard to recycle. By its structure (geometry and bounds), the thermosetting have

high thermo-mechanical properties. More specifically, the use of epoxy resins is a com-

mon practice in the field of high-performance composites such as in aeronautics.

Reinforcements

Reinforcements considered in this industrial chair are made of continuous and dry carbon

fibres. These carbon fibres have a high tensile modulus (between 240 and 800 GPa) for a low

density (between 1.75 and 1.9 kg ·dm−3) [23, 25]. Therefore, composites made with carbon fi-

bres are mainly employed for structural parts. Carbon fibre reinforcements may have a variety

of structural architecture depending on the number of fibre orientations: unidirectional (UD),

bidirectional or multidirectional and the reinforcements architecture: NCF, woven, interlock,

etc. This work focuses on unidirectional carbon reinforcements.

In this work, the resin is of epoxy type with an assumed Newtonian behaviour in this liquid

state [36]. Unidirectional reinforcements made of continuous dry carbon fibres are considered.

Fibres are arranged in tows, which are a group of several thousand of fibres. These fibres have

an almost constant diameter and a circular cross-section.

LRI process

Among LCM processes, LRI process is chosen to be studied in the industrial chair. LRI is a

promising process since it is cost effective and well adapted for manufacturing thin and large

parts. Actually, unlike RTM where the resin is injected in the fibrous preform constrained be-

tween rigid moulds, in injection only a lower mould is mandatory, and a vacuum bag isolates

the system from atmosphere. The vacuum bag is cheaper than an outer mould and allows to

compact the stack of preforms when vacuum is pulled out. The second advantage of LRI is the

inlet vents. For the RTM process, the position of the resin inlets impacts greatly the filling time

and the flow pattern in the preforms. This limitation does not apply to LRI process since the

resin flows in a wetting membrane in the plane before starting to infuse the preforms through
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their thickness. Therefore, among LCM processes LRI is studied in this work over RTM since it

is the most relevant process for thin and large pieces under industrial context, rate and high

quality requirements.

FIGURE 1 – LRI process principle

Infusion strategy (LRI) is shown in Fig. 1. Atmospheric pressure compacts the preform, since

air is pumped out. Vacuum is also the driving force for the resin to flow from the injection vent

through a highly permeable distribution medium located under the preform. Thus the resin

flows preferentially into the distribution medium, forming a homogeneous bed, before infusing

into the preforms across their thickness. The challenge in mastering this process lies in obtain-

ing a homogeneous composite part, with the expected dimensions, since the parts undergoes

deformations during the infusion [51, 217] and without air entrapments (voids) [140]. Indeed, at

the moment, void creation and transport is a challenge on its own [35, 52]. The composite ma-

terial being a multi-scales structure or at least a dual-scale medium, then a variation of fluid ve-

locity between two scales may cause voids entrapment [139]. The change of velocity is dictated

by the capillary effects. They represent the intermolecular forces acting at an interface between

two phases. Typically, three interfaces are involved namely fibres/resin, fibres/rarefied-air and

resin/rarefied-air interfaces. The global force resulting from each interfaces may be modelled

by a capillary pressure (pressure jump pcap ) between the resin and air, which helps the fluid

to flow in narrow regions such as fibre tows. To understand the voids creation mechanism, the

competition between capillary effects and the viscous effect is an important factor to assess

[127, 167]. As shown in Fig. 2, if the viscous effect is larger than capillary effect then micro-voids

(A) Flow between the tows and micro-voids entrapment(B) Flow inside the tows and macro-voids entrapment

FIGURE 2 – LRI - voids entrapment mechanism

may be entrapped (see (A)), whereas capillary effect higher than viscous effect may lead to en-

trap macro-voids (see (B)). Voids are harmful to the materials since they can initiate cracks or

help in propagating them. They tend to deteriorate the mechanical properties of the composite

materials.

3



LRI process may have another source of void generation: the residual solubilised air. Solubilised

air is mostly removed from the resin during an outgassing step. However, the residual solu-

bilised air vapourises when lowering the pressure. Finally, at the end of the process, voids gen-

erated by one of the entrapment mechanisms or vapourised, grow during the curing of com-

posite materials [72] due to moisture.

This study is centred on the resin propagation into the micro-structure during the infusion.

Therefore, the method has to be able to describe the capillary action in order to recreate the

two voids entrapment mechanisms depicted in Fig. 2.

Finally, our study aims at representing the dual-scale flow by reporting the local effects induced

by the resin flow into the part scale. So far, studies carried out have shown that filling times are

rather poorly predicted from studies at the part scale [36]. Therefore, such models have to be

enriched by integrating local information on the micro-structure and local capillary effects.

Capillary flow in fibrous materials at different scales

As a consequence of the structure of the reinforcements, resin flow can be described at three

scales, as shown in Fig. 3: the macroscopic scale or part scale, the mesoscopic scale or tow

scale, and the microscopic scale or fibre scale. We can briefly describe these different scales

and evaluate how capillary effects and the geometric description of the micro-structure can be

modelled.

(A) Part scale ∝ 1m (B) Tow scale ∝ 10−3 m

(C) Fibres scale ∝ 10−6 m

FIGURE 3 – LRI - Process scales from (A) [17], (B) [138], (C)
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Part scale

At the part scale, the fibrous reinforcement can be considered as a homogeneous medium

characterised by a permeability and a fibre volume fraction. Permeability K is originally defined

as the ability of a medium to allow fluids, i.e. resin in the scope of this study, to pass through it

in a saturated regime. The resin flow can be described by the Darcy’s law [69] when the perme-

ability is lower than 10−6 m2. This description has been used within our team so far [36, 74, 3,

166] to study composite manufacturing at the macroscopic scale. In these past studies, Darcy’s

equations have been solved in the reinforcements while Stokes equations were solved in the dis-

tribution medium, during the resin infusion (see Fig. 4). However, Darcy’s law has been initially

FIGURE 4 – LRI - part scale approach

established for a saturated flow and requires modelling the permeability and capillary action,

both depending on the micro-structure and the fluid (resin) travelling inside [76, 176]. At the

macroscopic scale and for the infusion modelling, the micro-structure may only be taken into

account through empirical laws (e.g. Carman-Kozeny [29]) based on morphological descriptors

such as the fibre volume fraction, the diameter of the fibers, the spacing between the fibers, ...

Furthermore, the capillary effects are represented by a pressure jump at the resin/rarefied air

interface. This capillary pressure and the permeability are given by either: phenomenological

models [134, 153], micro-mechanical based on a simple micro-structure [93], or experiments.

It is possible to overcome these models by extracting the relevant information from the sub-

scales.

Tow scale

At the tow scale, the domain of interest contains a set of tows described as equivalent ho-

mogeneous media characterized by permeability and volume fraction of fibres. The resin flow

between the tows is ruled by the Stokes equations, and by the Darcy equation inside the tows,

as shown in Fig. 5. Like at the macroscopic scale, it is possible to take into account a capillary

force via a pressure discontinuity at the fluid front. Here too, the value of this jump is given

by: a phenomenological law, a micro-mechanical model or experiments, since it depends on

the geometry of the fibre network, accessible only by morphological descriptors. However, this

capillary force is only taken into account in tows, which implies that the flow depends directly

on the geometry of the tows.
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FIGURE 5 – LRI - tow scale approach (picture extracted from [36])

Fibre scale

At the scale of the fibre, the domain of interest corresponds to all the inter-fibre spaces (fi-

bres are impervious) and the flow is described by the Stokes equations, as seen in Fig. 6. The

FIGURE 6 – LRI - fibre scale approach

model accuracy comes from the geometrical description of the fibres arrangement which is

directly taken into account, unlike in a homogeneous medium approach, as for tow and part

scales. Furthermore, no phenomenological law is needed for the capillary action. The capillary

force given by the mechanical equilibrium of the triple line is added as a condition to satisfy

when solving the Stokes equations. Even at this microscopic scale, the continuum approach

does not take into account the motion of the particles (atoms) at the triple line. Therefore, com-

puting the dynamic of the capillary action/force would require a model for the contact angle

driven by the molecular scale phenomena.

The study of this scale has the advantage that a capillary pressure and a permeability may

be derived through an upscaling step. Computed at the fibre scale, the capillary pressure gives

a model for the capillary action to be used at the global scale [136]. Whereas, the permeability

models the action of the fibres onto the fluid flow [195]. Both parameters are computed at the

fibre scale in order to be used at the part scale.

The capillary pressure can be defined as the average action of the surface tension force, contrary

to the permeability, which is defined for a homogeneous medium but has to be computed at

the fibre scale. Therefore, this work will focus on presenting a numerical method describing

capillary effect. The method will be used to compute permeabilities and capillary pressures in

micro-structures.
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Research objectives

The aim of this industrial chair with Hexcel and Mines Saint-Etienne is to provide a numer-

ical model to simulate the LRI manufacturing process for aeronautic applications, especially

when thin composite parts are considered. In our group, a macroscopic and mesoscopic ap-

proach has been developed [17] relying on models and experimental values to account for both

the capillary action and permeability. The present work proposes a numerical strategy to de-

scribe the resin infusion at the microscopic scale with a surface tension force acting on the

fluid front and surface energies of fibres. It is intended to enhance the accuracy and physical

description of the macroscopic model but not replace it. Meaningful descriptors of the micro-

structure such as the permeability and a capillary pressure will be scaled-up to the macroscopic

model. The rest of the manuscript is organised in five chapters as follows:

— Chapter 2 presents the physical model used to describe the flow at microscopic scale.

The model is able to represent the fluid velocity and the pressure in the microstrucutre.

It is given in a general case with three interfaces between three phases (solid, liquid and

vapour). Two numerical models called ’solvers’ are needed to describe respectively the

flow and the interface between the liquid and vapour phase.

— Chapter 3 introduces the numerical model for the fluid computation (in both liquid and

vapour phases). Mathematical modelling presented in the previous chapter is numeri-

cally solved after highlighting the underlying challenges. A validation of the fluid ’solver’

is presented at the end of the chapter

— Chapter 4 focuses on the interface capturing ’solver’ based on a level-set function. The

level-set ’solver’ is tested to verify the numerical implementation. The final test empha-

sises that the level-set method conserves the mass if numerical parameters are chosen

wisely.

— Chapter 5 steps up the global numerical strategy to describe the surface tension force.

The level-set solver used to capture the interface gives the interface position. At this po-

sition, a force is added into the fluid solver to represent the action of molecular cohesion

on an interface. A comparison between two strategies to couple the two solvers (fluid

and level-set) is carried out.

— The final chapter, 6, validates the method proposed to compute surface tension action.

Furthermore, it presents a strategy to scale-up the two local parameters: surface tension

action and fibres arrangement, into two global parameters respectively called capillary

pressure and permeability.

Résumé en Français : Introduction générale - les matériaux com-

posites

Les procédés de fabrication par voie liquide sont une technique prometteuse pour réduire

les coûts associés à la fabrication de pièces composites. L’étude approfondie des procédés est

nécessaire pour en acquérir la maîtrise et les optimiser, afin de réduire les défauts induits tout

en maximisant les rendements. Du fait des coûts importants d’une analyse expérimentale par

essais / erreurs sur de grandes pièces pour l’aéronautique, la simulation numérique offre une

alternative moins onéreuse et complémentaire pour l’étude quantitative des physiques à l’œuvre
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et des phénomènes associés. C’est dans ce contexte qu’une chaire industrielle a été créée en

2015 entre l’École des Mines de Saint-Étienne et Hexcel Reinforcements pour simuler les procé-

dés de fabrication. Finalement, le cadre d’étude de cette thèse s’inscrit dans cette collaboration

entre un laboratoire et un partenaire industriel, visant plus particulièrement à comprendre et

simuler la phase d’infusion du procédé.

Les travaux précédents ont produit des outils numériques pour simuler l’avancée du front

de résine pendant l’infusion d’une préforme fibreuse en se basant sur plusieurs hypothèses. Un

milieu homogène équivalent a été associé à la préforme dans laquelle l’écoulement est régi par

la loi de Darcy. La résine imprègne la préforme fibreuse grâce à un différentiel de pression induit

par la mise sous vide du système. Ce type de modélisation est capable de rendre compte de géo-

métries complexes de pièces ainsi que de l’anisotropie de la perméabilité liée aux empilements

des fibres de carbone. Enfin, les composites dits de hautes performances se distinguent par un

taux volumique de fibre élevé assurant de meilleures propriétés mécaniques. Ce milieu fibreux

dense possédant des espaces poreux confinés est propice aux effets capillaires, non représentés

dans les travaux antérieurs. Le but de cette thèse est par conséquent de pallier les limitations

du modèle développé en calculant l’écoulement de la résine à l’échelle locale des fibres. L’ob-

jectif principal de cette thèse est double : premièrement, établir un modèle numérique stable

et robuste permettant de prendre en compte les phénomènes capillaires à l’échelle des fibres ;

puis dans un second temps, proposer une remontée d’échelle pour retranscrire la richesse des

informations locales dans des paramètres globaux tels que la perméabilité et la pression capil-

laire. L’écoulement dans la préforme est multiéchelle, pouvant être décomposé en trois niveaux

(l’échelle de la pièce, du toron et des fibres). L’étude à l’échelle des fibres offre une meilleure re-

présentativité de la force capillaire en se basant sur l’équilibre mécanique d’une interface plutôt

que sur des lois empiriques.

La modélisation de l’écoulement de la résine avec effets capillaires est étudiée dans un pre-

mier temps. La résolution numérique des équations du modèle nécessite deux outils : le pre-

mier permettant de résoudre les équations de la mécanique des fluides avec prise en compte

des tensions de surface ; le second permettant la description d’une interface propre à la formu-

lation Eulérienne du problème. Les deux outils (solveurs) seront successivement présentés et

validés. Une méthode numérique pour prendre en compte la force de tension de surface sera

présentée, basée sur ces deux solveurs. Deux algorithmes de couplage des deux solveurs se-

ront détaillés. Enfin, plusieurs cas tests de validations seront menés avec l’étude de ménisques

dans différentes configurations géométriques. Une comparaison à un benchmark numérique

permettra de positionner la méthode par rapport à d’autres méthodes issues de groupes de re-

cherche. La dernière partie de la section résultat sera consacrée à l’exploitation d’écoulements

dans des microstructures pour en extraire des perméabilités numériques et des pressions ca-

pillaires.
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Chapter 1

Modelling the flow and capillary action
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Introduction

Composites manufacturing by LRI process has to be studied at the microscopic scale (fi-

bre scale) with all its complexity, if one wants to get a deep understanding of the mechanisms

controlling the resin impregnation through fibrous preforms. The first key step, which is de-

veloped in this chapter, consists in modelling the resin and air flows at fibre scale. With this

model, a local description of geometry (fibres) is possible and mechanical equilibrium of the

three interfaces (solid/liquid, solid/vapour and liquid/vapour) may be added in the equations

to describe the capillary action. First, conservation equations are given for the fluid and then

the equilibrium equations are given for an interface. These equations form the system to be

solved in velocity and pressure. This chapter presents a general framework for a bi-fluid flow.

Each concept is exposed and systematically simplified based on the LRI process context. Two

cases of capillary action against gravity, one against a wall and the second between two walls,

are presented at the end of the chapter. They are designed to understand with examples the

boundary condition at the triple line where all the three phases (solid, liquid and vapour) are in

contact.

1.1 Fluid mechanics equations

Fluid mechanics equations are presented in the following section for the bulk fluid which

can be either the vapour or the liquid phase.

1.1.1 Notation

The problem to be solved considers two fluids: a vapour phase and a liquid phase. The fi-

bres or solid phase, are taken into account only through boundary conditions since they are

supposed to be fixed. Geometry and notations are given using Fig. 1.1. The bounded domain
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Chapter 1. Modelling the flow and capillary action

Ω⊂ IR3 is subdivided into two sub-regions denotedΩL(t ) for the liquid andΩV (t ) for the vapour

phase withΩ=ΩV (t )∪ΩL(t ) as shown in Fig. 1.1. The presence of two phases leads to the cre-

ation of an interface, denoted ΓLV (t ) = ∂ΩV (t )∩∂ΩL(t ) the position of which depends on time.

Furthermore, the rigid wall (Solid) is defined as a boundary of the computational domain and

may represent fibres for the composite manufacturing case. The solid interface can be subdi-

vided into two interfaces ΓSL = ΩL ∩ Solid and ΓSV = ΩV ∩ Solid. Each of the three interfaces

Γi nt , for i nt ∈ {SL,SV ,LV }, has a unit normal ni nt and a tangent plane described by two orthog-

onal vectors t 1
i nt and t 2

i nt , along with one in-going tangent T i nt of the interfaces contour at the

triple line (see Fig. 1.1). The line at the junction between the three phases (liquid, solid, vapour)

is called the triple line and is denoted L(t ) = ΓSL ∩ΓSV ∩ΓLV .

In the specific case of composite manufacturing, the resin is represented by the liquid phase,

FIGURE 1.1 – Schematic description of notations for a capillary flow - a liquid meniscus
against a rigid wall [58]

the rarefied air is the vapour phase and the fibres are the solid phase which is a boundary of the

fluid domain. Vectors and tensors are represented in the standard orthonormal basis of IRdi m

formed of vectors xk , with di m the dimension of the problem.

1.1.2 Bulk fluid conservation laws

The conservation of a quantity ψ in a control volume Ω fix in time reads: at time t , the

instantaneous variation of ψ in Ω is due to a convective flux characterized by a velocity v and

due to creation/annihilation phenomena, described by two source/sink terms. It can be written

as
∂

∂t

∫
Ω
ψdV︸ ︷︷ ︸

variation of quantity ψ

= −
∫
∂Ω
ψv ·nd A︸ ︷︷ ︸

convection flux

+
∫
∂Ω

ssur f ·ndS +
∫
Ω

svol dV︸ ︷︷ ︸
creation/anihilation rate

(1.1)

with n the outgoing unit vector, normal to the domain boundary ∂Ω. The source/sink term can

be defined on the surface (ssur f ) or in the volume (svol ) of the control volume. Using Ostro-

gradsky’s theorem, the local form of Eq. 1.1 is

∂ψ

∂t
+∇· (ψv ) =∇· ssur f + svol (1.2)
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1.1. Fluid mechanics equations

This equation is known as continuity equation, written in a conservative form. Classically, three

quantities are conserved: mass, momentum and energy density E . Five equations have to be

established to solve the five unknowns that will be pressure p, velocity v , and temperature T

resulting from energy conservation.

Mass conservation

Without any change in the matter itself (chemical or thermal reaction for instance), mass is

conserved over time. Therefore mass conservation can be derived by replacingψ by the density,

ρ in Eq. 1.2. After removing the source terms, the equation reads

∂ρ

∂t
+∇· (ρv ) = 0 (1.3)

— For an incompressible fluid, density is constant over time and space. The previous equa-

tion 1.3 can be simplified and yields

∇·v = 0. (1.4)

— Otherwise if the fluid is compressible, the system must be closed by a state equation

relating the thermodynamic variable ρ to the pressure and temperature T , ρ = ρ(p,T )

[107, 111, 110]. A well known equation of state is for example the ideal gas law p = ρRT .

Eq. 1.3 can be rewritten as Dρ
Dt +ρ∇·v = 0, introducing the material derivative D

Dt notation,

defined as
D•
Dt

= ∂•
∂t

+v ·∇•
Next, using the fact that ρ is a function of p and T , from the chain rule it comes that

Dρ

Dt
= ∂ρ

∂T

∣∣∣
p

DT

Dt
+ ∂ρ

∂p

∣∣∣
T

Dp

Dt
.

Then replacing it back into the mass conservation equation, thise equation reads

1

ρ

∂ρ

∂T

∣∣∣∣
p︸ ︷︷ ︸

−χT

DT

Dt
+ 1

ρ

∂ρ

∂p

∣∣∣∣
T︸ ︷︷ ︸

χp

Dp

Dt
+∇·v = 0 (1.5)

where χT and χp are respectively the thermal isobaric expansion coefficient and the

isothermal compressibility coefficient. For an ideal gas, those coefficients are χT = 1/T

and χp = 1/p. The global mass conservation in the case of a compressible fluid is

∇·v +χp

(
∂p

∂t
+v ·∇p

)
=χT

(
∂T

∂t
+v ·∇T

)
(1.6)

From literature, it is not clear whether the compressibility of the surrounding medium (e.g. the

rarefied air), has an influence on composites manufacturing. Besides, describing the dynamic

of the vapour phase is not in the scope of this study. Consequently, due to the Eulerian ap-

proach, only a continuous extension of the velocity across the interface ΓLV is sought. There-

fore, the vapour phase is considered Newtonian and incompressible. The same choice holds for

11



Chapter 1. Modelling the flow and capillary action

the resin in LCM processes and in particular for spontaneous impregnation or infusion driven

by low pressure gradient.

Momentum conservation

Starting from equation 1.2 and considering ψ= ρvk , where the subscript k ∈ {1,2,3} means

the k th component of a vector, leads to a conservation of momentum equation

ρ

(
∂vk

∂t
+v ·∇vk

)
+ vk

(
∂ρ

∂t
+∇· (ρv )

)
︸ ︷︷ ︸

=0

= (∇· ssur f )k + svol
k (1.7)

after decomposing the term ∇· (ρvk v ) in the following way ∇· (ρvk v ) = ρv ·∇vk + vk∇· (ρv ).

The surface source/sink term describes the molecular cohesive surface forces acting on the

surface of an infinitesimal fixed control volume. For each k momentum conservation equa-

tions, the surface source/sink is the divergence of the Cauchy stress tensor projected over the

face of normal xk i.e. xk ·σ, thus (∇·ssur f )k = ∂σkl
∂xl

. The second source/sink term on the volume

is the k th vector component of body forces such as svol
k = ρ( f v )k . The momentum conservation

equations then read

ρ

(
∂v

∂t
+v ·∇v

)
=∇·σ+ρ fv (1.8)

Energy conservation

Finally, the energy balance [15] is obtained by considering ψ= ρE in Eq. 1.2:

∂ρE

∂t
+∇· (ρE v ) =∇· ssur f + svol . (1.9)

The surface source term is split in two parts: the heat flux entering/exiting the fixed control

volume q and the power dissipated by the surface forces (σ·n)·v . Since the Cauchy stress tensor

is symmetric (σ ·n) · v = (σ · v ) ·n and ssur f = −q +σ · v . Recalling the Fourrier’s law, the heat

flux is given as q =−λ∇T with λ is the isotropic thermal conductivity for the sake of simplicity.

Therefore ∇ · ssur f = ∇ · (λ∇T )+∇ · (σ · v ). Like the surface source term, the volumetric source

term is broken up into two terms: the first is related to volumetric heat ρṙ , where ṙ is the rate of

volumetric heat per unit mass, and the second one is the power dissipated by the volume forces

ρ f v ·v . Hence, the conservation of energy law can be rewritten as

∂ρE

∂t
+ ∇· (ρE v ) = ρq̇︸︷︷︸

volumetric heat

+ ∇· (λ∇T )︸ ︷︷ ︸
thermal conduction

+ ∇· (σ ·v )︸ ︷︷ ︸
surface force

+ ρ f v ·v︸ ︷︷ ︸
body force

(1.10)

The total energy density E is composed of an internal energy density e and a kinetic energy

density 1
2 v2 with v2 = v ·v , so E = e+ 1

2 v2. The following steps intend to yield an equation of the

internal energy per unit mass and then formulating it in temperature. Using the expression for

the total energy density, the left-hand side of Eq. 1.10 becomes

∂ρE

∂t
+∇· (ρE v ) = ρ

(
∂e

∂t
+v ·∇e

)
+ρ

[
∂

∂t

(
v2

2

)
+v ·∇

(
v2

2

)]
(1.11)

12



1.1. Fluid mechanics equations

Taking the scalar product of the momentum conservation equation with the velocity it comes

ρ

[
∂

∂t

(
v2

2

)
+v ·∇

(
v2

2

)]
= (∇·σ) ·v +ρ fv ·v (1.12)

Then subtracting Eq. 1.12 to Eq. 1.10 the final equation for the internal energy per unit mass

becomes

ρ

(
∂e

∂t
+v ·∇e

)
=σ : ∇v +ρq̇ +∇· (λ∇T ) (1.13)

when using the identity ∇ · (σ · v )− (∇ ·σ) · v = σ : ∇v . As in the compressible mass conserva-

tion equation, a state equation is needed to close the system. Again the internal energy per

unit mass may depend on pressure and temperature (e = e(p,T ) and particularly for calorically

perfect gas e = cv T with cv the specific heat at constant volume). Therefore the temperature

variation in time is ruled by the convection, the work of molecular cohesion, a volumetric heat-

ing and diffusion/conduction, in the same order as in Eq. 1.13.

The three conservation equations are coupled for two reasons. First, the unknowns may ap-

pear in all the three conservation equations (like the fluid velocity in the conservation of mass,

momentum and energy). Second, conservation equations are coupled by the material parame-

ters and the geometry. Viscosity and surface tension may depend on temperature for example.

In order to avoid the cross-linking of the resin, the stage of infusion is thermally controlled in

the LRI-like processes. For this reason, we will assume that the temperature remains constant

in our simulations, and so will the surface tension.

1.1.3 Constitutive equation

The constitutive equation is, in our case, a law modelling the response of the studied mate-

rial to an external stimulus. In other words, it expresses the relationship between the stress and

strain.

Newtonian fluids

If the fluid is considered Newtonian, i.e. with a constant dynamic viscosity µ, the Cauchy

stress tensor σ is

σ= −p I︸︷︷︸
isotropic

+ 2µε̇(v )︸ ︷︷ ︸
deviatoric

(1.14)

with p the pressure, the strain rate tensor ε̇(v ) = 1
2 (∇v +∇v T ) and I the second order identity

tensor. This definition yields a symmetric stress tensor which is a requirement from the conser-

vation of angular momentum.

Non-Newtonian fluids

Polymer resins used in their liquid state composite manufacturing may be non-Newtonian

fluids [13]. Molten polymers may be considered as quasi-Newtonian fluids [14, 187], that is to

say their viscosities depend on the strain rate γ̇ usually expressed from the second invariant of

the strain rate tensor, i.e. γ̇ = p
2ε̇ : ε̇. The simplest model consists in considering a power-law
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Chapter 1. Modelling the flow and capillary action

dependence µ(γ̇) = µN γ̇
n−1 with µN and n respectively the consistency and power-law index;

value n = 1 corresponding to a Newtonian behaviour. In addition to a strain dependent viscos-

ity, a rheological approach may also be used [59], based on a viscoelastic constitutive law [196]

to model the behaviour of the non-Newtonian fluid.

In this work, the resin is considered Newtonian in the range of stresses considered, for LRI pro-

cess and spontaneous impregnation.

1.1.4 Navier-Stokes equations

The response of the fluid is given by the constitutive Eq. 1.14 which can be substituted in

the conservation of momentum Eq. 1.8, leading to:

ρ

(
∂v

∂t
+v ·∇v

)
︸ ︷︷ ︸

inertia

= −∇p︸ ︷︷ ︸
pressure term

+∇· (2µε̇(v )
)︸ ︷︷ ︸

viscous term

+ ρ fv︸︷︷︸
body forces

(1.15)

In the case of an incompressible fluid with constant viscosity, the viscous term may be simpli-

fied: ∇· (2µε̇(v )) = µ∆v . The inertial term is made of an unsteady term and a convective term.

Only the convective term v ·∇v makes Eq. 1.15 non-linear. This term is computationally expen-

sive since it requires an iterative strategy to solve the nonlinearity. Finally, body forces can be

gravity or magnetic forces like Lorentz force [30, 156] for example. In the following study, the

only body force is gravity.

The name "Navier-Stokes equations" refers to both mass and momentum conservation includ-

ing a constitutive equation, particularly for a Newtonian fluid. With the incompressibility con-

straint, Navier-Stokes equations to be solved areρ
(
∂v

∂t
+v ·∇v

)
=−∇p +∇· (2µε̇(v

)+ρg

∇·v = 0
(1.16)

with g the acceleration of gravity. Navier-Stokes equations define a system of four equations

with four unknowns, namely velocity and pressure in three dimensions (with one less equation

and velocity component in two dimensions).

Dimensionless equations

The Reynolds number [184], defined as

Re = inertia

viscous force
= ρV0 L0

µ
(1.17)

with L0 a characteristic length and V0 a characteristic velocity, is the dimensionless number gov-

erning the dimensionless Navier-Stokes equations. A flow with a high Reynolds number, above

103 is turbulent, whereas it is considered laminar for lower values of Re.
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1.1. Fluid mechanics equations

Dimensionless quantities will be noted with a superscript ∗. The k th component of the dimen-

sionless coordinates, x∗
k , and velocity, v∗

k are defined from the characteristic length L0 and ve-

locity V0 as

x∗
k = xk

L0
v∗

k = vk

V0
. (1.18)

The definition of the characteristic time is straightforward from the characteristic length and

velocity: T0 = L0/V0. The last dimensionless parameter to be determined is the pressure and

two possibilities may be considered:

• For a high Reynolds number: p∗ = p
ρV 2

0
. The momentum equations become

∂v∗

∂t∗
+v∗ ·∇v∗ =−∇p∗+ 1

Re
∆v∗. (1.19)

In this form, the inertia terms balance the pressure gradient since the viscous term tends

to vanish when the Reynolds number increases.

• For a low Reynolds number: p∗ = pL0
µV0

. Therefore momentum equations are written as

Re

(
∂v∗

∂t∗
+v∗ ·∇v∗

)
=−∇p∗+∆v∗. (1.20)

When the Reynolds number tends to zero, the inertial terms tend to disappear on the

left-hand side of the equation. Therefore the viscous diffusion term will be balanced only

by the pressure gradient.

Stokes equations

Eq. 1.15 may be simplified for some low values of Reynolds number. Neglecting the inertial

terms (cf. Eq. 1.20) leads to the momentum balance equation

0 =−∇p +∇· (2µε̇(v ))+ρg

∇·v = 0
(1.21)

known as Stokes system. A value for the Reynolds number may not be inferred for LRI process,

since the characteristic length is not easy to pick. Actually, one may choose the diameter of one

fiber, or the length of a fibre tow (if not the length of the part) as the characteristic length, chang-

ing significantly the flow regime according to the Reynolds number. The original Reynolds ex-

perience was a flow in a straight pipe and not in a complex microstructure. The relevance of the

Stokes assumption regime may be tackled by investigating the discrepancy between Stokes and

Navier-Stokes flow.

1.1.5 Boundary conditions

Boundary conditions are needed to solve fluid equations. Two types of boundary may be

distinguished: boundary at the interface between fluids and the solid ΓS j with j ∈ {L,V } and

fluid boundary.

At a fluid / solid interface, the fluid may stick to the solid (condition (1)) or slip over it (condition

(2)).
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Chapter 1. Modelling the flow and capillary action

— (1) A no-slip condition where the fluid sticks to the surface. Thus, the velocity vector is

null in that case v = 0.

— (2) Slip over the surface or symmetric boundary condition, where the normal velocity is

vanishing v ·n = 0 (see Fig. 1.2). A zero normal velocity physically means that no fluid is

entering the solid which may represent a impervious wall. The condition on the normal

velocity is associated with a condition on the tangent component of the stress vector

tα ·σ ·n =−βv · tα, where α= 1 in two dimensions and α= 1,2 in three dimensions. The

coefficient β is a friction coefficient which may model the roughness of a wall. In the

particular case where β= 0 the fluid slips freely over the surface, whereas it sticks to the

solid surface when β→∞.

FIGURE 1.2 – Fluid boundary conditions between solid and fluid

For conditions at the purely fluid boundary, the action of an external stress is taken into account

with condition (3), whereas a symmetric flow may be represented with condition (4).

— (3) Condition on the stress vector σ ·n (see Fig. 1.3). The condition reads σ ·n =−pext n,

with pext the value of the external loading in the normal direction. Nonetheless, condi-

tions on the tangential velocities may be added: tα ·v = 0, whereα= 1 in two dimensions

and α = 1,2 in three dimensions. This condition may represent the action of a pump

where the pressure is known but not the velocity distribution of the fluid.

— (4) Symmetric boundary condition. This condition is useful to impose a symmetric flow

in order to restrict the computational domain, the condition reads v · n = 0 with the

tangential components of the stress vector left equal to zero.

FIGURE 1.3 – Fluid boundary conditions at the fluid boundary

Aside from having boundary conditions in space at the domain boundary, initial fields have

to be prescribed as soon as a time derivative is involved in an equation.

1.2 Surface tension force

After studying the bulk, interface mechanics is emphasised as an extension of the derivation

presented at the continuum level. Non equilibrated forces are located at each interface between

liquid, vapour and solid phases [37, 71, 144]. Those forces are directly linked to the scope of the

study since that capillary forces are complementary driving forces for manufacturing compos-

ites through LRI process. This force may become prevalent in confined environments, which is

involved in a wide range of industrial and natural phenomena [46, 174, 189, 190]. This section

recalls concepts of wetting and capillarity involved in capillary flows.

16



1.2. Surface tension force

1.2.1 Basic notions

Molecules in a fluid have bonds between them, due either to intermolecular attraction forces

such as Van der Waals forces, hydrogen bonds or repulsive forces such as electromagnetic force.

In the case of a static liquid drop, such as the one represented in Fig. 1.4, molecules are at equi-

librium on average. As it can be seen in figure, molecules at the boundary have fewer interac-

tions than molecules inside the fluid. This creates a disequilibrium. This lack of interactions

from the outer side of the liquid surface leads to an extra tension between the molecules acting

along the liquid surface. The resulting force on the interface is called surface tension and can

be understood as a force per unit length or a surface energy. At equilibrium, the shape of the

interface is driven by a minimisation of this surface energy and potential energy.

FIGURE 1.4 – Bounds and interactions between molecules in a liquid drop

Surface tension coefficient

Fluid mechanics give a first definition of the surface tension coefficient γ as a force per unit

length. Let d f be the force needed to create an element of length dl , reversibly and isothermally,

then γ is defined as

γ=
(

d f

dl

)
V ,T,n

(1.22)

at constant temperature T , volume V , and molecule number n. The force induced by the at-

traction between molecules is tangent to the interface. For example, a volume with a constant

surface tension will modify its shape to become a sphere due to this tangential force. This first

definition may be used to describe the surface tension coefficient at the interface ΓLV .

Another equivalent definition for the surface tension coefficient consists in defining it as the

work needed to create an element of area dA = l dl (see Fig. 1.5)

dW = d f .dl = 2γ dA (1.23)

where there are two interfaces Liquid/Vapour since the liquid film has a width. A direct conse-

quence is that the surface tension can be regarded as an energy per square meter.

FIGURE 1.5 – Surface tension normal to the tube

Surface energies are coefficients that quantifies the work done to create an interface with solid,

in our case ΓSL and ΓSV . The second definition is also known as the thermodynamic approach

[97] describing the surface tension as the variation of free energy of a closed system relative

to the variation of the interface area. For both approaches, the surface tension is temperature
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Chapter 1. Modelling the flow and capillary action

dependent and tends to decrease as temperature increases. Various methods can be used to

measure the surface tension value [5, 32]. Among the common methods, the characterisation

used by our team is based on Wilhelmy’s method [214, 224]. It consists in measuring, with a

tensiometer, the weight of a liquid meniscus formed on a solid of high surface energy. This

measured force may be correlated to the surface tension coefficient. In this study, the surface

tension and energy coefficients measured are the input data of simulations. These coefficients

are usually given in mN ·m−1. For example, the surface tension coefficient value between wa-

ter and air is 72.8 mN ·m−1 at room temperature. From now on, ’surface tension’ refers to the

surface tension force and ’surface tension (or energy) coefficient’ is the force per unit length.

Surface tension is acting on the liquid / vapour interface ΓLV and surface energies are applied

on solid / fluid interfaces Γ j with j ∈ {SV ,SL}.

1.2.2 Mechanical equilibrium of an interface

The general concept of mechanical equilibrium describing the jump of stress vector at an

interface is applied for each interface: Liquid/Vapour, Solid/Liquid and Solid/Vapour. As an ex-

tension of the conservation equations presented above, the mechanical balance of the interface

is presented. The derivation is given in two dimensions for the sake of clarity but holds in 3D

[47]. Force configuration acting on an interface Γ are represented in Fig. 1.6. The curvilinear

abscissa is S. The normal n is the outgoing normal and t the only tangent in two dimensions.

FIGURE 1.6 – Mechanical equilibrium of the interface - Force configuration acting on any
Σ⊂ Γ

Force and momentum balance equations are derived below for any surface control Σ of inter-

faceΓ. These equations imply that surface tension force is acting only in the tangential direction

and give the jump of the stress vector across an interface (Laplace’s law).

Force balance

A force at the interface, denoted f (s), represents the surface tension. The stress vectorsσ ·n
are associated with the interaction of the bulk phases with the interface. Neglecting the inertia

of interface, the force equilibrium yields

[
f
]b

a +
∫
Σ

(σout −σi n) ·n dS = 0 (1.24)

where
[

f
]b

a = f (b)− f (a) = ∫
Γ

d f
dS dS. The jump is noted �·� and the jump of stress vector is �σ·n�.

Finally, the local force balance equation is

d f

dS
+�σ ·n� = 0 (1.25)
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1.2. Surface tension force

Momentum balance

The equation is written for any vector position x −O where O is an arbitrary origin

[
(x −O)× f

]b
a +

∫
Γ

(x −O)×�σ ·n�dS = 0 (1.26)

The first term of the equation may be rewritten in an integral form and further developed

[
(x −O)× f

]b
a =

∫
Γ

(
t × f + (x −O)× d f

dS

)
dS (1.27)

since the derivative of the position vector is the tangent vector d(x−O)
dS = t . When cancelling

terms using the force balance Eq. 1.25, the local momentum equilibrium equation becomes

t × f = 0. (1.28)

showing that f is colinear to t [89]. Hence, there exists a scalar γ, the surface tension or energy

coefficient, such that f = γt . The formula for the stress vector jump across an interface is

�σ ·n� =−d(γt )

dS
. (1.29)

The formula presented in 2D dimensions is extended in the general case by adding the contri-

bution in the second tangent direction [47]. Therefore, the general equation for the mechanical

equilibrium of an interface is

�σ ·n� =−∇α(γtα) (1.30)

with ∇α the derivative with respect to the surface coordinateαwith an implicit sum onα= {1,2}

representing the two tangents.

1.2.3 Mechanical equilibrium of an interface applied to a bi-fluid flow

The complete form of the mechanical equilibrium is given for the Liquid/Vapour interface

since it is located inside the domain where a jump of stress vector may be defined. For both

interfaces involving a solid interface, a simplification is made.

Liquid/vapour interface mechanical equilibrium

Eq. 1.30 may be applied to the jump of vector stress across the interface ΓLV and reads

− (σV ·nV +σL ·nL)ΓLV = �σ ·n�ΓLV =−∇α(γLV tαLV ) (1.31)

where the jump across the interface ΓLV is denoted �·�ΓLV and n = nL = −nV is the outgoing

normal to the liquid domain. Developing Eq. (1.31) yields the more usual expression

�σ ·n�ΓLV =−γLV C n − (∇αγLV )tαLV (1.32)

where the first right-hand side term expresses the Young-Laplace’s law, with C the mean curva-

ture, while the second term which accounts for surface tension gradient, is the Marangoni term
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Chapter 1. Modelling the flow and capillary action

[143, 149]. In a static case, the jump of stress vector is only the pressure jump across the inter-

face since the strain rate is equal to zero. Taking a constant surface tension value at the interface

leads to remove the Marangoni term and then derive the classical Young-Laplace equation [137]

pinside−poutside = γC . In order to distinguish correctly the inside from the outside, the pressure

must always conform to the rule that the higher pressure is in the concave region. This study is

based on Eq. (1.31), taking into account both Young-Laplace’s law and Marangoni’s effect.

Interfaces mechanical equilibrium involving the solid

As shown in Fig. 1.1, the solid can be split in two regions ΓSL and ΓSV , where ΓSL is the

solid/liquid interface and ΓSV the solid/vapour interface. As previously, the mechanical equi-

librium is written

�σ ·n�ΓS j =−∇α
(
γS j tαS j

)
(1.33)

with j representing either V or L. The stress vector accounting for the solid side σS is out of

reach since the solid is not represented in the domain. However, in this stress, the stress vector

is zero because the solid is considered to be rigid. As explained in Sect. 1.1.5 (1), taking a normal

pointing outwards from the fluids to the solid leads to the two conditions on the solid

v ·nSL = 0 and σ ·nSL =−βSL v +∇α(γSL tαSL) on ΓSL

v ·nSV = 0 and σ ·nSV =−βSV v +∇α(γSV tαSV ) on ΓSV ,
(1.34)

The condition of non-penetration on the velocity and a friction law for a fluid slipping on a

wall are completed with surface energy by adding a term to the vector stress. Projecting the

condition on the unit vectors normal n and tangents tα to the solid leads to

vn = 0, tαS j ·σ ·nS j =−βSV vtα+∇αγS j and nS j ·σ ·nS j = γS j C on ΓS j with j ∈ {SL,SV } (1.35)

where velocity is split with v = vnn+vtα tα. The coefficient β is a friction coefficient depending

on the surrounding fluid (β=βSL ,∀x ∈ ΓSL and β=βSV ,∀x ∈ ΓSV ) aiming at accounting for the

dynamic sub-scale effects [200]. Choosing β= 0 leads to a free slip condition governed only by

the capillary effects on the wall. Introducing this friction changes the dynamic but has no effect

on the steady-state solution.

1.2.4 Wetting

When three phases are in contact, the contact line is called triple line. In two dimensions,

this line is reduced to a point. In addition to the position of the triple line, the contact an-

gle θc (see Fig. 1.1) giving the slope of the interface at the contact line is the second major

parameter to describe the shape of the interface. This angle is computed from the three sur-

face tension/energy coefficients involved as shown in the following two paragraphs. Therefore,

choosing the three surface tension coefficients as input parameters is sufficient to prescribe the

equilibrium (static) contact angle θc .
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1.3. Summary

Dynamic contact angle

The static contact angle is limited to static cases and hence is not valid in dynamic. Its

regime has been experimentally stated [81], that the triple line advances with a "rolling" move-

ment. In order to remove the stress singularity at the contact line due to this no-slip boundary

condition (Huh and Scriven’s paradox [120], see also [39, 82, 194]), it has been postulated that

slip between the liquid and the solid or any other mechanism have to occur very close to the

contact line. Several approaches attempt to describe the contact angle in a dynamic case. Some

of them focus on molecular simulations of fluid advance and energy dissipation around the

triple line [38, 37]. Other approaches are based on hydrodynamic kinetics theories which con-

sider that energy dissipation is generated by viscous flows [66, 67, 94, 114, 205, 213]. In the latter,

the dynamic contact angle θd depends on the capillary number, which represents the ratio be-

tween the viscous effect and the capillary force such as

C a = µLV0

γLV
(1.36)

with µL the viscosity of the liquid. Although some general theories have attempted to bring

those approaches together [172], there is no universal model at the moment. Therefore as a first

approximation, no model is added here to represent the dynamic contact angle and only the

static contact angle will be considered.

Triple line equilibrium - Static contact angle

At the triple line L(t ) (see Fig. 1.1), the mechanical equilibrium reads

γSLT SL +γSV T SV +γLV T LV = Rsolid. (1.37)

It is assumed that the reaction of the solid Rsolid has no tangent component (Rsolid = Rsolidns

with ns the normal to the solid which is equal to nSL or nSV at the triple line). Writing the

projection of Eq. 1.37 in the tangent direction leads to the Young’s relation [229]

γSV = γSL +γLV cosθc . (1.38)

In the case of θc = 0◦, the wetting is named ’total’.

1.3 Summary

In the previous sections, fluid equations have been presented and some assumptions have

been made due to the specificity of LRI process. It has been supposed that:

— Fluids are incompressible with a Newtonian behaviour;

— Temperature is constant and then the surface tension coefficient too;

— A surface tension and two surface energies are applied on ΓLV , ΓSV and ΓSL respectively;

— The reaction of the solid is supposed to be in the normal direction in the triple line equi-

librium equation;

— A static angle is chosen to model the contact angle at the triple line.

— The solid does not move.
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Chapter 1. Modelling the flow and capillary action

The general framework of bi-fluid flow has many types of boundary conditions as depicted

in Fig.1.7 which is a 2D restriction of a meniscus against a vertical wall depicted in Fig. 1.1.

Neumann boundary conditions (onΓN ) and Dirichlet boundary conditions (onΓD ) are applied,

in order to weakly enforce the stress vectorσ ·n or impose a value for the velocity such as v = v̄
or one of its components (v ·n).

FIGURE 1.7 – Boundary conditions for a bi-fluid flow simulation with capillarity

Combining the Neumann and Dirichlet boundary conditions with those defined in section 1.1.5

and 1.2.3, the problem to solve reads

ρ

(
∂v

∂t
+v ·∇v

)
=−∇p +∇· (2µε̇(v

)+ρg inΩ,

∇·v = 0 inΩ,

σ ·n =−Pext n on ΓN ,

[σ ·n]ΓLV =−∇α(γLV tαLV ) on ΓLV (t ),

v ·nSL = 0 and σ ·nSL =−βSL v +∇α(γSL tSL
α) on ΓSL(t ),

v ·nSV = 0 and σ ·nSV =−βSV v +∇α(γSV tSV
α) on ΓSV (t ),

γSLT SL +γSV T SV +γLV T LV = Rsolidns and v ·ns = 0 on L(t ),

v = v or v ·n = 0 on ΓD .

(1.39)

The intersection between the domain where Dirichlet condition is imposed and the domain

with a Neumann condition is not zero (in general) ΓD ∩ΓN 6= 0. Even if Neumann and Dirichlet

conditions are imposed at the same position, they cannot act in the same direction. For exam-

ple, it is possible to impose the normal velocity equals to zero and at the same position impose

a value for the stress vector but only in tangents directions, as shown in Sect. 1.2.3.

1.4 Capillarity and gravity

Capillary effects appear in confined regions where gravity has a negligible effect since it

acts upon a very small amount of liquid. The distance from the wall at which the capillary is

predominant compared to gravity is called the capillary length [133]. In order to validate our

numerical simulations, the analytical solution of a meniscus creeping up against a vertical wall

is given and numerical solutions are exhibited for a meniscus between two vertical walls.
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1.4. Capillarity and gravity

1.4.1 Capillary length

κ−1 refers to a particular length, called the capillary length, beyond which gravity becomes

more important than capillary effect. It can be estimated by comparing the Laplace’s pressure

γLV /κ−1 and the hydrostatic pressure ρL gκ−1 at a depth κ−1. Equating both pressures leads to

the definition of the capillary length

κ−1 =√
γLV /ρL g . (1.40)

For instance, if the diameter of a bubble is smaller than the capillary length, then gravity has a

negligible influence compared to Laplace’s pressure. In that case, the bubble tends to maintain

a spherical shape. Alternatively, if its diameter is longer than the capillary length, the bubble

would have a flattened shape due to the effect of gravity.

1.4.2 Equation of a meniscus against a vertical wall

The surface of the meniscus is parametrised by z(x) with z the height and x the distance

from the wall. In Fig. 1.8, two types of menisci are represented: θc < 90◦ (a) and θc > 90◦ (b).

In case (A) curvature is negative whereas it is positive in case (B) of a reverse meniscus, in the

Cartesian coordinate system.

The pressure of the vapour phase pV is higher than the pressure just under the meniscus in

(A) high wettability (B) low wettability

FIGURE 1.8 – Meniscus against a wall [71]

the case (A). The meniscus rises in the first case to verify both the contact angle θc and accom-

modate the pressure pressure jump. This meniscus is constrained by the vapour phase which

presses the meniscus and curve it convexly. The pressure drop under the meniscus helps the

liquid to rise in the first case while it pushes the fluid down for the second case (B).

The equation for the meniscus is derived by equating the action of the hydrostatic pressure and

capillary pressure. The capillary pressure is proportional to the curvature C which in 2D is

C =−
d 2z

d x2[
1+

(
d z

d x

)2]3/2
. (1.41)

In order to evaluate the influence of the capillary length let’s assume that far from the wall the

first derivative of the position is negligible compared to 1 i.e. d z
d x << 1. Therefore, the curvature is
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Chapter 1. Modelling the flow and capillary action

approximated by C ≈−d 2z
d x2 far enough from the wall. Laplace’s equation 1.32 gives the pressure

under the surface: p A = patm+γC ≈ patm−γd 2z

d x2
. Furthermore, the pressure must also conform

to the laws of hydrostatics: p A = patm −ρg z since at equilibrium ∇p = ρg . Expressing p A from

the Laplace’s law yields

−γC = ρg z

or, equivalently using the first approximation for the curvature C ,

κ2z =−C ≈ d 2z

d x2
. (1.42)

Using the conditions z → 0 when x →+∞, the solution is

z = z0exp
(
− x

κ−1

)
(1.43)

Consequently, the surface perturbation decays exponentially with distance. Starting from this

position and recalling that exp(−1) ≈ 0.37 and exp(−2) ≈ 0.13, it can be inferred that the sur-

face tension force has a negligible effect on the shape of the meniscus at a distance greater than

the capillary length κ−1. This first part of the derivation helps to understand why the effect of

surface tension is larger than gravity when the distance from the solid is smaller than the capil-

lary length. However, the assumption on the curvature does not hold in the immediate vicinity

of the wall.

For the complete solution of a meniscus against a wall, curvature does not have to be ap-

proximated such as in Eq. 1.42. In this case, an analytical solution is known [71]. The solution

can be derived by writing the force balance of the grey dotted surface in Fig. 1.9, made of two

forces. The surface tension force is acting at each side of the interface going out of the control

dotted volume, xa and xm . The second force, the pressure action, is made up of the sum of ele-

mentary pressure actions on the striped region, for any height z̄ of the striped region between

0 and z.

FIGURE 1.9 – Meniscus against a wall - force equilibrium
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1.4. Capillarity and gravity

On the right-hand side of the dotted surface, the tangent to the interface is horizontal, thus the

surface tension force is only γLV in the x direction. Whereas on the left-hand side, the force due

to surface tension projected on the x-axis is γLV sin(θ) with θ the angle between the meniscus

and the z axis at a position xa . The other contribution to the mechanical equilibrium is brought

by the hydrostatic pressure P ′
0 −ρV g z̄ in the air and P0 −ρL g z̄ in the liquid, with P ′

0 and P0 the

pressure at each side of the interface at position xm . The horizontal action of the pressure is

derived by integrating the action in the liquid and the vapour phase
∫ z

0
P ′

0−P0+(ρL−ρV )g z̄ d z̄.

The relationship between P ′
0 and P0 is found at the position z(xm). Actually, when considering

only one wall, the point xm tends to infinity to recover a horizontal tangent for the meniscus.

The curvature is zero precisely in that case since the point xm is far away from the wall. Accord-

ing to the Young-Laplace’s law, the pressure jump is zero and P ′
0 = P0. In the case of a meniscus

between two walls, the relation is P ′
0 = P0 +γSLC (xm) but the curvature depends on the shape

of the meniscus and that is why the equation has no known analytical solution.

Taking P ′
0 = P0, it comes that the resultant pressure force is

∫ z

0
P ′

0−P0+(ρL−ρV )g z̄ d z̄ = 1

2
(ρL−

ρV )g z2. The horizontal projection of the force balance yields

sin(θ)+ 1

2
κ2
∗z2 = 1 (1.44)

with κ−1
∗ =

√
γLV

g (ρL −ρV )
a modified capillary length for this problem. The contribution of the

air pressure is taken into account through the air density in the modified capillary length. Yet

in most cases, the ratio between liquid and air density is around a thousand. Therefore, the

air pressure contribution is negligible, and the equivalent capillary length is very close to the

capillary length, κ−1 ≈ κ−1∗ . Eq. 1.44 may be applied to the position against the wall in order to

obtain an expression of the height h = z(x = 0) of the meniscus

h =p
2κ−1 (1− sinθc )1/2 (1.45)

Noticing that sinθ can be rewritten as
1[

1+
(

d z
d x

)2
]1/2

one can integrate one more time the equa-

tion 1.44 and yield an implicit relation [71] giving the position x in terms of height z

x −x0 = κ−1cosh

(
2κ−1

z

)
−2κ−1

(
1− z2

4κ−2

)1/2

(1.46)

where x0 is a distance to be determined for obtaining x = 0 at z = h (i.e. at the wall). In this

formula again, it is possible to take into account the effect of the pressure of the air by replacing

κ by κ∗ but it does not significantly change the shape of the meniscus when studying air and

water.

In terms of velocity at equilibrium, the velocity field is zero everywhere. From the position of

the meniscus, the pressure field can be computed since the pressure under the meniscus is only

the hydrostatic pressure balancing Laplace’s pressure.
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Chapter 1. Modelling the flow and capillary action

1.4.3 Equation of the meniscus between two vertical walls

The meniscus between two vertical walls is a more challenging case compared to the previ-

ous one since the entire meniscus is going up in order to accommodate Laplace’s law and hy-

drostatic pressure constraint at the same time. Two independent numerical methods are used

to solve this problem based on the minimisation of global energy [85] and force equilibrium.

These numerical methods are considered as semi-analytical to validate the Finite Element (FE)

solution.

Method 1: Energy minimisation

FIGURE 1.10 – Meniscus between two vertical walls - Drawing for energy derivation

Considering 2xm the distance between the two walls and as in Fig. 1.10, the potential energy

(Ep ) is defined as

Ep =
∫ 2xm

0

∫ z(x)

0
ρL g z̄d z̄d x =

∫ 2xm

0

1

2
ρL g z(x)2d x (1.47)

representing the sum of potential energy of each column of fluid. As it has been seen for a

meniscus against a wall, the contribution of the air pressure may be neglected and this as-

sumption holds for a meniscus between two walls. The second contribution to the energy is

the surface tension energy (Est )

Est =
∫
ΓLV

γLV dl =
∫ 2xm

0
γLV

√
1+ z ′(x)2d x (1.48)

where the short notation z ′(x) expresses the derivative z ′(x) = d z
d x . Summing the two energies

yields the global energy of the system

E(z, z ′) = Ep +Est =
∫ 2xm

0

[
1

2
ρL g z(x)2 +γLV

√
1+ z ′(x)2

]
d x (1.49)

Finally the problem to be solved is a minimisation of the energy with conditions at the triple

points on the left and right walls and it reads

min
{

E(z, z ′) ; z ′(0) =− 1

t anθc
and z ′(2xm) = 1

t anθc

}
(1.50)

Due to the boundary conditions, the meniscus is going up. Then the surface tension energy is

pushing the meniscus up since it does not tolerate a high degree of curvature (i.e. meniscus has

to be as flat as possible to minimise surface tension energy). It is the value of the contact angle

which acts as a driving force in the first instances of the minimisation of energy. The meniscus
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1.4. Capillarity and gravity

keeps going up until the weight of the meniscus balances the energy of the meniscus. Problem

1.50 is solved by an iterative method.

— Problem discretisation

The interval [0,mx] is divided into N + 1 points xk , equally spaced by a distance he =
2xm/N such that xk = k ×h for k ∈ [0, N ]. The N + 1 heights are computed using a fi-

nite difference method at each iteration i . The function z(x) is approximated using the

discretised k points for each iteration i

Z i
k ≈ z(xk ) (1.51)

Therefore the discretised problem reads

min
{

E i
N (Z ) ; Z i

0 = he

t anθ
+Z i

1 and Z i
N = he

t anθ
+Z i

N−1

}
(1.52)

where the energy is discretised using a backward differentiation and the integral is ap-

proximated using a rectangular method

E i
N =

N∑
k=0

[
1

2
ρg

(
Z i

k

)2
he +γ

√
h2

e +
(
Z i

k+1 −Z i
k

)2
]

(1.53)

— Minimisation of energy requires to compute the gradient

∂E i
N

∂Z i
k

= ρg Z i
k he −γZ i

k+1 −Z i
k

ak
+γZ i

k −Z i
k−1

ak−1
(1.54)

with ak =
√

he +
(
Z i

k+1 −Z i
k

)2
. Therefore for each iteration i the new position is

Z i+1 = Z i −q∇E i
N (1.55)

where q is a penalisation parameter used in the gradient descent method. The procedure

is iterated until the norm of the gradient is less than a small value, 1e−18 in this case.

Method 2: Force balance

Energy of the system is still seen as a function of two independent variables, namely z and

z ′ = d z/d x. Consequently, the variation of energy is expressed as

δE(z, z ′) = ∂E

∂z
δz + ∂E

∂z ′δz ′

=
∫ 2xm

0

(
ρL g z(x)δz +γLV

z ′(x)√
1+ z ′(x)2

δz ′
)

d x

=
∫ 2xm

0

(
− d

d x

(
γLV z ′(x)√
1+ z ′(x)2

)
+ρL g z(x)

)
δz d x +

[
γLV z ′(x)√
1+ z ′(x)2

δz(x)

]2xm

0

(1.56)

by integration by parts. The equilibrium state is achieved for a minimum of energy δE = 0, lead-

ing to the force balance equation. Actually, the integral term corresponds to the force balance
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Chapter 1. Modelling the flow and capillary action

equation, and the second term is the boundary condition to impose. For the boundary con-

dition at the position x = 0 and x = 2xm it may be possible to impose either the increment of

variation δz or
z ′(x)√

1+ z ′(x)2
= cosθc . The salient feature of this short derivation is to get a better

understanding of the condition at the triple line. The displacement z(x) of the meniscus is the

unknown, then it is not a boundary condition. Yet, the condition on cosθc may be imposed by

giving the value of the contact angle θc or only by specifying the surface tension and surface

energies in the mechanical equilibrium equation of the triple line 1.37. From the force balance

strategy, one can be convinced that the problem requires to impose the contact angle. And from

the energy minimisation, one can see the strong influence of contact angle on the whole solu-

tion. Therefore, even if this condition is only imposed at one point of the domain, it influences

the solution on the whole domain.

The force balance is then written:

− d

d x

(
γLV z ′(x)√
1+ z ′(x)2

)
+ρL g z(x) = 0

⇔ −γLV
z ′′(x)(

1+ z ′(x)2
)3/2

+ρL g z(x) = 0

(1.57)

representing the surface tension action γLV C balanced by the weight of the fluid.

— Linearisation of the equation 1.57 is as follows. The expression at iteration i +1 may be

approximated using

z ′′(x)(
1+ z ′(x)2

)3/2

∣∣∣∣∣
i+1

≈ z ′′(x)
∣∣
i+1(

1+ z ′(x)2
)3/2

∣∣∣
i

= z ′′(x)
∣∣
i+1 Ai (x) (1.58)

where the symbol |i+1 represents the quantity evaluated at iteration i + 1 and Ai (x) =
1

(1+z ′(x)2)3/2
∣∣∣
i

.

— The equation is discretised using a finite difference method (second order centered in

space scheme) like for the minimisation of energy and solved using the boundary con-

dition on the contact angle at each end. The discretised equation reads

−γLV Ai
k

Z i+1
k+1 −2Z i+1

k +Z i+1
k−1

h2
e

+ρL g Z i+1
k = 0 (1.59)

with Ai
k =

(
1+

(
Z i

k+1−Z i
k−1

)2

4h2
e

)−3/2

. The system written in matrix form with boundary con-

ditions is
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2γLV

h2
e

Ai
1 +ρL g −γLV

h2
e

Ai
1 0 · · · 0

−γLV

h2
e

Ai
2

2γLV

h2
e

Ai
2 +ρL g −γLV

h2
e

Ai
2 0

...

0
. . . . . . . . . 0

... −γLV

h2
e

Ai
N−2

2γLV

h2
e

Ai
N−2 +ρL g −γLV

h2
e

Ai
N−2

0 · · · 0 −γLV

h2
e

Ai
N−1

2γLV

h2
e

Ai
N−1 +ρL g




Z i+1

1

Z i+1
2
...

Z i+1
N−2

Z i+1
N−1

=



γLV Ai
1

he tanθc

0
...

0
γLV Ai

N−1
he tanθc


(1.60)

with boundary conditions in the right-hand side term.

Convergence

The numerical solution describing the shape of the meniscus tends to a limit when refining

the spacial discretisation (i.e. the number of points) as it can be seen in Fig. 1.11. The asymp-

FIGURE 1.11 – Meniscus between two walls - convergence of the shape of the meniscus
when increasing the number of points (force balance equation)

tote is only assessed for the force balance method since it is shown to be more robust than

the energy minimisation method. The contact angle used is 55.5°, surface tension parameter

γLV = 50.8mN ·m−1, the liquid density ρL = 3325kg ·m−3 and the distance between the two

walls 2xm = 0.1cm (representing diiodomethane and cellulose [180]). Fig. 1.12 depicts the dis-

crepancy between results from the minimisation of energy and the force equilibrium method,

when method 1 converges.

Conclusion

Within the context of LRI process, this chapter has introduced the modelling of capillary-

driven flows. These equations have three unknowns: the velocity, the pressure and interface

position. The two following chapters intend to set-up a solver for fluid equations and a solver

to represent the interface position.
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FIGURE 1.12 – Meniscus between two walls - comparison between energy minimisation
method (with 1001 points) and force equilibrium method (200001 points)

Résumé en Français : Modélisation de l’écoulement et de l’action

capillaire

L’écoulement bifluide est régi par les équations de conservation de la mécanique des mi-

lieux continus. Notre étude se place dans un cadre isotherme, car l’infusion de la préforme

se fait à température contrôlée. Par conséquent, les équations de conservation de la quantité

de mouvement et de conservation de la masse, réduites ici à la contrainte d’incompressibilité

ou encore Navier-Stokes ou Stokes, sont résolues pour déterminer le champ de vitesse et de

pression. Trois interfaces sont considérées dans cette étude, l’interface entre les fibres et la ré-

sine, les fibres et l’air raréfié ainsi que la résine et l’air ; une contrainte surfacique agissant sur

chacune d’elles. Chaque interface vérifie l’équilibre mécanique exprimant le saut du vecteur

contrainte de part et d’autre de l’interface. Cet équilibre décrit le saut de pression de Laplace

et les effets Marangoni. Le second et dernier équilibre mécanique pour les problèmes de ca-

pillarité est celui de la ligne triple, s’exprimant comme la somme des contraintes surfaciques

de chaque interface équilibrée par la réaction du solide. La projection de cette dernière rela-

tion dans une des directions tangentes à l’interface donne l’angle de contact statique de la ligne

triple lorsque la réaction du solide est portée par la normale. L’étude d’un ménisque s’appuyant

contre un mur permet d’introduire la longueur capillaire. Dans la zone allant de la paroi solide

jusqu’à cette longueur critique, l’action capillaire est prédominante par rapport à la gravité.

À l’inverse, l’action capillaire est négligeable devant la gravité à une distance supérieure de la

paroi. De ce fait, le positionnement de deux plaques à une distance inférieure à la longueur ca-

pillaire permet d’obtenir une ascension du liquide entre ces plaques et retrouver à l’équilibre

l’angle de contact statique.
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Introduction

This chapter exposes the numerical strategy for solving the previously established equations

describing capillary-driven flows. The first step consists in setting-up a Finite Element formu-

lation for discretising the Navier-Stokes equations. These equations are not linear, because of

the convective term v · ∇v , and consequently require the use of an iterative scheme, such as

Picard’s or Newton-Raphson’s schemes. Furthermore, both velocity and pressure fields will be

approximated by continuous and piecewise linear discrete fields. Such a discretisation of the

Navier-Stokes equations, is known to be unstable. Therefore, a Variational MultiScale method

is presented in order to ensure the existence and the uniqueness of the computed numerical

solution. This computational strategy will be validated in the last section of this chapter. Noting

that resin flow is not turbulent in LRI process, thus no turbulent model is investigated.

2.1 Weak formulation

The nonlinearity of the Navier-Stokes equations results from the convective term v ·∇v . First

of all, the weak formulation is given in this subsection. Then a standard time discretisation of

the unsteady term and a linearisation of the convective term will be presented. The system of

equations will be given as a saddle point minimisation problem requiring a stabilisation tech-

nique.

In order to solve the previous system of equations Eq. 1.39 using a Finite Element Method

(FEM), the weak integral form of this system has first to be established. Let’s first define function

spaces, L 2 and H 1 corresponding respectively to the Lebesgues space of square-integrable
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Chapter 2. Numerical strategy for solving Navier-Stokes equations

functions and the first type Sobolev’s space:

L 2(Ω) =
{

u : Ω→ IR |
∫
Ω

u2 dV <∞
}

H 1(Ω) =
{

u ∈L 2(Ω) | ∀i , j ∈N∩ [1,di m],
∂ui

∂x j
∈ L 2(Ω)

} (2.1)

with di m the space dimension. The functional spaces based on the Lesbesgues L 2(Ω) and

Sobolev H 1(Ω) spaces are defined as

W 0 =
{
ξ ∈ (

H 1 (Ω)
)di m

∣∣∣ ∀x ∈ ΓD ξ= 0
}

W =
{
ξ ∈ (

H 1 (Ω)
)di m

∣∣∣ ∀x ∈ ΓD ξ= v̄
}

Q =
{
ζ ∈L 2(Ω)

∣∣∣ ∫
Ω
ζdV = 0

} (2.2)

Following the Galerkin approach, Dirichlet boundary conditions are included in the definition

of the approximation space W (essential boundary condition). Weighting the Navier-Stokes

equations Eq. 1.16 with the test functions w and q , and after integrations by parts on the vis-

cous and pressure gradient terms, the problem reads:

find v ∈W , p ∈Q such that∫
Ω
ρ
∂v

∂t
·w dV +

∫
Ω
ρ(v ·∇)v ·w dV +

∫
Ω

2µε̇(v ) : ε̇(w )dV −
∫
Ω

p∇·w dV

+
∫
Ω

q∇·v dV =
∫
Ω
ρg ·w dV −

∫
ΓN

pext n ·w dV +
∫

(∂ΩL∪∂ΩV )\(ΓN )
σ ·n ·w dV

(2.3)

for all test functions (w , q) ∈W 0×Q. It may be possible to subtract the incompressibility equa-

tion ∇ · v = 0 to the momentum balance equation which would change the sign of the q∇ · v
term. This has the advantage to yield a symmetric matrix in the case of a Stokes flow. Yet, for

the Navier-Stokes equations, this gambit is not needed, since the symmetry of the elementary

rigidity matrix is broken by the convective term. In this chapter, the virtual work at the interfaces∫
(∂ΩL∪∂ΩV )\(ΓN )σ ·n ·w dV is taken equal to zero since a single fluid is considered.

2.2 Linearisation and discretisation

The linearisation of the convective term can be performed in the weak or strong formulation

indistinctly. It can be understood as linearising the unknown velocity v i t+1 at iteration i t + 1

with the velocity evaluated at the previous iteration v i t , incremented by a variation δv (v i t+1 =
v i t +δv ). The convective term from Navier-Stokes equation reads

(v i t+1 ·∇)v i t+1 =
(

v i t ·∇
)

v i t+1 + (δv ·∇) v i t+1

=
(

v i t ·∇
)

v i t+1 + (δv ·∇) v i t + (δv ·∇)δv
(2.4)

Neglecting the second order term (δv ·∇)δv and developing the δv term in the previous equa-

tion, it comes

(v i t+1 ·∇)v i t+1 =
(

v i t ·∇
)

v i t+1 +
(

v i t+1 ·∇
)

v i t −
(

v i t ·∇
)

v i t (2.5)
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By introducing a numerical parameter α, we obtain the linearisation:

(v i t+1 ·∇)v i t+1 ≈ (v i t ·∇)v i t+1 +α(v i t+1 ·∇)v i t −α(v i t ·∇)v i t (2.6)

This is known as Picard’s linearisation for α = 0 and Newton-Raphson’s linearisation when

α= 1. The Picard linearisation is commonly implemented in a FE code, because involving only

one term. Additionally, a linear convergence is expected if the convection, or nonlinearity, is

not too high [164]. In contrast, the Newton-Raphson method is known to exhibit a quadratic

convergence, but only if the initial guess is close enough to the solution [65]. For the sake of ro-

bustness and efficiency scheme, both approaches can be combined: Picard linearisation is used

during the first iterations in order to approach the solution, and then the scheme is switched to

the Newton-Raphson linearisation to accelerate the convergence.

Let [0, t f ] be the computation time interval, t f > 0. This interval is discretised by a set of

times {t n}n=0,··· ,N satisfying t 0 = 0, t N = t f and t n+1 > t n . In the simulations, these times are

assumed to be uniformly distributed. The time step is then defined as ∆t = t n+1 − t n . Here,

the superscripts n and n +1 denote, respectively, quantities evaluated at time t n and t n+1. The

unsteady term of the Navier-Stokes equations is discretised using a first order Euler backward

differentiation
∂v

∂t
≈ v n+1 −v n

∆t
(2.7)

The Navier-Stokes equations are written in a time implicit form, and the problem reads:

at time t n+1 and iteration i t +1, find v n+1,i t+1 ∈W , pn+1,i t+1 ∈Q such that∫
Ω
ρ

v n+1,i t+1 −v n

∆t
·w dV +

∫
Ω
ρ(v n+1,i t ·∇)v n+1,i t+1 ·w dV

+α
∫
Ω
ρ(v n+1,i t+1 ·∇)v n+1,i t ·w dV +

∫
Ω

2µε̇(v n+1,i t+1) : ε̇(w )dV −
∫
Ω

pn+1,i t+1∇·w dV

+
∫
Ω

q∇·v n+1,i t+1 dV =
∫
Ω
ρg ·w dV +α

∫
Ω
ρ(v n+1,i t ·∇)v n+1,i t ·w dV −

∫
ΓN

pext n ·w dV

(2.8)

for all (w , q) ∈W 0×Q and with v (t = 0) = 0 the initial velocity. The iterative procedure is carried

out until the velocity is solution of the non linearised Navier-Stokes equations. This condition is

assessed by looking at the finite element residual, which is defined as the internal forces minus

the external loadings. Thus the FE residual tends to zero when the solution converges, else it di-

verges. During the first iterations (usually 5) the Picard linearisation scheme (α= 0) is executed,

after which, it switches to the Newton-Raphson scheme (α = 1). An improved condition could

also be based on a minimum relative residual in order to be close enough to the solution, before

starting to converge faster to it. Finally, by its structure, the linearised Navier-Stokes equations

can be classified as a saddle point minimisation.

The final step is to approximate the spaces W and Q which are of infinite dimension with

functional spaces W h and Qh of finite dimension [41]. Therefore the solution (v n+1,i+1, pn+1,i+1) ∈
W ×Q is approximated by (v n+1,i+1

h , pn+1,i+1
h ) ∈W h×Qh . The domainΩ is discretised by a mesh

Th(Ω), made up of simplexesΩe , triangles in 2D or tetrahedrons in 3D. The discretised domain
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Chapter 2. Numerical strategy for solving Navier-Stokes equations

Ωh is such thatΩh =⋃nel
e=1Ω

e with nel the number of elements. The Navier-Stokes discrete prob-

lem may be written with the bilinear operator B and linear operator L. The operators are defined

as follow

Bh([v n+1,i+1
h , pn+1,i+1

h ], [w h , qh]) =
∫
Ω
ρ

v n+1,i t+1 −v n

∆t
·w dV +

∫
Ω
ρ(v n+1,i t ·∇)v n+1,i t+1 ·w dV

+α
∫
Ω
ρ(v n+1,i t+1 ·∇)v n+1,i t ·w dV +

∫
Ω

2µε̇(v n+1,i t+1) : ε̇(w )dV −
∫
Ω

pn+1,i t+1∇·w dV

+
∫
Ω

q∇·v n+1,i t+1 dV

(2.9)

and

Lh([w h , qh]) =
∫
Ω
ρg ·w dV +α

∫
Ω
ρ(v n+1,i t ·∇)v n+1,i t ·w dV −

∫
ΓN

pext n ·w dV (2.10)

The Navier-Stokes equation written with bilinear and linear operators reads:

Find v h ∈W h and ph ∈Qh such as

Bh([v n+1,i+1
h , pn+1,i+1

h ], [w h , qh]) = Lh([w h , qh]) ∀ (w h , qh) ∈W 0
h ×Qh . (2.11)

In this work, the same approximation is used for both pressure and velocity: a continuous and

piecewise linear approximation. This type of finite element is called P1/P1 in velocity and pres-

sure. Among many other combinations, the P2/P1 configuration, or Taylor-Hood element, is

well-known for its inherent stability with quadratic/linear approximations. The finite element

formulation resulting from the P1/P1 discretisation of NS equations is not stable, and conse-

quently requires a stabilisation technique. On the contrary, the explanation for the choice of a

linear approximation and the resulting stabilisation are the subjects of next section.

2.3 Stabilised finite element formulation

Usually, the velocity-pressure mixed discrete formulation Eq. 2.11 has to satisfy the Ladysenskaya-

Brezzi-Babuska (LBB) conditions [41], which ensure the existence and uniqueness, or equiva-

lently the stability, of the discrete solution. This restricts the choice of the approximation spaces

W h and Qh . From that point, three possibilities arise. The first method developed by the scien-

tific community was based on the fact that pressure can be viewed as the Lagrange multiplier

associated with the incompressibility constraint. The equations can then be formulated only

in velocity, while pressure is computed via an Uzawa algorithm [186]. This strategy is limited

because it requires iterations to solve the linearised problem. The second option is to choose

a stable element according to the LBB theory. For example, P2/P1, or P1+/P1 approximations

are stable [88]. For these elements, the number of degrees of freedom in velocity is systemically

higher than the one in pressure. Intuitively, this may be attributed to the fact that the second

order derivatives of the velocity are involved in the Navier-Stokes equations, but only the first

order derivative of the pressure. Consequently, approximated velocity has to be smoother than

pressure. The last possibility is to use a stabilisation technique to circumvent the LBB condi-

tion. Here, a Variational Multiscale Method (VMS) framework, formalised by Hughes [116, 117],
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2.3. Stabilised finite element formulation

is considered. Such a VMS approach seems relevant for the simulation of capillary-driven flow,

for many reasons. Hence, the pressure enrichment strategy, presented later on, and needed to

capture the pressure discontinuities, is built and works well in the VMS stabilisation context,

and not with Taylor-Hood element P2/P1. Additionally, VMS methods can also be formulated

to stabilise the convection-dominated flows. And last but not least, VMS stabilisations may be

implemented with ease in a FE code since they consist of adding additional terms in the stan-

dard formulation.

The VMS approach is based on the fact that the lost of stability between the continuous

and the discrete problems, is due to the unresolved subgrid components, here v ′ and p ′ [42].

Both velocity and pressure field are divided into a computable component, the finite element

solution, and these subgrid components:

v = v n+1,i+1
h +v ′ and p = pn+1,i+1

h +p ′.

The test function are split accordingly:

w = w h +w ′, and q = qh +q ′.

The subgrid components v ′ and p ′ belong, respectively, to W ′ and Q′, defined such that W =
W h ⊕W ′ and Q = Qh ⊕Q′. Using the scale decomposition for pressure and velocity, the sta-

bilised bilinear form of the Navier-Stokes equations reads

Bh([v n+1,i+1
h +v ′, pn+1,i+1

h +p ′], [w h +w ′, qh +q ′]) = Lh([w h +w ′, qh +q ′]) (2.12)

∀ (w h , qh) ∈ W 0
h ×Qh . The problem can be split into two subproblems, one at the Finite Ele-

ments (FE) scale and one at the sub-grid scale. The FE problem reads:

Bh([v n+1,i+1
h , pn+1,i+1

h ], [w h , qh])+Bh([v ′, p ′][w h , qh]) = Lh([w h , qh]) (2.13)

and the sub-grid problem is:

Bh([v n+1,i+1
h , pn+1,i+1

h ], [w ′, q ′])+Bh([v ′, p ′][w ′, q ′]) = Lh([w ′, q ′]) (2.14)

Eq. 2.13 may be rewritten as follows, making the sub-grid component terms appear clearly

Bh([v n+1,i+1
h , pn+1,i+1

h ], [w h , qh])+
nel∑
e=1

∫
Ωe

2µε̇(v ′) : ε̇(w h)dV +
nel∑
e=1

∫
Ωe
ρ(v n+1,i t

h ·∇v ′) ·w h dV

+
nel∑
e=1

∫
Ωe

qh∇·v ′ dV −
nel∑
e=1

∫
Ωe

p ′∇·w h dV = Lh([w h , qh])

(2.15)

Each stabilisation term involving the sub-grid velocity is integrated by parts. The functions be-

longing to the space W ′ are localised into the mesh elements and consequently vanish on the

element boundary. Consequently, the boundary terms at the element level resulting from the
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Chapter 2. Numerical strategy for solving Navier-Stokes equations

integrations by parts are equal to zero. Therefore the finite element formulation becomes

Bh([v n+1,i+1
h , pn+1,i+1

h ][w h , qh])−
nel∑
e=1

∫
Ωe

p ′∇·w h dV

−
nel∑
e=1

∫
Ωe

v ′ ·
[
µ∆h w h +ρv n+1,i t

h ·∇w h +∇qh

]
dV = Lh([w h , qh])

(2.16)

∀ (w h , qh) ∈W 0
h ×Qh .

This system is closed once v ′ and p ′ are approximated using the subgrid scale problem.

This approximation is done by using a VMS-type method called Algebraic SubGrid Scale (ASGS)

method, derived by Codina [62]. This method was implemented in the Z-Set (Zebulon) [34]

FE code in previous works performed in our laboratory [4, 36, 175] for solving Stokes, Darcy’s,

and Stokes-Darcy’s equations. In this work, the full version of the ASGS method, dedicated to

Navier-Stokes equations, was implemented. Using ASGS method, subgrid velocity v ′ is chosen

proportional to the finite element residual Rn+1,i t+1
h of the momentum balance equation (see

Eq. 2.17). Whereas subgrid pressure p ′ is proportional to the finite element residual of the mass

conservation equation (see Eq. 2.19), with specific proportionality coefficients [21, 62]. Hence,

v ′ =−τv Rn+1,i t+1
h (2.17)

with τv a stabilisation parameter and the FE residual Rn+1,i t+1
h defined as

Rn+1,i t+1
h = ρ v n+1,i t+1

h −v n
h

∆t
+ρv n+1,i t

h ·∇v n+1,i t+1
h −µ∆h v n+1,i t+1 +∇pn+1,i t+1

h −ρg (2.18)

and

p ′ =−τp∇·v n+1,i t+1
h (2.19)

with τp a second stabilisation parameter.

Substituting these expression in Eq. 2.16 leads to the finite element formulation of the Navier-

Stokes equations discretised and stabilised with the ASGS method. This reads:

find for the time n+1 and the iteration i t +1, v n+1,i t+1
h ∈W h and pn+1,i t+1 ∈Qh , with the initial
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2.4. Implementation validation

condition v h(t = 0) = v 0 such as

∫
Ωh

ρ
v n+1,i t+1

h −v n
h

∆t
· w h dV +

∫
Ωh

ρ(v n+1,i t
h · ∇)v n+1,i t+1

h · w h dV

+
∫
Ωh

2µε̇(v n+1,i t+1
h ) : ε̇(w h)dV −

∫
Ωh

pn+1,i t+1
h ∇·w h dV

+
∫
Ωh

qh∇·v n+1,i t+1
h dV −

∫
Ωh

ρg ·w h dV +
∫
ΓN

pext n ·w h dV

+
nel∑
e=1

∫
Ωe
τn+1,i t

v

[
ρv n+1,i t

h ·∇w h +∇qh

]
·[

ρ
v n+1,i t+1

h −v n
h

∆t
+ ρv n+1,i t

h ·∇v n+1,i t+1
h +∇pn+1,i t+1

h −ρg
]

dV

+
nel∑
e=1

∫
Ωe
τn+1,i t

p (∇·v n+1,i t+1
h )(∇·w h)dV = 0 ∀(w h , qh) ∈W 0

h ×Qh

(2.20)

for a Picard’s linearisation (α = 0 as seen in Eq. 2.6). In this work, the velocity v h is piecewise

linear, its second-order derivatives are null in an element, and consequently were removed from

this expression. The stabilisation parameters τv and τp on an element Ωe are defined using a

Fourier analysis [63, 64] as

τv =
[

4µ

(he )2
+ 2ρ‖v e‖

he

]−1

τp = (he )2

τv

(2.21)

where he and ‖v e‖ are respectively the mesh size (sum of all sides divided by the number of

sides) and the norm of the arithmetic average velocity on element.

2.4 Implementation validation

The validation of the implementation in the Zebulon FE code of the Navier-Stokes ASGS-

stabilized equations is achieved by performing an error analysis in a steady-state case. More-

over, two additional cases will be subsequently considered to assess the efficiency of the strat-

egy applied to 3D Navier-Stokes and Stokes flows. The enforcement of Neumann and friction

boundary conditions will be specifically evaluated. Finally, the renowned case of Von Karman

vortexes will be used to assess the full 3D Navier-Stokes ASGS solver. In this assessment section

no units are given for numerical values, since all type of metric system can be used, as long as

it remains homogeneous. The numerical simulation relies on four main steps: meshing the ge-

ometry made with GMSH [95], the numerical model implemented in Zebulon [34], solving the

linear system of equations with MUMPS solver [10, 11] and visualisation with ParaView [8].
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Chapter 2. Numerical strategy for solving Navier-Stokes equations

2.4.1 Error analysis in a steady-state case - polynomial manufactured solu-

tion

The polynomial manufactured solution of the steady Navier Stokes equations inside a square

of unit length Ω = [0,1]× [0,1] has been presented and solved several times in [98, 106, 112] in

order to assess the efficiency of the Navier-Stokes solver. This analysis is performed by calcu-

lating the convergence rate of the stabilised Navier-Stokes equations and comparing it to the

error obtained with the naturally stable P2/P1 Navier-Stokes element. The problem consists of

a jet impinging upon a wall with a controlled body force f given by

fx = 5ρx y8 +10ρx y3 +60µx y2

fy = 0
(2.22)

This body force is acting as an external force like the gravity and is consequently added to the

right-hand side of the linear system. The velocity and the pressure fields solutions of the steady

Navier-Stokes equations with the external force given in Eq. 2.22 are

vx =−5x y4 vy =−1

2
+ y5

p = 1

2
ρ(y5 − y10)+5µy4

(2.23)

Fig. 2.1 shows respectively, from left to right and top to down, the boundary conditions, the

velocity field, the pressure field with a low Reynold number and pressure field with a higher

Reynold number. A specificity of these boundary conditions is to prescribe the pressure at the

bottom left corner, since pressure is defined up to an additive constant. Looking at the velocity,

the fluid is injected from the upper right-hand side of the domain and is flowing out through

the bottom and upper sides after impinging upon the left-hand side wall.

Contrary to the velocity, the pressure field, the analytical expression which is given in Eq. 2.23,

depends on the flow regime, i.e. on density and viscosity. Actually, Fig. 2.1 (C) represents the

pressure field in the case of a laminar flow with a low Reynolds number Re = 0.5025 and the

flow is said to be diffusion dominated. Density and viscosity are then ρ = 0.1 and µ = 1. In the

second case depicted in Fig. 2.1 (D), those parameters are ρ = 1000 and µ= 1, yielding a turbu-

lent flow (or convection dominated flow) with a Reynolds number Re = 5025.

For the purpose of studying the convergence order, the norms L 2(Ω), ‖·‖0,Ω and H 1, ‖·‖1,Ω,

are defined:

‖u‖0,Ω =
(∫
Ω

u2 dV

) 1
2

(2.24)

‖u‖1,Ω =
(∫
Ω

u2 dV +
di m∑
j=1

∥∥∥∥ ∂u

∂x j

∥∥∥∥2

0,Ω

) 1
2

(2.25)

where di m is the spatial dimension.

As represented in Fig. 2.2, convergence orders are given for the naturally stable P2/P1 el-

ement in sub-figure (A) and for the ASGS-P1/P1 element in sub-figure (B), both for the low
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(A) boundary conditions
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(B) velocity field and streamlines
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(C) Pressure field with Re =
0.5025, ρ = 0.1 and µ= 1
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(D) Pressure field with Re = 5025,
ρ = 1000 and µ= 1

FIGURE 2.1 – Manufactured Solution for steady Navier Stokes

Reynolds number Re = 0.5025. Convergence orders are computed using 6 (for P2/P1 element)

or 7 (for P1/P1) structured meshes with the number of elements per side ranging from 20 to

400. The P2/P1 element matches the three theoretical convergence orders. The theoretical con-

vergence orders are 2 for both pressure with the norm L 2 and velocity with the norm H 1, and

a convergence order of 3 for the velocity with the norm L 2. The numerical values are: 2.04 for

the pressure, exactly as anticipated from the theory, 2 and 3 for the velocity with the norms H 1

and L 2 respectively.

The element stabilised with ASGS shows a stronger convergence for the norm L 2 in pressure

since the theoretical value is 1 and the computed convergence order is 1.37, but with a lower ac-

curacy compared to the error value of the P2/P1 with the same number of velocity unknowns.

Computed convergence orders are consistent with theoretical values for the velocity, 1 and 2

for the norm H 1 and L 2 respectively. This comparison enables to verify that one order of con-

vergence is lost for the velocity between P1/P1 and P2/P1 element, but the stiffness matrix is

smaller with linear approximation for a fix mesh size.
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FIGURE 2.2 – Manufactured Solution for steady Navier Stokes - Convergence orders in the
case of a laminar flow with Re = 0.5025

In the second case of a convection dominated flow (Re = 5025), the convergence orders are

plotted using the same structured meshes. As shown in Fig. 2.3, both naturally stable or sta-

bilised elements exhibit a better convergence than expected compared to the theoretical val-

ues, stated above. For a fixed mesh size, the error is greater for the turbulent case compared to

the laminar case for both types of elements. Here, the pressure convergence order is the same

for P1/P1 than P2/P1 element.
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FIGURE 2.3 – Manufactured Solution for steady Navier Stokes- Convergence orders in the
case of a turbulent flow with Re = 5025

For the presented cases and stationary solution flows, the non linear convective term is not

neglected. The non linearity has been managed for the convergence order only with a Picard’s

scheme (α alawys null) so far, which is iterated until a convergence criterion is reached. The

convergence criterion is based on the relative residual, defined as the maximum value of the

residual vector divided by the norm of the external force vector. The iterative procedure stops

when the relative residual reaches a value below 10−12. The rest of the paragraph will investigate

how to reduce the number of iterations to reach the same solution.

As presented previously, an improvement possibility consists in using a Newton-Raphson

linearisation (α= 1 in Eq. 2.8) instead of the Picard scheme (α= 0). To assess the iterative pro-

cedure efficiency, the turbulent case (Re = 5025) is solved instead of the laminar case (Re =
0.5025) since in the latter more iterations are added up. Actually, 33 Picard’s iterations are nec-

essary to reach a residual value below 10−12 for the convective dominated flow, whereas only
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6 iterations are required in the case of a laminar flow. Furthermore, no discrepancy has been

noted between P2/P1 or P1/P1 stabilised ASGS elements for the residual convergence in either

laminar or turbulent case.
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FIGURE 2.4 – Manufactured Solution for steady Navier Stokes - Rate of convergence using
ASGS stabilisation, mesh size 1/he = 120, and Re = 5025

The relative residual is plotted in Fig. 2.4 for the fifth refinement mesh corresponding to a mesh

size of 1/he = 120 in the case of a turbulent flow (Re = 5025) when using the ASGS-P1/P1 ele-

ment. The Navier-Stokes solver does only a fixed number of Picard’s iterations and will whether

or not, based on a ’switch_strategy’ condition use a Newton-Raphson’s scheme or continue with

the Picard’s scheme as depicted in Fig 2.4. The blue curve with square markers represents the

relative residual evolution during the iterations with a Picard scheme. Whereas the green dot-

ted curve embodies the Newton-Raphson scheme adopted if the ’switch_strategy’ is turned in.

The ’switch_strategy’ condition may be a simple fixed number of iterations for instance. In the

presented case, the switch condition is activated after nine Picard iterations. An improved con-

dition could also be based on a minimum relative residual in order to be close enough to the

solution, before starting to converge faster to it. As shown in the figure, the relative residual is

divided by 2.5 between two successive iterations in the case of the Picard linearisation and by

27 for the Newton-Raphson on average.

2.4.2 Flow between two walls

This 3D case is designed to investigate a Neumann condition imposition when using the

ASGS stabilisation and validate the implementation of a frictional boundary condition. Only for

this particular case, the Navier-Stokes equations are reduced to the Stokes equations since the

focus is not on the inertia terms, contrary to the previous manufactured solution. The domain

is an unit square extruded in the y-direction (see Fig. 2.5), Ω= [0,1]× [0,5]× [0,1]. On the inlet

{y = 0}, as well as on the outlet {y = 5}, the fluid is not sheared since the velocity in the x and z

directions is imposed to zero. On the bottom {z = 0} boundary, a no-slip condition is considered:

v = 0.
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Chapter 2. Numerical strategy for solving Navier-Stokes equations

FIGURE 2.5 – Flow between two walls - Boundary conditions

On the right {x = 1} and left {x = 0} hand sides boundaries, the normal velocity v · x is set to

zero. This condition is a symmetry condition. Neumann conditions are prescribed at the inlet

and outlet of the domain of normal n = +/− y , i.e. y ·σ · y = −105 and y ·σ · y = 0 respectively.

Only the normal component of the stress vector is prescribed since the tangential velocities are

imposed with a Dirichlet condition. In the case of no-shear flow at the inlet and outlet, using the

definition of the stress tensor Eq. 1.14, the pressure can be derived analytically. More specifically

the condition at the inlet reads p|inlet = 105 +2
∂vy

∂y . As long as the velocity does not depend on

y , the first derivative in the y direction is zero. Therefore, imposing at the inlet and outlet the

value for the normal stress is equivalent to enforce the pressure. Below, two types of conditions

are investigated at the upper wall: a no-slip condition and a Navier slip condition.

No-slip condition

A no-slip condition is first imposed at the upper wall {z = 1}: v = 0 (see Fig. 2.5). The analyt-

ical solution given in Appendix A Eq. A.8 is a velocity quadratic with respect to z, while pressure

is linear along the y-axis. This pressure is plotted in Fig. 2.6 with the dotted line. A numerical

experiment has been carried out with six mesh refinement levels. The initial constant mesh

size is 0.1 in the entire domain and corresponds to the refinement level 0. For each refinement

level, the mesh size is divided by two each time at the inlet and at the outlet where the solution

field varies mostly. The mesh is only locally refined otherwise solving the system would become

computationally CPU and memory intensive. For the six refinement levels, the pressure profile

is plotted along a line passing through points of coordinates (0.5,0,0.5) and (0.5,5,0.5), which

are placed at the center of the inlet and outlet faces. The gravity is not considered in this case

and viscosity is unitary µ= 1.

As seen in Fig.2.6, the pressure values at position y = 0 and y = 5 do not match the values im-

posed through the Neumann condition on the normal stress. The issue comes from the first

derivative of the velocity in the y-direction. The stabilisation inside the domain modifies the

velocity field and does not recover the analytical solution. In fact, the flow speeds up locally

at the inlet and at the outlet, even though the fluid is incompressible. This spurious acceler-

ation results from the relaxation of the mass conservation equation by the ASGS stabilisation∫
Ωe τ

n+1,i t
v ∇ph ·∇qh dV . One solution to deal with this adverse impact of the stabilisation is to

use multiple refinement levels since the effect of the stabilisation smooths out progressively

when refining the mesh size. As seen in the close-ups of Fig. 2.6, the pressure at the inlet and

outlet converges towards the analytical value. Refining the mesh relaxes the stabilisation terms

influence in the weak formulation, since the stabilisation coefficients depend on the mesh size.
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FIGURE 2.6 – Flow between two walls - Pressure field when refining the boundary mesh

A 8.4% error is reported for the pressure at the inlet with a coarser mesh (refinement level 0),

this error decreases to 1% for the most refined mesh (refinement level 5).

The refinement is local at the boundary and therefore not all the numerical solution converges

(A) Velocity magnitude with Dirichlet condition (B) Velocity magnitude without Dirichlet condition

(C) Pressure with Dirichlet condition (D) Pressure without Dirichlet condition

FIGURE 2.7 – Flow between two walls - Comparison of velocity and pressure field with (A
and C) and without (B and D) over-constrained Dirichlet boundary condition for the pres-

sure at the inlet and outlet - refinement level 0

but only the pressure at the ends of the domain. To our best knowledge, no systematic improve-

ment is known for this problem, except refining the mesh size. It has been also noticed in this

work that imposing directly the pressure as a Dirichlet condition helps to improve the accuracy

of the result, but only when the flow is oriented in the normal direction. In other terms, the over-

constrained problem with Dirichlet boundary condition on the pressure at the inlet and outlet
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has a solution closer to the analytical solution. Particularly, for the maximum velocity located

at the mid-plane {z = 0.5} which has a theoretical value of 2500 (with arbitrarily length unit over

time unit). When imposing Dirichlet boundary conditions, the relative error drops from 28.7%

to 1.4% for this maximum value, as can be seen in Fig. 2.7 with mesh refinement level 0.

Slip condition on the upper wall

The previous configuration is now extended to test the slip condition. The same bound-

ary conditions as in Fig. 2.5 are still considered, except at the upper wall {z = 1} where only

the normal velocity v · z is set to zero. This no-penetration condition is completed by a Navier

condition relating shear stress to the (tangential) velocity. The simplest relation is the following

linear expression

fNavier =
∫

upper wall (uw)
σ ·n ·w dS =

∫
uw

[σ ·n − (σ ·n ·n)n]︸ ︷︷ ︸
shear stress

·w dS +
∫

uw
(σ ·n ·n)n ·w︸ ︷︷ ︸

=0

dS

=−
∫

uw
βv ·wdS

(2.26)

The normal component of the test function w is equal to zero since a no-penetration condition

is used for the velocity. This leads to remove the normal component of the stress vector in Eq.

2.26 and restrict the velocity vector to its tangential components. The Navier boundary condi-

tion [148, 157] represents the fluid behaviour on a solid surface and may model the roughness

of the wall for example. The ratio µ/β is the slip length, which can be seen as the depth (inside

the solid) where the linear extrapolation of the velocity is equal to zero. Therefore, the no-slip

condition is reached when the ratio is equal to zero, that happens when the coefficient β tends

to infinity, or, at least, from a computational point of view, when β>>µ.

This slip condition is applied on the upper wall and thus the magnitude of the velocity is

FIGURE 2.8 – Flow between two walls - Pressure and velocity fields

not zero on this wall as seen in Fig. 2.8. The domain with the mesh drawn is colored with the

pressure isovalues. This mesh corresponds to the refinement called level 0 in the previous test,

which has a mesh size of 0.1. Simulation is run with a viscosity µ = 1 and a friction coefficient

β = 5. An analytical solution is given in Appendix A Eq. A.12. The numerical error with respect
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FIGURE 2.9 – Flow between two walls - Velocity field on the upper wall with slip condition

to the analytical solution is bounded between −3.7% and 4.6% (theoretical value 5./3.× 103),

for velocity values on the upper wall at the position y ∈ [1,4] (see Fig. 2.9). The relative error is

reasonable since the computation is run with an unrefined mesh.

2.4.3 Vortex shedding

This example is the well studied [154, 168, 209, 215] vortex shedding behind a cylinder. The

computational domain is Ω = [0,19]× [0,8]× [0,0.2] \ D with D the cylinder of diameter 1 cen-

tered at a point (x = 4, y = 4,∀z ∈ [0,0.2]). The boundary conditions are shown in Fig. 2.10 which

is the same setting as presented in the work of Owen [164]. The inlet velocity is prescribed, and

a zero normal stress condition is imposed at the outlet. Symmetrical boundary conditions are

prescribed on the other faces, while the velocity on the cylinder is zero, i.e. the fluid sticks to the

cylinder otherwise no vortex would be generated. Even though the vortex shedding problem

FIGURE 2.10 – Vortex shedding - Boundary conditions with slip on the top boundary

may be simplified to a 2D problem, the complete 3D is computed to demonstrate the ability of

the code to cope with complex problems. The mesh presented in Fig. 2.11 is made up of 22564

tetrahedrons with 6762 nodes (i.e 27048 unknowns). The inlet face has only one layer of element

in the extrusion direction z normal to the slice plan shown in Fig. 2.11. In the cylinder vicinity,

the mesh is refined in every space direction, in particular, it has 8 layers in the z-direction, with

a mesh size of 0.025. Elsewhere, the mesh size is of 0.5. This coarse mesh is already good enough

to predict accurately physical quantities like the Strouhal number, as defined and shown at the

end of this paragraph. The Reynolds number is Re = 125, calculated with a viscosity µ = 1, a

density ρ = 125, a unit characteristic length (the cylinder diameter), and a unit characteristic

velocity (inlet velocity). The simulation is run from time t0 = 0 until t f = 100 with a time step of

∆t = 0.02. The flow regime depends on the Reynolds number. The different regimes, from [192,

226] are summarized in Tab. 2.1. As expected for a Reynolds number of 125 (see the fourth line
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FIGURE 2.11 – Vortex shedding - view of the 3D mesh in the x-y plane

Reynolds number regime Flow regime Flow characteristics

Re → 0
Laminar

Creeping Flow
Steady - No wake

Re < 49
Laminar

Vortex pairs in wake
Steady

symmetric separation

49 <Re < 80−90
Laminar

Onset of Karman vortex street
Laminar unstable wake

80−90 <Re < [150;300]
Laminar

Pure Karman vortex street
Karman vortex street

[150;300] <Re < [105;1.3 ·105] Subcritical regime
Vortex street

(turbulent instabilities)

[105;1.3 ·105] <Re < 3.5 ·105 Critical regime

Laminar separation
Turbulent reattachment

Turbulent separation
Turbulent wake

3.5 ·105 <Re Supercritical regime Turbulent separation

TABLE 2.1 – Vortex Shedding - Flow regimes depending on the Reynolds number extracted
from [192, 226]

of Tab. 2.1), the Karman vortex street is predicted by the simulation (see Fig. 2.12). The top sub-

plot in Fig. 2.12 represents the pressure field and the bottom one, the magnitude of the velocity

at z = 0.2 and at time t = 100.
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FIGURE 2.12 – Vortex shedding - Pressure and velocity fields at t = 100

As in literature [106], pressure and velocities in x and y directions are represented over time for

point A = (6.15,4,0.2) behind the cylinder in Fig. 2.13. The periodic flow regime is established

gradually during the first half of the simulation. At t = 20, pressure and velocities components

start to oscillate. After t = 50 in the second half, it features stabilised periodic oscillations. The

oscillations amplitudes and mean values are similar (same first significant figure) with the re-

sults obtained in [106] for both velocities and pressure.

0 20 40 60 80 100

Time

−50

−40

−30

−20

−10

0

10

20

P
re
ss
u
re

0 20 40 60 80 100

Time

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

V
e
lo
ci
ty
-x

0 20 40 60 80 100

Time

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

V
e
lo
ci
ty

-y

FIGURE 2.13 – Vortex shedding - Pressure and velocity components at point A = (6.15,4,0.2)

The transitory state in the first half of the simulation is also reflected through drag and lift forces

on the cylinder. Since there is a no-slip condition at the cylinder, lift and drag forces are mainly

generated by the action of the pressure on the cylinder. The former (lift) is the sum of all stress

vector action on the cylinder in the y-direction (normal to the flow) whereas the latter force

(the drag) is projected in the flow x-direction. Both forces on the cylinder over time are drawn

in Fig. 2.14,where one can verify that, the lift force is smaller in magnitude than the drag one but

it covers a higher range when starting to oscillate. The spherical component of the stress vector

−p I accounts for almost all the lift whereas it accounts for approximately 80% of the drag.
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FIGURE 2.14 – Vortex shedding - Drag and lift forces

From the vortex shedding period, one can compute the Strouhal number giving useful insight

when describing oscillating flow mechanisms, St = fr eq D/‖vi nlet‖, with D the diameter of the

cylinder. A vortex is detached each time a peak of velocity in the y-direction or a peak of lift force

is reached. On Fig. 2.14, five periods are isolated when the flow is established. Thus, vortices are

generated with the frequency: fr eq = 5./28.3 ≈ 0.177. Some experiments [227] have explained

that the Strouhal number can be given as power expansion of 1/
p

Re for the exact same case of

a flow past a circular cylinder. Fey et al. [87] prove that the two first powers give satisfactory fit

with experiments. In that case, the Strouhal number is given by

St = St∗+ A/
p

Re

with St∗ = 0.2684 and A = −1.0356 which is valid for all Reynolds number between 45 and

2×105. The ability to correctly predict the Strouhal number (see Tab. 2.2) has been already no-

Numerical St nb. Experimental St nb.

0.177 0.176

TABLE 2.2 – Vortex Shedding - Comparison Strouhal number between numerical and ex-
perimental values

ticed in the literature [44, 63, 106]. As given in [99], one explanation may be that the backward

Euler scheme introduces numerical viscosity, giving satisfactory results. Here also, the numeri-

cal Strouhal number is in good agreement with the experimental one.
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Conclusion

This chapter focuses on the fluid solver for both Stokes and Navier-Stokes equations for

one phase flow. The Navier-Stokes equations have been first linearised (Picard and Newton-

Raphson methods) and then discretised using a FE method, piecewise linear both in velocity

and pressure. A VMS method has been described to stabilise this discrete formulation. Three

kinds of numerical simulations have been carried out to highlight: the convergence rate of the

chosen method, the imposition of the natural boundary condition and finally the ability to com-

pute a flow with features of the turbulence such as vortices.

Incrementally, every tool to compute bi-fluid flows are introduced at each chapter. The next

chapter intends to give a stand-alone method to capture an interface. The two methods (i.e. the

presented fluid solver and the one to be defined for capturing interface method) will be coupled

next to represent the front of resin in the fibres reinforcement during the LRI process.

Résumé en Français : Stratégie numérique pour résoudre les équa-

tions de Navier-Stokes

Le solveur bi-fluide se base sur la méthode des éléments finis pour résoudre les équations de

Navier-Stokes en supposant un comportement Newtonien des fluides. Une formulation mixte

en vitesse et pression avec une approximation linéaire des deux champs a été implémentée.

La stabilisation ASGS est utilisée, afin d’assurer l’existence et l’unicité de la solution. La non-

linéarité des équations de Navier-Stokes est traitée par deux schémas itératifs : Newton-Raphson

ou Picard, qui peuvent être utilisés séparément ou combinés. La preuve du bon fonctionne-

ment du solveur itératif est donnée par une étude de convergence jusqu’à un Reynolds de 5000,

suffisant pour notre étude. De plus, une attention particulière doit être prêtée à l’interaction

entre la stabilisation ASGS et les conditions aux bords imposées faiblement. Il a été noté que

la stabilisation pouvait biaiser la valeur de la pression imposée faiblement, indirectement. Une

taille de maille adaptée ou raffinée permet toutefois de diminuer le poids de la stabilisation et

donc du biais sans compromettre la stabilité. La robustesse et la simplicité de mise en œuvre

de la stratégie numérique développée en sont les atouts majeurs. Enfin, l’étude des allées de

tourbillons de Karman montre une bonne corrélation avec la littérature.
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Introduction

After setting up the flow solver, a description of the moving interface between resin and air

during composites manufacturing must be given and is the purpose of this chapter. Indeed, a

method to represent the moving interface between the resin and the air is required to be able,

in the next chapter, to numerically integrate the surface tension in the fluid solver. First of all,

the method describing the interface must comply with some requirements. Actually, numerical

simulation of the LRI manufacturing process must be able to account for drastic topological

changes. A detailed approach must give the position of the fluid front between both liquid (the

resin) and vapour phases (the air).

Interface tracking and capturing is an active field of research and at least two main types of

methods have been developed to deal with this challenging issue. A classification can be made

depending on the nature of the computational grid for spatial discretisation: (1) Lagrangian de-

scription (2) Eulerian description. In the case of a Lagrangian description the mesh is moving

with the flow velocity, therefore, boundaries of the domain describe the interface of the fluid.

Unfortunately, large deformation of the grid requires to use a re-meshing strategy which will in-

crease the computational cost. In an Eulerian description, the interface passes through a fixed

mesh, dealing naturally with topological changes. Some specific methods give the position of

the domains separated by the interface, here liquid and air, while others capture the position of

the interface.

Among Eulerian description, one of these methods is the Volume tracking method, developed

by Harlow and Welch [109] in which markers are placed in the fluid and are moved at each time

increment with the velocity field. Similarly, Daly et al. [68] placed the markers on the interface

creating the Surface tracking method. In this second method, the markers are also convected

with the velocity field. The main drawback of these methods is the shortage of these weightless

markers that may happen locally, decreasing the homogeneity of the geometry representation

accuracy throughout the computational domain. Volume tracking and Surface tracking belong
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to the group of front tracking methods which represents the interface explicitly.

Opposite approaches are the front capturing methods with an implicit representation of the

interface. Such methods introduce a real-valued function φ defined on the computational do-

main, whose value at a point indicates in which domain we are (resin or air). A change of value

between two nodes implicitly represent the interface which may be convected with a velocity

field. Two subcategories can be distinguished among front-capturing methods, the first one is

the Volume of Fluid (VoF) method introduced by Hirt and Nichols [113] where the function

φ is an indicator function, taking only two values: 1 or 0. The VoF method naturally ensures

the volume conservation, however the standard continuous Galerkin approximation is not ad-

equate here, since indicator functions are discontinuous. Moreover, even with a discontinuous

Galerkin technique [27], one faces the numerical diffusion issues: φh , the approximation of φ,

takes its values throughout the interval [0,1], which makes it difficult to locate the interface

precisely. Additionally, the geometric descriptors of the interface, such as the normal vectors or

the curvature, are not straightforward to compute with a VoF method. The second class of front

capturing methods, is constituted by the level-set method originally developed by Osher et al.

[162, 163], which consists in choosing φ as a continuous function. Each side of the interface is

characterised by the sign ofφ. Consequently, the interface is described as the zero-isosurface of

the fieldφ. Contrary to the VoF method, the interface is not diffuse: a point is either on one side

or on the other side of the interface. Besides, the geometrical quantities of the interface (normal

and curvature) can be directly computed.

Capturing methods deal implicitly with topological changes (void formation or annihilation),

since these changes are automatically taken into account by the value of φ. That is why the

method employed in this work is an interface capturing method, and more specifically a level-

set method, since capillary effects require the geometrical description of the interface. The

level-set features, ranging from time discretisation to space discretisation with stabilisation

strategy and a reinitialisation strategy will be presented. The question of the inherent mass loss

will be the common thread for the validation examples. It will be numerically assessed that mass

is conserved when refining the mesh and the time step. Finally, the last section of this chapter

will focus on how to perform an integration of a surface tension force on the level-set interface.

3.1 Level-set features

Level-set definition and its convection with a given velocity field are presented first. Second,

time and space discretisations are detailed. Finally, the level-set has to be periodically reini-

tialised in order to keep the metric distance property throughout the computation.

3.1.1 Level-Set function

The level-set function φ is a continuous function, chosen positive on one side of the in-

terface to be captured, and negative on the other side. Consequently, the interface ΓLV (t ) is

described as the zero-isosurface of φ:

ΓLV (t ) = {x ∈Ω, φ(x , t ) = 0} (3.1)
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where Ω is the computational domain for the level-set which is commonly the same as for the

fluid (see Fig. 3.1). The level-set method allows for the straightforward definition of geometrical

FIGURE 3.1 – Level-set definition - green circle representing the iso-surface zero (interface)
of the level-set field φ

quantities of the interface such as the vector normal n and the curvature C . The normal is

obtained by taking the gradient of φ

n = ∇φ
||∇φ|| (3.2)

while the curvature, the divergence of this vector

C =∇·n. (3.3)

3.1.2 Transport equation

To capture the interface, the level-set functionφ(x , t ) is advected using a transport equation

[161] with a velocity v coming from the physical problem Eq. 2.20. The transport equation is

not a conservation equation applied to φ but describe the constant variation of a flow particle

along a streamline: Dφ/Dt = cst . This transport equation may be given as

∂φ

∂t
+v ·∇φ= 0. (3.4)

A source or sink term may be added on the right-hand side of the transport equation. In our case

of pure advection, this source / sink term is 0. In order to solve the above first-order hyperbolic

equation, boundary conditions are considered and the problem to be solved reads
∂φ
∂t +v ·∇φ = 0 ∀(x , t ) ∈Ω× [0,T ]

φ(x , t = 0) = φ0(x) ∀x ∈Ω
φ(x , t ) = g (x , t ) ∀x ∈ ∂Ωi n ,∀t ∈ [0,T ]

(3.5)

where ∂Ωi n = {x ∈ ∂Ω | v ·n < 0} corresponds to the inflow boundary. For instance, the inflow

boundary is represented by the right-hand side of the domain in Fig. 3.2. The boundary has a

velocity in the −x direction whereas the normal is pointing outwards in the x direction. The
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FIGURE 3.2 – Level-set definition - inflow condition on the right-hand side of the domain

level-set method enables to represent complex geometries such as an aircraft without an ex-

plicit description of the contour by the mesh.

3.1.3 Time discretisation

Evaluating the transport equation at time t n+θ with θ ∈ [0,1] leads to

∂φ

∂t

∣∣∣
n+θ

+v ·∇φ
∣∣∣
n+θ

= 0 (3.6)

where the symbol •∣∣n+θ represents the quantity computed at time t n+θ. Two Taylor expansions,

written at time t n+θ, approximating the quantities φn+1 and φn , read

φn+1 =φn+θ+ (1−θ)∆t
∂φ

∂t

∣∣∣
n+θ

+ (1−θ)2∆t 2

2

∂2φ

∂t 2

∣∣∣
n+θ

+o(∆t 3) (3.7)

φn =φn+θ−θ∆t
∂φ

∂t

∣∣∣
n+θ

+θ2∆t 2

2

∂2φ

∂t 2

∣∣∣
n+θ

+o(∆t 3) (3.8)

Subtracting 3.8 to 3.7 leads to an approximation of the first derivate of φ at n +θ

∂φ

∂t

∣∣∣
n+θ

= φn+1 −φn

∆t
+ (2θ−1)

∆t

2

∂2φ

∂t 2

∣∣∣
n+θ

+o(∆t 2). (3.9)

Finally, an approximation of the convective term is given by weighting the values at the two

time steps as follows

v ·∇φ
∣∣∣
n+θ

≈ (1−θ) v ·∇φ
∣∣∣
n
+θv ·∇φ

∣∣∣
n+1

. (3.10)

Thus at the first order, equation 3.6 becomes

φn+1 −φn

∆t
+θv n+1 ·∇φn+1 = (θ−1)v n ·∇φn (3.11)

For θ = 0, the scheme is an explicit Euler scheme. This common scheme has the advantage to

be easy to implement and can be used at a low computation cost because no stiffness matrix

has to be inverted during the simulation. As a matter of fact, the explicit Euler scheme requires a

small time step∆t to ensure its stability. The condition on the time step is given by the Courant-

Friedrichs-Lewy (CFL) condition∆t < mi n(h)
max(v ) . Therefore the interface should move less than one
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mesh size to verify the CFL condition. Instead, if θ 6= 0 the scheme is implicit and the discreti-

sation scheme is unconditionally stable if θ ∈ [0.5,1]. More specifically for θ = 1 the scheme is

an implicit Euler scheme with an order of convergence equal to 1 whereas it is in O(∆t 2) for the

Crank-Nicolson scheme, as shown in Eq. 3.9. Indeed, the second-order time derivative is not

neglected when θ = 1/2, but is directly equal to 0, as shown in Eq. 3.9. Hence, the choice for

the rest of the study is to use a Crank-Nicolson scheme which requires to store velocities at the

current time step and at the previous time step (v n+1 and v n).

3.1.4 Finite element approximation

Let’s first define the function spaces S g and S 0, based on the Sobolev’s space H 1 as

S g = {
ξ ∈H 1(Ω) | ∀x ∈ ∂Ωi n ξ= g

}
S 0 = {

ξ ∈H 1(Ω) | ∀x ∈ ∂Ωi n ξ= 0
} (3.12)

The integral weak form of the equation 3.4 is first obtained by multiplying the equation with a

test function φ∗ ∈S 0 and then taking the integral over the whole domain. Finally, the problem

reads:

find φ ∈S g such that∫
Ω

φn+1 −φn

∆t
φ∗ dV +

∫
Ω

θv n+1 ·∇φn+1φ∗ dV =
∫
Ω

(θ−1)v n ·∇φn dV , ∀φ∗ ∈S 0 (3.13)

Within our FE framework, the domain Ω is discretised Ωh by a mesh made of simplexes Ωe

such that Ωh = ⋃nel
e=1Ω

e . Fluid and level-set have the same discretised domain. The level-set

function is approximated by φh , searched in S
g

h the space of the continuous and piecewise

linear functions. The discrete form of previous equation 3.13 is

1

∆t

∫
Ωh

φn+1
h φ∗

h dV +θ
∫
Ωh

v n+1
h ·∇φn+1

h φ∗
h dV =

1

∆t

∫
Ωh

φn
hφ

∗
h dV + (θ−1)

∫
Ωh

v n
h ·∇φn

hφ
∗
h dV , ∀φ∗

h ∈S 0
h

(3.14)

SUPG stabilisation
The standard Galerkin method, consisting in choosing φh and φ∗

h in the same approximation

space, is not stable for hyperbolic problems such as Eq. 3.4. A technique for stabilising the

discrete formulation is thus needed. The chosen method is the StreamLine Upwind Petrov-

Galerkin (SUPG) method. The SUPG stabilisation [44] creates an ’upwind’ effect by adding dif-

fusion in the direction of the convective velocity v n+1. Computed using the following formula,

the new test functions introduced belongs to the space S̃ 0
h , which has the same dimension as

S 0
h . They are defined as

φ̃∗
h =φ∗

h +τe
k v n+1 ·∇φ∗

h (3.15)

on a mesh elementΩe and at time t n+1. The stabilisation parameter τe
k is computed from

τe
k = 1

2

he

||v n+1
|e || (3.16)
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and it regulates the amount of diffusion needed to compute the solution. ||v n+1
|e || is the average

velocity on the element e and he is the mesh size defined for the case of triangles or tetrahedrons

as the sum of each edge divided by the number of edges. This stabilisation parameter decreases

when refining the mesh and vanishes at the limit he → 0. Hence this methods remains consis-

tent with the original transport equation. Therefore, the final stable FE formulation, obtained

with the θ-method for time-discretisation and SUPG method for stabilisation, reads:

Find φn+1
h ∈ S̃

g
h , such that

1

∆t

∫
Ωh

φn+1
h φ̃∗

h dV +θ
∫
Ωh

v n+1
h ·∇φn+1

h φ̃∗
h dV =

1

∆t

∫
Ωh

φn+1
h φ̃∗

h dV + (θ−1)
∫
Ωh

v n
h ·∇φn

hφ̃
∗
h dV , ∀φ̃∗

h ∈ S̃ 0
h .

(3.17)

Choice of the level-set function
Originally, the level-set was defined as the signed distance function to the interface (cf. Fig. 3.1).

Yet, the information of interest to construct the interface is located in a narrow-band around

the zero isosurface whereas outside this region, only the sign of φ counts. For this reason, the

second possibility consists in filtering the initial distance function [212]. In this way, the level-

set function tends quickly to a constant value when moving away from the interface, as seen in

Fig. 3.3. This technique avoids, or at least limits, the numerical problems which may occur due

to the convective term of the transport equation 3.4 even with the SUPG method. Indeed, the

transport equation 3.4 is reduced to dφ/d t = 0 where φ is constant.

In this work, an hyperbolic tangent filter is applied to get a smooth truncation far from the

interface. The definition leads to the new distance function

φ̆= ĕ tanh
d

ĕ
(3.18)

where ĕ is the bandwidth of the interface and d the signed distance function. Not only the fil-

FIGURE 3.3 – Level-set definition - green circle representing the interface of the filtered
level-set field φ

tering step does not change the convection of the level-set but also does not require additional

computation time since it is a mathematical function. The filter is applied only at the initial time
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or after a step of direct reinitialisation (see below). Subsequently, the filtered level-set function

is transported by using Eq. 3.17, which remains unchanged.

3.1.5 Reinitialisation

The initial property of the level-set function, to be a distance function or a tanh function,

is not automatically preserved during the resolution of the transport equation, since the con-

vection velocity may be anything. More specifically, the jump of material parameters at the

interface induces a discontinuity in the velocity gradient, which leads to strong gradients of the

level-set function that develop around the interface. Thus, the weight of the convective term

v ·∇φ increases in the transport equation 3.4, and the SUPG stabilisation may become insuffi-

cient at some point. The property of being a distance function is expressed by ‖φ‖ = 1. Thus,

by regularly reconstructing the level-set to respect this property without changing the position

of the zero iso-surface, the gradient is kept under control. This is called the reinitialisation step.

Two approaches are possible: direct reinitialisation, implemented in this thesis, or an iterative

method based on the Hamilton-Jacobi equation [26]. At the end of this section we will see how

to extend these techniques to tanh cases.

Direct reinitialisation
The direct reinitialisation is a promising route made possible by an increase of computational

power. This technique rebuilds the level-set function by computing the projection of each mesh

node on the interface i.e. the shortest distance to the interface (see node0 in Fig. 3.4). It also

guarantees optimal accuracy compared to others reinitialisation methods such as the Hamilton-

Jacobi’s. The actual barrier is the computational cost, which can be overcome by using a k −
d imensional tree for partitioning the space and improve the search of the projection [193]. Ad-

ditionally, the domain in which the direct reinitialisation is performed can be restricted to a

narrow region around the interface, especially in the case of a filtered level-set [158]. In the

present work, the direct reinitialisation is simply benefiting from multi-threading strategy since

the step of finding the shortest distance to the interface is independent from node to node.

One shortcoming of this approach comes for nodes for which the shortest distance is located

outside the domain (as illustrated in Fig. 3.4). This case occurs for a curved surface close to a

FIGURE 3.4 – Direct reinitialisation - problematic set of nodes

mesh boundary, like a meniscus against a wall in our case. In Fig. 3.4, node0 may be correctly
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reinitialised without changing the interface position. Node1 has a value φb before the reinitial-

isation giving information on the interface outside the domain. After the reinitialisation, the

shortest distance to the interface is φa changing the interface position. In that case, node1 is

not the only node without a projection located on the interface but all the nodes circled are

hard to reinitialised. For those points, after the direct reinitialisation, the shortest distance is

the distance to the point on the interface against the wall whereas their projections should be

located outside the domain by a continuous extension of the interface outside the computa-

tional domain. This unsolved problem motivates to choose a Hamilton-Jacobi reinitialisation if

not all the points have their projections on the interface within the computational domain and

to choose a direct reinitialisation otherwise. Although the efficiency of the multi-threading in

two dimensions is verified, this improvement falls short in three dimensions to tackle the com-

putational cost issue.

Principle of the Hamilton-Jacobi reinitialisation
To recover the mathematical property of a unitary gradient ‖∇·φ‖ = 1, the non linear Hamilton-

Jacobi equation can be solved [26]
∂ϕ

∂τ
+ si g n(ϕ0)(‖∇ϕ‖−1) = 0

ϕ0 =ϕ(x,τ= 0) =φ(x, t )
(3.19)

until reaching the steady state, with τ a fictive time and si g n(φ) a sign function that could be

defined as

si g n(ϕ0) =


1 if ϕ0 > 0

0 if ϕ0 = 0

−1 if ϕ0 < 0

(3.20)

First of all, it should be noted that when the steady-state is reached ∂ϕ/∂τ= 0 and consequently

‖∇ϕ‖ = 1 as it can be seen in Eq. 3.19. The variation in fictitious time enables to fix the initial

state from which computing a unit gradient. This term allows to spanned the complexity of

recovering a unit gradient through virtual time steps. Secondly, the interface does not move

during the reinitialisation. Indeed, the signed function is null at the interface at the position

where φ= 0. This property implies that the variation during the fictitious time is zero ∂ϕ
∂τ = 0 at

the interface. That is why, the interface (the zero iso-surface) does not move during the fictitious

reinitialisation time steps.

From a numerical point of view, it is preferable to have a continuous sign function. The first one

comes from Sussman et al. [204] and reads

si g n1(ϕ0) = ϕ0√
ϕ2

0 +h2
e

(3.21)

According to Basset [26] the si g n1 function works well if φ is not too flat or too abrupt close to

the interface. To address this issue, another definition from [169] could be used

si g n2(ϕ0) = ϕ0√
ϕ2

0 +||∇ϕ0||2h2
e

(3.22)
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The last sign function has a better conservation of the initial interface [211]. In fact for a steep

gradient, si g n2 is smaller than si g n1 and it will decrease the reinitialisation velocity coming

from the linearisation detailed in the following equation. Introducing the convective velocity

as v r = si g n(ϕ0) ∇ϕ
||∇ϕ|| and F = si g n(ϕ0) makes possible to write the Hamilton-Jacobi equa-

tion 3.19 under the form
∂ϕ

∂τ

∣∣∣
n+1

+v r (ϕ) ·∇ϕ
∣∣∣
n+1

= F (3.23)

where the symbol •∣∣n+1 represents the quantity computed at fictitious time τn+1. The convec-

tive term is still highly non-linear since the reinitialisation velocity depends on the reinitialised

function. A fixed-point method is used to remove the non-linearity from the implicit convective

term and, it comes

v r (ϕn+1,i t+1) ·∇ϕn+1,i t+1 ≈ v r (ϕn+1,i t ) ·∇ϕn+1,i t+1 (3.24)

with i t the iteration number. The Hamilton-Jacobi is solved only to recover the sign distance

function at static equilibrium. Therefore, at each time step, an exact solution does not need to

be computed. More precisely, iterations can be mixed with time increments in order to optimize

computational effort. Using this approach, the reinitialisation velocity becomes v r (ϕn+1,i t ) ≈
v r (ϕn) removing completely the iterative steps. The final equation to solve after linearisation is

∂ϕ

∂τ

∣∣∣
n+1

+v r (ϕn) ·∇ϕn+1 = F (3.25)

At steady state, ϕn+1 ≈ϕn and thus the unit gradient property will be recovered. The reinitiali-

sation equation has the same form than the convection equation of the level-set Eq. 3.4. Hence,

the SUPG stabilisation is exactly the same.

Note that by linearisation, the initial problem is rewritten as a convection equation without

boundary condition on the incoming flow. One may find examples when the reinitialisation

velocity is going inside the domain. The ’set of problematic nodes’ in Fig. 3.4 has an inflow for

instance. This is also precisely where the direct reinitialisation has problematic nodes. How-

ever, from experience, it seems that the calculation succeeds without the condition on the in-

flow boundary for the Hamilton-Jacobi equation 3.25. One explanation is that the SUPG stabil-

isation brings diffusion and changes slightly but enough the form of the equation. The SUPG

stabilisation transforms the first order Hamilton-Jacobi equation into a second order equation.

Finally, for the sake of saving computational time, the reinitialisation step is computed 3 times

with the virtual time step value has to same value than the mesh size. In general, this is suffi-

cient to reinitialise the level-set through a narrow-band.

Reinitialisation when using filtered level-set
When applying the tanh filter (see Sec. 3.1.4), the convection step remains unchanged. How-

ever, the property to be recovered is no longer the unit gradient property, but:

‖∇ϕ̆‖ = 1−
(
ϕ̆

ĕ

)2

.

59



Chapter 3. Level-set method

This property comes from the fact that t anh′(x) = 1− t anh2(x). Consequently, the Hamilton-

Jacobi system (Eq. 3.19) is replaced by
∂ϕ̆

∂τ
+ si g n(ϕ̆0)

(
‖∇ϕ̆‖−

(
1−

(
ϕ̆

ĕ

)2))
= 0

ϕ̆0 = ϕ̆(x,τ= 0) = φ̆(x, t )
. (3.26)

As for the reinitialisation without filtering step, the equation can be linearised and rewritten

under the form of a convection equation

∂ϕ̆n+1

∂τ
+ v̆ r (ϕ̆n) ·∇ϕ̆n+1 = F̆ (ϕ̆n) (3.27)

with v̆ r (ϕ̆n) = si g n(ϕ̆0)
∇ϕ̆n

‖∇ϕ̆n‖ and F̆ (ϕ̆n) = si g n(ϕ̆0)

(
1−

(
ϕ̆n

ĕ

)2)
. Away from the interface, in

the filtered region, the reinitialised velocity is set to 0 to avoid any singularity. Therefore, the

level-set field will not change in the filtered region.

3.1.6 Inflow condition

The function g (x , t ) represents the inflow boundary condition. In one case, the value may

be chosen as the previous time value, reading g (x , t ) = φn , with φn the value previous value of

φ at the inflow boundary. This condition is not consistent with the signed distance property.

Actually, a constant value of the level-set is placed at the inflow boundary and then convected.

Therefore, after some time increments, the level-set has the same constant value near the inflow

boundary. However, this will not change the interface position if the interface is far from the

inflow boundary. In the second case when using a filtering strategy, the inflow boundary value

g (x , t ) is set as the value in the filtered region. This case works well, if the initial interface is

chosen cautiously. The initial interface has to placed further away than the filter width from the

inflow boundary.

3.2 Error bound

Discretisation error
According to literature [48] the error for a level-set convection, with a Crank-Nicolson scheme

and SUPG stabilisation is bounded by:

‖φn
h −φ(•, tn)‖L 2 ≤ ctn

(
h

3
2 +∆t 2

)
+ε0 (3.28)

with c a constant depending on the smoothness of φ and ε0 the initial discretisation error. For

a fixed time step and mesh size, the error estimate of the level-set is growing with time. A spe-

cial attention should be paid to the sum of errors coming from errors from time step and mesh

size, since they give the linear pace at which the error estimate growths. Therefore, these two

discretisation errors (in space and time) should be small enough to keep the bounded error on

the level-set reasonable when running long simulations. Choosing independently the time step
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and mesh size may rise the weight of one source of error compared to the other and will not

minimise the error estimate. Also, in the case of an error mainly conditioned by the time step,

a refinement strategy on the mesh size would be vain. Still not mandatory, the best practical

choice would be to equilibrate error sources and then take ∆t ∼ h
3
4 . A crucial feature using this

relation is that a mesh refinement should always be associated with a decreasing time step. But,

this is generally not applicable in practice. Most of the time, the error is driven by the mesh size,

and a refinement is used in order to improve the result without changing the time step.

Volume loss
It is well known that conserving the volume with the level-set is challenging [129]. The example

presented in Fig. 3.5 transforms a square interface into a circle in a domainΩwith 0 velocity on

the boundary of the domain. Taking the volume integral of the level-set transport equation (Eq.

FIGURE 3.5 – Volume loss - evolving interface from a square to a circle

3.4), it comes, in the case of an incompressible fluid :∫
Ω

∂φ

∂t
dV +

∫
Ω

v ·∇φdV = 0

=⇒ d

d t

∫
Ω
φ(x , t )dV = 0

(3.29)

with impermeable boundaries and a fixed domain. The volume of each phase should be con-

stant in time, implying that the volume variation should be zero. As seen with Eq. 3.29, the con-

servation of volume is verified as long as φ(x , t ) is constant in each phase, which is the case for

the Volume of Fluid (VoF) method but not for the level-set method. One can verify that the con-

servation of the quantity
∫
ΩφdV between a square and a circle does not imply a conservation

of volume. From the previous equation, it can be inferred that the filter around the interface

tends to have a better volume conservation, since the method loses volume only within the

bandwidth.

Even if the level-set does not strictly conserve the volume Reusken et al. [182] have shown that

error on the volume is bounded by

|V −Vh | ≤ c ′tnh (3.30)

for linear approximation in space and a θ-method in time. Therefore, refining the mesh tends

to improve the volume conservation.
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3.3 Validation of level-set implementation

The level-set method has been implemented in the Zebulon [34] FE code. The first test case

is shown to demonstrate the implementation validity and the limit of the method. The rotating

circle permits to verify the volume of fluid lost during the computation.

3.3.1 Rotating and stretching circle - reinitialisation validation

This test corresponds to the rotation combined with the streching of a circle, and aims at

discriminating between the reinitialisation strategies. The input velocity field is divergence free

and has a zero value on the boundary of the domainΩ= [0,1]× [0,1]. It is defined byvx =−2sin2(πx)sin(πy)cos(πy)× (−1)p

vy = 2sin2(πy)sin(πx)cos(πx)× (−1)p
(3.31)

with p = 0 if t ∈ [0,1], p = 1 else (cf. background velocity field in Fig. 3.6 (B)). The circle is rotated

and stretched in the clockwise direction during the first half of the simulation and counter-

clockwise in the second half. At the end at t = 2 the interface should come back to the initial

position. A visual assessment of the circularity at the end of the simulation will give a first hint

on how the reinitialisation behaves.

Parameters Value

Mesh size 0.02
Unstructured mesh 50 × 50
Center of circle (0.5,0.7)
Circle radius 0.2
Final time 2
Number of time increments 200
Time step 0.01
θ for theta method 0.5
Number of reinitialisation steps 3
Reinitialisation time steps 0.02
Frequency direct reinitialisation 1

TABLE 3.1 – Rotating and stretching circle - model entries.

The model entries are given in the Tab. 3.1. No filter is used in that case to discriminate more

easily the effect of the reinitialisation. Fig. 3.6 (A) shows the interface shape at the first half of

the computation, at t = 1. Both reinitialisation methods give a similar result with a longer tail

than without reinitialisation. In Fig. 3.6 (B) the red circle represents the theoretical position of

the interface at the end of the simulation, at t = 2. The position of the final interface has a more

circular shape with the direct reinitialisation compared to the Hamilton-Jacobi’s. Whereas, the

interface without reinitialisation is the closest to the theoretical interface. This highlights the

trade-off between the accuracy on the position of the interface at the final time step and the

robustness of the computation by keeping the norm of the gradient of the level-set as close as

possible to 1. Norms of the level-set gradients are plotted in Fig. 3.7. The level-set gradient has
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FIGURE 3.6 – Rotating and stretching circle for unfiltered level-set - position of the interface

FIGURE 3.7 – Rotating and stretching circle - Norm of the unfiltered level-set gradient at the
end of the computation with different reinitialisation strategy.

a singular point at the centre of the circle as shown in each subplot. This particular point does

not depend on the reinitialisation strategy but is due to the particular shape of the interface. Be-

sides, the norm of the level-set is more regular when using a reinitialisation strategy as expected.

This feature for the level-set will bring robustness since issues on the interface crumbling are

directly related to an unphysical local strong convection. The Hamilton-Jacobi reinitialisation

is not as good as the direct reinitialisation since only three increments are used for the reinitial-

isation which tends to be reinitialised only around the interface. But increasing the number of

reinitialisation would lead to recover the same result that the direct reinitialisation. Therefore,

as expected for this case with only three increments, the direct reintialisation gives better results

compared to Hamilton-Jacobi. The improvement comes at the price of a higher computational

cost and only in cases where all the projections are well defined in the computational domain

(as it was discussed in 3.1.5).

Simulation are run on a Intel(R) Core(TM) i5-4590 processor with a speed of 3302 H z on one

thread. It takes 47.3 s in the case without reinitialisation, 126 s with direct reinitialisation and

155.7 s with Hamilton-Jacobi’s method.

Finally, in order to conserve a unit gradient, a reinitialisation strategy should be used during the
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convection of the level-set. In a similar case where the shortest distance is inside the compu-

tation domain, the direct reintialisation performs well in 2D compared to the Hamilton-Jacobi.

However, for interfaces intersecting domain boundary and in 3D, Hamilton-Jacobi may be used

over the direct reinitialisation.

3.3.2 Rotation of a circle - volume loss

This cases studies the rotation of a circle around the point (0.5,0.5) in a domaineΩ= [0,1]×
[0,1], without deformation [45],[26]. The corresponding velocity, which of course if divergence-

free, is expressed as: vx(x, y) =−π
2 (y − 1

2 )

vy (x, y) = π
2 (x − 1

2 ).
(3.32)

With this velocity, the period of rotation is T = 4 s. In this case, it is intended to evaluate the

volume loss depending on the average mesh size which successively takes the values he =
0.1,0.04,0.02,0.01 with an unstructured mesh and the time step which successively takes the

values ∆t = 0.28,0.23,0.18,0.14,0.01,0.02. The other values are recalled in Tab. 3.2. Note that

the final time corresponds to 4 complete rotations. In addition, no reinitialisation is made to

discriminate only the influence of the mesh size and time step on the volume loss. The volume

Parameters Value

Mesh size [0.01;0.1]
Unstructured mesh True
Center of circle (0.5,0.7)
Circle radius 0.2
Final time 16
Number of time increments [57,1600]
Time step [0.01, 0.28]
θ for theta method 0.5
Reinitialisation False

TABLE 3.2 – Rotation of a circle and volume loss - model entries.

lost by the level-set during the convection step is plotted over time in Fig. 3.8. The first four thick

curves (blue, red, green and black) describe the volume loss for one fixed time step using four

mesh refinements. More specifically, for a time step of ∆t = 0.02, the time discretisation error is

proportional to∆t 2 = 4×10−4 according to Eq. 3.28. For the smallest mesh size, he = 0.01, the er-

ror due to the space discretisation is proportional to the mesh size to the power 3/2, h
3
2
e = 10−3.

Therefore, for the first four curves, the error is mainly dominated by the space discretisation

error. That is why four mesh sizes have been considered. As it can be seen in Fig. 3.8 each mesh

refinement leads to a better volume conservation. So far, it shows numerically that if the error is

mainly due to the space discretisation then refining the mesh size tends to improve the volume

conservation.

Now, reciprocally, if the error is mainly due to the mesh size then refining the time step is some-

how ineffective. On Fig. 3.8, the blue curves with markers prove that refining the time step does

not improve significantly the volume conservation when the error comes from the spatial dis-

cretisation. As shown with the closeup on the centre of the figure, a two times smaller time step,
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FIGURE 3.8 – Rotation circle - Variation of volume during the simulation with variation of
mesh size and time step

does not improve significantly the solution. Among the other curves, the particular blue curve

is the one with cross markers and a time step∆t = 0.18. This time step value with a mesh size of

he = 0.1 should give a well-balanced error between spacial and time discretisation error.

As expected the central close-up shows that refining the time step further does not improve

significantly the conservation of volume. The time step is divided by two from ∆t = 0.02 to

∆t = 0.01 and still the volume continue to be lost since the error will come mainly from the

space discretisation. This concludes the numerical assessment of the discussion on mesh size

and time step refinements. Besides, let’s notice that the volume loss is linear in time after t = 4

and for the coarser grid does not exceed more than 5% of the initial value. It has already been

shown that the Crank-Nicholson scheme is more conservative than the implicit Euler scheme

[3]. This explains that even for a coarse grid, the volume lost during the simulation is accept-

able.

In conclusion, the non naturally conservative level-set characteristic can be overcome by a thor-

ough control of the time step and mesh size. A joined refinement in space and time converges

to the solution.

3.3.3 Zalesak slotted disk - filter influence

The Zalesak slotted disk [230] is investigated in order to assess the effect of the filter on the

volume loss. Recalling that the level-set method does not intrinsically conserve the mass due to

its signed distance function, the filter may help to remove this constraint far from the interface

by taking a constant value.

The Zalesak circle is initialised using topological operators mixing distance functions from lines

and circle implemented in our Z-set environment. The circle is convected using the velocity

field given in the previous case using Eq. 3.32 and the parameters for the simulation are sum-

marised in the Tab. 3.3 and Fig. 3.9.
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Parameters Value

Unstructured mesh 100 x 100

Centre of circle (0.5,0.7)

Circle radius 0.175

Final time 4

Number of time increments 40

θ for theta method 0.5

Reinitialisation False

Filtering function tanh

TABLE 3.3 – Zalesak slotted disk - model en-
tries

FIGURE 3.9 – Zalesak slotted disk - geomet-
rical entries

In Fig. 3.10 the variation of volume is plotted over time for different values of filter width. With-

out filter, the blue curve, the variation of volume is the biggest whereas for every filter width

value the level-set will be more conservative. A filter width three times the mesh size appears to

be a good empirical practice. Following this rule of thumb, the best practice filter width value

is 0.03 (the red curve with triangles). As it can be seen in the figure, this value for the level-set

width yields the smallest variation of volume at the end of the simulation. Therefore, accord-

ing to this test, the ability to improve mass conservation should be added to the advantages of

the filter. Among the other advantages, the filter is able to remove convection difficulties, such

as strong gradient, outside a narrow region around the interface. It also avoids specifying un-

known boundary values on the boundary with an inflow because it takes a constant value in the

filter region. Finally, it helps to prevent mass loss.
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FIGURE 3.10 – Zalesak circle - Variation of volume during the simulation with variation of
filter width.

3.3.4 Conclusion

Thanks to the three cases of level-set convection problems, the influence of the reinitialisa-

tion, the mesh size, time step and filter have been investigated. The main disadvantage of the

level-set is that the method does not conserve intrinsically the volume since it is not a equation

of conservation. However, it has been shown that mass/volume loss may be minimised under
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3.4. Quadrature rules and interfaces

certain conditions. The advantages of the level-set method will be exploited in the following

paragraphs to precisely represent the interface.

3.4 Quadrature rules and interfaces

Naturally, the level-set sign gives the information on the liquid phase location in the do-

main. In the case of surface tension force, it is also required to compute a surface integral which

may not coincide with the faces of the elements. The surface described by the level-set function

separates two different fluids, here resin and air, distinguished with their own material proper-

ties:
µ(x) =µV Heavi si de (φ(x))+µL

(
1−Heavi si de (φ(x))

)
ρ(x) = ρV Heavi si de (φ(x))+ρL

(
1−Heavi si de (φ(x))

) (3.33)

with Heavi si de a transition function to define. This interface passes through some elements of

the mesh, but does not coincide with a set of faces or edges. At the numerical level, on the

one hand, it is necessary to manage the transition between the two media, (e.g. a transition of

material properties). On the other hand to evaluate the integrals of the FE problem defined on

the interface, such as the integral related to surface tension phenomena. For both issues, which

are ideally connected, two strategies are possible: either consider a Continuum Stress Force

(CSF) method for a smooth transition (smooth Heavi si de ) or a Surface Local Reconstruction

(SLR) method with a sharp transition (Heavi si de = 0 or 1).

3.4.1 Continuum Stress Force

The main idea is to consider a smooth variation of parameters across the interface. The

Continuum Stress Force (CFS) [40] is widely used ([166], [179], [96] ) and easy to implement. The

performances of this method largely depend on the smoothed Heaviside function Heavi si de ,

used to perform the transition. Two functions are usually used [166]

Hl i n(φ,ε) =


0 i f φ<−ε
1
2

(
1+ φ

ε

)
i f −ε<φ< ε

1 i f φ> ε
(3.34)

Hsi n(φ,ε) =


0 i f φ<−ε
1
2

(
1+ φ

ε + 1
π sin πφ

ε

)
i f −ε<φ< ε

1 i f φ> ε
(3.35)

where ε≈ 2h. A representation is given in Fig. 3.11.
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Chapter 3. Level-set method

FIGURE 3.11 – Representation of Heaviside and smoothed Heaviside functions with ε= 0.5.

The sinusoidal Heaviside has the advantage to avoid a singularity in the derivatives at the two

junctions,φ=−ε andφ= ε, giving better results [225] due to the smoother transition. The width

of the interface should be large enough for a smooth transition of parameters such as density

or viscosity. But the transition region should not be too large so that it remains a transition

zone, i.e. with no physical existence. The CSF method, accounting for changing parameters,

introduces another parameter ε into the numerical simulation, a sort of interface width.

A Dirac function is defined as the derivative of the Heaviside function δ(φ) = d H
dφ . It is known

that a surface integral can be transformed into a volume integral as long as the condition that

the sum of Dirac is unitary:
∫
Ω

d Heavi si de
dφ dV = 1 is verified. Then it is possible to transform the

integral on the interface Γ in the following way∫
Γ

f d s ≈
∫

V
f δ(φ)dV (3.36)

with δ(φ) = d Heavi si de
dφ a regularised Dirac function and, in the specific case of Hsi n

δ(φ) =


1
2ε

(
1+cos πφ

ε

)
if φ ∈ [−ε,ε]

0 else.
(3.37)

Therefore, the surface integral can be easily computed when turned into a volume integral.

This strategy may be efficient in the case of a local refinement around the interface [105], since

in this case the width of the smooth Heaviside is is reduced due to the element size which is

down-sized to capture the interface. Furthermore, this strategy does not take into account the

advantage to know the position of the interface with the level-set method. This CSF method can

consequently be a solution in the case of a VoF method where the interface position is not de-

fined in an element. On the contrary, the level-set method, used here for the various advantages

exposed previously, allows an accurate representation of the interface inside an element. There-

fore, a Surface Local Reconstruction integration method is preferred in this work to accurately

integrate on the moving interface ΓLV .

3.4.2 Surface Local Reconstruction

The Surface Local Reconstruction (SLR) [175] is another technique which aims at computing

exactly each quantity across an interface, but also surface integrals. The Heaviside function in
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3.4. Quadrature rules and interfaces

the SLR case is stated as the standard Heaviside

HSLR (φ) =
 0 i f φ< 0

1 i f φ> 0
(3.38)

form the level-set function. Since the position of the interface is known, one would integrate

exactly the contribution of density and viscosity on each side of the interface by changing the

quadrature rule, as represented in Fig. 3.12. For example in two dimensions, the element is

sub-divided into three elements in order to add further integration points (or Gauss points). No

nodes are added contrary to X-FEM but only integration points. Thus, the size of the stiffness

matrix remains unchanged. Using these added integration points, the term involving the fluid

parameter, such as the term of virtual power of the internal actions in Navier-Stokes and Stokes

equations (Eq. 2.3), is integrated without smoothing the interface in the following way∫
el em

µ(x)ε̇(v ) : ε̇(w )dV

=
∫

bl ue
µblue ε̇(v ) : ε̇(w )dV +

∫
bl ack

µbl ack ε̇(v ) : ε̇(w )dV (3.39)

where the color blue and black refers to Fig 3.12 as the part under and above the interface.

FIGURE 3.12 – Intersection between the interface Γ and an element in 2D

Furthermore, to compute a surface integral, one or more integrations points may be added on

the interface depending on the order of interpolation. Unlike CSF case, the surface integral does

not have to be transformed into a volume integral. Thus, the SLR method has the advantage to

be more accurate than CSF method. In addition, SLR method does not require to choose any

tunable numerical parameter contrary to CSF method.

Each element cut by the interface is split depending on how it intersects with the interface. The

most common case in 2D is the one described in Fig. 3.12. When the element is fully cut by

the interface, three integration points are added on the top remaining triangle and the quadri-

lateral is split into two triangles with three integration points each. In the case of an element

cut on the edge, integration points are added on the interface without sub-dividing the ele-

ment. And in the last case of an element cut at a node, nothing is changed. In three dimensions,

the distinction between the cases has to be broadened. Its implementation becomes somehow

cumbersome but it is robust, and with the same complexity level as in 2D [36].
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Conclusion

In the case of numerical simulation of bi-fluid flow, three interfaces have to be represented.

Because only the fluid equations are solved in the domain, boundaries between the solid and

the two fluids are represented and captured by mesh boundaries (i.e. ΓSL and ΓSV ). The third

interface between the two fluids ΓLV is captured with a level-set method. This method has the

advantage to give a precise description of the fluid front and therefore to be able to integrate ex-

actly physical parameters and surface tension forces. Even though the level-set is not naturally

conservative, the method converges when refining the time step and mesh size.

The input of the level-set problem is the convective velocity which is the velocity from the fluid

problem, and its output is the position of the interface. The next chapter will investigate how to

couple fluid and level-set solvers to numerically take into account capillarity effects.

Résumé en Français : Méthode level-set

La description de l’interface mobile entre la phase liquide et la phase vapeur se fait par

une méthode level-set et résolution d’une équation de transport. Cette résolution se base aussi

sur des éléments finis linéaires, stabilisés par la méthode SUPG. Plusieurs méthodes sont éva-

luées pour maîtriser, voire réduire, la dégradation de l’interface ainsi que les pertes de volume

lors de l’étape de transport. Un raffinement conjoint des pas de temps et d’espace permet de

maîtriser l’erreur numérique et son accumulation lors des incréments en temps. Tout comme

la stratégie de réinitialisation utilisée, le filtre permettant d’avoir une fonction leve-set quasi-

ment constante en dehors d’un certain voisinage autour de l’interface, améliore encore la ro-

bustesse du calcul. L’ensemble de ces méthodes participe à la précision de la représentation

de l’interface liquide/gaz qui est un point crucial pour ensuite y appliquer la contrainte asso-

ciée à la tension superficielle. À cet effet, chaque élément du maillage traversé par l’interface

bénéficie d’un enrichissement de l’intégration par un découpage en sous-éléments. Ceci per-

met d’intégrer exactement les termes volumiques de l’équation de la mécanique des fluides,

mais aussi de pouvoir calculer numériquement le terme décrivant la tension de surface sur

l’interface décrite par la level-set ainsi localement reconstruite.
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Numerical strategy for capillary action
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Introduction

After presenting a numerical strategy for solving fluid mechanics equations and an interface

capturing method, this chapter presents the different key points for integrating capillary effects

in numerical simulation at the fluid-solid scale. First, pressure enrichment of the fluid problem

is needed to accurately describe the underlying physics of surface tensions. Next, emphasis is

placed on the global finite element formulation for surface tension and surface energies. Finally,

the non-linearity intrinsic to the surface tension force will be treated by two coupling strategies

between the level-set and the fluid solvers. The corresponding numerical methods have been

implemented in Z-Set (Zebulon) [34] FE code, at Mines Saint-Etienne. Validation cases are de-

scribed on an ongoing basis in this chapter.

4.1 Pressure and pressure gradient jumps

Multiphase flow exhibits strong and weak discontinuities, that is to say, a discontinuity of

the field and a discontinuity of its gradient respectively. In a general setting, discontinuities may

arise in highly advective compressible flows such as shock in air for example [61, 119, 170, 206].

But also, discontinuities of velocity or pressure may be induced by steep variation in material

properties or by surface tension flows of immiscible fluids [56, 77, 102, 125, 152, 185]. Indeed,

simply consider two columns of fluid one lying on top of the other. A contrast of densities leads

to a jump of pressure gradient, since the momentum equation is written as−∇p+ρg = 0. A pres-

sure jump may be also the result of the viscosity jump in a sheared flow or the surface tension

on a curved surface. This is the classical Young-Laplace equation [130, 141]. A consequence of

the continuous approximation of both pressure and velocity is that classical Galerkin-based FEs

are not able to capture a discontinuous solution. Yet, it is of the utmost importance to correctly

compute these jumps in the numerical simulation to carry out accurate numerical simulations.
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Chapter 4. Numerical strategy for capillary action

Otherwise, continuous approximation of a discontinuous field generate oscillations in the so-

lution, in particular in the velocity field which degenerates the front of fluid, regardless of the

front capturing method.

Many strategies are proposed in the literature to overcome the inability of continuous Galerkin-

based FEs to represent discontinuous fields. On one hand, in the case of a multiphase flow, a

common method is based on smoothing the discontinuities over the interface [40, 223]. The

material parameters are regularised in a region around the interface. Unfortunately, determin-

ing the width of the region and the form of this kind of mixture law is problem dependent

[130] and requires local refinement of the mesh. On the other hand, some approaches attempt

to properly capture the discontinuities instead of smoothing them. Discontinuity Capturing

(DC) techniques have been used to compute high-speed flow where the stabilisation SUPG [61,

119, 206] or Galerkin Least-Squares (GLS) [118] are enhanced to capture the discontinuities

by adding a discontinuity-capturing operator or discontinuous approximation. The X-FEM, for

their part, consider additional nodes on the interface to accurately capture the interface by in-

creasing the pressure space dimension [57, 151, 199]. However, the previous X-FEM method

increases the size of the system and changes the mesh connectivity. Consequently, the matrix-

graph is permanently changing in a time-dependent problem, reducing the efficiency of the

solver. All this leads to a global increase in the computation cost. In addition, a special treat-

ment has to be used to circumvent the problem of the ill-conditioning of the system [191]. A

Discontinuous Galerkin (DG) formulation [1, 159, 232] is another way to deal with strong and

weak discontinuities at the same time, with an interface corresponding to elements edges. How-

ever, like the X-FEM method, this requires a remeshing strategy for bi-fluid flows.

The strategy used and implemented during this work is the Enriched-FEM (E-FEM) [18], where

the added degrees of freedom are condensed prior to the assembly of the global matrix. There-

fore, the computational cost remains unchanged. Following Ausas et al. [20] [19], two degrees of

freedom are added to capture pressure jumps. A second enrichment from Owen [165] permits

to capture gradient pressure jumps, leading to add a third degree of freedom. In a nutshell, it re-

quires two further shape functions to describe a jump over an interface but only one to capture

a jump of gradient. Recently, an enrichment which does verify the partition of unity condition

(PUC), recalling that the sum of the shape functions shall equate to 1, has been proposed [123].

This condition is not satisfied by the three degrees of freedom considered in this work. A second

recent promising technique consists in endowing subscale space with discontinuous capturing

feature in the variational multiscale method [146]. However, results presented in the paper [146]

show better accuracy compared to most of discontinuous capturing techniques and the same

order of convergence than for Ausas’ method [19], considered here. Enforcing the weak and

strong discontinuities at the sub-grid scale and not only at the FEM scale, may also help in im-

posing Neumann condition on an immersed boundary [171]. Actually, the stabilisation terms

do not vanish on the interface since the interface cut the elements, in the case of an immersed

boundary. Therefore, the Neumann condition is not automatically enforced but several meth-

ods may be used such as Nitsche’s method [228]. Despite constant improvements in the field of

discontinuities capturing, the three added degrees of freedom presented in the next sub-section

give good results for the considered problems.
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4.1. Pressure and pressure gradient jumps

4.1.1 E-FEM and the three added degrees of freedom

The moving interface between liquid and vapour phases is described by a level-set func-

tion. Each element cut by the interface has to be enriched in order to capture weak and strong

pressure discontinuities. Fig. 4.1 shows in red the enriched elements cut by the interface.

FIGURE 4.1 – Enriched-FEM - Enrichment strategy when elements are cut by the front of
fluid

In every enriched element, two degrees of freedom are added to capture pressure jumps [19]

and one for pressure gradient discontinuities. The pressure approximation in an enriched ele-

ment reads

ph = ∑
I∈Ie

N I
e P I

e +
∑

J∈Je

M J
e P J

enr onΩe (4.1)

where Ie is the set of indices accounting for the number of nodes. N I
e and P I

e are the shape

function and nodal unknown associated with the node I . The set of indices Je = {0,1,2} ac-

counts for the three added degrees of freedom and P J
enr the associated degrees of freedom. The

general form of the system to solve for a cut element is written as(
K e/e K e/enr

K enr /e K enr /enr

)(
dU e

dP enr

)
=−

(
Re

Renr

)
(4.2)

where K e/e is the stiffness matrix and Re the residual for a standard element. The unknowns are

incremental unknowns dU e because a Newton algorithm is used. The shape functions for the

additional degrees of freedom are drawn in Fig. 4.2. The geometrical elements are drawn in two

dimensions with the vertices of the triangle represented by dark blue dots. The two first shape

functions M0 and M1 [19] are required to capture a pressure jump. Actually, M0 has a positive

value on the left-hand side of the interface ΓLV while M1 is positive on the other side. Therefore,

the pressure field may have a value on the left brought by M0 and another value on the right

corresponding to M1 shape function. Finally, the M2 shape function has a discontinuous slope

across the interface ΓLV . The three shape functions are easy to construct because they are based

on the primitive shape functions, allowing a direct implementation.

FIGURE 4.2 – Enriched-FEM - The shape functions corresponding to the three added de-
grees of freedom when element is cut by the interface, M0 and M1 are from [19], M2 from

[165]

73



Chapter 4. Numerical strategy for capillary action

To grasp the enrichment strategy, the sub-matrix term K enr /enr is explicitly given. This sub-

stiffness matrix is built from the term
∑ne l

e=1

∫
Ωe
τn+1,i

v ∇pn+1,i+1
h · ∇qh dV from the ASGS stabili-

sation (Eq. 2.20), only for elements cut by the interface

K I J
enr /enr =

∫
Ωe

τn+1,i
v ∇M I

e ·∇M J
e dV (4.3)

with indexes I , J ∈ Je . This stabilisation term is the same for Stokes or Navier-Stokes flows.

Therefore, enrichment is valid for both cases.

The three added shape functions have a zero value at vertices as it can be seen in Fig. 4.2.

Thus, the enriched pressure is written as

dP enr =−K −1
enr /enr (K enr /e dU e −Renr ) . (4.4)

The added degrees of freedom can be condensed in the element as follows(
K e/e −K e/enr K −1

enr /enr K enr /e
)

dU e =−Re +K e/enr K −1
enr /enr Renr (4.5)

A special attention should be paid to the inversion of the matrix K enr /enr for each element cut

by the interface. The computational cost is not significant since K enr /enr is only a 3×3 matrix

but it may not always be invertible; it is not invertible when the interface ΓLV is parallel to one

of the element edges [19]. In that particular case, the shape functions M0+M1 are proportional

to M2 and then M0, M1 and M2 are no longer linearly independent. The solution from the cited

article is to shift the diagonal entries of K enr /enr by adding a small coefficient ε when this situ-

ation is detected during the computation, i.e. K enr /enr ← K enr /enr + εI . In this work, the third

added degree of freedom associated with the M2 shape function is removed when the interface

is parallel to one of the element faces or edges. In practice, this situation is not often detected

during a general calculation.

4.1.2 Validation of the implementation

Three cases are investigated, represented in Fig. 4.3 to assess both enrichments to capture

strong and weak discontinuities. The first case (A) in Fig. 4.3 presents a pressure jump, whereas

the second case (B) has a pressure gradient jump. Finally, the last case (C) presents a jump of

both pressure and pressure gradient which holds the same numerical complexity that capillary

flow. The first case (a) has a pressure jump at the position y = y j ump = 0.52. The jump of normal

stress across an interface is 0 without surface tension (see Eq. 1.31) and it writes:

[σ ·n] =−[p]I +2[µ]ε̇(v ) = 0 (4.6)

The pressure jump is relative to shear stress at the interface with a change of viscosity. Therefore,

a sheared flow presents a pressure jump at the interface when the viscosity is discontinuous.

The viscosity ratio is five in this case but the accuracy holds for higher and more realistic ratios
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4.1. Pressure and pressure gradient jumps

(A) pressure jump (B) pressure gradient jump

(C) pressure and pressure gradient
jumps

FIGURE 4.3 – Enriched-FEM - Boundary conditions for the three cases to assess the discon-
tinuities capturing

like 103 or 104. The analytical solution of the first case (A) is:

velocity


vx = 1−x

vy = y

vz = 0

pressure

{
p = 2(µ2 −µ1) if y < y j ump

p = 0 else

(4.7)

As it can be seen in Fig. 4.4, the pressure for y > y j ump is zero and under y j ump , the pressure is

constant, equal to 8, which are both the theoretical values for the pressure. The velocity field is

presented on the right-hand side of the figure. The transparent green at the bottom represents

the liquid with the higher density. The pressure field is correctly predicted by the numerical

simulation due to the pressure enrichment. In fact, the analytical solution (constant on both

sides of the interface) is included in the FE pressure space (piecewise linear with jumps). The

interface is here parallel to faces of the cut elements. Therefore the matrix is not invertible as

discussed in the previous paragraph. Consequently, the third added degree of freedom [165] is

automatically removed. It has been tested that if no enrichment is added, the pressure cannot
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(A) pressure (B) velocity

FIGURE 4.4 – Enriched-FEM - Results with a pressure jump (case (A) Fig. 4.3) in the analyt-
ical solution (mesh size he = 1/20).

be discontinuous across the interface and thus the pressure jump is smoothed over each side

of the interface. This first case validates the implementation and the efficiency of the pressure

jump capturing technique from Ausas et al. [19].

The case (B) in Fig. 4.3 features a jump of pressure gradient, due to a jump in density. Two

fluids are inside a container with the heavier fluid at the bottom, like coffee and air in a cup.

Gravity is pulling both fluid in the direction −y and g = (0,−10,0). The analytical solution is

velocity {v = 0

pressure

{
p = ρ1‖g‖y +ρ2‖g‖(1− y j ump ) if y < y j ump

p = ρ2‖g‖(1− y) else

(4.8)

Fig. 4.5 (A) shows the pressure field. The velocity field, presented in the top of Fig. 4.5 (B), has a

maximum value in the centre of the domain of 10−15, which is machine zero when using double

precision float. Finally, at the bottom in Fig 4.5 (B), the pressure with a linear interpolation pro-

file is plotted at the position x = 0.5 and z = 1 with an exact match with the theoretical pressure.

And again this is expected since the analytical solution is included in the finite elements space.

The case (C) in Fig. 4.3 is the combination of both cases (A) and (B), allowing to assess the

robustness of combining both methods. The analytical solution is given by

velocity


vx = 1−x

vy = y

vz = 0

pressure

{
p = 2(µ2 −µ1)+ρ1‖g‖y +ρ2‖g‖(1− y j ump ) if y < y j ump

p = ρ2‖g‖(1− y) else

(4.9)
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(A) (B)

FIGURE 4.5 – Enriched-FEM - Results with a pressure gradient jump (case (B) Fig. 4.3) in
the analytical solution (mesh size he = 1/10).

The velocity field is plotted in Fig. 4.6 (A). Fig. 4.6 (B) shows the pressure field at the top and

(A) (B)

FIGURE 4.6 – Enriched-FEM - Results with both a pressure and pressure gradient jump
(case (C) Fig. 4.3) in the analytical solution.

at the bottom of the figure, the pressure along the y direction at position x = 0.5 and z = 1. The

jump at the interface is recovered by the numerical simulation, even in this case when the dis-

continuity is inside an element. This last case validates the double enrichment of the pressure

field to capture strong and weak discontinuities.
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Pressure enrichment is required to capture discontinuities as shown in Fig. 4.7. Without any

pressure enrichment both discontinuities are not captured by the simulation. This error in the

pressure field is one of the parasitic currents roots in the velocity field at the interface, as it will

be discussed in the validation of the implementation section.

FIGURE 4.7 – Enriched-FEM - Pressure corresponding to the case (C) Fig. 4.3, that is pre-
senting both weak and strong discontinuities. Dashed line: theoritical pressure; Solid line:

numerical pressure obtained without enrichment [19] and [165].

4.2 Global FEM formulation for surface tension and surface en-

ergies

In a general setting, surface tension is involved at the interface between vapour and liquid

phases. Additionally, in presence of a solid substrate (the carbon fibres in our case), surface

energies act at the liquid-solid and vapour-solid interfaces. On each of these interfaces, force

balance (see Sec.1.2.3), resulting from momentum and angular momentum balances, has to

be satisfied. The purpose of this section is to depict a global strategy to include this interface

condition in the integral weak FE formulation. Moreover, weakening the regularity required

for the solution on the interface enables to see the triple junction equilibrium (Eq. 1.37) as a

Neumann condition which appears naturally in the weak formulation.

FIGURE 4.8 – Schematic description of notations for a capillary flow - a liquid meniscus
against a rigid wall [58]
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4.2.1 Relaxed weak formulation

The surface tension and surface energies terms are injected in the integral weak formulation

through the stress vector term computed at each boundary (∂ΩL ∪∂ΩV ) \ (ΓN ). Contrary to the

case of a single fluid, this time the set (∂ΩL ∪∂ΩV ) \ (ΓN ) is not empty and may be decomposed

in the following way:∫
(∂ΩL∪∂ΩV )\(ΓN )

σ ·n ·w dS

=
∫
∂ΩL\ΓLV

σ ·nSL ·w dS +
∫
∂ΩV \ΓLV

σ ·nSV ·w dS −
∫
ΓLV

(σV −σL) ·nLV ·w dS
(4.10)

where the normal are oriented according to Fig. 4.8. The two first terms are Neumann bound-

ary condition for each phase, liquid and vapour. The third and last term is the stress jump at

the interface between liquid and vapour phases. Let’s remind with the following equation the

boundary conditions on the three interfaces Γi with i ∈ {LV ,SL,SV } and on the triple line L(t ):

[σ ·n]ΓLV =−∇α(γLV tαLV ) on ΓLV (t ),

v ·nSL = 0 and σ ·nSL =−βSL v +∇α(γSL tSL
α) on ΓSL(t ),

v ·nSV = 0 and σ ·nSV =−βSV v +∇α(γSV tSV
α) on ΓSV (t ),

γSLT SL +γSV T SV +γLV T LV = Rsolidns and v ·ns = 0 on L(t ),

(4.11)

For each interfaces, the stress vectors have been substituted with their expression given by the

mechanical equilibrium at the interface. The purpose of the derivation is to include the four

boundary conditions presented in Eq. 4.11 in the integral weak formulation as the virtual power

of external action at the boundary of each subdomain liquid and vapour 4.10. From now on, the

subscript for the normal and tangents are omitted but they refer implicitly to the surface over

which the integral is performed. The first term in Eq. 4.10 is replaced with the condition on ΓSL ,

the second term with the condition on ΓSV and the stress jump with the condition on ΓLV . It

comes:∫
(∂ΩL∪∂ΩV )\(ΓN )

σ ·n ·w dS

=
∫
ΓSL

(−βSL v +∇α(γSL tα)) ·w dS +
∫
ΓSV

(−βSV v +∇α(γSV tα)) ·w dS +
∫
ΓLV

∇α(γLV tα) ·w dS

(4.12)

since ∂Ω j \ΓLV = ΓS j with j ∈ {L,V } as seen in Fig. 4.8. Recall that in [102], there is an implicit

summation on the system coordinate α = {1,2} and tα are the vectors tangent to the surface.

The coefficients β j with j ∈ {L,V } are friction coefficients (see Sec. 1.1.5 cond. (2)) acting on

the solid substrate. It is classical in the literature to perform an integration by parts on the term

∇α(γi tα) [47, 49, 174, 183, 202] in order report the derivatives on the test functions. At first, the

integration by parts may be written using the curvilinear abscissa s∫
Γi

d

d s
(γi t ) ·w dS =

∫
∂Γi

γi T i ·w dl −
∫
Γi

γi t · d w

d s
dS with i ∈ {LV ,SL,SV } (4.13)
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Chapter 4. Numerical strategy for capillary action

with T i the tangent at the edge of the interface Γi . The same formula may be established in 3D

[47], only in that case the term γi t · d w
d s becomes the surface divergence of the test function w . .

Therefore, surface tension and surface energy terms are turned into∫
Γi

∇α(γi tα) ·w dS =
∫
∂Γi

γi T i ·w dl −
∫
Γi

γi (I −n ⊗n) : ∇w dS with i ∈ {LV ,SL,SV } (4.14)

where the surface divergence is written using the projection operator I −n ⊗n in the tangent

directions to the interface. Before the integration by parts, the computation of capillary forces

involves the gradient of the tangent vector, that is, the mean curvature. Whereas, now, as it can

be seen on the second term of the right-hand side of Eq. 4.14, only the normal vector to the

interface is required. The interface should be at least C 1. In that sense, the condition on the

regularity of the interface is weakened. The second advantage of doing an integration by parts

on the three interfaces is to weakly impose the mechanical equilibrium of the triple line [47].

∂Γi represents the boundary of the interface Γi , with i ∈ {LV ,SL,SV } which is two points in 2D

as seen in Fig. 4.9 and a curve in 3D.

FIGURE 4.9 – Meniscus facing a wall in 2D with visual description of boundaries of each
interfaces.

Each term
∫
∂Γi

γi T i ·w dl may be decomposed into a contribution at the triple line L(t) and a

contribution on the complementary ∂Γi \ L(t ). The sum from Eq. 4.12 may be rewritten as∫
∂ΓSV

γSV T SV ·w dl +
∫
∂ΓSL

γSLT SL ·w dl +
∫
∂ΓLV

γLV T LV ·w dl

=
∫

L(t )

(
γSV T SV +γSLT SL +γLV T LV

) ·w︸ ︷︷ ︸
=Rsol i d ns ·w

dl

︸ ︷︷ ︸
=0

+ ∑
i∈{SL,SV ,LV }

∫
∂Γi \L(t )

γi T i ·w dl (4.15)

The first term of Eq. 4.15 corresponds to the contribution of each interface boundary at the

triple line, and the second term is their contribution to the complementary, typically the posi-

tions a, b and c in Fig. 4.9 for a 2D case. Let’s notice that the term
∫
∂Γ\L γT ·w dl may be hard

to implement since it is case dependent. By choosing an appropriate condition on velocity at

these points, T i ·w = 0. In particular, this is the case when v · tα is enforced equal to zero. As a

matter of fact, prescribing the value of tangential velocity v · tα at ∂Γi \ L(t ) with i ∈ {LV ,SL,SV }

leads to set the tangential component of the test function to zero T i ·w = 0, since the velocity

and test function belong to the same space W .

In Eq. 4.15, the Young equation at the triple line is verified because the wall is assumed to be

rigid (w · nS = 0 on L(t)) and the wall reaction directed in the normal direction. But for soft
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4.2. Global FEM formulation for surface tension and surface energies

solid, this term is mandatory and can even prevail in some circumstances [201]. Here, we thus

deliberately neglect elasto-capillarity.

Hence, using expressions 4.15 and 4.14, without including Neumann condition (see condi-

tion 3 in Sec. 1.1.5), relation 4.10 can be expressed as∫
(∂ΩL∪∂ΩV )\(ΓN )

σ ·n ·w dS

=
∫
Γsol i d

βv ·w dS −
∫
Γ
γ(I −n ⊗n) : ∇w dS +

∫
∂Γ\L

γT ·w dl
(4.16)

with

•
∫
Γsol i d

βv ·w dS = ∑
j={SL,SV }

∫
Γ j

β j v ·w dS

•
∫
Γ
γ(I −n ⊗n) : ∇w dS = ∑

i∈{LV ,SL,SV }

∫
Γi

γi (I −ni ⊗ni ) : ∇w dS

•
∫
∂Γ\L

γT ·w dl = ∑
i∈{LV ,SL,SV }

∫
∂Γi \L(t )

γi T i ·w dl .

(4.17)

The term acting at position c in Fig. 4.9:
∫
∂ΓLV \L(t )γLV T LV ·w dl is naturally canceled when rep-

resenting a symmetrical boundary condition for the fluid flow v ·n = 0. In that case, it represents

the action of a symmetric wall; both flow and capillary action are symmetric.

4.2.2 Semi-implicit time discretisation for the interface terms

The time is sequenced into time increments with the superscript (•)n denoting the quantity

at the nth increment and the time step defined as∆t = t n+1−t n . Since an implicit time discreti-

sation is used to solve the Navier-Stokes equations, the surface tension term is required to be

computed at the time step t n+1

∫
Γn+1

γ(I −n ⊗n)
∣∣∣
n+1

: ∇w dS (4.18)

Of course, the three interfaces ΓLV , ΓSL and ΓSV and theirs geometries change over time. To

compute the surface tension term presented above, the geometry of the interface has to be

known beforehand since the normal to the interface is involved in the surface tension term. In

that sense, there is a coupling between the fluid mechanical problem and the interface geom-

etry problem. A distinction may be made between two the interfaces involving a solid and the

immersed interface ΓLV .

First, the interfaces ΓSL and ΓSV have a fixed geometry since they are represented by a bound-

ary of the fluid domain which does not change over time. However, the boundary position still

depends on time. To remove this first non-linearity, the interface between the solid and one of

the fluid is approximated using the previous interface position∫
Γn+1

j

γ j (I −n ⊗n)n+1 : ∇w dS ≈
∫
Γn

j

γ j (I −n ⊗n)n+1 : ∇w dS ∀ j ∈ {SL,SV }. (4.19)
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Chapter 4. Numerical strategy for capillary action

A particular attention have to be paid to the interface between the vapour and liquid phase

ΓLV with a changing geometry over time. Oppositely, both the Liquid/Vapour interface position

and its geometry are unknown. A first approach consists in using an explicit formulation for the

surface tension term∫
Γn+1

LV

γLV (I −n ⊗n)n+1 : ∇wdS ≈
∫
Γn

LV

γLV (I −n ⊗n)n : ∇wdS (4.20)

Brackbill et al. [40] have been the first to investigate the stability condition when using a time-

explicit discretization for the surface tension term in a bi-fluid flow which reads

∆t <∆tγ :=
√

(ρL +ρV )h3
e

4πγLV
(4.21)

This condition comes from the fact that the time step should be small enough to resolve the

fastest capillary waves of the problem
cγ∆tγ

he
< 1

2
(4.22)

where cγ is given by the dispersion relation

cγ =
√

γLV k

ρL +ρV
(4.23)

Consequently, the condition on the maximum allowable time step is when the maximum dis-

persion velocity occurs for a wavelength k = π/he (obtained when recasting Eq. 4.21 and 4.23

in Eq. 4.22). A formal derivation and discussion on a fine tunning of the time step restriction is

presented by Sussman et al. [203] and Galusinski et al. [91]. As noted by Popinet [178], the time

step criterion is very restrictive and it is not suited for engineering problems. Furthermore, the

restriction on the time step is a consequence of the requirement imposed by the spatiotemporal

sampling of capillary waves [73]. Thus, the restriction on the time step due to capillary action

is intrinsic to the problem and may not be simply overcome with the use of a small time step.

One solution is to damp fast modes rather than resolve them, aiming at using an extended time

step. This idea has been first proposed by Bänsch [24] with a Lagrangian finite-element discreti-

sation. Dziuk [83] [84] and Hysing [121] have extended the method to an Eulerian description

method, such as the level-set method. The derivation starts from the differential geometry rela-

tion [219] stating that the projection operator is equal to the surface gradient of the Lagrangian

interface position i d(x). Then, the unknown position of the interface is approximated based on

the previous position plus a predicted increment i d n+1 = i d n +∆t v n+1. The complete semi-

implicitation derivation may be written as follows∫
Γn+1

LV

γLV (I −n ⊗n)n+1 : ∇w d s =
∫
Γn+1

LV

γLV ∇Γi d n+1 : ∇w dS

≈
∫
Γn

LV

γLV ∇Γ(i d n +∆t v n+1) : ∇w dS

=
∫
Γn

LV

γLV (I −n ⊗n)n : ∇w dS︸ ︷︷ ︸
a

+∆t
∫
Γn

LV

γLV
(∇v n+1 · (I −n ⊗n)n)

: ∇w dS︸ ︷︷ ︸
b

(4.24)
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4.2. Global FEM formulation for surface tension and surface energies

with ∇Γ the surface gradient operator. The first term (a in Eq. 4.24) is the surface tension force at

the previous time step. The second term (b in Eq. 4.24) is a correction similar to a diffusion op-

erator working in the direction tangential to the interface. Note that if the surface tension term

is explicit (only a in Eq. 4.24), then increasing the surface tension coefficient tends to destabilise

the system since it increases the external loading with no modification in internal contribution.

This counter-intuitive fact does not hold with a semi-implicit treatment of the surface tension

term. When increasing the surface tension coefficient, the semi-implicit scheme creates more

interface diffusion and then a stiffer system, bringing robustness. According to Popinet [178],

the second term will damp fast capillary waves leading to stabilisation. Finally, thanks to an er-

ror analysis, Groß et al. [103] showed a O(
√

he ) error bound for the surface tension term when

using the semi-implicitation technique.

4.2.3 Validation of the implementation

A circular static bubble in a surrounding fluid is tested in 2D and 3D, without gravity but

with a surface tension acting on its contour. First, the 2D case compares the results obtained

using the pressure discontinuities capturing technique, and with and without the stabilisation

term (b in Eq. 4.24). Whereas, the 3D case assesses the pressure capturing technique efficiency

when the semi-implicitation technique is used.

2D bubble

The initial and boundary conditions are depicted in Fig. 4.10. The top boundary condition,

prescribing a zero tangential velocity and the normal component of the stress vector lead to

impose indirectly the pressure to 10 in the liquid outside the bubble. In 2D, the bubble is a disc

with a radius R = 0.1924 placed at the centre (0.5,0.5) of the unit domain. The viscosity and the

surface tension coefficient are set to 1. Therefore, the jump of pressure due to the curvature of

the bubble is ∆p = γLV /R ≈ 5.20. The pressure field is represented in Fig. 4.11, where it can be

seen that the computed solution is in good agreement with the analytical one.

FIGURE 4.10 – Static bubble - Boundary
conditions and the initial geometry

FIGURE 4.11 – Static bubble - Pressure field
he = 1/50

One challenge with numerical simulation of capillary action comes from parasitic currents. The

velocity field should be null in the entire domain since the bubble is static. Unfortunately, the

discretisation of the interface brings numerical errors when computing the capillary term [2,

86, 92], since a curved interface may not be exactly represented with segments. Typically, those
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Chapter 4. Numerical strategy for capillary action

parasitic currents are located at the interface and may deteriorate the shape of the interface.

Low magnitude parasitic currents (compare to the time step) create small local displacements

of the interface that initiate capillary waves with short wavelengths (of the order of the mesh

size). When the interface starts to oscillate due to the discretisation error, the pressure may

change suddenly at one point. This phenomena brings another source of unwanted capillary

waves. Those purely numerical capillary waves with short wavelengths are unresolved, creating

parasitic currents, which deteriorate the interface by convecting it with unphysical velocities.

Parasitic currents are proportional to the ratio γLV /µL [132, 198]. In order to assess the influ-

ence of the semi-implicitation technique, a simulation is run from time t0 = 1 to t f = 3 in three

regular time increments (∆t = 1) on a structured grid with a mesh size of 1/50. Fig. 4.12 ex-

hibits parasitic currents around the interface. In the sub-figure (A), the semi-implicitation term

(A) with semi-implicitation (B) without semi-implicitation

FIGURE 4.12 – Static bubble - Parasitic currents (vectors scaled by 200), at beginning
of the simulation at time t = 1

is used whereas in the sub-figure (B) an explicit scheme is used. The maximum velocity mag-

nitude for the case with the semi-implicitation term is 5.57×10−4 and 1.47×10−3 without. As

expected, the semi-implicitation technique acts as a stabilisation term reducing parasitic cur-

rents and allowing the use of a larger time step. After three time steps, unresolved fast modes

crumble the interface for the unstabilisated case as it can be seen in Fig. 4.13 (B). On the con-

trary, thanks to the surface diffusion, the interface remains unchanged with constant parasitic

currents around 2.5×10−4 (see Fig. 4.13 (A)). The same simulation is run with a smaller time

step ∆t = 0.1 in order to reduce the influence of the stabilisation term. The values of the para-

sitic currents (maximal velocity magnitude) are now: 1.23×10−3 with the stabilisation term and

1.47×10−3 without. At the end of the simulation after thirty time increments, the interface is

unchanged with the semi-implicit term (same order of magnitude for the parasitic current than

initially) and distorted otherwise (100 larger parasitic current magnitude than initially) as pre-

viously shown with the unitary time step. The stabilisation term not only tends to decrease the

value of the parasitic currents but also prevents the parasitic current to increase in time.

84



4.2. Global FEM formulation for surface tension and surface energies

(A) with semi-implicitation (B) without semi-implicitation

FIGURE 4.13 – Static bubble - Parasitic currents (vectors scaled by 1), at the end of the sim-
ulation at time t = 3

3D bubble

The 3D bubble aims to validate, first, that the pressure enrichment is mandatory for the nu-

merical simulation of capillary effects. And, second, that the pressure enrichment strategy and

the semi-impicitation of the surface tension term behave well together. Let us consider a com-

putational domain Ω = [0,1]3 with the initial setup in Tab. 4.1 and boundary conditions given

in Fig. 4.14.
Parameters Value

Centre of sphere (0.5,0.5,0.5)

Sphere radius 0.2

Final time 10

Number of time increments 50

∆t 0.2

θ for theta method 0.5

Reinitialisation False

Filtering function tanh

Mesh size {0.05,0.033,0.025}

Surface tension γLV 1

Viscosity µ 1

TABLE 4.1 – Static 3D bubble - model entries

FIGURE 4.14 – Static 3D bubble
- Boundary conditions and initial

values

The first simulation is executed with a coarse grid (mesh size he = 0.05) made up of 9620 nodes.

The results of the first Stokes computation are represented in Fig. 4.15 at the initial time, be-

fore moving the interface. Each subplot of the figure is divided into two parts. On the left-hand

side, half of the numerical solution without pressure enrichment is given and on the right-hand

side with the three additional degrees of freedom in pressure. The bubble without enrichment

is represented in transparent magenta and with the enrichment in transparent green. After the

first Stokes computation, the pressure field without enrichment is much diffuse than with en-

richment. Indeed, the pressure jump of 10 pressure units is correctly captured by the pressure

enrichment but not without. Making an error on the pressure field leads to strong parasitic cur-

rents in the velocity field which leads to the complete collapse of the bubble. This may come
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Chapter 4. Numerical strategy for capillary action

(A) Pressure field (B) Velocity field

FIGURE 4.15 – 3D static bubble - Comparison with (green) and without (magenta) pressure
enrichment

from the error on the estimation of the ASGS stabilisation term ∇p ·∇q (see Eq. eq:Navier-Stokes

ASGS 2 ). This term allows some mass to be lost, since it relaxes the mass conservation equation.
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4.2. Global FEM formulation for surface tension and surface energies

(A) Incr 30

(B) Incr 31

FIGURE 4.16 – 3D static bubble - Parasitic currents left for the case with pressure enrich-
ment

As shown in Fig. 4.16, the bubble without enrichment has totally disappeared after 30 time

increments. Nevertheless, the pressure field with stabilisation is oscillating between subplot (A)

and (B), creating parasitic currents. One node is either inside or outside the bubble as shown

with the yellow circled region in Fig. 4.16. Fortunately, the semi-implicit term for the capillary
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Chapter 4. Numerical strategy for capillary action

effect adds a surface diffusion to keep spurious velocities as low as possible.

Finally, the mass loss over time with and without using the pressure enrichment technique can

be studied. The convergence and comparison study is carried out with three meshes. As can be
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FIGURE 4.17 – 3D static bubble - Mass loss with and without pressure enrichment tech-
nique

seen in Fig. 4.17, refining the mesh tends to improve the mass conservation of the bubble by

decreasing the parasitic currents. The pressure enrichment is a key element for capillary flow

simulation, since it improves significantly the conservation of volume by minimising the par-

asitic currents. One will notice that the volume at the first time is not exactly the same volume

for all the curves; this is due to the better discretisation (polygonalisation) with refined meshes.

The volume variation computed at the final time is relative to the initial computed volume and

not the theoretical volume. The variation of volume decreases when refining the mesh.

Globally, the two validation cases confirm that parasitic currents originate, first, from the

linear discretisation of the interface itself, and second, from the position of the mesh nodes

with respect to the interface, i.e. nodes close to the interface. It was demonstrated that it is

highly profitable to use a pressure enrichment technique to capture the jumps of pressure and

pressure gradient. Furthermore, adding the semi-implicit diffusion term at the interface brings

robustness to the computation. The semi-implicitation allows to dissociate partially the time

step and the mesh size.

4.3 Coupling Fluid and Level-set solvers

Up to this point, each problem (fluid and level-set) has been treated separately. From a gen-

eral point of view, the level-set problem takes the fluid velocity as an input in order to convect

the fluid front. Conversely, the fluid problem depends greatly on the position of fluid front when

one comes to integrate the capillary forces. To put it briefly, the global system is non-linear due

to the implicit time integration method. This section addresses the coupling strategy to solve

this non-linearity. A staggered approach is used to solve recursively one problem after the other.
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It is chosen to solve first the fluid flow based on the previous known configuration and then

compute the new flow front geometry and position. A second choice is to restrict ourselves to

the Stokes equations in order to isolate and deal with only one non-linearity. Still, the strategy

developed with the Stokes solver is extensible to Navier-Stokes by adding inertia terms.

4.3.1 Weak coupling

The weak coupling strategy consists in solving the mechanical problem by using the inter-

faces obtained at the previous time increment. The interfaces are subsequently updated with

the computed velocity, and time is incremented. Thus, there is no iteration into a same time

increment, and the global solution (v ,p,φ) solving simultaneously Stokes and transport equa-

tions is reached only for the steady state. The staggered algorithm is given in Algo. 1, the Stokes

problem is solved at time t n+1 based on an evaluation of the geometry at time t n .

Algorithm 1 Staggered algorithm for fluid and level-set problems

Require: φ0
h the initial geometry

for all t n+1 ∈]0,T ] do
• Step 1 find v n+1

h ∈W h and pn+1
h ∈Qh such that

−
∫
Ωh

pn+1
h ∇·w h dV +

∫
Ωh

µn∇v n+1
h : ∇w h dV −

∫
Ωh

qh∇·v n+1
h dV +

∫
Γsolid,h

βv n+1
h ·w h dS

+∑
e
τe,n

p

∫
e
∇·v n+1

h ∇·w h dV −∑
e
τe,n

v

∫
e
∇pn+1

h ·∇qh dV +∆t
∫
Γn

LV ,h

γLV
(∇v n+1

h · (I −n ⊗n)n)
: ∇w h dS

=
∫
Ωh

ρn g ·w h dV −
∫
Γn

h

γ(I −n ⊗n)n : ∇w h dS +
∫
∂Γh \L

γT ·w h dl −∑
e
τe,n

v

∫
e
ρn g ·∇qh dV

with τv = h2
e /µ and τp =µ, for any test functions w h ∈W 0

h and qh ∈Qh .

• Step 2 find φn+1
h ∈Sh such that

∫
Ωh

φn+1
h −φn

h

∆t
φ̃∗

h dV + 1

2

∫
Ωh

v n+1
h ·∇φn+1

h φ̃∗
h dV =−1

2

∫
Ωh

v n
h ·∇φn

hφ̃
∗
h dV

with φ̃∗
h =φ∗

h +τe
k v n+1

h ·∇φ∗
h and τe

k = 1
2

he

||v n+1
|e || for any test functions φ∗

h ∈S 0
h .

• Step 3 Reinitialisation step of the level-set: solve the Halmiton-Jacobi Eq. 3.19 or apply
the direct reinitialisation technique 3.1.5.

end for

The geometry of the interface ΓLV has an effect on the computation of the surface ten-

sion term but also on each term in the fluid equation except for the pressure gradient term∫
Ωh

pn+1
h ∇·w h dV and the term from the incompressibility equation

∫
Ωh

qh∇·v n+1
h dV . All these

terms are approximated when using the staggered approach what indicates that the integration

is performed on the previous geometry i.e.Ωn+1
L ≈Ωn

L andΩn+1
V ≈Ωn

V .
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4.3.2 Strong coupling

The restriction on the time step (Eq. 4.21) is one of the motivations for using an iterative

approach [104], which couples Stokes and transport equations in a stronger way. A second rea-

son for the iterative coupling is to progressively remove the stabilisation term introduced with

the semi-implicit scheme. In fact, this purely numerical stabilisation alters the imposition of

the triple line equilibrium as Neumann condition. Yet, the stabilisation does not vanish when

using a weak coupling, affecting the contact angle. The stabilisation term is proportional to the

velocity gradient projected on the interface, which is particularly strong near the triple line. This

strong surface diffusion changes the contact angle imposed weakly with a Neumann condition.

To address these two issues, an iterative procedure is introduced in this subsection, computing

the Stokes problem on the geometry found at the previous iteration. First, the liquid and vapour

domains are approximated withΩn+1,i t+1
V ≈Ωn+1,i t

V andΩn+1,i t+1
L ≈Ωn+1,i t

L . And second, the it-

erative strategy modifies the semi-implicit scheme of capillary effects [104, 124]. The position

of the interface is approximated using the previous iterative geometry rather than the geometry

at the previous time step. The change reads

i d n+1,i t+1 ≈ i d n+1,i t +∆tδv n+1,i t+1 = i d n+1,i t +∆t
(

v n+1,i t+1 −v n+1,i t
)

. (4.25)

The surface tension force at the moving interface between the vapour and the liquid is trans-

formed using the previous approximation∫
Γn+1,i t+1

LV

γLV (I −n ⊗n)n+1,i t+1 : ∇w d s =
∫
Γn+1,i t+1

LV

γLV ∇Γi d n+1,i t+1 : ∇w dS

≈
∫
Γn+1,i t

LV

γLV ∇Γ
(
i d n+1,i t +∆t

(
v n+1,i t+1 −v n+1,i t

))
: ∇w dS

=
∫
Γn+1,i t

LV

γLV (I −n ⊗n)n+1,i t : ∇w dS+

+∆t
∫
Γn+1,i t

LV

γLV

((
∇v n+1,i t+1 −∇v n+1,i t

)
· (I −n ⊗n)n+1,i t

)
: ∇w dS︸ ︷︷ ︸

c

(4.26)

Compare to an explicit expression of the surface tension term, the additional term named c in

Eq. 4.26 brings stabilisation to the computation. Instead of only diffusing the solution like the

term b in Eq. 4.24, now the second term, c, depends on the gradient of the incremental un-

known. A salient feature of the strong coupling is that the stabilisation term c will progressively

vanish when converging during iterations. One can verify that when converging ‖v n+1,i t+1 −
v n+1,i t‖∞ → 0, then c → 0. Conversely, when the discrepancy between two successive velocities

increases, then the diffusion term c will be larger, creating a more diffusive and robust system.

Algorithm

The complete strong coupling algorithm is presented in Algo. 2. The main difference be-

tween the staggered and iterative coupling is the ’while loop’ encompassing the Stokes and

level-set problems. The fluid problem is modified using Eq. 4.26. The iterative coupling is pre-

sented for Stokes but can be extended to Navier-Stokes equations. In that case, the iterations

for removing the non-linearity from the inertia term may be incorporated within the iterations
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4.3. Coupling Fluid and Level-set solvers

for the surface tension stabilisation (Eq. 4.26). Both non-linearities would be solved at the same

time, increasing the complexity of the problem. In this work, the flow is restricted to Stokes

flows when using a strong coupling strategy, because the global system features already two

non-linearities. The first one is in the Stokes problem since the force depends on the previous

iterative velocity (i.e. the Stokes problem is not linear in this case). The second non-linearity is

global between the fluid and level-set problem, because the level-set convection may change

the fluid problem solution.

Convergence criterion

The global system may be put under the form K (U )U = F (U ) with the vector U of unknowns

(v , p, φ). The fixed point method is used to solve the previous equations, and for each iter-

ation the residual has to be null K (U )U −F (U ) = 0. Each increment is made of the following

steps: compute the vector of unknowns by using a Gauss pivoting strategy or a LU factorization

K (U i t )U i t+1 = F (U i t ). Then update the stiffness matrix and the external force (K (U i t+1) and

F (U i t+1)) and finally test the conditions if the solution vector verifies the system with the up-

dated stiffness and external force K (U i t+1)U i t+1 = F (U i t+1) or do another iteration. This con-

dition is standard when using a numerical resolution method. In the case of coupling fluid and

level-set solvers, this global condition may be tuned. The level-set problem is a linear problem,

contrary to the fluid problem which has its external force dependent on the velocity. If the solu-

tion of the fluid problem verifies the updated system, therefore the velocity has converged and

the updated stiffness for the level-set will not change. That is why, the condition named CDT1
in Algo. 2, is designed to assess the global convergence of the system by specifically looking at

the convergence of the fluid problem. Consequently, the condition CDT1 is verified if the previ-

ous solution verifies the updated (after transport of the level-set) system. The condition is met

if the infinity norm ‖K (U i t+1)U i t+1−F (U i t+1)‖∞ is smaller than a value (ε1 in Algo. 2). Theoret-

ically, the first condition CDT1 should be sufficient at each time step. However, this condition

is not always a suitable choice since parasitic currents may make the solution diverge. When

studying the case of a static bubble at equilibrium, parasitic currents appear at the interface.

The semi-implicit term (Eq. 4.26) for capillary effects tends to reduce its influence. Indeed, dur-

ing the iterations, the stabilisation term (c in Eq. 4.26) vanishes when converging, this leads to

an increase of the parasitic currents which will increase the stabilisation term back again. To

tackle this issue, a more practical convergence parameter may be derived based on the level-

set function. The condition CDT2 is verified if the infinity norm of the increment of unknowns

φn+1,i t+1−φn+1,i t is lower than an arbitrarily threshold (ε1 in Algo. 2). In general, this second cri-

terion may be not sufficient to ensure the convergence of the whole system. In fact, the solver

may be stuck in a local minimum (U is not the solution) but the variation of unknown may be

zero. To sum things up, if the condition CDT1 is true, it implies that CDT2 is true, but the reverse

does not hold. In this work, a regular convergence is assumed when dealing with a simple static

interface ΓLV between liquid and vapour phases. In that case, the condition CDT2 is suitable to

control convergence criterion.
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Algorithm 2 Iterative algorithm for fluid and level-set problems

Require: φ0
h the initial geometry

for all t n+1 ∈]0,T ] do

i t ← 0
CDT1, CDT2 ← False

while CDT1 or CDT2 is false do

• Step 1 find v n+1,i t+1
h ∈W h and pn+1,i t+1

h ∈Qh such that

−
∫
Ωh

pn+1,i+1
h ∇·w h dV +

∫
Ωh

µn+1,i t∇v n+1,i+1
h : ∇w h dV −

∫
Ωh

qh∇·v n+1,i+1
h dV

+∑
e
τe,n+1,i t

p

∫
e
∇·v n+1,i t+1

h ∇·w h dV −∑
e
τe,n+1,i t

v

∫
e
∇pn+1,i t+1

h ·∇qh dV

+
∫
Γsolid,h

βn+1,i t v n+1,i t+1
h ·w h dS +∆t

∫
Γn+1,i t

LV

γLV

(
∇v n+1,i t+1 · (I −n ⊗n)n+1,i t

)
: ∇w dS

=∆t
∫
Γn+1,i t

LV

γLV

(
∇v n+1,i t · (I −n ⊗n)n+1,i t

)
: ∇w dS −

∫
Γn+1,i t

h

γ(I −n ⊗n)n+1,i t : ∇w h dS

+
∫
Ωh

ρn+1,i t g ·w h dV +
∫
∂Γh \L

γT n+1,i t ·w h dl −∑
e
τe,n+1,i t

v

∫
e
ρn+1,i t g ·∇qh dV

with τv = h2
e /µ and τp =µ for any test functions w h ∈W 0

h and qh ∈Qh .

• Step 2 find φn+1,i t+1
h ∈Sh such that

∫
Ωh

φn+1,i t+1
h −φn

h

∆t
φ̃∗

h dV + 1

2

∫
Ωh

v n+1,i t+1
h ·∇φn+1,i t+1

h φ̃∗
h dV =−1

2

∫
Ωh

v n
h ·∇φn

hφ̃
∗
h dV

with φ̃∗
h =φ∗

h +τe
k v n+1,i t+1

h ·∇φ∗
h and τe

k = 1
2

he

||v n+1
|e || for any test functions φ∗

h ∈S 0
h .

• Step 3 Reinitialisation step: solve the Halmiton-Jacobi Eq. 3.19 or apply the direct reini-
tialisation technique 3.1.5.

if ‖K (U n+1,i t+1)U n+1,i t+1 −F (U n+1,i t+1)‖∞ < ε1 then
CDT1 ← True

end if
if ‖φn+1,i t+1 −φn+1,i t‖∞ < ε2 then

CDT2 ← True
end if

i t ← i t +1
end while

end for
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Problem solving marching

When solving the iterative problem coupling level-set and fluid problems, two approaches

may be considered. On one hand, the non-linearity on the position of the interface may be

solved by approximating the geometry with the previous iteration valueφi t . The transport prob-

lem is then solved using the computed velocity. This first approach is represented in Fig. 4.18 (A)

and called ’semi-decoupled approach’. On the other hand, both velocity to transport the inter-

face and geometry to integrate the capillary force can be approximated using the previous ones.

As shown in Fig. 4.18 (B), fluid and level-set solvers may be run simultaneously. With this ’fully

decoupled approach’, the non-linearity is solved using both equations simultaneously. There-

fore, the iterations are performed until both solvers have converged.

Few tests have been performed to compare the two approaches. Results tend to indicate that

(A) semi-decoupled approach (B) fully decoupled approach

FIGURE 4.18 – Problem solving marching - iterative coupling strategy

the semi-coupled approach (A) is more robust since only the interface geometry in the fluid

problem is approximated. Fully decoupled approach (B) makes more iterations than the semi-

decoupled approach but fluid and level-set problems may be run simultaneously. The wall

clock time spent for each approach seems to depend on the physical problem and no hard

rule has been drawn. When looking at the two approaches from a memory optimisation point

of view, one can notice that both approaches may be run on two separated machines.

In our case, the robustness of the computation is a crucial feature. Therefore, the semi-decoupled

approach has been adopted.

4.4 Numerical experiments

In order to validate the implementation and numerically assess the performance of the

model, two cases are investigated. The first one is a drop on a flat surface in two dimensions,

and the second case is a drop placed on a sinusoidal surface. Due to the action of gravity, the

liquid collapses on the solid. The surface tension and surface energies have been chosen for a

case of partial wetting. For both cases the liquid is water and the vapour is air. The properties of

the fluids are given in Tab. 4.2 and surface tension coefficients in Tab. 4.3.

Vapour Liquid

Viscosity (Pa · s) 1.71×10−5 1.0×10−4

Density (kg ·m−3) 1.2 1.0×103

TABLE 4.2 – Drop on surfaces - Fluids properties
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Solid/Vapour - γSV Solid/Liquid - γSL Liquid/Vapour - γLV

Surface tension /
energies (N ·m−1)

60.9×10−3 30×10−3 72.8×10−3

TABLE 4.3 – Drop on surfaces - Surface tension coefficients

4.4.1 Drop on flat surface

The first case is a drop spreading on a flat surface pulled down by gravity action (g =−9.81y ms−2).

The interface between air and water is initialised as a quarter of circle with the centre at the ori-

gin and a radius of 0.3. The boundary conditions are represented in Fig. 4.19. On the left-hand

FIGURE 4.19 – Drop on a flat surface - Boundary conditions

side of the figure, the condition on the normal velocity represents a symmetrical plan. The bot-

tom boundary is a solid with also a condition on normal velocity but with two surface energies.

On the top and right edges of the domain, a zero traction condition is applied. The bottom right

corner has a boundary condition on the velocity in the x-direction in order to cancel the term

resulting from the integration by parts
∫
∂ΓSV \L γSV T ·w h dl (see Sec. 4.2.1). The mesh used for

this case is an unstructured mesh with a mesh size of 1/50. Ten time increments are run from

t0 = 1 to time t f = 10 (∆t = 1). A comparison on the shape of the drop is obtained with the weak

and strong couplings in Fig. 4.20. The interfaces represented at t = 1 shows the correction steps

done during the iterations. When comparing the three other images in Fig. 4.20, it is clear that

the strong coupling reaches the equilibrium position faster compared to the weak coupling.

This feature can be seen in Fig. 4.21 by comparing the position of the triple point over time.

The strong coupling results drawn with green curves reaches first the equilibrium position. At

each simulation time step, the static contact angle is 65° and, in this model, weakly enforced in

the simulation. Thanks to the iterations, the first contact angle is 70° rather than 85° for weak

coupling. Originally, verifying the contact angle at each time step was what has motivated the

development of the iterative method. One can see that the discrepancy is significant when a

large time step is used. Nevertheless, when the time step is divided by ten, the result of the

weak coupling should tend towards the one generated by the strong coupling.

It can also be noticed in Fig. 4.21 (B) that it takes more time increments for the strong coupling

strategy to converge to the static contact angle when refining the time step (5 instead of 2). The

explanation could lie in the fact that there is no mesh adaptation or refinement and the angle
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(A) t=1 (B) t=4

(C) t=7 (D) t=10

FIGURE 4.20 – Drop on a flat surface - Comparison of the shape of the drop when using a
strong coupling or a weak coupling approach

is limited by the linear interpolation for the interface close to the solid surface. A cross com-

parison between the two subplots underlines that at first the static contact angle is verified and

then the triple line equilibrium position is reached for both coupling strategies. And for every

configurations, the strong coupling is quicker than the weak coupling to reach the equilibrium

position and the equilibrium contact angle. Imposing the static contact angle instead of a dy-

namic contact angle tends to decrease the spreading time in good agreement with [135]. Finally,

in Fig. 4.21 (A) the position of the triple point for the weak coupling has not converged yet. The
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FIGURE 4.21 – Drop on a flat surface - Comparison between strong and weak coupling
when using two time steps 1 and 0.1

discrepancy between the strong coupling with a time step of ∆t = 1 and ∆t = 0.1 on the final
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Chapter 4. Numerical strategy for capillary action

position of the triple point may be due to the volume lost with the larger time step. Actually,

during the first time increment, approximatively 60% of the total traveled length by the triple

point is covered, whereas the same length is travelled in five time increments with the smaller

time step. According to Eq. 3.28, the level-set error is proportional to the square of the time

step and the mesh size at power 3/2. With a unitary time step and a mesh size lower than one,

the main error is due to the time step. This is consistent with the strong coupling curves where

refining the time step improves the conservation of the mass.

Finally, Fig. 4.22 depicts the number of iterations needed to converge, at each time step

for the strong coupling. The criterion used to assess the convergence is the maximum abso-

lute variation of the level-set function lower than 1×10−4 (CDT2 in Algo. 2) which is 1/200 the

mesh size. Fig. 4.22 highlights the trade-off between choosing a larger time step and iterate
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FIGURE 4.22 – Drop on a flat surface - Number of iterations for the strong coupling strategy

many times or to do fewer iterations with a smaller time step. The comparison based on the

computational time is possible by assessing the number of Stokes/level-set cycles between the

approaches, since the computational cost for one cycle is almost constant between the two ap-

proaches. The number of cycles is reported in Tab. 4.4. Systematically, the strong coupling has

Strong coupling Strong coupling Weak coupling Weak coupling
∆t = 1 ∆t = 0.1 ∆t = 1 ∆t = 0.1

number of
Stokes/level-set 45 132 10 100

cycles

TABLE 4.4 – Drop on a flat surface - Comparison on the number of Stokes/level-set cycles

more cycles than the weak coupling but the discrepancy between the approaches decreases

when refining the time step.

The strong and weak coupling are in principle equivalent. However, when it comes to run the

simulation, the minimal time step for converging with only one iteration is not known and de-

pends on the flow obstacle that may arise such as a front of fluid flowing around a fibre. There-

fore, the strong coupling has the advantage to automatically iterate if the time step is not small

enough, without having to decrease the time step.
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4.4.2 Drop on a sinusoidal surface

The case of a drop laying on a sinusoidal solid surface is designed to test the limits of the

weak coupling with geometrical changes of the solid interface. The boundary conditions are

presented in Fig. 4.23.

FIGURE 4.23 – Drop on a sinusoidal surface - Boundary conditions

The solid boundary geometry is given by the function sol i d

sol i d(x) = 0.05cos(10πx) (4.27)

with the 0.05 the magnitude and 5 the frequency.
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(A) t=0.67 (B) t=3.33

(C) t=4 (D) t=5.33

(E) t=6.67 (F) t=8.67

FIGURE 4.24 – Drop on a sinusoidal surface - Comparison of the shape of the drop when
using a strong coupling and a weak coupling approach
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The same setup is used as for the case of a drop on a flat surface, but the surface is now

sinusoidal. The initial interface is placed on a hill of the sinusoid curve closer than before to

the equilibrium static contact angle (i.e. θi ni t = 71.54◦ for a static contact angle of 64.8◦). Two

conditions are used to ensure the convergence of the system and both have to be verified before

going to the next time increment. The condition CDT1: the relative FE residual (i.e. divided by

the external force) of the whole system has to be less than 1.e − 7. The second convergence

criterion CDT2: the minimum admissible level-set variation, has to be less than 1.e − 6. Two

time steps are investigated ∆t = 0.67 and ∆t = 0.1. The shape of the drop is presented in Fig.

4.24 for the simulation with ∆t = 0.67. At the triple point, the contact angle has to adapt rapidly

due to the change of the vector tangent to the solid surface. A close-up of the subplot (D) from

Fig. 4.24 is given in Fig. 4.25. It can be seen that the weak coupling strategy has difficulties to

adapt to the rapid variation of the solid tangent. It can be seen on this figure that the weak

coupling has a contact angle higher than 90◦ whereas the static contact angle is approximately

64.8◦. Physically, a dynamic contact angle is involved but it is not taken into account in our

model. This test is a proof of concept and should recover the static contact angle.

FIGURE 4.25 – Drop on a sinusoidal surface - close-up at t = 5.33 for the simulation with
the time step of ∆t = 0.67.

In Fig. 4.24 between subplots (B) and (C ) the strong coupling has iterated in order to verify

the static contact angle when crossing the minimums of the sinusoid. The weak coupling drop

passes the minimum between subplots (C ) and (D) or the close-up Fig. 4.25. At that moment,

the contact angle changes suddenly. This characteristic is underpinned by hard evidence as

shown in Fig. 4.26 (B) for the weak coupling curve with ∆t = 0.67 between t = 4 and t = 5.33.

The initial contact angle is taken away from the static angle by 10%. Both strong couplings

and only the weak coupling with the smaller time step are able to recover the static contact an-

gle for t ∈ [0,4], as shown in Fig. 4.26 (B). Indeed, the weak coupling with the larger time step

(∆t = 0.67) gives a constant overshoot value for the contact angle. When looking at the triple

point position in Fig. 4.26 (A), all the four simulations give the same position when the drop

descends from the hill to the valley of the sinusoid. Quickly after t = 4, the drop is climbing the

next hill of the sinusoid. Thus, locally at the triple point, the shape of the interface has to change

to still verify the contact condition. In Fig. 4.26 (B), both strong coupling strategies experience

oscillations but are able to describe the contact angle whereas the weak coupling overshoots it.

At t = 10, according to the subplot (A), the position is the same, for all strategies and time steps,
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FIGURE 4.26 – Drop on a sinusoidal surface - Comparison between strong and weak cou-
pling when using different time steps (A) position x of the triple point in time (B) variation

of contact angle in time

but the effect of the overshoot is not corrected for the contact angle yet.

The two cases of drop spreading on a solid surface enable to validate the implementation of

the surface tension and surface energies. It enlights on the potential improvement of an itera-

tive strategy to couple strongly the problem of capturing interface with the fluid problem.

Conclusion

The numerical strategy presented in this chapter allows performing simulations for flows

with capillary effects. The two numerical methods, pressure discontinuities capturing and cou-

pling strategy have been implemented and tested. They were shown to be efficient, and even

mandatory to solve the most severe cases. The pressure enrichment is able to deal with pressure

and pressure gradient jumps. Furthermore, weak and strong couplings have been discussed,

showing their respective advantages and limitations. Robust numerical simulations may be

achieved with the weak coupling approach and an enhanced precision especially for the con-

tact angle which may be accessible when using the strong coupling strategy. In the following

chapter, numerical experiments will be carried out to validate the model and to improve the

understanding of composite manufacturing by Liquid Resin Infusion process.
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Résumé en Français : Stratégie numérique pour décrire la capil-

larité

L’interaction du solveur de la mécanique des fluides et du solveur de capture d’interface,

avec l’ajout de deux techniques numériques supplémentaires, permet de décrire la capillarité.

Le premier point technique consiste à capter avec précision les discontinuités faibles et fortes

du champ de pression. En effet, le changement des paramètres physiques tels que la densité

ou viscosité peut générer des sauts de pression et de gradient de pression sur l’interface. La loi

de Laplace reliant le saut de pression à la courbure de l’interface est un autre exemple de dis-

continuité de pression. L’espace d’approximation de la pression étant initialement composé de

fonctions continues et linéaires par éléments ne peut par conséquent pas capter ces discon-

tinuités. Pour pallier cette difficulté, trois degrés de liberté ont été ajoutés et condensés avant

l’assemblage, sur les éléments traversés par l’interface. Trois cas tests de validation attestent de

la capacité de la méthode à décrire les discontinuités du champ de pression. Le second point

technique consiste à stabiliser le terme de tension de surface par une semi-implicitation de

l’approximation numérique du travail virtuel produit sur l’interface. Cette technique permet de

réduire l’intensité des courants parasites au front de fluide. Ces courants parasites proviennent

notamment de l’erreur numérique commise lors de la discrétisation linéaire de l’interface. Il a

été montré que cette stabilisation, permettant l’utilisation de plus grands pas de temps, relaxe

la condition sur l’angle de contact imposé faiblement dans la formulation. Un couplage itératif

a été implémenté permettant de trouver à chaque instant l’état d’équilibre quasi-statique du

problème global en vitesse, pression et géométrie (décrit par la fonction level-set). Le couplage

fort itératif semble indispensable pour prendre en compte les changements topologiques de la

surface solide, comme le montre le cas d’une goutte s’étalant sur une surface texturée.
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Numerical experiments
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Introduction

This chapter presents cases, first of validations and then for the study of microstructures.

The first part demonstrates the ability of the numerical method to describe cases with surface

tension. The numerical solution is compared to either semi-analytical solution, analytical so-

lution, or experiment. The second part of the chapter analyses the behaviour of the flow in mi-

crostructures and proposes solutions to extract their physical characteristics. At the scale of the

equivalent homogeneous medium, the fibrous medium can be characterised by a fibre volume

fraction and a permeability, the flow is then ruled by Darcy’s law. Here, two approaches are used

to calculate permeabilities by numerical experiments. On one hand, a numerical permeability

may be computed based on the Darcy equation written in flow rate. On the other hand, it may

also be based on the drag force definition. Once the permeability is evaluated, capillary effects

can be added to the Darcy’s law by considering a pressure jump at the flow front. The magni-

tude of this jump is a scalar, called capillary pressure. We propose to determine this quantity by

numerical experiments at the fibre scale. More precisely, two strategies are exposed to scale-up

the capillary action at the part scale. One method is based on an equivalence with a Darcy’s flow

in 1D whereas the second method involves an energy equivalence for the same capillary action

in a Stokes and associated Darcy domain in Appendix B.

5.1 Validation cases

Validation cases are designed to assess the robustness of the numerical strategy consisting

in two coupled solvers (fluid flow and interface tracking) to compute bi-fluid flow with capillary

action. Three cases are analysed: the interaction of a meniscus with walls, a bubble rising in a

liquid, and a cluster of tubes.
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5.1.1 Meniscus and walls

The case of the interaction of a meniscus with walls is subdivided in two cases: a meniscus

facing one single wall and a meniscus between two walls. The former has an analytical solution

Eq. 5.1, and the latter is compared with two semi-analytical solutions presented in Sec. 1.4.3.

The interface position and the contact angle are assessed at equilibrium only. Therefore, the

Solid/Vapour - γSV Solid/Liquid - γSL Liquid/Vapour - γLV

Surface tension /
energies (N ·m−1 )

54.7×10−3 25.9×10−3 50.8×10−3

Vapour Liquid

Viscosity (Pa · s) 1.71×10−5 2.76×10−3

Density (kg ·m−3) 1.292 3.325×103

TABLE 5.1 – Input values for the model

friction coefficients applied on the solid are considered as null βSL = βSV = 0. The solid is con-

sidered to be a cellulose plate, the liquid is diiodomethane and the vapour is air. Surface tension

and surface energies correspond to experimental measurements [180] and are summarised in

Tab. 5.1. The capillary length representing the distance over which the capillary effects are sig-

nificant can be computed from the numerical values given in Tab. 5.1, κ−1 =
√

γLV
ρL g ≈ 0.12cm.

The static contact angle is θc = arccos(γSV −γSL
γLV

) ≈ 55.5°.

Meniscus facing a vertical wall

This first case is a 2D case representing a meniscus facing a vertical infinite wall. The com-

putational domain is the unit square domain presented in Fig. 5.1. The interface is placed hor-

izontally in the middle of the domain at y = 1
2 . On the right-hand side of the domain a homo-

geneous Dirichlet boundary condition is imposed v = 0. Therefore the interface cannot move

on this side. This choice does not influence the representation of a meniscus facing a vertical

wall since the capillary length, 0.12 cm, is small compared to the length of the domain, 1cm.

The fluids (liquid and vapour) can come in and out from the bottom y = 0 (inlet) and the top

y = 1 (outlet). At both boundaries, the fluid is not sheared since the velocity in the x-direction

is set to zero. Therefore the pressure can be imposed through a Neumann boundary condition

on the normal stress. Let us choose a zero pressure value at the top of the domain. In order to

balance the weight of fluids (liquid and vapour), the pressure at the bottom is equal to the sum

of the two hydrostatic pressures in the vapour and liquid phases 1
2 g (ρL +ρV ). This relation is

valid since the gravity is acting in the −y direction. Finally, the left-hand side of the domain

represents the solid wall with two surface energies γSL and γSV . The interface between liquid

and vapour has a constant surface tension γLV reported in Tab. 5.1.

The term
∫
∂Γ\L γT ·w dl (from Eq. 4.15) located at each extremity of each interface may be re-

moved if the tangent velocity is imposed as explained at the end of Chap. 4.2.1. This term arises

from the integration by part of the integrals representing surface energies and surface tension.

This term vanishes if the velocity is set to v · y = 0 at the position (0,1) and (0,0) for example,

since the tangent T = y at theses points (for the interfaces ΓSV and ΓSL) and the component of
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5.1. Validation cases

FIGURE 5.1 – Meniscus facing a wall - computational domain and boundary conditions;
initially the interface is placed horizontally at y = 1

2 .

the test function w · y is then equal to zero. The static equilibrium of the interface position has

an analytical expression [71]

x −x0 = κ−1 cosh

(
2κ−1

y

)
−2κ−1

(
1− y2

4κ−2

)1/2

(5.1)

where x0 is the abscissa obtained from Eq.5.1 when x = 0 and y0 = y(x = 0). Note, Eq. 5.1

gives the abscissa as a function of the ordinate. The ordinate of the triple point is given by

y0 =
p

2κ−1(1− sinθc )1/2, at equilibrium, recalling that θc is the static contact angle.

The baseline solution is obtained on a coarse structured mesh made up of 49x49 elements

(i.e. 2500 nodes). The simulation takes 240s on a single core processor (CPU speed: 3.7 GHz).

200 increments are performed with a time step∆t =2.5×10−6 s, so the final time is t f =5×10−4 s.

It is observed that the equilibrium state is reached at time t f =5×10−4 s because the position of

FIGURE 5.2 – Meniscus facing a wall - comparison between the Finite Element solution
(green curve) and the analytical solution (blue dots).

the triple point remains unchanged as shown in Fig. 5.6. When the equilibrium state is reached,

the computed profile of the interface can be compared with the analytical solution. A good

correlation is found between both, as represented in Fig. 5.2. This figure is a close-up present-

ing half of the domain that includes the triple point. The numerical strategy does not require to

impose directly the value of the contact angle but it is done through the triple junction mechan-

ical equilibrium imposed as a Neumann condition in the weak formulation. The correspond-

ing static contact angle is recovered since the computed contact angle is 54.7° for a theoretical

contact angle of 55.5° according to the Young’s equation. The 1.26° error, i.e. 2.9 %, is another

parameter reflecting the good correlation between numerical solution and analytical one.
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The convergence of the meniscus shape is assessed by looking at the average error for each

point in the interval x ∈ [0,0.4], further points perfectly match the analytical solution. The ab-

scissa error of the interface position is reported in Tab. 5.2 for a structured mesh (see back-

ground of Fig. 5.2). The error decreases with the mesh size. This proves the ability of the method

to numerically describe precisely the equilibrium position of an interface in the case of a menis-

cus facing a vertical wall.

Mesh size (cm) h=0.02 h=0.01 h=0.005

∆x (cm) 4.1×10−3 3.8×10−4 7.6×10−5

TABLE 5.2 – Convergence of the meniscus shape when refining the mesh - mean absolute
error ∆x = 1

N

∑N
i=1 |xi

theo − xi
num| with N the number of discretisation points in the interval

x ∈ [0,0.4].

Globally, the success of simulating problem with capillary effects relies on the approxima-

tion of the pressure across the interface, ΓLV . Actually, grasping properly jumps of pressure and

pressure gradients is a prime priority. Fig. 5.4 represents pressure profile along the y-axis at

three abscissa for the current problem, as shown in black vertical lines in Fig. 5.3. The slope

FIGURE 5.3 – Meniscus facing a wall - pressure field [Pa] and profile lines of analysis in black
color (199×199 mesh).

of the pressure profile is lower above the jump (in air) than under in the liquid. This change of

slope operates inside an element cut by the interface. In addition to this pressure gradient jump,

the pressure is discontinuous across the interface arising from the curvature or a change of vis-

cosity with a sheared fluid at the interface. The numerical method is able to capture pressure

and pressure gradient discontinuities present in this case. Indeed, 98% of the pressure jump is

numerically recovered at the triple point on the finest mesh i.e. 199× 199 nodes (95% on the

coarse mesh i.e. 49×49 nodes), which is the point with the highest curvature. This ratio is given

only as an indication since it depends greatly on the position of the nodes closest to the inter-

face in the discretisation. In fact, the jump is computed from node closest to the considered
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5.1. Validation cases

FIGURE 5.4 – Meniscus facing a wall - pressure profile at three x positions (see Fig. 5.3 trans-
lated with a pressure n ×15 with n = 0,1,2.

abscissa on either side of the interface whereas it should be computed at the interface posi-

tion. Therefore, the method used to compute the error tends to overestimate it. Both jumps are

well described due to the enrichments [19] and [165]. The pressure average error is computed

throughout the domain and is reported in Tab. 5.3 bringing the proof that the error decreases

with the mesh size.

Mesh size (cm) h=0.02 h=0.01 h=0.005

∆pr ess (Pa) 4.13×10−2 6.12×10−3 1.42×10−3

TABLE 5.3 – Absolute error on the pressure field as a function of the mesh density -∆pr ess =
1

Nm

∑Nm
i=1 |p i

theo −p i
num| with Nm the number of mesh nodes.

Finally, the velocity at the first increment is plotted in Fig. 5.5 (A). The initial interface is

horizontal with a contact angle of 90°. This non-equilibrium at the triple point generates a ve-

locity of magnitude 2.4×103 cm · s−1, making the meniscus rise in order to verify the contact

angle. The Liquid/Vapour interface ΓLV is pressured downwards by the air since the pressure

in the liquid is lower, curving the interface. The meniscus continues to go up if the curvature is

pronounced enough. The rise stops when the hydrostatic pressure due to the meniscus weight

is balanced by the pressure jump from the surface tension action. At equilibrium, the veloci-

ties in the domain are associated with parasitic currents. Typically, they are located around the

interface (not at the triple point) and are inherent to the linear approximation of the interface

[92]. The maximum magnitude in this case is 3 cm · s−1, i.e. 0.13 % of the initial maximum veloc-

ity (2.4×103 cm · s−1), which can be considered as small and representative of the equilibrium

state (see Fig. 5.5 (B)). The spurious velocities are small enough and do not degenerate the in-

terface on the time intervals considered in this kind of simulations.
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(A) at the first increment (glyph scale factor =
5×10−5)

(B) at the last increment (glyph scale factor =
5×10−2)

FIGURE 5.5 – Meniscus facing a wall - velocity field magnitude in [cm/s]

In Fig. 5.6, the position (ordinate) of the triple point is plotted over time for various time

steps. Decreasing the time step does not change significantly the position and curves are over-

laid on each other even during the first increments when the position changes rapidly - see

closeup in Fig. 5.6. In that case a staggered algorithm (weak coupling) has been used and is sat-

isfactory. The time at which the equilibrium state is reached depends on the quantity of fluid in
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FIGURE 5.6 – Meniscus facing a wall - ordinate of the triple line during time with four dif-
ferent time steps.

the liquid phase. The amount of liquid in the column changes the transition dynamics. It is the

reason why the full domain was represented in the PhD thesis of A. Pons [177], for the simula-

tion of a meniscus between two plates to verify the Washburn law giving the height proportional

to the square root of time.

Meniscus between two vertical walls

The previous case is extended by placing a second wall on the right-hand side of the do-

main, see Fig. 5.1. On the second wall, the same boundary conditions are imposed as on the

first one: the normal velocity is equal to zero, v ·x = 0, and two surface energies γSL and γSV are

considered. The distance between the two walls has to be smaller than the capillary length for

108



5.1. Validation cases

a meniscus to rise in between. That is why, the second wall is placed at the position x = 0.1cm.

This case is symmetric with respect to the axis x = 0.05cm plan of symmetry. In 2D, the sim-

ulation is run on the full domain in order to assess the symmetry of the numerical solution,

whereas in 3D, for computational cost reason, the domain is reduced to half of the complete

domain with a symmetry boundary condition v ·n = 0 at x = 0.05cm (see Chap. 1.1.5 boundary

condition (4)).

First in 2D, the FE simulation is carried out using a structured mesh, with a mesh size of

2×10−3 cm in the x-direction and 5×10−5 m in the y-direction, corresponding to 5,000 nodes.

1,000 increments are performed with a time step ∆t = 1×10−6 s. Fig. 5.7 shows a good agree-

ment between FEM solution and semi-analytical solutions based on a minimisation of the en-

ergy or on the force equilibrium detailed in Sec. 1.4.3. The blue dotted curve with its ordinate

scale on the right-hand side of the figure is the relative error between the FE and the semi-

analytical solutions from force balance method. The maximum error corresponds to 0.012 %

error on the meniscus height. Like for the case of a meniscus facing a vertical wall, the con-

tact angle is correctly recovered by the FE simulation. The contact angle from the simulation is

equal to 56.6° for a targeted theoretical contact angle of 55.5°, which is a 2% error. At the final

time t f = 1×10−3 s, the system has reached its equilibrium state since the maximum magni-

tude velocity is 1.4 cm · s−1, which represents 0.05% of the maximal initial velocity magnitude

(2.8×103 cm · s−1).
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FIGURE 5.7 – Meniscus between two vertical walls 2D - comparison of the shape of the
meniscus: FEM solution compared with semi-analytical solutions based on minimisation
of energy (minmised with a gradient method) and force balanced (solved with a fixed point

method)

Extension to 3D

Even if the case of a meniscus between two vertical walls is a 2D case, the full 3D simula-

tion is run to assess the robustness of the method. The domain is extruded in the z-direction,

and the new domain is Ω= [0,0.05]× [0,0.5]× [0,0.1]. The initial interface is placed at position

y = 0.15 since the computational domain is reduced. This influences the boundary condition at

the bottom y = 0 since the height of the liquid column has changed, pext = g (0.15ρL+0.35ρV ) =
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Chapter 5. Numerical experiments

1.14×104 Pa, representing the hydrostatic pressure. 1000 increments are carried out with a time

step∆t = 1×10−6 s, on a unstructured mesh with 32235 nodes. Fig. 5.8 represents the evolution

(A) t = 0s (B) t = 1×10−4 s (C) t = 2×10−4 s (D) t = 1×10−3 s

FIGURE 5.8 – Meniscus between two vertical walls 3D - FE solution at 4 times of the sim-
ulation. The first wall (foreground) is represented by its mesh and the second wall (back-
ground) is opaque with piecewise linear pressure field. The velocity is represented by the
magenta arrows (‖v‖max = 2.6×103 cm · s−1 for (A) and ‖v‖max = 6.4cm · s−1 for (D)) and

the liquid-vapour interface is represented by the green surface.

of the velocity and pressure fields during the simulation. Only half of the domain is computed

but on the figure, the complete domain with the two walls in reconstructed symmetrically dur-

ing the post-processing step. The subplot (A) is the initial solution to the fluid problem. The ve-

locity is plotted with magenta arrows with a maximum of magnitude equal to 2.6×103 cm · s−1.

Two intermediate times are presented in subplots (B) and (C), where progressively the magni-

tude of the velocity field decreases and the meniscus is going up between the walls. The last

subplot (D) has a smaller velocity magnitude, 6.4 cm · s−1 (0.2% of the maximum of the initial

velocity). The interface represented in green can be considered as steady (in the time interval

[0,10−3 s]. The piecewise linear pressure is drawn on the opaque background wall. Across the in-

terface, the abrupt change represent the jump of pressure due to the curvature of the meniscus.

Under the meniscus, the pressure increases linearly and proportionally to the liquid density.

Following the first 2D analyses, the flow front position can be measured in 3D. Fig. 5.9

presents the computational result obtained in half of the physical domain (a symmetrical bound-

ary condition is placed at x = 0.05cm to represents the second wall placed at position x =
0.1cm). The FE simulation of the position (ordinate) of the interface at equilibrium is compared

with the two semi-analytical solutions. The absolute error is plotted in dash blue. In 3D the er-

ror is larger than in 2D, due to a coarser mesh: the characteristic mesh size is he = 4×10−3 cm

in 3D, while he =2×10−5 cm and he =5×10−5 cm in respectively the x–and y–directions in 2D.

Finally, the static contact angle is recovered: 57.2° for a theoretical angle of 55.5°, representing

an error of 3%.
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FIGURE 5.9 – Meniscus between two vertical walls 3D - comparison of the shape of the
meniscus: FE solution compared with semi-analytical solutions based on minimisation of
energy (minimised with a gradient method) and force balanced (solved with a fixed point

method)

3D cases are by essence more complex, in terms of configurations possible for the interface

when splitting the element, but also for evaluating the integral at the triple junction, since this

junction is a point in 2D and a line in 3D. Based on weakly couple fluid and level-set solver, the

presented numerical method is able to describe the position of an interface at equilibrium in

2D and 3D, in close agreement with the semi-analytical and analytical solutions.

5.1.2 Benchmark on 2D bubble dynamics

A quantitative 2D numerical benchmark for capillarity is proposed in literature [122]. The

benchmark aims to validate and compare interfacial flow codes. Our test case reproduces and

compares results with the benchmark. The case is a bubble rising in a liquid due to gravity while

the shape of the bubble undergoes deformations driven by capillary action. Note that this case

does not exhibit triple junction, since only two phases, liquid and vapour, are present. Both flu-

ids are incompressible. The objective is therefore to test the Stokes and Navier-Stokes solvers

with surface tension. A 3D extension is given in [6], whereas similar benchmark are given for

diffuse interface model [9] or lattice-Boltzmann / level-set approach [188].

The governing incompressible Navier-Stokes equations are solved incrementally in the space-

time domain Ω× [0, t f ]. A surface tension force is applied between the liquid and vapour sub-

domain ofΩ. The domain and the initial boundary conditions are represented in Fig. 5.10. The

pressure is imposed as a Dirichlet boundary condition at the top boundary y = 2 to ensure

the uniqueness of the solution. The physical parameters and dimensionless numbers of this

test case are reported in Tab. 5.4. Both dimensionless numbers (Reynolds and Eötvös numbers

ρL ρV µL µV g γLV Re Eo ρL/ρV µL/µV

1000 100 10 1 0.98 24.5 35 10 10 10

TABLE 5.4 – Input data for the simulation of the cluster of tubes

(also called Bond number)) are based on the characteristic length L = 2r0 with r0 the radius of
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FIGURE 5.10 – Benchmark bubble - computational domain and boundary conditions

the bubble. Also they involve a characteristic velocity, V =√
2g r0 the gravitational velocity

Re = ρLV L

µL
, Eo = ρLV 2L

γLV
(5.2)

with numerical values reported in Tab. 5.4. The simulation is run during three units of dimen-

sionless time t f = 3. According to experimental data [60], the bubble should rise in an ellipsoidal

regime. The Reynolds number indicates that the full Navier-Stokes equations has to be solved.

The Eötvös number points out that capillary effects are higher than gravity effects, leading to

no break up of the bubble.

In the purpose of validating the method, four quantities are analyzed:

— Position of the interface at the end of the computation

— Bubble centre of mass position or centroid defined as

X c = (xc , yc ) =
∫
ΩV

xdV∫
ΩV

dV
(5.3)

where x is the position. Among many over possibilities the centre of mass position is

commonly used [55, 160] to study the position of objects with complex geometry.

— Circularity, defined as the ratio of the perimeter of the area-equivalent circle over the

perimeter of the bubble

c = equivalent perimeter

perimeter of the bubble
(5.4)

This ratio is derived in 2D from [216].

— Rising velocity computed with the average velocity in the vapour phase

V c = (vcx , vc y ) =
∫
ΩV

vdV∫
ΩV

dV
. (5.5)

This parameter enables to assess the behaviour of the global solution and not only the

interface.
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As shown in Fig. 5.11, the Stokes solution depicts a bubble rising faster than the Navier-

Stokes solution. Actually, inertial effects are taken into account in the latter case tending to slow

down the motion at the first times of the rise. Only the Navier-Stokes solution is analysed in

more details later for comparison with literature. After departing from its initial position, the

bubble takes the shape of a half circle, with the bottom segment bended inside (at t = 1.5).

Finally, the bubble takes its final "ellipsoidal"-like shape with a constant sign for the curvature

(see t = 2.7).

(A) Stokes solution (B) Navier-Stokes solution

FIGURE 5.11 – Benchmark bubble - comparison between Stokes and Navier-Stokes solu-
tions

Reference solutions are extracted manually from the pdf version of benchmark article [122].

Therefore, the comparison with the article data (either TP2D, FreeLife or MooMMD solvers) is

given only as an indication since it is not the raw data from the article. 2000 time increments

(∆t = 1.5×10−3) are performed on a structured mesh with a mesh size he = 1/40 corresponding

to the coarser grid of the benchmark [122]. The convergence criterion is 10−4 for the relative

residual of the Navier-Stokes solver. The level-set is filtered with a filter width equals to three

times the mesh size. At t = t f , the final position of the interface is given in the subplot (A) of

Fig. 5.12. The solution from the article is superimposed on our computed numerical solution

(Zebulon). All the three solvers from the article converge towards a common interface solution

when refining the mesh and the time step. Our FE solution on the coarse mesh is compared

with the solution on both coarse and the finest grid in the benchmark for assessing the robust-

ness of the method. Obviously, comparison with the finest grid may yield discrepancy.

The average quantities such as the centre of mass of the bubble and the velocity rise are plotted

in the sub-figures (B) and (D) respectively. The circularity of our Zebulon FE solution agrees

with the converged circularity from the paper during the first half of the simulation. However,

a constant discrepancy appears during the second half. It may be due to a variation of mass in

our case which increases during the second half of the simulation. Despite increasing, the mass

loss stay low at the end of the simulation (3% of mass is loss during the computation). Mass is

conserved in the article for the three solvers. Groups TP2D and FreeLife used an interface to
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FIGURE 5.12 – Benchmark bubble - data for cross-comparisons

track the position of the bubble and perform a correction step after reinitialisation. The third

group, MooNMD uses a fitted mesh in a Lagrangian manner to follow the interface with natu-

rally stable elements. In our case, no such refinements are implemented to keep oriented users

method, i.e. with as few as possible tunable parameters. Our results may be enhanced when

refining the mesh size and time step which will help to conserve the mass.

A quantitative comparison is presented in Tab. 5.5 between the three solvers and our method.

All these results are obtained on the coarser mesh he = 1/40. The minimal value for the circular-

ity is reported in the first line of the table and the time when the minimal circularity is reached,

reported in the second line. The maximal y-velocity of the bubble centre is reported in the third

line and the corresponding time in the fourth line. Finally, the centroid ordinate is in the last

line at the final time t f = 3. The values reflect well that our approach gives results comparable

to other methods.

5.1.3 Cluster of tubes

The last validation case is a 3D simulation of a liquid rising inside a cluster of tubes (Fig.

5.13). The cluster is made of ten vertical and parallel glass tubes clamped in an horizontal plate.
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TABLE 5.5 – Benchmark bubble - cross-comparison of particular time and values

Group 1 (TP2D) 2 (FreeLIFE) 3 (MooNMD) us (Zebulon)
cmi n 0.9016 0.9060 0.9022 0.8982
t |c=cmi n 1.9234 1.8375 1.8630 1.9095
vc y,max 0.2418 0.2427 0.2418 0.2388
t |vc y,max 0.9141 0.9000 0.9236 0.9435
yc (t = 3) 1.0818 1.0715 1.0833 1.0798

The tubes are immersed in two fluids, a liquid, at the bottom, and air at the top. Contrary to

the case of meniscus between plates, geometry is an obvious challenge. This case is designed

to test the model with a complex geometry, with a second curvature on the solid due to the

cylindrical shape of the tubes. Input physical parameters in the model are reported in Tab. 5.6.

This last case of the subsection has no analytical solution and it embodies a first step towards

concluding physical results only based on the simulation.

FIGURE 5.13 – Cluster of tubes - computational domain and boundary conditions

Solid/Vapour - γSV Solid/Liquid - γSL Liquid/Vapour - γLV

Surface tension /
energies (N ·m−1 )

60.93×10−3 30.03×10−3 72.8×10−3

Vapour Liquid

Viscosity (Pa · s) 1.71×10−5 1×10−3

Density (kg ·m−3) 1.292 1×103

TABLE 5.6 – Input data for the simulation of the cluster of tubes

Fig. 5.13 introduces the boundary conditions. On the lateral faces of the bounding box the

velocity is homogeneously imposed with a homogeneous Dirichlet condition v = 0. This condi-

tion has no effect on the solution since the boundary is far enough from the zone of influence of

the meniscus. Indeed, the minimum distance from a tube to a side wall is at least tree times the

capillary length κ−1 ≈ 0.27cm. The velocity is not sheared at the inlet and outlet (bottom and

top) since both tangential velocities, v · x and v · y are equal to zero. At each end of the tubes

(belonging also to the inlet and outlet boundary), the velocity in the z-direction is set to zero
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with a homogeneous Dirichlet condition in order to remove the tangent term appearing when

integrating by parts the surface integrals (see Chap. 4.2.1). This choice has no influence on the

steady state solution. The velocity on each tube is set to zero in both x and y directions. This

condition is a little more restrictive than a simple no-penetration condition v ·n = 0. There-

fore the fluid is slipping only along the z-direction when the meniscus is rising. Those choices

make the simulation more robust and have no influence on the steady state solution. Finally,

the hydrostatic pressure is imposed at the inlet accounting for the weight of the two fluids. The

pressure on the outlet face is set to zero through a Neumann boundary condition.

The mesh shown in Fig. 5.14, has three different refinement regions (denoted 1, 2 and 3 in

the figure). The local refinement enables to place a higher number of unknowns around the

interface, aiming at the accuracy of the interface representation, especially in regions with a

high curvature. To do so, a first computation has been run with a coarse mesh with the refine-

ment number 2 nearby the tubes to extract a rough location of the interface at equilibrium. A

refinement has been applied from the rough location (1 and 3) and a the simulation has been

recomputed. 100 increments are performed with a time step of∆t = 5×10−6 s on the mesh from

Fig. 5.14 containing 91,701 nodes. For information purposes only, it takes about 16 hours to run

this case on a single core desktop processor.

FIGURE 5.14 – Cluster of tubes - mesh

The meniscus at equilibrium is plotted in Fig. 5.15. Glass tubes are represented in trans-

parent gray in the centre and the interface ΓLV is represented in green. The water under the

meniscus is colored in light blue. The maximal velocity at the beginning is located at the triple

line with a value of 3.3×103 cm · s−1 when at the end of the simulation the maximal value is

2.5×102 cm · s−1 as shown in Fig. 5.16. The meniscus in the centre of the cluster goes up taking

advantage of the confined medium with a distance between the tubes lower than the capillary

length. On the external fibres of the cluster, a standard meniscus is formed and vanishes on the

lateral boundaries.
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5.2. Microstructure analysis

FIGURE 5.15 – Cluster of 10 tubes - equilibrium position of the front of fluid

FIGURE 5.16 – Cluster of 10 tubes - velocity and pressure field at t = t f

5.2 Microstructure analysis

After validating the method describing capillary action, the focus is set on the scale-up of

permeability and capillary pressure. Firstly, two methods to compute the numerical perme-

ability are derived. The first method is based on the Darcy equation written in flow rate. The

second method based on the drag force definition yields an upper bound for the numerical

permeability. Secondly, a capillary pressure is computed from the fibre scale to the part scale.

Two techniques are presented for the scale-up of the capillary pressure. The first approach as-

sumes that in the same time interval, the same distance is covered by the fluid front with the

Stokes and Darcy modellisations. The second method is based on the equality of the work done

in Stokes and Darcy by the surface tension forces and capillary pressure respectively.
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5.2.1 Numerical permeability

Numerical permeability may be computed from volume averaging in the fluid domain. First,

let us present volume averaging equations establishing a link between the Stokes and Darcy

equations. The permeability is computed using a saturated flow (i.e. with only one phase - the

liquid resin).

Volume averaging equations

Let us consider a quantity B defined on a volumeΩ=ΩL ∪ΩS made up of liquid (resin) and

solid (fibres), with V = ∫
ΩdV the total volume and V f = ∫

ΩL
dV the fluid volume. The domain

Ω (with characteristic length ld ) belongs to a homogeneous domain of characteristic length lp ,

as defined in Fig. 5.17. The following averages represent local information in the homogeneous

medium and the condition lp À ld has to be met. The spatial average of this quantity is defined

as

< B >= 1

V

∫
ΩL

B dV (5.6)

whereas, the same average relative to the fluid volume is

< B >L= 1

VL

∫
ΩL

B dV. (5.7)

The relation between the liquid average and the average in the domain is given through the

porosity coefficient Φ = VL/V and it reads < B >= Φ < B >L . Furthermore, the need to inter-

change differentiation and integration leads to the spatial averaging theorem

<∇B >=∇< B >+ 1

V

∫
ΓSL

nLSB dS (5.8)

with the normal pointing outside the fluid domain and ΓSL the fibres interfaces embedded in

the domain Ω. According to Whitaker [222], this theorem represents a three-dimensional ver-

sion of the Leibniz rule for interchanging differentiation and integration. The theorem has been

proved independently in 1967 [16, 145, 197, 221]. Other derivations have been proposed in liter-

ature [78, 100, 115, 181, 220] and the spatial averaging theorem may be generalised to a tensorial

quantity B

<∇·B >=∇· < B >+ 1

V

∫
ΓSL

nLS ·B dS (5.9)

As shown in Fig. 5.17, the volume average equations homogeneise the subscale flow for a given

position x in the homogeneous domain. In order to be clear about the gradient of the average

(the second term in Eq. 5.8) the partial derivative of < B > with respect to coordinate x is

∂< B >
∂x

= lim
∆x→0

(< B > [x +∆x]−< B > [x]

∆x

)
. (5.10)

The spatial derivative is only defined at the homogeneous medium scale. In our case, it may

represent the variation of the pressure average in the case of a fibre volume fraction changing

along the x-axis in the Darcy medium. The quantity of interest may be averaged in space as

presented, but also in time. However, the time average is not needed in the case of a saturated

Stokes flow since it is a steady flow.
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5.2. Microstructure analysis

FIGURE 5.17 – Homogeneisation - domain definition

Averaging Stokes equations

Let us begin with the continuity equation, reduced in the case of an incompressible fluid, to

the divergence free condition ∇·v = 0. Using the volume averaging theorem Eq. 5.9, it comes

∇· < v >=− 1

V

∫
ΓSL

nLS ·v dS (5.11)

whereΓSL represents the boundary with the liquid and all the fibres. The term
∫
ΓSL

nLS ·v dS may

take into account a flow at a lower scale such as in the case of a flow at the mesoscale between

fibre tows. At the fibre scale, the fibres are impermeable solids, without normal velocity on their

contours (v ·n = 0 condition). The previous equation may be simplified, and it reads

∇· < v >= 0 (5.12)

in the case of impermeable solid fibres.

From the average of momentum balance equation without any external force, it comes

∇· <σ>+ 1

V

∫
ΓSL

σ ·nLS dS = 0 (5.13)

The stress tensor may be split into a deviatoric component 2µε̇ and a spherical component

−p I . To be consistent with the Darcy’s law and experiments, which considers only the fluid

pressure, the new unknown is the pressure average in the fluid domain using < p >=Φ< p >L

with the upper script •L representing the average relative to the fluid volume as defined in Eq.

5.7. Therefore, Eq. 5.13 leads to

∇· < 2µε̇>−Φ∇< p >L + 1

V

∫
ΓSL

σ ·nLS dS = 0, (5.14)

because the gradient of the porosity is supposed to be zero for an homogeneous medium such

as in a Darcy volume element with a constant fibre volume fraction i.e. < p >L ∇Φ = 0. The
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deviatoric component of the averaged stress is written as follows

< 2µε̇>=µ

∇< v >+ (∇< v >)T + 1

V

∫
ΓSL

(v ⊗n +n ⊗v ) dS︸ ︷︷ ︸
=0

 (5.15)

since < (∇v )T >= (<∇v >)T and no-slip condition is imposed on the fibres. By taking the di-

vergence of the last equation (Eq. 5.15) and recalling ∇· (∇< v >) =∆< v > and ∇· (∇< v >)T =
∇ (∇· < v >), it comes

∇· < 2µε̇>=µ∆< v > (5.16)

since the divergence of the average velocity is null for an incompressible fluid. Finally, the aver-

aged momentum equation reads

µ∆< v >−Φ∇< p >L − f d = 0 (5.17)

with f d = − 1
V

∫
ΓSL
σ ·nLS dS the normal stress exerted by the fluid on the fibres. According to

literature [173, 208], based on the Buckingham π-theorem [142] and a dimensional analysis,

the viscous drag force f d is modelled for solid fibres when neglecting the inertia by

f d = Φµ
K

< v > (5.18)

where K is the permeability. Therefore, the macroscopic equation becomes

µ∆< v >−Φ∇< p >L −Φµ
K

< v >= 0 (5.19)

which is well known as the Brinkman’s equation [43]. Hypothesising that the viscous term is

negligible compared to the drag force from the fibres, leads to the Darcy’s equation

< v >=−K

µ
∇< p >L (5.20)

Permeability computation - method 1

The permeability may be computed from the Darcy’s equation based on the flow rate across

a surface S, driven by the hydraulic gradient imposed over a domain of length L. The Darcy’s

equation written in term of flow rate is

Q = K

µ
|S|pi n −pout

L
(5.21)

with Q the flow rate across a surface as shown in Fig. 5.18. In case of flows at the fibre scale,

the flow rate is computed on the real microstructure in the flow direction using the formula

Q = ∫
S v ·n dS.
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5.2. Microstructure analysis

FIGURE 5.18 – Homogeneisation - numerical permeability from Darcy flow rate

Permeability computation - method 2

Darcy’s law, applicable at the macroscopic scale, is based on a parameter named permeabil-

ity, which may be computed from the drag force definition in a porous medium (Eq. 5.18). The

assumption is made that the viscous effect is negligible compared to the dissipation due to the

drag force. As before, only the hydrostatic part of the fluid stress is of interest, leading to

1

V

∫
ΓSL

σ ·n dS =− 1

V

∫
ΓSL

pn dS =− 1

V

∫
ΩL

∇p dV =−<∇p >
de f= Φµ

K
< v > .

(5.22)

The permeability is computed using the relation for an unidirectional flow of principal direction

i

K =−µΦ < v >i

<∇p >i
=−µΦ

∫
ΩL

vi dV∫
ΩL

∇i p dV
(5.23)

Contrary to the previous method based on global parameters (Eq. 5.21) ; this method integrates

local variations in the inter-fibre spaces. This is the main difference between the two meth-

ods, and that is why it is not expected to recover exactly the same value for the computed per-

meability. Numerically, it may be verified that QL ≈ ∫
ΩdV < v >i for an incompressible fluid.

Therefore, the discrepancy comes from the pressure since numerically it is verified that

pi n −pout

L
6= 1

Φ

1

VL

∫
ΩL

∇i pdV (5.24)

Due to its local definition, the second method based on the drag definition is able to capture

the pressure field inside the domain. Let us notice that both methods are equivalent when the

pressure is linear in the domain. In the case of a fibrous medium, fibres modify the pressure

field creating the discrepancy between the two methods. This second method based on the drag

definition gives an upper bound for the permeability value. Contrary to the Darcy’s equation

5.20, in the second method the gradient of the pressure average is transformed into the average

of the pressure gradient. This equivalence is valid if the hydrostatic component of the drag force

on the fibres are neglected, i.e.
∑#fibres

j=0

∫
fibre j

nLS p dS ≈ 0. Actually, for a flow in the y-direction

as it will be investigated, the pressure decreases with y therefore each integral in the sum is

positive since the normal is out-going 1
V

∫
ΓSL

ny p dS > 0. Based on Eq. 5.8, the inequality when
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switching integral and derivatives is

∇y < p >+ 1

V

∫
ΓSL

ny p dS︸ ︷︷ ︸
=<∇y p>

> ∇y < p >

0 > (<∇y p >) > (∇y < p >) (5.25)

Therefore, inversing the inequality Eq. 5.25 and multiplying by the negative quantity −µΦ <
v · y > leads to

−µΦ< v · y >
<∇y p >︸ ︷︷ ︸

Kmeth.2

> −µΦ < v · y >
∇y < p >︸ ︷︷ ︸

K

(5.26)

Finally, in the specific case presented in the following section, the permeability computed based

on the drag modelling has a larger value than the one computed from Darcy equation i.e. Kmeth. 2 >
Kmeth. 1. Computing an upper bound for the permeability is still an interesting point since a per-

meability variability may be observed experimentally [210].

5.2.2 Numerical experiments

Numerical permeability can be computed using one of the two methods presented in the

previous paragraph. Both methods need a geometrical description of the microstructure in or-

der to compute the fluid flow (velocity and pressure), from which a numerical permeability is

computed. In this subsection, two types of microstructures are generated. The first one has the

fibre positions randomly generated for a given volume fraction of fibre and constant radius with

a circular shape. The second microstructure is made up of a regular hexagonal packing with the

same circular fibre radius.

Randomly generated microstructures

Microstructures have been randomly generated by C. Mattrand based on a Fourier expan-

sion [147] to determine their positions. Two fibre volume fractions τ f are considered 30% and

45%. The porosity is related to the fibre volume fraction by τ f = 1−Φ. The purpose is first to

assess the influence of the domain size on the numerical permeability. The size of a Represen-

tative Elementary Volume (VER) for the permeability is the size above which the variation in

permeability is only due to statistical fluctuations.

Fibres have a constant radius of 20x̄, where x̄ is the computational unit length. For each five

domain sizes (200x̄, 400x̄, 600x̄, 800x̄ and 1000x̄) considered here, 15 fibre placement draws

are made for a constant fibre volume fraction. All together, for a given fibre volume fraction

15 × 5 = 75 simulations are run. The randomly generated microstructures are periodic, and

boundary conditions are given in Fig. 5.19. For each simulation, the numerical permeability

is computed in the flow direction. As shown in Fig. 5.20, the flow direction is along the y-axis,

from bottom to top. 11 randomly generated streamlines are represented and coloured with the

pressure values. Numerical permeabilities are represented in Fig. 5.21. The standard deviation

is represented by the blue line and the mean value by a green dot. Both methods have a decreas-

ing standard deviation when increasing the size of the domain in good agreement with results

from Narsilio et al. [155]. The method based on the drag modelling (c.f. Sec. 5.2.1) gives larger
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5.2. Microstructure analysis

FIGURE 5.19 – Numerical permeability - boundary conditions

FIGURE 5.20 – Numerical permeability - Flow and streamlines in the domain Ω =
[0,1000x̄]× [0,1000x̄]

values as predicted (more than two times higher) than the method based on the flow rate of

Darcy equation (c.f. Sec.5.2.1).

In the case of fibrous reinforcement, the radius of fibre is around 5µm. Recalling that the fi-

bres have a radius of 20x̄, the equality to scale our dimensionless results is 1x = 1/4µm for the

spatial scale. For example, the converged permeability for a fibre volume fraction of τ f = 30%

is 42 x̄2 = 42 × (1
4 10−6

)2
m2 = 2.6×10−12 m2. Therefore, the converged permeability when in-

creasing the domain size for τ f = 30% is 2.6×10−12 m2 with method 1 and 6.4×10−12 m2 with

the second method. Furthermore, the mean value for each domain size is a good first approx-

imation. Therefore, to compute a numerical permeability one can either run one simulation

on a domain larger than 1000x or run more than 15 simulations with a smaller domain to ho-

mogenise the effect of the fibre positions.
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FIGURE 5.21 – Numerical permeability - standard deviation and convergence of the nu-
merical permeability against the domain size for τ f = 30%

The numerical permeability with a higher volume fraction of τ f = 45% is represented in

Fig. 5.22. The standard deviation decreases and the mean value stabilises when increasing the

domain size. Again, the second method gives an upper bound estimation for the permeability.

Both methods predict approximatively a five times lower permeability when increasing the fi-

bres volume fraction from 30% to 45%. Further cases would be necessary to conclude on this

evolution found here.
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FIGURE 5.22 – Numerical permeability - standard deviation and convergence of the nu-
merical permeability against the domain size for τ f = 45%

Numerical permeabilities are reported in Tab. 5.7 for a fibre radius of 5µm.
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5.2. Microstructure analysis

τ f (%) method 1: Darcy (K [m2]) method 2: Drag def. (K [m2])

30 2.6×10−12 6.4×10−12

45 5.1×10−13 1.4×10−12

TABLE 5.7 – Numerical permeability - value summary from random draws

Models from the literature are reported in Tab. 5.8. Four models are given from: Tomadakis

and Robertson [207], Davies [79], Chen [80], Kozeny-Carman [29]. The Tomadakis and Robert-

son model assumes that the fibres are oriented in one direction with a constant radius and a

randomly generated position without intersections, an relies on two model parameters chosen

in our case εp = 0.33 and α = 0.707 for representing our case (see [207]). Davies [70] derives a

formula in a similar context of flow transverse to unidirectional cylindrical fibres when study-

ing fibrous filters to dissociate dust from air. Along with Chen [54], they studied the efficiency

of collection and pressure drop due to the filter leading to model the fibrous medium as a ho-

mogeneous material with a permeability. Both approaches focus on the flow around a circular

cylinder with Reynolds number between 0.2 and 2000. The Kozeny-Carman model [131, 50]

based on two articles separated by 10 years, is based on experimental data and a shape fac-

tor in order to move from originally spherical particles to any shape of a fibrous medium. The

constant used in Kozeny-Carman model is 1/180 [231]. Two other models namely Berdichevski

τ f (%) Kozeny-Carman Davies Chen Tomadakis and
(K [m2]) (K [m2]) (K [m2]) Robertson (K [m2])

30 2.1×10−12 3.7×10−12 5.9×10−11 8.3×10−12

45 4.6×10−13 8.5×10−13 1.8×10−11 1.1×10−12

TABLE 5.8 – Numerical permeability - models from the literature

and Cai[31], and Gebart [93], are derived (see Tab. 5.9) for the specific case of a flow transverse

to parallel fibres, which correspond to the studied 2D case. The model from Berdichevski and

τ f (%) Berdichevski Gebart method 1 method 2
and Cai (K [m2]) (K [m2]) (K [m2]) (K [m2])

30 3.8×10−12 2.7×10−12 2.6×10−12 6.4×10−12

45 9.4×10−13 6.6×10−13 5.1×10−13 1.4×10−12

TABLE 5.9 – Numerical permeability - models from the literature with flow transverse to
parallel fibres and our numerical permeability reported at the end

Cai is based on the self-consistent method which assumes that a basic element representing

the microstructure of a heterogeneous medium is embedded in an equivalent homogeneous

medium with unknown properties. The permeability is determined by solving the continuity

condition between the homogeneous and heterogeneous domains. Finally, Gebart model, like

the others, is only based on an approximate analytical solution for a flow transverse to parallel

fibres when studying RTM process.

125



Chapter 5. Numerical experiments

Among the six models from the literature, the method 1 based on Darcy’s flow rate gives

results close to permeabilities from Kozeny-Carman and Gebart models. The second method,

based on the drag definition, predicts a permeability with numerical values falling within the

range described by the other models or larger. Therefore, the numerical method presented gives

results comparable to models in the literature.

Hexagonal packing

This second microstructure is a regular hexagonal packing 5.23. It is designed to assess the

influence of the previous microstructure randomness. Furthermore, the hexagonal packing is

a suitable microstructure for a spontaneous capillary rise, as demonstrated in the next section.

It also enables to reach a more realistic fibre volume fraction, tending to τ f = 52% when in-

creasing the number of fibres in the stack. Actually, the microstructure (Fig. 5.23) shows a slight

(A) domain geometry
(B) boundary conditions

FIGURE 5.23 – Numerical permeability hexagonal arrangement - geometry and boundary
conditions

defect since at the entrance and exit of the domain, a fraction of fibre is lacking. This lacking

fibre volume is controlled by the parameter δ and leads to change the fibre volume fraction.

Without this lacking fibre, a domain with two quarters of fibres would be enough to compute

the permeability as it would represent, with symmetries, a completely regular microstructure.

However, the full domain is necessary to compute the capillary pressure, thus the domain in

the flow direction is fully represented. As seen in Fig. 5.23 (A), each fibre has a constant radius

r with their centres placed periodically (right and left) on two vertical segments spaced by a

distance of 2r , r = 0.1 and δ= 0.025. On one segment, two consecutive fibres have their centres

separated by a distance of 2r . Fig. 5.23 (B) exhibits the boundary conditions. The main direc-

tion of the flow is in the y-direction since a stress vector is applied at the bottom in this same

direction. On the right and left hand sides of the domain, a periodic boundary condition is used

for the fluid v ·n = 0 and the pressure is prescribed directly on the top boundary with p = 0 via

a Dirichlet condition. No slip is supposed on the fibres, thus the velocity vector is enforced to

zero. Finally, the gravity is neglected in this case.

126



5.2. Microstructure analysis

The velocity and pressure fields of the saturated flow are represented in Fig. 5.24. The domain

width is enlarged by taking advantage of the symmetries. The velocity magnitude is higher

where the space between the fibres is small. The velocity vector is zero at the upper and lower

ordinate of every fibre since the flow is supposed periodic and without in-going velocity in-

side fibres. The pressure field is plotted on the two streamlines in the centre of the figure. Every

single particle of fluid flows around the fibres from the bottom to the top boundary with a tor-

tuosity close to 1. The permeability is computed from the velocity and pressure fields based on

FIGURE 5.24 – Numerical permeability hexagonal arrangement - flow and streamlines in
duplicated symmetrical domain, fluid viscosity µL = 1Pa · s

method 1 (extracted from Darcy’s equation written with the flow) or method 2 (from the drag

definition). The influence of the domain size is evaluated by changing the number of fibres

aligned in the flow direction, up to 80 fibres are placed successively. The values are reported in

Fig. 5.25. For both methods, the predicted permeability value converges when increasing the

size of the domain. The value of the permeability is given in m2 by fixing the size of the fibre

radius r = 1×10−1x̄ = 5×10−6 m. Therefore, values of the converged permeability for methods

1 and 2 are 2.3×10−13 m2 and 5.5×10−13 m2 respectively. This case of a hexagonal packing cor-

responds to the case studied by Gebart [93]. He derived a permeability value by approximating

an analytical solution for the Stokes equations in a small element representing with symmetries

the whole domain. The transverse permeability from Gebart’s model is 3.4×10−13 m2 for a fibre

volume fraction of 52% and a fibre radius of 5µm. Therefore, the numerical method 1 gives a

value in the same range that predicted by Gebart. The method 2 describing the upper bound is

less than twice the numerical value from method 1. One can conclude that, the computed per-

meability is correctly predicted with our numerical approach and the upper bound from the

second method restricts the uncertainty of the method to a narrow interval. In literature, other

numerical permeability [195] yields a lower permeability than the Gebart’s model when study-

ing a quadratic fibre packing.
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FIGURE 5.25 – Numerical permeability hexagonal arrangement - dimensionless permeabil-
ity comparison between methods when increasing the number of fibres (# fibres)

Other permeability values from literature are reported in Tab. 5.10, showing a good agreement

Kozeny- Davies Tomadakis Berdichevski Gebart Method 1
τ f (%) Carman (K [m2]) and Robertson and (K [m2]) (K [m2])

(K [m2]) (K [m2]) Cai (K [m2])

52 2.3×10−13 4.7×10−13 3.6×10−13 4.8×10−13 3.4×10−13 2.3×10−13

TABLE 5.10 – Numerical permeability - models from the literature with τ f = 52%

with method 1 and respecting the upper bound given by method 2. One can notice that the

Kozeny-Carman model (with parameter 1/180) [131, 50] predicts the same value than the found

numerical value 2.3×10−13 m2.

The tortuosity of the streamlines is larger in the randomly generated case rather than in

the hexagonal packing microstructure. Indeed, as seen in Fig. 5.24, the two streamlines have a

more regular path than in Fig. 5.20 with a randomly generated microstructure. Therefore, the

fluid has a preferential path which has an influence on the permeability. Contrary to models in

literature, this versatile approach is able to take into account the effect of tortuosity by spanning

from completely regular to ’random’ arrangements.

5.2.3 Numerical capillary pressure

Capillary pressure is introduced for modelling the capillary effects at part scale. Indeed, so

far in this work, capillary action has been described at the fibre scale by taking into account sur-

face energies/tension on the three different interfaces involved in the problem. However, this

local approach can not be used for computing the flow in the entire part during the infusion.

Therefore, the flow in the entire part can be described by the Darcy’s equation, while a pres-

sure jump at the flow front represents the capillarity effects [17]. The magnitude of this jump
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is equal to the capillary pressure, a parameter representing the averaged capillary action at the

fibre scale. An extension of the previously presented volume averaging theorem to interfaces

and triple line/point may present one possibility to compute the capillary pressure [101]. Yet,

in this work we develop a strategy to compute this parameter in two ways: an equivalence with

a Darcy’s flow in one dimension, and by equaling the work done in a Stokes domain and in

a Darcy’s domain respectively by the surface tension and by the capillary force. After present-

ing the two methods, capillary pressure is computed in the randomly generated and hexagonal

packing microstructures.

Darcy 1D

A formula for the capillary pressure may be derived from a Darcy’s flow in one direction with

a pressure jump at the interface located at height h(t ) [17]. The pressure at the domain entrance

is pi n and pout at the outlet (see Fig. 5.26). Assuming that the flow is 1D, then v and p depend

FIGURE 5.26 – Capillary pressure definition from Darcy 1D - Computational domain and
boundary conditions

only on y and v ·x = 0. Substituting the velocity given by the flow equation into the conservation

of mass equation leads to a linear pressure for each phase (liquid and vapour)vy j =− K

µ j

d p j

d y

∇·v j = 0
=⇒ ∇·

(
− K

µ j

d p j

d y

)
= 0 =⇒ d 2p j

d y2
= 0 for j ∈ {L,V }. (5.27)

Four coefficients are necessary to solve this equation both in the liquid and vapour phases.

These coefficients are determined by considering the following conditions:

pL(hmi n = 0) = pi n pV (hmax) = pout

pV (h)−pL(h) = pcap vyV (h) = vyL(h)
(5.28)

The two first relations are the boundary conditions prescribed at the inlet and outlet of the do-

main; the third relation expresses the pressure jump at the fluid front, due to the capillary pres-

sure pcap ; the fourth and last relation is the continuity of the normal velocity at the interface,
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from the mass conservation. Using the four conditions, the pressure is written

p(y, t ) =



pL = pout −pi n −pcap

µV
µL

hmax −
(
µV
µL

−1
)

h(t )
y +pi n for y ∈ [0,h(t )]

pV = pout −pi n −pcap

hmax −
(
1− µL

µV

)
h(t )

(
y −hmax

)+pout for y ∈ [h(t ),hmax].

(5.29)

Finally, Darcy equation yields the formula for the constant velocity throughout the domain

vy (t ) =− K
(
pout −pi n −pcap

)
µV hmax +

(
µL −µV

)
h(t )

. (5.30)

The velocity at the fluid front has the same expression and is equal to the time derivative of the

front position vy (t ) = h′(t ), leading to the differential equation

h′(t ) =− K
(
∆p −pcap

)
µV hmax +∆µh(t )

(5.31)

with ∆p = pout − pi n and ∆µ = µL −µV . This differential equation has two solutions, only the

solution with an increasing height is kept

h(t ) = 1

∆µ

(√
−2K

(
∆p −pcap

)
∆µt + (

∆µhi ni t +µV hmax
)2 −µV hmax

)
(5.32)

For each time t > 0, the capillary pressure is computed by inversing the previous formula

pcap =∆p + h(t )−hi ni t

2K t

[
∆µ (h(t )+hi ni t )+2hmaxµV

]
. (5.33)

The capillary pressure found to be inversely proportional to the permeability. Increasing the fi-

bre volume fraction decreases the permeability and it yields a larger capillary pressure. Chang-

ing in topology (such as fibre clustering) may also change the fluid height and increases further

the capillary pressure. Furthermore, let us notice that from the Darcy’s equation, the height is

proportional to the square root of time when the capillary pressure is assumed constant, c.f. Eq.

5.32.

One may notice that the permeability has been obtained with no-slip condition prescribed on

the fibres, while in the capillary rise a slip condition is considered (otherwise, the triple point

cannot rise) and is based on the permeability. It has been numerically assessed that using the

same methods, the numerical permeability may vary up to 5 times the reported value when

imposing a free slip condition on the fibres in the case of a hexagonal packing. To impose the

same boundary conditions when computing the permeability and the capillary pressure, then

either the method of calculating permeability must be extended to the case with a slip bound-

ary condition, or the non-slip stress at the triple point must be relaxed only locally to allow the

fluid front to advance.
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5.2.4 Numerical experiments

A bi-fluid simulation is carried out with the two types of microstructure: the hexagonal fibre

packing and the structure generated by a stochastic algorithm. The properties of the interfaces

and fluids are reported in Tab. 5.11. The viscosities are those of air for the vapour and water for

Solid/Vapour - γSV Solid/Liquid - γSL Liquid/Vapour - γLV

Surface tension /
energies (N ·m−1 )

60.93×10−3 30.03×10−3 37.03×10−3

Vapour Liquid
Viscosity (Pa · s) 1.71×10−5 1×10−3

TABLE 5.11 – Input data for capillary rise in microstructures

the liquid. Resulting from the surface tension and energies, the static contact angle is θc = 33°

according to the Young’s equation γLV cosθc = γSV −γSL . A low contact angle ensures a high

wettability and a better spontaneous impregnation.

Capillary rise in hexagonal arrangement

The geometry considered here is the same as presented in Fig. 5.23 (A). At least three condi-

tions must be met for a spontaneous impregnation to occur:

— (cdt1) the length between two fibres has to be much smaller than the capillary length,

2d2 −2r ¿ κ−1, with d2 the horizontal distance between fibre centres as shown in Fig.

5.27 and if the centre of the first fibre is located at position (0,0) then the centre of the

second fibre is at position (d2,d1 + r ). This condition is true in our context since 2d2 −
2r ∝ 10µm and κ−1 ∝ 1cm.

— (cdt2) The no-penetration condition between fibres has to be verified for the fluid to flow

in between. Therefore, the distance between the centres has to be larger than the diam-

eter. In our case with the two first centres at (0,0) and (d2,d1 + r ), this condition reads:

d 2
2 + (d1 + r )2 > 4r 2 which is automatically verified for d2 = 2r and d1 > 0, as chosen.

— (cdt3) The impregnation stops if the pressure jump ∆p across the interface is zero, i.e. if

the interface is flat [28]. No driving force brings the interface forwards when the contact

angle is verified and the interface has reached the state of minimum energy (a straight

line) as depicted in Fig. 5.27. In the extreme case where the interface has no curva-

ture and the angle is satisfied, the interface must have reached at least point A in Fig.

5.27, to continue to go up. The ordinate of this point represents the critical distance

d1c = r sinα = r sin
(
π
2 −θc

) = r cosθc . Therefore, the distance d1 has to be shorter than

this critical distance, yielding: d1 < d1c = r cosθc . For a contact angle θc = 33° indirectly

specified through surface tension and surface energies values reported in Tab. 5.11, the

third condition for a spontaneous impregnation is d1 < 0.85r which is verified since the

distance is d1 = 0.5r .

Boundary conditions are the same as in Fig. 5.23 (B) for permeability computation, except that

a no-penetration condition is prescribed at the fibre contours v ·n = 0 instead of the no-slip

condition. Furthermore, a free normal stress is enforced at the bottom boundary (y = 0) to let
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FIGURE 5.27 – Hexagonal packing - Condition for the next fibre to be geometrically acces-
sible

the resin impregnate the fibres by the only action of capillarity.

The impregnation is simulated during t f − ti ni t = 0.85ms using 35000 time increments. Two

time sequences are adopted: between ti ni t = 0 and t = 0.1ms, 1000 time increments are per-

formed (∆t = 1×10−4 ms), then between t = 0.1ms and t f = 0.85ms, 2500 increments are per-

formed with a larger time step ∆t = 3×10−4 ms.

(A) t =
0ms

(B) t =
0.015ms

(C) t =
0.041ms

(D) t =
0.16ms

(E) t =
0.355ms

(F) t =
0.58ms

(G) t =
0.85ms

FIGURE 5.28 – Capillary rise in hexagonal packing - Position and shape of meniscus for
different times

Fig. 5.28 shows the interface position at seven different times during the capillary rising. The

interface is represented by a green curve, the resin below is in blue and air above in red. At

each instant, the interface is curved by the capillary action enabling the fluid to impregnate the

hexagonal packing microstructure. The arithmetic mean height, h(t ) of the interface is com-

puted and plotted in Fig. 5.29 (A). It can be shown that this height behaves like the square root

of time. Indeed, the graph of h2(t ), also drawn inside the figure, is a straight line. Therefore, the

fluid impregnation velocity decreases in time without any gravity action. The interface slow-

ing down results from the dissipative viscous term µ∆v which acts on an increasing volume of
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fluid. This is in good agreement with literature [90, 218], demonstrating that if the surface ten-

sion force is constant then the height depends on the square root of time when studying a flow

in capillary tubes. This law is known as the Washburn’s law. This flow regime is called viscous

regime.
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FIGURE 5.29 – Hexagonal packing - Capillary rise and pressure

From the height, the capillary pressure multiplied by permeability is computed using Eq.

5.33 and represented in Fig. 5.29 (B). After 0.1ms, the value is constant and pcap×K ≈ 9.7×10−9 Pa ·m2.

The permeability may be known based on previously computed numerical permeability Kmethod 1 ≈
2.3×10−13 m2 and Kmethod 2 ≈ 5.5×10−13 m2. Method 1 is based on Darcy’s equation expressed

with the flow and method 2 gives an upper bound for the permeability i.e. a minimal value

for the capillary pressure. The capillary pressure has a value of 0.42 bar with the permeability

from method 1 and a lower bound of 0.18 bar based on the second method for the permeability

computation. This range of value is a good approximation and belongs to common value range

[150]. For example, a maximal value of 37 kPa has been measured for woven fabric preforms

made of T-300 carbon fibres [7], but also values between 5 and 7 kPa are reported in [12], for

glass fibres and epoxy resin. These values are given for information only and not for compari-

son purposes since capillary pressure depends on the physical properties and geometry of the

fibres.

Capillary rise in randomly generated microstructure

The same methodology is applied to compute a capillary pressure in a microstructure with

randomly generated fibre positions. Boundary conditions are imposed as presented in Fig. 5.5

on page 115 with some modifications: from now on, only the normal velocity component is set

to zero on the fibres contour to enable the fluid to slip.

As presented in the previous paragraph, the same three conditions have to be verified for the

resin to impregnate the fibres. The distance between the fibres is smaller than the capillary

length since the same fluids are studied and no-penetration between fibres is allowed. How-

ever, the third condition is not verified everywhere in the domain. As seen in Fig. 5.30, even

for a fibre volume fraction of 45%, there is not always a fibre above to intersect the front of
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FIGURE 5.30 – Randomly generated microstructure - no spontaneous impregnation with-
out pressure differential

fluid. A complete spontaneous impregnation is not possible in this randomly generated mi-

crostructure. Therefore, a pressure gradient is applied between the inlet and outlet of the do-

main through the condition on the normal component of the stress vector: 2×103 Pa on the

left-hand side inlet. Thus ∆p =−2×103 Pa in Eq. 5.33.

The induced impregnation is simulated during t f − ti ni t = 0.891ms with 3300 time increments.

The simulation has been sequenced using successively two time steps: between ti ni t = 0 and

t = 0.0375ms, 1000 time increments are performed i.e. ∆t = 3.75×10−5 ms, then between t =
0.0375ms and t f = 0.891ms, 2300 increments are run with a time step ∆t = 3.71×10−4 ms.

(A) t = 0ms (B) t = 0.022ms (C) t = 0.112ms

(D) t = 0.557ms (E) t = 0.891ms

FIGURE 5.31 – Randomly generated microstructure - Position and shape of meniscus at
different instants

The progression of the front of resin is represented at 5 instants in Fig. 5.31. Initially, the

interface is a straight line at position y = 130 with the resin in blue and the air in red, as shown

in Fig. 5.31 (A). The resin starts to flow not in a straight way in the microstructure as it was the
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case in the hexagonal packing (subplot (B)). The region under x < 300 has a fibre distribution

easing the capillary rise than above x > 300 for a y-position between 150 and 450: the front of

resin moves faster under x = 300 as seen in Fig. 5.31 (C) and (D). Oppositely, more fibres are

randomly positioned near the top right quarter which helps the front of fluid to move due to

capillarity, catching up with the second half.

The size of the REV needed to determine the capillary pressure seems to be larger than the

size required to calculate a numerical permeability. At each time step, arithmetic mean value

of the y position of the interface is computed and reported in Fig. 5.32 (A). Like in the hexago-

nal case, the viscous dissipation slows down the fluid front. The fluid position is proportional

to the square root of time as pictured in the figure close-up, in good agreement with the the-

ory of the viscous regime [90]. The product of the capillary pressure by the permeability is
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FIGURE 5.32 – Randomly generated microstructure - capillary rise and pressure

computed based on Eq. 5.33 and plotted in Fig. 5.32 (B). The curve reaches a constant value

(pcap −∆p)K = 7.3×10−9 Pa ·m2 for t > 0.2ms. For this microstructure, the numerical perme-

ability is: 5.1×10−13 m2 based on method 1 which is in good agreement with Kozeny-Carman

and Gebart models. Recalling that a pressure differential of 2000 Pa is applied between the inlet

and outlet, then the capillary pressure is estimated to pcap = 12.3kPa. The capillary pressure

lower bound is 3.2 kPa, computed with the second method (giving an upper bound for the per-

meability).

Even with a fibre volume fraction of 45%, no spontaneous impregnation is possible in this

microstructure, and a pressure gradient has to be imposed to set the fluid in motion. This pres-

sure differential may interact with more complexity than just adding up its effects with the cap-

illary pressure as supposed in our interpretation. The influence of the pressure differential on

the capillary pressure should be assessed to verify this hypothesis. Finally, the capillary pressure

is inversely proportional to the permeability. Therefore, a precise estimation of this microstruc-

ture characteristic has to be known prior to compute the capillary pressure.
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Conclusion

First, in this chapter, validation cases have been presented and compared with success to

analytical and semi analytical solutions. In addition, a good agreement with a benchmark of

the literature was found for a bubble rising in a liquid. The last case of a cluster of tubes al-

lowed us to validate the robustness of the approach in a complex 3D geometry. The second

part of this chapter analysed two types of microstructure in order to extract a permeability and

a capillary pressure, both modelling respectively the capability of a medium to permit a fluid

flow through and the average capillary action. One microstructure was a hexagonal packing

whereas the other had circular fibres with randomly generated centres. Two methods to com-

pute the permeability were exposed: the first one is based on the Darcy’s equation expressed

with the flow rate and the other comes from the drag force definition, and provides an upper

bound of the numerical permeability. Finally, a method to compute the capillary pressure was

derived based on an equivalence of the resin front position between the Stokes flow in the mi-

crostructure and a 1D Darcy flow. Both numerical results for the permeability and the capillary

pressure are in good agreement with literature. At last, it has been shown that spontaneous cap-

illary rise is only possible when certain geometric conditions are met.

This method may be used to pre-compute permeability and capillary pressure depending on

morphological descriptors such as the fibre volume fraction. Then an industrial case of the in-

fusion of a composite part may be simulated, taking into account the capillary action, based on

an initial mapping of fibre volume fraction. In parts with complex geometries, a curved region

experiences a variation of fibre volume fraction during the forming phase before the infusion as

well as during infusion because of the swelling of the preforms for biocomposites. This spatial

variation of fibre volume fraction will influence the resin infusion (time and spatial impregna-

tion) through the permeability and the capillary pressure.

Résumé en Français : Éxpériences numériques

Plusieurs cas tests de validation attestent de la fiabilité du modèle prouvant qu’il est capable

de décrire la position statique de ménisques contre une plaque et entre deux plaques verticales.

De plus, une comparaison avec un benchmark numérique portant sur la capillarité a été réali-

sée. Une bonne adéquation entre notre solution numérique et celles données par les approches

de ce benchmark a été relevée. Enfin, un dernier cas de validation permet de conclure sur la

forme plausible d’un ménisque statique dans une microstructure complexe en 3D.

Des écoulements saturés et insaturés sont alors réalisés pour étudier les propriétés de la micro-

structure. Deux types de microstructures sont considérés : un positionnement hexagonal des

fibres et un tirage aléatoire de leurs centres. La perméabilité est calculée grâce à l’équation de

Darcy formulée en débit. Une seconde méthode permet de donner une borne supérieure de la

perméabilité numérique et repose sur la modélisation de la force de traînée. Enfin, une pression

capillaire est extraite de la hauteur du front de fluide en fonction du temps grâce à une équi-

valence avec un écoulement Darcy 1D. Les valeurs de perméabilités et de pressions capillaires

numériques sont comparées aux valeurs de la littérature et montrent une bonne cohérence

avec celles-ci. La comparaison entre ces deux types de microstructures montre que la taille du

domaine doit être suffisamment grande pour moyenner l’effet du positionnement aléatoire des
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fibres. La pression capillaire est calculée en faisant l’hypothèse que cette taille de domaine suf-

fisante pour décrire la perméabilité est également suiffisante pour la pression capillaire. Une

équivalence sur la hauteur de fluide avec l’équation de Darcy 1D, permet proposer une valeur

numérique de la pression capillaire.
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Conclusion

This research work is part of a collaboration between Mines Saint-Étienne and Hexcel Rein-

forcements to develop numerical methods capable of simulating Liquid Composite Moulding

manufacturing processes.

In continuity with previous works, the primary objective of this thesis is to improve the accu-

racy of the physical model by a local analysis of resin / fibre interactions during the infusion

step. Indeed, until now, the fibrous preform has been described by an equivalent homogeneous

medium. However, the comparison between simulation and experience, particularly based on

preform filling times, indicates that the effects related to capillarity cannot be neglected in the

flow regimes met. Describing these local effects is an essential part in modelling the LCM man-

ufacturing processes. A fibre-scale description based on the mechanical balance of the inter-

faces was adopted. The geometric representation of the interface between air and resin gives

to the description a considerable amount of information at the microstructural scale. As a con-

sequence, the secondary objective of this thesis work consists in condensing, in representative

global parameters, the information extracted from the study of flows at the fibre scale namely:

permeability and capillary pressure. These parameters characterise the flow at the local scale

and translate their effects at the global scale of equivalent homogeneous media.

The numerical tool is based on two solvers: one for numerically solving for fluids both mo-

mentum balance and conservation of mass equations, and another one for describing an in-

terface representing the moving fluid front through the level-set method. In our study, a bifluid

flow is considered. It represents the resin and rarefied air downstream of the fluid front dur-

ing the infusion process. In this method, a level-set function is used to describe the position of

the resin front, separating resin from air during the infusion stage. Both solvers use the finite

element method to solve partial differential equations numerically. Each solver was indepen-

dently tested by verification test cases. The emphasis was placed, for the Navier-Stokes solver,

on taking into account the inertial effects requiring to solve a non-linearity in velocity. For the

level-set solver, the variations of volume were studied when solving the transport equation.

The fluid mechanics problem has been reformulated by taking into account: the surface

tension, surface energies and the mechanical balance of surface tensions at the triple line. In

the resulting integral weak form, all these conditions appear to be Neumann conditions. Math-

ematically, an integration by parts reduces the regularity required for the interface description,

avoiding the calculation of the curvature. In all cases, a fixed simplicial mesh was used, with a

continuous and linear approximation by element of the unknowns, namely velocity and pres-

sure fields for mechanics and level-set field for capturing the fluid front. However, capillary

flows show features that the continuous approximation of pressure cannot take into account.

An enhancement of the pressure field approximation has been implemented to describe both
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jumps of pressure and pressure gradient. In addition, the linear approximation of the fluid in-

terface can generate parasitic currents. These spurious velocities lead to a degeneration of the

interface that can be controlled by a restriction on the time step. To remove this restriction,

capillary force stabilization was used to filter parasitic capillary waves. The stabilization in-

troduced as the semi-implicitation of the resin / air interface offers further robustness to the

numerical method. It was noted that the stabilization resulting from the semi-implicitation dif-

fuses the condition imposed weakly on the contact angle. Two coupling strategies between the

fluid solver and the level-set were then discussed. The main difference between the two cou-

plings is that the strong iterative coupling preserves the contact angle imposed by reducing the

stabilization term over the convergence iterations. Also, the main characteristic of the strong

iterative coupling is to obtain a solution to the global fluid and level-set problem, which cannot

be ensured by the weak coupling.

Menisci at equilibrium against and between vertical walls have been numerically computed.

The numerical solutions were successfully compared to analytical and semi-analytical solu-

tions demonstrating the ability of the proposed simulation to reproduce the physics of the

problem. The numerical method developed was compared with other methods referenced in a

numerical benchmark of the literature. The results obtained are in good agreement with those

given by the approaches of this study. Finally, the case of a cluster of tubes is presented, allow-

ing to test the numerical method with interactions between several 3D menisci.

For the purpose of simulating the flow of resin in a part with industrial dimensions, it is essential

to consider the preforms as equivalent homogeneous media. Before presenting the upscaling

strategy, it was recalled that the Darcy equation may be established from a spatial homogeniza-

tion of the Stokes equations. Thus the defined permeability reflects the ability of a medium to

let a fluid flows through. Permeability is numerically calculated, first, from the Darcy equation

formulated in terms of flow rate. A second method defined from the expression of the drag force

represents an estimation in excess of the permeability. Finally, capillary effects can be added to

the Darcy law by considering a pressure drop at the flow front. The amplitude of this jump is

a scalar called capillary pressure that acts in the normal direction on the fluid front. The latter

can be determined by assuming an equivalent position of the fluid front between, on the one

hand, the Stokes domain and, on the other hand, the position in the homogeneous domain in

which the flow is ruled by the Darcy equations in 1D. Both permeability and capillary pressure

parameters are in good agreement with the models from literature and the experimentally esti-

mated values.

Several outlooks can be drawn from this work. First in the short run, prospects can be di-

vided into three main areas. A numerical strategy can be developed to gather in an unity model

iterations from the Navier-Stokes solver and iterations from the strong coupling when taking

into account capillarity. The convergence speed is the parameter to be optimised when devel-

oping this model. This improved version could capture in particular the first instants of the

wetting when inertial forces are prevailing. The second axis is related to capillarity for taking

advantage of the strong iterative coupling with the use of a dynamic angle model. It could be

interesting to study the influence of a friction at the triple point on the dynamic angle, with this

same friction coefficient extracted from a second analysis at the lower scale by a representation
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of the roughness. The third axis is focused on the issue of homogenisation. Numerous precal-

culated permeabilities depending on representative parameters to be defined would make it

possible to create a permeability mapping at the part scale. The capillary pressure resulting

also from homogenisation could be calculated from an energy equivalence between a Stokes

system and its corresponding Darcy system. A global approach could be developed to jointly

compute permeability and capillary pressure.

In the long run, the geometry of the fibres could be extracted from tomographic images. A

complete analysis could be conducted to extract morphological criteria representative of the

microstructure. The influence of these criteria on the characteristic quantities of capillary flow

could also be studied. Finally, the versatility of the approaches could be exploited in many fields,

controlled by surface tensions, within structured environments: elasto-capillarity, microfabri-

cation, microfluidics.

This research will be continued as part of the industrial Chair between Mines Saint-Étienne

and Hexcel Reinforcements.
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Conclusion en Français

Ce travail de recherche s’inscrit dans une collaboration entre Mines Saint-Étienne et l’en-

treprise Hexcel Reinforcements visant au développement de méthodes numériques simulant

les procédés de fabrication par voie liquide. La modélisation puis la simulation numérique des

procédés permet de les étudier dans le but de les optimiser.

Dans la continuité des travaux précédents, l’objectif primaire de cette thèse est d’améliorer

la finesse du modèle physique par une analyse locale des interactions resine / fibres lors de

l’infusion. En effet jusqu’à présent, la préforme fibreuse était décrite par un milieu homogène

équivalent. Cependant, la confrontation entre simulation et expérience, notamment basée sur

les temps de remplissage de préformes, indique que les effets liés à la capillarité ne peuvent

être négligés dans les régimes d’écoulement rencontrés. Décrire ces effets locaux est un élé-

ment essentiel de la modélisation des procédés visés. Une description à l’échelle de la fibre se

basant sur l’équilibre mécanique des interfaces a été adoptée. La représentation géométrique

de l’interface entre l’air et la résine confère à la description une richesse d’information consi-

dérable à l’échelle microstructurale. C’est pourquoi, l’objectif secondaire du travail de thèse

consiste à condenser, dans des paramètres globaux représentatifs, l’information extraite de

l’étude d’écoulements à l’échelle de la fibre : la perméabilité et la pression capillaire. Ces pa-

ramètres quantifient l’écoulement à l’échelle locale et permettent de prendre en compte les

effets locaux à l’échelle macroscopique d’un milieu homogène équivalent.

L’outil numérique repose sur deux solveurs : l’un permettant de résoudre numériquement

les équations de conservation de la quantité de mouvement ainsi que de la masse pour les

fluides, l’autre permettant la description d’une interface représentant le front de fluide mo-

bile par la méthode level-set. Dans notre étude, un écoulement bifluide est considéré. Il repré-

sente la résine et l’air raréfié en aval du front lors du procédé d’infusion. Dans cette méthode,

une fonction level-set permet de décrire la position du front de résine, distinguant la résine

de l’air durant l’écoulement. Les deux solveurs se basent sur la méthode des éléments finis

pour résoudre numériquement les équations aux dérivées partielles. Chaque solveur a été in-

dépendamment éprouvé par des cas tests de vérification. L’accent a été placé, pour le solveur

fluide (Navier-Stokes), sur la prise en compte des effets d’inertie demandant de lever une non-

linéarité en vitesse ; pour le solveur level-set, sur l’étude des variations de volume lors de la

résolution de l’équation de transport.

Le problème mécanique fluide a été reformulé en prenant en compte : la tension de surface,

les énergies de surface et l’équilibre mécanique des tensions de surface à la ligne triple. Dans

la forme faible qui en découle, l’ensemble de ces conditions apparait comme des conditions de

Neumann. Mathématiquement, une intégration par partie a permis de diminuer la régularité

requise pour la description de l’interface, évitant le calcul de la courbure. Dans tous les cas,
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un maillage simplicial fixe a été utilisé, avec une approximation continue et linéaire par élé-

ment des inconnues, à savoir des champs de vitesse et de pression pour la mécanique et du

champ level-set pour la capture du front de fluide. Cependant, les écoulements capillaires pré-

sentent des particularités que l’approximation continue de la pression ne peut pas prendre en

compte. Un enrichissement de l’approximation du champ de pression a été implémenté pour

décrire les sauts de pression et de gradient de pression. Par ailleurs, l’approximation linéaire de

l’interface fluide peut engendrer des courants parasites. Ces derniers conduisent à une dégé-

nérescence de l’interface pouvant être contrôlée par une restriction sur le pas de temps. Pour

lever cette restriction, une stabilisation de la force capillaire a été utilisée pour filtrer les ondes

capillaires parasites. La stabilisation introduite comme de la semi-implicitation de l’interface

résine / air offre, sans nul doute, une robustesse à la méthode numérique. Il a été noté que, la

stabilisation issue de la semi-implicitation diffuse la condition imposée faiblement sur l’angle

de contact. Deux stratégies de couplage entre le solveur fluide et la level-set ont été ensuite dis-

cutées. La principale différence entre les deux couplages porte sur le fait que le couplage fort

itératif permet de rétablir l’angle de contact imposé en réduisant le terme de stabilisation au fil

les itérations. La caractéristique principale du couplage fort itératif est l’obtention d’une solu-

tion au problème global fluide et level-set, qui ne peut être assuré par le couplage faible.

La simulation numérique a permis de calculer les ménisques à l’équilibre contre et entre des

murs verticaux. Les solutions numériques ont été comparées avec succès à des solutions ana-

lytiques et semi-analytiques démontrant la capacité de la simulation à reproduire la physique

du problème. La méthode numérique développée a été confrontée à d’autres méthodes réfé-

rencées dans un benchmark numérique de la littérature, et les résultats obtenus sont en bonne

adéquation avec ceux donnés par les approches de cette étude. Enfin, le cas d’une grappe de

tubes est présenté, permettant de tester la méthode numérique avec de fortes interactions entre

plusieurs ménisques en 3D.

Dans le but de simuler l’écoulement de résine dans une pièce aux dimensions industrielles, il

est indispensable de considérer les préformes comme un milieu homogène équivalent. Dans

cette démarche de changement d’échelle, il a été rappelé que l’équation de Darcy est établie

à partir d’une homogénéisation spatiale des équations de Stokes. La perméabilité ainsi définie

traduit la capacité du milieu à se laisser imprégner par un fluide. La perméabilité est numéri-

quement calculée, d’abord, à partir de l’équation de Darcy formulée en termes de débit. Une

seconde méthode définie à partir de l’expression de la force de traînée représente une estima-

tion en excès de la perméabilité calculée. Enfin, les effets capillaires peuvent être ajoutés à la loi

de Darcy en considérant un saut de pression au front d’écoulement. L’amplitude de ce saut est

un scalaire nommé pression capillaire qui agit normalement au front de fluide. Cette dernière

peut être déterminée en faisant l’hypothèse d’une équivalence de la position du front de fluide

entre, d’une part le domaine de Stokes et d’autre part, la position dans le domaine homogène

équivalent dans lequel l’écoulement est décrit par les équations de Darcy en 1D. Les deux pa-

ramètres numériques calculés sont en bon accord avec les modèles issus de la littérature et les

valeurs estimées expérimentalement.

Plusieurs perspectives peuvent être tirées de ces travaux. Dans un premier temps, les pers-

pectives à court et moyen terme peuvent se scinder en trois axes. Une stratégie numérique peut
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être développée permettant d’intégrer de façon globale les itérations du solveur de Navier-

Stokes avec les itérations provenant du couplage fort lors du traitement de la capillarité. La

vitesse de convergence étant le paramètre à optimiser lors du développement de cette straté-

gie. Cette version améliorée pourrait permettre de capter notamment les premiers instants du

mouillage où les forces inertielles sont les plus actives. Le second axe de travail sur la capil-

larité s’inscrit dans la continuité du travail sur le couplage fort itératif avec l’utilisation d’un

modèle pour l’angle dynamique. Il pourrait être intéressant d’étudier l’influence d’un frotte-

ment au point triple sur l’angle dynamique, ce même frottement pouvant être extrait d’une

seconde analyse à l’échelle inférieure par une représentation de la rugosité. Le troisième axe

gravite autour de la problématique d’homogénéisation. Une accumulation de perméabilités

numériques en fonction de paramètres représentatifs à définir permettrait de créer des carto-

graphies de perméabilité pour des écoulements à l’échelle de la pièce. La pression capillaire

issue de l’homogénéisation pourrait être calculée à partir d’une équivalence énergétique entre

un écoulement fluide de Stokes et homogénéisé de Darcy. Une approche globale pourrait être

développée pour calculer conjointement la perméabilité et la pression capillaire.

À plus long terme, la géométrie des fibres pourrait être extraite d’images tomographiques. Une

analyse complète pourrait être menée dans le but d’extraire des critères morphologiques repré-

sentatifs de la microstructure et de l’étude de ces paramètres sur les grandeurs caractéristiques

de l’écoulement capillaire. Enfin, la versatilité des approches mises en place pourrait être ex-

ploitée dans de nombreux domaines où les écoulements forcés ou naturels, contrôlés par les

tensions de surface dans notre cas, agissent au sein de milieux structurés : elasto-capillarité,

microfabrication, microfluidique.

Ces recherches seront poursuivies dans le cadre de la chaire industrielle entre Mines Saint-

Étienne et Hexcel Reinforcements.
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Poiseuille flow
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A.1 Flow between two plates

An analytical solution can be derived for the Poiseuille problem of a laminar flow between

two plates. The global domain is presented in Fig. A.1 (A) and is simplified in 2D since the solu-

tion is constant in the x-direction. Incompressible Stokes equations have to be solved since the

(A) Global domain (B) 2D flow

FIGURE A.1 – Flow between two walls - Global 3D domain (A) and its restriction in 2D (B).

flow is supposed to be laminar:

−µ∆v +∇p = 0 (A.1)

∇·v = 0 (A.2)

The velocity is supposed to be only in the y-direction and every quantities are constants in

the x-direction. From the incompressibility constraint A.2, it comes that the velocity in the y-

direction depends only on z such that

v = vy (z)y (A.3)

where y is an unit vector in the y-direction.

The conservation of momentum equation A.1 is projected in each directions, and in the z-

direction is
∂p

∂z
= 0. (A.4)
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Therefore, the pressure is not changing in the z-direction and may only depend on y : p = p(y).

The last projection of the conservation of momentum equation in the y-direction reads

∂p

∂y
=µ∂

2vy

∂y2
. (A.5)

The left-hand side of the equation depends only on y whereas the right-hand side depends only

on z. Thus, ∂p
∂y =C and the pressure is linear in the y direction

p(y) = pout −pi n

L︸ ︷︷ ︸
C

y +pi n . (A.6)

The general solution for the velocity is

vy (z) = 1

2µ
C z2 +K1z +K2 (A.7)

Boundary conditions have to be used to obtain the analytical solution. The velocity is imposed

equal to zero at {z = 0}, then K2 = 0. For the condition on the upper wall two cases are going to

be considered: a slip and no-slip condition.

A.1.1 No-slip condition

This section investigate the case of a no-slip condition on the upper wall as shown in Fig.

A.1. The condition reads vy (zH ) = 0 and then the solution of a Poiseuille flow between two plates

with no-slip condition on each wall

vy = C

2µ

(
z2 −H z

)
p =C y +pi n

(A.8)

A.1.2 Slip condition

Let’s suppose that a slip condition is applied on the upper wall. The Navier condition gives

a value for the tangential component of the normal stress

σ ·n − [(σ ·n) ·n]n =−β [v − (v ·n)n] (A.9)

with β a friction coefficient. In the case of a Newtonian fluid and in this case, the Navier con-

dition may be rewritten as an equality between the shear stress and the tangential velocity

weighted by the friction coefficient

µ
∂vy

∂z
=−βvy (A.10)

After replacing Eq. A.7 in the previous Navier condition, the second coefficient K1 may be ex-

pressed as follow

K1 = 1

µ+βH

(
− β

2µ
C H 2 −C H

)
(A.11)
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The solution for Poiseuille flow with a no-split boundary condition at the bottom wall and a

Navier condition (slip) at the upper wall is

vy = C

2µ
z2 + 1

µ+βH

(
− β

2µ
C H 2 −C H

)
z

p =C y +pi n

(A.12)

When the friction coefficient increases, the solution tends to a no-slip condition.
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Appendix B

Capillary pressure based on energy
equivalence
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B.2 Numerical experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B.1 Stokes/Darcy energy equation

This appendix presents an equivalence between Stokes and Darcy based on the evaluation

of the power of external and internal efforts. First, the equation linking internal and external

powers is written based on the conservation of momentum without inertia effects. Then, the

equation is particularised for Stokes and Darcy cases by choosing the adapted constitutive law.

By identification, it is then possible to find a relationship between the terms in Stokes and Darcy

systems, accounting for the permeability in the case of a saturated flow. Finally, the same iden-

tification is possible in the case of a spontaneous capillary rise between the terms representing

the capillarity in both Stokes and Darcy systems.

(A) At t = t0 (B) At t = t f (C) boundary condition

FIGURE B.1 – Energy equivalence between Stokes and Darcy system - Domain definition
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B.1.1 Power relationship

Let us consider Ω the computational domain. This domain can be the microstructure de-

scribed in Fig. B.1 (A) on the left, ΩStokes , or the equivalent homogeneised medium like in Fig.

B.1 (A) on the right, ΩDar c y . In both cases, Ω contains two incompressible Newtonian fluids,

one a liquid and the other a gas. Neglecting inertia, the momentum balance equation writes as

∇·σ+ f = 0 inΩ (B.1)

withσ the stress tensor and f an external force. The power relationship is obtained by integrat-

ing this previous equation on the domainΩ after dotting it by the velocity. After integrating the

stress term by parts, it comes

−
∫
Ω
σ : ε̇(v )dV︸ ︷︷ ︸
P (i nt )

+
∫
∂Ω

(σ ·n) ·v dS︸ ︷︷ ︸
P (c)

+
∫
Ω

f ·v dV︸ ︷︷ ︸
P (d)︸ ︷︷ ︸

P (ext )

= 0 (B.2)

with ε̇(v ) = 1
2

(∇v +∇v T
)

and:

• P (ext ), the power of external efforts, made of the sum of

∗ P (c), the power of contact efforts

∗ P (d), the power of body forces

• P (i nt ), the power of internal efforts

The sum of external and internal power yields the variation of kinetic energy.

B.1.2 Constitutive law for Stokes and Darcy equations

The power relationship is applied to Stokes and Darcy in the case of a capillary action with-

out gravity effects. Both equations are derived by choosing the stress (σ), the normal stress (σ·n)

at the interfaces, and the external forces ( f ).

Stokes

In the case of a Stokes flow, the constitutive law isσ=−p I +2µε̇(v ), and f = 0 since gravity

is neglected. The contact efforts P (c) in Eq. B.2 represents the effects of surface tension: �σ ·
n� = ∇α

(
γtα

)
on interface ΓLV and considering a Navier friction condition, σ ·n = ∇α

(
γtα

)−
β (v − (v ·n)n) on each interface Γk with k ∈ {SL,SV }. A last contact condition is applied at the

bottom boundary ∂ΩN ,Stokes (see Fig. B.1 (C)), only for a saturated flow: σ ·n =−pext n.

Darcy

Stress in Darcy is limited to an hydrostatic pressure σ = −p I . Contrary to Stokes flow, the

external force represents a friction proportional to the velocity f =− µ
K v . The effort due to con-

tact represents the capillary pressure �σ ·n� = −pcap n at the only existent interface ΓLV and

σ ·n =−pext n at the bottom boundary ∂ΩN ,Dar c y in Fig. B.1 (C) for a saturated flow.
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B.1.3 Energy equivalence for saturated flow (without capillarity)

The relation B.2 is written for both Stokes and Darcy system. Velocity and pressure fields of

the Stokes system are denoted with the index •S and the sum of the power reads

−
∫
ΩStokes

(−pSδi j +2µε̇(v S)
)

: ε̇(v S)dV +
∫
∂Ω f i br es

(σ·n) ·v S dS+
∫
∂ΩN ,Stokes

(σ·n) ·v S dS = 0 (B.3)

In the case of an incompressible fluid, the pressure term does not work (∇ · v = 0) and after

replacing with the boundary values the relation becomes

−
∫
ΩStokes

2µε̇(v S) : ε̇(v S)dV −
∫
∂Ω f i br es

βv S ·v S dS −
∫
∂ΩN ,Stokes

pext n ·v S dS = 0 (B.4)

because the normal velocity is null on the fibres contours. Also for an incompressible fluid and

after replacing the boundary condition, the power equation for Darcy yields

−
∫
ΩDar c y

µ

K
v D ·v D dV −

∫
∂ΩN ,Dar c y

pext n ·v D dS = 0 (B.5)

Assuming that Stokes and Darcy systems carry the same amount of energy, the three terms

in Stokes system in Eq. B.4 are equal to the two terms in Darcy system in Eq. B.5. The same

constant external pressure pext is prescribed at the bottom boundary. Therefore, the last term in

both system is equal since the flow rate is the same −∫
∂ΩN ,Stokes

pext n ·v S dS =−∫
∂ΩN ,Dar c y

pext n ·
v D dS. It leads to the identification between power in Darcy and in Stokes systems∫

ΩStokes

2µε̇(v S) : ε̇(v S)dV +
∫
∂Ω f i br es

β(v S − (v S ·n)n) ·v S dS =
∫
ΩDar c y

µ

K
v D ·v D dV (B.6)

In the Stokes system, the viscous dissipation and friction on the fibres are represented by fric-

tion in the Darcy equation. The permeability is unrelated to the fluid viscosity, since the friction

in Darcy is proportional to µ
K .

Two cases are now investigated: the no-slip and slip conditions on the fibres.

• No-slip condition v = 0 on the fibres

The permeability represents the viscous dissipation in Stokes. Supposing that the viscos-

ity is constant in the fluid, like the permeability in the homogeneised domain then∫
ΩStokes

2ε̇(v S) : ε̇(v S)dV = 1

K

∫
ΩDar c y

v D ·v D dV. (B.7)

The fluid is set in motion by the gradient of pressure between the inlet (p = pext ) and

oulet (p = 0). The Darcy velocity has an analytical solution for a flow in 1D: a constant

velocity vD = K
µ

pext
L , where L is the domain length (reported in Fig. B.1 (C)). In that case,

the permeability could be computed using the formula

K =
2µ2L2

∫
ΩStokes

ε̇(v S) : ε̇(v S)dV

p2
ext

∫
ΩDar c y

dV
(B.8)
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Appendix B. Capillary pressure based on energy equivalence

undependently of the fluid viscosity because the velocity is inversely proportional to the

viscosity in Stokes equations vS ∝ 1/µ.

• Slip condition on the fibres (Navier friction)

Using the same assumption on the Darcy velocity, the formula for the permeability reads

K =
µL2

(
2µ

∫
ΩStokes

ε̇(v S) : ε̇(v S)dV +β
∫
∂Ω f i br es

v S ·v S dS

)

p2
ext

∫
ΩDar c y

dV
. (B.9)

In that case, the permeability depends on the fluid and is not a parameter of the mi-

crostructure.

B.1.4 Energy equivalence for a bifluid flow

Let us now consider the capillary forces, by assuming that the contribution to the variation

of energy in Stokes and Darcy systems between two moments t0 and t f > t0, due to capillary

effects are equal:

∑
k∈{LV ,SL,SV }

∫ t f

t0

(∫
Γk,Stokes

∇α
(
γk tα

) ·v S dS

)
d t =

∫ t f

t0

(∫
ΓLV ,Dar c y

pcap v D ·n dS

)
d t (B.10)

In our case, with impervious fibres v S · n = 0 in Stokes on the fibres contours. Then, with a

constant surface tension coefficient, the capillary energy equality becomes

∫ t f

t0

(∫
ΓLV ,Stokes

γLV C v S ·n dS

)
d t =

∫ t f

t0

(∫
ΓLV ,Dar c y

pcap v D ·n dS

)
d t (B.11)

The right-hand side term of the Darcy domain may be analytically computed by assuming that

the Darcy flow is 1D (i.e. v D ·n = dh
d t ) and that the capillary pressure is constant on the inter-

face and over time. The Stokes term on the left-hand side depends on the curvature C and is

numerically computed. Therefore, a precise computation of the curvature is a crucial point. Eq.

B.11 is transformed to express the capillary pressure as

pcap =

∫ t f

t0

(∫
ΓLV ,Stokes

γLV C v S ·n dS

)
d t

l
(
h(t f )−h(t0)

) (B.12)

This definition of the capillary pressure has the advantage to be independent of the perme-

ability, contrary to the definition based on the equivalence with Darcy 1D. Note in Eq. B.12 the

variation of the liquid height between t0 and t f in the Darcy domain, has been taken equal to

the one obtained by simulation in the Stokes domain.
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B.2 Numerical experiment

Numerical experiments are carried out using the microstructure with a hexagonal packing

as described in the Results chapter 5. The first test is for a saturated flow to compute the nu-

merical permeability and the second is a spontaneous impregnation.

B.2.1 Permeability

The results from the numerical permeability using methods 1 and 2 in Fig. 5.25 are com-

pared with the numerical permeability computed from Eq. B.8. The permeability computed

with the three methods in reported in Fig. B.3. The method based on the equation of Darcy

0 10 20 30 40 50 60 70 80

# fibres

5.0×10−5

1.0×10−4

1.5×10−4

2.0×10−4

2.5×10−4

3.0×10−4

3.5×10−4

4.0×10−4

K
 (
x
2
)

method 1: Darcy
method 2: Drag
method 3: Energy

FIGURE B.2 – Saturated flow in hexagonal packing - Numerical permeability

written in terms of flow rate gives close results with the introduced third method based on en-

ergy equivalence. The second method gives an estimation with excess for the permeability as

mentioned in the thesis.

B.2.2 Capillary pressure

The capillary pressure is computed from Eq. B.11, in the case of a spontaneous capillary rise

in a hexagonal fibre packing as presented in the Results section 5 of the thesis. The resin advanc-

ing between fibres is represented in Fig. B.3 at different instants and coloured in dark and light

blue close to the interface. Time t̃ measures the time after the interface has touched the fibre.

The weak coupling seems to struggle with sudden geometry changes. For example, the curva-

ture is inverted between subfigure (C) and (F). Yet, it is of paramount importance to obtain a

realistic description of the interface when advancing between two fibres with a high velocity at

the triple point since the capillary pressure depends on the curvature as shown in Eq. B.12. The

lack of accuracy of the weak coupling has been demonstrated and discussed with the case of a
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(A) t̃ = 0µs (B) t̃ = 0.1µs (C) t̃ = 0.2µs

(D) t̃ = 0.3µs (E) t̃ = 0.4µs (F) t̃ = 0.5µs

FIGURE B.3 – Capillary rise in hexagonal packing - Weak coupling

drop spreading on a sinusoidal surface. A strong coupling approach has been tested and the in-

terface position is represented in Fig. B.4. Data have been post-processed with Paraview [8] for

numerically integrating along the interface and in time the numerator in Eq. B.12, to compute

the capillary pressure.

Due to time constraint, only one test has been performed, resulting in a capillary pressure of

3.6 kPa. In the same hexagonal packing, the method based on Darcy 1D for the computation

of the capillary pressure has yielded a value of 42 kPa but with a no-slip condition for the per-

meability estimation in method 1 associated with. If one wants to compare capillary pressures

evaluated with the present energetic method, capillary pressure from the 1D Darcy method

should consider a permeability with a free slip boundary condition. In that case, computations

yield a five times higher permeability (1.26×10−12 m2), and so a capillary pressure of 8.4 kPa.

Therefore, the capillary pressure computed from the presented energy method gives compara-

ble results with the Darcy 1D method. This encouraging result has to be continued and further

tests have to carried out with the strong coupling in both cases.
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B.2. Numerical experiment

(A) t̃ = 0µs (B) t̃ = 0.02µs (C) t̃ = 0.05µs

(D) t̃ = 0.07µs (E) t̃ = 0.11µs (F) t̃ = 0.215µs

FIGURE B.4 – Capillary rise in hexagonal packing - Strong coupling
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Abstract:

Accounting for surface tension effects is of major interest in many fields in engineering. More

specifically, in the field of LCM composite processing, surface tension driven phenomena con-

trol the impregnation of liquid resin into fibrous preforms. In the work described here, a nu-

merical method able to deal with a general bi-fluid model integrating capillary actions is de-

veloped and implemented. Firstly, the method relies on a precise computation of the surface

tension force. Considering a mathematical transformation of the surface tension virtual work,

the regularity required for the solution on the evolving curved interface is weakened, and the

mechanical equilibrium of the triple line can be enforced as a natural condition. Consequently,

contact angles of the liquid over the solid phase result from this equilibrium. Secondly, for an

exhaustive capillary action representation, pressure and pressure gradient jumps across the in-

terface must be accounted for. A pressure enrichment strategy is used to properly compute

the discontinuities in both pressure and gradient fields. On top of that, a strong coupling strat-

egy is shown to yield physically sound solutions even for complex solid surfaces. The resulting

method is shown to predict accurately static contact angles for several test cases and is evalu-

ated in complex 3D cases. Owing to this methodology, capillary pressure and permeability can

be extracted, upscaled from flows computed in both model and more realistic microstructures.
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Résumé :

La prise en compte des effets liés à la tension superficielle est d’une importance majeure dans

l’élaboration de composites par procédés LCM où ils influencent l’imprégnation de la résine

liquide dans les préformes fibreuses, et donc la santé matière finale. Dans ce travail, une méth-

ode numérique capable de traiter un modèle général bi-fluide intégrant des actions capillaires

est développée et mise en œuvre. La méthode repose d’abord sur le calcul précis de la force

de tension superficielle. Considérant une transformation mathématique du travail virtuel de la

tension superficielle, la contrainte de régularité requise pour la solution sur l’interface courbe

en mouvement est réduite, et l’équilibre mécanique de la ligne triple peut être imposé comme

une condition naturelle. Par conséquent, les angles de contact du liquide sur la phase solide

résultent de cet équilibre. Ensuite, pour une représentation exhaustive des actions capillaires,

les sauts de pression et de gradient de pression à travers l’interface doivent être pris en compte.

Une stratégie d’enrichissement de la pression est utilisée pour calculer correctement les dis-

continuités dans les champs de pression et de gradient. De plus, une stratégie de couplage

fort itératif permet d’obtenir des solutions physiquement acceptables, même pour des surfaces

solides complexes. La méthode qui en résulte permet de prédire correctement des angles de

contact statiques pour plusieurs cas tests, elle est également évaluée sur des cas 3D complexes.

Grâce à cette méthodologie, il est possible d’extraire la pression capillaire et la perméabilité à

partir de moyennes des flux calculés dans des microstructures d’abord modèles puis plus réal-

istes.
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